1771100000000000 a001 17711/817138163596*14662949395604^(19/21) 1771100000000000 a001 89/1568437211*3461452808002^(11/12) 1771100000000000 a001 17711/45537549124*817138163596^(17/19) 1771100000000000 a001 17711/45537549124*14662949395604^(17/21) 1771100000000000 a001 17711/45537549124*192900153618^(17/18) 1771100000000000 a001 17711/17393796001*14662949395604^(7/9) 1771100000000000 a001 17711/17393796001*505019158607^(7/8) 1771100000000000 a001 17711/2537720636*45537549124^(15/17) 1771100000000000 a001 17711/2537720636*312119004989^(9/11) 1771100000000000 a001 17711/2537720636*14662949395604^(5/7) 1771100000000000 a001 17711/2537720636*192900153618^(5/6) 1771100000000000 a001 17711/2537720636*28143753123^(9/10) 1771100000000000 a001 17711/2537720636*10749957122^(15/16) 1771100000000000 a001 433494437/79206+433494437/79206*5^(1/2) 1771100000000000 a001 165580141/39603*141422324^(1/13) 1771100000000000 a001 267914296/39603*87403803^(1/19) 1771100000000000 a001 165580141/39603*2537720636^(1/15) 1771100000000000 a001 165580141/39603*45537549124^(1/17) 1771100000000000 a001 165580141/39603*14662949395604^(1/21) 1771100000000000 a001 165580141/39603*(1/2+1/2*5^(1/2))^3 1771100000000000 a001 165580141/39603*10749957122^(1/16) 1771100000000000 a001 165580141/39603*599074578^(1/14) 1771100000000000 a001 39088169/39603*33385282^(1/6) 1771100000000000 a001 267914296/39603*33385282^(1/18) 1771100000000000 a001 17711/141422324*2537720636^(13/15) 1771100000000000 a001 17711/141422324*45537549124^(13/17) 1771100000000000 a001 17711/141422324*14662949395604^(13/21) 1771100000000000 a001 17711/141422324*192900153618^(13/18) 1771100000000000 a001 17711/141422324*73681302247^(3/4) 1771100000000000 a001 17711/141422324*10749957122^(13/16) 1771100000000000 a001 63245986/39603*2537720636^(1/9) 1771100000000000 a001 63245986/39603*312119004989^(1/11) 1771100000000000 a001 63245986/39603*(1/2+1/2*5^(1/2))^5 1771100000000000 a001 63245986/39603*28143753123^(1/10) 1771100000000000 a001 17711/141422324*599074578^(13/14) 1771100000000000 a001 63245986/39603*228826127^(1/8) 1771100000000000 a001 34111385/13201*33385282^(1/9) 1771100000000000 a001 165580141/39603*33385282^(1/12) 1771100000000000 a001 24157817/39603*17393796001^(1/7) 1771100000000000 a001 24157817/39603*14662949395604^(1/9) 1771100000000000 a001 24157817/39603*(1/2+1/2*5^(1/2))^7 1771100000000000 a001 24157817/39603*599074578^(1/6) 1771100000000000 a001 267914296/39603*12752043^(1/17) 1771100000000000 a001 4976784/13201*12752043^(4/17) 1771100000000001 a001 34111385/13201*12752043^(2/17) 1771100000000001 a001 39088169/39603*12752043^(3/17) 1771100000000004 a001 9227465/39603*141422324^(3/13) 1771100000000004 a001 17711/20633239*2537720636^(7/9) 1771100000000004 a001 17711/20633239*17393796001^(5/7) 1771100000000004 a001 17711/20633239*312119004989^(7/11) 1771100000000004 a001 17711/20633239*14662949395604^(5/9) 1771100000000004 a001 17711/20633239*(1/2+1/2*5^(1/2))^35 1771100000000004 a001 17711/20633239*505019158607^(5/8) 1771100000000004 a001 17711/20633239*28143753123^(7/10) 1771100000000004 a001 9227465/39603*2537720636^(1/5) 1771100000000004 a001 9227465/39603*45537549124^(3/17) 1771100000000004 a001 9227465/39603*14662949395604^(1/7) 1771100000000004 a001 9227465/39603*(1/2+1/2*5^(1/2))^9 1771100000000004 a001 9227465/39603*192900153618^(1/6) 1771100000000004 a001 9227465/39603*10749957122^(3/16) 1771100000000004 a001 9227465/39603*599074578^(3/14) 1771100000000004 a001 17711/20633239*599074578^(5/6) 1771100000000004 a001 17711/20633239*228826127^(7/8) 1771100000000004 a001 9227465/39603*33385282^(1/4) 1771100000000004 a001 267914296/39603*4870847^(1/16) 1771100000000009 a001 34111385/13201*4870847^(1/8) 1771100000000012 a001 5702887/39603*4870847^(5/16) 1771100000000013 a001 39088169/39603*4870847^(3/16) 1771100000000017 a001 4976784/13201*4870847^(1/4) 1771100000000019 a001 3524578/39603*7881196^(1/3) 1771100000000028 a001 89/39604*141422324^(11/13) 1771100000000028 a001 89/39604*2537720636^(11/15) 1771100000000028 a001 89/39604*45537549124^(11/17) 1771100000000028 a001 89/39604*312119004989^(3/5) 1771100000000028 a001 89/39604*14662949395604^(11/21) 1771100000000028 a001 89/39604*(1/2+1/2*5^(1/2))^33 1771100000000028 a001 89/39604*192900153618^(11/18) 1771100000000028 a001 89/39604*10749957122^(11/16) 1771100000000028 a001 89/39604*1568397607^(3/4) 1771100000000028 a001 3524578/39603*312119004989^(1/5) 1771100000000028 a001 3524578/39603*(1/2+1/2*5^(1/2))^11 1771100000000028 a001 3524578/39603*1568397607^(1/4) 1771100000000028 a001 89/39604*599074578^(11/14) 1771100000000029 a001 89/39604*33385282^(11/12) 1771100000000034 a001 267914296/39603*1860498^(1/15) 1771100000000051 a001 165580141/39603*1860498^(1/10) 1771100000000068 a001 34111385/13201*1860498^(2/15) 1771100000000085 a001 63245986/39603*1860498^(1/6) 1771100000000102 a001 39088169/39603*1860498^(1/5) 1771100000000130 a001 726103/13201*1860498^(2/5) 1771100000000134 a001 4976784/13201*1860498^(4/15) 1771100000000157 a001 9227465/39603*1860498^(3/10) 1771100000000159 a001 5702887/39603*1860498^(1/3) 1771100000000195 a001 1346269/39603*141422324^(1/3) 1771100000000195 a001 17711/3010349*(1/2+1/2*5^(1/2))^31 1771100000000195 a001 17711/3010349*9062201101803^(1/2) 1771100000000195 a001 1346269/39603*(1/2+1/2*5^(1/2))^13 1771100000000195 a001 1346269/39603*73681302247^(1/4) 1771100000000250 a001 267914296/39603*710647^(1/14) 1771100000000500 a001 34111385/13201*710647^(1/7) 1771100000000751 a001 39088169/39603*710647^(3/14) 1771100000000877 a001 24157817/39603*710647^(1/4) 1771100000001000 a001 4976784/13201*710647^(2/7) 1771100000001241 a001 5702887/39603*710647^(5/14) 1771100000001241 a001 832040/39603*710647^(1/2) 1771100000001326 a001 514229/39603*7881196^(5/11) 1771100000001337 a001 514229/39603*20633239^(3/7) 1771100000001339 a001 514229/39603*141422324^(5/13) 1771100000001339 a001 17711/1149851*(1/2+1/2*5^(1/2))^29 1771100000001339 a001 17711/1149851*1322157322203^(1/2) 1771100000001339 a001 514229/39603*2537720636^(1/3) 1771100000001339 a001 514229/39603*45537549124^(5/17) 1771100000001339 a001 514229/39603*312119004989^(3/11) 1771100000001339 a001 514229/39603*14662949395604^(5/21) 1771100000001339 a001 514229/39603*(1/2+1/2*5^(1/2))^15 1771100000001339 a001 514229/39603*192900153618^(5/18) 1771100000001339 a001 514229/39603*28143753123^(3/10) 1771100000001339 a001 514229/39603*10749957122^(5/16) 1771100000001339 a001 514229/39603*599074578^(5/14) 1771100000001339 a001 514229/39603*228826127^(3/8) 1771100000001340 a001 514229/39603*33385282^(5/12) 1771100000001428 a001 726103/13201*710647^(3/7) 1771100000001595 a001 514229/39603*1860498^(1/2) 1771100000001849 a001 267914296/39603*271443^(1/13) 1771100000002485 a001 233802911/620166*24476^(8/21) 1771100000002922 a001 1836311903/4870847*24476^(8/21) 1771100000002985 a001 1602508992/4250681*24476^(8/21) 1771100000002995 a001 12586269025/33385282*24476^(8/21) 1771100000002996 a001 10983760033/29134601*24476^(8/21) 1771100000002996 a001 86267571272/228826127*24476^(8/21) 1771100000002996 a001 267913919/710646*24476^(8/21) 1771100000002996 a001 591286729879/1568397607*24476^(8/21) 1771100000002996 a001 516002918640/1368706081*24476^(8/21) 1771100000002996 a001 4052739537881/10749957122*24476^(8/21) 1771100000002996 a001 3536736619241/9381251041*24476^(8/21) 1771100000002996 a001 6557470319842/17393796001*24476^(8/21) 1771100000002996 a001 2504730781961/6643838879*24476^(8/21) 1771100000002996 a001 956722026041/2537720636*24476^(8/21) 1771100000002996 a001 365435296162/969323029*24476^(8/21) 1771100000002996 a001 139583862445/370248451*24476^(8/21) 1771100000002996 a001 53316291173/141422324*24476^(8/21) 1771100000002997 a001 20365011074/54018521*24476^(8/21) 1771100000003000 a001 7778742049/20633239*24476^(8/21) 1771100000003025 a001 2971215073/7881196*24476^(8/21) 1771100000003192 a001 1134903170/3010349*24476^(8/21) 1771100000003698 a001 34111385/13201*271443^(2/13) 1771100000004336 a001 433494437/1149851*24476^(8/21) 1771100000005546 a001 39088169/39603*271443^(3/13) 1771100000006864 a001 433494437/39603*103682^(1/24) 1771100000007394 a001 4976784/13201*271443^(4/13) 1771100000009158 a001 17711/439204*7881196^(9/11) 1771100000009181 a001 17711/439204*141422324^(9/13) 1771100000009181 a001 17711/439204*2537720636^(3/5) 1771100000009181 a001 17711/439204*45537549124^(9/17) 1771100000009181 a001 17711/439204*14662949395604^(3/7) 1771100000009181 a001 17711/439204*(1/2+1/2*5^(1/2))^27 1771100000009181 a001 17711/439204*192900153618^(1/2) 1771100000009181 a001 17711/439204*10749957122^(9/16) 1771100000009181 a001 196418/39603*45537549124^(1/3) 1771100000009181 a001 196418/39603*(1/2+1/2*5^(1/2))^17 1771100000009181 a001 17711/439204*599074578^(9/14) 1771100000009182 a001 17711/439204*33385282^(3/4) 1771100000009186 a001 196418/39603*12752043^(1/2) 1771100000009234 a001 5702887/39603*271443^(5/13) 1771100000009641 a001 17711/439204*1860498^(9/10) 1771100000011019 a001 726103/13201*271443^(6/13) 1771100000011285 a001 105937/13201*271443^(8/13) 1771100000011975 a001 5702887/64079*24476^(11/21) 1771100000012178 a001 165580141/439204*24476^(8/21) 1771100000012214 a001 1346269/39603*271443^(1/2) 1771100000012431 a001 832040/39603*271443^(7/13) 1771100000013729 a001 267914296/39603*103682^(1/12) 1771100000020594 a001 165580141/39603*103682^(1/8) 1771100000027458 a001 34111385/13201*103682^(1/6) 1771100000031181 a001 75025/15127*15127^(17/20) 1771100000034323 a001 63245986/39603*103682^(5/24) 1771100000037507 a001 28657/39603*64079^(21/23) 1771100000038708 a001 2971215073/271443*9349^(1/19) 1771100000041188 a001 39088169/39603*103682^(1/4) 1771100000048053 a001 24157817/39603*103682^(7/24) 1771100000051329 a001 433494437/39603*39603^(1/22) 1771100000054916 a001 4976784/13201*103682^(1/3) 1771100000059238 a001 7778742049/710647*9349^(1/19) 1771100000061786 a001 9227465/39603*103682^(3/8) 1771100000062234 a001 10182505537/930249*9349^(1/19) 1771100000062671 a001 53316291173/4870847*9349^(1/19) 1771100000062735 a001 139583862445/12752043*9349^(1/19) 1771100000062744 a001 182717648081/16692641*9349^(1/19) 1771100000062745 a001 956722026041/87403803*9349^(1/19) 1771100000062745 a001 2504730781961/228826127*9349^(1/19) 1771100000062745 a001 3278735159921/299537289*9349^(1/19) 1771100000062745 a001 10610209857723/969323029*9349^(1/19) 1771100000062745 a001 4052739537881/370248451*9349^(1/19) 1771100000062745 a001 387002188980/35355581*9349^(1/19) 1771100000062746 a001 591286729879/54018521*9349^(1/19) 1771100000062750 a001 7787980473/711491*9349^(1/19) 1771100000062774 a001 21566892818/1970299*9349^(1/19) 1771100000062927 a001 17711/167761*20633239^(5/7) 1771100000062930 a001 17711/167761*2537720636^(5/9) 1771100000062930 a001 17711/167761*312119004989^(5/11) 1771100000062930 a001 17711/167761*(1/2+1/2*5^(1/2))^25 1771100000062930 a001 17711/167761*3461452808002^(5/12) 1771100000062930 a001 17711/167761*28143753123^(1/2) 1771100000062930 a001 75025/39603*817138163596^(1/3) 1771100000062930 a001 75025/39603*(1/2+1/2*5^(1/2))^19 1771100000062930 a001 17711/167761*228826127^(5/8) 1771100000062930 a001 75025/39603*87403803^(1/2) 1771100000062941 a001 32951280099/3010349*9349^(1/19) 1771100000063356 a001 17711/167761*1860498^(5/6) 1771100000064085 a001 12586269025/1149851*9349^(1/19) 1771100000065927 a001 63245986/167761*24476^(8/21) 1771100000068636 a001 5702887/39603*103682^(5/12) 1771100000071927 a001 1201881744/109801*9349^(1/19) 1771100000075540 a001 3524578/39603*103682^(11/24) 1771100000082302 a001 726103/13201*103682^(1/2) 1771100000089437 a001 1346269/39603*103682^(13/24) 1771100000095594 a001 832040/39603*103682^(7/12) 1771100000099528 a001 121393/39603*103682^(3/4) 1771100000102658 a001 267914296/39603*39603^(1/11) 1771100000104310 a001 514229/39603*103682^(5/8) 1771100000106329 a001 105937/13201*103682^(2/3) 1771100000119740 a001 165580141/271443*24476^(1/3) 1771100000119803 a001 102334155/103682*24476^(2/7) 1771100000125676 a001 1836311903/167761*9349^(1/19) 1771100000125882 a001 196418/39603*103682^(17/24) 1771100000140270 a001 433494437/710647*24476^(1/3) 1771100000143265 a001 567451585/930249*24476^(1/3) 1771100000143702 a001 2971215073/4870847*24476^(1/3) 1771100000143766 a001 7778742049/12752043*24476^(1/3) 1771100000143775 a001 10182505537/16692641*24476^(1/3) 1771100000143777 a001 53316291173/87403803*24476^(1/3) 1771100000143777 a001 139583862445/228826127*24476^(1/3) 1771100000143777 a001 182717648081/299537289*24476^(1/3) 1771100000143777 a001 956722026041/1568397607*24476^(1/3) 1771100000143777 a001 2504730781961/4106118243*24476^(1/3) 1771100000143777 a001 3278735159921/5374978561*24476^(1/3) 1771100000143777 a001 10610209857723/17393796001*24476^(1/3) 1771100000143777 a001 4052739537881/6643838879*24476^(1/3) 1771100000143777 a001 1134903780/1860499*24476^(1/3) 1771100000143777 a001 591286729879/969323029*24476^(1/3) 1771100000143777 a001 225851433717/370248451*24476^(1/3) 1771100000143777 a001 21566892818/35355581*24476^(1/3) 1771100000143777 a001 32951280099/54018521*24476^(1/3) 1771100000143781 a001 1144206275/1875749*24476^(1/3) 1771100000143805 a001 1201881744/1970299*24476^(1/3) 1771100000143972 a001 1836311903/3010349*24476^(1/3) 1771100000145116 a001 701408733/1149851*24476^(1/3) 1771100000152771 a001 9227465/64079*24476^(10/21) 1771100000152958 a001 66978574/109801*24476^(1/3) 1771100000153987 a001 165580141/39603*39603^(3/22) 1771100000190493 a001 6624/2161*15127^(9/10) 1771100000193360 a001 75025/39603*103682^(19/24) 1771100000205316 a001 34111385/13201*39603^(2/11) 1771100000206707 a001 9303105/15251*24476^(1/3) 1771100000256645 a001 63245986/39603*39603^(5/22) 1771100000260520 a001 267914296/271443*24476^(2/7) 1771100000260584 a001 165580141/103682*24476^(5/21) 1771100000281050 a001 701408733/710647*24476^(2/7) 1771100000284046 a001 1836311903/1860498*24476^(2/7) 1771100000284483 a001 4807526976/4870847*24476^(2/7) 1771100000284547 a001 12586269025/12752043*24476^(2/7) 1771100000284556 a001 32951280099/33385282*24476^(2/7) 1771100000284557 a001 86267571272/87403803*24476^(2/7) 1771100000284557 a001 225851433717/228826127*24476^(2/7) 1771100000284557 a001 591286729879/599074578*24476^(2/7) 1771100000284557 a001 1548008755920/1568397607*24476^(2/7) 1771100000284557 a001 4052739537881/4106118243*24476^(2/7) 1771100000284557 a001 4807525989/4870846*24476^(2/7) 1771100000284557 a001 6557470319842/6643838879*24476^(2/7) 1771100000284557 a001 2504730781961/2537720636*24476^(2/7) 1771100000284557 a001 956722026041/969323029*24476^(2/7) 1771100000284557 a001 365435296162/370248451*24476^(2/7) 1771100000284558 a001 139583862445/141422324*24476^(2/7) 1771100000284558 a001 53316291173/54018521*24476^(2/7) 1771100000284562 a001 20365011074/20633239*24476^(2/7) 1771100000284586 a001 7778742049/7881196*24476^(2/7) 1771100000284753 a001 2971215073/3010349*24476^(2/7) 1771100000285897 a001 1134903170/1149851*24476^(2/7) 1771100000293546 a001 14930352/64079*24476^(3/7) 1771100000293739 a001 433494437/439204*24476^(2/7) 1771100000307974 a001 39088169/39603*39603^(3/11) 1771100000347488 a001 165580141/167761*24476^(2/7) 1771100000359304 a001 24157817/39603*39603^(7/22) 1771100000386996 a001 433494437/39603*15127^(1/20) 1771100000387155 a001 23184/51841*64079^(22/23) 1771100000401301 a001 433494437/271443*24476^(5/21) 1771100000401365 a001 133957148/51841*24476^(4/21) 1771100000410631 a001 4976784/13201*39603^(4/11) 1771100000421831 a001 1134903170/710647*24476^(5/21) 1771100000424190 a001 28657/39603*439204^(7/9) 1771100000424826 a001 2971215073/1860498*24476^(5/21) 1771100000425263 a001 7778742049/4870847*24476^(5/21) 1771100000425327 a001 20365011074/12752043*24476^(5/21) 1771100000425336 a001 53316291173/33385282*24476^(5/21) 1771100000425338 a001 139583862445/87403803*24476^(5/21) 1771100000425338 a001 365435296162/228826127*24476^(5/21) 1771100000425338 a001 956722026041/599074578*24476^(5/21) 1771100000425338 a001 2504730781961/1568397607*24476^(5/21) 1771100000425338 a001 6557470319842/4106118243*24476^(5/21) 1771100000425338 a001 10610209857723/6643838879*24476^(5/21) 1771100000425338 a001 4052739537881/2537720636*24476^(5/21) 1771100000425338 a001 1548008755920/969323029*24476^(5/21) 1771100000425338 a001 591286729879/370248451*24476^(5/21) 1771100000425338 a001 225851433717/141422324*24476^(5/21) 1771100000425339 a001 86267571272/54018521*24476^(5/21) 1771100000425342 a001 32951280099/20633239*24476^(5/21) 1771100000425367 a001 12586269025/7881196*24476^(5/21) 1771100000425534 a001 4807526976/3010349*24476^(5/21) 1771100000426678 a001 1836311903/1149851*24476^(5/21) 1771100000431313 a001 28657/39603*7881196^(7/11) 1771100000431329 a001 28657/39603*20633239^(3/5) 1771100000431331 a001 28657/39603*141422324^(7/13) 1771100000431331 a001 17711/64079*(1/2+1/2*5^(1/2))^23 1771100000431331 a001 17711/64079*4106118243^(1/2) 1771100000431331 a001 28657/39603*2537720636^(7/15) 1771100000431331 a001 28657/39603*17393796001^(3/7) 1771100000431331 a001 28657/39603*45537549124^(7/17) 1771100000431331 a001 28657/39603*14662949395604^(1/3) 1771100000431331 a001 28657/39603*(1/2+1/2*5^(1/2))^21 1771100000431331 a001 28657/39603*192900153618^(7/18) 1771100000431331 a001 28657/39603*10749957122^(7/16) 1771100000431331 a001 28657/39603*599074578^(1/2) 1771100000431332 a001 28657/39603*33385282^(7/12) 1771100000431690 a001 28657/39603*1860498^(7/10) 1771100000433962 a001 28657/39603*710647^(3/4) 1771100000434329 a001 24157817/64079*24476^(8/21) 1771100000434520 a001 701408733/439204*24476^(5/21) 1771100000461966 a001 9227465/39603*39603^(9/22) 1771100000488269 a001 267914296/167761*24476^(5/21) 1771100000494077 a001 701408733/64079*9349^(1/19) 1771100000513280 a001 5702887/39603*39603^(5/11) 1771100000542081 a001 233802911/90481*24476^(4/21) 1771100000542145 a001 433494437/103682*24476^(1/7) 1771100000562612 a001 1836311903/710647*24476^(4/21) 1771100000564649 a001 3524578/39603*39603^(1/2) 1771100000565378 a001 121393/103682*64079^(20/23) 1771100000565607 a001 267084832/103361*24476^(4/21) 1771100000566044 a001 12586269025/4870847*24476^(4/21) 1771100000566108 a001 10983760033/4250681*24476^(4/21) 1771100000566117 a001 43133785636/16692641*24476^(4/21) 1771100000566118 a001 75283811239/29134601*24476^(4/21) 1771100000566119 a001 591286729879/228826127*24476^(4/21) 1771100000566119 a001 86000486440/33281921*24476^(4/21) 1771100000566119 a001 4052739537881/1568397607*24476^(4/21) 1771100000566119 a001 3536736619241/1368706081*24476^(4/21) 1771100000566119 a001 3278735159921/1268860318*24476^(4/21) 1771100000566119 a001 2504730781961/969323029*24476^(4/21) 1771100000566119 a001 956722026041/370248451*24476^(4/21) 1771100000566119 a001 182717648081/70711162*24476^(4/21) 1771100000566119 a001 139583862445/54018521*24476^(4/21) 1771100000566123 a001 53316291173/20633239*24476^(4/21) 1771100000566147 a001 10182505537/3940598*24476^(4/21) 1771100000566314 a001 7778742049/3010349*24476^(4/21) 1771100000567458 a001 2971215073/1149851*24476^(4/21) 1771100000575109 a001 39088169/64079*24476^(1/3) 1771100000575300 a001 567451585/219602*24476^(4/21) 1771100000575491 a001 28657/39603*103682^(7/8) 1771100000589221 a001 17711/64079*103682^(23/24) 1771100000615875 a001 726103/13201*39603^(6/11) 1771100000617351 a001 98209/51841*64079^(19/23) 1771100000623416 a001 317811/103682*64079^(18/23) 1771100000629049 a001 433494437/167761*24476^(4/21) 1771100000633593 a001 75025/103682*64079^(21/23) 1771100000647016 a001 514229/103682*64079^(17/23) 1771100000663918 a001 416020/51841*64079^(16/23) 1771100000667474 a001 1346269/39603*39603^(13/22) 1771100000668588 a001 121393/271443*64079^(22/23) 1771100000682862 a001 1134903170/271443*24476^(1/7) 1771100000682926 a001 701408733/103682*24476^(2/21) 1771100000683379 a001 1346269/103682*64079^(15/23) 1771100000697909 a001 2/28657*(1/2+1/2*5^(1/2))^45 1771100000701863 a001 46347/2206*64079^(14/23) 1771100000703392 a001 2971215073/710647*24476^(1/7) 1771100000706388 a001 7778742049/1860498*24476^(1/7) 1771100000706825 a001 20365011074/4870847*24476^(1/7) 1771100000706888 a001 53316291173/12752043*24476^(1/7) 1771100000706898 a001 139583862445/33385282*24476^(1/7) 1771100000706899 a001 365435296162/87403803*24476^(1/7) 1771100000706899 a001 956722026041/228826127*24476^(1/7) 1771100000706899 a001 2504730781961/599074578*24476^(1/7) 1771100000706899 a001 6557470319842/1568397607*24476^(1/7) 1771100000706899 a001 10610209857723/2537720636*24476^(1/7) 1771100000706899 a001 4052739537881/969323029*24476^(1/7) 1771100000706899 a001 1548008755920/370248451*24476^(1/7) 1771100000706899 a001 591286729879/141422324*24476^(1/7) 1771100000706900 a001 225851433717/54018521*24476^(1/7) 1771100000706903 a001 86267571272/20633239*24476^(1/7) 1771100000706928 a001 32951280099/7881196*24476^(1/7) 1771100000707095 a001 12586269025/3010349*24476^(1/7) 1771100000708239 a001 4807526976/1149851*24476^(1/7) 1771100000709649 a001 317811/710647*64079^(22/23) 1771100000715639 a001 416020/930249*64079^(22/23) 1771100000715889 a001 63245986/64079*24476^(2/7) 1771100000716081 a001 1836311903/439204*24476^(1/7) 1771100000716514 a001 2178309/4870847*64079^(22/23) 1771100000716641 a001 5702887/12752043*64079^(22/23) 1771100000716660 a001 7465176/16692641*64079^(22/23) 1771100000716662 a001 39088169/87403803*64079^(22/23) 1771100000716663 a001 102334155/228826127*64079^(22/23) 1771100000716663 a001 133957148/299537289*64079^(22/23) 1771100000716663 a001 701408733/1568397607*64079^(22/23) 1771100000716663 a001 1836311903/4106118243*64079^(22/23) 1771100000716663 a001 2403763488/5374978561*64079^(22/23) 1771100000716663 a001 12586269025/28143753123*64079^(22/23) 1771100000716663 a001 32951280099/73681302247*64079^(22/23) 1771100000716663 a001 43133785636/96450076809*64079^(22/23) 1771100000716663 a001 225851433717/505019158607*64079^(22/23) 1771100000716663 a001 10610209857723/23725150497407*64079^(22/23) 1771100000716663 a001 139583862445/312119004989*64079^(22/23) 1771100000716663 a001 53316291173/119218851371*64079^(22/23) 1771100000716663 a001 10182505537/22768774562*64079^(22/23) 1771100000716663 a001 7778742049/17393796001*64079^(22/23) 1771100000716663 a001 2971215073/6643838879*64079^(22/23) 1771100000716663 a001 567451585/1268860318*64079^(22/23) 1771100000716663 a001 433494437/969323029*64079^(22/23) 1771100000716663 a001 165580141/370248451*64079^(22/23) 1771100000716663 a001 31622993/70711162*64079^(22/23) 1771100000716664 a001 24157817/54018521*64079^(22/23) 1771100000716671 a001 9227465/20633239*64079^(22/23) 1771100000716720 a001 1762289/3940598*64079^(22/23) 1771100000717054 a001 1346269/3010349*64079^(22/23) 1771100000718096 a001 832040/39603*39603^(7/11) 1771100000719342 a001 514229/1149851*64079^(22/23) 1771100000720561 a001 196418/271443*64079^(21/23) 1771100000720719 a001 1762289/51841*64079^(13/23) 1771100000726626 a001 105937/90481*64079^(20/23) 1771100000733249 a001 514229/710647*64079^(21/23) 1771100000735026 a001 98209/219602*64079^(22/23) 1771100000735100 a001 1346269/1860498*64079^(21/23) 1771100000735370 a001 3524578/4870847*64079^(21/23) 1771100000735410 a001 9227465/12752043*64079^(21/23) 1771100000735415 a001 24157817/33385282*64079^(21/23) 1771100000735416 a001 63245986/87403803*64079^(21/23) 1771100000735416 a001 165580141/228826127*64079^(21/23) 1771100000735416 a001 433494437/599074578*64079^(21/23) 1771100000735416 a001 1134903170/1568397607*64079^(21/23) 1771100000735416 a001 2971215073/4106118243*64079^(21/23) 1771100000735416 a001 7778742049/10749957122*64079^(21/23) 1771100000735416 a001 20365011074/28143753123*64079^(21/23) 1771100000735416 a001 53316291173/73681302247*64079^(21/23) 1771100000735416 a001 139583862445/192900153618*64079^(21/23) 1771100000735416 a001 10610209857723/14662949395604*64079^(21/23) 1771100000735416 a001 225851433717/312119004989*64079^(21/23) 1771100000735416 a001 86267571272/119218851371*64079^(21/23) 1771100000735416 a001 32951280099/45537549124*64079^(21/23) 1771100000735416 a001 12586269025/17393796001*64079^(21/23) 1771100000735416 a001 4807526976/6643838879*64079^(21/23) 1771100000735416 a001 1836311903/2537720636*64079^(21/23) 1771100000735416 a001 701408733/969323029*64079^(21/23) 1771100000735416 a001 267914296/370248451*64079^(21/23) 1771100000735416 a001 102334155/141422324*64079^(21/23) 1771100000735417 a001 39088169/54018521*64079^(21/23) 1771100000735419 a001 14930352/20633239*64079^(21/23) 1771100000735434 a001 5702887/7881196*64079^(21/23) 1771100000735537 a001 2178309/3010349*64079^(21/23) 1771100000736244 a001 832040/1149851*64079^(21/23) 1771100000739433 a001 5702887/103682*64079^(12/23) 1771100000741091 a001 317811/439204*64079^(21/23) 1771100000750151 a001 832040/710647*64079^(20/23) 1771100000750226 a001 514229/271443*64079^(19/23) 1771100000753584 a001 726103/620166*64079^(20/23) 1771100000754084 a001 5702887/4870847*64079^(20/23) 1771100000754157 a001 4976784/4250681*64079^(20/23) 1771100000754168 a001 39088169/33385282*64079^(20/23) 1771100000754170 a001 34111385/29134601*64079^(20/23) 1771100000754170 a001 267914296/228826127*64079^(20/23) 1771100000754170 a001 233802911/199691526*64079^(20/23) 1771100000754170 a001 1836311903/1568397607*64079^(20/23) 1771100000754170 a001 1602508992/1368706081*64079^(20/23) 1771100000754170 a001 12586269025/10749957122*64079^(20/23) 1771100000754170 a001 10983760033/9381251041*64079^(20/23) 1771100000754170 a001 86267571272/73681302247*64079^(20/23) 1771100000754170 a001 75283811239/64300051206*64079^(20/23) 1771100000754170 a001 2504730781961/2139295485799*64079^(20/23) 1771100000754170 a001 365435296162/312119004989*64079^(20/23) 1771100000754170 a001 139583862445/119218851371*64079^(20/23) 1771100000754170 a001 53316291173/45537549124*64079^(20/23) 1771100000754170 a001 20365011074/17393796001*64079^(20/23) 1771100000754170 a001 7778742049/6643838879*64079^(20/23) 1771100000754170 a001 2971215073/2537720636*64079^(20/23) 1771100000754170 a001 1134903170/969323029*64079^(20/23) 1771100000754170 a001 433494437/370248451*64079^(20/23) 1771100000754170 a001 165580141/141422324*64079^(20/23) 1771100000754171 a001 63245986/54018521*64079^(20/23) 1771100000754175 a001 24157817/20633239*64079^(20/23) 1771100000754203 a001 9227465/7881196*64079^(20/23) 1771100000754394 a001 3524578/3010349*64079^(20/23) 1771100000755705 a001 1346269/1149851*64079^(20/23) 1771100000758202 a001 9227465/103682*64079^(11/23) 1771100000764691 a001 514229/439204*64079^(20/23) 1771100000767128 a001 832040/271443*64079^(18/23) 1771100000769612 a001 1346269/710647*64079^(19/23) 1771100000769830 a001 701408733/167761*24476^(1/7) 1771100000771277 a001 514229/39603*39603^(15/22) 1771100000772440 a001 1762289/930249*64079^(19/23) 1771100000772853 a001 9227465/4870847*64079^(19/23) 1771100000772913 a001 24157817/12752043*64079^(19/23) 1771100000772922 a001 31622993/16692641*64079^(19/23) 1771100000772923 a001 165580141/87403803*64079^(19/23) 1771100000772923 a001 433494437/228826127*64079^(19/23) 1771100000772924 a001 567451585/299537289*64079^(19/23) 1771100000772924 a001 2971215073/1568397607*64079^(19/23) 1771100000772924 a001 7778742049/4106118243*64079^(19/23) 1771100000772924 a001 10182505537/5374978561*64079^(19/23) 1771100000772924 a001 53316291173/28143753123*64079^(19/23) 1771100000772924 a001 139583862445/73681302247*64079^(19/23) 1771100000772924 a001 182717648081/96450076809*64079^(19/23) 1771100000772924 a001 956722026041/505019158607*64079^(19/23) 1771100000772924 a001 10610209857723/5600748293801*64079^(19/23) 1771100000772924 a001 591286729879/312119004989*64079^(19/23) 1771100000772924 a001 225851433717/119218851371*64079^(19/23) 1771100000772924 a001 21566892818/11384387281*64079^(19/23) 1771100000772924 a001 32951280099/17393796001*64079^(19/23) 1771100000772924 a001 12586269025/6643838879*64079^(19/23) 1771100000772924 a001 1201881744/634430159*64079^(19/23) 1771100000772924 a001 1836311903/969323029*64079^(19/23) 1771100000772924 a001 701408733/370248451*64079^(19/23) 1771100000772924 a001 66978574/35355581*64079^(19/23) 1771100000772924 a001 102334155/54018521*64079^(19/23) 1771100000772927 a001 39088169/20633239*64079^(19/23) 1771100000772950 a001 3732588/1970299*64079^(19/23) 1771100000773108 a001 5702887/3010349*64079^(19/23) 1771100000773993 a001 267914296/39603*15127^(1/10) 1771100000774188 a001 2178309/1149851*64079^(19/23) 1771100000774310 a001 121393/167761*64079^(21/23) 1771100000776950 a001 7465176/51841*64079^(10/23) 1771100000781593 a001 208010/109801*64079^(19/23) 1771100000786589 a001 1346269/271443*64079^(17/23) 1771100000788095 a001 311187/101521*64079^(18/23) 1771100000791155 a001 5702887/1860498*64079^(18/23) 1771100000791601 a001 14930352/4870847*64079^(18/23) 1771100000791666 a001 39088169/12752043*64079^(18/23) 1771100000791675 a001 14619165/4769326*64079^(18/23) 1771100000791677 a001 267914296/87403803*64079^(18/23) 1771100000791677 a001 701408733/228826127*64079^(18/23) 1771100000791677 a001 1836311903/599074578*64079^(18/23) 1771100000791677 a001 686789568/224056801*64079^(18/23) 1771100000791677 a001 12586269025/4106118243*64079^(18/23) 1771100000791677 a001 32951280099/10749957122*64079^(18/23) 1771100000791677 a001 86267571272/28143753123*64079^(18/23) 1771100000791677 a001 32264490531/10525900321*64079^(18/23) 1771100000791677 a001 591286729879/192900153618*64079^(18/23) 1771100000791677 a001 1515744265389/494493258286*64079^(18/23) 1771100000791677 a001 2504730781961/817138163596*64079^(18/23) 1771100000791677 a001 956722026041/312119004989*64079^(18/23) 1771100000791677 a001 365435296162/119218851371*64079^(18/23) 1771100000791677 a001 139583862445/45537549124*64079^(18/23) 1771100000791677 a001 53316291173/17393796001*64079^(18/23) 1771100000791677 a001 20365011074/6643838879*64079^(18/23) 1771100000791677 a001 7778742049/2537720636*64079^(18/23) 1771100000791677 a001 2971215073/969323029*64079^(18/23) 1771100000791677 a001 1134903170/370248451*64079^(18/23) 1771100000791677 a001 433494437/141422324*64079^(18/23) 1771100000791678 a001 165580141/54018521*64079^(18/23) 1771100000791681 a001 63245986/20633239*64079^(18/23) 1771100000791706 a001 24157817/7881196*64079^(18/23) 1771100000791877 a001 9227465/3010349*64079^(18/23) 1771100000793045 a001 3524578/1149851*64079^(18/23) 1771100000795706 a001 24157817/103682*64079^(9/23) 1771100000799714 a001 23184/51841*7881196^(2/3) 1771100000799733 a001 23184/51841*312119004989^(2/5) 1771100000799733 a001 23184/51841*(1/2+1/2*5^(1/2))^22 1771100000799733 a001 23184/51841*10749957122^(11/24) 1771100000799733 a001 23184/51841*4106118243^(11/23) 1771100000799733 a001 23184/51841*1568397607^(1/2) 1771100000799733 a001 23184/51841*599074578^(11/21) 1771100000799733 a001 23184/51841*228826127^(11/20) 1771100000799733 a001 23184/51841*87403803^(11/19) 1771100000799734 a001 23184/51841*33385282^(11/18) 1771100000799740 a001 23184/51841*12752043^(11/17) 1771100000799784 a001 23184/51841*4870847^(11/16) 1771100000800108 a001 23184/51841*1860498^(11/15) 1771100000801054 a001 1346269/439204*64079^(18/23) 1771100000802488 a001 23184/51841*710647^(11/14) 1771100000805072 a001 726103/90481*64079^(16/23) 1771100000806952 a001 3524578/710647*64079^(17/23) 1771100000809923 a001 9227465/1860498*64079^(17/23) 1771100000810357 a001 24157817/4870847*64079^(17/23) 1771100000810420 a001 63245986/12752043*64079^(17/23) 1771100000810429 a001 165580141/33385282*64079^(17/23) 1771100000810430 a001 433494437/87403803*64079^(17/23) 1771100000810431 a001 1134903170/228826127*64079^(17/23) 1771100000810431 a001 2971215073/599074578*64079^(17/23) 1771100000810431 a001 7778742049/1568397607*64079^(17/23) 1771100000810431 a001 20365011074/4106118243*64079^(17/23) 1771100000810431 a001 53316291173/10749957122*64079^(17/23) 1771100000810431 a001 139583862445/28143753123*64079^(17/23) 1771100000810431 a001 365435296162/73681302247*64079^(17/23) 1771100000810431 a001 956722026041/192900153618*64079^(17/23) 1771100000810431 a001 10610209857723/2139295485799*64079^(17/23) 1771100000810431 a001 4052739537881/817138163596*64079^(17/23) 1771100000810431 a001 140728068720/28374454999*64079^(17/23) 1771100000810431 a001 591286729879/119218851371*64079^(17/23) 1771100000810431 a001 225851433717/45537549124*64079^(17/23) 1771100000810431 a001 86267571272/17393796001*64079^(17/23) 1771100000810431 a001 32951280099/6643838879*64079^(17/23) 1771100000810431 a001 1144206275/230701876*64079^(17/23) 1771100000810431 a001 4807526976/969323029*64079^(17/23) 1771100000810431 a001 1836311903/370248451*64079^(17/23) 1771100000810431 a001 701408733/141422324*64079^(17/23) 1771100000810431 a001 267914296/54018521*64079^(17/23) 1771100000810435 a001 9303105/1875749*64079^(17/23) 1771100000810459 a001 39088169/7881196*64079^(17/23) 1771100000810624 a001 14930352/3010349*64079^(17/23) 1771100000811759 a001 5702887/1149851*64079^(17/23) 1771100000814458 a001 39088169/103682*64079^(8/23) 1771100000817759 a001 105937/13201*39603^(8/11) 1771100000819537 a001 2178309/439204*64079^(17/23) 1771100000820072 a001 23184/51841*271443^(11/13) 1771100000823643 a001 1836311903/271443*24476^(2/21) 1771100000823706 a001 567451585/51841*24476^(1/21) 1771100000823770 a001 2149991424/121393 1771100000823929 a001 3524578/271443*64079^(15/23) 1771100000825666 a001 5702887/710647*64079^(16/23) 1771100000826282 a001 196418/167761*64079^(20/23) 1771100000828671 a001 829464/103361*64079^(16/23) 1771100000829109 a001 39088169/4870847*64079^(16/23) 1771100000829173 a001 34111385/4250681*64079^(16/23) 1771100000829183 a001 133957148/16692641*64079^(16/23) 1771100000829184 a001 233802911/29134601*64079^(16/23) 1771100000829184 a001 1836311903/228826127*64079^(16/23) 1771100000829184 a001 267084832/33281921*64079^(16/23) 1771100000829184 a001 12586269025/1568397607*64079^(16/23) 1771100000829184 a001 10983760033/1368706081*64079^(16/23) 1771100000829184 a001 43133785636/5374978561*64079^(16/23) 1771100000829184 a001 75283811239/9381251041*64079^(16/23) 1771100000829184 a001 591286729879/73681302247*64079^(16/23) 1771100000829184 a001 86000486440/10716675201*64079^(16/23) 1771100000829184 a001 4052739537881/505019158607*64079^(16/23) 1771100000829184 a001 3278735159921/408569081798*64079^(16/23) 1771100000829184 a001 2504730781961/312119004989*64079^(16/23) 1771100000829184 a001 956722026041/119218851371*64079^(16/23) 1771100000829184 a001 182717648081/22768774562*64079^(16/23) 1771100000829184 a001 139583862445/17393796001*64079^(16/23) 1771100000829184 a001 53316291173/6643838879*64079^(16/23) 1771100000829184 a001 10182505537/1268860318*64079^(16/23) 1771100000829184 a001 7778742049/969323029*64079^(16/23) 1771100000829184 a001 2971215073/370248451*64079^(16/23) 1771100000829184 a001 567451585/70711162*64079^(16/23) 1771100000829185 a001 433494437/54018521*64079^(16/23) 1771100000829188 a001 165580141/20633239*64079^(16/23) 1771100000829213 a001 31622993/3940598*64079^(16/23) 1771100000829380 a001 24157817/3010349*64079^(16/23) 1771100000830528 a001 9227465/1149851*64079^(16/23) 1771100000832347 a001 317811/167761*64079^(19/23) 1771100000833212 a001 31622993/51841*64079^(7/23) 1771100000838394 a001 1762289/219602*64079^(16/23) 1771100000842524 a001 75025/167761*64079^(22/23) 1771100000842643 a001 5702887/271443*64079^(14/23) 1771100000844173 a001 686789568/101521*24476^(2/21) 1771100000844435 a001 9227465/710647*64079^(15/23) 1771100000847168 a001 12586269025/1860498*24476^(2/21) 1771100000847427 a001 24157817/1860498*64079^(15/23) 1771100000847605 a001 32951280099/4870847*24476^(2/21) 1771100000847669 a001 86267571272/12752043*24476^(2/21) 1771100000847678 a001 32264490531/4769326*24476^(2/21) 1771100000847680 a001 591286729879/87403803*24476^(2/21) 1771100000847680 a001 1548008755920/228826127*24476^(2/21) 1771100000847680 a001 4052739537881/599074578*24476^(2/21) 1771100000847680 a001 1515744265389/224056801*24476^(2/21) 1771100000847680 a001 6557470319842/969323029*24476^(2/21) 1771100000847680 a001 2504730781961/370248451*24476^(2/21) 1771100000847680 a001 956722026041/141422324*24476^(2/21) 1771100000847681 a001 365435296162/54018521*24476^(2/21) 1771100000847684 a001 139583862445/20633239*24476^(2/21) 1771100000847708 a001 53316291173/7881196*24476^(2/21) 1771100000847863 a001 63245986/4870847*64079^(15/23) 1771100000847875 a001 20365011074/3010349*24476^(2/21) 1771100000847927 a001 165580141/12752043*64079^(15/23) 1771100000847936 a001 433494437/33385282*64079^(15/23) 1771100000847938 a001 1134903170/87403803*64079^(15/23) 1771100000847938 a001 2971215073/228826127*64079^(15/23) 1771100000847938 a001 7778742049/599074578*64079^(15/23) 1771100000847938 a001 20365011074/1568397607*64079^(15/23) 1771100000847938 a001 53316291173/4106118243*64079^(15/23) 1771100000847938 a001 139583862445/10749957122*64079^(15/23) 1771100000847938 a001 365435296162/28143753123*64079^(15/23) 1771100000847938 a001 956722026041/73681302247*64079^(15/23) 1771100000847938 a001 2504730781961/192900153618*64079^(15/23) 1771100000847938 a001 10610209857723/817138163596*64079^(15/23) 1771100000847938 a001 4052739537881/312119004989*64079^(15/23) 1771100000847938 a001 1548008755920/119218851371*64079^(15/23) 1771100000847938 a001 591286729879/45537549124*64079^(15/23) 1771100000847938 a001 7787980473/599786069*64079^(15/23) 1771100000847938 a001 86267571272/6643838879*64079^(15/23) 1771100000847938 a001 32951280099/2537720636*64079^(15/23) 1771100000847938 a001 12586269025/969323029*64079^(15/23) 1771100000847938 a001 4807526976/370248451*64079^(15/23) 1771100000847938 a001 1836311903/141422324*64079^(15/23) 1771100000847938 a001 701408733/54018521*64079^(15/23) 1771100000847942 a001 9238424/711491*64079^(15/23) 1771100000847966 a001 102334155/7881196*64079^(15/23) 1771100000848133 a001 39088169/3010349*64079^(15/23) 1771100000849020 a001 7778742049/1149851*24476^(2/21) 1771100000849276 a001 14930352/1149851*64079^(15/23) 1771100000851966 a001 102334155/103682*64079^(6/23) 1771100000855947 a001 514229/167761*64079^(18/23) 1771100000856670 a001 102334155/64079*24476^(5/21) 1771100000856861 a001 2971215073/439204*24476^(2/21) 1771100000857108 a001 5702887/439204*64079^(15/23) 1771100000861412 a001 9227465/271443*64079^(13/23) 1771100000861829 a001 15456/13201*39603^(10/11) 1771100000863183 a001 14930352/710647*64079^(14/23) 1771100000866179 a001 39088169/1860498*64079^(14/23) 1771100000866617 a001 102334155/4870847*64079^(14/23) 1771100000866680 a001 267914296/12752043*64079^(14/23) 1771100000866690 a001 701408733/33385282*64079^(14/23) 1771100000866691 a001 1836311903/87403803*64079^(14/23) 1771100000866691 a001 102287808/4868641*64079^(14/23) 1771100000866691 a001 12586269025/599074578*64079^(14/23) 1771100000866691 a001 32951280099/1568397607*64079^(14/23) 1771100000866691 a001 86267571272/4106118243*64079^(14/23) 1771100000866691 a001 225851433717/10749957122*64079^(14/23) 1771100000866691 a001 591286729879/28143753123*64079^(14/23) 1771100000866691 a001 1548008755920/73681302247*64079^(14/23) 1771100000866691 a001 4052739537881/192900153618*64079^(14/23) 1771100000866691 a001 225749145909/10745088481*64079^(14/23) 1771100000866691 a001 6557470319842/312119004989*64079^(14/23) 1771100000866691 a001 2504730781961/119218851371*64079^(14/23) 1771100000866691 a001 956722026041/45537549124*64079^(14/23) 1771100000866691 a001 365435296162/17393796001*64079^(14/23) 1771100000866691 a001 139583862445/6643838879*64079^(14/23) 1771100000866691 a001 53316291173/2537720636*64079^(14/23) 1771100000866691 a001 20365011074/969323029*64079^(14/23) 1771100000866691 a001 7778742049/370248451*64079^(14/23) 1771100000866691 a001 2971215073/141422324*64079^(14/23) 1771100000866692 a001 1134903170/54018521*64079^(14/23) 1771100000866695 a001 433494437/20633239*64079^(14/23) 1771100000866720 a001 165580141/7881196*64079^(14/23) 1771100000866887 a001 63245986/3010349*64079^(14/23) 1771100000868031 a001 24157817/1149851*64079^(14/23) 1771100000870719 a001 165580141/103682*64079^(5/23) 1771100000872849 a001 75640/15251*64079^(17/23) 1771100000875877 a001 9227465/439204*64079^(14/23) 1771100000880160 a001 4976784/90481*64079^(12/23) 1771100000881777 a001 196418/39603*39603^(17/22) 1771100000881939 a001 24157817/710647*64079^(13/23) 1771100000884933 a001 31622993/930249*64079^(13/23) 1771100000885370 a001 165580141/4870847*64079^(13/23) 1771100000885434 a001 433494437/12752043*64079^(13/23) 1771100000885443 a001 567451585/16692641*64079^(13/23) 1771100000885445 a001 2971215073/87403803*64079^(13/23) 1771100000885445 a001 7778742049/228826127*64079^(13/23) 1771100000885445 a001 10182505537/299537289*64079^(13/23) 1771100000885445 a001 53316291173/1568397607*64079^(13/23) 1771100000885445 a001 139583862445/4106118243*64079^(13/23) 1771100000885445 a001 182717648081/5374978561*64079^(13/23) 1771100000885445 a001 956722026041/28143753123*64079^(13/23) 1771100000885445 a001 2504730781961/73681302247*64079^(13/23) 1771100000885445 a001 3278735159921/96450076809*64079^(13/23) 1771100000885445 a001 10610209857723/312119004989*64079^(13/23) 1771100000885445 a001 4052739537881/119218851371*64079^(13/23) 1771100000885445 a001 387002188980/11384387281*64079^(13/23) 1771100000885445 a001 591286729879/17393796001*64079^(13/23) 1771100000885445 a001 225851433717/6643838879*64079^(13/23) 1771100000885445 a001 1135099622/33391061*64079^(13/23) 1771100000885445 a001 32951280099/969323029*64079^(13/23) 1771100000885445 a001 12586269025/370248451*64079^(13/23) 1771100000885445 a001 1201881744/35355581*64079^(13/23) 1771100000885445 a001 1836311903/54018521*64079^(13/23) 1771100000885449 a001 701408733/20633239*64079^(13/23) 1771100000885473 a001 66978574/1970299*64079^(13/23) 1771100000885640 a001 102334155/3010349*64079^(13/23) 1771100000886147 a001 102334155/24476*9349^(3/19) 1771100000886784 a001 39088169/1149851*64079^(13/23) 1771100000889473 a001 133957148/51841*64079^(4/23) 1771100000890105 a001 121393/103682*167761^(4/5) 1771100000892310 a001 1346269/167761*64079^(16/23) 1771100000894625 a001 196452/5779*64079^(13/23) 1771100000898915 a001 24157817/271443*64079^(11/23) 1771100000899887 a001 121393/39603*39603^(9/11) 1771100000900691 a001 39088169/710647*64079^(12/23) 1771100000903687 a001 831985/15126*64079^(12/23) 1771100000904124 a001 267914296/4870847*64079^(12/23) 1771100000904188 a001 233802911/4250681*64079^(12/23) 1771100000904197 a001 1836311903/33385282*64079^(12/23) 1771100000904198 a001 1602508992/29134601*64079^(12/23) 1771100000904198 a001 12586269025/228826127*64079^(12/23) 1771100000904198 a001 10983760033/199691526*64079^(12/23) 1771100000904198 a001 86267571272/1568397607*64079^(12/23) 1771100000904198 a001 75283811239/1368706081*64079^(12/23) 1771100000904198 a001 591286729879/10749957122*64079^(12/23) 1771100000904198 a001 12585437040/228811001*64079^(12/23) 1771100000904198 a001 4052739537881/73681302247*64079^(12/23) 1771100000904198 a001 3536736619241/64300051206*64079^(12/23) 1771100000904198 a001 6557470319842/119218851371*64079^(12/23) 1771100000904198 a001 2504730781961/45537549124*64079^(12/23) 1771100000904198 a001 956722026041/17393796001*64079^(12/23) 1771100000904198 a001 365435296162/6643838879*64079^(12/23) 1771100000904198 a001 139583862445/2537720636*64079^(12/23) 1771100000904198 a001 53316291173/969323029*64079^(12/23) 1771100000904198 a001 20365011074/370248451*64079^(12/23) 1771100000904199 a001 7778742049/141422324*64079^(12/23) 1771100000904199 a001 2971215073/54018521*64079^(12/23) 1771100000904203 a001 1134903170/20633239*64079^(12/23) 1771100000904227 a001 433494437/7881196*64079^(12/23) 1771100000904394 a001 165580141/3010349*64079^(12/23) 1771100000905538 a001 63245986/1149851*64079^(12/23) 1771100000908226 a001 433494437/103682*64079^(3/23) 1771100000910610 a001 1134903170/167761*24476^(2/21) 1771100000910794 a001 2178309/167761*64079^(15/23) 1771100000913380 a001 24157817/439204*64079^(12/23) 1771100000917668 a001 39088169/271443*64079^(10/23) 1771100000919445 a001 63245986/710647*64079^(11/23) 1771100000922440 a001 165580141/1860498*64079^(11/23) 1771100000922877 a001 433494437/4870847*64079^(11/23) 1771100000922941 a001 1134903170/12752043*64079^(11/23) 1771100000922950 a001 2971215073/33385282*64079^(11/23) 1771100000922952 a001 7778742049/87403803*64079^(11/23) 1771100000922952 a001 20365011074/228826127*64079^(11/23) 1771100000922952 a001 53316291173/599074578*64079^(11/23) 1771100000922952 a001 139583862445/1568397607*64079^(11/23) 1771100000922952 a001 365435296162/4106118243*64079^(11/23) 1771100000922952 a001 956722026041/10749957122*64079^(11/23) 1771100000922952 a001 2504730781961/28143753123*64079^(11/23) 1771100000922952 a001 6557470319842/73681302247*64079^(11/23) 1771100000922952 a001 10610209857723/119218851371*64079^(11/23) 1771100000922952 a001 4052739537881/45537549124*64079^(11/23) 1771100000922952 a001 1548008755920/17393796001*64079^(11/23) 1771100000922952 a001 591286729879/6643838879*64079^(11/23) 1771100000922952 a001 225851433717/2537720636*64079^(11/23) 1771100000922952 a001 86267571272/969323029*64079^(11/23) 1771100000922952 a001 32951280099/370248451*64079^(11/23) 1771100000922952 a001 12586269025/141422324*64079^(11/23) 1771100000922953 a001 4807526976/54018521*64079^(11/23) 1771100000922956 a001 1836311903/20633239*64079^(11/23) 1771100000922981 a001 3524667/39604*64079^(11/23) 1771100000923147 a001 267914296/3010349*64079^(11/23) 1771100000924292 a001 102334155/1149851*64079^(11/23) 1771100000926924 a001 1346269/103682*167761^(3/5) 1771100000926980 a001 701408733/103682*64079^(2/23) 1771100000929650 a001 3524578/167761*64079^(14/23) 1771100000932133 a001 39088169/439204*64079^(11/23) 1771100000932288 a001 15456/90481*439204^(8/9) 1771100000936422 a001 63245986/271443*64079^(9/23) 1771100000938199 a001 14619165/101521*64079^(10/23) 1771100000939313 a001 7465176/51841*167761^(2/5) 1771100000940429 a001 15456/90481*7881196^(8/11) 1771100000940447 a001 121393/103682*20633239^(4/7) 1771100000940450 a001 15456/90481*141422324^(8/13) 1771100000940450 a001 15456/90481*2537720636^(8/15) 1771100000940450 a001 121393/103682*2537720636^(4/9) 1771100000940450 a001 15456/90481*45537549124^(8/17) 1771100000940450 a001 15456/90481*14662949395604^(8/21) 1771100000940450 a001 15456/90481*(1/2+1/2*5^(1/2))^24 1771100000940450 a001 15456/90481*192900153618^(4/9) 1771100000940450 a001 15456/90481*73681302247^(6/13) 1771100000940450 a001 15456/90481*10749957122^(1/2) 1771100000940450 a001 121393/103682*(1/2+1/2*5^(1/2))^20 1771100000940450 a001 121393/103682*23725150497407^(5/16) 1771100000940450 a001 121393/103682*505019158607^(5/14) 1771100000940450 a001 121393/103682*73681302247^(5/13) 1771100000940450 a001 121393/103682*28143753123^(2/5) 1771100000940450 a001 121393/103682*10749957122^(5/12) 1771100000940450 a001 15456/90481*4106118243^(12/23) 1771100000940450 a001 121393/103682*4106118243^(10/23) 1771100000940450 a001 121393/103682*1568397607^(5/11) 1771100000940450 a001 15456/90481*1568397607^(6/11) 1771100000940450 a001 121393/103682*599074578^(10/21) 1771100000940450 a001 15456/90481*599074578^(4/7) 1771100000940450 a001 121393/103682*228826127^(1/2) 1771100000940450 a001 15456/90481*228826127^(3/5) 1771100000940450 a001 121393/103682*87403803^(10/19) 1771100000940450 a001 15456/90481*87403803^(12/19) 1771100000940451 a001 121393/103682*33385282^(5/9) 1771100000940451 a001 15456/90481*33385282^(2/3) 1771100000940456 a001 121393/103682*12752043^(10/17) 1771100000940457 a001 15456/90481*12752043^(12/17) 1771100000940496 a001 121393/103682*4870847^(5/8) 1771100000940506 a001 15456/90481*4870847^(3/4) 1771100000940791 a001 121393/103682*1860498^(2/3) 1771100000940859 a001 15456/90481*1860498^(4/5) 1771100000941194 a001 133957148/930249*64079^(10/23) 1771100000941631 a001 701408733/4870847*64079^(10/23) 1771100000941695 a001 1836311903/12752043*64079^(10/23) 1771100000941704 a001 14930208/103681*64079^(10/23) 1771100000941705 a001 12586269025/87403803*64079^(10/23) 1771100000941706 a001 32951280099/228826127*64079^(10/23) 1771100000941706 a001 43133785636/299537289*64079^(10/23) 1771100000941706 a001 32264490531/224056801*64079^(10/23) 1771100000941706 a001 591286729879/4106118243*64079^(10/23) 1771100000941706 a001 774004377960/5374978561*64079^(10/23) 1771100000941706 a001 4052739537881/28143753123*64079^(10/23) 1771100000941706 a001 1515744265389/10525900321*64079^(10/23) 1771100000941706 a001 3278735159921/22768774562*64079^(10/23) 1771100000941706 a001 2504730781961/17393796001*64079^(10/23) 1771100000941706 a001 956722026041/6643838879*64079^(10/23) 1771100000941706 a001 182717648081/1268860318*64079^(10/23) 1771100000941706 a001 139583862445/969323029*64079^(10/23) 1771100000941706 a001 53316291173/370248451*64079^(10/23) 1771100000941706 a001 10182505537/70711162*64079^(10/23) 1771100000941706 a001 7778742049/54018521*64079^(10/23) 1771100000941710 a001 2971215073/20633239*64079^(10/23) 1771100000941734 a001 567451585/3940598*64079^(10/23) 1771100000941901 a001 433494437/3010349*64079^(10/23) 1771100000942955 a001 121393/103682*710647^(5/7) 1771100000943045 a001 165580141/1149851*64079^(10/23) 1771100000943456 a001 15456/90481*710647^(6/7) 1771100000943957 a001 1876250208/105937 1771100000945734 a001 567451585/51841*64079^(1/23) 1771100000948364 a001 5702887/167761*64079^(13/23) 1771100000950758 a001 23184/51841*103682^(11/12) 1771100000950887 a001 31622993/219602*64079^(10/23) 1771100000951901 a001 165580141/103682*167761^(1/5) 1771100000954859 a001 317811/103682*439204^(2/3) 1771100000955175 a001 34111385/90481*64079^(8/23) 1771100000956952 a001 165580141/710647*64079^(9/23) 1771100000958940 a001 121393/103682*271443^(10/13) 1771100000959582 a001 1346269/103682*439204^(5/9) 1771100000959947 a001 433494437/1860498*64079^(9/23) 1771100000960384 a001 1134903170/4870847*64079^(9/23) 1771100000960396 a001 5702887/103682*439204^(4/9) 1771100000960448 a001 2971215073/12752043*64079^(9/23) 1771100000960458 a001 7778742049/33385282*64079^(9/23) 1771100000960459 a001 20365011074/87403803*64079^(9/23) 1771100000960459 a001 53316291173/228826127*64079^(9/23) 1771100000960459 a001 139583862445/599074578*64079^(9/23) 1771100000960459 a001 365435296162/1568397607*64079^(9/23) 1771100000960459 a001 956722026041/4106118243*64079^(9/23) 1771100000960459 a001 2504730781961/10749957122*64079^(9/23) 1771100000960459 a001 6557470319842/28143753123*64079^(9/23) 1771100000960459 a001 10610209857723/45537549124*64079^(9/23) 1771100000960459 a001 4052739537881/17393796001*64079^(9/23) 1771100000960459 a001 1548008755920/6643838879*64079^(9/23) 1771100000960459 a001 591286729879/2537720636*64079^(9/23) 1771100000960459 a001 225851433717/969323029*64079^(9/23) 1771100000960459 a001 86267571272/370248451*64079^(9/23) 1771100000960459 a001 63246219/271444*64079^(9/23) 1771100000960460 a001 12586269025/54018521*64079^(9/23) 1771100000960463 a001 4807526976/20633239*64079^(9/23) 1771100000960488 a001 1836311903/7881196*64079^(9/23) 1771100000960655 a001 701408733/3010349*64079^(9/23) 1771100000960965 a001 317811/103682*7881196^(6/11) 1771100000960980 a001 6624/101521*141422324^(2/3) 1771100000960980 a001 317811/103682*141422324^(6/13) 1771100000960980 a001 317811/103682*2537720636^(2/5) 1771100000960980 a001 6624/101521*(1/2+1/2*5^(1/2))^26 1771100000960980 a001 6624/101521*73681302247^(1/2) 1771100000960980 a001 6624/101521*10749957122^(13/24) 1771100000960980 a001 317811/103682*45537549124^(6/17) 1771100000960980 a001 317811/103682*14662949395604^(2/7) 1771100000960980 a001 317811/103682*(1/2+1/2*5^(1/2))^18 1771100000960980 a001 317811/103682*192900153618^(1/3) 1771100000960980 a001 317811/103682*10749957122^(3/8) 1771100000960980 a001 317811/103682*4106118243^(9/23) 1771100000960980 a001 6624/101521*4106118243^(13/23) 1771100000960980 a001 317811/103682*1568397607^(9/22) 1771100000960980 a001 6624/101521*1568397607^(13/22) 1771100000960980 a001 317811/103682*599074578^(3/7) 1771100000960980 a001 6624/101521*599074578^(13/21) 1771100000960980 a001 317811/103682*228826127^(9/20) 1771100000960980 a001 6624/101521*228826127^(13/20) 1771100000960980 a001 317811/103682*87403803^(9/19) 1771100000960980 a001 6624/101521*87403803^(13/19) 1771100000960981 a001 317811/103682*33385282^(1/2) 1771100000960981 a001 6624/101521*33385282^(13/18) 1771100000960986 a001 317811/103682*12752043^(9/17) 1771100000960988 a001 6624/101521*12752043^(13/17) 1771100000961022 a001 317811/103682*4870847^(9/16) 1771100000961041 a001 6624/101521*4870847^(13/16) 1771100000961287 a001 317811/103682*1860498^(3/5) 1771100000961424 a001 6624/101521*1860498^(13/15) 1771100000961427 a001 24157817/103682*439204^(1/3) 1771100000961492 a001 1842032556/104005 1771100000961799 a001 267914296/1149851*64079^(9/23) 1771100000962447 a001 102334155/103682*439204^(2/9) 1771100000962638 a001 15456/90481*271443^(12/13) 1771100000963235 a001 317811/103682*710647^(9/14) 1771100000963467 a001 433494437/103682*439204^(1/9) 1771100000963972 a001 2576/103361*20633239^(4/5) 1771100000963975 a001 2576/103361*17393796001^(4/7) 1771100000963975 a001 2576/103361*14662949395604^(4/9) 1771100000963975 a001 2576/103361*(1/2+1/2*5^(1/2))^28 1771100000963975 a001 2576/103361*73681302247^(7/13) 1771100000963975 a001 2576/103361*10749957122^(7/12) 1771100000963975 a001 416020/51841*(1/2+1/2*5^(1/2))^16 1771100000963975 a001 416020/51841*23725150497407^(1/4) 1771100000963975 a001 416020/51841*73681302247^(4/13) 1771100000963975 a001 416020/51841*10749957122^(1/3) 1771100000963975 a001 416020/51841*4106118243^(8/23) 1771100000963975 a001 2576/103361*4106118243^(14/23) 1771100000963975 a001 416020/51841*1568397607^(4/11) 1771100000963975 a001 2576/103361*1568397607^(7/11) 1771100000963975 a001 416020/51841*599074578^(8/21) 1771100000963975 a001 2576/103361*599074578^(2/3) 1771100000963975 a001 416020/51841*228826127^(2/5) 1771100000963975 a001 2576/103361*228826127^(7/10) 1771100000963976 a001 416020/51841*87403803^(8/19) 1771100000963976 a001 2576/103361*87403803^(14/19) 1771100000963976 a001 416020/51841*33385282^(4/9) 1771100000963977 a001 2576/103361*33385282^(7/9) 1771100000963981 a001 416020/51841*12752043^(8/17) 1771100000963984 a001 2576/103361*12752043^(14/17) 1771100000964013 a001 416020/51841*4870847^(1/2) 1771100000964041 a001 2576/103361*4870847^(7/8) 1771100000964050 a001 1837144320/103729 1771100000964237 a001 6624/101521*710647^(13/14) 1771100000964248 a001 416020/51841*1860498^(8/15) 1771100000964386 a001 46368/4870847*7881196^(10/11) 1771100000964409 a001 46368/4870847*20633239^(6/7) 1771100000964411 a001 46347/2206*20633239^(2/5) 1771100000964412 a001 46368/4870847*141422324^(10/13) 1771100000964412 a001 46368/4870847*2537720636^(2/3) 1771100000964412 a001 46368/4870847*45537549124^(10/17) 1771100000964412 a001 46368/4870847*312119004989^(6/11) 1771100000964412 a001 46368/4870847*14662949395604^(10/21) 1771100000964412 a001 46368/4870847*(1/2+1/2*5^(1/2))^30 1771100000964412 a001 46368/4870847*192900153618^(5/9) 1771100000964412 a001 46368/4870847*28143753123^(3/5) 1771100000964412 a001 46368/4870847*10749957122^(5/8) 1771100000964412 a001 46347/2206*17393796001^(2/7) 1771100000964412 a001 46347/2206*14662949395604^(2/9) 1771100000964412 a001 46347/2206*(1/2+1/2*5^(1/2))^14 1771100000964412 a001 46347/2206*10749957122^(7/24) 1771100000964412 a001 46347/2206*4106118243^(7/23) 1771100000964412 a001 46368/4870847*4106118243^(15/23) 1771100000964412 a001 46347/2206*1568397607^(7/22) 1771100000964412 a001 46368/4870847*1568397607^(15/22) 1771100000964412 a001 46347/2206*599074578^(1/3) 1771100000964412 a001 46368/4870847*599074578^(5/7) 1771100000964412 a001 46347/2206*228826127^(7/20) 1771100000964412 a001 46368/4870847*228826127^(3/4) 1771100000964413 a001 46347/2206*87403803^(7/19) 1771100000964413 a001 46368/4870847*87403803^(15/19) 1771100000964413 a001 46347/2206*33385282^(7/18) 1771100000964414 a001 46368/4870847*33385282^(5/6) 1771100000964417 a001 46347/2206*12752043^(7/17) 1771100000964422 a001 46368/4870847*12752043^(15/17) 1771100000964423 a001 2971215073/271443*24476^(1/21) 1771100000964423 a001 101003831712/5702887 1771100000964445 a001 46347/2206*4870847^(7/16) 1771100000964453 a001 2576/103361*1860498^(14/15) 1771100000964466 a001 5702887/103682*7881196^(4/11) 1771100000964476 a001 5702887/103682*141422324^(4/13) 1771100000964476 a001 5702887/103682*2537720636^(4/15) 1771100000964476 a001 15456/4250681*(1/2+1/2*5^(1/2))^32 1771100000964476 a001 15456/4250681*23725150497407^(1/2) 1771100000964476 a001 15456/4250681*73681302247^(8/13) 1771100000964476 a001 15456/4250681*10749957122^(2/3) 1771100000964476 a001 5702887/103682*45537549124^(4/17) 1771100000964476 a001 5702887/103682*14662949395604^(4/21) 1771100000964476 a001 5702887/103682*(1/2+1/2*5^(1/2))^12 1771100000964476 a001 5702887/103682*192900153618^(2/9) 1771100000964476 a001 5702887/103682*73681302247^(3/13) 1771100000964476 a001 5702887/103682*10749957122^(1/4) 1771100000964476 a001 5702887/103682*4106118243^(6/23) 1771100000964476 a001 15456/4250681*4106118243^(16/23) 1771100000964476 a001 5702887/103682*1568397607^(3/11) 1771100000964476 a001 15456/4250681*1568397607^(8/11) 1771100000964476 a001 5702887/103682*599074578^(2/7) 1771100000964476 a001 15456/4250681*599074578^(16/21) 1771100000964476 a001 5702887/103682*228826127^(3/10) 1771100000964476 a001 15456/4250681*228826127^(4/5) 1771100000964476 a001 5702887/103682*87403803^(6/19) 1771100000964476 a001 15456/4250681*87403803^(16/19) 1771100000964477 a001 5702887/103682*33385282^(1/3) 1771100000964478 a001 15456/4250681*33385282^(8/9) 1771100000964478 a001 1836329614/103683 1771100000964480 a001 24157817/103682*7881196^(3/11) 1771100000964480 a001 5702887/103682*12752043^(6/17) 1771100000964482 a001 9227465/103682*7881196^(1/3) 1771100000964482 a001 102334155/103682*7881196^(2/11) 1771100000964482 a001 46368/4870847*4870847^(15/16) 1771100000964484 a001 7465176/51841*20633239^(2/7) 1771100000964484 a001 433494437/103682*7881196^(1/11) 1771100000964485 a001 7465176/51841*2537720636^(2/9) 1771100000964485 a001 144/103681*45537549124^(2/3) 1771100000964485 a001 144/103681*(1/2+1/2*5^(1/2))^34 1771100000964485 a001 144/103681*10749957122^(17/24) 1771100000964485 a001 7465176/51841*312119004989^(2/11) 1771100000964485 a001 7465176/51841*(1/2+1/2*5^(1/2))^10 1771100000964485 a001 7465176/51841*28143753123^(1/5) 1771100000964485 a001 7465176/51841*10749957122^(5/24) 1771100000964485 a001 7465176/51841*4106118243^(5/23) 1771100000964485 a001 144/103681*4106118243^(17/23) 1771100000964485 a001 7465176/51841*1568397607^(5/22) 1771100000964485 a001 144/103681*1568397607^(17/22) 1771100000964485 a001 7465176/51841*599074578^(5/21) 1771100000964485 a001 144/103681*599074578^(17/21) 1771100000964485 a001 7465176/51841*228826127^(1/4) 1771100000964486 a001 144/103681*228826127^(17/20) 1771100000964486 a001 7465176/51841*87403803^(5/19) 1771100000964486 a001 144/103681*87403803^(17/19) 1771100000964486 a001 692290561536/39088169 1771100000964486 a001 7465176/51841*33385282^(5/18) 1771100000964486 a001 31622993/51841*20633239^(1/5) 1771100000964486 a001 15456/4250681*12752043^(16/17) 1771100000964486 a001 165580141/103682*20633239^(1/7) 1771100000964487 a001 15456/29134601*141422324^(12/13) 1771100000964487 a001 15456/29134601*2537720636^(4/5) 1771100000964487 a001 15456/29134601*45537549124^(12/17) 1771100000964487 a001 15456/29134601*14662949395604^(4/7) 1771100000964487 a001 15456/29134601*505019158607^(9/14) 1771100000964487 a001 15456/29134601*192900153618^(2/3) 1771100000964487 a001 15456/29134601*73681302247^(9/13) 1771100000964487 a001 15456/29134601*10749957122^(3/4) 1771100000964487 a001 39088169/103682*(1/2+1/2*5^(1/2))^8 1771100000964487 a001 39088169/103682*23725150497407^(1/8) 1771100000964487 a001 39088169/103682*73681302247^(2/13) 1771100000964487 a001 39088169/103682*10749957122^(1/6) 1771100000964487 a001 39088169/103682*4106118243^(4/23) 1771100000964487 a001 15456/29134601*4106118243^(18/23) 1771100000964487 a001 39088169/103682*1568397607^(2/11) 1771100000964487 a001 15456/29134601*1568397607^(9/11) 1771100000964487 a001 39088169/103682*599074578^(4/21) 1771100000964487 a001 15456/29134601*599074578^(6/7) 1771100000964487 a001 39088169/103682*228826127^(1/5) 1771100000964487 a001 15456/29134601*228826127^(9/10) 1771100000964487 a001 86306677152/4873055 1771100000964487 a001 39088169/103682*87403803^(4/19) 1771100000964487 a001 144/103681*33385282^(17/18) 1771100000964487 a001 102334155/103682*141422324^(2/13) 1771100000964487 a001 102334155/103682*2537720636^(2/15) 1771100000964487 a001 46368/228826127*817138163596^(2/3) 1771100000964487 a001 46368/228826127*10749957122^(19/24) 1771100000964487 a001 102334155/103682*45537549124^(2/17) 1771100000964487 a001 102334155/103682*14662949395604^(2/21) 1771100000964487 a001 102334155/103682*(1/2+1/2*5^(1/2))^6 1771100000964487 a001 102334155/103682*10749957122^(1/8) 1771100000964487 a001 102334155/103682*4106118243^(3/23) 1771100000964487 a001 46368/228826127*4106118243^(19/23) 1771100000964487 a001 102334155/103682*1568397607^(3/22) 1771100000964487 a001 46368/228826127*1568397607^(19/22) 1771100000964487 a001 102334155/103682*599074578^(1/7) 1771100000964487 a001 46368/228826127*599074578^(19/21) 1771100000964487 a001 593128762380/33489287 1771100000964487 a001 102334155/103682*228826127^(3/20) 1771100000964487 a001 15456/29134601*87403803^(18/19) 1771100000964487 a001 2576/33281921*2537720636^(8/9) 1771100000964487 a001 2576/33281921*312119004989^(8/11) 1771100000964487 a001 2576/33281921*23725150497407^(5/8) 1771100000964487 a001 2576/33281921*73681302247^(10/13) 1771100000964487 a001 2576/33281921*28143753123^(4/5) 1771100000964487 a001 2576/33281921*10749957122^(5/6) 1771100000964487 a001 133957148/51841*(1/2+1/2*5^(1/2))^4 1771100000964487 a001 133957148/51841*23725150497407^(1/16) 1771100000964487 a001 133957148/51841*73681302247^(1/13) 1771100000964487 a001 133957148/51841*10749957122^(1/12) 1771100000964487 a001 433494437/103682*141422324^(1/13) 1771100000964487 a001 133957148/51841*4106118243^(2/23) 1771100000964487 a001 133957148/51841*1568397607^(1/11) 1771100000964487 a001 2576/33281921*4106118243^(20/23) 1771100000964487 a001 133957148/51841*599074578^(2/21) 1771100000964487 a001 2576/33281921*1568397607^(10/11) 1771100000964487 a001 4140883358976/233802911 1771100000964487 a001 46368/228826127*228826127^(19/20) 1771100000964487 a001 133957148/51841*228826127^(1/10) 1771100000964487 a001 6624/224056801*2537720636^(14/15) 1771100000964487 a001 6624/224056801*17393796001^(6/7) 1771100000964487 a001 6624/224056801*45537549124^(14/17) 1771100000964487 a001 6624/224056801*817138163596^(14/19) 1771100000964487 a001 6624/224056801*14662949395604^(2/3) 1771100000964487 a001 6624/224056801*192900153618^(7/9) 1771100000964487 a001 6624/224056801*10749957122^(7/8) 1771100000964487 a001 701408733/103682*(1/2+1/2*5^(1/2))^2 1771100000964487 a001 701408733/103682*10749957122^(1/24) 1771100000964487 a001 701408733/103682*4106118243^(1/23) 1771100000964487 a001 701408733/103682*1568397607^(1/22) 1771100000964487 a001 6624/224056801*4106118243^(21/23) 1771100000964487 a001 32522920131744/1836311903 1771100000964487 a001 701408733/103682*599074578^(1/21) 1771100000964487 a001 2576/33281921*599074578^(20/21) 1771100000964487 a001 15456/1368706081*312119004989^(4/5) 1771100000964487 a001 15456/1368706081*23725150497407^(11/16) 1771100000964487 a001 15456/1368706081*73681302247^(11/13) 1771100000964487 a001 15456/1368706081*10749957122^(11/12) 1771100000964487 a001 1836311903/103682 1771100000964487 a001 6624/224056801*1568397607^(21/22) 1771100000964487 a001 222915410823168/12586269025 1771100000964487 a001 15456/1368706081*4106118243^(22/23) 1771100000964487 a001 15456/9381251041*45537549124^(16/17) 1771100000964487 a001 15456/9381251041*14662949395604^(16/21) 1771100000964487 a001 15456/9381251041*192900153618^(8/9) 1771100000964487 a001 15456/9381251041*73681302247^(12/13) 1771100000964487 a001 194533374050400/10983760033 1771100000964487 a001 23184/5374978561*10749957122^(23/24) 1771100000964487 a001 6624/10525900321*312119004989^(10/11) 1771100000964487 a001 6624/10525900321*3461452808002^(5/6) 1771100000964487 a001 190985619453804/10783446409 1771100000964487 a001 2576/10716675201*23725150497407^(13/16) 1771100000964487 a001 190478797368576/10754830177 1771100000964487 a001 10472279278589856/591286729879 1771100000964487 a004 Fibonacci(24)/Lucas(1)/(1/2+sqrt(5)/2)^2 1771100000964487 a001 3236112266924880/182717648081 1771100000964487 a001 2472169789109664/139583862445 1771100000964487 a001 46368/119218851371*817138163596^(17/19) 1771100000964487 a001 46368/119218851371*14662949395604^(17/21) 1771100000964487 a001 46368/119218851371*192900153618^(17/18) 1771100000964487 a001 944284833479232/53316291173 1771100000964487 a001 11592/11384387281*14662949395604^(7/9) 1771100000964487 a001 11592/11384387281*505019158607^(7/8) 1771100000964487 a001 180342355664016/10182505537 1771100000964487 a001 137769300504864/7778742049 1771100000964487 a001 46368/6643838879*45537549124^(15/17) 1771100000964487 a001 46368/6643838879*312119004989^(9/11) 1771100000964487 a001 46368/6643838879*14662949395604^(5/7) 1771100000964487 a001 46368/6643838879*192900153618^(5/6) 1771100000964487 a001 46368/6643838879*28143753123^(9/10) 1771100000964487 a001 46368/6643838879*10749957122^(15/16) 1771100000964487 a001 52623190186560/2971215073 1771100000964487 a001 567451585/103682+567451585/103682*5^(1/2) 1771100000964487 a001 701408733/103682*228826127^(1/20) 1771100000964487 a001 10050135027408/567451585 1771100000964487 a001 433494437/103682*2537720636^(1/15) 1771100000964487 a001 433494437/103682*45537549124^(1/17) 1771100000964487 a001 433494437/103682*14662949395604^(1/21) 1771100000964487 a001 433494437/103682*(1/2+1/2*5^(1/2))^3 1771100000964487 a001 433494437/103682*192900153618^(1/18) 1771100000964487 a001 433494437/103682*10749957122^(1/16) 1771100000964487 a001 433494437/103682*599074578^(1/14) 1771100000964487 a001 102334155/103682*87403803^(3/19) 1771100000964487 a001 7677619977888/433494437 1771100000964487 a001 701408733/103682*87403803^(1/19) 1771100000964487 a001 46368/370248451*2537720636^(13/15) 1771100000964487 a001 165580141/103682*2537720636^(1/9) 1771100000964487 a001 46368/370248451*45537549124^(13/17) 1771100000964487 a001 46368/370248451*14662949395604^(13/21) 1771100000964487 a001 46368/370248451*192900153618^(13/18) 1771100000964487 a001 46368/370248451*73681302247^(3/4) 1771100000964487 a001 46368/370248451*10749957122^(13/16) 1771100000964487 a001 165580141/103682*312119004989^(1/11) 1771100000964487 a001 165580141/103682*(1/2+1/2*5^(1/2))^5 1771100000964487 a001 165580141/103682*28143753123^(1/10) 1771100000964487 a001 165580141/103682*228826127^(1/8) 1771100000964487 a001 46368/370248451*599074578^(13/14) 1771100000964487 a001 133957148/51841*87403803^(2/19) 1771100000964487 a001 2932589878848/165580141 1771100000964487 a001 701408733/103682*33385282^(1/18) 1771100000964487 a001 31622993/51841*17393796001^(1/7) 1771100000964487 a001 31622993/51841*14662949395604^(1/9) 1771100000964487 a001 31622993/51841*(1/2+1/2*5^(1/2))^7 1771100000964487 a001 31622993/51841*599074578^(1/6) 1771100000964487 a001 39088169/103682*33385282^(2/9) 1771100000964487 a001 433494437/103682*33385282^(1/12) 1771100000964487 a001 133957148/51841*33385282^(1/9) 1771100000964487 a001 102334155/103682*33385282^(1/6) 1771100000964488 a001 560074829328/31622993 1771100000964488 a001 24157817/103682*141422324^(3/13) 1771100000964488 a001 46368/54018521*2537720636^(7/9) 1771100000964488 a001 24157817/103682*2537720636^(1/5) 1771100000964488 a001 46368/54018521*17393796001^(5/7) 1771100000964488 a001 46368/54018521*312119004989^(7/11) 1771100000964488 a001 46368/54018521*14662949395604^(5/9) 1771100000964488 a001 46368/54018521*505019158607^(5/8) 1771100000964488 a001 46368/54018521*28143753123^(7/10) 1771100000964488 a001 24157817/103682*45537549124^(3/17) 1771100000964488 a001 24157817/103682*14662949395604^(1/7) 1771100000964488 a001 24157817/103682*(1/2+1/2*5^(1/2))^9 1771100000964488 a001 24157817/103682*192900153618^(1/6) 1771100000964488 a001 24157817/103682*10749957122^(3/16) 1771100000964488 a001 24157817/103682*599074578^(3/14) 1771100000964488 a001 46368/54018521*599074578^(5/6) 1771100000964488 a001 46368/54018521*228826127^(7/8) 1771100000964488 a001 701408733/103682*12752043^(1/17) 1771100000964488 a001 24157817/103682*33385282^(1/4) 1771100000964488 a001 133957148/51841*12752043^(2/17) 1771100000964489 a001 7465176/51841*12752043^(5/17) 1771100000964489 a001 102334155/103682*12752043^(3/17) 1771100000964489 a001 39088169/103682*12752043^(4/17) 1771100000964491 a001 427859097120/24157817 1771100000964491 a001 46368/20633239*141422324^(11/13) 1771100000964491 a001 46368/20633239*2537720636^(11/15) 1771100000964491 a001 46368/20633239*45537549124^(11/17) 1771100000964491 a001 46368/20633239*312119004989^(3/5) 1771100000964491 a001 46368/20633239*14662949395604^(11/21) 1771100000964491 a001 46368/20633239*(1/2+1/2*5^(1/2))^33 1771100000964491 a001 46368/20633239*192900153618^(11/18) 1771100000964491 a001 46368/20633239*10749957122^(11/16) 1771100000964491 a001 9227465/103682*312119004989^(1/5) 1771100000964491 a001 9227465/103682*(1/2+1/2*5^(1/2))^11 1771100000964491 a001 9227465/103682*1568397607^(1/4) 1771100000964491 a001 46368/20633239*1568397607^(3/4) 1771100000964491 a001 46368/20633239*599074578^(11/14) 1771100000964492 a001 701408733/103682*4870847^(1/16) 1771100000964493 a001 46368/20633239*33385282^(11/12) 1771100000964496 a001 133957148/51841*4870847^(1/8) 1771100000964501 a001 102334155/103682*4870847^(3/16) 1771100000964504 a001 5702887/103682*4870847^(3/8) 1771100000964505 a001 39088169/103682*4870847^(1/4) 1771100000964509 a001 7465176/51841*4870847^(5/16) 1771100000964511 a001 163427632704/9227465 1771100000964516 a001 1762289/51841*141422324^(1/3) 1771100000964516 a001 11592/1970299*(1/2+1/2*5^(1/2))^31 1771100000964516 a001 11592/1970299*9062201101803^(1/2) 1771100000964516 a001 1762289/51841*(1/2+1/2*5^(1/2))^13 1771100000964516 a001 1762289/51841*73681302247^(1/4) 1771100000964521 a001 701408733/103682*1860498^(1/15) 1771100000964538 a001 433494437/103682*1860498^(1/10) 1771100000964555 a001 133957148/51841*1860498^(2/15) 1771100000964572 a001 165580141/103682*1860498^(1/6) 1771100000964589 a001 102334155/103682*1860498^(1/5) 1771100000964623 a001 39088169/103682*1860498^(4/15) 1771100000964641 a001 24157817/103682*1860498^(3/10) 1771100000964651 a001 46347/2206*1860498^(7/15) 1771100000964654 a001 31211900496/1762289 1771100000964656 a001 7465176/51841*1860498^(1/3) 1771100000964670 a001 1346269/103682*7881196^(5/11) 1771100000964681 a001 1346269/103682*20633239^(3/7) 1771100000964681 a001 5702887/103682*1860498^(2/5) 1771100000964682 a001 1346269/103682*141422324^(5/13) 1771100000964683 a001 1346269/103682*2537720636^(1/3) 1771100000964683 a001 46368/3010349*(1/2+1/2*5^(1/2))^29 1771100000964683 a001 46368/3010349*1322157322203^(1/2) 1771100000964683 a001 1346269/103682*45537549124^(5/17) 1771100000964683 a001 1346269/103682*312119004989^(3/11) 1771100000964683 a001 1346269/103682*14662949395604^(5/21) 1771100000964683 a001 1346269/103682*(1/2+1/2*5^(1/2))^15 1771100000964683 a001 1346269/103682*192900153618^(5/18) 1771100000964683 a001 1346269/103682*28143753123^(3/10) 1771100000964683 a001 1346269/103682*10749957122^(5/16) 1771100000964683 a001 1346269/103682*599074578^(5/14) 1771100000964683 a001 1346269/103682*228826127^(3/8) 1771100000964683 a001 1346269/103682*33385282^(5/12) 1771100000964738 a001 701408733/103682*710647^(1/14) 1771100000964938 a001 1346269/103682*1860498^(1/2) 1771100000964988 a001 133957148/51841*710647^(1/7) 1771100000965239 a001 102334155/103682*710647^(3/14) 1771100000965364 a001 31622993/51841*710647^(1/4) 1771100000965489 a001 39088169/103682*710647^(2/7) 1771100000965631 a001 23843770272/1346269 1771100000965738 a001 7465176/51841*710647^(5/14) 1771100000965803 a001 46368/1149851*7881196^(9/11) 1771100000965827 a001 46368/1149851*141422324^(9/13) 1771100000965827 a001 46368/1149851*2537720636^(3/5) 1771100000965827 a001 46368/1149851*45537549124^(9/17) 1771100000965827 a001 46368/1149851*14662949395604^(3/7) 1771100000965827 a001 46368/1149851*(1/2+1/2*5^(1/2))^27 1771100000965827 a001 46368/1149851*192900153618^(1/2) 1771100000965827 a001 46368/1149851*10749957122^(9/16) 1771100000965827 a001 514229/103682*45537549124^(1/3) 1771100000965827 a001 514229/103682*(1/2+1/2*5^(1/2))^17 1771100000965827 a001 46368/1149851*599074578^(9/14) 1771100000965828 a001 46368/1149851*33385282^(3/4) 1771100000965832 a001 514229/103682*12752043^(1/2) 1771100000965979 a001 5702887/103682*710647^(3/7) 1771100000965979 a001 416020/51841*710647^(4/7) 1771100000966166 a001 46347/2206*710647^(1/2) 1771100000966287 a001 46368/1149851*1860498^(9/10) 1771100000966336 a001 701408733/103682*271443^(1/13) 1771100000967133 a001 9227465/167761*64079^(12/23) 1771100000968185 a001 133957148/51841*271443^(2/13) 1771100000969641 a001 102334155/439204*64079^(9/23) 1771100000970034 a001 102334155/103682*271443^(3/13) 1771100000971352 a001 567451585/51841*103682^(1/24) 1771100000971883 a001 39088169/103682*271443^(4/13) 1771100000972329 a001 9107509824/514229 1771100000973666 a001 11592/109801*20633239^(5/7) 1771100000973669 a001 11592/109801*2537720636^(5/9) 1771100000973669 a001 11592/109801*312119004989^(5/11) 1771100000973669 a001 11592/109801*(1/2+1/2*5^(1/2))^25 1771100000973669 a001 11592/109801*3461452808002^(5/12) 1771100000973669 a001 11592/109801*28143753123^(1/2) 1771100000973669 a001 98209/51841*817138163596^(1/3) 1771100000973669 a001 98209/51841*(1/2+1/2*5^(1/2))^19 1771100000973669 a001 11592/109801*228826127^(5/8) 1771100000973669 a001 98209/51841*87403803^(1/2) 1771100000973731 a001 7465176/51841*271443^(5/13) 1771100000973929 a001 165580141/271443*64079^(7/23) 1771100000974095 a001 11592/109801*1860498^(5/6) 1771100000975570 a001 5702887/103682*271443^(6/13) 1771100000975706 a001 267914296/710647*64079^(8/23) 1771100000976534 a001 1762289/51841*271443^(1/2) 1771100000977356 a001 46347/2206*271443^(7/13) 1771100000977621 a001 317811/103682*271443^(9/13) 1771100000978217 a001 701408733/103682*103682^(1/12) 1771100000978701 a001 233802911/620166*64079^(8/23) 1771100000978768 a001 416020/51841*271443^(8/13) 1771100000979138 a001 1836311903/4870847*64079^(8/23) 1771100000979202 a001 1602508992/4250681*64079^(8/23) 1771100000979211 a001 12586269025/33385282*64079^(8/23) 1771100000979212 a001 10983760033/29134601*64079^(8/23) 1771100000979213 a001 86267571272/228826127*64079^(8/23) 1771100000979213 a001 267913919/710646*64079^(8/23) 1771100000979213 a001 591286729879/1568397607*64079^(8/23) 1771100000979213 a001 516002918640/1368706081*64079^(8/23) 1771100000979213 a001 4052739537881/10749957122*64079^(8/23) 1771100000979213 a001 3536736619241/9381251041*64079^(8/23) 1771100000979213 a001 6557470319842/17393796001*64079^(8/23) 1771100000979213 a001 2504730781961/6643838879*64079^(8/23) 1771100000979213 a001 956722026041/2537720636*64079^(8/23) 1771100000979213 a001 365435296162/969323029*64079^(8/23) 1771100000979213 a001 139583862445/370248451*64079^(8/23) 1771100000979213 a001 53316291173/141422324*64079^(8/23) 1771100000979213 a001 20365011074/54018521*64079^(8/23) 1771100000979217 a001 7778742049/20633239*64079^(8/23) 1771100000979241 a001 2971215073/7881196*64079^(8/23) 1771100000979408 a001 1134903170/3010349*64079^(8/23) 1771100000980552 a001 433494437/1149851*64079^(8/23) 1771100000984954 a001 7778742049/710647*24476^(1/21) 1771100000985081 a001 433494437/103682*103682^(1/8) 1771100000985881 a001 14930352/167761*64079^(11/23) 1771100000987949 a001 10182505537/930249*24476^(1/21) 1771100000988386 a001 53316291173/4870847*24476^(1/21) 1771100000988394 a001 165580141/439204*64079^(8/23) 1771100000988450 a001 139583862445/12752043*24476^(1/21) 1771100000988459 a001 182717648081/16692641*24476^(1/21) 1771100000988460 a001 956722026041/87403803*24476^(1/21) 1771100000988461 a001 2504730781961/228826127*24476^(1/21) 1771100000988461 a001 3278735159921/299537289*24476^(1/21) 1771100000988461 a001 10610209857723/969323029*24476^(1/21) 1771100000988461 a001 4052739537881/370248451*24476^(1/21) 1771100000988461 a001 387002188980/35355581*24476^(1/21) 1771100000988461 a001 591286729879/54018521*24476^(1/21) 1771100000988465 a001 7787980473/711491*24476^(1/21) 1771100000988489 a001 21566892818/1970299*24476^(1/21) 1771100000988656 a001 32951280099/3010349*24476^(1/21) 1771100000989800 a001 12586269025/1149851*24476^(1/21) 1771100000991946 a001 133957148/51841*103682^(1/6) 1771100000992683 a001 267914296/271443*64079^(6/23) 1771100000994459 a001 433494437/710647*64079^(7/23) 1771100000997451 a001 165580141/64079*24476^(4/21) 1771100000997455 a001 567451585/930249*64079^(7/23) 1771100000997642 a001 1201881744/109801*24476^(1/21) 1771100000997892 a001 2971215073/4870847*64079^(7/23) 1771100000997955 a001 7778742049/12752043*64079^(7/23) 1771100000997965 a001 10182505537/16692641*64079^(7/23) 1771100000997966 a001 53316291173/87403803*64079^(7/23) 1771100000997966 a001 139583862445/228826127*64079^(7/23) 1771100000997966 a001 182717648081/299537289*64079^(7/23) 1771100000997966 a001 956722026041/1568397607*64079^(7/23) 1771100000997966 a001 2504730781961/4106118243*64079^(7/23) 1771100000997966 a001 3278735159921/5374978561*64079^(7/23) 1771100000997966 a001 10610209857723/17393796001*64079^(7/23) 1771100000997966 a001 4052739537881/6643838879*64079^(7/23) 1771100000997966 a001 1134903780/1860499*64079^(7/23) 1771100000997966 a001 591286729879/969323029*64079^(7/23) 1771100000997966 a001 225851433717/370248451*64079^(7/23) 1771100000997966 a001 21566892818/35355581*64079^(7/23) 1771100000997967 a001 32951280099/54018521*64079^(7/23) 1771100000997970 a001 1144206275/1875749*64079^(7/23) 1771100000997995 a001 1201881744/1970299*64079^(7/23) 1771100000998162 a001 1836311903/3010349*64079^(7/23) 1771100000998811 a001 165580141/103682*103682^(5/24) 1771100000999306 a001 701408733/1149851*64079^(7/23) 1771100001001994 a001 46368/64079*64079^(21/23) 1771100001004637 a001 24157817/167761*64079^(10/23) 1771100001005676 a001 102334155/103682*103682^(1/4) 1771100001007148 a001 66978574/109801*64079^(7/23) 1771100001011436 a001 433494437/271443*64079^(5/23) 1771100001012540 a001 31622993/51841*103682^(7/24) 1771100001013213 a001 701408733/710647*64079^(6/23) 1771100001015816 a001 567451585/51841*39603^(1/22) 1771100001016208 a001 1836311903/1860498*64079^(6/23) 1771100001016645 a001 4807526976/4870847*64079^(6/23) 1771100001016709 a001 12586269025/12752043*64079^(6/23) 1771100001016718 a001 32951280099/33385282*64079^(6/23) 1771100001016720 a001 86267571272/87403803*64079^(6/23) 1771100001016720 a001 225851433717/228826127*64079^(6/23) 1771100001016720 a001 591286729879/599074578*64079^(6/23) 1771100001016720 a001 1548008755920/1568397607*64079^(6/23) 1771100001016720 a001 4052739537881/4106118243*64079^(6/23) 1771100001016720 a001 4807525989/4870846*64079^(6/23) 1771100001016720 a001 6557470319842/6643838879*64079^(6/23) 1771100001016720 a001 2504730781961/2537720636*64079^(6/23) 1771100001016720 a001 956722026041/969323029*64079^(6/23) 1771100001016720 a001 365435296162/370248451*64079^(6/23) 1771100001016720 a001 139583862445/141422324*64079^(6/23) 1771100001016720 a001 53316291173/54018521*64079^(6/23) 1771100001016724 a001 20365011074/20633239*64079^(6/23) 1771100001016748 a001 7778742049/7881196*64079^(6/23) 1771100001016915 a001 2971215073/3010349*64079^(6/23) 1771100001018059 a001 1134903170/1149851*64079^(6/23) 1771100001018236 a001 1739379600/98209 1771100001019405 a001 39088169/103682*103682^(1/3) 1771100001020276 a001 75025/103682*439204^(7/9) 1771100001023389 a001 39088169/167761*64079^(9/23) 1771100001025901 a001 433494437/439204*64079^(6/23) 1771100001026270 a001 24157817/103682*103682^(3/8) 1771100001027399 a001 75025/103682*7881196^(7/11) 1771100001027415 a001 75025/103682*20633239^(3/5) 1771100001027418 a001 75025/103682*141422324^(7/13) 1771100001027418 a001 75025/103682*2537720636^(7/15) 1771100001027418 a001 46368/167761*(1/2+1/2*5^(1/2))^23 1771100001027418 a001 75025/103682*17393796001^(3/7) 1771100001027418 a001 75025/103682*45537549124^(7/17) 1771100001027418 a001 75025/103682*14662949395604^(1/3) 1771100001027418 a001 75025/103682*(1/2+1/2*5^(1/2))^21 1771100001027418 a001 75025/103682*192900153618^(7/18) 1771100001027418 a001 75025/103682*10749957122^(7/16) 1771100001027418 a001 46368/167761*4106118243^(1/2) 1771100001027418 a001 75025/103682*599074578^(1/2) 1771100001027418 a001 75025/103682*33385282^(7/12) 1771100001027776 a001 75025/103682*1860498^(7/10) 1771100001030048 a001 75025/103682*710647^(3/4) 1771100001030190 a001 233802911/90481*64079^(4/23) 1771100001031966 a001 1134903170/710647*64079^(5/23) 1771100001033133 a001 7465176/51841*103682^(5/12) 1771100001034962 a001 2971215073/1860498*64079^(5/23) 1771100001035399 a001 7778742049/4870847*64079^(5/23) 1771100001035463 a001 20365011074/12752043*64079^(5/23) 1771100001035472 a001 53316291173/33385282*64079^(5/23) 1771100001035473 a001 139583862445/87403803*64079^(5/23) 1771100001035473 a001 365435296162/228826127*64079^(5/23) 1771100001035473 a001 956722026041/599074578*64079^(5/23) 1771100001035473 a001 2504730781961/1568397607*64079^(5/23) 1771100001035473 a001 6557470319842/4106118243*64079^(5/23) 1771100001035473 a001 10610209857723/6643838879*64079^(5/23) 1771100001035473 a001 4052739537881/2537720636*64079^(5/23) 1771100001035473 a001 1548008755920/969323029*64079^(5/23) 1771100001035473 a001 591286729879/370248451*64079^(5/23) 1771100001035473 a001 225851433717/141422324*64079^(5/23) 1771100001035474 a001 86267571272/54018521*64079^(5/23) 1771100001035478 a001 32951280099/20633239*64079^(5/23) 1771100001035502 a001 12586269025/7881196*64079^(5/23) 1771100001035669 a001 4807526976/3010349*64079^(5/23) 1771100001036813 a001 1836311903/1149851*64079^(5/23) 1771100001038184 a001 75025/39603*39603^(19/22) 1771100001040004 a001 9227465/103682*103682^(11/24) 1771100001042143 a001 63245986/167761*64079^(8/23) 1771100001044655 a001 701408733/439204*64079^(5/23) 1771100001046853 a001 5702887/103682*103682^(1/2) 1771100001048943 a001 1134903170/271443*64079^(3/23) 1771100001050720 a001 1836311903/710647*64079^(4/23) 1771100001051353 a001 105937/90481*167761^(4/5) 1771100001051391 a001 1836311903/167761*24476^(1/21) 1771100001053715 a001 267084832/103361*64079^(4/23) 1771100001053757 a001 1762289/51841*103682^(13/24) 1771100001054152 a001 12586269025/4870847*64079^(4/23) 1771100001054216 a001 10983760033/4250681*64079^(4/23) 1771100001054225 a001 43133785636/16692641*64079^(4/23) 1771100001054227 a001 75283811239/29134601*64079^(4/23) 1771100001054227 a001 591286729879/228826127*64079^(4/23) 1771100001054227 a001 86000486440/33281921*64079^(4/23) 1771100001054227 a001 4052739537881/1568397607*64079^(4/23) 1771100001054227 a001 3536736619241/1368706081*64079^(4/23) 1771100001054227 a001 3278735159921/1268860318*64079^(4/23) 1771100001054227 a001 2504730781961/969323029*64079^(4/23) 1771100001054227 a001 956722026041/370248451*64079^(4/23) 1771100001054227 a001 182717648081/70711162*64079^(4/23) 1771100001054228 a001 139583862445/54018521*64079^(4/23) 1771100001054231 a001 53316291173/20633239*64079^(4/23) 1771100001054255 a001 10182505537/3940598*64079^(4/23) 1771100001054422 a001 7778742049/3010349*64079^(4/23) 1771100001055567 a001 2971215073/1149851*64079^(4/23) 1771100001060519 a001 46347/2206*103682^(7/12) 1771100001060897 a001 9303105/15251*64079^(7/23) 1771100001063408 a001 567451585/219602*64079^(4/23) 1771100001066311 a001 2/75025*(1/2+1/2*5^(1/2))^47 1771100001067145 a001 701408733/103682*39603^(1/11) 1771100001067474 a001 3524578/271443*167761^(3/5) 1771100001067654 a001 1346269/103682*103682^(5/8) 1771100001067697 a001 1836311903/271443*64079^(2/23) 1771100001069474 a001 2971215073/710647*64079^(3/23) 1771100001072469 a001 7778742049/1860498*64079^(3/23) 1771100001072906 a001 20365011074/4870847*64079^(3/23) 1771100001072970 a001 53316291173/12752043*64079^(3/23) 1771100001072979 a001 139583862445/33385282*64079^(3/23) 1771100001072980 a001 365435296162/87403803*64079^(3/23) 1771100001072980 a001 956722026041/228826127*64079^(3/23) 1771100001072981 a001 2504730781961/599074578*64079^(3/23) 1771100001072981 a001 6557470319842/1568397607*64079^(3/23) 1771100001072981 a001 10610209857723/2537720636*64079^(3/23) 1771100001072981 a001 4052739537881/969323029*64079^(3/23) 1771100001072981 a001 1548008755920/370248451*64079^(3/23) 1771100001072981 a001 591286729879/141422324*64079^(3/23) 1771100001072981 a001 225851433717/54018521*64079^(3/23) 1771100001072985 a001 86267571272/20633239*64079^(3/23) 1771100001073009 a001 32951280099/7881196*64079^(3/23) 1771100001073176 a001 12586269025/3010349*64079^(3/23) 1771100001073812 a001 416020/51841*103682^(2/3) 1771100001074320 a001 4807526976/1149851*64079^(3/23) 1771100001074878 a001 832040/710647*167761^(4/5) 1771100001077745 a001 121393/103682*103682^(5/6) 1771100001078311 a001 726103/620166*167761^(4/5) 1771100001078811 a001 5702887/4870847*167761^(4/5) 1771100001078884 a001 4976784/4250681*167761^(4/5) 1771100001078895 a001 39088169/33385282*167761^(4/5) 1771100001078897 a001 34111385/29134601*167761^(4/5) 1771100001078897 a001 267914296/228826127*167761^(4/5) 1771100001078897 a001 233802911/199691526*167761^(4/5) 1771100001078897 a001 1836311903/1568397607*167761^(4/5) 1771100001078897 a001 1602508992/1368706081*167761^(4/5) 1771100001078897 a001 12586269025/10749957122*167761^(4/5) 1771100001078897 a001 10983760033/9381251041*167761^(4/5) 1771100001078897 a001 86267571272/73681302247*167761^(4/5) 1771100001078897 a001 75283811239/64300051206*167761^(4/5) 1771100001078897 a001 2504730781961/2139295485799*167761^(4/5) 1771100001078897 a001 365435296162/312119004989*167761^(4/5) 1771100001078897 a001 139583862445/119218851371*167761^(4/5) 1771100001078897 a001 53316291173/45537549124*167761^(4/5) 1771100001078897 a001 20365011074/17393796001*167761^(4/5) 1771100001078897 a001 7778742049/6643838879*167761^(4/5) 1771100001078897 a001 2971215073/2537720636*167761^(4/5) 1771100001078897 a001 1134903170/969323029*167761^(4/5) 1771100001078897 a001 433494437/370248451*167761^(4/5) 1771100001078897 a001 165580141/141422324*167761^(4/5) 1771100001078898 a001 63245986/54018521*167761^(4/5) 1771100001078902 a001 24157817/20633239*167761^(4/5) 1771100001078930 a001 9227465/7881196*167761^(4/5) 1771100001079121 a001 3524578/3010349*167761^(4/5) 1771100001079650 a001 165580141/167761*64079^(6/23) 1771100001080031 a001 39088169/271443*167761^(2/5) 1771100001080432 a001 1346269/1149851*167761^(4/5) 1771100001081148 a001 121393/271443*7881196^(2/3) 1771100001081167 a001 121393/271443*312119004989^(2/5) 1771100001081167 a001 121393/271443*(1/2+1/2*5^(1/2))^22 1771100001081167 a001 121393/271443*10749957122^(11/24) 1771100001081167 a001 121393/271443*4106118243^(11/23) 1771100001081167 a001 121393/271443*1568397607^(1/2) 1771100001081167 a001 121393/271443*599074578^(11/21) 1771100001081167 a001 121393/271443*228826127^(11/20) 1771100001081167 a001 121393/271443*87403803^(11/19) 1771100001081168 a001 121393/271443*33385282^(11/18) 1771100001081174 a001 121393/271443*12752043^(11/17) 1771100001081218 a001 121393/271443*4870847^(11/16) 1771100001081542 a001 121393/271443*1860498^(11/15) 1771100001081678 a001 14736260449/832040 1771100001082162 a001 1836311903/439204*64079^(3/23) 1771100001082527 a001 514229/103682*103682^(17/24) 1771100001083922 a001 121393/271443*710647^(11/14) 1771100001084546 a001 317811/103682*103682^(3/4) 1771100001086450 a001 2971215073/271443*64079^(1/23) 1771100001087980 a001 9227465/710647*167761^(3/5) 1771100001088227 a001 686789568/101521*64079^(2/23) 1771100001089418 a001 514229/439204*167761^(4/5) 1771100001090972 a001 24157817/1860498*167761^(3/5) 1771100001091222 a001 12586269025/1860498*64079^(2/23) 1771100001091408 a001 63245986/4870847*167761^(3/5) 1771100001091472 a001 165580141/12752043*167761^(3/5) 1771100001091481 a001 433494437/33385282*167761^(3/5) 1771100001091483 a001 1134903170/87403803*167761^(3/5) 1771100001091483 a001 2971215073/228826127*167761^(3/5) 1771100001091483 a001 7778742049/599074578*167761^(3/5) 1771100001091483 a001 20365011074/1568397607*167761^(3/5) 1771100001091483 a001 53316291173/4106118243*167761^(3/5) 1771100001091483 a001 139583862445/10749957122*167761^(3/5) 1771100001091483 a001 365435296162/28143753123*167761^(3/5) 1771100001091483 a001 956722026041/73681302247*167761^(3/5) 1771100001091483 a001 2504730781961/192900153618*167761^(3/5) 1771100001091483 a001 10610209857723/817138163596*167761^(3/5) 1771100001091483 a001 4052739537881/312119004989*167761^(3/5) 1771100001091483 a001 1548008755920/119218851371*167761^(3/5) 1771100001091483 a001 591286729879/45537549124*167761^(3/5) 1771100001091483 a001 7787980473/599786069*167761^(3/5) 1771100001091483 a001 86267571272/6643838879*167761^(3/5) 1771100001091483 a001 32951280099/2537720636*167761^(3/5) 1771100001091483 a001 12586269025/969323029*167761^(3/5) 1771100001091483 a001 4807526976/370248451*167761^(3/5) 1771100001091483 a001 1836311903/141422324*167761^(3/5) 1771100001091484 a001 701408733/54018521*167761^(3/5) 1771100001091487 a001 9238424/711491*167761^(3/5) 1771100001091511 a001 102334155/7881196*167761^(3/5) 1771100001091659 a001 32951280099/4870847*64079^(2/23) 1771100001091678 a001 39088169/3010349*167761^(3/5) 1771100001091723 a001 86267571272/12752043*64079^(2/23) 1771100001091732 a001 32264490531/4769326*64079^(2/23) 1771100001091734 a001 591286729879/87403803*64079^(2/23) 1771100001091734 a001 1548008755920/228826127*64079^(2/23) 1771100001091734 a001 4052739537881/599074578*64079^(2/23) 1771100001091734 a001 1515744265389/224056801*64079^(2/23) 1771100001091734 a001 6557470319842/969323029*64079^(2/23) 1771100001091734 a001 2504730781961/370248451*64079^(2/23) 1771100001091734 a001 956722026041/141422324*64079^(2/23) 1771100001091735 a001 365435296162/54018521*64079^(2/23) 1771100001091738 a001 139583862445/20633239*64079^(2/23) 1771100001091763 a001 53316291173/7881196*64079^(2/23) 1771100001091930 a001 20365011074/3010349*64079^(2/23) 1771100001092618 a001 433494437/271443*167761^(1/5) 1771100001092821 a001 14930352/1149851*167761^(3/5) 1771100001093074 a001 7778742049/1149851*64079^(2/23) 1771100001093536 a001 121393/710647*439204^(8/9) 1771100001098404 a001 267914296/167761*64079^(5/23) 1771100001098571 a001 832040/271443*439204^(2/3) 1771100001100132 a001 3524578/271443*439204^(5/9) 1771100001100562 a001 14619165/101521*167761^(2/5) 1771100001100653 a001 5702887/439204*167761^(3/5) 1771100001100916 a001 2971215073/439204*64079^(2/23) 1771100001101122 a001 4976784/90481*439204^(4/9) 1771100001101506 a001 121393/271443*271443^(11/13) 1771100001101676 a001 121393/710647*7881196^(8/11) 1771100001101695 a001 105937/90481*20633239^(4/7) 1771100001101697 a001 121393/710647*141422324^(8/13) 1771100001101697 a001 121393/710647*2537720636^(8/15) 1771100001101697 a001 105937/90481*2537720636^(4/9) 1771100001101697 a001 121393/710647*45537549124^(8/17) 1771100001101697 a001 121393/710647*14662949395604^(8/21) 1771100001101697 a001 121393/710647*(1/2+1/2*5^(1/2))^24 1771100001101697 a001 121393/710647*192900153618^(4/9) 1771100001101697 a001 121393/710647*73681302247^(6/13) 1771100001101697 a001 105937/90481*(1/2+1/2*5^(1/2))^20 1771100001101697 a001 105937/90481*23725150497407^(5/16) 1771100001101697 a001 105937/90481*505019158607^(5/14) 1771100001101697 a001 105937/90481*73681302247^(5/13) 1771100001101697 a001 105937/90481*28143753123^(2/5) 1771100001101697 a001 105937/90481*10749957122^(5/12) 1771100001101697 a001 121393/710647*10749957122^(1/2) 1771100001101697 a001 105937/90481*4106118243^(10/23) 1771100001101697 a001 121393/710647*4106118243^(12/23) 1771100001101697 a001 105937/90481*1568397607^(5/11) 1771100001101697 a001 121393/710647*1568397607^(6/11) 1771100001101697 a001 105937/90481*599074578^(10/21) 1771100001101697 a001 121393/710647*599074578^(4/7) 1771100001101697 a001 105937/90481*228826127^(1/2) 1771100001101697 a001 121393/710647*228826127^(3/5) 1771100001101697 a001 105937/90481*87403803^(10/19) 1771100001101697 a001 121393/710647*87403803^(12/19) 1771100001101698 a001 105937/90481*33385282^(5/9) 1771100001101698 a001 121393/710647*33385282^(2/3) 1771100001101703 a001 105937/90481*12752043^(10/17) 1771100001101705 a001 121393/710647*12752043^(12/17) 1771100001101744 a001 105937/90481*4870847^(5/8) 1771100001101753 a001 121393/710647*4870847^(3/4) 1771100001101772 a001 12860010241/726103 1771100001102038 a001 105937/90481*1860498^(2/3) 1771100001102106 a001 121393/710647*1860498^(4/5) 1771100001102144 a001 63245986/271443*439204^(1/3) 1771100001103164 a001 267914296/271443*439204^(2/9) 1771100001103557 a001 133957148/930249*167761^(2/5) 1771100001103994 a001 701408733/4870847*167761^(2/5) 1771100001104058 a001 1836311903/12752043*167761^(2/5) 1771100001104067 a001 14930208/103681*167761^(2/5) 1771100001104069 a001 12586269025/87403803*167761^(2/5) 1771100001104069 a001 32951280099/228826127*167761^(2/5) 1771100001104069 a001 43133785636/299537289*167761^(2/5) 1771100001104069 a001 32264490531/224056801*167761^(2/5) 1771100001104069 a001 591286729879/4106118243*167761^(2/5) 1771100001104069 a001 774004377960/5374978561*167761^(2/5) 1771100001104069 a001 4052739537881/28143753123*167761^(2/5) 1771100001104069 a001 1515744265389/10525900321*167761^(2/5) 1771100001104069 a001 3278735159921/22768774562*167761^(2/5) 1771100001104069 a001 2504730781961/17393796001*167761^(2/5) 1771100001104069 a001 956722026041/6643838879*167761^(2/5) 1771100001104069 a001 182717648081/1268860318*167761^(2/5) 1771100001104069 a001 139583862445/969323029*167761^(2/5) 1771100001104069 a001 53316291173/370248451*167761^(2/5) 1771100001104069 a001 10182505537/70711162*167761^(2/5) 1771100001104070 a001 7778742049/54018521*167761^(2/5) 1771100001104073 a001 2971215073/20633239*167761^(2/5) 1771100001104098 a001 567451585/3940598*167761^(2/5) 1771100001104099 a001 98209/51841*103682^(19/24) 1771100001104184 a001 1134903170/271443*439204^(1/9) 1771100001104202 a001 105937/90481*710647^(5/7) 1771100001104264 a001 433494437/3010349*167761^(2/5) 1771100001104677 a001 832040/271443*7881196^(6/11) 1771100001104692 a001 121393/1860498*141422324^(2/3) 1771100001104692 a001 832040/271443*141422324^(6/13) 1771100001104692 a001 832040/271443*2537720636^(2/5) 1771100001104692 a001 121393/1860498*(1/2+1/2*5^(1/2))^26 1771100001104692 a001 832040/271443*45537549124^(6/17) 1771100001104692 a001 121393/1860498*73681302247^(1/2) 1771100001104692 a001 832040/271443*14662949395604^(2/7) 1771100001104692 a001 832040/271443*(1/2+1/2*5^(1/2))^18 1771100001104692 a001 832040/271443*192900153618^(1/3) 1771100001104692 a001 832040/271443*10749957122^(3/8) 1771100001104692 a001 121393/1860498*10749957122^(13/24) 1771100001104692 a001 832040/271443*4106118243^(9/23) 1771100001104692 a001 121393/1860498*4106118243^(13/23) 1771100001104692 a001 832040/271443*1568397607^(9/22) 1771100001104692 a001 121393/1860498*1568397607^(13/22) 1771100001104692 a001 832040/271443*599074578^(3/7) 1771100001104692 a001 121393/1860498*599074578^(13/21) 1771100001104692 a001 832040/271443*228826127^(9/20) 1771100001104692 a001 121393/1860498*228826127^(13/20) 1771100001104692 a001 832040/271443*87403803^(9/19) 1771100001104692 a001 121393/1860498*87403803^(13/19) 1771100001104693 a001 832040/271443*33385282^(1/2) 1771100001104693 a001 121393/1860498*33385282^(13/18) 1771100001104698 a001 832040/271443*12752043^(9/17) 1771100001104701 a001 121393/1860498*12752043^(13/17) 1771100001104703 a001 121393/710647*710647^(6/7) 1771100001104703 a001 101003831720/5702887 1771100001104734 a001 832040/271443*4870847^(9/16) 1771100001104753 a001 121393/1860498*4870847^(13/16) 1771100001104999 a001 832040/271443*1860498^(3/5) 1771100001105126 a001 121393/4870847*20633239^(4/5) 1771100001105129 a001 121393/4870847*17393796001^(4/7) 1771100001105129 a001 121393/4870847*14662949395604^(4/9) 1771100001105129 a001 121393/4870847*(1/2+1/2*5^(1/2))^28 1771100001105129 a001 121393/4870847*73681302247^(7/13) 1771100001105129 a001 726103/90481*(1/2+1/2*5^(1/2))^16 1771100001105129 a001 726103/90481*23725150497407^(1/4) 1771100001105129 a001 726103/90481*73681302247^(4/13) 1771100001105129 a001 726103/90481*10749957122^(1/3) 1771100001105129 a001 121393/4870847*10749957122^(7/12) 1771100001105129 a001 726103/90481*4106118243^(8/23) 1771100001105129 a001 121393/4870847*4106118243^(14/23) 1771100001105129 a001 726103/90481*1568397607^(4/11) 1771100001105129 a001 121393/4870847*1568397607^(7/11) 1771100001105129 a001 726103/90481*599074578^(8/21) 1771100001105129 a001 121393/4870847*599074578^(2/3) 1771100001105129 a001 726103/90481*228826127^(2/5) 1771100001105129 a001 121393/4870847*228826127^(7/10) 1771100001105129 a001 726103/90481*87403803^(8/19) 1771100001105129 a001 121393/4870847*87403803^(14/19) 1771100001105130 a001 726103/90481*33385282^(4/9) 1771100001105130 a001 121393/4870847*33385282^(7/9) 1771100001105131 a001 88143821479/4976784 1771100001105134 a001 726103/90481*12752043^(8/17) 1771100001105136 a001 121393/1860498*1860498^(13/15) 1771100001105138 a001 121393/4870847*12752043^(14/17) 1771100001105167 a001 726103/90481*4870847^(1/2) 1771100001105167 a001 121393/12752043*7881196^(10/11) 1771100001105189 a001 121393/12752043*20633239^(6/7) 1771100001105191 a001 5702887/271443*20633239^(2/5) 1771100001105192 a001 4976784/90481*7881196^(4/11) 1771100001105193 a001 121393/12752043*141422324^(10/13) 1771100001105193 a001 121393/12752043*2537720636^(2/3) 1771100001105193 a001 5702887/271443*17393796001^(2/7) 1771100001105193 a001 121393/12752043*45537549124^(10/17) 1771100001105193 a001 121393/12752043*312119004989^(6/11) 1771100001105193 a001 121393/12752043*14662949395604^(10/21) 1771100001105193 a001 121393/12752043*(1/2+1/2*5^(1/2))^30 1771100001105193 a001 121393/12752043*192900153618^(5/9) 1771100001105193 a001 5702887/271443*14662949395604^(2/9) 1771100001105193 a001 5702887/271443*(1/2+1/2*5^(1/2))^14 1771100001105193 a001 121393/12752043*28143753123^(3/5) 1771100001105193 a001 5702887/271443*10749957122^(7/24) 1771100001105193 a001 121393/12752043*10749957122^(5/8) 1771100001105193 a001 5702887/271443*4106118243^(7/23) 1771100001105193 a001 121393/12752043*4106118243^(15/23) 1771100001105193 a001 5702887/271443*1568397607^(7/22) 1771100001105193 a001 121393/12752043*1568397607^(15/22) 1771100001105193 a001 5702887/271443*599074578^(1/3) 1771100001105193 a001 121393/12752043*599074578^(5/7) 1771100001105193 a001 5702887/271443*228826127^(7/20) 1771100001105193 a001 121393/12752043*228826127^(3/4) 1771100001105193 a001 5702887/271443*87403803^(7/19) 1771100001105193 a001 121393/12752043*87403803^(15/19) 1771100001105193 a001 692290561591/39088169 1771100001105194 a001 5702887/271443*33385282^(7/18) 1771100001105194 a001 121393/12752043*33385282^(5/6) 1771100001105195 a001 121393/4870847*4870847^(7/8) 1771100001105195 a001 24157817/271443*7881196^(1/3) 1771100001105196 a001 63245986/271443*7881196^(3/11) 1771100001105198 a001 5702887/271443*12752043^(7/17) 1771100001105199 a001 267914296/271443*7881196^(2/11) 1771100001105201 a001 1134903170/271443*7881196^(1/11) 1771100001105202 a001 4976784/90481*141422324^(4/13) 1771100001105202 a001 4976784/90481*2537720636^(4/15) 1771100001105202 a001 121393/33385282*(1/2+1/2*5^(1/2))^32 1771100001105202 a001 121393/33385282*23725150497407^(1/2) 1771100001105202 a001 4976784/90481*45537549124^(4/17) 1771100001105202 a001 121393/33385282*73681302247^(8/13) 1771100001105202 a001 4976784/90481*817138163596^(4/19) 1771100001105202 a001 4976784/90481*14662949395604^(4/21) 1771100001105202 a001 4976784/90481*(1/2+1/2*5^(1/2))^12 1771100001105202 a001 4976784/90481*73681302247^(3/13) 1771100001105202 a001 4976784/90481*10749957122^(1/4) 1771100001105202 a001 121393/33385282*10749957122^(2/3) 1771100001105202 a001 4976784/90481*4106118243^(6/23) 1771100001105202 a001 121393/33385282*4106118243^(16/23) 1771100001105202 a001 4976784/90481*1568397607^(3/11) 1771100001105202 a001 121393/33385282*1568397607^(8/11) 1771100001105202 a001 4976784/90481*599074578^(2/7) 1771100001105202 a001 121393/33385282*599074578^(16/21) 1771100001105202 a001 4976784/90481*228826127^(3/10) 1771100001105202 a001 121393/33385282*228826127^(4/5) 1771100001105202 a001 604146740112/34111385 1771100001105202 a001 4976784/90481*87403803^(6/19) 1771100001105202 a001 39088169/271443*20633239^(2/7) 1771100001105203 a001 121393/33385282*87403803^(16/19) 1771100001105203 a001 121393/12752043*12752043^(15/17) 1771100001105203 a001 4976784/90481*33385282^(1/3) 1771100001105203 a001 165580141/271443*20633239^(1/5) 1771100001105203 a001 433494437/271443*20633239^(1/7) 1771100001105204 a001 39088169/271443*2537720636^(2/9) 1771100001105204 a001 121393/87403803*45537549124^(2/3) 1771100001105204 a001 39088169/271443*312119004989^(2/11) 1771100001105204 a001 39088169/271443*(1/2+1/2*5^(1/2))^10 1771100001105204 a001 39088169/271443*28143753123^(1/5) 1771100001105204 a001 39088169/271443*10749957122^(5/24) 1771100001105204 a001 121393/87403803*10749957122^(17/24) 1771100001105204 a001 39088169/271443*4106118243^(5/23) 1771100001105204 a001 121393/87403803*4106118243^(17/23) 1771100001105204 a001 39088169/271443*1568397607^(5/22) 1771100001105204 a001 121393/87403803*1568397607^(17/22) 1771100001105204 a001 39088169/271443*599074578^(5/21) 1771100001105204 a001 121393/87403803*599074578^(17/21) 1771100001105204 a001 4745030099417/267914296 1771100001105204 a001 39088169/271443*228826127^(1/4) 1771100001105204 a001 121393/87403803*228826127^(17/20) 1771100001105204 a001 121393/33385282*33385282^(8/9) 1771100001105204 a001 39088169/271443*87403803^(5/19) 1771100001105204 a001 121393/228826127*141422324^(12/13) 1771100001105204 a001 121393/228826127*2537720636^(4/5) 1771100001105204 a001 121393/228826127*45537549124^(12/17) 1771100001105204 a001 121393/228826127*14662949395604^(4/7) 1771100001105204 a001 121393/228826127*192900153618^(2/3) 1771100001105204 a001 121393/228826127*73681302247^(9/13) 1771100001105204 a001 34111385/90481*(1/2+1/2*5^(1/2))^8 1771100001105204 a001 34111385/90481*23725150497407^(1/8) 1771100001105204 a001 34111385/90481*505019158607^(1/7) 1771100001105204 a001 34111385/90481*73681302247^(2/13) 1771100001105204 a001 34111385/90481*10749957122^(1/6) 1771100001105204 a001 121393/228826127*10749957122^(3/4) 1771100001105204 a001 34111385/90481*4106118243^(4/23) 1771100001105204 a001 121393/228826127*4106118243^(18/23) 1771100001105204 a001 34111385/90481*1568397607^(2/11) 1771100001105204 a001 121393/228826127*1568397607^(9/11) 1771100001105204 a001 4140883359305/233802911 1771100001105204 a001 34111385/90481*599074578^(4/21) 1771100001105204 a001 121393/228826127*599074578^(6/7) 1771100001105204 a001 34111385/90481*228826127^(1/5) 1771100001105204 a001 121393/87403803*87403803^(17/19) 1771100001105204 a001 267914296/271443*141422324^(2/13) 1771100001105204 a001 1134903170/271443*141422324^(1/13) 1771100001105204 a001 267914296/271443*2537720636^(2/15) 1771100001105204 a001 121393/599074578*817138163596^(2/3) 1771100001105204 a001 267914296/271443*45537549124^(2/17) 1771100001105204 a001 267914296/271443*14662949395604^(2/21) 1771100001105204 a001 267914296/271443*(1/2+1/2*5^(1/2))^6 1771100001105204 a001 267914296/271443*10749957122^(1/8) 1771100001105204 a001 121393/599074578*10749957122^(19/24) 1771100001105204 a001 267914296/271443*4106118243^(3/23) 1771100001105204 a001 121393/599074578*4106118243^(19/23) 1771100001105204 a001 267914296/271443*1568397607^(3/22) 1771100001105204 a001 32522920134328/1836311903 1771100001105204 a001 121393/599074578*1568397607^(19/22) 1771100001105204 a001 267914296/271443*599074578^(1/7) 1771100001105204 a001 121393/228826127*228826127^(9/10) 1771100001105204 a001 121393/1568397607*2537720636^(8/9) 1771100001105204 a001 121393/1568397607*312119004989^(8/11) 1771100001105204 a001 121393/1568397607*23725150497407^(5/8) 1771100001105204 a001 121393/1568397607*73681302247^(10/13) 1771100001105204 a001 233802911/90481*(1/2+1/2*5^(1/2))^4 1771100001105204 a001 233802911/90481*23725150497407^(1/16) 1771100001105204 a001 233802911/90481*73681302247^(1/13) 1771100001105204 a001 233802911/90481*10749957122^(1/12) 1771100001105204 a001 121393/1568397607*28143753123^(4/5) 1771100001105204 a001 233802911/90481*4106118243^(2/23) 1771100001105204 a001 121393/1568397607*10749957122^(5/6) 1771100001105204 a001 28382036775023/1602508992 1771100001105204 a001 233802911/90481*1568397607^(1/11) 1771100001105204 a001 121393/1568397607*4106118243^(20/23) 1771100001105204 a001 121393/599074578*599074578^(19/21) 1771100001105204 a001 121393/4106118243*2537720636^(14/15) 1771100001105204 a001 233802911/90481*599074578^(2/21) 1771100001105204 a001 121393/4106118243*17393796001^(6/7) 1771100001105204 a001 121393/4106118243*45537549124^(14/17) 1771100001105204 a001 121393/4106118243*14662949395604^(2/3) 1771100001105204 a001 121393/4106118243*505019158607^(3/4) 1771100001105204 a001 121393/4106118243*192900153618^(7/9) 1771100001105204 a001 1836311903/271443*(1/2+1/2*5^(1/2))^2 1771100001105204 a001 1836311903/271443*10749957122^(1/24) 1771100001105204 a001 222915410840879/12586269025 1771100001105204 a001 1836311903/271443*4106118243^(1/23) 1771100001105204 a001 121393/4106118243*10749957122^(7/8) 1771100001105204 a001 1836311903/271443*1568397607^(1/22) 1771100001105204 a001 121393/1568397607*1568397607^(10/11) 1771100001105204 a001 121393/10749957122*312119004989^(4/5) 1771100001105204 a001 121393/10749957122*23725150497407^(11/16) 1771100001105204 a001 121393/10749957122*73681302247^(11/13) 1771100001105204 a001 1602508992/90481 1771100001105204 a001 121393/4106118243*4106118243^(21/23) 1771100001105204 a001 1527884955751825/86267571272 1771100001105204 a001 121393/10749957122*10749957122^(11/12) 1771100001105204 a001 121393/73681302247*45537549124^(16/17) 1771100001105204 a001 121393/73681302247*14662949395604^(16/21) 1771100001105204 a001 1333351581685969/75283811239 1771100001105204 a001 121393/73681302247*192900153618^(8/9) 1771100001105204 a001 121393/192900153618*312119004989^(10/11) 1771100001105204 a001 10472279279421896/591286729879 1771100001105204 a001 121393/73681302247*73681302247^(12/13) 1771100001105204 a001 121393/3461452808002*14662949395604^(8/9) 1771100001105204 a004 Fibonacci(26)/Lucas(1)/(1/2+sqrt(5)/2)^4 1771100001105204 a001 116139356907195113/6557470319842 1771100001105204 a001 121393/312119004989*817138163596^(17/19) 1771100001105204 a001 121393/312119004989*14662949395604^(17/21) 1771100001105204 a001 121393/312119004989*192900153618^(17/18) 1771100001105204 a001 6472224534363989/365435296162 1771100001105204 a001 121393/119218851371*14662949395604^(7/9) 1771100001105204 a001 121393/119218851371*505019158607^(7/8) 1771100001105204 a001 2472169789306082/139583862445 1771100001105204 a001 121393/17393796001*45537549124^(15/17) 1771100001105204 a001 944284833554257/53316291173 1771100001105204 a001 121393/17393796001*312119004989^(9/11) 1771100001105204 a001 121393/17393796001*14662949395604^(5/7) 1771100001105204 a001 121393/17393796001*192900153618^(5/6) 1771100001105204 a001 121393/17393796001*28143753123^(9/10) 1771100001105204 a001 121393/28143753123*10749957122^(23/24) 1771100001105204 a001 121393/17393796001*10749957122^(15/16) 1771100001105204 a001 360684711356689/20365011074 1771100001105204 a001 2971215073/542886+2971215073/542886*5^(1/2) 1771100001105204 a001 121393/10749957122*4106118243^(22/23) 1771100001105204 a001 1836311903/271443*599074578^(1/21) 1771100001105204 a001 267914296/271443*228826127^(3/20) 1771100001105204 a001 1134903170/271443*2537720636^(1/15) 1771100001105204 a001 137769300515810/7778742049 1771100001105204 a001 1134903170/271443*45537549124^(1/17) 1771100001105204 a001 1134903170/271443*14662949395604^(1/21) 1771100001105204 a001 1134903170/271443*(1/2+1/2*5^(1/2))^3 1771100001105204 a001 1134903170/271443*10749957122^(1/16) 1771100001105204 a001 121393/4106118243*1568397607^(21/22) 1771100001105204 a001 1134903170/271443*599074578^(1/14) 1771100001105204 a001 1836311903/271443*228826127^(1/20) 1771100001105204 a001 121393/969323029*2537720636^(13/15) 1771100001105204 a001 52623190190741/2971215073 1771100001105204 a001 433494437/271443*2537720636^(1/9) 1771100001105204 a001 121393/969323029*45537549124^(13/17) 1771100001105204 a001 121393/969323029*14662949395604^(13/21) 1771100001105204 a001 121393/969323029*192900153618^(13/18) 1771100001105204 a001 121393/969323029*73681302247^(3/4) 1771100001105204 a001 433494437/271443*312119004989^(1/11) 1771100001105204 a001 433494437/271443*(1/2+1/2*5^(1/2))^5 1771100001105204 a001 433494437/271443*28143753123^(1/10) 1771100001105204 a001 121393/969323029*10749957122^(13/16) 1771100001105204 a001 233802911/90481*228826127^(1/10) 1771100001105204 a001 121393/1568397607*599074578^(20/21) 1771100001105204 a001 433494437/271443*228826127^(1/8) 1771100001105204 a001 121393/969323029*599074578^(13/14) 1771100001105204 a001 1836311903/271443*87403803^(1/19) 1771100001105204 a001 20100270056413/1134903170 1771100001105204 a001 165580141/271443*17393796001^(1/7) 1771100001105204 a001 165580141/271443*14662949395604^(1/9) 1771100001105204 a001 165580141/271443*(1/2+1/2*5^(1/2))^7 1771100001105204 a001 165580141/271443*599074578^(1/6) 1771100001105204 a001 34111385/90481*87403803^(4/19) 1771100001105204 a001 233802911/90481*87403803^(2/19) 1771100001105204 a001 121393/599074578*228826127^(19/20) 1771100001105204 a001 267914296/271443*87403803^(3/19) 1771100001105204 a001 63245986/271443*141422324^(3/13) 1771100001105204 a001 7677619978498/433494437 1771100001105204 a001 1836311903/271443*33385282^(1/18) 1771100001105204 a001 233/271444*2537720636^(7/9) 1771100001105204 a001 63245986/271443*2537720636^(1/5) 1771100001105204 a001 233/271444*17393796001^(5/7) 1771100001105204 a001 233/271444*312119004989^(7/11) 1771100001105204 a001 233/271444*14662949395604^(5/9) 1771100001105204 a001 233/271444*505019158607^(5/8) 1771100001105204 a001 63245986/271443*45537549124^(3/17) 1771100001105204 a001 63245986/271443*817138163596^(3/19) 1771100001105204 a001 63245986/271443*14662949395604^(1/7) 1771100001105204 a001 63245986/271443*(1/2+1/2*5^(1/2))^9 1771100001105204 a001 233/271444*28143753123^(7/10) 1771100001105204 a001 63245986/271443*10749957122^(3/16) 1771100001105204 a001 63245986/271443*599074578^(3/14) 1771100001105204 a001 233/271444*599074578^(5/6) 1771100001105204 a001 233/271444*228826127^(7/8) 1771100001105204 a001 1134903170/271443*33385282^(1/12) 1771100001105204 a001 233802911/90481*33385282^(1/9) 1771100001105204 a001 121393/228826127*87403803^(18/19) 1771100001105204 a001 39088169/271443*33385282^(5/18) 1771100001105204 a001 267914296/271443*33385282^(1/6) 1771100001105204 a001 34111385/90481*33385282^(2/9) 1771100001105204 a001 63245986/271443*33385282^(1/4) 1771100001105204 a001 121393/54018521*141422324^(11/13) 1771100001105205 a001 2932589879081/165580141 1771100001105205 a001 121393/54018521*2537720636^(11/15) 1771100001105205 a001 121393/54018521*45537549124^(11/17) 1771100001105205 a001 121393/54018521*312119004989^(3/5) 1771100001105205 a001 121393/54018521*14662949395604^(11/21) 1771100001105205 a001 121393/54018521*192900153618^(11/18) 1771100001105205 a001 24157817/271443*312119004989^(1/5) 1771100001105205 a001 24157817/271443*(1/2+1/2*5^(1/2))^11 1771100001105205 a001 121393/54018521*10749957122^(11/16) 1771100001105205 a001 24157817/271443*1568397607^(1/4) 1771100001105205 a001 121393/54018521*1568397607^(3/4) 1771100001105205 a001 121393/54018521*599074578^(11/14) 1771100001105205 a001 1836311903/271443*12752043^(1/17) 1771100001105205 a001 121393/87403803*33385282^(17/18) 1771100001105205 a001 233802911/90481*12752043^(2/17) 1771100001105206 a001 267914296/271443*12752043^(3/17) 1771100001105206 a001 121393/54018521*33385282^(11/12) 1771100001105206 a001 4976784/90481*12752043^(6/17) 1771100001105206 a001 34111385/90481*12752043^(4/17) 1771100001105207 a001 39088169/271443*12752043^(5/17) 1771100001105208 a001 4807509265/271442 1771100001105208 a001 9227465/271443*141422324^(1/3) 1771100001105208 a001 121393/20633239*(1/2+1/2*5^(1/2))^31 1771100001105208 a001 121393/20633239*9062201101803^(1/2) 1771100001105208 a001 9227465/271443*(1/2+1/2*5^(1/2))^13 1771100001105208 a001 9227465/271443*73681302247^(1/4) 1771100001105209 a001 1836311903/271443*4870847^(1/16) 1771100001105213 a001 121393/33385282*12752043^(16/17) 1771100001105213 a001 233802911/90481*4870847^(1/8) 1771100001105218 a001 267914296/271443*4870847^(3/16) 1771100001105219 a001 3524578/271443*7881196^(5/11) 1771100001105223 a001 34111385/90481*4870847^(1/4) 1771100001105226 a001 5702887/271443*4870847^(7/16) 1771100001105227 a001 39088169/271443*4870847^(5/16) 1771100001105230 a001 4976784/90481*4870847^(3/8) 1771100001105231 a001 3524578/271443*20633239^(3/7) 1771100001105232 a001 427859097154/24157817 1771100001105232 a001 3524578/271443*141422324^(5/13) 1771100001105232 a001 3524578/271443*2537720636^(1/3) 1771100001105232 a001 121393/7881196*(1/2+1/2*5^(1/2))^29 1771100001105232 a001 121393/7881196*1322157322203^(1/2) 1771100001105232 a001 3524578/271443*45537549124^(5/17) 1771100001105232 a001 3524578/271443*312119004989^(3/11) 1771100001105232 a001 3524578/271443*14662949395604^(5/21) 1771100001105232 a001 3524578/271443*(1/2+1/2*5^(1/2))^15 1771100001105232 a001 3524578/271443*192900153618^(5/18) 1771100001105232 a001 3524578/271443*28143753123^(3/10) 1771100001105232 a001 3524578/271443*10749957122^(5/16) 1771100001105232 a001 3524578/271443*599074578^(5/14) 1771100001105232 a001 3524578/271443*228826127^(3/8) 1771100001105233 a001 3524578/271443*33385282^(5/12) 1771100001105238 a001 1836311903/271443*1860498^(1/15) 1771100001105255 a001 1134903170/271443*1860498^(1/10) 1771100001105263 a001 121393/12752043*4870847^(15/16) 1771100001105272 a001 233802911/90481*1860498^(2/15) 1771100001105289 a001 433494437/271443*1860498^(1/6) 1771100001105306 a001 267914296/271443*1860498^(1/5) 1771100001105340 a001 34111385/90481*1860498^(4/15) 1771100001105357 a001 63245986/271443*1860498^(3/10) 1771100001105374 a001 39088169/271443*1860498^(1/3) 1771100001105376 a001 121393/3010349*7881196^(9/11) 1771100001105395 a001 163427632717/9227465 1771100001105399 a001 121393/3010349*141422324^(9/13) 1771100001105399 a001 121393/3010349*2537720636^(3/5) 1771100001105399 a001 121393/3010349*45537549124^(9/17) 1771100001105399 a001 121393/3010349*817138163596^(9/19) 1771100001105399 a001 121393/3010349*14662949395604^(3/7) 1771100001105399 a001 121393/3010349*(1/2+1/2*5^(1/2))^27 1771100001105399 a001 121393/3010349*192900153618^(1/2) 1771100001105399 a001 1346269/271443*45537549124^(1/3) 1771100001105399 a001 1346269/271443*(1/2+1/2*5^(1/2))^17 1771100001105399 a001 121393/3010349*10749957122^(9/16) 1771100001105399 a001 121393/3010349*599074578^(9/14) 1771100001105401 a001 121393/3010349*33385282^(3/4) 1771100001105402 a001 726103/90481*1860498^(8/15) 1771100001105405 a001 1346269/271443*12752043^(1/2) 1771100001105407 a001 4976784/90481*1860498^(2/5) 1771100001105409 a001 165580141/1149851*167761^(2/5) 1771100001105432 a001 5702887/271443*1860498^(7/15) 1771100001105454 a001 1836311903/271443*710647^(1/14) 1771100001105488 a001 3524578/271443*1860498^(1/2) 1771100001105607 a001 121393/4870847*1860498^(14/15) 1771100001105705 a001 233802911/90481*710647^(1/7) 1771100001105860 a001 121393/3010349*1860498^(9/10) 1771100001105955 a001 267914296/271443*710647^(3/14) 1771100001106081 a001 165580141/271443*710647^(1/4) 1771100001106206 a001 34111385/90481*710647^(2/7) 1771100001106456 a001 39088169/271443*710647^(5/14) 1771100001106515 a001 62423800997/3524578 1771100001106540 a001 121393/1149851*20633239^(5/7) 1771100001106543 a001 121393/1149851*2537720636^(5/9) 1771100001106543 a001 121393/1149851*312119004989^(5/11) 1771100001106543 a001 121393/1149851*(1/2+1/2*5^(1/2))^25 1771100001106543 a001 121393/1149851*3461452808002^(5/12) 1771100001106543 a001 514229/271443*817138163596^(1/3) 1771100001106543 a001 514229/271443*(1/2+1/2*5^(1/2))^19 1771100001106543 a001 121393/1149851*28143753123^(1/2) 1771100001106543 a001 121393/1149851*228826127^(5/8) 1771100001106544 a001 514229/271443*87403803^(1/2) 1771100001106705 a001 4976784/90481*710647^(3/7) 1771100001106947 a001 5702887/271443*710647^(1/2) 1771100001106947 a001 832040/271443*710647^(9/14) 1771100001106970 a001 121393/1149851*1860498^(5/6) 1771100001106981 a001 7778742049/710647*64079^(1/23) 1771100001107053 a001 1836311903/271443*271443^(1/13) 1771100001107133 a001 726103/90481*710647^(4/7) 1771100001107244 a001 196418/271443*439204^(7/9) 1771100001107949 a001 121393/1860498*710647^(13/14) 1771100001108902 a001 233802911/90481*271443^(2/13) 1771100001109976 a001 10182505537/930249*64079^(1/23) 1771100001110413 a001 53316291173/4870847*64079^(1/23) 1771100001110477 a001 139583862445/12752043*64079^(1/23) 1771100001110486 a001 182717648081/16692641*64079^(1/23) 1771100001110487 a001 956722026041/87403803*64079^(1/23) 1771100001110488 a001 2504730781961/228826127*64079^(1/23) 1771100001110488 a001 3278735159921/299537289*64079^(1/23) 1771100001110488 a001 10610209857723/969323029*64079^(1/23) 1771100001110488 a001 4052739537881/370248451*64079^(1/23) 1771100001110488 a001 387002188980/35355581*64079^(1/23) 1771100001110488 a001 591286729879/54018521*64079^(1/23) 1771100001110492 a001 7787980473/711491*64079^(1/23) 1771100001110516 a001 21566892818/1970299*64079^(1/23) 1771100001110683 a001 32951280099/3010349*64079^(1/23) 1771100001110751 a001 267914296/271443*271443^(3/13) 1771100001111827 a001 12586269025/1149851*64079^(1/23) 1771100001112069 a001 2971215073/271443*103682^(1/24) 1771100001112600 a001 34111385/90481*271443^(4/13) 1771100001113148 a001 1134903170/710647*167761^(1/5) 1771100001113251 a001 31622993/219602*167761^(2/5) 1771100001114190 a001 23843770274/1346269 1771100001114367 a001 196418/271443*7881196^(7/11) 1771100001114383 a001 196418/271443*20633239^(3/5) 1771100001114385 a001 196418/271443*141422324^(7/13) 1771100001114385 a001 196418/271443*2537720636^(7/15) 1771100001114385 a001 196418/271443*17393796001^(3/7) 1771100001114385 a001 196418/271443*45537549124^(7/17) 1771100001114385 a001 121393/439204*(1/2+1/2*5^(1/2))^23 1771100001114385 a001 196418/271443*14662949395604^(1/3) 1771100001114385 a001 196418/271443*(1/2+1/2*5^(1/2))^21 1771100001114385 a001 196418/271443*192900153618^(7/18) 1771100001114385 a001 196418/271443*10749957122^(7/16) 1771100001114385 a001 121393/439204*4106118243^(1/2) 1771100001114385 a001 196418/271443*599074578^(1/2) 1771100001114386 a001 196418/271443*33385282^(7/12) 1771100001114449 a001 39088169/271443*271443^(5/13) 1771100001114744 a001 196418/271443*1860498^(7/10) 1771100001116143 a001 2971215073/1860498*167761^(1/5) 1771100001116296 a001 4976784/90481*271443^(6/13) 1771100001116580 a001 7778742049/4870847*167761^(1/5) 1771100001116644 a001 20365011074/12752043*167761^(1/5) 1771100001116654 a001 53316291173/33385282*167761^(1/5) 1771100001116655 a001 139583862445/87403803*167761^(1/5) 1771100001116655 a001 365435296162/228826127*167761^(1/5) 1771100001116655 a001 956722026041/599074578*167761^(1/5) 1771100001116655 a001 2504730781961/1568397607*167761^(1/5) 1771100001116655 a001 6557470319842/4106118243*167761^(1/5) 1771100001116655 a001 10610209857723/6643838879*167761^(1/5) 1771100001116655 a001 4052739537881/2537720636*167761^(1/5) 1771100001116655 a001 1548008755920/969323029*167761^(1/5) 1771100001116655 a001 591286729879/370248451*167761^(1/5) 1771100001116655 a001 225851433717/141422324*167761^(1/5) 1771100001116656 a001 86267571272/54018521*167761^(1/5) 1771100001116659 a001 32951280099/20633239*167761^(1/5) 1771100001116684 a001 12586269025/7881196*167761^(1/5) 1771100001116851 a001 4807526976/3010349*167761^(1/5) 1771100001117016 a001 196418/271443*710647^(3/4) 1771100001117061 a001 105937/620166*439204^(8/9) 1771100001117157 a001 433494437/167761*64079^(4/23) 1771100001117227 a001 9227465/271443*271443^(1/2) 1771100001117995 a001 1836311903/1149851*167761^(1/5) 1771100001118136 a001 5702887/271443*271443^(7/13) 1771100001118475 a001 433494437/103682*39603^(3/22) 1771100001118933 a001 1836311903/271443*103682^(1/12) 1771100001119539 a001 311187/101521*439204^(2/3) 1771100001119669 a001 1201881744/109801*64079^(1/23) 1771100001119921 a001 726103/90481*271443^(8/13) 1771100001119933 a001 514229/710647*439204^(7/9) 1771100001120060 a001 1/98209*(1/2+1/2*5^(1/2))^49 1771100001120187 a001 105937/90481*271443^(10/13) 1771100001120494 a001 832040/4870847*439204^(8/9) 1771100001120638 a001 9227465/710647*439204^(5/9) 1771100001120994 a001 726103/4250681*439204^(8/9) 1771100001121067 a001 5702887/33385282*439204^(8/9) 1771100001121078 a001 4976784/29134601*439204^(8/9) 1771100001121080 a001 39088169/228826127*439204^(8/9) 1771100001121080 a001 34111385/199691526*439204^(8/9) 1771100001121080 a001 267914296/1568397607*439204^(8/9) 1771100001121080 a001 233802911/1368706081*439204^(8/9) 1771100001121080 a001 1836311903/10749957122*439204^(8/9) 1771100001121080 a001 1602508992/9381251041*439204^(8/9) 1771100001121080 a001 12586269025/73681302247*439204^(8/9) 1771100001121080 a001 10983760033/64300051206*439204^(8/9) 1771100001121080 a001 86267571272/505019158607*439204^(8/9) 1771100001121080 a001 75283811239/440719107401*439204^(8/9) 1771100001121080 a001 2504730781961/14662949395604*439204^(8/9) 1771100001121080 a001 139583862445/817138163596*439204^(8/9) 1771100001121080 a001 53316291173/312119004989*439204^(8/9) 1771100001121080 a001 20365011074/119218851371*439204^(8/9) 1771100001121080 a001 7778742049/45537549124*439204^(8/9) 1771100001121080 a001 2971215073/17393796001*439204^(8/9) 1771100001121080 a001 1134903170/6643838879*439204^(8/9) 1771100001121080 a001 433494437/2537720636*439204^(8/9) 1771100001121080 a001 165580141/969323029*439204^(8/9) 1771100001121080 a001 63245986/370248451*439204^(8/9) 1771100001121081 a001 24157817/141422324*439204^(8/9) 1771100001121085 a001 9227465/54018521*439204^(8/9) 1771100001121113 a001 3524578/20633239*439204^(8/9) 1771100001121304 a001 1346269/7881196*439204^(8/9) 1771100001121333 a001 832040/271443*271443^(9/13) 1771100001121653 a001 39088169/710647*439204^(4/9) 1771100001121784 a001 1346269/1860498*439204^(7/9) 1771100001122054 a001 3524578/4870847*439204^(7/9) 1771100001122093 a001 9227465/12752043*439204^(7/9) 1771100001122099 a001 24157817/33385282*439204^(7/9) 1771100001122100 a001 63245986/87403803*439204^(7/9) 1771100001122100 a001 165580141/228826127*439204^(7/9) 1771100001122100 a001 433494437/599074578*439204^(7/9) 1771100001122100 a001 1134903170/1568397607*439204^(7/9) 1771100001122100 a001 2971215073/4106118243*439204^(7/9) 1771100001122100 a001 7778742049/10749957122*439204^(7/9) 1771100001122100 a001 20365011074/28143753123*439204^(7/9) 1771100001122100 a001 53316291173/73681302247*439204^(7/9) 1771100001122100 a001 139583862445/192900153618*439204^(7/9) 1771100001122100 a001 10610209857723/14662949395604*439204^(7/9) 1771100001122100 a001 225851433717/312119004989*439204^(7/9) 1771100001122100 a001 86267571272/119218851371*439204^(7/9) 1771100001122100 a001 32951280099/45537549124*439204^(7/9) 1771100001122100 a001 12586269025/17393796001*439204^(7/9) 1771100001122100 a001 4807526976/6643838879*439204^(7/9) 1771100001122100 a001 1836311903/2537720636*439204^(7/9) 1771100001122100 a001 701408733/969323029*439204^(7/9) 1771100001122100 a001 267914296/370248451*439204^(7/9) 1771100001122100 a001 102334155/141422324*439204^(7/9) 1771100001122100 a001 39088169/54018521*439204^(7/9) 1771100001122103 a001 14930352/20633239*439204^(7/9) 1771100001122118 a001 5702887/7881196*439204^(7/9) 1771100001122208 a001 317811/710647*7881196^(2/3) 1771100001122221 a001 2178309/3010349*439204^(7/9) 1771100001122227 a001 317811/710647*312119004989^(2/5) 1771100001122227 a001 317811/710647*(1/2+1/2*5^(1/2))^22 1771100001122227 a001 317811/710647*10749957122^(11/24) 1771100001122227 a001 317811/710647*4106118243^(11/23) 1771100001122227 a001 317811/710647*1568397607^(1/2) 1771100001122227 a001 317811/710647*599074578^(11/21) 1771100001122227 a001 317811/710647*228826127^(11/20) 1771100001122227 a001 317811/710647*87403803^(11/19) 1771100001122228 a001 317811/710647*33385282^(11/18) 1771100001122234 a001 317811/710647*12752043^(11/17) 1771100001122238 a001 101003831721/5702887 1771100001122279 a001 317811/710647*4870847^(11/16) 1771100001122598 a001 5702887/1860498*439204^(2/3) 1771100001122602 a001 317811/710647*1860498^(11/15) 1771100001122615 a001 514229/3010349*439204^(8/9) 1771100001122674 a001 165580141/710647*439204^(1/3) 1771100001122928 a001 832040/1149851*439204^(7/9) 1771100001123044 a001 14930352/4870847*439204^(2/3) 1771100001123109 a001 39088169/12752043*439204^(2/3) 1771100001123119 a001 14619165/4769326*439204^(2/3) 1771100001123120 a001 267914296/87403803*439204^(2/3) 1771100001123120 a001 701408733/228826127*439204^(2/3) 1771100001123120 a001 1836311903/599074578*439204^(2/3) 1771100001123120 a001 686789568/224056801*439204^(2/3) 1771100001123120 a001 12586269025/4106118243*439204^(2/3) 1771100001123120 a001 32951280099/10749957122*439204^(2/3) 1771100001123120 a001 86267571272/28143753123*439204^(2/3) 1771100001123120 a001 32264490531/10525900321*439204^(2/3) 1771100001123120 a001 591286729879/192900153618*439204^(2/3) 1771100001123120 a001 1548008755920/505019158607*439204^(2/3) 1771100001123120 a001 1515744265389/494493258286*439204^(2/3) 1771100001123120 a001 956722026041/312119004989*439204^(2/3) 1771100001123120 a001 365435296162/119218851371*439204^(2/3) 1771100001123120 a001 139583862445/45537549124*439204^(2/3) 1771100001123120 a001 53316291173/17393796001*439204^(2/3) 1771100001123120 a001 20365011074/6643838879*439204^(2/3) 1771100001123120 a001 7778742049/2537720636*439204^(2/3) 1771100001123120 a001 2971215073/969323029*439204^(2/3) 1771100001123120 a001 1134903170/370248451*439204^(2/3) 1771100001123120 a001 433494437/141422324*439204^(2/3) 1771100001123121 a001 165580141/54018521*439204^(2/3) 1771100001123125 a001 63245986/20633239*439204^(2/3) 1771100001123149 a001 24157817/7881196*439204^(2/3) 1771100001123320 a001 9227465/3010349*439204^(2/3) 1771100001123629 a001 24157817/1860498*439204^(5/9) 1771100001123694 a001 701408733/710647*439204^(2/9) 1771100001123885 a001 121393/710647*271443^(12/13) 1771100001124066 a001 63245986/4870847*439204^(5/9) 1771100001124130 a001 165580141/12752043*439204^(5/9) 1771100001124139 a001 433494437/33385282*439204^(5/9) 1771100001124140 a001 1134903170/87403803*439204^(5/9) 1771100001124140 a001 2971215073/228826127*439204^(5/9) 1771100001124140 a001 7778742049/599074578*439204^(5/9) 1771100001124140 a001 20365011074/1568397607*439204^(5/9) 1771100001124140 a001 53316291173/4106118243*439204^(5/9) 1771100001124140 a001 139583862445/10749957122*439204^(5/9) 1771100001124140 a001 365435296162/28143753123*439204^(5/9) 1771100001124140 a001 956722026041/73681302247*439204^(5/9) 1771100001124140 a001 2504730781961/192900153618*439204^(5/9) 1771100001124140 a001 10610209857723/817138163596*439204^(5/9) 1771100001124140 a001 4052739537881/312119004989*439204^(5/9) 1771100001124140 a001 1548008755920/119218851371*439204^(5/9) 1771100001124140 a001 591286729879/45537549124*439204^(5/9) 1771100001124140 a001 7787980473/599786069*439204^(5/9) 1771100001124140 a001 86267571272/6643838879*439204^(5/9) 1771100001124140 a001 32951280099/2537720636*439204^(5/9) 1771100001124140 a001 12586269025/969323029*439204^(5/9) 1771100001124140 a001 4807526976/370248451*439204^(5/9) 1771100001124141 a001 1836311903/141422324*439204^(5/9) 1771100001124141 a001 701408733/54018521*439204^(5/9) 1771100001124145 a001 9238424/711491*439204^(5/9) 1771100001124169 a001 102334155/7881196*439204^(5/9) 1771100001124336 a001 39088169/3010349*439204^(5/9) 1771100001124488 a001 3524578/1149851*439204^(2/3) 1771100001124649 a001 831985/15126*439204^(4/9) 1771100001124714 a001 2971215073/710647*439204^(1/9) 1771100001124983 a001 317811/710647*710647^(11/14) 1771100001125086 a001 267914296/4870847*439204^(4/9) 1771100001125150 a001 233802911/4250681*439204^(4/9) 1771100001125159 a001 1836311903/33385282*439204^(4/9) 1771100001125160 a001 1602508992/29134601*439204^(4/9) 1771100001125161 a001 12586269025/228826127*439204^(4/9) 1771100001125161 a001 10983760033/199691526*439204^(4/9) 1771100001125161 a001 86267571272/1568397607*439204^(4/9) 1771100001125161 a001 75283811239/1368706081*439204^(4/9) 1771100001125161 a001 591286729879/10749957122*439204^(4/9) 1771100001125161 a001 12585437040/228811001*439204^(4/9) 1771100001125161 a001 4052739537881/73681302247*439204^(4/9) 1771100001125161 a001 3536736619241/64300051206*439204^(4/9) 1771100001125161 a001 6557470319842/119218851371*439204^(4/9) 1771100001125161 a001 2504730781961/45537549124*439204^(4/9) 1771100001125161 a001 956722026041/17393796001*439204^(4/9) 1771100001125161 a001 365435296162/6643838879*439204^(4/9) 1771100001125161 a001 139583862445/2537720636*439204^(4/9) 1771100001125161 a001 53316291173/969323029*439204^(4/9) 1771100001125161 a001 20365011074/370248451*439204^(4/9) 1771100001125161 a001 7778742049/141422324*439204^(4/9) 1771100001125161 a001 2971215073/54018521*439204^(4/9) 1771100001125165 a001 1134903170/20633239*439204^(4/9) 1771100001125189 a001 433494437/7881196*439204^(4/9) 1771100001125202 a001 105937/620166*7881196^(8/11) 1771100001125220 a001 832040/710647*20633239^(4/7) 1771100001125222 a001 105937/620166*141422324^(8/13) 1771100001125223 a001 105937/620166*2537720636^(8/15) 1771100001125223 a001 832040/710647*2537720636^(4/9) 1771100001125223 a001 105937/620166*45537549124^(8/17) 1771100001125223 a001 105937/620166*14662949395604^(8/21) 1771100001125223 a001 105937/620166*(1/2+1/2*5^(1/2))^24 1771100001125223 a001 832040/710647*(1/2+1/2*5^(1/2))^20 1771100001125223 a001 832040/710647*23725150497407^(5/16) 1771100001125223 a001 105937/620166*192900153618^(4/9) 1771100001125223 a001 832040/710647*73681302247^(5/13) 1771100001125223 a001 105937/620166*73681302247^(6/13) 1771100001125223 a001 832040/710647*28143753123^(2/5) 1771100001125223 a001 832040/710647*10749957122^(5/12) 1771100001125223 a001 105937/620166*10749957122^(1/2) 1771100001125223 a001 832040/710647*4106118243^(10/23) 1771100001125223 a001 105937/620166*4106118243^(12/23) 1771100001125223 a001 832040/710647*1568397607^(5/11) 1771100001125223 a001 105937/620166*1568397607^(6/11) 1771100001125223 a001 832040/710647*599074578^(10/21) 1771100001125223 a001 105937/620166*599074578^(4/7) 1771100001125223 a001 832040/710647*228826127^(1/2) 1771100001125223 a001 105937/620166*228826127^(3/5) 1771100001125223 a001 832040/710647*87403803^(10/19) 1771100001125223 a001 105937/620166*87403803^(12/19) 1771100001125223 a001 832040/710647*33385282^(5/9) 1771100001125224 a001 105937/620166*33385282^(2/3) 1771100001125224 a001 11017977685/622098 1771100001125229 a001 832040/710647*12752043^(10/17) 1771100001125230 a001 105937/620166*12752043^(12/17) 1771100001125269 a001 832040/710647*4870847^(5/8) 1771100001125279 a001 105937/620166*4870847^(3/4) 1771100001125356 a001 165580141/3010349*439204^(4/9) 1771100001125478 a001 14930352/1149851*439204^(5/9) 1771100001125564 a001 832040/710647*1860498^(2/3) 1771100001125632 a001 105937/620166*1860498^(4/5) 1771100001125644 a001 311187/101521*7881196^(6/11) 1771100001125660 a001 317811/4870847*141422324^(2/3) 1771100001125660 a001 311187/101521*141422324^(6/13) 1771100001125660 a001 311187/101521*2537720636^(2/5) 1771100001125660 a001 311187/101521*45537549124^(6/17) 1771100001125660 a001 317811/4870847*(1/2+1/2*5^(1/2))^26 1771100001125660 a001 311187/101521*14662949395604^(2/7) 1771100001125660 a001 311187/101521*(1/2+1/2*5^(1/2))^18 1771100001125660 a001 311187/101521*192900153618^(1/3) 1771100001125660 a001 317811/4870847*73681302247^(1/2) 1771100001125660 a001 311187/101521*10749957122^(3/8) 1771100001125660 a001 317811/4870847*10749957122^(13/24) 1771100001125660 a001 311187/101521*4106118243^(9/23) 1771100001125660 a001 317811/4870847*4106118243^(13/23) 1771100001125660 a001 311187/101521*1568397607^(9/22) 1771100001125660 a001 317811/4870847*1568397607^(13/22) 1771100001125660 a001 311187/101521*599074578^(3/7) 1771100001125660 a001 317811/4870847*599074578^(13/21) 1771100001125660 a001 311187/101521*228826127^(9/20) 1771100001125660 a001 317811/4870847*228826127^(13/20) 1771100001125660 a001 311187/101521*87403803^(9/19) 1771100001125660 a001 317811/4870847*87403803^(13/19) 1771100001125660 a001 692290561599/39088169 1771100001125660 a001 311187/101521*33385282^(1/2) 1771100001125661 a001 317811/4870847*33385282^(13/18) 1771100001125665 a001 311187/101521*12752043^(9/17) 1771100001125668 a001 317811/4870847*12752043^(13/17) 1771100001125669 a001 433494437/1860498*439204^(1/3) 1771100001125702 a001 311187/101521*4870847^(9/16) 1771100001125707 a001 317811/33385282*7881196^(10/11) 1771100001125720 a001 105937/4250681*20633239^(4/5) 1771100001125720 a001 317811/4870847*4870847^(13/16) 1771100001125723 a001 105937/4250681*17393796001^(4/7) 1771100001125723 a001 105937/4250681*14662949395604^(4/9) 1771100001125723 a001 105937/4250681*(1/2+1/2*5^(1/2))^28 1771100001125723 a001 5702887/710647*(1/2+1/2*5^(1/2))^16 1771100001125723 a001 5702887/710647*73681302247^(4/13) 1771100001125723 a001 105937/4250681*73681302247^(7/13) 1771100001125723 a001 5702887/710647*10749957122^(1/3) 1771100001125723 a001 105937/4250681*10749957122^(7/12) 1771100001125723 a001 5702887/710647*4106118243^(8/23) 1771100001125723 a001 105937/4250681*4106118243^(14/23) 1771100001125723 a001 5702887/710647*1568397607^(4/11) 1771100001125723 a001 105937/4250681*1568397607^(7/11) 1771100001125723 a001 5702887/710647*599074578^(8/21) 1771100001125723 a001 105937/4250681*599074578^(2/3) 1771100001125723 a001 5702887/710647*228826127^(2/5) 1771100001125723 a001 105937/4250681*228826127^(7/10) 1771100001125723 a001 604146740119/34111385 1771100001125723 a001 5702887/710647*87403803^(8/19) 1771100001125723 a001 105937/4250681*87403803^(14/19) 1771100001125724 a001 39088169/710647*7881196^(4/11) 1771100001125724 a001 5702887/710647*33385282^(4/9) 1771100001125725 a001 105937/4250681*33385282^(7/9) 1771100001125725 a001 63245986/710647*7881196^(1/3) 1771100001125725 a001 9227465/710647*7881196^(5/11) 1771100001125726 a001 165580141/710647*7881196^(3/11) 1771100001125728 a001 5702887/710647*12752043^(8/17) 1771100001125729 a001 701408733/710647*7881196^(2/11) 1771100001125729 a001 317811/33385282*20633239^(6/7) 1771100001125731 a001 14930352/710647*20633239^(2/5) 1771100001125732 a001 2971215073/710647*7881196^(1/11) 1771100001125732 a001 105937/4250681*12752043^(14/17) 1771100001125733 a001 317811/33385282*141422324^(10/13) 1771100001125733 a001 317811/33385282*2537720636^(2/3) 1771100001125733 a001 14930352/710647*17393796001^(2/7) 1771100001125733 a001 317811/33385282*45537549124^(10/17) 1771100001125733 a001 317811/33385282*312119004989^(6/11) 1771100001125733 a001 317811/33385282*14662949395604^(10/21) 1771100001125733 a001 317811/33385282*(1/2+1/2*5^(1/2))^30 1771100001125733 a001 14930352/710647*14662949395604^(2/9) 1771100001125733 a001 14930352/710647*(1/2+1/2*5^(1/2))^14 1771100001125733 a001 317811/33385282*192900153618^(5/9) 1771100001125733 a001 317811/33385282*28143753123^(3/5) 1771100001125733 a001 14930352/710647*10749957122^(7/24) 1771100001125733 a001 317811/33385282*10749957122^(5/8) 1771100001125733 a001 14930352/710647*4106118243^(7/23) 1771100001125733 a001 317811/33385282*4106118243^(15/23) 1771100001125733 a001 14930352/710647*1568397607^(7/22) 1771100001125733 a001 317811/33385282*1568397607^(15/22) 1771100001125733 a001 14930352/710647*599074578^(1/3) 1771100001125733 a001 317811/33385282*599074578^(5/7) 1771100001125733 a001 1573285842/88831 1771100001125733 a001 14930352/710647*228826127^(7/20) 1771100001125733 a001 317811/33385282*228826127^(3/4) 1771100001125733 a001 14930352/710647*87403803^(7/19) 1771100001125733 a001 317811/33385282*87403803^(15/19) 1771100001125733 a001 14619165/101521*20633239^(2/7) 1771100001125733 a001 14930352/710647*33385282^(7/18) 1771100001125733 a001 433494437/710647*20633239^(1/5) 1771100001125734 a001 1134903170/710647*20633239^(1/7) 1771100001125734 a001 317811/33385282*33385282^(5/6) 1771100001125734 a001 39088169/710647*141422324^(4/13) 1771100001125734 a001 39088169/710647*2537720636^(4/15) 1771100001125734 a001 39088169/710647*45537549124^(4/17) 1771100001125734 a001 105937/29134601*23725150497407^(1/2) 1771100001125734 a001 39088169/710647*14662949395604^(4/21) 1771100001125734 a001 39088169/710647*(1/2+1/2*5^(1/2))^12 1771100001125734 a001 39088169/710647*73681302247^(3/13) 1771100001125734 a001 105937/29134601*73681302247^(8/13) 1771100001125734 a001 39088169/710647*10749957122^(1/4) 1771100001125734 a001 105937/29134601*10749957122^(2/3) 1771100001125734 a001 39088169/710647*4106118243^(6/23) 1771100001125734 a001 105937/29134601*4106118243^(16/23) 1771100001125734 a001 39088169/710647*1568397607^(3/11) 1771100001125734 a001 105937/29134601*1568397607^(8/11) 1771100001125734 a001 4140883359353/233802911 1771100001125734 a001 39088169/710647*599074578^(2/7) 1771100001125734 a001 105937/29134601*599074578^(16/21) 1771100001125734 a001 39088169/710647*228826127^(3/10) 1771100001125734 a001 105937/29134601*228826127^(4/5) 1771100001125734 a001 39088169/710647*87403803^(6/19) 1771100001125734 a001 377/710646*141422324^(12/13) 1771100001125734 a001 105937/29134601*87403803^(16/19) 1771100001125734 a001 14619165/101521*2537720636^(2/9) 1771100001125734 a001 317811/228826127*45537549124^(2/3) 1771100001125734 a001 14619165/101521*312119004989^(2/11) 1771100001125734 a001 14619165/101521*(1/2+1/2*5^(1/2))^10 1771100001125734 a001 14619165/101521*28143753123^(1/5) 1771100001125734 a001 14619165/101521*10749957122^(5/24) 1771100001125734 a001 317811/228826127*10749957122^(17/24) 1771100001125734 a001 14619165/101521*4106118243^(5/23) 1771100001125734 a001 317811/228826127*4106118243^(17/23) 1771100001125734 a001 32522920134705/1836311903 1771100001125734 a001 14619165/101521*1568397607^(5/22) 1771100001125734 a001 317811/228826127*1568397607^(17/22) 1771100001125734 a001 14619165/101521*599074578^(5/21) 1771100001125734 a001 317811/228826127*599074578^(17/21) 1771100001125734 a001 14619165/101521*228826127^(1/4) 1771100001125734 a001 701408733/710647*141422324^(2/13) 1771100001125734 a001 165580141/710647*141422324^(3/13) 1771100001125734 a001 2971215073/710647*141422324^(1/13) 1771100001125734 a001 377/710646*2537720636^(4/5) 1771100001125734 a001 317811/228826127*228826127^(17/20) 1771100001125734 a001 377/710646*45537549124^(12/17) 1771100001125734 a001 377/710646*14662949395604^(4/7) 1771100001125734 a001 267914296/710647*(1/2+1/2*5^(1/2))^8 1771100001125734 a001 267914296/710647*23725150497407^(1/8) 1771100001125734 a001 377/710646*192900153618^(2/3) 1771100001125734 a001 267914296/710647*73681302247^(2/13) 1771100001125734 a001 377/710646*73681302247^(9/13) 1771100001125734 a001 267914296/710647*10749957122^(1/6) 1771100001125734 a001 377/710646*10749957122^(3/4) 1771100001125734 a001 3547754596919/200313624 1771100001125734 a001 267914296/710647*4106118243^(4/23) 1771100001125734 a001 377/710646*4106118243^(18/23) 1771100001125734 a001 267914296/710647*1568397607^(2/11) 1771100001125734 a001 377/710646*1568397607^(9/11) 1771100001125734 a001 267914296/710647*599074578^(4/21) 1771100001125734 a001 701408733/710647*2537720636^(2/15) 1771100001125734 a001 701408733/710647*45537549124^(2/17) 1771100001125734 a001 317811/1568397607*817138163596^(2/3) 1771100001125734 a001 701408733/710647*14662949395604^(2/21) 1771100001125734 a001 701408733/710647*(1/2+1/2*5^(1/2))^6 1771100001125734 a001 701408733/710647*10749957122^(1/8) 1771100001125734 a001 222915410843463/12586269025 1771100001125734 a001 317811/1568397607*10749957122^(19/24) 1771100001125734 a001 701408733/710647*4106118243^(3/23) 1771100001125734 a001 377/710646*599074578^(6/7) 1771100001125734 a001 317811/1568397607*4106118243^(19/23) 1771100001125734 a001 701408733/710647*1568397607^(3/22) 1771100001125734 a001 105937/1368706081*2537720636^(8/9) 1771100001125734 a001 317811/10749957122*2537720636^(14/15) 1771100001125734 a001 105937/1368706081*312119004989^(8/11) 1771100001125734 a001 105937/1368706081*23725150497407^(5/8) 1771100001125734 a001 1836311903/710647*23725150497407^(1/16) 1771100001125734 a001 1836311903/710647*73681302247^(1/13) 1771100001125734 a001 105937/1368706081*73681302247^(10/13) 1771100001125734 a001 194533374068111/10983760033 1771100001125734 a001 1836311903/710647*10749957122^(1/12) 1771100001125734 a001 105937/1368706081*28143753123^(4/5) 1771100001125734 a001 317811/1568397607*1568397607^(19/22) 1771100001125734 a001 1836311903/710647*4106118243^(2/23) 1771100001125734 a001 105937/1368706081*10749957122^(5/6) 1771100001125734 a001 1836311903/710647*1568397607^(1/11) 1771100001125734 a001 317811/10749957122*17393796001^(6/7) 1771100001125734 a001 317811/10749957122*45537549124^(14/17) 1771100001125734 a001 317811/10749957122*14662949395604^(2/3) 1771100001125734 a001 686789568/101521*(1/2+1/2*5^(1/2))^2 1771100001125734 a001 317811/10749957122*192900153618^(7/9) 1771100001125734 a001 190985619471192/10783446409 1771100001125734 a001 701408733/710647*599074578^(1/7) 1771100001125734 a001 686789568/101521*10749957122^(1/24) 1771100001125734 a001 105937/1368706081*4106118243^(20/23) 1771100001125734 a001 686789568/101521*4106118243^(1/23) 1771100001125734 a001 105937/9381251041*312119004989^(4/5) 1771100001125734 a001 105937/9381251041*23725150497407^(11/16) 1771100001125734 a006 5^(1/2)*Fibonacci(50)/Lucas(28)/sqrt(5) 1771100001125734 a001 105937/9381251041*73681302247^(11/13) 1771100001125734 a001 317811/10749957122*10749957122^(7/8) 1771100001125734 a001 105937/64300051206*45537549124^(16/17) 1771100001125734 a001 10472279279543289/591286729879 1771100001125734 a001 105937/64300051206*14662949395604^(16/21) 1771100001125734 a001 317811/505019158607*312119004989^(10/11) 1771100001125734 a001 105937/64300051206*192900153618^(8/9) 1771100001125734 a001 105937/3020733700601*14662949395604^(8/9) 1771100001125734 a001 105937/440719107401*505019158607^(13/14) 1771100001125734 a001 317811/312119004989*14662949395604^(7/9) 1771100001125734 a001 317811/312119004989*505019158607^(7/8) 1771100001125734 a001 317811/817138163596*192900153618^(17/18) 1771100001125734 a001 317811/45537549124*45537549124^(15/17) 1771100001125734 a001 16944503813982303/956722026041 1771100001125734 a001 105937/64300051206*73681302247^(12/13) 1771100001125734 a001 317811/45537549124*312119004989^(9/11) 1771100001125734 a001 317811/45537549124*14662949395604^(5/7) 1771100001125734 a001 317811/45537549124*192900153618^(5/6) 1771100001125734 a001 317811/45537549124*28143753123^(9/10) 1771100001125734 a001 2472169789334739/139583862445 1771100001125734 a001 7778742049/1421294+7778742049/1421294*5^(1/2) 1771100001125734 a001 105937/9381251041*10749957122^(11/12) 1771100001125734 a001 317811/73681302247*10749957122^(23/24) 1771100001125734 a001 317811/45537549124*10749957122^(15/16) 1771100001125734 a001 686789568/101521*1568397607^(1/22) 1771100001125734 a001 2971215073/710647*2537720636^(1/15) 1771100001125734 a001 317811/2537720636*2537720636^(13/15) 1771100001125734 a001 944284833565203/53316291173 1771100001125734 a001 2971215073/710647*45537549124^(1/17) 1771100001125734 a001 2971215073/710647*14662949395604^(1/21) 1771100001125734 a001 2971215073/710647*(1/2+1/2*5^(1/2))^3 1771100001125734 a001 2971215073/710647*10749957122^(1/16) 1771100001125734 a001 317811/10749957122*4106118243^(21/23) 1771100001125734 a001 105937/9381251041*4106118243^(22/23) 1771100001125734 a001 686789568/101521*599074578^(1/21) 1771100001125734 a001 1134903170/710647*2537720636^(1/9) 1771100001125734 a001 180342355680435/10182505537 1771100001125734 a001 317811/2537720636*45537549124^(13/17) 1771100001125734 a001 317811/2537720636*14662949395604^(13/21) 1771100001125734 a001 1134903170/710647*312119004989^(1/11) 1771100001125734 a001 1134903170/710647*(1/2+1/2*5^(1/2))^5 1771100001125734 a001 317811/2537720636*192900153618^(13/18) 1771100001125734 a001 1134903170/710647*28143753123^(1/10) 1771100001125734 a001 317811/2537720636*73681302247^(3/4) 1771100001125734 a001 317811/2537720636*10749957122^(13/16) 1771100001125734 a001 1836311903/710647*599074578^(2/21) 1771100001125734 a001 2971215073/710647*599074578^(1/14) 1771100001125734 a001 105937/1368706081*1568397607^(10/11) 1771100001125734 a001 317811/10749957122*1568397607^(21/22) 1771100001125734 a001 686789568/101521*228826127^(1/20) 1771100001125734 a001 267914296/710647*228826127^(1/5) 1771100001125734 a001 10597638501339/598364773 1771100001125734 a001 433494437/710647*17393796001^(1/7) 1771100001125734 a001 433494437/710647*14662949395604^(1/9) 1771100001125734 a001 433494437/710647*(1/2+1/2*5^(1/2))^7 1771100001125734 a001 433494437/710647*599074578^(1/6) 1771100001125734 a001 1836311903/710647*228826127^(1/10) 1771100001125734 a001 317811/1568397607*599074578^(19/21) 1771100001125734 a001 701408733/710647*228826127^(3/20) 1771100001125734 a001 1134903170/710647*228826127^(1/8) 1771100001125734 a001 105937/1368706081*599074578^(20/21) 1771100001125734 a001 317811/2537720636*599074578^(13/14) 1771100001125734 a001 686789568/101521*87403803^(1/19) 1771100001125734 a001 317811/370248451*2537720636^(7/9) 1771100001125734 a001 165580141/710647*2537720636^(1/5) 1771100001125734 a001 52623190191351/2971215073 1771100001125734 a001 317811/370248451*17393796001^(5/7) 1771100001125734 a001 165580141/710647*45537549124^(3/17) 1771100001125734 a001 317811/370248451*312119004989^(7/11) 1771100001125734 a001 317811/370248451*14662949395604^(5/9) 1771100001125734 a001 317811/370248451*505019158607^(5/8) 1771100001125734 a001 165580141/710647*14662949395604^(1/7) 1771100001125734 a001 165580141/710647*(1/2+1/2*5^(1/2))^9 1771100001125734 a001 317811/370248451*28143753123^(7/10) 1771100001125734 a001 165580141/710647*10749957122^(3/16) 1771100001125734 a001 317811/141422324*141422324^(11/13) 1771100001125734 a001 165580141/710647*599074578^(3/14) 1771100001125734 a001 317811/370248451*599074578^(5/6) 1771100001125734 a001 1836311903/710647*87403803^(2/19) 1771100001125734 a001 377/710646*228826127^(9/10) 1771100001125734 a001 14619165/101521*87403803^(5/19) 1771100001125734 a001 317811/1568397607*228826127^(19/20) 1771100001125734 a001 701408733/710647*87403803^(3/19) 1771100001125734 a001 317811/370248451*228826127^(7/8) 1771100001125734 a001 267914296/710647*87403803^(4/19) 1771100001125734 a001 686789568/101521*33385282^(1/18) 1771100001125734 a001 10050135028323/567451585 1771100001125734 a001 317811/141422324*2537720636^(11/15) 1771100001125734 a001 317811/141422324*45537549124^(11/17) 1771100001125734 a001 317811/141422324*312119004989^(3/5) 1771100001125734 a001 317811/141422324*817138163596^(11/19) 1771100001125734 a001 317811/141422324*14662949395604^(11/21) 1771100001125734 a001 63245986/710647*(1/2+1/2*5^(1/2))^11 1771100001125734 a001 317811/141422324*192900153618^(11/18) 1771100001125734 a001 317811/141422324*10749957122^(11/16) 1771100001125734 a001 63245986/710647*1568397607^(1/4) 1771100001125734 a001 317811/141422324*1568397607^(3/4) 1771100001125734 a001 317811/141422324*599074578^(11/14) 1771100001125734 a001 2971215073/710647*33385282^(1/12) 1771100001125734 a001 317811/228826127*87403803^(17/19) 1771100001125734 a001 1836311903/710647*33385282^(1/9) 1771100001125734 a001 377/710646*87403803^(18/19) 1771100001125734 a001 701408733/710647*33385282^(1/6) 1771100001125735 a001 39088169/710647*33385282^(1/3) 1771100001125735 a001 267914296/710647*33385282^(2/9) 1771100001125735 a001 14619165/101521*33385282^(5/18) 1771100001125735 a001 165580141/710647*33385282^(1/4) 1771100001125735 a001 24157817/710647*141422324^(1/3) 1771100001125735 a001 7677619978587/433494437 1771100001125735 a001 317811/54018521*9062201101803^(1/2) 1771100001125735 a001 24157817/710647*(1/2+1/2*5^(1/2))^13 1771100001125735 a001 24157817/710647*73681302247^(1/4) 1771100001125735 a001 686789568/101521*12752043^(1/17) 1771100001125735 a001 105937/29134601*33385282^(8/9) 1771100001125735 a001 1836311903/710647*12752043^(2/17) 1771100001125736 a001 317811/228826127*33385282^(17/18) 1771100001125736 a001 317811/141422324*33385282^(11/12) 1771100001125736 a001 701408733/710647*12752043^(3/17) 1771100001125737 a001 9227465/710647*20633239^(3/7) 1771100001125737 a001 267914296/710647*12752043^(4/17) 1771100001125737 a001 14930352/710647*12752043^(7/17) 1771100001125737 a001 14619165/101521*12752043^(5/17) 1771100001125738 a001 39088169/710647*12752043^(6/17) 1771100001125738 a001 9227465/710647*141422324^(5/13) 1771100001125738 a001 2932589879115/165580141 1771100001125738 a001 9227465/710647*2537720636^(1/3) 1771100001125738 a001 9227465/710647*45537549124^(5/17) 1771100001125738 a001 10959/711491*(1/2+1/2*5^(1/2))^29 1771100001125738 a001 10959/711491*1322157322203^(1/2) 1771100001125738 a001 9227465/710647*312119004989^(3/11) 1771100001125738 a001 9227465/710647*14662949395604^(5/21) 1771100001125738 a001 9227465/710647*(1/2+1/2*5^(1/2))^15 1771100001125738 a001 9227465/710647*192900153618^(5/18) 1771100001125738 a001 9227465/710647*28143753123^(3/10) 1771100001125738 a001 9227465/710647*10749957122^(5/16) 1771100001125738 a001 9227465/710647*599074578^(5/14) 1771100001125738 a001 9227465/710647*228826127^(3/8) 1771100001125739 a001 686789568/101521*4870847^(1/16) 1771100001125739 a001 9227465/710647*33385282^(5/12) 1771100001125739 a001 317811/7881196*7881196^(9/11) 1771100001125742 a001 317811/33385282*12752043^(15/17) 1771100001125744 a001 1836311903/710647*4870847^(1/8) 1771100001125744 a001 105937/29134601*12752043^(16/17) 1771100001125748 a001 701408733/710647*4870847^(3/16) 1771100001125753 a001 267914296/710647*4870847^(1/4) 1771100001125758 a001 14619165/101521*4870847^(5/16) 1771100001125761 a001 5702887/710647*4870847^(1/2) 1771100001125762 a001 39088169/710647*4870847^(3/8) 1771100001125763 a001 560074829379/31622993 1771100001125763 a001 317811/7881196*141422324^(9/13) 1771100001125763 a001 317811/7881196*2537720636^(3/5) 1771100001125763 a001 317811/7881196*45537549124^(9/17) 1771100001125763 a001 3524578/710647*45537549124^(1/3) 1771100001125763 a001 317811/7881196*14662949395604^(3/7) 1771100001125763 a001 317811/7881196*(1/2+1/2*5^(1/2))^27 1771100001125763 a001 3524578/710647*(1/2+1/2*5^(1/2))^17 1771100001125763 a001 317811/7881196*192900153618^(1/2) 1771100001125763 a001 317811/7881196*10749957122^(9/16) 1771100001125763 a001 317811/7881196*599074578^(9/14) 1771100001125764 a001 317811/7881196*33385282^(3/4) 1771100001125765 a001 14930352/710647*4870847^(7/16) 1771100001125768 a001 3524578/710647*12752043^(1/2) 1771100001125768 a001 686789568/101521*1860498^(1/15) 1771100001125785 a001 2971215073/710647*1860498^(1/10) 1771100001125789 a001 105937/4250681*4870847^(7/8) 1771100001125798 a001 1134903170/271443*103682^(1/8) 1771100001125802 a001 1836311903/710647*1860498^(2/15) 1771100001125803 a001 317811/33385282*4870847^(15/16) 1771100001125819 a001 1134903170/710647*1860498^(1/6) 1771100001125837 a001 701408733/439204*167761^(1/5) 1771100001125837 a001 701408733/710647*1860498^(1/5) 1771100001125871 a001 267914296/710647*1860498^(4/15) 1771100001125888 a001 165580141/710647*1860498^(3/10) 1771100001125905 a001 14619165/101521*1860498^(1/3) 1771100001125927 a001 317811/3010349*20633239^(5/7) 1771100001125929 a001 427859097159/24157817 1771100001125930 a001 317811/3010349*2537720636^(5/9) 1771100001125930 a001 317811/3010349*312119004989^(5/11) 1771100001125930 a001 317811/3010349*(1/2+1/2*5^(1/2))^25 1771100001125930 a001 1346269/710647*817138163596^(1/3) 1771100001125930 a001 1346269/710647*(1/2+1/2*5^(1/2))^19 1771100001125930 a001 317811/3010349*28143753123^(1/2) 1771100001125930 a001 317811/3010349*228826127^(5/8) 1771100001125930 a001 1346269/710647*87403803^(1/2) 1771100001125939 a001 39088169/710647*1860498^(2/5) 1771100001125967 a001 311187/101521*1860498^(3/5) 1771100001125971 a001 14930352/710647*1860498^(7/15) 1771100001125985 a001 686789568/101521*710647^(1/14) 1771100001125994 a001 9227465/710647*1860498^(1/2) 1771100001125996 a001 5702887/710647*1860498^(8/15) 1771100001126103 a001 317811/4870847*1860498^(13/15) 1771100001126106 a001 1134903170/4870847*439204^(1/3) 1771100001126170 a001 2971215073/12752043*439204^(1/3) 1771100001126179 a001 7778742049/33385282*439204^(1/3) 1771100001126181 a001 20365011074/87403803*439204^(1/3) 1771100001126181 a001 53316291173/228826127*439204^(1/3) 1771100001126181 a001 139583862445/599074578*439204^(1/3) 1771100001126181 a001 365435296162/1568397607*439204^(1/3) 1771100001126181 a001 956722026041/4106118243*439204^(1/3) 1771100001126181 a001 2504730781961/10749957122*439204^(1/3) 1771100001126181 a001 6557470319842/28143753123*439204^(1/3) 1771100001126181 a001 10610209857723/45537549124*439204^(1/3) 1771100001126181 a001 4052739537881/17393796001*439204^(1/3) 1771100001126181 a001 1548008755920/6643838879*439204^(1/3) 1771100001126181 a001 591286729879/2537720636*439204^(1/3) 1771100001126181 a001 225851433717/969323029*439204^(1/3) 1771100001126181 a001 86267571272/370248451*439204^(1/3) 1771100001126181 a001 63246219/271444*439204^(1/3) 1771100001126181 a001 12586269025/54018521*439204^(1/3) 1771100001126185 a001 4807526976/20633239*439204^(1/3) 1771100001126201 a001 105937/4250681*1860498^(14/15) 1771100001126209 a001 1836311903/7881196*439204^(1/3) 1771100001126223 a001 317811/7881196*1860498^(9/10) 1771100001126235 a001 1836311903/710647*710647^(1/7) 1771100001126356 a001 317811/3010349*1860498^(5/6) 1771100001126376 a001 701408733/3010349*439204^(1/3) 1771100001126486 a001 701408733/710647*710647^(3/14) 1771100001126500 a001 63245986/1149851*439204^(4/9) 1771100001126611 a001 433494437/710647*710647^(1/4) 1771100001126689 a001 1836311903/1860498*439204^(2/9) 1771100001126736 a001 267914296/710647*710647^(2/7) 1771100001126987 a001 14619165/101521*710647^(5/14) 1771100001127056 a001 514229/710647*7881196^(7/11) 1771100001127070 a001 12571356363/709805 1771100001127071 a001 514229/710647*20633239^(3/5) 1771100001127074 a001 514229/710647*141422324^(7/13) 1771100001127074 a001 514229/710647*2537720636^(7/15) 1771100001127074 a001 514229/710647*17393796001^(3/7) 1771100001127074 a001 514229/710647*45537549124^(7/17) 1771100001127074 a001 317811/1149851*(1/2+1/2*5^(1/2))^23 1771100001127074 a001 514229/710647*14662949395604^(1/3) 1771100001127074 a001 514229/710647*(1/2+1/2*5^(1/2))^21 1771100001127074 a001 514229/710647*192900153618^(7/18) 1771100001127074 a001 514229/710647*10749957122^(7/16) 1771100001127074 a001 317811/1149851*4106118243^(1/2) 1771100001127074 a001 514229/710647*599074578^(1/2) 1771100001127075 a001 514229/710647*33385282^(7/12) 1771100001127126 a001 4807526976/4870847*439204^(2/9) 1771100001127190 a001 12586269025/12752043*439204^(2/9) 1771100001127199 a001 32951280099/33385282*439204^(2/9) 1771100001127201 a001 86267571272/87403803*439204^(2/9) 1771100001127201 a001 225851433717/228826127*439204^(2/9) 1771100001127201 a001 591286729879/599074578*439204^(2/9) 1771100001127201 a001 1548008755920/1568397607*439204^(2/9) 1771100001127201 a001 4052739537881/4106118243*439204^(2/9) 1771100001127201 a001 4807525989/4870846*439204^(2/9) 1771100001127201 a001 6557470319842/6643838879*439204^(2/9) 1771100001127201 a001 2504730781961/2537720636*439204^(2/9) 1771100001127201 a001 956722026041/969323029*439204^(2/9) 1771100001127201 a001 365435296162/370248451*439204^(2/9) 1771100001127201 a001 139583862445/141422324*439204^(2/9) 1771100001127202 a001 53316291173/54018521*439204^(2/9) 1771100001127205 a001 20365011074/20633239*439204^(2/9) 1771100001127229 a001 7778742049/7881196*439204^(2/9) 1771100001127237 a001 39088169/710647*710647^(3/7) 1771100001127396 a001 2971215073/3010349*439204^(2/9) 1771100001127432 a001 514229/710647*1860498^(7/10) 1771100001127486 a001 14930352/710647*710647^(1/2) 1771100001127520 a001 267914296/1149851*439204^(1/3) 1771100001127583 a001 686789568/101521*271443^(1/13) 1771100001127709 a001 7778742049/1860498*439204^(1/9) 1771100001127727 a001 5702887/710647*710647^(4/7) 1771100001127728 a001 832040/710647*710647^(5/7) 1771100001127775 a001 317811/439204*439204^(7/9) 1771100001127902 a001 2/514229*(1/2+1/2*5^(1/2))^51 1771100001127914 a001 311187/101521*710647^(9/14) 1771100001128146 a001 20365011074/4870847*439204^(1/9) 1771100001128199 a001 416020/930249*7881196^(2/3) 1771100001128210 a001 53316291173/12752043*439204^(1/9) 1771100001128218 a001 416020/930249*312119004989^(2/5) 1771100001128218 a001 416020/930249*(1/2+1/2*5^(1/2))^22 1771100001128218 a001 416020/930249*10749957122^(11/24) 1771100001128218 a001 416020/930249*4106118243^(11/23) 1771100001128218 a001 416020/930249*1568397607^(1/2) 1771100001128218 a001 416020/930249*599074578^(11/21) 1771100001128218 a001 416020/930249*228826127^(11/20) 1771100001128218 a001 416020/930249*87403803^(11/19) 1771100001128218 a001 692290561600/39088169 1771100001128219 a001 416020/930249*33385282^(11/18) 1771100001128219 a001 139583862445/33385282*439204^(1/9) 1771100001128221 a001 365435296162/87403803*439204^(1/9) 1771100001128221 a001 956722026041/228826127*439204^(1/9) 1771100001128221 a001 2504730781961/599074578*439204^(1/9) 1771100001128221 a001 6557470319842/1568397607*439204^(1/9) 1771100001128221 a001 10610209857723/2537720636*439204^(1/9) 1771100001128221 a001 4052739537881/969323029*439204^(1/9) 1771100001128221 a001 1548008755920/370248451*439204^(1/9) 1771100001128221 a001 591286729879/141422324*439204^(1/9) 1771100001128222 a001 225851433717/54018521*439204^(1/9) 1771100001128225 a001 416020/930249*12752043^(11/17) 1771100001128225 a001 86267571272/20633239*439204^(1/9) 1771100001128229 a001 105937/620166*710647^(6/7) 1771100001128250 a001 32951280099/7881196*439204^(1/9) 1771100001128269 a001 416020/930249*4870847^(11/16) 1771100001128416 a001 12586269025/3010349*439204^(1/9) 1771100001128540 a001 1134903170/1149851*439204^(2/9) 1771100001128593 a001 416020/930249*1860498^(11/15) 1771100001128634 a001 832040/4870847*7881196^(8/11) 1771100001128653 a001 726103/620166*20633239^(4/7) 1771100001128655 a001 832040/4870847*141422324^(8/13) 1771100001128655 a001 832040/4870847*2537720636^(8/15) 1771100001128655 a001 726103/620166*2537720636^(4/9) 1771100001128655 a001 832040/4870847*45537549124^(8/17) 1771100001128655 a001 832040/4870847*(1/2+1/2*5^(1/2))^24 1771100001128655 a001 726103/620166*(1/2+1/2*5^(1/2))^20 1771100001128655 a001 726103/620166*23725150497407^(5/16) 1771100001128655 a001 726103/620166*505019158607^(5/14) 1771100001128655 a001 832040/4870847*192900153618^(4/9) 1771100001128655 a001 726103/620166*73681302247^(5/13) 1771100001128655 a001 832040/4870847*73681302247^(6/13) 1771100001128655 a001 726103/620166*28143753123^(2/5) 1771100001128655 a001 726103/620166*10749957122^(5/12) 1771100001128655 a001 832040/4870847*10749957122^(1/2) 1771100001128655 a001 726103/620166*4106118243^(10/23) 1771100001128655 a001 832040/4870847*4106118243^(12/23) 1771100001128655 a001 726103/620166*1568397607^(5/11) 1771100001128655 a001 832040/4870847*1568397607^(6/11) 1771100001128655 a001 726103/620166*599074578^(10/21) 1771100001128655 a001 832040/4870847*599074578^(4/7) 1771100001128655 a001 726103/620166*228826127^(1/2) 1771100001128655 a001 832040/4870847*228826127^(3/5) 1771100001128655 a001 1569212312/88601 1771100001128655 a001 726103/620166*87403803^(10/19) 1771100001128655 a001 832040/4870847*87403803^(12/19) 1771100001128656 a001 726103/620166*33385282^(5/9) 1771100001128656 a001 832040/4870847*33385282^(2/3) 1771100001128661 a001 726103/620166*12752043^(10/17) 1771100001128663 a001 832040/4870847*12752043^(12/17) 1771100001128702 a001 726103/620166*4870847^(5/8) 1771100001128703 a001 5702887/1860498*7881196^(6/11) 1771100001128703 a001 832040/87403803*7881196^(10/11) 1771100001128710 a001 75640/1875749*7881196^(9/11) 1771100001128711 a001 832040/4870847*4870847^(3/4) 1771100001128717 a001 24157817/1860498*7881196^(5/11) 1771100001128719 a001 832040/12752043*141422324^(2/3) 1771100001128719 a001 5702887/1860498*141422324^(6/13) 1771100001128719 a001 5702887/1860498*2537720636^(2/5) 1771100001128719 a001 5702887/1860498*45537549124^(6/17) 1771100001128719 a001 832040/12752043*(1/2+1/2*5^(1/2))^26 1771100001128719 a001 5702887/1860498*14662949395604^(2/7) 1771100001128719 a001 5702887/1860498*(1/2+1/2*5^(1/2))^18 1771100001128719 a001 5702887/1860498*192900153618^(1/3) 1771100001128719 a001 832040/12752043*73681302247^(1/2) 1771100001128719 a001 5702887/1860498*10749957122^(3/8) 1771100001128719 a001 832040/12752043*10749957122^(13/24) 1771100001128719 a001 5702887/1860498*4106118243^(9/23) 1771100001128719 a001 832040/12752043*4106118243^(13/23) 1771100001128719 a001 5702887/1860498*1568397607^(9/22) 1771100001128719 a001 832040/12752043*1568397607^(13/22) 1771100001128719 a001 5702887/1860498*599074578^(3/7) 1771100001128719 a001 832040/12752043*599074578^(13/21) 1771100001128719 a001 593128762435/33489287 1771100001128719 a001 5702887/1860498*228826127^(9/20) 1771100001128719 a001 832040/12752043*228826127^(13/20) 1771100001128719 a001 5702887/1860498*87403803^(9/19) 1771100001128719 a001 832040/12752043*87403803^(13/19) 1771100001128719 a001 831985/15126*7881196^(4/11) 1771100001128719 a001 5702887/1860498*33385282^(1/2) 1771100001128720 a001 832040/12752043*33385282^(13/18) 1771100001128720 a001 165580141/1860498*7881196^(1/3) 1771100001128722 a001 433494437/1860498*7881196^(3/11) 1771100001128724 a001 1836311903/1860498*7881196^(2/11) 1771100001128724 a001 5702887/1860498*12752043^(9/17) 1771100001128725 a001 416020/16692641*20633239^(4/5) 1771100001128726 a001 832040/87403803*20633239^(6/7) 1771100001128727 a001 7778742049/1860498*7881196^(1/11) 1771100001128727 a001 832040/12752043*12752043^(13/17) 1771100001128728 a001 39088169/1860498*20633239^(2/5) 1771100001128728 a001 416020/16692641*17393796001^(4/7) 1771100001128728 a001 416020/16692641*14662949395604^(4/9) 1771100001128728 a001 416020/16692641*(1/2+1/2*5^(1/2))^28 1771100001128728 a001 829464/103361*(1/2+1/2*5^(1/2))^16 1771100001128728 a001 829464/103361*73681302247^(4/13) 1771100001128728 a001 416020/16692641*73681302247^(7/13) 1771100001128728 a001 829464/103361*10749957122^(1/3) 1771100001128728 a001 416020/16692641*10749957122^(7/12) 1771100001128728 a001 829464/103361*4106118243^(8/23) 1771100001128728 a001 416020/16692641*4106118243^(14/23) 1771100001128728 a001 829464/103361*1568397607^(4/11) 1771100001128728 a001 416020/16692641*1568397607^(7/11) 1771100001128728 a001 4140883359360/233802911 1771100001128728 a001 829464/103361*599074578^(8/21) 1771100001128728 a001 416020/16692641*599074578^(2/3) 1771100001128728 a001 829464/103361*228826127^(2/5) 1771100001128728 a001 416020/16692641*228826127^(7/10) 1771100001128728 a001 829464/103361*87403803^(8/19) 1771100001128728 a001 416020/16692641*87403803^(14/19) 1771100001128728 a001 133957148/930249*20633239^(2/7) 1771100001128728 a001 24157817/1860498*20633239^(3/7) 1771100001128729 a001 829464/103361*33385282^(4/9) 1771100001128729 a001 567451585/930249*20633239^(1/5) 1771100001128729 a001 2971215073/1860498*20633239^(1/7) 1771100001128729 a001 416020/16692641*33385282^(7/9) 1771100001128729 a001 832040/87403803*141422324^(10/13) 1771100001128729 a001 832040/87403803*2537720636^(2/3) 1771100001128729 a001 39088169/1860498*17393796001^(2/7) 1771100001128729 a001 832040/87403803*45537549124^(10/17) 1771100001128729 a001 832040/87403803*312119004989^(6/11) 1771100001128729 a001 39088169/1860498*14662949395604^(2/9) 1771100001128729 a001 39088169/1860498*(1/2+1/2*5^(1/2))^14 1771100001128729 a001 832040/87403803*192900153618^(5/9) 1771100001128729 a001 832040/87403803*28143753123^(3/5) 1771100001128729 a001 39088169/1860498*10749957122^(7/24) 1771100001128729 a001 832040/87403803*10749957122^(5/8) 1771100001128729 a001 39088169/1860498*4106118243^(7/23) 1771100001128729 a001 832040/87403803*4106118243^(15/23) 1771100001128729 a001 32522920134760/1836311903 1771100001128729 a001 39088169/1860498*1568397607^(7/22) 1771100001128729 a001 832040/87403803*1568397607^(15/22) 1771100001128729 a001 39088169/1860498*599074578^(1/3) 1771100001128729 a001 832040/87403803*599074578^(5/7) 1771100001128729 a001 39088169/1860498*228826127^(7/20) 1771100001128729 a001 832040/87403803*228826127^(3/4) 1771100001128729 a001 39088169/1860498*87403803^(7/19) 1771100001128729 a001 832040/1568397607*141422324^(12/13) 1771100001128729 a001 832040/370248451*141422324^(11/13) 1771100001128729 a001 831985/15126*141422324^(4/13) 1771100001128730 a001 832040/87403803*87403803^(15/19) 1771100001128730 a001 831985/15126*2537720636^(4/15) 1771100001128730 a001 831985/15126*45537549124^(4/17) 1771100001128730 a001 831985/15126*14662949395604^(4/21) 1771100001128730 a001 831985/15126*(1/2+1/2*5^(1/2))^12 1771100001128730 a001 831985/15126*192900153618^(2/9) 1771100001128730 a001 831985/15126*73681302247^(3/13) 1771100001128730 a001 832040/228826127*73681302247^(8/13) 1771100001128730 a001 831985/15126*10749957122^(1/4) 1771100001128730 a001 832040/228826127*10749957122^(2/3) 1771100001128730 a001 506822085275/28616232 1771100001128730 a001 831985/15126*4106118243^(6/23) 1771100001128730 a001 832040/228826127*4106118243^(16/23) 1771100001128730 a001 831985/15126*1568397607^(3/11) 1771100001128730 a001 832040/228826127*1568397607^(8/11) 1771100001128730 a001 831985/15126*599074578^(2/7) 1771100001128730 a001 832040/228826127*599074578^(16/21) 1771100001128730 a001 831985/15126*228826127^(3/10) 1771100001128730 a001 433494437/1860498*141422324^(3/13) 1771100001128730 a001 1836311903/1860498*141422324^(2/13) 1771100001128730 a001 7778742049/1860498*141422324^(1/13) 1771100001128730 a001 832040/228826127*228826127^(4/5) 1771100001128730 a001 133957148/930249*2537720636^(2/9) 1771100001128730 a001 416020/299537289*45537549124^(2/3) 1771100001128730 a001 133957148/930249*312119004989^(2/11) 1771100001128730 a001 133957148/930249*(1/2+1/2*5^(1/2))^10 1771100001128730 a001 133957148/930249*28143753123^(1/5) 1771100001128730 a001 4053007469888/228841255 1771100001128730 a001 133957148/930249*10749957122^(5/24) 1771100001128730 a001 416020/299537289*10749957122^(17/24) 1771100001128730 a001 133957148/930249*4106118243^(5/23) 1771100001128730 a001 416020/299537289*4106118243^(17/23) 1771100001128730 a001 133957148/930249*1568397607^(5/22) 1771100001128730 a001 416020/299537289*1568397607^(17/22) 1771100001128730 a001 133957148/930249*599074578^(5/21) 1771100001128730 a001 832040/1568397607*2537720636^(4/5) 1771100001128730 a001 416020/299537289*599074578^(17/21) 1771100001128730 a001 832040/1568397607*45537549124^(12/17) 1771100001128730 a001 233802911/620166*(1/2+1/2*5^(1/2))^8 1771100001128730 a001 233802911/620166*23725150497407^(1/8) 1771100001128730 a001 832040/1568397607*192900153618^(2/3) 1771100001128730 a001 233802911/620166*73681302247^(2/13) 1771100001128730 a001 832040/1568397607*73681302247^(9/13) 1771100001128730 a001 194533374068440/10983760033 1771100001128730 a001 233802911/620166*10749957122^(1/6) 1771100001128730 a001 832040/1568397607*10749957122^(3/4) 1771100001128730 a001 233802911/620166*4106118243^(4/23) 1771100001128730 a001 832040/1568397607*4106118243^(18/23) 1771100001128730 a001 233802911/620166*1568397607^(2/11) 1771100001128730 a001 416020/5374978561*2537720636^(8/9) 1771100001128730 a001 832040/28143753123*2537720636^(14/15) 1771100001128730 a001 832040/6643838879*2537720636^(13/15) 1771100001128730 a001 1836311903/1860498*2537720636^(2/15) 1771100001128730 a001 832040/1568397607*1568397607^(9/11) 1771100001128730 a001 1836311903/1860498*45537549124^(2/17) 1771100001128730 a001 1836311903/1860498*14662949395604^(2/21) 1771100001128730 a001 1836311903/1860498*(1/2+1/2*5^(1/2))^6 1771100001128730 a001 190985619471515/10783446409 1771100001128730 a001 1836311903/1860498*10749957122^(1/8) 1771100001128730 a001 832040/4106118243*10749957122^(19/24) 1771100001128730 a001 1836311903/1860498*4106118243^(3/23) 1771100001128730 a001 832040/4106118243*4106118243^(19/23) 1771100001128730 a001 416020/5374978561*312119004989^(8/11) 1771100001128730 a001 267084832/103361*(1/2+1/2*5^(1/2))^4 1771100001128730 a001 267084832/103361*23725150497407^(1/16) 1771100001128730 a001 190478797386240/10754830177 1771100001128730 a001 267084832/103361*73681302247^(1/13) 1771100001128730 a001 416020/5374978561*73681302247^(10/13) 1771100001128730 a001 267084832/103361*10749957122^(1/12) 1771100001128730 a001 416020/5374978561*28143753123^(4/5) 1771100001128730 a001 7778742049/1860498*2537720636^(1/15) 1771100001128730 a001 832040/28143753123*17393796001^(6/7) 1771100001128730 a001 1836311903/1860498*1568397607^(3/22) 1771100001128730 a001 267084832/103361*4106118243^(2/23) 1771100001128730 a001 832040/28143753123*45537549124^(14/17) 1771100001128730 a001 416020/5374978561*10749957122^(5/6) 1771100001128730 a001 12586269025/1860498*(1/2+1/2*5^(1/2))^2 1771100001128730 a001 10472279279561000/591286729879 1771100001128730 a001 832040/28143753123*505019158607^(3/4) 1771100001128730 a001 832040/28143753123*192900153618^(7/9) 1771100001128730 a001 12586269025/1860498*10749957122^(1/24) 1771100001128730 a001 832040/505019158607*45537549124^(16/17) 1771100001128730 a001 832040/119218851371*45537549124^(15/17) 1771100001128730 a001 832040/73681302247*312119004989^(4/5) 1771100001128730 a001 10983760033/620166 1771100001128730 a001 832040/73681302247*73681302247^(11/13) 1771100001128730 a001 71778070001154880/4052739537881 1771100001128730 a001 832040/1322157322203*312119004989^(10/11) 1771100001128730 a001 208010/204284540899*14662949395604^(7/9) 1771100001128730 a001 416020/1730726404001*505019158607^(13/14) 1771100001128730 a001 208010/204284540899*505019158607^(7/8) 1771100001128730 a001 58069678454368900/3278735159921 1771100001128730 a001 832040/505019158607*192900153618^(8/9) 1771100001128730 a001 832040/2139295485799*192900153618^(17/18) 1771100001128730 a001 832040/119218851371*312119004989^(9/11) 1771100001128730 a001 44361286907582920/2504730781961 1771100001128730 a001 832040/119218851371*192900153618^(5/6) 1771100001128730 a001 832040/505019158607*73681302247^(12/13) 1771100001128730 a001 16944503814010960/956722026041 1771100001128730 a001 832040/119218851371*28143753123^(9/10) 1771100001128730 a001 12586269025/1860498*4106118243^(1/23) 1771100001128730 a001 7778742049/1860498*45537549124^(1/17) 1771100001128730 a001 3236112267224980/182717648081 1771100001128730 a001 7778742049/1860498*(1/2+1/2*5^(1/2))^3 1771100001128730 a001 7778742049/1860498*10749957122^(1/16) 1771100001128730 a001 2971215073/1860498*2537720636^(1/9) 1771100001128730 a001 832040/28143753123*10749957122^(7/8) 1771100001128730 a001 832040/73681302247*10749957122^(11/12) 1771100001128730 a001 832040/119218851371*10749957122^(15/16) 1771100001128730 a001 416020/96450076809*10749957122^(23/24) 1771100001128730 a001 12586269025/1860498*1568397607^(1/22) 1771100001128730 a001 832040/6643838879*45537549124^(13/17) 1771100001128730 a001 494433957867784/27916772489 1771100001128730 a001 2971215073/1860498*312119004989^(1/11) 1771100001128730 a001 2971215073/1860498*(1/2+1/2*5^(1/2))^5 1771100001128730 a001 832040/6643838879*192900153618^(13/18) 1771100001128730 a001 2971215073/1860498*28143753123^(1/10) 1771100001128730 a001 832040/6643838879*73681302247^(3/4) 1771100001128730 a001 267084832/103361*1568397607^(1/11) 1771100001128730 a001 832040/6643838879*10749957122^(13/16) 1771100001128730 a001 416020/5374978561*4106118243^(20/23) 1771100001128730 a001 832040/28143753123*4106118243^(21/23) 1771100001128730 a001 832040/73681302247*4106118243^(22/23) 1771100001128730 a001 233802911/620166*599074578^(4/21) 1771100001128730 a001 12586269025/1860498*599074578^(1/21) 1771100001128730 a001 567451585/930249*17393796001^(1/7) 1771100001128730 a001 944284833566800/53316291173 1771100001128730 a001 567451585/930249*14662949395604^(1/9) 1771100001128730 a001 567451585/930249*(1/2+1/2*5^(1/2))^7 1771100001128730 a001 7778742049/1860498*599074578^(1/14) 1771100001128730 a001 267084832/103361*599074578^(2/21) 1771100001128730 a001 832040/4106118243*1568397607^(19/22) 1771100001128730 a001 1836311903/1860498*599074578^(1/7) 1771100001128730 a001 416020/5374978561*1568397607^(10/11) 1771100001128730 a001 832040/28143753123*1568397607^(21/22) 1771100001128730 a001 567451585/930249*599074578^(1/6) 1771100001128730 a001 832040/969323029*2537720636^(7/9) 1771100001128730 a001 12586269025/1860498*228826127^(1/20) 1771100001128730 a001 433494437/1860498*2537720636^(1/5) 1771100001128730 a001 832040/969323029*17393796001^(5/7) 1771100001128730 a001 180342355680740/10182505537 1771100001128730 a001 433494437/1860498*45537549124^(3/17) 1771100001128730 a001 832040/969323029*312119004989^(7/11) 1771100001128730 a001 433494437/1860498*14662949395604^(1/7) 1771100001128730 a001 433494437/1860498*(1/2+1/2*5^(1/2))^9 1771100001128730 a001 433494437/1860498*192900153618^(1/6) 1771100001128730 a001 832040/969323029*28143753123^(7/10) 1771100001128730 a001 433494437/1860498*10749957122^(3/16) 1771100001128730 a001 433494437/1860498*599074578^(3/14) 1771100001128730 a001 267084832/103361*228826127^(1/10) 1771100001128730 a001 832040/1568397607*599074578^(6/7) 1771100001128730 a001 133957148/930249*228826127^(1/4) 1771100001128730 a001 2971215073/1860498*228826127^(1/8) 1771100001128730 a001 832040/4106118243*599074578^(19/21) 1771100001128730 a001 832040/6643838879*599074578^(13/14) 1771100001128730 a001 416020/5374978561*599074578^(20/21) 1771100001128730 a001 1836311903/1860498*228826127^(3/20) 1771100001128730 a001 832040/969323029*599074578^(5/6) 1771100001128730 a001 233802911/620166*228826127^(1/5) 1771100001128730 a001 12586269025/1860498*87403803^(1/19) 1771100001128730 a001 832040/370248451*2537720636^(11/15) 1771100001128730 a001 137769300517640/7778742049 1771100001128730 a001 832040/370248451*45537549124^(11/17) 1771100001128730 a001 832040/370248451*312119004989^(3/5) 1771100001128730 a001 165580141/1860498*312119004989^(1/5) 1771100001128730 a001 165580141/1860498*(1/2+1/2*5^(1/2))^11 1771100001128730 a001 832040/370248451*192900153618^(11/18) 1771100001128730 a001 832040/370248451*10749957122^(11/16) 1771100001128730 a001 165580141/1860498*1568397607^(1/4) 1771100001128730 a001 832040/370248451*1568397607^(3/4) 1771100001128730 a001 832040/370248451*599074578^(11/14) 1771100001128730 a001 416020/299537289*228826127^(17/20) 1771100001128730 a001 267084832/103361*87403803^(2/19) 1771100001128730 a001 832040/1568397607*228826127^(9/10) 1771100001128730 a001 832040/969323029*228826127^(7/8) 1771100001128730 a001 832040/4106118243*228826127^(19/20) 1771100001128730 a001 1836311903/1860498*87403803^(3/19) 1771100001128730 a001 831985/15126*87403803^(6/19) 1771100001128730 a001 233802911/620166*87403803^(4/19) 1771100001128730 a001 133957148/930249*87403803^(5/19) 1771100001128730 a001 31622993/930249*141422324^(1/3) 1771100001128730 a001 12586269025/1860498*33385282^(1/18) 1771100001128730 a001 52623190191440/2971215073 1771100001128730 a001 208010/35355581*9062201101803^(1/2) 1771100001128730 a001 31622993/930249*(1/2+1/2*5^(1/2))^13 1771100001128730 a001 31622993/930249*73681302247^(1/4) 1771100001128730 a001 7778742049/1860498*33385282^(1/12) 1771100001128730 a001 832040/228826127*87403803^(16/19) 1771100001128730 a001 267084832/103361*33385282^(1/9) 1771100001128730 a001 416020/299537289*87403803^(17/19) 1771100001128730 a001 832040/1568397607*87403803^(18/19) 1771100001128730 a001 1836311903/1860498*33385282^(1/6) 1771100001128730 a001 233802911/620166*33385282^(2/9) 1771100001128730 a001 39088169/1860498*33385282^(7/18) 1771100001128730 a001 433494437/1860498*33385282^(1/4) 1771100001128730 a001 133957148/930249*33385282^(5/18) 1771100001128730 a001 831985/15126*33385282^(1/3) 1771100001128730 a001 24157817/1860498*141422324^(5/13) 1771100001128730 a001 32951262388/1860497 1771100001128730 a001 24157817/1860498*2537720636^(1/3) 1771100001128730 a001 24157817/1860498*45537549124^(5/17) 1771100001128730 a001 24157817/1860498*312119004989^(3/11) 1771100001128730 a001 24157817/1860498*14662949395604^(5/21) 1771100001128730 a001 24157817/1860498*(1/2+1/2*5^(1/2))^15 1771100001128730 a001 24157817/1860498*192900153618^(5/18) 1771100001128730 a001 24157817/1860498*28143753123^(3/10) 1771100001128730 a001 24157817/1860498*10749957122^(5/16) 1771100001128730 a001 24157817/1860498*599074578^(5/14) 1771100001128730 a001 24157817/1860498*228826127^(3/8) 1771100001128730 a001 12586269025/1860498*12752043^(1/17) 1771100001128731 a001 832040/87403803*33385282^(5/6) 1771100001128731 a001 24157817/1860498*33385282^(5/12) 1771100001128731 a001 267084832/103361*12752043^(2/17) 1771100001128731 a001 832040/228826127*33385282^(8/9) 1771100001128731 a001 832040/370248451*33385282^(11/12) 1771100001128731 a001 416020/299537289*33385282^(17/18) 1771100001128731 a001 1836311903/1860498*12752043^(3/17) 1771100001128732 a001 233802911/620166*12752043^(4/17) 1771100001128733 a001 133957148/930249*12752043^(5/17) 1771100001128733 a001 829464/103361*12752043^(8/17) 1771100001128733 a001 831985/15126*12752043^(6/17) 1771100001128734 a001 75640/1875749*141422324^(9/13) 1771100001128734 a001 7677619978600/433494437 1771100001128734 a001 75640/1875749*2537720636^(3/5) 1771100001128734 a001 75640/1875749*45537549124^(9/17) 1771100001128734 a001 9227465/1860498*45537549124^(1/3) 1771100001128734 a001 75640/1875749*14662949395604^(3/7) 1771100001128734 a001 75640/1875749*(1/2+1/2*5^(1/2))^27 1771100001128734 a001 9227465/1860498*(1/2+1/2*5^(1/2))^17 1771100001128734 a001 75640/1875749*192900153618^(1/2) 1771100001128734 a001 75640/1875749*10749957122^(9/16) 1771100001128734 a001 75640/1875749*599074578^(9/14) 1771100001128734 a001 39088169/1860498*12752043^(7/17) 1771100001128734 a001 12586269025/1860498*4870847^(1/16) 1771100001128735 a001 75640/1875749*33385282^(3/4) 1771100001128737 a001 416020/16692641*12752043^(14/17) 1771100001128739 a001 267084832/103361*4870847^(1/8) 1771100001128739 a001 832040/87403803*12752043^(15/17) 1771100001128739 a001 9227465/1860498*12752043^(1/2) 1771100001128740 a001 832040/228826127*12752043^(16/17) 1771100001128744 a001 1836311903/1860498*4870847^(3/16) 1771100001128748 a001 233802911/620166*4870847^(1/4) 1771100001128753 a001 133957148/930249*4870847^(5/16) 1771100001128755 a001 208010/1970299*20633239^(5/7) 1771100001128758 a001 831985/15126*4870847^(3/8) 1771100001128758 a001 2932589879120/165580141 1771100001128758 a001 208010/1970299*2537720636^(5/9) 1771100001128758 a001 1762289/930249*817138163596^(1/3) 1771100001128758 a001 208010/1970299*(1/2+1/2*5^(1/2))^25 1771100001128758 a001 208010/1970299*3461452808002^(5/12) 1771100001128758 a001 1762289/930249*(1/2+1/2*5^(1/2))^19 1771100001128758 a001 208010/1970299*28143753123^(1/2) 1771100001128758 a001 208010/1970299*228826127^(5/8) 1771100001128758 a001 1762289/930249*87403803^(1/2) 1771100001128761 a001 5702887/1860498*4870847^(9/16) 1771100001128762 a001 39088169/1860498*4870847^(7/16) 1771100001128764 a001 12586269025/1860498*1860498^(1/15) 1771100001128765 a001 829464/103361*4870847^(1/2) 1771100001128779 a001 832040/12752043*4870847^(13/16) 1771100001128781 a001 7778742049/1860498*1860498^(1/10) 1771100001128793 a001 416020/16692641*4870847^(7/8) 1771100001128798 a001 267084832/103361*1860498^(2/15) 1771100001128799 a001 832040/87403803*4870847^(15/16) 1771100001128815 a001 2971215073/1860498*1860498^(1/6) 1771100001128832 a001 1836311903/1860498*1860498^(1/5) 1771100001128866 a001 233802911/620166*1860498^(4/15) 1771100001128883 a001 433494437/1860498*1860498^(3/10) 1771100001128900 a001 133957148/930249*1860498^(1/3) 1771100001128907 a001 1346269/1860498*7881196^(7/11) 1771100001128916 a001 317811/4870847*710647^(13/14) 1771100001128922 a001 1346269/1860498*20633239^(3/5) 1771100001128925 a001 560074829380/31622993 1771100001128925 a001 1346269/1860498*141422324^(7/13) 1771100001128925 a001 1346269/1860498*2537720636^(7/15) 1771100001128925 a001 1346269/1860498*17393796001^(3/7) 1771100001128925 a001 1346269/1860498*45537549124^(7/17) 1771100001128925 a001 832040/3010349*(1/2+1/2*5^(1/2))^23 1771100001128925 a001 1346269/1860498*14662949395604^(1/3) 1771100001128925 a001 1346269/1860498*(1/2+1/2*5^(1/2))^21 1771100001128925 a001 1346269/1860498*192900153618^(7/18) 1771100001128925 a001 1346269/1860498*10749957122^(7/16) 1771100001128925 a001 832040/3010349*4106118243^(1/2) 1771100001128925 a001 1346269/1860498*599074578^(1/2) 1771100001128926 a001 1346269/1860498*33385282^(7/12) 1771100001128934 a001 831985/15126*1860498^(2/5) 1771100001128968 a001 39088169/1860498*1860498^(7/15) 1771100001128980 a001 12586269025/1860498*710647^(1/14) 1771100001128986 a001 24157817/1860498*1860498^(1/2) 1771100001128996 a001 726103/620166*1860498^(2/3) 1771100001129001 a001 829464/103361*1860498^(8/15) 1771100001129026 a001 5702887/1860498*1860498^(3/5) 1771100001129046 a001 2/1346269*(1/2+1/2*5^(1/2))^53 1771100001129064 a001 832040/4870847*1860498^(4/5) 1771100001129073 a001 2178309/4870847*7881196^(2/3) 1771100001129092 a001 2178309/4870847*312119004989^(2/5) 1771100001129092 a001 2178309/4870847*(1/2+1/2*5^(1/2))^22 1771100001129092 a001 2178309/4870847*10749957122^(11/24) 1771100001129092 a001 2178309/4870847*4106118243^(11/23) 1771100001129092 a001 2178309/4870847*1568397607^(1/2) 1771100001129092 a001 2178309/4870847*599074578^(11/21) 1771100001129092 a001 4745030099481/267914296 1771100001129092 a001 2178309/4870847*228826127^(11/20) 1771100001129092 a001 2178309/4870847*87403803^(11/19) 1771100001129093 a001 2178309/4870847*33385282^(11/18) 1771100001129099 a001 2178309/4870847*12752043^(11/17) 1771100001129135 a001 726103/4250681*7881196^(8/11) 1771100001129141 a001 46347/4868641*7881196^(10/11) 1771100001129143 a001 2178309/4870847*4870847^(11/16) 1771100001129144 a001 2178309/54018521*7881196^(9/11) 1771100001129149 a001 14930352/4870847*7881196^(6/11) 1771100001129153 a001 5702887/4870847*20633239^(4/7) 1771100001129154 a001 63245986/4870847*7881196^(5/11) 1771100001129156 a001 726103/4250681*141422324^(8/13) 1771100001129156 a001 726103/4250681*2537720636^(8/15) 1771100001129156 a001 5702887/4870847*2537720636^(4/9) 1771100001129156 a001 726103/4250681*45537549124^(8/17) 1771100001129156 a001 726103/4250681*14662949395604^(8/21) 1771100001129156 a001 726103/4250681*(1/2+1/2*5^(1/2))^24 1771100001129156 a001 5702887/4870847*(1/2+1/2*5^(1/2))^20 1771100001129156 a001 5702887/4870847*23725150497407^(5/16) 1771100001129156 a001 5702887/4870847*505019158607^(5/14) 1771100001129156 a001 726103/4250681*192900153618^(4/9) 1771100001129156 a001 5702887/4870847*73681302247^(5/13) 1771100001129156 a001 726103/4250681*73681302247^(6/13) 1771100001129156 a001 5702887/4870847*28143753123^(2/5) 1771100001129156 a001 5702887/4870847*10749957122^(5/12) 1771100001129156 a001 726103/4250681*10749957122^(1/2) 1771100001129156 a001 5702887/4870847*4106118243^(10/23) 1771100001129156 a001 726103/4250681*4106118243^(12/23) 1771100001129156 a001 5702887/4870847*1568397607^(5/11) 1771100001129156 a001 726103/4250681*1568397607^(6/11) 1771100001129156 a001 4140883359361/233802911 1771100001129156 a001 5702887/4870847*599074578^(10/21) 1771100001129156 a001 726103/4250681*599074578^(4/7) 1771100001129156 a001 5702887/4870847*228826127^(1/2) 1771100001129156 a001 726103/4250681*228826127^(3/5) 1771100001129156 a001 5702887/4870847*87403803^(10/19) 1771100001129156 a001 726103/4250681*87403803^(12/19) 1771100001129156 a001 267914296/4870847*7881196^(4/11) 1771100001129157 a001 5702887/4870847*33385282^(5/9) 1771100001129157 a001 726103/4250681*33385282^(2/3) 1771100001129157 a001 433494437/4870847*7881196^(1/3) 1771100001129159 a001 1134903170/4870847*7881196^(3/11) 1771100001129161 a001 4807526976/4870847*7881196^(2/11) 1771100001129162 a001 5702887/4870847*12752043^(10/17) 1771100001129162 a001 832040/12752043*1860498^(13/15) 1771100001129163 a001 46347/4868641*20633239^(6/7) 1771100001129163 a001 726103/29134601*20633239^(4/5) 1771100001129163 a001 726103/4250681*12752043^(12/17) 1771100001129164 a001 20365011074/4870847*7881196^(1/11) 1771100001129165 a001 102334155/4870847*20633239^(2/5) 1771100001129165 a001 63245986/4870847*20633239^(3/7) 1771100001129165 a001 311187/4769326*141422324^(2/3) 1771100001129165 a001 14930352/4870847*141422324^(6/13) 1771100001129165 a001 14930352/4870847*2537720636^(2/5) 1771100001129165 a001 14930352/4870847*45537549124^(6/17) 1771100001129165 a001 311187/4769326*(1/2+1/2*5^(1/2))^26 1771100001129165 a001 14930352/4870847*14662949395604^(2/7) 1771100001129165 a001 14930352/4870847*(1/2+1/2*5^(1/2))^18 1771100001129165 a001 14930352/4870847*192900153618^(1/3) 1771100001129165 a001 311187/4769326*73681302247^(1/2) 1771100001129165 a001 14930352/4870847*10749957122^(3/8) 1771100001129165 a001 311187/4769326*10749957122^(13/24) 1771100001129165 a001 14930352/4870847*4106118243^(9/23) 1771100001129165 a001 311187/4769326*4106118243^(13/23) 1771100001129165 a001 32522920134768/1836311903 1771100001129165 a001 14930352/4870847*1568397607^(9/22) 1771100001129165 a001 311187/4769326*1568397607^(13/22) 1771100001129165 a001 14930352/4870847*599074578^(3/7) 1771100001129165 a001 311187/4769326*599074578^(13/21) 1771100001129165 a001 14930352/4870847*228826127^(9/20) 1771100001129165 a001 311187/4769326*228826127^(13/20) 1771100001129165 a001 14930352/4870847*87403803^(9/19) 1771100001129165 a001 311187/4769326*87403803^(13/19) 1771100001129165 a001 701408733/4870847*20633239^(2/7) 1771100001129166 a001 2971215073/4870847*20633239^(1/5) 1771100001129166 a001 14930352/4870847*33385282^(1/2) 1771100001129166 a001 7778742049/4870847*20633239^(1/7) 1771100001129166 a001 311187/4769326*33385282^(13/18) 1771100001129166 a001 726103/29134601*17393796001^(4/7) 1771100001129166 a001 39088169/4870847*(1/2+1/2*5^(1/2))^16 1771100001129166 a001 39088169/4870847*23725150497407^(1/4) 1771100001129166 a001 39088169/4870847*73681302247^(4/13) 1771100001129166 a001 726103/29134601*73681302247^(7/13) 1771100001129166 a001 39088169/4870847*10749957122^(1/3) 1771100001129166 a001 726103/29134601*10749957122^(7/12) 1771100001129166 a001 86267588983/4870848 1771100001129166 a001 39088169/4870847*4106118243^(8/23) 1771100001129166 a001 726103/29134601*4106118243^(14/23) 1771100001129166 a001 39088169/4870847*1568397607^(4/11) 1771100001129166 a001 726103/29134601*1568397607^(7/11) 1771100001129166 a001 39088169/4870847*599074578^(8/21) 1771100001129166 a001 726103/29134601*599074578^(2/3) 1771100001129166 a001 39088169/4870847*228826127^(2/5) 1771100001129166 a001 726103/29134601*228826127^(7/10) 1771100001129166 a001 39088169/4870847*87403803^(8/19) 1771100001129166 a001 46347/4868641*141422324^(10/13) 1771100001129166 a001 726103/1368706081*141422324^(12/13) 1771100001129166 a001 2178309/969323029*141422324^(11/13) 1771100001129167 a001 726103/29134601*87403803^(14/19) 1771100001129167 a001 46347/4868641*2537720636^(2/3) 1771100001129167 a001 102334155/4870847*17393796001^(2/7) 1771100001129167 a001 46347/4868641*45537549124^(10/17) 1771100001129167 a001 46347/4868641*312119004989^(6/11) 1771100001129167 a001 102334155/4870847*14662949395604^(2/9) 1771100001129167 a001 102334155/4870847*(1/2+1/2*5^(1/2))^14 1771100001129167 a001 102334155/4870847*505019158607^(1/4) 1771100001129167 a001 46347/4868641*192900153618^(5/9) 1771100001129167 a001 46347/4868641*28143753123^(3/5) 1771100001129167 a001 4053007469889/228841255 1771100001129167 a001 102334155/4870847*10749957122^(7/24) 1771100001129167 a001 46347/4868641*10749957122^(5/8) 1771100001129167 a001 102334155/4870847*4106118243^(7/23) 1771100001129167 a001 46347/4868641*4106118243^(15/23) 1771100001129167 a001 102334155/4870847*1568397607^(7/22) 1771100001129167 a001 46347/4868641*1568397607^(15/22) 1771100001129167 a001 267914296/4870847*141422324^(4/13) 1771100001129167 a001 102334155/4870847*599074578^(1/3) 1771100001129167 a001 46347/4868641*599074578^(5/7) 1771100001129167 a001 102334155/4870847*228826127^(7/20) 1771100001129167 a001 1134903170/4870847*141422324^(3/13) 1771100001129167 a001 165580141/4870847*141422324^(1/3) 1771100001129167 a001 4807526976/4870847*141422324^(2/13) 1771100001129167 a001 46347/4868641*228826127^(3/4) 1771100001129167 a001 20365011074/4870847*141422324^(1/13) 1771100001129167 a001 267914296/4870847*2537720636^(4/15) 1771100001129167 a001 267914296/4870847*45537549124^(4/17) 1771100001129167 a001 267914296/4870847*817138163596^(4/19) 1771100001129167 a001 267914296/4870847*14662949395604^(4/21) 1771100001129167 a001 267914296/4870847*(1/2+1/2*5^(1/2))^12 1771100001129167 a001 267914296/4870847*73681302247^(3/13) 1771100001129167 a001 726103/199691526*73681302247^(8/13) 1771100001129167 a001 194533374068488/10983760033 1771100001129167 a001 267914296/4870847*10749957122^(1/4) 1771100001129167 a001 726103/199691526*10749957122^(2/3) 1771100001129167 a001 267914296/4870847*4106118243^(6/23) 1771100001129167 a001 726103/199691526*4106118243^(16/23) 1771100001129167 a001 267914296/4870847*1568397607^(3/11) 1771100001129167 a001 726103/199691526*1568397607^(8/11) 1771100001129167 a001 267914296/4870847*599074578^(2/7) 1771100001129167 a001 726103/199691526*599074578^(16/21) 1771100001129167 a001 701408733/4870847*2537720636^(2/9) 1771100001129167 a001 311187/224056801*45537549124^(2/3) 1771100001129167 a001 701408733/4870847*312119004989^(2/11) 1771100001129167 a001 701408733/4870847*(1/2+1/2*5^(1/2))^10 1771100001129167 a001 1527884955772497/86267571272 1771100001129167 a001 701408733/4870847*28143753123^(1/5) 1771100001129167 a001 701408733/4870847*10749957122^(5/24) 1771100001129167 a001 311187/224056801*10749957122^(17/24) 1771100001129167 a001 701408733/4870847*4106118243^(5/23) 1771100001129167 a001 311187/224056801*4106118243^(17/23) 1771100001129167 a001 701408733/4870847*1568397607^(5/22) 1771100001129167 a001 726103/1368706081*2537720636^(4/5) 1771100001129167 a001 311187/10525900321*2537720636^(14/15) 1771100001129167 a001 726103/9381251041*2537720636^(8/9) 1771100001129167 a001 2178309/17393796001*2537720636^(13/15) 1771100001129167 a001 311187/224056801*1568397607^(17/22) 1771100001129167 a001 726103/1368706081*45537549124^(12/17) 1771100001129167 a001 1836311903/4870847*(1/2+1/2*5^(1/2))^8 1771100001129167 a001 1836311903/4870847*23725150497407^(1/8) 1771100001129167 a001 190478797386287/10754830177 1771100001129167 a001 726103/1368706081*192900153618^(2/3) 1771100001129167 a001 1836311903/4870847*73681302247^(2/13) 1771100001129167 a001 726103/1368706081*73681302247^(9/13) 1771100001129167 a001 1836311903/4870847*10749957122^(1/6) 1771100001129167 a001 726103/1368706081*10749957122^(3/4) 1771100001129167 a001 1836311903/4870847*4106118243^(4/23) 1771100001129167 a001 4807526976/4870847*2537720636^(2/15) 1771100001129167 a001 7778742049/4870847*2537720636^(1/9) 1771100001129167 a001 726103/1368706081*4106118243^(18/23) 1771100001129167 a001 20365011074/4870847*2537720636^(1/15) 1771100001129167 a001 4807526976/4870847*45537549124^(2/17) 1771100001129167 a001 4807526976/4870847*(1/2+1/2*5^(1/2))^6 1771100001129167 a001 10472279279563584/591286729879 1771100001129167 a001 4807526976/4870847*10749957122^(1/8) 1771100001129167 a001 311187/10525900321*17393796001^(6/7) 1771100001129167 a001 987/4870846*10749957122^(19/24) 1771100001129167 a001 726103/9381251041*312119004989^(8/11) 1771100001129167 a001 12586269025/4870847*(1/2+1/2*5^(1/2))^4 1771100001129167 a001 12586269025/4870847*23725150497407^(1/16) 1771100001129167 a001 12586269025/4870847*73681302247^(1/13) 1771100001129167 a001 726103/9381251041*73681302247^(10/13) 1771100001129167 a001 4807526976/4870847*4106118243^(3/23) 1771100001129167 a001 311187/10525900321*45537549124^(14/17) 1771100001129167 a001 12586269025/4870847*10749957122^(1/12) 1771100001129167 a001 726103/440719107401*45537549124^(16/17) 1771100001129167 a001 2178309/312119004989*45537549124^(15/17) 1771100001129167 a001 726103/9381251041*28143753123^(4/5) 1771100001129167 a001 311187/10525900321*14662949395604^(2/3) 1771100001129167 a001 32951280099/4870847*(1/2+1/2*5^(1/2))^2 1771100001129167 a001 311187/10525900321*505019158607^(3/4) 1771100001129167 a001 311187/10525900321*192900153618^(7/9) 1771100001129167 a001 726103/64300051206*312119004989^(4/5) 1771100001129167 a001 726103/64300051206*23725150497407^(11/16) 1771100001129167 a001 86267571272/4870847 1771100001129167 a001 311187/494493258286*312119004989^(10/11) 1771100001129167 a001 2178309/5600748293801*817138163596^(17/19) 1771100001129167 a001 2178309/2139295485799*14662949395604^(7/9) 1771100001129167 a001 2178309/2139295485799*505019158607^(7/8) 1771100001129167 a001 726103/440719107401*192900153618^(8/9) 1771100001129167 a001 2178309/5600748293801*192900153618^(17/18) 1771100001129167 a001 2178309/312119004989*192900153618^(5/6) 1771100001129167 a001 116139356908766457/6557470319842 1771100001129167 a001 726103/64300051206*73681302247^(11/13) 1771100001129167 a001 726103/440719107401*73681302247^(12/13) 1771100001129167 a001 32951280099/4870847*10749957122^(1/24) 1771100001129167 a001 20365011074/4870847*45537549124^(1/17) 1771100001129167 a001 20365011074/4870847*14662949395604^(1/21) 1771100001129167 a001 20365011074/4870847*(1/2+1/2*5^(1/2))^3 1771100001129167 a001 20365011074/4870847*10749957122^(1/16) 1771100001129167 a001 2178309/312119004989*28143753123^(9/10) 1771100001129167 a001 32951280099/4870847*4106118243^(1/23) 1771100001129167 a001 2178309/17393796001*45537549124^(13/17) 1771100001129167 a001 7778742049/4870847*312119004989^(1/11) 1771100001129167 a001 16944503814015141/956722026041 1771100001129167 a001 7778742049/4870847*(1/2+1/2*5^(1/2))^5 1771100001129167 a001 2178309/17393796001*192900153618^(13/18) 1771100001129167 a001 7778742049/4870847*28143753123^(1/10) 1771100001129167 a001 2178309/17393796001*73681302247^(3/4) 1771100001129167 a001 12586269025/4870847*4106118243^(2/23) 1771100001129167 a001 726103/9381251041*10749957122^(5/6) 1771100001129167 a001 311187/10525900321*10749957122^(7/8) 1771100001129167 a001 726103/64300051206*10749957122^(11/12) 1771100001129167 a001 2178309/312119004989*10749957122^(15/16) 1771100001129167 a001 46347/10745088481*10749957122^(23/24) 1771100001129167 a001 2178309/17393796001*10749957122^(13/16) 1771100001129167 a001 1836311903/4870847*1568397607^(2/11) 1771100001129167 a001 32951280099/4870847*1568397607^(1/22) 1771100001129167 a001 2971215073/4870847*17393796001^(1/7) 1771100001129167 a001 2971215073/4870847*14662949395604^(1/9) 1771100001129167 a001 2971215073/4870847*(1/2+1/2*5^(1/2))^7 1771100001129167 a001 2178309/2537720636*2537720636^(7/9) 1771100001129167 a001 12586269025/4870847*1568397607^(1/11) 1771100001129167 a001 987/4870846*4106118243^(19/23) 1771100001129167 a001 4807526976/4870847*1568397607^(3/22) 1771100001129167 a001 726103/9381251041*4106118243^(20/23) 1771100001129167 a001 311187/10525900321*4106118243^(21/23) 1771100001129167 a001 726103/64300051206*4106118243^(22/23) 1771100001129167 a001 1134903170/4870847*2537720636^(1/5) 1771100001129167 a001 32951280099/4870847*599074578^(1/21) 1771100001129167 a001 2178309/2537720636*17393796001^(5/7) 1771100001129167 a001 1134903170/4870847*45537549124^(3/17) 1771100001129167 a001 494433957867906/27916772489 1771100001129167 a001 2178309/2537720636*312119004989^(7/11) 1771100001129167 a001 1134903170/4870847*14662949395604^(1/7) 1771100001129167 a001 1134903170/4870847*(1/2+1/2*5^(1/2))^9 1771100001129167 a001 1134903170/4870847*192900153618^(1/6) 1771100001129167 a001 2178309/2537720636*28143753123^(7/10) 1771100001129167 a001 1134903170/4870847*10749957122^(3/16) 1771100001129167 a001 20365011074/4870847*599074578^(1/14) 1771100001129167 a001 701408733/4870847*599074578^(5/21) 1771100001129167 a001 12586269025/4870847*599074578^(2/21) 1771100001129167 a001 726103/1368706081*1568397607^(9/11) 1771100001129167 a001 987/4870846*1568397607^(19/22) 1771100001129167 a001 726103/9381251041*1568397607^(10/11) 1771100001129167 a001 311187/10525900321*1568397607^(21/22) 1771100001129167 a001 4807526976/4870847*599074578^(1/7) 1771100001129167 a001 1836311903/4870847*599074578^(4/21) 1771100001129167 a001 2971215073/4870847*599074578^(1/6) 1771100001129167 a001 1134903170/4870847*599074578^(3/14) 1771100001129167 a001 2178309/969323029*2537720636^(11/15) 1771100001129167 a001 32951280099/4870847*228826127^(1/20) 1771100001129167 a001 2178309/969323029*45537549124^(11/17) 1771100001129167 a001 944284833567033/53316291173 1771100001129167 a001 2178309/969323029*312119004989^(3/5) 1771100001129167 a001 2178309/969323029*817138163596^(11/19) 1771100001129167 a001 2178309/969323029*14662949395604^(11/21) 1771100001129167 a001 433494437/4870847*(1/2+1/2*5^(1/2))^11 1771100001129167 a001 2178309/969323029*192900153618^(11/18) 1771100001129167 a001 2178309/969323029*10749957122^(11/16) 1771100001129167 a001 433494437/4870847*1568397607^(1/4) 1771100001129167 a001 2178309/969323029*1568397607^(3/4) 1771100001129167 a001 311187/224056801*599074578^(17/21) 1771100001129167 a001 12586269025/4870847*228826127^(1/10) 1771100001129167 a001 726103/1368706081*599074578^(6/7) 1771100001129167 a001 7778742049/4870847*228826127^(1/8) 1771100001129167 a001 2178309/2537720636*599074578^(5/6) 1771100001129167 a001 987/4870846*599074578^(19/21) 1771100001129167 a001 2178309/17393796001*599074578^(13/14) 1771100001129167 a001 726103/9381251041*599074578^(20/21) 1771100001129167 a001 4807526976/4870847*228826127^(3/20) 1771100001129167 a001 267914296/4870847*228826127^(3/10) 1771100001129167 a001 2178309/969323029*599074578^(11/14) 1771100001129167 a001 1836311903/4870847*228826127^(1/5) 1771100001129167 a001 701408733/4870847*228826127^(1/4) 1771100001129167 a001 32951280099/4870847*87403803^(1/19) 1771100001129167 a001 360684711361569/20365011074 1771100001129167 a001 165580141/4870847*(1/2+1/2*5^(1/2))^13 1771100001129167 a001 2178309/370248451*9062201101803^(1/2) 1771100001129167 a001 165580141/4870847*73681302247^(1/4) 1771100001129167 a001 726103/199691526*228826127^(4/5) 1771100001129167 a001 12586269025/4870847*87403803^(2/19) 1771100001129167 a001 311187/224056801*228826127^(17/20) 1771100001129167 a001 2178309/2537720636*228826127^(7/8) 1771100001129167 a001 726103/1368706081*228826127^(9/10) 1771100001129167 a001 987/4870846*228826127^(19/20) 1771100001129167 a001 4807526976/4870847*87403803^(3/19) 1771100001129167 a001 1836311903/4870847*87403803^(4/19) 1771100001129167 a001 102334155/4870847*87403803^(7/19) 1771100001129167 a001 63245986/4870847*141422324^(5/13) 1771100001129167 a001 701408733/4870847*87403803^(5/19) 1771100001129167 a001 267914296/4870847*87403803^(6/19) 1771100001129167 a001 32951280099/4870847*33385282^(1/18) 1771100001129167 a001 63245986/4870847*2537720636^(1/3) 1771100001129167 a001 137769300517674/7778742049 1771100001129167 a001 63245986/4870847*45537549124^(5/17) 1771100001129167 a001 63245986/4870847*312119004989^(3/11) 1771100001129167 a001 63245986/4870847*(1/2+1/2*5^(1/2))^15 1771100001129167 a001 2178309/141422324*1322157322203^(1/2) 1771100001129167 a001 63245986/4870847*192900153618^(5/18) 1771100001129167 a001 63245986/4870847*28143753123^(3/10) 1771100001129167 a001 63245986/4870847*10749957122^(5/16) 1771100001129167 a001 63245986/4870847*599074578^(5/14) 1771100001129167 a001 63245986/4870847*228826127^(3/8) 1771100001129167 a001 20365011074/4870847*33385282^(1/12) 1771100001129167 a001 46347/4868641*87403803^(15/19) 1771100001129167 a001 12586269025/4870847*33385282^(1/9) 1771100001129167 a001 726103/199691526*87403803^(16/19) 1771100001129167 a001 311187/224056801*87403803^(17/19) 1771100001129167 a001 726103/1368706081*87403803^(18/19) 1771100001129167 a001 4807526976/4870847*33385282^(1/6) 1771100001129167 a001 1836311903/4870847*33385282^(2/9) 1771100001129167 a001 1134903170/4870847*33385282^(1/4) 1771100001129167 a001 701408733/4870847*33385282^(5/18) 1771100001129167 a001 39088169/4870847*33385282^(4/9) 1771100001129167 a001 267914296/4870847*33385282^(1/3) 1771100001129167 a001 2178309/54018521*141422324^(9/13) 1771100001129167 a001 102334155/4870847*33385282^(7/18) 1771100001129167 a001 2178309/54018521*2537720636^(3/5) 1771100001129167 a001 52623190191453/2971215073 1771100001129167 a001 2178309/54018521*45537549124^(9/17) 1771100001129167 a001 24157817/4870847*45537549124^(1/3) 1771100001129167 a001 2178309/54018521*14662949395604^(3/7) 1771100001129167 a001 24157817/4870847*(1/2+1/2*5^(1/2))^17 1771100001129167 a001 2178309/54018521*192900153618^(1/2) 1771100001129167 a001 2178309/54018521*10749957122^(9/16) 1771100001129167 a001 2178309/54018521*599074578^(9/14) 1771100001129167 a001 32951280099/4870847*12752043^(1/17) 1771100001129167 a001 63245986/4870847*33385282^(5/12) 1771100001129168 a001 726103/29134601*33385282^(7/9) 1771100001129168 a001 2178309/20633239*20633239^(5/7) 1771100001129168 a001 12586269025/4870847*12752043^(2/17) 1771100001129168 a001 46347/4868641*33385282^(5/6) 1771100001129168 a001 726103/199691526*33385282^(8/9) 1771100001129168 a001 2178309/969323029*33385282^(11/12) 1771100001129168 a001 311187/224056801*33385282^(17/18) 1771100001129168 a001 2178309/54018521*33385282^(3/4) 1771100001129168 a001 4807526976/4870847*12752043^(3/17) 1771100001129169 a001 1836311903/4870847*12752043^(4/17) 1771100001129170 a001 701408733/4870847*12752043^(5/17) 1771100001129170 a001 267914296/4870847*12752043^(6/17) 1771100001129171 a001 4020054011337/226980634 1771100001129171 a001 2178309/20633239*2537720636^(5/9) 1771100001129171 a001 2178309/20633239*312119004989^(5/11) 1771100001129171 a001 9227465/4870847*817138163596^(1/3) 1771100001129171 a001 2178309/20633239*(1/2+1/2*5^(1/2))^25 1771100001129171 a001 9227465/4870847*(1/2+1/2*5^(1/2))^19 1771100001129171 a001 2178309/20633239*3461452808002^(5/12) 1771100001129171 a001 2178309/20633239*28143753123^(1/2) 1771100001129171 a001 14930352/4870847*12752043^(9/17) 1771100001129171 a001 2178309/20633239*228826127^(5/8) 1771100001129171 a001 9227465/4870847*87403803^(1/2) 1771100001129171 a001 102334155/4870847*12752043^(7/17) 1771100001129171 a001 32951280099/4870847*4870847^(1/16) 1771100001129171 a001 39088169/4870847*12752043^(8/17) 1771100001129173 a001 24157817/4870847*12752043^(1/2) 1771100001129173 a001 311187/4769326*12752043^(13/17) 1771100001129175 a001 726103/29134601*12752043^(14/17) 1771100001129176 a001 12586269025/4870847*4870847^(1/8) 1771100001129176 a001 46347/4868641*12752043^(15/17) 1771100001129177 a001 726103/199691526*12752043^(16/17) 1771100001129177 a001 3524578/4870847*7881196^(7/11) 1771100001129181 a001 4807526976/4870847*4870847^(3/16) 1771100001129184 a001 208010/1970299*1860498^(5/6) 1771100001129185 a001 1836311903/4870847*4870847^(1/4) 1771100001129190 a001 701408733/4870847*4870847^(5/16) 1771100001129193 a001 3524578/4870847*20633239^(3/5) 1771100001129194 a001 75640/1875749*1860498^(9/10) 1771100001129195 a001 267914296/4870847*4870847^(3/8) 1771100001129195 a001 3524578/4870847*141422324^(7/13) 1771100001129195 a001 7677619978602/433494437 1771100001129195 a001 3524578/4870847*2537720636^(7/15) 1771100001129195 a001 3524578/4870847*17393796001^(3/7) 1771100001129195 a001 3524578/4870847*45537549124^(7/17) 1771100001129195 a001 3524578/4870847*14662949395604^(1/3) 1771100001129195 a001 2178309/7881196*(1/2+1/2*5^(1/2))^23 1771100001129195 a001 3524578/4870847*(1/2+1/2*5^(1/2))^21 1771100001129195 a001 3524578/4870847*192900153618^(7/18) 1771100001129195 a001 3524578/4870847*10749957122^(7/16) 1771100001129195 a001 2178309/7881196*4106118243^(1/2) 1771100001129195 a001 3524578/4870847*599074578^(1/2) 1771100001129196 a001 3524578/4870847*33385282^(7/12) 1771100001129199 a001 102334155/4870847*4870847^(7/16) 1771100001129200 a001 5702887/12752043*7881196^(2/3) 1771100001129201 a001 32951280099/4870847*1860498^(1/15) 1771100001129202 a001 5702887/4870847*4870847^(5/8) 1771100001129204 a001 39088169/4870847*4870847^(1/2) 1771100001129204 a001 5702887/599074578*7881196^(10/11) 1771100001129206 a001 416020/16692641*1860498^(14/15) 1771100001129207 a001 14930352/4870847*4870847^(9/16) 1771100001129207 a001 5702887/141422324*7881196^(9/11) 1771100001129208 a001 5702887/33385282*7881196^(8/11) 1771100001129212 a001 726103/4250681*4870847^(3/4) 1771100001129213 a001 1/1762289*(1/2+1/2*5^(1/2))^55 1771100001129214 a001 14930352/1568397607*7881196^(10/11) 1771100001129215 a001 39088169/12752043*7881196^(6/11) 1771100001129215 a001 39088169/4106118243*7881196^(10/11) 1771100001129215 a001 102334155/10749957122*7881196^(10/11) 1771100001129215 a001 267914296/28143753123*7881196^(10/11) 1771100001129215 a001 701408733/73681302247*7881196^(10/11) 1771100001129215 a001 1836311903/192900153618*7881196^(10/11) 1771100001129215 a001 102287808/10745088481*7881196^(10/11) 1771100001129215 a001 12586269025/1322157322203*7881196^(10/11) 1771100001129215 a001 32951280099/3461452808002*7881196^(10/11) 1771100001129215 a001 86267571272/9062201101803*7881196^(10/11) 1771100001129215 a001 225851433717/23725150497407*7881196^(10/11) 1771100001129215 a001 139583862445/14662949395604*7881196^(10/11) 1771100001129215 a001 53316291173/5600748293801*7881196^(10/11) 1771100001129215 a001 20365011074/2139295485799*7881196^(10/11) 1771100001129215 a001 7778742049/817138163596*7881196^(10/11) 1771100001129215 a001 2971215073/312119004989*7881196^(10/11) 1771100001129215 a001 1134903170/119218851371*7881196^(10/11) 1771100001129215 a001 433494437/45537549124*7881196^(10/11) 1771100001129215 a001 165580141/17393796001*7881196^(10/11) 1771100001129215 a001 63245986/6643838879*7881196^(10/11) 1771100001129216 a001 24157817/2537720636*7881196^(10/11) 1771100001129216 a001 14930352/370248451*7881196^(9/11) 1771100001129216 a001 9227465/12752043*7881196^(7/11) 1771100001129217 a001 165580141/12752043*7881196^(5/11) 1771100001129218 a001 39088169/969323029*7881196^(9/11) 1771100001129218 a001 20365011074/4870847*1860498^(1/10) 1771100001129218 a001 9303105/230701876*7881196^(9/11) 1771100001129218 a001 267914296/6643838879*7881196^(9/11) 1771100001129218 a001 701408733/17393796001*7881196^(9/11) 1771100001129218 a001 1836311903/45537549124*7881196^(9/11) 1771100001129218 a001 4807526976/119218851371*7881196^(9/11) 1771100001129218 a001 1144206275/28374454999*7881196^(9/11) 1771100001129218 a001 32951280099/817138163596*7881196^(9/11) 1771100001129218 a001 86267571272/2139295485799*7881196^(9/11) 1771100001129218 a001 225851433717/5600748293801*7881196^(9/11) 1771100001129218 a001 365435296162/9062201101803*7881196^(9/11) 1771100001129218 a001 139583862445/3461452808002*7881196^(9/11) 1771100001129218 a001 53316291173/1322157322203*7881196^(9/11) 1771100001129218 a001 20365011074/505019158607*7881196^(9/11) 1771100001129218 a001 7778742049/192900153618*7881196^(9/11) 1771100001129218 a001 2971215073/73681302247*7881196^(9/11) 1771100001129218 a001 1134903170/28143753123*7881196^(9/11) 1771100001129218 a001 433494437/10749957122*7881196^(9/11) 1771100001129218 a001 165580141/4106118243*7881196^(9/11) 1771100001129218 a001 63245986/1568397607*7881196^(9/11) 1771100001129218 a001 24157817/599074578*7881196^(9/11) 1771100001129219 a001 4976784/29134601*7881196^(8/11) 1771100001129219 a001 7465176/16692641*7881196^(2/3) 1771100001129219 a001 5702887/12752043*312119004989^(2/5) 1771100001129219 a001 5702887/12752043*(1/2+1/2*5^(1/2))^22 1771100001129219 a001 5702887/12752043*10749957122^(11/24) 1771100001129219 a001 5702887/12752043*4106118243^(11/23) 1771100001129219 a001 32522920134769/1836311903 1771100001129219 a001 5702887/12752043*1568397607^(1/2) 1771100001129219 a001 5702887/12752043*599074578^(11/21) 1771100001129219 a001 5702887/12752043*228826127^(11/20) 1771100001129219 a001 9227465/969323029*7881196^(10/11) 1771100001129220 a001 5702887/12752043*87403803^(11/19) 1771100001129220 a001 233802911/4250681*7881196^(4/11) 1771100001129220 a001 39088169/228826127*7881196^(8/11) 1771100001129220 a001 5702887/12752043*33385282^(11/18) 1771100001129220 a001 34111385/199691526*7881196^(8/11) 1771100001129220 a001 267914296/1568397607*7881196^(8/11) 1771100001129220 a001 233802911/1368706081*7881196^(8/11) 1771100001129220 a001 1836311903/10749957122*7881196^(8/11) 1771100001129220 a001 1602508992/9381251041*7881196^(8/11) 1771100001129220 a001 12586269025/73681302247*7881196^(8/11) 1771100001129220 a001 10983760033/64300051206*7881196^(8/11) 1771100001129220 a001 86267571272/505019158607*7881196^(8/11) 1771100001129220 a001 75283811239/440719107401*7881196^(8/11) 1771100001129220 a001 2504730781961/14662949395604*7881196^(8/11) 1771100001129220 a001 139583862445/817138163596*7881196^(8/11) 1771100001129220 a001 53316291173/312119004989*7881196^(8/11) 1771100001129220 a001 20365011074/119218851371*7881196^(8/11) 1771100001129220 a001 7778742049/45537549124*7881196^(8/11) 1771100001129220 a001 2971215073/17393796001*7881196^(8/11) 1771100001129220 a001 1134903170/6643838879*7881196^(8/11) 1771100001129220 a001 433494437/2537720636*7881196^(8/11) 1771100001129220 a001 165580141/969323029*7881196^(8/11) 1771100001129221 a001 63245986/370248451*7881196^(8/11) 1771100001129221 a001 1134903170/12752043*7881196^(1/3) 1771100001129221 a001 24157817/141422324*7881196^(8/11) 1771100001129222 a001 39088169/87403803*7881196^(2/3) 1771100001129222 a001 9227465/228826127*7881196^(9/11) 1771100001129222 a001 24157817/33385282*7881196^(7/11) 1771100001129222 a001 102334155/228826127*7881196^(2/3) 1771100001129222 a001 133957148/299537289*7881196^(2/3) 1771100001129222 a001 701408733/1568397607*7881196^(2/3) 1771100001129222 a001 1836311903/4106118243*7881196^(2/3) 1771100001129222 a001 2403763488/5374978561*7881196^(2/3) 1771100001129222 a001 12586269025/28143753123*7881196^(2/3) 1771100001129222 a001 32951280099/73681302247*7881196^(2/3) 1771100001129222 a001 43133785636/96450076809*7881196^(2/3) 1771100001129222 a001 225851433717/505019158607*7881196^(2/3) 1771100001129222 a001 10610209857723/23725150497407*7881196^(2/3) 1771100001129222 a001 182717648081/408569081798*7881196^(2/3) 1771100001129222 a001 139583862445/312119004989*7881196^(2/3) 1771100001129222 a001 53316291173/119218851371*7881196^(2/3) 1771100001129222 a001 10182505537/22768774562*7881196^(2/3) 1771100001129222 a001 7778742049/17393796001*7881196^(2/3) 1771100001129222 a001 2971215073/6643838879*7881196^(2/3) 1771100001129222 a001 567451585/1268860318*7881196^(2/3) 1771100001129222 a001 433494437/969323029*7881196^(2/3) 1771100001129222 a001 165580141/370248451*7881196^(2/3) 1771100001129222 a001 31622993/70711162*7881196^(2/3) 1771100001129223 a001 2971215073/12752043*7881196^(3/11) 1771100001129223 a001 63245986/87403803*7881196^(7/11) 1771100001129223 a001 165580141/228826127*7881196^(7/11) 1771100001129223 a001 433494437/599074578*7881196^(7/11) 1771100001129223 a001 1134903170/1568397607*7881196^(7/11) 1771100001129223 a001 2971215073/4106118243*7881196^(7/11) 1771100001129223 a001 7778742049/10749957122*7881196^(7/11) 1771100001129223 a001 20365011074/28143753123*7881196^(7/11) 1771100001129223 a001 53316291173/73681302247*7881196^(7/11) 1771100001129223 a001 139583862445/192900153618*7881196^(7/11) 1771100001129223 a001 10610209857723/14662949395604*7881196^(7/11) 1771100001129223 a001 225851433717/312119004989*7881196^(7/11) 1771100001129223 a001 86267571272/119218851371*7881196^(7/11) 1771100001129223 a001 32951280099/45537549124*7881196^(7/11) 1771100001129223 a001 12586269025/17393796001*7881196^(7/11) 1771100001129223 a001 4807526976/6643838879*7881196^(7/11) 1771100001129223 a001 1836311903/2537720636*7881196^(7/11) 1771100001129223 a001 701408733/969323029*7881196^(7/11) 1771100001129223 a001 267914296/370248451*7881196^(7/11) 1771100001129223 a001 102334155/141422324*7881196^(7/11) 1771100001129223 a001 24157817/54018521*7881196^(2/3) 1771100001129223 a001 39088169/54018521*7881196^(7/11) 1771100001129224 a001 14619165/4769326*7881196^(6/11) 1771100001129225 a001 12586269025/12752043*7881196^(2/11) 1771100001129225 a001 9227465/54018521*7881196^(8/11) 1771100001129225 a001 267914296/87403803*7881196^(6/11) 1771100001129226 a001 701408733/228826127*7881196^(6/11) 1771100001129226 a001 311187/4769326*4870847^(13/16) 1771100001129226 a001 14930352/20633239*7881196^(7/11) 1771100001129226 a001 1836311903/599074578*7881196^(6/11) 1771100001129226 a001 686789568/224056801*7881196^(6/11) 1771100001129226 a001 12586269025/4106118243*7881196^(6/11) 1771100001129226 a001 32951280099/10749957122*7881196^(6/11) 1771100001129226 a001 86267571272/28143753123*7881196^(6/11) 1771100001129226 a001 32264490531/10525900321*7881196^(6/11) 1771100001129226 a001 591286729879/192900153618*7881196^(6/11) 1771100001129226 a001 1548008755920/505019158607*7881196^(6/11) 1771100001129226 a001 1515744265389/494493258286*7881196^(6/11) 1771100001129226 a001 956722026041/312119004989*7881196^(6/11) 1771100001129226 a001 365435296162/119218851371*7881196^(6/11) 1771100001129226 a001 139583862445/45537549124*7881196^(6/11) 1771100001129226 a001 53316291173/17393796001*7881196^(6/11) 1771100001129226 a001 20365011074/6643838879*7881196^(6/11) 1771100001129226 a001 7778742049/2537720636*7881196^(6/11) 1771100001129226 a001 2971215073/969323029*7881196^(6/11) 1771100001129226 a001 1134903170/370248451*7881196^(6/11) 1771100001129226 a001 433494437/141422324*7881196^(6/11) 1771100001129226 a001 165580141/54018521*7881196^(6/11) 1771100001129226 a001 4976784/4250681*20633239^(4/7) 1771100001129226 a001 5702887/12752043*12752043^(11/17) 1771100001129227 a001 433494437/33385282*7881196^(5/11) 1771100001129227 a001 5702887/599074578*20633239^(6/7) 1771100001129227 a001 5702887/228826127*20633239^(4/5) 1771100001129228 a001 53316291173/12752043*7881196^(1/11) 1771100001129228 a001 5702887/54018521*20633239^(5/7) 1771100001129228 a001 1134903170/87403803*7881196^(5/11) 1771100001129228 a001 2971215073/228826127*7881196^(5/11) 1771100001129228 a001 7778742049/599074578*7881196^(5/11) 1771100001129228 a001 20365011074/1568397607*7881196^(5/11) 1771100001129228 a001 53316291173/4106118243*7881196^(5/11) 1771100001129228 a001 139583862445/10749957122*7881196^(5/11) 1771100001129228 a001 365435296162/28143753123*7881196^(5/11) 1771100001129228 a001 956722026041/73681302247*7881196^(5/11) 1771100001129228 a001 2504730781961/192900153618*7881196^(5/11) 1771100001129228 a001 10610209857723/817138163596*7881196^(5/11) 1771100001129228 a001 4052739537881/312119004989*7881196^(5/11) 1771100001129228 a001 1548008755920/119218851371*7881196^(5/11) 1771100001129228 a001 591286729879/45537549124*7881196^(5/11) 1771100001129228 a001 7787980473/599786069*7881196^(5/11) 1771100001129228 a001 86267571272/6643838879*7881196^(5/11) 1771100001129228 a001 32951280099/2537720636*7881196^(5/11) 1771100001129228 a001 12586269025/969323029*7881196^(5/11) 1771100001129228 a001 4807526976/370248451*7881196^(5/11) 1771100001129228 a001 1836311903/141422324*7881196^(5/11) 1771100001129229 a001 165580141/12752043*20633239^(3/7) 1771100001129229 a001 267914296/12752043*20633239^(2/5) 1771100001129229 a001 5702887/33385282*141422324^(8/13) 1771100001129229 a001 5702887/33385282*2537720636^(8/15) 1771100001129229 a001 4976784/4250681*2537720636^(4/9) 1771100001129229 a001 5702887/33385282*45537549124^(8/17) 1771100001129229 a001 5702887/33385282*(1/2+1/2*5^(1/2))^24 1771100001129229 a001 4976784/4250681*(1/2+1/2*5^(1/2))^20 1771100001129229 a001 4976784/4250681*23725150497407^(5/16) 1771100001129229 a001 4976784/4250681*505019158607^(5/14) 1771100001129229 a001 5702887/33385282*192900153618^(4/9) 1771100001129229 a001 4976784/4250681*73681302247^(5/13) 1771100001129229 a001 5702887/33385282*73681302247^(6/13) 1771100001129229 a001 4976784/4250681*28143753123^(2/5) 1771100001129229 a001 4976784/4250681*10749957122^(5/12) 1771100001129229 a001 5702887/33385282*10749957122^(1/2) 1771100001129229 a001 591292432821/33385604 1771100001129229 a001 4976784/4250681*4106118243^(10/23) 1771100001129229 a001 5702887/33385282*4106118243^(12/23) 1771100001129229 a001 4976784/4250681*1568397607^(5/11) 1771100001129229 a001 5702887/33385282*1568397607^(6/11) 1771100001129229 a001 4976784/4250681*599074578^(10/21) 1771100001129229 a001 5702887/33385282*599074578^(4/7) 1771100001129229 a001 4976784/4250681*228826127^(1/2) 1771100001129229 a001 5702887/33385282*228826127^(3/5) 1771100001129229 a001 4976784/4250681*87403803^(10/19) 1771100001129229 a001 701408733/54018521*7881196^(5/11) 1771100001129229 a001 5702887/33385282*87403803^(12/19) 1771100001129229 a001 1836311903/12752043*20633239^(2/7) 1771100001129229 a001 1836311903/33385282*7881196^(4/11) 1771100001129229 a001 7778742049/12752043*20633239^(1/5) 1771100001129230 a001 4976784/4250681*33385282^(5/9) 1771100001129230 a001 20365011074/12752043*20633239^(1/7) 1771100001129230 a001 5702887/33385282*33385282^(2/3) 1771100001129230 a001 63245986/20633239*7881196^(6/11) 1771100001129230 a001 5702887/87403803*141422324^(2/3) 1771100001129230 a001 39088169/12752043*141422324^(6/13) 1771100001129230 a001 39088169/12752043*2537720636^(2/5) 1771100001129230 a001 39088169/12752043*45537549124^(6/17) 1771100001129230 a001 39088169/12752043*14662949395604^(2/7) 1771100001129230 a001 39088169/12752043*(1/2+1/2*5^(1/2))^18 1771100001129230 a001 39088169/12752043*192900153618^(1/3) 1771100001129230 a001 5702887/87403803*73681302247^(1/2) 1771100001129230 a001 222915410843903/12586269025 1771100001129230 a001 39088169/12752043*10749957122^(3/8) 1771100001129230 a001 5702887/87403803*10749957122^(13/24) 1771100001129230 a001 39088169/12752043*4106118243^(9/23) 1771100001129230 a001 5702887/87403803*4106118243^(13/23) 1771100001129230 a001 39088169/12752043*1568397607^(9/22) 1771100001129230 a001 5702887/87403803*1568397607^(13/22) 1771100001129230 a001 39088169/12752043*599074578^(3/7) 1771100001129230 a001 5702887/87403803*599074578^(13/21) 1771100001129230 a001 39088169/12752043*228826127^(9/20) 1771100001129230 a001 5702887/87403803*228826127^(13/20) 1771100001129230 a001 2971215073/33385282*7881196^(1/3) 1771100001129230 a001 39088169/12752043*87403803^(9/19) 1771100001129230 a001 5702887/10749957122*141422324^(12/13) 1771100001129230 a001 5702887/2537720636*141422324^(11/13) 1771100001129230 a001 5702887/87403803*87403803^(13/19) 1771100001129230 a001 5702887/599074578*141422324^(10/13) 1771100001129230 a001 5702887/228826127*17393796001^(4/7) 1771100001129230 a001 34111385/4250681*(1/2+1/2*5^(1/2))^16 1771100001129230 a001 34111385/4250681*23725150497407^(1/4) 1771100001129230 a001 5702887/228826127*505019158607^(1/2) 1771100001129230 a001 34111385/4250681*73681302247^(4/13) 1771100001129230 a001 5702887/228826127*73681302247^(7/13) 1771100001129230 a001 194533374068495/10983760033 1771100001129230 a001 34111385/4250681*10749957122^(1/3) 1771100001129230 a001 5702887/228826127*10749957122^(7/12) 1771100001129230 a001 34111385/4250681*4106118243^(8/23) 1771100001129230 a001 5702887/228826127*4106118243^(14/23) 1771100001129230 a001 34111385/4250681*1568397607^(4/11) 1771100001129230 a001 5702887/228826127*1568397607^(7/11) 1771100001129230 a001 34111385/4250681*599074578^(8/21) 1771100001129230 a001 5702887/228826127*599074578^(2/3) 1771100001129230 a001 233802911/4250681*141422324^(4/13) 1771100001129230 a001 433494437/12752043*141422324^(1/3) 1771100001129230 a001 165580141/12752043*141422324^(5/13) 1771100001129230 a001 2971215073/12752043*141422324^(3/13) 1771100001129230 a001 34111385/4250681*228826127^(2/5) 1771100001129230 a001 12586269025/12752043*141422324^(2/13) 1771100001129230 a001 5702887/228826127*228826127^(7/10) 1771100001129230 a001 53316291173/12752043*141422324^(1/13) 1771100001129230 a001 5702887/599074578*2537720636^(2/3) 1771100001129230 a001 267914296/12752043*17393796001^(2/7) 1771100001129230 a001 5702887/599074578*45537549124^(10/17) 1771100001129230 a001 5702887/599074578*312119004989^(6/11) 1771100001129230 a001 5702887/599074578*14662949395604^(10/21) 1771100001129230 a001 267914296/12752043*14662949395604^(2/9) 1771100001129230 a001 267914296/12752043*(1/2+1/2*5^(1/2))^14 1771100001129230 a001 5702887/599074578*192900153618^(5/9) 1771100001129230 a001 190985619471569/10783446409 1771100001129230 a001 5702887/599074578*28143753123^(3/5) 1771100001129230 a001 267914296/12752043*10749957122^(7/24) 1771100001129230 a001 5702887/599074578*10749957122^(5/8) 1771100001129230 a001 267914296/12752043*4106118243^(7/23) 1771100001129230 a001 5702887/599074578*4106118243^(15/23) 1771100001129230 a001 267914296/12752043*1568397607^(7/22) 1771100001129230 a001 5702887/599074578*1568397607^(15/22) 1771100001129230 a001 267914296/12752043*599074578^(1/3) 1771100001129230 a001 5702887/599074578*599074578^(5/7) 1771100001129230 a001 233802911/4250681*2537720636^(4/15) 1771100001129230 a001 233802911/4250681*45537549124^(4/17) 1771100001129230 a001 233802911/4250681*14662949395604^(4/21) 1771100001129230 a001 233802911/4250681*(1/2+1/2*5^(1/2))^12 1771100001129230 a001 1333351581704057/75283811239 1771100001129230 a001 233802911/4250681*73681302247^(3/13) 1771100001129230 a001 5702887/1568397607*73681302247^(8/13) 1771100001129230 a001 233802911/4250681*10749957122^(1/4) 1771100001129230 a001 5702887/1568397607*10749957122^(2/3) 1771100001129230 a001 233802911/4250681*4106118243^(6/23) 1771100001129230 a001 5702887/1568397607*4106118243^(16/23) 1771100001129230 a001 233802911/4250681*1568397607^(3/11) 1771100001129230 a001 5702887/192900153618*2537720636^(14/15) 1771100001129230 a001 5702887/73681302247*2537720636^(8/9) 1771100001129230 a001 1597/12752044*2537720636^(13/15) 1771100001129230 a001 5702887/10749957122*2537720636^(4/5) 1771100001129230 a001 5702887/1568397607*1568397607^(8/11) 1771100001129230 a001 5702887/6643838879*2537720636^(7/9) 1771100001129230 a001 1836311903/12752043*2537720636^(2/9) 1771100001129230 a001 5702887/4106118243*45537549124^(2/3) 1771100001129230 a001 1836311903/12752043*(1/2+1/2*5^(1/2))^10 1771100001129230 a001 10472279279563961/591286729879 1771100001129230 a001 1836311903/12752043*28143753123^(1/5) 1771100001129230 a001 1836311903/12752043*10749957122^(5/24) 1771100001129230 a001 5702887/4106118243*10749957122^(17/24) 1771100001129230 a001 1836311903/12752043*4106118243^(5/23) 1771100001129230 a001 12586269025/12752043*2537720636^(2/15) 1771100001129230 a001 20365011074/12752043*2537720636^(1/9) 1771100001129230 a001 5702887/4106118243*4106118243^(17/23) 1771100001129230 a001 53316291173/12752043*2537720636^(1/15) 1771100001129230 a001 5702887/10749957122*45537549124^(12/17) 1771100001129230 a001 1602508992/4250681*(1/2+1/2*5^(1/2))^8 1771100001129230 a001 1602508992/4250681*23725150497407^(1/8) 1771100001129230 a001 1602508992/4250681*505019158607^(1/7) 1771100001129230 a001 5702887/10749957122*192900153618^(2/3) 1771100001129230 a001 1602508992/4250681*73681302247^(2/13) 1771100001129230 a001 5702887/10749957122*73681302247^(9/13) 1771100001129230 a001 2971215073/12752043*2537720636^(1/5) 1771100001129230 a001 1602508992/4250681*10749957122^(1/6) 1771100001129230 a001 5702887/192900153618*17393796001^(6/7) 1771100001129230 a001 5702887/10749957122*10749957122^(3/4) 1771100001129230 a001 12586269025/12752043*45537549124^(2/17) 1771100001129230 a001 12586269025/12752043*14662949395604^(2/21) 1771100001129230 a001 12586269025/12752043*(1/2+1/2*5^(1/2))^6 1771100001129230 a001 5702887/3461452808002*45537549124^(16/17) 1771100001129230 a001 5702887/192900153618*45537549124^(14/17) 1771100001129230 a001 5702887/817138163596*45537549124^(15/17) 1771100001129230 a001 5702887/73681302247*312119004989^(8/11) 1771100001129230 a001 10983760033/4250681*(1/2+1/2*5^(1/2))^4 1771100001129230 a001 10983760033/4250681*23725150497407^(1/16) 1771100001129230 a001 12586269025/12752043*10749957122^(1/8) 1771100001129230 a001 10983760033/4250681*73681302247^(1/13) 1771100001129230 a001 5702887/73681302247*73681302247^(10/13) 1771100001129230 a001 5702887/192900153618*14662949395604^(2/3) 1771100001129230 a001 86267571272/12752043*(1/2+1/2*5^(1/2))^2 1771100001129230 a001 5702887/192900153618*505019158607^(3/4) 1771100001129230 a001 5702887/505019158607*312119004989^(4/5) 1771100001129230 a001 5702887/817138163596*312119004989^(9/11) 1771100001129230 a006 5^(1/2)*Fibonacci(56)/Lucas(34)/sqrt(5) 1771100001129230 a001 5702887/14662949395604*817138163596^(17/19) 1771100001129230 a001 5702887/14662949395604*14662949395604^(17/21) 1771100001129230 a001 5702887/14662949395604*192900153618^(17/18) 1771100001129230 a001 53316291173/12752043*45537549124^(1/17) 1771100001129230 a001 53316291173/12752043*14662949395604^(1/21) 1771100001129230 a001 53316291173/12752043*(1/2+1/2*5^(1/2))^3 1771100001129230 a001 53316291173/12752043*192900153618^(1/18) 1771100001129230 a001 1597/12752044*45537549124^(13/17) 1771100001129230 a001 5702887/505019158607*73681302247^(11/13) 1771100001129230 a001 5702887/3461452808002*73681302247^(12/13) 1771100001129230 a001 86267571272/12752043*10749957122^(1/24) 1771100001129230 a001 20365011074/12752043*312119004989^(1/11) 1771100001129230 a001 1597/12752044*14662949395604^(13/21) 1771100001129230 a001 20365011074/12752043*(1/2+1/2*5^(1/2))^5 1771100001129230 a001 1597/12752044*192900153618^(13/18) 1771100001129230 a001 10983760033/4250681*10749957122^(1/12) 1771100001129230 a001 20365011074/12752043*28143753123^(1/10) 1771100001129230 a001 53316291173/12752043*10749957122^(1/16) 1771100001129230 a001 1597/12752044*73681302247^(3/4) 1771100001129230 a001 5702887/73681302247*28143753123^(4/5) 1771100001129230 a001 5702887/817138163596*28143753123^(9/10) 1771100001129230 a001 1602508992/4250681*4106118243^(4/23) 1771100001129230 a001 86267571272/12752043*4106118243^(1/23) 1771100001129230 a001 7778742049/12752043*17393796001^(1/7) 1771100001129230 a001 44361286907595463/2504730781961 1771100001129230 a001 7778742049/12752043*(1/2+1/2*5^(1/2))^7 1771100001129230 a001 10983760033/4250681*4106118243^(2/23) 1771100001129230 a001 5702887/28143753123*10749957122^(19/24) 1771100001129230 a001 12586269025/12752043*4106118243^(3/23) 1771100001129230 a001 5702887/73681302247*10749957122^(5/6) 1771100001129230 a001 1597/12752044*10749957122^(13/16) 1771100001129230 a001 5702887/192900153618*10749957122^(7/8) 1771100001129230 a001 5702887/505019158607*10749957122^(11/12) 1771100001129230 a001 5702887/817138163596*10749957122^(15/16) 1771100001129230 a001 5702887/1322157322203*10749957122^(23/24) 1771100001129230 a001 86267571272/12752043*1568397607^(1/22) 1771100001129230 a001 5702887/6643838879*17393796001^(5/7) 1771100001129230 a001 2971215073/12752043*45537549124^(3/17) 1771100001129230 a001 5702887/6643838879*312119004989^(7/11) 1771100001129230 a001 16944503814015751/956722026041 1771100001129230 a001 2971215073/12752043*(1/2+1/2*5^(1/2))^9 1771100001129230 a001 2971215073/12752043*192900153618^(1/6) 1771100001129230 a001 5702887/6643838879*28143753123^(7/10) 1771100001129230 a001 2971215073/12752043*10749957122^(3/16) 1771100001129230 a001 1836311903/12752043*1568397607^(5/22) 1771100001129230 a001 10983760033/4250681*1568397607^(1/11) 1771100001129230 a001 5702887/10749957122*4106118243^(18/23) 1771100001129230 a001 5702887/2537720636*2537720636^(11/15) 1771100001129230 a001 5702887/28143753123*4106118243^(19/23) 1771100001129230 a001 5702887/73681302247*4106118243^(20/23) 1771100001129230 a001 5702887/192900153618*4106118243^(21/23) 1771100001129230 a001 12586269025/12752043*1568397607^(3/22) 1771100001129230 a001 5702887/505019158607*4106118243^(22/23) 1771100001129230 a001 1602508992/4250681*1568397607^(2/11) 1771100001129230 a001 86267571272/12752043*599074578^(1/21) 1771100001129230 a001 5702887/2537720636*45537549124^(11/17) 1771100001129230 a001 5702887/2537720636*312119004989^(3/5) 1771100001129230 a001 1134903170/12752043*312119004989^(1/5) 1771100001129230 a001 5702887/2537720636*14662949395604^(11/21) 1771100001129230 a001 1134903170/12752043*(1/2+1/2*5^(1/2))^11 1771100001129230 a001 5702887/2537720636*192900153618^(11/18) 1771100001129230 a001 5702887/2537720636*10749957122^(11/16) 1771100001129230 a001 53316291173/12752043*599074578^(1/14) 1771100001129230 a001 5702887/4106118243*1568397607^(17/22) 1771100001129230 a001 1134903170/12752043*1568397607^(1/4) 1771100001129230 a001 10983760033/4250681*599074578^(2/21) 1771100001129230 a001 5702887/10749957122*1568397607^(9/11) 1771100001129230 a001 5702887/28143753123*1568397607^(19/22) 1771100001129230 a001 5702887/73681302247*1568397607^(10/11) 1771100001129230 a001 5702887/192900153618*1568397607^(21/22) 1771100001129230 a001 233802911/4250681*599074578^(2/7) 1771100001129230 a001 12586269025/12752043*599074578^(1/7) 1771100001129230 a001 5702887/2537720636*1568397607^(3/4) 1771100001129230 a001 7778742049/12752043*599074578^(1/6) 1771100001129230 a001 1602508992/4250681*599074578^(4/21) 1771100001129230 a001 1836311903/12752043*599074578^(5/21) 1771100001129230 a001 2971215073/12752043*599074578^(3/14) 1771100001129230 a001 86267571272/12752043*228826127^(1/20) 1771100001129230 a001 2472169789339619/139583862445 1771100001129230 a001 433494437/12752043*(1/2+1/2*5^(1/2))^13 1771100001129230 a001 5702887/969323029*9062201101803^(1/2) 1771100001129230 a001 433494437/12752043*73681302247^(1/4) 1771100001129230 a001 5702887/1568397607*599074578^(16/21) 1771100001129230 a001 10983760033/4250681*228826127^(1/10) 1771100001129230 a001 5702887/4106118243*599074578^(17/21) 1771100001129230 a001 5702887/2537720636*599074578^(11/14) 1771100001129230 a001 5702887/6643838879*599074578^(5/6) 1771100001129230 a001 5702887/10749957122*599074578^(6/7) 1771100001129230 a001 20365011074/12752043*228826127^(1/8) 1771100001129230 a001 5702887/28143753123*599074578^(19/21) 1771100001129230 a001 1597/12752044*599074578^(13/14) 1771100001129230 a001 5702887/73681302247*599074578^(20/21) 1771100001129230 a001 12586269025/12752043*228826127^(3/20) 1771100001129230 a001 1602508992/4250681*228826127^(1/5) 1771100001129230 a001 267914296/12752043*228826127^(7/20) 1771100001129230 a001 1836311903/12752043*228826127^(1/4) 1771100001129230 a001 233802911/4250681*228826127^(3/10) 1771100001129230 a001 86267571272/12752043*87403803^(1/19) 1771100001129230 a001 165580141/12752043*2537720636^(1/3) 1771100001129230 a001 165580141/12752043*45537549124^(5/17) 1771100001129230 a001 944284833567067/53316291173 1771100001129230 a001 165580141/12752043*312119004989^(3/11) 1771100001129230 a001 165580141/12752043*14662949395604^(5/21) 1771100001129230 a001 165580141/12752043*(1/2+1/2*5^(1/2))^15 1771100001129230 a001 165580141/12752043*192900153618^(5/18) 1771100001129230 a001 165580141/12752043*28143753123^(3/10) 1771100001129230 a001 165580141/12752043*10749957122^(5/16) 1771100001129230 a001 165580141/12752043*599074578^(5/14) 1771100001129230 a001 5702887/599074578*228826127^(3/4) 1771100001129230 a001 10983760033/4250681*87403803^(2/19) 1771100001129230 a001 165580141/12752043*228826127^(3/8) 1771100001129230 a001 5702887/1568397607*228826127^(4/5) 1771100001129230 a001 5702887/141422324*141422324^(9/13) 1771100001129230 a001 5702887/4106118243*228826127^(17/20) 1771100001129230 a001 5702887/6643838879*228826127^(7/8) 1771100001129230 a001 5702887/10749957122*228826127^(9/10) 1771100001129230 a001 5702887/28143753123*228826127^(19/20) 1771100001129230 a001 12586269025/12752043*87403803^(3/19) 1771100001129230 a001 1602508992/4250681*87403803^(4/19) 1771100001129230 a001 1836311903/12752043*87403803^(5/19) 1771100001129230 a001 34111385/4250681*87403803^(8/19) 1771100001129230 a001 233802911/4250681*87403803^(6/19) 1771100001129230 a001 267914296/12752043*87403803^(7/19) 1771100001129230 a001 86267571272/12752043*33385282^(1/18) 1771100001129230 a001 5702887/141422324*2537720636^(3/5) 1771100001129230 a001 112925708003/6376021 1771100001129230 a001 5702887/141422324*45537549124^(9/17) 1771100001129230 a001 63245986/12752043*45537549124^(1/3) 1771100001129230 a001 5702887/141422324*817138163596^(9/19) 1771100001129230 a001 5702887/141422324*14662949395604^(3/7) 1771100001129230 a001 63245986/12752043*(1/2+1/2*5^(1/2))^17 1771100001129230 a001 5702887/141422324*192900153618^(1/2) 1771100001129230 a001 5702887/141422324*10749957122^(9/16) 1771100001129230 a001 5702887/141422324*599074578^(9/14) 1771100001129230 a001 53316291173/12752043*33385282^(1/12) 1771100001129230 a001 5702887/228826127*87403803^(14/19) 1771100001129230 a001 10983760033/4250681*33385282^(1/9) 1771100001129231 a001 5702887/599074578*87403803^(15/19) 1771100001129231 a001 5702887/1568397607*87403803^(16/19) 1771100001129231 a001 9227465/20633239*7881196^(2/3) 1771100001129231 a001 5702887/4106118243*87403803^(17/19) 1771100001129231 a001 5702887/10749957122*87403803^(18/19) 1771100001129231 a001 267084832/103361*710647^(1/7) 1771100001129231 a001 12586269025/12752043*33385282^(1/6) 1771100001129231 a001 1602508992/29134601*7881196^(4/11) 1771100001129231 a001 1602508992/4250681*33385282^(2/9) 1771100001129231 a001 2971215073/12752043*33385282^(1/4) 1771100001129231 a001 1836311903/12752043*33385282^(5/18) 1771100001129231 a001 12586269025/228826127*7881196^(4/11) 1771100001129231 a001 10983760033/199691526*7881196^(4/11) 1771100001129231 a001 86267571272/1568397607*7881196^(4/11) 1771100001129231 a001 75283811239/1368706081*7881196^(4/11) 1771100001129231 a001 591286729879/10749957122*7881196^(4/11) 1771100001129231 a001 12585437040/228811001*7881196^(4/11) 1771100001129231 a001 4052739537881/73681302247*7881196^(4/11) 1771100001129231 a001 3536736619241/64300051206*7881196^(4/11) 1771100001129231 a001 6557470319842/119218851371*7881196^(4/11) 1771100001129231 a001 2504730781961/45537549124*7881196^(4/11) 1771100001129231 a001 956722026041/17393796001*7881196^(4/11) 1771100001129231 a001 365435296162/6643838879*7881196^(4/11) 1771100001129231 a001 139583862445/2537720636*7881196^(4/11) 1771100001129231 a001 53316291173/969323029*7881196^(4/11) 1771100001129231 a001 233802911/4250681*33385282^(1/3) 1771100001129231 a001 20365011074/370248451*7881196^(4/11) 1771100001129231 a001 39088169/12752043*33385282^(1/2) 1771100001129231 a001 5702887/54018521*2537720636^(5/9) 1771100001129231 a001 137769300517679/7778742049 1771100001129231 a001 5702887/54018521*312119004989^(5/11) 1771100001129231 a001 24157817/12752043*817138163596^(1/3) 1771100001129231 a001 24157817/12752043*(1/2+1/2*5^(1/2))^19 1771100001129231 a001 5702887/54018521*28143753123^(1/2) 1771100001129231 a001 7778742049/141422324*7881196^(4/11) 1771100001129231 a001 267914296/12752043*33385282^(7/18) 1771100001129231 a001 5702887/54018521*228826127^(5/8) 1771100001129231 a001 86267571272/12752043*12752043^(1/17) 1771100001129231 a001 34111385/4250681*33385282^(4/9) 1771100001129231 a001 165580141/12752043*33385282^(5/12) 1771100001129231 a001 24157817/12752043*87403803^(1/2) 1771100001129231 a001 5702887/87403803*33385282^(13/18) 1771100001129231 a001 2971215073/54018521*7881196^(4/11) 1771100001129231 a001 7778742049/87403803*7881196^(1/3) 1771100001129232 a001 5702887/228826127*33385282^(7/9) 1771100001129232 a001 5702887/141422324*33385282^(3/4) 1771100001129232 a001 10983760033/4250681*12752043^(2/17) 1771100001129232 a001 5702887/599074578*33385282^(5/6) 1771100001129232 a001 726103/29134601*4870847^(7/8) 1771100001129232 a001 20365011074/228826127*7881196^(1/3) 1771100001129232 a001 53316291173/599074578*7881196^(1/3) 1771100001129232 a001 139583862445/1568397607*7881196^(1/3) 1771100001129232 a001 365435296162/4106118243*7881196^(1/3) 1771100001129232 a001 956722026041/10749957122*7881196^(1/3) 1771100001129232 a001 2504730781961/28143753123*7881196^(1/3) 1771100001129232 a001 6557470319842/73681302247*7881196^(1/3) 1771100001129232 a001 10610209857723/119218851371*7881196^(1/3) 1771100001129232 a001 4052739537881/45537549124*7881196^(1/3) 1771100001129232 a001 1548008755920/17393796001*7881196^(1/3) 1771100001129232 a001 591286729879/6643838879*7881196^(1/3) 1771100001129232 a001 225851433717/2537720636*7881196^(1/3) 1771100001129232 a001 86267571272/969323029*7881196^(1/3) 1771100001129232 a001 32951280099/370248451*7881196^(1/3) 1771100001129232 a001 5702887/1568397607*33385282^(8/9) 1771100001129232 a001 5702887/2537720636*33385282^(11/12) 1771100001129232 a001 12586269025/141422324*7881196^(1/3) 1771100001129232 a001 5702887/4106118243*33385282^(17/18) 1771100001129232 a001 7778742049/33385282*7881196^(3/11) 1771100001129232 a001 9227465/12752043*20633239^(3/5) 1771100001129232 a001 12586269025/12752043*12752043^(3/17) 1771100001129232 a001 4807526976/54018521*7881196^(1/3) 1771100001129232 a001 9238424/711491*7881196^(5/11) 1771100001129233 a001 1602508992/4250681*12752043^(4/17) 1771100001129233 a001 20365011074/87403803*7881196^(3/11) 1771100001129233 a001 53316291173/228826127*7881196^(3/11) 1771100001129233 a001 139583862445/599074578*7881196^(3/11) 1771100001129233 a001 365435296162/1568397607*7881196^(3/11) 1771100001129233 a001 956722026041/4106118243*7881196^(3/11) 1771100001129233 a001 2504730781961/10749957122*7881196^(3/11) 1771100001129233 a001 6557470319842/28143753123*7881196^(3/11) 1771100001129233 a001 10610209857723/45537549124*7881196^(3/11) 1771100001129233 a001 4052739537881/17393796001*7881196^(3/11) 1771100001129233 a001 1548008755920/6643838879*7881196^(3/11) 1771100001129233 a001 591286729879/2537720636*7881196^(3/11) 1771100001129233 a001 225851433717/969323029*7881196^(3/11) 1771100001129233 a001 86267571272/370248451*7881196^(3/11) 1771100001129234 a001 1836311903/12752043*12752043^(5/17) 1771100001129234 a001 63246219/271444*7881196^(3/11) 1771100001129234 a001 12586269025/54018521*7881196^(3/11) 1771100001129234 a001 233802911/4250681*12752043^(6/17) 1771100001129234 a001 9227465/12752043*141422324^(7/13) 1771100001129234 a001 32951280099/33385282*7881196^(2/11) 1771100001129234 a001 9227465/12752043*2537720636^(7/15) 1771100001129234 a001 52623190191455/2971215073 1771100001129234 a001 9227465/12752043*17393796001^(3/7) 1771100001129234 a001 9227465/12752043*45537549124^(7/17) 1771100001129234 a001 9227465/12752043*14662949395604^(1/3) 1771100001129234 a001 5702887/20633239*(1/2+1/2*5^(1/2))^23 1771100001129234 a001 9227465/12752043*(1/2+1/2*5^(1/2))^21 1771100001129234 a001 9227465/12752043*192900153618^(7/18) 1771100001129234 a001 9227465/12752043*10749957122^(7/16) 1771100001129234 a001 5702887/20633239*4106118243^(1/2) 1771100001129234 a001 9227465/12752043*599074578^(1/2) 1771100001129235 a001 12586269025/4870847*1860498^(2/15) 1771100001129235 a001 267914296/12752043*12752043^(7/17) 1771100001129235 a001 86267571272/12752043*4870847^(1/16) 1771100001129235 a001 1134903170/20633239*7881196^(4/11) 1771100001129235 a001 4976784/4250681*12752043^(10/17) 1771100001129235 a001 9227465/12752043*33385282^(7/12) 1771100001129235 a001 34111385/4250681*12752043^(8/17) 1771100001129236 a001 86267571272/87403803*7881196^(2/11) 1771100001129236 a001 39088169/12752043*12752043^(9/17) 1771100001129236 a001 63245986/12752043*12752043^(1/2) 1771100001129236 a001 1836311903/20633239*7881196^(1/3) 1771100001129236 a001 225851433717/228826127*7881196^(2/11) 1771100001129236 a001 591286729879/599074578*7881196^(2/11) 1771100001129236 a001 1548008755920/1568397607*7881196^(2/11) 1771100001129236 a001 4052739537881/4106118243*7881196^(2/11) 1771100001129236 a001 4807525989/4870846*7881196^(2/11) 1771100001129236 a001 6557470319842/6643838879*7881196^(2/11) 1771100001129236 a001 2504730781961/2537720636*7881196^(2/11) 1771100001129236 a001 956722026041/969323029*7881196^(2/11) 1771100001129236 a001 365435296162/370248451*7881196^(2/11) 1771100001129236 a001 14930352/1568397607*20633239^(6/7) 1771100001129236 a001 139583862445/141422324*7881196^(2/11) 1771100001129236 a001 829464/33281921*20633239^(4/5) 1771100001129236 a001 5702887/33385282*12752043^(12/17) 1771100001129237 a001 46347/4868641*4870847^(15/16) 1771100001129237 a001 53316291173/54018521*7881196^(2/11) 1771100001129237 a001 3732588/35355581*20633239^(5/7) 1771100001129237 a001 39088169/33385282*20633239^(4/7) 1771100001129237 a001 139583862445/33385282*7881196^(1/11) 1771100001129237 a001 2/9227465*(1/2+1/2*5^(1/2))^57 1771100001129237 a001 39088169/4106118243*20633239^(6/7) 1771100001129238 a001 4807526976/20633239*7881196^(3/11) 1771100001129238 a001 102334155/10749957122*20633239^(6/7) 1771100001129238 a001 267914296/28143753123*20633239^(6/7) 1771100001129238 a001 701408733/73681302247*20633239^(6/7) 1771100001129238 a001 1836311903/192900153618*20633239^(6/7) 1771100001129238 a001 102287808/10745088481*20633239^(6/7) 1771100001129238 a001 12586269025/1322157322203*20633239^(6/7) 1771100001129238 a001 32951280099/3461452808002*20633239^(6/7) 1771100001129238 a001 86267571272/9062201101803*20633239^(6/7) 1771100001129238 a001 225851433717/23725150497407*20633239^(6/7) 1771100001129238 a001 139583862445/14662949395604*20633239^(6/7) 1771100001129238 a001 53316291173/5600748293801*20633239^(6/7) 1771100001129238 a001 20365011074/2139295485799*20633239^(6/7) 1771100001129238 a001 7778742049/817138163596*20633239^(6/7) 1771100001129238 a001 2971215073/312119004989*20633239^(6/7) 1771100001129238 a001 1134903170/119218851371*20633239^(6/7) 1771100001129238 a001 433494437/45537549124*20633239^(6/7) 1771100001129238 a001 39088169/1568397607*20633239^(4/5) 1771100001129238 a001 165580141/17393796001*20633239^(6/7) 1771100001129238 a001 24157817/33385282*20633239^(3/5) 1771100001129238 a001 63245986/6643838879*20633239^(6/7) 1771100001129238 a001 433494437/33385282*20633239^(3/7) 1771100001129238 a001 34111385/1368706081*20633239^(4/5) 1771100001129238 a001 133957148/5374978561*20633239^(4/5) 1771100001129238 a001 233802911/9381251041*20633239^(4/5) 1771100001129238 a001 1836311903/73681302247*20633239^(4/5) 1771100001129238 a001 267084832/10716675201*20633239^(4/5) 1771100001129238 a001 12586269025/505019158607*20633239^(4/5) 1771100001129238 a001 10983760033/440719107401*20633239^(4/5) 1771100001129238 a001 43133785636/1730726404001*20633239^(4/5) 1771100001129238 a001 182717648081/7331474697802*20633239^(4/5) 1771100001129238 a001 139583862445/5600748293801*20633239^(4/5) 1771100001129238 a001 53316291173/2139295485799*20633239^(4/5) 1771100001129238 a001 10182505537/408569081798*20633239^(4/5) 1771100001129238 a001 7778742049/312119004989*20633239^(4/5) 1771100001129238 a001 2971215073/119218851371*20633239^(4/5) 1771100001129238 a001 567451585/22768774562*20633239^(4/5) 1771100001129238 a001 433494437/17393796001*20633239^(4/5) 1771100001129238 a001 165580141/6643838879*20633239^(4/5) 1771100001129238 a001 701408733/33385282*20633239^(2/5) 1771100001129238 a001 31622993/1268860318*20633239^(4/5) 1771100001129238 a001 39088169/370248451*20633239^(5/7) 1771100001129238 a001 7465176/16692641*312119004989^(2/5) 1771100001129238 a001 7465176/16692641*(1/2+1/2*5^(1/2))^22 1771100001129238 a001 222915410843904/12586269025 1771100001129238 a001 7465176/16692641*10749957122^(11/24) 1771100001129238 a001 7465176/16692641*4106118243^(11/23) 1771100001129238 a001 7465176/16692641*1568397607^(1/2) 1771100001129238 a001 7465176/16692641*599074578^(11/21) 1771100001129238 a001 7465176/16692641*228826127^(11/20) 1771100001129238 a001 7465176/16692641*87403803^(11/19) 1771100001129238 a001 102334155/969323029*20633239^(5/7) 1771100001129238 a001 66978574/634430159*20633239^(5/7) 1771100001129238 a001 701408733/6643838879*20633239^(5/7) 1771100001129238 a001 1836311903/17393796001*20633239^(5/7) 1771100001129238 a001 1201881744/11384387281*20633239^(5/7) 1771100001129238 a001 12586269025/119218851371*20633239^(5/7) 1771100001129238 a001 32951280099/312119004989*20633239^(5/7) 1771100001129238 a001 21566892818/204284540899*20633239^(5/7) 1771100001129238 a001 225851433717/2139295485799*20633239^(5/7) 1771100001129238 a001 182717648081/1730726404001*20633239^(5/7) 1771100001129238 a001 139583862445/1322157322203*20633239^(5/7) 1771100001129238 a001 53316291173/505019158607*20633239^(5/7) 1771100001129238 a001 10182505537/96450076809*20633239^(5/7) 1771100001129238 a001 7778742049/73681302247*20633239^(5/7) 1771100001129238 a001 2971215073/28143753123*20633239^(5/7) 1771100001129238 a001 567451585/5374978561*20633239^(5/7) 1771100001129238 a001 433494437/4106118243*20633239^(5/7) 1771100001129238 a001 165580141/1568397607*20633239^(5/7) 1771100001129238 a001 24157817/2537720636*20633239^(6/7) 1771100001129238 a001 31622993/299537289*20633239^(5/7) 1771100001129238 a001 365435296162/87403803*7881196^(1/11) 1771100001129238 a001 5702887/87403803*12752043^(13/17) 1771100001129238 a001 14930208/103681*20633239^(2/7) 1771100001129238 a001 24157817/969323029*20633239^(4/5) 1771100001129239 a001 34111385/29134601*20633239^(4/7) 1771100001129239 a001 63245986/87403803*20633239^(3/5) 1771100001129239 a001 956722026041/228826127*7881196^(1/11) 1771100001129239 a001 2504730781961/599074578*7881196^(1/11) 1771100001129239 a001 6557470319842/1568397607*7881196^(1/11) 1771100001129239 a001 10610209857723/2537720636*7881196^(1/11) 1771100001129239 a001 4052739537881/969323029*7881196^(1/11) 1771100001129239 a001 1548008755920/370248451*7881196^(1/11) 1771100001129239 a001 165580141/228826127*20633239^(3/5) 1771100001129239 a001 591286729879/141422324*7881196^(1/11) 1771100001129239 a001 433494437/599074578*20633239^(3/5) 1771100001129239 a001 1134903170/1568397607*20633239^(3/5) 1771100001129239 a001 2971215073/4106118243*20633239^(3/5) 1771100001129239 a001 7778742049/10749957122*20633239^(3/5) 1771100001129239 a001 20365011074/28143753123*20633239^(3/5) 1771100001129239 a001 53316291173/73681302247*20633239^(3/5) 1771100001129239 a001 139583862445/192900153618*20633239^(3/5) 1771100001129239 a001 365435296162/505019158607*20633239^(3/5) 1771100001129239 a001 10610209857723/14662949395604*20633239^(3/5) 1771100001129239 a001 225851433717/312119004989*20633239^(3/5) 1771100001129239 a001 86267571272/119218851371*20633239^(3/5) 1771100001129239 a001 32951280099/45537549124*20633239^(3/5) 1771100001129239 a001 12586269025/17393796001*20633239^(3/5) 1771100001129239 a001 4807526976/6643838879*20633239^(3/5) 1771100001129239 a001 1836311903/2537720636*20633239^(3/5) 1771100001129239 a001 701408733/969323029*20633239^(3/5) 1771100001129239 a001 267914296/370248451*20633239^(3/5) 1771100001129239 a001 102334155/141422324*20633239^(3/5) 1771100001129239 a001 10182505537/16692641*20633239^(1/5) 1771100001129239 a001 267914296/228826127*20633239^(4/7) 1771100001129239 a001 24157817/228826127*20633239^(5/7) 1771100001129239 a001 233802911/199691526*20633239^(4/7) 1771100001129239 a001 1836311903/1568397607*20633239^(4/7) 1771100001129239 a001 1602508992/1368706081*20633239^(4/7) 1771100001129239 a001 12586269025/10749957122*20633239^(4/7) 1771100001129239 a001 10983760033/9381251041*20633239^(4/7) 1771100001129239 a001 86267571272/73681302247*20633239^(4/7) 1771100001129239 a001 75283811239/64300051206*20633239^(4/7) 1771100001129239 a001 2504730781961/2139295485799*20633239^(4/7) 1771100001129239 a001 365435296162/312119004989*20633239^(4/7) 1771100001129239 a001 139583862445/119218851371*20633239^(4/7) 1771100001129239 a001 53316291173/45537549124*20633239^(4/7) 1771100001129239 a001 20365011074/17393796001*20633239^(4/7) 1771100001129239 a001 7778742049/6643838879*20633239^(4/7) 1771100001129239 a001 2971215073/2537720636*20633239^(4/7) 1771100001129239 a001 1134903170/969323029*20633239^(4/7) 1771100001129239 a001 433494437/370248451*20633239^(4/7) 1771100001129239 a001 165580141/141422324*20633239^(4/7) 1771100001129239 a001 7465176/16692641*33385282^(11/18) 1771100001129239 a001 53316291173/33385282*20633239^(1/7) 1771100001129239 a001 39088169/54018521*20633239^(3/5) 1771100001129239 a001 1134903170/87403803*20633239^(3/7) 1771100001129239 a001 225851433717/54018521*7881196^(1/11) 1771100001129239 a001 5702887/228826127*12752043^(14/17) 1771100001129239 a001 1836311903/87403803*20633239^(2/5) 1771100001129239 a001 4976784/29134601*141422324^(8/13) 1771100001129239 a001 4976784/29134601*2537720636^(8/15) 1771100001129239 a001 39088169/33385282*2537720636^(4/9) 1771100001129239 a001 4976784/29134601*45537549124^(8/17) 1771100001129239 a001 39088169/33385282*(1/2+1/2*5^(1/2))^20 1771100001129239 a001 39088169/33385282*23725150497407^(5/16) 1771100001129239 a001 39088169/33385282*505019158607^(5/14) 1771100001129239 a001 4976784/29134601*192900153618^(4/9) 1771100001129239 a001 39088169/33385282*73681302247^(5/13) 1771100001129239 a001 4976784/29134601*73681302247^(6/13) 1771100001129239 a001 194533374068496/10983760033 1771100001129239 a001 39088169/33385282*28143753123^(2/5) 1771100001129239 a001 39088169/33385282*10749957122^(5/12) 1771100001129239 a001 4976784/29134601*10749957122^(1/2) 1771100001129239 a001 39088169/33385282*4106118243^(10/23) 1771100001129239 a001 4976784/29134601*4106118243^(12/23) 1771100001129239 a001 39088169/33385282*1568397607^(5/11) 1771100001129239 a001 4976784/29134601*1568397607^(6/11) 1771100001129239 a001 39088169/33385282*599074578^(10/21) 1771100001129239 a001 4976784/29134601*599074578^(4/7) 1771100001129239 a001 2971215073/228826127*20633239^(3/7) 1771100001129239 a001 39088169/33385282*228826127^(1/2) 1771100001129239 a001 4976784/29134601*228826127^(3/5) 1771100001129239 a001 7778742049/599074578*20633239^(3/7) 1771100001129239 a001 20365011074/1568397607*20633239^(3/7) 1771100001129239 a001 53316291173/4106118243*20633239^(3/7) 1771100001129239 a001 139583862445/10749957122*20633239^(3/7) 1771100001129239 a001 365435296162/28143753123*20633239^(3/7) 1771100001129239 a001 956722026041/73681302247*20633239^(3/7) 1771100001129239 a001 2504730781961/192900153618*20633239^(3/7) 1771100001129239 a001 10610209857723/817138163596*20633239^(3/7) 1771100001129239 a001 4052739537881/312119004989*20633239^(3/7) 1771100001129239 a001 1548008755920/119218851371*20633239^(3/7) 1771100001129239 a001 591286729879/45537549124*20633239^(3/7) 1771100001129239 a001 7787980473/599786069*20633239^(3/7) 1771100001129239 a001 86267571272/6643838879*20633239^(3/7) 1771100001129239 a001 32951280099/2537720636*20633239^(3/7) 1771100001129239 a001 12586269025/969323029*20633239^(3/7) 1771100001129239 a001 4807526976/370248451*20633239^(3/7) 1771100001129240 a001 39088169/33385282*87403803^(10/19) 1771100001129240 a001 102287808/4868641*20633239^(2/5) 1771100001129240 a001 1836311903/141422324*20633239^(3/7) 1771100001129240 a001 14930352/228826127*141422324^(2/3) 1771100001129240 a001 63245986/54018521*20633239^(4/7) 1771100001129240 a001 4976784/29134601*87403803^(12/19) 1771100001129240 a001 4976784/9381251041*141422324^(12/13) 1771100001129240 a001 12586269025/599074578*20633239^(2/5) 1771100001129240 a001 32951280099/1568397607*20633239^(2/5) 1771100001129240 a001 86267571272/4106118243*20633239^(2/5) 1771100001129240 a001 225851433717/10749957122*20633239^(2/5) 1771100001129240 a001 591286729879/28143753123*20633239^(2/5) 1771100001129240 a001 1548008755920/73681302247*20633239^(2/5) 1771100001129240 a001 4052739537881/192900153618*20633239^(2/5) 1771100001129240 a001 225749145909/10745088481*20633239^(2/5) 1771100001129240 a001 6557470319842/312119004989*20633239^(2/5) 1771100001129240 a001 2504730781961/119218851371*20633239^(2/5) 1771100001129240 a001 956722026041/45537549124*20633239^(2/5) 1771100001129240 a001 365435296162/17393796001*20633239^(2/5) 1771100001129240 a001 139583862445/6643838879*20633239^(2/5) 1771100001129240 a001 14930352/6643838879*141422324^(11/13) 1771100001129240 a001 53316291173/2537720636*20633239^(2/5) 1771100001129240 a001 14619165/4769326*141422324^(6/13) 1771100001129240 a001 20365011074/969323029*20633239^(2/5) 1771100001129240 a001 14930352/1568397607*141422324^(10/13) 1771100001129240 a001 7778742049/370248451*20633239^(2/5) 1771100001129240 a001 14930352/370248451*141422324^(9/13) 1771100001129240 a001 14619165/4769326*2537720636^(2/5) 1771100001129240 a001 14619165/4769326*45537549124^(6/17) 1771100001129240 a001 14619165/4769326*14662949395604^(2/7) 1771100001129240 a001 14619165/4769326*(1/2+1/2*5^(1/2))^18 1771100001129240 a001 14619165/4769326*192900153618^(1/3) 1771100001129240 a001 591286747590/33385283 1771100001129240 a001 14930352/228826127*73681302247^(1/2) 1771100001129240 a001 14619165/4769326*10749957122^(3/8) 1771100001129240 a001 14930352/228826127*10749957122^(13/24) 1771100001129240 a001 14619165/4769326*4106118243^(9/23) 1771100001129240 a001 14930352/228826127*4106118243^(13/23) 1771100001129240 a001 14619165/4769326*1568397607^(9/22) 1771100001129240 a001 14930352/228826127*1568397607^(13/22) 1771100001129240 a001 433494437/33385282*141422324^(5/13) 1771100001129240 a001 14619165/4769326*599074578^(3/7) 1771100001129240 a001 14930352/228826127*599074578^(13/21) 1771100001129240 a001 567451585/16692641*141422324^(1/3) 1771100001129240 a001 1836311903/33385282*141422324^(4/13) 1771100001129240 a001 7778742049/33385282*141422324^(3/13) 1771100001129240 a001 14619165/4769326*228826127^(9/20) 1771100001129240 a001 32951280099/33385282*141422324^(2/13) 1771100001129240 a001 14930352/228826127*228826127^(13/20) 1771100001129240 a001 139583862445/33385282*141422324^(1/13) 1771100001129240 a001 829464/33281921*17393796001^(4/7) 1771100001129240 a001 133957148/16692641*(1/2+1/2*5^(1/2))^16 1771100001129240 a001 133957148/16692641*23725150497407^(1/4) 1771100001129240 a001 3536741596032/199691807 1771100001129240 a001 133957148/16692641*73681302247^(4/13) 1771100001129240 a001 829464/33281921*73681302247^(7/13) 1771100001129240 a001 133957148/16692641*10749957122^(1/3) 1771100001129240 a001 829464/33281921*10749957122^(7/12) 1771100001129240 a001 133957148/16692641*4106118243^(8/23) 1771100001129240 a001 829464/33281921*4106118243^(14/23) 1771100001129240 a001 133957148/16692641*1568397607^(4/11) 1771100001129240 a001 829464/33281921*1568397607^(7/11) 1771100001129240 a001 133957148/16692641*599074578^(8/21) 1771100001129240 a001 829464/33281921*599074578^(2/3) 1771100001129240 a001 14930352/1568397607*2537720636^(2/3) 1771100001129240 a001 701408733/33385282*17393796001^(2/7) 1771100001129240 a001 14930352/1568397607*45537549124^(10/17) 1771100001129240 a001 14930352/1568397607*312119004989^(6/11) 1771100001129240 a001 14930352/1568397607*14662949395604^(10/21) 1771100001129240 a001 701408733/33385282*(1/2+1/2*5^(1/2))^14 1771100001129240 a001 10472279279564016/591286729879 1771100001129240 a001 14930352/1568397607*192900153618^(5/9) 1771100001129240 a001 14930352/1568397607*28143753123^(3/5) 1771100001129240 a001 701408733/33385282*10749957122^(7/24) 1771100001129240 a001 14930352/1568397607*10749957122^(5/8) 1771100001129240 a001 701408733/33385282*4106118243^(7/23) 1771100001129240 a001 14930352/1568397607*4106118243^(15/23) 1771100001129240 a001 701408733/33385282*1568397607^(7/22) 1771100001129240 a001 14930352/505019158607*2537720636^(14/15) 1771100001129240 a001 2584/33385281*2537720636^(8/9) 1771100001129240 a001 14930352/119218851371*2537720636^(13/15) 1771100001129240 a001 14930352/1568397607*1568397607^(15/22) 1771100001129240 a001 4976784/9381251041*2537720636^(4/5) 1771100001129240 a001 14930352/17393796001*2537720636^(7/9) 1771100001129240 a001 1836311903/33385282*2537720636^(4/15) 1771100001129240 a001 14930352/6643838879*2537720636^(11/15) 1771100001129240 a001 1836311903/33385282*45537549124^(4/17) 1771100001129240 a001 1836311903/33385282*817138163596^(4/19) 1771100001129240 a001 1836311903/33385282*14662949395604^(4/21) 1771100001129240 a001 1836311903/33385282*(1/2+1/2*5^(1/2))^12 1771100001129240 a001 1836311903/33385282*192900153618^(2/9) 1771100001129240 a001 1836311903/33385282*73681302247^(3/13) 1771100001129240 a001 4976784/1368706081*73681302247^(8/13) 1771100001129240 a001 1836311903/33385282*10749957122^(1/4) 1771100001129240 a001 4976784/1368706081*10749957122^(2/3) 1771100001129240 a001 1836311903/33385282*4106118243^(6/23) 1771100001129240 a001 14930208/103681*2537720636^(2/9) 1771100001129240 a001 7778742049/33385282*2537720636^(1/5) 1771100001129240 a001 32951280099/33385282*2537720636^(2/15) 1771100001129240 a001 4976784/1368706081*4106118243^(16/23) 1771100001129240 a001 53316291173/33385282*2537720636^(1/9) 1771100001129240 a001 139583862445/33385282*2537720636^(1/15) 1771100001129240 a001 7465176/5374978561*45537549124^(2/3) 1771100001129240 a001 14930208/103681*312119004989^(2/11) 1771100001129240 a001 14930208/103681*(1/2+1/2*5^(1/2))^10 1771100001129240 a001 14930208/103681*28143753123^(1/5) 1771100001129240 a001 14930208/103681*10749957122^(5/24) 1771100001129240 a001 14930352/505019158607*17393796001^(6/7) 1771100001129240 a001 7465176/5374978561*10749957122^(17/24) 1771100001129240 a001 4976784/9381251041*45537549124^(12/17) 1771100001129240 a001 4976784/9381251041*14662949395604^(4/7) 1771100001129240 a001 12586269025/33385282*(1/2+1/2*5^(1/2))^8 1771100001129240 a001 12586269025/33385282*23725150497407^(1/8) 1771100001129240 a001 4976784/9381251041*192900153618^(2/3) 1771100001129240 a001 12586269025/33385282*73681302247^(2/13) 1771100001129240 a001 4976784/9381251041*73681302247^(9/13) 1771100001129240 a001 4976784/3020733700601*45537549124^(16/17) 1771100001129240 a001 14930352/2139295485799*45537549124^(15/17) 1771100001129240 a001 14930352/505019158607*45537549124^(14/17) 1771100001129240 a001 14930352/119218851371*45537549124^(13/17) 1771100001129240 a001 32951280099/33385282*45537549124^(2/17) 1771100001129240 a001 14930352/73681302247*817138163596^(2/3) 1771100001129240 a001 32951280099/33385282*(1/2+1/2*5^(1/2))^6 1771100001129240 a001 2584/33385281*312119004989^(8/11) 1771100001129240 a001 43133785636/16692641*(1/2+1/2*5^(1/2))^4 1771100001129240 a001 43133785636/16692641*23725150497407^(1/16) 1771100001129240 a001 2584/33385281*23725150497407^(5/8) 1771100001129240 a001 139583862445/33385282*45537549124^(1/17) 1771100001129240 a001 14930352/2139295485799*312119004989^(9/11) 1771100001129240 a001 32264490531/4769326*(1/2+1/2*5^(1/2))^2 1771100001129240 a001 196452/192933544679*505019158607^(7/8) 1771100001129240 a001 10182505537/16692641*17393796001^(1/7) 1771100001129240 a001 139583862445/33385282*(1/2+1/2*5^(1/2))^3 1771100001129240 a001 14930352/505019158607*192900153618^(7/9) 1771100001129240 a001 14930352/2139295485799*192900153618^(5/6) 1771100001129240 a001 14930352/119218851371*14662949395604^(13/21) 1771100001129240 a001 53316291173/33385282*(1/2+1/2*5^(1/2))^5 1771100001129240 a001 14930352/119218851371*192900153618^(13/18) 1771100001129240 a001 2584/33385281*73681302247^(10/13) 1771100001129240 a001 4976784/440719107401*73681302247^(11/13) 1771100001129240 a001 4976784/3020733700601*73681302247^(12/13) 1771100001129240 a001 12586269025/33385282*10749957122^(1/6) 1771100001129240 a001 53316291173/33385282*28143753123^(1/10) 1771100001129240 a001 14930352/119218851371*73681302247^(3/4) 1771100001129240 a001 32264490531/4769326*10749957122^(1/24) 1771100001129240 a001 10182505537/16692641*14662949395604^(1/9) 1771100001129240 a001 10182505537/16692641*(1/2+1/2*5^(1/2))^7 1771100001129240 a001 139583862445/33385282*10749957122^(1/16) 1771100001129240 a001 43133785636/16692641*10749957122^(1/12) 1771100001129240 a001 32951280099/33385282*10749957122^(1/8) 1771100001129240 a001 14930352/17393796001*17393796001^(5/7) 1771100001129240 a001 2584/33385281*28143753123^(4/5) 1771100001129240 a001 14930352/2139295485799*28143753123^(9/10) 1771100001129240 a001 32264490531/4769326*4106118243^(1/23) 1771100001129240 a001 7778742049/33385282*45537549124^(3/17) 1771100001129240 a001 14930352/17393796001*14662949395604^(5/9) 1771100001129240 a001 7778742049/33385282*(1/2+1/2*5^(1/2))^9 1771100001129240 a001 14930352/17393796001*505019158607^(5/8) 1771100001129240 a001 7778742049/33385282*192900153618^(1/6) 1771100001129240 a001 14930352/17393796001*28143753123^(7/10) 1771100001129240 a001 14930208/103681*4106118243^(5/23) 1771100001129240 a001 7778742049/33385282*10749957122^(3/16) 1771100001129240 a001 43133785636/16692641*4106118243^(2/23) 1771100001129240 a001 4976784/9381251041*10749957122^(3/4) 1771100001129240 a001 14930352/73681302247*10749957122^(19/24) 1771100001129240 a001 14930352/119218851371*10749957122^(13/16) 1771100001129240 a001 2584/33385281*10749957122^(5/6) 1771100001129240 a001 32951280099/33385282*4106118243^(3/23) 1771100001129240 a001 14930352/505019158607*10749957122^(7/8) 1771100001129240 a001 4976784/440719107401*10749957122^(11/12) 1771100001129240 a001 14930352/2139295485799*10749957122^(15/16) 1771100001129240 a001 7465176/1730726404001*10749957122^(23/24) 1771100001129240 a001 12586269025/33385282*4106118243^(4/23) 1771100001129240 a001 32264490531/4769326*1568397607^(1/22) 1771100001129240 a001 14930352/6643838879*45537549124^(11/17) 1771100001129240 a001 14930352/6643838879*312119004989^(3/5) 1771100001129240 a001 14930352/6643838879*14662949395604^(11/21) 1771100001129240 a001 2971215073/33385282*(1/2+1/2*5^(1/2))^11 1771100001129240 a001 14930352/6643838879*192900153618^(11/18) 1771100001129240 a001 14930352/6643838879*10749957122^(11/16) 1771100001129240 a001 7465176/5374978561*4106118243^(17/23) 1771100001129240 a001 43133785636/16692641*1568397607^(1/11) 1771100001129240 a001 4976784/9381251041*4106118243^(18/23) 1771100001129240 a001 14930352/73681302247*4106118243^(19/23) 1771100001129240 a001 2584/33385281*4106118243^(20/23) 1771100001129240 a001 1836311903/33385282*1568397607^(3/11) 1771100001129240 a001 14930352/505019158607*4106118243^(21/23) 1771100001129240 a001 32951280099/33385282*1568397607^(3/22) 1771100001129240 a001 4976784/440719107401*4106118243^(22/23) 1771100001129240 a001 12586269025/33385282*1568397607^(2/11) 1771100001129240 a001 14930208/103681*1568397607^(5/22) 1771100001129240 a001 2971215073/33385282*1568397607^(1/4) 1771100001129240 a001 32264490531/4769326*599074578^(1/21) 1771100001129240 a001 16944503814015840/956722026041 1771100001129240 a001 567451585/16692641*(1/2+1/2*5^(1/2))^13 1771100001129240 a001 567451585/16692641*73681302247^(1/4) 1771100001129240 a001 139583862445/33385282*599074578^(1/14) 1771100001129240 a001 4976784/1368706081*1568397607^(8/11) 1771100001129240 a001 43133785636/16692641*599074578^(2/21) 1771100001129240 a001 7465176/5374978561*1568397607^(17/22) 1771100001129240 a001 14930352/6643838879*1568397607^(3/4) 1771100001129240 a001 4976784/9381251041*1568397607^(9/11) 1771100001129240 a001 14930352/73681302247*1568397607^(19/22) 1771100001129240 a001 2584/33385281*1568397607^(10/11) 1771100001129240 a001 14930352/505019158607*1568397607^(21/22) 1771100001129240 a001 32951280099/33385282*599074578^(1/7) 1771100001129240 a001 10182505537/16692641*599074578^(1/6) 1771100001129240 a001 701408733/33385282*599074578^(1/3) 1771100001129240 a001 12586269025/33385282*599074578^(4/21) 1771100001129240 a001 7778742049/33385282*599074578^(3/14) 1771100001129240 a001 14930208/103681*599074578^(5/21) 1771100001129240 a001 1836311903/33385282*599074578^(2/7) 1771100001129240 a001 32264490531/4769326*228826127^(1/20) 1771100001129240 a001 433494437/33385282*2537720636^(1/3) 1771100001129240 a001 433494437/33385282*45537549124^(5/17) 1771100001129240 a001 433494437/33385282*312119004989^(3/11) 1771100001129240 a001 433494437/33385282*(1/2+1/2*5^(1/2))^15 1771100001129240 a001 14930352/969323029*1322157322203^(1/2) 1771100001129240 a001 433494437/33385282*192900153618^(5/18) 1771100001129240 a001 433494437/33385282*28143753123^(3/10) 1771100001129240 a001 433494437/33385282*10749957122^(5/16) 1771100001129240 a001 14930352/1568397607*599074578^(5/7) 1771100001129240 a001 43133785636/16692641*228826127^(1/10) 1771100001129240 a001 433494437/33385282*599074578^(5/14) 1771100001129240 a001 4976784/1368706081*599074578^(16/21) 1771100001129240 a001 14930352/6643838879*599074578^(11/14) 1771100001129240 a001 7465176/5374978561*599074578^(17/21) 1771100001129240 a001 14930352/17393796001*599074578^(5/6) 1771100001129240 a001 4976784/9381251041*599074578^(6/7) 1771100001129240 a001 53316291173/33385282*228826127^(1/8) 1771100001129240 a001 14930352/73681302247*599074578^(19/21) 1771100001129240 a001 14930352/119218851371*599074578^(13/14) 1771100001129240 a001 2584/33385281*599074578^(20/21) 1771100001129240 a001 32951280099/33385282*228826127^(3/20) 1771100001129240 a001 12586269025/33385282*228826127^(1/5) 1771100001129240 a001 14930208/103681*228826127^(1/4) 1771100001129240 a001 133957148/16692641*228826127^(2/5) 1771100001129240 a001 1836311903/33385282*228826127^(3/10) 1771100001129240 a001 701408733/33385282*228826127^(7/20) 1771100001129240 a001 32264490531/4769326*87403803^(1/19) 1771100001129240 a001 14930352/370248451*2537720636^(3/5) 1771100001129240 a001 14930352/370248451*45537549124^(9/17) 1771100001129240 a001 165580141/33385282*45537549124^(1/3) 1771100001129240 a001 2472169789339632/139583862445 1771100001129240 a001 14930352/370248451*14662949395604^(3/7) 1771100001129240 a001 165580141/33385282*(1/2+1/2*5^(1/2))^17 1771100001129240 a001 14930352/370248451*192900153618^(1/2) 1771100001129240 a001 14930352/370248451*10749957122^(9/16) 1771100001129240 a001 2971215073/141422324*20633239^(2/5) 1771100001129240 a001 433494437/33385282*228826127^(3/8) 1771100001129240 a001 14930352/370248451*599074578^(9/14) 1771100001129240 a001 829464/33281921*228826127^(7/10) 1771100001129240 a001 43133785636/16692641*87403803^(2/19) 1771100001129240 a001 14930352/1568397607*228826127^(3/4) 1771100001129240 a001 4976784/1368706081*228826127^(4/5) 1771100001129240 a001 7465176/5374978561*228826127^(17/20) 1771100001129240 a001 10983760033/4250681*4870847^(1/8) 1771100001129240 a001 14930352/17393796001*228826127^(7/8) 1771100001129240 a001 4976784/9381251041*228826127^(9/10) 1771100001129240 a001 14930352/73681302247*228826127^(19/20) 1771100001129240 a001 32951280099/33385282*87403803^(3/19) 1771100001129240 a001 12586269025/33385282*87403803^(4/19) 1771100001129240 a001 14930208/103681*87403803^(5/19) 1771100001129240 a001 1836311903/33385282*87403803^(6/19) 1771100001129240 a001 14619165/4769326*87403803^(9/19) 1771100001129240 a001 701408733/33385282*87403803^(7/19) 1771100001129240 a001 32264490531/4769326*33385282^(1/18) 1771100001129240 a001 3732588/35355581*2537720636^(5/9) 1771100001129240 a001 944284833567072/53316291173 1771100001129240 a001 31622993/16692641*817138163596^(1/3) 1771100001129240 a001 31622993/16692641*(1/2+1/2*5^(1/2))^19 1771100001129240 a001 3732588/35355581*3461452808002^(5/12) 1771100001129240 a001 3732588/35355581*28143753123^(1/2) 1771100001129240 a001 133957148/16692641*87403803^(8/19) 1771100001129240 a001 3732588/35355581*228826127^(5/8) 1771100001129240 a001 14930352/228826127*87403803^(13/19) 1771100001129240 a001 139583862445/33385282*33385282^(1/12) 1771100001129240 a001 829464/33281921*87403803^(14/19) 1771100001129240 a001 12586269025/87403803*20633239^(2/7) 1771100001129240 a001 43133785636/16692641*33385282^(1/9) 1771100001129240 a001 14930352/1568397607*87403803^(15/19) 1771100001129240 a001 4976784/1368706081*87403803^(16/19) 1771100001129240 a001 31622993/16692641*87403803^(1/2) 1771100001129240 a001 7465176/5374978561*87403803^(17/19) 1771100001129240 a001 4976784/9381251041*87403803^(18/19) 1771100001129240 a001 32951280099/33385282*33385282^(1/6) 1771100001129240 a001 5702887/599074578*12752043^(15/17) 1771100001129240 a001 12586269025/33385282*33385282^(2/9) 1771100001129240 a001 32951280099/228826127*20633239^(2/7) 1771100001129240 a001 43133785636/299537289*20633239^(2/7) 1771100001129240 a001 7778742049/33385282*33385282^(1/4) 1771100001129240 a001 32264490531/224056801*20633239^(2/7) 1771100001129240 a001 591286729879/4106118243*20633239^(2/7) 1771100001129240 a001 774004377960/5374978561*20633239^(2/7) 1771100001129240 a001 4052739537881/28143753123*20633239^(2/7) 1771100001129240 a001 1515744265389/10525900321*20633239^(2/7) 1771100001129240 a001 3278735159921/22768774562*20633239^(2/7) 1771100001129240 a001 2504730781961/17393796001*20633239^(2/7) 1771100001129240 a001 956722026041/6643838879*20633239^(2/7) 1771100001129240 a001 182717648081/1268860318*20633239^(2/7) 1771100001129240 a001 139583862445/969323029*20633239^(2/7) 1771100001129240 a001 701408733/54018521*20633239^(3/7) 1771100001129240 a001 53316291173/370248451*20633239^(2/7) 1771100001129240 a001 14930208/103681*33385282^(5/18) 1771100001129240 a001 10182505537/70711162*20633239^(2/7) 1771100001129240 a001 53316291173/87403803*20633239^(1/5) 1771100001129240 a001 1836311903/33385282*33385282^(1/3) 1771100001129240 a001 1134903170/54018521*20633239^(2/5) 1771100001129240 a001 24157817/33385282*141422324^(7/13) 1771100001129240 a001 20365011074/20633239*7881196^(2/11) 1771100001129240 a001 24157817/33385282*2537720636^(7/15) 1771100001129240 a001 24157817/33385282*17393796001^(3/7) 1771100001129240 a001 180342355680792/10182505537 1771100001129240 a001 24157817/33385282*45537549124^(7/17) 1771100001129240 a001 24157817/33385282*14662949395604^(1/3) 1771100001129240 a001 24157817/33385282*(1/2+1/2*5^(1/2))^21 1771100001129240 a001 24157817/33385282*192900153618^(7/18) 1771100001129240 a001 24157817/33385282*10749957122^(7/16) 1771100001129240 a001 14930352/54018521*4106118243^(1/2) 1771100001129240 a001 24157817/33385282*599074578^(1/2) 1771100001129240 a001 701408733/33385282*33385282^(7/18) 1771100001129240 a001 32264490531/4769326*12752043^(1/17) 1771100001129240 a001 39088169/33385282*33385282^(5/9) 1771100001129240 a001 433494437/33385282*33385282^(5/12) 1771100001129240 a001 133957148/16692641*33385282^(4/9) 1771100001129240 a001 139583862445/228826127*20633239^(1/5) 1771100001129240 a001 182717648081/299537289*20633239^(1/5) 1771100001129240 a001 956722026041/1568397607*20633239^(1/5) 1771100001129240 a001 2504730781961/4106118243*20633239^(1/5) 1771100001129240 a001 3278735159921/5374978561*20633239^(1/5) 1771100001129240 a001 10610209857723/17393796001*20633239^(1/5) 1771100001129240 a001 4052739537881/6643838879*20633239^(1/5) 1771100001129240 a001 1134903780/1860499*20633239^(1/5) 1771100001129240 a001 591286729879/969323029*20633239^(1/5) 1771100001129240 a001 14619165/4769326*33385282^(1/2) 1771100001129240 a001 139583862445/87403803*20633239^(1/7) 1771100001129240 a001 225851433717/370248451*20633239^(1/5) 1771100001129240 a001 4976784/29134601*33385282^(2/3) 1771100001129240 a001 21566892818/35355581*20633239^(1/5) 1771100001129241 a001 5702887/1568397607*12752043^(16/17) 1771100001129241 a001 365435296162/228826127*20633239^(1/7) 1771100001129241 a001 2/24157817*(1/2+1/2*5^(1/2))^59 1771100001129241 a001 956722026041/599074578*20633239^(1/7) 1771100001129241 a001 2504730781961/1568397607*20633239^(1/7) 1771100001129241 a001 6557470319842/4106118243*20633239^(1/7) 1771100001129241 a001 10610209857723/6643838879*20633239^(1/7) 1771100001129241 a001 4052739537881/2537720636*20633239^(1/7) 1771100001129241 a001 1548008755920/969323029*20633239^(1/7) 1771100001129241 a001 7778742049/54018521*20633239^(2/7) 1771100001129241 a001 591286729879/370248451*20633239^(1/7) 1771100001129241 a001 5702887/7881196*7881196^(7/11) 1771100001129241 a001 225851433717/141422324*20633239^(1/7) 1771100001129241 a001 14930352/228826127*33385282^(13/18) 1771100001129241 a001 39088169/87403803*312119004989^(2/5) 1771100001129241 a001 1527884955772561/86267571272 1771100001129241 a001 39088169/87403803*10749957122^(11/24) 1771100001129241 a001 39088169/87403803*4106118243^(11/23) 1771100001129241 a001 39088169/87403803*1568397607^(1/2) 1771100001129241 a001 39088169/87403803*599074578^(11/21) 1771100001129241 a001 39088169/87403803*228826127^(11/20) 1771100001129241 a001 14930352/370248451*33385282^(3/4) 1771100001129241 a001 829464/33281921*33385282^(7/9) 1771100001129241 a001 39088169/87403803*87403803^(11/19) 1771100001129241 a001 39088169/228826127*141422324^(8/13) 1771100001129241 a001 39088169/73681302247*141422324^(12/13) 1771100001129241 a001 43133785636/16692641*12752043^(2/17) 1771100001129241 a001 39088169/17393796001*141422324^(11/13) 1771100001129241 a001 39088169/4106118243*141422324^(10/13) 1771100001129241 a001 39088169/599074578*141422324^(2/3) 1771100001129241 a001 39088169/969323029*141422324^(9/13) 1771100001129241 a001 267914296/87403803*141422324^(6/13) 1771100001129241 a001 39088169/228826127*2537720636^(8/15) 1771100001129241 a001 34111385/29134601*2537720636^(4/9) 1771100001129241 a001 39088169/228826127*45537549124^(8/17) 1771100001129241 a001 34111385/29134601*23725150497407^(5/16) 1771100001129241 a001 190478797386295/10754830177 1771100001129241 a001 39088169/228826127*192900153618^(4/9) 1771100001129241 a001 34111385/29134601*73681302247^(5/13) 1771100001129241 a001 39088169/228826127*73681302247^(6/13) 1771100001129241 a001 34111385/29134601*28143753123^(2/5) 1771100001129241 a001 34111385/29134601*10749957122^(5/12) 1771100001129241 a001 39088169/228826127*10749957122^(1/2) 1771100001129241 a001 1134903170/87403803*141422324^(5/13) 1771100001129241 a001 34111385/29134601*4106118243^(10/23) 1771100001129241 a001 39088169/228826127*4106118243^(12/23) 1771100001129241 a001 14930352/1568397607*33385282^(5/6) 1771100001129241 a001 34111385/29134601*1568397607^(5/11) 1771100001129241 a001 39088169/228826127*1568397607^(6/11) 1771100001129241 a001 34111385/29134601*599074578^(10/21) 1771100001129241 a001 39088169/228826127*599074578^(4/7) 1771100001129241 a001 2971215073/87403803*141422324^(1/3) 1771100001129241 a001 1602508992/29134601*141422324^(4/13) 1771100001129241 a001 20365011074/87403803*141422324^(3/13) 1771100001129241 a001 34111385/29134601*228826127^(1/2) 1771100001129241 a001 86267571272/87403803*141422324^(2/13) 1771100001129241 a001 39088169/228826127*228826127^(3/5) 1771100001129241 a001 365435296162/87403803*141422324^(1/13) 1771100001129241 a001 267914296/87403803*2537720636^(2/5) 1771100001129241 a001 267914296/87403803*45537549124^(6/17) 1771100001129241 a001 267914296/87403803*14662949395604^(2/7) 1771100001129241 a001 10472279279564024/591286729879 1771100001129241 a001 267914296/87403803*192900153618^(1/3) 1771100001129241 a001 39088169/599074578*73681302247^(1/2) 1771100001129241 a001 267914296/87403803*10749957122^(3/8) 1771100001129241 a001 39088169/599074578*10749957122^(13/24) 1771100001129241 a001 267914296/87403803*4106118243^(9/23) 1771100001129241 a001 39088169/599074578*4106118243^(13/23) 1771100001129241 a001 267914296/87403803*1568397607^(9/22) 1771100001129241 a001 39088169/599074578*1568397607^(13/22) 1771100001129241 a001 267914296/87403803*599074578^(3/7) 1771100001129241 a001 39088169/599074578*599074578^(13/21) 1771100001129241 a001 39088169/1568397607*17393796001^(4/7) 1771100001129241 a001 233802911/29134601*23725150497407^(1/4) 1771100001129241 a001 39088169/1568397607*505019158607^(1/2) 1771100001129241 a001 233802911/29134601*73681302247^(4/13) 1771100001129241 a001 39088169/1568397607*73681302247^(7/13) 1771100001129241 a001 233802911/29134601*10749957122^(1/3) 1771100001129241 a001 39088169/1568397607*10749957122^(7/12) 1771100001129241 a001 233802911/29134601*4106118243^(8/23) 1771100001129241 a001 39088169/1568397607*4106118243^(14/23) 1771100001129241 a001 233802911/29134601*1568397607^(4/11) 1771100001129241 a001 39088169/4106118243*2537720636^(2/3) 1771100001129241 a001 39088169/1568397607*1568397607^(7/11) 1771100001129241 a001 39088169/1322157322203*2537720636^(14/15) 1771100001129241 a001 39088169/505019158607*2537720636^(8/9) 1771100001129241 a001 39088169/312119004989*2537720636^(13/15) 1771100001129241 a001 39088169/73681302247*2537720636^(4/5) 1771100001129241 a001 39088169/45537549124*2537720636^(7/9) 1771100001129241 a001 39088169/17393796001*2537720636^(11/15) 1771100001129241 a001 1836311903/87403803*17393796001^(2/7) 1771100001129241 a001 39088169/4106118243*45537549124^(10/17) 1771100001129241 a001 39088169/4106118243*312119004989^(6/11) 1771100001129241 a001 1836311903/87403803*14662949395604^(2/9) 1771100001129241 a001 39088169/4106118243*192900153618^(5/9) 1771100001129241 a001 39088169/4106118243*28143753123^(3/5) 1771100001129241 a001 1836311903/87403803*10749957122^(7/24) 1771100001129241 a001 39088169/4106118243*10749957122^(5/8) 1771100001129241 a001 1602508992/29134601*2537720636^(4/15) 1771100001129241 a001 1836311903/87403803*4106118243^(7/23) 1771100001129241 a001 12586269025/87403803*2537720636^(2/9) 1771100001129241 a001 20365011074/87403803*2537720636^(1/5) 1771100001129241 a001 86267571272/87403803*2537720636^(2/15) 1771100001129241 a001 39088169/4106118243*4106118243^(15/23) 1771100001129241 a001 139583862445/87403803*2537720636^(1/9) 1771100001129241 a001 365435296162/87403803*2537720636^(1/15) 1771100001129241 a001 1602508992/29134601*45537549124^(4/17) 1771100001129241 a001 1602508992/29134601*817138163596^(4/19) 1771100001129241 a001 1602508992/29134601*14662949395604^(4/21) 1771100001129241 a001 1602508992/29134601*73681302247^(3/13) 1771100001129241 a001 39088169/10749957122*73681302247^(8/13) 1771100001129241 a001 1602508992/29134601*10749957122^(1/4) 1771100001129241 a001 39088169/10749957122*10749957122^(2/3) 1771100001129241 a001 39088169/1322157322203*17393796001^(6/7) 1771100001129241 a001 39088169/45537549124*17393796001^(5/7) 1771100001129241 a001 39088169/28143753123*45537549124^(2/3) 1771100001129241 a001 12586269025/87403803*312119004989^(2/11) 1771100001129241 a001 12586269025/87403803*28143753123^(1/5) 1771100001129241 a001 39088169/73681302247*45537549124^(12/17) 1771100001129241 a001 39088169/23725150497407*45537549124^(16/17) 1771100001129241 a001 39088169/5600748293801*45537549124^(15/17) 1771100001129241 a001 53316291173/87403803*17393796001^(1/7) 1771100001129241 a001 39088169/1322157322203*45537549124^(14/17) 1771100001129241 a001 39088169/312119004989*45537549124^(13/17) 1771100001129241 a001 10983760033/29134601*23725150497407^(1/8) 1771100001129241 a001 39088169/73681302247*192900153618^(2/3) 1771100001129241 a001 10983760033/29134601*73681302247^(2/13) 1771100001129241 a001 86267571272/87403803*45537549124^(2/17) 1771100001129241 a001 39088169/73681302247*73681302247^(9/13) 1771100001129241 a001 365435296162/87403803*45537549124^(1/17) 1771100001129241 a001 39088169/3461452808002*312119004989^(4/5) 1771100001129241 a001 39088169/1322157322203*817138163596^(14/19) 1771100001129241 a006 5^(1/2)*Fibonacci(60)/Lucas(38)/sqrt(5) 1771100001129241 a001 39088169/23725150497407*14662949395604^(16/21) 1771100001129241 a004 Fibonacci(38)/Lucas(1)/(1/2+sqrt(5)/2)^16 1771100001129241 a001 365435296162/87403803*14662949395604^(1/21) 1771100001129241 a001 139583862445/87403803*312119004989^(1/11) 1771100001129241 a001 39088169/1322157322203*192900153618^(7/9) 1771100001129241 a001 39088169/23725150497407*192900153618^(8/9) 1771100001129241 a001 53316291173/87403803*14662949395604^(1/9) 1771100001129241 a001 139583862445/87403803*28143753123^(1/10) 1771100001129241 a001 39088169/312119004989*73681302247^(3/4) 1771100001129241 a001 39088169/3461452808002*73681302247^(11/13) 1771100001129241 a001 39088169/23725150497407*73681302247^(12/13) 1771100001129241 a001 591286729879/87403803*10749957122^(1/24) 1771100001129241 a001 20365011074/87403803*45537549124^(3/17) 1771100001129241 a001 39088169/45537549124*312119004989^(7/11) 1771100001129241 a001 20365011074/87403803*14662949395604^(1/7) 1771100001129241 a001 20365011074/87403803*192900153618^(1/6) 1771100001129241 a001 12586269025/87403803*10749957122^(5/24) 1771100001129241 a001 75283811239/29134601*10749957122^(1/12) 1771100001129241 a001 39088169/505019158607*28143753123^(4/5) 1771100001129241 a001 86267571272/87403803*10749957122^(1/8) 1771100001129241 a001 39088169/5600748293801*28143753123^(9/10) 1771100001129241 a001 10983760033/29134601*10749957122^(1/6) 1771100001129241 a001 39088169/45537549124*28143753123^(7/10) 1771100001129241 a001 20365011074/87403803*10749957122^(3/16) 1771100001129241 a001 591286729879/87403803*4106118243^(1/23) 1771100001129241 a001 39088169/17393796001*45537549124^(11/17) 1771100001129241 a001 39088169/17393796001*312119004989^(3/5) 1771100001129241 a001 39088169/17393796001*817138163596^(11/19) 1771100001129241 a001 39088169/17393796001*14662949395604^(11/21) 1771100001129241 a001 39088169/17393796001*192900153618^(11/18) 1771100001129241 a001 39088169/28143753123*10749957122^(17/24) 1771100001129241 a001 75283811239/29134601*4106118243^(2/23) 1771100001129241 a001 39088169/73681302247*10749957122^(3/4) 1771100001129241 a001 1602508992/29134601*4106118243^(6/23) 1771100001129241 a001 39088169/312119004989*10749957122^(13/16) 1771100001129241 a001 39088169/505019158607*10749957122^(5/6) 1771100001129241 a001 39088169/1322157322203*10749957122^(7/8) 1771100001129241 a001 86267571272/87403803*4106118243^(3/23) 1771100001129241 a001 39088169/3461452808002*10749957122^(11/12) 1771100001129241 a001 39088169/5600748293801*10749957122^(15/16) 1771100001129241 a001 39088169/9062201101803*10749957122^(23/24) 1771100001129241 a001 39088169/17393796001*10749957122^(11/16) 1771100001129241 a001 10983760033/29134601*4106118243^(4/23) 1771100001129241 a001 12586269025/87403803*4106118243^(5/23) 1771100001129241 a001 591286729879/87403803*1568397607^(1/22) 1771100001129241 a001 116139356908771337/6557470319842 1771100001129241 a001 2971215073/87403803*73681302247^(1/4) 1771100001129241 a001 39088169/10749957122*4106118243^(16/23) 1771100001129241 a001 75283811239/29134601*1568397607^(1/11) 1771100001129241 a001 39088169/28143753123*4106118243^(17/23) 1771100001129241 a001 39088169/73681302247*4106118243^(18/23) 1771100001129241 a001 39088169/192900153618*4106118243^(19/23) 1771100001129241 a001 39088169/505019158607*4106118243^(20/23) 1771100001129241 a001 39088169/1322157322203*4106118243^(21/23) 1771100001129241 a001 86267571272/87403803*1568397607^(3/22) 1771100001129241 a001 39088169/3461452808002*4106118243^(22/23) 1771100001129241 a001 1836311903/87403803*1568397607^(7/22) 1771100001129241 a001 10983760033/29134601*1568397607^(2/11) 1771100001129241 a001 12586269025/87403803*1568397607^(5/22) 1771100001129241 a001 1602508992/29134601*1568397607^(3/11) 1771100001129241 a001 1134903170/87403803*2537720636^(1/3) 1771100001129241 a001 7778742049/87403803*1568397607^(1/4) 1771100001129241 a001 591286729879/87403803*599074578^(1/21) 1771100001129241 a001 1134903170/87403803*45537549124^(5/17) 1771100001129241 a001 1134903170/87403803*312119004989^(3/11) 1771100001129241 a001 1134903170/87403803*14662949395604^(5/21) 1771100001129241 a001 1134903170/87403803*192900153618^(5/18) 1771100001129241 a001 1134903170/87403803*28143753123^(3/10) 1771100001129241 a001 1134903170/87403803*10749957122^(5/16) 1771100001129241 a001 365435296162/87403803*599074578^(1/14) 1771100001129241 a001 39088169/4106118243*1568397607^(15/22) 1771100001129241 a001 75283811239/29134601*599074578^(2/21) 1771100001129241 a001 39088169/10749957122*1568397607^(8/11) 1771100001129241 a001 39088169/17393796001*1568397607^(3/4) 1771100001129241 a001 39088169/28143753123*1568397607^(17/22) 1771100001129241 a001 39088169/73681302247*1568397607^(9/11) 1771100001129241 a001 39088169/192900153618*1568397607^(19/22) 1771100001129241 a001 39088169/505019158607*1568397607^(10/11) 1771100001129241 a001 39088169/1322157322203*1568397607^(21/22) 1771100001129241 a001 86267571272/87403803*599074578^(1/7) 1771100001129241 a001 53316291173/87403803*599074578^(1/6) 1771100001129241 a001 10983760033/29134601*599074578^(4/21) 1771100001129241 a001 20365011074/87403803*599074578^(3/14) 1771100001129241 a001 233802911/29134601*599074578^(8/21) 1771100001129241 a001 12586269025/87403803*599074578^(5/21) 1771100001129241 a001 1602508992/29134601*599074578^(2/7) 1771100001129241 a001 1836311903/87403803*599074578^(1/3) 1771100001129241 a001 591286729879/87403803*228826127^(1/20) 1771100001129241 a001 39088169/969323029*2537720636^(3/5) 1771100001129241 a001 39088169/969323029*45537549124^(9/17) 1771100001129241 a001 433494437/87403803*45537549124^(1/3) 1771100001129241 a001 16944503814015853/956722026041 1771100001129241 a001 39088169/969323029*14662949395604^(3/7) 1771100001129241 a001 39088169/969323029*192900153618^(1/2) 1771100001129241 a001 39088169/969323029*10749957122^(9/16) 1771100001129241 a001 1134903170/87403803*599074578^(5/14) 1771100001129241 a001 39088169/1568397607*599074578^(2/3) 1771100001129241 a001 75283811239/29134601*228826127^(1/10) 1771100001129241 a001 39088169/4106118243*599074578^(5/7) 1771100001129241 a001 39088169/10749957122*599074578^(16/21) 1771100001129241 a001 39088169/17393796001*599074578^(11/14) 1771100001129241 a001 39088169/28143753123*599074578^(17/21) 1771100001129241 a001 39088169/45537549124*599074578^(5/6) 1771100001129241 a001 139583862445/87403803*228826127^(1/8) 1771100001129241 a001 39088169/73681302247*599074578^(6/7) 1771100001129241 a001 39088169/192900153618*599074578^(19/21) 1771100001129241 a001 39088169/312119004989*599074578^(13/14) 1771100001129241 a001 39088169/505019158607*599074578^(20/21) 1771100001129241 a001 39088169/969323029*599074578^(9/14) 1771100001129241 a001 86267571272/87403803*228826127^(3/20) 1771100001129241 a001 10983760033/29134601*228826127^(1/5) 1771100001129241 a001 12586269025/87403803*228826127^(1/4) 1771100001129241 a001 1602508992/29134601*228826127^(3/10) 1771100001129241 a001 267914296/87403803*228826127^(9/20) 1771100001129241 a001 1836311903/87403803*228826127^(7/20) 1771100001129241 a001 591286729879/87403803*87403803^(1/19) 1771100001129241 a001 39088169/370248451*2537720636^(5/9) 1771100001129241 a001 233802911/29134601*228826127^(2/5) 1771100001129241 a001 39088169/370248451*312119004989^(5/11) 1771100001129241 a001 1548008738209/87403802 1771100001129241 a001 39088169/370248451*28143753123^(1/2) 1771100001129241 a001 1134903170/87403803*228826127^(3/8) 1771100001129241 a001 39088169/599074578*228826127^(13/20) 1771100001129241 a001 39088169/1568397607*228826127^(7/10) 1771100001129241 a001 75283811239/29134601*87403803^(2/19) 1771100001129241 a001 39088169/4106118243*228826127^(3/4) 1771100001129241 a001 39088169/10749957122*228826127^(4/5) 1771100001129241 a001 39088169/28143753123*228826127^(17/20) 1771100001129241 a001 39088169/45537549124*228826127^(7/8) 1771100001129241 a001 39088169/73681302247*228826127^(9/10) 1771100001129241 a001 39088169/192900153618*228826127^(19/20) 1771100001129241 a001 39088169/370248451*228826127^(5/8) 1771100001129241 a001 86267571272/87403803*87403803^(3/19) 1771100001129241 a001 63245986/87403803*141422324^(7/13) 1771100001129241 a001 10983760033/29134601*87403803^(4/19) 1771100001129241 a001 4976784/1368706081*33385282^(8/9) 1771100001129241 a001 12586269025/87403803*87403803^(5/19) 1771100001129241 a001 1602508992/29134601*87403803^(6/19) 1771100001129241 a001 1836311903/87403803*87403803^(7/19) 1771100001129241 a001 34111385/29134601*87403803^(10/19) 1771100001129241 a001 591286729879/87403803*33385282^(1/18) 1771100001129241 a001 63245986/87403803*2537720636^(7/15) 1771100001129241 a001 63245986/87403803*17393796001^(3/7) 1771100001129241 a001 63245986/87403803*45537549124^(7/17) 1771100001129241 a001 2472169789339634/139583862445 1771100001129241 a001 63245986/87403803*14662949395604^(1/3) 1771100001129241 a001 63245986/87403803*192900153618^(7/18) 1771100001129241 a001 63245986/87403803*10749957122^(7/16) 1771100001129241 a001 39088169/141422324*4106118243^(1/2) 1771100001129241 a001 63245986/87403803*599074578^(1/2) 1771100001129241 a001 233802911/29134601*87403803^(8/19) 1771100001129241 a001 14930352/6643838879*33385282^(11/12) 1771100001129241 a001 267914296/87403803*87403803^(9/19) 1771100001129241 a001 39088169/228826127*87403803^(12/19) 1771100001129241 a001 34111385/64300051206*141422324^(12/13) 1771100001129241 a001 102334155/45537549124*141422324^(11/13) 1771100001129241 a001 165580141/87403803*87403803^(1/2) 1771100001129241 a001 102334155/10749957122*141422324^(10/13) 1771100001129241 a001 365435296162/87403803*33385282^(1/12) 1771100001129241 a001 9303105/230701876*141422324^(9/13) 1771100001129241 a001 14619165/224056801*141422324^(2/3) 1771100001129241 a001 34111385/199691526*141422324^(8/13) 1771100001129241 a001 1/31622993*(1/2+1/2*5^(1/2))^61 1771100001129241 a001 7465176/5374978561*33385282^(17/18) 1771100001129241 a001 267914296/505019158607*141422324^(12/13) 1771100001129241 a001 233802911/440719107401*141422324^(12/13) 1771100001129241 a001 1836311903/3461452808002*141422324^(12/13) 1771100001129241 a001 1602508992/3020733700601*141422324^(12/13) 1771100001129241 a001 12586269025/23725150497407*141422324^(12/13) 1771100001129241 a001 7778742049/14662949395604*141422324^(12/13) 1771100001129241 a001 2971215073/5600748293801*141422324^(12/13) 1771100001129241 a001 1134903170/2139295485799*141422324^(12/13) 1771100001129241 a001 267914296/119218851371*141422324^(11/13) 1771100001129241 a001 433494437/817138163596*141422324^(12/13) 1771100001129241 a001 39088169/599074578*87403803^(13/19) 1771100001129241 a001 3524667/1568437211*141422324^(11/13) 1771100001129241 a001 701408733/228826127*141422324^(6/13) 1771100001129241 a001 1836311903/817138163596*141422324^(11/13) 1771100001129241 a001 4807526976/2139295485799*141422324^(11/13) 1771100001129241 a001 12586269025/5600748293801*141422324^(11/13) 1771100001129241 a001 32951280099/14662949395604*141422324^(11/13) 1771100001129241 a001 53316291173/23725150497407*141422324^(11/13) 1771100001129241 a001 20365011074/9062201101803*141422324^(11/13) 1771100001129241 a001 7778742049/3461452808002*141422324^(11/13) 1771100001129241 a001 2971215073/1322157322203*141422324^(11/13) 1771100001129241 a001 1134903170/505019158607*141422324^(11/13) 1771100001129241 a001 267914296/28143753123*141422324^(10/13) 1771100001129241 a001 433494437/192900153618*141422324^(11/13) 1771100001129241 a001 701408733/73681302247*141422324^(10/13) 1771100001129241 a001 165580141/312119004989*141422324^(12/13) 1771100001129241 a001 165580141/228826127*141422324^(7/13) 1771100001129241 a001 1836311903/192900153618*141422324^(10/13) 1771100001129241 a001 102287808/10745088481*141422324^(10/13) 1771100001129241 a001 12586269025/1322157322203*141422324^(10/13) 1771100001129241 a001 32951280099/3461452808002*141422324^(10/13) 1771100001129241 a001 86267571272/9062201101803*141422324^(10/13) 1771100001129241 a001 225851433717/23725150497407*141422324^(10/13) 1771100001129241 a001 139583862445/14662949395604*141422324^(10/13) 1771100001129241 a001 53316291173/5600748293801*141422324^(10/13) 1771100001129241 a001 20365011074/2139295485799*141422324^(10/13) 1771100001129241 a001 7778742049/817138163596*141422324^(10/13) 1771100001129241 a001 2971215073/312119004989*141422324^(10/13) 1771100001129241 a001 2971215073/228826127*141422324^(5/13) 1771100001129241 a001 1134903170/119218851371*141422324^(10/13) 1771100001129241 a001 102334155/228826127*312119004989^(2/5) 1771100001129241 a001 10472279279564025/591286729879 1771100001129241 a001 102334155/228826127*10749957122^(11/24) 1771100001129241 a001 102334155/228826127*4106118243^(11/23) 1771100001129241 a001 102334155/228826127*1568397607^(1/2) 1771100001129241 a001 433494437/45537549124*141422324^(10/13) 1771100001129241 a001 267914296/6643838879*141422324^(9/13) 1771100001129241 a001 102334155/228826127*599074578^(11/21) 1771100001129241 a001 267914296/4106118243*141422324^(2/3) 1771100001129241 a001 7778742049/228826127*141422324^(1/3) 1771100001129241 a001 701408733/17393796001*141422324^(9/13) 1771100001129241 a001 165580141/73681302247*141422324^(11/13) 1771100001129241 a001 39088169/1568397607*87403803^(14/19) 1771100001129241 a001 1836311903/45537549124*141422324^(9/13) 1771100001129241 a001 4807526976/119218851371*141422324^(9/13) 1771100001129241 a001 1144206275/28374454999*141422324^(9/13) 1771100001129241 a001 32951280099/817138163596*141422324^(9/13) 1771100001129241 a001 86267571272/2139295485799*141422324^(9/13) 1771100001129241 a001 225851433717/5600748293801*141422324^(9/13) 1771100001129241 a001 365435296162/9062201101803*141422324^(9/13) 1771100001129241 a001 139583862445/3461452808002*141422324^(9/13) 1771100001129241 a001 53316291173/1322157322203*141422324^(9/13) 1771100001129241 a001 20365011074/505019158607*141422324^(9/13) 1771100001129241 a001 7778742049/192900153618*141422324^(9/13) 1771100001129241 a001 2971215073/73681302247*141422324^(9/13) 1771100001129241 a001 12586269025/228826127*141422324^(4/13) 1771100001129241 a001 1134903170/28143753123*141422324^(9/13) 1771100001129241 a001 267914296/1568397607*141422324^(8/13) 1771100001129241 a001 701408733/10749957122*141422324^(2/3) 1771100001129241 a001 433494437/10749957122*141422324^(9/13) 1771100001129241 a001 1836311903/28143753123*141422324^(2/3) 1771100001129241 a001 686789568/10525900321*141422324^(2/3) 1771100001129241 a001 12586269025/192900153618*141422324^(2/3) 1771100001129241 a001 32951280099/505019158607*141422324^(2/3) 1771100001129241 a001 86267571272/1322157322203*141422324^(2/3) 1771100001129241 a001 32264490531/494493258286*141422324^(2/3) 1771100001129241 a001 1548008755920/23725150497407*141422324^(2/3) 1771100001129241 a001 139583862445/2139295485799*141422324^(2/3) 1771100001129241 a001 53316291173/817138163596*141422324^(2/3) 1771100001129241 a001 20365011074/312119004989*141422324^(2/3) 1771100001129241 a001 7778742049/119218851371*141422324^(2/3) 1771100001129241 a001 2971215073/45537549124*141422324^(2/3) 1771100001129241 a001 1134903170/17393796001*141422324^(2/3) 1771100001129241 a001 433494437/6643838879*141422324^(2/3) 1771100001129241 a001 233802911/1368706081*141422324^(8/13) 1771100001129241 a001 75283811239/29134601*33385282^(1/9) 1771100001129241 a001 165580141/17393796001*141422324^(10/13) 1771100001129241 a001 24157817/33385282*33385282^(7/12) 1771100001129241 a001 1836311903/10749957122*141422324^(8/13) 1771100001129241 a001 1602508992/9381251041*141422324^(8/13) 1771100001129241 a001 12586269025/73681302247*141422324^(8/13) 1771100001129241 a001 10983760033/64300051206*141422324^(8/13) 1771100001129241 a001 86267571272/505019158607*141422324^(8/13) 1771100001129241 a001 75283811239/440719107401*141422324^(8/13) 1771100001129241 a001 2504730781961/14662949395604*141422324^(8/13) 1771100001129241 a001 139583862445/817138163596*141422324^(8/13) 1771100001129241 a001 53316291173/312119004989*141422324^(8/13) 1771100001129241 a001 20365011074/119218851371*141422324^(8/13) 1771100001129241 a001 7778742049/45537549124*141422324^(8/13) 1771100001129241 a001 2971215073/17393796001*141422324^(8/13) 1771100001129241 a001 53316291173/228826127*141422324^(3/13) 1771100001129241 a001 1134903170/6643838879*141422324^(8/13) 1771100001129241 a001 433494437/2537720636*141422324^(8/13) 1771100001129241 a001 433494437/599074578*141422324^(7/13) 1771100001129241 a001 102334155/228826127*228826127^(11/20) 1771100001129241 a001 39088169/4106118243*87403803^(15/19) 1771100001129241 a001 165580141/4106118243*141422324^(9/13) 1771100001129241 a001 1134903170/1568397607*141422324^(7/13) 1771100001129241 a001 2971215073/4106118243*141422324^(7/13) 1771100001129241 a001 7778742049/10749957122*141422324^(7/13) 1771100001129241 a001 20365011074/28143753123*141422324^(7/13) 1771100001129241 a001 53316291173/73681302247*141422324^(7/13) 1771100001129241 a001 139583862445/192900153618*141422324^(7/13) 1771100001129241 a001 365435296162/505019158607*141422324^(7/13) 1771100001129241 a001 10610209857723/14662949395604*141422324^(7/13) 1771100001129241 a001 225851433717/312119004989*141422324^(7/13) 1771100001129241 a001 86267571272/119218851371*141422324^(7/13) 1771100001129241 a001 32951280099/45537549124*141422324^(7/13) 1771100001129241 a001 12586269025/17393796001*141422324^(7/13) 1771100001129241 a001 4807526976/6643838879*141422324^(7/13) 1771100001129241 a001 1836311903/2537720636*141422324^(7/13) 1771100001129241 a001 225851433717/228826127*141422324^(2/13) 1771100001129241 a001 701408733/969323029*141422324^(7/13) 1771100001129241 a001 1836311903/599074578*141422324^(6/13) 1771100001129241 a001 165580141/2537720636*141422324^(2/3) 1771100001129241 a001 686789568/224056801*141422324^(6/13) 1771100001129241 a001 12586269025/4106118243*141422324^(6/13) 1771100001129241 a001 32951280099/10749957122*141422324^(6/13) 1771100001129241 a001 86267571272/28143753123*141422324^(6/13) 1771100001129241 a001 32264490531/10525900321*141422324^(6/13) 1771100001129241 a001 591286729879/192900153618*141422324^(6/13) 1771100001129241 a001 1548008755920/505019158607*141422324^(6/13) 1771100001129241 a001 1515744265389/494493258286*141422324^(6/13) 1771100001129241 a001 956722026041/312119004989*141422324^(6/13) 1771100001129241 a001 365435296162/119218851371*141422324^(6/13) 1771100001129241 a001 139583862445/45537549124*141422324^(6/13) 1771100001129241 a001 53316291173/17393796001*141422324^(6/13) 1771100001129241 a001 20365011074/6643838879*141422324^(6/13) 1771100001129241 a001 956722026041/228826127*141422324^(1/13) 1771100001129241 a001 7778742049/2537720636*141422324^(6/13) 1771100001129241 a001 267914296/370248451*141422324^(7/13) 1771100001129241 a001 165580141/969323029*141422324^(8/13) 1771100001129241 a001 7778742049/599074578*141422324^(5/13) 1771100001129241 a001 2971215073/969323029*141422324^(6/13) 1771100001129241 a001 34111385/199691526*2537720636^(8/15) 1771100001129241 a001 267914296/228826127*2537720636^(4/9) 1771100001129241 a001 34111385/199691526*45537549124^(8/17) 1771100001129241 a001 267914296/228826127*23725150497407^(5/16) 1771100001129241 a001 267914296/228826127*505019158607^(5/14) 1771100001129241 a001 34111385/199691526*192900153618^(4/9) 1771100001129241 a001 267914296/228826127*73681302247^(5/13) 1771100001129241 a001 34111385/199691526*73681302247^(6/13) 1771100001129241 a001 267914296/228826127*28143753123^(2/5) 1771100001129241 a001 267914296/228826127*10749957122^(5/12) 1771100001129241 a001 34111385/199691526*10749957122^(1/2) 1771100001129241 a001 267914296/228826127*4106118243^(10/23) 1771100001129241 a001 34111385/199691526*4106118243^(12/23) 1771100001129241 a001 267914296/228826127*1568397607^(5/11) 1771100001129241 a001 34111385/199691526*1568397607^(6/11) 1771100001129241 a001 39088169/10749957122*87403803^(16/19) 1771100001129241 a001 267914296/228826127*599074578^(10/21) 1771100001129241 a001 34111385/199691526*599074578^(4/7) 1771100001129241 a001 20365011074/1568397607*141422324^(5/13) 1771100001129241 a001 701408733/228826127*2537720636^(2/5) 1771100001129241 a001 701408733/228826127*45537549124^(6/17) 1771100001129241 a001 701408733/228826127*14662949395604^(2/7) 1771100001129241 a001 701408733/228826127*192900153618^(1/3) 1771100001129241 a001 14619165/224056801*73681302247^(1/2) 1771100001129241 a001 701408733/228826127*10749957122^(3/8) 1771100001129241 a001 14619165/224056801*10749957122^(13/24) 1771100001129241 a001 701408733/228826127*4106118243^(9/23) 1771100001129241 a001 14619165/224056801*4106118243^(13/23) 1771100001129241 a001 10182505537/299537289*141422324^(1/3) 1771100001129241 a001 701408733/228826127*1568397607^(9/22) 1771100001129241 a001 53316291173/4106118243*141422324^(5/13) 1771100001129241 a001 14619165/224056801*1568397607^(13/22) 1771100001129241 a001 6765/228826126*2537720636^(14/15) 1771100001129241 a001 139583862445/10749957122*141422324^(5/13) 1771100001129241 a001 34111385/440719107401*2537720636^(8/9) 1771100001129241 a001 102334155/817138163596*2537720636^(13/15) 1771100001129241 a001 365435296162/28143753123*141422324^(5/13) 1771100001129241 a001 956722026041/73681302247*141422324^(5/13) 1771100001129241 a001 2504730781961/192900153618*141422324^(5/13) 1771100001129241 a001 10610209857723/817138163596*141422324^(5/13) 1771100001129241 a001 4052739537881/312119004989*141422324^(5/13) 1771100001129241 a001 1548008755920/119218851371*141422324^(5/13) 1771100001129241 a001 591286729879/45537549124*141422324^(5/13) 1771100001129241 a001 7787980473/599786069*141422324^(5/13) 1771100001129241 a001 34111385/64300051206*2537720636^(4/5) 1771100001129241 a001 102334155/119218851371*2537720636^(7/9) 1771100001129241 a001 102334155/45537549124*2537720636^(11/15) 1771100001129241 a001 102334155/10749957122*2537720636^(2/3) 1771100001129241 a001 86267571272/6643838879*141422324^(5/13) 1771100001129241 a001 34111385/1368706081*17393796001^(4/7) 1771100001129241 a001 1836311903/228826127*23725150497407^(1/4) 1771100001129241 a001 1836311903/228826127*73681302247^(4/13) 1771100001129241 a001 34111385/1368706081*73681302247^(7/13) 1771100001129241 a001 1836311903/228826127*10749957122^(1/3) 1771100001129241 a001 34111385/1368706081*10749957122^(7/12) 1771100001129241 a001 12586269025/228826127*2537720636^(4/15) 1771100001129241 a001 1836311903/228826127*4106118243^(8/23) 1771100001129241 a001 32951280099/228826127*2537720636^(2/9) 1771100001129241 a001 53316291173/228826127*2537720636^(1/5) 1771100001129241 a001 2971215073/228826127*2537720636^(1/3) 1771100001129241 a001 34111385/1368706081*4106118243^(14/23) 1771100001129241 a001 225851433717/228826127*2537720636^(2/15) 1771100001129241 a001 365435296162/228826127*2537720636^(1/9) 1771100001129241 a001 956722026041/228826127*2537720636^(1/15) 1771100001129241 a001 102287808/4868641*17393796001^(2/7) 1771100001129241 a001 102334155/10749957122*45537549124^(10/17) 1771100001129241 a001 102334155/10749957122*312119004989^(6/11) 1771100001129241 a001 102287808/4868641*14662949395604^(2/9) 1771100001129241 a001 102334155/10749957122*192900153618^(5/9) 1771100001129241 a001 102334155/10749957122*28143753123^(3/5) 1771100001129241 a001 102287808/4868641*10749957122^(7/24) 1771100001129241 a001 102334155/10749957122*10749957122^(5/8) 1771100001129241 a001 6765/228826126*17393796001^(6/7) 1771100001129241 a001 102334155/119218851371*17393796001^(5/7) 1771100001129241 a001 12586269025/228826127*45537549124^(4/17) 1771100001129241 a001 12586269025/228826127*14662949395604^(4/21) 1771100001129241 a001 12586269025/228826127*192900153618^(2/9) 1771100001129241 a001 12586269025/228826127*73681302247^(3/13) 1771100001129241 a001 831985/228811001*73681302247^(8/13) 1771100001129241 a001 14619165/10525900321*45537549124^(2/3) 1771100001129241 a001 139583862445/228826127*17393796001^(1/7) 1771100001129241 a001 102334155/14662949395604*45537549124^(15/17) 1771100001129241 a001 6765/228826126*45537549124^(14/17) 1771100001129241 a001 102334155/817138163596*45537549124^(13/17) 1771100001129241 a001 32951280099/228826127*312119004989^(2/11) 1771100001129241 a001 225851433717/228826127*45537549124^(2/17) 1771100001129241 a001 34111385/64300051206*14662949395604^(4/7) 1771100001129241 a001 102334155/14662949395604*312119004989^(9/11) 1771100001129241 a001 34111385/3020733700601*312119004989^(4/5) 1771100001129241 a001 102334155/505019158607*817138163596^(2/3) 1771100001129241 a001 102334155/14662949395604*14662949395604^(5/7) 1771100001129241 a001 139583862445/228826127*14662949395604^(1/9) 1771100001129241 a001 591286729879/228826127*73681302247^(1/13) 1771100001129241 a001 102334155/14662949395604*192900153618^(5/6) 1771100001129241 a001 102334155/119218851371*312119004989^(7/11) 1771100001129241 a001 102334155/119218851371*14662949395604^(5/9) 1771100001129241 a001 102334155/119218851371*505019158607^(5/8) 1771100001129241 a001 34111385/64300051206*73681302247^(9/13) 1771100001129241 a001 365435296162/228826127*28143753123^(1/10) 1771100001129241 a001 102334155/817138163596*73681302247^(3/4) 1771100001129241 a001 34111385/3020733700601*73681302247^(11/13) 1771100001129241 a001 102334155/45537549124*45537549124^(11/17) 1771100001129241 a001 1548008755920/228826127*10749957122^(1/24) 1771100001129241 a001 102334155/45537549124*312119004989^(3/5) 1771100001129241 a001 102334155/45537549124*14662949395604^(11/21) 1771100001129241 a001 102334155/45537549124*192900153618^(11/18) 1771100001129241 a001 956722026041/228826127*10749957122^(1/16) 1771100001129241 a001 591286729879/228826127*10749957122^(1/12) 1771100001129241 a001 12586269025/228826127*10749957122^(1/4) 1771100001129241 a001 102334155/119218851371*28143753123^(7/10) 1771100001129241 a001 34111385/440719107401*28143753123^(4/5) 1771100001129241 a001 225851433717/228826127*10749957122^(1/8) 1771100001129241 a001 102334155/14662949395604*28143753123^(9/10) 1771100001129241 a001 86267571272/228826127*10749957122^(1/6) 1771100001129241 a001 32951280099/228826127*10749957122^(5/24) 1771100001129241 a001 53316291173/228826127*10749957122^(3/16) 1771100001129241 a001 1548008755920/228826127*4106118243^(1/23) 1771100001129241 a001 102334155/17393796001*9062201101803^(1/2) 1771100001129241 a001 7778742049/228826127*73681302247^(1/4) 1771100001129241 a001 831985/228811001*10749957122^(2/3) 1771100001129241 a001 591286729879/228826127*4106118243^(2/23) 1771100001129241 a001 14619165/10525900321*10749957122^(17/24) 1771100001129241 a001 102334155/45537549124*10749957122^(11/16) 1771100001129241 a001 34111385/64300051206*10749957122^(3/4) 1771100001129241 a001 102334155/505019158607*10749957122^(19/24) 1771100001129241 a001 102334155/817138163596*10749957122^(13/16) 1771100001129241 a001 34111385/440719107401*10749957122^(5/6) 1771100001129241 a001 6765/228826126*10749957122^(7/8) 1771100001129241 a001 225851433717/228826127*4106118243^(3/23) 1771100001129241 a001 34111385/3020733700601*10749957122^(11/12) 1771100001129241 a001 102334155/14662949395604*10749957122^(15/16) 1771100001129241 a001 102334155/23725150497407*10749957122^(23/24) 1771100001129241 a001 102287808/4868641*4106118243^(7/23) 1771100001129241 a001 86267571272/228826127*4106118243^(4/23) 1771100001129241 a001 32951280099/228826127*4106118243^(5/23) 1771100001129241 a001 12586269025/228826127*4106118243^(6/23) 1771100001129241 a001 1548008755920/228826127*1568397607^(1/22) 1771100001129241 a001 2971215073/228826127*45537549124^(5/17) 1771100001129241 a001 32951280099/2537720636*141422324^(5/13) 1771100001129241 a001 2971215073/228826127*312119004989^(3/11) 1771100001129241 a001 2971215073/228826127*14662949395604^(5/21) 1771100001129241 a001 102334155/6643838879*1322157322203^(1/2) 1771100001129241 a001 2971215073/228826127*28143753123^(3/10) 1771100001129241 a001 2971215073/228826127*10749957122^(5/16) 1771100001129241 a001 102334155/10749957122*4106118243^(15/23) 1771100001129241 a001 591286729879/228826127*1568397607^(1/11) 1771100001129241 a001 831985/228811001*4106118243^(16/23) 1771100001129241 a001 14619165/10525900321*4106118243^(17/23) 1771100001129241 a001 34111385/64300051206*4106118243^(18/23) 1771100001129241 a001 102334155/505019158607*4106118243^(19/23) 1771100001129241 a001 34111385/440719107401*4106118243^(20/23) 1771100001129241 a001 6765/228826126*4106118243^(21/23) 1771100001129241 a001 225851433717/228826127*1568397607^(3/22) 1771100001129241 a001 34111385/3020733700601*4106118243^(22/23) 1771100001129241 a001 9303105/230701876*2537720636^(3/5) 1771100001129241 a001 86267571272/228826127*1568397607^(2/11) 1771100001129241 a001 1836311903/228826127*1568397607^(4/11) 1771100001129241 a001 32951280099/228826127*1568397607^(5/22) 1771100001129241 a001 20365011074/228826127*1568397607^(1/4) 1771100001129241 a001 12586269025/228826127*1568397607^(3/11) 1771100001129241 a001 102287808/4868641*1568397607^(7/22) 1771100001129241 a001 1548008755920/228826127*599074578^(1/21) 1771100001129241 a001 9303105/230701876*45537549124^(9/17) 1771100001129241 a001 1134903170/228826127*45537549124^(1/3) 1771100001129241 a001 3415863438493275/192866774113 1771100001129241 a001 9303105/230701876*192900153618^(1/2) 1771100001129241 a001 9303105/230701876*10749957122^(9/16) 1771100001129241 a001 956722026041/228826127*599074578^(1/14) 1771100001129241 a001 34111385/1368706081*1568397607^(7/11) 1771100001129241 a001 591286729879/228826127*599074578^(2/21) 1771100001129241 a001 102334155/10749957122*1568397607^(15/22) 1771100001129241 a001 831985/228811001*1568397607^(8/11) 1771100001129241 a001 102334155/45537549124*1568397607^(3/4) 1771100001129241 a001 14619165/10525900321*1568397607^(17/22) 1771100001129241 a001 34111385/64300051206*1568397607^(9/11) 1771100001129241 a001 102334155/505019158607*1568397607^(19/22) 1771100001129241 a001 34111385/440719107401*1568397607^(10/11) 1771100001129241 a001 6765/228826126*1568397607^(21/22) 1771100001129241 a001 225851433717/228826127*599074578^(1/7) 1771100001129241 a001 139583862445/228826127*599074578^(1/6) 1771100001129241 a001 86267571272/228826127*599074578^(4/21) 1771100001129241 a001 53316291173/228826127*599074578^(3/14) 1771100001129241 a001 32951280099/228826127*599074578^(5/21) 1771100001129241 a001 701408733/228826127*599074578^(3/7) 1771100001129241 a001 12586269025/228826127*599074578^(2/7) 1771100001129241 a001 102287808/4868641*599074578^(1/3) 1771100001129241 a001 10983760033/199691526*141422324^(4/13) 1771100001129241 a001 12586269025/969323029*141422324^(5/13) 1771100001129241 a001 1548008755920/228826127*228826127^(1/20) 1771100001129241 a001 102334155/969323029*2537720636^(5/9) 1771100001129241 a001 1836311903/228826127*599074578^(8/21) 1771100001129241 a001 2971215073/228826127*599074578^(5/14) 1771100001129241 a001 102334155/969323029*312119004989^(5/11) 1771100001129241 a001 102334155/969323029*3461452808002^(5/12) 1771100001129241 a001 102334155/969323029*28143753123^(1/2) 1771100001129241 a001 14619165/224056801*599074578^(13/21) 1771100001129241 a001 34111385/1368706081*599074578^(2/3) 1771100001129241 a001 591286729879/228826127*228826127^(1/10) 1771100001129241 a001 9303105/230701876*599074578^(9/14) 1771100001129241 a001 102334155/10749957122*599074578^(5/7) 1771100001129241 a001 53316291173/1568397607*141422324^(1/3) 1771100001129241 a001 831985/228811001*599074578^(16/21) 1771100001129241 a001 102334155/45537549124*599074578^(11/14) 1771100001129241 a001 14619165/10525900321*599074578^(17/21) 1771100001129241 a001 102334155/119218851371*599074578^(5/6) 1771100001129241 a001 139583862445/4106118243*141422324^(1/3) 1771100001129241 a001 365435296162/228826127*228826127^(1/8) 1771100001129241 a001 34111385/64300051206*599074578^(6/7) 1771100001129241 a001 182717648081/5374978561*141422324^(1/3) 1771100001129241 a001 956722026041/28143753123*141422324^(1/3) 1771100001129241 a001 2504730781961/73681302247*141422324^(1/3) 1771100001129241 a001 3278735159921/96450076809*141422324^(1/3) 1771100001129241 a001 10610209857723/312119004989*141422324^(1/3) 1771100001129241 a001 4052739537881/119218851371*141422324^(1/3) 1771100001129241 a001 387002188980/11384387281*141422324^(1/3) 1771100001129241 a001 591286729879/17393796001*141422324^(1/3) 1771100001129241 a001 225851433717/6643838879*141422324^(1/3) 1771100001129241 a001 102334155/505019158607*599074578^(19/21) 1771100001129241 a001 1135099622/33391061*141422324^(1/3) 1771100001129241 a001 102334155/817138163596*599074578^(13/14) 1771100001129241 a001 34111385/440719107401*599074578^(20/21) 1771100001129241 a001 225851433717/228826127*228826127^(3/20) 1771100001129241 a001 86267571272/1568397607*141422324^(4/13) 1771100001129241 a001 1134903170/370248451*141422324^(6/13) 1771100001129241 a001 32951280099/969323029*141422324^(1/3) 1771100001129241 a001 75283811239/1368706081*141422324^(4/13) 1771100001129241 a001 591286729879/10749957122*141422324^(4/13) 1771100001129241 a001 12585437040/228811001*141422324^(4/13) 1771100001129241 a001 4052739537881/73681302247*141422324^(4/13) 1771100001129241 a001 3536736619241/64300051206*141422324^(4/13) 1771100001129241 a001 6557470319842/119218851371*141422324^(4/13) 1771100001129241 a001 2504730781961/45537549124*141422324^(4/13) 1771100001129241 a001 956722026041/17393796001*141422324^(4/13) 1771100001129241 a001 365435296162/6643838879*141422324^(4/13) 1771100001129241 a001 86267571272/228826127*228826127^(1/5) 1771100001129241 a001 139583862445/2537720636*141422324^(4/13) 1771100001129241 a001 139583862445/599074578*141422324^(3/13) 1771100001129241 a001 32951280099/228826127*228826127^(1/4) 1771100001129241 a001 53316291173/969323029*141422324^(4/13) 1771100001129241 a001 39088169/28143753123*87403803^(17/19) 1771100001129241 a001 12586269025/228826127*228826127^(3/10) 1771100001129241 a001 102287808/4868641*228826127^(7/20) 1771100001129241 a001 267914296/228826127*228826127^(1/2) 1771100001129241 a001 1548008755920/228826127*87403803^(1/19) 1771100001129241 a001 365435296162/1568397607*141422324^(3/13) 1771100001129241 a001 4807526976/370248451*141422324^(5/13) 1771100001129241 a001 2971215073/228826127*228826127^(3/8) 1771100001129241 a001 165580141/228826127*2537720636^(7/15) 1771100001129241 a001 165580141/228826127*17393796001^(3/7) 1771100001129241 a001 165580141/228826127*45537549124^(7/17) 1771100001129241 a001 165580141/228826127*14662949395604^(1/3) 1771100001129241 a001 165580141/228826127*192900153618^(7/18) 1771100001129241 a001 165580141/228826127*10749957122^(7/16) 1771100001129241 a001 102334155/370248451*4106118243^(1/2) 1771100001129241 a001 956722026041/4106118243*141422324^(3/13) 1771100001129241 a001 2504730781961/10749957122*141422324^(3/13) 1771100001129241 a001 6557470319842/28143753123*141422324^(3/13) 1771100001129241 a001 10610209857723/45537549124*141422324^(3/13) 1771100001129241 a001 4052739537881/17393796001*141422324^(3/13) 1771100001129241 a001 1836311903/228826127*228826127^(2/5) 1771100001129241 a001 1548008755920/6643838879*141422324^(3/13) 1771100001129241 a001 591286729879/2537720636*141422324^(3/13) 1771100001129241 a001 701408733/228826127*228826127^(9/20) 1771100001129241 a001 591286729879/599074578*141422324^(2/13) 1771100001129241 a001 225851433717/969323029*141422324^(3/13) 1771100001129241 a001 34111385/199691526*228826127^(3/5) 1771100001129241 a001 165580141/228826127*599074578^(1/2) 1771100001129241 a001 12586269025/370248451*141422324^(1/3) 1771100001129241 a001 1548008755920/1568397607*141422324^(2/13) 1771100001129241 a001 20365011074/370248451*141422324^(4/13) 1771100001129241 a001 4052739537881/4106118243*141422324^(2/13) 1771100001129241 a001 4807525989/4870846*141422324^(2/13) 1771100001129241 a001 6557470319842/6643838879*141422324^(2/13) 1771100001129241 a001 2504730781961/2537720636*141422324^(2/13) 1771100001129241 a001 2/165580141*(1/2+1/2*5^(1/2))^63 1771100001129241 a001 14619165/224056801*228826127^(13/20) 1771100001129241 a001 39088169/73681302247*87403803^(18/19) 1771100001129241 a001 2504730781961/599074578*141422324^(1/13) 1771100001129241 a001 956722026041/969323029*141422324^(2/13) 1771100001129241 a001 102334155/969323029*228826127^(5/8) 1771100001129241 a001 34111385/1368706081*228826127^(7/10) 1771100001129241 a001 133957148/299537289*312119004989^(2/5) 1771100001129241 a001 71778070001175616/4052739537881 1771100001129241 a001 133957148/299537289*10749957122^(11/24) 1771100001129241 a001 133957148/299537289*4106118243^(11/23) 1771100001129241 a001 133957148/299537289*1568397607^(1/2) 1771100001129241 a001 591286729879/228826127*87403803^(2/19) 1771100001129241 a001 102334155/10749957122*228826127^(3/4) 1771100001129241 a001 6557470319842/1568397607*141422324^(1/13) 1771100001129241 a001 86267571272/370248451*141422324^(3/13) 1771100001129241 a001 133957148/299537289*599074578^(11/21) 1771100001129241 a001 831985/228811001*228826127^(4/5) 1771100001129241 a001 10610209857723/2537720636*141422324^(1/13) 1771100001129241 a001 267914296/1568397607*2537720636^(8/15) 1771100001129241 a001 233802911/199691526*2537720636^(4/9) 1771100001129241 a001 267914296/1568397607*45537549124^(8/17) 1771100001129241 a001 233802911/199691526*23725150497407^(5/16) 1771100001129241 a001 233802911/199691526*505019158607^(5/14) 1771100001129241 a001 267914296/1568397607*192900153618^(4/9) 1771100001129241 a001 233802911/199691526*73681302247^(5/13) 1771100001129241 a001 267914296/1568397607*73681302247^(6/13) 1771100001129241 a001 233802911/199691526*28143753123^(2/5) 1771100001129241 a001 233802911/199691526*10749957122^(5/12) 1771100001129241 a001 267914296/1568397607*10749957122^(1/2) 1771100001129241 a001 233802911/199691526*4106118243^(10/23) 1771100001129241 a001 267914296/1568397607*4106118243^(12/23) 1771100001129241 a001 233802911/199691526*1568397607^(5/11) 1771100001129241 a001 267914296/1568397607*1568397607^(6/11) 1771100001129241 a001 267914296/9062201101803*2537720636^(14/15) 1771100001129241 a001 133957148/1730726404001*2537720636^(8/9) 1771100001129241 a001 267914296/2139295485799*2537720636^(13/15) 1771100001129241 a001 267914296/505019158607*2537720636^(4/5) 1771100001129241 a001 1836311903/599074578*2537720636^(2/5) 1771100001129241 a001 267914296/312119004989*2537720636^(7/9) 1771100001129241 a001 267914296/119218851371*2537720636^(11/15) 1771100001129241 a001 267914296/28143753123*2537720636^(2/3) 1771100001129241 a001 14619165/10525900321*228826127^(17/20) 1771100001129241 a001 267914296/6643838879*2537720636^(3/5) 1771100001129241 a001 1836311903/599074578*45537549124^(6/17) 1771100001129241 a001 1836311903/599074578*14662949395604^(2/7) 1771100001129241 a001 1836311903/599074578*192900153618^(1/3) 1771100001129241 a001 267914296/4106118243*73681302247^(1/2) 1771100001129241 a001 1836311903/599074578*10749957122^(3/8) 1771100001129241 a001 267914296/4106118243*10749957122^(13/24) 1771100001129241 a001 7778742049/599074578*2537720636^(1/3) 1771100001129241 a001 10983760033/199691526*2537720636^(4/15) 1771100001129241 a001 1836311903/599074578*4106118243^(9/23) 1771100001129241 a001 43133785636/299537289*2537720636^(2/9) 1771100001129241 a001 139583862445/599074578*2537720636^(1/5) 1771100001129241 a001 267914296/4106118243*4106118243^(13/23) 1771100001129241 a001 591286729879/599074578*2537720636^(2/15) 1771100001129241 a001 956722026041/599074578*2537720636^(1/9) 1771100001129241 a001 133957148/5374978561*17393796001^(4/7) 1771100001129241 a001 2504730781961/599074578*2537720636^(1/15) 1771100001129241 a001 133957148/5374978561*14662949395604^(4/9) 1771100001129241 a001 133957148/5374978561*505019158607^(1/2) 1771100001129241 a001 267084832/33281921*73681302247^(4/13) 1771100001129241 a001 133957148/5374978561*73681302247^(7/13) 1771100001129241 a001 267084832/33281921*10749957122^(1/3) 1771100001129241 a001 133957148/5374978561*10749957122^(7/12) 1771100001129241 a001 267914296/9062201101803*17393796001^(6/7) 1771100001129241 a001 267914296/312119004989*17393796001^(5/7) 1771100001129241 a001 12586269025/599074578*17393796001^(2/7) 1771100001129241 a001 267914296/28143753123*45537549124^(10/17) 1771100001129241 a001 267914296/28143753123*312119004989^(6/11) 1771100001129241 a001 267914296/28143753123*14662949395604^(10/21) 1771100001129241 a001 12586269025/599074578*14662949395604^(2/9) 1771100001129241 a001 267914296/28143753123*192900153618^(5/9) 1771100001129241 a001 267914296/28143753123*28143753123^(3/5) 1771100001129241 a001 182717648081/299537289*17393796001^(1/7) 1771100001129241 a001 267914296/9062201101803*45537549124^(14/17) 1771100001129241 a001 267914296/2139295485799*45537549124^(13/17) 1771100001129241 a001 133957148/96450076809*45537549124^(2/3) 1771100001129241 a001 267914296/505019158607*45537549124^(12/17) 1771100001129241 a001 10983760033/199691526*45537549124^(4/17) 1771100001129241 a001 267914296/119218851371*45537549124^(11/17) 1771100001129241 a001 10983760033/199691526*817138163596^(4/19) 1771100001129241 a001 10983760033/199691526*14662949395604^(4/21) 1771100001129241 a001 10983760033/199691526*73681302247^(3/13) 1771100001129241 a001 139583862445/599074578*45537549124^(3/17) 1771100001129241 a001 267914296/73681302247*73681302247^(8/13) 1771100001129241 a001 591286729879/599074578*45537549124^(2/17) 1771100001129241 a001 2504730781961/599074578*45537549124^(1/17) 1771100001129241 a001 133957148/1730726404001*312119004989^(8/11) 1771100001129241 a001 133957148/1730726404001*23725150497407^(5/8) 1771100001129241 a004 Fibonacci(42)/Lucas(1)/(1/2+sqrt(5)/2)^20 1771100001129241 a001 139583862445/599074578*14662949395604^(1/7) 1771100001129241 a001 139583862445/599074578*192900153618^(1/6) 1771100001129241 a001 267914296/9062201101803*192900153618^(7/9) 1771100001129241 a001 267913919/710646*73681302247^(2/13) 1771100001129241 a001 267914296/119218851371*312119004989^(3/5) 1771100001129241 a001 267914296/119218851371*14662949395604^(11/21) 1771100001129241 a001 267914296/119218851371*192900153618^(11/18) 1771100001129241 a001 267914296/505019158607*73681302247^(9/13) 1771100001129241 a001 133957148/1730726404001*73681302247^(10/13) 1771100001129241 a001 267914296/23725150497407*73681302247^(11/13) 1771100001129241 a001 43133785636/299537289*28143753123^(1/5) 1771100001129241 a001 4052739537881/599074578*10749957122^(1/24) 1771100001129241 a001 66978574/11384387281*9062201101803^(1/2) 1771100001129241 a001 10182505537/299537289*73681302247^(1/4) 1771100001129241 a001 2504730781961/599074578*10749957122^(1/16) 1771100001129241 a001 86000486440/33281921*10749957122^(1/12) 1771100001129241 a001 267914296/312119004989*28143753123^(7/10) 1771100001129241 a001 133957148/1730726404001*28143753123^(4/5) 1771100001129241 a001 591286729879/599074578*10749957122^(1/8) 1771100001129241 a001 12586269025/599074578*10749957122^(7/24) 1771100001129241 a001 267913919/710646*10749957122^(1/6) 1771100001129241 a001 139583862445/599074578*10749957122^(3/16) 1771100001129241 a001 43133785636/299537289*10749957122^(5/24) 1771100001129241 a001 10983760033/199691526*10749957122^(1/4) 1771100001129241 a001 4052739537881/599074578*4106118243^(1/23) 1771100001129241 a001 7778742049/599074578*45537549124^(5/17) 1771100001129241 a001 7778742049/599074578*312119004989^(3/11) 1771100001129241 a001 7778742049/599074578*14662949395604^(5/21) 1771100001129241 a001 7778742049/599074578*192900153618^(5/18) 1771100001129241 a001 7778742049/599074578*28143753123^(3/10) 1771100001129241 a001 267914296/28143753123*10749957122^(5/8) 1771100001129241 a001 4052739537881/969323029*141422324^(1/13) 1771100001129241 a001 86000486440/33281921*4106118243^(2/23) 1771100001129241 a001 267914296/73681302247*10749957122^(2/3) 1771100001129241 a001 7778742049/599074578*10749957122^(5/16) 1771100001129241 a001 267914296/119218851371*10749957122^(11/16) 1771100001129241 a001 133957148/96450076809*10749957122^(17/24) 1771100001129241 a001 267914296/505019158607*10749957122^(3/4) 1771100001129241 a001 267914296/1322157322203*10749957122^(19/24) 1771100001129241 a001 267914296/2139295485799*10749957122^(13/16) 1771100001129241 a001 133957148/1730726404001*10749957122^(5/6) 1771100001129241 a001 267914296/9062201101803*10749957122^(7/8) 1771100001129241 a001 591286729879/599074578*4106118243^(3/23) 1771100001129241 a001 267914296/23725150497407*10749957122^(11/12) 1771100001129241 a001 267913919/710646*4106118243^(4/23) 1771100001129241 a001 267084832/33281921*4106118243^(8/23) 1771100001129241 a001 43133785636/299537289*4106118243^(5/23) 1771100001129241 a001 10983760033/199691526*4106118243^(6/23) 1771100001129241 a001 12586269025/599074578*4106118243^(7/23) 1771100001129241 a001 4052739537881/599074578*1568397607^(1/22) 1771100001129241 a001 267914296/6643838879*45537549124^(9/17) 1771100001129241 a001 2971215073/599074578*45537549124^(1/3) 1771100001129241 a001 267914296/6643838879*817138163596^(9/19) 1771100001129241 a001 267914296/6643838879*14662949395604^(3/7) 1771100001129241 a001 267914296/6643838879*192900153618^(1/2) 1771100001129241 a001 133957148/5374978561*4106118243^(14/23) 1771100001129241 a001 267914296/6643838879*10749957122^(9/16) 1771100001129241 a001 86000486440/33281921*1568397607^(1/11) 1771100001129241 a001 267914296/28143753123*4106118243^(15/23) 1771100001129241 a001 267914296/73681302247*4106118243^(16/23) 1771100001129241 a001 133957148/96450076809*4106118243^(17/23) 1771100001129241 a001 267914296/505019158607*4106118243^(18/23) 1771100001129241 a001 267914296/1322157322203*4106118243^(19/23) 1771100001129241 a001 133957148/1730726404001*4106118243^(20/23) 1771100001129241 a001 267914296/9062201101803*4106118243^(21/23) 1771100001129241 a001 591286729879/599074578*1568397607^(3/22) 1771100001129241 a001 267914296/23725150497407*4106118243^(22/23) 1771100001129241 a001 66978574/634430159*2537720636^(5/9) 1771100001129241 a001 267913919/710646*1568397607^(2/11) 1771100001129241 a001 43133785636/299537289*1568397607^(5/22) 1771100001129241 a001 53316291173/599074578*1568397607^(1/4) 1771100001129241 a001 1836311903/599074578*1568397607^(9/22) 1771100001129241 a001 10983760033/199691526*1568397607^(3/11) 1771100001129241 a001 12586269025/599074578*1568397607^(7/22) 1771100001129241 a001 4052739537881/599074578*599074578^(1/21) 1771100001129241 a001 267084832/33281921*1568397607^(4/11) 1771100001129241 a001 66978574/634430159*312119004989^(5/11) 1771100001129241 a001 567451585/299537289*817138163596^(1/3) 1771100001129241 a001 66978574/634430159*3461452808002^(5/12) 1771100001129241 a001 66978574/634430159*28143753123^(1/2) 1771100001129241 a001 267914296/4106118243*1568397607^(13/22) 1771100001129241 a001 2504730781961/599074578*599074578^(1/14) 1771100001129241 a001 133957148/5374978561*1568397607^(7/11) 1771100001129241 a001 86000486440/33281921*599074578^(2/21) 1771100001129241 a001 267914296/28143753123*1568397607^(15/22) 1771100001129241 a001 267914296/73681302247*1568397607^(8/11) 1771100001129241 a001 267914296/119218851371*1568397607^(3/4) 1771100001129241 a001 133957148/96450076809*1568397607^(17/22) 1771100001129241 a001 267914296/505019158607*1568397607^(9/11) 1771100001129241 a001 267914296/1322157322203*1568397607^(19/22) 1771100001129241 a001 133957148/1730726404001*1568397607^(10/11) 1771100001129241 a001 267914296/9062201101803*1568397607^(21/22) 1771100001129241 a001 591286729879/599074578*599074578^(1/7) 1771100001129241 a001 102334155/119218851371*228826127^(7/8) 1771100001129241 a001 182717648081/299537289*599074578^(1/6) 1771100001129241 a001 267913919/710646*599074578^(4/21) 1771100001129241 a001 139583862445/599074578*599074578^(3/14) 1771100001129241 a001 43133785636/299537289*599074578^(5/21) 1771100001129241 a001 10983760033/199691526*599074578^(2/7) 1771100001129241 a001 34111385/64300051206*228826127^(9/10) 1771100001129241 a001 233802911/199691526*599074578^(10/21) 1771100001129241 a001 12586269025/599074578*599074578^(1/3) 1771100001129241 a001 4052739537881/599074578*228826127^(1/20) 1771100001129241 a001 433494437/599074578*2537720636^(7/15) 1771100001129241 a001 7778742049/599074578*599074578^(5/14) 1771100001129241 a001 267084832/33281921*599074578^(8/21) 1771100001129241 a001 433494437/599074578*17393796001^(3/7) 1771100001129241 a001 433494437/599074578*45537549124^(7/17) 1771100001129241 a001 10610209840012/599074577 1771100001129241 a001 433494437/599074578*192900153618^(7/18) 1771100001129241 a001 433494437/599074578*10749957122^(7/16) 1771100001129241 a001 267914296/969323029*4106118243^(1/2) 1771100001129241 a001 1836311903/599074578*599074578^(3/7) 1771100001129241 a001 267914296/1568397607*599074578^(4/7) 1771100001129241 a001 267914296/4106118243*599074578^(13/21) 1771100001129241 a001 267914296/6643838879*599074578^(9/14) 1771100001129241 a001 102334155/505019158607*228826127^(19/20) 1771100001129241 a001 133957148/5374978561*599074578^(2/3) 1771100001129241 a001 86000486440/33281921*228826127^(1/10) 1771100001129241 a001 701408733/1568397607*312119004989^(2/5) 1771100001129241 a001 701408733/1568397607*10749957122^(11/24) 1771100001129241 a001 267914296/28143753123*599074578^(5/7) 1771100001129241 a001 701408733/1568397607*4106118243^(11/23) 1771100001129241 a001 267914296/73681302247*599074578^(16/21) 1771100001129241 a001 701408733/1568397607*1568397607^(1/2) 1771100001129241 a001 267914296/119218851371*599074578^(11/14) 1771100001129241 a001 701408733/23725150497407*2537720636^(14/15) 1771100001129241 a001 233802911/1368706081*2537720636^(8/15) 1771100001129241 a001 233802911/3020733700601*2537720636^(8/9) 1771100001129241 a001 701408733/5600748293801*2537720636^(13/15) 1771100001129241 a001 1836311903/1568397607*2537720636^(4/9) 1771100001129241 a001 133957148/96450076809*599074578^(17/21) 1771100001129241 a001 233802911/440719107401*2537720636^(4/5) 1771100001129241 a001 701408733/817138163596*2537720636^(7/9) 1771100001129241 a001 3524667/1568437211*2537720636^(11/15) 1771100001129241 a001 701408733/73681302247*2537720636^(2/3) 1771100001129241 a001 701408733/17393796001*2537720636^(3/5) 1771100001129241 a001 686789568/224056801*2537720636^(2/5) 1771100001129241 a001 701408733/6643838879*2537720636^(5/9) 1771100001129241 a001 233802911/1368706081*45537549124^(8/17) 1771100001129241 a001 1836311903/1568397607*23725150497407^(5/16) 1771100001129241 a001 1836311903/1568397607*505019158607^(5/14) 1771100001129241 a001 233802911/1368706081*192900153618^(4/9) 1771100001129241 a001 1836311903/1568397607*73681302247^(5/13) 1771100001129241 a001 233802911/1368706081*73681302247^(6/13) 1771100001129241 a001 1836311903/1568397607*28143753123^(2/5) 1771100001129241 a001 267914296/312119004989*599074578^(5/6) 1771100001129241 a001 1836311903/1568397607*10749957122^(5/12) 1771100001129241 a001 233802911/1368706081*10749957122^(1/2) 1771100001129241 a001 20365011074/1568397607*2537720636^(1/3) 1771100001129241 a001 86267571272/1568397607*2537720636^(4/15) 1771100001129241 a001 32264490531/224056801*2537720636^(2/9) 1771100001129241 a001 1836311903/1568397607*4106118243^(10/23) 1771100001129241 a001 365435296162/1568397607*2537720636^(1/5) 1771100001129241 a001 233802911/1368706081*4106118243^(12/23) 1771100001129241 a001 1548008755920/1568397607*2537720636^(2/15) 1771100001129241 a001 2504730781961/1568397607*2537720636^(1/9) 1771100001129241 a001 6557470319842/1568397607*2537720636^(1/15) 1771100001129241 a001 686789568/224056801*45537549124^(6/17) 1771100001129241 a001 686789568/224056801*14662949395604^(2/7) 1771100001129241 a001 686789568/224056801*192900153618^(1/3) 1771100001129241 a001 701408733/10749957122*73681302247^(1/2) 1771100001129241 a001 686789568/224056801*10749957122^(3/8) 1771100001129241 a001 701408733/10749957122*10749957122^(13/24) 1771100001129241 a001 233802911/9381251041*17393796001^(4/7) 1771100001129241 a001 701408733/23725150497407*17393796001^(6/7) 1771100001129241 a001 701408733/817138163596*17393796001^(5/7) 1771100001129241 a001 12586269025/1568397607*23725150497407^(1/4) 1771100001129241 a001 233802911/9381251041*505019158607^(1/2) 1771100001129241 a001 12586269025/1568397607*73681302247^(4/13) 1771100001129241 a001 233802911/9381251041*73681302247^(7/13) 1771100001129241 a001 32951280099/1568397607*17393796001^(2/7) 1771100001129241 a001 956722026041/1568397607*17393796001^(1/7) 1771100001129241 a001 701408733/73681302247*45537549124^(10/17) 1771100001129241 a001 701408733/23725150497407*45537549124^(14/17) 1771100001129241 a001 701408733/5600748293801*45537549124^(13/17) 1771100001129241 a001 233802911/440719107401*45537549124^(12/17) 1771100001129241 a001 701408733/505019158607*45537549124^(2/3) 1771100001129241 a001 3524667/1568437211*45537549124^(11/17) 1771100001129241 a001 701408733/73681302247*312119004989^(6/11) 1771100001129241 a001 32951280099/1568397607*14662949395604^(2/9) 1771100001129241 a001 701408733/73681302247*192900153618^(5/9) 1771100001129241 a001 86267571272/1568397607*45537549124^(4/17) 1771100001129241 a001 365435296162/1568397607*45537549124^(3/17) 1771100001129241 a001 1548008755920/1568397607*45537549124^(2/17) 1771100001129241 a001 6557470319842/1568397607*45537549124^(1/17) 1771100001129241 a001 233802911/64300051206*23725150497407^(1/2) 1771100001129241 a001 233802911/64300051206*505019158607^(4/7) 1771100001129241 a001 233802911/3020733700601*312119004989^(8/11) 1771100001129241 a001 2504730781961/1568397607*312119004989^(1/11) 1771100001129241 a001 1548008755920/1568397607*14662949395604^(2/21) 1771100001129241 a006 5^(1/2)*Fibonacci(66)/Lucas(44)/sqrt(5) 1771100001129241 a004 Fibonacci(44)/Lucas(1)/(1/2+sqrt(5)/2)^22 1771100001129241 a001 139583862445/1568397607*312119004989^(1/5) 1771100001129241 a001 3524667/1568437211*14662949395604^(11/21) 1771100001129241 a001 233802911/440719107401*192900153618^(2/3) 1771100001129241 a001 3524667/1568437211*192900153618^(11/18) 1771100001129241 a001 591286729879/1568397607*73681302247^(2/13) 1771100001129241 a001 701408733/119218851371*9062201101803^(1/2) 1771100001129241 a001 233802911/64300051206*73681302247^(8/13) 1771100001129241 a001 53316291173/1568397607*73681302247^(1/4) 1771100001129241 a001 2504730781961/1568397607*28143753123^(1/10) 1771100001129241 a001 233802911/440719107401*73681302247^(9/13) 1771100001129241 a001 701408733/5600748293801*73681302247^(3/4) 1771100001129241 a001 233802911/3020733700601*73681302247^(10/13) 1771100001129241 a001 32264490531/224056801*28143753123^(1/5) 1771100001129241 a001 20365011074/1568397607*45537549124^(5/17) 1771100001129241 a001 1515744265389/224056801*10749957122^(1/24) 1771100001129241 a001 20365011074/1568397607*312119004989^(3/11) 1771100001129241 a001 20365011074/1568397607*14662949395604^(5/21) 1771100001129241 a001 701408733/45537549124*1322157322203^(1/2) 1771100001129241 a001 20365011074/1568397607*192900153618^(5/18) 1771100001129241 a001 6557470319842/1568397607*10749957122^(1/16) 1771100001129241 a001 701408733/73681302247*28143753123^(3/5) 1771100001129241 a001 4052739537881/1568397607*10749957122^(1/12) 1771100001129241 a001 20365011074/1568397607*28143753123^(3/10) 1771100001129241 a001 701408733/817138163596*28143753123^(7/10) 1771100001129241 a001 233802911/3020733700601*28143753123^(4/5) 1771100001129241 a001 1548008755920/1568397607*10749957122^(1/8) 1771100001129241 a001 591286729879/1568397607*10749957122^(1/6) 1771100001129241 a001 12586269025/1568397607*10749957122^(1/3) 1771100001129241 a001 32264490531/224056801*10749957122^(5/24) 1771100001129241 a001 86267571272/1568397607*10749957122^(1/4) 1771100001129241 a001 32951280099/1568397607*10749957122^(7/24) 1771100001129241 a001 1515744265389/224056801*4106118243^(1/23) 1771100001129241 a001 701408733/17393796001*45537549124^(9/17) 1771100001129241 a001 7778742049/1568397607*45537549124^(1/3) 1771100001129241 a001 20365011074/1568397607*10749957122^(5/16) 1771100001129241 a001 701408733/17393796001*14662949395604^(3/7) 1771100001129241 a001 701408733/17393796001*192900153618^(1/2) 1771100001129241 a001 233802911/9381251041*10749957122^(7/12) 1771100001129241 a001 4052739537881/1568397607*4106118243^(2/23) 1771100001129241 a001 701408733/73681302247*10749957122^(5/8) 1771100001129241 a001 233802911/64300051206*10749957122^(2/3) 1771100001129241 a001 3524667/1568437211*10749957122^(11/16) 1771100001129241 a001 701408733/505019158607*10749957122^(17/24) 1771100001129241 a001 233802911/440719107401*10749957122^(3/4) 1771100001129241 a001 701408733/3461452808002*10749957122^(19/24) 1771100001129241 a001 701408733/5600748293801*10749957122^(13/16) 1771100001129241 a001 233802911/3020733700601*10749957122^(5/6) 1771100001129241 a001 956722026041/599074578*228826127^(1/8) 1771100001129241 a001 701408733/23725150497407*10749957122^(7/8) 1771100001129241 a001 1548008755920/1568397607*4106118243^(3/23) 1771100001129241 a001 701408733/17393796001*10749957122^(9/16) 1771100001129241 a001 267914296/505019158607*599074578^(6/7) 1771100001129241 a001 365435296162/370248451*141422324^(2/13) 1771100001129241 a001 591286729879/1568397607*4106118243^(4/23) 1771100001129241 a001 32264490531/224056801*4106118243^(5/23) 1771100001129241 a001 686789568/224056801*4106118243^(9/23) 1771100001129241 a001 86267571272/1568397607*4106118243^(6/23) 1771100001129241 a001 32951280099/1568397607*4106118243^(7/23) 1771100001129241 a001 1515744265389/224056801*1568397607^(1/22) 1771100001129241 a001 12586269025/1568397607*4106118243^(8/23) 1771100001129241 a001 701408733/6643838879*312119004989^(5/11) 1771100001129241 a001 2971215073/1568397607*817138163596^(1/3) 1771100001129241 a001 701408733/6643838879*28143753123^(1/2) 1771100001129241 a001 701408733/10749957122*4106118243^(13/23) 1771100001129241 a001 233802911/9381251041*4106118243^(14/23) 1771100001129241 a001 4052739537881/1568397607*1568397607^(1/11) 1771100001129241 a001 701408733/73681302247*4106118243^(15/23) 1771100001129241 a001 233802911/64300051206*4106118243^(16/23) 1771100001129241 a001 701408733/505019158607*4106118243^(17/23) 1771100001129241 a001 233802911/440719107401*4106118243^(18/23) 1771100001129241 a001 701408733/3461452808002*4106118243^(19/23) 1771100001129241 a001 233802911/3020733700601*4106118243^(20/23) 1771100001129241 a001 701408733/23725150497407*4106118243^(21/23) 1771100001129241 a001 1548008755920/1568397607*1568397607^(3/22) 1771100001129241 a001 591286729879/1568397607*1568397607^(2/11) 1771100001129241 a001 433494437/599074578*599074578^(1/2) 1771100001129241 a001 1134903170/1568397607*2537720636^(7/15) 1771100001129241 a001 32264490531/224056801*1568397607^(5/22) 1771100001129241 a001 139583862445/1568397607*1568397607^(1/4) 1771100001129241 a001 86267571272/1568397607*1568397607^(3/11) 1771100001129241 a001 1836311903/1568397607*1568397607^(5/11) 1771100001129241 a001 32951280099/1568397607*1568397607^(7/22) 1771100001129241 a001 1515744265389/224056801*599074578^(1/21) 1771100001129241 a001 267914296/1322157322203*599074578^(19/21) 1771100001129241 a001 12586269025/1568397607*1568397607^(4/11) 1771100001129241 a001 1134903170/1568397607*17393796001^(3/7) 1771100001129241 a001 1134903170/1568397607*45537549124^(7/17) 1771100001129241 a001 1134903170/1568397607*14662949395604^(1/3) 1771100001129241 a001 1134903170/1568397607*192900153618^(7/18) 1771100001129241 a001 686789568/224056801*1568397607^(9/22) 1771100001129241 a001 1134903170/1568397607*10749957122^(7/16) 1771100001129241 a001 233802911/1368706081*1568397607^(6/11) 1771100001129241 a001 701408733/2537720636*4106118243^(1/2) 1771100001129241 a001 6557470319842/1568397607*599074578^(1/14) 1771100001129241 a001 267914296/2139295485799*599074578^(13/14) 1771100001129241 a001 1836311903/23725150497407*2537720636^(8/9) 1771100001129241 a001 1836311903/14662949395604*2537720636^(13/15) 1771100001129241 a001 1836311903/3461452808002*2537720636^(4/5) 1771100001129241 a001 1836311903/2139295485799*2537720636^(7/9) 1771100001129241 a001 701408733/10749957122*1568397607^(13/22) 1771100001129241 a001 1836311903/817138163596*2537720636^(11/15) 1771100001129241 a001 1836311903/192900153618*2537720636^(2/3) 1771100001129241 a001 1836311903/45537549124*2537720636^(3/5) 1771100001129241 a001 1836311903/10749957122*2537720636^(8/15) 1771100001129241 a001 233802911/9381251041*1568397607^(7/11) 1771100001129241 a001 1836311903/17393796001*2537720636^(5/9) 1771100001129241 a001 4052739537881/1568397607*599074578^(2/21) 1771100001129241 a001 1602508992/1368706081*2537720636^(4/9) 1771100001129241 a001 1602508992/3020733700601*2537720636^(4/5) 1771100001129241 a001 133957148/1730726404001*599074578^(20/21) 1771100001129241 a001 701408733/73681302247*1568397607^(15/22) 1771100001129241 a001 4807526976/5600748293801*2537720636^(7/9) 1771100001129241 a001 12586269025/23725150497407*2537720636^(4/5) 1771100001129241 a001 12586269025/4106118243*2537720636^(2/5) 1771100001129241 a001 4807526976/2139295485799*2537720636^(11/15) 1771100001129241 a001 12586269025/14662949395604*2537720636^(7/9) 1771100001129241 a001 7778742049/14662949395604*2537720636^(4/5) 1771100001129241 a001 20365011074/23725150497407*2537720636^(7/9) 1771100001129241 a001 1836311903/4106118243*312119004989^(2/5) 1771100001129241 a001 7778742049/9062201101803*2537720636^(7/9) 1771100001129241 a001 12586269025/5600748293801*2537720636^(11/15) 1771100001129241 a001 1836311903/4106118243*10749957122^(11/24) 1771100001129241 a001 32951280099/14662949395604*2537720636^(11/15) 1771100001129241 a001 53316291173/23725150497407*2537720636^(11/15) 1771100001129241 a001 20365011074/9062201101803*2537720636^(11/15) 1771100001129241 a001 102287808/10745088481*2537720636^(2/3) 1771100001129241 a001 2971215073/23725150497407*2537720636^(13/15) 1771100001129241 a001 53316291173/4106118243*2537720636^(1/3) 1771100001129241 a001 233802911/64300051206*1568397607^(8/11) 1771100001129241 a001 7778742049/3461452808002*2537720636^(11/15) 1771100001129241 a001 2971215073/4106118243*2537720636^(7/15) 1771100001129241 a001 12586269025/1322157322203*2537720636^(2/3) 1771100001129241 a001 32951280099/3461452808002*2537720636^(2/3) 1771100001129241 a001 86267571272/9062201101803*2537720636^(2/3) 1771100001129241 a001 225851433717/23725150497407*2537720636^(2/3) 1771100001129241 a001 139583862445/14662949395604*2537720636^(2/3) 1771100001129241 a001 53316291173/5600748293801*2537720636^(2/3) 1771100001129241 a001 20365011074/2139295485799*2537720636^(2/3) 1771100001129241 a001 4807526976/119218851371*2537720636^(3/5) 1771100001129241 a001 3524667/1568437211*1568397607^(3/4) 1771100001129241 a001 2971215073/5600748293801*2537720636^(4/5) 1771100001129241 a001 75283811239/1368706081*2537720636^(4/15) 1771100001129241 a001 7778742049/817138163596*2537720636^(2/3) 1771100001129241 a001 2971215073/3461452808002*2537720636^(7/9) 1771100001129241 a001 1201881744/11384387281*2537720636^(5/9) 1771100001129241 a001 1144206275/28374454999*2537720636^(3/5) 1771100001129241 a001 591286729879/4106118243*2537720636^(2/9) 1771100001129241 a001 32951280099/817138163596*2537720636^(3/5) 1771100001129241 a001 86267571272/2139295485799*2537720636^(3/5) 1771100001129241 a001 225851433717/5600748293801*2537720636^(3/5) 1771100001129241 a001 365435296162/9062201101803*2537720636^(3/5) 1771100001129241 a001 139583862445/3461452808002*2537720636^(3/5) 1771100001129241 a001 53316291173/1322157322203*2537720636^(3/5) 1771100001129241 a001 1602508992/9381251041*2537720636^(8/15) 1771100001129241 a001 20365011074/505019158607*2537720636^(3/5) 1771100001129241 a001 701408733/505019158607*1568397607^(17/22) 1771100001129241 a001 2971215073/1322157322203*2537720636^(11/15) 1771100001129241 a001 956722026041/4106118243*2537720636^(1/5) 1771100001129241 a001 1836311903/4106118243*4106118243^(11/23) 1771100001129241 a001 7778742049/192900153618*2537720636^(3/5) 1771100001129241 a001 12586269025/119218851371*2537720636^(5/9) 1771100001129241 a001 32951280099/312119004989*2537720636^(5/9) 1771100001129241 a001 21566892818/204284540899*2537720636^(5/9) 1771100001129241 a001 225851433717/2139295485799*2537720636^(5/9) 1771100001129241 a001 182717648081/1730726404001*2537720636^(5/9) 1771100001129241 a001 139583862445/1322157322203*2537720636^(5/9) 1771100001129241 a001 53316291173/505019158607*2537720636^(5/9) 1771100001129241 a001 10182505537/96450076809*2537720636^(5/9) 1771100001129241 a001 12586269025/73681302247*2537720636^(8/15) 1771100001129241 a001 7778742049/73681302247*2537720636^(5/9) 1771100001129241 a001 10983760033/64300051206*2537720636^(8/15) 1771100001129241 a001 86267571272/505019158607*2537720636^(8/15) 1771100001129241 a001 75283811239/440719107401*2537720636^(8/15) 1771100001129241 a001 2504730781961/14662949395604*2537720636^(8/15) 1771100001129241 a001 139583862445/817138163596*2537720636^(8/15) 1771100001129241 a001 53316291173/312119004989*2537720636^(8/15) 1771100001129241 a001 20365011074/119218851371*2537720636^(8/15) 1771100001129241 a001 2971215073/312119004989*2537720636^(2/3) 1771100001129241 a001 4052739537881/4106118243*2537720636^(2/15) 1771100001129241 a001 7778742049/45537549124*2537720636^(8/15) 1771100001129241 a001 12586269025/10749957122*2537720636^(4/9) 1771100001129241 a001 7778742049/10749957122*2537720636^(7/15) 1771100001129241 a001 6557470319842/4106118243*2537720636^(1/9) 1771100001129241 a001 233802911/440719107401*1568397607^(9/11) 1771100001129241 a001 20365011074/28143753123*2537720636^(7/15) 1771100001129241 a001 53316291173/73681302247*2537720636^(7/15) 1771100001129241 a001 139583862445/192900153618*2537720636^(7/15) 1771100001129241 a001 591286729879/817138163596*2537720636^(7/15) 1771100001129241 a001 225851433717/312119004989*2537720636^(7/15) 1771100001129241 a001 86267571272/119218851371*2537720636^(7/15) 1771100001129241 a001 32951280099/45537549124*2537720636^(7/15) 1771100001129241 a001 32951280099/10749957122*2537720636^(2/5) 1771100001129241 a001 2971215073/73681302247*2537720636^(3/5) 1771100001129241 a001 10983760033/9381251041*2537720636^(4/9) 1771100001129241 a001 12586269025/17393796001*2537720636^(7/15) 1771100001129241 a001 86267571272/73681302247*2537720636^(4/9) 1771100001129241 a001 75283811239/64300051206*2537720636^(4/9) 1771100001129241 a001 2504730781961/2139295485799*2537720636^(4/9) 1771100001129241 a001 365435296162/312119004989*2537720636^(4/9) 1771100001129241 a001 139583862445/119218851371*2537720636^(4/9) 1771100001129241 a001 53316291173/45537549124*2537720636^(4/9) 1771100001129241 a001 1836311903/10749957122*45537549124^(8/17) 1771100001129241 a001 1836311903/10749957122*14662949395604^(8/21) 1771100001129241 a001 1602508992/1368706081*23725150497407^(5/16) 1771100001129241 a001 1602508992/1368706081*505019158607^(5/14) 1771100001129241 a001 1836311903/10749957122*192900153618^(4/9) 1771100001129241 a001 1602508992/1368706081*73681302247^(5/13) 1771100001129241 a001 1836311903/10749957122*73681302247^(6/13) 1771100001129241 a001 1602508992/1368706081*28143753123^(2/5) 1771100001129241 a001 20365011074/17393796001*2537720636^(4/9) 1771100001129241 a001 2971215073/28143753123*2537720636^(5/9) 1771100001129241 a001 1602508992/1368706081*10749957122^(5/12) 1771100001129241 a001 1836311903/10749957122*10749957122^(1/2) 1771100001129241 a001 86267571272/28143753123*2537720636^(2/5) 1771100001129241 a001 32264490531/10525900321*2537720636^(2/5) 1771100001129241 a001 591286729879/192900153618*2537720636^(2/5) 1771100001129241 a001 1548008755920/505019158607*2537720636^(2/5) 1771100001129241 a001 1515744265389/494493258286*2537720636^(2/5) 1771100001129241 a001 956722026041/312119004989*2537720636^(2/5) 1771100001129241 a001 365435296162/119218851371*2537720636^(2/5) 1771100001129241 a001 1836311903/2139295485799*17393796001^(5/7) 1771100001129241 a001 139583862445/45537549124*2537720636^(2/5) 1771100001129241 a001 1836311903/73681302247*17393796001^(4/7) 1771100001129241 a001 12586269025/4106118243*45537549124^(6/17) 1771100001129241 a001 12586269025/4106118243*14662949395604^(2/7) 1771100001129241 a001 12586269025/4106118243*192900153618^(1/3) 1771100001129241 a001 1836311903/28143753123*73681302247^(1/2) 1771100001129241 a001 139583862445/10749957122*2537720636^(1/3) 1771100001129241 a001 86267571272/4106118243*17393796001^(2/7) 1771100001129241 a001 2504730781961/4106118243*17393796001^(1/7) 1771100001129241 a001 1836311903/14662949395604*45537549124^(13/17) 1771100001129241 a001 1836311903/3461452808002*45537549124^(12/17) 1771100001129241 a001 1836311903/1322157322203*45537549124^(2/3) 1771100001129241 a001 1836311903/192900153618*45537549124^(10/17) 1771100001129241 a001 1836311903/73681302247*14662949395604^(4/9) 1771100001129241 a001 10983760033/1368706081*23725150497407^(1/4) 1771100001129241 a001 10983760033/1368706081*73681302247^(4/13) 1771100001129241 a001 75283811239/1368706081*45537549124^(4/17) 1771100001129241 a001 1836311903/73681302247*73681302247^(7/13) 1771100001129241 a001 956722026041/4106118243*45537549124^(3/17) 1771100001129241 a001 53316291173/4106118243*45537549124^(5/17) 1771100001129241 a001 4052739537881/4106118243*45537549124^(2/17) 1771100001129241 a001 1836311903/192900153618*312119004989^(6/11) 1771100001129241 a001 1836311903/192900153618*14662949395604^(10/21) 1771100001129241 a001 86267571272/4106118243*505019158607^(1/4) 1771100001129241 a001 1836311903/192900153618*192900153618^(5/9) 1771100001129241 a006 5^(1/2)*Fibonacci(68)/Lucas(46)/sqrt(5) 1771100001129241 a004 Fibonacci(46)/Lucas(1)/(1/2+sqrt(5)/2)^24 1771100001129241 a001 1836311903/2139295485799*14662949395604^(5/9) 1771100001129241 a001 956722026041/4106118243*192900153618^(1/6) 1771100001129241 a001 1836311903/312119004989*9062201101803^(1/2) 1771100001129241 a001 1836311903/14662949395604*192900153618^(13/18) 1771100001129241 a001 516002918640/1368706081*73681302247^(2/13) 1771100001129241 a001 75283811239/1368706081*73681302247^(3/13) 1771100001129241 a001 139583862445/4106118243*73681302247^(1/4) 1771100001129241 a001 53316291173/4106118243*312119004989^(3/11) 1771100001129241 a001 1836311903/119218851371*1322157322203^(1/2) 1771100001129241 a001 53316291173/4106118243*192900153618^(5/18) 1771100001129241 a001 1836311903/505019158607*73681302247^(8/13) 1771100001129241 a001 1836311903/3461452808002*73681302247^(9/13) 1771100001129241 a001 1836311903/14662949395604*73681302247^(3/4) 1771100001129241 a001 1836311903/23725150497407*73681302247^(10/13) 1771100001129241 a001 1836311903/45537549124*45537549124^(9/17) 1771100001129241 a001 591286729879/4106118243*28143753123^(1/5) 1771100001129241 a001 20365011074/4106118243*45537549124^(1/3) 1771100001129241 a001 53316291173/4106118243*28143753123^(3/10) 1771100001129241 a001 1836311903/45537549124*817138163596^(9/19) 1771100001129241 a001 1836311903/45537549124*14662949395604^(3/7) 1771100001129241 a001 1836311903/45537549124*192900153618^(1/2) 1771100001129241 a001 53316291173/17393796001*2537720636^(2/5) 1771100001129241 a001 3536736619241/1368706081*10749957122^(1/12) 1771100001129241 a001 1836311903/192900153618*28143753123^(3/5) 1771100001129241 a001 4807526976/6643838879*2537720636^(7/15) 1771100001129241 a001 1836311903/2139295485799*28143753123^(7/10) 1771100001129241 a001 1836311903/23725150497407*28143753123^(4/5) 1771100001129241 a001 4052739537881/4106118243*10749957122^(1/8) 1771100001129241 a001 516002918640/1368706081*10749957122^(1/6) 1771100001129241 a001 956722026041/4106118243*10749957122^(3/16) 1771100001129241 a001 591286729879/4106118243*10749957122^(5/24) 1771100001129241 a001 12586269025/4106118243*10749957122^(3/8) 1771100001129241 a001 75283811239/1368706081*10749957122^(1/4) 1771100001129241 a001 2971215073/17393796001*2537720636^(8/15) 1771100001129241 a001 86267571272/4106118243*10749957122^(7/24) 1771100001129241 a001 10983760033/1368706081*10749957122^(1/3) 1771100001129241 a001 53316291173/4106118243*10749957122^(5/16) 1771100001129241 a001 1836311903/17393796001*312119004989^(5/11) 1771100001129241 a001 1836311903/17393796001*3461452808002^(5/12) 1771100001129241 a001 1836311903/28143753123*10749957122^(13/24) 1771100001129241 a001 701408733/3461452808002*1568397607^(19/22) 1771100001129241 a001 1836311903/17393796001*28143753123^(1/2) 1771100001129241 a001 1836311903/73681302247*10749957122^(7/12) 1771100001129241 a001 3536736619241/1368706081*4106118243^(2/23) 1771100001129241 a001 1836311903/45537549124*10749957122^(9/16) 1771100001129241 a001 1836311903/192900153618*10749957122^(5/8) 1771100001129241 a001 1836311903/505019158607*10749957122^(2/3) 1771100001129241 a001 1836311903/817138163596*10749957122^(11/16) 1771100001129241 a001 1836311903/1322157322203*10749957122^(17/24) 1771100001129241 a001 365435296162/28143753123*2537720636^(1/3) 1771100001129241 a001 1836311903/3461452808002*10749957122^(3/4) 1771100001129241 a001 1836311903/9062201101803*10749957122^(19/24) 1771100001129241 a001 1836311903/14662949395604*10749957122^(13/16) 1771100001129241 a001 1836311903/23725150497407*10749957122^(5/6) 1771100001129241 a001 956722026041/73681302247*2537720636^(1/3) 1771100001129241 a001 2504730781961/192900153618*2537720636^(1/3) 1771100001129241 a001 10610209857723/817138163596*2537720636^(1/3) 1771100001129241 a001 4052739537881/312119004989*2537720636^(1/3) 1771100001129241 a001 1548008755920/119218851371*2537720636^(1/3) 1771100001129241 a001 4052739537881/4106118243*4106118243^(3/23) 1771100001129241 a001 591286729879/45537549124*2537720636^(1/3) 1771100001129241 a001 591286729879/10749957122*2537720636^(4/15) 1771100001129241 a001 516002918640/1368706081*4106118243^(4/23) 1771100001129241 a001 7787980473/599786069*2537720636^(1/3) 1771100001129241 a001 591286729879/4106118243*4106118243^(5/23) 1771100001129241 a001 75283811239/1368706081*4106118243^(6/23) 1771100001129241 a001 774004377960/5374978561*2537720636^(2/9) 1771100001129241 a001 7778742049/6643838879*2537720636^(4/9) 1771100001129241 a001 12585437040/228811001*2537720636^(4/15) 1771100001129241 a001 1602508992/1368706081*4106118243^(10/23) 1771100001129241 a001 4052739537881/73681302247*2537720636^(4/15) 1771100001129241 a001 3536736619241/64300051206*2537720636^(4/15) 1771100001129241 a001 6557470319842/119218851371*2537720636^(4/15) 1771100001129241 a001 86267571272/4106118243*4106118243^(7/23) 1771100001129241 a001 2504730781961/45537549124*2537720636^(4/15) 1771100001129241 a001 2504730781961/10749957122*2537720636^(1/5) 1771100001129241 a001 20365011074/6643838879*2537720636^(2/5) 1771100001129241 a001 10983760033/1368706081*4106118243^(8/23) 1771100001129241 a001 956722026041/17393796001*2537720636^(4/15) 1771100001129241 a001 2971215073/4106118243*17393796001^(3/7) 1771100001129241 a001 12586269025/4106118243*4106118243^(9/23) 1771100001129241 a001 1836311903/10749957122*4106118243^(12/23) 1771100001129241 a001 233802911/3020733700601*1568397607^(10/11) 1771100001129241 a001 2971215073/4106118243*45537549124^(7/17) 1771100001129241 a001 2971215073/4106118243*14662949395604^(1/3) 1771100001129241 a001 2971215073/4106118243*192900153618^(7/18) 1771100001129241 a001 4052739537881/28143753123*2537720636^(2/9) 1771100001129241 a001 1515744265389/10525900321*2537720636^(2/9) 1771100001129241 a001 3278735159921/22768774562*2537720636^(2/9) 1771100001129241 a001 2971215073/4106118243*10749957122^(7/16) 1771100001129241 a001 6557470319842/28143753123*2537720636^(1/5) 1771100001129241 a001 2504730781961/17393796001*2537720636^(2/9) 1771100001129241 a001 10610209857723/45537549124*2537720636^(1/5) 1771100001129241 a001 4807525989/4870846*2537720636^(2/15) 1771100001129241 a001 86267571272/6643838879*2537720636^(1/3) 1771100001129241 a001 4052739537881/17393796001*2537720636^(1/5) 1771100001129241 a001 1836311903/28143753123*4106118243^(13/23) 1771100001129241 a001 1836311903/73681302247*4106118243^(14/23) 1771100001129241 a001 3536736619241/1368706081*1568397607^(1/11) 1771100001129241 a001 1836311903/192900153618*4106118243^(15/23) 1771100001129241 a001 365435296162/6643838879*2537720636^(4/15) 1771100001129241 a001 701408733/23725150497407*1568397607^(21/22) 1771100001129241 a001 1836311903/505019158607*4106118243^(16/23) 1771100001129241 a001 2403763488/5374978561*312119004989^(2/5) 1771100001129241 a001 1836311903/1322157322203*4106118243^(17/23) 1771100001129241 a001 2403763488/5374978561*10749957122^(11/24) 1771100001129241 a001 1836311903/3461452808002*4106118243^(18/23) 1771100001129241 a001 956722026041/6643838879*2537720636^(2/9) 1771100001129241 a001 4807526976/5600748293801*17393796001^(5/7) 1771100001129241 a001 267084832/10716675201*17393796001^(4/7) 1771100001129241 a001 1836311903/9062201101803*4106118243^(19/23) 1771100001129241 a001 1602508992/9381251041*45537549124^(8/17) 1771100001129241 a001 12586269025/10749957122*23725150497407^(5/16) 1771100001129241 a001 12586269025/10749957122*505019158607^(5/14) 1771100001129241 a001 1602508992/9381251041*192900153618^(4/9) 1771100001129241 a001 12586269025/10749957122*73681302247^(5/13) 1771100001129241 a001 1602508992/9381251041*73681302247^(6/13) 1771100001129241 a001 225851433717/10749957122*17393796001^(2/7) 1771100001129241 a001 12586269025/10749957122*28143753123^(2/5) 1771100001129241 a001 3278735159921/5374978561*17393796001^(1/7) 1771100001129241 a001 32951280099/10749957122*45537549124^(6/17) 1771100001129241 a001 1602508992/3020733700601*45537549124^(12/17) 1771100001129241 a001 14930208/10749853441*45537549124^(2/3) 1771100001129241 a001 4807526976/2139295485799*45537549124^(11/17) 1771100001129241 a001 102287808/10745088481*45537549124^(10/17) 1771100001129241 a001 32951280099/10749957122*14662949395604^(2/7) 1771100001129241 a001 32951280099/10749957122*192900153618^(1/3) 1771100001129241 a001 139583862445/10749957122*45537549124^(5/17) 1771100001129241 a001 591286729879/10749957122*45537549124^(4/17) 1771100001129241 a001 686789568/10525900321*73681302247^(1/2) 1771100001129241 a001 53316291173/10749957122*45537549124^(1/3) 1771100001129241 a001 2504730781961/10749957122*45537549124^(3/17) 1771100001129241 a001 4807525989/4870846*45537549124^(2/17) 1771100001129241 a001 267084832/10716675201*14662949395604^(4/9) 1771100001129241 a001 267084832/10716675201*505019158607^(1/2) 1771100001129241 a001 102287808/10745088481*312119004989^(6/11) 1771100001129241 a001 102287808/10745088481*14662949395604^(10/21) 1771100001129241 a001 1201881744/204284540899*9062201101803^(1/2) 1771100001129241 a001 139583862445/10749957122*312119004989^(3/11) 1771100001129241 a001 102287808/10745088481*192900153618^(5/9) 1771100001129241 a001 139583862445/10749957122*192900153618^(5/18) 1771100001129241 a001 1602508992/3020733700601*192900153618^(2/3) 1771100001129241 a001 4052739537881/10749957122*73681302247^(2/13) 1771100001129241 a001 591286729879/10749957122*73681302247^(3/13) 1771100001129241 a001 182717648081/5374978561*73681302247^(1/4) 1771100001129241 a001 4807526976/119218851371*817138163596^(9/19) 1771100001129241 a001 267084832/10716675201*73681302247^(7/13) 1771100001129241 a001 4807526976/119218851371*192900153618^(1/2) 1771100001129241 a001 1602508992/440719107401*73681302247^(8/13) 1771100001129241 a001 1602508992/3020733700601*73681302247^(9/13) 1771100001129241 a001 1548008755920/1568397607*599074578^(1/7) 1771100001129241 a001 1548008755920/6643838879*2537720636^(1/5) 1771100001129241 a001 139583862445/10749957122*28143753123^(3/10) 1771100001129241 a001 1201881744/11384387281*312119004989^(5/11) 1771100001129241 a001 10182505537/5374978561*817138163596^(1/3) 1771100001129241 a001 102287808/10745088481*28143753123^(3/5) 1771100001129241 a001 4807526976/5600748293801*28143753123^(7/10) 1771100001129241 a001 1836311903/23725150497407*4106118243^(20/23) 1771100001129241 a001 4807525989/4870846*10749957122^(1/8) 1771100001129241 a001 1201881744/11384387281*28143753123^(1/2) 1771100001129241 a001 4052739537881/10749957122*10749957122^(1/6) 1771100001129241 a001 2504730781961/10749957122*10749957122^(3/16) 1771100001129241 a001 1836311903/6643838879*4106118243^(1/2) 1771100001129241 a001 774004377960/5374978561*10749957122^(5/24) 1771100001129241 a001 7778742049/10749957122*17393796001^(3/7) 1771100001129241 a001 591286729879/10749957122*10749957122^(1/4) 1771100001129241 a001 12586269025/10749957122*10749957122^(5/12) 1771100001129241 a001 225851433717/10749957122*10749957122^(7/24) 1771100001129241 a001 139583862445/10749957122*10749957122^(5/16) 1771100001129241 a001 43133785636/5374978561*10749957122^(1/3) 1771100001129241 a001 32951280099/10749957122*10749957122^(3/8) 1771100001129241 a001 1602508992/9381251041*10749957122^(1/2) 1771100001129241 a001 7778742049/10749957122*45537549124^(7/17) 1771100001129241 a001 7778742049/10749957122*14662949395604^(1/3) 1771100001129241 a001 7778742049/10749957122*192900153618^(7/18) 1771100001129241 a001 686789568/10525900321*10749957122^(13/24) 1771100001129241 a001 4052739537881/4106118243*1568397607^(3/22) 1771100001129241 a001 4807526976/119218851371*10749957122^(9/16) 1771100001129241 a001 267084832/10716675201*10749957122^(7/12) 1771100001129241 a001 12586269025/14662949395604*17393796001^(5/7) 1771100001129241 a001 102287808/10745088481*10749957122^(5/8) 1771100001129241 a001 12586269025/505019158607*17393796001^(4/7) 1771100001129241 a001 1602508992/440719107401*10749957122^(2/3) 1771100001129241 a001 4807526976/2139295485799*10749957122^(11/16) 1771100001129241 a001 12586269025/28143753123*312119004989^(2/5) 1771100001129241 a001 591286729879/28143753123*17393796001^(2/7) 1771100001129241 a001 20365011074/28143753123*17393796001^(3/7) 1771100001129241 a001 1602508992/3020733700601*10749957122^(3/4) 1771100001129241 a001 10983760033/440719107401*17393796001^(4/7) 1771100001129241 a001 43133785636/1730726404001*17393796001^(4/7) 1771100001129241 a001 75283811239/3020733700601*17393796001^(4/7) 1771100001129241 a001 182717648081/7331474697802*17393796001^(4/7) 1771100001129241 a001 139583862445/5600748293801*17393796001^(4/7) 1771100001129241 a001 53316291173/2139295485799*17393796001^(4/7) 1771100001129241 a001 4807526976/23725150497407*10749957122^(19/24) 1771100001129241 a001 12586269025/73681302247*45537549124^(8/17) 1771100001129241 a001 12586269025/23725150497407*45537549124^(12/17) 1771100001129241 a001 12586269025/9062201101803*45537549124^(2/3) 1771100001129241 a001 12586269025/5600748293801*45537549124^(11/17) 1771100001129241 a001 7778742049/10749957122*10749957122^(7/16) 1771100001129241 a001 12586269025/1322157322203*45537549124^(10/17) 1771100001129241 a001 53316291173/73681302247*17393796001^(3/7) 1771100001129241 a001 1144206275/28374454999*45537549124^(9/17) 1771100001129241 a001 86267571272/28143753123*45537549124^(6/17) 1771100001129241 a001 10983760033/9381251041*23725150497407^(5/16) 1771100001129241 a001 10983760033/9381251041*505019158607^(5/14) 1771100001129241 a001 12586269025/73681302247*192900153618^(4/9) 1771100001129241 a001 139583862445/192900153618*17393796001^(3/7) 1771100001129241 a001 139583862445/28143753123*45537549124^(1/3) 1771100001129241 a001 10182505537/408569081798*17393796001^(4/7) 1771100001129241 a001 365435296162/28143753123*45537549124^(5/17) 1771100001129241 a001 10983760033/9381251041*73681302247^(5/13) 1771100001129241 a001 12586269025/73681302247*73681302247^(6/13) 1771100001129241 a001 6557470319842/28143753123*45537549124^(3/17) 1771100001129241 a001 86267571272/28143753123*14662949395604^(2/7) 1771100001129241 a001 86267571272/28143753123*192900153618^(1/3) 1771100001129241 a001 12586269025/1322157322203*312119004989^(6/11) 1771100001129241 a001 12585437040/228811001*14662949395604^(4/21) 1771100001129241 a006 5^(1/2)*Fibonacci(72)/Lucas(50)/sqrt(5) 1771100001129241 a004 Fibonacci(50)/Lucas(1)/(1/2+sqrt(5)/2)^28 1771100001129241 a001 12585437040/228811001*192900153618^(2/9) 1771100001129241 a001 1144206275/28374454999*14662949395604^(3/7) 1771100001129241 a001 12586269025/23725150497407*192900153618^(2/3) 1771100001129241 a001 1144206275/28374454999*192900153618^(1/2) 1771100001129241 a001 3536736619241/9381251041*73681302247^(2/13) 1771100001129241 a001 12585437040/228811001*73681302247^(3/13) 1771100001129241 a001 956722026041/28143753123*73681302247^(1/4) 1771100001129241 a001 75283811239/9381251041*73681302247^(4/13) 1771100001129241 a001 12586269025/192900153618*73681302247^(1/2) 1771100001129241 a001 12586269025/119218851371*312119004989^(5/11) 1771100001129241 a001 12586269025/119218851371*3461452808002^(5/12) 1771100001129241 a001 12586269025/505019158607*73681302247^(7/13) 1771100001129241 a001 12586269025/3461452808002*73681302247^(8/13) 1771100001129241 a001 12586269025/23725150497407*73681302247^(9/13) 1771100001129241 a001 1548008755920/73681302247*17393796001^(2/7) 1771100001129241 a001 32951280099/45537549124*17393796001^(3/7) 1771100001129241 a001 4052739537881/28143753123*28143753123^(1/5) 1771100001129241 a001 20365011074/28143753123*45537549124^(7/17) 1771100001129241 a001 4052739537881/192900153618*17393796001^(2/7) 1771100001129241 a001 225749145909/10745088481*17393796001^(2/7) 1771100001129241 a001 10983760033/9381251041*28143753123^(2/5) 1771100001129241 a001 6557470319842/312119004989*17393796001^(2/7) 1771100001129241 a001 4807525989/4870846*4106118243^(3/23) 1771100001129241 a001 365435296162/28143753123*28143753123^(3/10) 1771100001129241 a001 2504730781961/119218851371*17393796001^(2/7) 1771100001129241 a001 20365011074/28143753123*14662949395604^(1/3) 1771100001129241 a001 20365011074/28143753123*192900153618^(7/18) 1771100001129241 a001 12586269025/119218851371*28143753123^(1/2) 1771100001129241 a001 12586269025/1322157322203*28143753123^(3/5) 1771100001129241 a001 32951280099/14662949395604*45537549124^(11/17) 1771100001129241 a001 32951280099/3461452808002*45537549124^(10/17) 1771100001129241 a001 956722026041/45537549124*17393796001^(2/7) 1771100001129241 a001 10983760033/64300051206*45537549124^(8/17) 1771100001129241 a001 12586269025/14662949395604*28143753123^(7/10) 1771100001129241 a001 32951280099/73681302247*312119004989^(2/5) 1771100001129241 a001 32264490531/10525900321*45537549124^(6/17) 1771100001129241 a001 365435296162/73681302247*45537549124^(1/3) 1771100001129241 a001 956722026041/73681302247*45537549124^(5/17) 1771100001129241 a001 53316291173/73681302247*45537549124^(7/17) 1771100001129241 a001 86267571272/9062201101803*45537549124^(10/17) 1771100001129241 a001 4052739537881/73681302247*45537549124^(4/17) 1771100001129241 a001 225851433717/5600748293801*45537549124^(9/17) 1771100001129241 a001 365435296162/9062201101803*45537549124^(9/17) 1771100001129241 a001 139583862445/3461452808002*45537549124^(9/17) 1771100001129241 a001 53316291173/23725150497407*45537549124^(11/17) 1771100001129241 a001 75283811239/440719107401*45537549124^(8/17) 1771100001129241 a001 139583862445/192900153618*45537549124^(7/17) 1771100001129241 a001 10983760033/64300051206*14662949395604^(8/21) 1771100001129241 a001 10983760033/64300051206*192900153618^(4/9) 1771100001129241 a001 1548008755920/73681302247*14662949395604^(2/9) 1771100001129241 a001 10983760033/3020733700601*23725150497407^(1/2) 1771100001129241 a006 5^(1/2)*Fibonacci(74)/Lucas(52)/sqrt(5) 1771100001129241 a004 Fibonacci(52)/Lucas(1)/(1/2+sqrt(5)/2)^30 1771100001129241 a001 10983760033/3020733700601*505019158607^(4/7) 1771100001129241 a001 139583862445/73681302247*817138163596^(1/3) 1771100001129241 a001 2504730781961/192900153618*45537549124^(5/17) 1771100001129241 a001 10610209857723/2139295485799*45537549124^(1/3) 1771100001129241 a001 86267571272/119218851371*45537549124^(7/17) 1771100001129241 a001 140728068720/28374454999*45537549124^(1/3) 1771100001129241 a001 10610209857723/817138163596*45537549124^(5/17) 1771100001129241 a001 2504730781961/73681302247*73681302247^(1/4) 1771100001129241 a001 10983760033/64300051206*73681302247^(6/13) 1771100001129241 a001 53316291173/73681302247*14662949395604^(1/3) 1771100001129241 a001 53316291173/73681302247*192900153618^(7/18) 1771100001129241 a001 32951280099/505019158607*73681302247^(1/2) 1771100001129241 a001 591286729879/119218851371*45537549124^(1/3) 1771100001129241 a001 10983760033/440719107401*73681302247^(7/13) 1771100001129241 a001 1548008755920/119218851371*45537549124^(5/17) 1771100001129241 a001 10983760033/3020733700601*73681302247^(8/13) 1771100001129241 a001 43133785636/96450076809*312119004989^(2/5) 1771100001129241 a001 6557470319842/119218851371*45537549124^(4/17) 1771100001129241 a001 86267571272/9062201101803*312119004989^(6/11) 1771100001129241 a001 21566892818/204284540899*312119004989^(5/11) 1771100001129241 a006 5^(1/2)*Fibonacci(76)/Lucas(54)/sqrt(5) 1771100001129241 a004 Fibonacci(54)/Lucas(1)/(1/2+sqrt(5)/2)^32 1771100001129241 a001 1135099622/192933544679*9062201101803^(1/2) 1771100001129241 a001 139583862445/192900153618*14662949395604^(1/3) 1771100001129241 a001 225851433717/2139295485799*312119004989^(5/11) 1771100001129241 a006 5^(1/2)*Fibonacci(78)/Lucas(56)/sqrt(5) 1771100001129241 a004 Fibonacci(56)/Lucas(1)/(1/2+sqrt(5)/2)^34 1771100001129241 a004 Fibonacci(58)/Lucas(1)/(1/2+sqrt(5)/2)^36 1771100001129241 a006 5^(1/2)*Fibonacci(82)/Lucas(60)/sqrt(5) 1771100001129241 a004 Fibonacci(60)/Lucas(1)/(1/2+sqrt(5)/2)^38 1771100001129241 a004 Fibonacci(64)/Lucas(1)/(1/2+sqrt(5)/2)^42 1771100001129241 a004 Fibonacci(66)/Lucas(1)/(1/2+sqrt(5)/2)^44 1771100001129241 a004 Fibonacci(68)/Lucas(1)/(1/2+sqrt(5)/2)^46 1771100001129241 a004 Fibonacci(70)/Lucas(1)/(1/2+sqrt(5)/2)^48 1771100001129241 a004 Fibonacci(72)/Lucas(1)/(1/2+sqrt(5)/2)^50 1771100001129241 a004 Fibonacci(74)/Lucas(1)/(1/2+sqrt(5)/2)^52 1771100001129241 a004 Fibonacci(76)/Lucas(1)/(1/2+sqrt(5)/2)^54 1771100001129241 a004 Fibonacci(88)/Lucas(1)/(1/2+sqrt(5)/2)^66 1771100001129241 a004 Fibonacci(90)/Lucas(1)/(1/2+sqrt(5)/2)^68 1771100001129241 a004 Fibonacci(92)/Lucas(1)/(1/2+sqrt(5)/2)^70 1771100001129241 a004 Fibonacci(94)/Lucas(1)/(1/2+sqrt(5)/2)^72 1771100001129241 a004 Fibonacci(96)/Lucas(1)/(1/2+sqrt(5)/2)^74 1771100001129241 a004 Fibonacci(100)/Lucas(1)/(1/2+sqrt(5)/2)^78 1771100001129241 a004 Fibonacci(97)/Lucas(1)/(1/2+sqrt(5)/2)^75 1771100001129241 a004 Fibonacci(98)/Lucas(1)/(1/2+sqrt(5)/2)^76 1771100001129241 a004 Fibonacci(99)/Lucas(1)/(1/2+sqrt(5)/2)^77 1771100001129241 a004 Fibonacci(95)/Lucas(1)/(1/2+sqrt(5)/2)^73 1771100001129241 a004 Fibonacci(93)/Lucas(1)/(1/2+sqrt(5)/2)^71 1771100001129241 a004 Fibonacci(91)/Lucas(1)/(1/2+sqrt(5)/2)^69 1771100001129241 a004 Fibonacci(89)/Lucas(1)/(1/2+sqrt(5)/2)^67 1771100001129241 a004 Fibonacci(87)/Lucas(1)/(1/2+sqrt(5)/2)^65 1771100001129241 a004 Fibonacci(83)/Lucas(1)/(1/2+sqrt(5)/2)^61 1771100001129241 a004 Fibonacci(75)/Lucas(1)/(1/2+sqrt(5)/2)^53 1771100001129241 a004 Fibonacci(73)/Lucas(1)/(1/2+sqrt(5)/2)^51 1771100001129241 a004 Fibonacci(71)/Lucas(1)/(1/2+sqrt(5)/2)^49 1771100001129241 a004 Fibonacci(65)/Lucas(1)/(1/2+sqrt(5)/2)^43 1771100001129241 a004 Fibonacci(63)/Lucas(1)/(1/2+sqrt(5)/2)^41 1771100001129241 a006 5^(1/2)*Fibonacci(85)/Lucas(63)/sqrt(5) 1771100001129241 a004 Fibonacci(61)/Lucas(1)/(1/2+sqrt(5)/2)^39 1771100001129241 a004 Fibonacci(59)/Lucas(1)/(1/2+sqrt(5)/2)^37 1771100001129241 a006 5^(1/2)*Fibonacci(81)/Lucas(59)/sqrt(5) 1771100001129241 a004 Fibonacci(57)/Lucas(1)/(1/2+sqrt(5)/2)^35 1771100001129241 a006 5^(1/2)*Fibonacci(79)/Lucas(57)/sqrt(5) 1771100001129241 a004 Fibonacci(55)/Lucas(1)/(1/2+sqrt(5)/2)^33 1771100001129241 a006 5^(1/2)*Fibonacci(77)/Lucas(55)/sqrt(5) 1771100001129241 a001 139583862445/312119004989*312119004989^(2/5) 1771100001129241 a001 139583862445/14662949395604*192900153618^(5/9) 1771100001129241 a001 86000486440/10716675201*73681302247^(4/13) 1771100001129241 a001 75283811239/64300051206*73681302247^(5/13) 1771100001129241 a001 3536736619241/440719107401*73681302247^(4/13) 1771100001129241 a001 10610209857723/312119004989*73681302247^(1/4) 1771100001129241 a001 10610209857723/119218851371*312119004989^(1/5) 1771100001129241 a001 1515744265389/10525900321*28143753123^(1/5) 1771100001129241 a004 Fibonacci(53)/Lucas(1)/(1/2+sqrt(5)/2)^31 1771100001129241 a001 1548008755920/119218851371*192900153618^(5/18) 1771100001129241 a001 139583862445/119218851371*505019158607^(5/14) 1771100001129241 a001 139583862445/817138163596*73681302247^(6/13) 1771100001129241 a001 182717648081/7331474697802*73681302247^(7/13) 1771100001129241 a001 139583862445/2139295485799*73681302247^(1/2) 1771100001129241 a001 139583862445/5600748293801*73681302247^(7/13) 1771100001129241 a001 4052739537881/119218851371*73681302247^(1/4) 1771100001129241 a001 956722026041/119218851371*73681302247^(4/13) 1771100001129241 a001 53316291173/119218851371*312119004989^(2/5) 1771100001129241 a001 10182505537/7331474697802*45537549124^(2/3) 1771100001129241 a001 53316291173/817138163596*73681302247^(1/2) 1771100001129241 a001 53316291173/312119004989*73681302247^(6/13) 1771100001129241 a001 20365011074/9062201101803*45537549124^(11/17) 1771100001129241 a001 3536736619241/9381251041*10749957122^(1/6) 1771100001129241 a001 53316291173/14662949395604*73681302247^(8/13) 1771100001129241 a001 956722026041/73681302247*28143753123^(3/10) 1771100001129241 a001 20365011074/2139295485799*45537549124^(10/17) 1771100001129241 a001 20365011074/505019158607*45537549124^(9/17) 1771100001129241 a001 86267571272/73681302247*28143753123^(2/5) 1771100001129241 a001 32951280099/45537549124*14662949395604^(1/3) 1771100001129241 a001 32951280099/45537549124*192900153618^(7/18) 1771100001129241 a001 225851433717/45537549124*45537549124^(1/3) 1771100001129241 a001 139583862445/45537549124*45537549124^(6/17) 1771100001129241 a001 591286729879/45537549124*45537549124^(5/17) 1771100001129241 a001 2504730781961/192900153618*28143753123^(3/10) 1771100001129241 a001 6557470319842/28143753123*10749957122^(3/16) 1771100001129241 a001 2504730781961/45537549124*45537549124^(4/17) 1771100001129241 a001 10610209857723/817138163596*28143753123^(3/10) 1771100001129241 a001 4052739537881/312119004989*28143753123^(3/10) 1771100001129241 a001 10610209857723/45537549124*45537549124^(3/17) 1771100001129241 a001 1548008755920/119218851371*28143753123^(3/10) 1771100001129241 a001 10182505537/96450076809*312119004989^(5/11) 1771100001129241 a001 10182505537/96450076809*3461452808002^(5/12) 1771100001129241 a001 20365011074/2139295485799*312119004989^(6/11) 1771100001129241 a001 10182505537/1730726404001*9062201101803^(1/2) 1771100001129241 a004 Fibonacci(51)/Lucas(1)/(1/2+sqrt(5)/2)^29 1771100001129241 a001 10182505537/408569081798*505019158607^(1/2) 1771100001129241 a001 139583862445/45537549124*14662949395604^(2/7) 1771100001129241 a001 139583862445/45537549124*192900153618^(1/3) 1771100001129241 a001 2504730781961/2139295485799*28143753123^(2/5) 1771100001129241 a001 2504730781961/45537549124*73681302247^(3/13) 1771100001129241 a001 387002188980/11384387281*73681302247^(1/4) 1771100001129241 a001 182717648081/22768774562*73681302247^(4/13) 1771100001129241 a001 20365011074/119218851371*14662949395604^(8/21) 1771100001129241 a001 53316291173/45537549124*23725150497407^(5/16) 1771100001129241 a001 53316291173/45537549124*505019158607^(5/14) 1771100001129241 a001 20365011074/119218851371*192900153618^(4/9) 1771100001129241 a001 32951280099/3461452808002*28143753123^(3/5) 1771100001129241 a001 10182505537/408569081798*73681302247^(7/13) 1771100001129241 a001 139583862445/119218851371*28143753123^(2/5) 1771100001129241 a001 20365011074/5600748293801*73681302247^(8/13) 1771100001129241 a001 21566892818/204284540899*28143753123^(1/2) 1771100001129241 a001 12586269025/17393796001*17393796001^(3/7) 1771100001129241 a001 182717648081/1730726404001*28143753123^(1/2) 1771100001129241 a001 139583862445/1322157322203*28143753123^(1/2) 1771100001129241 a001 53316291173/505019158607*28143753123^(1/2) 1771100001129241 a001 3278735159921/22768774562*28143753123^(1/5) 1771100001129241 a001 225851433717/23725150497407*28143753123^(3/5) 1771100001129241 a001 139583862445/14662949395604*28143753123^(3/5) 1771100001129241 a001 53316291173/5600748293801*28143753123^(3/5) 1771100001129241 a001 591286729879/45537549124*28143753123^(3/10) 1771100001129241 a001 12585437040/228811001*10749957122^(1/4) 1771100001129241 a001 7778742049/9062201101803*17393796001^(5/7) 1771100001129241 a001 10182505537/22768774562*312119004989^(2/5) 1771100001129241 a001 53316291173/45537549124*28143753123^(2/5) 1771100001129241 a001 10182505537/96450076809*28143753123^(1/2) 1771100001129241 a001 20365011074/2139295485799*28143753123^(3/5) 1771100001129241 a001 591286729879/28143753123*10749957122^(7/24) 1771100001129241 a001 20365011074/23725150497407*28143753123^(7/10) 1771100001129241 a001 7778742049/312119004989*17393796001^(4/7) 1771100001129241 a001 12586269025/28143753123*10749957122^(11/24) 1771100001129241 a001 1515744265389/10525900321*10749957122^(5/24) 1771100001129241 a001 4052739537881/10749957122*4106118243^(4/23) 1771100001129241 a001 12586269025/17393796001*45537549124^(7/17) 1771100001129241 a001 6557470319842/6643838879*2537720636^(2/15) 1771100001129241 a001 86267571272/28143753123*10749957122^(3/8) 1771100001129241 a001 4052739537881/73681302247*10749957122^(1/4) 1771100001129241 a001 12586269025/17393796001*14662949395604^(1/3) 1771100001129241 a001 12586269025/17393796001*192900153618^(7/18) 1771100001129241 a001 10610209857723/45537549124*10749957122^(3/16) 1771100001129241 a001 3536736619241/64300051206*10749957122^(1/4) 1771100001129241 a001 10983760033/9381251041*10749957122^(5/12) 1771100001129241 a001 6557470319842/119218851371*10749957122^(1/4) 1771100001129241 a001 3278735159921/22768774562*10749957122^(5/24) 1771100001129241 a001 1548008755920/73681302247*10749957122^(7/24) 1771100001129241 a001 365435296162/17393796001*17393796001^(2/7) 1771100001129241 a001 4052739537881/192900153618*10749957122^(7/24) 1771100001129241 a001 225749145909/10745088481*10749957122^(7/24) 1771100001129241 a001 6557470319842/312119004989*10749957122^(7/24) 1771100001129241 a001 2504730781961/119218851371*10749957122^(7/24) 1771100001129241 a001 2504730781961/45537549124*10749957122^(1/4) 1771100001129241 a001 2504730781961/192900153618*10749957122^(5/16) 1771100001129241 a001 591286729879/73681302247*10749957122^(1/3) 1771100001129241 a001 10610209857723/817138163596*10749957122^(5/16) 1771100001129241 a001 4052739537881/312119004989*10749957122^(5/16) 1771100001129241 a001 1548008755920/119218851371*10749957122^(5/16) 1771100001129241 a001 10610209857723/17393796001*17393796001^(1/7) 1771100001129241 a001 86000486440/10716675201*10749957122^(1/3) 1771100001129241 a001 12586269025/73681302247*10749957122^(1/2) 1771100001129241 a001 4052739537881/505019158607*10749957122^(1/3) 1771100001129241 a001 2504730781961/312119004989*10749957122^(1/3) 1771100001129241 a001 956722026041/119218851371*10749957122^(1/3) 1771100001129241 a001 7778742049/14662949395604*45537549124^(12/17) 1771100001129241 a001 7778742049/5600748293801*45537549124^(2/3) 1771100001129241 a001 7778742049/3461452808002*45537549124^(11/17) 1771100001129241 a001 20365011074/28143753123*10749957122^(7/16) 1771100001129241 a001 7778742049/192900153618*45537549124^(9/17) 1771100001129241 a001 32264490531/10525900321*10749957122^(3/8) 1771100001129241 a001 7778742049/73681302247*312119004989^(5/11) 1771100001129241 a001 32951280099/17393796001*817138163596^(1/3) 1771100001129241 a001 7787980473/599786069*45537549124^(5/17) 1771100001129241 a001 591286729879/45537549124*10749957122^(5/16) 1771100001129241 a001 53316291173/17393796001*45537549124^(6/17) 1771100001129241 a001 591286729879/192900153618*10749957122^(3/8) 1771100001129241 a001 4052739537881/17393796001*45537549124^(3/17) 1771100001129241 a001 1548008755920/505019158607*10749957122^(3/8) 1771100001129241 a001 1515744265389/494493258286*10749957122^(3/8) 1771100001129241 a001 2504730781961/817138163596*10749957122^(3/8) 1771100001129241 a001 956722026041/312119004989*10749957122^(3/8) 1771100001129241 a001 7778742049/192900153618*14662949395604^(3/7) 1771100001129241 a001 7778742049/192900153618*192900153618^(1/2) 1771100001129241 a001 2504730781961/17393796001*312119004989^(2/11) 1771100001129241 a004 Fibonacci(49)/Lucas(1)/(1/2+sqrt(5)/2)^27 1771100001129241 a001 4052739537881/17393796001*192900153618^(1/6) 1771100001129241 a001 139583862445/17393796001*23725150497407^(1/4) 1771100001129241 a001 7778742049/14662949395604*192900153618^(2/3) 1771100001129241 a001 6557470319842/17393796001*73681302247^(2/13) 1771100001129241 a001 591286729879/17393796001*73681302247^(1/4) 1771100001129241 a001 182717648081/22768774562*10749957122^(1/3) 1771100001129241 a001 139583862445/17393796001*73681302247^(4/13) 1771100001129241 a001 53316291173/17393796001*192900153618^(1/3) 1771100001129241 a001 86267571272/73681302247*10749957122^(5/12) 1771100001129241 a001 12586269025/192900153618*10749957122^(13/24) 1771100001129241 a001 7778742049/312119004989*73681302247^(7/13) 1771100001129241 a001 7778742049/2139295485799*73681302247^(8/13) 1771100001129241 a001 7778742049/14662949395604*73681302247^(9/13) 1771100001129241 a001 7778742049/119218851371*73681302247^(1/2) 1771100001129241 a001 2504730781961/17393796001*28143753123^(1/5) 1771100001129241 a001 7778742049/45537549124*45537549124^(8/17) 1771100001129241 a001 75283811239/64300051206*10749957122^(5/12) 1771100001129241 a001 32951280099/73681302247*10749957122^(11/24) 1771100001129241 a001 2504730781961/2139295485799*10749957122^(5/12) 1771100001129241 a001 1144206275/28374454999*10749957122^(9/16) 1771100001129241 a001 365435296162/312119004989*10749957122^(5/12) 1771100001129241 a001 53316291173/73681302247*10749957122^(7/16) 1771100001129241 a001 7787980473/599786069*28143753123^(3/10) 1771100001129241 a001 139583862445/119218851371*10749957122^(5/12) 1771100001129241 a001 139583862445/45537549124*10749957122^(3/8) 1771100001129241 a001 7778742049/73681302247*28143753123^(1/2) 1771100001129241 a001 139583862445/192900153618*10749957122^(7/16) 1771100001129241 a001 12586269025/505019158607*10749957122^(7/12) 1771100001129241 a001 20365011074/17393796001*505019158607^(5/14) 1771100001129241 a001 225851433717/312119004989*10749957122^(7/16) 1771100001129241 a001 7778742049/45537549124*192900153618^(4/9) 1771100001129241 a001 86267571272/119218851371*10749957122^(7/16) 1771100001129241 a001 20365011074/17393796001*73681302247^(5/13) 1771100001129241 a001 7778742049/45537549124*73681302247^(6/13) 1771100001129241 a001 43133785636/96450076809*10749957122^(11/24) 1771100001129241 a001 225851433717/505019158607*10749957122^(11/24) 1771100001129241 a001 139583862445/312119004989*10749957122^(11/24) 1771100001129241 a001 7778742049/817138163596*28143753123^(3/5) 1771100001129241 a001 32951280099/45537549124*10749957122^(7/16) 1771100001129241 a001 53316291173/119218851371*10749957122^(11/24) 1771100001129241 a001 10983760033/64300051206*10749957122^(1/2) 1771100001129241 a001 12586269025/1322157322203*10749957122^(5/8) 1771100001129241 a001 53316291173/45537549124*10749957122^(5/12) 1771100001129241 a001 7778742049/9062201101803*28143753123^(7/10) 1771100001129241 a001 774004377960/5374978561*4106118243^(5/23) 1771100001129241 a001 20365011074/17393796001*28143753123^(2/5) 1771100001129241 a001 75283811239/440719107401*10749957122^(1/2) 1771100001129241 a001 2504730781961/14662949395604*10749957122^(1/2) 1771100001129241 a001 139583862445/817138163596*10749957122^(1/2) 1771100001129241 a001 53316291173/312119004989*10749957122^(1/2) 1771100001129241 a001 12586269025/3461452808002*10749957122^(2/3) 1771100001129241 a001 86267571272/1322157322203*10749957122^(13/24) 1771100001129241 a001 32264490531/494493258286*10749957122^(13/24) 1771100001129241 a001 12586269025/5600748293801*10749957122^(11/16) 1771100001129241 a001 139583862445/2139295485799*10749957122^(13/24) 1771100001129241 a001 6557470319842/17393796001*10749957122^(1/6) 1771100001129241 a001 53316291173/817138163596*10749957122^(13/24) 1771100001129241 a001 86267571272/2139295485799*10749957122^(9/16) 1771100001129241 a001 10983760033/440719107401*10749957122^(7/12) 1771100001129241 a001 12586269025/9062201101803*10749957122^(17/24) 1771100001129241 a001 139583862445/3461452808002*10749957122^(9/16) 1771100001129241 a001 4052739537881/17393796001*10749957122^(3/16) 1771100001129241 a001 10182505537/22768774562*10749957122^(11/24) 1771100001129241 a001 53316291173/1322157322203*10749957122^(9/16) 1771100001129241 a001 43133785636/1730726404001*10749957122^(7/12) 1771100001129241 a001 182717648081/7331474697802*10749957122^(7/12) 1771100001129241 a001 139583862445/5600748293801*10749957122^(7/12) 1771100001129241 a001 2504730781961/17393796001*10749957122^(5/24) 1771100001129241 a001 53316291173/2139295485799*10749957122^(7/12) 1771100001129241 a001 20365011074/312119004989*10749957122^(13/24) 1771100001129241 a001 12586269025/23725150497407*10749957122^(3/4) 1771100001129241 a001 20365011074/505019158607*10749957122^(9/16) 1771100001129241 a001 86267571272/9062201101803*10749957122^(5/8) 1771100001129241 a001 10610209857723/6643838879*2537720636^(1/9) 1771100001129241 a001 139583862445/14662949395604*10749957122^(5/8) 1771100001129241 a001 956722026041/17393796001*10749957122^(1/4) 1771100001129241 a001 53316291173/5600748293801*10749957122^(5/8) 1771100001129241 a001 10182505537/408569081798*10749957122^(7/12) 1771100001129241 a001 10983760033/3020733700601*10749957122^(2/3) 1771100001129241 a001 86267571272/23725150497407*10749957122^(2/3) 1771100001129241 a001 32951280099/14662949395604*10749957122^(11/16) 1771100001129241 a001 12586269025/17393796001*10749957122^(7/16) 1771100001129241 a001 53316291173/14662949395604*10749957122^(2/3) 1771100001129241 a001 20365011074/2139295485799*10749957122^(5/8) 1771100001129241 a001 32951280099/23725150497407*10749957122^(17/24) 1771100001129241 a001 7787980473/599786069*10749957122^(5/16) 1771100001129241 a001 53316291173/23725150497407*10749957122^(11/16) 1771100001129241 a001 139583862445/17393796001*10749957122^(1/3) 1771100001129241 a001 20365011074/5600748293801*10749957122^(2/3) 1771100001129241 a001 20365011074/9062201101803*10749957122^(11/16) 1771100001129241 a001 10182505537/7331474697802*10749957122^(17/24) 1771100001129241 a001 53316291173/17393796001*10749957122^(3/8) 1771100001129241 a001 591286729879/10749957122*4106118243^(6/23) 1771100001129241 a001 20365011074/17393796001*10749957122^(5/12) 1771100001129241 a001 7778742049/119218851371*10749957122^(13/24) 1771100001129241 a001 7778742049/45537549124*10749957122^(1/2) 1771100001129241 a001 7778742049/192900153618*10749957122^(9/16) 1771100001129241 a001 7778742049/312119004989*10749957122^(7/12) 1771100001129241 a001 7778742049/817138163596*10749957122^(5/8) 1771100001129241 a001 3536736619241/9381251041*4106118243^(4/23) 1771100001129241 a001 7778742049/2139295485799*10749957122^(2/3) 1771100001129241 a001 7778742049/3461452808002*10749957122^(11/16) 1771100001129241 a001 225851433717/10749957122*4106118243^(7/23) 1771100001129241 a001 7778742049/5600748293801*10749957122^(17/24) 1771100001129241 a001 7778742049/14662949395604*10749957122^(3/4) 1771100001129241 a001 7778742049/17393796001*10749957122^(11/24) 1771100001129241 a001 2403763488/5374978561*4106118243^(11/23) 1771100001129241 a001 4052739537881/28143753123*4106118243^(5/23) 1771100001129241 a001 43133785636/5374978561*4106118243^(8/23) 1771100001129241 a001 4807526976/6643838879*17393796001^(3/7) 1771100001129241 a001 1515744265389/10525900321*4106118243^(5/23) 1771100001129241 a001 3278735159921/22768774562*4106118243^(5/23) 1771100001129241 a001 6557470319842/17393796001*4106118243^(4/23) 1771100001129241 a001 4807526976/6643838879*45537549124^(7/17) 1771100001129241 a001 4807526976/6643838879*14662949395604^(1/3) 1771100001129241 a001 4807526976/6643838879*192900153618^(7/18) 1771100001129241 a001 12585437040/228811001*4106118243^(6/23) 1771100001129241 a001 32951280099/10749957122*4106118243^(9/23) 1771100001129241 a001 516002918640/1368706081*1568397607^(2/11) 1771100001129241 a001 4052739537881/73681302247*4106118243^(6/23) 1771100001129241 a001 3536736619241/64300051206*4106118243^(6/23) 1771100001129241 a001 6557470319842/119218851371*4106118243^(6/23) 1771100001129241 a001 12586269025/10749957122*4106118243^(10/23) 1771100001129241 a001 2504730781961/45537549124*4106118243^(6/23) 1771100001129241 a001 2504730781961/17393796001*4106118243^(5/23) 1771100001129241 a001 591286729879/28143753123*4106118243^(7/23) 1771100001129241 a001 567451585/7331474697802*2537720636^(8/9) 1771100001129241 a001 4807526976/6643838879*10749957122^(7/16) 1771100001129241 a001 1548008755920/73681302247*4106118243^(7/23) 1771100001129241 a001 4052739537881/192900153618*4106118243^(7/23) 1771100001129241 a001 225749145909/10745088481*4106118243^(7/23) 1771100001129241 a001 6557470319842/312119004989*4106118243^(7/23) 1771100001129241 a001 2504730781961/119218851371*4106118243^(7/23) 1771100001129241 a001 956722026041/45537549124*4106118243^(7/23) 1771100001129241 a001 956722026041/17393796001*4106118243^(6/23) 1771100001129241 a001 75283811239/9381251041*4106118243^(8/23) 1771100001129241 a001 2971215073/3461452808002*17393796001^(5/7) 1771100001129241 a001 591286729879/73681302247*4106118243^(8/23) 1771100001129241 a001 86000486440/10716675201*4106118243^(8/23) 1771100001129241 a001 3536736619241/440719107401*4106118243^(8/23) 1771100001129241 a001 3278735159921/408569081798*4106118243^(8/23) 1771100001129241 a001 2504730781961/312119004989*4106118243^(8/23) 1771100001129241 a001 1134903170/9062201101803*2537720636^(13/15) 1771100001129241 a001 2971215073/119218851371*17393796001^(4/7) 1771100001129241 a001 1602508992/9381251041*4106118243^(12/23) 1771100001129241 a001 182717648081/22768774562*4106118243^(8/23) 1771100001129241 a001 365435296162/17393796001*4106118243^(7/23) 1771100001129241 a001 2971215073/28143753123*312119004989^(5/11) 1771100001129241 a001 12586269025/6643838879*817138163596^(1/3) 1771100001129241 a001 2971215073/28143753123*3461452808002^(5/12) 1771100001129241 a001 139583862445/6643838879*17393796001^(2/7) 1771100001129241 a001 86267571272/28143753123*4106118243^(9/23) 1771100001129241 a001 2971215073/28143753123*28143753123^(1/2) 1771100001129241 a001 4052739537881/6643838879*17393796001^(1/7) 1771100001129241 a001 2971215073/73681302247*45537549124^(9/17) 1771100001129241 a001 2971215073/23725150497407*45537549124^(13/17) 1771100001129241 a001 32951280099/6643838879*45537549124^(1/3) 1771100001129241 a001 2971215073/5600748293801*45537549124^(12/17) 1771100001129241 a001 2971215073/2139295485799*45537549124^(2/3) 1771100001129241 a001 2971215073/1322157322203*45537549124^(11/17) 1771100001129241 a001 2971215073/312119004989*45537549124^(10/17) 1771100001129241 a001 2971215073/73681302247*14662949395604^(3/7) 1771100001129241 a001 2971215073/73681302247*192900153618^(1/2) 1771100001129241 a001 365435296162/6643838879*45537549124^(4/17) 1771100001129241 a001 1548008755920/6643838879*45537549124^(3/17) 1771100001129241 a001 6557470319842/6643838879*45537549124^(2/17) 1771100001129241 a001 86267571272/6643838879*312119004989^(3/11) 1771100001129241 a001 86267571272/6643838879*14662949395604^(5/21) 1771100001129241 a001 2971215073/192900153618*1322157322203^(1/2) 1771100001129241 a001 10610209857723/6643838879*312119004989^(1/11) 1771100001129241 a001 1548008755920/6643838879*817138163596^(3/19) 1771100001129241 a006 5^(1/2)*Fibonacci(69)/Lucas(47)/sqrt(5) 1771100001129241 a001 2971215073/312119004989*14662949395604^(10/21) 1771100001129241 a001 139583862445/6643838879*14662949395604^(2/9) 1771100001129241 a001 2971215073/1322157322203*192900153618^(11/18) 1771100001129241 a001 2971215073/312119004989*192900153618^(5/9) 1771100001129241 a001 2504730781961/6643838879*73681302247^(2/13) 1771100001129241 a001 225851433717/6643838879*73681302247^(1/4) 1771100001129241 a001 365435296162/6643838879*73681302247^(3/13) 1771100001129241 a001 2971215073/119218851371*14662949395604^(4/9) 1771100001129241 a001 2971215073/817138163596*73681302247^(8/13) 1771100001129241 a001 10610209857723/6643838879*28143753123^(1/10) 1771100001129241 a001 2971215073/5600748293801*73681302247^(9/13) 1771100001129241 a001 2971215073/23725150497407*73681302247^(3/4) 1771100001129241 a001 2971215073/119218851371*73681302247^(7/13) 1771100001129241 a001 956722026041/6643838879*28143753123^(1/5) 1771100001129241 a001 20365011074/6643838879*45537549124^(6/17) 1771100001129241 a001 86267571272/6643838879*28143753123^(3/10) 1771100001129241 a001 32264490531/10525900321*4106118243^(9/23) 1771100001129241 a001 20365011074/6643838879*14662949395604^(2/7) 1771100001129241 a001 20365011074/6643838879*192900153618^(1/3) 1771100001129241 a001 591286729879/192900153618*4106118243^(9/23) 1771100001129241 a001 1548008755920/505019158607*4106118243^(9/23) 1771100001129241 a001 1515744265389/494493258286*4106118243^(9/23) 1771100001129241 a001 956722026041/312119004989*4106118243^(9/23) 1771100001129241 a001 2971215073/45537549124*73681302247^(1/2) 1771100001129241 a001 365435296162/119218851371*4106118243^(9/23) 1771100001129241 a001 2971215073/312119004989*28143753123^(3/5) 1771100001129241 a001 1836311903/2537720636*2537720636^(7/15) 1771100001129241 a001 2971215073/3461452808002*28143753123^(7/10) 1771100001129241 a001 139583862445/45537549124*4106118243^(9/23) 1771100001129241 a001 6557470319842/6643838879*10749957122^(1/8) 1771100001129241 a001 139583862445/17393796001*4106118243^(8/23) 1771100001129241 a001 2504730781961/6643838879*10749957122^(1/6) 1771100001129241 a001 1548008755920/6643838879*10749957122^(3/16) 1771100001129241 a001 4807526976/17393796001*4106118243^(1/2) 1771100001129241 a001 10983760033/9381251041*4106118243^(10/23) 1771100001129241 a001 956722026041/6643838879*10749957122^(5/24) 1771100001129241 a001 686789568/10525900321*4106118243^(13/23) 1771100001129241 a001 365435296162/6643838879*10749957122^(1/4) 1771100001129241 a001 139583862445/6643838879*10749957122^(7/24) 1771100001129241 a001 86267571272/6643838879*10749957122^(5/16) 1771100001129241 a001 86267571272/73681302247*4106118243^(10/23) 1771100001129241 a001 53316291173/6643838879*10749957122^(1/3) 1771100001129241 a001 2971215073/17393796001*45537549124^(8/17) 1771100001129241 a001 75283811239/64300051206*4106118243^(10/23) 1771100001129241 a001 2504730781961/2139295485799*4106118243^(10/23) 1771100001129241 a001 365435296162/312119004989*4106118243^(10/23) 1771100001129241 a001 12586269025/28143753123*4106118243^(11/23) 1771100001129241 a001 139583862445/119218851371*4106118243^(10/23) 1771100001129241 a001 2971215073/17393796001*14662949395604^(8/21) 1771100001129241 a001 7778742049/6643838879*505019158607^(5/14) 1771100001129241 a001 2971215073/17393796001*192900153618^(4/9) 1771100001129241 a001 7778742049/6643838879*73681302247^(5/13) 1771100001129241 a001 2971215073/17393796001*73681302247^(6/13) 1771100001129241 a001 53316291173/45537549124*4106118243^(10/23) 1771100001129241 a001 20365011074/6643838879*10749957122^(3/8) 1771100001129241 a001 7778742049/6643838879*28143753123^(2/5) 1771100001129241 a001 53316291173/17393796001*4106118243^(9/23) 1771100001129241 a001 2971215073/73681302247*10749957122^(9/16) 1771100001129241 a001 267084832/10716675201*4106118243^(14/23) 1771100001129241 a001 2971215073/119218851371*10749957122^(7/12) 1771100001129241 a001 2971215073/45537549124*10749957122^(13/24) 1771100001129241 a001 32951280099/73681302247*4106118243^(11/23) 1771100001129241 a001 2971215073/312119004989*10749957122^(5/8) 1771100001129241 a001 43133785636/96450076809*4106118243^(11/23) 1771100001129241 a001 225851433717/505019158607*4106118243^(11/23) 1771100001129241 a001 182717648081/408569081798*4106118243^(11/23) 1771100001129241 a001 139583862445/312119004989*4106118243^(11/23) 1771100001129241 a001 2971215073/817138163596*10749957122^(2/3) 1771100001129241 a001 53316291173/119218851371*4106118243^(11/23) 1771100001129241 a001 2971215073/1322157322203*10749957122^(11/16) 1771100001129241 a001 2971215073/2139295485799*10749957122^(17/24) 1771100001129241 a001 12586269025/45537549124*4106118243^(1/2) 1771100001129241 a001 2971215073/5600748293801*10749957122^(3/4) 1771100001129241 a001 10182505537/22768774562*4106118243^(11/23) 1771100001129241 a001 12586269025/73681302247*4106118243^(12/23) 1771100001129241 a001 2971215073/14662949395604*10749957122^(19/24) 1771100001129241 a001 32951280099/119218851371*4106118243^(1/2) 1771100001129241 a001 7778742049/6643838879*10749957122^(5/12) 1771100001129241 a001 20365011074/17393796001*4106118243^(10/23) 1771100001129241 a001 86267571272/312119004989*4106118243^(1/2) 1771100001129241 a001 225851433717/817138163596*4106118243^(1/2) 1771100001129241 a001 1548008755920/5600748293801*4106118243^(1/2) 1771100001129241 a001 139583862445/505019158607*4106118243^(1/2) 1771100001129241 a001 2971215073/23725150497407*10749957122^(13/16) 1771100001129241 a001 53316291173/192900153618*4106118243^(1/2) 1771100001129241 a001 20365011074/73681302247*4106118243^(1/2) 1771100001129241 a001 102287808/10745088481*4106118243^(15/23) 1771100001129241 a001 2971215073/17393796001*10749957122^(1/2) 1771100001129241 a001 6557470319842/6643838879*4106118243^(3/23) 1771100001129241 a001 10983760033/64300051206*4106118243^(12/23) 1771100001129241 a001 86267571272/505019158607*4106118243^(12/23) 1771100001129241 a001 75283811239/440719107401*4106118243^(12/23) 1771100001129241 a001 139583862445/817138163596*4106118243^(12/23) 1771100001129241 a001 53316291173/312119004989*4106118243^(12/23) 1771100001129241 a001 1134903170/2139295485799*2537720636^(4/5) 1771100001129241 a001 20365011074/119218851371*4106118243^(12/23) 1771100001129241 a001 7778742049/28143753123*4106118243^(1/2) 1771100001129241 a001 12586269025/192900153618*4106118243^(13/23) 1771100001129241 a001 1602508992/440719107401*4106118243^(16/23) 1771100001129241 a001 2504730781961/6643838879*4106118243^(4/23) 1771100001129241 a001 591286729879/4106118243*1568397607^(5/22) 1771100001129241 a001 32951280099/505019158607*4106118243^(13/23) 1771100001129241 a001 86267571272/1322157322203*4106118243^(13/23) 1771100001129241 a001 32264490531/494493258286*4106118243^(13/23) 1771100001129241 a001 139583862445/2139295485799*4106118243^(13/23) 1771100001129241 a001 53316291173/817138163596*4106118243^(13/23) 1771100001129241 a001 20365011074/312119004989*4106118243^(13/23) 1771100001129241 a001 1134903170/1322157322203*2537720636^(7/9) 1771100001129241 a001 7778742049/45537549124*4106118243^(12/23) 1771100001129241 a001 12586269025/505019158607*4106118243^(14/23) 1771100001129241 a001 7778742049/17393796001*4106118243^(11/23) 1771100001129241 a001 14930208/10749853441*4106118243^(17/23) 1771100001129241 a001 956722026041/6643838879*4106118243^(5/23) 1771100001129241 a001 10983760033/440719107401*4106118243^(14/23) 1771100001129241 a001 43133785636/1730726404001*4106118243^(14/23) 1771100001129241 a001 75283811239/3020733700601*4106118243^(14/23) 1771100001129241 a001 182717648081/7331474697802*4106118243^(14/23) 1771100001129241 a001 139583862445/5600748293801*4106118243^(14/23) 1771100001129241 a001 53316291173/2139295485799*4106118243^(14/23) 1771100001129241 a001 10182505537/408569081798*4106118243^(14/23) 1771100001129241 a001 7778742049/119218851371*4106118243^(13/23) 1771100001129241 a001 12586269025/1322157322203*4106118243^(15/23) 1771100001129241 a001 1602508992/3020733700601*4106118243^(18/23) 1771100001129241 a001 365435296162/6643838879*4106118243^(6/23) 1771100001129241 a001 32951280099/3461452808002*4106118243^(15/23) 1771100001129241 a001 86267571272/9062201101803*4106118243^(15/23) 1771100001129241 a001 225851433717/23725150497407*4106118243^(15/23) 1771100001129241 a001 139583862445/14662949395604*4106118243^(15/23) 1771100001129241 a001 53316291173/5600748293801*4106118243^(15/23) 1771100001129241 a001 20365011074/2139295485799*4106118243^(15/23) 1771100001129241 a001 7778742049/312119004989*4106118243^(14/23) 1771100001129241 a001 12586269025/3461452808002*4106118243^(16/23) 1771100001129241 a001 4807526976/23725150497407*4106118243^(19/23) 1771100001129241 a001 139583862445/6643838879*4106118243^(7/23) 1771100001129241 a001 10983760033/3020733700601*4106118243^(16/23) 1771100001129241 a001 86267571272/23725150497407*4106118243^(16/23) 1771100001129241 a001 53316291173/14662949395604*4106118243^(16/23) 1771100001129241 a001 1134903170/505019158607*2537720636^(11/15) 1771100001129241 a001 20365011074/5600748293801*4106118243^(16/23) 1771100001129241 a001 7778742049/817138163596*4106118243^(15/23) 1771100001129241 a001 365435296162/4106118243*1568397607^(1/4) 1771100001129241 a001 12586269025/9062201101803*4106118243^(17/23) 1771100001129241 a001 53316291173/6643838879*4106118243^(8/23) 1771100001129241 a001 32951280099/23725150497407*4106118243^(17/23) 1771100001129241 a001 2971215073/10749957122*4106118243^(1/2) 1771100001129241 a001 10182505537/7331474697802*4106118243^(17/23) 1771100001129241 a001 7778742049/2139295485799*4106118243^(16/23) 1771100001129241 a001 12586269025/23725150497407*4106118243^(18/23) 1771100001129241 a001 2971215073/6643838879*312119004989^(2/5) 1771100001129241 a001 20365011074/6643838879*4106118243^(9/23) 1771100001129241 a001 4807525989/4870846*1568397607^(3/22) 1771100001129241 a001 7778742049/5600748293801*4106118243^(17/23) 1771100001129241 a001 2971215073/6643838879*10749957122^(11/24) 1771100001129241 a001 7778742049/14662949395604*4106118243^(18/23) 1771100001129241 a001 75283811239/1368706081*1568397607^(3/11) 1771100001129241 a001 7778742049/6643838879*4106118243^(10/23) 1771100001129241 a001 1134903170/119218851371*2537720636^(2/3) 1771100001129241 a001 2971215073/45537549124*4106118243^(13/23) 1771100001129241 a001 2971215073/17393796001*4106118243^(12/23) 1771100001129241 a001 956722026041/1568397607*599074578^(1/6) 1771100001129241 a001 2971215073/119218851371*4106118243^(14/23) 1771100001129241 a001 567451585/5374978561*2537720636^(5/9) 1771100001129241 a001 1134903170/28143753123*2537720636^(3/5) 1771100001129241 a001 2971215073/312119004989*4106118243^(15/23) 1771100001129241 a001 2971215073/817138163596*4106118243^(16/23) 1771100001129241 a001 4052739537881/10749957122*1568397607^(2/11) 1771100001129241 a001 2971215073/2139295485799*4106118243^(17/23) 1771100001129241 a001 2971215073/5600748293801*4106118243^(18/23) 1771100001129241 a001 86267571272/4106118243*1568397607^(7/22) 1771100001129241 a001 2971215073/14662949395604*4106118243^(19/23) 1771100001129241 a001 3536736619241/9381251041*1568397607^(2/11) 1771100001129241 a001 2971215073/6643838879*4106118243^(11/23) 1771100001129241 a001 6557470319842/17393796001*1568397607^(2/11) 1771100001129241 a001 6557470319842/6643838879*1568397607^(3/22) 1771100001129241 a001 591286729879/599074578*228826127^(3/20) 1771100001129241 a001 774004377960/5374978561*1568397607^(5/22) 1771100001129241 a001 1836311903/4106118243*1568397607^(1/2) 1771100001129241 a001 10983760033/1368706081*1568397607^(4/11) 1771100001129241 a001 4052739537881/28143753123*1568397607^(5/22) 1771100001129241 a001 1515744265389/10525900321*1568397607^(5/22) 1771100001129241 a001 3278735159921/22768774562*1568397607^(5/22) 1771100001129241 a001 956722026041/10749957122*1568397607^(1/4) 1771100001129241 a001 1836311903/2537720636*17393796001^(3/7) 1771100001129241 a001 1134903170/6643838879*2537720636^(8/15) 1771100001129241 a001 2504730781961/17393796001*1568397607^(5/22) 1771100001129241 a001 1836311903/2537720636*45537549124^(7/17) 1771100001129241 a001 1836311903/2537720636*14662949395604^(1/3) 1771100001129241 a001 1836311903/2537720636*192900153618^(7/18) 1771100001129241 a001 7778742049/2537720636*2537720636^(2/5) 1771100001129241 a001 2504730781961/6643838879*1568397607^(2/11) 1771100001129241 a001 1836311903/2537720636*10749957122^(7/16) 1771100001129241 a001 2504730781961/28143753123*1568397607^(1/4) 1771100001129241 a001 6557470319842/73681302247*1568397607^(1/4) 1771100001129241 a001 10610209857723/119218851371*1568397607^(1/4) 1771100001129241 a001 4052739537881/45537549124*1568397607^(1/4) 1771100001129241 a001 591286729879/10749957122*1568397607^(3/11) 1771100001129241 a001 32951280099/2537720636*2537720636^(1/3) 1771100001129241 a001 1548008755920/17393796001*1568397607^(1/4) 1771100001129241 a001 12586269025/4106118243*1568397607^(9/22) 1771100001129241 a001 2971215073/2537720636*2537720636^(4/9) 1771100001129241 a001 12585437040/228811001*1568397607^(3/11) 1771100001129241 a001 4052739537881/73681302247*1568397607^(3/11) 1771100001129241 a001 3536736619241/64300051206*1568397607^(3/11) 1771100001129241 a001 6557470319842/119218851371*1568397607^(3/11) 1771100001129241 a001 2504730781961/45537549124*1568397607^(3/11) 1771100001129241 a001 139583862445/2537720636*2537720636^(4/15) 1771100001129241 a001 956722026041/17393796001*1568397607^(3/11) 1771100001129241 a001 956722026041/6643838879*1568397607^(5/22) 1771100001129241 a001 1602508992/1368706081*1568397607^(5/11) 1771100001129241 a001 225851433717/10749957122*1568397607^(7/22) 1771100001129241 a001 182717648081/1268860318*2537720636^(2/9) 1771100001129241 a001 591286729879/1568397607*599074578^(4/21) 1771100001129241 a001 591286729879/2537720636*2537720636^(1/5) 1771100001129241 a001 591286729879/6643838879*1568397607^(1/4) 1771100001129241 a001 1134903170/4106118243*4106118243^(1/2) 1771100001129241 a001 591286729879/28143753123*1568397607^(7/22) 1771100001129241 a001 1548008755920/73681302247*1568397607^(7/22) 1771100001129241 a001 4052739537881/192900153618*1568397607^(7/22) 1771100001129241 a001 225749145909/10745088481*1568397607^(7/22) 1771100001129241 a001 6557470319842/312119004989*1568397607^(7/22) 1771100001129241 a001 2504730781961/119218851371*1568397607^(7/22) 1771100001129241 a001 956722026041/45537549124*1568397607^(7/22) 1771100001129241 a001 365435296162/17393796001*1568397607^(7/22) 1771100001129241 a001 365435296162/6643838879*1568397607^(3/11) 1771100001129241 a001 2504730781961/2537720636*2537720636^(2/15) 1771100001129241 a001 4052739537881/2537720636*2537720636^(1/9) 1771100001129241 a001 43133785636/5374978561*1568397607^(4/11) 1771100001129241 a001 10610209857723/2537720636*2537720636^(1/15) 1771100001129241 a001 75283811239/9381251041*1568397607^(4/11) 1771100001129241 a001 567451585/5374978561*312119004989^(5/11) 1771100001129241 a001 1201881744/634430159*817138163596^(1/3) 1771100001129241 a001 567451585/5374978561*28143753123^(1/2) 1771100001129241 a001 591286729879/73681302247*1568397607^(4/11) 1771100001129241 a001 86000486440/10716675201*1568397607^(4/11) 1771100001129241 a001 4052739537881/505019158607*1568397607^(4/11) 1771100001129241 a001 3278735159921/408569081798*1568397607^(4/11) 1771100001129241 a001 2504730781961/312119004989*1568397607^(4/11) 1771100001129241 a001 956722026041/119218851371*1568397607^(4/11) 1771100001129241 a001 182717648081/22768774562*1568397607^(4/11) 1771100001129241 a001 139583862445/17393796001*1568397607^(4/11) 1771100001129241 a001 139583862445/6643838879*1568397607^(7/22) 1771100001129241 a001 1134903170/1322157322203*17393796001^(5/7) 1771100001129241 a001 1134903170/28143753123*45537549124^(9/17) 1771100001129241 a001 1836311903/10749957122*1568397607^(6/11) 1771100001129241 a001 1144206275/230701876*45537549124^(1/3) 1771100001129241 a001 567451585/22768774562*17393796001^(4/7) 1771100001129241 a001 1134903170/28143753123*14662949395604^(3/7) 1771100001129241 a001 1134903170/28143753123*192900153618^(1/2) 1771100001129241 a001 53316291173/2537720636*17393796001^(2/7) 1771100001129241 a001 1134903780/1860499*17393796001^(1/7) 1771100001129241 a001 1134903170/9062201101803*45537549124^(13/17) 1771100001129241 a001 1134903170/2139295485799*45537549124^(12/17) 1771100001129241 a001 32951280099/2537720636*45537549124^(5/17) 1771100001129241 a001 567451585/408569081798*45537549124^(2/3) 1771100001129241 a001 1134903170/505019158607*45537549124^(11/17) 1771100001129241 a001 1134903170/119218851371*45537549124^(10/17) 1771100001129241 a001 32951280099/2537720636*312119004989^(3/11) 1771100001129241 a001 32951280099/2537720636*14662949395604^(5/21) 1771100001129241 a001 1134903170/73681302247*1322157322203^(1/2) 1771100001129241 a001 139583862445/2537720636*45537549124^(4/17) 1771100001129241 a001 591286729879/2537720636*45537549124^(3/17) 1771100001129241 a001 2504730781961/2537720636*45537549124^(2/17) 1771100001129241 a001 10610209857723/2537720636*45537549124^(1/17) 1771100001129241 a001 1134903170/505019158607*312119004989^(3/5) 1771100001129241 a001 1134903170/1322157322203*312119004989^(7/11) 1771100001129241 a001 139583862445/2537720636*817138163596^(4/19) 1771100001129241 a001 1134903170/312119004989*23725150497407^(1/2) 1771100001129241 a001 1134903170/2139295485799*192900153618^(2/3) 1771100001129241 a001 1135099622/33391061*73681302247^(1/4) 1771100001129241 a001 956722026041/2537720636*73681302247^(2/13) 1771100001129241 a001 139583862445/2537720636*73681302247^(3/13) 1771100001129241 a001 1134903170/119218851371*312119004989^(6/11) 1771100001129241 a001 1134903170/119218851371*14662949395604^(10/21) 1771100001129241 a001 1134903170/119218851371*192900153618^(5/9) 1771100001129241 a001 1134903170/2139295485799*73681302247^(9/13) 1771100001129241 a001 1134903170/9062201101803*73681302247^(3/4) 1771100001129241 a001 567451585/7331474697802*73681302247^(10/13) 1771100001129241 a001 32951280099/2537720636*28143753123^(3/10) 1771100001129241 a001 182717648081/1268860318*28143753123^(1/5) 1771100001129241 a001 567451585/22768774562*14662949395604^(4/9) 1771100001129241 a001 10182505537/1268860318*23725150497407^(1/4) 1771100001129241 a001 10182505537/1268860318*73681302247^(4/13) 1771100001129241 a001 10610209857723/2537720636*10749957122^(1/16) 1771100001129241 a001 567451585/22768774562*73681302247^(7/13) 1771100001129241 a001 3278735159921/1268860318*10749957122^(1/12) 1771100001129241 a001 1134903170/119218851371*28143753123^(3/5) 1771100001129241 a001 1134903170/1322157322203*28143753123^(7/10) 1771100001129241 a001 567451585/7331474697802*28143753123^(4/5) 1771100001129241 a001 2504730781961/2537720636*10749957122^(1/8) 1771100001129241 a001 956722026041/2537720636*10749957122^(1/6) 1771100001129241 a001 591286729879/2537720636*10749957122^(3/16) 1771100001129241 a001 182717648081/1268860318*10749957122^(5/24) 1771100001129241 a001 139583862445/2537720636*10749957122^(1/4) 1771100001129241 a001 32951280099/10749957122*1568397607^(9/22) 1771100001129241 a001 32951280099/2537720636*10749957122^(5/16) 1771100001129241 a001 53316291173/2537720636*10749957122^(7/24) 1771100001129241 a001 7778742049/2537720636*45537549124^(6/17) 1771100001129241 a001 7778742049/2537720636*14662949395604^(2/7) 1771100001129241 a001 7778742049/2537720636*192900153618^(1/3) 1771100001129241 a001 10182505537/1268860318*10749957122^(1/3) 1771100001129241 a001 1134903170/17393796001*73681302247^(1/2) 1771100001129241 a001 1134903170/28143753123*10749957122^(9/16) 1771100001129241 a001 3278735159921/1268860318*4106118243^(2/23) 1771100001129241 a001 1134903170/119218851371*10749957122^(5/8) 1771100001129241 a001 567451585/22768774562*10749957122^(7/12) 1771100001129241 a001 1134903170/312119004989*10749957122^(2/3) 1771100001129241 a001 1134903170/505019158607*10749957122^(11/16) 1771100001129241 a001 567451585/408569081798*10749957122^(17/24) 1771100001129241 a001 1134903170/2139295485799*10749957122^(3/4) 1771100001129241 a001 7778742049/2537720636*10749957122^(3/8) 1771100001129241 a001 1134903170/5600748293801*10749957122^(19/24) 1771100001129241 a001 1134903170/9062201101803*10749957122^(13/16) 1771100001129241 a001 567451585/7331474697802*10749957122^(5/6) 1771100001129241 a001 2504730781961/2537720636*4106118243^(3/23) 1771100001129241 a001 1134903170/17393796001*10749957122^(13/24) 1771100001129241 a001 86267571272/28143753123*1568397607^(9/22) 1771100001129241 a001 956722026041/2537720636*4106118243^(4/23) 1771100001129241 a001 32264490531/10525900321*1568397607^(9/22) 1771100001129241 a001 591286729879/192900153618*1568397607^(9/22) 1771100001129241 a001 1548008755920/505019158607*1568397607^(9/22) 1771100001129241 a001 1515744265389/494493258286*1568397607^(9/22) 1771100001129241 a001 956722026041/312119004989*1568397607^(9/22) 1771100001129241 a001 365435296162/119218851371*1568397607^(9/22) 1771100001129241 a001 139583862445/45537549124*1568397607^(9/22) 1771100001129241 a001 182717648081/1268860318*4106118243^(5/23) 1771100001129241 a001 53316291173/17393796001*1568397607^(9/22) 1771100001129241 a001 53316291173/6643838879*1568397607^(4/11) 1771100001129241 a001 139583862445/2537720636*4106118243^(6/23) 1771100001129241 a001 53316291173/2537720636*4106118243^(7/23) 1771100001129241 a001 12586269025/10749957122*1568397607^(5/11) 1771100001129241 a001 10182505537/1268860318*4106118243^(8/23) 1771100001129241 a001 1134903170/6643838879*45537549124^(8/17) 1771100001129241 a001 1134903170/6643838879*14662949395604^(8/21) 1771100001129241 a001 2971215073/2537720636*505019158607^(5/14) 1771100001129241 a001 1134903170/6643838879*192900153618^(4/9) 1771100001129241 a001 2971215073/2537720636*73681302247^(5/13) 1771100001129241 a001 1134903170/6643838879*73681302247^(6/13) 1771100001129241 a001 2971215073/2537720636*28143753123^(2/5) 1771100001129241 a001 1836311903/28143753123*1568397607^(13/22) 1771100001129241 a001 2971215073/2537720636*10749957122^(5/12) 1771100001129241 a001 7778742049/2537720636*4106118243^(9/23) 1771100001129241 a001 1134903170/6643838879*10749957122^(1/2) 1771100001129241 a001 10983760033/9381251041*1568397607^(5/11) 1771100001129241 a001 86267571272/73681302247*1568397607^(5/11) 1771100001129241 a001 75283811239/64300051206*1568397607^(5/11) 1771100001129241 a001 2504730781961/2139295485799*1568397607^(5/11) 1771100001129241 a001 365435296162/312119004989*1568397607^(5/11) 1771100001129241 a001 139583862445/119218851371*1568397607^(5/11) 1771100001129241 a001 53316291173/45537549124*1568397607^(5/11) 1771100001129241 a001 2403763488/5374978561*1568397607^(1/2) 1771100001129241 a001 20365011074/17393796001*1568397607^(5/11) 1771100001129241 a001 20365011074/6643838879*1568397607^(9/22) 1771100001129241 a001 365435296162/1568397607*599074578^(3/14) 1771100001129241 a001 567451585/22768774562*4106118243^(14/23) 1771100001129241 a001 1134903170/17393796001*4106118243^(13/23) 1771100001129241 a001 3278735159921/1268860318*1568397607^(1/11) 1771100001129241 a001 1134903170/119218851371*4106118243^(15/23) 1771100001129241 a001 1134903170/312119004989*4106118243^(16/23) 1771100001129241 a001 567451585/408569081798*4106118243^(17/23) 1771100001129241 a001 1836311903/73681302247*1568397607^(7/11) 1771100001129241 a001 12586269025/28143753123*1568397607^(1/2) 1771100001129241 a001 1134903170/2139295485799*4106118243^(18/23) 1771100001129241 a001 32951280099/73681302247*1568397607^(1/2) 1771100001129241 a001 43133785636/96450076809*1568397607^(1/2) 1771100001129241 a001 225851433717/505019158607*1568397607^(1/2) 1771100001129241 a001 10610209857723/23725150497407*1568397607^(1/2) 1771100001129241 a001 182717648081/408569081798*1568397607^(1/2) 1771100001129241 a001 139583862445/312119004989*1568397607^(1/2) 1771100001129241 a001 53316291173/119218851371*1568397607^(1/2) 1771100001129241 a001 2971215073/2537720636*4106118243^(10/23) 1771100001129241 a001 10182505537/22768774562*1568397607^(1/2) 1771100001129241 a001 1134903170/5600748293801*4106118243^(19/23) 1771100001129241 a001 3536736619241/1368706081*599074578^(2/21) 1771100001129241 a001 567451585/7331474697802*4106118243^(20/23) 1771100001129241 a001 1134903170/6643838879*4106118243^(12/23) 1771100001129241 a001 7778742049/17393796001*1568397607^(1/2) 1771100001129241 a001 2504730781961/2537720636*1568397607^(3/22) 1771100001129241 a001 7778742049/6643838879*1568397607^(5/11) 1771100001129241 a001 1602508992/9381251041*1568397607^(6/11) 1771100001129241 a001 1836311903/192900153618*1568397607^(15/22) 1771100001129241 a001 12586269025/73681302247*1568397607^(6/11) 1771100001129241 a001 10983760033/64300051206*1568397607^(6/11) 1771100001129241 a001 86267571272/505019158607*1568397607^(6/11) 1771100001129241 a001 75283811239/440719107401*1568397607^(6/11) 1771100001129241 a001 2504730781961/14662949395604*1568397607^(6/11) 1771100001129241 a001 139583862445/817138163596*1568397607^(6/11) 1771100001129241 a001 53316291173/312119004989*1568397607^(6/11) 1771100001129241 a001 20365011074/119218851371*1568397607^(6/11) 1771100001129241 a001 7778742049/45537549124*1568397607^(6/11) 1771100001129241 a001 956722026041/2537720636*1568397607^(2/11) 1771100001129241 a001 686789568/10525900321*1568397607^(13/22) 1771100001129241 a001 1836311903/505019158607*1568397607^(8/11) 1771100001129241 a001 12586269025/192900153618*1568397607^(13/22) 1771100001129241 a001 32951280099/505019158607*1568397607^(13/22) 1771100001129241 a001 86267571272/1322157322203*1568397607^(13/22) 1771100001129241 a001 32264490531/494493258286*1568397607^(13/22) 1771100001129241 a001 139583862445/2139295485799*1568397607^(13/22) 1771100001129241 a001 53316291173/817138163596*1568397607^(13/22) 1771100001129241 a001 20365011074/312119004989*1568397607^(13/22) 1771100001129241 a001 7778742049/119218851371*1568397607^(13/22) 1771100001129241 a001 1836311903/817138163596*1568397607^(3/4) 1771100001129241 a001 182717648081/1268860318*1568397607^(5/22) 1771100001129241 a001 2971215073/17393796001*1568397607^(6/11) 1771100001129241 a001 2971215073/6643838879*1568397607^(1/2) 1771100001129241 a001 267084832/10716675201*1568397607^(7/11) 1771100001129241 a001 1836311903/1322157322203*1568397607^(17/22) 1771100001129241 a001 32264490531/224056801*599074578^(5/21) 1771100001129241 a001 225851433717/2537720636*1568397607^(1/4) 1771100001129241 a001 12586269025/505019158607*1568397607^(7/11) 1771100001129241 a001 10983760033/440719107401*1568397607^(7/11) 1771100001129241 a001 43133785636/1730726404001*1568397607^(7/11) 1771100001129241 a001 75283811239/3020733700601*1568397607^(7/11) 1771100001129241 a001 182717648081/7331474697802*1568397607^(7/11) 1771100001129241 a001 139583862445/5600748293801*1568397607^(7/11) 1771100001129241 a001 53316291173/2139295485799*1568397607^(7/11) 1771100001129241 a001 10182505537/408569081798*1568397607^(7/11) 1771100001129241 a001 7778742049/312119004989*1568397607^(7/11) 1771100001129241 a001 2971215073/45537549124*1568397607^(13/22) 1771100001129241 a001 139583862445/2537720636*1568397607^(3/11) 1771100001129241 a001 102287808/10745088481*1568397607^(15/22) 1771100001129241 a001 1836311903/3461452808002*1568397607^(9/11) 1771100001129241 a001 12586269025/1322157322203*1568397607^(15/22) 1771100001129241 a001 32951280099/3461452808002*1568397607^(15/22) 1771100001129241 a001 86267571272/9062201101803*1568397607^(15/22) 1771100001129241 a001 225851433717/23725150497407*1568397607^(15/22) 1771100001129241 a001 139583862445/14662949395604*1568397607^(15/22) 1771100001129241 a001 53316291173/5600748293801*1568397607^(15/22) 1771100001129241 a001 20365011074/2139295485799*1568397607^(15/22) 1771100001129241 a001 7778742049/817138163596*1568397607^(15/22) 1771100001129241 a001 2971215073/119218851371*1568397607^(7/11) 1771100001129241 a001 53316291173/2537720636*1568397607^(7/22) 1771100001129241 a001 1602508992/440719107401*1568397607^(8/11) 1771100001129241 a001 1836311903/9062201101803*1568397607^(19/22) 1771100001129241 a001 12586269025/3461452808002*1568397607^(8/11) 1771100001129241 a001 10983760033/3020733700601*1568397607^(8/11) 1771100001129241 a001 86267571272/23725150497407*1568397607^(8/11) 1771100001129241 a001 53316291173/14662949395604*1568397607^(8/11) 1771100001129241 a001 20365011074/5600748293801*1568397607^(8/11) 1771100001129241 a001 4807526976/2139295485799*1568397607^(3/4) 1771100001129241 a001 7778742049/2139295485799*1568397607^(8/11) 1771100001129241 a001 2971215073/312119004989*1568397607^(15/22) 1771100001129241 a001 10182505537/1268860318*1568397607^(4/11) 1771100001129241 a001 12586269025/5600748293801*1568397607^(3/4) 1771100001129241 a001 32951280099/14662949395604*1568397607^(3/4) 1771100001129241 a001 53316291173/23725150497407*1568397607^(3/4) 1771100001129241 a001 20365011074/9062201101803*1568397607^(3/4) 1771100001129241 a001 14930208/10749853441*1568397607^(17/22) 1771100001129241 a001 7778742049/3461452808002*1568397607^(3/4) 1771100001129241 a001 1836311903/23725150497407*1568397607^(10/11) 1771100001129241 a001 567451585/1268860318*312119004989^(2/5) 1771100001129241 a001 12586269025/9062201101803*1568397607^(17/22) 1771100001129241 a001 32951280099/23725150497407*1568397607^(17/22) 1771100001129241 a001 567451585/1268860318*10749957122^(11/24) 1771100001129241 a001 10182505537/7331474697802*1568397607^(17/22) 1771100001129241 a001 7778742049/5600748293801*1568397607^(17/22) 1771100001129241 a001 2971215073/817138163596*1568397607^(8/11) 1771100001129241 a001 1602508992/3020733700601*1568397607^(9/11) 1771100001129241 a001 7778742049/2537720636*1568397607^(9/22) 1771100001129241 a001 2971215073/1322157322203*1568397607^(3/4) 1771100001129241 a001 12586269025/23725150497407*1568397607^(9/11) 1771100001129241 a001 7778742049/14662949395604*1568397607^(9/11) 1771100001129241 a001 2971215073/2139295485799*1568397607^(17/22) 1771100001129241 a001 4052739537881/4106118243*599074578^(1/7) 1771100001129241 a001 567451585/1268860318*4106118243^(11/23) 1771100001129241 a001 4807526976/23725150497407*1568397607^(19/22) 1771100001129241 a001 10610209857723/2537720636*599074578^(1/14) 1771100001129241 a001 2971215073/5600748293801*1568397607^(9/11) 1771100001129241 a001 2971215073/2537720636*1568397607^(5/11) 1771100001129241 a001 2971215073/14662949395604*1568397607^(19/22) 1771100001129241 a001 4807525989/4870846*599074578^(1/7) 1771100001129241 a001 86267571272/1568397607*599074578^(2/7) 1771100001129241 a001 1134903170/17393796001*1568397607^(13/22) 1771100001129241 a001 1134903170/6643838879*1568397607^(6/11) 1771100001129241 a001 2504730781961/4106118243*599074578^(1/6) 1771100001129241 a001 567451585/22768774562*1568397607^(7/11) 1771100001129241 a001 3278735159921/1268860318*599074578^(2/21) 1771100001129241 a001 6557470319842/6643838879*599074578^(1/7) 1771100001129241 a001 1134903170/119218851371*1568397607^(15/22) 1771100001129241 a001 1134903170/312119004989*1568397607^(8/11) 1771100001129241 a001 3278735159921/5374978561*599074578^(1/6) 1771100001129241 a001 1134903170/505019158607*1568397607^(3/4) 1771100001129241 a001 10610209857723/17393796001*599074578^(1/6) 1771100001129241 a001 567451585/408569081798*1568397607^(17/22) 1771100001129241 a001 516002918640/1368706081*599074578^(4/21) 1771100001129241 a001 4052739537881/6643838879*599074578^(1/6) 1771100001129241 a001 1134903170/2139295485799*1568397607^(9/11) 1771100001129241 a001 1134903170/5600748293801*1568397607^(19/22) 1771100001129241 a001 567451585/1268860318*1568397607^(1/2) 1771100001129241 a001 32951280099/1568397607*599074578^(1/3) 1771100001129241 a001 567451585/7331474697802*1568397607^(10/11) 1771100001129241 a001 3536736619241/9381251041*599074578^(4/21) 1771100001129241 a001 6557470319842/17393796001*599074578^(4/21) 1771100001129241 a001 956722026041/4106118243*599074578^(3/14) 1771100001129241 a001 1515744265389/224056801*228826127^(1/20) 1771100001129241 a001 2504730781961/2537720636*599074578^(1/7) 1771100001129241 a001 2504730781961/6643838879*599074578^(4/21) 1771100001129241 a001 701408733/969323029*2537720636^(7/15) 1771100001129241 a001 2504730781961/10749957122*599074578^(3/14) 1771100001129241 a001 20365011074/1568397607*599074578^(5/14) 1771100001129241 a001 6557470319842/28143753123*599074578^(3/14) 1771100001129241 a001 10610209857723/45537549124*599074578^(3/14) 1771100001129241 a001 4052739537881/17393796001*599074578^(3/14) 1771100001129241 a001 591286729879/4106118243*599074578^(5/21) 1771100001129241 a001 1134903780/1860499*599074578^(1/6) 1771100001129241 a001 1548008755920/6643838879*599074578^(3/14) 1771100001129241 a001 701408733/1568397607*599074578^(11/21) 1771100001129241 a001 12586269025/1568397607*599074578^(8/21) 1771100001129241 a001 774004377960/5374978561*599074578^(5/21) 1771100001129241 a001 701408733/969323029*17393796001^(3/7) 1771100001129241 a001 701408733/969323029*45537549124^(7/17) 1771100001129241 a001 701408733/969323029*14662949395604^(1/3) 1771100001129241 a001 701408733/969323029*192900153618^(7/18) 1771100001129241 a001 701408733/969323029*10749957122^(7/16) 1771100001129241 a001 4052739537881/28143753123*599074578^(5/21) 1771100001129241 a001 1515744265389/10525900321*599074578^(5/21) 1771100001129241 a001 3278735159921/22768774562*599074578^(5/21) 1771100001129241 a001 2504730781961/17393796001*599074578^(5/21) 1771100001129241 a001 956722026041/2537720636*599074578^(4/21) 1771100001129241 a001 956722026041/6643838879*599074578^(5/21) 1771100001129241 a001 433494437/1568397607*4106118243^(1/2) 1771100001129241 a001 75283811239/1368706081*599074578^(2/7) 1771100001129241 a001 591286729879/2537720636*599074578^(3/14) 1771100001129241 a001 686789568/224056801*599074578^(3/7) 1771100001129241 a001 591286729879/10749957122*599074578^(2/7) 1771100001129241 a001 12585437040/228811001*599074578^(2/7) 1771100001129241 a001 4052739537881/73681302247*599074578^(2/7) 1771100001129241 a001 3536736619241/64300051206*599074578^(2/7) 1771100001129241 a001 6557470319842/119218851371*599074578^(2/7) 1771100001129241 a001 2504730781961/45537549124*599074578^(2/7) 1771100001129241 a001 956722026041/17393796001*599074578^(2/7) 1771100001129241 a001 182717648081/1268860318*599074578^(5/21) 1771100001129241 a001 365435296162/6643838879*599074578^(2/7) 1771100001129241 a001 1836311903/1568397607*599074578^(10/21) 1771100001129241 a001 86267571272/4106118243*599074578^(1/3) 1771100001129241 a001 433494437/4106118243*2537720636^(5/9) 1771100001129241 a001 433494437/14662949395604*2537720636^(14/15) 1771100001129241 a001 225851433717/10749957122*599074578^(1/3) 1771100001129241 a001 433494437/5600748293801*2537720636^(8/9) 1771100001129241 a001 591286729879/28143753123*599074578^(1/3) 1771100001129241 a001 1548008755920/73681302247*599074578^(1/3) 1771100001129241 a001 4052739537881/192900153618*599074578^(1/3) 1771100001129241 a001 225749145909/10745088481*599074578^(1/3) 1771100001129241 a001 6557470319842/312119004989*599074578^(1/3) 1771100001129241 a001 2504730781961/119218851371*599074578^(1/3) 1771100001129241 a001 956722026041/45537549124*599074578^(1/3) 1771100001129241 a001 433494437/3461452808002*2537720636^(13/15) 1771100001129241 a001 365435296162/17393796001*599074578^(1/3) 1771100001129241 a001 53316291173/4106118243*599074578^(5/14) 1771100001129241 a001 433494437/817138163596*2537720636^(4/5) 1771100001129241 a001 433494437/505019158607*2537720636^(7/9) 1771100001129241 a001 433494437/192900153618*2537720636^(11/15) 1771100001129241 a001 139583862445/2537720636*599074578^(2/7) 1771100001129241 a001 139583862445/6643838879*599074578^(1/3) 1771100001129241 a001 433494437/45537549124*2537720636^(2/3) 1771100001129241 a001 433494437/10749957122*2537720636^(3/5) 1771100001129241 a001 139583862445/10749957122*599074578^(5/14) 1771100001129241 a001 365435296162/28143753123*599074578^(5/14) 1771100001129241 a001 956722026041/73681302247*599074578^(5/14) 1771100001129241 a001 2504730781961/192900153618*599074578^(5/14) 1771100001129241 a001 10610209857723/817138163596*599074578^(5/14) 1771100001129241 a001 4052739537881/312119004989*599074578^(5/14) 1771100001129241 a001 1548008755920/119218851371*599074578^(5/14) 1771100001129241 a001 591286729879/45537549124*599074578^(5/14) 1771100001129241 a001 7787980473/599786069*599074578^(5/14) 1771100001129241 a001 10983760033/1368706081*599074578^(8/21) 1771100001129241 a001 1836311903/969323029*817138163596^(1/3) 1771100001129241 a001 433494437/4106118243*3461452808002^(5/12) 1771100001129241 a001 433494437/4106118243*28143753123^(1/2) 1771100001129241 a001 12586269025/969323029*2537720636^(1/3) 1771100001129241 a001 86267571272/6643838879*599074578^(5/14) 1771100001129241 a001 53316291173/969323029*2537720636^(4/15) 1771100001129241 a001 2971215073/969323029*2537720636^(2/5) 1771100001129241 a001 139583862445/969323029*2537720636^(2/9) 1771100001129241 a001 225851433717/969323029*2537720636^(1/5) 1771100001129241 a001 956722026041/969323029*2537720636^(2/15) 1771100001129241 a001 1548008755920/969323029*2537720636^(1/9) 1771100001129241 a001 43133785636/5374978561*599074578^(8/21) 1771100001129241 a001 4052739537881/969323029*2537720636^(1/15) 1771100001129241 a001 433494437/10749957122*45537549124^(9/17) 1771100001129241 a001 4807526976/969323029*45537549124^(1/3) 1771100001129241 a001 433494437/10749957122*817138163596^(9/19) 1771100001129241 a001 433494437/10749957122*14662949395604^(3/7) 1771100001129241 a001 433494437/10749957122*192900153618^(1/2) 1771100001129241 a001 75283811239/9381251041*599074578^(8/21) 1771100001129241 a001 433494437/10749957122*10749957122^(9/16) 1771100001129241 a001 591286729879/73681302247*599074578^(8/21) 1771100001129241 a001 86000486440/10716675201*599074578^(8/21) 1771100001129241 a001 433494437/14662949395604*17393796001^(6/7) 1771100001129241 a001 4052739537881/505019158607*599074578^(8/21) 1771100001129241 a001 3278735159921/408569081798*599074578^(8/21) 1771100001129241 a001 2504730781961/312119004989*599074578^(8/21) 1771100001129241 a001 956722026041/119218851371*599074578^(8/21) 1771100001129241 a001 433494437/505019158607*17393796001^(5/7) 1771100001129241 a001 182717648081/22768774562*599074578^(8/21) 1771100001129241 a001 12586269025/969323029*45537549124^(5/17) 1771100001129241 a001 12586269025/969323029*312119004989^(3/11) 1771100001129241 a001 12586269025/969323029*14662949395604^(5/21) 1771100001129241 a001 12586269025/969323029*192900153618^(5/18) 1771100001129241 a001 12586269025/969323029*28143753123^(3/10) 1771100001129241 a001 591286729879/969323029*17393796001^(1/7) 1771100001129241 a001 20365011074/969323029*17393796001^(2/7) 1771100001129241 a001 433494437/14662949395604*45537549124^(14/17) 1771100001129241 a001 433494437/3461452808002*45537549124^(13/17) 1771100001129241 a001 433494437/192900153618*45537549124^(11/17) 1771100001129241 a001 433494437/312119004989*45537549124^(2/3) 1771100001129241 a001 433494437/73681302247*9062201101803^(1/2) 1771100001129241 a001 32951280099/969323029*73681302247^(1/4) 1771100001129241 a001 225851433717/969323029*45537549124^(3/17) 1771100001129241 a001 956722026041/969323029*45537549124^(2/17) 1771100001129241 a001 53316291173/969323029*45537549124^(4/17) 1771100001129241 a001 433494437/192900153618*312119004989^(3/5) 1771100001129241 a001 4052739537881/969323029*45537549124^(1/17) 1771100001129241 a001 433494437/192900153618*192900153618^(11/18) 1771100001129241 a001 225851433717/969323029*14662949395604^(1/7) 1771100001129241 a001 1548008755920/969323029*312119004989^(1/11) 1771100001129241 a001 139583862445/969323029*312119004989^(2/11) 1771100001129241 a001 2504730781961/969323029*73681302247^(1/13) 1771100001129241 a001 433494437/3461452808002*192900153618^(13/18) 1771100001129241 a001 433494437/14662949395604*192900153618^(7/9) 1771100001129241 a001 365435296162/969323029*73681302247^(2/13) 1771100001129241 a001 53316291173/969323029*817138163596^(4/19) 1771100001129241 a001 433494437/119218851371*23725150497407^(1/2) 1771100001129241 a001 53316291173/969323029*73681302247^(3/13) 1771100001129241 a001 1548008755920/969323029*28143753123^(1/10) 1771100001129241 a001 433494437/817138163596*73681302247^(9/13) 1771100001129241 a001 433494437/3461452808002*73681302247^(3/4) 1771100001129241 a001 433494437/119218851371*73681302247^(8/13) 1771100001129241 a001 433494437/45537549124*45537549124^(10/17) 1771100001129241 a001 139583862445/969323029*28143753123^(1/5) 1771100001129241 a001 6557470319842/969323029*10749957122^(1/24) 1771100001129241 a001 433494437/45537549124*312119004989^(6/11) 1771100001129241 a001 20365011074/969323029*14662949395604^(2/9) 1771100001129241 a001 20365011074/969323029*505019158607^(1/4) 1771100001129241 a001 139583862445/17393796001*599074578^(8/21) 1771100001129241 a001 433494437/45537549124*192900153618^(5/9) 1771100001129241 a001 4052739537881/969323029*10749957122^(1/16) 1771100001129241 a001 2504730781961/969323029*10749957122^(1/12) 1771100001129241 a001 433494437/505019158607*28143753123^(7/10) 1771100001129241 a001 433494437/5600748293801*28143753123^(4/5) 1771100001129241 a001 956722026041/969323029*10749957122^(1/8) 1771100001129241 a001 433494437/45537549124*28143753123^(3/5) 1771100001129241 a001 433494437/17393796001*17393796001^(4/7) 1771100001129241 a001 12586269025/969323029*10749957122^(5/16) 1771100001129241 a001 225851433717/969323029*10749957122^(3/16) 1771100001129241 a001 139583862445/969323029*10749957122^(5/24) 1771100001129241 a001 53316291173/969323029*10749957122^(1/4) 1771100001129241 a001 6557470319842/969323029*4106118243^(1/23) 1771100001129241 a001 20365011074/969323029*10749957122^(7/24) 1771100001129241 a001 433494437/17393796001*14662949395604^(4/9) 1771100001129241 a001 7778742049/969323029*73681302247^(4/13) 1771100001129241 a001 433494437/17393796001*73681302247^(7/13) 1771100001129241 a001 2504730781961/969323029*4106118243^(2/23) 1771100001129241 a001 433494437/119218851371*10749957122^(2/3) 1771100001129241 a001 433494437/45537549124*10749957122^(5/8) 1771100001129241 a001 433494437/192900153618*10749957122^(11/16) 1771100001129241 a001 433494437/312119004989*10749957122^(17/24) 1771100001129241 a001 7778742049/969323029*10749957122^(1/3) 1771100001129241 a001 433494437/817138163596*10749957122^(3/4) 1771100001129241 a001 433494437/2139295485799*10749957122^(19/24) 1771100001129241 a001 433494437/3461452808002*10749957122^(13/16) 1771100001129241 a001 433494437/5600748293801*10749957122^(5/6) 1771100001129241 a001 433494437/14662949395604*10749957122^(7/8) 1771100001129241 a001 956722026041/969323029*4106118243^(3/23) 1771100001129241 a001 433494437/17393796001*10749957122^(7/12) 1771100001129241 a001 365435296162/969323029*4106118243^(4/23) 1771100001129241 a001 139583862445/969323029*4106118243^(5/23) 1771100001129241 a001 53316291173/969323029*4106118243^(6/23) 1771100001129241 a001 6557470319842/969323029*1568397607^(1/22) 1771100001129241 a001 20365011074/969323029*4106118243^(7/23) 1771100001129241 a001 53316291173/2537720636*599074578^(1/3) 1771100001129241 a001 53316291173/6643838879*599074578^(8/21) 1771100001129241 a001 2971215073/969323029*45537549124^(6/17) 1771100001129241 a001 2971215073/969323029*14662949395604^(2/7) 1771100001129241 a001 2971215073/969323029*192900153618^(1/3) 1771100001129241 a001 433494437/6643838879*73681302247^(1/2) 1771100001129241 a001 7778742049/969323029*4106118243^(8/23) 1771100001129241 a001 2971215073/969323029*10749957122^(3/8) 1771100001129241 a001 433494437/6643838879*10749957122^(13/24) 1771100001129241 a001 2504730781961/969323029*1568397607^(1/11) 1771100001129241 a001 433494437/45537549124*4106118243^(15/23) 1771100001129241 a001 433494437/17393796001*4106118243^(14/23) 1771100001129241 a001 433494437/119218851371*4106118243^(16/23) 1771100001129241 a001 433494437/312119004989*4106118243^(17/23) 1771100001129241 a001 2971215073/969323029*4106118243^(9/23) 1771100001129241 a001 433494437/817138163596*4106118243^(18/23) 1771100001129241 a001 433494437/2139295485799*4106118243^(19/23) 1771100001129241 a001 433494437/5600748293801*4106118243^(20/23) 1771100001129241 a001 433494437/14662949395604*4106118243^(21/23) 1771100001129241 a001 956722026041/969323029*1568397607^(3/22) 1771100001129241 a001 433494437/6643838879*4106118243^(13/23) 1771100001129241 a001 233802911/1368706081*599074578^(4/7) 1771100001129241 a001 12586269025/4106118243*599074578^(3/7) 1771100001129241 a001 433494437/2537720636*2537720636^(8/15) 1771100001129241 a001 365435296162/969323029*1568397607^(2/11) 1771100001129241 a001 1134903170/1568397607*599074578^(1/2) 1771100001129241 a001 32951280099/2537720636*599074578^(5/14) 1771100001129241 a001 1134903170/969323029*2537720636^(4/9) 1771100001129241 a001 139583862445/969323029*1568397607^(5/22) 1771100001129241 a001 86267571272/969323029*1568397607^(1/4) 1771100001129241 a001 53316291173/969323029*1568397607^(3/11) 1771100001129241 a001 32951280099/10749957122*599074578^(3/7) 1771100001129241 a001 86267571272/28143753123*599074578^(3/7) 1771100001129241 a001 32264490531/10525900321*599074578^(3/7) 1771100001129241 a001 20365011074/969323029*1568397607^(7/22) 1771100001129241 a001 591286729879/192900153618*599074578^(3/7) 1771100001129241 a001 1548008755920/505019158607*599074578^(3/7) 1771100001129241 a001 1515744265389/494493258286*599074578^(3/7) 1771100001129241 a001 956722026041/312119004989*599074578^(3/7) 1771100001129241 a001 365435296162/119218851371*599074578^(3/7) 1771100001129241 a001 139583862445/45537549124*599074578^(3/7) 1771100001129241 a001 6557470319842/969323029*599074578^(1/21) 1771100001129241 a001 53316291173/17393796001*599074578^(3/7) 1771100001129241 a001 7778742049/969323029*1568397607^(4/11) 1771100001129241 a001 10182505537/1268860318*599074578^(8/21) 1771100001129241 a001 20365011074/6643838879*599074578^(3/7) 1771100001129241 a001 433494437/2537720636*45537549124^(8/17) 1771100001129241 a001 1134903170/969323029*23725150497407^(5/16) 1771100001129241 a001 1134903170/969323029*505019158607^(5/14) 1771100001129241 a001 433494437/2537720636*192900153618^(4/9) 1771100001129241 a001 1134903170/969323029*73681302247^(5/13) 1771100001129241 a001 433494437/2537720636*73681302247^(6/13) 1771100001129241 a001 1134903170/969323029*28143753123^(2/5) 1771100001129241 a001 1134903170/969323029*10749957122^(5/12) 1771100001129241 a001 433494437/2537720636*10749957122^(1/2) 1771100001129241 a001 1134903170/969323029*4106118243^(10/23) 1771100001129241 a001 433494437/2537720636*4106118243^(12/23) 1771100001129241 a001 2971215073/969323029*1568397607^(9/22) 1771100001129241 a001 1602508992/1368706081*599074578^(10/21) 1771100001129241 a001 4052739537881/969323029*599074578^(1/14) 1771100001129241 a001 701408733/10749957122*599074578^(13/21) 1771100001129241 a001 12586269025/10749957122*599074578^(10/21) 1771100001129241 a001 10983760033/9381251041*599074578^(10/21) 1771100001129241 a001 433494437/17393796001*1568397607^(7/11) 1771100001129241 a001 86267571272/73681302247*599074578^(10/21) 1771100001129241 a001 75283811239/64300051206*599074578^(10/21) 1771100001129241 a001 2504730781961/2139295485799*599074578^(10/21) 1771100001129241 a001 365435296162/312119004989*599074578^(10/21) 1771100001129241 a001 139583862445/119218851371*599074578^(10/21) 1771100001129241 a001 433494437/6643838879*1568397607^(13/22) 1771100001129241 a001 53316291173/45537549124*599074578^(10/21) 1771100001129241 a001 2504730781961/969323029*599074578^(2/21) 1771100001129241 a001 20365011074/17393796001*599074578^(10/21) 1771100001129241 a001 1836311903/4106118243*599074578^(11/21) 1771100001129241 a001 433494437/45537549124*1568397607^(15/22) 1771100001129241 a001 7778742049/2537720636*599074578^(3/7) 1771100001129241 a001 7778742049/6643838879*599074578^(10/21) 1771100001129241 a001 2971215073/4106118243*599074578^(1/2) 1771100001129241 a001 433494437/119218851371*1568397607^(8/11) 1771100001129241 a001 433494437/192900153618*1568397607^(3/4) 1771100001129241 a001 433494437/312119004989*1568397607^(17/22) 1771100001129241 a001 7778742049/10749957122*599074578^(1/2) 1771100001129241 a001 701408733/17393796001*599074578^(9/14) 1771100001129241 a001 20365011074/28143753123*599074578^(1/2) 1771100001129241 a001 53316291173/73681302247*599074578^(1/2) 1771100001129241 a001 139583862445/192900153618*599074578^(1/2) 1771100001129241 a001 10610209857723/14662949395604*599074578^(1/2) 1771100001129241 a001 591286729879/817138163596*599074578^(1/2) 1771100001129241 a001 225851433717/312119004989*599074578^(1/2) 1771100001129241 a001 86267571272/119218851371*599074578^(1/2) 1771100001129241 a001 32951280099/45537549124*599074578^(1/2) 1771100001129241 a001 12586269025/17393796001*599074578^(1/2) 1771100001129241 a001 433494437/817138163596*1568397607^(9/11) 1771100001129241 a001 1134903170/969323029*1568397607^(5/11) 1771100001129241 a001 4807526976/6643838879*599074578^(1/2) 1771100001129241 a001 433494437/2139295485799*1568397607^(19/22) 1771100001129241 a001 433494437/5600748293801*1568397607^(10/11) 1771100001129241 a001 433494437/2537720636*1568397607^(6/11) 1771100001129241 a001 2403763488/5374978561*599074578^(11/21) 1771100001129241 a001 233802911/9381251041*599074578^(2/3) 1771100001129241 a001 433494437/14662949395604*1568397607^(21/22) 1771100001129241 a001 12586269025/28143753123*599074578^(11/21) 1771100001129241 a001 32951280099/73681302247*599074578^(11/21) 1771100001129241 a001 43133785636/96450076809*599074578^(11/21) 1771100001129241 a001 225851433717/505019158607*599074578^(11/21) 1771100001129241 a001 139583862445/312119004989*599074578^(11/21) 1771100001129241 a001 53316291173/119218851371*599074578^(11/21) 1771100001129241 a001 10182505537/22768774562*599074578^(11/21) 1771100001129241 a001 956722026041/969323029*599074578^(1/7) 1771100001129241 a001 7778742049/17393796001*599074578^(11/21) 1771100001129241 a001 1836311903/2537720636*599074578^(1/2) 1771100001129241 a001 4052739537881/1568397607*228826127^(1/10) 1771100001129241 a001 2971215073/2537720636*599074578^(10/21) 1771100001129241 a001 2971215073/6643838879*599074578^(11/21) 1771100001129241 a001 1836311903/10749957122*599074578^(4/7) 1771100001129241 a001 591286729879/969323029*599074578^(1/6) 1771100001129241 a001 225851433717/228826127*87403803^(3/19) 1771100001129241 a001 1602508992/9381251041*599074578^(4/7) 1771100001129241 a001 701408733/73681302247*599074578^(5/7) 1771100001129241 a001 12586269025/73681302247*599074578^(4/7) 1771100001129241 a001 10983760033/64300051206*599074578^(4/7) 1771100001129241 a001 86267571272/505019158607*599074578^(4/7) 1771100001129241 a001 75283811239/440719107401*599074578^(4/7) 1771100001129241 a001 2504730781961/14662949395604*599074578^(4/7) 1771100001129241 a001 139583862445/817138163596*599074578^(4/7) 1771100001129241 a001 53316291173/312119004989*599074578^(4/7) 1771100001129241 a001 20365011074/119218851371*599074578^(4/7) 1771100001129241 a001 365435296162/969323029*599074578^(4/21) 1771100001129241 a001 7778742049/45537549124*599074578^(4/7) 1771100001129241 a001 2971215073/17393796001*599074578^(4/7) 1771100001129241 a001 225851433717/969323029*599074578^(3/14) 1771100001129241 a001 1836311903/28143753123*599074578^(13/21) 1771100001129241 a001 686789568/10525900321*599074578^(13/21) 1771100001129241 a001 233802911/64300051206*599074578^(16/21) 1771100001129241 a001 12586269025/192900153618*599074578^(13/21) 1771100001129241 a001 32951280099/505019158607*599074578^(13/21) 1771100001129241 a001 86267571272/1322157322203*599074578^(13/21) 1771100001129241 a001 32264490531/494493258286*599074578^(13/21) 1771100001129241 a001 1548008755920/23725150497407*599074578^(13/21) 1771100001129241 a001 139583862445/2139295485799*599074578^(13/21) 1771100001129241 a001 53316291173/817138163596*599074578^(13/21) 1771100001129241 a001 20365011074/312119004989*599074578^(13/21) 1771100001129241 a001 139583862445/969323029*599074578^(5/21) 1771100001129241 a001 7778742049/119218851371*599074578^(13/21) 1771100001129241 a001 1836311903/45537549124*599074578^(9/14) 1771100001129241 a001 2971215073/45537549124*599074578^(13/21) 1771100001129241 a001 567451585/1268860318*599074578^(11/21) 1771100001129241 a001 1134903170/6643838879*599074578^(4/7) 1771100001129241 a001 4807526976/119218851371*599074578^(9/14) 1771100001129241 a001 3524667/1568437211*599074578^(11/14) 1771100001129241 a001 1144206275/28374454999*599074578^(9/14) 1771100001129241 a001 32951280099/817138163596*599074578^(9/14) 1771100001129241 a001 86267571272/2139295485799*599074578^(9/14) 1771100001129241 a001 225851433717/5600748293801*599074578^(9/14) 1771100001129241 a001 365435296162/9062201101803*599074578^(9/14) 1771100001129241 a001 139583862445/3461452808002*599074578^(9/14) 1771100001129241 a001 53316291173/1322157322203*599074578^(9/14) 1771100001129241 a001 20365011074/505019158607*599074578^(9/14) 1771100001129241 a001 7778742049/192900153618*599074578^(9/14) 1771100001129241 a001 1836311903/73681302247*599074578^(2/3) 1771100001129241 a001 2971215073/73681302247*599074578^(9/14) 1771100001129241 a001 267084832/10716675201*599074578^(2/3) 1771100001129241 a001 701408733/505019158607*599074578^(17/21) 1771100001129241 a001 3536736619241/1368706081*228826127^(1/10) 1771100001129241 a001 12586269025/505019158607*599074578^(2/3) 1771100001129241 a001 10983760033/440719107401*599074578^(2/3) 1771100001129241 a001 43133785636/1730726404001*599074578^(2/3) 1771100001129241 a001 75283811239/3020733700601*599074578^(2/3) 1771100001129241 a001 182717648081/7331474697802*599074578^(2/3) 1771100001129241 a001 139583862445/5600748293801*599074578^(2/3) 1771100001129241 a001 53316291173/2139295485799*599074578^(2/3) 1771100001129241 a001 10182505537/408569081798*599074578^(2/3) 1771100001129241 a001 53316291173/969323029*599074578^(2/7) 1771100001129241 a001 7778742049/312119004989*599074578^(2/3) 1771100001129241 a001 2971215073/119218851371*599074578^(2/3) 1771100001129241 a001 1134903170/17393796001*599074578^(13/21) 1771100001129241 a001 701408733/817138163596*599074578^(5/6) 1771100001129241 a001 1836311903/192900153618*599074578^(5/7) 1771100001129241 a001 1134903170/28143753123*599074578^(9/14) 1771100001129241 a001 2504730781961/1568397607*228826127^(1/8) 1771100001129241 a001 102287808/10745088481*599074578^(5/7) 1771100001129241 a001 233802911/440719107401*599074578^(6/7) 1771100001129241 a001 43133785636/299537289*228826127^(1/4) 1771100001129241 a001 12586269025/1322157322203*599074578^(5/7) 1771100001129241 a001 32951280099/3461452808002*599074578^(5/7) 1771100001129241 a001 86267571272/9062201101803*599074578^(5/7) 1771100001129241 a001 225851433717/23725150497407*599074578^(5/7) 1771100001129241 a001 139583862445/14662949395604*599074578^(5/7) 1771100001129241 a001 53316291173/5600748293801*599074578^(5/7) 1771100001129241 a001 20365011074/2139295485799*599074578^(5/7) 1771100001129241 a001 20365011074/969323029*599074578^(1/3) 1771100001129241 a001 2971215073/312119004989*599074578^(5/7) 1771100001129241 a001 567451585/22768774562*599074578^(2/3) 1771100001129241 a001 6557470319842/969323029*228826127^(1/20) 1771100001129241 a001 701408733/969323029*599074578^(1/2) 1771100001129241 a001 12586269025/969323029*599074578^(5/14) 1771100001129241 a001 1836311903/505019158607*599074578^(16/21) 1771100001129241 a001 3278735159921/1268860318*228826127^(1/10) 1771100001129241 a001 1602508992/440719107401*599074578^(16/21) 1771100001129241 a001 701408733/3461452808002*599074578^(19/21) 1771100001129241 a001 12586269025/3461452808002*599074578^(16/21) 1771100001129241 a001 10983760033/3020733700601*599074578^(16/21) 1771100001129241 a001 86267571272/23725150497407*599074578^(16/21) 1771100001129241 a001 53316291173/14662949395604*599074578^(16/21) 1771100001129241 a001 20365011074/5600748293801*599074578^(16/21) 1771100001129241 a001 7778742049/2139295485799*599074578^(16/21) 1771100001129241 a001 433494437/969323029*312119004989^(2/5) 1771100001129241 a001 187917426909946969/10610209857723 1771100001129241 a001 7778742049/969323029*599074578^(8/21) 1771100001129241 a001 1836311903/817138163596*599074578^(11/14) 1771100001129241 a001 433494437/969323029*10749957122^(11/24) 1771100001129241 a001 2971215073/817138163596*599074578^(16/21) 1771100001129241 a001 1134903170/119218851371*599074578^(5/7) 1771100001129241 a001 433494437/969323029*4106118243^(11/23) 1771100001129241 a001 4807526976/2139295485799*599074578^(11/14) 1771100001129241 a001 701408733/5600748293801*599074578^(13/14) 1771100001129241 a001 12586269025/5600748293801*599074578^(11/14) 1771100001129241 a001 32951280099/14662949395604*599074578^(11/14) 1771100001129241 a001 53316291173/23725150497407*599074578^(11/14) 1771100001129241 a001 20365011074/9062201101803*599074578^(11/14) 1771100001129241 a001 7778742049/3461452808002*599074578^(11/14) 1771100001129241 a001 1836311903/1322157322203*599074578^(17/21) 1771100001129241 a001 2971215073/1322157322203*599074578^(11/14) 1771100001129241 a001 14930208/10749853441*599074578^(17/21) 1771100001129241 a001 233802911/3020733700601*599074578^(20/21) 1771100001129241 a001 12586269025/9062201101803*599074578^(17/21) 1771100001129241 a001 32951280099/23725150497407*599074578^(17/21) 1771100001129241 a001 10182505537/7331474697802*599074578^(17/21) 1771100001129241 a001 7778742049/5600748293801*599074578^(17/21) 1771100001129241 a001 1836311903/2139295485799*599074578^(5/6) 1771100001129241 a001 1134903170/312119004989*599074578^(16/21) 1771100001129241 a001 2971215073/2139295485799*599074578^(17/21) 1771100001129241 a001 2971215073/969323029*599074578^(3/7) 1771100001129241 a001 4807526976/5600748293801*599074578^(5/6) 1771100001129241 a001 12586269025/14662949395604*599074578^(5/6) 1771100001129241 a001 20365011074/23725150497407*599074578^(5/6) 1771100001129241 a001 7778742049/9062201101803*599074578^(5/6) 1771100001129241 a001 6557470319842/4106118243*228826127^(1/8) 1771100001129241 a001 1836311903/3461452808002*599074578^(6/7) 1771100001129241 a001 433494437/969323029*1568397607^(1/2) 1771100001129241 a001 1134903170/505019158607*599074578^(11/14) 1771100001129241 a001 2971215073/3461452808002*599074578^(5/6) 1771100001129241 a001 1602508992/3020733700601*599074578^(6/7) 1771100001129241 a001 12586269025/23725150497407*599074578^(6/7) 1771100001129241 a001 7778742049/14662949395604*599074578^(6/7) 1771100001129241 a001 10610209857723/6643838879*228826127^(1/8) 1771100001129241 a001 567451585/408569081798*599074578^(17/21) 1771100001129241 a001 2971215073/5600748293801*599074578^(6/7) 1771100001129241 a001 1548008755920/1568397607*228826127^(3/20) 1771100001129241 a001 1836311903/9062201101803*599074578^(19/21) 1771100001129241 a001 1134903170/1322157322203*599074578^(5/6) 1771100001129241 a001 4807526976/23725150497407*599074578^(19/21) 1771100001129241 a001 1836311903/14662949395604*599074578^(13/14) 1771100001129241 a001 4052739537881/2537720636*228826127^(1/8) 1771100001129241 a001 1134903170/2139295485799*599074578^(6/7) 1771100001129241 a001 2971215073/14662949395604*599074578^(19/21) 1771100001129241 a001 1134903170/969323029*599074578^(10/21) 1771100001129241 a001 1836311903/23725150497407*599074578^(20/21) 1771100001129241 a001 2971215073/23725150497407*599074578^(13/14) 1771100001129241 a001 1134903170/5600748293801*599074578^(19/21) 1771100001129241 a001 1134903170/9062201101803*599074578^(13/14) 1771100001129241 a001 1/133957148*(1/2+1/2*5^(1/2))^64 1771100001129241 a001 4052739537881/4106118243*228826127^(3/20) 1771100001129241 a001 567451585/7331474697802*599074578^(20/21) 1771100001129241 a001 433494437/2537720636*599074578^(4/7) 1771100001129241 a001 433494437/6643838879*599074578^(13/21) 1771100001129241 a001 433494437/10749957122*599074578^(9/14) 1771100001129241 a001 4807525989/4870846*228826127^(3/20) 1771100001129241 a001 6557470319842/6643838879*228826127^(3/20) 1771100001129241 a001 433494437/17393796001*599074578^(2/3) 1771100001129241 a001 10983760033/199691526*228826127^(3/10) 1771100001129241 a001 2504730781961/969323029*228826127^(1/10) 1771100001129241 a001 2504730781961/2537720636*228826127^(3/20) 1771100001129241 a001 433494437/45537549124*599074578^(5/7) 1771100001129241 a001 433494437/119218851371*599074578^(16/21) 1771100001129241 a001 433494437/192900153618*599074578^(11/14) 1771100001129241 a001 433494437/312119004989*599074578^(17/21) 1771100001129241 a001 433494437/505019158607*599074578^(5/6) 1771100001129241 a001 591286729879/1568397607*228826127^(1/5) 1771100001129241 a001 1548008755920/370248451*141422324^(1/13) 1771100001129241 a001 1548008755920/969323029*228826127^(1/8) 1771100001129241 a001 433494437/817138163596*599074578^(6/7) 1771100001129241 a001 433494437/2139295485799*599074578^(19/21) 1771100001129241 a001 433494437/969323029*599074578^(11/21) 1771100001129241 a001 433494437/3461452808002*599074578^(13/14) 1771100001129241 a001 433494437/5600748293801*599074578^(20/21) 1771100001129241 a001 516002918640/1368706081*228826127^(1/5) 1771100001129241 a001 4052739537881/10749957122*228826127^(1/5) 1771100001129241 a001 3536736619241/9381251041*228826127^(1/5) 1771100001129241 a001 6557470319842/17393796001*228826127^(1/5) 1771100001129241 a001 2504730781961/6643838879*228826127^(1/5) 1771100001129241 a001 63245986/119218851371*141422324^(12/13) 1771100001129241 a001 12586269025/599074578*228826127^(7/20) 1771100001129241 a001 956722026041/969323029*228826127^(3/20) 1771100001129241 a001 956722026041/2537720636*228826127^(1/5) 1771100001129241 a001 102334155/141422324*141422324^(7/13) 1771100001129241 a001 4052739537881/599074578*87403803^(1/19) 1771100001129241 a001 32264490531/224056801*228826127^(1/4) 1771100001129241 a001 7778742049/599074578*228826127^(3/8) 1771100001129241 a001 267914296/370248451*2537720636^(7/15) 1771100001129241 a001 267914296/370248451*17393796001^(3/7) 1771100001129241 a001 267914296/370248451*45537549124^(7/17) 1771100001129241 a001 44361286907595736/2504730781961 1771100001129241 a001 267914296/370248451*14662949395604^(1/3) 1771100001129241 a001 267914296/370248451*192900153618^(7/18) 1771100001129241 a001 267914296/370248451*10749957122^(7/16) 1771100001129241 a001 165580141/599074578*4106118243^(1/2) 1771100001129241 a001 591286729879/4106118243*228826127^(1/4) 1771100001129241 a001 774004377960/5374978561*228826127^(1/4) 1771100001129241 a001 4052739537881/28143753123*228826127^(1/4) 1771100001129241 a001 1515744265389/10525900321*228826127^(1/4) 1771100001129241 a001 3278735159921/22768774562*228826127^(1/4) 1771100001129241 a001 2504730781961/17393796001*228826127^(1/4) 1771100001129241 a001 956722026041/6643838879*228826127^(1/4) 1771100001129241 a001 267084832/33281921*228826127^(2/5) 1771100001129241 a001 365435296162/969323029*228826127^(1/5) 1771100001129241 a001 182717648081/1268860318*228826127^(1/4) 1771100001129241 a001 133957148/299537289*228826127^(11/20) 1771100001129241 a001 86267571272/1568397607*228826127^(3/10) 1771100001129241 a001 75283811239/1368706081*228826127^(3/10) 1771100001129241 a001 591286729879/10749957122*228826127^(3/10) 1771100001129241 a001 12585437040/228811001*228826127^(3/10) 1771100001129241 a001 4052739537881/73681302247*228826127^(3/10) 1771100001129241 a001 3536736619241/64300051206*228826127^(3/10) 1771100001129241 a001 6557470319842/119218851371*228826127^(3/10) 1771100001129241 a001 2504730781961/45537549124*228826127^(3/10) 1771100001129241 a001 956722026041/17393796001*228826127^(3/10) 1771100001129241 a001 1836311903/599074578*228826127^(9/20) 1771100001129241 a001 365435296162/6643838879*228826127^(3/10) 1771100001129241 a001 139583862445/969323029*228826127^(1/4) 1771100001129241 a001 139583862445/2537720636*228826127^(3/10) 1771100001129241 a001 267914296/370248451*599074578^(1/2) 1771100001129241 a001 32951280099/1568397607*228826127^(7/20) 1771100001129241 a001 233802911/199691526*228826127^(1/2) 1771100001129241 a001 1515744265389/224056801*87403803^(1/19) 1771100001129241 a001 86267571272/4106118243*228826127^(7/20) 1771100001129241 a001 225851433717/10749957122*228826127^(7/20) 1771100001129241 a001 591286729879/28143753123*228826127^(7/20) 1771100001129241 a001 1548008755920/73681302247*228826127^(7/20) 1771100001129241 a001 4052739537881/192900153618*228826127^(7/20) 1771100001129241 a001 225749145909/10745088481*228826127^(7/20) 1771100001129241 a001 6557470319842/312119004989*228826127^(7/20) 1771100001129241 a001 2504730781961/119218851371*228826127^(7/20) 1771100001129241 a001 956722026041/45537549124*228826127^(7/20) 1771100001129241 a001 365435296162/17393796001*228826127^(7/20) 1771100001129241 a001 139583862445/6643838879*228826127^(7/20) 1771100001129241 a001 20365011074/1568397607*228826127^(3/8) 1771100001129241 a001 53316291173/969323029*228826127^(3/10) 1771100001129241 a001 165580141/1568397607*2537720636^(5/9) 1771100001129241 a001 53316291173/2537720636*228826127^(7/20) 1771100001129241 a001 165580141/1568397607*312119004989^(5/11) 1771100001129241 a001 116139356908771353/6557470319842 1771100001129241 a001 165580141/1568397607*28143753123^(1/2) 1771100001129241 a001 53316291173/4106118243*228826127^(3/8) 1771100001129241 a001 165580141/4106118243*2537720636^(3/5) 1771100001129241 a001 86267571272/54018521*20633239^(1/7) 1771100001129241 a001 165580141/5600748293801*2537720636^(14/15) 1771100001129241 a001 139583862445/10749957122*228826127^(3/8) 1771100001129241 a001 165580141/2139295485799*2537720636^(8/9) 1771100001129241 a001 165580141/1322157322203*2537720636^(13/15) 1771100001129241 a001 365435296162/28143753123*228826127^(3/8) 1771100001129241 a001 956722026041/73681302247*228826127^(3/8) 1771100001129241 a001 2504730781961/192900153618*228826127^(3/8) 1771100001129241 a001 10610209857723/817138163596*228826127^(3/8) 1771100001129241 a001 4052739537881/312119004989*228826127^(3/8) 1771100001129241 a001 1548008755920/119218851371*228826127^(3/8) 1771100001129241 a001 591286729879/45537549124*228826127^(3/8) 1771100001129241 a001 7787980473/599786069*228826127^(3/8) 1771100001129241 a001 165580141/312119004989*2537720636^(4/5) 1771100001129241 a001 165580141/192900153618*2537720636^(7/9) 1771100001129241 a001 165580141/73681302247*2537720636^(11/15) 1771100001129241 a001 86267571272/6643838879*228826127^(3/8) 1771100001129241 a001 165580141/17393796001*2537720636^(2/3) 1771100001129241 a001 12586269025/1568397607*228826127^(2/5) 1771100001129241 a001 4807526976/370248451*2537720636^(1/3) 1771100001129241 a001 165580141/4106118243*45537549124^(9/17) 1771100001129241 a001 1836311903/370248451*45537549124^(1/3) 1771100001129241 a001 165580141/4106118243*14662949395604^(3/7) 1771100001129241 a001 165580141/4106118243*192900153618^(1/2) 1771100001129241 a001 165580141/4106118243*10749957122^(9/16) 1771100001129241 a001 20365011074/370248451*2537720636^(4/15) 1771100001129241 a001 53316291173/370248451*2537720636^(2/9) 1771100001129241 a001 86267571272/370248451*2537720636^(1/5) 1771100001129241 a001 365435296162/370248451*2537720636^(2/15) 1771100001129241 a001 591286729879/370248451*2537720636^(1/9) 1771100001129241 a001 1548008755920/370248451*2537720636^(1/15) 1771100001129241 a001 4807526976/370248451*45537549124^(5/17) 1771100001129241 a001 4807526976/370248451*312119004989^(3/11) 1771100001129241 a001 4807526976/370248451*14662949395604^(5/21) 1771100001129241 a001 165580141/10749957122*1322157322203^(1/2) 1771100001129241 a001 4807526976/370248451*192900153618^(5/18) 1771100001129241 a001 4807526976/370248451*28143753123^(3/10) 1771100001129241 a001 4807526976/370248451*10749957122^(5/16) 1771100001129241 a001 165580141/5600748293801*17393796001^(6/7) 1771100001129241 a001 165580141/192900153618*17393796001^(5/7) 1771100001129241 a001 165580141/28143753123*9062201101803^(1/2) 1771100001129241 a001 12586269025/370248451*73681302247^(1/4) 1771100001129241 a001 165580141/73681302247*45537549124^(11/17) 1771100001129241 a001 225851433717/370248451*17393796001^(1/7) 1771100001129241 a001 165580141/23725150497407*45537549124^(15/17) 1771100001129241 a001 165580141/5600748293801*45537549124^(14/17) 1771100001129241 a001 165580141/1322157322203*45537549124^(13/17) 1771100001129241 a001 165580141/312119004989*45537549124^(12/17) 1771100001129241 a001 165580141/119218851371*45537549124^(2/3) 1771100001129241 a001 165580141/73681302247*312119004989^(3/5) 1771100001129241 a001 165580141/73681302247*14662949395604^(11/21) 1771100001129241 a001 165580141/73681302247*192900153618^(11/18) 1771100001129241 a001 86267571272/370248451*45537549124^(3/17) 1771100001129241 a001 365435296162/370248451*45537549124^(2/17) 1771100001129241 a001 165580141/192900153618*312119004989^(7/11) 1771100001129241 a001 1548008755920/370248451*45537549124^(1/17) 1771100001129241 a001 165580141/192900153618*505019158607^(5/8) 1771100001129241 a001 165580141/14662949395604*312119004989^(4/5) 1771100001129241 a001 165580141/1322157322203*14662949395604^(13/21) 1771100001129241 a001 1548008755920/370248451*14662949395604^(1/21) 1771100001129241 a004 Fibonacci(41)/Lucas(1)/(1/2+sqrt(5)/2)^19 1771100001129241 a001 139583862445/370248451*23725150497407^(1/8) 1771100001129241 a001 139583862445/370248451*505019158607^(1/7) 1771100001129241 a001 165580141/1322157322203*192900153618^(13/18) 1771100001129241 a001 165580141/23725150497407*192900153618^(5/6) 1771100001129241 a001 139583862445/370248451*73681302247^(2/13) 1771100001129241 a001 53316291173/370248451*312119004989^(2/11) 1771100001129241 a001 591286729879/370248451*28143753123^(1/10) 1771100001129241 a001 165580141/1322157322203*73681302247^(3/4) 1771100001129241 a001 165580141/2139295485799*73681302247^(10/13) 1771100001129241 a001 165580141/14662949395604*73681302247^(11/13) 1771100001129241 a001 53316291173/370248451*28143753123^(1/5) 1771100001129241 a001 2504730781961/370248451*10749957122^(1/24) 1771100001129241 a001 20365011074/370248451*45537549124^(4/17) 1771100001129241 a001 20365011074/370248451*817138163596^(4/19) 1771100001129241 a001 165580141/45537549124*23725150497407^(1/2) 1771100001129241 a001 20365011074/370248451*73681302247^(3/13) 1771100001129241 a001 1548008755920/370248451*10749957122^(1/16) 1771100001129241 a001 165580141/45537549124*73681302247^(8/13) 1771100001129241 a001 956722026041/370248451*10749957122^(1/12) 1771100001129241 a001 165580141/192900153618*28143753123^(7/10) 1771100001129241 a001 165580141/2139295485799*28143753123^(4/5) 1771100001129241 a001 365435296162/370248451*10749957122^(1/8) 1771100001129241 a001 165580141/23725150497407*28143753123^(9/10) 1771100001129241 a001 139583862445/370248451*10749957122^(1/6) 1771100001129241 a001 86267571272/370248451*10749957122^(3/16) 1771100001129241 a001 53316291173/370248451*10749957122^(5/24) 1771100001129241 a001 7778742049/370248451*17393796001^(2/7) 1771100001129241 a001 2504730781961/370248451*4106118243^(1/23) 1771100001129241 a001 20365011074/370248451*10749957122^(1/4) 1771100001129241 a001 165580141/17393796001*45537549124^(10/17) 1771100001129241 a001 165580141/17393796001*312119004989^(6/11) 1771100001129241 a001 165580141/17393796001*14662949395604^(10/21) 1771100001129241 a001 165580141/17393796001*192900153618^(5/9) 1771100001129241 a001 165580141/17393796001*28143753123^(3/5) 1771100001129241 a001 956722026041/370248451*4106118243^(2/23) 1771100001129241 a001 165580141/73681302247*10749957122^(11/16) 1771100001129241 a001 7778742049/370248451*10749957122^(7/24) 1771100001129241 a001 165580141/119218851371*10749957122^(17/24) 1771100001129241 a001 165580141/45537549124*10749957122^(2/3) 1771100001129241 a001 165580141/312119004989*10749957122^(3/4) 1771100001129241 a001 165580141/817138163596*10749957122^(19/24) 1771100001129241 a001 165580141/1322157322203*10749957122^(13/16) 1771100001129241 a001 165580141/2139295485799*10749957122^(5/6) 1771100001129241 a001 165580141/5600748293801*10749957122^(7/8) 1771100001129241 a001 365435296162/370248451*4106118243^(3/23) 1771100001129241 a001 165580141/14662949395604*10749957122^(11/12) 1771100001129241 a001 165580141/23725150497407*10749957122^(15/16) 1771100001129241 a001 165580141/17393796001*10749957122^(5/8) 1771100001129241 a001 139583862445/370248451*4106118243^(4/23) 1771100001129241 a001 53316291173/370248451*4106118243^(5/23) 1771100001129241 a001 20365011074/370248451*4106118243^(6/23) 1771100001129241 a001 2504730781961/370248451*1568397607^(1/22) 1771100001129241 a001 165580141/6643838879*17393796001^(4/7) 1771100001129241 a001 7778742049/370248451*4106118243^(7/23) 1771100001129241 a001 32951280099/2537720636*228826127^(3/8) 1771100001129241 a001 165580141/6643838879*14662949395604^(4/9) 1771100001129241 a001 165580141/6643838879*505019158607^(1/2) 1771100001129241 a001 2971215073/370248451*73681302247^(4/13) 1771100001129241 a001 165580141/6643838879*73681302247^(7/13) 1771100001129241 a001 2971215073/370248451*10749957122^(1/3) 1771100001129241 a001 165580141/6643838879*10749957122^(7/12) 1771100001129241 a001 956722026041/370248451*1568397607^(1/11) 1771100001129241 a001 165580141/45537549124*4106118243^(16/23) 1771100001129241 a001 165580141/17393796001*4106118243^(15/23) 1771100001129241 a001 2971215073/370248451*4106118243^(8/23) 1771100001129241 a001 165580141/119218851371*4106118243^(17/23) 1771100001129241 a001 165580141/312119004989*4106118243^(18/23) 1771100001129241 a001 165580141/817138163596*4106118243^(19/23) 1771100001129241 a001 165580141/2139295485799*4106118243^(20/23) 1771100001129241 a001 165580141/5600748293801*4106118243^(21/23) 1771100001129241 a001 365435296162/370248451*1568397607^(3/22) 1771100001129241 a001 165580141/14662949395604*4106118243^(22/23) 1771100001129241 a001 165580141/6643838879*4106118243^(14/23) 1771100001129241 a001 139583862445/370248451*1568397607^(2/11) 1771100001129241 a001 53316291173/370248451*1568397607^(5/22) 1771100001129241 a001 1134903170/370248451*2537720636^(2/5) 1771100001129241 a001 32951280099/370248451*1568397607^(1/4) 1771100001129241 a001 20365011074/370248451*1568397607^(3/11) 1771100001129241 a001 7778742049/370248451*1568397607^(7/22) 1771100001129241 a001 2504730781961/370248451*599074578^(1/21) 1771100001129241 a001 1134903170/370248451*45537549124^(6/17) 1771100001129241 a001 1134903170/370248451*14662949395604^(2/7) 1771100001129241 a001 1134903170/370248451*192900153618^(1/3) 1771100001129241 a001 165580141/2537720636*73681302247^(1/2) 1771100001129241 a001 1134903170/370248451*10749957122^(3/8) 1771100001129241 a001 165580141/2537720636*10749957122^(13/24) 1771100001129241 a001 2971215073/370248451*1568397607^(4/11) 1771100001129241 a001 1134903170/370248451*4106118243^(9/23) 1771100001129241 a001 165580141/2537720636*4106118243^(13/23) 1771100001129241 a001 1548008755920/370248451*599074578^(1/14) 1771100001129241 a001 956722026041/370248451*599074578^(2/21) 1771100001129241 a001 165580141/17393796001*1568397607^(15/22) 1771100001129241 a001 165580141/6643838879*1568397607^(7/11) 1771100001129241 a001 10983760033/1368706081*228826127^(2/5) 1771100001129241 a001 165580141/45537549124*1568397607^(8/11) 1771100001129241 a001 165580141/73681302247*1568397607^(3/4) 1771100001129241 a001 165580141/119218851371*1568397607^(17/22) 1771100001129241 a001 1134903170/370248451*1568397607^(9/22) 1771100001129241 a001 165580141/312119004989*1568397607^(9/11) 1771100001129241 a001 43133785636/5374978561*228826127^(2/5) 1771100001129241 a001 75283811239/9381251041*228826127^(2/5) 1771100001129241 a001 591286729879/73681302247*228826127^(2/5) 1771100001129241 a001 86000486440/10716675201*228826127^(2/5) 1771100001129241 a001 4052739537881/505019158607*228826127^(2/5) 1771100001129241 a001 3278735159921/408569081798*228826127^(2/5) 1771100001129241 a001 2504730781961/312119004989*228826127^(2/5) 1771100001129241 a001 956722026041/119218851371*228826127^(2/5) 1771100001129241 a001 182717648081/22768774562*228826127^(2/5) 1771100001129241 a001 139583862445/17393796001*228826127^(2/5) 1771100001129241 a001 165580141/817138163596*1568397607^(19/22) 1771100001129241 a001 53316291173/6643838879*228826127^(2/5) 1771100001129241 a001 165580141/2139295485799*1568397607^(10/11) 1771100001129241 a001 165580141/5600748293801*1568397607^(21/22) 1771100001129241 a001 165580141/2537720636*1568397607^(13/22) 1771100001129241 a001 63245986/28143753123*141422324^(11/13) 1771100001129241 a001 365435296162/370248451*599074578^(1/7) 1771100001129241 a001 20365011074/969323029*228826127^(7/20) 1771100001129241 a001 225851433717/370248451*599074578^(1/6) 1771100001129241 a001 10182505537/1268860318*228826127^(2/5) 1771100001129241 a001 139583862445/370248451*599074578^(4/21) 1771100001129241 a001 86267571272/370248451*599074578^(3/14) 1771100001129241 a001 6557470319842/969323029*87403803^(1/19) 1771100001129241 a001 53316291173/370248451*599074578^(5/21) 1771100001129241 a001 20365011074/370248451*599074578^(2/7) 1771100001129241 a001 686789568/224056801*228826127^(9/20) 1771100001129241 a001 12586269025/969323029*228826127^(3/8) 1771100001129241 a001 7778742049/370248451*599074578^(1/3) 1771100001129241 a001 2504730781961/370248451*228826127^(1/20) 1771100001129241 a001 267914296/1568397607*228826127^(3/5) 1771100001129241 a001 165580141/969323029*2537720636^(8/15) 1771100001129241 a001 4807526976/370248451*599074578^(5/14) 1771100001129241 a001 433494437/370248451*2537720636^(4/9) 1771100001129241 a001 165580141/969323029*45537549124^(8/17) 1771100001129241 a001 165580141/969323029*14662949395604^(8/21) 1771100001129241 a001 433494437/370248451*23725150497407^(5/16) 1771100001129241 a001 433494437/370248451*505019158607^(5/14) 1771100001129241 a001 165580141/969323029*192900153618^(4/9) 1771100001129241 a001 433494437/370248451*73681302247^(5/13) 1771100001129241 a001 165580141/969323029*73681302247^(6/13) 1771100001129241 a001 433494437/370248451*28143753123^(2/5) 1771100001129241 a001 433494437/370248451*10749957122^(5/12) 1771100001129241 a001 165580141/969323029*10749957122^(1/2) 1771100001129241 a001 2971215073/370248451*599074578^(8/21) 1771100001129241 a001 433494437/370248451*4106118243^(10/23) 1771100001129241 a001 165580141/969323029*4106118243^(12/23) 1771100001129241 a001 86267571272/228826127*87403803^(4/19) 1771100001129241 a001 12586269025/4106118243*228826127^(9/20) 1771100001129241 a001 433494437/370248451*1568397607^(5/11) 1771100001129241 a001 165580141/969323029*1568397607^(6/11) 1771100001129241 a001 32951280099/10749957122*228826127^(9/20) 1771100001129241 a001 86267571272/28143753123*228826127^(9/20) 1771100001129241 a001 32264490531/10525900321*228826127^(9/20) 1771100001129241 a001 591286729879/192900153618*228826127^(9/20) 1771100001129241 a001 1548008755920/505019158607*228826127^(9/20) 1771100001129241 a001 1515744265389/494493258286*228826127^(9/20) 1771100001129241 a001 956722026041/312119004989*228826127^(9/20) 1771100001129241 a001 365435296162/119218851371*228826127^(9/20) 1771100001129241 a001 139583862445/45537549124*228826127^(9/20) 1771100001129241 a001 53316291173/17393796001*228826127^(9/20) 1771100001129241 a001 20365011074/6643838879*228826127^(9/20) 1771100001129241 a001 1134903170/370248451*599074578^(3/7) 1771100001129241 a001 7778742049/969323029*228826127^(2/5) 1771100001129241 a001 7778742049/2537720636*228826127^(9/20) 1771100001129241 a001 165580141/4106118243*599074578^(9/14) 1771100001129241 a001 1836311903/1568397607*228826127^(1/2) 1771100001129241 a001 165580141/2537720636*599074578^(13/21) 1771100001129241 a001 165580141/6643838879*599074578^(2/3) 1771100001129241 a001 956722026041/370248451*228826127^(1/10) 1771100001129241 a001 165580141/17393796001*599074578^(5/7) 1771100001129241 a001 66978574/634430159*228826127^(5/8) 1771100001129241 a001 165580141/45537549124*599074578^(16/21) 1771100001129241 a001 1602508992/1368706081*228826127^(1/2) 1771100001129241 a001 165580141/73681302247*599074578^(11/14) 1771100001129241 a001 12586269025/10749957122*228826127^(1/2) 1771100001129241 a001 10983760033/9381251041*228826127^(1/2) 1771100001129241 a001 86267571272/73681302247*228826127^(1/2) 1771100001129241 a001 75283811239/64300051206*228826127^(1/2) 1771100001129241 a001 2504730781961/2139295485799*228826127^(1/2) 1771100001129241 a001 365435296162/312119004989*228826127^(1/2) 1771100001129241 a001 139583862445/119218851371*228826127^(1/2) 1771100001129241 a001 53316291173/45537549124*228826127^(1/2) 1771100001129241 a001 165580141/119218851371*599074578^(17/21) 1771100001129241 a001 20365011074/17393796001*228826127^(1/2) 1771100001129241 a001 267914296/4106118243*228826127^(13/20) 1771100001129241 a001 7778742049/6643838879*228826127^(1/2) 1771100001129241 a001 165580141/192900153618*599074578^(5/6) 1771100001129241 a001 2971215073/969323029*228826127^(9/20) 1771100001129241 a001 591286729879/370248451*228826127^(1/8) 1771100001129241 a001 165580141/312119004989*599074578^(6/7) 1771100001129241 a001 433494437/370248451*599074578^(10/21) 1771100001129241 a001 701408733/1568397607*228826127^(11/20) 1771100001129241 a001 2971215073/2537720636*228826127^(1/2) 1771100001129241 a001 165580141/817138163596*599074578^(19/21) 1771100001129241 a001 165580141/1322157322203*599074578^(13/14) 1771100001129241 a001 165580141/2139295485799*599074578^(20/21) 1771100001129241 a001 165580141/969323029*599074578^(4/7) 1771100001129241 a001 365435296162/370248451*228826127^(3/20) 1771100001129241 a001 1836311903/4106118243*228826127^(11/20) 1771100001129241 a001 2403763488/5374978561*228826127^(11/20) 1771100001129241 a001 12586269025/28143753123*228826127^(11/20) 1771100001129241 a001 32951280099/73681302247*228826127^(11/20) 1771100001129241 a001 43133785636/96450076809*228826127^(11/20) 1771100001129241 a001 225851433717/505019158607*228826127^(11/20) 1771100001129241 a001 139583862445/312119004989*228826127^(11/20) 1771100001129241 a001 53316291173/119218851371*228826127^(11/20) 1771100001129241 a001 10182505537/22768774562*228826127^(11/20) 1771100001129241 a001 7778742049/17393796001*228826127^(11/20) 1771100001129241 a001 2971215073/6643838879*228826127^(11/20) 1771100001129241 a001 133957148/5374978561*228826127^(7/10) 1771100001129241 a001 1134903170/969323029*228826127^(1/2) 1771100001129241 a001 567451585/1268860318*228826127^(11/20) 1771100001129241 a001 86000486440/33281921*87403803^(2/19) 1771100001129241 a001 233802911/1368706081*228826127^(3/5) 1771100001129241 a001 139583862445/370248451*228826127^(1/5) 1771100001129241 a001 1836311903/10749957122*228826127^(3/5) 1771100001129241 a001 1602508992/9381251041*228826127^(3/5) 1771100001129241 a001 12586269025/73681302247*228826127^(3/5) 1771100001129241 a001 10983760033/64300051206*228826127^(3/5) 1771100001129241 a001 86267571272/505019158607*228826127^(3/5) 1771100001129241 a001 75283811239/440719107401*228826127^(3/5) 1771100001129241 a001 2504730781961/14662949395604*228826127^(3/5) 1771100001129241 a001 139583862445/817138163596*228826127^(3/5) 1771100001129241 a001 53316291173/312119004989*228826127^(3/5) 1771100001129241 a001 20365011074/119218851371*228826127^(3/5) 1771100001129241 a001 7778742049/45537549124*228826127^(3/5) 1771100001129241 a001 2971215073/17393796001*228826127^(3/5) 1771100001129241 a001 267914296/28143753123*228826127^(3/4) 1771100001129241 a001 701408733/6643838879*228826127^(5/8) 1771100001129241 a001 63245986/6643838879*141422324^(10/13) 1771100001129241 a001 1134903170/6643838879*228826127^(3/5) 1771100001129241 a001 1836311903/17393796001*228826127^(5/8) 1771100001129241 a001 1201881744/11384387281*228826127^(5/8) 1771100001129241 a001 12586269025/119218851371*228826127^(5/8) 1771100001129241 a001 32951280099/312119004989*228826127^(5/8) 1771100001129241 a001 21566892818/204284540899*228826127^(5/8) 1771100001129241 a001 225851433717/2139295485799*228826127^(5/8) 1771100001129241 a001 182717648081/1730726404001*228826127^(5/8) 1771100001129241 a001 139583862445/1322157322203*228826127^(5/8) 1771100001129241 a001 53316291173/505019158607*228826127^(5/8) 1771100001129241 a001 10182505537/96450076809*228826127^(5/8) 1771100001129241 a001 7778742049/73681302247*228826127^(5/8) 1771100001129241 a001 2971215073/28143753123*228826127^(5/8) 1771100001129241 a001 701408733/10749957122*228826127^(13/20) 1771100001129241 a001 53316291173/370248451*228826127^(1/4) 1771100001129241 a001 567451585/5374978561*228826127^(5/8) 1771100001129241 a001 1836311903/28143753123*228826127^(13/20) 1771100001129241 a001 686789568/10525900321*228826127^(13/20) 1771100001129241 a001 12586269025/192900153618*228826127^(13/20) 1771100001129241 a001 32951280099/505019158607*228826127^(13/20) 1771100001129241 a001 86267571272/1322157322203*228826127^(13/20) 1771100001129241 a001 1548008755920/23725150497407*228826127^(13/20) 1771100001129241 a001 365435296162/5600748293801*228826127^(13/20) 1771100001129241 a001 139583862445/2139295485799*228826127^(13/20) 1771100001129241 a001 53316291173/817138163596*228826127^(13/20) 1771100001129241 a001 20365011074/312119004989*228826127^(13/20) 1771100001129241 a001 7778742049/119218851371*228826127^(13/20) 1771100001129241 a001 2971215073/45537549124*228826127^(13/20) 1771100001129241 a001 267914296/73681302247*228826127^(4/5) 1771100001129241 a001 1134903170/17393796001*228826127^(13/20) 1771100001129241 a001 433494437/969323029*228826127^(11/20) 1771100001129241 a001 433494437/2537720636*228826127^(3/5) 1771100001129241 a001 433494437/4106118243*228826127^(5/8) 1771100001129241 a001 233802911/9381251041*228826127^(7/10) 1771100001129241 a001 20365011074/370248451*228826127^(3/10) 1771100001129241 a001 1836311903/73681302247*228826127^(7/10) 1771100001129241 a001 267084832/10716675201*228826127^(7/10) 1771100001129241 a001 12586269025/505019158607*228826127^(7/10) 1771100001129241 a001 10983760033/440719107401*228826127^(7/10) 1771100001129241 a001 43133785636/1730726404001*228826127^(7/10) 1771100001129241 a001 75283811239/3020733700601*228826127^(7/10) 1771100001129241 a001 182717648081/7331474697802*228826127^(7/10) 1771100001129241 a001 139583862445/5600748293801*228826127^(7/10) 1771100001129241 a001 53316291173/2139295485799*228826127^(7/10) 1771100001129241 a001 10182505537/408569081798*228826127^(7/10) 1771100001129241 a001 7778742049/312119004989*228826127^(7/10) 1771100001129241 a001 4052739537881/1568397607*87403803^(2/19) 1771100001129241 a001 2971215073/119218851371*228826127^(7/10) 1771100001129241 a001 133957148/96450076809*228826127^(17/20) 1771100001129241 a001 433494437/6643838879*228826127^(13/20) 1771100001129241 a001 567451585/22768774562*228826127^(7/10) 1771100001129241 a001 3536736619241/1368706081*87403803^(2/19) 1771100001129241 a001 701408733/73681302247*228826127^(3/4) 1771100001129241 a001 267914296/312119004989*228826127^(7/8) 1771100001129241 a001 3278735159921/1268860318*87403803^(2/19) 1771100001129241 a001 7778742049/370248451*228826127^(7/20) 1771100001129241 a001 2504730781961/370248451*87403803^(1/19) 1771100001129241 a001 1836311903/192900153618*228826127^(3/4) 1771100001129241 a001 102287808/10745088481*228826127^(3/4) 1771100001129241 a001 12586269025/1322157322203*228826127^(3/4) 1771100001129241 a001 32951280099/3461452808002*228826127^(3/4) 1771100001129241 a001 86267571272/9062201101803*228826127^(3/4) 1771100001129241 a001 225851433717/23725150497407*228826127^(3/4) 1771100001129241 a001 139583862445/14662949395604*228826127^(3/4) 1771100001129241 a001 53316291173/5600748293801*228826127^(3/4) 1771100001129241 a001 20365011074/2139295485799*228826127^(3/4) 1771100001129241 a001 7778742049/817138163596*228826127^(3/4) 1771100001129241 a001 2971215073/312119004989*228826127^(3/4) 1771100001129241 a001 267914296/505019158607*228826127^(9/10) 1771100001129241 a001 433494437/17393796001*228826127^(7/10) 1771100001129241 a001 4807526976/370248451*228826127^(3/8) 1771100001129241 a001 1134903170/119218851371*228826127^(3/4) 1771100001129241 a001 165580141/370248451*312119004989^(2/5) 1771100001129241 a001 165580141/370248451*10749957122^(11/24) 1771100001129241 a001 165580141/370248451*4106118243^(11/23) 1771100001129241 a001 165580141/370248451*1568397607^(1/2) 1771100001129241 a001 2504730781961/969323029*87403803^(2/19) 1771100001129241 a001 233802911/64300051206*228826127^(4/5) 1771100001129241 a001 2971215073/370248451*228826127^(2/5) 1771100001129241 a001 63245986/1568397607*141422324^(9/13) 1771100001129241 a001 1836311903/505019158607*228826127^(4/5) 1771100001129241 a001 1602508992/440719107401*228826127^(4/5) 1771100001129241 a001 12586269025/3461452808002*228826127^(4/5) 1771100001129241 a001 10983760033/3020733700601*228826127^(4/5) 1771100001129241 a001 86267571272/23725150497407*228826127^(4/5) 1771100001129241 a001 53316291173/14662949395604*228826127^(4/5) 1771100001129241 a001 20365011074/5600748293801*228826127^(4/5) 1771100001129241 a001 7778742049/2139295485799*228826127^(4/5) 1771100001129241 a001 2971215073/817138163596*228826127^(4/5) 1771100001129241 a001 32951280099/228826127*87403803^(5/19) 1771100001129241 a001 267914296/1322157322203*228826127^(19/20) 1771100001129241 a001 433494437/45537549124*228826127^(3/4) 1771100001129241 a001 1134903170/312119004989*228826127^(4/5) 1771100001129241 a001 701408733/505019158607*228826127^(17/20) 1771100001129241 a001 1134903170/370248451*228826127^(9/20) 1771100001129241 a001 165580141/370248451*599074578^(11/21) 1771100001129241 a001 1836311903/1322157322203*228826127^(17/20) 1771100001129241 a001 14930208/10749853441*228826127^(17/20) 1771100001129241 a001 12586269025/9062201101803*228826127^(17/20) 1771100001129241 a001 32951280099/23725150497407*228826127^(17/20) 1771100001129241 a001 10182505537/7331474697802*228826127^(17/20) 1771100001129241 a001 7778742049/5600748293801*228826127^(17/20) 1771100001129241 a001 2971215073/2139295485799*228826127^(17/20) 1771100001129241 a001 701408733/817138163596*228826127^(7/8) 1771100001129241 a001 433494437/119218851371*228826127^(4/5) 1771100001129241 a001 567451585/408569081798*228826127^(17/20) 1771100001129241 a001 1836311903/2139295485799*228826127^(7/8) 1771100001129241 a001 4807526976/5600748293801*228826127^(7/8) 1771100001129241 a001 12586269025/14662949395604*228826127^(7/8) 1771100001129241 a001 20365011074/23725150497407*228826127^(7/8) 1771100001129241 a001 7778742049/9062201101803*228826127^(7/8) 1771100001129241 a001 2971215073/3461452808002*228826127^(7/8) 1771100001129241 a001 233802911/440719107401*228826127^(9/10) 1771100001129241 a001 1134903170/1322157322203*228826127^(7/8) 1771100001129241 a001 1836311903/3461452808002*228826127^(9/10) 1771100001129241 a001 1602508992/3020733700601*228826127^(9/10) 1771100001129241 a001 12586269025/23725150497407*228826127^(9/10) 1771100001129241 a001 7778742049/14662949395604*228826127^(9/10) 1771100001129241 a001 2971215073/5600748293801*228826127^(9/10) 1771100001129241 a001 433494437/312119004989*228826127^(17/20) 1771100001129241 a001 1134903170/2139295485799*228826127^(9/10) 1771100001129241 a001 63245986/969323029*141422324^(2/3) 1771100001129241 a001 701408733/3461452808002*228826127^(19/20) 1771100001129241 a001 433494437/505019158607*228826127^(7/8) 1771100001129241 a001 591286729879/599074578*87403803^(3/19) 1771100001129241 a001 433494437/370248451*228826127^(1/2) 1771100001129241 a001 1836311903/9062201101803*228826127^(19/20) 1771100001129241 a001 4807526976/23725150497407*228826127^(19/20) 1771100001129241 a001 2971215073/14662949395604*228826127^(19/20) 1771100001129241 a001 433494437/817138163596*228826127^(9/10) 1771100001129241 a001 1134903170/5600748293801*228826127^(19/20) 1771100001129241 a001 86267571272/87403803*33385282^(1/6) 1771100001129241 a001 165580141/1568397607*228826127^(5/8) 1771100001129241 a001 2/102334155*(1/2+1/2*5^(1/2))^62 1771100001129241 a001 433494437/2139295485799*228826127^(19/20) 1771100001129241 a001 165580141/969323029*228826127^(3/5) 1771100001129241 a001 165580141/2537720636*228826127^(13/20) 1771100001129241 a001 1548008755920/1568397607*87403803^(3/19) 1771100001129241 a001 4052739537881/4106118243*87403803^(3/19) 1771100001129241 a001 4807525989/4870846*87403803^(3/19) 1771100001129241 a001 165580141/6643838879*228826127^(7/10) 1771100001129241 a001 6557470319842/6643838879*87403803^(3/19) 1771100001129241 a001 2504730781961/2537720636*87403803^(3/19) 1771100001129241 a001 956722026041/370248451*87403803^(2/19) 1771100001129241 a001 165580141/17393796001*228826127^(3/4) 1771100001129241 a001 956722026041/969323029*87403803^(3/19) 1771100001129241 a001 12586269025/228826127*87403803^(6/19) 1771100001129241 a001 165580141/45537549124*228826127^(4/5) 1771100001129241 a001 165580141/119218851371*228826127^(17/20) 1771100001129241 a001 165580141/192900153618*228826127^(7/8) 1771100001129241 a001 165580141/312119004989*228826127^(9/10) 1771100001129241 a001 267913919/710646*87403803^(4/19) 1771100001129241 a001 165580141/370248451*228826127^(11/20) 1771100001129241 a001 165580141/817138163596*228826127^(19/20) 1771100001129241 a001 63245986/370248451*141422324^(8/13) 1771100001129241 a001 591286729879/1568397607*87403803^(4/19) 1771100001129241 a001 516002918640/1368706081*87403803^(4/19) 1771100001129241 a001 4052739537881/10749957122*87403803^(4/19) 1771100001129241 a001 3536736619241/9381251041*87403803^(4/19) 1771100001129241 a001 6557470319842/17393796001*87403803^(4/19) 1771100001129241 a001 2504730781961/6643838879*87403803^(4/19) 1771100001129241 a001 956722026041/2537720636*87403803^(4/19) 1771100001129241 a001 365435296162/370248451*87403803^(3/19) 1771100001129241 a001 433494437/141422324*141422324^(6/13) 1771100001129241 a001 365435296162/969323029*87403803^(4/19) 1771100001129241 a001 102287808/4868641*87403803^(7/19) 1771100001129241 a001 1836311903/141422324*141422324^(5/13) 1771100001129241 a001 1548008755920/228826127*33385282^(1/18) 1771100001129241 a001 102334155/141422324*2537720636^(7/15) 1771100001129241 a001 102334155/141422324*17393796001^(3/7) 1771100001129241 a001 102334155/141422324*45537549124^(7/17) 1771100001129241 a001 3236112267225915/182717648081 1771100001129241 a001 102334155/141422324*14662949395604^(1/3) 1771100001129241 a001 102334155/141422324*192900153618^(7/18) 1771100001129241 a001 102334155/141422324*10749957122^(7/16) 1771100001129241 a001 63245986/228826127*4106118243^(1/2) 1771100001129241 a001 43133785636/299537289*87403803^(5/19) 1771100001129241 a001 102334155/141422324*599074578^(1/2) 1771100001129241 a001 1201881744/35355581*141422324^(1/3) 1771100001129241 a001 32264490531/224056801*87403803^(5/19) 1771100001129241 a001 591286729879/4106118243*87403803^(5/19) 1771100001129241 a001 774004377960/5374978561*87403803^(5/19) 1771100001129241 a001 4052739537881/28143753123*87403803^(5/19) 1771100001129241 a001 1515744265389/10525900321*87403803^(5/19) 1771100001129241 a001 3278735159921/22768774562*87403803^(5/19) 1771100001129241 a001 2504730781961/17393796001*87403803^(5/19) 1771100001129241 a001 956722026041/6643838879*87403803^(5/19) 1771100001129241 a001 182717648081/1268860318*87403803^(5/19) 1771100001129241 a001 7778742049/141422324*141422324^(4/13) 1771100001129241 a001 139583862445/370248451*87403803^(4/19) 1771100001129241 a001 139583862445/969323029*87403803^(5/19) 1771100001129241 a001 1836311903/228826127*87403803^(8/19) 1771100001129241 a001 102334155/228826127*87403803^(11/19) 1771100001129241 a001 63246219/271444*141422324^(3/13) 1771100001129241 a001 10983760033/199691526*87403803^(6/19) 1771100001129241 a001 86267571272/1568397607*87403803^(6/19) 1771100001129241 a001 75283811239/1368706081*87403803^(6/19) 1771100001129241 a001 591286729879/10749957122*87403803^(6/19) 1771100001129241 a001 12585437040/228811001*87403803^(6/19) 1771100001129241 a001 4052739537881/73681302247*87403803^(6/19) 1771100001129241 a001 3536736619241/64300051206*87403803^(6/19) 1771100001129241 a001 6557470319842/119218851371*87403803^(6/19) 1771100001129241 a001 2504730781961/45537549124*87403803^(6/19) 1771100001129241 a001 956722026041/17393796001*87403803^(6/19) 1771100001129241 a001 365435296162/6643838879*87403803^(6/19) 1771100001129241 a001 139583862445/2537720636*87403803^(6/19) 1771100001129241 a001 53316291173/370248451*87403803^(5/19) 1771100001129241 a001 139583862445/141422324*141422324^(2/13) 1771100001129241 a001 14930352/20633239*20633239^(3/5) 1771100001129241 a001 53316291173/969323029*87403803^(6/19) 1771100001129241 a001 701408733/228826127*87403803^(9/19) 1771100001129241 a001 12586269025/599074578*87403803^(7/19) 1771100001129241 a001 591286729879/141422324*141422324^(1/13) 1771100001129241 a001 267914296/228826127*87403803^(10/19) 1771100001129241 a001 4052739537881/599074578*33385282^(1/18) 1771100001129241 a001 31622993/299537289*2537720636^(5/9) 1771100001129241 a001 31622993/299537289*312119004989^(5/11) 1771100001129241 a001 16944503814015856/956722026041 1771100001129241 a001 31622993/299537289*3461452808002^(5/12) 1771100001129241 a001 31622993/299537289*28143753123^(1/2) 1771100001129241 a001 433494437/228826127*87403803^(1/2) 1771100001129241 a001 32951280099/1568397607*87403803^(7/19) 1771100001129241 a001 86267571272/4106118243*87403803^(7/19) 1771100001129241 a001 225851433717/10749957122*87403803^(7/19) 1771100001129241 a001 591286729879/28143753123*87403803^(7/19) 1771100001129241 a001 1548008755920/73681302247*87403803^(7/19) 1771100001129241 a001 4052739537881/192900153618*87403803^(7/19) 1771100001129241 a001 225749145909/10745088481*87403803^(7/19) 1771100001129241 a001 6557470319842/312119004989*87403803^(7/19) 1771100001129241 a001 2504730781961/119218851371*87403803^(7/19) 1771100001129241 a001 956722026041/45537549124*87403803^(7/19) 1771100001129241 a001 365435296162/17393796001*87403803^(7/19) 1771100001129241 a001 139583862445/6643838879*87403803^(7/19) 1771100001129241 a001 53316291173/2537720636*87403803^(7/19) 1771100001129241 a001 20365011074/370248451*87403803^(6/19) 1771100001129241 a001 20365011074/969323029*87403803^(7/19) 1771100001129241 a001 1515744265389/224056801*33385282^(1/18) 1771100001129241 a001 63245986/1568397607*2537720636^(3/5) 1771100001129241 a001 63245986/1568397607*45537549124^(9/17) 1771100001129241 a001 701408733/141422324*45537549124^(1/3) 1771100001129241 a001 63245986/1568397607*817138163596^(9/19) 1771100001129241 a001 44361286907595738/2504730781961 1771100001129241 a001 63245986/1568397607*192900153618^(1/2) 1771100001129241 a001 63245986/1568397607*10749957122^(9/16) 1771100001129241 a001 63245986/2139295485799*2537720636^(14/15) 1771100001129241 a001 31622993/408569081798*2537720636^(8/9) 1771100001129241 a001 63245986/505019158607*2537720636^(13/15) 1771100001129241 a001 63245986/119218851371*2537720636^(4/5) 1771100001129241 a001 63245986/73681302247*2537720636^(7/9) 1771100001129241 a001 63245986/28143753123*2537720636^(11/15) 1771100001129241 a001 1836311903/141422324*2537720636^(1/3) 1771100001129241 a001 63245986/6643838879*2537720636^(2/3) 1771100001129241 a001 1836311903/141422324*45537549124^(5/17) 1771100001129241 a001 1836311903/141422324*312119004989^(3/11) 1771100001129241 a001 58069678454385679/3278735159921 1771100001129241 a001 1836311903/141422324*14662949395604^(5/21) 1771100001129241 a001 1836311903/141422324*192900153618^(5/18) 1771100001129241 a001 1836311903/141422324*28143753123^(3/10) 1771100001129241 a001 1836311903/141422324*10749957122^(5/16) 1771100001129241 a001 7778742049/141422324*2537720636^(4/15) 1771100001129241 a001 10182505537/70711162*2537720636^(2/9) 1771100001129241 a001 63246219/271444*2537720636^(1/5) 1771100001129241 a001 139583862445/141422324*2537720636^(2/15) 1771100001129241 a001 225851433717/141422324*2537720636^(1/9) 1771100001129241 a001 591286729879/141422324*2537720636^(1/15) 1771100001129241 a001 31622993/5374978561*9062201101803^(1/2) 1771100001129241 a001 1201881744/35355581*73681302247^(1/4) 1771100001129241 a001 63245986/2139295485799*17393796001^(6/7) 1771100001129241 a001 63245986/73681302247*17393796001^(5/7) 1771100001129241 a001 63245986/28143753123*45537549124^(11/17) 1771100001129241 a001 63245986/28143753123*312119004989^(3/5) 1771100001129241 a001 12586269025/141422324*312119004989^(1/5) 1771100001129241 a001 63245986/28143753123*192900153618^(11/18) 1771100001129241 a001 21566892818/35355581*17393796001^(1/7) 1771100001129241 a001 63245986/9062201101803*45537549124^(15/17) 1771100001129241 a001 63245986/2139295485799*45537549124^(14/17) 1771100001129241 a001 63245986/505019158607*45537549124^(13/17) 1771100001129241 a001 63245986/119218851371*45537549124^(12/17) 1771100001129241 a001 63245986/73681302247*14662949395604^(5/9) 1771100001129241 a001 63245986/73681302247*505019158607^(5/8) 1771100001129241 a001 63246219/271444*192900153618^(1/6) 1771100001129241 a001 139583862445/141422324*45537549124^(2/17) 1771100001129241 a001 21566892818/35355581*14662949395604^(1/9) 1771100001129241 a001 63245986/5600748293801*312119004989^(4/5) 1771100001129241 a001 225851433717/141422324*312119004989^(1/11) 1771100001129241 a001 591286729879/141422324*14662949395604^(1/21) 1771100001129241 a001 182717648081/70711162*23725150497407^(1/16) 1771100001129241 a001 139583862445/141422324*14662949395604^(2/21) 1771100001129241 a001 182717648081/70711162*73681302247^(1/13) 1771100001129241 a001 63245986/2139295485799*192900153618^(7/9) 1771100001129241 a001 53316291173/141422324*23725150497407^(1/8) 1771100001129241 a001 53316291173/141422324*505019158607^(1/7) 1771100001129241 a001 63245986/119218851371*192900153618^(2/3) 1771100001129241 a001 53316291173/141422324*73681302247^(2/13) 1771100001129241 a001 225851433717/141422324*28143753123^(1/10) 1771100001129241 a001 63245986/505019158607*73681302247^(3/4) 1771100001129241 a001 31622993/408569081798*73681302247^(10/13) 1771100001129241 a001 63245986/5600748293801*73681302247^(11/13) 1771100001129241 a001 31622993/22768774562*45537549124^(2/3) 1771100001129241 a001 63245986/119218851371*73681302247^(9/13) 1771100001129241 a001 956722026041/141422324*10749957122^(1/24) 1771100001129241 a001 10182505537/70711162*312119004989^(2/11) 1771100001129241 a001 591286729879/141422324*10749957122^(1/16) 1771100001129241 a001 63245986/73681302247*28143753123^(7/10) 1771100001129241 a001 182717648081/70711162*10749957122^(1/12) 1771100001129241 a001 10182505537/70711162*28143753123^(1/5) 1771100001129241 a001 31622993/408569081798*28143753123^(4/5) 1771100001129241 a001 139583862445/141422324*10749957122^(1/8) 1771100001129241 a001 63245986/9062201101803*28143753123^(9/10) 1771100001129241 a001 63246219/271444*10749957122^(3/16) 1771100001129241 a001 53316291173/141422324*10749957122^(1/6) 1771100001129241 a001 10182505537/70711162*10749957122^(5/24) 1771100001129241 a001 956722026041/141422324*4106118243^(1/23) 1771100001129241 a001 7778742049/141422324*45537549124^(4/17) 1771100001129241 a001 7778742049/141422324*817138163596^(4/19) 1771100001129241 a001 63245986/17393796001*23725150497407^(1/2) 1771100001129241 a001 7778742049/141422324*192900153618^(2/9) 1771100001129241 a001 7778742049/141422324*73681302247^(3/13) 1771100001129241 a001 63245986/17393796001*73681302247^(8/13) 1771100001129241 a001 63245986/28143753123*10749957122^(11/16) 1771100001129241 a001 182717648081/70711162*4106118243^(2/23) 1771100001129241 a001 7778742049/141422324*10749957122^(1/4) 1771100001129241 a001 63245986/119218851371*10749957122^(3/4) 1771100001129241 a001 31622993/22768774562*10749957122^(17/24) 1771100001129241 a001 63245986/312119004989*10749957122^(19/24) 1771100001129241 a001 63245986/505019158607*10749957122^(13/16) 1771100001129241 a001 31622993/408569081798*10749957122^(5/6) 1771100001129241 a001 63245986/2139295485799*10749957122^(7/8) 1771100001129241 a001 139583862445/141422324*4106118243^(3/23) 1771100001129241 a001 63245986/5600748293801*10749957122^(11/12) 1771100001129241 a001 63245986/9062201101803*10749957122^(15/16) 1771100001129241 a001 31622993/7331474697802*10749957122^(23/24) 1771100001129241 a001 63245986/17393796001*10749957122^(2/3) 1771100001129241 a001 53316291173/141422324*4106118243^(4/23) 1771100001129241 a001 10182505537/70711162*4106118243^(5/23) 1771100001129241 a001 956722026041/141422324*1568397607^(1/22) 1771100001129241 a001 7778742049/141422324*4106118243^(6/23) 1771100001129241 a001 2971215073/141422324*17393796001^(2/7) 1771100001129241 a001 63245986/6643838879*45537549124^(10/17) 1771100001129241 a001 63245986/6643838879*312119004989^(6/11) 1771100001129241 a001 63245986/6643838879*14662949395604^(10/21) 1771100001129241 a001 187917426909946978/10610209857723 1771100001129241 a001 63245986/6643838879*192900153618^(5/9) 1771100001129241 a001 63245986/6643838879*28143753123^(3/5) 1771100001129241 a001 2971215073/141422324*10749957122^(7/24) 1771100001129241 a001 63245986/6643838879*10749957122^(5/8) 1771100001129241 a001 182717648081/70711162*1568397607^(1/11) 1771100001129241 a001 2971215073/141422324*4106118243^(7/23) 1771100001129241 a001 31622993/22768774562*4106118243^(17/23) 1771100001129241 a001 63245986/17393796001*4106118243^(16/23) 1771100001129241 a001 63245986/119218851371*4106118243^(18/23) 1771100001129241 a001 63245986/312119004989*4106118243^(19/23) 1771100001129241 a001 31622993/408569081798*4106118243^(20/23) 1771100001129241 a001 63245986/2139295485799*4106118243^(21/23) 1771100001129241 a001 139583862445/141422324*1568397607^(3/22) 1771100001129241 a001 63245986/5600748293801*4106118243^(22/23) 1771100001129241 a001 63245986/6643838879*4106118243^(15/23) 1771100001129241 a001 53316291173/141422324*1568397607^(2/11) 1771100001129241 a001 10182505537/70711162*1568397607^(5/22) 1771100001129241 a001 12586269025/141422324*1568397607^(1/4) 1771100001129241 a001 7778742049/141422324*1568397607^(3/11) 1771100001129241 a001 956722026041/141422324*599074578^(1/21) 1771100001129241 a001 2971215073/141422324*1568397607^(7/22) 1771100001129241 a001 31622993/1268860318*17393796001^(4/7) 1771100001129241 a001 31622993/1268860318*14662949395604^(4/9) 1771100001129241 a001 31622993/1268860318*505019158607^(1/2) 1771100001129241 a001 567451585/70711162*73681302247^(4/13) 1771100001129241 a001 31622993/1268860318*73681302247^(7/13) 1771100001129241 a001 567451585/70711162*10749957122^(1/3) 1771100001129241 a001 31622993/1268860318*10749957122^(7/12) 1771100001129241 a001 567451585/70711162*4106118243^(8/23) 1771100001129241 a001 31622993/1268860318*4106118243^(14/23) 1771100001129241 a001 591286729879/141422324*599074578^(1/14) 1771100001129241 a001 182717648081/70711162*599074578^(2/21) 1771100001129241 a001 63245986/17393796001*1568397607^(8/11) 1771100001129241 a001 63245986/6643838879*1568397607^(15/22) 1771100001129241 a001 567451585/70711162*1568397607^(4/11) 1771100001129241 a001 63245986/28143753123*1568397607^(3/4) 1771100001129241 a001 31622993/22768774562*1568397607^(17/22) 1771100001129241 a001 63245986/119218851371*1568397607^(9/11) 1771100001129241 a001 63245986/312119004989*1568397607^(19/22) 1771100001129241 a001 31622993/408569081798*1568397607^(10/11) 1771100001129241 a001 63245986/2139295485799*1568397607^(21/22) 1771100001129241 a001 139583862445/141422324*599074578^(1/7) 1771100001129241 a001 31622993/1268860318*1568397607^(7/11) 1771100001129241 a001 21566892818/35355581*599074578^(1/6) 1771100001129241 a001 53316291173/141422324*599074578^(4/21) 1771100001129241 a001 63246219/271444*599074578^(3/14) 1771100001129241 a001 10182505537/70711162*599074578^(5/21) 1771100001129241 a001 7778742049/141422324*599074578^(2/7) 1771100001129241 a001 6557470319842/969323029*33385282^(1/18) 1771100001129241 a001 1836311903/141422324*599074578^(5/14) 1771100001129241 a001 2971215073/141422324*599074578^(1/3) 1771100001129241 a001 956722026041/141422324*228826127^(1/20) 1771100001129241 a001 433494437/141422324*2537720636^(2/5) 1771100001129241 a001 433494437/141422324*45537549124^(6/17) 1771100001129241 a001 13708391546789941/774004377960 1771100001129241 a001 433494437/141422324*192900153618^(1/3) 1771100001129241 a001 63245986/969323029*73681302247^(1/2) 1771100001129241 a001 433494437/141422324*10749957122^(3/8) 1771100001129241 a001 63245986/969323029*10749957122^(13/24) 1771100001129241 a001 433494437/141422324*4106118243^(9/23) 1771100001129241 a001 63245986/969323029*4106118243^(13/23) 1771100001129241 a001 567451585/70711162*599074578^(8/21) 1771100001129241 a001 433494437/141422324*1568397607^(9/22) 1771100001129241 a001 63245986/969323029*1568397607^(13/22) 1771100001129241 a001 63245986/1568397607*599074578^(9/14) 1771100001129241 a001 182717648081/70711162*228826127^(1/10) 1771100001129241 a001 31622993/1268860318*599074578^(2/3) 1771100001129241 a001 63245986/6643838879*599074578^(5/7) 1771100001129241 a001 63245986/17393796001*599074578^(16/21) 1771100001129241 a001 63245986/28143753123*599074578^(11/14) 1771100001129241 a001 31622993/22768774562*599074578^(17/21) 1771100001129241 a001 433494437/141422324*599074578^(3/7) 1771100001129241 a001 267084832/33281921*87403803^(8/19) 1771100001129241 a001 63245986/73681302247*599074578^(5/6) 1771100001129241 a001 225851433717/141422324*228826127^(1/8) 1771100001129241 a001 63245986/119218851371*599074578^(6/7) 1771100001129241 a001 63245986/312119004989*599074578^(19/21) 1771100001129241 a001 63245986/505019158607*599074578^(13/14) 1771100001129241 a001 31622993/408569081798*599074578^(20/21) 1771100001129241 a001 63245986/969323029*599074578^(13/21) 1771100001129241 a001 139583862445/141422324*228826127^(3/20) 1771100001129241 a001 53316291173/141422324*228826127^(1/5) 1771100001129241 a001 12586269025/1568397607*87403803^(8/19) 1771100001129241 a001 10182505537/70711162*228826127^(1/4) 1771100001129241 a001 10983760033/1368706081*87403803^(8/19) 1771100001129241 a001 43133785636/5374978561*87403803^(8/19) 1771100001129241 a001 75283811239/9381251041*87403803^(8/19) 1771100001129241 a001 591286729879/73681302247*87403803^(8/19) 1771100001129241 a001 86000486440/10716675201*87403803^(8/19) 1771100001129241 a001 4052739537881/505019158607*87403803^(8/19) 1771100001129241 a001 3278735159921/408569081798*87403803^(8/19) 1771100001129241 a001 2504730781961/312119004989*87403803^(8/19) 1771100001129241 a001 956722026041/119218851371*87403803^(8/19) 1771100001129241 a001 182717648081/22768774562*87403803^(8/19) 1771100001129241 a001 139583862445/17393796001*87403803^(8/19) 1771100001129241 a001 53316291173/6643838879*87403803^(8/19) 1771100001129241 a001 10182505537/1268860318*87403803^(8/19) 1771100001129241 a001 7778742049/370248451*87403803^(7/19) 1771100001129241 a001 956722026041/228826127*33385282^(1/12) 1771100001129241 a001 7778742049/141422324*228826127^(3/10) 1771100001129241 a001 7778742049/969323029*87403803^(8/19) 1771100001129241 a001 2971215073/141422324*228826127^(7/20) 1771100001129241 a001 956722026041/141422324*87403803^(1/19) 1771100001129241 a001 1836311903/141422324*228826127^(3/8) 1771100001129241 a001 2504730781961/370248451*33385282^(1/18) 1771100001129241 a001 63245986/370248451*2537720636^(8/15) 1771100001129241 a001 165580141/141422324*2537720636^(4/9) 1771100001129241 a001 63245986/370248451*45537549124^(8/17) 1771100001129241 a001 165580141/141422324*23725150497407^(5/16) 1771100001129241 a001 10472279279564026/591286729879 1771100001129241 a001 63245986/370248451*192900153618^(4/9) 1771100001129241 a001 165580141/141422324*73681302247^(5/13) 1771100001129241 a001 63245986/370248451*73681302247^(6/13) 1771100001129241 a001 165580141/141422324*28143753123^(2/5) 1771100001129241 a001 165580141/141422324*10749957122^(5/12) 1771100001129241 a001 63245986/370248451*10749957122^(1/2) 1771100001129241 a001 165580141/141422324*4106118243^(10/23) 1771100001129241 a001 63245986/370248451*4106118243^(12/23) 1771100001129241 a001 165580141/141422324*1568397607^(5/11) 1771100001129241 a001 63245986/370248451*1568397607^(6/11) 1771100001129241 a001 567451585/70711162*228826127^(2/5) 1771100001129241 a001 165580141/141422324*599074578^(10/21) 1771100001129241 a001 63245986/370248451*599074578^(4/7) 1771100001129241 a001 31622993/299537289*228826127^(5/8) 1771100001129241 a001 1836311903/599074578*87403803^(9/19) 1771100001129241 a001 433494437/141422324*228826127^(9/20) 1771100001129241 a001 34111385/199691526*87403803^(12/19) 1771100001129241 a001 686789568/224056801*87403803^(9/19) 1771100001129241 a001 12586269025/4106118243*87403803^(9/19) 1771100001129241 a001 32951280099/10749957122*87403803^(9/19) 1771100001129241 a001 86267571272/28143753123*87403803^(9/19) 1771100001129241 a001 32264490531/10525900321*87403803^(9/19) 1771100001129241 a001 591286729879/192900153618*87403803^(9/19) 1771100001129241 a001 1548008755920/505019158607*87403803^(9/19) 1771100001129241 a001 1515744265389/494493258286*87403803^(9/19) 1771100001129241 a001 956722026041/312119004989*87403803^(9/19) 1771100001129241 a001 365435296162/119218851371*87403803^(9/19) 1771100001129241 a001 139583862445/45537549124*87403803^(9/19) 1771100001129241 a001 53316291173/17393796001*87403803^(9/19) 1771100001129241 a001 20365011074/6643838879*87403803^(9/19) 1771100001129241 a001 7778742049/2537720636*87403803^(9/19) 1771100001129241 a001 2971215073/370248451*87403803^(8/19) 1771100001129241 a001 567451585/299537289*87403803^(1/2) 1771100001129241 a001 2971215073/969323029*87403803^(9/19) 1771100001129241 a001 63245986/969323029*228826127^(13/20) 1771100001129241 a001 31622993/1268860318*228826127^(7/10) 1771100001129241 a001 182717648081/70711162*87403803^(2/19) 1771100001129241 a001 63245986/6643838879*228826127^(3/4) 1771100001129241 a001 2971215073/1568397607*87403803^(1/2) 1771100001129241 a001 63245986/17393796001*228826127^(4/5) 1771100001129241 a001 7778742049/4106118243*87403803^(1/2) 1771100001129241 a001 10182505537/5374978561*87403803^(1/2) 1771100001129241 a001 53316291173/28143753123*87403803^(1/2) 1771100001129241 a001 139583862445/73681302247*87403803^(1/2) 1771100001129241 a001 182717648081/96450076809*87403803^(1/2) 1771100001129241 a001 956722026041/505019158607*87403803^(1/2) 1771100001129241 a001 10610209857723/5600748293801*87403803^(1/2) 1771100001129241 a001 591286729879/312119004989*87403803^(1/2) 1771100001129241 a001 225851433717/119218851371*87403803^(1/2) 1771100001129241 a001 21566892818/11384387281*87403803^(1/2) 1771100001129241 a001 32951280099/17393796001*87403803^(1/2) 1771100001129241 a001 12586269025/6643838879*87403803^(1/2) 1771100001129241 a001 1201881744/634430159*87403803^(1/2) 1771100001129241 a001 233802911/199691526*87403803^(10/19) 1771100001129241 a001 31622993/22768774562*228826127^(17/20) 1771100001129241 a001 1836311903/969323029*87403803^(1/2) 1771100001129241 a001 63245986/73681302247*228826127^(7/8) 1771100001129241 a001 165580141/141422324*228826127^(1/2) 1771100001129241 a001 63245986/119218851371*228826127^(9/10) 1771100001129241 a001 63245986/312119004989*228826127^(19/20) 1771100001129241 a001 1836311903/1568397607*87403803^(10/19) 1771100001129241 a001 10983760033/29134601*33385282^(2/9) 1771100001129241 a001 63245986/370248451*228826127^(3/5) 1771100001129241 a001 1602508992/1368706081*87403803^(10/19) 1771100001129241 a001 12586269025/10749957122*87403803^(10/19) 1771100001129241 a001 10983760033/9381251041*87403803^(10/19) 1771100001129241 a001 86267571272/73681302247*87403803^(10/19) 1771100001129241 a001 75283811239/64300051206*87403803^(10/19) 1771100001129241 a001 2504730781961/2139295485799*87403803^(10/19) 1771100001129241 a001 365435296162/312119004989*87403803^(10/19) 1771100001129241 a001 139583862445/119218851371*87403803^(10/19) 1771100001129241 a001 53316291173/45537549124*87403803^(10/19) 1771100001129241 a001 20365011074/17393796001*87403803^(10/19) 1771100001129241 a001 7778742049/6643838879*87403803^(10/19) 1771100001129241 a001 2971215073/2537720636*87403803^(10/19) 1771100001129241 a001 1134903170/370248451*87403803^(9/19) 1771100001129241 a001 14619165/224056801*87403803^(13/19) 1771100001129241 a001 1134903170/969323029*87403803^(10/19) 1771100001129241 a001 133957148/299537289*87403803^(11/19) 1771100001129241 a001 139583862445/141422324*87403803^(3/19) 1771100001129241 a001 2504730781961/599074578*33385282^(1/12) 1771100001129241 a001 701408733/370248451*87403803^(1/2) 1771100001129241 a001 6557470319842/1568397607*33385282^(1/12) 1771100001129241 a001 10610209857723/2537720636*33385282^(1/12) 1771100001129241 a001 701408733/1568397607*87403803^(11/19) 1771100001129241 a001 1836311903/4106118243*87403803^(11/19) 1771100001129241 a001 2403763488/5374978561*87403803^(11/19) 1771100001129241 a001 12586269025/28143753123*87403803^(11/19) 1771100001129241 a001 32951280099/73681302247*87403803^(11/19) 1771100001129241 a001 43133785636/96450076809*87403803^(11/19) 1771100001129241 a001 225851433717/505019158607*87403803^(11/19) 1771100001129241 a001 591286729879/1322157322203*87403803^(11/19) 1771100001129241 a001 10610209857723/23725150497407*87403803^(11/19) 1771100001129241 a001 139583862445/312119004989*87403803^(11/19) 1771100001129241 a001 53316291173/119218851371*87403803^(11/19) 1771100001129241 a001 10182505537/22768774562*87403803^(11/19) 1771100001129241 a001 7778742049/17393796001*87403803^(11/19) 1771100001129241 a001 2971215073/6643838879*87403803^(11/19) 1771100001129241 a001 4052739537881/969323029*33385282^(1/12) 1771100001129241 a001 567451585/1268860318*87403803^(11/19) 1771100001129241 a001 433494437/370248451*87403803^(10/19) 1771100001129241 a001 34111385/1368706081*87403803^(14/19) 1771100001129241 a001 53316291173/141422324*87403803^(4/19) 1771100001129241 a001 433494437/969323029*87403803^(11/19) 1771100001129241 a001 267914296/1568397607*87403803^(12/19) 1771100001129241 a001 591286729879/228826127*33385282^(1/9) 1771100001129241 a001 1548008755920/370248451*33385282^(1/12) 1771100001129241 a001 233802911/1368706081*87403803^(12/19) 1771100001129241 a001 1836311903/10749957122*87403803^(12/19) 1771100001129241 a001 1602508992/9381251041*87403803^(12/19) 1771100001129241 a001 12586269025/73681302247*87403803^(12/19) 1771100001129241 a001 10983760033/64300051206*87403803^(12/19) 1771100001129241 a001 86267571272/505019158607*87403803^(12/19) 1771100001129241 a001 75283811239/440719107401*87403803^(12/19) 1771100001129241 a001 2504730781961/14662949395604*87403803^(12/19) 1771100001129241 a001 139583862445/817138163596*87403803^(12/19) 1771100001129241 a001 53316291173/312119004989*87403803^(12/19) 1771100001129241 a001 20365011074/119218851371*87403803^(12/19) 1771100001129241 a001 7778742049/45537549124*87403803^(12/19) 1771100001129241 a001 2971215073/17393796001*87403803^(12/19) 1771100001129241 a001 1134903170/6643838879*87403803^(12/19) 1771100001129241 a001 433494437/2537720636*87403803^(12/19) 1771100001129241 a001 102334155/10749957122*87403803^(15/19) 1771100001129241 a001 10182505537/70711162*87403803^(5/19) 1771100001129241 a001 267914296/4106118243*87403803^(13/19) 1771100001129241 a001 701408733/10749957122*87403803^(13/19) 1771100001129241 a001 1836311903/28143753123*87403803^(13/19) 1771100001129241 a001 686789568/10525900321*87403803^(13/19) 1771100001129241 a001 12586269025/192900153618*87403803^(13/19) 1771100001129241 a001 32951280099/505019158607*87403803^(13/19) 1771100001129241 a001 86267571272/1322157322203*87403803^(13/19) 1771100001129241 a001 32264490531/494493258286*87403803^(13/19) 1771100001129241 a001 1548008755920/23725150497407*87403803^(13/19) 1771100001129241 a001 139583862445/2139295485799*87403803^(13/19) 1771100001129241 a001 53316291173/817138163596*87403803^(13/19) 1771100001129241 a001 20365011074/312119004989*87403803^(13/19) 1771100001129241 a001 7778742049/119218851371*87403803^(13/19) 1771100001129241 a001 2971215073/45537549124*87403803^(13/19) 1771100001129241 a001 1134903170/17393796001*87403803^(13/19) 1771100001129241 a001 165580141/370248451*87403803^(11/19) 1771100001129241 a001 433494437/6643838879*87403803^(13/19) 1771100001129241 a001 165580141/969323029*87403803^(12/19) 1771100001129241 a001 831985/228811001*87403803^(16/19) 1771100001129241 a001 7778742049/141422324*87403803^(6/19) 1771100001129241 a001 20365011074/87403803*33385282^(1/4) 1771100001129241 a001 133957148/5374978561*87403803^(14/19) 1771100001129241 a001 233802911/9381251041*87403803^(14/19) 1771100001129241 a001 1836311903/73681302247*87403803^(14/19) 1771100001129241 a001 267084832/10716675201*87403803^(14/19) 1771100001129241 a001 12586269025/505019158607*87403803^(14/19) 1771100001129241 a001 10983760033/440719107401*87403803^(14/19) 1771100001129241 a001 43133785636/1730726404001*87403803^(14/19) 1771100001129241 a001 75283811239/3020733700601*87403803^(14/19) 1771100001129241 a001 182717648081/7331474697802*87403803^(14/19) 1771100001129241 a001 139583862445/5600748293801*87403803^(14/19) 1771100001129241 a001 53316291173/2139295485799*87403803^(14/19) 1771100001129241 a001 10182505537/408569081798*87403803^(14/19) 1771100001129241 a001 7778742049/312119004989*87403803^(14/19) 1771100001129241 a001 2971215073/119218851371*87403803^(14/19) 1771100001129241 a001 567451585/22768774562*87403803^(14/19) 1771100001129241 a001 86000486440/33281921*33385282^(1/9) 1771100001129241 a001 165580141/2537720636*87403803^(13/19) 1771100001129241 a001 433494437/17393796001*87403803^(14/19) 1771100001129241 a001 14619165/10525900321*87403803^(17/19) 1771100001129241 a001 2971215073/141422324*87403803^(7/19) 1771100001129241 a001 4052739537881/1568397607*33385282^(1/9) 1771100001129241 a001 3536736619241/1368706081*33385282^(1/9) 1771100001129241 a001 956722026041/141422324*33385282^(1/18) 1771100001129241 a001 3278735159921/1268860318*33385282^(1/9) 1771100001129241 a001 31622993/70711162*312119004989^(2/5) 1771100001129241 a001 4000054745112196/225851433717 1771100001129241 a001 31622993/70711162*10749957122^(11/24) 1771100001129241 a001 31622993/70711162*4106118243^(11/23) 1771100001129241 a001 31622993/70711162*1568397607^(1/2) 1771100001129241 a001 267914296/28143753123*87403803^(15/19) 1771100001129241 a001 2504730781961/969323029*33385282^(1/9) 1771100001129241 a001 31622993/70711162*599074578^(11/21) 1771100001129241 a001 701408733/73681302247*87403803^(15/19) 1771100001129241 a001 1836311903/192900153618*87403803^(15/19) 1771100001129241 a001 102287808/10745088481*87403803^(15/19) 1771100001129241 a001 12586269025/1322157322203*87403803^(15/19) 1771100001129241 a001 32951280099/3461452808002*87403803^(15/19) 1771100001129241 a001 86267571272/9062201101803*87403803^(15/19) 1771100001129241 a001 225851433717/23725150497407*87403803^(15/19) 1771100001129241 a001 139583862445/14662949395604*87403803^(15/19) 1771100001129241 a001 53316291173/5600748293801*87403803^(15/19) 1771100001129241 a001 20365011074/2139295485799*87403803^(15/19) 1771100001129241 a001 7778742049/817138163596*87403803^(15/19) 1771100001129241 a001 2971215073/312119004989*87403803^(15/19) 1771100001129241 a001 1134903170/119218851371*87403803^(15/19) 1771100001129241 a001 165580141/6643838879*87403803^(14/19) 1771100001129241 a001 433494437/45537549124*87403803^(15/19) 1771100001129241 a001 34111385/64300051206*87403803^(18/19) 1771100001129241 a001 567451585/70711162*87403803^(8/19) 1771100001129241 a001 956722026041/370248451*33385282^(1/9) 1771100001129241 a001 267914296/73681302247*87403803^(16/19) 1771100001129241 a001 233802911/64300051206*87403803^(16/19) 1771100001129241 a001 1836311903/505019158607*87403803^(16/19) 1771100001129241 a001 1602508992/440719107401*87403803^(16/19) 1771100001129241 a001 12586269025/3461452808002*87403803^(16/19) 1771100001129241 a001 10983760033/3020733700601*87403803^(16/19) 1771100001129241 a001 86267571272/23725150497407*87403803^(16/19) 1771100001129241 a001 53316291173/14662949395604*87403803^(16/19) 1771100001129241 a001 20365011074/5600748293801*87403803^(16/19) 1771100001129241 a001 7778742049/2139295485799*87403803^(16/19) 1771100001129241 a001 2971215073/817138163596*87403803^(16/19) 1771100001129241 a001 1134903170/312119004989*87403803^(16/19) 1771100001129241 a001 31622993/70711162*228826127^(11/20) 1771100001129241 a001 165580141/17393796001*87403803^(15/19) 1771100001129241 a001 433494437/119218851371*87403803^(16/19) 1771100001129241 a001 66978574/35355581*87403803^(1/2) 1771100001129241 a001 433494437/141422324*87403803^(9/19) 1771100001129241 a001 133957148/96450076809*87403803^(17/19) 1771100001129241 a001 701408733/505019158607*87403803^(17/19) 1771100001129241 a001 1836311903/1322157322203*87403803^(17/19) 1771100001129241 a001 14930208/10749853441*87403803^(17/19) 1771100001129241 a001 12586269025/9062201101803*87403803^(17/19) 1771100001129241 a001 32951280099/23725150497407*87403803^(17/19) 1771100001129241 a001 10182505537/7331474697802*87403803^(17/19) 1771100001129241 a001 7778742049/5600748293801*87403803^(17/19) 1771100001129241 a001 2971215073/2139295485799*87403803^(17/19) 1771100001129241 a001 567451585/408569081798*87403803^(17/19) 1771100001129241 a001 165580141/45537549124*87403803^(16/19) 1771100001129241 a001 433494437/312119004989*87403803^(17/19) 1771100001129241 a001 12586269025/87403803*33385282^(5/18) 1771100001129241 a001 267914296/505019158607*87403803^(18/19) 1771100001129241 a001 233802911/440719107401*87403803^(18/19) 1771100001129241 a001 1836311903/3461452808002*87403803^(18/19) 1771100001129241 a001 1602508992/3020733700601*87403803^(18/19) 1771100001129241 a001 12586269025/23725150497407*87403803^(18/19) 1771100001129241 a001 7778742049/14662949395604*87403803^(18/19) 1771100001129241 a001 2971215073/5600748293801*87403803^(18/19) 1771100001129241 a001 1134903170/2139295485799*87403803^(18/19) 1771100001129241 a001 165580141/119218851371*87403803^(17/19) 1771100001129241 a001 591286729879/141422324*33385282^(1/12) 1771100001129241 a001 433494437/817138163596*87403803^(18/19) 1771100001129241 a001 165580141/141422324*87403803^(10/19) 1771100001129241 a001 225851433717/228826127*33385282^(1/6) 1771100001129241 a001 2/39088169*(1/2+1/2*5^(1/2))^60 1771100001129241 a001 165580141/312119004989*87403803^(18/19) 1771100001129241 a001 63245986/370248451*87403803^(12/19) 1771100001129241 a001 63245986/969323029*87403803^(13/19) 1771100001129241 a001 31622993/1268860318*87403803^(14/19) 1771100001129241 a001 591286729879/599074578*33385282^(1/6) 1771100001129241 a001 1548008755920/1568397607*33385282^(1/6) 1771100001129241 a001 4052739537881/4106118243*33385282^(1/6) 1771100001129241 a001 4807525989/4870846*33385282^(1/6) 1771100001129241 a001 6557470319842/6643838879*33385282^(1/6) 1771100001129241 a001 182717648081/70711162*33385282^(1/9) 1771100001129241 a001 2504730781961/2537720636*33385282^(1/6) 1771100001129241 a001 956722026041/969323029*33385282^(1/6) 1771100001129241 a001 63245986/6643838879*87403803^(15/19) 1771100001129241 a001 365435296162/370248451*33385282^(1/6) 1771100001129241 a001 63245986/17393796001*87403803^(16/19) 1771100001129242 a001 31622993/22768774562*87403803^(17/19) 1771100001129242 a001 1602508992/29134601*33385282^(1/3) 1771100001129242 a001 63245986/119218851371*87403803^(18/19) 1771100001129242 a001 31622993/70711162*87403803^(11/19) 1771100001129242 a001 86267571272/228826127*33385282^(2/9) 1771100001129242 a001 39088169/54018521*141422324^(7/13) 1771100001129242 a001 32951280099/33385282*12752043^(3/17) 1771100001129242 a001 267913919/710646*33385282^(2/9) 1771100001129242 a001 591286729879/1568397607*33385282^(2/9) 1771100001129242 a001 516002918640/1368706081*33385282^(2/9) 1771100001129242 a001 4052739537881/10749957122*33385282^(2/9) 1771100001129242 a001 3536736619241/9381251041*33385282^(2/9) 1771100001129242 a001 6557470319842/17393796001*33385282^(2/9) 1771100001129242 a001 2504730781961/6643838879*33385282^(2/9) 1771100001129242 a001 139583862445/141422324*33385282^(1/6) 1771100001129242 a001 956722026041/2537720636*33385282^(2/9) 1771100001129242 a001 365435296162/969323029*33385282^(2/9) 1771100001129242 a001 53316291173/228826127*33385282^(1/4) 1771100001129242 a001 139583862445/370248451*33385282^(2/9) 1771100001129242 a001 39088169/54018521*2537720636^(7/15) 1771100001129242 a001 39088169/54018521*17393796001^(3/7) 1771100001129242 a001 39088169/54018521*45537549124^(7/17) 1771100001129242 a001 944284833567073/53316291173 1771100001129242 a001 39088169/54018521*14662949395604^(1/3) 1771100001129242 a001 39088169/54018521*192900153618^(7/18) 1771100001129242 a001 39088169/54018521*10749957122^(7/16) 1771100001129242 a001 24157817/87403803*4106118243^(1/2) 1771100001129242 a001 39088169/54018521*599074578^(1/2) 1771100001129242 a001 1836311903/87403803*33385282^(7/18) 1771100001129242 a001 139583862445/599074578*33385282^(1/4) 1771100001129242 a001 365435296162/1568397607*33385282^(1/4) 1771100001129242 a001 956722026041/4106118243*33385282^(1/4) 1771100001129242 a001 2504730781961/10749957122*33385282^(1/4) 1771100001129242 a001 6557470319842/28143753123*33385282^(1/4) 1771100001129242 a001 10610209857723/45537549124*33385282^(1/4) 1771100001129242 a001 4052739537881/17393796001*33385282^(1/4) 1771100001129242 a001 1548008755920/6643838879*33385282^(1/4) 1771100001129242 a001 591286729879/2537720636*33385282^(1/4) 1771100001129242 a001 225851433717/969323029*33385282^(1/4) 1771100001129242 a001 32951280099/228826127*33385282^(5/18) 1771100001129242 a001 591286729879/87403803*12752043^(1/17) 1771100001129242 a001 86267571272/370248451*33385282^(1/4) 1771100001129242 a001 1134903170/87403803*33385282^(5/12) 1771100001129242 a001 43133785636/299537289*33385282^(5/18) 1771100001129242 a001 32264490531/224056801*33385282^(5/18) 1771100001129242 a001 591286729879/4106118243*33385282^(5/18) 1771100001129242 a001 774004377960/5374978561*33385282^(5/18) 1771100001129242 a001 4052739537881/28143753123*33385282^(5/18) 1771100001129242 a001 1515744265389/10525900321*33385282^(5/18) 1771100001129242 a001 3278735159921/22768774562*33385282^(5/18) 1771100001129242 a001 2504730781961/17393796001*33385282^(5/18) 1771100001129242 a001 956722026041/6643838879*33385282^(5/18) 1771100001129242 a001 53316291173/141422324*33385282^(2/9) 1771100001129242 a001 182717648081/1268860318*33385282^(5/18) 1771100001129242 a001 139583862445/969323029*33385282^(5/18) 1771100001129242 a001 53316291173/370248451*33385282^(5/18) 1771100001129242 a001 233802911/29134601*33385282^(4/9) 1771100001129242 a001 63246219/271444*33385282^(1/4) 1771100001129242 a001 12586269025/228826127*33385282^(1/3) 1771100001129242 a001 39088169/87403803*33385282^(11/18) 1771100001129242 a001 10983760033/199691526*33385282^(1/3) 1771100001129242 a001 24157817/45537549124*141422324^(12/13) 1771100001129242 a001 86267571272/1568397607*33385282^(1/3) 1771100001129242 a001 75283811239/1368706081*33385282^(1/3) 1771100001129242 a001 591286729879/10749957122*33385282^(1/3) 1771100001129242 a001 12585437040/228811001*33385282^(1/3) 1771100001129242 a001 4052739537881/73681302247*33385282^(1/3) 1771100001129242 a001 3536736619241/64300051206*33385282^(1/3) 1771100001129242 a001 6557470319842/119218851371*33385282^(1/3) 1771100001129242 a001 2504730781961/45537549124*33385282^(1/3) 1771100001129242 a001 956722026041/17393796001*33385282^(1/3) 1771100001129242 a001 365435296162/6643838879*33385282^(1/3) 1771100001129242 a001 10182505537/70711162*33385282^(5/18) 1771100001129242 a001 139583862445/2537720636*33385282^(1/3) 1771100001129242 a001 53316291173/969323029*33385282^(1/3) 1771100001129242 a001 24157817/10749957122*141422324^(11/13) 1771100001129242 a001 24157817/2537720636*141422324^(10/13) 1771100001129242 a001 24157817/599074578*141422324^(9/13) 1771100001129242 a001 20365011074/370248451*33385282^(1/3) 1771100001129242 a001 267914296/87403803*33385282^(1/2) 1771100001129242 a001 24157817/370248451*141422324^(2/3) 1771100001129242 a001 701408733/54018521*141422324^(5/13) 1771100001129242 a001 24157817/228826127*2537720636^(5/9) 1771100001129242 a001 494433957867927/27916772489 1771100001129242 a001 102334155/54018521*817138163596^(1/3) 1771100001129242 a001 24157817/228826127*3461452808002^(5/12) 1771100001129242 a001 24157817/228826127*28143753123^(1/2) 1771100001129242 a001 1836311903/54018521*141422324^(1/3) 1771100001129242 a001 165580141/54018521*141422324^(6/13) 1771100001129242 a001 2971215073/54018521*141422324^(4/13) 1771100001129242 a001 102287808/4868641*33385282^(7/18) 1771100001129242 a001 12586269025/54018521*141422324^(3/13) 1771100001129242 a001 53316291173/54018521*141422324^(2/13) 1771100001129242 a001 24157817/228826127*228826127^(5/8) 1771100001129242 a001 9227465/969323029*20633239^(6/7) 1771100001129242 a001 225851433717/54018521*141422324^(1/13) 1771100001129242 a001 24157817/599074578*2537720636^(3/5) 1771100001129242 a001 24157817/599074578*45537549124^(9/17) 1771100001129242 a001 267914296/54018521*45537549124^(1/3) 1771100001129242 a001 24157817/599074578*817138163596^(9/19) 1771100001129242 a001 24157817/599074578*14662949395604^(3/7) 1771100001129242 a001 24157817/599074578*192900153618^(1/2) 1771100001129242 a001 24157817/599074578*10749957122^(9/16) 1771100001129242 a001 24157817/599074578*599074578^(9/14) 1771100001129242 a001 701408733/54018521*2537720636^(1/3) 1771100001129242 a001 701408733/54018521*45537549124^(5/17) 1771100001129242 a001 701408733/54018521*312119004989^(3/11) 1771100001129242 a001 16944503814015861/956722026041 1771100001129242 a001 24157817/1568397607*1322157322203^(1/2) 1771100001129242 a001 701408733/54018521*192900153618^(5/18) 1771100001129242 a001 701408733/54018521*28143753123^(3/10) 1771100001129242 a001 701408733/54018521*10749957122^(5/16) 1771100001129242 a001 24157817/817138163596*2537720636^(14/15) 1771100001129242 a001 24157817/312119004989*2537720636^(8/9) 1771100001129242 a001 24157817/192900153618*2537720636^(13/15) 1771100001129242 a001 24157817/45537549124*2537720636^(4/5) 1771100001129242 a001 24157817/10749957122*2537720636^(11/15) 1771100001129242 a001 24157817/28143753123*2537720636^(7/9) 1771100001129242 a001 1548008755920/228826127*12752043^(1/17) 1771100001129242 a001 24157817/4106118243*9062201101803^(1/2) 1771100001129242 a001 1836311903/54018521*73681302247^(1/4) 1771100001129242 a001 12586269025/54018521*2537720636^(1/5) 1771100001129242 a001 7778742049/54018521*2537720636^(2/9) 1771100001129242 a001 53316291173/54018521*2537720636^(2/15) 1771100001129242 a001 2971215073/54018521*2537720636^(4/15) 1771100001129242 a001 86267571272/54018521*2537720636^(1/9) 1771100001129242 a001 225851433717/54018521*2537720636^(1/15) 1771100001129242 a001 24157817/10749957122*45537549124^(11/17) 1771100001129242 a001 24157817/10749957122*312119004989^(3/5) 1771100001129242 a001 24157817/10749957122*14662949395604^(11/21) 1771100001129242 a001 24157817/10749957122*192900153618^(11/18) 1771100001129242 a001 24157817/28143753123*17393796001^(5/7) 1771100001129242 a001 24157817/817138163596*17393796001^(6/7) 1771100001129242 a001 24157817/10749957122*10749957122^(11/16) 1771100001129242 a001 12586269025/54018521*45537549124^(3/17) 1771100001129242 a001 24157817/28143753123*312119004989^(7/11) 1771100001129242 a001 12586269025/54018521*817138163596^(3/19) 1771100001129242 a001 12586269025/54018521*14662949395604^(1/7) 1771100001129242 a001 32951280099/54018521*17393796001^(1/7) 1771100001129242 a001 24157817/14662949395604*45537549124^(16/17) 1771100001129242 a001 24157817/3461452808002*45537549124^(15/17) 1771100001129242 a001 24157817/192900153618*45537549124^(13/17) 1771100001129242 a001 24157817/817138163596*45537549124^(14/17) 1771100001129242 a001 24157817/28143753123*28143753123^(7/10) 1771100001129242 a001 32951280099/54018521*14662949395604^(1/9) 1771100001129242 a001 225851433717/54018521*45537549124^(1/17) 1771100001129242 a001 24157817/2139295485799*312119004989^(4/5) 1771100001129242 a001 24157817/192900153618*192900153618^(13/18) 1771100001129242 a001 225851433717/54018521*14662949395604^(1/21) 1771100001129242 a004 Fibonacci(37)/Lucas(1)/(1/2+sqrt(5)/2)^15 1771100001129242 a001 24157817/14662949395604*14662949395604^(16/21) 1771100001129242 a006 5^(1/2)*Fibonacci(59)/Lucas(37)/sqrt(5) 1771100001129242 a001 24157817/23725150497407*505019158607^(7/8) 1771100001129242 a001 139583862445/54018521*23725150497407^(1/16) 1771100001129242 a001 24157817/14662949395604*192900153618^(8/9) 1771100001129242 a001 139583862445/54018521*73681302247^(1/13) 1771100001129242 a001 24157817/119218851371*817138163596^(2/3) 1771100001129242 a001 86267571272/54018521*28143753123^(1/10) 1771100001129242 a001 24157817/192900153618*73681302247^(3/4) 1771100001129242 a001 24157817/45537549124*45537549124^(12/17) 1771100001129242 a001 24157817/2139295485799*73681302247^(11/13) 1771100001129242 a001 24157817/14662949395604*73681302247^(12/13) 1771100001129242 a001 12586269025/54018521*10749957122^(3/16) 1771100001129242 a001 20365011074/54018521*23725150497407^(1/8) 1771100001129242 a001 20365011074/54018521*505019158607^(1/7) 1771100001129242 a001 24157817/45537549124*192900153618^(2/3) 1771100001129242 a001 20365011074/54018521*73681302247^(2/13) 1771100001129242 a001 225851433717/54018521*10749957122^(1/16) 1771100001129242 a001 24157817/45537549124*73681302247^(9/13) 1771100001129242 a001 139583862445/54018521*10749957122^(1/12) 1771100001129242 a001 24157817/312119004989*28143753123^(4/5) 1771100001129242 a001 24157817/3461452808002*28143753123^(9/10) 1771100001129242 a001 53316291173/54018521*10749957122^(1/8) 1771100001129242 a001 20365011074/54018521*10749957122^(1/6) 1771100001129242 a001 365435296162/54018521*4106118243^(1/23) 1771100001129242 a001 24157817/17393796001*45537549124^(2/3) 1771100001129242 a001 187917426909947033/10610209857723 1771100001129242 a001 7778742049/54018521*28143753123^(1/5) 1771100001129242 a001 7778742049/54018521*10749957122^(5/24) 1771100001129242 a001 139583862445/54018521*4106118243^(2/23) 1771100001129242 a001 24157817/119218851371*10749957122^(19/24) 1771100001129242 a001 24157817/45537549124*10749957122^(3/4) 1771100001129242 a001 24157817/192900153618*10749957122^(13/16) 1771100001129242 a001 24157817/312119004989*10749957122^(5/6) 1771100001129242 a001 24157817/817138163596*10749957122^(7/8) 1771100001129242 a001 53316291173/54018521*4106118243^(3/23) 1771100001129242 a001 24157817/2139295485799*10749957122^(11/12) 1771100001129242 a001 24157817/3461452808002*10749957122^(15/16) 1771100001129242 a001 24157817/5600748293801*10749957122^(23/24) 1771100001129242 a001 24157817/17393796001*10749957122^(17/24) 1771100001129242 a001 20365011074/54018521*4106118243^(4/23) 1771100001129242 a001 7778742049/54018521*4106118243^(5/23) 1771100001129242 a001 365435296162/54018521*1568397607^(1/22) 1771100001129242 a001 2971215073/54018521*45537549124^(4/17) 1771100001129242 a001 24157817/6643838879*23725150497407^(1/2) 1771100001129242 a001 24157817/6643838879*505019158607^(4/7) 1771100001129242 a001 2971215073/54018521*73681302247^(3/13) 1771100001129242 a001 24157817/6643838879*73681302247^(8/13) 1771100001129242 a001 2971215073/54018521*10749957122^(1/4) 1771100001129242 a001 24157817/6643838879*10749957122^(2/3) 1771100001129242 a001 139583862445/54018521*1568397607^(1/11) 1771100001129242 a001 2971215073/54018521*4106118243^(6/23) 1771100001129242 a001 24157817/45537549124*4106118243^(18/23) 1771100001129242 a001 24157817/17393796001*4106118243^(17/23) 1771100001129242 a001 24157817/119218851371*4106118243^(19/23) 1771100001129242 a001 24157817/312119004989*4106118243^(20/23) 1771100001129242 a001 24157817/2537720636*2537720636^(2/3) 1771100001129242 a001 24157817/817138163596*4106118243^(21/23) 1771100001129242 a001 53316291173/54018521*1568397607^(3/22) 1771100001129242 a001 24157817/2139295485799*4106118243^(22/23) 1771100001129242 a001 24157817/6643838879*4106118243^(16/23) 1771100001129242 a001 20365011074/54018521*1568397607^(2/11) 1771100001129242 a001 4807526976/54018521*1568397607^(1/4) 1771100001129242 a001 7778742049/54018521*1568397607^(5/22) 1771100001129242 a001 365435296162/54018521*599074578^(1/21) 1771100001129242 a001 2971215073/54018521*1568397607^(3/11) 1771100001129242 a001 1134903170/54018521*17393796001^(2/7) 1771100001129242 a001 24157817/2537720636*45537549124^(10/17) 1771100001129242 a001 24157817/2537720636*312119004989^(6/11) 1771100001129242 a001 24157817/2537720636*14662949395604^(10/21) 1771100001129242 a001 1134903170/54018521*14662949395604^(2/9) 1771100001129242 a001 24157817/2537720636*192900153618^(5/9) 1771100001129242 a001 24157817/2537720636*28143753123^(3/5) 1771100001129242 a001 1134903170/54018521*10749957122^(7/24) 1771100001129242 a001 24157817/2537720636*10749957122^(5/8) 1771100001129242 a001 1134903170/54018521*4106118243^(7/23) 1771100001129242 a001 24157817/2537720636*4106118243^(15/23) 1771100001129242 a001 225851433717/54018521*599074578^(1/14) 1771100001129242 a001 139583862445/54018521*599074578^(2/21) 1771100001129242 a001 1134903170/54018521*1568397607^(7/22) 1771100001129242 a001 24157817/10749957122*1568397607^(3/4) 1771100001129242 a001 24157817/17393796001*1568397607^(17/22) 1771100001129242 a001 24157817/6643838879*1568397607^(8/11) 1771100001129242 a001 24157817/45537549124*1568397607^(9/11) 1771100001129242 a001 24157817/119218851371*1568397607^(19/22) 1771100001129242 a001 24157817/312119004989*1568397607^(10/11) 1771100001129242 a001 24157817/817138163596*1568397607^(21/22) 1771100001129242 a001 53316291173/54018521*599074578^(1/7) 1771100001129242 a001 24157817/2537720636*1568397607^(15/22) 1771100001129242 a001 32951280099/54018521*599074578^(1/6) 1771100001129242 a001 20365011074/54018521*599074578^(4/21) 1771100001129242 a001 701408733/54018521*599074578^(5/14) 1771100001129242 a001 12586269025/54018521*599074578^(3/14) 1771100001129242 a001 7778742049/54018521*599074578^(5/21) 1771100001129242 a001 2971215073/54018521*599074578^(2/7) 1771100001129242 a001 365435296162/54018521*228826127^(1/20) 1771100001129242 a001 24157817/969323029*17393796001^(4/7) 1771100001129242 a001 10472279279564029/591286729879 1771100001129242 a001 433494437/54018521*73681302247^(4/13) 1771100001129242 a001 24157817/969323029*73681302247^(7/13) 1771100001129242 a001 433494437/54018521*10749957122^(1/3) 1771100001129242 a001 24157817/969323029*10749957122^(7/12) 1771100001129242 a001 1134903170/54018521*599074578^(1/3) 1771100001129242 a001 433494437/54018521*4106118243^(8/23) 1771100001129242 a001 24157817/969323029*4106118243^(14/23) 1771100001129242 a001 433494437/54018521*1568397607^(4/11) 1771100001129242 a001 24157817/969323029*1568397607^(7/11) 1771100001129242 a001 139583862445/54018521*228826127^(1/10) 1771100001129242 a001 433494437/54018521*599074578^(8/21) 1771100001129242 a001 24157817/2537720636*599074578^(5/7) 1771100001129242 a001 24157817/6643838879*599074578^(16/21) 1771100001129242 a001 24157817/10749957122*599074578^(11/14) 1771100001129242 a001 24157817/17393796001*599074578^(17/21) 1771100001129242 a001 24157817/28143753123*599074578^(5/6) 1771100001129242 a001 86267571272/54018521*228826127^(1/8) 1771100001129242 a001 24157817/45537549124*599074578^(6/7) 1771100001129242 a001 24157817/119218851371*599074578^(19/21) 1771100001129242 a001 24157817/192900153618*599074578^(13/14) 1771100001129242 a001 24157817/312119004989*599074578^(20/21) 1771100001129242 a001 53316291173/54018521*228826127^(3/20) 1771100001129242 a001 24157817/969323029*599074578^(2/3) 1771100001129242 a001 12586269025/599074578*33385282^(7/18) 1771100001129242 a001 20365011074/54018521*228826127^(1/5) 1771100001129242 a001 7778742049/54018521*228826127^(1/4) 1771100001129242 a001 34111385/29134601*33385282^(5/9) 1771100001129242 a001 2971215073/54018521*228826127^(3/10) 1771100001129242 a001 32951280099/1568397607*33385282^(7/18) 1771100001129242 a001 86267571272/4106118243*33385282^(7/18) 1771100001129242 a001 225851433717/10749957122*33385282^(7/18) 1771100001129242 a001 591286729879/28143753123*33385282^(7/18) 1771100001129242 a001 1548008755920/73681302247*33385282^(7/18) 1771100001129242 a001 4052739537881/192900153618*33385282^(7/18) 1771100001129242 a001 225749145909/10745088481*33385282^(7/18) 1771100001129242 a001 6557470319842/312119004989*33385282^(7/18) 1771100001129242 a001 2504730781961/119218851371*33385282^(7/18) 1771100001129242 a001 956722026041/45537549124*33385282^(7/18) 1771100001129242 a001 365435296162/17393796001*33385282^(7/18) 1771100001129242 a001 139583862445/6643838879*33385282^(7/18) 1771100001129242 a001 53316291173/2537720636*33385282^(7/18) 1771100001129242 a001 7778742049/141422324*33385282^(1/3) 1771100001129242 a001 701408733/54018521*228826127^(3/8) 1771100001129242 a001 1134903170/54018521*228826127^(7/20) 1771100001129242 a001 365435296162/54018521*87403803^(1/19) 1771100001129242 a001 165580141/54018521*2537720636^(2/5) 1771100001129242 a001 20365011074/969323029*33385282^(7/18) 1771100001129242 a001 165580141/54018521*45537549124^(6/17) 1771100001129242 a001 165580141/54018521*14662949395604^(2/7) 1771100001129242 a001 165580141/54018521*192900153618^(1/3) 1771100001129242 a001 24157817/370248451*73681302247^(1/2) 1771100001129242 a001 165580141/54018521*10749957122^(3/8) 1771100001129242 a001 24157817/370248451*10749957122^(13/24) 1771100001129242 a001 165580141/54018521*4106118243^(9/23) 1771100001129242 a001 24157817/370248451*4106118243^(13/23) 1771100001129242 a001 165580141/54018521*1568397607^(9/22) 1771100001129242 a001 24157817/370248451*1568397607^(13/22) 1771100001129242 a001 165580141/54018521*599074578^(3/7) 1771100001129242 a001 433494437/54018521*228826127^(2/5) 1771100001129242 a001 24157817/370248451*599074578^(13/21) 1771100001129242 a001 2971215073/228826127*33385282^(5/12) 1771100001129242 a001 7778742049/370248451*33385282^(7/18) 1771100001129242 a001 139583862445/54018521*87403803^(2/19) 1771100001129242 a001 24157817/969323029*228826127^(7/10) 1771100001129242 a001 24157817/2537720636*228826127^(3/4) 1771100001129242 a001 24157817/6643838879*228826127^(4/5) 1771100001129242 a001 165580141/54018521*228826127^(9/20) 1771100001129242 a001 24157817/17393796001*228826127^(17/20) 1771100001129242 a001 4052739537881/599074578*12752043^(1/17) 1771100001129242 a001 24157817/28143753123*228826127^(7/8) 1771100001129242 a001 24157817/45537549124*228826127^(9/10) 1771100001129242 a001 24157817/119218851371*228826127^(19/20) 1771100001129242 a001 1515744265389/224056801*12752043^(1/17) 1771100001129242 a001 24157817/141422324*141422324^(8/13) 1771100001129242 a001 24157817/370248451*228826127^(13/20) 1771100001129242 a001 6557470319842/969323029*12752043^(1/17) 1771100001129242 a001 53316291173/54018521*87403803^(3/19) 1771100001129242 a001 2504730781961/370248451*12752043^(1/17) 1771100001129242 a001 20365011074/54018521*87403803^(4/19) 1771100001129242 a001 7778742049/599074578*33385282^(5/12) 1771100001129242 a001 20365011074/1568397607*33385282^(5/12) 1771100001129242 a001 53316291173/4106118243*33385282^(5/12) 1771100001129242 a001 139583862445/10749957122*33385282^(5/12) 1771100001129242 a001 365435296162/28143753123*33385282^(5/12) 1771100001129242 a001 956722026041/73681302247*33385282^(5/12) 1771100001129242 a001 2504730781961/192900153618*33385282^(5/12) 1771100001129242 a001 10610209857723/817138163596*33385282^(5/12) 1771100001129242 a001 4052739537881/312119004989*33385282^(5/12) 1771100001129242 a001 1548008755920/119218851371*33385282^(5/12) 1771100001129242 a001 591286729879/45537549124*33385282^(5/12) 1771100001129242 a001 7787980473/599786069*33385282^(5/12) 1771100001129242 a001 86267571272/6643838879*33385282^(5/12) 1771100001129242 a001 32951280099/2537720636*33385282^(5/12) 1771100001129242 a001 12586269025/969323029*33385282^(5/12) 1771100001129242 a001 7778742049/54018521*87403803^(5/19) 1771100001129242 a001 1836311903/228826127*33385282^(4/9) 1771100001129242 a001 4807526976/370248451*33385282^(5/12) 1771100001129242 a001 2971215073/54018521*87403803^(6/19) 1771100001129242 a001 102334155/54018521*87403803^(1/2) 1771100001129242 a001 1134903170/54018521*87403803^(7/19) 1771100001129242 a001 365435296162/54018521*33385282^(1/18) 1771100001129242 a001 24157817/141422324*2537720636^(8/15) 1771100001129242 a001 63245986/54018521*2537720636^(4/9) 1771100001129242 a001 24157817/141422324*45537549124^(8/17) 1771100001129242 a001 24157817/141422324*14662949395604^(8/21) 1771100001129242 a001 63245986/54018521*23725150497407^(5/16) 1771100001129242 a001 63245986/54018521*505019158607^(5/14) 1771100001129242 a001 24157817/141422324*192900153618^(4/9) 1771100001129242 a001 763942477886281/43133785636 1771100001129242 a001 63245986/54018521*73681302247^(5/13) 1771100001129242 a001 24157817/141422324*73681302247^(6/13) 1771100001129242 a001 63245986/54018521*28143753123^(2/5) 1771100001129242 a001 63245986/54018521*10749957122^(5/12) 1771100001129242 a001 24157817/141422324*10749957122^(1/2) 1771100001129242 a001 63245986/54018521*4106118243^(10/23) 1771100001129242 a001 24157817/141422324*4106118243^(12/23) 1771100001129242 a001 63245986/54018521*1568397607^(5/11) 1771100001129242 a001 24157817/141422324*1568397607^(6/11) 1771100001129242 a001 63245986/54018521*599074578^(10/21) 1771100001129242 a001 24157817/141422324*599074578^(4/7) 1771100001129242 a001 267084832/33281921*33385282^(4/9) 1771100001129242 a001 12586269025/1568397607*33385282^(4/9) 1771100001129242 a001 10983760033/1368706081*33385282^(4/9) 1771100001129242 a001 43133785636/5374978561*33385282^(4/9) 1771100001129242 a001 75283811239/9381251041*33385282^(4/9) 1771100001129242 a001 591286729879/73681302247*33385282^(4/9) 1771100001129242 a001 86000486440/10716675201*33385282^(4/9) 1771100001129242 a001 4052739537881/505019158607*33385282^(4/9) 1771100001129242 a001 3278735159921/408569081798*33385282^(4/9) 1771100001129242 a001 2504730781961/312119004989*33385282^(4/9) 1771100001129242 a001 956722026041/119218851371*33385282^(4/9) 1771100001129242 a001 182717648081/22768774562*33385282^(4/9) 1771100001129242 a001 139583862445/17393796001*33385282^(4/9) 1771100001129242 a001 53316291173/6643838879*33385282^(4/9) 1771100001129242 a001 433494437/54018521*87403803^(8/19) 1771100001129242 a001 10182505537/1268860318*33385282^(4/9) 1771100001129242 a001 2971215073/141422324*33385282^(7/18) 1771100001129242 a001 7778742049/969323029*33385282^(4/9) 1771100001129242 a001 63245986/54018521*228826127^(1/2) 1771100001129242 a001 24157817/141422324*228826127^(3/5) 1771100001129242 a001 2971215073/370248451*33385282^(4/9) 1771100001129242 a001 956722026041/141422324*12752043^(1/17) 1771100001129242 a001 165580141/54018521*87403803^(9/19) 1771100001129242 a001 225851433717/54018521*33385282^(1/12) 1771100001129242 a001 1836311903/141422324*33385282^(5/12) 1771100001129242 a001 701408733/228826127*33385282^(1/2) 1771100001129242 a001 24157817/370248451*87403803^(13/19) 1771100001129242 a001 24157817/969323029*87403803^(14/19) 1771100001129242 a001 139583862445/54018521*33385282^(1/9) 1771100001129242 a001 63245986/87403803*33385282^(7/12) 1771100001129242 a001 1836311903/599074578*33385282^(1/2) 1771100001129242 a001 24157817/2537720636*87403803^(15/19) 1771100001129242 a001 39088169/228826127*33385282^(2/3) 1771100001129242 a001 686789568/224056801*33385282^(1/2) 1771100001129242 a001 12586269025/4106118243*33385282^(1/2) 1771100001129242 a001 32951280099/10749957122*33385282^(1/2) 1771100001129242 a001 86267571272/28143753123*33385282^(1/2) 1771100001129242 a001 32264490531/10525900321*33385282^(1/2) 1771100001129242 a001 591286729879/192900153618*33385282^(1/2) 1771100001129242 a001 1515744265389/494493258286*33385282^(1/2) 1771100001129242 a001 2504730781961/817138163596*33385282^(1/2) 1771100001129242 a001 956722026041/312119004989*33385282^(1/2) 1771100001129242 a001 365435296162/119218851371*33385282^(1/2) 1771100001129242 a001 139583862445/45537549124*33385282^(1/2) 1771100001129242 a001 53316291173/17393796001*33385282^(1/2) 1771100001129242 a001 20365011074/6643838879*33385282^(1/2) 1771100001129242 a001 7778742049/2537720636*33385282^(1/2) 1771100001129242 a001 567451585/70711162*33385282^(4/9) 1771100001129242 a001 2971215073/969323029*33385282^(1/2) 1771100001129242 a001 24157817/6643838879*87403803^(16/19) 1771100001129242 a001 1134903170/370248451*33385282^(1/2) 1771100001129242 a001 24157817/17393796001*87403803^(17/19) 1771100001129242 a001 63245986/54018521*87403803^(10/19) 1771100001129242 a001 24157817/45537549124*87403803^(18/19) 1771100001129242 a001 24157817/141422324*87403803^(12/19) 1771100001129242 a001 267914296/228826127*33385282^(5/9) 1771100001129242 a001 9227465/370248451*20633239^(4/5) 1771100001129242 a001 53316291173/54018521*33385282^(1/6) 1771100001129242 a001 233802911/199691526*33385282^(5/9) 1771100001129242 a001 1836311903/1568397607*33385282^(5/9) 1771100001129242 a001 1602508992/1368706081*33385282^(5/9) 1771100001129242 a001 12586269025/10749957122*33385282^(5/9) 1771100001129242 a001 10983760033/9381251041*33385282^(5/9) 1771100001129242 a001 86267571272/73681302247*33385282^(5/9) 1771100001129242 a001 75283811239/64300051206*33385282^(5/9) 1771100001129242 a001 2504730781961/2139295485799*33385282^(5/9) 1771100001129242 a001 365435296162/312119004989*33385282^(5/9) 1771100001129242 a001 139583862445/119218851371*33385282^(5/9) 1771100001129242 a001 53316291173/45537549124*33385282^(5/9) 1771100001129242 a001 20365011074/17393796001*33385282^(5/9) 1771100001129242 a001 7778742049/6643838879*33385282^(5/9) 1771100001129242 a001 2971215073/2537720636*33385282^(5/9) 1771100001129242 a001 433494437/141422324*33385282^(1/2) 1771100001129242 a001 1134903170/969323029*33385282^(5/9) 1771100001129242 a001 433494437/370248451*33385282^(5/9) 1771100001129242 a001 102334155/228826127*33385282^(11/18) 1771100001129242 a001 165580141/228826127*33385282^(7/12) 1771100001129242 a001 39088169/599074578*33385282^(13/18) 1771100001129242 a001 433494437/599074578*33385282^(7/12) 1771100001129242 a001 1134903170/1568397607*33385282^(7/12) 1771100001129242 a001 2971215073/4106118243*33385282^(7/12) 1771100001129242 a001 7778742049/10749957122*33385282^(7/12) 1771100001129242 a001 20365011074/28143753123*33385282^(7/12) 1771100001129242 a001 53316291173/73681302247*33385282^(7/12) 1771100001129242 a001 139583862445/192900153618*33385282^(7/12) 1771100001129242 a001 10610209857723/14662949395604*33385282^(7/12) 1771100001129242 a001 225851433717/312119004989*33385282^(7/12) 1771100001129242 a001 86267571272/119218851371*33385282^(7/12) 1771100001129242 a001 32951280099/45537549124*33385282^(7/12) 1771100001129242 a001 12586269025/17393796001*33385282^(7/12) 1771100001129242 a001 4807526976/6643838879*33385282^(7/12) 1771100001129242 a001 1836311903/2537720636*33385282^(7/12) 1771100001129242 a001 701408733/969323029*33385282^(7/12) 1771100001129242 a001 267914296/370248451*33385282^(7/12) 1771100001129242 a001 9227465/87403803*20633239^(5/7) 1771100001129242 a001 20365011074/54018521*33385282^(2/9) 1771100001129242 a001 133957148/299537289*33385282^(11/18) 1771100001129242 a001 39088169/969323029*33385282^(3/4) 1771100001129242 a001 701408733/1568397607*33385282^(11/18) 1771100001129242 a001 1836311903/4106118243*33385282^(11/18) 1771100001129242 a001 2403763488/5374978561*33385282^(11/18) 1771100001129242 a001 12586269025/28143753123*33385282^(11/18) 1771100001129242 a001 32951280099/73681302247*33385282^(11/18) 1771100001129242 a001 43133785636/96450076809*33385282^(11/18) 1771100001129242 a001 225851433717/505019158607*33385282^(11/18) 1771100001129242 a001 10610209857723/23725150497407*33385282^(11/18) 1771100001129242 a001 139583862445/312119004989*33385282^(11/18) 1771100001129242 a001 53316291173/119218851371*33385282^(11/18) 1771100001129242 a001 10182505537/22768774562*33385282^(11/18) 1771100001129242 a001 7778742049/17393796001*33385282^(11/18) 1771100001129242 a001 2971215073/6643838879*33385282^(11/18) 1771100001129242 a001 567451585/1268860318*33385282^(11/18) 1771100001129242 a001 12586269025/33385282*12752043^(4/17) 1771100001129242 a001 433494437/969323029*33385282^(11/18) 1771100001129242 a001 102334155/141422324*33385282^(7/12) 1771100001129242 a001 165580141/141422324*33385282^(5/9) 1771100001129242 a001 165580141/370248451*33385282^(11/18) 1771100001129242 a001 39088169/1568397607*33385282^(7/9) 1771100001129242 a001 12586269025/54018521*33385282^(1/4) 1771100001129242 a001 34111385/199691526*33385282^(2/3) 1771100001129242 a001 7778742049/54018521*33385282^(5/18) 1771100001129242 a001 75283811239/29134601*12752043^(2/17) 1771100001129242 a001 267914296/1568397607*33385282^(2/3) 1771100001129242 a001 233802911/1368706081*33385282^(2/3) 1771100001129242 a001 1836311903/10749957122*33385282^(2/3) 1771100001129242 a001 1602508992/9381251041*33385282^(2/3) 1771100001129242 a001 12586269025/73681302247*33385282^(2/3) 1771100001129242 a001 10983760033/64300051206*33385282^(2/3) 1771100001129242 a001 86267571272/505019158607*33385282^(2/3) 1771100001129242 a001 75283811239/440719107401*33385282^(2/3) 1771100001129242 a001 2504730781961/14662949395604*33385282^(2/3) 1771100001129242 a001 139583862445/817138163596*33385282^(2/3) 1771100001129242 a001 53316291173/312119004989*33385282^(2/3) 1771100001129242 a001 20365011074/119218851371*33385282^(2/3) 1771100001129242 a001 7778742049/45537549124*33385282^(2/3) 1771100001129242 a001 2971215073/17393796001*33385282^(2/3) 1771100001129242 a001 1134903170/6643838879*33385282^(2/3) 1771100001129242 a001 433494437/2537720636*33385282^(2/3) 1771100001129242 a001 165580141/969323029*33385282^(2/3) 1771100001129242 a001 39088169/4106118243*33385282^(5/6) 1771100001129242 a001 14619165/224056801*33385282^(13/18) 1771100001129242 a001 2971215073/54018521*33385282^(1/3) 1771100001129242 a001 267914296/4106118243*33385282^(13/18) 1771100001129242 a001 701408733/10749957122*33385282^(13/18) 1771100001129242 a001 1836311903/28143753123*33385282^(13/18) 1771100001129242 a001 686789568/10525900321*33385282^(13/18) 1771100001129242 a001 12586269025/192900153618*33385282^(13/18) 1771100001129242 a001 32951280099/505019158607*33385282^(13/18) 1771100001129242 a001 86267571272/1322157322203*33385282^(13/18) 1771100001129242 a001 32264490531/494493258286*33385282^(13/18) 1771100001129242 a001 1548008755920/23725150497407*33385282^(13/18) 1771100001129242 a001 139583862445/2139295485799*33385282^(13/18) 1771100001129242 a001 53316291173/817138163596*33385282^(13/18) 1771100001129242 a001 20365011074/312119004989*33385282^(13/18) 1771100001129242 a001 7778742049/119218851371*33385282^(13/18) 1771100001129242 a001 2971215073/45537549124*33385282^(13/18) 1771100001129242 a001 1134903170/17393796001*33385282^(13/18) 1771100001129242 a001 31622993/70711162*33385282^(11/18) 1771100001129242 a001 433494437/6643838879*33385282^(13/18) 1771100001129242 a001 9303105/230701876*33385282^(3/4) 1771100001129242 a001 63245986/370248451*33385282^(2/3) 1771100001129242 a001 165580141/2537720636*33385282^(13/18) 1771100001129242 a001 39088169/10749957122*33385282^(8/9) 1771100001129242 a001 267914296/6643838879*33385282^(3/4) 1771100001129242 a001 701408733/17393796001*33385282^(3/4) 1771100001129242 a001 1836311903/45537549124*33385282^(3/4) 1771100001129242 a001 4807526976/119218851371*33385282^(3/4) 1771100001129242 a001 1144206275/28374454999*33385282^(3/4) 1771100001129242 a001 32951280099/817138163596*33385282^(3/4) 1771100001129242 a001 86267571272/2139295485799*33385282^(3/4) 1771100001129242 a001 225851433717/5600748293801*33385282^(3/4) 1771100001129242 a001 365435296162/9062201101803*33385282^(3/4) 1771100001129242 a001 139583862445/3461452808002*33385282^(3/4) 1771100001129242 a001 53316291173/1322157322203*33385282^(3/4) 1771100001129242 a001 20365011074/505019158607*33385282^(3/4) 1771100001129242 a001 7778742049/192900153618*33385282^(3/4) 1771100001129242 a001 2971215073/73681302247*33385282^(3/4) 1771100001129242 a001 1134903170/28143753123*33385282^(3/4) 1771100001129242 a001 433494437/10749957122*33385282^(3/4) 1771100001129242 a001 34111385/1368706081*33385282^(7/9) 1771100001129242 a001 165580141/4106118243*33385282^(3/4) 1771100001129242 a001 24157817/54018521*312119004989^(2/5) 1771100001129242 a001 583600122205489/32951280099 1771100001129242 a001 24157817/54018521*10749957122^(11/24) 1771100001129242 a001 24157817/54018521*4106118243^(11/23) 1771100001129242 a001 24157817/54018521*1568397607^(1/2) 1771100001129242 a001 24157817/54018521*599074578^(11/21) 1771100001129242 a001 39088169/17393796001*33385282^(11/12) 1771100001129242 a001 1134903170/54018521*33385282^(7/18) 1771100001129242 a001 133957148/5374978561*33385282^(7/9) 1771100001129242 a001 24157817/54018521*228826127^(11/20) 1771100001129242 a001 233802911/9381251041*33385282^(7/9) 1771100001129242 a001 1836311903/73681302247*33385282^(7/9) 1771100001129242 a001 267084832/10716675201*33385282^(7/9) 1771100001129242 a001 12586269025/505019158607*33385282^(7/9) 1771100001129242 a001 10983760033/440719107401*33385282^(7/9) 1771100001129242 a001 43133785636/1730726404001*33385282^(7/9) 1771100001129242 a001 75283811239/3020733700601*33385282^(7/9) 1771100001129242 a001 182717648081/7331474697802*33385282^(7/9) 1771100001129242 a001 139583862445/5600748293801*33385282^(7/9) 1771100001129242 a001 53316291173/2139295485799*33385282^(7/9) 1771100001129242 a001 10182505537/408569081798*33385282^(7/9) 1771100001129242 a001 7778742049/312119004989*33385282^(7/9) 1771100001129242 a001 2971215073/119218851371*33385282^(7/9) 1771100001129242 a001 567451585/22768774562*33385282^(7/9) 1771100001129242 a001 433494437/17393796001*33385282^(7/9) 1771100001129242 a001 63245986/969323029*33385282^(13/18) 1771100001129242 a001 591286729879/228826127*12752043^(2/17) 1771100001129242 a001 365435296162/54018521*12752043^(1/17) 1771100001129242 a001 165580141/6643838879*33385282^(7/9) 1771100001129242 a001 701408733/54018521*33385282^(5/12) 1771100001129242 a001 39088169/28143753123*33385282^(17/18) 1771100001129242 a001 86000486440/33281921*12752043^(2/17) 1771100001129242 a001 63245986/1568397607*33385282^(3/4) 1771100001129242 a001 4052739537881/1568397607*12752043^(2/17) 1771100001129242 a001 3536736619241/1368706081*12752043^(2/17) 1771100001129242 a001 3278735159921/1268860318*12752043^(2/17) 1771100001129242 a001 2504730781961/969323029*12752043^(2/17) 1771100001129243 a001 102334155/10749957122*33385282^(5/6) 1771100001129243 a001 956722026041/370248451*12752043^(2/17) 1771100001129243 a001 39088169/54018521*33385282^(7/12) 1771100001129243 a001 433494437/54018521*33385282^(4/9) 1771100001129243 a001 267914296/28143753123*33385282^(5/6) 1771100001129243 a001 701408733/73681302247*33385282^(5/6) 1771100001129243 a001 1836311903/192900153618*33385282^(5/6) 1771100001129243 a001 102287808/10745088481*33385282^(5/6) 1771100001129243 a001 12586269025/1322157322203*33385282^(5/6) 1771100001129243 a001 32951280099/3461452808002*33385282^(5/6) 1771100001129243 a001 86267571272/9062201101803*33385282^(5/6) 1771100001129243 a001 225851433717/23725150497407*33385282^(5/6) 1771100001129243 a001 139583862445/14662949395604*33385282^(5/6) 1771100001129243 a001 53316291173/5600748293801*33385282^(5/6) 1771100001129243 a001 20365011074/2139295485799*33385282^(5/6) 1771100001129243 a001 7778742049/817138163596*33385282^(5/6) 1771100001129243 a001 2971215073/312119004989*33385282^(5/6) 1771100001129243 a001 1134903170/119218851371*33385282^(5/6) 1771100001129243 a001 31622993/1268860318*33385282^(7/9) 1771100001129243 a001 433494437/45537549124*33385282^(5/6) 1771100001129243 a001 165580141/17393796001*33385282^(5/6) 1771100001129243 a001 24157817/54018521*87403803^(11/19) 1771100001129243 a001 182717648081/70711162*12752043^(2/17) 1771100001129243 a001 831985/228811001*33385282^(8/9) 1771100001129243 a001 267914296/73681302247*33385282^(8/9) 1771100001129243 a001 233802911/64300051206*33385282^(8/9) 1771100001129243 a001 1836311903/505019158607*33385282^(8/9) 1771100001129243 a001 1602508992/440719107401*33385282^(8/9) 1771100001129243 a001 12586269025/3461452808002*33385282^(8/9) 1771100001129243 a001 10983760033/3020733700601*33385282^(8/9) 1771100001129243 a001 86267571272/23725150497407*33385282^(8/9) 1771100001129243 a001 53316291173/14662949395604*33385282^(8/9) 1771100001129243 a001 20365011074/5600748293801*33385282^(8/9) 1771100001129243 a001 7778742049/2139295485799*33385282^(8/9) 1771100001129243 a001 2971215073/817138163596*33385282^(8/9) 1771100001129243 a001 1134903170/312119004989*33385282^(8/9) 1771100001129243 a001 63245986/6643838879*33385282^(5/6) 1771100001129243 a001 433494437/119218851371*33385282^(8/9) 1771100001129243 a001 165580141/54018521*33385282^(1/2) 1771100001129243 a001 102334155/45537549124*33385282^(11/12) 1771100001129243 a001 165580141/45537549124*33385282^(8/9) 1771100001129243 a001 267914296/119218851371*33385282^(11/12) 1771100001129243 a001 3524667/1568437211*33385282^(11/12) 1771100001129243 a001 1836311903/817138163596*33385282^(11/12) 1771100001129243 a001 4807526976/2139295485799*33385282^(11/12) 1771100001129243 a001 12586269025/5600748293801*33385282^(11/12) 1771100001129243 a001 32951280099/14662949395604*33385282^(11/12) 1771100001129243 a001 53316291173/23725150497407*33385282^(11/12) 1771100001129243 a001 20365011074/9062201101803*33385282^(11/12) 1771100001129243 a001 7778742049/3461452808002*33385282^(11/12) 1771100001129243 a001 2971215073/1322157322203*33385282^(11/12) 1771100001129243 a001 1134903170/505019158607*33385282^(11/12) 1771100001129243 a001 433494437/192900153618*33385282^(11/12) 1771100001129243 a001 14619165/10525900321*33385282^(17/18) 1771100001129243 a001 165580141/73681302247*33385282^(11/12) 1771100001129243 a001 133957148/96450076809*33385282^(17/18) 1771100001129243 a001 701408733/505019158607*33385282^(17/18) 1771100001129243 a001 1836311903/1322157322203*33385282^(17/18) 1771100001129243 a001 14930208/10749853441*33385282^(17/18) 1771100001129243 a001 12586269025/9062201101803*33385282^(17/18) 1771100001129243 a001 32951280099/23725150497407*33385282^(17/18) 1771100001129243 a001 10182505537/7331474697802*33385282^(17/18) 1771100001129243 a001 7778742049/5600748293801*33385282^(17/18) 1771100001129243 a001 2971215073/2139295485799*33385282^(17/18) 1771100001129243 a001 567451585/408569081798*33385282^(17/18) 1771100001129243 a001 63245986/17393796001*33385282^(8/9) 1771100001129243 a001 433494437/312119004989*33385282^(17/18) 1771100001129243 a001 165580141/119218851371*33385282^(17/18) 1771100001129243 a001 63245986/28143753123*33385282^(11/12) 1771100001129243 a001 86267571272/20633239*7881196^(1/11) 1771100001129243 a001 63245986/54018521*33385282^(5/9) 1771100001129243 a001 1/7465176*(1/2+1/2*5^(1/2))^58 1771100001129243 a001 31622993/22768774562*33385282^(17/18) 1771100001129243 a001 14930208/103681*12752043^(5/17) 1771100001129243 a001 86267571272/87403803*12752043^(3/17) 1771100001129243 a001 24157817/141422324*33385282^(2/3) 1771100001129243 a001 24157817/370248451*33385282^(13/18) 1771100001129243 a001 24157817/599074578*33385282^(3/4) 1771100001129243 a001 24157817/969323029*33385282^(7/9) 1771100001129243 a001 225851433717/228826127*12752043^(3/17) 1771100001129243 a001 139583862445/54018521*12752043^(2/17) 1771100001129243 a001 591286729879/599074578*12752043^(3/17) 1771100001129243 a001 1548008755920/1568397607*12752043^(3/17) 1771100001129243 a001 4052739537881/4106118243*12752043^(3/17) 1771100001129243 a001 4807525989/4870846*12752043^(3/17) 1771100001129243 a001 6557470319842/6643838879*12752043^(3/17) 1771100001129243 a001 2504730781961/2537720636*12752043^(3/17) 1771100001129243 a001 956722026041/969323029*12752043^(3/17) 1771100001129243 a001 24157817/2537720636*33385282^(5/6) 1771100001129243 a001 365435296162/370248451*12752043^(3/17) 1771100001129243 a001 139583862445/141422324*12752043^(3/17) 1771100001129243 a001 24157817/6643838879*33385282^(8/9) 1771100001129243 a001 24157817/10749957122*33385282^(11/12) 1771100001129243 a001 24157817/17393796001*33385282^(17/18) 1771100001129243 a001 24157817/54018521*33385282^(11/18) 1771100001129243 a001 1836311903/33385282*12752043^(6/17) 1771100001129244 a001 10983760033/29134601*12752043^(4/17) 1771100001129244 a001 9238424/711491*20633239^(3/7) 1771100001129244 a001 24157817/20633239*20633239^(4/7) 1771100001129244 a001 433494437/20633239*20633239^(2/5) 1771100001129244 a001 14930352/20633239*141422324^(7/13) 1771100001129244 a001 86267571272/228826127*12752043^(4/17) 1771100001129244 a001 53316291173/54018521*12752043^(3/17) 1771100001129244 a001 267913919/710646*12752043^(4/17) 1771100001129244 a001 591286729879/1568397607*12752043^(4/17) 1771100001129244 a001 516002918640/1368706081*12752043^(4/17) 1771100001129244 a001 4052739537881/10749957122*12752043^(4/17) 1771100001129244 a001 3536736619241/9381251041*12752043^(4/17) 1771100001129244 a001 6557470319842/17393796001*12752043^(4/17) 1771100001129244 a001 2504730781961/6643838879*12752043^(4/17) 1771100001129244 a001 956722026041/2537720636*12752043^(4/17) 1771100001129244 a001 365435296162/969323029*12752043^(4/17) 1771100001129244 a001 14930352/20633239*2537720636^(7/15) 1771100001129244 a001 10597638501360/598364773 1771100001129244 a001 14930352/20633239*17393796001^(3/7) 1771100001129244 a001 14930352/20633239*45537549124^(7/17) 1771100001129244 a001 14930352/20633239*14662949395604^(1/3) 1771100001129244 a001 9227465/33385282*(1/2+1/2*5^(1/2))^23 1771100001129244 a001 14930352/20633239*(1/2+1/2*5^(1/2))^21 1771100001129244 a001 14930352/20633239*192900153618^(7/18) 1771100001129244 a001 14930352/20633239*10749957122^(7/16) 1771100001129244 a001 9227465/33385282*4106118243^(1/2) 1771100001129244 a001 14930352/20633239*599074578^(1/2) 1771100001129244 a001 139583862445/370248451*12752043^(4/17) 1771100001129244 a001 3524578/370248451*7881196^(10/11) 1771100001129244 a001 53316291173/141422324*12752043^(4/17) 1771100001129244 a001 701408733/33385282*12752043^(7/17) 1771100001129244 a001 12586269025/87403803*12752043^(5/17) 1771100001129244 a001 2971215073/20633239*20633239^(2/7) 1771100001129244 a001 32264490531/4769326*4870847^(1/16) 1771100001129244 a001 12586269025/12752043*4870847^(3/16) 1771100001129244 a001 32951280099/228826127*12752043^(5/17) 1771100001129244 a001 20365011074/54018521*12752043^(4/17) 1771100001129244 a001 43133785636/299537289*12752043^(5/17) 1771100001129244 a001 32264490531/224056801*12752043^(5/17) 1771100001129244 a001 591286729879/4106118243*12752043^(5/17) 1771100001129244 a001 774004377960/5374978561*12752043^(5/17) 1771100001129244 a001 4052739537881/28143753123*12752043^(5/17) 1771100001129244 a001 1515744265389/10525900321*12752043^(5/17) 1771100001129244 a001 3278735159921/22768774562*12752043^(5/17) 1771100001129244 a001 2504730781961/17393796001*12752043^(5/17) 1771100001129244 a001 956722026041/6643838879*12752043^(5/17) 1771100001129244 a001 182717648081/1268860318*12752043^(5/17) 1771100001129244 a001 139583862445/969323029*12752043^(5/17) 1771100001129244 a001 53316291173/370248451*12752043^(5/17) 1771100001129245 a001 10182505537/70711162*12752043^(5/17) 1771100001129245 a001 1144206275/1875749*20633239^(1/5) 1771100001129245 a001 14930352/20633239*33385282^(7/12) 1771100001129245 a001 133957148/16692641*12752043^(8/17) 1771100001129245 a001 32951280099/20633239*20633239^(1/7) 1771100001129245 a001 1602508992/29134601*12752043^(6/17) 1771100001129245 a001 12586269025/228826127*12752043^(6/17) 1771100001129245 a001 7778742049/54018521*12752043^(5/17) 1771100001129245 a001 10983760033/199691526*12752043^(6/17) 1771100001129245 a001 86267571272/1568397607*12752043^(6/17) 1771100001129245 a001 75283811239/1368706081*12752043^(6/17) 1771100001129245 a001 591286729879/10749957122*12752043^(6/17) 1771100001129245 a001 12585437040/228811001*12752043^(6/17) 1771100001129245 a001 4052739537881/73681302247*12752043^(6/17) 1771100001129245 a001 3536736619241/64300051206*12752043^(6/17) 1771100001129245 a001 6557470319842/119218851371*12752043^(6/17) 1771100001129245 a001 2504730781961/45537549124*12752043^(6/17) 1771100001129245 a001 956722026041/17393796001*12752043^(6/17) 1771100001129245 a001 365435296162/6643838879*12752043^(6/17) 1771100001129245 a001 139583862445/2537720636*12752043^(6/17) 1771100001129245 a001 53316291173/969323029*12752043^(6/17) 1771100001129245 a001 20365011074/370248451*12752043^(6/17) 1771100001129245 a001 7465176/16692641*12752043^(11/17) 1771100001129245 a001 165580141/33385282*12752043^(1/2) 1771100001129245 a001 9227465/87403803*2537720636^(5/9) 1771100001129245 a001 360684711361585/20365011074 1771100001129245 a001 9227465/87403803*312119004989^(5/11) 1771100001129245 a001 39088169/20633239*817138163596^(1/3) 1771100001129245 a001 39088169/20633239*(1/2+1/2*5^(1/2))^19 1771100001129245 a001 9227465/87403803*3461452808002^(5/12) 1771100001129245 a001 9227465/87403803*28143753123^(1/2) 1771100001129245 a001 7778742049/141422324*12752043^(6/17) 1771100001129245 a001 9227465/87403803*228826127^(5/8) 1771100001129245 a001 39088169/20633239*87403803^(1/2) 1771100001129245 a001 9227465/228826127*141422324^(9/13) 1771100001129245 a001 9227465/17393796001*141422324^(12/13) 1771100001129245 a001 9227465/4106118243*141422324^(11/13) 1771100001129245 a001 9227465/969323029*141422324^(10/13) 1771100001129245 a001 9238424/711491*141422324^(5/13) 1771100001129245 a001 9227465/228826127*2537720636^(3/5) 1771100001129245 a001 9227465/228826127*45537549124^(9/17) 1771100001129245 a001 9303105/1875749*45537549124^(1/3) 1771100001129245 a001 9227465/228826127*14662949395604^(3/7) 1771100001129245 a001 9303105/1875749*(1/2+1/2*5^(1/2))^17 1771100001129245 a001 9227465/228826127*192900153618^(1/2) 1771100001129245 a001 9227465/228826127*10749957122^(9/16) 1771100001129245 a001 9227465/228826127*599074578^(9/14) 1771100001129245 a001 701408733/20633239*141422324^(1/3) 1771100001129245 a001 1134903170/20633239*141422324^(4/13) 1771100001129245 a001 4807526976/20633239*141422324^(3/13) 1771100001129245 a001 14619165/4769326*12752043^(9/17) 1771100001129245 a001 20365011074/20633239*141422324^(2/13) 1771100001129245 a001 86267571272/20633239*141422324^(1/13) 1771100001129245 a001 9238424/711491*2537720636^(1/3) 1771100001129245 a001 9238424/711491*45537549124^(5/17) 1771100001129245 a001 494433957867928/27916772489 1771100001129245 a001 9238424/711491*14662949395604^(5/21) 1771100001129245 a001 9238424/711491*(1/2+1/2*5^(1/2))^15 1771100001129245 a001 9227465/599074578*1322157322203^(1/2) 1771100001129245 a001 9238424/711491*192900153618^(5/18) 1771100001129245 a001 9238424/711491*28143753123^(3/10) 1771100001129245 a001 9238424/711491*10749957122^(5/16) 1771100001129245 a001 9238424/711491*599074578^(5/14) 1771100001129245 a001 6472224534451845/365435296162 1771100001129245 a001 701408733/20633239*(1/2+1/2*5^(1/2))^13 1771100001129245 a001 701408733/20633239*73681302247^(1/4) 1771100001129245 a001 9227465/4106118243*2537720636^(11/15) 1771100001129245 a001 9227465/312119004989*2537720636^(14/15) 1771100001129245 a001 9227465/119218851371*2537720636^(8/9) 1771100001129245 a001 9227465/73681302247*2537720636^(13/15) 1771100001129245 a001 9227465/10749957122*2537720636^(7/9) 1771100001129245 a001 9227465/17393796001*2537720636^(4/5) 1771100001129245 a001 9227465/4106118243*45537549124^(11/17) 1771100001129245 a001 9227465/4106118243*312119004989^(3/5) 1771100001129245 a001 16944503814015895/956722026041 1771100001129245 a001 1836311903/20633239*(1/2+1/2*5^(1/2))^11 1771100001129245 a001 9227465/4106118243*192900153618^(11/18) 1771100001129245 a001 9227465/4106118243*10749957122^(11/16) 1771100001129245 a001 4807526976/20633239*2537720636^(1/5) 1771100001129245 a001 20365011074/20633239*2537720636^(2/15) 1771100001129245 a001 32951280099/20633239*2537720636^(1/9) 1771100001129245 a001 2971215073/20633239*2537720636^(2/9) 1771100001129245 a001 9227465/10749957122*17393796001^(5/7) 1771100001129245 a001 86267571272/20633239*2537720636^(1/15) 1771100001129245 a001 4807526976/20633239*45537549124^(3/17) 1771100001129245 a001 9227465/10749957122*312119004989^(7/11) 1771100001129245 a001 44361286907595840/2504730781961 1771100001129245 a001 4807526976/20633239*(1/2+1/2*5^(1/2))^9 1771100001129245 a001 4807526976/20633239*192900153618^(1/6) 1771100001129245 a001 9227465/10749957122*28143753123^(7/10) 1771100001129245 a001 4807526976/20633239*10749957122^(3/16) 1771100001129245 a001 9227465/312119004989*17393796001^(6/7) 1771100001129245 a001 1144206275/1875749*17393796001^(1/7) 1771100001129245 a001 1144206275/1875749*14662949395604^(1/9) 1771100001129245 a001 1144206275/1875749*(1/2+1/2*5^(1/2))^7 1771100001129245 a001 9227465/73681302247*45537549124^(13/17) 1771100001129245 a001 9227465/5600748293801*45537549124^(16/17) 1771100001129245 a001 9227465/1322157322203*45537549124^(15/17) 1771100001129245 a001 9227465/312119004989*45537549124^(14/17) 1771100001129245 a001 32951280099/20633239*312119004989^(1/11) 1771100001129245 a001 9227465/73681302247*14662949395604^(13/21) 1771100001129245 a001 32951280099/20633239*(1/2+1/2*5^(1/2))^5 1771100001129245 a001 9227465/73681302247*192900153618^(13/18) 1771100001129245 a001 32951280099/20633239*28143753123^(1/10) 1771100001129245 a001 86267571272/20633239*45537549124^(1/17) 1771100001129245 a001 9227465/73681302247*73681302247^(3/4) 1771100001129245 a001 86267571272/20633239*14662949395604^(1/21) 1771100001129245 a001 86267571272/20633239*(1/2+1/2*5^(1/2))^3 1771100001129245 a001 7787980473/1422982+7787980473/1422982*5^(1/2) 1771100001129245 a001 9227465/1322157322203*14662949395604^(5/7) 1771100001129245 a006 5^(1/2)*Fibonacci(57)/Lucas(35)/sqrt(5) 1771100001129245 a001 9227465/817138163596*23725150497407^(11/16) 1771100001129245 a001 9227465/312119004989*14662949395604^(2/3) 1771100001129245 a001 139583862445/20633239*(1/2+1/2*5^(1/2))^2 1771100001129245 a001 9227465/312119004989*505019158607^(3/4) 1771100001129245 a001 9227465/1322157322203*192900153618^(5/6) 1771100001129245 a001 9227465/312119004989*192900153618^(7/9) 1771100001129245 a001 9227465/119218851371*312119004989^(8/11) 1771100001129245 a001 53316291173/20633239*(1/2+1/2*5^(1/2))^4 1771100001129245 a001 53316291173/20633239*23725150497407^(1/16) 1771100001129245 a001 53316291173/20633239*73681302247^(1/13) 1771100001129245 a001 9227465/817138163596*73681302247^(11/13) 1771100001129245 a001 9227465/5600748293801*73681302247^(12/13) 1771100001129245 a001 9227465/119218851371*73681302247^(10/13) 1771100001129245 a001 139583862445/20633239*10749957122^(1/24) 1771100001129245 a001 20365011074/20633239*45537549124^(2/17) 1771100001129245 a001 20365011074/20633239*(1/2+1/2*5^(1/2))^6 1771100001129245 a001 187917426909947410/10610209857723 1771100001129245 a001 86267571272/20633239*10749957122^(1/16) 1771100001129245 a001 53316291173/20633239*10749957122^(1/12) 1771100001129245 a001 9227465/119218851371*28143753123^(4/5) 1771100001129245 a001 9227465/1322157322203*28143753123^(9/10) 1771100001129245 a001 20365011074/20633239*10749957122^(1/8) 1771100001129245 a001 139583862445/20633239*4106118243^(1/23) 1771100001129245 a001 9227465/17393796001*45537549124^(12/17) 1771100001129245 a001 7778742049/20633239*(1/2+1/2*5^(1/2))^8 1771100001129245 a001 71778070001175785/4052739537881 1771100001129245 a001 9227465/17393796001*192900153618^(2/3) 1771100001129245 a001 7778742049/20633239*73681302247^(2/13) 1771100001129245 a001 9227465/17393796001*73681302247^(9/13) 1771100001129245 a001 7778742049/20633239*10749957122^(1/6) 1771100001129245 a001 53316291173/20633239*4106118243^(2/23) 1771100001129245 a001 9227465/73681302247*10749957122^(13/16) 1771100001129245 a001 9227465/119218851371*10749957122^(5/6) 1771100001129245 a001 9227465/45537549124*10749957122^(19/24) 1771100001129245 a001 9227465/312119004989*10749957122^(7/8) 1771100001129245 a001 9227465/817138163596*10749957122^(11/12) 1771100001129245 a001 9227465/1322157322203*10749957122^(15/16) 1771100001129245 a001 20365011074/20633239*4106118243^(3/23) 1771100001129245 a001 9227465/2139295485799*10749957122^(23/24) 1771100001129245 a001 9227465/17393796001*10749957122^(3/4) 1771100001129245 a001 7778742049/20633239*4106118243^(4/23) 1771100001129245 a001 139583862445/20633239*1568397607^(1/22) 1771100001129245 a001 9227465/6643838879*45537549124^(2/3) 1771100001129245 a001 2971215073/20633239*312119004989^(2/11) 1771100001129245 a001 2971215073/20633239*(1/2+1/2*5^(1/2))^10 1771100001129245 a001 2971215073/20633239*28143753123^(1/5) 1771100001129245 a001 2971215073/20633239*10749957122^(5/24) 1771100001129245 a001 9227465/6643838879*10749957122^(17/24) 1771100001129245 a001 2971215073/20633239*4106118243^(5/23) 1771100001129245 a001 53316291173/20633239*1568397607^(1/11) 1771100001129245 a001 1836311903/20633239*1568397607^(1/4) 1771100001129245 a001 9227465/45537549124*4106118243^(19/23) 1771100001129245 a001 9227465/17393796001*4106118243^(18/23) 1771100001129245 a001 9227465/119218851371*4106118243^(20/23) 1771100001129245 a001 9227465/312119004989*4106118243^(21/23) 1771100001129245 a001 20365011074/20633239*1568397607^(3/22) 1771100001129245 a001 9227465/817138163596*4106118243^(22/23) 1771100001129245 a001 9227465/6643838879*4106118243^(17/23) 1771100001129245 a001 7778742049/20633239*1568397607^(2/11) 1771100001129245 a001 1134903170/20633239*2537720636^(4/15) 1771100001129245 a001 2971215073/20633239*1568397607^(5/22) 1771100001129245 a001 139583862445/20633239*599074578^(1/21) 1771100001129245 a001 1134903170/20633239*45537549124^(4/17) 1771100001129245 a001 1134903170/20633239*14662949395604^(4/21) 1771100001129245 a001 1134903170/20633239*(1/2+1/2*5^(1/2))^12 1771100001129245 a001 10472279279564050/591286729879 1771100001129245 a001 1134903170/20633239*73681302247^(3/13) 1771100001129245 a001 9227465/2537720636*73681302247^(8/13) 1771100001129245 a001 1134903170/20633239*10749957122^(1/4) 1771100001129245 a001 9227465/2537720636*10749957122^(2/3) 1771100001129245 a001 1134903170/20633239*4106118243^(6/23) 1771100001129245 a001 9227465/2537720636*4106118243^(16/23) 1771100001129245 a001 86267571272/20633239*599074578^(1/14) 1771100001129245 a001 9227465/4106118243*1568397607^(3/4) 1771100001129245 a001 53316291173/20633239*599074578^(2/21) 1771100001129245 a001 1134903170/20633239*1568397607^(3/11) 1771100001129245 a001 9227465/17393796001*1568397607^(9/11) 1771100001129245 a001 9227465/6643838879*1568397607^(17/22) 1771100001129245 a001 9227465/45537549124*1568397607^(19/22) 1771100001129245 a001 9227465/119218851371*1568397607^(10/11) 1771100001129245 a001 9227465/312119004989*1568397607^(21/22) 1771100001129245 a001 20365011074/20633239*599074578^(1/7) 1771100001129245 a001 9227465/2537720636*1568397607^(8/11) 1771100001129245 a001 1144206275/1875749*599074578^(1/6) 1771100001129245 a001 7778742049/20633239*599074578^(4/21) 1771100001129245 a001 4807526976/20633239*599074578^(3/14) 1771100001129245 a001 2971215073/20633239*599074578^(5/21) 1771100001129245 a001 1134903170/20633239*599074578^(2/7) 1771100001129245 a001 139583862445/20633239*228826127^(1/20) 1771100001129245 a001 9227465/969323029*2537720636^(2/3) 1771100001129245 a001 433494437/20633239*17393796001^(2/7) 1771100001129245 a001 9227465/969323029*45537549124^(10/17) 1771100001129245 a001 9227465/969323029*312119004989^(6/11) 1771100001129245 a001 433494437/20633239*14662949395604^(2/9) 1771100001129245 a001 433494437/20633239*(1/2+1/2*5^(1/2))^14 1771100001129245 a001 307696518854785/17373187209 1771100001129245 a001 9227465/969323029*192900153618^(5/9) 1771100001129245 a001 9227465/969323029*28143753123^(3/5) 1771100001129245 a001 433494437/20633239*10749957122^(7/24) 1771100001129245 a001 9227465/969323029*10749957122^(5/8) 1771100001129245 a001 433494437/20633239*4106118243^(7/23) 1771100001129245 a001 9227465/969323029*4106118243^(15/23) 1771100001129245 a001 433494437/20633239*1568397607^(7/22) 1771100001129245 a001 9227465/969323029*1568397607^(15/22) 1771100001129245 a001 53316291173/20633239*228826127^(1/10) 1771100001129245 a001 433494437/20633239*599074578^(1/3) 1771100001129245 a001 9227465/4106118243*599074578^(11/14) 1771100001129245 a001 9227465/2537720636*599074578^(16/21) 1771100001129245 a001 9227465/6643838879*599074578^(17/21) 1771100001129245 a001 9227465/10749957122*599074578^(5/6) 1771100001129245 a001 32951280099/20633239*228826127^(1/8) 1771100001129245 a001 9227465/17393796001*599074578^(6/7) 1771100001129245 a001 9227465/45537549124*599074578^(19/21) 1771100001129245 a001 9227465/73681302247*599074578^(13/14) 1771100001129245 a001 9227465/119218851371*599074578^(20/21) 1771100001129245 a001 20365011074/20633239*228826127^(3/20) 1771100001129245 a001 9227465/969323029*599074578^(5/7) 1771100001129245 a001 7778742049/20633239*228826127^(1/5) 1771100001129245 a001 9238424/711491*228826127^(3/8) 1771100001129245 a001 2971215073/20633239*228826127^(1/4) 1771100001129245 a001 1134903170/20633239*228826127^(3/10) 1771100001129245 a001 139583862445/20633239*87403803^(1/19) 1771100001129245 a001 9227465/370248451*17393796001^(4/7) 1771100001129245 a001 165580141/20633239*(1/2+1/2*5^(1/2))^16 1771100001129245 a001 165580141/20633239*23725150497407^(1/4) 1771100001129245 a001 1527884955772565/86267571272 1771100001129245 a001 165580141/20633239*73681302247^(4/13) 1771100001129245 a001 9227465/370248451*73681302247^(7/13) 1771100001129245 a001 165580141/20633239*10749957122^(1/3) 1771100001129245 a001 9227465/370248451*10749957122^(7/12) 1771100001129245 a001 165580141/20633239*4106118243^(8/23) 1771100001129245 a001 9227465/370248451*4106118243^(14/23) 1771100001129245 a001 165580141/20633239*1568397607^(4/11) 1771100001129245 a001 9227465/370248451*1568397607^(7/11) 1771100001129245 a001 433494437/20633239*228826127^(7/20) 1771100001129245 a001 165580141/20633239*599074578^(8/21) 1771100001129245 a001 9227465/370248451*599074578^(2/3) 1771100001129245 a001 53316291173/20633239*87403803^(2/19) 1771100001129245 a001 165580141/20633239*228826127^(2/5) 1771100001129245 a001 9227465/969323029*228826127^(3/4) 1771100001129245 a001 9227465/2537720636*228826127^(4/5) 1771100001129245 a001 9227465/6643838879*228826127^(17/20) 1771100001129245 a001 9227465/141422324*141422324^(2/3) 1771100001129245 a001 9227465/10749957122*228826127^(7/8) 1771100001129245 a001 9227465/17393796001*228826127^(9/10) 1771100001129245 a001 9227465/45537549124*228826127^(19/20) 1771100001129245 a001 9227465/370248451*228826127^(7/10) 1771100001129245 a001 20365011074/20633239*87403803^(3/19) 1771100001129245 a001 63245986/20633239*141422324^(6/13) 1771100001129245 a001 7778742049/20633239*87403803^(4/19) 1771100001129245 a001 2971215073/20633239*87403803^(5/19) 1771100001129245 a001 1134903170/20633239*87403803^(6/19) 1771100001129245 a001 433494437/20633239*87403803^(7/19) 1771100001129245 a001 139583862445/20633239*33385282^(1/18) 1771100001129245 a001 63245986/20633239*2537720636^(2/5) 1771100001129245 a001 63245986/20633239*45537549124^(6/17) 1771100001129245 a001 63245986/20633239*14662949395604^(2/7) 1771100001129245 a001 63245986/20633239*(1/2+1/2*5^(1/2))^18 1771100001129245 a001 63245986/20633239*192900153618^(1/3) 1771100001129245 a001 9227465/141422324*73681302247^(1/2) 1771100001129245 a001 2504721554530/141421803 1771100001129245 a001 63245986/20633239*10749957122^(3/8) 1771100001129245 a001 9227465/141422324*10749957122^(13/24) 1771100001129245 a001 63245986/20633239*4106118243^(9/23) 1771100001129245 a001 9227465/141422324*4106118243^(13/23) 1771100001129245 a001 63245986/20633239*1568397607^(9/22) 1771100001129245 a001 9227465/141422324*1568397607^(13/22) 1771100001129245 a001 63245986/20633239*599074578^(3/7) 1771100001129245 a001 9227465/141422324*599074578^(13/21) 1771100001129245 a001 1836311903/87403803*12752043^(7/17) 1771100001129245 a001 63245986/20633239*228826127^(9/20) 1771100001129245 a001 165580141/20633239*87403803^(8/19) 1771100001129245 a001 9227465/141422324*228826127^(13/20) 1771100001129246 a001 86267571272/20633239*33385282^(1/12) 1771100001129246 a001 53316291173/20633239*33385282^(1/9) 1771100001129246 a001 9227465/370248451*87403803^(14/19) 1771100001129246 a001 9227465/969323029*87403803^(15/19) 1771100001129246 a001 9227465/2537720636*87403803^(16/19) 1771100001129246 a001 63245986/20633239*87403803^(9/19) 1771100001129246 a001 9227465/6643838879*87403803^(17/19) 1771100001129246 a001 9227465/17393796001*87403803^(18/19) 1771100001129246 a001 9227465/141422324*87403803^(13/19) 1771100001129246 a001 20365011074/20633239*33385282^(1/6) 1771100001129246 a001 591286729879/87403803*4870847^(1/16) 1771100001129246 a001 102287808/4868641*12752043^(7/17) 1771100001129246 a001 2971215073/54018521*12752043^(6/17) 1771100001129246 a001 12586269025/599074578*12752043^(7/17) 1771100001129246 a001 32951280099/1568397607*12752043^(7/17) 1771100001129246 a001 86267571272/4106118243*12752043^(7/17) 1771100001129246 a001 225851433717/10749957122*12752043^(7/17) 1771100001129246 a001 591286729879/28143753123*12752043^(7/17) 1771100001129246 a001 1548008755920/73681302247*12752043^(7/17) 1771100001129246 a001 4052739537881/192900153618*12752043^(7/17) 1771100001129246 a001 225749145909/10745088481*12752043^(7/17) 1771100001129246 a001 6557470319842/312119004989*12752043^(7/17) 1771100001129246 a001 2504730781961/119218851371*12752043^(7/17) 1771100001129246 a001 956722026041/45537549124*12752043^(7/17) 1771100001129246 a001 365435296162/17393796001*12752043^(7/17) 1771100001129246 a001 139583862445/6643838879*12752043^(7/17) 1771100001129246 a001 53316291173/2537720636*12752043^(7/17) 1771100001129246 a001 20365011074/969323029*12752043^(7/17) 1771100001129246 a001 7778742049/370248451*12752043^(7/17) 1771100001129246 a001 7778742049/20633239*33385282^(2/9) 1771100001129246 a001 4807526976/20633239*33385282^(1/4) 1771100001129246 a001 2971215073/141422324*12752043^(7/17) 1771100001129246 a001 39088169/33385282*12752043^(10/17) 1771100001129246 a001 2971215073/20633239*33385282^(5/18) 1771100001129246 a001 1548008755920/228826127*4870847^(1/16) 1771100001129246 a001 4052739537881/599074578*4870847^(1/16) 1771100001129246 a001 1515744265389/224056801*4870847^(1/16) 1771100001129246 a001 6557470319842/969323029*4870847^(1/16) 1771100001129246 a001 2504730781961/370248451*4870847^(1/16) 1771100001129246 a001 1134903170/20633239*33385282^(1/3) 1771100001129246 a001 9227465/54018521*141422324^(8/13) 1771100001129246 a001 956722026041/141422324*4870847^(1/16) 1771100001129246 a001 9227465/54018521*2537720636^(8/15) 1771100001129246 a001 24157817/20633239*2537720636^(4/9) 1771100001129246 a001 9227465/54018521*45537549124^(8/17) 1771100001129246 a001 24157817/20633239*(1/2+1/2*5^(1/2))^20 1771100001129246 a001 24157817/20633239*23725150497407^(5/16) 1771100001129246 a001 24157817/20633239*505019158607^(5/14) 1771100001129246 a001 9227465/54018521*192900153618^(4/9) 1771100001129246 a001 24157817/20633239*73681302247^(5/13) 1771100001129246 a001 9227465/54018521*73681302247^(6/13) 1771100001129246 a001 24157817/20633239*28143753123^(2/5) 1771100001129246 a001 44583082168781/2517253805 1771100001129246 a001 24157817/20633239*10749957122^(5/12) 1771100001129246 a001 9227465/54018521*10749957122^(1/2) 1771100001129246 a001 24157817/20633239*4106118243^(10/23) 1771100001129246 a001 9227465/54018521*4106118243^(12/23) 1771100001129246 a001 24157817/20633239*1568397607^(5/11) 1771100001129246 a001 9227465/54018521*1568397607^(6/11) 1771100001129246 a001 24157817/20633239*599074578^(10/21) 1771100001129246 a001 9227465/54018521*599074578^(4/7) 1771100001129246 a001 433494437/20633239*33385282^(7/18) 1771100001129246 a001 24157817/20633239*228826127^(1/2) 1771100001129246 a001 9227465/54018521*228826127^(3/5) 1771100001129246 a001 139583862445/20633239*12752043^(1/17) 1771100001129246 a001 9238424/711491*33385282^(5/12) 1771100001129246 a001 165580141/20633239*33385282^(4/9) 1771100001129246 a001 24157817/20633239*87403803^(10/19) 1771100001129246 a001 233802911/29134601*12752043^(8/17) 1771100001129246 a001 9227465/54018521*87403803^(12/19) 1771100001129246 a001 3524578/87403803*7881196^(9/11) 1771100001129246 a001 63245986/20633239*33385282^(1/2) 1771100001129246 a001 1836311903/228826127*12752043^(8/17) 1771100001129246 a001 1134903170/54018521*12752043^(7/17) 1771100001129246 a001 267084832/33281921*12752043^(8/17) 1771100001129246 a001 12586269025/1568397607*12752043^(8/17) 1771100001129246 a001 10983760033/1368706081*12752043^(8/17) 1771100001129246 a001 43133785636/5374978561*12752043^(8/17) 1771100001129246 a001 75283811239/9381251041*12752043^(8/17) 1771100001129246 a001 591286729879/73681302247*12752043^(8/17) 1771100001129246 a001 86000486440/10716675201*12752043^(8/17) 1771100001129246 a001 4052739537881/505019158607*12752043^(8/17) 1771100001129246 a001 3278735159921/408569081798*12752043^(8/17) 1771100001129246 a001 2504730781961/312119004989*12752043^(8/17) 1771100001129246 a001 956722026041/119218851371*12752043^(8/17) 1771100001129246 a001 182717648081/22768774562*12752043^(8/17) 1771100001129246 a001 139583862445/17393796001*12752043^(8/17) 1771100001129246 a001 53316291173/6643838879*12752043^(8/17) 1771100001129246 a001 10182505537/1268860318*12752043^(8/17) 1771100001129246 a001 7778742049/969323029*12752043^(8/17) 1771100001129246 a001 2971215073/370248451*12752043^(8/17) 1771100001129246 a001 567451585/70711162*12752043^(8/17) 1771100001129246 a001 433494437/87403803*12752043^(1/2) 1771100001129246 a001 365435296162/54018521*4870847^(1/16) 1771100001129247 a001 9227465/228826127*33385282^(3/4) 1771100001129247 a001 9227465/141422324*33385282^(13/18) 1771100001129247 a001 9227465/370248451*33385282^(7/9) 1771100001129247 a001 1134903170/228826127*12752043^(1/2) 1771100001129247 a001 2971215073/599074578*12752043^(1/2) 1771100001129247 a001 53316291173/20633239*12752043^(2/17) 1771100001129247 a001 7778742049/1568397607*12752043^(1/2) 1771100001129247 a001 20365011074/4106118243*12752043^(1/2) 1771100001129247 a001 53316291173/10749957122*12752043^(1/2) 1771100001129247 a001 139583862445/28143753123*12752043^(1/2) 1771100001129247 a001 365435296162/73681302247*12752043^(1/2) 1771100001129247 a001 956722026041/192900153618*12752043^(1/2) 1771100001129247 a001 10610209857723/2139295485799*12752043^(1/2) 1771100001129247 a001 4052739537881/817138163596*12752043^(1/2) 1771100001129247 a001 140728068720/28374454999*12752043^(1/2) 1771100001129247 a001 591286729879/119218851371*12752043^(1/2) 1771100001129247 a001 225851433717/45537549124*12752043^(1/2) 1771100001129247 a001 86267571272/17393796001*12752043^(1/2) 1771100001129247 a001 32951280099/6643838879*12752043^(1/2) 1771100001129247 a001 1144206275/230701876*12752043^(1/2) 1771100001129247 a001 4807526976/969323029*12752043^(1/2) 1771100001129247 a001 1836311903/370248451*12752043^(1/2) 1771100001129247 a001 9227465/969323029*33385282^(5/6) 1771100001129247 a001 267914296/87403803*12752043^(9/17) 1771100001129247 a001 701408733/141422324*12752043^(1/2) 1771100001129247 a001 9227465/2537720636*33385282^(8/9) 1771100001129247 a001 9227465/4106118243*33385282^(11/12) 1771100001129247 a001 24157817/20633239*33385282^(5/9) 1771100001129247 a001 9227465/6643838879*33385282^(17/18) 1771100001129247 a001 701408733/228826127*12752043^(9/17) 1771100001129247 a001 433494437/54018521*12752043^(8/17) 1771100001129247 a001 1836311903/599074578*12752043^(9/17) 1771100001129247 a001 686789568/224056801*12752043^(9/17) 1771100001129247 a001 12586269025/4106118243*12752043^(9/17) 1771100001129247 a001 32951280099/10749957122*12752043^(9/17) 1771100001129247 a001 86267571272/28143753123*12752043^(9/17) 1771100001129247 a001 32264490531/10525900321*12752043^(9/17) 1771100001129247 a001 591286729879/192900153618*12752043^(9/17) 1771100001129247 a001 1548008755920/505019158607*12752043^(9/17) 1771100001129247 a001 1515744265389/494493258286*12752043^(9/17) 1771100001129247 a001 956722026041/312119004989*12752043^(9/17) 1771100001129247 a001 365435296162/119218851371*12752043^(9/17) 1771100001129247 a001 139583862445/45537549124*12752043^(9/17) 1771100001129247 a001 53316291173/17393796001*12752043^(9/17) 1771100001129247 a001 20365011074/6643838879*12752043^(9/17) 1771100001129247 a001 7778742049/2537720636*12752043^(9/17) 1771100001129247 a001 2971215073/969323029*12752043^(9/17) 1771100001129247 a001 1134903170/370248451*12752043^(9/17) 1771100001129247 a001 9227465/54018521*33385282^(2/3) 1771100001129247 a001 433494437/141422324*12752043^(9/17) 1771100001129247 a001 4976784/29134601*12752043^(12/17) 1771100001129247 a001 267914296/54018521*12752043^(1/2) 1771100001129247 a001 20365011074/20633239*12752043^(3/17) 1771100001129247 a001 34111385/29134601*12752043^(10/17) 1771100001129248 a001 267914296/228826127*12752043^(10/17) 1771100001129248 a001 165580141/54018521*12752043^(9/17) 1771100001129248 a001 233802911/199691526*12752043^(10/17) 1771100001129248 a001 1836311903/1568397607*12752043^(10/17) 1771100001129248 a001 1602508992/1368706081*12752043^(10/17) 1771100001129248 a001 12586269025/10749957122*12752043^(10/17) 1771100001129248 a001 10983760033/9381251041*12752043^(10/17) 1771100001129248 a001 86267571272/73681302247*12752043^(10/17) 1771100001129248 a001 75283811239/64300051206*12752043^(10/17) 1771100001129248 a001 2504730781961/2139295485799*12752043^(10/17) 1771100001129248 a001 365435296162/312119004989*12752043^(10/17) 1771100001129248 a001 139583862445/119218851371*12752043^(10/17) 1771100001129248 a001 53316291173/45537549124*12752043^(10/17) 1771100001129248 a001 20365011074/17393796001*12752043^(10/17) 1771100001129248 a001 7778742049/6643838879*12752043^(10/17) 1771100001129248 a001 2971215073/2537720636*12752043^(10/17) 1771100001129248 a001 1134903170/969323029*12752043^(10/17) 1771100001129248 a001 433494437/370248451*12752043^(10/17) 1771100001129248 a001 165580141/141422324*12752043^(10/17) 1771100001129248 a001 39088169/87403803*12752043^(11/17) 1771100001129248 a001 14930352/228826127*12752043^(13/17) 1771100001129248 a001 7778742049/20633239*12752043^(4/17) 1771100001129248 a001 102334155/228826127*12752043^(11/17) 1771100001129248 a001 133957148/299537289*12752043^(11/17) 1771100001129248 a001 701408733/1568397607*12752043^(11/17) 1771100001129248 a001 1836311903/4106118243*12752043^(11/17) 1771100001129248 a001 2403763488/5374978561*12752043^(11/17) 1771100001129248 a001 12586269025/28143753123*12752043^(11/17) 1771100001129248 a001 32951280099/73681302247*12752043^(11/17) 1771100001129248 a001 43133785636/96450076809*12752043^(11/17) 1771100001129248 a001 225851433717/505019158607*12752043^(11/17) 1771100001129248 a001 10610209857723/23725150497407*12752043^(11/17) 1771100001129248 a001 139583862445/312119004989*12752043^(11/17) 1771100001129248 a001 53316291173/119218851371*12752043^(11/17) 1771100001129248 a001 10182505537/22768774562*12752043^(11/17) 1771100001129248 a001 7778742049/17393796001*12752043^(11/17) 1771100001129248 a001 2971215073/6643838879*12752043^(11/17) 1771100001129248 a001 567451585/1268860318*12752043^(11/17) 1771100001129248 a001 433494437/969323029*12752043^(11/17) 1771100001129248 a001 165580141/370248451*12752043^(11/17) 1771100001129248 a001 63245986/54018521*12752043^(10/17) 1771100001129248 a001 31622993/70711162*12752043^(11/17) 1771100001129249 a001 2971215073/20633239*12752043^(5/17) 1771100001129249 a001 829464/33281921*12752043^(14/17) 1771100001129249 a001 39088169/228826127*12752043^(12/17) 1771100001129249 a001 34111385/199691526*12752043^(12/17) 1771100001129249 a001 267914296/1568397607*12752043^(12/17) 1771100001129249 a001 233802911/1368706081*12752043^(12/17) 1771100001129249 a001 1836311903/10749957122*12752043^(12/17) 1771100001129249 a001 1602508992/9381251041*12752043^(12/17) 1771100001129249 a001 12586269025/73681302247*12752043^(12/17) 1771100001129249 a001 10983760033/64300051206*12752043^(12/17) 1771100001129249 a001 86267571272/505019158607*12752043^(12/17) 1771100001129249 a001 75283811239/440719107401*12752043^(12/17) 1771100001129249 a001 2504730781961/14662949395604*12752043^(12/17) 1771100001129249 a001 139583862445/817138163596*12752043^(12/17) 1771100001129249 a001 53316291173/312119004989*12752043^(12/17) 1771100001129249 a001 20365011074/119218851371*12752043^(12/17) 1771100001129249 a001 7778742049/45537549124*12752043^(12/17) 1771100001129249 a001 2971215073/17393796001*12752043^(12/17) 1771100001129249 a001 1134903170/6643838879*12752043^(12/17) 1771100001129249 a001 433494437/2537720636*12752043^(12/17) 1771100001129249 a001 165580141/969323029*12752043^(12/17) 1771100001129249 a001 43133785636/16692641*4870847^(1/8) 1771100001129249 a001 1602508992/4250681*4870847^(1/4) 1771100001129249 a001 63245986/370248451*12752043^(12/17) 1771100001129249 a001 1134903170/20633239*12752043^(6/17) 1771100001129249 a001 14930352/1568397607*12752043^(15/17) 1771100001129249 a001 39088169/599074578*12752043^(13/17) 1771100001129249 a001 24157817/54018521*12752043^(11/17) 1771100001129250 a001 14619165/224056801*12752043^(13/17) 1771100001129250 a001 9227465/20633239*312119004989^(2/5) 1771100001129250 a001 9227465/20633239*(1/2+1/2*5^(1/2))^22 1771100001129250 a001 9227465/20633239*10749957122^(11/24) 1771100001129250 a001 85146110326225/4807526976 1771100001129250 a001 9227465/20633239*4106118243^(11/23) 1771100001129250 a001 9227465/20633239*1568397607^(1/2) 1771100001129250 a001 9227465/20633239*599074578^(11/21) 1771100001129250 a001 267914296/4106118243*12752043^(13/17) 1771100001129250 a001 701408733/10749957122*12752043^(13/17) 1771100001129250 a001 1836311903/28143753123*12752043^(13/17) 1771100001129250 a001 686789568/10525900321*12752043^(13/17) 1771100001129250 a001 12586269025/192900153618*12752043^(13/17) 1771100001129250 a001 32951280099/505019158607*12752043^(13/17) 1771100001129250 a001 86267571272/1322157322203*12752043^(13/17) 1771100001129250 a001 32264490531/494493258286*12752043^(13/17) 1771100001129250 a001 1548008755920/23725150497407*12752043^(13/17) 1771100001129250 a001 139583862445/2139295485799*12752043^(13/17) 1771100001129250 a001 53316291173/817138163596*12752043^(13/17) 1771100001129250 a001 20365011074/312119004989*12752043^(13/17) 1771100001129250 a001 7778742049/119218851371*12752043^(13/17) 1771100001129250 a001 2971215073/45537549124*12752043^(13/17) 1771100001129250 a001 1134903170/17393796001*12752043^(13/17) 1771100001129250 a001 433494437/6643838879*12752043^(13/17) 1771100001129250 a001 9227465/20633239*228826127^(11/20) 1771100001129250 a001 165580141/2537720636*12752043^(13/17) 1771100001129250 a001 24157817/141422324*12752043^(12/17) 1771100001129250 a001 63245986/969323029*12752043^(13/17) 1771100001129250 a001 9227465/20633239*87403803^(11/19) 1771100001129250 a001 433494437/20633239*12752043^(7/17) 1771100001129250 a001 4976784/1368706081*12752043^(16/17) 1771100001129250 a001 39088169/1568397607*12752043^(14/17) 1771100001129250 a001 139583862445/20633239*4870847^(1/16) 1771100001129250 a001 34111385/1368706081*12752043^(14/17) 1771100001129250 a001 24157817/370248451*12752043^(13/17) 1771100001129250 a001 133957148/5374978561*12752043^(14/17) 1771100001129250 a001 233802911/9381251041*12752043^(14/17) 1771100001129250 a001 1836311903/73681302247*12752043^(14/17) 1771100001129250 a001 267084832/10716675201*12752043^(14/17) 1771100001129250 a001 12586269025/505019158607*12752043^(14/17) 1771100001129250 a001 10983760033/440719107401*12752043^(14/17) 1771100001129250 a001 43133785636/1730726404001*12752043^(14/17) 1771100001129250 a001 75283811239/3020733700601*12752043^(14/17) 1771100001129250 a001 182717648081/7331474697802*12752043^(14/17) 1771100001129250 a001 139583862445/5600748293801*12752043^(14/17) 1771100001129250 a001 53316291173/2139295485799*12752043^(14/17) 1771100001129250 a001 10182505537/408569081798*12752043^(14/17) 1771100001129250 a001 7778742049/312119004989*12752043^(14/17) 1771100001129250 a001 2971215073/119218851371*12752043^(14/17) 1771100001129250 a001 567451585/22768774562*12752043^(14/17) 1771100001129250 a001 433494437/17393796001*12752043^(14/17) 1771100001129250 a001 165580141/6643838879*12752043^(14/17) 1771100001129250 a001 31622993/1268860318*12752043^(14/17) 1771100001129250 a001 75283811239/29134601*4870847^(1/8) 1771100001129251 a001 9227465/20633239*33385282^(11/18) 1771100001129251 a001 591286729879/228826127*4870847^(1/8) 1771100001129251 a001 165580141/20633239*12752043^(8/17) 1771100001129251 a001 86000486440/33281921*4870847^(1/8) 1771100001129251 a001 4052739537881/1568397607*4870847^(1/8) 1771100001129251 a001 3536736619241/1368706081*4870847^(1/8) 1771100001129251 a001 3278735159921/1268860318*4870847^(1/8) 1771100001129251 a001 2504730781961/969323029*4870847^(1/8) 1771100001129251 a001 956722026041/370248451*4870847^(1/8) 1771100001129251 a001 39088169/4106118243*12752043^(15/17) 1771100001129251 a001 182717648081/70711162*4870847^(1/8) 1771100001129251 a001 9303105/1875749*12752043^(1/2) 1771100001129251 a001 102334155/10749957122*12752043^(15/17) 1771100001129251 a001 24157817/969323029*12752043^(14/17) 1771100001129251 a001 267914296/28143753123*12752043^(15/17) 1771100001129251 a001 701408733/73681302247*12752043^(15/17) 1771100001129251 a001 1836311903/192900153618*12752043^(15/17) 1771100001129251 a001 102287808/10745088481*12752043^(15/17) 1771100001129251 a001 12586269025/1322157322203*12752043^(15/17) 1771100001129251 a001 32951280099/3461452808002*12752043^(15/17) 1771100001129251 a001 86267571272/9062201101803*12752043^(15/17) 1771100001129251 a001 225851433717/23725150497407*12752043^(15/17) 1771100001129251 a001 139583862445/14662949395604*12752043^(15/17) 1771100001129251 a001 53316291173/5600748293801*12752043^(15/17) 1771100001129251 a001 20365011074/2139295485799*12752043^(15/17) 1771100001129251 a001 7778742049/817138163596*12752043^(15/17) 1771100001129251 a001 2971215073/312119004989*12752043^(15/17) 1771100001129251 a001 1134903170/119218851371*12752043^(15/17) 1771100001129251 a001 433494437/45537549124*12752043^(15/17) 1771100001129251 a001 165580141/17393796001*12752043^(15/17) 1771100001129251 a001 63245986/6643838879*12752043^(15/17) 1771100001129251 a001 139583862445/54018521*4870847^(1/8) 1771100001129251 a001 63245986/20633239*12752043^(9/17) 1771100001129251 a001 39088169/10749957122*12752043^(16/17) 1771100001129251 a001 831985/228811001*12752043^(16/17) 1771100001129251 a001 24157817/2537720636*12752043^(15/17) 1771100001129251 a001 267914296/73681302247*12752043^(16/17) 1771100001129251 a001 233802911/64300051206*12752043^(16/17) 1771100001129251 a001 1836311903/505019158607*12752043^(16/17) 1771100001129251 a001 1602508992/440719107401*12752043^(16/17) 1771100001129251 a001 12586269025/3461452808002*12752043^(16/17) 1771100001129251 a001 10983760033/3020733700601*12752043^(16/17) 1771100001129251 a001 86267571272/23725150497407*12752043^(16/17) 1771100001129251 a001 53316291173/14662949395604*12752043^(16/17) 1771100001129251 a001 20365011074/5600748293801*12752043^(16/17) 1771100001129251 a001 7778742049/2139295485799*12752043^(16/17) 1771100001129251 a001 2971215073/817138163596*12752043^(16/17) 1771100001129251 a001 1134903170/312119004989*12752043^(16/17) 1771100001129251 a001 433494437/119218851371*12752043^(16/17) 1771100001129251 a001 165580141/45537549124*12752043^(16/17) 1771100001129252 a001 63245986/17393796001*12752043^(16/17) 1771100001129252 a001 7778742049/4870847*1860498^(1/6) 1771100001129252 a001 24157817/6643838879*12752043^(16/17) 1771100001129252 a001 2/5702887*(1/2+1/2*5^(1/2))^56 1771100001129252 a001 24157817/20633239*12752043^(10/17) 1771100001129253 a001 3524578/20633239*7881196^(8/11) 1771100001129254 a001 32951280099/33385282*4870847^(3/16) 1771100001129254 a001 1836311903/12752043*4870847^(5/16) 1771100001129254 a001 9227465/54018521*12752043^(12/17) 1771100001129254 a001 9227465/141422324*12752043^(13/17) 1771100001129254 a001 9227465/370248451*12752043^(14/17) 1771100001129255 a001 53316291173/20633239*4870847^(1/8) 1771100001129255 a001 24157817/7881196*7881196^(6/11) 1771100001129255 a001 86267571272/87403803*4870847^(3/16) 1771100001129255 a001 9227465/969323029*12752043^(15/17) 1771100001129255 a001 225851433717/228826127*4870847^(3/16) 1771100001129255 a001 591286729879/599074578*4870847^(3/16) 1771100001129255 a001 1548008755920/1568397607*4870847^(3/16) 1771100001129255 a001 4052739537881/4106118243*4870847^(3/16) 1771100001129255 a001 4807525989/4870846*4870847^(3/16) 1771100001129255 a001 6557470319842/6643838879*4870847^(3/16) 1771100001129255 a001 2504730781961/2537720636*4870847^(3/16) 1771100001129255 a001 956722026041/969323029*4870847^(3/16) 1771100001129255 a001 365435296162/370248451*4870847^(3/16) 1771100001129255 a001 139583862445/141422324*4870847^(3/16) 1771100001129256 a001 9227465/2537720636*12752043^(16/17) 1771100001129256 a001 53316291173/54018521*4870847^(3/16) 1771100001129256 a001 5702887/7881196*20633239^(3/5) 1771100001129257 a001 9227465/20633239*12752043^(11/17) 1771100001129257 a001 102334155/7881196*7881196^(5/11) 1771100001129258 a001 12586269025/33385282*4870847^(1/4) 1771100001129258 a001 233802911/4250681*4870847^(3/8) 1771100001129259 a001 5702887/7881196*141422324^(7/13) 1771100001129259 a001 10050135028343/567451585 1771100001129259 a001 5702887/7881196*2537720636^(7/15) 1771100001129259 a001 5702887/7881196*17393796001^(3/7) 1771100001129259 a001 5702887/7881196*45537549124^(7/17) 1771100001129259 a001 5702887/7881196*14662949395604^(1/3) 1771100001129259 a001 3524578/12752043*(1/2+1/2*5^(1/2))^23 1771100001129259 a001 5702887/7881196*(1/2+1/2*5^(1/2))^21 1771100001129259 a001 5702887/7881196*192900153618^(7/18) 1771100001129259 a001 5702887/7881196*10749957122^(7/16) 1771100001129259 a001 3524578/12752043*4106118243^(1/2) 1771100001129259 a001 5702887/7881196*599074578^(1/2) 1771100001129259 a001 433494437/7881196*7881196^(4/11) 1771100001129259 a001 20365011074/20633239*4870847^(3/16) 1771100001129260 a001 10983760033/29134601*4870847^(1/4) 1771100001129260 a001 5702887/7881196*33385282^(7/12) 1771100001129260 a001 86267571272/228826127*4870847^(1/4) 1771100001129260 a001 267913919/710646*4870847^(1/4) 1771100001129260 a001 591286729879/1568397607*4870847^(1/4) 1771100001129260 a001 516002918640/1368706081*4870847^(1/4) 1771100001129260 a001 4052739537881/10749957122*4870847^(1/4) 1771100001129260 a001 3536736619241/9381251041*4870847^(1/4) 1771100001129260 a001 6557470319842/17393796001*4870847^(1/4) 1771100001129260 a001 2504730781961/6643838879*4870847^(1/4) 1771100001129260 a001 956722026041/2537720636*4870847^(1/4) 1771100001129260 a001 365435296162/969323029*4870847^(1/4) 1771100001129260 a001 139583862445/370248451*4870847^(1/4) 1771100001129260 a001 53316291173/141422324*4870847^(1/4) 1771100001129260 a001 3524667/39604*7881196^(1/3) 1771100001129260 a001 20365011074/54018521*4870847^(1/4) 1771100001129262 a001 1836311903/7881196*7881196^(3/11) 1771100001129263 a001 14930208/103681*4870847^(5/16) 1771100001129263 a001 267914296/12752043*4870847^(7/16) 1771100001129264 a001 7778742049/20633239*4870847^(1/4) 1771100001129264 a001 12586269025/87403803*4870847^(5/16) 1771100001129264 a001 86267571272/12752043*1860498^(1/15) 1771100001129265 a001 32951280099/228826127*4870847^(5/16) 1771100001129265 a001 43133785636/299537289*4870847^(5/16) 1771100001129265 a001 32264490531/224056801*4870847^(5/16) 1771100001129265 a001 591286729879/4106118243*4870847^(5/16) 1771100001129265 a001 774004377960/5374978561*4870847^(5/16) 1771100001129265 a001 4052739537881/28143753123*4870847^(5/16) 1771100001129265 a001 1515744265389/10525900321*4870847^(5/16) 1771100001129265 a001 3278735159921/22768774562*4870847^(5/16) 1771100001129265 a001 2504730781961/17393796001*4870847^(5/16) 1771100001129265 a001 956722026041/6643838879*4870847^(5/16) 1771100001129265 a001 182717648081/1268860318*4870847^(5/16) 1771100001129265 a001 7778742049/7881196*7881196^(2/11) 1771100001129265 a001 139583862445/969323029*4870847^(5/16) 1771100001129265 a001 53316291173/370248451*4870847^(5/16) 1771100001129265 a001 10182505537/70711162*4870847^(5/16) 1771100001129265 a001 7778742049/54018521*4870847^(5/16) 1771100001129265 a001 1762289/16692641*20633239^(5/7) 1771100001129266 a001 3524578/370248451*20633239^(6/7) 1771100001129266 a001 1762289/70711162*20633239^(4/5) 1771100001129267 a001 32951280099/7881196*7881196^(1/11) 1771100001129268 a001 34111385/4250681*4870847^(1/2) 1771100001129268 a001 1836311903/33385282*4870847^(3/8) 1771100001129268 a001 102334155/7881196*20633239^(3/7) 1771100001129268 a001 165580141/7881196*20633239^(2/5) 1771100001129268 a001 1762289/16692641*2537720636^(5/9) 1771100001129268 a001 52623190191456/2971215073 1771100001129268 a001 1762289/16692641*312119004989^(5/11) 1771100001129268 a001 3732588/1970299*817138163596^(1/3) 1771100001129268 a001 1762289/16692641*(1/2+1/2*5^(1/2))^25 1771100001129268 a001 3732588/1970299*(1/2+1/2*5^(1/2))^19 1771100001129268 a001 1762289/16692641*3461452808002^(5/12) 1771100001129268 a001 1762289/16692641*28143753123^(1/2) 1771100001129268 a001 1762289/16692641*228826127^(5/8) 1771100001129268 a001 3732588/1970299*87403803^(1/2) 1771100001129269 a001 567451585/3940598*20633239^(2/7) 1771100001129269 a001 2971215073/20633239*4870847^(5/16) 1771100001129269 a001 1201881744/1970299*20633239^(1/5) 1771100001129269 a001 1602508992/29134601*4870847^(3/8) 1771100001129269 a001 12586269025/7881196*20633239^(1/7) 1771100001129269 a001 12586269025/228826127*4870847^(3/8) 1771100001129269 a001 10983760033/199691526*4870847^(3/8) 1771100001129269 a001 86267571272/1568397607*4870847^(3/8) 1771100001129269 a001 75283811239/1368706081*4870847^(3/8) 1771100001129269 a001 591286729879/10749957122*4870847^(3/8) 1771100001129269 a001 12585437040/228811001*4870847^(3/8) 1771100001129269 a001 4052739537881/73681302247*4870847^(3/8) 1771100001129269 a001 3536736619241/64300051206*4870847^(3/8) 1771100001129269 a001 6557470319842/119218851371*4870847^(3/8) 1771100001129269 a001 2504730781961/45537549124*4870847^(3/8) 1771100001129269 a001 956722026041/17393796001*4870847^(3/8) 1771100001129269 a001 365435296162/6643838879*4870847^(3/8) 1771100001129269 a001 139583862445/2537720636*4870847^(3/8) 1771100001129269 a001 53316291173/969323029*4870847^(3/8) 1771100001129269 a001 20365011074/370248451*4870847^(3/8) 1771100001129269 a001 7778742049/141422324*4870847^(3/8) 1771100001129269 a001 3524578/87403803*141422324^(9/13) 1771100001129269 a001 3524578/87403803*2537720636^(3/5) 1771100001129269 a001 137769300517682/7778742049 1771100001129269 a001 3524578/87403803*45537549124^(9/17) 1771100001129269 a001 39088169/7881196*45537549124^(1/3) 1771100001129269 a001 3524578/87403803*14662949395604^(3/7) 1771100001129269 a001 39088169/7881196*(1/2+1/2*5^(1/2))^17 1771100001129269 a001 3524578/87403803*192900153618^(1/2) 1771100001129269 a001 3524578/87403803*10749957122^(9/16) 1771100001129269 a001 3524578/87403803*599074578^(9/14) 1771100001129270 a001 3524578/6643838879*141422324^(12/13) 1771100001129270 a001 3524578/1568397607*141422324^(11/13) 1771100001129270 a001 102334155/7881196*141422324^(5/13) 1771100001129270 a001 3524578/370248451*141422324^(10/13) 1771100001129270 a001 66978574/1970299*141422324^(1/3) 1771100001129270 a001 102334155/7881196*2537720636^(1/3) 1771100001129270 a001 180342355680795/10182505537 1771100001129270 a001 102334155/7881196*45537549124^(5/17) 1771100001129270 a001 102334155/7881196*312119004989^(3/11) 1771100001129270 a001 102334155/7881196*14662949395604^(5/21) 1771100001129270 a001 102334155/7881196*(1/2+1/2*5^(1/2))^15 1771100001129270 a001 102334155/7881196*192900153618^(5/18) 1771100001129270 a001 102334155/7881196*28143753123^(3/10) 1771100001129270 a001 102334155/7881196*10749957122^(5/16) 1771100001129270 a001 102334155/7881196*599074578^(5/14) 1771100001129270 a001 433494437/7881196*141422324^(4/13) 1771100001129270 a001 102334155/7881196*228826127^(3/8) 1771100001129270 a001 1836311903/7881196*141422324^(3/13) 1771100001129270 a001 7778742049/7881196*141422324^(2/13) 1771100001129270 a001 32951280099/7881196*141422324^(1/13) 1771100001129270 a001 944284833567088/53316291173 1771100001129270 a001 66978574/1970299*(1/2+1/2*5^(1/2))^13 1771100001129270 a001 1762289/299537289*9062201101803^(1/2) 1771100001129270 a001 66978574/1970299*73681302247^(1/4) 1771100001129270 a001 3524578/1568397607*2537720636^(11/15) 1771100001129270 a001 3524578/1568397607*45537549124^(11/17) 1771100001129270 a001 27777188644266/1568358005 1771100001129270 a001 3524578/1568397607*312119004989^(3/5) 1771100001129270 a001 3524578/1568397607*14662949395604^(11/21) 1771100001129270 a001 3524667/39604*(1/2+1/2*5^(1/2))^11 1771100001129270 a001 3524578/1568397607*192900153618^(11/18) 1771100001129270 a001 3524578/1568397607*10749957122^(11/16) 1771100001129270 a001 3524667/39604*1568397607^(1/4) 1771100001129270 a001 3524578/4106118243*2537720636^(7/9) 1771100001129270 a001 3524578/119218851371*2537720636^(14/15) 1771100001129270 a001 1762289/22768774562*2537720636^(8/9) 1771100001129270 a001 3524578/28143753123*2537720636^(13/15) 1771100001129270 a001 3524578/1568397607*1568397607^(3/4) 1771100001129270 a001 3524578/6643838879*2537720636^(4/5) 1771100001129270 a001 1836311903/7881196*2537720636^(1/5) 1771100001129270 a001 3524578/4106118243*17393796001^(5/7) 1771100001129270 a001 1836311903/7881196*45537549124^(3/17) 1771100001129270 a001 1836311903/7881196*817138163596^(3/19) 1771100001129270 a001 1836311903/7881196*14662949395604^(1/7) 1771100001129270 a001 1836311903/7881196*(1/2+1/2*5^(1/2))^9 1771100001129270 a001 3524578/4106118243*28143753123^(7/10) 1771100001129270 a001 1836311903/7881196*10749957122^(3/16) 1771100001129270 a001 12586269025/7881196*2537720636^(1/9) 1771100001129270 a001 7778742049/7881196*2537720636^(2/15) 1771100001129270 a001 32951280099/7881196*2537720636^(1/15) 1771100001129270 a001 1201881744/1970299*17393796001^(1/7) 1771100001129270 a001 1201881744/1970299*14662949395604^(1/9) 1771100001129270 a001 1201881744/1970299*(1/2+1/2*5^(1/2))^7 1771100001129270 a001 3524578/119218851371*17393796001^(6/7) 1771100001129270 a001 3524578/28143753123*45537549124^(13/17) 1771100001129270 a001 12586269025/7881196*312119004989^(1/11) 1771100001129270 a001 3524578/28143753123*14662949395604^(13/21) 1771100001129270 a001 12586269025/7881196*(1/2+1/2*5^(1/2))^5 1771100001129270 a001 3524578/28143753123*192900153618^(13/18) 1771100001129270 a001 12586269025/7881196*28143753123^(1/10) 1771100001129270 a001 3524578/28143753123*73681302247^(3/4) 1771100001129270 a001 3524578/2139295485799*45537549124^(16/17) 1771100001129270 a001 3524578/505019158607*45537549124^(15/17) 1771100001129270 a001 3524578/119218851371*45537549124^(14/17) 1771100001129270 a001 32951280099/7881196*45537549124^(1/17) 1771100001129270 a001 32951280099/7881196*14662949395604^(1/21) 1771100001129270 a001 32951280099/7881196*(1/2+1/2*5^(1/2))^3 1771100001129270 a001 3524578/505019158607*312119004989^(9/11) 1771100001129270 a001 3524578/5600748293801*312119004989^(10/11) 1771100001129270 a001 1762289/1730726404001*14662949395604^(7/9) 1771100001129270 a001 1762289/7331474697802*23725150497407^(13/16) 1771100001129270 a001 1762289/1730726404001*505019158607^(7/8) 1771100001129270 a001 3524578/2139295485799*192900153618^(8/9) 1771100001129270 a001 3524578/9062201101803*192900153618^(17/18) 1771100001129270 a001 53316291173/7881196*(1/2+1/2*5^(1/2))^2 1771100001129270 a001 187917426909949994/10610209857723 1771100001129270 a001 3524578/119218851371*505019158607^(3/4) 1771100001129270 a001 3524578/119218851371*192900153618^(7/9) 1771100001129270 a001 3524578/312119004989*73681302247^(11/13) 1771100001129270 a001 3524578/2139295485799*73681302247^(12/13) 1771100001129270 a001 32951280099/7881196*10749957122^(1/16) 1771100001129270 a001 53316291173/7881196*10749957122^(1/24) 1771100001129270 a001 1762289/22768774562*312119004989^(8/11) 1771100001129270 a001 10182505537/3940598*(1/2+1/2*5^(1/2))^4 1771100001129270 a001 10182505537/3940598*23725150497407^(1/16) 1771100001129270 a001 10182505537/3940598*73681302247^(1/13) 1771100001129270 a001 1762289/22768774562*73681302247^(10/13) 1771100001129270 a001 3524578/505019158607*28143753123^(9/10) 1771100001129270 a001 10182505537/3940598*10749957122^(1/12) 1771100001129270 a001 1762289/22768774562*28143753123^(4/5) 1771100001129270 a001 53316291173/7881196*4106118243^(1/23) 1771100001129270 a001 7778742049/7881196*45537549124^(2/17) 1771100001129270 a001 3524578/17393796001*817138163596^(2/3) 1771100001129270 a001 7778742049/7881196*(1/2+1/2*5^(1/2))^6 1771100001129270 a001 13708391546790161/774004377960 1771100001129270 a001 7778742049/7881196*10749957122^(1/8) 1771100001129270 a001 10182505537/3940598*4106118243^(2/23) 1771100001129270 a001 3524578/28143753123*10749957122^(13/16) 1771100001129270 a001 3524578/119218851371*10749957122^(7/8) 1771100001129270 a001 1762289/22768774562*10749957122^(5/6) 1771100001129270 a001 3524578/312119004989*10749957122^(11/12) 1771100001129270 a001 3524578/505019158607*10749957122^(15/16) 1771100001129270 a001 1762289/408569081798*10749957122^(23/24) 1771100001129270 a001 3524578/17393796001*10749957122^(19/24) 1771100001129270 a001 7778742049/7881196*4106118243^(3/23) 1771100001129270 a001 53316291173/7881196*1568397607^(1/22) 1771100001129270 a001 3524578/6643838879*45537549124^(12/17) 1771100001129270 a001 2971215073/7881196*(1/2+1/2*5^(1/2))^8 1771100001129270 a001 10472279279564194/591286729879 1771100001129270 a001 3524578/6643838879*192900153618^(2/3) 1771100001129270 a001 2971215073/7881196*73681302247^(2/13) 1771100001129270 a001 3524578/6643838879*73681302247^(9/13) 1771100001129270 a001 2971215073/7881196*10749957122^(1/6) 1771100001129270 a001 3524578/6643838879*10749957122^(3/4) 1771100001129270 a001 2971215073/7881196*4106118243^(4/23) 1771100001129270 a001 10182505537/3940598*1568397607^(1/11) 1771100001129270 a001 1762289/22768774562*4106118243^(20/23) 1771100001129270 a001 3524578/17393796001*4106118243^(19/23) 1771100001129270 a001 3524578/119218851371*4106118243^(21/23) 1771100001129270 a001 3524578/312119004989*4106118243^(22/23) 1771100001129270 a001 7778742049/7881196*1568397607^(3/22) 1771100001129270 a001 3524578/6643838879*4106118243^(18/23) 1771100001129270 a001 2971215073/7881196*1568397607^(2/11) 1771100001129270 a001 567451585/3940598*2537720636^(2/9) 1771100001129270 a001 53316291173/7881196*599074578^(1/21) 1771100001129270 a001 1762289/1268860318*45537549124^(2/3) 1771100001129270 a001 567451585/3940598*312119004989^(2/11) 1771100001129270 a001 567451585/3940598*(1/2+1/2*5^(1/2))^10 1771100001129270 a001 4000054745112260/225851433717 1771100001129270 a001 567451585/3940598*28143753123^(1/5) 1771100001129270 a001 567451585/3940598*10749957122^(5/24) 1771100001129270 a001 1762289/1268860318*10749957122^(17/24) 1771100001129270 a001 567451585/3940598*4106118243^(5/23) 1771100001129270 a001 32951280099/7881196*599074578^(1/14) 1771100001129270 a001 1762289/1268860318*4106118243^(17/23) 1771100001129270 a001 567451585/3940598*1568397607^(5/22) 1771100001129270 a001 10182505537/3940598*599074578^(2/21) 1771100001129270 a001 3524578/17393796001*1568397607^(19/22) 1771100001129270 a001 3524578/6643838879*1568397607^(9/11) 1771100001129270 a001 1762289/22768774562*1568397607^(10/11) 1771100001129270 a001 3524578/119218851371*1568397607^(21/22) 1771100001129270 a001 7778742049/7881196*599074578^(1/7) 1771100001129270 a001 1201881744/1970299*599074578^(1/6) 1771100001129270 a001 1762289/1268860318*1568397607^(17/22) 1771100001129270 a001 1836311903/7881196*599074578^(3/14) 1771100001129270 a001 2971215073/7881196*599074578^(4/21) 1771100001129270 a001 567451585/3940598*599074578^(5/21) 1771100001129270 a001 53316291173/7881196*228826127^(1/20) 1771100001129270 a001 433494437/7881196*2537720636^(4/15) 1771100001129270 a001 433494437/7881196*45537549124^(4/17) 1771100001129270 a001 433494437/7881196*(1/2+1/2*5^(1/2))^12 1771100001129270 a001 3524578/969323029*23725150497407^(1/2) 1771100001129270 a001 3524578/969323029*505019158607^(4/7) 1771100001129270 a001 763942477886293/43133785636 1771100001129270 a001 433494437/7881196*73681302247^(3/13) 1771100001129270 a001 3524578/969323029*73681302247^(8/13) 1771100001129270 a001 433494437/7881196*10749957122^(1/4) 1771100001129270 a001 3524578/969323029*10749957122^(2/3) 1771100001129270 a001 433494437/7881196*4106118243^(6/23) 1771100001129270 a001 3524578/969323029*4106118243^(16/23) 1771100001129270 a001 433494437/7881196*1568397607^(3/11) 1771100001129270 a001 3524578/969323029*1568397607^(8/11) 1771100001129270 a001 3524578/1568397607*599074578^(11/14) 1771100001129270 a001 433494437/7881196*599074578^(2/7) 1771100001129270 a001 10182505537/3940598*228826127^(1/10) 1771100001129270 a001 3524578/4106118243*599074578^(5/6) 1771100001129270 a001 12586269025/7881196*228826127^(1/8) 1771100001129270 a001 1762289/1268860318*599074578^(17/21) 1771100001129270 a001 3524578/6643838879*599074578^(6/7) 1771100001129270 a001 3524578/17393796001*599074578^(19/21) 1771100001129270 a001 3524578/28143753123*599074578^(13/14) 1771100001129270 a001 1762289/22768774562*599074578^(20/21) 1771100001129270 a001 7778742049/7881196*228826127^(3/20) 1771100001129270 a001 3524578/969323029*599074578^(16/21) 1771100001129270 a001 2971215073/7881196*228826127^(1/5) 1771100001129270 a001 567451585/3940598*228826127^(1/4) 1771100001129270 a001 433494437/7881196*228826127^(3/10) 1771100001129270 a001 53316291173/7881196*87403803^(1/19) 1771100001129270 a001 3524578/370248451*2537720636^(2/3) 1771100001129270 a001 165580141/7881196*17393796001^(2/7) 1771100001129270 a001 3524578/370248451*45537549124^(10/17) 1771100001129270 a001 3524578/370248451*312119004989^(6/11) 1771100001129270 a001 3524578/370248451*14662949395604^(10/21) 1771100001129270 a001 165580141/7881196*14662949395604^(2/9) 1771100001129270 a001 165580141/7881196*(1/2+1/2*5^(1/2))^14 1771100001129270 a001 3524578/370248451*192900153618^(5/9) 1771100001129270 a001 583600122205498/32951280099 1771100001129270 a001 3524578/370248451*28143753123^(3/5) 1771100001129270 a001 165580141/7881196*10749957122^(7/24) 1771100001129270 a001 3524578/370248451*10749957122^(5/8) 1771100001129270 a001 165580141/7881196*4106118243^(7/23) 1771100001129270 a001 3524578/370248451*4106118243^(15/23) 1771100001129270 a001 165580141/7881196*1568397607^(7/22) 1771100001129270 a001 3524578/370248451*1568397607^(15/22) 1771100001129270 a001 165580141/7881196*599074578^(1/3) 1771100001129270 a001 3524578/370248451*599074578^(5/7) 1771100001129270 a001 10182505537/3940598*87403803^(2/19) 1771100001129270 a001 165580141/7881196*228826127^(7/20) 1771100001129270 a001 3524578/969323029*228826127^(4/5) 1771100001129270 a001 1762289/1268860318*228826127^(17/20) 1771100001129270 a001 3524578/4106118243*228826127^(7/8) 1771100001129270 a001 3524578/6643838879*228826127^(9/10) 1771100001129270 a001 3524578/17393796001*228826127^(19/20) 1771100001129270 a001 7778742049/7881196*87403803^(3/19) 1771100001129270 a001 3524578/370248451*228826127^(3/4) 1771100001129270 a001 2971215073/7881196*87403803^(4/19) 1771100001129270 a001 567451585/3940598*87403803^(5/19) 1771100001129270 a001 433494437/7881196*87403803^(6/19) 1771100001129270 a001 2971215073/54018521*4870847^(3/8) 1771100001129270 a001 53316291173/7881196*33385282^(1/18) 1771100001129270 a001 1762289/70711162*17393796001^(4/7) 1771100001129270 a001 1762289/70711162*14662949395604^(4/9) 1771100001129270 a001 31622993/3940598*(1/2+1/2*5^(1/2))^16 1771100001129270 a001 31622993/3940598*23725150497407^(1/4) 1771100001129270 a001 31622993/3940598*73681302247^(4/13) 1771100001129270 a001 1762289/70711162*73681302247^(7/13) 1771100001129270 a001 222915410843908/12586269025 1771100001129270 a001 31622993/3940598*10749957122^(1/3) 1771100001129270 a001 1762289/70711162*10749957122^(7/12) 1771100001129270 a001 31622993/3940598*4106118243^(8/23) 1771100001129270 a001 1762289/70711162*4106118243^(14/23) 1771100001129270 a001 31622993/3940598*1568397607^(4/11) 1771100001129270 a001 1762289/70711162*1568397607^(7/11) 1771100001129270 a001 31622993/3940598*599074578^(8/21) 1771100001129270 a001 1762289/70711162*599074578^(2/3) 1771100001129270 a001 165580141/7881196*87403803^(7/19) 1771100001129270 a001 31622993/3940598*228826127^(2/5) 1771100001129270 a001 1762289/70711162*228826127^(7/10) 1771100001129270 a001 32951280099/7881196*33385282^(1/12) 1771100001129270 a001 10182505537/3940598*33385282^(1/9) 1771100001129270 a001 31622993/3940598*87403803^(8/19) 1771100001129270 a001 3524578/370248451*87403803^(15/19) 1771100001129270 a001 3524578/969323029*87403803^(16/19) 1771100001129270 a001 1762289/1268860318*87403803^(17/19) 1771100001129270 a001 3524578/6643838879*87403803^(18/19) 1771100001129270 a001 1762289/70711162*87403803^(14/19) 1771100001129270 a001 7778742049/7881196*33385282^(1/6) 1771100001129270 a001 2971215073/7881196*33385282^(2/9) 1771100001129270 a001 1836311903/7881196*33385282^(1/4) 1771100001129270 a001 567451585/3940598*33385282^(5/18) 1771100001129270 a001 433494437/7881196*33385282^(1/3) 1771100001129270 a001 3524578/54018521*141422324^(2/3) 1771100001129270 a001 24157817/7881196*141422324^(6/13) 1771100001129270 a001 24157817/7881196*2537720636^(2/5) 1771100001129270 a001 24157817/7881196*45537549124^(6/17) 1771100001129270 a001 24157817/7881196*14662949395604^(2/7) 1771100001129270 a001 24157817/7881196*(1/2+1/2*5^(1/2))^18 1771100001129270 a001 24157817/7881196*192900153618^(1/3) 1771100001129270 a001 3524578/54018521*73681302247^(1/2) 1771100001129270 a001 24157817/7881196*10749957122^(3/8) 1771100001129270 a001 3524578/54018521*10749957122^(13/24) 1771100001129270 a001 42573055163113/2403763488 1771100001129270 a001 24157817/7881196*4106118243^(9/23) 1771100001129270 a001 3524578/54018521*4106118243^(13/23) 1771100001129270 a001 24157817/7881196*1568397607^(9/22) 1771100001129270 a001 3524578/54018521*1568397607^(13/22) 1771100001129270 a001 24157817/7881196*599074578^(3/7) 1771100001129270 a001 3524578/54018521*599074578^(13/21) 1771100001129270 a001 24157817/7881196*228826127^(9/20) 1771100001129270 a001 102334155/7881196*33385282^(5/12) 1771100001129270 a001 3524578/54018521*228826127^(13/20) 1771100001129270 a001 165580141/7881196*33385282^(7/18) 1771100001129270 a001 53316291173/7881196*12752043^(1/17) 1771100001129270 a001 24157817/7881196*87403803^(9/19) 1771100001129270 a001 3524578/54018521*87403803^(13/19) 1771100001129271 a001 31622993/3940598*33385282^(4/9) 1771100001129271 a001 3524578/87403803*33385282^(3/4) 1771100001129271 a001 5702887/12752043*4870847^(11/16) 1771100001129271 a001 10182505537/3940598*12752043^(2/17) 1771100001129271 a001 1762289/70711162*33385282^(7/9) 1771100001129271 a001 3524578/370248451*33385282^(5/6) 1771100001129271 a001 24157817/7881196*33385282^(1/2) 1771100001129271 a001 3524578/969323029*33385282^(8/9) 1771100001129271 a001 3524578/1568397607*33385282^(11/12) 1771100001129271 a001 1762289/1268860318*33385282^(17/18) 1771100001129271 a001 3524578/54018521*33385282^(13/18) 1771100001129272 a001 9227465/7881196*20633239^(4/7) 1771100001129272 a001 7778742049/7881196*12752043^(3/17) 1771100001129272 a001 39088169/12752043*4870847^(9/16) 1771100001129272 a001 701408733/33385282*4870847^(7/16) 1771100001129272 a001 2971215073/7881196*12752043^(4/17) 1771100001129273 a001 567451585/3940598*12752043^(5/17) 1771100001129273 a001 1134903170/20633239*4870847^(3/8) 1771100001129274 a001 433494437/7881196*12752043^(6/17) 1771100001129274 a001 1836311903/87403803*4870847^(7/16) 1771100001129274 a001 32264490531/4769326*1860498^(1/15) 1771100001129274 a001 3524578/20633239*141422324^(8/13) 1771100001129274 a001 102287808/4868641*4870847^(7/16) 1771100001129274 a001 12586269025/599074578*4870847^(7/16) 1771100001129274 a001 32951280099/1568397607*4870847^(7/16) 1771100001129274 a001 86267571272/4106118243*4870847^(7/16) 1771100001129274 a001 225851433717/10749957122*4870847^(7/16) 1771100001129274 a001 591286729879/28143753123*4870847^(7/16) 1771100001129274 a001 1548008755920/73681302247*4870847^(7/16) 1771100001129274 a001 4052739537881/192900153618*4870847^(7/16) 1771100001129274 a001 225749145909/10745088481*4870847^(7/16) 1771100001129274 a001 6557470319842/312119004989*4870847^(7/16) 1771100001129274 a001 2504730781961/119218851371*4870847^(7/16) 1771100001129274 a001 956722026041/45537549124*4870847^(7/16) 1771100001129274 a001 365435296162/17393796001*4870847^(7/16) 1771100001129274 a001 139583862445/6643838879*4870847^(7/16) 1771100001129274 a001 53316291173/2537720636*4870847^(7/16) 1771100001129274 a001 20365011074/969323029*4870847^(7/16) 1771100001129274 a001 7778742049/370248451*4870847^(7/16) 1771100001129274 a001 3524578/20633239*2537720636^(8/15) 1771100001129274 a001 9227465/7881196*2537720636^(4/9) 1771100001129274 a001 3524578/20633239*45537549124^(8/17) 1771100001129274 a001 3524578/20633239*14662949395604^(8/21) 1771100001129274 a001 3524578/20633239*(1/2+1/2*5^(1/2))^24 1771100001129274 a001 9227465/7881196*(1/2+1/2*5^(1/2))^20 1771100001129274 a001 9227465/7881196*23725150497407^(5/16) 1771100001129274 a001 3524578/20633239*192900153618^(4/9) 1771100001129274 a001 9227465/7881196*73681302247^(5/13) 1771100001129274 a001 3524578/20633239*73681302247^(6/13) 1771100001129274 a001 9227465/7881196*28143753123^(2/5) 1771100001129274 a001 9227465/7881196*10749957122^(5/12) 1771100001129274 a001 3524578/20633239*10749957122^(1/2) 1771100001129274 a001 9227465/7881196*4106118243^(10/23) 1771100001129274 a001 3524578/20633239*4106118243^(12/23) 1771100001129274 a001 32522920134770/1836311903 1771100001129274 a001 9227465/7881196*1568397607^(5/11) 1771100001129274 a001 3524578/20633239*1568397607^(6/11) 1771100001129274 a001 9227465/7881196*599074578^(10/21) 1771100001129274 a001 3524578/20633239*599074578^(4/7) 1771100001129274 a001 9227465/7881196*228826127^(1/2) 1771100001129274 a001 3524578/20633239*228826127^(3/5) 1771100001129274 a001 2971215073/141422324*4870847^(7/16) 1771100001129274 a001 9227465/7881196*87403803^(10/19) 1771100001129274 a001 3524578/20633239*87403803^(12/19) 1771100001129274 a001 165580141/7881196*12752043^(7/17) 1771100001129274 a001 53316291173/7881196*4870847^(1/16) 1771100001129274 a001 1134903170/54018521*4870847^(7/16) 1771100001129275 a001 9227465/7881196*33385282^(5/9) 1771100001129275 a001 39088169/7881196*12752043^(1/2) 1771100001129275 a001 31622993/3940598*12752043^(8/17) 1771100001129275 a001 3524578/20633239*33385282^(2/3) 1771100001129275 a001 591286729879/87403803*1860498^(1/15) 1771100001129275 a001 1548008755920/228826127*1860498^(1/15) 1771100001129275 a001 4052739537881/599074578*1860498^(1/15) 1771100001129275 a001 1515744265389/224056801*1860498^(1/15) 1771100001129275 a001 6557470319842/969323029*1860498^(1/15) 1771100001129275 a001 2504730781961/370248451*1860498^(1/15) 1771100001129275 a001 4976784/4250681*4870847^(5/8) 1771100001129275 a001 956722026041/141422324*1860498^(1/15) 1771100001129276 a001 365435296162/54018521*1860498^(1/15) 1771100001129276 a001 24157817/7881196*12752043^(9/17) 1771100001129277 a001 133957148/16692641*4870847^(1/2) 1771100001129278 a001 433494437/20633239*4870847^(7/16) 1771100001129278 a001 233802911/29134601*4870847^(1/2) 1771100001129279 a001 1836311903/228826127*4870847^(1/2) 1771100001129279 a001 267084832/33281921*4870847^(1/2) 1771100001129279 a001 12586269025/1568397607*4870847^(1/2) 1771100001129279 a001 10983760033/1368706081*4870847^(1/2) 1771100001129279 a001 43133785636/5374978561*4870847^(1/2) 1771100001129279 a001 75283811239/9381251041*4870847^(1/2) 1771100001129279 a001 591286729879/73681302247*4870847^(1/2) 1771100001129279 a001 86000486440/10716675201*4870847^(1/2) 1771100001129279 a001 4052739537881/505019158607*4870847^(1/2) 1771100001129279 a001 3278735159921/408569081798*4870847^(1/2) 1771100001129279 a001 2504730781961/312119004989*4870847^(1/2) 1771100001129279 a001 956722026041/119218851371*4870847^(1/2) 1771100001129279 a001 182717648081/22768774562*4870847^(1/2) 1771100001129279 a001 139583862445/17393796001*4870847^(1/2) 1771100001129279 a001 53316291173/6643838879*4870847^(1/2) 1771100001129279 a001 10182505537/1268860318*4870847^(1/2) 1771100001129279 a001 7778742049/969323029*4870847^(1/2) 1771100001129279 a001 2971215073/370248451*4870847^(1/2) 1771100001129279 a001 567451585/70711162*4870847^(1/2) 1771100001129279 a001 3524578/54018521*12752043^(13/17) 1771100001129279 a001 1762289/70711162*12752043^(14/17) 1771100001129279 a001 10182505537/3940598*4870847^(1/8) 1771100001129279 a001 433494437/54018521*4870847^(1/2) 1771100001129279 a001 1762289/3940598*7881196^(2/3) 1771100001129279 a001 3524578/370248451*12752043^(15/17) 1771100001129279 a001 139583862445/20633239*1860498^(1/15) 1771100001129280 a001 3524578/969323029*12752043^(16/17) 1771100001129280 a001 9227465/7881196*12752043^(10/17) 1771100001129281 a001 53316291173/12752043*1860498^(1/10) 1771100001129282 a001 3524578/20633239*12752043^(12/17) 1771100001129282 a001 14619165/4769326*4870847^(9/16) 1771100001129283 a001 165580141/20633239*4870847^(1/2) 1771100001129283 a001 267914296/87403803*4870847^(9/16) 1771100001129283 a001 1346269/1860498*1860498^(7/10) 1771100001129283 a001 701408733/228826127*4870847^(9/16) 1771100001129283 a001 1836311903/599074578*4870847^(9/16) 1771100001129283 a001 686789568/224056801*4870847^(9/16) 1771100001129283 a001 12586269025/4106118243*4870847^(9/16) 1771100001129283 a001 32951280099/10749957122*4870847^(9/16) 1771100001129283 a001 86267571272/28143753123*4870847^(9/16) 1771100001129283 a001 32264490531/10525900321*4870847^(9/16) 1771100001129283 a001 591286729879/192900153618*4870847^(9/16) 1771100001129283 a001 1515744265389/494493258286*4870847^(9/16) 1771100001129283 a001 2504730781961/817138163596*4870847^(9/16) 1771100001129283 a001 956722026041/312119004989*4870847^(9/16) 1771100001129283 a001 365435296162/119218851371*4870847^(9/16) 1771100001129283 a001 139583862445/45537549124*4870847^(9/16) 1771100001129283 a001 53316291173/17393796001*4870847^(9/16) 1771100001129283 a001 20365011074/6643838879*4870847^(9/16) 1771100001129283 a001 7778742049/2537720636*4870847^(9/16) 1771100001129283 a001 2971215073/969323029*4870847^(9/16) 1771100001129283 a001 1134903170/370248451*4870847^(9/16) 1771100001129283 a001 433494437/141422324*4870847^(9/16) 1771100001129284 a001 7778742049/7881196*4870847^(3/16) 1771100001129284 a001 165580141/54018521*4870847^(9/16) 1771100001129285 a001 5702887/33385282*4870847^(3/4) 1771100001129286 a001 39088169/33385282*4870847^(5/8) 1771100001129287 a001 63245986/20633239*4870847^(9/16) 1771100001129288 a001 34111385/29134601*4870847^(5/8) 1771100001129288 a001 267914296/228826127*4870847^(5/8) 1771100001129288 a001 233802911/199691526*4870847^(5/8) 1771100001129288 a001 1836311903/1568397607*4870847^(5/8) 1771100001129288 a001 1602508992/1368706081*4870847^(5/8) 1771100001129288 a001 12586269025/10749957122*4870847^(5/8) 1771100001129288 a001 10983760033/9381251041*4870847^(5/8) 1771100001129288 a001 86267571272/73681302247*4870847^(5/8) 1771100001129288 a001 75283811239/64300051206*4870847^(5/8) 1771100001129288 a001 2504730781961/2139295485799*4870847^(5/8) 1771100001129288 a001 365435296162/312119004989*4870847^(5/8) 1771100001129288 a001 139583862445/119218851371*4870847^(5/8) 1771100001129288 a001 53316291173/45537549124*4870847^(5/8) 1771100001129288 a001 20365011074/17393796001*4870847^(5/8) 1771100001129288 a001 7778742049/6643838879*4870847^(5/8) 1771100001129288 a001 2971215073/2537720636*4870847^(5/8) 1771100001129288 a001 1134903170/969323029*4870847^(5/8) 1771100001129288 a001 433494437/370248451*4870847^(5/8) 1771100001129288 a001 165580141/141422324*4870847^(5/8) 1771100001129288 a001 2971215073/7881196*4870847^(1/4) 1771100001129289 a001 63245986/54018521*4870847^(5/8) 1771100001129289 a001 7465176/16692641*4870847^(11/16) 1771100001129291 a001 5702887/87403803*4870847^(13/16) 1771100001129291 a001 139583862445/33385282*1860498^(1/10) 1771100001129292 a001 39088169/87403803*4870847^(11/16) 1771100001129292 a001 365435296162/87403803*1860498^(1/10) 1771100001129292 a001 956722026041/228826127*1860498^(1/10) 1771100001129292 a001 2504730781961/599074578*1860498^(1/10) 1771100001129292 a001 6557470319842/1568397607*1860498^(1/10) 1771100001129292 a001 10610209857723/2537720636*1860498^(1/10) 1771100001129292 a001 4052739537881/969323029*1860498^(1/10) 1771100001129292 a001 1548008755920/370248451*1860498^(1/10) 1771100001129292 a001 102334155/228826127*4870847^(11/16) 1771100001129292 a001 591286729879/141422324*1860498^(1/10) 1771100001129293 a001 133957148/299537289*4870847^(11/16) 1771100001129293 a001 701408733/1568397607*4870847^(11/16) 1771100001129293 a001 1836311903/4106118243*4870847^(11/16) 1771100001129293 a001 2403763488/5374978561*4870847^(11/16) 1771100001129293 a001 12586269025/28143753123*4870847^(11/16) 1771100001129293 a001 32951280099/73681302247*4870847^(11/16) 1771100001129293 a001 43133785636/96450076809*4870847^(11/16) 1771100001129293 a001 225851433717/505019158607*4870847^(11/16) 1771100001129293 a001 591286729879/1322157322203*4870847^(11/16) 1771100001129293 a001 10610209857723/23725150497407*4870847^(11/16) 1771100001129293 a001 139583862445/312119004989*4870847^(11/16) 1771100001129293 a001 53316291173/119218851371*4870847^(11/16) 1771100001129293 a001 10182505537/22768774562*4870847^(11/16) 1771100001129293 a001 7778742049/17393796001*4870847^(11/16) 1771100001129293 a001 2971215073/6643838879*4870847^(11/16) 1771100001129293 a001 567451585/1268860318*4870847^(11/16) 1771100001129293 a001 433494437/969323029*4870847^(11/16) 1771100001129293 a001 165580141/370248451*4870847^(11/16) 1771100001129293 a001 24157817/20633239*4870847^(5/8) 1771100001129293 a001 31622993/70711162*4870847^(11/16) 1771100001129293 a001 225851433717/54018521*1860498^(1/10) 1771100001129293 a001 567451585/3940598*4870847^(5/16) 1771100001129294 a001 24157817/54018521*4870847^(11/16) 1771100001129295 a001 4976784/29134601*4870847^(3/4) 1771100001129296 a001 5702887/228826127*4870847^(7/8) 1771100001129297 a001 86267571272/20633239*1860498^(1/10) 1771100001129297 a001 39088169/228826127*4870847^(3/4) 1771100001129297 a001 34111385/199691526*4870847^(3/4) 1771100001129297 a001 267914296/1568397607*4870847^(3/4) 1771100001129297 a001 233802911/1368706081*4870847^(3/4) 1771100001129297 a001 1836311903/10749957122*4870847^(3/4) 1771100001129297 a001 1602508992/9381251041*4870847^(3/4) 1771100001129297 a001 12586269025/73681302247*4870847^(3/4) 1771100001129297 a001 10983760033/64300051206*4870847^(3/4) 1771100001129297 a001 86267571272/505019158607*4870847^(3/4) 1771100001129297 a001 75283811239/440719107401*4870847^(3/4) 1771100001129297 a001 2504730781961/14662949395604*4870847^(3/4) 1771100001129297 a001 139583862445/817138163596*4870847^(3/4) 1771100001129297 a001 53316291173/312119004989*4870847^(3/4) 1771100001129297 a001 20365011074/119218851371*4870847^(3/4) 1771100001129297 a001 7778742049/45537549124*4870847^(3/4) 1771100001129297 a001 2971215073/17393796001*4870847^(3/4) 1771100001129297 a001 1134903170/6643838879*4870847^(3/4) 1771100001129297 a001 433494437/2537720636*4870847^(3/4) 1771100001129297 a001 165580141/969323029*4870847^(3/4) 1771100001129297 a001 63245986/370248451*4870847^(3/4) 1771100001129298 a001 433494437/7881196*4870847^(3/8) 1771100001129298 a001 24157817/141422324*4870847^(3/4) 1771100001129298 a001 1762289/3940598*312119004989^(2/5) 1771100001129298 a001 1762289/3940598*(1/2+1/2*5^(1/2))^22 1771100001129298 a001 1762289/3940598*10749957122^(11/24) 1771100001129298 a001 1762289/3940598*4106118243^(11/23) 1771100001129298 a001 1762289/3940598*1568397607^(1/2) 1771100001129298 a001 139580337956/7880997 1771100001129298 a001 1762289/3940598*599074578^(11/21) 1771100001129298 a001 1762289/3940598*228826127^(11/20) 1771100001129298 a001 1762289/3940598*87403803^(11/19) 1771100001129299 a001 10983760033/4250681*1860498^(2/15) 1771100001129299 a001 1762289/3940598*33385282^(11/18) 1771100001129300 a001 14930352/228826127*4870847^(13/16) 1771100001129300 a001 5702887/599074578*4870847^(15/16) 1771100001129301 a001 9227465/20633239*4870847^(11/16) 1771100001129302 a001 39088169/599074578*4870847^(13/16) 1771100001129302 a001 14619165/224056801*4870847^(13/16) 1771100001129302 a001 267914296/4106118243*4870847^(13/16) 1771100001129302 a001 701408733/10749957122*4870847^(13/16) 1771100001129302 a001 1836311903/28143753123*4870847^(13/16) 1771100001129302 a001 686789568/10525900321*4870847^(13/16) 1771100001129302 a001 12586269025/192900153618*4870847^(13/16) 1771100001129302 a001 32951280099/505019158607*4870847^(13/16) 1771100001129302 a001 86267571272/1322157322203*4870847^(13/16) 1771100001129302 a001 32264490531/494493258286*4870847^(13/16) 1771100001129302 a001 1548008755920/23725150497407*4870847^(13/16) 1771100001129302 a001 139583862445/2139295485799*4870847^(13/16) 1771100001129302 a001 53316291173/817138163596*4870847^(13/16) 1771100001129302 a001 20365011074/312119004989*4870847^(13/16) 1771100001129302 a001 7778742049/119218851371*4870847^(13/16) 1771100001129302 a001 2971215073/45537549124*4870847^(13/16) 1771100001129302 a001 1134903170/17393796001*4870847^(13/16) 1771100001129302 a001 433494437/6643838879*4870847^(13/16) 1771100001129302 a001 165580141/2537720636*4870847^(13/16) 1771100001129302 a001 63245986/969323029*4870847^(13/16) 1771100001129302 a001 9227465/54018521*4870847^(3/4) 1771100001129302 a001 165580141/7881196*4870847^(7/16) 1771100001129302 a001 24157817/370248451*4870847^(13/16) 1771100001129303 a001 1836311903/4870847*1860498^(4/15) 1771100001129304 a001 53316291173/7881196*1860498^(1/15) 1771100001129305 a001 829464/33281921*4870847^(7/8) 1771100001129305 a001 1762289/3940598*12752043^(11/17) 1771100001129306 a001 9227465/141422324*4870847^(13/16) 1771100001129306 a001 39088169/1568397607*4870847^(7/8) 1771100001129306 a001 34111385/1368706081*4870847^(7/8) 1771100001129307 a001 133957148/5374978561*4870847^(7/8) 1771100001129307 a001 233802911/9381251041*4870847^(7/8) 1771100001129307 a001 1836311903/73681302247*4870847^(7/8) 1771100001129307 a001 267084832/10716675201*4870847^(7/8) 1771100001129307 a001 12586269025/505019158607*4870847^(7/8) 1771100001129307 a001 10983760033/440719107401*4870847^(7/8) 1771100001129307 a001 43133785636/1730726404001*4870847^(7/8) 1771100001129307 a001 75283811239/3020733700601*4870847^(7/8) 1771100001129307 a001 182717648081/7331474697802*4870847^(7/8) 1771100001129307 a001 139583862445/5600748293801*4870847^(7/8) 1771100001129307 a001 53316291173/2139295485799*4870847^(7/8) 1771100001129307 a001 10182505537/408569081798*4870847^(7/8) 1771100001129307 a001 7778742049/312119004989*4870847^(7/8) 1771100001129307 a001 2971215073/119218851371*4870847^(7/8) 1771100001129307 a001 567451585/22768774562*4870847^(7/8) 1771100001129307 a001 433494437/17393796001*4870847^(7/8) 1771100001129307 a001 165580141/6643838879*4870847^(7/8) 1771100001129307 a001 31622993/1268860318*4870847^(7/8) 1771100001129307 a001 31622993/3940598*4870847^(1/2) 1771100001129307 a001 24157817/969323029*4870847^(7/8) 1771100001129308 a001 43133785636/16692641*1860498^(2/15) 1771100001129309 a001 75283811239/29134601*1860498^(2/15) 1771100001129309 a001 591286729879/228826127*1860498^(2/15) 1771100001129309 a001 86000486440/33281921*1860498^(2/15) 1771100001129309 a001 4052739537881/1568397607*1860498^(2/15) 1771100001129309 a001 3536736619241/1368706081*1860498^(2/15) 1771100001129309 a001 3278735159921/1268860318*1860498^(2/15) 1771100001129309 a001 2504730781961/969323029*1860498^(2/15) 1771100001129309 a001 956722026041/370248451*1860498^(2/15) 1771100001129310 a001 182717648081/70711162*1860498^(2/15) 1771100001129310 a001 14930352/1568397607*4870847^(15/16) 1771100001129310 a001 139583862445/54018521*1860498^(2/15) 1771100001129311 a001 9227465/370248451*4870847^(7/8) 1771100001129311 a001 39088169/4106118243*4870847^(15/16) 1771100001129311 a001 102334155/10749957122*4870847^(15/16) 1771100001129311 a001 267914296/28143753123*4870847^(15/16) 1771100001129311 a001 701408733/73681302247*4870847^(15/16) 1771100001129311 a001 1836311903/192900153618*4870847^(15/16) 1771100001129311 a001 102287808/10745088481*4870847^(15/16) 1771100001129311 a001 12586269025/1322157322203*4870847^(15/16) 1771100001129311 a001 32951280099/3461452808002*4870847^(15/16) 1771100001129311 a001 86267571272/9062201101803*4870847^(15/16) 1771100001129311 a001 225851433717/23725150497407*4870847^(15/16) 1771100001129311 a001 139583862445/14662949395604*4870847^(15/16) 1771100001129311 a001 53316291173/5600748293801*4870847^(15/16) 1771100001129311 a001 20365011074/2139295485799*4870847^(15/16) 1771100001129311 a001 7778742049/817138163596*4870847^(15/16) 1771100001129311 a001 2971215073/312119004989*4870847^(15/16) 1771100001129311 a001 1134903170/119218851371*4870847^(15/16) 1771100001129311 a001 433494437/45537549124*4870847^(15/16) 1771100001129311 a001 165580141/17393796001*4870847^(15/16) 1771100001129311 a001 63245986/6643838879*4870847^(15/16) 1771100001129312 a001 24157817/2537720636*4870847^(15/16) 1771100001129312 a001 24157817/7881196*4870847^(9/16) 1771100001129314 a001 53316291173/20633239*1860498^(2/15) 1771100001129315 a001 9227465/969323029*4870847^(15/16) 1771100001129316 a001 20365011074/12752043*1860498^(1/6) 1771100001129316 a001 2/2178309*(1/2+1/2*5^(1/2))^54 1771100001129320 a001 1134903170/4870847*1860498^(3/10) 1771100001129321 a001 9227465/7881196*4870847^(5/8) 1771100001129321 a001 32951280099/7881196*1860498^(1/10) 1771100001129325 a001 53316291173/33385282*1860498^(1/6) 1771100001129326 a001 139583862445/87403803*1860498^(1/6) 1771100001129326 a001 365435296162/228826127*1860498^(1/6) 1771100001129326 a001 956722026041/599074578*1860498^(1/6) 1771100001129326 a001 2504730781961/1568397607*1860498^(1/6) 1771100001129326 a001 6557470319842/4106118243*1860498^(1/6) 1771100001129326 a001 10610209857723/6643838879*1860498^(1/6) 1771100001129326 a001 4052739537881/2537720636*1860498^(1/6) 1771100001129326 a001 1548008755920/969323029*1860498^(1/6) 1771100001129327 a001 591286729879/370248451*1860498^(1/6) 1771100001129327 a001 225851433717/141422324*1860498^(1/6) 1771100001129327 a001 86267571272/54018521*1860498^(1/6) 1771100001129330 a001 3524578/20633239*4870847^(3/4) 1771100001129331 a001 32951280099/20633239*1860498^(1/6) 1771100001129331 a001 3524578/54018521*4870847^(13/16) 1771100001129333 a001 12586269025/12752043*1860498^(1/5) 1771100001129335 a001 1762289/70711162*4870847^(7/8) 1771100001129337 a001 701408733/4870847*1860498^(1/3) 1771100001129338 a001 10182505537/3940598*1860498^(2/15) 1771100001129340 a001 3524578/370248451*4870847^(15/16) 1771100001129342 a001 32951280099/33385282*1860498^(1/5) 1771100001129343 a001 86267571272/87403803*1860498^(1/5) 1771100001129344 a001 225851433717/228826127*1860498^(1/5) 1771100001129344 a001 591286729879/599074578*1860498^(1/5) 1771100001129344 a001 1548008755920/1568397607*1860498^(1/5) 1771100001129344 a001 4052739537881/4106118243*1860498^(1/5) 1771100001129344 a001 4807525989/4870846*1860498^(1/5) 1771100001129344 a001 6557470319842/6643838879*1860498^(1/5) 1771100001129344 a001 2504730781961/2537720636*1860498^(1/5) 1771100001129344 a001 956722026041/969323029*1860498^(1/5) 1771100001129344 a001 365435296162/370248451*1860498^(1/5) 1771100001129344 a001 139583862445/141422324*1860498^(1/5) 1771100001129344 a001 2178309/3010349*7881196^(7/11) 1771100001129344 a001 53316291173/54018521*1860498^(1/5) 1771100001129348 a001 20365011074/20633239*1860498^(1/5) 1771100001129350 a001 1762289/3940598*4870847^(11/16) 1771100001129355 a001 12586269025/7881196*1860498^(1/6) 1771100001129360 a001 2178309/3010349*20633239^(3/5) 1771100001129362 a001 2178309/3010349*141422324^(7/13) 1771100001129362 a001 2932589879121/165580141 1771100001129362 a001 2178309/3010349*2537720636^(7/15) 1771100001129362 a001 2178309/3010349*17393796001^(3/7) 1771100001129362 a001 2178309/3010349*45537549124^(7/17) 1771100001129362 a001 1346269/4870847*(1/2+1/2*5^(1/2))^23 1771100001129362 a001 2178309/3010349*14662949395604^(1/3) 1771100001129362 a001 2178309/3010349*(1/2+1/2*5^(1/2))^21 1771100001129362 a001 2178309/3010349*192900153618^(7/18) 1771100001129362 a001 2178309/3010349*10749957122^(7/16) 1771100001129362 a001 1346269/4870847*4106118243^(1/2) 1771100001129362 a001 2178309/3010349*599074578^(1/2) 1771100001129363 a001 2178309/3010349*33385282^(7/12) 1771100001129367 a001 1602508992/4250681*1860498^(4/15) 1771100001129371 a001 267914296/4870847*1860498^(2/5) 1771100001129372 a001 7778742049/7881196*1860498^(1/5) 1771100001129376 a001 12586269025/33385282*1860498^(4/15) 1771100001129377 a001 10983760033/29134601*1860498^(4/15) 1771100001129378 a001 86267571272/228826127*1860498^(4/15) 1771100001129378 a001 267913919/710646*1860498^(4/15) 1771100001129378 a001 591286729879/1568397607*1860498^(4/15) 1771100001129378 a001 516002918640/1368706081*1860498^(4/15) 1771100001129378 a001 4052739537881/10749957122*1860498^(4/15) 1771100001129378 a001 3536736619241/9381251041*1860498^(4/15) 1771100001129378 a001 6557470319842/17393796001*1860498^(4/15) 1771100001129378 a001 2504730781961/6643838879*1860498^(4/15) 1771100001129378 a001 956722026041/2537720636*1860498^(4/15) 1771100001129378 a001 365435296162/969323029*1860498^(4/15) 1771100001129378 a001 139583862445/370248451*1860498^(4/15) 1771100001129378 a001 53316291173/141422324*1860498^(4/15) 1771100001129378 a001 20365011074/54018521*1860498^(4/15) 1771100001129382 a001 7778742049/20633239*1860498^(4/15) 1771100001129384 a001 2971215073/12752043*1860498^(3/10) 1771100001129393 a001 7778742049/33385282*1860498^(3/10) 1771100001129394 a001 20365011074/87403803*1860498^(3/10) 1771100001129395 a001 53316291173/228826127*1860498^(3/10) 1771100001129395 a001 139583862445/599074578*1860498^(3/10) 1771100001129395 a001 365435296162/1568397607*1860498^(3/10) 1771100001129395 a001 956722026041/4106118243*1860498^(3/10) 1771100001129395 a001 2504730781961/10749957122*1860498^(3/10) 1771100001129395 a001 6557470319842/28143753123*1860498^(3/10) 1771100001129395 a001 10610209857723/45537549124*1860498^(3/10) 1771100001129395 a001 4052739537881/17393796001*1860498^(3/10) 1771100001129395 a001 1548008755920/6643838879*1860498^(3/10) 1771100001129395 a001 591286729879/2537720636*1860498^(3/10) 1771100001129395 a001 225851433717/969323029*1860498^(3/10) 1771100001129395 a001 86267571272/370248451*1860498^(3/10) 1771100001129395 a001 63246219/271444*1860498^(3/10) 1771100001129395 a001 12586269025/54018521*1860498^(3/10) 1771100001129399 a001 4807526976/20633239*1860498^(3/10) 1771100001129401 a001 1836311903/12752043*1860498^(1/3) 1771100001129405 a001 102334155/4870847*1860498^(7/15) 1771100001129406 a001 2971215073/7881196*1860498^(4/15) 1771100001129410 a001 14930208/103681*1860498^(1/3) 1771100001129411 a001 1346269/141422324*7881196^(10/11) 1771100001129412 a001 12586269025/87403803*1860498^(1/3) 1771100001129412 a001 1346269/33385282*7881196^(9/11) 1771100001129412 a001 32951280099/228826127*1860498^(1/3) 1771100001129412 a001 43133785636/299537289*1860498^(1/3) 1771100001129412 a001 32264490531/224056801*1860498^(1/3) 1771100001129412 a001 591286729879/4106118243*1860498^(1/3) 1771100001129412 a001 774004377960/5374978561*1860498^(1/3) 1771100001129412 a001 4052739537881/28143753123*1860498^(1/3) 1771100001129412 a001 1515744265389/10525900321*1860498^(1/3) 1771100001129412 a001 3278735159921/22768774562*1860498^(1/3) 1771100001129412 a001 2504730781961/17393796001*1860498^(1/3) 1771100001129412 a001 956722026041/6643838879*1860498^(1/3) 1771100001129412 a001 182717648081/1268860318*1860498^(1/3) 1771100001129412 a001 139583862445/969323029*1860498^(1/3) 1771100001129412 a001 53316291173/370248451*1860498^(1/3) 1771100001129412 a001 10182505537/70711162*1860498^(1/3) 1771100001129412 a001 7778742049/54018521*1860498^(1/3) 1771100001129416 a001 2971215073/20633239*1860498^(1/3) 1771100001129417 a001 32951280099/4870847*710647^(1/14) 1771100001129422 a001 63245986/4870847*1860498^(1/2) 1771100001129423 a001 1346269/12752043*20633239^(5/7) 1771100001129423 a001 1836311903/7881196*1860498^(3/10) 1771100001129423 a001 39088169/3010349*7881196^(5/11) 1771100001129425 a001 9227465/3010349*7881196^(6/11) 1771100001129426 a001 7677619978603/433494437 1771100001129426 a001 1346269/12752043*2537720636^(5/9) 1771100001129426 a001 1346269/12752043*312119004989^(5/11) 1771100001129426 a001 1346269/12752043*(1/2+1/2*5^(1/2))^25 1771100001129426 a001 5702887/3010349*(1/2+1/2*5^(1/2))^19 1771100001129426 a001 1346269/12752043*3461452808002^(5/12) 1771100001129426 a001 1346269/12752043*28143753123^(1/2) 1771100001129426 a001 1346269/12752043*228826127^(5/8) 1771100001129426 a001 5702887/3010349*87403803^(1/2) 1771100001129426 a001 165580141/3010349*7881196^(4/11) 1771100001129427 a001 267914296/3010349*7881196^(1/3) 1771100001129429 a001 701408733/3010349*7881196^(3/11) 1771100001129431 a001 2971215073/3010349*7881196^(2/11) 1771100001129432 a001 1836311903/710647*271443^(2/13) 1771100001129433 a001 1346269/141422324*20633239^(6/7) 1771100001129434 a001 1346269/54018521*20633239^(4/5) 1771100001129434 a001 12586269025/3010349*7881196^(1/11) 1771100001129435 a001 39088169/3010349*20633239^(3/7) 1771100001129435 a001 233802911/4250681*1860498^(2/5) 1771100001129435 a001 1346269/33385282*141422324^(9/13) 1771100001129435 a001 591184413432/33379505 1771100001129435 a001 1346269/33385282*2537720636^(3/5) 1771100001129435 a001 1346269/33385282*45537549124^(9/17) 1771100001129435 a001 14930352/3010349*45537549124^(1/3) 1771100001129435 a001 1346269/33385282*14662949395604^(3/7) 1771100001129435 a001 1346269/33385282*(1/2+1/2*5^(1/2))^27 1771100001129435 a001 14930352/3010349*(1/2+1/2*5^(1/2))^17 1771100001129435 a001 1346269/33385282*192900153618^(1/2) 1771100001129435 a001 1346269/33385282*10749957122^(9/16) 1771100001129435 a001 1346269/33385282*599074578^(9/14) 1771100001129435 a001 63245986/3010349*20633239^(2/5) 1771100001129435 a001 433494437/3010349*20633239^(2/7) 1771100001129436 a001 1836311903/3010349*20633239^(1/5) 1771100001129436 a001 4807526976/3010349*20633239^(1/7) 1771100001129436 a001 1346269/33385282*33385282^(3/4) 1771100001129436 a001 39088169/3010349*141422324^(5/13) 1771100001129436 a001 39088169/3010349*2537720636^(1/3) 1771100001129436 a001 52623190191461/2971215073 1771100001129436 a001 39088169/3010349*45537549124^(5/17) 1771100001129436 a001 39088169/3010349*312119004989^(3/11) 1771100001129436 a001 39088169/3010349*(1/2+1/2*5^(1/2))^15 1771100001129436 a001 1346269/87403803*1322157322203^(1/2) 1771100001129436 a001 39088169/3010349*192900153618^(5/18) 1771100001129436 a001 39088169/3010349*28143753123^(3/10) 1771100001129436 a001 39088169/3010349*10749957122^(5/16) 1771100001129436 a001 39088169/3010349*599074578^(5/14) 1771100001129436 a001 39088169/3010349*228826127^(3/8) 1771100001129437 a001 1346269/2537720636*141422324^(12/13) 1771100001129437 a001 1346269/599074578*141422324^(11/13) 1771100001129437 a001 102334155/3010349*141422324^(1/3) 1771100001129437 a001 137769300517695/7778742049 1771100001129437 a001 1346269/228826127*9062201101803^(1/2) 1771100001129437 a001 102334155/3010349*(1/2+1/2*5^(1/2))^13 1771100001129437 a001 102334155/3010349*73681302247^(1/4) 1771100001129437 a001 701408733/3010349*141422324^(3/13) 1771100001129437 a001 165580141/3010349*141422324^(4/13) 1771100001129437 a001 2971215073/3010349*141422324^(2/13) 1771100001129437 a001 12586269025/3010349*141422324^(1/13) 1771100001129437 a001 1346269/599074578*2537720636^(11/15) 1771100001129437 a001 180342355680812/10182505537 1771100001129437 a001 1346269/599074578*45537549124^(11/17) 1771100001129437 a001 1346269/599074578*312119004989^(3/5) 1771100001129437 a001 1346269/599074578*14662949395604^(11/21) 1771100001129437 a001 267914296/3010349*(1/2+1/2*5^(1/2))^11 1771100001129437 a001 1346269/599074578*192900153618^(11/18) 1771100001129437 a001 1346269/599074578*10749957122^(11/16) 1771100001129437 a001 267914296/3010349*1568397607^(1/4) 1771100001129437 a001 1346269/599074578*1568397607^(3/4) 1771100001129437 a001 1346269/599074578*599074578^(11/14) 1771100001129437 a001 1346269/1568397607*2537720636^(7/9) 1771100001129437 a001 701408733/3010349*2537720636^(1/5) 1771100001129437 a001 1346269/1568397607*17393796001^(5/7) 1771100001129437 a001 701408733/3010349*45537549124^(3/17) 1771100001129437 a001 944284833567177/53316291173 1771100001129437 a001 1346269/1568397607*14662949395604^(5/9) 1771100001129437 a001 701408733/3010349*(1/2+1/2*5^(1/2))^9 1771100001129437 a001 1346269/1568397607*505019158607^(5/8) 1771100001129437 a001 701408733/3010349*192900153618^(1/6) 1771100001129437 a001 1346269/1568397607*28143753123^(7/10) 1771100001129437 a001 701408733/3010349*10749957122^(3/16) 1771100001129437 a001 1346269/45537549124*2537720636^(14/15) 1771100001129437 a001 1346269/10749957122*2537720636^(13/15) 1771100001129437 a001 1346269/17393796001*2537720636^(8/9) 1771100001129437 a001 1836311903/3010349*17393796001^(1/7) 1771100001129437 a001 2472169789339907/139583862445 1771100001129437 a001 1836311903/3010349*14662949395604^(1/9) 1771100001129437 a001 1836311903/3010349*(1/2+1/2*5^(1/2))^7 1771100001129437 a001 4807526976/3010349*2537720636^(1/9) 1771100001129437 a001 12586269025/3010349*2537720636^(1/15) 1771100001129437 a001 1346269/10749957122*45537549124^(13/17) 1771100001129437 a001 4807526976/3010349*312119004989^(1/11) 1771100001129437 a001 1346269/10749957122*14662949395604^(13/21) 1771100001129437 a001 4807526976/3010349*(1/2+1/2*5^(1/2))^5 1771100001129437 a001 1346269/10749957122*192900153618^(13/18) 1771100001129437 a001 4807526976/3010349*28143753123^(1/10) 1771100001129437 a001 1346269/10749957122*73681302247^(3/4) 1771100001129437 a001 1346269/45537549124*17393796001^(6/7) 1771100001129437 a001 1346269/10749957122*10749957122^(13/16) 1771100001129437 a001 12586269025/3010349*45537549124^(1/17) 1771100001129437 a001 12586269025/3010349*14662949395604^(1/21) 1771100001129437 a001 12586269025/3010349*(1/2+1/2*5^(1/2))^3 1771100001129437 a001 12586269025/3010349*10749957122^(1/16) 1771100001129437 a001 1346269/192900153618*45537549124^(15/17) 1771100001129437 a001 44361286907600631/2504730781961 1771100001129437 a001 1346269/192900153618*312119004989^(9/11) 1771100001129437 a001 3415863438493652/192866774113 1771100001129437 a001 1346269/192900153618*14662949395604^(5/7) 1771100001129437 a001 1346269/2139295485799*312119004989^(10/11) 1771100001129437 a001 1346269/1322157322203*14662949395604^(7/9) 1771100001129437 a004 Fibonacci(31)/Lucas(1)/(1/2+sqrt(5)/2)^9 1771100001129437 a001 1346269/1322157322203*505019158607^(7/8) 1771100001129437 a001 187917426909967705/10610209857723 1771100001129437 a001 1346269/3461452808002*192900153618^(17/18) 1771100001129437 a001 1346269/817138163596*192900153618^(8/9) 1771100001129437 a001 1346269/119218851371*312119004989^(4/5) 1771100001129437 a001 1346269/119218851371*23725150497407^(11/16) 1771100001129437 a001 53316291173/3010349 1771100001129437 a001 1346269/45537549124*45537549124^(14/17) 1771100001129437 a001 1346269/817138163596*73681302247^(12/13) 1771100001129437 a001 1346269/119218851371*73681302247^(11/13) 1771100001129437 a001 1346269/45537549124*817138163596^(14/19) 1771100001129437 a001 1346269/45537549124*14662949395604^(2/3) 1771100001129437 a001 20365011074/3010349*(1/2+1/2*5^(1/2))^2 1771100001129437 a001 1346269/45537549124*192900153618^(7/9) 1771100001129437 a001 20365011074/3010349*10749957122^(1/24) 1771100001129437 a001 1346269/192900153618*28143753123^(9/10) 1771100001129437 a001 2971215073/3010349*2537720636^(2/15) 1771100001129437 a001 20365011074/3010349*4106118243^(1/23) 1771100001129437 a001 1346269/17393796001*312119004989^(8/11) 1771100001129437 a001 7778742049/3010349*(1/2+1/2*5^(1/2))^4 1771100001129437 a001 10472279279565181/591286729879 1771100001129437 a001 7778742049/3010349*73681302247^(1/13) 1771100001129437 a001 1346269/17393796001*73681302247^(10/13) 1771100001129437 a001 7778742049/3010349*10749957122^(1/12) 1771100001129437 a001 1346269/17393796001*28143753123^(4/5) 1771100001129437 a001 1346269/119218851371*10749957122^(11/12) 1771100001129437 a001 1346269/45537549124*10749957122^(7/8) 1771100001129437 a001 1346269/192900153618*10749957122^(15/16) 1771100001129437 a001 1346269/312119004989*10749957122^(23/24) 1771100001129437 a001 7778742049/3010349*4106118243^(2/23) 1771100001129437 a001 1346269/17393796001*10749957122^(5/6) 1771100001129437 a001 20365011074/3010349*1568397607^(1/22) 1771100001129437 a001 2971215073/3010349*45537549124^(2/17) 1771100001129437 a001 1346269/6643838879*817138163596^(2/3) 1771100001129437 a001 2971215073/3010349*14662949395604^(2/21) 1771100001129437 a001 2971215073/3010349*(1/2+1/2*5^(1/2))^6 1771100001129437 a001 2971215073/3010349*10749957122^(1/8) 1771100001129437 a001 1346269/6643838879*10749957122^(19/24) 1771100001129437 a001 2971215073/3010349*4106118243^(3/23) 1771100001129437 a001 1346269/2537720636*2537720636^(4/5) 1771100001129437 a001 7778742049/3010349*1568397607^(1/11) 1771100001129437 a001 1346269/45537549124*4106118243^(21/23) 1771100001129437 a001 1346269/17393796001*4106118243^(20/23) 1771100001129437 a001 1346269/119218851371*4106118243^(22/23) 1771100001129437 a001 1346269/6643838879*4106118243^(19/23) 1771100001129437 a001 2971215073/3010349*1568397607^(3/22) 1771100001129437 a001 20365011074/3010349*599074578^(1/21) 1771100001129437 a001 1346269/2537720636*45537549124^(12/17) 1771100001129437 a001 1134903170/3010349*(1/2+1/2*5^(1/2))^8 1771100001129437 a001 1134903170/3010349*23725150497407^(1/8) 1771100001129437 a001 1346269/2537720636*192900153618^(2/3) 1771100001129437 a001 1134903170/3010349*73681302247^(2/13) 1771100001129437 a001 1346269/2537720636*73681302247^(9/13) 1771100001129437 a001 1134903170/3010349*10749957122^(1/6) 1771100001129437 a001 1346269/2537720636*10749957122^(3/4) 1771100001129437 a001 1134903170/3010349*4106118243^(4/23) 1771100001129437 a001 701408733/3010349*599074578^(3/14) 1771100001129437 a001 12586269025/3010349*599074578^(1/14) 1771100001129437 a001 1346269/2537720636*4106118243^(18/23) 1771100001129437 a001 1134903170/3010349*1568397607^(2/11) 1771100001129437 a001 7778742049/3010349*599074578^(2/21) 1771100001129437 a001 1346269/17393796001*1568397607^(10/11) 1771100001129437 a001 1346269/6643838879*1568397607^(19/22) 1771100001129437 a001 1346269/45537549124*1568397607^(21/22) 1771100001129437 a001 1836311903/3010349*599074578^(1/6) 1771100001129437 a001 2971215073/3010349*599074578^(1/7) 1771100001129437 a001 1346269/2537720636*1568397607^(9/11) 1771100001129437 a001 1134903170/3010349*599074578^(4/21) 1771100001129437 a001 20365011074/3010349*228826127^(1/20) 1771100001129437 a001 433494437/3010349*2537720636^(2/9) 1771100001129437 a001 1346269/969323029*45537549124^(2/3) 1771100001129437 a001 433494437/3010349*312119004989^(2/11) 1771100001129437 a001 433494437/3010349*(1/2+1/2*5^(1/2))^10 1771100001129437 a001 583600122205553/32951280099 1771100001129437 a001 433494437/3010349*28143753123^(1/5) 1771100001129437 a001 433494437/3010349*10749957122^(5/24) 1771100001129437 a001 1346269/969323029*10749957122^(17/24) 1771100001129437 a001 433494437/3010349*4106118243^(5/23) 1771100001129437 a001 1346269/969323029*4106118243^(17/23) 1771100001129437 a001 433494437/3010349*1568397607^(5/22) 1771100001129437 a001 1346269/969323029*1568397607^(17/22) 1771100001129437 a001 433494437/3010349*599074578^(5/21) 1771100001129437 a001 7778742049/3010349*228826127^(1/10) 1771100001129437 a001 1346269/1568397607*599074578^(5/6) 1771100001129437 a001 4807526976/3010349*228826127^(1/8) 1771100001129437 a001 1346269/2537720636*599074578^(6/7) 1771100001129437 a001 1346269/6643838879*599074578^(19/21) 1771100001129437 a001 1346269/10749957122*599074578^(13/14) 1771100001129437 a001 1346269/17393796001*599074578^(20/21) 1771100001129437 a001 2971215073/3010349*228826127^(3/20) 1771100001129437 a001 1346269/969323029*599074578^(17/21) 1771100001129437 a001 1134903170/3010349*228826127^(1/5) 1771100001129437 a001 433494437/3010349*228826127^(1/4) 1771100001129437 a001 20365011074/3010349*87403803^(1/19) 1771100001129437 a001 165580141/3010349*2537720636^(4/15) 1771100001129437 a001 165580141/3010349*45537549124^(4/17) 1771100001129437 a001 1346269/370248451*23725150497407^(1/2) 1771100001129437 a001 165580141/3010349*(1/2+1/2*5^(1/2))^12 1771100001129437 a001 165580141/3010349*192900153618^(2/9) 1771100001129437 a001 165580141/3010349*73681302247^(3/13) 1771100001129437 a001 1346269/370248451*73681302247^(8/13) 1771100001129437 a001 222915410843929/12586269025 1771100001129437 a001 165580141/3010349*10749957122^(1/4) 1771100001129437 a001 1346269/370248451*10749957122^(2/3) 1771100001129437 a001 165580141/3010349*4106118243^(6/23) 1771100001129437 a001 1346269/370248451*4106118243^(16/23) 1771100001129437 a001 165580141/3010349*1568397607^(3/11) 1771100001129437 a001 1346269/370248451*1568397607^(8/11) 1771100001129437 a001 165580141/3010349*599074578^(2/7) 1771100001129437 a001 1346269/370248451*599074578^(16/21) 1771100001129437 a001 1346269/141422324*141422324^(10/13) 1771100001129437 a001 165580141/3010349*228826127^(3/10) 1771100001129437 a001 7778742049/3010349*87403803^(2/19) 1771100001129437 a001 1346269/1568397607*228826127^(7/8) 1771100001129437 a001 1346269/969323029*228826127^(17/20) 1771100001129437 a001 1346269/2537720636*228826127^(9/10) 1771100001129437 a001 1346269/6643838879*228826127^(19/20) 1771100001129437 a001 2971215073/3010349*87403803^(3/19) 1771100001129437 a001 1346269/370248451*228826127^(4/5) 1771100001129437 a001 1134903170/3010349*87403803^(4/19) 1771100001129437 a001 433494437/3010349*87403803^(5/19) 1771100001129437 a001 165580141/3010349*87403803^(6/19) 1771100001129437 a001 20365011074/3010349*33385282^(1/18) 1771100001129437 a001 1346269/141422324*2537720636^(2/3) 1771100001129437 a001 63245986/3010349*17393796001^(2/7) 1771100001129437 a001 1346269/141422324*45537549124^(10/17) 1771100001129437 a001 1346269/141422324*312119004989^(6/11) 1771100001129437 a001 1346269/141422324*14662949395604^(10/21) 1771100001129437 a001 63245986/3010349*(1/2+1/2*5^(1/2))^14 1771100001129437 a001 1346269/141422324*192900153618^(5/9) 1771100001129437 a001 1346269/141422324*28143753123^(3/5) 1771100001129437 a001 63245986/3010349*10749957122^(7/24) 1771100001129437 a001 1346269/141422324*10749957122^(5/8) 1771100001129437 a001 42573055163117/2403763488 1771100001129437 a001 63245986/3010349*4106118243^(7/23) 1771100001129437 a001 1346269/141422324*4106118243^(15/23) 1771100001129437 a001 63245986/3010349*1568397607^(7/22) 1771100001129437 a001 1346269/141422324*1568397607^(15/22) 1771100001129437 a001 63245986/3010349*599074578^(1/3) 1771100001129437 a001 1346269/141422324*599074578^(5/7) 1771100001129437 a001 63245986/3010349*228826127^(7/20) 1771100001129437 a001 1346269/141422324*228826127^(3/4) 1771100001129437 a001 12586269025/3010349*33385282^(1/12) 1771100001129437 a001 63245986/3010349*87403803^(7/19) 1771100001129437 a001 7778742049/3010349*33385282^(1/9) 1771100001129437 a001 1346269/370248451*87403803^(16/19) 1771100001129437 a001 1346269/969323029*87403803^(17/19) 1771100001129437 a001 1346269/2537720636*87403803^(18/19) 1771100001129437 a001 2971215073/3010349*33385282^(1/6) 1771100001129437 a001 1346269/141422324*87403803^(15/19) 1771100001129437 a001 1134903170/3010349*33385282^(2/9) 1771100001129437 a001 701408733/3010349*33385282^(1/4) 1771100001129437 a001 39088169/3010349*33385282^(5/12) 1771100001129437 a001 433494437/3010349*33385282^(5/18) 1771100001129437 a001 165580141/3010349*33385282^(1/3) 1771100001129437 a001 1346269/54018521*17393796001^(4/7) 1771100001129437 a001 1346269/54018521*14662949395604^(4/9) 1771100001129437 a001 24157817/3010349*(1/2+1/2*5^(1/2))^16 1771100001129437 a001 24157817/3010349*73681302247^(4/13) 1771100001129437 a001 1346269/54018521*73681302247^(7/13) 1771100001129437 a001 24157817/3010349*10749957122^(1/3) 1771100001129437 a001 1346269/54018521*10749957122^(7/12) 1771100001129437 a001 24157817/3010349*4106118243^(8/23) 1771100001129437 a001 1346269/54018521*4106118243^(14/23) 1771100001129437 a001 32522920134773/1836311903 1771100001129437 a001 24157817/3010349*1568397607^(4/11) 1771100001129437 a001 1346269/54018521*1568397607^(7/11) 1771100001129437 a001 24157817/3010349*599074578^(8/21) 1771100001129437 a001 1346269/54018521*599074578^(2/3) 1771100001129437 a001 24157817/3010349*228826127^(2/5) 1771100001129437 a001 1346269/54018521*228826127^(7/10) 1771100001129437 a001 20365011074/3010349*12752043^(1/17) 1771100001129437 a001 24157817/3010349*87403803^(8/19) 1771100001129437 a001 63245986/3010349*33385282^(7/18) 1771100001129437 a001 1346269/54018521*87403803^(14/19) 1771100001129438 a001 7778742049/3010349*12752043^(2/17) 1771100001129438 a001 24157817/3010349*33385282^(4/9) 1771100001129438 a001 1346269/141422324*33385282^(5/6) 1771100001129438 a001 1346269/370248451*33385282^(8/9) 1771100001129438 a001 1346269/599074578*33385282^(11/12) 1771100001129438 a001 1346269/969323029*33385282^(17/18) 1771100001129438 a001 1346269/54018521*33385282^(7/9) 1771100001129439 a001 2971215073/3010349*12752043^(3/17) 1771100001129439 a001 1134903170/3010349*12752043^(4/17) 1771100001129439 a001 39088169/4870847*1860498^(8/15) 1771100001129440 a001 433494437/3010349*12752043^(5/17) 1771100001129440 a001 567451585/3940598*1860498^(1/3) 1771100001129441 a001 14930352/3010349*12752043^(1/2) 1771100001129441 a001 165580141/3010349*12752043^(6/17) 1771100001129441 a001 1346269/20633239*141422324^(2/3) 1771100001129441 a001 9227465/3010349*141422324^(6/13) 1771100001129441 a001 9227465/3010349*2537720636^(2/5) 1771100001129441 a001 9227465/3010349*45537549124^(6/17) 1771100001129441 a001 1346269/20633239*(1/2+1/2*5^(1/2))^26 1771100001129441 a001 9227465/3010349*14662949395604^(2/7) 1771100001129441 a001 9227465/3010349*(1/2+1/2*5^(1/2))^18 1771100001129441 a001 9227465/3010349*192900153618^(1/3) 1771100001129441 a001 1346269/20633239*73681302247^(1/2) 1771100001129441 a001 9227465/3010349*10749957122^(3/8) 1771100001129441 a001 1346269/20633239*10749957122^(13/24) 1771100001129441 a001 9227465/3010349*4106118243^(9/23) 1771100001129441 a001 1346269/20633239*4106118243^(13/23) 1771100001129441 a001 9227465/3010349*1568397607^(9/22) 1771100001129441 a001 1346269/20633239*1568397607^(13/22) 1771100001129441 a001 12422650078085/701408733 1771100001129441 a001 9227465/3010349*599074578^(3/7) 1771100001129441 a001 1346269/20633239*599074578^(13/21) 1771100001129441 a001 9227465/3010349*228826127^(9/20) 1771100001129441 a001 1346269/20633239*228826127^(13/20) 1771100001129441 a001 9227465/3010349*87403803^(9/19) 1771100001129441 a001 1346269/20633239*87403803^(13/19) 1771100001129441 a001 63245986/3010349*12752043^(7/17) 1771100001129441 a001 20365011074/3010349*4870847^(1/16) 1771100001129442 a001 9227465/3010349*33385282^(1/2) 1771100001129442 a001 1346269/20633239*33385282^(13/18) 1771100001129442 a001 24157817/3010349*12752043^(8/17) 1771100001129444 a001 1836311903/33385282*1860498^(2/5) 1771100001129444 a001 1346269/7881196*7881196^(8/11) 1771100001129446 a001 1602508992/29134601*1860498^(2/5) 1771100001129446 a001 12586269025/228826127*1860498^(2/5) 1771100001129446 a001 10983760033/199691526*1860498^(2/5) 1771100001129446 a001 86267571272/1568397607*1860498^(2/5) 1771100001129446 a001 75283811239/1368706081*1860498^(2/5) 1771100001129446 a001 591286729879/10749957122*1860498^(2/5) 1771100001129446 a001 12585437040/228811001*1860498^(2/5) 1771100001129446 a001 4052739537881/73681302247*1860498^(2/5) 1771100001129446 a001 3536736619241/64300051206*1860498^(2/5) 1771100001129446 a001 6557470319842/119218851371*1860498^(2/5) 1771100001129446 a001 2504730781961/45537549124*1860498^(2/5) 1771100001129446 a001 956722026041/17393796001*1860498^(2/5) 1771100001129446 a001 365435296162/6643838879*1860498^(2/5) 1771100001129446 a001 139583862445/2537720636*1860498^(2/5) 1771100001129446 a001 53316291173/969323029*1860498^(2/5) 1771100001129446 a001 20365011074/370248451*1860498^(2/5) 1771100001129446 a001 7778742049/141422324*1860498^(2/5) 1771100001129446 a001 7778742049/3010349*4870847^(1/8) 1771100001129446 a001 1346269/54018521*12752043^(14/17) 1771100001129446 a001 1346269/141422324*12752043^(15/17) 1771100001129446 a001 2971215073/54018521*1860498^(2/5) 1771100001129447 a001 9227465/3010349*12752043^(9/17) 1771100001129447 a001 1346269/370248451*12752043^(16/17) 1771100001129449 a001 1346269/20633239*12752043^(13/17) 1771100001129450 a001 1134903170/20633239*1860498^(2/5) 1771100001129451 a001 2971215073/3010349*4870847^(3/16) 1771100001129455 a001 1134903170/3010349*4870847^(1/4) 1771100001129460 a001 433494437/3010349*4870847^(5/16) 1771100001129463 a001 3524578/3010349*20633239^(4/7) 1771100001129465 a001 165580141/3010349*4870847^(3/8) 1771100001129465 a001 1346269/7881196*141422324^(8/13) 1771100001129465 a001 1346269/7881196*2537720636^(8/15) 1771100001129465 a001 3524578/3010349*2537720636^(4/9) 1771100001129465 a001 1346269/7881196*45537549124^(8/17) 1771100001129465 a001 1346269/7881196*14662949395604^(8/21) 1771100001129465 a001 1346269/7881196*(1/2+1/2*5^(1/2))^24 1771100001129465 a001 3524578/3010349*(1/2+1/2*5^(1/2))^20 1771100001129465 a001 3524578/3010349*505019158607^(5/14) 1771100001129465 a001 1346269/7881196*192900153618^(4/9) 1771100001129465 a001 3524578/3010349*73681302247^(5/13) 1771100001129465 a001 1346269/7881196*73681302247^(6/13) 1771100001129465 a001 3524578/3010349*28143753123^(2/5) 1771100001129465 a001 3524578/3010349*10749957122^(5/12) 1771100001129465 a001 1346269/7881196*10749957122^(1/2) 1771100001129465 a001 3524578/3010349*4106118243^(10/23) 1771100001129465 a001 1346269/7881196*4106118243^(12/23) 1771100001129465 a001 3524578/3010349*1568397607^(5/11) 1771100001129465 a001 1346269/7881196*1568397607^(6/11) 1771100001129465 a001 3524578/3010349*599074578^(10/21) 1771100001129465 a001 1346269/7881196*599074578^(4/7) 1771100001129465 a001 2372515049741/133957148 1771100001129465 a001 3524578/3010349*228826127^(1/2) 1771100001129465 a001 1346269/7881196*228826127^(3/5) 1771100001129465 a001 3524578/3010349*87403803^(10/19) 1771100001129465 a001 1346269/7881196*87403803^(12/19) 1771100001129466 a001 3524578/3010349*33385282^(5/9) 1771100001129466 a001 1346269/7881196*33385282^(2/3) 1771100001129467 a001 2178309/4870847*1860498^(11/15) 1771100001129469 a001 267914296/12752043*1860498^(7/15) 1771100001129469 a001 63245986/3010349*4870847^(7/16) 1771100001129471 a001 20365011074/3010349*1860498^(1/15) 1771100001129472 a001 3524578/3010349*12752043^(10/17) 1771100001129472 a001 14930352/4870847*1860498^(3/5) 1771100001129473 a001 1346269/7881196*12752043^(12/17) 1771100001129474 a001 433494437/7881196*1860498^(2/5) 1771100001129475 a001 24157817/3010349*4870847^(1/2) 1771100001129478 a001 701408733/33385282*1860498^(7/15) 1771100001129480 a001 1836311903/87403803*1860498^(7/15) 1771100001129480 a001 102287808/4868641*1860498^(7/15) 1771100001129480 a001 12586269025/599074578*1860498^(7/15) 1771100001129480 a001 32951280099/1568397607*1860498^(7/15) 1771100001129480 a001 86267571272/4106118243*1860498^(7/15) 1771100001129480 a001 225851433717/10749957122*1860498^(7/15) 1771100001129480 a001 591286729879/28143753123*1860498^(7/15) 1771100001129480 a001 1548008755920/73681302247*1860498^(7/15) 1771100001129480 a001 4052739537881/192900153618*1860498^(7/15) 1771100001129480 a001 225749145909/10745088481*1860498^(7/15) 1771100001129480 a001 6557470319842/312119004989*1860498^(7/15) 1771100001129480 a001 2504730781961/119218851371*1860498^(7/15) 1771100001129480 a001 956722026041/45537549124*1860498^(7/15) 1771100001129480 a001 365435296162/17393796001*1860498^(7/15) 1771100001129480 a001 139583862445/6643838879*1860498^(7/15) 1771100001129480 a001 53316291173/2537720636*1860498^(7/15) 1771100001129480 a001 20365011074/969323029*1860498^(7/15) 1771100001129480 a001 7778742049/370248451*1860498^(7/15) 1771100001129480 a001 2971215073/141422324*1860498^(7/15) 1771100001129481 a001 1134903170/54018521*1860498^(7/15) 1771100001129481 a001 86267571272/12752043*710647^(1/14) 1771100001129481 a001 1836311903/1860498*710647^(3/14) 1771100001129483 a001 9227465/3010349*4870847^(9/16) 1771100001129484 a001 433494437/20633239*1860498^(7/15) 1771100001129486 a001 165580141/12752043*1860498^(1/2) 1771100001129488 a001 12586269025/3010349*1860498^(1/10) 1771100001129490 a001 32264490531/4769326*710647^(1/14) 1771100001129491 a001 591286729879/87403803*710647^(1/14) 1771100001129492 a001 1548008755920/228826127*710647^(1/14) 1771100001129492 a001 4052739537881/599074578*710647^(1/14) 1771100001129492 a001 1515744265389/224056801*710647^(1/14) 1771100001129492 a001 6557470319842/969323029*710647^(1/14) 1771100001129492 a001 2504730781961/370248451*710647^(1/14) 1771100001129492 a001 956722026041/141422324*710647^(1/14) 1771100001129492 a001 365435296162/54018521*710647^(1/14) 1771100001129495 a001 433494437/33385282*1860498^(1/2) 1771100001129496 a001 139583862445/20633239*710647^(1/14) 1771100001129497 a001 5702887/4870847*1860498^(2/3) 1771100001129497 a001 1134903170/87403803*1860498^(1/2) 1771100001129497 a001 2971215073/228826127*1860498^(1/2) 1771100001129497 a001 7778742049/599074578*1860498^(1/2) 1771100001129497 a001 20365011074/1568397607*1860498^(1/2) 1771100001129497 a001 53316291173/4106118243*1860498^(1/2) 1771100001129497 a001 139583862445/10749957122*1860498^(1/2) 1771100001129497 a001 365435296162/28143753123*1860498^(1/2) 1771100001129497 a001 956722026041/73681302247*1860498^(1/2) 1771100001129497 a001 2504730781961/192900153618*1860498^(1/2) 1771100001129497 a001 10610209857723/817138163596*1860498^(1/2) 1771100001129497 a001 4052739537881/312119004989*1860498^(1/2) 1771100001129497 a001 1548008755920/119218851371*1860498^(1/2) 1771100001129497 a001 591286729879/45537549124*1860498^(1/2) 1771100001129497 a001 7787980473/599786069*1860498^(1/2) 1771100001129497 a001 86267571272/6643838879*1860498^(1/2) 1771100001129497 a001 32951280099/2537720636*1860498^(1/2) 1771100001129497 a001 12586269025/969323029*1860498^(1/2) 1771100001129497 a001 4807526976/370248451*1860498^(1/2) 1771100001129497 a001 1836311903/141422324*1860498^(1/2) 1771100001129498 a001 701408733/54018521*1860498^(1/2) 1771100001129501 a001 9238424/711491*1860498^(1/2) 1771100001129501 a001 1346269/20633239*4870847^(13/16) 1771100001129503 a001 1346269/54018521*4870847^(7/8) 1771100001129503 a001 34111385/4250681*1860498^(8/15) 1771100001129505 a001 7778742049/3010349*1860498^(2/15) 1771100001129507 a001 1346269/141422324*4870847^(15/16) 1771100001129509 a001 165580141/7881196*1860498^(7/15) 1771100001129512 a001 3524578/3010349*4870847^(5/8) 1771100001129513 a001 133957148/16692641*1860498^(8/15) 1771100001129514 a001 233802911/29134601*1860498^(8/15) 1771100001129514 a001 1836311903/228826127*1860498^(8/15) 1771100001129514 a001 267084832/33281921*1860498^(8/15) 1771100001129514 a001 12586269025/1568397607*1860498^(8/15) 1771100001129514 a001 10983760033/1368706081*1860498^(8/15) 1771100001129514 a001 43133785636/5374978561*1860498^(8/15) 1771100001129514 a001 75283811239/9381251041*1860498^(8/15) 1771100001129514 a001 591286729879/73681302247*1860498^(8/15) 1771100001129514 a001 86000486440/10716675201*1860498^(8/15) 1771100001129514 a001 3278735159921/408569081798*1860498^(8/15) 1771100001129514 a001 2504730781961/312119004989*1860498^(8/15) 1771100001129514 a001 956722026041/119218851371*1860498^(8/15) 1771100001129514 a001 182717648081/22768774562*1860498^(8/15) 1771100001129514 a001 139583862445/17393796001*1860498^(8/15) 1771100001129514 a001 53316291173/6643838879*1860498^(8/15) 1771100001129514 a001 10182505537/1268860318*1860498^(8/15) 1771100001129514 a001 7778742049/969323029*1860498^(8/15) 1771100001129514 a001 2971215073/370248451*1860498^(8/15) 1771100001129514 a001 567451585/70711162*1860498^(8/15) 1771100001129515 a001 433494437/54018521*1860498^(8/15) 1771100001129518 a001 165580141/20633239*1860498^(8/15) 1771100001129520 a001 53316291173/7881196*710647^(1/14) 1771100001129521 a001 1346269/7881196*4870847^(3/4) 1771100001129522 a001 4807526976/3010349*1860498^(1/6) 1771100001129526 a001 102334155/7881196*1860498^(1/2) 1771100001129537 a001 39088169/12752043*1860498^(3/5) 1771100001129539 a001 2971215073/3010349*1860498^(1/5) 1771100001129543 a001 31622993/3940598*1860498^(8/15) 1771100001129547 a001 14619165/4769326*1860498^(3/5) 1771100001129548 a001 267914296/87403803*1860498^(3/5) 1771100001129548 a001 701408733/228826127*1860498^(3/5) 1771100001129548 a001 1836311903/599074578*1860498^(3/5) 1771100001129548 a001 686789568/224056801*1860498^(3/5) 1771100001129548 a001 12586269025/4106118243*1860498^(3/5) 1771100001129548 a001 32951280099/10749957122*1860498^(3/5) 1771100001129548 a001 86267571272/28143753123*1860498^(3/5) 1771100001129548 a001 32264490531/10525900321*1860498^(3/5) 1771100001129548 a001 591286729879/192900153618*1860498^(3/5) 1771100001129548 a001 1548008755920/505019158607*1860498^(3/5) 1771100001129548 a001 1515744265389/494493258286*1860498^(3/5) 1771100001129548 a001 2504730781961/817138163596*1860498^(3/5) 1771100001129548 a001 956722026041/312119004989*1860498^(3/5) 1771100001129548 a001 365435296162/119218851371*1860498^(3/5) 1771100001129548 a001 139583862445/45537549124*1860498^(3/5) 1771100001129548 a001 53316291173/17393796001*1860498^(3/5) 1771100001129548 a001 20365011074/6643838879*1860498^(3/5) 1771100001129548 a001 7778742049/2537720636*1860498^(3/5) 1771100001129548 a001 2971215073/969323029*1860498^(3/5) 1771100001129548 a001 1134903170/370248451*1860498^(3/5) 1771100001129548 a001 433494437/141422324*1860498^(3/5) 1771100001129549 a001 165580141/54018521*1860498^(3/5) 1771100001129552 a001 63245986/20633239*1860498^(3/5) 1771100001129553 a001 3524578/4870847*1860498^(7/10) 1771100001129561 a001 4807526976/1149851*439204^(1/9) 1771100001129565 a001 726103/4250681*1860498^(4/5) 1771100001129570 a001 4976784/4250681*1860498^(2/3) 1771100001129573 a001 1134903170/3010349*1860498^(4/15) 1771100001129577 a001 24157817/7881196*1860498^(3/5) 1771100001129581 a001 39088169/33385282*1860498^(2/3) 1771100001129582 a001 34111385/29134601*1860498^(2/3) 1771100001129582 a001 267914296/228826127*1860498^(2/3) 1771100001129582 a001 233802911/199691526*1860498^(2/3) 1771100001129582 a001 1836311903/1568397607*1860498^(2/3) 1771100001129582 a001 1602508992/1368706081*1860498^(2/3) 1771100001129582 a001 12586269025/10749957122*1860498^(2/3) 1771100001129582 a001 10983760033/9381251041*1860498^(2/3) 1771100001129582 a001 86267571272/73681302247*1860498^(2/3) 1771100001129582 a001 75283811239/64300051206*1860498^(2/3) 1771100001129582 a001 2504730781961/2139295485799*1860498^(2/3) 1771100001129582 a001 365435296162/312119004989*1860498^(2/3) 1771100001129582 a001 139583862445/119218851371*1860498^(2/3) 1771100001129582 a001 53316291173/45537549124*1860498^(2/3) 1771100001129582 a001 20365011074/17393796001*1860498^(2/3) 1771100001129582 a001 7778742049/6643838879*1860498^(2/3) 1771100001129582 a001 2971215073/2537720636*1860498^(2/3) 1771100001129582 a001 1134903170/969323029*1860498^(2/3) 1771100001129582 a001 433494437/370248451*1860498^(2/3) 1771100001129582 a001 165580141/141422324*1860498^(2/3) 1771100001129583 a001 63245986/54018521*1860498^(2/3) 1771100001129587 a001 24157817/20633239*1860498^(2/3) 1771100001129590 a001 701408733/3010349*1860498^(3/10) 1771100001129593 a001 9227465/12752043*1860498^(7/10) 1771100001129595 a001 5702887/12752043*1860498^(11/15) 1771100001129597 a001 2178309/20633239*1860498^(5/6) 1771100001129598 a001 24157817/33385282*1860498^(7/10) 1771100001129599 a001 63245986/87403803*1860498^(7/10) 1771100001129599 a001 165580141/228826127*1860498^(7/10) 1771100001129599 a001 433494437/599074578*1860498^(7/10) 1771100001129599 a001 1134903170/1568397607*1860498^(7/10) 1771100001129599 a001 2971215073/4106118243*1860498^(7/10) 1771100001129599 a001 7778742049/10749957122*1860498^(7/10) 1771100001129599 a001 20365011074/28143753123*1860498^(7/10) 1771100001129599 a001 53316291173/73681302247*1860498^(7/10) 1771100001129599 a001 139583862445/192900153618*1860498^(7/10) 1771100001129599 a001 365435296162/505019158607*1860498^(7/10) 1771100001129599 a001 10610209857723/14662949395604*1860498^(7/10) 1771100001129599 a001 225851433717/312119004989*1860498^(7/10) 1771100001129599 a001 86267571272/119218851371*1860498^(7/10) 1771100001129599 a001 32951280099/45537549124*1860498^(7/10) 1771100001129599 a001 12586269025/17393796001*1860498^(7/10) 1771100001129599 a001 4807526976/6643838879*1860498^(7/10) 1771100001129599 a001 1836311903/2537720636*1860498^(7/10) 1771100001129599 a001 701408733/969323029*1860498^(7/10) 1771100001129599 a001 267914296/370248451*1860498^(7/10) 1771100001129599 a001 102334155/141422324*1860498^(7/10) 1771100001129600 a001 39088169/54018521*1860498^(7/10) 1771100001129602 a001 14930352/20633239*1860498^(7/10) 1771100001129606 a001 567451585/930249*710647^(1/4) 1771100001129607 a001 433494437/3010349*1860498^(1/3) 1771100001129608 a001 311187/4769326*1860498^(13/15) 1771100001129613 a001 1346269/3010349*7881196^(2/3) 1771100001129613 a001 7465176/16692641*1860498^(11/15) 1771100001129615 a001 9227465/7881196*1860498^(2/3) 1771100001129616 a001 39088169/87403803*1860498^(11/15) 1771100001129616 a001 102334155/228826127*1860498^(11/15) 1771100001129616 a001 133957148/299537289*1860498^(11/15) 1771100001129616 a001 701408733/1568397607*1860498^(11/15) 1771100001129616 a001 1836311903/4106118243*1860498^(11/15) 1771100001129616 a001 2403763488/5374978561*1860498^(11/15) 1771100001129616 a001 12586269025/28143753123*1860498^(11/15) 1771100001129616 a001 32951280099/73681302247*1860498^(11/15) 1771100001129616 a001 43133785636/96450076809*1860498^(11/15) 1771100001129616 a001 225851433717/505019158607*1860498^(11/15) 1771100001129616 a001 10610209857723/23725150497407*1860498^(11/15) 1771100001129616 a001 139583862445/312119004989*1860498^(11/15) 1771100001129616 a001 53316291173/119218851371*1860498^(11/15) 1771100001129616 a001 10182505537/22768774562*1860498^(11/15) 1771100001129616 a001 7778742049/17393796001*1860498^(11/15) 1771100001129616 a001 2971215073/6643838879*1860498^(11/15) 1771100001129616 a001 567451585/1268860318*1860498^(11/15) 1771100001129616 a001 433494437/969323029*1860498^(11/15) 1771100001129616 a001 165580141/370248451*1860498^(11/15) 1771100001129617 a001 31622993/70711162*1860498^(11/15) 1771100001129617 a001 5702887/7881196*1860498^(7/10) 1771100001129618 a001 24157817/54018521*1860498^(11/15) 1771100001129625 a001 9227465/20633239*1860498^(11/15) 1771100001129628 a001 2178309/54018521*1860498^(9/10) 1771100001129632 a001 1346269/3010349*312119004989^(2/5) 1771100001129632 a001 1346269/3010349*(1/2+1/2*5^(1/2))^22 1771100001129632 a001 1346269/3010349*10749957122^(11/24) 1771100001129632 a001 1346269/3010349*4106118243^(11/23) 1771100001129632 a001 1346269/3010349*1568397607^(1/2) 1771100001129632 a001 1346269/3010349*599074578^(11/21) 1771100001129632 a001 1346269/3010349*228826127^(11/20) 1771100001129632 a001 1812440220361/102334155 1771100001129632 a001 1346269/3010349*87403803^(11/19) 1771100001129633 a001 1346269/3010349*33385282^(11/18) 1771100001129638 a001 5702887/33385282*1860498^(4/5) 1771100001129639 a001 1346269/3010349*12752043^(11/17) 1771100001129641 a001 165580141/3010349*1860498^(2/5) 1771100001129644 a001 726103/29134601*1860498^(14/15) 1771100001129649 a001 4976784/29134601*1860498^(4/5) 1771100001129650 a001 39088169/228826127*1860498^(4/5) 1771100001129651 a001 34111385/199691526*1860498^(4/5) 1771100001129651 a001 267914296/1568397607*1860498^(4/5) 1771100001129651 a001 233802911/1368706081*1860498^(4/5) 1771100001129651 a001 1836311903/10749957122*1860498^(4/5) 1771100001129651 a001 1602508992/9381251041*1860498^(4/5) 1771100001129651 a001 12586269025/73681302247*1860498^(4/5) 1771100001129651 a001 10983760033/64300051206*1860498^(4/5) 1771100001129651 a001 86267571272/505019158607*1860498^(4/5) 1771100001129651 a001 75283811239/440719107401*1860498^(4/5) 1771100001129651 a001 2504730781961/14662949395604*1860498^(4/5) 1771100001129651 a001 139583862445/817138163596*1860498^(4/5) 1771100001129651 a001 53316291173/312119004989*1860498^(4/5) 1771100001129651 a001 20365011074/119218851371*1860498^(4/5) 1771100001129651 a001 7778742049/45537549124*1860498^(4/5) 1771100001129651 a001 2971215073/17393796001*1860498^(4/5) 1771100001129651 a001 1134903170/6643838879*1860498^(4/5) 1771100001129651 a001 433494437/2537720636*1860498^(4/5) 1771100001129651 a001 165580141/969323029*1860498^(4/5) 1771100001129651 a001 63245986/370248451*1860498^(4/5) 1771100001129651 a001 24157817/141422324*1860498^(4/5) 1771100001129655 a001 9227465/54018521*1860498^(4/5) 1771100001129657 a001 5702887/54018521*1860498^(5/6) 1771100001129666 a001 3732588/35355581*1860498^(5/6) 1771100001129667 a001 39088169/370248451*1860498^(5/6) 1771100001129668 a001 12586269025/4870847*710647^(1/7) 1771100001129668 a001 102334155/969323029*1860498^(5/6) 1771100001129668 a001 66978574/634430159*1860498^(5/6) 1771100001129668 a001 701408733/6643838879*1860498^(5/6) 1771100001129668 a001 1836311903/17393796001*1860498^(5/6) 1771100001129668 a001 1201881744/11384387281*1860498^(5/6) 1771100001129668 a001 12586269025/119218851371*1860498^(5/6) 1771100001129668 a001 32951280099/312119004989*1860498^(5/6) 1771100001129668 a001 21566892818/204284540899*1860498^(5/6) 1771100001129668 a001 225851433717/2139295485799*1860498^(5/6) 1771100001129668 a001 182717648081/1730726404001*1860498^(5/6) 1771100001129668 a001 139583862445/1322157322203*1860498^(5/6) 1771100001129668 a001 53316291173/505019158607*1860498^(5/6) 1771100001129668 a001 10182505537/96450076809*1860498^(5/6) 1771100001129668 a001 7778742049/73681302247*1860498^(5/6) 1771100001129668 a001 2971215073/28143753123*1860498^(5/6) 1771100001129668 a001 567451585/5374978561*1860498^(5/6) 1771100001129668 a001 433494437/4106118243*1860498^(5/6) 1771100001129668 a001 165580141/1568397607*1860498^(5/6) 1771100001129668 a001 31622993/299537289*1860498^(5/6) 1771100001129668 a001 24157817/228826127*1860498^(5/6) 1771100001129672 a001 9227465/87403803*1860498^(5/6) 1771100001129673 a001 1762289/3940598*1860498^(11/15) 1771100001129674 a001 5702887/87403803*1860498^(13/15) 1771100001129676 a001 63245986/3010349*1860498^(7/15) 1771100001129683 a001 14930352/228826127*1860498^(13/15) 1771100001129683 a001 3524578/20633239*1860498^(4/5) 1771100001129683 a001 1346269/3010349*4870847^(11/16) 1771100001129684 a001 39088169/599074578*1860498^(13/15) 1771100001129685 a001 14619165/224056801*1860498^(13/15) 1771100001129685 a001 267914296/4106118243*1860498^(13/15) 1771100001129685 a001 701408733/10749957122*1860498^(13/15) 1771100001129685 a001 1836311903/28143753123*1860498^(13/15) 1771100001129685 a001 686789568/10525900321*1860498^(13/15) 1771100001129685 a001 12586269025/192900153618*1860498^(13/15) 1771100001129685 a001 32951280099/505019158607*1860498^(13/15) 1771100001129685 a001 86267571272/1322157322203*1860498^(13/15) 1771100001129685 a001 32264490531/494493258286*1860498^(13/15) 1771100001129685 a001 1548008755920/23725150497407*1860498^(13/15) 1771100001129685 a001 139583862445/2139295485799*1860498^(13/15) 1771100001129685 a001 53316291173/817138163596*1860498^(13/15) 1771100001129685 a001 20365011074/312119004989*1860498^(13/15) 1771100001129685 a001 7778742049/119218851371*1860498^(13/15) 1771100001129685 a001 2971215073/45537549124*1860498^(13/15) 1771100001129685 a001 1134903170/17393796001*1860498^(13/15) 1771100001129685 a001 433494437/6643838879*1860498^(13/15) 1771100001129685 a001 165580141/2537720636*1860498^(13/15) 1771100001129685 a001 63245986/969323029*1860498^(13/15) 1771100001129685 a001 24157817/370248451*1860498^(13/15) 1771100001129687 a001 20365011074/3010349*710647^(1/14) 1771100001129689 a001 9227465/141422324*1860498^(13/15) 1771100001129691 a001 5702887/141422324*1860498^(9/10) 1771100001129692 a001 39088169/3010349*1860498^(1/2) 1771100001129695 a001 1762289/16692641*1860498^(5/6) 1771100001129700 a001 14930352/370248451*1860498^(9/10) 1771100001129701 a001 39088169/969323029*1860498^(9/10) 1771100001129702 a001 9303105/230701876*1860498^(9/10) 1771100001129702 a001 267914296/6643838879*1860498^(9/10) 1771100001129702 a001 701408733/17393796001*1860498^(9/10) 1771100001129702 a001 1836311903/45537549124*1860498^(9/10) 1771100001129702 a001 4807526976/119218851371*1860498^(9/10) 1771100001129702 a001 1144206275/28374454999*1860498^(9/10) 1771100001129702 a001 32951280099/817138163596*1860498^(9/10) 1771100001129702 a001 86267571272/2139295485799*1860498^(9/10) 1771100001129702 a001 225851433717/5600748293801*1860498^(9/10) 1771100001129702 a001 365435296162/9062201101803*1860498^(9/10) 1771100001129702 a001 139583862445/3461452808002*1860498^(9/10) 1771100001129702 a001 53316291173/1322157322203*1860498^(9/10) 1771100001129702 a001 20365011074/505019158607*1860498^(9/10) 1771100001129702 a001 7778742049/192900153618*1860498^(9/10) 1771100001129702 a001 2971215073/73681302247*1860498^(9/10) 1771100001129702 a001 1134903170/28143753123*1860498^(9/10) 1771100001129702 a001 433494437/10749957122*1860498^(9/10) 1771100001129702 a001 165580141/4106118243*1860498^(9/10) 1771100001129702 a001 63245986/1568397607*1860498^(9/10) 1771100001129702 a001 24157817/599074578*1860498^(9/10) 1771100001129704 a001 514229/710647*710647^(3/4) 1771100001129706 a001 9227465/228826127*1860498^(9/10) 1771100001129708 a001 5702887/228826127*1860498^(14/15) 1771100001129710 a001 24157817/3010349*1860498^(8/15) 1771100001129714 a001 3524578/54018521*1860498^(13/15) 1771100001129717 a001 829464/33281921*1860498^(14/15) 1771100001129719 a001 39088169/1568397607*1860498^(14/15) 1771100001129719 a001 34111385/1368706081*1860498^(14/15) 1771100001129719 a001 133957148/5374978561*1860498^(14/15) 1771100001129719 a001 233802911/9381251041*1860498^(14/15) 1771100001129719 a001 1836311903/73681302247*1860498^(14/15) 1771100001129719 a001 267084832/10716675201*1860498^(14/15) 1771100001129719 a001 12586269025/505019158607*1860498^(14/15) 1771100001129719 a001 10983760033/440719107401*1860498^(14/15) 1771100001129719 a001 43133785636/1730726404001*1860498^(14/15) 1771100001129719 a001 182717648081/7331474697802*1860498^(14/15) 1771100001129719 a001 139583862445/5600748293801*1860498^(14/15) 1771100001129719 a001 53316291173/2139295485799*1860498^(14/15) 1771100001129719 a001 10182505537/408569081798*1860498^(14/15) 1771100001129719 a001 7778742049/312119004989*1860498^(14/15) 1771100001129719 a001 2971215073/119218851371*1860498^(14/15) 1771100001129719 a001 567451585/22768774562*1860498^(14/15) 1771100001129719 a001 433494437/17393796001*1860498^(14/15) 1771100001129719 a001 165580141/6643838879*1860498^(14/15) 1771100001129719 a001 31622993/1268860318*1860498^(14/15) 1771100001129719 a001 24157817/969323029*1860498^(14/15) 1771100001129720 a001 2178309/3010349*1860498^(7/10) 1771100001129723 a001 9227465/370248451*1860498^(14/15) 1771100001129730 a001 3524578/87403803*1860498^(9/10) 1771100001129731 a001 10983760033/4250681*710647^(1/7) 1771100001129732 a001 233802911/620166*710647^(2/7) 1771100001129741 a001 43133785636/16692641*710647^(1/7) 1771100001129742 a001 75283811239/29134601*710647^(1/7) 1771100001129742 a001 591286729879/228826127*710647^(1/7) 1771100001129742 a001 86000486440/33281921*710647^(1/7) 1771100001129742 a001 4052739537881/1568397607*710647^(1/7) 1771100001129742 a001 3536736619241/1368706081*710647^(1/7) 1771100001129742 a001 3278735159921/1268860318*710647^(1/7) 1771100001129742 a001 2504730781961/969323029*710647^(1/7) 1771100001129742 a001 956722026041/370248451*710647^(1/7) 1771100001129742 a001 182717648081/70711162*710647^(1/7) 1771100001129743 a001 139583862445/54018521*710647^(1/7) 1771100001129746 a001 53316291173/20633239*710647^(1/7) 1771100001129747 a001 1762289/70711162*1860498^(14/15) 1771100001129748 a001 9227465/3010349*1860498^(3/5) 1771100001129753 a001 1/416020*(1/2+1/2*5^(1/2))^52 1771100001129771 a001 10182505537/3940598*710647^(1/7) 1771100001129806 a001 3524578/3010349*1860498^(2/3) 1771100001129852 a001 1346269/12752043*1860498^(5/6) 1771100001129874 a001 1346269/7881196*1860498^(4/5) 1771100001129884 a001 1346269/20633239*1860498^(13/15) 1771100001129896 a001 1346269/33385282*1860498^(9/10) 1771100001129915 a001 1346269/54018521*1860498^(14/15) 1771100001129918 a001 4807526976/4870847*710647^(3/14) 1771100001129938 a001 7778742049/3010349*710647^(1/7) 1771100001129982 a001 12586269025/12752043*710647^(3/14) 1771100001129982 a001 133957148/930249*710647^(5/14) 1771100001129991 a001 32951280099/33385282*710647^(3/14) 1771100001129992 a001 86267571272/87403803*710647^(3/14) 1771100001129993 a001 225851433717/228826127*710647^(3/14) 1771100001129993 a001 591286729879/599074578*710647^(3/14) 1771100001129993 a001 1548008755920/1568397607*710647^(3/14) 1771100001129993 a001 4052739537881/4106118243*710647^(3/14) 1771100001129993 a001 4807525989/4870846*710647^(3/14) 1771100001129993 a001 6557470319842/6643838879*710647^(3/14) 1771100001129993 a001 2504730781961/2537720636*710647^(3/14) 1771100001129993 a001 956722026041/969323029*710647^(3/14) 1771100001129993 a001 365435296162/370248451*710647^(3/14) 1771100001129993 a001 139583862445/141422324*710647^(3/14) 1771100001129993 a001 53316291173/54018521*710647^(3/14) 1771100001129997 a001 20365011074/20633239*710647^(3/14) 1771100001130007 a001 1346269/3010349*1860498^(11/15) 1771100001130021 a001 7778742049/7881196*710647^(3/14) 1771100001130043 a001 2971215073/4870847*710647^(1/4) 1771100001130051 a001 832040/1149851*7881196^(7/11) 1771100001130067 a001 832040/1149851*20633239^(3/5) 1771100001130068 a001 427859097160/24157817 1771100001130069 a001 832040/1149851*141422324^(7/13) 1771100001130069 a001 832040/1149851*2537720636^(7/15) 1771100001130069 a001 832040/1149851*17393796001^(3/7) 1771100001130069 a001 832040/1149851*45537549124^(7/17) 1771100001130069 a001 514229/1860498*(1/2+1/2*5^(1/2))^23 1771100001130069 a001 832040/1149851*14662949395604^(1/3) 1771100001130069 a001 832040/1149851*(1/2+1/2*5^(1/2))^21 1771100001130069 a001 832040/1149851*192900153618^(7/18) 1771100001130069 a001 832040/1149851*10749957122^(7/16) 1771100001130069 a001 514229/1860498*4106118243^(1/2) 1771100001130069 a001 832040/1149851*599074578^(1/2) 1771100001130070 a001 832040/1149851*33385282^(7/12) 1771100001130107 a001 7778742049/12752043*710647^(1/4) 1771100001130116 a001 10182505537/16692641*710647^(1/4) 1771100001130118 a001 53316291173/87403803*710647^(1/4) 1771100001130118 a001 139583862445/228826127*710647^(1/4) 1771100001130118 a001 182717648081/299537289*710647^(1/4) 1771100001130118 a001 956722026041/1568397607*710647^(1/4) 1771100001130118 a001 2504730781961/4106118243*710647^(1/4) 1771100001130118 a001 3278735159921/5374978561*710647^(1/4) 1771100001130118 a001 10610209857723/17393796001*710647^(1/4) 1771100001130118 a001 4052739537881/6643838879*710647^(1/4) 1771100001130118 a001 1134903780/1860499*710647^(1/4) 1771100001130118 a001 591286729879/969323029*710647^(1/4) 1771100001130118 a001 225851433717/370248451*710647^(1/4) 1771100001130118 a001 21566892818/35355581*710647^(1/4) 1771100001130119 a001 32951280099/54018521*710647^(1/4) 1771100001130122 a001 1144206275/1875749*710647^(1/4) 1771100001130146 a001 1201881744/1970299*710647^(1/4) 1771100001130169 a001 1836311903/4870847*710647^(2/7) 1771100001130188 a001 2971215073/3010349*710647^(3/14) 1771100001130232 a001 1602508992/4250681*710647^(2/7) 1771100001130233 a001 831985/15126*710647^(3/7) 1771100001130242 a001 12586269025/33385282*710647^(2/7) 1771100001130243 a001 10983760033/29134601*710647^(2/7) 1771100001130243 a001 86267571272/228826127*710647^(2/7) 1771100001130243 a001 267913919/710646*710647^(2/7) 1771100001130243 a001 591286729879/1568397607*710647^(2/7) 1771100001130243 a001 516002918640/1368706081*710647^(2/7) 1771100001130243 a001 4052739537881/10749957122*710647^(2/7) 1771100001130243 a001 3536736619241/9381251041*710647^(2/7) 1771100001130243 a001 6557470319842/17393796001*710647^(2/7) 1771100001130243 a001 2504730781961/6643838879*710647^(2/7) 1771100001130243 a001 956722026041/2537720636*710647^(2/7) 1771100001130243 a001 365435296162/969323029*710647^(2/7) 1771100001130243 a001 139583862445/370248451*710647^(2/7) 1771100001130243 a001 53316291173/141422324*710647^(2/7) 1771100001130244 a001 20365011074/54018521*710647^(2/7) 1771100001130247 a001 7778742049/20633239*710647^(2/7) 1771100001130272 a001 2971215073/7881196*710647^(2/7) 1771100001130313 a001 1836311903/3010349*710647^(1/4) 1771100001130419 a001 701408733/4870847*710647^(5/14) 1771100001130427 a001 832040/1149851*1860498^(7/10) 1771100001130439 a001 1134903170/3010349*710647^(2/7) 1771100001130483 a001 39088169/1860498*710647^(1/2) 1771100001130483 a001 1836311903/12752043*710647^(5/14) 1771100001130492 a001 14930208/103681*710647^(5/14) 1771100001130493 a001 12586269025/87403803*710647^(5/14) 1771100001130494 a001 32951280099/228826127*710647^(5/14) 1771100001130494 a001 43133785636/299537289*710647^(5/14) 1771100001130494 a001 32264490531/224056801*710647^(5/14) 1771100001130494 a001 591286729879/4106118243*710647^(5/14) 1771100001130494 a001 774004377960/5374978561*710647^(5/14) 1771100001130494 a001 4052739537881/28143753123*710647^(5/14) 1771100001130494 a001 1515744265389/10525900321*710647^(5/14) 1771100001130494 a001 3278735159921/22768774562*710647^(5/14) 1771100001130494 a001 2504730781961/17393796001*710647^(5/14) 1771100001130494 a001 956722026041/6643838879*710647^(5/14) 1771100001130494 a001 182717648081/1268860318*710647^(5/14) 1771100001130494 a001 139583862445/969323029*710647^(5/14) 1771100001130494 a001 53316291173/370248451*710647^(5/14) 1771100001130494 a001 10182505537/70711162*710647^(5/14) 1771100001130494 a001 7778742049/54018521*710647^(5/14) 1771100001130498 a001 2971215073/20633239*710647^(5/14) 1771100001130503 a001 514229/4870847*20633239^(5/7) 1771100001130506 a001 1120149658761/63245986 1771100001130506 a001 514229/4870847*2537720636^(5/9) 1771100001130506 a001 514229/4870847*312119004989^(5/11) 1771100001130506 a001 514229/4870847*(1/2+1/2*5^(1/2))^25 1771100001130506 a001 514229/4870847*3461452808002^(5/12) 1771100001130506 a001 2178309/1149851*817138163596^(1/3) 1771100001130506 a001 2178309/1149851*(1/2+1/2*5^(1/2))^19 1771100001130506 a001 514229/4870847*28143753123^(1/2) 1771100001130506 a001 514229/4870847*228826127^(5/8) 1771100001130506 a001 2178309/1149851*87403803^(1/2) 1771100001130522 a001 567451585/3940598*710647^(5/14) 1771100001130547 a001 514229/12752043*7881196^(9/11) 1771100001130555 a001 514229/54018521*7881196^(10/11) 1771100001130566 a001 14930352/1149851*7881196^(5/11) 1771100001130570 a001 514229/12752043*141422324^(9/13) 1771100001130570 a001 2932589879123/165580141 1771100001130570 a001 514229/12752043*2537720636^(3/5) 1771100001130570 a001 514229/12752043*45537549124^(9/17) 1771100001130570 a001 5702887/1149851*45537549124^(1/3) 1771100001130570 a001 514229/12752043*14662949395604^(3/7) 1771100001130570 a001 514229/12752043*(1/2+1/2*5^(1/2))^27 1771100001130570 a001 5702887/1149851*(1/2+1/2*5^(1/2))^17 1771100001130570 a001 514229/12752043*192900153618^(1/2) 1771100001130570 a001 514229/12752043*10749957122^(9/16) 1771100001130570 a001 514229/12752043*599074578^(9/14) 1771100001130570 a001 63245986/1149851*7881196^(4/11) 1771100001130571 a001 514229/12752043*33385282^(3/4) 1771100001130571 a001 102334155/1149851*7881196^(1/3) 1771100001130573 a001 267914296/1149851*7881196^(3/11) 1771100001130575 a001 5702887/1149851*12752043^(1/2) 1771100001130576 a001 1134903170/1149851*7881196^(2/11) 1771100001130577 a001 14930352/1149851*20633239^(3/7) 1771100001130578 a001 514229/54018521*20633239^(6/7) 1771100001130578 a001 4807526976/1149851*7881196^(1/11) 1771100001130579 a001 12586269025/1860498*271443^(1/13) 1771100001130579 a001 14930352/1149851*141422324^(5/13) 1771100001130579 a001 7677619978608/433494437 1771100001130579 a001 14930352/1149851*2537720636^(1/3) 1771100001130579 a001 14930352/1149851*45537549124^(5/17) 1771100001130579 a001 14930352/1149851*312119004989^(3/11) 1771100001130579 a001 514229/33385282*(1/2+1/2*5^(1/2))^29 1771100001130579 a001 14930352/1149851*14662949395604^(5/21) 1771100001130579 a001 14930352/1149851*(1/2+1/2*5^(1/2))^15 1771100001130579 a001 14930352/1149851*192900153618^(5/18) 1771100001130579 a001 14930352/1149851*28143753123^(3/10) 1771100001130579 a001 14930352/1149851*10749957122^(5/16) 1771100001130579 a001 14930352/1149851*599074578^(5/14) 1771100001130579 a001 14930352/1149851*228826127^(3/8) 1771100001130580 a001 165580141/1149851*20633239^(2/7) 1771100001130580 a001 24157817/1149851*20633239^(2/5) 1771100001130580 a001 14930352/1149851*33385282^(5/12) 1771100001130580 a001 701408733/1149851*20633239^(1/5) 1771100001130580 a001 1836311903/1149851*20633239^(1/7) 1771100001130581 a001 39088169/1149851*141422324^(1/3) 1771100001130581 a001 20100270056701/1134903170 1771100001130581 a001 514229/87403803*9062201101803^(1/2) 1771100001130581 a001 39088169/1149851*(1/2+1/2*5^(1/2))^13 1771100001130581 a001 39088169/1149851*73681302247^(1/4) 1771100001130581 a001 514229/228826127*141422324^(11/13) 1771100001130581 a001 514229/969323029*141422324^(12/13) 1771100001130581 a001 514229/228826127*2537720636^(11/15) 1771100001130581 a001 52623190191495/2971215073 1771100001130581 a001 514229/228826127*45537549124^(11/17) 1771100001130581 a001 514229/228826127*312119004989^(3/5) 1771100001130581 a001 102334155/1149851*312119004989^(1/5) 1771100001130581 a001 102334155/1149851*(1/2+1/2*5^(1/2))^11 1771100001130581 a001 514229/228826127*192900153618^(11/18) 1771100001130581 a001 514229/228826127*10749957122^(11/16) 1771100001130581 a001 102334155/1149851*1568397607^(1/4) 1771100001130581 a001 514229/228826127*1568397607^(3/4) 1771100001130581 a001 514229/228826127*599074578^(11/14) 1771100001130581 a001 267914296/1149851*141422324^(3/13) 1771100001130581 a001 1134903170/1149851*141422324^(2/13) 1771100001130581 a001 4807526976/1149851*141422324^(1/13) 1771100001130581 a001 514229/599074578*2537720636^(7/9) 1771100001130581 a001 267914296/1149851*2537720636^(1/5) 1771100001130581 a001 10597638501368/598364773 1771100001130581 a001 514229/599074578*17393796001^(5/7) 1771100001130581 a001 267914296/1149851*45537549124^(3/17) 1771100001130581 a001 514229/599074578*312119004989^(7/11) 1771100001130581 a001 267914296/1149851*14662949395604^(1/7) 1771100001130581 a001 267914296/1149851*(1/2+1/2*5^(1/2))^9 1771100001130581 a001 267914296/1149851*192900153618^(1/6) 1771100001130581 a001 514229/599074578*28143753123^(7/10) 1771100001130581 a001 267914296/1149851*10749957122^(3/16) 1771100001130581 a001 267914296/1149851*599074578^(3/14) 1771100001130581 a001 514229/599074578*599074578^(5/6) 1771100001130581 a001 360684711361857/20365011074 1771100001130581 a001 701408733/1149851*17393796001^(1/7) 1771100001130581 a001 701408733/1149851*14662949395604^(1/9) 1771100001130581 a001 701408733/1149851*(1/2+1/2*5^(1/2))^7 1771100001130581 a001 514229/4106118243*2537720636^(13/15) 1771100001130581 a001 514229/17393796001*2537720636^(14/15) 1771100001130581 a001 514229/6643838879*2537720636^(8/9) 1771100001130581 a001 1836311903/1149851*2537720636^(1/9) 1771100001130581 a001 514229/4106118243*45537549124^(13/17) 1771100001130581 a001 944284833567787/53316291173 1771100001130581 a001 1836311903/1149851*312119004989^(1/11) 1771100001130581 a001 514229/4106118243*14662949395604^(13/21) 1771100001130581 a001 1836311903/1149851*(1/2+1/2*5^(1/2))^5 1771100001130581 a001 514229/4106118243*192900153618^(13/18) 1771100001130581 a001 1836311903/1149851*28143753123^(1/10) 1771100001130581 a001 514229/4106118243*73681302247^(3/4) 1771100001130581 a001 514229/4106118243*10749957122^(13/16) 1771100001130581 a001 4807526976/1149851*2537720636^(1/15) 1771100001130581 a001 4807526976/1149851*45537549124^(1/17) 1771100001130581 a001 2472169789341504/139583862445 1771100001130581 a001 4807526976/1149851*14662949395604^(1/21) 1771100001130581 a001 4807526976/1149851*10749957122^(1/16) 1771100001130581 a001 514229/73681302247*45537549124^(15/17) 1771100001130581 a001 514229/312119004989*45537549124^(16/17) 1771100001130581 a001 514229/73681302247*312119004989^(9/11) 1771100001130581 a001 16944503814028671/956722026041 1771100001130581 a001 514229/73681302247*192900153618^(5/6) 1771100001130581 a001 44361286907629288/2504730781961 1771100001130581 a001 514229/817138163596*312119004989^(10/11) 1771100001130581 a001 514229/1322157322203*817138163596^(17/19) 1771100001130581 a004 Fibonacci(29)/Lucas(1)/(1/2+sqrt(5)/2)^7 1771100001130581 a001 187917426910089098/10610209857723 1771100001130581 a001 514229/312119004989*14662949395604^(16/21) 1771100001130581 a001 514229/1322157322203*192900153618^(17/18) 1771100001130581 a001 514229/312119004989*192900153618^(8/9) 1771100001130581 a001 27416783093600617/1548008755920 1771100001130581 a001 514229/312119004989*73681302247^(12/13) 1771100001130581 a001 514229/17393796001*17393796001^(6/7) 1771100001130581 a001 20365011074/1149851 1771100001130581 a001 514229/45537549124*73681302247^(11/13) 1771100001130581 a001 514229/73681302247*28143753123^(9/10) 1771100001130581 a001 514229/17393796001*45537549124^(14/17) 1771100001130581 a001 514229/17393796001*14662949395604^(2/3) 1771100001130581 a001 7778742049/1149851*(1/2+1/2*5^(1/2))^2 1771100001130581 a001 307696518855017/17373187209 1771100001130581 a001 514229/17393796001*192900153618^(7/9) 1771100001130581 a001 7778742049/1149851*10749957122^(1/24) 1771100001130581 a001 7778742049/1149851*4106118243^(1/23) 1771100001130581 a001 514229/73681302247*10749957122^(15/16) 1771100001130581 a001 514229/119218851371*10749957122^(23/24) 1771100001130581 a001 514229/45537549124*10749957122^(11/12) 1771100001130581 a001 514229/17393796001*10749957122^(7/8) 1771100001130581 a001 7778742049/1149851*1568397607^(1/22) 1771100001130581 a001 514229/6643838879*312119004989^(8/11) 1771100001130581 a001 514229/6643838879*23725150497407^(5/8) 1771100001130581 a001 2971215073/1149851*(1/2+1/2*5^(1/2))^4 1771100001130581 a001 2971215073/1149851*23725150497407^(1/16) 1771100001130581 a001 2971215073/1149851*73681302247^(1/13) 1771100001130581 a001 1527884955773717/86267571272 1771100001130581 a001 514229/6643838879*73681302247^(10/13) 1771100001130581 a001 2971215073/1149851*10749957122^(1/12) 1771100001130581 a001 514229/6643838879*28143753123^(4/5) 1771100001130581 a001 2971215073/1149851*4106118243^(2/23) 1771100001130581 a001 514229/6643838879*10749957122^(5/6) 1771100001130581 a001 514229/45537549124*4106118243^(22/23) 1771100001130581 a001 514229/17393796001*4106118243^(21/23) 1771100001130581 a001 701408733/1149851*599074578^(1/6) 1771100001130581 a001 2971215073/1149851*1568397607^(1/11) 1771100001130581 a001 514229/6643838879*4106118243^(20/23) 1771100001130581 a001 1134903170/1149851*2537720636^(2/15) 1771100001130581 a001 7778742049/1149851*599074578^(1/21) 1771100001130581 a001 1134903170/1149851*45537549124^(2/17) 1771100001130581 a001 1134903170/1149851*14662949395604^(2/21) 1771100001130581 a001 1134903170/1149851*(1/2+1/2*5^(1/2))^6 1771100001130581 a001 583600122205930/32951280099 1771100001130581 a001 1134903170/1149851*10749957122^(1/8) 1771100001130581 a001 514229/2537720636*10749957122^(19/24) 1771100001130581 a001 1134903170/1149851*4106118243^(3/23) 1771100001130581 a001 4807526976/1149851*599074578^(1/14) 1771100001130581 a001 514229/2537720636*4106118243^(19/23) 1771100001130581 a001 1134903170/1149851*1568397607^(3/22) 1771100001130581 a001 2971215073/1149851*599074578^(2/21) 1771100001130581 a001 514229/17393796001*1568397607^(21/22) 1771100001130581 a001 514229/6643838879*1568397607^(10/11) 1771100001130581 a001 514229/2537720636*1568397607^(19/22) 1771100001130581 a001 1134903170/1149851*599074578^(1/7) 1771100001130581 a001 514229/969323029*2537720636^(4/5) 1771100001130581 a001 7778742049/1149851*228826127^(1/20) 1771100001130581 a001 514229/969323029*45537549124^(12/17) 1771100001130581 a001 514229/969323029*14662949395604^(4/7) 1771100001130581 a001 433494437/1149851*(1/2+1/2*5^(1/2))^8 1771100001130581 a001 433494437/1149851*23725150497407^(1/8) 1771100001130581 a001 514229/969323029*192900153618^(2/3) 1771100001130581 a001 433494437/1149851*73681302247^(2/13) 1771100001130581 a001 514229/969323029*73681302247^(9/13) 1771100001130581 a001 222915410844073/12586269025 1771100001130581 a001 433494437/1149851*10749957122^(1/6) 1771100001130581 a001 514229/969323029*10749957122^(3/4) 1771100001130581 a001 433494437/1149851*4106118243^(4/23) 1771100001130581 a001 514229/969323029*4106118243^(18/23) 1771100001130581 a001 433494437/1149851*1568397607^(2/11) 1771100001130581 a001 514229/969323029*1568397607^(9/11) 1771100001130581 a001 433494437/1149851*599074578^(4/21) 1771100001130581 a001 2971215073/1149851*228826127^(1/10) 1771100001130581 a001 1836311903/1149851*228826127^(1/8) 1771100001130581 a001 514229/4106118243*599074578^(13/14) 1771100001130581 a001 514229/2537720636*599074578^(19/21) 1771100001130581 a001 514229/6643838879*599074578^(20/21) 1771100001130581 a001 1134903170/1149851*228826127^(3/20) 1771100001130581 a001 514229/969323029*599074578^(6/7) 1771100001130581 a001 433494437/1149851*228826127^(1/5) 1771100001130581 a001 7778742049/1149851*87403803^(1/19) 1771100001130581 a001 165580141/1149851*2537720636^(2/9) 1771100001130581 a001 514229/370248451*45537549124^(2/3) 1771100001130581 a001 165580141/1149851*312119004989^(2/11) 1771100001130581 a001 165580141/1149851*(1/2+1/2*5^(1/2))^10 1771100001130581 a001 165580141/1149851*28143753123^(1/5) 1771100001130581 a001 165580141/1149851*10749957122^(5/24) 1771100001130581 a001 514229/370248451*10749957122^(17/24) 1771100001130581 a001 85146110326289/4807526976 1771100001130581 a001 165580141/1149851*4106118243^(5/23) 1771100001130581 a001 514229/370248451*4106118243^(17/23) 1771100001130581 a001 165580141/1149851*1568397607^(5/22) 1771100001130581 a001 514229/370248451*1568397607^(17/22) 1771100001130581 a001 165580141/1149851*599074578^(5/21) 1771100001130581 a001 514229/370248451*599074578^(17/21) 1771100001130581 a001 165580141/1149851*228826127^(1/4) 1771100001130581 a001 2971215073/1149851*87403803^(2/19) 1771100001130581 a001 514229/599074578*228826127^(7/8) 1771100001130581 a001 514229/969323029*228826127^(9/10) 1771100001130581 a001 514229/2537720636*228826127^(19/20) 1771100001130581 a001 1134903170/1149851*87403803^(3/19) 1771100001130581 a001 514229/370248451*228826127^(17/20) 1771100001130581 a001 433494437/1149851*87403803^(4/19) 1771100001130581 a001 63245986/1149851*141422324^(4/13) 1771100001130581 a001 165580141/1149851*87403803^(5/19) 1771100001130581 a001 7778742049/1149851*33385282^(1/18) 1771100001130581 a001 63245986/1149851*2537720636^(4/15) 1771100001130581 a001 63245986/1149851*45537549124^(4/17) 1771100001130581 a001 514229/141422324*23725150497407^(1/2) 1771100001130581 a001 63245986/1149851*817138163596^(4/19) 1771100001130581 a001 63245986/1149851*(1/2+1/2*5^(1/2))^12 1771100001130581 a001 63245986/1149851*192900153618^(2/9) 1771100001130581 a001 63245986/1149851*73681302247^(3/13) 1771100001130581 a001 514229/141422324*73681302247^(8/13) 1771100001130581 a001 63245986/1149851*10749957122^(1/4) 1771100001130581 a001 514229/141422324*10749957122^(2/3) 1771100001130581 a001 63245986/1149851*4106118243^(6/23) 1771100001130581 a001 514229/141422324*4106118243^(16/23) 1771100001130581 a001 32522920134794/1836311903 1771100001130581 a001 63245986/1149851*1568397607^(3/11) 1771100001130581 a001 514229/141422324*1568397607^(8/11) 1771100001130581 a001 63245986/1149851*599074578^(2/7) 1771100001130581 a001 514229/141422324*599074578^(16/21) 1771100001130581 a001 63245986/1149851*228826127^(3/10) 1771100001130581 a001 514229/141422324*228826127^(4/5) 1771100001130581 a001 4807526976/1149851*33385282^(1/12) 1771100001130581 a001 63245986/1149851*87403803^(6/19) 1771100001130581 a001 2971215073/1149851*33385282^(1/9) 1771100001130581 a001 514229/370248451*87403803^(17/19) 1771100001130581 a001 514229/969323029*87403803^(18/19) 1771100001130581 a001 1134903170/1149851*33385282^(1/6) 1771100001130581 a001 514229/141422324*87403803^(16/19) 1771100001130581 a001 433494437/1149851*33385282^(2/9) 1771100001130581 a001 267914296/1149851*33385282^(1/4) 1771100001130581 a001 165580141/1149851*33385282^(5/18) 1771100001130581 a001 514229/54018521*141422324^(10/13) 1771100001130581 a001 514229/54018521*2537720636^(2/3) 1771100001130581 a001 24157817/1149851*17393796001^(2/7) 1771100001130581 a001 514229/54018521*45537549124^(10/17) 1771100001130581 a001 514229/54018521*312119004989^(6/11) 1771100001130581 a001 514229/54018521*14662949395604^(10/21) 1771100001130581 a001 24157817/1149851*14662949395604^(2/9) 1771100001130581 a001 24157817/1149851*(1/2+1/2*5^(1/2))^14 1771100001130581 a001 514229/54018521*192900153618^(5/9) 1771100001130581 a001 514229/54018521*28143753123^(3/5) 1771100001130581 a001 24157817/1149851*10749957122^(7/24) 1771100001130581 a001 514229/54018521*10749957122^(5/8) 1771100001130581 a001 24157817/1149851*4106118243^(7/23) 1771100001130581 a001 514229/54018521*4106118243^(15/23) 1771100001130581 a001 24157817/1149851*1568397607^(7/22) 1771100001130581 a001 514229/54018521*1568397607^(15/22) 1771100001130581 a001 12422650078093/701408733 1771100001130581 a001 24157817/1149851*599074578^(1/3) 1771100001130581 a001 514229/54018521*599074578^(5/7) 1771100001130581 a001 63245986/1149851*33385282^(1/3) 1771100001130581 a001 24157817/1149851*228826127^(7/20) 1771100001130581 a001 514229/54018521*228826127^(3/4) 1771100001130581 a001 7778742049/1149851*12752043^(1/17) 1771100001130581 a001 24157817/1149851*87403803^(7/19) 1771100001130582 a001 514229/54018521*87403803^(15/19) 1771100001130582 a001 514229/20633239*20633239^(4/5) 1771100001130582 a001 24157817/1149851*33385282^(7/18) 1771100001130582 a001 2971215073/1149851*12752043^(2/17) 1771100001130582 a001 514229/228826127*33385282^(11/12) 1771100001130582 a001 514229/141422324*33385282^(8/9) 1771100001130582 a001 514229/370248451*33385282^(17/18) 1771100001130583 a001 1134903170/1149851*12752043^(3/17) 1771100001130583 a001 514229/54018521*33385282^(5/6) 1771100001130583 a001 433494437/1149851*12752043^(4/17) 1771100001130584 a001 165580141/1149851*12752043^(5/17) 1771100001130585 a001 63245986/1149851*12752043^(6/17) 1771100001130585 a001 514229/20633239*17393796001^(4/7) 1771100001130585 a001 514229/20633239*14662949395604^(4/9) 1771100001130585 a001 514229/20633239*(1/2+1/2*5^(1/2))^28 1771100001130585 a001 9227465/1149851*(1/2+1/2*5^(1/2))^16 1771100001130585 a001 514229/20633239*505019158607^(1/2) 1771100001130585 a001 9227465/1149851*73681302247^(4/13) 1771100001130585 a001 514229/20633239*73681302247^(7/13) 1771100001130585 a001 9227465/1149851*10749957122^(1/3) 1771100001130585 a001 514229/20633239*10749957122^(7/12) 1771100001130585 a001 9227465/1149851*4106118243^(8/23) 1771100001130585 a001 514229/20633239*4106118243^(14/23) 1771100001130585 a001 9227465/1149851*1568397607^(4/11) 1771100001130585 a001 514229/20633239*1568397607^(7/11) 1771100001130585 a001 9227465/1149851*599074578^(8/21) 1771100001130585 a001 514229/20633239*599074578^(2/3) 1771100001130585 a001 365002315345/20608792 1771100001130585 a001 9227465/1149851*228826127^(2/5) 1771100001130585 a001 514229/20633239*228826127^(7/10) 1771100001130585 a001 9227465/1149851*87403803^(8/19) 1771100001130585 a001 514229/20633239*87403803^(14/19) 1771100001130585 a001 7778742049/1149851*4870847^(1/16) 1771100001130586 a001 9227465/1149851*33385282^(4/9) 1771100001130586 a001 24157817/1149851*12752043^(7/17) 1771100001130586 a001 514229/20633239*33385282^(7/9) 1771100001130590 a001 9227465/1149851*12752043^(8/17) 1771100001130590 a001 2971215073/1149851*4870847^(1/8) 1771100001130591 a001 514229/54018521*12752043^(15/17) 1771100001130591 a001 514229/141422324*12752043^(16/17) 1771100001130594 a001 3524578/1149851*7881196^(6/11) 1771100001130594 a001 514229/20633239*12752043^(14/17) 1771100001130595 a001 1134903170/1149851*4870847^(3/16) 1771100001130599 a001 433494437/1149851*4870847^(1/4) 1771100001130604 a001 165580141/1149851*4870847^(5/16) 1771100001130609 a001 63245986/1149851*4870847^(3/8) 1771100001130609 a001 514229/7881196*141422324^(2/3) 1771100001130609 a001 3524578/1149851*141422324^(6/13) 1771100001130609 a001 3524578/1149851*2537720636^(2/5) 1771100001130609 a001 3524578/1149851*45537549124^(6/17) 1771100001130609 a001 514229/7881196*(1/2+1/2*5^(1/2))^26 1771100001130609 a001 3524578/1149851*14662949395604^(2/7) 1771100001130609 a001 3524578/1149851*(1/2+1/2*5^(1/2))^18 1771100001130609 a001 3524578/1149851*192900153618^(1/3) 1771100001130609 a001 514229/7881196*73681302247^(1/2) 1771100001130609 a001 3524578/1149851*10749957122^(3/8) 1771100001130609 a001 514229/7881196*10749957122^(13/24) 1771100001130609 a001 3524578/1149851*4106118243^(9/23) 1771100001130609 a001 514229/7881196*4106118243^(13/23) 1771100001130609 a001 3524578/1149851*1568397607^(9/22) 1771100001130609 a001 514229/7881196*1568397607^(13/22) 1771100001130609 a001 3524578/1149851*599074578^(3/7) 1771100001130609 a001 514229/7881196*599074578^(13/21) 1771100001130609 a001 3524578/1149851*228826127^(9/20) 1771100001130609 a001 514229/7881196*228826127^(13/20) 1771100001130609 a001 1812440220362/102334155 1771100001130609 a001 3524578/1149851*87403803^(9/19) 1771100001130609 a001 514229/7881196*87403803^(13/19) 1771100001130610 a001 3524578/1149851*33385282^(1/2) 1771100001130610 a001 514229/7881196*33385282^(13/18) 1771100001130614 a001 24157817/1149851*4870847^(7/16) 1771100001130615 a001 7778742049/1149851*1860498^(1/15) 1771100001130615 a001 3524578/1149851*12752043^(9/17) 1771100001130618 a001 514229/7881196*12752043^(13/17) 1771100001130622 a001 9227465/1149851*4870847^(1/2) 1771100001130632 a001 4807526976/1149851*1860498^(1/10) 1771100001130649 a001 2971215073/1149851*1860498^(2/15) 1771100001130650 a001 514229/20633239*4870847^(7/8) 1771100001130651 a001 3524578/1149851*4870847^(9/16) 1771100001130651 a001 514229/54018521*4870847^(15/16) 1771100001130666 a001 1836311903/1149851*1860498^(1/6) 1771100001130670 a001 267914296/4870847*710647^(3/7) 1771100001130670 a001 514229/7881196*4870847^(13/16) 1771100001130683 a001 1134903170/1149851*1860498^(1/5) 1771100001130689 a001 433494437/3010349*710647^(5/14) 1771100001130717 a001 433494437/1149851*1860498^(4/15) 1771100001130732 a001 829464/103361*710647^(4/7) 1771100001130733 a001 233802911/4250681*710647^(3/7) 1771100001130734 a001 267914296/1149851*1860498^(3/10) 1771100001130743 a001 1836311903/33385282*710647^(3/7) 1771100001130744 a001 1602508992/29134601*710647^(3/7) 1771100001130744 a001 12586269025/228826127*710647^(3/7) 1771100001130744 a001 10983760033/199691526*710647^(3/7) 1771100001130744 a001 86267571272/1568397607*710647^(3/7) 1771100001130744 a001 75283811239/1368706081*710647^(3/7) 1771100001130744 a001 591286729879/10749957122*710647^(3/7) 1771100001130744 a001 12585437040/228811001*710647^(3/7) 1771100001130744 a001 4052739537881/73681302247*710647^(3/7) 1771100001130744 a001 3536736619241/64300051206*710647^(3/7) 1771100001130744 a001 6557470319842/119218851371*710647^(3/7) 1771100001130744 a001 2504730781961/45537549124*710647^(3/7) 1771100001130744 a001 956722026041/17393796001*710647^(3/7) 1771100001130744 a001 365435296162/6643838879*710647^(3/7) 1771100001130744 a001 139583862445/2537720636*710647^(3/7) 1771100001130744 a001 53316291173/969323029*710647^(3/7) 1771100001130744 a001 20365011074/370248451*710647^(3/7) 1771100001130744 a001 7778742049/141422324*710647^(3/7) 1771100001130745 a001 2971215073/54018521*710647^(3/7) 1771100001130748 a001 1134903170/20633239*710647^(3/7) 1771100001130751 a001 165580141/1149851*1860498^(1/3) 1771100001130755 a001 514229/3010349*7881196^(8/11) 1771100001130773 a001 433494437/7881196*710647^(3/7) 1771100001130774 a001 1346269/1149851*20633239^(4/7) 1771100001130776 a001 514229/3010349*141422324^(8/13) 1771100001130776 a001 514229/3010349*2537720636^(8/15) 1771100001130776 a001 1346269/1149851*2537720636^(4/9) 1771100001130776 a001 514229/3010349*45537549124^(8/17) 1771100001130776 a001 514229/3010349*14662949395604^(8/21) 1771100001130776 a001 514229/3010349*(1/2+1/2*5^(1/2))^24 1771100001130776 a001 1346269/1149851*(1/2+1/2*5^(1/2))^20 1771100001130776 a001 1346269/1149851*23725150497407^(5/16) 1771100001130776 a001 1346269/1149851*505019158607^(5/14) 1771100001130776 a001 514229/3010349*192900153618^(4/9) 1771100001130776 a001 1346269/1149851*73681302247^(5/13) 1771100001130776 a001 514229/3010349*73681302247^(6/13) 1771100001130776 a001 1346269/1149851*28143753123^(2/5) 1771100001130776 a001 1346269/1149851*10749957122^(5/12) 1771100001130776 a001 514229/3010349*10749957122^(1/2) 1771100001130776 a001 1346269/1149851*4106118243^(10/23) 1771100001130776 a001 514229/3010349*4106118243^(12/23) 1771100001130776 a001 1346269/1149851*1568397607^(5/11) 1771100001130776 a001 514229/3010349*1568397607^(6/11) 1771100001130776 a001 1346269/1149851*599074578^(10/21) 1771100001130776 a001 514229/3010349*599074578^(4/7) 1771100001130776 a001 1346269/1149851*228826127^(1/2) 1771100001130776 a001 514229/3010349*228826127^(3/5) 1771100001130776 a001 1346269/1149851*87403803^(10/19) 1771100001130776 a001 514229/3010349*87403803^(12/19) 1771100001130776 a001 692290561601/39088169 1771100001130777 a001 1346269/1149851*33385282^(5/9) 1771100001130777 a001 514229/3010349*33385282^(2/3) 1771100001130783 a001 1346269/1149851*12752043^(10/17) 1771100001130784 a001 514229/3010349*12752043^(12/17) 1771100001130786 a001 63245986/1149851*1860498^(2/5) 1771100001130820 a001 24157817/1149851*1860498^(7/15) 1771100001130823 a001 1346269/1149851*4870847^(5/8) 1771100001130831 a001 7778742049/1149851*710647^(1/14) 1771100001130832 a001 514229/3010349*4870847^(3/4) 1771100001130835 a001 14930352/1149851*1860498^(1/2) 1771100001130858 a001 9227465/1149851*1860498^(8/15) 1771100001130916 a001 3524578/1149851*1860498^(3/5) 1771100001130920 a001 102334155/4870847*710647^(1/2) 1771100001130933 a001 514229/4870847*1860498^(5/6) 1771100001130940 a001 165580141/3010349*710647^(3/7) 1771100001130973 a001 5702887/1860498*710647^(9/14) 1771100001130973 a001 416020/930249*710647^(11/14) 1771100001130984 a001 267914296/12752043*710647^(1/2) 1771100001130993 a001 701408733/33385282*710647^(1/2) 1771100001130994 a001 1836311903/87403803*710647^(1/2) 1771100001130995 a001 102287808/4868641*710647^(1/2) 1771100001130995 a001 12586269025/599074578*710647^(1/2) 1771100001130995 a001 32951280099/1568397607*710647^(1/2) 1771100001130995 a001 86267571272/4106118243*710647^(1/2) 1771100001130995 a001 225851433717/10749957122*710647^(1/2) 1771100001130995 a001 591286729879/28143753123*710647^(1/2) 1771100001130995 a001 1548008755920/73681302247*710647^(1/2) 1771100001130995 a001 4052739537881/192900153618*710647^(1/2) 1771100001130995 a001 225749145909/10745088481*710647^(1/2) 1771100001130995 a001 6557470319842/312119004989*710647^(1/2) 1771100001130995 a001 2504730781961/119218851371*710647^(1/2) 1771100001130995 a001 956722026041/45537549124*710647^(1/2) 1771100001130995 a001 365435296162/17393796001*710647^(1/2) 1771100001130995 a001 139583862445/6643838879*710647^(1/2) 1771100001130995 a001 53316291173/2537720636*710647^(1/2) 1771100001130995 a001 20365011074/969323029*710647^(1/2) 1771100001130995 a001 7778742049/370248451*710647^(1/2) 1771100001130995 a001 2971215073/141422324*710647^(1/2) 1771100001130995 a001 1134903170/54018521*710647^(1/2) 1771100001130999 a001 433494437/20633239*710647^(1/2) 1771100001131016 a001 32951280099/4870847*271443^(1/13) 1771100001131023 a001 165580141/7881196*710647^(1/2) 1771100001131030 a001 514229/12752043*1860498^(9/10) 1771100001131053 a001 514229/7881196*1860498^(13/15) 1771100001131062 a001 514229/20633239*1860498^(14/15) 1771100001131079 a001 86267571272/12752043*271443^(1/13) 1771100001131082 a001 2971215073/1149851*710647^(1/7) 1771100001131089 a001 32264490531/4769326*271443^(1/13) 1771100001131090 a001 591286729879/87403803*271443^(1/13) 1771100001131090 a001 1548008755920/228826127*271443^(1/13) 1771100001131090 a001 4052739537881/599074578*271443^(1/13) 1771100001131090 a001 1515744265389/224056801*271443^(1/13) 1771100001131090 a001 6557470319842/969323029*271443^(1/13) 1771100001131090 a001 2504730781961/370248451*271443^(1/13) 1771100001131090 a001 956722026041/141422324*271443^(1/13) 1771100001131091 a001 365435296162/54018521*271443^(1/13) 1771100001131094 a001 139583862445/20633239*271443^(1/13) 1771100001131117 a001 1346269/1149851*1860498^(2/3) 1771100001131119 a001 53316291173/7881196*271443^(1/13) 1771100001131160 a001 726103/620166*710647^(5/7) 1771100001131170 a001 39088169/4870847*710647^(4/7) 1771100001131186 a001 514229/3010349*1860498^(4/5) 1771100001131190 a001 63245986/3010349*710647^(1/2) 1771100001131234 a001 34111385/4250681*710647^(4/7) 1771100001131244 a001 133957148/16692641*710647^(4/7) 1771100001131245 a001 233802911/29134601*710647^(4/7) 1771100001131245 a001 1836311903/228826127*710647^(4/7) 1771100001131245 a001 267084832/33281921*710647^(4/7) 1771100001131245 a001 12586269025/1568397607*710647^(4/7) 1771100001131245 a001 10983760033/1368706081*710647^(4/7) 1771100001131245 a001 43133785636/5374978561*710647^(4/7) 1771100001131245 a001 75283811239/9381251041*710647^(4/7) 1771100001131245 a001 591286729879/73681302247*710647^(4/7) 1771100001131245 a001 86000486440/10716675201*710647^(4/7) 1771100001131245 a001 3536736619241/440719107401*710647^(4/7) 1771100001131245 a001 3278735159921/408569081798*710647^(4/7) 1771100001131245 a001 2504730781961/312119004989*710647^(4/7) 1771100001131245 a001 956722026041/119218851371*710647^(4/7) 1771100001131245 a001 182717648081/22768774562*710647^(4/7) 1771100001131245 a001 139583862445/17393796001*710647^(4/7) 1771100001131245 a001 53316291173/6643838879*710647^(4/7) 1771100001131245 a001 10182505537/1268860318*710647^(4/7) 1771100001131245 a001 7778742049/969323029*710647^(4/7) 1771100001131245 a001 2971215073/370248451*710647^(4/7) 1771100001131245 a001 567451585/70711162*710647^(4/7) 1771100001131246 a001 433494437/54018521*710647^(4/7) 1771100001131249 a001 165580141/20633239*710647^(4/7) 1771100001131274 a001 31622993/3940598*710647^(4/7) 1771100001131281 a001 701408733/710647*271443^(3/13) 1771100001131286 a001 20365011074/3010349*271443^(1/13) 1771100001131332 a001 1134903170/1149851*710647^(3/14) 1771100001131419 a001 14930352/4870847*710647^(9/14) 1771100001131441 a001 24157817/3010349*710647^(4/7) 1771100001131458 a001 701408733/1149851*710647^(1/4) 1771100001131485 a001 39088169/12752043*710647^(9/14) 1771100001131494 a001 14619165/4769326*710647^(9/14) 1771100001131495 a001 267914296/87403803*710647^(9/14) 1771100001131496 a001 701408733/228826127*710647^(9/14) 1771100001131496 a001 1836311903/599074578*710647^(9/14) 1771100001131496 a001 686789568/224056801*710647^(9/14) 1771100001131496 a001 12586269025/4106118243*710647^(9/14) 1771100001131496 a001 32951280099/10749957122*710647^(9/14) 1771100001131496 a001 86267571272/28143753123*710647^(9/14) 1771100001131496 a001 32264490531/10525900321*710647^(9/14) 1771100001131496 a001 591286729879/192900153618*710647^(9/14) 1771100001131496 a001 1548008755920/505019158607*710647^(9/14) 1771100001131496 a001 1515744265389/494493258286*710647^(9/14) 1771100001131496 a001 956722026041/312119004989*710647^(9/14) 1771100001131496 a001 365435296162/119218851371*710647^(9/14) 1771100001131496 a001 139583862445/45537549124*710647^(9/14) 1771100001131496 a001 53316291173/17393796001*710647^(9/14) 1771100001131496 a001 20365011074/6643838879*710647^(9/14) 1771100001131496 a001 7778742049/2537720636*710647^(9/14) 1771100001131496 a001 2971215073/969323029*710647^(9/14) 1771100001131496 a001 1134903170/370248451*710647^(9/14) 1771100001131496 a001 433494437/141422324*710647^(9/14) 1771100001131496 a001 165580141/54018521*710647^(9/14) 1771100001131500 a001 63245986/20633239*710647^(9/14) 1771100001131525 a001 24157817/7881196*710647^(9/14) 1771100001131555 a001 1346269/1860498*710647^(3/4) 1771100001131583 a001 433494437/1149851*710647^(2/7) 1771100001131601 a001 196418/1149851*439204^(8/9) 1771100001131661 a001 5702887/4870847*710647^(5/7) 1771100001131661 a001 832040/4870847*710647^(6/7) 1771100001131695 a001 9227465/3010349*710647^(9/14) 1771100001131734 a001 4976784/4250681*710647^(5/7) 1771100001131744 a001 39088169/33385282*710647^(5/7) 1771100001131746 a001 34111385/29134601*710647^(5/7) 1771100001131746 a001 267914296/228826127*710647^(5/7) 1771100001131746 a001 233802911/199691526*710647^(5/7) 1771100001131746 a001 1836311903/1568397607*710647^(5/7) 1771100001131746 a001 1602508992/1368706081*710647^(5/7) 1771100001131746 a001 12586269025/10749957122*710647^(5/7) 1771100001131746 a001 10983760033/9381251041*710647^(5/7) 1771100001131746 a001 86267571272/73681302247*710647^(5/7) 1771100001131746 a001 75283811239/64300051206*710647^(5/7) 1771100001131746 a001 2504730781961/2139295485799*710647^(5/7) 1771100001131746 a001 365435296162/312119004989*710647^(5/7) 1771100001131746 a001 139583862445/119218851371*710647^(5/7) 1771100001131746 a001 53316291173/45537549124*710647^(5/7) 1771100001131746 a001 20365011074/17393796001*710647^(5/7) 1771100001131746 a001 7778742049/6643838879*710647^(5/7) 1771100001131746 a001 2971215073/2537720636*710647^(5/7) 1771100001131746 a001 1134903170/969323029*710647^(5/7) 1771100001131746 a001 433494437/370248451*710647^(5/7) 1771100001131746 a001 165580141/141422324*710647^(5/7) 1771100001131747 a001 63245986/54018521*710647^(5/7) 1771100001131751 a001 24157817/20633239*710647^(5/7) 1771100001131779 a001 9227465/7881196*710647^(5/7) 1771100001131825 a001 3524578/4870847*710647^(3/4) 1771100001131833 a001 165580141/1149851*710647^(5/14) 1771100001131847 a001 2178309/4870847*710647^(11/14) 1771100001131865 a001 9227465/12752043*710647^(3/4) 1771100001131870 a001 24157817/33385282*710647^(3/4) 1771100001131871 a001 63245986/87403803*710647^(3/4) 1771100001131871 a001 165580141/228826127*710647^(3/4) 1771100001131871 a001 433494437/599074578*710647^(3/4) 1771100001131871 a001 1134903170/1568397607*710647^(3/4) 1771100001131871 a001 2971215073/4106118243*710647^(3/4) 1771100001131871 a001 7778742049/10749957122*710647^(3/4) 1771100001131871 a001 20365011074/28143753123*710647^(3/4) 1771100001131871 a001 53316291173/73681302247*710647^(3/4) 1771100001131871 a001 139583862445/192900153618*710647^(3/4) 1771100001131871 a001 365435296162/505019158607*710647^(3/4) 1771100001131871 a001 10610209857723/14662949395604*710647^(3/4) 1771100001131871 a001 225851433717/312119004989*710647^(3/4) 1771100001131871 a001 86267571272/119218851371*710647^(3/4) 1771100001131871 a001 32951280099/45537549124*710647^(3/4) 1771100001131871 a001 12586269025/17393796001*710647^(3/4) 1771100001131871 a001 4807526976/6643838879*710647^(3/4) 1771100001131871 a001 1836311903/2537720636*710647^(3/4) 1771100001131871 a001 701408733/969323029*710647^(3/4) 1771100001131871 a001 267914296/370248451*710647^(3/4) 1771100001131872 a001 102334155/141422324*710647^(3/4) 1771100001131872 a001 39088169/54018521*710647^(3/4) 1771100001131874 a001 14930352/20633239*710647^(3/4) 1771100001131889 a001 5702887/7881196*710647^(3/4) 1771100001131901 a001 514229/1149851*7881196^(2/3) 1771100001131920 a001 514229/1149851*312119004989^(2/5) 1771100001131920 a001 514229/1149851*(1/2+1/2*5^(1/2))^22 1771100001131920 a001 514229/1149851*10749957122^(11/24) 1771100001131920 a001 514229/1149851*4106118243^(11/23) 1771100001131920 a001 514229/1149851*1568397607^(1/2) 1771100001131920 a001 514229/1149851*599074578^(11/21) 1771100001131920 a001 514229/1149851*228826127^(11/20) 1771100001131920 a001 514229/1149851*87403803^(11/19) 1771100001131921 a001 514229/1149851*33385282^(11/18) 1771100001131922 a001 264431464441/14930352 1771100001131927 a001 514229/1149851*12752043^(11/17) 1771100001131970 a001 3524578/3010349*710647^(5/7) 1771100001131972 a001 514229/1149851*4870847^(11/16) 1771100001131975 a001 5702887/12752043*710647^(11/14) 1771100001131975 a001 832040/12752043*710647^(13/14) 1771100001131992 a001 2178309/3010349*710647^(3/4) 1771100001131994 a001 7465176/16692641*710647^(11/14) 1771100001131996 a001 39088169/87403803*710647^(11/14) 1771100001131997 a001 102334155/228826127*710647^(11/14) 1771100001131997 a001 133957148/299537289*710647^(11/14) 1771100001131997 a001 701408733/1568397607*710647^(11/14) 1771100001131997 a001 1836311903/4106118243*710647^(11/14) 1771100001131997 a001 2403763488/5374978561*710647^(11/14) 1771100001131997 a001 12586269025/28143753123*710647^(11/14) 1771100001131997 a001 32951280099/73681302247*710647^(11/14) 1771100001131997 a001 43133785636/96450076809*710647^(11/14) 1771100001131997 a001 225851433717/505019158607*710647^(11/14) 1771100001131997 a001 10610209857723/23725150497407*710647^(11/14) 1771100001131997 a001 139583862445/312119004989*710647^(11/14) 1771100001131997 a001 53316291173/119218851371*710647^(11/14) 1771100001131997 a001 10182505537/22768774562*710647^(11/14) 1771100001131997 a001 7778742049/17393796001*710647^(11/14) 1771100001131997 a001 2971215073/6643838879*710647^(11/14) 1771100001131997 a001 567451585/1268860318*710647^(11/14) 1771100001131997 a001 433494437/969323029*710647^(11/14) 1771100001131997 a001 165580141/370248451*710647^(11/14) 1771100001131997 a001 31622993/70711162*710647^(11/14) 1771100001131998 a001 24157817/54018521*710647^(11/14) 1771100001132005 a001 9227465/20633239*710647^(11/14) 1771100001132054 a001 1762289/3940598*710647^(11/14) 1771100001132084 a001 63245986/1149851*710647^(3/7) 1771100001132162 a001 726103/4250681*710647^(6/7) 1771100001132235 a001 5702887/33385282*710647^(6/7) 1771100001132245 a001 4976784/29134601*710647^(6/7) 1771100001132247 a001 39088169/228826127*710647^(6/7) 1771100001132247 a001 34111385/199691526*710647^(6/7) 1771100001132247 a001 267914296/1568397607*710647^(6/7) 1771100001132247 a001 233802911/1368706081*710647^(6/7) 1771100001132247 a001 1836311903/10749957122*710647^(6/7) 1771100001132247 a001 1602508992/9381251041*710647^(6/7) 1771100001132247 a001 12586269025/73681302247*710647^(6/7) 1771100001132247 a001 10983760033/64300051206*710647^(6/7) 1771100001132247 a001 86267571272/505019158607*710647^(6/7) 1771100001132247 a001 75283811239/440719107401*710647^(6/7) 1771100001132247 a001 2504730781961/14662949395604*710647^(6/7) 1771100001132247 a001 139583862445/817138163596*710647^(6/7) 1771100001132247 a001 53316291173/312119004989*710647^(6/7) 1771100001132247 a001 20365011074/119218851371*710647^(6/7) 1771100001132247 a001 7778742049/45537549124*710647^(6/7) 1771100001132247 a001 2971215073/17393796001*710647^(6/7) 1771100001132247 a001 1134903170/6643838879*710647^(6/7) 1771100001132247 a001 433494437/2537720636*710647^(6/7) 1771100001132247 a001 165580141/969323029*710647^(6/7) 1771100001132247 a001 63245986/370248451*710647^(6/7) 1771100001132248 a001 24157817/141422324*710647^(6/7) 1771100001132252 a001 9227465/54018521*710647^(6/7) 1771100001132280 a001 3524578/20633239*710647^(6/7) 1771100001132296 a001 514229/1149851*1860498^(11/15) 1771100001132335 a001 24157817/1149851*710647^(1/2) 1771100001132388 a001 1346269/3010349*710647^(11/14) 1771100001132421 a001 311187/4769326*710647^(13/14) 1771100001132428 a001 267084832/103361*271443^(2/13) 1771100001132430 a001 7778742049/1149851*271443^(1/13) 1771100001132471 a001 1346269/7881196*710647^(6/7) 1771100001132487 a001 5702887/87403803*710647^(13/14) 1771100001132496 a001 14930352/228826127*710647^(13/14) 1771100001132497 a001 1346269/439204*439204^(2/3) 1771100001132497 a001 39088169/599074578*710647^(13/14) 1771100001132498 a001 14619165/224056801*710647^(13/14) 1771100001132498 a001 267914296/4106118243*710647^(13/14) 1771100001132498 a001 701408733/10749957122*710647^(13/14) 1771100001132498 a001 1836311903/28143753123*710647^(13/14) 1771100001132498 a001 686789568/10525900321*710647^(13/14) 1771100001132498 a001 12586269025/192900153618*710647^(13/14) 1771100001132498 a001 32951280099/505019158607*710647^(13/14) 1771100001132498 a001 86267571272/1322157322203*710647^(13/14) 1771100001132498 a001 32264490531/494493258286*710647^(13/14) 1771100001132498 a001 1548008755920/23725150497407*710647^(13/14) 1771100001132498 a001 139583862445/2139295485799*710647^(13/14) 1771100001132498 a001 53316291173/817138163596*710647^(13/14) 1771100001132498 a001 20365011074/312119004989*710647^(13/14) 1771100001132498 a001 7778742049/119218851371*710647^(13/14) 1771100001132498 a001 2971215073/45537549124*710647^(13/14) 1771100001132498 a001 1134903170/17393796001*710647^(13/14) 1771100001132498 a001 433494437/6643838879*710647^(13/14) 1771100001132498 a001 165580141/2537720636*710647^(13/14) 1771100001132498 a001 63245986/969323029*710647^(13/14) 1771100001132498 a001 24157817/370248451*710647^(13/14) 1771100001132502 a001 9227465/141422324*710647^(13/14) 1771100001132527 a001 3524578/54018521*710647^(13/14) 1771100001132589 a001 9227465/1149851*710647^(4/7) 1771100001132599 a001 7778742049/710647*103682^(1/24) 1771100001132663 a001 233802911/90481*103682^(1/6) 1771100001132697 a001 1346269/20633239*710647^(13/14) 1771100001132699 a001 832040/1149851*710647^(3/4) 1771100001132748 a001 2/317811*(1/2+1/2*5^(1/2))^50 1771100001132864 a001 3524578/1149851*710647^(9/14) 1771100001132865 a001 12586269025/4870847*271443^(2/13) 1771100001132928 a001 10983760033/4250681*271443^(2/13) 1771100001132938 a001 43133785636/16692641*271443^(2/13) 1771100001132939 a001 75283811239/29134601*271443^(2/13) 1771100001132939 a001 591286729879/228826127*271443^(2/13) 1771100001132939 a001 86000486440/33281921*271443^(2/13) 1771100001132939 a001 4052739537881/1568397607*271443^(2/13) 1771100001132939 a001 3536736619241/1368706081*271443^(2/13) 1771100001132939 a001 3278735159921/1268860318*271443^(2/13) 1771100001132939 a001 2504730781961/969323029*271443^(2/13) 1771100001132939 a001 956722026041/370248451*271443^(2/13) 1771100001132939 a001 182717648081/70711162*271443^(2/13) 1771100001132940 a001 139583862445/54018521*271443^(2/13) 1771100001132943 a001 53316291173/20633239*271443^(2/13) 1771100001132968 a001 10182505537/3940598*271443^(2/13) 1771100001133130 a001 267914296/710647*271443^(4/13) 1771100001133135 a001 7778742049/3010349*271443^(2/13) 1771100001133281 a001 1346269/1149851*710647^(5/7) 1771100001133311 a001 5702887/439204*439204^(5/9) 1771100001133782 a001 514229/3010349*710647^(6/7) 1771100001133866 a001 514229/7881196*710647^(13/14) 1771100001134277 a001 1836311903/1860498*271443^(3/13) 1771100001134279 a001 2971215073/1149851*271443^(2/13) 1771100001134343 a001 24157817/439204*439204^(4/9) 1771100001134676 a001 514229/1149851*710647^(11/14) 1771100001134714 a001 4807526976/4870847*271443^(3/13) 1771100001134777 a001 12586269025/12752043*271443^(3/13) 1771100001134787 a001 32951280099/33385282*271443^(3/13) 1771100001134788 a001 86267571272/87403803*271443^(3/13) 1771100001134788 a001 225851433717/228826127*271443^(3/13) 1771100001134788 a001 591286729879/599074578*271443^(3/13) 1771100001134788 a001 1548008755920/1568397607*271443^(3/13) 1771100001134788 a001 4052739537881/4106118243*271443^(3/13) 1771100001134788 a001 4807525989/4870846*271443^(3/13) 1771100001134788 a001 6557470319842/6643838879*271443^(3/13) 1771100001134788 a001 2504730781961/2537720636*271443^(3/13) 1771100001134788 a001 956722026041/969323029*271443^(3/13) 1771100001134788 a001 365435296162/370248451*271443^(3/13) 1771100001134788 a001 139583862445/141422324*271443^(3/13) 1771100001134789 a001 53316291173/54018521*271443^(3/13) 1771100001134792 a001 20365011074/20633239*271443^(3/13) 1771100001134817 a001 7778742049/7881196*271443^(3/13) 1771100001134887 a001 31211900499/1762289 1771100001134898 a001 317811/439204*7881196^(7/11) 1771100001134913 a001 317811/439204*20633239^(3/5) 1771100001134916 a001 317811/439204*141422324^(7/13) 1771100001134916 a001 317811/439204*2537720636^(7/15) 1771100001134916 a001 317811/439204*17393796001^(3/7) 1771100001134916 a001 317811/439204*45537549124^(7/17) 1771100001134916 a001 196418/710647*(1/2+1/2*5^(1/2))^23 1771100001134916 a001 317811/439204*14662949395604^(1/3) 1771100001134916 a001 317811/439204*(1/2+1/2*5^(1/2))^21 1771100001134916 a001 317811/439204*192900153618^(7/18) 1771100001134916 a001 317811/439204*10749957122^(7/16) 1771100001134916 a001 196418/710647*4106118243^(1/2) 1771100001134916 a001 317811/439204*599074578^(1/2) 1771100001134917 a001 317811/439204*33385282^(7/12) 1771100001134979 a001 14619165/101521*271443^(5/13) 1771100001134984 a001 2971215073/3010349*271443^(3/13) 1771100001135274 a001 317811/439204*1860498^(7/10) 1771100001135362 a001 102334155/439204*439204^(1/3) 1771100001135594 a001 10182505537/930249*103682^(1/24) 1771100001135911 a001 701408733/167761*64079^(3/23) 1771100001136031 a001 53316291173/4870847*103682^(1/24) 1771100001136095 a001 139583862445/12752043*103682^(1/24) 1771100001136104 a001 182717648081/16692641*103682^(1/24) 1771100001136106 a001 956722026041/87403803*103682^(1/24) 1771100001136106 a001 2504730781961/228826127*103682^(1/24) 1771100001136106 a001 3278735159921/299537289*103682^(1/24) 1771100001136106 a001 10610209857723/969323029*103682^(1/24) 1771100001136106 a001 4052739537881/370248451*103682^(1/24) 1771100001136106 a001 387002188980/35355581*103682^(1/24) 1771100001136107 a001 591286729879/54018521*103682^(1/24) 1771100001136110 a001 7787980473/711491*103682^(1/24) 1771100001136126 a001 233802911/620166*271443^(4/13) 1771100001136128 a001 1134903170/1149851*271443^(3/13) 1771100001136134 a001 21566892818/1970299*103682^(1/24) 1771100001136301 a001 32951280099/3010349*103682^(1/24) 1771100001136382 a001 433494437/439204*439204^(2/9) 1771100001136563 a001 1836311903/4870847*271443^(4/13) 1771100001136626 a001 1602508992/4250681*271443^(4/13) 1771100001136636 a001 12586269025/33385282*271443^(4/13) 1771100001136637 a001 10983760033/29134601*271443^(4/13) 1771100001136637 a001 86267571272/228826127*271443^(4/13) 1771100001136637 a001 267913919/710646*271443^(4/13) 1771100001136637 a001 591286729879/1568397607*271443^(4/13) 1771100001136637 a001 516002918640/1368706081*271443^(4/13) 1771100001136637 a001 4052739537881/10749957122*271443^(4/13) 1771100001136637 a001 3536736619241/9381251041*271443^(4/13) 1771100001136637 a001 6557470319842/17393796001*271443^(4/13) 1771100001136637 a001 2504730781961/6643838879*271443^(4/13) 1771100001136637 a001 956722026041/2537720636*271443^(4/13) 1771100001136637 a001 365435296162/969323029*271443^(4/13) 1771100001136637 a001 139583862445/370248451*271443^(4/13) 1771100001136637 a001 53316291173/141422324*271443^(4/13) 1771100001136638 a001 20365011074/54018521*271443^(4/13) 1771100001136641 a001 7778742049/20633239*271443^(4/13) 1771100001136666 a001 2971215073/7881196*271443^(4/13) 1771100001136828 a001 39088169/710647*271443^(6/13) 1771100001136833 a001 1134903170/3010349*271443^(4/13) 1771100001137402 a001 1836311903/439204*439204^(1/9) 1771100001137446 a001 12586269025/1149851*103682^(1/24) 1771100001137546 a001 317811/439204*710647^(3/4) 1771100001137753 a001 24157817/710647*271443^(1/2) 1771100001137907 a001 32685526544/1845493 1771100001137908 a001 98209/930249*20633239^(5/7) 1771100001137911 a001 98209/930249*2537720636^(5/9) 1771100001137911 a001 98209/930249*312119004989^(5/11) 1771100001137911 a001 98209/930249*(1/2+1/2*5^(1/2))^25 1771100001137911 a001 98209/930249*3461452808002^(5/12) 1771100001137911 a001 208010/109801*817138163596^(1/3) 1771100001137911 a001 208010/109801*(1/2+1/2*5^(1/2))^19 1771100001137911 a001 98209/930249*28143753123^(1/2) 1771100001137911 a001 98209/930249*228826127^(5/8) 1771100001137911 a001 208010/109801*87403803^(1/2) 1771100001137975 a001 133957148/930249*271443^(5/13) 1771100001137977 a001 433494437/1149851*271443^(4/13) 1771100001138231 a001 267914296/64079*24476^(1/7) 1771100001138325 a001 196418/4870847*7881196^(9/11) 1771100001138337 a001 98209/930249*1860498^(5/6) 1771100001138347 a001 427859097162/24157817 1771100001138348 a001 196418/4870847*141422324^(9/13) 1771100001138348 a001 196418/4870847*2537720636^(3/5) 1771100001138348 a001 196418/4870847*45537549124^(9/17) 1771100001138348 a001 2178309/439204*45537549124^(1/3) 1771100001138348 a001 196418/4870847*14662949395604^(3/7) 1771100001138348 a001 196418/4870847*(1/2+1/2*5^(1/2))^27 1771100001138348 a001 196418/4870847*192900153618^(1/2) 1771100001138348 a001 2178309/439204*(1/2+1/2*5^(1/2))^17 1771100001138348 a001 196418/4870847*10749957122^(9/16) 1771100001138348 a001 196418/4870847*599074578^(9/14) 1771100001138349 a001 196418/4870847*33385282^(3/4) 1771100001138353 a001 2178309/439204*12752043^(1/2) 1771100001138399 a001 5702887/439204*7881196^(5/11) 1771100001138401 a001 196418/20633239*7881196^(10/11) 1771100001138410 a001 5702887/439204*20633239^(3/7) 1771100001138412 a001 560074829383/31622993 1771100001138412 a001 701408733/4870847*271443^(5/13) 1771100001138412 a001 5702887/439204*141422324^(5/13) 1771100001138412 a001 5702887/439204*2537720636^(1/3) 1771100001138412 a001 5702887/439204*45537549124^(5/17) 1771100001138412 a001 196418/12752043*(1/2+1/2*5^(1/2))^29 1771100001138412 a001 196418/12752043*1322157322203^(1/2) 1771100001138412 a001 5702887/439204*312119004989^(3/11) 1771100001138412 a001 5702887/439204*14662949395604^(5/21) 1771100001138412 a001 5702887/439204*(1/2+1/2*5^(1/2))^15 1771100001138412 a001 5702887/439204*192900153618^(5/18) 1771100001138412 a001 5702887/439204*28143753123^(3/10) 1771100001138412 a001 5702887/439204*10749957122^(5/16) 1771100001138412 a001 5702887/439204*599074578^(5/14) 1771100001138412 a001 5702887/439204*228826127^(3/8) 1771100001138412 a001 5702887/439204*33385282^(5/12) 1771100001138413 a001 24157817/439204*7881196^(4/11) 1771100001138413 a001 39088169/439204*7881196^(1/3) 1771100001138415 a001 102334155/439204*7881196^(3/11) 1771100001138417 a001 433494437/439204*7881196^(2/11) 1771100001138420 a001 1836311903/439204*7881196^(1/11) 1771100001138421 a001 196452/5779*141422324^(1/3) 1771100001138421 a001 2932589879136/165580141 1771100001138421 a001 98209/16692641*(1/2+1/2*5^(1/2))^31 1771100001138421 a001 98209/16692641*9062201101803^(1/2) 1771100001138421 a001 196452/5779*(1/2+1/2*5^(1/2))^13 1771100001138421 a001 196452/5779*73681302247^(1/4) 1771100001138422 a001 31622993/219602*20633239^(2/7) 1771100001138422 a001 66978574/109801*20633239^(1/5) 1771100001138422 a001 701408733/439204*20633239^(1/7) 1771100001138422 a001 196418/87403803*141422324^(11/13) 1771100001138422 a001 7677619978642/433494437 1771100001138422 a001 196418/87403803*2537720636^(11/15) 1771100001138422 a001 196418/87403803*45537549124^(11/17) 1771100001138422 a001 196418/87403803*312119004989^(3/5) 1771100001138422 a001 196418/87403803*817138163596^(11/19) 1771100001138422 a001 196418/87403803*14662949395604^(11/21) 1771100001138422 a001 196418/87403803*192900153618^(11/18) 1771100001138422 a001 39088169/439204*312119004989^(1/5) 1771100001138422 a001 39088169/439204*(1/2+1/2*5^(1/2))^11 1771100001138422 a001 196418/87403803*10749957122^(11/16) 1771100001138422 a001 39088169/439204*1568397607^(1/4) 1771100001138422 a001 196418/87403803*1568397607^(3/4) 1771100001138422 a001 196418/87403803*599074578^(11/14) 1771100001138423 a001 196418/370248451*141422324^(12/13) 1771100001138423 a001 102334155/439204*141422324^(3/13) 1771100001138423 a001 118236882687/6675901 1771100001138423 a001 196418/228826127*2537720636^(7/9) 1771100001138423 a001 102334155/439204*2537720636^(1/5) 1771100001138423 a001 196418/228826127*17393796001^(5/7) 1771100001138423 a001 102334155/439204*45537549124^(3/17) 1771100001138423 a001 196418/228826127*312119004989^(7/11) 1771100001138423 a001 196418/228826127*14662949395604^(5/9) 1771100001138423 a001 196418/228826127*505019158607^(5/8) 1771100001138423 a001 102334155/439204*14662949395604^(1/7) 1771100001138423 a001 102334155/439204*(1/2+1/2*5^(1/2))^9 1771100001138423 a001 102334155/439204*192900153618^(1/6) 1771100001138423 a001 196418/228826127*28143753123^(7/10) 1771100001138423 a001 102334155/439204*10749957122^(3/16) 1771100001138423 a001 102334155/439204*599074578^(3/14) 1771100001138423 a001 196418/228826127*599074578^(5/6) 1771100001138423 a001 433494437/439204*141422324^(2/13) 1771100001138423 a001 1836311903/439204*141422324^(1/13) 1771100001138423 a001 52623190191728/2971215073 1771100001138423 a001 66978574/109801*17393796001^(1/7) 1771100001138423 a001 66978574/109801*14662949395604^(1/9) 1771100001138423 a001 66978574/109801*(1/2+1/2*5^(1/2))^7 1771100001138423 a001 196418/228826127*228826127^(7/8) 1771100001138423 a001 66978574/109801*599074578^(1/6) 1771100001138423 a001 196418/1568397607*2537720636^(13/15) 1771100001138423 a001 701408733/439204*2537720636^(1/9) 1771100001138423 a001 137769300518394/7778742049 1771100001138423 a001 196418/1568397607*45537549124^(13/17) 1771100001138423 a001 196418/1568397607*14662949395604^(13/21) 1771100001138423 a001 196418/1568397607*192900153618^(13/18) 1771100001138423 a001 701408733/439204*312119004989^(1/11) 1771100001138423 a001 701408733/439204*(1/2+1/2*5^(1/2))^5 1771100001138423 a001 196418/1568397607*73681302247^(3/4) 1771100001138423 a001 701408733/439204*28143753123^(1/10) 1771100001138423 a001 196418/1568397607*10749957122^(13/16) 1771100001138423 a001 196418/6643838879*2537720636^(14/15) 1771100001138423 a001 1836311903/439204*2537720636^(1/15) 1771100001138423 a001 180342355681727/10182505537 1771100001138423 a001 1836311903/439204*45537549124^(1/17) 1771100001138423 a001 1836311903/439204*14662949395604^(1/21) 1771100001138423 a001 1836311903/439204*(1/2+1/2*5^(1/2))^3 1771100001138423 a001 1836311903/439204*10749957122^(1/16) 1771100001138423 a001 944284833571968/53316291173 1771100001138423 a001 600940872/109801+600940872/109801*5^(1/2) 1771100001138423 a001 196418/28143753123*45537549124^(15/17) 1771100001138423 a001 494433957870490/27916772489 1771100001138423 a001 196418/28143753123*312119004989^(9/11) 1771100001138423 a001 196418/28143753123*14662949395604^(5/7) 1771100001138423 a001 196418/28143753123*192900153618^(5/6) 1771100001138423 a001 196418/119218851371*45537549124^(16/17) 1771100001138423 a001 3236112267242691/182717648081 1771100001138423 a001 196418/28143753123*28143753123^(9/10) 1771100001138423 a001 16944503814103696/956722026041 1771100001138423 a001 98209/96450076809*505019158607^(7/8) 1771100001138423 a001 196418/505019158607*14662949395604^(17/21) 1771100001138423 a004 Fibonacci(27)/Lucas(1)/(1/2+sqrt(5)/2)^5 1771100001138423 a001 187917426910921138/10610209857723 1771100001138423 a001 98209/408569081798*505019158607^(13/14) 1771100001138423 a001 196418/312119004989*3461452808002^(5/6) 1771100001138423 a001 196418/505019158607*192900153618^(17/18) 1771100001138423 a001 10472279279618314/591286729879 1771100001138423 a001 196418/119218851371*192900153618^(8/9) 1771100001138423 a001 196418/119218851371*73681302247^(12/13) 1771100001138423 a001 4000054745132932/225851433717 1771100001138423 a001 196418/17393796001*312119004989^(4/5) 1771100001138423 a001 196418/17393796001*23725150497407^(11/16) 1771100001138423 a001 7778742049/439204 1771100001138423 a001 196418/17393796001*73681302247^(11/13) 1771100001138423 a001 196418/28143753123*10749957122^(15/16) 1771100001138423 a001 98209/22768774562*10749957122^(23/24) 1771100001138423 a001 196418/17393796001*10749957122^(11/12) 1771100001138423 a001 98209/1268860318*2537720636^(8/9) 1771100001138423 a001 196418/6643838879*17393796001^(6/7) 1771100001138423 a001 196418/6643838879*45537549124^(14/17) 1771100001138423 a001 196418/6643838879*14662949395604^(2/3) 1771100001138423 a001 196418/6643838879*505019158607^(3/4) 1771100001138423 a001 196418/6643838879*192900153618^(7/9) 1771100001138423 a001 2971215073/439204*(1/2+1/2*5^(1/2))^2 1771100001138423 a001 583600122208514/32951280099 1771100001138423 a001 2971215073/439204*10749957122^(1/24) 1771100001138423 a001 2971215073/439204*4106118243^(1/23) 1771100001138423 a001 196418/6643838879*10749957122^(7/8) 1771100001138423 a001 2971215073/439204*1568397607^(1/22) 1771100001138423 a001 196418/17393796001*4106118243^(22/23) 1771100001138423 a001 196418/6643838879*4106118243^(21/23) 1771100001138423 a001 1836311903/439204*599074578^(1/14) 1771100001138423 a001 98209/1268860318*312119004989^(8/11) 1771100001138423 a001 98209/1268860318*23725150497407^(5/8) 1771100001138423 a001 567451585/219602*(1/2+1/2*5^(1/2))^4 1771100001138423 a001 567451585/219602*23725150497407^(1/16) 1771100001138423 a001 567451585/219602*73681302247^(1/13) 1771100001138423 a001 2971215073/439204*599074578^(1/21) 1771100001138423 a001 98209/1268860318*73681302247^(10/13) 1771100001138423 a001 567451585/219602*10749957122^(1/12) 1771100001138423 a001 98209/1268860318*28143753123^(4/5) 1771100001138423 a001 44583082169012/2517253805 1771100001138423 a001 567451585/219602*4106118243^(2/23) 1771100001138423 a001 98209/1268860318*10749957122^(5/6) 1771100001138423 a001 567451585/219602*1568397607^(1/11) 1771100001138423 a001 98209/1268860318*4106118243^(20/23) 1771100001138423 a001 196418/6643838879*1568397607^(21/22) 1771100001138423 a001 567451585/219602*599074578^(2/21) 1771100001138423 a001 98209/1268860318*1568397607^(10/11) 1771100001138423 a001 2971215073/439204*228826127^(1/20) 1771100001138423 a001 433494437/439204*2537720636^(2/15) 1771100001138423 a001 433494437/439204*45537549124^(2/17) 1771100001138423 a001 196418/969323029*817138163596^(2/3) 1771100001138423 a001 433494437/439204*14662949395604^(2/21) 1771100001138423 a001 433494437/439204*10749957122^(1/8) 1771100001138423 a001 196418/969323029*10749957122^(19/24) 1771100001138423 a001 433494437/439204*4106118243^(3/23) 1771100001138423 a001 42573055163333/2403763488 1771100001138423 a001 196418/969323029*4106118243^(19/23) 1771100001138423 a001 433494437/439204*1568397607^(3/22) 1771100001138423 a001 196418/969323029*1568397607^(19/22) 1771100001138423 a001 433494437/439204*599074578^(1/7) 1771100001138423 a001 701408733/439204*228826127^(1/8) 1771100001138423 a001 567451585/219602*228826127^(1/10) 1771100001138423 a001 196418/1568397607*599074578^(13/14) 1771100001138423 a001 98209/1268860318*599074578^(20/21) 1771100001138423 a001 196418/969323029*599074578^(19/21) 1771100001138423 a001 433494437/439204*228826127^(3/20) 1771100001138423 a001 2971215073/439204*87403803^(1/19) 1771100001138423 a001 196418/370248451*2537720636^(4/5) 1771100001138423 a001 196418/370248451*45537549124^(12/17) 1771100001138423 a001 196418/370248451*14662949395604^(4/7) 1771100001138423 a001 196418/370248451*505019158607^(9/14) 1771100001138423 a001 196418/370248451*192900153618^(2/3) 1771100001138423 a001 165580141/439204*(1/2+1/2*5^(1/2))^8 1771100001138423 a001 165580141/439204*23725150497407^(1/8) 1771100001138423 a001 165580141/439204*73681302247^(2/13) 1771100001138423 a001 196418/370248451*73681302247^(9/13) 1771100001138423 a001 165580141/439204*10749957122^(1/6) 1771100001138423 a001 196418/370248451*10749957122^(3/4) 1771100001138423 a001 165580141/439204*4106118243^(4/23) 1771100001138423 a001 196418/370248451*4106118243^(18/23) 1771100001138423 a001 32522920134938/1836311903 1771100001138423 a001 165580141/439204*1568397607^(2/11) 1771100001138423 a001 196418/370248451*1568397607^(9/11) 1771100001138423 a001 165580141/439204*599074578^(4/21) 1771100001138423 a001 196418/370248451*599074578^(6/7) 1771100001138423 a001 165580141/439204*228826127^(1/5) 1771100001138423 a001 567451585/219602*87403803^(2/19) 1771100001138423 a001 196418/969323029*228826127^(19/20) 1771100001138423 a001 433494437/439204*87403803^(3/19) 1771100001138423 a001 196418/370248451*228826127^(9/10) 1771100001138423 a001 165580141/439204*87403803^(4/19) 1771100001138423 a001 2971215073/439204*33385282^(1/18) 1771100001138423 a001 31622993/219602*2537720636^(2/9) 1771100001138423 a001 98209/70711162*45537549124^(2/3) 1771100001138423 a001 31622993/219602*312119004989^(2/11) 1771100001138423 a001 31622993/219602*(1/2+1/2*5^(1/2))^10 1771100001138423 a001 31622993/219602*28143753123^(1/5) 1771100001138423 a001 31622993/219602*10749957122^(5/24) 1771100001138423 a001 98209/70711162*10749957122^(17/24) 1771100001138423 a001 31622993/219602*4106118243^(5/23) 1771100001138423 a001 98209/70711162*4106118243^(17/23) 1771100001138423 a001 31622993/219602*1568397607^(5/22) 1771100001138423 a001 98209/70711162*1568397607^(17/22) 1771100001138423 a001 12422650078148/701408733 1771100001138423 a001 31622993/219602*599074578^(5/21) 1771100001138423 a001 98209/70711162*599074578^(17/21) 1771100001138423 a001 31622993/219602*228826127^(1/4) 1771100001138423 a001 98209/70711162*228826127^(17/20) 1771100001138423 a001 1836311903/439204*33385282^(1/12) 1771100001138423 a001 31622993/219602*87403803^(5/19) 1771100001138423 a001 567451585/219602*33385282^(1/9) 1771100001138423 a001 196418/370248451*87403803^(18/19) 1771100001138423 a001 433494437/439204*33385282^(1/6) 1771100001138423 a001 98209/70711162*87403803^(17/19) 1771100001138423 a001 102334155/439204*33385282^(1/4) 1771100001138423 a001 165580141/439204*33385282^(2/9) 1771100001138423 a001 31622993/219602*33385282^(5/18) 1771100001138423 a001 24157817/439204*141422324^(4/13) 1771100001138423 a001 196418/20633239*20633239^(6/7) 1771100001138423 a001 24157817/439204*2537720636^(4/15) 1771100001138423 a001 24157817/439204*45537549124^(4/17) 1771100001138423 a001 196418/54018521*23725150497407^(1/2) 1771100001138423 a001 24157817/439204*14662949395604^(4/21) 1771100001138423 a001 24157817/439204*(1/2+1/2*5^(1/2))^12 1771100001138423 a001 24157817/439204*192900153618^(2/9) 1771100001138423 a001 24157817/439204*73681302247^(3/13) 1771100001138423 a001 196418/54018521*73681302247^(8/13) 1771100001138423 a001 24157817/439204*10749957122^(1/4) 1771100001138423 a001 196418/54018521*10749957122^(2/3) 1771100001138423 a001 24157817/439204*4106118243^(6/23) 1771100001138423 a001 196418/54018521*4106118243^(16/23) 1771100001138423 a001 24157817/439204*1568397607^(3/11) 1771100001138423 a001 196418/54018521*1568397607^(8/11) 1771100001138423 a001 24157817/439204*599074578^(2/7) 1771100001138423 a001 196418/54018521*599074578^(16/21) 1771100001138423 a001 2372515049753/133957148 1771100001138423 a001 24157817/439204*228826127^(3/10) 1771100001138423 a001 196418/54018521*228826127^(4/5) 1771100001138423 a001 2971215073/439204*12752043^(1/17) 1771100001138423 a001 24157817/439204*87403803^(6/19) 1771100001138423 a001 196418/54018521*87403803^(16/19) 1771100001138424 a001 24157817/439204*33385282^(1/3) 1771100001138424 a001 196418/87403803*33385282^(11/12) 1771100001138424 a001 567451585/219602*12752043^(2/17) 1771100001138424 a001 98209/70711162*33385282^(17/18) 1771100001138425 a001 433494437/439204*12752043^(3/17) 1771100001138425 a001 196418/54018521*33385282^(8/9) 1771100001138425 a001 9227465/439204*20633239^(2/5) 1771100001138425 a001 165580141/439204*12752043^(4/17) 1771100001138426 a001 31622993/219602*12752043^(5/17) 1771100001138427 a001 196418/20633239*141422324^(10/13) 1771100001138427 a001 196418/20633239*2537720636^(2/3) 1771100001138427 a001 9227465/439204*17393796001^(2/7) 1771100001138427 a001 196418/20633239*45537549124^(10/17) 1771100001138427 a001 196418/20633239*312119004989^(6/11) 1771100001138427 a001 196418/20633239*14662949395604^(10/21) 1771100001138427 a001 196418/20633239*(1/2+1/2*5^(1/2))^30 1771100001138427 a001 196418/20633239*192900153618^(5/9) 1771100001138427 a001 9227465/439204*14662949395604^(2/9) 1771100001138427 a001 9227465/439204*(1/2+1/2*5^(1/2))^14 1771100001138427 a001 196418/20633239*28143753123^(3/5) 1771100001138427 a001 9227465/439204*10749957122^(7/24) 1771100001138427 a001 196418/20633239*10749957122^(5/8) 1771100001138427 a001 9227465/439204*4106118243^(7/23) 1771100001138427 a001 196418/20633239*4106118243^(15/23) 1771100001138427 a001 9227465/439204*1568397607^(7/22) 1771100001138427 a001 196418/20633239*1568397607^(15/22) 1771100001138427 a001 9227465/439204*599074578^(1/3) 1771100001138427 a001 196418/20633239*599074578^(5/7) 1771100001138427 a001 9227465/439204*228826127^(7/20) 1771100001138427 a001 196418/20633239*228826127^(3/4) 1771100001138427 a001 362488044074/20466831 1771100001138427 a001 9227465/439204*87403803^(7/19) 1771100001138427 a001 196418/20633239*87403803^(15/19) 1771100001138427 a001 24157817/439204*12752043^(6/17) 1771100001138427 a001 2971215073/439204*4870847^(1/16) 1771100001138427 a001 9227465/439204*33385282^(7/18) 1771100001138428 a001 196418/20633239*33385282^(5/6) 1771100001138431 a001 9227465/439204*12752043^(7/17) 1771100001138432 a001 567451585/219602*4870847^(1/8) 1771100001138434 a001 196418/54018521*12752043^(16/17) 1771100001138436 a001 196418/20633239*12752043^(15/17) 1771100001138437 a001 433494437/439204*4870847^(3/16) 1771100001138441 a001 165580141/439204*4870847^(1/4) 1771100001138446 a001 31622993/219602*4870847^(5/16) 1771100001138448 a001 98209/3940598*20633239^(4/5) 1771100001138451 a001 98209/3940598*17393796001^(4/7) 1771100001138451 a001 98209/3940598*14662949395604^(4/9) 1771100001138451 a001 98209/3940598*(1/2+1/2*5^(1/2))^28 1771100001138451 a001 1762289/219602*(1/2+1/2*5^(1/2))^16 1771100001138451 a001 1762289/219602*23725150497407^(1/4) 1771100001138451 a001 1762289/219602*73681302247^(4/13) 1771100001138451 a001 98209/3940598*73681302247^(7/13) 1771100001138451 a001 1762289/219602*10749957122^(1/3) 1771100001138451 a001 98209/3940598*10749957122^(7/12) 1771100001138451 a001 1762289/219602*4106118243^(8/23) 1771100001138451 a001 98209/3940598*4106118243^(14/23) 1771100001138451 a001 1762289/219602*1568397607^(4/11) 1771100001138451 a001 98209/3940598*1568397607^(7/11) 1771100001138451 a001 1762289/219602*599074578^(8/21) 1771100001138451 a001 98209/3940598*599074578^(2/3) 1771100001138451 a001 1762289/219602*228826127^(2/5) 1771100001138451 a001 98209/3940598*228826127^(7/10) 1771100001138451 a001 24157817/439204*4870847^(3/8) 1771100001138451 a001 1762289/219602*87403803^(8/19) 1771100001138451 a001 98209/3940598*87403803^(14/19) 1771100001138451 a001 692290561604/39088169 1771100001138452 a001 1762289/219602*33385282^(4/9) 1771100001138452 a001 98209/3940598*33385282^(7/9) 1771100001138456 a001 1762289/219602*12752043^(8/17) 1771100001138457 a001 2971215073/439204*1860498^(1/15) 1771100001138459 a001 9227465/439204*4870847^(7/16) 1771100001138460 a001 98209/3940598*12752043^(14/17) 1771100001138474 a001 1836311903/439204*1860498^(1/10) 1771100001138475 a001 1836311903/12752043*271443^(5/13) 1771100001138485 a001 14930208/103681*271443^(5/13) 1771100001138486 a001 12586269025/87403803*271443^(5/13) 1771100001138486 a001 32951280099/228826127*271443^(5/13) 1771100001138486 a001 43133785636/299537289*271443^(5/13) 1771100001138486 a001 32264490531/224056801*271443^(5/13) 1771100001138486 a001 591286729879/4106118243*271443^(5/13) 1771100001138486 a001 774004377960/5374978561*271443^(5/13) 1771100001138486 a001 4052739537881/28143753123*271443^(5/13) 1771100001138486 a001 1515744265389/10525900321*271443^(5/13) 1771100001138486 a001 3278735159921/22768774562*271443^(5/13) 1771100001138486 a001 2504730781961/17393796001*271443^(5/13) 1771100001138486 a001 956722026041/6643838879*271443^(5/13) 1771100001138486 a001 182717648081/1268860318*271443^(5/13) 1771100001138486 a001 139583862445/969323029*271443^(5/13) 1771100001138486 a001 53316291173/370248451*271443^(5/13) 1771100001138486 a001 10182505537/70711162*271443^(5/13) 1771100001138487 a001 7778742049/54018521*271443^(5/13) 1771100001138488 a001 1762289/219602*4870847^(1/2) 1771100001138490 a001 2971215073/20633239*271443^(5/13) 1771100001138491 a001 567451585/219602*1860498^(2/15) 1771100001138497 a001 196418/20633239*4870847^(15/16) 1771100001138508 a001 701408733/439204*1860498^(1/6) 1771100001138515 a001 567451585/3940598*271443^(5/13) 1771100001138516 a001 98209/3940598*4870847^(7/8) 1771100001138525 a001 433494437/439204*1860498^(1/5) 1771100001138559 a001 165580141/439204*1860498^(4/15) 1771100001138576 a001 102334155/439204*1860498^(3/10) 1771100001138593 a001 31622993/219602*1860498^(1/3) 1771100001138603 a001 1346269/439204*7881196^(6/11) 1771100001138618 a001 196418/3010349*141422324^(2/3) 1771100001138618 a001 1346269/439204*141422324^(6/13) 1771100001138618 a001 1346269/439204*2537720636^(2/5) 1771100001138618 a001 1346269/439204*45537549124^(6/17) 1771100001138618 a001 196418/3010349*(1/2+1/2*5^(1/2))^26 1771100001138618 a001 1346269/439204*14662949395604^(2/7) 1771100001138618 a001 1346269/439204*(1/2+1/2*5^(1/2))^18 1771100001138618 a001 1346269/439204*192900153618^(1/3) 1771100001138618 a001 196418/3010349*73681302247^(1/2) 1771100001138618 a001 1346269/439204*10749957122^(3/8) 1771100001138618 a001 196418/3010349*10749957122^(13/24) 1771100001138618 a001 1346269/439204*4106118243^(9/23) 1771100001138618 a001 196418/3010349*4106118243^(13/23) 1771100001138618 a001 1346269/439204*1568397607^(9/22) 1771100001138618 a001 196418/3010349*1568397607^(13/22) 1771100001138618 a001 1346269/439204*599074578^(3/7) 1771100001138618 a001 196418/3010349*599074578^(13/21) 1771100001138618 a001 1346269/439204*228826127^(9/20) 1771100001138618 a001 196418/3010349*228826127^(13/20) 1771100001138618 a001 1346269/439204*87403803^(9/19) 1771100001138618 a001 196418/3010349*87403803^(13/19) 1771100001138619 a001 1346269/439204*33385282^(1/2) 1771100001138619 a001 196418/3010349*33385282^(13/18) 1771100001138620 a001 7777396013/439128 1771100001138624 a001 1346269/439204*12752043^(9/17) 1771100001138626 a001 196418/3010349*12752043^(13/17) 1771100001138628 a001 24157817/439204*1860498^(2/5) 1771100001138660 a001 1346269/439204*4870847^(9/16) 1771100001138666 a001 9227465/439204*1860498^(7/15) 1771100001138668 a001 5702887/439204*1860498^(1/2) 1771100001138673 a001 2971215073/439204*710647^(1/14) 1771100001138676 a001 14930352/710647*271443^(7/13) 1771100001138679 a001 196418/3010349*4870847^(13/16) 1771100001138682 a001 433494437/3010349*271443^(5/13) 1771100001138724 a001 1762289/219602*1860498^(8/15) 1771100001138808 a001 196418/4870847*1860498^(9/10) 1771100001138924 a001 567451585/219602*710647^(1/7) 1771100001138925 a001 1346269/439204*1860498^(3/5) 1771100001138929 a001 98209/3940598*1860498^(14/15) 1771100001139062 a001 196418/3010349*1860498^(13/15) 1771100001139174 a001 433494437/439204*710647^(3/14) 1771100001139299 a001 66978574/109801*710647^(1/4) 1771100001139425 a001 165580141/439204*710647^(2/7) 1771100001139464 a001 686789568/101521*103682^(1/12) 1771100001139528 a001 433494437/271443*103682^(5/24) 1771100001139675 a001 31622993/219602*710647^(5/14) 1771100001139741 a001 196418/1149851*7881196^(8/11) 1771100001139760 a001 514229/439204*20633239^(4/7) 1771100001139762 a001 196418/1149851*141422324^(8/13) 1771100001139762 a001 196418/1149851*2537720636^(8/15) 1771100001139762 a001 514229/439204*2537720636^(4/9) 1771100001139762 a001 196418/1149851*45537549124^(8/17) 1771100001139762 a001 196418/1149851*14662949395604^(8/21) 1771100001139762 a001 196418/1149851*(1/2+1/2*5^(1/2))^24 1771100001139762 a001 196418/1149851*192900153618^(4/9) 1771100001139762 a001 514229/439204*(1/2+1/2*5^(1/2))^20 1771100001139762 a001 514229/439204*23725150497407^(5/16) 1771100001139762 a001 514229/439204*505019158607^(5/14) 1771100001139762 a001 196418/1149851*73681302247^(6/13) 1771100001139762 a001 514229/439204*73681302247^(5/13) 1771100001139762 a001 514229/439204*28143753123^(2/5) 1771100001139762 a001 514229/439204*10749957122^(5/12) 1771100001139762 a001 196418/1149851*10749957122^(1/2) 1771100001139762 a001 514229/439204*4106118243^(10/23) 1771100001139762 a001 196418/1149851*4106118243^(12/23) 1771100001139762 a001 514229/439204*1568397607^(5/11) 1771100001139762 a001 196418/1149851*1568397607^(6/11) 1771100001139762 a001 514229/439204*599074578^(10/21) 1771100001139762 a001 196418/1149851*599074578^(4/7) 1771100001139762 a001 514229/439204*228826127^(1/2) 1771100001139762 a001 196418/1149851*228826127^(3/5) 1771100001139762 a001 514229/439204*87403803^(10/19) 1771100001139762 a001 196418/1149851*87403803^(12/19) 1771100001139763 a001 514229/439204*33385282^(5/9) 1771100001139763 a001 196418/1149851*33385282^(2/3) 1771100001139769 a001 514229/439204*12752043^(10/17) 1771100001139770 a001 196418/1149851*12752043^(12/17) 1771100001139773 a001 101003831722/5702887 1771100001139809 a001 514229/439204*4870847^(5/8) 1771100001139818 a001 196418/1149851*4870847^(3/4) 1771100001139824 a001 831985/15126*271443^(6/13) 1771100001139826 a001 165580141/1149851*271443^(5/13) 1771100001139926 a001 24157817/439204*710647^(3/7) 1771100001140103 a001 514229/439204*1860498^(2/3) 1771100001140172 a001 196418/1149851*1860498^(4/5) 1771100001140180 a001 9227465/439204*710647^(1/2) 1771100001140261 a001 267914296/4870847*271443^(6/13) 1771100001140272 a001 2971215073/439204*271443^(1/13) 1771100001140324 a001 233802911/4250681*271443^(6/13) 1771100001140334 a001 1836311903/33385282*271443^(6/13) 1771100001140335 a001 1602508992/29134601*271443^(6/13) 1771100001140335 a001 12586269025/228826127*271443^(6/13) 1771100001140335 a001 10983760033/199691526*271443^(6/13) 1771100001140335 a001 86267571272/1568397607*271443^(6/13) 1771100001140335 a001 75283811239/1368706081*271443^(6/13) 1771100001140335 a001 591286729879/10749957122*271443^(6/13) 1771100001140335 a001 12585437040/228811001*271443^(6/13) 1771100001140335 a001 4052739537881/73681302247*271443^(6/13) 1771100001140335 a001 3536736619241/64300051206*271443^(6/13) 1771100001140335 a001 6557470319842/119218851371*271443^(6/13) 1771100001140335 a001 2504730781961/45537549124*271443^(6/13) 1771100001140335 a001 956722026041/17393796001*271443^(6/13) 1771100001140335 a001 365435296162/6643838879*271443^(6/13) 1771100001140335 a001 139583862445/2537720636*271443^(6/13) 1771100001140335 a001 53316291173/969323029*271443^(6/13) 1771100001140335 a001 20365011074/370248451*271443^(6/13) 1771100001140335 a001 7778742049/141422324*271443^(6/13) 1771100001140336 a001 2971215073/54018521*271443^(6/13) 1771100001140340 a001 1134903170/20633239*271443^(6/13) 1771100001140364 a001 433494437/7881196*271443^(6/13) 1771100001140455 a001 1762289/219602*710647^(4/7) 1771100001140516 a001 5702887/710647*271443^(8/13) 1771100001140531 a001 165580141/3010349*271443^(6/13) 1771100001140748 a001 31622993/930249*271443^(1/2) 1771100001140873 a001 1346269/439204*710647^(9/14) 1771100001141185 a001 165580141/4870847*271443^(1/2) 1771100001141249 a001 433494437/12752043*271443^(1/2) 1771100001141258 a001 567451585/16692641*271443^(1/2) 1771100001141260 a001 2971215073/87403803*271443^(1/2) 1771100001141260 a001 7778742049/228826127*271443^(1/2) 1771100001141260 a001 10182505537/299537289*271443^(1/2) 1771100001141260 a001 53316291173/1568397607*271443^(1/2) 1771100001141260 a001 139583862445/4106118243*271443^(1/2) 1771100001141260 a001 182717648081/5374978561*271443^(1/2) 1771100001141260 a001 956722026041/28143753123*271443^(1/2) 1771100001141260 a001 2504730781961/73681302247*271443^(1/2) 1771100001141260 a001 3278735159921/96450076809*271443^(1/2) 1771100001141260 a001 10610209857723/312119004989*271443^(1/2) 1771100001141260 a001 4052739537881/119218851371*271443^(1/2) 1771100001141260 a001 387002188980/11384387281*271443^(1/2) 1771100001141260 a001 591286729879/17393796001*271443^(1/2) 1771100001141260 a001 225851433717/6643838879*271443^(1/2) 1771100001141260 a001 1135099622/33391061*271443^(1/2) 1771100001141260 a001 32951280099/969323029*271443^(1/2) 1771100001141260 a001 12586269025/370248451*271443^(1/2) 1771100001141260 a001 1201881744/35355581*271443^(1/2) 1771100001141260 a001 1836311903/54018521*271443^(1/2) 1771100001141264 a001 701408733/20633239*271443^(1/2) 1771100001141288 a001 66978574/1970299*271443^(1/2) 1771100001141455 a001 102334155/3010349*271443^(1/2) 1771100001141672 a001 39088169/1860498*271443^(7/13) 1771100001141675 a001 63245986/1149851*271443^(6/13) 1771100001141875 a001 196418/3010349*710647^(13/14) 1771100001142110 a001 102334155/4870847*271443^(7/13) 1771100001142121 a001 567451585/219602*271443^(2/13) 1771100001142173 a001 267914296/12752043*271443^(7/13) 1771100001142183 a001 701408733/33385282*271443^(7/13) 1771100001142184 a001 1836311903/87403803*271443^(7/13) 1771100001142184 a001 102287808/4868641*271443^(7/13) 1771100001142184 a001 12586269025/599074578*271443^(7/13) 1771100001142184 a001 32951280099/1568397607*271443^(7/13) 1771100001142184 a001 86267571272/4106118243*271443^(7/13) 1771100001142184 a001 225851433717/10749957122*271443^(7/13) 1771100001142184 a001 591286729879/28143753123*271443^(7/13) 1771100001142184 a001 1548008755920/73681302247*271443^(7/13) 1771100001142184 a001 4052739537881/192900153618*271443^(7/13) 1771100001142184 a001 225749145909/10745088481*271443^(7/13) 1771100001142184 a001 6557470319842/312119004989*271443^(7/13) 1771100001142184 a001 2504730781961/119218851371*271443^(7/13) 1771100001142184 a001 956722026041/45537549124*271443^(7/13) 1771100001142184 a001 365435296162/17393796001*271443^(7/13) 1771100001142184 a001 139583862445/6643838879*271443^(7/13) 1771100001142184 a001 53316291173/2537720636*271443^(7/13) 1771100001142184 a001 20365011074/969323029*271443^(7/13) 1771100001142184 a001 7778742049/370248451*271443^(7/13) 1771100001142184 a001 2971215073/141422324*271443^(7/13) 1771100001142185 a001 1134903170/54018521*271443^(7/13) 1771100001142189 a001 433494437/20633239*271443^(7/13) 1771100001142213 a001 165580141/7881196*271443^(7/13) 1771100001142267 a001 514229/439204*710647^(5/7) 1771100001142301 a001 311187/101521*271443^(9/13) 1771100001142380 a001 63245986/3010349*271443^(7/13) 1771100001142459 a001 12586269025/1860498*103682^(1/12) 1771100001142566 a001 317811/710647*271443^(11/13) 1771100001142599 a001 39088169/1149851*271443^(1/2) 1771100001142768 a001 196418/1149851*710647^(6/7) 1771100001142896 a001 32951280099/4870847*103682^(1/12) 1771100001142960 a001 86267571272/12752043*103682^(1/12) 1771100001142969 a001 32264490531/4769326*103682^(1/12) 1771100001142970 a001 591286729879/87403803*103682^(1/12) 1771100001142971 a001 1548008755920/228826127*103682^(1/12) 1771100001142971 a001 4052739537881/599074578*103682^(1/12) 1771100001142971 a001 1515744265389/224056801*103682^(1/12) 1771100001142971 a001 6557470319842/969323029*103682^(1/12) 1771100001142971 a001 2504730781961/370248451*103682^(1/12) 1771100001142971 a001 956722026041/141422324*103682^(1/12) 1771100001142971 a001 365435296162/54018521*103682^(1/12) 1771100001142975 a001 139583862445/20633239*103682^(1/12) 1771100001142999 a001 53316291173/7881196*103682^(1/12) 1771100001143166 a001 20365011074/3010349*103682^(1/12) 1771100001143520 a001 829464/103361*271443^(8/13) 1771100001143525 a001 24157817/1149851*271443^(7/13) 1771100001143713 a001 832040/710647*271443^(10/13) 1771100001143959 a001 39088169/4870847*271443^(8/13) 1771100001143970 a001 433494437/439204*271443^(3/13) 1771100001144022 a001 34111385/4250681*271443^(8/13) 1771100001144032 a001 133957148/16692641*271443^(8/13) 1771100001144033 a001 233802911/29134601*271443^(8/13) 1771100001144033 a001 1836311903/228826127*271443^(8/13) 1771100001144033 a001 267084832/33281921*271443^(8/13) 1771100001144033 a001 12586269025/1568397607*271443^(8/13) 1771100001144033 a001 10983760033/1368706081*271443^(8/13) 1771100001144033 a001 43133785636/5374978561*271443^(8/13) 1771100001144033 a001 75283811239/9381251041*271443^(8/13) 1771100001144033 a001 591286729879/73681302247*271443^(8/13) 1771100001144033 a001 86000486440/10716675201*271443^(8/13) 1771100001144033 a001 3536736619241/440719107401*271443^(8/13) 1771100001144033 a001 3278735159921/408569081798*271443^(8/13) 1771100001144033 a001 2504730781961/312119004989*271443^(8/13) 1771100001144033 a001 956722026041/119218851371*271443^(8/13) 1771100001144033 a001 182717648081/22768774562*271443^(8/13) 1771100001144033 a001 139583862445/17393796001*271443^(8/13) 1771100001144033 a001 53316291173/6643838879*271443^(8/13) 1771100001144033 a001 10182505537/1268860318*271443^(8/13) 1771100001144033 a001 7778742049/969323029*271443^(8/13) 1771100001144033 a001 2971215073/370248451*271443^(8/13) 1771100001144033 a001 567451585/70711162*271443^(8/13) 1771100001144034 a001 433494437/54018521*271443^(8/13) 1771100001144038 a001 165580141/20633239*271443^(8/13) 1771100001144062 a001 31622993/3940598*271443^(8/13) 1771100001144229 a001 24157817/3010349*271443^(8/13) 1771100001144310 a001 7778742049/1149851*103682^(1/12) 1771100001145287 a001 1201881744/109801*103682^(1/24) 1771100001145360 a001 5702887/1860498*271443^(9/13) 1771100001145377 a001 9227465/1149851*271443^(8/13) 1771100001145806 a001 14930352/4870847*271443^(9/13) 1771100001145819 a001 165580141/439204*271443^(4/13) 1771100001145871 a001 39088169/12752043*271443^(9/13) 1771100001145881 a001 14619165/4769326*271443^(9/13) 1771100001145882 a001 267914296/87403803*271443^(9/13) 1771100001145882 a001 701408733/228826127*271443^(9/13) 1771100001145882 a001 1836311903/599074578*271443^(9/13) 1771100001145882 a001 686789568/224056801*271443^(9/13) 1771100001145882 a001 12586269025/4106118243*271443^(9/13) 1771100001145882 a001 32951280099/10749957122*271443^(9/13) 1771100001145882 a001 86267571272/28143753123*271443^(9/13) 1771100001145882 a001 32264490531/10525900321*271443^(9/13) 1771100001145882 a001 591286729879/192900153618*271443^(9/13) 1771100001145882 a001 1515744265389/494493258286*271443^(9/13) 1771100001145882 a001 2504730781961/817138163596*271443^(9/13) 1771100001145882 a001 956722026041/312119004989*271443^(9/13) 1771100001145882 a001 365435296162/119218851371*271443^(9/13) 1771100001145882 a001 139583862445/45537549124*271443^(9/13) 1771100001145882 a001 53316291173/17393796001*271443^(9/13) 1771100001145882 a001 20365011074/6643838879*271443^(9/13) 1771100001145882 a001 7778742049/2537720636*271443^(9/13) 1771100001145882 a001 2971215073/969323029*271443^(9/13) 1771100001145882 a001 1134903170/370248451*271443^(9/13) 1771100001145883 a001 433494437/141422324*271443^(9/13) 1771100001145883 a001 165580141/54018521*271443^(9/13) 1771100001145887 a001 63245986/20633239*271443^(9/13) 1771100001145912 a001 24157817/7881196*271443^(9/13) 1771100001146082 a001 9227465/3010349*271443^(9/13) 1771100001146328 a001 2971215073/710647*103682^(1/8) 1771100001146392 a001 267914296/271443*103682^(1/4) 1771100001147145 a001 726103/620166*271443^(10/13) 1771100001147250 a001 3524578/1149851*271443^(9/13) 1771100001147411 a001 105937/620166*271443^(12/13) 1771100001147585 a001 98209/219602*7881196^(2/3) 1771100001147604 a001 98209/219602*312119004989^(2/5) 1771100001147604 a001 98209/219602*(1/2+1/2*5^(1/2))^22 1771100001147604 a001 98209/219602*10749957122^(11/24) 1771100001147604 a001 98209/219602*4106118243^(11/23) 1771100001147604 a001 98209/219602*1568397607^(1/2) 1771100001147604 a001 98209/219602*599074578^(11/21) 1771100001147604 a001 98209/219602*228826127^(11/20) 1771100001147604 a001 98209/219602*87403803^(11/19) 1771100001147605 a001 98209/219602*33385282^(11/18) 1771100001147611 a001 98209/219602*12752043^(11/17) 1771100001147646 a001 5702887/4870847*271443^(10/13) 1771100001147655 a001 98209/219602*4870847^(11/16) 1771100001147668 a001 31622993/219602*271443^(5/13) 1771100001147679 a001 38580030724/2178309 1771100001147719 a001 4976784/4250681*271443^(10/13) 1771100001147730 a001 39088169/33385282*271443^(10/13) 1771100001147731 a001 34111385/29134601*271443^(10/13) 1771100001147731 a001 267914296/228826127*271443^(10/13) 1771100001147731 a001 233802911/199691526*271443^(10/13) 1771100001147731 a001 1836311903/1568397607*271443^(10/13) 1771100001147731 a001 1602508992/1368706081*271443^(10/13) 1771100001147731 a001 12586269025/10749957122*271443^(10/13) 1771100001147731 a001 10983760033/9381251041*271443^(10/13) 1771100001147731 a001 86267571272/73681302247*271443^(10/13) 1771100001147731 a001 75283811239/64300051206*271443^(10/13) 1771100001147731 a001 2504730781961/2139295485799*271443^(10/13) 1771100001147731 a001 365435296162/312119004989*271443^(10/13) 1771100001147731 a001 139583862445/119218851371*271443^(10/13) 1771100001147731 a001 53316291173/45537549124*271443^(10/13) 1771100001147731 a001 20365011074/17393796001*271443^(10/13) 1771100001147731 a001 7778742049/6643838879*271443^(10/13) 1771100001147731 a001 2971215073/2537720636*271443^(10/13) 1771100001147731 a001 1134903170/969323029*271443^(10/13) 1771100001147731 a001 433494437/370248451*271443^(10/13) 1771100001147732 a001 165580141/141422324*271443^(10/13) 1771100001147732 a001 63245986/54018521*271443^(10/13) 1771100001147736 a001 24157817/20633239*271443^(10/13) 1771100001147764 a001 9227465/7881196*271443^(10/13) 1771100001147955 a001 3524578/3010349*271443^(10/13) 1771100001147979 a001 98209/219602*1860498^(11/15) 1771100001148557 a001 416020/930249*271443^(11/13) 1771100001149266 a001 1346269/1149851*271443^(10/13) 1771100001149324 a001 7778742049/1860498*103682^(1/8) 1771100001149431 a001 2178309/4870847*271443^(11/13) 1771100001149517 a001 24157817/439204*271443^(6/13) 1771100001149559 a001 5702887/12752043*271443^(11/13) 1771100001149577 a001 7465176/16692641*271443^(11/13) 1771100001149580 a001 39088169/87403803*271443^(11/13) 1771100001149580 a001 102334155/228826127*271443^(11/13) 1771100001149580 a001 133957148/299537289*271443^(11/13) 1771100001149580 a001 701408733/1568397607*271443^(11/13) 1771100001149580 a001 1836311903/4106118243*271443^(11/13) 1771100001149580 a001 2403763488/5374978561*271443^(11/13) 1771100001149580 a001 12586269025/28143753123*271443^(11/13) 1771100001149580 a001 32951280099/73681302247*271443^(11/13) 1771100001149580 a001 43133785636/96450076809*271443^(11/13) 1771100001149580 a001 225851433717/505019158607*271443^(11/13) 1771100001149580 a001 591286729879/1322157322203*271443^(11/13) 1771100001149580 a001 10610209857723/23725150497407*271443^(11/13) 1771100001149580 a001 139583862445/312119004989*271443^(11/13) 1771100001149580 a001 53316291173/119218851371*271443^(11/13) 1771100001149580 a001 10182505537/22768774562*271443^(11/13) 1771100001149580 a001 7778742049/17393796001*271443^(11/13) 1771100001149580 a001 2971215073/6643838879*271443^(11/13) 1771100001149580 a001 567451585/1268860318*271443^(11/13) 1771100001149580 a001 433494437/969323029*271443^(11/13) 1771100001149580 a001 165580141/370248451*271443^(11/13) 1771100001149581 a001 31622993/70711162*271443^(11/13) 1771100001149582 a001 24157817/54018521*271443^(11/13) 1771100001149589 a001 9227465/20633239*271443^(11/13) 1771100001149638 a001 1762289/3940598*271443^(11/13) 1771100001149761 a001 20365011074/4870847*103682^(1/8) 1771100001149825 a001 53316291173/12752043*103682^(1/8) 1771100001149834 a001 139583862445/33385282*103682^(1/8) 1771100001149835 a001 365435296162/87403803*103682^(1/8) 1771100001149835 a001 956722026041/228826127*103682^(1/8) 1771100001149835 a001 2504730781961/599074578*103682^(1/8) 1771100001149835 a001 6557470319842/1568397607*103682^(1/8) 1771100001149835 a001 10610209857723/2537720636*103682^(1/8) 1771100001149835 a001 4052739537881/969323029*103682^(1/8) 1771100001149835 a001 1548008755920/370248451*103682^(1/8) 1771100001149836 a001 591286729879/141422324*103682^(1/8) 1771100001149836 a001 225851433717/54018521*103682^(1/8) 1771100001149840 a001 86267571272/20633239*103682^(1/8) 1771100001149864 a001 32951280099/7881196*103682^(1/8) 1771100001149971 a001 1346269/3010349*271443^(11/13) 1771100001150031 a001 12586269025/3010349*103682^(1/8) 1771100001150360 a001 98209/219602*710647^(11/14) 1771100001150440 a001 196452/5779*271443^(1/2) 1771100001150843 a001 832040/4870847*271443^(12/13) 1771100001151009 a001 196418/167761*167761^(4/5) 1771100001151175 a001 4807526976/1149851*103682^(1/8) 1771100001151344 a001 726103/4250681*271443^(12/13) 1771100001151370 a001 9227465/439204*271443^(7/13) 1771100001151417 a001 5702887/33385282*271443^(12/13) 1771100001151428 a001 4976784/29134601*271443^(12/13) 1771100001151429 a001 39088169/228826127*271443^(12/13) 1771100001151429 a001 34111385/199691526*271443^(12/13) 1771100001151429 a001 267914296/1568397607*271443^(12/13) 1771100001151429 a001 233802911/1368706081*271443^(12/13) 1771100001151429 a001 1836311903/10749957122*271443^(12/13) 1771100001151429 a001 1602508992/9381251041*271443^(12/13) 1771100001151429 a001 12586269025/73681302247*271443^(12/13) 1771100001151429 a001 10983760033/64300051206*271443^(12/13) 1771100001151429 a001 86267571272/505019158607*271443^(12/13) 1771100001151429 a001 75283811239/440719107401*271443^(12/13) 1771100001151429 a001 2504730781961/14662949395604*271443^(12/13) 1771100001151429 a001 139583862445/817138163596*271443^(12/13) 1771100001151429 a001 53316291173/312119004989*271443^(12/13) 1771100001151429 a001 20365011074/119218851371*271443^(12/13) 1771100001151429 a001 7778742049/45537549124*271443^(12/13) 1771100001151429 a001 2971215073/17393796001*271443^(12/13) 1771100001151429 a001 1134903170/6643838879*271443^(12/13) 1771100001151429 a001 433494437/2537720636*271443^(12/13) 1771100001151430 a001 165580141/969323029*271443^(12/13) 1771100001151430 a001 63245986/370248451*271443^(12/13) 1771100001151430 a001 24157817/141422324*271443^(12/13) 1771100001151434 a001 9227465/54018521*271443^(12/13) 1771100001151462 a001 3524578/20633239*271443^(12/13) 1771100001151653 a001 1346269/7881196*271443^(12/13) 1771100001152152 a001 2971215073/439204*103682^(1/12) 1771100001152260 a001 514229/1149851*271443^(11/13) 1771100001152964 a001 514229/3010349*271443^(12/13) 1771100001153193 a001 1836311903/710647*103682^(1/6) 1771100001153243 a001 1762289/219602*271443^(8/13) 1771100001153257 a001 165580141/271443*103682^(7/24) 1771100001153279 a001 2/121393*(1/2+1/2*5^(1/2))^48 1771100001153279 a001 10749957122/121393*8^(1/3) 1771100001154339 a001 2178309/167761*167761^(3/5) 1771100001154665 a001 1134903170/167761*64079^(2/23) 1771100001155259 a001 1346269/439204*271443^(9/13) 1771100001156189 a001 267084832/103361*103682^(1/6) 1771100001156533 a001 2971215073/271443*39603^(1/22) 1771100001156626 a001 12586269025/4870847*103682^(1/6) 1771100001156689 a001 10983760033/4250681*103682^(1/6) 1771100001156699 a001 43133785636/16692641*103682^(1/6) 1771100001156700 a001 75283811239/29134601*103682^(1/6) 1771100001156700 a001 591286729879/228826127*103682^(1/6) 1771100001156700 a001 86000486440/33281921*103682^(1/6) 1771100001156700 a001 4052739537881/1568397607*103682^(1/6) 1771100001156700 a001 3536736619241/1368706081*103682^(1/6) 1771100001156700 a001 3278735159921/1268860318*103682^(1/6) 1771100001156700 a001 2504730781961/969323029*103682^(1/6) 1771100001156700 a001 956722026041/370248451*103682^(1/6) 1771100001156700 a001 182717648081/70711162*103682^(1/6) 1771100001156701 a001 139583862445/54018521*103682^(1/6) 1771100001156704 a001 53316291173/20633239*103682^(1/6) 1771100001156729 a001 10182505537/3940598*103682^(1/6) 1771100001156896 a001 7778742049/3010349*103682^(1/6) 1771100001158040 a001 2971215073/1149851*103682^(1/6) 1771100001158252 a001 514229/439204*271443^(10/13) 1771100001159017 a001 1836311903/439204*103682^(1/8) 1771100001160058 a001 1134903170/710647*103682^(5/24) 1771100001160122 a001 34111385/90481*103682^(1/3) 1771100001160990 a001 165580141/39603*15127^(3/20) 1771100001160993 a001 121393/167761*439204^(7/9) 1771100001161950 a001 196418/1149851*271443^(12/13) 1771100001163053 a001 2971215073/1860498*103682^(5/24) 1771100001163490 a001 7778742049/4870847*103682^(5/24) 1771100001163554 a001 20365011074/12752043*103682^(5/24) 1771100001163563 a001 53316291173/33385282*103682^(5/24) 1771100001163565 a001 139583862445/87403803*103682^(5/24) 1771100001163565 a001 365435296162/228826127*103682^(5/24) 1771100001163565 a001 956722026041/599074578*103682^(5/24) 1771100001163565 a001 2504730781961/1568397607*103682^(5/24) 1771100001163565 a001 6557470319842/4106118243*103682^(5/24) 1771100001163565 a001 10610209857723/6643838879*103682^(5/24) 1771100001163565 a001 4052739537881/2537720636*103682^(5/24) 1771100001163565 a001 1548008755920/969323029*103682^(5/24) 1771100001163565 a001 591286729879/370248451*103682^(5/24) 1771100001163565 a001 225851433717/141422324*103682^(5/24) 1771100001163566 a001 86267571272/54018521*103682^(5/24) 1771100001163569 a001 32951280099/20633239*103682^(5/24) 1771100001163594 a001 12586269025/7881196*103682^(5/24) 1771100001163760 a001 4807526976/3010349*103682^(5/24) 1771100001164905 a001 1836311903/1149851*103682^(5/24) 1771100001165882 a001 567451585/219602*103682^(1/6) 1771100001166795 a001 9107509825/514229 1771100001166923 a001 701408733/710647*103682^(1/4) 1771100001166987 a001 63245986/271443*103682^(3/8) 1771100001167000 a001 24157817/167761*167761^(2/5) 1771100001167943 a001 98209/219602*271443^(11/13) 1771100001168116 a001 121393/167761*7881196^(7/11) 1771100001168132 a001 121393/167761*20633239^(3/5) 1771100001168134 a001 121393/167761*141422324^(7/13) 1771100001168134 a001 121393/167761*2537720636^(7/15) 1771100001168134 a001 121393/167761*17393796001^(3/7) 1771100001168134 a001 75025/271443*(1/2+1/2*5^(1/2))^23 1771100001168134 a001 121393/167761*45537549124^(7/17) 1771100001168134 a001 121393/167761*14662949395604^(1/3) 1771100001168134 a001 121393/167761*(1/2+1/2*5^(1/2))^21 1771100001168134 a001 121393/167761*192900153618^(7/18) 1771100001168134 a001 121393/167761*10749957122^(7/16) 1771100001168134 a001 75025/271443*4106118243^(1/2) 1771100001168134 a001 121393/167761*599074578^(1/2) 1771100001168135 a001 121393/167761*33385282^(7/12) 1771100001168493 a001 121393/167761*1860498^(7/10) 1771100001169804 a001 133957148/51841*39603^(2/11) 1771100001169918 a001 1836311903/1860498*103682^(1/4) 1771100001170355 a001 4807526976/4870847*103682^(1/4) 1771100001170419 a001 12586269025/12752043*103682^(1/4) 1771100001170428 a001 32951280099/33385282*103682^(1/4) 1771100001170430 a001 86267571272/87403803*103682^(1/4) 1771100001170430 a001 225851433717/228826127*103682^(1/4) 1771100001170430 a001 591286729879/599074578*103682^(1/4) 1771100001170430 a001 1548008755920/1568397607*103682^(1/4) 1771100001170430 a001 4052739537881/4106118243*103682^(1/4) 1771100001170430 a001 4807525989/4870846*103682^(1/4) 1771100001170430 a001 6557470319842/6643838879*103682^(1/4) 1771100001170430 a001 2504730781961/2537720636*103682^(1/4) 1771100001170430 a001 956722026041/969323029*103682^(1/4) 1771100001170430 a001 365435296162/370248451*103682^(1/4) 1771100001170430 a001 139583862445/141422324*103682^(1/4) 1771100001170430 a001 53316291173/54018521*103682^(1/4) 1771100001170434 a001 20365011074/20633239*103682^(1/4) 1771100001170458 a001 7778742049/7881196*103682^(1/4) 1771100001170625 a001 2971215073/3010349*103682^(1/4) 1771100001170765 a001 121393/167761*710647^(3/4) 1771100001171577 a001 75025/103682*103682^(7/8) 1771100001171769 a001 1134903170/1149851*103682^(1/4) 1771100001172746 a001 701408733/439204*103682^(5/24) 1771100001173418 a001 1836311903/167761*64079^(1/23) 1771100001173576 a001 28657/15127*15127^(19/20) 1771100001173788 a001 433494437/710647*103682^(7/24) 1771100001173851 a001 39088169/271443*103682^(5/12) 1771100001176783 a001 567451585/930249*103682^(7/24) 1771100001177063 a001 7778742049/710647*39603^(1/22) 1771100001177220 a001 2971215073/4870847*103682^(7/24) 1771100001177284 a001 7778742049/12752043*103682^(7/24) 1771100001177293 a001 10182505537/16692641*103682^(7/24) 1771100001177294 a001 53316291173/87403803*103682^(7/24) 1771100001177294 a001 139583862445/228826127*103682^(7/24) 1771100001177295 a001 182717648081/299537289*103682^(7/24) 1771100001177295 a001 956722026041/1568397607*103682^(7/24) 1771100001177295 a001 2504730781961/4106118243*103682^(7/24) 1771100001177295 a001 3278735159921/5374978561*103682^(7/24) 1771100001177295 a001 10610209857723/17393796001*103682^(7/24) 1771100001177295 a001 4052739537881/6643838879*103682^(7/24) 1771100001177295 a001 1134903780/1860499*103682^(7/24) 1771100001177295 a001 591286729879/969323029*103682^(7/24) 1771100001177295 a001 225851433717/370248451*103682^(7/24) 1771100001177295 a001 21566892818/35355581*103682^(7/24) 1771100001177295 a001 32951280099/54018521*103682^(7/24) 1771100001177299 a001 1144206275/1875749*103682^(7/24) 1771100001177323 a001 1201881744/1970299*103682^(7/24) 1771100001177490 a001 1836311903/3010349*103682^(7/24) 1771100001178634 a001 701408733/1149851*103682^(7/24) 1771100001179586 a001 267914296/167761*167761^(1/5) 1771100001179611 a001 433494437/439204*103682^(1/4) 1771100001180059 a001 10182505537/930249*39603^(1/22) 1771100001180218 a001 121393/64079*64079^(19/23) 1771100001180496 a001 53316291173/4870847*39603^(1/22) 1771100001180559 a001 139583862445/12752043*39603^(1/22) 1771100001180569 a001 182717648081/16692641*39603^(1/22) 1771100001180570 a001 956722026041/87403803*39603^(1/22) 1771100001180570 a001 2504730781961/228826127*39603^(1/22) 1771100001180570 a001 3278735159921/299537289*39603^(1/22) 1771100001180570 a001 10610209857723/969323029*39603^(1/22) 1771100001180570 a001 4052739537881/370248451*39603^(1/22) 1771100001180570 a001 387002188980/35355581*39603^(1/22) 1771100001180571 a001 591286729879/54018521*39603^(1/22) 1771100001180575 a001 7787980473/711491*39603^(1/22) 1771100001180599 a001 21566892818/1970299*39603^(1/22) 1771100001180652 a001 267914296/710647*103682^(1/3) 1771100001180717 a001 24157817/271443*103682^(11/24) 1771100001180766 a001 32951280099/3010349*39603^(1/22) 1771100001181910 a001 12586269025/1149851*39603^(1/22) 1771100001183648 a001 233802911/620166*103682^(1/3) 1771100001184085 a001 1836311903/4870847*103682^(1/3) 1771100001184148 a001 1602508992/4250681*103682^(1/3) 1771100001184158 a001 12586269025/33385282*103682^(1/3) 1771100001184159 a001 10983760033/29134601*103682^(1/3) 1771100001184159 a001 86267571272/228826127*103682^(1/3) 1771100001184159 a001 267913919/710646*103682^(1/3) 1771100001184159 a001 591286729879/1568397607*103682^(1/3) 1771100001184159 a001 516002918640/1368706081*103682^(1/3) 1771100001184159 a001 4052739537881/10749957122*103682^(1/3) 1771100001184159 a001 3536736619241/9381251041*103682^(1/3) 1771100001184159 a001 6557470319842/17393796001*103682^(1/3) 1771100001184159 a001 2504730781961/6643838879*103682^(1/3) 1771100001184159 a001 956722026041/2537720636*103682^(1/3) 1771100001184159 a001 365435296162/969323029*103682^(1/3) 1771100001184159 a001 139583862445/370248451*103682^(1/3) 1771100001184159 a001 53316291173/141422324*103682^(1/3) 1771100001184160 a001 20365011074/54018521*103682^(1/3) 1771100001184163 a001 7778742049/20633239*103682^(1/3) 1771100001184188 a001 2971215073/7881196*103682^(1/3) 1771100001184355 a001 1134903170/3010349*103682^(1/3) 1771100001185307 a001 46368/167761*103682^(23/24) 1771100001185499 a001 433494437/1149851*103682^(1/3) 1771100001186476 a001 66978574/109801*103682^(7/24) 1771100001186996 a001 2178309/167761*439204^(5/9) 1771100001187390 a001 514229/167761*439204^(2/3) 1771100001187517 a001 165580141/710647*103682^(3/8) 1771100001187579 a001 4976784/90481*103682^(1/2) 1771100001188095 a001 9227465/167761*439204^(4/9) 1771100001188469 a001 23843770275/1346269 1771100001188662 a001 75025/710647*20633239^(5/7) 1771100001188665 a001 75025/710647*2537720636^(5/9) 1771100001188665 a001 75025/710647*312119004989^(5/11) 1771100001188665 a001 75025/710647*(1/2+1/2*5^(1/2))^25 1771100001188665 a001 75025/710647*3461452808002^(5/12) 1771100001188665 a001 75025/710647*28143753123^(1/2) 1771100001188665 a001 317811/167761*817138163596^(1/3) 1771100001188665 a001 317811/167761*(1/2+1/2*5^(1/2))^19 1771100001188665 a001 75025/710647*228826127^(5/8) 1771100001188665 a001 317811/167761*87403803^(1/2) 1771100001189091 a001 75025/710647*1860498^(5/6) 1771100001189111 a001 39088169/167761*439204^(1/3) 1771100001189752 a001 1201881744/109801*39603^(1/22) 1771100001190131 a001 165580141/167761*439204^(2/9) 1771100001190512 a001 433494437/1860498*103682^(3/8) 1771100001190949 a001 1134903170/4870847*103682^(3/8) 1771100001191013 a001 2971215073/12752043*103682^(3/8) 1771100001191022 a001 7778742049/33385282*103682^(3/8) 1771100001191024 a001 20365011074/87403803*103682^(3/8) 1771100001191024 a001 53316291173/228826127*103682^(3/8) 1771100001191024 a001 139583862445/599074578*103682^(3/8) 1771100001191024 a001 365435296162/1568397607*103682^(3/8) 1771100001191024 a001 956722026041/4106118243*103682^(3/8) 1771100001191024 a001 2504730781961/10749957122*103682^(3/8) 1771100001191024 a001 6557470319842/28143753123*103682^(3/8) 1771100001191024 a001 10610209857723/45537549124*103682^(3/8) 1771100001191024 a001 4052739537881/17393796001*103682^(3/8) 1771100001191024 a001 1548008755920/6643838879*103682^(3/8) 1771100001191024 a001 591286729879/2537720636*103682^(3/8) 1771100001191024 a001 225851433717/969323029*103682^(3/8) 1771100001191024 a001 86267571272/370248451*103682^(3/8) 1771100001191024 a001 63246219/271444*103682^(3/8) 1771100001191025 a001 12586269025/54018521*103682^(3/8) 1771100001191028 a001 4807526976/20633239*103682^(3/8) 1771100001191053 a001 1836311903/7881196*103682^(3/8) 1771100001191152 a001 701408733/167761*439204^(1/9) 1771100001191219 a001 701408733/3010349*103682^(3/8) 1771100001191632 a001 31211900500/1762289 1771100001191637 a001 75025/1860498*7881196^(9/11) 1771100001191660 a001 75025/1860498*141422324^(9/13) 1771100001191660 a001 75025/1860498*2537720636^(3/5) 1771100001191660 a001 75025/1860498*45537549124^(9/17) 1771100001191660 a001 75025/1860498*14662949395604^(3/7) 1771100001191660 a001 75025/1860498*(1/2+1/2*5^(1/2))^27 1771100001191660 a001 75025/1860498*192900153618^(1/2) 1771100001191660 a001 75640/15251*45537549124^(1/3) 1771100001191660 a001 75640/15251*(1/2+1/2*5^(1/2))^17 1771100001191660 a001 75025/1860498*10749957122^(9/16) 1771100001191660 a001 75025/1860498*599074578^(9/14) 1771100001191661 a001 75025/1860498*33385282^(3/4) 1771100001191665 a001 75640/15251*12752043^(1/2) 1771100001192084 a001 2178309/167761*7881196^(5/11) 1771100001192093 a001 32685526545/1845493 1771100001192095 a001 2178309/167761*20633239^(3/7) 1771100001192097 a001 2178309/167761*141422324^(5/13) 1771100001192097 a001 2178309/167761*2537720636^(1/3) 1771100001192097 a001 75025/4870847*(1/2+1/2*5^(1/2))^29 1771100001192097 a001 75025/4870847*1322157322203^(1/2) 1771100001192097 a001 2178309/167761*45537549124^(5/17) 1771100001192097 a001 2178309/167761*312119004989^(3/11) 1771100001192097 a001 2178309/167761*14662949395604^(5/21) 1771100001192097 a001 2178309/167761*(1/2+1/2*5^(1/2))^15 1771100001192097 a001 2178309/167761*192900153618^(5/18) 1771100001192097 a001 2178309/167761*28143753123^(3/10) 1771100001192097 a001 2178309/167761*10749957122^(5/16) 1771100001192097 a001 2178309/167761*599074578^(5/14) 1771100001192097 a001 2178309/167761*228826127^(3/8) 1771100001192098 a001 2178309/167761*33385282^(5/12) 1771100001192121 a001 75025/1860498*1860498^(9/10) 1771100001192160 a001 427859097175/24157817 1771100001192161 a001 14930352/167761*7881196^(1/3) 1771100001192161 a001 5702887/167761*141422324^(1/3) 1771100001192161 a001 75025/12752043*(1/2+1/2*5^(1/2))^31 1771100001192161 a001 75025/12752043*9062201101803^(1/2) 1771100001192161 a001 5702887/167761*(1/2+1/2*5^(1/2))^13 1771100001192161 a001 5702887/167761*73681302247^(1/4) 1771100001192164 a001 39088169/167761*7881196^(3/11) 1771100001192165 a001 9227465/167761*7881196^(4/11) 1771100001192167 a001 165580141/167761*7881196^(2/11) 1771100001192169 a001 701408733/167761*7881196^(1/11) 1771100001192170 a001 560074829400/31622993 1771100001192170 a001 75025/33385282*141422324^(11/13) 1771100001192170 a001 75025/33385282*2537720636^(11/15) 1771100001192170 a001 75025/33385282*45537549124^(11/17) 1771100001192170 a001 75025/33385282*312119004989^(3/5) 1771100001192170 a001 75025/33385282*817138163596^(11/19) 1771100001192170 a001 75025/33385282*14662949395604^(11/21) 1771100001192170 a001 75025/33385282*(1/2+1/2*5^(1/2))^33 1771100001192170 a001 75025/33385282*192900153618^(11/18) 1771100001192170 a001 14930352/167761*312119004989^(1/5) 1771100001192170 a001 14930352/167761*(1/2+1/2*5^(1/2))^11 1771100001192170 a001 75025/33385282*10749957122^(11/16) 1771100001192170 a001 14930352/167761*1568397607^(1/4) 1771100001192170 a001 75025/33385282*1568397607^(3/4) 1771100001192170 a001 75025/33385282*599074578^(11/14) 1771100001192171 a001 9303105/15251*20633239^(1/5) 1771100001192171 a001 267914296/167761*20633239^(1/7) 1771100001192171 a001 24157817/167761*20633239^(2/7) 1771100001192171 a001 39088169/167761*141422324^(3/13) 1771100001192171 a001 2932589879225/165580141 1771100001192171 a001 75025/87403803*2537720636^(7/9) 1771100001192171 a001 39088169/167761*2537720636^(1/5) 1771100001192171 a001 75025/87403803*17393796001^(5/7) 1771100001192171 a001 75025/87403803*312119004989^(7/11) 1771100001192171 a001 75025/87403803*14662949395604^(5/9) 1771100001192171 a001 75025/87403803*28143753123^(7/10) 1771100001192171 a001 39088169/167761*45537549124^(3/17) 1771100001192171 a001 39088169/167761*14662949395604^(1/7) 1771100001192171 a001 39088169/167761*(1/2+1/2*5^(1/2))^9 1771100001192171 a001 39088169/167761*192900153618^(1/6) 1771100001192171 a001 39088169/167761*10749957122^(3/16) 1771100001192171 a001 39088169/167761*599074578^(3/14) 1771100001192171 a001 75025/87403803*599074578^(5/6) 1771100001192171 a001 75025/87403803*228826127^(7/8) 1771100001192172 a001 75025/33385282*33385282^(11/12) 1771100001192172 a001 7677619978875/433494437 1771100001192172 a001 9303105/15251*17393796001^(1/7) 1771100001192172 a001 9303105/15251*14662949395604^(1/9) 1771100001192172 a001 9303105/15251*(1/2+1/2*5^(1/2))^7 1771100001192172 a001 9303105/15251*599074578^(1/6) 1771100001192172 a001 701408733/167761*141422324^(1/13) 1771100001192172 a001 2010027005740/113490317 1771100001192172 a001 75025/599074578*2537720636^(13/15) 1771100001192172 a001 267914296/167761*2537720636^(1/9) 1771100001192172 a001 75025/599074578*45537549124^(13/17) 1771100001192172 a001 75025/599074578*14662949395604^(13/21) 1771100001192172 a001 75025/599074578*192900153618^(13/18) 1771100001192172 a001 75025/599074578*73681302247^(3/4) 1771100001192172 a001 267914296/167761*312119004989^(1/11) 1771100001192172 a001 267914296/167761*(1/2+1/2*5^(1/2))^5 1771100001192172 a001 267914296/167761*28143753123^(1/10) 1771100001192172 a001 75025/599074578*10749957122^(13/16) 1771100001192172 a001 52623190193325/2971215073 1771100001192172 a001 701408733/167761*2537720636^(1/15) 1771100001192172 a001 701408733/167761*45537549124^(1/17) 1771100001192172 a001 701408733/167761*14662949395604^(1/21) 1771100001192172 a001 701408733/167761*(1/2+1/2*5^(1/2))^3 1771100001192172 a001 701408733/167761*192900153618^(1/18) 1771100001192172 a001 701408733/167761*10749957122^(1/16) 1771100001192172 a001 267914296/167761*228826127^(1/8) 1771100001192172 a001 165580141/167761*141422324^(2/13) 1771100001192172 a001 701408733/167761*599074578^(1/14) 1771100001192172 a001 75025/599074578*599074578^(13/14) 1771100001192172 a001 137769300522575/7778742049 1771100001192172 a001 1836311903/335522+1836311903/335522*5^(1/2) 1771100001192172 a001 180342355687200/10182505537 1771100001192172 a001 75025/10749957122*45537549124^(15/17) 1771100001192172 a001 75025/10749957122*312119004989^(9/11) 1771100001192172 a001 75025/10749957122*14662949395604^(5/7) 1771100001192172 a001 75025/10749957122*192900153618^(5/6) 1771100001192172 a001 75025/10749957122*28143753123^(9/10) 1771100001192172 a001 944284833600625/53316291173 1771100001192172 a001 75025/10749957122*10749957122^(15/16) 1771100001192172 a001 494433957885495/27916772489 1771100001192172 a001 75025/73681302247*14662949395604^(7/9) 1771100001192172 a001 75025/73681302247*505019158607^(7/8) 1771100001192172 a001 3236112267340900/182717648081 1771100001192172 a001 75025/192900153618*817138163596^(17/19) 1771100001192172 a001 16944503814617925/956722026041 1771100001192172 a004 Fibonacci(25)/Lucas(1)/(1/2+sqrt(5)/2)^3 1771100001192172 a001 187917426916624025/10610209857723 1771100001192172 a001 75025/312119004989*23725150497407^(13/16) 1771100001192172 a001 10472279279936125/591286729879 1771100001192172 a001 75025/45537549124*45537549124^(16/17) 1771100001192172 a001 75025/119218851371*312119004989^(10/11) 1771100001192172 a001 75025/119218851371*3461452808002^(5/6) 1771100001192172 a001 4000054745254325/225851433717 1771100001192172 a001 75025/45537549124*14662949395604^(16/21) 1771100001192172 a001 75025/45537549124*192900153618^(8/9) 1771100001192172 a001 763942477913425/43133785636 1771100001192172 a001 75025/45537549124*73681302247^(12/13) 1771100001192172 a001 583600122226225/32951280099 1771100001192172 a001 75025/2537720636*2537720636^(14/15) 1771100001192172 a001 75025/17393796001*10749957122^(23/24) 1771100001192172 a001 75025/6643838879*312119004989^(4/5) 1771100001192172 a001 75025/6643838879*23725150497407^(11/16) 1771100001192172 a001 75025/6643838879*73681302247^(11/13) 1771100001192172 a001 2971215073/167761 1771100001192172 a001 75025/6643838879*10749957122^(11/12) 1771100001192172 a001 75025/6643838879*4106118243^(22/23) 1771100001192172 a001 75025/2537720636*17393796001^(6/7) 1771100001192172 a001 75025/2537720636*45537549124^(14/17) 1771100001192172 a001 75025/2537720636*14662949395604^(2/3) 1771100001192172 a001 75025/2537720636*505019158607^(3/4) 1771100001192172 a001 75025/2537720636*192900153618^(7/9) 1771100001192172 a001 1134903170/167761*(1/2+1/2*5^(1/2))^2 1771100001192172 a001 1134903170/167761*10749957122^(1/24) 1771100001192172 a001 1134903170/167761*4106118243^(1/23) 1771100001192172 a001 75025/2537720636*10749957122^(7/8) 1771100001192172 a001 42573055164625/2403763488 1771100001192172 a001 1134903170/167761*1568397607^(1/22) 1771100001192172 a001 75025/2537720636*4106118243^(21/23) 1771100001192172 a001 1134903170/167761*599074578^(1/21) 1771100001192172 a001 75025/2537720636*1568397607^(21/22) 1771100001192172 a001 75025/969323029*2537720636^(8/9) 1771100001192172 a001 75025/969323029*312119004989^(8/11) 1771100001192172 a001 75025/969323029*23725150497407^(5/8) 1771100001192172 a001 75025/969323029*73681302247^(10/13) 1771100001192172 a001 75025/969323029*28143753123^(4/5) 1771100001192172 a001 433494437/167761*(1/2+1/2*5^(1/2))^4 1771100001192172 a001 433494437/167761*23725150497407^(1/16) 1771100001192172 a001 433494437/167761*73681302247^(1/13) 1771100001192172 a001 433494437/167761*10749957122^(1/12) 1771100001192172 a001 433494437/167761*4106118243^(2/23) 1771100001192172 a001 75025/969323029*10749957122^(5/6) 1771100001192172 a001 433494437/167761*1568397607^(1/11) 1771100001192172 a001 1134903170/167761*228826127^(1/20) 1771100001192172 a001 75025/969323029*4106118243^(20/23) 1771100001192172 a001 32522920135925/1836311903 1771100001192172 a001 433494437/167761*599074578^(2/21) 1771100001192172 a001 75025/969323029*1568397607^(10/11) 1771100001192172 a001 433494437/167761*228826127^(1/10) 1771100001192172 a001 75025/969323029*599074578^(20/21) 1771100001192172 a001 75025/141422324*141422324^(12/13) 1771100001192172 a001 1134903170/167761*87403803^(1/19) 1771100001192172 a001 165580141/167761*2537720636^(2/15) 1771100001192172 a001 75025/370248451*817138163596^(2/3) 1771100001192172 a001 165580141/167761*45537549124^(2/17) 1771100001192172 a001 165580141/167761*14662949395604^(2/21) 1771100001192172 a001 165580141/167761*(1/2+1/2*5^(1/2))^6 1771100001192172 a001 165580141/167761*10749957122^(1/8) 1771100001192172 a001 75025/370248451*10749957122^(19/24) 1771100001192172 a001 165580141/167761*4106118243^(3/23) 1771100001192172 a001 75025/370248451*4106118243^(19/23) 1771100001192172 a001 165580141/167761*1568397607^(3/22) 1771100001192172 a001 75025/370248451*1568397607^(19/22) 1771100001192172 a001 165580141/167761*599074578^(1/7) 1771100001192172 a001 12422650078525/701408733 1771100001192172 a001 75025/370248451*599074578^(19/21) 1771100001192172 a001 165580141/167761*228826127^(3/20) 1771100001192172 a001 433494437/167761*87403803^(2/19) 1771100001192172 a001 75025/370248451*228826127^(19/20) 1771100001192172 a001 165580141/167761*87403803^(3/19) 1771100001192172 a001 75025/141422324*2537720636^(4/5) 1771100001192172 a001 75025/141422324*45537549124^(12/17) 1771100001192172 a001 75025/141422324*14662949395604^(4/7) 1771100001192172 a001 75025/141422324*505019158607^(9/14) 1771100001192172 a001 75025/141422324*192900153618^(2/3) 1771100001192172 a001 75025/141422324*73681302247^(9/13) 1771100001192172 a001 63245986/167761*(1/2+1/2*5^(1/2))^8 1771100001192172 a001 63245986/167761*23725150497407^(1/8) 1771100001192172 a001 63245986/167761*73681302247^(2/13) 1771100001192172 a001 1134903170/167761*33385282^(1/18) 1771100001192172 a001 63245986/167761*10749957122^(1/6) 1771100001192172 a001 75025/141422324*10749957122^(3/4) 1771100001192172 a001 63245986/167761*4106118243^(4/23) 1771100001192172 a001 75025/141422324*4106118243^(18/23) 1771100001192172 a001 63245986/167761*1568397607^(2/11) 1771100001192172 a001 75025/141422324*1568397607^(9/11) 1771100001192172 a001 63245986/167761*599074578^(4/21) 1771100001192172 a001 75025/141422324*599074578^(6/7) 1771100001192172 a001 2372515049825/133957148 1771100001192172 a001 63245986/167761*228826127^(1/5) 1771100001192172 a001 75025/141422324*228826127^(9/10) 1771100001192172 a001 701408733/167761*33385282^(1/12) 1771100001192172 a001 63245986/167761*87403803^(4/19) 1771100001192172 a001 39088169/167761*33385282^(1/4) 1771100001192172 a001 433494437/167761*33385282^(1/9) 1771100001192172 a001 165580141/167761*33385282^(1/6) 1771100001192172 a001 75025/141422324*87403803^(18/19) 1771100001192172 a001 63245986/167761*33385282^(2/9) 1771100001192172 a001 24157817/167761*2537720636^(2/9) 1771100001192172 a001 75025/54018521*45537549124^(2/3) 1771100001192172 a001 24157817/167761*312119004989^(2/11) 1771100001192172 a001 24157817/167761*(1/2+1/2*5^(1/2))^10 1771100001192172 a001 24157817/167761*28143753123^(1/5) 1771100001192172 a001 24157817/167761*10749957122^(5/24) 1771100001192172 a001 75025/54018521*10749957122^(17/24) 1771100001192172 a001 24157817/167761*4106118243^(5/23) 1771100001192172 a001 75025/54018521*4106118243^(17/23) 1771100001192172 a001 24157817/167761*1568397607^(5/22) 1771100001192172 a001 75025/54018521*1568397607^(17/22) 1771100001192172 a001 24157817/167761*599074578^(5/21) 1771100001192172 a001 75025/54018521*599074578^(17/21) 1771100001192172 a001 24157817/167761*228826127^(1/4) 1771100001192172 a001 75025/54018521*228826127^(17/20) 1771100001192172 a001 362488044085/20466831 1771100001192172 a001 1134903170/167761*12752043^(1/17) 1771100001192172 a001 24157817/167761*87403803^(5/19) 1771100001192173 a001 75025/54018521*87403803^(17/19) 1771100001192173 a001 24157817/167761*33385282^(5/18) 1771100001192173 a001 433494437/167761*12752043^(2/17) 1771100001192174 a001 165580141/167761*12752043^(3/17) 1771100001192174 a001 75025/54018521*33385282^(17/18) 1771100001192174 a001 75025/7881196*7881196^(10/11) 1771100001192174 a001 63245986/167761*12752043^(4/17) 1771100001192176 a001 24157817/167761*12752043^(5/17) 1771100001192176 a001 9227465/167761*141422324^(4/13) 1771100001192176 a001 9227465/167761*2537720636^(4/15) 1771100001192176 a001 75025/20633239*(1/2+1/2*5^(1/2))^32 1771100001192176 a001 75025/20633239*23725150497407^(1/2) 1771100001192176 a001 75025/20633239*505019158607^(4/7) 1771100001192176 a001 75025/20633239*73681302247^(8/13) 1771100001192176 a001 9227465/167761*45537549124^(4/17) 1771100001192176 a001 9227465/167761*817138163596^(4/19) 1771100001192176 a001 9227465/167761*14662949395604^(4/21) 1771100001192176 a001 9227465/167761*(1/2+1/2*5^(1/2))^12 1771100001192176 a001 9227465/167761*73681302247^(3/13) 1771100001192176 a001 9227465/167761*10749957122^(1/4) 1771100001192176 a001 75025/20633239*10749957122^(2/3) 1771100001192176 a001 9227465/167761*4106118243^(6/23) 1771100001192176 a001 75025/20633239*4106118243^(16/23) 1771100001192176 a001 9227465/167761*1568397607^(3/11) 1771100001192176 a001 75025/20633239*1568397607^(8/11) 1771100001192176 a001 9227465/167761*599074578^(2/7) 1771100001192176 a001 75025/20633239*599074578^(16/21) 1771100001192176 a001 9227465/167761*228826127^(3/10) 1771100001192176 a001 75025/20633239*228826127^(4/5) 1771100001192176 a001 9227465/167761*87403803^(6/19) 1771100001192176 a001 75025/20633239*87403803^(16/19) 1771100001192176 a001 692290561625/39088169 1771100001192176 a001 1134903170/167761*4870847^(1/16) 1771100001192176 a001 9227465/167761*33385282^(1/3) 1771100001192177 a001 75025/20633239*33385282^(8/9) 1771100001192180 a001 9227465/167761*12752043^(6/17) 1771100001192181 a001 433494437/167761*4870847^(1/8) 1771100001192186 a001 165580141/167761*4870847^(3/16) 1771100001192186 a001 75025/20633239*12752043^(16/17) 1771100001192190 a001 63245986/167761*4870847^(1/4) 1771100001192196 a001 24157817/167761*4870847^(5/16) 1771100001192197 a001 75025/7881196*20633239^(6/7) 1771100001192199 a001 3524578/167761*20633239^(2/5) 1771100001192200 a001 75025/7881196*141422324^(10/13) 1771100001192200 a001 75025/7881196*2537720636^(2/3) 1771100001192200 a001 75025/7881196*45537549124^(10/17) 1771100001192200 a001 75025/7881196*312119004989^(6/11) 1771100001192200 a001 75025/7881196*14662949395604^(10/21) 1771100001192200 a001 75025/7881196*(1/2+1/2*5^(1/2))^30 1771100001192200 a001 75025/7881196*192900153618^(5/9) 1771100001192200 a001 3524578/167761*17393796001^(2/7) 1771100001192200 a001 75025/7881196*28143753123^(3/5) 1771100001192200 a001 3524578/167761*14662949395604^(2/9) 1771100001192200 a001 3524578/167761*(1/2+1/2*5^(1/2))^14 1771100001192200 a001 3524578/167761*10749957122^(7/24) 1771100001192200 a001 75025/7881196*10749957122^(5/8) 1771100001192200 a001 3524578/167761*4106118243^(7/23) 1771100001192200 a001 75025/7881196*4106118243^(15/23) 1771100001192200 a001 3524578/167761*1568397607^(7/22) 1771100001192200 a001 75025/7881196*1568397607^(15/22) 1771100001192200 a001 3524578/167761*599074578^(1/3) 1771100001192200 a001 75025/7881196*599074578^(5/7) 1771100001192200 a001 3524578/167761*228826127^(7/20) 1771100001192200 a001 75025/7881196*228826127^(3/4) 1771100001192200 a001 3524578/167761*87403803^(7/19) 1771100001192200 a001 75025/7881196*87403803^(15/19) 1771100001192201 a001 3524578/167761*33385282^(7/18) 1771100001192202 a001 75025/7881196*33385282^(5/6) 1771100001192202 a001 132215732225/7465176 1771100001192204 a001 9227465/167761*4870847^(3/8) 1771100001192205 a001 3524578/167761*12752043^(7/17) 1771100001192206 a001 1134903170/167761*1860498^(1/15) 1771100001192210 a001 75025/7881196*12752043^(15/17) 1771100001192223 a001 701408733/167761*1860498^(1/10) 1771100001192233 a001 3524578/167761*4870847^(7/16) 1771100001192240 a001 433494437/167761*1860498^(2/15) 1771100001192257 a001 267914296/167761*1860498^(1/6) 1771100001192270 a001 75025/7881196*4870847^(15/16) 1771100001192274 a001 165580141/167761*1860498^(1/5) 1771100001192308 a001 63245986/167761*1860498^(4/15) 1771100001192325 a001 39088169/167761*1860498^(3/10) 1771100001192343 a001 24157817/167761*1860498^(1/3) 1771100001192353 a001 2178309/167761*1860498^(1/2) 1771100001192364 a001 267914296/1149851*103682^(3/8) 1771100001192364 a001 75025/3010349*20633239^(4/5) 1771100001192367 a001 75025/3010349*17393796001^(4/7) 1771100001192367 a001 75025/3010349*14662949395604^(4/9) 1771100001192367 a001 75025/3010349*(1/2+1/2*5^(1/2))^28 1771100001192367 a001 75025/3010349*73681302247^(7/13) 1771100001192367 a001 1346269/167761*(1/2+1/2*5^(1/2))^16 1771100001192367 a001 1346269/167761*23725150497407^(1/4) 1771100001192367 a001 1346269/167761*73681302247^(4/13) 1771100001192367 a001 1346269/167761*10749957122^(1/3) 1771100001192367 a001 75025/3010349*10749957122^(7/12) 1771100001192367 a001 1346269/167761*4106118243^(8/23) 1771100001192367 a001 75025/3010349*4106118243^(14/23) 1771100001192367 a001 1346269/167761*1568397607^(4/11) 1771100001192367 a001 75025/3010349*1568397607^(7/11) 1771100001192367 a001 1346269/167761*599074578^(8/21) 1771100001192367 a001 75025/3010349*599074578^(2/3) 1771100001192367 a001 1346269/167761*228826127^(2/5) 1771100001192367 a001 75025/3010349*228826127^(7/10) 1771100001192367 a001 1346269/167761*87403803^(8/19) 1771100001192367 a001 75025/3010349*87403803^(14/19) 1771100001192368 a001 1346269/167761*33385282^(4/9) 1771100001192368 a001 75025/3010349*33385282^(7/9) 1771100001192372 a001 1346269/167761*12752043^(8/17) 1771100001192376 a001 75025/3010349*12752043^(14/17) 1771100001192378 a001 101003831725/5702887 1771100001192381 a001 9227465/167761*1860498^(2/5) 1771100001192404 a001 1346269/167761*4870847^(1/2) 1771100001192422 a001 1134903170/167761*710647^(1/14) 1771100001192432 a001 75025/3010349*4870847^(7/8) 1771100001192439 a001 3524578/167761*1860498^(7/15) 1771100001192640 a001 1346269/167761*1860498^(8/15) 1771100001192673 a001 433494437/167761*710647^(1/7) 1771100001192845 a001 75025/3010349*1860498^(14/15) 1771100001192923 a001 165580141/167761*710647^(3/14) 1771100001193048 a001 9303105/15251*710647^(1/4) 1771100001193174 a001 63245986/167761*710647^(2/7) 1771100001193192 a001 75025/439204*439204^(8/9) 1771100001193341 a001 165580141/439204*103682^(1/3) 1771100001193425 a001 24157817/167761*710647^(5/14) 1771100001193496 a001 514229/167761*7881196^(6/11) 1771100001193511 a001 75025/1149851*141422324^(2/3) 1771100001193511 a001 514229/167761*141422324^(6/13) 1771100001193511 a001 514229/167761*2537720636^(2/5) 1771100001193511 a001 75025/1149851*(1/2+1/2*5^(1/2))^26 1771100001193511 a001 75025/1149851*73681302247^(1/2) 1771100001193511 a001 514229/167761*45537549124^(6/17) 1771100001193511 a001 514229/167761*14662949395604^(2/7) 1771100001193511 a001 514229/167761*(1/2+1/2*5^(1/2))^18 1771100001193511 a001 514229/167761*192900153618^(1/3) 1771100001193511 a001 514229/167761*10749957122^(3/8) 1771100001193511 a001 75025/1149851*10749957122^(13/24) 1771100001193511 a001 514229/167761*4106118243^(9/23) 1771100001193511 a001 75025/1149851*4106118243^(13/23) 1771100001193511 a001 514229/167761*1568397607^(9/22) 1771100001193511 a001 75025/1149851*1568397607^(13/22) 1771100001193511 a001 514229/167761*599074578^(3/7) 1771100001193511 a001 75025/1149851*599074578^(13/21) 1771100001193511 a001 514229/167761*228826127^(9/20) 1771100001193511 a001 75025/1149851*228826127^(13/20) 1771100001193511 a001 514229/167761*87403803^(9/19) 1771100001193511 a001 75025/1149851*87403803^(13/19) 1771100001193512 a001 514229/167761*33385282^(1/2) 1771100001193512 a001 75025/1149851*33385282^(13/18) 1771100001193517 a001 514229/167761*12752043^(9/17) 1771100001193520 a001 75025/1149851*12752043^(13/17) 1771100001193553 a001 514229/167761*4870847^(9/16) 1771100001193572 a001 75025/1149851*4870847^(13/16) 1771100001193586 a001 38580030725/2178309 1771100001193679 a001 9227465/167761*710647^(3/7) 1771100001193818 a001 514229/167761*1860498^(3/5) 1771100001193954 a001 3524578/167761*710647^(1/2) 1771100001193955 a001 75025/1149851*1860498^(13/15) 1771100001194021 a001 1134903170/167761*271443^(1/13) 1771100001194371 a001 1346269/167761*710647^(4/7) 1771100001194382 a001 14619165/101521*103682^(5/12) 1771100001194450 a001 9227465/271443*103682^(13/24) 1771100001195766 a001 514229/167761*710647^(9/14) 1771100001195870 a001 433494437/167761*271443^(2/13) 1771100001196768 a001 75025/1149851*710647^(13/14) 1771100001197377 a001 133957148/930249*103682^(5/12) 1771100001197719 a001 165580141/167761*271443^(3/13) 1771100001197814 a001 701408733/4870847*103682^(5/12) 1771100001197878 a001 1836311903/12752043*103682^(5/12) 1771100001197887 a001 14930208/103681*103682^(5/12) 1771100001197889 a001 12586269025/87403803*103682^(5/12) 1771100001197889 a001 32951280099/228826127*103682^(5/12) 1771100001197889 a001 43133785636/299537289*103682^(5/12) 1771100001197889 a001 32264490531/224056801*103682^(5/12) 1771100001197889 a001 591286729879/4106118243*103682^(5/12) 1771100001197889 a001 774004377960/5374978561*103682^(5/12) 1771100001197889 a001 4052739537881/28143753123*103682^(5/12) 1771100001197889 a001 1515744265389/10525900321*103682^(5/12) 1771100001197889 a001 3278735159921/22768774562*103682^(5/12) 1771100001197889 a001 2504730781961/17393796001*103682^(5/12) 1771100001197889 a001 956722026041/6643838879*103682^(5/12) 1771100001197889 a001 182717648081/1268860318*103682^(5/12) 1771100001197889 a001 139583862445/969323029*103682^(5/12) 1771100001197889 a001 53316291173/370248451*103682^(5/12) 1771100001197889 a001 10182505537/70711162*103682^(5/12) 1771100001197889 a001 7778742049/54018521*103682^(5/12) 1771100001197893 a001 2971215073/20633239*103682^(5/12) 1771100001197917 a001 567451585/3940598*103682^(5/12) 1771100001198084 a001 433494437/3010349*103682^(5/12) 1771100001199036 a001 1836311903/167761*103682^(1/24) 1771100001199228 a001 165580141/1149851*103682^(5/12) 1771100001199568 a001 63245986/167761*271443^(4/13) 1771100001200205 a001 102334155/439204*103682^(3/8) 1771100001201247 a001 63245986/710647*103682^(11/24) 1771100001201300 a001 5702887/271443*103682^(7/12) 1771100001201332 a001 75025/439204*7881196^(8/11) 1771100001201351 a001 196418/167761*20633239^(4/7) 1771100001201353 a001 75025/439204*141422324^(8/13) 1771100001201353 a001 75025/439204*2537720636^(8/15) 1771100001201353 a001 196418/167761*2537720636^(4/9) 1771100001201353 a001 75025/439204*45537549124^(8/17) 1771100001201353 a001 75025/439204*14662949395604^(8/21) 1771100001201353 a001 75025/439204*(1/2+1/2*5^(1/2))^24 1771100001201353 a001 75025/439204*192900153618^(4/9) 1771100001201353 a001 75025/439204*73681302247^(6/13) 1771100001201353 a001 196418/167761*(1/2+1/2*5^(1/2))^20 1771100001201353 a001 196418/167761*23725150497407^(5/16) 1771100001201353 a001 196418/167761*505019158607^(5/14) 1771100001201353 a001 196418/167761*73681302247^(5/13) 1771100001201353 a001 196418/167761*28143753123^(2/5) 1771100001201353 a001 75025/439204*10749957122^(1/2) 1771100001201353 a001 196418/167761*10749957122^(5/12) 1771100001201353 a001 196418/167761*4106118243^(10/23) 1771100001201353 a001 75025/439204*4106118243^(12/23) 1771100001201353 a001 196418/167761*1568397607^(5/11) 1771100001201353 a001 75025/439204*1568397607^(6/11) 1771100001201353 a001 196418/167761*599074578^(10/21) 1771100001201353 a001 75025/439204*599074578^(4/7) 1771100001201353 a001 196418/167761*228826127^(1/2) 1771100001201353 a001 75025/439204*228826127^(3/5) 1771100001201353 a001 196418/167761*87403803^(10/19) 1771100001201353 a001 75025/439204*87403803^(12/19) 1771100001201354 a001 196418/167761*33385282^(5/9) 1771100001201354 a001 75025/439204*33385282^(2/3) 1771100001201360 a001 196418/167761*12752043^(10/17) 1771100001201361 a001 75025/439204*12752043^(12/17) 1771100001201400 a001 196418/167761*4870847^(5/8) 1771100001201409 a001 75025/439204*4870847^(3/4) 1771100001201417 a001 24157817/167761*271443^(5/13) 1771100001201694 a001 196418/167761*1860498^(2/3) 1771100001201762 a001 75025/439204*1860498^(4/5) 1771100001201865 a001 1473626045/83204 1771100001203270 a001 9227465/167761*271443^(6/13) 1771100001203858 a001 196418/167761*710647^(5/7) 1771100001204179 a001 5702887/167761*271443^(1/2) 1771100001204242 a001 165580141/1860498*103682^(11/24) 1771100001204359 a001 75025/439204*710647^(6/7) 1771100001204679 a001 433494437/4870847*103682^(11/24) 1771100001204743 a001 1134903170/12752043*103682^(11/24) 1771100001204752 a001 2971215073/33385282*103682^(11/24) 1771100001204753 a001 7778742049/87403803*103682^(11/24) 1771100001204753 a001 20365011074/228826127*103682^(11/24) 1771100001204754 a001 53316291173/599074578*103682^(11/24) 1771100001204754 a001 139583862445/1568397607*103682^(11/24) 1771100001204754 a001 365435296162/4106118243*103682^(11/24) 1771100001204754 a001 956722026041/10749957122*103682^(11/24) 1771100001204754 a001 2504730781961/28143753123*103682^(11/24) 1771100001204754 a001 6557470319842/73681302247*103682^(11/24) 1771100001204754 a001 10610209857723/119218851371*103682^(11/24) 1771100001204754 a001 4052739537881/45537549124*103682^(11/24) 1771100001204754 a001 1548008755920/17393796001*103682^(11/24) 1771100001204754 a001 591286729879/6643838879*103682^(11/24) 1771100001204754 a001 225851433717/2537720636*103682^(11/24) 1771100001204754 a001 86267571272/969323029*103682^(11/24) 1771100001204754 a001 32951280099/370248451*103682^(11/24) 1771100001204754 a001 12586269025/141422324*103682^(11/24) 1771100001204754 a001 4807526976/54018521*103682^(11/24) 1771100001204758 a001 1836311903/20633239*103682^(11/24) 1771100001204782 a001 3524667/39604*103682^(11/24) 1771100001204949 a001 267914296/3010349*103682^(11/24) 1771100001205143 a001 3524578/167761*271443^(7/13) 1771100001205901 a001 1134903170/167761*103682^(1/12) 1771100001206093 a001 102334155/1149851*103682^(11/24) 1771100001207070 a001 31622993/219602*103682^(5/12) 1771100001207159 a001 1346269/167761*271443^(8/13) 1771100001207862 a001 1836311903/271443*39603^(1/11) 1771100001208111 a001 39088169/710647*103682^(1/2) 1771100001208204 a001 3524578/271443*103682^(5/8) 1771100001210152 a001 514229/167761*271443^(9/13) 1771100001211107 a001 831985/15126*103682^(1/2) 1771100001211544 a001 267914296/4870847*103682^(1/2) 1771100001211607 a001 233802911/4250681*103682^(1/2) 1771100001211617 a001 1836311903/33385282*103682^(1/2) 1771100001211618 a001 1602508992/29134601*103682^(1/2) 1771100001211618 a001 12586269025/228826127*103682^(1/2) 1771100001211618 a001 10983760033/199691526*103682^(1/2) 1771100001211618 a001 86267571272/1568397607*103682^(1/2) 1771100001211618 a001 75283811239/1368706081*103682^(1/2) 1771100001211618 a001 591286729879/10749957122*103682^(1/2) 1771100001211618 a001 12585437040/228811001*103682^(1/2) 1771100001211618 a001 4052739537881/73681302247*103682^(1/2) 1771100001211618 a001 3536736619241/64300051206*103682^(1/2) 1771100001211618 a001 6557470319842/119218851371*103682^(1/2) 1771100001211618 a001 2504730781961/45537549124*103682^(1/2) 1771100001211618 a001 956722026041/17393796001*103682^(1/2) 1771100001211618 a001 365435296162/6643838879*103682^(1/2) 1771100001211618 a001 139583862445/2537720636*103682^(1/2) 1771100001211618 a001 53316291173/969323029*103682^(1/2) 1771100001211618 a001 20365011074/370248451*103682^(1/2) 1771100001211618 a001 7778742049/141422324*103682^(1/2) 1771100001211619 a001 2971215073/54018521*103682^(1/2) 1771100001211622 a001 1134903170/20633239*103682^(1/2) 1771100001211647 a001 433494437/7881196*103682^(1/2) 1771100001211814 a001 165580141/3010349*103682^(1/2) 1771100001212766 a001 701408733/167761*103682^(1/8) 1771100001212958 a001 63245986/1149851*103682^(1/2) 1771100001213935 a001 39088169/439204*103682^(11/24) 1771100001214965 a001 726103/90481*103682^(2/3) 1771100001214977 a001 24157817/710647*103682^(13/24) 1771100001217971 a001 31622993/930249*103682^(13/24) 1771100001218408 a001 165580141/4870847*103682^(13/24) 1771100001218472 a001 433494437/12752043*103682^(13/24) 1771100001218481 a001 567451585/16692641*103682^(13/24) 1771100001218483 a001 2971215073/87403803*103682^(13/24) 1771100001218483 a001 7778742049/228826127*103682^(13/24) 1771100001218483 a001 10182505537/299537289*103682^(13/24) 1771100001218483 a001 53316291173/1568397607*103682^(13/24) 1771100001218483 a001 139583862445/4106118243*103682^(13/24) 1771100001218483 a001 182717648081/5374978561*103682^(13/24) 1771100001218483 a001 956722026041/28143753123*103682^(13/24) 1771100001218483 a001 2504730781961/73681302247*103682^(13/24) 1771100001218483 a001 3278735159921/96450076809*103682^(13/24) 1771100001218483 a001 10610209857723/312119004989*103682^(13/24) 1771100001218483 a001 4052739537881/119218851371*103682^(13/24) 1771100001218483 a001 387002188980/11384387281*103682^(13/24) 1771100001218483 a001 591286729879/17393796001*103682^(13/24) 1771100001218483 a001 225851433717/6643838879*103682^(13/24) 1771100001218483 a001 1135099622/33391061*103682^(13/24) 1771100001218483 a001 32951280099/969323029*103682^(13/24) 1771100001218483 a001 12586269025/370248451*103682^(13/24) 1771100001218483 a001 1201881744/35355581*103682^(13/24) 1771100001218484 a001 1836311903/54018521*103682^(13/24) 1771100001218487 a001 701408733/20633239*103682^(13/24) 1771100001218512 a001 66978574/1970299*103682^(13/24) 1771100001218678 a001 102334155/3010349*103682^(13/24) 1771100001219631 a001 433494437/167761*103682^(1/6) 1771100001219822 a001 39088169/1149851*103682^(13/24) 1771100001219843 a001 196418/167761*271443^(10/13) 1771100001220800 a001 24157817/439204*103682^(1/2) 1771100001221133 a001 165580141/103682*39603^(5/22) 1771100001221839 a001 14930352/710647*103682^(7/12) 1771100001222100 a001 1346269/271443*103682^(17/24) 1771100001223541 a001 75025/439204*271443^(12/13) 1771100001224836 a001 39088169/1860498*103682^(7/12) 1771100001225273 a001 102334155/4870847*103682^(7/12) 1771100001225337 a001 267914296/12752043*103682^(7/12) 1771100001225346 a001 701408733/33385282*103682^(7/12) 1771100001225348 a001 1836311903/87403803*103682^(7/12) 1771100001225348 a001 102287808/4868641*103682^(7/12) 1771100001225348 a001 12586269025/599074578*103682^(7/12) 1771100001225348 a001 32951280099/1568397607*103682^(7/12) 1771100001225348 a001 86267571272/4106118243*103682^(7/12) 1771100001225348 a001 225851433717/10749957122*103682^(7/12) 1771100001225348 a001 591286729879/28143753123*103682^(7/12) 1771100001225348 a001 1548008755920/73681302247*103682^(7/12) 1771100001225348 a001 4052739537881/192900153618*103682^(7/12) 1771100001225348 a001 225749145909/10745088481*103682^(7/12) 1771100001225348 a001 6557470319842/312119004989*103682^(7/12) 1771100001225348 a001 2504730781961/119218851371*103682^(7/12) 1771100001225348 a001 956722026041/45537549124*103682^(7/12) 1771100001225348 a001 365435296162/17393796001*103682^(7/12) 1771100001225348 a001 139583862445/6643838879*103682^(7/12) 1771100001225348 a001 53316291173/2537720636*103682^(7/12) 1771100001225348 a001 20365011074/969323029*103682^(7/12) 1771100001225348 a001 7778742049/370248451*103682^(7/12) 1771100001225348 a001 2971215073/141422324*103682^(7/12) 1771100001225348 a001 1134903170/54018521*103682^(7/12) 1771100001225352 a001 433494437/20633239*103682^(7/12) 1771100001225376 a001 165580141/7881196*103682^(7/12) 1771100001225543 a001 63245986/3010349*103682^(7/12) 1771100001226495 a001 267914296/167761*103682^(5/24) 1771100001226688 a001 24157817/1149851*103682^(7/12) 1771100001227663 a001 196452/5779*103682^(13/24) 1771100001228258 a001 832040/271443*103682^(3/4) 1771100001228393 a001 686789568/101521*39603^(1/11) 1771100001228710 a001 9227465/710647*103682^(5/8) 1771100001231388 a001 12586269025/1860498*39603^(1/11) 1771100001231701 a001 24157817/1860498*103682^(5/8) 1771100001231825 a001 32951280099/4870847*39603^(1/11) 1771100001231889 a001 86267571272/12752043*39603^(1/11) 1771100001231898 a001 32264490531/4769326*39603^(1/11) 1771100001231899 a001 591286729879/87403803*39603^(1/11) 1771100001231900 a001 1548008755920/228826127*39603^(1/11) 1771100001231900 a001 4052739537881/599074578*39603^(1/11) 1771100001231900 a001 1515744265389/224056801*39603^(1/11) 1771100001231900 a001 6557470319842/969323029*39603^(1/11) 1771100001231900 a001 2504730781961/370248451*39603^(1/11) 1771100001231900 a001 956722026041/141422324*39603^(1/11) 1771100001231900 a001 365435296162/54018521*39603^(1/11) 1771100001231904 a001 139583862445/20633239*39603^(1/11) 1771100001231928 a001 53316291173/7881196*39603^(1/11) 1771100001232095 a001 20365011074/3010349*39603^(1/11) 1771100001232138 a001 63245986/4870847*103682^(5/8) 1771100001232190 a001 196418/64079*64079^(18/23) 1771100001232191 a001 121393/271443*103682^(11/12) 1771100001232202 a001 165580141/12752043*103682^(5/8) 1771100001232211 a001 433494437/33385282*103682^(5/8) 1771100001232212 a001 1134903170/87403803*103682^(5/8) 1771100001232213 a001 2971215073/228826127*103682^(5/8) 1771100001232213 a001 7778742049/599074578*103682^(5/8) 1771100001232213 a001 20365011074/1568397607*103682^(5/8) 1771100001232213 a001 53316291173/4106118243*103682^(5/8) 1771100001232213 a001 139583862445/10749957122*103682^(5/8) 1771100001232213 a001 365435296162/28143753123*103682^(5/8) 1771100001232213 a001 956722026041/73681302247*103682^(5/8) 1771100001232213 a001 2504730781961/192900153618*103682^(5/8) 1771100001232213 a001 10610209857723/817138163596*103682^(5/8) 1771100001232213 a001 4052739537881/312119004989*103682^(5/8) 1771100001232213 a001 1548008755920/119218851371*103682^(5/8) 1771100001232213 a001 591286729879/45537549124*103682^(5/8) 1771100001232213 a001 7787980473/599786069*103682^(5/8) 1771100001232213 a001 86267571272/6643838879*103682^(5/8) 1771100001232213 a001 32951280099/2537720636*103682^(5/8) 1771100001232213 a001 12586269025/969323029*103682^(5/8) 1771100001232213 a001 4807526976/370248451*103682^(5/8) 1771100001232213 a001 1836311903/141422324*103682^(5/8) 1771100001232213 a001 701408733/54018521*103682^(5/8) 1771100001232217 a001 9238424/711491*103682^(5/8) 1771100001232241 a001 102334155/7881196*103682^(5/8) 1771100001232408 a001 39088169/3010349*103682^(5/8) 1771100001233239 a001 7778742049/1149851*39603^(1/11) 1771100001233360 a001 165580141/167761*103682^(1/4) 1771100001233551 a001 14930352/1149851*103682^(5/8) 1771100001234533 a001 9227465/439204*103682^(7/12) 1771100001235559 a001 5702887/710647*103682^(2/3) 1771100001236974 a001 514229/271443*103682^(19/24) 1771100001238256 a001 317811/64079*64079^(17/23) 1771100001238564 a001 829464/103361*103682^(2/3) 1771100001238992 a001 105937/90481*103682^(5/6) 1771100001239002 a001 39088169/4870847*103682^(2/3) 1771100001239066 a001 34111385/4250681*103682^(2/3) 1771100001239076 a001 133957148/16692641*103682^(2/3) 1771100001239077 a001 233802911/29134601*103682^(2/3) 1771100001239077 a001 1836311903/228826127*103682^(2/3) 1771100001239077 a001 267084832/33281921*103682^(2/3) 1771100001239077 a001 12586269025/1568397607*103682^(2/3) 1771100001239077 a001 10983760033/1368706081*103682^(2/3) 1771100001239077 a001 43133785636/5374978561*103682^(2/3) 1771100001239077 a001 75283811239/9381251041*103682^(2/3) 1771100001239077 a001 591286729879/73681302247*103682^(2/3) 1771100001239077 a001 86000486440/10716675201*103682^(2/3) 1771100001239077 a001 3536736619241/440719107401*103682^(2/3) 1771100001239077 a001 3278735159921/408569081798*103682^(2/3) 1771100001239077 a001 2504730781961/312119004989*103682^(2/3) 1771100001239077 a001 956722026041/119218851371*103682^(2/3) 1771100001239077 a001 182717648081/22768774562*103682^(2/3) 1771100001239077 a001 139583862445/17393796001*103682^(2/3) 1771100001239077 a001 53316291173/6643838879*103682^(2/3) 1771100001239077 a001 10182505537/1268860318*103682^(2/3) 1771100001239077 a001 7778742049/969323029*103682^(2/3) 1771100001239077 a001 2971215073/370248451*103682^(2/3) 1771100001239077 a001 567451585/70711162*103682^(2/3) 1771100001239078 a001 433494437/54018521*103682^(2/3) 1771100001239081 a001 165580141/20633239*103682^(2/3) 1771100001239106 a001 31622993/3940598*103682^(2/3) 1771100001239273 a001 24157817/3010349*103682^(2/3) 1771100001240225 a001 9303105/15251*103682^(7/24) 1771100001240421 a001 9227465/1149851*103682^(2/3) 1771100001241081 a001 2971215073/439204*39603^(1/11) 1771100001241383 a001 5702887/439204*103682^(5/8) 1771100001242464 a001 3524578/710647*103682^(17/24) 1771100001243501 a001 1836311903/167761*39603^(1/22) 1771100001245435 a001 9227465/1860498*103682^(17/24) 1771100001245868 a001 24157817/4870847*103682^(17/24) 1771100001245931 a001 63245986/12752043*103682^(17/24) 1771100001245940 a001 165580141/33385282*103682^(17/24) 1771100001245942 a001 433494437/87403803*103682^(17/24) 1771100001245942 a001 1134903170/228826127*103682^(17/24) 1771100001245942 a001 2971215073/599074578*103682^(17/24) 1771100001245942 a001 7778742049/1568397607*103682^(17/24) 1771100001245942 a001 20365011074/4106118243*103682^(17/24) 1771100001245942 a001 53316291173/10749957122*103682^(17/24) 1771100001245942 a001 139583862445/28143753123*103682^(17/24) 1771100001245942 a001 365435296162/73681302247*103682^(17/24) 1771100001245942 a001 956722026041/192900153618*103682^(17/24) 1771100001245942 a001 2504730781961/505019158607*103682^(17/24) 1771100001245942 a001 10610209857723/2139295485799*103682^(17/24) 1771100001245942 a001 140728068720/28374454999*103682^(17/24) 1771100001245942 a001 591286729879/119218851371*103682^(17/24) 1771100001245942 a001 225851433717/45537549124*103682^(17/24) 1771100001245942 a001 86267571272/17393796001*103682^(17/24) 1771100001245942 a001 32951280099/6643838879*103682^(17/24) 1771100001245942 a001 1144206275/230701876*103682^(17/24) 1771100001245942 a001 4807526976/969323029*103682^(17/24) 1771100001245942 a001 1836311903/370248451*103682^(17/24) 1771100001245942 a001 701408733/141422324*103682^(17/24) 1771100001245943 a001 267914296/54018521*103682^(17/24) 1771100001245946 a001 9303105/1875749*103682^(17/24) 1771100001245970 a001 39088169/7881196*103682^(17/24) 1771100001246048 a001 11592/6119*24476^(19/21) 1771100001246136 a001 14930352/3010349*103682^(17/24) 1771100001247090 a001 63245986/167761*103682^(1/3) 1771100001247271 a001 5702887/1149851*103682^(17/24) 1771100001248287 a001 1762289/219602*103682^(2/3) 1771100001248432 a001 75025/64079*64079^(20/23) 1771100001249225 a001 311187/101521*103682^(3/4) 1771100001252284 a001 5702887/1860498*103682^(3/4) 1771100001252731 a001 14930352/4870847*103682^(3/4) 1771100001252796 a001 39088169/12752043*103682^(3/4) 1771100001252805 a001 14619165/4769326*103682^(3/4) 1771100001252807 a001 267914296/87403803*103682^(3/4) 1771100001252807 a001 701408733/228826127*103682^(3/4) 1771100001252807 a001 1836311903/599074578*103682^(3/4) 1771100001252807 a001 686789568/224056801*103682^(3/4) 1771100001252807 a001 12586269025/4106118243*103682^(3/4) 1771100001252807 a001 32951280099/10749957122*103682^(3/4) 1771100001252807 a001 86267571272/28143753123*103682^(3/4) 1771100001252807 a001 32264490531/10525900321*103682^(3/4) 1771100001252807 a001 591286729879/192900153618*103682^(3/4) 1771100001252807 a001 1515744265389/494493258286*103682^(3/4) 1771100001252807 a001 2504730781961/817138163596*103682^(3/4) 1771100001252807 a001 956722026041/312119004989*103682^(3/4) 1771100001252807 a001 365435296162/119218851371*103682^(3/4) 1771100001252807 a001 139583862445/45537549124*103682^(3/4) 1771100001252807 a001 53316291173/17393796001*103682^(3/4) 1771100001252807 a001 20365011074/6643838879*103682^(3/4) 1771100001252807 a001 7778742049/2537720636*103682^(3/4) 1771100001252807 a001 2971215073/969323029*103682^(3/4) 1771100001252807 a001 1134903170/370248451*103682^(3/4) 1771100001252807 a001 433494437/141422324*103682^(3/4) 1771100001252807 a001 165580141/54018521*103682^(3/4) 1771100001252811 a001 63245986/20633239*103682^(3/4) 1771100001252836 a001 24157817/7881196*103682^(3/4) 1771100001253006 a001 9227465/3010349*103682^(3/4) 1771100001253954 a001 39088169/167761*103682^(3/8) 1771100001254175 a001 3524578/1149851*103682^(3/4) 1771100001255049 a001 2178309/439204*103682^(17/24) 1771100001255083 a001 75025/167761*7881196^(2/3) 1771100001255102 a001 75025/167761*312119004989^(2/5) 1771100001255102 a001 75025/167761*(1/2+1/2*5^(1/2))^22 1771100001255102 a001 75025/167761*10749957122^(11/24) 1771100001255102 a001 75025/167761*4106118243^(11/23) 1771100001255102 a001 75025/167761*1568397607^(1/2) 1771100001255102 a001 75025/167761*599074578^(11/21) 1771100001255102 a001 75025/167761*228826127^(11/20) 1771100001255102 a001 75025/167761*87403803^(11/19) 1771100001255103 a001 75025/167761*33385282^(11/18) 1771100001255109 a001 75025/167761*12752043^(11/17) 1771100001255154 a001 75025/167761*4870847^(11/16) 1771100001255477 a001 75025/167761*1860498^(11/15) 1771100001256360 a001 1346269/710647*103682^(19/24) 1771100001257858 a001 75025/167761*710647^(11/14) 1771100001258545 a001 196418/271443*103682^(7/8) 1771100001258609 a001 5628750625/317811 1771100001259188 a001 1762289/930249*103682^(19/24) 1771100001259191 a001 1134903170/271443*39603^(3/22) 1771100001259601 a001 9227465/4870847*103682^(19/24) 1771100001259661 a001 24157817/12752043*103682^(19/24) 1771100001259670 a001 31622993/16692641*103682^(19/24) 1771100001259671 a001 165580141/87403803*103682^(19/24) 1771100001259672 a001 433494437/228826127*103682^(19/24) 1771100001259672 a001 567451585/299537289*103682^(19/24) 1771100001259672 a001 2971215073/1568397607*103682^(19/24) 1771100001259672 a001 7778742049/4106118243*103682^(19/24) 1771100001259672 a001 10182505537/5374978561*103682^(19/24) 1771100001259672 a001 53316291173/28143753123*103682^(19/24) 1771100001259672 a001 139583862445/73681302247*103682^(19/24) 1771100001259672 a001 182717648081/96450076809*103682^(19/24) 1771100001259672 a001 956722026041/505019158607*103682^(19/24) 1771100001259672 a001 10610209857723/5600748293801*103682^(19/24) 1771100001259672 a001 591286729879/312119004989*103682^(19/24) 1771100001259672 a001 225851433717/119218851371*103682^(19/24) 1771100001259672 a001 21566892818/11384387281*103682^(19/24) 1771100001259672 a001 32951280099/17393796001*103682^(19/24) 1771100001259672 a001 12586269025/6643838879*103682^(19/24) 1771100001259672 a001 1201881744/634430159*103682^(19/24) 1771100001259672 a001 1836311903/969323029*103682^(19/24) 1771100001259672 a001 701408733/370248451*103682^(19/24) 1771100001259672 a001 66978574/35355581*103682^(19/24) 1771100001259672 a001 102334155/54018521*103682^(19/24) 1771100001259676 a001 39088169/20633239*103682^(19/24) 1771100001259699 a001 3732588/1970299*103682^(19/24) 1771100001259856 a001 5702887/3010349*103682^(19/24) 1771100001260820 a001 24157817/167761*103682^(5/12) 1771100001260936 a001 2178309/1149851*103682^(19/24) 1771100001261856 a001 514229/64079*64079^(16/23) 1771100001262184 a001 1346269/439204*103682^(3/4) 1771100001262518 a001 832040/710647*103682^(5/6) 1771100001265950 a001 726103/620166*103682^(5/6) 1771100001266451 a001 5702887/4870847*103682^(5/6) 1771100001266524 a001 4976784/4250681*103682^(5/6) 1771100001266535 a001 39088169/33385282*103682^(5/6) 1771100001266536 a001 34111385/29134601*103682^(5/6) 1771100001266536 a001 267914296/228826127*103682^(5/6) 1771100001266536 a001 233802911/199691526*103682^(5/6) 1771100001266536 a001 1836311903/1568397607*103682^(5/6) 1771100001266536 a001 1602508992/1368706081*103682^(5/6) 1771100001266536 a001 12586269025/10749957122*103682^(5/6) 1771100001266536 a001 10983760033/9381251041*103682^(5/6) 1771100001266536 a001 86267571272/73681302247*103682^(5/6) 1771100001266536 a001 75283811239/64300051206*103682^(5/6) 1771100001266536 a001 2504730781961/2139295485799*103682^(5/6) 1771100001266536 a001 365435296162/312119004989*103682^(5/6) 1771100001266536 a001 139583862445/119218851371*103682^(5/6) 1771100001266536 a001 53316291173/45537549124*103682^(5/6) 1771100001266536 a001 20365011074/17393796001*103682^(5/6) 1771100001266536 a001 7778742049/6643838879*103682^(5/6) 1771100001266536 a001 2971215073/2537720636*103682^(5/6) 1771100001266536 a001 1134903170/969323029*103682^(5/6) 1771100001266536 a001 433494437/370248451*103682^(5/6) 1771100001266536 a001 165580141/141422324*103682^(5/6) 1771100001266537 a001 63245986/54018521*103682^(5/6) 1771100001266541 a001 24157817/20633239*103682^(5/6) 1771100001266569 a001 9227465/7881196*103682^(5/6) 1771100001266760 a001 3524578/3010349*103682^(5/6) 1771100001267682 a001 14930352/167761*103682^(11/24) 1771100001268071 a001 1346269/1149851*103682^(5/6) 1771100001268341 a001 208010/109801*103682^(19/24) 1771100001271234 a001 514229/710647*103682^(7/8) 1771100001272275 a001 121393/439204*103682^(23/24) 1771100001272462 a001 102334155/103682*39603^(3/11) 1771100001273085 a001 1346269/1860498*103682^(7/8) 1771100001273252 a001 317811/710647*103682^(11/12) 1771100001273355 a001 3524578/4870847*103682^(7/8) 1771100001273394 a001 9227465/12752043*103682^(7/8) 1771100001273400 a001 24157817/33385282*103682^(7/8) 1771100001273401 a001 63245986/87403803*103682^(7/8) 1771100001273401 a001 165580141/228826127*103682^(7/8) 1771100001273401 a001 433494437/599074578*103682^(7/8) 1771100001273401 a001 1134903170/1568397607*103682^(7/8) 1771100001273401 a001 2971215073/4106118243*103682^(7/8) 1771100001273401 a001 7778742049/10749957122*103682^(7/8) 1771100001273401 a001 20365011074/28143753123*103682^(7/8) 1771100001273401 a001 53316291173/73681302247*103682^(7/8) 1771100001273401 a001 139583862445/192900153618*103682^(7/8) 1771100001273401 a001 365435296162/505019158607*103682^(7/8) 1771100001273401 a001 10610209857723/14662949395604*103682^(7/8) 1771100001273401 a001 225851433717/312119004989*103682^(7/8) 1771100001273401 a001 86267571272/119218851371*103682^(7/8) 1771100001273401 a001 32951280099/45537549124*103682^(7/8) 1771100001273401 a001 12586269025/17393796001*103682^(7/8) 1771100001273401 a001 4807526976/6643838879*103682^(7/8) 1771100001273401 a001 1836311903/2537720636*103682^(7/8) 1771100001273401 a001 701408733/969323029*103682^(7/8) 1771100001273401 a001 267914296/370248451*103682^(7/8) 1771100001273401 a001 102334155/141422324*103682^(7/8) 1771100001273401 a001 39088169/54018521*103682^(7/8) 1771100001273404 a001 14930352/20633239*103682^(7/8) 1771100001273419 a001 5702887/7881196*103682^(7/8) 1771100001273522 a001 2178309/3010349*103682^(7/8) 1771100001274229 a001 832040/1149851*103682^(7/8) 1771100001274553 a001 9227465/167761*103682^(1/2) 1771100001275441 a001 75025/167761*271443^(11/13) 1771100001277057 a001 514229/439204*103682^(5/6) 1771100001278758 a001 832040/64079*64079^(15/23) 1771100001279012 a001 433494437/64079*24476^(2/21) 1771100001279076 a001 317811/439204*103682^(7/8) 1771100001279243 a001 416020/930249*103682^(11/12) 1771100001279722 a001 2971215073/710647*39603^(3/22) 1771100001280117 a001 2178309/4870847*103682^(11/12) 1771100001280244 a001 5702887/12752043*103682^(11/12) 1771100001280263 a001 7465176/16692641*103682^(11/12) 1771100001280265 a001 39088169/87403803*103682^(11/12) 1771100001280266 a001 102334155/228826127*103682^(11/12) 1771100001280266 a001 133957148/299537289*103682^(11/12) 1771100001280266 a001 701408733/1568397607*103682^(11/12) 1771100001280266 a001 1836311903/4106118243*103682^(11/12) 1771100001280266 a001 2403763488/5374978561*103682^(11/12) 1771100001280266 a001 12586269025/28143753123*103682^(11/12) 1771100001280266 a001 32951280099/73681302247*103682^(11/12) 1771100001280266 a001 43133785636/96450076809*103682^(11/12) 1771100001280266 a001 225851433717/505019158607*103682^(11/12) 1771100001280266 a001 591286729879/1322157322203*103682^(11/12) 1771100001280266 a001 10610209857723/23725150497407*103682^(11/12) 1771100001280266 a001 139583862445/312119004989*103682^(11/12) 1771100001280266 a001 53316291173/119218851371*103682^(11/12) 1771100001280266 a001 10182505537/22768774562*103682^(11/12) 1771100001280266 a001 7778742049/17393796001*103682^(11/12) 1771100001280266 a001 2971215073/6643838879*103682^(11/12) 1771100001280266 a001 567451585/1268860318*103682^(11/12) 1771100001280266 a001 433494437/969323029*103682^(11/12) 1771100001280266 a001 165580141/370248451*103682^(11/12) 1771100001280266 a001 31622993/70711162*103682^(11/12) 1771100001280267 a001 24157817/54018521*103682^(11/12) 1771100001280274 a001 9227465/20633239*103682^(11/12) 1771100001280323 a001 1762289/3940598*103682^(11/12) 1771100001280657 a001 1346269/3010349*103682^(11/12) 1771100001281403 a001 5702887/167761*103682^(13/24) 1771100001282717 a001 7778742049/1860498*39603^(3/22) 1771100001282945 a001 514229/1149851*103682^(11/12) 1771100001283154 a001 20365011074/4870847*39603^(3/22) 1771100001283218 a001 53316291173/12752043*39603^(3/22) 1771100001283227 a001 139583862445/33385282*39603^(3/22) 1771100001283228 a001 365435296162/87403803*39603^(3/22) 1771100001283229 a001 956722026041/228826127*39603^(3/22) 1771100001283229 a001 2504730781961/599074578*39603^(3/22) 1771100001283229 a001 6557470319842/1568397607*39603^(3/22) 1771100001283229 a001 10610209857723/2537720636*39603^(3/22) 1771100001283229 a001 4052739537881/969323029*39603^(3/22) 1771100001283229 a001 1548008755920/370248451*39603^(3/22) 1771100001283229 a001 591286729879/141422324*39603^(3/22) 1771100001283229 a001 225851433717/54018521*39603^(3/22) 1771100001283233 a001 86267571272/20633239*39603^(3/22) 1771100001283257 a001 32951280099/7881196*39603^(3/22) 1771100001283424 a001 12586269025/3010349*39603^(3/22) 1771100001284568 a001 4807526976/1149851*39603^(3/22) 1771100001284963 a001 317811/1149851*103682^(23/24) 1771100001286814 a001 832040/3010349*103682^(23/24) 1771100001287084 a001 2178309/7881196*103682^(23/24) 1771100001287124 a001 5702887/20633239*103682^(23/24) 1771100001287130 a001 14930352/54018521*103682^(23/24) 1771100001287130 a001 39088169/141422324*103682^(23/24) 1771100001287131 a001 102334155/370248451*103682^(23/24) 1771100001287131 a001 267914296/969323029*103682^(23/24) 1771100001287131 a001 701408733/2537720636*103682^(23/24) 1771100001287131 a001 1836311903/6643838879*103682^(23/24) 1771100001287131 a001 4807526976/17393796001*103682^(23/24) 1771100001287131 a001 12586269025/45537549124*103682^(23/24) 1771100001287131 a001 32951280099/119218851371*103682^(23/24) 1771100001287131 a001 86267571272/312119004989*103682^(23/24) 1771100001287131 a001 225851433717/817138163596*103682^(23/24) 1771100001287131 a001 1548008755920/5600748293801*103682^(23/24) 1771100001287131 a001 139583862445/505019158607*103682^(23/24) 1771100001287131 a001 53316291173/192900153618*103682^(23/24) 1771100001287131 a001 20365011074/73681302247*103682^(23/24) 1771100001287131 a001 7778742049/28143753123*103682^(23/24) 1771100001287131 a001 2971215073/10749957122*103682^(23/24) 1771100001287131 a001 1134903170/4106118243*103682^(23/24) 1771100001287131 a001 433494437/1568397607*103682^(23/24) 1771100001287131 a001 165580141/599074578*103682^(23/24) 1771100001287131 a001 63245986/228826127*103682^(23/24) 1771100001287131 a001 24157817/87403803*103682^(23/24) 1771100001287133 a001 9227465/33385282*103682^(23/24) 1771100001287148 a001 3524578/12752043*103682^(23/24) 1771100001287251 a001 1346269/4870847*103682^(23/24) 1771100001287958 a001 514229/1860498*103682^(23/24) 1771100001288307 a001 3524578/167761*103682^(7/12) 1771100001292410 a001 1836311903/439204*39603^(3/22) 1771100001292805 a001 196418/710647*103682^(23/24) 1771100001293995 a001 1/23184*(1/2+1/2*5^(1/2))^46 1771100001294830 a001 1134903170/167761*39603^(1/11) 1771100001295068 a001 2178309/167761*103682^(5/8) 1771100001298219 a001 1346269/64079*64079^(14/23) 1771100001298629 a001 98209/219602*103682^(11/12) 1771100001302203 a001 1346269/167761*103682^(2/3) 1771100001308361 a001 75640/15251*103682^(17/24) 1771100001310521 a001 233802911/90481*39603^(2/11) 1771100001312294 a001 121393/167761*103682^(7/8) 1771100001316702 a001 2178309/64079*64079^(13/23) 1771100001317077 a001 514229/167761*103682^(3/4) 1771100001319095 a001 317811/167761*103682^(19/24) 1771100001323791 a001 31622993/51841*39603^(7/22) 1771100001326024 a001 75025/271443*103682^(23/24) 1771100001331051 a001 1836311903/710647*39603^(2/11) 1771100001332889 a001 1328767776/75025 1771100001334046 a001 267084832/103361*39603^(2/11) 1771100001334483 a001 12586269025/4870847*39603^(2/11) 1771100001334547 a001 10983760033/4250681*39603^(2/11) 1771100001334556 a001 43133785636/16692641*39603^(2/11) 1771100001334558 a001 75283811239/29134601*39603^(2/11) 1771100001334558 a001 591286729879/228826127*39603^(2/11) 1771100001334558 a001 86000486440/33281921*39603^(2/11) 1771100001334558 a001 4052739537881/1568397607*39603^(2/11) 1771100001334558 a001 3536736619241/1368706081*39603^(2/11) 1771100001334558 a001 3278735159921/1268860318*39603^(2/11) 1771100001334558 a001 2504730781961/969323029*39603^(2/11) 1771100001334558 a001 956722026041/370248451*39603^(2/11) 1771100001334558 a001 182717648081/70711162*39603^(2/11) 1771100001334558 a001 139583862445/54018521*39603^(2/11) 1771100001334562 a001 53316291173/20633239*39603^(2/11) 1771100001334586 a001 10182505537/3940598*39603^(2/11) 1771100001334753 a001 7778742049/3010349*39603^(2/11) 1771100001335559 a001 3524578/64079*64079^(12/23) 1771100001335897 a001 2971215073/1149851*39603^(2/11) 1771100001338648 a001 196418/167761*103682^(5/6) 1771100001343739 a001 567451585/219602*39603^(2/11) 1771100001346159 a001 701408733/167761*39603^(3/22) 1771100001351484 a001 567451585/51841*15127^(1/20) 1771100001354273 a001 5702887/64079*64079^(11/23) 1771100001361850 a001 433494437/271443*39603^(5/22) 1771100001373042 a001 9227465/64079*64079^(10/23) 1771100001375120 a001 39088169/103682*39603^(4/11) 1771100001382380 a001 1134903170/710647*39603^(5/22) 1771100001385375 a001 2971215073/1860498*39603^(5/22) 1771100001385812 a001 7778742049/4870847*39603^(5/22) 1771100001385876 a001 20365011074/12752043*39603^(5/22) 1771100001385885 a001 53316291173/33385282*39603^(5/22) 1771100001385887 a001 139583862445/87403803*39603^(5/22) 1771100001385887 a001 365435296162/228826127*39603^(5/22) 1771100001385887 a001 956722026041/599074578*39603^(5/22) 1771100001385887 a001 2504730781961/1568397607*39603^(5/22) 1771100001385887 a001 6557470319842/4106118243*39603^(5/22) 1771100001385887 a001 10610209857723/6643838879*39603^(5/22) 1771100001385887 a001 4052739537881/2537720636*39603^(5/22) 1771100001385887 a001 1548008755920/969323029*39603^(5/22) 1771100001385887 a001 591286729879/370248451*39603^(5/22) 1771100001385887 a001 225851433717/141422324*39603^(5/22) 1771100001385888 a001 86267571272/54018521*39603^(5/22) 1771100001385891 a001 32951280099/20633239*39603^(5/22) 1771100001385916 a001 12586269025/7881196*39603^(5/22) 1771100001386082 a001 4807526976/3010349*39603^(5/22) 1771100001387227 a001 1836311903/1149851*39603^(5/22) 1771100001388678 a001 46368/64079*439204^(7/9) 1771100001391790 a001 14930352/64079*64079^(9/23) 1771100001395068 a001 701408733/439204*39603^(5/22) 1771100001395801 a001 46368/64079*7881196^(7/11) 1771100001395817 a001 46368/64079*20633239^(3/5) 1771100001395819 a001 46368/64079*141422324^(7/13) 1771100001395819 a001 46368/64079*2537720636^(7/15) 1771100001395819 a001 28657/103682*(1/2+1/2*5^(1/2))^23 1771100001395819 a001 28657/103682*4106118243^(1/2) 1771100001395819 a001 46368/64079*17393796001^(3/7) 1771100001395819 a001 46368/64079*45537549124^(7/17) 1771100001395819 a001 46368/64079*14662949395604^(1/3) 1771100001395819 a001 46368/64079*(1/2+1/2*5^(1/2))^21 1771100001395819 a001 46368/64079*192900153618^(7/18) 1771100001395819 a001 46368/64079*10749957122^(7/16) 1771100001395819 a001 46368/64079*599074578^(1/2) 1771100001395820 a001 46368/64079*33385282^(7/12) 1771100001396177 a001 46368/64079*1860498^(7/10) 1771100001397488 a001 433494437/167761*39603^(2/11) 1771100001398449 a001 46368/64079*710647^(3/4) 1771100001406127 a001 75025/167761*103682^(11/12) 1771100001410545 a001 24157817/64079*64079^(8/23) 1771100001413179 a001 267914296/271443*39603^(3/11) 1771100001419793 a001 701408733/64079*24476^(1/21) 1771100001426450 a001 24157817/103682*39603^(9/22) 1771100001429298 a001 39088169/64079*64079^(7/23) 1771100001433709 a001 701408733/710647*39603^(3/11) 1771100001436705 a001 1836311903/1860498*39603^(3/11) 1771100001437142 a001 4807526976/4870847*39603^(3/11) 1771100001437205 a001 12586269025/12752043*39603^(3/11) 1771100001437215 a001 32951280099/33385282*39603^(3/11) 1771100001437216 a001 86267571272/87403803*39603^(3/11) 1771100001437216 a001 225851433717/228826127*39603^(3/11) 1771100001437216 a001 591286729879/599074578*39603^(3/11) 1771100001437216 a001 1548008755920/1568397607*39603^(3/11) 1771100001437216 a001 4052739537881/4106118243*39603^(3/11) 1771100001437216 a001 4807525989/4870846*39603^(3/11) 1771100001437216 a001 6557470319842/6643838879*39603^(3/11) 1771100001437216 a001 2504730781961/2537720636*39603^(3/11) 1771100001437216 a001 956722026041/969323029*39603^(3/11) 1771100001437216 a001 365435296162/370248451*39603^(3/11) 1771100001437216 a001 139583862445/141422324*39603^(3/11) 1771100001437217 a001 53316291173/54018521*39603^(3/11) 1771100001437220 a001 20365011074/20633239*39603^(3/11) 1771100001437245 a001 7778742049/7881196*39603^(3/11) 1771100001437412 a001 2971215073/3010349*39603^(3/11) 1771100001438556 a001 1134903170/1149851*39603^(3/11) 1771100001446398 a001 433494437/439204*39603^(3/11) 1771100001448052 a001 63245986/64079*64079^(6/23) 1771100001448818 a001 267914296/167761*39603^(5/22) 1771100001464508 a001 165580141/271443*39603^(7/22) 1771100001466805 a001 102334155/64079*64079^(5/23) 1771100001477777 a001 7465176/51841*39603^(5/11) 1771100001485038 a001 433494437/710647*39603^(7/22) 1771100001485559 a001 165580141/64079*64079^(4/23) 1771100001488034 a001 567451585/930249*39603^(7/22) 1771100001488471 a001 2971215073/4870847*39603^(7/22) 1771100001488535 a001 7778742049/12752043*39603^(7/22) 1771100001488544 a001 10182505537/16692641*39603^(7/22) 1771100001488545 a001 53316291173/87403803*39603^(7/22) 1771100001488545 a001 139583862445/228826127*39603^(7/22) 1771100001488545 a001 182717648081/299537289*39603^(7/22) 1771100001488545 a001 956722026041/1568397607*39603^(7/22) 1771100001488545 a001 2504730781961/4106118243*39603^(7/22) 1771100001488545 a001 3278735159921/5374978561*39603^(7/22) 1771100001488545 a001 10610209857723/17393796001*39603^(7/22) 1771100001488545 a001 4052739537881/6643838879*39603^(7/22) 1771100001488545 a001 1134903780/1860499*39603^(7/22) 1771100001488545 a001 591286729879/969323029*39603^(7/22) 1771100001488545 a001 225851433717/370248451*39603^(7/22) 1771100001488545 a001 21566892818/35355581*39603^(7/22) 1771100001488546 a001 32951280099/54018521*39603^(7/22) 1771100001488550 a001 1144206275/1875749*39603^(7/22) 1771100001488574 a001 1201881744/1970299*39603^(7/22) 1771100001488741 a001 1836311903/3010349*39603^(7/22) 1771100001489885 a001 701408733/1149851*39603^(7/22) 1771100001492201 a001 2971215073/271443*15127^(1/20) 1771100001497727 a001 66978574/109801*39603^(7/22) 1771100001500147 a001 165580141/167761*39603^(3/11) 1771100001504312 a001 267914296/64079*64079^(3/23) 1771100001509244 a001 28657/39603*39603^(21/22) 1771100001512731 a001 7778742049/710647*15127^(1/20) 1771100001515726 a001 10182505537/930249*15127^(1/20) 1771100001515837 a001 34111385/90481*39603^(4/11) 1771100001516163 a001 53316291173/4870847*15127^(1/20) 1771100001516227 a001 139583862445/12752043*15127^(1/20) 1771100001516237 a001 182717648081/16692641*15127^(1/20) 1771100001516238 a001 956722026041/87403803*15127^(1/20) 1771100001516238 a001 2504730781961/228826127*15127^(1/20) 1771100001516238 a001 3278735159921/299537289*15127^(1/20) 1771100001516238 a001 10610209857723/969323029*15127^(1/20) 1771100001516238 a001 4052739537881/370248451*15127^(1/20) 1771100001516238 a001 387002188980/35355581*15127^(1/20) 1771100001516239 a001 591286729879/54018521*15127^(1/20) 1771100001516242 a001 7787980473/711491*15127^(1/20) 1771100001516267 a001 21566892818/1970299*15127^(1/20) 1771100001516434 a001 32951280099/3010349*15127^(1/20) 1771100001517578 a001 12586269025/1149851*15127^(1/20) 1771100001522303 a001 832040/64079*167761^(3/5) 1771100001523066 a001 433494437/64079*64079^(2/23) 1771100001525420 a001 1201881744/109801*15127^(1/20) 1771100001527354 a001 3478759201/196418 1771100001529112 a001 9227465/103682*39603^(1/2) 1771100001535405 a001 9227465/64079*167761^(2/5) 1771100001536368 a001 267914296/710647*39603^(4/11) 1771100001536533 a001 28657/271443*20633239^(5/7) 1771100001536536 a001 28657/271443*2537720636^(5/9) 1771100001536536 a001 28657/271443*312119004989^(5/11) 1771100001536536 a001 28657/271443*(1/2+1/2*5^(1/2))^25 1771100001536536 a001 28657/271443*3461452808002^(5/12) 1771100001536536 a001 28657/271443*28143753123^(1/2) 1771100001536536 a001 121393/64079*817138163596^(1/3) 1771100001536536 a001 121393/64079*(1/2+1/2*5^(1/2))^19 1771100001536536 a001 28657/271443*228826127^(5/8) 1771100001536536 a001 121393/64079*87403803^(1/2) 1771100001536962 a001 28657/271443*1860498^(5/6) 1771100001539363 a001 233802911/620166*39603^(4/11) 1771100001539800 a001 1836311903/4870847*39603^(4/11) 1771100001539864 a001 1602508992/4250681*39603^(4/11) 1771100001539873 a001 12586269025/33385282*39603^(4/11) 1771100001539874 a001 10983760033/29134601*39603^(4/11) 1771100001539875 a001 86267571272/228826127*39603^(4/11) 1771100001539875 a001 267913919/710646*39603^(4/11) 1771100001539875 a001 591286729879/1568397607*39603^(4/11) 1771100001539875 a001 516002918640/1368706081*39603^(4/11) 1771100001539875 a001 4052739537881/10749957122*39603^(4/11) 1771100001539875 a001 3536736619241/9381251041*39603^(4/11) 1771100001539875 a001 6557470319842/17393796001*39603^(4/11) 1771100001539875 a001 2504730781961/6643838879*39603^(4/11) 1771100001539875 a001 956722026041/2537720636*39603^(4/11) 1771100001539875 a001 365435296162/969323029*39603^(4/11) 1771100001539875 a001 139583862445/370248451*39603^(4/11) 1771100001539875 a001 53316291173/141422324*39603^(4/11) 1771100001539875 a001 20365011074/54018521*39603^(4/11) 1771100001539879 a001 7778742049/20633239*39603^(4/11) 1771100001539903 a001 2971215073/7881196*39603^(4/11) 1771100001539979 a001 46368/64079*103682^(7/8) 1771100001540070 a001 1134903170/3010349*39603^(4/11) 1771100001541214 a001 433494437/1149851*39603^(4/11) 1771100001541820 a001 701408733/64079*64079^(1/23) 1771100001547987 a001 34111385/13201*15127^(1/5) 1771100001547987 a001 102334155/64079*167761^(1/5) 1771100001549056 a001 165580141/439204*39603^(4/11) 1771100001551476 a001 9303105/15251*39603^(7/22) 1771100001553708 a001 28657/103682*103682^(23/24) 1771100001554961 a001 832040/64079*439204^(5/9) 1771100001555727 a001 9107509827/514229 1771100001556521 a001 3524578/64079*439204^(4/9) 1771100001557043 a001 28657/710647*7881196^(9/11) 1771100001557066 a001 28657/710647*141422324^(9/13) 1771100001557066 a001 28657/710647*2537720636^(3/5) 1771100001557066 a001 28657/710647*45537549124^(9/17) 1771100001557066 a001 28657/710647*817138163596^(9/19) 1771100001557066 a001 28657/710647*14662949395604^(3/7) 1771100001557066 a001 28657/710647*(1/2+1/2*5^(1/2))^27 1771100001557066 a001 28657/710647*192900153618^(1/2) 1771100001557066 a001 28657/710647*10749957122^(9/16) 1771100001557066 a001 317811/64079*45537549124^(1/3) 1771100001557066 a001 317811/64079*(1/2+1/2*5^(1/2))^17 1771100001557066 a001 28657/710647*599074578^(9/14) 1771100001557067 a001 28657/710647*33385282^(3/4) 1771100001557072 a001 317811/64079*12752043^(1/2) 1771100001557511 a001 14930352/64079*439204^(1/3) 1771100001557527 a001 28657/710647*1860498^(9/10) 1771100001558533 a001 63245986/64079*439204^(2/9) 1771100001559553 a001 267914296/64079*439204^(1/9) 1771100001559866 a001 23843770280/1346269 1771100001560049 a001 832040/64079*7881196^(5/11) 1771100001560060 a001 832040/64079*20633239^(3/7) 1771100001560061 a001 832040/64079*141422324^(5/13) 1771100001560062 a001 28657/1860498*(1/2+1/2*5^(1/2))^29 1771100001560062 a001 28657/1860498*1322157322203^(1/2) 1771100001560062 a001 832040/64079*2537720636^(1/3) 1771100001560062 a001 832040/64079*45537549124^(5/17) 1771100001560062 a001 832040/64079*312119004989^(3/11) 1771100001560062 a001 832040/64079*14662949395604^(5/21) 1771100001560062 a001 832040/64079*(1/2+1/2*5^(1/2))^15 1771100001560062 a001 832040/64079*192900153618^(5/18) 1771100001560062 a001 832040/64079*28143753123^(3/10) 1771100001560062 a001 832040/64079*10749957122^(5/16) 1771100001560062 a001 832040/64079*599074578^(5/14) 1771100001560062 a001 832040/64079*228826127^(3/8) 1771100001560062 a001 832040/64079*33385282^(5/12) 1771100001560317 a001 832040/64079*1860498^(1/2) 1771100001560470 a001 62423801013/3524578 1771100001560498 a001 2178309/64079*141422324^(1/3) 1771100001560499 a001 28657/4870847*(1/2+1/2*5^(1/2))^31 1771100001560499 a001 28657/4870847*9062201101803^(1/2) 1771100001560499 a001 2178309/64079*(1/2+1/2*5^(1/2))^13 1771100001560499 a001 2178309/64079*73681302247^(1/4) 1771100001560553 a001 5702887/64079*7881196^(1/3) 1771100001560558 a001 163427632759/9227465 1771100001560562 a001 28657/12752043*141422324^(11/13) 1771100001560562 a001 28657/12752043*2537720636^(11/15) 1771100001560562 a001 28657/12752043*45537549124^(11/17) 1771100001560562 a001 28657/12752043*312119004989^(3/5) 1771100001560562 a001 28657/12752043*817138163596^(11/19) 1771100001560562 a001 28657/12752043*14662949395604^(11/21) 1771100001560562 a001 28657/12752043*(1/2+1/2*5^(1/2))^33 1771100001560562 a001 28657/12752043*192900153618^(11/18) 1771100001560562 a001 28657/12752043*10749957122^(11/16) 1771100001560562 a001 5702887/64079*312119004989^(1/5) 1771100001560562 a001 5702887/64079*(1/2+1/2*5^(1/2))^11 1771100001560562 a001 5702887/64079*1568397607^(1/4) 1771100001560562 a001 28657/12752043*1568397607^(3/4) 1771100001560562 a001 28657/12752043*599074578^(11/14) 1771100001560564 a001 28657/12752043*33385282^(11/12) 1771100001560564 a001 14930352/64079*7881196^(3/11) 1771100001560568 a001 63245986/64079*7881196^(2/11) 1771100001560571 a001 267914296/64079*7881196^(1/11) 1771100001560571 a001 427859097264/24157817 1771100001560572 a001 14930352/64079*141422324^(3/13) 1771100001560572 a001 28657/33385282*2537720636^(7/9) 1771100001560572 a001 28657/33385282*17393796001^(5/7) 1771100001560572 a001 28657/33385282*312119004989^(7/11) 1771100001560572 a001 28657/33385282*14662949395604^(5/9) 1771100001560572 a001 28657/33385282*(1/2+1/2*5^(1/2))^35 1771100001560572 a001 28657/33385282*505019158607^(5/8) 1771100001560572 a001 28657/33385282*28143753123^(7/10) 1771100001560572 a001 14930352/64079*2537720636^(1/5) 1771100001560572 a001 14930352/64079*45537549124^(3/17) 1771100001560572 a001 14930352/64079*14662949395604^(1/7) 1771100001560572 a001 14930352/64079*(1/2+1/2*5^(1/2))^9 1771100001560572 a001 14930352/64079*192900153618^(1/6) 1771100001560572 a001 14930352/64079*10749957122^(3/16) 1771100001560572 a001 14930352/64079*599074578^(3/14) 1771100001560572 a001 28657/33385282*599074578^(5/6) 1771100001560572 a001 28657/33385282*228826127^(7/8) 1771100001560572 a001 14930352/64079*33385282^(1/4) 1771100001560572 a001 39088169/64079*20633239^(1/5) 1771100001560573 a001 102334155/64079*20633239^(1/7) 1771100001560573 a001 1120149659033/63245986 1771100001560573 a001 39088169/64079*17393796001^(1/7) 1771100001560573 a001 39088169/64079*14662949395604^(1/9) 1771100001560573 a001 39088169/64079*(1/2+1/2*5^(1/2))^7 1771100001560573 a001 39088169/64079*599074578^(1/6) 1771100001560573 a001 2932589879835/165580141 1771100001560573 a001 28657/228826127*2537720636^(13/15) 1771100001560573 a001 28657/228826127*45537549124^(13/17) 1771100001560573 a001 28657/228826127*14662949395604^(13/21) 1771100001560573 a001 28657/228826127*192900153618^(13/18) 1771100001560573 a001 28657/228826127*73681302247^(3/4) 1771100001560573 a001 28657/228826127*10749957122^(13/16) 1771100001560573 a001 102334155/64079*2537720636^(1/9) 1771100001560573 a001 102334155/64079*312119004989^(1/11) 1771100001560573 a001 102334155/64079*(1/2+1/2*5^(1/2))^5 1771100001560573 a001 102334155/64079*28143753123^(1/10) 1771100001560573 a001 102334155/64079*228826127^(1/8) 1771100001560573 a001 28657/228826127*599074578^(13/14) 1771100001560573 a001 267914296/64079*141422324^(1/13) 1771100001560573 a001 7677619980472/433494437 1771100001560573 a001 267914296/64079*2537720636^(1/15) 1771100001560573 a001 267914296/64079*45537549124^(1/17) 1771100001560573 a001 267914296/64079*14662949395604^(1/21) 1771100001560573 a001 267914296/64079*(1/2+1/2*5^(1/2))^3 1771100001560573 a001 267914296/64079*10749957122^(1/16) 1771100001560573 a001 267914296/64079*599074578^(1/14) 1771100001560573 a001 20100270061581/1134903170 1771100001560573 a001 701408733/128158+701408733/128158*5^(1/2) 1771100001560573 a001 52623190204271/2971215073 1771100001560573 a001 28657/4106118243*45537549124^(15/17) 1771100001560573 a001 28657/4106118243*312119004989^(9/11) 1771100001560573 a001 28657/4106118243*14662949395604^(5/7) 1771100001560573 a001 28657/4106118243*192900153618^(5/6) 1771100001560573 a001 28657/4106118243*28143753123^(9/10) 1771100001560573 a001 28657/4106118243*10749957122^(15/16) 1771100001560573 a001 137769300551232/7778742049 1771100001560573 a001 360684711449425/20365011074 1771100001560573 a001 28657/28143753123*14662949395604^(7/9) 1771100001560573 a001 28657/28143753123*505019158607^(7/8) 1771100001560573 a001 944284833797043/53316291173 1771100001560573 a001 28657/73681302247*14662949395604^(17/21) 1771100001560573 a001 28657/73681302247*192900153618^(17/18) 1771100001560573 a001 2472169789941704/139583862445 1771100001560573 a001 6472224536028069/365435296162 1771100001560573 a001 116139356937055817/6557470319842 1771100001560573 a004 Fibonacci(23)/Lucas(1)/(1/2+sqrt(5)/2) 1771100001560573 a001 10472279282114434/591286729879 1771100001560573 a001 28657/312119004989*14662949395604^(6/7) 1771100001560573 a001 4000054746086365/225851433717 1771100001560573 a001 28657/119218851371*23725150497407^(13/16) 1771100001560573 a001 1527884956144661/86267571272 1771100001560573 a001 28657/45537549124*312119004989^(10/11) 1771100001560573 a001 28657/45537549124*3461452808002^(5/6) 1771100001560573 a001 583600122347618/32951280099 1771100001560573 a001 28657/17393796001*45537549124^(16/17) 1771100001560573 a001 28657/17393796001*14662949395604^(16/21) 1771100001560573 a001 28657/17393796001*192900153618^(8/9) 1771100001560573 a001 28657/17393796001*73681302247^(12/13) 1771100001560573 a001 222915410898193/12586269025 1771100001560573 a001 28657/6643838879*10749957122^(23/24) 1771100001560573 a001 85146110346961/4807526976 1771100001560573 a001 28657/2537720636*312119004989^(4/5) 1771100001560573 a001 28657/2537720636*23725150497407^(11/16) 1771100001560573 a001 28657/2537720636*73681302247^(11/13) 1771100001560573 a001 28657/2537720636*10749957122^(11/12) 1771100001560573 a001 28657/2537720636*4106118243^(22/23) 1771100001560573 a001 1134903170/64079 1771100001560573 a001 28657/969323029*2537720636^(14/15) 1771100001560573 a001 28657/969323029*17393796001^(6/7) 1771100001560573 a001 28657/969323029*45537549124^(14/17) 1771100001560573 a001 28657/969323029*14662949395604^(2/3) 1771100001560573 a001 28657/969323029*505019158607^(3/4) 1771100001560573 a001 28657/969323029*192900153618^(7/9) 1771100001560573 a001 28657/969323029*10749957122^(7/8) 1771100001560573 a001 28657/969323029*4106118243^(21/23) 1771100001560573 a001 433494437/64079*(1/2+1/2*5^(1/2))^2 1771100001560573 a001 433494437/64079*10749957122^(1/24) 1771100001560573 a001 433494437/64079*4106118243^(1/23) 1771100001560573 a001 433494437/64079*1568397607^(1/22) 1771100001560573 a001 433494437/64079*599074578^(1/21) 1771100001560573 a001 28657/969323029*1568397607^(21/22) 1771100001560573 a001 12422650081109/701408733 1771100001560573 a001 433494437/64079*228826127^(1/20) 1771100001560573 a001 28657/370248451*2537720636^(8/9) 1771100001560573 a001 28657/370248451*312119004989^(8/11) 1771100001560573 a001 28657/370248451*23725150497407^(5/8) 1771100001560573 a001 28657/370248451*73681302247^(10/13) 1771100001560573 a001 28657/370248451*28143753123^(4/5) 1771100001560573 a001 28657/370248451*10749957122^(5/6) 1771100001560573 a001 28657/370248451*4106118243^(20/23) 1771100001560573 a001 165580141/64079*(1/2+1/2*5^(1/2))^4 1771100001560573 a001 165580141/64079*23725150497407^(1/16) 1771100001560573 a001 165580141/64079*73681302247^(1/13) 1771100001560573 a001 165580141/64079*10749957122^(1/12) 1771100001560573 a001 165580141/64079*4106118243^(2/23) 1771100001560573 a001 165580141/64079*1568397607^(1/11) 1771100001560573 a001 165580141/64079*599074578^(2/21) 1771100001560573 a001 28657/370248451*1568397607^(10/11) 1771100001560573 a001 433494437/64079*87403803^(1/19) 1771100001560573 a001 165580141/64079*228826127^(1/10) 1771100001560573 a001 28657/370248451*599074578^(20/21) 1771100001560573 a001 4745030100637/267914296 1771100001560573 a001 165580141/64079*87403803^(2/19) 1771100001560573 a001 63245986/64079*141422324^(2/13) 1771100001560573 a001 28657/141422324*817138163596^(2/3) 1771100001560573 a001 28657/141422324*10749957122^(19/24) 1771100001560573 a001 63245986/64079*2537720636^(2/15) 1771100001560573 a001 28657/141422324*4106118243^(19/23) 1771100001560573 a001 63245986/64079*45537549124^(2/17) 1771100001560573 a001 63245986/64079*14662949395604^(2/21) 1771100001560573 a001 63245986/64079*(1/2+1/2*5^(1/2))^6 1771100001560573 a001 63245986/64079*10749957122^(1/8) 1771100001560573 a001 63245986/64079*4106118243^(3/23) 1771100001560573 a001 63245986/64079*1568397607^(3/22) 1771100001560573 a001 28657/141422324*1568397607^(19/22) 1771100001560573 a001 63245986/64079*599074578^(1/7) 1771100001560573 a001 433494437/64079*33385282^(1/18) 1771100001560573 a001 28657/141422324*599074578^(19/21) 1771100001560573 a001 63245986/64079*228826127^(3/20) 1771100001560573 a001 28657/141422324*228826127^(19/20) 1771100001560573 a001 1812440220802/102334155 1771100001560573 a001 63245986/64079*87403803^(3/19) 1771100001560573 a001 267914296/64079*33385282^(1/12) 1771100001560573 a001 165580141/64079*33385282^(1/9) 1771100001560574 a001 63245986/64079*33385282^(1/6) 1771100001560574 a001 28657/54018521*141422324^(12/13) 1771100001560574 a001 28657/54018521*2537720636^(4/5) 1771100001560574 a001 28657/54018521*45537549124^(12/17) 1771100001560574 a001 28657/54018521*14662949395604^(4/7) 1771100001560574 a001 28657/54018521*192900153618^(2/3) 1771100001560574 a001 28657/54018521*73681302247^(9/13) 1771100001560574 a001 28657/54018521*10749957122^(3/4) 1771100001560574 a001 28657/54018521*4106118243^(18/23) 1771100001560574 a001 24157817/64079*(1/2+1/2*5^(1/2))^8 1771100001560574 a001 24157817/64079*23725150497407^(1/8) 1771100001560574 a001 24157817/64079*505019158607^(1/7) 1771100001560574 a001 24157817/64079*73681302247^(2/13) 1771100001560574 a001 24157817/64079*10749957122^(1/6) 1771100001560574 a001 24157817/64079*4106118243^(4/23) 1771100001560574 a001 24157817/64079*1568397607^(2/11) 1771100001560574 a001 28657/54018521*1568397607^(9/11) 1771100001560574 a001 24157817/64079*599074578^(4/21) 1771100001560574 a001 28657/54018521*599074578^(6/7) 1771100001560574 a001 24157817/64079*228826127^(1/5) 1771100001560574 a001 28657/54018521*228826127^(9/10) 1771100001560574 a001 433494437/64079*12752043^(1/17) 1771100001560574 a001 24157817/64079*87403803^(4/19) 1771100001560574 a001 28657/54018521*87403803^(18/19) 1771100001560574 a001 692290561769/39088169 1771100001560574 a001 24157817/64079*33385282^(2/9) 1771100001560574 a001 165580141/64079*12752043^(2/17) 1771100001560575 a001 63245986/64079*12752043^(3/17) 1771100001560576 a001 9227465/64079*20633239^(2/7) 1771100001560576 a001 24157817/64079*12752043^(4/17) 1771100001560577 a001 28657/20633239*45537549124^(2/3) 1771100001560577 a001 28657/20633239*(1/2+1/2*5^(1/2))^34 1771100001560577 a001 28657/20633239*10749957122^(17/24) 1771100001560577 a001 9227465/64079*2537720636^(2/9) 1771100001560577 a001 28657/20633239*4106118243^(17/23) 1771100001560577 a001 9227465/64079*312119004989^(2/11) 1771100001560577 a001 9227465/64079*(1/2+1/2*5^(1/2))^10 1771100001560577 a001 9227465/64079*28143753123^(1/5) 1771100001560577 a001 9227465/64079*10749957122^(5/24) 1771100001560577 a001 9227465/64079*4106118243^(5/23) 1771100001560577 a001 9227465/64079*1568397607^(5/22) 1771100001560577 a001 28657/20633239*1568397607^(17/22) 1771100001560577 a001 9227465/64079*599074578^(5/21) 1771100001560577 a001 28657/20633239*599074578^(17/21) 1771100001560577 a001 9227465/64079*228826127^(1/4) 1771100001560577 a001 28657/20633239*228826127^(17/20) 1771100001560577 a001 9227465/64079*87403803^(5/19) 1771100001560578 a001 28657/20633239*87403803^(17/19) 1771100001560578 a001 9227465/64079*33385282^(5/18) 1771100001560578 a001 433494437/64079*4870847^(1/16) 1771100001560579 a001 28657/20633239*33385282^(17/18) 1771100001560579 a001 264431464505/14930352 1771100001560581 a001 9227465/64079*12752043^(5/17) 1771100001560583 a001 165580141/64079*4870847^(1/8) 1771100001560587 a001 63245986/64079*4870847^(3/16) 1771100001560591 a001 3524578/64079*7881196^(4/11) 1771100001560592 a001 24157817/64079*4870847^(1/4) 1771100001560601 a001 9227465/64079*4870847^(5/16) 1771100001560602 a001 3524578/64079*141422324^(4/13) 1771100001560602 a001 28657/7881196*(1/2+1/2*5^(1/2))^32 1771100001560602 a001 28657/7881196*23725150497407^(1/2) 1771100001560602 a001 28657/7881196*505019158607^(4/7) 1771100001560602 a001 28657/7881196*73681302247^(8/13) 1771100001560602 a001 28657/7881196*10749957122^(2/3) 1771100001560602 a001 3524578/64079*2537720636^(4/15) 1771100001560602 a001 28657/7881196*4106118243^(16/23) 1771100001560602 a001 3524578/64079*45537549124^(4/17) 1771100001560602 a001 3524578/64079*817138163596^(4/19) 1771100001560602 a001 3524578/64079*14662949395604^(4/21) 1771100001560602 a001 3524578/64079*(1/2+1/2*5^(1/2))^12 1771100001560602 a001 3524578/64079*73681302247^(3/13) 1771100001560602 a001 3524578/64079*10749957122^(1/4) 1771100001560602 a001 3524578/64079*4106118243^(6/23) 1771100001560602 a001 3524578/64079*1568397607^(3/11) 1771100001560602 a001 28657/7881196*1568397607^(8/11) 1771100001560602 a001 3524578/64079*599074578^(2/7) 1771100001560602 a001 28657/7881196*599074578^(16/21) 1771100001560602 a001 3524578/64079*228826127^(3/10) 1771100001560602 a001 28657/7881196*228826127^(4/5) 1771100001560602 a001 3524578/64079*87403803^(6/19) 1771100001560602 a001 28657/7881196*87403803^(16/19) 1771100001560602 a001 3524578/64079*33385282^(1/3) 1771100001560603 a001 28657/7881196*33385282^(8/9) 1771100001560606 a001 3524578/64079*12752043^(6/17) 1771100001560607 a001 433494437/64079*1860498^(1/15) 1771100001560612 a001 28657/7881196*12752043^(16/17) 1771100001560613 a001 101003831746/5702887 1771100001560624 a001 267914296/64079*1860498^(1/10) 1771100001560630 a001 3524578/64079*4870847^(3/8) 1771100001560641 a001 165580141/64079*1860498^(2/15) 1771100001560658 a001 102334155/64079*1860498^(1/6) 1771100001560676 a001 63245986/64079*1860498^(1/5) 1771100001560710 a001 24157817/64079*1860498^(4/15) 1771100001560725 a001 14930352/64079*1860498^(3/10) 1771100001560743 a001 28657/3010349*7881196^(10/11) 1771100001560748 a001 9227465/64079*1860498^(1/3) 1771100001560765 a001 28657/3010349*20633239^(6/7) 1771100001560767 a001 1346269/64079*20633239^(2/5) 1771100001560769 a001 28657/3010349*141422324^(10/13) 1771100001560769 a001 28657/3010349*2537720636^(2/3) 1771100001560769 a001 28657/3010349*45537549124^(10/17) 1771100001560769 a001 28657/3010349*312119004989^(6/11) 1771100001560769 a001 28657/3010349*14662949395604^(10/21) 1771100001560769 a001 28657/3010349*(1/2+1/2*5^(1/2))^30 1771100001560769 a001 28657/3010349*192900153618^(5/9) 1771100001560769 a001 28657/3010349*28143753123^(3/5) 1771100001560769 a001 28657/3010349*10749957122^(5/8) 1771100001560769 a001 28657/3010349*4106118243^(15/23) 1771100001560769 a001 1346269/64079*17393796001^(2/7) 1771100001560769 a001 1346269/64079*14662949395604^(2/9) 1771100001560769 a001 1346269/64079*(1/2+1/2*5^(1/2))^14 1771100001560769 a001 1346269/64079*505019158607^(1/4) 1771100001560769 a001 1346269/64079*10749957122^(7/24) 1771100001560769 a001 1346269/64079*4106118243^(7/23) 1771100001560769 a001 1346269/64079*1568397607^(7/22) 1771100001560769 a001 28657/3010349*1568397607^(15/22) 1771100001560769 a001 1346269/64079*599074578^(1/3) 1771100001560769 a001 28657/3010349*599074578^(5/7) 1771100001560769 a001 1346269/64079*228826127^(7/20) 1771100001560769 a001 28657/3010349*228826127^(3/4) 1771100001560769 a001 1346269/64079*87403803^(7/19) 1771100001560769 a001 28657/3010349*87403803^(15/19) 1771100001560769 a001 1346269/64079*33385282^(7/18) 1771100001560770 a001 28657/3010349*33385282^(5/6) 1771100001560773 a001 1346269/64079*12752043^(7/17) 1771100001560778 a001 28657/3010349*12752043^(15/17) 1771100001560801 a001 1346269/64079*4870847^(7/16) 1771100001560806 a001 3524578/64079*1860498^(2/5) 1771100001560824 a001 433494437/64079*710647^(1/14) 1771100001560839 a001 28657/3010349*4870847^(15/16) 1771100001560843 a001 38580030733/2178309 1771100001561007 a001 1346269/64079*1860498^(7/15) 1771100001561074 a001 165580141/64079*710647^(1/7) 1771100001561325 a001 63245986/64079*710647^(3/14) 1771100001561450 a001 39088169/64079*710647^(1/4) 1771100001561576 a001 24157817/64079*710647^(2/7) 1771100001561830 a001 9227465/64079*710647^(5/14) 1771100001561909 a001 28657/1149851*20633239^(4/5) 1771100001561913 a001 28657/1149851*17393796001^(4/7) 1771100001561913 a001 28657/1149851*14662949395604^(4/9) 1771100001561913 a001 28657/1149851*(1/2+1/2*5^(1/2))^28 1771100001561913 a001 28657/1149851*505019158607^(1/2) 1771100001561913 a001 28657/1149851*73681302247^(7/13) 1771100001561913 a001 28657/1149851*10749957122^(7/12) 1771100001561913 a001 28657/1149851*4106118243^(14/23) 1771100001561913 a001 514229/64079*(1/2+1/2*5^(1/2))^16 1771100001561913 a001 514229/64079*23725150497407^(1/4) 1771100001561913 a001 514229/64079*73681302247^(4/13) 1771100001561913 a001 514229/64079*10749957122^(1/3) 1771100001561913 a001 514229/64079*4106118243^(8/23) 1771100001561913 a001 514229/64079*1568397607^(4/11) 1771100001561913 a001 28657/1149851*1568397607^(7/11) 1771100001561913 a001 514229/64079*599074578^(8/21) 1771100001561913 a001 28657/1149851*599074578^(2/3) 1771100001561913 a001 514229/64079*228826127^(2/5) 1771100001561913 a001 28657/1149851*228826127^(7/10) 1771100001561913 a001 514229/64079*87403803^(8/19) 1771100001561913 a001 28657/1149851*87403803^(14/19) 1771100001561913 a001 514229/64079*33385282^(4/9) 1771100001561914 a001 28657/1149851*33385282^(7/9) 1771100001561918 a001 514229/64079*12752043^(8/17) 1771100001561922 a001 28657/1149851*12752043^(14/17) 1771100001561950 a001 514229/64079*4870847^(1/2) 1771100001561978 a001 28657/1149851*4870847^(7/8) 1771100001562105 a001 3524578/64079*710647^(3/7) 1771100001562186 a001 514229/64079*1860498^(8/15) 1771100001562390 a001 28657/1149851*1860498^(14/15) 1771100001562422 a001 433494437/64079*271443^(1/13) 1771100001562424 a001 14736260453/832040 1771100001562522 a001 1346269/64079*710647^(1/2) 1771100001563634 a001 196418/64079*439204^(2/3) 1771100001563917 a001 514229/64079*710647^(4/7) 1771100001564271 a001 165580141/64079*271443^(2/13) 1771100001566120 a001 63245986/64079*271443^(3/13) 1771100001567167 a001 63245986/271443*39603^(9/22) 1771100001567438 a001 701408733/64079*103682^(1/24) 1771100001567970 a001 24157817/64079*271443^(4/13) 1771100001569739 a001 196418/64079*7881196^(6/11) 1771100001569755 a001 28657/439204*141422324^(2/3) 1771100001569755 a001 196418/64079*141422324^(6/13) 1771100001569755 a001 196418/64079*2537720636^(2/5) 1771100001569755 a001 28657/439204*(1/2+1/2*5^(1/2))^26 1771100001569755 a001 28657/439204*73681302247^(1/2) 1771100001569755 a001 28657/439204*10749957122^(13/24) 1771100001569755 a001 28657/439204*4106118243^(13/23) 1771100001569755 a001 196418/64079*45537549124^(6/17) 1771100001569755 a001 196418/64079*14662949395604^(2/7) 1771100001569755 a001 196418/64079*(1/2+1/2*5^(1/2))^18 1771100001569755 a001 196418/64079*192900153618^(1/3) 1771100001569755 a001 196418/64079*10749957122^(3/8) 1771100001569755 a001 196418/64079*4106118243^(9/23) 1771100001569755 a001 196418/64079*1568397607^(9/22) 1771100001569755 a001 28657/439204*1568397607^(13/22) 1771100001569755 a001 196418/64079*599074578^(3/7) 1771100001569755 a001 28657/439204*599074578^(13/21) 1771100001569755 a001 196418/64079*228826127^(9/20) 1771100001569755 a001 28657/439204*228826127^(13/20) 1771100001569755 a001 196418/64079*87403803^(9/19) 1771100001569755 a001 28657/439204*87403803^(13/19) 1771100001569755 a001 196418/64079*33385282^(1/2) 1771100001569756 a001 28657/439204*33385282^(13/18) 1771100001569760 a001 196418/64079*12752043^(9/17) 1771100001569763 a001 28657/439204*12752043^(13/17) 1771100001569797 a001 196418/64079*4870847^(9/16) 1771100001569815 a001 28657/439204*4870847^(13/16) 1771100001569822 a001 9227465/64079*271443^(5/13) 1771100001570062 a001 196418/64079*1860498^(3/5) 1771100001570198 a001 28657/439204*1860498^(13/15) 1771100001571696 a001 3524578/64079*271443^(6/13) 1771100001572009 a001 196418/64079*710647^(9/14) 1771100001572517 a001 2178309/64079*271443^(1/2) 1771100001573011 a001 28657/439204*710647^(13/14) 1771100001573159 a001 75025/64079*167761^(4/5) 1771100001573262 a001 5628750626/317811 1771100001573712 a001 1346269/64079*271443^(7/13) 1771100001574303 a001 433494437/64079*103682^(1/12) 1771100001576705 a001 514229/64079*271443^(8/13) 1771100001579169 a001 1836311903/167761*15127^(1/20) 1771100001579327 a001 28657/64079*64079^(22/23) 1771100001580426 a001 5702887/103682*39603^(6/11) 1771100001581167 a001 267914296/64079*103682^(1/8) 1771100001586396 a001 196418/64079*271443^(9/13) 1771100001587697 a001 165580141/710647*39603^(9/22) 1771100001588032 a001 165580141/64079*103682^(1/6) 1771100001590692 a001 433494437/1860498*39603^(9/22) 1771100001591129 a001 1134903170/4870847*39603^(9/22) 1771100001591193 a001 2971215073/12752043*39603^(9/22) 1771100001591202 a001 7778742049/33385282*39603^(9/22) 1771100001591204 a001 20365011074/87403803*39603^(9/22) 1771100001591204 a001 53316291173/228826127*39603^(9/22) 1771100001591204 a001 139583862445/599074578*39603^(9/22) 1771100001591204 a001 365435296162/1568397607*39603^(9/22) 1771100001591204 a001 956722026041/4106118243*39603^(9/22) 1771100001591204 a001 2504730781961/10749957122*39603^(9/22) 1771100001591204 a001 6557470319842/28143753123*39603^(9/22) 1771100001591204 a001 10610209857723/45537549124*39603^(9/22) 1771100001591204 a001 4052739537881/17393796001*39603^(9/22) 1771100001591204 a001 1548008755920/6643838879*39603^(9/22) 1771100001591204 a001 591286729879/2537720636*39603^(9/22) 1771100001591204 a001 225851433717/969323029*39603^(9/22) 1771100001591204 a001 86267571272/370248451*39603^(9/22) 1771100001591204 a001 63246219/271444*39603^(9/22) 1771100001591204 a001 12586269025/54018521*39603^(9/22) 1771100001591208 a001 4807526976/20633239*39603^(9/22) 1771100001591232 a001 1836311903/7881196*39603^(9/22) 1771100001591399 a001 701408733/3010349*39603^(9/22) 1771100001592543 a001 267914296/1149851*39603^(9/22) 1771100001594897 a001 102334155/64079*103682^(5/24) 1771100001600385 a001 102334155/439204*39603^(9/22) 1771100001601762 a001 63245986/64079*103682^(1/4) 1771100001602805 a001 63245986/167761*39603^(4/11) 1771100001608626 a001 39088169/64079*103682^(7/24) 1771100001611902 a001 701408733/64079*39603^(1/22) 1771100001614514 a001 75025/24476*24476^(6/7) 1771100001615342 a001 28657/167761*439204^(8/9) 1771100001615492 a001 24157817/64079*103682^(1/3) 1771100001618495 a001 39088169/271443*39603^(5/11) 1771100001622354 a001 14930352/64079*103682^(3/8) 1771100001623483 a001 28657/167761*7881196^(8/11) 1771100001623501 a001 75025/64079*20633239^(4/7) 1771100001623504 a001 28657/167761*141422324^(8/13) 1771100001623504 a001 28657/167761*2537720636^(8/15) 1771100001623504 a001 75025/64079*2537720636^(4/9) 1771100001623504 a001 28657/167761*45537549124^(8/17) 1771100001623504 a001 28657/167761*14662949395604^(8/21) 1771100001623504 a001 28657/167761*(1/2+1/2*5^(1/2))^24 1771100001623504 a001 28657/167761*192900153618^(4/9) 1771100001623504 a001 28657/167761*73681302247^(6/13) 1771100001623504 a001 28657/167761*10749957122^(1/2) 1771100001623504 a001 28657/167761*4106118243^(12/23) 1771100001623504 a001 75025/64079*(1/2+1/2*5^(1/2))^20 1771100001623504 a001 75025/64079*23725150497407^(5/16) 1771100001623504 a001 75025/64079*505019158607^(5/14) 1771100001623504 a001 75025/64079*73681302247^(5/13) 1771100001623504 a001 75025/64079*28143753123^(2/5) 1771100001623504 a001 75025/64079*10749957122^(5/12) 1771100001623504 a001 75025/64079*4106118243^(10/23) 1771100001623504 a001 28657/167761*1568397607^(6/11) 1771100001623504 a001 75025/64079*1568397607^(5/11) 1771100001623504 a001 75025/64079*599074578^(10/21) 1771100001623504 a001 28657/167761*599074578^(4/7) 1771100001623504 a001 75025/64079*228826127^(1/2) 1771100001623504 a001 28657/167761*228826127^(3/5) 1771100001623504 a001 75025/64079*87403803^(10/19) 1771100001623504 a001 28657/167761*87403803^(12/19) 1771100001623505 a001 75025/64079*33385282^(5/9) 1771100001623505 a001 28657/167761*33385282^(2/3) 1771100001623510 a001 75025/64079*12752043^(10/17) 1771100001623511 a001 28657/167761*12752043^(12/17) 1771100001623550 a001 75025/64079*4870847^(5/8) 1771100001623560 a001 28657/167761*4870847^(3/4) 1771100001623845 a001 75025/64079*1860498^(2/3) 1771100001623913 a001 28657/167761*1860498^(4/5) 1771100001626009 a001 75025/64079*710647^(5/7) 1771100001626510 a001 28657/167761*710647^(6/7) 1771100001629225 a001 9227465/64079*103682^(5/12) 1771100001631795 a001 1762289/51841*39603^(13/22) 1771100001636075 a001 5702887/64079*103682^(11/24) 1771100001639026 a001 14619165/101521*39603^(5/11) 1771100001641994 a001 75025/64079*271443^(10/13) 1771100001642021 a001 133957148/930249*39603^(5/11) 1771100001642458 a001 701408733/4870847*39603^(5/11) 1771100001642522 a001 1836311903/12752043*39603^(5/11) 1771100001642531 a001 14930208/103681*39603^(5/11) 1771100001642533 a001 12586269025/87403803*39603^(5/11) 1771100001642533 a001 32951280099/228826127*39603^(5/11) 1771100001642533 a001 43133785636/299537289*39603^(5/11) 1771100001642533 a001 32264490531/224056801*39603^(5/11) 1771100001642533 a001 591286729879/4106118243*39603^(5/11) 1771100001642533 a001 774004377960/5374978561*39603^(5/11) 1771100001642533 a001 4052739537881/28143753123*39603^(5/11) 1771100001642533 a001 1515744265389/10525900321*39603^(5/11) 1771100001642533 a001 3278735159921/22768774562*39603^(5/11) 1771100001642533 a001 2504730781961/17393796001*39603^(5/11) 1771100001642533 a001 956722026041/6643838879*39603^(5/11) 1771100001642533 a001 182717648081/1268860318*39603^(5/11) 1771100001642533 a001 139583862445/969323029*39603^(5/11) 1771100001642533 a001 53316291173/370248451*39603^(5/11) 1771100001642533 a001 10182505537/70711162*39603^(5/11) 1771100001642534 a001 7778742049/54018521*39603^(5/11) 1771100001642537 a001 2971215073/20633239*39603^(5/11) 1771100001642561 a001 567451585/3940598*39603^(5/11) 1771100001642728 a001 433494437/3010349*39603^(5/11) 1771100001642979 a001 3524578/64079*103682^(1/2) 1771100001643872 a001 165580141/1149851*39603^(5/11) 1771100001645692 a001 28657/167761*271443^(12/13) 1771100001647541 a001 2149991425/121393 1771100001649740 a001 2178309/64079*103682^(13/24) 1771100001651714 a001 31622993/219602*39603^(5/11) 1771100001654134 a001 39088169/167761*39603^(9/22) 1771100001656875 a001 1346269/64079*103682^(7/12) 1771100001663033 a001 832040/64079*103682^(5/8) 1771100001663232 a001 433494437/64079*39603^(1/11) 1771100001666966 a001 121393/64079*103682^(19/24) 1771100001668326 a001 121393/24476*24476^(17/21) 1771100001669825 a001 24157817/271443*39603^(1/2) 1771100001671749 a001 514229/64079*103682^(2/3) 1771100001673767 a001 317811/64079*103682^(17/24) 1771100001683021 a001 46347/2206*39603^(7/11) 1771100001690355 a001 63245986/710647*39603^(1/2) 1771100001693320 a001 196418/64079*103682^(3/4) 1771100001693350 a001 165580141/1860498*39603^(1/2) 1771100001693787 a001 433494437/4870847*39603^(1/2) 1771100001693851 a001 1134903170/12752043*39603^(1/2) 1771100001693860 a001 2971215073/33385282*39603^(1/2) 1771100001693862 a001 7778742049/87403803*39603^(1/2) 1771100001693862 a001 20365011074/228826127*39603^(1/2) 1771100001693862 a001 53316291173/599074578*39603^(1/2) 1771100001693862 a001 139583862445/1568397607*39603^(1/2) 1771100001693862 a001 365435296162/4106118243*39603^(1/2) 1771100001693862 a001 956722026041/10749957122*39603^(1/2) 1771100001693862 a001 2504730781961/28143753123*39603^(1/2) 1771100001693862 a001 6557470319842/73681302247*39603^(1/2) 1771100001693862 a001 10610209857723/119218851371*39603^(1/2) 1771100001693862 a001 4052739537881/45537549124*39603^(1/2) 1771100001693862 a001 1548008755920/17393796001*39603^(1/2) 1771100001693862 a001 591286729879/6643838879*39603^(1/2) 1771100001693862 a001 225851433717/2537720636*39603^(1/2) 1771100001693862 a001 86267571272/969323029*39603^(1/2) 1771100001693862 a001 32951280099/370248451*39603^(1/2) 1771100001693862 a001 12586269025/141422324*39603^(1/2) 1771100001693863 a001 4807526976/54018521*39603^(1/2) 1771100001693866 a001 1836311903/20633239*39603^(1/2) 1771100001693891 a001 3524667/39604*39603^(1/2) 1771100001694058 a001 267914296/3010349*39603^(1/2) 1771100001695202 a001 102334155/1149851*39603^(1/2) 1771100001701354 a001 28657/24476*24476^(20/21) 1771100001703043 a001 39088169/439204*39603^(1/2) 1771100001705464 a001 24157817/167761*39603^(5/11) 1771100001714561 a001 267914296/64079*39603^(3/22) 1771100001721152 a001 4976784/90481*39603^(6/11) 1771100001734620 a001 1346269/103682*39603^(15/22) 1771100001738481 a001 701408733/103682*15127^(1/10) 1771100001741684 a001 39088169/710647*39603^(6/11) 1771100001744680 a001 831985/15126*39603^(6/11) 1771100001745117 a001 267914296/4870847*39603^(6/11) 1771100001745180 a001 233802911/4250681*39603^(6/11) 1771100001745190 a001 1836311903/33385282*39603^(6/11) 1771100001745191 a001 1602508992/29134601*39603^(6/11) 1771100001745191 a001 12586269025/228826127*39603^(6/11) 1771100001745191 a001 10983760033/199691526*39603^(6/11) 1771100001745191 a001 86267571272/1568397607*39603^(6/11) 1771100001745191 a001 75283811239/1368706081*39603^(6/11) 1771100001745191 a001 591286729879/10749957122*39603^(6/11) 1771100001745191 a001 12585437040/228811001*39603^(6/11) 1771100001745191 a001 4052739537881/73681302247*39603^(6/11) 1771100001745191 a001 3536736619241/64300051206*39603^(6/11) 1771100001745191 a001 6557470319842/119218851371*39603^(6/11) 1771100001745191 a001 2504730781961/45537549124*39603^(6/11) 1771100001745191 a001 956722026041/17393796001*39603^(6/11) 1771100001745191 a001 365435296162/6643838879*39603^(6/11) 1771100001745191 a001 139583862445/2537720636*39603^(6/11) 1771100001745191 a001 53316291173/969323029*39603^(6/11) 1771100001745191 a001 20365011074/370248451*39603^(6/11) 1771100001745191 a001 7778742049/141422324*39603^(6/11) 1771100001745192 a001 2971215073/54018521*39603^(6/11) 1771100001745195 a001 1134903170/20633239*39603^(6/11) 1771100001745220 a001 433494437/7881196*39603^(6/11) 1771100001745387 a001 165580141/3010349*39603^(6/11) 1771100001746531 a001 63245986/1149851*39603^(6/11) 1771100001754373 a001 24157817/439204*39603^(6/11) 1771100001756791 a001 14930352/167761*39603^(1/2) 1771100001760799 a001 75025/64079*103682^(5/6) 1771100001765890 a001 165580141/64079*39603^(2/11) 1771100001772487 a001 9227465/271443*39603^(13/22) 1771100001785242 a001 416020/51841*39603^(8/11) 1771100001793014 a001 24157817/710647*39603^(13/22) 1771100001796009 a001 31622993/930249*39603^(13/22) 1771100001796446 a001 165580141/4870847*39603^(13/22) 1771100001796510 a001 433494437/12752043*39603^(13/22) 1771100001796519 a001 567451585/16692641*39603^(13/22) 1771100001796520 a001 2971215073/87403803*39603^(13/22) 1771100001796520 a001 7778742049/228826127*39603^(13/22) 1771100001796520 a001 10182505537/299537289*39603^(13/22) 1771100001796520 a001 53316291173/1568397607*39603^(13/22) 1771100001796520 a001 139583862445/4106118243*39603^(13/22) 1771100001796520 a001 182717648081/5374978561*39603^(13/22) 1771100001796520 a001 956722026041/28143753123*39603^(13/22) 1771100001796520 a001 2504730781961/73681302247*39603^(13/22) 1771100001796520 a001 3278735159921/96450076809*39603^(13/22) 1771100001796520 a001 10610209857723/312119004989*39603^(13/22) 1771100001796520 a001 4052739537881/119218851371*39603^(13/22) 1771100001796520 a001 387002188980/11384387281*39603^(13/22) 1771100001796520 a001 591286729879/17393796001*39603^(13/22) 1771100001796520 a001 225851433717/6643838879*39603^(13/22) 1771100001796520 a001 1135099622/33391061*39603^(13/22) 1771100001796520 a001 32951280099/969323029*39603^(13/22) 1771100001796520 a001 12586269025/370248451*39603^(13/22) 1771100001796520 a001 1201881744/35355581*39603^(13/22) 1771100001796521 a001 1836311903/54018521*39603^(13/22) 1771100001796525 a001 701408733/20633239*39603^(13/22) 1771100001796549 a001 66978574/1970299*39603^(13/22) 1771100001796716 a001 102334155/3010349*39603^(13/22) 1771100001797860 a001 39088169/1149851*39603^(13/22) 1771100001805700 a001 196452/5779*39603^(13/22) 1771100001808126 a001 9227465/167761*39603^(6/11) 1771100001817219 a001 102334155/64079*39603^(5/22) 1771100001823801 a001 5702887/271443*39603^(7/11) 1771100001838422 a001 514229/103682*39603^(17/22) 1771100001842326 a001 98209/12238*24476^(16/21) 1771100001844341 a001 14930352/710647*39603^(7/11) 1771100001847338 a001 39088169/1860498*39603^(7/11) 1771100001847775 a001 102334155/4870847*39603^(7/11) 1771100001847839 a001 267914296/12752043*39603^(7/11) 1771100001847848 a001 701408733/33385282*39603^(7/11) 1771100001847849 a001 1836311903/87403803*39603^(7/11) 1771100001847850 a001 102287808/4868641*39603^(7/11) 1771100001847850 a001 12586269025/599074578*39603^(7/11) 1771100001847850 a001 32951280099/1568397607*39603^(7/11) 1771100001847850 a001 86267571272/4106118243*39603^(7/11) 1771100001847850 a001 225851433717/10749957122*39603^(7/11) 1771100001847850 a001 591286729879/28143753123*39603^(7/11) 1771100001847850 a001 1548008755920/73681302247*39603^(7/11) 1771100001847850 a001 4052739537881/192900153618*39603^(7/11) 1771100001847850 a001 225749145909/10745088481*39603^(7/11) 1771100001847850 a001 6557470319842/312119004989*39603^(7/11) 1771100001847850 a001 2504730781961/119218851371*39603^(7/11) 1771100001847850 a001 956722026041/45537549124*39603^(7/11) 1771100001847850 a001 365435296162/17393796001*39603^(7/11) 1771100001847850 a001 139583862445/6643838879*39603^(7/11) 1771100001847850 a001 53316291173/2537720636*39603^(7/11) 1771100001847850 a001 20365011074/969323029*39603^(7/11) 1771100001847850 a001 7778742049/370248451*39603^(7/11) 1771100001847850 a001 2971215073/141422324*39603^(7/11) 1771100001847850 a001 1134903170/54018521*39603^(7/11) 1771100001847854 a001 433494437/20633239*39603^(7/11) 1771100001847878 a001 165580141/7881196*39603^(7/11) 1771100001848045 a001 63245986/3010349*39603^(7/11) 1771100001849190 a001 24157817/1149851*39603^(7/11) 1771100001857035 a001 9227465/439204*39603^(7/11) 1771100001859440 a001 5702887/167761*39603^(13/22) 1771100001868548 a001 63245986/64079*39603^(3/11) 1771100001875170 a001 3524578/271443*39603^(15/22) 1771100001879198 a001 1836311903/271443*15127^(1/10) 1771100001884905 a001 317811/103682*39603^(9/11) 1771100001895676 a001 9227465/710647*39603^(15/22) 1771100001898668 a001 24157817/1860498*39603^(15/22) 1771100001899104 a001 63245986/4870847*39603^(15/22) 1771100001899168 a001 165580141/12752043*39603^(15/22) 1771100001899177 a001 433494437/33385282*39603^(15/22) 1771100001899179 a001 1134903170/87403803*39603^(15/22) 1771100001899179 a001 2971215073/228826127*39603^(15/22) 1771100001899179 a001 7778742049/599074578*39603^(15/22) 1771100001899179 a001 20365011074/1568397607*39603^(15/22) 1771100001899179 a001 53316291173/4106118243*39603^(15/22) 1771100001899179 a001 139583862445/10749957122*39603^(15/22) 1771100001899179 a001 365435296162/28143753123*39603^(15/22) 1771100001899179 a001 956722026041/73681302247*39603^(15/22) 1771100001899179 a001 2504730781961/192900153618*39603^(15/22) 1771100001899179 a001 10610209857723/817138163596*39603^(15/22) 1771100001899179 a001 4052739537881/312119004989*39603^(15/22) 1771100001899179 a001 1548008755920/119218851371*39603^(15/22) 1771100001899179 a001 591286729879/45537549124*39603^(15/22) 1771100001899179 a001 7787980473/599786069*39603^(15/22) 1771100001899179 a001 86267571272/6643838879*39603^(15/22) 1771100001899179 a001 32951280099/2537720636*39603^(15/22) 1771100001899179 a001 12586269025/969323029*39603^(15/22) 1771100001899179 a001 4807526976/370248451*39603^(15/22) 1771100001899179 a001 1836311903/141422324*39603^(15/22) 1771100001899179 a001 701408733/54018521*39603^(15/22) 1771100001899183 a001 9238424/711491*39603^(15/22) 1771100001899207 a001 102334155/7881196*39603^(15/22) 1771100001899374 a001 39088169/3010349*39603^(15/22) 1771100001899728 a001 686789568/101521*15127^(1/10) 1771100001900517 a001 14930352/1149851*39603^(15/22) 1771100001902723 a001 12586269025/1860498*15127^(1/10) 1771100001903160 a001 32951280099/4870847*15127^(1/10) 1771100001903224 a001 86267571272/12752043*15127^(1/10) 1771100001903233 a001 32264490531/4769326*15127^(1/10) 1771100001903235 a001 591286729879/87403803*15127^(1/10) 1771100001903235 a001 1548008755920/228826127*15127^(1/10) 1771100001903235 a001 4052739537881/599074578*15127^(1/10) 1771100001903235 a001 1515744265389/224056801*15127^(1/10) 1771100001903235 a001 6557470319842/969323029*15127^(1/10) 1771100001903235 a001 2504730781961/370248451*15127^(1/10) 1771100001903235 a001 956722026041/141422324*15127^(1/10) 1771100001903236 a001 365435296162/54018521*15127^(1/10) 1771100001903239 a001 139583862445/20633239*15127^(1/10) 1771100001903264 a001 53316291173/7881196*15127^(1/10) 1771100001903430 a001 20365011074/3010349*15127^(1/10) 1771100001904575 a001 7778742049/1149851*15127^(1/10) 1771100001908349 a001 5702887/439204*39603^(15/22) 1771100001910809 a001 3524578/167761*39603^(7/11) 1771100001912416 a001 2971215073/439204*15127^(1/10) 1771100001919877 a001 39088169/64079*39603^(7/22) 1771100001926396 a001 726103/90481*39603^(8/11) 1771100001928975 a001 121393-46368*5^(1/2) 1771100001934984 a001 63245986/39603*15127^(1/4) 1771100001946990 a001 5702887/710647*39603^(8/11) 1771100001947570 a001 701408733/64079*15127^(1/20) 1771100001948923 a001 98209/51841*39603^(19/22) 1771100001949995 a001 829464/103361*39603^(8/11) 1771100001950433 a001 39088169/4870847*39603^(8/11) 1771100001950497 a001 34111385/4250681*39603^(8/11) 1771100001950506 a001 133957148/16692641*39603^(8/11) 1771100001950508 a001 233802911/29134601*39603^(8/11) 1771100001950508 a001 1836311903/228826127*39603^(8/11) 1771100001950508 a001 267084832/33281921*39603^(8/11) 1771100001950508 a001 12586269025/1568397607*39603^(8/11) 1771100001950508 a001 10983760033/1368706081*39603^(8/11) 1771100001950508 a001 43133785636/5374978561*39603^(8/11) 1771100001950508 a001 75283811239/9381251041*39603^(8/11) 1771100001950508 a001 591286729879/73681302247*39603^(8/11) 1771100001950508 a001 86000486440/10716675201*39603^(8/11) 1771100001950508 a001 4052739537881/505019158607*39603^(8/11) 1771100001950508 a001 3278735159921/408569081798*39603^(8/11) 1771100001950508 a001 2504730781961/312119004989*39603^(8/11) 1771100001950508 a001 956722026041/119218851371*39603^(8/11) 1771100001950508 a001 182717648081/22768774562*39603^(8/11) 1771100001950508 a001 139583862445/17393796001*39603^(8/11) 1771100001950508 a001 53316291173/6643838879*39603^(8/11) 1771100001950508 a001 10182505537/1268860318*39603^(8/11) 1771100001950508 a001 7778742049/969323029*39603^(8/11) 1771100001950508 a001 2971215073/370248451*39603^(8/11) 1771100001950508 a001 567451585/70711162*39603^(8/11) 1771100001950509 a001 433494437/54018521*39603^(8/11) 1771100001950512 a001 165580141/20633239*39603^(8/11) 1771100001950537 a001 31622993/3940598*39603^(8/11) 1771100001950704 a001 24157817/3010349*39603^(8/11) 1771100001951852 a001 9227465/1149851*39603^(8/11) 1771100001952643 a001 165580141/24476*9349^(2/19) 1771100001959718 a001 1762289/219602*39603^(8/11) 1771100001962035 a001 2178309/167761*39603^(15/22) 1771100001966165 a001 1134903170/167761*15127^(1/10) 1771100001967033 a001 121393/103682*39603^(10/11) 1771100001970418 a001 10959/844*24476^(5/7) 1771100001971207 a001 24157817/64079*39603^(4/11) 1771100001977995 a001 1346269/271443*39603^(17/22) 1771100001991886 a001 28657/64079*7881196^(2/3) 1771100001991905 a001 28657/64079*312119004989^(2/5) 1771100001991905 a001 28657/64079*(1/2+1/2*5^(1/2))^22 1771100001991905 a001 28657/64079*10749957122^(11/24) 1771100001991905 a001 28657/64079*4106118243^(11/23) 1771100001991905 a001 28657/64079*1568397607^(1/2) 1771100001991905 a001 28657/64079*599074578^(11/21) 1771100001991905 a001 28657/64079*228826127^(11/20) 1771100001991905 a001 28657/64079*87403803^(11/19) 1771100001991906 a001 28657/64079*33385282^(11/18) 1771100001991912 a001 28657/64079*12752043^(11/17) 1771100001991956 a001 28657/64079*4870847^(11/16) 1771100001992280 a001 28657/64079*1860498^(11/15) 1771100001994661 a001 28657/64079*710647^(11/14) 1771100001998359 a001 3524578/710647*39603^(17/22) 1771100002001330 a001 9227465/1860498*39603^(17/22) 1771100002001763 a001 24157817/4870847*39603^(17/22) 1771100002001826 a001 63245986/12752043*39603^(17/22) 1771100002001836 a001 165580141/33385282*39603^(17/22) 1771100002001837 a001 433494437/87403803*39603^(17/22) 1771100002001837 a001 1134903170/228826127*39603^(17/22) 1771100002001837 a001 2971215073/599074578*39603^(17/22) 1771100002001837 a001 7778742049/1568397607*39603^(17/22) 1771100002001837 a001 20365011074/4106118243*39603^(17/22) 1771100002001837 a001 53316291173/10749957122*39603^(17/22) 1771100002001837 a001 139583862445/28143753123*39603^(17/22) 1771100002001837 a001 365435296162/73681302247*39603^(17/22) 1771100002001837 a001 956722026041/192900153618*39603^(17/22) 1771100002001837 a001 2504730781961/505019158607*39603^(17/22) 1771100002001837 a001 10610209857723/2139295485799*39603^(17/22) 1771100002001837 a001 140728068720/28374454999*39603^(17/22) 1771100002001837 a001 591286729879/119218851371*39603^(17/22) 1771100002001837 a001 225851433717/45537549124*39603^(17/22) 1771100002001837 a001 86267571272/17393796001*39603^(17/22) 1771100002001837 a001 32951280099/6643838879*39603^(17/22) 1771100002001837 a001 1144206275/230701876*39603^(17/22) 1771100002001837 a001 4807526976/969323029*39603^(17/22) 1771100002001837 a001 1836311903/370248451*39603^(17/22) 1771100002001837 a001 701408733/141422324*39603^(17/22) 1771100002001838 a001 267914296/54018521*39603^(17/22) 1771100002001841 a001 9303105/1875749*39603^(17/22) 1771100002001865 a001 39088169/7881196*39603^(17/22) 1771100002002031 a001 14930352/3010349*39603^(17/22) 1771100002003166 a001 5702887/1149851*39603^(17/22) 1771100002010944 a001 2178309/439204*39603^(17/22) 1771100002012244 a001 28657/64079*271443^(11/13) 1771100002013634 a001 1346269/167761*39603^(8/11) 1771100002022534 a001 14930352/64079*39603^(9/22) 1771100002028617 a001 832040/271443*39603^(9/11) 1771100002049585 a001 311187/101521*39603^(9/11) 1771100002052644 a001 5702887/1860498*39603^(9/11) 1771100002053090 a001 14930352/4870847*39603^(9/11) 1771100002053155 a001 39088169/12752043*39603^(9/11) 1771100002053165 a001 14619165/4769326*39603^(9/11) 1771100002053166 a001 267914296/87403803*39603^(9/11) 1771100002053166 a001 701408733/228826127*39603^(9/11) 1771100002053166 a001 1836311903/599074578*39603^(9/11) 1771100002053166 a001 686789568/224056801*39603^(9/11) 1771100002053166 a001 12586269025/4106118243*39603^(9/11) 1771100002053166 a001 32951280099/10749957122*39603^(9/11) 1771100002053166 a001 86267571272/28143753123*39603^(9/11) 1771100002053166 a001 32264490531/10525900321*39603^(9/11) 1771100002053166 a001 591286729879/192900153618*39603^(9/11) 1771100002053166 a001 1548008755920/505019158607*39603^(9/11) 1771100002053166 a001 1515744265389/494493258286*39603^(9/11) 1771100002053166 a001 956722026041/312119004989*39603^(9/11) 1771100002053166 a001 365435296162/119218851371*39603^(9/11) 1771100002053166 a001 139583862445/45537549124*39603^(9/11) 1771100002053166 a001 53316291173/17393796001*39603^(9/11) 1771100002053166 a001 20365011074/6643838879*39603^(9/11) 1771100002053166 a001 7778742049/2537720636*39603^(9/11) 1771100002053166 a001 2971215073/969323029*39603^(9/11) 1771100002053166 a001 1134903170/370248451*39603^(9/11) 1771100002053166 a001 433494437/141422324*39603^(9/11) 1771100002053167 a001 165580141/54018521*39603^(9/11) 1771100002053171 a001 63245986/20633239*39603^(9/11) 1771100002053195 a001 24157817/7881196*39603^(9/11) 1771100002053366 a001 9227465/3010349*39603^(9/11) 1771100002054534 a001 3524578/1149851*39603^(9/11) 1771100002062543 a001 1346269/439204*39603^(9/11) 1771100002064256 a001 75640/15251*39603^(17/22) 1771100002073869 a001 9227465/64079*39603^(5/11) 1771100002081798 a001 514229/271443*39603^(19/22) 1771100002101184 a001 1346269/710647*39603^(19/22) 1771100002104012 a001 1762289/930249*39603^(19/22) 1771100002104425 a001 9227465/4870847*39603^(19/22) 1771100002104485 a001 24157817/12752043*39603^(19/22) 1771100002104494 a001 31622993/16692641*39603^(19/22) 1771100002104495 a001 165580141/87403803*39603^(19/22) 1771100002104495 a001 433494437/228826127*39603^(19/22) 1771100002104495 a001 567451585/299537289*39603^(19/22) 1771100002104495 a001 2971215073/1568397607*39603^(19/22) 1771100002104495 a001 7778742049/4106118243*39603^(19/22) 1771100002104495 a001 10182505537/5374978561*39603^(19/22) 1771100002104495 a001 53316291173/28143753123*39603^(19/22) 1771100002104495 a001 139583862445/73681302247*39603^(19/22) 1771100002104495 a001 182717648081/96450076809*39603^(19/22) 1771100002104495 a001 956722026041/505019158607*39603^(19/22) 1771100002104495 a001 10610209857723/5600748293801*39603^(19/22) 1771100002104495 a001 591286729879/312119004989*39603^(19/22) 1771100002104495 a001 225851433717/119218851371*39603^(19/22) 1771100002104495 a001 21566892818/11384387281*39603^(19/22) 1771100002104495 a001 32951280099/17393796001*39603^(19/22) 1771100002104495 a001 12586269025/6643838879*39603^(19/22) 1771100002104495 a001 1201881744/634430159*39603^(19/22) 1771100002104495 a001 1836311903/969323029*39603^(19/22) 1771100002104495 a001 701408733/370248451*39603^(19/22) 1771100002104496 a001 66978574/35355581*39603^(19/22) 1771100002104496 a001 102334155/54018521*39603^(19/22) 1771100002104499 a001 39088169/20633239*39603^(19/22) 1771100002104522 a001 3732588/1970299*39603^(19/22) 1771100002104680 a001 5702887/3010349*39603^(19/22) 1771100002105330 a001 75025/103682*39603^(21/22) 1771100002105760 a001 2178309/1149851*39603^(19/22) 1771100002113165 a001 208010/109801*39603^(19/22) 1771100002116045 a001 514229/24476*24476^(2/3) 1771100002117436 a001 514229/167761*39603^(9/11) 1771100002125183 a001 5702887/64079*39603^(1/2) 1771100002125478 a001 433494437/103682*15127^(3/20) 1771100002128280 a001 105937/90481*39603^(10/11) 1771100002142930 a001 28657/64079*103682^(11/12) 1771100002151806 a001 832040/710647*39603^(10/11) 1771100002155238 a001 726103/620166*39603^(10/11) 1771100002155739 a001 5702887/4870847*39603^(10/11) 1771100002155812 a001 4976784/4250681*39603^(10/11) 1771100002155823 a001 39088169/33385282*39603^(10/11) 1771100002155824 a001 34111385/29134601*39603^(10/11) 1771100002155825 a001 267914296/228826127*39603^(10/11) 1771100002155825 a001 233802911/199691526*39603^(10/11) 1771100002155825 a001 1836311903/1568397607*39603^(10/11) 1771100002155825 a001 1602508992/1368706081*39603^(10/11) 1771100002155825 a001 12586269025/10749957122*39603^(10/11) 1771100002155825 a001 10983760033/9381251041*39603^(10/11) 1771100002155825 a001 86267571272/73681302247*39603^(10/11) 1771100002155825 a001 75283811239/64300051206*39603^(10/11) 1771100002155825 a001 2504730781961/2139295485799*39603^(10/11) 1771100002155825 a001 365435296162/312119004989*39603^(10/11) 1771100002155825 a001 139583862445/119218851371*39603^(10/11) 1771100002155825 a001 53316291173/45537549124*39603^(10/11) 1771100002155825 a001 20365011074/17393796001*39603^(10/11) 1771100002155825 a001 7778742049/6643838879*39603^(10/11) 1771100002155825 a001 2971215073/2537720636*39603^(10/11) 1771100002155825 a001 1134903170/969323029*39603^(10/11) 1771100002155825 a001 433494437/370248451*39603^(10/11) 1771100002155825 a001 165580141/141422324*39603^(10/11) 1771100002155825 a001 63245986/54018521*39603^(10/11) 1771100002155829 a001 24157817/20633239*39603^(10/11) 1771100002155857 a001 9227465/7881196*39603^(10/11) 1771100002156049 a001 3524578/3010349*39603^(10/11) 1771100002156659 a001 821223649/46368 1771100002157360 a001 1346269/1149851*39603^(10/11) 1771100002163919 a001 317811/167761*39603^(19/22) 1771100002166346 a001 514229/439204*39603^(10/11) 1771100002176552 a001 3524578/64079*39603^(6/11) 1771100002192298 a001 196418/271443*39603^(21/22) 1771100002204986 a001 514229/710647*39603^(21/22) 1771100002206838 a001 1346269/1860498*39603^(21/22) 1771100002207108 a001 3524578/4870847*39603^(21/22) 1771100002207147 a001 9227465/12752043*39603^(21/22) 1771100002207153 a001 24157817/33385282*39603^(21/22) 1771100002207154 a001 63245986/87403803*39603^(21/22) 1771100002207154 a001 165580141/228826127*39603^(21/22) 1771100002207154 a001 433494437/599074578*39603^(21/22) 1771100002207154 a001 1134903170/1568397607*39603^(21/22) 1771100002207154 a001 2971215073/4106118243*39603^(21/22) 1771100002207154 a001 7778742049/10749957122*39603^(21/22) 1771100002207154 a001 20365011074/28143753123*39603^(21/22) 1771100002207154 a001 53316291173/73681302247*39603^(21/22) 1771100002207154 a001 139583862445/192900153618*39603^(21/22) 1771100002207154 a001 10610209857723/14662949395604*39603^(21/22) 1771100002207154 a001 591286729879/817138163596*39603^(21/22) 1771100002207154 a001 225851433717/312119004989*39603^(21/22) 1771100002207154 a001 86267571272/119218851371*39603^(21/22) 1771100002207154 a001 32951280099/45537549124*39603^(21/22) 1771100002207154 a001 12586269025/17393796001*39603^(21/22) 1771100002207154 a001 4807526976/6643838879*39603^(21/22) 1771100002207154 a001 1836311903/2537720636*39603^(21/22) 1771100002207154 a001 701408733/969323029*39603^(21/22) 1771100002207154 a001 267914296/370248451*39603^(21/22) 1771100002207154 a001 102334155/141422324*39603^(21/22) 1771100002207154 a001 39088169/54018521*39603^(21/22) 1771100002207156 a001 14930352/20633239*39603^(21/22) 1771100002207171 a001 5702887/7881196*39603^(21/22) 1771100002207275 a001 2178309/3010349*39603^(21/22) 1771100002207982 a001 832040/1149851*39603^(21/22) 1771100002212828 a001 317811/439204*39603^(21/22) 1771100002227778 a001 2178309/64079*39603^(13/22) 1771100002227937 a001 196418/167761*39603^(10/11) 1771100002231024 a001 63245986/15127*5778^(1/6) 1771100002246047 a001 121393/167761*39603^(21/22) 1771100002254975 a001 208010/6119*24476^(13/21) 1771100002258483 a001 2/17711*(1/2+1/2*5^(1/2))^44 1771100002266195 a001 1134903170/271443*15127^(3/20) 1771100002279377 a001 1346269/64079*39603^(7/11) 1771100002286725 a001 2971215073/710647*15127^(3/20) 1771100002289720 a001 7778742049/1860498*15127^(3/20) 1771100002290157 a001 20365011074/4870847*15127^(3/20) 1771100002290221 a001 53316291173/12752043*15127^(3/20) 1771100002290230 a001 139583862445/33385282*15127^(3/20) 1771100002290232 a001 365435296162/87403803*15127^(3/20) 1771100002290232 a001 956722026041/228826127*15127^(3/20) 1771100002290232 a001 2504730781961/599074578*15127^(3/20) 1771100002290232 a001 6557470319842/1568397607*15127^(3/20) 1771100002290232 a001 10610209857723/2537720636*15127^(3/20) 1771100002290232 a001 4052739537881/969323029*15127^(3/20) 1771100002290232 a001 1548008755920/370248451*15127^(3/20) 1771100002290232 a001 591286729879/141422324*15127^(3/20) 1771100002290232 a001 225851433717/54018521*15127^(3/20) 1771100002290236 a001 86267571272/20633239*15127^(3/20) 1771100002290260 a001 32951280099/7881196*15127^(3/20) 1771100002290427 a001 12586269025/3010349*15127^(3/20) 1771100002291571 a001 4807526976/1149851*15127^(3/20) 1771100002299413 a001 1836311903/439204*15127^(3/20) 1771100002321981 a001 39088169/39603*15127^(3/10) 1771100002329999 a001 832040/64079*39603^(15/22) 1771100002334567 a001 433494437/64079*15127^(1/10) 1771100002353162 a001 701408733/167761*15127^(3/20) 1771100002383179 a001 514229/64079*39603^(8/11) 1771100002396462 a001 1346269/24476*24476^(4/7) 1771100002429662 a001 317811/64079*39603^(17/22) 1771100002473732 a001 46368/64079*39603^(21/22) 1771100002493680 a001 196418/64079*39603^(9/11) 1771100002511790 a001 121393/64079*39603^(19/22) 1771100002512475 a001 133957148/51841*15127^(1/5) 1771100002525061 a001 75025/2-17711/2*5^(1/2) 1771100002536973 a001 2178309/24476*24476^(11/21) 1771100002562568 a001 17711/24476*64079^(21/23) 1771100002627069 a001 28657/9349*9349^(18/19) 1771100002650087 a001 75025/64079*39603^(10/11) 1771100002653191 a001 233802911/90481*15127^(1/5) 1771100002673722 a001 1836311903/710647*15127^(1/5) 1771100002676717 a001 267084832/103361*15127^(1/5) 1771100002677154 a001 12586269025/4870847*15127^(1/5) 1771100002677218 a001 10983760033/4250681*15127^(1/5) 1771100002677227 a001 43133785636/16692641*15127^(1/5) 1771100002677229 a001 75283811239/29134601*15127^(1/5) 1771100002677229 a001 591286729879/228826127*15127^(1/5) 1771100002677229 a001 86000486440/33281921*15127^(1/5) 1771100002677229 a001 4052739537881/1568397607*15127^(1/5) 1771100002677229 a001 3536736619241/1368706081*15127^(1/5) 1771100002677229 a001 3278735159921/1268860318*15127^(1/5) 1771100002677229 a001 2504730781961/969323029*15127^(1/5) 1771100002677229 a001 956722026041/370248451*15127^(1/5) 1771100002677229 a001 182717648081/70711162*15127^(1/5) 1771100002677229 a001 139583862445/54018521*15127^(1/5) 1771100002677233 a001 53316291173/20633239*15127^(1/5) 1771100002677257 a001 10182505537/3940598*15127^(1/5) 1771100002677424 a001 7778742049/3010349*15127^(1/5) 1771100002677857 a001 1762289/12238*24476^(10/21) 1771100002678568 a001 2971215073/1149851*15127^(1/5) 1771100002686410 a001 567451585/219602*15127^(1/5) 1771100002708978 a001 24157817/39603*15127^(7/20) 1771100002721564 a001 267914296/64079*15127^(3/20) 1771100002740159 a001 433494437/167761*15127^(1/5) 1771100002818598 a001 5702887/24476*24476^(3/7) 1771100002899472 a001 165580141/103682*15127^(1/4) 1771100002947240 a001 433494437/39603*5778^(1/18) 1771100002949252 a001 17711/24476*439204^(7/9) 1771100002956375 a001 17711/24476*7881196^(7/11) 1771100002956390 a001 17711/24476*20633239^(3/5) 1771100002956393 a001 17711/24476*141422324^(7/13) 1771100002956393 a001 10946/39603*(1/2+1/2*5^(1/2))^23 1771100002956393 a001 10946/39603*4106118243^(1/2) 1771100002956393 a001 17711/24476*2537720636^(7/15) 1771100002956393 a001 17711/24476*17393796001^(3/7) 1771100002956393 a001 17711/24476*45537549124^(7/17) 1771100002956393 a001 17711/24476*14662949395604^(1/3) 1771100002956393 a001 17711/24476*(1/2+1/2*5^(1/2))^21 1771100002956393 a001 17711/24476*192900153618^(7/18) 1771100002956393 a001 17711/24476*10749957122^(7/16) 1771100002956393 a001 17711/24476*599074578^(1/2) 1771100002956394 a001 17711/24476*33385282^(7/12) 1771100002956751 a001 17711/24476*1860498^(7/10) 1771100002959023 a001 17711/24476*710647^(3/4) 1771100002959394 a001 9227465/24476*24476^(8/21) 1771100003019139 a001 10946*9349^(1/19) 1771100003040188 a001 433494437/271443*15127^(1/4) 1771100003060719 a001 1134903170/710647*15127^(1/4) 1771100003063714 a001 2971215073/1860498*15127^(1/4) 1771100003064151 a001 7778742049/4870847*15127^(1/4) 1771100003064215 a001 20365011074/12752043*15127^(1/4) 1771100003064224 a001 53316291173/33385282*15127^(1/4) 1771100003064225 a001 139583862445/87403803*15127^(1/4) 1771100003064226 a001 365435296162/228826127*15127^(1/4) 1771100003064226 a001 956722026041/599074578*15127^(1/4) 1771100003064226 a001 2504730781961/1568397607*15127^(1/4) 1771100003064226 a001 6557470319842/4106118243*15127^(1/4) 1771100003064226 a001 10610209857723/6643838879*15127^(1/4) 1771100003064226 a001 4052739537881/2537720636*15127^(1/4) 1771100003064226 a001 1548008755920/969323029*15127^(1/4) 1771100003064226 a001 591286729879/370248451*15127^(1/4) 1771100003064226 a001 225851433717/141422324*15127^(1/4) 1771100003064226 a001 86267571272/54018521*15127^(1/4) 1771100003064230 a001 32951280099/20633239*15127^(1/4) 1771100003064254 a001 12586269025/7881196*15127^(1/4) 1771100003064421 a001 4807526976/3010349*15127^(1/4) 1771100003065565 a001 1836311903/1149851*15127^(1/4) 1771100003073407 a001 701408733/439204*15127^(1/4) 1771100003095973 a001 4976784/13201*15127^(2/5) 1771100003097479 a001 46368/9349*9349^(17/19) 1771100003100168 a001 3732588/6119*24476^(1/3) 1771100003100553 a001 17711/24476*103682^(7/8) 1771100003108561 a001 165580141/64079*15127^(1/5) 1771100003114282 a001 10946/39603*103682^(23/24) 1771100003121147 a001 -46368+28657*5^(1/2) 1771100003127156 a001 267914296/167761*15127^(1/4) 1771100003240951 a001 24157817/24476*24476^(2/7) 1771100003286468 a001 102334155/103682*15127^(3/10) 1771100003381731 a001 39088169/24476*24476^(5/21) 1771100003427185 a001 267914296/271443*15127^(3/10) 1771100003447716 a001 701408733/710647*15127^(3/10) 1771100003450711 a001 1836311903/1860498*15127^(3/10) 1771100003451148 a001 4807526976/4870847*15127^(3/10) 1771100003451212 a001 12586269025/12752043*15127^(3/10) 1771100003451221 a001 32951280099/33385282*15127^(3/10) 1771100003451222 a001 86267571272/87403803*15127^(3/10) 1771100003451223 a001 225851433717/228826127*15127^(3/10) 1771100003451223 a001 591286729879/599074578*15127^(3/10) 1771100003451223 a001 1548008755920/1568397607*15127^(3/10) 1771100003451223 a001 4052739537881/4106118243*15127^(3/10) 1771100003451223 a001 4807525989/4870846*15127^(3/10) 1771100003451223 a001 6557470319842/6643838879*15127^(3/10) 1771100003451223 a001 2504730781961/2537720636*15127^(3/10) 1771100003451223 a001 956722026041/969323029*15127^(3/10) 1771100003451223 a001 365435296162/370248451*15127^(3/10) 1771100003451223 a001 139583862445/141422324*15127^(3/10) 1771100003451223 a001 53316291173/54018521*15127^(3/10) 1771100003451227 a001 20365011074/20633239*15127^(3/10) 1771100003451251 a001 7778742049/7881196*15127^(3/10) 1771100003451418 a001 2971215073/3010349*15127^(3/10) 1771100003452562 a001 1134903170/1149851*15127^(3/10) 1771100003460404 a001 433494437/439204*15127^(3/10) 1771100003482976 a001 9227465/39603*15127^(9/20) 1771100003489548 a001 507544128/28657 1771100003489548 a001 178707/2-64079/2*5^(1/2) 1771100003495558 a001 102334155/64079*15127^(1/4) 1771100003514153 a001 165580141/167761*15127^(3/10) 1771100003522512 a001 31622993/12238*24476^(4/21) 1771100003564563 a001 11592/6119*64079^(19/23) 1771100003663292 a001 102334155/24476*24476^(1/7) 1771100003673465 a001 31622993/51841*15127^(7/20) 1771100003742787 a001 121393/24476*64079^(17/23) 1771100003794759 a001 98209/12238*64079^(16/23) 1771100003800824 a001 10959/844*64079^(15/23) 1771100003804073 a001 165580141/24476*24476^(2/21) 1771100003811001 a001 75025/24476*64079^(18/23) 1771100003814182 a001 165580141/271443*15127^(7/20) 1771100003824424 a001 514229/24476*64079^(14/23) 1771100003834712 a001 433494437/710647*15127^(7/20) 1771100003837708 a001 567451585/930249*15127^(7/20) 1771100003838145 a001 2971215073/4870847*15127^(7/20) 1771100003838209 a001 7778742049/12752043*15127^(7/20) 1771100003838218 a001 10182505537/16692641*15127^(7/20) 1771100003838219 a001 53316291173/87403803*15127^(7/20) 1771100003838219 a001 139583862445/228826127*15127^(7/20) 1771100003838219 a001 182717648081/299537289*15127^(7/20) 1771100003838219 a001 956722026041/1568397607*15127^(7/20) 1771100003838219 a001 2504730781961/4106118243*15127^(7/20) 1771100003838219 a001 3278735159921/5374978561*15127^(7/20) 1771100003838219 a001 10610209857723/17393796001*15127^(7/20) 1771100003838219 a001 4052739537881/6643838879*15127^(7/20) 1771100003838219 a001 1134903780/1860499*15127^(7/20) 1771100003838219 a001 591286729879/969323029*15127^(7/20) 1771100003838219 a001 225851433717/370248451*15127^(7/20) 1771100003838220 a001 21566892818/35355581*15127^(7/20) 1771100003838220 a001 32951280099/54018521*15127^(7/20) 1771100003838224 a001 1144206275/1875749*15127^(7/20) 1771100003838248 a001 1201881744/1970299*15127^(7/20) 1771100003838415 a001 1836311903/3010349*15127^(7/20) 1771100003839559 a001 701408733/1149851*15127^(7/20) 1771100003841326 a001 208010/6119*64079^(13/23) 1771100003847401 a001 66978574/109801*15127^(7/20) 1771100003860787 a001 1346269/24476*64079^(12/23) 1771100003869958 a001 5702887/39603*15127^(1/2) 1771100003879271 a001 2178309/24476*64079^(11/23) 1771100003882555 a001 63245986/64079*15127^(3/10) 1771100003895053 r009 Re(z^3+c),c=-29/118+22/59*I,n=5 1771100003898127 a001 1762289/12238*64079^(10/23) 1771100003901150 a001 9303105/15251*15127^(7/20) 1771100003911727 a001 567451585/51841*5778^(1/18) 1771100003916841 a001 5702887/24476*64079^(9/23) 1771100003920877 a001 5473/51841*20633239^(5/7) 1771100003920880 a001 5473/51841*2537720636^(5/9) 1771100003920880 a001 5473/51841*312119004989^(5/11) 1771100003920880 a001 5473/51841*(1/2+1/2*5^(1/2))^25 1771100003920880 a001 5473/51841*3461452808002^(5/12) 1771100003920880 a001 5473/51841*28143753123^(1/2) 1771100003920880 a001 11592/6119*817138163596^(1/3) 1771100003920880 a001 11592/6119*(1/2+1/2*5^(1/2))^19 1771100003920880 a001 5473/51841*228826127^(5/8) 1771100003920880 a001 11592/6119*87403803^(1/2) 1771100003921307 a001 5473/51841*1860498^(5/6) 1771100003935610 a001 9227465/24476*64079^(8/23) 1771100003944854 a001 10946*24476^(1/21) 1771100003954358 a001 3732588/6119*64079^(7/23) 1771100003973114 a001 24157817/24476*64079^(6/23) 1771100003991866 a001 39088169/24476*64079^(5/23) 1771100003998667 a001 1328767778/75025 1771100004010620 a001 31622993/12238*64079^(4/23) 1771100004029374 a001 102334155/24476*64079^(3/23) 1771100004034305 a001 17711/24476*39603^(21/22) 1771100004044369 a001 10959/844*167761^(3/5) 1771100004048127 a001 165580141/24476*64079^(2/23) 1771100004051311 a001 11592/6119*103682^(19/24) 1771100004052444 a001 2971215073/271443*5778^(1/18) 1771100004060462 a001 39088169/103682*15127^(2/5) 1771100004060491 a001 1762289/12238*167761^(2/5) 1771100004061574 a001 10946/271443*7881196^(9/11) 1771100004061597 a001 10946/271443*141422324^(9/13) 1771100004061597 a001 10946/271443*2537720636^(3/5) 1771100004061597 a001 10946/271443*45537549124^(9/17) 1771100004061597 a001 10946/271443*817138163596^(9/19) 1771100004061597 a001 10946/271443*14662949395604^(3/7) 1771100004061597 a001 10946/271443*(1/2+1/2*5^(1/2))^27 1771100004061597 a001 10946/271443*192900153618^(1/2) 1771100004061597 a001 10946/271443*10749957122^(9/16) 1771100004061597 a001 10946/271443*599074578^(9/14) 1771100004061597 a001 121393/24476*45537549124^(1/3) 1771100004061597 a001 121393/24476*(1/2+1/2*5^(1/2))^17 1771100004061598 a001 10946/271443*33385282^(3/4) 1771100004061603 a001 121393/24476*12752043^(1/2) 1771100004062058 a001 10946/271443*1860498^(9/10) 1771100004066881 a001 10946*64079^(1/23) 1771100004072946 a001 1739379603/98209 1771100004072974 a001 7778742049/710647*5778^(1/18) 1771100004073048 a001 39088169/24476*167761^(1/5) 1771100004075970 a001 10182505537/930249*5778^(1/18) 1771100004076407 a001 53316291173/4870847*5778^(1/18) 1771100004076470 a001 139583862445/12752043*5778^(1/18) 1771100004076480 a001 182717648081/16692641*5778^(1/18) 1771100004076481 a001 956722026041/87403803*5778^(1/18) 1771100004076481 a001 2504730781961/228826127*5778^(1/18) 1771100004076481 a001 3278735159921/299537289*5778^(1/18) 1771100004076481 a001 10610209857723/969323029*5778^(1/18) 1771100004076481 a001 4052739537881/370248451*5778^(1/18) 1771100004076481 a001 387002188980/35355581*5778^(1/18) 1771100004076482 a001 591286729879/54018521*5778^(1/18) 1771100004076486 a001 7787980473/711491*5778^(1/18) 1771100004076510 a001 21566892818/1970299*5778^(1/18) 1771100004076677 a001 32951280099/3010349*5778^(1/18) 1771100004077027 a001 10959/844*439204^(5/9) 1771100004077821 a001 12586269025/1149851*5778^(1/18) 1771100004081749 a001 1346269/24476*439204^(4/9) 1771100004082114 a001 10959/844*7881196^(5/11) 1771100004082126 a001 10959/844*20633239^(3/7) 1771100004082127 a001 10959/844*141422324^(5/13) 1771100004082127 a001 10946/710647*(1/2+1/2*5^(1/2))^29 1771100004082127 a001 10946/710647*1322157322203^(1/2) 1771100004082127 a001 10959/844*2537720636^(1/3) 1771100004082127 a001 10959/844*45537549124^(5/17) 1771100004082127 a001 10959/844*312119004989^(3/11) 1771100004082127 a001 10959/844*14662949395604^(5/21) 1771100004082127 a001 10959/844*(1/2+1/2*5^(1/2))^15 1771100004082127 a001 10959/844*192900153618^(5/18) 1771100004082127 a001 10959/844*28143753123^(3/10) 1771100004082127 a001 10959/844*10749957122^(5/16) 1771100004082127 a001 10959/844*599074578^(5/14) 1771100004082127 a001 10959/844*228826127^(3/8) 1771100004082128 a001 10959/844*33385282^(5/12) 1771100004082383 a001 10959/844*1860498^(1/2) 1771100004082563 a001 5702887/24476*439204^(1/3) 1771100004083595 a001 24157817/24476*439204^(2/9) 1771100004083783 a001 9107509840/514229 1771100004084614 a001 102334155/24476*439204^(1/9) 1771100004085123 a001 208010/6119*141422324^(1/3) 1771100004085123 a001 5473/930249*(1/2+1/2*5^(1/2))^31 1771100004085123 a001 5473/930249*9062201101803^(1/2) 1771100004085123 a001 208010/6119*(1/2+1/2*5^(1/2))^13 1771100004085123 a001 208010/6119*73681302247^(1/4) 1771100004085364 a001 23843770314/1346269 1771100004085550 a001 2178309/24476*7881196^(1/3) 1771100004085560 a001 10946/4870847*141422324^(11/13) 1771100004085560 a001 10946/4870847*2537720636^(11/15) 1771100004085560 a001 10946/4870847*45537549124^(11/17) 1771100004085560 a001 10946/4870847*312119004989^(3/5) 1771100004085560 a001 10946/4870847*14662949395604^(11/21) 1771100004085560 a001 10946/4870847*(1/2+1/2*5^(1/2))^33 1771100004085560 a001 10946/4870847*192900153618^(11/18) 1771100004085560 a001 10946/4870847*10749957122^(11/16) 1771100004085560 a001 10946/4870847*1568397607^(3/4) 1771100004085560 a001 10946/4870847*599074578^(11/14) 1771100004085560 a001 2178309/24476*312119004989^(1/5) 1771100004085560 a001 2178309/24476*(1/2+1/2*5^(1/2))^11 1771100004085560 a001 2178309/24476*1568397607^(1/4) 1771100004085561 a001 10946/4870847*33385282^(11/12) 1771100004085595 a001 31211900551/1762289 1771100004085616 a001 5702887/24476*7881196^(3/11) 1771100004085623 a001 5702887/24476*141422324^(3/13) 1771100004085624 a001 10946/12752043*2537720636^(7/9) 1771100004085624 a001 10946/12752043*17393796001^(5/7) 1771100004085624 a001 10946/12752043*312119004989^(7/11) 1771100004085624 a001 10946/12752043*14662949395604^(5/9) 1771100004085624 a001 10946/12752043*(1/2+1/2*5^(1/2))^35 1771100004085624 a001 10946/12752043*505019158607^(5/8) 1771100004085624 a001 10946/12752043*28143753123^(7/10) 1771100004085624 a001 10946/12752043*599074578^(5/6) 1771100004085624 a001 5702887/24476*2537720636^(1/5) 1771100004085624 a001 5702887/24476*45537549124^(3/17) 1771100004085624 a001 5702887/24476*14662949395604^(1/7) 1771100004085624 a001 5702887/24476*(1/2+1/2*5^(1/2))^9 1771100004085624 a001 5702887/24476*192900153618^(1/6) 1771100004085624 a001 5702887/24476*10749957122^(3/16) 1771100004085624 a001 5702887/24476*599074578^(3/14) 1771100004085624 a001 10946/12752043*228826127^(7/8) 1771100004085624 a001 5702887/24476*33385282^(1/4) 1771100004085629 a001 12571356384/709805 1771100004085630 a001 24157817/24476*7881196^(2/11) 1771100004085632 a001 102334155/24476*7881196^(1/11) 1771100004085632 a001 3732588/6119*20633239^(1/5) 1771100004085633 a001 5473/16692641*(1/2+1/2*5^(1/2))^37 1771100004085633 a001 3732588/6119*17393796001^(1/7) 1771100004085633 a001 3732588/6119*14662949395604^(1/9) 1771100004085633 a001 3732588/6119*(1/2+1/2*5^(1/2))^7 1771100004085633 a001 3732588/6119*599074578^(1/6) 1771100004085634 a001 427859097874/24157817 1771100004085634 a001 39088169/24476*20633239^(1/7) 1771100004085634 a001 10946/87403803*2537720636^(13/15) 1771100004085634 a001 10946/87403803*45537549124^(13/17) 1771100004085634 a001 10946/87403803*14662949395604^(13/21) 1771100004085634 a001 10946/87403803*192900153618^(13/18) 1771100004085634 a001 10946/87403803*73681302247^(3/4) 1771100004085634 a001 10946/87403803*10749957122^(13/16) 1771100004085634 a001 10946/87403803*599074578^(13/14) 1771100004085634 a001 39088169/24476*2537720636^(1/9) 1771100004085634 a001 39088169/24476*312119004989^(1/11) 1771100004085634 a001 39088169/24476*(1/2+1/2*5^(1/2))^5 1771100004085634 a001 39088169/24476*28143753123^(1/10) 1771100004085634 a001 39088169/24476*228826127^(1/8) 1771100004085634 a001 560074830315/31622993 1771100004085634 a001 102334155/24476*141422324^(1/13) 1771100004085634 a001 102334155/24476*2537720636^(1/15) 1771100004085634 a001 102334155/24476*45537549124^(1/17) 1771100004085634 a001 102334155/24476*14662949395604^(1/21) 1771100004085634 a001 102334155/24476*(1/2+1/2*5^(1/2))^3 1771100004085634 a001 102334155/24476*10749957122^(1/16) 1771100004085634 a001 102334155/24476*599074578^(1/14) 1771100004085634 a001 2932589884016/165580141 1771100004085634 a001 7677619991418/433494437 1771100004085634 a001 10946/1568397607*45537549124^(15/17) 1771100004085634 a001 10946/1568397607*312119004989^(9/11) 1771100004085634 a001 10946/1568397607*14662949395604^(5/7) 1771100004085634 a001 10946/1568397607*192900153618^(5/6) 1771100004085634 a001 10946/1568397607*28143753123^(9/10) 1771100004085634 a001 10946/1568397607*10749957122^(15/16) 1771100004085634 a001 10050135045119/567451585 1771100004085634 a001 52623190279296/2971215073 1771100004085634 a001 5473/5374978561*14662949395604^(7/9) 1771100004085634 a001 5473/5374978561*505019158607^(7/8) 1771100004085634 a001 10597638519050/598364773 1771100004085634 a001 10946/28143753123*817138163596^(17/19) 1771100004085634 a001 10946/28143753123*14662949395604^(17/21) 1771100004085634 a001 10946/28143753123*192900153618^(17/18) 1771100004085634 a001 180342355981827/10182505537 1771100004085634 a001 944284835143312/53316291173 1771100004085634 a001 5473/96450076809*3461452808002^(11/12) 1771100004085634 a001 2472169793466282/139583862445 1771100004085634 a004 Fibonacci(21)*(1/2+sqrt(5)/2)/Lucas(1) 1771100004085634 a001 10472279297044786/591286729879 1771100004085634 a001 307696519368404/17373187209 1771100004085634 a001 10946/312119004989*14662949395604^(8/9) 1771100004085634 a001 763942479161485/43133785636 1771100004085634 a001 10946/119218851371*14662949395604^(6/7) 1771100004085634 a001 583600123179658/32951280099 1771100004085634 a001 5473/22768774562*23725150497407^(13/16) 1771100004085634 a001 222915411216004/12586269025 1771100004085634 a001 10946/17393796001*312119004989^(10/11) 1771100004085634 a001 10946/17393796001*3461452808002^(5/6) 1771100004085634 a001 42573055234177/2403763488 1771100004085634 a001 10946/6643838879*45537549124^(16/17) 1771100004085634 a001 10946/6643838879*14662949395604^(16/21) 1771100004085634 a001 10946/6643838879*192900153618^(8/9) 1771100004085634 a001 10946/6643838879*73681302247^(12/13) 1771100004085634 a001 32522920189058/1836311903 1771100004085634 a001 5473/1268860318*10749957122^(23/24) 1771100004085634 a001 12422650098820/701408733 1771100004085634 a001 10946/969323029*312119004989^(4/5) 1771100004085634 a001 10946/969323029*23725150497407^(11/16) 1771100004085634 a001 10946/969323029*73681302247^(11/13) 1771100004085634 a001 10946/969323029*10749957122^(11/12) 1771100004085634 a001 10946/969323029*4106118243^(22/23) 1771100004085634 a001 433494437/24476 1771100004085634 a001 10946/370248451*2537720636^(14/15) 1771100004085634 a001 10946/370248451*17393796001^(6/7) 1771100004085634 a001 10946/370248451*45537549124^(14/17) 1771100004085634 a001 10946/370248451*817138163596^(14/19) 1771100004085634 a001 10946/370248451*14662949395604^(2/3) 1771100004085634 a001 10946/370248451*192900153618^(7/9) 1771100004085634 a001 10946/370248451*10749957122^(7/8) 1771100004085634 a001 10946/370248451*4106118243^(21/23) 1771100004085634 a001 10946/370248451*1568397607^(21/22) 1771100004085634 a001 165580141/24476*(1/2+1/2*5^(1/2))^2 1771100004085634 a001 165580141/24476*10749957122^(1/24) 1771100004085634 a001 165580141/24476*4106118243^(1/23) 1771100004085634 a001 165580141/24476*1568397607^(1/22) 1771100004085634 a001 165580141/24476*599074578^(1/21) 1771100004085634 a001 165580141/24476*228826127^(1/20) 1771100004085634 a001 165580141/24476*87403803^(1/19) 1771100004085634 a001 1812440223386/102334155 1771100004085634 a001 5473/70711162*2537720636^(8/9) 1771100004085634 a001 5473/70711162*312119004989^(8/11) 1771100004085634 a001 5473/70711162*23725150497407^(5/8) 1771100004085634 a001 5473/70711162*73681302247^(10/13) 1771100004085634 a001 5473/70711162*28143753123^(4/5) 1771100004085634 a001 5473/70711162*10749957122^(5/6) 1771100004085634 a001 5473/70711162*4106118243^(20/23) 1771100004085634 a001 5473/70711162*1568397607^(10/11) 1771100004085634 a001 5473/70711162*599074578^(20/21) 1771100004085634 a001 31622993/12238*(1/2+1/2*5^(1/2))^4 1771100004085634 a001 31622993/12238*23725150497407^(1/16) 1771100004085634 a001 31622993/12238*73681302247^(1/13) 1771100004085634 a001 31622993/12238*10749957122^(1/12) 1771100004085634 a001 31622993/12238*4106118243^(2/23) 1771100004085634 a001 31622993/12238*1568397607^(1/11) 1771100004085634 a001 31622993/12238*599074578^(2/21) 1771100004085634 a001 31622993/12238*228826127^(1/10) 1771100004085635 a001 102334155/24476*33385282^(1/12) 1771100004085635 a001 165580141/24476*33385282^(1/18) 1771100004085635 a001 31622993/12238*87403803^(2/19) 1771100004085635 a001 31622993/12238*33385282^(1/9) 1771100004085635 a001 692290562756/39088169 1771100004085635 a001 24157817/24476*141422324^(2/13) 1771100004085635 a001 10946/54018521*817138163596^(2/3) 1771100004085635 a001 10946/54018521*10749957122^(19/24) 1771100004085635 a001 10946/54018521*4106118243^(19/23) 1771100004085635 a001 10946/54018521*1568397607^(19/22) 1771100004085635 a001 10946/54018521*599074578^(19/21) 1771100004085635 a001 24157817/24476*2537720636^(2/15) 1771100004085635 a001 24157817/24476*45537549124^(2/17) 1771100004085635 a001 24157817/24476*14662949395604^(2/21) 1771100004085635 a001 24157817/24476*(1/2+1/2*5^(1/2))^6 1771100004085635 a001 24157817/24476*10749957122^(1/8) 1771100004085635 a001 24157817/24476*4106118243^(3/23) 1771100004085635 a001 24157817/24476*1568397607^(3/22) 1771100004085635 a001 24157817/24476*599074578^(1/7) 1771100004085635 a001 24157817/24476*228826127^(3/20) 1771100004085635 a001 10946/54018521*228826127^(19/20) 1771100004085635 a001 24157817/24476*87403803^(3/19) 1771100004085635 a001 165580141/24476*12752043^(1/17) 1771100004085635 a001 24157817/24476*33385282^(1/6) 1771100004085636 a001 31622993/12238*12752043^(2/17) 1771100004085637 a001 132215732441/7465176 1771100004085637 a001 24157817/24476*12752043^(3/17) 1771100004085638 a001 10946/20633239*141422324^(12/13) 1771100004085639 a001 10946/20633239*2537720636^(4/5) 1771100004085639 a001 10946/20633239*45537549124^(12/17) 1771100004085639 a001 10946/20633239*14662949395604^(4/7) 1771100004085639 a001 10946/20633239*(1/2+1/2*5^(1/2))^36 1771100004085639 a001 10946/20633239*192900153618^(2/3) 1771100004085639 a001 10946/20633239*73681302247^(9/13) 1771100004085639 a001 10946/20633239*10749957122^(3/4) 1771100004085639 a001 10946/20633239*4106118243^(18/23) 1771100004085639 a001 10946/20633239*1568397607^(9/11) 1771100004085639 a001 10946/20633239*599074578^(6/7) 1771100004085639 a001 9227465/24476*(1/2+1/2*5^(1/2))^8 1771100004085639 a001 9227465/24476*23725150497407^(1/8) 1771100004085639 a001 9227465/24476*505019158607^(1/7) 1771100004085639 a001 9227465/24476*73681302247^(2/13) 1771100004085639 a001 9227465/24476*10749957122^(1/6) 1771100004085639 a001 9227465/24476*4106118243^(4/23) 1771100004085639 a001 9227465/24476*1568397607^(2/11) 1771100004085639 a001 9227465/24476*599074578^(4/21) 1771100004085639 a001 9227465/24476*228826127^(1/5) 1771100004085639 a001 10946/20633239*228826127^(9/10) 1771100004085639 a001 9227465/24476*87403803^(4/19) 1771100004085639 a001 10946/20633239*87403803^(18/19) 1771100004085639 a001 9227465/24476*33385282^(2/9) 1771100004085639 a001 165580141/24476*4870847^(1/16) 1771100004085641 a001 9227465/24476*12752043^(4/17) 1771100004085644 a001 31622993/12238*4870847^(1/8) 1771100004085649 a001 24157817/24476*4870847^(3/16) 1771100004085649 a001 101003831890/5702887 1771100004085657 a001 9227465/24476*4870847^(1/4) 1771100004085662 a001 1762289/12238*20633239^(2/7) 1771100004085663 a001 1201881744/109801*5778^(1/18) 1771100004085663 a001 5473/3940598*45537549124^(2/3) 1771100004085663 a001 5473/3940598*(1/2+1/2*5^(1/2))^34 1771100004085663 a001 5473/3940598*10749957122^(17/24) 1771100004085663 a001 5473/3940598*4106118243^(17/23) 1771100004085663 a001 5473/3940598*1568397607^(17/22) 1771100004085663 a001 5473/3940598*599074578^(17/21) 1771100004085663 a001 1762289/12238*2537720636^(2/9) 1771100004085663 a001 1762289/12238*312119004989^(2/11) 1771100004085663 a001 1762289/12238*(1/2+1/2*5^(1/2))^10 1771100004085663 a001 1762289/12238*28143753123^(1/5) 1771100004085663 a001 1762289/12238*10749957122^(5/24) 1771100004085663 a001 1762289/12238*4106118243^(5/23) 1771100004085663 a001 1762289/12238*1568397607^(5/22) 1771100004085663 a001 1762289/12238*599074578^(5/21) 1771100004085663 a001 1762289/12238*228826127^(1/4) 1771100004085663 a001 5473/3940598*228826127^(17/20) 1771100004085663 a001 1762289/12238*87403803^(5/19) 1771100004085663 a001 5473/3940598*87403803^(17/19) 1771100004085663 a001 1762289/12238*33385282^(5/18) 1771100004085664 a001 5473/3940598*33385282^(17/18) 1771100004085666 a001 1762289/12238*12752043^(5/17) 1771100004085669 a001 165580141/24476*1860498^(1/15) 1771100004085686 a001 102334155/24476*1860498^(1/10) 1771100004085686 a001 1762289/12238*4870847^(5/16) 1771100004085703 a001 31622993/12238*1860498^(2/15) 1771100004085719 a001 39088169/24476*1860498^(1/6) 1771100004085737 a001 24157817/24476*1860498^(1/5) 1771100004085738 a001 38580030788/2178309 1771100004085775 a001 9227465/24476*1860498^(4/15) 1771100004085777 a001 5702887/24476*1860498^(3/10) 1771100004085819 a001 1346269/24476*7881196^(4/11) 1771100004085830 a001 1346269/24476*141422324^(4/13) 1771100004085830 a001 10946/3010349*(1/2+1/2*5^(1/2))^32 1771100004085830 a001 10946/3010349*23725150497407^(1/2) 1771100004085830 a001 10946/3010349*73681302247^(8/13) 1771100004085830 a001 10946/3010349*10749957122^(2/3) 1771100004085830 a001 10946/3010349*4106118243^(16/23) 1771100004085830 a001 10946/3010349*1568397607^(8/11) 1771100004085830 a001 10946/3010349*599074578^(16/21) 1771100004085830 a001 1346269/24476*2537720636^(4/15) 1771100004085830 a001 1346269/24476*45537549124^(4/17) 1771100004085830 a001 1346269/24476*14662949395604^(4/21) 1771100004085830 a001 1346269/24476*(1/2+1/2*5^(1/2))^12 1771100004085830 a001 1346269/24476*192900153618^(2/9) 1771100004085830 a001 1346269/24476*73681302247^(3/13) 1771100004085830 a001 1346269/24476*10749957122^(1/4) 1771100004085830 a001 1346269/24476*4106118243^(6/23) 1771100004085830 a001 1346269/24476*1568397607^(3/11) 1771100004085830 a001 1346269/24476*599074578^(2/7) 1771100004085830 a001 1346269/24476*228826127^(3/10) 1771100004085830 a001 10946/3010349*228826127^(4/5) 1771100004085830 a001 1346269/24476*87403803^(6/19) 1771100004085830 a001 10946/3010349*87403803^(16/19) 1771100004085830 a001 1346269/24476*33385282^(1/3) 1771100004085831 a001 10946/3010349*33385282^(8/9) 1771100004085833 a001 1762289/12238*1860498^(1/3) 1771100004085834 a001 1346269/24476*12752043^(6/17) 1771100004085840 a001 10946/3010349*12752043^(16/17) 1771100004085858 a001 1346269/24476*4870847^(3/8) 1771100004085885 a001 165580141/24476*710647^(1/14) 1771100004086035 a001 1346269/24476*1860498^(2/5) 1771100004086135 a001 31622993/12238*710647^(1/7) 1771100004086342 a001 7368130237/416020 1771100004086387 a001 24157817/24476*710647^(3/14) 1771100004086510 a001 3732588/6119*710647^(1/4) 1771100004086641 a001 9227465/24476*710647^(2/7) 1771100004086915 a001 1762289/12238*710647^(5/14) 1771100004086948 a001 10946/1149851*7881196^(10/11) 1771100004086970 a001 10946/1149851*20633239^(6/7) 1771100004086972 a001 514229/24476*20633239^(2/5) 1771100004086974 a001 10946/1149851*141422324^(10/13) 1771100004086974 a001 10946/1149851*2537720636^(2/3) 1771100004086974 a001 10946/1149851*45537549124^(10/17) 1771100004086974 a001 10946/1149851*312119004989^(6/11) 1771100004086974 a001 10946/1149851*14662949395604^(10/21) 1771100004086974 a001 10946/1149851*(1/2+1/2*5^(1/2))^30 1771100004086974 a001 10946/1149851*192900153618^(5/9) 1771100004086974 a001 10946/1149851*28143753123^(3/5) 1771100004086974 a001 10946/1149851*10749957122^(5/8) 1771100004086974 a001 10946/1149851*4106118243^(15/23) 1771100004086974 a001 10946/1149851*1568397607^(15/22) 1771100004086974 a001 10946/1149851*599074578^(5/7) 1771100004086974 a001 514229/24476*17393796001^(2/7) 1771100004086974 a001 514229/24476*14662949395604^(2/9) 1771100004086974 a001 514229/24476*(1/2+1/2*5^(1/2))^14 1771100004086974 a001 514229/24476*505019158607^(1/4) 1771100004086974 a001 514229/24476*10749957122^(7/24) 1771100004086974 a001 514229/24476*4106118243^(7/23) 1771100004086974 a001 514229/24476*1568397607^(7/22) 1771100004086974 a001 514229/24476*599074578^(1/3) 1771100004086974 a001 514229/24476*228826127^(7/20) 1771100004086974 a001 10946/1149851*228826127^(3/4) 1771100004086974 a001 514229/24476*87403803^(7/19) 1771100004086974 a001 10946/1149851*87403803^(15/19) 1771100004086975 a001 514229/24476*33385282^(7/18) 1771100004086975 a001 10946/1149851*33385282^(5/6) 1771100004086978 a001 514229/24476*12752043^(7/17) 1771100004086984 a001 10946/1149851*12752043^(15/17) 1771100004087007 a001 514229/24476*4870847^(7/16) 1771100004087044 a001 10946/1149851*4870847^(15/16) 1771100004087213 a001 514229/24476*1860498^(7/15) 1771100004087333 a001 1346269/24476*710647^(3/7) 1771100004087483 a001 165580141/24476*271443^(1/13) 1771100004088727 a001 514229/24476*710647^(1/2) 1771100004089333 a001 31622993/12238*271443^(2/13) 1771100004090481 a001 432980818/24447 1771100004091182 a001 24157817/24476*271443^(3/13) 1771100004092499 a001 10946*103682^(1/24) 1771100004093035 a001 9227465/24476*271443^(4/13) 1771100004094813 a001 5473/219602*20633239^(4/5) 1771100004094816 a001 5473/219602*17393796001^(4/7) 1771100004094816 a001 5473/219602*14662949395604^(4/9) 1771100004094816 a001 5473/219602*(1/2+1/2*5^(1/2))^28 1771100004094816 a001 5473/219602*73681302247^(7/13) 1771100004094816 a001 5473/219602*10749957122^(7/12) 1771100004094816 a001 5473/219602*4106118243^(14/23) 1771100004094816 a001 5473/219602*1568397607^(7/11) 1771100004094816 a001 5473/219602*599074578^(2/3) 1771100004094816 a001 98209/12238*(1/2+1/2*5^(1/2))^16 1771100004094816 a001 98209/12238*23725150497407^(1/4) 1771100004094816 a001 98209/12238*73681302247^(4/13) 1771100004094816 a001 98209/12238*10749957122^(1/3) 1771100004094816 a001 98209/12238*4106118243^(8/23) 1771100004094816 a001 98209/12238*1568397607^(4/11) 1771100004094816 a001 98209/12238*599074578^(8/21) 1771100004094816 a001 98209/12238*228826127^(2/5) 1771100004094816 a001 5473/219602*228826127^(7/10) 1771100004094816 a001 98209/12238*87403803^(8/19) 1771100004094816 a001 5473/219602*87403803^(14/19) 1771100004094817 a001 98209/12238*33385282^(4/9) 1771100004094817 a001 5473/219602*33385282^(7/9) 1771100004094821 a001 98209/12238*12752043^(8/17) 1771100004094825 a001 5473/219602*12752043^(14/17) 1771100004094853 a001 98209/12238*4870847^(1/2) 1771100004094881 a001 5473/219602*4870847^(7/8) 1771100004094908 a001 1762289/12238*271443^(5/13) 1771100004095089 a001 98209/12238*1860498^(8/15) 1771100004095293 a001 5473/219602*1860498^(14/15) 1771100004096820 a001 98209/12238*710647^(4/7) 1771100004096924 a001 1346269/24476*271443^(6/13) 1771100004097141 a001 208010/6119*271443^(1/2) 1771100004099364 a001 165580141/24476*103682^(1/12) 1771100004099917 a001 514229/24476*271443^(7/13) 1771100004106229 a001 102334155/24476*103682^(1/8) 1771100004109608 a001 98209/12238*271443^(8/13) 1771100004113094 a001 31622993/12238*103682^(1/6) 1771100004118853 a001 2149991428/121393 1771100004119958 a001 39088169/24476*103682^(5/24) 1771100004126824 a001 24157817/24476*103682^(1/4) 1771100004133686 a001 3732588/6119*103682^(7/24) 1771100004136964 a001 10946*39603^(1/22) 1771100004139412 a001 1836311903/167761*5778^(1/18) 1771100004140557 a001 9227465/24476*103682^(1/3) 1771100004141895 a001 28657/24476*64079^(20/23) 1771100004142444 a001 75025/24476*439204^(2/3) 1771100004147406 a001 5702887/24476*103682^(3/8) 1771100004148549 a001 75025/24476*7881196^(6/11) 1771100004148565 a001 10946/167761*141422324^(2/3) 1771100004148565 a001 75025/24476*141422324^(6/13) 1771100004148565 a001 10946/167761*(1/2+1/2*5^(1/2))^26 1771100004148565 a001 10946/167761*73681302247^(1/2) 1771100004148565 a001 10946/167761*10749957122^(13/24) 1771100004148565 a001 10946/167761*4106118243^(13/23) 1771100004148565 a001 10946/167761*1568397607^(13/22) 1771100004148565 a001 10946/167761*599074578^(13/21) 1771100004148565 a001 75025/24476*2537720636^(2/5) 1771100004148565 a001 75025/24476*45537549124^(6/17) 1771100004148565 a001 75025/24476*14662949395604^(2/7) 1771100004148565 a001 75025/24476*(1/2+1/2*5^(1/2))^18 1771100004148565 a001 75025/24476*192900153618^(1/3) 1771100004148565 a001 75025/24476*10749957122^(3/8) 1771100004148565 a001 75025/24476*4106118243^(9/23) 1771100004148565 a001 75025/24476*1568397607^(9/22) 1771100004148565 a001 75025/24476*599074578^(3/7) 1771100004148565 a001 75025/24476*228826127^(9/20) 1771100004148565 a001 10946/167761*228826127^(13/20) 1771100004148565 a001 75025/24476*87403803^(9/19) 1771100004148565 a001 10946/167761*87403803^(13/19) 1771100004148566 a001 75025/24476*33385282^(1/2) 1771100004148566 a001 10946/167761*33385282^(13/18) 1771100004148571 a001 75025/24476*12752043^(9/17) 1771100004148573 a001 10946/167761*12752043^(13/17) 1771100004148607 a001 75025/24476*4870847^(9/16) 1771100004148626 a001 10946/167761*4870847^(13/16) 1771100004148872 a001 75025/24476*1860498^(3/5) 1771100004149008 a001 10946/167761*1860498^(13/15) 1771100004150819 a001 75025/24476*710647^(9/14) 1771100004151821 a001 10946/167761*710647^(13/14) 1771100004154310 a001 1762289/12238*103682^(5/12) 1771100004158636 m001 (Zeta(3)-GAMMA(2/3))/(ln(2)-Zeta(1,-1)) 1771100004161072 a001 2178309/24476*103682^(11/24) 1771100004165206 a001 75025/24476*271443^(9/13) 1771100004168207 a001 1346269/24476*103682^(1/2) 1771100004174365 a001 208010/6119*103682^(13/24) 1771100004178298 a001 121393/24476*103682^(17/24) 1771100004183081 a001 514229/24476*103682^(7/12) 1771100004185099 a001 10959/844*103682^(5/8) 1771100004188293 a001 165580141/24476*39603^(1/11) 1771100004201179 a001 34111385/90481*15127^(2/5) 1771100004204652 a001 98209/12238*103682^(2/3) 1771100004221709 a001 267914296/710647*15127^(2/5) 1771100004224705 a001 233802911/620166*15127^(2/5) 1771100004225142 a001 1836311903/4870847*15127^(2/5) 1771100004225205 a001 1602508992/4250681*15127^(2/5) 1771100004225215 a001 12586269025/33385282*15127^(2/5) 1771100004225216 a001 10983760033/29134601*15127^(2/5) 1771100004225216 a001 86267571272/228826127*15127^(2/5) 1771100004225216 a001 267913919/710646*15127^(2/5) 1771100004225216 a001 591286729879/1568397607*15127^(2/5) 1771100004225216 a001 516002918640/1368706081*15127^(2/5) 1771100004225216 a001 4052739537881/10749957122*15127^(2/5) 1771100004225216 a001 3536736619241/9381251041*15127^(2/5) 1771100004225216 a001 6557470319842/17393796001*15127^(2/5) 1771100004225216 a001 2504730781961/6643838879*15127^(2/5) 1771100004225216 a001 956722026041/2537720636*15127^(2/5) 1771100004225216 a001 365435296162/969323029*15127^(2/5) 1771100004225216 a001 139583862445/370248451*15127^(2/5) 1771100004225216 a001 53316291173/141422324*15127^(2/5) 1771100004225217 a001 20365011074/54018521*15127^(2/5) 1771100004225221 a001 7778742049/20633239*15127^(2/5) 1771100004225245 a001 2971215073/7881196*15127^(2/5) 1771100004225412 a001 1134903170/3010349*15127^(2/5) 1771100004226556 a001 433494437/1149851*15127^(2/5) 1771100004234398 a001 165580141/439204*15127^(2/5) 1771100004239622 a001 102334155/24476*39603^(3/22) 1771100004256994 a001 3524578/39603*15127^(11/20) 1771100004269551 a001 39088169/64079*15127^(7/20) 1771100004272130 a001 75025/24476*103682^(3/4) 1771100004288147 a001 63245986/167761*15127^(2/5) 1771100004290951 a001 31622993/12238*39603^(2/11) 1771100004313319 a001 410611825/23184 1771100004342280 a001 39088169/24476*39603^(5/22) 1771100004391659 a001 75025/9349*9349^(16/19) 1771100004393610 a001 24157817/24476*39603^(3/11) 1771100004444937 a001 3732588/6119*39603^(7/22) 1771100004447460 a001 24157817/103682*15127^(9/20) 1771100004466622 a001 28657/24476*167761^(4/5) 1771100004472631 a001 10946*15127^(1/20) 1771100004496272 a001 9227465/24476*39603^(4/11) 1771100004507813 a001 701408733/64079*5778^(1/18) 1771100004508805 a001 10946/64079*439204^(8/9) 1771100004516946 a001 10946/64079*7881196^(8/11) 1771100004516964 a001 28657/24476*20633239^(4/7) 1771100004516966 a001 10946/64079*141422324^(8/13) 1771100004516966 a001 10946/64079*2537720636^(8/15) 1771100004516966 a001 10946/64079*45537549124^(8/17) 1771100004516966 a001 10946/64079*14662949395604^(8/21) 1771100004516966 a001 10946/64079*(1/2+1/2*5^(1/2))^24 1771100004516966 a001 10946/64079*192900153618^(4/9) 1771100004516966 a001 10946/64079*73681302247^(6/13) 1771100004516966 a001 10946/64079*10749957122^(1/2) 1771100004516966 a001 10946/64079*4106118243^(12/23) 1771100004516966 a001 10946/64079*1568397607^(6/11) 1771100004516966 a001 10946/64079*599074578^(4/7) 1771100004516966 a001 28657/24476*2537720636^(4/9) 1771100004516966 a001 28657/24476*(1/2+1/2*5^(1/2))^20 1771100004516966 a001 28657/24476*23725150497407^(5/16) 1771100004516966 a001 28657/24476*505019158607^(5/14) 1771100004516966 a001 28657/24476*73681302247^(5/13) 1771100004516966 a001 28657/24476*28143753123^(2/5) 1771100004516966 a001 28657/24476*10749957122^(5/12) 1771100004516966 a001 28657/24476*4106118243^(10/23) 1771100004516966 a001 28657/24476*1568397607^(5/11) 1771100004516966 a001 28657/24476*599074578^(10/21) 1771100004516966 a001 10946/64079*228826127^(3/5) 1771100004516966 a001 28657/24476*228826127^(1/2) 1771100004516966 a001 28657/24476*87403803^(10/19) 1771100004516967 a001 10946/64079*87403803^(12/19) 1771100004516967 a001 28657/24476*33385282^(5/9) 1771100004516967 a001 10946/64079*33385282^(2/3) 1771100004516973 a001 28657/24476*12752043^(10/17) 1771100004516974 a001 10946/64079*12752043^(12/17) 1771100004517013 a001 28657/24476*4870847^(5/8) 1771100004517022 a001 10946/64079*4870847^(3/4) 1771100004517307 a001 28657/24476*1860498^(2/3) 1771100004517376 a001 10946/64079*1860498^(4/5) 1771100004519471 a001 28657/24476*710647^(5/7) 1771100004519972 a001 10946/64079*710647^(6/7) 1771100004535457 a001 28657/24476*271443^(10/13) 1771100004539155 a001 10946/64079*271443^(12/13) 1771100004547586 a001 5702887/24476*39603^(9/22) 1771100004588176 a001 63245986/271443*15127^(9/20) 1771100004598955 a001 1762289/12238*39603^(5/11) 1771100004608706 a001 165580141/710647*15127^(9/20) 1771100004611702 a001 433494437/1860498*15127^(9/20) 1771100004612139 a001 1134903170/4870847*15127^(9/20) 1771100004612202 a001 2971215073/12752043*15127^(9/20) 1771100004612212 a001 7778742049/33385282*15127^(9/20) 1771100004612213 a001 20365011074/87403803*15127^(9/20) 1771100004612213 a001 53316291173/228826127*15127^(9/20) 1771100004612213 a001 139583862445/599074578*15127^(9/20) 1771100004612213 a001 365435296162/1568397607*15127^(9/20) 1771100004612213 a001 956722026041/4106118243*15127^(9/20) 1771100004612213 a001 2504730781961/10749957122*15127^(9/20) 1771100004612213 a001 6557470319842/28143753123*15127^(9/20) 1771100004612213 a001 10610209857723/45537549124*15127^(9/20) 1771100004612213 a001 4052739537881/17393796001*15127^(9/20) 1771100004612213 a001 1548008755920/6643838879*15127^(9/20) 1771100004612213 a001 591286729879/2537720636*15127^(9/20) 1771100004612213 a001 225851433717/969323029*15127^(9/20) 1771100004612213 a001 86267571272/370248451*15127^(9/20) 1771100004612213 a001 63246219/271444*15127^(9/20) 1771100004612214 a001 12586269025/54018521*15127^(9/20) 1771100004612217 a001 4807526976/20633239*15127^(9/20) 1771100004612242 a001 1836311903/7881196*15127^(9/20) 1771100004612409 a001 701408733/3010349*15127^(9/20) 1771100004613553 a001 267914296/1149851*15127^(9/20) 1771100004621395 a001 102334155/439204*15127^(9/20) 1771100004643888 a001 726103/13201*15127^(3/5) 1771100004650181 a001 2178309/24476*39603^(1/2) 1771100004654261 a001 28657/24476*103682^(5/6) 1771100004656549 a001 24157817/64079*15127^(2/5) 1771100004675143 a001 39088169/167761*15127^(9/20) 1771100004701780 a001 1346269/24476*39603^(6/11) 1771100004752402 a001 208010/6119*39603^(13/22) 1771100004805582 a001 514229/24476*39603^(7/11) 1771100004834454 a001 7465176/51841*15127^(1/2) 1771100004852065 a001 10959/844*39603^(15/22) 1771100004859628 a001 165580141/24476*15127^(1/10) 1771100004896134 a001 11592/6119*39603^(19/22) 1771100004916083 a001 98209/12238*39603^(8/11) 1771100004934193 a001 121393/24476*39603^(17/22) 1771100004975173 a001 39088169/271443*15127^(1/2) 1771100004995703 a001 14619165/101521*15127^(1/2) 1771100004998698 a001 133957148/930249*15127^(1/2) 1771100004999135 a001 701408733/4870847*15127^(1/2) 1771100004999199 a001 1836311903/12752043*15127^(1/2) 1771100004999209 a001 14930208/103681*15127^(1/2) 1771100004999210 a001 12586269025/87403803*15127^(1/2) 1771100004999210 a001 32951280099/228826127*15127^(1/2) 1771100004999210 a001 43133785636/299537289*15127^(1/2) 1771100004999210 a001 32264490531/224056801*15127^(1/2) 1771100004999210 a001 591286729879/4106118243*15127^(1/2) 1771100004999210 a001 774004377960/5374978561*15127^(1/2) 1771100004999210 a001 4052739537881/28143753123*15127^(1/2) 1771100004999210 a001 1515744265389/10525900321*15127^(1/2) 1771100004999210 a001 3278735159921/22768774562*15127^(1/2) 1771100004999210 a001 2504730781961/17393796001*15127^(1/2) 1771100004999210 a001 956722026041/6643838879*15127^(1/2) 1771100004999210 a001 182717648081/1268860318*15127^(1/2) 1771100004999210 a001 139583862445/969323029*15127^(1/2) 1771100004999210 a001 53316291173/370248451*15127^(1/2) 1771100004999210 a001 10182505537/70711162*15127^(1/2) 1771100004999211 a001 7778742049/54018521*15127^(1/2) 1771100004999214 a001 2971215073/20633239*15127^(1/2) 1771100004999239 a001 567451585/3940598*15127^(1/2) 1771100004999406 a001 433494437/3010349*15127^(1/2) 1771100005000550 a001 165580141/1149851*15127^(1/2) 1771100005008392 a001 31622993/219602*15127^(1/2) 1771100005031155 a001 1346269/39603*15127^(13/20) 1771100005043544 a001 14930352/64079*15127^(9/20) 1771100005052949 a001 63245986/9349*3571^(2/17) 1771100005062141 a001 24157817/167761*15127^(1/2) 1771100005072490 a001 75025/24476*39603^(9/11) 1771100005178264 a001 39088169/15127*5778^(2/9) 1771100005221457 a001 9227465/103682*15127^(11/20) 1771100005246625 a001 102334155/24476*15127^(3/20) 1771100005362170 a001 24157817/271443*15127^(11/20) 1771100005371187 a001 121393/9349*9349^(15/19) 1771100005382700 a001 63245986/710647*15127^(11/20) 1771100005385695 a001 165580141/1860498*15127^(11/20) 1771100005386132 a001 433494437/4870847*15127^(11/20) 1771100005386196 a001 1134903170/12752043*15127^(11/20) 1771100005386205 a001 2971215073/33385282*15127^(11/20) 1771100005386207 a001 7778742049/87403803*15127^(11/20) 1771100005386207 a001 20365011074/228826127*15127^(11/20) 1771100005386207 a001 53316291173/599074578*15127^(11/20) 1771100005386207 a001 139583862445/1568397607*15127^(11/20) 1771100005386207 a001 365435296162/4106118243*15127^(11/20) 1771100005386207 a001 956722026041/10749957122*15127^(11/20) 1771100005386207 a001 2504730781961/28143753123*15127^(11/20) 1771100005386207 a001 6557470319842/73681302247*15127^(11/20) 1771100005386207 a001 10610209857723/119218851371*15127^(11/20) 1771100005386207 a001 4052739537881/45537549124*15127^(11/20) 1771100005386207 a001 1548008755920/17393796001*15127^(11/20) 1771100005386207 a001 591286729879/6643838879*15127^(11/20) 1771100005386207 a001 225851433717/2537720636*15127^(11/20) 1771100005386207 a001 86267571272/969323029*15127^(11/20) 1771100005386207 a001 32951280099/370248451*15127^(11/20) 1771100005386207 a001 12586269025/141422324*15127^(11/20) 1771100005386208 a001 4807526976/54018521*15127^(11/20) 1771100005386211 a001 1836311903/20633239*15127^(11/20) 1771100005386236 a001 3524667/39604*15127^(11/20) 1771100005386402 a001 267914296/3010349*15127^(11/20) 1771100005387547 a001 102334155/1149851*15127^(11/20) 1771100005395388 a001 39088169/439204*15127^(11/20) 1771100005417444 a001 832040/39603*15127^(7/10) 1771100005430546 a001 9227465/64079*15127^(1/2) 1771100005449136 a001 14930352/167761*15127^(11/20) 1771100005543550 a001 28657/24476*39603^(10/11) 1771100005608439 a001 5702887/103682*15127^(3/5) 1771100005633622 a001 31622993/12238*15127^(1/5) 1771100005646208 a001 -53133/2+39603/2*5^(1/2) 1771100005646208 a001 313679522/17711 1771100005749165 a001 4976784/90481*15127^(3/5) 1771100005769697 a001 39088169/710647*15127^(3/5) 1771100005772692 a001 831985/15126*15127^(3/5) 1771100005773129 a001 267914296/4870847*15127^(3/5) 1771100005773193 a001 233802911/4250681*15127^(3/5) 1771100005773202 a001 1836311903/33385282*15127^(3/5) 1771100005773204 a001 1602508992/29134601*15127^(3/5) 1771100005773204 a001 12586269025/228826127*15127^(3/5) 1771100005773204 a001 10983760033/199691526*15127^(3/5) 1771100005773204 a001 86267571272/1568397607*15127^(3/5) 1771100005773204 a001 75283811239/1368706081*15127^(3/5) 1771100005773204 a001 591286729879/10749957122*15127^(3/5) 1771100005773204 a001 12585437040/228811001*15127^(3/5) 1771100005773204 a001 4052739537881/73681302247*15127^(3/5) 1771100005773204 a001 3536736619241/64300051206*15127^(3/5) 1771100005773204 a001 6557470319842/119218851371*15127^(3/5) 1771100005773204 a001 2504730781961/45537549124*15127^(3/5) 1771100005773204 a001 956722026041/17393796001*15127^(3/5) 1771100005773204 a001 365435296162/6643838879*15127^(3/5) 1771100005773204 a001 139583862445/2537720636*15127^(3/5) 1771100005773204 a001 53316291173/969323029*15127^(3/5) 1771100005773204 a001 20365011074/370248451*15127^(3/5) 1771100005773204 a001 7778742049/141422324*15127^(3/5) 1771100005773205 a001 2971215073/54018521*15127^(3/5) 1771100005773208 a001 1134903170/20633239*15127^(3/5) 1771100005773232 a001 433494437/7881196*15127^(3/5) 1771100005773399 a001 165580141/3010349*15127^(3/5) 1771100005774544 a001 63245986/1149851*15127^(3/5) 1771100005782386 a001 24157817/439204*15127^(3/5) 1771100005806292 a001 514229/39603*15127^(3/4) 1771100005817528 a001 5702887/64079*15127^(11/20) 1771100005836139 a001 9227465/167761*15127^(3/5) 1771100005894480 a001 267914296/39603*5778^(1/9) 1771100005995475 a001 1762289/51841*15127^(13/20) 1771100006020619 a001 39088169/24476*15127^(1/4) 1771100006136168 a001 9227465/271443*15127^(13/20) 1771100006156694 a001 24157817/710647*15127^(13/20) 1771100006159689 a001 31622993/930249*15127^(13/20) 1771100006160126 a001 165580141/4870847*15127^(13/20) 1771100006160190 a001 433494437/12752043*15127^(13/20) 1771100006160199 a001 567451585/16692641*15127^(13/20) 1771100006160201 a001 2971215073/87403803*15127^(13/20) 1771100006160201 a001 7778742049/228826127*15127^(13/20) 1771100006160201 a001 10182505537/299537289*15127^(13/20) 1771100006160201 a001 53316291173/1568397607*15127^(13/20) 1771100006160201 a001 139583862445/4106118243*15127^(13/20) 1771100006160201 a001 182717648081/5374978561*15127^(13/20) 1771100006160201 a001 956722026041/28143753123*15127^(13/20) 1771100006160201 a001 2504730781961/73681302247*15127^(13/20) 1771100006160201 a001 3278735159921/96450076809*15127^(13/20) 1771100006160201 a001 10610209857723/312119004989*15127^(13/20) 1771100006160201 a001 4052739537881/119218851371*15127^(13/20) 1771100006160201 a001 387002188980/11384387281*15127^(13/20) 1771100006160201 a001 591286729879/17393796001*15127^(13/20) 1771100006160201 a001 225851433717/6643838879*15127^(13/20) 1771100006160201 a001 1135099622/33391061*15127^(13/20) 1771100006160201 a001 32951280099/969323029*15127^(13/20) 1771100006160201 a001 12586269025/370248451*15127^(13/20) 1771100006160201 a001 1201881744/35355581*15127^(13/20) 1771100006160201 a001 1836311903/54018521*15127^(13/20) 1771100006160205 a001 701408733/20633239*15127^(13/20) 1771100006160229 a001 66978574/1970299*15127^(13/20) 1771100006160396 a001 102334155/3010349*15127^(13/20) 1771100006161540 a001 39088169/1149851*15127^(13/20) 1771100006169381 a001 196452/5779*15127^(13/20) 1771100006188443 a001 105937/13201*15127^(4/5) 1771100006204564 a001 3524578/64079*15127^(3/5) 1771100006223120 a001 5702887/167761*15127^(13/20) 1771100006382369 a001 46347/2206*15127^(7/10) 1771100006407616 a001 24157817/24476*15127^(3/10) 1771100006470902 a001 196418/9349*9349^(14/19) 1771100006523150 a001 5702887/271443*15127^(7/10) 1771100006543689 a001 14930352/710647*15127^(7/10) 1771100006546686 a001 39088169/1860498*15127^(7/10) 1771100006547123 a001 102334155/4870847*15127^(7/10) 1771100006547187 a001 267914296/12752043*15127^(7/10) 1771100006547196 a001 701408733/33385282*15127^(7/10) 1771100006547197 a001 1836311903/87403803*15127^(7/10) 1771100006547198 a001 102287808/4868641*15127^(7/10) 1771100006547198 a001 12586269025/599074578*15127^(7/10) 1771100006547198 a001 32951280099/1568397607*15127^(7/10) 1771100006547198 a001 86267571272/4106118243*15127^(7/10) 1771100006547198 a001 225851433717/10749957122*15127^(7/10) 1771100006547198 a001 591286729879/28143753123*15127^(7/10) 1771100006547198 a001 1548008755920/73681302247*15127^(7/10) 1771100006547198 a001 4052739537881/192900153618*15127^(7/10) 1771100006547198 a001 225749145909/10745088481*15127^(7/10) 1771100006547198 a001 6557470319842/312119004989*15127^(7/10) 1771100006547198 a001 2504730781961/119218851371*15127^(7/10) 1771100006547198 a001 956722026041/45537549124*15127^(7/10) 1771100006547198 a001 365435296162/17393796001*15127^(7/10) 1771100006547198 a001 139583862445/6643838879*15127^(7/10) 1771100006547198 a001 53316291173/2537720636*15127^(7/10) 1771100006547198 a001 20365011074/969323029*15127^(7/10) 1771100006547198 a001 7778742049/370248451*15127^(7/10) 1771100006547198 a001 2971215073/141422324*15127^(7/10) 1771100006547198 a001 1134903170/54018521*15127^(7/10) 1771100006547202 a001 433494437/20633239*15127^(7/10) 1771100006547226 a001 165580141/7881196*15127^(7/10) 1771100006547393 a001 63245986/3010349*15127^(7/10) 1771100006548538 a001 24157817/1149851*15127^(7/10) 1771100006556383 a001 9227465/439204*15127^(7/10) 1771100006588128 a001 196418/39603*15127^(17/20) 1771100006591458 a001 2178309/64079*15127^(13/20) 1771100006610157 a001 3524578/167761*15127^(7/10) 1771100006610696 a001 50549/2-6765/2*5^(1/2) 1771100006629449 a001 5473/12238*64079^(22/23) 1771100006769636 a001 1346269/103682*15127^(3/4) 1771100006794611 a001 3732588/6119*15127^(7/20) 1771100006858967 a001 701408733/103682*5778^(1/9) 1771100006910186 a001 3524578/271443*15127^(3/4) 1771100006930692 a001 9227465/710647*15127^(3/4) 1771100006933684 a001 24157817/1860498*15127^(3/4) 1771100006934120 a001 63245986/4870847*15127^(3/4) 1771100006934184 a001 165580141/12752043*15127^(3/4) 1771100006934193 a001 433494437/33385282*15127^(3/4) 1771100006934194 a001 1134903170/87403803*15127^(3/4) 1771100006934195 a001 2971215073/228826127*15127^(3/4) 1771100006934195 a001 7778742049/599074578*15127^(3/4) 1771100006934195 a001 20365011074/1568397607*15127^(3/4) 1771100006934195 a001 53316291173/4106118243*15127^(3/4) 1771100006934195 a001 139583862445/10749957122*15127^(3/4) 1771100006934195 a001 365435296162/28143753123*15127^(3/4) 1771100006934195 a001 956722026041/73681302247*15127^(3/4) 1771100006934195 a001 2504730781961/192900153618*15127^(3/4) 1771100006934195 a001 10610209857723/817138163596*15127^(3/4) 1771100006934195 a001 4052739537881/312119004989*15127^(3/4) 1771100006934195 a001 1548008755920/119218851371*15127^(3/4) 1771100006934195 a001 591286729879/45537549124*15127^(3/4) 1771100006934195 a001 7787980473/599786069*15127^(3/4) 1771100006934195 a001 86267571272/6643838879*15127^(3/4) 1771100006934195 a001 32951280099/2537720636*15127^(3/4) 1771100006934195 a001 12586269025/969323029*15127^(3/4) 1771100006934195 a001 4807526976/370248451*15127^(3/4) 1771100006934195 a001 1836311903/141422324*15127^(3/4) 1771100006934195 a001 701408733/54018521*15127^(3/4) 1771100006934199 a001 9238424/711491*15127^(3/4) 1771100006934223 a001 102334155/7881196*15127^(3/4) 1771100006934390 a001 39088169/3010349*15127^(3/4) 1771100006935533 a001 14930352/1149851*15127^(3/4) 1771100006941906 a001 121393/39603*15127^(9/10) 1771100006943365 a001 5702887/439204*15127^(3/4) 1771100006978725 a001 1346269/64079*15127^(7/10) 1771100006997050 a001 2178309/167761*15127^(3/4) 1771100006999684 a001 1836311903/271443*5778^(1/9) 1771100007020214 a001 686789568/101521*5778^(1/9) 1771100007023210 a001 12586269025/1860498*5778^(1/9) 1771100007023647 a001 32951280099/4870847*5778^(1/9) 1771100007023711 a001 86267571272/12752043*5778^(1/9) 1771100007023720 a001 32264490531/4769326*5778^(1/9) 1771100007023721 a001 591286729879/87403803*5778^(1/9) 1771100007023721 a001 1548008755920/228826127*5778^(1/9) 1771100007023721 a001 4052739537881/599074578*5778^(1/9) 1771100007023721 a001 1515744265389/224056801*5778^(1/9) 1771100007023721 a001 6557470319842/969323029*5778^(1/9) 1771100007023722 a001 2504730781961/370248451*5778^(1/9) 1771100007023722 a001 956722026041/141422324*5778^(1/9) 1771100007023722 a001 365435296162/54018521*5778^(1/9) 1771100007023726 a001 139583862445/20633239*5778^(1/9) 1771100007023750 a001 53316291173/7881196*5778^(1/9) 1771100007023917 a001 20365011074/3010349*5778^(1/9) 1771100007025061 a001 7778742049/1149851*5778^(1/9) 1771100007032875 a001 10946*5778^(1/18) 1771100007032903 a001 2971215073/439204*5778^(1/9) 1771100007042009 a001 5473/12238*7881196^(2/3) 1771100007042028 a001 5473/12238*312119004989^(2/5) 1771100007042028 a001 5473/12238*(1/2+1/2*5^(1/2))^22 1771100007042028 a001 5473/12238*10749957122^(11/24) 1771100007042028 a001 5473/12238*4106118243^(11/23) 1771100007042028 a001 5473/12238*1568397607^(1/2) 1771100007042028 a001 5473/12238*599074578^(11/21) 1771100007042028 a001 5473/12238*228826127^(11/20) 1771100007042028 a001 5473/12238*87403803^(11/19) 1771100007042029 a001 5473/12238*33385282^(11/18) 1771100007042035 a001 5473/12238*12752043^(11/17) 1771100007042079 a001 5473/12238*4870847^(11/16) 1771100007042403 a001 5473/12238*1860498^(11/15) 1771100007044783 a001 5473/12238*710647^(11/14) 1771100007062367 a001 5473/12238*271443^(11/13) 1771100007086652 a001 1134903170/167761*5778^(1/9) 1771100007155926 a001 416020/51841*15127^(4/5) 1771100007181614 a001 9227465/24476*15127^(2/5) 1771100007193052 a001 5473/12238*103682^(11/12) 1771100007297080 a001 726103/90481*15127^(4/5) 1771100007317674 a001 5702887/710647*15127^(4/5) 1771100007320678 a001 829464/103361*15127^(4/5) 1771100007321117 a001 39088169/4870847*15127^(4/5) 1771100007321181 a001 34111385/4250681*15127^(4/5) 1771100007321190 a001 133957148/16692641*15127^(4/5) 1771100007321191 a001 233802911/29134601*15127^(4/5) 1771100007321191 a001 1836311903/228826127*15127^(4/5) 1771100007321191 a001 267084832/33281921*15127^(4/5) 1771100007321191 a001 12586269025/1568397607*15127^(4/5) 1771100007321191 a001 10983760033/1368706081*15127^(4/5) 1771100007321191 a001 43133785636/5374978561*15127^(4/5) 1771100007321191 a001 75283811239/9381251041*15127^(4/5) 1771100007321191 a001 591286729879/73681302247*15127^(4/5) 1771100007321191 a001 86000486440/10716675201*15127^(4/5) 1771100007321191 a001 4052739537881/505019158607*15127^(4/5) 1771100007321191 a001 3278735159921/408569081798*15127^(4/5) 1771100007321191 a001 2504730781961/312119004989*15127^(4/5) 1771100007321191 a001 956722026041/119218851371*15127^(4/5) 1771100007321191 a001 182717648081/22768774562*15127^(4/5) 1771100007321191 a001 139583862445/17393796001*15127^(4/5) 1771100007321191 a001 53316291173/6643838879*15127^(4/5) 1771100007321191 a001 10182505537/1268860318*15127^(4/5) 1771100007321191 a001 7778742049/969323029*15127^(4/5) 1771100007321192 a001 2971215073/370248451*15127^(4/5) 1771100007321192 a001 567451585/70711162*15127^(4/5) 1771100007321192 a001 433494437/54018521*15127^(4/5) 1771100007321196 a001 165580141/20633239*15127^(4/5) 1771100007321220 a001 31622993/3940598*15127^(4/5) 1771100007321388 a001 24157817/3010349*15127^(4/5) 1771100007322535 a001 9227465/1149851*15127^(4/5) 1771100007330401 a001 1762289/219602*15127^(4/5) 1771100007365015 a001 832040/64079*15127^(3/4) 1771100007384317 a001 1346269/167761*15127^(4/5) 1771100007415871 a001 75025/39603*15127^(19/20) 1771100007455053 a001 433494437/64079*5778^(1/9) 1771100007524709 a001 317811/9349*9349^(13/19) 1771100007544774 a001 514229/103682*15127^(17/20) 1771100007568596 a001 5702887/24476*15127^(9/20) 1771100007684347 a001 1346269/271443*15127^(17/20) 1771100007704710 a001 3524578/710647*15127^(17/20) 1771100007707681 a001 9227465/1860498*15127^(17/20) 1771100007708114 a001 24157817/4870847*15127^(17/20) 1771100007708178 a001 63245986/12752043*15127^(17/20) 1771100007708187 a001 165580141/33385282*15127^(17/20) 1771100007708188 a001 433494437/87403803*15127^(17/20) 1771100007708188 a001 1134903170/228826127*15127^(17/20) 1771100007708188 a001 2971215073/599074578*15127^(17/20) 1771100007708188 a001 7778742049/1568397607*15127^(17/20) 1771100007708188 a001 20365011074/4106118243*15127^(17/20) 1771100007708188 a001 53316291173/10749957122*15127^(17/20) 1771100007708188 a001 139583862445/28143753123*15127^(17/20) 1771100007708188 a001 365435296162/73681302247*15127^(17/20) 1771100007708188 a001 956722026041/192900153618*15127^(17/20) 1771100007708188 a001 10610209857723/2139295485799*15127^(17/20) 1771100007708188 a001 4052739537881/817138163596*15127^(17/20) 1771100007708188 a001 140728068720/28374454999*15127^(17/20) 1771100007708188 a001 591286729879/119218851371*15127^(17/20) 1771100007708188 a001 225851433717/45537549124*15127^(17/20) 1771100007708188 a001 86267571272/17393796001*15127^(17/20) 1771100007708188 a001 32951280099/6643838879*15127^(17/20) 1771100007708188 a001 1144206275/230701876*15127^(17/20) 1771100007708188 a001 4807526976/969323029*15127^(17/20) 1771100007708188 a001 1836311903/370248451*15127^(17/20) 1771100007708188 a001 701408733/141422324*15127^(17/20) 1771100007708189 a001 267914296/54018521*15127^(17/20) 1771100007708193 a001 9303105/1875749*15127^(17/20) 1771100007708217 a001 39088169/7881196*15127^(17/20) 1771100007708382 a001 14930352/3010349*15127^(17/20) 1771100007709517 a001 5702887/1149851*15127^(17/20) 1771100007717295 a001 2178309/439204*15127^(17/20) 1771100007753863 a001 514229/64079*15127^(4/5) 1771100007770607 a001 75640/15251*15127^(17/20) 1771100007926924 a001 317811/103682*15127^(9/10) 1771100007955632 a001 1762289/12238*15127^(1/2) 1771100008070636 a001 832040/271443*15127^(9/10) 1771100008091604 a001 311187/101521*15127^(9/10) 1771100008094663 a001 5702887/1860498*15127^(9/10) 1771100008095109 a001 14930352/4870847*15127^(9/10) 1771100008095174 a001 39088169/12752043*15127^(9/10) 1771100008095184 a001 14619165/4769326*15127^(9/10) 1771100008095185 a001 267914296/87403803*15127^(9/10) 1771100008095185 a001 701408733/228826127*15127^(9/10) 1771100008095185 a001 1836311903/599074578*15127^(9/10) 1771100008095185 a001 686789568/224056801*15127^(9/10) 1771100008095185 a001 12586269025/4106118243*15127^(9/10) 1771100008095185 a001 32951280099/10749957122*15127^(9/10) 1771100008095185 a001 86267571272/28143753123*15127^(9/10) 1771100008095185 a001 32264490531/10525900321*15127^(9/10) 1771100008095185 a001 591286729879/192900153618*15127^(9/10) 1771100008095185 a001 1548008755920/505019158607*15127^(9/10) 1771100008095185 a001 1515744265389/494493258286*15127^(9/10) 1771100008095185 a001 2504730781961/817138163596*15127^(9/10) 1771100008095185 a001 956722026041/312119004989*15127^(9/10) 1771100008095185 a001 365435296162/119218851371*15127^(9/10) 1771100008095185 a001 139583862445/45537549124*15127^(9/10) 1771100008095185 a001 53316291173/17393796001*15127^(9/10) 1771100008095185 a001 20365011074/6643838879*15127^(9/10) 1771100008095185 a001 7778742049/2537720636*15127^(9/10) 1771100008095185 a001 2971215073/969323029*15127^(9/10) 1771100008095185 a001 1134903170/370248451*15127^(9/10) 1771100008095185 a001 433494437/141422324*15127^(9/10) 1771100008095186 a001 165580141/54018521*15127^(9/10) 1771100008095190 a001 63245986/20633239*15127^(9/10) 1771100008095214 a001 24157817/7881196*15127^(9/10) 1771100008095385 a001 9227465/3010349*15127^(9/10) 1771100008096553 a001 3524578/1149851*15127^(9/10) 1771100008104562 a001 1346269/439204*15127^(9/10) 1771100008125505 a001 24157817/15127*5778^(5/18) 1771100008136013 a001 317811/64079*15127^(17/20) 1771100008159455 a001 514229/167761*15127^(9/10) 1771100008171269 a001 -6765+10946*5^(1/2) 1771100008326609 a001 98209/51841*15127^(19/20) 1771100008342526 a001 2178309/24476*15127^(11/20) 1771100008459484 a001 514229/271443*15127^(19/20) 1771100008478871 a001 1346269/710647*15127^(19/20) 1771100008481699 a001 1762289/930249*15127^(19/20) 1771100008482112 a001 9227465/4870847*15127^(19/20) 1771100008482172 a001 24157817/12752043*15127^(19/20) 1771100008482181 a001 31622993/16692641*15127^(19/20) 1771100008482182 a001 165580141/87403803*15127^(19/20) 1771100008482182 a001 433494437/228826127*15127^(19/20) 1771100008482182 a001 567451585/299537289*15127^(19/20) 1771100008482182 a001 2971215073/1568397607*15127^(19/20) 1771100008482182 a001 7778742049/4106118243*15127^(19/20) 1771100008482182 a001 10182505537/5374978561*15127^(19/20) 1771100008482182 a001 53316291173/28143753123*15127^(19/20) 1771100008482182 a001 139583862445/73681302247*15127^(19/20) 1771100008482182 a001 182717648081/96450076809*15127^(19/20) 1771100008482182 a001 956722026041/505019158607*15127^(19/20) 1771100008482182 a001 10610209857723/5600748293801*15127^(19/20) 1771100008482182 a001 591286729879/312119004989*15127^(19/20) 1771100008482182 a001 225851433717/119218851371*15127^(19/20) 1771100008482182 a001 21566892818/11384387281*15127^(19/20) 1771100008482182 a001 32951280099/17393796001*15127^(19/20) 1771100008482182 a001 12586269025/6643838879*15127^(19/20) 1771100008482182 a001 1201881744/634430159*15127^(19/20) 1771100008482182 a001 1836311903/969323029*15127^(19/20) 1771100008482182 a001 701408733/370248451*15127^(19/20) 1771100008482182 a001 66978574/35355581*15127^(19/20) 1771100008482183 a001 102334155/54018521*15127^(19/20) 1771100008482186 a001 39088169/20633239*15127^(19/20) 1771100008482209 a001 3732588/1970299*15127^(19/20) 1771100008482367 a001 5702887/3010349*15127^(19/20) 1771100008483447 a001 2178309/1149851*15127^(19/20) 1771100008490852 a001 208010/109801*15127^(19/20) 1771100008535699 a001 196418/64079*15127^(9/10) 1771100008541606 a001 317811/167761*15127^(19/20) 1771100008596051 a001 514229/9349*9349^(12/19) 1771100008729793 a001 1346269/24476*15127^(3/5) 1771100008841720 a001 165580141/39603*5778^(1/6) 1771100008869179 a001 2/6765*(1/2+1/2*5^(1/2))^42 1771100008889477 a001 121393/64079*15127^(19/20) 1771100009116082 a001 208010/6119*15127^(13/20) 1771100009504930 a001 514229/24476*15127^(7/10) 1771100009660696 a001 832040/9349*9349^(11/19) 1771100009730429 a001 28657/3571*3571^(16/17) 1771100009806207 a001 433494437/103682*5778^(1/6) 1771100009887081 a001 10959/844*15127^(3/4) 1771100009946924 a001 1134903170/271443*5778^(1/6) 1771100009967455 a001 2971215073/710647*5778^(1/6) 1771100009970450 a001 7778742049/1860498*5778^(1/6) 1771100009970887 a001 20365011074/4870847*5778^(1/6) 1771100009970951 a001 53316291173/12752043*5778^(1/6) 1771100009970960 a001 139583862445/33385282*5778^(1/6) 1771100009970961 a001 365435296162/87403803*5778^(1/6) 1771100009970962 a001 956722026041/228826127*5778^(1/6) 1771100009970962 a001 2504730781961/599074578*5778^(1/6) 1771100009970962 a001 6557470319842/1568397607*5778^(1/6) 1771100009970962 a001 10610209857723/2537720636*5778^(1/6) 1771100009970962 a001 4052739537881/969323029*5778^(1/6) 1771100009970962 a001 1548008755920/370248451*5778^(1/6) 1771100009970962 a001 591286729879/141422324*5778^(1/6) 1771100009970962 a001 225851433717/54018521*5778^(1/6) 1771100009970966 a001 86267571272/20633239*5778^(1/6) 1771100009970990 a001 32951280099/7881196*5778^(1/6) 1771100009971157 a001 12586269025/3010349*5778^(1/6) 1771100009972301 a001 4807526976/1149851*5778^(1/6) 1771100009980115 a001 165580141/24476*5778^(1/9) 1771100009980143 a001 1836311903/439204*5778^(1/6) 1771100010033892 a001 701408733/167761*5778^(1/6) 1771100010286766 a001 98209/12238*15127^(4/5) 1771100010402294 a001 267914296/64079*5778^(1/6) 1771100010640544 a001 121393/24476*15127^(17/20) 1771100010696331 a001 26073/2+4181/2*5^(1/2) 1771100010727899 a001 1346269/9349*9349^(10/19) 1771100011072743 a001 14930352/15127*5778^(1/3) 1771100011114509 a001 75025/24476*15127^(9/10) 1771100011273821 a001 11592/6119*15127^(19/20) 1771100011788960 a001 34111385/13201*5778^(2/9) 1771100011794125 a001 2178309/9349*9349^(9/19) 1771100012753448 a001 133957148/51841*5778^(2/9) 1771100012860724 a001 3524578/9349*9349^(8/19) 1771100012894164 a001 233802911/90481*5778^(2/9) 1771100012914695 a001 1836311903/710647*5778^(2/9) 1771100012917690 a001 267084832/103361*5778^(2/9) 1771100012918127 a001 12586269025/4870847*5778^(2/9) 1771100012918191 a001 10983760033/4250681*5778^(2/9) 1771100012918200 a001 43133785636/16692641*5778^(2/9) 1771100012918202 a001 75283811239/29134601*5778^(2/9) 1771100012918202 a001 591286729879/228826127*5778^(2/9) 1771100012918202 a001 86000486440/33281921*5778^(2/9) 1771100012918202 a001 4052739537881/1568397607*5778^(2/9) 1771100012918202 a001 3536736619241/1368706081*5778^(2/9) 1771100012918202 a001 3278735159921/1268860318*5778^(2/9) 1771100012918202 a001 2504730781961/969323029*5778^(2/9) 1771100012918202 a001 956722026041/370248451*5778^(2/9) 1771100012918202 a001 182717648081/70711162*5778^(2/9) 1771100012918202 a001 139583862445/54018521*5778^(2/9) 1771100012918206 a001 53316291173/20633239*5778^(2/9) 1771100012918230 a001 10182505537/3940598*5778^(2/9) 1771100012918397 a001 7778742049/3010349*5778^(2/9) 1771100012919541 a001 2971215073/1149851*5778^(2/9) 1771100012927355 a001 102334155/24476*5778^(1/6) 1771100012927383 a001 567451585/219602*5778^(2/9) 1771100012981132 a001 433494437/167761*5778^(2/9) 1771100013090173 a001 24157817/3571*1364^(2/15) 1771100013222806 a001 102334155/9349*3571^(1/17) 1771100013258899 a001 6765/9349*64079^(21/23) 1771100013349534 a001 165580141/64079*5778^(2/9) 1771100013645583 a001 6765/9349*439204^(7/9) 1771100013652706 a001 6765/9349*7881196^(7/11) 1771100013652721 a001 6765/9349*20633239^(3/5) 1771100013652724 a001 4181/15127*(1/2+1/2*5^(1/2))^23 1771100013652724 a001 4181/15127*4106118243^(1/2) 1771100013652724 a001 6765/9349*141422324^(7/13) 1771100013652724 a001 6765/9349*2537720636^(7/15) 1771100013652724 a001 6765/9349*17393796001^(3/7) 1771100013652724 a001 6765/9349*45537549124^(7/17) 1771100013652724 a001 6765/9349*14662949395604^(1/3) 1771100013652724 a001 6765/9349*(1/2+1/2*5^(1/2))^21 1771100013652724 a001 6765/9349*192900153618^(7/18) 1771100013652724 a001 6765/9349*10749957122^(7/16) 1771100013652724 a001 6765/9349*599074578^(1/2) 1771100013652725 a001 6765/9349*33385282^(7/12) 1771100013653082 a001 6765/9349*1860498^(7/10) 1771100013655354 a001 6765/9349*710647^(3/4) 1771100013796884 a001 6765/9349*103682^(7/8) 1771100013810613 a001 4181/15127*103682^(23/24) 1771100013927180 a001 5702887/9349*9349^(7/19) 1771100014019989 a001 9227465/15127*5778^(7/18) 1771100014730636 a001 6765/9349*39603^(21/22) 1771100014736200 a001 63245986/39603*5778^(5/18) 1771100014781965 a001 1597/2+15127/2*5^(1/2) 1771100014781966 a001 119814916/6765 1771100014993691 a001 9227465/9349*9349^(6/19) 1771100015306558 m001 (LambertW(1)*Rabbit+BesselK(1,1))/LambertW(1) 1771100015700688 a001 165580141/103682*5778^(5/18) 1771100015841405 a001 433494437/271443*5778^(5/18) 1771100015861935 a001 1134903170/710647*5778^(5/18) 1771100015864930 a001 2971215073/1860498*5778^(5/18) 1771100015865367 a001 7778742049/4870847*5778^(5/18) 1771100015865431 a001 20365011074/12752043*5778^(5/18) 1771100015865440 a001 53316291173/33385282*5778^(5/18) 1771100015865442 a001 139583862445/87403803*5778^(5/18) 1771100015865442 a001 365435296162/228826127*5778^(5/18) 1771100015865442 a001 956722026041/599074578*5778^(5/18) 1771100015865442 a001 2504730781961/1568397607*5778^(5/18) 1771100015865442 a001 6557470319842/4106118243*5778^(5/18) 1771100015865442 a001 10610209857723/6643838879*5778^(5/18) 1771100015865442 a001 4052739537881/2537720636*5778^(5/18) 1771100015865442 a001 1548008755920/969323029*5778^(5/18) 1771100015865442 a001 591286729879/370248451*5778^(5/18) 1771100015865442 a001 225851433717/141422324*5778^(5/18) 1771100015865443 a001 86267571272/54018521*5778^(5/18) 1771100015865446 a001 32951280099/20633239*5778^(5/18) 1771100015865470 a001 12586269025/7881196*5778^(5/18) 1771100015865637 a001 4807526976/3010349*5778^(5/18) 1771100015866782 a001 1836311903/1149851*5778^(5/18) 1771100015874595 a001 31622993/12238*5778^(2/9) 1771100015874623 a001 701408733/439204*5778^(5/18) 1771100015928372 a001 267914296/167761*5778^(5/18) 1771100016060181 a001 14930352/9349*9349^(5/19) 1771100016115071 a001 165580141/15127*2207^(1/16) 1771100016256223 a001 24157817/5778*2207^(3/16) 1771100016296774 a001 102334155/64079*5778^(5/18) 1771100016967214 a001 5702887/15127*5778^(4/9) 1771100017126679 a001 24157817/9349*9349^(4/19) 1771100017304199 a001 46368/3571*3571^(15/17) 1771100017588588 a001 17711/9349*24476^(19/21) 1771100017683440 a001 39088169/39603*5778^(1/3) 1771100018193174 a001 4181*9349^(3/19) 1771100018271514 a001 96932304/5473 1771100018647928 a001 102334155/103682*5778^(1/3) 1771100018788645 a001 267914296/271443*5778^(1/3) 1771100018809175 a001 701408733/710647*5778^(1/3) 1771100018812170 a001 1836311903/1860498*5778^(1/3) 1771100018812607 a001 4807526976/4870847*5778^(1/3) 1771100018812671 a001 12586269025/12752043*5778^(1/3) 1771100018812681 a001 32951280099/33385282*5778^(1/3) 1771100018812682 a001 86267571272/87403803*5778^(1/3) 1771100018812682 a001 225851433717/228826127*5778^(1/3) 1771100018812682 a001 591286729879/599074578*5778^(1/3) 1771100018812682 a001 1548008755920/1568397607*5778^(1/3) 1771100018812682 a001 4052739537881/4106118243*5778^(1/3) 1771100018812682 a001 4807525989/4870846*5778^(1/3) 1771100018812682 a001 6557470319842/6643838879*5778^(1/3) 1771100018812682 a001 2504730781961/2537720636*5778^(1/3) 1771100018812682 a001 956722026041/969323029*5778^(1/3) 1771100018812682 a001 365435296162/370248451*5778^(1/3) 1771100018812682 a001 139583862445/141422324*5778^(1/3) 1771100018812683 a001 53316291173/54018521*5778^(1/3) 1771100018812686 a001 20365011074/20633239*5778^(1/3) 1771100018812711 a001 7778742049/7881196*5778^(1/3) 1771100018812878 a001 2971215073/3010349*5778^(1/3) 1771100018814022 a001 1134903170/1149851*5778^(1/3) 1771100018821835 a001 39088169/24476*5778^(5/18) 1771100018821864 a001 433494437/439204*5778^(1/3) 1771100018834637 a001 46368/9349*24476^(17/21) 1771100018875613 a001 165580141/167761*5778^(1/3) 1771100019203102 a001 75025/9349*24476^(16/21) 1771100019244014 a001 63245986/64079*5778^(1/3) 1771100019256915 a001 121393/9349*24476^(5/7) 1771100019259670 a001 63245986/9349*9349^(2/19) 1771100019289942 a001 28657/9349*24476^(6/7) 1771100019430914 a001 196418/9349*24476^(2/3) 1771100019559007 a001 317811/9349*24476^(13/21) 1771100019704634 a001 514229/9349*24476^(4/7) 1771100019843563 a001 832040/9349*24476^(11/21) 1771100019907102 a001 17711/9349*64079^(19/23) 1771100019914493 a001 3524578/15127*5778^(1/2) 1771100019985051 a001 1346269/9349*24476^(10/21) 1771100020125561 a001 2178309/9349*24476^(3/7) 1771100020263417 a001 4181/39603*20633239^(5/7) 1771100020263420 a001 4181/39603*2537720636^(5/9) 1771100020263420 a001 4181/39603*312119004989^(5/11) 1771100020263420 a001 4181/39603*(1/2+1/2*5^(1/2))^25 1771100020263420 a001 4181/39603*3461452808002^(5/12) 1771100020263420 a001 4181/39603*28143753123^(1/2) 1771100020263420 a001 4181/39603*228826127^(5/8) 1771100020263420 a001 17711/9349*817138163596^(1/3) 1771100020263420 a001 17711/9349*(1/2+1/2*5^(1/2))^19 1771100020263420 a001 17711/9349*87403803^(1/2) 1771100020263846 a001 4181/39603*1860498^(5/6) 1771100020266445 a001 3524578/9349*24476^(8/21) 1771100020326166 a001 102334155/9349*9349^(1/19) 1771100020378251 h001 (-10*exp(3)+11)/(-2*exp(4)+2) 1771100020393850 a001 17711/9349*103682^(19/24) 1771100020407187 a001 5702887/9349*24476^(1/3) 1771100020547982 a001 9227465/9349*24476^(2/7) 1771100020630681 a001 24157817/39603*5778^(7/18) 1771100020688757 a001 14930352/9349*24476^(5/21) 1771100020829540 a001 24157817/9349*24476^(4/21) 1771100020909097 a001 46368/9349*64079^(17/23) 1771100020937292 a001 507544133/28657 1771100020970320 a001 4181*24476^(1/7) 1771100021087321 a001 121393/9349*64079^(15/23) 1771100021111101 a001 63245986/9349*24476^(2/21) 1771100021139293 a001 196418/9349*64079^(14/23) 1771100021145358 a001 317811/9349*64079^(13/23) 1771100021155535 a001 75025/9349*64079^(16/23) 1771100021168959 a001 514229/9349*64079^(12/23) 1771100021185861 a001 832040/9349*64079^(11/23) 1771100021205322 a001 1346269/9349*64079^(10/23) 1771100021223805 a001 2178309/9349*64079^(9/23) 1771100021227884 a001 4181/103682*7881196^(9/11) 1771100021227907 a001 4181/103682*141422324^(9/13) 1771100021227907 a001 4181/103682*2537720636^(3/5) 1771100021227907 a001 4181/103682*45537549124^(9/17) 1771100021227907 a001 4181/103682*14662949395604^(3/7) 1771100021227907 a001 4181/103682*(1/2+1/2*5^(1/2))^27 1771100021227907 a001 4181/103682*192900153618^(1/2) 1771100021227907 a001 4181/103682*10749957122^(9/16) 1771100021227907 a001 4181/103682*599074578^(9/14) 1771100021227908 a001 46368/9349*45537549124^(1/3) 1771100021227908 a001 46368/9349*(1/2+1/2*5^(1/2))^17 1771100021227909 a001 4181/103682*33385282^(3/4) 1771100021227913 a001 46368/9349*12752043^(1/2) 1771100021228368 a001 4181/103682*1860498^(9/10) 1771100021238674 a001 17711/9349*39603^(19/22) 1771100021242662 a001 3524578/9349*64079^(8/23) 1771100021251881 a001 102334155/9349*24476^(1/21) 1771100021261376 a001 5702887/9349*64079^(7/23) 1771100021280145 a001 9227465/9349*64079^(6/23) 1771100021298892 a001 14930352/9349*64079^(5/23) 1771100021317648 a001 24157817/9349*64079^(4/23) 1771100021326224 a001 1328767791/75025 1771100021330866 a001 121393/9349*167761^(3/5) 1771100021336401 a001 4181*64079^(3/23) 1771100021344609 a001 46368/9349*103682^(17/24) 1771100021355155 a001 63245986/9349*64079^(2/23) 1771100021363524 a001 121393/9349*439204^(5/9) 1771100021367685 a001 1346269/9349*167761^(2/5) 1771100021368612 a001 121393/9349*7881196^(5/11) 1771100021368623 a001 121393/9349*20633239^(3/7) 1771100021368624 a001 4181/271443*(1/2+1/2*5^(1/2))^29 1771100021368624 a001 4181/271443*1322157322203^(1/2) 1771100021368624 a001 121393/9349*141422324^(5/13) 1771100021368624 a001 121393/9349*2537720636^(1/3) 1771100021368624 a001 121393/9349*45537549124^(5/17) 1771100021368624 a001 121393/9349*312119004989^(3/11) 1771100021368624 a001 121393/9349*14662949395604^(5/21) 1771100021368624 a001 121393/9349*(1/2+1/2*5^(1/2))^15 1771100021368624 a001 121393/9349*192900153618^(5/18) 1771100021368624 a001 121393/9349*28143753123^(3/10) 1771100021368624 a001 121393/9349*10749957122^(5/16) 1771100021368624 a001 121393/9349*599074578^(5/14) 1771100021368625 a001 121393/9349*228826127^(3/8) 1771100021368625 a001 121393/9349*33385282^(5/12) 1771100021368880 a001 121393/9349*1860498^(1/2) 1771100021373908 a001 102334155/9349*64079^(1/23) 1771100021380074 a001 14930352/9349*167761^(1/5) 1771100021382968 a001 1739379620/98209 1771100021389155 a001 4181/710647*(1/2+1/2*5^(1/2))^31 1771100021389155 a001 4181/710647*9062201101803^(1/2) 1771100021389155 a001 317811/9349*141422324^(1/3) 1771100021389155 a001 317811/9349*(1/2+1/2*5^(1/2))^13 1771100021389155 a001 317811/9349*73681302247^(1/4) 1771100021389527 a001 2178309/9349*439204^(1/3) 1771100021389921 a001 514229/9349*439204^(4/9) 1771100021390626 a001 9227465/9349*439204^(2/9) 1771100021391247 a001 9107509929/514229 1771100021391641 a001 4181*439204^(1/9) 1771100021392141 a001 832040/9349*7881196^(1/3) 1771100021392150 a001 4181/1860498*141422324^(11/13) 1771100021392150 a001 4181/1860498*2537720636^(11/15) 1771100021392150 a001 4181/1860498*45537549124^(11/17) 1771100021392150 a001 4181/1860498*312119004989^(3/5) 1771100021392150 a001 4181/1860498*14662949395604^(11/21) 1771100021392150 a001 4181/1860498*(1/2+1/2*5^(1/2))^33 1771100021392150 a001 4181/1860498*192900153618^(11/18) 1771100021392150 a001 4181/1860498*10749957122^(11/16) 1771100021392150 a001 4181/1860498*1568397607^(3/4) 1771100021392150 a001 4181/1860498*599074578^(11/14) 1771100021392150 a001 832040/9349*312119004989^(1/5) 1771100021392150 a001 832040/9349*(1/2+1/2*5^(1/2))^11 1771100021392150 a001 832040/9349*1568397607^(1/4) 1771100021392151 a001 4181/1860498*33385282^(11/12) 1771100021392455 a001 23843770547/1346269 1771100021392579 a001 2178309/9349*7881196^(3/11) 1771100021392587 a001 4181/4870847*2537720636^(7/9) 1771100021392587 a001 4181/4870847*17393796001^(5/7) 1771100021392587 a001 4181/4870847*312119004989^(7/11) 1771100021392587 a001 4181/4870847*14662949395604^(5/9) 1771100021392587 a001 4181/4870847*(1/2+1/2*5^(1/2))^35 1771100021392587 a001 4181/4870847*505019158607^(5/8) 1771100021392587 a001 4181/4870847*28143753123^(7/10) 1771100021392587 a001 4181/4870847*599074578^(5/6) 1771100021392587 a001 4181/4870847*228826127^(7/8) 1771100021392587 a001 2178309/9349*141422324^(3/13) 1771100021392587 a001 2178309/9349*2537720636^(1/5) 1771100021392587 a001 2178309/9349*45537549124^(3/17) 1771100021392587 a001 2178309/9349*817138163596^(3/19) 1771100021392587 a001 2178309/9349*14662949395604^(1/7) 1771100021392587 a001 2178309/9349*(1/2+1/2*5^(1/2))^9 1771100021392587 a001 2178309/9349*10749957122^(3/16) 1771100021392587 a001 2178309/9349*599074578^(3/14) 1771100021392588 a001 2178309/9349*33385282^(1/4) 1771100021392631 a001 31211900856/1762289 1771100021392650 a001 5702887/9349*20633239^(1/5) 1771100021392651 a001 4181/12752043*(1/2+1/2*5^(1/2))^37 1771100021392651 a001 5702887/9349*17393796001^(1/7) 1771100021392651 a001 5702887/9349*14662949395604^(1/9) 1771100021392651 a001 5702887/9349*(1/2+1/2*5^(1/2))^7 1771100021392651 a001 5702887/9349*599074578^(1/6) 1771100021392657 a001 163427634589/9227465 1771100021392659 a001 4181*7881196^(1/11) 1771100021392660 a001 14930352/9349*20633239^(1/7) 1771100021392660 a001 4181/33385282*2537720636^(13/15) 1771100021392660 a001 4181/33385282*45537549124^(13/17) 1771100021392660 a001 4181/33385282*14662949395604^(13/21) 1771100021392660 a001 4181/33385282*(1/2+1/2*5^(1/2))^39 1771100021392660 a001 4181/33385282*192900153618^(13/18) 1771100021392660 a001 4181/33385282*73681302247^(3/4) 1771100021392660 a001 4181/33385282*10749957122^(13/16) 1771100021392660 a001 4181/33385282*599074578^(13/14) 1771100021392660 a001 14930352/9349*2537720636^(1/9) 1771100021392660 a001 14930352/9349*312119004989^(1/11) 1771100021392660 a001 14930352/9349*(1/2+1/2*5^(1/2))^5 1771100021392660 a001 14930352/9349*28143753123^(1/10) 1771100021392660 a001 14930352/9349*228826127^(1/8) 1771100021392661 a001 9227465/9349*7881196^(2/11) 1771100021392661 a001 427859102055/24157817 1771100021392661 a001 560074835788/31622993 1771100021392662 a001 2932589912673/165580141 1771100021392662 a001 4181*141422324^(1/13) 1771100021392662 a001 4181/599074578*45537549124^(15/17) 1771100021392662 a001 4181/599074578*312119004989^(9/11) 1771100021392662 a001 4181/599074578*14662949395604^(5/7) 1771100021392662 a001 4181/599074578*192900153618^(5/6) 1771100021392662 a001 4181/599074578*28143753123^(9/10) 1771100021392662 a001 4181/599074578*10749957122^(15/16) 1771100021392662 a001 7677620066443/433494437 1771100021392662 a001 10050135143328/567451585 1771100021392662 a001 4181/4106118243*14662949395604^(7/9) 1771100021392662 a001 4181/4106118243*505019158607^(7/8) 1771100021392662 a001 52623190793525/2971215073 1771100021392662 a001 4181*2537720636^(1/15) 1771100021392662 a001 4181/10749957122*14662949395604^(17/21) 1771100021392662 a001 4181/10749957122*192900153618^(17/18) 1771100021392662 a001 137769302093919/7778742049 1771100021392662 a001 180342357744116/10182505537 1771100021392662 a001 4181/73681302247*3461452808002^(11/12) 1771100021392662 a001 944284844370777/53316291173 1771100021392662 a001 4181*45537549124^(1/17) 1771100021392662 a001 4181/192900153618*14662949395604^(19/21) 1771100021392662 a001 2472169817624099/139583862445 1771100021392662 a001 4181*14662949395604^(1/21) 1771100021392662 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^3/Lucas(1) 1771100021392662 a001 10472279399378941/591286729879 1771100021392662 a001 763942486626661/43133785636 1771100021392662 a001 4181/119218851371*14662949395604^(8/9) 1771100021392662 a001 583600128882545/32951280099 1771100021392662 a001 4181/45537549124*14662949395604^(6/7) 1771100021392662 a001 4181*10749957122^(1/16) 1771100021392662 a001 222915413394313/12586269025 1771100021392662 a001 4181/17393796001*23725150497407^(13/16) 1771100021392662 a001 42573055650197/2403763488 1771100021392662 a001 4181/6643838879*312119004989^(10/11) 1771100021392662 a001 4181/6643838879*3461452808002^(5/6) 1771100021392662 a001 32522920506869/1836311903 1771100021392662 a001 4181/2537720636*45537549124^(16/17) 1771100021392662 a001 4181/2537720636*14662949395604^(16/21) 1771100021392662 a001 4181/2537720636*192900153618^(8/9) 1771100021392662 a001 4181/2537720636*73681302247^(12/13) 1771100021392662 a001 4181*599074578^(1/14) 1771100021392662 a001 12422650220213/701408733 1771100021392662 a001 4181/969323029*10749957122^(23/24) 1771100021392662 a001 2372515076885/133957148 1771100021392662 a001 4181/370248451*312119004989^(4/5) 1771100021392662 a001 4181/370248451*23725150497407^(11/16) 1771100021392662 a001 4181/370248451*73681302247^(11/13) 1771100021392662 a001 4181/370248451*10749957122^(11/12) 1771100021392662 a001 4181/370248451*4106118243^(22/23) 1771100021392662 a001 1812440241097/102334155 1771100021392662 a001 4181/141422324*2537720636^(14/15) 1771100021392662 a001 4181/141422324*17393796001^(6/7) 1771100021392662 a001 4181/141422324*45537549124^(14/17) 1771100021392662 a001 4181/141422324*817138163596^(14/19) 1771100021392662 a001 4181/141422324*14662949395604^(2/3) 1771100021392662 a001 4181/141422324*192900153618^(7/9) 1771100021392662 a001 4181/141422324*10749957122^(7/8) 1771100021392662 a001 4181/141422324*4106118243^(21/23) 1771100021392662 a001 4181/141422324*1568397607^(21/22) 1771100021392662 a001 4181*33385282^(1/12) 1771100021392662 a001 102334155/18698+102334155/18698*5^(1/2) 1771100021392662 a001 165580141/9349 1771100021392662 a001 63245986/9349*(1/2+1/2*5^(1/2))^2 1771100021392662 a001 63245986/9349*10749957122^(1/24) 1771100021392662 a001 63245986/9349*4106118243^(1/23) 1771100021392662 a001 63245986/9349*1568397607^(1/22) 1771100021392662 a001 63245986/9349*599074578^(1/21) 1771100021392662 a001 63245986/9349*228826127^(1/20) 1771100021392662 a001 63245986/9349*87403803^(1/19) 1771100021392662 a001 63245986/9349*33385282^(1/18) 1771100021392662 a001 4181/54018521*2537720636^(8/9) 1771100021392662 a001 4181/54018521*312119004989^(8/11) 1771100021392662 a001 4181/54018521*23725150497407^(5/8) 1771100021392662 a001 4181/54018521*73681302247^(10/13) 1771100021392662 a001 4181/54018521*28143753123^(4/5) 1771100021392662 a001 4181/54018521*10749957122^(5/6) 1771100021392662 a001 4181/54018521*4106118243^(20/23) 1771100021392662 a001 4181/54018521*1568397607^(10/11) 1771100021392662 a001 4181/54018521*599074578^(20/21) 1771100021392662 a001 24157817/9349*(1/2+1/2*5^(1/2))^4 1771100021392662 a001 24157817/9349*23725150497407^(1/16) 1771100021392662 a001 24157817/9349*73681302247^(1/13) 1771100021392662 a001 24157817/9349*10749957122^(1/12) 1771100021392662 a001 24157817/9349*4106118243^(2/23) 1771100021392662 a001 24157817/9349*1568397607^(1/11) 1771100021392662 a001 24157817/9349*599074578^(2/21) 1771100021392662 a001 24157817/9349*228826127^(1/10) 1771100021392662 a001 24157817/9349*87403803^(2/19) 1771100021392663 a001 63245986/9349*12752043^(1/17) 1771100021392663 a001 24157817/9349*33385282^(1/9) 1771100021392663 a001 132215733733/7465176 1771100021392664 a001 24157817/9349*12752043^(2/17) 1771100021392666 a001 4181/20633239*817138163596^(2/3) 1771100021392666 a001 4181/20633239*(1/2+1/2*5^(1/2))^38 1771100021392666 a001 4181/20633239*10749957122^(19/24) 1771100021392666 a001 4181/20633239*4106118243^(19/23) 1771100021392666 a001 4181/20633239*1568397607^(19/22) 1771100021392666 a001 4181/20633239*599074578^(19/21) 1771100021392666 a001 4181/20633239*228826127^(19/20) 1771100021392666 a001 9227465/9349*141422324^(2/13) 1771100021392666 a001 9227465/9349*2537720636^(2/15) 1771100021392666 a001 9227465/9349*45537549124^(2/17) 1771100021392666 a001 9227465/9349*14662949395604^(2/21) 1771100021392666 a001 9227465/9349*(1/2+1/2*5^(1/2))^6 1771100021392666 a001 9227465/9349*10749957122^(1/8) 1771100021392666 a001 9227465/9349*4106118243^(3/23) 1771100021392666 a001 9227465/9349*1568397607^(3/22) 1771100021392666 a001 9227465/9349*599074578^(1/7) 1771100021392666 a001 9227465/9349*228826127^(3/20) 1771100021392666 a001 9227465/9349*87403803^(3/19) 1771100021392666 a001 9227465/9349*33385282^(1/6) 1771100021392667 a001 63245986/9349*4870847^(1/16) 1771100021392668 a001 9227465/9349*12752043^(3/17) 1771100021392672 a001 24157817/9349*4870847^(1/8) 1771100021392673 a001 101003832877/5702887 1771100021392680 a001 9227465/9349*4870847^(3/16) 1771100021392690 a001 4181/7881196*141422324^(12/13) 1771100021392690 a001 4181/7881196*2537720636^(4/5) 1771100021392690 a001 4181/7881196*45537549124^(12/17) 1771100021392690 a001 4181/7881196*14662949395604^(4/7) 1771100021392690 a001 4181/7881196*(1/2+1/2*5^(1/2))^36 1771100021392690 a001 4181/7881196*192900153618^(2/3) 1771100021392690 a001 4181/7881196*73681302247^(9/13) 1771100021392690 a001 4181/7881196*10749957122^(3/4) 1771100021392690 a001 4181/7881196*4106118243^(18/23) 1771100021392690 a001 4181/7881196*1568397607^(9/11) 1771100021392690 a001 4181/7881196*599074578^(6/7) 1771100021392690 a001 4181/7881196*228826127^(9/10) 1771100021392690 a001 4181/7881196*87403803^(18/19) 1771100021392690 a001 3524578/9349*(1/2+1/2*5^(1/2))^8 1771100021392690 a001 3524578/9349*23725150497407^(1/8) 1771100021392690 a001 3524578/9349*73681302247^(2/13) 1771100021392690 a001 3524578/9349*10749957122^(1/6) 1771100021392690 a001 3524578/9349*4106118243^(4/23) 1771100021392690 a001 3524578/9349*1568397607^(2/11) 1771100021392690 a001 3524578/9349*599074578^(4/21) 1771100021392690 a001 3524578/9349*228826127^(1/5) 1771100021392690 a001 3524578/9349*87403803^(4/19) 1771100021392691 a001 3524578/9349*33385282^(2/9) 1771100021392693 a001 3524578/9349*12752043^(4/17) 1771100021392696 a001 63245986/9349*1860498^(1/15) 1771100021392709 a001 3524578/9349*4870847^(1/4) 1771100021392713 a001 4181*1860498^(1/10) 1771100021392731 a001 24157817/9349*1860498^(2/15) 1771100021392740 a001 38580031165/2178309 1771100021392741 a001 2178309/9349*1860498^(3/10) 1771100021392745 a001 14930352/9349*1860498^(1/6) 1771100021392768 a001 9227465/9349*1860498^(1/5) 1771100021392827 a001 3524578/9349*1860498^(4/15) 1771100021392856 a001 1346269/9349*20633239^(2/7) 1771100021392857 a001 4181/3010349*45537549124^(2/3) 1771100021392857 a001 4181/3010349*(1/2+1/2*5^(1/2))^34 1771100021392857 a001 4181/3010349*10749957122^(17/24) 1771100021392857 a001 4181/3010349*4106118243^(17/23) 1771100021392857 a001 4181/3010349*1568397607^(17/22) 1771100021392857 a001 4181/3010349*599074578^(17/21) 1771100021392857 a001 4181/3010349*228826127^(17/20) 1771100021392857 a001 4181/3010349*87403803^(17/19) 1771100021392857 a001 1346269/9349*2537720636^(2/9) 1771100021392857 a001 1346269/9349*312119004989^(2/11) 1771100021392857 a001 1346269/9349*(1/2+1/2*5^(1/2))^10 1771100021392857 a001 1346269/9349*28143753123^(1/5) 1771100021392857 a001 1346269/9349*10749957122^(5/24) 1771100021392857 a001 1346269/9349*4106118243^(5/23) 1771100021392857 a001 1346269/9349*1568397607^(5/22) 1771100021392857 a001 1346269/9349*599074578^(5/21) 1771100021392857 a001 1346269/9349*228826127^(1/4) 1771100021392857 a001 1346269/9349*87403803^(5/19) 1771100021392858 a001 1346269/9349*33385282^(5/18) 1771100021392859 a001 4181/3010349*33385282^(17/18) 1771100021392860 a001 1346269/9349*12752043^(5/17) 1771100021392881 a001 1346269/9349*4870847^(5/16) 1771100021392912 a001 63245986/9349*710647^(1/14) 1771100021393028 a001 1346269/9349*1860498^(1/3) 1771100021393163 a001 24157817/9349*710647^(1/7) 1771100021393202 a001 7368130309/416020 1771100021393417 a001 9227465/9349*710647^(3/14) 1771100021393528 a001 5702887/9349*710647^(1/4) 1771100021393692 a001 3524578/9349*710647^(2/7) 1771100021393991 a001 514229/9349*7881196^(4/11) 1771100021394001 a001 4181/1149851*(1/2+1/2*5^(1/2))^32 1771100021394001 a001 4181/1149851*23725150497407^(1/2) 1771100021394001 a001 4181/1149851*73681302247^(8/13) 1771100021394001 a001 4181/1149851*10749957122^(2/3) 1771100021394001 a001 4181/1149851*4106118243^(16/23) 1771100021394001 a001 4181/1149851*1568397607^(8/11) 1771100021394001 a001 4181/1149851*599074578^(16/21) 1771100021394001 a001 4181/1149851*228826127^(4/5) 1771100021394001 a001 4181/1149851*87403803^(16/19) 1771100021394001 a001 514229/9349*141422324^(4/13) 1771100021394001 a001 514229/9349*2537720636^(4/15) 1771100021394001 a001 514229/9349*45537549124^(4/17) 1771100021394001 a001 514229/9349*817138163596^(4/19) 1771100021394001 a001 514229/9349*14662949395604^(4/21) 1771100021394001 a001 514229/9349*(1/2+1/2*5^(1/2))^12 1771100021394001 a001 514229/9349*73681302247^(3/13) 1771100021394001 a001 514229/9349*10749957122^(1/4) 1771100021394001 a001 514229/9349*4106118243^(6/23) 1771100021394001 a001 514229/9349*1568397607^(3/11) 1771100021394001 a001 514229/9349*599074578^(2/7) 1771100021394001 a001 514229/9349*228826127^(3/10) 1771100021394001 a001 514229/9349*87403803^(6/19) 1771100021394002 a001 514229/9349*33385282^(1/3) 1771100021394003 a001 4181/1149851*33385282^(8/9) 1771100021394005 a001 514229/9349*12752043^(6/17) 1771100021394011 a001 4181/1149851*12752043^(16/17) 1771100021394029 a001 514229/9349*4870847^(3/8) 1771100021394110 a001 1346269/9349*710647^(5/14) 1771100021394206 a001 514229/9349*1860498^(2/5) 1771100021394511 a001 63245986/9349*271443^(1/13) 1771100021395504 a001 514229/9349*710647^(3/7) 1771100021396360 a001 24157817/9349*271443^(2/13) 1771100021396364 a001 5628750689/317811 1771100021398213 a001 9227465/9349*271443^(3/13) 1771100021399527 a001 102334155/9349*103682^(1/24) 1771100021400086 a001 3524578/9349*271443^(4/13) 1771100021401173 a001 317811/9349*271443^(1/2) 1771100021401817 a001 4181/439204*7881196^(10/11) 1771100021401839 a001 4181/439204*20633239^(6/7) 1771100021401842 a001 196418/9349*20633239^(2/5) 1771100021401843 a001 4181/439204*141422324^(10/13) 1771100021401843 a001 4181/439204*2537720636^(2/3) 1771100021401843 a001 4181/439204*45537549124^(10/17) 1771100021401843 a001 4181/439204*312119004989^(6/11) 1771100021401843 a001 4181/439204*14662949395604^(10/21) 1771100021401843 a001 4181/439204*(1/2+1/2*5^(1/2))^30 1771100021401843 a001 4181/439204*192900153618^(5/9) 1771100021401843 a001 4181/439204*28143753123^(3/5) 1771100021401843 a001 4181/439204*10749957122^(5/8) 1771100021401843 a001 4181/439204*4106118243^(15/23) 1771100021401843 a001 4181/439204*1568397607^(15/22) 1771100021401843 a001 4181/439204*599074578^(5/7) 1771100021401843 a001 4181/439204*228826127^(3/4) 1771100021401843 a001 4181/439204*87403803^(15/19) 1771100021401843 a001 196418/9349*17393796001^(2/7) 1771100021401843 a001 196418/9349*14662949395604^(2/9) 1771100021401843 a001 196418/9349*(1/2+1/2*5^(1/2))^14 1771100021401843 a001 196418/9349*10749957122^(7/24) 1771100021401843 a001 196418/9349*4106118243^(7/23) 1771100021401843 a001 196418/9349*1568397607^(7/22) 1771100021401843 a001 196418/9349*599074578^(1/3) 1771100021401843 a001 196418/9349*228826127^(7/20) 1771100021401843 a001 196418/9349*87403803^(7/19) 1771100021401844 a001 196418/9349*33385282^(7/18) 1771100021401844 a001 4181/439204*33385282^(5/6) 1771100021401848 a001 196418/9349*12752043^(7/17) 1771100021401853 a001 4181/439204*12752043^(15/17) 1771100021401876 a001 196418/9349*4870847^(7/16) 1771100021401913 a001 4181/439204*4870847^(15/16) 1771100021402082 a001 196418/9349*1860498^(7/15) 1771100021402102 a001 1346269/9349*271443^(5/13) 1771100021403597 a001 196418/9349*710647^(1/2) 1771100021405095 a001 514229/9349*271443^(6/13) 1771100021406391 a001 63245986/9349*103682^(1/12) 1771100021413256 a001 4181*103682^(1/8) 1771100021414786 a001 196418/9349*271443^(7/13) 1771100021418038 a001 2149991449/121393 1771100021420121 a001 24157817/9349*103682^(1/6) 1771100021426984 a001 14930352/9349*103682^(5/24) 1771100021433855 a001 9227465/9349*103682^(1/4) 1771100021440704 a001 5702887/9349*103682^(7/24) 1771100021443991 a001 102334155/9349*39603^(1/22) 1771100021447608 a001 3524578/9349*103682^(1/3) 1771100021454370 a001 2178309/9349*103682^(3/8) 1771100021455589 a001 4181/167761*20633239^(4/5) 1771100021455592 a001 4181/167761*17393796001^(4/7) 1771100021455592 a001 4181/167761*14662949395604^(4/9) 1771100021455592 a001 4181/167761*(1/2+1/2*5^(1/2))^28 1771100021455592 a001 4181/167761*73681302247^(7/13) 1771100021455592 a001 4181/167761*10749957122^(7/12) 1771100021455592 a001 4181/167761*4106118243^(14/23) 1771100021455592 a001 4181/167761*1568397607^(7/11) 1771100021455592 a001 4181/167761*599074578^(2/3) 1771100021455592 a001 4181/167761*228826127^(7/10) 1771100021455592 a001 4181/167761*87403803^(14/19) 1771100021455592 a001 75025/9349*(1/2+1/2*5^(1/2))^16 1771100021455592 a001 75025/9349*23725150497407^(1/4) 1771100021455592 a001 75025/9349*73681302247^(4/13) 1771100021455592 a001 75025/9349*10749957122^(1/3) 1771100021455592 a001 75025/9349*4106118243^(8/23) 1771100021455592 a001 75025/9349*1568397607^(4/11) 1771100021455592 a001 75025/9349*599074578^(8/21) 1771100021455592 a001 75025/9349*228826127^(2/5) 1771100021455592 a001 75025/9349*87403803^(8/19) 1771100021455593 a001 75025/9349*33385282^(4/9) 1771100021455593 a001 4181/167761*33385282^(7/9) 1771100021455597 a001 75025/9349*12752043^(8/17) 1771100021455601 a001 4181/167761*12752043^(14/17) 1771100021455630 a001 75025/9349*4870847^(1/2) 1771100021455657 a001 4181/167761*4870847^(7/8) 1771100021455865 a001 75025/9349*1860498^(8/15) 1771100021456070 a001 4181/167761*1860498^(14/15) 1771100021457596 a001 75025/9349*710647^(4/7) 1771100021461505 a001 1346269/9349*103682^(5/12) 1771100021467662 a001 832040/9349*103682^(11/24) 1771100021470384 a001 75025/9349*271443^(8/13) 1771100021471596 a001 121393/9349*103682^(5/8) 1771100021476378 a001 514229/9349*103682^(1/2) 1771100021478397 a001 317811/9349*103682^(13/24) 1771100021486430 a001 28657/9349*64079^(18/23) 1771100021495320 a001 63245986/9349*39603^(1/11) 1771100021497950 a001 196418/9349*103682^(7/12) 1771100021533442 a001 10946/9349*24476^(20/21) 1771100021546649 a001 4181*39603^(3/22) 1771100021565428 a001 75025/9349*103682^(2/3) 1771100021566597 a001 410611829/23184 1771100021595168 a001 31622993/51841*5778^(7/18) 1771100021597979 a001 24157817/9349*39603^(2/11) 1771100021649306 a001 14930352/9349*39603^(5/22) 1771100021700641 a001 9227465/9349*39603^(3/11) 1771100021735885 a001 165580141/271443*5778^(7/18) 1771100021751955 a001 5702887/9349*39603^(7/22) 1771100021756415 a001 433494437/710647*5778^(7/18) 1771100021759411 a001 567451585/930249*5778^(7/18) 1771100021759848 a001 2971215073/4870847*5778^(7/18) 1771100021759911 a001 7778742049/12752043*5778^(7/18) 1771100021759921 a001 10182505537/16692641*5778^(7/18) 1771100021759922 a001 53316291173/87403803*5778^(7/18) 1771100021759922 a001 139583862445/228826127*5778^(7/18) 1771100021759922 a001 182717648081/299537289*5778^(7/18) 1771100021759922 a001 956722026041/1568397607*5778^(7/18) 1771100021759922 a001 2504730781961/4106118243*5778^(7/18) 1771100021759922 a001 3278735159921/5374978561*5778^(7/18) 1771100021759922 a001 10610209857723/17393796001*5778^(7/18) 1771100021759922 a001 4052739537881/6643838879*5778^(7/18) 1771100021759922 a001 1134903780/1860499*5778^(7/18) 1771100021759922 a001 591286729879/969323029*5778^(7/18) 1771100021759922 a001 225851433717/370248451*5778^(7/18) 1771100021759922 a001 21566892818/35355581*5778^(7/18) 1771100021759923 a001 32951280099/54018521*5778^(7/18) 1771100021759926 a001 1144206275/1875749*5778^(7/18) 1771100021759951 a001 1201881744/1970299*5778^(7/18) 1771100021760118 a001 1836311903/3010349*5778^(7/18) 1771100021761262 a001 701408733/1149851*5778^(7/18) 1771100021769076 a001 24157817/24476*5778^(1/3) 1771100021769104 a001 66978574/109801*5778^(7/18) 1771100021779659 a001 102334155/9349*15127^(1/20) 1771100021803324 a001 3524578/9349*39603^(4/11) 1771100021817873 a001 28657/9349*439204^(2/3) 1771100021822853 a001 9303105/15251*5778^(7/18) 1771100021823978 a001 28657/9349*7881196^(6/11) 1771100021823993 a001 4181/64079*141422324^(2/3) 1771100021823994 a001 4181/64079*(1/2+1/2*5^(1/2))^26 1771100021823994 a001 4181/64079*73681302247^(1/2) 1771100021823994 a001 4181/64079*10749957122^(13/24) 1771100021823994 a001 4181/64079*4106118243^(13/23) 1771100021823994 a001 4181/64079*1568397607^(13/22) 1771100021823994 a001 4181/64079*599074578^(13/21) 1771100021823994 a001 4181/64079*228826127^(13/20) 1771100021823994 a001 4181/64079*87403803^(13/19) 1771100021823994 a001 28657/9349*141422324^(6/13) 1771100021823994 a001 28657/9349*2537720636^(2/5) 1771100021823994 a001 28657/9349*45537549124^(6/17) 1771100021823994 a001 28657/9349*14662949395604^(2/7) 1771100021823994 a001 28657/9349*(1/2+1/2*5^(1/2))^18 1771100021823994 a001 28657/9349*192900153618^(1/3) 1771100021823994 a001 28657/9349*10749957122^(3/8) 1771100021823994 a001 28657/9349*4106118243^(9/23) 1771100021823994 a001 28657/9349*1568397607^(9/22) 1771100021823994 a001 28657/9349*599074578^(3/7) 1771100021823994 a001 28657/9349*228826127^(9/20) 1771100021823994 a001 28657/9349*87403803^(9/19) 1771100021823995 a001 28657/9349*33385282^(1/2) 1771100021823995 a001 4181/64079*33385282^(13/18) 1771100021824000 a001 28657/9349*12752043^(9/17) 1771100021824002 a001 4181/64079*12752043^(13/17) 1771100021824036 a001 28657/9349*4870847^(9/16) 1771100021824054 a001 4181/64079*4870847^(13/16) 1771100021824301 a001 28657/9349*1860498^(3/5) 1771100021824437 a001 4181/64079*1860498^(13/15) 1771100021826248 a001 28657/9349*710647^(9/14) 1771100021827250 a001 4181/64079*710647^(13/14) 1771100021840635 a001 28657/9349*271443^(9/13) 1771100021854550 a001 2178309/9349*39603^(9/22) 1771100021906149 a001 1346269/9349*39603^(5/11) 1771100021947559 a001 28657/9349*103682^(3/4) 1771100021956771 a001 832040/9349*39603^(1/2) 1771100022009951 a001 514229/9349*39603^(6/11) 1771100022056434 a001 317811/9349*39603^(13/22) 1771100022093081 m001 exp(cos(Pi/12))^2*ArtinRank2/exp(1) 1771100022100504 a001 46368/9349*39603^(17/22) 1771100022120452 a001 196418/9349*39603^(7/11) 1771100022138562 a001 121393/9349*39603^(15/22) 1771100022166656 a001 63245986/9349*15127^(1/10) 1771100022191254 a001 39088169/64079*5778^(7/18) 1771100022276859 a001 75025/9349*39603^(8/11) 1771100022553652 a001 4181*15127^(3/20) 1771100022584834 a001 313679525/17711 1771100022725768 a001 433494437/39603*2207^(1/16) 1771100022747919 a001 28657/9349*39603^(9/11) 1771100022861630 a001 311187/2161*5778^(5/9) 1771100022940650 a001 24157817/9349*15127^(1/5) 1771100023327645 a001 14930352/9349*15127^(1/4) 1771100023557506 m001 (1/2+exp(gamma))^ln(2) 1771100023577919 a001 4976784/13201*5778^(4/9) 1771100023690255 a001 567451585/51841*2207^(1/16) 1771100023714647 a001 9227465/9349*15127^(3/10) 1771100023830972 a001 2971215073/271443*2207^(1/16) 1771100023851502 a001 7778742049/710647*2207^(1/16) 1771100023854498 a001 10182505537/930249*2207^(1/16) 1771100023854935 a001 53316291173/4870847*2207^(1/16) 1771100023854998 a001 139583862445/12752043*2207^(1/16) 1771100023855008 a001 182717648081/16692641*2207^(1/16) 1771100023855009 a001 956722026041/87403803*2207^(1/16) 1771100023855009 a001 2504730781961/228826127*2207^(1/16) 1771100023855009 a001 3278735159921/299537289*2207^(1/16) 1771100023855009 a001 10610209857723/969323029*2207^(1/16) 1771100023855009 a001 4052739537881/370248451*2207^(1/16) 1771100023855009 a001 387002188980/35355581*2207^(1/16) 1771100023855010 a001 591286729879/54018521*2207^(1/16) 1771100023855013 a001 7787980473/711491*2207^(1/16) 1771100023855038 a001 21566892818/1970299*2207^(1/16) 1771100023855205 a001 32951280099/3010349*2207^(1/16) 1771100023856349 a001 12586269025/1149851*2207^(1/16) 1771100023864191 a001 1201881744/109801*2207^(1/16) 1771100023917940 a001 1836311903/167761*2207^(1/16) 1771100023973984 a001 10946/9349*64079^(20/23) 1771100024101629 a001 5702887/9349*15127^(7/20) 1771100024286341 a001 701408733/64079*2207^(1/16) 1771100024298711 a001 10946/9349*167761^(4/5) 1771100024339902 a001 102334155/9349*5778^(1/18) 1771100024340894 a001 4181/24476*439204^(8/9) 1771100024349034 a001 4181/24476*7881196^(8/11) 1771100024349053 a001 10946/9349*20633239^(4/7) 1771100024349055 a001 4181/24476*141422324^(8/13) 1771100024349055 a001 4181/24476*2537720636^(8/15) 1771100024349055 a001 4181/24476*45537549124^(8/17) 1771100024349055 a001 4181/24476*14662949395604^(8/21) 1771100024349055 a001 4181/24476*(1/2+1/2*5^(1/2))^24 1771100024349055 a001 4181/24476*192900153618^(4/9) 1771100024349055 a001 4181/24476*73681302247^(6/13) 1771100024349055 a001 4181/24476*10749957122^(1/2) 1771100024349055 a001 4181/24476*4106118243^(12/23) 1771100024349055 a001 4181/24476*1568397607^(6/11) 1771100024349055 a001 4181/24476*599074578^(4/7) 1771100024349055 a001 4181/24476*228826127^(3/5) 1771100024349055 a001 4181/24476*87403803^(12/19) 1771100024349055 a001 10946/9349*2537720636^(4/9) 1771100024349055 a001 10946/9349*(1/2+1/2*5^(1/2))^20 1771100024349055 a001 10946/9349*23725150497407^(5/16) 1771100024349055 a001 10946/9349*505019158607^(5/14) 1771100024349055 a001 10946/9349*73681302247^(5/13) 1771100024349055 a001 10946/9349*28143753123^(2/5) 1771100024349055 a001 10946/9349*10749957122^(5/12) 1771100024349055 a001 10946/9349*4106118243^(10/23) 1771100024349055 a001 10946/9349*1568397607^(5/11) 1771100024349055 a001 10946/9349*599074578^(10/21) 1771100024349055 a001 10946/9349*228826127^(1/2) 1771100024349055 a001 10946/9349*87403803^(10/19) 1771100024349056 a001 4181/24476*33385282^(2/3) 1771100024349056 a001 10946/9349*33385282^(5/9) 1771100024349061 a001 10946/9349*12752043^(10/17) 1771100024349062 a001 4181/24476*12752043^(12/17) 1771100024349102 a001 10946/9349*4870847^(5/8) 1771100024349111 a001 4181/24476*4870847^(3/4) 1771100024349396 a001 10946/9349*1860498^(2/3) 1771100024349464 a001 4181/24476*1860498^(4/5) 1771100024351560 a001 10946/9349*710647^(5/7) 1771100024352061 a001 4181/24476*710647^(6/7) 1771100024367545 a001 10946/9349*271443^(10/13) 1771100024371243 a001 4181/24476*271443^(12/13) 1771100024486350 a001 10946/9349*103682^(5/6) 1771100024488665 a001 3524578/9349*15127^(2/5) 1771100024542408 a001 39088169/103682*5778^(4/9) 1771100024683125 a001 34111385/90481*5778^(4/9) 1771100024703655 a001 267914296/710647*5778^(4/9) 1771100024706651 a001 233802911/620166*5778^(4/9) 1771100024707088 a001 1836311903/4870847*5778^(4/9) 1771100024707152 a001 1602508992/4250681*5778^(4/9) 1771100024707161 a001 12586269025/33385282*5778^(4/9) 1771100024707162 a001 10983760033/29134601*5778^(4/9) 1771100024707162 a001 86267571272/228826127*5778^(4/9) 1771100024707162 a001 267913919/710646*5778^(4/9) 1771100024707162 a001 591286729879/1568397607*5778^(4/9) 1771100024707162 a001 516002918640/1368706081*5778^(4/9) 1771100024707162 a001 4052739537881/10749957122*5778^(4/9) 1771100024707162 a001 3536736619241/9381251041*5778^(4/9) 1771100024707162 a001 6557470319842/17393796001*5778^(4/9) 1771100024707162 a001 2504730781961/6643838879*5778^(4/9) 1771100024707162 a001 956722026041/2537720636*5778^(4/9) 1771100024707162 a001 365435296162/969323029*5778^(4/9) 1771100024707162 a001 139583862445/370248451*5778^(4/9) 1771100024707163 a001 53316291173/141422324*5778^(4/9) 1771100024707163 a001 20365011074/54018521*5778^(4/9) 1771100024707167 a001 7778742049/20633239*5778^(4/9) 1771100024707191 a001 2971215073/7881196*5778^(4/9) 1771100024707358 a001 1134903170/3010349*5778^(4/9) 1771100024708502 a001 433494437/1149851*5778^(4/9) 1771100024716314 a001 3732588/6119*5778^(7/18) 1771100024716344 a001 165580141/439204*5778^(4/9) 1771100024770093 a001 63245986/167761*5778^(4/9) 1771100024875559 a001 2178309/9349*15127^(9/20) 1771100024960734 r009 Re(z^3+c),c=-35/86+31/44*I,n=18 1771100025138495 a001 24157817/64079*5778^(4/9) 1771100025262826 a001 1346269/9349*15127^(1/2) 1771100025375638 a001 10946/9349*39603^(10/11) 1771100025649116 a001 832040/9349*15127^(11/20) 1771100025701740 a001 75025/3571*3571^(14/17) 1771100025809140 a001 1346269/15127*5778^(11/18) 1771100026037964 a001 514229/9349*15127^(3/5) 1771100026420114 a001 317811/9349*15127^(13/20) 1771100026525165 a001 9227465/39603*5778^(1/2) 1771100026811403 a001 10946*2207^(1/16) 1771100026819800 a001 196418/9349*15127^(7/10) 1771100027173578 a001 121393/9349*15127^(3/4) 1771100027287142 a001 63245986/9349*5778^(1/9) 1771100027489649 a001 24157817/103682*5778^(1/2) 1771100027616361 a001 17711/9349*15127^(19/20) 1771100027630365 a001 63245986/271443*5778^(1/2) 1771100027647543 a001 75025/9349*15127^(4/5) 1771100027650896 a001 165580141/710647*5778^(1/2) 1771100027653891 a001 433494437/1860498*5778^(1/2) 1771100027654328 a001 1134903170/4870847*5778^(1/2) 1771100027654392 a001 2971215073/12752043*5778^(1/2) 1771100027654401 a001 7778742049/33385282*5778^(1/2) 1771100027654402 a001 20365011074/87403803*5778^(1/2) 1771100027654403 a001 53316291173/228826127*5778^(1/2) 1771100027654403 a001 139583862445/599074578*5778^(1/2) 1771100027654403 a001 365435296162/1568397607*5778^(1/2) 1771100027654403 a001 956722026041/4106118243*5778^(1/2) 1771100027654403 a001 2504730781961/10749957122*5778^(1/2) 1771100027654403 a001 6557470319842/28143753123*5778^(1/2) 1771100027654403 a001 10610209857723/45537549124*5778^(1/2) 1771100027654403 a001 4052739537881/17393796001*5778^(1/2) 1771100027654403 a001 1548008755920/6643838879*5778^(1/2) 1771100027654403 a001 591286729879/2537720636*5778^(1/2) 1771100027654403 a001 225851433717/969323029*5778^(1/2) 1771100027654403 a001 86267571272/370248451*5778^(1/2) 1771100027654403 a001 63246219/271444*5778^(1/2) 1771100027654403 a001 12586269025/54018521*5778^(1/2) 1771100027654407 a001 4807526976/20633239*5778^(1/2) 1771100027654431 a001 1836311903/7881196*5778^(1/2) 1771100027654598 a001 701408733/3010349*5778^(1/2) 1771100027655742 a001 267914296/1149851*5778^(1/2) 1771100027663560 a001 9227465/24476*5778^(4/9) 1771100027663584 a001 102334155/439204*5778^(1/2) 1771100027717333 a001 39088169/167761*5778^(1/2) 1771100027806855 a001 46368/9349*15127^(17/20) 1771100028085733 a001 14930352/64079*5778^(1/2) 1771100028755674 a001 832040/15127*5778^(2/3) 1771100028789938 a001 28657/9349*15127^(9/10) 1771100029472390 a001 5702887/39603*5778^(5/9) 1771100029563932 a001 119814917/6765 1771100030234382 a001 4181*5778^(1/6) 1771100030436887 a001 7465176/51841*5778^(5/9) 1771100030577605 a001 39088169/271443*5778^(5/9) 1771100030598136 a001 14619165/101521*5778^(5/9) 1771100030601131 a001 133957148/930249*5778^(5/9) 1771100030601568 a001 701408733/4870847*5778^(5/9) 1771100030601632 a001 1836311903/12752043*5778^(5/9) 1771100030601641 a001 14930208/103681*5778^(5/9) 1771100030601643 a001 12586269025/87403803*5778^(5/9) 1771100030601643 a001 32951280099/228826127*5778^(5/9) 1771100030601643 a001 43133785636/299537289*5778^(5/9) 1771100030601643 a001 32264490531/224056801*5778^(5/9) 1771100030601643 a001 591286729879/4106118243*5778^(5/9) 1771100030601643 a001 774004377960/5374978561*5778^(5/9) 1771100030601643 a001 4052739537881/28143753123*5778^(5/9) 1771100030601643 a001 1515744265389/10525900321*5778^(5/9) 1771100030601643 a001 3278735159921/22768774562*5778^(5/9) 1771100030601643 a001 2504730781961/17393796001*5778^(5/9) 1771100030601643 a001 956722026041/6643838879*5778^(5/9) 1771100030601643 a001 182717648081/1268860318*5778^(5/9) 1771100030601643 a001 139583862445/969323029*5778^(5/9) 1771100030601643 a001 53316291173/370248451*5778^(5/9) 1771100030601643 a001 10182505537/70711162*5778^(5/9) 1771100030601643 a001 7778742049/54018521*5778^(5/9) 1771100030601647 a001 2971215073/20633239*5778^(5/9) 1771100030601671 a001 567451585/3940598*5778^(5/9) 1771100030601838 a001 433494437/3010349*5778^(5/9) 1771100030602982 a001 165580141/1149851*5778^(5/9) 1771100030610785 a001 5702887/24476*5778^(1/2) 1771100030610824 a001 31622993/219602*5778^(5/9) 1771100030664574 a001 24157817/167761*5778^(5/9) 1771100031032979 a001 9227465/64079*5778^(5/9) 1771100031704765 a001 514229/15127*5778^(13/18) 1771100032419670 a001 3524578/39603*5778^(11/18) 1771100033181623 a001 24157817/9349*5778^(2/9) 1771100033384133 a001 9227465/103682*5778^(11/18) 1771100033524846 a001 24157817/271443*5778^(11/18) 1771100033545376 a001 63245986/710647*5778^(11/18) 1771100033548371 a001 165580141/1860498*5778^(11/18) 1771100033548808 a001 433494437/4870847*5778^(11/18) 1771100033548872 a001 1134903170/12752043*5778^(11/18) 1771100033548881 a001 2971215073/33385282*5778^(11/18) 1771100033548883 a001 7778742049/87403803*5778^(11/18) 1771100033548883 a001 20365011074/228826127*5778^(11/18) 1771100033548883 a001 53316291173/599074578*5778^(11/18) 1771100033548883 a001 139583862445/1568397607*5778^(11/18) 1771100033548883 a001 365435296162/4106118243*5778^(11/18) 1771100033548883 a001 956722026041/10749957122*5778^(11/18) 1771100033548883 a001 2504730781961/28143753123*5778^(11/18) 1771100033548883 a001 6557470319842/73681302247*5778^(11/18) 1771100033548883 a001 10610209857723/119218851371*5778^(11/18) 1771100033548883 a001 4052739537881/45537549124*5778^(11/18) 1771100033548883 a001 1548008755920/17393796001*5778^(11/18) 1771100033548883 a001 591286729879/6643838879*5778^(11/18) 1771100033548883 a001 225851433717/2537720636*5778^(11/18) 1771100033548883 a001 86267571272/969323029*5778^(11/18) 1771100033548883 a001 32951280099/370248451*5778^(11/18) 1771100033548883 a001 12586269025/141422324*5778^(11/18) 1771100033548884 a001 4807526976/54018521*5778^(11/18) 1771100033548887 a001 1836311903/20633239*5778^(11/18) 1771100033548912 a001 3524667/39604*5778^(11/18) 1771100033549078 a001 267914296/3010349*5778^(11/18) 1771100033550223 a001 102334155/1149851*5778^(11/18) 1771100033558064 a001 39088169/439204*5778^(11/18) 1771100033558065 a001 1762289/12238*5778^(5/9) 1771100033611812 a001 14930352/167761*5778^(11/18) 1771100033784629 a001 121393/3571*3571^(13/17) 1771100033980204 a001 5702887/64079*5778^(11/18) 1771100034647159 a001 317811/15127*5778^(7/9) 1771100035366807 a001 726103/13201*5778^(2/3) 1771100036128861 a001 14930352/9349*5778^(5/18) 1771100036331358 a001 5702887/103682*5778^(2/3) 1771100036472084 a001 4976784/90481*5778^(2/3) 1771100036492616 a001 39088169/710647*5778^(2/3) 1771100036495611 a001 831985/15126*5778^(2/3) 1771100036496049 a001 267914296/4870847*5778^(2/3) 1771100036496112 a001 233802911/4250681*5778^(2/3) 1771100036496122 a001 1836311903/33385282*5778^(2/3) 1771100036496123 a001 1602508992/29134601*5778^(2/3) 1771100036496123 a001 12586269025/228826127*5778^(2/3) 1771100036496123 a001 10983760033/199691526*5778^(2/3) 1771100036496123 a001 86267571272/1568397607*5778^(2/3) 1771100036496123 a001 75283811239/1368706081*5778^(2/3) 1771100036496123 a001 591286729879/10749957122*5778^(2/3) 1771100036496123 a001 12585437040/228811001*5778^(2/3) 1771100036496123 a001 4052739537881/73681302247*5778^(2/3) 1771100036496123 a001 3536736619241/64300051206*5778^(2/3) 1771100036496123 a001 6557470319842/119218851371*5778^(2/3) 1771100036496123 a001 2504730781961/45537549124*5778^(2/3) 1771100036496123 a001 956722026041/17393796001*5778^(2/3) 1771100036496123 a001 365435296162/6643838879*5778^(2/3) 1771100036496123 a001 139583862445/2537720636*5778^(2/3) 1771100036496123 a001 53316291173/969323029*5778^(2/3) 1771100036496123 a001 20365011074/370248451*5778^(2/3) 1771100036496123 a001 7778742049/141422324*5778^(2/3) 1771100036496124 a001 2971215073/54018521*5778^(2/3) 1771100036496127 a001 1134903170/20633239*5778^(2/3) 1771100036496152 a001 433494437/7881196*5778^(2/3) 1771100036496319 a001 165580141/3010349*5778^(2/3) 1771100036497463 a001 63245986/1149851*5778^(2/3) 1771100036505202 a001 2178309/24476*5778^(11/18) 1771100036505305 a001 24157817/439204*5778^(2/3) 1771100036559058 a001 9227465/167761*5778^(2/3) 1771100036927484 a001 3524578/64079*5778^(2/3) 1771100037607087 a001 196418/15127*5778^(5/6) 1771100037849578 h001 (1/2*exp(1)+1/8)/(1/12*exp(2)+2/9) 1771100038314317 a001 1346269/39603*5778^(13/18) 1771100038699690 a001 45765225/2584 1771100038840840 a001 6765*2207^(1/8) 1771100038981989 a001 2584*2207^(1/4) 1771100039076107 a001 9227465/9349*5778^(1/3) 1771100039278638 a001 1762289/51841*5778^(13/18) 1771100039419330 a001 9227465/271443*5778^(13/18) 1771100039439857 a001 24157817/710647*5778^(13/18) 1771100039442852 a001 31622993/930249*5778^(13/18) 1771100039443289 a001 165580141/4870847*5778^(13/18) 1771100039443352 a001 433494437/12752043*5778^(13/18) 1771100039443362 a001 567451585/16692641*5778^(13/18) 1771100039443363 a001 2971215073/87403803*5778^(13/18) 1771100039443363 a001 7778742049/228826127*5778^(13/18) 1771100039443363 a001 10182505537/299537289*5778^(13/18) 1771100039443363 a001 53316291173/1568397607*5778^(13/18) 1771100039443363 a001 139583862445/4106118243*5778^(13/18) 1771100039443363 a001 182717648081/5374978561*5778^(13/18) 1771100039443363 a001 956722026041/28143753123*5778^(13/18) 1771100039443363 a001 2504730781961/73681302247*5778^(13/18) 1771100039443363 a001 3278735159921/96450076809*5778^(13/18) 1771100039443363 a001 10610209857723/312119004989*5778^(13/18) 1771100039443363 a001 4052739537881/119218851371*5778^(13/18) 1771100039443363 a001 387002188980/11384387281*5778^(13/18) 1771100039443363 a001 591286729879/17393796001*5778^(13/18) 1771100039443363 a001 225851433717/6643838879*5778^(13/18) 1771100039443363 a001 1135099622/33391061*5778^(13/18) 1771100039443363 a001 32951280099/969323029*5778^(13/18) 1771100039443363 a001 12586269025/370248451*5778^(13/18) 1771100039443363 a001 1201881744/35355581*5778^(13/18) 1771100039443364 a001 1836311903/54018521*5778^(13/18) 1771100039443368 a001 701408733/20633239*5778^(13/18) 1771100039443392 a001 66978574/1970299*5778^(13/18) 1771100039443559 a001 102334155/3010349*5778^(13/18) 1771100039444703 a001 39088169/1149851*5778^(13/18) 1771100039452543 a001 196452/5779*5778^(13/18) 1771100039452712 a001 1346269/24476*5778^(2/3) 1771100039506283 a001 5702887/167761*5778^(13/18) 1771100039874621 a001 2178309/64079*5778^(13/18) 1771100040521109 a001 121393/15127*5778^(8/9) 1771100041243504 a001 4181/9349*64079^(22/23) 1771100041260850 a001 832040/39603*5778^(7/9) 1771100041656063 a001 4181/9349*7881196^(2/3) 1771100041656082 a001 4181/9349*312119004989^(2/5) 1771100041656082 a001 4181/9349*(1/2+1/2*5^(1/2))^22 1771100041656082 a001 4181/9349*10749957122^(11/24) 1771100041656082 a001 4181/9349*4106118243^(11/23) 1771100041656082 a001 4181/9349*1568397607^(1/2) 1771100041656082 a001 4181/9349*599074578^(11/21) 1771100041656082 a001 4181/9349*228826127^(11/20) 1771100041656083 a001 4181/9349*87403803^(11/19) 1771100041656083 a001 4181/9349*33385282^(11/18) 1771100041656089 a001 4181/9349*12752043^(11/17) 1771100041656134 a001 4181/9349*4870847^(11/16) 1771100041656458 a001 4181/9349*1860498^(11/15) 1771100041658838 a001 4181/9349*710647^(11/14) 1771100041676422 a001 4181/9349*271443^(11/13) 1771100041807107 a001 4181/9349*103682^(11/12) 1771100041987704 a001 196418/3571*3571^(12/17) 1771100042023332 a001 5702887/9349*5778^(7/18) 1771100042225775 a001 46347/2206*5778^(7/9) 1771100042366555 a001 5702887/271443*5778^(7/9) 1771100042387095 a001 14930352/710647*5778^(7/9) 1771100042390092 a001 39088169/1860498*5778^(7/9) 1771100042390529 a001 102334155/4870847*5778^(7/9) 1771100042390593 a001 267914296/12752043*5778^(7/9) 1771100042390602 a001 701408733/33385282*5778^(7/9) 1771100042390603 a001 1836311903/87403803*5778^(7/9) 1771100042390604 a001 102287808/4868641*5778^(7/9) 1771100042390604 a001 12586269025/599074578*5778^(7/9) 1771100042390604 a001 32951280099/1568397607*5778^(7/9) 1771100042390604 a001 86267571272/4106118243*5778^(7/9) 1771100042390604 a001 225851433717/10749957122*5778^(7/9) 1771100042390604 a001 591286729879/28143753123*5778^(7/9) 1771100042390604 a001 1548008755920/73681302247*5778^(7/9) 1771100042390604 a001 4052739537881/192900153618*5778^(7/9) 1771100042390604 a001 225749145909/10745088481*5778^(7/9) 1771100042390604 a001 6557470319842/312119004989*5778^(7/9) 1771100042390604 a001 2504730781961/119218851371*5778^(7/9) 1771100042390604 a001 956722026041/45537549124*5778^(7/9) 1771100042390604 a001 365435296162/17393796001*5778^(7/9) 1771100042390604 a001 139583862445/6643838879*5778^(7/9) 1771100042390604 a001 53316291173/2537720636*5778^(7/9) 1771100042390604 a001 20365011074/969323029*5778^(7/9) 1771100042390604 a001 7778742049/370248451*5778^(7/9) 1771100042390604 a001 2971215073/141422324*5778^(7/9) 1771100042390604 a001 1134903170/54018521*5778^(7/9) 1771100042390608 a001 433494437/20633239*5778^(7/9) 1771100042390632 a001 165580141/7881196*5778^(7/9) 1771100042390799 a001 63245986/3010349*5778^(7/9) 1771100042391944 a001 24157817/1149851*5778^(7/9) 1771100042399245 a001 208010/6119*5778^(13/18) 1771100042399789 a001 9227465/439204*5778^(7/9) 1771100042453563 a001 3524578/167761*5778^(7/9) 1771100042822131 a001 1346269/64079*5778^(7/9) 1771100043555317 a001 75025/15127*5778^(17/18) 1771100044118430 a001 102334155/9349*2207^(1/16) 1771100044209942 a001 514229/39603*5778^(5/6) 1771100044796965 a007 Real Root Of 345*x^4+333*x^3-391*x^2-302*x-853 1771100044970612 a001 3524578/9349*5778^(4/9) 1771100045173285 a001 1346269/103682*5778^(5/6) 1771100045313835 a001 3524578/271443*5778^(5/6) 1771100045334341 a001 9227465/710647*5778^(5/6) 1771100045337333 a001 24157817/1860498*5778^(5/6) 1771100045337769 a001 63245986/4870847*5778^(5/6) 1771100045337833 a001 165580141/12752043*5778^(5/6) 1771100045337842 a001 433494437/33385282*5778^(5/6) 1771100045337844 a001 1134903170/87403803*5778^(5/6) 1771100045337844 a001 2971215073/228826127*5778^(5/6) 1771100045337844 a001 7778742049/599074578*5778^(5/6) 1771100045337844 a001 20365011074/1568397607*5778^(5/6) 1771100045337844 a001 53316291173/4106118243*5778^(5/6) 1771100045337844 a001 139583862445/10749957122*5778^(5/6) 1771100045337844 a001 365435296162/28143753123*5778^(5/6) 1771100045337844 a001 956722026041/73681302247*5778^(5/6) 1771100045337844 a001 2504730781961/192900153618*5778^(5/6) 1771100045337844 a001 10610209857723/817138163596*5778^(5/6) 1771100045337844 a001 4052739537881/312119004989*5778^(5/6) 1771100045337844 a001 1548008755920/119218851371*5778^(5/6) 1771100045337844 a001 591286729879/45537549124*5778^(5/6) 1771100045337844 a001 7787980473/599786069*5778^(5/6) 1771100045337844 a001 86267571272/6643838879*5778^(5/6) 1771100045337844 a001 32951280099/2537720636*5778^(5/6) 1771100045337844 a001 12586269025/969323029*5778^(5/6) 1771100045337844 a001 4807526976/370248451*5778^(5/6) 1771100045337844 a001 1836311903/141422324*5778^(5/6) 1771100045337844 a001 701408733/54018521*5778^(5/6) 1771100045337848 a001 9238424/711491*5778^(5/6) 1771100045337872 a001 102334155/7881196*5778^(5/6) 1771100045338039 a001 39088169/3010349*5778^(5/6) 1771100045339182 a001 14930352/1149851*5778^(5/6) 1771100045347014 a001 5702887/439204*5778^(5/6) 1771100045348336 a001 514229/24476*5778^(7/9) 1771100045400700 a001 2178309/167761*5778^(5/6) 1771100045451536 a001 267914296/39603*2207^(1/8) 1771100045768664 a001 832040/64079*5778^(5/6) 1771100046162526 a007 Real Root Of -663*x^4-998*x^3-5*x^2-14*x+970 1771100046416024 a001 701408733/103682*2207^(1/8) 1771100046556740 a001 1836311903/271443*2207^(1/8) 1771100046577271 a001 686789568/101521*2207^(1/8) 1771100046580266 a001 12586269025/1860498*2207^(1/8) 1771100046580703 a001 32951280099/4870847*2207^(1/8) 1771100046580767 a001 86267571272/12752043*2207^(1/8) 1771100046580776 a001 32264490531/4769326*2207^(1/8) 1771100046580777 a001 591286729879/87403803*2207^(1/8) 1771100046580778 a001 1548008755920/228826127*2207^(1/8) 1771100046580778 a001 4052739537881/599074578*2207^(1/8) 1771100046580778 a001 1515744265389/224056801*2207^(1/8) 1771100046580778 a001 6557470319842/969323029*2207^(1/8) 1771100046580778 a001 2504730781961/370248451*2207^(1/8) 1771100046580778 a001 956722026041/141422324*2207^(1/8) 1771100046580778 a001 365435296162/54018521*2207^(1/8) 1771100046580782 a001 139583862445/20633239*2207^(1/8) 1771100046580806 a001 53316291173/7881196*2207^(1/8) 1771100046580973 a001 20365011074/3010349*2207^(1/8) 1771100046582117 a001 7778742049/1149851*2207^(1/8) 1771100046589959 a001 2971215073/439204*2207^(1/8) 1771100046643708 a001 1134903170/167761*2207^(1/8) 1771100047012110 a001 433494437/64079*2207^(1/8) 1771100047152335 a001 105937/13201*5778^(8/9) 1771100047917749 a001 2178309/9349*5778^(1/2) 1771100048119818 a001 416020/51841*5778^(8/9) 1771100048260972 a001 726103/90481*5778^(8/9) 1771100048281566 a001 5702887/710647*5778^(8/9) 1771100048284571 a001 829464/103361*5778^(8/9) 1771100048285009 a001 39088169/4870847*5778^(8/9) 1771100048285073 a001 34111385/4250681*5778^(8/9) 1771100048285082 a001 133957148/16692641*5778^(8/9) 1771100048285084 a001 233802911/29134601*5778^(8/9) 1771100048285084 a001 1836311903/228826127*5778^(8/9) 1771100048285084 a001 267084832/33281921*5778^(8/9) 1771100048285084 a001 12586269025/1568397607*5778^(8/9) 1771100048285084 a001 10983760033/1368706081*5778^(8/9) 1771100048285084 a001 43133785636/5374978561*5778^(8/9) 1771100048285084 a001 75283811239/9381251041*5778^(8/9) 1771100048285084 a001 591286729879/73681302247*5778^(8/9) 1771100048285084 a001 86000486440/10716675201*5778^(8/9) 1771100048285084 a001 3536736619241/440719107401*5778^(8/9) 1771100048285084 a001 3278735159921/408569081798*5778^(8/9) 1771100048285084 a001 2504730781961/312119004989*5778^(8/9) 1771100048285084 a001 956722026041/119218851371*5778^(8/9) 1771100048285084 a001 182717648081/22768774562*5778^(8/9) 1771100048285084 a001 139583862445/17393796001*5778^(8/9) 1771100048285084 a001 53316291173/6643838879*5778^(8/9) 1771100048285084 a001 10182505537/1268860318*5778^(8/9) 1771100048285084 a001 7778742049/969323029*5778^(8/9) 1771100048285084 a001 2971215073/370248451*5778^(8/9) 1771100048285084 a001 567451585/70711162*5778^(8/9) 1771100048285085 a001 433494437/54018521*5778^(8/9) 1771100048285088 a001 165580141/20633239*5778^(8/9) 1771100048285113 a001 31622993/3940598*5778^(8/9) 1771100048285280 a001 24157817/3010349*5778^(8/9) 1771100048286428 a001 9227465/1149851*5778^(8/9) 1771100048290730 a001 10959/844*5778^(5/6) 1771100048294294 a001 1762289/219602*5778^(8/9) 1771100048348210 a001 1346269/167761*5778^(8/9) 1771100048717756 a001 514229/64079*5778^(8/9) 1771100049537171 a001 165580141/24476*2207^(1/8) 1771100050112264 a001 196418/39603*5778^(17/18) 1771100050144872 a001 317811/3571*3571^(11/17) 1771100050865259 a001 1346269/9349*5778^(5/9) 1771100051068910 a001 514229/103682*5778^(17/18) 1771100051208482 a001 1346269/271443*5778^(17/18) 1771100051228846 a001 3524578/710647*5778^(17/18) 1771100051231817 a001 9227465/1860498*5778^(17/18) 1771100051232250 a001 24157817/4870847*5778^(17/18) 1771100051232313 a001 63245986/12752043*5778^(17/18) 1771100051232323 a001 165580141/33385282*5778^(17/18) 1771100051232324 a001 433494437/87403803*5778^(17/18) 1771100051232324 a001 1134903170/228826127*5778^(17/18) 1771100051232324 a001 2971215073/599074578*5778^(17/18) 1771100051232324 a001 7778742049/1568397607*5778^(17/18) 1771100051232324 a001 20365011074/4106118243*5778^(17/18) 1771100051232324 a001 53316291173/10749957122*5778^(17/18) 1771100051232324 a001 139583862445/28143753123*5778^(17/18) 1771100051232324 a001 365435296162/73681302247*5778^(17/18) 1771100051232324 a001 956722026041/192900153618*5778^(17/18) 1771100051232324 a001 2504730781961/505019158607*5778^(17/18) 1771100051232324 a001 10610209857723/2139295485799*5778^(17/18) 1771100051232324 a001 140728068720/28374454999*5778^(17/18) 1771100051232324 a001 591286729879/119218851371*5778^(17/18) 1771100051232324 a001 225851433717/45537549124*5778^(17/18) 1771100051232324 a001 86267571272/17393796001*5778^(17/18) 1771100051232324 a001 32951280099/6643838879*5778^(17/18) 1771100051232324 a001 1144206275/230701876*5778^(17/18) 1771100051232324 a001 4807526976/969323029*5778^(17/18) 1771100051232324 a001 1836311903/370248451*5778^(17/18) 1771100051232324 a001 701408733/141422324*5778^(17/18) 1771100051232325 a001 267914296/54018521*5778^(17/18) 1771100051232328 a001 9303105/1875749*5778^(17/18) 1771100051232353 a001 39088169/7881196*5778^(17/18) 1771100051232518 a001 14930352/3010349*5778^(17/18) 1771100051233653 a001 5702887/1149851*5778^(17/18) 1771100051241431 a001 2178309/439204*5778^(17/18) 1771100051250659 a001 98209/12238*5778^(8/9) 1771100051294743 a001 75640/15251*5778^(17/18) 1771100051660149 a001 317811/64079*5778^(17/18) 1771100053811792 a001 832040/9349*5778^(11/18) 1771100054164680 a001 121393/24476*5778^(17/18) 1771100054179566 a001 1/1292*(1/2+1/2*5^(1/2))^40 1771100056760884 a001 514229/9349*5778^(2/3) 1771100057042400 r009 Im(z^3+c),c=-23/78+7/51*I,n=12 1771100058319575 a001 514229/3571*3571^(10/17) 1771100059703277 a001 317811/9349*5778^(13/18) 1771100059760464 a007 Real Root Of 2*x^4-508*x^3+885*x^2-190*x+363 1771100061566608 a001 63245986/15127*2207^(3/16) 1771100061707764 a001 9227465/5778*2207^(5/16) 1771100062663206 a001 196418/9349*5778^(7/9) 1771100065023886 a001 28657/1364*1364^(14/15) 1771100065577228 a001 121393/9349*5778^(5/6) 1771100066487580 a001 832040/3571*3571^(9/17) 1771100066844199 a001 63245986/9349*2207^(1/8) 1771100067738136 m001 Zeta(5)*(2/3*Pi*3^(1/2)/GAMMA(2/3))^Landau 1771100067955167 m001 Totient*Tribonacci-ln(2) 1771100068177305 a001 165580141/39603*2207^(3/16) 1771100068359842 a007 Real Root Of -448*x^4-349*x^3+173*x^2-570*x+917 1771100068611436 a001 75025/9349*5778^(8/9) 1771100069141792 a001 433494437/103682*2207^(3/16) 1771100069282509 a001 1134903170/271443*2207^(3/16) 1771100069303039 a001 2971215073/710647*2207^(3/16) 1771100069306035 a001 7778742049/1860498*2207^(3/16) 1771100069306472 a001 20365011074/4870847*2207^(3/16) 1771100069306536 a001 53316291173/12752043*2207^(3/16) 1771100069306545 a001 139583862445/33385282*2207^(3/16) 1771100069306546 a001 365435296162/87403803*2207^(3/16) 1771100069306546 a001 956722026041/228826127*2207^(3/16) 1771100069306546 a001 2504730781961/599074578*2207^(3/16) 1771100069306546 a001 6557470319842/1568397607*2207^(3/16) 1771100069306546 a001 10610209857723/2537720636*2207^(3/16) 1771100069306546 a001 4052739537881/969323029*2207^(3/16) 1771100069306546 a001 1548008755920/370248451*2207^(3/16) 1771100069306547 a001 591286729879/141422324*2207^(3/16) 1771100069306547 a001 225851433717/54018521*2207^(3/16) 1771100069306551 a001 86267571272/20633239*2207^(3/16) 1771100069306575 a001 32951280099/7881196*2207^(3/16) 1771100069306742 a001 12586269025/3010349*2207^(3/16) 1771100069307886 a001 4807526976/1149851*2207^(3/16) 1771100069315728 a001 1836311903/439204*2207^(3/16) 1771100069369477 a001 701408733/167761*2207^(3/16) 1771100069737878 a001 267914296/64079*2207^(3/16) 1771100071330991 a001 46368/9349*5778^(17/18) 1771100072262940 a001 102334155/24476*2207^(3/16) 1771100074658144 a001 1346269/3571*3571^(8/17) 1771100076553485 a001 39088169/3571*1364^(1/15) 1771100077399380 a001 22882613/1292 1771100078390384 q001 6778/3827 1771100078547644 r005 Im(z^2+c),c=-49/90+10/31*I,n=55 1771100078955540 m001 GlaisherKinkelin/(LandauRamanujan2nd^Gompertz) 1771100082827730 a001 2178309/3571*3571^(7/17) 1771100083546408 a007 Real Root Of 430*x^4+217*x^3-959*x^2+165*x+275 1771100084292377 a001 39088169/15127*2207^(1/4) 1771100084433518 a001 5702887/5778*2207^(3/8) 1771100086572649 a001 2584/3571*64079^(21/23) 1771100086959333 a001 2584/3571*439204^(7/9) 1771100086966456 a001 2584/3571*7881196^(7/11) 1771100086966465 a001 1597/5778*(1/2+1/2*5^(1/2))^23 1771100086966465 a001 1597/5778*4106118243^(1/2) 1771100086966472 a001 2584/3571*20633239^(3/5) 1771100086966474 a001 2584/3571*141422324^(7/13) 1771100086966474 a001 2584/3571*2537720636^(7/15) 1771100086966474 a001 2584/3571*17393796001^(3/7) 1771100086966474 a001 2584/3571*45537549124^(7/17) 1771100086966474 a001 2584/3571*14662949395604^(1/3) 1771100086966474 a001 2584/3571*(1/2+1/2*5^(1/2))^21 1771100086966474 a001 2584/3571*192900153618^(7/18) 1771100086966474 a001 2584/3571*10749957122^(7/16) 1771100086966474 a001 2584/3571*599074578^(1/2) 1771100086966475 a001 2584/3571*33385282^(7/12) 1771100086966832 a001 2584/3571*1860498^(7/10) 1771100086969104 a001 2584/3571*710647^(3/4) 1771100087110634 a001 2584/3571*103682^(7/8) 1771100087124354 a001 1597/5778*103682^(23/24) 1771100088044387 a001 2584/3571*39603^(21/22) 1771100089569968 a001 4181*2207^(3/16) 1771100090903074 a001 34111385/13201*2207^(1/4) 1771100090997690 a001 3524578/3571*3571^(6/17) 1771100091572341 a007 Real Root Of 647*x^4+894*x^3-166*x^2+320*x-312 1771100091867561 a001 133957148/51841*2207^(1/4) 1771100092008278 a001 233802911/90481*2207^(1/4) 1771100092028808 a001 1836311903/710647*2207^(1/4) 1771100092031804 a001 267084832/103361*2207^(1/4) 1771100092032241 a001 12586269025/4870847*2207^(1/4) 1771100092032305 a001 10983760033/4250681*2207^(1/4) 1771100092032314 a001 43133785636/16692641*2207^(1/4) 1771100092032315 a001 75283811239/29134601*2207^(1/4) 1771100092032315 a001 591286729879/228826127*2207^(1/4) 1771100092032315 a001 86000486440/33281921*2207^(1/4) 1771100092032315 a001 4052739537881/1568397607*2207^(1/4) 1771100092032315 a001 3536736619241/1368706081*2207^(1/4) 1771100092032315 a001 3278735159921/1268860318*2207^(1/4) 1771100092032315 a001 2504730781961/969323029*2207^(1/4) 1771100092032315 a001 956722026041/370248451*2207^(1/4) 1771100092032315 a001 182717648081/70711162*2207^(1/4) 1771100092032316 a001 139583862445/54018521*2207^(1/4) 1771100092032320 a001 53316291173/20633239*2207^(1/4) 1771100092032344 a001 10182505537/3940598*2207^(1/4) 1771100092032511 a001 7778742049/3010349*2207^(1/4) 1771100092033655 a001 2971215073/1149851*2207^(1/4) 1771100092041497 a001 567451585/219602*2207^(1/4) 1771100092095246 a001 433494437/167761*2207^(1/4) 1771100092463647 a001 165580141/64079*2207^(1/4) 1771100094988709 a001 31622993/12238*2207^(1/4) 1771100096608894 a001 228826127*144^(7/17) 1771100098330406 m009 (2*Psi(1,3/4)+1/2)/(1/3*Psi(1,3/4)-4) 1771100099167507 a001 1597*3571^(5/17) 1771100100095069 m001 (Artin-MertensB1)/(ln(3)-arctan(1/2)) 1771100104399351 r005 Re(z^2+c),c=-5/78+23/44*I,n=20 1771100104990059 r005 Im(z^2+c),c=-7/38+11/46*I,n=6 1771100107018147 a001 24157817/15127*2207^(5/16) 1771100107159326 a001 1762289/2889*2207^(7/16) 1771100107337379 a001 9227465/3571*3571^(4/17) 1771100107818567 r005 Re(z^2+c),c=-17/14+5/179*I,n=34 1771100110614658 r002 49th iterates of z^2 + 1771100112295738 a001 24157817/9349*2207^(1/4) 1771100113628843 a001 63245986/39603*2207^(5/16) 1771100114593331 a001 165580141/103682*2207^(5/16) 1771100114734047 a001 433494437/271443*2207^(5/16) 1771100114754578 a001 1134903170/710647*2207^(5/16) 1771100114757573 a001 2971215073/1860498*2207^(5/16) 1771100114758010 a001 7778742049/4870847*2207^(5/16) 1771100114758074 a001 20365011074/12752043*2207^(5/16) 1771100114758083 a001 53316291173/33385282*2207^(5/16) 1771100114758084 a001 139583862445/87403803*2207^(5/16) 1771100114758085 a001 365435296162/228826127*2207^(5/16) 1771100114758085 a001 956722026041/599074578*2207^(5/16) 1771100114758085 a001 2504730781961/1568397607*2207^(5/16) 1771100114758085 a001 6557470319842/4106118243*2207^(5/16) 1771100114758085 a001 10610209857723/6643838879*2207^(5/16) 1771100114758085 a001 4052739537881/2537720636*2207^(5/16) 1771100114758085 a001 1548008755920/969323029*2207^(5/16) 1771100114758085 a001 591286729879/370248451*2207^(5/16) 1771100114758085 a001 225851433717/141422324*2207^(5/16) 1771100114758085 a001 86267571272/54018521*2207^(5/16) 1771100114758089 a001 32951280099/20633239*2207^(5/16) 1771100114758113 a001 12586269025/7881196*2207^(5/16) 1771100114758280 a001 4807526976/3010349*2207^(5/16) 1771100114759424 a001 1836311903/1149851*2207^(5/16) 1771100114767266 a001 701408733/439204*2207^(5/16) 1771100114821015 a001 267914296/167761*2207^(5/16) 1771100115189417 a001 102334155/64079*2207^(5/16) 1771100115507230 a001 14930352/3571*3571^(3/17) 1771100117714478 a001 39088169/24476*2207^(5/16) 1771100119588615 a001 74049696/4181 1771100120757129 a001 17711/3571*9349^(17/19) 1771100123384199 a001 28657/3571*9349^(16/19) 1771100123677089 a001 24157817/3571*3571^(2/17) 1771100123776269 a001 10946/3571*9349^(18/19) 1771100123854609 a001 46368/3571*9349^(15/19) 1771100125148789 a001 75025/3571*9349^(14/19) 1771100126095652 a001 31622993/2889*843^(1/14) 1771100126128317 a001 121393/3571*9349^(13/19) 1771100127228032 a001 196418/3571*9349^(12/19) 1771100127891116 a001 11592/341*1364^(13/15) 1771100128281840 a001 317811/3571*9349^(11/19) 1771100129345594 m001 Cahen/exp(-1/2*Pi)/MadelungNaCl 1771100129353182 a001 514229/3571*9349^(10/19) 1771100129602031 a001 6765/3571*24476^(19/21) 1771100129743914 a001 14930352/15127*2207^(3/8) 1771100129884993 a001 726103/1926*2207^(1/2) 1771100130346616 r009 Im(z^3+c),c=-13/38+23/32*I,n=55 1771100130417827 a001 832040/3571*9349^(9/19) 1771100130553953 m001 1/ln(LaplaceLimit)*Conway*RenyiParking^2 1771100131485030 a001 1346269/3571*9349^(8/19) 1771100131846944 a001 39088169/3571*3571^(1/17) 1771100131920545 a001 6765/3571*64079^(19/23) 1771100132276849 a001 1597/15127*20633239^(5/7) 1771100132276852 a001 1597/15127*2537720636^(5/9) 1771100132276852 a001 1597/15127*312119004989^(5/11) 1771100132276852 a001 1597/15127*(1/2+1/2*5^(1/2))^25 1771100132276852 a001 1597/15127*3461452808002^(5/12) 1771100132276852 a001 1597/15127*28143753123^(1/2) 1771100132276852 a001 1597/15127*228826127^(5/8) 1771100132276863 a001 6765/3571*817138163596^(1/3) 1771100132276863 a001 6765/3571*(1/2+1/2*5^(1/2))^19 1771100132276863 a001 6765/3571*87403803^(1/2) 1771100132277279 a001 1597/15127*1860498^(5/6) 1771100132407293 a001 6765/3571*103682^(19/24) 1771100132551256 a001 2178309/3571*9349^(7/19) 1771100133252117 a001 6765/3571*39603^(19/22) 1771100133617855 a001 3524578/3571*9349^(6/19) 1771100134684311 a001 1597*9349^(5/19) 1771100135021505 a001 14930352/9349*2207^(5/16) 1771100135750822 a001 9227465/3571*9349^(4/19) 1771100136354612 a001 39088169/39603*2207^(3/8) 1771100136494289 a001 17711/3571*24476^(17/21) 1771100136817312 a001 14930352/3571*9349^(3/19) 1771100137036360 a001 193864621/10946 1771100137319100 a001 102334155/103682*2207^(3/8) 1771100137459817 a001 267914296/271443*2207^(3/8) 1771100137480347 a001 701408733/710647*2207^(3/8) 1771100137483343 a001 1836311903/1860498*2207^(3/8) 1771100137483780 a001 4807526976/4870847*2207^(3/8) 1771100137483843 a001 12586269025/12752043*2207^(3/8) 1771100137483853 a001 32951280099/33385282*2207^(3/8) 1771100137483854 a001 86267571272/87403803*2207^(3/8) 1771100137483854 a001 225851433717/228826127*2207^(3/8) 1771100137483854 a001 591286729879/599074578*2207^(3/8) 1771100137483854 a001 1548008755920/1568397607*2207^(3/8) 1771100137483854 a001 4052739537881/4106118243*2207^(3/8) 1771100137483854 a001 4807525989/4870846*2207^(3/8) 1771100137483854 a001 6557470319842/6643838879*2207^(3/8) 1771100137483854 a001 2504730781961/2537720636*2207^(3/8) 1771100137483854 a001 956722026041/969323029*2207^(3/8) 1771100137483854 a001 365435296162/370248451*2207^(3/8) 1771100137483854 a001 139583862445/141422324*2207^(3/8) 1771100137483855 a001 53316291173/54018521*2207^(3/8) 1771100137483858 a001 20365011074/20633239*2207^(3/8) 1771100137483883 a001 7778742049/7881196*2207^(3/8) 1771100137484050 a001 2971215073/3010349*2207^(3/8) 1771100137485194 a001 1134903170/1149851*2207^(3/8) 1771100137493036 a001 433494437/439204*2207^(3/8) 1771100137546785 a001 165580141/167761*2207^(3/8) 1771100137740338 a001 46368/3571*24476^(5/7) 1771100137883810 a001 24157817/3571*9349^(2/19) 1771100137915186 a001 63245986/64079*2207^(3/8) 1771100138108803 a001 75025/3571*24476^(2/3) 1771100138162616 a001 121393/3571*24476^(13/21) 1771100138195643 a001 28657/3571*24476^(16/21) 1771100138336615 a001 196418/3571*24476^(4/7) 1771100138464707 a001 317811/3571*24476^(11/21) 1771100138568749 a001 17711/3571*64079^(17/23) 1771100138610335 a001 514229/3571*24476^(10/21) 1771100138749264 a001 832040/3571*24476^(3/7) 1771100138887525 a001 1597/39603*7881196^(9/11) 1771100138887549 a001 1597/39603*141422324^(9/13) 1771100138887549 a001 1597/39603*2537720636^(3/5) 1771100138887549 a001 1597/39603*45537549124^(9/17) 1771100138887549 a001 1597/39603*14662949395604^(3/7) 1771100138887549 a001 1597/39603*(1/2+1/2*5^(1/2))^27 1771100138887549 a001 1597/39603*192900153618^(1/2) 1771100138887549 a001 1597/39603*10749957122^(9/16) 1771100138887549 a001 1597/39603*599074578^(9/14) 1771100138887550 a001 1597/39603*33385282^(3/4) 1771100138887560 a001 17711/3571*45537549124^(1/3) 1771100138887560 a001 17711/3571*(1/2+1/2*5^(1/2))^17 1771100138887565 a001 17711/3571*12752043^(1/2) 1771100138888009 a001 1597/39603*1860498^(9/10) 1771100138890752 a001 1346269/3571*24476^(8/21) 1771100138950305 a001 39088169/3571*9349^(1/19) 1771100139004260 a001 17711/3571*103682^(17/24) 1771100139031262 a001 2178309/3571*24476^(1/3) 1771100139172146 a001 3524578/3571*24476^(2/7) 1771100139312887 a001 1597*24476^(5/21) 1771100139453683 a001 9227465/3571*24476^(4/21) 1771100139570744 a001 46368/3571*64079^(15/23) 1771100139581952 a001 507544167/28657 1771100139594458 a001 14930352/3571*24476^(1/7) 1771100139629804 a001 6765/3571*15127^(19/20) 1771100139735241 a001 24157817/3571*24476^(2/21) 1771100139748968 a001 121393/3571*64079^(13/23) 1771100139760156 a001 17711/3571*39603^(17/22) 1771100139800940 a001 196418/3571*64079^(12/23) 1771100139807005 a001 317811/3571*64079^(11/23) 1771100139814289 a001 46368/3571*167761^(3/5) 1771100139817182 a001 75025/3571*64079^(14/23) 1771100139830605 a001 514229/3571*64079^(10/23) 1771100139846946 a001 46368/3571*439204^(5/9) 1771100139847508 a001 832040/3571*64079^(9/23) 1771100139852034 a001 46368/3571*7881196^(5/11) 1771100139852036 a001 1597/103682*(1/2+1/2*5^(1/2))^29 1771100139852036 a001 1597/103682*1322157322203^(1/2) 1771100139852045 a001 46368/3571*20633239^(3/7) 1771100139852047 a001 46368/3571*141422324^(5/13) 1771100139852047 a001 46368/3571*2537720636^(1/3) 1771100139852047 a001 46368/3571*45537549124^(5/17) 1771100139852047 a001 46368/3571*312119004989^(3/11) 1771100139852047 a001 46368/3571*14662949395604^(5/21) 1771100139852047 a001 46368/3571*(1/2+1/2*5^(1/2))^15 1771100139852047 a001 46368/3571*192900153618^(5/18) 1771100139852047 a001 46368/3571*28143753123^(3/10) 1771100139852047 a001 46368/3571*10749957122^(5/16) 1771100139852047 a001 46368/3571*599074578^(5/14) 1771100139852047 a001 46368/3571*228826127^(3/8) 1771100139852048 a001 46368/3571*33385282^(5/12) 1771100139852303 a001 46368/3571*1860498^(1/2) 1771100139866968 a001 1346269/3571*64079^(8/23) 1771100139876021 a001 39088169/3571*24476^(1/21) 1771100139885452 a001 2178309/3571*64079^(7/23) 1771100139904309 a001 3524578/3571*64079^(6/23) 1771100139923023 a001 1597*64079^(5/23) 1771100139941791 a001 9227465/3571*64079^(4/23) 1771100139953348 a001 265753576/15005 1771100139955019 a001 46368/3571*103682^(5/8) 1771100139960539 a001 14930352/3571*64079^(3/23) 1771100139979295 a001 24157817/3571*64079^(2/23) 1771100139992753 a001 1597/271443*(1/2+1/2*5^(1/2))^31 1771100139992753 a001 1597/271443*9062201101803^(1/2) 1771100139992764 a001 121393/3571*141422324^(1/3) 1771100139992764 a001 121393/3571*(1/2+1/2*5^(1/2))^13 1771100139992764 a001 121393/3571*73681302247^(1/4) 1771100139992969 a001 514229/3571*167761^(2/5) 1771100139998048 a001 39088169/3571*64079^(1/23) 1771100140004204 a001 1597*167761^(1/5) 1771100140004783 a001 121393/3571*271443^(1/2) 1771100140007534 a001 3478759473/196418 1771100140013229 a001 832040/3571*439204^(1/3) 1771100140013283 a001 1597/710647*141422324^(11/13) 1771100140013284 a001 1597/710647*2537720636^(11/15) 1771100140013284 a001 1597/710647*45537549124^(11/17) 1771100140013284 a001 1597/710647*312119004989^(3/5) 1771100140013284 a001 1597/710647*14662949395604^(11/21) 1771100140013284 a001 1597/710647*(1/2+1/2*5^(1/2))^33 1771100140013284 a001 1597/710647*192900153618^(11/18) 1771100140013284 a001 1597/710647*10749957122^(11/16) 1771100140013284 a001 1597/710647*1568397607^(3/4) 1771100140013284 a001 1597/710647*599074578^(11/14) 1771100140013285 a001 317811/3571*7881196^(1/3) 1771100140013285 a001 1597/710647*33385282^(11/12) 1771100140013294 a001 317811/3571*312119004989^(1/5) 1771100140013294 a001 317811/3571*(1/2+1/2*5^(1/2))^11 1771100140013294 a001 317811/3571*1568397607^(1/4) 1771100140014790 a001 3524578/3571*439204^(2/9) 1771100140015440 a001 9107510539/514229 1771100140015780 a001 14930352/3571*439204^(1/9) 1771100140016279 a001 1597/1860498*2537720636^(7/9) 1771100140016279 a001 1597/1860498*17393796001^(5/7) 1771100140016279 a001 1597/1860498*312119004989^(7/11) 1771100140016279 a001 1597/1860498*14662949395604^(5/9) 1771100140016279 a001 1597/1860498*(1/2+1/2*5^(1/2))^35 1771100140016279 a001 1597/1860498*505019158607^(5/8) 1771100140016279 a001 1597/1860498*28143753123^(7/10) 1771100140016279 a001 1597/1860498*599074578^(5/6) 1771100140016279 a001 1597/1860498*228826127^(7/8) 1771100140016282 a001 832040/3571*7881196^(3/11) 1771100140016290 a001 832040/3571*141422324^(3/13) 1771100140016290 a001 832040/3571*2537720636^(1/5) 1771100140016290 a001 832040/3571*45537549124^(3/17) 1771100140016290 a001 832040/3571*817138163596^(3/19) 1771100140016290 a001 832040/3571*14662949395604^(1/7) 1771100140016290 a001 832040/3571*(1/2+1/2*5^(1/2))^9 1771100140016290 a001 832040/3571*10749957122^(3/16) 1771100140016290 a001 832040/3571*599074578^(3/14) 1771100140016290 a001 832040/3571*33385282^(1/4) 1771100140016443 a001 832040/3571*1860498^(3/10) 1771100140016594 a001 23843772144/1346269 1771100140016716 a001 1597/4870847*(1/2+1/2*5^(1/2))^37 1771100140016726 a001 2178309/3571*20633239^(1/5) 1771100140016727 a001 2178309/3571*17393796001^(1/7) 1771100140016727 a001 2178309/3571*14662949395604^(1/9) 1771100140016727 a001 2178309/3571*(1/2+1/2*5^(1/2))^7 1771100140016727 a001 2178309/3571*599074578^(1/6) 1771100140016762 a001 62423805893/3524578 1771100140016780 a001 1597/12752043*2537720636^(13/15) 1771100140016780 a001 1597/12752043*45537549124^(13/17) 1771100140016780 a001 1597/12752043*14662949395604^(13/21) 1771100140016780 a001 1597/12752043*(1/2+1/2*5^(1/2))^39 1771100140016780 a001 1597/12752043*192900153618^(13/18) 1771100140016780 a001 1597/12752043*73681302247^(3/4) 1771100140016780 a001 1597/12752043*10749957122^(13/16) 1771100140016780 a001 1597/12752043*599074578^(13/14) 1771100140016786 a001 32685529107/1845493 1771100140016789 a001 1597/33385282*(1/2+1/2*5^(1/2))^41 1771100140016790 a001 427859130712/24157817 1771100140016790 a001 1597*20633239^(1/7) 1771100140016790 a001 1120149746601/63245986 1771100140016791 a001 1597/228826127*45537549124^(15/17) 1771100140016791 a001 1597/228826127*312119004989^(9/11) 1771100140016791 a001 1597/228826127*14662949395604^(5/7) 1771100140016791 a001 1597/228826127*192900153618^(5/6) 1771100140016791 a001 1597/228826127*28143753123^(9/10) 1771100140016791 a001 1597/228826127*10749957122^(15/16) 1771100140016791 a001 2932590109091/165580141 1771100140016791 a001 7677620580672/433494437 1771100140016791 a001 1597/1568397607*14662949395604^(7/9) 1771100140016791 a001 1597/1568397607*505019158607^(7/8) 1771100140016791 a001 4020054326585/226980634 1771100140016791 a001 1597/4106118243*14662949395604^(17/21) 1771100140016791 a001 1597/4106118243*192900153618^(17/18) 1771100140016791 a001 52623194318103/2971215073 1771100140016791 a001 1597*2537720636^(1/9) 1771100140016791 a001 137769311321384/7778742049 1771100140016791 a001 1597/28143753123*3461452808002^(11/12) 1771100140016791 a001 225851433717/12752042 1771100140016791 a001 1597/73681302247*14662949395604^(19/21) 1771100140016791 a001 944284907616763/53316291173 1771100140016791 a001 494433996640848/27916772489 1771100140016791 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^5/Lucas(1) 1771100140016791 a001 10472280100787674/591286729879 1771100140016791 a001 4000055058791717/225851433717 1771100140016791 a001 1597/312119004989*14662949395604^(20/21) 1771100140016791 a001 1527885075587477/86267571272 1771100140016791 a001 1597*28143753123^(1/10) 1771100140016791 a001 583600167970714/32951280099 1771100140016791 a001 1597/45537549124*14662949395604^(8/9) 1771100140016791 a001 44583085664933/2517253805 1771100140016791 a001 1597/17393796001*14662949395604^(6/7) 1771100140016791 a001 85146117003281/4807526976 1771100140016791 a001 1597/6643838879*23725150497407^(13/16) 1771100140016791 a001 1597/6643838879*505019158607^(13/14) 1771100140016791 a001 32522922685178/1836311903 1771100140016791 a001 1597/2537720636*312119004989^(10/11) 1771100140016791 a001 1597/2537720636*3461452808002^(5/6) 1771100140016791 a001 12422651052253/701408733 1771100140016791 a001 1597/969323029*45537549124^(16/17) 1771100140016791 a001 1597/969323029*14662949395604^(16/21) 1771100140016791 a001 1597/969323029*192900153618^(8/9) 1771100140016791 a001 1597/969323029*73681302247^(12/13) 1771100140016791 a001 1597*228826127^(1/8) 1771100140016791 a001 4745030471581/267914296 1771100140016791 a001 1597/370248451*10749957122^(23/24) 1771100140016791 a001 362488072498/20466831 1771100140016791 a001 1597/141422324*312119004989^(4/5) 1771100140016791 a001 1597/141422324*23725150497407^(11/16) 1771100140016791 a001 1597/141422324*73681302247^(11/13) 1771100140016791 a001 1597/141422324*10749957122^(11/12) 1771100140016791 a001 1597/141422324*4106118243^(22/23) 1771100140016791 a001 692290615889/39088169 1771100140016791 a001 1597/54018521*2537720636^(14/15) 1771100140016791 a001 1597/54018521*17393796001^(6/7) 1771100140016791 a001 1597/54018521*45537549124^(14/17) 1771100140016791 a001 1597/54018521*817138163596^(14/19) 1771100140016791 a001 1597/54018521*14662949395604^(2/3) 1771100140016791 a001 1597/54018521*192900153618^(7/9) 1771100140016791 a001 1597/54018521*10749957122^(7/8) 1771100140016791 a001 1597/54018521*4106118243^(21/23) 1771100140016791 a001 1597/54018521*1568397607^(21/22) 1771100140016792 a001 264431485177/14930352 1771100140016795 a001 1597/20633239*2537720636^(8/9) 1771100140016795 a001 1597/20633239*312119004989^(8/11) 1771100140016795 a001 1597/20633239*(1/2+1/2*5^(1/2))^40 1771100140016795 a001 1597/20633239*23725150497407^(5/8) 1771100140016795 a001 1597/20633239*73681302247^(10/13) 1771100140016795 a001 1597/20633239*28143753123^(4/5) 1771100140016795 a001 1597/20633239*10749957122^(5/6) 1771100140016795 a001 1597/20633239*4106118243^(20/23) 1771100140016795 a001 1597/20633239*1568397607^(10/11) 1771100140016795 a001 1597/20633239*599074578^(20/21) 1771100140016797 a001 14930352/3571*7881196^(1/11) 1771100140016800 a001 14930352/3571*141422324^(1/13) 1771100140016800 a001 14930352/3571*2537720636^(1/15) 1771100140016800 a001 14930352/3571*45537549124^(1/17) 1771100140016800 a001 14930352/3571*14662949395604^(1/21) 1771100140016800 a001 14930352/3571*(1/2+1/2*5^(1/2))^3 1771100140016800 a001 14930352/3571*10749957122^(1/16) 1771100140016800 a001 14930352/3571*599074578^(1/14) 1771100140016800 a001 14930352/3571*33385282^(1/12) 1771100140016801 a001 39088169/7142+39088169/7142*5^(1/2) 1771100140016802 a001 63245986/3571 1771100140016802 a001 24157817/3571*(1/2+1/2*5^(1/2))^2 1771100140016802 a001 24157817/3571*10749957122^(1/24) 1771100140016802 a001 24157817/3571*4106118243^(1/23) 1771100140016802 a001 24157817/3571*1568397607^(1/22) 1771100140016802 a001 24157817/3571*599074578^(1/21) 1771100140016802 a001 24157817/3571*228826127^(1/20) 1771100140016802 a001 24157817/3571*87403803^(1/19) 1771100140016802 a001 24157817/3571*33385282^(1/18) 1771100140016803 a001 24157817/3571*12752043^(1/17) 1771100140016806 a001 9227465/3571*(1/2+1/2*5^(1/2))^4 1771100140016806 a001 9227465/3571*23725150497407^(1/16) 1771100140016806 a001 9227465/3571*73681302247^(1/13) 1771100140016806 a001 9227465/3571*10749957122^(1/12) 1771100140016806 a001 9227465/3571*4106118243^(2/23) 1771100140016806 a001 9227465/3571*1568397607^(1/11) 1771100140016806 a001 9227465/3571*599074578^(2/21) 1771100140016806 a001 9227465/3571*228826127^(1/10) 1771100140016806 a001 9227465/3571*87403803^(2/19) 1771100140016806 a001 9227465/3571*33385282^(1/9) 1771100140016807 a001 24157817/3571*4870847^(1/16) 1771100140016807 a001 9227465/3571*12752043^(2/17) 1771100140016815 a001 9227465/3571*4870847^(1/8) 1771100140016819 a001 1597/7881196*817138163596^(2/3) 1771100140016819 a001 1597/7881196*(1/2+1/2*5^(1/2))^38 1771100140016819 a001 1597/7881196*10749957122^(19/24) 1771100140016819 a001 1597/7881196*4106118243^(19/23) 1771100140016819 a001 1597/7881196*1568397607^(19/22) 1771100140016819 a001 1597/7881196*599074578^(19/21) 1771100140016819 a001 1597/7881196*228826127^(19/20) 1771100140016825 a001 3524578/3571*7881196^(2/11) 1771100140016830 a001 3524578/3571*141422324^(2/13) 1771100140016830 a001 3524578/3571*2537720636^(2/15) 1771100140016830 a001 3524578/3571*45537549124^(2/17) 1771100140016830 a001 3524578/3571*14662949395604^(2/21) 1771100140016830 a001 3524578/3571*(1/2+1/2*5^(1/2))^6 1771100140016830 a001 3524578/3571*10749957122^(1/8) 1771100140016830 a001 3524578/3571*4106118243^(3/23) 1771100140016830 a001 3524578/3571*1568397607^(3/22) 1771100140016830 a001 3524578/3571*599074578^(1/7) 1771100140016830 a001 3524578/3571*228826127^(3/20) 1771100140016830 a001 3524578/3571*87403803^(3/19) 1771100140016830 a001 3524578/3571*33385282^(1/6) 1771100140016832 a001 3524578/3571*12752043^(3/17) 1771100140016836 a001 24157817/3571*1860498^(1/15) 1771100140016844 a001 3524578/3571*4870847^(3/16) 1771100140016851 a001 14930352/3571*1860498^(1/10) 1771100140016866 a001 38580033749/2178309 1771100140016874 a001 9227465/3571*1860498^(2/15) 1771100140016876 a001 1597*1860498^(1/6) 1771100140016932 a001 3524578/3571*1860498^(1/5) 1771100140016986 a001 1597/3010349*141422324^(12/13) 1771100140016986 a001 1597/3010349*2537720636^(4/5) 1771100140016986 a001 1597/3010349*45537549124^(12/17) 1771100140016986 a001 1597/3010349*14662949395604^(4/7) 1771100140016986 a001 1597/3010349*(1/2+1/2*5^(1/2))^36 1771100140016986 a001 1597/3010349*192900153618^(2/3) 1771100140016986 a001 1597/3010349*73681302247^(9/13) 1771100140016986 a001 1597/3010349*10749957122^(3/4) 1771100140016986 a001 1597/3010349*4106118243^(18/23) 1771100140016986 a001 1597/3010349*1568397607^(9/11) 1771100140016986 a001 1597/3010349*599074578^(6/7) 1771100140016986 a001 1597/3010349*228826127^(9/10) 1771100140016986 a001 1597/3010349*87403803^(18/19) 1771100140016997 a001 1346269/3571*(1/2+1/2*5^(1/2))^8 1771100140016997 a001 1346269/3571*23725150497407^(1/8) 1771100140016997 a001 1346269/3571*73681302247^(2/13) 1771100140016997 a001 1346269/3571*10749957122^(1/6) 1771100140016997 a001 1346269/3571*4106118243^(4/23) 1771100140016997 a001 1346269/3571*1568397607^(2/11) 1771100140016997 a001 1346269/3571*599074578^(4/21) 1771100140016997 a001 1346269/3571*228826127^(1/5) 1771100140016997 a001 1346269/3571*87403803^(4/19) 1771100140016997 a001 1346269/3571*33385282^(2/9) 1771100140016999 a001 1346269/3571*12752043^(4/17) 1771100140017016 a001 1346269/3571*4870847^(1/4) 1771100140017053 a001 24157817/3571*710647^(1/14) 1771100140017133 a001 1346269/3571*1860498^(4/15) 1771100140017306 a001 2947252321/166408 1771100140017307 a001 9227465/3571*710647^(1/7) 1771100140017581 a001 3524578/3571*710647^(3/14) 1771100140017604 a001 2178309/3571*710647^(1/4) 1771100140017999 a001 1346269/3571*710647^(2/7) 1771100140018130 a001 1597/1149851*45537549124^(2/3) 1771100140018130 a001 1597/1149851*(1/2+1/2*5^(1/2))^34 1771100140018130 a001 1597/1149851*10749957122^(17/24) 1771100140018130 a001 1597/1149851*4106118243^(17/23) 1771100140018130 a001 1597/1149851*1568397607^(17/22) 1771100140018130 a001 1597/1149851*599074578^(17/21) 1771100140018130 a001 1597/1149851*228826127^(17/20) 1771100140018130 a001 1597/1149851*87403803^(17/19) 1771100140018132 a001 1597/1149851*33385282^(17/18) 1771100140018140 a001 514229/3571*20633239^(2/7) 1771100140018141 a001 514229/3571*2537720636^(2/9) 1771100140018141 a001 514229/3571*312119004989^(2/11) 1771100140018141 a001 514229/3571*(1/2+1/2*5^(1/2))^10 1771100140018141 a001 514229/3571*28143753123^(1/5) 1771100140018141 a001 514229/3571*10749957122^(5/24) 1771100140018141 a001 514229/3571*4106118243^(5/23) 1771100140018141 a001 514229/3571*1568397607^(5/22) 1771100140018141 a001 514229/3571*599074578^(5/21) 1771100140018141 a001 514229/3571*228826127^(1/4) 1771100140018141 a001 514229/3571*87403803^(5/19) 1771100140018141 a001 514229/3571*33385282^(5/18) 1771100140018144 a001 514229/3571*12752043^(5/17) 1771100140018164 a001 514229/3571*4870847^(5/16) 1771100140018312 a001 514229/3571*1860498^(1/3) 1771100140018651 a001 24157817/3571*271443^(1/13) 1771100140019393 a001 514229/3571*710647^(5/14) 1771100140020326 a001 5628751066/317811 1771100140020504 a001 9227465/3571*271443^(2/13) 1771100140021902 a001 196418/3571*439204^(4/9) 1771100140022377 a001 3524578/3571*271443^(3/13) 1771100140023666 a001 39088169/3571*103682^(1/24) 1771100140024393 a001 1346269/3571*271443^(4/13) 1771100140025972 a001 1597/439204*(1/2+1/2*5^(1/2))^32 1771100140025972 a001 1597/439204*23725150497407^(1/2) 1771100140025972 a001 1597/439204*73681302247^(8/13) 1771100140025972 a001 1597/439204*10749957122^(2/3) 1771100140025972 a001 1597/439204*4106118243^(16/23) 1771100140025972 a001 1597/439204*1568397607^(8/11) 1771100140025972 a001 1597/439204*599074578^(16/21) 1771100140025972 a001 1597/439204*228826127^(4/5) 1771100140025972 a001 1597/439204*87403803^(16/19) 1771100140025972 a001 196418/3571*7881196^(4/11) 1771100140025973 a001 1597/439204*33385282^(8/9) 1771100140025982 a001 1597/439204*12752043^(16/17) 1771100140025983 a001 196418/3571*141422324^(4/13) 1771100140025983 a001 196418/3571*2537720636^(4/15) 1771100140025983 a001 196418/3571*45537549124^(4/17) 1771100140025983 a001 196418/3571*817138163596^(4/19) 1771100140025983 a001 196418/3571*14662949395604^(4/21) 1771100140025983 a001 196418/3571*(1/2+1/2*5^(1/2))^12 1771100140025983 a001 196418/3571*73681302247^(3/13) 1771100140025983 a001 196418/3571*10749957122^(1/4) 1771100140025983 a001 196418/3571*4106118243^(6/23) 1771100140025983 a001 196418/3571*1568397607^(3/11) 1771100140025983 a001 196418/3571*599074578^(2/7) 1771100140025983 a001 196418/3571*228826127^(3/10) 1771100140025983 a001 196418/3571*87403803^(6/19) 1771100140025983 a001 196418/3571*33385282^(1/3) 1771100140025987 a001 196418/3571*12752043^(6/17) 1771100140026011 a001 196418/3571*4870847^(3/8) 1771100140026188 a001 196418/3571*1860498^(2/5) 1771100140027386 a001 514229/3571*271443^(5/13) 1771100140027486 a001 196418/3571*710647^(3/7) 1771100140030532 a001 24157817/3571*103682^(1/12) 1771100140037077 a001 196418/3571*271443^(6/13) 1771100140037394 a001 14930352/3571*103682^(1/8) 1771100140041023 a001 2149991593/121393 1771100140044265 a001 9227465/3571*103682^(1/6) 1771100140051114 a001 1597*103682^(5/24) 1771100140058018 a001 3524578/3571*103682^(1/4) 1771100140064780 a001 2178309/3571*103682^(7/24) 1771100140068130 a001 39088169/3571*39603^(1/22) 1771100140071915 a001 1346269/3571*103682^(1/3) 1771100140078073 a001 832040/3571*103682^(3/8) 1771100140079695 a001 1597/167761*7881196^(10/11) 1771100140079717 a001 1597/167761*20633239^(6/7) 1771100140079721 a001 1597/167761*141422324^(10/13) 1771100140079721 a001 1597/167761*2537720636^(2/3) 1771100140079721 a001 1597/167761*45537549124^(10/17) 1771100140079721 a001 1597/167761*312119004989^(6/11) 1771100140079721 a001 1597/167761*14662949395604^(10/21) 1771100140079721 a001 1597/167761*(1/2+1/2*5^(1/2))^30 1771100140079721 a001 1597/167761*192900153618^(5/9) 1771100140079721 a001 1597/167761*28143753123^(3/5) 1771100140079721 a001 1597/167761*10749957122^(5/8) 1771100140079721 a001 1597/167761*4106118243^(15/23) 1771100140079721 a001 1597/167761*1568397607^(15/22) 1771100140079721 a001 1597/167761*599074578^(5/7) 1771100140079721 a001 1597/167761*228826127^(3/4) 1771100140079721 a001 1597/167761*87403803^(15/19) 1771100140079722 a001 1597/167761*33385282^(5/6) 1771100140079730 a001 75025/3571*20633239^(2/5) 1771100140079731 a001 1597/167761*12752043^(15/17) 1771100140079732 a001 75025/3571*17393796001^(2/7) 1771100140079732 a001 75025/3571*14662949395604^(2/9) 1771100140079732 a001 75025/3571*(1/2+1/2*5^(1/2))^14 1771100140079732 a001 75025/3571*10749957122^(7/24) 1771100140079732 a001 75025/3571*4106118243^(7/23) 1771100140079732 a001 75025/3571*1568397607^(7/22) 1771100140079732 a001 75025/3571*599074578^(1/3) 1771100140079732 a001 75025/3571*228826127^(7/20) 1771100140079732 a001 75025/3571*87403803^(7/19) 1771100140079733 a001 75025/3571*33385282^(7/18) 1771100140079736 a001 75025/3571*12752043^(7/17) 1771100140079765 a001 75025/3571*4870847^(7/16) 1771100140079791 a001 1597/167761*4870847^(15/16) 1771100140079971 a001 75025/3571*1860498^(7/15) 1771100140081485 a001 75025/3571*710647^(1/2) 1771100140082006 a001 121393/3571*103682^(13/24) 1771100140086789 a001 514229/3571*103682^(5/12) 1771100140088807 a001 317811/3571*103682^(11/24) 1771100140092675 a001 75025/3571*271443^(7/13) 1771100140108360 a001 196418/3571*103682^(1/2) 1771100140119460 a001 24157817/3571*39603^(1/11) 1771100140148076 a001 28657/3571*64079^(16/23) 1771100140170787 a001 14930352/3571*39603^(3/22) 1771100140175839 a001 75025/3571*103682^(7/12) 1771100140182884 a001 821223713/46368 1771100140222122 a001 9227465/3571*39603^(2/11) 1771100140273436 a001 1597*39603^(5/22) 1771100140324805 a001 3524578/3571*39603^(3/11) 1771100140376031 a001 2178309/3571*39603^(7/22) 1771100140403798 a001 39088169/3571*15127^(1/20) 1771100140427630 a001 1346269/3571*39603^(4/11) 1771100140439143 a001 10946/3571*24476^(6/7) 1771100140440248 a001 24157817/24476*2207^(3/8) 1771100140448119 a001 1597/64079*20633239^(4/5) 1771100140448123 a001 1597/64079*17393796001^(4/7) 1771100140448123 a001 1597/64079*14662949395604^(4/9) 1771100140448123 a001 1597/64079*(1/2+1/2*5^(1/2))^28 1771100140448123 a001 1597/64079*73681302247^(7/13) 1771100140448123 a001 1597/64079*10749957122^(7/12) 1771100140448123 a001 1597/64079*4106118243^(14/23) 1771100140448123 a001 1597/64079*1568397607^(7/11) 1771100140448123 a001 1597/64079*599074578^(2/3) 1771100140448123 a001 1597/64079*228826127^(7/10) 1771100140448123 a001 1597/64079*87403803^(14/19) 1771100140448124 a001 1597/64079*33385282^(7/9) 1771100140448131 a001 1597/64079*12752043^(14/17) 1771100140448133 a001 28657/3571*(1/2+1/2*5^(1/2))^16 1771100140448133 a001 28657/3571*23725150497407^(1/4) 1771100140448133 a001 28657/3571*73681302247^(4/13) 1771100140448133 a001 28657/3571*10749957122^(1/3) 1771100140448133 a001 28657/3571*4106118243^(8/23) 1771100140448133 a001 28657/3571*1568397607^(4/11) 1771100140448133 a001 28657/3571*599074578^(8/21) 1771100140448133 a001 28657/3571*228826127^(2/5) 1771100140448134 a001 28657/3571*87403803^(8/19) 1771100140448134 a001 28657/3571*33385282^(4/9) 1771100140448139 a001 28657/3571*12752043^(8/17) 1771100140448171 a001 28657/3571*4870847^(1/2) 1771100140448188 a001 1597/64079*4870847^(7/8) 1771100140448406 a001 28657/3571*1860498^(8/15) 1771100140448600 a001 1597/64079*1860498^(14/15) 1771100140450137 a001 28657/3571*710647^(4/7) 1771100140462926 a001 28657/3571*271443^(8/13) 1771100140478252 a001 832040/3571*39603^(9/22) 1771100140531433 a001 514229/3571*39603^(5/11) 1771100140557970 a001 28657/3571*103682^(2/3) 1771100140577915 a001 317811/3571*39603^(1/2) 1771100140621985 a001 46368/3571*39603^(15/22) 1771100140641933 a001 196418/3571*39603^(6/11) 1771100140660043 a001 121393/3571*39603^(13/22) 1771100140790796 a001 24157817/3571*15127^(1/10) 1771100140798340 a001 75025/3571*39603^(7/11) 1771100141155214 a001 313679546/17711 1771100141177791 a001 14930352/3571*15127^(3/20) 1771100141269400 a001 28657/3571*39603^(8/11) 1771100141564793 a001 9227465/3571*15127^(1/5) 1771100141951775 a001 1597*15127^(1/4) 1771100142338811 a001 3524578/3571*15127^(3/10) 1771100142635631 a001 10946/3571*64079^(18/23) 1771100142725705 a001 2178309/3571*15127^(7/20) 1771100142964042 a001 39088169/3571*5778^(1/18) 1771100142967074 a001 10946/3571*439204^(2/3) 1771100142973179 a001 10946/3571*7881196^(6/11) 1771100142973184 a001 1597/24476*141422324^(2/3) 1771100142973184 a001 1597/24476*(1/2+1/2*5^(1/2))^26 1771100142973184 a001 1597/24476*73681302247^(1/2) 1771100142973184 a001 1597/24476*10749957122^(13/24) 1771100142973184 a001 1597/24476*4106118243^(13/23) 1771100142973184 a001 1597/24476*1568397607^(13/22) 1771100142973184 a001 1597/24476*599074578^(13/21) 1771100142973184 a001 1597/24476*228826127^(13/20) 1771100142973184 a001 1597/24476*87403803^(13/19) 1771100142973185 a001 1597/24476*33385282^(13/18) 1771100142973192 a001 1597/24476*12752043^(13/17) 1771100142973195 a001 10946/3571*141422324^(6/13) 1771100142973195 a001 10946/3571*2537720636^(2/5) 1771100142973195 a001 10946/3571*45537549124^(6/17) 1771100142973195 a001 10946/3571*14662949395604^(2/7) 1771100142973195 a001 10946/3571*(1/2+1/2*5^(1/2))^18 1771100142973195 a001 10946/3571*192900153618^(1/3) 1771100142973195 a001 10946/3571*10749957122^(3/8) 1771100142973195 a001 10946/3571*4106118243^(9/23) 1771100142973195 a001 10946/3571*1568397607^(9/22) 1771100142973195 a001 10946/3571*599074578^(3/7) 1771100142973195 a001 10946/3571*228826127^(9/20) 1771100142973195 a001 10946/3571*87403803^(9/19) 1771100142973196 a001 10946/3571*33385282^(1/2) 1771100142973201 a001 10946/3571*12752043^(9/17) 1771100142973237 a001 10946/3571*4870847^(9/16) 1771100142973245 a001 1597/24476*4870847^(13/16) 1771100142973502 a001 10946/3571*1860498^(3/5) 1771100142973627 a001 1597/24476*1860498^(13/15) 1771100142975449 a001 10946/3571*710647^(9/14) 1771100142976440 a001 1597/24476*710647^(13/14) 1771100142989836 a001 10946/3571*271443^(9/13) 1771100143096760 a001 10946/3571*103682^(3/4) 1771100143112972 a001 1346269/3571*15127^(2/5) 1771100143499262 a001 832040/3571*15127^(9/20) 1771100143888110 a001 514229/3571*15127^(1/2) 1771100143897120 a001 10946/3571*39603^(9/11) 1771100144270261 a001 317811/3571*15127^(11/20) 1771100144299174 a001 75025/322*18^(40/57) 1771100144669946 a001 196418/3571*15127^(3/5) 1771100144758670 r005 Re(z^2+c),c=-13/66+8/55*I,n=8 1771100145023724 a001 121393/3571*15127^(13/20) 1771100145466507 a001 17711/3571*15127^(17/20) 1771100145497689 a001 75025/3571*15127^(7/10) 1771100145657001 a001 46368/3571*15127^(3/4) 1771100145708047 a001 1/322*(1/2*5^(1/2)+1/2)^8*3^(3/17) 1771100145911283 a001 24157817/3571*5778^(1/9) 1771100146640084 a001 28657/3571*15127^(4/5) 1771100147819660 a001 23962985/1353 1771100148412421 m005 (1/3*gamma+2/7)/(1/11*Pi-5/9) 1771100148858521 a001 14930352/3571*5778^(1/6) 1771100149939139 a001 10946/3571*15127^(9/10) 1771100151222401 a007 Real Root Of -942*x^4-895*x^3+709*x^2-714*x+808 1771100151805767 a001 9227465/3571*5778^(2/9) 1771100152469690 a001 9227465/15127*2207^(7/16) 1771100152611032 a001 1346269/5778*2207^(9/16) 1771100154752992 a001 1597*5778^(5/18) 1771100157464611 a001 4181/3571*24476^(20/21) 1771100157700272 a001 3524578/3571*5778^(1/3) 1771100157747281 a001 9227465/9349*2207^(3/8) 1771100158022650 m001 Grothendieck^(GAMMA(19/24)/KhinchinLevy) 1771100159080383 a001 24157817/39603*2207^(7/16) 1771100159905152 a001 4181/3571*64079^(20/23) 1771100160044870 a001 31622993/51841*2207^(7/16) 1771100160185587 a001 165580141/271443*2207^(7/16) 1771100160206117 a001 433494437/710647*2207^(7/16) 1771100160209112 a001 567451585/930249*2207^(7/16) 1771100160209549 a001 2971215073/4870847*2207^(7/16) 1771100160209613 a001 7778742049/12752043*2207^(7/16) 1771100160209623 a001 10182505537/16692641*2207^(7/16) 1771100160209624 a001 53316291173/87403803*2207^(7/16) 1771100160209624 a001 139583862445/228826127*2207^(7/16) 1771100160209624 a001 182717648081/299537289*2207^(7/16) 1771100160209624 a001 956722026041/1568397607*2207^(7/16) 1771100160209624 a001 2504730781961/4106118243*2207^(7/16) 1771100160209624 a001 3278735159921/5374978561*2207^(7/16) 1771100160209624 a001 10610209857723/17393796001*2207^(7/16) 1771100160209624 a001 4052739537881/6643838879*2207^(7/16) 1771100160209624 a001 1134903780/1860499*2207^(7/16) 1771100160209624 a001 591286729879/969323029*2207^(7/16) 1771100160209624 a001 225851433717/370248451*2207^(7/16) 1771100160209624 a001 21566892818/35355581*2207^(7/16) 1771100160209625 a001 32951280099/54018521*2207^(7/16) 1771100160209628 a001 1144206275/1875749*2207^(7/16) 1771100160209653 a001 1201881744/1970299*2207^(7/16) 1771100160209820 a001 1836311903/3010349*2207^(7/16) 1771100160210964 a001 701408733/1149851*2207^(7/16) 1771100160218806 a001 66978574/109801*2207^(7/16) 1771100160229879 a001 4181/3571*167761^(4/5) 1771100160272051 a001 1597/9349*439204^(8/9) 1771100160272555 a001 9303105/15251*2207^(7/16) 1771100160280192 a001 1597/9349*7881196^(8/11) 1771100160280213 a001 1597/9349*141422324^(8/13) 1771100160280213 a001 1597/9349*2537720636^(8/15) 1771100160280213 a001 1597/9349*45537549124^(8/17) 1771100160280213 a001 1597/9349*14662949395604^(8/21) 1771100160280213 a001 1597/9349*(1/2+1/2*5^(1/2))^24 1771100160280213 a001 1597/9349*192900153618^(4/9) 1771100160280213 a001 1597/9349*73681302247^(6/13) 1771100160280213 a001 1597/9349*10749957122^(1/2) 1771100160280213 a001 1597/9349*4106118243^(12/23) 1771100160280213 a001 1597/9349*1568397607^(6/11) 1771100160280213 a001 1597/9349*599074578^(4/7) 1771100160280213 a001 1597/9349*228826127^(3/5) 1771100160280213 a001 1597/9349*87403803^(12/19) 1771100160280214 a001 1597/9349*33385282^(2/3) 1771100160280220 a001 1597/9349*12752043^(12/17) 1771100160280221 a001 4181/3571*20633239^(4/7) 1771100160280223 a001 4181/3571*2537720636^(4/9) 1771100160280223 a001 4181/3571*(1/2+1/2*5^(1/2))^20 1771100160280223 a001 4181/3571*23725150497407^(5/16) 1771100160280223 a001 4181/3571*505019158607^(5/14) 1771100160280223 a001 4181/3571*73681302247^(5/13) 1771100160280223 a001 4181/3571*28143753123^(2/5) 1771100160280223 a001 4181/3571*10749957122^(5/12) 1771100160280223 a001 4181/3571*4106118243^(10/23) 1771100160280223 a001 4181/3571*1568397607^(5/11) 1771100160280223 a001 4181/3571*599074578^(10/21) 1771100160280223 a001 4181/3571*228826127^(1/2) 1771100160280223 a001 4181/3571*87403803^(10/19) 1771100160280224 a001 4181/3571*33385282^(5/9) 1771100160280230 a001 4181/3571*12752043^(10/17) 1771100160280269 a001 1597/9349*4870847^(3/4) 1771100160280270 a001 4181/3571*4870847^(5/8) 1771100160280564 a001 4181/3571*1860498^(2/3) 1771100160280622 a001 1597/9349*1860498^(4/5) 1771100160282728 a001 4181/3571*710647^(5/7) 1771100160283219 a001 1597/9349*710647^(6/7) 1771100160298714 a001 4181/3571*271443^(10/13) 1771100160302401 a001 1597/9349*271443^(12/13) 1771100160417519 a001 4181/3571*103682^(5/6) 1771100160640956 a001 39088169/64079*2207^(7/16) 1771100160647409 a001 2178309/3571*5778^(7/18) 1771100161306807 a001 4181/3571*39603^(10/11) 1771100162742571 a001 39088169/3571*2207^(1/16) 1771100163166016 a001 3732588/6119*2207^(7/16) 1771100163594920 a001 1346269/3571*5778^(4/9) 1771100164203612 q001 5393/3045 1771100166541453 a001 832040/3571*5778^(1/2) 1771100167367365 r002 4th iterates of z^2 + 1771100169490545 a001 514229/3571*5778^(5/9) 1771100171406040 a001 165580141/15127*843^(1/14) 1771100171567151 a001 9227465/2207*843^(3/14) 1771100172432939 a001 317811/3571*5778^(11/18) 1771100174665709 r005 Re(z^2+c),c=5/22+7/38*I,n=17 1771100175195445 a001 5702887/15127*2207^(1/2) 1771100175336095 a001 416020/2889*2207^(5/8) 1771100175392868 a001 196418/3571*5778^(2/3) 1771100178016737 a001 433494437/39603*843^(1/14) 1771100178306889 a001 121393/3571*5778^(13/18) 1771100178981224 a001 567451585/51841*843^(1/14) 1771100179121941 a001 2971215073/271443*843^(1/14) 1771100179142471 a001 7778742049/710647*843^(1/14) 1771100179145467 a001 10182505537/930249*843^(1/14) 1771100179145904 a001 53316291173/4870847*843^(1/14) 1771100179145968 a001 139583862445/12752043*843^(1/14) 1771100179145977 a001 182717648081/16692641*843^(1/14) 1771100179145978 a001 956722026041/87403803*843^(1/14) 1771100179145978 a001 2504730781961/228826127*843^(1/14) 1771100179145978 a001 3278735159921/299537289*843^(1/14) 1771100179145978 a001 10610209857723/969323029*843^(1/14) 1771100179145978 a001 4052739537881/370248451*843^(1/14) 1771100179145979 a001 387002188980/35355581*843^(1/14) 1771100179145979 a001 591286729879/54018521*843^(1/14) 1771100179145983 a001 7787980473/711491*843^(1/14) 1771100179146007 a001 21566892818/1970299*843^(1/14) 1771100179146174 a001 32951280099/3010349*843^(1/14) 1771100179147318 a001 12586269025/1149851*843^(1/14) 1771100179155160 a001 1201881744/109801*843^(1/14) 1771100179208909 a001 1836311903/167761*843^(1/14) 1771100179577310 a001 701408733/64079*843^(1/14) 1771100180473036 a001 5702887/9349*2207^(7/16) 1771100181341098 a001 75025/3571*5778^(7/9) 1771100181806151 a001 4976784/13201*2207^(1/2) 1771100182102372 a001 10946*843^(1/14) 1771100182770640 a001 39088169/103682*2207^(1/2) 1771100182911357 a001 34111385/90481*2207^(1/2) 1771100182931887 a001 267914296/710647*2207^(1/2) 1771100182934883 a001 233802911/620166*2207^(1/2) 1771100182935320 a001 1836311903/4870847*2207^(1/2) 1771100182935383 a001 1602508992/4250681*2207^(1/2) 1771100182935393 a001 12586269025/33385282*2207^(1/2) 1771100182935394 a001 10983760033/29134601*2207^(1/2) 1771100182935394 a001 86267571272/228826127*2207^(1/2) 1771100182935394 a001 267913919/710646*2207^(1/2) 1771100182935394 a001 591286729879/1568397607*2207^(1/2) 1771100182935394 a001 516002918640/1368706081*2207^(1/2) 1771100182935394 a001 4052739537881/10749957122*2207^(1/2) 1771100182935394 a001 3536736619241/9381251041*2207^(1/2) 1771100182935394 a001 6557470319842/17393796001*2207^(1/2) 1771100182935394 a001 2504730781961/6643838879*2207^(1/2) 1771100182935394 a001 956722026041/2537720636*2207^(1/2) 1771100182935394 a001 365435296162/969323029*2207^(1/2) 1771100182935394 a001 139583862445/370248451*2207^(1/2) 1771100182935394 a001 53316291173/141422324*2207^(1/2) 1771100182935395 a001 20365011074/54018521*2207^(1/2) 1771100182935398 a001 7778742049/20633239*2207^(1/2) 1771100182935423 a001 2971215073/7881196*2207^(1/2) 1771100182935590 a001 1134903170/3010349*2207^(1/2) 1771100182936734 a001 433494437/1149851*2207^(1/2) 1771100182944576 a001 165580141/439204*2207^(1/2) 1771100182998325 a001 63245986/167761*2207^(1/2) 1771100183366727 a001 24157817/64079*2207^(1/2) 1771100184060653 a001 46368/3571*5778^(5/6) 1771100185468342 a001 24157817/3571*2207^(1/8) 1771100185891792 a001 9227465/24476*2207^(1/2) 1771100187603980 a001 28657/3571*5778^(8/9) 1771100188990647 a001 17711/3571*5778^(17/18) 1771100189437395 r009 Re(z^3+c),c=-9/70+34/41*I,n=33 1771100190088892 r005 Im(z^2+c),c=15/56+1/24*I,n=33 1771100190735008 a007 Real Root Of -109*x^4+153*x^3+3*x^2-834*x+436 1771100191582118 a001 75025/1364*1364^(4/5) 1771100193498452 a001 45765229/2584 1771100194626888 m001 (Gompertz-LambertW(1))/(-MadelungNaCl+Paris) 1771100195161499 m001 (1/2)^Zeta(5)/((1/2)^Zeta(1/2)) 1771100195764698 s002 sum(A193522[n]/(n^2*pi^n+1),n=1..infinity) 1771100197921255 a001 3524578/15127*2207^(9/16) 1771100198063717 a001 514229/5778*2207^(11/16) 1771100199409401 a001 102334155/9349*843^(1/14) 1771100203198845 a001 3524578/9349*2207^(1/2) 1771100204531927 a001 9227465/39603*2207^(9/16) 1771100205496411 a001 24157817/103682*2207^(9/16) 1771100205517592 m001 1/(2^(1/3))/ln(Salem)*BesselK(1,1)^2 1771100205637127 a001 63245986/271443*2207^(9/16) 1771100205657658 a001 165580141/710647*2207^(9/16) 1771100205660653 a001 433494437/1860498*2207^(9/16) 1771100205661090 a001 1134903170/4870847*2207^(9/16) 1771100205661154 a001 2971215073/12752043*2207^(9/16) 1771100205661163 a001 7778742049/33385282*2207^(9/16) 1771100205661164 a001 20365011074/87403803*2207^(9/16) 1771100205661165 a001 53316291173/228826127*2207^(9/16) 1771100205661165 a001 139583862445/599074578*2207^(9/16) 1771100205661165 a001 365435296162/1568397607*2207^(9/16) 1771100205661165 a001 956722026041/4106118243*2207^(9/16) 1771100205661165 a001 2504730781961/10749957122*2207^(9/16) 1771100205661165 a001 6557470319842/28143753123*2207^(9/16) 1771100205661165 a001 10610209857723/45537549124*2207^(9/16) 1771100205661165 a001 4052739537881/17393796001*2207^(9/16) 1771100205661165 a001 1548008755920/6643838879*2207^(9/16) 1771100205661165 a001 591286729879/2537720636*2207^(9/16) 1771100205661165 a001 225851433717/969323029*2207^(9/16) 1771100205661165 a001 86267571272/370248451*2207^(9/16) 1771100205661165 a001 63246219/271444*2207^(9/16) 1771100205661165 a001 12586269025/54018521*2207^(9/16) 1771100205661169 a001 4807526976/20633239*2207^(9/16) 1771100205661193 a001 1836311903/7881196*2207^(9/16) 1771100205661360 a001 701408733/3010349*2207^(9/16) 1771100205662504 a001 267914296/1149851*2207^(9/16) 1771100205670346 a001 102334155/439204*2207^(9/16) 1771100205724095 a001 39088169/167761*2207^(9/16) 1771100206092495 a001 14930352/64079*2207^(9/16) 1771100207969579 p003 LerchPhi(1/512,6,427/218) 1771100208194110 a001 14930352/3571*2207^(3/16) 1771100208617547 a001 5702887/24476*2207^(9/16) 1771100208758840 a001 843/196418*89^(6/19) 1771100220646922 a001 311187/2161*2207^(5/8) 1771100220784641 a001 105937/1926*2207^(3/4) 1771100225924513 a001 2178309/9349*2207^(9/16) 1771100227257683 a001 5702887/39603*2207^(5/8) 1771100228222180 a001 7465176/51841*2207^(5/8) 1771100228362898 a001 39088169/271443*2207^(5/8) 1771100228383428 a001 14619165/101521*2207^(5/8) 1771100228386424 a001 133957148/930249*2207^(5/8) 1771100228386861 a001 701408733/4870847*2207^(5/8) 1771100228386925 a001 1836311903/12752043*2207^(5/8) 1771100228386934 a001 14930208/103681*2207^(5/8) 1771100228386935 a001 12586269025/87403803*2207^(5/8) 1771100228386935 a001 32951280099/228826127*2207^(5/8) 1771100228386935 a001 43133785636/299537289*2207^(5/8) 1771100228386935 a001 32264490531/224056801*2207^(5/8) 1771100228386935 a001 591286729879/4106118243*2207^(5/8) 1771100228386935 a001 774004377960/5374978561*2207^(5/8) 1771100228386935 a001 4052739537881/28143753123*2207^(5/8) 1771100228386935 a001 1515744265389/10525900321*2207^(5/8) 1771100228386935 a001 3278735159921/22768774562*2207^(5/8) 1771100228386935 a001 2504730781961/17393796001*2207^(5/8) 1771100228386935 a001 956722026041/6643838879*2207^(5/8) 1771100228386935 a001 182717648081/1268860318*2207^(5/8) 1771100228386935 a001 139583862445/969323029*2207^(5/8) 1771100228386935 a001 53316291173/370248451*2207^(5/8) 1771100228386936 a001 10182505537/70711162*2207^(5/8) 1771100228386936 a001 7778742049/54018521*2207^(5/8) 1771100228386940 a001 2971215073/20633239*2207^(5/8) 1771100228386964 a001 567451585/3940598*2207^(5/8) 1771100228387131 a001 433494437/3010349*2207^(5/8) 1771100228388275 a001 165580141/1149851*2207^(5/8) 1771100228396117 a001 31622993/219602*2207^(5/8) 1771100228449867 a001 24157817/167761*2207^(5/8) 1771100228818272 a001 9227465/64079*2207^(5/8) 1771100230919887 a001 9227465/3571*2207^(1/4) 1771100231330341 m001 (Pi-Zeta(5))/(StronglyCareFree+ThueMorse) 1771100231343358 a001 1762289/12238*2207^(5/8) 1771100232040274 m001 GAMMA(1/6)^2*exp(GolombDickman)^2*GAMMA(13/24) 1771100242972692 m005 (1/3*exp(1)+3/7)/(4/9*exp(1)-5/11) 1771100243372963 a001 1346269/15127*2207^(11/16) 1771100243523100 a001 98209/2889*2207^(13/16) 1771100244987218 a001 47/46368*2584^(23/35) 1771100244996173 m001 (exp(1)+cos(1/12*Pi))/(MertensB3+RenyiParking) 1771100245125615 l006 ln(1565/9198) 1771100248650554 a001 1346269/9349*2207^(5/8) 1771100249983493 a001 3524578/39603*2207^(11/16) 1771100250081273 r002 39th iterates of z^2 + 1771100250947956 a001 9227465/103682*2207^(11/16) 1771100251088670 a001 24157817/271443*2207^(11/16) 1771100251109200 a001 63245986/710647*2207^(11/16) 1771100251112195 a001 165580141/1860498*2207^(11/16) 1771100251112632 a001 433494437/4870847*2207^(11/16) 1771100251112696 a001 1134903170/12752043*2207^(11/16) 1771100251112705 a001 2971215073/33385282*2207^(11/16) 1771100251112706 a001 7778742049/87403803*2207^(11/16) 1771100251112706 a001 20365011074/228826127*2207^(11/16) 1771100251112706 a001 53316291173/599074578*2207^(11/16) 1771100251112706 a001 139583862445/1568397607*2207^(11/16) 1771100251112706 a001 365435296162/4106118243*2207^(11/16) 1771100251112706 a001 956722026041/10749957122*2207^(11/16) 1771100251112706 a001 2504730781961/28143753123*2207^(11/16) 1771100251112706 a001 6557470319842/73681302247*2207^(11/16) 1771100251112706 a001 10610209857723/119218851371*2207^(11/16) 1771100251112706 a001 4052739537881/45537549124*2207^(11/16) 1771100251112706 a001 1548008755920/17393796001*2207^(11/16) 1771100251112706 a001 591286729879/6643838879*2207^(11/16) 1771100251112706 a001 225851433717/2537720636*2207^(11/16) 1771100251112706 a001 86267571272/969323029*2207^(11/16) 1771100251112706 a001 32951280099/370248451*2207^(11/16) 1771100251112707 a001 12586269025/141422324*2207^(11/16) 1771100251112707 a001 4807526976/54018521*2207^(11/16) 1771100251112711 a001 1836311903/20633239*2207^(11/16) 1771100251112735 a001 3524667/39604*2207^(11/16) 1771100251112902 a001 267914296/3010349*2207^(11/16) 1771100251114046 a001 102334155/1149851*2207^(11/16) 1771100251121888 a001 39088169/439204*2207^(11/16) 1771100251175635 a001 14930352/167761*2207^(11/16) 1771100251544028 a001 5702887/64079*2207^(11/16) 1771100253645643 a001 1597*2207^(5/16) 1771100254069025 a001 2178309/24476*2207^(11/16) 1771100254958470 a001 121393/1364*1364^(11/15) 1771100255665448 r005 Im(z^2+c),c=-41/70+11/28*I,n=35 1771100265503072 a005 (1/sin(86/195*Pi))^1367 1771100266098027 a001 832040/15127*2207^(3/4) 1771100266215653 a001 121393/5778*2207^(7/8) 1771100271375618 a001 832040/9349*2207^(11/16) 1771100272709161 a001 726103/13201*2207^(3/4) 1771100273673713 a001 5702887/103682*2207^(3/4) 1771100273814439 a001 4976784/90481*2207^(3/4) 1771100273834971 a001 39088169/710647*2207^(3/4) 1771100273837966 a001 831985/15126*2207^(3/4) 1771100273838403 a001 267914296/4870847*2207^(3/4) 1771100273838467 a001 233802911/4250681*2207^(3/4) 1771100273838476 a001 1836311903/33385282*2207^(3/4) 1771100273838478 a001 1602508992/29134601*2207^(3/4) 1771100273838478 a001 12586269025/228826127*2207^(3/4) 1771100273838478 a001 10983760033/199691526*2207^(3/4) 1771100273838478 a001 86267571272/1568397607*2207^(3/4) 1771100273838478 a001 75283811239/1368706081*2207^(3/4) 1771100273838478 a001 591286729879/10749957122*2207^(3/4) 1771100273838478 a001 12585437040/228811001*2207^(3/4) 1771100273838478 a001 4052739537881/73681302247*2207^(3/4) 1771100273838478 a001 3536736619241/64300051206*2207^(3/4) 1771100273838478 a001 6557470319842/119218851371*2207^(3/4) 1771100273838478 a001 2504730781961/45537549124*2207^(3/4) 1771100273838478 a001 956722026041/17393796001*2207^(3/4) 1771100273838478 a001 365435296162/6643838879*2207^(3/4) 1771100273838478 a001 139583862445/2537720636*2207^(3/4) 1771100273838478 a001 53316291173/969323029*2207^(3/4) 1771100273838478 a001 20365011074/370248451*2207^(3/4) 1771100273838478 a001 7778742049/141422324*2207^(3/4) 1771100273838478 a001 2971215073/54018521*2207^(3/4) 1771100273838482 a001 1134903170/20633239*2207^(3/4) 1771100273838506 a001 433494437/7881196*2207^(3/4) 1771100273838673 a001 165580141/3010349*2207^(3/4) 1771100273839817 a001 63245986/1149851*2207^(3/4) 1771100273847660 a001 24157817/439204*2207^(3/4) 1771100273865378 m001 (Shi(1)+KhinchinLevy)/(Landau+Sarnak) 1771100273901412 a001 9227465/167761*2207^(3/4) 1771100274269838 a001 3524578/64079*2207^(3/4) 1771100276371454 a001 3524578/3571*2207^(3/8) 1771100276795067 a001 1346269/24476*2207^(3/4) 1771100278491783 a001 1597/3571*64079^(22/23) 1771100278904343 a001 1597/3571*7881196^(2/3) 1771100278904362 a001 1597/3571*312119004989^(2/5) 1771100278904362 a001 1597/3571*(1/2+1/2*5^(1/2))^22 1771100278904362 a001 1597/3571*10749957122^(11/24) 1771100278904362 a001 1597/3571*4106118243^(11/23) 1771100278904362 a001 1597/3571*1568397607^(1/2) 1771100278904362 a001 1597/3571*599074578^(11/21) 1771100278904362 a001 1597/3571*228826127^(11/20) 1771100278904362 a001 1597/3571*87403803^(11/19) 1771100278904363 a001 1597/3571*33385282^(11/18) 1771100278904369 a001 1597/3571*12752043^(11/17) 1771100278904413 a001 1597/3571*4870847^(11/16) 1771100278904737 a001 1597/3571*1860498^(11/15) 1771100278907117 a001 1597/3571*710647^(11/14) 1771100278924701 a001 1597/3571*271443^(11/13) 1771100279055386 a001 1597/3571*103682^(11/12) 1771100283102531 a007 Real Root Of 598*x^4+621*x^3-457*x^2+876*x+551 1771100287788123 a007 Real Root Of -443*x^4-150*x^3+616*x^2-855*x+79 1771100288825650 a001 514229/15127*2207^(13/16) 1771100289028392 a001 75025/5778*2207^(15/16) 1771100291293577 a001 139583862445/3*123^(5/18) 1771100292861401 m005 (1/2*Zeta(3)+5/12)/(1/6*Catalan-8/11) 1771100293080303 a007 Real Root Of -664*x^4-524*x^3+462*x^2-834*x+696 1771100294103241 a001 514229/9349*2207^(3/4) 1771100294705323 r009 Re(z^3+c),c=-33/74+22/41*I,n=57 1771100295435203 a001 1346269/39603*2207^(13/16) 1771100296399524 a001 1762289/51841*2207^(13/16) 1771100296540216 a001 9227465/271443*2207^(13/16) 1771100296560743 a001 24157817/710647*2207^(13/16) 1771100296563738 a001 31622993/930249*2207^(13/16) 1771100296564175 a001 165580141/4870847*2207^(13/16) 1771100296564238 a001 433494437/12752043*2207^(13/16) 1771100296564248 a001 567451585/16692641*2207^(13/16) 1771100296564249 a001 2971215073/87403803*2207^(13/16) 1771100296564249 a001 7778742049/228826127*2207^(13/16) 1771100296564249 a001 10182505537/299537289*2207^(13/16) 1771100296564249 a001 53316291173/1568397607*2207^(13/16) 1771100296564249 a001 139583862445/4106118243*2207^(13/16) 1771100296564249 a001 182717648081/5374978561*2207^(13/16) 1771100296564249 a001 956722026041/28143753123*2207^(13/16) 1771100296564249 a001 2504730781961/73681302247*2207^(13/16) 1771100296564249 a001 3278735159921/96450076809*2207^(13/16) 1771100296564249 a001 10610209857723/312119004989*2207^(13/16) 1771100296564249 a001 4052739537881/119218851371*2207^(13/16) 1771100296564249 a001 387002188980/11384387281*2207^(13/16) 1771100296564249 a001 591286729879/17393796001*2207^(13/16) 1771100296564249 a001 225851433717/6643838879*2207^(13/16) 1771100296564249 a001 1135099622/33391061*2207^(13/16) 1771100296564249 a001 32951280099/969323029*2207^(13/16) 1771100296564249 a001 12586269025/370248451*2207^(13/16) 1771100296564249 a001 1201881744/35355581*2207^(13/16) 1771100296564250 a001 1836311903/54018521*2207^(13/16) 1771100296564254 a001 701408733/20633239*2207^(13/16) 1771100296564278 a001 66978574/1970299*2207^(13/16) 1771100296564445 a001 102334155/3010349*2207^(13/16) 1771100296565589 a001 39088169/1149851*2207^(13/16) 1771100296573429 a001 196452/5779*2207^(13/16) 1771100296627169 a001 5702887/167761*2207^(13/16) 1771100296894599 r005 Im(z^2+c),c=-5/27+15/62*I,n=14 1771100296995507 a001 2178309/64079*2207^(13/16) 1771100298155326 a007 Real Root Of -882*x^4-447*x^3+747*x^2+994*x+151 1771100299097122 a001 2178309/3571*2207^(7/16) 1771100299520131 a001 208010/6119*2207^(13/16) 1771100299912329 m001 (Pi-1)*(Si(Pi)-2/3*Pi*3^(1/2)/GAMMA(2/3)) 1771100302661362 a007 Real Root Of -671*x^4-805*x^3+869*x^2+809*x+837 1771100303951367 a001 5826920/329 1771100304112401 a001 39088169/5778*843^(1/7) 1771100306578180 r005 Im(z^2+c),c=-71/86+6/53*I,n=38 1771100306973485 s001 sum(exp(-Pi/2)^n*A097787[n],n=1..infinity) 1771100309323906 q001 4008/2263 1771100311546575 a001 317811/15127*2207^(7/8) 1771100314485687 r005 Re(z^2+c),c=-29/34+3/128*I,n=44 1771100315320675 a007 Real Root Of -597*x^4-748*x^3+608*x^2+264*x+279 1771100316824166 a001 317811/9349*2207^(13/16) 1771100316957392 r005 Im(z^2+c),c=-63/62+11/59*I,n=18 1771100318033552 a001 39088169/3571*843^(1/14) 1771100318160268 a001 832040/39603*2207^(7/8) 1771100318455011 a001 98209/682*1364^(2/3) 1771100319125192 a001 46347/2206*2207^(7/8) 1771100319265973 a001 5702887/271443*2207^(7/8) 1771100319286513 a001 14930352/710647*2207^(7/8) 1771100319289509 a001 39088169/1860498*2207^(7/8) 1771100319289947 a001 102334155/4870847*2207^(7/8) 1771100319290010 a001 267914296/12752043*2207^(7/8) 1771100319290020 a001 701408733/33385282*2207^(7/8) 1771100319290021 a001 1836311903/87403803*2207^(7/8) 1771100319290021 a001 102287808/4868641*2207^(7/8) 1771100319290021 a001 12586269025/599074578*2207^(7/8) 1771100319290021 a001 32951280099/1568397607*2207^(7/8) 1771100319290021 a001 86267571272/4106118243*2207^(7/8) 1771100319290021 a001 225851433717/10749957122*2207^(7/8) 1771100319290021 a001 591286729879/28143753123*2207^(7/8) 1771100319290021 a001 1548008755920/73681302247*2207^(7/8) 1771100319290021 a001 4052739537881/192900153618*2207^(7/8) 1771100319290021 a001 225749145909/10745088481*2207^(7/8) 1771100319290021 a001 6557470319842/312119004989*2207^(7/8) 1771100319290021 a001 2504730781961/119218851371*2207^(7/8) 1771100319290021 a001 956722026041/45537549124*2207^(7/8) 1771100319290021 a001 365435296162/17393796001*2207^(7/8) 1771100319290021 a001 139583862445/6643838879*2207^(7/8) 1771100319290021 a001 53316291173/2537720636*2207^(7/8) 1771100319290021 a001 20365011074/969323029*2207^(7/8) 1771100319290021 a001 7778742049/370248451*2207^(7/8) 1771100319290021 a001 2971215073/141422324*2207^(7/8) 1771100319290022 a001 1134903170/54018521*2207^(7/8) 1771100319290025 a001 433494437/20633239*2207^(7/8) 1771100319290050 a001 165580141/7881196*2207^(7/8) 1771100319290217 a001 63245986/3010349*2207^(7/8) 1771100319291361 a001 24157817/1149851*2207^(7/8) 1771100319299207 a001 9227465/439204*2207^(7/8) 1771100319352980 a001 3524578/167761*2207^(7/8) 1771100319505057 r009 Re(z^3+c),c=-11/46+7/19*I,n=13 1771100319721549 a001 1346269/64079*2207^(7/8) 1771100321823164 a001 1346269/3571*2207^(1/2) 1771100322247755 a001 514229/24476*2207^(7/8) 1771100328463218 a001 1/233*2178309^(13/51) 1771100331306857 v002 sum(1/(2^n*(7*n^2+n+34)),n=1..infinity) 1771100333521557 m001 exp(1)^2/(2^(1/3))*ln(gamma)^2 1771100333646953 m005 (1/2*Zeta(3)-7/9)/(173/198+1/18*5^(1/2)) 1771100334285036 a001 196418/15127*2207^(15/16) 1771100336835997 m001 (-Stephens+Thue)/(Si(Pi)+Riemann1stZero) 1771100339562627 a001 196418/9349*2207^(7/8) 1771100340887891 a001 514229/39603*2207^(15/16) 1771100341082616 l006 ln(1133/6659) 1771100341851235 a001 1346269/103682*2207^(15/16) 1771100341991785 a001 3524578/271443*2207^(15/16) 1771100342012291 a001 9227465/710647*2207^(15/16) 1771100342015282 a001 24157817/1860498*2207^(15/16) 1771100342015719 a001 63245986/4870847*2207^(15/16) 1771100342015783 a001 165580141/12752043*2207^(15/16) 1771100342015792 a001 433494437/33385282*2207^(15/16) 1771100342015793 a001 1134903170/87403803*2207^(15/16) 1771100342015793 a001 2971215073/228826127*2207^(15/16) 1771100342015793 a001 7778742049/599074578*2207^(15/16) 1771100342015793 a001 20365011074/1568397607*2207^(15/16) 1771100342015793 a001 53316291173/4106118243*2207^(15/16) 1771100342015793 a001 139583862445/10749957122*2207^(15/16) 1771100342015793 a001 365435296162/28143753123*2207^(15/16) 1771100342015793 a001 956722026041/73681302247*2207^(15/16) 1771100342015793 a001 2504730781961/192900153618*2207^(15/16) 1771100342015793 a001 10610209857723/817138163596*2207^(15/16) 1771100342015793 a001 4052739537881/312119004989*2207^(15/16) 1771100342015793 a001 1548008755920/119218851371*2207^(15/16) 1771100342015793 a001 591286729879/45537549124*2207^(15/16) 1771100342015793 a001 7787980473/599786069*2207^(15/16) 1771100342015793 a001 86267571272/6643838879*2207^(15/16) 1771100342015793 a001 32951280099/2537720636*2207^(15/16) 1771100342015793 a001 12586269025/969323029*2207^(15/16) 1771100342015793 a001 4807526976/370248451*2207^(15/16) 1771100342015794 a001 1836311903/141422324*2207^(15/16) 1771100342015794 a001 701408733/54018521*2207^(15/16) 1771100342015798 a001 9238424/711491*2207^(15/16) 1771100342015822 a001 102334155/7881196*2207^(15/16) 1771100342015989 a001 39088169/3010349*2207^(15/16) 1771100342017131 a001 14930352/1149851*2207^(15/16) 1771100342024964 a001 5702887/439204*2207^(15/16) 1771100342078649 a001 2178309/167761*2207^(15/16) 1771100342446614 a001 832040/64079*2207^(15/16) 1771100344548229 a001 832040/3571*2207^(9/16) 1771100344968680 a001 10959/844*2207^(15/16) 1771100348312621 a007 Real Root Of 316*x^4+455*x^3-310*x^2-79*x+251 1771100349422794 a001 6765*843^(1/7) 1771100349583890 a001 5702887/2207*843^(2/7) 1771100353240376 l006 ln(1507/1799) 1771100355887894 a001 5702887/843*322^(1/6) 1771100356033492 a001 267914296/39603*843^(1/7) 1771100356997979 a001 701408733/103682*843^(1/7) 1771100357138696 a001 1836311903/271443*843^(1/7) 1771100357159227 a001 686789568/101521*843^(1/7) 1771100357162222 a001 12586269025/1860498*843^(1/7) 1771100357162659 a001 32951280099/4870847*843^(1/7) 1771100357162723 a001 86267571272/12752043*843^(1/7) 1771100357162732 a001 32264490531/4769326*843^(1/7) 1771100357162733 a001 591286729879/87403803*843^(1/7) 1771100357162734 a001 1548008755920/228826127*843^(1/7) 1771100357162734 a001 4052739537881/599074578*843^(1/7) 1771100357162734 a001 1515744265389/224056801*843^(1/7) 1771100357162734 a001 6557470319842/969323029*843^(1/7) 1771100357162734 a001 2504730781961/370248451*843^(1/7) 1771100357162734 a001 956722026041/141422324*843^(1/7) 1771100357162734 a001 365435296162/54018521*843^(1/7) 1771100357162738 a001 139583862445/20633239*843^(1/7) 1771100357162762 a001 53316291173/7881196*843^(1/7) 1771100357162929 a001 20365011074/3010349*843^(1/7) 1771100357164073 a001 7778742049/1149851*843^(1/7) 1771100357171915 a001 2971215073/439204*843^(1/7) 1771100357225664 a001 1134903170/167761*843^(1/7) 1771100357594066 a001 433494437/64079*843^(1/7) 1771100360119127 a001 165580141/24476*843^(1/7) 1771100361456614 r005 Im(z^2+c),c=-17/18+12/77*I,n=3 1771100362255181 a001 121393/9349*2207^(15/16) 1771100364741641 a001 2/987*(1/2+1/2*5^(1/2))^38 1771100367247045 a003 cos(Pi*6/91)+cos(Pi*19/91) 1771100367275853 a001 514229/3571*2207^(5/8) 1771100368372698 a007 Real Root Of -661*x^4-891*x^3+739*x^2+401*x-54 1771100377426158 a001 63245986/9349*843^(1/7) 1771100377543970 b008 35/2+PolyLog[2,1/5] 1771100380488084 m001 (ln(5)+cos(1/12*Pi))/(FeigenbaumKappa+Paris) 1771100381905647 a001 317811/1364*1364^(3/5) 1771100389996779 a001 317811/3571*2207^(11/16) 1771100390120158 m001 (exp(1)+Ei(1))/(Pi^(1/2)+FeigenbaumB) 1771100395997788 h001 (1/11*exp(1)+2/7)/(1/3*exp(2)+6/11) 1771100403737328 a007 Real Root Of -453*x^4-170*x^3+496*x^2-900*x+363 1771100405268490 a001 17480761/987 1771100409491363 a007 Real Root Of 416*x^4+564*x^3-52*x^2+534*x+149 1771100412735241 a001 196418/3571*2207^(3/4) 1771100416168796 a007 Real Root Of -264*x^4+272*x^3+837*x^2-296*x+959 1771100417176691 a007 Real Root Of -31*x^4-70*x^3-713*x^2+909*x+183 1771100424163170 m001 (exp(-1/2*Pi)+GAMMA(23/24))/(Catalan-Ei(1,1)) 1771100424384572 a007 Real Root Of -404*x^4-613*x^3-400*x^2-820*x+372 1771100424759456 m001 (1+GAMMA(2/3))/(-GAMMA(19/24)+FeigenbaumAlpha) 1771100425268481 m001 ln(GlaisherKinkelin)/Champernowne*Zeta(1,2)^2 1771100427051550 r009 Re(z^3+c),c=-57/106+11/18*I,n=47 1771100427350427 q001 6631/3744 1771100428832967 m001 Porter/(HardHexagonsEntropy-LambertW(1)) 1771100435427795 a001 121393/3571*2207^(13/16) 1771100437921365 p004 log(36457/6203) 1771100438999742 r005 Im(z^2+c),c=-4/5+12/125*I,n=48 1771100445373821 a001 514229/1364*1364^(8/15) 1771100448176076 m006 (2/3*exp(Pi)-1/4)/(1/6*Pi+1/3) 1771100451173559 a001 3732588/341*521^(1/13) 1771100452874374 a007 Real Root Of 693*x^4+463*x^3-925*x^2+616*x-254 1771100458240537 a001 75025/3571*2207^(7/8) 1771100464348414 m001 ReciprocalLucas-ZetaQ(2)^BesselI(1,1) 1771100473114437 m001 HeathBrownMoroz^(OneNinth/ThueMorse) 1771100474733001 m001 MertensB1+MertensB2+Weierstrass 1771100478140081 m001 1/Rabbit^2/exp(Lehmer)^2*cos(1)^2 1771100480738626 a001 46368/3571*2207^(15/16) 1771100482129170 a001 24157817/5778*843^(3/14) 1771100486958381 m001 1/GAMMA(7/24)^2*exp(Bloch)^2*cos(Pi/5)^2 1771100490686852 a007 Real Root Of -749*x^4-958*x^3+405*x^2-646*x-367 1771100494526002 r005 Re(z^2+c),c=-19/98+9/55*I,n=15 1771100494937022 m001 (-Artin+Khinchin)/(sin(1)+arctan(1/2)) 1771100496050322 a001 24157817/3571*843^(1/7) 1771100498765171 r005 Re(z^2+c),c=-39/74+37/60*I,n=53 1771100503466063 a001 28657/521*521^(12/13) 1771100506585612 a001 17480762/987 1771100508835299 a001 610*1364^(7/15) 1771100514248099 a007 Real Root Of 763*x^4-990*x^3-745*x^2-921*x-146 1771100518851657 r009 Im(z^3+c),c=-53/126+1/20*I,n=25 1771100522820710 a005 (1/sin(78/215*Pi))^486 1771100527439567 a001 63245986/15127*843^(3/14) 1771100527600702 a001 3524578/2207*843^(5/14) 1771100530671902 r005 Re(z^2+c),c=-5/106+19/35*I,n=46 1771100530944358 m001 1/exp(GAMMA(5/6))/Riemann3rdZero^2/cos(1)^2 1771100533728220 a003 cos(Pi*3/104)+sin(Pi*24/85) 1771100534050265 a001 165580141/39603*843^(3/14) 1771100535014752 a001 433494437/103682*843^(3/14) 1771100535155469 a001 1134903170/271443*843^(3/14) 1771100535176000 a001 2971215073/710647*843^(3/14) 1771100535178995 a001 7778742049/1860498*843^(3/14) 1771100535179432 a001 20365011074/4870847*843^(3/14) 1771100535179496 a001 53316291173/12752043*843^(3/14) 1771100535179505 a001 139583862445/33385282*843^(3/14) 1771100535179506 a001 365435296162/87403803*843^(3/14) 1771100535179507 a001 956722026041/228826127*843^(3/14) 1771100535179507 a001 2504730781961/599074578*843^(3/14) 1771100535179507 a001 6557470319842/1568397607*843^(3/14) 1771100535179507 a001 10610209857723/2537720636*843^(3/14) 1771100535179507 a001 4052739537881/969323029*843^(3/14) 1771100535179507 a001 1548008755920/370248451*843^(3/14) 1771100535179507 a001 591286729879/141422324*843^(3/14) 1771100535179507 a001 225851433717/54018521*843^(3/14) 1771100535179511 a001 86267571272/20633239*843^(3/14) 1771100535179535 a001 32951280099/7881196*843^(3/14) 1771100535179702 a001 12586269025/3010349*843^(3/14) 1771100535180846 a001 4807526976/1149851*843^(3/14) 1771100535188688 a001 1836311903/439204*843^(3/14) 1771100535242437 a001 701408733/167761*843^(3/14) 1771100535610839 a001 267914296/64079*843^(3/14) 1771100536903660 m001 (BesselK(0,1)-ln(5))/(Trott+TwinPrimes) 1771100537123460 m005 (3/4*gamma-2)/(2/3*gamma+1/2) 1771100537123460 m007 (-3/4*gamma+2)/(-2/3*gamma-1/2) 1771100538135901 a001 102334155/24476*843^(3/14) 1771100538645475 a007 Real Root Of 323*x^4-193*x^3-828*x^2+515*x-741 1771100541808792 m001 Shi(1)+Pi*csc(1/24*Pi)/GAMMA(23/24)*Rabbit 1771100548891408 m001 (Pi+ln(Pi))/(AlladiGrinstead-Riemann3rdZero) 1771100555308981 l006 ln(701/4120) 1771100555442933 a001 4181*843^(3/14) 1771100566402473 m005 (1/2*exp(1)+7/11)/(2/9*Pi+3/7) 1771100569067351 r002 40th iterates of z^2 + 1771100571653554 a007 Real Root Of -346*x^4-187*x^3+521*x^2+45*x+811 1771100572299337 a001 1346269/1364*1364^(2/5) 1771100578733405 r005 Im(z^2+c),c=-75/122+2/61*I,n=51 1771100583666843 a007 Real Root Of 664*x^4+810*x^3-601*x^2-747*x+146 1771100589072833 a001 987/1364*64079^(21/23) 1771100589459516 a001 987/1364*439204^(7/9) 1771100589466221 a001 610/2207*(1/2+1/2*5^(1/2))^23 1771100589466221 a001 610/2207*4106118243^(1/2) 1771100589466639 a001 987/1364*7881196^(7/11) 1771100589466655 a001 987/1364*20633239^(3/5) 1771100589466658 a001 987/1364*141422324^(7/13) 1771100589466658 a001 987/1364*2537720636^(7/15) 1771100589466658 a001 987/1364*17393796001^(3/7) 1771100589466658 a001 987/1364*45537549124^(7/17) 1771100589466658 a001 987/1364*14662949395604^(1/3) 1771100589466658 a001 987/1364*(1/2+1/2*5^(1/2))^21 1771100589466658 a001 987/1364*192900153618^(7/18) 1771100589466658 a001 987/1364*10749957122^(7/16) 1771100589466658 a001 987/1364*599074578^(1/2) 1771100589466659 a001 987/1364*33385282^(7/12) 1771100589467016 a001 987/1364*1860498^(7/10) 1771100589469288 a001 987/1364*710647^(3/4) 1771100589610818 a001 987/1364*103682^(7/8) 1771100589624110 a001 610/2207*103682^(23/24) 1771100590544571 a001 987/1364*39603^(21/22) 1771100598311212 r005 Im(z^2+c),c=-27/29+8/49*I,n=29 1771100600584684 m001 (-gamma(1)+Gompertz)/(arctan(1/2)-sin(1)) 1771100604292489 h005 exp(cos(Pi*15/49)*sin(Pi*18/37)) 1771100604599918 m001 (Si(Pi)+Zeta(3))/(ln(3)+Kac) 1771100607183101 a007 Real Root Of -639*x^4-477*x^3+483*x^2-929*x+477 1771100607697501 q001 2623/1481 1771100612921224 m001 ln((3^(1/3)))^2/Paris^2*GAMMA(17/24) 1771100614108322 s002 sum(A147802[n]/(exp(n)+1),n=1..infinity) 1771100618682270 r002 49th iterates of z^2 + 1771100622764503 a007 Real Root Of -866*x^4-677*x^3+829*x^2-745*x+840 1771100627066088 m005 (1/2*3^(1/2)-2/9)/(7/9*Zeta(3)-4/7) 1771100635762401 a001 2178309/1364*1364^(1/3) 1771100640476323 a007 Real Root Of 440*x^4+970*x^3+785*x^2-697*x+93 1771100641815367 a007 Real Root Of -422*x^4-431*x^3+278*x^2-665*x-292 1771100651583678 r005 Re(z^2+c),c=-11/106+18/41*I,n=22 1771100657017801 a007 Real Root Of 108*x^4-138*x^3+582*x^2-626*x-130 1771100660145953 a001 2584*843^(2/7) 1771100660465427 a007 Real Root Of 553*x^4+464*x^3-57*x^2+967*x-972 1771100662573336 a007 Real Root Of -486*x^4-679*x^3-7*x^2-93*x+867 1771100662858900 m001 (Sarnak+ZetaQ(2))/(KhinchinLevy-RenyiParking) 1771100663141052 m005 (1/2*gamma-1/10)/(2/7*gamma+9/10) 1771100670754096 m001 GAMMA(23/24)^ZetaP(3)/LambertW(1) 1771100674067107 a001 14930352/3571*843^(3/14) 1771100674765846 a007 Real Root Of -625*x^4-583*x^3+268*x^2-681*x+864 1771100676134236 a001 322/1346269*832040^(6/19) 1771100676134592 a001 322/24157817*7778742049^(6/19) 1771100680394448 m006 (3/5/Pi-2/3)/(1/2*exp(2*Pi)+5/6) 1771100683300222 m001 (-arctan(1/3)+ArtinRank2)/(2^(1/2)-Zeta(3)) 1771100686779787 m001 Grothendieck^ZetaQ(4)/BesselI(1,1) 1771100698190073 a007 Real Root Of -367*x^4-833*x^3-353*x^2+387*x+776 1771100699225840 a001 1762289/682*1364^(4/15) 1771100700493039 a007 Real Root Of 587*x^4+47*x^3+420*x^2-336*x-73 1771100700562380 l006 ln(1671/9821) 1771100702447225 m001 (Grothendieck*ZetaR(2)-ZetaQ(4))/ZetaR(2) 1771100704094183 r005 Re(z^2+c),c=-23/24+8/51*I,n=14 1771100705456356 a001 39088169/15127*843^(2/7) 1771100705617389 a001 987*843^(3/7) 1771100709150893 a003 sin(Pi*35/113)+sin(Pi*24/61) 1771100712067055 a001 34111385/13201*843^(2/7) 1771100712240788 m001 (arctan(1/3)+Niven)^cos(1/5*Pi) 1771100713031543 a001 133957148/51841*843^(2/7) 1771100713172260 a001 233802911/90481*843^(2/7) 1771100713192791 a001 1836311903/710647*843^(2/7) 1771100713195786 a001 267084832/103361*843^(2/7) 1771100713196223 a001 12586269025/4870847*843^(2/7) 1771100713196287 a001 10983760033/4250681*843^(2/7) 1771100713196296 a001 43133785636/16692641*843^(2/7) 1771100713196297 a001 75283811239/29134601*843^(2/7) 1771100713196298 a001 591286729879/228826127*843^(2/7) 1771100713196298 a001 86000486440/33281921*843^(2/7) 1771100713196298 a001 4052739537881/1568397607*843^(2/7) 1771100713196298 a001 3536736619241/1368706081*843^(2/7) 1771100713196298 a001 3278735159921/1268860318*843^(2/7) 1771100713196298 a001 2504730781961/969323029*843^(2/7) 1771100713196298 a001 956722026041/370248451*843^(2/7) 1771100713196298 a001 182717648081/70711162*843^(2/7) 1771100713196298 a001 139583862445/54018521*843^(2/7) 1771100713196302 a001 53316291173/20633239*843^(2/7) 1771100713196326 a001 10182505537/3940598*843^(2/7) 1771100713196493 a001 7778742049/3010349*843^(2/7) 1771100713197637 a001 2971215073/1149851*843^(2/7) 1771100713205479 a001 567451585/219602*843^(2/7) 1771100713259228 a001 433494437/167761*843^(2/7) 1771100713627630 a001 165580141/64079*843^(2/7) 1771100714247851 m001 (BesselI(0,1)-CareFree)/(FeigenbaumC+Totient) 1771100716152692 a001 31622993/12238*843^(2/7) 1771100717818499 g005 GAMMA(8/9)*GAMMA(5/9)*GAMMA(7/8)/GAMMA(10/11) 1771100729153338 a003 sin(Pi*1/79)+sin(Pi*5/114) 1771100730071417 s002 sum(A180966[n]/(n*exp(pi*n)+1),n=1..infinity) 1771100730071792 s002 sum(A180966[n]/(n*exp(pi*n)-1),n=1..infinity) 1771100732016607 r005 Im(z^2+c),c=-33/40+3/26*I,n=62 1771100733446505 a007 Real Root Of 835*x^4+792*x^3-345*x^2-533*x+100 1771100733459727 a001 24157817/9349*843^(2/7) 1771100736194305 a007 Real Root Of -233*x^4-301*x^3-213*x^2-273*x+805 1771100738767500 r005 Im(z^2+c),c=15/82+19/33*I,n=11 1771100738945722 r005 Re(z^2+c),c=-93/74+9/23*I,n=7 1771100744126837 m001 exp(gamma)-GAMMA(1/24)^Zeta(1/2) 1771100745989918 m001 PrimesInBinary*Sierpinski^GAMMA(7/12) 1771100750887472 a007 Real Root Of 28*x^4-761*x^3-993*x^2+496*x-510 1771100759111589 a007 Real Root Of 665*x^4+371*x^3-924*x^2+604*x-514 1771100762689139 a001 5702887/1364*1364^(1/5) 1771100766400890 a007 Real Root Of 191*x^4-914*x^3-28*x^2-314*x-60 1771100770359199 r005 Im(z^2+c),c=-49/90+8/25*I,n=37 1771100776502816 m001 (-arctan(1/2)+TwinPrimes)/(Psi(1,1/3)+1) 1771100780028666 m001 (-FellerTornier+Rabbit)/(Shi(1)+GAMMA(5/6)) 1771100785538879 r005 Im(z^2+c),c=17/64+2/45*I,n=57 1771100792133296 q001 6484/3661 1771100792643293 r009 Re(z^3+c),c=-1/13+14/17*I,n=12 1771100801743195 m001 BesselK(1,1)+Shi(1)^FransenRobinson 1771100804245134 m001 (-GAMMA(3/4)+Khinchin)/(Psi(1,1/3)-Si(Pi)) 1771100805534153 l006 ln(970/5701) 1771100806335804 m001 (-GolombDickman+PrimesInBinary)/(cos(1)+Cahen) 1771100808795666 a007 Real Root Of -421*x^4-780*x^3-420*x^2-653*x-30 1771100808859801 a007 Real Root Of 246*x^4-103*x^3-957*x^2-257*x-446 1771100811035739 r005 Re(z^2+c),c=25/86+15/61*I,n=52 1771100814026299 a001 28284480/1597 1771100824771797 m001 (-ArtinRank2+HardyLittlewoodC4)/(1+Zeta(3)) 1771100825317808 a001 5473/682*3571^(16/17) 1771100826152494 a001 9227465/1364*1364^(2/15) 1771100826319982 r005 Im(z^2+c),c=-29/48+20/61*I,n=57 1771100827134449 m001 FransenRobinson^Champernowne+HardyLittlewoodC3 1771100829402031 a001 17711/1364*3571^(15/17) 1771100829872643 a007 Real Root Of 660*x^4-124*x^3+502*x^2-738*x+115 1771100835928660 m001 ln(2)-GlaisherKinkelin^(Pi*2^(1/2)/GAMMA(3/4)) 1771100838162762 a001 9227465/5778*843^(5/14) 1771100839132466 a001 28657/1364*3571^(14/17) 1771100841307883 r005 Re(z^2+c),c=-3/38+18/37*I,n=6 1771100844492021 r005 Re(z^2+c),c=-19/102+11/54*I,n=6 1771100844804326 m001 (ln(3)-ln(5))/(Ei(1)-ErdosBorwein) 1771100845788027 m001 Grothendieck/(Riemann2ndZero^gamma(3)) 1771100846706240 a001 11592/341*3571^(13/17) 1771100852083918 a001 9227465/3571*843^(2/7) 1771100854300201 a008 Real Root of (6+9*x-11*x^2-8*x^3) 1771100855103784 a001 75025/1364*3571^(12/17) 1771100863186677 a001 121393/1364*3571^(11/17) 1771100871389756 a001 98209/682*3571^(10/17) 1771100874204189 a007 Real Root Of -451*x^4-600*x^3+288*x^2-669*x-984 1771100874485593 a001 15127/13*1346269^(27/52) 1771100879546927 a001 317811/1364*3571^(9/17) 1771100883473165 a001 24157817/15127*843^(5/14) 1771100883634467 a001 1346269/2207*843^(1/2) 1771100886877327 r009 Re(z^3+c),c=-8/25+28/45*I,n=43 1771100887721634 a001 514229/1364*3571^(8/17) 1771100889031514 m001 ThueMorse^Psi(1,1/3)/(gamma(3)^Psi(1,1/3)) 1771100889615831 a001 3732588/341*1364^(1/15) 1771100890083864 a001 63245986/39603*843^(5/14) 1771100891048352 a001 165580141/103682*843^(5/14) 1771100891189069 a001 433494437/271443*843^(5/14) 1771100891209599 a001 1134903170/710647*843^(5/14) 1771100891212595 a001 2971215073/1860498*843^(5/14) 1771100891213032 a001 7778742049/4870847*843^(5/14) 1771100891213096 a001 20365011074/12752043*843^(5/14) 1771100891213105 a001 53316291173/33385282*843^(5/14) 1771100891213106 a001 139583862445/87403803*843^(5/14) 1771100891213106 a001 365435296162/228826127*843^(5/14) 1771100891213106 a001 956722026041/599074578*843^(5/14) 1771100891213106 a001 2504730781961/1568397607*843^(5/14) 1771100891213106 a001 6557470319842/4106118243*843^(5/14) 1771100891213106 a001 10610209857723/6643838879*843^(5/14) 1771100891213106 a001 4052739537881/2537720636*843^(5/14) 1771100891213106 a001 1548008755920/969323029*843^(5/14) 1771100891213106 a001 591286729879/370248451*843^(5/14) 1771100891213107 a001 225851433717/141422324*843^(5/14) 1771100891213107 a001 86267571272/54018521*843^(5/14) 1771100891213111 a001 32951280099/20633239*843^(5/14) 1771100891213135 a001 12586269025/7881196*843^(5/14) 1771100891213302 a001 4807526976/3010349*843^(5/14) 1771100891214446 a001 1836311903/1149851*843^(5/14) 1771100891222288 a001 701408733/439204*843^(5/14) 1771100891276037 a001 267914296/167761*843^(5/14) 1771100891644439 a001 102334155/64079*843^(5/14) 1771100892502983 m001 (OneNinth+PlouffeB)/(5^(1/2)+Shi(1)) 1771100894169501 a001 39088169/24476*843^(5/14) 1771100895889643 a001 610*3571^(7/17) 1771100897353993 a001 646/341*24476^(19/21) 1771100897514038 m001 (MertensB1-ZetaQ(3))/(Champernowne+Conway) 1771100899672508 a001 646/341*64079^(19/23) 1771100900028313 a001 305/2889*20633239^(5/7) 1771100900028316 a001 305/2889*2537720636^(5/9) 1771100900028316 a001 305/2889*312119004989^(5/11) 1771100900028316 a001 305/2889*(1/2+1/2*5^(1/2))^25 1771100900028316 a001 305/2889*3461452808002^(5/12) 1771100900028316 a001 305/2889*28143753123^(1/2) 1771100900028316 a001 305/2889*228826127^(5/8) 1771100900028742 a001 305/2889*1860498^(5/6) 1771100900028826 a001 646/341*817138163596^(1/3) 1771100900028826 a001 646/341*(1/2+1/2*5^(1/2))^19 1771100900028826 a001 646/341*87403803^(1/2) 1771100900159256 a001 646/341*103682^(19/24) 1771100901004081 a001 646/341*39603^(19/22) 1771100903475306 m005 (1/3*Catalan+1/12)/(13/10+2/5*5^(1/2)) 1771100904060211 a001 1346269/1364*3571^(6/17) 1771100907381771 a001 646/341*15127^(19/20) 1771100911476536 a001 14930352/9349*843^(5/14) 1771100912229801 a001 2178309/1364*3571^(5/17) 1771100917431192 q001 3861/2180 1771100920399764 a001 1762289/682*3571^(4/17) 1771100923462671 a007 Real Root Of -484*x^4-521*x^3-186*x^2-903*x+852 1771100927208797 a001 615/124*9349^(17/19) 1771100928569585 a001 5702887/1364*3571^(3/17) 1771100932791198 a001 74049730/4181 1771100934714228 r002 6th iterates of z^2 + 1771100935952490 a001 17711/1364*9349^(15/19) 1771100936739461 a001 9227465/1364*3571^(2/17) 1771100937109022 a007 Real Root Of -544*x^4-733*x^3+192*x^2+27*x+726 1771100938579561 a001 28657/1364*9349^(14/19) 1771100938971630 a001 5473/682*9349^(16/19) 1771100939049971 a001 11592/341*9349^(13/19) 1771100940344152 a001 75025/1364*9349^(12/19) 1771100941323680 a001 121393/1364*9349^(11/19) 1771100941857813 a007 Real Root Of 52*x^4+920*x^3-52*x^2-645*x-515 1771100942423395 a001 98209/682*9349^(10/19) 1771100942945964 a001 615/124*24476^(17/21) 1771100943477203 a001 317811/1364*9349^(9/19) 1771100944548546 a001 514229/1364*9349^(8/19) 1771100944909316 a001 3732588/341*3571^(1/17) 1771100945020425 a001 615/124*64079^(17/23) 1771100945338701 a001 610/15127*7881196^(9/11) 1771100945338724 a001 610/15127*141422324^(9/13) 1771100945338724 a001 610/15127*2537720636^(3/5) 1771100945338724 a001 610/15127*45537549124^(9/17) 1771100945338724 a001 610/15127*14662949395604^(3/7) 1771100945338724 a001 610/15127*(1/2+1/2*5^(1/2))^27 1771100945338724 a001 610/15127*192900153618^(1/2) 1771100945338724 a001 610/15127*10749957122^(9/16) 1771100945338724 a001 610/15127*599074578^(9/14) 1771100945338725 a001 610/15127*33385282^(3/4) 1771100945339185 a001 610/15127*1860498^(9/10) 1771100945339236 a001 615/124*45537549124^(1/3) 1771100945339236 a001 615/124*(1/2+1/2*5^(1/2))^17 1771100945339241 a001 615/124*12752043^(1/2) 1771100945455937 a001 615/124*103682^(17/24) 1771100945613191 a001 610*9349^(7/19) 1771100946211832 a001 615/124*39603^(17/22) 1771100946680395 a001 1346269/1364*9349^(6/19) 1771100947106236 l006 ln(1239/7282) 1771100947369085 m001 (KhinchinLevy-Porter)/(Zeta(1/2)-Champernowne) 1771100947746621 a001 2178309/1364*9349^(5/19) 1771100948813221 a001 1762289/682*9349^(4/19) 1771100949838225 a001 17711/1364*24476^(5/7) 1771100949879678 a001 5702887/1364*9349^(3/19) 1771100950118764 a001 7456335/421 1771100950946189 a001 9227465/1364*9349^(2/19) 1771100951084274 a001 11592/341*24476^(13/21) 1771100951452740 a001 75025/1364*24476^(4/7) 1771100951506553 a001 121393/1364*24476^(11/21) 1771100951539580 a001 28657/1364*24476^(2/3) 1771100951668632 a001 17711/1364*64079^(15/23) 1771100951680552 a001 98209/682*24476^(10/21) 1771100951808644 a001 317811/1364*24476^(3/7) 1771100951912177 a001 17711/1364*167761^(3/5) 1771100951918186 a001 615/124*15127^(17/20) 1771100951944835 a001 17711/1364*439204^(5/9) 1771100951949424 a001 610/39603*(1/2+1/2*5^(1/2))^29 1771100951949424 a001 610/39603*1322157322203^(1/2) 1771100951949922 a001 17711/1364*7881196^(5/11) 1771100951949934 a001 17711/1364*20633239^(3/7) 1771100951949935 a001 17711/1364*141422324^(5/13) 1771100951949935 a001 17711/1364*2537720636^(1/3) 1771100951949935 a001 17711/1364*45537549124^(5/17) 1771100951949935 a001 17711/1364*312119004989^(3/11) 1771100951949935 a001 17711/1364*14662949395604^(5/21) 1771100951949935 a001 17711/1364*(1/2+1/2*5^(1/2))^15 1771100951949935 a001 17711/1364*192900153618^(5/18) 1771100951949935 a001 17711/1364*28143753123^(3/10) 1771100951949935 a001 17711/1364*10749957122^(5/16) 1771100951949935 a001 17711/1364*599074578^(5/14) 1771100951949935 a001 17711/1364*228826127^(3/8) 1771100951949936 a001 17711/1364*33385282^(5/12) 1771100951950191 a001 17711/1364*1860498^(1/2) 1771100951954272 a001 514229/1364*24476^(8/21) 1771100952012680 a001 3732588/341*9349^(1/19) 1771100952052907 a001 17711/1364*103682^(5/8) 1771100952093201 a001 610*24476^(1/3) 1771100952234689 a001 1346269/1364*24476^(2/7) 1771100952375200 a001 2178309/1364*24476^(5/21) 1771100952516083 a001 1762289/682*24476^(4/21) 1771100952646822 a001 507544400/28657 1771100952656825 a001 5702887/1364*24476^(1/7) 1771100952670627 a001 11592/341*64079^(13/23) 1771100952719873 a001 17711/1364*39603^(15/22) 1771100952797621 a001 9227465/1364*24476^(2/21) 1771100952848851 a001 121393/1364*64079^(11/23) 1771100952900823 a001 98209/682*64079^(10/23) 1771100952906889 a001 317811/1364*64079^(9/23) 1771100952913912 a001 305/51841*(1/2+1/2*5^(1/2))^31 1771100952913912 a001 305/51841*9062201101803^(1/2) 1771100952914424 a001 11592/341*141422324^(1/3) 1771100952914424 a001 11592/341*(1/2+1/2*5^(1/2))^13 1771100952914424 a001 11592/341*73681302247^(1/4) 1771100952917065 a001 75025/1364*64079^(12/23) 1771100952926442 a001 11592/341*271443^(1/2) 1771100952930489 a001 514229/1364*64079^(8/23) 1771100952938395 a001 3732588/341*24476^(1/21) 1771100952947391 a001 610*64079^(7/23) 1771100952966852 a001 1346269/1364*64079^(6/23) 1771100952985335 a001 2178309/1364*64079^(5/23) 1771100953003665 a001 11592/341*103682^(13/24) 1771100953004192 a001 1762289/682*64079^(4/23) 1771100953015661 a001 265753698/15005 1771100953022906 a001 5702887/1364*64079^(3/23) 1771100953041675 a001 9227465/1364*64079^(2/23) 1771100953054629 a001 610/271443*141422324^(11/13) 1771100953054629 a001 610/271443*2537720636^(11/15) 1771100953054629 a001 610/271443*45537549124^(11/17) 1771100953054629 a001 610/271443*312119004989^(3/5) 1771100953054629 a001 610/271443*14662949395604^(11/21) 1771100953054629 a001 610/271443*(1/2+1/2*5^(1/2))^33 1771100953054629 a001 610/271443*192900153618^(11/18) 1771100953054629 a001 610/271443*10749957122^(11/16) 1771100953054629 a001 610/271443*1568397607^(3/4) 1771100953054629 a001 610/271443*599074578^(11/14) 1771100953054630 a001 610/271443*33385282^(11/12) 1771100953055131 a001 121393/1364*7881196^(1/3) 1771100953055140 a001 121393/1364*312119004989^(1/5) 1771100953055140 a001 121393/1364*(1/2+1/2*5^(1/2))^11 1771100953055140 a001 121393/1364*1568397607^(1/4) 1771100953060423 a001 3732588/341*64079^(1/23) 1771100953063187 a001 98209/682*167761^(2/5) 1771100953066517 a001 2178309/1364*167761^(1/5) 1771100953069474 a001 1739380535/98209 1771100953072610 a001 317811/1364*439204^(1/3) 1771100953075159 a001 610/710647*2537720636^(7/9) 1771100953075159 a001 610/710647*17393796001^(5/7) 1771100953075159 a001 610/710647*312119004989^(7/11) 1771100953075159 a001 610/710647*14662949395604^(5/9) 1771100953075159 a001 610/710647*(1/2+1/2*5^(1/2))^35 1771100953075159 a001 610/710647*505019158607^(5/8) 1771100953075159 a001 610/710647*28143753123^(7/10) 1771100953075159 a001 610/710647*599074578^(5/6) 1771100953075159 a001 610/710647*228826127^(7/8) 1771100953075663 a001 317811/1364*7881196^(3/11) 1771100953075671 a001 317811/1364*141422324^(3/13) 1771100953075671 a001 317811/1364*2537720636^(1/5) 1771100953075671 a001 317811/1364*45537549124^(3/17) 1771100953075671 a001 317811/1364*14662949395604^(1/7) 1771100953075671 a001 317811/1364*(1/2+1/2*5^(1/2))^9 1771100953075671 a001 317811/1364*192900153618^(1/6) 1771100953075671 a001 317811/1364*10749957122^(3/16) 1771100953075671 a001 317811/1364*599074578^(3/14) 1771100953075671 a001 317811/1364*33385282^(1/4) 1771100953075824 a001 317811/1364*1860498^(3/10) 1771100953077325 a001 9107514720/514229 1771100953077333 a001 1346269/1364*439204^(2/9) 1771100953078147 a001 5702887/1364*439204^(1/9) 1771100953078154 a001 305/930249*(1/2+1/2*5^(1/2))^37 1771100953078470 a001 23843783090/1346269 1771100953078591 a001 610/4870847*2537720636^(13/15) 1771100953078591 a001 610/4870847*45537549124^(13/17) 1771100953078591 a001 610/4870847*14662949395604^(13/21) 1771100953078591 a001 610/4870847*(1/2+1/2*5^(1/2))^39 1771100953078591 a001 610/4870847*192900153618^(13/18) 1771100953078591 a001 610/4870847*73681302247^(3/4) 1771100953078591 a001 610/4870847*10749957122^(13/16) 1771100953078591 a001 610/4870847*599074578^(13/14) 1771100953078638 a001 31211917275/1762289 1771100953078655 a001 610/12752043*(1/2+1/2*5^(1/2))^41 1771100953078662 a001 2514272624/141961 1771100953078665 a001 305/16692641*(1/2+1/2*5^(1/2))^43 1771100953078665 a001 610*20633239^(1/5) 1771100953078666 a001 427859327130/24157817 1771100953078666 a001 610/87403803*45537549124^(15/17) 1771100953078666 a001 610/87403803*312119004989^(9/11) 1771100953078666 a001 610/87403803*14662949395604^(5/7) 1771100953078666 a001 610/87403803*192900153618^(5/6) 1771100953078666 a001 610/87403803*28143753123^(9/10) 1771100953078666 a001 610/87403803*10749957122^(15/16) 1771100953078666 a001 560075130415/31622993 1771100953078666 a001 2932591455360/165580141 1771100953078666 a001 305/299537289*14662949395604^(7/9) 1771100953078666 a001 305/299537289*505019158607^(7/8) 1771100953078666 a001 7677624105250/433494437 1771100953078666 a001 610/1568397607*14662949395604^(17/21) 1771100953078666 a001 610/1568397607*192900153618^(17/18) 1771100953078666 a001 32951280099/1860497 1771100953078666 a001 52623218475920/2971215073 1771100953078666 a001 305/5374978561*3461452808002^(11/12) 1771100953078666 a001 10597644197490/598364773 1771100953078666 a001 610/28143753123*14662949395604^(19/21) 1771100953078666 a001 180342452613095/10182505537 1771100953078666 a001 610*17393796001^(1/7) 1771100953078666 a001 944285341111200/53316291173 1771100953078666 a001 494434223621482/27916772489 1771100953078666 a001 3236114006605515/182717648081 1771100953078666 a001 307696684238740/17373187209 1771100953078666 a001 763942888498105/43133785636 1771100953078666 a001 610/119218851371*14662949395604^(20/21) 1771100953078666 a001 583600435885010/32951280099 1771100953078666 a001 44583106131764/2517253805 1771100953078666 a001 610/17393796001*14662949395604^(8/9) 1771100953078666 a001 42573078045725/2403763488 1771100953078666 a001 610/6643838879*14662949395604^(6/7) 1771100953078666 a001 32522937615530/1836311903 1771100953078666 a001 305/1268860318*23725150497407^(13/16) 1771100953078666 a001 305/1268860318*505019158607^(13/14) 1771100953078666 a001 12422656755140/701408733 1771100953078666 a001 610*599074578^(1/6) 1771100953078666 a001 610/969323029*312119004989^(10/11) 1771100953078666 a001 610/969323029*3461452808002^(5/6) 1771100953078666 a001 182501255765/10304396 1771100953078666 a001 610/370248451*45537549124^(16/17) 1771100953078666 a001 610/370248451*14662949395604^(16/21) 1771100953078666 a001 610/370248451*192900153618^(8/9) 1771100953078666 a001 610/370248451*73681302247^(12/13) 1771100953078666 a001 362488238906/20466831 1771100953078666 a001 305/70711162*10749957122^(23/24) 1771100953078666 a001 692290933700/39088169 1771100953078667 a001 610/54018521*312119004989^(4/5) 1771100953078667 a001 610/54018521*23725150497407^(11/16) 1771100953078667 a001 610/54018521*73681302247^(11/13) 1771100953078667 a001 610/54018521*10749957122^(11/12) 1771100953078667 a001 610/54018521*4106118243^(22/23) 1771100953078668 a001 132215803285/7465176 1771100953078670 a001 610/20633239*2537720636^(14/15) 1771100953078670 a001 610/20633239*17393796001^(6/7) 1771100953078670 a001 610/20633239*45537549124^(14/17) 1771100953078670 a001 610/20633239*14662949395604^(2/3) 1771100953078670 a001 610/20633239*(1/2+1/2*5^(1/2))^42 1771100953078670 a001 610/20633239*192900153618^(7/9) 1771100953078670 a001 610/20633239*10749957122^(7/8) 1771100953078670 a001 610/20633239*4106118243^(21/23) 1771100953078670 a001 610/20633239*1568397607^(21/22) 1771100953078677 a001 101003886010/5702887 1771100953078695 a001 305/3940598*2537720636^(8/9) 1771100953078695 a001 305/3940598*312119004989^(8/11) 1771100953078695 a001 305/3940598*(1/2+1/2*5^(1/2))^40 1771100953078695 a001 305/3940598*23725150497407^(5/8) 1771100953078695 a001 305/3940598*73681302247^(10/13) 1771100953078695 a001 305/3940598*28143753123^(4/5) 1771100953078695 a001 305/3940598*10749957122^(5/6) 1771100953078695 a001 305/3940598*4106118243^(20/23) 1771100953078695 a001 305/3940598*1568397607^(10/11) 1771100953078695 a001 305/3940598*599074578^(20/21) 1771100953078741 a001 38580051460/2178309 1771100953078862 a001 610/3010349*817138163596^(2/3) 1771100953078862 a001 610/3010349*(1/2+1/2*5^(1/2))^38 1771100953078862 a001 610/3010349*10749957122^(19/24) 1771100953078862 a001 610/3010349*4106118243^(19/23) 1771100953078862 a001 610/3010349*1568397607^(19/22) 1771100953078862 a001 610/3010349*599074578^(19/21) 1771100953078862 a001 610/3010349*228826127^(19/20) 1771100953079103 a001 2178309/1364*20633239^(1/7) 1771100953079103 a001 2178309/1364*2537720636^(1/9) 1771100953079103 a001 2178309/1364*312119004989^(1/11) 1771100953079103 a001 2178309/1364*(1/2+1/2*5^(1/2))^5 1771100953079103 a001 2178309/1364*28143753123^(1/10) 1771100953079103 a001 2178309/1364*228826127^(1/8) 1771100953079164 a001 5702887/1364*7881196^(1/11) 1771100953079167 a001 5702887/1364*141422324^(1/13) 1771100953079167 a001 5702887/1364*2537720636^(1/15) 1771100953079167 a001 5702887/1364*45537549124^(1/17) 1771100953079167 a001 5702887/1364*14662949395604^(1/21) 1771100953079167 a001 5702887/1364*(1/2+1/2*5^(1/2))^3 1771100953079167 a001 5702887/1364*10749957122^(1/16) 1771100953079167 a001 5702887/1364*599074578^(1/14) 1771100953079167 a001 5702887/1364*33385282^(1/12) 1771100953079176 a001 1866294/341+1866294/341*5^(1/2) 1771100953079178 a001 24157817/1364 1771100953079182 a001 9227465/1364*(1/2+1/2*5^(1/2))^2 1771100953079182 a001 9227465/1364*10749957122^(1/24) 1771100953079182 a001 9227465/1364*4106118243^(1/23) 1771100953079182 a001 9227465/1364*1568397607^(1/22) 1771100953079182 a001 9227465/1364*599074578^(1/21) 1771100953079182 a001 9227465/1364*228826127^(1/20) 1771100953079182 a001 9227465/1364*87403803^(1/19) 1771100953079182 a001 9227465/1364*33385282^(1/18) 1771100953079183 a001 9227465/1364*12752043^(1/17) 1771100953079187 a001 9227465/1364*4870847^(1/16) 1771100953079188 a001 2178309/1364*1860498^(1/6) 1771100953079206 a001 1762289/682*(1/2+1/2*5^(1/2))^4 1771100953079206 a001 1762289/682*23725150497407^(1/16) 1771100953079206 a001 1762289/682*73681302247^(1/13) 1771100953079206 a001 1762289/682*10749957122^(1/12) 1771100953079206 a001 1762289/682*4106118243^(2/23) 1771100953079206 a001 1762289/682*1568397607^(1/11) 1771100953079206 a001 1762289/682*599074578^(2/21) 1771100953079206 a001 1762289/682*228826127^(1/10) 1771100953079206 a001 1762289/682*87403803^(2/19) 1771100953079206 a001 1762289/682*33385282^(1/9) 1771100953079208 a001 1762289/682*12752043^(2/17) 1771100953079216 a001 1762289/682*4870847^(1/8) 1771100953079216 a001 9227465/1364*1860498^(1/15) 1771100953079218 a001 5702887/1364*1860498^(1/10) 1771100953079275 a001 1762289/682*1860498^(2/15) 1771100953079368 a001 1346269/1364*7881196^(2/11) 1771100953079373 a001 1346269/1364*141422324^(2/13) 1771100953079373 a001 1346269/1364*2537720636^(2/15) 1771100953079373 a001 1346269/1364*45537549124^(2/17) 1771100953079373 a001 1346269/1364*14662949395604^(2/21) 1771100953079373 a001 1346269/1364*(1/2+1/2*5^(1/2))^6 1771100953079373 a001 1346269/1364*10749957122^(1/8) 1771100953079373 a001 1346269/1364*4106118243^(3/23) 1771100953079373 a001 1346269/1364*1568397607^(3/22) 1771100953079373 a001 1346269/1364*599074578^(1/7) 1771100953079373 a001 1346269/1364*228826127^(3/20) 1771100953079373 a001 1346269/1364*87403803^(3/19) 1771100953079373 a001 1346269/1364*33385282^(1/6) 1771100953079375 a001 1346269/1364*12752043^(3/17) 1771100953079387 a001 1346269/1364*4870847^(3/16) 1771100953079432 a001 9227465/1364*710647^(1/14) 1771100953079476 a001 1346269/1364*1860498^(1/5) 1771100953079543 a001 610*710647^(1/4) 1771100953079707 a001 1762289/682*710647^(1/7) 1771100953080006 a001 610/1149851*141422324^(12/13) 1771100953080006 a001 610/1149851*2537720636^(4/5) 1771100953080006 a001 610/1149851*45537549124^(12/17) 1771100953080006 a001 610/1149851*14662949395604^(4/7) 1771100953080006 a001 610/1149851*(1/2+1/2*5^(1/2))^36 1771100953080006 a001 610/1149851*192900153618^(2/3) 1771100953080006 a001 610/1149851*73681302247^(9/13) 1771100953080006 a001 610/1149851*10749957122^(3/4) 1771100953080006 a001 610/1149851*4106118243^(18/23) 1771100953080006 a001 610/1149851*1568397607^(9/11) 1771100953080006 a001 610/1149851*599074578^(6/7) 1771100953080006 a001 610/1149851*228826127^(9/10) 1771100953080006 a001 610/1149851*87403803^(18/19) 1771100953080125 a001 1346269/1364*710647^(3/14) 1771100953080517 a001 514229/1364*(1/2+1/2*5^(1/2))^8 1771100953080517 a001 514229/1364*23725150497407^(1/8) 1771100953080517 a001 514229/1364*73681302247^(2/13) 1771100953080517 a001 514229/1364*10749957122^(1/6) 1771100953080517 a001 514229/1364*4106118243^(4/23) 1771100953080517 a001 514229/1364*1568397607^(2/11) 1771100953080517 a001 514229/1364*599074578^(4/21) 1771100953080517 a001 514229/1364*228826127^(1/5) 1771100953080517 a001 514229/1364*87403803^(4/19) 1771100953080518 a001 514229/1364*33385282^(2/9) 1771100953080520 a001 514229/1364*12752043^(4/17) 1771100953080536 a001 514229/1364*4870847^(1/4) 1771100953080654 a001 514229/1364*1860498^(4/15) 1771100953081031 a001 9227465/1364*271443^(1/13) 1771100953081519 a001 514229/1364*710647^(2/7) 1771100953082177 a001 432981050/24447 1771100953082904 a001 1762289/682*271443^(2/13) 1771100953084920 a001 1346269/1364*271443^(3/13) 1771100953086041 a001 3732588/341*103682^(1/24) 1771100953087848 a001 305/219602*45537549124^(2/3) 1771100953087848 a001 305/219602*(1/2+1/2*5^(1/2))^34 1771100953087848 a001 305/219602*10749957122^(17/24) 1771100953087848 a001 305/219602*4106118243^(17/23) 1771100953087848 a001 305/219602*1568397607^(17/22) 1771100953087848 a001 305/219602*599074578^(17/21) 1771100953087848 a001 305/219602*228826127^(17/20) 1771100953087848 a001 305/219602*87403803^(17/19) 1771100953087849 a001 305/219602*33385282^(17/18) 1771100953087913 a001 514229/1364*271443^(4/13) 1771100953088358 a001 98209/682*20633239^(2/7) 1771100953088359 a001 98209/682*2537720636^(2/9) 1771100953088359 a001 98209/682*312119004989^(2/11) 1771100953088359 a001 98209/682*(1/2+1/2*5^(1/2))^10 1771100953088359 a001 98209/682*28143753123^(1/5) 1771100953088359 a001 98209/682*10749957122^(5/24) 1771100953088359 a001 98209/682*4106118243^(5/23) 1771100953088359 a001 98209/682*1568397607^(5/22) 1771100953088359 a001 98209/682*599074578^(5/21) 1771100953088359 a001 98209/682*228826127^(1/4) 1771100953088359 a001 98209/682*87403803^(5/19) 1771100953088360 a001 98209/682*33385282^(5/18) 1771100953088362 a001 98209/682*12752043^(5/17) 1771100953088383 a001 98209/682*4870847^(5/16) 1771100953088530 a001 98209/682*1860498^(1/3) 1771100953089612 a001 98209/682*710647^(5/14) 1771100953092911 a001 9227465/1364*103682^(1/12) 1771100953097604 a001 98209/682*271443^(5/13) 1771100953099761 a001 5702887/1364*103682^(1/8) 1771100953102732 a001 2149992580/121393 1771100953106665 a001 1762289/682*103682^(1/6) 1771100953113427 a001 2178309/1364*103682^(5/24) 1771100953120562 a001 1346269/1364*103682^(1/4) 1771100953126719 a001 610*103682^(7/24) 1771100953130505 a001 3732588/341*39603^(1/22) 1771100953130653 a001 121393/1364*103682^(11/24) 1771100953135435 a001 514229/1364*103682^(1/3) 1771100953137454 a001 317811/1364*103682^(3/8) 1771100953138028 a001 75025/1364*439204^(4/9) 1771100953141597 a001 610/167761*(1/2+1/2*5^(1/2))^32 1771100953141597 a001 610/167761*23725150497407^(1/2) 1771100953141597 a001 610/167761*505019158607^(4/7) 1771100953141597 a001 610/167761*73681302247^(8/13) 1771100953141597 a001 610/167761*10749957122^(2/3) 1771100953141597 a001 610/167761*4106118243^(16/23) 1771100953141597 a001 610/167761*1568397607^(8/11) 1771100953141597 a001 610/167761*599074578^(16/21) 1771100953141597 a001 610/167761*228826127^(4/5) 1771100953141597 a001 610/167761*87403803^(16/19) 1771100953141598 a001 610/167761*33385282^(8/9) 1771100953141607 a001 610/167761*12752043^(16/17) 1771100953142098 a001 75025/1364*7881196^(4/11) 1771100953142108 a001 75025/1364*141422324^(4/13) 1771100953142108 a001 75025/1364*2537720636^(4/15) 1771100953142108 a001 75025/1364*45537549124^(4/17) 1771100953142108 a001 75025/1364*817138163596^(4/19) 1771100953142108 a001 75025/1364*14662949395604^(4/21) 1771100953142108 a001 75025/1364*(1/2+1/2*5^(1/2))^12 1771100953142108 a001 75025/1364*73681302247^(3/13) 1771100953142108 a001 75025/1364*10749957122^(1/4) 1771100953142108 a001 75025/1364*4106118243^(6/23) 1771100953142108 a001 75025/1364*1568397607^(3/11) 1771100953142108 a001 75025/1364*599074578^(2/7) 1771100953142108 a001 75025/1364*228826127^(3/10) 1771100953142108 a001 75025/1364*87403803^(6/19) 1771100953142109 a001 75025/1364*33385282^(1/3) 1771100953142112 a001 75025/1364*12752043^(6/17) 1771100953142136 a001 75025/1364*4870847^(3/8) 1771100953142313 a001 75025/1364*1860498^(2/5) 1771100953143611 a001 75025/1364*710647^(3/7) 1771100953153202 a001 75025/1364*271443^(6/13) 1771100953157007 a001 98209/682*103682^(5/12) 1771100953181840 a001 9227465/1364*39603^(1/11) 1771100953224485 a001 75025/1364*103682^(1/2) 1771100953233154 a001 5702887/1364*39603^(3/22) 1771100953243616 a001 410612045/23184 1771100953247960 a001 28657/1364*64079^(14/23) 1771100953284523 a001 1762289/682*39603^(2/11) 1771100953335749 a001 2178309/1364*39603^(5/22) 1771100953387348 a001 1346269/1364*39603^(3/11) 1771100953437970 a001 610*39603^(7/22) 1771100953466173 a001 3732588/341*15127^(1/20) 1771100953491151 a001 514229/1364*39603^(4/11) 1771100953509972 a001 610/64079*7881196^(10/11) 1771100953509995 a001 610/64079*20633239^(6/7) 1771100953509998 a001 610/64079*141422324^(10/13) 1771100953509998 a001 610/64079*2537720636^(2/3) 1771100953509998 a001 610/64079*45537549124^(10/17) 1771100953509998 a001 610/64079*312119004989^(6/11) 1771100953509998 a001 610/64079*14662949395604^(10/21) 1771100953509998 a001 610/64079*(1/2+1/2*5^(1/2))^30 1771100953509998 a001 610/64079*192900153618^(5/9) 1771100953509998 a001 610/64079*28143753123^(3/5) 1771100953509998 a001 610/64079*10749957122^(5/8) 1771100953509998 a001 610/64079*4106118243^(15/23) 1771100953509998 a001 610/64079*1568397607^(15/22) 1771100953509998 a001 610/64079*599074578^(5/7) 1771100953509998 a001 610/64079*228826127^(3/4) 1771100953509998 a001 610/64079*87403803^(15/19) 1771100953510000 a001 610/64079*33385282^(5/6) 1771100953510008 a001 610/64079*12752043^(15/17) 1771100953510068 a001 610/64079*4870847^(15/16) 1771100953510508 a001 28657/1364*20633239^(2/5) 1771100953510510 a001 28657/1364*17393796001^(2/7) 1771100953510510 a001 28657/1364*14662949395604^(2/9) 1771100953510510 a001 28657/1364*(1/2+1/2*5^(1/2))^14 1771100953510510 a001 28657/1364*10749957122^(7/24) 1771100953510510 a001 28657/1364*4106118243^(7/23) 1771100953510510 a001 28657/1364*1568397607^(7/22) 1771100953510510 a001 28657/1364*599074578^(1/3) 1771100953510510 a001 28657/1364*228826127^(7/20) 1771100953510510 a001 28657/1364*87403803^(7/19) 1771100953510511 a001 28657/1364*33385282^(7/18) 1771100953510514 a001 28657/1364*12752043^(7/17) 1771100953510543 a001 28657/1364*4870847^(7/16) 1771100953510749 a001 28657/1364*1860498^(7/15) 1771100953512263 a001 28657/1364*710647^(1/2) 1771100953523453 a001 28657/1364*271443^(7/13) 1771100953537634 a001 317811/1364*39603^(9/22) 1771100953581703 a001 11592/341*39603^(13/22) 1771100953601651 a001 98209/682*39603^(5/11) 1771100953606617 a001 28657/1364*103682^(7/12) 1771100953619762 a001 121393/1364*39603^(1/2) 1771100953758059 a001 75025/1364*39603^(6/11) 1771100953783081 a001 5473/682*24476^(16/21) 1771100953853176 a001 9227465/1364*15127^(1/10) 1771100954145674 a001 4181/1364*9349^(18/19) 1771100954209248 a001 313679690/17711 1771100954229119 a001 28657/1364*39603^(7/11) 1771100954240158 a001 5702887/1364*15127^(3/20) 1771100954627195 a001 1762289/682*15127^(1/5) 1771100955014089 a001 2178309/1364*15127^(1/4) 1771100955401356 a001 1346269/1364*15127^(3/10) 1771100955735515 a001 5473/682*64079^(16/23) 1771100955787646 a001 610*15127^(7/20) 1771100956026418 a001 3732588/341*5778^(1/18) 1771100956035058 a001 305/12238*20633239^(4/5) 1771100956035061 a001 305/12238*17393796001^(4/7) 1771100956035061 a001 305/12238*14662949395604^(4/9) 1771100956035061 a001 305/12238*(1/2+1/2*5^(1/2))^28 1771100956035061 a001 305/12238*73681302247^(7/13) 1771100956035061 a001 305/12238*10749957122^(7/12) 1771100956035061 a001 305/12238*4106118243^(14/23) 1771100956035061 a001 305/12238*1568397607^(7/11) 1771100956035061 a001 305/12238*599074578^(2/3) 1771100956035061 a001 305/12238*228826127^(7/10) 1771100956035061 a001 305/12238*87403803^(14/19) 1771100956035062 a001 305/12238*33385282^(7/9) 1771100956035070 a001 305/12238*12752043^(14/17) 1771100956035126 a001 305/12238*4870847^(7/8) 1771100956035538 a001 305/12238*1860498^(14/15) 1771100956035573 a001 5473/682*(1/2+1/2*5^(1/2))^16 1771100956035573 a001 5473/682*23725150497407^(1/4) 1771100956035573 a001 5473/682*73681302247^(4/13) 1771100956035573 a001 5473/682*10749957122^(1/3) 1771100956035573 a001 5473/682*4106118243^(8/23) 1771100956035573 a001 5473/682*1568397607^(4/11) 1771100956035573 a001 5473/682*599074578^(8/21) 1771100956035573 a001 5473/682*228826127^(2/5) 1771100956035573 a001 5473/682*87403803^(8/19) 1771100956035573 a001 5473/682*33385282^(4/9) 1771100956035578 a001 5473/682*12752043^(8/17) 1771100956035610 a001 5473/682*4870847^(1/2) 1771100956035845 a001 5473/682*1860498^(8/15) 1771100956037577 a001 5473/682*710647^(4/7) 1771100956050365 a001 5473/682*271443^(8/13) 1771100956145409 a001 5473/682*103682^(2/3) 1771100956176494 a001 514229/1364*15127^(2/5) 1771100956558645 a001 317811/1364*15127^(9/20) 1771100956856840 a001 5473/682*39603^(8/11) 1771100956958330 a001 98209/682*15127^(1/2) 1771100957312109 a001 121393/1364*15127^(11/20) 1771100957420896 a001 47/610*610^(39/46) 1771100957754892 a001 17711/1364*15127^(3/4) 1771100957786073 a001 75025/1364*15127^(3/5) 1771100957945386 a001 11592/341*15127^(13/20) 1771100958928469 a001 28657/1364*15127^(7/10) 1771100958973665 a001 9227465/1364*5778^(1/9) 1771100960615576 a007 Real Root Of -278*x^4-95*x^3+909*x^2+71*x-518 1771100960827790 a001 23962996/1353 1771100960984726 m001 Bloch/(Riemann2ndZero^arctan(1/3)) 1771100961852722 r009 Re(z^3+c),c=-9/38+7/10*I,n=47 1771100961920892 a001 5702887/1364*5778^(1/6) 1771100962227526 a001 5473/682*15127^(4/5) 1771100964868173 a001 1762289/682*5778^(2/9) 1771100967815312 a001 2178309/1364*5778^(5/18) 1771100970762824 a001 1346269/1364*5778^(1/3) 1771100970808556 a001 4181/1364*24476^(6/7) 1771100973005045 a001 4181/1364*64079^(18/23) 1771100973336488 a001 4181/1364*439204^(2/3) 1771100973342098 a001 610/9349*141422324^(2/3) 1771100973342098 a001 610/9349*(1/2+1/2*5^(1/2))^26 1771100973342098 a001 610/9349*73681302247^(1/2) 1771100973342098 a001 610/9349*10749957122^(13/24) 1771100973342098 a001 610/9349*4106118243^(13/23) 1771100973342098 a001 610/9349*1568397607^(13/22) 1771100973342098 a001 610/9349*599074578^(13/21) 1771100973342098 a001 610/9349*228826127^(13/20) 1771100973342098 a001 610/9349*87403803^(13/19) 1771100973342099 a001 610/9349*33385282^(13/18) 1771100973342106 a001 610/9349*12752043^(13/17) 1771100973342158 a001 610/9349*4870847^(13/16) 1771100973342541 a001 610/9349*1860498^(13/15) 1771100973342593 a001 4181/1364*7881196^(6/11) 1771100973342609 a001 4181/1364*141422324^(6/13) 1771100973342609 a001 4181/1364*2537720636^(2/5) 1771100973342609 a001 4181/1364*45537549124^(6/17) 1771100973342609 a001 4181/1364*14662949395604^(2/7) 1771100973342609 a001 4181/1364*(1/2+1/2*5^(1/2))^18 1771100973342609 a001 4181/1364*192900153618^(1/3) 1771100973342609 a001 4181/1364*10749957122^(3/8) 1771100973342609 a001 4181/1364*4106118243^(9/23) 1771100973342609 a001 4181/1364*1568397607^(9/22) 1771100973342609 a001 4181/1364*599074578^(3/7) 1771100973342609 a001 4181/1364*228826127^(9/20) 1771100973342609 a001 4181/1364*87403803^(9/19) 1771100973342610 a001 4181/1364*33385282^(1/2) 1771100973342615 a001 4181/1364*12752043^(9/17) 1771100973342651 a001 4181/1364*4870847^(9/16) 1771100973342916 a001 4181/1364*1860498^(3/5) 1771100973344864 a001 4181/1364*710647^(9/14) 1771100973345354 a001 610/9349*710647^(13/14) 1771100973359250 a001 4181/1364*271443^(9/13) 1771100973466175 a001 4181/1364*103682^(3/4) 1771100973709358 a001 610*5778^(7/18) 1771100974266535 a001 4181/1364*39603^(9/11) 1771100975330768 a007 Real Root Of -857*x^4-993*x^3+205*x^2-958*x+576 1771100975778250 r005 Re(z^2+c),c=3/14+21/44*I,n=37 1771100975804957 a001 3732588/341*2207^(1/16) 1771100976658451 a001 514229/1364*5778^(4/9) 1771100979600846 a001 317811/1364*5778^(1/2) 1771100980308557 a001 4181/1364*15127^(9/10) 1771100982560777 a001 98209/682*5778^(5/9) 1771100984487836 r009 Re(z^3+c),c=-4/15+28/61*I,n=28 1771100985474800 a001 121393/1364*5778^(11/18) 1771100988509009 a001 75025/1364*5778^(2/3) 1771100991228566 a001 11592/341*5778^(13/18) 1771100992111598 a007 Real Root Of -12*x^4-165*x^3+857*x^2+319*x+895 1771100994771895 a001 28657/1364*5778^(7/9) 1771100995442345 a001 615/124*5778^(17/18) 1771100996158562 a001 17711/1364*5778^(5/6) 1771100998530743 a001 9227465/1364*2207^(1/8) 1771101003042538 r009 Re(z^3+c),c=-17/54+19/31*I,n=64 1771101003191441 a001 5473/682*5778^(8/9) 1771101004377736 a001 76/3*987^(11/39) 1771101004775609 a001 46368/521*521^(11/13) 1771101006191950 a001 22882625/1292 1771101009702530 r005 Im(z^2+c),c=-41/78+18/53*I,n=25 1771101016179569 a001 5702887/5778*843^(3/7) 1771101017670115 a001 521/21*987^(13/21) 1771101019872439 m001 exp(FeigenbaumC)^2*DuboisRaymond*GAMMA(7/12)^2 1771101021256509 a001 5702887/1364*2207^(3/16) 1771101026236628 s002 sum(A071328[n]/((2^n+1)/n),n=1..infinity) 1771101028921698 r005 Re(z^2+c),c=-3/23+32/53*I,n=15 1771101030100726 a001 1597*843^(5/14) 1771101030326620 r009 Im(z^3+c),c=-49/114+45/58*I,n=4 1771101032195336 a007 Real Root Of 762*x^4+952*x^3-764*x^2-390*x-503 1771101038170496 l006 ln(1508/8863) 1771101038961582 r002 30th iterates of z^2 + 1771101043982329 a001 1762289/682*2207^(1/4) 1771101044468549 h002 exp(7^(3/10)-11^(1/12)) 1771101044468549 h007 exp(7^(3/10)-11^(1/12)) 1771101045134867 r005 Im(z^2+c),c=-27/58+11/36*I,n=31 1771101049463259 l006 ln(7984/9531) 1771101051418226 r005 Im(z^2+c),c=-29/36+6/59*I,n=48 1771101053137997 a007 Real Root Of 430*x^4+823*x^3+493*x^2+755*x+132 1771101053869309 m001 (Pi^(1/2)-cosh(1))^Psi(2,1/3) 1771101057083658 r005 Im(z^2+c),c=-21/34+34/125*I,n=18 1771101061013684 a001 24157817/2207*322^(1/12) 1771101061489989 a001 14930352/15127*843^(3/7) 1771101061650586 a001 832040/2207*843^(4/7) 1771101061757859 m001 (gamma(1)+FeigenbaumB)/(Magata+QuadraticClass) 1771101064926570 a007 Real Root Of -766*x^4-391*x^3-41*x^2+667*x+118 1771101066708008 a001 2178309/1364*2207^(5/16) 1771101068041959 m001 (Gompertz-exp(1))/(-KhinchinLevy+Mills) 1771101068100691 a001 39088169/39603*843^(3/7) 1771101069065179 a001 102334155/103682*843^(3/7) 1771101069205896 a001 267914296/271443*843^(3/7) 1771101069226426 a001 701408733/710647*843^(3/7) 1771101069229422 a001 1836311903/1860498*843^(3/7) 1771101069229859 a001 4807526976/4870847*843^(3/7) 1771101069229922 a001 12586269025/12752043*843^(3/7) 1771101069229932 a001 32951280099/33385282*843^(3/7) 1771101069229933 a001 86267571272/87403803*843^(3/7) 1771101069229933 a001 225851433717/228826127*843^(3/7) 1771101069229933 a001 591286729879/599074578*843^(3/7) 1771101069229933 a001 1548008755920/1568397607*843^(3/7) 1771101069229933 a001 4052739537881/4106118243*843^(3/7) 1771101069229933 a001 4807525989/4870846*843^(3/7) 1771101069229933 a001 6557470319842/6643838879*843^(3/7) 1771101069229933 a001 2504730781961/2537720636*843^(3/7) 1771101069229933 a001 956722026041/969323029*843^(3/7) 1771101069229933 a001 365435296162/370248451*843^(3/7) 1771101069229933 a001 139583862445/141422324*843^(3/7) 1771101069229934 a001 53316291173/54018521*843^(3/7) 1771101069229937 a001 20365011074/20633239*843^(3/7) 1771101069229962 a001 7778742049/7881196*843^(3/7) 1771101069230129 a001 2971215073/3010349*843^(3/7) 1771101069231273 a001 1134903170/1149851*843^(3/7) 1771101069239115 a001 433494437/439204*843^(3/7) 1771101069292864 a001 165580141/167761*843^(3/7) 1771101069385937 a007 Real Root Of 218*x^4-55*x^3-480*x^2+896*x+642 1771101069470513 m001 (DuboisRaymond+Landau)/(GAMMA(2/3)+Zeta(1,2)) 1771101069661265 a001 63245986/64079*843^(3/7) 1771101072186329 a001 24157817/24476*843^(3/7) 1771101076762764 q001 5099/2879 1771101089151187 a001 1597/1364*24476^(20/21) 1771101089434060 a001 1346269/1364*2207^(3/8) 1771101089493370 a001 9227465/9349*843^(3/7) 1771101091591730 a001 1597/1364*64079^(20/23) 1771101091916457 a001 1597/1364*167761^(4/5) 1771101091958140 a001 610/3571*439204^(8/9) 1771101091966280 a001 610/3571*7881196^(8/11) 1771101091966301 a001 610/3571*141422324^(8/13) 1771101091966301 a001 610/3571*2537720636^(8/15) 1771101091966301 a001 610/3571*45537549124^(8/17) 1771101091966301 a001 610/3571*14662949395604^(8/21) 1771101091966301 a001 610/3571*(1/2+1/2*5^(1/2))^24 1771101091966301 a001 610/3571*192900153618^(4/9) 1771101091966301 a001 610/3571*73681302247^(6/13) 1771101091966301 a001 610/3571*10749957122^(1/2) 1771101091966301 a001 610/3571*4106118243^(12/23) 1771101091966301 a001 610/3571*1568397607^(6/11) 1771101091966301 a001 610/3571*599074578^(4/7) 1771101091966301 a001 610/3571*228826127^(3/5) 1771101091966301 a001 610/3571*87403803^(12/19) 1771101091966302 a001 610/3571*33385282^(2/3) 1771101091966309 a001 610/3571*12752043^(12/17) 1771101091966357 a001 610/3571*4870847^(3/4) 1771101091966710 a001 610/3571*1860498^(4/5) 1771101091966799 a001 1597/1364*20633239^(4/7) 1771101091966802 a001 1597/1364*2537720636^(4/9) 1771101091966802 a001 1597/1364*(1/2+1/2*5^(1/2))^20 1771101091966802 a001 1597/1364*23725150497407^(5/16) 1771101091966802 a001 1597/1364*505019158607^(5/14) 1771101091966802 a001 1597/1364*73681302247^(5/13) 1771101091966802 a001 1597/1364*28143753123^(2/5) 1771101091966802 a001 1597/1364*10749957122^(5/12) 1771101091966802 a001 1597/1364*4106118243^(10/23) 1771101091966802 a001 1597/1364*1568397607^(5/11) 1771101091966802 a001 1597/1364*599074578^(10/21) 1771101091966802 a001 1597/1364*228826127^(1/2) 1771101091966802 a001 1597/1364*87403803^(10/19) 1771101091966803 a001 1597/1364*33385282^(5/9) 1771101091966808 a001 1597/1364*12752043^(10/17) 1771101091966848 a001 1597/1364*4870847^(5/8) 1771101091967143 a001 1597/1364*1860498^(2/3) 1771101091969307 a001 1597/1364*710647^(5/7) 1771101091969307 a001 610/3571*710647^(6/7) 1771101091985292 a001 1597/1364*271443^(10/13) 1771101091988489 a001 610/3571*271443^(12/13) 1771101092104097 a001 1597/1364*103682^(5/6) 1771101092993386 a001 1597/1364*39603^(10/11) 1771101109769543 m006 (Pi^2+5)/(4/5*Pi^2+1/2) 1771101109769543 m008 (Pi^2+5)/(4/5*Pi^2+1/2) 1771101110375993 m001 (1+ln(3))/(-KhinchinLevy+ZetaQ(4)) 1771101111021564 k008 concat of cont frac of 1771101111111261 k007 concat of cont frac of 1771101111112151 k006 concat of cont frac of 1771101111118421 k006 concat of cont frac of 1771101111119131 k008 concat of cont frac of 1771101111321144 k006 concat of cont frac of 1771101111621822 k008 concat of cont frac of 1771101112159135 a001 610*2207^(7/16) 1771101112616131 k006 concat of cont frac of 1771101114157265 a007 Real Root Of -577*x^4-806*x^3+326*x^2+249*x+618 1771101121183412 k008 concat of cont frac of 1771101121233111 k008 concat of cont frac of 1771101121729524 r005 Im(z^2+c),c=-19/18+28/131*I,n=25 1771101122132141 k009 concat of cont frac of 1771101122222151 k007 concat of cont frac of 1771101124441121 k006 concat of cont frac of 1771101124883066 a007 Real Root Of -544*x^4+563*x^3+959*x^2+877*x-188 1771101126709817 p004 log(22469/3823) 1771101126723407 m001 (Ei(1,1)+GAMMA(19/24))/(ReciprocalLucas-Salem) 1771101129717172 k008 concat of cont frac of 1771101131096009 a001 3732588/341*843^(1/14) 1771101134886768 a001 514229/1364*2207^(1/2) 1771101136221221 k008 concat of cont frac of 1771101138194879 m001 (Sierpinski+Trott2nd)/(BesselJ(0,1)+Rabbit) 1771101141393274 s002 sum(A189154[n]/(exp(n)-1),n=1..infinity) 1771101142211535 k008 concat of cont frac of 1771101151211811 k008 concat of cont frac of 1771101151415131 k006 concat of cont frac of 1771101154112324 k006 concat of cont frac of 1771101155675315 m001 BesselI(0,1)^(ln(2)/ln(10))+ArtinRank2 1771101157607704 a001 317811/1364*2207^(9/16) 1771101162320323 s001 sum(exp(-Pi/3)^(n-1)*A037188[n],n=1..infinity) 1771101163401794 r005 Re(z^2+c),c=-6/5+11/117*I,n=58 1771101169954956 a007 Real Root Of 223*x^4-911*x^3-612*x^2-491*x+111 1771101172716528 m001 Robbin*LaplaceLimit^2*ln(Tribonacci) 1771101173840134 q001 6337/3578 1771101174127381 k006 concat of cont frac of 1771101180346176 a001 98209/682*2207^(5/8) 1771101182310112 k006 concat of cont frac of 1771101194196447 a001 1762289/2889*843^(1/2) 1771101195376927 m005 (11/6+3/2*5^(1/2))/(1/2*2^(1/2)-1) 1771101203038740 a001 121393/1364*2207^(11/16) 1771101208117606 a001 3524578/3571*843^(3/7) 1771101211453044 l006 ln(6477/7732) 1771101212111711 k008 concat of cont frac of 1771101212524709 m005 (9/20+1/4*5^(1/2))/(4*Zeta(3)+8/9) 1771101213121221 k008 concat of cont frac of 1771101221246259 k007 concat of cont frac of 1771101222320416 k007 concat of cont frac of 1771101225851491 a001 75025/1364*2207^(3/4) 1771101231121865 k006 concat of cont frac of 1771101231211011 k009 concat of cont frac of 1771101236358262 m001 (Otter+Tribonacci)/(exp(1/Pi)+MertensB3) 1771101239506839 a001 9227465/15127*843^(1/2) 1771101239669281 a001 514229/2207*843^(9/14) 1771101240081895 m001 FeigenbaumMu*Lehmer^Totient 1771101241217178 k007 concat of cont frac of 1771101241219470 r005 Im(z^2+c),c=-119/122+7/39*I,n=58 1771101241893849 r005 Im(z^2+c),c=-67/90+35/39*I,n=3 1771101245153231 r005 Re(z^2+c),c=-67/70+6/37*I,n=14 1771101246117536 a001 24157817/39603*843^(1/2) 1771101247082024 a001 31622993/51841*843^(1/2) 1771101247222741 a001 165580141/271443*843^(1/2) 1771101247243271 a001 433494437/710647*843^(1/2) 1771101247246266 a001 567451585/930249*843^(1/2) 1771101247246703 a001 2971215073/4870847*843^(1/2) 1771101247246767 a001 7778742049/12752043*843^(1/2) 1771101247246776 a001 10182505537/16692641*843^(1/2) 1771101247246778 a001 53316291173/87403803*843^(1/2) 1771101247246778 a001 139583862445/228826127*843^(1/2) 1771101247246778 a001 182717648081/299537289*843^(1/2) 1771101247246778 a001 956722026041/1568397607*843^(1/2) 1771101247246778 a001 2504730781961/4106118243*843^(1/2) 1771101247246778 a001 3278735159921/5374978561*843^(1/2) 1771101247246778 a001 10610209857723/17393796001*843^(1/2) 1771101247246778 a001 4052739537881/6643838879*843^(1/2) 1771101247246778 a001 1134903780/1860499*843^(1/2) 1771101247246778 a001 591286729879/969323029*843^(1/2) 1771101247246778 a001 225851433717/370248451*843^(1/2) 1771101247246778 a001 21566892818/35355581*843^(1/2) 1771101247246778 a001 32951280099/54018521*843^(1/2) 1771101247246782 a001 1144206275/1875749*843^(1/2) 1771101247246806 a001 1201881744/1970299*843^(1/2) 1771101247246973 a001 1836311903/3010349*843^(1/2) 1771101247248117 a001 701408733/1149851*843^(1/2) 1771101247255959 a001 66978574/109801*843^(1/2) 1771101247309708 a001 9303105/15251*843^(1/2) 1771101247678110 a001 39088169/64079*843^(1/2) 1771101248349590 a001 11592/341*2207^(13/16) 1771101250203172 a001 3732588/6119*843^(1/2) 1771101250425309 m001 1/Riemann3rdZero/ln(ErdosBorwein)^2/Zeta(9)^2 1771101252112134 k006 concat of cont frac of 1771101262415122 k007 concat of cont frac of 1771101267510202 a001 5702887/9349*843^(1/2) 1771101268014264 a007 Real Root Of 842*x^4+893*x^3-356*x^2+878*x-652 1771101271671461 a001 28657/1364*2207^(7/8) 1771101273265610 m005 (-7/12+1/6*5^(1/2))/(1/4*Zeta(3)+8/9) 1771101277911986 m002 -5+ProductLog[Pi]+Sinh[Pi]+Sinh[Pi]/Log[Pi] 1771101278086287 m006 (1/3*exp(2*Pi)+1/5)/(2/5*exp(Pi)+5/6) 1771101287768363 r005 Re(z^2+c),c=-21/22+13/81*I,n=26 1771101292836671 a001 17711/1364*2207^(15/16) 1771101302895539 m001 (Conway+FransenRobinson)/(exp(Pi)-gamma(1)) 1771101309112866 a001 9227465/1364*843^(1/7) 1771101311104521 k007 concat of cont frac of 1771101311461251 k009 concat of cont frac of 1771101312091450 m001 (GaussKuzminWirsing+GAMMA(5/12))^Cahen 1771101315257604 m001 (Chi(1)-Zeta(1/2))/(-Mills+ZetaQ(3)) 1771101317122593 a001 17480770/987 1771101321476814 k009 concat of cont frac of 1771101321511114 k006 concat of cont frac of 1771101321923454 a007 Real Root Of -301*x^4+67*x^3+791*x^2-626*x-256 1771101325193612 k008 concat of cont frac of 1771101327778003 m001 (ln(2)+Champernowne)/(FeigenbaumD+Tetranacci) 1771101331412761 k008 concat of cont frac of 1771101332635808 r005 Im(z^2+c),c=-47/102+9/28*I,n=16 1771101335435965 m001 (Grothendieck+Otter)/(RenyiParking+Tetranacci) 1771101339737775 a001 199/377*63245986^(17/24) 1771101350405591 m005 (1/2*Pi-5/11)/(3/4*Catalan-3/4) 1771101353303145 r005 Im(z^2+c),c=-37/34+13/66*I,n=14 1771101361618200 m006 (2/Pi+3/5)/(3*exp(Pi)+2/5) 1771101371575861 a001 31622993/2889*322^(1/12) 1771101372213201 a001 726103/1926*843^(4/7) 1771101373655476 m001 (ln(2^(1/2)+1)+Rabbit)/(Sarnak+ZetaP(3)) 1771101374783074 m001 (ErdosBorwein-ZetaQ(3))/(sin(1/12*Pi)+Cahen) 1771101375467484 r005 Re(z^2+c),c=1/62+4/7*I,n=32 1771101381167734 h001 (5/9*exp(2)+7/10)/(1/3*exp(2)+1/4) 1771101382864376 m005 (1/2*gamma-1/10)/(2/11*3^(1/2)+3/4) 1771101386134361 a001 2178309/3571*843^(1/2) 1771101387127165 a007 Real Root Of 39*x^4-300*x^3-474*x^2-186*x-893 1771101388006117 m005 (1/2*Zeta(3)-5/6)/(6*5^(1/2)-3/10) 1771101389225531 r002 40th iterates of z^2 + 1771101391305497 a003 sin(Pi*23/67)+sin(Pi*22/63) 1771101391884399 h001 (7/8*exp(2)+4/5)/(4/9*exp(2)+9/11) 1771101393870652 a007 Real Root Of -502*x^4-662*x^3+159*x^2-267*x+290 1771101398461426 a003 cos(Pi*11/57)+sin(Pi*45/113) 1771101404911080 m005 (1/2*gamma+5/6)/(-17/72+7/18*5^(1/2)) 1771101407566426 m001 (Zeta(3)-Backhouse)/(MinimumGamma-Trott2nd) 1771101408855764 r009 Re(z^3+c),c=-11/46+7/19*I,n=16 1771101409171113 k008 concat of cont frac of 1771101412052211 k008 concat of cont frac of 1771101415595186 a001 29/987*55^(13/29) 1771101416886282 a001 165580141/15127*322^(1/12) 1771101417523685 a001 5702887/15127*843^(4/7) 1771101417681296 a001 317811/2207*843^(5/7) 1771101417876644 p004 log(37397/31327) 1771101421525112 k007 concat of cont frac of 1771101422138465 m001 BesselK(1,1)/(Otter^GAMMA(5/6)) 1771101422786356 r005 Im(z^2+c),c=-53/94+19/58*I,n=59 1771101423496983 a001 433494437/39603*322^(1/12) 1771101424131214 k008 concat of cont frac of 1771101424134396 a001 4976784/13201*843^(4/7) 1771101424461471 a001 567451585/51841*322^(1/12) 1771101424602188 a001 2971215073/271443*322^(1/12) 1771101424622719 a001 7778742049/710647*322^(1/12) 1771101424625714 a001 10182505537/930249*322^(1/12) 1771101424626151 a001 53316291173/4870847*322^(1/12) 1771101424626215 a001 139583862445/12752043*322^(1/12) 1771101424626224 a001 182717648081/16692641*322^(1/12) 1771101424626225 a001 956722026041/87403803*322^(1/12) 1771101424626226 a001 2504730781961/228826127*322^(1/12) 1771101424626226 a001 3278735159921/299537289*322^(1/12) 1771101424626226 a001 10610209857723/969323029*322^(1/12) 1771101424626226 a001 4052739537881/370248451*322^(1/12) 1771101424626226 a001 387002188980/35355581*322^(1/12) 1771101424626226 a001 591286729879/54018521*322^(1/12) 1771101424626230 a001 7787980473/711491*322^(1/12) 1771101424626254 a001 21566892818/1970299*322^(1/12) 1771101424626421 a001 32951280099/3010349*322^(1/12) 1771101424627565 a001 12586269025/1149851*322^(1/12) 1771101424635407 a001 1201881744/109801*322^(1/12) 1771101424689156 a001 1836311903/167761*322^(1/12) 1771101425057558 a001 701408733/64079*322^(1/12) 1771101425098886 a001 39088169/103682*843^(4/7) 1771101425239603 a001 34111385/90481*843^(4/7) 1771101425260133 a001 267914296/710647*843^(4/7) 1771101425263129 a001 233802911/620166*843^(4/7) 1771101425263566 a001 1836311903/4870847*843^(4/7) 1771101425263629 a001 1602508992/4250681*843^(4/7) 1771101425263639 a001 12586269025/33385282*843^(4/7) 1771101425263640 a001 10983760033/29134601*843^(4/7) 1771101425263640 a001 86267571272/228826127*843^(4/7) 1771101425263640 a001 267913919/710646*843^(4/7) 1771101425263640 a001 591286729879/1568397607*843^(4/7) 1771101425263640 a001 516002918640/1368706081*843^(4/7) 1771101425263640 a001 4052739537881/10749957122*843^(4/7) 1771101425263640 a001 3536736619241/9381251041*843^(4/7) 1771101425263640 a001 6557470319842/17393796001*843^(4/7) 1771101425263640 a001 2504730781961/6643838879*843^(4/7) 1771101425263640 a001 956722026041/2537720636*843^(4/7) 1771101425263640 a001 365435296162/969323029*843^(4/7) 1771101425263640 a001 139583862445/370248451*843^(4/7) 1771101425263640 a001 53316291173/141422324*843^(4/7) 1771101425263641 a001 20365011074/54018521*843^(4/7) 1771101425263644 a001 7778742049/20633239*843^(4/7) 1771101425263669 a001 2971215073/7881196*843^(4/7) 1771101425263836 a001 1134903170/3010349*843^(4/7) 1771101425264980 a001 433494437/1149851*843^(4/7) 1771101425272822 a001 165580141/439204*843^(4/7) 1771101425326571 a001 63245986/167761*843^(4/7) 1771101425694973 a001 24157817/64079*843^(4/7) 1771101427582621 a001 10946*322^(1/12) 1771101428220040 a001 9227465/24476*843^(4/7) 1771101431948303 r009 Re(z^3+c),c=-11/102+41/50*I,n=7 1771101432125328 r009 Re(z^3+c),c=-19/66+10/19*I,n=40 1771101433225102 k008 concat of cont frac of 1771101433666066 r005 Im(z^2+c),c=25/114+3/34*I,n=18 1771101433707931 a007 Real Root Of -46*x^4-820*x^3-146*x^2-894*x+556 1771101444889662 a001 102334155/9349*322^(1/12) 1771101445527106 a001 3524578/9349*843^(4/7) 1771101449397288 a007 Real Root Of 393*x^4+504*x^3-145*x^2+904*x+989 1771101450516987 r002 49th iterates of z^2 + 1771101456600299 r005 Im(z^2+c),c=-8/19+19/64*I,n=47 1771101457607632 l006 ln(269/1581) 1771101459278144 m001 1/ln(Pi)^2*FeigenbaumC^2/Zeta(3)^2 1771101463409636 m001 1/(2^(1/3))^2*ln(LaplaceLimit)^2/BesselK(1,1) 1771101463825525 m001 (ln(Pi)+cos(1/12*Pi))^BesselJ(0,1) 1771101463825525 m001 (ln(Pi)+cos(Pi/12))^BesselJ(0,1) 1771101467311878 m001 GAMMA(5/24)/KhintchineLevy^2*ln(LambertW(1)) 1771101467846638 a005 (1/cos(25/231*Pi))^205 1771101469821828 r005 Re(z^2+c),c=-5/56+29/34*I,n=10 1771101471679688 l006 ln(4970/5933) 1771101475907382 a007 Real Root Of 632*x^4+922*x^3-340*x^2-21*x-67 1771101478285098 a007 Real Root Of 25*x^4-164*x^3-115*x^2+337*x+429 1771101480949442 m001 (Si(Pi)+LandauRamanujan*Tribonacci)/Tribonacci 1771101487129719 a001 5702887/1364*843^(3/14) 1771101490228849 b008 -7*E+ArcCosh[2] 1771101503979388 r005 Re(z^2+c),c=-5/31+5/17*I,n=16 1771101506909068 a001 75025/521*521^(10/13) 1771101507088372 m005 (1/2*Catalan+1/4)/(10/11*gamma-1/8) 1771101511232657 r002 34th iterates of z^2 + 1771101511241113 k006 concat of cont frac of 1771101512243315 a007 Real Root Of 373*x^4+552*x^3+422*x^2+838*x-443 1771101516776640 m001 1/2/(BesselI(1,2)^sqrt(5)) 1771101523845855 r005 Im(z^2+c),c=-9/29+38/61*I,n=11 1771101524770042 a007 Real Root Of 63*x^4-406*x^3-806*x^2+353*x+278 1771101526177796 r005 Im(z^2+c),c=-67/126+15/47*I,n=45 1771101527486075 m001 ZetaQ(2)/MinimumGamma/exp(-1/2*Pi) 1771101532631792 m005 (1/2*2^(1/2)+1/8)/(2/11*Catalan-7/11) 1771101537353908 m001 (Pi-ln(Pi))/(GAMMA(5/6)-HeathBrownMoroz) 1771101543005493 a003 cos(Pi*1/104)*cos(Pi*43/97) 1771101544233638 a007 Real Root Of -790*x^4-971*x^3+944*x^2+173*x-276 1771101545650176 a001 46368/11*199^(16/59) 1771101549866246 m001 BesselI(0,1)^BesselJ(1,1)+Robbin 1771101550230347 a001 1346269/5778*843^(9/14) 1771101555303831 m001 (Landau-Tetranacci)/(GAMMA(3/4)-Conway) 1771101556816549 m001 GAMMA(3/4)^2/RenyiParking^2*exp(GAMMA(5/24))^2 1771101560840698 r005 Im(z^2+c),c=17/64+2/45*I,n=64 1771101562422911 k009 concat of cont frac of 1771101563513897 a001 39088169/3571*322^(1/12) 1771101564151508 a001 1346269/3571*843^(4/7) 1771101567932151 b008 3*EllipticPi[3*Pi,-1] 1771101569197542 r005 Re(z^2+c),c=1/42+37/63*I,n=45 1771101573297782 a007 Real Root Of -32*x^4-246*x^3-907*x^2+739*x+158 1771101573676680 q001 1238/699 1771101576810768 a007 Real Root Of -810*x^4-958*x^3+526*x^2-14*x+973 1771101578095103 a007 Real Root Of -295*x^4-380*x^3-97*x^2-429*x+336 1771101580282271 b008 7/4+E^(-7+Pi) 1771101580708484 r002 3th iterates of z^2 + 1771101590180995 a007 Real Root Of -362*x^4+292*x^3+887*x^2-796*x+992 1771101594728702 a007 Real Root Of 256*x^4+344*x^3-552*x^2-591*x+77 1771101595540604 a001 3524578/15127*843^(9/14) 1771101595710865 a001 196418/2207*843^(11/14) 1771101598458769 a003 cos(Pi*12/59)+sin(Pi*34/81) 1771101599479050 r005 Re(z^2+c),c=-11/74+15/46*I,n=7 1771101602051815 r005 Im(z^2+c),c=3/20+57/64*I,n=4 1771101602151282 a001 9227465/39603*843^(9/14) 1771101603115767 a001 24157817/103682*843^(9/14) 1771101603256484 a001 63245986/271443*843^(9/14) 1771101603277014 a001 165580141/710647*843^(9/14) 1771101603280009 a001 433494437/1860498*843^(9/14) 1771101603280446 a001 1134903170/4870847*843^(9/14) 1771101603280510 a001 2971215073/12752043*843^(9/14) 1771101603280519 a001 7778742049/33385282*843^(9/14) 1771101603280521 a001 20365011074/87403803*843^(9/14) 1771101603280521 a001 53316291173/228826127*843^(9/14) 1771101603280521 a001 139583862445/599074578*843^(9/14) 1771101603280521 a001 365435296162/1568397607*843^(9/14) 1771101603280521 a001 956722026041/4106118243*843^(9/14) 1771101603280521 a001 2504730781961/10749957122*843^(9/14) 1771101603280521 a001 6557470319842/28143753123*843^(9/14) 1771101603280521 a001 10610209857723/45537549124*843^(9/14) 1771101603280521 a001 4052739537881/17393796001*843^(9/14) 1771101603280521 a001 1548008755920/6643838879*843^(9/14) 1771101603280521 a001 591286729879/2537720636*843^(9/14) 1771101603280521 a001 225851433717/969323029*843^(9/14) 1771101603280521 a001 86267571272/370248451*843^(9/14) 1771101603280521 a001 63246219/271444*843^(9/14) 1771101603280521 a001 12586269025/54018521*843^(9/14) 1771101603280525 a001 4807526976/20633239*843^(9/14) 1771101603280549 a001 1836311903/7881196*843^(9/14) 1771101603280716 a001 701408733/3010349*843^(9/14) 1771101603281860 a001 267914296/1149851*843^(9/14) 1771101603289702 a001 102334155/439204*843^(9/14) 1771101603343451 a001 39088169/167761*843^(9/14) 1771101603696585 m001 1/GAMMA(7/24)^2*Magata^2/exp(cos(Pi/12))^2 1771101603711851 a001 14930352/64079*843^(9/14) 1771101603935099 a007 Real Root Of -699*x^4-980*x^3+968*x^2+454*x-799 1771101605396468 m001 (FeigenbaumC-Si(Pi))/(-Salem+ZetaQ(3)) 1771101606236906 a001 5702887/24476*843^(9/14) 1771101608936284 m001 1/exp(Salem)*Rabbit*cos(Pi/5) 1771101615114187 k008 concat of cont frac of 1771101615759623 m008 (3*Pi^6-1/4)/(1/5*Pi+1) 1771101616684953 r005 Re(z^2+c),c=7/52+31/49*I,n=11 1771101619857945 a007 Real Root Of -275*x^4+127*x^3+839*x^2-801*x-639 1771101620178220 h005 exp(cos(Pi*13/49)*sin(Pi*11/34)) 1771101621115533 k007 concat of cont frac of 1771101623543885 a001 2178309/9349*843^(9/14) 1771101628282666 a003 sin(Pi*2/91)+sin(Pi*1/29) 1771101629518341 s002 sum(A228379[n]/(n*pi^n-1),n=1..infinity) 1771101633868350 a007 Real Root Of 186*x^4-363*x^3-694*x^2+682*x-462 1771101641248359 a007 Real Root Of 749*x^4+663*x^3-967*x^2-40*x-724 1771101642450703 a007 Real Root Of 90*x^4+287*x^3+927*x^2-25*x-32 1771101653753964 r005 Im(z^2+c),c=-173/126+5/63*I,n=13 1771101654625964 m001 (GlaisherKinkelin+LaplaceLimit)^Thue 1771101660309097 r005 Re(z^2+c),c=4/23+32/57*I,n=63 1771101660550997 a007 Real Root Of 414*x^4+882*x^3+402*x^2+238*x-13 1771101664495686 m001 (Pi-GAMMA(23/24))/(KomornikLoreti-Lehmer) 1771101665146645 a001 1762289/682*843^(2/7) 1771101667823810 a003 sin(Pi*23/76)+sin(Pi*37/91) 1771101668585340 m001 (3^(1/3))/CareFree*ln(BesselK(0,1)) 1771101669366860 a007 Real Root Of -31*x^4-601*x^3-951*x^2-569*x-428 1771101671547817 l006 ln(8433/10067) 1771101673640722 m005 (1/3*2^(1/2)-1/6)/(2/11*3^(1/2)-1/7) 1771101679676509 r005 Re(z^2+c),c=-15/74+5/53*I,n=4 1771101685201467 r005 Re(z^2+c),c=-89/106+5/64*I,n=62 1771101693560000 a003 cos(Pi*1/82)-cos(Pi*16/83) 1771101696608265 m001 GAMMA(13/24)^gamma(2)+StronglyCareFree 1771101698495864 r005 Re(z^2+c),c=-3/118+31/52*I,n=35 1771101706641472 a007 Real Root Of -207*x^4+602*x^3+231*x^2-606*x-959 1771101717647989 a007 Real Root Of 530*x^4+973*x^3+639*x^2+617*x-721 1771101717732572 a007 Real Root Of 25*x^4+418*x^3-450*x^2-184*x+255 1771101727683926 r005 Im(z^2+c),c=-23/40+19/58*I,n=47 1771101728246532 a001 416020/2889*843^(5/7) 1771101729101291 g004 Im(GAMMA(1+I*71/20)) 1771101735754233 a003 cos(Pi*12/113)+cos(Pi*4/21) 1771101740048167 m001 (GAMMA(23/24)-Mills)/(Niven+Riemann1stZero) 1771101742167695 a001 832040/3571*843^(9/14) 1771101742626166 b008 1/14+Sqrt[26]/3 1771101743022917 m001 (exp(-1/2*Pi)+ZetaP(4))/(Shi(1)-ln(gamma)) 1771101760730616 m001 (FeigenbaumC+RenyiParking)/Backhouse 1771101762337869 m005 (4*exp(1)-1/6)/(13/40+1/8*5^(1/2)) 1771101766761071 m001 (GlaisherKinkelin-gamma(1))/BesselJ(0,1) 1771101767006060 a005 (1/cos(33/203*Pi))^156 1771101768872514 m006 (4*Pi-3/4)/(3/5*Pi^2+3/4) 1771101768872514 m008 (4*Pi-3/4)/(3/5*Pi^2+3/4) 1771101773557399 a001 311187/2161*843^(5/7) 1771101773694543 a001 121393/2207*843^(6/7) 1771101774375140 r005 Im(z^2+c),c=-23/60+30/53*I,n=23 1771101778876244 r005 Re(z^2+c),c=-4/25+7/25*I,n=5 1771101778997533 m001 1/exp(cos(1))*Tribonacci*sqrt(1+sqrt(3)) 1771101779385203 a001 3524578/843*322^(1/4) 1771101780168165 a001 5702887/39603*843^(5/7) 1771101781132663 a001 7465176/51841*843^(5/7) 1771101781273381 a001 39088169/271443*843^(5/7) 1771101781293912 a001 14619165/101521*843^(5/7) 1771101781296907 a001 133957148/930249*843^(5/7) 1771101781297344 a001 701408733/4870847*843^(5/7) 1771101781297408 a001 1836311903/12752043*843^(5/7) 1771101781297417 a001 14930208/103681*843^(5/7) 1771101781297419 a001 12586269025/87403803*843^(5/7) 1771101781297419 a001 32951280099/228826127*843^(5/7) 1771101781297419 a001 43133785636/299537289*843^(5/7) 1771101781297419 a001 32264490531/224056801*843^(5/7) 1771101781297419 a001 591286729879/4106118243*843^(5/7) 1771101781297419 a001 774004377960/5374978561*843^(5/7) 1771101781297419 a001 4052739537881/28143753123*843^(5/7) 1771101781297419 a001 1515744265389/10525900321*843^(5/7) 1771101781297419 a001 3278735159921/22768774562*843^(5/7) 1771101781297419 a001 2504730781961/17393796001*843^(5/7) 1771101781297419 a001 956722026041/6643838879*843^(5/7) 1771101781297419 a001 182717648081/1268860318*843^(5/7) 1771101781297419 a001 139583862445/969323029*843^(5/7) 1771101781297419 a001 53316291173/370248451*843^(5/7) 1771101781297419 a001 10182505537/70711162*843^(5/7) 1771101781297420 a001 7778742049/54018521*843^(5/7) 1771101781297423 a001 2971215073/20633239*843^(5/7) 1771101781297448 a001 567451585/3940598*843^(5/7) 1771101781297614 a001 433494437/3010349*843^(5/7) 1771101781298759 a001 165580141/1149851*843^(5/7) 1771101781306601 a001 31622993/219602*843^(5/7) 1771101781360350 a001 24157817/167761*843^(5/7) 1771101781525792 m005 (1/2*exp(1)+3/5)/(3/10*Zeta(3)-1/4) 1771101781728756 a001 9227465/64079*843^(5/7) 1771101784253844 a001 1762289/12238*843^(5/7) 1771101786104167 m001 (-Artin+ThueMorse)/(Si(Pi)+arctan(1/3)) 1771101788952693 a001 10749957122/55*55^(11/20) 1771101791681256 m001 (GAMMA(13/24)+AlladiGrinstead*Niven)/Niven 1771101795734091 r005 Re(z^2+c),c=17/106+5/64*I,n=14 1771101798599722 a007 Real Root Of -48*x^4-873*x^3-396*x^2+175*x+254 1771101798675824 p004 log(21799/3709) 1771101801561055 a001 1346269/9349*843^(5/7) 1771101812151159 k006 concat of cont frac of 1771101814191113 k008 concat of cont frac of 1771101814946029 m001 HardyLittlewoodC5/polylog(4,1/2)*5^(1/2) 1771101816490213 a007 Real Root Of 801*x^4+872*x^3-761*x^2+385*x+32 1771101816994821 r005 Re(z^2+c),c=-19/98+9/55*I,n=12 1771101818410740 l006 ln(7667/7804) 1771101821151251 k008 concat of cont frac of 1771101825209456 r002 36th iterates of z^2 + 1771101831340896 a007 Real Root Of -421*x^4-677*x^3-80*x^2-296*x+108 1771101831396537 r005 Im(z^2+c),c=-31/58+17/53*I,n=46 1771101831850295 m001 BesselK(1,1)^2*exp(BesselJ(0,1))/GAMMA(5/24) 1771101835438565 a007 Real Root Of 52*x^4+878*x^3-792*x^2-504*x+768 1771101842643178 m001 FeigenbaumD+ReciprocalFibonacci^(5^(1/2)) 1771101843163447 a001 2178309/1364*843^(5/14) 1771101860679736 a003 cos(Pi*19/104)+sin(Pi*45/118) 1771101866371481 r005 Im(z^2+c),c=-29/27+5/24*I,n=47 1771101867625401 h005 exp(cos(Pi*3/13)*sin(Pi*13/47)) 1771101871341406 m001 1/GAMMA(13/24)/ln(GAMMA(1/12))^2/gamma 1771101879211391 a007 Real Root Of 527*x^4+899*x^3-51*x^2-179*x-348 1771101885653332 r009 Im(z^3+c),c=-23/78+7/51*I,n=13 1771101893521437 l006 ln(1451/8528) 1771101904616536 a001 305/682*64079^(22/23) 1771101905029095 a001 305/682*7881196^(2/3) 1771101905029114 a001 305/682*312119004989^(2/5) 1771101905029114 a001 305/682*(1/2+1/2*5^(1/2))^22 1771101905029114 a001 305/682*10749957122^(11/24) 1771101905029114 a001 305/682*4106118243^(11/23) 1771101905029114 a001 305/682*1568397607^(1/2) 1771101905029114 a001 305/682*599074578^(11/21) 1771101905029114 a001 305/682*228826127^(11/20) 1771101905029114 a001 305/682*87403803^(11/19) 1771101905029115 a001 305/682*33385282^(11/18) 1771101905029121 a001 305/682*12752043^(11/17) 1771101905029166 a001 305/682*4870847^(11/16) 1771101905029490 a001 305/682*1860498^(11/15) 1771101905031870 a001 305/682*710647^(11/14) 1771101905049454 a001 305/682*271443^(11/13) 1771101905180139 a001 305/682*103682^(11/12) 1771101906265295 a001 514229/5778*843^(11/14) 1771101914985820 m002 4+Pi^(-5)-Sinh[Pi]/2 1771101917370515 r005 Im(z^2+c),c=-8/9+14/75*I,n=14 1771101917430339 a007 Real Root Of 572*x^4-890*x^3-903*x^2-826*x+179 1771101919106466 r005 Re(z^2+c),c=15/46+24/59*I,n=9 1771101920186458 a001 514229/3571*843^(5/7) 1771101926161227 m007 (-5/6*gamma-5/3*ln(2)-3)/(-4/5*gamma+1/5) 1771101932887060 a007 Real Root Of 555*x^4+885*x^3+3*x^2+386*x+130 1771101933389025 m001 Artin-Sierpinski+TreeGrowth2nd 1771101936111117 k007 concat of cont frac of 1771101936875274 r005 Im(z^2+c),c=-11/26+11/37*I,n=39 1771101937928398 m001 1/BesselK(0,1)*exp(Bloch)/arctan(1/2)^2 1771101939065304 a007 Real Root Of -697*x^4-835*x^3+208*x^2-783*x+180 1771101943137446 r002 60th iterates of z^2 + 1771101944541430 m005 (1/3*Zeta(3)+1/5)/(Pi+1/4) 1771101945621340 a007 Real Root Of 735*x^4+731*x^3-402*x^2+778*x-532 1771101951574584 a001 1346269/15127*843^(11/14) 1771101951798427 a001 75025/2207*843^(13/14) 1771101958185121 a001 3524578/39603*843^(11/14) 1771101958392916 l006 ln(3463/4134) 1771101959149585 a001 9227465/103682*843^(11/14) 1771101959290299 a001 24157817/271443*843^(11/14) 1771101959310828 a001 63245986/710647*843^(11/14) 1771101959313824 a001 165580141/1860498*843^(11/14) 1771101959314261 a001 433494437/4870847*843^(11/14) 1771101959314324 a001 1134903170/12752043*843^(11/14) 1771101959314334 a001 2971215073/33385282*843^(11/14) 1771101959314335 a001 7778742049/87403803*843^(11/14) 1771101959314335 a001 20365011074/228826127*843^(11/14) 1771101959314335 a001 53316291173/599074578*843^(11/14) 1771101959314335 a001 139583862445/1568397607*843^(11/14) 1771101959314335 a001 365435296162/4106118243*843^(11/14) 1771101959314335 a001 956722026041/10749957122*843^(11/14) 1771101959314335 a001 2504730781961/28143753123*843^(11/14) 1771101959314335 a001 6557470319842/73681302247*843^(11/14) 1771101959314335 a001 10610209857723/119218851371*843^(11/14) 1771101959314335 a001 4052739537881/45537549124*843^(11/14) 1771101959314335 a001 1548008755920/17393796001*843^(11/14) 1771101959314335 a001 591286729879/6643838879*843^(11/14) 1771101959314335 a001 225851433717/2537720636*843^(11/14) 1771101959314335 a001 86267571272/969323029*843^(11/14) 1771101959314335 a001 32951280099/370248451*843^(11/14) 1771101959314335 a001 12586269025/141422324*843^(11/14) 1771101959314336 a001 4807526976/54018521*843^(11/14) 1771101959314339 a001 1836311903/20633239*843^(11/14) 1771101959314364 a001 3524667/39604*843^(11/14) 1771101959314531 a001 267914296/3010349*843^(11/14) 1771101959315675 a001 102334155/1149851*843^(11/14) 1771101959323516 a001 39088169/439204*843^(11/14) 1771101959377264 a001 14930352/167761*843^(11/14) 1771101959745657 a001 5702887/64079*843^(11/14) 1771101962270657 a001 2178309/24476*843^(11/14) 1771101965129994 r002 29th iterates of z^2 + 1771101969735466 r005 Im(z^2+c),c=-9/14+63/256*I,n=29 1771101979577267 a001 832040/9349*843^(11/14) 1771101981494869 r005 Re(z^2+c),c=-2/21+5/8*I,n=49 1771101982888701 a007 Real Root Of 140*x^4+386*x^3+357*x^2-620*x-119 1771101984927410 a007 Real Root Of -599*x^4-886*x^3+731*x^2+575*x-303 1771101992726837 l006 ln(1182/6947) 1771101992966002 q001 6043/3412 1771101993352770 m001 (cos(1)-ln(2))/(-GAMMA(13/24)+FeigenbaumAlpha) 1771101996339850 m001 (Salem+StolarskyHarborth)/(Gompertz-Mills) 1771101998322039 r009 Re(z^3+c),c=-4/29+23/28*I,n=27 1771101998476795 m001 CopelandErdos*HardyLittlewoodC3+Trott2nd 1771102000781200 m001 (GolombDickman+ThueMorse)/(Bloch-Shi(1)) 1771102000967581 r005 Re(z^2+c),c=-1/24+31/56*I,n=64 1771102001004288 m005 (1/3*5^(1/2)+1/9)/(1/10*2^(1/2)-5/8) 1771102001076440 a007 Real Root Of -941*x^4+277*x^3+655*x^2+671*x-140 1771102007302863 m006 (2/Pi-4/5)/(3*Pi-1/5) 1771102007619537 a001 11/28657*13^(31/52) 1771102008728017 a001 233*521^(9/13) 1771102012931056 a007 Real Root Of 584*x^4+833*x^3+59*x^2+784*x+85 1771102013015315 m001 (-cos(1/12*Pi)+PlouffeB)/(2^(1/2)+GAMMA(2/3)) 1771102013121421 k007 concat of cont frac of 1771102014226133 a007 Real Root Of -24*x^4-426*x^3-9*x^2+148*x+247 1771102017273614 a007 Real Root Of 262*x^4-115*x^3-703*x^2+198*x-661 1771102018125880 m001 ((1+3^(1/2))^(1/2)+Niven)^Bloch 1771102021147562 m001 gamma(3)/ln(3)/GAMMA(11/12) 1771102021180639 a001 1346269/1364*843^(3/7) 1771102029896851 m005 (1/4*exp(1)-2/5)/(5/6*2^(1/2)+2/5) 1771102047399943 m001 (Riemann3rdZero-Robbin)/exp(1/Pi) 1771102055962135 a007 Real Root Of -390*x^4-151*x^3+722*x^2-853*x-777 1771102060967929 a007 Real Root Of -640*x^4-889*x^3-107*x^2+570*x+100 1771102074408991 a001 1/29*47^(17/40) 1771102075056418 m001 (1-arctan(1/2))/(-Kolakoski+LandauRamanujan) 1771102077944278 r005 Re(z^2+c),c=-1/50+25/37*I,n=10 1771102079791892 a001 196418/3*1364^(45/58) 1771102079876536 m001 (-GAMMA(19/24)+Artin)/(5^(1/2)+BesselI(0,2)) 1771102081501079 r005 Im(z^2+c),c=11/50+5/57*I,n=16 1771102083033494 s002 sum(A154349[n]/(16^n-1),n=1..infinity) 1771102084277377 a001 105937/1926*843^(6/7) 1771102085162318 r002 3th iterates of z^2 + 1771102087810424 m005 (1/3*2^(1/2)+1/3)/(-65/84+1/7*5^(1/2)) 1771102098198542 a001 317811/3571*843^(11/14) 1771102100995208 q001 4805/2713 1771102107831296 a007 Real Root Of 458*x^4+951*x^3+994*x^2+965*x-632 1771102111134124 k008 concat of cont frac of 1771102114213111 k007 concat of cont frac of 1771102116849345 a001 521/987*6765^(7/51) 1771102117217946 a003 cos(Pi*41/112)/cos(Pi*23/54) 1771102122015915 a001 6677055/377 1771102123121117 k006 concat of cont frac of 1771102126130212 r005 Re(z^2+c),c=-33/40+7/58*I,n=32 1771102127314151 k006 concat of cont frac of 1771102129590811 a001 832040/15127*843^(6/7) 1771102131631024 m001 1/FeigenbaumD/MertensB1/ln(sqrt(5)) 1771102136201952 a001 726103/13201*843^(6/7) 1771102137166504 a001 5702887/103682*843^(6/7) 1771102137307230 a001 4976784/90481*843^(6/7) 1771102137327762 a001 39088169/710647*843^(6/7) 1771102137330758 a001 831985/15126*843^(6/7) 1771102137331195 a001 267914296/4870847*843^(6/7) 1771102137331258 a001 233802911/4250681*843^(6/7) 1771102137331268 a001 1836311903/33385282*843^(6/7) 1771102137331269 a001 1602508992/29134601*843^(6/7) 1771102137331269 a001 12586269025/228826127*843^(6/7) 1771102137331269 a001 10983760033/199691526*843^(6/7) 1771102137331269 a001 86267571272/1568397607*843^(6/7) 1771102137331269 a001 75283811239/1368706081*843^(6/7) 1771102137331269 a001 591286729879/10749957122*843^(6/7) 1771102137331269 a001 12585437040/228811001*843^(6/7) 1771102137331269 a001 4052739537881/73681302247*843^(6/7) 1771102137331269 a001 3536736619241/64300051206*843^(6/7) 1771102137331269 a001 6557470319842/119218851371*843^(6/7) 1771102137331269 a001 2504730781961/45537549124*843^(6/7) 1771102137331269 a001 956722026041/17393796001*843^(6/7) 1771102137331269 a001 365435296162/6643838879*843^(6/7) 1771102137331269 a001 139583862445/2537720636*843^(6/7) 1771102137331269 a001 53316291173/969323029*843^(6/7) 1771102137331269 a001 20365011074/370248451*843^(6/7) 1771102137331269 a001 7778742049/141422324*843^(6/7) 1771102137331270 a001 2971215073/54018521*843^(6/7) 1771102137331273 a001 1134903170/20633239*843^(6/7) 1771102137331298 a001 433494437/7881196*843^(6/7) 1771102137331465 a001 165580141/3010349*843^(6/7) 1771102137332609 a001 63245986/1149851*843^(6/7) 1771102137340451 a001 24157817/439204*843^(6/7) 1771102137394204 a001 9227465/167761*843^(6/7) 1771102137762630 a001 3524578/64079*843^(6/7) 1771102139135871 r005 Re(z^2+c),c=-21/110+7/39*I,n=11 1771102140287862 a001 1346269/24476*843^(6/7) 1771102141244263 k008 concat of cont frac of 1771102145083458 m001 GAMMA(11/12)/(3^(1/3))/ln(GAMMA(3/4))^2 1771102146379342 b008 -1+Sqrt[2]*Sin[1+E] 1771102147231498 m005 (1/2*Pi+6/7)/(4/5*gamma+10/11) 1771102148279991 r002 3th iterates of z^2 + 1771102150390600 l006 ln(913/5366) 1771102151561469 r002 53th iterates of z^2 + 1771102157596054 a001 514229/9349*843^(6/7) 1771102163238818 k008 concat of cont frac of 1771102163251596 a003 cos(Pi*13/79)-cos(Pi*29/113) 1771102166519244 m001 GAMMA(23/24)*HeathBrownMoroz-Pi^(1/2) 1771102169501724 r009 Re(z^3+c),c=-8/29+22/45*I,n=19 1771102172635833 r005 Re(z^2+c),c=-11/70+34/49*I,n=55 1771102196193581 h001 (7/11*exp(2)+7/11)/(7/9*exp(1)+9/10) 1771102199196872 a001 610*843^(1/2) 1771102203409052 a003 cos(Pi*29/69)-cos(Pi*53/111) 1771102207351643 m001 (GAMMA(23/24)+Magata)/FeigenbaumAlpha 1771102210442723 a007 Real Root Of 37*x^4+631*x^3-401*x^2+579*x+996 1771102211661711 k008 concat of cont frac of 1771102214121131 k006 concat of cont frac of 1771102214310121 k008 concat of cont frac of 1771102216817268 m001 1/ln(GAMMA(11/12))^2/Porter/log(2+sqrt(3)) 1771102222422795 r005 Im(z^2+c),c=-17/30+25/98*I,n=14 1771102222700465 m001 exp(Riemann2ndZero)/Khintchine^2/GAMMA(11/12) 1771102231462808 a007 Real Root Of 407*x^4+346*x^3-66*x^2+802*x-455 1771102232622645 m001 (CareFree+Mills)/(Catalan+Ei(1,1)) 1771102233298541 a003 cos(Pi*16/113)+cos(Pi*18/109) 1771102236957028 a007 Real Root Of -268*x^4-587*x^3-328*x^2-390*x-286 1771102239040014 m001 Zeta(1/2)/Salem^2*exp(sin(Pi/12))^2 1771102239402876 m001 (sin(1/12*Pi)+PlouffeB)/PrimesInBinary 1771102242864992 m004 (5*Pi)/3+Pi*Sinh[Sqrt[5]*Pi] 1771102243601335 m001 1/Pi/ln(GAMMA(1/3))^2*cos(1) 1771102246356961 a007 Real Root Of 755*x^4+457*x^3+631*x^2-853*x+128 1771102247560026 m001 (BesselJ(1,1)+FeigenbaumC)/GlaisherKinkelin 1771102254280575 m001 (3^(1/2))^(1/ZetaQ(3)) 1771102260586013 a005 (1/cos(27/128*Pi))^167 1771102260713968 m001 HardyLittlewoodC5/(Tribonacci+Weierstrass) 1771102261357609 a001 7/4*(1/2*5^(1/2)+1/2)^12*4^(19/23) 1771102262307012 a001 98209/2889*843^(13/14) 1771102262738991 r002 34th iterates of z^2 + 1771102269457227 a007 Real Root Of 849*x^4+769*x^3-581*x^2+795*x-851 1771102270081379 l006 ln(1557/9151) 1771102276228179 a001 196418/3571*843^(6/7) 1771102276875209 a007 Real Root Of -49*x^4-874*x^3-98*x^2+252*x+982 1771102277626500 r002 37th iterates of z^2 + 1771102280186242 p001 sum((-1)^n/(485*n+409)/n/(6^n),n=1..infinity) 1771102284011916 q001 3567/2014 1771102286004083 m001 (FeigenbaumC-LambertW(1))/(-Lehmer+Mills) 1771102287199751 a007 Real Root Of 969*x^4+918*x^3-741*x^2+751*x-780 1771102289092652 r009 Re(z^3+c),c=-4/21+41/43*I,n=37 1771102289325231 m001 gamma^MadelungNaCl*Cahen^MadelungNaCl 1771102295649670 a003 cos(Pi*13/66)+sin(Pi*28/69) 1771102297879025 a003 cos(Pi*11/58)+sin(Pi*31/79) 1771102301740262 m005 (1/2*3^(1/2)+3/7)/(7/11*gamma+4/11) 1771102305878229 g007 Psi(2,3/7)+Psi(2,2/7)-Psi(2,3/8)-Psi(2,1/5) 1771102307095643 r005 Im(z^2+c),c=-21/122+12/49*I,n=5 1771102307609613 a001 514229/15127*843^(13/14) 1771102313789982 r005 Im(z^2+c),c=-99/94+10/49*I,n=50 1771102314219174 a001 1346269/39603*843^(13/14) 1771102315183495 a001 1762289/51841*843^(13/14) 1771102315324188 a001 9227465/271443*843^(13/14) 1771102315344715 a001 24157817/710647*843^(13/14) 1771102315347710 a001 31622993/930249*843^(13/14) 1771102315348147 a001 165580141/4870847*843^(13/14) 1771102315348210 a001 433494437/12752043*843^(13/14) 1771102315348220 a001 567451585/16692641*843^(13/14) 1771102315348221 a001 2971215073/87403803*843^(13/14) 1771102315348221 a001 7778742049/228826127*843^(13/14) 1771102315348221 a001 10182505537/299537289*843^(13/14) 1771102315348221 a001 53316291173/1568397607*843^(13/14) 1771102315348221 a001 139583862445/4106118243*843^(13/14) 1771102315348221 a001 182717648081/5374978561*843^(13/14) 1771102315348221 a001 956722026041/28143753123*843^(13/14) 1771102315348221 a001 2504730781961/73681302247*843^(13/14) 1771102315348221 a001 3278735159921/96450076809*843^(13/14) 1771102315348221 a001 10610209857723/312119004989*843^(13/14) 1771102315348221 a001 4052739537881/119218851371*843^(13/14) 1771102315348221 a001 387002188980/11384387281*843^(13/14) 1771102315348221 a001 591286729879/17393796001*843^(13/14) 1771102315348221 a001 225851433717/6643838879*843^(13/14) 1771102315348221 a001 1135099622/33391061*843^(13/14) 1771102315348221 a001 32951280099/969323029*843^(13/14) 1771102315348221 a001 12586269025/370248451*843^(13/14) 1771102315348221 a001 1201881744/35355581*843^(13/14) 1771102315348222 a001 1836311903/54018521*843^(13/14) 1771102315348225 a001 701408733/20633239*843^(13/14) 1771102315348250 a001 66978574/1970299*843^(13/14) 1771102315348417 a001 102334155/3010349*843^(13/14) 1771102315349561 a001 39088169/1149851*843^(13/14) 1771102315357401 a001 196452/5779*843^(13/14) 1771102315411141 a001 5702887/167761*843^(13/14) 1771102315779479 a001 2178309/64079*843^(13/14) 1771102318304107 a001 208010/6119*843^(13/14) 1771102319278256 r005 Re(z^2+c),c=-5/6+12/161*I,n=4 1771102322121826 k008 concat of cont frac of 1771102323963933 m002 4*Coth[Pi]+2*ProductLog[Pi]+Sinh[Pi] 1771102328866603 a007 Real Root Of 685*x^4+990*x^3-678*x^2-875*x-663 1771102335608161 a001 317811/9349*843^(13/14) 1771102338383786 a007 Real Root Of -43*x^4-730*x^3+514*x^2-748*x+933 1771102339987025 m001 1/GAMMA(1/24)*exp(FeigenbaumC)^2/Zeta(1,2) 1771102348677850 r005 Re(z^2+c),c=17/106+5/64*I,n=13 1771102353432326 p003 LerchPhi(1/1024,6,23/8) 1771102358828158 m001 GAMMA(1/24)*ln(FeigenbaumKappa)^2/GAMMA(3/4) 1771102360247642 h001 (7/8*exp(1)+8/11)/(4/9*exp(1)+6/11) 1771102360699091 m005 (3/4*Catalan+5)/(2*gamma-5/6) 1771102363319216 m001 1/exp(Khintchine)/Cahen^2*Zeta(5)^2 1771102370931668 m006 (1/4*exp(2*Pi)-4/5)/(1/3*exp(Pi)-1/5) 1771102376576926 a001 3732588/341*322^(1/12) 1771102377215682 a001 514229/1364*843^(4/7) 1771102387267904 a001 6677056/377 1771102388337515 r004 Im(z^2+c),c=1/26+16/19*I,z(0)=I,n=10 1771102388977058 m005 (1/2*Zeta(3)+2/3)/(1/12*3^(1/2)+4/7) 1771102391610948 m005 (1/2*exp(1)-6)/(2/11*Catalan-3/7) 1771102392794563 r005 Re(z^2+c),c=-13/106+5/12*I,n=9 1771102395912997 m005 (1/3*5^(1/2)+1/8)/(1/9*gamma-5/9) 1771102402635245 a007 Real Root Of -60*x^4+933*x^3+425*x^2+483*x-104 1771102404778712 l006 ln(5419/6469) 1771102404778712 p004 log(6469/5419) 1771102405467392 r005 Im(z^2+c),c=-3/5+2/117*I,n=9 1771102416003052 m001 (Khinchin+1)/(2^(1/2)+2/3) 1771102417800115 m001 sin(1/12*Pi)+MertensB2*MinimumGamma 1771102418541257 r005 Im(z^2+c),c=-65/118+17/49*I,n=27 1771102418546044 a007 Real Root Of -146*x^3-67*x^2+357*x+389 1771102425031323 r009 Re(z^3+c),c=-8/29+18/37*I,n=15 1771102432728847 r002 38th iterates of z^2 + 1771102433121718 k008 concat of cont frac of 1771102433163112 q001 5896/3329 1771102433737325 m001 gamma^(Pi*csc(1/24*Pi)/GAMMA(23/24))*CareFree 1771102439767195 l006 ln(644/3785) 1771102443639871 a007 Real Root Of 472*x^4+152*x^3+591*x^2-304*x-72 1771102454007036 m001 Landau-Zeta(5)^exp(Pi) 1771102454211926 a001 121393/3571*843^(13/14) 1771102456081063 m005 (23/20+1/4*5^(1/2))/(7/11*Zeta(3)+1/5) 1771102458071785 p001 sum((-1)^n/(455*n+6)/n/(12^n),n=1..infinity) 1771102460271910 a001 5702887/521*199^(1/11) 1771102460351943 a007 Real Root Of -470*x^4-485*x^3+627*x^2-182*x-359 1771102461823531 m001 KomornikLoreti*cos(1/12*Pi)^MertensB1 1771102482112006 a007 Real Root Of -449*x^4-293*x^3+866*x^2-163*x-215 1771102484511518 a001 14930352/2207*322^(1/6) 1771102484815058 r005 Re(z^2+c),c=-5/24+1/40*I,n=6 1771102493368698 a001 2/377*(1/2+1/2*5^(1/2))^36 1771102500426226 r005 Re(z^2+c),c=-6/5+8/81*I,n=64 1771102502412612 k009 concat of cont frac of 1771102504243937 a008 Real Root of x^4+10*x^2-152*x+228 1771102507475942 m001 (-gamma(1)+Totient)/(ln(2)/ln(10)-ln(3)) 1771102510667294 a001 196418/521*521^(8/13) 1771102512537951 a007 Real Root Of -171*x^4-201*x^3+339*x^2+509*x+404 1771102514134913 k008 concat of cont frac of 1771102515149560 m007 (-4/5*gamma-8/5*ln(2)-1/6)/(-5/6*gamma-1/2) 1771102532271101 m005 (1/2*5^(1/2)+6/7)/(9/11*5^(1/2)-5/7) 1771102537224735 m001 Pi*2^(1/2)-Si(Pi)/ln(2) 1771102541501811 k009 concat of cont frac of 1771102543372754 m001 Psi(1,1/3)^GAMMA(3/4)+Rabbit 1771102545122113 k007 concat of cont frac of 1771102552060471 a007 Real Root Of 409*x^4+748*x^3-155*x^2-719*x-656 1771102553897283 h001 (1/4*exp(2)+7/9)/(3/10*exp(1)+2/3) 1771102554470323 r002 3th iterates of z^2 + 1771102555227811 a001 317811/1364*843^(9/14) 1771102556132653 r009 Im(z^3+c),c=-51/122+1/18*I,n=27 1771102559959277 r005 Re(z^2+c),c=-5/48+7/16*I,n=18 1771102576379288 p001 sum(1/(333*n+58)/(6^n),n=0..infinity) 1771102578563839 a007 Real Root Of 368*x^4+712*x^3+310*x^2+700*x+602 1771102578869835 m001 (Khinchin+PrimesInBinary)/(Shi(1)+ln(2)) 1771102588764845 r005 Im(z^2+c),c=-47/82+20/59*I,n=48 1771102595968060 a007 Real Root Of -141*x^4+377*x^3+407*x^2-742*x+891 1771102597583300 r002 3th iterates of z^2 + 1771102598637172 l006 ln(1663/9774) 1771102603612899 m009 (6*Psi(1,2/3)-1/4)/(48*Catalan+6*Pi^2-4/5) 1771102614383317 l006 ln(7375/8804) 1771102621111516 k006 concat of cont frac of 1771102626837463 a002 14^(10/9)-2^(1/12) 1771102627741438 r002 24th iterates of z^2 + 1771102630949227 m001 ln(TreeGrowth2nd)/Paris*GAMMA(5/12) 1771102635064611 r005 Im(z^2+c),c=-4/13+53/58*I,n=3 1771102640582599 r002 4th iterates of z^2 + 1771102648039762 m001 Grothendieck^AlladiGrinstead+ZetaP(3) 1771102652519893 a001 6677057/377 1771102656746048 m001 Zeta(1,2)-ln(5)+StronglyCareFree 1771102660822480 s002 sum(A146626[n]/((2^n-1)/n),n=1..infinity) 1771102661596958 q001 2329/1315 1771102669706845 r005 Im(z^2+c),c=-37/86+47/52*I,n=4 1771102672615314 m001 (Mills+Thue)/(Shi(1)-Zeta(1,-1)) 1771102672655889 m001 (cos(1)+ln(2))/(-Champernowne+ZetaQ(2)) 1771102680556374 r009 Re(z^3+c),c=-11/56+26/27*I,n=9 1771102688533881 q001 1/56462 1771102691047989 r002 43th iterates of z^2 + 1771102694818909 m001 (ln(2+3^(1/2))-Zeta(1,2))/(Porter-Totient) 1771102698916462 b008 Csch[Sqrt[1+Sqrt[Pi]+Pi]] 1771102699041737 l006 ln(1019/5989) 1771102700472373 a007 Real Root Of -714*x^4-977*x^3+470*x^2+80*x+265 1771102703978750 a007 Real Root Of 535*x^4+372*x^3-666*x^2+562*x-113 1771102704117206 m001 Pi^sin(1/12*Pi)*ln(2+3^(1/2)) 1771102704117206 m001 Pi^sin(Pi/12)*ln(2+sqrt(3)) 1771102705088165 r005 Im(z^2+c),c=-23/42+2/63*I,n=34 1771102710318409 a007 Real Root Of 483*x^4+196*x^3-618*x^2+441*x-944 1771102713519470 m001 TwinPrimes*exp(Si(Pi))*BesselK(0,1) 1771102722906921 r005 Im(z^2+c),c=-87/86+7/37*I,n=26 1771102727344130 m001 5^(1/2)-arctan(1/2)-HeathBrownMoroz 1771102730248170 r005 Im(z^2+c),c=-11/14+24/229*I,n=56 1771102733257494 a001 98209/682*843^(5/7) 1771102737316496 a003 cos(Pi*1/113)+cos(Pi*9/41) 1771102741018169 m001 (Psi(2,1/3)-cos(1/12*Pi))/(MinimumGamma+Niven) 1771102746928793 m001 gamma(2)^(Robbin/Pi^(1/2)) 1771102753952815 m001 1/FeigenbaumC/ln(GolombDickman)/cos(Pi/5)^2 1771102755399351 a003 cos(Pi*25/109)-sin(Pi*36/95) 1771102762409548 a001 2584/3*24476^(57/58) 1771102763621083 a007 Real Root Of -570*x^4-925*x^3-370*x^2-449*x+835 1771102767600861 m001 (Zeta(1/2)-ArtinRank2)/(Kac+Lehmer) 1771102772143037 a007 Real Root Of 801*x^4+979*x^3-555*x^2+574*x+315 1771102777541638 m005 (1/3*2^(1/2)+1/5)/(2/11*gamma-1/7) 1771102778151034 r005 Re(z^2+c),c=-1/16+21/61*I,n=2 1771102783887125 a007 Real Root Of -279*x^4-304*x^3+321*x^2-304*x-489 1771102784145587 h001 (1/11*exp(2)+2/11)/(5/9*exp(2)+5/7) 1771102784416237 a007 Real Root Of 941*x^4-6*x^3+399*x^2-854*x+15 1771102795073947 a001 39088169/5778*322^(1/6) 1771102797942388 r005 Re(z^2+c),c=23/60+7/47*I,n=55 1771102798443873 a005 (1/sin(104/235*Pi))^738 1771102798635497 b008 LogGamma[(1+3*Sqrt[Pi])^(-1)] 1771102798653327 r002 18th iterates of z^2 + 1771102799162390 m006 (1/3*ln(Pi)-2/5)/(3/4*Pi^2+3) 1771102810380314 a007 Real Root Of 39*x^4-451*x^3-626*x^2+281*x-428 1771102818821345 l006 ln(1394/8193) 1771102828502411 m006 (2*exp(2*Pi)-3)/(1/5/Pi-2/3) 1771102834059120 r005 Re(z^2+c),c=-93/110+3/49*I,n=22 1771102837012226 r009 Im(z^3+c),c=-55/86+25/42*I,n=5 1771102840384404 a001 6765*322^(1/6) 1771102840649079 m001 (GAMMA(7/12)+LandauRamanujan2nd)^BesselJ(0,1) 1771102841873355 b008 Pi-9*(1+ArcCosh[2]) 1771102844009506 a007 Real Root Of -784*x^4-603*x^3+825*x^2-536*x+827 1771102844385913 r005 Re(z^2+c),c=-5/4+96/197*I,n=4 1771102846995111 a001 267914296/39603*322^(1/6) 1771102847764904 m005 (1/2*exp(1)-4/9)/(3/8*gamma+3/10) 1771102847820069 a001 7/610*14930352^(4/9) 1771102847959600 a001 701408733/103682*322^(1/6) 1771102848100317 a001 1836311903/271443*322^(1/6) 1771102848120847 a001 686789568/101521*322^(1/6) 1771102848123843 a001 12586269025/1860498*322^(1/6) 1771102848124280 a001 32951280099/4870847*322^(1/6) 1771102848124343 a001 86267571272/12752043*322^(1/6) 1771102848124353 a001 32264490531/4769326*322^(1/6) 1771102848124354 a001 591286729879/87403803*322^(1/6) 1771102848124354 a001 1548008755920/228826127*322^(1/6) 1771102848124354 a001 4052739537881/599074578*322^(1/6) 1771102848124354 a001 1515744265389/224056801*322^(1/6) 1771102848124354 a001 6557470319842/969323029*322^(1/6) 1771102848124354 a001 2504730781961/370248451*322^(1/6) 1771102848124354 a001 956722026041/141422324*322^(1/6) 1771102848124355 a001 365435296162/54018521*322^(1/6) 1771102848124358 a001 139583862445/20633239*322^(1/6) 1771102848124383 a001 53316291173/7881196*322^(1/6) 1771102848124550 a001 20365011074/3010349*322^(1/6) 1771102848125694 a001 7778742049/1149851*322^(1/6) 1771102848133536 a001 2971215073/439204*322^(1/6) 1771102848187285 a001 1134903170/167761*322^(1/6) 1771102848555687 a001 433494437/64079*322^(1/6) 1771102849033369 a007 Real Root Of -907*x^4-878*x^3+932*x^2-78*x+985 1771102851080752 a001 165580141/24476*322^(1/6) 1771102851895266 r009 Re(z^3+c),c=-55/98+29/50*I,n=23 1771102854046077 r005 Im(z^2+c),c=-11/29+19/54*I,n=7 1771102856742818 m001 1/exp(Conway)*Champernowne^2/GAMMA(7/12)^2 1771102864106850 a007 Real Root Of -356*x^4-127*x^3+694*x^2-693*x-607 1771102864610315 r009 Re(z^3+c),c=-17/94+5/41*I,n=4 1771102868387807 a001 63245986/9349*322^(1/6) 1771102870953447 a007 Real Root Of 461*x^4-749*x^3+257*x^2-414*x-86 1771102872639946 r005 Im(z^2+c),c=-9/8+52/233*I,n=63 1771102875262075 a007 Real Root Of -594*x^4-712*x^3+243*x^2-88*x+971 1771102878368813 m008 (3/4*Pi-1/6)/(4*Pi^3-2/5) 1771102887677935 r005 Re(z^2+c),c=35/102+21/62*I,n=4 1771102890003356 r005 Im(z^2+c),c=-1+40/213*I,n=26 1771102892644558 r005 Re(z^2+c),c=-1/52+29/50*I,n=60 1771102895871842 q001 5749/3246 1771102898530458 r005 Im(z^2+c),c=-23/60+11/40*I,n=6 1771102898618071 a007 Real Root Of 909*x^4+913*x^3-796*x^2+485*x-516 1771102904157361 a001 5/15127*1364^(10/43) 1771102907806564 m001 Salem^sin(1)/(Gompertz^sin(1)) 1771102910055038 m001 (Ei(1)+FeigenbaumD)/Sierpinski 1771102911241287 a001 121393/1364*843^(11/14) 1771102911714182 k009 concat of cont frac of 1771102913113070 m001 (LambertW(1)-exp(1))/(-GAMMA(3/4)+Trott) 1771102915519677 s002 sum(A200516[n]/(n^3*2^n+1),n=1..infinity) 1771102919613556 m002 (-3*Cosh[Pi])/(4*Pi)+Tanh[Pi] 1771102926916258 m001 -GAMMA(5/24)/(-polylog(4,1/2)+3) 1771102928031376 r009 Re(z^3+c),c=-11/28+30/61*I,n=5 1771102931823362 m001 (QuadraticClass-ZetaP(3))/(gamma(1)+Bloch) 1771102935892811 m001 1/cos(Pi/5)/ln(FeigenbaumD)*sqrt(2) 1771102943284701 a007 Real Root Of 654*x^4+625*x^3-989*x^2+273*x+623 1771102947173760 r005 Re(z^2+c),c=13/54+10/19*I,n=54 1771102957139332 m001 (1-GAMMA(13/24))/(HardyLittlewoodC4+ZetaQ(2)) 1771102966313282 a007 Real Root Of -37*x^4-692*x^3-669*x^2-313*x+463 1771102972636742 m005 (1/2*Zeta(3)-2/7)/(6/11*5^(1/2)-3) 1771102973335912 a007 Real Root Of -320*x^4-323*x^3-824*x^2-115*x+4 1771102977183690 m001 (ReciprocalLucas+Salem)/(5^(1/2)-arctan(1/2)) 1771102985503484 m001 exp(sin(Pi/5))^2*GAMMA(13/24)/sqrt(3)^2 1771102986647794 r005 Im(z^2+c),c=-7/10+53/197*I,n=17 1771102987012138 a001 24157817/3571*322^(1/6) 1771102991178669 r005 Im(z^2+c),c=-55/122+10/33*I,n=34 1771102991437838 h001 (-9*exp(-1)+6)/(-exp(3/2)+6) 1771102995562130 r005 Re(z^2+c),c=19/52+23/32*I,n=2 1771102996319968 a007 Real Root Of 360*x^4+362*x^3-100*x^2+352*x-594 1771102998814811 r005 Im(z^2+c),c=-81/70+10/53*I,n=12 1771103001857292 r005 Im(z^2+c),c=-55/64+2/15*I,n=38 1771103004787617 m001 (Psi(2,1/3)+Zeta(5))/(-Pi^(1/2)+Porter) 1771103006444469 m001 (-exp(1)+3)/BesselI(1,2) 1771103008481321 a007 Real Root Of -677*x^4-934*x^3+216*x^2+100*x+972 1771103012560807 a001 317811/521*521^(7/13) 1771103015692678 a003 2^(1/2)+cos(1/12*Pi)+cos(7/18*Pi)-cos(1/10*Pi) 1771103017711030 k006 concat of cont frac of 1771103021348974 m001 Sierpinski^2*MertensB1/exp(GAMMA(1/12)) 1771103023589232 m001 Pi*Psi(1,1/3)/(exp(gamma)-gamma(2)) 1771103023632120 p004 log(29819/24979) 1771103028363216 m001 1/ln(Riemann2ndZero)/FibonacciFactorial*Robbin 1771103041604427 h001 (-8*exp(-1)-2)/(-4*exp(2/3)+5) 1771103044019339 a001 3571/233*1597^(1/51) 1771103049703306 a007 Real Root Of -732*x^4-779*x^3+784*x^2-461*x-401 1771103051230219 a007 Real Root Of -17*x^4-304*x^3-102*x^2-845*x+849 1771103051592890 h001 (7/12*exp(2)+7/11)/(3/11*exp(2)+7/9) 1771103051665417 a003 sin(Pi*33/115)/cos(Pi*40/113) 1771103052967785 r005 Re(z^2+c),c=-1/6+17/64*I,n=5 1771103055411703 q001 342/1931 1771103055738528 a001 5/271443*3571^(24/43) 1771103058315546 a003 -1+cos(2/5*Pi)-2*cos(7/18*Pi)-cos(10/27*Pi) 1771103077700324 a001 12238/305*34^(8/19) 1771103080965432 a007 Real Root Of -669*x^4-489*x^3+434*x^2-893*x+923 1771103084631279 a003 cos(Pi*16/83)+sin(Pi*37/93) 1771103084968257 r009 Im(z^3+c),c=-23/78+7/51*I,n=14 1771103085074619 m001 (gamma(2)-Trott2nd)/(GAMMA(2/3)-ln(Pi)) 1771103089345285 a001 75025/1364*843^(6/7) 1771103099958157 a007 Real Root Of 704*x^4+582*x^3-468*x^2+967*x-513 1771103100078124 r009 Im(z^3+c),c=-23/78+7/51*I,n=18 1771103101324291 r005 Im(z^2+c),c=-9/28+11/40*I,n=23 1771103103570787 a007 Real Root Of 299*x^4-324*x^3-766*x^2-632*x-90 1771103104709574 r009 Im(z^3+c),c=-23/78+7/51*I,n=19 1771103105000701 r009 Im(z^3+c),c=-23/78+7/51*I,n=17 1771103106624562 r009 Im(z^3+c),c=-23/78+7/51*I,n=24 1771103106625283 r009 Im(z^3+c),c=-23/78+7/51*I,n=23 1771103106634903 r009 Im(z^3+c),c=-23/78+7/51*I,n=25 1771103106637589 r009 Im(z^3+c),c=-23/78+7/51*I,n=29 1771103106637603 r009 Im(z^3+c),c=-23/78+7/51*I,n=30 1771103106637624 r009 Im(z^3+c),c=-23/78+7/51*I,n=31 1771103106637627 r009 Im(z^3+c),c=-23/78+7/51*I,n=35 1771103106637627 r009 Im(z^3+c),c=-23/78+7/51*I,n=36 1771103106637627 r009 Im(z^3+c),c=-23/78+7/51*I,n=37 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=41 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=42 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=40 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=47 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=46 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=48 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=52 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=53 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=54 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=58 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=59 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=60 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=64 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=63 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=62 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=61 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=57 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=56 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=55 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=51 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=50 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=49 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=45 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=43 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=44 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=39 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=38 1771103106637628 r009 Im(z^3+c),c=-23/78+7/51*I,n=34 1771103106637629 r009 Im(z^3+c),c=-23/78+7/51*I,n=33 1771103106637629 r009 Im(z^3+c),c=-23/78+7/51*I,n=32 1771103106637724 r009 Im(z^3+c),c=-23/78+7/51*I,n=28 1771103106638196 r009 Im(z^3+c),c=-23/78+7/51*I,n=27 1771103106638348 r009 Im(z^3+c),c=-23/78+7/51*I,n=26 1771103106711363 r009 Im(z^3+c),c=-23/78+7/51*I,n=22 1771103106817653 r009 Im(z^3+c),c=-23/78+7/51*I,n=20 1771103106932929 r009 Im(z^3+c),c=-23/78+7/51*I,n=21 1771103107643876 m005 (-17/28+1/4*5^(1/2))/(3*Zeta(3)-8/9) 1771103112143106 k008 concat of cont frac of 1771103114055378 a001 5/5778*2207^(4/43) 1771103118122119 k006 concat of cont frac of 1771103121025506 a001 5/710647*9349^(26/43) 1771103124430612 a007 Real Root Of -626*x^4+886*x^3+244*x^2+706*x-137 1771103124679703 a007 Real Root Of 141*x^4-43*x^3-711*x^2-699*x-634 1771103125321341 k007 concat of cont frac of 1771103131276077 a007 Real Root Of -438*x^4-563*x^3+693*x^2+516*x-78 1771103132976147 a001 5/103682*64079^(14/43) 1771103136895461 m009 (1/2*Psi(1,2/3)-4/5)/(2*Catalan+1/4*Pi^2-1/6) 1771103138500791 a001 5/1860498*15127^(29/43) 1771103141961925 m001 ZetaQ(3)*(CopelandErdos+KomornikLoreti) 1771103141965775 r005 Re(z^2+c),c=-35/34+27/115*I,n=6 1771103142246215 r005 Im(z^2+c),c=-55/98+14/43*I,n=61 1771103142299676 r005 Im(z^2+c),c=-15/34+19/42*I,n=12 1771103143028817 r009 Im(z^3+c),c=-1/29+44/49*I,n=2 1771103144302394 l006 ln(375/2204) 1771103145683839 a007 Real Root Of 427*x^4+399*x^3-850*x^2-710*x-576 1771103150420224 m007 (-1/2*gamma-ln(2)-1/6)/(-1/2*gamma-ln(2)+1/3) 1771103152143508 r009 Re(z^3+c),c=-37/122+27/47*I,n=61 1771103155705831 r009 Im(z^3+c),c=-23/78+7/51*I,n=16 1771103159699433 a007 Real Root Of 187*x^4-33*x^3-882*x^2-798*x+169 1771103178929294 a001 5/4870847*5778^(37/43) 1771103181421122 k008 concat of cont frac of 1771103189160769 m005 (1/2*Pi-5/6)/(4*Catalan+1/2) 1771103191702432 a007 Real Root Of -105*x^4-99*x^3-116*x^2-297*x+321 1771103192824240 m001 ln(Riemann3rdZero)*KhintchineLevy*arctan(1/2) 1771103195082350 l006 ln(1956/2335) 1771103202883514 a001 726103/281*322^(1/3) 1771103204363400 m001 (-Conway+Niven)/(arctan(1/2)-exp(Pi)) 1771103204508287 a001 7/365435296162*20365011074^(17/22) 1771103204509322 a001 1/14619165*514229^(17/22) 1771103204707141 a007 Real Root Of 683*x^4+770*x^3-142*x^2+790*x-598 1771103209687648 m002 24-Sinh[Pi]^2/6 1771103211231121 k007 concat of cont frac of 1771103222162631 k008 concat of cont frac of 1771103226978494 r005 Re(z^2+c),c=-5/29+9/35*I,n=15 1771103230051946 a005 (1/cos(2/235*Pi))^1599 1771103231931613 k006 concat of cont frac of 1771103237836971 r005 Re(z^2+c),c=-7/86+14/29*I,n=52 1771103238427105 m001 (BesselK(0,1)+FellerTornier)/(Pi+Shi(1)) 1771103240710335 p003 LerchPhi(1/2,6,172/189) 1771103240786965 m005 (1/2*3^(1/2)+7/11)/(7/11*Zeta(3)+1/12) 1771103248816734 m005 (1/2*3^(1/2)-1/11)/(2/7*gamma+3/11) 1771103249605461 r009 Im(z^3+c),c=-23/78+7/51*I,n=15 1771103258735767 q001 4511/2547 1771103261630535 m005 (1/3*2^(1/2)+2/3)/(3/11*gamma-4/5) 1771103262075335 a007 Real Root Of 303*x^4-47*x^3-373*x^2+662*x-900 1771103267134647 a001 11592/341*843^(13/14) 1771103268297879 r005 Im(z^2+c),c=-8/19+19/64*I,n=44 1771103270589427 r002 48th iterates of z^2 + 1771103270635160 m001 Zeta(5)^2/ln(GAMMA(23/24))^2/cos(Pi/12)^2 1771103272100388 a001 5/3571*24476^(1/43) 1771103273418728 m001 (Kac-ZetaP(2))/(GAMMA(5/6)-FibonacciFactorial) 1771103284456848 a007 Real Root Of 388*x^4+388*x^3+186*x^2+823*x-788 1771103290648305 m001 (ThueMorse+ZetaP(4))/(gamma-ln(2)/ln(10)) 1771103291271110 k008 concat of cont frac of 1771103292801096 m005 (1/2*3^(1/2)+1/6)/(4/11*Catalan+1/4) 1771103293546066 a007 Real Root Of 215*x^4+458*x^3-131*x^2-966*x-871 1771103297688037 m001 Zeta(3)^GAMMA(11/24)*Zeta(3)^GAMMA(19/24) 1771103298195722 a007 Real Root Of -438*x^4-744*x^3+656*x^2+990*x-128 1771103303038244 a007 Real Root Of 391*x^4+249*x^3-396*x^2+521*x-299 1771103308306802 m001 1/BesselJ(1,1)*ln(Niven)*Zeta(1/2) 1771103309727282 s002 sum(A035077[n]/(10^n+1),n=1..infinity) 1771103310130673 m005 (2/5*2^(1/2)+1)/(13/4+5/2*5^(1/2)) 1771103313357653 a001 2/47*6643838879^(4/15) 1771103316546996 r005 Re(z^2+c),c=-1/20+15/26*I,n=35 1771103317329372 m001 (MertensB1+Stephens)/(2*Pi/GAMMA(5/6)-Chi(1)) 1771103319028471 a007 Real Root Of -352*x^4-779*x^3-760*x^2-814*x+78 1771103326136646 m001 Backhouse^(Zeta(5)*Porter) 1771103326289100 a007 Real Root Of 909*x^4+787*x^3-754*x^2+971*x-487 1771103336129693 m001 1/DuboisRaymond/ln(Artin)^2/sqrt(3)^2 1771103340118202 a007 Real Root Of 987*x^4+880*x^3-785*x^2-645*x+133 1771103343619859 r002 63th iterates of z^2 + 1771103346946971 g002 Psi(4/7)+Psi(2/5)-Psi(7/10)-Psi(2/9) 1771103348044355 m001 GAMMA(19/24)/ln(BesselJ(1,1))^2*Zeta(7)^2 1771103349910732 m001 (BesselK(0,1)-Zeta(1,-1))/(Kac+Khinchin) 1771103353993031 r009 Re(z^3+c),c=-51/86+2/53*I,n=4 1771103356859133 m001 1/TreeGrowth2nd^2*ln(Rabbit) 1771103367085377 m001 (2^(1/2))^Khinchin-BesselJ(0,1) 1771103367085377 m001 BesselJ(0,1)-sqrt(2)^Khinchin 1771103372014646 m001 (-gamma(1)+ZetaQ(4))/(BesselK(0,1)-sin(1)) 1771103374765316 a007 Real Root Of -433*x^4-180*x^3+707*x^2-713*x-220 1771103382448009 p003 LerchPhi(1/1024,5,298/133) 1771103382864369 q001 5602/3163 1771103388059359 r009 Re(z^3+c),c=-11/46+7/19*I,n=17 1771103390623204 m001 1/(3^(1/3))^2/exp(Sierpinski)^2/cosh(1) 1771103391829193 m001 (Bloch+MinimumGamma)/(RenyiParking-Tribonacci) 1771103393983565 r005 Re(z^2+c),c=-5/4+7/208*I,n=52 1771103395615126 a007 Real Root Of 785*x^4+768*x^3-854*x^2+972*x+943 1771103399010792 r009 Re(z^3+c),c=-15/94+29/35*I,n=22 1771103399281562 r009 Re(z^3+c),c=-4/19+13/49*I,n=7 1771103407126636 r002 28th iterates of z^2 + 1771103413040279 m005 (1/2*Pi+3/11)/(8/11*Zeta(3)+1/6) 1771103415154276 m001 gamma^exp(1/exp(1))*gamma^Niven 1771103416742212 r005 Re(z^2+c),c=-8/31+31/35*I,n=8 1771103419082353 m001 (2*Pi/GAMMA(5/6))^(Pi^(1/2)/sin(1/5*Pi)) 1771103419082353 m001 GAMMA(1/6)^(sqrt(Pi)/sin(Pi/5)) 1771103426236314 a007 Real Root Of -511*x^4-105*x^3+859*x^2-742*x+436 1771103426818237 l006 ln(1606/9439) 1771103428807453 a007 Real Root Of 308*x^4+267*x^3-311*x^2+779*x+808 1771103431922123 k008 concat of cont frac of 1771103436872038 a003 sin(Pi*19/87)/cos(Pi*28/73) 1771103439752081 h005 exp(cos(Pi*9/32)-cos(Pi*12/25)) 1771103442585484 a007 Real Root Of -660*x^4-793*x^3+599*x^2+151*x+477 1771103454512406 a007 Real Root Of -622*x^4-603*x^3+925*x^2+610*x+949 1771103458036823 m005 (1/2*2^(1/2)+3/10)/(1/5*3^(1/2)+2/9) 1771103460521363 a007 Real Root Of -605*x^4-949*x^3+156*x^2-252*x-255 1771103465419051 m001 FeigenbaumMu/Pi/csc(1/24*Pi)*GAMMA(23/24)/Thue 1771103466525535 q001 6693/3779 1771103477090136 m001 (Pi+FeigenbaumC)/FransenRobinson 1771103478124782 a008 Real Root of (-1+7*x-x^2+9*x^4-x^8) 1771103488200153 a007 Real Root Of -821*x^4+65*x^3+917*x^2+839*x+121 1771103494434531 r005 Re(z^2+c),c=-7/46+10/31*I,n=12 1771103496304643 m001 (GAMMA(5/6)-cos(1))/(-OneNinth+TreeGrowth2nd) 1771103505161409 m001 Niven+Thue*ZetaP(4) 1771103509027087 m001 1/Lehmer*exp(Si(Pi))^2*Sierpinski 1771103512881130 l006 ln(1231/7235) 1771103514471997 a001 514229/521*521^(6/13) 1771103517467297 a003 sin(Pi*19/93)/cos(Pi*16/41) 1771103520870526 a007 Real Root Of 549*x^4+208*x^3-656*x^2+858*x-669 1771103522407861 m001 exp(OneNinth)/Robbin*GAMMA(23/24)^2 1771103529579811 r002 5th iterates of z^2 + 1771103532132681 a001 4106118243*144^(5/17) 1771103545258531 r002 3th iterates of z^2 + 1771103561635829 m005 (1/3*gamma+1/8)/(9/11*3^(1/2)+3/8) 1771103563569377 a007 Real Root Of -576*x^4-962*x^3-520*x^2-698*x+718 1771103566083041 a007 Real Root Of 670*x^4+481*x^3-637*x^2+799*x-507 1771103573567776 r005 Im(z^2+c),c=-4/3+2/241*I,n=55 1771103575906594 h003 exp(Pi*((13^(1/2)+14^(1/2))^(1/2)*17^(1/2))) 1771103584662903 a001 1/4*1346269^(16/53) 1771103593810640 m009 (1/3*Pi^2+5)/(1/2*Psi(1,2/3)-2) 1771103598187833 a001 2/47*2207^(47/60) 1771103606587697 m001 (KhinchinLevy-PlouffeB*Sarnak)/PlouffeB 1771103608038558 m001 (FeigenbaumC-LambertW(1))/(MertensB1+ZetaP(2)) 1771103609361448 a007 Real Root Of -106*x^4+233*x^3+231*x^2-905*x+10 1771103609898256 a007 Real Root Of -927*x^4-991*x^3+846*x^2-494*x+87 1771103614756380 h001 (-9*exp(1/3)+4)/(-6*exp(2)-4) 1771103616501456 m001 LaplaceLimit^Psi(2,1/3)*arctan(1/2)^Psi(2,1/3) 1771103617378841 r005 Im(z^2+c),c=-11/18+36/115*I,n=57 1771103621380123 a007 Real Root Of 47*x^4-391*x^3-284*x^2+988*x+6 1771103625105222 k008 concat of cont frac of 1771103628925493 r002 10th iterates of z^2 + 1771103634732073 m001 3^(1/2)*GAMMA(11/12)^ThueMorse 1771103634732073 m001 sqrt(3)*GAMMA(11/12)^ThueMorse 1771103640139073 m004 (-50*Pi)/3-5*E^(Sqrt[5]*Pi)*Pi 1771103653338202 m001 Paris^2/Lehmer^2*ln(Ei(1)) 1771103667363252 a007 Real Root Of -224*x^4-345*x^3-420*x^2-857*x+87 1771103674349576 l006 ln(856/5031) 1771103676248554 a007 Real Root Of -999*x^4-766*x^3+601*x^2+420*x-88 1771103679147508 m001 (Trott-ZetaQ(2))/(RenyiParking-Riemann3rdZero) 1771103689512170 m001 (Zeta(5)+3^(1/3))/(GAMMA(23/24)+Artin) 1771103691261921 k009 concat of cont frac of 1771103695936643 r005 Im(z^2+c),c=-113/110+15/64*I,n=52 1771103712748872 l006 ln(8273/9876) 1771103715228678 m001 (Conway+MasserGramain)/(gamma(1)+GAMMA(19/24)) 1771103716669067 r005 Im(z^2+c),c=25/106+27/40*I,n=6 1771103721796022 a007 Real Root Of -125*x^4+76*x^3-50*x^2-664*x+633 1771103722395382 r005 Im(z^2+c),c=9/118+25/41*I,n=44 1771103722664736 a001 41/48*610^(26/55) 1771103723112121 k009 concat of cont frac of 1771103725137770 m001 HardyLittlewoodC5/(exp(Pi)+ZetaQ(4)) 1771103729593127 a001 843/55*3^(5/38) 1771103730344138 r005 Im(z^2+c),c=-11/42+7/27*I,n=8 1771103730389262 a007 Real Root Of 35*x^4-382*x^3-555*x^2-878*x+175 1771103731123321 k008 concat of cont frac of 1771103732336066 h001 (7/11*exp(2)+1/12)/(8/9*exp(1)+2/7) 1771103737973032 p001 sum(1/(589*n+569)/(64^n),n=0..infinity) 1771103744366933 m005 (4*Pi+2/5)/(5*2^(1/2)+1/4) 1771103746115645 m001 1/Trott/exp(PrimesInBinary)^2*BesselJ(1,1) 1771103746576912 r005 Re(z^2+c),c=3/106+32/59*I,n=16 1771103747032268 a007 Real Root Of 276*x^4-66*x^3-810*x^2+513*x+367 1771103747858724 m001 (2^(1/2)+ZetaP(2))^Catalan 1771103748157710 m001 (5^(1/2)+LambertW(1))/(Sarnak+Thue) 1771103750683148 r005 Im(z^2+c),c=-1/34+8/11*I,n=30 1771103752281544 m001 Pi/Psi(1,1/3)/(ln(2+3^(1/2))+BesselJ(1,1)) 1771103753814998 a007 Real Root Of -48*x^4-856*x^3-129*x^2-442*x+24 1771103754864006 m001 1/ln(GAMMA(17/24))^2*BesselK(1,1)/cos(1) 1771103754981658 m001 1/GAMMA(2/3)^2*ln(GAMMA(5/24))^3 1771103767483791 a007 Real Root Of -443*x^4-644*x^3-208*x^2-797*x+22 1771103768737097 a007 Real Root Of -348*x^4-26*x^3+441*x^2-907*x+290 1771103774752752 m001 (GAMMA(7/12)+Trott)^PisotVijayaraghavan 1771103775008767 m001 (Backhouse+Tetranacci)/(ln(2)/ln(10)+ln(5)) 1771103778259052 m001 exp(cos(Pi/5))*Conway/sqrt(1+sqrt(3)) 1771103779507561 a001 7/4181*1134903170^(4/9) 1771103791624512 m001 (GAMMA(5/6)+PrimesInBinary)^ln(2+3^(1/2)) 1771103791826399 s001 sum(exp(-Pi/3)^n*A211224[n],n=1..infinity) 1771103792739111 m001 Catalan*ln(2^(1/2)+1)*Ei(1,1) 1771103799339692 a001 7/28657*86267571272^(4/9) 1771103799761843 a001 7/196418*6557470319842^(4/9) 1771103799868879 a007 Real Root Of 245*x^4+265*x^3-468*x^2-181*x+209 1771103800075825 a001 9227465/1364*322^(1/6) 1771103807078755 s002 sum(A067976[n]/(n*pi^n-1),n=1..infinity) 1771103814750582 a007 Real Root Of 128*x^4-252*x^3-173*x^2+844*x-622 1771103815431018 a003 cos(Pi*3/14)+sin(Pi*34/75) 1771103821801828 r005 Re(z^2+c),c=-19/98+9/55*I,n=17 1771103823016461 l006 ln(1337/7858) 1771103825086934 m001 (KhinchinHarmonic+Lehmer)/(5^(1/2)-Catalan) 1771103826389761 m009 (1/4*Psi(1,1/3)-1/6)/(5*Psi(1,3/4)+3/5) 1771103829338433 m005 (1/3*Catalan+1/2)/(2/3*3^(1/2)-7/10) 1771103832335935 m005 (1/3*2^(1/2)-1/7)/(1/8*Catalan-3/10) 1771103836061401 r005 Im(z^2+c),c=-28/27+3/13*I,n=44 1771103838465565 r005 Im(z^2+c),c=13/46+1/19*I,n=5 1771103838943884 r005 Re(z^2+c),c=-19/98+9/55*I,n=18 1771103844685843 a007 Real Root Of 512*x^4-958*x^3-172*x^2-953*x+179 1771103851167978 r005 Im(z^2+c),c=-2/15+13/57*I,n=6 1771103853323867 a001 8/64079*11^(7/48) 1771103856678008 m001 (BesselK(1,1)+FeigenbaumDelta)/(Pi+Zeta(1,-1)) 1771103873039466 l006 ln(6317/7541) 1771103873039466 p004 log(7541/6317) 1771103875049106 a003 cos(Pi*9/71)+cos(Pi*20/113) 1771103875874185 m001 1/OneNinth/exp(LaplaceLimit)^2*GAMMA(1/3)^2 1771103879534139 a001 161/416020*4181^(36/49) 1771103890681291 m001 (2^(1/3)+Zeta(3))/(GlaisherKinkelin+OneNinth) 1771103892260796 a007 Real Root Of 247*x^4+46*x^3-625*x^2+453*x+588 1771103893288615 a001 64079/1597*34^(8/19) 1771103895276724 a007 Real Root Of 469*x^4+749*x^3-57*x^2+512*x+632 1771103896103896 q001 1091/616 1771103896529679 r005 Re(z^2+c),c=-19/98+9/55*I,n=20 1771103898682329 m001 BesselJ(1,1)^2/exp(Robbin)*BesselK(0,1)^2 1771103903349235 m005 (1/2*3^(1/2)-1/6)/(2/7*3^(1/2)-1/10) 1771103908010504 a001 9227465/2207*322^(1/4) 1771103911845828 m001 (ln(gamma)-KhinchinLevy)/(Khinchin-Niven) 1771103914874436 a008 Real Root of (2+4*x+5*x^2-3*x^3-x^4+x^5) 1771103916983230 r002 64th iterates of z^2 + 1771103917514057 a007 Real Root Of -247*x^4+76*x^3+886*x^2+491*x+943 1771103918754444 m001 LandauRamanujan2nd+Riemann3rdZero^ZetaQ(2) 1771103919027327 v002 sum(1/(2^n*(23*n^2-66*n+89)),n=1..infinity) 1771103919919182 m002 -Pi^5/(6*E^Pi)+5*Csch[Pi] 1771103928743599 m008 (2/3*Pi^3+1)/(4*Pi^5-1/2) 1771103936862529 m001 (Otter+Salem)/(Zeta(1,2)-HardHexagonsEntropy) 1771103941876139 m005 (1/2*Zeta(3)-7/11)/(1/5*2^(1/2)-1/12) 1771103944212828 r005 Re(z^2+c),c=-19/98+9/55*I,n=22 1771103946355381 r005 Re(z^2+c),c=-19/98+9/55*I,n=23 1771103946633906 r005 Re(z^2+c),c=-19/98+9/55*I,n=25 1771103947302043 r005 Re(z^2+c),c=-19/98+9/55*I,n=27 1771103947355770 r005 Re(z^2+c),c=-19/98+9/55*I,n=30 1771103947359887 r005 Re(z^2+c),c=-19/98+9/55*I,n=28 1771103947364909 r005 Re(z^2+c),c=-19/98+9/55*I,n=32 1771103947365941 r005 Re(z^2+c),c=-19/98+9/55*I,n=35 1771103947366063 r005 Re(z^2+c),c=-19/98+9/55*I,n=37 1771103947366081 r005 Re(z^2+c),c=-19/98+9/55*I,n=40 1771103947366082 r005 Re(z^2+c),c=-19/98+9/55*I,n=42 1771103947366083 r005 Re(z^2+c),c=-19/98+9/55*I,n=45 1771103947366083 r005 Re(z^2+c),c=-19/98+9/55*I,n=47 1771103947366083 r005 Re(z^2+c),c=-19/98+9/55*I,n=50 1771103947366083 r005 Re(z^2+c),c=-19/98+9/55*I,n=52 1771103947366083 r005 Re(z^2+c),c=-19/98+9/55*I,n=55 1771103947366083 r005 Re(z^2+c),c=-19/98+9/55*I,n=57 1771103947366083 r005 Re(z^2+c),c=-19/98+9/55*I,n=54 1771103947366083 r005 Re(z^2+c),c=-19/98+9/55*I,n=59 1771103947366083 r005 Re(z^2+c),c=-19/98+9/55*I,n=60 1771103947366083 r005 Re(z^2+c),c=-19/98+9/55*I,n=62 1771103947366083 r005 Re(z^2+c),c=-19/98+9/55*I,n=64 1771103947366083 r005 Re(z^2+c),c=-19/98+9/55*I,n=63 1771103947366083 r005 Re(z^2+c),c=-19/98+9/55*I,n=61 1771103947366083 r005 Re(z^2+c),c=-19/98+9/55*I,n=58 1771103947366083 r005 Re(z^2+c),c=-19/98+9/55*I,n=56 1771103947366083 r005 Re(z^2+c),c=-19/98+9/55*I,n=53 1771103947366083 r005 Re(z^2+c),c=-19/98+9/55*I,n=49 1771103947366083 r005 Re(z^2+c),c=-19/98+9/55*I,n=51 1771103947366083 r005 Re(z^2+c),c=-19/98+9/55*I,n=48 1771103947366083 r005 Re(z^2+c),c=-19/98+9/55*I,n=46 1771103947366083 r005 Re(z^2+c),c=-19/98+9/55*I,n=44 1771103947366083 r005 Re(z^2+c),c=-19/98+9/55*I,n=43 1771103947366084 r005 Re(z^2+c),c=-19/98+9/55*I,n=41 1771103947366085 r005 Re(z^2+c),c=-19/98+9/55*I,n=39 1771103947366085 r005 Re(z^2+c),c=-19/98+9/55*I,n=38 1771103947366118 r005 Re(z^2+c),c=-19/98+9/55*I,n=33 1771103947366148 r005 Re(z^2+c),c=-19/98+9/55*I,n=36 1771103947366274 r005 Re(z^2+c),c=-19/98+9/55*I,n=34 1771103947370416 r005 Re(z^2+c),c=-19/98+9/55*I,n=31 1771103947382248 r005 Re(z^2+c),c=-19/98+9/55*I,n=29 1771103947646515 r005 Re(z^2+c),c=-19/98+9/55*I,n=26 1771103948661914 r005 Re(z^2+c),c=-19/98+9/55*I,n=24 1771103949488896 a003 cos(Pi*11/104)+sin(Pi*30/97) 1771103954815376 m001 Sierpinski^Porter*Pi*csc(5/24*Pi)/GAMMA(19/24) 1771103955119058 m001 (cos(1)+cos(1/12*Pi))^HardHexagonsEntropy 1771103964761183 m001 (ln(2)-FeigenbaumKappa)/Artin 1771103964987825 a007 Real Root Of 45*x^4+848*x^3+960*x^2+964*x-706 1771103965011652 r005 Re(z^2+c),c=-19/98+9/55*I,n=21 1771103965850062 m001 GAMMA(11/24)/exp(BesselK(0,1))^2*GAMMA(5/12) 1771103969458132 m001 (exp(1/Pi)+LandauRamanujan)/(Mills-Paris) 1771103980569864 m001 ((1+3^(1/2))^(1/2)-Landau)/(GAMMA(3/4)-Si(Pi)) 1771103981287427 r005 Re(z^2+c),c=-9/86+24/55*I,n=40 1771103987002172 m001 ArtinRank2*CopelandErdos+ErdosBorwein 1771103988379129 a001 521/144*75025^(16/29) 1771103993404201 r009 Re(z^3+c),c=-43/126+49/51*I,n=4 1771103993871579 a001 5778/55*377^(10/21) 1771103996684854 r005 Im(z^2+c),c=-2/3+41/185*I,n=33 1771103997120350 m001 (Chi(1)+2*Pi/GAMMA(5/6))/(Otter+TwinPrimes) 1771103999179411 m001 Backhouse^FeigenbaumD*MasserGramain 1771104005058444 r005 Im(z^2+c),c=-13/40+19/64*I,n=7 1771104005691936 r005 Re(z^2+c),c=-53/44+1/34*I,n=36 1771104006741408 p003 LerchPhi(1/1024,2,127/169) 1771104012281406 a001 167761/4181*34^(8/19) 1771104015690819 r002 38th iterates of z^2 + 1771104016376631 a001 832040/521*521^(5/13) 1771104029642222 a001 219602/5473*34^(8/19) 1771104031609146 m001 (KomornikLoreti+Rabbit)/(1+HardyLittlewoodC5) 1771104032175130 a001 1149851/28657*34^(8/19) 1771104032544677 a001 3010349/75025*34^(8/19) 1771104032598593 a001 3940598/98209*34^(8/19) 1771104032606459 a001 20633239/514229*34^(8/19) 1771104032607607 a001 54018521/1346269*34^(8/19) 1771104032607774 a001 70711162/1762289*34^(8/19) 1771104032607799 a001 370248451/9227465*34^(8/19) 1771104032607802 a001 969323029/24157817*34^(8/19) 1771104032607803 a001 1268860318/31622993*34^(8/19) 1771104032607803 a001 6643838879/165580141*34^(8/19) 1771104032607803 a001 17393796001/433494437*34^(8/19) 1771104032607803 a001 22768774562/567451585*34^(8/19) 1771104032607803 a001 119218851371/2971215073*34^(8/19) 1771104032607803 a001 312119004989/7778742049*34^(8/19) 1771104032607803 a001 408569081798/10182505537*34^(8/19) 1771104032607803 a001 2139295485799/53316291173*34^(8/19) 1771104032607803 a001 5600748293801/139583862445*34^(8/19) 1771104032607803 a001 23725150497407/591286729879*34^(8/19) 1771104032607803 a001 3020733700601/75283811239*34^(8/19) 1771104032607803 a001 1730726404001/43133785636*34^(8/19) 1771104032607803 a001 440719107401/10983760033*34^(8/19) 1771104032607803 a001 505019158607/12586269025*34^(8/19) 1771104032607803 a001 10716675201/267084832*34^(8/19) 1771104032607803 a001 73681302247/1836311903*34^(8/19) 1771104032607803 a001 9381251041/233802911*34^(8/19) 1771104032607803 a001 5374978561/133957148*34^(8/19) 1771104032607803 a001 1368706081/34111385*34^(8/19) 1771104032607803 a001 1568397607/39088169*34^(8/19) 1771104032607805 a001 33281921/829464*34^(8/19) 1771104032607814 a001 228826127/5702887*34^(8/19) 1771104032607878 a001 29134601/726103*34^(8/19) 1771104032608316 a001 16692641/416020*34^(8/19) 1771104032611321 a001 4250681/105937*34^(8/19) 1771104032631915 a001 4870847/121393*34^(8/19) 1771104032773069 a001 103361/2576*34^(8/19) 1771104033272746 a001 377/521*64079^(21/23) 1771104033500550 r005 Im(z^2+c),c=-16/27+11/34*I,n=32 1771104033646042 a001 233/843*(1/2+1/2*5^(1/2))^23 1771104033646042 a001 233/843*4106118243^(1/2) 1771104033659431 a001 377/521*439204^(7/9) 1771104033666554 a001 377/521*7881196^(7/11) 1771104033666570 a001 377/521*20633239^(3/5) 1771104033666572 a001 377/521*141422324^(7/13) 1771104033666572 a001 377/521*2537720636^(7/15) 1771104033666572 a001 377/521*17393796001^(3/7) 1771104033666572 a001 377/521*45537549124^(7/17) 1771104033666572 a001 377/521*14662949395604^(1/3) 1771104033666572 a001 377/521*(1/2+1/2*5^(1/2))^21 1771104033666572 a001 377/521*192900153618^(7/18) 1771104033666572 a001 377/521*10749957122^(7/16) 1771104033666572 a001 377/521*599074578^(1/2) 1771104033666573 a001 377/521*33385282^(7/12) 1771104033666930 a001 377/521*1860498^(7/10) 1771104033669202 a001 377/521*710647^(3/4) 1771104033740554 a001 710647/17711*34^(8/19) 1771104033803932 a001 233/843*103682^(23/24) 1771104033810732 a001 377/521*103682^(7/8) 1771104034744487 a001 377/521*39603^(21/22) 1771104038097574 a007 Real Root Of 64*x^4-78*x^3-523*x^2-544*x-386 1771104040371796 a001 90481/2255*34^(8/19) 1771104041014015 a001 6/726103*5^(9/19) 1771104047265159 r005 Re(z^2+c),c=-19/98+9/55*I,n=19 1771104067194712 a001 28657/199*199^(10/11) 1771104067667448 h001 (4/5*exp(1)+7/8)/(3/5*exp(1)+1/11) 1771104068065294 m001 Zeta(3)*ln(GlaisherKinkelin)^2*cosh(1)^2 1771104080164349 a007 Real Root Of -722*x^4-714*x^3+397*x^2-860*x+369 1771104084656734 a007 Real Root Of 147*x^4-414*x^3-28*x^2+234*x+527 1771104085052169 m001 (Pi+Shi(1))/(Khinchin+Riemann2ndZero) 1771104085823003 a001 51841/1292*34^(8/19) 1771104087587829 l006 ln(481/2827) 1771104096670814 a008 Real Root of (-5+x+4*x^2+2*x^3-3*x^4-2*x^5) 1771104096931955 r005 Im(z^2+c),c=41/118+17/49*I,n=39 1771104106138208 r009 Re(z^3+c),c=-43/102+13/25*I,n=14 1771104109002128 m005 (1/3*exp(1)+4/5)/(3/5*gamma-1/4) 1771104109363334 a001 7/144*86267571272^(3/5) 1771104111675794 r005 Re(z^2+c),c=-5/7+32/65*I,n=7 1771104112140919 m005 (1/2*3^(1/2)-4)/(9/11*exp(1)-5/11) 1771104121521141 k008 concat of cont frac of 1771104139824070 a001 3571*514229^(11/17) 1771104141591101 k007 concat of cont frac of 1771104141758783 m001 (CopelandErdos*Robbin+MertensB1)/CopelandErdos 1771104151122111 k008 concat of cont frac of 1771104153081427 r005 Im(z^2+c),c=-43/44+13/58*I,n=18 1771104155761266 m001 (KhinchinHarmonic+Magata)/(Si(Pi)+Shi(1)) 1771104156262199 m001 Lehmer+GlaisherKinkelin^TwinPrimes 1771104161186305 m001 (ln(2+3^(1/2))+FeigenbaumB)/(Kac-Tribonacci) 1771104162337434 a003 cos(Pi*16/75)+sin(Pi*40/89) 1771104170047183 m001 gamma/GAMMA(11/12)*exp(sinh(1)) 1771104177117442 l006 ln(4361/5206) 1771104178901462 p003 LerchPhi(1/12,1,109/187) 1771104184670028 m001 (MertensB1+Paris)/(3^(1/2)-GAMMA(7/12)) 1771104189608581 a007 Real Root Of 160*x^4-352*x^3-375*x^2-924*x-154 1771104191649388 a007 Real Root Of -227*x^4-489*x^3-897*x^2-775*x+958 1771104194336468 a007 Real Root Of -42*x^4-783*x^3-735*x^2-749*x-136 1771104196671414 a007 Real Root Of 3*x^4-485*x^3-617*x^2+762*x+561 1771104201119922 m001 BesselJ(0,1)^ln(3)+GAMMA(23/24) 1771104206517309 m005 (1/2*Zeta(3)-7/12)/(1/10*exp(1)+8/11) 1771104210716382 m005 (1/3*gamma-4/5)/(-17/30+1/10*5^(1/2)) 1771104211273365 a003 cos(Pi*3/80)+cos(Pi*8/37) 1771104216927811 h001 (3/10*exp(1)+4/11)/(5/6*exp(2)+1/2) 1771104218573178 a001 24157817/5778*322^(1/4) 1771104220445088 m001 Riemann3rdZero-exp(1)*Khinchin 1771104226580901 r005 Im(z^2+c),c=-11/20+11/35*I,n=35 1771104227095033 m001 (BesselJ(0,1)-Ei(1))/(-gamma(1)+BesselI(1,1)) 1771104227297970 a007 Real Root Of -396*x^4-508*x^3+811*x^2+556*x-485 1771104232456190 r005 Re(z^2+c),c=-7/46+17/43*I,n=6 1771104233955815 a005 (1/cos(6/161*Pi))^1424 1771104241128114 k008 concat of cont frac of 1771104241181051 k009 concat of cont frac of 1771104241654642 m001 (-Cahen+OneNinth)/(1-ArtinRank2) 1771104242126504 m001 (ln(5)+RenyiParking)^(2/3) 1771104246029288 m001 (5^(1/2)+Ei(1,1))/(MertensB3+ZetaQ(2)) 1771104246502044 r005 Im(z^2+c),c=-8/19+19/64*I,n=49 1771104246639061 a007 Real Root Of -913*x^4+129*x^3-604*x^2+42*x+28 1771104252044132 a007 Real Root Of -34*x^4+885*x^3+911*x^2-954*x+704 1771104257276366 r005 Re(z^2+c),c=23/126+25/54*I,n=58 1771104257368014 m001 1/ln(Riemann3rdZero)^2/FeigenbaumB/cos(Pi/5)^2 1771104262497837 m001 OrthogonalArrays/(AlladiGrinstead^ln(3)) 1771104262757271 m001 (FransenRobinson+Kac)/(Shi(1)+ln(2^(1/2)+1)) 1771104263883670 a001 63245986/15127*322^(1/4) 1771104268328531 a005 (1/cos(4/229*Pi))^1908 1771104268691573 a007 Real Root Of -447*x^4-486*x^3+698*x^2+165*x-199 1771104269307538 m001 (Zeta(5)+Bloch)/(FeigenbaumC-FeigenbaumD) 1771104270494382 a001 165580141/39603*322^(1/4) 1771104271458872 a001 433494437/103682*322^(1/4) 1771104271599589 a001 1134903170/271443*322^(1/4) 1771104271620120 a001 2971215073/710647*322^(1/4) 1771104271623115 a001 7778742049/1860498*322^(1/4) 1771104271623552 a001 20365011074/4870847*322^(1/4) 1771104271623616 a001 53316291173/12752043*322^(1/4) 1771104271623625 a001 139583862445/33385282*322^(1/4) 1771104271623627 a001 365435296162/87403803*322^(1/4) 1771104271623627 a001 956722026041/228826127*322^(1/4) 1771104271623627 a001 2504730781961/599074578*322^(1/4) 1771104271623627 a001 6557470319842/1568397607*322^(1/4) 1771104271623627 a001 10610209857723/2537720636*322^(1/4) 1771104271623627 a001 4052739537881/969323029*322^(1/4) 1771104271623627 a001 1548008755920/370248451*322^(1/4) 1771104271623627 a001 591286729879/141422324*322^(1/4) 1771104271623627 a001 225851433717/54018521*322^(1/4) 1771104271623631 a001 86267571272/20633239*322^(1/4) 1771104271623655 a001 32951280099/7881196*322^(1/4) 1771104271623822 a001 12586269025/3010349*322^(1/4) 1771104271624966 a001 4807526976/1149851*322^(1/4) 1771104271632808 a001 1836311903/439204*322^(1/4) 1771104271686557 a001 701408733/167761*322^(1/4) 1771104272054960 a001 267914296/64079*322^(1/4) 1771104273512713 m001 (Shi(1)*GAMMA(19/24)+Chi(1))/GAMMA(19/24) 1771104274580027 a001 102334155/24476*322^(1/4) 1771104277385630 h001 (2/11*exp(2)+5/6)/(2/9*exp(1)+5/8) 1771104277990127 a007 Real Root Of 173*x^4-45*x^3-83*x^2+765*x-337 1771104282203769 p001 sum((-1)^n/(559*n+556)/(32^n),n=0..infinity) 1771104285715117 r002 5th iterates of z^2 + 1771104291887096 a001 4181*322^(1/4) 1771104291988880 m001 exp(1/exp(1))^(FellerTornier/ZetaQ(4)) 1771104301427741 r009 Re(z^3+c),c=-5/16+32/53*I,n=56 1771104303121947 m001 (ArtinRank2-Porter)/(Zeta(1/2)+GAMMA(23/24)) 1771104303388927 a003 cos(Pi*14/103)+sin(Pi*34/103) 1771104310402091 m001 (Paris+QuadraticClass)/(Ei(1,1)-Psi(2,1/3)) 1771104310634962 m001 Zeta(5)^2/ln(Riemann2ndZero)^2/cos(Pi/5)^2 1771104311388204 s002 sum(A254379[n]/(2^n-1),n=1..infinity) 1771104312181106 k006 concat of cont frac of 1771104313575532 r005 Im(z^2+c),c=-73/86+4/31*I,n=38 1771104315244986 r005 Im(z^2+c),c=-113/102+15/62*I,n=60 1771104315949243 l006 ln(1549/9104) 1771104320207538 a007 Real Root Of 303*x^4-405*x^3-859*x^2+931*x-888 1771104320829515 m001 (arctan(1/2)-exp(1))/(-Gompertz+Sarnak) 1771104327278488 a001 1/311187*55^(23/54) 1771104342521406 a008 Real Root of x^4-2*x^3-28*x^2-18*x+35 1771104342920733 h001 (7/8*exp(2)+9/10)/(5/11*exp(2)+4/5) 1771104345419319 q001 6399/3613 1771104349817068 m005 (1/2*exp(1)+1/8)/(7/10*5^(1/2)-8/11) 1771104352611428 a007 Real Root Of 366*x^4+115*x^3-895*x^2+258*x+302 1771104372332643 a007 Real Root Of -286*x^4+360*x^3+933*x^2-841*x+398 1771104378008835 a007 Real Root Of -22*x^4-384*x^3+133*x^2+573*x-221 1771104384269330 m005 (5/18+1/6*5^(1/2))/(5/9*5^(1/2)-7/8) 1771104387330475 m005 (1/3*5^(1/2)-1/10)/(3/4*Pi-6) 1771104391802426 a007 Real Root Of 897*x^4+930*x^3-487*x^2+853*x-621 1771104397350274 a001 13201/329*34^(8/19) 1771104402998847 r002 62th iterates of z^2 + 1771104403313844 m005 (1/3*exp(1)+1/4)/(4/7*5^(1/2)-5/8) 1771104404287419 a007 Real Root Of -301*x^4-119*x^3+802*x^2+314*x+341 1771104404633543 h001 (4/9*exp(2)+4/11)/(3/5*exp(1)+3/7) 1771104405893947 s002 sum(A108703[n]/((2*n+1)!),n=1..infinity) 1771104410460864 s002 sum(A034237[n]/((2*n+1)!),n=1..infinity) 1771104410511520 a001 14930352/3571*322^(1/4) 1771104410808247 p004 log(29437/24659) 1771104413376855 v002 sum(1/(2^n*(21*n^2-11*n+26)),n=1..infinity) 1771104418797391 l006 ln(1068/6277) 1771104418831211 a003 sin(Pi*5/37)/cos(Pi*37/87) 1771104423281714 r005 Im(z^2+c),c=-67/66+11/59*I,n=18 1771104423680095 m005 (1/2*Catalan-5/12)/(10/11*5^(1/2)+3/10) 1771104430224182 s002 sum(A101260[n]/((exp(n)-1)/n),n=1..infinity) 1771104432969279 r009 Im(z^3+c),c=-31/114+9/62*I,n=11 1771104437069307 m001 1/FeigenbaumC*ln(FransenRobinson)*Pi 1771104437771104 q001 5308/2997 1771104445852191 m004 (25*Cos[Sqrt[5]*Pi])/Pi+8*Csc[Sqrt[5]*Pi] 1771104446058224 a007 Real Root Of 463*x^4+315*x^3-218*x^2+717*x-852 1771104452346988 m001 (KhinchinLevy-exp(1))/(-Totient+Weierstrass) 1771104455805234 m006 (3/5*Pi-1/4)/(4*exp(Pi)-1/4) 1771104461016425 l006 ln(6766/8077) 1771104461354166 m001 1/GAMMA(1/3)*CareFree^2/exp(GAMMA(19/24))^2 1771104464591685 m001 Cahen^ZetaR(2)/(Cahen^exp(1/exp(1))) 1771104465491312 m001 (exp(Pi)+gamma)/(-QuadraticClass+RenyiParking) 1771104466174941 a001 5/103682*843^(23/43) 1771104470296137 a008 Real Root of x^2-x-31191 1771104480180029 r005 Im(z^2+c),c=-37/62+18/43*I,n=14 1771104485570586 a003 cos(Pi*22/111)-sin(Pi*49/108) 1771104500800274 a003 cos(Pi*11/51)+sin(Pi*40/87) 1771104509106161 a001 843*34^(4/19) 1771104515058277 l006 ln(1655/9727) 1771104518283966 a001 1346269/521*521^(4/13) 1771104522684608 m001 (GAMMA(19/24)+Backhouse)/(Kac+Thue) 1771104522876472 m001 (FeigenbaumMu-MertensB3)^Rabbit 1771104524404384 m004 -ProductLog[Sqrt[5]*Pi]/25+2*Tan[Sqrt[5]*Pi] 1771104524542462 r002 7th iterates of z^2 + 1771104528562941 h001 (1/2*exp(2)+1/5)/(5/8*exp(1)+1/2) 1771104530499917 m001 GAMMA(1/4)/Ei(1)^2/ln(GAMMA(5/12))^2 1771104533631742 m001 (BesselI(0,1)-sin(1))/(-FeigenbaumB+Lehmer) 1771104546140238 a007 Real Root Of -158*x^4+83*x^3+453*x^2-14*x+570 1771104546928495 m001 sqrt(5)*GaussKuzminWirsing^GAMMA(5/12) 1771104567891634 r005 Im(z^2+c),c=-13/22+26/81*I,n=51 1771104569143932 m005 (1/3*2^(1/2)+1/2)/(3/10*Zeta(3)-10/11) 1771104574684604 a005 (1/cos(5/216*Pi))^1086 1771104577908441 q001 4217/2381 1771104580727779 r005 Im(z^2+c),c=-29/27+13/62*I,n=23 1771104591416421 r005 Re(z^2+c),c=-143/106+8/63*I,n=9 1771104602640500 m001 BesselK(0,1)^2/TwinPrimes^2/exp(exp(1))^2 1771104603637887 r005 Im(z^2+c),c=-13/14+31/191*I,n=55 1771104606157948 r009 Re(z^3+c),c=-9/44+56/61*I,n=11 1771104609137086 b008 (-5*E^2)/2+Tanh[1] 1771104610727451 l006 ln(4589/4671) 1771104611433513 b008 (-2/3+E^(-2))/3 1771104613279750 m006 (4/5*Pi^2-1/4)/(1/Pi-3/4) 1771104622299161 r005 Re(z^2+c),c=-5/28+30/41*I,n=7 1771104626383341 a001 1346269/843*322^(5/12) 1771104633493310 r004 Re(z^2+c),c=1/4+5/24*I,z(0)=exp(3/8*I*Pi),n=26 1771104635692955 m001 (2^(1/3)-KhinchinLevy)/(Pi+1) 1771104640042323 p004 log(24767/20747) 1771104642051803 r005 Im(z^2+c),c=-7/5+26/127*I,n=3 1771104642501497 h001 (-10*exp(2)-4)/(-8*exp(4)-3) 1771104659713291 g006 2*Psi(1,7/10)-Psi(1,10/11)-Psi(1,2/9) 1771104663323722 m009 (1/3*Psi(1,3/4)+3/5)/(3/4*Psi(1,1/3)+3/5) 1771104666802192 p003 LerchPhi(1/64,4,601/219) 1771104683081397 a007 Real Root Of -248*x^4+426*x^3-865*x^2+216*x+68 1771104684147889 a001 119218851371/34*2504730781961^(18/23) 1771104688618161 r009 Re(z^3+c),c=-7/40+17/19*I,n=59 1771104688764365 r005 Im(z^2+c),c=-65/114+7/22*I,n=44 1771104690197308 l006 ln(587/3450) 1771104691828260 a007 Real Root Of 63*x^4-515*x^3+814*x^2-964*x+148 1771104696472793 s002 sum(A150518[n]/((pi^n+1)/n),n=1..infinity) 1771104699104788 m004 2/5+(375*Csc[Sqrt[5]*Pi])/Pi 1771104702577863 m001 (ln(Pi)+3^(1/3))/(Bloch+Riemann1stZero) 1771104706695166 a003 cos(Pi*29/91)-cos(Pi*34/89) 1771104709542024 m005 (1/3*Pi-3/5)/(2/5*2^(1/2)-9/11) 1771104725306129 m005 (1/2*3^(1/2)-4/5)/(9/10*2^(1/2)-9/10) 1771104738353745 a007 Real Root Of -518*x^4-534*x^3+348*x^2-194*x+695 1771104740601273 a001 55/3571*76^(1/31) 1771104741102485 r005 Re(z^2+c),c=-17/14+10/183*I,n=44 1771104742230055 r005 Im(z^2+c),c=-53/74+16/25*I,n=4 1771104744290172 g001 Psi(1,97/102) 1771104744290172 l003 Psi(1,97/102) 1771104746238195 s002 sum(A280561[n]/(16^n),n=1..infinity) 1771104746411228 p004 log(36251/30367) 1771104746974044 s002 sum(A281281[n]/(16^n),n=1..infinity) 1771104749558662 a001 161/305*102334155^(4/21) 1771104762446750 p001 sum(1/(503*n+495)/n/(6^n),n=1..infinity) 1771104764209034 s002 sum(A281636[n]/(16^n),n=1..infinity) 1771104772169691 a007 Real Root Of -628*x^4-508*x^3+788*x^2-270*x+407 1771104773778158 m001 (Totient-TwinPrimes)/(Otter+QuadraticClass) 1771104777706915 r005 Im(z^2+c),c=-21/50+14/47*I,n=21 1771104781213014 m001 1/CareFree^2/exp(Bloch)/Rabbit 1771104787346004 a007 Real Root Of -294*x^4-590*x^3-505*x^2-183*x+875 1771104788456972 a007 Real Root Of 600*x^4+678*x^3-887*x^2-453*x-157 1771104796697771 m005 (1/2*Catalan+11/12)/(4*3^(1/2)+5/6) 1771104799132575 m001 (GAMMA(5/12)+3)/(Ei(1)+1) 1771104800399761 a007 Real Root Of -41*x^4+224*x^3+712*x^2-129*x-814 1771104803310255 m005 (1/3*gamma+2/11)/(9/11*exp(1)-1/9) 1771104805126249 m001 Pi^(1/2)/(Grothendieck^HeathBrownMoroz) 1771104814677106 a007 Real Root Of 233*x^4-65*x^3-510*x^2+105*x-868 1771104815120557 a007 Real Root Of 516*x^4-765*x^3+711*x^2-457*x-108 1771104815864022 q001 3126/1765 1771104821600213 m001 (-GAMMA(2/3)+Sarnak)/(exp(1)+sin(1)) 1771104823046174 r002 54th iterates of z^2 + 1771104834241089 g005 GAMMA(11/12)*GAMMA(4/11)/GAMMA(7/9)/GAMMA(3/4) 1771104834267730 m005 (1/2*Catalan-4/5)/(4/5*3^(1/2)+6/11) 1771104835282109 r005 Re(z^2+c),c=-2/5+27/47*I,n=39 1771104835382908 m001 (2^(1/2)-Ei(1))/(GAMMA(7/12)+KhinchinLevy) 1771104844245619 r005 Re(z^2+c),c=-5/42+17/40*I,n=9 1771104845449076 p004 log(10973/1867) 1771104846839862 m001 ln(gamma)^OneNinth+Thue 1771104848061977 r009 Re(z^3+c),c=-21/94+5/16*I,n=6 1771104849478609 a001 3/2584*34^(17/22) 1771104850493655 m004 60/Pi-(Sqrt[5]*Log[Sqrt[5]*Pi])/Pi 1771104855375376 m006 (5*ln(Pi)-2/3)/(ln(Pi)-4) 1771104861074640 r009 Re(z^3+c),c=-11/46+7/19*I,n=19 1771104869398221 m001 (FeigenbaumDelta+Niven)/(Catalan+FeigenbaumD) 1771104874516299 r009 Re(z^3+c),c=-3/11+23/48*I,n=17 1771104875651519 r005 Im(z^2+c),c=-37/64+12/37*I,n=60 1771104876097626 a001 141*3^(11/53) 1771104881379583 m001 1/GAMMA(17/24)^2*exp(Conway)^2/arctan(1/2) 1771104888738451 r005 Im(z^2+c),c=-29/27+9/43*I,n=55 1771104890549907 a007 Real Root Of 342*x^4+327*x^3-532*x^2+233*x+533 1771104894557058 r005 Re(z^2+c),c=-3/4+22/161*I,n=23 1771104898372967 r009 Re(z^3+c),c=-27/106+20/47*I,n=9 1771104898461738 a001 843/5*4181^(11/39) 1771104916646558 l006 ln(1280/7523) 1771104917833343 m001 (-Champernowne+Magata)/(Si(Pi)+gamma(3)) 1771104920983093 a007 Real Root Of 169*x^4+387*x^3+185*x^2-276*x-582 1771104922552378 m001 BesselK(0,1)/exp(Riemann2ndZero)*LambertW(1) 1771104929903059 a007 Real Root Of 660*x^4+960*x^3-90*x^2+470*x-46 1771104946819800 a001 6/329*225851433717^(2/23) 1771104948240648 r002 8th iterates of z^2 + 1771104953012188 h001 (6/11*exp(2)+1/7)/(2/9*exp(2)+5/7) 1771104958442093 a001 599074578/89*46368^(7/23) 1771104958492232 a001 20633239/89*2971215073^(7/23) 1771104963291205 a001 322/514229*8^(1/2) 1771104967970090 a003 cos(Pi*11/81)+cos(Pi*17/100) 1771104974507376 h001 (-9*exp(-2)+1)/(-6*exp(1)+4) 1771104975812023 l006 ln(2405/2871) 1771104987697833 m001 (Grothendieck+Robbin)/(Shi(1)+FellerTornier) 1771104987894977 r009 Im(z^3+c),c=-23/78+7/51*I,n=11 1771105004794499 a007 Real Root Of -688*x^4-959*x^3+902*x^2+858*x+132 1771105010295126 q001 5161/2914 1771105019082971 m001 ln(2)^Bloch/Weierstrass 1771105020190466 a001 2178309/521*521^(3/13) 1771105020790574 r005 Re(z^2+c),c=-19/98+9/55*I,n=16 1771105021677038 r005 Im(z^2+c),c=-13/90+25/38*I,n=6 1771105028004360 r005 Re(z^2+c),c=-1/31+25/44*I,n=54 1771105034030906 m005 (1/2*Catalan-6/11)/(gamma-1/12) 1771105035075274 r002 6th iterates of z^2 + 1771105036159206 m001 ZetaQ(2)/(3^(1/2)+Mills) 1771105037413153 m004 (5*Pi)/3+Pi*Cosh[Sqrt[5]*Pi] 1771105043438439 r005 Re(z^2+c),c=17/90+29/57*I,n=11 1771105044439381 a007 Real Root Of -421*x^4+172*x^3+438*x^2+945*x+155 1771105046563427 m001 (2^(1/2)+exp(1/Pi))/(OneNinth+Porter) 1771105047533319 m005 (1/2*Pi-5/9)/(2/11*5^(1/2)+1/6) 1771105052087015 r005 Im(z^2+c),c=-61/102+6/19*I,n=48 1771105062272915 r008 a(0)=0,K{-n^6,65+7*n^3+5*n^2-79*n} 1771105063003393 m001 1/exp(1)/ln(ArtinRank2)*log(2+sqrt(3))^2 1771105065825762 m001 exp(Salem)*Riemann2ndZero^2/cos(Pi/5) 1771105075236666 h001 (-7*exp(1)+7)/(-2*exp(1/3)-4) 1771105084181174 m001 1/(3^(1/3))*ErdosBorwein/ln(GAMMA(17/24))^2 1771105094757568 q001 7196/4063 1771105095262478 m001 AlladiGrinstead/MertensB1/ZetaP(3) 1771105101214062 r005 Re(z^2+c),c=5/28+19/45*I,n=58 1771105106185975 m001 (2^(1/2)+Ei(1,1))/(RenyiParking+ZetaP(3)) 1771105108458509 l006 ln(693/4073) 1771105109712004 m001 1/exp(BesselJ(1,1))^2*Magata^2/exp(1) 1771105114693348 m001 1/exp(Riemann2ndZero)^2*ArtinRank2^2*Robbin 1771105115211711 k008 concat of cont frac of 1771105118416636 m001 Niven^DuboisRaymond+Robbin 1771105120993319 a001 123/17711*225851433717^(10/21) 1771105135778831 r005 Re(z^2+c),c=-11/62+13/54*I,n=8 1771105136223961 b008 4-Erfi[3]/9 1771105137411583 m001 (Catalan+Zeta(3))/(-Cahen+Tribonacci) 1771105138905464 a007 Real Root Of 415*x^4+44*x^3+290*x^2-231*x+4 1771105146243268 s002 sum(A281088[n]/(16^n),n=1..infinity) 1771105147524101 m005 (1/2*exp(1)-3/4)/(10/11*Pi+7/12) 1771105152025229 a007 Real Root Of -86*x^4-85*x^3-609*x^2-938*x+623 1771105152873124 r009 Re(z^3+c),c=-19/106+11/12*I,n=29 1771105153111111 k008 concat of cont frac of 1771105158040434 a007 Real Root Of 668*x^4+762*x^3-478*x^2+939*x+823 1771105163783656 a007 Real Root Of 804*x^4+440*x^3-990*x^2+965*x-652 1771105165410308 m001 (2*Pi/GAMMA(5/6)+GAMMA(13/24))/(Magata+Robbin) 1771105176111340 h001 (1/4*exp(1)+8/11)/(1/8*exp(1)+5/11) 1771105177421599 a001 1/233*13^(21/38) 1771105182944864 r009 Re(z^3+c),c=-3/13+18/53*I,n=17 1771105187627410 a007 Real Root Of -424*x^4+410*x^3-225*x^2+662*x+127 1771105189132961 m009 (16*Catalan+2*Pi^2+2/5)/(3/4*Psi(1,2/3)-1/3) 1771105189508334 p003 LerchPhi(1/5,2,575/229) 1771105193197923 a003 sin(Pi*3/68)/cos(Pi*17/79) 1771105203136118 m001 FibonacciFactorial/Backhouse*Riemann2ndZero 1771105204850881 a007 Real Root Of -513*x^4-478*x^3+612*x^2-457*x-337 1771105209430474 a007 Real Root Of -645*x^4+110*x^3+275*x^2+437*x-86 1771105211382425 r005 Im(z^2+c),c=-22/19+14/57*I,n=22 1771105215644653 m005 (1/3*Pi-3/5)/(5/7*exp(1)+7/12) 1771105216957866 m001 (-FeigenbaumB+Salem)/(Catalan+GAMMA(23/24)) 1771105218130853 m001 (-MertensB3+ZetaQ(4))/(2^(1/2)-LaplaceLimit) 1771105223575848 a001 5702887/1364*322^(1/4) 1771105229780479 a007 Real Root Of 314*x^4+35*x^3-606*x^2+641*x+141 1771105242001754 p004 log(21611/3677) 1771105242017373 a001 3571/3*3^(17/47) 1771105243880462 m001 arctan(1/2)/exp(Rabbit)*log(1+sqrt(2))^2 1771105245600453 r005 Im(z^2+c),c=-13/20+16/49*I,n=17 1771105249773815 r009 Re(z^3+c),c=-43/82+17/48*I,n=10 1771105253558786 m005 (1/2*gamma+4/11)/(7/11*gamma-4/11) 1771105257081455 a007 Real Root Of -618*x^4-898*x^3-90*x^2-781*x-9 1771105260679684 m001 MertensB1/ln(ArtinRank2)^2*Zeta(1,2)^2 1771105267575011 m001 OneNinth*Kolakoski^2*ln(sinh(1))^2 1771105268467224 r005 Re(z^2+c),c=-125/106+9/53*I,n=60 1771105273015649 l006 ln(1492/8769) 1771105284854976 r005 Re(z^2+c),c=-5/74+31/61*I,n=39 1771105285892066 r002 59th iterates of z^2 + 1771105287163436 a007 Real Root Of -351*x^4+725*x^3-63*x^2+459*x-83 1771105291546257 r005 Im(z^2+c),c=-17/30+21/68*I,n=30 1771105296728704 b008 29*ArcCot[10/7] 1771105298628882 m001 (polylog(4,1/2)+Conway)/(Otter-Tetranacci) 1771105308964316 q001 2035/1149 1771105314952214 r005 Im(z^2+c),c=-1/10+7/32*I,n=14 1771105317521989 h001 (-9*exp(2/3)-3)/(-5*exp(1)+2) 1771105318637761 r005 Re(z^2+c),c=27/122+11/62*I,n=18 1771105318931068 r005 Im(z^2+c),c=-57/106+17/53*I,n=62 1771105329770362 m001 (Artin-Kac)/(Riemann1stZero+StolarskyHarborth) 1771105331510614 a001 5702887/2207*322^(1/3) 1771105342944139 r005 Im(z^2+c),c=-2/3+65/212*I,n=38 1771105344208643 r005 Im(z^2+c),c=-43/74+7/24*I,n=16 1771105350348017 a007 Real Root Of -923*x^4-923*x^3+987*x^2-39*x+789 1771105350915630 m001 Pi-2^(1/3)/GAMMA(2/3)-BesselJ(1,1) 1771105352163525 r005 Re(z^2+c),c=1/11+33/56*I,n=33 1771105354868966 m001 (-gamma+PisotVijayaraghavan)/(2^(1/3)-Chi(1)) 1771105359661999 m001 Niven^(Ei(1)*BesselI(1,1)) 1771105366521001 r005 Im(z^2+c),c=-8/19+19/64*I,n=45 1771105366730868 s001 sum(exp(-Pi/3)^(n-1)*A035542[n],n=1..infinity) 1771105373447943 a007 Real Root Of 306*x^4-49*x^3-481*x^2+549*x-802 1771105378778716 s002 sum(A073053[n]/(exp(n)+1),n=1..infinity) 1771105378840582 r005 Im(z^2+c),c=-47/50+1/6*I,n=51 1771105381424773 b008 SinIntegral[1+ArcTan[Pi^2]] 1771105381806849 a007 Real Root Of 621*x^4+686*x^3-588*x^2+132*x-221 1771105381905987 r002 49th iterates of z^2 + 1771105396815118 h001 (1/3*exp(2)+7/9)/(7/11*exp(1)+1/10) 1771105402301866 a003 cos(Pi*17/84)-sin(Pi*18/41) 1771105403608905 m005 (1/3*Catalan-1/3)/(5/7*2^(1/2)+4/7) 1771105403867435 m001 (ThueMorse+ZetaQ(3))/(BesselI(0,2)+Paris) 1771105409636289 r005 Im(z^2+c),c=27/98+1/40*I,n=48 1771105410985111 a007 Real Root Of -184*x^4-323*x^3-317*x^2+495*x+96 1771105411844763 m001 (Ei(1,1)+Weierstrass)/(exp(1)+Zeta(3)) 1771105412703970 b008 1+2^(-3/8) 1771105415741657 l006 ln(799/4696) 1771105418131411 k008 concat of cont frac of 1771105430288387 l006 ln(7664/9149) 1771105439689361 m001 BesselI(1,2)^Backhouse-DuboisRaymond 1771105458069215 r002 34th iterates of z^2 + 1771105459891043 r005 Im(z^2+c),c=-3/58+47/59*I,n=54 1771105460514858 m001 GAMMA(1/3)^2*ErdosBorwein^2*exp(GAMMA(5/6))^2 1771105463722585 m001 BesselI(1,2)*RenyiParking+LandauRamanujan2nd 1771105465235732 a007 Real Root Of 78*x^4-417*x^3-447*x^2+878*x-127 1771105469620592 r009 Re(z^3+c),c=-21/74+16/31*I,n=19 1771105478058751 m001 (FibonacciFactorial-Sarnak)/(Pi-ln(2)/ln(10)) 1771105486084298 r002 39th iterates of z^2 + 1771105488815231 a007 Real Root Of -829*x^4-983*x^3+420*x^2-658*x+213 1771105496839540 a007 Real Root Of -990*x^4-989*x^3+967*x^2-907*x-393 1771105497820525 m006 (2/3*ln(Pi)+5/6)/(3/5/Pi-1/5) 1771105500979080 m001 LandauRamanujan+Riemann3rdZero^ErdosBorwein 1771105506819249 m005 (1/3*Catalan+1/9)/(1/4*exp(1)-4/9) 1771105510475235 a008 Real Root of x^4-x^3-36*x^2+84*x+16 1771105514867481 p004 log(15427/12923) 1771105522097481 a001 3524578/521*521^(2/13) 1771105522393203 r009 Im(z^3+c),c=-31/114+9/62*I,n=12 1771105527218931 a007 Real Root Of 500*x^4+236*x^3-801*x^2+87*x-942 1771105527638190 q001 7049/3980 1771105534099756 m001 (Artin-BesselI(0,1))/(FeigenbaumMu+Porter) 1771105539566470 r009 Re(z^3+c),c=-11/46+7/19*I,n=22 1771105540710657 l006 ln(1704/10015) 1771105545951677 m001 Ei(1)/(MertensB3^CopelandErdos) 1771105550297663 r005 Re(z^2+c),c=-47/46+7/22*I,n=17 1771105558315230 m004 (50*Sqrt[5])/(3*Pi)+3*Log[Sqrt[5]*Pi] 1771105559982878 s001 sum(1/10^(n-1)*A250141[n]/n!,n=1..infinity) 1771105560278348 m001 (Zeta(1,2)+polylog(4,1/2))/(exp(Pi)+gamma) 1771105561426014 m001 (CopelandErdos+ErdosBorwein)/(2^(1/2)-Artin) 1771105565192438 r005 Im(z^2+c),c=-71/126+14/43*I,n=62 1771105572710468 a003 sin(Pi*30/107)+sin(Pi*44/89) 1771105572952960 r005 Re(z^2+c),c=5/22+7/38*I,n=13 1771105573770491 a001 5401872/305 1771105576890785 m001 (1-exp(Pi))/(cos(1)+Rabbit) 1771105579122882 a003 cos(Pi*8/91)/sin(Pi*17/93) 1771105581068313 m001 (Si(Pi)+GAMMA(13/24))/(-Mills+Riemann2ndZero) 1771105583292645 m009 (2/5*Psi(1,1/3)-6)/(4/5*Psi(1,1/3)+3) 1771105584888464 m005 (1/2*Zeta(3)+5)/(-61/198+3/22*5^(1/2)) 1771105589498253 r009 Re(z^3+c),c=-11/46+7/19*I,n=20 1771105590972511 a007 Real Root Of 31*x^4-597*x^3+836*x^2-329*x+972 1771105591681496 a007 Real Root Of -294*x^4-304*x^3-155*x^2-895*x+105 1771105591826884 a007 Real Root Of -801*x^4-701*x^3+631*x^2-578*x+984 1771105591963435 m005 (1/2*2^(1/2)+7/9)/(1/7*2^(1/2)+7/11) 1771105595891160 m001 1/exp(Sierpinski)^2*FeigenbaumC/sin(Pi/5) 1771105600482079 m001 1/cos(Pi/12)*ln(GAMMA(5/12))^2/gamma^2 1771105603295615 s002 sum(A015062[n]/((2*n+1)!),n=1..infinity) 1771105605482589 m005 (5*gamma+4/5)/(3*Catalan-2/3) 1771105611967479 a003 cos(Pi*12/83)+cos(Pi*13/80) 1771105613258674 m005 (1/2*3^(1/2)+5/6)/(7/10*gamma-1/2) 1771105616389968 q001 5014/2831 1771105616414404 r002 7th iterates of z^2 + 1771105619789405 m001 1/(Psi(2,1/3)-Totient) 1771105619789405 m001 1/abs(-Psi(2,1/3)+Totient) 1771105624219260 a007 Real Root Of -174*x^4-223*x^3-385*x^2-787*x+287 1771105625099480 r005 Im(z^2+c),c=-33/50+18/41*I,n=36 1771105628308574 m001 (Rabbit-ZetaP(4))/(ln(3)-Backhouse) 1771105628830666 m001 (Shi(1)+ReciprocalLucas)/Niven 1771105628923084 g007 Psi(2,7/8)+Psi(2,1/4)+Psi(2,1/3)-Psi(2,7/12) 1771105633346592 m001 GAMMA(7/24)^2/ln(Kolakoski)^2*Pi^2 1771105634864143 a003 cos(Pi*9/61)+sin(Pi*33/97) 1771105635419533 r009 Re(z^3+c),c=-11/46+7/19*I,n=25 1771105637451867 r005 Im(z^2+c),c=-5/94+34/41*I,n=9 1771105638125546 l006 ln(5259/6278) 1771105638547020 r002 26th iterates of z^2 + 1771105640378687 a001 10946/521*1364^(14/15) 1771105642073550 a001 2584*322^(1/3) 1771105644536030 a007 Real Root Of -406*x^4-210*x^3+714*x^2-889*x-986 1771105646686216 r005 Im(z^2+c),c=15/38+10/43*I,n=13 1771105646751752 r009 Re(z^3+c),c=-11/46+7/19*I,n=28 1771105647910406 r009 Re(z^3+c),c=-11/46+7/19*I,n=31 1771105647989679 r009 Re(z^3+c),c=-11/46+7/19*I,n=30 1771105648003109 r009 Re(z^3+c),c=-11/46+7/19*I,n=33 1771105648011133 r009 Re(z^3+c),c=-11/46+7/19*I,n=34 1771105648015357 r009 Re(z^3+c),c=-11/46+7/19*I,n=36 1771105648017653 r009 Re(z^3+c),c=-11/46+7/19*I,n=39 1771105648017881 r009 Re(z^3+c),c=-11/46+7/19*I,n=37 1771105648017971 r009 Re(z^3+c),c=-11/46+7/19*I,n=42 1771105648018008 r009 Re(z^3+c),c=-11/46+7/19*I,n=45 1771105648018011 r009 Re(z^3+c),c=-11/46+7/19*I,n=48 1771105648018012 r009 Re(z^3+c),c=-11/46+7/19*I,n=47 1771105648018012 r009 Re(z^3+c),c=-11/46+7/19*I,n=50 1771105648018012 r009 Re(z^3+c),c=-11/46+7/19*I,n=51 1771105648018012 r009 Re(z^3+c),c=-11/46+7/19*I,n=53 1771105648018012 r009 Re(z^3+c),c=-11/46+7/19*I,n=56 1771105648018012 r009 Re(z^3+c),c=-11/46+7/19*I,n=54 1771105648018012 r009 Re(z^3+c),c=-11/46+7/19*I,n=59 1771105648018012 r009 Re(z^3+c),c=-11/46+7/19*I,n=62 1771105648018012 r009 Re(z^3+c),c=-11/46+7/19*I,n=64 1771105648018012 r009 Re(z^3+c),c=-11/46+7/19*I,n=63 1771105648018012 r009 Re(z^3+c),c=-11/46+7/19*I,n=61 1771105648018012 r009 Re(z^3+c),c=-11/46+7/19*I,n=60 1771105648018012 r009 Re(z^3+c),c=-11/46+7/19*I,n=58 1771105648018012 r009 Re(z^3+c),c=-11/46+7/19*I,n=57 1771105648018012 r009 Re(z^3+c),c=-11/46+7/19*I,n=55 1771105648018012 r009 Re(z^3+c),c=-11/46+7/19*I,n=52 1771105648018012 r009 Re(z^3+c),c=-11/46+7/19*I,n=49 1771105648018014 r009 Re(z^3+c),c=-11/46+7/19*I,n=46 1771105648018014 r009 Re(z^3+c),c=-11/46+7/19*I,n=44 1771105648018024 r009 Re(z^3+c),c=-11/46+7/19*I,n=43 1771105648018062 r009 Re(z^3+c),c=-11/46+7/19*I,n=41 1771105648018065 r009 Re(z^3+c),c=-11/46+7/19*I,n=40 1771105648018688 r009 Re(z^3+c),c=-11/46+7/19*I,n=38 1771105648025338 r009 Re(z^3+c),c=-11/46+7/19*I,n=35 1771105648086282 r009 Re(z^3+c),c=-11/46+7/19*I,n=32 1771105648229561 a003 cos(Pi*1/64)+sin(Pi*25/89) 1771105648565628 r009 Re(z^3+c),c=-11/46+7/19*I,n=29 1771105648815080 r009 Re(z^3+c),c=-11/46+7/19*I,n=27 1771105649087890 a003 cos(Pi*1/78)+cos(Pi*25/114) 1771105651042391 l006 ln(905/5319) 1771105651589599 r009 Re(z^3+c),c=-11/46+7/19*I,n=26 1771105655937234 r009 Im(z^3+c),c=-19/122+6/35*I,n=3 1771105662331434 a007 Real Root Of -387*x^4-638*x^3+16*x^2-296*x-311 1771105662362923 a007 Real Root Of -348*x^4+2*x^3+400*x^2-714*x+916 1771105662473480 r009 Re(z^3+c),c=-11/46+7/19*I,n=23 1771105663247483 r005 Re(z^2+c),c=23/90+23/57*I,n=5 1771105664244112 r009 Re(z^3+c),c=-11/46+7/19*I,n=24 1771105666683154 m001 ln(5)^GaussKuzminWirsing-MertensB3 1771105667369477 m003 1/20+Sqrt[5]/32+4*Csch[1/2+Sqrt[5]/2] 1771105676212861 a007 Real Root Of -86*x^4-305*x^3-738*x^2-460*x+652 1771105677488259 r005 Re(z^2+c),c=3/118+22/41*I,n=12 1771105677951528 m002 5+Sinh[Pi]+(7*Tanh[Pi])/6 1771105681247154 a001 322/4181*2504730781961^(4/21) 1771105687384081 a001 39088169/15127*322^(1/3) 1771105691088433 a007 Real Root Of 473*x^4+665*x^3-130*x^2+538*x+401 1771105691425746 r005 Re(z^2+c),c=-41/34+3/37*I,n=40 1771105693994798 a001 34111385/13201*322^(1/3) 1771105694959289 a001 133957148/51841*322^(1/3) 1771105695100006 a001 233802911/90481*322^(1/3) 1771105695120537 a001 1836311903/710647*322^(1/3) 1771105695123532 a001 267084832/103361*322^(1/3) 1771105695123969 a001 12586269025/4870847*322^(1/3) 1771105695124033 a001 10983760033/4250681*322^(1/3) 1771105695124042 a001 43133785636/16692641*322^(1/3) 1771105695124043 a001 75283811239/29134601*322^(1/3) 1771105695124044 a001 591286729879/228826127*322^(1/3) 1771105695124044 a001 86000486440/33281921*322^(1/3) 1771105695124044 a001 4052739537881/1568397607*322^(1/3) 1771105695124044 a001 3536736619241/1368706081*322^(1/3) 1771105695124044 a001 3278735159921/1268860318*322^(1/3) 1771105695124044 a001 2504730781961/969323029*322^(1/3) 1771105695124044 a001 956722026041/370248451*322^(1/3) 1771105695124044 a001 182717648081/70711162*322^(1/3) 1771105695124044 a001 139583862445/54018521*322^(1/3) 1771105695124048 a001 53316291173/20633239*322^(1/3) 1771105695124072 a001 10182505537/3940598*322^(1/3) 1771105695124239 a001 7778742049/3010349*322^(1/3) 1771105695125383 a001 2971215073/1149851*322^(1/3) 1771105695133225 a001 567451585/219602*322^(1/3) 1771105695186974 a001 433494437/167761*322^(1/3) 1771105695555377 a001 165580141/64079*322^(1/3) 1771105697959842 r005 Im(z^2+c),c=-11/29+2/7*I,n=15 1771105698080446 a001 31622993/12238*322^(1/3) 1771105699756554 a001 17711/521*1364^(13/15) 1771105703524102 r005 Re(z^2+c),c=-139/118+3/20*I,n=60 1771105703962710 a007 Real Root Of -324*x^4-780*x^3-949*x^2-994*x+71 1771105704511778 a001 167761*514229^(9/17) 1771105714472499 r005 Re(z^2+c),c=-29/34+3/128*I,n=42 1771105715387530 a001 24157817/9349*322^(1/3) 1771105718676538 a007 Real Root Of -497*x^4-826*x^3-182*x^2-864*x-658 1771105720579884 r005 Im(z^2+c),c=-7/12+14/57*I,n=14 1771105720772700 a001 2178309/76*15127^(39/43) 1771105722559756 b008 EllipticK[Pi*ArcCot[8]] 1771105733551816 a007 Real Root Of -742*x^4+264*x^3-949*x^2+514*x+123 1771105736044806 a001 6/7*987^(2/19) 1771105742511138 m001 (sin(1/5*Pi)-ln(3))/(Ei(1)-ErdosBorwein) 1771105759556561 m005 (1/3*gamma+1/9)/(5/11*Pi+2/7) 1771105762608554 a003 sin(Pi*6/91)*sin(Pi*36/109) 1771105764780650 a001 28657/521*1364^(4/5) 1771105769499006 r005 Im(z^2+c),c=5/54+19/28*I,n=9 1771105773225802 r005 Re(z^2+c),c=-107/106+6/61*I,n=10 1771105775028952 m001 exp(CareFree)^2*GolombDickman/(3^(1/3)) 1771105777101618 m001 (gamma+CareFree)/Sarnak 1771105779151230 p002 log(10^(6/7)-2^(2/5)) 1771105779505153 p004 log(17203/2927) 1771105781719194 a005 (1/cos(1/109*Pi))^1376 1771105786961169 h001 (-9*exp(-2)-9)/(-7*exp(1/3)+4) 1771105787895100 m001 (LandauRamanujan-ZetaQ(2))/(ln(3)-ArtinRank2) 1771105787942199 m005 (1/2*Pi-2/9)/(3/8*Pi-5/12) 1771105792206543 a007 Real Root Of -670*x^4-478*x^3+976*x^2-304*x+337 1771105792773763 m001 1/ln(BesselJ(0,1))*Riemann3rdZero*Ei(1) 1771105795348362 a007 Real Root Of -609*x^4-425*x^3+432*x^2-738*x+969 1771105795677867 r005 Re(z^2+c),c=11/42+9/19*I,n=21 1771105806965391 a007 Real Root Of -717*x^4-546*x^3+782*x^2-504*x+676 1771105810034222 a007 Real Root Of -29*x^4-465*x^3+812*x^2-816*x+957 1771105815386990 p001 sum((-1)^n/(285*n+62)/n/(16^n),n=1..infinity) 1771105817945857 m001 (ln(2^(1/2)+1)-Ei(1,1))/(GolombDickman-Robbin) 1771105826397146 q001 2979/1682 1771105827648082 a001 46368/521*1364^(11/15) 1771105828878690 a007 Real Root Of 919*x^4+895*x^3-873*x^2+835*x+147 1771105829407789 a007 Real Root Of -79*x^4+231*x^3+152*x^2-800*x+167 1771105832804115 p003 LerchPhi(1/6,3,58/151) 1771105834012055 a001 9227465/3571*322^(1/3) 1771105834460312 l006 ln(8113/9685) 1771105835768055 a007 Real Root Of -866*x^4-930*x^3+662*x^2-547*x+309 1771105837002081 l006 ln(1011/5942) 1771105841755603 h001 (3/4*exp(1)+2/7)/(2/11*exp(1)+9/11) 1771105843775699 g007 Psi(2,7/8)+Psi(2,5/8)-Psi(2,8/11)-Psi(2,2/9) 1771105847553719 a007 Real Root Of -516*x^4-886*x^3-330*x^2-135*x+951 1771105850682554 r002 41th iterates of z^2 + 1771105855550039 r005 Re(z^2+c),c=13/48+33/56*I,n=8 1771105859699184 r009 Re(z^3+c),c=-11/46+7/19*I,n=21 1771105866575741 m001 PlouffeB*(Catalan+FransenRobinson) 1771105871458719 m004 -1+(75*Sqrt[5])/Pi+5*E^(Sqrt[5]*Pi)*Pi 1771105874728596 a007 Real Root Of -596*x^4-833*x^3+250*x^2-112*x+254 1771105875327076 a007 Real Root Of 36*x^4-87*x^3-400*x^2-559*x+112 1771105881054865 r009 Re(z^3+c),c=-1/94+55/62*I,n=4 1771105882144080 r009 Re(z^3+c),c=-3/13+18/53*I,n=20 1771105885662237 a007 Real Root Of 439*x^4+804*x^3+607*x^2+813*x-317 1771105891339289 a001 75025/521*1364^(2/3) 1771105892277470 m001 GAMMA(13/24)^2/Niven^2/exp(sqrt(1+sqrt(3))) 1771105892473801 r005 Re(z^2+c),c=-13/106+25/63*I,n=24 1771105893393960 m005 (1/3*5^(1/2)+1/6)/(7/11*Zeta(3)-1/4) 1771105896569363 a007 Real Root Of 607*x^4+808*x^3-468*x^2-466*x-841 1771105897661995 m001 (ReciprocalLucas+Totient)/(FeigenbaumMu-Niven) 1771105901273248 a001 1364/317811*2178309^(13/51) 1771105903187607 p004 log(35869/30047) 1771105912786480 m001 (RenyiParking+ZetaP(4))/(2^(1/3)-Kolakoski) 1771105920318882 r005 Re(z^2+c),c=-3/5+64/79*I,n=3 1771105927178507 a007 Real Root Of -6*x^4+296*x^3+111*x^2-252*x+909 1771105934433757 r009 Re(z^3+c),c=-3/13+18/53*I,n=23 1771105936585415 a007 Real Root Of 422*x^4+139*x^3-630*x^2+516*x-490 1771105938144586 r009 Re(z^3+c),c=-3/13+18/53*I,n=26 1771105938244191 r009 Re(z^3+c),c=-3/13+18/53*I,n=25 1771105938380406 r009 Re(z^3+c),c=-3/13+18/53*I,n=28 1771105938391419 r009 Re(z^3+c),c=-3/13+18/53*I,n=29 1771105938404090 r009 Re(z^3+c),c=-3/13+18/53*I,n=31 1771105938406398 r009 Re(z^3+c),c=-3/13+18/53*I,n=32 1771105938406887 r009 Re(z^3+c),c=-3/13+18/53*I,n=34 1771105938407170 r009 Re(z^3+c),c=-3/13+18/53*I,n=37 1771105938407174 r009 Re(z^3+c),c=-3/13+18/53*I,n=35 1771105938407197 r009 Re(z^3+c),c=-3/13+18/53*I,n=40 1771105938407199 r009 Re(z^3+c),c=-3/13+18/53*I,n=43 1771105938407199 r009 Re(z^3+c),c=-3/13+18/53*I,n=46 1771105938407199 r009 Re(z^3+c),c=-3/13+18/53*I,n=49 1771105938407199 r009 Re(z^3+c),c=-3/13+18/53*I,n=52 1771105938407199 r009 Re(z^3+c),c=-3/13+18/53*I,n=55 1771105938407199 r009 Re(z^3+c),c=-3/13+18/53*I,n=54 1771105938407199 r009 Re(z^3+c),c=-3/13+18/53*I,n=57 1771105938407199 r009 Re(z^3+c),c=-3/13+18/53*I,n=58 1771105938407199 r009 Re(z^3+c),c=-3/13+18/53*I,n=60 1771105938407199 r009 Re(z^3+c),c=-3/13+18/53*I,n=61 1771105938407199 r009 Re(z^3+c),c=-3/13+18/53*I,n=63 1771105938407199 r009 Re(z^3+c),c=-3/13+18/53*I,n=64 1771105938407199 r009 Re(z^3+c),c=-3/13+18/53*I,n=62 1771105938407199 r009 Re(z^3+c),c=-3/13+18/53*I,n=59 1771105938407199 r009 Re(z^3+c),c=-3/13+18/53*I,n=56 1771105938407199 r009 Re(z^3+c),c=-3/13+18/53*I,n=51 1771105938407199 r009 Re(z^3+c),c=-3/13+18/53*I,n=53 1771105938407199 r009 Re(z^3+c),c=-3/13+18/53*I,n=50 1771105938407199 r009 Re(z^3+c),c=-3/13+18/53*I,n=48 1771105938407199 r009 Re(z^3+c),c=-3/13+18/53*I,n=47 1771105938407199 r009 Re(z^3+c),c=-3/13+18/53*I,n=45 1771105938407199 r009 Re(z^3+c),c=-3/13+18/53*I,n=44 1771105938407199 r009 Re(z^3+c),c=-3/13+18/53*I,n=42 1771105938407199 r009 Re(z^3+c),c=-3/13+18/53*I,n=41 1771105938407200 r009 Re(z^3+c),c=-3/13+18/53*I,n=38 1771105938407204 r009 Re(z^3+c),c=-3/13+18/53*I,n=39 1771105938407269 r009 Re(z^3+c),c=-3/13+18/53*I,n=36 1771105938408154 r009 Re(z^3+c),c=-3/13+18/53*I,n=33 1771105938419699 r009 Re(z^3+c),c=-3/13+18/53*I,n=30 1771105938563296 r009 Re(z^3+c),c=-3/13+18/53*I,n=27 1771105938568925 m001 (Pi^(1/2))^(GlaisherKinkelin/ZetaQ(4)) 1771105938689145 r009 Re(z^3+c),c=-3/13+18/53*I,n=22 1771105940264529 r009 Re(z^3+c),c=-3/13+18/53*I,n=24 1771105943141955 r002 11th iterates of z^2 + 1771105954715846 a001 233*1364^(3/5) 1771105954779656 a007 Real Root Of 429*x^4+786*x^3+107*x^2+467*x+637 1771105959315729 r009 Re(z^3+c),c=-3/13+18/53*I,n=21 1771105967627511 r005 Im(z^2+c),c=11/23+21/62*I,n=6 1771105971767911 r009 Re(z^3+c),c=-3/13+18/53*I,n=19 1771105972650039 m001 3^(1/3)-KhinchinLevy^exp(1/Pi) 1771105978958172 q001 6902/3897 1771105982457540 a001 15456*1364^(1/53) 1771105987667695 l006 ln(1117/6565) 1771105989892866 a007 Real Root Of 422*x^4+329*x^3-646*x^2-53*x-392 1771105990532888 a001 28657/3*3571^(4/53) 1771105991914809 a007 Real Root Of 25*x^4+452*x^3+179*x^2+254*x-408 1771105993959793 a007 Real Root Of -566*x^4-861*x^3+70*x^2-746*x-755 1771106008488843 m001 (3^(1/2))^gamma/(Cahen^gamma) 1771106008488843 m001 sqrt(3)^gamma/(Cahen^gamma) 1771106011172097 a001 1/615*13^(27/29) 1771106011488526 a001 7/47*(1/2*5^(1/2)+1/2)^9*47^(5/7) 1771106013911489 r009 Re(z^3+c),c=-15/29+27/49*I,n=26 1771106015382644 m001 (Chi(1)+GAMMA(3/4))/(-GAMMA(19/24)+ZetaQ(3)) 1771106018212591 a001 196418/521*1364^(8/15) 1771106022891678 a001 4181/3*15127^(14/53) 1771106024004496 a001 5702887/521*521^(1/13) 1771106031323757 r005 Re(z^2+c),c=-5/58+62/63*I,n=10 1771106031760082 b008 Csc[ArcCsch[Pi/2]] 1771106049883336 a001 832040/843*322^(1/2) 1771106068187495 a001 2207*1836311903^(9/17) 1771106073115466 m001 (-Mills+Riemann2ndZero)/(2^(1/2)-ln(2)/ln(10)) 1771106080824102 r005 Im(z^2+c),c=-10/23+21/34*I,n=5 1771106081663431 a001 317811/521*1364^(7/15) 1771106084650259 r002 5th iterates of z^2 + 1771106087838159 m001 (cos(1)+3^(1/3))/(BesselK(1,1)+polylog(4,1/2)) 1771106090680868 s002 sum(A155499[n]/(exp(pi*n)-1),n=1..infinity) 1771106094808126 q001 3923/2215 1771106098030856 r009 Re(z^3+c),c=-111/118+1/38*I,n=2 1771106099520129 a007 Real Root Of 266*x^4+166*x^3-365*x^2-158*x-830 1771106102029293 r005 Im(z^2+c),c=-5/6+48/241*I,n=59 1771106107390648 a007 Real Root Of -663*x^4-483*x^3+624*x^2-861*x+358 1771106112216277 l006 ln(1223/7188) 1771106114556564 a007 Real Root Of 350*x^4+512*x^3-229*x^2+109*x+312 1771106116121103 k007 concat of cont frac of 1771106118718608 r009 Re(z^3+c),c=-7/32+13/44*I,n=5 1771106120690094 a008 Real Root of (-6+6*x-5*x^2+4*x^3+2*x^4-2*x^5) 1771106122130502 m001 RenyiParking-ln(2)/ln(10)*Ei(1) 1771106126954432 r005 Re(z^2+c),c=-39/106+41/64*I,n=46 1771106129606985 a007 Real Root Of 638*x^4+717*x^3-743*x^2+255*x+488 1771106134579362 p004 log(36563/6221) 1771106135598197 r005 Re(z^2+c),c=-17/94+27/37*I,n=40 1771106145131809 a001 514229/521*1364^(2/5) 1771106147341970 m001 (Magata-TwinPrimes)/(Pi-BesselI(1,2)) 1771106148263005 r004 Re(z^2+c),c=1/20+3/16*I,z(0)=exp(1/8*I*Pi),n=2 1771106149933983 h001 (-4*exp(3/2)-1)/(-6*exp(2/3)+1) 1771106151129537 m001 (2^(1/2)-BesselI(0,1))/(Robbin+ZetaP(3)) 1771106153023282 m001 GAMMA(1/6)^2*ln(DuboisRaymond)^2*Zeta(1/2)^2 1771106155770781 r009 Im(z^3+c),c=-31/114+9/62*I,n=16 1771106156518920 r009 Im(z^3+c),c=-31/114+9/62*I,n=17 1771106157597180 r009 Re(z^3+c),c=-3/13+18/53*I,n=18 1771106158209468 r009 Im(z^3+c),c=-31/114+9/62*I,n=18 1771106158402408 r009 Im(z^3+c),c=-31/114+9/62*I,n=22 1771106158406091 r009 Im(z^3+c),c=-31/114+9/62*I,n=23 1771106158406531 r009 Im(z^3+c),c=-31/114+9/62*I,n=21 1771106158407139 r009 Im(z^3+c),c=-31/114+9/62*I,n=27 1771106158407145 r009 Im(z^3+c),c=-31/114+9/62*I,n=28 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=32 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=33 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=34 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=38 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=39 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=37 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=43 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=44 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=45 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=48 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=49 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=50 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=54 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=55 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=59 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=60 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=61 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=64 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=63 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=62 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=58 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=57 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=56 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=53 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=52 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=51 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=47 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=46 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=42 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=41 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=40 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=36 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=35 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=29 1771106158407148 r009 Im(z^3+c),c=-31/114+9/62*I,n=31 1771106158407149 r009 Im(z^3+c),c=-31/114+9/62*I,n=30 1771106158407164 r009 Im(z^3+c),c=-31/114+9/62*I,n=26 1771106158407293 r009 Im(z^3+c),c=-31/114+9/62*I,n=25 1771106158407343 r009 Im(z^3+c),c=-31/114+9/62*I,n=24 1771106158456264 r009 Im(z^3+c),c=-31/114+9/62*I,n=20 1771106158537282 r009 Im(z^3+c),c=-31/114+9/62*I,n=19 1771106159623198 a001 987/521*24476^(19/21) 1771106161701722 r008 a(0)=2,K{-n^6,-3+28*n^3-39*n^2+19*n} 1771106161941720 a001 987/521*64079^(19/23) 1771106162274074 a001 233/2207*20633239^(5/7) 1771106162274077 a001 233/2207*2537720636^(5/9) 1771106162274077 a001 233/2207*312119004989^(5/11) 1771106162274077 a001 233/2207*(1/2+1/2*5^(1/2))^25 1771106162274077 a001 233/2207*3461452808002^(5/12) 1771106162274077 a001 233/2207*28143753123^(1/2) 1771106162274077 a001 233/2207*228826127^(5/8) 1771106162274503 a001 233/2207*1860498^(5/6) 1771106162298039 a001 987/521*817138163596^(1/3) 1771106162298039 a001 987/521*(1/2+1/2*5^(1/2))^19 1771106162298039 a001 987/521*87403803^(1/2) 1771106162428470 a001 987/521*103682^(19/24) 1771106163273297 a001 987/521*39603^(19/22) 1771106163867017 m001 (Pi+exp(1))/(arctan(1/2)-Kolakoski) 1771106165549478 a007 Real Root Of 64*x^4-462*x^3-555*x^2+557*x-469 1771106168357493 m001 (BesselK(0,1)-exp(1))/(CareFree+Lehmer) 1771106169651006 a001 987/521*15127^(19/20) 1771106170165936 r009 Im(z^3+c),c=-31/114+9/62*I,n=13 1771106170236068 a001 3571/233*6557470319842^(16/17) 1771106171959456 r009 Im(z^3+c),c=-31/114+9/62*I,n=15 1771106175063468 r004 Im(z^2+c),c=-10/9-5/23*I,z(0)=-1,n=9 1771106186588325 m001 exp(GAMMA(13/24))^2*Trott^2*LambertW(1) 1771106190136871 s001 sum(exp(-Pi/3)^(n-1)*A193630[n],n=1..infinity) 1771106191544427 m001 exp(1)*gamma*GAMMA(5/6) 1771106196241848 l006 ln(2854/3407) 1771106196381727 r002 35th iterates of z^2 + 1771106199614260 p003 LerchPhi(1/2,3,101/120) 1771106205206746 r002 17th iterates of z^2 + 1771106207822860 m006 (1/3*ln(Pi)+4)/(2*Pi^2+5) 1771106208593491 a001 832040/521*1364^(1/3) 1771106211251116 k008 concat of cont frac of 1771106213616154 r009 Im(z^3+c),c=-35/86+3/44*I,n=16 1771106213839490 m001 (ln(5)-ln(2+3^(1/2)))/(Niven-ZetaQ(2)) 1771106216897051 l006 ln(1329/7811) 1771106219451780 a005 (1/sin(91/229*Pi))^272 1771106220675244 r009 Im(z^3+c),c=-31/114+9/62*I,n=14 1771106221195453 h005 exp(cos(Pi*14/55)-cos(Pi*23/50)) 1771106221396416 a007 Real Root Of -542*x^4-578*x^3+297*x^2-807*x-239 1771106230657161 a007 Real Root Of -557*x^4-499*x^3+774*x^2+343*x+888 1771106232062466 m001 Si(Pi)^Zeta(5)-Champernowne 1771106234486583 m005 (1/2*3^(1/2)+5/7)/(1/8*Catalan+7/9) 1771106238275825 a001 208010/19*29^(1/7) 1771106240100765 a005 (1/cos(8/127*Pi))^29 1771106254996088 r005 Im(z^2+c),c=-11/27+5/17*I,n=18 1771106258381954 m001 Bloch/(GolombDickman^FransenRobinson) 1771106259097525 q001 4867/2748 1771106265206924 r005 Re(z^2+c),c=17/46+3/4*I,n=4 1771106269109904 a007 Real Root Of -269*x^4-651*x^3-935*x^2-690*x+741 1771106272057734 a001 1346269/521*1364^(4/15) 1771106276998137 m008 (4*Pi^2-4/5)/(5/6*Pi^3-4) 1771106278745400 m001 1/GAMMA(1/3)/ln(Backhouse)^2*sin(Pi/12)^2 1771106280441766 a007 Real Root Of 619*x^4+858*x^3+69*x^2+968*x+174 1771106287493936 m001 (-MertensB3+Niven)/(Chi(1)+BesselI(0,1)) 1771106291170347 m001 (Pi*2^(1/2)/GAMMA(3/4)-cos(1))/(ln(3)+Cahen) 1771106292603157 a007 Real Root Of 159*x^4-334*x^3-347*x^2+775*x-959 1771106305028598 a007 Real Root Of 335*x^4-107*x^3-723*x^2+595*x-569 1771106306112783 l006 ln(1435/8434) 1771106309124083 a001 7881196/233*1836311903^(16/17) 1771106309125372 a001 17393796001/233*514229^(16/17) 1771106311707372 m008 (1/6*Pi^2-1/4)/(4/5*Pi^4+5/6) 1771106319075086 a007 Real Root Of -351*x^4-345*x^3-18*x^2-828*x+127 1771106321768597 r002 10th iterates of z^2 + 1771106334817448 a001 311187/46*123^(1/5) 1771106335521002 a001 2178309/521*1364^(1/5) 1771106337626227 a001 11/1597*3^(49/57) 1771106338999787 m001 (Zeta(1/2)-cos(1/5*Pi))^ArtinRank2 1771106340360901 a008 Real Root of x^4+9*x^2-75*x+13 1771106346670838 m001 GAMMA(5/12)^2/exp(Ei(1))^2*sqrt(3) 1771106348012804 m001 (Pi^(1/2)-FeigenbaumMu)/(ln(2)+arctan(1/3)) 1771106350894114 a007 Real Root Of 9*x^4-765*x^3+642*x^2+849*x+644 1771106354139769 a007 Real Root Of -181*x^4+540*x^3+826*x^2-782*x+805 1771106356560370 r005 Re(z^2+c),c=-7/27+19/32*I,n=14 1771106358176639 m001 1/exp(Zeta(3))/GolombDickman/exp(1) 1771106359561949 m001 ln(TreeGrowth2nd)^2*Champernowne*GAMMA(5/12) 1771106362537269 m001 (KhinchinLevy-Psi(1,1/3))/(PlouffeB+Trott2nd) 1771106368165161 r005 Im(z^2+c),c=-137/118+1/44*I,n=35 1771106370009143 q001 5811/3281 1771106371817280 m005 (1/2*Pi+1/9)/(3/8*5^(1/2)+1/9) 1771106372347717 a007 Real Root Of -669*x^4-800*x^3+626*x^2-417*x-564 1771106374704128 a003 cos(Pi*17/120)/cos(Pi*31/94) 1771106376093195 r002 46th iterates of z^2 + 1771106378835407 a007 Real Root Of -660*x^4-856*x^3+764*x^2+83*x-511 1771106379306630 a001 36/341*199^(30/31) 1771106379761755 r002 3th iterates of z^2 + 1771106383054832 l006 ln(1541/9057) 1771106386975579 a001 28284569/1597 1771106389166730 p003 LerchPhi(1/32,3,33/86) 1771106392813879 m001 (-Magata+PlouffeB)/(ln(2)/ln(10)+GAMMA(2/3)) 1771106395623448 a001 6765/521*3571^(15/17) 1771106395971801 a001 5/3571*47^(29/44) 1771106398984645 a001 3524578/521*1364^(2/15) 1771106414489704 a001 10946/521*3571^(14/17) 1771106415457022 a001 4181/521*3571^(16/17) 1771106417922706 r005 Im(z^2+c),c=-27/62+8/27*I,n=13 1771106418573940 a001 17711/521*3571^(13/17) 1771106419448394 m005 (1/2*3^(1/2)-10/11)/(4/7*Pi+7/11) 1771106428304405 a001 28657/521*3571^(12/17) 1771106431618914 m001 BesselK(0,1)^2*exp(Riemann1stZero)^2/Ei(1) 1771106434242134 a007 Real Root Of -452*x^4-480*x^3+527*x^2+405*x+845 1771106435878202 a001 46368/521*3571^(11/17) 1771106438597667 m001 (LambertW(1)+FeigenbaumD)/(ZetaP(3)+ZetaQ(3)) 1771106440230974 m001 exp(-1/2*Pi)+Khinchin^ZetaP(2) 1771106444275774 a001 75025/521*3571^(10/17) 1771106449477317 m005 (1/2*Zeta(3)+1/2)/(4/5*Catalan-1/9) 1771106449921342 q001 6755/3814 1771106450092982 l006 ln(1647/9680) 1771106451897279 a005 (1/cos(5/218*Pi))^220 1771106451996498 a007 Real Root Of 304*x^4-840*x^3+884*x^2-476*x-117 1771106452358691 a001 233*3571^(9/17) 1771106454730690 a001 2584/521*9349^(17/19) 1771106459968436 m002 -Log[Pi]+Pi/ProductLog[Pi]-Tanh[Pi]/Pi^4 1771106460561796 a001 196418/521*3571^(8/17) 1771106462448148 a001 5702887/521*1364^(1/15) 1771106462750401 m001 arctan(1/2)/(ThueMorse^exp(sqrt(2))) 1771106463610155 m005 (1/2*2^(1/2)-8/9)/(32/9+3*5^(1/2)) 1771106463629078 m001 (2^(1/3)+Zeta(5))/(-HardHexagonsEntropy+Paris) 1771106465927636 a007 Real Root Of 344*x^4+69*x^3-979*x^2-282*x-430 1771106468718994 a001 317811/521*3571^(7/17) 1771106470467906 a001 2584/521*24476^(17/21) 1771106472026991 a007 Real Root Of -337*x^4-299*x^3-86*x^2-845*x+428 1771106472542373 a001 2584/521*64079^(17/23) 1771106472837126 a001 233/5778*7881196^(9/11) 1771106472837149 a001 233/5778*141422324^(9/13) 1771106472837149 a001 233/5778*2537720636^(3/5) 1771106472837149 a001 233/5778*45537549124^(9/17) 1771106472837149 a001 233/5778*817138163596^(9/19) 1771106472837149 a001 233/5778*14662949395604^(3/7) 1771106472837149 a001 233/5778*(1/2+1/2*5^(1/2))^27 1771106472837149 a001 233/5778*192900153618^(1/2) 1771106472837149 a001 233/5778*10749957122^(9/16) 1771106472837149 a001 233/5778*599074578^(9/14) 1771106472837150 a001 233/5778*33385282^(3/4) 1771106472837610 a001 233/5778*1860498^(9/10) 1771106472861185 a001 2584/521*45537549124^(1/3) 1771106472861185 a001 2584/521*(1/2+1/2*5^(1/2))^17 1771106472861190 a001 2584/521*12752043^(1/2) 1771106472977886 a001 2584/521*103682^(17/24) 1771106473733784 a001 2584/521*39603^(17/22) 1771106474899497 s002 sum(A055909[n]/(10^n+1),n=1..infinity) 1771106476893726 a001 514229/521*3571^(6/17) 1771106479440156 a001 2584/521*15127^(17/20) 1771106485061761 a001 832040/521*3571^(5/17) 1771106491186151 r005 Im(z^2+c),c=-11/28+16/55*I,n=28 1771106493232354 a001 1346269/521*3571^(4/17) 1771106493350479 a007 Real Root Of -49*x^4-877*x^3-199*x^2-619*x+582 1771106499153297 r005 Im(z^2+c),c=-7/6+39/184*I,n=11 1771106499371785 p001 sum((-1)^n/(576*n+539)/(10^n),n=0..infinity) 1771106500909100 a007 Real Root Of 952*x^4-182*x^3-783*x^2-753*x+158 1771106501401970 a001 2178309/521*3571^(3/17) 1771106502174241 a001 6765/521*9349^(15/19) 1771106505620664 a001 74049963/4181 1771106507417130 m001 (ln(Pi)+ZetaQ(2))/(Pi+Pi*2^(1/2)/GAMMA(3/4)) 1771106509023833 p004 log(10303/1753) 1771106509571960 a001 3524578/521*3571^(2/17) 1771106510917961 a001 17711/521*9349^(13/19) 1771106513545040 a001 28657/521*9349^(12/19) 1771106513937111 a001 10946/521*9349^(14/19) 1771106514015452 a001 46368/521*9349^(11/19) 1771106515309637 a001 75025/521*9349^(10/19) 1771106516060020 a001 6765/521*24476^(5/7) 1771106516289169 a001 233*9349^(9/19) 1771106517388887 a001 196418/521*9349^(8/19) 1771106517741806 a001 5702887/521*3571^(1/17) 1771106517890433 a001 6765/521*64079^(15/23) 1771106518133979 a001 6765/521*167761^(3/5) 1771106518147700 a001 233/15127*(1/2+1/2*5^(1/2))^29 1771106518147700 a001 233/15127*1322157322203^(1/2) 1771106518166636 a001 6765/521*439204^(5/9) 1771106518171724 a001 6765/521*7881196^(5/11) 1771106518171735 a001 6765/521*20633239^(3/7) 1771106518171737 a001 6765/521*141422324^(5/13) 1771106518171737 a001 6765/521*2537720636^(1/3) 1771106518171737 a001 6765/521*45537549124^(5/17) 1771106518171737 a001 6765/521*312119004989^(3/11) 1771106518171737 a001 6765/521*14662949395604^(5/21) 1771106518171737 a001 6765/521*(1/2+1/2*5^(1/2))^15 1771106518171737 a001 6765/521*192900153618^(5/18) 1771106518171737 a001 6765/521*28143753123^(3/10) 1771106518171737 a001 6765/521*10749957122^(5/16) 1771106518171737 a001 6765/521*599074578^(5/14) 1771106518171737 a001 6765/521*228826127^(3/8) 1771106518171738 a001 6765/521*33385282^(5/12) 1771106518171993 a001 6765/521*1860498^(1/2) 1771106518274709 a001 6765/521*103682^(5/8) 1771106518442698 a001 317811/521*9349^(7/19) 1771106518941678 a001 6765/521*39603^(15/22) 1771106519514045 a001 514229/521*9349^(6/19) 1771106520578693 a001 832040/521*9349^(5/19) 1771106521645900 a001 1346269/521*9349^(4/19) 1771106521932121 k008 concat of cont frac of 1771106522712130 a001 2178309/521*9349^(3/19) 1771106522930750 a001 96932660/5473 1771106522952303 a001 17711/521*24476^(13/21) 1771106522964451 a001 2584/521*5778^(17/18) 1771106523778733 a001 3524578/521*9349^(2/19) 1771106523976712 a001 6765/521*15127^(3/4) 1771106524198356 a001 46368/521*24476^(11/21) 1771106524538661 a001 17711/521*64079^(13/23) 1771106524566823 a001 75025/521*24476^(10/21) 1771106524620636 a001 233*24476^(3/7) 1771106524653663 a001 28657/521*24476^(4/7) 1771106524758420 a001 233/39603*(1/2+1/2*5^(1/2))^31 1771106524758420 a001 233/39603*9062201101803^(1/2) 1771106524782458 a001 17711/521*141422324^(1/3) 1771106524782458 a001 17711/521*(1/2+1/2*5^(1/2))^13 1771106524782458 a001 17711/521*73681302247^(1/4) 1771106524794476 a001 17711/521*271443^(1/2) 1771106524794636 a001 196418/521*24476^(8/21) 1771106524845193 a001 5702887/521*9349^(1/19) 1771106524871700 a001 17711/521*103682^(13/24) 1771106524922729 a001 317811/521*24476^(1/3) 1771106525068356 a001 514229/521*24476^(2/7) 1771106525207286 a001 832040/521*24476^(5/21) 1771106525348774 a001 1346269/521*24476^(4/21) 1771106525449739 a001 17711/521*39603^(13/22) 1771106525456258 a001 507545997/28657 1771106525489286 a001 2178309/521*24476^(1/7) 1771106525540659 a001 46368/521*64079^(11/23) 1771106525630170 a001 3524578/521*24476^(2/21) 1771106525718884 a001 233*64079^(9/23) 1771106525722911 a001 233/103682*141422324^(11/13) 1771106525722911 a001 233/103682*2537720636^(11/15) 1771106525722911 a001 233/103682*45537549124^(11/17) 1771106525722911 a001 233/103682*312119004989^(3/5) 1771106525722911 a001 233/103682*14662949395604^(11/21) 1771106525722911 a001 233/103682*(1/2+1/2*5^(1/2))^33 1771106525722911 a001 233/103682*192900153618^(11/18) 1771106525722911 a001 233/103682*10749957122^(11/16) 1771106525722911 a001 233/103682*1568397607^(3/4) 1771106525722911 a001 233/103682*599074578^(11/14) 1771106525722913 a001 233/103682*33385282^(11/12) 1771106525746939 a001 46368/521*7881196^(1/3) 1771106525746949 a001 46368/521*312119004989^(1/5) 1771106525746949 a001 46368/521*(1/2+1/2*5^(1/2))^11 1771106525746949 a001 46368/521*1568397607^(1/4) 1771106525770856 a001 196418/521*64079^(8/23) 1771106525770912 a001 5702887/521*24476^(1/21) 1771106525776921 a001 317811/521*64079^(7/23) 1771106525787098 a001 75025/521*64079^(10/23) 1771106525800521 a001 514229/521*64079^(6/23) 1771106525817424 a001 832040/521*64079^(5/23) 1771106525822461 a001 46368/521*103682^(11/24) 1771106525824725 a001 1328772671/75025 1771106525836885 a001 1346269/521*64079^(4/23) 1771106525855368 a001 2178309/521*64079^(3/23) 1771106525863629 a001 233/271443*2537720636^(7/9) 1771106525863629 a001 233/271443*17393796001^(5/7) 1771106525863629 a001 233/271443*312119004989^(7/11) 1771106525863629 a001 233/271443*14662949395604^(5/9) 1771106525863629 a001 233/271443*(1/2+1/2*5^(1/2))^35 1771106525863629 a001 233/271443*505019158607^(5/8) 1771106525863629 a001 233/271443*28143753123^(7/10) 1771106525863629 a001 233/271443*599074578^(5/6) 1771106525863629 a001 233/271443*228826127^(7/8) 1771106525874225 a001 3524578/521*64079^(2/23) 1771106525878483 a001 102316824/5777 1771106525884159 a001 233/710647*(1/2+1/2*5^(1/2))^37 1771106525884606 a001 233*439204^(1/3) 1771106525886326 a001 9107543377/514229 1771106525887155 a001 233/1860498*2537720636^(13/15) 1771106525887155 a001 233/1860498*45537549124^(13/17) 1771106525887155 a001 233/1860498*14662949395604^(13/21) 1771106525887155 a001 233/1860498*(1/2+1/2*5^(1/2))^39 1771106525887155 a001 233/1860498*192900153618^(13/18) 1771106525887155 a001 233/1860498*73681302247^(3/4) 1771106525887155 a001 233/1860498*10749957122^(13/16) 1771106525887155 a001 233/1860498*599074578^(13/14) 1771106525887471 a001 23843858115/1346269 1771106525887592 a001 233/4870847*(1/2+1/2*5^(1/2))^41 1771106525887638 a001 31212015484/1762289 1771106525887655 a001 233/12752043*(1/2+1/2*5^(1/2))^43 1771106525887658 a001 233*7881196^(3/11) 1771106525887662 a001 163428234789/9227465 1771106525887665 a001 233/33385282*45537549124^(15/17) 1771106525887665 a001 233/33385282*312119004989^(9/11) 1771106525887665 a001 233/33385282*14662949395604^(5/7) 1771106525887665 a001 233/33385282*(1/2+1/2*5^(1/2))^45 1771106525887665 a001 233/33385282*192900153618^(5/6) 1771106525887665 a001 233/33385282*28143753123^(9/10) 1771106525887665 a001 233/33385282*10749957122^(15/16) 1771106525887666 a001 427860673399/24157817 1771106525887666 a001 2403763488/135721 1771106525887666 a001 233/228826127*14662949395604^(7/9) 1771106525887666 a001 233/228826127*505019158607^(7/8) 1771106525887666 a001 233*141422324^(3/13) 1771106525887666 a001 2932600682825/165580141 1771106525887666 a001 233/599074578*14662949395604^(17/21) 1771106525887666 a001 233/599074578*192900153618^(17/18) 1771106525887666 a001 7677648263067/433494437 1771106525887666 a001 591186591364/33379505 1771106525887666 a001 233/4106118243*3461452808002^(11/12) 1771106525887666 a001 233*2537720636^(1/5) 1771106525887666 a001 52623384056061/2971215073 1771106525887666 a001 233/10749957122*14662949395604^(19/21) 1771106525887666 a001 137769808061807/7778742049 1771106525887666 a001 180343020064680/10182505537 1771106525887666 a001 233*45537549124^(3/17) 1771106525887666 a001 944288312326273/53316291173 1771106525887666 a001 2472178896849459/139583862445 1771106525887666 a001 233*14662949395604^(1/7) 1771106525887666 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^9/Lucas(1) 1771106525887666 a001 233*192900153618^(1/6) 1771106525887666 a001 44937958368329/2537281508 1771106525887666 a001 2504730781961/141421803 1771106525887666 a001 233/45537549124*14662949395604^(20/21) 1771106525887666 a001 222916232067553/12586269025 1771106525887666 a001 233*10749957122^(3/16) 1771106525887666 a001 42573212002873/2403763488 1771106525887666 a001 233/6643838879*14662949395604^(8/9) 1771106525887666 a001 32523039949685/1836311903 1771106525887666 a001 233/2537720636*14662949395604^(6/7) 1771106525887666 a001 12422695843309/701408733 1771106525887666 a001 233*599074578^(3/14) 1771106525887666 a001 233/969323029*23725150497407^(13/16) 1771106525887666 a001 2372523790121/133957148 1771106525887666 a001 233/370248451*312119004989^(10/11) 1771106525887666 a001 233/370248451*3461452808002^(5/6) 1771106525887666 a001 1812446897417/102334155 1771106525887666 a001 233/141422324*45537549124^(16/17) 1771106525887666 a001 233/141422324*14662949395604^(16/21) 1771106525887666 a001 233/141422324*192900153618^(8/9) 1771106525887666 a001 233/141422324*73681302247^(12/13) 1771106525887666 a001 692293112009/39088169 1771106525887667 a001 233*33385282^(1/4) 1771106525887667 a001 233/54018521*10749957122^(23/24) 1771106525887668 a001 7777424665/439128 1771106525887670 a001 233/20633239*312119004989^(4/5) 1771106525887670 a001 233/20633239*(1/2+1/2*5^(1/2))^44 1771106525887670 a001 233/20633239*23725150497407^(11/16) 1771106525887670 a001 233/20633239*73681302247^(11/13) 1771106525887670 a001 233/20633239*10749957122^(11/12) 1771106525887670 a001 233/20633239*4106118243^(22/23) 1771106525887677 a001 101004203821/5702887 1771106525887695 a001 233/7881196*2537720636^(14/15) 1771106525887695 a001 233/7881196*17393796001^(6/7) 1771106525887695 a001 233/7881196*45537549124^(14/17) 1771106525887695 a001 233/7881196*14662949395604^(2/3) 1771106525887695 a001 233/7881196*(1/2+1/2*5^(1/2))^42 1771106525887695 a001 233/7881196*505019158607^(3/4) 1771106525887695 a001 233/7881196*192900153618^(7/9) 1771106525887695 a001 233/7881196*10749957122^(7/8) 1771106525887695 a001 233/7881196*4106118243^(21/23) 1771106525887695 a001 233/7881196*1568397607^(21/22) 1771106525887741 a001 38580172853/2178309 1771106525887820 a001 233*1860498^(3/10) 1771106525887862 a001 233/3010349*2537720636^(8/9) 1771106525887862 a001 233/3010349*312119004989^(8/11) 1771106525887862 a001 233/3010349*(1/2+1/2*5^(1/2))^40 1771106525887862 a001 233/3010349*23725150497407^(5/8) 1771106525887862 a001 233/3010349*73681302247^(10/13) 1771106525887862 a001 233/3010349*28143753123^(4/5) 1771106525887862 a001 233/3010349*10749957122^(5/6) 1771106525887862 a001 233/3010349*4106118243^(20/23) 1771106525887862 a001 233/3010349*1568397607^(10/11) 1771106525887862 a001 233/3010349*599074578^(20/21) 1771106525888178 a001 7368157369/416020 1771106525889006 a001 233/1149851*817138163596^(2/3) 1771106525889006 a001 233/1149851*(1/2+1/2*5^(1/2))^38 1771106525889006 a001 233/1149851*10749957122^(19/24) 1771106525889006 a001 233/1149851*4106118243^(19/23) 1771106525889006 a001 233/1149851*1568397607^(19/22) 1771106525889006 a001 233/1149851*599074578^(19/21) 1771106525889006 a001 233/1149851*228826127^(19/20) 1771106525891174 a001 5628771361/317811 1771106525892939 a001 5702887/521*64079^(1/23) 1771106525896848 a001 233/439204*141422324^(12/13) 1771106525896848 a001 233/439204*2537720636^(4/5) 1771106525896848 a001 233/439204*45537549124^(12/17) 1771106525896848 a001 233/439204*14662949395604^(4/7) 1771106525896848 a001 233/439204*(1/2+1/2*5^(1/2))^36 1771106525896848 a001 233/439204*192900153618^(2/3) 1771106525896848 a001 233/439204*73681302247^(9/13) 1771106525896848 a001 233/439204*10749957122^(3/4) 1771106525896848 a001 233/439204*4106118243^(18/23) 1771106525896848 a001 233/439204*1568397607^(9/11) 1771106525896848 a001 233/439204*599074578^(6/7) 1771106525896848 a001 233/439204*228826127^(9/10) 1771106525896848 a001 233/439204*87403803^(18/19) 1771106525898606 a001 832040/521*167761^(1/5) 1771106525908196 a001 317811/521*20633239^(1/5) 1771106525908197 a001 317811/521*17393796001^(1/7) 1771106525908197 a001 317811/521*14662949395604^(1/9) 1771106525908197 a001 317811/521*(1/2+1/2*5^(1/2))^7 1771106525908197 a001 317811/521*599074578^(1/6) 1771106525909073 a001 317811/521*710647^(1/4) 1771106525910609 a001 2178309/521*439204^(1/9) 1771106525911003 a001 514229/521*439204^(2/9) 1771106525911191 a001 832040/521*20633239^(1/7) 1771106525911192 a001 832040/521*2537720636^(1/9) 1771106525911192 a001 832040/521*312119004989^(1/11) 1771106525911192 a001 832040/521*(1/2+1/2*5^(1/2))^5 1771106525911192 a001 832040/521*28143753123^(1/10) 1771106525911192 a001 832040/521*228826127^(1/8) 1771106525911277 a001 832040/521*1860498^(1/6) 1771106525911626 a001 2178309/521*7881196^(1/11) 1771106525911629 a001 2178309/521*141422324^(1/13) 1771106525911629 a001 2178309/521*2537720636^(1/15) 1771106525911629 a001 2178309/521*45537549124^(1/17) 1771106525911629 a001 2178309/521*14662949395604^(1/21) 1771106525911629 a001 2178309/521*(1/2+1/2*5^(1/2))^3 1771106525911629 a001 2178309/521*10749957122^(1/16) 1771106525911629 a001 2178309/521*599074578^(1/14) 1771106525911629 a001 2178309/521*33385282^(1/12) 1771106525911680 a001 2178309/521*1860498^(1/10) 1771106525911693 a001 5702887/1042+5702887/1042*5^(1/2) 1771106525911708 a001 9227465/521 1771106525911732 a001 3524578/521*(1/2+1/2*5^(1/2))^2 1771106525911732 a001 3524578/521*10749957122^(1/24) 1771106525911732 a001 3524578/521*4106118243^(1/23) 1771106525911732 a001 3524578/521*1568397607^(1/22) 1771106525911732 a001 3524578/521*599074578^(1/21) 1771106525911732 a001 3524578/521*228826127^(1/20) 1771106525911732 a001 3524578/521*87403803^(1/19) 1771106525911732 a001 3524578/521*33385282^(1/18) 1771106525911733 a001 3524578/521*12752043^(1/17) 1771106525911737 a001 3524578/521*4870847^(1/16) 1771106525911766 a001 3524578/521*1860498^(1/15) 1771106525911899 a001 1346269/521*(1/2+1/2*5^(1/2))^4 1771106525911899 a001 1346269/521*23725150497407^(1/16) 1771106525911899 a001 1346269/521*73681302247^(1/13) 1771106525911899 a001 1346269/521*10749957122^(1/12) 1771106525911899 a001 1346269/521*4106118243^(2/23) 1771106525911899 a001 1346269/521*1568397607^(1/11) 1771106525911899 a001 1346269/521*599074578^(2/21) 1771106525911899 a001 1346269/521*228826127^(1/10) 1771106525911899 a001 1346269/521*87403803^(2/19) 1771106525911899 a001 1346269/521*33385282^(1/9) 1771106525911900 a001 1346269/521*12752043^(2/17) 1771106525911908 a001 1346269/521*4870847^(1/8) 1771106525911967 a001 1346269/521*1860498^(2/15) 1771106525911983 a001 3524578/521*710647^(1/14) 1771106525912400 a001 1346269/521*710647^(1/7) 1771106525913038 a001 514229/521*7881196^(2/11) 1771106525913043 a001 514229/521*141422324^(2/13) 1771106525913043 a001 514229/521*2537720636^(2/15) 1771106525913043 a001 514229/521*45537549124^(2/17) 1771106525913043 a001 514229/521*14662949395604^(2/21) 1771106525913043 a001 514229/521*(1/2+1/2*5^(1/2))^6 1771106525913043 a001 514229/521*10749957122^(1/8) 1771106525913043 a001 514229/521*4106118243^(3/23) 1771106525913043 a001 514229/521*1568397607^(3/22) 1771106525913043 a001 514229/521*599074578^(1/7) 1771106525913043 a001 514229/521*228826127^(3/20) 1771106525913043 a001 514229/521*87403803^(3/19) 1771106525913043 a001 514229/521*33385282^(1/6) 1771106525913045 a001 514229/521*12752043^(3/17) 1771106525913057 a001 514229/521*4870847^(3/16) 1771106525913145 a001 514229/521*1860498^(1/5) 1771106525913581 a001 3524578/521*271443^(1/13) 1771106525913795 a001 514229/521*710647^(3/14) 1771106525915597 a001 1346269/521*271443^(2/13) 1771106525918557 a001 5702887/521*103682^(1/24) 1771106525918590 a001 514229/521*271443^(3/13) 1771106525920885 a001 196418/521*(1/2+1/2*5^(1/2))^8 1771106525920885 a001 196418/521*23725150497407^(1/8) 1771106525920885 a001 196418/521*73681302247^(2/13) 1771106525920885 a001 196418/521*10749957122^(1/6) 1771106525920885 a001 196418/521*4106118243^(4/23) 1771106525920885 a001 196418/521*1568397607^(2/11) 1771106525920885 a001 196418/521*599074578^(4/21) 1771106525920885 a001 196418/521*228826127^(1/5) 1771106525920885 a001 196418/521*87403803^(4/19) 1771106525920885 a001 196418/521*33385282^(2/9) 1771106525920888 a001 196418/521*12752043^(4/17) 1771106525920904 a001 196418/521*4870847^(1/4) 1771106525921022 a001 196418/521*1860498^(4/15) 1771106525921887 a001 196418/521*710647^(2/7) 1771106525925462 a001 3524578/521*103682^(1/12) 1771106525928281 a001 196418/521*271443^(4/13) 1771106525932223 a001 2178309/521*103682^(1/8) 1771106525939358 a001 1346269/521*103682^(1/6) 1771106525945516 a001 832040/521*103682^(5/24) 1771106525949449 a001 233*103682^(3/8) 1771106525949462 a001 75025/521*167761^(2/5) 1771106525950597 a001 233/167761*45537549124^(2/3) 1771106525950597 a001 233/167761*(1/2+1/2*5^(1/2))^34 1771106525950597 a001 233/167761*10749957122^(17/24) 1771106525950597 a001 233/167761*4106118243^(17/23) 1771106525950597 a001 233/167761*1568397607^(17/22) 1771106525950597 a001 233/167761*599074578^(17/21) 1771106525950597 a001 233/167761*228826127^(17/20) 1771106525950597 a001 233/167761*87403803^(17/19) 1771106525950598 a001 233/167761*33385282^(17/18) 1771106525954232 a001 514229/521*103682^(1/4) 1771106525956250 a001 317811/521*103682^(7/24) 1771106525963022 a001 5702887/521*39603^(1/22) 1771106525974633 a001 75025/521*20633239^(2/7) 1771106525974634 a001 75025/521*2537720636^(2/9) 1771106525974634 a001 75025/521*312119004989^(2/11) 1771106525974634 a001 75025/521*(1/2+1/2*5^(1/2))^10 1771106525974634 a001 75025/521*28143753123^(1/5) 1771106525974634 a001 75025/521*10749957122^(5/24) 1771106525974634 a001 75025/521*4106118243^(5/23) 1771106525974634 a001 75025/521*1568397607^(5/22) 1771106525974634 a001 75025/521*599074578^(5/21) 1771106525974634 a001 75025/521*228826127^(1/4) 1771106525974634 a001 75025/521*87403803^(5/19) 1771106525974635 a001 75025/521*33385282^(5/18) 1771106525974638 a001 75025/521*12752043^(5/17) 1771106525974658 a001 75025/521*4870847^(5/16) 1771106525974805 a001 75025/521*1860498^(1/3) 1771106525975803 a001 196418/521*103682^(1/3) 1771106525975887 a001 75025/521*710647^(5/14) 1771106525983879 a001 75025/521*271443^(5/13) 1771106526014391 a001 3524578/521*39603^(1/11) 1771106526043282 a001 75025/521*103682^(5/12) 1771106526052449 a001 410613337/23184 1771106526065617 a001 2178309/521*39603^(3/22) 1771106526117216 a001 1346269/521*39603^(2/11) 1771106526117994 a001 28657/521*64079^(12/23) 1771106526167839 a001 832040/521*39603^(5/22) 1771106526221019 a001 514229/521*39603^(3/11) 1771106526267502 a001 317811/521*39603^(7/22) 1771106526298691 a001 5702887/521*15127^(1/20) 1771106526311572 a001 46368/521*39603^(1/2) 1771106526319000 a001 233/64079*(1/2+1/2*5^(1/2))^32 1771106526319000 a001 233/64079*23725150497407^(1/2) 1771106526319000 a001 233/64079*505019158607^(4/7) 1771106526319000 a001 233/64079*73681302247^(8/13) 1771106526319000 a001 233/64079*10749957122^(2/3) 1771106526319000 a001 233/64079*4106118243^(16/23) 1771106526319000 a001 233/64079*1568397607^(8/11) 1771106526319000 a001 233/64079*599074578^(16/21) 1771106526319000 a001 233/64079*228826127^(4/5) 1771106526319000 a001 233/64079*87403803^(16/19) 1771106526319001 a001 233/64079*33385282^(8/9) 1771106526319010 a001 233/64079*12752043^(16/17) 1771106526331520 a001 196418/521*39603^(4/11) 1771106526338956 a001 28657/521*439204^(4/9) 1771106526343027 a001 28657/521*7881196^(4/11) 1771106526343037 a001 28657/521*141422324^(4/13) 1771106526343037 a001 28657/521*2537720636^(4/15) 1771106526343037 a001 28657/521*45537549124^(4/17) 1771106526343037 a001 28657/521*14662949395604^(4/21) 1771106526343037 a001 28657/521*(1/2+1/2*5^(1/2))^12 1771106526343037 a001 28657/521*192900153618^(2/9) 1771106526343037 a001 28657/521*73681302247^(3/13) 1771106526343037 a001 28657/521*10749957122^(1/4) 1771106526343037 a001 28657/521*4106118243^(6/23) 1771106526343037 a001 28657/521*1568397607^(3/11) 1771106526343037 a001 28657/521*599074578^(2/7) 1771106526343037 a001 28657/521*228826127^(3/10) 1771106526343037 a001 28657/521*87403803^(6/19) 1771106526343038 a001 28657/521*33385282^(1/3) 1771106526343041 a001 28657/521*12752043^(6/17) 1771106526343065 a001 28657/521*4870847^(3/8) 1771106526343242 a001 28657/521*1860498^(2/5) 1771106526344540 a001 28657/521*710647^(3/7) 1771106526349630 a001 233*39603^(9/22) 1771106526354131 a001 28657/521*271443^(6/13) 1771106526425415 a001 28657/521*103682^(1/2) 1771106526487928 a001 75025/521*39603^(5/11) 1771106526685729 a001 3524578/521*15127^(1/10) 1771106526897172 a001 10946/521*24476^(2/3) 1771106526958989 a001 28657/521*39603^(6/11) 1771106527017108 a001 313680677/17711 1771106527072624 a001 2178309/521*15127^(3/20) 1771106527459892 a001 1346269/521*15127^(1/5) 1771106527846184 a001 832040/521*15127^(1/4) 1771106528235033 a001 514229/521*15127^(3/10) 1771106528605557 a001 10946/521*64079^(14/23) 1771106528617185 a001 317811/521*15127^(7/20) 1771106528844044 a001 233/24476*7881196^(10/11) 1771106528844067 a001 233/24476*20633239^(6/7) 1771106528844070 a001 233/24476*141422324^(10/13) 1771106528844070 a001 233/24476*2537720636^(2/3) 1771106528844070 a001 233/24476*45537549124^(10/17) 1771106528844070 a001 233/24476*312119004989^(6/11) 1771106528844070 a001 233/24476*14662949395604^(10/21) 1771106528844070 a001 233/24476*(1/2+1/2*5^(1/2))^30 1771106528844070 a001 233/24476*192900153618^(5/9) 1771106528844070 a001 233/24476*28143753123^(3/5) 1771106528844070 a001 233/24476*10749957122^(5/8) 1771106528844070 a001 233/24476*4106118243^(15/23) 1771106528844070 a001 233/24476*1568397607^(15/22) 1771106528844070 a001 233/24476*599074578^(5/7) 1771106528844070 a001 233/24476*228826127^(3/4) 1771106528844070 a001 233/24476*87403803^(15/19) 1771106528844072 a001 233/24476*33385282^(5/6) 1771106528844080 a001 233/24476*12752043^(15/17) 1771106528844140 a001 233/24476*4870847^(15/16) 1771106528858944 a001 5702887/521*5778^(1/18) 1771106528868106 a001 10946/521*20633239^(2/5) 1771106528868108 a001 10946/521*17393796001^(2/7) 1771106528868108 a001 10946/521*14662949395604^(2/9) 1771106528868108 a001 10946/521*(1/2+1/2*5^(1/2))^14 1771106528868108 a001 10946/521*505019158607^(1/4) 1771106528868108 a001 10946/521*10749957122^(7/24) 1771106528868108 a001 10946/521*4106118243^(7/23) 1771106528868108 a001 10946/521*1568397607^(7/22) 1771106528868108 a001 10946/521*599074578^(1/3) 1771106528868108 a001 10946/521*228826127^(7/20) 1771106528868108 a001 10946/521*87403803^(7/19) 1771106528868108 a001 10946/521*33385282^(7/18) 1771106528868112 a001 10946/521*12752043^(7/17) 1771106528868140 a001 10946/521*4870847^(7/16) 1771106528868346 a001 10946/521*1860498^(7/15) 1771106528869861 a001 10946/521*710647^(1/2) 1771106528881051 a001 10946/521*271443^(7/13) 1771106528964215 a001 10946/521*103682^(7/12) 1771106529016872 a001 196418/521*15127^(2/5) 1771106529111203 a001 4181/521*9349^(16/19) 1771106529370651 a001 233*15127^(9/20) 1771106529586719 a001 10946/521*39603^(7/11) 1771106529813436 a001 17711/521*15127^(13/20) 1771106529844617 a001 75025/521*15127^(1/2) 1771106530003930 a001 46368/521*15127^(11/20) 1771106530987017 a001 28657/521*15127^(3/5) 1771106531806234 a001 3524578/521*5778^(1/9) 1771106532592899 a001 15127/377*34^(8/19) 1771106533628972 a001 119815357/6765 1771106534286084 a001 10946/521*15127^(7/10) 1771106534753382 a001 2178309/521*5778^(1/6) 1771106537700903 a001 1346269/521*5778^(2/9) 1771106540647447 a001 832040/521*5778^(5/18) 1771106541453905 r009 Re(z^3+c),c=-17/110+53/61*I,n=31 1771106541829654 r009 Re(z^3+c),c=-4/25+53/60*I,n=21 1771106543200584 a007 Real Root Of 412*x^4+382*x^3-x^2+819*x-478 1771106543596549 a001 514229/521*5778^(1/3) 1771106543922700 a001 4181/521*24476^(16/21) 1771106545875140 a001 4181/521*64079^(16/23) 1771106546151158 a001 233/9349*20633239^(4/5) 1771106546151161 a001 233/9349*17393796001^(4/7) 1771106546151161 a001 233/9349*14662949395604^(4/9) 1771106546151161 a001 233/9349*(1/2+1/2*5^(1/2))^28 1771106546151161 a001 233/9349*505019158607^(1/2) 1771106546151161 a001 233/9349*73681302247^(7/13) 1771106546151161 a001 233/9349*10749957122^(7/12) 1771106546151161 a001 233/9349*4106118243^(14/23) 1771106546151161 a001 233/9349*1568397607^(7/11) 1771106546151161 a001 233/9349*599074578^(2/3) 1771106546151161 a001 233/9349*228826127^(7/10) 1771106546151162 a001 233/9349*87403803^(14/19) 1771106546151163 a001 233/9349*33385282^(7/9) 1771106546151170 a001 233/9349*12752043^(14/17) 1771106546151227 a001 233/9349*4870847^(7/8) 1771106546151639 a001 233/9349*1860498^(14/15) 1771106546175199 a001 4181/521*(1/2+1/2*5^(1/2))^16 1771106546175199 a001 4181/521*23725150497407^(1/4) 1771106546175199 a001 4181/521*73681302247^(4/13) 1771106546175199 a001 4181/521*10749957122^(1/3) 1771106546175199 a001 4181/521*4106118243^(8/23) 1771106546175199 a001 4181/521*1568397607^(4/11) 1771106546175199 a001 4181/521*599074578^(8/21) 1771106546175199 a001 4181/521*228826127^(2/5) 1771106546175199 a001 4181/521*87403803^(8/19) 1771106546175199 a001 4181/521*33385282^(4/9) 1771106546175204 a001 4181/521*12752043^(8/17) 1771106546175236 a001 4181/521*4870847^(1/2) 1771106546175471 a001 4181/521*1860498^(8/15) 1771106546177203 a001 4181/521*710647^(4/7) 1771106546189991 a001 4181/521*271443^(8/13) 1771106546285035 a001 4181/521*103682^(2/3) 1771106546538954 a001 317811/521*5778^(7/18) 1771106546996468 a001 4181/521*39603^(8/11) 1771106547930918 r005 Im(z^2+c),c=-18/23+4/47*I,n=51 1771106548637545 a001 5702887/521*2207^(1/16) 1771106549498893 a001 196418/521*5778^(4/9) 1771106552367172 a001 4181/521*15127^(4/5) 1771106552412925 a001 233*5778^(1/2) 1771106555447144 a001 75025/521*5778^(5/9) 1771106558166710 a001 46368/521*5778^(11/18) 1771106558710731 r005 Im(z^2+c),c=-8/19+19/64*I,n=54 1771106561542108 m006 (1/6*ln(Pi)+4)/(2/Pi-2/5) 1771106561710049 a001 28657/521*5778^(2/3) 1771106562380502 a001 6765/521*5778^(5/6) 1771106563096721 a001 17711/521*5778^(13/18) 1771106563292059 a007 Real Root Of 784*x^4+975*x^3-410*x^2+719*x+262 1771106570129622 a001 10946/521*5778^(7/9) 1771106570909509 r005 Im(z^2+c),c=-39/74+26/59*I,n=24 1771106571363436 a001 3524578/521*2207^(1/8) 1771106571756304 m001 1/(3^(1/3))^2*ln(CareFree)^2/gamma^2 1771106575553951 m001 (FeigenbaumAlpha+Weierstrass)/(Zeta(5)-exp(1)) 1771106577868599 a007 Real Root Of -39*x^4+345*x^3+351*x^2-920*x-430 1771106581795084 a007 Real Root Of -547*x^4-790*x^3-64*x^2-288*x+684 1771106584341979 l004 Si(169/43) 1771106591431993 a007 Real Root Of -624*x^4-399*x^3+617*x^2-761*x+640 1771106593331216 a001 4181/521*5778^(8/9) 1771106594089185 a001 2178309/521*2207^(3/16) 1771106600368762 r009 Re(z^3+c),c=-13/22+26/51*I,n=39 1771106611032799 m001 1/BesselK(1,1)/Magata/ln(log(2+sqrt(3))) 1771106613762701 a003 cos(Pi*29/111)-sin(Pi*24/73) 1771106616692411 a003 cos(Pi*3/74)*cos(Pi*31/70) 1771106616815308 a001 1346269/521*2207^(1/4) 1771106619347490 m001 BesselI(1,2)-gamma(1)+OneNinth 1771106619625473 a007 Real Root Of -11*x^4+512*x^3+530*x^2-768*x-70 1771106621954480 r005 Im(z^2+c),c=-59/52+9/46*I,n=38 1771106623284184 s002 sum(A065120[n]/(pi^n+1),n=1..infinity) 1771106624360738 a001 5778/5*75025^(13/29) 1771106629185165 p001 sum((-1)^n/(543*n+8)/n/(10^n),n=1..infinity) 1771106639540454 a001 832040/521*2207^(5/16) 1771106644284551 r002 31th iterates of z^2 + 1771106645602768 a001 1597/521*9349^(18/19) 1771106647077069 a001 1762289/682*322^(1/3) 1771106659111040 m001 (Backhouse+Champernowne)/(ln(Pi)-GAMMA(11/12)) 1771106662265704 a001 1597/521*24476^(6/7) 1771106662268159 a001 514229/521*2207^(3/8) 1771106662756451 m001 1/ln(FeigenbaumD)/RenyiParking/BesselJ(0,1) 1771106663463595 a003 cos(Pi*17/99)+sin(Pi*37/101) 1771106664462199 a001 1597/521*64079^(18/23) 1771106664775738 a001 233/3571*141422324^(2/3) 1771106664775738 a001 233/3571*(1/2+1/2*5^(1/2))^26 1771106664775738 a001 233/3571*73681302247^(1/2) 1771106664775738 a001 233/3571*10749957122^(13/24) 1771106664775738 a001 233/3571*4106118243^(13/23) 1771106664775738 a001 233/3571*1568397607^(13/22) 1771106664775738 a001 233/3571*599074578^(13/21) 1771106664775738 a001 233/3571*228826127^(13/20) 1771106664775738 a001 233/3571*87403803^(13/19) 1771106664775739 a001 233/3571*33385282^(13/18) 1771106664775746 a001 233/3571*12752043^(13/17) 1771106664775799 a001 233/3571*4870847^(13/16) 1771106664776182 a001 233/3571*1860498^(13/15) 1771106664778995 a001 233/3571*710647^(13/14) 1771106664793644 a001 1597/521*439204^(2/3) 1771106664799749 a001 1597/521*7881196^(6/11) 1771106664799765 a001 1597/521*141422324^(6/13) 1771106664799765 a001 1597/521*2537720636^(2/5) 1771106664799765 a001 1597/521*45537549124^(6/17) 1771106664799765 a001 1597/521*14662949395604^(2/7) 1771106664799765 a001 1597/521*(1/2+1/2*5^(1/2))^18 1771106664799765 a001 1597/521*192900153618^(1/3) 1771106664799765 a001 1597/521*10749957122^(3/8) 1771106664799765 a001 1597/521*4106118243^(9/23) 1771106664799765 a001 1597/521*1568397607^(9/22) 1771106664799765 a001 1597/521*599074578^(3/7) 1771106664799765 a001 1597/521*228826127^(9/20) 1771106664799765 a001 1597/521*87403803^(9/19) 1771106664799765 a001 1597/521*33385282^(1/2) 1771106664799770 a001 1597/521*12752043^(9/17) 1771106664799807 a001 1597/521*4870847^(9/16) 1771106664800072 a001 1597/521*1860498^(3/5) 1771106664802019 a001 1597/521*710647^(9/14) 1771106664816406 a001 1597/521*271443^(9/13) 1771106664923331 a001 1597/521*103682^(3/4) 1771106665512400 m005 (1/2*5^(1/2)-3/10)/(1/5*5^(1/2)-10/11) 1771106665723693 a001 1597/521*39603^(9/11) 1771106668612370 m001 exp(BesselK(1,1))*Paris/Zeta(7)^2 1771106671765735 a001 1597/521*15127^(9/10) 1771106672379822 m001 BesselK(1,1)^GAMMA(7/24)/((1/2)^GAMMA(7/24)) 1771106672956722 l006 ln(6157/7350) 1771106675015214 m005 (1/2*Zeta(3)+1/8)/(1/5*5^(1/2)-6/7) 1771106677470903 a007 Real Root Of -114*x^4+536*x^3+930*x^2-488*x+318 1771106680569494 a007 Real Root Of -465*x^4-620*x^3+43*x^2-559*x+6 1771106681633938 m006 (Pi-5/6)/(2/Pi+2/3) 1771106684688585 h001 (5/11*exp(2)+1/5)/(1/6*exp(2)+7/9) 1771106684989166 a001 317811/521*2207^(7/16) 1771106694360048 a007 Real Root Of -19*x^4-328*x^3+182*x^2+505*x-866 1771106696440089 m005 (1/2*Pi+4/5)/(6/11*Pi-3/8) 1771106700452913 m002 6/Pi^6+6*Pi-Log[Pi] 1771106703929086 a001 5702887/521*843^(1/14) 1771106705820621 m001 Zeta(7)^2/ln(Backhouse)*cos(Pi/5)^2 1771106706083152 a007 Real Root Of 700*x^4+898*x^3-152*x^2+769*x-60 1771106707727708 a001 196418/521*2207^(1/2) 1771106709441916 a007 Real Root Of 620*x^4+695*x^3-446*x^2+326*x-263 1771106709998570 a005 (1/cos(3/173*Pi))^385 1771106714335274 a001 3571/832040*2178309^(13/51) 1771106717619362 m001 (Tribonacci-Trott)/(3^(1/3)-HardyLittlewoodC5) 1771106719310401 r005 Re(z^2+c),c=-13/94+19/53*I,n=16 1771106720516359 r005 Im(z^2+c),c=-13/24+17/53*I,n=56 1771106721493351 h001 (1/8*exp(1)+5/11)/(6/11*exp(2)+5/11) 1771106721692615 r009 Re(z^3+c),c=-3/13+18/53*I,n=16 1771106723641452 a007 Real Root Of 567*x^4+339*x^3-520*x^2-938*x+180 1771106730420343 a001 233*2207^(9/16) 1771106734879932 r005 Im(z^2+c),c=-9/20+10/33*I,n=35 1771106738765377 m001 (CareFree+ZetaP(2))/(Zeta(1,2)+BesselI(1,2)) 1771106751568071 m001 cos(1/12*Pi)/arctan(1/2)/Salem 1771106751695537 m001 (Psi(2,1/3)-Zeta(3))/(Ei(1)+GAMMA(17/24)) 1771106753233166 a001 75025/521*2207^(5/8) 1771106755011922 a001 3524578/2207*322^(5/12) 1771106756642744 m001 (sin(1/12*Pi)+Landau)/(Ei(1)-3^(1/3)) 1771106768913859 m005 (1/2*5^(1/2)+1/9)/(7/11*Catalan+1/9) 1771106775731335 a001 46368/521*2207^(11/16) 1771106777043888 m001 (Chi(1)-ln(Pi))/(Niven+Trott2nd) 1771106777777711 m005 (1/2*3^(1/2)+7/10)/(5*3^(1/2)+2/11) 1771106793099383 m001 Grothendieck^(FeigenbaumB/sin(1)) 1771106793164044 a001 161/305*4807526976^(6/23) 1771106793344704 a001 341/36*75025^(6/23) 1771106799053278 a001 28657/521*2207^(3/4) 1771106802852063 m008 (1/4*Pi^5+1/2)/(4*Pi^2+4) 1771106816769937 m001 GAMMA(23/24)*BesselI(0,2)^LaplaceLimit 1771106819912609 r005 Im(z^2+c),c=-151/126+10/63*I,n=31 1771106820218554 a001 17711/521*2207^(13/16) 1771106828040626 r005 Im(z^2+c),c=-6/5+3/128*I,n=46 1771106830092272 m001 (gamma(1)-Pi^(1/2))/(Cahen-RenyiParking) 1771106831450333 r005 Im(z^2+c),c=-8/19+19/64*I,n=52 1771106832959425 a001 9349/2178309*2178309^(13/51) 1771106843303337 m001 Riemann3rdZero/(gamma(3)-2^(1/2)) 1771106847030060 a001 10946/521*2207^(7/8) 1771106848707117 m001 Backhouse^cos(1/5*Pi)/BesselJ(0,1) 1771106848707117 m001 Backhouse^cos(Pi/5)/BesselJ(0,1) 1771106849317793 m001 MasserGramainDelta^(Si(Pi)*Sierpinski) 1771106853034057 m001 (cos(1)+Trott)/(2^(1/3)+Si(Pi)) 1771106853903046 m001 BesselI(1,2)*GAMMA(5/6)*Paris 1771106859059544 a001 6765/521*2207^(15/16) 1771106862324896 a001 233/3*521^(46/53) 1771106868169051 m005 (-14/3+1/3*5^(1/2))/(1/3*2^(1/2)-1/4) 1771106868678101 r005 Im(z^2+c),c=-7/11+2/51*I,n=34 1771106870072328 m005 (1/3*2^(1/2)-1/5)/(8/11*3^(1/2)+3/11) 1771106871390165 m005 (1/3*Catalan+1/12)/(4/7*5^(1/2)+11/12) 1771106872087491 r005 Im(z^2+c),c=-5/8+73/179*I,n=27 1771106881946536 a001 3524578/521*843^(1/7) 1771106889564336 a001 17480825/987 1771106899361806 m001 GAMMA(5/6)/GAMMA(3/4)^2/ln(GAMMA(7/12)) 1771106901494965 r005 Re(z^2+c),c=-3/29+18/41*I,n=28 1771106902326647 m001 (Zeta(5)+AlladiGrinstead)/(LaplaceLimit-Niven) 1771106903174126 a007 Real Root Of -549*x^4-960*x^3-544*x^2-970*x+57 1771106906273182 a001 5778/1346269*2178309^(13/51) 1771106908797563 a007 Real Root Of 22*x^4+354*x^3-657*x^2-459*x-63 1771106914021447 m001 (3^(1/2)+Pi^(1/2))/(-CareFree+FeigenbaumD) 1771106923387283 r005 Im(z^2+c),c=-119/90+2/43*I,n=11 1771106928871174 m001 -cos(Pi/5)/(-exp(-Pi)+1/2) 1771106928871174 m001 cos(Pi/5)/(1/2-exp(-Pi)) 1771106931006263 m001 (BesselI(1,2)+CareFree)/(Riemann1stZero-Salem) 1771106940051852 m009 (2/5*Psi(1,1/3)+3)/(1/5*Pi^2+2) 1771106941838649 q001 472/2665 1771106941838649 r005 Im(z^2+c),c=-37/26+118/123*I,n=2 1771106943971478 b008 -1/3+Pi*Cot[2] 1771106944554726 m001 (Lehmer-Rabbit)/(Backhouse-Kolakoski) 1771106945526532 m001 1/GAMMA(11/24)*ln(LaplaceLimit)/Zeta(3) 1771106949331092 r005 Im(z^2+c),c=-41/86+11/37*I,n=15 1771106961316340 a001 4181/3*843^(20/53) 1771106962986305 r005 Re(z^2+c),c=1/58+7/36*I,n=14 1771106967663133 a001 73681302247*144^(3/17) 1771106968571693 m005 (-13/20+1/4*5^(1/2))/(1/10*gamma-4/7) 1771106972843607 a007 Real Root Of -16*x^4-287*x^3-34*x^2+539*x+84 1771106979653532 a003 sin(Pi*19/119)-sin(Pi*8/35) 1771106980766246 m009 (2*Psi(1,2/3)-1/2)/(1/12*Pi^2-4) 1771106981639266 m001 1/Salem/CareFree*ln(GAMMA(5/6))^2 1771106985079652 m005 (1/2*2^(1/2)-6)/(4/11*exp(1)+2) 1771107015907184 a007 Real Root Of 617*x^4+926*x^3-823*x^2-489*x+789 1771107016191755 a001 47/46368*1346269^(15/41) 1771107028806584 r009 Im(z^3+c),c=-23/27+16/25*I,n=2 1771107030335190 a007 Real Root Of -592*x^4-410*x^3+790*x^2-375*x+405 1771107035539534 m001 ln(GAMMA(7/24))/GlaisherKinkelin^2*sin(Pi/12) 1771107036529963 p002 log(5^(3/10)+5^(9/10)) 1771107036610372 h001 (7/8*exp(2)+2/5)/(1/2*exp(2)+2/11) 1771107044625214 m001 (arctan(1/2)-Gompertz)/(RenyiParking+ZetaQ(4)) 1771107049413515 r005 Im(z^2+c),c=-19/56+12/43*I,n=26 1771107059963862 a001 2178309/521*843^(3/14) 1771107064923552 a003 cos(Pi*9/97)+cos(Pi*17/86) 1771107065575074 a001 9227465/5778*322^(5/12) 1771107072441554 s002 sum(A096252[n]/(n*exp(pi*n)-1),n=1..infinity) 1771107075452367 a001 18/377*3524578^(2/23) 1771107084868375 l006 ln(3303/3943) 1771107086782019 r005 Re(z^2+c),c=-7/6+50/139*I,n=7 1771107099392576 m005 (1/2*5^(1/2)-2/5)/(1/5*Catalan+2/9) 1771107107753448 r005 Re(z^2+c),c=6/29+15/28*I,n=57 1771107110174557 a001 9349*6557470319842^(7/17) 1771107110885636 a001 24157817/15127*322^(5/12) 1771107111349072 r005 Im(z^2+c),c=-17/32+17/53*I,n=36 1771107113502535 m001 (Si(Pi)-exp(1/Pi))/(FeigenbaumD+Trott) 1771107114252550 m001 (Pi+sin(1))/(Porter+Riemann2ndZero) 1771107114273293 m001 MertensB1^GaussAGM+exp(1/exp(1)) 1771107117496358 a001 63245986/39603*322^(5/12) 1771107118460850 a001 165580141/103682*322^(5/12) 1771107118601567 a001 433494437/271443*322^(5/12) 1771107118622098 a001 1134903170/710647*322^(5/12) 1771107118625093 a001 2971215073/1860498*322^(5/12) 1771107118625530 a001 7778742049/4870847*322^(5/12) 1771107118625594 a001 20365011074/12752043*322^(5/12) 1771107118625603 a001 53316291173/33385282*322^(5/12) 1771107118625604 a001 139583862445/87403803*322^(5/12) 1771107118625604 a001 365435296162/228826127*322^(5/12) 1771107118625605 a001 956722026041/599074578*322^(5/12) 1771107118625605 a001 2504730781961/1568397607*322^(5/12) 1771107118625605 a001 6557470319842/4106118243*322^(5/12) 1771107118625605 a001 10610209857723/6643838879*322^(5/12) 1771107118625605 a001 4052739537881/2537720636*322^(5/12) 1771107118625605 a001 1548008755920/969323029*322^(5/12) 1771107118625605 a001 591286729879/370248451*322^(5/12) 1771107118625605 a001 225851433717/141422324*322^(5/12) 1771107118625605 a001 86267571272/54018521*322^(5/12) 1771107118625609 a001 32951280099/20633239*322^(5/12) 1771107118625633 a001 12586269025/7881196*322^(5/12) 1771107118625800 a001 4807526976/3010349*322^(5/12) 1771107118626944 a001 1836311903/1149851*322^(5/12) 1771107118634786 a001 701408733/439204*322^(5/12) 1771107118688535 a001 267914296/167761*322^(5/12) 1771107119056938 a001 102334155/64079*322^(5/12) 1771107121582009 a001 39088169/24476*322^(5/12) 1771107122298756 m005 (1/2*2^(1/2)+1)/(1/3*Pi-1/12) 1771107125054227 a007 Real Root Of 639*x^4+842*x^3-86*x^2+363*x-697 1771107127137147 s003 concatenated sequence A039407 1771107128068285 r005 Im(z^2+c),c=-35/44+3/23*I,n=8 1771107130438582 a001 7881196*514229^(7/17) 1771107130462096 a001 271443*1836311903^(7/17) 1771107134681738 r005 Im(z^2+c),c=-8/19+19/64*I,n=56 1771107134734825 r005 Im(z^2+c),c=-57/122+22/53*I,n=9 1771107136349170 m001 (GaussKuzminWirsing-Magata)/(Salem+Stephens) 1771107138634828 a007 Real Root Of -941*x^4+327*x^3+510*x^2+950*x+155 1771107138889105 a001 14930352/9349*322^(5/12) 1771107139538853 r002 47th iterates of z^2 + 1771107145768879 a007 Real Root Of -143*x^4-128*x^3-819*x^2+776*x+14 1771107147273152 a007 Real Root Of 550*x^4+810*x^3-192*x^2-369*x-963 1771107153545227 m001 (cos(1/12*Pi)+GAMMA(23/24))/(Artin-MertensB1) 1771107163649229 r009 Im(z^3+c),c=-5/14+5/46*I,n=8 1771107169441619 a007 Real Root Of -430*x^4-859*x^3-192*x^2+319*x+626 1771107172085864 m005 (1/2*5^(1/2)+1/6)/(3*5^(1/2)+6/11) 1771107172987640 r005 Im(z^2+c),c=9/25+34/55*I,n=18 1771107176115282 r009 Re(z^3+c),c=-19/62+25/41*I,n=28 1771107179002405 r005 Im(z^2+c),c=-21/34+20/57*I,n=15 1771107187325946 r005 Re(z^2+c),c=-23/19+1/11*I,n=36 1771107197142484 a001 34/3571*47^(41/54) 1771107205664942 m001 Artin^ln(Pi)/FeigenbaumC 1771107210838800 m005 (1/2*2^(1/2)-9/10)/(1/5*exp(1)+6/11) 1771107215087286 r005 Re(z^2+c),c=-89/106+5/64*I,n=64 1771107216835241 a001 2207/514229*2178309^(13/51) 1771107217369261 r005 Re(z^2+c),c=-1/26+29/51*I,n=33 1771107218793937 h001 (7/8*exp(1)+2/3)/(3/8*exp(1)+7/10) 1771107228781843 r005 Im(z^2+c),c=-13/98+32/37*I,n=24 1771107230123378 s002 sum(A118163[n]/(pi^n-1),n=1..infinity) 1771107232812645 a007 Real Root Of -238*x^4+126*x^3+278*x^2-678*x+969 1771107237981579 a001 1346269/521*843^(2/7) 1771107242194220 m001 (Psi(2,1/3)+5^(1/2))/(-BesselK(0,1)+Magata) 1771107243123431 m001 (Pi+gamma(2))/(DuboisRaymond-ReciprocalLucas) 1771107254226487 a007 Real Root Of 704*x^4+485*x^3-949*x^2+866*x+278 1771107256656522 h001 (3/11*exp(1)+5/9)/(7/8*exp(2)+6/7) 1771107257513712 a001 1597*322^(5/12) 1771107259931355 m001 ln(2)/ln(10)/(Zeta(5)+LaplaceLimit) 1771107263171825 a007 Real Root Of -161*x^4+119*x^3+331*x^2-747*x-116 1771107271743475 m001 Pi-(Psi(1,1/3)+Psi(2,1/3))/sin(1/12*Pi) 1771107271977559 r002 3th iterates of z^2 + 1771107272081647 a007 Real Root Of -81*x^4+104*x^3+729*x^2+708*x+342 1771107275696691 m001 Pi^2/ln(ErdosBorwein)/sinh(1) 1771107279947992 s002 sum(A096345[n]/(2^n-1),n=1..infinity) 1771107281494185 r005 Im(z^2+c),c=-35/64+2/9*I,n=7 1771107283701368 a007 Real Root Of -898*x^4-944*x^3-409*x^2+3*x+9 1771107289277779 m005 (1/3*Zeta(3)-3/5)/(3/10*5^(1/2)+5/11) 1771107292038625 m001 1/GAMMA(11/24)^2/ArtinRank2*exp(GAMMA(7/12)) 1771107293435261 m001 1/BesselJ(0,1)*Paris^2*exp(log(2+sqrt(3)))^2 1771107295123131 k008 concat of cont frac of 1771107300393241 m001 1/ln(GAMMA(5/6))^2/GlaisherKinkelin/sqrt(3)^2 1771107304182558 r002 3th iterates of z^2 + 1771107315487382 r005 Im(z^2+c),c=-13/29+19/63*I,n=20 1771107316390953 r005 Re(z^2+c),c=13/102+37/63*I,n=36 1771107327483713 r005 Re(z^2+c),c=-83/56+15/38*I,n=3 1771107335062004 r005 Im(z^2+c),c=-55/106+17/64*I,n=10 1771107336701616 a001 1364/13*610^(4/49) 1771107339215337 r009 Re(z^3+c),c=-19/32+12/23*I,n=36 1771107355563119 r002 5th iterates of z^2 + 1771107362268005 a007 Real Root Of 905*x^4+942*x^3-837*x^2+625*x+61 1771107362430198 r005 Re(z^2+c),c=-13/122+16/37*I,n=28 1771107375502489 a007 Real Root Of -684*x^4-71*x^3+88*x^2+477*x+82 1771107377145434 r005 Re(z^2+c),c=11/38+29/61*I,n=19 1771107377963414 a001 4/161*15127^(10/49) 1771107379122173 a001 341/646*6765^(7/51) 1771107387115629 r005 Im(z^2+c),c=-8/19+19/64*I,n=59 1771107390023237 a007 Real Root Of -285*x^4-531*x^3-493*x^2-744*x+83 1771107393174004 m001 ((2^(1/3))+GAMMA(1/12))^GAMMA(5/6) 1771107396081562 m001 sin(1)+GaussAGM(1,1/sqrt(2))^BesselJ(1,1) 1771107396222292 r005 Im(z^2+c),c=-8/19+19/64*I,n=61 1771107398642979 r005 Re(z^2+c),c=-87/70+27/55*I,n=3 1771107403935404 a001 47/514229*591286729879^(13/21) 1771107404119058 r009 Re(z^3+c),c=-13/50+7/16*I,n=21 1771107407697162 r005 Im(z^2+c),c=-29/106+1/39*I,n=14 1771107408697842 m005 (19/6+5/2*5^(1/2))/(-2/5+2/5*5^(1/2)) 1771107411171155 k008 concat of cont frac of 1771107415498508 a007 Real Root Of -2*x^4-355*x^3-133*x^2+868*x+539 1771107415998336 a001 832040/521*843^(5/14) 1771107418828874 m005 (25/42+1/6*5^(1/2))/(4/11*3^(1/2)-1/12) 1771107424675385 l006 ln(106/623) 1771107425539310 r005 Im(z^2+c),c=-8/19+19/64*I,n=51 1771107429573848 a007 Real Root Of 829*x^4+889*x^3-565*x^2+997*x+320 1771107432316003 r005 Im(z^2+c),c=-21/52+21/44*I,n=7 1771107440958726 m005 (1/2*Pi-2/5)/(1/7*exp(1)+3/11) 1771107444349587 l006 ln(7055/8422) 1771107456140350 q001 6461/3648 1771107458227837 m001 (HeathBrownMoroz-Mills)/(TwinPrimes+ZetaP(4)) 1771107460158120 r005 Re(z^2+c),c=-16/11+19/48*I,n=3 1771107465479365 p001 sum(1/(415*n+27)/n/(128^n),n=1..infinity) 1771107467353150 a005 (1/cos(9/212*Pi))^1871 1771107467955814 b008 (15/7)^(3/4) 1771107468722814 r005 Re(z^2+c),c=-63/52+2/37*I,n=34 1771107473387034 a001 514229/843*322^(7/12) 1771107475049011 a001 610/521*24476^(20/21) 1771107477489563 a001 610/521*64079^(20/23) 1771107477814291 a001 610/521*167761^(4/5) 1771107477832948 a001 233/1364*439204^(8/9) 1771107477841089 a001 233/1364*7881196^(8/11) 1771107477841110 a001 233/1364*141422324^(8/13) 1771107477841110 a001 233/1364*2537720636^(8/15) 1771107477841110 a001 233/1364*45537549124^(8/17) 1771107477841110 a001 233/1364*14662949395604^(8/21) 1771107477841110 a001 233/1364*(1/2+1/2*5^(1/2))^24 1771107477841110 a001 233/1364*192900153618^(4/9) 1771107477841110 a001 233/1364*73681302247^(6/13) 1771107477841110 a001 233/1364*10749957122^(1/2) 1771107477841110 a001 233/1364*4106118243^(12/23) 1771107477841110 a001 233/1364*1568397607^(6/11) 1771107477841110 a001 233/1364*599074578^(4/7) 1771107477841110 a001 233/1364*228826127^(3/5) 1771107477841110 a001 233/1364*87403803^(12/19) 1771107477841111 a001 233/1364*33385282^(2/3) 1771107477841117 a001 233/1364*12752043^(12/17) 1771107477841166 a001 233/1364*4870847^(3/4) 1771107477841519 a001 233/1364*1860498^(4/5) 1771107477844116 a001 233/1364*710647^(6/7) 1771107477863298 a001 233/1364*271443^(12/13) 1771107477864633 a001 610/521*20633239^(4/7) 1771107477864636 a001 610/521*2537720636^(4/9) 1771107477864636 a001 610/521*(1/2+1/2*5^(1/2))^20 1771107477864636 a001 610/521*23725150497407^(5/16) 1771107477864636 a001 610/521*505019158607^(5/14) 1771107477864636 a001 610/521*73681302247^(5/13) 1771107477864636 a001 610/521*28143753123^(2/5) 1771107477864636 a001 610/521*10749957122^(5/12) 1771107477864636 a001 610/521*4106118243^(10/23) 1771107477864636 a001 610/521*1568397607^(5/11) 1771107477864636 a001 610/521*599074578^(10/21) 1771107477864636 a001 610/521*228826127^(1/2) 1771107477864636 a001 610/521*87403803^(10/19) 1771107477864636 a001 610/521*33385282^(5/9) 1771107477864642 a001 610/521*12752043^(10/17) 1771107477864682 a001 610/521*4870847^(5/8) 1771107477864977 a001 610/521*1860498^(2/3) 1771107477867141 a001 610/521*710647^(5/7) 1771107477883126 a001 610/521*271443^(10/13) 1771107478001931 a001 610/521*103682^(5/6) 1771107478891223 a001 610/521*39603^(10/11) 1771107493206061 p001 sum((-1)^n/(231*n+227)/n/(12^n),n=1..infinity) 1771107498794083 m001 Chi(1)*(Salem-Zeta(1,2)) 1771107501742686 r005 Im(z^2+c),c=-8/19+19/64*I,n=63 1771107517263586 m001 (KhinchinHarmonic+ZetaQ(4))/Paris 1771107528935880 m005 (7/20+1/4*5^(1/2))/(1/198+5/22*5^(1/2)) 1771107530846962 r005 Re(z^2+c),c=-25/18+2/65*I,n=4 1771107538589725 b008 7+Pi^2+Sin[1] 1771107544141252 q001 5517/3115 1771107544207917 a001 521/1346269*832040^(37/47) 1771107547623935 r005 Re(z^2+c),c=13/82+3/41*I,n=7 1771107550128713 s002 sum(A198541[n]/((pi^n+1)/n),n=1..infinity) 1771107552087923 r005 Im(z^2+c),c=-8/19+19/64*I,n=64 1771107570125070 a007 Real Root Of 397*x^4+454*x^3-821*x^2-545*x+226 1771107585795736 m001 1/Zeta(9)^2/exp(MertensB1)^2*sqrt(3)^2 1771107592884995 a007 Real Root Of 769*x^4+507*x^3-821*x^2+919*x-547 1771107593146793 a007 Real Root Of 603*x^4+900*x^3-626*x^2-636*x-96 1771107594017670 a001 514229/521*843^(3/7) 1771107594564378 m001 (Zeta(1/2)+GAMMA(7/12))/(FeigenbaumD+Salem) 1771107597234485 r005 Im(z^2+c),c=-33/34+8/45*I,n=48 1771107597840715 r002 8th iterates of z^2 + 1771107599667306 m001 1/FeigenbaumD^2*ln(Paris)*GAMMA(1/24)^2 1771107602106666 a007 Real Root Of 373*x^4-246*x^3-962*x^2+711*x-760 1771107602665429 r005 Re(z^2+c),c=-9/50+11/15*I,n=7 1771107607204695 m001 MertensB2*ReciprocalFibonacci-Niven 1771107609499428 r005 Im(z^2+c),c=-8/19+19/64*I,n=58 1771107612465390 a008 Real Root of (-6+6*x-6*x^2+2*x^3-5*x^4+3*x^5) 1771107616541496 a005 (1/sin(64/137*Pi))^1834 1771107616717531 r005 Re(z^2+c),c=15/98+1/18*I,n=7 1771107617311393 a007 Real Root Of 331*x^4-112*x^3-921*x^2+528*x-55 1771107620993093 m001 (PlouffeB+Trott)/(GAMMA(17/24)+MinimumGamma) 1771107623604917 m001 Pi+1/(exp(-1/2*Pi)+Zeta(1,2)) 1771107629557127 m001 (3^(1/2)-FeigenbaumKappa)^(Pi^(1/2)) 1771107638882885 p004 log(21859/18311) 1771107638925490 m005 (1/2*exp(1)+3/4)/(1/6*5^(1/2)+9/11) 1771107644269086 a007 Real Root Of -328*x^4-168*x^3+738*x^2+79*x+119 1771107644666984 m001 sin(1)+Chi(1)^ThueMorse 1771107647042609 r005 Im(z^2+c),c=-8/19+19/64*I,n=62 1771107647490023 a007 Real Root Of -515*x^4+663*x^3+899*x^2+698*x-155 1771107650796666 r002 9th iterates of z^2 + 1771107655128431 m001 (Paris+PrimesInBinary)/(3^(1/3)+Backhouse) 1771107659332700 a003 cos(Pi*5/94)+sin(Pi*25/87) 1771107659645418 r005 Re(z^2+c),c=1/36+3/31*I,n=3 1771107661858204 r009 Re(z^3+c),c=-3/10+35/62*I,n=42 1771107662961634 r005 Im(z^2+c),c=-11/34+1/37*I,n=10 1771107666848310 m001 ((1+3^(1/2))^(1/2)-ZetaP(3))/(1+Zeta(1,-1)) 1771107668474051 q001 4573/2582 1771107670412256 r002 42th iterates of z^2 + 1771107680058874 r005 Im(z^2+c),c=-8/19+19/64*I,n=57 1771107684353806 m001 GaussKuzminWirsing*(arctan(1/3)+MertensB1) 1771107686499125 r005 Im(z^2+c),c=7/17+7/32*I,n=31 1771107699584736 r005 Im(z^2+c),c=-31/34+1/70*I,n=14 1771107705833949 a007 Real Root Of -585*x^4-556*x^3+696*x^2-179*x+167 1771107709506667 m001 (GAMMA(3/4)*Pi^(1/2)-ZetaQ(4))/GAMMA(3/4) 1771107713698320 s002 sum(A003385[n]/(64^n-1),n=1..infinity) 1771107714210966 m005 (1/2*3^(1/2)-7/8)/(6*Catalan-3/7) 1771107721281176 m001 (exp(-1/2*Pi)-Lehmer)/(ln(3)-ln(2^(1/2)+1)) 1771107721762602 r005 Re(z^2+c),c=9/23+11/35*I,n=39 1771107728989773 r005 Im(z^2+c),c=-8/19+19/64*I,n=60 1771107730083173 a007 Real Root Of -668*x^4-790*x^3+831*x^2+617*x+670 1771107730897846 m005 (1/3*Pi+1/12)/(2*Pi+1/10) 1771107730897846 m006 (1/6/Pi+2/3)/(1/5/Pi+4) 1771107730897846 m008 (2/3*Pi+1/6)/(4*Pi+1/5) 1771107731226757 m001 (GAMMA(3/4)+2*Pi/GAMMA(5/6))/(PlouffeB-Thue) 1771107734987318 a001 1149851/233*6557470319842^(14/17) 1771107734988658 a001 969323029/233*1836311903^(14/17) 1771107734989761 a001 817138163596/233*514229^(14/17) 1771107735735869 a007 Real Root Of -195*x^4-183*x^3+18*x^2-845*x-651 1771107741970111 a007 Real Root Of -96*x^4+601*x^3-829*x^2+620*x-892 1771107752071581 r009 Re(z^3+c),c=-7/26+36/49*I,n=30 1771107753302040 a007 Real Root Of -665*x^4-786*x^3+454*x^2-273*x+269 1771107753545364 r002 4th iterates of z^2 + 1771107753545364 r002 4th iterates of z^2 + 1771107758327577 m005 (1/2*3^(1/2)+7/10)/(3/11*exp(1)+1/7) 1771107760811847 l006 ln(3752/4479) 1771107767205673 m001 Riemann3rdZero^Thue/(ln(2^(1/2)+1)^Thue) 1771107767550663 a001 1/21*24157817^(13/21) 1771107768185439 a007 Real Root Of 566*x^4+460*x^3-744*x^2+289*x-168 1771107772030324 a001 317811/521*843^(1/2) 1771107778377195 m009 (1/3*Psi(1,3/4)-1/2)/(3/10*Pi^2-1) 1771107781515598 m001 MadelungNaCl^Chi(1)+ZetaP(3) 1771107789838914 l004 Ssi(227/56) 1771107795402200 m009 (16/5*Catalan+2/5*Pi^2-1/6)/(1/3*Pi^2+1/2) 1771107806227126 a007 Real Root Of 154*x^4-3*x^3-389*x^2-379*x-983 1771107808522265 m001 Paris*Niven/ln(Sierpinski) 1771107813790164 r005 Re(z^2+c),c=-43/36+28/51*I,n=3 1771107817448769 r005 Im(z^2+c),c=-73/74+11/60*I,n=60 1771107819551613 r009 Re(z^3+c),c=-16/31+19/43*I,n=9 1771107826712534 r002 9th iterates of z^2 + 1771107835266298 r005 Re(z^2+c),c=-3/22+4/11*I,n=22 1771107852525055 r005 Im(z^2+c),c=-7/12+25/74*I,n=38 1771107857491459 q001 3629/2049 1771107857910445 a001 9349/13*5^(14/25) 1771107864422440 m001 polylog(4,1/2)^Zeta(5)+BesselI(0,1) 1771107877577854 m001 ln(2^(1/2)+1)*BesselI(0,2)*QuadraticClass 1771107879530730 m001 1/gamma^2*GAMMA(7/24)/exp(sqrt(1+sqrt(3))) 1771107894060970 r009 Re(z^3+c),c=-23/86+5/8*I,n=10 1771107894870501 a007 Real Root Of -159*x^4-238*x^3-325*x^2-224*x+865 1771107899682073 m001 (Psi(1,1/3)+FeigenbaumKappa)/(Trott+ZetaQ(2)) 1771107906299449 r009 Re(z^3+c),c=-11/46+7/19*I,n=18 1771107909488179 a007 Real Root Of 324*x^4+449*x^3-75*x^2-45*x-538 1771107911498229 a007 Real Root Of 159*x^4-263*x^3-369*x^2+943*x-198 1771107917342445 r002 64th iterates of z^2 + 1771107919699727 r009 Re(z^3+c),c=-1/40+8/19*I,n=15 1771107919763385 a001 281/726103*28657^(19/51) 1771107921881437 s002 sum(A121051[n]/(n^2*10^n-1),n=1..infinity) 1771107923272532 k006 concat of cont frac of 1771107926559230 a007 Real Root Of 625*x^4+515*x^3-786*x^2+987*x+925 1771107931582361 a007 Real Root Of 693*x^4+878*x^3+2*x^2+772*x-580 1771107932807881 m001 (KhinchinLevy-Landau)/(TreeGrowth2nd-ZetaP(4)) 1771107947481399 m001 FeigenbaumAlpha*(gamma(1)+gamma(3)) 1771107949413921 a001 5702887/521*322^(1/12) 1771107949850649 m001 (Pi+Rabbit)/(Riemann2ndZero+Sarnak) 1771107950060531 a001 196418/521*843^(4/7) 1771107952388405 m001 (2^(1/3)-ln(3))/(-GaussAGM+KhinchinHarmonic) 1771107961807125 s002 sum(A135388[n]/((2^n-1)/n),n=1..infinity) 1771107962530587 v002 sum(1/(3^n*(32*n^2-80*n+71)),n=1..infinity) 1771107967393612 a003 cos(Pi*17/89)+sin(Pi*15/38) 1771107967840962 r005 Re(z^2+c),c=27/82+9/17*I,n=61 1771107970301613 a007 Real Root Of -643*x^4-983*x^3-932*x^2+743*x+156 1771107971576042 m005 (1/2*exp(1)-2/7)/(3/7*Zeta(3)+1/11) 1771107972968298 a007 Real Root Of 375*x^4+75*x^3-688*x^2+690*x+107 1771107973777133 s002 sum(A139042[n]/(n^2*10^n-1),n=1..infinity) 1771107979182889 a007 Real Root Of 595*x^4+746*x^3-164*x^2+670*x-9 1771107982163912 m001 (ReciprocalLucas-Trott2nd)/(ln(gamma)-Landau) 1771107986351623 r005 Im(z^2+c),c=-13/14+31/202*I,n=3 1771107994389901 q001 6314/3565 1771107999249257 m001 Chi(1)^(3^(1/3))*gamma(1)^(3^(1/3)) 1771107999806591 m006 (4*Pi+4/5)/(1/3*exp(Pi)-1/6) 1771108003802070 r009 Re(z^3+c),c=-3/13+18/53*I,n=15 1771108019086638 m005 (1/3*3^(1/2)+2/11)/(6/11*Pi-6) 1771108022760479 m001 (Pi+Shi(1))/(Ei(1)+PlouffeB) 1771108024484608 r008 a(0)=2,K{-n^6,3*n^3+n^2+3*n} 1771108024561293 r005 Im(z^2+c),c=-97/102+7/41*I,n=41 1771108032313027 m002 Sinh[Pi]+(4*Pi^6*Tanh[Pi])/E^Pi 1771108034329917 a003 cos(Pi*4/49)/sin(Pi*16/87) 1771108035498031 h001 (2/3*exp(2)+3/7)/(7/9*exp(1)+10/11) 1771108036998408 r005 Re(z^2+c),c=-17/122+11/46*I,n=2 1771108037561752 m004 5-(5*E^(Sqrt[5]*Pi))/Pi+(25*Pi)/6 1771108038804129 m001 (BesselI(0,2)+ErdosBorwein)/(Paris-ZetaP(4)) 1771108041541281 l006 ln(7953/9494) 1771108053185932 m001 cos(1)^ln(3)-BesselI(0,2) 1771108062141536 a007 Real Root Of -26*x^4-484*x^3-424*x^2-165*x-545 1771108065905212 r005 Re(z^2+c),c=13/66+17/42*I,n=28 1771108070579292 a001 2178309/1364*322^(5/12) 1771108071722480 m001 (5^(1/2)-Shi(1))/(-LandauRamanujan+Paris) 1771108073534110 s002 sum(A262452[n]/(n^2*2^n-1),n=1..infinity) 1771108073608595 m001 Ei(1)*Kolakoski*Salem 1771108077284722 m001 (CareFree+Kac)/(Sarnak+Trott2nd) 1771108079039792 r005 Im(z^2+c),c=-47/44+12/53*I,n=48 1771108087030924 a007 Real Root Of 58*x^4-362*x^3-272*x^2+705*x-480 1771108096154787 r002 26th iterates of z^2 + 1771108099209050 r008 a(0)=0,K{-n^6,40-28*n^3+19*n^2-37*n} 1771108101757497 m001 (2^(1/3)-BesselJ(1,1))/(-GAMMA(11/12)+Lehmer) 1771108102672263 s002 sum(A193060[n]/(n*pi^n-1),n=1..infinity) 1771108109516227 r002 8th iterates of z^2 + 1771108120349017 l006 ln(6100/6209) 1771108127120018 a001 1/7*(1/2*5^(1/2)+1/2)^8*4^(7/10) 1771108127140556 r009 Re(z^3+c),c=-41/122+30/49*I,n=35 1771108127485703 a003 sin(Pi*5/71)*sin(Pi*29/97) 1771108128044848 a001 233*843^(9/14) 1771108132137382 a001 5778/13*987^(31/58) 1771108132242094 a001 46368/199*199^(9/11) 1771108135101718 r005 Im(z^2+c),c=-37/106+9/32*I,n=33 1771108139868852 a003 cos(Pi*13/67)-cos(Pi*5/18) 1771108142505543 m005 (5*Catalan+3/5)/(4/5*exp(1)+3/4) 1771108146619176 a007 Real Root Of -920*x^4+818*x^3-998*x^2+566*x+137 1771108146877278 a001 3571/6765*6765^(7/51) 1771108148089154 s002 sum(A257408[n]/(n*2^n-1),n=1..infinity) 1771108165838065 m001 Riemann3rdZero*ln(Artin)*FeigenbaumD^2 1771108178514231 a001 987*322^(1/2) 1771108179419525 q001 2685/1516 1771108197629636 r005 Im(z^2+c),c=-79/98+3/22*I,n=23 1771108203355029 m005 (1/2*3^(1/2)+3/10)/(3/5*5^(1/2)-2) 1771108204819665 m001 (Porter+Sierpinski)/(cos(1)+MadelungNaCl) 1771108208133314 m005 (1/3*5^(1/2)-1/6)/(7/8*exp(1)+8/9) 1771108208255145 m001 1/ln(BesselK(1,1))/Conway^2/cos(Pi/5)^2 1771108208347234 m001 1/GAMMA(1/4)^2/Conway^2/exp(arctan(1/2))^2 1771108217155595 a007 Real Root Of -506*x^4-949*x^3-250*x^2-569*x-517 1771108221062787 m002 6+E^Pi/(4*Pi)+Pi^2 1771108224124135 k009 concat of cont frac of 1771108229113682 m001 (Grothendieck-Paris)/(PlouffeB+Weierstrass) 1771108240296856 m001 GAMMA(1/3)/Paris/exp(Zeta(1,2))^2 1771108241517479 a007 Real Root Of -416*x^4-729*x^3+98*x^2-27*x-312 1771108242464763 p003 LerchPhi(1/64,6,431/220) 1771108253280678 m001 LaplaceLimit^2/ln(DuboisRaymond)*TwinPrimes 1771108258891235 a001 9349/17711*6765^(7/51) 1771108258892450 a001 233/4*76^(41/52) 1771108261411343 r009 Re(z^3+c),c=-13/50+7/16*I,n=19 1771108262359768 r005 Im(z^2+c),c=-6/7+5/38*I,n=42 1771108270879387 a007 Real Root Of 639*x^4+502*x^3-499*x^2+833*x-458 1771108273014494 a007 Real Root Of -712*x^4-679*x^3+530*x^2-511*x+666 1771108275233851 a001 6119/11592*6765^(7/51) 1771108276978287 m001 1/ln(GAMMA(19/24))^2/TwinPrimes*sqrt(3)^2 1771108277086136 a007 Real Root Of 404*x^4+526*x^3+182*x^2+905*x-21 1771108279091819 a001 39603/75025*6765^(7/51) 1771108279321251 r005 Im(z^2+c),c=-8/19+19/64*I,n=55 1771108284328219 a007 Real Root Of 445*x^4+220*x^3-877*x^2+138*x-161 1771108285334143 a001 15127/28657*6765^(7/51) 1771108285399269 g006 2*Psi(1,1/11)-Psi(1,7/9)-Psi(1,1/8) 1771108285554706 h001 (6/11*exp(2)+5/9)/(9/10*exp(1)+1/7) 1771108287744535 m001 FeigenbaumAlpha^Zeta(5)/((3^(1/3))^Zeta(5)) 1771108289800464 m006 (1/2*exp(2*Pi)+1/4)/(2/3*ln(Pi)+3/4) 1771108291679830 r002 31th iterates of z^2 + 1771108292215631 a001 341/2*17711^(52/55) 1771108292266538 l006 ln(4201/5015) 1771108295070181 m001 (-LambertW(1)+2)/cos(Pi/5) 1771108303185926 a001 4/89*34^(7/18) 1771108306149370 a001 75025/521*843^(5/7) 1771108309979051 r005 Im(z^2+c),c=-87/86+15/61*I,n=40 1771108313132398 m005 (1/2*Pi-5/12)/(2/11*Catalan-9/11) 1771108314833575 a007 Real Root Of 302*x^4-990*x^3+421*x^2-638*x-132 1771108320950850 m001 (GAMMA(13/24)*FeigenbaumC-Paris)/GAMMA(13/24) 1771108326296053 r005 Im(z^2+c),c=-31/74+8/27*I,n=29 1771108328119667 a001 2889/5473*6765^(7/51) 1771108335236329 r005 Im(z^2+c),c=-7/8+20/143*I,n=37 1771108339025331 r005 Im(z^2+c),c=-55/54+7/36*I,n=37 1771108343711083 q001 7111/4015 1771108344984959 a007 Real Root Of 264*x^4-16*x^3-309*x^2+807*x-288 1771108358330232 a007 Real Root Of -376*x^4-86*x^3+980*x^2-407*x-573 1771108361141956 a007 Real Root Of 299*x^4-739*x^3+817*x^2-508*x-120 1771108361947922 a007 Real Root Of 612*x^4+987*x^3+557*x^2-963*x+147 1771108362066726 m006 (4/5*Pi^2-5)/(3/5*Pi-1/4) 1771108362066726 m008 (4/5*Pi^2-5)/(3/5*Pi-1/4) 1771108372063751 m001 LambertW(1)^Catalan+Salem 1771108373296401 r002 59th iterates of z^2 + 1771108376652895 a001 416020/9*9349^(37/41) 1771108392006469 m001 BesselK(0,1)*Trott/ln(BesselK(1,1))^2 1771108400337425 a007 Real Root Of -471*x^4-870*x^3-664*x^2-979*x+150 1771108403007496 r005 Re(z^2+c),c=-17/14+13/238*I,n=48 1771108404013793 l006 ln(1639/9633) 1771108407082699 m001 HardHexagonsEntropy*Artin/exp(cos(1))^2 1771108414030491 m001 (2^(1/3))^2*exp(Paris)^2*Catalan 1771108419858767 m001 Grothendieck^ln(2)*KhinchinLevy 1771108420017659 a001 233/322*7^(23/50) 1771108420234223 s002 sum(A254298[n]/((3*n+1)!),n=1..infinity) 1771108426430479 a001 29/2178309*1597^(20/57) 1771108429098561 a008 Real Root of (2+5*x+6*x^3-3*x^4-4*x^5) 1771108430800430 r005 Im(z^2+c),c=-69/58+5/31*I,n=44 1771108435718207 a007 Real Root Of -56*x^4+572*x^3+604*x^2-934*x+180 1771108441020748 m001 (GaussAGM+MadelungNaCl)/(BesselK(0,1)+Zeta(5)) 1771108443377350 q001 4426/2499 1771108446445813 a007 Real Root Of 80*x^4-108*x^3-234*x^2-492*x+95 1771108447477647 m001 exp(Pi)*Landau/Rabbit 1771108453513432 m005 (1/2*5^(1/2)-7/9)/(5/8*exp(1)+2/9) 1771108454939561 m001 exp(Catalan)/Riemann3rdZero*sqrt(Pi) 1771108461611480 h001 (-3*exp(1/2)+6)/(-9*exp(2)+7) 1771108468348492 r009 Re(z^3+c),c=-23/86+6/13*I,n=19 1771108468874286 a001 3571/2*144^(37/40) 1771108469847513 s002 sum(A287335[n]/(2^n+1),n=1..infinity) 1771108471730569 l006 ln(1533/9010) 1771108476184194 a007 Real Root Of -514*x^4-616*x^3+231*x^2-45*x+831 1771108478364996 a007 Real Root Of -169*x^4-138*x^3+725*x^2+437*x-604 1771108482178187 s002 sum(A073525[n]/((10^n-1)/n),n=1..infinity) 1771108483939257 a001 46368/521*843^(11/14) 1771108484534169 b008 (3+Sech[1])^4 1771108489077721 a001 5702887/5778*322^(1/2) 1771108492082018 a007 Real Root Of -603*x^4-911*x^3-147*x^2-615*x+244 1771108492303267 r005 Im(z^2+c),c=-43/34+11/107*I,n=8 1771108494237801 m006 (4/5*exp(Pi)+1/2)/(1/5*exp(2*Pi)+1/4) 1771108496432948 p004 log(26407/4493) 1771108497494047 m005 (1/2*3^(1/2)+11/12)/(4/9*gamma+3/4) 1771108497587636 a007 Real Root Of -431*x^4-645*x^3+195*x^2-477*x-799 1771108498484637 r005 Im(z^2+c),c=-43/94+39/44*I,n=4 1771108499909056 a003 cos(Pi*3/80)/cos(Pi*27/56) 1771108503596391 m001 ln((2^(1/3)))*Riemann3rdZero^2*GAMMA(3/4) 1771108515123128 k008 concat of cont frac of 1771108517798032 a007 Real Root Of 218*x^4+206*x^3-347*x^2-149*x-176 1771108518104539 g006 Psi(1,1/11)+Psi(1,1/3)-Psi(1,1/10)-Psi(1,2/7) 1771108522538389 a001 956722026041/29*7^(19/22) 1771108534388333 a001 14930352/15127*322^(1/2) 1771108534496438 m005 (1/3*Zeta(3)+2/5)/(1/12*5^(1/2)-2/11) 1771108535424511 s002 sum(A043126[n]/(10^n+1),n=1..infinity) 1771108540999062 a001 39088169/39603*322^(1/2) 1771108541963555 a001 102334155/103682*322^(1/2) 1771108542104272 a001 267914296/271443*322^(1/2) 1771108542124803 a001 701408733/710647*322^(1/2) 1771108542127798 a001 1836311903/1860498*322^(1/2) 1771108542128235 a001 4807526976/4870847*322^(1/2) 1771108542128299 a001 12586269025/12752043*322^(1/2) 1771108542128308 a001 32951280099/33385282*322^(1/2) 1771108542128309 a001 86267571272/87403803*322^(1/2) 1771108542128310 a001 225851433717/228826127*322^(1/2) 1771108542128310 a001 591286729879/599074578*322^(1/2) 1771108542128310 a001 1548008755920/1568397607*322^(1/2) 1771108542128310 a001 4052739537881/4106118243*322^(1/2) 1771108542128310 a001 4807525989/4870846*322^(1/2) 1771108542128310 a001 6557470319842/6643838879*322^(1/2) 1771108542128310 a001 2504730781961/2537720636*322^(1/2) 1771108542128310 a001 956722026041/969323029*322^(1/2) 1771108542128310 a001 365435296162/370248451*322^(1/2) 1771108542128310 a001 139583862445/141422324*322^(1/2) 1771108542128310 a001 53316291173/54018521*322^(1/2) 1771108542128314 a001 20365011074/20633239*322^(1/2) 1771108542128338 a001 7778742049/7881196*322^(1/2) 1771108542128505 a001 2971215073/3010349*322^(1/2) 1771108542129649 a001 1134903170/1149851*322^(1/2) 1771108542137491 a001 433494437/439204*322^(1/2) 1771108542191240 a001 165580141/167761*322^(1/2) 1771108542559644 a001 63245986/64079*322^(1/2) 1771108545084718 a001 24157817/24476*322^(1/2) 1771108545942143 a007 Real Root Of -594*x^4-579*x^3+584*x^2-563*x-201 1771108549507575 l006 ln(1427/8387) 1771108549507575 p004 log(8387/1427) 1771108552154626 m001 (1+sin(1/12*Pi))/(-AlladiGrinstead+Paris) 1771108556303071 a001 3010349*6557470319842^(5/17) 1771108556303268 a001 33385282*1836311903^(5/17) 1771108556303660 a001 370248451*514229^(5/17) 1771108556646163 m001 (GAMMA(17/24)+Thue)/(ln(2)+polylog(4,1/2)) 1771108558299827 q001 6167/3482 1771108562391832 a001 9227465/9349*322^(1/2) 1771108566026359 m001 2^(1/2)*GAMMA(5/6)+ZetaP(3) 1771108567409223 a007 Real Root Of -552*x^4-598*x^3+832*x^2+823*x+957 1771108569716647 m001 (Zeta(3)+ln(3))/(ln(Pi)-Riemann1stZero) 1771108571316624 m002 Pi^4+80*Tanh[Pi] 1771108575046262 a007 Real Root Of -477*x^4-101*x^3-941*x^2+805*x+172 1771108578157346 r005 Re(z^2+c),c=-17/13+26/59*I,n=3 1771108583746322 a007 Real Root Of 527*x^4+402*x^3-750*x^2+356*x+31 1771108587683628 r005 Im(z^2+c),c=-8/19+19/64*I,n=53 1771108591105777 r002 44th iterates of z^2 + 1771108593048359 a007 Real Root Of -5*x^4-883*x^3+456*x^2+639*x+49 1771108595364543 m005 (1/2*Pi+2/9)/(5/11*gamma+3/4) 1771108597588176 h001 (5/12*exp(2)+5/7)/(5/7*exp(1)+1/5) 1771108601631313 a001 2/228826127*3^(9/14) 1771108601951205 a007 Real Root Of -614*x^4-494*x^3+901*x^2-582*x-560 1771108602375519 m001 ArtinRank2^2/GaussAGM(1,1/sqrt(2))/exp(Salem) 1771108606758811 r005 Re(z^2+c),c=-7/8+16/53*I,n=6 1771108607600038 a007 Real Root Of 601*x^4+833*x^3-406*x^2+532*x+930 1771108607913264 r005 Im(z^2+c),c=-29/50+15/53*I,n=16 1771108608987007 a007 Real Root Of -768*x^4-992*x^3+564*x^2+273*x+760 1771108611163044 m001 (LaplaceLimit+Niven)/(Catalan+BesselK(0,1)) 1771108614648710 r005 Im(z^2+c),c=-119/94+1/52*I,n=43 1771108616914241 r009 Im(z^3+c),c=-31/114+9/62*I,n=10 1771108617103942 a007 Real Root Of -500*x^4-366*x^3+322*x^2-955*x+185 1771108621376008 a001 2207/4181*6765^(7/51) 1771108621475707 m005 (1/2*gamma-1/12)/(1/4*5^(1/2)+3/5) 1771108623382764 s001 sum(exp(-4*Pi/5)^n*A232045[n],n=1..infinity) 1771108628183303 a007 Real Root Of -13*x^4-276*x^3-757*x^2+916*x-523 1771108628598152 m005 (-25/44+1/4*5^(1/2))/(4/5*exp(1)+3) 1771108628638661 a007 Real Root Of 684*x^4+364*x^3-905*x^2+912*x-254 1771108629325397 a007 Real Root Of 52*x^4+863*x^3-982*x^2+795*x+19 1771108637025209 m001 (3^(1/2)+ln(3)*DuboisRaymond)/ln(3) 1771108638019034 m001 (Magata-Sarnak)/(Tetranacci-ThueMorse) 1771108639766575 l006 ln(1321/7764) 1771108644439347 m001 (Artin-Conway)/(FeigenbaumC-Mills) 1771108655136986 s002 sum(A150518[n]/((pi^n-1)/n),n=1..infinity) 1771108661096144 r005 Im(z^2+c),c=-11/17+25/64*I,n=9 1771108662552936 a001 28657/521*843^(6/7) 1771108664261075 r005 Im(z^2+c),c=-17/18+29/172*I,n=32 1771108667327032 r005 Im(z^2+c),c=-22/21+10/49*I,n=56 1771108678007587 m001 ln(GAMMA(1/3))/KhintchineLevy*Zeta(1/2)^2 1771108679770316 m001 (Pi-GaussAGM)/(GlaisherKinkelin-Sierpinski) 1771108681016568 a001 3524578/3571*322^(1/2) 1771108681222786 m005 (1/2*Pi-5/9)/(1/8*2^(1/2)-3/4) 1771108681451094 m006 (1/4*exp(2*Pi)-1/6)/(3/Pi-1/5) 1771108682461619 m006 (2/5*ln(Pi)+1/3)/(1/4*Pi^2+2) 1771108686004767 a007 Real Root Of 465*x^4+919*x^3+178*x^2-123*x-246 1771108691387022 m002 -1+Pi-4*ProductLog[Pi]*Sech[Pi] 1771108701105877 m001 (1+2^(1/3))/(-exp(1/Pi)+Riemann1stZero) 1771108701159508 m001 1/BesselJ(1,1)/FeigenbaumDelta^2/exp(sqrt(Pi)) 1771108708221168 a007 Real Root Of -342*x^4-423*x^3+421*x^2-155*x-580 1771108716881492 r002 30th iterates of z^2 + 1771108717408508 m001 BesselI(1,2)*Artin+Salem 1771108718816534 a007 Real Root Of -696*x^4-563*x^3+477*x^2-986*x+478 1771108721087592 l006 ln(4650/5551) 1771108724355760 m001 Niven^LambertW(1)*ErdosBorwein^LambertW(1) 1771108724960650 a007 Real Root Of -287*x^4-83*x^3+702*x^2+139*x+407 1771108728032785 a007 Real Root Of 662*x^4+627*x^3-844*x^2-48*x-468 1771108732137722 m001 (GAMMA(7/12)+Gompertz)/(RenyiParking+ZetaP(2)) 1771108735459633 a001 9349/610*1597^(1/51) 1771108735940679 p003 LerchPhi(1/100,4,502/183) 1771108745774461 l006 ln(1215/7141) 1771108747440563 a001 1/3*(1/2*5^(1/2)+1/2)^10*76^(20/23) 1771108748629607 a007 Real Root Of 253*x^4-311*x^3+212*x^2-543*x+91 1771108750233293 r009 Re(z^3+c),c=-2/7+13/19*I,n=47 1771108750437714 m001 (FeigenbaumD+GaussAGM)/(sin(1)+ln(Pi)) 1771108756363764 a007 Real Root Of -820*x^4-994*x^3+603*x^2-211*x+281 1771108756791127 m001 (Catalan*BesselI(0,2)+Riemann1stZero)/Catalan 1771108758896777 m001 Rabbit*ln(MinimumGamma)^2*sqrt(3) 1771108760356176 m001 exp(Tribonacci)^2*ErdosBorwein/Ei(1)^2 1771108766175986 r009 Im(z^3+c),c=-8/19+2/39*I,n=43 1771108766530393 m004 2+5*Pi+(Sqrt[5]*Pi*Sech[Sqrt[5]*Pi])/4 1771108766777616 m004 2+5*Pi+(Sqrt[5]*Pi)/(2*E^(Sqrt[5]*Pi)) 1771108767024840 m004 2+5*Pi+(Sqrt[5]*Pi*Csch[Sqrt[5]*Pi])/4 1771108767034907 r009 Re(z^3+c),c=-18/31+4/35*I,n=5 1771108769456316 p003 LerchPhi(1/16,6,198/101) 1771108770541780 r002 35th iterates of z^2 + 1771108777251219 h001 (-3*exp(3)-1)/(-4*exp(-2)+4) 1771108780126460 a007 Real Root Of -613*x^4-318*x^3+271*x^2+163*x-35 1771108783208112 h001 (-10*exp(1)-10)/(-11*exp(3)+11) 1771108783862733 a007 Real Root Of 482*x^4+709*x^3-330*x^2-208*x-137 1771108796982302 a001 199/196418*514229^(26/35) 1771108804961924 r009 Im(z^3+c),c=-4/29+1/60*I,n=5 1771108812179174 a007 Real Root Of 631*x^4+103*x^3+805*x^2-450*x-105 1771108827356985 p004 log(20177/3433) 1771108827889780 a003 sin(Pi*4/119)/sin(Pi*14/69) 1771108831591447 m005 (1/2*5^(1/2)-5/11)/(6/11*Catalan-1/8) 1771108839009962 a001 17711/521*843^(13/14) 1771108839445742 m001 (1-DuboisRaymond)/(ReciprocalLucas+Sierpinski) 1771108844471137 a008 Real Root of x^3-240*x-1305 1771108847867030 m001 (Kolakoski+Tribonacci)/(ln(gamma)+Zeta(1,2)) 1771108850414992 a001 5/76*15127^(25/43) 1771108850457782 q001 1741/983 1771108856193447 a007 Real Root Of -587*x^4-377*x^3+896*x^2-678*x-330 1771108861070186 r005 Im(z^2+c),c=-47/82+21/61*I,n=29 1771108865304177 a001 17/16692641*11^(3/13) 1771108872047139 l006 ln(1109/6518) 1771108874621033 h001 (1/2*exp(1)+9/10)/(1/9*exp(2)+5/11) 1771108876539351 r005 Im(z^2+c),c=-37/106+9/32*I,n=36 1771108884951013 m005 (1/2*exp(1)-2/11)/(1/3*gamma-6/7) 1771108885021572 m001 GAMMA(1/6)/exp(Trott)*LambertW(1)^2 1771108888966292 m001 (Robbin+Salem)/(MadelungNaCl-Rabbit) 1771108889071853 m001 (GAMMA(5/6)+Tribonacci)/(gamma+ln(3)) 1771108891652165 m001 1/Riemann2ndZero/ln(MertensB1)^2*sin(Pi/12)^2 1771108891989875 r009 Im(z^3+c),c=-71/98+1/4*I,n=3 1771108893370577 m001 (2*Pi/GAMMA(5/6)-Artin)/(DuboisRaymond+Paris) 1771108896885177 a001 377*322^(2/3) 1771108900700629 m001 KomornikLoreti^ZetaQ(4)/BesselI(1,1) 1771108905743516 r009 Re(z^3+c),c=-9/98+38/45*I,n=56 1771108913218482 a007 Real Root Of -531*x^4-342*x^3+996*x^2-50*x+112 1771108921941233 a007 Real Root Of -438*x^4-704*x^3-318*x^2-384*x+716 1771108929474253 a007 Real Root Of 372*x^4-115*x^3-670*x^2+928*x-554 1771108940646130 r009 Im(z^3+c),c=-87/110+43/55*I,n=2 1771108942700143 m002 -E^Pi/4-Pi+6*Pi^3 1771108949229917 h001 (3/4*exp(1)+5/8)/(2/5*exp(1)+5/12) 1771108949271989 a005 (1/cos(5/174*Pi))^1833 1771108952961520 r009 Re(z^3+c),c=-29/98+21/38*I,n=27 1771108956521690 a007 Real Root Of -323*x^4-393*x^3+98*x^2+15*x+714 1771108956788658 a007 Real Root Of -138*x^4+282*x^3+833*x^2-727*x-976 1771108963972039 a007 Real Root Of 42*x^4-671*x^3-344*x^2-449*x+94 1771108964628219 r009 Re(z^3+c),c=-15/82+19/23*I,n=10 1771108970549268 a007 Real Root Of -112*x^4+906*x^3-469*x^2-851*x-953 1771108975265405 a002 18^(7/4)+6^(5/3) 1771108982029113 a007 Real Root Of -404*x^4+107*x^3+897*x^2-590*x+711 1771108995972290 a007 Real Root Of -361*x^4-37*x^3+688*x^2-802*x-232 1771108996215495 a007 Real Root Of -53*x^4-887*x^3+924*x^2+128*x-416 1771108997791317 m001 (FeigenbaumD+Kac)/(ln(5)+sin(1/12*Pi)) 1771109006978486 m005 (4*exp(1)-1/2)/(4*2^(1/2)+1/5) 1771109009876694 a003 cos(Pi*9/89)+sin(Pi*23/75) 1771109010173609 r002 41th iterates of z^2 + 1771109015086870 m001 cos(1)*Zeta(3)*exp(sqrt(1+sqrt(3)))^2 1771109018567639 a001 6677081/377 1771109022041445 a003 cos(Pi*7/87)+sin(Pi*27/91) 1771109025009535 l006 ln(1003/5895) 1771109028869179 a007 Real Root Of 690*x^4+886*x^3-533*x^2-337*x-792 1771109032310234 r005 Im(z^2+c),c=-9/14+1/216*I,n=34 1771109032570272 a007 Real Root Of -99*x^4+272*x^3+474*x^2-138*x+754 1771109039031579 m001 MinimumGamma^GAMMA(19/24)/QuadraticClass 1771109041188841 m005 (1/2*5^(1/2)-10/11)/(3/7*Pi-1/6) 1771109041496205 a001 3/4181*5^(32/57) 1771109051086436 m001 exp(1)*GAMMA(7/12)/GAMMA(1/24) 1771109052039097 b008 (-2+E)^Sqrt[3]*Pi 1771109056885754 p003 LerchPhi(1/1024,2,511/215) 1771109058448409 r005 Re(z^2+c),c=-13/70+17/27*I,n=32 1771109060547077 r005 Im(z^2+c),c=-8/19+19/64*I,n=50 1771109061317220 h001 (-4*exp(1)+7)/(-3*exp(1/3)+2) 1771109074387686 l006 ln(5099/6087) 1771109081574672 m001 1/cos(Pi/12)^2/Rabbit^2/ln(sqrt(2))^2 1771109081895362 a007 Real Root Of 290*x^4-466*x^3-988*x^2+877*x-790 1771109084177829 m001 (Trott-Weierstrass)/(MertensB3-Mills) 1771109086535800 m005 (1/2*gamma+1/2)/(1/3*2^(1/2)-11/12) 1771109091637347 r002 8th iterates of z^2 + 1771109093181123 a007 Real Root Of 819*x^4+871*x^3-989*x^2+7*x-105 1771109095243867 m001 (exp(Pi)+Zeta(5))/(exp(1/Pi)+gamma(2)) 1771109098434919 m001 (Ei(1,1)+Conway)/(MertensB2-ZetaP(3)) 1771109104258803 r002 48th iterates of z^2 + 1771109105253416 m001 (BesselJ(1,1)-Catalan)/(Khinchin+ZetaQ(4)) 1771109107710463 m005 (-1/66+1/6*5^(1/2))/(7/12*5^(1/2)+5/7) 1771109109115233 m001 (Pi-ln(2^(1/2)+1))/(exp(1/Pi)-Paris) 1771109118826049 a007 Real Root Of -418*x^4-526*x^3-194*x^2-545*x+834 1771109128842864 a007 Real Root Of 652*x^4+987*x^3-56*x^2-6*x-767 1771109129625972 h001 (1/10*exp(2)+1/11)/(7/12*exp(2)+3/8) 1771109136564368 r005 Im(z^2+c),c=-15/19+4/39*I,n=57 1771109141027572 a001 41/48*317811^(8/19) 1771109146773149 b008 3*(1+Pi)*Tan[3] 1771109149356528 a007 Real Root Of 605*x^4+499*x^3-516*x^2+930*x+85 1771109149410490 a003 cos(Pi*3/31)+cos(Pi*9/46) 1771109149749926 q001 602/3399 1771109157080323 a003 cos(Pi*2/89)*cos(Pi*39/88) 1771109160854352 a001 370248451/233*6557470319842^(12/17) 1771109160854352 a001 119218851371/233*1836311903^(12/17) 1771109161041881 r002 6th iterates of z^2 + 1771109164014379 r002 44th iterates of z^2 + 1771109165933225 a007 Real Root Of x^4-111*x^3+219*x^2-231*x+329 1771109167734934 r009 Im(z^3+c),c=-21/110+32/35*I,n=56 1771109169699252 a007 Real Root Of 242*x^4-590*x^3-354*x^2+572*x+994 1771109170276236 r002 28th iterates of z^2 + 1771109176911113 a007 Real Root Of -866*x^4-786*x^3+501*x^2-953*x+895 1771109180607849 r009 Im(z^3+c),c=-11/20+21/58*I,n=25 1771109181851843 m006 (1/5*exp(Pi)-1/4)/(1/3*Pi-4/5) 1771109183560621 a007 Real Root Of 230*x^4+661*x^3+708*x^2+377*x-144 1771109186616825 m001 Zeta(1,-1)*(CopelandErdos-Mills) 1771109187869909 m001 Chi(1)-gamma*ln(Pi) 1771109200347052 a001 199/317811*3^(53/56) 1771109211822176 m001 (-BesselI(0,2)+CareFree)/(Psi(1,1/3)-Zeta(3)) 1771109213778145 a007 Real Root Of -308*x^4+201*x^3+238*x^2+531*x+88 1771109214123547 l006 ln(897/5272) 1771109216735977 a001 9227465/843*123^(1/10) 1771109217024073 m001 TravellingSalesman^(BesselJ(0,1)/ZetaR(2)) 1771109217070918 m001 GaussAGM*TreeGrowth2nd+OrthogonalArrays 1771109227924967 a003 -1+cos(8/27*Pi)-2*cos(13/27*Pi)+cos(7/18*Pi) 1771109229461081 a001 29/832040*2584^(6/29) 1771109232346894 r005 Re(z^2+c),c=-7/86+14/29*I,n=49 1771109233718601 r002 29i'th iterates of 2*x/(1-x^2) of 1771109233739069 m005 (1/2*Pi+7/10)/(1/7*Pi+5/6) 1771109235498919 p003 LerchPhi(1/512,4,244/89) 1771109236024046 m001 (Zeta(5)+gamma(3))/(exp(-1/2*Pi)-Kolakoski) 1771109239008049 m001 (1+sin(1/12*Pi))/(-KhinchinHarmonic+MertensB2) 1771109239736368 a007 Real Root Of 758*x^4-841*x^3+732*x^2-382*x-7 1771109242972971 a007 Real Root Of 52*x^4+932*x^3+233*x^2+696*x+480 1771109243201445 r002 9th iterates of z^2 + 1771109246091200 r005 Im(z^2+c),c=-23/58+7/24*I,n=33 1771109249874207 m005 (1/3*2^(1/2)+1/6)/(5/12*5^(1/2)-4/7) 1771109252180076 a007 Real Root Of 611*x^4+731*x^3-701*x^2-358*x-386 1771109259566171 m005 (1/2*Zeta(3)+1/4)/(9/10*gamma-1) 1771109260555641 a007 Real Root Of 421*x^4+797*x^3-95*x^2-680*x-621 1771109261829606 m001 1/RenyiParking/Conway*ln(sin(1)) 1771109271523178 q001 4279/2416 1771109272130102 r009 Re(z^3+c),c=-43/102+23/51*I,n=3 1771109276652048 a007 Real Root Of 705*x^4+585*x^3-511*x^2+900*x-490 1771109285697667 m002 -3+1/(6*ProductLog[Pi])+ProductLog[Pi] 1771109297597891 a007 Real Root Of 435*x^4+379*x^3-254*x^2+896*x+209 1771109299815364 m001 (cos(1/12*Pi)-ln(Pi))/Psi(1,1/3) 1771109312277221 r005 Re(z^2+c),c=11/58+19/47*I,n=26 1771109312921691 m001 (MertensB1+Trott)/(2^(1/2)+Champernowne) 1771109315185237 r002 40th iterates of z^2 + 1771109316189775 r005 Re(z^2+c),c=-145/118+10/31*I,n=2 1771109318077800 r005 Im(z^2+c),c=-7/6+19/96*I,n=51 1771109326494000 l006 ln(1688/9921) 1771109337916318 a007 Real Root Of -941*x^4-938*x^3+701*x^2-747*x+526 1771109339084201 a007 Real Root Of 582*x^4+808*x^3-287*x^2+282*x+162 1771109339904613 m001 (Pi+gamma(3))/(MadelungNaCl+Trott2nd) 1771109343711006 a007 Real Root Of -830*x^4-689*x^3+917*x^2-657*x+299 1771109344024472 m001 3/2*Khinchin*GAMMA(5/24) 1771109345092233 m005 (1/3*exp(1)+1/10)/(5/12*5^(1/2)-4/11) 1771109345459260 a001 843/196418*2178309^(13/51) 1771109346528523 a001 1/9303105*3^(5/11) 1771109357501678 a007 Real Root Of 667*x^4-332*x^3-959*x^2-772*x+168 1771109370502572 l006 ln(5548/6623) 1771109372795911 a003 cos(Pi*5/92)+sin(Pi*21/73) 1771109372917333 a001 3524578/521*322^(1/6) 1771109379059495 q001 6817/3849 1771109380548668 a007 Real Root Of -459*x^4-253*x^3+336*x^2-704*x+810 1771109389980666 a007 Real Root Of 297*x^4+340*x^3-521*x^2-726*x-685 1771109390439135 m006 (1/3*ln(Pi)-1/5)/(3/4*ln(Pi)+1/6) 1771109397397309 r002 63th iterates of z^2 + 1771109397504021 r002 5th iterates of z^2 + 1771109397993831 r005 Im(z^2+c),c=-15/14+55/228*I,n=13 1771109399286016 r005 Re(z^2+c),c=-27/32+5/63*I,n=14 1771109401373413 a001 11/75025*17711^(37/51) 1771109403590229 m001 ln(Pi)+ln(2+3^(1/2))*PlouffeB 1771109412542948 r005 Im(z^2+c),c=1/26+11/63*I,n=8 1771109418178637 m001 (MertensB2+TreeGrowth2nd)/(gamma(3)-GaussAGM) 1771109419986429 a007 Real Root Of -733*x^4-507*x^3+889*x^2-930*x-40 1771109422074098 m001 (Stephens+StronglyCareFree)/(Conway-cos(1)) 1771109425796432 r002 21th iterates of z^2 + 1771109438064187 m001 Pi*csc(1/24*Pi)/GAMMA(23/24)/(Salem^(3^(1/2))) 1771109453922930 l006 ln(791/4649) 1771109453925179 a007 Real Root Of 241*x^4+439*x^3+13*x^2-381*x-648 1771109465138794 m001 (GaussAGM-ThueMorse)/(ln(3)+GAMMA(17/24)) 1771109469996832 r005 Im(z^2+c),c=-35/94+11/38*I,n=12 1771109474045810 a007 Real Root Of 315*x^4+157*x^3-706*x^2-466*x-838 1771109476656481 a003 cos(Pi*1/96)-cos(Pi*21/109) 1771109477038707 a007 Real Root Of -134*x^4+512*x^3+935*x^2-537*x+279 1771109483342577 a007 Real Root Of 654*x^4+730*x^3-978*x^2-239*x+265 1771109486846894 a003 cos(Pi*1/114)+cos(Pi*9/41) 1771109491314034 m001 1/Salem^2*exp(Riemann2ndZero)^3 1771109494083032 a001 1346269/1364*322^(1/2) 1771109496329949 m001 (Thue*ZetaP(2)+ThueMorse)/ZetaP(2) 1771109497227370 a007 Real Root Of 776*x^4-245*x^3-892*x^2-567*x+129 1771109497451220 m001 (PlouffeB+Sierpinski)/(GAMMA(2/3)+Artin) 1771109509378801 a001 1/439204*76^(9/19) 1771109510042618 m005 (1/2*2^(1/2)-1)/(9/11*Pi-11/12) 1771109510045251 m001 (ln(Pi)-TreeGrowth2nd)/(Pi+Chi(1)) 1771109510685591 r005 Im(z^2+c),c=-25/62+17/58*I,n=33 1771109515464124 m005 (1/2*Pi+3/4)/(7/12*3^(1/2)+3/10) 1771109515711892 r005 Re(z^2+c),c=-9/8+16/107*I,n=4 1771109526242222 r005 Im(z^2+c),c=-17/44+16/55*I,n=16 1771109527524469 m001 ThueMorse^cos(1)*ThueMorse^(2^(1/2)) 1771109527524469 m001 ThueMorse^cos(1)*ThueMorse^sqrt(2) 1771109529840635 s002 sum(A015775[n]/(n^2*2^n-1),n=1..infinity) 1771109534521069 a007 Real Root Of -522*x^4-798*x^3-440*x^2-751*x+753 1771109542845281 r005 Im(z^2+c),c=-43/42+9/46*I,n=61 1771109556997393 m001 Pi^Salem*polylog(4,1/2)^Salem 1771109558661835 a007 Real Root Of 683*x^4+595*x^3-761*x^2+652*x+127 1771109560362875 q001 2538/1433 1771109562569534 m006 (4/5*ln(Pi)-3/5)/(1/3*exp(2*Pi)-1/5) 1771109563451369 a005 (1/cos(29/147*Pi))^193 1771109565832576 a001 24476/1597*1597^(1/51) 1771109567066195 r005 Re(z^2+c),c=-9/86+24/55*I,n=43 1771109567171105 a007 Real Root Of 583*x^4+837*x^3+6*x^2+676*x+92 1771109571737353 r005 Re(z^2+c),c=-9/11+5/43*I,n=44 1771109572262861 a007 Real Root Of -517*x^4-625*x^3+6*x^2-865*x+64 1771109575682945 m005 (1/3*5^(1/2)+3/7)/(4*3^(1/2)-3/10) 1771109576340976 a007 Real Root Of -227*x^4+118*x^3+683*x^2-591*x-300 1771109577838630 m001 Grothendieck*HeathBrownMoroz+ZetaP(3) 1771109578242839 m001 StolarskyHarborth/Zeta(1/2)/Pi 1771109591723349 m001 ln(BesselK(1,1))^2*BesselJ(0,1)^2*GAMMA(19/24) 1771109593660409 a007 Real Root Of -851*x^4-653*x^3+795*x^2-957*x+557 1771109594872446 a007 Real Root Of -175*x^4-180*x^3-341*x^2-762*x+442 1771109599654642 l006 ln(1476/8675) 1771109599721245 r005 Im(z^2+c),c=-11/36+15/58*I,n=6 1771109602018058 a001 1346269/2207*322^(7/12) 1771109605008175 m006 (5/6*exp(Pi)-1/3)/(2*exp(2*Pi)-1) 1771109609162780 r005 Re(z^2+c),c=9/118+11/47*I,n=15 1771109611458431 m001 Otter*(Magata+Sierpinski) 1771109611878361 m001 GAMMA(13/24)*KhinchinLevy-ZetaP(3) 1771109612165228 a005 (1/sin(50/121*Pi))^1239 1771109612559941 r004 Re(z^2+c),c=-45/46+5/19*I,z(0)=-1,n=55 1771109616121418 a007 Real Root Of 569*x^4+780*x^3-976*x^2-873*x+250 1771109617072543 a003 cos(Pi*8/61)+sin(Pi*31/95) 1771109617440093 a003 cos(Pi*13/61)+sin(Pi*48/107) 1771109622276752 l006 ln(5997/7159) 1771109624928457 r009 Re(z^3+c),c=-51/86+25/49*I,n=12 1771109628418302 r005 Im(z^2+c),c=-5/14+15/53*I,n=22 1771109630978099 a007 Real Root Of -195*x^4-206*x^3-235*x^2+738*x-122 1771109633420978 m001 1/GAMMA(19/24)*exp(Bloch)^2*cos(Pi/5) 1771109634055411 m001 (5^(1/2)+Ei(1,1))/(LaplaceLimit+Sarnak) 1771109634318065 m001 Catalan/exp(TwinPrimes)^2/sinh(1)^2 1771109640331032 a007 Real Root Of -388*x^4+436*x^3-958*x^2+751*x-105 1771109643390423 r005 Re(z^2+c),c=-17/78+4/49*I,n=2 1771109646497883 m001 (CareFree-DuboisRaymond)/(Otter-ZetaP(4)) 1771109649202113 a007 Real Root Of -734*x^4-790*x^3+685*x^2-705*x-564 1771109649327941 r009 Re(z^3+c),c=-29/106+32/63*I,n=9 1771109651337454 m005 (1/2*Zeta(3)-4)/(1/10*2^(1/2)-1/3) 1771109657652804 a007 Real Root Of -612*x^4-990*x^3+87*x^2-468*x-580 1771109660464758 m008 (4/5*Pi^4-1/2)/(1/5*Pi-5) 1771109672492850 m005 (1/2*gamma-8/11)/(1/6*5^(1/2)-1/8) 1771109675738629 p001 sum((-1)^n/(124*n+99)/n/(25^n),n=0..infinity) 1771109684459671 m001 Pi^(1/2)-ZetaQ(3)^HardHexagonsEntropy 1771109684571107 m005 (1/2*gamma+1/12)/(7/11*2^(1/2)-3) 1771109685809647 a007 Real Root Of -36*x^4-680*x^3-725*x^2+467*x+128 1771109686982419 a001 64079/4181*1597^(1/51) 1771109688434312 r002 57th iterates of z^2 + 1771109693233819 a007 Real Root Of 406*x^4+564*x^3+819*x^2-435*x-100 1771109695172814 m001 3^(1/2)/(Kolakoski-Pi^(1/2)) 1771109695619212 a003 cos(Pi*16/63)*cos(Pi*41/98) 1771109702800614 a001 2207/5*75025^(17/23) 1771109705296473 a001 55/24476*18^(5/7) 1771109720473036 h001 (2/11*exp(1)+3/11)/(6/11*exp(2)+3/10) 1771109728328916 p004 log(36857/6271) 1771109737474710 r002 58th iterates of z^2 + 1771109744671592 a007 Real Root Of 767*x^4+615*x^3-807*x^2+966*x+112 1771109761857148 a001 39603/2584*1597^(1/51) 1771109763590203 r008 a(0)=0,K{-n^6,8+7*n^3-13*n^2+55*n} 1771109764981121 r005 Re(z^2+c),c=-5/52+29/64*I,n=21 1771109767421652 m001 (-LaplaceLimit+ZetaQ(2))/(5^(1/2)+Zeta(3)) 1771109767937511 l006 ln(685/4026) 1771109770808202 q001 5873/3316 1771109772983067 m001 LaplaceLimit*CareFree/ln(Salem)^2 1771109775231310 m001 (-LaplaceLimit+Rabbit)/(5^(1/2)+BesselK(0,1)) 1771109780715736 r002 4th iterates of z^2 + 1771109781289838 r005 Im(z^2+c),c=-7/9+6/77*I,n=63 1771109781907930 m001 (ln(3)+MadelungNaCl)/(Mills-Porter) 1771109788284253 a007 Real Root Of -384*x^4-174*x^3+730*x^2-219*x+134 1771109791202720 a007 Real Root Of -770*x^4-518*x^3+991*x^2-563*x+593 1771109795112579 a007 Real Root Of 644*x^4+588*x^3-535*x^2+892*x+188 1771109798778608 a007 Real Root Of -132*x^4+379*x^3+916*x^2-751*x-799 1771109802381426 r002 63th iterates of z^2 + 1771109804757185 m001 (-exp(1)+2)/(GAMMA(11/12)+3) 1771109838315596 r009 Re(z^3+c),c=-8/27+21/38*I,n=43 1771109838975964 l006 ln(6446/7695) 1771109840368699 m005 (1/2+1/2*5^(1/2))/(2/9*5^(1/2)+5/12) 1771109842774958 p004 log(19507/3319) 1771109843006525 r005 Im(z^2+c),c=-29/48+13/45*I,n=30 1771109845582985 a007 Real Root Of -415*x^4-824*x^3-443*x^2-117*x+688 1771109853504323 r005 Re(z^2+c),c=-11/10+63/221*I,n=13 1771109857210888 m001 (MadelungNaCl-Psi(1,1/3))/(Magata+Mills) 1771109857976973 a007 Real Root Of -529*x^4-963*x^3-417*x^2-694*x-66 1771109860237076 r002 64i'th iterates of 2*x/(1-x^2) of 1771109860726377 r005 Re(z^2+c),c=-43/48+11/38*I,n=2 1771109861388117 m001 (ln(3)+CopelandErdos)/(LandauRamanujan-Trott) 1771109862394168 m006 (5/6*exp(Pi)+1/2)/(5*exp(Pi)-4) 1771109864491119 a007 Real Root Of -584*x^4-274*x^3+569*x^2-925*x+801 1771109867813317 r005 Re(z^2+c),c=-9/14+58/185*I,n=9 1771109870052593 m001 (Ei(1)+BesselI(0,2))/CopelandErdos 1771109876435361 m001 GAMMA(1/12)*Sierpinski^2/ln(GAMMA(11/24))^2 1771109877554424 a007 Real Root Of -724*x^4-539*x^3+753*x^2-789*x+370 1771109891949573 r005 Im(z^2+c),c=-67/64+12/59*I,n=39 1771109898566336 a007 Real Root Of 32*x^4+542*x^3-457*x^2-358*x-519 1771109902644068 r005 Re(z^2+c),c=-3/94+26/45*I,n=55 1771109903913433 r004 Re(z^2+c),c=2/9+1/4*I,z(0)=exp(7/24*I*Pi),n=3 1771109911057209 r005 Im(z^2+c),c=-55/62+1/58*I,n=4 1771109912581567 a001 1762289/2889*322^(7/12) 1771109919977018 a007 Real Root Of 382*x^4+262*x^3-926*x^2-688*x-617 1771109920275593 a007 Real Root Of 53*x^4+993*x^3+966*x^2+74*x+31 1771109930659878 p003 LerchPhi(1/16,6,83/134) 1771109930961232 q001 3335/1883 1771109941238459 a007 Real Root Of 824*x^4+998*x^3-655*x^2+390*x+182 1771109944494066 a001 5778/5*21^(26/29) 1771109946326318 m001 (BesselJ(0,1)+gamma(3))/(-GAMMA(23/24)+Lehmer) 1771109948527123 r005 Im(z^2+c),c=-28/27+7/34*I,n=19 1771109948956729 r009 Re(z^3+c),c=-21/110+19/21*I,n=5 1771109957892181 a001 9227465/15127*322^(7/12) 1771109962880575 h001 (4/7*exp(2)+4/11)/(9/10*exp(1)+1/7) 1771109963664542 a007 Real Root Of 390*x^4+525*x^3+24*x^2+677*x+203 1771109964445003 l006 ln(1264/7429) 1771109964502911 a001 24157817/39603*322^(7/12) 1771109965467404 a001 31622993/51841*322^(7/12) 1771109965608121 a001 165580141/271443*322^(7/12) 1771109965628652 a001 433494437/710647*322^(7/12) 1771109965631647 a001 567451585/930249*322^(7/12) 1771109965632084 a001 2971215073/4870847*322^(7/12) 1771109965632148 a001 7778742049/12752043*322^(7/12) 1771109965632157 a001 10182505537/16692641*322^(7/12) 1771109965632158 a001 53316291173/87403803*322^(7/12) 1771109965632159 a001 139583862445/228826127*322^(7/12) 1771109965632159 a001 182717648081/299537289*322^(7/12) 1771109965632159 a001 956722026041/1568397607*322^(7/12) 1771109965632159 a001 2504730781961/4106118243*322^(7/12) 1771109965632159 a001 3278735159921/5374978561*322^(7/12) 1771109965632159 a001 10610209857723/17393796001*322^(7/12) 1771109965632159 a001 4052739537881/6643838879*322^(7/12) 1771109965632159 a001 1134903780/1860499*322^(7/12) 1771109965632159 a001 591286729879/969323029*322^(7/12) 1771109965632159 a001 225851433717/370248451*322^(7/12) 1771109965632159 a001 21566892818/35355581*322^(7/12) 1771109965632159 a001 32951280099/54018521*322^(7/12) 1771109965632163 a001 1144206275/1875749*322^(7/12) 1771109965632187 a001 1201881744/1970299*322^(7/12) 1771109965632354 a001 1836311903/3010349*322^(7/12) 1771109965633498 a001 701408733/1149851*322^(7/12) 1771109965641340 a001 66978574/109801*322^(7/12) 1771109965695089 a001 9303105/15251*322^(7/12) 1771109966063493 a001 39088169/64079*322^(7/12) 1771109968588567 a001 3732588/6119*322^(7/12) 1771109974856698 a007 Real Root Of -432*x^4-804*x^3-429*x^2-246*x+694 1771109982169621 a001 969323029*6557470319842^(3/17) 1771109982169621 a001 4106118243*1836311903^(3/17) 1771109982169858 a001 17393796001*514229^(3/17) 1771109984451546 m001 ZetaQ(3)/(LambertW(1)+gamma(1)) 1771109985625507 m001 FeigenbaumKappa-Pi^(1/2)-GAMMA(2/3) 1771109985895682 a001 5702887/9349*322^(7/12) 1771109987036912 h001 (9/11*exp(2)+1/8)/(4/9*exp(2)+1/5) 1771109999696391 a001 1/5473*610^(17/48) 1771110001570170 a007 Real Root Of -587*x^4-516*x^3+789*x^2-650*x-717 1771110001622637 m001 1+Gompertz+ZetaP(3) 1771110010129623 m005 (1/2*Pi-10/11)/(2/9*gamma-1/11) 1771110015482297 a007 Real Root Of 474*x^4+253*x^3-748*x^2+87*x-758 1771110016676500 m005 (1/2*gamma-1/2)/(31/144+7/16*5^(1/2)) 1771110024996734 m005 (1/2*Zeta(3)+5/11)/(1/2*2^(1/2)-1/9) 1771110027452417 l006 ln(6895/8231) 1771110029148475 m008 (2/3*Pi^5-3)/(3/5*Pi-3/4) 1771110033881479 m006 (1/6*ln(Pi)+3/5)/(5/6*exp(2*Pi)+1/4) 1771110039781993 m001 (2^(1/2)-CareFree)/(-FeigenbaumDelta+Robbin) 1771110044466134 r002 18th iterates of z^2 + 1771110046149280 a001 7/10946*610^(29/56) 1771110049424107 r009 Re(z^3+c),c=-5/18+36/53*I,n=30 1771110050020857 m002 -4-4*Pi-Log[Pi] 1771110051699917 m001 (BesselJ(0,1)+Zeta(3))/(-Pi^(1/2)+Robbin) 1771110073498584 a005 (1/cos(14/193*Pi))^1692 1771110073857372 a001 1/10959*17711^(4/59) 1771110078470179 a007 Real Root Of 738*x^4+936*x^3-886*x^2-421*x-28 1771110079031658 a001 2161/141*1597^(1/51) 1771110085658192 r009 Re(z^3+c),c=-7/36+18/25*I,n=39 1771110089236039 r009 Re(z^3+c),c=-3/52+27/49*I,n=4 1771110095885710 r009 Re(z^3+c),c=-9/29+31/52*I,n=63 1771110102310147 k008 concat of cont frac of 1771110104520426 a001 2178309/3571*322^(7/12) 1771110105900315 r002 2th iterates of z^2 + 1771110110437634 a003 cos(Pi*9/62)+sin(Pi*24/71) 1771110111031241 k008 concat of cont frac of 1771110111117245 k007 concat of cont frac of 1771110111141281 k007 concat of cont frac of 1771110113110192 k008 concat of cont frac of 1771110113131191 k007 concat of cont frac of 1771110118131151 k008 concat of cont frac of 1771110121321833 k008 concat of cont frac of 1771110122111486 k008 concat of cont frac of 1771110128093766 r005 Im(z^2+c),c=3/22+5/37*I,n=7 1771110130617498 r002 46th iterates of z^2 + 1771110131327612 k009 concat of cont frac of 1771110131888532 k008 concat of cont frac of 1771110134112111 k007 concat of cont frac of 1771110134701975 h005 exp(cos(Pi*15/58)-cos(Pi*25/54)) 1771110142119839 k008 concat of cont frac of 1771110151314143 k006 concat of cont frac of 1771110151911315 k008 concat of cont frac of 1771110155643869 r005 Im(z^2+c),c=-11/18+29/86*I,n=57 1771110158594084 q001 4132/2333 1771110159706174 h001 (-exp(7)-6)/(-3*exp(3)-2) 1771110174063416 a003 cos(Pi*16/73)+sin(Pi*50/103) 1771110181802569 a007 Real Root Of -448*x^4-396*x^3+346*x^2-180*x+804 1771110181912607 a007 Real Root Of 169*x^4+87*x^3-8*x^2+579*x-129 1771110188957749 a007 Real Root Of 253*x^4-405*x^3-937*x^2+724*x-518 1771110189331775 m001 GAMMA(7/24)^2/exp(RenyiParking)^2/Zeta(3) 1771110192211801 a007 Real Root Of -669*x^4-740*x^3+851*x^2-148*x-460 1771110192882591 l006 ln(7344/8767) 1771110196612158 r005 Re(z^2+c),c=-17/94+49/60*I,n=60 1771110196927910 l006 ln(579/3403) 1771110211011918 k007 concat of cont frac of 1771110212181231 k007 concat of cont frac of 1771110212275211 a001 7/281*199^(29/36) 1771110217705578 a007 Real Root Of 215*x^4-324*x^3-903*x^2+214*x-704 1771110224548406 a007 Real Root Of -821*x^4-801*x^3+705*x^2-407*x+696 1771110236451095 l006 ln(7611/7747) 1771110246930166 a007 Real Root Of 72*x^4+46*x^3+222*x^2+842*x+342 1771110247754632 a007 Real Root Of -222*x^4-437*x^3-413*x^2-52*x+960 1771110250428815 m001 GAMMA(17/24)+LandauRamanujan2nd^MertensB3 1771110250563264 m005 (1/2*Pi+5/8)/(1/8*exp(1)+9/10) 1771110255821121 k008 concat of cont frac of 1771110257260525 a007 Real Root Of -158*x^4-172*x^3+364*x^2+827*x+922 1771110259105556 a007 Real Root Of 412*x^4+925*x^3+433*x^2+685*x+940 1771110262684772 a005 (1/sin(71/221*Pi))^404 1771110263529145 a007 Real Root Of -25*x^4-30*x^3-621*x^2-689*x+807 1771110265010890 a007 Real Root Of 525*x^4+530*x^3-550*x^2+454*x+308 1771110275949340 m002 -5+Pi^3-5*Pi^3*Cosh[Pi] 1771110276649111 a001 199/75025*4181^(39/50) 1771110279230788 a007 Real Root Of 852*x^4+916*x^3-721*x^2+866*x+501 1771110282683412 m001 (Artin-GAMMA(13/24))/TravellingSalesman 1771110284600840 a007 Real Root Of -474*x^4+18*x^3+970*x^2-855*x+207 1771110287018237 r009 Re(z^3+c),c=-8/29+21/43*I,n=24 1771110288415375 a007 Real Root Of -607*x^4-846*x^3-97*x^2-385*x+895 1771110301421121 k008 concat of cont frac of 1771110304091116 a007 Real Root Of 717*x^4+573*x^3-994*x^2+434*x+15 1771110308384413 a003 cos(Pi*17/84)+sin(Pi*48/115) 1771110310199017 a007 Real Root Of -812*x^4-724*x^3+823*x^2-861*x-139 1771110311112122 k007 concat of cont frac of 1771110311665867 r009 Re(z^3+c),c=-23/86+35/47*I,n=4 1771110311743213 k008 concat of cont frac of 1771110312138629 a007 Real Root Of -408*x^4-684*x^3-60*x^2+143*x+656 1771110312418651 k008 concat of cont frac of 1771110312612288 q001 4929/2783 1771110314025152 p001 sum((-1)^n/(547*n+331)/n/(64^n),n=1..infinity) 1771110314626686 r005 Im(z^2+c),c=-11/114+5/23*I,n=7 1771110316521982 r005 Re(z^2+c),c=-73/62+7/55*I,n=28 1771110320402000 a001 196418/843*322^(3/4) 1771110322892538 m005 (1/2*exp(1)-4/11)/(6*Catalan+1/8) 1771110323412172 a007 Real Root Of 675*x^4+843*x^3-767*x^2-430*x-314 1771110329293904 a007 Real Root Of -673*x^4-936*x^3+879*x^2+261*x-873 1771110331221424 k008 concat of cont frac of 1771110331262893 r005 Im(z^2+c),c=-27/34+10/99*I,n=56 1771110339249976 l006 ln(7793/9303) 1771110341141629 k006 concat of cont frac of 1771110341999952 m001 (Pi^(1/2)*GAMMA(7/12)-gamma(3))/GAMMA(7/12) 1771110344172209 m001 FeigenbaumB^2*GolombDickman/ln(GAMMA(1/12)) 1771110347838708 m001 (2^(1/3)+2/3)/(sin(Pi/5)+1/2) 1771110351597586 r005 Im(z^2+c),c=-37/106+9/32*I,n=38 1771110361533604 m005 (23/10+3/2*5^(1/2))/(1/3*gamma+3) 1771110365819997 m005 (1/2*2^(1/2)-7/12)/(4/11*exp(1)+6) 1771110373710416 r002 62th iterates of z^2 + 1771110374971195 m001 Zeta(1,2)^2/FeigenbaumAlpha*exp(cos(Pi/5))^2 1771110375459247 r005 Re(z^2+c),c=-15/82+13/60*I,n=11 1771110377098562 l006 ln(1631/9586) 1771110378037811 m001 (2^(1/2)+arctan(1/3))/(Paris+QuadraticClass) 1771110382660213 r005 Im(z^2+c),c=-17/66+13/50*I,n=14 1771110383253238 a007 Real Root Of 669*x^4+878*x^3-200*x^2+522*x-153 1771110389091203 r005 Im(z^2+c),c=-1/10+7/32*I,n=17 1771110389640557 a008 Real Root of (-5+5*x-7*x^2-8*x^4+x^8) 1771110392034153 m001 1/exp(Khintchine)^2*Backhouse^2/GAMMA(1/6) 1771110395828928 a007 Real Root Of -841*x^4-876*x^3+4*x^2+980*x-168 1771110396459089 a003 cos(Pi*4/79)/sin(Pi*16/85) 1771110403200249 a001 1322157322203*144^(1/17) 1771110409729605 m005 (11/20+1/4*5^(1/2))/(2/7*Catalan+6) 1771110412879540 m001 (FeigenbaumMu-MertensB2)/(Ei(1)-arctan(1/2)) 1771110417711104 k006 concat of cont frac of 1771110423755026 q001 5726/3233 1771110424464139 r005 Im(z^2+c),c=-21/62+38/61*I,n=55 1771110427947379 m001 exp(GAMMA(17/24))/Riemann3rdZero*GAMMA(3/4) 1771110430807531 m001 (Otter-Trott)/(sin(1/12*Pi)+OrthogonalArrays) 1771110431270659 a007 Real Root Of 522*x^4+521*x^3-411*x^2+312*x-400 1771110433679528 a007 Real Root Of 181*x^4+48*x^3+13*x^2+869*x-16 1771110439591799 m005 (1/2*Pi+1/11)/(10/11*3^(1/2)-7/11) 1771110441337535 a007 Real Root Of 595*x^4-112*x^3+282*x^2-253*x+36 1771110445132156 k008 concat of cont frac of 1771110454442329 a003 cos(Pi*8/53)+sin(Pi*34/99) 1771110456176447 a007 Real Root Of -876*x^4-848*x^3+582*x^2-722*x+804 1771110457803007 m005 (1/2*Zeta(3)-2/11)/(4/7*2^(1/2)-4/7) 1771110469670028 l006 ln(8242/9839) 1771110470487400 a007 Real Root Of -671*x^4-733*x^3+139*x^2-882*x+532 1771110470640316 r009 Re(z^3+c),c=-23/74+31/53*I,n=30 1771110476260913 l006 ln(1052/6183) 1771110481268247 r005 Im(z^2+c),c=-31/78+26/61*I,n=7 1771110483705657 r002 57i'th iterates of 2*x/(1-x^2) of 1771110495121468 r005 Re(z^2+c),c=-1+31/223*I,n=42 1771110499427614 r005 Re(z^2+c),c=5/18+15/64*I,n=23 1771110502054075 m001 (MadelungNaCl+Porter)/(5^(1/2)-BesselK(0,1)) 1771110503724189 m005 (1/2*Catalan+8/11)/(4/11*Catalan-2/5) 1771110505323183 a001 4/317811*1597^(19/53) 1771110507738256 q001 6523/3683 1771110520824292 m005 (1/3*5^(1/2)+3/7)/(-21/88+3/22*5^(1/2)) 1771110527767947 m001 (exp(Pi)+HardHexagonsEntropy)/(Robbin+Sarnak) 1771110529237606 a007 Real Root Of -862*x^4-953*x^3+666*x^2-528*x+163 1771110531808134 r005 Im(z^2+c),c=-37/106+9/32*I,n=34 1771110532254605 l006 ln(9590/9607) 1771110533468875 r002 29th iterates of z^2 + 1771110538886313 a007 Real Root Of 748*x^4+932*x^3-225*x^2+352*x-853 1771110545074938 m001 Champernowne*FeigenbaumKappa^KhinchinLevy 1771110557991695 r002 4th iterates of z^2 + 1771110558163335 m001 GAMMA(3/4)^2/ln(Catalan)/cos(Pi/12) 1771110575035897 r005 Im(z^2+c),c=-1/10+7/32*I,n=15 1771110577252692 m001 GAMMA(7/12)^2/ln(BesselK(0,1))^2*LambertW(1) 1771110582315849 l006 ln(1525/8963) 1771110582499840 m001 (1+GAMMA(3/4))/(Gompertz+TwinPrimes) 1771110586721194 a001 14662949395604/233*1836311903^(10/17) 1771110586721194 a001 119218851371/233*6557470319842^(10/17) 1771110594545461 r005 Re(z^2+c),c=10/29+14/45*I,n=31 1771110596141760 a003 cos(Pi*43/101)/cos(Pi*11/24) 1771110599450804 a007 Real Root Of -83*x^4+107*x^3-816*x^2+309*x+81 1771110604568778 r005 Im(z^2+c),c=-103/118+11/58*I,n=12 1771110607178263 r005 Im(z^2+c),c=-8/23+16/57*I,n=18 1771110608147584 a007 Real Root Of 273*x^4-586*x^3-684*x^2+970*x+997 1771110609340314 a007 Real Root Of 24*x^4-94*x^3+271*x^2+413*x-877 1771110612167107 h001 (3/7*exp(2)+1/3)/(2/5*exp(1)+8/9) 1771110613211111 k007 concat of cont frac of 1771110613469144 a007 Real Root Of 381*x^4+996*x^3+243*x^2-737*x+117 1771110613546107 a007 Real Root Of -357*x^4-774*x^3+77*x^2+739*x+280 1771110614550605 a007 Real Root Of 717*x^4+865*x^3-557*x^2+353*x+123 1771110617398748 a001 2/987*4181^(13/50) 1771110630024315 a007 Real Root Of -981*x^4-983*x^3+984*x^2-883*x-459 1771110630873503 r005 Im(z^2+c),c=-59/70+1/8*I,n=58 1771110631384717 a001 843/1597*6765^(7/51) 1771110641117742 k006 concat of cont frac of 1771110647925125 r009 Re(z^3+c),c=-5/118+44/57*I,n=31 1771110647961919 m001 (2^(1/3)+Magata)/(Riemann3rdZero+Totient) 1771110655433035 r005 Re(z^2+c),c=8/25+17/63*I,n=62 1771110661831360 a001 2178309/199*76^(1/9) 1771110668997823 m001 1/exp(Riemann3rdZero)/Magata^2/Sierpinski^2 1771110669554072 h001 (10/11*exp(2)+1/9)/(4/9*exp(2)+4/7) 1771110670603003 s002 sum(A249369[n]/(exp(n)-1),n=1..infinity) 1771110671543250 r009 Re(z^3+c),c=-13/64+4/17*I,n=7 1771110675887250 m001 BesselJ(0,1)-LambertW(1)*Zeta(5) 1771110677749155 m001 (Lehmer-Robbin)/(ArtinRank2-HardyLittlewoodC4) 1771110678001617 r005 Im(z^2+c),c=-125/126+8/43*I,n=17 1771110678179515 a007 Real Root Of 742*x^4-139*x^3+962*x^2-318*x-88 1771110681881561 m005 (3*Catalan-1/3)/(5/6*Catalan+3/5) 1771110683654879 r005 Re(z^2+c),c=-3/58+35/62*I,n=22 1771110688906449 r005 Im(z^2+c),c=-17/31+19/59*I,n=38 1771110690602937 m001 cos(1)^(GAMMA(7/12)*Tribonacci) 1771110691129504 a001 24476/21*12586269025^(10/11) 1771110694082727 a001 370248451/21*317811^(10/11) 1771110694085720 a001 3010349/21*63245986^(10/11) 1771110699961883 a007 Real Root Of 264*x^4+413*x^3+137*x^2+826*x+730 1771110703662048 a007 Real Root Of 270*x^4+13*x^3-987*x^2-417*x-227 1771110715073716 a007 Real Root Of -201*x^4+373*x^3+836*x^2-351*x+806 1771110718860260 m001 (Rabbit+StolarskyHarborth)/(Thue-ThueMorse) 1771110721111311 k006 concat of cont frac of 1771110732406949 a007 Real Root Of -383*x^4-546*x^3-54*x^2-443*x+120 1771110735019165 a007 Real Root Of -738*x^4-544*x^3+965*x^2-776*x-162 1771110735746670 p004 log(25643/4363) 1771110740189027 r009 Re(z^3+c),c=-4/17+17/48*I,n=8 1771110749403766 s002 sum(A060983[n]/(10^n+1),n=1..infinity) 1771110750246887 a001 1364/317811*13^(21/38) 1771110752484038 s002 sum(A092356[n]/(n*pi^n-1),n=1..infinity) 1771110755081753 r002 34th iterates of z^2 + 1771110755798415 m001 1/Kolakoski/Khintchine^2/ln(GAMMA(1/3)) 1771110756704686 a001 8/3010349*18^(21/32) 1771110758632151 r005 Im(z^2+c),c=-119/90+3/49*I,n=39 1771110759403772 s002 sum(A065766[n]/(10^n-1),n=1..infinity) 1771110764082229 b008 ArcSinh[E^(-2)+E] 1771110764874224 m001 Zeta(1,2)/ArtinRank2*HeathBrownMoroz 1771110775611886 m001 ln(GAMMA(5/6))^2/BesselJ(1,1)^2*GAMMA(7/12)^2 1771110788053972 m001 1/exp(exp(1))/Robbin^2*sinh(1) 1771110789554343 a007 Real Root Of -593*x^4-831*x^3+572*x^2+371*x+81 1771110796421747 a001 2178309/521*322^(1/4) 1771110799298347 m001 (Si(Pi)-exp(1))/(ThueMorse+ZetaP(4)) 1771110811881437 m001 1/GAMMA(1/4)^2/Paris*exp(exp(1))^2 1771110818192749 l006 ln(473/2780) 1771110820348086 a001 45537549124/21*1597^(10/11) 1771110824767813 r002 57th iterates of z^2 + 1771110828648778 r005 Im(z^2+c),c=-6/7+9/74*I,n=9 1771110833209021 r005 Im(z^2+c),c=-1/10+7/32*I,n=20 1771110833222447 m001 exp(Rabbit)/Champernowne*Zeta(5)^2 1771110849403772 s002 sum(A001001[n]/(10^n+1),n=1..infinity) 1771110849403772 s002 sum(A288418[n]/(10^n-1),n=1..infinity) 1771110853224389 r008 a(0)=0,K{-n^6,32+3*n^3+11*n^2+11*n} 1771110856796003 m001 (GAMMA(1/6)+5)/(cos(Pi/12)+5) 1771110856988837 b008 2+Zeta[-4/9] 1771110857099887 a007 Real Root Of 320*x^4-213*x^3-599*x^2+917*x-829 1771110860575176 m005 (1/4*exp(1)-1/3)/(-19/40+1/8*5^(1/2)) 1771110860694841 r005 Im(z^2+c),c=-8/19+19/64*I,n=38 1771110863157544 k006 concat of cont frac of 1771110870310950 r005 Im(z^2+c),c=-1/10+7/32*I,n=23 1771110872569467 r004 Re(z^2+c),c=2/9-1/14*I,z(0)=I,n=6 1771110873291076 r005 Im(z^2+c),c=-1/10+7/32*I,n=26 1771110873522009 r005 Im(z^2+c),c=-1/10+7/32*I,n=29 1771110873539283 r005 Im(z^2+c),c=-1/10+7/32*I,n=32 1771110873540528 r005 Im(z^2+c),c=-1/10+7/32*I,n=35 1771110873540610 r005 Im(z^2+c),c=-1/10+7/32*I,n=34 1771110873540614 r005 Im(z^2+c),c=-1/10+7/32*I,n=38 1771110873540616 r005 Im(z^2+c),c=-1/10+7/32*I,n=37 1771110873540620 r005 Im(z^2+c),c=-1/10+7/32*I,n=40 1771110873540620 r005 Im(z^2+c),c=-1/10+7/32*I,n=41 1771110873540620 r005 Im(z^2+c),c=-1/10+7/32*I,n=43 1771110873540620 r005 Im(z^2+c),c=-1/10+7/32*I,n=44 1771110873540620 r005 Im(z^2+c),c=-1/10+7/32*I,n=46 1771110873540620 r005 Im(z^2+c),c=-1/10+7/32*I,n=47 1771110873540620 r005 Im(z^2+c),c=-1/10+7/32*I,n=49 1771110873540620 r005 Im(z^2+c),c=-1/10+7/32*I,n=52 1771110873540620 r005 Im(z^2+c),c=-1/10+7/32*I,n=55 1771110873540620 r005 Im(z^2+c),c=-1/10+7/32*I,n=50 1771110873540620 r005 Im(z^2+c),c=-1/10+7/32*I,n=58 1771110873540620 r005 Im(z^2+c),c=-1/10+7/32*I,n=61 1771110873540620 r005 Im(z^2+c),c=-1/10+7/32*I,n=64 1771110873540620 r005 Im(z^2+c),c=-1/10+7/32*I,n=63 1771110873540620 r005 Im(z^2+c),c=-1/10+7/32*I,n=62 1771110873540620 r005 Im(z^2+c),c=-1/10+7/32*I,n=60 1771110873540620 r005 Im(z^2+c),c=-1/10+7/32*I,n=59 1771110873540620 r005 Im(z^2+c),c=-1/10+7/32*I,n=57 1771110873540620 r005 Im(z^2+c),c=-1/10+7/32*I,n=56 1771110873540620 r005 Im(z^2+c),c=-1/10+7/32*I,n=53 1771110873540620 r005 Im(z^2+c),c=-1/10+7/32*I,n=54 1771110873540620 r005 Im(z^2+c),c=-1/10+7/32*I,n=51 1771110873540620 r005 Im(z^2+c),c=-1/10+7/32*I,n=48 1771110873540620 r005 Im(z^2+c),c=-1/10+7/32*I,n=45 1771110873540621 r005 Im(z^2+c),c=-1/10+7/32*I,n=42 1771110873540624 r005 Im(z^2+c),c=-1/10+7/32*I,n=39 1771110873540665 r005 Im(z^2+c),c=-1/10+7/32*I,n=36 1771110873541131 r005 Im(z^2+c),c=-1/10+7/32*I,n=31 1771110873541157 r005 Im(z^2+c),c=-1/10+7/32*I,n=33 1771110873546688 r005 Im(z^2+c),c=-1/10+7/32*I,n=30 1771110873555465 r005 Im(z^2+c),c=-1/10+7/32*I,n=28 1771110873604974 r005 Im(z^2+c),c=-1/10+7/32*I,n=27 1771110873833752 r005 Im(z^2+c),c=-1/10+7/32*I,n=25 1771110874158690 r005 Im(z^2+c),c=-1/10+7/32*I,n=24 1771110876332237 a007 Real Root Of 798*x^4+536*x^3+279*x^2-872*x-161 1771110878448061 r005 Im(z^2+c),c=-1/10+7/32*I,n=21 1771110878522896 r005 Im(z^2+c),c=-1/10+7/32*I,n=22 1771110880582960 a007 Real Root Of -626*x^4-397*x^3+573*x^2-718*x+885 1771110883682058 p003 LerchPhi(1/1024,4,159/58) 1771110884393173 a007 Real Root Of -498*x^4-355*x^3+502*x^2-816*x-92 1771110888375269 a007 Real Root Of 383*x^4+895*x^3+665*x^2-58*x-985 1771110894366753 r005 Im(z^2+c),c=-1/10+7/32*I,n=18 1771110898553138 a007 Real Root Of -23*x^4-428*x^3-345*x^2+400*x+611 1771110899087910 m005 (1/3*gamma+1/4)/(3*Catalan-1/4) 1771110900967628 r005 Im(z^2+c),c=-5/6+2/195*I,n=37 1771110902189045 m001 MinimumGamma/(ln(gamma)+exp(1/Pi)) 1771110906835096 r009 Re(z^3+c),c=-23/114+14/61*I,n=7 1771110908142784 r005 Re(z^2+c),c=-15/58+33/53*I,n=62 1771110915293712 m001 1/GAMMA(11/24)/exp(MertensB1)^2/sqrt(3) 1771110917586939 a001 610*322^(7/12) 1771110921590288 a007 Real Root Of -3*x^4+371*x^3+472*x^2+197*x+959 1771110923488597 a007 Real Root Of -614*x^4-450*x^3+986*x^2-124*x+229 1771110923814009 a007 Real Root Of -774*x^4-651*x^3+927*x^2-680*x-113 1771110924215386 m001 1/exp(Khintchine)^2/CareFree*FeigenbaumD 1771110925435807 m005 (1/3*3^(1/2)+1/11)/(1/10*Catalan+2/7) 1771110927634301 m005 (1/2*2^(1/2)+1/6)/(5/12*Catalan-7/8) 1771110933948844 r005 Im(z^2+c),c=-83/118+21/55*I,n=10 1771110934091527 m001 (Mills-Stephens)/(3^(1/3)-2*Pi/GAMMA(5/6)) 1771110936724950 a007 Real Root Of -595*x^4-409*x^3+650*x^2-470*x+711 1771110947867117 m001 1/Porter^2/LandauRamanujan^2/ln(cos(Pi/5))^2 1771110951310259 r005 Im(z^2+c),c=-1/10+7/32*I,n=19 1771110954843868 a007 Real Root Of 887*x^4-360*x^3+224*x^2-249*x-54 1771110963163553 r005 Im(z^2+c),c=-37/106+9/32*I,n=41 1771110963734560 r005 Im(z^2+c),c=-4/15+37/45*I,n=11 1771110972883659 a007 Real Root Of -516*x^4-212*x^3+808*x^2-210*x+993 1771110980699823 a007 Real Root Of -804*x^4-562*x^3+921*x^2-643*x+761 1771110993525218 m005 (1/2*exp(1)-1/11)/(4/9*Zeta(3)+2/11) 1771110997844765 m005 (1/3*gamma-1/3)/(1/4*exp(1)-3/5) 1771111001652507 r005 Re(z^2+c),c=-5/6+10/107*I,n=56 1771111008785008 m001 LandauRamanujan/(ln(gamma)^OrthogonalArrays) 1771111011016141 k008 concat of cont frac of 1771111011112171 k007 concat of cont frac of 1771111012111141 k007 concat of cont frac of 1771111013232145 k006 concat of cont frac of 1771111013912141 k007 concat of cont frac of 1771111015516731 k006 concat of cont frac of 1771111016121252 k008 concat of cont frac of 1771111016121273 k008 concat of cont frac of 1771111016385211 k006 concat of cont frac of 1771111021292182 k008 concat of cont frac of 1771111025522052 a001 832040/2207*322^(2/3) 1771111031711874 k008 concat of cont frac of 1771111032633672 m001 (PlouffeB+Porter)/(3^(1/2)-HardyLittlewoodC3) 1771111038121132 k006 concat of cont frac of 1771111040272922 a007 Real Root Of 2*x^4+357*x^3+493*x^2+178*x-539 1771111041111441 k008 concat of cont frac of 1771111041133332 k009 concat of cont frac of 1771111042652683 a007 Real Root Of -150*x^4+361*x^3+958*x^2-129*x+248 1771111043111171 k006 concat of cont frac of 1771111044118522 k006 concat of cont frac of 1771111045565685 a005 (1/cos(7/52*Pi))^156 1771111046345959 m005 (1/3*5^(1/2)+3/4)/(1/4*gamma+7/10) 1771111047520607 r004 Re(z^2+c),c=2/11+9/23*I,z(0)=I,n=48 1771111056152215 k008 concat of cont frac of 1771111060181190 m001 cos(Pi/12)*GAMMA(1/12)*ln(log(1+sqrt(2)))^2 1771111061720797 r005 Im(z^2+c),c=-37/106+9/32*I,n=43 1771111062677601 r009 Re(z^3+c),c=-27/94+31/58*I,n=16 1771111065117553 a007 Real Root Of 490*x^4+488*x^3-526*x^2+702*x+783 1771111065396838 a007 Real Root Of 471*x^4+403*x^3+35*x^2+929*x-860 1771111071966255 a007 Real Root Of 295*x^4+798*x^3+527*x^2+7*x-110 1771111072896311 m008 (2/5*Pi^3-1)/(3/4*Pi-3) 1771111076511295 m001 -exp(-1/2*Pi)/GAMMA(19/24) 1771111076511295 m001 exp(-1/2*Pi)/GAMMA(19/24) 1771111076511295 m001 exp(-Pi)/exp(-1/2*Pi)/GAMMA(19/24) 1771111076511295 m001 exp(-Pi)^(1/2)/GAMMA(19/24) 1771111078113430 m001 1/5*(5^(1/2)*Backhouse+CareFree)*5^(1/2) 1771111081411171 k006 concat of cont frac of 1771111082234255 m001 exp(Kolakoski)^2*Backhouse^2*Niven 1771111086271594 a007 Real Root Of 27*x^4+500*x^3+441*x^2+926*x-820 1771111087179808 m001 KomornikLoreti-OneNinth^Si(Pi) 1771111092154806 l006 ln(1313/7717) 1771111093937101 l004 Ssi(267/112) 1771111095948154 r005 Re(z^2+c),c=-65/54+4/51*I,n=56 1771111098538391 a007 Real Root Of -584*x^4-941*x^3+616*x^2+499*x-530 1771111101117111 k006 concat of cont frac of 1771111101166498 m001 Pi^(1/2)-Trott^MinimumGamma 1771111101211212 k006 concat of cont frac of 1771111101212167 k006 concat of cont frac of 1771111101392217 m001 1/Trott/Magata^2*ln(OneNinth) 1771111101761761 k008 concat of cont frac of 1771111101821752 k008 concat of cont frac of 1771111101916114 k009 concat of cont frac of 1771111102111012 k006 concat of cont frac of 1771111102121144 k007 concat of cont frac of 1771111104812131 k008 concat of cont frac of 1771111105124715 k006 concat of cont frac of 1771111108223717 k008 concat of cont frac of 1771111110121390 r005 Im(z^2+c),c=-85/114+6/55*I,n=40 1771111110201212 k007 concat of cont frac of 1771111110275431 k009 concat of cont frac of 1771111110912246 k009 concat of cont frac of 1771111111101212 k008 concat of cont frac of 1771111111111211 k006 concat of cont frac of 1771111111114171 k008 concat of cont frac of 1771111111118212 k008 concat of cont frac of 1771111111118811 k007 concat of cont frac of 1771111111124321 k006 concat of cont frac of 1771111111132144 k008 concat of cont frac of 1771111111133373 k008 concat of cont frac of 1771111111137131 k006 concat of cont frac of 1771111111151112 k008 concat of cont frac of 1771111111152244 k008 concat of cont frac of 1771111111171312 k009 concat of cont frac of 1771111111171733 k006 concat of cont frac of 1771111111175241 k007 concat of cont frac of 1771111111191314 k008 concat of cont frac of 1771111111193221 k009 concat of cont frac of 1771111111211411 k006 concat of cont frac of 1771111111212542 k007 concat of cont frac of 1771111111219534 k006 concat of cont frac of 1771111111221214 k006 concat of cont frac of 1771111111224817 k008 concat of cont frac of 1771111111232131 k008 concat of cont frac of 1771111111233311 k007 concat of cont frac of 1771111111255111 k007 concat of cont frac of 1771111111271211 k007 concat of cont frac of 1771111111291182 k007 concat of cont frac of 1771111111311121 k008 concat of cont frac of 1771111111412132 k009 concat of cont frac of 1771111111412231 k007 concat of cont frac of 1771111111431024 k007 concat of cont frac of 1771111111431411 k006 concat of cont frac of 1771111111511159 k008 concat of cont frac of 1771111111511272 k007 concat of cont frac of 1771111111611212 k009 concat of cont frac of 1771111111612142 k006 concat of cont frac of 1771111111616111 k006 concat of cont frac of 1771111111672152 k008 concat of cont frac of 1771111111814146 k007 concat of cont frac of 1771111111912218 k008 concat of cont frac of 1771111112116222 k006 concat of cont frac of 1771111112121211 k008 concat of cont frac of 1771111112131463 k008 concat of cont frac of 1771111112141212 k006 concat of cont frac of 1771111112145222 k006 concat of cont frac of 1771111112152129 k006 concat of cont frac of 1771111112181110 k009 concat of cont frac of 1771111112181611 k008 concat of cont frac of 1771111112232331 k009 concat of cont frac of 1771111112321311 k008 concat of cont frac of 1771111112511175 k008 concat of cont frac of 1771111112512875 k006 concat of cont frac of 1771111112612242 k006 concat of cont frac of 1771111112712212 k006 concat of cont frac of 1771111113011711 k009 concat of cont frac of 1771111113111642 k007 concat of cont frac of 1771111113141315 k006 concat of cont frac of 1771111113161361 k007 concat of cont frac of 1771111113221271 k006 concat of cont frac of 1771111113310141 k008 concat of cont frac of 1771111113338243 k007 concat of cont frac of 1771111114111121 k008 concat of cont frac of 1771111114112174 k006 concat of cont frac of 1771111114113111 k006 concat of cont frac of 1771111114113420 k008 concat of cont frac of 1771111114113811 k006 concat of cont frac of 1771111114214211 k008 concat of cont frac of 1771111114321211 k008 concat of cont frac of 1771111114411022 k008 concat of cont frac of 1771111114812181 k008 concat of cont frac of 1771111115111111 k008 concat of cont frac of 1771111115224214 k006 concat of cont frac of 1771111115733115 k008 concat of cont frac of 1771111115750143 m001 KhinchinHarmonic*Niven^Trott2nd 1771111116145121 k007 concat of cont frac of 1771111117172878 k006 concat of cont frac of 1771111117222421 k006 concat of cont frac of 1771111117811251 k009 concat of cont frac of 1771111118012134 k008 concat of cont frac of 1771111118214122 k008 concat of cont frac of 1771111119123121 k007 concat of cont frac of 1771111119242212 k008 concat of cont frac of 1771111119324171 k006 concat of cont frac of 1771111119511132 k007 concat of cont frac of 1771111120998003 r002 61th iterates of z^2 + 1771111121105217 k008 concat of cont frac of 1771111121111611 k008 concat of cont frac of 1771111121113023 k008 concat of cont frac of 1771111121116521 k007 concat of cont frac of 1771111121117521 k006 concat of cont frac of 1771111121153427 k008 concat of cont frac of 1771111121223101 k006 concat of cont frac of 1771111121231311 k008 concat of cont frac of 1771111121313148 k009 concat of cont frac of 1771111121395315 k008 concat of cont frac of 1771111121412341 k006 concat of cont frac of 1771111121714111 k007 concat of cont frac of 1771111121721143 k008 concat of cont frac of 1771111122115111 k008 concat of cont frac of 1771111122136221 k008 concat of cont frac of 1771111123109184 k008 concat of cont frac of 1771111123113214 k008 concat of cont frac of 1771111123124121 k006 concat of cont frac of 1771111123212256 k008 concat of cont frac of 1771111123724656 r005 Im(z^2+c),c=-43/82+11/35*I,n=31 1771111124022513 k009 concat of cont frac of 1771111124131523 k007 concat of cont frac of 1771111124712315 k007 concat of cont frac of 1771111125111113 k008 concat of cont frac of 1771111125712613 k008 concat of cont frac of 1771111128121211 k007 concat of cont frac of 1771111128121301 k006 concat of cont frac of 1771111128314117 k007 concat of cont frac of 1771111129014174 k007 concat of cont frac of 1771111131111125 k006 concat of cont frac of 1771111131111324 k006 concat of cont frac of 1771111131112231 k006 concat of cont frac of 1771111131221117 k008 concat of cont frac of 1771111131291122 k007 concat of cont frac of 1771111131311515 k006 concat of cont frac of 1771111131461426 k008 concat of cont frac of 1771111131748551 k008 concat of cont frac of 1771111131764163 k008 concat of cont frac of 1771111132041387 k008 concat of cont frac of 1771111132131181 k006 concat of cont frac of 1771111132213112 k008 concat of cont frac of 1771111132314132 k008 concat of cont frac of 1771111132541132 k008 concat of cont frac of 1771111133121111 k007 concat of cont frac of 1771111133161254 k007 concat of cont frac of 1771111133313112 k007 concat of cont frac of 1771111134311121 k008 concat of cont frac of 1771111135113611 k008 concat of cont frac of 1771111136121213 k007 concat of cont frac of 1771111136124110 k008 concat of cont frac of 1771111136431117 k007 concat of cont frac of 1771111136613677 a007 Real Root Of 202*x^4+x^3-338*x^2+27*x-874 1771111137511324 k008 concat of cont frac of 1771111137639302 a008 Real Root of x^4-x^3-19*x^2+14*x+69 1771111138125192 k006 concat of cont frac of 1771111141212741 k006 concat of cont frac of 1771111141241153 k006 concat of cont frac of 1771111141295111 k008 concat of cont frac of 1771111141311119 k007 concat of cont frac of 1771111141417611 k009 concat of cont frac of 1771111142114131 k008 concat of cont frac of 1771111142121391 k008 concat of cont frac of 1771111142123816 k006 concat of cont frac of 1771111142133131 k008 concat of cont frac of 1771111143111114 k006 concat of cont frac of 1771111143226783 a003 cos(Pi*8/95)+cos(Pi*24/119) 1771111143241441 k009 concat of cont frac of 1771111143411212 k007 concat of cont frac of 1771111144101214 k008 concat of cont frac of 1771111146513114 k008 concat of cont frac of 1771111149321221 k008 concat of cont frac of 1771111149691882 r005 Im(z^2+c),c=-13/22+3/100*I,n=27 1771111151132466 k007 concat of cont frac of 1771111151165211 k007 concat of cont frac of 1771111151272521 k006 concat of cont frac of 1771111152121141 k006 concat of cont frac of 1771111155221145 k009 concat of cont frac of 1771111155476316 m001 (Psi(2,1/3)-exp(Pi))/(ln(gamma)+OneNinth) 1771111155514111 k008 concat of cont frac of 1771111155604700 r005 Re(z^2+c),c=-7/30+19/34*I,n=9 1771111158126131 k008 concat of cont frac of 1771111158211041 k006 concat of cont frac of 1771111159541899 r005 Im(z^2+c),c=-61/74+6/35*I,n=31 1771111161111811 k008 concat of cont frac of 1771111161118155 k008 concat of cont frac of 1771111161121112 k007 concat of cont frac of 1771111161121272 k006 concat of cont frac of 1771111161128111 k006 concat of cont frac of 1771111161171724 k008 concat of cont frac of 1771111161521522 k007 concat of cont frac of 1771111163211128 k006 concat of cont frac of 1771111163481597 k008 concat of cont frac of 1771111165117111 k006 concat of cont frac of 1771111166778190 a007 Real Root Of 876*x^4+697*x^3-958*x^2+969*x-26 1771111167115415 k008 concat of cont frac of 1771111171322212 k008 concat of cont frac of 1771111172111141 k006 concat of cont frac of 1771111173112195 k008 concat of cont frac of 1771111173126178 k006 concat of cont frac of 1771111173242193 k006 concat of cont frac of 1771111174813110 k007 concat of cont frac of 1771111177444017 k006 concat of cont frac of 1771111178619919 a007 Real Root Of -228*x^4-37*x^3+852*x^2+814*x+807 1771111180835639 m009 (3/5*Psi(1,3/4)+2/5)/(Pi^2+1) 1771111181112141 k008 concat of cont frac of 1771111184455765 m005 (1/3*2^(1/2)-1/10)/(4/9*exp(1)+8/9) 1771111187878169 a007 Real Root Of 603*x^4+201*x^3-990*x^2+720*x-436 1771111191134221 k006 concat of cont frac of 1771111192111111 k006 concat of cont frac of 1771111192143256 k008 concat of cont frac of 1771111199122213 k008 concat of cont frac of 1771111201136048 a001 13/271443*4^(50/53) 1771111202129156 r002 10th iterates of z^2 + 1771111203522779 r005 Re(z^2+c),c=23/94+13/64*I,n=36 1771111204054319 a001 11/987*4181^(31/51) 1771111206054509 m001 (Totient-Trott2nd)/(ln(2+3^(1/2))-Stephens) 1771111206938565 r005 Im(z^2+c),c=-37/106+9/32*I,n=48 1771111210119229 k008 concat of cont frac of 1771111211122435 k006 concat of cont frac of 1771111211129331 k008 concat of cont frac of 1771111211143416 k008 concat of cont frac of 1771111211211448 k008 concat of cont frac of 1771111211211614 k009 concat of cont frac of 1771111211211616 k008 concat of cont frac of 1771111211213112 k008 concat of cont frac of 1771111211213512 k008 concat of cont frac of 1771111211231411 k009 concat of cont frac of 1771111211401342 k007 concat of cont frac of 1771111211411211 k009 concat of cont frac of 1771111211422712 k006 concat of cont frac of 1771111211441161 k008 concat of cont frac of 1771111211442022 k008 concat of cont frac of 1771111211610271 k007 concat of cont frac of 1771111211722221 k006 concat of cont frac of 1771111212111345 k008 concat of cont frac of 1771111212111744 k008 concat of cont frac of 1771111212131121 k008 concat of cont frac of 1771111212141123 k008 concat of cont frac of 1771111212144114 k006 concat of cont frac of 1771111212211415 k008 concat of cont frac of 1771111212213111 k008 concat of cont frac of 1771111212242161 k007 concat of cont frac of 1771111212611112 k006 concat of cont frac of 1771111212742225 k007 concat of cont frac of 1771111213111117 k006 concat of cont frac of 1771111213113243 k007 concat of cont frac of 1771111213333327 k006 concat of cont frac of 1771111213902267 r005 Im(z^2+c),c=-37/106+9/32*I,n=46 1771111214213631 m001 ln(GAMMA(1/12))^2*OneNinth/GAMMA(1/4) 1771111214263111 k008 concat of cont frac of 1771111214538588 p004 log(37339/6353) 1771111214673141 k008 concat of cont frac of 1771111215122215 k007 concat of cont frac of 1771111215962326 k006 concat of cont frac of 1771111216182321 k006 concat of cont frac of 1771111216932459 k009 concat of cont frac of 1771111217138321 k006 concat of cont frac of 1771111218343221 k008 concat of cont frac of 1771111218413915 r005 Im(z^2+c),c=-37/106+9/32*I,n=45 1771111220216375 a007 Real Root Of 512*x^4+636*x^3-257*x^2+29*x-647 1771111221111231 k008 concat of cont frac of 1771111221122113 k008 concat of cont frac of 1771111221122135 k008 concat of cont frac of 1771111221131111 k006 concat of cont frac of 1771111221169151 k006 concat of cont frac of 1771111222201114 k008 concat of cont frac of 1771111222355141 k008 concat of cont frac of 1771111223072026 a007 Real Root Of 137*x^4-597*x^3+189*x^2+241*x+949 1771111223148211 k006 concat of cont frac of 1771111223151141 k008 concat of cont frac of 1771111223182118 k008 concat of cont frac of 1771111223251671 k008 concat of cont frac of 1771111223311261 k008 concat of cont frac of 1771111223551221 k006 concat of cont frac of 1771111224265329 k008 concat of cont frac of 1771111224998797 m001 exp(GAMMA(11/24))^2*Cahen/sqrt(3) 1771111225221509 k006 concat of cont frac of 1771111226711953 r005 Im(z^2+c),c=-37/106+9/32*I,n=50 1771111227830141 k007 concat of cont frac of 1771111230668571 r005 Im(z^2+c),c=-37/106+9/32*I,n=53 1771111231115177 k009 concat of cont frac of 1771111231124417 k008 concat of cont frac of 1771111232111163 k008 concat of cont frac of 1771111232115112 k006 concat of cont frac of 1771111232132121 k006 concat of cont frac of 1771111232377611 k008 concat of cont frac of 1771111232505992 r005 Im(z^2+c),c=-37/106+9/32*I,n=55 1771111232761481 a003 sin(Pi*25/83)+sin(Pi*43/105) 1771111233144965 k008 concat of cont frac of 1771111233868541 r005 Im(z^2+c),c=-37/106+9/32*I,n=58 1771111233918192 r005 Im(z^2+c),c=-37/106+9/32*I,n=60 1771111234117131 k009 concat of cont frac of 1771111234163587 r005 Im(z^2+c),c=-37/106+9/32*I,n=62 1771111234203711 r005 Im(z^2+c),c=-37/106+9/32*I,n=63 1771111234221112 k009 concat of cont frac of 1771111234251992 r005 Im(z^2+c),c=-37/106+9/32*I,n=57 1771111234260662 r005 Im(z^2+c),c=-37/106+9/32*I,n=64 1771111234384587 r005 Im(z^2+c),c=-37/106+9/32*I,n=61 1771111234613156 r005 Im(z^2+c),c=-37/106+9/32*I,n=59 1771111234875266 r005 Im(z^2+c),c=-37/106+9/32*I,n=56 1771111234886914 r005 Im(z^2+c),c=-37/106+9/32*I,n=51 1771111235114811 k008 concat of cont frac of 1771111235466011 m005 (1/2*2^(1/2)+3/5)/(1/9*2^(1/2)-1/12) 1771111236968452 r005 Im(z^2+c),c=-37/106+9/32*I,n=52 1771111237096233 r005 Im(z^2+c),c=-37/106+9/32*I,n=54 1771111238480149 r005 Re(z^2+c),c=37/122+13/56*I,n=16 1771111238721212 k007 concat of cont frac of 1771111240455274 m005 (1/2*Catalan-1/10)/(1/7*2^(1/2)-2/11) 1771111241318511 k007 concat of cont frac of 1771111241363416 k008 concat of cont frac of 1771111242201221 k008 concat of cont frac of 1771111242241621 k008 concat of cont frac of 1771111242415808 k006 concat of cont frac of 1771111246062262 r002 19th iterates of z^2 + 1771111246421503 l006 ln(840/4937) 1771111248111211 k009 concat of cont frac of 1771111250019537 r009 Re(z^3+c),c=-7/24+7/13*I,n=32 1771111251112613 k006 concat of cont frac of 1771111251251112 k008 concat of cont frac of 1771111251321231 k008 concat of cont frac of 1771111251531644 r005 Im(z^2+c),c=-37/106+9/32*I,n=49 1771111256171841 k006 concat of cont frac of 1771111256229070 m001 (5^(1/2)-BesselJ(1,1))/(-ErdosBorwein+Lehmer) 1771111261752216 k006 concat of cont frac of 1771111261812862 a007 Real Root Of -653*x^4-576*x^3+913*x^2+268*x+836 1771111265555857 r005 Im(z^2+c),c=-37/106+9/32*I,n=47 1771111267529417 g005 GAMMA(2/7)*GAMMA(4/5)/GAMMA(7/12)/GAMMA(2/3) 1771111271117714 k006 concat of cont frac of 1771111271419114 k007 concat of cont frac of 1771111276150837 m001 (Conway+OrthogonalArrays)/GAMMA(7/12) 1771111276151715 k008 concat of cont frac of 1771111277291333 k009 concat of cont frac of 1771111278369310 a007 Real Root Of 423*x^4+172*x^3-244*x^2+947*x-764 1771111279539235 m005 (1/2*3^(1/2)+9/10)/(1/5*2^(1/2)+5/7) 1771111282718191 k009 concat of cont frac of 1771111283931705 m001 (5^(1/2)-ln(gamma))/(-MadelungNaCl+ZetaP(3)) 1771111286111281 k007 concat of cont frac of 1771111287319324 k008 concat of cont frac of 1771111291111511 k007 concat of cont frac of 1771111302121112 k007 concat of cont frac of 1771111302317125 k006 concat of cont frac of 1771111302346010 p002 log(18^(5/6)-12^(2/3)) 1771111311118961 k007 concat of cont frac of 1771111311151253 k008 concat of cont frac of 1771111311212147 k007 concat of cont frac of 1771111311251142 k006 concat of cont frac of 1771111311312761 k007 concat of cont frac of 1771111311316272 k007 concat of cont frac of 1771111311319322 k007 concat of cont frac of 1771111311453381 a007 Real Root Of 343*x^4+42*x^3-793*x^2+873*x+892 1771111311691413 k007 concat of cont frac of 1771111311713133 k009 concat of cont frac of 1771111311731594 k009 concat of cont frac of 1771111311811124 k006 concat of cont frac of 1771111312113131 k009 concat of cont frac of 1771111312133212 k008 concat of cont frac of 1771111312216131 k007 concat of cont frac of 1771111312231312 k009 concat of cont frac of 1771111312413131 k006 concat of cont frac of 1771111313241315 k008 concat of cont frac of 1771111313332143 b008 13+2^Sqrt[5] 1771111313820211 k008 concat of cont frac of 1771111314112141 k007 concat of cont frac of 1771111314121114 k008 concat of cont frac of 1771111314181121 k008 concat of cont frac of 1771111315422531 k008 concat of cont frac of 1771111316196211 k007 concat of cont frac of 1771111316210274 k009 concat of cont frac of 1771111316775367 r005 Im(z^2+c),c=-37/106+9/32*I,n=44 1771111316861533 m001 ln(CareFree)/Backhouse^2/cos(Pi/12)^2 1771111317111421 k007 concat of cont frac of 1771111318940405 m001 FransenRobinson^FeigenbaumC/Artin 1771111319809666 r009 Re(z^3+c),c=-49/110+31/60*I,n=2 1771111320057596 r005 Re(z^2+c),c=-59/70+2/29*I,n=48 1771111320113112 k007 concat of cont frac of 1771111320392217 k007 concat of cont frac of 1771111321111621 k008 concat of cont frac of 1771111321131132 k009 concat of cont frac of 1771111321257111 k008 concat of cont frac of 1771111321291332 k008 concat of cont frac of 1771111321352221 k008 concat of cont frac of 1771111321751122 k008 concat of cont frac of 1771111322113732 k006 concat of cont frac of 1771111322813832 k008 concat of cont frac of 1771111323410181 k007 concat of cont frac of 1771111323812311 k006 concat of cont frac of 1771111326474711 k008 concat of cont frac of 1771111326678323 r005 Re(z^2+c),c=-9/98+25/54*I,n=28 1771111331118411 k008 concat of cont frac of 1771111331122215 k008 concat of cont frac of 1771111331232111 k008 concat of cont frac of 1771111331743221 k006 concat of cont frac of 1771111332123331 k007 concat of cont frac of 1771111333190278 a007 Real Root Of 806*x^4+932*x^3-165*x^2+964*x-528 1771111333779158 a001 55/64079*521^(15/31) 1771111334957185 a007 Real Root Of -622*x^4-540*x^3+378*x^2-605*x+863 1771111335311513 k006 concat of cont frac of 1771111336086415 a001 726103/1926*322^(2/3) 1771111340221312 k007 concat of cont frac of 1771111341111161 k006 concat of cont frac of 1771111341801738 a007 Real Root Of 178*x^4-272*x^3-871*x^2+518*x+387 1771111342522128 k008 concat of cont frac of 1771111345370238 a001 24157817/2207*123^(1/10) 1771111349348685 a007 Real Root Of 34*x^4-503*x^3-542*x^2+599*x-368 1771111350103584 a007 Real Root Of 646*x^4+802*x^3-213*x^2+517*x-317 1771111351878799 m001 exp(-1/2*Pi)/MertensB2*QuadraticClass 1771111352323987 a007 Real Root Of 524*x^4+714*x^3-221*x^2+380*x+177 1771111359694360 m001 (cos(1/5*Pi)+BesselI(1,1))/StronglyCareFree 1771111368175395 r009 Re(z^3+c),c=-5/82+40/51*I,n=46 1771111368892516 r005 Im(z^2+c),c=-37/106+9/32*I,n=40 1771111369496152 m005 (1/3*Catalan+1/9)/(8/9*5^(1/2)+4/11) 1771111370097084 b008 Log[Sqrt[7/2]*Pi] 1771111374631867 r009 Re(z^3+c),c=-2/9+9/31*I,n=3 1771111377450468 a007 Real Root Of 122*x^4-221*x^3-954*x^2-357*x-68 1771111381397153 a001 5702887/15127*322^(2/3) 1771111382531133 k006 concat of cont frac of 1771111385712178 a007 Real Root Of -452*x^4-359*x^3+876*x^2-353*x-920 1771111386493854 a007 Real Root Of -437*x^4-746*x^3-134*x^2-36*x+512 1771111388007901 a001 4976784/13201*322^(2/3) 1771111388746585 a007 Real Root Of -40*x^4+924*x^3-803*x^2-769*x-859 1771111388972397 a001 39088169/103682*322^(2/3) 1771111389113114 a001 34111385/90481*322^(2/3) 1771111389133645 a001 267914296/710647*322^(2/3) 1771111389136640 a001 233802911/620166*322^(2/3) 1771111389137077 a001 1836311903/4870847*322^(2/3) 1771111389137141 a001 1602508992/4250681*322^(2/3) 1771111389137150 a001 12586269025/33385282*322^(2/3) 1771111389137152 a001 10983760033/29134601*322^(2/3) 1771111389137152 a001 86267571272/228826127*322^(2/3) 1771111389137152 a001 267913919/710646*322^(2/3) 1771111389137152 a001 591286729879/1568397607*322^(2/3) 1771111389137152 a001 516002918640/1368706081*322^(2/3) 1771111389137152 a001 4052739537881/10749957122*322^(2/3) 1771111389137152 a001 3536736619241/9381251041*322^(2/3) 1771111389137152 a001 6557470319842/17393796001*322^(2/3) 1771111389137152 a001 2504730781961/6643838879*322^(2/3) 1771111389137152 a001 956722026041/2537720636*322^(2/3) 1771111389137152 a001 365435296162/969323029*322^(2/3) 1771111389137152 a001 139583862445/370248451*322^(2/3) 1771111389137152 a001 53316291173/141422324*322^(2/3) 1771111389137153 a001 20365011074/54018521*322^(2/3) 1771111389137156 a001 7778742049/20633239*322^(2/3) 1771111389137180 a001 2971215073/7881196*322^(2/3) 1771111389137347 a001 1134903170/3010349*322^(2/3) 1771111389138492 a001 433494437/1149851*322^(2/3) 1771111389146333 a001 165580141/439204*322^(2/3) 1771111389200083 a001 63245986/167761*322^(2/3) 1771111389568487 a001 24157817/64079*322^(2/3) 1771111391420204 a007 Real Root Of 679*x^4+532*x^3-699*x^2+647*x-387 1771111391661897 r005 Im(z^2+c),c=-49/110+19/63*I,n=29 1771111392093568 a001 9227465/24476*322^(2/3) 1771111392116441 k006 concat of cont frac of 1771111394218592 k007 concat of cont frac of 1771111399319118 a001 103682/5*4181^(17/21) 1771111400106832 m001 (FellerTornier+Niven)/(2^(1/2)-GAMMA(7/12)) 1771111408037124 a001 505019158607*1836311903^(1/17) 1771111408037124 a001 312119004989*6557470319842^(1/17) 1771111408037203 a001 817138163596*514229^(1/17) 1771111408039926 r009 Re(z^3+c),c=-1/106+19/22*I,n=8 1771111409400731 a001 3524578/9349*322^(2/3) 1771111409984790 m001 (FeigenbaumC+ZetaQ(3))/(3^(1/2)-ln(2)) 1771111411111331 k008 concat of cont frac of 1771111411147411 k007 concat of cont frac of 1771111411152412 k008 concat of cont frac of 1771111411162211 k007 concat of cont frac of 1771111411212141 k006 concat of cont frac of 1771111411323216 k006 concat of cont frac of 1771111412110311 k008 concat of cont frac of 1771111412251142 k009 concat of cont frac of 1771111412251251 k006 concat of cont frac of 1771111412414212 k008 concat of cont frac of 1771111412770158 r005 Re(z^2+c),c=-19/98+9/55*I,n=14 1771111413212412 k008 concat of cont frac of 1771111414236035 l006 ln(1207/7094) 1771111417112213 k008 concat of cont frac of 1771111417112412 k006 concat of cont frac of 1771111417191966 k008 concat of cont frac of 1771111418435128 m001 (RenyiParking-Riemann2ndZero)/ln(Pi) 1771111419132746 k008 concat of cont frac of 1771111421117114 k008 concat of cont frac of 1771111421125422 k008 concat of cont frac of 1771111421331112 k008 concat of cont frac of 1771111421411122 k008 concat of cont frac of 1771111421812621 k008 concat of cont frac of 1771111423115111 k008 concat of cont frac of 1771111431112131 k006 concat of cont frac of 1771111431411481 k009 concat of cont frac of 1771111434111252 k006 concat of cont frac of 1771111434113112 k008 concat of cont frac of 1771111438861605 r005 Im(z^2+c),c=-5/8+69/172*I,n=6 1771111441117121 k008 concat of cont frac of 1771111442123163 k007 concat of cont frac of 1771111445960369 m005 (1/2*Pi+6/11)/(2/7*3^(1/2)+7/10) 1771111446537097 m001 (BesselI(1,2)-Shi(1))/(Mills+Niven) 1771111448718198 a001 5/4*24476^(1/29) 1771111451122222 k006 concat of cont frac of 1771111454670662 m001 (-BesselK(0,1)+ln(2^(1/2)+1))/(1-2^(1/3)) 1771111461111111 k006 concat of cont frac of 1771111462248461 r002 10th iterates of z^2 + 1771111464209593 r005 Re(z^2+c),c=-9/106+10/21*I,n=29 1771111465849253 r002 5th iterates of z^2 + 1771111472302923 r005 Im(z^2+c),c=-17/30+23/70*I,n=38 1771111473354163 r005 Im(z^2+c),c=-37/106+9/32*I,n=39 1771111474901706 r002 26th iterates of z^2 + 1771111478022557 m001 (-Cahen+Kac)/(1-gamma(3)) 1771111478526207 h001 (3/8*exp(1)+3/11)/(8/9*exp(2)+8/11) 1771111481162491 m001 (sin(1/12*Pi)-CareFree)/(Salem+Totient) 1771111481232312 k007 concat of cont frac of 1771111483976028 a001 1/8*55^(2/23) 1771111489511921 r005 Im(z^2+c),c=-37/106+9/32*I,n=42 1771111496097863 m001 Zeta(3)/(exp(sqrt(2))^GAMMA(2/3)) 1771111501990319 r002 4th iterates of z^2 + 1771111503793970 l006 ln(1574/9251) 1771111511118213 k007 concat of cont frac of 1771111511216154 k007 concat of cont frac of 1771111512111836 k008 concat of cont frac of 1771111512113213 k008 concat of cont frac of 1771111513111213 k007 concat of cont frac of 1771111513608462 m001 Pi^Bloch/gamma(2) 1771111513621917 k006 concat of cont frac of 1771111514231851 k006 concat of cont frac of 1771111514433311 k007 concat of cont frac of 1771111514911933 k008 concat of cont frac of 1771111516280160 h001 (5/7*exp(1)+7/11)/(1/7*exp(2)+2/5) 1771111517101615 k008 concat of cont frac of 1771111517312412 k009 concat of cont frac of 1771111522121111 k008 concat of cont frac of 1771111523123163 k007 concat of cont frac of 1771111526440720 m005 (1/2*exp(1)-3/10)/(4/5*Zeta(3)-4/11) 1771111526813121 k009 concat of cont frac of 1771111528025801 a001 1346269/3571*322^(2/3) 1771111530349181 a007 Real Root Of -319*x^4-634*x^3+237*x^2+988*x+623 1771111530400053 g007 Psi(2,3/8)+Psi(2,2/7)+Psi(2,1/3)-Psi(2,5/6) 1771111530525533 m001 Sierpinski^2*Khintchine*ln(FeigenbaumD) 1771111530816493 a005 (1/cos(22/177*Pi))^890 1771111533414291 k008 concat of cont frac of 1771111536814973 m001 1/Paris^2*exp(CareFree)/GAMMA(19/24) 1771111540307228 a007 Real Root Of 886*x^4+571*x^3-954*x^2+991*x-798 1771111541228349 k006 concat of cont frac of 1771111542216131 k008 concat of cont frac of 1771111544111792 k006 concat of cont frac of 1771111544596534 m001 cos(1)^2*Si(Pi)*ln(sqrt(Pi))^2 1771111545732596 m001 BesselI(0,1)^cos(1)+HardyLittlewoodC3 1771111551111121 k008 concat of cont frac of 1771111551221336 k008 concat of cont frac of 1771111552322112 k006 concat of cont frac of 1771111554311114 k008 concat of cont frac of 1771111558660845 r005 Im(z^2+c),c=-5/8+30/131*I,n=18 1771111561117711 k006 concat of cont frac of 1771111561342281 k006 concat of cont frac of 1771111561670270 m001 sin(Pi/5)^gamma/(sin(Pi/5)^sqrt(1+sqrt(3))) 1771111563311139 a001 3571/832040*13^(21/38) 1771111564509236 a007 Real Root Of -351*x^4-52*x^3+234*x^2-975*x+704 1771111572407423 m001 TwinPrimes^2*ln(Sierpinski)/GAMMA(7/12)^2 1771111576527604 r005 Im(z^2+c),c=-73/74+11/60*I,n=57 1771111577729646 a001 5/4*843^(3/58) 1771111579082622 a007 Real Root Of 410*x^4+883*x^3+793*x^2+480*x-766 1771111582116133 k008 concat of cont frac of 1771111583926374 m001 (ln(2)/ln(10)*LambertW(1)-sinh(1))/LambertW(1) 1771111584209082 a007 Real Root Of -733*x^4-965*x^3+758*x^2+719*x+747 1771111587121753 m005 (1/3*Zeta(3)+1/2)/(4*2^(1/2)-4/7) 1771111589219621 a007 Real Root Of 263*x^4-377*x^3-761*x^2+768*x-935 1771111591311171 k007 concat of cont frac of 1771111598248469 m001 (2^(1/3)+Si(Pi))/(ln(2+3^(1/2))+BesselJ(1,1)) 1771111600482667 r005 Re(z^2+c),c=-42/31+2/43*I,n=28 1771111611111711 k009 concat of cont frac of 1771111611715221 k006 concat of cont frac of 1771111612111553 k006 concat of cont frac of 1771111612165412 k006 concat of cont frac of 1771111613111822 k008 concat of cont frac of 1771111613121212 k008 concat of cont frac of 1771111614112912 k006 concat of cont frac of 1771111614310121 k008 concat of cont frac of 1771111619265866 a007 Real Root Of 655*x^4+812*x^3-142*x^2+326*x-911 1771111621412111 k008 concat of cont frac of 1771111621515271 k007 concat of cont frac of 1771111621622111 k008 concat of cont frac of 1771111624211922 k006 concat of cont frac of 1771111626519631 r005 Im(z^2+c),c=-21/44+16/43*I,n=14 1771111631211141 k006 concat of cont frac of 1771111634415221 k008 concat of cont frac of 1771111635747080 a007 Real Root Of 371*x^4+254*x^3-326*x^2+298*x-689 1771111636149209 p004 log(33601/5717) 1771111636207697 r009 Re(z^3+c),c=-4/19+9/34*I,n=6 1771111640787672 a007 Real Root Of -10*x^4+306*x^3-108*x^2-337*x-666 1771111641612221 k008 concat of cont frac of 1771111643384867 m005 (1/2*Pi+7/11)/(3/11*5^(1/2)+7/11) 1771111644458763 a007 Real Root Of 788*x^4+954*x^3-368*x^2+248*x-860 1771111645750280 a001 47/13*377^(15/56) 1771111646349307 m001 GAMMA(7/12)+Grothendieck-Riemann2ndZero 1771111648859855 a007 Real Root Of -258*x^4-15*x^3+394*x^2-706*x-31 1771111651516042 l006 ln(9122/9285) 1771111652124011 k009 concat of cont frac of 1771111655104215 k008 concat of cont frac of 1771111655934219 a001 31622993/2889*123^(1/10) 1771111656860755 r009 Re(z^3+c),c=-57/122+21/41*I,n=56 1771111660960511 m001 Paris^MertensB1+GAMMA(3/4) 1771111661181166 m005 (1/2*exp(1)-1/10)/(11/12*gamma+2/11) 1771111661613210 k008 concat of cont frac of 1771111670895234 m005 (1/3*Pi+2/7)/(10/11*gamma-3/5) 1771111671221311 k008 concat of cont frac of 1771111671288127 q001 7026/3967 1771111677854987 r005 Re(z^2+c),c=-29/34+1/67*I,n=14 1771111680102758 m001 Catalan+LandauRamanujan^LandauRamanujan2nd 1771111681935614 a001 9349/2178309*13^(21/38) 1771111688211111 k008 concat of cont frac of 1771111689984991 r005 Im(z^2+c),c=11/74+4/31*I,n=11 1771111691228543 a007 Real Root Of 679*x^4-423*x^3-577*x^2-678*x-105 1771111695176892 r005 Im(z^2+c),c=-73/110+16/63*I,n=49 1771111695285940 r002 4th iterates of z^2 + 1771111697405550 a007 Real Root Of 272*x^4+424*x^3+185*x^2+183*x-577 1771111701154532 k008 concat of cont frac of 1771111701244902 a001 165580141/15127*123^(1/10) 1771111702312612 k006 concat of cont frac of 1771111704174171 m001 GAMMA(1/12)*MadelungNaCl^2*exp(cos(Pi/5))^2 1771111706855019 r005 Im(z^2+c),c=-33/50+23/54*I,n=6 1771111707855642 a001 433494437/39603*123^(1/10) 1771111708820136 a001 567451585/51841*123^(1/10) 1771111708960854 a001 2971215073/271443*123^(1/10) 1771111708981384 a001 7778742049/710647*123^(1/10) 1771111708984379 a001 10182505537/930249*123^(1/10) 1771111708984816 a001 53316291173/4870847*123^(1/10) 1771111708984880 a001 139583862445/12752043*123^(1/10) 1771111708984890 a001 182717648081/16692641*123^(1/10) 1771111708984891 a001 956722026041/87403803*123^(1/10) 1771111708984891 a001 2504730781961/228826127*123^(1/10) 1771111708984891 a001 3278735159921/299537289*123^(1/10) 1771111708984891 a001 10610209857723/969323029*123^(1/10) 1771111708984891 a001 4052739537881/370248451*123^(1/10) 1771111708984891 a001 387002188980/35355581*123^(1/10) 1771111708984892 a001 591286729879/54018521*123^(1/10) 1771111708984895 a001 7787980473/711491*123^(1/10) 1771111708984920 a001 21566892818/1970299*123^(1/10) 1771111708985087 a001 32951280099/3010349*123^(1/10) 1771111708986231 a001 12586269025/1149851*123^(1/10) 1771111708994073 a001 1201881744/109801*123^(1/10) 1771111709047822 a001 1836311903/167761*123^(1/10) 1771111709416226 a001 701408733/64079*123^(1/10) 1771111711221111 k007 concat of cont frac of 1771111711224213 k007 concat of cont frac of 1771111711431264 k009 concat of cont frac of 1771111711813221 k007 concat of cont frac of 1771111711941304 a001 10946*123^(1/10) 1771111712102292 k008 concat of cont frac of 1771111712312121 k008 concat of cont frac of 1771111712482648 a007 Real Root Of 722*x^4+837*x^3-286*x^2+476*x-714 1771111712597582 m001 ln(3)/(Bloch+ZetaR(2)) 1771111712616231 k006 concat of cont frac of 1771111713135121 k008 concat of cont frac of 1771111713251311 k008 concat of cont frac of 1771111713732795 r002 31th iterates of z^2 + 1771111713851181 k009 concat of cont frac of 1771111714045400 m001 1/TwinPrimes^2*exp(CopelandErdos)/GAMMA(13/24) 1771111714609066 m001 (-Landau+Tetranacci)/(BesselI(0,2)-Psi(1,1/3)) 1771111714693867 r002 25th iterates of z^2 + 1771111715131101 k007 concat of cont frac of 1771111716217385 m001 (Chi(1)+Cahen)/(3^(1/2)-Psi(1,1/3)) 1771111717593406 m002 -5*Pi^3*Log[Pi]+ProductLog[Pi]/3 1771111717771117 s003 concatenated sequence A087514 1771111720177082 r005 Re(z^2+c),c=5/94+27/46*I,n=22 1771111721311842 k008 concat of cont frac of 1771111721615111 k008 concat of cont frac of 1771111724544116 k007 concat of cont frac of 1771111724693132 k007 concat of cont frac of 1771111729248446 a001 102334155/9349*123^(1/10) 1771111731114441 k006 concat of cont frac of 1771111731123151 k008 concat of cont frac of 1771111734200313 a008 Real Root of (-6+5*x-5*x^3+4*x^4+3*x^5) 1771111736120115 k008 concat of cont frac of 1771111737103355 a001 15127/3*514229^(39/49) 1771111742567346 m001 (Zeta(5)+3^(1/3))/(BesselI(1,1)+GaussAGM) 1771111742962752 q001 6229/3517 1771111743389658 a001 1/1353*(1/2*5^(1/2)+1/2)^13*11^(7/11) 1771111743874059 a001 121393/843*322^(5/6) 1771111750909331 s002 sum(A229395[n]/((2*n+1)!),n=1..infinity) 1771111751726134 k007 concat of cont frac of 1771111752044534 r005 Im(z^2+c),c=-13/10+1/222*I,n=23 1771111752225162 k008 concat of cont frac of 1771111752532403 a007 Real Root Of -644*x^4+828*x^3+526*x^2+466*x-103 1771111752573883 a001 11592/19*11^(4/9) 1771111752976064 a007 Real Root Of 864*x^4+906*x^3-948*x^2+562*x+501 1771111755249572 a001 5778/1346269*13^(21/38) 1771111756782636 m005 (1/2*Catalan-7/9)/(1/7*5^(1/2)-1/2) 1771111756811212 k008 concat of cont frac of 1771111761111111 k008 concat of cont frac of 1771111761447516 k008 concat of cont frac of 1771111768222698 a001 1/105937*610^(16/35) 1771111771231132 k008 concat of cont frac of 1771111780498812 m001 1/ln(GAMMA(1/6))^2*LaplaceLimit^2/sin(1) 1771111792623993 r002 4th iterates of z^2 + 1771111798334586 l006 ln(367/2157) 1771111802152311 k009 concat of cont frac of 1771111802498645 a001 21/76*29^(16/29) 1771111802637810 a007 Real Root Of 25*x^4-182*x^3-19*x^2+404*x-482 1771111806002152 m005 (1/2*3^(1/2)-1/9)/(4/9*Catalan-5/6) 1771111807137389 r005 Re(z^2+c),c=-9/86+24/55*I,n=46 1771111808049994 m005 (1/2*3^(1/2)+11/12)/(1/10*3^(1/2)+5/6) 1771111810423989 m001 (Khinchin+Lehmer)/(Tetranacci-ZetaP(4)) 1771111811177142 k006 concat of cont frac of 1771111811227114 k006 concat of cont frac of 1771111811281222 k007 concat of cont frac of 1771111812112141 k007 concat of cont frac of 1771111812813314 k008 concat of cont frac of 1771111816844185 r005 Re(z^2+c),c=-5/24+1/61*I,n=12 1771111821200146 m001 (ln(Pi)-GlaisherKinkelin)/(Sarnak+ZetaQ(2)) 1771111821717151 k006 concat of cont frac of 1771111821921621 k008 concat of cont frac of 1771111823291715 k008 concat of cont frac of 1771111824943348 a003 cos(Pi*12/77)+sin(Pi*31/89) 1771111825717694 r005 Im(z^2+c),c=-55/94+29/63*I,n=32 1771111827132251 k006 concat of cont frac of 1771111829129543 r009 Re(z^3+c),c=-11/32+36/55*I,n=4 1771111831916103 k007 concat of cont frac of 1771111832157212 k008 concat of cont frac of 1771111834672287 a007 Real Root Of -678*x^4-896*x^3+206*x^2-344*x+438 1771111835670035 q001 5432/3067 1771111836063884 r005 Im(z^2+c),c=-19/106+6/25*I,n=9 1771111836316079 h001 (-6*exp(-1)+8)/(-2*exp(-2)-3) 1771111839166791 m002 -E^Pi-E^Pi/Pi^6+Pi^2+Pi^3 1771111842101227 m005 (3/4*Pi+2/5)/(3/4*Pi-4/5) 1771111842101227 m006 (2/5/Pi+3/4)/(4/5/Pi-3/4) 1771111842101227 m008 (3/4*Pi+2/5)/(3/4*Pi-4/5) 1771111844903741 r005 Re(z^2+c),c=-113/90+14/37*I,n=47 1771111846273448 a001 199/18*(1/2*5^(1/2)+1/2)^7*18^(13/22) 1771111847873369 a001 39088169/3571*123^(1/10) 1771111852126113 k007 concat of cont frac of 1771111858360411 a007 Real Root Of 255*x^4-743*x^3+263*x^2+237*x+374 1771111861212438 a007 Real Root Of 702*x^4+648*x^3-331*x^2+965*x-560 1771111861686408 a001 9349/610*6557470319842^(16/17) 1771111863762397 a007 Real Root Of 122*x^4-60*x^3-235*x^2+705*x+452 1771111867732653 m001 (BesselI(1,2)+MertensB1)/(Chi(1)+exp(-1/2*Pi)) 1771111869436197 m001 BesselK(1,1)/ln(LandauRamanujan)^2*GAMMA(5/12) 1771111870627832 a007 Real Root Of -637*x^4-935*x^3+571*x^2+49*x-631 1771111876559835 m001 (sin(1/5*Pi)+ln(Pi))/(GAMMA(13/24)-Robbin) 1771111877599052 m001 (BesselI(0,2)+1/2)/(-5^(1/2)+2/3) 1771111881949961 a001 20633239/610*1836311903^(16/17) 1771111881951225 a001 22768774562/305*514229^(16/17) 1771111891108122 k008 concat of cont frac of 1771111892315294 a008 Real Root of (2+14*x-5*x^2-2*x^3) 1771111893695104 a003 cos(Pi*17/95)/cos(Pi*14/41) 1771111895401263 m005 (1/3*Catalan-4)/(5*gamma-4/5) 1771111895623516 a001 9/5473*55^(1/54) 1771111898142363 r005 Im(z^2+c),c=-41/110+17/60*I,n=13 1771111905546318 a007 Real Root Of -515*x^4-969*x^3-451*x^2-792*x-304 1771111909893961 a007 Real Root Of -654*x^4-975*x^3+486*x^2+751*x+824 1771111910412521 k008 concat of cont frac of 1771111910421872 m001 Niven^2*ln(DuboisRaymond)^2/BesselJ(1,1) 1771111920093967 h001 (2/7*exp(2)+6/7)/(1/6*exp(2)+4/9) 1771111921512421 k008 concat of cont frac of 1771111921699992 a007 Real Root Of -261*x^4+85*x^3+611*x^2-630*x+8 1771111924199342 p004 log(27527/23059) 1771111926604628 a007 Real Root Of -211*x^4-299*x^3-131*x^2+333*x-53 1771111931621119 k008 concat of cont frac of 1771111939926523 m001 Zeta(9)^2*BesselJ(0,1)/ln(cosh(1)) 1771111940019080 m005 (1/2*2^(1/2)-7/12)/(-19/88+9/22*5^(1/2)) 1771111941317131 k006 concat of cont frac of 1771111942652415 a007 Real Root Of 888*x^4+840*x^3-816*x^2+628*x-399 1771111947697625 r005 Re(z^2+c),c=13/62+8/49*I,n=19 1771111950488526 r005 Im(z^2+c),c=-19/14+35/148*I,n=6 1771111953238144 a007 Real Root Of -170*x^4+106*x^3+760*x^2+383*x+556 1771111960259839 q001 4635/2617 1771111964297264 a007 Real Root Of 54*x^4+966*x^3+202*x^2+571*x+81 1771111964933527 m001 GAMMA(23/24)^(2^(1/2))*Zeta(1/2)^(2^(1/2)) 1771111964933527 m001 GAMMA(23/24)^sqrt(2)*Zeta(1/2)^sqrt(2) 1771111970484428 r002 64th iterates of z^2 + 1771111972247259 m001 1/FeigenbaumKappa^2*Salem/exp(GAMMA(17/24)) 1771111976396981 r005 Im(z^2+c),c=-39/70+21/64*I,n=48 1771111984559779 a007 Real Root Of 564*x^4+995*x^3+527*x^2+477*x-830 1771111996325558 m001 (Chi(1)-Gompertz)/(-PlouffeB+Tribonacci) 1771112002503724 m001 exp(1)^GAMMA(5/6)*exp(1)^KhinchinHarmonic 1771112002503724 m001 exp(GAMMA(5/6)+KhinchinHarmonic) 1771112002995993 h001 (-8*exp(2)-4)/(-2*exp(1)+9) 1771112006587911 m008 (2*Pi+3/5)/(4*Pi^4-1) 1771112007474481 b008 Sqrt[ExpIntegralE[2,6*Pi]] 1771112007842984 m008 (4*Pi^6-5/6)/(1/2*Pi+3/5) 1771112012404616 r009 Re(z^3+c),c=-13/36+27/44*I,n=25 1771112018173632 k007 concat of cont frac of 1771112018588975 r005 Im(z^2+c),c=-1/10+7/32*I,n=16 1771112021329354 k006 concat of cont frac of 1771112023744196 m005 (1/3*Catalan-1/2)/(2/9*3^(1/2)+5/7) 1771112025059071 a007 Real Root Of -431*x^4-192*x^3+405*x^2-927*x+262 1771112032380753 a007 Real Root Of 632*x^4+718*x^3-869*x^2+193*x+838 1771112040868016 r005 Re(z^2+c),c=-1/122+41/64*I,n=13 1771112048778194 r005 Re(z^2+c),c=-7/106+23/45*I,n=63 1771112052168110 r005 Im(z^2+c),c=-19/18+29/123*I,n=61 1771112055808079 m001 (Tribonacci+TwinPrimes)/(Conway+OneNinth) 1771112063265607 a007 Real Root Of 479*x^4+980*x^3+604*x^2+453*x-361 1771112064506477 a007 Real Root Of -295*x^4+46*x^3+816*x^2-89*x+441 1771112065812481 a001 2207/514229*13^(21/38) 1771112069102271 a007 Real Root Of 445*x^4+80*x^3-815*x^2+460*x-563 1771112071874917 m001 1/ln(Salem)^2*MadelungNaCl^2*GAMMA(7/12) 1771112076413950 r005 Im(z^2+c),c=-63/86+4/51*I,n=21 1771112082173111 k008 concat of cont frac of 1771112088381503 m001 GaussAGM+Catalan^RenyiParking 1771112098998081 q001 1/564617 1771112099811123 k006 concat of cont frac of 1771112101901860 r009 Re(z^3+c),c=-17/86+7/33*I,n=5 1771112103443911 a003 cos(Pi*6/79)+cos(Pi*8/39) 1771112104590254 r005 Re(z^2+c),c=-29/34+3/127*I,n=28 1771112110121311 k007 concat of cont frac of 1771112110131328 k007 concat of cont frac of 1771112111112111 k007 concat of cont frac of 1771112111123141 k007 concat of cont frac of 1771112111145412 k009 concat of cont frac of 1771112111164122 k008 concat of cont frac of 1771112111220942 a007 Real Root Of -92*x^4+142*x^3-95*x^2-742*x+678 1771112111316111 k007 concat of cont frac of 1771112111411113 k006 concat of cont frac of 1771112111432114 k008 concat of cont frac of 1771112111451281 k008 concat of cont frac of 1771112111452112 k007 concat of cont frac of 1771112111463171 k007 concat of cont frac of 1771112112215131 k008 concat of cont frac of 1771112112454251 k008 concat of cont frac of 1771112112611214 k008 concat of cont frac of 1771112113113151 k006 concat of cont frac of 1771112113211111 k007 concat of cont frac of 1771112113237211 k008 concat of cont frac of 1771112113417137 k006 concat of cont frac of 1771112113541311 k008 concat of cont frac of 1771112115112131 k007 concat of cont frac of 1771112115115416 k007 concat of cont frac of 1771112115123111 k007 concat of cont frac of 1771112115261131 k008 concat of cont frac of 1771112116113241 k008 concat of cont frac of 1771112116119121 k008 concat of cont frac of 1771112116311319 k008 concat of cont frac of 1771112119236121 k008 concat of cont frac of 1771112119722509 a007 Real Root Of -719*x^4-723*x^3+488*x^2-414*x+794 1771112119948920 r009 Re(z^3+c),c=-25/102+5/13*I,n=3 1771112120907699 a007 Real Root Of -698*x^4-909*x^3-977*x^2+691*x-86 1771112120971306 a001 2504730781961/2*2^(1/2) 1771112121053122 k006 concat of cont frac of 1771112121123312 k008 concat of cont frac of 1771112121141512 k008 concat of cont frac of 1771112121152123 k006 concat of cont frac of 1771112121221222 k006 concat of cont frac of 1771112121231112 k007 concat of cont frac of 1771112121241126 k007 concat of cont frac of 1771112121310351 k008 concat of cont frac of 1771112122141311 k008 concat of cont frac of 1771112122156106 k008 concat of cont frac of 1771112122161221 k008 concat of cont frac of 1771112122361111 k008 concat of cont frac of 1771112122431531 k007 concat of cont frac of 1771112122455665 r009 Re(z^3+c),c=-17/54+38/61*I,n=43 1771112123113223 k008 concat of cont frac of 1771112123241271 k007 concat of cont frac of 1771112123371315 k008 concat of cont frac of 1771112123422512 k008 concat of cont frac of 1771112123721112 k009 concat of cont frac of 1771112123743947 r005 Im(z^2+c),c=-5/4+81/218*I,n=3 1771112123796179 m005 (1/2*Catalan-4/11)/(10/11*Catalan-3/10) 1771112124111312 k006 concat of cont frac of 1771112125112711 k008 concat of cont frac of 1771112126415323 k008 concat of cont frac of 1771112127161131 k006 concat of cont frac of 1771112129314213 k006 concat of cont frac of 1771112131551140 k007 concat of cont frac of 1771112131656185 k009 concat of cont frac of 1771112132173712 k008 concat of cont frac of 1771112132211125 k007 concat of cont frac of 1771112133212152 k006 concat of cont frac of 1771112134712171 k008 concat of cont frac of 1771112135152611 k008 concat of cont frac of 1771112136594370 q001 3838/2167 1771112137132491 k008 concat of cont frac of 1771112138721357 l006 ln(1362/8005) 1771112141142121 k008 concat of cont frac of 1771112141274142 k008 concat of cont frac of 1771112141709811 a007 Real Root Of 51*x^4+851*x^3-978*x^2-885*x+728 1771112142111825 k008 concat of cont frac of 1771112142313111 k008 concat of cont frac of 1771112143211211 k006 concat of cont frac of 1771112151530131 k008 concat of cont frac of 1771112154311111 k006 concat of cont frac of 1771112161314111 k008 concat of cont frac of 1771112162212811 k006 concat of cont frac of 1771112163307447 p004 log(29863/5081) 1771112164171253 k008 concat of cont frac of 1771112166565403 a007 Real Root Of -682*x^4-869*x^3+539*x^2+9*x+208 1771112170269428 r009 Re(z^3+c),c=-7/64+49/64*I,n=48 1771112171111981 k008 concat of cont frac of 1771112171113233 k008 concat of cont frac of 1771112171321121 k008 concat of cont frac of 1771112171411221 k008 concat of cont frac of 1771112174271566 k009 concat of cont frac of 1771112174644659 h001 (7/12*exp(2)+7/12)/(1/3*exp(2)+3/10) 1771112179080131 r009 Im(z^3+c),c=-4/29+1/60*I,n=6 1771112184217921 k006 concat of cont frac of 1771112187266027 r004 Re(z^2+c),c=1/3-5/9*I,z(0)=exp(7/24*I*Pi),n=4 1771112187851252 a007 Real Root Of -420*x^4-607*x^3-116*x^2-427*x+368 1771112190990415 a007 Real Root Of -522*x^4-289*x^3+825*x^2-787*x-451 1771112191113192 k007 concat of cont frac of 1771112192114361 k007 concat of cont frac of 1771112192623853 h001 (9/11*exp(1)+8/9)/(5/12*exp(1)+5/8) 1771112198122583 a001 75025/199*199^(8/11) 1771112202545526 m001 1/Lehmer^2*Kolakoski^2*ln(GAMMA(1/3)) 1771112211116913 k008 concat of cont frac of 1771112211117821 k006 concat of cont frac of 1771112211121261 k006 concat of cont frac of 1771112211132571 k007 concat of cont frac of 1771112211139164 k006 concat of cont frac of 1771112211164142 k007 concat of cont frac of 1771112211229113 k008 concat of cont frac of 1771112211410137 k008 concat of cont frac of 1771112211651311 k008 concat of cont frac of 1771112212019421 k009 concat of cont frac of 1771112212111813 k009 concat of cont frac of 1771112212132434 k008 concat of cont frac of 1771112212711116 k007 concat of cont frac of 1771112213011118 k008 concat of cont frac of 1771112213215134 k006 concat of cont frac of 1771112215111511 k008 concat of cont frac of 1771112215178713 k006 concat of cont frac of 1771112218122224 k008 concat of cont frac of 1771112219927678 a001 1346269/521*322^(1/3) 1771112220123312 k006 concat of cont frac of 1771112221142233 k007 concat of cont frac of 1771112221211422 k009 concat of cont frac of 1771112221356521 k007 concat of cont frac of 1771112224709112 a007 Real Root Of 191*x^4-41*x^3-68*x^2+586*x-856 1771112225124119 k009 concat of cont frac of 1771112226111111 k006 concat of cont frac of 1771112226721995 r009 Re(z^3+c),c=-67/126+31/53*I,n=6 1771112227221231 k008 concat of cont frac of 1771112229131921 k008 concat of cont frac of 1771112231023114 k008 concat of cont frac of 1771112231211511 k006 concat of cont frac of 1771112231568123 k006 concat of cont frac of 1771112231888016 a007 Real Root Of -720*x^4-201*x^3+328*x^2+929*x-173 1771112231952111 k008 concat of cont frac of 1771112233128192 k008 concat of cont frac of 1771112234022248 a007 Real Root Of -866*x^4+396*x^3-125*x^2+960*x+177 1771112235113111 k008 concat of cont frac of 1771112235414111 k008 concat of cont frac of 1771112239012417 k008 concat of cont frac of 1771112239114332 k006 concat of cont frac of 1771112244102172 k008 concat of cont frac of 1771112246242111 k007 concat of cont frac of 1771112248932896 m001 Psi(1,1/3)^GAMMA(13/24)/FeigenbaumAlpha 1771112251211102 k009 concat of cont frac of 1771112252622914 r005 Re(z^2+c),c=-5/118+31/56*I,n=51 1771112252981089 a001 5778/377*1597^(1/51) 1771112254651413 b008 13/5+ExpIntegralEi[-1/3] 1771112255406797 q001 6879/3884 1771112258585286 r005 Im(z^2+c),c=-25/48+20/63*I,n=50 1771112261910711 r009 Im(z^3+c),c=-17/82+23/24*I,n=18 1771112262781111 k008 concat of cont frac of 1771112264271021 l006 ln(995/5848) 1771112269951555 a007 Real Root Of 391*x^4+247*x^3-495*x^2+147*x-662 1771112271511515 k006 concat of cont frac of 1771112274463946 r005 Im(z^2+c),c=-37/106+9/32*I,n=28 1771112281211212 k008 concat of cont frac of 1771112281911315 k006 concat of cont frac of 1771112282011944 a007 Real Root Of -348*x^4-441*x^3+316*x^2-210*x-389 1771112283654345 m001 exp(Lehmer)^2/DuboisRaymond/GAMMA(7/24)^2 1771112286079660 a001 76/10610209857723*13^(6/17) 1771112295122221 k008 concat of cont frac of 1771112296645846 m001 (-ln(Pi)+arctan(1/2))/(5^(1/2)+ln(5)) 1771112304080552 a007 Real Root Of 408*x^4-41*x^3-654*x^2+730*x-898 1771112306013566 a007 Real Root Of 614*x^4+452*x^3-387*x^2+828*x-850 1771112307380207 m001 (CareFree-Si(Pi))/(MasserGramain+ZetaQ(4)) 1771112307473497 a007 Real Root Of 775*x^4+617*x^3-569*x^2+987*x-665 1771112309261934 a005 (1/cos(11/239*Pi))^1591 1771112311046521 k008 concat of cont frac of 1771112311121161 k007 concat of cont frac of 1771112311212127 k008 concat of cont frac of 1771112312114142 k007 concat of cont frac of 1771112317111125 k006 concat of cont frac of 1771112317411118 k007 concat of cont frac of 1771112319506548 a008 Real Root of x^4-2*x^3-29*x^2-36*x+156 1771112321114181 k007 concat of cont frac of 1771112321125251 k007 concat of cont frac of 1771112322307391 h001 (2/11*exp(1)+3/4)/(9/10*exp(2)+3/8) 1771112322725311 k008 concat of cont frac of 1771112323124711 k008 concat of cont frac of 1771112323161212 k006 concat of cont frac of 1771112331111833 k009 concat of cont frac of 1771112333769132 r009 Re(z^3+c),c=-5/48+35/44*I,n=23 1771112336222101 k009 concat of cont frac of 1771112336483035 r008 a(0)=0,K{-n^6,-44+43*n-21*n^2+28*n^3} 1771112339018280 a007 Real Root Of -549*x^4-552*x^3+609*x^2-341*x-179 1771112341094549 a001 514229/1364*322^(2/3) 1771112343314319 a003 sin(Pi*30/107)+sin(Pi*45/91) 1771112344198431 r005 Re(z^2+c),c=-37/58+11/26*I,n=33 1771112344535449 m001 cos(1)*Grothendieck*Tribonacci 1771112349593840 r005 Re(z^2+c),c=19/60+13/43*I,n=27 1771112351111113 k008 concat of cont frac of 1771112351182118 k006 concat of cont frac of 1771112352321271 k008 concat of cont frac of 1771112353783235 k006 concat of cont frac of 1771112355143056 m001 (Cahen+Khinchin)/(Porter+ThueMorse) 1771112355906875 m001 (Riemann2ndZero-Stephens)/(ln(Pi)-gamma(2)) 1771112356177004 m005 (1/2*Pi-3/11)/(3/4*gamma+3/10) 1771112356805045 a007 Real Root Of 807*x^4-483*x^3+482*x^2-629*x-130 1771112359222011 k007 concat of cont frac of 1771112361163333 k009 concat of cont frac of 1771112366546193 r005 Re(z^2+c),c=-1/44+29/54*I,n=8 1771112366946107 m001 OrthogonalArrays/BesselK(1,1)/ln(2+3^(1/2)) 1771112368691175 m001 Zeta(3)*ln(FeigenbaumD)/sin(Pi/12)^2 1771112369630616 l006 ln(1623/9539) 1771112372131171 k009 concat of cont frac of 1771112377048791 r005 Im(z^2+c),c=-25/26+11/63*I,n=45 1771112386878310 r009 Im(z^3+c),c=-4/29+1/60*I,n=7 1771112390550629 m001 (Riemann2ndZero+Stephens)/(Bloch+RenyiParking) 1771112394931180 a001 1/21*6765^(7/47) 1771112398887324 r009 Im(z^3+c),c=-4/29+1/60*I,n=8 1771112399534909 r009 Im(z^3+c),c=-4/29+1/60*I,n=9 1771112399566916 r009 Im(z^3+c),c=-4/29+1/60*I,n=10 1771112399568302 r009 Im(z^3+c),c=-4/29+1/60*I,n=11 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=12 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=25 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=26 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=27 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=28 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=29 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=30 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=31 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=32 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=33 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=34 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=35 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=36 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=24 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=23 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=22 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=21 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=20 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=19 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=18 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=17 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=16 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=15 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=14 1771112399568347 r009 Im(z^3+c),c=-4/29+1/60*I,n=13 1771112405358182 q001 3041/1717 1771112407495626 a001 47/6557470319842*28657^(5/16) 1771112411151752 k007 concat of cont frac of 1771112411222421 k007 concat of cont frac of 1771112411231661 k007 concat of cont frac of 1771112411311351 k008 concat of cont frac of 1771112411345128 k008 concat of cont frac of 1771112411415112 k008 concat of cont frac of 1771112411526651 k008 concat of cont frac of 1771112412666710 m001 (gamma+FeigenbaumDelta)/(MertensB2+Tetranacci) 1771112413237485 k006 concat of cont frac of 1771112414111284 k007 concat of cont frac of 1771112414221312 k008 concat of cont frac of 1771112415361111 k008 concat of cont frac of 1771112416141312 k008 concat of cont frac of 1771112421911134 k008 concat of cont frac of 1771112424303114 m005 (-15/4+1/4*5^(1/2))/(9/11*Zeta(3)+9/11) 1771112425512278 k006 concat of cont frac of 1771112427700783 r009 Re(z^3+c),c=-5/52+32/37*I,n=18 1771112441111512 k008 concat of cont frac of 1771112441161143 k006 concat of cont frac of 1771112441316129 k008 concat of cont frac of 1771112442345160 m001 (Zeta(1/2)-Otter)/(Riemann3rdZero-ZetaP(4)) 1771112442456450 p004 log(16921/2879) 1771112442462061 a008 Real Root of (-3-2*x+5*x^2+x^3+6*x^4+4*x^5) 1771112443111071 k006 concat of cont frac of 1771112447631952 r005 Im(z^2+c),c=-1/8+7/31*I,n=17 1771112447925394 a007 Real Root Of 41*x^4+727*x^3+29*x^2+234*x-264 1771112449029749 a001 514229/2207*322^(3/4) 1771112450110310 k008 concat of cont frac of 1771112451289384 m004 (-4*Sqrt[5])/Pi-25*Sqrt[5]*Pi+Sec[Sqrt[5]*Pi] 1771112452086486 m001 Rabbit/Magata/Salem 1771112457413926 r002 28th iterates of z^2 + 1771112460104196 a003 cos(Pi*37/110)*cos(Pi*31/81) 1771112477825799 m008 (Pi^6-3/5)/(3*Pi-4) 1771112478586365 r005 Re(z^2+c),c=37/98+8/29*I,n=11 1771112478783464 m001 (Ei(1)-Zeta(1,-1))/(GaussKuzminWirsing-Porter) 1771112478981552 a007 Real Root Of -531*x^4-795*x^3+542*x^2+262*x-428 1771112489684341 h001 (3/4*exp(2)+1/10)/(10/11*exp(1)+5/7) 1771112494121216 k006 concat of cont frac of 1771112495169465 r005 Re(z^2+c),c=-5/32+13/43*I,n=7 1771112499244968 m001 HardHexagonsEntropy^BesselI(1,1)*Porter 1771112509211087 m001 Riemann2ndZero-Lehmer-exp(1) 1771112511074300 m001 1/ArtinRank2^2*exp(FeigenbaumAlpha)^2*gamma 1771112511111210 k007 concat of cont frac of 1771112511481113 k006 concat of cont frac of 1771112514321532 k007 concat of cont frac of 1771112514569506 m001 Niven^2/DuboisRaymond^2/ln(GAMMA(11/24))^2 1771112515112113 k006 concat of cont frac of 1771112521028301 m001 (LambertW(1)+3)/(-exp(Pi)+3) 1771112523121581 k006 concat of cont frac of 1771112523660419 m005 (23/20+1/4*5^(1/2))/(5/12*3^(1/2)-9/11) 1771112525152599 a001 233/3*64079^(26/53) 1771112526470913 r009 Re(z^3+c),c=-15/29+27/49*I,n=38 1771112528112156 k008 concat of cont frac of 1771112531219538 m006 (4*Pi^2-5/6)/(2/5*exp(2*Pi)+4) 1771112535166502 r005 Im(z^2+c),c=17/64+2/45*I,n=50 1771112536561799 l006 ln(628/3691) 1771112539570634 m001 1/cosh(1)/Zeta(1/2)^2*exp(log(1+sqrt(2)))^2 1771112540062516 m001 exp(Zeta(5))^2*GAMMA(17/24)/gamma 1771112541268102 m001 (Catalan+GaussAGM)/(Stephens+ThueMorse) 1771112544303979 a007 Real Root Of -24*x^4+298*x^3+759*x^2+467*x+338 1771112554327492 a007 Real Root Of -154*x^4+33*x^3+267*x^2-598*x-198 1771112556696045 a007 Real Root Of 736*x^4+994*x^3-26*x^2-396*x-7 1771112556757117 s002 sum(A049991[n]/(n^3*pi^n-1),n=1..infinity) 1771112557953416 r009 Re(z^3+c),c=-15/29+27/49*I,n=41 1771112570123057 a007 Real Root Of -41*x^4+240*x^3+605*x^2-332*x-749 1771112572657724 a003 sin(Pi*29/103)+sin(Pi*53/111) 1771112576632583 a003 cos(Pi*14/75)+sin(Pi*31/80) 1771112578075074 m001 Grothendieck/Gompertz*Lehmer 1771112581177024 r009 Re(z^3+c),c=-15/29+27/49*I,n=53 1771112581227879 r009 Re(z^3+c),c=-15/29+27/49*I,n=56 1771112581301985 r009 Re(z^3+c),c=-15/29+27/49*I,n=59 1771112581313293 r009 Re(z^3+c),c=-15/29+27/49*I,n=62 1771112581619830 r009 Re(z^3+c),c=-15/29+27/49*I,n=44 1771112581806311 r009 Re(z^3+c),c=-15/29+27/49*I,n=50 1771112583708507 r009 Re(z^3+c),c=-15/29+27/49*I,n=47 1771112585526431 m001 (2^(1/3)-ln(Pi))/(PlouffeB+ZetaP(3)) 1771112588641662 a007 Real Root Of 575*x^4+156*x^3-970*x^2+684*x-537 1771112594592047 a007 Real Root Of 333*x^4-143*x^3-677*x^2+697*x-713 1771112596069108 h001 (-exp(1/3)-4)/(-9*exp(1)-6) 1771112600536193 q001 5285/2984 1771112609828983 a007 Real Root Of 198*x^4-949*x^3+845*x^2-168*x+971 1771112611148111 k006 concat of cont frac of 1771112611152735 k008 concat of cont frac of 1771112612112256 k006 concat of cont frac of 1771112613287258 r005 Im(z^2+c),c=-8/19+19/64*I,n=48 1771112623416492 k008 concat of cont frac of 1771112628042639 m005 (1/3*gamma+1/10)/(6*exp(1)+1/5) 1771112628113163 k008 concat of cont frac of 1771112637865121 a007 Real Root Of -440*x^4-479*x^3+703*x^2+468*x+292 1771112641241110 k006 concat of cont frac of 1771112642245661 r005 Im(z^2+c),c=-53/122+3/10*I,n=28 1771112645322626 a007 Real Root Of -322*x^4-294*x^3+702*x^2+712*x+594 1771112647019513 r002 50th iterates of z^2 + 1771112655654484 a007 Real Root Of -769*x^4-979*x^3+927*x^2+502*x+109 1771112660941119 a001 3732588/341*123^(1/10) 1771112668110139 r005 Re(z^2+c),c=7/24+35/62*I,n=8 1771112672114121 k008 concat of cont frac of 1771112672160592 b008 -1/2+(1+Pi)^EulerGamma 1771112678598032 a001 75025/11*521^(9/59) 1771112679830627 r005 Re(z^2+c),c=-7/86+14/29*I,n=48 1771112691741450 a007 Real Root Of 792*x^4+786*x^3-803*x^2+435*x-137 1771112692060816 a001 24476/1597*6557470319842^(16/17) 1771112692419102 k006 concat of cont frac of 1771112693696527 r009 Re(z^3+c),c=-15/29+27/49*I,n=35 1771112695017230 a001 54018521/1597*1836311903^(16/17) 1771112695018491 a001 119218851371/1597*514229^(16/17) 1771112697677003 m001 (exp(1)+GAMMA(5/6))/(GAMMA(7/12)+Cahen) 1771112701870793 r005 Re(z^2+c),c=-9/86+24/55*I,n=49 1771112711113211 k006 concat of cont frac of 1771112711113587 k008 concat of cont frac of 1771112711131118 k008 concat of cont frac of 1771112711250122 k009 concat of cont frac of 1771112713155121 k009 concat of cont frac of 1771112713576738 a007 Real Root Of -6*x^4-28*x^3-645*x^2-639*x+795 1771112715157227 l006 ln(1517/8916) 1771112722221225 k008 concat of cont frac of 1771112722826315 a007 Real Root Of 641*x^4+768*x^3-725*x^2-696*x-999 1771112726349416 r009 Im(z^3+c),c=-29/46+15/47*I,n=47 1771112727409188 r002 5th iterates of z^2 + 1771112731111834 k007 concat of cont frac of 1771112732664677 r005 Re(z^2+c),c=33/122+13/57*I,n=38 1771112733285476 l006 ln(449/536) 1771112734055751 a007 Real Root Of 622*x^4+991*x^3-271*x^2-400*x-473 1771112735225904 r005 Im(z^2+c),c=-5/6+43/225*I,n=27 1771112737210698 a007 Real Root Of 261*x^4+69*x^3-301*x^2+303*x-704 1771112743747060 p004 log(23057/3923) 1771112752257267 m001 GAMMA(19/24)^2/GAMMA(11/24)/ln(Zeta(9))^2 1771112759592779 a001 1346269/5778*322^(3/4) 1771112766351862 a001 38/17*34^(27/46) 1771112770651784 m001 (Otter+Thue)/(Ei(1)+sin(1/12*Pi)) 1771112779241852 m009 (1/2*Psi(1,3/4)-3/5)/(2/5*Psi(1,1/3)-1/4) 1771112782734535 a007 Real Root Of -620*x^4-480*x^3+356*x^2-886*x+748 1771112783944205 a003 cos(Pi*29/71)-cos(Pi*48/103) 1771112788489372 m009 (1/3*Psi(1,3/4)-2)/(1/5*Psi(1,3/4)+6) 1771112794113545 r005 Re(z^2+c),c=-37/30+5/94*I,n=38 1771112796328264 p003 LerchPhi(1/3,3,429/233) 1771112803326830 m001 (ln(3)+GAMMA(7/12))/(GolombDickman+Thue) 1771112804386079 r002 60th iterates of z^2 + 1771112804903324 a001 3524578/15127*322^(3/4) 1771112808389726 m001 1/GAMMA(13/24)/GAMMA(1/3)*exp(GAMMA(23/24))^2 1771112811214415 k006 concat of cont frac of 1771112811514044 a001 9227465/39603*322^(3/4) 1771112812478535 a001 24157817/103682*322^(3/4) 1771112812619252 a001 63245986/271443*322^(3/4) 1771112812639782 a001 165580141/710647*322^(3/4) 1771112812642778 a001 433494437/1860498*322^(3/4) 1771112812643215 a001 1134903170/4870847*322^(3/4) 1771112812643278 a001 2971215073/12752043*322^(3/4) 1771112812643288 a001 7778742049/33385282*322^(3/4) 1771112812643289 a001 20365011074/87403803*322^(3/4) 1771112812643289 a001 53316291173/228826127*322^(3/4) 1771112812643289 a001 139583862445/599074578*322^(3/4) 1771112812643289 a001 365435296162/1568397607*322^(3/4) 1771112812643289 a001 956722026041/4106118243*322^(3/4) 1771112812643289 a001 2504730781961/10749957122*322^(3/4) 1771112812643289 a001 6557470319842/28143753123*322^(3/4) 1771112812643289 a001 10610209857723/45537549124*322^(3/4) 1771112812643289 a001 4052739537881/17393796001*322^(3/4) 1771112812643289 a001 1548008755920/6643838879*322^(3/4) 1771112812643289 a001 591286729879/2537720636*322^(3/4) 1771112812643289 a001 225851433717/969323029*322^(3/4) 1771112812643289 a001 86267571272/370248451*322^(3/4) 1771112812643289 a001 63246219/271444*322^(3/4) 1771112812643290 a001 12586269025/54018521*322^(3/4) 1771112812643293 a001 4807526976/20633239*322^(3/4) 1771112812643318 a001 1836311903/7881196*322^(3/4) 1771112812643485 a001 701408733/3010349*322^(3/4) 1771112812644629 a001 267914296/1149851*322^(3/4) 1771112812652471 a001 102334155/439204*322^(3/4) 1771112812706220 a001 39088169/167761*322^(3/4) 1771112813074623 a001 14930352/64079*322^(3/4) 1771112813210873 a001 64079/4181*6557470319842^(16/17) 1771112813642208 a001 141422324/4181*1836311903^(16/17) 1771112813643469 a001 312119004989/4181*514229^(16/17) 1771112813699074 h001 (4/11*exp(1)+5/7)/(1/11*exp(1)+5/7) 1771112815599693 a001 5702887/24476*322^(3/4) 1771112818548135 a007 Real Root Of 455*x^4+122*x^3-954*x^2+237*x-387 1771112823840246 a001 311187*3571^(38/49) 1771112827515731 k007 concat of cont frac of 1771112827648975 m001 (BesselK(1,1)-ZetaP(3))/(Zeta(5)+exp(1/Pi)) 1771112829122799 a001 2/13*121393^(15/37) 1771112830073500 r005 Im(z^2+c),c=-1/8+7/31*I,n=16 1771112830886430 a001 167761/10946*6557470319842^(16/17) 1771112830949361 a001 370248451/10946*1836311903^(16/17) 1771112830950622 a001 408569081798/5473*514229^(16/17) 1771112832906782 a001 2178309/9349*322^(3/4) 1771112833465259 a001 439204/28657*6557470319842^(16/17) 1771112833474440 a001 969323029/28657*1836311903^(16/17) 1771112833475701 a001 2139295485799/28657*514229^(16/17) 1771112833841505 a001 1149851/75025*6557470319842^(16/17) 1771112833842844 a001 2537720636/75025*1836311903^(16/17) 1771112833844105 a001 5600748293801/75025*514229^(16/17) 1771112833896398 a001 3010349/196418*6557470319842^(16/17) 1771112833896594 a001 6643838879/196418*1836311903^(16/17) 1771112833897855 a001 7331474697802/98209*514229^(16/17) 1771112833904407 a001 7881196/514229*6557470319842^(16/17) 1771112833904436 a001 17393796001/514229*1836311903^(16/17) 1771112833905576 a001 20633239/1346269*6557470319842^(16/17) 1771112833905580 a001 45537549124/1346269*1836311903^(16/17) 1771112833905746 a001 54018521/3524578*6557470319842^(16/17) 1771112833905747 a001 119218851371/3524578*1836311903^(16/17) 1771112833905771 a001 141422324/9227465*6557470319842^(16/17) 1771112833905771 a001 312119004989/9227465*1836311903^(16/17) 1771112833905775 a001 370248451/24157817*6557470319842^(16/17) 1771112833905775 a001 817138163596/24157817*1836311903^(16/17) 1771112833905775 a001 969323029/63245986*6557470319842^(16/17) 1771112833905775 a001 2139295485799/63245986*1836311903^(16/17) 1771112833905775 a001 2537720636/165580141*6557470319842^(16/17) 1771112833905775 a001 5600748293801/165580141*1836311903^(16/17) 1771112833905775 a001 14662949395604/433494437*1836311903^(16/17) 1771112833905775 a001 6643838879/433494437*6557470319842^(16/17) 1771112833905775 a001 17393796001/1134903170*6557470319842^(16/17) 1771112833905775 a001 45537549124/2971215073*6557470319842^(16/17) 1771112833905775 a001 119218851371/7778742049*6557470319842^(16/17) 1771112833905775 a001 312119004989/20365011074*6557470319842^(16/17) 1771112833905775 a001 817138163596/53316291173*6557470319842^(16/17) 1771112833905775 a001 494493258286/32264490531*6557470319842^(16/17) 1771112833905775 a001 505019158607/32951280099*6557470319842^(16/17) 1771112833905775 a001 192900153618/12586269025*6557470319842^(16/17) 1771112833905775 a001 10525900321/686789568*6557470319842^(16/17) 1771112833905775 a001 28143753123/1836311903*6557470319842^(16/17) 1771112833905775 a001 23725150497407/701408733*1836311903^(16/17) 1771112833905775 a001 10749957122/701408733*6557470319842^(16/17) 1771112833905775 a001 9062201101803/267914296*1836311903^(16/17) 1771112833905775 a001 4106118243/267914296*6557470319842^(16/17) 1771112833905775 a001 228826126/6765*1836311903^(16/17) 1771112833905775 a001 224056801/14619165*6557470319842^(16/17) 1771112833905776 a001 1322157322203/39088169*1836311903^(16/17) 1771112833905776 a001 599074578/39088169*6557470319842^(16/17) 1771112833905777 a001 505019158607/14930352*1836311903^(16/17) 1771112833905777 a001 228826127/14930352*6557470319842^(16/17) 1771112833905786 a001 192900153618/5702887*1836311903^(16/17) 1771112833905787 a001 87403803/5702887*6557470319842^(16/17) 1771112833905850 a001 10525900321/311187*1836311903^(16/17) 1771112833905852 a001 4769326/311187*6557470319842^(16/17) 1771112833906287 a001 28143753123/832040*1836311903^(16/17) 1771112833906298 a001 12752043/832040*6557470319842^(16/17) 1771112833909282 a001 10749957122/317811*1836311903^(16/17) 1771112833909357 a001 4870847/317811*6557470319842^(16/17) 1771112833910543 a001 23725150497407/317811*514229^(16/17) 1771112833929813 a001 4106118243/121393*1836311903^(16/17) 1771112833930325 a001 1860498/121393*6557470319842^(16/17) 1771112833931074 a001 9062201101803/121393*514229^(16/17) 1771112834070531 a001 224056801/6624*1836311903^(16/17) 1771112834071792 a001 10749853441/144*514229^(16/17) 1771112834074038 a001 101521/6624*6557470319842^(16/17) 1771112835035025 a001 599074578/17711*1836311903^(16/17) 1771112835036286 a001 1322157322203/17711*514229^(16/17) 1771112835059063 a001 271443/17711*6557470319842^(16/17) 1771112837976870 a007 Real Root Of -584*x^4-325*x^3+923*x^2-889*x-529 1771112838224322 k008 concat of cont frac of 1771112841319107 l006 ln(889/5225) 1771112841645769 a001 228826127/6765*1836311903^(16/17) 1771112841647030 a001 505019158607/6765*514229^(16/17) 1771112841810525 a001 103682/6765*6557470319842^(16/17) 1771112842519432 m005 (1/3*3^(1/2)-1/3)/(29/60+2/5*5^(1/2)) 1771112854531271 k008 concat of cont frac of 1771112855317376 r005 Im(z^2+c),c=-5/102+34/43*I,n=21 1771112856166610 m005 (1/2*Zeta(3)-3)/(7/11*2^(1/2)+5/11) 1771112857583610 s001 sum(exp(-2*Pi/3)^n*A217322[n],n=1..infinity) 1771112860821335 m001 -BesselI(1,1)/(-cos(Pi/5)+4) 1771112864785845 m001 (Zeta(3)*GaussAGM+Weierstrass)/GaussAGM 1771112865035516 q001 2244/1267 1771112865401950 b008 E*(6+Sqrt[Sech[2]]) 1771112871112025 k008 concat of cont frac of 1771112871328321 k006 concat of cont frac of 1771112876159007 a007 Real Root Of 192*x^4-175*x^3-226*x^2+950*x-470 1771112876264093 b008 13*ArcSec[29/6] 1771112881614821 m001 (exp(Pi)-sin(1/5*Pi))/(ln(3)+ZetaP(3)) 1771112886956485 a001 87403803/2584*1836311903^(16/17) 1771112886957745 a001 96450076809/1292*514229^(16/17) 1771112888085735 a001 39603/2584*6557470319842^(16/17) 1771112894683560 m004 2+(5*Sqrt[5])/(E^(Sqrt[5]*Pi)*Pi)+5*Pi 1771112908281493 m001 GAMMA(1/3)/Khintchine^2*exp(GAMMA(11/24))^2 1771112910360297 r005 Re(z^2+c),c=-41/34+5/126*I,n=16 1771112911310415 k006 concat of cont frac of 1771112911541402 k007 concat of cont frac of 1771112911721112 k007 concat of cont frac of 1771112912212174 k008 concat of cont frac of 1771112917489309 a001 311187*9349^(34/49) 1771112918621113 k007 concat of cont frac of 1771112920920214 m005 (1/2*exp(1)-3/8)/(1/12*3^(1/2)-7/10) 1771112923462974 a007 Real Root Of -279*x^4-343*x^3-284*x^2-417*x+992 1771112926291411 r005 Im(z^2+c),c=-25/62+17/58*I,n=18 1771112929081284 m006 (1/4*exp(Pi)+3/4)/(1/3*Pi^2+2/5) 1771112929463009 r005 Im(z^2+c),c=-37/106+9/32*I,n=37 1771112938949858 a001 121393/7*15127^(47/49) 1771112944852231 a007 Real Root Of 666*x^4+802*x^3-502*x^2-946*x-148 1771112951309784 a007 Real Root Of -710*x^4-955*x^3-58*x^2-828*x+396 1771112951531343 a001 832040/3571*322^(3/4) 1771112961942251 k008 concat of cont frac of 1771112962121276 a007 Real Root Of 102*x^4-925*x^3+946*x^2+363*x+525 1771112965456681 m001 1/3*MinimumGamma*3^(2/3)*ZetaP(3) 1771112968201169 r009 Re(z^3+c),c=-11/46+11/30*I,n=8 1771112970454070 r005 Re(z^2+c),c=-3/25+31/49*I,n=34 1771112983998427 a007 Real Root Of -698*x^4-675*x^3+812*x^2+109*x+764 1771112988407452 m004 1+(50*Sqrt[5])/Pi+Sinh[Sqrt[5]*Pi]/4 1771112989744907 a005 (1/cos(22/205*Pi))^1202 1771112991463279 r005 Im(z^2+c),c=-8/19+19/64*I,n=46 1771112996635282 r005 Im(z^2+c),c=-23/70+17/61*I,n=12 1771112998713011 h005 exp(cos(Pi*7/45)*cos(Pi*8/29)) 1771113001894330 m001 ln(OneNinth)/FibonacciFactorial/GAMMA(23/24) 1771113002725949 r005 Im(z^2+c),c=-1+3/16*I,n=18 1771113003648007 m001 Psi(1,1/3)*LandauRamanujan*UniversalParabolic 1771113004510201 r005 Re(z^2+c),c=-5/24+1/63*I,n=9 1771113007029097 b008 Coth[4/21]/3 1771113007743058 l006 ln(1150/6759) 1771113012210212 k009 concat of cont frac of 1771113014247110 k008 concat of cont frac of 1771113014413769 a007 Real Root Of 706*x^4+431*x^3-761*x^2+698*x-929 1771113023293546 m001 ln(2)^GaussAGM+MertensB2 1771113034853258 b008 Zeta[1/2,3/7]^2 1771113036662485 a007 Real Root Of -446*x^4-125*x^3+743*x^2-623*x+260 1771113036851175 m001 (-Otter+Sarnak)/(LambertW(1)+ln(2)) 1771113039720185 a007 Real Root Of 437*x^4+799*x^3+479*x^2+605*x-292 1771113050281585 a001 233/521*64079^(22/23) 1771113050533595 a007 Real Root Of 801*x^4+424*x^3-968*x^2+880*x-931 1771113050694147 a001 233/521*7881196^(2/3) 1771113050694166 a001 233/521*312119004989^(2/5) 1771113050694166 a001 233/521*(1/2+1/2*5^(1/2))^22 1771113050694166 a001 233/521*10749957122^(11/24) 1771113050694166 a001 233/521*4106118243^(11/23) 1771113050694166 a001 233/521*1568397607^(1/2) 1771113050694166 a001 233/521*599074578^(11/21) 1771113050694166 a001 233/521*228826127^(11/20) 1771113050694166 a001 233/521*87403803^(11/19) 1771113050694167 a001 233/521*33385282^(11/18) 1771113050694173 a001 233/521*12752043^(11/17) 1771113050694217 a001 233/521*4870847^(11/16) 1771113050694541 a001 233/521*1860498^(11/15) 1771113050696921 a001 233/521*710647^(11/14) 1771113050714505 a001 233/521*271443^(11/13) 1771113050845192 a001 233/521*103682^(11/12) 1771113057825259 r005 Re(z^2+c),c=-9/86+24/55*I,n=52 1771113061172821 m001 (1+GAMMA(23/24))/(-Cahen+KomornikLoreti) 1771113066211545 m001 1/GAMMA(5/24)*GAMMA(13/24)*exp(GAMMA(7/24))^2 1771113067567998 r005 Re(z^2+c),c=-2/29+25/49*I,n=23 1771113068744420 r002 33th iterates of z^2 + 1771113069207679 a003 cos(Pi*11/52)+sin(Pi*31/70) 1771113070545641 h001 (1/2*exp(2)+8/11)/(6/7*exp(1)+1/6) 1771113080992188 h001 (6/7*exp(1)+2/3)/(1/7*exp(2)+7/11) 1771113081716121 k007 concat of cont frac of 1771113083543059 p001 sum((-1)^n/(491*n+56)/(12^n),n=0..infinity) 1771113088174280 a001 682*377^(28/51) 1771113090380363 a003 cos(Pi*11/62)+sin(Pi*40/107) 1771113100566994 q001 5935/3351 1771113100972686 r005 Re(z^2+c),c=-6/5+1/98*I,n=22 1771113101115134 k007 concat of cont frac of 1771113101314518 k007 concat of cont frac of 1771113101432471 k008 concat of cont frac of 1771113110151132 k007 concat of cont frac of 1771113110242115 k006 concat of cont frac of 1771113111011236 k008 concat of cont frac of 1771113111122101 k006 concat of cont frac of 1771113111195116 k009 concat of cont frac of 1771113111312114 k008 concat of cont frac of 1771113111319212 k008 concat of cont frac of 1771113111341111 k007 concat of cont frac of 1771113111531982 k007 concat of cont frac of 1771113112111211 k008 concat of cont frac of 1771113112113241 k008 concat of cont frac of 1771113112213191 k008 concat of cont frac of 1771113112223113 k008 concat of cont frac of 1771113112523216 k007 concat of cont frac of 1771113112598389 l006 ln(1411/8293) 1771113112669175 m005 (1/2*Zeta(3)+10/11)/(3/10*5^(1/2)+2/11) 1771113113132111 k006 concat of cont frac of 1771113113222141 k006 concat of cont frac of 1771113113512113 k009 concat of cont frac of 1771113114424917 k006 concat of cont frac of 1771113115131212 k006 concat of cont frac of 1771113115991806 m001 1/BesselK(0,1)/ln((3^(1/3)))^2 1771113117112111 k009 concat of cont frac of 1771113118214718 m005 (3/5*2^(1/2)-2)/(1/5*Catalan-5/6) 1771113118511111 k009 concat of cont frac of 1771113119326976 r005 Im(z^2+c),c=-13/22+33/103*I,n=33 1771113121111113 k008 concat of cont frac of 1771113121111413 k007 concat of cont frac of 1771113121112521 k008 concat of cont frac of 1771113121126423 k006 concat of cont frac of 1771113121131211 k007 concat of cont frac of 1771113121214111 k007 concat of cont frac of 1771113121322112 k006 concat of cont frac of 1771113121412311 k008 concat of cont frac of 1771113121901657 h001 (5/7*exp(2)+1/8)/(4/11*exp(2)+4/11) 1771113122161112 k008 concat of cont frac of 1771113122212912 k006 concat of cont frac of 1771113122641117 k006 concat of cont frac of 1771113124112313 k008 concat of cont frac of 1771113124729179 g006 Psi(1,5/8)+Psi(1,3/7)-Psi(1,5/9)-Psi(1,4/7) 1771113127058102 m001 (3^(1/2)+Conway)/(Niven+ZetaQ(3)) 1771113127161411 k008 concat of cont frac of 1771113131261571 k006 concat of cont frac of 1771113131706131 k006 concat of cont frac of 1771113131813223 k006 concat of cont frac of 1771113132140122 k008 concat of cont frac of 1771113132611132 k008 concat of cont frac of 1771113133211236 k007 concat of cont frac of 1771113142193122 k008 concat of cont frac of 1771113142532116 k006 concat of cont frac of 1771113143737210 m004 (125*Pi)/3+(25*Sqrt[5]*Pi)/Log[Sqrt[5]*Pi]^2 1771113144611388 q001 6/33877 1771113144886443 r009 Re(z^3+c),c=-31/114+37/54*I,n=60 1771113146051102 k008 concat of cont frac of 1771113149750767 m001 (3^(1/3)+Cahen)/(HeathBrownMoroz+Salem) 1771113150363227 m005 (1/2*gamma-1/11)/(-57/110+2/11*5^(1/2)) 1771113151112531 k006 concat of cont frac of 1771113151714216 k006 concat of cont frac of 1771113156291181 k006 concat of cont frac of 1771113157080834 m001 1/LambertW(1)/(2^(1/3))^2*ln(log(1+sqrt(2)))^2 1771113161113012 k007 concat of cont frac of 1771113161117321 k008 concat of cont frac of 1771113161121343 k008 concat of cont frac of 1771113161176254 k008 concat of cont frac of 1771113161195131 k007 concat of cont frac of 1771113161214332 k008 concat of cont frac of 1771113161612111 k007 concat of cont frac of 1771113163325157 m001 (LambertW(1)*GAMMA(2/3)-Pi^(1/2))/LambertW(1) 1771113163325157 m001 (LambertW(1)*GAMMA(2/3)-sqrt(Pi))/LambertW(1) 1771113164211281 k007 concat of cont frac of 1771113167467450 a001 75025/843*322^(11/12) 1771113169120172 r005 Re(z^2+c),c=-10/27+9/14*I,n=14 1771113169682914 m001 (gamma+ln(2))/(-BesselI(1,1)+GlaisherKinkelin) 1771113171111232 k008 concat of cont frac of 1771113172239113 k008 concat of cont frac of 1771113173651411 k007 concat of cont frac of 1771113176234559 r005 Im(z^2+c),c=-49/46+6/29*I,n=43 1771113179184852 m001 (DuboisRaymond+Porter)/(2^(1/3)-arctan(1/3)) 1771113181221126 k008 concat of cont frac of 1771113182765950 m002 -10+6*Pi^3+ProductLog[Pi] 1771113184717779 l006 ln(1672/9827) 1771113185683730 b008 Log[Log[44]]^2 1771113188267379 m001 Conway/ln(Artin)^2*GAMMA(1/4)^2 1771113197520811 a001 4769326/141*1836311903^(16/17) 1771113197522070 a001 10525900321/141*514229^(16/17) 1771113198152837 a007 Real Root Of -444*x^4-943*x^3-587*x^2-126*x+748 1771113198872794 r005 Re(z^2+c),c=-9/86+24/55*I,n=55 1771113205260805 a001 2161/141*6557470319842^(16/17) 1771113206153730 a001 1/2*28657^(43/54) 1771113207279183 r005 Re(z^2+c),c=1/42+13/20*I,n=19 1771113211161215 k008 concat of cont frac of 1771113211713213 k008 concat of cont frac of 1771113214311141 k009 concat of cont frac of 1771113214911997 k008 concat of cont frac of 1771113215211314 k008 concat of cont frac of 1771113215390322 m001 OneNinth^2/exp(RenyiParking)/GAMMA(1/6)^2 1771113215412114 k006 concat of cont frac of 1771113215455550 m005 (1/2*Pi-5/9)/(2/7*Zeta(3)-11/12) 1771113216277836 r005 Im(z^2+c),c=-19/74+13/47*I,n=5 1771113217115231 k008 concat of cont frac of 1771113218436424 r005 Im(z^2+c),c=-39/64+1/3*I,n=24 1771113220221243 k008 concat of cont frac of 1771113221111118 k009 concat of cont frac of 1771113221221110 k006 concat of cont frac of 1771113221710512 k008 concat of cont frac of 1771113221811121 k007 concat of cont frac of 1771113222221788 k008 concat of cont frac of 1771113222229952 r009 Re(z^3+c),c=-15/29+27/49*I,n=29 1771113225954937 r002 16th iterates of z^2 + 1771113226119142 k008 concat of cont frac of 1771113228057991 r009 Re(z^3+c),c=-25/48+21/37*I,n=12 1771113231217653 a007 Real Root Of 683*x^4+801*x^3-573*x^2+144*x-218 1771113231753774 r005 Im(z^2+c),c=-57/58+2/11*I,n=27 1771113239058183 m001 (Landau+MertensB2)/(BesselI(1,1)-Backhouse) 1771113240231110 k008 concat of cont frac of 1771113241121324 k006 concat of cont frac of 1771113241382172 k007 concat of cont frac of 1771113242679517 r005 Im(z^2+c),c=-25/18+1/44*I,n=13 1771113243761996 q001 3691/2084 1771113245349561 m001 (Backhouse+GolombDickman)/(Salem-ZetaQ(4)) 1771113248177126 r005 Re(z^2+c),c=-13/90+34/61*I,n=4 1771113248977067 r005 Im(z^2+c),c=-1/8+7/31*I,n=19 1771113251512113 k006 concat of cont frac of 1771113252504803 m001 OneNinth^2*FeigenbaumD^2*exp(GAMMA(1/3))^2 1771113254293307 a007 Real Root Of 323*x^4+355*x^3-642*x^2-385*x+126 1771113254539335 r005 Re(z^2+c),c=-9/86+24/55*I,n=58 1771113257781854 m001 (Ei(1)+LaplaceLimit)/(Magata-ReciprocalLucas) 1771113261687276 r005 Im(z^2+c),c=-7/6+48/163*I,n=8 1771113265242141 k008 concat of cont frac of 1771113267877251 a003 cos(Pi*23/116)+sin(Pi*29/71) 1771113269924056 m001 FeigenbaumKappa^2*ln(Khintchine)^3 1771113273585861 a007 Real Root Of 139*x^4-350*x^3-911*x^2-410*x+103 1771113276419664 r005 Re(z^2+c),c=-9/86+24/55*I,n=61 1771113276596311 a007 Real Root Of -850*x^4-695*x^3+998*x^2-629*x+258 1771113284984170 r005 Re(z^2+c),c=-9/86+24/55*I,n=64 1771113292403174 r005 Re(z^2+c),c=-9/86+24/55*I,n=62 1771113296603714 r005 Re(z^2+c),c=-9/86+24/55*I,n=63 1771113297076006 r005 Re(z^2+c),c=-9/86+24/55*I,n=59 1771113305125888 r005 Re(z^2+c),c=-9/86+24/55*I,n=60 1771113307818802 a001 3010349/610*6557470319842^(14/17) 1771113307818997 a001 1268860318/305*1836311903^(14/17) 1771113307820100 a001 2139295485799/610*514229^(14/17) 1771113311305513 r005 Re(z^2+c),c=-9/86+24/55*I,n=56 1771113311311111 k008 concat of cont frac of 1771113311516211 k006 concat of cont frac of 1771113311737602 r009 Re(z^3+c),c=-37/118+46/63*I,n=9 1771113312116218 k008 concat of cont frac of 1771113312351946 k009 concat of cont frac of 1771113314111191 k008 concat of cont frac of 1771113316092570 m005 (1/2*2^(1/2)-5/7)/(6/7*Zeta(3)-5/8) 1771113321266121 k008 concat of cont frac of 1771113324031731 k006 concat of cont frac of 1771113325148861 r005 Re(z^2+c),c=-9/86+24/55*I,n=57 1771113334259022 a007 Real Root Of -276*x^4-276*x^3+14*x^2-260*x+678 1771113341111715 k006 concat of cont frac of 1771113342175296 a007 Real Root Of 25*x^4-460*x^3-428*x^2-802*x+158 1771113342601271 a001 987/11*5778^(36/59) 1771113343781634 a007 Real Root Of 244*x^4-842*x^3+492*x^2+233*x+321 1771113344186499 r009 Re(z^3+c),c=-19/58+18/29*I,n=53 1771113347477214 h001 (7/12*exp(2)+6/11)/(5/7*exp(1)+4/5) 1771113347520931 r009 Im(z^3+c),c=-7/17+2/29*I,n=9 1771113351151236 k008 concat of cont frac of 1771113353178688 r005 Re(z^2+c),c=-9/86+24/55*I,n=53 1771113356523143 a007 Real Root Of -254*x^4+120*x^3+670*x^2-938*x-597 1771113357415311 k007 concat of cont frac of 1771113357508474 a007 Real Root Of 976*x^4+919*x^3-993*x^2+476*x-540 1771113359254312 a007 Real Root Of -751*x^4-793*x^3+585*x^2-341*x+545 1771113360795691 m001 (FeigenbaumB+Lehmer)/(GAMMA(2/3)+ln(gamma)) 1771113361494752 m001 GAMMA(11/12)*GAMMA(17/24)+PrimesInBinary 1771113361731171 k008 concat of cont frac of 1771113363878942 m001 (Pi-Riemann2ndZero)/Psi(1,1/3) 1771113364946035 r005 Im(z^2+c),c=-47/82+19/48*I,n=39 1771113369737662 r005 Im(z^2+c),c=-1/8+7/31*I,n=20 1771113371760826 r005 Re(z^2+c),c=-9/86+24/55*I,n=54 1771113372183461 r005 Re(z^2+c),c=-21/110+31/39*I,n=28 1771113372511343 k006 concat of cont frac of 1771113373587733 m005 (1/2*3^(1/2)+1)/(3/10*Pi+1/9) 1771113379062112 r009 Re(z^3+c),c=-15/29+27/49*I,n=32 1771113381102923 k008 concat of cont frac of 1771113387695129 r009 Im(z^3+c),c=-65/126+7/54*I,n=23 1771113388704707 r005 Im(z^2+c),c=-1/8+7/31*I,n=22 1771113394638547 m006 (1/2*exp(2*Pi)-1/6)/(5*Pi-3/5) 1771113404118522 k006 concat of cont frac of 1771113405471452 m005 (1/2*Pi-5/11)/(17/66+1/6*5^(1/2)) 1771113406521256 a007 Real Root Of 920*x^4-925*x^3-805*x^2-895*x+188 1771113408413352 r005 Im(z^2+c),c=-1/8+7/31*I,n=25 1771113409169251 q001 5138/2901 1771113410537767 r005 Im(z^2+c),c=-1/8+7/31*I,n=28 1771113410728984 r005 Im(z^2+c),c=-1/8+7/31*I,n=31 1771113410742657 r005 Im(z^2+c),c=-1/8+7/31*I,n=33 1771113410743346 r005 Im(z^2+c),c=-1/8+7/31*I,n=34 1771113410743929 r005 Im(z^2+c),c=-1/8+7/31*I,n=36 1771113410744153 r005 Im(z^2+c),c=-1/8+7/31*I,n=39 1771113410744168 r005 Im(z^2+c),c=-1/8+7/31*I,n=37 1771113410744180 r005 Im(z^2+c),c=-1/8+7/31*I,n=42 1771113410744182 r005 Im(z^2+c),c=-1/8+7/31*I,n=45 1771113410744182 r005 Im(z^2+c),c=-1/8+7/31*I,n=48 1771113410744182 r005 Im(z^2+c),c=-1/8+7/31*I,n=47 1771113410744182 r005 Im(z^2+c),c=-1/8+7/31*I,n=50 1771113410744182 r005 Im(z^2+c),c=-1/8+7/31*I,n=51 1771113410744182 r005 Im(z^2+c),c=-1/8+7/31*I,n=53 1771113410744182 r005 Im(z^2+c),c=-1/8+7/31*I,n=56 1771113410744182 r005 Im(z^2+c),c=-1/8+7/31*I,n=59 1771113410744182 r005 Im(z^2+c),c=-1/8+7/31*I,n=62 1771113410744182 r005 Im(z^2+c),c=-1/8+7/31*I,n=64 1771113410744182 r005 Im(z^2+c),c=-1/8+7/31*I,n=61 1771113410744182 r005 Im(z^2+c),c=-1/8+7/31*I,n=63 1771113410744182 r005 Im(z^2+c),c=-1/8+7/31*I,n=60 1771113410744182 r005 Im(z^2+c),c=-1/8+7/31*I,n=58 1771113410744182 r005 Im(z^2+c),c=-1/8+7/31*I,n=57 1771113410744182 r005 Im(z^2+c),c=-1/8+7/31*I,n=54 1771113410744182 r005 Im(z^2+c),c=-1/8+7/31*I,n=55 1771113410744182 r005 Im(z^2+c),c=-1/8+7/31*I,n=52 1771113410744182 r005 Im(z^2+c),c=-1/8+7/31*I,n=49 1771113410744183 r005 Im(z^2+c),c=-1/8+7/31*I,n=46 1771113410744183 r005 Im(z^2+c),c=-1/8+7/31*I,n=44 1771113410744183 r005 Im(z^2+c),c=-1/8+7/31*I,n=43 1771113410744186 r005 Im(z^2+c),c=-1/8+7/31*I,n=41 1771113410744187 r005 Im(z^2+c),c=-1/8+7/31*I,n=40 1771113410744242 r005 Im(z^2+c),c=-1/8+7/31*I,n=38 1771113410744308 r005 Im(z^2+c),c=-1/8+7/31*I,n=30 1771113410744949 r005 Im(z^2+c),c=-1/8+7/31*I,n=35 1771113410752515 r005 Im(z^2+c),c=-1/8+7/31*I,n=32 1771113410819431 r005 Im(z^2+c),c=-1/8+7/31*I,n=29 1771113410900850 m001 (KhinchinLevy+Robbin)/(GAMMA(13/24)-Gompertz) 1771113410934447 r005 Im(z^2+c),c=-1/8+7/31*I,n=27 1771113411131711 k006 concat of cont frac of 1771113411135117 k008 concat of cont frac of 1771113411250449 r005 Im(z^2+c),c=-1/8+7/31*I,n=26 1771113411311123 k006 concat of cont frac of 1771113411789644 r005 Im(z^2+c),c=-1/8+7/31*I,n=23 1771113412311116 k006 concat of cont frac of 1771113412483012 p004 log(23633/4021) 1771113412641114 k008 concat of cont frac of 1771113414600693 r005 Im(z^2+c),c=-1/8+7/31*I,n=24 1771113419216261 k008 concat of cont frac of 1771113431425524 k007 concat of cont frac of 1771113436300455 a003 cos(Pi*12/91)/cos(Pi*35/107) 1771113436570593 m001 1/PisotVijayaraghavan*Lehmer*exp(Tribonacci)^2 1771113438410706 m005 (1/2*2^(1/2)+2)/(8/9*Catalan+5/7) 1771113454019011 a007 Real Root Of -904*x^4-850*x^3+987*x^2-971*x-643 1771113454777862 m001 (1+cos(1/5*Pi))/(-ln(gamma)+Bloch) 1771113456156957 a001 18/2504730781961*46368^(16/17) 1771113461131121 k006 concat of cont frac of 1771113465211161 k008 concat of cont frac of 1771113465818785 r005 Im(z^2+c),c=-1/8+7/31*I,n=21 1771113467232114 k006 concat of cont frac of 1771113467272626 r009 Re(z^3+c),c=-19/54+31/49*I,n=63 1771113469883971 a007 Real Root Of -42*x^4-788*x^3-832*x^2-886*x+107 1771113473371707 r005 Re(z^2+c),c=-9/86+24/55*I,n=50 1771113479106563 r005 Re(z^2+c),c=-9/86+24/55*I,n=51 1771113481311223 k008 concat of cont frac of 1771113486316520 m001 (MertensB2+Riemann1stZero)/(Catalan-Pi^(1/2)) 1771113489074553 a007 Real Root Of -550*x^4-656*x^3+30*x^2-982*x-66 1771113490945662 a007 Real Root Of -128*x^4+121*x^3-871*x^2+547*x+125 1771113495281066 r005 Re(z^2+c),c=23/94+13/64*I,n=41 1771113496114112 k007 concat of cont frac of 1771113501882732 q001 6585/3718 1771113502320094 a007 Real Root Of -847*x^4-992*x^3+985*x^2+604*x+803 1771113503422901 r002 63th iterates of z^2 + 1771113507592459 a007 Real Root Of 928*x^4+946*x^3-893*x^2+837*x+408 1771113510112367 s002 sum(A055314[n]/(n!^2),n=1..infinity) 1771113511212231 k007 concat of cont frac of 1771113512176211 k006 concat of cont frac of 1771113513411323 k008 concat of cont frac of 1771113514327213 k007 concat of cont frac of 1771113516111121 k008 concat of cont frac of 1771113520542805 r005 Im(z^2+c),c=-37/106+9/32*I,n=35 1771113537516710 m001 (MinimumGamma+Porter)/(Shi(1)+Gompertz) 1771113538893455 a007 Real Root Of 771*x^4+877*x^3-569*x^2+545*x+36 1771113540419511 s002 sum(A043906[n]/(10^n+1),n=1..infinity) 1771113549501960 m001 (TwinPrimes+1/3)/(ln(5)+4) 1771113550804595 m001 BesselI(0,2)*sin(1/5*Pi)^Weierstrass 1771113552357443 a007 Real Root Of 675*x^4-605*x^3-391*x^2-610*x+123 1771113557480973 m001 (KomornikLoreti+RenyiParking)/(Shi(1)+Artin) 1771113567515510 m001 (Backhouse+Champernowne)/(Shi(1)+Zeta(1,-1)) 1771113574604508 l006 ln(261/1534) 1771113577328474 m001 (Ei(1,1)+ZetaP(3))/(1+GAMMA(3/4)) 1771113580834963 r005 Re(z^2+c),c=-13/74+13/53*I,n=16 1771113583831132 m005 (1/2*Zeta(3)-4/7)/(7/11*2^(1/2)-11/12) 1771113585067752 r005 Re(z^2+c),c=-3/62+27/50*I,n=43 1771113585811269 a007 Real Root Of 426*x^4+156*x^3-567*x^2+780*x-165 1771113587592405 r005 Re(z^2+c),c=-13/86+14/43*I,n=12 1771113592997575 h001 (7/11*exp(1)+8/11)/(2/5*exp(1)+3/10) 1771113594954860 r002 20i'th iterates of 2*x/(1-x^2) of 1771113604457200 r005 Re(z^2+c),c=23/94+13/64*I,n=40 1771113606474590 a007 Real Root Of 104*x^4-194*x^3+162*x^2-693*x-129 1771113607500883 a003 cos(Pi*15/101)+cos(Pi*17/107) 1771113612141122 k007 concat of cont frac of 1771113613579620 r009 Re(z^3+c),c=-4/31+41/53*I,n=6 1771113624371315 k008 concat of cont frac of 1771113626081628 m005 (1/2*3^(1/2)-1/9)/(5/11*gamma+4) 1771113632511123 k007 concat of cont frac of 1771113634212191 k007 concat of cont frac of 1771113635763972 r005 Re(z^2+c),c=3/98+21/37*I,n=26 1771113636731511 k008 concat of cont frac of 1771113638795359 r005 Re(z^2+c),c=-117/122+4/27*I,n=34 1771113640464269 r005 Im(z^2+c),c=9/29+3/58*I,n=24 1771113641151171 k008 concat of cont frac of 1771113643433776 a001 832040/521*322^(5/12) 1771113646953977 a007 Real Root Of 800*x^4+897*x^3-260*x^2+783*x-686 1771113650450570 m001 FeigenbaumKappa^ln(2+3^(1/2))*KhinchinLevy 1771113658267574 m001 (FeigenbaumKappa+PlouffeB)/(Thue+ZetaP(3)) 1771113661450698 a001 123/1597*377^(11/12) 1771113662143101 k008 concat of cont frac of 1771113662317125 k006 concat of cont frac of 1771113667560384 m001 exp(1)/(Gompertz^(Pi*2^(1/2)/GAMMA(3/4))) 1771113672015698 a001 17711/11*24476^(14/59) 1771113673834834 a001 46368/11*39603^(8/59) 1771113674312141 k008 concat of cont frac of 1771113687151221 r009 Re(z^3+c),c=-11/64+1/45*I,n=5 1771113694490199 a007 Real Root Of -418*x^4-98*x^3+500*x^2-611*x+918 1771113700787187 r009 Re(z^3+c),c=-29/102+25/37*I,n=47 1771113700953477 a007 Real Root Of 677*x^4+643*x^3-802*x^2+780*x+808 1771113705251545 m001 (log(gamma)*sqrt(Pi)+exp(sqrt(2)))/sqrt(Pi) 1771113706247607 a007 Real Root Of 26*x^4+463*x^3+79*x^2+648*x+643 1771113707192109 r005 Re(z^2+c),c=-45/118+33/46*I,n=6 1771113707934345 m005 (1/3*5^(1/2)-1/12)/(5/7*2^(1/2)-7/11) 1771113708813254 m001 ln(Pi)+gamma(3)+GolombDickman 1771113710306117 m001 Lehmer/CareFree^2/ln(TreeGrowth2nd)^2 1771113711162221 k006 concat of cont frac of 1771113713338939 a001 2/271443*4^(31/49) 1771113714211139 k007 concat of cont frac of 1771113714615116 k009 concat of cont frac of 1771113715722702 b008 2+E^3*(6+E) 1771113719636358 m005 (-5/42+1/6*5^(1/2))/(5/7*Catalan+7/9) 1771113719714977 a007 Real Root Of 246*x^4+70*x^3-606*x^2+486*x+730 1771113723160155 r005 Re(z^2+c),c=-9/86+24/55*I,n=48 1771113723651331 k007 concat of cont frac of 1771113726194084 m001 Rabbit/(BesselI(1,1)-cos(1/12*Pi)) 1771113728547994 m001 (FeigenbaumC-exp(-Pi))/Psi(1,1/3) 1771113731548867 r005 Im(z^2+c),c=-37/58+7/17*I,n=34 1771113732825182 r005 Re(z^2+c),c=1/114+10/59*I,n=10 1771113734464588 m001 (GaussAGM-ZetaP(2))/(ln(gamma)-ln(5)) 1771113734608378 m001 1/Pi^2*GAMMA(2/3)^2/exp(sinh(1))^2 1771113735213206 k008 concat of cont frac of 1771113738619549 r005 Re(z^2+c),c=21/94+9/50*I,n=21 1771113741474361 a001 46368/11*2207^(11/59) 1771113749630446 r005 Re(z^2+c),c=-77/94+3/26*I,n=44 1771113752089876 a007 Real Root Of -564*x^4-439*x^3+673*x^2-395*x+300 1771113758508699 a003 cos(Pi*3/61)+cos(Pi*25/117) 1771113763109273 a007 Real Root Of -506*x^4-357*x^3+684*x^2-175*x+540 1771113763900231 m001 Paris*ln(DuboisRaymond)^2*sin(Pi/12)^2 1771113764596605 a001 317811/1364*322^(3/4) 1771113771843774 s002 sum(A160535[n]/(n^2*pi^n+1),n=1..infinity) 1771113773761222 k008 concat of cont frac of 1771113782099781 a003 cos(Pi*1/51)+sin(Pi*9/32) 1771113791660983 a007 Real Root Of 237*x^4+355*x^3-443*x^2-420*x+286 1771113794747270 a007 Real Root Of -458*x^4-844*x^3-276*x^2-894*x-900 1771113799231329 m001 FeigenbaumC*ln(LandauRamanujan)^2/RenyiParking 1771113802088127 a001 1597/11*9349^(31/59) 1771113805604444 m001 (Rabbit-ZetaP(4))/(sin(1/12*Pi)+Paris) 1771113806049141 m002 E^Pi*Pi^6*Sech[Pi]^2+Sinh[Pi] 1771113810893800 a007 Real Root Of -341*x^4-292*x^3+941*x^2+600*x-156 1771113811261221 k008 concat of cont frac of 1771113811416111 k008 concat of cont frac of 1771113811869997 r005 Re(z^2+c),c=-9/86+24/55*I,n=47 1771113816776796 a007 Real Root Of 186*x^4-398*x^3-788*x^2+736*x-266 1771113819524343 a001 47/144*6765^(39/40) 1771113820397275 m001 exp(OneNinth)^2/GolombDickman^2*GAMMA(1/6) 1771113824787053 r002 29th iterates of z^2 + 1771113831089351 q001 1447/817 1771113832611677 r009 Im(z^3+c),c=-13/30+2/51*I,n=40 1771113838744030 a001 23725150497407/144*144^(16/17) 1771113851053214 m001 Zeta(9)^2/ln(Si(Pi))^2*sin(Pi/12)^2 1771113858756592 a007 Real Root Of 876*x^4+588*x^3-901*x^2+893*x-945 1771113865237761 p004 log(13183/2243) 1771113867276159 a007 Real Root Of 183*x^4+128*x^3-225*x^2+486*x+477 1771113872531891 a001 317811/2207*322^(5/6) 1771113879291031 k008 concat of cont frac of 1771113886926714 a001 9349/3*89^(12/31) 1771113895800331 r009 Im(z^3+c),c=-61/118+4/43*I,n=6 1771113905693484 m001 (2^(1/3)-5^(1/2))/(-GAMMA(11/12)+ErdosBorwein) 1771113908431319 m001 (Chi(1)+exp(1/Pi))/(GaussAGM+PrimesInBinary) 1771113908803406 a003 cos(Pi*13/97)+sin(Pi*23/70) 1771113911223511 k006 concat of cont frac of 1771113911344454 k008 concat of cont frac of 1771113915536406 m001 1/GAMMA(1/24)^2*Salem^2*exp(GAMMA(5/12))^2 1771113917584121 r005 Im(z^2+c),c=-15/31+13/42*I,n=38 1771113917722268 m001 Pi+2*2^(1/2)/cos(1)*Pi/GAMMA(5/6) 1771113921117713 k006 concat of cont frac of 1771113923997654 m001 1/GAMMA(1/6)^2/FeigenbaumB/exp(cosh(1))^2 1771113925114122 k008 concat of cont frac of 1771113925631174 m001 Bloch/((Pi*csc(5/24*Pi)/GAMMA(19/24))^Robbin) 1771113926582991 a007 Real Root Of -350*x^4-218*x^3+122*x^2-537*x+899 1771113929813664 h001 (7/9*exp(2)+5/11)/(5/11*exp(2)+1/7) 1771113932646941 m001 1/exp(GAMMA(1/4))^3*Zeta(1,2) 1771113935311477 m001 exp(PrimesInBinary)*GolombDickman^2/gamma^2 1771113939696974 m001 ln(Zeta(3))*RenyiParking/log(1+sqrt(2))^2 1771113943463398 m006 (1/5*exp(2*Pi)+4/5)/(1/6*ln(Pi)-4/5) 1771113944804135 r005 Im(z^2+c),c=-20/27+9/53*I,n=16 1771113946997636 a007 Real Root Of -238*x^4+279*x^3-152*x^2+522*x-89 1771113949760007 r005 Re(z^2+c),c=-5/24+1/61*I,n=14 1771113951840381 m003 35/2+Sqrt[5]/64+(Sqrt[5]*E^(1/2+Sqrt[5]/2))/64 1771113953051593 h005 exp(cos(Pi*5/44)-cos(Pi*8/21)) 1771113955192439 a007 Real Root Of -391*x^4-197*x^3+420*x^2-422*x+688 1771113961363512 m001 arctan(1/2)^2/exp(GAMMA(2/3))^2/cos(Pi/5) 1771113967065897 s002 sum(A098899[n]/((10^n-1)/n),n=1..infinity) 1771113967065897 s002 sum(A098770[n]/((10^n-1)/n),n=1..infinity) 1771113971268331 m001 (Zeta(5)+LandauRamanujan2nd)^KhinchinLevy 1771113973124117 m001 FeigenbaumKappa^GAMMA(17/24)/GaussAGM 1771113976679037 m001 Artin/(FellerTornier^exp(1/Pi)) 1771113977683851 p003 LerchPhi(1/8,6,215/161) 1771113983122211 m006 (1/4*Pi^2-1/3)/(3/Pi+1/4) 1771113987920366 a001 1/7*29^(3/47) 1771113991859261 m001 Psi(2,1/3)*ln(2+3^(1/2))/HardyLittlewoodC5 1771113992474278 a007 Real Root Of 891*x^4+986*x^3-573*x^2+813*x-52 1771114006173191 p004 log(17497/14657) 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=17 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=18 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=19 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=20 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=21 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=22 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=23 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=24 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=25 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=26 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=27 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=28 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=39 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=40 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=41 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=42 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=43 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=38 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=37 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=36 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=35 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=34 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=33 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=32 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=31 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=30 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=29 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=16 1771114006801607 r009 Re(z^3+c),c=-11/64+1/45*I,n=15 1771114006801609 r009 Re(z^3+c),c=-11/64+1/45*I,n=14 1771114006801635 r009 Re(z^3+c),c=-11/64+1/45*I,n=13 1771114006801942 r009 Re(z^3+c),c=-11/64+1/45*I,n=12 1771114006805246 r009 Re(z^3+c),c=-11/64+1/45*I,n=11 1771114006838241 r009 Re(z^3+c),c=-11/64+1/45*I,n=10 1771114007141195 r009 Re(z^3+c),c=-11/64+1/45*I,n=9 1771114009634187 r009 Re(z^3+c),c=-11/64+1/45*I,n=8 1771114013092470 a007 Real Root Of -250*x^4+370*x^3+649*x^2-888*x+907 1771114013529192 r005 Im(z^2+c),c=-57/122+19/62*I,n=34 1771114014114878 a003 sin(Pi*3/35)*sin(Pi*16/69) 1771114014221460 m001 Ei(1,1)*CopelandErdos-MasserGramainDelta 1771114021104738 l006 ln(1460/8581) 1771114025608369 a001 18/233*1597^(14/19) 1771114026731253 r009 Re(z^3+c),c=-11/64+1/45*I,n=7 1771114031176328 k006 concat of cont frac of 1771114041486979 m005 (5/12+1/4*5^(1/2))/(5/9*Catalan+5) 1771114043572539 m005 (1/2*3^(1/2)-9/11)/(5/6*Pi+1/12) 1771114044695577 r002 48th iterates of z^2 + 1771114045892035 m001 (Conway+Otter)/(2^(1/2)-GAMMA(19/24)) 1771114047549603 m001 (gamma(3)+Trott)/(ln(5)-ln(2^(1/2)+1)) 1771114051965898 r005 Re(z^2+c),c=-3/23+18/47*I,n=12 1771114057095039 r005 Im(z^2+c),c=-1/8+7/31*I,n=18 1771114063180282 b008 -18+ArcCsch[2+Sqrt[2]] 1771114063595214 a003 cos(Pi*1/65)/cos(Pi*30/97) 1771114069798457 m001 1/ArtinRank2/CopelandErdos^2/exp(GAMMA(1/3)) 1771114072007940 p001 sum((-1)^n/(567*n+533)/(8^n),n=0..infinity) 1771114079939841 m001 exp(GolombDickman)^2/FeigenbaumAlpha^2/Pi 1771114082261446 m006 (1/3*Pi^2-4)/(3/4*exp(2*Pi)-2/3) 1771114083082054 r005 Im(z^2+c),c=-47/70+7/48*I,n=13 1771114083100880 a005 (1/cos(3/227*Pi))^663 1771114083763982 m001 (GAMMA(2/3)-sin(1))/(ln(5)+GAMMA(17/24)) 1771114088159601 m005 (-19/36+1/4*5^(1/2))/(7/9*3^(1/2)+5/12) 1771114088586440 r005 Im(z^2+c),c=-19/26+1/96*I,n=13 1771114091741237 a001 55/64079*1364^(13/31) 1771114095947683 a007 Real Root Of -280*x^4-314*x^3+556*x^2+68*x-613 1771114096959610 m002 4-Sinh[Pi]/2+Tanh[Pi]/Pi^5 1771114098832073 r009 Re(z^3+c),c=-11/64+1/45*I,n=6 1771114101312214 k008 concat of cont frac of 1771114101344111 k008 concat of cont frac of 1771114101611470 s001 sum(1/10^(n-1)*A031463[n]/n!,n=1..infinity) 1771114101611470 s001 sum(1/10^(n-1)*A045071[n]/n!,n=1..infinity) 1771114102121111 k008 concat of cont frac of 1771114105136766 a007 Real Root Of -841*x^4-906*x^3+764*x^2-580*x-182 1771114110262115 k006 concat of cont frac of 1771114111111232 k008 concat of cont frac of 1771114111122411 k008 concat of cont frac of 1771114111125341 k008 concat of cont frac of 1771114111455696 k006 concat of cont frac of 1771114111521112 k006 concat of cont frac of 1771114112211351 k008 concat of cont frac of 1771114112311133 k007 concat of cont frac of 1771114112624221 k009 concat of cont frac of 1771114113113116 k006 concat of cont frac of 1771114113148182 k009 concat of cont frac of 1771114113158221 k008 concat of cont frac of 1771114113191141 k008 concat of cont frac of 1771114113511231 k007 concat of cont frac of 1771114116142111 k006 concat of cont frac of 1771114117419087 a007 Real Root Of 678*x^4+970*x^3-903*x^2-366*x+902 1771114118299508 l006 ln(1199/7047) 1771114120886889 a001 7881196/1597*6557470319842^(14/17) 1771114120886918 a001 6643838879/1597*1836311903^(14/17) 1771114120888021 a001 5600748293801/1597*514229^(14/17) 1771114121212831 k008 concat of cont frac of 1771114121252646 k009 concat of cont frac of 1771114121520141 k008 concat of cont frac of 1771114122111191 k008 concat of cont frac of 1771114123519126 k008 concat of cont frac of 1771114125160065 m005 (1/3*3^(1/2)+1/12)/(-47/12+1/12*5^(1/2)) 1771114127831011 k006 concat of cont frac of 1771114131035508 a001 76/2178309*55^(15/37) 1771114131131311 k008 concat of cont frac of 1771114132223872 k008 concat of cont frac of 1771114134171192 k007 concat of cont frac of 1771114134211122 k008 concat of cont frac of 1771114135062750 r002 8th iterates of z^2 + 1771114136073476 m001 (-BesselK(1,1)+Riemann3rdZero)/(Chi(1)+cos(1)) 1771114138224164 k006 concat of cont frac of 1771114145683839 r009 Re(z^3+c),c=-9/34+13/19*I,n=32 1771114151612151 k008 concat of cont frac of 1771114161141121 k008 concat of cont frac of 1771114167812929 q001 6438/3635 1771114172800795 r005 Re(z^2+c),c=-5/24+1/61*I,n=16 1771114173674222 a008 Real Root of x^5-2*x^4+4*x^3-10*x^2+7*x-1 1771114176896249 h001 (1/3*exp(1)+5/11)/(11/12*exp(2)+10/11) 1771114180350500 m005 (5*2^(1/2)-3/5)/(3/5*gamma-4) 1771114181717151 k006 concat of cont frac of 1771114182345291 k006 concat of cont frac of 1771114183099311 a001 416020/2889*322^(5/6) 1771114184029678 m001 (-KomornikLoreti+Thue)/(Psi(2,1/3)+exp(1)) 1771114192982874 m001 (BesselI(1,2)*Trott+ZetaP(3))/Trott 1771114193253269 m001 1/exp(FeigenbaumD)*RenyiParking^2*arctan(1/2) 1771114194442328 a001 843/196418*13^(21/38) 1771114194616454 r005 Re(z^2+c),c=-5/24+1/61*I,n=18 1771114196521099 r005 Re(z^2+c),c=-5/24+1/61*I,n=20 1771114196647100 r005 Re(z^2+c),c=-5/24+1/61*I,n=23 1771114196648951 r005 Re(z^2+c),c=-5/24+1/61*I,n=25 1771114196649822 r005 Re(z^2+c),c=-5/24+1/61*I,n=27 1771114196650010 r005 Re(z^2+c),c=-5/24+1/61*I,n=29 1771114196650043 r005 Re(z^2+c),c=-5/24+1/61*I,n=31 1771114196650049 r005 Re(z^2+c),c=-5/24+1/61*I,n=33 1771114196650049 r005 Re(z^2+c),c=-5/24+1/61*I,n=35 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=37 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=39 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=41 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=43 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=45 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=47 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=49 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=51 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=53 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=55 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=57 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=59 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=61 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=63 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=64 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=62 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=60 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=58 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=56 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=54 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=52 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=50 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=48 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=46 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=44 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=42 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=40 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=38 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=36 1771114196650050 r005 Re(z^2+c),c=-5/24+1/61*I,n=34 1771114196650052 r005 Re(z^2+c),c=-5/24+1/61*I,n=32 1771114196650065 r005 Re(z^2+c),c=-5/24+1/61*I,n=30 1771114196650146 r005 Re(z^2+c),c=-5/24+1/61*I,n=28 1771114196650157 r005 Re(z^2+c),c=-5/24+1/61*I,n=22 1771114196650566 r005 Re(z^2+c),c=-5/24+1/61*I,n=26 1771114196652126 r005 Re(z^2+c),c=-5/24+1/61*I,n=24 1771114196672843 r005 Re(z^2+c),c=-5/24+1/61*I,n=21 1771114197193924 r005 Re(z^2+c),c=-5/24+1/61*I,n=19 1771114197286344 m005 (8/5+2*5^(1/2))/(2*2^(1/2)+3/5) 1771114197564304 r005 Im(z^2+c),c=-5/8+71/193*I,n=38 1771114202774052 r005 Re(z^2+c),c=27/64+45/56*I,n=3 1771114203764261 r005 Re(z^2+c),c=-5/24+1/61*I,n=17 1771114209271020 a007 Real Root Of 21*x^4+49*x^3+211*x^2+108*x-405 1771114211132215 k007 concat of cont frac of 1771114211161132 k007 concat of cont frac of 1771114211521111 k009 concat of cont frac of 1771114211714221 k008 concat of cont frac of 1771114212134216 k006 concat of cont frac of 1771114213210125 k008 concat of cont frac of 1771114214121451 k007 concat of cont frac of 1771114216144211 k008 concat of cont frac of 1771114220843228 a005 (1/sin(90/211*Pi))^1221 1771114221112112 k006 concat of cont frac of 1771114222113352 k008 concat of cont frac of 1771114228410496 a001 311187/2161*322^(5/6) 1771114229990017 h005 exp(cos(Pi*14/55)*sin(Pi*15/49)) 1771114231121153 k008 concat of cont frac of 1771114232721213 k007 concat of cont frac of 1771114235021309 a001 5702887/39603*322^(5/6) 1771114235985814 a001 7465176/51841*322^(5/6) 1771114236126533 a001 39088169/271443*322^(5/6) 1771114236147064 a001 14619165/101521*322^(5/6) 1771114236150059 a001 133957148/930249*322^(5/6) 1771114236150496 a001 701408733/4870847*322^(5/6) 1771114236150560 a001 1836311903/12752043*322^(5/6) 1771114236150569 a001 14930208/103681*322^(5/6) 1771114236150571 a001 12586269025/87403803*322^(5/6) 1771114236150571 a001 32951280099/228826127*322^(5/6) 1771114236150571 a001 43133785636/299537289*322^(5/6) 1771114236150571 a001 32264490531/224056801*322^(5/6) 1771114236150571 a001 591286729879/4106118243*322^(5/6) 1771114236150571 a001 774004377960/5374978561*322^(5/6) 1771114236150571 a001 4052739537881/28143753123*322^(5/6) 1771114236150571 a001 1515744265389/10525900321*322^(5/6) 1771114236150571 a001 3278735159921/22768774562*322^(5/6) 1771114236150571 a001 2504730781961/17393796001*322^(5/6) 1771114236150571 a001 956722026041/6643838879*322^(5/6) 1771114236150571 a001 182717648081/1268860318*322^(5/6) 1771114236150571 a001 139583862445/969323029*322^(5/6) 1771114236150571 a001 53316291173/370248451*322^(5/6) 1771114236150571 a001 10182505537/70711162*322^(5/6) 1771114236150571 a001 7778742049/54018521*322^(5/6) 1771114236150575 a001 2971215073/20633239*322^(5/6) 1771114236150599 a001 567451585/3940598*322^(5/6) 1771114236150766 a001 433494437/3010349*322^(5/6) 1771114236151910 a001 165580141/1149851*322^(5/6) 1771114236159752 a001 31622993/219602*322^(5/6) 1771114236213502 a001 24157817/167761*322^(5/6) 1771114236581910 a001 9227465/64079*322^(5/6) 1771114237326916 a007 Real Root Of -462*x^4-142*x^3+728*x^2-649*x+324 1771114239107016 a001 1762289/12238*322^(5/6) 1771114239511987 a001 20633239/4181*6557470319842^(14/17) 1771114239511991 a001 17393796001/4181*1836311903^(14/17) 1771114239513094 a001 14662949395604/4181*514229^(14/17) 1771114240034486 a008 Real Root of x^3-50*x-83 1771114241111151 k006 concat of cont frac of 1771114243865352 a007 Real Root Of -209*x^4-469*x^3-920*x^2-949*x+656 1771114250843124 r005 Im(z^2+c),c=-55/56+2/11*I,n=56 1771114256288965 m001 GAMMA(1/6)/(3^(1/3))/exp(GAMMA(7/24)) 1771114256414350 a001 1346269/9349*322^(5/6) 1771114256819157 a001 54018521/10946*6557470319842^(14/17) 1771114256819157 a001 22768774562/5473*1836311903^(14/17) 1771114259344239 a001 141422324/28657*6557470319842^(14/17) 1771114259344239 a001 119218851371/28657*1836311903^(14/17) 1771114259712643 a001 370248451/75025*6557470319842^(14/17) 1771114259712643 a001 312119004989/75025*1836311903^(14/17) 1771114259766393 a001 969323029/196418*6557470319842^(14/17) 1771114259766393 a001 408569081798/98209*1836311903^(14/17) 1771114259774235 a001 2537720636/514229*6557470319842^(14/17) 1771114259774235 a001 2139295485799/514229*1836311903^(14/17) 1771114259775379 a001 5600748293801/1346269*1836311903^(14/17) 1771114259775379 a001 6643838879/1346269*6557470319842^(14/17) 1771114259775546 a001 7331474697802/1762289*1836311903^(14/17) 1771114259775546 a001 17393796001/3524578*6557470319842^(14/17) 1771114259775570 a001 45537549124/9227465*6557470319842^(14/17) 1771114259775574 a001 119218851371/24157817*6557470319842^(14/17) 1771114259775574 a001 312119004989/63245986*6557470319842^(14/17) 1771114259775574 a001 817138163596/165580141*6557470319842^(14/17) 1771114259775574 a001 2139295485799/433494437*6557470319842^(14/17) 1771114259775574 a001 5600748293801/1134903170*6557470319842^(14/17) 1771114259775574 a001 9062201101803/1836311903*6557470319842^(14/17) 1771114259775574 a001 3461452808002/701408733*6557470319842^(14/17) 1771114259775574 a001 1322157322203/267914296*6557470319842^(14/17) 1771114259775574 a001 505019158607/102334155*6557470319842^(14/17) 1771114259775575 a001 192900153618/39088169*6557470319842^(14/17) 1771114259775576 a001 73681302247/14930352*6557470319842^(14/17) 1771114259775585 a001 23725150497407/5702887*1836311903^(14/17) 1771114259775585 a001 28143753123/5702887*6557470319842^(14/17) 1771114259775649 a001 3020733700601/726103*1836311903^(14/17) 1771114259775649 a001 4870846/987*6557470319842^(14/17) 1771114259776086 a001 1730726404001/416020*1836311903^(14/17) 1771114259776086 a001 4106118243/832040*6557470319842^(14/17) 1771114259779081 a001 440719107401/105937*1836311903^(14/17) 1771114259779081 a001 1568397607/317811*6557470319842^(14/17) 1771114259799612 a001 505019158607/121393*1836311903^(14/17) 1771114259799612 a001 599074578/121393*6557470319842^(14/17) 1771114259940330 a001 10716675201/2576*1836311903^(14/17) 1771114259940330 a001 228826127/46368*6557470319842^(14/17) 1771114260904825 a001 73681302247/17711*1836311903^(14/17) 1771114260904825 a001 87403803/17711*6557470319842^(14/17) 1771114262182385 r005 Im(z^2+c),c=-71/106+14/31*I,n=44 1771114264060348 m001 (ln(2)/ln(10)+cos(1/5*Pi))/(-ln(3)+Bloch) 1771114264246132 r002 2th iterates of z^2 + 1771114265403538 m005 (1/2*2^(1/2)+4/5)/(1/8*5^(1/2)+4/7) 1771114265436479 q001 4991/2818 1771114267515575 a001 228811001/55*1836311903^(14/17) 1771114267515576 a001 33385282/6765*6557470319842^(14/17) 1771114267516678 a001 23725150497407/6765*514229^(14/17) 1771114268644663 m001 (exp(Pi)+ln(2)/ln(10))/(RenyiParking+Stephens) 1771114269347275 r005 Re(z^2+c),c=-9/86+24/55*I,n=45 1771114269583458 l006 ln(938/5513) 1771114274245575 r005 Re(z^2+c),c=-5/24+1/61*I,n=15 1771114281421257 k008 concat of cont frac of 1771114285996288 r009 Re(z^3+c),c=-13/64+4/17*I,n=9 1771114286576574 m001 exp(1/Pi)/(ZetaP(4)^Paris) 1771114287075575 m001 (BesselJ(0,1)-LandauRamanujan2nd)/MertensB2 1771114289303885 a007 Real Root Of 471*x^4+812*x^3-32*x^2+44*x+55 1771114290760604 m001 (3^(1/3)+FeigenbaumC)/(KhinchinLevy+Robbin) 1771114299448982 m001 (1/3*Catalan+ln(2+sqrt(3)))/Catalan 1771114309584267 r005 Im(z^2+c),c=-67/64+16/41*I,n=6 1771114311211171 k006 concat of cont frac of 1771114312138567 a007 Real Root Of -780*x^4-991*x^3+417*x^2-960*x-839 1771114312826326 a001 5374978561/1292*1836311903^(14/17) 1771114312826337 a001 12752043/2584*6557470319842^(14/17) 1771114312827429 a001 9062201101803/2584*514229^(14/17) 1771114325724036 m005 (25/4+1/4*5^(1/2))/(4/7*gamma-5/7) 1771114331744660 m001 StronglyCareFree+Cahen^Trott 1771114333599094 m001 (GAMMA(2/3)-gamma(2))/(Grothendieck-Niven) 1771114334211262 k008 concat of cont frac of 1771114335123737 k008 concat of cont frac of 1771114336193568 a005 (1/cos(7/171*Pi))^1735 1771114345836094 a003 cos(Pi*16/77)+sin(Pi*47/109) 1771114352957280 m005 (1/2*Catalan+3)/(9/10*Pi-7/8) 1771114353765196 m001 ZetaQ(4)^(ZetaP(3)/Trott2nd) 1771114356750048 r005 Im(z^2+c),c=-1+47/251*I,n=36 1771114362036336 a007 Real Root Of 490*x^4+621*x^3-29*x^2+518*x-363 1771114362474619 m001 (Totient-ZetaQ(3))/(ln(2)-exp(1/exp(1))) 1771114364677136 a001 1/23184*121393^(49/54) 1771114369204687 a007 Real Root Of 505*x^4+409*x^3-17*x^2+994*x-883 1771114375040587 a001 514229/3571*322^(5/6) 1771114377862212 a001 2889/17*55^(31/53) 1771114381165161 r005 Re(z^2+c),c=3/14+18/37*I,n=55 1771114381551314 a007 Real Root Of 459*x^4+208*x^3-773*x^2-928*x+187 1771114381898897 l006 ln(1615/9492) 1771114384333575 m004 (105*Sqrt[5]*Pi)/4-(25*Tan[Sqrt[5]*Pi])/Pi 1771114388324065 m001 (BesselI(0,1)+MertensB2)/(TreeGrowth2nd+Thue) 1771114393419876 p001 sum(1/(585*n+583)/(16^n),n=0..infinity) 1771114394371941 m001 (1-exp(Pi))/(-BesselI(1,2)+PolyaRandomWalk3D) 1771114398313395 a007 Real Root Of -619*x^4-919*x^3+373*x^2-336*x-780 1771114398637494 r009 Re(z^3+c),c=-29/86+26/47*I,n=13 1771114399509912 a007 Real Root Of 587*x^4+124*x^3-29*x^2-465*x+82 1771114399646670 a007 Real Root Of -572*x^4-866*x^3+801*x^2+793*x-291 1771114400906275 m005 (5*exp(1)-1/6)/(5*Catalan+3) 1771114405540787 v002 sum(1/(3^n*(9/2*n^2+37/2*n-1)),n=1..infinity) 1771114406330333 r009 Re(z^3+c),c=-29/110+9/20*I,n=14 1771114406916784 a007 Real Root Of 344*x^4+138*x^3-758*x^2-238*x-662 1771114408863799 p004 log(22963/3907) 1771114411024111 k006 concat of cont frac of 1771114411368271 k008 concat of cont frac of 1771114411689111 k008 concat of cont frac of 1771114413352937 m001 (-Kac+MertensB3)/(BesselK(0,1)+FeigenbaumMu) 1771114420719875 r005 Im(z^2+c),c=-27/58+15/49*I,n=47 1771114421161173 k007 concat of cont frac of 1771114421278782 r002 47th iterates of z^2 + 1771114422309003 r005 Im(z^2+c),c=-45/82+11/34*I,n=46 1771114424630244 a007 Real Root Of -78*x^4+689*x^3-590*x^2-137*x-967 1771114425113111 k006 concat of cont frac of 1771114426056288 b008 Coth[13/230] 1771114430357871 r002 13th iterates of z^2 + 1771114432910905 a007 Real Root Of 716*x^4+932*x^3-660*x^2+275*x+690 1771114434442961 a007 Real Root Of -567*x^4-783*x^3+346*x^2-329*x-439 1771114437966427 a001 55/5778*15127^(2/31) 1771114438463739 m001 GAMMA(13/24)*(Psi(1,1/3)+CareFree) 1771114442778610 q001 3544/2001 1771114447766408 r005 Im(z^2+c),c=-13/21+1/32*I,n=37 1771114450784827 a007 Real Root Of -128*x^4+151*x^3+310*x^2-319*x+561 1771114451687317 m002 -4/E^Pi+ProductLog[Pi]+Tanh[Pi]/Log[Pi] 1771114452887566 a007 Real Root Of -266*x^4-140*x^3+105*x^2-484*x+653 1771114455896144 a001 55/15127*3571^(6/31) 1771114457418570 a001 39603/8*514229^(28/45) 1771114459811123 k006 concat of cont frac of 1771114459915272 a007 Real Root Of -718*x^4-645*x^3+657*x^2-338*x+822 1771114460482326 a007 Real Root Of -374*x^4-761*x^3-434*x^2-63*x+702 1771114461574688 r004 Re(z^2+c),c=11/46+1/17*I,z(0)=-1,n=2 1771114470087769 r004 Im(z^2+c),c=5/34+1/7*I,z(0)=exp(5/24*I*Pi),n=3 1771114472421333 m005 (1/2*5^(1/2)-1/5)/(2/3*3^(1/2)-7/11) 1771114473352167 m001 (-GAMMA(5/6)+Pi^(1/2))/(exp(1)+Catalan) 1771114481766773 a007 Real Root Of 428*x^4+90*x^3-413*x^2+848*x-914 1771114482727555 a007 Real Root Of -584*x^4-305*x^3+819*x^2-302*x+948 1771114483187668 m005 (1/2*Catalan+3/7)/(1/7*exp(1)-8/9) 1771114488898596 a001 55/24476*9349^(7/31) 1771114492911002 r002 54th iterates of z^2 + 1771114493697816 a007 Real Root Of -851*x^4-690*x^3+961*x^2-792*x+123 1771114504114704 a001 2/317811*75025^(11/37) 1771114515416165 k006 concat of cont frac of 1771114517874826 a001 55/271443*5778^(16/31) 1771114521000526 r009 Re(z^3+c),c=-3/122+13/32*I,n=14 1771114521891127 k006 concat of cont frac of 1771114529528957 r009 Re(z^3+c),c=-41/74+15/26*I,n=11 1771114531111441 k008 concat of cont frac of 1771114532383537 a007 Real Root Of -698*x^4-972*x^3+834*x^2+502*x-259 1771114537514653 l006 ln(677/3979) 1771114538176048 m001 (LandauRamanujan2nd-OneNinth)/(Pi-arctan(1/2)) 1771114539653297 a007 Real Root Of 189*x^4+153*x^3-447*x^2-46*x+311 1771114544510885 a007 Real Root Of 183*x^4+109*x^3-96*x^2+354*x-267 1771114544543482 m001 (Zeta(5)+Mills)/(PisotVijayaraghavan-ZetaQ(4)) 1771114552303069 h001 (1/6*exp(2)+7/12)/(1/7*exp(1)+7/11) 1771114559790699 a001 17711/11*843^(21/59) 1771114560387437 r005 Re(z^2+c),c=-23/118+3/19*I,n=10 1771114561436292 r005 Im(z^2+c),c=-41/86+18/47*I,n=14 1771114562318340 m001 BesselJ(1,1)*exp(OneNinth)^2/GAMMA(7/24) 1771114563354002 a007 Real Root Of 3*x^4+536*x^3+824*x^2-419*x-911 1771114575958034 m001 (FeigenbaumMu+Stephens)/(2^(1/3)-GAMMA(23/24)) 1771114576301169 r005 Im(z^2+c),c=-79/90+12/47*I,n=39 1771114576622774 m001 (LambertW(1)+MertensB3)/(ThueMorse+TwinPrimes) 1771114577604646 r005 Im(z^2+c),c=-33/26+1/119*I,n=10 1771114579480299 a007 Real Root Of -675*x^4+798*x^3-221*x^2+412*x+85 1771114582734356 a001 18/2971215073*987^(14/17) 1771114583133601 a007 Real Root Of 911*x^4-578*x^3+661*x^2-797*x-166 1771114583170700 r005 Re(z^2+c),c=-3/20+37/54*I,n=58 1771114583560059 m001 (PlouffeB-Psi(2,1/3))/(ReciprocalLucas+Salem) 1771114596578561 r005 Re(z^2+c),c=-13/102+22/57*I,n=18 1771114599686028 q001 5641/3185 1771114611132642 k008 concat of cont frac of 1771114611296598 m001 ZetaP(4)/(exp(1/Pi)+Otter) 1771114612721242 a007 Real Root Of -709*x^4-946*x^3+992*x^2+345*x-780 1771114620255859 m005 (1/3+1/4*5^(1/2))/(4/5*Zeta(3)-6) 1771114623390901 a001 1368706081/329*1836311903^(14/17) 1771114623390976 a001 4870847/987*6557470319842^(14/17) 1771114623392004 a001 494493258286/141*514229^(14/17) 1771114626401410 r002 48th iterates of z^2 + 1771114629922037 a005 (1/cos(13/180*Pi))^1707 1771114634977768 m002 Log[Pi]+ProductLog[Pi]/Pi^2+6*Sech[Pi] 1771114639756397 m001 (Pi-ln(2+3^(1/2)))/(CopelandErdos+Kolakoski) 1771114641869371 m001 Tribonacci^(ln(2)/ln(10))/(Tribonacci^Pi) 1771114643977818 r005 Re(z^2+c),c=-1/5+43/61*I,n=16 1771114649264165 a001 1/3*(1/2*5^(1/2)+1/2)^29*29^(5/11) 1771114652786181 r005 Im(z^2+c),c=-41/70+14/39*I,n=50 1771114657548449 a007 Real Root Of 32*x^4-477*x^3-699*x^2-933*x-146 1771114661370795 r005 Re(z^2+c),c=5/28+21/46*I,n=35 1771114663423186 a001 12238/17*28657^(5/57) 1771114666663837 a007 Real Root Of 20*x^4-493*x^3-699*x^2+384*x-63 1771114672061307 r005 Re(z^2+c),c=-13/98+19/51*I,n=17 1771114680944818 r008 a(0)=3,K{-n^6,-68-39*n^3+43*n^2+64*n} 1771114686773807 a005 (1/sin(114/235*Pi))^522 1771114689212794 r005 Re(z^2+c),c=11/118+34/63*I,n=11 1771114701625245 a001 55/271443*2207^(18/31) 1771114702345863 m001 Zeta(3)/Champernowne^2*exp(cos(Pi/5)) 1771114703153088 r005 Im(z^2+c),c=-9/29+7/25*I,n=4 1771114711033512 r009 Re(z^3+c),c=-1/11+31/39*I,n=53 1771114713783471 k006 concat of cont frac of 1771114719058314 m001 (Artin-FeigenbaumB)/(ln(2)+Ei(1)) 1771114720771561 m005 (1/3*5^(1/2)+1/11)/(5/12*3^(1/2)+4) 1771114722521131 k007 concat of cont frac of 1771114723314148 k007 concat of cont frac of 1771114723987544 a003 sin(Pi*11/104)*sin(Pi*19/104) 1771114728549865 p003 LerchPhi(1/8,4,487/176) 1771114729459089 m004 -3/2-25*Sqrt[5]*Pi+5*Csch[Sqrt[5]*Pi] 1771114729599860 m004 -3/2-25*Sqrt[5]*Pi+5*Sech[Sqrt[5]*Pi] 1771114729736212 r005 Re(z^2+c),c=-17/14+40/237*I,n=22 1771114732480294 a007 Real Root Of 798*x^4+899*x^3-557*x^2+230*x-703 1771114733516371 m001 (3^(1/2)+exp(1/Pi))/(Magata+Riemann1stZero) 1771114733689178 a001 969323029/610*6557470319842^(12/17) 1771114733689178 a001 312119004989/610*1836311903^(12/17) 1771114734029448 a001 196418/843*18^(40/57) 1771114735492083 a001 1/843*(1/2*5^(1/2)+1/2)^10*3^(3/17) 1771114735526025 a007 Real Root Of 629*x^4+442*x^3-802*x^2+254*x-768 1771114737820426 r005 Re(z^2+c),c=-18/31+32/63*I,n=10 1771114744166070 p003 LerchPhi(1/10,3,165/199) 1771114749974365 r004 Im(z^2+c),c=-9/22+5/18*I,z(0)=-1,n=14 1771114750850818 r005 Re(z^2+c),c=-9/86+24/55*I,n=44 1771114753813666 m001 Artin^GAMMA(11/24)/(Catalan^GAMMA(11/24)) 1771114760846469 r005 Re(z^2+c),c=-29/34+3/128*I,n=40 1771114762516753 r009 Re(z^3+c),c=-29/114+14/33*I,n=9 1771114765717902 a001 161/4*2504730781961^(7/9) 1771114767450059 l006 ln(1093/6424) 1771114773920770 m001 (Tribonacci+ZetaQ(4))/(Catalan+Champernowne) 1771114774523262 g006 2*Psi(1,4/9)+Psi(1,3/8)-Psi(1,3/4) 1771114777266716 a003 sin(Pi*25/81)+sin(Pi*17/43) 1771114785187154 r005 Im(z^2+c),c=-3/44+9/43*I,n=7 1771114787103374 a007 Real Root Of -378*x^4-107*x^3+337*x^2-870*x+527 1771114787290101 s002 sum(A249380[n]/((exp(n)-1)/n),n=1..infinity) 1771114793326188 a007 Real Root Of 36*x^4+585*x^3-894*x^2+665*x-26 1771114798489645 a001 322/75025*89^(6/19) 1771114812512403 a003 cos(Pi*14/69)+sin(Pi*18/43) 1771114844310560 m001 1/exp(ArtinRank2)/DuboisRaymond/Zeta(3)^2 1771114849450266 r005 Im(z^2+c),c=-33/86+13/45*I,n=31 1771114854621609 m001 (FeigenbaumD-PisotVijayaraghavan)/ZetaP(4) 1771114855411141 m001 CopelandErdos^2*Backhouse*exp(cosh(1))^2 1771114855743261 a007 Real Root Of 852*x^4+936*x^3-432*x^2+746*x-507 1771114855883754 m001 ln(OneNinth)^2*ErdosBorwein^2*sinh(1)^2 1771114859238914 m001 (exp(1)+sin(1))/(ln(gamma)+Zeta(1/2)) 1771114862737644 a003 cos(Pi*9/73)+cos(Pi*7/39) 1771114862759810 r005 Im(z^2+c),c=-11/26+11/37*I,n=41 1771114864864864 q001 2097/1184 1771114868482574 r005 Im(z^2+c),c=-11/54+42/61*I,n=15 1771114869006261 r005 Im(z^2+c),c=-11/90+9/40*I,n=10 1771114869346461 r008 a(0)=0,K{-n^6,-52-25*n+17*n^2+7*n^3} 1771114870544692 r002 54th iterates of z^2 + 1771114870608603 l006 ln(1509/8869) 1771114878152432 r002 56th iterates of z^2 + 1771114882182344 a001 18/2504730781961*3524578^(14/17) 1771114883368710 a003 cos(Pi*19/116)/cos(Pi*36/107) 1771114887704011 a007 Real Root Of -362*x^4-390*x^3-900*x^2+902*x-129 1771114894010325 m003 -1+Sqrt[5]/64+(3*Cosh[1/2+Sqrt[5]/2])/8 1771114894988047 a007 Real Root Of -356*x^4-163*x^3+618*x^2-27*x+611 1771114903183293 r005 Im(z^2+c),c=-19/56+12/43*I,n=22 1771114909368640 r005 Im(z^2+c),c=-49/106+19/61*I,n=18 1771114912820921 r008 a(0)=0,K{-n^6,30+3*n^3+10*n^2+14*n} 1771114920638941 m001 (Backhouse+MertensB3)/(ln(2)+ln(2^(1/2)+1)) 1771114921531912 k008 concat of cont frac of 1771114922137711 k006 concat of cont frac of 1771114923813612 r002 56th iterates of z^2 + 1771114931132444 k007 concat of cont frac of 1771114936222639 k006 concat of cont frac of 1771114938523091 h001 (-6*exp(5)-1)/(-6*exp(2)-6) 1771114951302361 r005 Im(z^2+c),c=-101/122+7/60*I,n=58 1771114956563293 r005 Im(z^2+c),c=-47/50+1/6*I,n=44 1771114956687891 m001 (2^(1/3)-sin(1/12*Pi))/(-Lehmer+Trott2nd) 1771114957123414 k008 concat of cont frac of 1771114958020881 r002 59th iterates of z^2 + 1771114962017329 l006 ln(8371/9993) 1771114963274282 a007 Real Root Of 328*x^4+13*x^3-628*x^2+973*x+538 1771114965958561 a007 Real Root Of 502*x^4+272*x^3-741*x^2+913*x+513 1771114966646624 a007 Real Root Of 541*x^4+160*x^3-854*x^2+500*x-870 1771114966936905 p004 log(13759/2341) 1771114967808880 m006 (1/2*Pi^2+5/6)/(1/6*exp(Pi)-3/5) 1771114968605447 r005 Re(z^2+c),c=-5/24+1/61*I,n=13 1771114971148111 k006 concat of cont frac of 1771114981283893 a005 (1/sin(86/189*Pi))^287 1771114989852805 m001 (Zeta(5)+GAMMA(17/24))/(3^(1/2)-BesselK(0,1)) 1771114991143221 k008 concat of cont frac of 1771115007592744 m001 GAMMA(7/12)^2/Champernowne*exp(sqrt(5)) 1771115011743131 k008 concat of cont frac of 1771115013822018 r009 Im(z^3+c),c=-8/31+7/47*I,n=4 1771115019172815 k008 concat of cont frac of 1771115027337702 r002 20th iterates of z^2 + 1771115044815357 m001 (HardHexagonsEntropy-Niven)/(exp(1/Pi)+Artin) 1771115051605105 a007 Real Root Of 481*x^4+545*x^3-289*x^2+203*x-439 1771115053209703 r002 36th iterates of z^2 + 1771115053571446 r005 Im(z^2+c),c=-47/50+1/6*I,n=49 1771115054177399 a007 Real Root Of -393*x^4-569*x^3+51*x^2-704*x-701 1771115061345127 a007 Real Root Of -888*x^4-971*x^3+936*x^2-157*x+129 1771115066943577 a001 514229/521*322^(1/2) 1771115071548720 a007 Real Root Of -298*x^4-133*x^3+338*x^2-135*x+894 1771115075234345 h001 (7/9*exp(2)+2/3)/(3/7*exp(2)+5/11) 1771115080377647 q001 6941/3919 1771115087072175 p003 LerchPhi(1/100,3,105/127) 1771115087965660 r005 Re(z^2+c),c=27/86+14/55*I,n=26 1771115088336502 l006 ln(7922/9457) 1771115097138537 r009 Re(z^3+c),c=-39/118+35/61*I,n=18 1771115103111129 k006 concat of cont frac of 1771115107418184 m001 Zeta(9)^2*Backhouse^2/ln(cos(Pi/12))^2 1771115110343911 k006 concat of cont frac of 1771115111111154 k008 concat of cont frac of 1771115111195211 k009 concat of cont frac of 1771115111273916 k006 concat of cont frac of 1771115111445117 k008 concat of cont frac of 1771115112124121 k007 concat of cont frac of 1771115112193224 k008 concat of cont frac of 1771115112321213 k007 concat of cont frac of 1771115112913113 k009 concat of cont frac of 1771115113217111 k008 concat of cont frac of 1771115113279520 a003 sin(Pi*32/95)+sin(Pi*26/73) 1771115113283211 k006 concat of cont frac of 1771115114211332 k008 concat of cont frac of 1771115114224232 k008 concat of cont frac of 1771115118112211 k008 concat of cont frac of 1771115119112412 k007 concat of cont frac of 1771115121101816 k008 concat of cont frac of 1771115121113132 k008 concat of cont frac of 1771115121123221 k007 concat of cont frac of 1771115121217211 k006 concat of cont frac of 1771115127111112 k009 concat of cont frac of 1771115131152132 k008 concat of cont frac of 1771115131231116 k007 concat of cont frac of 1771115132320790 m001 (-HardyLittlewoodC4+Sarnak)/(gamma+Pi^(1/2)) 1771115135242101 k007 concat of cont frac of 1771115141647709 l006 ln(416/2445) 1771115144908459 h005 exp(cos(Pi*1/8)/cos(Pi*19/48)) 1771115148025619 m001 BesselK(0,1)*ln(FeigenbaumD)/GAMMA(1/24) 1771115151221118 k008 concat of cont frac of 1771115151303116 k008 concat of cont frac of 1771115151416228 k008 concat of cont frac of 1771115152131411 k008 concat of cont frac of 1771115158046053 r009 Re(z^3+c),c=-17/62+29/49*I,n=11 1771115159644711 r005 Im(z^2+c),c=-107/114+7/41*I,n=11 1771115172427256 a007 Real Root Of -782*x^4-365*x^3+867*x^2+985*x+146 1771115173674588 q001 4844/2735 1771115173727294 s003 concatenated sequence A050524 1771115176614411 k006 concat of cont frac of 1771115178493392 r005 Im(z^2+c),c=-107/110+5/28*I,n=54 1771115182239869 r005 Im(z^2+c),c=-113/110+13/49*I,n=7 1771115185314833 k008 concat of cont frac of 1771115188060219 s002 sum(A171362[n]/((exp(n)+1)/n),n=1..infinity) 1771115188117340 a001 98209/682*322^(5/6) 1771115190012548 m005 (1/2*Pi-4/9)/(55/9+1/9*5^(1/2)) 1771115197481500 h001 (-3*exp(2)+1)/(-6*exp(3)+1) 1771115197748699 a003 cos(Pi*5/102)/sin(Pi*13/69) 1771115197765822 r005 Re(z^2+c),c=-15/22+74/105*I,n=4 1771115208580426 a007 Real Root Of 201*x^4+260*x^3-455*x^2-708*x-360 1771115211111102 k008 concat of cont frac of 1771115211111121 k007 concat of cont frac of 1771115211112234 k006 concat of cont frac of 1771115212238220 m004 1+(50*Sqrt[5])/Pi+Cosh[Sqrt[5]*Pi]/4 1771115214227448 a007 Real Root Of -819*x^4-950*x^3+850*x^2-500*x-771 1771115218983045 a001 123/832040*144^(2/55) 1771115220114143 k006 concat of cont frac of 1771115222111151 k007 concat of cont frac of 1771115222811319 k007 concat of cont frac of 1771115226822105 a007 Real Root Of 45*x^4+810*x^3+192*x^2-680*x-57 1771115227212124 k006 concat of cont frac of 1771115227396722 m001 gamma+(3^(1/2))^FellerTornier 1771115229834933 l006 ln(7473/8921) 1771115231328321 k006 concat of cont frac of 1771115231521015 k008 concat of cont frac of 1771115232422757 a007 Real Root Of 643*x^4+881*x^3-642*x^2+133*x+817 1771115239392415 m001 1/exp(LambertW(1))^2/FeigenbaumC*Zeta(7) 1771115241308768 m001 Riemann3rdZero^ErdosBorwein+BesselJ(0,1) 1771115245141233 k006 concat of cont frac of 1771115251421211 k008 concat of cont frac of 1771115255438831 a007 Real Root Of 50*x^4+899*x^3+267*x^2+475*x-659 1771115259115417 k006 concat of cont frac of 1771115260516543 m005 (1/2*exp(1)-4/7)/(6/11*3^(1/2)-1/2) 1771115261582276 m001 1/KhintchineLevy/exp(FransenRobinson)^2*gamma 1771115266762810 r009 Re(z^3+c),c=-27/86+29/63*I,n=5 1771115273019228 r002 3th iterates of z^2 + 1771115282109822 m001 (Pi-PisotVijayaraghavan)/GAMMA(23/24) 1771115291070114 r009 Im(z^3+c),c=-15/44+7/60*I,n=6 1771115296052713 a001 196418/2207*322^(11/12) 1771115297210931 k008 concat of cont frac of 1771115304263962 m009 (3/5*Psi(1,2/3)+5/6)/(6*Psi(1,3/4)-1/6) 1771115305547960 m001 (2^(1/3)-Catalan)/(Porter+Weierstrass) 1771115311312211 k008 concat of cont frac of 1771115312820595 r005 Re(z^2+c),c=39/118+2/7*I,n=54 1771115313931911 k008 concat of cont frac of 1771115318314191 k008 concat of cont frac of 1771115321129121 k008 concat of cont frac of 1771115323682040 m005 (1/2*gamma+8/9)/(1/11*Zeta(3)+5/9) 1771115326163301 a001 12752043/377*1836311903^(16/17) 1771115326164551 a001 28143753123/377*514229^(16/17) 1771115328469029 a007 Real Root Of -207*x^4+7*x^3+391*x^2-283*x+348 1771115329838952 m001 GAMMA(3/4)^sqrt(5)/(exp(-Pi)^sqrt(5)) 1771115329838952 m001 exp(Pi)^(5^(1/2))*GAMMA(3/4)^(5^(1/2)) 1771115329838952 m001 exp(Pi)^sqrt(5)*GAMMA(3/4)^sqrt(5) 1771115331311121 k006 concat of cont frac of 1771115332015009 m001 (-Mills+Thue)/(Catalan+ln(5)) 1771115332112571 k007 concat of cont frac of 1771115347499518 a007 Real Root Of 488*x^4-445*x^3+731*x^2-91*x-42 1771115349318910 r005 Re(z^2+c),c=-131/110+2/55*I,n=10 1771115350047359 r005 Re(z^2+c),c=-19/14+62/149*I,n=4 1771115350434789 m001 1/FeigenbaumB^2/ln(Backhouse)^2/gamma 1771115352114336 m005 (1/3*Zeta(3)-2/11)/(1/2*Catalan+7/9) 1771115355106888 a007 Real Root Of 484*x^4+770*x^3+178*x^2+411*x-315 1771115356831131 m001 2^(1/3)+Cahen*Kolakoski 1771115363218935 m005 (1/3*3^(1/2)-1/10)/(4/7*Pi+9/10) 1771115379214073 a001 5778/377*6557470319842^(16/17) 1771115380661261 r009 Re(z^3+c),c=-5/27+55/58*I,n=15 1771115381330745 r005 Im(z^2+c),c=-65/64+11/59*I,n=18 1771115381936368 m001 (GAMMA(7/12)+FransenRobinson)/(Pi-ln(2)) 1771115383561914 m002 4+6*E^Pi*Log[Pi]*Sech[Pi] 1771115385676458 r009 Re(z^3+c),c=-19/86+37/52*I,n=13 1771115389423566 l006 ln(7024/8385) 1771115389652201 r002 63th iterates of z^2 + 1771115393697251 r009 Re(z^3+c),c=-37/122+32/59*I,n=15 1771115407210219 m004 -2-25*Sqrt[5]*Pi+ProductLog[Sqrt[5]*Pi]/3 1771115407945651 r002 39th iterates of z^2 + 1771115409413281 q001 2747/1551 1771115411063252 a007 Real Root Of 519*x^4+780*x^3-330*x^2-237*x-158 1771115411111112 k008 concat of cont frac of 1771115412563315 r005 Re(z^2+c),c=-7/86+14/29*I,n=46 1771115412720542 m001 (Robbin-ZetaQ(2))/(ln(5)+MasserGramainDelta) 1771115417126111 k007 concat of cont frac of 1771115417933852 m009 (2*Psi(1,1/3)+1)/(16/3*Catalan+2/3*Pi^2+1/2) 1771115424779975 m005 (11/12+1/6*5^(1/2))/(3*exp(1)-7/8) 1771115428097664 r005 Re(z^2+c),c=-47/46+13/49*I,n=30 1771115433164384 l006 ln(1403/8246) 1771115441133392 k006 concat of cont frac of 1771115441771115 k006 concat of cont frac of 1771115446484233 m004 -13/6-25*Sqrt[5]*Pi+Sin[Sqrt[5]*Pi] 1771115448847179 m001 (gamma(3)-Pi^(1/2))/(HeathBrownMoroz+Paris) 1771115452364228 r002 54th iterates of z^2 + 1771115452750704 s002 sum(A261299[n]/(16^n),n=1..infinity) 1771115453987918 m001 Champernowne*Trott-Pi^(1/2) 1771115454458484 a007 Real Root Of 404*x^4+180*x^3-509*x^2+810*x+56 1771115459793399 s002 sum(A251822[n]/(n^3*10^n+1),n=1..infinity) 1771115463563972 r004 Im(z^2+c),c=-4/9+7/24*I,z(0)=-1,n=21 1771115467575540 r005 Re(z^2+c),c=-9/86+24/55*I,n=42 1771115478634840 p004 log(20051/19699) 1771115488404259 r005 Im(z^2+c),c=-13/29+10/33*I,n=28 1771115492618286 m001 1/PrimesInBinary^2*Paris/exp(sinh(1)) 1771115494624311 r005 Im(z^2+c),c=-53/64+4/35*I,n=36 1771115497234822 m001 Niven^2/ln(Champernowne)*GAMMA(5/6)^2 1771115498259049 m001 MadelungNaCl*GlaisherKinkelin^ZetaQ(2) 1771115502662862 h001 (1/9*exp(2)+2/5)/(7/8*exp(2)+3/7) 1771115506078368 m001 (Pi-Psi(2,1/3))/(sin(1/5*Pi)-sin(1/12*Pi)) 1771115509782101 r009 Re(z^3+c),c=-19/94+61/63*I,n=31 1771115513111111 k009 concat of cont frac of 1771115514839832 r005 Re(z^2+c),c=-3/17+8/33*I,n=9 1771115515211141 k008 concat of cont frac of 1771115517330505 m001 (Ei(1)+Mills)/(PolyaRandomWalk3D+Porter) 1771115527725806 r005 Im(z^2+c),c=-113/106+9/44*I,n=35 1771115528028357 m001 1/exp(GAMMA(5/12))^2/RenyiParking*cos(Pi/12)^2 1771115529474196 m001 (Pi+Grothendieck)/(KhinchinHarmonic+MertensB2) 1771115530905005 r005 Im(z^2+c),c=-57/70+14/37*I,n=7 1771115534781758 a003 cos(Pi*10/63)-sin(Pi*23/93) 1771115536501939 a007 Real Root Of 896*x^4+921*x^3-654*x^2+659*x-481 1771115538149911 r005 Im(z^2+c),c=21/44+4/21*I,n=5 1771115542521116 k006 concat of cont frac of 1771115546757753 a001 2537720636/1597*6557470319842^(12/17) 1771115546757753 a001 817138163596/1597*1836311903^(12/17) 1771115551191191 k008 concat of cont frac of 1771115553270001 p003 LerchPhi(1/3,5,331/233) 1771115556032582 l006 ln(987/5801) 1771115556263120 m005 (1/3*Zeta(3)+2/7)/(11/12*gamma-11/12) 1771115558150548 s002 sum(A266680[n]/(16^n),n=1..infinity) 1771115561021311 k008 concat of cont frac of 1771115562407554 p001 sum(1/(588*n+569)/(64^n),n=0..infinity) 1771115562591693 r005 Re(z^2+c),c=-1/21+26/45*I,n=3 1771115563365351 b008 16+Erfc[-3/4] 1771115563365351 b008 17+Erf[3/4] 1771115570808483 l006 ln(6575/7849) 1771115580358473 a007 Real Root Of -737*x^4-840*x^3+930*x^2+515*x+580 1771115582756221 m001 (Catalan+ReciprocalFibonacci)/(2^(1/2)+1) 1771115585727748 m001 Artin+KomornikLoreti^Stephens 1771115595272412 q001 6144/3469 1771115595326118 m005 (1/2*Catalan+6/7)/(1/11*3^(1/2)-9/10) 1771115597321115 k006 concat of cont frac of 1771115598874921 m001 (Shi(1)+3^(1/3))/(-GAMMA(19/24)+Sierpinski) 1771115600580510 m005 (1/3*3^(1/2)-1/2)/(7/11*gamma+4) 1771115604883922 m001 GAMMA(5/12)/(GAMMA(19/24)^ln(Pi)) 1771115606609545 a001 514229/5778*322^(11/12) 1771115611019391 a007 Real Root Of 528*x^4+743*x^3-422*x^2+167*x+552 1771115612422895 a007 Real Root Of -441*x^4+47*x^3+813*x^2+495*x-113 1771115637366039 m001 (ln(2)-ln(2)/ln(10))/(ln(2^(1/2)+1)+MertensB3) 1771115640114950 r005 Re(z^2+c),c=-17/98+29/47*I,n=27 1771115642868192 r009 Re(z^3+c),c=-31/102+23/40*I,n=38 1771115646610454 a007 Real Root Of 61*x^4-903*x^3+607*x^2+889*x+938 1771115648176004 m005 (1/2*Zeta(3)+1/11)/(-43/70+1/10*5^(1/2)) 1771115651919186 a001 1346269/15127*322^(11/12) 1771115658529773 a001 3524578/39603*322^(11/12) 1771115659494245 a001 9227465/103682*322^(11/12) 1771115659634960 a001 24157817/271443*322^(11/12) 1771115659655490 a001 63245986/710647*322^(11/12) 1771115659658485 a001 165580141/1860498*322^(11/12) 1771115659658922 a001 433494437/4870847*322^(11/12) 1771115659658986 a001 1134903170/12752043*322^(11/12) 1771115659658995 a001 2971215073/33385282*322^(11/12) 1771115659658996 a001 7778742049/87403803*322^(11/12) 1771115659658996 a001 20365011074/228826127*322^(11/12) 1771115659658996 a001 53316291173/599074578*322^(11/12) 1771115659658996 a001 139583862445/1568397607*322^(11/12) 1771115659658996 a001 365435296162/4106118243*322^(11/12) 1771115659658996 a001 956722026041/10749957122*322^(11/12) 1771115659658996 a001 2504730781961/28143753123*322^(11/12) 1771115659658996 a001 6557470319842/73681302247*322^(11/12) 1771115659658996 a001 10610209857723/119218851371*322^(11/12) 1771115659658996 a001 4052739537881/45537549124*322^(11/12) 1771115659658996 a001 1548008755920/17393796001*322^(11/12) 1771115659658996 a001 591286729879/6643838879*322^(11/12) 1771115659658996 a001 225851433717/2537720636*322^(11/12) 1771115659658996 a001 86267571272/969323029*322^(11/12) 1771115659658996 a001 32951280099/370248451*322^(11/12) 1771115659658997 a001 12586269025/141422324*322^(11/12) 1771115659658997 a001 4807526976/54018521*322^(11/12) 1771115659659001 a001 1836311903/20633239*322^(11/12) 1771115659659025 a001 3524667/39604*322^(11/12) 1771115659659192 a001 267914296/3010349*322^(11/12) 1771115659660336 a001 102334155/1149851*322^(11/12) 1771115659668178 a001 39088169/439204*322^(11/12) 1771115659721926 a001 14930352/167761*322^(11/12) 1771115660090321 a001 5702887/64079*322^(11/12) 1771115660445908 a007 Real Root Of 383*x^4+888*x^3+725*x^2+859*x+412 1771115662615341 a001 2178309/24476*322^(11/12) 1771115663353202 r009 Re(z^3+c),c=-4/13+38/63*I,n=36 1771115665382922 a001 2139295485799/4181*1836311903^(12/17) 1771115665382922 a001 6643838879/4181*6557470319842^(12/17) 1771115666677038 l006 ln(1558/9157) 1771115679922085 a001 832040/9349*322^(11/12) 1771115682690102 a001 5600748293801/10946*1836311903^(12/17) 1771115682690102 a001 17393796001/10946*6557470319842^(12/17) 1771115685215185 a001 14662949395604/28657*1836311903^(12/17) 1771115685215185 a001 45537549124/28657*6557470319842^(12/17) 1771115685583590 a001 119218851371/75025*6557470319842^(12/17) 1771115685637340 a001 312119004989/196418*6557470319842^(12/17) 1771115685645182 a001 817138163596/514229*6557470319842^(12/17) 1771115685646326 a001 2139295485799/1346269*6557470319842^(12/17) 1771115685646493 a001 5600748293801/3524578*6557470319842^(12/17) 1771115685646517 a001 14662949395604/9227465*6557470319842^(12/17) 1771115685646523 a001 23725150497407/14930352*6557470319842^(12/17) 1771115685646532 a001 9062201101803/5702887*6557470319842^(12/17) 1771115685646596 a001 494493258286/311187*6557470319842^(12/17) 1771115685647033 a001 1322157322203/832040*6557470319842^(12/17) 1771115685650028 a001 505019158607/317811*6557470319842^(12/17) 1771115685670559 a001 192900153618/121393*6557470319842^(12/17) 1771115685811277 a001 23725150497407/46368*1836311903^(12/17) 1771115685811277 a001 10525900321/6624*6557470319842^(12/17) 1771115686749429 m001 (GAMMA(3/4)+AlladiGrinstead)/(Salem-Trott2nd) 1771115686775773 a001 9062201101803/17711*1836311903^(12/17) 1771115686775773 a001 28143753123/17711*6557470319842^(12/17) 1771115693386528 a001 3461452808002/6765*1836311903^(12/17) 1771115693386528 a001 10749957122/6765*6557470319842^(12/17) 1771115693831552 h001 (10/11*exp(1)+2/9)/(2/9*exp(1)+11/12) 1771115701183047 m004 -125/(2*Pi)+2*Cot[Sqrt[5]*Pi] 1771115710811561 a008 Real Root of x^4-x^3+21*x^2-43*x+6 1771115711811111 k006 concat of cont frac of 1771115716369473 m001 (Salem+ZetaQ(3))/(polylog(4,1/2)-KhinchinLevy) 1771115717513212 k007 concat of cont frac of 1771115720412106 a007 Real Root Of 352*x^4+355*x^3-368*x^2+437*x+437 1771115720921560 b008 3-Sqrt[5*E]/3 1771115724091110 p003 LerchPhi(1/125,4,276/179) 1771115725130081 a007 Real Root Of 634*x^4+692*x^3-644*x^2+36*x-310 1771115726429115 m003 -5/2+Sinh[1/2+Sqrt[5]/2]+2*Tanh[1/2+Sqrt[5]/2] 1771115738501920 r005 Re(z^2+c),c=27/110+11/23*I,n=11 1771115738697316 a001 1322157322203/2584*1836311903^(12/17) 1771115738697316 a001 4106118243/2584*6557470319842^(12/17) 1771115744304317 r005 Im(z^2+c),c=-21/22+16/93*I,n=51 1771115745568300 q001 3397/1918 1771115752190599 r005 Re(z^2+c),c=11/34+17/57*I,n=32 1771115753971034 a007 Real Root Of 396*x^4+126*x^3-638*x^2+414*x-462 1771115755920861 r005 Im(z^2+c),c=-119/122+7/39*I,n=56 1771115764949675 r009 Re(z^3+c),c=-23/102+16/47*I,n=4 1771115766515634 a007 Real Root Of -215*x^4+113*x^3+667*x^2+79*x+791 1771115776589686 r009 Re(z^3+c),c=-67/98+7/10*I,n=2 1771115777719361 a003 cos(Pi*4/41)+sin(Pi*32/105) 1771115778782306 l006 ln(6126/7313) 1771115781399284 r009 Re(z^3+c),c=-4/15+28/61*I,n=25 1771115782097568 m001 Zeta(1,-1)-sin(1)-LandauRamanujan 1771115785428856 r005 Re(z^2+c),c=-3/98+25/43*I,n=58 1771115787025097 r009 Im(z^3+c),c=-31/52+13/58*I,n=17 1771115788146560 r005 Im(z^2+c),c=-9/14+15/58*I,n=23 1771115795146053 m001 (KomornikLoreti*Landau-ZetaQ(3))/Landau 1771115797972733 h001 (6/11*exp(1)+1/12)/(3/11*exp(1)+1/7) 1771115798544278 a001 317811/3571*322^(11/12) 1771115802216113 k009 concat of cont frac of 1771115805761111 r005 Re(z^2+c),c=-10/21+7/13*I,n=53 1771115807268165 b008 1+Sqrt[-2+Sqrt[5+Sqrt[3]]] 1771115818038453 m001 ln(GAMMA(5/12))^2*Sierpinski*Zeta(3) 1771115823740451 r005 Re(z^2+c),c=23/94+13/64*I,n=42 1771115830610137 m001 Weierstrass^FeigenbaumB*Weierstrass^exp(Pi) 1771115832208054 r002 26th iterates of z^2 + 1771115834863467 r005 Re(z^2+c),c=-59/70+4/43*I,n=12 1771115834868380 p001 sum(1/(413*n+29)/n/(128^n),n=1..infinity) 1771115837438252 b008 -1/56+Erfc[Khinchin] 1771115839246273 r002 6th iterates of z^2 + 1771115841582867 a007 Real Root Of 147*x^4-926*x^3+577*x^2+873*x+342 1771115849290958 m001 (Riemann3rdZero+Thue)/(Bloch+Riemann1stZero) 1771115850659435 r005 Re(z^2+c),c=43/126+9/31*I,n=53 1771115854320011 m005 (1/3*Catalan-2/3)/(7/12*exp(1)+5/11) 1771115857931086 l006 ln(571/3356) 1771115860456232 a007 Real Root Of 520*x^4+683*x^3-641*x^2-832*x-785 1771115861264642 m001 (GAMMA(2/3)+GAMMA(19/24))/(GaussAGM+Lehmer) 1771115861728627 r005 Re(z^2+c),c=17/86+9/61*I,n=8 1771115867147046 a007 Real Root Of 774*x^4+922*x^3-579*x^2+588*x+364 1771115868317250 m005 (1/2*Zeta(3)+5/7)/(1/8*Catalan-6/7) 1771115871613715 b008 3/35+2*Erf[1] 1771115872225158 a007 Real Root Of 622*x^4+474*x^3-953*x^2+452*x+303 1771115884837058 r009 Re(z^3+c),c=-3/11+28/59*I,n=13 1771115885816082 s002 sum(A270726[n]/(pi^n+1),n=1..infinity) 1771115901934863 h001 (3/5*exp(2)+6/11)/(2/7*exp(2)+7/10) 1771115908135131 r002 4th iterates of z^2 + 1771115911113741 k007 concat of cont frac of 1771115911800504 m002 3/Pi^3+Cosh[Pi]+6*Coth[Pi] 1771115913218814 k007 concat of cont frac of 1771115915629397 m001 (Pi^(1/2)+Sierpinski)/(Ei(1)+BesselI(1,1)) 1771115920582380 a007 Real Root Of 277*x^4+748*x^3+957*x^2+446*x-782 1771115923091301 m001 (FellerTornier-ZetaP(3))/(Zeta(1,2)+Pi^(1/2)) 1771115925793350 a007 Real Root Of 443*x^4+912*x^3+874*x^2+809*x-601 1771115934641770 r005 Re(z^2+c),c=-7/86+14/29*I,n=43 1771115943098769 m005 (1/2*exp(1)-8/11)/(-1/16+3/16*5^(1/2)) 1771115948312467 r005 Re(z^2+c),c=-101/86+5/11*I,n=2 1771115951971480 s003 concatenated sequence A146752 1771115954157910 m001 (LandauRamanujan2nd+Mills)/(ln(5)-Landau) 1771115957387202 a007 Real Root Of -267*x^4+24*x^3+437*x^2-735*x+88 1771115958087793 r005 Re(z^2+c),c=-1/56+33/56*I,n=64 1771115960245257 m002 -6+6*Pi^3-Pi/ProductLog[Pi] 1771115960264727 m001 (GAMMA(7/12)-ZetaQ(3))/(Zeta(5)-Ei(1)) 1771115967583195 a003 cos(Pi*7/113)+cos(Pi*25/119) 1771115973741794 q001 4047/2285 1771115979757649 p003 LerchPhi(1/10,5,235/166) 1771115984223142 m005 (1/2*5^(1/2)+5/8)/(3*Pi+5/12) 1771115984908236 m001 (ln(2)-Zeta(1/2))/(FibonacciFactorial-Trott) 1771115984960169 m001 Pi^(1/2)-Trott2nd^Tribonacci 1771115985305989 r005 Im(z^2+c),c=-17/42+11/34*I,n=9 1771115985350945 a007 Real Root Of -387*x^4-347*x^3+482*x^2-401*x-342 1771115986897144 r005 Re(z^2+c),c=-11/10+19/107*I,n=4 1771115991286400 r009 Re(z^3+c),c=-17/64+25/53*I,n=9 1771115997979795 r005 Re(z^2+c),c=-17/90+49/64*I,n=13 1771115998378552 r005 Re(z^2+c),c=-169/114+15/38*I,n=3 1771115999665822 r005 Re(z^2+c),c=9/40+2/11*I,n=22 1771116002700345 r005 Re(z^2+c),c=23/94+13/64*I,n=46 1771116007389766 r008 a(0)=2,K{-n^6,30-3*n^3+41*n^2-62*n} 1771116014593880 r002 40th iterates of z^2 + 1771116016713692 a007 Real Root Of 587*x^4+627*x^3-547*x^2+364*x+68 1771116016843399 a007 Real Root Of -210*x^4-249*x^3+596*x^2+998*x+581 1771116017711160 k006 concat of cont frac of 1771116019497203 a007 Real Root Of -16*x^4-285*x^3+13*x^2+768*x+516 1771116019561653 a007 Real Root Of 393*x^4+793*x^3-104*x^2-787*x-529 1771116019653867 l006 ln(5677/6777) 1771116021689304 r005 Re(z^2+c),c=23/94+13/64*I,n=47 1771116021914533 m001 ln(3)^MertensB1/(Champernowne^MertensB1) 1771116040508656 m001 Sarnak^GAMMA(13/24)*ln(2)/ln(10) 1771116044360175 r002 19th iterates of z^2 + 1771116045690376 a001 8/11*64079^(31/44) 1771116049262141 a001 10745088481/21*1836311903^(12/17) 1771116049262141 a001 224056801/141*6557470319842^(12/17) 1771116050619701 m001 (KhinchinHarmonic-ZetaP(3))^BesselI(0,1) 1771116053459033 a005 (1/sin(58/153*Pi))^70 1771116053761117 m001 (exp(Pi)+Gompertz)/(Lehmer+RenyiParking) 1771116061083853 a003 cos(Pi*1/115)+cos(Pi*9/41) 1771116063394930 r005 Re(z^2+c),c=-15/94+23/33*I,n=58 1771116063574838 m001 (KhinchinHarmonic+Khinchin)/(MertensB2+Porter) 1771116072586818 m001 (FeigenbaumDelta+ZetaQ(2))/(Shi(1)+ln(5)) 1771116081618367 r005 Re(z^2+c),c=9/98+15/56*I,n=6 1771116081763146 m001 (-GaussAGM+HardyLittlewoodC5)/(exp(Pi)+sin(1)) 1771116084891292 a001 41/105937*121393^(11/12) 1771116084909819 a001 123/63245986*39088169^(11/12) 1771116084909819 a001 123/2504730781961*4052739537881^(11/12) 1771116084909819 a001 123/12586269025*12586269025^(11/12) 1771116087671829 l006 ln(1297/7623) 1771116090722422 r004 Im(z^2+c),c=7/46+1/8*I,z(0)=exp(7/8*I*Pi),n=11 1771116093122601 a005 (1/sin(51/181*Pi))^209 1771116101613424 g007 Psi(2,2/7)-Psi(2,5/12)-Psi(2,7/11)-Psi(2,2/5) 1771116109545457 r002 42th iterates of z^2 + 1771116110113231 k008 concat of cont frac of 1771116110312311 k008 concat of cont frac of 1771116111121118 k007 concat of cont frac of 1771116111121411 k008 concat of cont frac of 1771116111911112 k007 concat of cont frac of 1771116112101291 k008 concat of cont frac of 1771116112121023 k008 concat of cont frac of 1771116114113116 k007 concat of cont frac of 1771116116426097 a007 Real Root Of -295*x^4+118*x^3+752*x^2-221*x+808 1771116116583806 a001 199/225851433717*514229^(13/14) 1771116118759911 m001 (Ei(1)-exp(1/exp(1)))/(Otter-ThueMorse) 1771116121221391 k009 concat of cont frac of 1771116123417621 k006 concat of cont frac of 1771116125112101 k007 concat of cont frac of 1771116126648817 a007 Real Root Of -774*x^4-854*x^3+296*x^2-660*x+774 1771116131912247 k006 concat of cont frac of 1771116132111111 k008 concat of cont frac of 1771116138763197 q001 4697/2652 1771116142846514 k006 concat of cont frac of 1771116145344087 m001 (FeigenbaumC+Thue)/(gamma(2)+GAMMA(7/12)) 1771116148125155 k008 concat of cont frac of 1771116150153629 k008 concat of cont frac of 1771116150809715 r002 63th iterates of z^2 + 1771116151322711 k006 concat of cont frac of 1771116159560506 a001 312119004989/610*6557470319842^(10/17) 1771116161117113 k007 concat of cont frac of 1771116161349236 a007 Real Root Of -63*x^4+762*x^3-580*x^2-790*x-395 1771116161372124 k008 concat of cont frac of 1771116162106474 r005 Im(z^2+c),c=-11/10+32/153*I,n=26 1771116163122185 k008 concat of cont frac of 1771116165381884 p001 sum((-1)^n/(223*n+56)/(24^n),n=0..infinity) 1771116171302111 k006 concat of cont frac of 1771116175647960 m001 Pi-1/exp(gamma)-cos(1/5*Pi) 1771116183805731 a007 Real Root Of 180*x^4-85*x^3-246*x^2+639*x-340 1771116187363530 a003 sin(Pi*2/39)-sin(Pi*8/73) 1771116191142731 k006 concat of cont frac of 1771116194069918 a007 Real Root Of 449*x^4+992*x^3+894*x^2+978*x+21 1771116210395186 r002 51th iterates of z^2 + 1771116211132178 k006 concat of cont frac of 1771116211192321 k006 concat of cont frac of 1771116211261411 k008 concat of cont frac of 1771116212121231 k006 concat of cont frac of 1771116212577272 p004 log(24691/4201) 1771116214134648 k008 concat of cont frac of 1771116221211321 k006 concat of cont frac of 1771116223441500 m001 (Pi-gamma(3))/(BesselJ(1,1)+MertensB3) 1771116224519486 r009 Im(z^3+c),c=-5/23+4/25*I,n=5 1771116227732106 r005 Re(z^2+c),c=17/50+25/62*I,n=18 1771116229234131 k008 concat of cont frac of 1771116231213161 k007 concat of cont frac of 1771116232614593 a007 Real Root Of -593*x^4-604*x^3+177*x^2-729*x+633 1771116235687984 a007 Real Root Of -213*x^4-628*x^3-871*x^2-454*x+535 1771116239942905 m001 (DuboisRaymond-Si(Pi))/(Thue+ZetaP(4)) 1771116248336934 a007 Real Root Of 168*x^4-280*x^3+608*x^2-690*x-143 1771116249408037 s002 sum(A055139[n]/(pi^n),n=1..infinity) 1771116250813626 p003 LerchPhi(1/1024,1,61/108) 1771116253956369 g006 2*Psi(1,5/11)+Psi(1,4/11)-Psi(1,3/4) 1771116255070198 a007 Real Root Of -882*x^4-974*x^3+838*x^2-250*x+196 1771116257101095 p003 LerchPhi(1/3,2,74/95) 1771116260427878 r005 Im(z^2+c),c=-67/122+9/28*I,n=47 1771116260995374 r008 a(0)=0,K{-n^6,-30-52*n+57*n^2-10*n^3} 1771116263663464 q001 5347/3019 1771116263697750 a001 121393/199*199^(7/11) 1771116266099353 m001 OneNinth^2/ln(KhintchineLevy)^2/sqrt(5) 1771116267287518 a007 Real Root Of 99*x^4-386*x^3-619*x^2+542*x-217 1771116268363203 l006 ln(726/4267) 1771116271111758 a007 Real Root Of 435*x^4+545*x^3+94*x^2+702*x-304 1771116276013300 m001 (BesselI(0,2)+Trott)/(Ei(1)-BesselK(1,1)) 1771116280969936 m009 (1/10*Pi^2+3)/(4/5*Psi(1,2/3)-1/5) 1771116284789172 a007 Real Root Of -666*x^4-955*x^3+309*x^2-418*x-462 1771116285038653 m001 (ln(5)+FeigenbaumMu)^MadelungNaCl 1771116289441792 m005 (1/2*2^(1/2)+7/9)/(1/7*Zeta(3)+2/3) 1771116289963681 r005 Re(z^2+c),c=-49/50+7/52*I,n=22 1771116290374427 r002 25th iterates of z^2 + 1771116292739931 a007 Real Root Of -646*x^4-750*x^3+136*x^2-681*x+557 1771116293506073 b008 Pi-ArcSinh[68] 1771116296749686 b008 64*E+Pi 1771116297035744 g001 GAMMA(1/3,3/106) 1771116301899304 l006 ln(5228/6241) 1771116304742997 m005 (3*exp(1)-4/5)/(1/6*Catalan+4) 1771116307865124 a007 Real Root Of -16*x^4+456*x^3+606*x^2-79*x+650 1771116308051293 a001 18/7778742049*317811^(12/17) 1771116308053769 a001 18/2504730781961*1134903170^(12/17) 1771116310406549 r005 Im(z^2+c),c=-24/29+11/64*I,n=20 1771116311121682 k006 concat of cont frac of 1771116312672651 a001 3/4*(1/2*5^(1/2)+1/2)*4^(3/11) 1771116317315211 k006 concat of cont frac of 1771116324103429 m001 (-Zeta(1,2)+Mills)/(ln(2)/ln(10)+cos(1/12*Pi)) 1771116331794532 r009 Im(z^3+c),c=-7/52+35/39*I,n=32 1771116332261521 k008 concat of cont frac of 1771116332741773 r002 59th iterates of z^2 + 1771116347381289 r002 5th iterates of z^2 + 1771116348456527 r005 Re(z^2+c),c=-9/14+113/161*I,n=5 1771116351102913 k008 concat of cont frac of 1771116355021620 m001 Zeta(3)^(Pi*2^(1/2)/GAMMA(3/4)/Zeta(1,-1)) 1771116356474186 a001 377/3*29^(11/14) 1771116358608137 r005 Im(z^2+c),c=1/58+2/11*I,n=5 1771116361488481 q001 5997/3386 1771116363539250 r005 Re(z^2+c),c=23/94+13/64*I,n=48 1771116365973174 r005 Re(z^2+c),c=23/94+13/64*I,n=52 1771116370806538 a007 Real Root Of -442*x^4-644*x^3+585*x^2+840*x+424 1771116372201160 a001 21/29*4^(20/31) 1771116373528909 r005 Re(z^2+c),c=23/94+13/64*I,n=53 1771116376494670 m001 (CareFree+Sierpinski)/(cos(1)+ln(2+3^(1/2))) 1771116376963665 a007 Real Root Of -563*x^4-454*x^3+420*x^2-926*x+60 1771116386450032 r005 Re(z^2+c),c=-1/82+37/62*I,n=53 1771116387416125 k008 concat of cont frac of 1771116400724087 m001 (Ei(1,1)+FeigenbaumD)/(KhinchinLevy+ZetaP(2)) 1771116405854769 m005 (1/2*gamma+1/10)/(2/7*3^(1/2)-5/7) 1771116408156583 a001 7881196/5*832040^(13/19) 1771116409007234 a007 Real Root Of -402*x^4-311*x^3+859*x^2+735*x+835 1771116410647824 m001 1/ln(Sierpinski)/Bloch/(2^(1/3)) 1771116411235134 k007 concat of cont frac of 1771116414198097 l006 ln(1607/9445) 1771116415896971 a001 15127/5*7778742049^(13/19) 1771116420551263 r005 Re(z^2+c),c=23/94+13/64*I,n=58 1771116422305879 r005 Re(z^2+c),c=23/94+13/64*I,n=59 1771116423451858 r005 Re(z^2+c),c=23/94+13/64*I,n=54 1771116428691702 r005 Re(z^2+c),c=23/94+13/64*I,n=64 1771116429560264 r005 Re(z^2+c),c=23/94+13/64*I,n=60 1771116430002268 m001 (arctan(1/2)-GAMMA(5/6))/(ZetaP(2)-ZetaP(4)) 1771116430236517 r005 Re(z^2+c),c=23/94+13/64*I,n=63 1771116430477575 b008 -1/11+Coth[3/5] 1771116432084347 r005 Re(z^2+c),c=23/94+13/64*I,n=57 1771116432996931 r005 Re(z^2+c),c=23/94+13/64*I,n=62 1771116433785058 r005 Re(z^2+c),c=23/94+13/64*I,n=61 1771116436493655 b008 ArcSech[-1+E^(2/7)] 1771116439587031 m001 exp(Pi)/(2^(1/2)-OneNinth) 1771116439587031 m001 exp(Pi)/(OneNinth-sqrt(2)) 1771116440181188 q001 6647/3753 1771116440611952 a001 682*17711^(4/41) 1771116447060038 l003 BesselK(3,3/4) 1771116449974671 a007 Real Root Of 361*x^4+565*x^3-156*x^2-244*x-356 1771116451126388 r005 Re(z^2+c),c=23/94+13/64*I,n=56 1771116451483471 r005 Re(z^2+c),c=23/94+13/64*I,n=51 1771116454881359 r005 Re(z^2+c),c=23/94+13/64*I,n=55 1771116464928181 m005 (1/2*3^(1/2)+3)/(1/10*exp(1)-1/4) 1771116466181113 m001 (Khinchin-ZetaP(2))/(HardyLittlewoodC3+Kac) 1771116476192793 m005 (1/3*Zeta(3)-2/11)/(5/8*gamma+7/8) 1771116481060495 a007 Real Root Of -603*x^4-417*x^3+844*x^2-873*x-577 1771116482996534 m001 DuboisRaymond^(5^(1/2))+KhinchinHarmonic 1771116485362284 a003 sin(Pi*27/95)+sin(Pi*29/63) 1771116487132823 m001 LambertW(1)*exp(MinimumGamma)/sinh(1)^2 1771116488291443 a007 Real Root Of -270*x^4-407*x^3+698*x^2+992*x-37 1771116490447824 a001 317811/521*322^(7/12) 1771116499622985 a007 Real Root Of 506*x^4+884*x^3+392*x^2+549*x-325 1771116500398191 a001 55/710647*843^(25/31) 1771116500649892 a003 cos(Pi*7/107)+cos(Pi*14/67) 1771116502294968 p001 sum((-1)^n/(605*n+534)/(8^n),n=0..infinity) 1771116503699201 a007 Real Root Of 461*x^4+587*x^3+31*x^2+921*x+259 1771116505767405 m001 ln(PrimesInBinary)/Kolakoski/Riemann3rdZero^2 1771116511386583 a007 Real Root Of -402*x^4-876*x^3-108*x^2+387*x+113 1771116511597547 h001 (9/10*exp(1)+3/11)/(1/9*exp(2)+5/7) 1771116516732345 m001 (sin(1)*Zeta(1/2)-MertensB1)/sin(1) 1771116517484211 a007 Real Root Of 181*x^4-397*x^3-482*x^2-321*x+74 1771116522805347 m001 GAMMA(23/24)^cos(1/12*Pi)-Zeta(3) 1771116522805347 m001 GAMMA(23/24)^cos(Pi/12)-Zeta(3) 1771116523135762 m001 (Psi(1,1/3)+GAMMA(19/24))/(Magata+Otter) 1771116526192923 r004 Re(z^2+c),c=-35/34+10/21*I,z(0)=-1,n=7 1771116527534077 m001 Zeta(1/2)^2/ln(FeigenbaumD)^2*cos(Pi/5) 1771116532636102 m001 (3^(1/3)+Khinchin)/(Niven-Riemann3rdZero) 1771116534375303 l006 ln(881/5178) 1771116535280227 k008 concat of cont frac of 1771116538111121 k007 concat of cont frac of 1771116545012639 a007 Real Root Of 804*x^4+806*x^3-552*x^2+534*x-756 1771116558008883 m007 (-2/3*gamma-2*ln(2)+1/3*Pi+1)/(-4*gamma+3/4) 1771116561274184 a001 281/726103*832040^(37/47) 1771116561923734 a007 Real Root Of 459*x^4+502*x^3-637*x^2+16*x+299 1771116562916204 b008 1+KelvinKer[0,ArcCoth[2]] 1771116567834356 a007 Real Root Of 480*x^4-90*x^3+12*x^2-911*x+161 1771116571003247 a007 Real Root Of -47*x^4-861*x^3-561*x^2-979*x-118 1771116575842363 m001 (Rabbit+Thue)/(GolombDickman+MertensB1) 1771116575873043 a007 Real Root Of 841*x^4+912*x^3-903*x^2-253*x-824 1771116577883012 m001 1/GAMMA(1/4)^2*ln(Riemann1stZero)*Zeta(1,2)^2 1771116579589221 m001 (FransenRobinson+Thue)^TreeGrowth2nd 1771116582204741 r005 Re(z^2+c),c=23/94+13/64*I,n=50 1771116585348610 a007 Real Root Of 426*x^4+202*x^3+656*x^2-379*x-87 1771116587887157 s002 sum(A159714[n]/(n*exp(pi*n)+1),n=1..infinity) 1771116587887157 s002 sum(A159714[n]/(n*exp(pi*n)-1),n=1..infinity) 1771116595824093 r005 Re(z^2+c),c=23/94+13/64*I,n=49 1771116602199119 a001 76/13*55^(13/47) 1771116604095014 m001 Kolakoski/(Catalan+FeigenbaumMu) 1771116605850348 r009 Re(z^3+c),c=-5/14+11/18*I,n=49 1771116611124823 k008 concat of cont frac of 1771116611130720 r002 38th iterates of z^2 + 1771116611593312 a001 121393/1364*322^(11/12) 1771116623673155 r002 3th iterates of z^2 + 1771116625348076 m006 (5*exp(Pi)+1/6)/(3*exp(Pi)-4) 1771116628728754 b008 Pi+25*Tanh[2/3] 1771116632749139 r005 Re(z^2+c),c=23/94+13/64*I,n=45 1771116637180177 l006 ln(4779/5705) 1771116639996320 a001 5/271443*322^(34/43) 1771116640669102 m001 (Pi*2^(1/2)/GAMMA(3/4)+ln(Pi))/(Si(Pi)+sin(1)) 1771116650145957 m001 1/ln(Rabbit)^2/FeigenbaumB*sqrt(3) 1771116652855630 r005 Im(z^2+c),c=-99/106+12/53*I,n=30 1771116654334389 a007 Real Root Of -546*x^4-648*x^3-39*x^2-700*x+655 1771116654964582 a007 Real Root Of 166*x^4-317*x^3-321*x^2+836*x-907 1771116658535536 m001 1/GAMMA(1/6)^2/ln(BesselK(1,1))^2*sqrt(2) 1771116666133857 m001 (Pi*2^(1/2)/GAMMA(3/4)+MertensB1)^BesselK(0,1) 1771116667400162 m001 (3^(1/2)+exp(1/Pi))/((1+3^(1/2))^(1/2)-Magata) 1771116669344261 a001 41/15456*8^(21/23) 1771116671778079 s001 sum(exp(-Pi/4)^n*A154625[n],n=1..infinity) 1771116672018325 m001 1/GAMMA(19/24)^2*CareFree*exp(sqrt(Pi))^2 1771116677962846 m005 (1/2*2^(1/2)-7/10)/(3/4*Catalan-2/7) 1771116678205965 h001 (-12*exp(3)-3)/(-2*exp(2)+1) 1771116679032579 m005 (1/2*3^(1/2)-3/8)/(-37/77+1/11*5^(1/2)) 1771116679241475 r005 Im(z^2+c),c=-13/22+26/71*I,n=43 1771116683656959 r005 Re(z^2+c),c=-95/98+3/29*I,n=6 1771116687870802 a001 47/4181*3^(12/29) 1771116691924336 m001 (BesselJ(0,1)+ln(5))/(-Niven+Tribonacci) 1771116695630307 m001 (Pi-GAMMA(11/12))/(KhinchinLevy-ZetaQ(3)) 1771116696771947 a007 Real Root Of -5*x^4-881*x^3+803*x^2-768*x+14 1771116697880373 m006 (1/6*exp(2*Pi)-5)/(3/5/Pi-2/3) 1771116701171354 m001 (-Salem+ZetaP(2))/(5^(1/2)+Si(Pi)) 1771116704561592 a007 Real Root Of 287*x^4+643*x^3+314*x^2-51*x-327 1771116704670255 r005 Re(z^2+c),c=-2/17+47/54*I,n=39 1771116709443899 r009 Re(z^3+c),c=-17/36+27/61*I,n=9 1771116710466855 m005 (1/3*Zeta(3)-1/2)/(3/7*Catalan-6) 1771116713451763 a007 Real Root Of 230*x^4-820*x^3+385*x^2+490*x+217 1771116720789145 l006 ln(1036/6089) 1771116722695794 m001 (Khinchin-MasserGramain)/(sin(1/12*Pi)-Artin) 1771116725884332 m001 Zeta(1,-1)^polylog(4,1/2)-Niven 1771116726071170 a007 Real Root Of 582*x^4+797*x^3-355*x^2-294*x-706 1771116727304591 m001 1/ln(Catalan)/FeigenbaumDelta/GAMMA(19/24)^2 1771116727839339 a007 Real Root Of -366*x^4+87*x^3+591*x^2-739*x+922 1771116735986575 r005 Re(z^2+c),c=13/40+21/64*I,n=27 1771116739089242 m005 (1/3*Pi+1/12)/(9/11*Catalan-1/9) 1771116752035096 a001 1568397607/377*1836311903^(14/17) 1771116752035607 a001 1860498/377*6557470319842^(14/17) 1771116752036199 a001 1322157322203/377*514229^(14/17) 1771116752708646 m001 Riemann2ndZero/(Salem^GAMMA(11/12)) 1771116754906983 m005 (-13/28+1/4*5^(1/2))/(1/3*gamma-8/11) 1771116760880725 r005 Im(z^2+c),c=-2/3+66/223*I,n=64 1771116777142750 a001 9062201101803/89*21^(2/11) 1771116779766750 m001 (Pi+AlladiGrinstead)/(Magata-Salem) 1771116783373657 m001 (exp(-1/2*Pi)-exp(Pi))/(-Conway+ZetaQ(3)) 1771116786516695 a007 Real Root Of -655*x^4-692*x^3+723*x^2-28*x+283 1771116788450206 a007 Real Root Of 464*x^4+536*x^3-818*x^2-598*x-81 1771116792188902 a007 Real Root Of -304*x^4+39*x^3+977*x^2-191*x-195 1771116793625326 r005 Im(z^2+c),c=-5/6+20/167*I,n=49 1771116806668378 m001 GAMMA(1/24)/Tribonacci^2/exp(Zeta(1,2)) 1771116818014114 l005 2*exp(133/65)/(exp(133/65)+1) 1771116819612103 m005 (1/2*exp(1)+7/8)/(3/8*Pi+1/12) 1771116825092624 m005 (19/28+1/4*5^(1/2))/(8/9*5^(1/2)+5) 1771116825580417 a007 Real Root Of 125*x^4-35*x^3-84*x^2+293*x-642 1771116825846026 m001 (2^(1/2)+1)/(-exp(1/exp(1))+FransenRobinson) 1771116827929829 m005 (1/2*gamma-4/7)/(76/77+3/11*5^(1/2)) 1771116832661711 a007 Real Root Of 222*x^4+309*x^3-135*x^2+296*x+480 1771116843154124 k008 concat of cont frac of 1771116844083754 a007 Real Root Of 972*x^4-111*x^3+544*x^2-290*x-70 1771116852411212 k007 concat of cont frac of 1771116857577987 r005 Re(z^2+c),c=-79/78+22/53*I,n=5 1771116858682150 l006 ln(1191/7000) 1771116860576491 m001 Otter/ln(5)/Zeta(5) 1771116862509391 r005 Im(z^2+c),c=-19/110+16/25*I,n=3 1771116862662502 a001 514229/2207*18^(40/57) 1771116863241505 m001 RenyiParking^Cahen/(HardyLittlewoodC4^Cahen) 1771116864132980 a001 1/2207*(1/2*5^(1/2)+1/2)^12*3^(3/17) 1771116865408045 h001 (-2*exp(3/2)+7)/(-exp(3)+9) 1771116866117378 a003 cos(Pi*1/105)*cos(Pi*43/97) 1771116868167918 m001 (sin(1)*PrimesInBinary-Tribonacci)/sin(1) 1771116871785540 m001 FeigenbaumD*Cahen^2*ln(log(1+sqrt(2)))^2 1771116876159520 r005 Re(z^2+c),c=-29/22+4/89*I,n=32 1771116882541456 r005 Im(z^2+c),c=-39/40+13/62*I,n=10 1771116891288953 h001 (4/9*exp(2)+2/7)/(7/11*exp(1)+2/7) 1771116907218014 m001 GAMMA(1/6)^2/ln(FeigenbaumD)/sqrt(Pi) 1771116907663815 r005 Re(z^2+c),c=11/90+7/11*I,n=22 1771116909441667 g004 Re(GAMMA(-51/20+I*197/60)) 1771116909559932 a007 Real Root Of -627*x^4-700*x^3+755*x^2-296*x-612 1771116912027802 r002 10th iterates of z^2 + 1771116912607500 a001 18/233*365435296162^(2/17) 1771116914750388 m001 (Thue-TwinPrimes)/(GolombDickman-MadelungNaCl) 1771116916170659 m001 (Sarnak+ZetaP(2))/(Cahen-Rabbit) 1771116918993289 m001 ((3^(1/3))+sqrt(1+sqrt(3)))/MadelungNaCl 1771116918993289 m001 (3^(1/3)+(1+3^(1/2))^(1/2))/MadelungNaCl 1771116924551810 a007 Real Root Of -553*x^4-782*x^3-83*x^2-318*x+794 1771116930707692 r005 Re(z^2+c),c=5/17+13/51*I,n=24 1771116930999007 m001 1/BesselJ(1,1)^2*Si(Pi)^2 1771116930999007 m001 Si(Pi)^2/BesselJ(1,1)^2 1771116936711620 r002 23th iterates of z^2 + 1771116936913233 r005 Im(z^2+c),c=-1/66+11/57*I,n=7 1771116938686383 m004 1+25*Sqrt[5]*Pi+3/(4*ProductLog[Sqrt[5]*Pi]) 1771116940045409 m001 HardyLittlewoodC3^Zeta(1,-1)+ln(2) 1771116940054807 a007 Real Root Of 569*x^4+406*x^3-829*x^2+97*x-571 1771116941117112 k006 concat of cont frac of 1771116950201343 r008 a(0)=3,K{-n^6,-46-5*n^3-9*n^2+64*n} 1771116964301444 a007 Real Root Of 357*x^4+12*x^3-931*x^2+71*x-400 1771116964422792 m001 (-GAMMA(1/12)+2)/(-arctan(1/2)+1) 1771116964816723 l006 ln(1346/7911) 1771116968920648 m001 1/ln(GAMMA(5/24))^2/Sierpinski*Zeta(9)^2 1771116969374876 m001 (-Sierpinski+ZetaQ(4))/(gamma+ln(2^(1/2)+1)) 1771116969777858 m005 (1/2*2^(1/2)+5/6)/(6/7*gamma+3/8) 1771116972629736 a001 817138163596/1597*6557470319842^(10/17) 1771116974418351 b008 -24/7+ArcCosh[E] 1771116981279228 h005 exp(sin(Pi*5/51)-sin(Pi*20/59)) 1771116995789360 a007 Real Root Of -49*x^4-863*x^3+57*x^2-511*x 1771116996898177 m006 (1/2*Pi^2-2)/(1/2*exp(Pi)+5) 1771116998907638 a007 Real Root Of -264*x^4+88*x^3+543*x^2-453*x+581 1771117000137894 m005 (1/3*exp(1)+1/10)/(1/7*5^(1/2)-6) 1771117000543626 a001 199/433494437*610^(13/14) 1771117000607516 m005 (1/2*5^(1/2)-1)/(1/9*Zeta(3)-4/5) 1771117002251997 r009 Re(z^3+c),c=-3/122+11/27*I,n=9 1771117005329672 m001 (ln(Pi)+BesselI(1,2))/(GaussAGM+Rabbit) 1771117005685129 r002 53th iterates of z^2 + 1771117005830903 r005 Im(z^2+c),c=-11/14+173/200*I,n=3 1771117006059086 a007 Real Root Of 430*x^4+354*x^3-820*x^2+222*x+701 1771117006146287 m005 (2*Catalan+1/6)/(4/5*gamma+2/3) 1771117009309284 m001 (5^(1/2)+HeathBrownMoroz)^Rabbit 1771117012011711 h001 (5/9*exp(2)+1/3)/(3/5*exp(1)+7/8) 1771117012036688 m001 (-FeigenbaumC+Otter)/(LambertW(1)-Zeta(3)) 1771117012544296 m001 ln(2^(1/2)+1)+GaussAGM^MasserGramain 1771117022340530 r005 Im(z^2+c),c=-91/114+5/52*I,n=47 1771117028161794 m001 (Totient+ThueMorse)/(polylog(4,1/2)+Bloch) 1771117032710333 a007 Real Root Of 966*x^4-266*x^3+228*x^2-471*x-93 1771117041995037 l006 ln(4330/5169) 1771117049031423 l006 ln(1501/8822) 1771117060467910 m005 (25/42+1/6*5^(1/2))/(2*Pi-9/11) 1771117064210402 r002 25th iterates of z^2 + 1771117064460842 r005 Re(z^2+c),c=-3/28+25/58*I,n=29 1771117064749013 a007 Real Root Of 420*x^4+875*x^3+345*x^2+731*x+941 1771117069311592 a007 Real Root Of -200*x^4+383*x^3+806*x^2-640*x+434 1771117071016255 r005 Im(z^2+c),c=-25/26+11/63*I,n=48 1771117073295610 a001 199/6765*34^(28/55) 1771117074605539 m001 Totient^Mills/(ZetaR(2)^Mills) 1771117083333322 a001 1/72*(1/2+1/2*5^(1/2))^34 1771117091255000 a001 2139295485799/4181*6557470319842^(10/17) 1771117095618107 m001 (Conway-Otter)/(AlladiGrinstead+Champernowne) 1771117101655024 a007 Real Root Of -659*x^4-735*x^3+694*x^2-380*x-449 1771117104595491 h001 (9/10*exp(1)+7/12)/(7/12*exp(1)+1/8) 1771117107905842 a007 Real Root Of 169*x^4-131*x^3-421*x^2+432*x-305 1771117108562194 a001 5600748293801/10946*6557470319842^(10/17) 1771117111061112 k008 concat of cont frac of 1771117111087280 a001 14662949395604/28657*6557470319842^(10/17) 1771117111145110 k008 concat of cont frac of 1771117111211711 k006 concat of cont frac of 1771117111518200 r005 Im(z^2+c),c=-109/110+9/49*I,n=28 1771117111683372 a001 23725150497407/46368*6557470319842^(10/17) 1771117112647869 a001 9062201101803/17711*6557470319842^(10/17) 1771117113124434 k008 concat of cont frac of 1771117114122111 k008 concat of cont frac of 1771117115111213 k006 concat of cont frac of 1771117115754717 m001 Pi^(1/2)+gamma(2)^Mills 1771117117481288 l006 ln(1656/9733) 1771117118121220 k007 concat of cont frac of 1771117118211111 k007 concat of cont frac of 1771117119258629 a001 3461452808002/6765*6557470319842^(10/17) 1771117125213111 k008 concat of cont frac of 1771117127636934 m004 -2-5/Pi+5*Pi*Sec[Sqrt[5]*Pi] 1771117129736281 r002 16th iterates of z^2 + 1771117131944556 m007 (-1/3*gamma-ln(2)-1/6*Pi+1)/(-5/6*gamma+1/4) 1771117138122613 k006 concat of cont frac of 1771117139674604 m001 (Shi(1)+Zeta(5))/(-BesselI(1,1)+MadelungNaCl) 1771117141071911 a007 Real Root Of 442*x^4+778*x^3+434*x^2+296*x-864 1771117153131231 k008 concat of cont frac of 1771117154782798 a003 -1+cos(10/21*Pi)-2*cos(2/9*Pi)+cos(7/27*Pi) 1771117156272812 k006 concat of cont frac of 1771117159889798 m001 1/Trott^2*LandauRamanujan*exp(Zeta(9)) 1771117162264231 k008 concat of cont frac of 1771117162396136 a005 (1/sin(105/236*Pi))^650 1771117164569453 a001 1322157322203/2584*6557470319842^(10/17) 1771117166212534 q001 13/734 1771117169255963 m001 (BesselJ(0,1)+ReciprocalLucas)/(1+cos(1)) 1771117170217271 s003 concatenated sequence A043230 1771117170626470 r005 Re(z^2+c),c=13/48+11/48*I,n=25 1771117171213112 k008 concat of cont frac of 1771117173226306 a001 1346269/5778*18^(40/57) 1771117174697929 a001 1/5778*(1/2*5^(1/2)+1/2)^14*3^(3/17) 1771117179217271 s003 concatenated sequence A044010 1771117189511122 k007 concat of cont frac of 1771117191036957 r002 4th iterates of z^2 + 1771117195161156 k006 concat of cont frac of 1771117199956601 r002 5th iterates of z^2 + 1771117202937709 m001 (ln(Pi)-exp(1/Pi))/(TreeGrowth2nd+Thue) 1771117205750999 m001 exp(KhintchineLevy)/GlaisherKinkelin/(3^(1/3)) 1771117211161221 k007 concat of cont frac of 1771117211181214 k008 concat of cont frac of 1771117211221614 k008 concat of cont frac of 1771117211403161 k007 concat of cont frac of 1771117212138264 a007 Real Root Of 292*x^4-35*x^3-486*x^2+707*x-291 1771117213112212 k006 concat of cont frac of 1771117213135119 k007 concat of cont frac of 1771117213821483 a003 sin(Pi*1/60)*sin(Pi*10/91) 1771117217212145 k006 concat of cont frac of 1771117218779842 a007 Real Root Of 732*x^4+897*x^3-111*x^2+620*x-773 1771117220008754 a001 1/15127*(1/2*5^(1/2)+1/2)^16*3^(3/17) 1771117222337870 a007 Real Root Of -758*x^4+802*x^3-735*x^2+448*x-60 1771117224886894 a003 cos(Pi*34/105)-cos(Pi*29/75) 1771117226619514 a001 1/39603*(1/2*5^(1/2)+1/2)^18*3^(3/17) 1771117228180103 a001 1/64079*(1/2*5^(1/2)+1/2)^19*3^(3/17) 1771117228944305 h005 exp(cos(Pi*13/35)-sin(Pi*22/53)) 1771117230705189 a001 1/24476*(1/2*5^(1/2)+1/2)^17*3^(3/17) 1771117245557007 m001 (-gamma(3)+Sierpinski)/(2^(1/3)-exp(1)) 1771117246540492 a001 2178309/9349*18^(40/57) 1771117247849125 m001 (1+CopelandErdos)/(FeigenbaumMu+Magata) 1771117248012385 a001 1/9349*(1/2*5^(1/2)+1/2)^15*3^(3/17) 1771117252127173 k006 concat of cont frac of 1771117256521356 a007 Real Root Of 415*x^4+910*x^3+440*x^2-306*x-950 1771117258344046 a007 Real Root Of -566*x^4-723*x^3+872*x^2+818*x+266 1771117258774894 a005 (1/sin(60/149*Pi))^400 1771117258810238 p001 sum(1/(303*n+28)/n/(2^n),n=1..infinity) 1771117272553645 a007 Real Root Of 73*x^4-446*x^3-913*x^2+484*x+525 1771117277607040 l006 ln(8211/9802) 1771117278556683 a007 Real Root Of -729*x^4-455*x^3+30*x^2+903*x-16 1771117294391154 a003 sin(Pi*2/111)+sin(Pi*1/26) 1771117312904970 m001 (Totient+ZetaP(4))/(GAMMA(19/24)-Artin) 1771117321312371 k006 concat of cont frac of 1771117323346110 m001 (5^(1/2)+3^(1/3))/(-MertensB1+ZetaQ(2)) 1771117323376881 r005 Re(z^2+c),c=-9/86+24/55*I,n=41 1771117325561122 a007 Real Root Of 679*x^4+717*x^3-819*x^2-108*x-320 1771117326567416 a007 Real Root Of -793*x^4-711*x^3+917*x^2-42*x+902 1771117327334016 a007 Real Root Of -25*x^4+402*x^3+139*x^2-610*x+963 1771117330544432 r005 Im(z^2+c),c=-19/18+21/95*I,n=33 1771117331181786 m006 (4/5*exp(2*Pi)-5/6)/(exp(Pi)+1) 1771117335475234 m001 (3^(1/2)+Catalan)/(FeigenbaumB+LaplaceLimit) 1771117336944692 a007 Real Root Of 195*x^4+309*x^3+391*x^2+950*x+254 1771117336966153 a007 Real Root Of 288*x^4+156*x^3-696*x^2-157*x-62 1771117343009015 a007 Real Root Of -276*x^4-328*x^3-48*x^2-537*x+93 1771117343252574 m009 (5/2*Pi^2-3/4)/(32/5*Catalan+4/5*Pi^2-1/4) 1771117344401460 a007 Real Root Of 369*x^4+218*x^3-645*x^2+177*x-83 1771117352319520 a007 Real Root Of -774*x^4+242*x^3+240*x^2+934*x+160 1771117353739133 r009 Re(z^3+c),c=-13/64+4/17*I,n=10 1771117357892601 m001 (gamma(3)-Gompertz)/(Ei(1)-Zeta(1/2)) 1771117358279031 a007 Real Root Of 476*x^4+905*x^3+113*x^2-128*x-237 1771117365165348 a001 832040/3571*18^(40/57) 1771117365468890 r005 Re(z^2+c),c=-3/118+37/58*I,n=38 1771117366637678 a001 1/3571*(1/2*5^(1/2)+1/2)^13*3^(3/17) 1771117370868602 a007 Real Root Of -434*x^4-836*x^3-63*x^2+496*x+702 1771117371137310 a001 4/55*956722026041^(7/10) 1771117379264819 m002 2/Log[Pi]+(E^Pi*Tanh[Pi])/Pi^6 1771117383776443 m001 (Sarnak+Stephens)/(HardHexagonsEntropy-Robbin) 1771117385345956 r005 Im(z^2+c),c=-17/18+50/207*I,n=8 1771117391630403 a007 Real Root Of 770*x^4-495*x^3+143*x^2-449*x-8 1771117394885445 r009 Im(z^3+c),c=-17/32+4/25*I,n=56 1771117412565090 a007 Real Root Of -45*x^4-819*x^3-438*x^2-856*x+23 1771117415132213 k007 concat of cont frac of 1771117415536465 m001 (exp(1/exp(1))-FeigenbaumKappa)/(Pi+Ei(1)) 1771117420147781 r002 11th iterates of z^2 + 1771117423251665 m001 (BesselK(0,1)*Khinchin+GAMMA(1/4))/Khinchin 1771117425995198 r005 Im(z^2+c),c=-17/18-43/255*I,n=29 1771117426009436 a007 Real Root Of 528*x^4+941*x^3+375*x^2+394*x-446 1771117431836978 m001 (FeigenbaumC-Trott)/(sin(1/5*Pi)+BesselJ(1,1)) 1771117434242642 b008 63*Gamma[Pi^(-1)] 1771117434725837 m001 (Zeta(3)-HardyLittlewoodC5)/(Mills-Thue) 1771117437008989 a001 610/843*7^(23/50) 1771117437365968 r002 9th iterates of z^2 + 1771117441196639 a007 Real Root Of 728*x^4+833*x^3-667*x^2+152*x-174 1771117449672940 a007 Real Root Of 606*x^4+886*x^3-481*x^2-12*x+447 1771117458378654 r002 61th iterates of z^2 + 1771117459724558 r005 Re(z^2+c),c=9/32+13/56*I,n=17 1771117461514914 r005 Re(z^2+c),c=-15/86+10/41*I,n=7 1771117461517341 k007 concat of cont frac of 1771117468375291 m001 Chi(1)*RenyiParking+ln(Pi) 1771117473837366 a007 Real Root Of -731*x^4-328*x^3+999*x^2-826*x+774 1771117475134528 a001 10745088481/21*6557470319842^(10/17) 1771117477172466 r005 Im(z^2+c),c=-47/82+21/62*I,n=50 1771117482297694 r005 Re(z^2+c),c=-17/14+7/223*I,n=42 1771117485749446 r005 Im(z^2+c),c=-5/38+24/37*I,n=6 1771117488947698 a007 Real Root Of 552*x^4+157*x^3-933*x^2+600*x-570 1771117491610401 m002 -2+Pi^6-Sinh[Pi]-Pi^4*Sinh[Pi] 1771117504819168 m001 (Sierpinski-Stephens)/(arctan(1/3)-Backhouse) 1771117511273916 m001 1/BesselJ(1,1)^2/(3^(1/3))*ln(GAMMA(13/24)) 1771117512217286 r002 56th iterates of z^2 + 1771117519111121 k008 concat of cont frac of 1771117521972326 r002 34th iterates of z^2 + 1771117522112111 k008 concat of cont frac of 1771117522435321 r005 Im(z^2+c),c=-27/74+1/36*I,n=19 1771117525539454 r005 Re(z^2+c),c=23/94+13/64*I,n=44 1771117530231961 r005 Re(z^2+c),c=23/94+13/64*I,n=43 1771117530868645 a007 Real Root Of -779*x^4-841*x^3+245*x^2-798*x+811 1771117531722412 k008 concat of cont frac of 1771117534232637 r005 Im(z^2+c),c=-77/86+7/47*I,n=23 1771117536171691 m005 (1/3*Catalan-1/5)/(5/11*Pi-5/6) 1771117536210968 a007 Real Root Of 225*x^4+468*x^3+38*x^2+4*x+274 1771117540063794 a007 Real Root Of 533*x^4-846*x^3+901*x^2-799*x-175 1771117540477420 l006 ln(3881/4633) 1771117547129724 m001 Trott2nd/(MertensB3+Riemann1stZero) 1771117547387566 m001 (sin(1)+GAMMA(11/12))/(-MertensB1+MertensB3) 1771117547937636 m001 (-MasserGramain+Totient)/(Si(Pi)+Zeta(1/2)) 1771117553668411 m001 1/ln(Paris)*DuboisRaymond^2*Trott 1771117564154252 r005 Re(z^2+c),c=-21/110+7/39*I,n=12 1771117565570212 a003 cos(Pi*31/78)-cos(Pi*48/119) 1771117567859691 r005 Im(z^2+c),c=-89/70+1/42*I,n=35 1771117572738317 a007 Real Root Of 326*x^4+566*x^3-239*x^2-81*x+543 1771117583959312 a007 Real Root Of 500*x^4+501*x^3-658*x^2-2*x-76 1771117587066917 a007 Real Root Of -665*x^4-605*x^3+556*x^2-921*x-193 1771117587611020 m001 ZetaP(3)^(LandauRamanujan2nd*Niven) 1771117592318975 r002 35th iterates of z^2 + 1771117596572017 m001 exp(MinimumGamma)^2/MadelungNaCl^2*Niven^2 1771117596691134 p003 LerchPhi(1/25,4,301/195) 1771117602901109 a003 cos(Pi*22/107)+sin(Pi*37/87) 1771117612125712 k008 concat of cont frac of 1771117619360095 r005 Im(z^2+c),c=-61/74+9/50*I,n=4 1771117620477923 m001 Pi^(1/2)/((Pi^(1/2))^HeathBrownMoroz) 1771117622431012 k007 concat of cont frac of 1771117627865744 a003 cos(Pi*23/107)+sin(Pi*47/103) 1771117630781132 m001 HeathBrownMoroz*(Riemann1stZero-ln(2)) 1771117632488240 m001 (Si(Pi)+Zeta(1/2))/(MertensB2+Salem) 1771117636582725 r009 Im(z^3+c),c=-2/11+1/63*I,n=3 1771117638283992 r002 16th iterates of z^2 + 1771117641648903 a007 Real Root Of -650*x^4-889*x^3+983*x^2+884*x-61 1771117645114612 a007 Real Root Of -515*x^4-554*x^3+366*x^2-299*x+312 1771117653520224 r005 Im(z^2+c),c=-6/11+19/59*I,n=61 1771117653700871 a007 Real Root Of -443*x^4-447*x^3+788*x^2+104*x-412 1771117654061139 m005 (1/2*2^(1/2)+1/8)/(-37/264+1/24*5^(1/2)) 1771117654590493 r005 Im(z^2+c),c=-19/18+41/203*I,n=38 1771117657562473 r005 Im(z^2+c),c=-4/3+3/233*I,n=22 1771117665877416 m001 (Si(Pi)+gamma(3))/(-GAMMA(11/12)+ZetaQ(3)) 1771117665974491 a008 Real Root of (2+2*x-2*x^2+6*x^3+2*x^4-3*x^5) 1771117669116011 a007 Real Root Of -532*x^4-675*x^3+243*x^2-269*x+246 1771117673806942 m001 KomornikLoreti-Paris^Grothendieck 1771117680346405 m001 (Zeta(5)+Rabbit)/(3^(1/2)-exp(1)) 1771117682282442 s002 sum(A269697[n]/(pi^n),n=1..infinity) 1771117686639289 a007 Real Root Of -111*x^4-291*x^3-793*x^2-629*x+849 1771117690597712 m005 (1/2*exp(1)+11/12)/(6*Pi-6) 1771117691819655 m001 (-ln(Pi)+Zeta(1/2))/(5^(1/2)-BesselJ(0,1)) 1771117694082441 a007 Real Root Of -616*x^4-957*x^3+647*x^2+179*x-968 1771117698801015 a007 Real Root Of 809*x^4+863*x^3-798*x^2+788*x+733 1771117702965238 v002 sum(1/(2^n*(6*n^2+24*n+8)),n=1..infinity) 1771117704220916 a007 Real Root Of -277*x^4+254*x^3+729*x^2-712*x+589 1771117708482845 r005 Im(z^2+c),c=-89/82+9/43*I,n=47 1771117711251553 k006 concat of cont frac of 1771117717061771 k006 concat of cont frac of 1771117717171771 s003 concatenated sequence A214530 1771117719195796 m005 (1/2*gamma+3)/(3/11*Pi+1) 1771117721828347 a003 cos(Pi*23/94)/cos(Pi*40/109) 1771117723787348 m001 (Pi-ln(2)/ln(10))*(GAMMA(3/4)-BesselK(1,1)) 1771117725947398 a007 Real Root Of -775*x^4-472*x^3+960*x^2-886*x+423 1771117731831711 k008 concat of cont frac of 1771117733926365 a001 18/2971215073*39088169^(10/17) 1771117733926365 a001 9/182717648081*139583862445^(10/17) 1771117735665436 a001 18/24157817*10946^(10/17) 1771117739673362 a007 Real Root Of 617*x^4+817*x^3-221*x^2+363*x-196 1771117739859663 r005 Re(z^2+c),c=-115/78+9/64*I,n=5 1771117771017711 k006 concat of cont frac of 1771117771085396 r005 Im(z^2+c),c=-19/36+1/32*I,n=42 1771117776365945 a007 Real Root Of -577*x^4-507*x^3+678*x^2-642*x-403 1771117779782809 m001 LandauRamanujan+GAMMA(17/24)^Trott2nd 1771117780340711 l006 ln(155/911) 1771117781500453 r002 7th iterates of z^2 + 1771117792903841 r009 Re(z^3+c),c=-19/32+12/23*I,n=54 1771117796545243 a007 Real Root Of -159*x^4+524*x^3+288*x^2-738*x-943 1771117799778282 a007 Real Root Of 311*x^4-99*x^3-855*x^2+803*x+494 1771117804844185 r002 3th iterates of z^2 + 1771117807511140 m005 (1/2*5^(1/2)-7/8)/(5/12*Zeta(3)-4/11) 1771117814275923 m005 (1/2*exp(1)+3/4)/(7/9*2^(1/2)+1/11) 1771117816703678 g007 Psi(2,7/9)+Psi(2,1/3)-Psi(2,3/5)-Psi(2,2/5) 1771117821221161 k007 concat of cont frac of 1771117822850935 m001 PrimesInBinary*MertensB1^2*exp(Catalan)^2 1771117823897049 a007 Real Root Of 580*x^4+586*x^3-189*x^2+928*x-215 1771117827230241 m001 (2*Pi/GAMMA(5/6))^(exp(-1/2*Pi)/GolombDickman) 1771117827230241 m001 GAMMA(1/6)^(exp(-1/2*Pi)/GolombDickman) 1771117828727666 a007 Real Root Of 289*x^4+461*x^3+215*x^2+341*x-353 1771117830328471 m001 sin(Pi/5)/exp(DuboisRaymond)/sqrt(1+sqrt(3))^2 1771117835626966 l006 ln(7313/8730) 1771117838643581 m002 -3+Pi+Cosh[Pi]+6*Tanh[Pi] 1771117855336368 q001 7003/3954 1771117859546046 a007 Real Root Of 608*x^4+602*x^3-442*x^2+561*x-258 1771117867502522 m001 CopelandErdos^GAMMA(17/24)/QuadraticClass 1771117870723198 r005 Re(z^2+c),c=-3/58+29/54*I,n=48 1771117877307304 m001 (Zeta(1,2)+Bloch)/(FeigenbaumD-ZetaQ(2)) 1771117883253995 r005 Im(z^2+c),c=17/38+11/24*I,n=4 1771117887731456 a001 21/4*29^(13/36) 1771117887875547 b008 (-2+Pi)*Log[2+E] 1771117889320108 r002 62th iterates of z^2 + 1771117892798083 a003 -cos(3/7*Pi)-2^(1/2)-cos(7/30*Pi)+cos(7/24*Pi) 1771117898285889 a007 Real Root Of -386*x^4-595*x^3-310*x^2-708*x+211 1771117913970750 a001 196418/521*322^(2/3) 1771117914221192 k009 concat of cont frac of 1771117921818882 a007 Real Root Of -542*x^4-480*x^3+996*x^2+656*x+704 1771117923235840 a008 Real Root of (-4+2*x-x^2+5*x^3-6*x^4+2*x^5) 1771117925843323 q001 6353/3587 1771117928792787 r009 Re(z^3+c),c=-29/94+31/53*I,n=33 1771117930271236 m004 -75/Pi+Cos[Sqrt[5]*Pi]+4*Sec[Sqrt[5]*Pi] 1771117942514369 a007 Real Root Of -926*x^4-847*x^3+717*x^2-918*x+531 1771117942920590 a001 13/2207*4^(27/34) 1771117948008492 m001 (5^(1/2)-exp(Pi))/(-BesselK(1,1)+Grothendieck) 1771117954374895 m005 (4/15+1/6*5^(1/2))/(3/11*5^(1/2)+3) 1771117957157855 r005 Re(z^2+c),c=-15/98+12/31*I,n=6 1771117958070855 m009 (5*Psi(1,2/3)+3)/(48*Catalan+6*Pi^2+1/4) 1771117964440537 a007 Real Root Of 2*x^4+359*x^3+842*x^2-700*x+180 1771117974375173 a007 Real Root Of -493*x^4-839*x^3+222*x^2+762*x+843 1771117976707024 m009 (4/5*Psi(1,1/3)-1/6)/(2*Catalan+1/4*Pi^2+1/6) 1771117978928196 r002 11th iterates of z^2 + 1771117988062609 r005 Re(z^2+c),c=-9/86+23/37*I,n=9 1771117988303094 r009 Re(z^3+c),c=-23/94+10/27*I,n=5 1771117988388132 a007 Real Root Of 567*x^4+179*x^3-384*x^2-607*x+118 1771117992831024 a007 Real Root Of 157*x^4-296*x^3-621*x^2+361*x-602 1771117993170026 a007 Real Root Of 438*x^4+95*x^3-513*x^2+988*x-423 1771117994588618 a003 cos(Pi*11/93)+cos(Pi*15/82) 1771117996478945 r002 51th iterates of z^2 + 1771117999284341 m001 1/exp(Zeta(1,2))^2/GAMMA(1/6)^2*sin(1) 1771118004864447 r005 Re(z^2+c),c=37/110+29/50*I,n=42 1771118012422360 q001 5703/3220 1771118019313258 m001 Pi/(exp(Pi)+Ei(1,1))*ln(2+3^(1/2)) 1771118019418163 k006 concat of cont frac of 1771118023014007 m001 (1-GAMMA(3/4))/(gamma(2)+GlaisherKinkelin) 1771118024444143 r002 24th iterates of z^2 + 1771118028089100 r005 Re(z^2+c),c=-9/86+24/55*I,n=39 1771118034000578 r005 Re(z^2+c),c=-7/10+136/165*I,n=3 1771118042715237 a001 1346269/322*123^(3/10) 1771118042960670 a007 Real Root Of 617*x^4+315*x^3-780*x^2+741*x-562 1771118043560354 r009 Re(z^3+c),c=-7/22+25/41*I,n=43 1771118044840020 s002 sum(A205093[n]/(n!^3),n=1..infinity) 1771118062704852 m001 (HardyLittlewoodC3+Sarnak)/(ln(2)+Zeta(1/2)) 1771118074328018 r009 Im(z^3+c),c=-39/44+10/17*I,n=2 1771118074446585 m008 (3/5*Pi^6-2/5)/(1/3*Pi^6+5) 1771118076158461 m003 -2+26*ProductLog[1/2+Sqrt[5]/2] 1771118077870986 m001 (2^(1/3))^2*exp(TwinPrimes)/log(2+sqrt(3))^2 1771118086592705 r005 Im(z^2+c),c=-43/82+28/53*I,n=35 1771118087079256 a007 Real Root Of 594*x^4+476*x^3-671*x^2+522*x-171 1771118087820855 m001 MadelungNaCl/Artin*ln(cos(1))^2 1771118089917337 r005 Im(z^2+c),c=-81/118+12/55*I,n=50 1771118091112424 a008 Real Root of x^3-x^2-256*x-708 1771118091501093 p004 log(37409/31337) 1771118095324364 m005 (1/2*5^(1/2)+4/5)/(6/11*Catalan+7/12) 1771118097802443 m005 (1/3*Zeta(3)-1/7)/(23/35+5/14*5^(1/2)) 1771118111111110 k008 concat of cont frac of 1771118111383111 k008 concat of cont frac of 1771118111676755 m005 (1/2*5^(1/2)-7/10)/(4/5*5^(1/2)+4/7) 1771118113783730 a007 Real Root Of 594*x^4+487*x^3-537*x^2+438*x-679 1771118114118101 k007 concat of cont frac of 1771118114635592 a007 Real Root Of 322*x^4+39*x^3-163*x^2+815*x-997 1771118118641074 m003 -1/2+(5*Sqrt[5])/8+Cosh[1/2+Sqrt[5]/2]/3 1771118121275849 q001 5053/2853 1771118123171376 k008 concat of cont frac of 1771118128570906 m001 (GAMMA(11/12)+Tribonacci)/(Shi(1)+gamma) 1771118129217345 a007 Real Root Of 587*x^4+412*x^3+41*x^2-972*x+168 1771118130372457 m005 (23/30+1/6*5^(1/2))/(3/4*gamma+6) 1771118131211163 k008 concat of cont frac of 1771118131642261 k008 concat of cont frac of 1771118139201514 k008 concat of cont frac of 1771118139882407 a007 Real Root Of 317*x^4-20*x^3-462*x^2-738*x+145 1771118141070359 s002 sum(A278624[n]/((10^n+1)/n),n=1..infinity) 1771118141182412 k006 concat of cont frac of 1771118141414210 a001 1/17*1346269^(21/37) 1771118142296289 s002 sum(A278624[n]/((10^n-1)/n),n=1..infinity) 1771118145125966 a007 Real Root Of 567*x^4+782*x^3-147*x^2+959*x+925 1771118145585079 r009 Im(z^3+c),c=-67/114+1/27*I,n=3 1771118151131314 k007 concat of cont frac of 1771118151911133 k007 concat of cont frac of 1771118153046341 m008 (3/5*Pi^4+5/6)/(1/3*Pi^4+1) 1771118161821545 s002 sum(A082596[n]/((2^n-1)/n),n=1..infinity) 1771118169390181 l006 ln(3432/4097) 1771118171214116 k006 concat of cont frac of 1771118171861422 k007 concat of cont frac of 1771118172000029 m001 (Gompertz-Riemann1stZero)^Ei(1,1) 1771118177908049 a001 192900153618/377*1836311903^(12/17) 1771118177908049 a001 599074578/377*6557470319842^(12/17) 1771118178232636 a001 317811/1364*18^(40/57) 1771118179707963 a001 1/1364*(1/2*5^(1/2)+1/2)^11*3^(3/17) 1771118181808830 a007 Real Root Of -703*x^4-470*x^3+94*x^2+736*x-130 1771118184100292 a007 Real Root Of 58*x^4+997*x^3-575*x^2-661*x+609 1771118196790221 b008 10+(27*Pi)/11 1771118205488738 r005 Im(z^2+c),c=13/36+3/28*I,n=50 1771118207504042 a007 Real Root Of -716*x^4-738*x^3+962*x^2+234*x+342 1771118211211611 k008 concat of cont frac of 1771118212532140 k008 concat of cont frac of 1771118220126005 r005 Re(z^2+c),c=23/94+13/64*I,n=39 1771118221132415 k008 concat of cont frac of 1771118222226878 a003 cos(Pi*13/62)+sin(Pi*38/87) 1771118226251211 k006 concat of cont frac of 1771118228105180 p004 log(28817/4903) 1771118231211421 k006 concat of cont frac of 1771118233810475 a001 5702887/521*123^(1/10) 1771118235334978 m001 (Pi-cos(1))/(Porter+ZetaQ(4)) 1771118235664131 m005 (1/2*2^(1/2)-5/6)/(1/12*Catalan+7/11) 1771118237304491 a007 Real Root Of -691*x^4+831*x^3+459*x^2+670*x-137 1771118239004238 m001 (OrthogonalArrays+TwinPrimes)/(1-Zeta(1,-1)) 1771118239865790 m003 E^(1+Sqrt[5])/2+5*Sin[1/2+Sqrt[5]/2] 1771118241432111 k009 concat of cont frac of 1771118243368064 r005 Im(z^2+c),c=-19/26+14/67*I,n=60 1771118244824563 r009 Re(z^3+c),c=-31/86+23/42*I,n=10 1771118246920882 a003 sin(Pi*4/73)/cos(Pi*9/110) 1771118249055191 a007 Real Root Of -127*x^4+39*x^3+25*x^2-446*x+598 1771118251045135 a007 Real Root Of -603*x^4-929*x^3+59*x^2-87*x+433 1771118251136555 a007 Real Root Of 257*x^4+204*x^3-420*x^2+284*x+425 1771118251930736 a007 Real Root Of 891*x^4+948*x^3-932*x^2+293*x-58 1771118253613969 r002 32th iterates of z^2 + 1771118262268704 q001 4403/2486 1771118265380875 r005 Im(z^2+c),c=-27/58+15/49*I,n=52 1771118267069480 m009 (5/6*Psi(1,2/3)+1/2)/(1/4*Psi(1,1/3)-4/5) 1771118267949234 r005 Re(z^2+c),c=29/118+10/49*I,n=23 1771118271131732 k008 concat of cont frac of 1771118274103605 l003 BesselY(2,107/112) 1771118275927823 r005 Re(z^2+c),c=1/106+38/63*I,n=44 1771118292915023 m001 (-sin(Pi/5)+4)/(2^(1/3)+2/3) 1771118303130342 r005 Re(z^2+c),c=-1/74+28/57*I,n=3 1771118307181226 a007 Real Root Of -477*x^4-780*x^3+94*x^2-25*x+21 1771118309204307 a007 Real Root Of -939*x^4-958*x^3+584*x^2-986*x+339 1771118310209183 r009 Re(z^3+c),c=-4/9+25/47*I,n=23 1771118311121431 k008 concat of cont frac of 1771118311127411 k006 concat of cont frac of 1771118312132313 k007 concat of cont frac of 1771118314172421 k008 concat of cont frac of 1771118314260230 r009 Re(z^3+c),c=-21/74+6/11*I,n=9 1771118321207811 r005 Im(z^2+c),c=-11/15+5/53*I,n=13 1771118322244108 k006 concat of cont frac of 1771118323482093 a007 Real Root Of 390*x^4-100*x^3-669*x^2+915*x-674 1771118324154878 r005 Im(z^2+c),c=-1+40/213*I,n=43 1771118329134540 s002 sum(A109724[n]/(n^2*pi^n+1),n=1..infinity) 1771118340717696 m001 MertensB3^MertensB1+ln(2) 1771118348677499 m001 (ErdosBorwein+ZetaQ(2))/Zeta(1,2) 1771118356402161 a007 Real Root Of -17*x^4-279*x^3+367*x^2-459*x-525 1771118367889465 m001 (BesselI(0,1)+CareFree)/(-Lehmer+Niven) 1771118374488888 a007 Real Root Of 213*x^4-246*x^3-374*x^2+837*x-807 1771118375672395 m001 1/arctan(1/2)*Zeta(5)/ln(log(1+sqrt(2))) 1771118379039946 m001 BesselI(1,2)+Bloch^BesselI(0,2) 1771118385782890 a007 Real Root Of 736*x^4-408*x^3-966*x^2-701*x+156 1771118386313964 m001 Artin-exp(sqrt(2))*GAMMA(5/24) 1771118391566098 m005 (-1/6+1/6*5^(1/2))/(4/7*gamma+5/6) 1771118394510053 m001 exp(Bloch)^2/FransenRobinson*TreeGrowth2nd^2 1771118395395082 a007 Real Root Of 273*x^4+847*x^3+847*x^2-107*x-827 1771118399994571 r009 Im(z^3+c),c=-47/86+4/63*I,n=5 1771118402005286 a007 Real Root Of -446*x^4-604*x^3-49*x^2-657*x+23 1771118407031445 a007 Real Root Of 465*x^4+379*x^3-804*x^2-550*x-922 1771118411351622 k006 concat of cont frac of 1771118412396616 m001 (Si(Pi)+cos(1))/(StolarskyHarborth+ZetaQ(2)) 1771118422801350 a003 cos(Pi*5/101)+cos(Pi*22/103) 1771118423848840 m001 Zeta(1,2)*(OneNinth+StolarskyHarborth) 1771118425580788 r005 Im(z^2+c),c=-101/110+10/63*I,n=26 1771118431223831 k008 concat of cont frac of 1771118435214475 m001 (exp(1)+ln(3))/(-3^(1/3)+FibonacciFactorial) 1771118447979073 r005 Im(z^2+c),c=-89/98+8/53*I,n=3 1771118448632543 m001 GAMMA(5/12)^2/exp(Khintchine)^2*sin(1) 1771118451625512 r005 Re(z^2+c),c=51/122+25/31*I,n=3 1771118452100047 q001 3753/2119 1771118466828806 l006 ln(1599/9398) 1771118477243386 r004 Re(z^2+c),c=-3/22+4/11*I,z(0)=I,n=25 1771118479410390 r005 Im(z^2+c),c=-11/102+33/50*I,n=33 1771118486685677 a007 Real Root Of 39*x^4+679*x^3-178*x^2+532*x+55 1771118489626908 r005 Im(z^2+c),c=-101/106+6/35*I,n=58 1771118492109851 a001 17*47^(14/23) 1771118500237095 a007 Real Root Of -465*x^4-940*x^3-528*x^2-623*x-94 1771118501065061 r005 Im(z^2+c),c=-87/64+1/24*I,n=30 1771118511608312 h005 exp(sin(Pi*7/39)/sin(Pi*5/13)) 1771118512131228 k007 concat of cont frac of 1771118513590066 m001 (sin(1)+Conway)/(HardyLittlewoodC3+Stephens) 1771118526899630 m005 (23/66+1/6*5^(1/2))/(-67/132+9/22*5^(1/2)) 1771118527280843 m004 (50*Cot[Sqrt[5]*Pi])/Pi+Sin[Sqrt[5]*Pi]/2 1771118532422214 k008 concat of cont frac of 1771118533749179 m001 (Paris-QuadraticClass)/(Lehmer-MertensB2) 1771118540516905 l006 ln(1444/8487) 1771118544105796 m001 FeigenbaumB/(ReciprocalFibonacci+Totient) 1771118544157831 m006 (1/6*exp(2*Pi)-2/3)/(5*Pi^2+2/3) 1771118549875030 l006 ln(6415/7658) 1771118550327724 m005 (1/2*5^(1/2)+6/11)/(6*3^(1/2)-1) 1771118552359797 m001 (Niven+Thue)/(Zeta(1,-1)-GlaisherKinkelin) 1771118554592132 r009 Im(z^3+c),c=-9/44+24/25*I,n=18 1771118558929946 a007 Real Root Of 80*x^4-518*x^3-780*x^2+903*x+381 1771118562187136 h001 (8/9*exp(1)+3/4)/(1/2*exp(1)+3/7) 1771118563750726 r002 28th iterates of z^2 + 1771118567248758 s002 sum(A272769[n]/(n^2*2^n-1),n=1..infinity) 1771118574011883 q001 6856/3871 1771118574784150 a007 Real Root Of -349*x^4-371*x^3-108*x^2-993*x-47 1771118575657342 m001 (1-cos(1/12*Pi))/(RenyiParking+Salem) 1771118580031412 m005 (1/3*Catalan+1/11)/(5/7*3^(1/2)+1) 1771118596487205 m001 (2*Pi/GAMMA(5/6))^cos(1)*polylog(4,1/2)^cos(1) 1771118596487205 m001 GAMMA(1/6)^cos(1)*polylog(4,1/2)^cos(1) 1771118600961462 m001 PrimesInBinary/MadelungNaCl/Totient 1771118608834016 r005 Im(z^2+c),c=-7/17+23/40*I,n=64 1771118609696727 r005 Re(z^2+c),c=-5/86+17/32*I,n=32 1771118613888935 m001 1/ln(Zeta(3))/Robbin/arctan(1/2) 1771118615021000 m001 1/Sierpinski/Champernowne*exp(sqrt(3)) 1771118615179379 m001 (Chi(1)-Pi^(1/2))/(-Conway+FeigenbaumC) 1771118621496342 r009 Im(z^3+c),c=-13/102+53/59*I,n=22 1771118623634764 m001 Pi*(Psi(2,1/3)+polylog(4,1/2))-2*Pi/GAMMA(5/6) 1771118631926726 l006 ln(1289/7576) 1771118644712719 a007 Real Root Of -902*x^4-948*x^3+943*x^2-683*x-559 1771118654964455 b008 BesselI[1,1/9]/Pi 1771118656692966 r005 Im(z^2+c),c=-19/50+17/59*I,n=26 1771118657419440 a007 Real Root Of 236*x^4+111*x^3-648*x^2-410*x-399 1771118679016375 r005 Re(z^2+c),c=-17/18+25/131*I,n=42 1771118681833180 a003 sin(Pi*30/107)+sin(Pi*46/93) 1771118687019616 a007 Real Root Of 546*x^4-692*x^3-55*x^2-719*x-130 1771118687354866 m001 AlladiGrinstead*ZetaQ(4)-Pi^(1/2) 1771118690912796 r009 Re(z^3+c),c=-3/32+36/41*I,n=8 1771118698108424 m005 (1/2*Pi+7/8)/(7/10*Pi-9/11) 1771118708402620 r009 Re(z^3+c),c=-7/114+31/46*I,n=14 1771118709467191 r005 Im(z^2+c),c=-73/64+10/43*I,n=16 1771118718068095 m005 (21/20+1/4*5^(1/2))/(-3/8+5/24*5^(1/2)) 1771118721461187 q001 3103/1752 1771118741752579 r005 Im(z^2+c),c=-83/102+5/46*I,n=61 1771118742441040 r005 Im(z^2+c),c=-79/90+7/50*I,n=26 1771118748325111 l006 ln(1134/6665) 1771118749470208 a007 Real Root Of -180*x^4+548*x^3+830*x^2-930*x+565 1771118752582713 a001 1597/2207*7^(23/50) 1771118760359774 r002 46th iterates of z^2 + 1771118770042568 m001 (ln(2)+GAMMA(23/24))/(BesselK(0,1)-ln(gamma)) 1771118771787315 a007 Real Root Of -291*x^4-27*x^3+920*x^2+24*x-130 1771118775399032 a007 Real Root Of -504*x^4-683*x^3-81*x^2-595*x+365 1771118776982755 m005 (1/3*2^(1/2)-1/3)/(1/4*exp(1)+1/10) 1771118779284971 l006 ln(1511/1538) 1771118779930811 m001 1/GAMMA(19/24)^2*exp(Bloch)^2*GAMMA(7/24)^2 1771118781307197 m001 (Bloch+CareFree)/(BesselI(0,1)-BesselK(1,1)) 1771118781986519 m001 exp(Riemann1stZero)^2/FeigenbaumB^2/cosh(1) 1771118787236094 a007 Real Root Of -615*x^4-664*x^3+728*x^2-101*x-100 1771118791371625 r002 11th iterates of z^2 + 1771118794627682 m001 1/PrimesInBinary/ln(Backhouse)^2*Zeta(5) 1771118798370300 a007 Real Root Of -38*x^4-696*x^3-441*x^2-575*x+509 1771118800936731 r005 Re(z^2+c),c=-17/14+5/53*I,n=64 1771118803029883 m001 GAMMA(7/24)/exp(GAMMA(23/24))^2/sqrt(5) 1771118813720901 m005 (1/2*2^(1/2)-5/8)/(1/6*5^(1/2)+1/11) 1771118814942423 m001 StronglyCareFree/(BesselK(0,1)-Thue) 1771118816895970 r005 Re(z^2+c),c=-17/14+3/229*I,n=32 1771118820016111 a007 Real Root Of -613*x^4+635*x^3+420*x^2+802*x+133 1771118822744558 m001 (2^(1/3)-ln(Pi))/(-Zeta(1,2)+2*Pi/GAMMA(5/6)) 1771118825346625 r009 Re(z^3+c),c=-13/64+4/17*I,n=13 1771118830123932 a002 19^(12/11)-19^(2/3) 1771118832572792 r009 Re(z^3+c),c=-115/122+3/53*I,n=2 1771118833178779 m001 (sin(1)+GAMMA(2/3)*ln(gamma))/ln(gamma) 1771118833178779 m001 (sin(1)+GAMMA(2/3)*log(gamma))/log(gamma) 1771118837809410 m001 1/Tribonacci*Magata/exp(GAMMA(19/24))^2 1771118847774472 r009 Re(z^3+c),c=-10/31+33/53*I,n=47 1771118853402827 m001 (OneNinth+ZetaP(2))/(Backhouse+Niven) 1771118853743392 a007 Real Root Of -218*x^4-305*x^3+267*x^2+258*x+70 1771118856758470 m001 (Ei(1)-cos(1/12*Pi))/(Magata+Tribonacci) 1771118857348639 r009 Re(z^3+c),c=-19/32+12/23*I,n=60 1771118857493926 m001 (Conway+Tribonacci)/(gamma(3)+Pi^(1/2)) 1771118859081794 m001 (Zeta(5)+cos(1/12*Pi))/(gamma(3)+GAMMA(5/6)) 1771118862061940 r005 Re(z^2+c),c=37/126+29/59*I,n=14 1771118862123989 a007 Real Root Of -376*x^4-164*x^3+942*x^2-23*x-207 1771118865692505 a007 Real Root Of -428*x^4-633*x^3+515*x^2+97*x-749 1771118870710036 r009 Re(z^3+c),c=-13/64+4/17*I,n=16 1771118871435512 a007 Real Root Of -630*x^4-642*x^3+240*x^2-793*x+475 1771118871583578 r009 Re(z^3+c),c=-13/64+4/17*I,n=17 1771118871591952 r009 Re(z^3+c),c=-13/64+4/17*I,n=19 1771118871598821 r009 Re(z^3+c),c=-13/64+4/17*I,n=20 1771118871602129 r009 Re(z^3+c),c=-13/64+4/17*I,n=23 1771118871602231 r009 Re(z^3+c),c=-13/64+4/17*I,n=26 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=27 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=29 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=30 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=33 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=36 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=37 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=39 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=40 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=43 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=46 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=47 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=49 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=50 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=53 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=56 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=57 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=59 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=60 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=63 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=64 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=62 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=61 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=58 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=55 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=54 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=52 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=51 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=48 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=45 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=44 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=42 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=41 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=38 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=35 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=34 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=32 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=31 1771118871602233 r009 Re(z^3+c),c=-13/64+4/17*I,n=28 1771118871602238 r009 Re(z^3+c),c=-13/64+4/17*I,n=25 1771118871602248 r009 Re(z^3+c),c=-13/64+4/17*I,n=24 1771118871602261 r009 Re(z^3+c),c=-13/64+4/17*I,n=22 1771118871603569 r009 Re(z^3+c),c=-13/64+4/17*I,n=21 1771118871664582 a007 Real Root Of -652*x^4-752*x^3+625*x^2-161*x-8 1771118871671549 r009 Re(z^3+c),c=-13/64+4/17*I,n=18 1771118873877812 r009 Re(z^3+c),c=-13/64+4/17*I,n=15 1771118878468253 r009 Re(z^3+c),c=-13/64+4/17*I,n=14 1771118879353188 m001 (Chi(1)+sin(1/12*Pi))/(2*Pi/GAMMA(5/6)+Kac) 1771118881634913 r009 Re(z^3+c),c=-17/60+19/37*I,n=17 1771118883972722 r009 Re(z^3+c),c=-13/64+4/17*I,n=12 1771118889087134 r005 Re(z^2+c),c=-69/110+14/33*I,n=47 1771118896032045 a007 Real Root Of -406*x^4-745*x^3+169*x^2+292*x-157 1771118900013245 m005 (1/2*Catalan+7/8)/(3/7*gamma-1) 1771118901580982 l006 ln(979/5754) 1771118902698171 r005 Re(z^2+c),c=-21/110+27/46*I,n=15 1771118903410902 q001 5556/3137 1771118903760864 r005 Im(z^2+c),c=-101/106+6/35*I,n=49 1771118909405173 m001 Si(Pi)^ArtinRank2*GAMMA(3/4)^ArtinRank2 1771118910439008 b008 44/3+Log[21] 1771118913800488 m005 (1/2*Catalan-2/7)/(-7/30+1/10*5^(1/2)) 1771118915121173 k007 concat of cont frac of 1771118921111163 k007 concat of cont frac of 1771118922394832 m001 Riemann2ndZero^(2*Zeta(1/2)*Pi/GAMMA(5/6)) 1771118924306989 a008 Real Root of x^4-x^3+38*x^2-173*x-441 1771118926524789 m001 (sin(1/5*Pi)+arctan(1/3))/(LaplaceLimit-Salem) 1771118934699567 m001 (exp(1/exp(1))+FeigenbaumC)/(Landau+Mills) 1771118943806409 a007 Real Root Of 380*x^4+304*x^3-488*x^2+103*x-337 1771118944522596 a001 4181/5778*7^(23/50) 1771118947539732 m001 (Pi+Kac)/(Kolakoski+MertensB3) 1771118951905924 m001 1/exp(Magata)^2*DuboisRaymond^2/GAMMA(1/24) 1771118960449814 r005 Re(z^2+c),c=-47/34+8/93*I,n=14 1771118961060018 b008 Sqrt[2*SinIntegral[(13*Pi)/2]] 1771118965349402 r005 Im(z^2+c),c=-19/30+35/86*I,n=6 1771118967524521 m001 (GaussAGM-OrthogonalArrays)/(Pi-gamma(1)) 1771118970186607 a007 Real Root Of -754*x^4-880*x^3+958*x^2-17*x-505 1771118971717453 a007 Real Root Of 361*x^4+39*x^3-810*x^2-51*x-885 1771118972526254 a001 10946/15127*7^(23/50) 1771118976611932 a001 28657/39603*7^(23/50) 1771118977208025 a001 75025/103682*7^(23/50) 1771118977294994 a001 196418/271443*7^(23/50) 1771118977307682 a001 514229/710647*7^(23/50) 1771118977309533 a001 1346269/1860498*7^(23/50) 1771118977309970 a001 2178309/3010349*7^(23/50) 1771118977310678 a001 832040/1149851*7^(23/50) 1771118977315524 a001 317811/439204*7^(23/50) 1771118977348743 a001 121393/167761*7^(23/50) 1771118977576430 a001 46368/64079*7^(23/50) 1771118978160730 m001 1/exp(OneNinth)^2*ErdosBorwein^2/sinh(1) 1771118979137021 a001 17711/24476*7^(23/50) 1771118987630292 l006 ln(2983/3561) 1771118989833466 a001 6765/9349*7^(23/50) 1771118997759066 r002 64th iterates of z^2 + 1771119006801563 m001 (-MinimumGamma+Rabbit)/(Chi(1)+Magata) 1771119021477149 m001 (ErdosBorwein-ln(2)/ln(10))/(Rabbit+Trott2nd) 1771119027023995 a008 Real Root of x^4-x^3-10*x^2+4*x+20 1771119029374398 m001 (2^(1/3))^2/OneNinth*ln(sqrt(2))^2 1771119037168392 a007 Real Root Of -163*x^4-76*x^3+89*x^2-828*x-564 1771119037830888 r009 Im(z^3+c),c=-5/66+37/41*I,n=12 1771119042122559 a007 Real Root Of 197*x^4-118*x^3-665*x^2+96*x-338 1771119049838310 s002 sum(A066652[n]/(pi^n+1),n=1..infinity) 1771119050699680 m001 (arctan(1/3)+Trott)/(2^(1/2)+arctan(1/2)) 1771119053581927 m005 (1/2*5^(1/2)-1/12)/(1/7*gamma-2/3) 1771119055030790 a007 Real Root Of -765*x^4-649*x^3+700*x^2-428*x+968 1771119061275542 m001 1/Zeta(9)*GAMMA(5/6)^2*exp(log(2+sqrt(3)))^2 1771119063148002 a001 2584/3571*7^(23/50) 1771119070890786 a003 cos(Pi*2/87)+cos(Pi*19/87) 1771119079892585 r005 Im(z^2+c),c=-91/118+7/48*I,n=3 1771119082429518 m005 (3/5*Pi+4/5)/(Catalan+3/5) 1771119089868663 a008 Real Root of x^3-x^2-272*x+1052 1771119109277392 r005 Im(z^2+c),c=-81/110+13/54*I,n=33 1771119111212116 k008 concat of cont frac of 1771119111218199 k008 concat of cont frac of 1771119111513221 k008 concat of cont frac of 1771119112363511 k008 concat of cont frac of 1771119112493757 l006 ln(824/4843) 1771119112541121 k006 concat of cont frac of 1771119112923221 k009 concat of cont frac of 1771119113411154 k008 concat of cont frac of 1771119113418321 k007 concat of cont frac of 1771119114459821 a003 cos(Pi*26/119)+sin(Pi*54/113) 1771119116563495 m001 (Grothendieck+TwinPrimes)/(Shi(1)+arctan(1/3)) 1771119118382517 k006 concat of cont frac of 1771119123111312 k008 concat of cont frac of 1771119124260294 a007 Real Root Of -5*x^4+410*x^3+363*x^2-160*x+905 1771119126128611 r002 4th iterates of z^2 + 1771119130111152 k009 concat of cont frac of 1771119131151611 k009 concat of cont frac of 1771119133574007 q001 2453/1385 1771119134023148 m002 E^(2*Pi)+4*Pi^5+Sinh[Pi] 1771119137225595 r005 Re(z^2+c),c=-57/106+23/48*I,n=56 1771119137602519 r002 5th iterates of z^2 + 1771119151310215 a007 Real Root Of -808*x^4-789*x^3+951*x^2+83*x+731 1771119154782209 m001 (BesselI(0,1)+Zeta(5))/(-GAMMA(2/3)+ZetaQ(2)) 1771119155684478 r004 Re(z^2+c),c=-1/5+1/8*I,z(0)=exp(7/8*I*Pi),n=14 1771119159800107 a001 18/24157817*14930352^(8/17) 1771119159800109 a001 9/567451585*53316291173^(8/17) 1771119160001037 r005 Im(z^2+c),c=-14/27+1/49*I,n=7 1771119163679820 r005 Im(z^2+c),c=-19/32+19/55*I,n=39 1771119165121421 k008 concat of cont frac of 1771119169334599 a001 18/514229*4181^(8/17) 1771119171868680 a001 9/5473*17711^(56/59) 1771119173221111 k008 concat of cont frac of 1771119182177017 a003 sin(Pi*2/53)/cos(Pi*31/116) 1771119182224213 k008 concat of cont frac of 1771119183218785 m005 (1/2*5^(1/2)+7/12)/(3*Zeta(3)+6) 1771119185367083 m005 (1/2*Pi+3/5)/(5/12*Pi-1/12) 1771119185679203 a001 123/5*1346269^(10/33) 1771119187194896 r005 Im(z^2+c),c=-63/50+3/34*I,n=15 1771119188225277 a007 Real Root Of -734*x^4-631*x^3+889*x^2-196*x+581 1771119194313016 a003 cos(Pi*10/119)+sin(Pi*17/57) 1771119195236327 h001 (1/4*exp(2)+1/3)/(2/7*exp(1)+5/11) 1771119195368917 r002 16th iterates of z^2 + 1771119196502444 m001 GAMMA(2/3)^2/exp(MadelungNaCl)^2/Pi 1771119211231132 k006 concat of cont frac of 1771119211390191 a008 Real Root of (-1+x^3-x^5-x^6+x^7-x^8-x^9) 1771119212224736 a003 cos(Pi*26/93)*cos(Pi*39/95) 1771119212260183 a003 cos(Pi*11/94)+sin(Pi*37/117) 1771119213017431 k007 concat of cont frac of 1771119215096985 a007 Real Root Of -679*x^4-892*x^3+35*x^2-735*x+314 1771119215437032 a003 cos(Pi*1/24)+cos(Pi*14/65) 1771119215511141 k007 concat of cont frac of 1771119217024096 m001 ln(Niven)/Bloch^2*exp(1)^2 1771119217114211 k007 concat of cont frac of 1771119217605654 a007 Real Root Of -183*x^4-526*x^3+42*x^2+857*x-150 1771119218158471 m005 (1/2*5^(1/2)+1/8)/(3/10*gamma-7/8) 1771119218783237 m005 (5*Catalan+1/6)/(4/5*Pi+1/6) 1771119220105084 r009 Re(z^3+c),c=-5/38+31/38*I,n=29 1771119222236288 a005 (1/sin(74/157*Pi))^708 1771119224469794 m001 (sin(1)+cos(1))/(HeathBrownMoroz+ZetaP(4)) 1771119225339509 m001 (Psi(2,1/3)+Totient)/GaussKuzminWirsing 1771119228156254 m005 (1/2*exp(1)-5/12)/(1/9*2^(1/2)+3/8) 1771119236782511 m001 ln(TreeGrowth2nd)^2*FransenRobinson^2*gamma^2 1771119241663319 m001 (Tribonacci-Trott)/(GAMMA(2/3)-arctan(1/3)) 1771119243438773 a007 Real Root Of -757*x^4-518*x^3+995*x^2-805*x+24 1771119244086995 a007 Real Root Of -572*x^4-811*x^3-94*x^2-915*x-203 1771119249706547 m001 (Grothendieck+Tribonacci)/(Catalan+GAMMA(5/6)) 1771119250794876 l006 ln(1493/8775) 1771119251121241 k009 concat of cont frac of 1771119254777034 m001 BesselJ(1,1)/(exp(Pi)+Niven) 1771119257230940 r005 Im(z^2+c),c=-79/86+11/48*I,n=42 1771119267482302 a003 cos(Pi*2/55)+sin(Pi*19/67) 1771119271201266 m001 GAMMA(3/4)*LandauRamanujan+GaussAGM 1771119272636601 r002 16th iterates of z^2 + 1771119281111713 k008 concat of cont frac of 1771119292762611 m001 (Pi+Ei(1))/(sin(1/12*Pi)+Sierpinski) 1771119297825550 a001 (2+2^(1/2))^(470/59) 1771119298554955 a007 Real Root Of 112*x^4-108*x^3-548*x^2+537*x+968 1771119300626104 a007 Real Root Of -564*x^4-551*x^3+536*x^2-231*x+398 1771119309291254 m001 Pi^(1/2)-cos(1/5*Pi)*ZetaQ(4) 1771119311214131 k007 concat of cont frac of 1771119311234649 a001 233/11*1364^(55/59) 1771119312113850 m001 (5^(1/2)*ZetaP(3)-StolarskyHarborth)/ZetaP(3) 1771119315144791 m001 (FeigenbaumC-Mills)/(GAMMA(2/3)+ln(5)) 1771119315574436 a007 Real Root Of 877*x^4+852*x^3-800*x^2+443*x-602 1771119316444032 a005 (1/cos(14/157*Pi))^246 1771119316619274 r002 36th iterates of z^2 + 1771119324181626 q001 6709/3788 1771119332002682 a001 11/3*6765^(5/28) 1771119332625971 m005 (1/5*Pi-1)/(5/6*exp(1)-1/6) 1771119337448912 a001 233*322^(3/4) 1771119340436790 a007 Real Root Of -148*x^4+89*x^3+549*x^2+195*x+574 1771119341517610 a007 Real Root Of -327*x^4-390*x^3+43*x^2-581*x-113 1771119342111611 k006 concat of cont frac of 1771119345354680 a001 4/2889*521^(38/49) 1771119347111313 k008 concat of cont frac of 1771119350743334 a007 Real Root Of 344*x^4+465*x^3+302*x^2-708*x+113 1771119356696002 m009 (1/5*Psi(1,3/4)+3)/(1/5*Psi(1,1/3)-4) 1771119360533651 m001 (ErdosBorwein*Rabbit+Niven)/ErdosBorwein 1771119363105143 m005 (1/2*Zeta(3)+11/12)/(2/11*Pi+2/7) 1771119365180895 r005 Re(z^2+c),c=6/29+25/54*I,n=49 1771119378137437 m001 Conway*GolombDickman-Sierpinski 1771119380779962 m003 1/72+(9*Sqrt[5])/16+Sin[1/2+Sqrt[5]/2]/2 1771119384517754 r005 Im(z^2+c),c=-21/25+9/52*I,n=4 1771119385506866 a007 Real Root Of -491*x^4-339*x^3+308*x^2-975*x+255 1771119386507317 m005 (1/3*gamma+3/4)/(4/9*Catalan+1/8) 1771119421138828 l006 ln(669/3932) 1771119431546378 r005 Im(z^2+c),c=-6/5+17/113*I,n=46 1771119432171113 k007 concat of cont frac of 1771119434040782 q001 4256/2403 1771119434280265 a007 Real Root Of -740*x^4-871*x^3+140*x^2-571*x+992 1771119434694232 a007 Real Root Of -480*x^4-578*x^3+12*x^2-641*x+339 1771119439500194 r005 Im(z^2+c),c=-47/74+19/45*I,n=28 1771119448144640 r009 Re(z^3+c),c=-2/21+53/60*I,n=8 1771119448714910 m008 (4*Pi^5-1)/(3/4*Pi^4-4) 1771119448802049 m001 (-GAMMA(23/24)+Porter)/(exp(Pi)+Pi^(1/2)) 1771119449401204 m001 (Pi-Si(Pi))/gamma(1) 1771119456000617 m005 (4*exp(1)-4/5)/(7/3+3/2*5^(1/2)) 1771119467150527 r009 Re(z^3+c),c=-13/64+4/17*I,n=11 1771119473718755 a001 2/29*843^(7/50) 1771119475280703 m004 1+25*Sqrt[5]*Pi+(2*Cos[Sqrt[5]*Pi])/3 1771119476643837 m008 (4*Pi^2+1)/(3/4*Pi^3-2/5) 1771119480045689 r009 Re(z^3+c),c=-19/102+41/45*I,n=61 1771119485870910 a001 11*(1/2*5^(1/2)+1/2)^18*29^(7/23) 1771119486414524 a003 cos(Pi*19/97)+sin(Pi*44/109) 1771119490493757 m001 1/GAMMA(13/24)/exp(Catalan)/GAMMA(19/24)^2 1771119496638788 l006 ln(5517/6586) 1771119499616031 r005 Re(z^2+c),c=-19/122+14/45*I,n=15 1771119505417698 r005 Im(z^2+c),c=-41/50+5/44*I,n=49 1771119508493397 m001 Riemann1stZero^Totient/ReciprocalLucas 1771119509287206 m006 (4*ln(Pi)-4/5)/(2/5*exp(2*Pi)-5/6) 1771119511535110 k008 concat of cont frac of 1771119515596972 m005 (1/3*Catalan+2/3)/(1/7*Pi+1/10) 1771119516482454 r005 Im(z^2+c),c=-47/86+47/62*I,n=5 1771119523941911 r002 5th iterates of z^2 + 1771119531595891 r002 3th iterates of z^2 + 1771119536371599 r002 26th iterates of z^2 + 1771119536407520 a007 Real Root Of 69*x^4-717*x^3+523*x^2+542*x+704 1771119547917214 r009 Re(z^3+c),c=-17/56+25/41*I,n=31 1771119555685472 q001 6059/3421 1771119558808788 p003 LerchPhi(1/16,1,137/237) 1771119564016914 m003 -3+Sqrt[5]/2+(Sqrt[5]*E^(-1/2-Sqrt[5]/2))/4 1771119564537460 m001 (Catalan+KhinchinLevy)/(Salem+Trott) 1771119565381164 a007 Real Root Of -779*x^4-923*x^3+818*x^2+6*x-18 1771119565653570 a001 987/1364*7^(23/50) 1771119567571195 m001 ln(Niven)^2*GolombDickman/Zeta(9)^2 1771119568602965 a001 17393796001*13^(19/21) 1771119575723875 r005 Re(z^2+c),c=25/126+4/27*I,n=14 1771119578231770 m001 (-GAMMA(17/24)+1)/ln(5) 1771119578231770 m001 (1-GAMMA(17/24))/ln(5) 1771119583125007 r002 22th iterates of z^2 + 1771119586081096 m006 (3/5*exp(2*Pi)-1/2)/(4/5*exp(Pi)-2/5) 1771119590082595 r005 Re(z^2+c),c=-1/7+17/49*I,n=21 1771119594487494 m001 BesselJ(0,1)+ReciprocalLucas^ZetaQ(3) 1771119594761646 r009 Re(z^3+c),c=-19/32+12/23*I,n=63 1771119596435778 m001 (ln(Pi)+Artin)/(Robbin-Stephens) 1771119600317928 m001 BesselK(0,1)/(MasserGramainDelta^(3^(1/3))) 1771119602704984 m001 (Khinchin+Trott2nd)/(KhinchinLevy-exp(1)) 1771119603782150 a001 23725150497407/377*1836311903^(10/17) 1771119603782150 a001 192900153618/377*6557470319842^(10/17) 1771119608593218 a007 Real Root Of -289*x^4-234*x^3-201*x^2-838*x+690 1771119609928450 a007 Real Root Of 276*x^4-244*x^3-959*x^2+742*x+251 1771119610896975 r009 Re(z^3+c),c=-5/16+31/49*I,n=53 1771119611111225 k009 concat of cont frac of 1771119614468124 a001 13/5778*11^(37/43) 1771119619809076 a007 Real Root Of 97*x^4-26*x^3-133*x^2-108*x-873 1771119623153211 k008 concat of cont frac of 1771119629299651 r002 43th iterates of z^2 + 1771119633808628 m001 (ArtinRank2-Mills)/(Zeta(5)-ln(2)) 1771119633886718 m001 (ln(2)/ln(10))^ZetaP(4)-FeigenbaumD 1771119634163617 a007 Real Root Of -437*x^4-860*x^3-950*x^2+212*x+63 1771119635414229 a007 Real Root Of -715*x^4-830*x^3+727*x^2+331*x+730 1771119636120631 l006 ln(1183/6953) 1771119638935994 a007 Real Root Of -790*x^4-984*x^3+301*x^2-697*x+128 1771119639408921 a007 Real Root Of -879*x^4-722*x^3+838*x^2-667*x+828 1771119640174127 a001 3/7*18^(27/55) 1771119648023302 a007 Real Root Of -619*x^4-351*x^3+985*x^2-747*x-272 1771119654464711 a003 cos(Pi*12/55)+sin(Pi*48/101) 1771119656013351 m005 (1/2*2^(1/2)-7/9)/(2/5*2^(1/2)-1/6) 1771119656112275 m001 (Salem+Stephens)/(polylog(4,1/2)+Bloch) 1771119656723295 a005 (1/cos(13/123*Pi))^1281 1771119657601925 m001 Zeta(1/2)*exp(GlaisherKinkelin)^2*cos(Pi/12)^2 1771119669841478 r009 Re(z^3+c),c=-19/32+12/23*I,n=51 1771119675490632 m001 (5^(1/2)-Pi^(1/2))/(GAMMA(17/24)+MertensB3) 1771119678589342 a007 Real Root Of 292*x^4-399*x^3-992*x^2+899*x-386 1771119681119678 v007 sum((16+4*n^2-4*n)/fibonacci(n),n=1..infinity) 1771119684075031 m005 (1/2*exp(1)+1/12)/(2/11*Zeta(3)-3/10) 1771119685233036 l006 ln(8051/9611) 1771119706187747 a007 Real Root Of -46*x^4-794*x^3+359*x^2-147*x-129 1771119708820987 a001 47/89*2178309^(34/39) 1771119709437497 m005 (-1/4+1/4*5^(1/2))/(6/11*3^(1/2)+4/5) 1771119709682197 m005 (2/3+1/6*5^(1/2))/(4/7*gamma-11/12) 1771119712626564 h001 (7/10*exp(2)+6/11)/(2/5*exp(2)+3/11) 1771119714416794 a005 (1/sin(61/187*Pi))^414 1771119714834585 r005 Im(z^2+c),c=-67/66+6/23*I,n=62 1771119715363623 a001 3/103682*11^(34/45) 1771119720871841 l006 ln(1697/9974) 1771119721121113 k007 concat of cont frac of 1771119735294312 a007 Real Root Of 412*x^4+371*x^3-503*x^2+131*x-183 1771119737133463 m004 2/5+25*Sqrt[5]*Pi+Cot[Sqrt[5]*Pi] 1771119739554477 m001 (Catalan+Zeta(3))/(ln(gamma)+KhinchinHarmonic) 1771119745896215 a001 13/123*7^(13/49) 1771119746476134 a007 Real Root Of -933*x^4-853*x^3+831*x^2-774*x+464 1771119749527479 a007 Real Root Of -544*x^4-717*x^3-151*x^2-502*x+954 1771119756313465 g002 -Psi(1/8)-2*Psi(6/11)-Psi(2/11) 1771119756447193 p004 log(34883/29221) 1771119761341163 m005 (-13/44+1/4*5^(1/2))/(3/5*exp(1)-1/7) 1771119764989365 r009 Re(z^3+c),c=-37/114+37/62*I,n=28 1771119769063622 r005 Im(z^2+c),c=-23/40+16/41*I,n=46 1771119774434111 k006 concat of cont frac of 1771119775821144 m001 (3^(1/2)-Zeta(5))/(Sierpinski+Totient) 1771119778296412 m001 (-LaplaceLimit+Trott)/(5^(1/2)+exp(1/exp(1))) 1771119788809936 r005 Im(z^2+c),c=-1/8+7/31*I,n=15 1771119790331317 k008 concat of cont frac of 1771119792869432 a007 Real Root Of 790*x^4+724*x^3-823*x^2+238*x-748 1771119794857676 m001 BesselK(0,1)-Cahen*Magata 1771119802146113 m001 MadelungNaCl^TravellingSalesman/sin(1) 1771119803855713 a007 Real Root Of 799*x^4+520*x^3-930*x^2+962*x-352 1771119811874259 a007 Real Root Of 499*x^4+420*x^3+576*x^2-840*x-165 1771119812121212 k009 concat of cont frac of 1771119812559191 a007 Real Root Of -254*x^4-142*x^3+720*x^2+349*x+70 1771119813749140 m001 (exp(Pi)+exp(1))/(-GAMMA(3/4)+Khinchin) 1771119817896140 a003 sin(Pi*14/71)-sin(Pi*26/95) 1771119819838969 a007 Real Root Of -140*x^4+482*x^3+679*x^2-854*x+413 1771119820327898 r005 Im(z^2+c),c=-7/8+22/159*I,n=26 1771119821122738 r005 Re(z^2+c),c=-1/7+19/61*I,n=5 1771119823818240 m001 (-BesselI(0,2)+ZetaP(3))/(BesselK(0,1)-ln(5)) 1771119824388358 m001 AlladiGrinstead*Tribonacci^GAMMA(17/24) 1771119825626982 m001 exp(MinimumGamma)/Lehmer^2*(3^(1/3)) 1771119835611324 k009 concat of cont frac of 1771119840102797 a007 Real Root Of 529*x^4+239*x^3-904*x^2+202*x-684 1771119842484827 m001 (GAMMA(13/24)-Conway)/(Lehmer+Mills) 1771119842829076 q001 1803/1018 1771119843755541 r005 Re(z^2+c),c=-3/50+26/49*I,n=29 1771119843810849 r005 Re(z^2+c),c=-51/52+8/55*I,n=38 1771119845523356 a007 Real Root Of -675*x^4-680*x^3+389*x^2-499*x+760 1771119847910422 m005 (1/2*exp(1)-1/4)/(5/11*gamma+6) 1771119852912072 a007 Real Root Of 668*x^4+960*x^3-339*x^2-171*x-479 1771119865260487 r009 Im(z^3+c),c=-51/62+16/23*I,n=2 1771119872825547 m001 (Pi+Shi(1))/(Conway-Riemann3rdZero) 1771119884238909 r005 Re(z^2+c),c=1/29+13/24*I,n=16 1771119886033655 m001 3^(1/2)/(cos(1/12*Pi)^Cahen) 1771119886033655 m001 sqrt(3)/(cos(Pi/12)^Cahen) 1771119898260879 a007 Real Root Of 214*x^4+182*x^3+320*x^2+859*x-577 1771119898996762 r005 Im(z^2+c),c=-35/34+18/91*I,n=50 1771119905794676 a007 Real Root Of -372*x^4-295*x^3-55*x^2-830*x+724 1771119907181427 a007 Real Root Of -517*x^4-654*x^3-172*x^2-654*x+835 1771119913111101 k009 concat of cont frac of 1771119913114113 k008 concat of cont frac of 1771119915931506 l006 ln(514/3021) 1771119916226891 a007 Real Root Of -472*x^4-556*x^3+634*x^2+217*x-49 1771119918800549 m005 (1/3*Zeta(3)+1/7)/(11/12*gamma-2/9) 1771119921184673 a007 Real Root Of 497*x^4+328*x^3-836*x^2-60*x-552 1771119925507871 m001 (BesselJ(1,1)-Landau)/(Mills-Sarnak) 1771119931262278 a007 Real Root Of -861*x^4-597*x^3+999*x^2-836*x+541 1771119935798631 m005 (3/4+5/12*5^(1/2))/(1/5*2^(1/2)+2/3) 1771119936453235 m005 (1/2*Pi-5/12)/(-19/12+5/12*5^(1/2)) 1771119947719019 r005 Re(z^2+c),c=-73/82+12/47*I,n=8 1771119949242719 r005 Re(z^2+c),c=-11/78+29/49*I,n=15 1771119951087379 a007 Real Root Of -775*x^4-814*x^3+669*x^2-319*x+440 1771119953264284 m005 (1/2*gamma+1/8)/(5/8*exp(1)+7/11) 1771119955510253 r002 16th iterates of z^2 + 1771119962363948 m001 exp(GolombDickman)/CopelandErdos*sqrt(5) 1771119969703980 a007 Real Root Of -512*x^4-615*x^3+144*x^2-570*x+160 1771119972981333 m001 1/Niven/exp(FransenRobinson)/Riemann1stZero^2 1771119977549743 m001 (Cahen+MasserGramain)/gamma(1) 1771119978420865 m005 (9/8+1/4*5^(1/2))/(14/5+3*5^(1/2)) 1771119981991513 m001 OneNinth^2*ln(FeigenbaumDelta)/Zeta(7) 1771119988641285 r009 Re(z^3+c),c=-15/56+25/37*I,n=25 1771119994125680 m006 (1/5*exp(2*Pi)+1/6)/(1/3/Pi-1/6) 1771119996406432 a001 1/76*(1/2*5^(1/2)+1/2)^7*3571^(3/16) 1771119997087161 r005 Im(z^2+c),c=-1/15+37/53*I,n=30 1771119997333955 m002 (24*Cosh[Pi])/(5*Pi) 1771119997833644 a007 Real Root Of 532*x^4+900*x^3+118*x^2+547*x+364 1771120000118335 m001 (Backhouse+Sierpinski)/(gamma(3)+BesselI(0,2)) 1771120000132856 m001 1/Zeta(1/2)^2/RenyiParking*ln(sin(Pi/5))^2 1771120003526327 m001 (ln(2^(1/2)+1)+MadelungNaCl)/ZetaR(2) 1771120004232839 a001 2/10610209857723*610^(17/24) 1771120005808390 r009 Re(z^3+c),c=-3/13+18/53*I,n=13 1771120010423188 m005 (1/3*Zeta(3)-1/5)/(2/11*3^(1/2)+9/11) 1771120014218547 a003 cos(Pi*8/91)+cos(Pi*1/5) 1771120020496427 b008 (31*ArcSinh[Khinchin])/3 1771120021154706 a001 1/76*(1/2*5^(1/2)+1/2)*24476^(7/16) 1771120021181664 a001 1/76*(1/2*5^(1/2)+1/2)^9*9349^(1/16) 1771120022313350 a001 1/76*(1/2*5^(1/2)+1/2)^3*64079^(5/16) 1771120022744687 a001 1/4870004*(1/2*5^(1/2)+1/2)^26*64079^(5/16) 1771120024111132 a001 1/1860176*(1/2*5^(1/2)+1/2)^22*24476^(7/16) 1771120025131737 m001 GlaisherKinkelin/exp(FeigenbaumAlpha)/Lehmer 1771120026519562 r009 Re(z^3+c),c=-13/98+19/35*I,n=2 1771120027995788 a001 817138163596/13*987^(9/11) 1771120028093911 r005 Re(z^2+c),c=-5/46+30/61*I,n=10 1771120031872189 a007 Real Root Of -302*x^4-216*x^3+331*x^2+80*x+875 1771120038531534 a007 Real Root Of -672*x^4-828*x^3+153*x^2-453*x+730 1771120041445314 a001 1/710524*(1/2*5^(1/2)+1/2)^28*9349^(1/16) 1771120054296824 m001 (ln(gamma)+gamma(2))/(FeigenbaumMu-ThueMorse) 1771120054779399 r005 Im(z^2+c),c=31/102+2/53*I,n=40 1771120056721462 a007 Real Root Of 36*x^4-799*x^3-390*x^2-657*x+133 1771120059474901 m001 (MadelungNaCl+Thue)/(cos(1/5*Pi)+LaplaceLimit) 1771120063154209 m001 (BesselI(0,2)+GAMMA(19/24))/(Cahen+Mills) 1771120064577073 a007 Real Root Of -161*x^4-73*x^3+290*x^2+262*x+733 1771120067351114 m001 ln(FeigenbaumD)*Niven*GAMMA(23/24)^2 1771120067987972 m001 (5^(1/2)-Si(Pi))/(arctan(1/2)+Niven) 1771120072800748 m002 -2-4/Pi^3+ProductLog[Pi]/3 1771120076617273 a003 sin(Pi*5/103)/cos(Pi*11/64) 1771120082450430 r005 Im(z^2+c),c=-13/14+45/197*I,n=40 1771120089135034 m001 (2^(1/3)-Mills)/(ReciprocalLucas+TwinPrimes) 1771120090058908 p004 log(11173/1901) 1771120093751041 r005 Re(z^2+c),c=-13/90+18/53*I,n=7 1771120094617489 r002 17th iterates of z^2 + 1771120095266209 r005 Re(z^2+c),c=-3/25+15/26*I,n=9 1771120095838574 l006 ln(2534/3025) 1771120099431634 a007 Real Root Of 288*x^4+546*x^3-153*x^2-544*x-284 1771120104177100 s001 sum(exp(-Pi/3)^n*A133747[n],n=1..infinity) 1771120107962213 q001 6562/3705 1771120111121182 k006 concat of cont frac of 1771120111856375 r009 Re(z^3+c),c=-16/27+32/59*I,n=9 1771120113211137 k008 concat of cont frac of 1771120124483515 r009 Re(z^3+c),c=-67/114+1/2*I,n=27 1771120126172983 m001 ln(2)^gamma(3)*Pi^(1/2) 1771120128674370 a003 cos(Pi*13/95)-cos(Pi*21/88) 1771120129526870 m001 (2^(1/2)+BesselK(1,1))/(PrimesInBinary+Sarnak) 1771120134111231 k008 concat of cont frac of 1771120135295560 a001 1/271396*(1/2*5^(1/2)+1/2)^24*3571^(3/16) 1771120137951877 m001 (BesselK(1,1)-DuboisRaymond)/(Pi-sin(1)) 1771120138401992 h001 (6/11*exp(1)+1/11)/(1/12*exp(2)+3/11) 1771120139864341 r005 Re(z^2+c),c=-5/122+32/63*I,n=15 1771120145153011 k006 concat of cont frac of 1771120152935482 s002 sum(A175971[n]/(n^3*2^n-1),n=1..infinity) 1771120154587729 l006 ln(1387/8152) 1771120156231700 a001 377/3571*199^(30/31) 1771120160346571 m005 (1/2*3^(1/2)+9/10)/(5/8*gamma+7/11) 1771120160579985 a007 Real Root Of 242*x^4-94*x^3-743*x^2-821*x+169 1771120161718310 p001 sum((-1)^n/(552*n+55)/(3^n),n=0..infinity) 1771120166981536 a001 610/3*322^(41/53) 1771120167305912 r005 Im(z^2+c),c=-13/30+11/25*I,n=5 1771120177112017 k006 concat of cont frac of 1771120187480296 m001 (ln(2)/ln(10)+exp(1))/(GAMMA(5/6)+Stephens) 1771120195645930 m001 1/exp(Paris)^2/Niven/exp(1) 1771120199172722 m001 Zeta(1,-1)+KhinchinHarmonic^KhinchinLevy 1771120200940734 a001 1/103664*(1/2*5^(1/2)+1/2)^13*1364^(13/16) 1771120202541910 m001 (QuadraticClass-ZetaP(3))/(MertensB2+Otter) 1771120204949936 a007 Real Root Of 700*x^4+808*x^3-216*x^2+785*x-331 1771120205325431 m001 1/Lehmer^2*exp(GolombDickman)*gamma^2 1771120205947799 r002 9th iterates of z^2 + 1771120208410867 q001 4759/2687 1771120214986188 m001 Riemann3rdZero^2/Si(Pi)^2*ln(GAMMA(1/3))^2 1771120216297668 m004 -30/Pi-25*Sqrt[5]*Pi+(5*Pi)/Log[Sqrt[5]*Pi] 1771120230398809 m005 (5/12+1/6*5^(1/2))/(5/9*gamma+1/8) 1771120230696448 r005 Im(z^2+c),c=17/64+2/45*I,n=56 1771120236451364 h001 (5/9*exp(1)+7/8)/(5/11*exp(1)+1/9) 1771120243212004 m001 (BesselK(1,1)*ZetaR(2)-exp(1))/ZetaR(2) 1771120244338076 a007 Real Root Of -817*x^4-907*x^3+670*x^2-601*x-166 1771120250420124 k008 concat of cont frac of 1771120252056134 a007 Real Root Of -488*x^4-4*x^3+879*x^2-597*x+965 1771120252292728 g005 GAMMA(8/11)*GAMMA(2/9)*GAMMA(7/8)*GAMMA(2/7) 1771120258145891 a003 cos(Pi*1/69)+cos(Pi*16/73) 1771120266786352 m005 (1/3*exp(1)+1/6)/(1/4*gamma-3/4) 1771120267755548 a007 Real Root Of 373*x^4+446*x^3-843*x^2-791*x+51 1771120271113121 k007 concat of cont frac of 1771120271500974 m001 (TreeGrowth2nd+Trott)/(Si(Pi)+ln(2)) 1771120276655833 a003 sin(Pi*18/61)+sin(Pi*36/85) 1771120277048397 a007 Real Root Of 533*x^4+492*x^3-933*x^2-116*x+210 1771120277356935 m005 (1/2*Pi-5/11)/(Catalan-2/7) 1771120284357944 a003 cos(Pi*11/96)*cos(Pi*41/83) 1771120290321417 h001 (1/9*exp(1)+1/12)/(2/3*exp(1)+4/11) 1771120293847566 r005 Re(z^2+c),c=-1/60+2/55*I,n=2 1771120294209257 m001 exp(Si(Pi))^2/FeigenbaumAlpha/Catalan 1771120294825821 a001 514229/18*11^(35/46) 1771120295102362 l006 ln(873/5131) 1771120305355370 r009 Re(z^3+c),c=-3/10+22/39*I,n=41 1771120307196246 r005 Re(z^2+c),c=-1/13+27/55*I,n=36 1771120307450822 m001 (Cahen-CareFree)/(OneNinth-ZetaP(2)) 1771120308698569 r005 Im(z^2+c),c=-27/56+13/42*I,n=58 1771120313203322 r002 21th iterates of z^2 + 1771120317830591 r005 Im(z^2+c),c=-7/12+14/93*I,n=4 1771120319651370 r005 Re(z^2+c),c=-29/114+14/23*I,n=23 1771120322543773 a001 24476/13*1548008755920^(9/11) 1771120325500200 a001 141422324/13*39088169^(9/11) 1771120325500712 a001 1860498/13*7778742049^(9/11) 1771120325507713 a001 10749957122/13*196418^(9/11) 1771120329402438 a001 196418/199*199^(6/11) 1771120329506522 m001 (gamma(3)+FransenRobinson)/(Zeta(5)-ln(gamma)) 1771120332608925 a007 Real Root Of -587*x^4-562*x^3+152*x^2-800*x+760 1771120338570997 m001 1/GAMMA(1/24)/Riemann2ndZero/ln(Pi) 1771120341949928 r005 Im(z^2+c),c=-6/25+4/17*I,n=3 1771120348219695 r002 18th iterates of z^2 + 1771120348825801 m001 (Landau-MinimumGamma)/(Zeta(1,2)+Backhouse) 1771120349336925 m001 1/exp(Salem)^2/Khintchine*sqrt(5)^2 1771120351020925 m005 (1/2*2^(1/2)+6/7)/(-17/120+11/24*5^(1/2)) 1771120359274505 g001 Psi(1/5,9/86) 1771120371205418 m001 (GaussKuzminWirsing-ZetaQ(4))/Niven 1771120373307055 r002 8th iterates of z^2 + 1771120385125820 a003 cos(Pi*31/107)/cos(Pi*43/111) 1771120387117566 m001 2^(1/3)*FeigenbaumD-ln(5) 1771120399181332 r005 Re(z^2+c),c=-9/86+24/55*I,n=21 1771120400711168 a007 Real Root Of -32*x^4+741*x^3-638*x^2-657*x-637 1771120412849628 r002 48th iterates of z^2 + 1771120416967067 m001 Shi(1)^Champernowne+LandauRamanujan 1771120418860600 h005 exp(cos(Pi*7/22)/sin(Pi*15/38)) 1771120420304066 a007 Real Root Of -406*x^4-718*x^3-375*x^2-890*x-394 1771120420791302 m001 (Kac+ZetaQ(2))/(FeigenbaumB-FeigenbaumDelta) 1771120425137761 m001 (Zeta(5)+Artin)/(FeigenbaumC-MertensB2) 1771120430250952 a001 1/39596*(1/2*5^(1/2)+1/2)^11*521^(15/16) 1771120431396045 q001 2956/1669 1771120432354832 g006 -Psi(1,1/11)-Psi(1,4/7)-Psi(1,2/7)-Psi(1,1/6) 1771120440477903 r002 28th iterates of z^2 + 1771120443380349 l004 Si(205/83) 1771120444843836 m001 ln(Porter)^2/CopelandErdos^2*sin(Pi/12)^2 1771120448069903 a001 9/98209*14930352^(14/19) 1771120448079085 a001 18/165580141*139583862445^(14/19) 1771120449987611 h001 (7/8*exp(1)+6/11)/(1/8*exp(2)+8/11) 1771120453295355 l006 ln(1232/7241) 1771120459356075 r005 Im(z^2+c),c=-37/106+9/32*I,n=32 1771120460791910 a007 Real Root Of 42*x^4+793*x^3+894*x^2+425*x+43 1771120464433329 a001 5/3010349*18^(1/45) 1771120469646698 r009 Re(z^3+c),c=-5/17+23/41*I,n=19 1771120471755168 m001 BesselI(0,1)^Zeta(1,-1)+AlladiGrinstead 1771120476128693 r005 Im(z^2+c),c=-25/44+19/58*I,n=55 1771120476379010 r002 51th iterates of z^2 + 1771120480625009 m001 (CareFree+StronglyCareFree)/(Chi(1)-gamma(3)) 1771120483575930 r005 Re(z^2+c),c=-7/118+21/40*I,n=25 1771120484776702 r005 Im(z^2+c),c=13/98+37/59*I,n=49 1771120490401722 r005 Re(z^2+c),c=-5/6+27/151*I,n=18 1771120491558834 a007 Real Root Of 4*x^4+709*x^3+97*x^2-128*x+261 1771120499001823 a001 2207/34*196418^(37/57) 1771120502432239 b008 E^Khinchin+4*Tanh[1] 1771120508479717 m001 HardHexagonsEntropy-Khinchin+Porter 1771120509782895 a007 Real Root Of 427*x^4+934*x^3+619*x^2-640*x-128 1771120514282343 a007 Real Root Of -784*x^4-788*x^3+450*x^2-638*x+795 1771120514716104 a007 Real Root Of -798*x^4-671*x^3+952*x^2-760*x-208 1771120515265425 s002 sum(A203919[n]/(2^n-1),n=1..infinity) 1771120521276677 r009 Im(z^3+c),c=-13/94+4/23*I,n=5 1771120537789209 a007 Real Root Of -491*x^4-618*x^3+166*x^2-200*x+523 1771120540097659 l006 ln(1591/9351) 1771120540269693 m001 Zeta(1,2)/(FeigenbaumDelta+GolombDickman) 1771120540754827 r005 Re(z^2+c),c=-39/74+32/63*I,n=39 1771120548852225 m001 MertensB1^2*Cahen*ln(Zeta(9))^2 1771120549477975 r002 34th iterates of z^2 + 1771120550409443 m001 (Pi-gamma(2))/(FeigenbaumAlpha-Sarnak) 1771120554089172 r005 Re(z^2+c),c=9/40+9/50*I,n=11 1771120554604378 a005 (1/cos(6/217*Pi))^1980 1771120555727025 a007 Real Root Of 751*x^4+697*x^3-707*x^2+185*x-972 1771120557992223 l006 ln(7153/8539) 1771120559058294 g007 Psi(2,1/10)-Psi(2,4/11)-Psi(2,2/9)-Psi(2,4/5) 1771120561051965 r009 Re(z^3+c),c=-17/114+29/35*I,n=36 1771120563149583 m003 3/5+Sqrt[5]/64-5*Log[1/2+Sqrt[5]/2] 1771120568209655 h003 exp(Pi*(14^(1/10)+17^(9/10))) 1771120568209655 h008 exp(Pi*(14^(1/10)+17^(9/10))) 1771120572087812 a007 Real Root Of -327*x^4-346*x^3+560*x^2+475*x+380 1771120572197332 m001 GlaisherKinkelin+Gompertz-OneNinth 1771120576895736 a003 -cos(3/7*Pi)+cos(4/21*Pi)-3^(1/2)-cos(5/18*Pi) 1771120581599398 q001 7065/3989 1771120585615310 a001 18/75025*196418^(6/17) 1771120585674805 a001 18/1346269*701408733^(6/17) 1771120585675000 a001 18/24157817*2504730781961^(6/17) 1771120588365605 r002 38th iterates of z^2 + 1771120593233179 r005 Im(z^2+c),c=-57/110+23/60*I,n=21 1771120594254818 r005 Re(z^2+c),c=-69/110+14/33*I,n=54 1771120595613086 a001 5/4870847*123^(29/49) 1771120601346436 a007 Real Root Of 488*x^4+438*x^3-385*x^2+285*x-656 1771120613313766 q001 7/39523 1771120614290897 a007 Real Root Of 7*x^4+143*x^3+337*x^2+38*x+640 1771120628211750 r005 Re(z^2+c),c=9/58+16/37*I,n=32 1771120628866447 a007 Real Root Of -488*x^4-448*x^3+758*x^2+241*x+362 1771120634343684 m005 (1/2*5^(1/2)+5/11)/(3/5*Zeta(3)+1/6) 1771120638068995 m005 (1/2*Catalan+4/7)/(4/7*2^(1/2)-3/4) 1771120640187980 m001 (-Ei(1,1)+Rabbit)/(3^(1/2)+Zeta(5)) 1771120642765069 a001 199/18*(1/2*5^(1/2)+1/2)^21*18^(13/20) 1771120645999698 r002 26th iterates of z^2 + 1771120646235835 r005 Im(z^2+c),c=-45/74+2/61*I,n=57 1771120647338769 a007 Real Root Of 914*x^4+135*x^3-593*x^2-801*x-14 1771120647888408 m001 (Catalan-Chi(1))/(-sin(1)+GlaisherKinkelin) 1771120656358005 a007 Real Root Of -605*x^4-940*x^3-376*x^2-921*x+279 1771120657495151 a007 Real Root Of -916*x^4-819*x^3+715*x^2-999*x+451 1771120667558675 m005 (1/2*exp(1)-2)/(1/5*exp(1)-2/11) 1771120678915124 b008 3*(1/76+EulerGamma) 1771120686008347 h001 (-exp(1)-5)/(-8*exp(4)+1) 1771120689124610 m006 (2/3/Pi-4)/(1/3*Pi-5/6) 1771120689655172 q001 4109/2320 1771120690178307 r005 Re(z^2+c),c=-29/106+19/25*I,n=19 1771120691540143 m001 (Trott+Thue)/(Ei(1)-OrthogonalArrays) 1771120692296519 b008 Pi*(-2/9+E+Pi) 1771120692655907 m005 (5/66+1/6*5^(1/2))/(2*Catalan+7/10) 1771120698895379 r009 Re(z^3+c),c=-19/32+12/23*I,n=57 1771120699365147 r005 Re(z^2+c),c=-10/31+11/25*I,n=3 1771120711244039 r005 Im(z^2+c),c=-23/26+14/97*I,n=58 1771120715860941 m005 (1/2*2^(1/2)+10/11)/(1/2*Catalan+5/11) 1771120728162690 h001 (1/5*exp(2)+6/7)/(2/9*exp(1)+5/7) 1771120730563323 m001 GAMMA(19/24)+FeigenbaumB^FransenRobinson 1771120732178419 m001 (arctan(1/3)-FeigenbaumKappa)/(Lehmer-Salem) 1771120738579921 a007 Real Root Of 471*x^4+596*x^3+56*x^2+712*x-238 1771120738984809 r005 Re(z^2+c),c=33/106+16/63*I,n=26 1771120739083411 m001 TwinPrimes^sqrt(5)*TwinPrimes^GAMMA(11/24) 1771120742315373 m001 Riemann3rdZero*Sierpinski*Trott2nd 1771120745976639 m005 (1/2*gamma+1)/(4/5*Zeta(3)-8/9) 1771120750101551 m001 (Ei(1)-3^(1/3))/(AlladiGrinstead+MadelungNaCl) 1771120753433115 a007 Real Root Of 644*x^4+414*x^3-617*x^2+693*x-874 1771120754695736 m005 (1/2*Catalan+5/12)/(4/9*exp(1)-5/7) 1771120761048407 a001 75025/521*322^(5/6) 1771120762819654 r005 Im(z^2+c),c=-71/98+10/37*I,n=4 1771120770216760 r005 Re(z^2+c),c=-69/110+14/33*I,n=61 1771120771900209 m001 MinimumGamma*ln(FransenRobinson)*GAMMA(19/24) 1771120774509321 m007 (-3/4*gamma+4/5)/(-3/4*gamma-3/2*ln(2)-3/5) 1771120778784009 a007 Real Root Of 217*x^4+76*x^3-23*x^2+385*x-959 1771120784870930 r005 Im(z^2+c),c=-21/106+13/53*I,n=18 1771120786090822 r002 4th iterates of z^2 + 1771120796899971 a007 Real Root Of 296*x^4-160*x^3-698*x^2+699*x-374 1771120811531366 l006 ln(4619/5514) 1771120813911369 m001 GAMMA(5/24)*ln(Rabbit)*sinh(1) 1771120818725736 m001 (GAMMA(5/6)-LambertW(1)*Zeta(1,2))/Zeta(1,2) 1771120827899434 a007 Real Root Of 467*x^4+580*x^3-666*x^2-864*x-814 1771120828916840 r002 35th iterates of z^2 + 1771120829480334 m001 cosh(1)^2*GAMMA(2/3)*ln(sqrt(3)) 1771120830047891 r005 Re(z^2+c),c=-1/11+15/31*I,n=16 1771120834735779 q001 5262/2971 1771120837981833 l006 ln(359/2110) 1771120840782481 a008 Real Root of x^4-18*x^2-77*x+183 1771120852624873 a007 Real Root Of 87*x^4-387*x^3-377*x^2+500*x-938 1771120858280313 a005 (1/cos(8/91*Pi))^730 1771120861805405 a001 11/13*196418^(2/33) 1771120863271754 a007 Real Root Of -330*x^4-855*x^3-606*x^2-293*x-121 1771120871288328 a001 144/4870847*7^(23/25) 1771120873881143 a007 Real Root Of -686*x^4-799*x^3+283*x^2-907*x-183 1771120885418077 m001 (-FeigenbaumD+Sarnak)/(2^(1/2)-Conway) 1771120887131063 a005 (1/cos(5/201*Pi))^187 1771120899320380 r002 37th iterates of z^2 + 1771120900343990 m001 (Pi-gamma(3))/(Gompertz+Salem) 1771120905835914 a007 Real Root Of 463*x^4+952*x^3+501*x^2-89*x-996 1771120906028121 a007 Real Root Of -188*x^4+70*x^3-348*x^2+703*x+136 1771120907109122 r005 Re(z^2+c),c=7/60+19/50*I,n=38 1771120914649868 a007 Real Root Of -622*x^4-853*x^3+730*x^2+2*x-905 1771120918081674 a003 cos(Pi*13/57)/cos(Pi*9/25) 1771120924652532 a001 5702887/843*123^(1/5) 1771120927664273 q001 6415/3622 1771120932010047 m001 1/LandauRamanujan/ln(CareFree)^2/BesselK(1,1) 1771120935518854 m001 (LandauRamanujan2nd-Shi(1))/(Paris+Sierpinski) 1771120938207095 r002 8th iterates of z^2 + 1771120946433248 m001 GAMMA(1/3)/ln(Trott)^2/exp(1)^2 1771120954019276 m001 GAMMA(1/6)/ln(BesselK(0,1))^2*cosh(1)^2 1771120956746116 r005 Re(z^2+c),c=-37/118+30/49*I,n=38 1771120960127360 a007 Real Root Of 91*x^4-416*x^3-446*x^2+762*x-458 1771120960353153 m001 ln(TreeGrowth2nd)*Salem*GAMMA(2/3)^2 1771120968183474 m001 (Khinchin-exp(Pi))/(-Lehmer+MadelungNaCl) 1771120973048432 a007 Real Root Of 764*x^4+854*x^3-428*x^2+758*x-88 1771120977776101 m006 (2/3/Pi+1/4)/(1/2*ln(Pi)-5/6) 1771120977828720 h001 (7/12*exp(2)+5/12)/(5/7*exp(1)+8/11) 1771120990917510 h002 exp(12^(7/6)-3^(7/3)) 1771120990917510 h007 exp(12^(7/6)-3^(7/3)) 1771120994103294 m001 (1+KhinchinLevy)/Champernowne 1771120994809080 m001 (Zeta(3)+HeathBrownMoroz)/(ZetaP(4)-ZetaQ(3)) 1771121004200996 h001 (4/5*exp(1)+1/2)/(2/11*exp(2)+1/6) 1771121010350521 a007 Real Root Of 418*x^4+700*x^3-290*x^2-906*x-919 1771121011412168 k007 concat of cont frac of 1771121011513611 k008 concat of cont frac of 1771121014230439 m005 (1/2*5^(1/2)-4)/(47/44+1/4*5^(1/2)) 1771121019217762 a007 Real Root Of 780*x^4-928*x^3+633*x^2-632*x+11 1771121023311211 k006 concat of cont frac of 1771121033672929 r005 Re(z^2+c),c=19/66+7/29*I,n=27 1771121034301721 k008 concat of cont frac of 1771121034984513 a003 cos(Pi*8/69)+cos(Pi*19/103) 1771121036167661 k006 concat of cont frac of 1771121037055242 a007 Real Root Of -515*x^4-659*x^3+532*x^2+710*x+995 1771121038499047 a007 Real Root Of -3*x^4+30*x^3+75*x^2+323*x+533 1771121043902457 a007 Real Root Of 946*x^4+987*x^3-484*x^2+748*x-982 1771121044867022 a003 sin(Pi*3/61)/cos(Pi*15/91) 1771121049313493 m001 (ln(2)-sin(1))/(MertensB1+Stephens) 1771121056531771 m004 5+55*Pi-Sin[Sqrt[5]*Pi] 1771121061893660 a007 Real Root Of -695*x^4-67*x^3-407*x^2+733*x-116 1771121063106879 r005 Im(z^2+c),c=-17/14+11/240*I,n=8 1771121071714204 m005 (2/3*Catalan+1/3)/(5*Catalan+3/4) 1771121074976385 r009 Im(z^3+c),c=-11/42+6/41*I,n=3 1771121081892454 a001 2/1597*46368^(1/31) 1771121082051271 l006 ln(6704/8003) 1771121085179279 a007 Real Root Of -85*x^4+165*x^3+270*x^2-646*x-238 1771121093322375 a001 199/144*514229^(1/53) 1771121094825985 m001 Pi*csc(1/12*Pi)/GAMMA(11/12)/Artin*Stephens 1771121101251124 k006 concat of cont frac of 1771121101311652 k006 concat of cont frac of 1771121101339161 k007 concat of cont frac of 1771121102171151 k006 concat of cont frac of 1771121102569629 m005 (3/5*2^(1/2)-1/3)/(4*gamma+3/5) 1771121103211211 k006 concat of cont frac of 1771121104144503 k008 concat of cont frac of 1771121104522518 m001 1/exp(Salem)/MertensB1*GAMMA(3/4)^2 1771121105372506 a007 Real Root Of -470*x^4-169*x^3+827*x^2-919*x-536 1771121111111114 k006 concat of cont frac of 1771121111111424 k006 concat of cont frac of 1771121111111514 k008 concat of cont frac of 1771121111113151 k007 concat of cont frac of 1771121111121111 k008 concat of cont frac of 1771121111131371 k008 concat of cont frac of 1771121111164662 k008 concat of cont frac of 1771121111181331 k007 concat of cont frac of 1771121111212217 k008 concat of cont frac of 1771121111214211 k007 concat of cont frac of 1771121111234593 k008 concat of cont frac of 1771121111282421 k007 concat of cont frac of 1771121111312112 k007 concat of cont frac of 1771121111313262 k006 concat of cont frac of 1771121111325111 k008 concat of cont frac of 1771121111347215 k007 concat of cont frac of 1771121111412415 k008 concat of cont frac of 1771121111425321 k006 concat of cont frac of 1771121111461121 k008 concat of cont frac of 1771121111481321 k009 concat of cont frac of 1771121111611311 k007 concat of cont frac of 1771121111613616 k006 concat of cont frac of 1771121111813211 k007 concat of cont frac of 1771121112111135 k009 concat of cont frac of 1771121112111211 k007 concat of cont frac of 1771121112111711 k006 concat of cont frac of 1771121112153135 k007 concat of cont frac of 1771121112214131 k008 concat of cont frac of 1771121112221215 k008 concat of cont frac of 1771121112321112 k009 concat of cont frac of 1771121112425111 k007 concat of cont frac of 1771121113117211 k006 concat of cont frac of 1771121113130121 k006 concat of cont frac of 1771121113132111 k007 concat of cont frac of 1771121113142166 k008 concat of cont frac of 1771121113317316 k008 concat of cont frac of 1771121113521511 k006 concat of cont frac of 1771121114104311 k008 concat of cont frac of 1771121114864381 r005 Re(z^2+c),c=-53/98+31/48*I,n=17 1771121114959228 r005 Re(z^2+c),c=1/62+17/29*I,n=26 1771121115811221 k006 concat of cont frac of 1771121115926271 k008 concat of cont frac of 1771121116101215 k008 concat of cont frac of 1771121116161128 k008 concat of cont frac of 1771121116458869 m001 (Riemann3rdZero+Stephens)/exp(1/exp(1)) 1771121116459543 k008 concat of cont frac of 1771121117121111 k008 concat of cont frac of 1771121117865686 a007 Real Root Of -171*x^4+69*x^3+658*x^2+205*x+365 1771121118121149 k006 concat of cont frac of 1771121118498017 a007 Real Root Of 179*x^4-838*x^3-109*x^2-983*x+182 1771121120523161 k008 concat of cont frac of 1771121121211162 k008 concat of cont frac of 1771121121211221 k007 concat of cont frac of 1771121121322111 k008 concat of cont frac of 1771121121412481 k008 concat of cont frac of 1771121121512191 k008 concat of cont frac of 1771121121914211 k006 concat of cont frac of 1771121122121104 k008 concat of cont frac of 1771121122441241 k008 concat of cont frac of 1771121122641773 a003 cos(Pi*3/109)-cos(Pi*7/36) 1771121124141224 k009 concat of cont frac of 1771121124292334 m001 PlouffeB/Khinchin 1771121125111133 k006 concat of cont frac of 1771121125231121 k009 concat of cont frac of 1771121125286157 p004 log(34501/28901) 1771121125752412 k008 concat of cont frac of 1771121126194753 r005 Re(z^2+c),c=-13/66+29/37*I,n=37 1771121126965724 l006 ln(1640/9639) 1771121129839753 m001 ln(Pi)*gamma(2)+Grothendieck 1771121131122159 k008 concat of cont frac of 1771121131213111 k006 concat of cont frac of 1771121131221231 k007 concat of cont frac of 1771121131614155 k008 concat of cont frac of 1771121132114127 k006 concat of cont frac of 1771121133711032 k007 concat of cont frac of 1771121135171591 k008 concat of cont frac of 1771121135760588 r005 Im(z^2+c),c=-9/10+16/107*I,n=17 1771121139101312 k006 concat of cont frac of 1771121141050509 m001 (GAMMA(3/4)+3^(1/3))/(Backhouse-ErdosBorwein) 1771121141113136 k008 concat of cont frac of 1771121141118131 k008 concat of cont frac of 1771121141312172 k008 concat of cont frac of 1771121142113141 k007 concat of cont frac of 1771121142181132 k006 concat of cont frac of 1771121145111122 k008 concat of cont frac of 1771121145351392 r005 Im(z^2+c),c=-29/50+13/40*I,n=40 1771121146411133 k006 concat of cont frac of 1771121148462111 k008 concat of cont frac of 1771121149123171 k008 concat of cont frac of 1771121149233191 k008 concat of cont frac of 1771121151121128 k006 concat of cont frac of 1771121151131194 k008 concat of cont frac of 1771121151518115 k007 concat of cont frac of 1771121151852138 k007 concat of cont frac of 1771121152612227 k007 concat of cont frac of 1771121154324118 k008 concat of cont frac of 1771121156131119 k008 concat of cont frac of 1771121161140621 k006 concat of cont frac of 1771121161221312 k008 concat of cont frac of 1771121161423111 k006 concat of cont frac of 1771121161456244 k006 concat of cont frac of 1771121167660014 a001 3/10946*53316291173^(13/24) 1771121167901723 a001 321/8*34^(8/19) 1771121171211116 k009 concat of cont frac of 1771121171313215 k008 concat of cont frac of 1771121178111451 k008 concat of cont frac of 1771121179079187 a007 Real Root Of -970*x^4+419*x^3+138*x^2+531*x+93 1771121181114521 k008 concat of cont frac of 1771121183228667 r005 Re(z^2+c),c=11/50+14/29*I,n=54 1771121183711612 k006 concat of cont frac of 1771121184202211 k007 concat of cont frac of 1771121185942590 r005 Im(z^2+c),c=-7/17+17/58*I,n=17 1771121193101126 k006 concat of cont frac of 1771121193133540 k009 concat of cont frac of 1771121195969859 r005 Im(z^2+c),c=-25/62+17/58*I,n=30 1771121196383141 r005 Re(z^2+c),c=29/98+8/33*I,n=21 1771121198962396 a007 Real Root Of 15*x^4-406*x^3-25*x^2+761*x-977 1771121204142102 k008 concat of cont frac of 1771121204686917 b008 Sqrt[3]+Cot[1/16] 1771121207953388 l006 ln(1281/7529) 1771121208561239 a007 Real Root Of -180*x^4+424*x^3+858*x^2-907*x-171 1771121211051533 k006 concat of cont frac of 1771121211111152 k006 concat of cont frac of 1771121211151153 k006 concat of cont frac of 1771121211218241 k006 concat of cont frac of 1771121211321115 k006 concat of cont frac of 1771121213111213 k008 concat of cont frac of 1771121213272101 k008 concat of cont frac of 1771121213331111 k007 concat of cont frac of 1771121213572212 k008 concat of cont frac of 1771121214115813 k008 concat of cont frac of 1771121214435836 m001 (BesselK(1,1)+ZetaP(2))/(ln(gamma)+ln(Pi)) 1771121215121310 k006 concat of cont frac of 1771121215226106 m001 ThueMorse/MertensB3/MadelungNaCl 1771121221138201 k007 concat of cont frac of 1771121221211112 k006 concat of cont frac of 1771121221215133 k007 concat of cont frac of 1771121222610885 l002 exp(polylog(2,32/65)) 1771121222716002 r005 Im(z^2+c),c=-8/19+19/64*I,n=43 1771121223227708 a007 Real Root Of -166*x^4+222*x^3+943*x^2+12*x-70 1771121224112171 k008 concat of cont frac of 1771121224443221 k006 concat of cont frac of 1771121227111231 k008 concat of cont frac of 1771121230708423 r009 Re(z^3+c),c=-5/16+37/63*I,n=30 1771121231321101 k008 concat of cont frac of 1771121233447581 m001 (ErdosBorwein-MertensB3)/(GAMMA(19/24)+Artin) 1771121239884788 r002 14th iterates of z^2 + 1771121241133413 k009 concat of cont frac of 1771121241211311 k007 concat of cont frac of 1771121241321101 k007 concat of cont frac of 1771121241414124 k009 concat of cont frac of 1771121241511427 k008 concat of cont frac of 1771121241570404 a007 Real Root Of -44*x^4-729*x^3+888*x^2-95*x-818 1771121243185341 k008 concat of cont frac of 1771121249611113 k008 concat of cont frac of 1771121250480343 a007 Real Root Of 729*x^4+819*x^3+107*x^2-962*x+17 1771121251017226 k007 concat of cont frac of 1771121251381171 k007 concat of cont frac of 1771121252131121 k006 concat of cont frac of 1771121254912536 k008 concat of cont frac of 1771121258659957 a007 Real Root Of -515*x^4-615*x^3+331*x^2-330*x+28 1771121259282109 b008 E^Gamma[1/3]+Pi 1771121259282109 m001 Pi+exp(1)^(2/3*Pi*3^(1/2)/GAMMA(2/3)) 1771121259282109 m001 Pi+exp(1)^GAMMA(1/3) 1771121261724421 k009 concat of cont frac of 1771121262371161 k008 concat of cont frac of 1771121263231112 k009 concat of cont frac of 1771121263656058 a003 cos(Pi*3/109)+cos(Pi*22/101) 1771121263710650 r005 Im(z^2+c),c=-103/110+1/6*I,n=19 1771121264765061 a005 (1/sin(27/233*Pi))^34 1771121269693476 m005 (1/2*3^(1/2)+5/12)/(5/9*5^(1/2)+6) 1771121271272215 k007 concat of cont frac of 1771121271513111 k008 concat of cont frac of 1771121271934115 k006 concat of cont frac of 1771121281111124 k006 concat of cont frac of 1771121296273260 m005 (1/6*2^(1/2)-3/4)/(1/6*gamma-3) 1771121302006060 r009 Im(z^3+c),c=-23/54+1/23*I,n=52 1771121306714877 m001 ln(FeigenbaumC)/Si(Pi)^2*Zeta(9)^2 1771121311111815 k008 concat of cont frac of 1771121311112112 k008 concat of cont frac of 1771121311162262 k007 concat of cont frac of 1771121311171854 k008 concat of cont frac of 1771121311172112 k008 concat of cont frac of 1771121311212541 k008 concat of cont frac of 1771121311312194 k008 concat of cont frac of 1771121311424112 k006 concat of cont frac of 1771121311512423 k007 concat of cont frac of 1771121312211361 k006 concat of cont frac of 1771121312321171 k006 concat of cont frac of 1771121313223122 k007 concat of cont frac of 1771121313499284 r005 Re(z^2+c),c=21/58+11/57*I,n=12 1771121317215121 k008 concat of cont frac of 1771121317941657 r002 35th iterates of z^2 + 1771121319217322 k008 concat of cont frac of 1771121319271172 k007 concat of cont frac of 1771121321221941 k008 concat of cont frac of 1771121321231122 k007 concat of cont frac of 1771121325361533 k008 concat of cont frac of 1771121331261121 k009 concat of cont frac of 1771121332132111 k007 concat of cont frac of 1771121345454777 m001 FeigenbaumD^(3^(1/2)/ZetaP(3)) 1771121349427609 b008 2^(-CosIntegral[1/4]) 1771121349941036 m005 (1/2*2^(1/2)-8/9)/(5*5^(1/2)-11/12) 1771121350718384 a003 cos(Pi*31/97)/cos(Pi*41/102) 1771121351231316 k007 concat of cont frac of 1771121351311111 k008 concat of cont frac of 1771121351324411 k006 concat of cont frac of 1771121351766513 q001 1153/651 1771121352009520 l006 ln(922/5419) 1771121359585945 r005 Re(z^2+c),c=-99/82+1/29*I,n=52 1771121361058601 r009 Re(z^3+c),c=-1/50+9/46*I,n=2 1771121371013261 k008 concat of cont frac of 1771121372463109 m001 Artin^polylog(4,1/2)/(Artin^ln(3)) 1771121374734617 r005 Im(z^2+c),c=-16/29+6/17*I,n=20 1771121379440473 a003 cos(Pi*14/107)+sin(Pi*15/46) 1771121383161212 k007 concat of cont frac of 1771121386759059 m001 (Sierpinski-ThueMorse)/(Ei(1)-Pi^(1/2)) 1771121393074668 m001 Zeta(1,2)*Riemann3rdZero^2*ln(gamma)^2 1771121397911502 m001 1/arctan(1/2)*Pi^2/ln(cos(Pi/12))^2 1771121401331111 k008 concat of cont frac of 1771121402225560 a007 Real Root Of -552*x^4-336*x^3+808*x^2-619*x-66 1771121403927834 a007 Real Root Of 410*x^4+684*x^3+930*x^2-899*x-185 1771121410411121 k008 concat of cont frac of 1771121411112111 k006 concat of cont frac of 1771121411112711 k009 concat of cont frac of 1771121411171202 k006 concat of cont frac of 1771121411211121 k009 concat of cont frac of 1771121411745585 r005 Im(z^2+c),c=-111/98+9/32*I,n=9 1771121412161914 k008 concat of cont frac of 1771121412312241 k008 concat of cont frac of 1771121413112231 k008 concat of cont frac of 1771121419312112 k008 concat of cont frac of 1771121422111121 k006 concat of cont frac of 1771121428928643 r005 Re(z^2+c),c=-29/34+15/107*I,n=6 1771121431221131 k007 concat of cont frac of 1771121431223116 k006 concat of cont frac of 1771121435368096 a007 Real Root Of -321*x^4-257*x^3+325*x^2-855*x-803 1771121436450668 g006 Psi(1,1/12)+Psi(1,2/11)+Psi(1,7/9)-Psi(1,4/5) 1771121439388302 m001 Zeta(1/2)^AlladiGrinstead*Conway 1771121441112111 k008 concat of cont frac of 1771121447124333 a007 Real Root Of -162*x^4+325*x^3+640*x^2-869*x-147 1771121447230706 r005 Re(z^2+c),c=-5/24+1/61*I,n=11 1771121447261956 m001 (Kac-Totient)/(GAMMA(7/12)+FeigenbaumAlpha) 1771121447778790 m002 -1-E^Pi/Pi^3+Pi^3-Sinh[Pi] 1771121451414119 k008 concat of cont frac of 1771121451815251 k006 concat of cont frac of 1771121454983199 m005 (1/2*Pi-3)/(6*Zeta(3)+6/7) 1771121456388021 a001 47/13*4181^(26/35) 1771121461171213 k008 concat of cont frac of 1771121461711151 k008 concat of cont frac of 1771121469007434 m001 (1-Pi*2^(1/2)/GAMMA(3/4))/(exp(1/Pi)+OneNinth) 1771121471202113 k006 concat of cont frac of 1771121476276106 l006 ln(1485/8728) 1771121479323714 m001 CopelandErdos+KomornikLoreti*Thue 1771121482772489 m001 (Zeta(1/2)+FeigenbaumC)/(Shi(1)+Zeta(5)) 1771121489898989 s001 sum(exp(-Pi/4)^n*A088856[n],n=1..infinity) 1771121494950821 r005 Im(z^2+c),c=-1/8+7/31*I,n=13 1771121504812111 k006 concat of cont frac of 1771121507867742 a007 Real Root Of -322*x^4-337*x^3-63*x^2-582*x+463 1771121510155161 k006 concat of cont frac of 1771121511262242 k007 concat of cont frac of 1771121512112025 k007 concat of cont frac of 1771121512113528 k008 concat of cont frac of 1771121512115114 k009 concat of cont frac of 1771121515762131 k007 concat of cont frac of 1771121517231112 k008 concat of cont frac of 1771121518342330 a007 Real Root Of 642*x^4+964*x^3+52*x^2+928*x+519 1771121521142725 p003 LerchPhi(1/3,2,344/131) 1771121521911124 k006 concat of cont frac of 1771121526522377 m001 (GAMMA(5/6)*FeigenbaumC+Salem)/FeigenbaumC 1771121529211168 k007 concat of cont frac of 1771121531215391 k007 concat of cont frac of 1771121531657878 m001 (sin(1)+Magata)/(MasserGramainDelta+Stephens) 1771121532595057 m001 FeigenbaumD^2/CopelandErdos/ln(TwinPrimes)^2 1771121534327636 m001 BesselI(0,2)^Conway/(1+3^(1/2))^(1/2) 1771121534652474 r005 Re(z^2+c),c=-11/56+7/47*I,n=8 1771121541761410 m001 (Champernowne+FeigenbaumMu)/(Zeta(1,-1)+Artin) 1771121542278345 a007 Real Root Of -274*x^4-195*x^3-224*x^2-920*x+686 1771121547195126 r009 Re(z^3+c),c=-73/110+43/57*I,n=2 1771121548348788 a007 Real Root Of 342*x^4+673*x^3-27*x^2-614*x-629 1771121556174755 b008 93*Sqrt[Sinh[2]] 1771121556515401 r002 9th iterates of z^2 + 1771121556874502 r005 Re(z^2+c),c=-9/50+35/52*I,n=28 1771121558311472 m001 TwinPrimes*exp(MinimumGamma)^2*(3^(1/3)) 1771121561033250 m001 (ln(3)-Conway)/(FellerTornier+GaussAGM) 1771121561317713 k006 concat of cont frac of 1771121564827667 a007 Real Root Of -418*x^4-929*x^3-827*x^2-354*x+919 1771121568111131 k008 concat of cont frac of 1771121570600050 a007 Real Root Of -787*x^4-835*x^3+959*x^2-93*x-68 1771121573596105 m005 (1/2*3^(1/2)+2/3)/(1/3*Pi-2/11) 1771121577754373 a003 sin(Pi*1/97)*sin(Pi*7/38) 1771121578564466 a007 Real Root Of -43*x^4-791*x^3-521*x^2+54*x+949 1771121582112814 k008 concat of cont frac of 1771121593233517 m001 Zeta(1/2)^(Psi(1,1/3)*GAMMA(2/3)) 1771121593417292 r009 Re(z^3+c),c=-5/66+37/46*I,n=40 1771121596121241 k008 concat of cont frac of 1771121598297200 m001 2*Pi/GAMMA(5/6)/(gamma(2)^(5^(1/2))) 1771121598319586 a007 Real Root Of -77*x^4+617*x^3+616*x^2-759*x+909 1771121601947149 a007 Real Root Of 433*x^4+342*x^3-535*x^2+90*x-523 1771121602237229 a005 (1/sin(64/169*Pi))^317 1771121611208364 a007 Real Root Of -321*x^4-48*x^3+638*x^2-657*x-273 1771121611212111 k007 concat of cont frac of 1771121613503812 k007 concat of cont frac of 1771121614411822 k008 concat of cont frac of 1771121619149421 k008 concat of cont frac of 1771121623141111 k006 concat of cont frac of 1771121624111291 k006 concat of cont frac of 1771121625147799 a001 (5+5^(1/2))^(269/25) 1771121626141151 k008 concat of cont frac of 1771121626647422 a007 Real Root Of 751*x^4+808*x^3-338*x^2+579*x-815 1771121627337002 m001 Pi^(1/2)*BesselI(1,1)^HeathBrownMoroz 1771121629713400 r002 12th iterates of z^2 + 1771121633881821 m006 (3/5/Pi+1/4)/(1/3*Pi^2-4/5) 1771121635514294 s002 sum(A164560[n]/(10^n-1),n=1..infinity) 1771121638965492 a003 cos(Pi*15/103)+sin(Pi*22/65) 1771121639784232 a007 Real Root Of 420*x^4+240*x^3-249*x^2+737*x-713 1771121651343649 a007 Real Root Of 773*x^4+744*x^3-997*x^2+134*x-108 1771121656271334 m001 arctan(1/3)/(Gompertz-PrimesInBinary) 1771121658675471 a007 Real Root Of -459*x^4-298*x^3+237*x^2-662*x+945 1771121659158304 m008 (1/6*Pi^3-3)/(1/5*Pi^2-3/4) 1771121661856112 k009 concat of cont frac of 1771121664658957 m004 -6+(25*Sqrt[5]*Pi)/3+5*E^(Sqrt[5]*Pi)*Pi 1771121666241411 k007 concat of cont frac of 1771121673298159 m005 (1/2*2^(1/2)+6/11)/(13/5+2*5^(1/2)) 1771121679781921 l006 ln(563/3309) 1771121681346901 l006 ln(2085/2489) 1771121681638058 b008 (17*ArcCsc[32])/3 1771121685322111 k008 concat of cont frac of 1771121691514902 r009 Re(z^3+c),c=-35/118+31/56*I,n=41 1771121692946467 h001 (6/11*exp(2)+5/11)/(5/8*exp(1)+5/6) 1771121700244581 a007 Real Root Of 476*x^4+475*x^3-140*x^2+718*x-334 1771121700881000 m001 (LaplaceLimit-ZetaP(4))/(FeigenbaumD+Kac) 1771121701469805 m005 (1/3*2^(1/2)+1/5)/(7/9*Catalan-1/3) 1771121702221682 r005 Im(z^2+c),c=-49/74+11/45*I,n=42 1771121711111582 k008 concat of cont frac of 1771121711122241 k008 concat of cont frac of 1771121711431223 k009 concat of cont frac of 1771121711432121 k008 concat of cont frac of 1771121714524698 r005 Re(z^2+c),c=-97/78+25/51*I,n=3 1771121716627642 h001 (2/11*exp(1)+3/7)/(7/12*exp(2)+9/10) 1771121716821142 k006 concat of cont frac of 1771121717353129 k006 concat of cont frac of 1771121721473252 m001 (ErdosBorwein-RenyiParking)/(Ei(1,1)-CareFree) 1771121723521215 k008 concat of cont frac of 1771121724129582 m001 (5^(1/2)+Zeta(5))/(-MertensB1+ZetaP(4)) 1771121724251313 k008 concat of cont frac of 1771121732301205 r002 16th iterates of z^2 + 1771121739369167 a007 Real Root Of 847*x^4+893*x^3-722*x^2+737*x+197 1771121742643962 m001 (sin(1/5*Pi)+Grothendieck)/(Totient-ZetaQ(4)) 1771121744903722 r005 Re(z^2+c),c=5/94+30/53*I,n=26 1771121745577088 m005 (1/3*Zeta(3)-1/8)/(7/8*5^(1/2)-2/5) 1771121749834795 m001 1/GAMMA(1/4)*MinimumGamma^2/exp(Zeta(3)) 1771121759909804 m001 RenyiParking+GAMMA(2/3)^ZetaP(4) 1771121761997793 a001 15127/3*8^(29/48) 1771121762130479 a008 Real Root of x^4-2*x^3-14*x^2-22*x-16 1771121776779653 m001 (MertensB1+TravellingSalesman)/Psi(2,1/3) 1771121777591788 r005 Re(z^2+c),c=7/22+11/41*I,n=49 1771121785815202 q001 6268/3539 1771121790406396 a007 Real Root Of 398*x^4+220*x^3-972*x^2-450*x-442 1771121791007228 r005 Re(z^2+c),c=-15/94+23/33*I,n=61 1771121794308811 m001 MertensB3^(Pi^(1/2))+OneNinth 1771121795375889 a007 Real Root Of 111*x^4-553*x^3+449*x^2-182*x+894 1771121801112131 k008 concat of cont frac of 1771121801896247 m001 ln(2+3^(1/2))^Mills/cos(1/5*Pi) 1771121804513317 s002 sum(A224348[n]/(n*2^n+1),n=1..infinity) 1771121805143614 m006 (3/4*exp(2*Pi)+5/6)/(1/3/Pi-1/3) 1771121806782871 r009 Re(z^3+c),c=-21/40+19/33*I,n=9 1771121808693140 a007 Real Root Of -699*x^4-876*x^3+886*x^2-83*x-915 1771121811138131 k008 concat of cont frac of 1771121811213111 k009 concat of cont frac of 1771121811322812 k008 concat of cont frac of 1771121815947861 r009 Re(z^3+c),c=-3/13+18/53*I,n=12 1771121818759196 p004 log(25561/4349) 1771121819289306 h001 (2/3*exp(1)+7/8)/(1/6*exp(2)+2/7) 1771121825346101 m001 (Ei(1,1)-gamma(3))/(Backhouse-FeigenbaumD) 1771121828308347 m001 CopelandErdos^Ei(1)*Trott2nd 1771121830686388 r005 Im(z^2+c),c=-43/90+23/64*I,n=14 1771121835063174 a007 Real Root Of 735*x^4+978*x^3-864*x^2-719*x-362 1771121836000239 m001 (ln(3)+Conway)/(FeigenbaumC-Weierstrass) 1771121841048999 m005 (1/2*Zeta(3)-7/8)/(7/12*Pi-2/7) 1771121841562121 k006 concat of cont frac of 1771121842711675 r002 4th iterates of z^2 + 1771121844892835 a001 47/2584*225851433717^(19/24) 1771121850179573 m001 (-KomornikLoreti+Paris)/(3^(1/2)-Khinchin) 1771121853908307 a007 Real Root Of -x^4+582*x^3+954*x^2+143*x+504 1771121856980303 a003 cos(Pi*2/57)/cos(Pi*9/29) 1771121862411142 k009 concat of cont frac of 1771121862486574 a005 (1/cos(2/37*Pi))^993 1771121865744326 r009 Re(z^3+c),c=-6/31+37/52*I,n=16 1771121872656120 a001 18/1597*121393^(4/17) 1771121878921480 m001 (LandauRamanujan2nd*Otter-Pi^(1/2))/Otter 1771121883656509 q001 5115/2888 1771121884512332 k006 concat of cont frac of 1771121884961822 m002 2+5*Pi+Tanh[Pi]/Pi^5 1771121886201011 a007 Real Root Of -590*x^4-663*x^3+23*x^2-909*x+440 1771121894621635 r005 Re(z^2+c),c=-11/60+45/56*I,n=16 1771121898524611 a007 Real Root Of -928*x^4-358*x^3+108*x^2+906*x+156 1771121907004530 l006 ln(1330/7817) 1771121908257304 m001 (Grothendieck+Kac)/(Zeta(5)+FellerTornier) 1771121911168872 h001 (1/12*exp(2)+4/7)/(5/6*exp(2)+6/11) 1771121911411251 k008 concat of cont frac of 1771121913109025 k006 concat of cont frac of 1771121918115361 k007 concat of cont frac of 1771121919331473 m001 arctan(1/2)^2*Robbin^2*ln(cosh(1))^2 1771121921742861 a007 Real Root Of 376*x^4+217*x^3-121*x^2+635*x-990 1771121922218608 r009 Re(z^3+c),c=-5/66+46/59*I,n=61 1771121925958172 m001 GAMMA(1/12)^2/ln(MertensB1)/GAMMA(1/6) 1771121928578868 r005 Im(z^2+c),c=35/94+7/37*I,n=57 1771121929731555 a007 Real Root Of -29*x^4+656*x^3-421*x^2-893*x-457 1771121931351744 a007 Real Root Of -68*x^4+388*x^3+972*x^2+25*x-180 1771121934389572 r005 Re(z^2+c),c=-7/60+20/23*I,n=3 1771121938337497 m001 Porter+ZetaP(4)^arctan(1/2) 1771121942289283 a007 Real Root Of 594*x^4-781*x^3+250*x^2-870*x+150 1771121944615675 a007 Real Root Of 592*x^4+704*x^3-779*x^2-172*x+225 1771121946761661 m002 -2/Pi-Log[Pi]+Tanh[Pi]/Pi^4 1771121948036157 s002 sum(A287104[n]/(2^n-1),n=1..infinity) 1771121951171157 k006 concat of cont frac of 1771121960528568 s002 sum(A061285[n]/(n^3*exp(n)+1),n=1..infinity) 1771121961195986 r009 Im(z^3+c),c=-53/126+1/41*I,n=31 1771121963588973 a007 Real Root Of -260*x^4-26*x^3+455*x^2-67*x+868 1771121966945144 m001 Si(Pi)/CareFree/ZetaR(2) 1771121968918275 r005 Re(z^2+c),c=-35/34+47/122*I,n=21 1771121971931681 a007 Real Root Of 335*x^4+13*x^3-356*x^2-549*x+108 1771121975278932 r005 Im(z^2+c),c=-16/27+7/29*I,n=14 1771121983817984 a007 Real Root Of 734*x^4+978*x^3-252*x^2+544*x-35 1771121998029031 r009 Im(z^3+c),c=-45/106+1/21*I,n=31 1771122007868292 m002 Pi+Cosh[Pi]+3*Tanh[Pi]^2 1771122008594610 a001 9/5473*433494437^(4/17) 1771122009527650 r005 Im(z^2+c),c=-65/122+8/25*I,n=55 1771122011414163 m001 Trott2nd-BesselI(1,2)-exp(-1/2*Pi) 1771122011488109 a001 18/75025*1548008755920^(4/17) 1771122012699635 p004 log(21341/3631) 1771122016569385 a001 3571/21*2178309^(19/24) 1771122021749006 m001 ZetaQ(3)^HeathBrownMoroz*Grothendieck 1771122023170830 m001 (Zeta(1,-1)+Cahen)/(Rabbit-TreeGrowth2nd) 1771122025213662 r004 Im(z^2+c),c=-49/46+5/24*I,z(0)=-1,n=46 1771122032508944 m003 1/2+(5*Sqrt[5])/16+Cosh[1/2+Sqrt[5]/2]^2/12 1771122033282232 r005 Im(z^2+c),c=-51/38+1/12*I,n=13 1771122034747719 m001 (-MertensB3+Sarnak)/(5^(1/2)+Zeta(3)) 1771122038444345 q001 3962/2237 1771122041351209 a007 Real Root Of 879*x^4+979*x^3-708*x^2+737*x+316 1771122045548896 r005 Re(z^2+c),c=-11/54+4/43*I,n=8 1771122052945037 a007 Real Root Of -718*x^4-698*x^3+938*x^2-451*x-554 1771122055652910 m005 (1/2*2^(1/2)+3/4)/(1/12*5^(1/2)+7/11) 1771122056562083 a003 cos(Pi*25/112)/cos(Pi*29/81) 1771122058090680 r002 32th iterates of z^2 + 1771122058607789 r005 Re(z^2+c),c=-31/27+11/53*I,n=20 1771122066106447 r009 Re(z^3+c),c=-5/19+4/9*I,n=7 1771122069856982 a005 (1/cos(2/227*Pi))^1492 1771122073693140 m001 FeigenbaumB/(MertensB1^BesselI(0,2)) 1771122073792410 l006 ln(767/4508) 1771122077095814 r009 Re(z^3+c),c=-3/32+38/51*I,n=23 1771122093632151 m005 (35/44+1/4*5^(1/2))/(1/12*3^(1/2)-10/11) 1771122095911041 a007 Real Root Of -151*x^4-93*x^3-73*x^2-196*x+851 1771122101112412 k009 concat of cont frac of 1771122109589350 m001 GAMMA(2/3)*(MasserGramain+Robbin) 1771122110385550 r005 Im(z^2+c),c=-17/18+26/153*I,n=7 1771122110976255 a007 Real Root Of 549*x^4+229*x^3-879*x^2+784*x+16 1771122111123311 k008 concat of cont frac of 1771122111135432 k008 concat of cont frac of 1771122111221141 k008 concat of cont frac of 1771122111222441 k009 concat of cont frac of 1771122111351221 k009 concat of cont frac of 1771122111555511 k007 concat of cont frac of 1771122112012211 k006 concat of cont frac of 1771122112113111 k007 concat of cont frac of 1771122113114161 k007 concat of cont frac of 1771122113121014 k007 concat of cont frac of 1771122113661113 k006 concat of cont frac of 1771122113956714 r005 Im(z^2+c),c=-1/102+4/21*I,n=5 1771122114115919 k008 concat of cont frac of 1771122116911111 k008 concat of cont frac of 1771122117111111 k007 concat of cont frac of 1771122119124831 a001 4/514229*34^(7/30) 1771122120820276 r009 Re(z^3+c),c=-83/110+32/59*I,n=3 1771122121011173 k008 concat of cont frac of 1771122121106141 k008 concat of cont frac of 1771122121221142 k008 concat of cont frac of 1771122121221611 k007 concat of cont frac of 1771122121224124 k007 concat of cont frac of 1771122121441151 k006 concat of cont frac of 1771122121615072 r005 Im(z^2+c),c=-19/14+71/203*I,n=5 1771122123228201 k006 concat of cont frac of 1771122126118211 k009 concat of cont frac of 1771122128211115 k008 concat of cont frac of 1771122128517683 m005 (-47/12+1/12*5^(1/2))/(3/4*Pi-1/4) 1771122128713112 k008 concat of cont frac of 1771122131112821 k006 concat of cont frac of 1771122138328227 r005 Im(z^2+c),c=31/118+3/62*I,n=42 1771122140762873 m005 (-7/12+1/4*5^(1/2))/(8/9*3^(1/2)-1/6) 1771122141912111 k008 concat of cont frac of 1771122142118243 k008 concat of cont frac of 1771122143131181 k008 concat of cont frac of 1771122148343228 m001 FeigenbaumKappa+polylog(4,1/2)^MertensB3 1771122151211291 k009 concat of cont frac of 1771122151223213 k008 concat of cont frac of 1771122151261111 k008 concat of cont frac of 1771122155375359 q001 6771/3823 1771122162202903 m001 (OneNinth-gamma)/(Sarnak+Tetranacci) 1771122163266614 a007 Real Root Of 259*x^4-939*x^3+403*x^2+659*x+237 1771122163267087 a007 Real Root Of -467*x^4-355*x^3+689*x^2+99*x+637 1771122164749929 a001 726103/6*47^(23/33) 1771122166256922 a001 987/9349*199^(30/31) 1771122167594205 m001 (sin(1)+CareFree)/(-FeigenbaumB+Niven) 1771122172521475 k007 concat of cont frac of 1771122173231331 k008 concat of cont frac of 1771122177655501 r005 Re(z^2+c),c=23/102+13/32*I,n=20 1771122179631595 a001 3/439204*199^(9/50) 1771122180696822 m001 ln(GAMMA(1/4))/Tribonacci^2/arctan(1/2)^2 1771122181129132 k009 concat of cont frac of 1771122181151313 k006 concat of cont frac of 1771122181213611 k006 concat of cont frac of 1771122181418152 k008 concat of cont frac of 1771122184334389 a001 46368/521*322^(11/12) 1771122185058678 p004 log(35153/5981) 1771122186121312 k007 concat of cont frac of 1771122187440111 m001 3^(1/2)/(FeigenbaumD-Niven) 1771122188322403 r005 Im(z^2+c),c=-67/90+4/49*I,n=17 1771122190493737 l006 ln(7891/9420) 1771122190966300 p001 sum((-1)^n/(549*n+329)/n/(64^n),n=1..infinity) 1771122191115791 k008 concat of cont frac of 1771122191615657 m005 (1/2*3^(1/2)-1/2)/(5/7*exp(1)+1/8) 1771122192232134 k008 concat of cont frac of 1771122193175323 a007 Real Root Of -254*x^4-223*x^3-239*x^2-799*x+595 1771122198355213 a007 Real Root Of 532*x^4+742*x^3-99*x^2+529*x+135 1771122199684524 r002 3th iterates of z^2 + 1771122202117527 a001 41/48*9227465^(10/21) 1771122203823662 m001 Pi/(Psi(1,1/3)/Psi(2,1/3)-BesselI(1,2)) 1771122204872218 r005 Im(z^2+c),c=-9/34+45/59*I,n=26 1771122211131231 k006 concat of cont frac of 1771122211212152 k008 concat of cont frac of 1771122211241523 k009 concat of cont frac of 1771122213133132 k008 concat of cont frac of 1771122213162131 k006 concat of cont frac of 1771122213498261 a007 Real Root Of 160*x^4-81*x^3+126*x^2+919*x-792 1771122215112311 k009 concat of cont frac of 1771122220113181 k008 concat of cont frac of 1771122220458255 m001 (GAMMA(13/24)-exp(Pi))/(KhinchinLevy+Trott2nd) 1771122221131199 k008 concat of cont frac of 1771122221257891 r009 Re(z^3+c),c=-37/110+7/10*I,n=5 1771122221612115 k008 concat of cont frac of 1771122222312412 k008 concat of cont frac of 1771122226101217 k008 concat of cont frac of 1771122226753175 m001 RenyiParking-ZetaP(2)^Paris 1771122226999589 r005 Im(z^2+c),c=-3/4+19/180*I,n=9 1771122228258272 r005 Im(z^2+c),c=-21/34+7/20*I,n=18 1771122230467038 r005 Im(z^2+c),c=-25/27+5/31*I,n=45 1771122231123211 k009 concat of cont frac of 1771122231172211 k008 concat of cont frac of 1771122231705614 m001 (gamma(2)+gamma(3))/(TreeGrowth2nd-ZetaQ(3)) 1771122241212121 k009 concat of cont frac of 1771122251681112 k006 concat of cont frac of 1771122256957615 p003 LerchPhi(1/25,10,17/18) 1771122262654402 a007 Real Root Of -778*x^4-931*x^3+921*x^2+201*x-50 1771122264887203 m001 (Grothendieck-MasserGramainDelta)^cos(1) 1771122267773276 r005 Im(z^2+c),c=-131/110+13/58*I,n=5 1771122273485215 r005 Im(z^2+c),c=-16/31+1/33*I,n=21 1771122280320882 m004 2+5*Pi+2*Sech[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 1771122280578799 m004 2+5*Pi+(4*Tan[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 1771122280836716 m004 2+5*Pi+2*Csch[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 1771122281111112 k007 concat of cont frac of 1771122281135611 k008 concat of cont frac of 1771122282241521 k008 concat of cont frac of 1771122283436442 a007 Real Root Of -462*x^4-817*x^3-264*x^2-799*x-580 1771122286312274 m001 (BesselJ(0,1)-Stephens)/(-Tetranacci+Thue) 1771122288462414 r009 Re(z^3+c),c=-21/64+40/63*I,n=62 1771122290461033 r009 Re(z^3+c),c=-5/31+21/38*I,n=2 1771122291928211 k007 concat of cont frac of 1771122295116413 k006 concat of cont frac of 1771122295526182 s002 sum(A249931[n]/((2*n+1)!),n=1..infinity) 1771122295829558 r005 Re(z^2+c),c=-5/56+8/17*I,n=22 1771122297086022 a007 Real Root Of 701*x^4+990*x^3-545*x^2-651*x-841 1771122300807312 a007 Real Root Of -26*x^4-433*x^3+512*x^2+442*x-41 1771122302245383 l006 ln(971/5707) 1771122311111115 k006 concat of cont frac of 1771122311121322 k006 concat of cont frac of 1771122312621316 k008 concat of cont frac of 1771122314229052 a001 5778/5*5^(13/49) 1771122315113132 k009 concat of cont frac of 1771122315966376 a007 Real Root Of 530*x^4+449*x^3-570*x^2+207*x-566 1771122318101111 k007 concat of cont frac of 1771122318203221 k006 concat of cont frac of 1771122320302648 q001 2809/1586 1771122321521111 k009 concat of cont frac of 1771122321742454 k007 concat of cont frac of 1771122322112623 k008 concat of cont frac of 1771122323741601 k006 concat of cont frac of 1771122329863850 m001 1/sin(Pi/5)^2/cos(Pi/12)/exp(sqrt(2))^2 1771122330621254 m001 (Magata+Paris)/(2^(1/2)+BesselI(1,1)) 1771122331516413 k008 concat of cont frac of 1771122332108400 m001 arctan(1/2)/(FeigenbaumC^BesselI(1,2)) 1771122332983661 m001 PisotVijayaraghavan*ln(Paris)*gamma 1771122336815028 a008 Real Root of (-3+7*x-4*x^2-7*x^4+x^8) 1771122341134597 k008 concat of cont frac of 1771122342217111 k006 concat of cont frac of 1771122347995055 m005 (1/3*3^(1/2)-1/3)/(4/7*5^(1/2)+1/10) 1771122351331511 k008 concat of cont frac of 1771122353230504 a007 Real Root Of 597*x^4+928*x^3-151*x^2-188*x-578 1771122354893586 a007 Real Root Of 350*x^4+657*x^3+171*x^2+130*x-100 1771122357453179 m001 1/FeigenbaumAlpha^2*Conway/ln(Rabbit)^2 1771122364019633 m001 (-Gompertz+MertensB2)/(exp(Pi)+ErdosBorwein) 1771122370330985 m005 (1/2*5^(1/2)+5/8)/(1/2*exp(1)-3/8) 1771122372033151 m005 (1/4*gamma-5)/(Pi-2/5) 1771122373334094 l006 ln(5806/6931) 1771122382332024 a007 Real Root Of 556*x^4-687*x^3-421*x^2-671*x-110 1771122386116238 r005 Im(z^2+c),c=-9/10+131/162*I,n=3 1771122387879343 h001 (3/4*exp(1)+3/11)/(3/8*exp(1)+2/7) 1771122394156940 a001 18/1597*165580141^(7/18) 1771122394221173 k007 concat of cont frac of 1771122397955682 h001 (-2*exp(1/2)-3)/(-4*exp(2)-6) 1771122398668060 m001 (Zeta(1/2)+KhinchinHarmonic)/ln(5) 1771122405700170 a003 cos(Pi*1/8)+sin(Pi*37/115) 1771122410254359 r005 Re(z^2+c),c=-19/82+37/50*I,n=19 1771122412211811 k008 concat of cont frac of 1771122413952761 m001 DuboisRaymond-ln(gamma)^(5^(1/2)) 1771122416213594 k008 concat of cont frac of 1771122417781711 m001 (exp(1)-sin(1/12*Pi))^HardyLittlewoodC3 1771122421111315 k008 concat of cont frac of 1771122423153444 s002 sum(A224348[n]/(n*2^n-1),n=1..infinity) 1771122424121633 a007 Real Root Of -238*x^4-188*x^3+518*x^2+413*x+404 1771122429448135 k006 concat of cont frac of 1771122447022794 m001 ThueMorse^BesselI(1,2)/(ThueMorse^(5^(1/2))) 1771122447022794 m001 ThueMorse^BesselI(1,2)/(ThueMorse^sqrt(5)) 1771122447241167 k007 concat of cont frac of 1771122451371678 l006 ln(1175/6906) 1771122454078213 r005 Im(z^2+c),c=-83/86+3/17*I,n=26 1771122459515627 a001 646/6119*199^(30/31) 1771122460128137 a007 Real Root Of -349*x^4-693*x^3-64*x^2+497*x+665 1771122461122263 k007 concat of cont frac of 1771122464621613 a007 Real Root Of -255*x^4-706*x^3-813*x^2-87*x+983 1771122465801479 a007 Real Root Of 587*x^4+446*x^3-663*x^2+802*x+202 1771122466045226 a003 cos(Pi*1/116)+cos(Pi*9/41) 1771122475191651 p004 log(35729/6079) 1771122479184699 r002 53th iterates of z^2 + 1771122481421012 k009 concat of cont frac of 1771122482735507 s002 sum(A085623[n]/(n*exp(n)-1),n=1..infinity) 1771122484073051 a007 Real Root Of 373*x^4-356*x^3-384*x^2-817*x-135 1771122485203828 m001 exp(CareFree)/Artin/MadelungNaCl^2 1771122487662537 h001 (8/11*exp(1)+5/8)/(1/8*exp(2)+6/11) 1771122497427429 r005 Re(z^2+c),c=-29/34+1/43*I,n=18 1771122502301495 a001 6765/64079*199^(30/31) 1771122504374725 h001 (1/3*exp(2)+1/12)/(3/7*exp(1)+3/11) 1771122505181725 h001 (-7*exp(2)+4)/(-5*exp(2)+10) 1771122508543869 a001 17711/167761*199^(30/31) 1771122508848417 m001 (Chi(1)+MertensB2)/Shi(1) 1771122509454619 a001 11592/109801*199^(30/31) 1771122509587495 a001 121393/1149851*199^(30/31) 1771122509606882 a001 317811/3010349*199^(30/31) 1771122509611458 a001 514229/4870847*199^(30/31) 1771122509611898 a001 161/416020*28657^(19/51) 1771122509618863 a001 98209/930249*199^(30/31) 1771122509669618 a001 75025/710647*199^(30/31) 1771122510017493 a001 28657/271443*199^(30/31) 1771122510439579 g007 Psi(2,3/8)-Psi(2,7/11)-Psi(2,5/8)-Psi(2,5/6) 1771122512211122 k008 concat of cont frac of 1771122512401868 a001 5473/51841*199^(30/31) 1771122513582345 r005 Im(z^2+c),c=-13/18+17/59*I,n=56 1771122517813211 k008 concat of cont frac of 1771122519007465 m001 (exp(1)+ln(5))/(-Riemann3rdZero+Stephens) 1771122520117995 m001 GAMMA(5/6)*exp(MertensB1)^2/Zeta(5)^2 1771122521215115 k006 concat of cont frac of 1771122524171133 a007 Real Root Of 16*x^4-398*x^3-436*x^2+389*x-312 1771122527859707 r005 Re(z^2+c),c=-5/94+17/33*I,n=21 1771122528393699 b008 57*30^(1/3) 1771122528744615 a001 4181/39603*199^(30/31) 1771122533211001 a001 1/2576*956722026041^(7/18) 1771122533398656 a007 Real Root Of -43*x^4+522*x^3+767*x^2-462*x+99 1771122549548930 m001 CopelandErdos-KhinchinHarmonic+MertensB3 1771122554772025 m005 (31/28+1/4*5^(1/2))/(7/12*5^(1/2)-4/11) 1771122556376474 l006 ln(1379/8105) 1771122559492220 r005 Im(z^2+c),c=-47/66+15/52*I,n=26 1771122564524613 k008 concat of cont frac of 1771122565571075 m001 Riemann2ndZero^2*ln(Backhouse)/Zeta(1,2) 1771122565801495 m001 (arctan(1/2)+Grothendieck)/(GAMMA(3/4)-ln(3)) 1771122570408568 q001 4465/2521 1771122571013263 h001 (7/9*exp(1)+1/9)/(1/8*exp(1)+11/12) 1771122572033470 r005 Im(z^2+c),c=-59/58+6/31*I,n=63 1771122575080920 m001 1/cos(Pi/5)^2*GAMMA(3/4)^2/exp(sin(Pi/12)) 1771122577360675 a008 Real Root of x^4-x^3+4*x^2+92*x+135 1771122579648880 h001 (5/12*exp(1)+1/12)/(7/8*exp(2)+2/5) 1771122581050198 m001 (Ei(1,1)*Riemann3rdZero-Shi(1))/Riemann3rdZero 1771122588651557 r009 Im(z^3+c),c=-25/48+7/44*I,n=6 1771122588891925 r009 Im(z^3+c),c=-7/26+4/27*I,n=2 1771122590715574 m001 (-CopelandErdos+Kolakoski)/(2^(1/3)+Ei(1)) 1771122604357988 a007 Real Root Of -557*x^4-493*x^3+629*x^2-368*x+117 1771122605405558 r005 Im(z^2+c),c=-23/42+12/37*I,n=50 1771122605566326 r005 Im(z^2+c),c=-25/58+14/47*I,n=20 1771122611479114 k007 concat of cont frac of 1771122618056538 r009 Im(z^3+c),c=-103/118+17/28*I,n=2 1771122622200219 r005 Im(z^2+c),c=-13/14+31/191*I,n=64 1771122623056528 r005 Re(z^2+c),c=-11/106+48/61*I,n=48 1771122628998959 r005 Re(z^2+c),c=-93/110+2/31*I,n=18 1771122631061164 m005 (1/3*3^(1/2)-3/5)/(1/11*exp(1)-3/8) 1771122632295593 s002 sum(A087610[n]/((2^n+1)/n),n=1..infinity) 1771122634317488 l006 ln(1583/9304) 1771122640759471 a001 1597/15127*199^(30/31) 1771122653674567 a003 cos(Pi*13/102)+cos(Pi*3/17) 1771122660453964 m001 polylog(4,1/2)*(Kolakoski-ZetaP(2)) 1771122661458949 r005 Re(z^2+c),c=-36/29+5/44*I,n=20 1771122670099674 a007 Real Root Of -623*x^4-636*x^3+498*x^2-67*x+916 1771122670654517 a007 Real Root Of 196*x^4-x^3-420*x^2+495*x+260 1771122671191470 m006 (2/Pi-4/5)/(5/6*Pi^2+1) 1771122680856457 h001 (-9*exp(-2)-4)/(-3*exp(1/2)+2) 1771122684685855 a007 Real Root Of 718*x^4+797*x^3-927*x^2-390*x-420 1771122685185185 q001 6121/3456 1771122685354771 m001 (Cahen-Pi)^GolombDickman 1771122685354771 m001 (Pi-Cahen)^GolombDickman 1771122685453413 a007 Real Root Of 27*x^4-327*x^3-515*x^2+127*x-242 1771122689965489 m001 1/ln(Riemann2ndZero)/Champernowne/GAMMA(3/4)^2 1771122701807686 a007 Real Root Of -4*x^4-709*x^3-93*x^2+805*x-923 1771122705121092 m001 GAMMA(1/4)*(MadelungNaCl-sqrt(5)) 1771122705121092 m001 Pi*2^(1/2)/GAMMA(3/4)*(5^(1/2)-MadelungNaCl) 1771122706812100 m005 (2/5*Catalan-3)/(3/4*Catalan+4/5) 1771122708116894 m001 (2^(1/2))^BesselI(1,1)*Backhouse 1771122708116894 m001 sqrt(2)^BesselI(1,1)*Backhouse 1771122709951032 m006 (1/5*exp(2*Pi)+1/4)/(1/3/Pi+1/2) 1771122713012061 m001 GAMMA(2/3)^GAMMA(3/4)*GAMMA(2/3)^TwinPrimes 1771122714381434 a001 87403803/89*21^(19/20) 1771122714500646 m001 (Pi^(1/2)-ZetaQ(2))^GAMMA(11/12) 1771122714521371 k007 concat of cont frac of 1771122719211531 k007 concat of cont frac of 1771122719800889 m001 GAMMA(23/24)-Zeta(5)+Grothendieck 1771122723182281 a007 Real Root Of -557*x^4-747*x^3+267*x^2-812*x-945 1771122724121421 k008 concat of cont frac of 1771122724844495 a001 2/17711*610^(4/57) 1771122728033351 r005 Re(z^2+c),c=-91/110+5/47*I,n=58 1771122729069450 m001 (BesselI(1,1)-Pi^(1/2))/(ln(2)-exp(1/Pi)) 1771122730958884 m005 (1/3*Pi+1/10)/(1/11*5^(1/2)+4/9) 1771122732111213 k006 concat of cont frac of 1771122733109129 m001 (BesselI(1,2)-Catalan)/(FeigenbaumAlpha+Mills) 1771122739113420 m001 ln(RenyiParking)/Conway/(2^(1/3)) 1771122740010166 r005 Im(z^2+c),c=-81/58+7/61*I,n=14 1771122741633795 a007 Real Root Of 150*x^4+238*x^3-382*x^2-950*x-638 1771122747294955 r005 Im(z^2+c),c=-43/42+9/40*I,n=5 1771122754317291 m001 (5^(1/2)+GAMMA(19/24))/(Lehmer+MertensB3) 1771122761077502 l006 ln(3721/4442) 1771122769014581 r005 Im(z^2+c),c=-15/14+25/121*I,n=41 1771122772135319 r005 Re(z^2+c),c=-6/29+2/37*I,n=9 1771122789593925 m001 (Stephens+TreeGrowth2nd)/(5^(1/2)-Psi(2,1/3)) 1771122790497824 m001 (GAMMA(2/3)-ln(3)*Bloch)/Bloch 1771122791074995 m001 (-Gompertz+LaplaceLimit)/(cos(1)+Zeta(1,-1)) 1771122791804553 m005 (3/20+1/4*5^(1/2))/(1/4*3^(1/2)-5/6) 1771122793544299 g002 Psi(11/12)+Psi(5/12)+Psi(5/8)-Psi(4/11) 1771122803944037 m001 exp(BesselJ(0,1))^2*GolombDickman^2/Zeta(7)^2 1771122808226868 m002 2/3+3/Pi^4+ProductLog[Pi] 1771122808439320 m001 1/exp(TreeGrowth2nd)/Niven/Zeta(1/2)^2 1771122812112512 k008 concat of cont frac of 1771122822011131 k008 concat of cont frac of 1771122839918958 r005 Re(z^2+c),c=-15/106+43/50*I,n=25 1771122843009869 a007 Real Root Of 794*x^4+843*x^3-923*x^2+288*x+276 1771122843455428 m005 (1/3*3^(1/2)+3/7)/(1/4*exp(1)+5) 1771122846775909 a003 sin(Pi*7/111)*sin(Pi*31/87) 1771122852256208 a003 cos(Pi*4/71)+cos(Pi*18/85) 1771122854020959 m001 (Lehmer-TwinPrimes)/(GAMMA(3/4)-ErdosBorwein) 1771122855578741 m001 (Si(Pi)+MasserGramain)^GolombDickman 1771122859510433 a007 Real Root Of -514*x^4-894*x^3+194*x^2-252*x-964 1771122862689142 a007 Real Root Of 933*x^4+927*x^3-741*x^2+808*x-275 1771122866738242 m001 (Chi(1)-Shi(1))/(-BesselI(0,1)+Trott2nd) 1771122866738242 m001 Ei(1,1)/(BesselI(0,1)-Trott2nd) 1771122867726562 m001 KomornikLoreti/ln(Pi)/QuadraticClass 1771122868792921 r009 Re(z^3+c),c=-13/74+2/23*I,n=2 1771122874162325 r005 Im(z^2+c),c=-29/62+13/42*I,n=21 1771122894878791 m001 MertensB1*(ArtinRank2-exp(1/Pi)) 1771122895456149 h003 exp(Pi*(11+1/19*5^(3/4))) 1771122902799164 m001 (KhinchinHarmonic-Rabbit)/(Stephens+ZetaQ(3)) 1771122906483053 b008 7^Tan[2/7] 1771122909703727 m001 (exp(Pi)+gamma)/(-Zeta(1,-1)+GAMMA(19/24)) 1771122916694010 m001 (2*Pi/GAMMA(5/6))^GAMMA(2/3)/gamma 1771122916694010 m001 GAMMA(1/6)^GAMMA(2/3)/gamma 1771122918760285 r005 Im(z^2+c),c=-33/86+13/45*I,n=33 1771122931342620 m001 (GlaisherKinkelin+Porter)^BesselI(1,1) 1771122935486080 m002 5-E^Pi+(2*ProductLog[Pi])/5 1771122942265095 r005 Im(z^2+c),c=-1/13+23/33*I,n=39 1771122942658480 a007 Real Root Of -39*x^4-743*x^3-930*x^2-82*x-80 1771122946570809 r005 Im(z^2+c),c=35/106+4/59*I,n=49 1771122956406240 a007 Real Root Of -681*x^4+837*x^3-588*x^2+916*x+186 1771122961750675 m001 ZetaQ(2)^Niven*ZetaP(2)^Niven 1771122971513438 b008 6*Sqrt[3*E]+EulerGamma 1771122974541872 a007 Real Root Of 677*x^4+34*x^3+183*x^2-394*x-76 1771122975165079 m005 (1/2*2^(1/2)+5/11)/(9/10*3^(1/2)+5) 1771122976723593 m001 (CopelandErdos-ZetaR(2))^Rabbit 1771122977813256 a007 Real Root Of 531*x^4+925*x^3+64*x^2+648*x+861 1771122983471986 m001 (Salem+TreeGrowth2nd)/(ln(2)+Ei(1,1)) 1771122985061664 m001 (MasserGramainDelta+Mills)/(Pi-exp(1/Pi)) 1771122991393389 a001 11/5702887*433494437^(5/22) 1771122992063955 a001 11/514229*10946^(5/22) 1771122994652406 q001 1656/935 1771122994652406 r005 Im(z^2+c),c=-143/102+54/55*I,n=2 1771123000548340 a007 Real Root Of -338*x^4-49*x^3+345*x^2-732*x+675 1771123008898336 a003 cos(Pi*18/119)+cos(Pi*5/32) 1771123009890387 a001 377/521*7^(23/50) 1771123011448852 m001 1/ln(PrimesInBinary)/LaplaceLimit^2/Zeta(1/2) 1771123014454803 m001 1/ln(GAMMA(3/4))*DuboisRaymond/cos(1) 1771123019027440 p004 log(34483/5867) 1771123019661780 m005 (1/2*Zeta(3)+5/11)/(5/9*gamma-11/12) 1771123020493875 a007 Real Root Of 146*x^4+541*x^3+960*x^2+798*x-29 1771123029411498 r005 Re(z^2+c),c=-21/122+13/47*I,n=6 1771123041978539 m001 (Shi(1)*MertensB3+arctan(1/2))/Shi(1) 1771123050302122 m001 KomornikLoreti/(MertensB1+RenyiParking) 1771123053300877 a001 14930352/2207*123^(1/5) 1771123054079896 m001 Mills*(Riemann1stZero-gamma) 1771123056659754 r002 3th iterates of z^2 + 1771123056971655 a003 sin(Pi*3/86)/cos(Pi*17/59) 1771123062601413 m001 (-ln(3)+2/3)/(-gamma+1/3) 1771123075846200 m001 MasserGramainDelta^(AlladiGrinstead*Salem) 1771123081165252 k006 concat of cont frac of 1771123086152987 s002 sum(A075438[n]/((2^n-1)/n),n=1..infinity) 1771123090368883 m001 KomornikLoreti^exp(1/exp(1))/Mills 1771123093894600 r009 Re(z^3+c),c=-1/122+53/63*I,n=22 1771123095058149 m001 1/log(1+sqrt(2))^2/cosh(1)^2*ln(sqrt(Pi))^2 1771123103159201 m002 2+Pi^(-5)+5*Pi 1771123103189666 m001 Robbin^2*exp(FeigenbaumC)/cosh(1) 1771123106850635 g007 -2*Psi(13/10)-Psi(2,3/5)-Psi(2,2/5) 1771123111125191 k006 concat of cont frac of 1771123111153813 k007 concat of cont frac of 1771123112113713 k008 concat of cont frac of 1771123112115111 k006 concat of cont frac of 1771123112115214 k008 concat of cont frac of 1771123113111712 k006 concat of cont frac of 1771123113232512 k007 concat of cont frac of 1771123114725281 k008 concat of cont frac of 1771123116587393 m001 1/BesselK(1,1)*Salem^2*ln(Catalan)^2 1771123116861526 a007 Real Root Of -104*x^4-290*x^3-653*x^2+864*x+172 1771123117814314 k007 concat of cont frac of 1771123119421111 k008 concat of cont frac of 1771123120115812 k009 concat of cont frac of 1771123121121172 k008 concat of cont frac of 1771123123432782 a007 Real Root Of 53*x^4+964*x^3+393*x^2-981*x-66 1771123123493251 a008 Real Root of (1+6*x+x^2-6*x^3-x^4+6*x^5) 1771123123827177 m001 1/GAMMA(5/6)^2*exp(GAMMA(23/24))*cos(Pi/5) 1771123125391111 k006 concat of cont frac of 1771123131231421 k007 concat of cont frac of 1771123132759393 r005 Re(z^2+c),c=-7/78+7/15*I,n=35 1771123133692582 r009 Re(z^3+c),c=-37/122+14/25*I,n=18 1771123134231142 k008 concat of cont frac of 1771123135511141 k008 concat of cont frac of 1771123136149797 r005 Im(z^2+c),c=-19/18+27/127*I,n=8 1771123141112411 k007 concat of cont frac of 1771123143914694 a001 192900153618/13*701408733^(8/23) 1771123144943018 a001 9062201101803/13*10946^(8/23) 1771123152313834 a003 cos(Pi*11/87)/sin(Pi*19/109) 1771123153513321 k007 concat of cont frac of 1771123154442664 a007 Real Root Of 191*x^4-335*x^3-943*x^2+50*x-694 1771123157034342 r002 7th iterates of z^2 + 1771123158978471 m001 2^(1/3)*(AlladiGrinstead+Gompertz) 1771123159428112 m001 HardyLittlewoodC4^(FeigenbaumAlpha/Niven) 1771123161183297 l006 ln(204/1199) 1771123162124111 k006 concat of cont frac of 1771123163074934 r005 Im(z^2+c),c=-1/118+39/49*I,n=27 1771123171123131 k009 concat of cont frac of 1771123174057597 a007 Real Root Of 692*x^4+413*x^3-824*x^2+542*x-970 1771123174239364 a007 Real Root Of -618*x^4-835*x^3+410*x^2+454*x+960 1771123174939315 m001 (ln(gamma)+Gompertz)/(LandauRamanujan-Magata) 1771123175637715 a007 Real Root Of -298*x^4-136*x^3+663*x^2-153*x-174 1771123181319827 l006 ln(5357/6395) 1771123182553725 a007 Real Root Of -220*x^4-488*x^3-312*x^2-309*x-115 1771123189144303 m002 E^Pi/Pi^3+(E^Pi*Pi^5)/4 1771123195913829 m001 1/Rabbit/ln(CareFree)^2*cosh(1) 1771123211125312 k006 concat of cont frac of 1771123211242024 k006 concat of cont frac of 1771123212312219 k006 concat of cont frac of 1771123216403307 r009 Re(z^3+c),c=-27/86+29/43*I,n=5 1771123217564938 m001 (ln(2)/ln(10)-Conway*ZetaQ(2))/Conway 1771123217829109 m001 arctan(1/2)*GAMMA(23/24)/Khinchin 1771123217829109 m001 arctan(1/2)/Khinchin*GAMMA(23/24) 1771123224290791 m001 ln(Pi)^(ReciprocalFibonacci/Kolakoski) 1771123225636911 m001 Ei(1,1)/((Pi^(1/2))^Artin) 1771123228001306 h001 (5/12*exp(2)+7/8)/(2/11*exp(2)+8/9) 1771123231706880 m001 (PlouffeB+ZetaQ(2))/(Zeta(3)+KomornikLoreti) 1771123240937153 m001 MinimumGamma/(MasserGramain^TreeGrowth2nd) 1771123240965225 m005 (1/2*2^(1/2)+2/9)/(1/11*exp(1)+5) 1771123248756323 r005 Im(z^2+c),c=-10/23+24/49*I,n=12 1771123249654473 m001 (Champernowne+GolombDickman*OneNinth)/OneNinth 1771123250095208 r005 Im(z^2+c),c=-1+46/243*I,n=13 1771123251114161 k007 concat of cont frac of 1771123252611195 m006 (3/4*exp(2*Pi)+1)/(4/Pi+1) 1771123260437375 q001 7127/4024 1771123265972939 a007 Real Root Of 684*x^4+450*x^3-789*x^2+566*x-753 1771123267648854 m001 (Catalan+GAMMA(2/3))/(ln(gamma)+FeigenbaumC) 1771123268984786 r005 Im(z^2+c),c=31/118+3/62*I,n=47 1771123270097433 m001 (sin(Pi/12)+2/3)/(GAMMA(3/4)+4) 1771123271131920 k009 concat of cont frac of 1771123273839305 r005 Im(z^2+c),c=-15/14+44/247*I,n=4 1771123276167752 m002 Log[Pi]/2+(Pi*Log[Pi])/3 1771123283444473 m001 Pi^ln(2)-TreeGrowth2nd 1771123288761537 a007 Real Root Of 278*x^4+155*x^3-639*x^2+398*x+835 1771123299256621 a007 Real Root Of -178*x^4+222*x^3+960*x^2+343*x+581 1771123303233902 r005 Re(z^2+c),c=-9/86+24/55*I,n=36 1771123307484511 m001 (Totient-Trott2nd)/(KhinchinLevy-Tetranacci) 1771123311211121 k007 concat of cont frac of 1771123313314220 k008 concat of cont frac of 1771123315659476 m001 Psi(2,1/3)^MertensB2*Riemann3rdZero^MertensB2 1771123319121634 m001 (ln(5)-Zeta(1/2))/(Zeta(1,2)+LandauRamanujan) 1771123321351113 k008 concat of cont frac of 1771123321405682 s002 sum(A008699[n]/(exp(pi*n)-1),n=1..infinity) 1771123324579534 r005 Re(z^2+c),c=-11/74+20/37*I,n=9 1771123327652250 m005 (1/2*gamma-9/11)/(2/5*Zeta(3)-2/11) 1771123332141266 m005 (1/3*Catalan-2/5)/(2*exp(1)-1/11) 1771123334844943 r002 58th iterates of z^2 + 1771123335781520 a007 Real Root Of 224*x^4-799*x^3+331*x^2+325*x+621 1771123339268918 m001 1/Ei(1)^2*ln(KhintchineLevy)/GAMMA(13/24)^2 1771123340887018 q001 5471/3089 1771123347207082 s002 sum(A080645[n]/((pi^n-1)/n),n=1..infinity) 1771123349436737 a007 Real Root Of -407*x^4-197*x^3+750*x^2-508*x-342 1771123350177361 a007 Real Root Of 733*x^4+996*x^3-259*x^2+246*x-431 1771123351311341 k008 concat of cont frac of 1771123363866912 a001 39088169/5778*123^(1/5) 1771123377785998 a003 cos(Pi*7/71)+cos(Pi*22/113) 1771123379932063 a007 Real Root Of -729*x^4-942*x^3+325*x^2-370*x+265 1771123381017138 a007 Real Root Of 515*x^4+60*x^3-981*x^2+638*x-527 1771123384192751 a007 Real Root Of -851*x^4-72*x^3+203*x^2+530*x-99 1771123385050353 r009 Re(z^3+c),c=-13/60+17/59*I,n=5 1771123396994708 m001 gamma(3)/arctan(1/2)/Riemann3rdZero 1771123402668234 m005 (1/2*2^(1/2)+4/7)/(3/5*exp(1)-10/11) 1771123404932245 l006 ln(6993/8348) 1771123405300771 a007 Real Root Of -422*x^4-35*x^3+855*x^2-568*x+270 1771123406310324 m006 (5/6*Pi^2+2/5)/(Pi^2-5) 1771123406310324 m008 (5/6*Pi^2+2/5)/(Pi^2-5) 1771123408520692 a001 305/2889*199^(30/31) 1771123409177896 a001 6765*123^(1/5) 1771123415788679 a001 267914296/39603*123^(1/5) 1771123416753179 a001 701408733/103682*123^(1/5) 1771123416893898 a001 1836311903/271443*123^(1/5) 1771123416914429 a001 686789568/101521*123^(1/5) 1771123416917424 a001 12586269025/1860498*123^(1/5) 1771123416917861 a001 32951280099/4870847*123^(1/5) 1771123416917925 a001 86267571272/12752043*123^(1/5) 1771123416917934 a001 32264490531/4769326*123^(1/5) 1771123416917936 a001 591286729879/87403803*123^(1/5) 1771123416917936 a001 1548008755920/228826127*123^(1/5) 1771123416917936 a001 4052739537881/599074578*123^(1/5) 1771123416917936 a001 1515744265389/224056801*123^(1/5) 1771123416917936 a001 6557470319842/969323029*123^(1/5) 1771123416917936 a001 2504730781961/370248451*123^(1/5) 1771123416917936 a001 956722026041/141422324*123^(1/5) 1771123416917936 a001 365435296162/54018521*123^(1/5) 1771123416917940 a001 139583862445/20633239*123^(1/5) 1771123416917964 a001 53316291173/7881196*123^(1/5) 1771123416918131 a001 20365011074/3010349*123^(1/5) 1771123416919275 a001 7778742049/1149851*123^(1/5) 1771123416927117 a001 2971215073/439204*123^(1/5) 1771123416980867 a001 1134903170/167761*123^(1/5) 1771123417349273 a001 433494437/64079*123^(1/5) 1771123419874368 a001 165580141/24476*123^(1/5) 1771123425530330 m001 FeigenbaumAlpha*FeigenbaumB/Salem 1771123429581497 a007 Real Root Of -442*x^4-900*x^3-529*x^2-981*x-729 1771123437181624 a001 63245986/9349*123^(1/5) 1771123453436064 r009 Re(z^3+c),c=-47/118+37/53*I,n=10 1771123453620393 m001 (2^(1/2)-Sierpinski)^(Pi*2^(1/2)/GAMMA(3/4)) 1771123456960010 r002 5th iterates of z^2 + 1771123461953449 m002 -1+3*Pi^3+Pi^4/Log[Pi] 1771123468545240 m005 (27/44+1/4*5^(1/2))/(2/9*Zeta(3)-1/3) 1771123481846378 a007 Real Root Of 214*x^4+126*x^3-154*x^2+19*x-889 1771123491179201 q001 3815/2154 1771123492155337 m009 (3/2*Pi^2+2/5)/(3/5*Psi(1,3/4)-2/3) 1771123498155813 r005 Re(z^2+c),c=-15/94+23/33*I,n=55 1771123504207113 m005 (1/2*2^(1/2)-7/9)/(8/9*Catalan-9/11) 1771123508236768 r005 Im(z^2+c),c=-11/23+1/11*I,n=4 1771123510216213 k006 concat of cont frac of 1771123511336111 k008 concat of cont frac of 1771123511414866 m001 (Otter+StronglyCareFree)/(Pi-MertensB2) 1771123511690258 m001 LambertW(1)+GAMMA(11/12)+ZetaR(2) 1771123518110212 k008 concat of cont frac of 1771123518465305 m001 1/ln(Tribonacci)^2*FeigenbaumC*Ei(1)^2 1771123523402226 m001 (1+PisotVijayaraghavan)^Magata 1771123524911254 p004 log(13477/2293) 1771123529436511 m001 (Otter+ZetaQ(4))/(2^(1/3)+HardyLittlewoodC5) 1771123530901238 r005 Im(z^2+c),c=-5/6+25/179*I,n=18 1771123535949705 a001 38/17*832040^(17/53) 1771123539974164 a003 cos(Pi*10/51)-sin(Pi*44/95) 1771123542612405 a007 Real Root Of -339*x^4-129*x^3+119*x^2-735*x+944 1771123543753858 p004 log(10301/8629) 1771123547127756 m001 (Pi+BesselI(0,1))/(DuboisRaymond-FeigenbaumD) 1771123548349362 r009 Re(z^3+c),c=-21/110+39/41*I,n=21 1771123552111873 m001 Psi(2,1/3)^(ln(2+3^(1/2))/Paris) 1771123555807333 a001 24157817/3571*123^(1/5) 1771123557360685 m001 1/GAMMA(1/24)/FransenRobinson^2*ln(sqrt(Pi))^2 1771123558874440 r005 Re(z^2+c),c=-43/29+15/38*I,n=3 1771123561730076 m005 (1/2*3^(1/2)-3/4)/(1/12*exp(1)+3/7) 1771123562758587 m004 -3-(5*E^(Sqrt[5]*Pi))/Pi+3*Sqrt[5]*Pi 1771123563685868 a001 8/39603*1364^(46/49) 1771123569156543 r002 33th iterates of z^2 + 1771123572572200 m005 (1/2*Catalan+1/2)/(8/11*Zeta(3)-1/3) 1771123591169037 a007 Real Root Of -750*x^4-528*x^3+923*x^2-921*x-80 1771123592742890 a007 Real Root Of 359*x^4+521*x^3-502*x^2+25*x+981 1771123596669975 r002 11th iterates of z^2 + 1771123599804278 a007 Real Root Of -571*x^4-516*x^3+825*x^2+323*x+736 1771123614348296 h001 (3/7*exp(2)+2/7)/(7/12*exp(1)+4/11) 1771123625770631 m005 (1/2*5^(1/2)-1/3)/(2/7*Pi-5/11) 1771123628023908 a007 Real Root Of -424*x^4-421*x^3-68*x^2+620*x+11 1771123628817076 q001 5974/3373 1771123632220975 a007 Real Root Of 697*x^4+758*x^3-487*x^2+605*x-48 1771123644217124 k006 concat of cont frac of 1771123646013158 a007 Real Root Of -144*x^4+441*x^3-112*x^2-228*x-278 1771123647242950 m001 exp(Pi)^Zeta(1/2)/(MinimumGamma^Zeta(1/2)) 1771123650376974 r009 Re(z^3+c),c=-25/78+25/38*I,n=61 1771123652099408 r002 21th iterates of z^2 + 1771123654565354 r005 Re(z^2+c),c=-13/94+14/39*I,n=18 1771123655315862 r009 Re(z^3+c),c=-17/74+7/11*I,n=8 1771123655463127 m005 (1/3*gamma-2/3)/(4/5*5^(1/2)+8/9) 1771123657333297 l006 ln(1681/9880) 1771123659960437 a007 Real Root Of 905*x^4-76*x^3+728*x^2-959*x-194 1771123664407383 m001 (2^(1/2)-cos(1))/(-ln(2)+KhinchinLevy) 1771123665027223 a007 Real Root Of -873*x^4-923*x^3+823*x^2-884*x-685 1771123665140276 r002 36th iterates of z^2 + 1771123668777925 m001 ((2^(1/3))-GAMMA(5/24))^(1/2) 1771123668777925 m001 (-2^(1/3)+Pi*csc(5/24*Pi)/GAMMA(19/24))^(1/2) 1771123669616635 m005 (1/2*3^(1/2)+5/7)/(7/12*gamma+5/9) 1771123670054675 m001 (Catalan-Zeta(1/2))/(-Zeta(1,-1)+Salem) 1771123671189166 r005 Re(z^2+c),c=23/94+13/64*I,n=37 1771123676824977 g001 abs(GAMMA(211/60+I*289/60)) 1771123681258634 r005 Im(z^2+c),c=-13/22+59/126*I,n=16 1771123690367944 m005 (1/2*gamma-2/11)/(3/10*3^(1/2)+1/12) 1771123692108497 a007 Real Root Of 509*x^4+317*x^3-359*x^2+816*x-676 1771123696091585 m001 (-Otter+Trott)/(1+LaplaceLimit) 1771123696515867 r002 3th iterates of z^2 + 1771123703957084 m001 ((1+3^(1/2))^(1/2)-Robbin)/(Psi(2,1/3)-sin(1)) 1771123706563118 h001 (1/9*exp(2)+1/4)/(7/9*exp(2)+3/10) 1771123709514852 r005 Re(z^2+c),c=-71/118+13/31*I,n=5 1771123711213231 k008 concat of cont frac of 1771123718808421 r005 Re(z^2+c),c=-9/7+31/88*I,n=5 1771123721376506 r005 Re(z^2+c),c=-6/29+23/31*I,n=22 1771123725860428 l006 ln(1477/8681) 1771123730167794 p003 LerchPhi(1/5,5,112/79) 1771123731136111 k008 concat of cont frac of 1771123751098831 a001 233*18^(40/57) 1771123751133110 k008 concat of cont frac of 1771123752594693 a001 1/521*(1/2*5^(1/2)+1/2)^9*3^(3/17) 1771123756055256 m004 -ProductLog[Sqrt[5]*Pi]+21*Tan[Sqrt[5]*Pi] 1771123759630865 m005 (1/2*3^(1/2)+10/11)/(69/80+1/16*5^(1/2)) 1771123765326109 h001 (4/7*exp(2)+3/11)/(5/6*exp(1)+3/11) 1771123773041365 s002 sum(A049240[n]/(exp(n)+1),n=1..infinity) 1771123774071694 a007 Real Root Of 430*x^4+992*x^3+133*x^2-743*x-453 1771123777364158 m001 (-GAMMA(11/12)+ErdosBorwein)/(2^(1/3)+Si(Pi)) 1771123785905615 a007 Real Root Of -315*x^4-380*x^3-152*x^2-921*x-166 1771123789876614 a007 Real Root Of -941*x^4+980*x^3-550*x^2+770*x+160 1771123796963607 a007 Real Root Of 232*x^4+367*x^3+533*x^2+739*x-607 1771123798223452 m001 (-BesselI(0,2)+Landau)/(cos(1)+BesselJ(1,1)) 1771123800218593 a007 Real Root Of -245*x^4+74*x^3+592*x^2-516*x+51 1771123801213988 a003 cos(Pi*2/89)+sin(Pi*29/103) 1771123803273668 v003 sum((2*n^3-8*n^2+19*n-2)/n^n,n=1..infinity) 1771123807658936 m001 (cos(1)+Otter)/(-Robbin+Thue) 1771123811025854 m001 (Magata+ZetaP(4))/(Pi^(1/2)+DuboisRaymond) 1771123813081247 a007 Real Root Of 379*x^4+664*x^3-133*x^2-634*x-746 1771123815625719 r005 Im(z^2+c),c=-83/94+13/64*I,n=11 1771123816143158 m001 Bloch/cos(1/5*Pi)*GaussKuzminWirsing 1771123816148461 m001 exp(OneNinth)*Porter^2*exp(1)^2 1771123816350684 l006 ln(1273/7482) 1771123818875032 a007 Real Root Of -108*x^4+843*x^3-937*x^2+68*x-802 1771123821116711 k009 concat of cont frac of 1771123821768570 r009 Re(z^3+c),c=-17/54+16/25*I,n=61 1771123822712058 a007 Real Root Of 535*x^4-701*x^3-790*x^2-928*x-144 1771123826812029 m005 (1/2*Pi+1/7)/(5/9*Pi-7/9) 1771123828589301 a003 sin(Pi*32/111)+sin(Pi*51/115) 1771123838426412 m001 Pi*Zeta(5)/Tribonacci 1771123846502768 a007 Real Root Of -141*x^4+484*x^3-855*x^2+640*x+143 1771123850359282 h001 (7/10*exp(1)+3/10)/(5/12*exp(1)+1/9) 1771123862091719 r005 Re(z^2+c),c=-61/42+9/55*I,n=4 1771123869014034 m002 -Log[Pi]-Pi^5*Sech[Pi]+Pi^2*Tanh[Pi] 1771123872026251 q001 2159/1219 1771123876005937 a007 Real Root Of 386*x^4+689*x^3-15*x^2-521*x-846 1771123879813046 m001 (-Bloch+ZetaP(2))/(cos(1)+LambertW(1)) 1771123885868435 r002 50th iterates of z^2 + 1771123903088212 a007 Real Root Of -14*x^4+579*x^3+809*x^2-75*x+684 1771123903479816 a007 Real Root Of 14*x^4-244*x^3-359*x^2-119*x-578 1771123911456299 m001 (TwinPrimes+ZetaQ(2))/(BesselI(0,1)-Mills) 1771123917425050 r002 48th iterates of z^2 + 1771123930873848 a007 Real Root Of 479*x^4+59*x^3-794*x^2+634*x-772 1771123933353884 m001 BesselI(1,2)/(TwinPrimes^sin(1/12*Pi)) 1771123933773881 m001 (Magata+MasserGramain)/(ZetaP(4)-ZetaQ(2)) 1771123934901351 m005 (1/2*2^(1/2)+1/2)/(3/10*exp(1)+6) 1771123935265330 a001 322/75025*2178309^(13/51) 1771123936379779 m001 2^(1/3)/(Trott2nd^exp(1/Pi)) 1771123938548080 m001 (GAMMA(11/12)-ArtinRank2)/(Trott2nd+ZetaP(3)) 1771123939471768 m001 (ThueMorse-ZetaP(3))/(Zeta(1,2)+BesselI(0,2)) 1771123941377901 l006 ln(1069/6283) 1771123941690386 m001 sin(1/12*Pi)/Kolakoski/Tribonacci 1771123944695105 m001 AlladiGrinstead/(1+FeigenbaumMu) 1771123952415862 m001 (ReciprocalLucas/Kac)^(1/2) 1771123964710502 m001 (CareFree-Weierstrass)/(Zeta(5)+sin(1/12*Pi)) 1771123967596293 r005 Re(z^2+c),c=17/90+7/52*I,n=9 1771123976571513 r005 Im(z^2+c),c=-89/118+7/54*I,n=23 1771123976925902 r005 Im(z^2+c),c=-25/18+7/69*I,n=11 1771123977721516 r005 Re(z^2+c),c=-9/14+178/241*I,n=4 1771123977917524 a007 Real Root Of 27*x^4-523*x^3+769*x^2-379*x+899 1771123982009755 a003 2^(1/2)+cos(1/18*Pi)+cos(8/21*Pi)-cos(1/27*Pi) 1771123982674381 a007 Real Root Of -924*x^4-948*x^3+742*x^2-862*x-29 1771123984373710 r005 Im(z^2+c),c=-17/30+56/125*I,n=11 1771123986274502 a007 Real Root Of 525*x^4-700*x^3+806*x^2-668*x-148 1771123992387247 m005 (1/3*gamma-2/7)/(3/10*gamma-7/10) 1771123993005141 a007 Real Root Of 372*x^4+742*x^3+430*x^2+577*x+135 1771123994276346 a007 Real Root Of 305*x^4-199*x^3-974*x^2+177*x-738 1771123996355173 a007 Real Root Of 680*x^4+677*x^3-218*x^2+821*x-792 1771123997015722 r009 Re(z^3+c),c=-25/78+24/41*I,n=18 1771124005854155 p004 log(29017/4937) 1771124008403181 r005 Re(z^2+c),c=-1/11+13/28*I,n=36 1771124009871971 m001 exp(FeigenbaumKappa)^2*Salem^2/sinh(1) 1771124012583900 r005 Re(z^2+c),c=-7/50+39/58*I,n=25 1771124027937071 s001 sum(1/10^(n-1)*A015627[n]/n!^2,n=1..infinity) 1771124032506639 m001 sin(Pi/12)^2/exp(GAMMA(17/24))^2*sin(Pi/5)^2 1771124032731370 m001 (Magata+MertensB1)/(Si(Pi)+Ei(1,1)) 1771124040269734 m005 (1/3*5^(1/2)+1/11)/(3/11*Zeta(3)-4/5) 1771124048118937 a007 Real Root Of -712*x^4-729*x^3+599*x^2-730*x-216 1771124051113910 p003 LerchPhi(1/64,1,113/199) 1771124053468452 p001 sum((-1)^n/(146*n+55)/(10^n),n=0..infinity) 1771124057563639 m001 (ln(5)-sin(1))/((1+3^(1/2))^(1/2)+FeigenbaumD) 1771124058860346 m001 (sin(1/12*Pi)+KhinchinLevy)/(3^(1/2)-Catalan) 1771124062467827 a007 Real Root Of 636*x^4+685*x^3-601*x^2-106*x-755 1771124066590045 m005 (1/3*Pi+5/6)/(4/5*gamma+3/5) 1771124067304973 s001 sum(1/10^(n-1)*A015622[n]/n!^2,n=1..infinity) 1771124071280726 r005 Re(z^2+c),c=-3/62+35/59*I,n=3 1771124080182694 q001 698/3941 1771124082204848 r005 Re(z^2+c),c=-13/74+13/53*I,n=19 1771124084880533 r002 13th iterates of z^2 + 1771124091392770 a007 Real Root Of -162*x^4-580*x^3-920*x^2-504*x+365 1771124091503072 r004 Re(z^2+c),c=-5/26+3/20*I,z(0)=-1,n=9 1771124095291845 a001 8/2207*39603^(18/49) 1771124099113589 m001 (arctan(1/2)-GaussAGM)/(Robbin-ZetaP(2)) 1771124101907717 m001 BesselI(1,2)-FeigenbaumD^gamma 1771124104156724 m005 (1/2*5^(1/2)+7/11)/(-59/99+2/9*5^(1/2)) 1771124107326817 a007 Real Root Of 2*x^4+349*x^3-927*x^2-291*x-745 1771124109071599 m002 6/Pi+Pi^4/E^Pi+Cosh[Pi] 1771124110551416 k008 concat of cont frac of 1771124111115413 k008 concat of cont frac of 1771124111611426 k008 concat of cont frac of 1771124112036564 r005 Im(z^2+c),c=-43/46+9/55*I,n=17 1771124113097351 a007 Real Root Of 202*x^4-2*x^3-631*x^2-548*x-990 1771124114291266 r009 Re(z^3+c),c=-5/52+51/59*I,n=34 1771124114461271 k009 concat of cont frac of 1771124117319862 a003 cos(Pi*16/91)+sin(Pi*42/113) 1771124118695852 a001 8/2207*5778^(22/49) 1771124121022213 k006 concat of cont frac of 1771124121123163 k008 concat of cont frac of 1771124121211151 k007 concat of cont frac of 1771124125377465 l006 ln(865/5084) 1771124127072221 k008 concat of cont frac of 1771124129414449 a007 Real Root Of 203*x^4-606*x^3+113*x^2+477*x+170 1771124135519959 a007 Real Root Of 163*x^4+167*x^3+550*x^2+977*x-671 1771124137139865 l006 ln(1636/1953) 1771124139698403 m005 (1/3*2^(1/2)-3/7)/(5/11*3^(1/2)-6/11) 1771124140970185 r005 Im(z^2+c),c=-53/50+10/49*I,n=35 1771124142009610 a007 Real Root Of 104*x^4-220*x^3-623*x^2+29*x-240 1771124143304123 m001 (gamma(3)+Paris)/(3^(1/2)-Psi(2,1/3)) 1771124145553111 k008 concat of cont frac of 1771124148364322 m005 (1/2*Zeta(3)+6/7)/(37/14+5/2*5^(1/2)) 1771124151112311 k008 concat of cont frac of 1771124151465142 k006 concat of cont frac of 1771124153098356 r005 Im(z^2+c),c=-131/114+6/25*I,n=4 1771124156758678 m001 (BesselI(1,2)+MertensB3)/(sin(1)+cos(1/5*Pi)) 1771124161223381 k008 concat of cont frac of 1771124163901039 a007 Real Root Of -617*x^4-385*x^3+596*x^2-709*x+807 1771124167221252 k007 concat of cont frac of 1771124168438376 m005 (1/2*3^(1/2)-5/7)/(4/7*Catalan+1/3) 1771124173401910 q001 4821/2722 1771124175231745 m001 (exp(-1/2*Pi)+TwinPrimes)/(LambertW(1)-Shi(1)) 1771124189019927 r002 3th iterates of z^2 + 1771124193215162 m001 (ThueMorse-ZetaQ(3))/(BesselJ(1,1)+Tribonacci) 1771124202185952 a007 Real Root Of 664*x^4+724*x^3-952*x^2-293*x-44 1771124202336234 a007 Real Root Of 233*x^4+149*x^3-41*x^2+523*x-410 1771124204456078 s002 sum(A069586[n]/((10^n-1)/n),n=1..infinity) 1771124208133028 a007 Real Root Of -507*x^4-303*x^3+602*x^2-489*x+551 1771124211312131 k007 concat of cont frac of 1771124212456300 m005 (1/2*5^(1/2)-1/4)/(4/11*gamma-7/10) 1771124213440037 h001 (-9*exp(1)+10)/(-12*exp(2)+7) 1771124213612214 k009 concat of cont frac of 1771124221422323 k006 concat of cont frac of 1771124222445376 m005 (1/3*Catalan+1/2)/(1/6*exp(1)-5) 1771124227271821 k007 concat of cont frac of 1771124227752632 a007 Real Root Of -994*x^4+574*x^3-364*x^2+323*x-48 1771124227866568 h001 (5/12*exp(2)+6/7)/(2/7*exp(2)+1/9) 1771124228212715 k006 concat of cont frac of 1771124233537820 b008 -1+ProductLog[12/Pi] 1771124233789464 p004 log(31991/5443) 1771124239613255 m001 StolarskyHarborth^arctan(1/2)*LambertW(1) 1771124240643422 m005 (1/2*Pi-2/5)/(1/9*2^(1/2)-9/11) 1771124240896309 a001 10610209857723/2*141422324^(12/13) 1771124240896309 a001 102334155/2*14662949395604^(20/21) 1771124240896309 a001 701408733/2*14662949395604^(8/9) 1771124240896309 a001 591286729879/2*2537720636^(14/15) 1771124240896309 a001 774004377960*2537720636^(8/9) 1771124240896309 a001 2504730781961/2*2537720636^(13/15) 1771124240896309 a001 10610209857723/2*2537720636^(4/5) 1771124240896309 a001 1836311903/2*14662949395604^(6/7) 1771124240896309 a001 2403763488*23725150497407^(13/16) 1771124240896309 a001 2403763488*505019158607^(13/14) 1771124240896309 a001 591286729879/2*17393796001^(6/7) 1771124240896309 a001 12586269025/2*312119004989^(10/11) 1771124240896309 a001 12586269025/2*3461452808002^(5/6) 1771124240896309 a001 32951280099/2*45537549124^(16/17) 1771124240896309 a001 139583862445/2*45537549124^(15/17) 1771124240896309 a001 591286729879/2*45537549124^(14/17) 1771124240896309 a001 2504730781961/2*45537549124^(13/17) 1771124240896309 a001 10610209857723/2*45537549124^(12/17) 1771124240896309 a001 32951280099/2*14662949395604^(16/21) 1771124240896309 a001 32951280099/2*192900153618^(8/9) 1771124240896309 a001 225851433717/2*312119004989^(4/5) 1771124240896309 a001 10610209857723/2*14662949395604^(4/7) 1771124240896309 a001 2504730781961/2*14662949395604^(13/21) 1771124240896309 a001 591286729879/2*505019158607^(3/4) 1771124240896309 a001 139583862445/2*14662949395604^(5/7) 1771124240896309 a001 10610209857723/2*192900153618^(2/3) 1771124240896309 a001 591286729879/2*192900153618^(7/9) 1771124240896309 a001 139583862445/2*192900153618^(5/6) 1771124240896309 a001 10610209857723/2*73681302247^(9/13) 1771124240896309 a001 2504730781961/2*73681302247^(3/4) 1771124240896309 a001 225851433717/2*73681302247^(11/13) 1771124240896309 a001 10182505537*14662949395604^(7/9) 1771124240896309 a001 10182505537*505019158607^(7/8) 1771124240896309 a001 774004377960*28143753123^(4/5) 1771124240896309 a001 139583862445/2*28143753123^(9/10) 1771124240896309 a001 7778742049/2*817138163596^(17/19) 1771124240896309 a001 7778742049/2*14662949395604^(17/21) 1771124240896309 a001 7778742049/2*192900153618^(17/18) 1771124240896309 a001 10610209857723/2*10749957122^(3/4) 1771124240896309 a001 4052739537881/2*10749957122^(19/24) 1771124240896309 a001 2504730781961/2*10749957122^(13/16) 1771124240896309 a001 774004377960*10749957122^(5/6) 1771124240896309 a001 591286729879/2*10749957122^(7/8) 1771124240896309 a001 225851433717/2*10749957122^(11/12) 1771124240896309 a001 139583862445/2*10749957122^(15/16) 1771124240896309 a001 43133785636*10749957122^(23/24) 1771124240896309 a001 10610209857723/2*4106118243^(18/23) 1771124240896309 a001 4052739537881/2*4106118243^(19/23) 1771124240896309 a001 774004377960*4106118243^(20/23) 1771124240896309 a001 591286729879/2*4106118243^(21/23) 1771124240896309 a001 225851433717/2*4106118243^(22/23) 1771124240896309 a001 567451585*3461452808002^(11/12) 1771124240896309 a001 10610209857723/2*1568397607^(9/11) 1771124240896309 a001 4052739537881/2*1568397607^(19/22) 1771124240896309 a001 774004377960*1568397607^(10/11) 1771124240896309 a001 591286729879/2*1568397607^(21/22) 1771124240896309 a001 433494437/2*14662949395604^(19/21) 1771124240896309 a001 10610209857723/2*599074578^(6/7) 1771124240896309 a001 4052739537881/2*599074578^(19/21) 1771124240896309 a001 2504730781961/2*599074578^(13/14) 1771124240896309 a001 774004377960*599074578^(20/21) 1771124240896309 a001 10610209857723/2*228826127^(9/10) 1771124240896309 a001 4052739537881/2*228826127^(19/20) 1771124240896309 a001 10610209857723/2*87403803^(18/19) 1771124243569365 p001 sum(1/(411*n+31)/n/(128^n),n=1..infinity) 1771124244456697 m001 (Backhouse+GAMMA(5/6))^BesselK(1,1) 1771124244456697 m001 (GAMMA(5/6)+Backhouse)^BesselK(1,1) 1771124245768416 r005 Re(z^2+c),c=-13/74+13/53*I,n=17 1771124250091814 a001 1/18*(1/2*5^(1/2)+1/2)^19*47^(11/12) 1771124250200680 r005 Re(z^2+c),c=-7/106+23/45*I,n=53 1771124251546737 b008 (1+Sqrt[2]+Pi)^(1/3) 1771124252443031 a005 (1/cos(3/209*Pi))^562 1771124253475092 m005 (1/2*Pi+5/8)/(6/7*Catalan-10/11) 1771124253724321 k007 concat of cont frac of 1771124254273600 l006 ln(1526/8969) 1771124255261442 a007 Real Root Of -158*x^4+127*x^3+577*x^2-134*x+213 1771124257297891 r005 Im(z^2+c),c=-67/118+9/46*I,n=7 1771124260140746 a007 Real Root Of -451*x^4-87*x^3+864*x^2-934*x-410 1771124263124152 m001 1/BesselJ(1,1)^2/ln(Porter)*GAMMA(1/4)^2 1771124271114421 k006 concat of cont frac of 1771124275111413 k007 concat of cont frac of 1771124275324488 r005 Im(z^2+c),c=-41/98+19/64*I,n=23 1771124277413862 a007 Real Root Of -3*x^4-532*x^3-114*x^2+601*x+563 1771124279380260 a003 cos(Pi*3/94)+sin(Pi*28/99) 1771124283514533 m004 2+5*Pi+(5*Cos[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 1771124284248101 r005 Re(z^2+c),c=23/94+13/64*I,n=38 1771124288699516 r005 Im(z^2+c),c=-9/26+17/59*I,n=9 1771124291103359 a007 Real Root Of -484*x^4-633*x^3+257*x^2+269*x+916 1771124292309062 m001 ErdosBorwein^OrthogonalArrays-ZetaP(3) 1771124293515938 a007 Real Root Of -398*x^4-328*x^3+899*x^2+179*x-409 1771124293865850 h001 (-6*exp(1)+4)/(-exp(-3)+7) 1771124294017908 a007 Real Root Of 568*x^4+643*x^3+69*x^2+956*x-540 1771124295534338 r005 Re(z^2+c),c=-69/58+33/52*I,n=2 1771124297995730 r005 Re(z^2+c),c=-9/86+24/55*I,n=38 1771124305942979 a001 514229/47*2^(41/59) 1771124307297604 m001 (MertensB2-ZetaQ(4))/(arctan(1/3)+MertensB1) 1771124308800105 r005 Im(z^2+c),c=-27/58+4/13*I,n=25 1771124309881193 m001 Zeta(1,-1)+FibonacciFactorial+Rabbit 1771124311351131 k007 concat of cont frac of 1771124312821821 k009 concat of cont frac of 1771124313402010 h001 (4/11*exp(2)+5/12)/(7/12*exp(1)+1/6) 1771124324868600 r009 Re(z^3+c),c=-23/70+33/59*I,n=13 1771124326111141 k008 concat of cont frac of 1771124326228612 k008 concat of cont frac of 1771124329233162 k008 concat of cont frac of 1771124330292372 b008 1/3-37*Sqrt[23] 1771124331305798 m001 FransenRobinson^(ln(2)/ln(10)*Tribonacci) 1771124332751046 q001 1/5646131 1771124336347371 m005 (1/3*5^(1/2)-2/5)/(7/8*exp(1)-3/7) 1771124340170262 a007 Real Root Of 25*x^4+482*x^3+748*x^2+890*x-983 1771124341493068 m001 1/exp(GAMMA(23/24))^2*Salem^2/Zeta(9)^2 1771124343965016 p001 sum((-1)^n/(455*n+438)/n/(6^n),n=1..infinity) 1771124345112132 k008 concat of cont frac of 1771124348333651 r005 Im(z^2+c),c=-23/18+39/227*I,n=4 1771124348453824 r005 Re(z^2+c),c=15/56+2/9*I,n=17 1771124349680965 p004 log(28759/24091) 1771124356316881 m001 LaplaceLimit*Robbin+MertensB3 1771124361114110 k008 concat of cont frac of 1771124365258207 a007 Real Root Of 221*x^4+253*x^3-72*x^2+659*x+624 1771124368880462 a001 9227465/1364*123^(1/5) 1771124372465756 r005 Re(z^2+c),c=3/58+7/12*I,n=43 1771124377556886 m005 (1/2*Zeta(3)+3/5)/(5/8*gamma-3/7) 1771124378404201 m005 (1/2*5^(1/2)-3/10)/(4/9*2^(1/2)-1/6) 1771124379864340 a007 Real Root Of -768*x^4-896*x^3+164*x^2-932*x+414 1771124387332115 m001 (MertensB3+ZetaQ(4))/(Si(Pi)-ln(3)) 1771124389956386 r002 7th iterates of z^2 + 1771124392964689 r009 Im(z^3+c),c=-45/106+3/56*I,n=13 1771124394691066 a001 4/2889*9349^(26/49) 1771124395070551 a001 317811/199*199^(5/11) 1771124401511242 k008 concat of cont frac of 1771124408182114 a001 161/305*6765^(7/51) 1771124410096898 a001 3/2537720636*123^(9/16) 1771124410560032 r004 Im(z^2+c),c=-37/46+1/10*I,z(0)=-1,n=41 1771124411112112 k007 concat of cont frac of 1771124416416412 k007 concat of cont frac of 1771124417498488 r005 Im(z^2+c),c=-11/8+7/115*I,n=6 1771124417831004 q001 2662/1503 1771124419553252 a007 Real Root Of -854*x^4-134*x^3-292*x^2+885*x-146 1771124421911244 k006 concat of cont frac of 1771124422950061 l006 ln(661/3885) 1771124425057793 r005 Im(z^2+c),c=-11/52+52/63*I,n=3 1771124425952888 a007 Real Root Of 225*x^4-468*x^3-830*x^2+758*x-868 1771124426513467 r005 Im(z^2+c),c=-5/8+61/204*I,n=28 1771124428068385 a007 Real Root Of -765*x^4-850*x^3+729*x^2-291*x+3 1771124431200706 a007 Real Root Of -811*x^4-975*x^3+585*x^2-510*x-175 1771124433041178 m001 (Otter+Porter)/(exp(Pi)+FeigenbaumC) 1771124434304419 a003 cos(Pi*17/112)+sin(Pi*21/61) 1771124442874093 r005 Im(z^2+c),c=-47/90+26/45*I,n=32 1771124443198689 a007 Real Root Of 904*x^4+954*x^3-659*x^2+577*x-506 1771124445899977 r009 Re(z^3+c),c=-23/86+34/49*I,n=51 1771124457100945 a001 8/39603*64079^(30/49) 1771124466486902 r005 Im(z^2+c),c=-107/126+5/39*I,n=33 1771124471918381 a007 Real Root Of 243*x^4-14*x^3-267*x^2+881*x-71 1771124475325130 r005 Im(z^2+c),c=-33/98+17/61*I,n=17 1771124477952811 m001 gamma(1)^GAMMA(17/24)/(gamma(1)^GolombDickman) 1771124478087241 r005 Im(z^2+c),c=-11/8+2/179*I,n=22 1771124491047342 a007 Real Root Of 582*x^4-473*x^3-995*x^2-321*x+6 1771124491398021 m005 (1/2*Pi-7/10)/(6/7*5^(1/2)+3) 1771124499972065 a007 Real Root Of 166*x^4-775*x^3+476*x^2+161*x+894 1771124500252843 m001 (Pi+exp(-Pi)*GAMMA(1/24))/GAMMA(1/24) 1771124519878682 m001 Porter^2/FransenRobinson*ln((2^(1/3))) 1771124522528545 r002 44th iterates of z^2 + 1771124525033096 a001 199/2178309*17711^(7/13) 1771124525641083 a001 199/53316291173*2504730781961^(7/13) 1771124525641083 a001 199/1836311903*4807526976^(7/13) 1771124525641085 a001 199/63245986*9227465^(7/13) 1771124526463313 m005 (1/2*Zeta(3)-1/10)/(7/11*Catalan-3/10) 1771124526972421 m001 GAMMA(19/24)/exp(Khintchine)^2/GAMMA(7/24) 1771124533738811 r005 Re(z^2+c),c=29/82+3/28*I,n=54 1771124535118363 p001 sum(1/(574*n+57)/(10^n),n=0..infinity) 1771124541321559 s001 sum(1/10^(n-1)*A105465[n]/n!^2,n=1..infinity) 1771124544734453 m001 (LambertW(1)-ln(2)/ln(10))/(Cahen+Thue) 1771124545725882 a001 19/2*39088169^(9/16) 1771124547888527 r005 Im(z^2+c),c=-23/26+14/97*I,n=56 1771124549826253 a007 Real Root Of 289*x^4+482*x^3-137*x^2+183*x+588 1771124550368951 m001 (exp(1/Pi)-MadelungNaCl)/(Pi-Zeta(5)) 1771124555216825 a007 Real Root Of 484*x^4+340*x^3-993*x^2+316*x+801 1771124560407480 r005 Im(z^2+c),c=-7/8+35/248*I,n=20 1771124560613380 r009 Re(z^3+c),c=-7/23+26/45*I,n=61 1771124566562762 a007 Real Root Of 534*x^4+208*x^3-987*x^2+538*x-50 1771124566876460 m009 (2*Psi(1,2/3)-3)/(1/4*Psi(1,2/3)+1) 1771124567197311 a003 cos(Pi*22/95)/cos(Pi*30/83) 1771124576814440 a003 cos(Pi*3/88)+sin(Pi*32/113) 1771124586414659 a005 (1/cos(5/232*Pi))^1253 1771124591027378 m005 (1/2*5^(1/2)-2)/(1/7*2^(1/2)-7/10) 1771124596273355 m001 LaplaceLimit^FransenRobinson+Backhouse 1771124600651293 p004 log(17027/2897) 1771124602007952 r005 Re(z^2+c),c=-19/16+15/113*I,n=52 1771124611542993 r005 Re(z^2+c),c=-35/29+1/22*I,n=14 1771124620060790 q001 5827/3290 1771124621211151 k008 concat of cont frac of 1771124622417688 a007 Real Root Of 659*x^4+691*x^3-525*x^2+954*x+691 1771124624265939 a003 sin(Pi*30/107)+sin(Pi*47/95) 1771124629602157 r005 Im(z^2+c),c=-13/14+31/191*I,n=63 1771124631466859 m005 (1/2*3^(1/2)-3/5)/(7/8*5^(1/2)-5/11) 1771124635696292 r005 Re(z^2+c),c=37/126+12/29*I,n=35 1771124637025176 a001 13/322*521^(13/55) 1771124637703379 m001 FeigenbaumAlpha/(PlouffeB-Zeta(1,2)) 1771124637908082 r005 Re(z^2+c),c=7/23+37/63*I,n=4 1771124645906713 a007 Real Root Of -690*x^4-777*x^3+634*x^2-555*x-499 1771124646202686 m005 (1/2*3^(1/2)-5/7)/(5/9*2^(1/2)-7/10) 1771124646848038 m006 (5/6*Pi^2+4)/(3*exp(Pi)-2/5) 1771124648404061 g002 -2*Psi(10/11)-Psi(2/11)-Psi(1/10) 1771124651412613 k006 concat of cont frac of 1771124652537366 g001 abs(Psi(2+I*7/2)) 1771124653182823 l006 ln(1118/6571) 1771124653198230 r002 23th iterates of z^2 + 1771124655209705 m001 ln(2+3^(1/2))/GAMMA(11/12)/CareFree 1771124655220349 m006 (2/5*Pi^2+3)/(4*Pi^2-1/4) 1771124655220349 m008 (2/5*Pi^2+3)/(4*Pi^2-1/4) 1771124655962005 a007 Real Root Of -449*x^4-151*x^3+876*x^2-16*x+803 1771124668069575 m001 1/GAMMA(7/24)/exp(Backhouse)^2*Zeta(9)^2 1771124668129551 m001 (Ei(1,1)+FeigenbaumC)/(MertensB3-ZetaP(3)) 1771124673395854 r009 Re(z^3+c),c=-17/54+7/11*I,n=63 1771124673868894 s002 sum(A254607[n]/(exp(n)-1),n=1..infinity) 1771124689510538 r009 Re(z^3+c),c=-19/118+21/25*I,n=12 1771124702350978 m001 1/exp(FeigenbaumB)/ErdosBorwein/GAMMA(7/12) 1771124702484259 m005 (1/2*Catalan+1/11)/(7/10*Pi+9/10) 1771124706844754 m001 exp(OneNinth)^2/Kolakoski/log(1+sqrt(2)) 1771124718760243 r005 Im(z^2+c),c=-41/106+11/38*I,n=25 1771124720000379 m001 OneNinth/PisotVijayaraghavan^2/exp(sqrt(Pi))^2 1771124723917927 k006 concat of cont frac of 1771124725322434 a001 8/15127*2207^(37/49) 1771124747814692 h001 (5/9*exp(1)+2/3)/(2/9*exp(1)+5/8) 1771124749807477 l006 ln(1575/9257) 1771124751605155 r005 Re(z^2+c),c=-7/60+24/41*I,n=9 1771124755329645 m001 (3^(1/3)-exp(Pi))/(-Mills+StolarskyHarborth) 1771124758527626 m001 Kolakoski^2*Artin^2*ln(Zeta(9)) 1771124759466470 r009 Im(z^3+c),c=-33/70+29/52*I,n=42 1771124763731260 r005 Im(z^2+c),c=-113/94+5/63*I,n=4 1771124765602544 a001 7/1346269*1346269^(1/4) 1771124765602662 a001 7/3524578*63245986^(1/4) 1771124765602686 a001 7/9227465*2971215073^(1/4) 1771124765602690 a001 7/24157817*139583862445^(1/4) 1771124765602690 a001 7/63245986*6557470319842^(1/4) 1771124765602690 a001 7/39088169*956722026041^(1/4) 1771124765602692 a001 7/14930352*20365011074^(1/4) 1771124765602701 a001 7/5702887*433494437^(1/4) 1771124765602766 a001 1/311187*9227465^(1/4) 1771124765605497 a001 7/832040*196418^(1/4) 1771124765709185 a001 7/514229*28657^(1/4) 1771124770672123 a001 7/317811*4181^(1/4) 1771124776482479 m001 (3^(1/3))*Si(Pi)^(1/3) 1771124781357807 a007 Real Root Of 47*x^4-567*x^3+217*x^2+791*x+606 1771124783979402 m001 (2^(1/2)+Chi(1))/(Thue+ThueMorse) 1771124789127511 r009 Re(z^3+c),c=-1/4+17/42*I,n=16 1771124790027717 m001 (-OrthogonalArrays+Stephens)/(cos(1)+gamma(1)) 1771124790151091 q001 3165/1787 1771124799451019 l006 ln(7731/9229) 1771124812711512 k009 concat of cont frac of 1771124816653278 a007 Real Root Of -64*x^4-294*x^3-667*x^2-102*x+908 1771124818953490 a007 Real Root Of -691*x^4-615*x^3-827*x^2+776*x+14 1771124819183194 a007 Real Root Of -602*x^4+164*x^3-164*x^2+640*x+120 1771124819656171 m001 (3^(1/3)+ArtinRank2)/(Cahen-LandauRamanujan) 1771124821049437 a007 Real Root Of 368*x^4+94*x^3-575*x^2+257*x-840 1771124821321775 a007 Real Root Of -272*x^4-701*x^3-511*x^2-145*x+128 1771124836375870 m001 1/exp((2^(1/3)))/Porter*Catalan 1771124841121015 k008 concat of cont frac of 1771124844456024 a007 Real Root Of 482*x^4+525*x^3-872*x^2-912*x-706 1771124858059164 a007 Real Root Of -523*x^4-620*x^3+111*x^2-286*x+847 1771124859540647 m001 (ReciprocalLucas+ZetaQ(3))/(Ei(1,1)-MertensB3) 1771124863049887 m002 6+Cosh[Pi]+ProductLog[Pi]/9 1771124869634184 m005 (1/2*exp(1)+1/5)/(5*3^(1/2)+1/7) 1771124876466484 m002 -Pi+(6*Log[Pi])/E^Pi+ProductLog[Pi] 1771124877972116 a007 Real Root Of -436*x^4-105*x^3+360*x^2-976*x+849 1771124881152296 r005 Im(z^2+c),c=-107/110+5/28*I,n=52 1771124893271267 r009 Re(z^3+c),c=-5/22+18/55*I,n=9 1771124898615786 a007 Real Root Of -765*x^4-711*x^3+326*x^2-962*x+851 1771124900047981 m001 (gamma-MinimumGamma)/(Pi+Si(Pi)) 1771124900663004 a007 Real Root Of -38*x^4-632*x^3+676*x^2-850*x+833 1771124901300191 r005 Im(z^2+c),c=-49/48+1/54*I,n=3 1771124907706307 m002 -5-Pi^4+Pi^5-Pi^5*Csch[Pi] 1771124930484545 b008 7*Erfc[-1/3]^3 1771124931760615 h001 (3/10*exp(2)+3/11)/(1/10*exp(2)+2/3) 1771124935199585 q001 6833/3858 1771124935528998 r005 Im(z^2+c),c=-26/27+9/58*I,n=6 1771124935787700 m001 (MinimumGamma+Niven)/(ln(Pi)-cos(1/12*Pi)) 1771124942665780 m005 (1/2*gamma-1/6)/(3/5*Pi+5) 1771124946732367 a007 Real Root Of 201*x^4-185*x^3-990*x^2+43*x+176 1771124947585396 m004 5*Pi+(25*Sqrt[5]*Sin[Sqrt[5]*Pi])/(6*Pi) 1771124947781373 a005 (1/sin(88/203*Pi))^26 1771124947839592 m001 (ln(2)-ln(2^(1/2)+1))/(Ei(1)-FeigenbaumB) 1771124952825410 r009 Re(z^3+c),c=-5/27+49/55*I,n=51 1771124958434977 m001 (exp(-1/2*Pi)-AlladiGrinstead)/(Magata-Trott) 1771124958621068 m001 1/exp(Riemann2ndZero)*Backhouse*GAMMA(13/24) 1771124958952631 a001 2207/21*21^(6/35) 1771124964560565 a001 64079/89*610^(8/57) 1771124976731106 a005 (1/cos(22/71*Pi))^21 1771124977226409 l006 ln(6095/7276) 1771124977262131 r004 Im(z^2+c),c=-15/14+4/11*I,z(0)=-1,n=10 1771124977262131 r004 Im(z^2+c),c=-15/14-4/11*I,z(0)=-1,n=10 1771124982071110 a007 Real Root Of -571*x^4-274*x^3+927*x^2-212*x+813 1771124986188978 l006 ln(457/2686) 1771124986344472 m001 ln(Riemann3rdZero)^2*Paris/gamma 1771124994243118 m001 (GAMMA(5/12)+4)/(-cos(1)+4) 1771124997716686 s001 sum(exp(-3*Pi/5)^n*A216297[n],n=1..infinity) 1771124998168995 m003 359/2+Sqrt[5]/64-Sinh[1/2+Sqrt[5]/2] 1771124999151334 m001 GAMMA(3/4)/(sin(1/5*Pi)^ln(2)) 1771124999151334 m001 GAMMA(3/4)/(sin(Pi/5)^ln(2)) 1771125002749739 m001 (HardyLittlewoodC3-StronglyCareFree)/Kolakoski 1771125003584145 a001 7/196418*610^(1/4) 1771125005444808 a001 1/39603*(1/2*5^(1/2)+1/2)*47^(8/21) 1771125007005404 a001 1/64079*(1/2*5^(1/2)+1/2)^2*47^(8/21) 1771125008149601 a007 Real Root Of 251*x^4-98*x^3-794*x^2-112*x-722 1771125009530501 a001 1/24476*47^(8/21) 1771125012704989 m001 1/ln(sqrt(2))^2/Riemann2ndZero/sqrt(5) 1771125013212112 k008 concat of cont frac of 1771125013863513 r002 10th iterates of z^2 + 1771125019119456 a007 Real Root Of -260*x^4-246*x^3+407*x^2+179*x+232 1771125022917362 h001 (3/4*exp(1)+1/8)/(1/7*exp(1)+5/6) 1771125023320933 m001 ln(5)^(ErdosBorwein*RenyiParking) 1771125036873345 m001 1/ln(Catalan)^2/CopelandErdos*LambertW(1)^2 1771125050580853 m001 (2^(1/3)-Ei(1))/(-ThueMorse+ZetaQ(2)) 1771125060357315 q001 3668/2071 1771125063497492 m001 (FeigenbaumB+KhinchinLevy)/(Psi(1,1/3)+Conway) 1771125071220953 r005 Im(z^2+c),c=-95/98+8/45*I,n=27 1771125073507992 m005 (1/3*Catalan-1/12)/(7/12*gamma+11/12) 1771125082952667 a007 Real Root Of -516*x^4-393*x^3+764*x^2-33*x+439 1771125083538143 a007 Real Root Of -66*x^4+15*x^3-71*x^2+698*x+126 1771125092004959 r002 26th iterates of z^2 + 1771125098951854 a007 Real Root Of 508*x^4+497*x^3-581*x^2-96*x-585 1771125099989638 b008 -7+E^(2*Sqrt[14]) 1771125103358352 a007 Real Root Of -29*x^4+480*x^3+969*x^2+461*x+729 1771125105055083 a007 Real Root Of 166*x^4-8*x^3-161*x^2+289*x-661 1771125110215120 k006 concat of cont frac of 1771125111133312 k006 concat of cont frac of 1771125111271145 k007 concat of cont frac of 1771125111283410 k006 concat of cont frac of 1771125111319412 k006 concat of cont frac of 1771125111411143 k008 concat of cont frac of 1771125111611132 k008 concat of cont frac of 1771125112995890 r009 Re(z^3+c),c=-27/86+41/57*I,n=9 1771125113231314 k007 concat of cont frac of 1771125114212912 k009 concat of cont frac of 1771125114434034 r005 Im(z^2+c),c=-27/31+5/36*I,n=31 1771125115114854 k008 concat of cont frac of 1771125117331891 m001 (ln(5)+gamma(2))/(Grothendieck-Khinchin) 1771125118192313 k006 concat of cont frac of 1771125118392122 r005 Im(z^2+c),c=-41/50+6/61*I,n=18 1771125121786672 a001 11/1346269*6765^(5/57) 1771125129677155 a003 cos(Pi*5/56)/cos(Pi*20/63) 1771125136226498 a007 Real Root Of -640*x^4-906*x^3+546*x^2+115*x-245 1771125147064957 h001 (-3*exp(1/3)+8)/(-9*exp(2/3)-4) 1771125158779087 a007 Real Root Of -45*x^4-852*x^3-997*x^2-389*x+323 1771125159109698 m005 (1/3*gamma+2/11)/(4/5*3^(1/2)+8/11) 1771125160562316 a007 Real Root Of -571*x^4-846*x^3-424*x^2-946*x+573 1771125161754512 a007 Real Root Of -233*x^4-42*x^3+581*x^2+279*x+731 1771125166111131 k007 concat of cont frac of 1771125166581735 r005 Re(z^2+c),c=17/52+12/49*I,n=21 1771125171289849 m005 (1/2*Catalan-4/11)/(1/2*3^(1/2)-1/3) 1771125174910794 a003 cos(Pi*20/83)/cos(Pi*19/52) 1771125175659336 r005 Im(z^2+c),c=-9/16+11/34*I,n=58 1771125182147204 a001 28657/322*18^(5/21) 1771125191543328 m001 exp(Tribonacci)*Backhouse*GAMMA(5/24)^2 1771125194316937 a003 cos(Pi*20/93)+sin(Pi*37/81) 1771125196888827 a007 Real Root Of -428*x^4-923*x^3-578*x^2-54*x+801 1771125197145215 r009 Re(z^3+c),c=-3/10+13/23*I,n=27 1771125197958863 m001 (1-Zeta(1,2))/(-FeigenbaumKappa+MertensB1) 1771125204121186 k008 concat of cont frac of 1771125211112133 k007 concat of cont frac of 1771125212121875 m001 (HardHexagonsEntropy+MertensB3)/(1+cos(1)) 1771125213215512 k008 concat of cont frac of 1771125214895594 p003 LerchPhi(1/256,2,112/149) 1771125215438224 l006 ln(1624/9545) 1771125218111181 k007 concat of cont frac of 1771125221425221 k009 concat of cont frac of 1771125223625686 a007 Real Root Of 570*x^4+463*x^3-252*x^2+887*x-675 1771125224164021 m001 exp(sinh(1))^2/GAMMA(23/24)*sqrt(3) 1771125225771210 k008 concat of cont frac of 1771125227812738 r005 Re(z^2+c),c=-47/52+7/32*I,n=54 1771125228180698 a007 Real Root Of -46*x^4+209*x^3+745*x^2+659*x+444 1771125241484229 k007 concat of cont frac of 1771125250230242 r005 Re(z^2+c),c=-99/118+2/25*I,n=34 1771125265392781 q001 4171/2355 1771125267207558 m001 Sierpinski^Landau*Shi(1) 1771125267692085 m001 1/GAMMA(3/4)^2/exp((2^(1/3)))*Zeta(1,2) 1771125272932114 k008 concat of cont frac of 1771125274825742 a007 Real Root Of 170*x^4+341*x^3+298*x^2+441*x+68 1771125279816581 m005 (1/3*2^(1/2)+2/7)/(3/10*Catalan+4) 1771125280181633 a007 Real Root Of 311*x^4+745*x^3+973*x^2-668*x-145 1771125280915914 m001 (-Backhouse+ZetaP(2))/(2^(1/3)-ln(2)) 1771125285452807 l006 ln(4459/5323) 1771125286702053 a007 Real Root Of 713*x^4-160*x^3-974*x^2-679*x+151 1771125287159104 r009 Re(z^3+c),c=-17/31+13/20*I,n=11 1771125290571772 a007 Real Root Of 326*x^4+526*x^3+361*x^2+481*x-566 1771125299536501 a003 cos(Pi*32/85)-cos(Pi*27/62) 1771125299596979 m001 (-FeigenbaumMu+Otter)/(2^(1/3)-ErdosBorwein) 1771125302954644 r002 60th iterates of z^2 + 1771125305212765 l006 ln(1167/6859) 1771125308410561 a007 Real Root Of -696*x^4-692*x^3+443*x^2-540*x+658 1771125308429017 r005 Im(z^2+c),c=-109/102+1/50*I,n=14 1771125312149046 m005 (1/2*2^(1/2)-3)/(1/2*3^(1/2)+3/7) 1771125316732377 r009 Re(z^3+c),c=-19/32+12/23*I,n=48 1771125317108910 h005 exp(cos(Pi*3/22)-cos(Pi*16/41)) 1771125319064282 r005 Re(z^2+c),c=31/90+16/57*I,n=4 1771125329251081 a007 Real Root Of -254*x^4-789*x^3-259*x^2+631*x-99 1771125333372132 a007 Real Root Of 146*x^4-107*x^3-942*x^2-761*x-424 1771125339864917 m001 (Zeta(5)+OneNinth)/MasserGramain 1771125340814907 r009 Im(z^3+c),c=-17/44+5/7*I,n=11 1771125341976231 a007 Real Root Of -739*x^4-706*x^3-897*x^2+181*x+57 1771125347930708 m005 (1/3*5^(1/2)-2/7)/(4/7*Pi+4/5) 1771125351193522 k006 concat of cont frac of 1771125360202508 m001 (-Rabbit+ZetaP(3))/(2^(1/2)+ErdosBorwein) 1771125364293735 m001 FeigenbaumAlpha/Backhouse^2*exp(GAMMA(2/3))^2 1771125367763597 m001 1/cosh(1)^2/Bloch/ln(sqrt(1+sqrt(3))) 1771125371122222 g007 Psi(2,9/10)+Psi(2,2/9)-Psi(2,7/10)-Psi(2,8/9) 1771125373754376 m001 (-gamma(3)+ThueMorse)/(2^(1/3)+Shi(1)) 1771125374477131 r005 Re(z^2+c),c=1/22+6/23*I,n=15 1771125382929923 a003 sin(Pi*23/83)/cos(Pi*34/95) 1771125383338841 p001 sum(1/(201*n+62)/(3^n),n=0..infinity) 1771125383726263 a003 cos(Pi*30/113)/cos(Pi*41/109) 1771125384418945 m001 (Ei(1)+Totient)/(Catalan-ln(3)) 1771125395725701 r005 Re(z^2+c),c=-1/6+32/51*I,n=36 1771125407648131 a007 Real Root Of -331*x^4+185*x^3+731*x^2-879*x+435 1771125408357366 m002 -4*ProductLog[Pi]+5*Pi*Sinh[Pi] 1771125409172868 r002 62th iterates of z^2 + 1771125415715878 m005 (1/2*Catalan+4/7)/(2/3*exp(1)+4) 1771125421214674 k009 concat of cont frac of 1771125421515269 h001 (-9*exp(-3)+3)/(-5*exp(3/2)+8) 1771125421571433 m006 (1/5*exp(2*Pi)+1/3)/(4/Pi-2/3) 1771125425337332 a007 Real Root Of 31*x^4+508*x^3-728*x^2-41*x-421 1771125425609688 a007 Real Root Of -839*x^4-694*x^3+646*x^2-823*x+916 1771125425850647 m001 (ThueMorse-ZetaQ(4))/(Zeta(1/2)-Thue) 1771125426297840 q001 4674/2639 1771125432489085 a003 sin(Pi*7/79)-sin(Pi*10/67) 1771125433185368 m001 (gamma+ln(5)*FeigenbaumMu)/FeigenbaumMu 1771125439608713 a007 Real Root Of 76*x^4-363*x^3-303*x^2+799*x-399 1771125439811590 a001 2/2971215073*46368^(7/23) 1771125439861733 a001 1/43133785636*2971215073^(7/23) 1771125442573654 m001 (-ln(2)+Robbin)/(BesselK(0,1)+GAMMA(2/3)) 1771125453337622 m001 (ln(Pi)+KhinchinLevy)/(Lehmer+Sarnak) 1771125458157402 r005 Re(z^2+c),c=-5/58+29/60*I,n=19 1771125461556665 a007 Real Root Of 411*x^4+762*x^3+287*x^2+332*x-123 1771125483564382 m001 (2^(1/2)+GaussAGM*ZetaP(4))/GaussAGM 1771125491917368 m001 Kolakoski-Pi+Stephens 1771125494459068 r005 Im(z^2+c),c=-19/14+4/181*I,n=21 1771125495031287 m001 1/GAMMA(3/4)*FibonacciFactorial/exp(sqrt(3)) 1771125497463867 b008 (7/2+EulerGamma*Pi)/3 1771125508686113 m005 (1/2*5^(1/2)+11/12)/(3/10*exp(1)+1/3) 1771125510556191 l006 ln(710/4173) 1771125511699846 r002 32th iterates of z^2 + 1771125515985820 m001 (-Landau+QuadraticClass)/(1-cos(1/5*Pi)) 1771125524514664 r005 Im(z^2+c),c=-1+27/154*I,n=12 1771125525594550 a007 Real Root Of 200*x^4-503*x^3-852*x^2+791*x-689 1771125528671105 r009 Re(z^3+c),c=-13/44+11/20*I,n=35 1771125536686990 a003 cos(Pi*10/89)+sin(Pi*26/83) 1771125539543755 a007 Real Root Of -469*x^4-578*x^3+345*x^2-627*x-789 1771125541978987 m002 -36+5*E^Pi+Pi^4 1771125543436855 l006 ln(7282/8693) 1771125550925765 a007 Real Root Of 972*x^4-578*x^3-802*x^2-889*x+16 1771125551603132 m005 (1/3*2^(1/2)-1/3)/(6*Zeta(3)+7/12) 1771125553380629 a007 Real Root Of -571*x^4-175*x^3+817*x^2-867*x+548 1771125555180234 m001 KhinchinLevy^ln(5)*KhinchinLevy^(3^(1/2)) 1771125555935682 q001 5177/2923 1771125567873423 a003 sin(Pi*3/52)*sin(Pi*37/84) 1771125582479298 a007 Real Root Of 807*x^4+858*x^3-638*x^2+246*x-737 1771125583542416 r005 Re(z^2+c),c=33/106+13/49*I,n=39 1771125587504496 q001 1/5646127 1771125588129335 r005 Im(z^2+c),c=-19/18+25/128*I,n=15 1771125591553612 m001 exp(GAMMA(1/12))^2*FransenRobinson/cosh(1) 1771125602999434 m001 exp(1/2)/(ln(1+sqrt(2))^LambertW(1)) 1771125609902957 m005 (4/5*2^(1/2)+2/3)/(3/5*2^(1/2)+1/6) 1771125610255992 r009 Re(z^3+c),c=-23/94+12/31*I,n=14 1771125612454590 r002 52th iterates of z^2 + 1771125615098662 a007 Real Root Of -220*x^4+147*x^3+660*x^2-91*x+750 1771125621427292 a001 1/167732*(1/2*5^(1/2)+1/2)^4*2207^(4/21) 1771125623211261 k006 concat of cont frac of 1771125625105302 a008 Real Root of x^3-x^2-287*x-159 1771125625796195 a007 Real Root Of -380*x^4-794*x^3-496*x^2-298*x+356 1771125631371211 a001 817138163596/5*317811^(11/15) 1771125631373778 a001 20633239/5*591286729879^(11/15) 1771125631373782 a001 4106118243/5*433494437^(11/15) 1771125632633241 m006 (1/4/Pi+5)/(5/6*Pi+1/4) 1771125633134007 r005 Im(z^2+c),c=-19/29+4/29*I,n=7 1771125636595566 m001 1/KhintchineLevy*Cahen^2*ln(BesselK(1,1)) 1771125639356365 r005 Im(z^2+c),c=-13/14+17/105*I,n=27 1771125653278244 a001 1/322*(1/2*5^(1/2)+1/2)^11*3^(23/24) 1771125653793332 l006 ln(1673/9833) 1771125655096110 a007 Real Root Of 373*x^4+859*x^3+257*x^2-612*x-788 1771125662613033 q001 568/3207 1771125664346387 m001 (-GAMMA(7/24)+3)/(BesselK(1,1)+4) 1771125666775291 a001 23725150497407/2*1836311903^(15/17) 1771125666775291 a001 17393796001/2*6557470319842^(15/17) 1771125671234519 a007 Real Root Of -669*x^4-624*x^3+707*x^2-610*x-182 1771125671580108 m001 1/arctan(1/2)^2*ln(GAMMA(1/3))/sin(Pi/12) 1771125671975687 m001 BesselJ(0,1)*((1+3^(1/2))^(1/2)+Robbin) 1771125676994186 a007 Real Root Of -524*x^4+511*x^3-632*x^2+415*x-56 1771125703802571 g002 Psi(1/11)-2*Psi(2/9)-Psi(2/7) 1771125705491302 h001 (-9*exp(1)+7)/(-9*exp(7)+9) 1771125705782889 m001 (LambertW(1)-Landau)/(Totient+ZetaQ(3)) 1771125709421335 r002 6th iterates of z^2 + 1771125712562700 m001 sin(1/5*Pi)/(gamma(1)^BesselK(0,1)) 1771125722633258 m001 (ln(Pi)+Niven)/(Catalan+ln(2)) 1771125725886406 m001 (LaplaceLimit-Tetranacci)/(gamma(2)-CareFree) 1771125732641132 a005 (1/cos(25/229*Pi))^777 1771125742825407 a007 Real Root Of 578*x^4+650*x^3-59*x^2+589*x-848 1771125744772515 a001 521/4052739537881*3^(7/24) 1771125751933543 q001 6183/3491 1771125753191231 r009 Re(z^3+c),c=-3/10+29/52*I,n=23 1771125759399103 l006 ln(963/5660) 1771125769137403 b008 -18*Pi^2+Cos[1] 1771125770449910 a005 (1/sin(79/175*Pi))^1625 1771125771667637 m005 (1/2*3^(1/2)-10/11)/(5*gamma-5/11) 1771125777506638 a007 Real Root Of -651*x^4-829*x^3+653*x^2+191*x+90 1771125794738112 m002 3+3/Log[Pi]-Sinh[Pi]/3 1771125795195322 p003 LerchPhi(1/32,4,533/194) 1771125796913776 r005 Im(z^2+c),c=-107/114+15/64*I,n=30 1771125798742278 m006 (5/6*Pi^2+4)/(3/4*Pi^2-1/2) 1771125798742278 m008 (5/6*Pi^2+4)/(3/4*Pi^2-1/2) 1771125798742278 m009 (1/6*Pi^2+4/5)/(3/2*Pi^2-1) 1771125800475108 r005 Im(z^2+c),c=-13/14+37/226*I,n=14 1771125802856931 r005 Im(z^2+c),c=-6/7+5/38*I,n=46 1771125805090415 r008 a(0)=0,K{-n^6,68-11*n^3-59*n^2+58*n} 1771125808622146 m001 (3^(1/3)-GaussAGM)/(Otter+Weierstrass) 1771125809604171 m005 (1/3*exp(1)-3/7)/(3/10*3^(1/2)-1/4) 1771125814174059 a008 Real Root of x^4-2*x^3+7*x^2+3*x-26 1771125814874082 a007 Real Root Of 383*x^4+510*x^3+160*x^2+742*x-123 1771125817948793 r005 Re(z^2+c),c=-55/106+27/53*I,n=42 1771125821871330 a007 Real Root Of 105*x^4-556*x^3-568*x^2-673*x+140 1771125827814569 q001 6686/3775 1771125835375496 m001 (BesselK(1,1)-Landau)/(Lehmer-MertensB1) 1771125840902235 a001 29/5*17711^(31/53) 1771125841006636 m001 1/exp(BesselK(0,1))/Salem^2*GAMMA(11/24)^2 1771125841446286 m001 (Magata+ZetaQ(2))/(LandauRamanujan-exp(1)) 1771125847870216 m001 1/Sierpinski^2/exp(Conway)*TwinPrimes^2 1771125853420945 m001 (Chi(1)+Kolakoski)/(MertensB1+TwinPrimes) 1771125859600830 m001 GAMMA(3/4)^ReciprocalLucas/sin(1) 1771125866412312 m001 (1+Backhouse)/(-HardHexagonsEntropy+ZetaQ(3)) 1771125868290264 m001 LandauRamanujan*Kolakoski^2/exp(Zeta(9)) 1771125870192422 r005 Re(z^2+c),c=19/54+34/45*I,n=4 1771125883777223 m004 (5*Pi)/18-Log[Sqrt[5]*Pi]*Sec[Sqrt[5]*Pi] 1771125886789815 a007 Real Root Of -593*x^4-756*x^3+160*x^2-677*x-66 1771125893077112 q001 7189/4059 1771125896824364 m005 (1/3*Pi+2/9)/(1/11*Catalan-4/5) 1771125898495347 r005 Re(z^2+c),c=35/114+7/27*I,n=44 1771125901971171 m001 (ln(Pi)+PlouffeB)/(TreeGrowth2nd+Weierstrass) 1771125903627200 r009 Re(z^3+c),c=-7/74+45/56*I,n=24 1771125904693866 l006 ln(1216/7147) 1771125914708895 a001 1/3009828*(1/2*5^(1/2)+1/2)^12*39603^(1/21) 1771125915989778 a001 1/4870004*(1/2*5^(1/2)+1/2)^2*64079^(11/21) 1771125916847357 a007 Real Root Of -334*x^4-107*x^3+948*x^2+268*x+193 1771125925197817 r004 Re(z^2+c),c=-41/34+1/16*I,z(0)=-1,n=55 1771125926398707 a001 1/710524*(1/2*5^(1/2)+1/2)*9349^(10/21) 1771125928623128 m001 (ln(gamma)+GAMMA(23/24))/(Conway-MertensB2) 1771125929338752 a007 Real Root Of -288*x^4-654*x^3-622*x^2-465*x+328 1771125934722424 r005 Im(z^2+c),c=-91/110+7/60*I,n=59 1771125935895835 m001 (-Grothendieck+Paris)/(2^(1/2)-arctan(1/2)) 1771125936146564 a007 Real Root Of 157*x^4-59*x^3-540*x^2+119*x+32 1771125938618728 r005 Im(z^2+c),c=-85/126+10/41*I,n=51 1771125940874499 m001 ln(GAMMA(2/3))^2*GAMMA(13/24)*sinh(1) 1771125943391041 a007 Real Root Of 288*x^4+320*x^3-208*x^2+277*x+87 1771125950929180 l006 ln(2823/3370) 1771125950995877 r005 Im(z^2+c),c=23/126+48/59*I,n=3 1771125953071382 r002 9th iterates of z^2 + 1771125953176418 m005 (1/2*2^(1/2)-5/12)/(3/11*3^(1/2)-7/11) 1771125971076429 m009 (32/5*Catalan+4/5*Pi^2-3)/(6*Psi(1,1/3)+1/6) 1771125972457496 r009 Re(z^3+c),c=-31/94+15/32*I,n=5 1771125973425326 r005 Im(z^2+c),c=-113/110+12/61*I,n=42 1771125979343791 p004 log(33049/5623) 1771125980321280 a003 sin(Pi*2/39)/sin(Pi*22/61) 1771125983913511 a001 11/34*55^(14/33) 1771125984817357 a007 Real Root Of 892*x^4-770*x^3+374*x^2-571*x+10 1771125985187899 m001 (1-3^(1/3))/(Grothendieck+TravellingSalesman) 1771125994871644 a007 Real Root Of -361*x^4-761*x^3-136*x^2+135*x-10 1771125995656059 l006 ln(9010/9171) 1771125998258227 r009 Im(z^3+c),c=-12/29+3/49*I,n=35 1771125999941545 l006 ln(1469/8634) 1771126001311276 g001 Re(Psi(-9/2+I*37/12)) 1771126005078334 a007 Real Root Of -317*x^4-746*x^3-413*x^2+346*x+883 1771126007377379 h001 (1/12*exp(2)+6/11)/(7/8*exp(2)+1/11) 1771126011469441 a007 Real Root Of 872*x^4+673*x^3-908*x^2+943*x-323 1771126014386219 r009 Re(z^3+c),c=-23/86+25/54*I,n=14 1771126016049464 a003 cos(Pi*8/77)+cos(Pi*14/73) 1771126021436869 m005 (1/2*3^(1/2)-5/7)/(5/7*gamma+4/9) 1771126021605020 a001 1/271396*(1/2*5^(1/2)+1/2)^4*3571^(5/21) 1771126024806493 r005 Re(z^2+c),c=-13/106+11/25*I,n=7 1771126026453587 m001 (-ln(2^(1/2)+1)+arctan(1/2))/(2^(1/3)+ln(3)) 1771126031015085 a007 Real Root Of -674*x^4-805*x^3+62*x^2-593*x+915 1771126033057851 r005 Re(z^2+c),c=3/8+32/55*I,n=2 1771126044139531 a007 Real Root Of 230*x^4-348*x^3-757*x^2+699*x-584 1771126047417400 a008 Real Root of x^4-2*x^3-x^2-28*x+54 1771126048143622 a003 cos(Pi*1/79)+sin(Pi*16/57) 1771126054257797 m005 (1/2*3^(1/2)-4/11)/(1/12*Pi-6/11) 1771126057607035 a007 Real Root Of 45*x^4+787*x^3-187*x^2-124*x+868 1771126066663448 a007 Real Root Of 699*x^4+941*x^3-132*x^2+218*x-850 1771126068592044 m001 (-GAMMA(11/12)+KomornikLoreti)/(5^(1/2)+Ei(1)) 1771126108981345 a007 Real Root Of 115*x^4-243*x^3-905*x^2-720*x-918 1771126111331957 k008 concat of cont frac of 1771126113105326 k008 concat of cont frac of 1771126113151291 k006 concat of cont frac of 1771126117660442 r005 Im(z^2+c),c=-67/122+20/61*I,n=39 1771126121131111 k007 concat of cont frac of 1771126121213111 k008 concat of cont frac of 1771126121693763 r005 Im(z^2+c),c=-33/58+6/19*I,n=33 1771126123224924 m006 (4*Pi-1/5)/(3*exp(Pi)+2/5) 1771126125131112 k008 concat of cont frac of 1771126125167587 h001 (2/5*exp(1)+5/7)/(1/3*exp(1)+1/9) 1771126128291761 r005 Re(z^2+c),c=23/102+16/33*I,n=57 1771126128999466 a007 Real Root Of 918*x^4+855*x^3-945*x^2+596*x-263 1771126132112131 k008 concat of cont frac of 1771126133448208 r005 Im(z^2+c),c=-51/94+14/51*I,n=14 1771126134322117 k008 concat of cont frac of 1771126135111131 k008 concat of cont frac of 1771126139017297 a003 cos(Pi*11/87)+cos(Pi*14/79) 1771126144111512 k008 concat of cont frac of 1771126145344227 k009 concat of cont frac of 1771126145910887 r002 7th iterates of z^2 + 1771126159411121 k008 concat of cont frac of 1771126164777069 m001 (Weierstrass-ZetaQ(4))/(FeigenbaumD-Trott) 1771126166482103 r002 10th iterates of z^2 + 1771126166538748 r005 Im(z^2+c),c=-55/98+17/35*I,n=21 1771126177764117 m001 (-FeigenbaumD+ZetaP(3))/(2^(1/2)+gamma(3)) 1771126182239297 k002 Champernowne real with 1/2*n^2+105/2*n-36 1771126186146332 m005 (1/3*Catalan-2/9)/(5/12*Catalan-3/7) 1771126188717386 p004 log(14897/12479) 1771126188976445 r005 Im(z^2+c),c=-25/34+17/111*I,n=10 1771126192090195 r005 Im(z^2+c),c=-7/15+19/62*I,n=39 1771126192250993 r005 Im(z^2+c),c=-27/56+13/42*I,n=60 1771126196894114 a001 96450076809/17*956722026041^(7/24) 1771126196894115 a001 5600748293801/34*9227465^(7/24) 1771126199751529 a007 Real Root Of -744*x^4+848*x^3+437*x^2+504*x+81 1771126208515947 m001 Zeta(1/2)^2/Robbin*ln(gamma) 1771126209366069 m001 (-ln(gamma)+Pi^(1/2))/(3^(1/2)-BesselK(0,1)) 1771126211751431 k007 concat of cont frac of 1771126214221312 k008 concat of cont frac of 1771126214881888 q001 8/45169 1771126217711262 k006 concat of cont frac of 1771126220107152 r005 Im(z^2+c),c=-109/126+7/57*I,n=12 1771126221112426 k006 concat of cont frac of 1771126221215117 k008 concat of cont frac of 1771126226682831 a003 cos(Pi*11/72)+cos(Pi*13/84) 1771126227814706 r005 Im(z^2+c),c=-27/56+13/42*I,n=55 1771126228022129 r002 52th iterates of z^2 + 1771126235243625 r002 40th iterates of z^2 + 1771126237027552 r002 27th iterates of z^2 + 1771126237762424 r005 Im(z^2+c),c=-31/27+8/45*I,n=18 1771126239700104 m001 Zeta(1/2)^Shi(1)*Zeta(1/2)^ZetaP(2) 1771126241554533 r005 Re(z^2+c),c=-43/36+4/41*I,n=40 1771126253707263 a007 Real Root Of -832*x^4-769*x^3+856*x^2-986*x-517 1771126255839412 m001 1/ln(TwinPrimes)*GlaisherKinkelin^2/sqrt(5) 1771126260665760 s001 sum(exp(-Pi)^(n-1)*A261288[n],n=1..infinity) 1771126262501345 r002 15th iterates of z^2 + 1771126265348442 m005 (1/2*gamma-3)/(7/9*exp(1)-7/12) 1771126270537561 a007 Real Root Of -590*x^4-807*x^3+13*x^2-488*x+417 1771126271411818 k007 concat of cont frac of 1771126274988916 a007 Real Root Of 415*x^4+150*x^3-409*x^2+912*x-352 1771126275887593 m001 Catalan^MertensB3+QuadraticClass 1771126277778953 a007 Real Root Of -354*x^4-173*x^3+126*x^2-922*x+494 1771126281131232 k008 concat of cont frac of 1771126281705452 r005 Im(z^2+c),c=-83/102+7/51*I,n=19 1771126286613435 a007 Real Root Of 95*x^4-122*x^3-183*x^2+583*x-6 1771126291741016 a007 Real Root Of -845*x^4-940*x^3+586*x^2-209*x+884 1771126292335273 a001 55/2207*76^(24/53) 1771126297110752 m001 (ln(gamma)+ln(3))/(Khinchin+PrimesInBinary) 1771126300724535 m001 FeigenbaumDelta^gamma-LaplaceLimit 1771126300872857 r005 Re(z^2+c),c=-17/40+23/44*I,n=8 1771126311059152 m001 (-ln(2+3^(1/2))+exp(1/exp(1)))/(2^(1/2)-ln(2)) 1771126312777679 h001 (7/10*exp(2)+5/12)/(2/5*exp(2)+1/5) 1771126315105801 m001 Porter^2*Champernowne/exp(GAMMA(2/3))^2 1771126316308410 m001 (FeigenbaumKappa+Mills)/(1-FeigenbaumAlpha) 1771126316636680 a001 521*(1/2*5^(1/2)+1/2)^25*3^(9/14) 1771126317423064 m005 (1/2*exp(1)-1/2)/(2/11*3^(1/2)-4/5) 1771126330308779 r005 Im(z^2+c),c=-13/110+41/64*I,n=6 1771126335984844 b008 E-65*Sinh[4] 1771126337459683 m001 (Paris-RenyiParking)/(Ei(1)-GAMMA(7/12)) 1771126341103119 a001 76/2178309*55^(49/50) 1771126359110489 m001 gamma^2*exp(LaplaceLimit)^2/sin(1)^2 1771126360407319 a007 Real Root Of 399*x^4-107*x^3-923*x^2+571*x-614 1771126361204118 s002 sum(A107433[n]/(exp(pi*n)-1),n=1..infinity) 1771126362335036 a007 Real Root Of -306*x^4+360*x^3+880*x^2-814*x+809 1771126362372583 a007 Real Root Of 990*x^4+67*x^3+531*x^2-55*x-27 1771126365515811 k008 concat of cont frac of 1771126385198021 l006 ln(6833/8157) 1771126387306323 a003 cos(Pi*1/58)-cos(Pi*17/88) 1771126388688651 a007 Real Root Of -225*x^4-354*x^3+211*x^2+373*x+246 1771126390188437 r005 Im(z^2+c),c=-3/50+6/29*I,n=7 1771126394682727 r005 Im(z^2+c),c=-53/58+8/51*I,n=25 1771126394762187 m001 (gamma(2)+TreeGrowth2nd)/(Si(Pi)+gamma) 1771126403159414 a008 Real Root of x^2-x-31546 1771126408875910 r009 Re(z^3+c),c=-11/46+7/19*I,n=15 1771126411047083 r005 Im(z^2+c),c=-81/98+3/26*I,n=40 1771126423285617 a005 (1/cos(49/180*Pi))^127 1771126426374496 m005 (7/12+1/4*5^(1/2))/(2*Pi+1/6) 1771126433961926 r002 16th iterates of z^2 + 1771126434242981 a007 Real Root Of 493*x^4+520*x^3-537*x^2+325*x+298 1771126438592351 m001 (LandauRamanujan2nd+ZetaP(4))/(Pi+gamma) 1771126438794502 m001 Backhouse^Mills*Trott 1771126449785960 r005 Re(z^2+c),c=-1/34+43/58*I,n=27 1771126453166959 m005 (1/3*exp(1)+2/5)/(7/8*2^(1/2)-1/2) 1771126456379216 p001 sum((-1)^n/(515*n+167)/n/(8^n),n=1..infinity) 1771126456436758 a007 Real Root Of -916*x^4-859*x^3+660*x^2-696*x+938 1771126457732634 l006 ln(253/1487) 1771126459454529 m001 (Backhouse-MertensB1)/(3^(1/3)-exp(1/Pi)) 1771126461122118 k008 concat of cont frac of 1771126465983049 l005 201601/3600/(exp(449/60)^2-1) 1771126472943285 m006 (2*Pi-1/2)/(5/6/Pi+3) 1771126475785589 r009 Re(z^3+c),c=-17/58+13/24*I,n=28 1771126477134964 r009 Re(z^3+c),c=-7/44+32/37*I,n=61 1771126477673702 m009 (5/12*Pi^2+2)/(4/5*Psi(1,2/3)+1) 1771126482597673 m001 (GlaisherKinkelin+Trott)/(Zeta(3)-Bloch) 1771126483207421 b008 QPochhammer[-2/7,Cos[1]] 1771126484673182 a007 Real Root Of 716*x^4+703*x^3-285*x^2+792*x-843 1771126488073267 b008 -1+KelvinKei[0,E^(-2)] 1771126494439263 r009 Re(z^3+c),c=-7/23+26/45*I,n=50 1771126501982169 m001 ln(3)^FeigenbaumKappa+HardyLittlewoodC3 1771126504425623 r005 Im(z^2+c),c=-17/56+13/48*I,n=18 1771126510432338 h001 (2/7*exp(2)+7/8)/(3/8*exp(1)+2/3) 1771126522063771 a007 Real Root Of -308*x^4-781*x^3-356*x^2+253*x-29 1771126524682132 m002 -3/4+Pi^3-Sinh[Pi]-Tanh[Pi] 1771126528750914 h001 (2/5*exp(2)+9/10)/(8/11*exp(1)+1/5) 1771126533212769 m001 (3^(1/3)+Conway)/(MertensB2-Sierpinski) 1771126537118197 m001 MertensB3^sin(1/12*Pi)*MertensB3^(3^(1/2)) 1771126541299041 r005 Re(z^2+c),c=-3/62+25/41*I,n=3 1771126547768873 m001 1/Si(Pi)/FeigenbaumAlpha/exp(Paris)^2 1771126569777095 m001 Pi^(1/2)-gamma(3)*MasserGramain 1771126578554936 a007 Real Root Of -14*x^4+265*x^3+861*x^2+547*x-122 1771126585058834 a005 (1/cos(9/184*Pi))^631 1771126590276727 r002 5th iterates of z^2 + 1771126598635922 a007 Real Root Of -700*x^4-854*x^3+522*x^2+205*x+869 1771126602312706 a007 Real Root Of -614*x^4-278*x^3+930*x^2-354*x+953 1771126608578988 r005 Re(z^2+c),c=-1/17+30/53*I,n=26 1771126609053711 a007 Real Root Of -613*x^4-752*x^3-43*x^2-905*x+386 1771126611415160 a007 Real Root Of -418*x^4+129*x^3+726*x^2-898*x+962 1771126611511317 k007 concat of cont frac of 1771126611587100 s003 concatenated sequence A173375 1771126628312689 r005 Im(z^2+c),c=-9/58+11/47*I,n=16 1771126640620423 a007 Real Root Of -125*x^4+898*x^3-937*x^2-372*x-161 1771126643702329 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=31 1771126645584080 m001 FeigenbaumD^ln(Pi)/MadelungNaCl 1771126646787514 r009 Re(z^3+c),c=-3/94+23/35*I,n=37 1771126650965017 a007 Real Root Of 994*x^4-126*x^3+640*x^2-566*x-122 1771126651445708 a007 Real Root Of 394*x^4+535*x^3-271*x^2+155*x+220 1771126653820835 m001 GaussKuzminWirsing/DuboisRaymond/ln(2^(1/2)+1) 1771126662589681 m001 Landau^TravellingSalesman*Trott2nd 1771126663524988 m001 (-GaussAGM+Thue)/(sin(1)+cos(1)) 1771126667211287 r009 Re(z^3+c),c=-17/98+47/52*I,n=33 1771126668644021 r005 Im(z^2+c),c=-15/14+25/119*I,n=64 1771126669631340 r005 Im(z^2+c),c=-7/12+15/46*I,n=40 1771126675688210 s001 sum(exp(-Pi/3)^(n-1)*A037218[n],n=1..infinity) 1771126676862451 m002 5+Pi^6+3*E^Pi*Cosh[Pi] 1771126679759296 m001 (Otter+ReciprocalFibonacci)/(1-Cahen) 1771126686146550 r005 Re(z^2+c),c=-37/31+1/53*I,n=14 1771126688884907 m001 (GAMMA(11/12)-GAMMA(13/24))/(Magata-OneNinth) 1771126690918941 l006 ln(4010/4787) 1771126692651549 a007 Real Root Of -600*x^4-356*x^3+749*x^2-622*x+475 1771126693872444 p003 LerchPhi(1/10,5,254/113) 1771126694465799 m001 (Robbin+Totient)/(Shi(1)-gamma(1)) 1771126698604864 r005 Im(z^2+c),c=-27/44+13/45*I,n=19 1771126711710510 a007 Real Root Of 128*x^4-861*x^3+510*x^2+768*x+564 1771126712831064 r002 10th iterates of z^2 + 1771126723701661 m001 Paris^2*FeigenbaumB^2*exp(cos(Pi/12)) 1771126725269469 r002 59th iterates of z^2 + 1771126729826871 a007 Real Root Of 89*x^4+33*x^3+240*x^2+309*x-898 1771126730239343 a007 Real Root Of 685*x^4+382*x^3-860*x^2+942*x-252 1771126734996688 m002 Log[Pi]/ProductLog[Pi]+(Pi^3*ProductLog[Pi])/2 1771126736390533 m001 (MasserGramain-ReciprocalFibonacci)/(Pi-ln(5)) 1771126749277137 r005 Im(z^2+c),c=-125/126+5/27*I,n=45 1771126760563380 q001 503/284 1771126764602522 m001 GAMMA(23/24)+Cahen^(2/3) 1771126766363516 g001 abs(GAMMA(13/12+I*29/15)) 1771126768347353 m005 (1/2*gamma-1/6)/(1/10*exp(1)+5/12) 1771126773661089 p004 log(30139/25247) 1771126774879974 r005 Re(z^2+c),c=-5/6+20/129*I,n=10 1771126776970099 a007 Real Root Of -356*x^4-399*x^3+812*x^2+171*x-958 1771126780977947 m009 (1/6*Psi(1,3/4)-1/3)/(24*Catalan+3*Pi^2-3/5) 1771126780988884 a007 Real Root Of 589*x^4+443*x^3-292*x^2+845*x-922 1771126786772045 m001 (Ei(1,1)+KhinchinLevy)/(3^(1/3)-5^(1/2)) 1771126791299141 a007 Real Root Of 53*x^4-266*x^3-564*x^2-276*x-719 1771126794591405 r002 29th iterates of z^2 + 1771126801529934 r009 Re(z^3+c),c=-5/42+23/28*I,n=5 1771126802257295 m005 (1/3*Catalan+1/12)/(2/3*Pi+1/10) 1771126821181414 a007 Real Root Of 558*x^4+396*x^3-631*x^2+593*x-261 1771126830938419 m001 (exp(Pi)-Zeta(3)*Riemann2ndZero)/Zeta(3) 1771126832740630 a007 Real Root Of 376*x^4+115*x^3-798*x^2+862*x+969 1771126842518001 k008 concat of cont frac of 1771126844093188 m005 (1/3*3^(1/2)+1/2)/(4/11*gamma-9/11) 1771126849739215 r009 Re(z^3+c),c=-19/66+10/19*I,n=37 1771126854086537 a008 Real Root of x^4-x^3-280*x^2-315*x+567 1771126859394713 a003 cos(Pi*11/91)+sin(Pi*22/69) 1771126866299049 m002 3/4+(E^Pi*Pi^5)/4 1771126870113274 m005 (1/2*gamma+5/7)/(6*Catalan+1/6) 1771126872865159 m001 (Chi(1)-sin(1/5*Pi))/(CopelandErdos+Salem) 1771126886893331 l006 ln(1567/9210) 1771126892606829 a008 Real Root of (1+6*x+2*x^2+x^4+6*x^5) 1771126898270939 m001 (exp(Pi)+GAMMA(11/12))/(CareFree+Robbin) 1771126905209791 a007 Real Root Of 38*x^4+698*x^3+471*x^2+521*x+219 1771126910286347 m001 Landau-Pi*csc(1/24*Pi)/GAMMA(23/24)*Paris 1771126910893949 a007 Real Root Of 819*x^4+695*x^3-993*x^2+499*x-199 1771126912137548 m001 (Khinchin+Sarnak)/(Sierpinski-TwinPrimes) 1771126912196210 r005 Re(z^2+c),c=-5/82+29/54*I,n=22 1771126915509631 a007 Real Root Of 713*x^4+915*x^3-580*x^2+485*x+746 1771126938851705 m001 Paris/(ln(Pi)-sin(1/5*Pi)) 1771126949983625 r002 29th iterates of z^2 + 1771126950851760 r009 Re(z^3+c),c=-19/32+23/42*I,n=39 1771126958284338 r005 Re(z^2+c),c=-13/74+13/53*I,n=22 1771126959468101 a007 Real Root Of 166*x^4-264*x^3-448*x^2+822*x-239 1771126959804176 m001 (2^(1/3)-ln(2))/(ln(5)+BesselI(1,2)) 1771126960444666 m002 4+Cosh[Pi]+(Pi^2*ProductLog[Pi])/5 1771126961385562 a007 Real Root Of 801*x^4+699*x^3-959*x^2+419*x-248 1771126967503696 m001 cos(1)^Magata/ln(2) 1771126968944525 r009 Re(z^3+c),c=-1/3+31/50*I,n=45 1771126969524708 l006 ln(1314/7723) 1771126973884844 m001 Pi/GAMMA(19/24)*Robbin 1771126977894222 r002 35th iterates of z^2 + 1771126984028259 v003 sum((n^3-5*n^2+24*n-12)/(n!+2),n=1..infinity) 1771126984122689 a007 Real Root Of 704*x^4+911*x^3-350*x^2-5*x-777 1771126985422374 r005 Im(z^2+c),c=-1/10+7/32*I,n=13 1771126988619463 a007 Real Root Of -699*x^4-979*x^3+749*x^2+898*x+680 1771126989199987 m001 (gamma(3)+exp(-1/2*Pi))/(Ei(1,1)+cos(1/12*Pi)) 1771126990117540 m001 (sin(1/5*Pi)+MasserGramain)^exp(1) 1771127002340155 m005 (1/2*Catalan+8/9)/(1/10*gamma-9/11) 1771127006290851 m001 (Si(Pi)+cos(1))/(CareFree+MasserGramain) 1771127008864478 m001 Thue/(CareFree-Ei(1,1)) 1771127011141115 k008 concat of cont frac of 1771127019988303 a007 Real Root Of -701*x^4-808*x^3+939*x^2+722*x+742 1771127026763442 a001 29/610*46368^(27/49) 1771127037125558 a007 Real Root Of 159*x^4-375*x^3+954*x^2-383*x-100 1771127038784278 m001 (Artin+Khinchin)/(Pi-2^(1/2)) 1771127052806439 m001 (Zeta(1,2)-polylog(4,1/2))/(FeigenbaumB-Trott) 1771127058978082 m001 Porter^2*DuboisRaymond*exp((3^(1/3))) 1771127060345746 r009 Im(z^3+c),c=-1/27+53/59*I,n=2 1771127066782833 s001 sum(exp(-2*Pi/3)^n*A162945[n],n=1..infinity) 1771127068967243 m001 Riemann1stZero*ln(FeigenbaumDelta)^2/Ei(1) 1771127071947065 h001 (10/11*exp(2)+3/4)/(5/9*exp(2)+1/9) 1771127074682227 a005 (1/cos(19/182*Pi))^641 1771127074937860 m001 (FeigenbaumD+Khinchin)/(Conway-ErdosBorwein) 1771127075053588 m001 (BesselI(0,2)+ThueMorse)^gamma 1771127078028196 m001 (Gompertz-Landau)/(Sierpinski+ThueMorse) 1771127083012917 m001 (Grothendieck+Porter)/(ln(gamma)-GAMMA(17/24)) 1771127083183224 m001 (-Mills+ZetaP(4))/(BesselJ(0,1)-GaussAGM) 1771127087223545 a001 7/832040*75025^(47/53) 1771127091563684 l006 ln(1061/6236) 1771127092655422 a001 5600748293801/2*6557470319842^(13/17) 1771127092879875 l006 ln(5197/6204) 1771127102116624 k007 concat of cont frac of 1771127105576345 m001 (Si(Pi)-ln(3))/(-HardyLittlewoodC3+Lehmer) 1771127105869696 a007 Real Root Of 144*x^4-39*x^3-459*x^2-56*x-293 1771127109140741 h001 (7/12*exp(2)+2/9)/(8/9*exp(1)+1/7) 1771127111182811 k008 concat of cont frac of 1771127112116631 k008 concat of cont frac of 1771127114019772 a007 Real Root Of -787*x^4-860*x^3-321*x^2+602*x-91 1771127114221112 k008 concat of cont frac of 1771127117402920 r002 52th iterates of z^2 + 1771127121131732 k006 concat of cont frac of 1771127123151217 k008 concat of cont frac of 1771127123265988 r002 16th iterates of z^2 + 1771127124012747 a007 Real Root Of 144*x^4-191*x^3-116*x^2+663*x-940 1771127137927720 r009 Im(z^3+c),c=-61/118+37/64*I,n=33 1771127141508262 a007 Real Root Of -12*x^4+233*x^3+426*x^2+342*x+682 1771127144166350 a007 Real Root Of 941*x^4+800*x^3-945*x^2+544*x-887 1771127147570492 r005 Im(z^2+c),c=-91/102+4/27*I,n=30 1771127149393387 a007 Real Root Of -436*x^4-680*x^3-280*x^2-338*x+792 1771127150100015 a003 cos(Pi*11/85)+cos(Pi*7/40) 1771127152912173 k006 concat of cont frac of 1771127153592809 a001 2207/144*1597^(1/51) 1771127158574329 p003 LerchPhi(1/12,3,61/34) 1771127161763326 k007 concat of cont frac of 1771127174781405 a007 Real Root Of 401*x^4+828*x^3+254*x^2-146*x-401 1771127178678641 r002 64th iterates of z^2 + 1771127180057387 a001 11/165580141*987^(10/21) 1771127184389463 a007 Real Root Of 712*x^4+476*x^3-817*x^2+626*x-690 1771127185245307 k002 Champernowne real with n^2+51*n-35 1771127192134367 m002 -Pi^2/5+Pi^6/(5*ProductLog[Pi]) 1771127194597668 m001 (Artin-Champernowne)/(Riemann1stZero+ZetaQ(3)) 1771127203165128 r005 Re(z^2+c),c=-14/25+23/49*I,n=10 1771127210315144 b008 1+Sqrt[2]+3*Sqrt[26] 1771127211411131 k008 concat of cont frac of 1771127211767987 m005 (1/3*Zeta(3)+2/5)/(7/6+3/2*5^(1/2)) 1771127213162869 a007 Real Root Of 768*x^4+900*x^3-901*x^2-658*x-896 1771127214971922 m001 1/ln(GAMMA(7/24))*MinimumGamma^2*cos(Pi/12)^2 1771127215343201 a001 1/29*(1/2*5^(1/2)+1/2)^3*18^(1/15) 1771127220847022 m001 (Lehmer-MertensB1)/(polylog(4,1/2)-CareFree) 1771127221126110 k006 concat of cont frac of 1771127222165411 k008 concat of cont frac of 1771127222435783 a003 cos(Pi*14/71)+sin(Pi*13/32) 1771127228244973 a001 3/3010349*521^(23/50) 1771127230113122 k008 concat of cont frac of 1771127231522123 k006 concat of cont frac of 1771127234017167 m001 (ln(2+3^(1/2))+Zeta(1,2))/(Khinchin-Landau) 1771127234615017 k007 concat of cont frac of 1771127238587367 m001 Landau/Khinchin*ZetaQ(3) 1771127244750365 m001 (exp(1)+Artin)/(-MadelungNaCl+ZetaQ(4)) 1771127247492588 r002 3th iterates of z^2 + 1771127252507280 r005 Im(z^2+c),c=-7/102+49/61*I,n=12 1771127261556443 h001 (-7*exp(5)-9)/(-4*exp(5)+2) 1771127263038383 m001 exp(Catalan)^2*FeigenbaumAlpha^2*GAMMA(5/12)^2 1771127263472255 m001 GAMMA(7/24)^2/ln(TwinPrimes)^2*LambertW(1)^2 1771127265950801 m001 (Cahen-KhinchinHarmonic)/(MertensB2-ThueMorse) 1771127268667675 m001 (ln(3)-Sierpinski)^(3^(1/3)) 1771127270254635 a007 Real Root Of -984*x^4-817*x^3+962*x^2-809*x+693 1771127277747500 m001 (DuboisRaymond+Niven)/(ThueMorse+TwinPrimes) 1771127280334333 m001 MasserGramainDelta/(Mills^OneNinth) 1771127286730512 a007 Real Root Of -668*x^4-640*x^3+809*x^2-45*x+400 1771127290028026 l006 ln(808/4749) 1771127290496423 b008 18-ArcSinh[2]/5 1771127290496423 m003 -18+(3*Log[1/2+Sqrt[5]/2])/5 1771127294514865 r005 Re(z^2+c),c=-13/74+13/53*I,n=24 1771127296178335 a003 cos(Pi*9/43)+sin(Pi*44/101) 1771127297778759 r002 9th iterates of z^2 + 1771127310819115 a007 Real Root Of 766*x^4+423*x^3-896*x^2+875*x-827 1771127311151125 k007 concat of cont frac of 1771127311155142 k008 concat of cont frac of 1771127314630574 m001 (GAMMA(13/24)+Otter)/(cos(1/5*Pi)+ln(gamma)) 1771127317329120 a003 cos(Pi*3/13)/cos(Pi*13/36) 1771127320674409 m005 (1/2*exp(1)-8/11)/(6/11*Catalan-1/7) 1771127321951715 m001 Pi^(1/2)*HardyLittlewoodC3^ZetaQ(4) 1771127324376581 a007 Real Root Of -30*x^4-540*x^3-165*x^2-228*x-403 1771127327118730 r005 Re(z^2+c),c=-13/74+13/53*I,n=25 1771127329969366 r004 Im(z^2+c),c=7/22+2/17*I,z(0)=exp(5/8*I*Pi),n=5 1771127331715268 r005 Re(z^2+c),c=-13/74+13/53*I,n=27 1771127332929139 b008 1/13+17*Coth[2] 1771127337477205 a005 (1/sin(18/137*Pi))^46 1771127341069677 r005 Re(z^2+c),c=15/46+17/50*I,n=25 1771127342451682 m001 FransenRobinson*(StolarskyHarborth-ln(gamma)) 1771127343735364 r005 Re(z^2+c),c=-13/74+13/53*I,n=30 1771127344032314 m005 (1/3*5^(1/2)-2/5)/(10/11*Zeta(3)+6/7) 1771127345309048 r005 Re(z^2+c),c=-13/74+13/53*I,n=32 1771127345364727 l006 ln(6384/7621) 1771127345389977 r005 Re(z^2+c),c=-13/74+13/53*I,n=33 1771127345432818 r005 Re(z^2+c),c=-13/74+13/53*I,n=35 1771127345482559 r005 Re(z^2+c),c=-13/74+13/53*I,n=38 1771127345489831 r005 Re(z^2+c),c=-13/74+13/53*I,n=40 1771127345489917 r005 Re(z^2+c),c=-13/74+13/53*I,n=41 1771127345490200 r005 Re(z^2+c),c=-13/74+13/53*I,n=43 1771127345490404 r005 Re(z^2+c),c=-13/74+13/53*I,n=46 1771127345490436 r005 Re(z^2+c),c=-13/74+13/53*I,n=49 1771127345490437 r005 Re(z^2+c),c=-13/74+13/53*I,n=48 1771127345490438 r005 Re(z^2+c),c=-13/74+13/53*I,n=51 1771127345490439 r005 Re(z^2+c),c=-13/74+13/53*I,n=54 1771127345490439 r005 Re(z^2+c),c=-13/74+13/53*I,n=57 1771127345490439 r005 Re(z^2+c),c=-13/74+13/53*I,n=56 1771127345490439 r005 Re(z^2+c),c=-13/74+13/53*I,n=59 1771127345490439 r005 Re(z^2+c),c=-13/74+13/53*I,n=62 1771127345490439 r005 Re(z^2+c),c=-13/74+13/53*I,n=64 1771127345490439 r005 Re(z^2+c),c=-13/74+13/53*I,n=60 1771127345490439 r005 Re(z^2+c),c=-13/74+13/53*I,n=63 1771127345490439 r005 Re(z^2+c),c=-13/74+13/53*I,n=61 1771127345490439 r005 Re(z^2+c),c=-13/74+13/53*I,n=58 1771127345490439 r005 Re(z^2+c),c=-13/74+13/53*I,n=55 1771127345490439 r005 Re(z^2+c),c=-13/74+13/53*I,n=52 1771127345490439 r005 Re(z^2+c),c=-13/74+13/53*I,n=53 1771127345490441 r005 Re(z^2+c),c=-13/74+13/53*I,n=50 1771127345490454 r005 Re(z^2+c),c=-13/74+13/53*I,n=47 1771127345490473 r005 Re(z^2+c),c=-13/74+13/53*I,n=44 1771127345490476 r005 Re(z^2+c),c=-13/74+13/53*I,n=45 1771127345490965 r005 Re(z^2+c),c=-13/74+13/53*I,n=42 1771127345494152 r005 Re(z^2+c),c=-13/74+13/53*I,n=39 1771127345497721 r005 Re(z^2+c),c=-13/74+13/53*I,n=37 1771127345501038 r005 Re(z^2+c),c=-13/74+13/53*I,n=36 1771127345608175 r005 Re(z^2+c),c=-13/74+13/53*I,n=34 1771127346382411 r005 Re(z^2+c),c=-13/74+13/53*I,n=31 1771127346859403 r005 Re(z^2+c),c=-13/74+13/53*I,n=29 1771127348549391 r005 Re(z^2+c),c=-13/74+13/53*I,n=28 1771127353208796 a001 11/2504730781961*591286729879^(10/21) 1771127353208797 a001 11/20365011074*24157817^(10/21) 1771127363191121 m008 (4*Pi^6-4/5)/(1/2*Pi+3/5) 1771127367332378 a007 Real Root Of -489*x^4-561*x^3+28*x^2-930*x-40 1771127367656933 r005 Re(z^2+c),c=-13/98+22/59*I,n=22 1771127369295972 m004 -4+5/Pi-25*Sqrt[5]*Pi+Tan[Sqrt[5]*Pi] 1771127371011174 r005 Im(z^2+c),c=9/106+9/59*I,n=3 1771127371244037 r005 Re(z^2+c),c=-15/62+26/51*I,n=6 1771127371591303 r005 Re(z^2+c),c=-13/74+13/53*I,n=26 1771127379296202 m001 cos(1/5*Pi)+Catalan^BesselJ(1,1) 1771127379296202 m001 cos(Pi/5)+Catalan^BesselJ(1,1) 1771127382903783 r002 55th iterates of z^2 + 1771127393354180 a007 Real Root Of 396*x^4+703*x^3-167*x^2-210*x+161 1771127395963329 a007 Real Root Of 423*x^4+497*x^3+308*x^2+995*x-605 1771127400279452 b008 1/4+ArcSec[17+Pi] 1771127404943828 a007 Real Root Of 361*x^4+485*x^3+145*x^2+570*x-303 1771127405086543 a007 Real Root Of -43*x^4-800*x^3-665*x^2+328*x+984 1771127406567208 m005 (1/2*exp(1)-1)/(4/7*5^(1/2)+3/4) 1771127407391841 p001 sum(1/(587*n+569)/(64^n),n=0..infinity) 1771127407738878 m001 HeathBrownMoroz^BesselI(1,1)+MadelungNaCl 1771127416949489 r009 Re(z^3+c),c=-13/74+25/28*I,n=61 1771127417123270 k008 concat of cont frac of 1771127423188361 h001 (5/11*exp(2)+9/11)/(5/7*exp(1)+5/12) 1771127423709840 a003 sin(Pi*1/18)/cos(Pi*7/111) 1771127424493758 m001 BesselK(1,1)^2*ln(LaplaceLimit)/sin(1) 1771127429956842 h001 (2/9*exp(1)+3/7)/(7/9*exp(2)+1/12) 1771127432767777 a003 sin(Pi*1/110)/sin(Pi*5/97) 1771127435758096 m001 (exp(Pi)+arctan(1/3))/PisotVijayaraghavan 1771127440697320 a001 8/11*1364^(23/52) 1771127444518584 l006 ln(1363/8011) 1771127447307455 m005 (1/2*2^(1/2)-5/6)/(1/9*2^(1/2)+5/9) 1771127449708098 l006 ln(7499/7633) 1771127449728258 a007 Real Root Of -30*x^4+195*x^3+135*x^2-351*x-590 1771127455460172 m005 (1/2*5^(1/2)-2)/(1/9*exp(1)-4/5) 1771127463767336 a001 123/8*2^(10/49) 1771127470095606 r002 26th iterates of z^2 + 1771127480154447 a001 610/7*47^(7/38) 1771127485969271 r005 Im(z^2+c),c=-101/102+8/43*I,n=23 1771127486119089 r009 Re(z^3+c),c=-19/62+4/7*I,n=25 1771127487893837 a001 5/3461452808002*2^(5/17) 1771127490033078 h001 (3/5*exp(2)+1/11)/(10/11*exp(1)+1/12) 1771127490965521 a007 Real Root Of 129*x^4-587*x^3-200*x^2+960*x+919 1771127494211533 m006 (1/3/Pi-5)/(2/3*ln(Pi)+2) 1771127497434240 a008 Real Root of (1+x+3*x^2+x^3+5*x^4+3*x^5) 1771127499926175 r005 Im(z^2+c),c=-11/14+31/79*I,n=7 1771127504252008 r005 Re(z^2+c),c=-13/86+9/22*I,n=6 1771127506277762 p003 LerchPhi(1/64,4,176/203) 1771127516641912 k008 concat of cont frac of 1771127518679183 l006 ln(7571/9038) 1771127520543900 r005 Im(z^2+c),c=-15/14+48/247*I,n=3 1771127523662292 r005 Re(z^2+c),c=19/54+7/17*I,n=37 1771127531150726 a007 Real Root Of -642*x^4-839*x^3+592*x^2+511*x+704 1771127535688657 a008 Real Root of (1+6*x+2*x^2-x^3-5*x^4+4*x^5) 1771127548290657 m001 (Champernowne-ZetaP(4))^ln(2+3^(1/2)) 1771127552957380 a003 sin(Pi*5/108)/cos(Pi*23/118) 1771127553612967 g007 Psi(2,3/11)+Psi(2,3/4)+Psi(2,1/3)-14*Zeta(3) 1771127554835258 r002 10th iterates of z^2 + 1771127556788183 r009 Re(z^3+c),c=-9/46+47/49*I,n=35 1771127557743985 r005 Re(z^2+c),c=-13/74+13/53*I,n=23 1771127571945781 a003 sin(Pi*20/67)+sin(Pi*27/65) 1771127573915016 a007 Real Root Of 438*x^4+708*x^3+41*x^2-140*x-753 1771127575820780 m001 CopelandErdos^gamma(1)+TwinPrimes 1771127576177005 a007 Real Root Of -513*x^4-49*x^3+281*x^2+491*x-95 1771127577338675 a001 3/377*317811^(12/49) 1771127577936843 m005 (1/2*5^(1/2)+3)/(11/12*exp(1)-1/6) 1771127583777940 m005 (3*Catalan+5/6)/(1/4*2^(1/2)-1/3) 1771127583874824 p004 log(21059/3583) 1771127587263333 r005 Re(z^2+c),c=-13/74+13/53*I,n=21 1771127592568376 m008 (Pi+4/5)/(3/4*Pi^3-1) 1771127593240397 r005 Im(z^2+c),c=-71/114+15/49*I,n=59 1771127594304941 m001 Zeta(7)^2/exp(RenyiParking)/exp(1) 1771127597084417 m004 -4+10/Pi-25*Sqrt[5]*Pi-Sin[Sqrt[5]*Pi] 1771127597304258 g005 Pi^(1/2)*GAMMA(2/11)*GAMMA(3/7)/GAMMA(1/11) 1771127602889710 a007 Real Root Of 348*x^4-492*x^3-88*x^2-608*x-108 1771127611168317 m001 (CareFree-MertensB1)/(Riemann3rdZero-ZetaQ(4)) 1771127614741327 m001 GaussAGM^ZetaP(2)-ln(3) 1771127627204124 m005 (5*gamma+3/5)/(exp(1)-3/4) 1771127635702603 r002 8th iterates of z^2 + 1771127638764314 m001 Conway/(PlouffeB^ThueMorse) 1771127639821534 h005 exp(sin(Pi*6/31)/sin(Pi*22/45)) 1771127640182891 a001 89/322*(1/2+1/2*5^(1/2))^23 1771127640182891 a001 89/322*4106118243^(1/2) 1771127640340783 a001 89/322*103682^(23/24) 1771127640753563 a001 144/199*64079^(21/23) 1771127641140252 a001 144/199*439204^(7/9) 1771127641147375 a001 144/199*7881196^(7/11) 1771127641147391 a001 144/199*20633239^(3/5) 1771127641147394 a001 144/199*141422324^(7/13) 1771127641147394 a001 144/199*2537720636^(7/15) 1771127641147394 a001 144/199*17393796001^(3/7) 1771127641147394 a001 144/199*45537549124^(7/17) 1771127641147394 a001 144/199*14662949395604^(1/3) 1771127641147394 a001 144/199*(1/2+1/2*5^(1/2))^21 1771127641147394 a001 144/199*192900153618^(7/18) 1771127641147394 a001 144/199*10749957122^(7/16) 1771127641147394 a001 144/199*599074578^(1/2) 1771127641147395 a001 144/199*33385282^(7/12) 1771127641147752 a001 144/199*1860498^(7/10) 1771127641150024 a001 144/199*710647^(3/4) 1771127641291556 a001 144/199*103682^(7/8) 1771127642225323 a001 144/199*39603^(21/22) 1771127656570987 r005 Im(z^2+c),c=-45/56+3/31*I,n=14 1771127664337978 m001 (-sin(1/5*Pi)+Otter)/(Catalan+BesselK(0,1)) 1771127665039815 q001 6895/3893 1771127666948273 a007 Real Root Of -567*x^4-905*x^3+490*x^2+652*x+169 1771127669434524 l006 ln(555/3262) 1771127674303734 b008 3+10*ArcTan[10] 1771127686502462 m001 (Zeta(1,2)-BesselI(0,2))/(BesselI(1,2)-Magata) 1771127687523231 m001 (2^(1/2)+TravellingSalesman)/Zeta(3) 1771127692335308 m005 (1/2*gamma+3/5)/(1/4*Catalan+3/11) 1771127698311011 k007 concat of cont frac of 1771127708993640 r005 Im(z^2+c),c=-61/114+24/59*I,n=11 1771127712703503 m001 (Shi(1)-cos(1/5*Pi))/(-ln(5)+exp(-1/2*Pi)) 1771127715392220 a001 55/271443*322^(24/31) 1771127716083536 r005 Re(z^2+c),c=-113/94+35/54*I,n=2 1771127732798076 r005 Im(z^2+c),c=-15/14+37/167*I,n=13 1771127733501876 a007 Real Root Of -699*x^4-639*x^3+998*x^2+98*x+371 1771127736215018 q001 6392/3609 1771127736792839 m005 (1/2*exp(1)-5/12)/(1/7*Pi+1/12) 1771127747854540 a007 Real Root Of 696*x^4+760*x^3-580*x^2+988*x+943 1771127749019084 a001 47/55*5^(24/53) 1771127757335754 r005 Re(z^2+c),c=33/98+11/38*I,n=50 1771127762667180 h001 (3/5*exp(2)+5/11)/(5/7*exp(1)+9/11) 1771127765038542 r005 Re(z^2+c),c=-3/22+4/11*I,n=20 1771127772345516 a007 Real Root Of 638*x^4+847*x^3-762*x^2-917*x-806 1771127775293529 h001 (1/10*exp(1)+3/11)/(4/5*exp(1)+9/10) 1771127777231477 a007 Real Root Of -134*x^4+738*x^3-650*x^2-102*x-562 1771127799131339 a001 11*233^(55/59) 1771127814306785 a007 Real Root Of -472*x^4-839*x^3-138*x^2+328*x+997 1771127819548872 q001 5889/3325 1771127823119915 m001 Pi^(1/2)*AlladiGrinstead*Champernowne 1771127827132055 p003 LerchPhi(1/125,6,647/225) 1771127837312633 a007 Real Root Of -528*x^4-377*x^3+350*x^2-585*x+967 1771127840243535 m001 (Sarnak+ZetaQ(4))/(ln(2^(1/2)+1)-Bloch) 1771127840972313 g004 Im(GAMMA(16/5+I*23/20)) 1771127846969645 m005 (23/28+1/4*5^(1/2))/(-35/176+7/16*5^(1/2)) 1771127851809117 a003 cos(Pi*6/83)+cos(Pi*19/92) 1771127852107551 k007 concat of cont frac of 1771127859542186 a007 Real Root Of -180*x^4-432*x^3-354*x^2+234*x+896 1771127861634135 a001 8/11*64079^(15/52) 1771127865698570 a001 2207/233*55^(19/26) 1771127869859277 a007 Real Root Of 453*x^4+27*x^3-814*x^2+716*x-486 1771127877621696 r005 Im(z^2+c),c=-17/54+9/19*I,n=5 1771127883596499 a007 Real Root Of 597*x^4+564*x^3-954*x^2+400*x+960 1771127885491009 m005 (1/2*Pi-10/11)/(5^(1/2)+3/2) 1771127886545260 l006 ln(1412/8299) 1771127888121626 r005 Re(z^2+c),c=21/64+5/18*I,n=54 1771127890564895 m001 (Lehmer-MertensB2)/(Riemann3rdZero-ZetaQ(2)) 1771127891893307 a001 47/55*610^(5/44) 1771127895888361 m001 (Grothendieck+Landau)/(cos(1/12*Pi)-GaussAGM) 1771127903094589 p001 sum((-1)^n/(376*n+303)/n/(8^n),n=1..infinity) 1771127905568854 a003 cos(Pi*5/72)/sin(Pi*21/113) 1771127912221121 k007 concat of cont frac of 1771127915764256 m005 (1/3*Pi-1/4)/(7/9*gamma-4/9) 1771127918447878 q001 5386/3041 1771127920607298 a007 Real Root Of -40*x^4+390*x^3+481*x^2-688*x-167 1771127920717779 a007 Real Root Of -955*x^4-986*x^3+874*x^2-395*x+478 1771127928195476 m003 -1/8+(5*Sqrt[5])/32+Cot[1/2+Sqrt[5]/2] 1771127929650496 a001 521/433494437*3^(6/17) 1771127930866223 m001 (ln(2)+exp(1/Pi))/(GolombDickman+Landau) 1771127935336656 a008 Real Root of x^3-243*x-1252 1771127939750276 a001 11/28657*514229^(5/43) 1771127942201795 m005 (3/20+1/4*5^(1/2))/(3/8*Pi-7/9) 1771127948337782 a007 Real Root Of 544*x^4+789*x^3+41*x^2+808*x+333 1771127952482061 a007 Real Root Of 673*x^4+758*x^3+413*x^2-558*x+81 1771127952756026 p003 LerchPhi(1/1024,3,130/73) 1771127955914027 a007 Real Root Of 124*x^4-292*x^3-486*x^2+743*x-2 1771127962169813 m001 Landau^gamma(2)+BesselJ(0,1) 1771127963547786 r009 Re(z^3+c),c=-25/118+17/63*I,n=6 1771127965496331 r009 Re(z^3+c),c=-3/122+21/52*I,n=8 1771127967809491 a007 Real Root Of 495*x^4+977*x^3+325*x^2+759*x+882 1771127970602921 a007 Real Root Of -741*x^4-849*x^3+655*x^2+192*x+860 1771127990925247 a007 Real Root Of 380*x^4+813*x^3+24*x^2+6*x+713 1771127998594250 r005 Re(z^2+c),c=4/19+25/59*I,n=61 1771128003485544 m005 (1/2*Pi+1/5)/(4*exp(1)-7/8) 1771128009291103 r005 Im(z^2+c),c=-21/106+13/53*I,n=16 1771128009713876 m001 gamma(1)*arctan(1/2)^Tribonacci 1771128009724768 r005 Re(z^2+c),c=19/86+7/23*I,n=2 1771128010150011 r005 Re(z^2+c),c=5/36+13/32*I,n=18 1771128012122921 k008 concat of cont frac of 1771128014875311 m005 (3/8+1/4*5^(1/2))/(6*Catalan-2/9) 1771128021195754 m001 1/exp(LandauRamanujan)^2/Artin*MadelungNaCl^2 1771128026070769 m006 (2/3/Pi-3/5)/(3/4*Pi-1/6) 1771128027147870 l006 ln(857/5037) 1771128029420367 r002 30th iterates of z^2 + 1771128032959900 m003 -11/12+Sqrt[5]/32-Tanh[1/2+Sqrt[5]/2] 1771128033820810 b008 97*Erfi[11] 1771128037722161 q001 4883/2757 1771128038548065 r005 Im(z^2+c),c=-5/31+28/41*I,n=27 1771128050404792 r005 Re(z^2+c),c=-5/6+18/203*I,n=20 1771128051315830 m006 (2/3/Pi-4)/(2/5*exp(2*Pi)-1/3) 1771128051965160 a007 Real Root Of -336*x^4-467*x^3-229*x^2-795*x+22 1771128060113247 a007 Real Root Of -537*x^4-90*x^3+987*x^2-485*x+829 1771128061044139 m001 HardyLittlewoodC5^FeigenbaumKappa-PlouffeB 1771128065473285 m006 (ln(Pi)+2)/(3/4*exp(Pi)+2/5) 1771128065771731 m001 1/Magata/exp(Backhouse)*sin(Pi/12) 1771128087716541 m001 (Zeta(3)-ln(5))/(Pi-sin(1)) 1771128091954276 a007 Real Root Of -203*x^4-50*x^3+591*x^2-40*x-205 1771128092426286 r005 Im(z^2+c),c=11/118+7/47*I,n=3 1771128094211749 m001 1/exp(GolombDickman)/Cahen*GAMMA(5/12) 1771128097016729 q001 1/5646119 1771128101786646 a007 Real Root Of 106*x^4-395*x^3-257*x^2+955*x-740 1771128101790367 m009 (5/2*Pi^2+3/4)/(1/4*Psi(1,3/4)+4/5) 1771128101868638 m005 (1/2*gamma-3/4)/(-16/33+1/3*5^(1/2)) 1771128104697036 p003 LerchPhi(1/100,1,17/30) 1771128105548985 r005 Re(z^2+c),c=-1/19+20/31*I,n=45 1771128108697788 a007 Real Root Of 850*x^4+938*x^3-992*x^2+481*x+811 1771128112111131 k006 concat of cont frac of 1771128112121923 k008 concat of cont frac of 1771128113863111 k008 concat of cont frac of 1771128118141092 k007 concat of cont frac of 1771128118215821 r005 Im(z^2+c),c=-29/50+13/46*I,n=16 1771128120952130 a007 Real Root Of 493*x^4+414*x^3-366*x^2+542*x-443 1771128121167909 m001 (Trott2nd-ZetaP(3))/(CopelandErdos+Gompertz) 1771128122114895 a001 1/6*(1/2*5^(1/2)+1/2)^6*18^(8/13) 1771128127810101 k008 concat of cont frac of 1771128128175768 a007 Real Root Of 64*x^4-611*x^3+834*x^2-370*x+804 1771128131515316 k007 concat of cont frac of 1771128132803091 a007 Real Root Of -279*x^4-474*x^3-86*x^2+760*x-129 1771128135242550 r009 Re(z^3+c),c=-31/102+16/25*I,n=35 1771128135688988 h005 exp(cos(Pi*2/43)*sin(Pi*10/51)) 1771128138310864 a003 cos(Pi*4/77)+cos(Pi*23/108) 1771128144082319 m001 (Shi(1)+Conway)/(-KhinchinHarmonic+ThueMorse) 1771128148789286 m001 (Niven+Totient)/(Chi(1)+ln(2^(1/2)+1)) 1771128150999243 a007 Real Root Of -897*x^4-982*x^3+835*x^2-269*x+275 1771128151606855 m002 180-Sinh[Pi]/4 1771128157371229 r005 Im(z^2+c),c=-71/106+53/54*I,n=3 1771128157677329 a007 Real Root Of 451*x^4+492*x^3-894*x^2-673*x-92 1771128163672888 r002 8th iterates of z^2 + 1771128167970329 a007 Real Root Of -369*x^4-137*x^3+555*x^2-136*x+888 1771128169123665 a003 cos(Pi*27/109)*cos(Pi*21/50) 1771128172704901 m001 ln(3)+GAMMA(7/12)*TreeGrowth2nd 1771128172752765 a007 Real Root Of -561*x^4-137*x^3+939*x^2-928*x+170 1771128172930529 r005 Re(z^2+c),c=-1/5+44/59*I,n=7 1771128174556398 r002 45th iterates of z^2 + 1771128184391427 q001 438/2473 1771128186636635 r005 Re(z^2+c),c=-13/74+13/53*I,n=20 1771128188251317 k002 Champernowne real with 3/2*n^2+99/2*n-34 1771128194631296 m001 LaplaceLimit*ArtinRank2^2*ln(sqrt(3)) 1771128195393580 m001 GAMMA(19/24)^ln(2)/(GAMMA(19/24)^GAMMA(1/12)) 1771128197524100 r005 Re(z^2+c),c=13/46+11/46*I,n=31 1771128198442827 l006 ln(1159/6812) 1771128203217117 k008 concat of cont frac of 1771128204503158 r005 Im(z^2+c),c=-5/6+24/203*I,n=33 1771128205113222 a001 3/46*521^(19/36) 1771128209315530 a007 Real Root Of 238*x^4+2*x^3-43*x^2+743*x-880 1771128211213232 k008 concat of cont frac of 1771128211512222 k009 concat of cont frac of 1771128212417158 a007 Real Root Of 667*x^4+330*x^3-981*x^2+941*x+14 1771128216235474 m001 ErdosBorwein^GAMMA(5/6)*ErdosBorwein^ZetaP(4) 1771128228468182 a007 Real Root Of -766*x^4-623*x^3+817*x^2-409*x+789 1771128229628538 h001 (1/10*exp(1)+1/4)/(11/12*exp(1)+5/11) 1771128231113149 k006 concat of cont frac of 1771128236468201 g002 -Psi(1/10)-2*Psi(4/9)-Psi(3/8) 1771128241180671 r005 Im(z^2+c),c=-43/40+14/37*I,n=7 1771128243241638 m001 (-Lehmer+ThueMorse)/(GaussAGM-Si(Pi)) 1771128249090131 r002 52th iterates of z^2 + 1771128251919715 m002 (4*Pi^4)/E^Pi+Log[Pi]^(-1) 1771128263568685 a007 Real Root Of -755*x^4-675*x^3+442*x^2-915*x+672 1771128285139070 a007 Real Root Of 172*x^4-360*x^3+775*x^2-946*x-17 1771128286003001 m001 (3^(1/3)+BesselI(0,2))/(2^(1/3)+sin(1)) 1771128289254629 r005 Re(z^2+c),c=-3/16+23/48*I,n=6 1771128290832136 r002 16th iterates of z^2 + 1771128297561502 m001 (2^(1/3)+TwinPrimes)/Trott 1771128297685592 m005 (1/3*Zeta(3)+1/10)/(6*gamma-7/11) 1771128298921785 l006 ln(1461/8587) 1771128304549314 r009 Re(z^3+c),c=-11/118+52/61*I,n=22 1771128307031129 p003 LerchPhi(1/6,4,152/175) 1771128309005642 s002 sum(A055622[n]/(pi^n-1),n=1..infinity) 1771128312280604 a007 Real Root Of -286*x^4+62*x^3+621*x^2-543*x+249 1771128312950021 a001 682/17*13^(11/19) 1771128315657210 r009 Re(z^3+c),c=-65/66+11/46*I,n=2 1771128331251616 k006 concat of cont frac of 1771128334229347 a007 Real Root Of -319*x^4-464*x^3-515*x^2-714*x+912 1771128339815645 r009 Re(z^3+c),c=-39/122+37/59*I,n=14 1771128345625255 p004 log(29311/4987) 1771128347233495 m001 sin(1/5*Pi)^Champernowne+GaussAGM 1771128355909226 p001 sum((-1)^n/(293*n+166)/n/(12^n),n=1..infinity) 1771128360223672 m001 1/FeigenbaumC/exp(Si(Pi))^2*log(2+sqrt(3)) 1771128364680200 a007 Real Root Of -761*x^4-806*x^3+465*x^2-753*x+218 1771128369118318 q001 3877/2189 1771128378883867 r005 Im(z^2+c),c=-37/38+7/37*I,n=18 1771128380173061 r002 4th iterates of z^2 + 1771128380816490 m001 (AlladiGrinstead-Stephens)/(ln(3)+Ei(1,1)) 1771128381721975 m001 (BesselI(1,1)*GAMMA(5/6)-Chi(1))/GAMMA(5/6) 1771128386706527 a007 Real Root Of 349*x^4+56*x^3-694*x^2+157*x-668 1771128395408181 a007 Real Root Of -612*x^4-715*x^3+201*x^2-554*x+438 1771128396638096 a003 cos(Pi*5/71)+cos(Pi*23/111) 1771128400867339 m001 CareFree*(cos(1/5*Pi)+Niven) 1771128403947952 m001 (MinimumGamma+Robbin)/(3^(1/2)-Si(Pi)) 1771128404633052 a001 11/75025*377^(21/50) 1771128406673764 h001 (1/10*exp(2)+4/7)/(11/12*exp(2)+5/8) 1771128410598940 a007 Real Root Of 15*x^4-824*x^3-763*x^2+777*x-956 1771128412724818 m001 Pi*(Psi(2,1/3)-BesselI(1,2))+GAMMA(11/12) 1771128418192286 m006 (2/5/Pi-1/3)/(2/3*ln(Pi)+2/5) 1771128418679672 m001 (1-BesselJ(1,1)*ZetaP(2))/ZetaP(2) 1771128419224221 k007 concat of cont frac of 1771128429860712 m001 (GAMMA(19/24)-Backhouse)/(Ei(1,1)+exp(1/Pi)) 1771128433133952 r005 Re(z^2+c),c=-97/78+9/56*I,n=23 1771128433748988 r009 Re(z^3+c),c=-1/13+45/56*I,n=32 1771128438201839 a007 Real Root Of -725*x^4-913*x^3+734*x^2+385*x+441 1771128442260083 r009 Re(z^3+c),c=-27/82+14/23*I,n=38 1771128444580268 r005 Re(z^2+c),c=-15/106+7/20*I,n=14 1771128450022535 m001 cos(1/5*Pi)+FeigenbaumKappa*Rabbit 1771128450810123 l006 ln(1187/1417) 1771128452288663 m001 FeigenbaumB+cos(1/12*Pi)^MasserGramainDelta 1771128452857810 r002 55th iterates of z^2 + 1771128456195623 a007 Real Root Of 459*x^4+964*x^3+772*x^2+365*x-936 1771128459557105 a007 Real Root Of -437*x^4-210*x^3+715*x^2-924*x-746 1771128460765532 a001 514229/199*199^(4/11) 1771128462233911 r002 3th iterates of z^2 + 1771128465170540 p001 sum(1/(358*n+225)/n/(10^n),n=1..infinity) 1771128473999403 b008 Cosh[E^(E/17)] 1771128475669487 s002 sum(A078234[n]/(n!^2),n=1..infinity) 1771128477073216 m001 1/ln(GAMMA(1/4))*ArtinRank2^2/Zeta(1/2)^2 1771128477334007 r005 Re(z^2+c),c=-3/56+25/48*I,n=24 1771128480703468 q001 7251/4094 1771128481628352 a003 cos(Pi*21/101)+sin(Pi*41/95) 1771128489941959 m005 (1/2*Zeta(3)+3/10)/(2/5*exp(1)+4) 1771128496114575 a007 Real Root Of 289*x^4-181*x^3-972*x^2+584*x+234 1771128504601133 r005 Re(z^2+c),c=-13/82+16/23*I,n=49 1771128507128557 p001 sum(1/(464*n+57)/(12^n),n=0..infinity) 1771128510117218 m001 GAMMA(7/24)^2/exp(ErdosBorwein)/Zeta(5)^2 1771128513025395 m001 CareFree^2*exp(Si(Pi))^2*Zeta(1,2)^2 1771128519761359 m001 (GAMMA(5/6)+QuadraticClass)/(ln(Pi)+gamma(2)) 1771128529850432 m001 (-MertensB3+Tribonacci)/(Catalan-Zeta(3)) 1771128539221176 p004 log(22787/3877) 1771128542471409 m001 KomornikLoreti-Tribonacci*ZetaQ(3) 1771128542650340 m001 FibonacciFactorial-Pi^(1/2)-GAMMA(3/4) 1771128543371195 r005 Im(z^2+c),c=-89/102+5/31*I,n=16 1771128553755733 a001 521/1597*8^(48/59) 1771128556789689 m005 (1/2*3^(1/2)+4)/(10/11*gamma-1/4) 1771128557965699 r005 Re(z^2+c),c=15/46+4/15*I,n=42 1771128558702047 a007 Real Root Of 454*x^4+565*x^3-57*x^2+618*x-55 1771128560524691 a007 Real Root Of 362*x^4+736*x^3-25*x^2-658*x-560 1771128563626793 a007 Real Root Of 708*x^4+384*x^3-819*x^2+816*x-819 1771128570120704 m001 ln(Trott)^2*FransenRobinson*GAMMA(7/24) 1771128570995197 m001 LaplaceLimit*(ln(2+3^(1/2))+FeigenbaumKappa) 1771128571939483 a007 Real Root Of -512*x^4-895*x^3-408*x^2-675*x+150 1771128578380340 m001 (Bloch-FibonacciFactorial)/(Mills+Otter) 1771128578785989 m001 exp(1/Pi)*StronglyCareFree+CareFree 1771128579110307 r005 Re(z^2+c),c=-33/23+8/51*I,n=6 1771128581882312 a007 Real Root Of -520*x^4-864*x^3-116*x^2-461*x-136 1771128591298451 m005 (1/3*5^(1/2)-2/3)/(3/11*3^(1/2)-11/12) 1771128598171657 a007 Real Root Of 584*x^4+792*x^3-702*x^2-897*x-733 1771128601286560 r002 8th iterates of z^2 + 1771128608923884 q001 3374/1905 1771128612067125 a007 Real Root Of 345*x^4-166*x^3-602*x^2-969*x-154 1771128622151608 a007 Real Root Of 318*x^4-319*x^3-846*x^2-522*x-68 1771128624064864 a007 Real Root Of 440*x^4-19*x^3-959*x^2+328*x-846 1771128625886872 a007 Real Root Of -872*x^4-668*x^3+966*x^2-830*x+369 1771128631905226 r002 6th iterates of z^2 + 1771128634647817 m001 (2^(1/3)+Zeta(5))/(-Pi^(1/2)+PlouffeB) 1771128644814833 h001 (4/5*exp(1)+1/2)/(1/7*exp(2)+5/11) 1771128645450966 r009 Re(z^3+c),c=-19/62+34/53*I,n=40 1771128656791947 m001 (Pi+arctan(1/3))/(exp(-1/2*Pi)+MadelungNaCl) 1771128670833329 a001 233/2207*199^(30/31) 1771128673426800 r002 37th iterates of z^2 + 1771128681987310 a003 cos(Pi*23/112)+sin(Pi*31/73) 1771128682016584 m001 (MasserGramain+PlouffeB)/(GAMMA(19/24)-cos(1)) 1771128682230332 a005 (1/sin(74/221*Pi))^53 1771128684534646 l006 ln(302/1775) 1771128685957287 a007 Real Root Of -123*x^4+905*x^3-744*x^2-289*x-972 1771128688161513 r005 Re(z^2+c),c=-89/122+20/41*I,n=6 1771128689674681 r005 Re(z^2+c),c=-1/8+9/23*I,n=19 1771128690168489 a007 Real Root Of -743*x^4-969*x^3+501*x^2-734*x-944 1771128691653686 m001 LambertW(1)+PisotVijayaraghavan^TwinPrimes 1771128692881681 m001 Paris*(BesselJ(1,1)+FeigenbaumKappa) 1771128700891368 m005 (1/2*2^(1/2)+5/6)/(3*Pi-8/11) 1771128703900217 r005 Re(z^2+c),c=-1/60+25/51*I,n=9 1771128707492828 a003 cos(Pi*1/117)+cos(Pi*9/41) 1771128714115229 k009 concat of cont frac of 1771128716940794 m001 (polylog(4,1/2)+(1+3^(1/2))^(1/2))/GAMMA(3/4) 1771128716940794 m001 (polylog(4,1/2)+sqrt(1+sqrt(3)))/GAMMA(3/4) 1771128717034651 m001 1/FeigenbaumB/exp(CareFree)/FeigenbaumC^2 1771128723751762 r005 Re(z^2+c),c=-13/98+37/60*I,n=21 1771128728546753 a007 Real Root Of 48*x^4-49*x^3-268*x^2+420*x+840 1771128731756739 a003 cos(Pi*16/97)+sin(Pi*24/67) 1771128736735718 m001 Chi(1)*HardHexagonsEntropy/TwinPrimes 1771128737414981 a007 Real Root Of 926*x^4+252*x^3+900*x^2-583*x-131 1771128741216259 m001 LandauRamanujan/ln(GolombDickman)/Catalan 1771128748916744 r005 Im(z^2+c),c=-39/74+15/47*I,n=46 1771128749083382 h001 (1/6*exp(2)+2/3)/(1/11*exp(2)+2/5) 1771128752725057 r009 Re(z^3+c),c=-29/86+17/23*I,n=2 1771128755427930 s002 sum(A221185[n]/(n^3*exp(n)-1),n=1..infinity) 1771128756078305 m001 MinimumGamma*(Zeta(3)-gamma(2)) 1771128757799205 q001 6245/3526 1771128760348608 a007 Real Root Of 90*x^4-412*x^3-988*x^2+112*x+123 1771128761011287 m002 -(E^Pi/Pi)+Pi^2-E^Pi/Log[Pi] 1771128768081288 a007 Real Root Of -594*x^4-989*x^3+26*x^2-106*x+81 1771128771101518 a003 cos(Pi*3/113)+cos(Pi*17/78) 1771128776011244 a007 Real Root Of 562*x^4+685*x^3+93*x^2+633*x-895 1771128784288343 a001 322/75025*13^(21/38) 1771128784643844 m001 (GAMMA(19/24)+Champernowne)/(Sarnak+ZetaQ(3)) 1771128789926582 r009 Re(z^3+c),c=-13/50+7/16*I,n=24 1771128790528152 a007 Real Root Of 739*x^4+344*x^3-948*x^2+940*x-722 1771128797500837 m001 (FellerTornier-ZetaQ(3))/(GAMMA(5/6)+Cahen) 1771128801564398 s002 sum(A185582[n]/(n*pi^n-1),n=1..infinity) 1771128804530591 a007 Real Root Of -32*x^4+518*x^3-95*x^2-913*x-648 1771128811719081 a007 Real Root Of -706*x^4-534*x^3+562*x^2-964*x+510 1771128812767500 r009 Re(z^3+c),c=-11/38+17/32*I,n=36 1771128818702992 r005 Re(z^2+c),c=3/25+5/13*I,n=30 1771128819618446 a007 Real Root Of -338*x^4-739*x^3-474*x^2-690*x-515 1771128823360515 m001 MadelungNaCl^2/ln(Lehmer)^2*(2^(1/3))^2 1771128829340612 s002 sum(A182062[n]/(2^n-1),n=1..infinity) 1771128837197430 a007 Real Root Of -371*x^4-150*x^3+572*x^2-83*x+876 1771128839980638 b008 E+45*EulerGamma^2 1771128846719111 a007 Real Root Of -62*x^4+478*x^3+709*x^2-827*x-423 1771128851491801 a001 (1+2^(1/2))^(555/34) 1771128851660198 p004 log(19813/3371) 1771128854090357 a007 Real Root Of -307*x^4-110*x^3+971*x^2+445*x+152 1771128854332822 r005 Re(z^2+c),c=-77/64+2/61*I,n=32 1771128858480975 r009 Re(z^3+c),c=-37/122+27/47*I,n=63 1771128867380420 m001 GAMMA(1/3)^2*exp(Paris)*sqrt(5) 1771128868120965 m001 (exp(1/exp(1))+ZetaQ(3))^GAMMA(7/12) 1771128870103052 m001 (cos(1/12*Pi)+Conway)/(Psi(1,1/3)+exp(1)) 1771128875004381 r005 Re(z^2+c),c=-5/24+1/56*I,n=8 1771128877746318 m001 (Pi^(1/2)-cos(1))/(-CareFree+ZetaQ(3)) 1771128886230931 m004 6-Cos[Sqrt[5]*Pi]+Pi*Sinh[Sqrt[5]*Pi] 1771128887777648 a005 (1/sin(108/221*Pi))^905 1771128889583700 m005 (1/3*exp(1)-4/5)/(4*2^(1/2)+1/3) 1771128896817052 m003 2+Sqrt[5]/64-1/(5*ProductLog[1/2+Sqrt[5]/2]) 1771128902916550 r005 Re(z^2+c),c=21/110+17/36*I,n=49 1771128905526174 r002 4th iterates of z^2 + 1771128907767244 m001 (Zeta(3)+HardyLittlewoodC5)/(Landau-ZetaP(2)) 1771128910027995 m001 1/ln(BesselJ(0,1))*Sierpinski*GAMMA(2/3)^2 1771128914756934 a007 Real Root Of 844*x^4+912*x^3-298*x^2+785*x-913 1771128917138433 m001 (5^(1/2)+exp(1/Pi))/(-Gompertz+Stephens) 1771128920026570 r005 Re(z^2+c),c=-5/24+1/60*I,n=10 1771128921956927 b008 9*Sqrt[E+2*EulerGamma] 1771128926670452 a007 Real Root Of -552*x^4-377*x^3+614*x^2-965*x-298 1771128930206856 a007 Real Root Of -469*x^4-621*x^3+201*x^2+115*x+738 1771128932757557 q001 2871/1621 1771128934596753 m001 Conway/Zeta(5)/Rabbit 1771128936343941 r005 Re(z^2+c),c=-7/54+24/43*I,n=9 1771128938216124 a003 sin(Pi*6/115)/sin(Pi*22/59) 1771128944751310 a001 987/11*322^(54/59) 1771128945099451 m009 (3*Psi(1,2/3)-1/6)/(Psi(1,1/3)-5) 1771128945843706 m001 1/GAMMA(3/4)/Khintchine*exp(log(1+sqrt(2)))^2 1771128961413113 s002 sum(A119486[n]/(2^n-1),n=1..infinity) 1771128963288378 m001 (Zeta(1/2)-gamma)/(-Ei(1,1)+exp(-1/2*Pi)) 1771128979631214 a007 Real Root Of -158*x^4+72*x^3+492*x^2+312*x+964 1771128979816407 r005 Im(z^2+c),c=-13/27+13/43*I,n=19 1771128982684692 r009 Re(z^3+c),c=-21/110+29/31*I,n=57 1771128987182453 m001 Sierpinski*ln(ErdosBorwein)*Zeta(3)^2 1771128987326689 h001 (5/12*exp(2)+6/7)/(1/4*exp(2)+3/8) 1771128989361428 m001 exp(1)^Chi(1)-cos(1) 1771128998645560 r005 Re(z^2+c),c=-6/31+29/39*I,n=7 1771129004172594 m001 (GAMMA(3/4)-ln(3))/(ln(2^(1/2)+1)+Zeta(1,-1)) 1771129004576414 p004 log(31039/5281) 1771129008857892 r005 Re(z^2+c),c=-5/27+37/50*I,n=19 1771129017711290 k006 concat of cont frac of 1771129018239240 m001 3^(1/2)/(RenyiParking^ZetaP(4)) 1771129019673422 m001 1/exp(Si(Pi))^2/Artin*GAMMA(13/24)^2 1771129022718935 r005 Re(z^2+c),c=-9/70+19/49*I,n=12 1771129028017343 m001 HeathBrownMoroz*ZetaQ(3)^HardHexagonsEntropy 1771129033819213 m001 (Bloch-FeigenbaumMu)/(MadelungNaCl+ZetaQ(4)) 1771129036475938 m001 Sarnak^MertensB2+GAMMA(11/12) 1771129038238365 r005 Im(z^2+c),c=-11/30+1/36*I,n=15 1771129043870529 r005 Re(z^2+c),c=-17/14+19/218*I,n=22 1771129045907436 l006 ln(1559/9163) 1771129046363597 a007 Real Root Of -620*x^4-767*x^3-194*x^2-904*x+847 1771129051861656 r005 Re(z^2+c),c=21/62+8/9*I,n=3 1771129053993752 m001 (-LandauRamanujan+1/3)/(-LambertW(1)+3) 1771129057484121 m001 1/GAMMA(1/6)/Trott/exp(sqrt(5)) 1771129057512416 a007 Real Root Of 805*x^4+862*x^3-937*x^2-100*x-370 1771129059438504 m001 TwinPrimes^2/ln(Trott)^2/Zeta(3) 1771129060462328 r009 Re(z^3+c),c=-1/122+16/19*I,n=28 1771129065111404 a007 Real Root Of 196*x^4+267*x^3-313*x^2-395*x-163 1771129068054672 a007 Real Root Of 292*x^4-128*x^3-751*x^2+670*x-42 1771129072458901 m001 (Gompertz+Salem)/(exp(1/Pi)-Artin) 1771129080296540 a001 2161/3*514229^(18/43) 1771129084399627 m005 (1/2*Pi+4/11)/(5/9*Catalan+7/12) 1771129084403060 r005 Re(z^2+c),c=2/7+8/33*I,n=29 1771129087347795 r005 Im(z^2+c),c=-41/54+2/41*I,n=43 1771129087813825 a007 Real Root Of -46*x^4-762*x^3+899*x^2-603*x+214 1771129093214864 a003 cos(Pi*4/95)/cos(Pi*37/119) 1771129101116248 k008 concat of cont frac of 1771129111111311 k008 concat of cont frac of 1771129111124114 k007 concat of cont frac of 1771129111804918 m001 LaplaceLimit*DuboisRaymond/exp(Riemann3rdZero) 1771129118215125 k008 concat of cont frac of 1771129119545181 a007 Real Root Of 224*x^4+143*x^3-50*x^2+857*x+265 1771129121111241 k008 concat of cont frac of 1771129122689669 a001 123/34*6765^(15/34) 1771129123532010 m001 (3^(1/2)+cos(1))/(-gamma(3)+GAMMA(17/24)) 1771129127851317 m001 (-Tribonacci+ZetaP(3))/(ArtinRank2-Psi(1,1/3)) 1771129129390703 m001 HardyLittlewoodC5/(exp(Pi)+HeathBrownMoroz) 1771129130866246 a008 Real Root of (2-5*x^2+3*x^3-4*x^4-4*x^5) 1771129131700430 r005 Re(z^2+c),c=4/23+11/30*I,n=11 1771129132122111 k006 concat of cont frac of 1771129132728883 l006 ln(1257/7388) 1771129141134223 k008 concat of cont frac of 1771129141311697 q001 5239/2958 1771129143342742 m001 cos(Pi/12)^2/ln(FeigenbaumKappa)/sqrt(3) 1771129146510539 p003 LerchPhi(1/25,5,424/189) 1771129152112112 k009 concat of cont frac of 1771129153251421 k008 concat of cont frac of 1771129164480613 m008 (2/3*Pi^6-3/4)/(2/5*Pi^2-1/3) 1771129165107204 m001 1/ln(GAMMA(7/12))/FeigenbaumKappa^2*sinh(1)^2 1771129170651548 m001 1/GAMMA(19/24)^2/ln(ArtinRank2)*Zeta(1,2)^2 1771129171747224 p004 log(20389/3469) 1771129177792237 a007 Real Root Of 233*x^4+148*x^3-152*x^2+32*x-937 1771129180855766 m001 (Artin*ZetaQ(4)+Robbin)/Artin 1771129189626480 m001 (BesselK(1,1)-Psi(2,1/3))/(-GAMMA(19/24)+Thue) 1771129191257327 k002 Champernowne real with 2*n^2+48*n-33 1771129192077675 m001 (BesselI(0,1)+Zeta(3))/(-Zeta(5)+Salem) 1771129193548692 r005 Re(z^2+c),c=1/82+10/19*I,n=12 1771129195186052 m005 (1/3*Zeta(3)+3/4)/(2/9*5^(1/2)+6) 1771129205391646 a007 Real Root Of 410*x^4+600*x^3+93*x^2+801*x+426 1771129205818561 a007 Real Root Of 652*x^4-515*x^3-166*x^2-709*x+133 1771129209357716 r005 Im(z^2+c),c=-13/15+3/22*I,n=47 1771129217789632 a007 Real Root Of -916*x^4-963*x^3+801*x^2-124*x+931 1771129227444830 m001 BesselK(1,1)^2*Riemann1stZero^2/ln(Ei(1))^2 1771129246638260 r005 Im(z^2+c),c=-57/110+16/51*I,n=14 1771129247885460 a007 Real Root Of -654*x^4-434*x^3+874*x^2-618*x+188 1771129248874460 m001 (gamma-ln(2)/ln(10))/(Catalan+Cahen) 1771129250460258 a007 Real Root Of -526*x^4-387*x^3+962*x^2-52*x-84 1771129252529436 a007 Real Root Of -367*x^4-405*x^3-567*x^2+837*x+15 1771129253511333 a007 Real Root Of -433*x^4+836*x^3+75*x^2+759*x-141 1771129266090723 m001 Champernowne*ln(Cahen)^2/FeigenbaumKappa 1771129272943463 m005 1/4*5^(1/2)/(7/8*exp(1)+7/9) 1771129274461469 l006 ln(955/5613) 1771129274559028 m001 (MertensB3-Robbin)/(Pi+MasserGramain) 1771129280139997 r005 Re(z^2+c),c=-11/74+37/62*I,n=4 1771129285169615 r005 Im(z^2+c),c=-9/10+45/196*I,n=42 1771129285198923 m001 Zeta(3)^Magata/(Zeta(3)^(ln(2)/ln(10))) 1771129287653535 r005 Im(z^2+c),c=-69/118+13/40*I,n=58 1771129290937258 r002 50th iterates of z^2 + 1771129294941053 r009 Re(z^3+c),c=-19/66+10/19*I,n=30 1771129297520237 a001 829464*29^(10/11) 1771129299428771 p001 sum(1/(307*n+176)/n/(12^n),n=1..infinity) 1771129302856834 m001 FibonacciFactorial/(ThueMorse^PrimesInBinary) 1771129308503159 a007 Real Root Of 24*x^4-673*x^3+76*x^2-321*x-63 1771129309793555 a001 11/46368*4181^(15/29) 1771129311122111 k006 concat of cont frac of 1771129316848760 p003 LerchPhi(1/2,2,352/125) 1771129318642279 m001 Shi(1)^Landau/LandauRamanujan2nd 1771129323034002 a003 cos(Pi*29/93)*cos(Pi*27/68) 1771129323233742 r005 Re(z^2+c),c=-15/118+31/48*I,n=28 1771129328210666 h001 (3/4*exp(2)+6/11)/(4/11*exp(2)+3/4) 1771129328845954 h005 exp(cos(Pi*1/38)*cos(Pi*11/36)) 1771129331292361 a001 34/710647*18^(24/53) 1771129334976427 a007 Real Root Of 511*x^4+698*x^3-539*x^2-164*x+250 1771129335340889 a007 Real Root Of -298*x^4-126*x^3+433*x^2+57*x+975 1771129336625278 b008 3+14*Log[Catalan] 1771129346452178 a007 Real Root Of 338*x^4+796*x^3+505*x^2-230*x-895 1771129348667974 l006 ln(7860/9383) 1771129352032433 m001 1/BesselK(1,1)^2*exp(Champernowne)*LambertW(1) 1771129355154176 a007 Real Root Of -316*x^4-380*x^3+253*x^2+77*x+341 1771129366579346 m001 Backhouse^Champernowne+Sarnak 1771129370408547 m001 GAMMA(1/6)*Magata^2*exp(Zeta(7)) 1771129373049465 a007 Real Root Of 700*x^4+796*x^3-816*x^2-39*x+25 1771129375878563 m001 1/LaplaceLimit/exp(DuboisRaymond)^2*sqrt(3) 1771129377599416 r002 40th iterates of z^2 + 1771129385256144 l006 ln(1608/9451) 1771129394166043 q001 2368/1337 1771129394273244 r002 16th iterates of z^2 + 1771129396019153 m001 (LambertW(1)+exp(1/exp(1)))/(Landau+Lehmer) 1771129399130608 m001 1/ln(Tribonacci)/FransenRobinson^2/Trott^2 1771129404574915 p004 log(32191/5477) 1771129416217852 a007 Real Root Of -327*x^4-497*x^3-289*x^2-380*x+690 1771129417785347 a008 Real Root of x^4-2*x^3+11*x^2-2*x-59 1771129422629583 r009 Re(z^3+c),c=-55/102+25/44*I,n=14 1771129431716000 a007 Real Root Of -101*x^4+935*x^3-831*x^2-502*x-705 1771129436698435 a007 Real Root Of 29*x^4-826*x^3-562*x^2-620*x+132 1771129438289287 r005 Re(z^2+c),c=-103/86+6/43*I,n=44 1771129444325591 a007 Real Root Of 819*x^4+847*x^3-641*x^2+391*x-650 1771129457759042 a007 Real Root Of 854*x^4-794*x^3+904*x^2-883*x-190 1771129464891827 m002 6/Pi-Sinh[Pi]^2/Pi^6 1771129466526813 r005 Im(z^2+c),c=-12/23+1/31*I,n=20 1771129466686259 m001 BesselI(0,1)*ZetaQ(3)-Grothendieck 1771129466993177 r002 44th iterates of z^2 + 1771129467362512 g006 Psi(1,1/3)-Psi(1,3/10)-Psi(1,2/7)-Psi(1,5/6) 1771129474904963 m005 (1/2*exp(1)-3/7)/(19/10+3/2*5^(1/2)) 1771129478924772 r005 Re(z^2+c),c=-5/118+34/61*I,n=45 1771129491954461 r009 Re(z^3+c),c=-33/74+26/49*I,n=40 1771129500615180 r005 Re(z^2+c),c=-13/70+20/27*I,n=28 1771129508379829 l006 ln(6673/7966) 1771129509672148 r005 Re(z^2+c),c=-13/62+13/17*I,n=51 1771129514062751 r005 Re(z^2+c),c=-41/34+1/19*I,n=38 1771129514128399 r005 Re(z^2+c),c=-27/22+1/19*I,n=48 1771129521123123 r005 Im(z^2+c),c=-47/106+13/41*I,n=11 1771129523111908 a007 Real Root Of -551*x^4-82*x^3-597*x^2+656*x+135 1771129526420407 a007 Real Root Of 846*x^4+99*x^3-580*x^2-385*x+85 1771129537162209 r005 Re(z^2+c),c=-29/34+3/128*I,n=38 1771129538800838 r005 Re(z^2+c),c=-161/110+9/61*I,n=6 1771129544204867 m001 Niven^BesselK(0,1)*BesselI(0,2)^BesselK(0,1) 1771129544515221 a001 55/5778*123^(4/31) 1771129544736483 a007 Real Root Of 216*x^4-327*x^3-497*x^2+873*x-837 1771129545158655 m008 (3/4*Pi-1/5)/(2/5*Pi^5-2/3) 1771129547291214 l006 ln(653/3838) 1771129547443228 r005 Im(z^2+c),c=-5/17+35/57*I,n=38 1771129550239750 a005 (1/sin(84/223*Pi))^755 1771129551270245 r005 Re(z^2+c),c=5/18+19/59*I,n=7 1771129556131140 r005 Im(z^2+c),c=-33/34+8/45*I,n=50 1771129562309419 m001 (-Kac+Riemann1stZero)/(BesselJ(0,1)-sin(1)) 1771129564302734 m001 (Robbin+ZetaP(4))/(BesselI(1,2)-GAMMA(19/24)) 1771129564424460 a007 Real Root Of 378*x^4+465*x^3-856*x^2-572*x+536 1771129573768773 m005 (1/2*5^(1/2)-2/5)/(7/10+3/2*5^(1/2)) 1771129577107113 r009 Re(z^3+c),c=-1/16+25/33*I,n=21 1771129578396300 m005 (1/36+1/4*5^(1/2))/(4/7*Zeta(3)-4) 1771129580920713 r005 Re(z^2+c),c=37/110+15/53*I,n=56 1771129583929092 r005 Im(z^2+c),c=-23/22+15/74*I,n=49 1771129585144064 m005 (1/2*gamma+5/6)/(2/11*Catalan-4/5) 1771129586289835 m001 PlouffeB^(cos(1/12*Pi)/PrimesInBinary) 1771129594848403 q001 6601/3727 1771129612290691 a007 Real Root Of -508*x^4-690*x^3+477*x^2+310*x+218 1771129613300016 r005 Im(z^2+c),c=-13/18+16/85*I,n=59 1771129613307810 r005 Im(z^2+c),c=-141/122+1/44*I,n=23 1771129614362299 m001 KomornikLoreti-sin(1/5*Pi)*Trott2nd 1771129615149304 a007 Real Root Of -576*x^4-787*x^3+590*x^2+689*x+665 1771129615577431 a003 cos(Pi*25/116)-sin(Pi*28/69) 1771129623109146 a002 15^(12/11)-7^(1/5) 1771129629629629 r005 Im(z^2+c),c=-47/60+13/15*I,n=3 1771129632257785 m005 (1/3*Catalan-1/3)/(7/8*5^(1/2)-3/8) 1771129637585292 l006 ln(5988/6095) 1771129639933866 r005 Re(z^2+c),c=29/90+14/51*I,n=35 1771129641813046 m001 Zeta(7)/GAMMA(11/24)/exp(cos(1))^2 1771129642495054 m001 (FeigenbaumB+Khinchin)/(sin(1)+ln(Pi)) 1771129643282171 a007 Real Root Of -680*x^4-942*x^3+476*x^2-474*x-875 1771129644404716 m001 KhinchinHarmonic+Trott^cos(1/5*Pi) 1771129644725470 v003 sum((3*n^3-7*n^2+5*n+7)/(n!+2),n=1..infinity) 1771129645754412 p001 sum(1/(409*n+327)/n/(8^n),n=1..infinity) 1771129647060941 m001 GaussAGM*(Robbin-Zeta(1/2)) 1771129647608870 a007 Real Root Of 746*x^4+815*x^3-275*x^2+607*x-875 1771129655955827 r002 44th iterates of z^2 + 1771129655955827 r002 44th iterates of z^2 + 1771129659344449 g005 GAMMA(4/7)*GAMMA(3/7)/GAMMA(7/12)/GAMMA(7/9) 1771129662170089 b008 -1/36+Sqrt[1+Sqrt[5]] 1771129665023491 m001 (ln(2)+HardyLittlewoodC5)/(MertensB3-Rabbit) 1771129667535757 r002 3th iterates of z^2 + 1771129671204407 a007 Real Root Of 831*x^4+927*x^3-696*x^2+679*x+359 1771129671893882 m001 (GAMMA(2/3)-ln(3))/(exp(1/exp(1))-gamma(3)) 1771129675647730 a007 Real Root Of 376*x^4-500*x^3-245*x^2-562*x-95 1771129681363117 m001 1/5*OneNinth*5^(1/2)/exp(1) 1771129681363117 m001 OneNinth/sqrt(5)/exp(1) 1771129683466075 m001 (Cahen+ThueMorse)/(5^(1/2)-GAMMA(13/24)) 1771129683767268 a007 Real Root Of 268*x^4-192*x^3-515*x^2+929*x-443 1771129684635104 a001 89/123*3^(22/27) 1771129693688677 r005 Im(z^2+c),c=-41/70+19/34*I,n=4 1771129697757803 m001 ln(GAMMA(1/3))^2*FeigenbaumC/Zeta(9)^2 1771129701946287 a001 121393/322*29^(17/37) 1771129702976720 a007 Real Root Of -390*x^4-509*x^3+871*x^2+474*x-883 1771129704046136 m005 (1/3*Catalan+1/7)/(1/6*exp(1)-1/5) 1771129704534636 l006 ln(1657/9739) 1771129704534636 p004 log(9739/1657) 1771129707112970 q001 4233/2390 1771129708076846 a007 Real Root Of -458*x^4-855*x^3-517*x^2-890*x-198 1771129709409938 r005 Re(z^2+c),c=-13/16+11/105*I,n=24 1771129709880726 h001 (1/11*exp(2)+11/12)/(1/10*exp(1)+5/8) 1771129717438210 r005 Re(z^2+c),c=5/14+15/53*I,n=62 1771129718814607 s002 sum(A289850[n]/(n!^3),n=1..infinity) 1771129720182560 a003 cos(Pi*8/113)+sin(Pi*29/99) 1771129727070424 m001 (Zeta(1,2)-Stephens)/(ZetaP(4)+ZetaQ(3)) 1771129731016420 a007 Real Root Of -418*x^4-891*x^3+182*x^2+367*x-758 1771129737205050 l006 ln(5486/6549) 1771129741977026 a007 Real Root Of -686*x^4-580*x^3+667*x^2-858*x-84 1771129749422422 m005 (1/3*5^(1/2)-1/5)/(3/8*Zeta(3)-1/7) 1771129750689444 a001 416020/161*123^(2/5) 1771129759451001 m001 Kolakoski-GAMMA(7/12)-Zeta(5) 1771129764253967 r005 Re(z^2+c),c=-9/10+34/167*I,n=22 1771129769294370 a007 Real Root Of 382*x^4-214*x^3-817*x^2+913*x-768 1771129780634256 b008 52/3+1/Sqrt[7] 1771129781197081 r005 Re(z^2+c),c=-7/6+33/118*I,n=6 1771129782858626 a007 Real Root Of -359*x^4-579*x^3-304*x^2-326*x+692 1771129784607000 m005 (1/2*2^(1/2)+6/7)/(1/5*Catalan+7/10) 1771129784617288 a001 3/4*18^(11/37) 1771129791112349 k007 concat of cont frac of 1771129792287261 a007 Real Root Of -14*x^4+427*x^3+916*x^2+759*x+981 1771129799101938 r005 Re(z^2+c),c=-7/34+2/29*I,n=10 1771129800554198 r005 Re(z^2+c),c=-141/118+3/38*I,n=30 1771129806277091 m001 Pi^(1/2)*LambertW(1)^HeathBrownMoroz 1771129806805494 l006 ln(1004/5901) 1771129810907677 m001 (1+2^(1/3))/(-Si(Pi)+Stephens) 1771129819975336 m001 1/exp(GAMMA(5/24))*CopelandErdos^2*sin(Pi/12) 1771129828637815 q001 6098/3443 1771129835571282 m008 (Pi^2+2/5)/(3/5*Pi^6+3) 1771129854166582 m001 polylog(4,1/2)*(3^(1/3))^ReciprocalFibonacci 1771129856102369 r009 Re(z^3+c),c=-1/28+27/35*I,n=39 1771129856840762 a007 Real Root Of 50*x^4-438*x^3-796*x^2+142*x-177 1771129862158553 r005 Im(z^2+c),c=-25/48+15/32*I,n=48 1771129865416306 a007 Real Root Of -437*x^4-745*x^3+40*x^2-251*x-409 1771129866305329 r008 a(0)=0,K{-n^6,-42+34*n-11*n^2+25*n^3} 1771129867530995 a007 Real Root Of -968*x^4+880*x^3-767*x^2+153*x+57 1771129868707900 a007 Real Root Of 410*x^4+93*x^3-641*x^2+533*x-563 1771129869211892 m001 1/PrimesInBinary^2/ln(Magata)*GAMMA(11/24)^2 1771129869356890 m005 (1/2*Pi+7/12)/(3/5*Catalan+2/3) 1771129869445473 m001 LandauRamanujan-Riemann3rdZero^Zeta(1,-1) 1771129885748114 a007 Real Root Of 335*x^4+22*x^3-365*x^2-784*x+14 1771129888552426 m001 Pi*csc(5/12*Pi)/GAMMA(7/12)/Landau*ZetaP(2) 1771129890941866 a003 sin(Pi*32/107)+sin(Pi*41/99) 1771129894328442 a007 Real Root Of -44*x^4+7*x^3+100*x^2+801*x-145 1771129904935366 a007 Real Root Of 699*x^4+931*x^3-650*x^2-484*x-524 1771129907594968 m001 (KomornikLoreti-MertensB1)/(CopelandErdos+Kac) 1771129910002940 r009 Re(z^3+c),c=-23/114+14/61*I,n=9 1771129911924909 m001 (HeathBrownMoroz-Si(Pi))/(-MertensB1+Mills) 1771129915513488 m001 (3^(1/2)+Chi(1))/(3^(1/3)+ZetaQ(3)) 1771129916233703 a001 4870847/144*1836311903^(16/17) 1771129916234889 a001 5374978561/72*514229^(16/17) 1771129922936041 r005 Im(z^2+c),c=-27/56+13/42*I,n=49 1771129926718293 a007 Real Root Of 559*x^4+676*x^3+18*x^2+466*x-976 1771129926790083 m001 MinimumGamma^2/MadelungNaCl/exp(cos(Pi/12))^2 1771129931870285 l006 ln(1355/7964) 1771129933232932 m001 (3^(1/2)+ln(3))/(-3^(1/3)+GlaisherKinkelin) 1771129935180269 a007 Real Root Of -59*x^4+391*x^3-773*x^2+720*x+154 1771129937191029 b008 7*(5/17+Sqrt[5]) 1771129938934945 s002 sum(A118645[n]/(n^3*2^n+1),n=1..infinity) 1771129941786691 a001 3524578/521*123^(1/5) 1771129942129990 a003 cos(Pi*35/109)*cos(Pi*20/51) 1771129944576138 a007 Real Root Of 327*x^4+395*x^3-389*x^2+398*x+902 1771129946443515 m001 (Pi*2^(1/2)/GAMMA(3/4))^gamma(1)*DuboisRaymond 1771129946659676 a007 Real Root Of 368*x^4+838*x^3+669*x^2+258*x-607 1771129965474192 m001 1/OneNinth^2/Rabbit*exp(GAMMA(1/3)) 1771129973752302 b008 2/35+ArcSinh[Khinchin] 1771129992515052 r005 Im(z^2+c),c=-7/8+12/85*I,n=30 1771129996619903 a007 Real Root Of 150*x^4-948*x^3+804*x^2+455*x+463 1771130000293899 r005 Re(z^2+c),c=15/52+14/41*I,n=7 1771130005472300 l006 ln(1706/10027) 1771130010766651 r005 Re(z^2+c),c=-25/18+61/150*I,n=3 1771130019924563 a007 Real Root Of 275*x^4+53*x^3-825*x^2-29*x+125 1771130022339240 s001 sum(exp(-Pi/4)^n*A061082[n],n=1..infinity) 1771130041387150 a007 Real Root Of -130*x^4+230*x^3+396*x^2-774*x-56 1771130042690326 m005 (1/2*3^(1/2)+4/11)/(2/3*2^(1/2)+6) 1771130042770433 m001 (GAMMA(2/3)-exp(Pi))/(Salem+ZetaQ(2)) 1771130047065935 p003 LerchPhi(1/16,6,283/212) 1771130048657944 a007 Real Root Of 6*x^4+146*x^3+700*x^2-92*x-466 1771130053638823 a007 Real Root Of -494*x^4-273*x^3+948*x^2-710*x-887 1771130054784555 r009 Re(z^3+c),c=-19/98+21/23*I,n=55 1771130065495782 m001 (Ei(1,1)-exp(1))/(-exp(1/exp(1))+Conway) 1771130069477333 a007 Real Root Of 430*x^4-672*x^3+629*x^2-838*x+132 1771130070596014 m001 (Cahen+CopelandErdos)/(FeigenbaumKappa-Thue) 1771130092392455 l006 ln(4299/5132) 1771130092511031 s002 sum(A210061[n]/(pi^n),n=1..infinity) 1771130094342853 a005 (1/cos(1/111*Pi))^1427 1771130095090769 m005 (1/2*Zeta(3)+5/6)/(1/12*exp(1)+7/12) 1771130097329060 m001 1/GAMMA(7/24)/MertensB1^2*exp(log(2+sqrt(3))) 1771130100066080 a007 Real Root Of -150*x^4+749*x^3-691*x^2+108*x-709 1771130104463437 q001 1865/1053 1771130105370599 r005 Re(z^2+c),c=-175/118+15/38*I,n=3 1771130106589095 a007 Real Root Of 21*x^4+380*x^3+128*x^2-219*x+764 1771130107978710 m006 (2/Pi+1/5)/(5*ln(Pi)-1) 1771130109223927 a007 Real Root Of -241*x^4+788*x^3-989*x^2+928*x+200 1771130109370682 r005 Im(z^2+c),c=-14/23+10/37*I,n=10 1771130109756036 r005 Im(z^2+c),c=1/110+45/59*I,n=32 1771130110397278 a007 Real Root Of -510*x^4-671*x^3+669*x^2+170*x-507 1771130113317811 k008 concat of cont frac of 1771130122400231 m005 (1/2*Zeta(3)+2/3)/(5/7*Zeta(3)-1/7) 1771130122493942 a001 18/13*2178309^(25/51) 1771130132357754 a007 Real Root Of 173*x^4-632*x^3-942*x^2+849*x-755 1771130132986938 a001 2/6119*7^(33/38) 1771130133534129 a003 cos(Pi*8/99)-cos(Pi*12/119) 1771130137693738 m001 exp(Pi)^BesselK(0,1)*Bloch 1771130147665322 a007 Real Root Of -28*x^4-440*x^3+968*x^2-416*x-356 1771130149847762 r005 Im(z^2+c),c=11/74+4/31*I,n=10 1771130155409665 r002 10th iterates of z^2 + 1771130155409665 r002 10th iterates of z^2 + 1771130155668580 a007 Real Root Of 606*x^4-347*x^3-882*x^2-734*x+159 1771130157928962 m001 (Ei(1)-MertensB1)/(RenyiParking+ZetaP(3)) 1771130163732115 r005 Im(z^2+c),c=-9/19+19/64*I,n=15 1771130163837177 m001 (ln(3)+Artin)/(Mills-Weierstrass) 1771130164228300 r002 5th iterates of z^2 + 1771130170098495 m001 1/Tribonacci/GaussKuzminWirsing/exp(Trott) 1771130170688767 r009 Re(z^3+c),c=-19/32+23/42*I,n=57 1771130173653161 m001 (3^(1/3))*ln(Riemann1stZero)*arctan(1/2) 1771130174589074 r005 Im(z^2+c),c=-26/27+7/40*I,n=42 1771130179896733 m005 (1/3*Zeta(3)-1/6)/(2/11*2^(1/2)-1/8) 1771130180381606 r005 Im(z^2+c),c=-71/114+16/47*I,n=49 1771130180554945 r005 Re(z^2+c),c=-61/114+21/44*I,n=39 1771130185383524 m001 1/ln(OneNinth)^2/Sierpinski/GAMMA(5/24) 1771130188013794 m005 (1/2*5^(1/2)-1)/(6/7*3^(1/2)-9/11) 1771130194263337 k002 Champernowne real with 5/2*n^2+93/2*n-32 1771130202939102 a003 sin(Pi*30/107)+sin(Pi*48/97) 1771130205508073 m001 (GAMMA(2/3)-FeigenbaumC)/(FeigenbaumD+Trott) 1771130224867675 m001 GAMMA(11/12)/PrimesInBinary^2/ln(sqrt(2)) 1771130225201256 r005 Im(z^2+c),c=-12/25+17/55*I,n=49 1771130227933003 m001 arctan(1/2)+Landau+LandauRamanujan 1771130228588674 m005 (1/2*Catalan-1/11)/(5/6*Pi-6/11) 1771130229575912 a001 3/3010349*64079^(13/50) 1771130233920239 m001 Salem*(ln(2^(1/2)+1)+GolombDickman) 1771130234225290 a001 47/317811*832040^(31/45) 1771130238391722 m001 1/Trott^2*exp(GlaisherKinkelin)/sqrt(3) 1771130239505768 a007 Real Root Of -46*x^4-851*x^3-656*x^2-230*x+140 1771130251397152 r005 Im(z^2+c),c=-21/22+21/122*I,n=37 1771130262015829 a003 cos(Pi*27/61)*sin(Pi*50/111) 1771130273228774 a007 Real Root Of 469*x^4+607*x^3-379*x^2-178*x-369 1771130273785340 a007 Real Root Of -645*x^4-826*x^3+573*x^2-3*x-45 1771130275928494 b008 1/2+Sqrt[Pi]*Sinh[2/3] 1771130279852094 a001 2207/144*6557470319842^(16/17) 1771130281963553 r002 8th iterates of z^2 + 1771130284654192 m001 Zeta(5)/exp(CareFree)*sin(Pi/5)^2 1771130289605386 l006 ln(351/2063) 1771130298978454 a003 -1+2*cos(4/27*Pi)+cos(3/10*Pi)+cos(10/27*Pi) 1771130299055962 a001 1/9*11^(7/36) 1771130306387664 h001 (2/9*exp(1)+3/8)/(5/7*exp(2)+1/4) 1771130306813521 a007 Real Root Of -623*x^4-815*x^3+495*x^2+77*x+186 1771130319613538 r005 Re(z^2+c),c=-23/122+38/51*I,n=34 1771130331141536 k008 concat of cont frac of 1771130341467291 r009 Re(z^3+c),c=-11/50+24/37*I,n=10 1771130342257279 a007 Real Root Of 552*x^4+868*x^3-326*x^2-64*x+300 1771130344401543 r009 Re(z^3+c),c=-9/38+22/61*I,n=12 1771130344659475 r005 Re(z^2+c),c=-6/31+19/25*I,n=58 1771130346190188 a007 Real Root Of -361*x^4+700*x^3+390*x^2+453*x-96 1771130346232179 q001 6957/3928 1771130347286314 r005 Re(z^2+c),c=1/19+13/27*I,n=6 1771130347469855 a007 Real Root Of -690*x^4-441*x^3+995*x^2-916*x-404 1771130349462598 m001 1/GAMMA(1/24)/Catalan/exp(cos(Pi/12)) 1771130349608138 m001 (5^(1/2)+BesselJ(1,1))/(-Cahen+Kolakoski) 1771130351303979 a003 sin(Pi*25/89)+sin(Pi*47/97) 1771130355320270 l006 ln(7411/8847) 1771130359444998 m001 1/exp(Magata)/GlaisherKinkelin^2*Zeta(1,2)^2 1771130377697319 a007 Real Root Of -155*x^4-167*x^3+525*x^2+952*x-184 1771130378533154 a001 1/203*(1/2*5^(1/2)+1/2)^6*7^(5/14) 1771130395182913 a007 Real Root Of 54*x^4+911*x^3-749*x^2+987*x+141 1771130396066383 a001 199/7778742049*46368^(14/23) 1771130396166670 a001 199/6557470319842*2971215073^(14/23) 1771130396565501 a007 Real Root Of -625*x^4-448*x^3+821*x^2-801*x-333 1771130399044473 r002 27th iterates of z^2 + 1771130402928586 a007 Real Root Of 434*x^4+888*x^3+434*x^2+352*x-75 1771130408963876 a008 Real Root of (11+14*x-8*x^2-7*x^3) 1771130409351225 r002 19th iterates of z^2 + 1771130412674546 r005 Im(z^2+c),c=-77/114+15/64*I,n=46 1771130427520460 r005 Re(z^2+c),c=-93/110+4/59*I,n=16 1771130432782868 a008 Real Root of (1+6*x+3*x^2+6*x^3+3*x^4+6*x^5) 1771130432951534 a007 Real Root Of 246*x^4-152*x^3-559*x^2+338*x-913 1771130434521762 a007 Real Root Of -655*x^4-884*x^3+124*x^2-376*x+479 1771130434782608 q001 5092/2875 1771130441112127 k008 concat of cont frac of 1771130444432361 a007 Real Root Of 628*x^4+909*x^3+64*x^2+904*x+271 1771130445205281 a007 Real Root Of -275*x^4-264*x^3+72*x^2-636*x-113 1771130446103779 m005 (1/3*gamma-2/9)/(9/11*Zeta(3)+7/10) 1771130446167685 a005 (1/sin(85/222*Pi))^806 1771130446459576 r005 Im(z^2+c),c=11/74+6/47*I,n=5 1771130449150462 r002 8th iterates of z^2 + 1771130451132371 h001 (8/11*exp(2)+1/12)/(9/11*exp(1)+6/7) 1771130457083276 m002 -3/Pi^6+6/(Pi^3*ProductLog[Pi]) 1771130460806336 m005 (1/3*3^(1/2)-1/5)/(5/11*Zeta(3)-1/3) 1771130488701693 r005 Re(z^2+c),c=-9/98+12/25*I,n=16 1771130490601010 m001 Pi*(Psi(2,1/3)-Zeta(3))+Zeta(1,-1) 1771130500423118 a007 Real Root Of 841*x^4+935*x^3-665*x^2+665*x+183 1771130500475913 r009 Re(z^3+c),c=-21/122+1/34*I,n=3 1771130501188433 m001 ln(LandauRamanujan)^2/Artin^2/cos(1)^2 1771130502281540 a007 Real Root Of 4*x^4-402*x^3+580*x^2-121*x+589 1771130502687756 m001 1/Si(Pi)^2*Artin/ln(cos(1)) 1771130508474330 r005 Im(z^2+c),c=-61/118+19/56*I,n=23 1771130511245615 m005 (1/2*Pi+8/9)/(2/7*5^(1/2)-1/2) 1771130516346802 a007 Real Root Of 223*x^4+202*x^3-245*x^2+522*x+621 1771130516367810 m005 (1/3*gamma+4/5)/(2*exp(1)+1/6) 1771130517963146 a007 Real Root Of -503*x^4-250*x^3+929*x^2-400*x-62 1771130518529030 m003 1/2+Sqrt[5]/8-21*Cos[1/2+Sqrt[5]/2] 1771130519278083 r005 Re(z^2+c),c=-31/44+7/15*I,n=17 1771130525922848 a007 Real Root Of -564*x^4-309*x^3+614*x^2-664*x+731 1771130530045735 m001 FeigenbaumC^2/Porter*ln(PrimesInBinary)^2 1771130533150233 a007 Real Root Of 736*x^4+689*x^3-570*x^2+702*x-383 1771130533818082 a007 Real Root Of -629*x^4-442*x^3+858*x^2-121*x+828 1771130535733788 a007 Real Root Of -549*x^4-507*x^3+718*x^2+337*x+930 1771130536656029 m005 (1/3*gamma+1/11)/(1/6*Pi-4/11) 1771130538497054 h001 (1/11*exp(2)+6/11)/(9/10*exp(2)+2/9) 1771130540199044 m005 (1/2*Catalan+11/12)/(2/3*2^(1/2)-1/6) 1771130548599483 a007 Real Root Of 539*x^4+864*x^3+518*x^2+828*x-662 1771130556840415 h001 (-8*exp(-3)-2)/(-7*exp(1/2)-2) 1771130561659875 m001 2/3*Si(Pi)*Pi*3^(1/2)/GAMMA(2/3)*FeigenbaumMu 1771130565323288 a003 cos(Pi*13/58)-cos(Pi*28/93) 1771130571681590 q001 9/50815 1771130572461103 a007 Real Root Of -516*x^4-700*x^3+852*x^2+401*x-774 1771130574725901 a007 Real Root Of -739*x^4-963*x^3+98*x^2-978*x-118 1771130577920654 a007 Real Root Of 425*x^4+583*x^3-572*x^2-689*x-369 1771130580267018 r005 Re(z^2+c),c=-7/78+7/15*I,n=32 1771130587764398 m001 sin(Pi/12)^GaussAGM(1,1/sqrt(2))*GAMMA(1/6) 1771130589287441 r005 Re(z^2+c),c=13/106+15/49*I,n=8 1771130592555073 r005 Im(z^2+c),c=-8/9+19/123*I,n=13 1771130599662708 a007 Real Root Of 20*x^4-384*x^3-899*x^2-27*x+442 1771130599980230 m001 (3^(1/2)-exp(1))/(gamma(3)+2*Pi/GAMMA(5/6)) 1771130603232352 m001 1/exp(GAMMA(1/4))^2/Salem^2*sin(Pi/5)^2 1771130605494110 a005 (1/cos(1/11*Pi))^1573 1771130611163244 k009 concat of cont frac of 1771130614133958 m001 1/GAMMA(1/4)*Sierpinski/ln(Zeta(9))^2 1771130615326995 r005 Re(z^2+c),c=43/126+19/50*I,n=26 1771130618813778 r002 9i'th iterates of 2*x/(1-x^2) of 1771130621283892 r009 Re(z^3+c),c=-5/22+18/55*I,n=11 1771130623212332 l006 ln(1453/8540) 1771130625639252 a007 Real Root Of -79*x^4+214*x^3+247*x^2-675*x-4 1771130625686059 q001 3227/1822 1771130627913592 a007 Real Root Of 470*x^4+398*x^3-561*x^2+442*x+129 1771130628682087 m005 (1/3*3^(1/2)+2/7)/(5/11*3^(1/2)-3/10) 1771130629771409 r005 Im(z^2+c),c=-65/82+6/61*I,n=11 1771130629968990 m001 cos(Pi/5)/ln(BesselK(1,1))^2/sqrt(Pi) 1771130632605511 m001 (Khinchin+Sarnak)/(2^(1/2)-ErdosBorwein) 1771130634782813 p004 log(16747/16453) 1771130638438348 m001 (Chi(1)+Ei(1,1))/(-GolombDickman+Trott2nd) 1771130638438348 m001 Shi(1)/(GolombDickman-Trott2nd) 1771130649992739 m001 (cos(1/5*Pi)-Zeta(1/2))/(Backhouse-ZetaP(3)) 1771130659658505 r005 Re(z^2+c),c=-15/94+23/33*I,n=64 1771130660527111 h001 (-9*exp(3)+6)/(-9*exp(7)+2) 1771130661057976 a007 Real Root Of -315*x^4-158*x^3+961*x^2+875*x+757 1771130684249598 p003 LerchPhi(1/100,2,179/238) 1771130684941533 a007 Real Root Of -763*x^4-430*x^3+845*x^2+619*x-133 1771130687543587 m001 BesselI(1,2)^Gompertz+ZetaP(2) 1771130690059113 m001 (ln(2+3^(1/2))+GAMMA(7/12))/ErdosBorwein 1771130690649095 a007 Real Root Of -295*x^4-195*x^3+401*x^2-50*x+473 1771130691534780 m001 ln(GAMMA(5/12))*GAMMA(2/3)/gamma 1771130694437809 a007 Real Root Of 377*x^4+292*x^3-603*x^2-65*x-311 1771130703821904 m008 (1/6*Pi^5-1/3)/(3*Pi^2-1) 1771130705146654 s002 sum(A121808[n]/(n^3*pi^n-1),n=1..infinity) 1771130718535773 l006 ln(3112/3715) 1771130721858813 a007 Real Root Of -536*x^4-641*x^3-80*x^2-673*x+772 1771130723634436 m005 (1/2*2^(1/2)+5)/(2*Zeta(3)+9/11) 1771130729470057 l006 ln(1102/6477) 1771130737328464 a003 sin(Pi*22/71)+sin(Pi*35/89) 1771130741760067 r005 Im(z^2+c),c=-7/10+37/171*I,n=29 1771130750083062 a007 Real Root Of -74*x^4+309*x^3+918*x^2-95*x-603 1771130750103331 m001 (Conway-KomornikLoreti)/(Zeta(3)+GAMMA(7/12)) 1771130771344944 m001 (ln(gamma)-3^(1/3))/(Artin-MertensB1) 1771130782304279 b008 ExpIntegralEi[3*(1/16+Pi)] 1771130783101094 r005 Im(z^2+c),c=-14/25+11/20*I,n=15 1771130785338887 a007 Real Root Of 459*x^4+947*x^3+357*x^2-66*x-492 1771130785514565 r009 Im(z^3+c),c=-31/114+9/62*I,n=9 1771130791383562 r002 19th iterates of z^2 + 1771130791655989 a001 6765/29*76^(22/47) 1771130795417197 m001 GAMMA(1/24)/PisotVijayaraghavan 1771130798938109 m001 (sin(1)+ln(5))/(Sarnak+TwinPrimes) 1771130813526607 a007 Real Root Of -678*x^4-715*x^3+817*x^2-16*x+108 1771130815004310 m001 (HeathBrownMoroz-Si(Pi))/(Lehmer+ZetaP(2)) 1771130819050064 a001 3*(1/2*5^(1/2)+1/2)^24*76^(14/15) 1771130819248258 r009 Re(z^3+c),c=-23/114+14/61*I,n=10 1771130821615373 a007 Real Root Of -662*x^4-213*x^3+950*x^2-993*x+592 1771130830090979 m001 (2^(1/3)-5^(1/2))/(cos(1)+Trott) 1771130831993227 a007 Real Root Of -637*x^4-664*x^3+492*x^2-508*x+136 1771130837461115 a007 Real Root Of 203*x^4+597*x^3+843*x^2+585*x-289 1771130837514473 q001 4589/2591 1771130842658231 a007 Real Root Of -554*x^4-335*x^3+838*x^2-391*x+269 1771130850978393 a003 sin(Pi*5/117)/cos(Pi*5/22) 1771130851109173 r009 Im(z^3+c),c=-1/19+47/52*I,n=16 1771130851723520 a007 Real Root Of -611*x^4-741*x^3+753*x^2-147*x-727 1771130851740594 a007 Real Root Of -601*x^4-449*x^3+979*x^2-51*x+258 1771130857449941 r005 Im(z^2+c),c=-125/114+7/32*I,n=63 1771130857919731 a001 370248451/34*591286729879^(20/21) 1771130857919732 a001 5600748293801/34*24157817^(20/21) 1771130859184934 r002 28th iterates of z^2 + 1771130864400937 m001 (5^(1/2)-Zeta(5))/(-CareFree+Trott2nd) 1771130873279580 m001 Sierpinski^2*ln(Khintchine)*FeigenbaumD 1771130879019507 r005 Re(z^2+c),c=-11/82+23/26*I,n=24 1771130883089669 m004 -5+625*Pi-Cosh[Sqrt[5]*Pi]/3 1771130883526725 m005 (5/8+3/8*5^(1/2))/(Catalan-5/6) 1771130885595821 a007 Real Root Of -686*x^4-925*x^3+341*x^2-260*x+81 1771130885696933 r002 23th iterates of z^2 + 1771130897077425 r005 Re(z^2+c),c=29/98+19/64*I,n=11 1771130901771130 k006 concat of cont frac of 1771130920080208 b008 (2+Sqrt[47])/5 1771130925352721 m001 Catalan+Zeta(1/2)-FibonacciFactorial 1771130925434423 a007 Real Root Of 72*x^4-176*x^3-619*x^2+63*x+367 1771130925464025 r005 Im(z^2+c),c=-119/118+11/57*I,n=21 1771130929446402 r002 9th iterates of z^2 + 1771130933111131 k008 concat of cont frac of 1771130934047589 r002 45th iterates of z^2 + 1771130935052546 l006 ln(751/4414) 1771130936271269 m001 gamma(3)/(Chi(1)+arctan(1/3)) 1771130937898530 a001 47/46368*377^(47/54) 1771130950338166 m001 1/GAMMA(2/3)/MertensB1/ln(log(1+sqrt(2)))^2 1771130950584582 m001 (Shi(1)+cos(1/12*Pi))/(MertensB2+OneNinth) 1771130952380952 q001 5951/3360 1771130957946603 r002 29th iterates of z^2 + 1771130959496922 r009 Re(z^3+c),c=-7/40+48/53*I,n=33 1771130961712053 a007 Real Root Of 36*x^4+590*x^3-888*x^2-793*x+13 1771130964796860 g006 -Psi(1,1/11)-Psi(1,7/8)-Psi(1,1/7)-Psi(1,4/5) 1771130965743859 r009 Im(z^3+c),c=-71/122+17/56*I,n=8 1771130966709971 a007 Real Root Of -31*x^4+182*x^3-913*x^2+379*x+7 1771130969026481 a007 Real Root Of 38*x^4+705*x^3+522*x^2-769*x+256 1771130975148591 m001 (1+Ei(1))/(-Pi^(1/2)+Magata) 1771130981266498 m001 (cos(1/12*Pi)+exp(-1/2*Pi))/LaplaceLimit 1771130988562618 m001 Ei(1)-Ei(1,1)*BesselI(1,1) 1771130994413040 a007 Real Root Of -195*x^4-3*x^3+153*x^2-318*x+859 1771130995827384 r005 Im(z^2+c),c=11/114+53/57*I,n=4 1771131009663363 a003 cos(Pi*19/87)+sin(Pi*52/109) 1771131011531311 k006 concat of cont frac of 1771131030815449 a001 9349/3*13^(21/31) 1771131031345054 m004 -5-E^(Sqrt[5]*Pi)/6+625*Pi 1771131034389104 a001 9227465/4*47^(9/17) 1771131034670615 l006 ln(5077/5086) 1771131036396243 a007 Real Root Of 874*x^4-66*x^3-772*x^2-888*x+181 1771131037499023 a008 Real Root of (1+6*x+3*x^2+5*x^3-3*x^4+4*x^5) 1771131037745120 m001 (2^(1/3))^Landau/(TreeGrowth2nd^Landau) 1771131038235380 r005 Re(z^2+c),c=-19/16+4/63*I,n=16 1771131043601447 a007 Real Root Of 31*x^4+603*x^3+945*x^2-176*x+181 1771131046633843 a005 (1/sin(79/201*Pi))^570 1771131048857284 l006 ln(8149/9728) 1771131048957766 a007 Real Root Of 927*x^4-507*x^3+373*x^2-613*x-124 1771131053036802 r004 Im(z^2+c),c=5/34-3/20*I,z(0)=exp(1/8*I*Pi),n=7 1771131053952711 m008 (2/3*Pi^6+5)/(1/3*Pi^4+4) 1771131057070565 m001 arctan(1/3)/(FeigenbaumKappa^ReciprocalLucas) 1771131063218515 a001 24157817/11*18^(13/18) 1771131063442056 m001 Thue+(ln(2)/ln(10))^ZetaP(4) 1771131065211465 r009 Re(z^3+c),c=-10/17+8/33*I,n=40 1771131067392885 a007 Real Root Of 141*x^4-274*x^3-898*x^2+276*x+396 1771131067394562 a001 47/102334155*4807526976^(9/19) 1771131067395001 a001 47/1346269*514229^(9/19) 1771131068053632 m008 (1/2*Pi^6+3/4)/(3/5*Pi+5/6) 1771131073359225 m001 1/ln(FeigenbaumKappa)^2/Robbin*Trott 1771131075156678 s002 sum(A118174[n]/((2^n-1)/n),n=1..infinity) 1771131078675263 a007 Real Root Of 473*x^4+887*x^3+664*x^2+982*x-70 1771131094844813 r009 Re(z^3+c),c=-6/19+24/37*I,n=56 1771131099640491 m001 (Pi*2^(1/2)/GAMMA(3/4)+ln(5))/Otter 1771131100816121 k006 concat of cont frac of 1771131103211249 k006 concat of cont frac of 1771131104153123 k008 concat of cont frac of 1771131108871184 a007 Real Root Of 720*x^4+539*x^3-921*x^2+886*x+368 1771131109569471 m001 (Pi+Zeta(1,-1))/(exp(1/exp(1))+CopelandErdos) 1771131110329080 r005 Im(z^2+c),c=-23/62+15/53*I,n=13 1771131111111112 k008 concat of cont frac of 1771131111113311 k006 concat of cont frac of 1771131111121111 k009 concat of cont frac of 1771131111137245 k007 concat of cont frac of 1771131111143317 k007 concat of cont frac of 1771131111211249 k008 concat of cont frac of 1771131111218111 k008 concat of cont frac of 1771131111321223 k009 concat of cont frac of 1771131111411611 k007 concat of cont frac of 1771131112005001 a007 Real Root Of -460*x^4-530*x^3+751*x^2-109*x-967 1771131112121911 k009 concat of cont frac of 1771131113121111 k008 concat of cont frac of 1771131114111105 k006 concat of cont frac of 1771131114121514 k008 concat of cont frac of 1771131115124345 k007 concat of cont frac of 1771131116173132 k008 concat of cont frac of 1771131116231124 k006 concat of cont frac of 1771131118376731 k007 concat of cont frac of 1771131119211111 k007 concat of cont frac of 1771131121111212 k008 concat of cont frac of 1771131121241121 k008 concat of cont frac of 1771131121322143 k008 concat of cont frac of 1771131121711151 k008 concat of cont frac of 1771131121731311 k008 concat of cont frac of 1771131121981411 k006 concat of cont frac of 1771131122101442 k007 concat of cont frac of 1771131122111313 k006 concat of cont frac of 1771131122144223 k009 concat of cont frac of 1771131122226391 r005 Re(z^2+c),c=-125/106+7/46*I,n=30 1771131123116113 k008 concat of cont frac of 1771131128575726 a007 Real Root Of -706*x^4-905*x^3+552*x^2-238*x-234 1771131128923845 a007 Real Root Of -690*x^4-760*x^3+220*x^2-681*x+671 1771131129213176 k006 concat of cont frac of 1771131131111731 k009 concat of cont frac of 1771131131128162 k007 concat of cont frac of 1771131131883005 l006 ln(1151/6765) 1771131139123111 k008 concat of cont frac of 1771131139953236 s003 concatenated sequence A072399 1771131140741048 a007 Real Root Of 148*x^4-766*x^3+93*x^2+945*x+834 1771131141080834 a007 Real Root Of 673*x^4+620*x^3-254*x^2+782*x-996 1771131141181211 k008 concat of cont frac of 1771131141514221 k006 concat of cont frac of 1771131141781113 k008 concat of cont frac of 1771131142511132 k006 concat of cont frac of 1771131150806073 m001 (GAMMA(13/24)+ThueMorse)/(Si(Pi)-ln(2)) 1771131151012267 r005 Im(z^2+c),c=-49/118+10/37*I,n=8 1771131151015122 k008 concat of cont frac of 1771131151193883 a001 161/416020*832040^(37/47) 1771131151333418 k007 concat of cont frac of 1771131151561131 k007 concat of cont frac of 1771131153136301 k006 concat of cont frac of 1771131153606065 m001 Niven-gamma(1)^gamma 1771131155401311 k008 concat of cont frac of 1771131156311152 k006 concat of cont frac of 1771131157111111 k008 concat of cont frac of 1771131157112963 k007 concat of cont frac of 1771131160119723 r005 Re(z^2+c),c=-5/6+15/161*I,n=44 1771131161612124 k007 concat of cont frac of 1771131162491247 a007 Real Root Of -545*x^4-339*x^3+566*x^2-590*x+659 1771131162511113 k008 concat of cont frac of 1771131166227111 k008 concat of cont frac of 1771131169118016 b008 ArcCsc[10]+ArcSec[-10] 1771131170551885 a007 Real Root Of -382*x^4-241*x^3+327*x^2-720*x+119 1771131174299078 r005 Im(z^2+c),c=-5/4+39/251*I,n=9 1771131174683054 m001 1/exp(Tribonacci)*PrimesInBinary^2/cosh(1) 1771131174929112 k008 concat of cont frac of 1771131177793911 r002 4th iterates of z^2 + 1771131179600438 m004 -5+625*Pi-Sinh[Sqrt[5]*Pi]/3 1771131179622621 a007 Real Root Of -119*x^4+539*x^3+719*x^2+872*x+135 1771131181193112 k006 concat of cont frac of 1771131182234567 a001 199/377*144^(41/58) 1771131182518943 a003 cos(Pi*5/81)+sin(Pi*20/69) 1771131182612278 k008 concat of cont frac of 1771131184102113 k008 concat of cont frac of 1771131186743264 m001 (ln(3)+gamma(3))/(Backhouse-GaussAGM) 1771131186783634 h001 (3/7*exp(1)+9/11)/(1/6*exp(1)+2/3) 1771131191618321 k008 concat of cont frac of 1771131192134311 k008 concat of cont frac of 1771131193173371 k006 concat of cont frac of 1771131197269347 k002 Champernowne real with 3*n^2+45*n-31 1771131199311541 k009 concat of cont frac of 1771131201241131 k006 concat of cont frac of 1771131203575938 m001 (Ei(1,1)+sin(1/12*Pi))/(FellerTornier-Lehmer) 1771131204001193 r002 6th iterates of z^2 + 1771131205487557 r005 Im(z^2+c),c=-43/56+34/59*I,n=5 1771131208111123 k006 concat of cont frac of 1771131208324456 m001 (Chi(1)+Paris)/(Weierstrass+ZetaQ(2)) 1771131209625917 a003 cos(Pi*43/103)-cos(Pi*47/99) 1771131211111122 k008 concat of cont frac of 1771131211127112 k008 concat of cont frac of 1771131211132816 k008 concat of cont frac of 1771131211141122 k007 concat of cont frac of 1771131211222111 k007 concat of cont frac of 1771131212115121 k008 concat of cont frac of 1771131212232141 k008 concat of cont frac of 1771131212315111 k006 concat of cont frac of 1771131212736029 r005 Re(z^2+c),c=1/44+31/49*I,n=43 1771131213115321 k008 concat of cont frac of 1771131214121451 k008 concat of cont frac of 1771131214261112 k008 concat of cont frac of 1771131215837852 m001 exp(Zeta(1/2))/GAMMA(1/24)^2/cosh(1)^2 1771131216212123 k007 concat of cont frac of 1771131216719113 k007 concat of cont frac of 1771131217446877 m001 (Niven+Sierpinski)/(Landau-ln(2)/ln(10)) 1771131217660286 a007 Real Root Of -456*x^4-283*x^3+711*x^2-247*x+247 1771131218405295 s002 sum(A029975[n]/((exp(n)+1)/n),n=1..infinity) 1771131221121212 k008 concat of cont frac of 1771131221121633 k007 concat of cont frac of 1771131221311271 k006 concat of cont frac of 1771131221311419 k008 concat of cont frac of 1771131221716167 m001 (Otter+Rabbit)^BesselJ(1,1) 1771131224323447 m001 ln(2+3^(1/2))^(GAMMA(5/6)*Tribonacci) 1771131224571575 m005 (1/2*gamma+7/12)/(3/7*3^(1/2)-1/4) 1771131227189036 l006 ln(1551/9116) 1771131227861755 r005 Im(z^2+c),c=-121/114+13/63*I,n=37 1771131232122630 k008 concat of cont frac of 1771131235685470 r009 Re(z^3+c),c=-39/98+33/56*I,n=64 1771131239187231 k006 concat of cont frac of 1771131241161152 k008 concat of cont frac of 1771131242913176 k008 concat of cont frac of 1771131243223512 k009 concat of cont frac of 1771131243780207 m001 (BesselI(1,2)-FeigenbaumD)/(Zeta(5)-ln(3)) 1771131244778636 r005 Im(z^2+c),c=-1+8/43*I,n=28 1771131247950090 r005 Re(z^2+c),c=-67/54+1/63*I,n=36 1771131251123211 k006 concat of cont frac of 1771131251448797 a007 Real Root Of 714*x^4+349*x^3-909*x^2+920*x-606 1771131252939181 l006 ln(5037/6013) 1771131253032063 m001 (Ei(1)+Zeta(1/2))/(arctan(1/2)-Riemann3rdZero) 1771131254155413 a007 Real Root Of -983*x^4-30*x^3+656*x^2+915*x+16 1771131256367507 p001 sum((-1)^n/(578*n+543)/(12^n),n=0..infinity) 1771131258131868 m001 ln(GAMMA(19/24))/Rabbit/GAMMA(5/6)^2 1771131262579764 r009 Im(z^3+c),c=-49/114+3/59*I,n=20 1771131271989244 a007 Real Root Of 459*x^4+536*x^3-350*x^2+652*x+714 1771131272911608 m001 (3^(1/3))^2/(2^(1/3))^2*ln(sin(Pi/12)) 1771131282020484 r009 Im(z^3+c),c=-3/19+26/29*I,n=34 1771131283415193 p004 log(11467/1951) 1771131291016101 k006 concat of cont frac of 1771131301038449 a003 -1+2*cos(3/8*Pi)-cos(5/24*Pi)-cos(7/30*Pi) 1771131308236705 r002 7th iterates of z^2 + 1771131311311217 k008 concat of cont frac of 1771131311314114 k008 concat of cont frac of 1771131311341343 k006 concat of cont frac of 1771131311731121 k007 concat of cont frac of 1771131312112924 k009 concat of cont frac of 1771131312115317 k008 concat of cont frac of 1771131312213521 k009 concat of cont frac of 1771131313695104 a007 Real Root Of -221*x^4-300*x^3-18*x^2-444*x-222 1771131314357141 k008 concat of cont frac of 1771131315301272 k008 concat of cont frac of 1771131315448740 a007 Real Root Of -215*x^4-415*x^3-827*x^2-860*x+881 1771131317683048 a001 1364/10610209857723*3^(7/24) 1771131321121112 k008 concat of cont frac of 1771131321221221 k009 concat of cont frac of 1771131322122121 k009 concat of cont frac of 1771131323121311 k008 concat of cont frac of 1771131332214211 k006 concat of cont frac of 1771131332311342 k007 concat of cont frac of 1771131333252678 r009 Re(z^3+c),c=-9/44+49/50*I,n=51 1771131339401820 q001 1362/769 1771131340279127 g005 GAMMA(7/12)*GAMMA(5/11)/GAMMA(1/11)/GAMMA(5/9) 1771131341118213 k008 concat of cont frac of 1771131341683057 m001 (Lehmer-StronglyCareFree)/MertensB2 1771131342117179 a001 33281921/8*1836311903^(14/17) 1771131342118282 a001 505019158607/144*514229^(14/17) 1771131342120686 a001 710647/144*6557470319842^(14/17) 1771131352113111 k006 concat of cont frac of 1771131356364079 m001 (Chi(1)-sin(1))/(3^(1/3)+Lehmer) 1771131358005373 m001 Mills^exp(Pi)/Trott2nd 1771131361231401 k008 concat of cont frac of 1771131363770666 m001 (3^(1/3))^2*ln(KhintchineHarmonic)*GAMMA(7/12) 1771131364200712 m005 (1/2*Catalan-10/11)/(2/3*3^(1/2)-9/10) 1771131366825191 r009 Re(z^3+c),c=-8/29+21/43*I,n=27 1771131369020420 a003 sin(Pi*5/72)*sin(Pi*18/59) 1771131380867952 r005 Im(z^2+c),c=-85/78+8/45*I,n=8 1771131381281111 k006 concat of cont frac of 1771131382025949 m001 (2^(1/2)+GAMMA(7/12))/(DuboisRaymond+Porter) 1771131384144441 m005 (1/3*Zeta(3)-2/9)/(9/40+7/20*5^(1/2)) 1771131394095363 a007 Real Root Of -975*x^4-989*x^3+871*x^2-860*x-156 1771131399865385 b008 57/(1/2+E) 1771131405184691 m001 1/OneNinth/ln(GaussKuzminWirsing)/BesselJ(1,1) 1771131405462370 m001 (ZetaP(2)-ZetaQ(3))/(Zeta(5)+Porter) 1771131406093104 r002 4th iterates of z^2 + 1771131410166132 k006 concat of cont frac of 1771131410603776 a007 Real Root Of 783*x^4+768*x^3-793*x^2+243*x-520 1771131411111112 k006 concat of cont frac of 1771131411112113 k008 concat of cont frac of 1771131411183123 k006 concat of cont frac of 1771131411306197 r005 Re(z^2+c),c=1/62+13/22*I,n=55 1771131411411111 k008 concat of cont frac of 1771131413511511 k006 concat of cont frac of 1771131414503480 a007 Real Root Of 866*x^4+538*x^3-330*x^2-669*x-106 1771131419744698 m001 (GaussAGM+MertensB1)/(sin(1)+Zeta(1/2)) 1771131420268465 r009 Re(z^3+c),c=-41/78+21/55*I,n=58 1771131420325996 a007 Real Root Of 17*x^4+347*x^3+822*x^2+147*x-193 1771131421161144 k008 concat of cont frac of 1771131421293972 r004 Im(z^2+c),c=-11/24+7/23*I,z(0)=-1,n=40 1771131422113631 k009 concat of cont frac of 1771131427393749 r005 Re(z^2+c),c=-41/34+2/69*I,n=44 1771131430271689 m001 1/OneNinth*exp(Porter)*GAMMA(5/24) 1771131432148065 m005 (1/2*2^(1/2)-11/12)/(19/120+11/24*5^(1/2)) 1771131432211431 k007 concat of cont frac of 1771131432421412 k006 concat of cont frac of 1771131436301248 a008 Real Root of (-3-x+2*x^2-4*x^3-x^4+x^5) 1771131439138071 a001 969323029/5*591286729879^(11/13) 1771131439138071 a001 192900153618/5*1134903170^(11/13) 1771131440219684 a007 Real Root Of 638*x^4+814*x^3-281*x^2+773*x+495 1771131450080579 a001 199/1346269*2^(6/23) 1771131450714179 m006 (3/4/Pi-1)/(2/3*ln(Pi)-1/3) 1771131456948839 a003 cos(Pi*20/71)-cos(Pi*22/63) 1771131460029982 h001 (-exp(6)+6)/(-4*exp(4)-6) 1771131460750642 a007 Real Root Of 386*x^4+549*x^3-137*x^2-124*x-538 1771131463587477 a007 Real Root Of 577*x^4+304*x^3-623*x^2+793*x-630 1771131475946685 s002 sum(A181485[n]/(10^n+1),n=1..infinity) 1771131476154736 a007 Real Root Of -52*x^4-889*x^3+522*x^2-735*x+959 1771131481421132 k008 concat of cont frac of 1771131489699599 m002 -5+(Pi^2*Sinh[Pi]*Tanh[Pi])/5 1771131491562197 k007 concat of cont frac of 1771131491816421 l006 ln(6962/8311) 1771131492028740 a007 Real Root Of 28*x^4-161*x^3+352*x^2+921*x-643 1771131496396468 a001 29/89*75025^(21/59) 1771131500326079 m004 -5/6-(25*Sqrt[5])/Pi+Tan[Sqrt[5]*Pi] 1771131501432087 l006 ln(400/2351) 1771131511821284 k007 concat of cont frac of 1771131512173173 k007 concat of cont frac of 1771131513113114 k007 concat of cont frac of 1771131518953051 a007 Real Root Of -25*x^4+747*x^3+660*x^2-870*x+785 1771131519213241 k008 concat of cont frac of 1771131520228382 m007 (-2/3*gamma-4/3*ln(2)-3)/(-3/4*gamma-2) 1771131523041535 m005 (1/2*Catalan-3/11)/(9/11*2^(1/2)-1/9) 1771131523111132 k008 concat of cont frac of 1771131527046696 a007 Real Root Of -842*x^4-773*x^3+776*x^2-994*x-204 1771131528705467 r005 Re(z^2+c),c=2/7+7/29*I,n=38 1771131529746525 m009 (3*Pi^2+1/3)/(1/4*Psi(1,1/3)-5/6) 1771131530139820 m003 1/2+(5*Sqrt[5])/16+(3*Sech[1/2+Sqrt[5]/2])/2 1771131531431341 k009 concat of cont frac of 1771131534905356 m001 (Zeta(3)+Ei(1))/(arctan(1/2)+GAMMA(17/24)) 1771131543819383 r005 Im(z^2+c),c=-11/46+13/51*I,n=9 1771131544026703 m001 (-Zeta(1,-1)+DuboisRaymond)/(Shi(1)-Zeta(5)) 1771131547442852 m001 (Weierstrass+ZetaQ(3))/(GAMMA(23/24)+Niven) 1771131551003988 a007 Real Root Of -559*x^4-751*x^3+572*x^2+17*x-436 1771131553415361 r005 Re(z^2+c),c=23/94+13/64*I,n=33 1771131561251223 k007 concat of cont frac of 1771131565261359 a007 Real Root Of -998*x^4-943*x^3+921*x^2-401*x+982 1771131572478585 m005 (43/44+1/4*5^(1/2))/(3/7*5^(1/2)-1/11) 1771131572857772 m001 (gamma+ln(gamma))/(-GAMMA(5/6)+GAMMA(17/24)) 1771131577610083 h001 (-6*exp(2)+10)/(-10*exp(3)+7) 1771131577716026 m005 (3/4*gamma+3/5)/(2*Catalan+4) 1771131582241181 k006 concat of cont frac of 1771131590705081 p003 LerchPhi(1/12,2,505/208) 1771131598366257 r002 12th iterates of z^2 + 1771131598366257 r002 12th iterates of z^2 + 1771131611211022 k008 concat of cont frac of 1771131613211199 k008 concat of cont frac of 1771131617713113 k006 concat of cont frac of 1771131617869290 m001 MertensB1^2*exp(Backhouse)^2*KhintchineLevy^2 1771131618141222 k008 concat of cont frac of 1771131623467211 k008 concat of cont frac of 1771131628958802 m001 (Zeta(1/2)-LaplaceLimit)/(Mills-OneNinth) 1771131631141312 k006 concat of cont frac of 1771131632344121 k009 concat of cont frac of 1771131641482777 a001 3/46*9349^(13/36) 1771131643726693 m001 Otter^exp(Pi)/TreeGrowth2nd 1771131651925602 r002 18th iterates of z^2 + 1771131664012339 m007 (-4*gamma-12*ln(2)+2*Pi+2/3)/(-1/3*gamma+2/5) 1771131664848991 m005 (1/2*5^(1/2)-5/11)/(11/12*Zeta(3)-8/11) 1771131664990649 a007 Real Root Of -622*x^4-635*x^3+416*x^2-753*x-46 1771131667160956 g006 Psi(1,2/3)-Psi(1,9/11)-Psi(1,3/11)-Psi(1,4/7) 1771131671239593 a007 Real Root Of -486*x^4-400*x^3+139*x^2-743*x+808 1771131674348406 a007 Real Root Of -92*x^4+696*x^3-413*x^2-795*x-258 1771131680779092 m004 6-Cos[Sqrt[5]*Pi]+Pi*Cosh[Sqrt[5]*Pi] 1771131683874879 s002 sum(A128470[n]/(n^2*exp(n)+1),n=1..infinity) 1771131689904715 m005 (1/2*Catalan+4/11)/(5/11*Zeta(3)-1/2) 1771131692018926 r005 Im(z^2+c),c=-5/42+13/58*I,n=9 1771131692154748 a007 Real Root Of 505*x^4+905*x^3+307*x^2+864*x+626 1771131694230273 a007 Real Root Of -594*x^4-304*x^3+957*x^2-358*x+520 1771131694370495 r005 Re(z^2+c),c=-17/94+13/56*I,n=6 1771131704577365 q001 6307/3561 1771131704756829 r005 Im(z^2+c),c=-13/14+31/191*I,n=51 1771131706435993 a003 cos(Pi*11/41)*cos(Pi*29/59) 1771131715391763 m001 GlaisherKinkelin^2/exp(Conway)^2*Zeta(1/2) 1771131718741752 a007 Real Root Of 800*x^4+990*x^3-798*x^2+63*x+243 1771131721746244 a007 Real Root Of 684*x^4+958*x^3-613*x^2-119*x+304 1771131727596736 r005 Im(z^2+c),c=-13/27+1/33*I,n=38 1771131746855650 a003 cos(Pi*8/97)/cos(Pi*37/117) 1771131756796258 r009 Re(z^3+c),c=-3/13+20/59*I,n=8 1771131757647506 a003 cos(Pi*1/106)*cos(Pi*43/97) 1771131759376817 l006 ln(1649/9692) 1771131759388462 m001 (Pi-ln(2))/(Zeta(1,-1)+GaussKuzminWirsing) 1771131765515880 m001 exp((2^(1/3)))^2/CareFree*Zeta(9)^2 1771131767404719 m005 (1/2*2^(1/2)-1/10)/(10/11*Zeta(3)-3/4) 1771131767489008 r005 Im(z^2+c),c=15/94+29/47*I,n=7 1771131767905876 r009 Re(z^3+c),c=-23/56+24/35*I,n=7 1771131773838110 a007 Real Root Of 327*x^4+152*x^3-203*x^2+483*x-881 1771131777920656 a007 Real Root Of 184*x^4+41*x^3-799*x^2-146*x+665 1771131784122357 r005 Im(z^2+c),c=-9/8+44/217*I,n=37 1771131786615101 r009 Im(z^3+c),c=-9/44+7/43*I,n=5 1771131790006648 r009 Im(z^3+c),c=-27/34+37/48*I,n=2 1771131798103640 a007 Real Root Of -759*x^4-646*x^3-121*x^2+571*x-93 1771131799480473 m005 (1/2*Catalan-5/8)/(5/8*5^(1/2)-5/11) 1771131800315423 m001 Conway^GaussAGM/CareFree 1771131805157593 q001 4945/2792 1771131811022223 k009 concat of cont frac of 1771131811415121 k008 concat of cont frac of 1771131811521311 k008 concat of cont frac of 1771131812585268 r009 Re(z^3+c),c=-11/48+39/58*I,n=17 1771131818796523 r005 Im(z^2+c),c=-71/106+6/23*I,n=64 1771131819849624 m001 (3^(1/2))^LaplaceLimit/StolarskyHarborth 1771131829184325 a007 Real Root Of -466*x^4-325*x^3+706*x^2-152*x+296 1771131831815643 k007 concat of cont frac of 1771131833882619 m001 1/TreeGrowth2nd/exp(MertensB1)^2*GAMMA(1/4)^2 1771131837045414 b008 CosIntegral[2/11+Pi] 1771131841985203 l006 ln(1249/7341) 1771131844453031 r005 Re(z^2+c),c=-3/38+20/41*I,n=32 1771131848679713 m004 -6-150*Pi+4*Sinh[Sqrt[5]*Pi] 1771131861298413 q001 1/5646107 1771131864311329 k009 concat of cont frac of 1771131865300932 m001 CareFree/CopelandErdos*Lehmer 1771131875684695 m001 (Lehmer-ZetaP(4))/(ln(5)+Conway) 1771131879368887 a001 13/11*199^(53/56) 1771131889549013 a001 1364*(1/2*5^(1/2)+1/2)^23*3^(9/14) 1771131889694542 s002 sum(A107553[n]/(exp(n)+1),n=1..infinity) 1771131895077626 a008 Real Root of (2+5*x-18*x^2+x^3) 1771131896176634 a003 sin(Pi*24/85)+sin(Pi*41/87) 1771131899789039 a005 (1/sin(80/207*Pi))^1107 1771131904899994 p003 LerchPhi(1/100,2,505/212) 1771131905807232 a007 Real Root Of 55*x^4-651*x^3+386*x^2+512*x+958 1771131906386543 r002 56th iterates of z^2 + 1771131909780838 a007 Real Root Of 4*x^4-638*x^3+639*x^2+464*x+679 1771131911123535 k006 concat of cont frac of 1771131911241311 k006 concat of cont frac of 1771131912378107 m001 (FeigenbaumAlpha+Magata)/(Shi(1)+BesselI(0,2)) 1771131912509502 b008 2+ExpIntegralEi[1/8]/6 1771131917895497 r005 Im(z^2+c),c=-21/106+13/53*I,n=21 1771131921613134 k008 concat of cont frac of 1771131928086617 r002 13th iterates of z^2 + 1771131929509871 m006 (4/5*Pi+1/3)/(3*exp(2*Pi)+3/4) 1771131929877327 r009 Re(z^3+c),c=-15/29+27/49*I,n=20 1771131932404256 r002 54th iterates of z^2 + 1771131934279201 r002 9th iterates of z^2 + 1771131934503878 r005 Re(z^2+c),c=-5/4+76/157*I,n=3 1771131934595944 p003 LerchPhi(1/5,4,179/206) 1771131942432121 k007 concat of cont frac of 1771131943121421 k008 concat of cont frac of 1771131943672514 m001 Otter/gamma(3)/StolarskyHarborth 1771131945991112 m003 (-5*Cosh[1/2+Sqrt[5]/2])/6+Csch[1/2+Sqrt[5]/2] 1771131956313711 m005 (1/2*Zeta(3)-2/11)/(9/11*exp(1)+1/7) 1771131967654158 a007 Real Root Of 520*x^4+872*x^3+314*x^2+410*x-531 1771131973208559 m001 (Rabbit+Riemann3rdZero)/(BesselI(0,1)-exp(1)) 1771131982204646 q001 3583/2023 1771131982414770 m005 (1/2*Catalan+1/7)/(3/11*gamma+2/11) 1771131986514335 a008 Real Root of x^4-x^3+5*x^2-105*x+166 1771131989464848 m001 FeigenbaumB^gamma(1)*ZetaP(3) 1771131991674061 r005 Re(z^2+c),c=-1/15+21/41*I,n=32 1771131992507436 a001 1/7881196*76^(14/23) 1771132001602933 m001 Catalan+sin(1/12*Pi)+Gompertz 1771132002434217 l006 ln(849/4990) 1771132003538189 r009 Re(z^3+c),c=-11/30+34/57*I,n=34 1771132006003635 s001 sum(exp(-3*Pi/4)^n*A145292[n],n=1..infinity) 1771132006003635 s001 sum(exp(-3*Pi/4)^n*A228183[n],n=1..infinity) 1771132011222411 k007 concat of cont frac of 1771132011423111 k008 concat of cont frac of 1771132012465546 a007 Real Root Of -23*x^4-372*x^3+593*x^2-550*x+698 1771132013919009 a007 Real Root Of -620*x^4-443*x^3+830*x^2-179*x+719 1771132015762958 r005 Im(z^2+c),c=-25/18+5/98*I,n=8 1771132021125641 k006 concat of cont frac of 1771132021345372 m001 (Zeta(1,2)-gamma)/(OneNinth+RenyiParking) 1771132026618680 r009 Re(z^3+c),c=-12/19+20/43*I,n=44 1771132035807809 m001 exp(GAMMA(1/3))^2/Sierpinski/arctan(1/2) 1771132035890861 s002 sum(A239051[n]/((exp(n)-1)/n),n=1..infinity) 1771132037579678 h001 (2/5*exp(2)+3/11)/(1/3*exp(1)+11/12) 1771132039074556 m002 (Pi*Coth[Pi])/5+Log[Pi]*Tanh[Pi] 1771132039444263 a001 199/3*2584^(32/45) 1771132042989814 m005 (1/2*exp(1)-2/9)/(8/9*Catalan-3/4) 1771132043667144 m001 BesselI(0,1)*Bloch+GAMMA(19/24) 1771132044455880 a007 Real Root Of -215*x^4-119*x^3+846*x^2+903*x+400 1771132045853080 m001 (-Sarnak+Weierstrass)/(Niven-ln(2)/ln(10)) 1771132048032492 r005 Im(z^2+c),c=-8/19+19/64*I,n=39 1771132050755608 m001 Psi(1,1/3)*BesselI(1,2)+(1+3^(1/2))^(1/2) 1771132050822775 m001 2*Pi/GAMMA(5/6)/(Trott2nd^arctan(1/3)) 1771132055409271 m001 GAMMA(3/4)^2/exp(KhintchineLevy)/sin(Pi/12) 1771132055830928 r009 Re(z^3+c),c=-37/122+19/31*I,n=31 1771132059190224 a001 6/7*233^(5/9) 1771132074093323 a007 Real Root Of -308*x^4+950*x^3+838*x^2+275*x+28 1771132075324835 a007 Real Root Of 331*x^4+385*x^3-713*x^2-640*x-15 1771132076435441 m001 (Zeta(1/2)+1)/(-2^(1/3)+1) 1771132078034408 a007 Real Root Of -675*x^4-573*x^3+962*x^2+170*x+742 1771132079107321 a001 13/47*6643838879^(2/7) 1771132096639099 a003 sin(Pi*26/101)/cos(Pi*41/112) 1771132099749661 r005 Im(z^2+c),c=-127/126+10/53*I,n=28 1771132106112111 k007 concat of cont frac of 1771132111151123 k008 concat of cont frac of 1771132111422127 k007 concat of cont frac of 1771132112531533 k006 concat of cont frac of 1771132112935802 m008 (2/3*Pi^5-2)/(1/5*Pi^2-5/6) 1771132113219114 k008 concat of cont frac of 1771132113719765 m001 (5^(1/2)+Thue)/MadelungNaCl 1771132115332312 k008 concat of cont frac of 1771132116868163 l006 ln(1925/2298) 1771132117318125 k007 concat of cont frac of 1771132118311331 k008 concat of cont frac of 1771132118517433 k007 concat of cont frac of 1771132121112337 k008 concat of cont frac of 1771132121121512 k008 concat of cont frac of 1771132121433117 k008 concat of cont frac of 1771132122221322 k007 concat of cont frac of 1771132124281922 k008 concat of cont frac of 1771132127612291 k008 concat of cont frac of 1771132131215215 k008 concat of cont frac of 1771132132111112 k008 concat of cont frac of 1771132133048519 q001 5804/3277 1771132136198792 a007 Real Root Of -298*x^4-325*x^3+204*x^2-617*x-606 1771132136300003 m001 (-Magata+Paris)/(BesselI(0,1)+BesselK(1,1)) 1771132136702303 m001 Riemann2ndZero^2*Bloch^2*exp(sin(Pi/5)) 1771132141321411 k006 concat of cont frac of 1771132141591116 k006 concat of cont frac of 1771132141811711 k007 concat of cont frac of 1771132143002443 m001 (Kac+ZetaQ(3))/(2^(1/2)-Pi^(1/2)) 1771132145416609 r005 Im(z^2+c),c=-51/110+19/62*I,n=30 1771132146140775 a001 13/9062201101803*18^(20/23) 1771132151239222 k006 concat of cont frac of 1771132151771431 m001 OrthogonalArrays*(Backhouse-DuboisRaymond) 1771132153561980 m001 ln(Khintchine)^2*DuboisRaymond*cos(Pi/12)^2 1771132155030231 k009 concat of cont frac of 1771132155896885 m001 (PlouffeB-Stephens)/(2*Pi/GAMMA(5/6)+Paris) 1771132156826194 l006 ln(1298/7629) 1771132157959981 a001 21/1364*64079^(49/58) 1771132164395318 r002 22th iterates of z^2 + 1771132165627173 m001 (exp(Pi)+2^(1/2))/(MertensB3+ZetaQ(2)) 1771132166788055 m001 (Pi^(1/2)-MertensB2)/(GAMMA(2/3)+Zeta(1,2)) 1771132167216111 k006 concat of cont frac of 1771132170555212 r005 Im(z^2+c),c=-39/56+8/49*I,n=30 1771132171023518 r009 Re(z^3+c),c=-23/114+14/61*I,n=13 1771132171248631 m001 (KhinchinLevy+Rabbit)/(exp(1/exp(1))-Artin) 1771132171828118 k008 concat of cont frac of 1771132172365466 r002 35th iterates of z^2 + 1771132177265147 a001 610/47*1364^(21/58) 1771132179712381 m005 (1/2*2^(1/2)+5/7)/(8/9*2^(1/2)-5/11) 1771132181883499 m001 Landau^ln(5)*gamma(3)^ln(5) 1771132183613153 m004 -1/3+(25*Sqrt[5]*Pi*Csch[Sqrt[5]*Pi])/2 1771132184402695 p001 sum((-1)^n/(595*n+554)/(25^n),n=0..infinity) 1771132187043341 a007 Real Root Of -680*x^4+58*x^3-788*x^2+634*x+138 1771132187148932 r009 Re(z^3+c),c=-51/52+13/57*I,n=2 1771132188340111 k008 concat of cont frac of 1771132191172113 k007 concat of cont frac of 1771132192399317 r002 3th iterates of z^2 + 1771132199076693 r005 Re(z^2+c),c=-27/22+16/51*I,n=20 1771132200275357 k002 Champernowne real with 7/2*n^2+87/2*n-30 1771132202746856 r009 Re(z^3+c),c=-23/114+14/61*I,n=16 1771132203121848 r009 Re(z^3+c),c=-23/114+14/61*I,n=17 1771132203176072 a007 Real Root Of -799*x^4+433*x^3-164*x^2+941*x+175 1771132203186713 r009 Re(z^3+c),c=-23/114+14/61*I,n=20 1771132203187780 r009 Re(z^3+c),c=-23/114+14/61*I,n=19 1771132203189310 r009 Re(z^3+c),c=-23/114+14/61*I,n=23 1771132203189362 r009 Re(z^3+c),c=-23/114+14/61*I,n=26 1771132203189362 r009 Re(z^3+c),c=-23/114+14/61*I,n=27 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=30 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=33 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=34 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=36 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=37 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=40 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=43 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=44 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=47 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=46 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=50 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=53 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=54 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=57 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=60 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=61 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=63 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=64 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=62 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=59 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=56 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=58 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=55 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=51 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=52 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=49 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=48 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=45 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=42 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=41 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=39 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=38 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=35 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=32 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=31 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=29 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=28 1771132203189363 r009 Re(z^3+c),c=-23/114+14/61*I,n=24 1771132203189366 r009 Re(z^3+c),c=-23/114+14/61*I,n=25 1771132203189469 r009 Re(z^3+c),c=-23/114+14/61*I,n=22 1771132203189878 r009 Re(z^3+c),c=-23/114+14/61*I,n=21 1771132203230659 r009 Re(z^3+c),c=-23/114+14/61*I,n=18 1771132205119225 r009 Re(z^3+c),c=-23/114+14/61*I,n=15 1771132205298456 r009 Re(z^3+c),c=-23/114+14/61*I,n=14 1771132208315199 r005 Im(z^2+c),c=-25/18+64/197*I,n=3 1771132209859530 a003 cos(Pi*10/73)+cos(Pi*12/71) 1771132211111811 k006 concat of cont frac of 1771132212377204 a005 (1/cos(13/31*Pi))^52 1771132213209231 h001 (2/11*exp(1)+3/5)/(3/4*exp(2)+7/11) 1771132213553620 r005 Im(z^2+c),c=-3/4+12/205*I,n=31 1771132214031111 k008 concat of cont frac of 1771132214125213 k006 concat of cont frac of 1771132214131111 k009 concat of cont frac of 1771132218720388 a007 Real Root Of -5*x^4-890*x^3-789*x^2-654*x+213 1771132221111141 k006 concat of cont frac of 1771132226405095 a007 Real Root Of 103*x^4-701*x^3-948*x^2+789*x-537 1771132229591378 a007 Real Root Of 713*x^4+799*x^3-485*x^2+391*x-363 1771132236230925 a001 18/233*28657^(45/46) 1771132239028622 m001 GAMMA(1/6)^2*Bloch*ln(GAMMA(5/6)) 1771132239064817 m001 (Artin+Trott2nd)/(1+BesselI(0,1)) 1771132239238881 r009 Re(z^3+c),c=-19/78+25/36*I,n=36 1771132241813315 k009 concat of cont frac of 1771132243253834 r009 Re(z^3+c),c=-23/114+14/61*I,n=12 1771132245733461 a008 Real Root of x^4+21*x^2-93*x+89 1771132252060804 r002 50th iterates of z^2 + 1771132255312502 r005 Im(z^2+c),c=-89/90+7/38*I,n=39 1771132263449663 r002 57th iterates of z^2 + 1771132267221115 k006 concat of cont frac of 1771132269487869 a003 cos(Pi*40/91)*cos(Pi*55/117) 1771132275344148 g001 abs(Psi(77/24+I*29/8)) 1771132279246263 m001 (FeigenbaumC+KomornikLoreti)/(Porter+Stephens) 1771132285935803 a007 Real Root Of 676*x^4+792*x^3-411*x^2+802*x+458 1771132292075237 m001 (BesselI(1,1)-Backhouse)/(PlouffeB+Trott2nd) 1771132292867285 r009 Re(z^3+c),c=-21/118+6/59*I,n=3 1771132309030361 m001 Thue/(BesselJ(1,1)^ln(2^(1/2)+1)) 1771132311312241 k007 concat of cont frac of 1771132312581224 k006 concat of cont frac of 1771132314628989 m005 (1/2*Catalan+2/5)/(-79/14+5/14*5^(1/2)) 1771132320837359 r005 Im(z^2+c),c=-15/14+45/209*I,n=51 1771132322282369 m008 (3*Pi^6-1/5)/(1/5*Pi+1) 1771132325392102 r005 Re(z^2+c),c=-63/52+1/14*I,n=44 1771132326112122 k008 concat of cont frac of 1771132331717920 r002 62th iterates of z^2 + 1771132334246086 r005 Re(z^2+c),c=4/27+17/49*I,n=16 1771132337674686 a007 Real Root Of -423*x^4-336*x^3+469*x^2+63*x+936 1771132337909921 a001 29/17711*5^(2/41) 1771132340807539 m001 Lehmer^2*ln(GolombDickman)^2/BesselJ(1,1) 1771132343180119 m001 Zeta(5)+arctan(1/3)+ThueMorse 1771132346002234 a003 cos(Pi*5/99)+cos(Pi*16/75) 1771132353887774 m009 (8*Catalan+Pi^2+1/3)/(6*Catalan+3/4*Pi^2-3) 1771132354164240 m005 (1/2*5^(1/2)+2/7)/(1/11*exp(1)+6/11) 1771132355592167 r002 41th iterates of z^2 + 1771132362139691 r009 Re(z^3+c),c=-9/28+10/17*I,n=18 1771132362192280 b008 1/2+Sqrt[7]*(-4+Pi) 1771132367317420 a007 Real Root Of 245*x^4+842*x^3+775*x^2-379*x-87 1771132376395534 q001 2221/1254 1771132381211223 k008 concat of cont frac of 1771132383439610 m001 (-Otter+Trott)/(GAMMA(11/12)-exp(1)) 1771132384287473 a001 13/47*2207^(47/56) 1771132392179162 m001 Pi^(1/2)-gamma(3)*Cahen 1771132394125699 a007 Real Root Of 507*x^4+647*x^3+233*x^2+969*x-409 1771132395171649 m009 (2/3*Psi(1,1/3)-2/3)/(1/6*Psi(1,3/4)+3) 1771132402641064 m001 ArtinRank2+(2^(1/3))^HardyLittlewoodC4 1771132410771522 b008 Cos[1/2+E^(2/9)] 1771132411206291 m005 (1/2*3^(1/2)+9/10)/(1/11*exp(1)+3/4) 1771132412429118 k006 concat of cont frac of 1771132418432960 r009 Re(z^3+c),c=-11/60+4/29*I,n=3 1771132422011411 k008 concat of cont frac of 1771132427980263 r009 Re(z^3+c),c=-5/17+35/64*I,n=29 1771132436966306 a007 Real Root Of -346*x^4-549*x^3-111*x^2+143*x+956 1771132438057871 a007 Real Root Of -53*x^4+847*x^3+987*x^2-851*x+624 1771132448761069 l006 ln(449/2639) 1771132451117055 r005 Im(z^2+c),c=-59/114+19/60*I,n=62 1771132452257929 m008 (3/5*Pi^4-2)/(1/3*Pi^4-3/5) 1771132455029708 m005 (1/2*Zeta(3)-4/11)/(53/168+11/24*5^(1/2)) 1771132464733144 b008 5+E^Pi*ArcCoth[2] 1771132468524465 s001 sum(exp(-Pi/2)^(n-1)*A216048[n],n=1..infinity) 1771132469060127 m001 (Shi(1)-sin(1))/(-ln(2+3^(1/2))+Paris) 1771132471313837 r002 7th iterates of z^2 + 1771132474681564 r005 Re(z^2+c),c=-7/86+57/59*I,n=11 1771132478266412 r005 Re(z^2+c),c=5/58+27/56*I,n=8 1771132478961739 m001 (LambertW(1)+CareFree)^Psi(2,1/3) 1771132482128729 k006 concat of cont frac of 1771132483040242 m001 Sierpinski^2*RenyiParking/exp(Zeta(5)) 1771132488985900 a001 5/7*7^(7/15) 1771132500880890 a007 Real Root Of -387*x^4+802*x^3-558*x^2+759*x-121 1771132505134634 p001 sum((-1)^n/(169*n+54)/(5^n),n=0..infinity) 1771132509515348 r009 Re(z^3+c),c=-39/94+23/43*I,n=14 1771132510131311 k006 concat of cont frac of 1771132511170721 r002 36th iterates of z^2 + 1771132513121111 k007 concat of cont frac of 1771132519955067 m001 1/GAMMA(1/12)^2*ln(Artin)*cosh(1)^2 1771132520119307 m004 -3/2-25*Sqrt[5]*Pi+4*Csch[Sqrt[5]*Pi] 1771132520169541 m001 (Paris+Rabbit)/(exp(1/Pi)-FeigenbaumC) 1771132520231925 m004 -3/2-25*Sqrt[5]*Pi+4*Sech[Sqrt[5]*Pi] 1771132520272361 r005 Im(z^2+c),c=-73/122+23/63*I,n=7 1771132521178280 a001 610/47*24476^(15/58) 1771132522111318 k008 concat of cont frac of 1771132522513683 m001 (PlouffeB+Porter)/(CopelandErdos-MertensB3) 1771132526463149 a001 832040/199*199^(3/11) 1771132533864234 r005 Re(z^2+c),c=-69/110+14/33*I,n=40 1771132536688643 r002 53th iterates of z^2 + 1771132542367156 r002 59th iterates of z^2 + 1771132546778241 r002 5th iterates of z^2 + 1771132549534133 m005 (1/2*Pi-4/11)/(1/6*gamma-7/9) 1771132552007522 m001 Lehmer-Zeta(5)*BesselI(0,2) 1771132552844138 m001 (exp(1)-ln(2))/(-ln(Pi)+HeathBrownMoroz) 1771132553214070 m005 (1/2*2^(1/2)-5/7)/(3/8*2^(1/2)-1/8) 1771132553595961 s002 sum(A173502[n]/((2*n+1)!),n=1..infinity) 1771132556240834 m001 (-ln(2)+GAMMA(23/24))/(sin(1)+Zeta(5)) 1771132566271129 r009 Im(z^3+c),c=-9/74+44/49*I,n=16 1771132572045562 m008 (4/5*Pi^5+5/6)/(Pi^2+4) 1771132575181280 r009 Re(z^3+c),c=-23/114+14/61*I,n=11 1771132576004555 r005 Im(z^2+c),c=-71/66+13/61*I,n=63 1771132580994442 m001 MasserGramain+MertensB3^HardyLittlewoodC5 1771132583406358 r005 Re(z^2+c),c=3/10+15/52*I,n=8 1771132602420125 a001 89/710647*2^(1/2) 1771132611611183 k008 concat of cont frac of 1771132627226626 h001 (5/7*exp(1)+7/8)/(1/8*exp(2)+2/3) 1771132629435990 r004 Re(z^2+c),c=3/34+3/4*I,z(0)=exp(5/8*I*Pi),n=3 1771132629961561 m005 (1/2*exp(1)+10/11)/(6/11*Zeta(3)+5/8) 1771132632583971 l006 ln(8438/10073) 1771132632646536 a001 3524578/843*123^(3/10) 1771132637746062 m001 (Cahen+Paris)/(BesselK(0,1)-gamma(3)) 1771132640164214 r009 Re(z^3+c),c=-25/42+27/50*I,n=24 1771132641078041 r005 Im(z^2+c),c=-21/106+13/53*I,n=23 1771132642670770 a007 Real Root Of 368*x^4+604*x^3+617*x^2+765*x-846 1771132642833277 q001 5301/2993 1771132645412665 m001 1/GAMMA(23/24)^2*Artin/ln(Zeta(9)) 1771132646326913 a007 Real Root Of 520*x^4+892*x^3+482*x^2+795*x-265 1771132646520221 r005 Im(z^2+c),c=-11/19+1/31*I,n=62 1771132648046032 a007 Real Root Of -172*x^4-244*x^3-142*x^2-169*x+483 1771132652424730 m001 GAMMA(19/24)-GAMMA(3/4)+MasserGramainDelta 1771132668803287 m001 (-ln(2+3^(1/2))+ZetaQ(4))/(Zeta(1,-1)-gamma) 1771132672866277 a007 Real Root Of 708*x^4+813*x^3+6*x^2+923*x-834 1771132677040608 a003 cos(Pi*25/114)+sin(Pi*58/119) 1771132677410543 m001 CopelandErdos^Robbin/(CopelandErdos^Shi(1)) 1771132678320298 m001 (StronglyCareFree+Totient)/(1+DuboisRaymond) 1771132691860114 p001 sum(1/(409*n+33)/n/(128^n),n=1..infinity) 1771132695954854 a007 Real Root Of -970*x^4+904*x^3+993*x^2+543*x+71 1771132700416131 r005 Im(z^2+c),c=-37/106+9/32*I,n=30 1771132702625965 a001 3571*(1/2*5^(1/2)+1/2)^21*3^(9/14) 1771132705599689 r009 Re(z^3+c),c=-5/26+51/53*I,n=31 1771132712517467 r005 Im(z^2+c),c=-13/66+13/53*I,n=10 1771132719618980 a007 Real Root Of 459*x^4+145*x^3-491*x^2-902*x-144 1771132720201873 l006 ln(1396/8205) 1771132720463572 m001 Pi^(1/2)-ZetaQ(4)^MertensB2 1771132723942664 m001 (ln(5)+Ei(1))/(CareFree-FeigenbaumD) 1771132734781470 r002 46th iterates of z^2 + 1771132736019268 m001 CareFree+MertensB2^Ei(1) 1771132742743029 r009 Re(z^3+c),c=-19/66+10/19*I,n=35 1771132749143898 r005 Re(z^2+c),c=-2/3+47/154*I,n=29 1771132763735175 h001 (-2*exp(7)-1)/(-exp(2)-5) 1771132764876199 r005 Im(z^2+c),c=-24/25+4/23*I,n=33 1771132767057016 s002 sum(A079670[n]/(pi^n),n=1..infinity) 1771132768001879 a001 73681302247/144*1836311903^(12/17) 1771132768001879 a001 228826127/144*6557470319842^(12/17) 1771132768002824 a001 23725150497407/144*514229^(12/17) 1771132771271600 m001 arctan(1/2)+FeigenbaumKappa^QuadraticClass 1771132771541590 r002 18th iterates of z^2 + 1771132773129150 m005 (1/2*Catalan-2/9)/(5/9*2^(1/2)+6/11) 1771132775831015 a007 Real Root Of -250*x^4-261*x^3-42*x^2-377*x+474 1771132776324020 m003 2+(4*Coth[1/2+Sqrt[5]/2])/3+Tan[1/2+Sqrt[5]/2] 1771132780965236 a008 Real Root of x^2-x-31192 1771132784824849 p001 sum(1/(479*n+59)/(3^n),n=0..infinity) 1771132785010333 l006 ln(6513/7775) 1771132802082286 r005 Im(z^2+c),c=-79/126+1/30*I,n=56 1771132815263121 k007 concat of cont frac of 1771132818702981 a008 Real Root of x^4-2*x^3+28*x^2+49*x-22 1771132819885322 a003 cos(Pi*9/67)+cos(Pi*19/111) 1771132821252294 a001 9349*(1/2*5^(1/2)+1/2)^19*3^(9/14) 1771132822739017 a007 Real Root Of 792*x^4+896*x^3-363*x^2+517*x-761 1771132828998003 m005 (1/2*3^(1/2)+1/3)/(7/12*Catalan+1/7) 1771132830256741 a007 Real Root Of 168*x^4-286*x^3-749*x^2+797*x+519 1771132834962622 q001 308/1739 1771132834962622 r002 2th iterates of z^2 + 1771132834962622 r002 2th iterates of z^2 + 1771132834962622 r005 Im(z^2+c),c=-33/94+22/37*I,n=2 1771132838559642 a001 24476*(1/2*5^(1/2)+1/2)^17*3^(9/14) 1771132841084750 a001 64079*(1/2*5^(1/2)+1/2)^15*3^(9/14) 1771132841516090 a001 87403803*3^(9/14) 1771132842645352 a001 39603*(1/2*5^(1/2)+1/2)^16*3^(9/14) 1771132848899757 l006 ln(947/5566) 1771132849256171 a001 15127*(1/2*5^(1/2)+1/2)^18*3^(9/14) 1771132856089097 r005 Im(z^2+c),c=-21/106+13/53*I,n=20 1771132857103489 a007 Real Root Of -507*x^4+277*x^3-140*x^2+613*x+115 1771132857763952 a007 Real Root Of -712*x^4-479*x^3+583*x^2-965*x+807 1771132859580906 m001 (Psi(2,1/3)*Pi^(1/2)-gamma(1))/Psi(2,1/3) 1771132866344628 a007 Real Root Of -719*x^4-830*x^3+870*x^2+243*x+165 1771132875731183 m009 (24*Catalan+3*Pi^2-4/5)/(3/8*Pi^2-5/6) 1771132876033944 b008 5*EllipticPi[-16,-1] 1771132878760315 r005 Re(z^2+c),c=7/23+9/35*I,n=64 1771132880685767 g002 -Psi(5/11)-Psi(8/9)-2*Psi(1/7) 1771132880841910 a001 34/9349*7^(48/59) 1771132883232307 p004 log(30757/5233) 1771132894567397 a001 5778*(1/2*5^(1/2)+1/2)^20*3^(9/14) 1771132900307059 r009 Im(z^3+c),c=-23/78+7/51*I,n=10 1771132901567311 m006 (2/3*Pi+3/4)/(3*exp(2*Pi)-1/2) 1771132912671907 a007 Real Root Of 244*x^4+210*x^3-572*x^2+223*x+955 1771132917611049 m001 1/LambertW(1)/BesselJ(0,1)*ln(arctan(1/2)) 1771132920945277 a007 Real Root Of -479*x^4-782*x^3+90*x^2-68*x-34 1771132934473045 r005 Re(z^2+c),c=-1/3+27/37*I,n=3 1771132937347263 m001 1/exp(RenyiParking)^2/Porter*OneNinth^2 1771132939884842 h001 (7/11*exp(2)+9/10)/(1/3*exp(2)+7/10) 1771132957981642 a007 Real Root Of 188*x^4-236*x^3-838*x^2+422*x+215 1771132969404813 a007 Real Root Of 570*x^4+380*x^3-589*x^2+428*x-892 1771132969556477 r005 Im(z^2+c),c=-21/106+13/53*I,n=26 1771132973233476 l006 ln(1445/8493) 1771132980065606 q001 7019/3963 1771132983872239 m001 (GaussAGM-Magata)/(cos(1/5*Pi)+Cahen) 1771132992487380 m001 1/gamma^2*GAMMA(5/24)^2/ln(sqrt(Pi))^2 1771132995876781 m009 (1/6*Psi(1,1/3)-4/5)/(2/5*Psi(1,3/4)-6) 1771133003065233 m005 (1/2*Pi+2/7)/(1/10*3^(1/2)+7/8) 1771133008503785 b008 Pi*Sech[Sinh[1]] 1771133010348064 m001 (exp(Pi)+gamma(1))/(Lehmer+Rabbit) 1771133011678332 a007 Real Root Of -567*x^4-418*x^3+797*x^2-647*x-389 1771133011996716 a007 Real Root Of 203*x^4-173*x^3-660*x^2+195*x-543 1771133014455111 a007 Real Root Of -481*x^4-654*x^3+167*x^2-626*x-533 1771133028075700 r005 Im(z^2+c),c=-21/106+13/53*I,n=28 1771133031685164 r005 Im(z^2+c),c=-21/106+13/53*I,n=29 1771133032548932 r005 Im(z^2+c),c=-21/106+13/53*I,n=31 1771133034827228 r005 Im(z^2+c),c=-21/106+13/53*I,n=34 1771133035068230 r005 Im(z^2+c),c=-21/106+13/53*I,n=36 1771133035122397 r005 Im(z^2+c),c=-21/106+13/53*I,n=39 1771133035135963 r005 Im(z^2+c),c=-21/106+13/53*I,n=37 1771133035136225 r005 Im(z^2+c),c=-21/106+13/53*I,n=42 1771133035136882 r005 Im(z^2+c),c=-21/106+13/53*I,n=41 1771133035136941 r005 Im(z^2+c),c=-21/106+13/53*I,n=44 1771133035137374 r005 Im(z^2+c),c=-21/106+13/53*I,n=47 1771133035137442 r005 Im(z^2+c),c=-21/106+13/53*I,n=49 1771133035137449 r005 Im(z^2+c),c=-21/106+13/53*I,n=50 1771133035137449 r005 Im(z^2+c),c=-21/106+13/53*I,n=52 1771133035137452 r005 Im(z^2+c),c=-21/106+13/53*I,n=55 1771133035137452 r005 Im(z^2+c),c=-21/106+13/53*I,n=57 1771133035137452 r005 Im(z^2+c),c=-21/106+13/53*I,n=60 1771133035137453 r005 Im(z^2+c),c=-21/106+13/53*I,n=63 1771133035137453 r005 Im(z^2+c),c=-21/106+13/53*I,n=62 1771133035137453 r005 Im(z^2+c),c=-21/106+13/53*I,n=64 1771133035137453 r005 Im(z^2+c),c=-21/106+13/53*I,n=58 1771133035137453 r005 Im(z^2+c),c=-21/106+13/53*I,n=61 1771133035137453 r005 Im(z^2+c),c=-21/106+13/53*I,n=59 1771133035137453 r005 Im(z^2+c),c=-21/106+13/53*I,n=54 1771133035137453 r005 Im(z^2+c),c=-21/106+13/53*I,n=56 1771133035137454 r005 Im(z^2+c),c=-21/106+13/53*I,n=53 1771133035137458 r005 Im(z^2+c),c=-21/106+13/53*I,n=51 1771133035137494 r005 Im(z^2+c),c=-21/106+13/53*I,n=48 1771133035137521 r005 Im(z^2+c),c=-21/106+13/53*I,n=46 1771133035137545 r005 Im(z^2+c),c=-21/106+13/53*I,n=45 1771133035138554 r005 Im(z^2+c),c=-21/106+13/53*I,n=43 1771133035143546 r005 Im(z^2+c),c=-21/106+13/53*I,n=40 1771133035157540 r005 Im(z^2+c),c=-21/106+13/53*I,n=38 1771133035278572 r005 Im(z^2+c),c=-21/106+13/53*I,n=33 1771133035337646 r005 Im(z^2+c),c=-21/106+13/53*I,n=35 1771133035541033 m001 (KomornikLoreti+Otter)/(Pi-arctan(1/2)) 1771133035874214 r005 Im(z^2+c),c=-21/106+13/53*I,n=32 1771133037226123 m001 Zeta(1/2)^FeigenbaumC/(Zeta(1/2)^arctan(1/3)) 1771133037348434 m005 (1/2*Catalan+2/3)/(1/5*Catalan-9/11) 1771133039561721 a001 8/47*24476^(11/16) 1771133039727210 r005 Im(z^2+c),c=-21/106+13/53*I,n=30 1771133041594266 a001 8/47*7881196^(7/16) 1771133042335358 a001 8/47*39603^(21/32) 1771133045996464 s002 sum(A099124[n]/(n!^2),n=1..infinity) 1771133056362941 r005 Re(z^2+c),c=17/48+40/53*I,n=4 1771133065344600 l006 ln(4588/5477) 1771133065593891 m001 ln(2)/ln(10)*(TreeGrowth2nd+ZetaR(2)) 1771133066486857 m001 MinimumGamma^2/Kolakoski*ln(GAMMA(11/24)) 1771133067621749 r005 Im(z^2+c),c=-21/106+13/53*I,n=27 1771133069705429 p004 log(14347/2441) 1771133074876877 r005 Re(z^2+c),c=-13/74+13/53*I,n=18 1771133085234428 a001 2/3010349*29^(39/40) 1771133086450350 a007 Real Root Of -126*x^4+270*x^3+868*x^2+302*x+552 1771133089751169 r005 Im(z^2+c),c=-21/106+13/53*I,n=24 1771133090417960 m001 (Pi-GAMMA(23/24))/(Backhouse-MertensB1) 1771133092275697 m001 (Sierpinski+Thue)/(Cahen-Chi(1)) 1771133093525179 q001 3939/2224 1771133094157057 s001 sum(exp(-Pi)^(n-1)*A111054[n],n=1..infinity) 1771133094860563 a007 Real Root Of -78*x^4+535*x^3-608*x^2+361*x-937 1771133098088629 s002 sum(A193688[n]/(64^n),n=1..infinity) 1771133100918821 r005 Im(z^2+c),c=-21/106+13/53*I,n=25 1771133104510713 m001 (ln(5)+KhinchinLevy)/(QuadraticClass-Sarnak) 1771133104840628 a007 Real Root Of -264*x^4-397*x^3-434*x^2-653*x+597 1771133109687130 h001 (1/8*exp(2)+4/11)/(8/9*exp(2)+7/10) 1771133111241168 k006 concat of cont frac of 1771133111711311 k009 concat of cont frac of 1771133112121211 k008 concat of cont frac of 1771133112902350 m005 (1/2*exp(1)+1/10)/(-1/11+9/22*5^(1/2)) 1771133113212122 k008 concat of cont frac of 1771133114685581 m001 1/exp(GAMMA(3/4))^2*OneNinth^2*sqrt(Pi) 1771133116124769 a007 Real Root Of 48*x^4+852*x^3+84*x^2+905*x-9 1771133116125923 m001 1/sin(1)^2*log(1+sqrt(2))^2*ln(sinh(1)) 1771133116131365 k008 concat of cont frac of 1771133116317871 h001 (2/5*exp(2)+1/9)/(1/6*exp(2)+1/2) 1771133116412314 k006 concat of cont frac of 1771133121221633 k009 concat of cont frac of 1771133121521071 k007 concat of cont frac of 1771133124214112 k008 concat of cont frac of 1771133125695584 m001 polylog(4,1/2)+LaplaceLimit^ln(gamma) 1771133127141117 k006 concat of cont frac of 1771133128024450 a001 2889/305*55^(19/26) 1771133129233371 k009 concat of cont frac of 1771133132111175 k008 concat of cont frac of 1771133132111261 k006 concat of cont frac of 1771133132112241 k008 concat of cont frac of 1771133133111111 k007 concat of cont frac of 1771133133855034 m001 ln(2+3^(1/2))*KhinchinLevy^(3^(1/2)) 1771133136103623 m001 OneNinth*exp(Rabbit)*cos(Pi/5) 1771133137181951 k008 concat of cont frac of 1771133140537204 a007 Real Root Of 244*x^4+79*x^3-444*x^2-80*x-711 1771133141111121 k006 concat of cont frac of 1771133142162352 a007 Real Root Of -473*x^4+5*x^3+979*x^2-694*x+382 1771133142861261 k006 concat of cont frac of 1771133143213511 k008 concat of cont frac of 1771133149221650 a007 Real Root Of 766*x^4+691*x^3-409*x^2+946*x-740 1771133151101732 k007 concat of cont frac of 1771133152113171 k008 concat of cont frac of 1771133153489600 m001 (Porter-Salem)/(ln(3)+Landau) 1771133153714150 m005 (1/3*Zeta(3)-3/5)/(11/12*Catalan+2/7) 1771133157948139 m001 1/Magata/Lehmer^2*ln(cos(Pi/5)) 1771133162111539 k008 concat of cont frac of 1771133168443284 m001 (Stephens-Trott)/(ln(2+3^(1/2))-GAMMA(17/24)) 1771133169182635 m001 1/2*Gompertz^(3^(1/3))/Pi*3^(1/2)*GAMMA(2/3) 1771133173075386 a003 sin(Pi*1/33)/sin(Pi*11/61) 1771133173175406 r005 Im(z^2+c),c=-23/22+3/16*I,n=9 1771133175739437 m001 OrthogonalArrays*(GAMMA(23/24)+CopelandErdos) 1771133175914230 r002 30th iterates of z^2 + 1771133178876234 m001 Pi*csc(5/12*Pi)/GAMMA(7/12)/Chi(1)*ArtinRank2 1771133181111121 k007 concat of cont frac of 1771133181717363 m001 (1+BesselK(0,1))/(-Artin+Salem) 1771133182258770 a007 Real Root Of 779*x^4+915*x^3-664*x^2+638*x+631 1771133189893278 m005 (1/2*gamma+1/11)/(10/11*2^(1/2)+6/7) 1771133190133237 m001 (cos(1/5*Pi)-BesselK(1,1))/(ArtinRank2+Bloch) 1771133196945796 a007 Real Root Of -381*x^4-506*x^3-73*x^2-643*x+28 1771133203281367 k002 Champernowne real with 4*n^2+42*n-29 1771133205135157 a001 2207*(1/2*5^(1/2)+1/2)^22*3^(9/14) 1771133208397968 m001 exp((3^(1/3)))^2/MertensB1*sin(Pi/12) 1771133209667232 l006 ln(498/2927) 1771133210020811 r009 Im(z^3+c),c=-19/46+26/33*I,n=4 1771133211331221 k008 concat of cont frac of 1771133211621844 k008 concat of cont frac of 1771133212011110 k006 concat of cont frac of 1771133216439034 a007 Real Root Of -99*x^4+462*x^3+831*x^2+x+936 1771133219132221 k007 concat of cont frac of 1771133219439938 a007 Real Root Of 487*x^4+438*x^3-820*x^2-618*x-881 1771133223311631 k008 concat of cont frac of 1771133224474900 m001 Backhouse*HardHexagonsEntropy^sin(1/5*Pi) 1771133227380290 a007 Real Root Of -140*x^4+914*x^3-251*x^2+903*x-157 1771133238815003 m009 (2/5*Psi(1,2/3)+1/4)/(20/3*Catalan+5/6*Pi^2-6) 1771133244447171 m001 1/ln(GAMMA(17/24))*HardHexagonsEntropy/Pi 1771133246834007 r005 Im(z^2+c),c=-31/30+25/124*I,n=30 1771133247308190 a001 123/377*610^(54/55) 1771133249753659 a001 199/21*10946^(17/54) 1771133251138725 h001 (4/11*exp(1)+1/10)/(9/11*exp(2)+1/10) 1771133253284943 a007 Real Root Of -498*x^4+657*x^3+962*x^2+881*x+130 1771133259505352 q001 4798/2709 1771133264383329 r005 Im(z^2+c),c=-12/25+17/55*I,n=58 1771133275837961 a007 Real Root Of -871*x^4-975*x^3+477*x^2-806*x+230 1771133284006457 m001 1/(2^(1/3))/Salem^2/exp(sinh(1)) 1771133287126973 a007 Real Root Of 246*x^4+216*x^3+25*x^2-903*x-16 1771133287176896 m001 (Otter-Totient)/(ln(2)-BesselK(1,1)) 1771133289243206 a007 Real Root Of 16*x^4-651*x^3+505*x^2+724*x+593 1771133298061141 a007 Real Root Of 62*x^4-324*x^3-537*x^2+115*x-522 1771133298469067 a007 Real Root Of 789*x^4+597*x^3-745*x^2+926*x-470 1771133302291701 l006 ln(4477/4557) 1771133303087134 m001 GAMMA(1/24)/MadelungNaCl/ln(log(2+sqrt(3)))^2 1771133303693086 a007 Real Root Of -803*x^4+941*x^3-946*x^2+843*x+185 1771133314226012 k008 concat of cont frac of 1771133317146700 l006 ln(7251/8656) 1771133318249967 m001 Zeta(1,-1)*Shi(1)^FibonacciFactorial 1771133321121123 k006 concat of cont frac of 1771133325203136 r005 Re(z^2+c),c=-11/94+23/56*I,n=16 1771133334342106 a007 Real Root Of 401*x^4+64*x^3-741*x^2+918*x+360 1771133340956437 a003 cos(Pi*2/49)/cos(Pi*23/74) 1771133343545169 a007 Real Root Of 53*x^4-532*x^3+214*x^2-907*x+16 1771133343595166 m006 (4*exp(Pi)+5/6)/(4/Pi+4) 1771133344226789 p004 log(14923/2539) 1771133345786602 m001 (GaussAGM-Otter)/(Ei(1)-ArtinRank2) 1771133356642605 r005 Im(z^2+c),c=-55/56+2/11*I,n=47 1771133375078271 q001 5657/3194 1771133376435554 m001 (exp(-1/2*Pi)-GAMMA(5/6))/(Cahen-Champernowne) 1771133381078054 a007 Real Root Of -302*x^4-364*x^3+676*x^2+847*x+329 1771133390416389 m001 (ln(5)+Cahen)/(Kac+MasserGramain) 1771133398541069 m002 Pi/5-Cosh[Pi]+Pi^2/ProductLog[Pi] 1771133404925880 m001 ErdosBorwein*LandauRamanujan+Landau 1771133409771461 r009 Re(z^3+c),c=-23/86+6/13*I,n=20 1771133415219171 k008 concat of cont frac of 1771133416196915 r005 Im(z^2+c),c=-79/58+1/60*I,n=25 1771133419732503 m004 -1/3+(25*Sqrt[5]*Pi)/E^(Sqrt[5]*Pi) 1771133431084406 l006 ln(1543/9069) 1771133432890472 r005 Im(z^2+c),c=-2/3+124/251*I,n=10 1771133443197298 a007 Real Root Of 447*x^4+480*x^3-289*x^2+825*x+636 1771133444229221 a007 Real Root Of 337*x^4-285*x^3-933*x^2-748*x+163 1771133451015656 r002 16th iterates of z^2 + 1771133451161421 k006 concat of cont frac of 1771133452134113 k008 concat of cont frac of 1771133455118407 r005 Re(z^2+c),c=19/110+25/43*I,n=15 1771133458127799 m005 (1/2*5^(1/2)-9/10)/(3/7*5^(1/2)+3/11) 1771133460179396 q001 6516/3679 1771133466395652 a003 cos(Pi*1/62)+cos(Pi*23/105) 1771133467849753 m005 (1/2*gamma-1)/(Pi+7/8) 1771133482463640 a001 21/29*1364^(16/21) 1771133486008698 m005 (1/3*gamma+1/8)/(153/154+5/14*5^(1/2)) 1771133487520647 s002 sum(A108552[n]/((2*n+1)!),n=1..infinity) 1771133488939286 a007 Real Root Of 417*x^4+200*x^3-517*x^2-747*x+147 1771133495122409 a007 Real Root Of 531*x^4+313*x^3-774*x^2+790*x+341 1771133502546275 a003 cos(Pi*8/119)+cos(Pi*5/24) 1771133502567904 a001 682/567451585*3^(6/17) 1771133512215031 k007 concat of cont frac of 1771133513214120 k008 concat of cont frac of 1771133519795279 m001 KhinchinLevy^(Ei(1)/LambertW(1)) 1771133524091894 m005 (-1/44+1/4*5^(1/2))/(8/11*Zeta(3)-4/7) 1771133527231733 a007 Real Root Of 523*x^4+477*x^3-779*x^2-77*x-189 1771133529336156 r005 Im(z^2+c),c=-103/98+5/24*I,n=22 1771133529513924 a007 Real Root Of 201*x^4+650*x^3+973*x^2-973*x+138 1771133530167812 a007 Real Root Of 491*x^4+510*x^3-731*x^2+223*x+690 1771133532738020 m001 (Porter+ZetaP(3))/(MertensB2-OneNinth) 1771133532927911 r005 Re(z^2+c),c=17/82+19/35*I,n=28 1771133536601856 l006 ln(1045/6142) 1771133537610851 r009 Re(z^3+c),c=-33/106+13/21*I,n=46 1771133540965712 r002 56th iterates of z^2 + 1771133560323155 m002 -6*Pi+2*Pi^4+Log[Pi] 1771133566572468 r005 Re(z^2+c),c=-31/32+4/19*I,n=34 1771133569106267 a007 Real Root Of -132*x^4+335*x^3-743*x^2+817*x+170 1771133570417270 a007 Real Root Of 112*x^4-847*x^3-343*x^2-564*x+1 1771133589497154 r005 Re(z^2+c),c=5/56+15/58*I,n=20 1771133589772294 r005 Re(z^2+c),c=-9/86+24/55*I,n=33 1771133590859694 m005 (1/2*Pi+3/11)/(67/88+1/8*5^(1/2)) 1771133595362485 m001 sin(1)/(Pi+ln(5)) 1771133600650751 m001 (Conway+HeathBrownMoroz)/(RenyiParking-Trott) 1771133607160112 a003 cos(Pi*7/71)/sin(Pi*15/83) 1771133612291363 k007 concat of cont frac of 1771133620511876 p004 log(34213/5821) 1771133627185009 a007 Real Root Of 539*x^4+664*x^3-384*x^2+305*x+130 1771133627744327 m004 -6+2*E^(Sqrt[5]*Pi)-150*Pi 1771133629039449 a007 Real Root Of -142*x^4-90*x^3-436*x^2-756*x+926 1771133631411511 k006 concat of cont frac of 1771133633028062 r005 Re(z^2+c),c=-39/46+2/37*I,n=20 1771133637599748 r005 Im(z^2+c),c=-13/16+9/74*I,n=25 1771133638871584 l006 ln(1592/9357) 1771133645216203 r005 Re(z^2+c),c=1/25+37/64*I,n=36 1771133648629678 b008 19+CoshIntegral[2/13] 1771133648782593 m001 BesselJ(1,1)^2/exp(Artin)^2*GAMMA(11/24) 1771133654323734 a007 Real Root Of -945*x^4-985*x^3+968*x^2-44*x+712 1771133657234145 a007 Real Root Of 852*x^4+535*x^3-880*x^2-961*x+194 1771133667036202 m001 (FibonacciFactorial+Lehmer)/(Zeta(5)+gamma(2)) 1771133673559168 m001 GAMMA(7/24)/exp(Khintchine)^2/cos(Pi/5) 1771133674745400 a003 cos(Pi*11/56)+sin(Pi*17/42) 1771133674930090 m005 (1/2*Catalan-1/6)/(4/9*3^(1/2)+7/8) 1771133679456119 m001 (-GAMMA(7/12)+MasserGramain)/(2^(1/2)-Catalan) 1771133697625890 m001 (Shi(1)+FeigenbaumMu)/(-Kolakoski+Magata) 1771133702834096 a007 Real Root Of 458*x^4+531*x^3-388*x^2+356*x+291 1771133707917124 m008 (3/4*Pi^4-5)/(4*Pi^6-3) 1771133712267837 m001 (GolombDickman+Khinchin)/(BesselI(1,1)+Conway) 1771133716418226 a007 Real Root Of -369*x^4-316*x^3-114*x^2-804*x+809 1771133722281111 k006 concat of cont frac of 1771133723243078 a007 Real Root Of -91*x^4+730*x^3-939*x^2+318*x-778 1771133724363053 a001 41/329*55^(5/57) 1771133726721188 m005 (1/3*5^(1/2)-2/7)/(11/12*5^(1/2)+6/11) 1771133732281384 m001 (Artin+2/3)/(-ThueMorse+1) 1771133734333786 a007 Real Root Of -151*x^4+106*x^3-792*x^2+742*x+157 1771133740829457 r005 Im(z^2+c),c=-1/56+27/46*I,n=3 1771133749955555 r005 Re(z^2+c),c=3/32+9/26*I,n=23 1771133750968704 l006 ln(2663/3179) 1771133756850653 a003 cos(Pi*8/75)/cos(Pi*26/81) 1771133759468482 a007 Real Root Of -611*x^4-847*x^3+153*x^2-513*x-82 1771133762408249 r005 Re(z^2+c),c=-3/86+15/28*I,n=21 1771133764799352 a003 cos(Pi*15/98)-cos(Pi*15/91) 1771133765086295 m001 (Pi*Zeta(1,-1)+Psi(2,1/3))/Pi 1771133769825085 a007 Real Root Of 321*x^4+420*x^3-307*x^2-215*x-243 1771133769868092 h001 (9/11*exp(1)+2/7)/(4/11*exp(1)+3/7) 1771133775681392 a001 521/3*34^(27/41) 1771133788148228 r005 Re(z^2+c),c=5/48+19/40*I,n=5 1771133788268127 r005 Re(z^2+c),c=-67/114+13/31*I,n=19 1771133797325014 r008 a(0)=1,K{-n^6,-5+9*n^3-3*n^2-n} 1771133798990267 a007 Real Root Of 509*x^4+559*x^3-634*x^2+432*x+851 1771133805917670 m001 1/GAMMA(1/6)*ln(Khintchine)/Zeta(9) 1771133812958233 r005 Im(z^2+c),c=-17/32+20/51*I,n=23 1771133813593440 a007 Real Root Of 477*x^4+564*x^3+125*x^2+645*x-810 1771133816336307 r002 57th iterates of z^2 + 1771133819361362 r005 Re(z^2+c),c=5/78+13/62*I,n=6 1771133822856940 m001 (-GAMMA(17/24)+KhinchinHarmonic)/(1-2^(1/3)) 1771133830591137 m005 (5/4+1/4*5^(1/2))/(6/11*2^(1/2)+1/4) 1771133831952426 a007 Real Root Of 753*x^4+850*x^3-669*x^2+229*x-183 1771133833951121 r005 Im(z^2+c),c=-37/60+14/57*I,n=18 1771133834249738 l006 ln(547/3215) 1771133836060626 r005 Im(z^2+c),c=-79/64+1/38*I,n=61 1771133838171721 a007 Real Root Of -33*x^4+462*x^3+663*x^2-368*x+160 1771133839588138 r005 Re(z^2+c),c=-11/98+21/50*I,n=26 1771133841494426 a003 cos(Pi*2/63)*cos(Pi*35/79) 1771133843775022 a007 Real Root Of 371*x^4-255*x^3-863*x^2+938*x-699 1771133844337640 m001 1/TreeGrowth2nd/RenyiParking/ln(GAMMA(1/6)) 1771133852053010 r009 Re(z^3+c),c=-11/36+32/55*I,n=52 1771133862237781 a007 Real Root Of 556*x^4+567*x^3-479*x^2+208*x-450 1771133867571594 m001 (Ei(1,1)-Zeta(1,-1))/(CareFree+Riemann2ndZero) 1771133874248684 a001 2139295485799/3*8^(7/16) 1771133876717852 a007 Real Root Of 103*x^4-412*x^3-818*x^2+465*x+87 1771133880218954 m001 (sin(1/5*Pi)-cos(1/5*Pi))/(gamma(1)-Salem) 1771133883894529 a007 Real Root Of -313*x^4+725*x^3-592*x^2+225*x-25 1771133885916049 l003 Zeta(1,74/97) 1771133886287808 m001 1/MertensB1^2*ln(FibonacciFactorial)*Lehmer 1771133893500322 m001 CopelandErdos^2/exp(Backhouse)^2/Niven 1771133895082210 a007 Real Root Of 445*x^4+987*x^3+678*x^2+74*x-891 1771133895790217 a001 15127/1597*55^(19/26) 1771133907044482 m003 -2+Sqrt[5]/32+(5*Sech[1/2+Sqrt[5]/2])/12 1771133911111353 k008 concat of cont frac of 1771133922788184 a003 sin(Pi*3/43)*sin(Pi*10/33) 1771133928912922 a001 39603/13*89^(20/51) 1771133934451749 r005 Re(z^2+c),c=9/118+26/45*I,n=26 1771133940394193 r005 Im(z^2+c),c=-29/114+15/58*I,n=11 1771133944166458 r005 Im(z^2+c),c=-21/106+13/53*I,n=22 1771133952615602 r005 Im(z^2+c),c=-31/34+3/19*I,n=9 1771133954711110 a007 Real Root Of 822*x^4+974*x^3-739*x^2+310*x+190 1771133958850561 a007 Real Root Of 280*x^4-219*x^3-921*x^2+114*x-881 1771133960286720 r005 Re(z^2+c),c=-11/60+29/40*I,n=13 1771133963325488 a007 Real Root Of -7*x^4+770*x^3-590*x^2-846*x-860 1771133966689958 r009 Re(z^3+c),c=-13/50+7/16*I,n=27 1771133967723839 r002 4th iterates of z^2 + 1771133976485361 a007 Real Root Of 275*x^4+467*x^3+577*x^2+566*x-919 1771133987111331 k009 concat of cont frac of 1771133989691878 r005 Im(z^2+c),c=-11/48+10/13*I,n=12 1771133993859287 a007 Real Root Of 51*x^4+849*x^3-933*x^2+500*x-35 1771133995990758 r005 Re(z^2+c),c=-1+31/223*I,n=32 1771133998537796 m001 HardyLittlewoodC4*Khinchin^(Pi^(1/2)) 1771134007805792 a001 39603/4181*55^(19/26) 1771134010483243 m001 1/ln(Zeta(5))^2*LambertW(1)^2/sinh(1)^2 1771134018298236 l006 ln(1690/9933) 1771134019360835 a007 Real Root Of 207*x^4-27*x^3-340*x^2+527*x-187 1771134020506250 h001 (1/8*exp(2)+8/11)/(1/9*exp(2)+1/9) 1771134020618556 q001 859/485 1771134023109088 r005 Im(z^2+c),c=-25/102+10/39*I,n=9 1771134034249084 a001 64079/6765*55^(19/26) 1771134034821310 p001 sum((-1)^n/(551*n+327)/n/(64^n),n=1..infinity) 1771134038066649 a007 Real Root Of 639*x^4+601*x^3-661*x^2+571*x+136 1771134040651454 a007 Real Root Of -508*x^4-420*x^3+965*x^2+722*x+917 1771134041977134 r002 17th iterates of z^2 + 1771134043514292 r002 36th iterates of z^2 + 1771134053834600 p004 log(16651/2833) 1771134057136784 q001 1/56461 1771134061839052 a007 Real Root Of 301*x^4+785*x^3+732*x^2+154*x-624 1771134062508709 r005 Im(z^2+c),c=-9/16+44/91*I,n=19 1771134062690815 m001 FibonacciFactorial+HardyLittlewoodC3^Totient 1771134063142183 a001 28657/76*76^(8/9) 1771134065854719 m001 GAMMA(1/24)^2*ln(FeigenbaumC)^2*Zeta(1,2)^2 1771134068607059 r009 Re(z^3+c),c=-13/70+27/29*I,n=23 1771134076406562 r009 Re(z^3+c),c=-2/7+31/59*I,n=16 1771134077035232 a001 6119/646*55^(19/26) 1771134084099552 r005 Im(z^2+c),c=-85/78+8/41*I,n=14 1771134085923236 r002 3th iterates of z^2 + 1771134093329082 m001 (-Ei(1,1)+Zeta(1,-1))/(2^(1/2)-exp(Pi)) 1771134099845953 m001 (3^(1/3))^LambertW(1)+cos(1) 1771134100946475 m001 (LambertW(1)+BesselK(1,1))/(-Robbin+ZetaQ(4)) 1771134103913483 m001 (Trott2nd-ZetaQ(3))/(Porter-PrimesInBinary) 1771134106377427 l006 ln(1143/6718) 1771134109752029 a007 Real Root Of -597*x^4-738*x^3+230*x^2-503*x+162 1771134113711515 k008 concat of cont frac of 1771134117006117 a007 Real Root Of 294*x^4-811*x^3+90*x^2+212*x+955 1771134118483693 r005 Re(z^2+c),c=-5/122+17/30*I,n=42 1771134121453312 k009 concat of cont frac of 1771134122659717 a007 Real Root Of 7*x^4-632*x^3-786*x^2+797*x+297 1771134124455538 a001 5/7*29^(41/43) 1771134130945511 m001 (-PlouffeB+ZetaQ(4))/(5^(1/2)+BesselJ(1,1)) 1771134134661871 r005 Re(z^2+c),c=23/78+26/53*I,n=54 1771134138669545 a007 Real Root Of -454*x^4-912*x^3-446*x^2-736*x-504 1771134141531933 r005 Im(z^2+c),c=-73/74+11/60*I,n=51 1771134144139319 a007 Real Root Of -597*x^4-979*x^3-3*x^2-547*x-524 1771134152680421 m003 -5*E^(-1/2-Sqrt[5]/2)+9/Log[1/2+Sqrt[5]/2] 1771134153810196 a007 Real Root Of 923*x^4+296*x^3-278*x^2-654*x+122 1771134158386642 a007 Real Root Of -24*x^4+208*x^3+397*x^2-553*x-833 1771134158458375 m005 (1/2*Catalan+5/6)/(5/6*3^(1/2)-5/7) 1771134159386717 a007 Real Root Of -449*x^4+127*x^3+814*x^2-907*x+964 1771134160756931 m001 Zeta(1/2)*exp(Riemann1stZero)*log(1+sqrt(2)) 1771134164974586 m001 Zeta(5)^Champernowne/LambertW(1) 1771134168063671 m001 (3^(1/3))/Salem^2/exp(sqrt(Pi)) 1771134168720824 a001 11/34*2584^(27/53) 1771134170876826 m001 (2^(1/2)*MertensB3+PlouffeB)/MertensB3 1771134172393297 r005 Im(z^2+c),c=-173/126+1/50*I,n=30 1771134179277158 a007 Real Root Of -655*x^4-636*x^3+543*x^2-566*x+206 1771134181111919 k008 concat of cont frac of 1771134181401289 a007 Real Root Of 136*x^4-612*x^3-993*x^2+640*x-490 1771134188982172 a007 Real Root Of -370*x^4-914*x^3-831*x^2-666*x-10 1771134190203924 m005 (1/2*3^(1/2)-7/10)/(2/9*exp(1)+1/3) 1771134193761735 r009 Re(z^3+c),c=-13/50+7/16*I,n=26 1771134193887726 a001 3020733700601/48*1836311903^(10/17) 1771134193887726 a001 73681302247/144*6557470319842^(10/17) 1771134198092879 r002 17th iterates of z^2 + 1771134198999776 m001 (-FeigenbaumD+Rabbit)/(BesselK(0,1)+ln(2)) 1771134199090673 m001 ln(KhintchineLevy)^2*Bloch^2*exp(1) 1771134206287377 k002 Champernowne real with 9/2*n^2+81/2*n-28 1771134207772495 a001 21/29*3461452808002^(4/21) 1771134207772495 a001 21/29*10749957122^(5/21) 1771134207772495 a001 21/29*228826127^(2/7) 1771134207772522 a001 21/29*4870847^(5/14) 1771134207772690 a001 21/29*1860498^(8/21) 1771134207850951 a001 21/29*103682^(10/21) 1771134208836010 m005 (1/2*Catalan+1/7)/(5/8*gamma-7/10) 1771134211212112 k008 concat of cont frac of 1771134212195402 a001 21/29*15127^(4/7) 1771134216110412 k008 concat of cont frac of 1771134218785403 r005 Im(z^2+c),c=3/40+5/31*I,n=4 1771134221638808 r005 Re(z^2+c),c=-11/106+53/57*I,n=15 1771134222356110 k008 concat of cont frac of 1771134231027990 a007 Real Root Of -679*x^4-722*x^3+491*x^2-979*x-604 1771134233004772 m005 (1/2*Catalan-1/8)/(9/10*Catalan-7/11) 1771134237592440 h001 (3/11*exp(1)+6/11)/(7/8*exp(2)+4/5) 1771134238225171 k007 concat of cont frac of 1771134241212111 k007 concat of cont frac of 1771134244660651 r005 Re(z^2+c),c=-71/74+25/56*I,n=5 1771134245301518 a001 1364/4181*8^(48/59) 1771134248578344 a003 sin(Pi*37/107)+sin(Pi*26/75) 1771134254516774 m001 Zeta(1/2)^GaussAGM(1,1/sqrt(2))*GAMMA(17/24) 1771134254669587 m001 (1/3)^GAMMA(1/6)*GAMMA(1/12)^GAMMA(1/6) 1771134257281441 k009 concat of cont frac of 1771134269709338 l006 ln(6064/7239) 1771134271161421 k007 concat of cont frac of 1771134271474422 r005 Im(z^2+c),c=-57/98+17/48*I,n=36 1771134272033597 m006 (1/3*ln(Pi)+1/4)/(2/3*exp(2*Pi)-2/5) 1771134272834313 k008 concat of cont frac of 1771134284893926 m001 (exp(Pi)+FeigenbaumKappa)/(Mills+ZetaP(4)) 1771134285762154 r002 22th iterates of z^2 + 1771134286475214 r002 20th iterates of z^2 + 1771134286879901 r002 39th iterates of z^2 + 1771134293595715 m001 exp(log(1+sqrt(2)))/Pi^2/sinh(1)^2 1771134295645878 m001 (FeigenbaumMu+Paris)/(Si(Pi)+Ei(1,1)) 1771134298024267 b008 ArcSinh[3/E^(1/20)] 1771134299543026 m001 Conway^(BesselI(0,2)/Shi(1)) 1771134309791936 m001 (Magata+PrimesInBinary)/(Shi(1)-sin(1)) 1771134311113451 k007 concat of cont frac of 1771134313281473 k007 concat of cont frac of 1771134315645596 a001 3571/2971215073*3^(6/17) 1771134315724936 a007 Real Root Of 148*x^4-435*x^3+321*x^2-115*x-33 1771134316693326 m001 (-GAMMA(7/12)+MertensB2)/(Si(Pi)-Zeta(1,2)) 1771134322804879 m005 (1/2*5^(1/2)+1/12)/(4/7*exp(1)-7/8) 1771134325643346 r009 Re(z^3+c),c=-13/50+7/16*I,n=29 1771134328273242 r004 Im(z^2+c),c=5/18+2/21*I,z(0)=exp(5/8*I*Pi),n=6 1771134328881512 r005 Im(z^2+c),c=-13/14+31/191*I,n=58 1771134340001900 a007 Real Root Of 363*x^4-20*x^3-934*x^2+130*x-523 1771134341415657 r009 Im(z^3+c),c=-47/70+4/53*I,n=2 1771134342577787 m005 (1/2*Zeta(3)-1/7)/(2/11*gamma-4/11) 1771134342705698 m005 (1/3*Zeta(3)+1/10)/(1/2*3^(1/2)-7/12) 1771134342971920 r005 Im(z^2+c),c=3/110+5/28*I,n=3 1771134352386478 r005 Re(z^2+c),c=-155/106+17/43*I,n=3 1771134354814185 r005 Im(z^2+c),c=-5/62+13/61*I,n=10 1771134356132137 l006 ln(596/3503) 1771134358698399 m001 GAMMA(1/3)*TwinPrimes^2/exp(GAMMA(5/24))^2 1771134363345661 a001 3/8*2178309^(14/53) 1771134370295909 a001 9349/987*55^(19/26) 1771134371958015 a007 Real Root Of -492*x^4-639*x^3+469*x^2+179*x+137 1771134372030701 m001 1/Ei(1)*FeigenbaumKappa^2*ln(sin(Pi/12))^2 1771134372691368 r005 Im(z^2+c),c=-7/6+22/215*I,n=4 1771134378207819 m001 1/Conway^2*ErdosBorwein/ln((2^(1/3)))^2 1771134380275292 m004 2+5*Pi+Log[Sqrt[5]*Pi]^2/E^(Sqrt[5]*Pi) 1771134383160026 r005 Im(z^2+c),c=-47/86+1/31*I,n=26 1771134385589928 m001 Khinchin/(GAMMA(13/24)^sin(1)) 1771134391345346 a007 Real Root Of 140*x^4-869*x^3+566*x^2+660*x+506 1771134393835084 m001 Pi/(1/2*exp(Pi)*2^(1/2)+exp(1/Pi)) 1771134397586860 m001 1/exp((3^(1/3)))^2*FransenRobinson*GAMMA(5/6) 1771134398797557 r005 Re(z^2+c),c=-5/102+33/61*I,n=57 1771134403627203 m005 (1/2*gamma+7/12)/(-37/66+3/11*5^(1/2)) 1771134404832996 m008 (1/6*Pi^3-3)/(4*Pi^5-1/6) 1771134411112121 k006 concat of cont frac of 1771134418087293 m001 (Si(Pi)-Zeta(1/2))/(Cahen+FibonacciFactorial) 1771134430987745 a007 Real Root Of -629*x^4-816*x^3+538*x^2-449*x-827 1771134434272033 a001 9349/7778742049*3^(6/17) 1771134437749977 a007 Real Root Of 17*x^4+288*x^3-214*x^2+334*x+303 1771134443308917 a008 Real Root of x^5-x^4-8*x^3+9*x^2+6*x-2 1771134451579397 a001 12238/10182505537*3^(6/17) 1771134454104507 a001 64079/53316291173*3^(6/17) 1771134454472916 a001 167761/139583862445*3^(6/17) 1771134454526666 a001 219602/182717648081*3^(6/17) 1771134454534508 a001 1149851/956722026041*3^(6/17) 1771134454535652 a001 3010349/2504730781961*3^(6/17) 1771134454535819 a001 3940598/3278735159921*3^(6/17) 1771134454535858 a001 4250681/3536736619241*3^(6/17) 1771134454535922 a001 4870847/4052739537881*3^(6/17) 1771134454536359 a001 1/832040*3^(6/17) 1771134454539354 a001 710647/591286729879*3^(6/17) 1771134454559885 a001 90481/75283811239*3^(6/17) 1771134454700605 a001 51841/43133785636*3^(6/17) 1771134455665111 a001 13201/10983760033*3^(6/17) 1771134456180516 v003 sum((n^3+n^2-3*n+7)/n^(n-1),n=1..infinity) 1771134462275936 a001 15127/12586269025*3^(6/17) 1771134463978009 r005 Re(z^2+c),c=-73/86+1/21*I,n=28 1771134464008765 m001 (-GAMMA(23/24)+ErdosBorwein)/(1+BesselI(0,2)) 1771134467500593 a001 21/29*2207^(5/7) 1771134469662583 a001 13/47*843^(47/49) 1771134482090264 m001 (GAMMA(17/24)+TwinPrimes)^Thue 1771134482569376 m001 FransenRobinson-Zeta(1,-1)-Zeta(3) 1771134493552245 r005 Im(z^2+c),c=-33/82+13/45*I,n=13 1771134498147597 m001 (Conway+MasserGramainDelta)/(1+BesselJ(0,1)) 1771134507587203 a001 321/267084832*3^(6/17) 1771134508443663 a007 Real Root Of 285*x^4+644*x^3+291*x^2-482*x-993 1771134510843887 m001 (Catalan+3^(1/3))/(-gamma(2)+Champernowne) 1771134517790859 m005 (1/3*5^(1/2)-1/4)/(5/8*Pi+5/6) 1771134520557893 r005 Re(z^2+c),c=13/44+34/43*I,n=4 1771134525851506 q001 7228/4081 1771134527078180 m001 1/Zeta(1,2)/exp(MertensB1)/arctan(1/2) 1771134528583710 a007 Real Root Of -72*x^4-395*x^3-935*x^2-612*x+363 1771134529801791 r005 Im(z^2+c),c=19/70+1/43*I,n=17 1771134532094870 r009 Re(z^3+c),c=-2/9+26/37*I,n=8 1771134533203494 p003 LerchPhi(1/512,2,24/101) 1771134535918984 a007 Real Root Of -249*x^4-125*x^3+448*x^2+277*x+841 1771134536561306 m001 (3^(1/3))*sqrt(3)^Artin 1771134536561306 m001 3^(1/3)*(3^(1/2))^Artin 1771134538056566 a003 cos(Pi*29/65)/cos(Pi*31/66) 1771134539056750 r002 51th iterates of z^2 + 1771134543590413 r002 56th iterates of z^2 + 1771134544160241 m008 (1/5*Pi^5-2/3)/(5/6*Pi+4/5) 1771134551275807 m001 (Pi^(1/2)+Otter)/(3^(1/2)-Zeta(1,2)) 1771134551806874 a003 cos(Pi*2/81)+cos(Pi*12/55) 1771134552925834 a007 Real Root Of 719*x^4+978*x^3-98*x^2+996*x+430 1771134553517491 a007 Real Root Of -389*x^4-543*x^3-286*x^2+207*x+43 1771134554389470 m004 -5-25*Sqrt[5]*Pi+(100*Sinh[Sqrt[5]*Pi])/Pi 1771134554656605 r005 Im(z^2+c),c=-45/98+18/61*I,n=15 1771134555384426 m001 2^(1/2)/(ln(2^(1/2)+1)^Grothendieck) 1771134561381003 a007 Real Root Of 986*x^4-979*x^3-948*x^2-877*x-132 1771134565190580 a007 Real Root Of -767*x^4-594*x^3+956*x^2-964*x-459 1771134574375971 r005 Re(z^2+c),c=1/7+40/63*I,n=43 1771134575622762 r009 Re(z^3+c),c=-35/114+24/41*I,n=45 1771134576920746 a003 cos(Pi*17/100)/cos(Pi*22/65) 1771134578820916 r002 4th iterates of z^2 + 1771134586164018 l006 ln(1241/7294) 1771134589394804 a001 46/311187*2178309^(17/35) 1771134589593514 r009 Re(z^3+c),c=-13/50+7/16*I,n=32 1771134591256346 m001 ln(Niven)^2*FeigenbaumB^2/GAMMA(11/12)^2 1771134593993325 q001 6369/3596 1771134596130743 m001 (Artin-GAMMA(7/24))/GAMMA(7/12) 1771134598554306 a003 cos(Pi*20/117)+sin(Pi*19/52) 1771134599050376 r002 5th iterates of z^2 + 1771134600697945 r009 Re(z^3+c),c=-11/34+32/53*I,n=33 1771134601178726 m001 BesselJ(0,1)^2*FransenRobinson^2/ln(sinh(1))^2 1771134616745202 r009 Re(z^3+c),c=-8/29+13/24*I,n=11 1771134618819201 a007 Real Root Of -296*x^4-179*x^3-208*x^2-967*x+858 1771134623562233 m001 (-FeigenbaumDelta+2)/(GAMMA(19/24)+1/3) 1771134625134355 r005 Im(z^2+c),c=-9/11+1/9*I,n=62 1771134628151890 m001 ln(Riemann3rdZero)/Lehmer^2*GAMMA(11/24) 1771134632109373 r005 Re(z^2+c),c=-5/56+8/13*I,n=6 1771134632960028 a007 Real Root Of 536*x^4+158*x^3-884*x^2+994*x+137 1771134633928628 a007 Real Root Of 943*x^4+981*x^3-786*x^2+291*x-848 1771134636992341 r009 Re(z^3+c),c=-19/122+28/33*I,n=57 1771134649786294 r009 Re(z^3+c),c=-31/74+27/44*I,n=34 1771134652752916 r008 a(0)=0,K{-n^6,21+60*n-43*n^2+19*n^3} 1771134655849897 m004 -1/3+(25*Sqrt[5]*Pi*Sech[Sqrt[5]*Pi])/2 1771134669337885 r009 Re(z^3+c),c=-13/50+7/16*I,n=35 1771134675885828 l006 ln(3401/4060) 1771134678755401 a007 Real Root Of 551*x^4+237*x^3-898*x^2+510*x-385 1771134680187107 r009 Re(z^3+c),c=-13/50+7/16*I,n=37 1771134682934874 r009 Im(z^3+c),c=-9/50+1/63*I,n=6 1771134682952582 r009 Re(z^3+c),c=-13/50+7/16*I,n=40 1771134683381549 q001 551/3111 1771134683381549 r002 2th iterates of z^2 + 1771134683381549 r002 2th iterates of z^2 + 1771134683639515 r009 Re(z^3+c),c=-13/50+7/16*I,n=38 1771134684092143 r009 Re(z^3+c),c=-13/50+7/16*I,n=43 1771134684328940 r009 Re(z^3+c),c=-13/50+7/16*I,n=45 1771134684340484 r009 Re(z^3+c),c=-13/50+7/16*I,n=46 1771134684348472 r009 Re(z^3+c),c=-13/50+7/16*I,n=48 1771134684363391 r009 Re(z^3+c),c=-13/50+7/16*I,n=51 1771134684367371 r009 Re(z^3+c),c=-13/50+7/16*I,n=54 1771134684367770 r009 Re(z^3+c),c=-13/50+7/16*I,n=56 1771134684367846 r009 Re(z^3+c),c=-13/50+7/16*I,n=53 1771134684367943 r009 Re(z^3+c),c=-13/50+7/16*I,n=59 1771134684368002 r009 Re(z^3+c),c=-13/50+7/16*I,n=62 1771134684368008 r009 Re(z^3+c),c=-13/50+7/16*I,n=57 1771134684368012 r009 Re(z^3+c),c=-13/50+7/16*I,n=64 1771134684368019 r009 Re(z^3+c),c=-13/50+7/16*I,n=61 1771134684368024 r009 Re(z^3+c),c=-13/50+7/16*I,n=63 1771134684368041 r009 Re(z^3+c),c=-13/50+7/16*I,n=60 1771134684368106 r009 Re(z^3+c),c=-13/50+7/16*I,n=58 1771134684368596 r009 Re(z^3+c),c=-13/50+7/16*I,n=55 1771134684370233 r009 Re(z^3+c),c=-13/50+7/16*I,n=52 1771134684371148 r009 Re(z^3+c),c=-13/50+7/16*I,n=49 1771134684372358 r009 Re(z^3+c),c=-13/50+7/16*I,n=50 1771134684404091 r009 Re(z^3+c),c=-13/50+7/16*I,n=47 1771134684525605 r009 Re(z^3+c),c=-13/50+7/16*I,n=42 1771134684536105 r009 Re(z^3+c),c=-13/50+7/16*I,n=44 1771134684788650 r009 Re(z^3+c),c=-13/50+7/16*I,n=41 1771134685765179 r009 Re(z^3+c),c=-13/50+7/16*I,n=34 1771134686430965 r009 Re(z^3+c),c=-13/50+7/16*I,n=39 1771134690793639 r009 Im(z^3+c),c=-7/18+5/58*I,n=17 1771134692520166 m001 Magata*exp(GolombDickman)/Ei(1)^2 1771134693527763 a001 1/77*(1/2*5^(1/2)+1/2)^8*11^(4/9) 1771134696057771 r009 Re(z^3+c),c=-13/50+7/16*I,n=36 1771134700420665 a007 Real Root Of -711*x^4-639*x^3+511*x^2-567*x+839 1771134704601263 m001 PisotVijayaraghavan*(Catalan+BesselK(0,1)) 1771134709391954 r009 Re(z^3+c),c=-13/50+7/16*I,n=30 1771134709530620 m006 (3/4*exp(Pi)+5/6)/(Pi^2+2/5) 1771134718749664 m005 (1/3*2^(1/2)+3/4)/(1/11*2^(1/2)-9/11) 1771134721218330 a007 Real Root Of -29*x^4+389*x^3-308*x^2+780*x+150 1771134723828095 r009 Re(z^3+c),c=-13/50+7/16*I,n=33 1771134731887968 a007 Real Root Of -378*x^4-272*x^3+830*x^2+768*x+965 1771134734612611 a007 Real Root Of 466*x^4+886*x^3+589*x^2+434*x-742 1771134745311266 a007 Real Root Of -371*x^4-398*x^3-178*x^2-975*x+271 1771134747359483 s002 sum(A160908[n]/(2^n+1),n=1..infinity) 1771134749296696 a007 Real Root Of -181*x^4+295*x^3+683*x^2-417*x+539 1771134749323631 a007 Real Root Of -360*x^4-583*x^3+284*x^2+780*x+794 1771134750731294 a007 Real Root Of 818*x^4+793*x^3-927*x^2+867*x+800 1771134751523533 a007 Real Root Of -163*x^4-144*x^3+496*x^2-752 1771134755145606 m001 (exp(1/Pi)+OrthogonalArrays)/(Rabbit+Thue) 1771134761308919 a001 9227465/2207*123^(3/10) 1771134761806568 m001 (Catalan-ln(2))/(Gompertz+Robbin) 1771134761931174 a001 843/6557470319842*3^(7/24) 1771134764578015 m005 (1/2*2^(1/2)+5/12)/(5/12*gamma-7/8) 1771134765667182 a007 Real Root Of -338*x^4+70*x^3+523*x^2-689*x+854 1771134768305226 a007 Real Root Of 429*x^4+277*x^3-236*x^2+777*x-566 1771134771805305 a003 cos(Pi*23/117)+sin(Pi*32/79) 1771134774644940 r002 25i'th iterates of 2*x/(1-x^2) of 1771134775703400 a001 4/317811*2584^(1/23) 1771134778005135 a001 4/514229*165580141^(1/23) 1771134778006986 a001 1/208010*10610209857723^(1/23) 1771134779795623 a007 Real Root Of 896*x^4+884*x^3-429*x^2+980*x-824 1771134787401120 r005 Re(z^2+c),c=-17/82+1/28*I,n=5 1771134788784214 g002 -gamma-2*ln(2)-Psi(1/12)-Psi(7/11)-Psi(2/11) 1771134790428158 r009 Re(z^3+c),c=-13/50+7/16*I,n=31 1771134790945395 a003 cos(Pi*1/118)+cos(Pi*9/41) 1771134791439663 r002 9th iterates of z^2 + 1771134791864379 a007 Real Root Of -149*x^4+203*x^3+268*x^2-549*x+781 1771134796339992 a003 cos(Pi*17/79)+sin(Pi*43/94) 1771134798720562 l006 ln(645/3791) 1771134803463076 h005 exp(sin(Pi*3/53)-sin(Pi*7/26)) 1771134805788271 q001 4651/2626 1771134807646622 a007 Real Root Of 646*x^4+893*x^3+421*x^2+983*x-975 1771134818155246 a001 2207/1836311903*3^(6/17) 1771134818280692 a007 Real Root Of 61*x^4-223*x^3-120*x^2+901*x+133 1771134821465160 a005 (1/sin(83/179*Pi))^1500 1771134823163765 r009 Re(z^3+c),c=-5/102+32/51*I,n=10 1771134827349918 m005 (1/2*exp(1)+5/7)/(7/12*Catalan+7/11) 1771134827845978 m002 4+E^Pi/2+Log[Pi]+Tanh[Pi] 1771134829847880 a007 Real Root Of -535*x^4-881*x^3-243*x^2-878*x-423 1771134832511344 k007 concat of cont frac of 1771134841405149 r005 Re(z^2+c),c=-5/4+7/195*I,n=42 1771134844239431 a007 Real Root Of 331*x^4+409*x^3-702*x^2-147*x+957 1771134844736966 a003 cos(Pi*11/98)+cos(Pi*17/91) 1771134852229317 a008 Real Root of x^4-21*x^2-22*x+95 1771134856881182 r005 Re(z^2+c),c=-9/50+8/35*I,n=13 1771134858724684 m001 exp(Champernowne)/Cahen^2/cosh(1) 1771134866157290 m004 75*Sqrt[5]*Pi+100*Pi*Sinh[Sqrt[5]*Pi] 1771134866218811 a007 Real Root Of -13*x^4-202*x^3-761*x^2+278*x+72 1771134887644818 s002 sum(A101020[n]/(2^n-1),n=1..infinity) 1771134888945455 m001 (3^(1/3)+exp(1/Pi))/(Champernowne+Porter) 1771134891351635 r009 Re(z^3+c),c=-3/122+13/32*I,n=16 1771134891491021 m001 (2^(1/2))^KhinchinLevy*ln(Pi)^KhinchinLevy 1771134892900827 m001 Grothendieck+HardyLittlewoodC3-MasserGramain 1771134898376311 h001 (2/9*exp(2)+7/12)/(1/8*exp(1)+11/12) 1771134898466664 a007 Real Root Of -121*x^4+546*x^3+848*x^2-572*x+551 1771134902328275 a003 sin(Pi*5/94)/sin(Pi*40/103) 1771134903418580 m005 (1/2*2^(1/2)-1/7)/(8/9*Catalan-4) 1771134907693615 m001 Otter^CopelandErdos/(MertensB1^CopelandErdos) 1771134909196769 s002 sum(A224452[n]/(n!^2),n=1..infinity) 1771134917172506 r005 Im(z^2+c),c=-27/58+15/49*I,n=50 1771134922471496 m001 1/exp(GAMMA(23/24))*(3^(1/3))/cos(1)^2 1771134924586679 r009 Re(z^3+c),c=-4/31+27/38*I,n=5 1771134927044916 a003 cos(Pi*22/101)+sin(Pi*43/91) 1771134932642052 b008 11/14+LogGamma[1/3] 1771134937524606 r005 Re(z^2+c),c=-19/122+15/52*I,n=5 1771134951215239 k008 concat of cont frac of 1771134953414463 r005 Re(z^2+c),c=-27/70+29/47*I,n=33 1771134957482297 p004 log(19531/3323) 1771134959855024 p004 log(31063/26021) 1771134967803590 m002 -2*Pi+Cosh[Pi]*ProductLog[Pi]+Sinh[Pi] 1771134970613895 m005 (1/2*Pi+1/5)/(3/11*Catalan+3/4) 1771134978152496 m001 (ln(5)-Zeta(1,-1))/(gamma(1)-Trott2nd) 1771134979301464 r009 Re(z^3+c),c=-11/62+30/41*I,n=56 1771134983652498 q001 3792/2141 1771134990964079 a007 Real Root Of -638*x^4+371*x^3+430*x^2+853*x-166 1771134995720276 l006 ln(1339/7870) 1771134995838258 a007 Real Root Of -457*x^4-554*x^3+548*x^2+568*x+706 1771134999981760 m001 exp(Zeta(1,2))*RenyiParking/sqrt(1+sqrt(3)) 1771135001101325 r009 Im(z^3+c),c=-49/114+1/27*I,n=59 1771135002550834 l006 ln(7540/9001) 1771135003057105 a007 Real Root Of 6*x^4-994*x^3-465*x^2-548*x-88 1771135003116935 r005 Im(z^2+c),c=-41/94+3/10*I,n=34 1771135010539715 m001 (ln(3)-ln(5))/(GAMMA(7/12)+FeigenbaumKappa) 1771135020052675 a007 Real Root Of -266*x^4-289*x^3-26*x^2-55*x+996 1771135020237177 a007 Real Root Of 778*x^4+947*x^3-422*x^2+828*x+396 1771135023341125 k008 concat of cont frac of 1771135025302531 s002 sum(A278931[n]/(16^n),n=1..infinity) 1771135027814140 a007 Real Root Of -416*x^4-659*x^3+446*x^2+88*x-811 1771135028175600 m005 (1/3*3^(1/2)-1/4)/(6/7*3^(1/2)+4/11) 1771135033095456 m006 (2/3/Pi+1/2)/(3/4*exp(2*Pi)+1/2) 1771135036951476 m001 (Otter-sin(1/12*Pi)*Backhouse)/Backhouse 1771135050535363 r005 Re(z^2+c),c=31/98+18/55*I,n=26 1771135052093260 r002 44th iterates of z^2 + 1771135052252871 m001 (Zeta(1,-1)+Weierstrass)/ZetaP(3) 1771135060357571 p004 log(22943/19219) 1771135067049889 m001 Zeta(3)+gamma^GAMMA(23/24) 1771135068959714 a007 Real Root Of -503*x^4-670*x^3+220*x^2+245*x+971 1771135071877003 a001 24157817/5778*123^(3/10) 1771135075686921 a001 3571/10946*8^(48/59) 1771135080916055 a007 Real Root Of -448*x^4-544*x^3-238*x^2-644*x+992 1771135081663196 a007 Real Root Of 262*x^4-327*x^3-956*x^2+948*x+283 1771135086452314 m001 sin(1/5*Pi)+AlladiGrinstead+Artin 1771135089511697 r002 27i'th iterates of 2*x/(1-x^2) of 1771135095577420 r005 Im(z^2+c),c=-109/94+16/63*I,n=46 1771135096140306 p003 LerchPhi(1/256,6,190/97) 1771135096329694 a007 Real Root Of 561*x^4-906*x^3-236*x^2-52*x+1 1771135097864744 m001 1/GAMMA(13/24)*(2^(1/3))/ln(cosh(1)) 1771135099424500 a007 Real Root Of 589*x^4+777*x^3-304*x^2+750*x+803 1771135100838964 m001 1/GAMMA(19/24)^2/ErdosBorwein/ln(GAMMA(23/24)) 1771135101611721 k008 concat of cont frac of 1771135103421582 m001 ln(TwinPrimes)^2*Champernowne/Zeta(3) 1771135106425573 m001 Pi*(Psi(2,1/3)-BesselJ(0,1)*GAMMA(13/24)) 1771135106663155 q001 6725/3797 1771135107615226 m001 Si(Pi)-ZetaP(3)^(3^(1/3)) 1771135110279941 m001 (FeigenbaumMu+ZetaQ(3))/(1-Zeta(3)) 1771135111121241 k008 concat of cont frac of 1771135114938211 k008 concat of cont frac of 1771135115080036 m001 ln(Sierpinski)^2*HardHexagonsEntropy^2*Zeta(7) 1771135117188284 a001 63245986/15127*123^(3/10) 1771135120509525 r008 a(0)=2,K{-n^6,8+7*n^3-n^2-8*n} 1771135123799035 b008 1/12+15*Sinh[1] 1771135123799112 a001 165580141/39603*123^(3/10) 1771135124763618 a001 433494437/103682*123^(3/10) 1771135124904338 a001 1134903170/271443*123^(3/10) 1771135124924869 a001 2971215073/710647*123^(3/10) 1771135124927864 a001 7778742049/1860498*123^(3/10) 1771135124928301 a001 20365011074/4870847*123^(3/10) 1771135124928365 a001 53316291173/12752043*123^(3/10) 1771135124928374 a001 139583862445/33385282*123^(3/10) 1771135124928375 a001 365435296162/87403803*123^(3/10) 1771135124928376 a001 956722026041/228826127*123^(3/10) 1771135124928376 a001 2504730781961/599074578*123^(3/10) 1771135124928376 a001 6557470319842/1568397607*123^(3/10) 1771135124928376 a001 10610209857723/2537720636*123^(3/10) 1771135124928376 a001 4052739537881/969323029*123^(3/10) 1771135124928376 a001 1548008755920/370248451*123^(3/10) 1771135124928376 a001 591286729879/141422324*123^(3/10) 1771135124928376 a001 225851433717/54018521*123^(3/10) 1771135124928380 a001 86267571272/20633239*123^(3/10) 1771135124928404 a001 32951280099/7881196*123^(3/10) 1771135124928571 a001 12586269025/3010349*123^(3/10) 1771135124929715 a001 4807526976/1149851*123^(3/10) 1771135124937557 a001 1836311903/439204*123^(3/10) 1771135124991307 a001 701408733/167761*123^(3/10) 1771135125359716 a001 267914296/64079*123^(3/10) 1771135127884827 a001 102334155/24476*123^(3/10) 1771135132604584 m001 (Sarnak-Tetranacci)/(exp(-1/2*Pi)+Bloch) 1771135139466655 m009 (4/5*Psi(1,3/4)+1/2)/(3/2*Pi^2-1/2) 1771135140674487 a007 Real Root Of 711*x^4+588*x^3-878*x^2+501*x-88 1771135145192198 a001 4181*123^(3/10) 1771135148855498 m001 2^(1/2)-CopelandErdos+Lehmer 1771135149332915 s002 sum(A162276[n]/((2*n)!),n=1..infinity) 1771135165521815 k007 concat of cont frac of 1771135176076735 m004 -1/30+25*Sqrt[5]*Pi+ProductLog[Sqrt[5]*Pi] 1771135178810753 l006 ln(694/4079) 1771135179642343 a007 Real Root Of 111*x^4+376*x^3+818*x^2+615*x-480 1771135183038267 m001 (5^(1/2)+FellerTornier)/exp(1/exp(1)) 1771135187209614 r005 Re(z^2+c),c=-17/14+8/255*I,n=42 1771135188464265 a001 29/34*21^(6/25) 1771135188481893 h001 (5/11*exp(2)+5/7)/(4/5*exp(1)+1/8) 1771135189452553 m001 (ReciprocalFibonacci-ZetaQ(4))^Bloch 1771135196838520 a001 9349/28657*8^(48/59) 1771135204397456 a007 Real Root Of 125*x^4-275*x^3-513*x^2+351*x-527 1771135209293387 k002 Champernowne real with 5*n^2+39*n-27 1771135211973898 r005 Re(z^2+c),c=37/118+13/49*I,n=44 1771135212417531 k008 concat of cont frac of 1771135213033775 p001 sum((-1)^n/(341*n+207)/n/(10^n),n=1..infinity) 1771135214514300 a001 24476/75025*8^(48/59) 1771135217093162 a001 64079/196418*8^(48/59) 1771135218686986 a001 39603/121393*8^(48/59) 1771135220979591 a007 Real Root Of -574*x^4-526*x^3+578*x^2-119*x+702 1771135224086716 m001 (-Lehmer+Otter)/(CareFree-Chi(1)) 1771135225438533 a001 2161/6624*8^(48/59) 1771135229173783 p001 sum(1/(311*n+273)/n/(10^n),n=1..infinity) 1771135231237711 m001 (5^(1/2)*Bloch-Ei(1,1))/Bloch 1771135235011544 r005 Re(z^2+c),c=-11/50+13/17*I,n=9 1771135235647681 m001 (ln(2+3^(1/2))-ln(gamma))^Catalan 1771135235647681 m001 (ln(2+sqrt(3))-log(gamma))^Catalan 1771135238752082 m001 (Ei(1)-Zeta(1/2))/(BesselK(1,1)-ThueMorse) 1771135240319997 m009 (1/2*Psi(1,1/3)+1/3)/(2/5*Psi(1,1/3)-1) 1771135243288172 r002 3th iterates of z^2 + 1771135245637251 r005 Im(z^2+c),c=-57/98+18/53*I,n=45 1771135258890401 a007 Real Root Of 34*x^4-169*x^3+348*x^2+895*x-780 1771135263818689 a001 14930352/3571*123^(3/10) 1771135265700483 q001 2933/1656 1771135270104210 a001 38/98209*121393^(18/25) 1771135270970176 l006 ln(4139/4941) 1771135271714326 a001 5778/17711*8^(48/59) 1771135272502405 a003 cos(Pi*51/115)/sin(Pi*51/107) 1771135274438769 m005 (1/2*Catalan-1/9)/(49/45+7/18*5^(1/2)) 1771135276568445 m001 (Pi-Conway)/(MadelungNaCl-Rabbit) 1771135281111011 r002 33th iterates of z^2 + 1771135281530037 s002 sum(A176057[n]/(exp(n)-1),n=1..infinity) 1771135293381150 s002 sum(A207896[n]/(n!^2),n=1..infinity) 1771135293860353 a001 8/29*3571^(29/57) 1771135296557726 m004 25*Sqrt[5]*Pi+(125*Sin[Sqrt[5]*Pi])/(18*Pi) 1771135302456705 r005 Re(z^2+c),c=5/23+7/41*I,n=7 1771135302923349 a007 Real Root Of 156*x^4+82*x^3+417*x^2+998*x-620 1771135303123706 m001 (ln(Pi)-Gompertz*ZetaR(2))/Gompertz 1771135312320227 a007 Real Root Of -401*x^4-915*x^3-535*x^2-2*x+537 1771135314711324 a007 Real Root Of -352*x^4-270*x^3-20*x^2-623*x+923 1771135322179434 g006 Psi(1,4/5)-Psi(1,8/11)-Psi(1,4/7)-Psi(1,2/7) 1771135323111411 k006 concat of cont frac of 1771135326460144 a007 Real Root Of 566*x^4+459*x^3-534*x^2+488*x-480 1771135326905024 a007 Real Root Of 654*x^4+734*x^3-468*x^2+422*x-142 1771135331760127 a007 Real Root Of -200*x^4-18*x^3+867*x^2+469*x-21 1771135332908821 a007 Real Root Of -51*x^4+804*x^3+884*x^2-888*x+623 1771135333412332 k008 concat of cont frac of 1771135333798252 a001 843*(1/2*5^(1/2)+1/2)^24*3^(9/14) 1771135336461784 a007 Real Root Of -512*x^4-123*x^3+579*x^2-902*x+941 1771135340503778 m005 (1/3*exp(1)+3/7)/(1/11*2^(1/2)+5/8) 1771135349414863 l006 ln(1437/8446) 1771135354938060 m001 1/MinimumGamma*ln(CareFree)*exp(1)^2 1771135357172485 r005 Im(z^2+c),c=-47/44+1/50*I,n=11 1771135357844933 r005 Im(z^2+c),c=-65/126+7/18*I,n=21 1771135364093300 m005 (1/3*2^(1/2)-1/11)/(3*gamma+5/12) 1771135375885699 m001 Pi^Grothendieck/(BesselI(0,2)^Grothendieck) 1771135379024302 r005 Re(z^2+c),c=-3/5+16/39*I,n=21 1771135379305806 r005 Im(z^2+c),c=-13/14+31/191*I,n=61 1771135383402523 a007 Real Root Of -516*x^4-646*x^3-71*x^2-742*x+397 1771135398571150 a007 Real Root Of -649*x^4-458*x^3+839*x^2-407*x+489 1771135402067329 a007 Real Root Of -504*x^4-702*x^3+844*x^2+488*x-724 1771135402098897 m001 Zeta(1,2)/Niven^2*ln(sqrt(3)) 1771135403729542 m005 (1/2*Zeta(3)-4/7)/(2/9*Zeta(3)-1/10) 1771135406808941 m004 -6-150*Pi+4*Cosh[Sqrt[5]*Pi] 1771135409368710 a007 Real Root Of 546*x^4+68*x^3-988*x^2+897*x-307 1771135410271619 a007 Real Root Of -629*x^4+206*x^3-510*x^2+645*x+132 1771135411177142 k006 concat of cont frac of 1771135414344524 r005 Im(z^2+c),c=-9/58+11/47*I,n=19 1771135420467791 r004 Re(z^2+c),c=-1/24+5/9*I,z(0)=I,n=42 1771135421197127 a007 Real Root Of -434*x^4-408*x^3+336*x^2-573*x-65 1771135421596683 a007 Real Root Of 857*x^4+986*x^3-319*x^2+807*x-525 1771135423874852 r005 Im(z^2+c),c=-23/38+19/60*I,n=53 1771135426140882 r005 Im(z^2+c),c=-5/9+12/47*I,n=12 1771135429480886 a001 1/7*3^(9/46) 1771135432157414 m001 (ln(Pi)+FeigenbaumD)/(Kolakoski-Otter) 1771135433635573 m001 1/PrimesInBinary^2*Paris^2/exp(sqrt(3))^2 1771135435942074 a007 Real Root Of -508*x^4-876*x^3-499*x^2-672*x+507 1771135438832256 r009 Re(z^3+c),c=-13/50+7/16*I,n=28 1771135441466290 r005 Im(z^2+c),c=-1/42+9/46*I,n=8 1771135443487092 a007 Real Root Of -637*x^4-562*x^3+360*x^2-889*x+442 1771135446947345 a003 sin(Pi*30/107)+sin(Pi*49/99) 1771135447391936 m001 (-BesselK(0,1)+Trott2nd)/(Catalan-exp(Pi)) 1771135451510774 m001 Pi*csc(1/24*Pi)/GAMMA(23/24)/(Salem+ZetaR(2)) 1771135460822912 r002 24th iterates of z^2 + 1771135475164081 m001 (FeigenbaumDelta-MadelungNaCl)/ZetaQ(4) 1771135478029248 r002 3th iterates of z^2 + 1771135479306685 q001 5007/2827 1771135480966634 a001 39603/5*832040^(36/49) 1771135483711161 k008 concat of cont frac of 1771135487136956 r005 Im(z^2+c),c=-87/118+5/34*I,n=3 1771135490039243 r005 Im(z^2+c),c=-41/98+8/27*I,n=32 1771135490354635 m001 ln(FeigenbaumB)^2*ErdosBorwein/MadelungNaCl^2 1771135494163983 b008 -10/Pi+ExpIntegralEi[2] 1771135495899418 m001 1/FransenRobinson/exp(Conway)*FeigenbaumC 1771135503355354 a007 Real Root Of 650*x^4+825*x^3-464*x^2+131*x-125 1771135503518099 a003 cos(Pi*5/41)+sin(Pi*31/97) 1771135504305847 a003 sin(Pi*10/93)-sin(Pi*9/53) 1771135505074506 a001 3/4870847*76^(10/41) 1771135507132313 m004 -2+25*Sqrt[5]*Pi+625*Pi*Sech[Sqrt[5]*Pi] 1771135508767801 l006 ln(743/4367) 1771135515111511 k007 concat of cont frac of 1771135515812121 k006 concat of cont frac of 1771135516996596 r005 Im(z^2+c),c=-21/22+16/93*I,n=54 1771135517879998 m001 (GAMMA(5/6)+PlouffeB)/(Psi(1,1/3)-Zeta(5)) 1771135521865056 m001 Pi+2^(1/3)*(BesselI(1,1)-(1+3^(1/2))^(1/2)) 1771135523745027 a007 Real Root Of -263*x^4-652*x^3-362*x^2+350*x+721 1771135524866114 a008 Real Root of (-4+5*x-5*x^2-2*x^3-x^5) 1771135525121221 k008 concat of cont frac of 1771135533040606 a007 Real Root Of 162*x^4-136*x^3-941*x^2-585*x-434 1771135534988427 a003 cos(Pi*7/106)+sin(Pi*30/103) 1771135543316055 r005 Re(z^2+c),c=15/62+32/59*I,n=36 1771135544261333 a007 Real Root Of 524*x^4+430*x^3-929*x^2-210*x-225 1771135548617118 r005 Re(z^2+c),c=4/27+2/63*I,n=8 1771135549941294 r005 Re(z^2+c),c=-17/106+7/25*I,n=4 1771135550555937 h001 (-5*exp(1/2)+9)/(-2*exp(-2)-4) 1771135552495887 r005 Re(z^2+c),c=-29/60+29/55*I,n=35 1771135559391058 r004 Im(z^2+c),c=-17/38+6/17*I,z(0)=-1,n=10 1771135559523916 a007 Real Root Of 330*x^4+721*x^3-3*x^2-813*x-672 1771135560977238 a007 Real Root Of 219*x^4-81*x^3-465*x^2+846*x+352 1771135562413208 m004 -2+25*Sqrt[5]*Pi+625*Pi*Csch[Sqrt[5]*Pi] 1771135567783891 q001 7081/3998 1771135569631017 m001 1/FeigenbaumB/Khintchine*exp(Tribonacci)^2 1771135569821268 m001 Kolakoski*HardHexagonsEntropy^2*ln(Pi) 1771135572319658 m001 (GAMMA(19/24)+MadelungNaCl)/(Mills-Otter) 1771135573777890 a007 Real Root Of -440*x^4-975*x^3-386*x^2-535*x-824 1771135579551184 m005 (1/2*gamma-1/8)/(8/9*2^(1/2)-1/3) 1771135579762475 r009 Re(z^3+c),c=-9/52+44/49*I,n=49 1771135581217214 b008 BesselK[2,EulerGamma]/Pi 1771135584067469 h005 exp(cos(Pi*4/39)*cos(Pi*5/17)) 1771135588893332 a001 2207/6765*8^(48/59) 1771135595937961 h001 (5/7*exp(1)+2/5)/(2/7*exp(1)+6/11) 1771135599245968 a001 8/2207*322^(33/49) 1771135608800293 r005 Re(z^2+c),c=27/106+13/62*I,n=12 1771135610470526 m001 1/ln(GAMMA(5/12))*Sierpinski/GAMMA(5/24)^2 1771135611141213 k007 concat of cont frac of 1771135612493836 b008 ExpIntegralEi[-3*ArcSinh[9]] 1771135615015794 m001 (ln(3)+ln(2^(1/2)+1))/(sin(1/12*Pi)+Thue) 1771135617147798 r002 25th iterates of z^2 + 1771135619774721 a001 23725150497407/144*6557470319842^(8/17) 1771135620547275 a005 (1/cos(1/107*Pi))^1326 1771135625067193 m001 (cos(1/5*Pi)+arctan(1/2))/(Rabbit+ZetaQ(3)) 1771135642501041 r009 Re(z^3+c),c=-41/70+7/12*I,n=62 1771135642851644 a001 8/4870847*47^(21/34) 1771135644217956 a005 (1/sin(100/217*Pi))^1592 1771135646227041 a007 Real Root Of -18*x^4+537*x^3+805*x^2+98*x+809 1771135650183457 m001 exp(1/exp(1))^(BesselI(0,2)/Porter) 1771135655491677 r005 Re(z^2+c),c=29/94+24/59*I,n=20 1771135655536343 m005 (1/2*Zeta(3)-5/11)/(Zeta(3)-3/8) 1771135657947043 l006 ln(1535/9022) 1771135659027565 a007 Real Root Of 240*x^4-272*x^3-724*x^2+875*x-52 1771135669558411 a007 Real Root Of 270*x^4-268*x^3-930*x^2+557*x-242 1771135679356862 r005 Re(z^2+c),c=-23/118+13/17*I,n=31 1771135683561892 a007 Real Root Of -61*x^4+615*x^3-465*x^2-424*x-607 1771135685955159 l006 ln(4877/5822) 1771135686362623 m001 ln(TwinPrimes)^2/FibonacciFactorial*(2^(1/3)) 1771135687628199 m001 (5^(1/2)+gamma)/(GAMMA(19/24)+PrimesInBinary) 1771135689367409 r005 Im(z^2+c),c=-7/10+32/55*I,n=4 1771135693673795 a001 199/610*13^(31/47) 1771135697510661 m001 (GAMMA(3/4)-ln(5))/(Riemann2ndZero+TwinPrimes) 1771135698039001 m001 (ln(gamma)-Ei(1))/(Conway+ZetaP(4)) 1771135702457243 m001 (ln(2)+Sierpinski)/(Tetranacci-ZetaP(4)) 1771135703631651 m001 (Gompertz-Khinchin)^StronglyCareFree 1771135704019744 r002 53th iterates of z^2 + 1771135709341688 r005 Im(z^2+c),c=-9/56+15/64*I,n=6 1771135713948456 m001 BesselI(0,1)^LaplaceLimit/TwinPrimes 1771135715828447 r005 Re(z^2+c),c=-15/94+3/10*I,n=12 1771135716496798 r005 Im(z^2+c),c=-13/14+39/241*I,n=26 1771135721840888 m001 FeigenbaumKappa^exp(1/exp(1))+Ei(1,1) 1771135723349966 a007 Real Root Of 540*x^4+903*x^3+46*x^2+192*x-101 1771135725261275 r005 Re(z^2+c),c=-89/60+15/38*I,n=3 1771135727882776 r005 Re(z^2+c),c=-7/106+24/47*I,n=36 1771135729214071 a001 7/433494437*2^(2/15) 1771135729595634 a007 Real Root Of -467*x^4-346*x^3+726*x^2-386*x-288 1771135730047240 a007 Real Root Of 436*x^4+836*x^3+94*x^2-592*x-989 1771135735192877 r005 Re(z^2+c),c=29/70+7/33*I,n=50 1771135735349053 m001 (PrimesInBinary-ZetaP(4))/(BesselK(1,1)+Mills) 1771135743103377 m001 1/FeigenbaumKappa/Kolakoski^2*exp(exp(1)) 1771135747048437 m001 Chi(1)+GaussAGM+Paris 1771135760461899 a007 Real Root Of 316*x^4-943*x^3-63*x^2+938*x+666 1771135762685638 a007 Real Root Of 470*x^4+837*x^3+85*x^2+545*x+724 1771135764390418 r005 Re(z^2+c),c=-47/38+2/45*I,n=46 1771135766881560 a007 Real Root Of 257*x^4+174*x^3+7*x^2+943*x+86 1771135769091836 r009 Re(z^3+c),c=-27/74+24/47*I,n=8 1771135776068748 m001 (-FellerTornier+Niven)/(1-Ei(1,1)) 1771135779915498 r005 Im(z^2+c),c=-23/28+10/63*I,n=38 1771135781257833 m005 (1/2*Pi+10/11)/(9/11*Zeta(3)+5/12) 1771135781383432 q001 2074/1171 1771135784790511 m001 (FeigenbaumC+Niven)/(ln(2)+Conway) 1771135785107448 a007 Real Root Of -348*x^4+841*x^3-350*x^2+192*x+50 1771135789262053 a007 Real Root Of -940*x^4-992*x^3+956*x^2-544*x-224 1771135791152185 m001 (Zeta(3)-Conway)/(LandauRamanujan2nd-ZetaQ(3)) 1771135794675511 a007 Real Root Of -718*x^4-617*x^3+543*x^2-874*x+386 1771135797896741 l006 ln(792/4655) 1771135801964216 a007 Real Root Of -574*x^4+89*x^3-616*x^2+777*x+158 1771135826930595 a007 Real Root Of -23*x^4-388*x^3+307*x^2-669*x-583 1771135828570623 a007 Real Root Of 460*x^4+356*x^3-151*x^2+861*x-550 1771135832312538 r005 Im(z^2+c),c=-27/58+15/49*I,n=41 1771135836671261 a007 Real Root Of 349*x^4+947*x^3+354*x^2-945*x-957 1771135836950940 a007 Real Root Of -492*x^4-592*x^3+373*x^2-532*x-560 1771135837285334 a007 Real Root Of -589*x^4-855*x^3-127*x^2-367*x+794 1771135840001668 r005 Re(z^2+c),c=5/18+4/9*I,n=55 1771135843790769 m001 FeigenbaumC^BesselJ(0,1)-ReciprocalFibonacci 1771135844122197 a001 76/55*13^(3/31) 1771135845303485 m001 (Pi+2^(1/3))/(FellerTornier-FransenRobinson) 1771135845571677 s002 sum(A197571[n]/(n*exp(n)-1),n=1..infinity) 1771135847175042 m001 3^(1/3)+RenyiParking*TreeGrowth2nd 1771135848181945 a008 Real Root of (6-x-4*x^2+6*x^3+x^4-2*x^5) 1771135848899883 r005 Im(z^2+c),c=-67/106+1/40*I,n=27 1771135850371110 a007 Real Root Of 727*x^4+492*x^3-943*x^2+296*x-938 1771135854879800 a008 Real Root of x^4-2*x^3-3*x^2-86*x+163 1771135859784763 a001 15127/13*2^(20/33) 1771135868266135 r005 Im(z^2+c),c=-45/38+7/41*I,n=48 1771135868718078 m001 exp((2^(1/3)))^2*Riemann1stZero*Zeta(7) 1771135868784237 m005 (1/2*Zeta(3)-2/5)/(6/11*2^(1/2)+4/11) 1771135869879814 a007 Real Root Of -815*x^4-773*x^3+904*x^2-536*x-60 1771135892115677 a007 Real Root Of -131*x^4-231*x^3-398*x^2-445*x+466 1771135898914806 r005 Im(z^2+c),c=21/52+19/59*I,n=10 1771135905791589 a007 Real Root Of 42*x^4+790*x^3+815*x^2+10*x+773 1771135907320401 a007 Real Root Of -154*x^4-595*x^3-926*x^2-505*x+220 1771135909888853 a001 4/1597*233^(25/32) 1771135913735610 r002 35th iterates of z^2 + 1771135929335369 m001 (1+3^(1/2))^(1/2)*(BesselI(0,1)-DuboisRaymond) 1771135929447725 l006 ln(1633/9598) 1771135930285613 a007 Real Root Of 218*x^4+45*x^3-808*x^2+37*x+705 1771135930916873 m001 GAMMA(17/24)+Gompertz^HardHexagonsEntropy 1771135946017079 a001 7/121393*89^(1/4) 1771135952914277 r005 Im(z^2+c),c=-61/102+10/33*I,n=39 1771135970124107 m004 -5+(50*E^(Sqrt[5]*Pi))/Pi-25*Sqrt[5]*Pi 1771135973879216 a007 Real Root Of -947*x^4-638*x^3+621*x^2+909*x-176 1771135974335057 m001 (-Tetranacci+Thue)/(3^(1/2)-GAMMA(5/6)) 1771135977853168 m001 (GAMMA(7/12)+MertensB2)/(1-ln(Pi)) 1771135983446784 r005 Re(z^2+c),c=-133/90+8/57*I,n=5 1771135983934083 a003 cos(Pi*3/46)/cos(Pi*37/118) 1771135991042116 m001 Catalan-Khinchin-ZetaQ(4) 1771135991717497 r002 3th iterates of z^2 + 1771135991854141 l006 ln(5615/6703) 1771135994134600 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)/(Zeta(5)+PlouffeB) 1771135995922588 a007 Real Root Of -578*x^4-855*x^3-168*x^2-562*x+469 1771135998108980 r005 Im(z^2+c),c=-29/31+19/63*I,n=37 1771135999802354 a007 Real Root Of 827*x^4+982*x^3-212*x^2+957*x-322 1771136000000000 r005 Im(z^2+c),c=-1/50+1/5*I,n=3 1771136002751276 a007 Real Root Of 854*x^4+910*x^3-654*x^2+978*x+436 1771136009588034 m001 (MinimumGamma+Robbin)/(Zeta(1/2)+MertensB1) 1771136014040895 m001 ln(Pi)^(2*Pi/GAMMA(5/6))*GaussAGM 1771136014104720 a007 Real Root Of -185*x^4+129*x^3+967*x^2+650*x+655 1771136017520879 a007 Real Root Of 97*x^4-749*x^3+771*x^2-867*x-182 1771136020618453 r002 5th iterates of z^2 + 1771136028345470 m001 (BesselJZeros(0,1)+3)/(exp(1)+1/3) 1771136041026689 r002 57th iterates of z^2 + 1771136042589295 r002 20th iterates of z^2 + 1771136044135786 m001 (ln(5)+Pi^(1/2))/(Riemann2ndZero-Tetranacci) 1771136053334011 l006 ln(841/4943) 1771136056177693 a003 cos(Pi*25/116)+sin(Pi*28/61) 1771136058563874 m001 (Stephens-StronglyCareFree)/GAMMA(5/6) 1771136063408190 q001 5363/3028 1771136066403009 a007 Real Root Of 751*x^4+735*x^3-341*x^2+805*x-811 1771136070372745 r005 Im(z^2+c),c=-15/38+28/51*I,n=23 1771136071736835 a003 cos(Pi*11/76)+sin(Pi*26/77) 1771136076897180 a001 5702887/1364*123^(3/10) 1771136078024333 r005 Im(z^2+c),c=-13/14+31/191*I,n=57 1771136088503775 m001 exp(1/Pi)^(FeigenbaumAlpha/gamma(1)) 1771136090728463 r002 4th iterates of z^2 + 1771136095271627 r005 Re(z^2+c),c=-14/11+5/36*I,n=11 1771136095908371 h001 (5/9*exp(2)+7/9)/(10/11*exp(1)+2/7) 1771136096819493 a007 Real Root Of -578*x^4-926*x^3-97*x^2-825*x-614 1771136097201722 m005 (1/2*5^(1/2)-1/8)/(83/16+3/16*5^(1/2)) 1771136100071260 r002 24th iterates of z^2 + 1771136100475562 r005 Im(z^2+c),c=-8/27+7/26*I,n=24 1771136105961071 a007 Real Root Of 541*x^4+889*x^3+242*x^2+959*x+555 1771136111321117 k006 concat of cont frac of 1771136112106356 a003 cos(Pi*21/116)+sin(Pi*36/95) 1771136114115122 k008 concat of cont frac of 1771136115573267 r005 Re(z^2+c),c=-19/98+13/16*I,n=27 1771136115700589 m001 (exp(1/exp(1))+ArtinRank2)/(ZetaP(3)-ZetaQ(2)) 1771136116118492 m001 (2^(1/2))^GAMMA(19/24)*(2^(1/2))^PlouffeB 1771136118368549 r002 53th iterates of z^2 + 1771136135602708 r002 28th iterates of z^2 + 1771136137073701 m001 ln(GAMMA(3/4))^2/GAMMA(23/24)*GAMMA(5/24) 1771136152121712 k008 concat of cont frac of 1771136153477407 a007 Real Root Of -645*x^4-664*x^3+373*x^2-936*x-170 1771136154124183 r009 Im(z^3+c),c=-9/26+5/44*I,n=6 1771136156297546 m002 2/Pi^5+6*Pi-Log[Pi] 1771136157752361 a007 Real Root Of 472*x^4+718*x^3+160*x^2+479*x-309 1771136167578470 m001 MinimumGamma^2/Khintchine/ln(cos(Pi/5))^2 1771136177777759 a007 Real Root Of -368*x^4-335*x^3+891*x^2+568*x-29 1771136182267949 m001 (ErdosBorwein-Paris)/(GAMMA(3/4)-Artin) 1771136188950530 r002 33th iterates of z^2 + 1771136189069128 r005 Re(z^2+c),c=-9/82+20/47*I,n=31 1771136190093753 r002 56th iterates of z^2 + 1771136195002454 m005 (1/2*Catalan+7/8)/(1/2*Pi-9/11) 1771136205233779 r005 Im(z^2+c),c=-9/58+11/47*I,n=21 1771136206976735 a007 Real Root Of 557*x^4+292*x^3-908*x^2+243*x-580 1771136209750662 m001 (Pi-Pi^(1/2)*HeathBrownMoroz)/Pi^(1/2) 1771136209750662 m001 HeathBrownMoroz-Pi^(1/2) 1771136209750662 m001 Pi^(1/2)-HeathBrownMoroz 1771136212299397 k002 Champernowne real with 11/2*n^2+75/2*n-26 1771136216010383 a007 Real Root Of -359*x^4-708*x^3-176*x^2-292*x-366 1771136220128034 m001 (HeathBrownMoroz+Robbin)/(Pi+BesselK(1,1)) 1771136226683244 l006 ln(6353/7584) 1771136230959162 a007 Real Root Of 545*x^4+215*x^3-985*x^2+216*x-696 1771136233466363 m001 Otter-Riemann2ndZero^Niven 1771136241249326 q001 3289/1857 1771136242289852 a001 21/29*843^(40/49) 1771136244842607 m005 (5*2^(1/2)-1/2)/(1/4*Catalan-3/5) 1771136250600347 l006 ln(7443/7576) 1771136255925133 a007 Real Root Of 492*x^4+655*x^3-355*x^2+482*x+765 1771136263431370 m004 (-15*Sqrt[5]*Pi)/2-5*E^(Sqrt[5]*Pi)*Pi 1771136271628258 a007 Real Root Of -418*x^4-262*x^3+881*x^2+61*x+2 1771136272217517 r002 47th iterates of z^2 + 1771136272242496 r005 Im(z^2+c),c=-9/58+11/47*I,n=22 1771136274345634 a007 Real Root Of -459*x^4-345*x^3+521*x^2-417*x+227 1771136275746779 r005 Re(z^2+c),c=-17/14+13/148*I,n=24 1771136278097869 r005 Re(z^2+c),c=-5/26+5/29*I,n=10 1771136280644425 l006 ln(890/5231) 1771136282022672 r005 Im(z^2+c),c=-45/64+19/53*I,n=17 1771136282407924 m001 GAMMA(5/6)/Si(Pi)^2*exp(sin(1))^2 1771136288856418 r005 Im(z^2+c),c=-17/90+8/33*I,n=9 1771136289093938 a007 Real Root Of -54*x^4+576*x^3+987*x^2-151*x+368 1771136290085075 a007 Real Root Of 315*x^4+98*x^3-350*x^2+676*x-260 1771136290459726 r005 Im(z^2+c),c=-9/58+11/47*I,n=24 1771136291738446 m001 Pi*2^(1/2)/GAMMA(3/4)/cos(1/12*Pi)*Bloch 1771136299687204 r002 43th iterates of z^2 + 1771136303835574 r005 Re(z^2+c),c=3/62+13/46*I,n=5 1771136306211046 m005 (1/2*exp(1)-1/4)/(8/11*5^(1/2)-1) 1771136307721245 m001 (Porter+Totient)/(ln(Pi)+BesselJ(1,1)) 1771136309604745 r002 22th iterates of z^2 + 1771136311369581 r005 Im(z^2+c),c=-9/58+11/47*I,n=27 1771136314020107 r005 Im(z^2+c),c=-9/58+11/47*I,n=30 1771136314188151 r005 Im(z^2+c),c=-9/58+11/47*I,n=29 1771136314191234 r005 Im(z^2+c),c=-9/58+11/47*I,n=32 1771136314231336 r005 Im(z^2+c),c=-9/58+11/47*I,n=35 1771136314235047 r005 Im(z^2+c),c=-9/58+11/47*I,n=33 1771136314238340 r005 Im(z^2+c),c=-9/58+11/47*I,n=38 1771136314239072 r005 Im(z^2+c),c=-9/58+11/47*I,n=40 1771136314239090 r005 Im(z^2+c),c=-9/58+11/47*I,n=41 1771136314239118 r005 Im(z^2+c),c=-9/58+11/47*I,n=43 1771136314239134 r005 Im(z^2+c),c=-9/58+11/47*I,n=46 1771136314239136 r005 Im(z^2+c),c=-9/58+11/47*I,n=49 1771136314239136 r005 Im(z^2+c),c=-9/58+11/47*I,n=51 1771136314239136 r005 Im(z^2+c),c=-9/58+11/47*I,n=52 1771136314239136 r005 Im(z^2+c),c=-9/58+11/47*I,n=54 1771136314239136 r005 Im(z^2+c),c=-9/58+11/47*I,n=57 1771136314239136 r005 Im(z^2+c),c=-9/58+11/47*I,n=60 1771136314239136 r005 Im(z^2+c),c=-9/58+11/47*I,n=59 1771136314239136 r005 Im(z^2+c),c=-9/58+11/47*I,n=62 1771136314239136 r005 Im(z^2+c),c=-9/58+11/47*I,n=63 1771136314239136 r005 Im(z^2+c),c=-9/58+11/47*I,n=64 1771136314239136 r005 Im(z^2+c),c=-9/58+11/47*I,n=61 1771136314239136 r005 Im(z^2+c),c=-9/58+11/47*I,n=58 1771136314239136 r005 Im(z^2+c),c=-9/58+11/47*I,n=56 1771136314239136 r005 Im(z^2+c),c=-9/58+11/47*I,n=55 1771136314239136 r005 Im(z^2+c),c=-9/58+11/47*I,n=53 1771136314239136 r005 Im(z^2+c),c=-9/58+11/47*I,n=48 1771136314239136 r005 Im(z^2+c),c=-9/58+11/47*I,n=50 1771136314239137 r005 Im(z^2+c),c=-9/58+11/47*I,n=47 1771136314239138 r005 Im(z^2+c),c=-9/58+11/47*I,n=44 1771136314239139 r005 Im(z^2+c),c=-9/58+11/47*I,n=45 1771136314239181 r005 Im(z^2+c),c=-9/58+11/47*I,n=42 1771136314239520 r005 Im(z^2+c),c=-9/58+11/47*I,n=39 1771136314239696 r005 Im(z^2+c),c=-9/58+11/47*I,n=37 1771136314241041 r005 Im(z^2+c),c=-9/58+11/47*I,n=36 1771136314252725 r005 Im(z^2+c),c=-9/58+11/47*I,n=34 1771136314391605 r005 Im(z^2+c),c=-9/58+11/47*I,n=31 1771136314597040 r005 Re(z^2+c),c=-45/31+1/46*I,n=12 1771136315339725 r005 Im(z^2+c),c=-9/58+11/47*I,n=28 1771136317491488 r005 Im(z^2+c),c=-9/58+11/47*I,n=26 1771136317642995 r005 Im(z^2+c),c=-9/58+11/47*I,n=25 1771136327253566 a007 Real Root Of -641*x^4-856*x^3+487*x^2+363*x+667 1771136329838440 a007 Real Root Of -144*x^4-8*x^3+377*x^2-127*x-35 1771136334193182 r009 Re(z^3+c),c=-15/31+16/31*I,n=32 1771136338215510 m001 ln(GAMMA(5/24))*Salem*Zeta(7)^2 1771136338705339 m001 (Chi(1)*sin(1)+Riemann1stZero)/Chi(1) 1771136344235367 h001 (3/8*exp(1)+1/11)/(5/6*exp(2)+1/9) 1771136348531401 a007 Real Root Of -833*x^4-803*x^3+843*x^2-231*x+682 1771136355995628 a005 (1/cos(5/214*Pi))^212 1771136359062855 r005 Re(z^2+c),c=-11/54+11/59*I,n=3 1771136359733094 a003 cos(Pi*13/105)+cos(Pi*12/67) 1771136361880051 r002 25th iterates of z^2 + 1771136365164940 r002 28th iterates of z^2 + 1771136366176272 r005 Im(z^2+c),c=-9/58+11/47*I,n=23 1771136371632273 m001 GAMMA(5/12)^2*ln(GolombDickman)^2/LambertW(1) 1771136376961439 a007 Real Root Of 133*x^4-223*x^3-638*x^2+195*x-201 1771136380337262 a001 3571/377*55^(19/26) 1771136382084433 a007 Real Root Of 599*x^4+418*x^3-980*x^2+770*x+866 1771136382612703 m005 (19/42+1/6*5^(1/2))/(3/5*5^(1/2)-6) 1771136403999739 r002 53th iterates of z^2 + 1771136404148991 m001 (Zeta(5)-HeathBrownMoroz)/(Stephens+ZetaQ(3)) 1771136404330197 b008 -1/2+E^(Sqrt[E]*Pi) 1771136404330197 m001 1/2-exp(Pi)^exp(1/2) 1771136407530733 s002 sum(A182209[n]/((2^n-1)/n),n=1..infinity) 1771136412632390 l006 ln(7091/8465) 1771136417116327 r005 Im(z^2+c),c=-3/32+22/31*I,n=30 1771136420509421 m001 (ArtinRank2+ErdosBorwein)/(Mills-Salem) 1771136428738774 r005 Re(z^2+c),c=-3/22+18/49*I,n=12 1771136431831224 m001 exp(1/Pi)/CopelandErdos*GaussKuzminWirsing 1771136434897632 r005 Re(z^2+c),c=-3/56+12/25*I,n=8 1771136434905225 r009 Im(z^3+c),c=-17/32+10/63*I,n=21 1771136435353940 a007 Real Root Of 869*x^4-373*x^3-115*x^2-783*x-138 1771136442107033 m005 (1/3*3^(1/2)+2/5)/(1/3*Catalan-6/7) 1771136444327061 r005 Im(z^2+c),c=-31/54+23/58*I,n=49 1771136448154375 r005 Re(z^2+c),c=3/10+17/44*I,n=19 1771136448483001 m001 (Pi-Zeta(1,2))/(Bloch+FeigenbaumC) 1771136450430636 m001 ln(sqrt(5))^2*cosh(1)*sqrt(Pi) 1771136451914401 r002 60th iterates of z^2 + 1771136452555549 m005 (1/2*5^(1/2)+1/10)/(11/12*3^(1/2)-9/10) 1771136453008257 q001 4504/2543 1771136460251051 a007 Real Root Of 53*x^4+894*x^3-785*x^2+90*x-520 1771136461216305 r009 Re(z^3+c),c=-4/21+28/31*I,n=8 1771136463567281 r009 Re(z^3+c),c=-5/19+43/63*I,n=46 1771136463735802 r005 Re(z^2+c),c=-2/31+18/35*I,n=41 1771136464269507 m001 GAMMA(5/6)*Riemann2ndZero/Totient 1771136465897078 r002 3th iterates of z^2 + 1771136471402426 a003 cos(Pi*19/90)+sin(Pi*49/111) 1771136472176017 r005 Re(z^2+c),c=-2/3+103/253*I,n=15 1771136478492096 m001 1/ln(Pi)^2/GAMMA(1/4)*sin(1) 1771136482981733 a007 Real Root Of -89*x^4+31*x^3+364*x^2+27*x-46 1771136484231238 l006 ln(939/5519) 1771136490868641 h001 (6/11*exp(2)+8/9)/(11/12*exp(1)+2/7) 1771136493474195 b008 ProductLog[Pi^2+Cos[1]] 1771136498704731 m001 gamma(3)^GlaisherKinkelin/(gamma(3)^exp(1/Pi)) 1771136499583372 m001 (MertensB2+Riemann3rdZero)/(3^(1/2)-MertensB1) 1771136503402027 b008 3*(-1+Pi+Cosh[2]) 1771136514663327 m005 (1/3*2^(1/2)-1/7)/(7/11*gamma-2/11) 1771136515148215 k007 concat of cont frac of 1771136523162630 m001 (ZetaP(2)+ZetaP(4))/(ln(2)/ln(10)+Khinchin) 1771136524106918 a007 Real Root Of -675*x^4-729*x^3+718*x^2-124*x+120 1771136530944661 r005 Im(z^2+c),c=-5/14+13/22*I,n=26 1771136535561882 a007 Real Root Of 515*x^4-492*x^3+364*x^2-481*x+76 1771136535937566 a003 cos(Pi*17/104)+sin(Pi*41/115) 1771136538265144 a007 Real Root Of 2*x^4+351*x^3-572*x^2-69*x+319 1771136541546147 a007 Real Root Of -701*x^4-729*x^3+899*x^2+488*x+892 1771136542372115 r005 Re(z^2+c),c=-73/58+6/17*I,n=15 1771136561514160 m001 (FeigenbaumB+ThueMorse)/(ln(2)-gamma(2)) 1771136562036842 m007 (-1/2*gamma-3/2*ln(2)+1/4*Pi-4)/(-3*gamma-5/6) 1771136563524572 l006 ln(7829/9346) 1771136565358964 a007 Real Root Of 949*x^4+885*x^3-800*x^2+599*x-851 1771136569543746 m001 (-gamma(3)+Sierpinski)/(BesselJ(0,1)+ln(2)) 1771136571381575 a007 Real Root Of 47*x^4-715*x^3+638*x^2+574*x+492 1771136574078167 s002 sum(A107553[n]/(exp(n)),n=1..infinity) 1771136574790956 q001 5719/3229 1771136577303885 r005 Im(z^2+c),c=-14/17+5/44*I,n=31 1771136582272362 a003 cos(Pi*5/86)-sin(Pi*20/67) 1771136583945412 m001 (-Mills+Porter)/(Pi*2^(1/2)/GAMMA(3/4)-exp(1)) 1771136588206040 s002 sum(A131357[n]/(pi^n-1),n=1..infinity) 1771136592172657 a001 1346269/199*199^(2/11) 1771136592648299 m001 (Magata+Paris)/(ln(Pi)+GaussAGM) 1771136598585245 a001 521/20365011074*20365011074^(21/22) 1771136598587036 a001 521/832040*514229^(21/22) 1771136608911927 r005 Im(z^2+c),c=-25/34+7/106*I,n=31 1771136614142500 a007 Real Root Of -99*x^4+214*x^3+564*x^2-529*x-543 1771136616128349 r005 Im(z^2+c),c=-9/14+43/157*I,n=21 1771136616713214 r009 Im(z^3+c),c=-7/50+55/61*I,n=12 1771136622083878 a007 Real Root Of 41*x^4-510*x^3-628*x^2+153*x-996 1771136634607228 a007 Real Root Of 543*x^4+209*x^3-825*x^2+432*x-829 1771136640320294 a007 Real Root Of 325*x^4-841*x^3-650*x^2-583*x+128 1771136649093199 r005 Re(z^2+c),c=-91/74+1/58*I,n=28 1771136652020888 a007 Real Root Of 229*x^4+146*x^3-85*x^2+893*x+406 1771136653895274 q001 6934/3915 1771136659102086 m005 (11/28+1/4*5^(1/2))/(7/8*2^(1/2)-7/10) 1771136660505880 a001 1597/29*11^(19/39) 1771136667624182 l006 ln(988/5807) 1771136670137513 r005 Re(z^2+c),c=-29/24+2/25*I,n=64 1771136673625909 m001 log(1+sqrt(2))^2/ln(GAMMA(5/24))^2*sqrt(5)^2 1771136675856382 m001 Salem*ln(LaplaceLimit)/sqrt(1+sqrt(3))^2 1771136678116216 h001 (-7*exp(4)+12)/(-11*exp(1)+9) 1771136682772350 m001 (KhinchinHarmonic-Lehmer)/(Robbin-Trott) 1771136684020357 b008 (5*ArcCot[5]^2)/11 1771136688734961 a007 Real Root Of 327*x^4+429*x^3-438*x^2-683*x-670 1771136691344371 m001 (Niven+RenyiParking)/(Kac-LandauRamanujan) 1771136700804261 r008 a(0)=0,K{-n^6,-30+22*n^3+4*n^2+10*n} 1771136701755435 r005 Im(z^2+c),c=-9/58+11/47*I,n=18 1771136711567755 m005 (1/3*Catalan+1/12)/(1/7*5^(1/2)-1/10) 1771136715194452 a008 Real Root of x^3-222*x-1624 1771136716221332 k006 concat of cont frac of 1771136720031172 a007 Real Root Of -180*x^4+329*x^3+678*x^2-772*x+105 1771136730528548 a003 sin(Pi*34/117)-sin(Pi*3/10) 1771136734662075 m005 (15/44+1/4*5^(1/2))/(7/10*Zeta(3)-1/3) 1771136737006330 a007 Real Root Of 391*x^4+66*x^3-613*x^2+529*x-621 1771136738110118 m001 (-ReciprocalLucas+Tetranacci)/(2^(1/2)-Magata) 1771136745543884 a007 Real Root Of -299*x^4-602*x^3+41*x^2+640*x-111 1771136761164803 r005 Re(z^2+c),c=-15/86+1/4*I,n=14 1771136763354406 r005 Re(z^2+c),c=7/23+11/43*I,n=33 1771136769480740 a008 Real Root of (9+15*x+17*x^2-16*x^3) 1771136775221258 a007 Real Root Of 677*x^4+895*x^3-248*x^2+479*x-63 1771136775803830 a007 Real Root Of 264*x^4+449*x^3+110*x^2+274*x+37 1771136784786902 r002 5th iterates of z^2 + 1771136786342984 a007 Real Root Of -621*x^4-621*x^3+671*x^2-661*x-615 1771136789990792 r005 Im(z^2+c),c=-111/94+1/43*I,n=64 1771136789994989 m001 ZetaP(4)*(Artin-FeigenbaumD) 1771136792446367 s002 sum(A272522[n]/((pi^n-1)/n),n=1..infinity) 1771136795626464 r005 Re(z^2+c),c=-53/58+14/41*I,n=7 1771136799322531 r005 Im(z^2+c),c=17/64+1/58*I,n=18 1771136804077673 r005 Im(z^2+c),c=-9/58+11/47*I,n=20 1771136804214198 a007 Real Root Of -597*x^4-692*x^3+883*x^2+92*x-577 1771136804986977 m005 (-1/12+1/6*5^(1/2))/(3/10*exp(1)+9/11) 1771136814372177 a007 Real Root Of -554*x^4-542*x^3+630*x^2-258*x+7 1771136815935247 m004 7-Sinh[Sqrt[5]*Pi]/(2*ProductLog[Sqrt[5]*Pi]) 1771136818988947 a007 Real Root Of -194*x^4+56*x^3+39*x^2-748*x+773 1771136826023429 a007 Real Root Of -518*x^4-869*x^3-237*x^2-290*x+499 1771136826751425 r002 10th iterates of z^2 + 1771136831152344 r009 Re(z^3+c),c=-13/48+17/36*I,n=21 1771136833685844 l006 ln(1037/6095) 1771136833829684 a007 Real Root Of 787*x^4+873*x^3-459*x^2+279*x-960 1771136834025026 m001 (2^(1/3))/FeigenbaumDelta/exp(BesselK(0,1)) 1771136841433780 a007 Real Root Of -512*x^4-556*x^3-26*x^2-731*x+736 1771136847381976 a003 cos(Pi*6/61)+cos(Pi*15/77) 1771136848239414 a007 Real Root Of -197*x^4+437*x^3+906*x^2-505*x+630 1771136850863320 m001 (ArtinRank2-Thue)/(ln(2)-BesselK(1,1)) 1771136856848532 r005 Im(z^2+c),c=-9/32+35/57*I,n=30 1771136858391620 r005 Im(z^2+c),c=-7/15+34/55*I,n=31 1771136870854855 m001 GAMMA(1/24)^2/OneNinth*exp(sqrt(Pi))^2 1771136880216726 s002 sum(A199203[n]/((exp(n)+1)*n),n=1..infinity) 1771136885150046 m001 (Shi(1)-ln(5))/(-FeigenbaumMu+ZetaP(2)) 1771136888276820 m001 (ln(Pi)-GAMMA(13/24))/(Backhouse+Totient) 1771136888946558 m001 (polylog(4,1/2)+Porter)/(3^(1/3)-arctan(1/3)) 1771136900220212 m001 (ln(2)-exp(-1/2*Pi))/(MertensB2+Niven) 1771136908802447 m005 (-11/42+1/6*5^(1/2))/(1/12*Pi+4/11) 1771136910383540 m002 6+3/Pi+Sinh[Pi]/ProductLog[Pi] 1771136916291709 r005 Re(z^2+c),c=25/86+12/49*I,n=32 1771136916574954 a007 Real Root Of -698*x^4-689*x^3+523*x^2-385*x+718 1771136919223939 r005 Im(z^2+c),c=-43/90+14/39*I,n=14 1771136922877154 m001 ln(Zeta(3))/GAMMA(13/24)^2*sin(Pi/12) 1771136923770050 r005 Im(z^2+c),c=-9/8+44/233*I,n=26 1771136928730622 a007 Real Root Of -543*x^4-160*x^3+952*x^2-839*x-18 1771136935720238 m001 (Grothendieck+ReciprocalLucas)/(Ei(1)+Ei(1,1)) 1771136942141033 m005 (1/2*Pi-2/11)/(1/8*exp(1)+4/9) 1771136946329356 r005 Re(z^2+c),c=37/114+17/63*I,n=53 1771136946820279 a001 281/233802911*3^(6/17) 1771136954881609 a008 Real Root of x^4-2*x^3-12*x^2-80*x-125 1771136955647486 p004 log(31627/5381) 1771136974897052 a001 5778/233*8^(52/55) 1771136984257056 a007 Real Root Of 552*x^4+881*x^3+67*x^2+213*x-370 1771136984762176 l006 ln(1086/6383) 1771136988174914 m001 (Trott-ZetaQ(2))/(Zeta(1/2)-cos(1/12*Pi)) 1771136990798881 a007 Real Root Of -505*x^4-514*x^3+561*x^2+270*x+832 1771136991685813 m001 ArtinRank2*Bloch*exp(sin(1))^2 1771136998215362 m001 (Gompertz-OneNinth)/(3^(1/3)+ln(2+3^(1/2))) 1771137004091424 m001 Bloch^gamma(1)/Gompertz 1771137004305129 m005 (1/2*2^(1/2)+6)/(-11/30+1/3*5^(1/2)) 1771137004342682 r005 Im(z^2+c),c=-7/12+33/124*I,n=16 1771137005349561 p003 LerchPhi(1/6,4,397/143) 1771137013356106 p004 log(32203/5479) 1771137015045843 a007 Real Root Of 320*x^4+151*x^3-234*x^2+398*x-871 1771137017196528 m005 (1/3*Zeta(3)+1/3)/(1/12*3^(1/2)+4) 1771137020451732 a001 199/1597*21^(34/39) 1771137022906295 r009 Im(z^3+c),c=-13/32+1/20*I,n=8 1771137023752076 r005 Re(z^2+c),c=27/118+25/48*I,n=6 1771137026239067 q001 1215/686 1771137026239067 r002 2th iterates of z^2 + 1771137026239067 r002 2th iterates of z^2 + 1771137026239067 r002 2th iterates of z^2 + 1771137026239067 r002 2th iterates of z^2 + 1771137026239067 r005 Im(z^2+c),c=-103/98+9/56*I,n=2 1771137026582650 a001 123/89*3^(7/31) 1771137027964383 p004 log(13751/11519) 1771137030065415 r005 Re(z^2+c),c=-1/26+11/20*I,n=37 1771137030747519 r008 a(0)=0,K{-n^6,26+2*n^3+11*n^2+18*n} 1771137034460615 r009 Re(z^3+c),c=-13/44+11/20*I,n=43 1771137045040669 a001 521/3524578*6557470319842^(17/24) 1771137049332163 m001 FeigenbaumMu/(FeigenbaumKappa+TwinPrimes) 1771137052570764 h001 (2/5*exp(1)+7/9)/(1/6*exp(1)+3/5) 1771137056110432 r005 Im(z^2+c),c=-147/122+8/59*I,n=12 1771137057590143 m001 1/Riemann2ndZero*ln(Champernowne)^2/Trott^2 1771137060105984 m001 (-CareFree+RenyiParking)/(exp(Pi)+GAMMA(3/4)) 1771137064410925 a001 47/591286729879*21^(5/19) 1771137069818565 a007 Real Root Of 643*x^4+858*x^3+48*x^2+717*x-441 1771137071309948 m005 (-5/42+1/6*5^(1/2))/(3/11*Pi-1) 1771137073945506 r005 Im(z^2+c),c=-23/24+16/59*I,n=38 1771137074782514 s002 sum(A279085[n]/(n*10^n+1),n=1..infinity) 1771137076697145 p003 LerchPhi(1/32,2,376/157) 1771137087410137 m005 (1/2*2^(1/2)-3/7)/(6*exp(1)-7/12) 1771137093246157 a001 7/317811*1597^(39/43) 1771137095442032 m001 (Tribonacci-Weierstrass)/(gamma(1)-ArtinRank2) 1771137096964799 r005 Im(z^2+c),c=-8/25+20/43*I,n=5 1771137111461641 k008 concat of cont frac of 1771137113188816 r005 Im(z^2+c),c=-9/58+11/47*I,n=14 1771137115170841 m001 (Cahen-FeigenbaumDelta)/(Khinchin-ThueMorse) 1771137115477912 k007 concat of cont frac of 1771137116908018 r005 Re(z^2+c),c=-39/34+9/68*I,n=4 1771137117521181 k007 concat of cont frac of 1771137121413652 k007 concat of cont frac of 1771137121651077 m005 (1/2*Pi+2/11)/(1/5*Pi-8/11) 1771137122794012 l006 ln(1135/6671) 1771137128336506 m005 (1/2*5^(1/2)-1/4)/(2/9*3^(1/2)-7/8) 1771137128412915 k006 concat of cont frac of 1771137135019155 m008 (1/6*Pi^4+4)/(3*Pi+2) 1771137136595570 a007 Real Root Of -623*x^4+470*x^3-238*x^2+939*x+177 1771137141496135 m001 (MertensB2+Tetranacci)/(Chi(1)+GaussAGM) 1771137142247617 g004 Re(GAMMA(-21/10+I*109/30)) 1771137145589899 a007 Real Root Of 264*x^4+518*x^3-33*x^2-622*x-718 1771137147773787 m008 (3/5*Pi^5+3)/(Pi^2+2/3) 1771137147877415 r005 Im(z^2+c),c=-19/34+37/114*I,n=54 1771137151953861 a007 Real Root Of 685*x^4+773*x^3-561*x^2+760*x+660 1771137153581564 m001 (cos(1)+ln(3))/(-ln(Pi)+Ei(1,1)) 1771137157945103 m009 (4*Psi(1,3/4)-1/5)/(2*Psi(1,2/3)-1/2) 1771137158799698 p003 LerchPhi(1/25,6,319/239) 1771137161323411 k009 concat of cont frac of 1771137166709601 r005 Re(z^2+c),c=23/74+9/34*I,n=30 1771137166723391 m003 -1/12+Sqrt[5]/32+9*E^(-1/2-Sqrt[5]/2) 1771137184958820 r005 Im(z^2+c),c=-23/102+14/59*I,n=3 1771137187538879 r005 Im(z^2+c),c=-37/38+13/60*I,n=18 1771137188556681 m001 Pi/(Pi^(1/2)+HeathBrownMoroz) 1771137192389127 r002 6th iterates of z^2 + 1771137197021780 a007 Real Root Of 585*x^4+962*x^3-184*x^2-339*x-435 1771137200420471 m001 Si(Pi)^(Rabbit/BesselJ(0,1)) 1771137209256502 r005 Re(z^2+c),c=-1/22+29/53*I,n=58 1771137215305407 k002 Champernowne real with 6*n^2+36*n-25 1771137216112322 k008 concat of cont frac of 1771137223356151 k008 concat of cont frac of 1771137226633544 r005 Re(z^2+c),c=5/106+39/59*I,n=25 1771137230512541 r005 Im(z^2+c),c=-131/122+11/51*I,n=13 1771137232162632 a007 Real Root Of 666*x^4+305*x^3-982*x^2+692*x-553 1771137234604561 m005 (9/8+1/4*5^(1/2))/(3*Pi+1/12) 1771137239728682 r005 Im(z^2+c),c=-41/98+8/27*I,n=36 1771137240905230 s001 sum(exp(-Pi/3)^n*A278377[n],n=1..infinity) 1771137242955229 a007 Real Root Of -557*x^4-842*x^3-681*x^2+919*x+180 1771137249400899 l006 ln(1184/6959) 1771137249409509 m001 ln(Pi)*gamma(3)+ZetaP(3) 1771137258639738 a001 1/98209*21^(2/11) 1771137260361190 r005 Re(z^2+c),c=37/122+21/58*I,n=16 1771137263563964 r009 Re(z^3+c),c=-31/58+13/38*I,n=21 1771137264375439 a001 8/7*3571^(44/49) 1771137266605729 m001 Zeta(5)*LandauRamanujan2nd/Magata 1771137274513647 r005 Im(z^2+c),c=-29/34+11/70*I,n=18 1771137275627690 r005 Im(z^2+c),c=-43/42+4/21*I,n=17 1771137283179311 m001 exp(1/Pi)^(GAMMA(11/12)/sin(1/5*Pi)) 1771137283179311 m001 exp(1/Pi)^(GAMMA(11/12)/sin(Pi/5)) 1771137288515688 a007 Real Root Of -35*x^4+729*x^3-951*x^2+678*x+154 1771137304916957 r008 a(0)=0,K{-n^6,60-19*n^3-39*n^2+54*n} 1771137308147698 m008 (5/6*Pi+3)/(1/3*Pi^4-3/4) 1771137309471044 r005 Re(z^2+c),c=1/74+19/30*I,n=50 1771137312121115 k008 concat of cont frac of 1771137313407078 m004 -3+5*Pi-(15*Sqrt[5]*Sec[Sqrt[5]*Pi])/Pi 1771137315030373 a007 Real Root Of 394*x^4+28*x^3-900*x^2+108*x-707 1771137335113601 m001 Khinchin^GAMMA(13/24)/(Ei(1)^GAMMA(13/24)) 1771137336010126 a001 3/39088169*144^(12/19) 1771137337023154 r002 38th iterates of z^2 + 1771137345198852 a001 7/165580141*46368^(2/15) 1771137345220819 a001 7/1134903170*86267571272^(2/15) 1771137345220819 a001 7/433494437*63245986^(2/15) 1771137347348585 r005 Im(z^2+c),c=-41/74+31/59*I,n=17 1771137360888918 r005 Im(z^2+c),c=-31/58+14/45*I,n=28 1771137365944937 l006 ln(1233/7247) 1771137370316763 m005 (1/2*3^(1/2)-2/3)/(1/8*3^(1/2)+10/11) 1771137371883926 m005 (1/2*Zeta(3)-1/3)/(3/8*Pi+1/3) 1771137375609678 r005 Im(z^2+c),c=-36/31+14/57*I,n=58 1771137380005727 a007 Real Root Of -864*x^4+105*x^3+364*x^2+496*x-99 1771137384588277 m001 1/Catalan/Niven/exp(GAMMA(17/24)) 1771137385858745 m004 -5-25*Sqrt[5]*Pi+(100*Cosh[Sqrt[5]*Pi])/Pi 1771137387981585 r002 50th iterates of z^2 + 1771137388347420 m008 (4/5*Pi^2+2/3)/(1/6*Pi^3-1/3) 1771137389264670 a007 Real Root Of 395*x^4-130*x^3-919*x^2+632*x-607 1771137389876995 a001 8/7*39603^(34/49) 1771137393027659 m005 (1/2*exp(1)-2)/(5/12*Catalan-4) 1771137393186281 m001 (HardyLittlewoodC5+Kac)/(Stephens+ZetaQ(3)) 1771137397163050 m001 (Pi-ln(3))/(ln(Pi)+ZetaQ(3)) 1771137397577370 m001 1/Zeta(7)/exp(Sierpinski)^2*sqrt(Pi)^2 1771137403338735 m001 Gompertz^Khinchin*Rabbit 1771137407014513 a007 Real Root Of 673*x^4+623*x^3-506*x^2+433*x-807 1771137408660703 a001 521/987*63245986^(17/24) 1771137413221770 m001 Pi^2*exp(LambertW(1))^2*gamma 1771137416807895 m001 FransenRobinson-Shi(1)^MasserGramain 1771137423054012 r005 Im(z^2+c),c=-59/122+25/42*I,n=40 1771137427705866 q001 6431/3631 1771137445502087 a007 Real Root Of 432*x^4+25*x^3-637*x^2+752*x-782 1771137460723776 r005 Im(z^2+c),c=-7/8+55/131*I,n=6 1771137461487155 r005 Im(z^2+c),c=-115/118+5/28*I,n=30 1771137466111260 a007 Real Root Of -637*x^4-635*x^3+985*x^2+561*x+644 1771137467023077 l003 BesselY(1,4/111) 1771137470228332 m001 Pi-1/3*Psi(1,1/3)*3^(1/2)+Catalan 1771137470371718 r005 Re(z^2+c),c=7/66+15/44*I,n=9 1771137470523548 a003 cos(Pi*7/53)/sin(Pi*14/81) 1771137470583372 a007 Real Root Of 352*x^4+828*x^3+429*x^2+117*x-2 1771137473369169 m001 Champernowne/MertensB2*ZetaR(2) 1771137473579980 l006 ln(1282/7535) 1771137481111511 k008 concat of cont frac of 1771137484028123 a007 Real Root Of 447*x^4+620*x^3-17*x^2+727*x+387 1771137486587158 m001 ((1+3^(1/2))^(1/2)+CareFree)/(Conway+Trott2nd) 1771137487224257 a007 Real Root Of 38*x^4+141*x^3+670*x^2+877*x-139 1771137488241197 m001 (-Thue+ZetaP(4))/(3^(1/2)+Khinchin) 1771137492290610 a001 29/3*121393^(3/58) 1771137499637614 a007 Real Root Of -341*x^4+242*x^3+771*x^2-793*x+877 1771137505553220 m004 -2-25*Sqrt[5]*Pi+(3*Sin[Sqrt[5]*Pi])/4 1771137511172173 k006 concat of cont frac of 1771137520009397 p001 sum((-1)^n/(569*n+517)/(5^n),n=0..infinity) 1771137520526942 a007 Real Root Of 207*x^4+501*x^3+992*x^2+982*x-626 1771137521222410 q001 5216/2945 1771137521909233 a003 cos(Pi*15/104)+cos(Pi*7/43) 1771137524329746 m007 (-5*gamma+1/6)/(-2/5*gamma-4/5*ln(2)-3/4) 1771137526764791 p004 log(27847/23327) 1771137531000473 b008 2-Tanh[Sin[1]]/3 1771137533591423 m001 FellerTornier*(2*Pi/GAMMA(5/6)-ZetaP(4)) 1771137545081334 m001 exp(sin(Pi/12))^2*LandauRamanujan*sinh(1)^2 1771137553738233 m001 (exp(Pi)+2^(1/2))/(LaplaceLimit+Sarnak) 1771137560081921 r005 Re(z^2+c),c=-9/118+28/57*I,n=30 1771137573289968 l006 ln(1331/7823) 1771137577614063 a007 Real Root Of -637*x^4-938*x^3+577*x^2+139*x-507 1771137577850129 a007 Real Root Of -810*x^4-901*x^3+534*x^2-338*x+691 1771137579613330 a001 4/6765*34^(14/45) 1771137584994532 p001 sum(1/(453*n+28)/n/(12^n),n=1..infinity) 1771137585753460 a007 Real Root Of x^4-472*x^3+364*x^2+578*x+447 1771137586815564 a003 cos(Pi*13/75)+sin(Pi*7/19) 1771137595855337 s002 sum(A254843[n]/(n^2*2^n+1),n=1..infinity) 1771137596167122 m001 Paris^gamma(3)+StronglyCareFree 1771137597491149 p003 LerchPhi(1/6,1,13/228) 1771137604198653 s002 sum(A144615[n]/((2*n)!),n=1..infinity) 1771137608660781 h001 (4/9*exp(2)+4/7)/(5/9*exp(1)+2/3) 1771137612408627 a007 Real Root Of 524*x^4+372*x^3-666*x^2+252*x-554 1771137613175791 m001 (Chi(1)-ln(2+3^(1/2)))/(GAMMA(7/12)+Salem) 1771137620846582 r002 61th iterates of z^2 + 1771137621701842 a007 Real Root Of -517*x^4-89*x^3+989*x^2-286*x+984 1771137622067571 r005 Im(z^2+c),c=-21/106+13/53*I,n=19 1771137624830939 a005 (1/sin(76/173*Pi))^1542 1771137634007982 a003 cos(Pi*6/109)+cos(Pi*7/33) 1771137634375479 a001 1/1860621*(1/2*5^(1/2)+1/2)^2*15127^(5/19) 1771137634697570 r005 Re(z^2+c),c=37/98+16/19*I,n=3 1771137638839783 s002 sum(A227133[n]/((10^n+1)/n),n=1..infinity) 1771137639140794 a007 Real Root Of 26*x^4-823*x^3-893*x^2-776*x+170 1771137640373840 a001 1/7881717*(1/2*5^(1/2)+1/2)^3*64079^(6/19) 1771137642117470 r005 Im(z^2+c),c=-8/9+17/118*I,n=20 1771137646469003 p003 LerchPhi(1/1024,9,61/65) 1771137647386231 m005 (1/2*5^(1/2)-5)/(2/9*gamma+1/11) 1771137647616574 r005 Re(z^2+c),c=3/20+3/5*I,n=12 1771137649199251 r005 Im(z^2+c),c=49/102+17/60*I,n=5 1771137649745152 m005 (1/3*5^(1/2)-1/8)/(10/11*gamma-7/8) 1771137653756123 r005 Im(z^2+c),c=-131/118+1/47*I,n=19 1771137655002281 a007 Real Root Of 121*x^4+266*x^3+152*x^2+443*x+595 1771137658941560 a007 Real Root Of 996*x^4-316*x^3+658*x^2-969*x-195 1771137660360019 s002 sum(A147239[n]/((10^n-1)/n),n=1..infinity) 1771137660705451 m004 75*Sqrt[5]*Pi+100*Pi*Cosh[Sqrt[5]*Pi] 1771137661696878 a007 Real Root Of -486*x^4-721*x^3+323*x^2+386*x+447 1771137665919094 l006 ln(1380/8111) 1771137668110889 b008 12*E^(1/3)+Tanh[2] 1771137671536077 q001 4001/2259 1771137671538258 m001 Pi*(Psi(2,1/3)-exp(gamma))+(1+3^(1/2))^(1/2) 1771137674425087 a001 514229/7*47^(8/35) 1771137675503060 a007 Real Root Of -6*x^4+863*x^3+785*x^2-855*x+877 1771137675551241 r005 Re(z^2+c),c=17/74+5/27*I,n=12 1771137680273407 s001 sum(exp(-2*Pi)^(n-1)*A016058[n],n=1..infinity) 1771137684848780 a008 Real Root of (-7+7*x-9*x^2-5*x^4+x^8) 1771137692295780 a008 Real Root of x^4-x^3+12*x^2+61*x+55 1771137699431288 h001 (9/10*exp(1)+1/11)/(5/12*exp(1)+3/10) 1771137708833605 m009 (Pi^2-3/5)/(1/8*Pi^2+4) 1771137711242548 a007 Real Root Of -427*x^4-870*x^3-893*x^2-671*x+981 1771137719367114 a001 439204/233*610^(17/24) 1771137738120663 a001 2/233*987^(18/41) 1771137740232906 m001 exp(arctan(1/2))*BesselK(1,1)/cos(1) 1771137742943833 b008 1/3+7*E^Sin[2] 1771137744078543 r005 Im(z^2+c),c=25/122+5/51*I,n=12 1771137745238628 m001 (FeigenbaumB+Magata)/(Zeta(1,2)-Backhouse) 1771137746572103 a007 Real Root Of 294*x^4-42*x^3-434*x^2+472*x-929 1771137747149414 m001 Champernowne*(exp(-1/2*Pi)+FibonacciFactorial) 1771137748536705 m001 1/3*(cos(1/5*Pi)+KhinchinHarmonic)*3^(2/3) 1771137752195759 l006 ln(1429/8399) 1771137757674810 r005 Re(z^2+c),c=-11/70+31/51*I,n=24 1771137758584501 a007 Real Root Of -514*x^4+27*x^3+974*x^2-701*x+911 1771137762870644 a001 843/2584*8^(48/59) 1771137769224015 a003 sin(Pi*1/72)/sin(Pi*8/101) 1771137774481262 a007 Real Root Of -829*x^4-951*x^3+562*x^2-555*x+128 1771137777600582 b008 Erfi[(-7+EulerGamma)^(-1)] 1771137778376101 a007 Real Root Of -513*x^4-654*x^3+763*x^2+590*x+66 1771137784427433 m001 (BesselI(0,2)+Totient)/(sin(1)+Zeta(3)) 1771137787056367 q001 6787/3832 1771137801099078 m001 1/ln(OneNinth)^2*TreeGrowth2nd*sqrt(2)^2 1771137805830022 m005 (1/2*Catalan-3/5)/(11/12*gamma+3/11) 1771137806574711 r002 31th iterates of z^2 + 1771137830896360 m001 (KhinchinHarmonic+Rabbit)/(gamma+cos(1/5*Pi)) 1771137831177138 k006 concat of cont frac of 1771137832751773 l006 ln(1478/8687) 1771137851093044 r009 Re(z^3+c),c=-13/50+7/16*I,n=25 1771137852809872 r005 Re(z^2+c),c=-33/64+27/44*I,n=26 1771137852936044 m006 (2/3*exp(Pi)-1)/(4/5*Pi^2+1/4) 1771137859035655 r005 Re(z^2+c),c=-65/54+3/43*I,n=8 1771137861865383 m001 (GAMMA(19/24)+MertensB3)/(Chi(1)+gamma) 1771137862104885 a007 Real Root Of -198*x^4+609*x^3+27*x^2-621*x-420 1771137866089801 b008 17+(3/5)^(2/3) 1771137870025217 r002 44th iterates of z^2 + 1771137872982607 r005 Im(z^2+c),c=-5/6+29/246*I,n=36 1771137874627847 a007 Real Root Of -214*x^4+823*x^3-710*x^2+920*x+190 1771137879375838 a007 Real Root Of -128*x^4+203*x^3+344*x^2-890*x-268 1771137887390996 r005 Im(z^2+c),c=-16/25+13/51*I,n=29 1771137891542845 m001 (PlouffeB-ZetaP(3))/(GAMMA(3/4)-GAMMA(11/12)) 1771137906755324 r009 Re(z^3+c),c=-5/29+54/59*I,n=17 1771137908137847 l006 ln(1527/8975) 1771137914528026 r005 Re(z^2+c),c=-1/25+32/51*I,n=58 1771137920033685 m005 (-13/20+1/4*5^(1/2))/(2/7*Zeta(3)-6/7) 1771137924835589 r002 4th iterates of z^2 + 1771137928767734 m001 1/Kolakoski^2*ln(ArtinRank2)^2/Magata^2 1771137943047486 m001 (cos(1/12*Pi)-gamma(1))/(BesselK(1,1)-Landau) 1771137943798818 a005 (1/cos(3/104*Pi))^699 1771137952956134 q001 2786/1573 1771137961664845 r002 22th iterates of z^2 + 1771137963362296 m001 Mills+HardyLittlewoodC5^Thue 1771137964022225 a003 cos(Pi*5/119)-cos(Pi*14/71) 1771137967720700 m005 (1/2*Zeta(3)+4/11)/(1/6*3^(1/2)-5/6) 1771137978251041 a007 Real Root Of 222*x^4-143*x^3-528*x^2+556*x-338 1771137978836203 l006 ln(1576/9263) 1771137983520858 a007 Real Root Of 752*x^4+989*x^3-499*x^2+368*x+312 1771137998051980 a001 2537720636/21*144^(1/13) 1771137998537430 r009 Re(z^3+c),c=-4/23+8/9*I,n=53 1771138001546523 m005 (1/2*5^(1/2)+5/6)/(36/55+1/5*5^(1/2)) 1771138001593954 r005 Re(z^2+c),c=-6/31+39/49*I,n=46 1771138008007749 m001 (GAMMA(2/3)+ln(3))/(Conway+StolarskyHarborth) 1771138013357070 l006 ln(738/881) 1771138022524896 a007 Real Root Of -781*x^4-779*x^3+386*x^2-798*x+733 1771138031381446 a007 Real Root Of -110*x^4+977*x^3-836*x^2-650*x-572 1771138031694142 r009 Re(z^3+c),c=-3/122+13/32*I,n=18 1771138033557272 m001 Trott2nd/Stephens/Khinchin 1771138034810105 m001 MadelungNaCl^(Kolakoski/StronglyCareFree) 1771138045270899 l006 ln(1625/9551) 1771138056128922 r005 Im(z^2+c),c=5/58+5/32*I,n=4 1771138065796588 m001 (exp(1/Pi)-BesselI(1,2))/(Kac-RenyiParking) 1771138068543538 m001 cos(1/5*Pi)+Catalan^TreeGrowth2nd 1771138071093681 a007 Real Root Of 235*x^4-64*x^3-912*x^2-512*x-714 1771138072673039 m001 (FeigenbaumMu+MertensB3)/(Mills+MinimumGamma) 1771138078135688 b008 Sqrt[Gamma[1+E,10]] 1771138082143853 a007 Real Root Of 261*x^4-997*x^3+988*x^2-584*x+906 1771138082615243 a007 Real Root Of 141*x^4-945*x^3+899*x^2+486*x+182 1771138084866422 r005 Re(z^2+c),c=-17/90+12/25*I,n=6 1771138085626323 r005 Re(z^2+c),c=-3/74+25/44*I,n=36 1771138086882156 a007 Real Root Of -445*x^4-76*x^3+994*x^2+55*x+936 1771138105353296 r005 Im(z^2+c),c=-125/114+11/63*I,n=8 1771138105612021 m001 (gamma-sin(1))/(ArtinRank2+Kolakoski) 1771138107816344 l006 ln(1674/9839) 1771138110587651 q001 7143/4033 1771138117905469 m001 Catalan/(DuboisRaymond+FellerTornier) 1771138117933920 r009 Im(z^3+c),c=-29/70+2/33*I,n=35 1771138118725522 m001 (-Pi^(1/2)+FeigenbaumC)/(exp(1)+BesselK(1,1)) 1771138121631273 r005 Im(z^2+c),c=-20/23+8/55*I,n=15 1771138123720284 m005 (1/2*exp(1)-2/7)/(3/4*2^(1/2)+5) 1771138126854831 m001 (Sierpinski-exp(-1/2*Pi))^TwinPrimes 1771138129188490 r002 4th iterates of z^2 + 1771138142105828 r002 47th iterates of z^2 + 1771138146127043 b008 ExpIntegralEi[1]/107 1771138146228603 m001 (Artin-Conway)/(FeigenbaumB-HardyLittlewoodC4) 1771138147433444 a003 cos(Pi*44/111)/cos(Pi*43/87) 1771138148777792 p003 LerchPhi(1/8,1,86/145) 1771138153799910 p001 sum((-1)^n/(359*n+56)/(16^n),n=0..infinity) 1771138157111112 k009 concat of cont frac of 1771138161163258 h001 (7/8*exp(1)+2/7)/(1/6*exp(2)+3/11) 1771138162434738 m001 2^(1/2)*(ln(Pi)+OneNinth) 1771138162434738 m001 sqrt(2)*(ln(Pi)+OneNinth) 1771138164841161 r005 Re(z^2+c),c=3/20+20/39*I,n=10 1771138170850990 m005 (1/2*exp(1)-1)/(6/7*5^(1/2)+1/9) 1771138172548732 r005 Re(z^2+c),c=1/6+5/9*I,n=20 1771138176208829 a007 Real Root Of -666*x^4-449*x^3+990*x^2-496*x+75 1771138182980524 r005 Im(z^2+c),c=-15/17+4/31*I,n=10 1771138187489502 a007 Real Root Of 223*x^4+617*x^3+382*x^2-523*x+77 1771138191748256 m002 6+Pi^3/6-Pi^3/ProductLog[Pi] 1771138192525995 m001 Ei(1)^ln(Pi)/GAMMA(19/24) 1771138195152460 a007 Real Root Of 243*x^4+116*x^3-358*x^2+80*x-482 1771138195285931 m001 sin(Pi/12)^2/GAMMA(3/4)*exp(sin(Pi/5))^2 1771138197424892 a001 4126752/233 1771138211382113 q001 4357/2460 1771138216065822 a007 Real Root Of -236*x^4-289*x^3+2*x^2+124*x+930 1771138218311417 k002 Champernowne real with 13/2*n^2+69/2*n-24 1771138234440499 a003 cos(Pi*20/97)+sin(Pi*35/82) 1771138236346280 a001 9/4*10946^(38/53) 1771138241557711 k007 concat of cont frac of 1771138247491545 r005 Im(z^2+c),c=-59/122+15/49*I,n=22 1771138258263345 r009 Re(z^3+c),c=-1/30+43/59*I,n=32 1771138270546699 m001 LandauRamanujan2nd-Si(Pi)*HardyLittlewoodC5 1771138272600904 m001 (2^(1/3)+MertensB2)/(-Mills+Trott) 1771138272768540 m004 7-E^(Sqrt[5]*Pi)/(4*ProductLog[Sqrt[5]*Pi]) 1771138273204314 a007 Real Root Of 2*x^4-99*x^3+117*x^2+307*x-393 1771138273294746 m005 (1/2*Catalan-1/5)/(3/7*3^(1/2)+5/7) 1771138279312166 m002 -Pi+Pi^3+Log[Pi]-Pi^2*Log[Pi] 1771138282080483 m001 Pi/exp(Pi)*gamma(2)+Pi^(1/2) 1771138282355021 r009 Re(z^3+c),c=-15/106+29/34*I,n=17 1771138299218103 h001 (5/11*exp(2)+3/10)/(5/9*exp(1)+5/9) 1771138305034138 m001 CopelandErdos/exp(Champernowne)/Salem 1771138311844315 h001 (1/9*exp(1)+5/11)/(5/9*exp(2)+1/6) 1771138311918527 g007 Psi(2,1/11)+Psi(2,6/7)+Psi(2,1/4)-Psi(2,1/8) 1771138312753359 a007 Real Root Of 474*x^4+839*x^3+313*x^2+875*x+565 1771138313727747 m001 Tribonacci/ln(Riemann3rdZero)^2/Zeta(9) 1771138322239163 r002 3th iterates of z^2 + 1771138324979226 a007 Real Root Of -520*x^4-803*x^3+736*x^2+602*x-587 1771138326556103 a003 cos(Pi*7/32)+sin(Pi*37/77) 1771138329387408 r008 a(0)=0,K{-n^6,-93-19*n^3+60*n^2-9*n} 1771138332835374 q001 5928/3347 1771138337527227 m001 (Robbin-ThueMorse)/(ArtinRank2+Rabbit) 1771138339233969 g004 Re(GAMMA(11/3+I*32/15)) 1771138339473427 a007 Real Root Of -799*x^4+234*x^3-80*x^2+542*x-94 1771138351890958 a007 Real Root Of 445*x^4+932*x^3+189*x^2-523*x-720 1771138355158560 a007 Real Root Of -392*x^4-364*x^3+340*x^2-662*x-404 1771138366068919 m001 (Zeta(3)-gamma(1))/(Champernowne+Gompertz) 1771138368419403 m001 (LambertW(1)-cos(1))/(-ln(gamma)+cos(1/12*Pi)) 1771138369143603 r005 Im(z^2+c),c=-11/8+1/111*I,n=58 1771138369177156 m001 (Zeta(5)-cos(1/5*Pi))/(ln(5)-FellerTornier) 1771138369996476 m004 1+25*Sqrt[5]*Pi+Csc[Sqrt[5]*Pi]/3 1771138377867823 m008 (1/3*Pi-1/4)/(1/6*Pi^3-2/3) 1771138381639260 m001 (2^(1/3)+Zeta(3))/(-ln(5)+Ei(1,1)) 1771138388449751 m001 GAMMA(2/3)/exp(Lehmer)^2/GAMMA(7/12)^2 1771138389105601 r009 Re(z^3+c),c=-9/40+15/47*I,n=9 1771138389921136 m001 TreeGrowth2nd^2*Lehmer/ln(sqrt(5))^2 1771138405817841 m001 (Si(Pi)-cos(1))/(2*Pi/GAMMA(5/6)+Tribonacci) 1771138406540053 a003 sin(Pi*30/101)+sin(Pi*49/117) 1771138420622757 a005 (1/cos(13/108*Pi))^762 1771138422752852 r002 46th iterates of z^2 + 1771138430869643 a001 47*(1/2*5^(1/2)+1/2)^20*18^(6/19) 1771138436260930 a003 1/2-2*cos(2/7*Pi)-cos(11/24*Pi)-cos(4/27*Pi) 1771138447406949 a007 Real Root Of -277*x^4+294*x^3+900*x^2-555*x+553 1771138448770821 r009 Re(z^3+c),c=-27/98+19/39*I,n=26 1771138455813199 a003 sin(Pi*7/115)*sin(Pi*21/55) 1771138461072088 r005 Re(z^2+c),c=1/58+27/44*I,n=31 1771138473881408 m005 (1/2*2^(1/2)-11/12)/(1/5*Catalan+1) 1771138480573493 a007 Real Root Of -49*x^4+534*x^3+893*x^2-403*x-66 1771138481027051 m005 (1/2*exp(1)-2/5)/(2/11*Catalan+3/8) 1771138482024329 s001 sum(exp(-2*Pi/3)^n*A163372[n],n=1..infinity) 1771138490968880 h001 (3/7*exp(2)+7/11)/(1/4*exp(2)+3/10) 1771138494478640 m001 (3^(1/3)-Otter)/(ZetaP(4)+ZetaQ(3)) 1771138494929529 a007 Real Root Of 704*x^4+771*x^3-521*x^2+692*x+216 1771138497325465 r009 Re(z^3+c),c=-3/122+13/32*I,n=20 1771138498684286 m001 (Zeta(1/2)-CopelandErdos)/(Niven-RenyiParking) 1771138501662222 m001 RenyiParking^2/ln(GolombDickman)/sin(Pi/12)^2 1771138503039777 r009 Im(z^3+c),c=-25/58+1/16*I,n=11 1771138505256873 m005 (1/2*5^(1/2)-2/11)/(1/3*2^(1/2)-1) 1771138510628297 a001 17/299537289*199^(13/20) 1771138513460863 r005 Re(z^2+c),c=11/90+21/37*I,n=27 1771138524392531 a007 Real Root Of -295*x^4-64*x^3+526*x^2-759*x-447 1771138528973518 m001 BesselI(0,2)/(GolombDickman+LaplaceLimit) 1771138534271635 m005 (1/2*Catalan+9/11)/(3/7*exp(1)-4/9) 1771138537567864 m001 (MadelungNaCl+ZetaQ(4))/(Ei(1,1)-Psi(1,1/3)) 1771138542433597 m001 MertensB1^2*ArtinRank2*ln(Tribonacci)^2 1771138544338708 m001 (GAMMA(5/6)+Conway)/(Kac+RenyiParking) 1771138552956007 a007 Real Root Of 118*x^4-13*x^3-750*x^2-895*x+182 1771138556887073 a007 Real Root Of 742*x^4+861*x^3-918*x^2-75*x+229 1771138559842425 a008 Real Root of x^4-2*x^3+3*x^2+29*x+21 1771138562641163 r009 Re(z^3+c),c=-4/23+2/33*I,n=7 1771138563601903 r009 Re(z^3+c),c=-3/122+13/32*I,n=22 1771138565193706 a007 Real Root Of 354*x^4-37*x^3-881*x^2+741*x+387 1771138570169733 r005 Im(z^2+c),c=-21/52+21/43*I,n=10 1771138570287619 m005 (1/2*2^(1/2)-6/7)/(1/11*exp(1)+3/5) 1771138572605734 r009 Re(z^3+c),c=-3/122+13/32*I,n=24 1771138573759341 r009 Re(z^3+c),c=-3/122+13/32*I,n=26 1771138573895340 r009 Re(z^3+c),c=-3/122+13/32*I,n=28 1771138573909249 r009 Re(z^3+c),c=-3/122+13/32*I,n=30 1771138573910133 r009 Re(z^3+c),c=-3/122+13/32*I,n=33 1771138573910175 r009 Re(z^3+c),c=-3/122+13/32*I,n=35 1771138573910191 r009 Re(z^3+c),c=-3/122+13/32*I,n=37 1771138573910195 r009 Re(z^3+c),c=-3/122+13/32*I,n=39 1771138573910196 r009 Re(z^3+c),c=-3/122+13/32*I,n=41 1771138573910196 r009 Re(z^3+c),c=-3/122+13/32*I,n=43 1771138573910196 r009 Re(z^3+c),c=-3/122+13/32*I,n=45 1771138573910196 r009 Re(z^3+c),c=-3/122+13/32*I,n=47 1771138573910196 r009 Re(z^3+c),c=-3/122+13/32*I,n=49 1771138573910196 r009 Re(z^3+c),c=-3/122+13/32*I,n=51 1771138573910196 r009 Re(z^3+c),c=-3/122+13/32*I,n=53 1771138573910196 r009 Re(z^3+c),c=-3/122+13/32*I,n=55 1771138573910196 r009 Re(z^3+c),c=-3/122+13/32*I,n=57 1771138573910196 r009 Re(z^3+c),c=-3/122+13/32*I,n=59 1771138573910196 r009 Re(z^3+c),c=-3/122+13/32*I,n=61 1771138573910196 r009 Re(z^3+c),c=-3/122+13/32*I,n=63 1771138573910196 r009 Re(z^3+c),c=-3/122+13/32*I,n=64 1771138573910196 r009 Re(z^3+c),c=-3/122+13/32*I,n=62 1771138573910196 r009 Re(z^3+c),c=-3/122+13/32*I,n=60 1771138573910196 r009 Re(z^3+c),c=-3/122+13/32*I,n=58 1771138573910196 r009 Re(z^3+c),c=-3/122+13/32*I,n=56 1771138573910196 r009 Re(z^3+c),c=-3/122+13/32*I,n=54 1771138573910196 r009 Re(z^3+c),c=-3/122+13/32*I,n=52 1771138573910196 r009 Re(z^3+c),c=-3/122+13/32*I,n=50 1771138573910196 r009 Re(z^3+c),c=-3/122+13/32*I,n=48 1771138573910196 r009 Re(z^3+c),c=-3/122+13/32*I,n=46 1771138573910196 r009 Re(z^3+c),c=-3/122+13/32*I,n=44 1771138573910196 r009 Re(z^3+c),c=-3/122+13/32*I,n=42 1771138573910197 r009 Re(z^3+c),c=-3/122+13/32*I,n=40 1771138573910198 r009 Re(z^3+c),c=-3/122+13/32*I,n=38 1771138573910207 r009 Re(z^3+c),c=-3/122+13/32*I,n=36 1771138573910236 r009 Re(z^3+c),c=-3/122+13/32*I,n=34 1771138573910257 r009 Re(z^3+c),c=-3/122+13/32*I,n=32 1771138573910304 r009 Re(z^3+c),c=-3/122+13/32*I,n=31 1771138573914325 r009 Re(z^3+c),c=-3/122+13/32*I,n=29 1771138573958885 r009 Re(z^3+c),c=-3/122+13/32*I,n=27 1771138574360087 r009 Re(z^3+c),c=-3/122+13/32*I,n=25 1771138577610261 r009 Re(z^3+c),c=-3/122+13/32*I,n=23 1771138596133548 p004 log(23251/19477) 1771138602195020 r009 Re(z^3+c),c=-3/122+13/32*I,n=21 1771138602714666 m005 (1/2*exp(1)+3/5)/(53/56+1/14*5^(1/2)) 1771138604214179 m001 (DuboisRaymond-Zeta(5))/PlouffeB 1771138611124480 a007 Real Root Of -440*x^4-699*x^3-144*x^2-857*x-620 1771138611608185 m001 Zeta(1,-1)^MertensB2/(ln(2^(1/2)+1)^MertensB2) 1771138613012691 p004 log(13007/2213) 1771138613477105 r009 Re(z^3+c),c=-4/23+2/33*I,n=8 1771138615184580 m001 Zeta(9)/exp(ErdosBorwein)*log(1+sqrt(2)) 1771138617364640 r005 Im(z^2+c),c=-25/23+1/44*I,n=3 1771138618525359 m001 MinimumGamma*Trott2nd^FibonacciFactorial 1771138623119557 r009 Re(z^3+c),c=-4/23+2/33*I,n=9 1771138623146420 m001 Thue*(Catalan-Rabbit) 1771138624091548 r009 Re(z^3+c),c=-4/23+2/33*I,n=10 1771138624132313 r009 Re(z^3+c),c=-4/23+2/33*I,n=15 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=16 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=17 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=18 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=19 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=24 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=25 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=26 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=27 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=33 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=34 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=35 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=36 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=41 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=42 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=43 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=44 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=45 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=40 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=39 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=38 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=37 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=32 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=31 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=30 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=28 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=29 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=23 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=22 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=21 1771138624132314 r009 Re(z^3+c),c=-4/23+2/33*I,n=20 1771138624132323 r009 Re(z^3+c),c=-4/23+2/33*I,n=14 1771138624132464 r009 Re(z^3+c),c=-4/23+2/33*I,n=13 1771138624133607 r009 Re(z^3+c),c=-4/23+2/33*I,n=12 1771138624137408 r009 Re(z^3+c),c=-4/23+2/33*I,n=11 1771138632876793 m005 (1/2*5^(1/2)+5/6)/(3/8*2^(1/2)+4/7) 1771138634386682 r005 Re(z^2+c),c=7/40+32/59*I,n=36 1771138641739017 r005 Re(z^2+c),c=-3/44+28/55*I,n=32 1771138651772794 m001 (gamma(3)+Magata)/(Sierpinski-TwinPrimes) 1771138651990815 r005 Im(z^2+c),c=-35/82+8/27*I,n=12 1771138654931941 r005 Im(z^2+c),c=-43/90+5/14*I,n=14 1771138658239157 r005 Im(z^2+c),c=-41/86+20/49*I,n=14 1771138663085286 g006 Psi(1,1/12)+Psi(1,2/5)+Psi(1,1/5)-Psi(1,10/11) 1771138669673055 q001 1571/887 1771138670874150 m001 (1+3^(1/2))^(1/2)-Cahen-FeigenbaumB 1771138679130584 r005 Im(z^2+c),c=11/48+5/62*I,n=10 1771138679294886 r002 17th iterates of z^2 + 1771138679446881 m006 (3*Pi^2+2)/(5/6*Pi-5/6) 1771138679446881 m008 (3*Pi^2+2)/(5/6*Pi-5/6) 1771138682751042 m005 (1/2*2^(1/2)-5/12)/(2/3*Pi-5/11) 1771138686279614 r009 Re(z^3+c),c=-4/23+2/33*I,n=6 1771138688176963 a007 Real Root Of -532*x^4-190*x^3-41*x^2+705*x-122 1771138694278434 a007 Real Root Of -575*x^4-96*x^3+768*x^2+915*x+138 1771138696060363 m001 (-BesselI(1,1)+1/2)/(GAMMA(1/3)+1) 1771138702381861 m001 (cos(1/5*Pi)+FeigenbaumKappa)/(Gompertz+Kac) 1771138703567650 a001 10946/199*521^(12/13) 1771138711639194 a007 Real Root Of -578*x^4-683*x^3+772*x^2+45*x-449 1771138716464223 r005 Im(z^2+c),c=-18/25+1/58*I,n=36 1771138721159585 a007 Real Root Of -648*x^4-484*x^3+722*x^2-880*x-136 1771138724715816 r005 Im(z^2+c),c=-9/14+37/140*I,n=38 1771138734849009 r005 Im(z^2+c),c=-55/102+25/64*I,n=28 1771138737077478 p001 sum((-1)^n/(577*n+493)/(3^n),n=0..infinity) 1771138743585279 m001 Pi*(Psi(2,1/3)+polylog(4,1/2)-Pi^(1/2)) 1771138749876756 a001 3*832040^(22/47) 1771138753199869 r005 Im(z^2+c),c=-33/46+7/30*I,n=6 1771138754399786 m001 (Si(Pi)+arctan(1/3))/(polylog(4,1/2)+Rabbit) 1771138754904995 r009 Re(z^3+c),c=-25/78+23/37*I,n=63 1771138755949704 a007 Real Root Of 91*x^4-309*x^3-975*x^2-414*x-287 1771138773022365 b008 7^BarnesG[1/4] 1771138777405515 r005 Im(z^2+c),c=-23/28+23/44*I,n=5 1771138778606013 b008 E+(3+Sqrt[Pi])*Pi 1771138778806970 m001 (MasserGramainDelta-gamma(2))/MertensB2 1771138778810715 r009 Re(z^3+c),c=-3/122+13/32*I,n=19 1771138788676661 r005 Im(z^2+c),c=-43/122+11/38*I,n=5 1771138793139259 m001 Chi(1)*HardHexagonsEntropy+BesselK(1,1) 1771138797602134 m001 1/exp(Conway)^2*Cahen/GAMMA(1/3) 1771138801335196 r009 Re(z^3+c),c=-17/31+31/52*I,n=42 1771138814583108 g005 GAMMA(3/11)*GAMMA(2/9)^2/GAMMA(2/7) 1771138814936174 m001 gamma^(Zeta(1/2)/OrthogonalArrays) 1771138819041933 r009 Re(z^3+c),c=-9/17+13/15*I,n=3 1771138819336494 m001 ErdosBorwein*Khinchin^Paris 1771138820932084 r005 Im(z^2+c),c=-29/46+15/47*I,n=11 1771138827697061 a007 Real Root Of -419*x^4-652*x^3-174*x^2-199*x+694 1771138827754902 m006 (5/6*exp(2*Pi)+1/3)/(3/4*ln(Pi)-5/6) 1771138830084189 b008 19+50*Sqrt[10] 1771138836572290 a007 Real Root Of 144*x^4-392*x^3-131*x^2+490*x+304 1771138839775448 a007 Real Root Of -541*x^4-351*x^3+897*x^2-670*x-627 1771138843468415 m001 (2^(1/2)+Pi^(1/2))/(KhinchinHarmonic+ZetaQ(2)) 1771138843848586 m001 Zeta(7)^2*exp(GolombDickman)*cos(Pi/12)^2 1771138860499370 h001 (1/9*exp(2)+5/11)/(11/12*exp(2)+3/7) 1771138873148453 a007 Real Root Of 381*x^4+636*x^3+666*x^2-970*x+147 1771138881368537 m001 (BesselJ(0,1)-FeigenbaumC)/BesselK(1,1) 1771138881888608 m008 (1/6*Pi^5+2/5)/(3*Pi^4-2) 1771138883877550 a007 Real Root Of 360*x^4+296*x^3-143*x^2+645*x-307 1771138891252922 r009 Re(z^3+c),c=-33/122+9/19*I,n=14 1771138894278791 m001 (StolarskyHarborth-Trott2nd)/(ln(3)-Kolakoski) 1771138902566453 m001 (1/2*exp(1/Pi)+MadelungNaCl)/exp(1/Pi) 1771138911241113 k006 concat of cont frac of 1771138916804588 r009 Re(z^3+c),c=-7/38+54/59*I,n=35 1771138918736212 r005 Im(z^2+c),c=-35/44+1/7*I,n=48 1771138919762898 a007 Real Root Of 513*x^4+321*x^3-782*x^2+535*x+136 1771138920279288 a001 1/29*7^(37/44) 1771138923405172 r009 Re(z^3+c),c=-15/52+28/53*I,n=29 1771138928296749 r009 Re(z^3+c),c=-11/50+19/63*I,n=7 1771138940554356 r004 Re(z^2+c),c=-1/38-4/7*I,z(0)=I,n=41 1771138941174749 m001 BesselK(1,1)/FransenRobinson^2*exp(sin(1)) 1771138947953783 a007 Real Root Of -172*x^4-150*x^3-125*x^2-663*x+77 1771138956714972 m001 Pi*(Psi(2,1/3)-ln(2^(1/2)+1))-GAMMA(19/24) 1771138960575259 a007 Real Root Of -15*x^4+519*x^3+487*x^2+688*x-140 1771138961146691 m005 (1/3*2^(1/2)-3/4)/(4/7*Pi-2/9) 1771138961932597 m001 MinimumGamma^2/ln(Khintchine)^2*cos(Pi/5) 1771138970392104 q001 664/3749 1771138975852809 a007 Real Root Of 248*x^4-358*x^3-104*x^2-960*x-169 1771138978907917 m001 FeigenbaumC+KhinchinHarmonic+Riemann1stZero 1771138981273237 m001 (1+arctan(1/3))/(-Backhouse+Rabbit) 1771138985110817 m005 (1/3*exp(1)-2/9)/(1/5*5^(1/2)-5/6) 1771138989840932 m001 (Zeta(3)+1)/(-GolombDickman+1/2) 1771138990748661 m002 Cosh[Pi]+4*Sech[Pi]+Sinh[Pi]/2 1771138992921323 s002 sum(A017460[n]/(exp(n)+1),n=1..infinity) 1771138993880681 a007 Real Root Of -67*x^4+808*x^3-485*x^2-981*x-571 1771139002648395 m001 (-Landau+OneNinth)/(exp(1)-sin(1/12*Pi)) 1771139007239339 s002 sum(A195593[n]/(n^2*2^n+1),n=1..infinity) 1771139007908734 m005 (5/6*gamma+1/6)/(4*2^(1/2)-2) 1771139009279887 a007 Real Root Of 614*x^4+801*x^3-29*x^2+766*x-144 1771139016615268 a007 Real Root Of 67*x^4-268*x^3-916*x^2-30*x+672 1771139024441041 a001 7/17711*1346269^(28/47) 1771139029299393 a007 Real Root Of -705*x^4-633*x^3+293*x^2-942*x+833 1771139031066103 r002 42th iterates of z^2 + 1771139031478440 r002 6th iterates of z^2 + 1771139033652841 r005 Re(z^2+c),c=21/82+31/63*I,n=61 1771139033687755 m002 -1/6+4*Sech[Pi]*Tanh[Pi] 1771139034346069 m001 (Si(Pi)-ln(2^(1/2)+1))/(-GAMMA(19/24)+Kac) 1771139043150759 m001 Zeta(5)^2*exp(GAMMA(11/24))^2*sin(Pi/5)^2 1771139046578684 r002 16th iterates of z^2 + 1771139048154094 a007 Real Root Of -66*x^4+805*x^3+144*x^2+757*x-143 1771139058572499 a007 Real Root Of 674*x^4+891*x^3-252*x^2+889*x+683 1771139059315312 a007 Real Root Of -514*x^4-755*x^3-463*x^2-880*x+757 1771139059479324 m005 (1/2*3^(1/2)+2/9)/(1/12*3^(1/2)+6) 1771139061609578 r005 Im(z^2+c),c=-15/14+38/183*I,n=23 1771139061682422 r005 Im(z^2+c),c=-61/106+28/57*I,n=21 1771139063591893 q001 5069/2862 1771139064330714 a003 cos(Pi*5/96)/cos(Pi*34/109) 1771139065858757 m001 (LambertW(1)+Khinchin)/(Salem+TwinPrimes) 1771139069575581 m001 1/(3^(1/3))*ErdosBorwein*exp(arctan(1/2)) 1771139075476853 a007 Real Root Of -757*x^4-810*x^3+595*x^2-549*x+110 1771139085541464 r005 Re(z^2+c),c=-9/58+25/56*I,n=6 1771139096577249 m001 ln(GAMMA(11/12))*BesselK(0,1)/GAMMA(17/24) 1771139096607865 a007 Real Root Of -491*x^4-684*x^3+259*x^2-18*x+187 1771139100782665 a007 Real Root Of -405*x^4-473*x^3-43*x^2-947*x-185 1771139102497531 a001 41/3536736619241*1597^(15/22) 1771139106764624 m001 1/arctan(1/2)^2*FeigenbaumB^2*ln(gamma) 1771139111721311 k007 concat of cont frac of 1771139119684505 a007 Real Root Of -364*x^4-273*x^3+428*x^2-911*x-891 1771139121053038 a007 Real Root Of 255*x^4-235*x^3-398*x^2+955*x-875 1771139122111821 k008 concat of cont frac of 1771139122605513 k008 concat of cont frac of 1771139130303403 a007 Real Root Of -386*x^4-609*x^3-134*x^2+40*x+906 1771139133285121 k008 concat of cont frac of 1771139134124520 a007 Real Root Of -350*x^4-101*x^3+604*x^2-663*x-186 1771139136593657 r005 Re(z^2+c),c=-1/24+33/40*I,n=6 1771139136876143 a007 Real Root Of 879*x^4+976*x^3-910*x^2-2*x-376 1771139139097250 a003 cos(Pi*8/47)+sin(Pi*39/107) 1771139140504952 m006 (1/3*Pi^2-3)/(2/Pi+1) 1771139141855613 m001 GaussKuzminWirsing^GAMMA(1/6)-sqrt(Pi) 1771139141855613 m001 Pi^(1/2)-GaussKuzminWirsing^(2*Pi/GAMMA(5/6)) 1771139154732995 m001 (exp(1)-ln(Pi))/(GaussAGM+ZetaQ(2)) 1771139155388132 m005 (-25/44+1/4*5^(1/2))/(1/8*Pi-4/9) 1771139155486615 m005 (2*Pi-1/2)/(5/6*exp(1)+1) 1771139157468222 p004 log(19919/3389) 1771139158660280 r005 Im(z^2+c),c=-9/58+11/47*I,n=17 1771139163197223 s003 concatenated sequence A106921 1771139164561593 a007 Real Root Of -715*x^4-862*x^3+903*x^2+214*x-207 1771139164913834 r005 Re(z^2+c),c=-45/38+7/37*I,n=20 1771139165900732 r005 Re(z^2+c),c=-5/94+31/58*I,n=41 1771139167223241 k007 concat of cont frac of 1771139168696825 m001 (Landau+MertensB2)/(KhinchinLevy-Psi(1,1/3)) 1771139174222822 a007 Real Root Of -87*x^4+176*x^3+482*x^2+621*x-126 1771139179389236 m001 1/Zeta(1/2)^2/GAMMA(13/24)/ln(sinh(1)) 1771139201398383 a001 89*521^(11/13) 1771139205098129 a007 Real Root Of 29*x^4-218*x^3-66*x^2+640*x-156 1771139216754923 b008 5*(-36+EulerGamma) 1771139219058896 a007 Real Root Of -746*x^4-977*x^3+579*x^2-483*x-759 1771139221317427 k002 Champernowne real with 7*n^2+33*n-23 1771139230478331 r005 Im(z^2+c),c=-41/48+3/23*I,n=49 1771139230561478 a007 Real Root Of 469*x^4+445*x^3-60*x^2+592*x-906 1771139230830932 m001 gamma(1)+KhinchinHarmonic^ln(3) 1771139233342511 m001 (GAMMA(23/24)-Porter)/(sin(1/12*Pi)+gamma(2)) 1771139237299364 m001 (ln(3)+2*Pi/GAMMA(5/6))/(Paris-Weierstrass) 1771139240506329 q001 3498/1975 1771139241132291 k008 concat of cont frac of 1771139247841024 r005 Re(z^2+c),c=-9/50+1/5*I,n=4 1771139257601152 r009 Re(z^3+c),c=-13/50+7/16*I,n=23 1771139268545000 a007 Real Root Of 461*x^4+357*x^3-618*x^2+523*x+312 1771139269948009 a007 Real Root Of 585*x^4+308*x^3-614*x^2+842*x-628 1771139272979588 p001 sum(1/(586*n+569)/(64^n),n=0..infinity) 1771139274253877 h001 (2/11*exp(2)+11/12)/(3/7*exp(1)+1/9) 1771139276532034 m001 1/Trott/ln(FeigenbaumD)*Ei(1) 1771139277280218 a005 (1/sin(92/231*Pi))^11 1771139278764426 a007 Real Root Of 378*x^4+530*x^3-724*x^2-314*x+940 1771139283094874 a007 Real Root Of 250*x^4+346*x^3-82*x^2-59*x-385 1771139284236941 a007 Real Root Of 402*x^4+802*x^3+280*x^2-329*x-961 1771139286602253 r005 Re(z^2+c),c=-25/27+11/32*I,n=4 1771139287968435 a007 Real Root Of -365*x^4-47*x^3+994*x^2+107*x+402 1771139289307118 a003 cos(Pi*17/87)+sin(Pi*29/72) 1771139295253540 r005 Re(z^2+c),c=-9/10+66/251*I,n=10 1771139295874900 a007 Real Root Of 362*x^4+402*x^3-69*x^2+746*x+209 1771139296916286 r005 Re(z^2+c),c=-13/118+17/40*I,n=22 1771139302904892 a007 Real Root Of 544*x^4+873*x^3-442*x^2-696*x-349 1771139304521716 r005 Im(z^2+c),c=-33/70+6/19*I,n=18 1771139311212221 k008 concat of cont frac of 1771139312090019 a001 969323029/21*39088169^(1/13) 1771139312090019 a001 370248451/21*10610209857723^(1/13) 1771139312090019 a001 199691526/7*20365011074^(1/13) 1771139312094860 a001 224056801/3*75025^(1/13) 1771139313016159 m006 (2/5*exp(Pi)-2/3)/(1/Pi+1/6) 1771139319939355 a007 Real Root Of 711*x^4+847*x^3-864*x^2-329*x-163 1771139324392226 a007 Real Root Of 455*x^4+279*x^3-784*x^2+752*x+864 1771139327396012 m001 StolarskyHarborth^(5^(1/2))*Sarnak^(5^(1/2)) 1771139327824993 r009 Re(z^3+c),c=-15/46+19/33*I,n=18 1771139329272836 r002 31th iterates of z^2 + 1771139339975285 r009 Re(z^3+c),c=-15/52+19/36*I,n=25 1771139343646847 m001 (Si(Pi)+Chi(1))/(ln(Pi)+Artin) 1771139344647794 m005 (5*exp(1)-4/5)/(11/4+2*5^(1/2)) 1771139347055781 r009 Re(z^3+c),c=-31/86+37/61*I,n=41 1771139347282557 r002 39th iterates of z^2 + 1771139347468223 r005 Re(z^2+c),c=-11/58+4/25*I,n=4 1771139348278876 m001 (sin(1/12*Pi)-Cahen)/(MinimumGamma+Rabbit) 1771139352951016 m001 (exp(1)+3^(1/2))/(-Shi(1)+FeigenbaumMu) 1771139356859590 m002 5*Pi^3+E^Pi*Coth[Pi]-Log[Pi] 1771139361212278 a007 Real Root Of 34*x^4-258*x^3+46*x^2+523*x-986 1771139363510160 l006 ln(8407/10036) 1771139372200404 a001 76/89*4181^(4/11) 1771139392733810 a007 Real Root Of 718*x^4+924*x^3-686*x^2+390*x+911 1771139398816988 a001 13/123*47^(41/56) 1771139401100349 a007 Real Root Of 4*x^4+74*x^3+52*x^2-84*x-274 1771139403220334 m001 (BesselI(0,1)+FransenRobinson)/(Pi-sin(1)) 1771139403895914 m001 (BesselI(0,2)+GAMMA(11/12))/(Landau+Totient) 1771139405811296 q001 5425/3063 1771139408368566 m004 -1+(101*Sqrt[5]*Pi)/4+Cos[Sqrt[5]*Pi] 1771139408973281 m001 Pi*Psi(2,1/3)-5^(1/2)/LambertW(1) 1771139411084670 r009 Re(z^3+c),c=-1/32+39/62*I,n=28 1771139417471154 a007 Real Root Of -285*x^4-746*x^3-50*x^2+929*x+462 1771139418051644 a007 Real Root Of -199*x^4-9*x^3+732*x^2+367*x+262 1771139419046723 r002 13th iterates of z^2 + 1771139429618509 a007 Real Root Of -346*x^4-61*x^3+962*x^2+219*x+436 1771139429893239 r005 Im(z^2+c),c=-19/18+48/211*I,n=62 1771139433340020 a007 Real Root Of 260*x^4-984*x^3+74*x^2-937*x-174 1771139434560815 m005 (1/2*5^(1/2)-5/6)/(5/12*2^(1/2)-3/4) 1771139437227331 m001 KhinchinLevy^Artin/BesselK(1,1) 1771139437392354 p004 log(27407/4663) 1771139450064036 m006 (2/5/Pi-5/6)/(3/4*exp(2*Pi)-3) 1771139465787621 m002 -2/Pi^3+6*Pi-ProductLog[Pi] 1771139471189146 r009 Re(z^3+c),c=-9/56+7/8*I,n=23 1771139472684213 b008 2+Zeta[1/6]/3 1771139472968382 m001 (FeigenbaumD-Landau)/(MadelungNaCl-Otter) 1771139483570909 a007 Real Root Of -194*x^4+204*x^3+612*x^2-456*x+315 1771139486641215 a001 1/5796*(1/2*5^(1/2)+1/2)^30*18^(13/22) 1771139493437518 l006 ln(7669/9155) 1771139493636754 r005 Re(z^2+c),c=-7/66+13/30*I,n=29 1771139499268860 r005 Re(z^2+c),c=-1+31/223*I,n=50 1771139514099681 a007 Real Root Of -178*x^4+175*x^3+213*x^2-613*x+970 1771139516814586 a007 Real Root Of 345*x^4+496*x^3-270*x^2-499*x-676 1771139521079670 a007 Real Root Of 495*x^4+942*x^3+48*x^2-362*x-429 1771139521260505 m001 RenyiParking^2*Rabbit^2/exp(arctan(1/2)) 1771139546738645 m001 1/ln(Riemann1stZero)/KhintchineLevy*GAMMA(1/6) 1771139556728447 m001 (BesselK(0,1)-ln(gamma))/(-GAMMA(19/24)+Kac) 1771139557001816 a007 Real Root Of 338*x^4-155*x^3-828*x^2+678*x-389 1771139558394623 a003 sin(Pi*5/78)*sin(Pi*9/26) 1771139563365766 m009 (4*Catalan+1/2*Pi^2+1/5)/(5*Psi(1,1/3)-4/5) 1771139577912583 a007 Real Root Of -9*x^4+520*x^3-439*x^2-339*x-823 1771139581974373 a001 29/233*6765^(1/25) 1771139587364717 p004 log(34319/5839) 1771139588619229 a001 1/15124*(1/2*5^(1/2)+1/2)^15*199^(9/16) 1771139598041732 m006 (3/4*Pi^2+1/5)/(4/5*exp(2*Pi)+5/6) 1771139601105419 a005 (1/sin(75/217*Pi))^155 1771139602407723 a007 Real Root Of 423*x^4+478*x^3-285*x^2+731*x+682 1771139608078182 r005 Im(z^2+c),c=-35/44+5/53*I,n=45 1771139620843553 a007 Real Root Of 460*x^4+233*x^3-855*x^2-227*x-952 1771139622045740 a007 Real Root Of -474*x^4-857*x^3-193*x^2-405*x-209 1771139625543110 m005 (1/2*5^(1/2)-5/6)/(3/7*Catalan-2) 1771139633404182 p004 log(37199/6329) 1771139634918896 r005 Im(z^2+c),c=-11/30+9/17*I,n=10 1771139635948291 m001 1/exp(GAMMA(5/12))/BesselJ(0,1)/Zeta(1,2)^2 1771139638028923 a007 Real Root Of -694*x^4-984*x^3+395*x^2-358*x-511 1771139645498451 a007 Real Root Of -724*x^4+173*x^3-968*x^2+762*x+167 1771139648237957 m001 FransenRobinson/(sin(1)-1) 1771139648354239 m001 sin(1/5*Pi)+Salem^Zeta(5) 1771139651033721 l006 ln(6931/8274) 1771139662528246 a007 Real Root Of 389*x^4+676*x^3-422*x^2-814*x-190 1771139664706483 m005 (1/2*Pi-3)/(1/10*5^(1/2)+7/12) 1771139667068282 a007 Real Root Of 411*x^4+861*x^3+306*x^2-361*x-860 1771139667680001 r005 Im(z^2+c),c=-21/23+7/45*I,n=16 1771139676039676 s002 sum(A239060[n]/(10^n-1),n=1..infinity) 1771139680662925 r005 Im(z^2+c),c=-13/25+11/34*I,n=27 1771139681696709 a003 cos(Pi*10/53)+sin(Pi*34/87) 1771139694174838 a007 Real Root Of -391*x^4+195*x^3+850*x^2-797*x+853 1771139694216766 m001 1/GAMMA(7/24)*GAMMA(1/3)^2/ln(Zeta(5))^2 1771139698039837 m001 KhinchinLevy^Grothendieck+PrimesInBinary 1771139702328426 m001 (gamma(3)+Kac)/(Khinchin+Thue) 1771139704875590 a001 28657/199*521^(10/13) 1771139705882352 q001 1927/1088 1771139710846801 m005 (1/3*5^(1/2)-3/4)/(3/4*exp(1)+7/12) 1771139714497051 r002 3th iterates of z^2 + 1771139718908098 a007 Real Root Of 676*x^4+893*x^3+210*x^2+763*x-998 1771139729601833 m004 7-Cosh[Sqrt[5]*Pi]/(2*ProductLog[Sqrt[5]*Pi]) 1771139732216034 a007 Real Root Of -263*x^4-209*x^3+366*x^2-530*x-660 1771139740859165 r005 Re(z^2+c),c=-35/29+1/25*I,n=58 1771139741180563 a007 Real Root Of -582*x^4+552*x^3+999*x^2+718*x-161 1771139741201094 r005 Im(z^2+c),c=-17/14+35/218*I,n=35 1771139746602336 r005 Im(z^2+c),c=-4/3+20/247*I,n=15 1771139762897844 r005 Im(z^2+c),c=-31/30+24/121*I,n=54 1771139764175625 a007 Real Root Of 370*x^4+573*x^3-105*x^2-485*x-987 1771139766839275 m001 HardHexagonsEntropy/(ArtinRank2^Robbin) 1771139771769073 a001 75025/843*18^(5/21) 1771139772273844 r005 Re(z^2+c),c=-5/6+7/75*I,n=52 1771139774793136 m005 (1/2*Zeta(3)-5/8)/(145/198+5/18*5^(1/2)) 1771139786731501 a007 Real Root Of 491*x^4+365*x^3-622*x^2+758*x+490 1771139793843531 r005 Re(z^2+c),c=-5/6+13/138*I,n=38 1771139795080314 r005 Im(z^2+c),c=-21/22+20/107*I,n=8 1771139800421481 m001 Psi(1,1/3)/(Rabbit^GAMMA(13/24)) 1771139803167397 a007 Real Root Of 878*x^4+974*x^3-942*x^2+265*x+196 1771139803601947 r005 Im(z^2+c),c=-41/102+22/39*I,n=49 1771139812950798 a007 Real Root Of 109*x^4-175*x^3-270*x^2+280*x-702 1771139814593429 m001 1/exp(MinimumGamma)^2*MertensB1*(2^(1/3)) 1771139822351370 r005 Re(z^2+c),c=-32/23+20/33*I,n=2 1771139823768755 r005 Re(z^2+c),c=-5/9-43/85*I,n=16 1771139824806361 r005 Re(z^2+c),c=37/122+10/39*I,n=52 1771139828739197 m001 FeigenbaumD*(2*Pi/GAMMA(5/6)+MertensB2) 1771139830212926 m001 (1+Zeta(1,-1))/(-Conway+FeigenbaumB) 1771139835194230 m001 (Si(Pi)-arctan(1/2))/(exp(-1/2*Pi)+Stephens) 1771139835538965 m001 GAMMA(1/4)/Riemann1stZero*exp(GAMMA(11/24)) 1771139846190391 l006 ln(6193/7393) 1771139853412054 a007 Real Root Of -763*x^4-458*x^3+892*x^2-990*x+412 1771139858892119 a007 Real Root Of -617*x^4-630*x^3+937*x^2+712*x+893 1771139870244354 h001 (-7*exp(-3)-2)/(-7*exp(3)+8) 1771139870484404 a003 cos(Pi*2/93)/cos(Pi*13/42) 1771139875544114 r005 Im(z^2+c),c=-7/8+22/117*I,n=12 1771139876041619 r009 Re(z^3+c),c=-37/64+25/52*I,n=63 1771139883292810 r005 Im(z^2+c),c=-6/23+6/23*I,n=17 1771139885065047 m001 (1-BesselJ(0,1))/(ln(2+3^(1/2))+ZetaQ(3)) 1771139888864193 m001 CopelandErdos/exp(Artin)^2*(2^(1/3))^2 1771139892109280 m001 GlaisherKinkelin^(exp(1/exp(1))*BesselI(1,2)) 1771139893530566 a007 Real Root Of 415*x^4+589*x^3-353*x^2+341*x+900 1771139898091158 a001 7/6*3^(19/50) 1771139898257563 r002 26th iterates of z^2 + 1771139903526307 r005 Re(z^2+c),c=-13/86+7/22*I,n=7 1771139909920542 a007 Real Root Of -61*x^4+930*x^3-906*x^2-412*x-995 1771139911034759 a003 cos(Pi*13/93)+cos(Pi*1/6) 1771139918855309 m001 (2^(1/2)-ln(3))/(Niven+ZetaP(4)) 1771139919242113 k008 concat of cont frac of 1771139923711165 r005 Im(z^2+c),c=-14/23+18/53*I,n=56 1771139935140625 m001 Bloch^Sarnak*FeigenbaumDelta^Sarnak 1771139947861235 r009 Re(z^3+c),c=-9/29+22/37*I,n=48 1771139950411986 h001 (4/7*exp(1)+7/8)/(3/10*exp(1)+5/9) 1771139957913713 m001 (MertensB2+Trott)/(gamma(1)-polylog(4,1/2)) 1771139959354875 m001 exp(RenyiParking)*Kolakoski*GAMMA(11/12) 1771139959831871 g002 -Psi(1/12)-Psi(10/11)-Psi(6/7)-Psi(2/7) 1771139971139971 q001 6137/3465 1771139971321176 a007 Real Root Of -548*x^4-189*x^3+784*x^2-974*x+158 1771139971616881 a007 Real Root Of -245*x^4-68*x^3+15*x^2-581*x+957 1771139972660284 r005 Im(z^2+c),c=-47/106+19/63*I,n=33 1771139973071018 r001 63i'th iterates of 2*x^2-1 of 1771139973331745 r005 Re(z^2+c),c=-127/106+2/19*I,n=30 1771139974935214 a001 3/7*1322157322203^(23/24) 1771139975673660 a007 Real Root Of 672*x^4+890*x^3-760*x^2-799*x-699 1771139976201754 r009 Re(z^3+c),c=-45/86+14/57*I,n=4 1771139992041884 a007 Real Root Of 656*x^4+516*x^3-457*x^2+879*x-598 1771139993996932 r009 Re(z^3+c),c=-3/122+13/32*I,n=17 1771139997955001 r009 Re(z^3+c),c=-19/110+1/26*I,n=2 1771140006720811 a007 Real Root Of 453*x^4+536*x^3+52*x^2+630*x-527 1771140009138943 r005 Im(z^2+c),c=-20/21+11/64*I,n=30 1771140009538751 m001 (TwinPrimes+ZetaQ(3))/(Pi+HardyLittlewoodC3) 1771140010374110 a003 cos(Pi*5/108)/cos(Pi*33/106) 1771140015085567 a007 Real Root Of 461*x^4+208*x^3-597*x^2+616*x-417 1771140018104512 a007 Real Root Of -481*x^4-583*x^3+189*x^2-436*x+129 1771140019832956 r002 22th iterates of z^2 + 1771140021224595 m001 (Kolakoski-sin(1))/(-TreeGrowth2nd+ZetaP(3)) 1771140024361869 r005 Im(z^2+c),c=-11/18+29/91*I,n=62 1771140039147919 a007 Real Root Of -424*x^4-82*x^3+853*x^2-564*x+42 1771140043452805 r009 Re(z^3+c),c=-11/18+19/64*I,n=27 1771140048917341 r009 Re(z^3+c),c=-7/23+26/45*I,n=41 1771140052101033 a007 Real Root Of -375*x^4-135*x^3+962*x^2-64*x-191 1771140054669280 m001 (2^(1/2)+BesselK(0,1))/(-Zeta(1,2)+Paris) 1771140062619788 m001 1/GAMMA(1/12)*exp(RenyiParking)/Zeta(5) 1771140064429064 m001 (ln(2)/ln(10)+cos(1/5*Pi))/(ln(gamma)+Salem) 1771140079256177 a007 Real Root Of 611*x^4+485*x^3-592*x^2+521*x-538 1771140090778364 s002 sum(A081170[n]/(n^2*exp(n)-1),n=1..infinity) 1771140092553639 q001 421/2377 1771140094120411 r005 Im(z^2+c),c=-49/82+16/55*I,n=30 1771140094127585 r005 Re(z^2+c),c=-17/114+19/58*I,n=10 1771140094152050 l006 ln(5455/6512) 1771140098917353 r005 Re(z^2+c),c=-5/6+13/70*I,n=54 1771140100005882 a007 Real Root Of 214*x^4-246*x^3-786*x^2+590*x+38 1771140125494203 r005 Re(z^2+c),c=-7/106+23/45*I,n=64 1771140126725477 m001 MertensB1*exp(Conway)*Tribonacci 1771140130195379 m001 (1+Champernowne)/(-Robbin+Trott2nd) 1771140135548282 m002 6+Cosh[Pi]+(Cosh[Pi]*Coth[Pi])/Pi^4 1771140137484255 r002 59th iterates of z^2 + 1771140150585854 a001 2207/13*5^(1/38) 1771140150788639 h001 (-exp(4)+8)/(-6*exp(1)-10) 1771140153187390 r005 Re(z^2+c),c=-35/122+19/46*I,n=3 1771140155028751 a007 Real Root Of -686*x^4-729*x^3+715*x^2-558*x-531 1771140157575310 m001 3^(1/2)/(GaussAGM^Champernowne) 1771140168030798 m001 (BesselI(0,1)-MasserGramainDelta)^Otter 1771140182025319 l006 ln(49/288) 1771140184486481 r002 37th iterates of z^2 + 1771140188017713 s002 sum(A238935[n]/((3*n+1)!),n=1..infinity) 1771140192354496 r005 Re(z^2+c),c=11/38+5/21*I,n=17 1771140192618540 m005 (exp(1)+5)/(2/5*gamma-2/3) 1771140197514872 a001 521/233*75025^(22/37) 1771140206196232 a001 46368/199*521^(9/13) 1771140206268949 h001 (-6*exp(1)+4)/(-9*exp(2)-3) 1771140207310420 q001 6493/3666 1771140212359713 b008 1/2+14^(1/11) 1771140220089916 m001 MadelungNaCl+ZetaQ(2)^GlaisherKinkelin 1771140220637755 a007 Real Root Of -709*x^4+597*x^3-843*x^2+658*x+147 1771140221421750 a007 Real Root Of 451*x^4+842*x^3+556*x^2+581*x-475 1771140221789801 a007 Real Root Of 365*x^4+604*x^3-222*x^2-684*x-751 1771140224246672 a007 Real Root Of -622*x^4-997*x^3+413*x^2+148*x-452 1771140224323437 k002 Champernowne real with 15/2*n^2+63/2*n-22 1771140228004982 a007 Real Root Of -337*x^4-279*x^3-52*x^2-637*x+801 1771140236549109 a007 Real Root Of 908*x^4-797*x^3-38*x^2-530*x-98 1771140239043735 m004 180-Csc[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi] 1771140239089632 m001 (BesselI(0,1)+Ei(1))/(MertensB3+ZetaP(2)) 1771140243272403 a001 1/843*(1/2*5^(1/2)+1/2)^13*3^(23/24) 1771140247432050 m001 (Ei(1)+BesselI(1,2))/(Mills+Robbin) 1771140247759365 a007 Real Root Of 409*x^4-744*x^3-459*x^2-609*x-98 1771140252291138 m001 1/ln(sin(1))^2*KhintchineHarmonic^2*sqrt(3) 1771140253153829 m005 (1/2*Catalan+3/5)/(1/6*Pi-7/12) 1771140255742283 r005 Im(z^2+c),c=-65/98+1/60*I,n=24 1771140256324566 a003 cos(Pi*9/47)+sin(Pi*36/91) 1771140264441560 m001 (Rabbit-Tetranacci)/(Trott2nd+TwinPrimes) 1771140271182376 m001 (RenyiParking-Totient)/(CopelandErdos+Paris) 1771140289724532 s002 sum(A190445[n]/(n^3*exp(n)-1),n=1..infinity) 1771140300395722 r002 20th iterates of z^2 + 1771140309171346 m005 (1/2*exp(1)+1/6)/(3/4*gamma+3/7) 1771140311859677 m001 gamma(1)*Rabbit+MasserGramainDelta 1771140320360561 r002 32th iterates of z^2 + 1771140326343212 m001 Khinchin-GaussAGM(1,1/sqrt(2))^cos(1) 1771140330374554 r002 45th iterates of z^2 + 1771140332263072 r005 Re(z^2+c),c=-17/14+7/240*I,n=30 1771140334806018 a002 10^(5/3)-11^(7/5) 1771140339490685 m003 -13/3+Sqrt[5]/16+Sinh[1/2+Sqrt[5]/2] 1771140343434278 r009 Re(z^3+c),c=-19/98+50/53*I,n=43 1771140347918077 m005 (-1/3+1/4*5^(1/2))/(4/5*2^(1/2)+1/7) 1771140360467778 r005 Im(z^2+c),c=-12/25+17/55*I,n=60 1771140368444611 a007 Real Root Of -323*x^4-187*x^3+40*x^2-887*x+443 1771140373572021 r005 Im(z^2+c),c=19/102+7/64*I,n=8 1771140373834323 r005 Im(z^2+c),c=-37/38+5/28*I,n=19 1771140382533619 a003 sin(Pi*30/107)+sin(Pi*50/101) 1771140386716844 m005 (1/2*3^(1/2)-5/6)/(47/40+3/10*5^(1/2)) 1771140391200173 a007 Real Root Of 582*x^4+581*x^3-574*x^2-107*x-888 1771140403383346 r002 30th iterates of z^2 + 1771140403636268 m005 (15/44+1/4*5^(1/2))/(-25/36+1/12*5^(1/2)) 1771140418929402 q001 2283/1289 1771140419612257 m001 (sqrt(1+sqrt(3))+2)/(Zeta(1,2)+3) 1771140419703568 l006 ln(4717/5631) 1771140421266865 a007 Real Root Of -185*x^4+743*x^3-573*x^2+593*x-91 1771140425613294 a005 (1/cos(16/165*Pi))^1331 1771140438366591 b008 E-E^E/16 1771140448406534 a005 (1/sin(82/185*Pi))^468 1771140450138306 a007 Real Root Of 560*x^4+800*x^3-5*x^2+327*x-471 1771140454965942 a005 (1/cos(3/86*Pi))^95 1771140458900175 m001 (exp(1/Pi)-gamma(3))/(LandauRamanujan+Trott) 1771140465156706 m001 (ln(3)+BesselJ(1,1))/(DuboisRaymond-OneNinth) 1771140472239203 m001 GAMMA(5/12)-GaussKuzminWirsing*GAMMA(19/24) 1771140475712744 a007 Real Root Of -217*x^4-475*x^3-433*x^2+20*x+890 1771140477401521 b008 3+Gamma[14/3] 1771140479411446 m006 (5/6*exp(2*Pi)+4)/(2/5*ln(Pi)-3) 1771140480911036 m001 1/Khintchine^2/exp(Conway)^2*sqrt(3) 1771140486755833 m001 (Cahen+2/3)/(GAMMA(5/24)+3) 1771140488183254 l005 ln(tanh(396/49*Pi)) 1771140491048476 r004 Im(z^2+c),c=3/11+2/17*I,z(0)=I,n=4 1771140494075922 p001 sum((-1)^(n+1)/(95*n+49)/(2^n),n=0..infinity) 1771140497878580 r005 Re(z^2+c),c=-181/122+15/38*I,n=3 1771140501330243 r005 Re(z^2+c),c=-18/29+33/43*I,n=4 1771140502355826 r002 64th iterates of z^2 + 1771140505154936 a007 Real Root Of -50*x^4-829*x^3+994*x^2-141*x-7 1771140506457829 a007 Real Root Of 529*x^4+787*x^3-125*x^2-170*x-742 1771140510326345 m006 (3/4*Pi+1)/(1/6*Pi^2+1/4) 1771140510326345 m008 (3/4*Pi+1)/(1/6*Pi^2+1/4) 1771140513597638 h001 (10/11*exp(2)+8/9)/(1/2*exp(2)+3/5) 1771140516172220 r005 Im(z^2+c),c=1/16+1/6*I,n=4 1771140516483564 m009 (2/3*Psi(1,1/3)+1/3)/(4*Psi(1,1/3)-1/2) 1771140518731444 l002 polylog(10,17/96) 1771140529351334 r005 Re(z^2+c),c=-3/94+29/51*I,n=54 1771140536089870 m001 GAMMA(1/3)^2/KhintchineHarmonic/exp(Zeta(1/2)) 1771140546484935 r005 Im(z^2+c),c=-95/98+11/38*I,n=8 1771140554238691 a007 Real Root Of 202*x^4-208*x^3-800*x^2-161*x-919 1771140556961646 r002 59th iterates of z^2 + 1771140561840323 m001 (TravellingSalesman-Weierstrass)/GAMMA(2/3) 1771140562651716 r009 Im(z^3+c),c=-14/29+2/31*I,n=3 1771140562658946 r005 Im(z^2+c),c=-8/9+12/83*I,n=21 1771140565378086 m001 (2^(1/2)-ArtinRank2)/(MinimumGamma+Sierpinski) 1771140580351583 p004 log(26393/22109) 1771140582624721 m001 (Artin*Trott2nd+Weierstrass)/Trott2nd 1771140595368510 m005 (1/2*Pi+1/2)/(85/88+1/11*5^(1/2)) 1771140598604289 a007 Real Root Of -691*x^4-813*x^3+344*x^2-679*x+1 1771140609636184 q001 7205/4068 1771140609827323 m001 1/BesselJ(1,1)*MinimumGamma^2/exp(Zeta(7)) 1771140619346516 m001 exp(Riemann3rdZero)/Kolakoski*GAMMA(5/24)^2 1771140622403619 r008 a(0)=0,K{-n^6,-38-25*n^3+68*n^2-8*n} 1771140625049142 a007 Real Root Of 32*x^4+601*x^3+628*x^2+331*x-929 1771140628968004 a007 Real Root Of -426*x^4-219*x^3+985*x^2+373*x+546 1771140633139232 r009 Im(z^3+c),c=-8/13+3/10*I,n=24 1771140640582697 r005 Re(z^2+c),c=49/122+36/59*I,n=11 1771140643923094 h001 (5/6*exp(2)+5/8)/(4/9*exp(2)+6/11) 1771140649350098 a005 (1/sin(86/205*Pi))^1514 1771140654618122 a007 Real Root Of -371*x^4-124*x^3+380*x^2-866*x+236 1771140657890520 a001 2178309/199*199^(1/11) 1771140658627635 m001 (Grothendieck+ZetaQ(2))/(Zeta(3)+Zeta(1,-1)) 1771140663796277 a001 317811/7*29^(19/47) 1771140674048849 r009 Im(z^3+c),c=-29/66+54/55*I,n=3 1771140689516421 m008 (1/2*Pi^4+1/4)/(1/6*Pi-4/5) 1771140693378125 r009 Re(z^3+c),c=-29/98+23/40*I,n=21 1771140693417618 r005 Im(z^2+c),c=-8/19+19/64*I,n=41 1771140696577213 s002 sum(A263697[n]/((10^n-1)/n),n=1..infinity) 1771140698092839 q001 4922/2779 1771140699396318 m005 (-17/28+1/4*5^(1/2))/(1/7*Zeta(3)+1/10) 1771140700891321 r002 61th iterates of z^2 + 1771140700896139 l006 ln(2966/3019) 1771140708340805 a001 75025/199*521^(8/13) 1771140713621035 r005 Re(z^2+c),c=9/82+38/59*I,n=18 1771140720044776 p001 sum(1/(307*n+52)/n/(16^n),n=1..infinity) 1771140720823750 m001 3^(1/3)*MasserGramainDelta/ZetaR(2) 1771140721690791 a003 cos(Pi*1/119)+cos(Pi*9/41) 1771140722266650 a001 1/5*832040^(4/25) 1771140723963819 a007 Real Root Of -10*x^4+131*x^3-46*x^2-924*x-666 1771140735802850 m008 (2*Pi^3-3/5)/(1/4*Pi^2+1) 1771140745596103 m005 (1/3*Zeta(3)+2/11)/(4*Catalan-3/8) 1771140750965462 m001 (Kolakoski*Robbin+MasserGramain)/Robbin 1771140751403538 a007 Real Root Of -746*x^4-977*x^3+575*x^2+354*x+736 1771140753956595 r005 Re(z^2+c),c=-23/118+8/47*I,n=5 1771140769868442 a007 Real Root Of -266*x^4+55*x^3+735*x^2-448*x-176 1771140770634981 m001 (arctan(1/2)-sin(1/12*Pi))/(Grothendieck-Kac) 1771140771159083 m001 (ln(2)+AlladiGrinstead)^OrthogonalArrays 1771140774428032 r002 38th iterates of z^2 + 1771140780918968 m001 (2^(1/2))^GaussKuzminWirsing+TwinPrimes 1771140780918968 m001 TwinPrimes+sqrt(2)^GaussKuzminWirsing 1771140789589342 r009 Re(z^3+c),c=-7/36+31/57*I,n=3 1771140803695971 m001 Stephens-ln(2+3^(1/2))*Grothendieck 1771140806705456 a007 Real Root Of -980*x^4-863*x^3+975*x^2-545*x+825 1771140816289348 r005 Im(z^2+c),c=-53/102+21/44*I,n=26 1771140821919541 a007 Real Root Of -526*x^4-483*x^3-769*x^2+409*x-7 1771140825710370 a007 Real Root Of -693*x^4-787*x^3+917*x^2+460*x+385 1771140833299680 a007 Real Root Of -669*x^4-781*x^3+795*x^2-279*x-744 1771140844421945 a007 Real Root Of -640*x^4-791*x^3-629*x^2+576*x-10 1771140858354653 r009 Re(z^3+c),c=-5/19+33/46*I,n=20 1771140863047548 r005 Im(z^2+c),c=-81/70+11/42*I,n=27 1771140866017582 l006 ln(3979/4750) 1771140868148844 a001 11/46368*317811^(16/47) 1771140870472657 r005 Re(z^2+c),c=-7/66+13/29*I,n=9 1771140878071402 r005 Re(z^2+c),c=7/29+29/42*I,n=2 1771140888817489 m001 ArtinRank2*Bloch*ZetaQ(2) 1771140890694511 a007 Real Root Of -349*x^4-844*x^3-96*x^2+534*x-8 1771140891231586 a003 cos(Pi*26/77)*cos(Pi*21/55) 1771140896425372 r009 Re(z^3+c),c=-13/50+7/16*I,n=22 1771140896519182 m001 StolarskyHarborth^(polylog(4,1/2)*MertensB3) 1771140903426982 r005 Im(z^2+c),c=-63/122+6/19*I,n=42 1771140906521869 m002 -(Pi^4*Csch[Pi])+(Pi^4*ProductLog[Pi])/4 1771140911879067 r005 Re(z^2+c),c=-3/31+35/44*I,n=63 1771140912977579 m005 (1/2*Zeta(3)-4/5)/(4/7*Catalan+3/5) 1771140915370754 m009 (1/3*Psi(1,2/3)+3/4)/(4*Psi(1,3/4)-1/6) 1771140915443216 r005 Re(z^2+c),c=-23/19+5/56*I,n=56 1771140918985748 m005 (1/2*5^(1/2)-6/11)/(7/10*2^(1/2)-2/3) 1771140919070133 r005 Re(z^2+c),c=-11/122+32/47*I,n=15 1771140923271912 m001 exp(Zeta(1/2))^2*GAMMA(7/12)*arctan(1/2)^2 1771140924727124 m001 Ei(1)^2*Backhouse*ln(Zeta(3))^2 1771140932174816 m001 Magata*CopelandErdos^2*exp(sqrt(5)) 1771140934054697 m001 FeigenbaumD^2/ln(Champernowne)^2*OneNinth 1771140937234131 m001 Zeta(9)^2/CareFree/ln(sqrt(5)) 1771140939597315 q001 2639/1490 1771140941039559 a007 Real Root Of -347*x^4-661*x^3-580*x^2-570*x+552 1771140945318547 p004 log(26737/4549) 1771140950175783 m001 (-MertensB2+Trott)/(FeigenbaumD-Psi(2,1/3)) 1771140950603373 m005 (1/3*gamma-1/12)/(3/4*Zeta(3)-2/7) 1771140961671834 a007 Real Root Of 152*x^4-290*x^3-861*x^2+275*x+81 1771140962124368 p004 log(26161/4451) 1771140970583127 m001 Psi(2,1/3)/(Pi^(1/2)+Totient) 1771140978813813 r005 Re(z^2+c),c=7/17+43/53*I,n=3 1771140993069008 m001 FeigenbaumC^DuboisRaymond+MasserGramain 1771140995581665 r005 Re(z^2+c),c=-5/122+37/62*I,n=22 1771140996618677 r005 Re(z^2+c),c=-25/122+3/37*I,n=9 1771141003433676 a007 Real Root Of 336*x^4+419*x^3+105*x^2+984*x+435 1771141003959249 a001 15127/13*10946^(26/33) 1771141012222111 k009 concat of cont frac of 1771141014286408 r005 Re(z^2+c),c=19/110+38/61*I,n=5 1771141017527389 m001 (ln(Pi)+Zeta(1/2))/(GAMMA(19/24)-Otter) 1771141019434395 r005 Im(z^2+c),c=-15/22+22/123*I,n=22 1771141019798564 a001 123/28657*6765^(9/56) 1771141022211181 k008 concat of cont frac of 1771141030411850 a007 Real Root Of -43*x^4-794*x^3-544*x^2+566*x+609 1771141031357377 a007 Real Root Of -324*x^4-433*x^3-44*x^2-264*x+453 1771141032601254 r009 Re(z^3+c),c=-9/28+31/50*I,n=60 1771141044926492 m001 (exp(-1/2*Pi)+Khinchin)/(2^(1/2)+Ei(1,1)) 1771141046430075 m006 (3/5*ln(Pi)+1/4)/(2*ln(Pi)+3) 1771141056082373 m001 ReciprocalFibonacci/(sin(1)+GAMMA(11/12)) 1771141056963487 v002 sum(1/(5^n*(29*n^2-58*n+41)),n=1..infinity) 1771141062814976 m001 (-Backhouse+Cahen)/(Catalan-exp(1/Pi)) 1771141069436484 r009 Re(z^3+c),c=-43/62+1/64*I,n=3 1771141087293390 r005 Re(z^2+c),c=-5/31+27/59*I,n=6 1771141096526780 a007 Real Root Of -896*x^4+761*x^3+521*x^2+939*x-186 1771141096875574 s002 sum(A106083[n]/(n^2*pi^n-1),n=1..infinity) 1771141101181271 k008 concat of cont frac of 1771141103027309 a003 sin(Pi*1/105)*sin(Pi*24/119) 1771141104131213 k008 concat of cont frac of 1771141110111111 k008 concat of cont frac of 1771141111012123 k008 concat of cont frac of 1771141111115113 k008 concat of cont frac of 1771141111115117 k008 concat of cont frac of 1771141111121213 k008 concat of cont frac of 1771141111133523 k008 concat of cont frac of 1771141111142211 k008 concat of cont frac of 1771141111151214 k006 concat of cont frac of 1771141111211432 k008 concat of cont frac of 1771141111391122 k009 concat of cont frac of 1771141111504113 k006 concat of cont frac of 1771141111511411 k008 concat of cont frac of 1771141112131221 k006 concat of cont frac of 1771141112131322 k006 concat of cont frac of 1771141112183211 k008 concat of cont frac of 1771141112211111 k006 concat of cont frac of 1771141112215112 k007 concat of cont frac of 1771141112617311 k008 concat of cont frac of 1771141113761110 k008 concat of cont frac of 1771141114223113 k007 concat of cont frac of 1771141115111121 k008 concat of cont frac of 1771141115111331 k007 concat of cont frac of 1771141115125893 s002 sum(A194532[n]/(16^n-1),n=1..infinity) 1771141115581343 b008 -8/3+EulerGamma+Pi^(-1) 1771141117028597 m001 (3^(1/2)-Zeta(3))/(-Magata+PrimesInBinary) 1771141118221552 k007 concat of cont frac of 1771141121728118 k008 concat of cont frac of 1771141121918144 p001 sum(1/(195*n+43)/n/(24^n),n=1..infinity) 1771141122314116 k008 concat of cont frac of 1771141123114281 k007 concat of cont frac of 1771141123859360 m001 (LaplaceLimit+Otter)/(Porter+Stephens) 1771141124191111 k008 concat of cont frac of 1771141124558181 k006 concat of cont frac of 1771141124595778 r005 Re(z^2+c),c=-7/110+33/64*I,n=44 1771141125181612 k007 concat of cont frac of 1771141129291259 a007 Real Root Of -584*x^4-500*x^3+351*x^2-792*x+465 1771141131105322 k008 concat of cont frac of 1771141131112419 k008 concat of cont frac of 1771141133256286 a001 123/17711*12586269025^(11/15) 1771141133768719 m001 PisotVijayaraghavan^2*exp(Niven)^2/sqrt(3)^2 1771141134168411 k007 concat of cont frac of 1771141136364596 p001 sum(1/(614*n+589)/(12^n),n=0..infinity) 1771141138091281 a007 Real Root Of -525*x^4+748*x^3+965*x^2+870*x-188 1771141141145123 k008 concat of cont frac of 1771141141179271 k007 concat of cont frac of 1771141141271115 k008 concat of cont frac of 1771141141931167 a001 15127/55*6765^(11/15) 1771141142731832 k009 concat of cont frac of 1771141145717363 a007 Real Root Of -376*x^4-43*x^3+977*x^2-475*x-445 1771141150581578 q001 5634/3181 1771141151212111 k007 concat of cont frac of 1771141154140327 r005 Im(z^2+c),c=-31/46+1/56*I,n=31 1771141157605273 l006 ln(7220/8619) 1771141157720700 m001 ZetaQ(3)-HardyLittlewoodC3-ln(Pi) 1771141160676967 a007 Real Root Of -5*x^4-883*x^3+457*x^2+308*x+786 1771141161238379 r002 8th iterates of z^2 + 1771141161914316 k007 concat of cont frac of 1771141162074298 r005 Im(z^2+c),c=-7/17+34/61*I,n=7 1771141169311121 k009 concat of cont frac of 1771141171102221 k007 concat of cont frac of 1771141171273126 k006 concat of cont frac of 1771141173311221 k006 concat of cont frac of 1771141179348966 m001 (Bloch+HeathBrownMoroz)/(Niven+Riemann3rdZero) 1771141180021044 p001 sum(1/(407*n+35)/n/(128^n),n=1..infinity) 1771141188420908 r009 Re(z^3+c),c=-1/38+19/41*I,n=10 1771141191731130 r009 Re(z^3+c),c=-9/98+38/45*I,n=54 1771141192607543 a007 Real Root Of 691*x^4+318*x^3-947*x^2+969*x-346 1771141194132111 k007 concat of cont frac of 1771141194763637 m004 -3/2-25*Sqrt[5]*Pi+(Sqrt[5]*Pi)/E^(Sqrt[5]*Pi) 1771141199837832 b008 EulerGamma*(-3/41+Pi) 1771141200998825 m001 (FeigenbaumD*ZetaP(2)-ThueMorse)/ZetaP(2) 1771141201635214 m001 GAMMA(11/24)*Niven^2/exp(gamma)^2 1771141205984471 r005 Im(z^2+c),c=-49/62+4/39*I,n=59 1771141210170861 a001 121393/199*521^(7/13) 1771141211061340 k008 concat of cont frac of 1771141211111112 k007 concat of cont frac of 1771141211111113 k008 concat of cont frac of 1771141211715132 k006 concat of cont frac of 1771141212111111 k008 concat of cont frac of 1771141212111521 k007 concat of cont frac of 1771141212162128 k007 concat of cont frac of 1771141213909711 m001 (GaussAGM-MertensB3)/(Zeta(3)+ln(5)) 1771141214253315 k009 concat of cont frac of 1771141215112431 k008 concat of cont frac of 1771141215173411 k008 concat of cont frac of 1771141218222298 a007 Real Root Of 613*x^4+520*x^3-322*x^2+708*x-879 1771141218554327 m001 (RenyiParking+TwinPrimes)/(Pi^(1/2)-Si(Pi)) 1771141220327170 a007 Real Root Of -679*x^4-824*x^3+339*x^2-572*x+27 1771141220742097 m001 (HardyLittlewoodC4-Robbin)/(Pi-exp(Pi)) 1771141221712171 k008 concat of cont frac of 1771141222166463 m001 Psi(2,1/3)^(Mills/Zeta(1,-1)) 1771141223122111 k009 concat of cont frac of 1771141223225283 p004 log(21107/17681) 1771141227329447 k002 Champernowne real with 8*n^2+30*n-21 1771141228729962 a007 Real Root Of -652*x^4-804*x^3+502*x^2+298*x+902 1771141229011809 a003 cos(Pi*17/103)+sin(Pi*43/120) 1771141230214232 k008 concat of cont frac of 1771141232611121 k006 concat of cont frac of 1771141239498192 a007 Real Root Of -530*x^4-454*x^3+906*x^2-127*x-374 1771141241221351 k006 concat of cont frac of 1771141242463086 r005 Re(z^2+c),c=1/18+37/62*I,n=17 1771141250051363 r005 Im(z^2+c),c=-13/23+8/23*I,n=39 1771141251138192 a007 Real Root Of -640*x^4-874*x^3+562*x^2+332*x+267 1771141251174740 m005 (1/2*5^(1/2)+1/5)/(2/7*gamma-10/11) 1771141253123321 k006 concat of cont frac of 1771141256377271 r009 Re(z^3+c),c=-37/122+27/47*I,n=64 1771141256450344 s002 sum(A287036[n]/(n*2^n+1),n=1..infinity) 1771141263784182 s002 sum(A107553[n]/(exp(n)-1),n=1..infinity) 1771141267435828 r008 a(0)=0,K{-n^6,52-25*n^3+16*n^2-49*n} 1771141271321011 k008 concat of cont frac of 1771141272111231 k006 concat of cont frac of 1771141278912111 k008 concat of cont frac of 1771141281676361 m001 (Zeta(1/2)-MertensB2)/(Salem-Sierpinski) 1771141286254080 r009 Re(z^3+c),c=-25/126+23/43*I,n=3 1771141286693914 a007 Real Root Of 684*x^4+795*x^3-5*x^2+847*x-798 1771141288318981 r005 Re(z^2+c),c=-2/17+20/49*I,n=28 1771141291722251 k008 concat of cont frac of 1771141292436287 a001 5/4*1364^(35/51) 1771141296994949 r009 Re(z^3+c),c=-3/10+17/29*I,n=19 1771141302627933 r002 6th iterates of z^2 + 1771141303399092 s002 sum(A116208[n]/((pi^n+1)/n),n=1..infinity) 1771141309735700 p004 log(18097/3079) 1771141310159239 k008 concat of cont frac of 1771141310224461 k007 concat of cont frac of 1771141310531358 r005 Re(z^2+c),c=25/126+33/61*I,n=20 1771141311108162 k008 concat of cont frac of 1771141311111141 k007 concat of cont frac of 1771141311141351 k006 concat of cont frac of 1771141311622111 k008 concat of cont frac of 1771141312642147 k006 concat of cont frac of 1771141315114476 k006 concat of cont frac of 1771141322112541 k008 concat of cont frac of 1771141325485260 m005 (1/2*exp(1)-1/8)/(5/9*5^(1/2)-6/11) 1771141329560517 a007 Real Root Of 107*x^4+87*x^3+445*x^2-742*x-145 1771141330336788 r009 Re(z^3+c),c=-1/48+25/36*I,n=21 1771141331103213 k008 concat of cont frac of 1771141336487285 q001 2995/1691 1771141343415001 m001 Chi(1)/(Landau^FibonacciFactorial) 1771141349823102 a007 Real Root Of -47*x^4-784*x^3+883*x^2+448*x+54 1771141352303086 a007 Real Root Of -626*x^4-779*x^3+487*x^2-38*x+237 1771141354493643 m005 (1/2*3^(1/2)+5/12)/(71/132+1/12*5^(1/2)) 1771141366928550 r005 Im(z^2+c),c=-67/110+14/45*I,n=8 1771141373917242 a001 48/281*521^(23/31) 1771141380073844 m001 Sarnak^Robbin*Ei(1,1) 1771141385263080 a005 (1/cos(3/143*Pi))^263 1771141391224211 k008 concat of cont frac of 1771141397790352 m006 (3/4*Pi-5)/(2/3*exp(Pi)-1/2) 1771141399591662 m001 (GAMMA(2/3)-ln(2+3^(1/2)))/(Conway+Kolakoski) 1771141400088345 m001 ln(Trott)^2*Bloch*GAMMA(2/3)^2 1771141400645274 r005 Re(z^2+c),c=-2/21+21/46*I,n=25 1771141402856551 r008 a(0)=0,K{-n^6,8+15*n^3+44*n^2-61*n} 1771141404434364 m001 (FeigenbaumC+Porter)/(gamma+GAMMA(17/24)) 1771141407681712 m001 GAMMA(1/24)*exp(Ei(1))/log(1+sqrt(2)) 1771141411844475 r005 Im(z^2+c),c=-29/26+26/125*I,n=34 1771141411992712 a007 Real Root Of 289*x^4+216*x^3-433*x^2+177*x+28 1771141416020986 m005 (1/2*3^(1/2)-8/9)/(8/11*Zeta(3)+5/12) 1771141419291342 r005 Re(z^2+c),c=-9/118+30/61*I,n=33 1771141420545329 m001 (OneNinth-Stephens)/(ln(5)+MertensB2) 1771141422871966 a007 Real Root Of 460*x^4+566*x^3+371*x^2+897*x-957 1771141423102134 k006 concat of cont frac of 1771141424723018 m005 (1/3*3^(1/2)+1/12)/(2/5*exp(1)-5/7) 1771141430017914 a007 Real Root Of 602*x^4+604*x^3-558*x^2+329*x-235 1771141431137411 k009 concat of cont frac of 1771141435082457 r009 Im(z^3+c),c=-9/50+1/63*I,n=7 1771141435814679 a007 Real Root Of -394*x^4-523*x^3+195*x^2-740*x-951 1771141436903827 m001 (gamma(1)-ZetaQ(2))/(ln(gamma)+Zeta(1,-1)) 1771141437392318 a007 Real Root Of -690*x^4+92*x^3-825*x^2+531*x-68 1771141444674012 m001 KhinchinHarmonic/FeigenbaumC/ZetaQ(2) 1771141448636747 a003 cos(Pi*8/93)+sin(Pi*35/117) 1771141453972792 r005 Im(z^2+c),c=-39/70+18/59*I,n=26 1771141455046625 m001 Ei(1)^Landau/(Robbin^Landau) 1771141458743605 a001 514229/322*123^(1/2) 1771141461122171 k008 concat of cont frac of 1771141468584701 r009 Re(z^3+c),c=-1/29+13/19*I,n=32 1771141473459940 r002 42th iterates of z^2 + 1771141475133062 v003 sum((-5+7/2*n^2+9/2*n)/n^(n-1),n=1..infinity) 1771141475382167 a007 Real Root Of -74*x^4+858*x^3+923*x^2-949*x+919 1771141478079208 a007 Real Root Of -366*x^4-84*x^3-671*x^2+181*x+53 1771141478759389 m001 exp(1)*cos(Pi/12)-GAMMA(5/24) 1771141486493209 a007 Real Root Of 147*x^4-521*x^3-595*x^2+980*x-739 1771141490159233 r002 54i'th iterates of 2*x/(1-x^2) of 1771141492805019 m006 (5*exp(Pi)+2/3)/(1/2*exp(Pi)-5) 1771141495856596 h001 (3/7*exp(2)+10/11)/(7/11*exp(1)+4/7) 1771141496236121 k008 concat of cont frac of 1771141496949723 r002 44th iterates of z^2 + 1771141500387017 r005 Im(z^2+c),c=-5/9+13/35*I,n=21 1771141500934379 a007 Real Root Of 559*x^4+788*x^3-328*x^2-283*x-595 1771141501535026 q001 6346/3583 1771141504935720 r009 Re(z^3+c),c=-1/10+57/64*I,n=28 1771141511124212 k008 concat of cont frac of 1771141512216329 k008 concat of cont frac of 1771141515589655 l006 ln(3241/3869) 1771141524544879 m001 (-Pi^(1/2)+RenyiParking)/(2^(1/3)-Zeta(3)) 1771141525062568 r002 45th iterates of z^2 + 1771141525348884 a007 Real Root Of -499*x^4-443*x^3+837*x^2+168*x+121 1771141526898983 m001 (ArtinRank2+PlouffeB)/(Shi(1)+2*Pi/GAMMA(5/6)) 1771141534474978 m001 (ArtinRank2+TwinPrimes)/(arctan(1/2)-cos(1)) 1771141552558396 g003 Im(GAMMA(293/60+I*(-17/20))) 1771141555535155 m001 (3^(1/3)+Cahen)/(Robbin-Tribonacci) 1771141561152760 a003 cos(Pi*25/119)+sin(Pi*46/105) 1771141566919884 r005 Im(z^2+c),c=-21/31+11/53*I,n=35 1771141567007621 m005 (1/3*Catalan-1/7)/(9/22+5/22*5^(1/2)) 1771141568834383 r005 Im(z^2+c),c=-14/29+17/55*I,n=33 1771141573631061 a007 Real Root Of 38*x^4+687*x^3+252*x^2+93*x+192 1771141577787342 a007 Real Root Of 574*x^4+679*x^3-296*x^2+750*x+381 1771141589341186 h005 exp(cos(Pi*19/58)+cos(Pi*27/56)) 1771141591580885 r002 50th iterates of z^2 + 1771141602111521 k008 concat of cont frac of 1771141612191428 k008 concat of cont frac of 1771141612421349 k008 concat of cont frac of 1771141613111118 k007 concat of cont frac of 1771141614876964 r005 Re(z^2+c),c=-28/29+5/44*I,n=8 1771141618098511 k008 concat of cont frac of 1771141621215432 k008 concat of cont frac of 1771141624711321 k008 concat of cont frac of 1771141627697170 a007 Real Root Of 26*x^4+448*x^3-273*x^2-899*x+284 1771141632974135 r005 Im(z^2+c),c=-109/122+8/53*I,n=15 1771141634001899 m001 (Lehmer+QuadraticClass)/(Pi^(1/2)-Psi(1,1/3)) 1771141635520558 m001 GAMMA(3/4)/exp(GAMMA(11/24))/Zeta(9) 1771141638887208 a007 Real Root Of 974*x^4-275*x^3+242*x^2-519*x-102 1771141639312288 r005 Re(z^2+c),c=-6/5+8/85*I,n=58 1771141639814735 m001 Cahen-exp(1)^QuadraticClass 1771141642072806 a007 Real Root Of 83*x^4-6*x^3-198*x^2-13*x-252 1771141646334399 m001 (-BesselI(1,1)+ZetaP(3))/(exp(Pi)-ln(3)) 1771141647997102 m001 1/2*UniversalParabolic^cos(1/12*Pi)*2^(2/3) 1771141649048625 q001 3351/1892 1771141649840160 a001 2178309/521*123^(3/10) 1771141652603250 m001 (1/2)^BesselJ(0,1)*(1/2)^sqrt(3) 1771141655080146 a003 cos(Pi*11/96)/sin(Pi*14/79) 1771141657552358 a007 Real Root Of 193*x^4+77*x^3-489*x^2-583*x-970 1771141662105434 m001 1/ln(Niven)*CopelandErdos^2/sin(Pi/5) 1771141664414992 r009 Re(z^3+c),c=-27/110+2/5*I,n=3 1771141672059123 a001 521/34*233^(22/49) 1771141673713966 a003 cos(Pi*19/93)+sin(Pi*46/109) 1771141674305365 a007 Real Root Of -962*x^4-900*x^3+951*x^2-656*x+321 1771141678924129 m001 Zeta(1/2)-arctan(1/3)*cos(1/12*Pi) 1771141686180185 a007 Real Root Of 611*x^4+667*x^3-315*x^2+273*x-835 1771141696327034 m001 Sarnak^(Pi*2^(1/2)/GAMMA(3/4))/ZetaP(3) 1771141701303114 m005 (1/2*Catalan+3)/(4/5*exp(1)-2/9) 1771141702398693 r002 7th iterates of z^2 + 1771141703455466 a007 Real Root Of 652*x^4+645*x^3-787*x^2-304*x-902 1771141705508697 a003 cos(Pi*12/107)+sin(Pi*31/99) 1771141711211131 k008 concat of cont frac of 1771141712112216 k006 concat of cont frac of 1771141712121248 a001 196418/199*521^(6/13) 1771141712260770 r004 Im(z^2+c),c=-5/19*I,z(0)=exp(13/24*I*Pi),n=5 1771141713812253 k007 concat of cont frac of 1771141716321590 a007 Real Root Of -503*x^4-794*x^3-130*x^2-288*x+436 1771141721088379 h001 (-7*exp(8)+6)/(-2*exp(2)+3) 1771141721281935 r002 5th iterates of z^2 + 1771141724961245 m001 (AlladiGrinstead+Khinchin)/(Shi(1)+Catalan) 1771141725186286 m001 (-Mills+ZetaQ(2))/(Si(Pi)-ln(Pi)) 1771141725793684 m008 (2/5*Pi^3+1)/(1/4*Pi^5-5/6) 1771141733033235 a007 Real Root Of 565*x^4+832*x^3-388*x^2-656*x-882 1771141736302200 m005 (-1/10+1/2*5^(1/2))/(3*Catalan+3) 1771141737130350 a007 Real Root Of 452*x^4+823*x^3-206*x^2-918*x-855 1771141741215113 k009 concat of cont frac of 1771141743093173 m005 (1/2*Catalan+9/10)/(5/6*gamma+2/7) 1771141743136113 k006 concat of cont frac of 1771141743512231 k008 concat of cont frac of 1771141746427672 r005 Re(z^2+c),c=-1+31/223*I,n=40 1771141759297841 p004 log(25321/21211) 1771141760185201 m005 (1/2*exp(1)-1/11)/(6/11*Zeta(3)-8/11) 1771141767107938 r005 Im(z^2+c),c=-19/32+11/41*I,n=10 1771141771308617 k006 concat of cont frac of 1771141777087544 m006 (ln(Pi)-2)/(4*ln(Pi)+1/4) 1771141779226499 r005 Re(z^2+c),c=-3/82+22/39*I,n=51 1771141779460116 a007 Real Root Of 413*x^4+712*x^3-511*x^2-910*x-117 1771141781681304 q001 7058/3985 1771141790003120 m005 (1/2*exp(1)+5/11)/(2/7*Pi-1) 1771141795649554 m005 (1/2*Pi+1/8)/(1/7*gamma+7/8) 1771141797247254 a007 Real Root Of 50*x^4-529*x^3-701*x^2+834*x+245 1771141800926569 a007 Real Root Of -54*x^4-931*x^3+496*x^2+774*x-670 1771141807935239 r005 Re(z^2+c),c=-39/70+24/43*I,n=5 1771141811341228 k006 concat of cont frac of 1771141816473238 r002 16th iterates of z^2 + 1771141818524884 a003 cos(Pi*10/69)+cos(Pi*6/37) 1771141821841011 r009 Im(z^3+c),c=-31/114+9/62*I,n=8 1771141823751272 m001 ln(2)/ln(10)/(gamma(1)+Pi^(1/2)) 1771141839492779 s002 sum(A016549[n]/(n^2*pi^n-1),n=1..infinity) 1771141840575653 r002 63th iterates of z^2 + 1771141841121311 k008 concat of cont frac of 1771141843044816 m008 (3*Pi^2+3)/(3/5*Pi^5+1/2) 1771141848365712 p001 sum((-1)^n/(456*n+5)/n/(12^n),n=1..infinity) 1771141849138617 h001 (11/12*exp(1)+5/7)/(5/9*exp(1)+3/10) 1771141851414737 r005 Im(z^2+c),c=-101/106+6/35*I,n=57 1771141852359939 h001 (7/9*exp(1)+1/12)/(1/12*exp(2)+5/8) 1771141855358722 a001 13201*832040^(4/21) 1771141855502240 a007 Real Root Of 709*x^4+607*x^3-933*x^2+561*x+316 1771141859675653 m001 BesselI(0,1)^Paris+RenyiParking 1771141866336106 b008 47*ProductLog[ArcCoth[2]] 1771141868561168 m001 (5^(1/2)+BesselJ(1,1))/(-Pi^(1/2)+MertensB1) 1771141872639995 m001 LambertW(1)*FeigenbaumD^2*ln(cosh(1)) 1771141873686643 r002 25th iterates of z^2 + 1771141873735159 r002 32th iterates of z^2 + 1771141873955734 a001 24476/21*5^(13/50) 1771141874029779 a001 4250681/7*34^(22/23) 1771141876963354 r005 Im(z^2+c),c=-17/14+5/207*I,n=56 1771141881469387 r009 Re(z^3+c),c=-13/40+18/29*I,n=33 1771141888749668 r005 Re(z^2+c),c=-21/26+8/59*I,n=44 1771141892674296 r005 Im(z^2+c),c=-41/98+8/27*I,n=31 1771141896783112 m001 (BesselK(1,1)+Backhouse)/(Landau-Niven) 1771141900167214 a007 Real Root Of 418*x^4+788*x^3+282*x^2+180*x-301 1771141900386310 a001 196418/2207*18^(5/21) 1771141900557523 m002 Pi+Pi^6*Csch[Pi]+Pi^4/ProductLog[Pi] 1771141901576684 q001 3707/2093 1771141903385933 m005 (1/2*5^(1/2)-8/11)/(8/9*3^(1/2)+2/3) 1771141905465185 a007 Real Root Of 478*x^4+590*x^3-678*x^2-563*x-296 1771141905907176 r005 Re(z^2+c),c=35/118+28/57*I,n=14 1771141906649369 m001 (FeigenbaumC+ZetaQ(4))/(Zeta(5)-gamma(3)) 1771141907132202 a007 Real Root Of -281*x^4-506*x^3-56*x^2+461*x+946 1771141907281128 a001 1926*20365011074^(4/21) 1771141908089112 r002 19th iterates of z^2 + 1771141908351174 a007 Real Root Of -86*x^4+714*x^3+994*x^2-585*x+659 1771141910230317 m001 exp(1/exp(1))*(ln(Pi)+StolarskyHarborth) 1771141914115111 k006 concat of cont frac of 1771141916700544 r005 Im(z^2+c),c=-57/106+17/53*I,n=53 1771141920646274 a008 Real Root of x^4-2*x^3+22*x^2+22*x-51 1771141922247197 m001 (BesselK(0,1)-Ei(1,1))/(-gamma(2)+GAMMA(5/6)) 1771141929804310 a007 Real Root Of -601*x^4-865*x^3+78*x^2-177*x+550 1771141930746314 a007 Real Root Of -344*x^4-802*x^3-698*x^2-499*x+235 1771141938320449 a007 Real Root Of -513*x^4-549*x^3+29*x^2-931*x+258 1771141944301192 a001 5/4*24476^(25/51) 1771141945724526 a001 5/4*167761^(7/17) 1771141945750438 a001 5/4*20633239^(5/17) 1771141948371198 r005 Im(z^2+c),c=-19/56+12/43*I,n=29 1771141950858763 m001 Psi(2,1/3)^(Mills/gamma(2)) 1771141953292013 a007 Real Root Of 397*x^4+496*x^3-189*x^2-201*x-914 1771141955157506 r005 Im(z^2+c),c=-29/56+13/41*I,n=14 1771141957240732 m001 (Zeta(5)+GAMMA(2/3))/(Zeta(1,2)-ThueMorse) 1771141957609963 r005 Im(z^2+c),c=-11/30+16/51*I,n=4 1771141957639570 m001 Robbin*exp(ErdosBorwein)^2*OneNinth 1771141957773182 m001 (Shi(1)-gamma)/(Mills+OrthogonalArrays) 1771141961939568 r005 Re(z^2+c),c=-39/40+13/56*I,n=30 1771141962506513 g006 Psi(1,7/9)+Psi(1,1/3)-Psi(1,4/7)-Psi(1,1/5) 1771141965563043 l006 ln(5744/6857) 1771141982717602 k008 concat of cont frac of 1771141984741611 r009 Re(z^3+c),c=-17/98+3/55*I,n=7 1771141991766410 r009 Re(z^3+c),c=-17/98+3/55*I,n=8 1771141997289188 r009 Re(z^3+c),c=-17/98+3/55*I,n=9 1771141998132180 r009 Re(z^3+c),c=-17/98+3/55*I,n=10 1771141998211881 r009 Re(z^3+c),c=-17/98+3/55*I,n=11 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=17 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=18 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=19 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=20 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=21 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=27 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=28 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=29 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=26 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=30 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=36 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=37 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=38 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=39 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=40 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=41 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=42 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=43 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=44 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=46 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=35 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=34 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=33 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=32 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=31 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=25 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=24 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=23 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=22 1771141998215586 r009 Re(z^3+c),c=-17/98+3/55*I,n=16 1771141998215587 r009 Re(z^3+c),c=-17/98+3/55*I,n=15 1771141998215597 r009 Re(z^3+c),c=-17/98+3/55*I,n=14 1771141998215676 r009 Re(z^3+c),c=-17/98+3/55*I,n=13 1771141998215886 r009 Re(z^3+c),c=-17/98+3/55*I,n=12 1771142001839690 a005 (1/cos(11/140*Pi))^243 1771142012271037 p004 log(37273/31223) 1771142016210066 p004 log(25633/25183) 1771142017711420 k006 concat of cont frac of 1771142017711420 k006 concat of cont frac of 1771142031310836 r005 Im(z^2+c),c=-37/66+13/40*I,n=54 1771142036078392 a007 Real Root Of 315*x^4-287*x^3-812*x^2+856*x-631 1771142041073652 m001 (Robbin-Salem)/(BesselI(0,2)+Kac) 1771142062610263 r009 Im(z^3+c),c=-47/122+3/35*I,n=7 1771142064609465 a007 Real Root Of -457*x^4-808*x^3-143*x^2-103*x+274 1771142068373928 a007 Real Root Of -629*x^4-541*x^3+893*x^2-771*x-983 1771142077453422 p001 sum((-1)^n/(289*n+258)/n/(10^n),n=1..infinity) 1771142078333280 r002 19th iterates of z^2 + 1771142080826264 m001 (1-2^(1/3))/(FeigenbaumB+HardyLittlewoodC3) 1771142086759208 m001 Salem^2*ln(RenyiParking)*BesselJ(1,1) 1771142087930662 a003 cos(Pi*39/88)*sin(Pi*32/67) 1771142091306643 h001 (-exp(5)-6)/(-exp(1)-6) 1771142092302762 a007 Real Root Of -63*x^4+304*x^3+653*x^2+282*x+760 1771142105407964 r005 Im(z^2+c),c=-11/26+11/37*I,n=32 1771142108129220 a007 Real Root Of -214*x^4+260*x^3+651*x^2-615*x+419 1771142109851787 q001 4063/2294 1771142110241231 k008 concat of cont frac of 1771142111133151 k007 concat of cont frac of 1771142112812111 k007 concat of cont frac of 1771142113723211 k008 concat of cont frac of 1771142114233120 k007 concat of cont frac of 1771142115651171 k008 concat of cont frac of 1771142116111216 k007 concat of cont frac of 1771142116416206 r005 Re(z^2+c),c=11/82+37/58*I,n=60 1771142118090765 r005 Im(z^2+c),c=-17/82+11/46*I,n=3 1771142120422115 k008 concat of cont frac of 1771142121102121 k008 concat of cont frac of 1771142121111161 k008 concat of cont frac of 1771142123152920 k007 concat of cont frac of 1771142124448612 m001 GAMMA(2/3)/ln(FeigenbaumD)^2*GAMMA(5/6)^2 1771142125211118 k006 concat of cont frac of 1771142126859435 r005 Im(z^2+c),c=-45/38+9/49*I,n=6 1771142127191158 k007 concat of cont frac of 1771142129553654 m001 cos(1)^2*Zeta(1,2)^2*exp(cos(Pi/12))^2 1771142136322117 k006 concat of cont frac of 1771142140619864 a003 sin(Pi*15/91)/cos(Pi*25/61) 1771142141212192 k006 concat of cont frac of 1771142142398705 l006 ln(8247/9845) 1771142143497296 r009 Re(z^3+c),c=-5/118+43/60*I,n=14 1771142154111324 k008 concat of cont frac of 1771142157191776 a001 4/2889*3^(13/58) 1771142160246303 m001 Conway*(Zeta(5)+arctan(1/3)) 1771142163721193 k007 concat of cont frac of 1771142163779771 r005 Im(z^2+c),c=-51/56+9/58*I,n=42 1771142169793576 a007 Real Root Of -213*x^4-198*x^3-419*x^2-925*x+672 1771142171529931 a001 1364/53316291173*20365011074^(21/22) 1771142171531284 a001 1364/2178309*514229^(21/22) 1771142178111121 k008 concat of cont frac of 1771142179485106 m001 (Kac+Niven)/(Shi(1)+sin(1/12*Pi)) 1771142183365149 r009 Im(z^3+c),c=-9/50+1/63*I,n=8 1771142184313173 k006 concat of cont frac of 1771142185243498 r005 Im(z^2+c),c=-39/70+13/49*I,n=10 1771142186317719 a003 sin(Pi*3/115)/sin(Pi*13/85) 1771142195909110 m005 (1/2*Pi+1/8)/(1/11*3^(1/2)+4/5) 1771142209170067 h001 (-5*exp(2)+9)/(-2*exp(2)-1) 1771142209265009 r005 Im(z^2+c),c=-32/31+11/41*I,n=5 1771142210947807 a001 514229/5778*18^(5/21) 1771142211105768 k008 concat of cont frac of 1771142212511155 k008 concat of cont frac of 1771142214025870 a001 317811/199*521^(5/13) 1771142216131172 l006 ln(1707/10033) 1771142217144413 k006 concat of cont frac of 1771142221141215 k007 concat of cont frac of 1771142227359692 a007 Real Root Of -322*x^4-415*x^3-119*x^2-659*x+69 1771142228644284 a001 377/199*24476^(19/21) 1771142228967107 a003 cos(Pi*8/49)/cos(Pi*38/113) 1771142230193415 a001 89/843*20633239^(5/7) 1771142230193418 a001 89/843*2537720636^(5/9) 1771142230193418 a001 89/843*312119004989^(5/11) 1771142230193418 a001 89/843*(1/2+1/2*5^(1/2))^25 1771142230193418 a001 89/843*3461452808002^(5/12) 1771142230193418 a001 89/843*28143753123^(1/2) 1771142230193418 a001 89/843*228826127^(5/8) 1771142230193844 a001 89/843*1860498^(5/6) 1771142230335457 k002 Champernowne real with 17/2*n^2+57/2*n-20 1771142230962853 a001 377/199*64079^(19/23) 1771142231319179 a001 377/199*817138163596^(1/3) 1771142231319179 a001 377/199*(1/2+1/2*5^(1/2))^19 1771142231319180 a001 377/199*87403803^(1/2) 1771142231422202 k006 concat of cont frac of 1771142231449613 a001 377/199*103682^(19/24) 1771142232121161 k008 concat of cont frac of 1771142232294457 a001 377/199*39603^(19/22) 1771142238672296 a001 377/199*15127^(19/20) 1771142249384079 m005 (1/2*Pi-7/10)/(2*5^(1/2)+4/9) 1771142256258128 a001 1346269/15127*18^(5/21) 1771142257920956 h001 (-6*exp(5)+6)/(-9*exp(4)-8) 1771142259685137 a007 Real Root Of 772*x^4+695*x^3-824*x^2+535*x-203 1771142262868815 a001 3524578/39603*18^(5/21) 1771142263249443 r009 Im(z^3+c),c=-9/50+1/63*I,n=9 1771142263833301 a001 9227465/103682*18^(5/21) 1771142263974017 a001 24157817/271443*18^(5/21) 1771142263994548 a001 63245986/710647*18^(5/21) 1771142263997543 a001 165580141/1860498*18^(5/21) 1771142263997980 a001 433494437/4870847*18^(5/21) 1771142263998044 a001 1134903170/12752043*18^(5/21) 1771142263998053 a001 2971215073/33385282*18^(5/21) 1771142263998054 a001 7778742049/87403803*18^(5/21) 1771142263998055 a001 20365011074/228826127*18^(5/21) 1771142263998055 a001 53316291173/599074578*18^(5/21) 1771142263998055 a001 139583862445/1568397607*18^(5/21) 1771142263998055 a001 365435296162/4106118243*18^(5/21) 1771142263998055 a001 956722026041/10749957122*18^(5/21) 1771142263998055 a001 2504730781961/28143753123*18^(5/21) 1771142263998055 a001 6557470319842/73681302247*18^(5/21) 1771142263998055 a001 10610209857723/119218851371*18^(5/21) 1771142263998055 a001 4052739537881/45537549124*18^(5/21) 1771142263998055 a001 1548008755920/17393796001*18^(5/21) 1771142263998055 a001 591286729879/6643838879*18^(5/21) 1771142263998055 a001 225851433717/2537720636*18^(5/21) 1771142263998055 a001 86267571272/969323029*18^(5/21) 1771142263998055 a001 32951280099/370248451*18^(5/21) 1771142263998055 a001 12586269025/141422324*18^(5/21) 1771142263998055 a001 4807526976/54018521*18^(5/21) 1771142263998059 a001 1836311903/20633239*18^(5/21) 1771142263998083 a001 3524667/39604*18^(5/21) 1771142263998250 a001 267914296/3010349*18^(5/21) 1771142263999394 a001 102334155/1149851*18^(5/21) 1771142264007236 a001 39088169/439204*18^(5/21) 1771142264060985 a001 14930352/167761*18^(5/21) 1771142264429386 a001 5702887/64079*18^(5/21) 1771142266954444 a001 2178309/24476*18^(5/21) 1771142268067324 r002 3th iterates of z^2 + 1771142270978342 h005 exp(sin(Pi*3/40)-sin(Pi*14/47)) 1771142271474753 r009 Im(z^3+c),c=-9/50+1/63*I,n=10 1771142272126535 r005 Re(z^2+c),c=-1+31/223*I,n=58 1771142272290363 r009 Im(z^3+c),c=-9/50+1/63*I,n=11 1771142272367882 r009 Im(z^3+c),c=-9/50+1/63*I,n=12 1771142272374877 r009 Im(z^3+c),c=-9/50+1/63*I,n=13 1771142272375464 r009 Im(z^3+c),c=-9/50+1/63*I,n=14 1771142272375508 r009 Im(z^3+c),c=-9/50+1/63*I,n=15 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=16 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=33 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=34 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=35 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=36 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=37 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=38 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=39 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=40 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=41 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=42 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=43 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=44 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=45 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=46 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=32 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=31 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=30 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=29 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=28 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=27 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=26 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=25 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=24 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=23 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=22 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=21 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=20 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=19 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=18 1771142272375511 r009 Im(z^3+c),c=-9/50+1/63*I,n=17 1771142276246420 l006 ln(1658/9745) 1771142277689063 m003 1+(5*Csc[1/2+Sqrt[5]/2]*Tanh[1/2+Sqrt[5]/2])/6 1771142279396861 a001 3/4*1364^(5/42) 1771142284261447 a001 832040/9349*18^(5/21) 1771142284569138 q001 4419/2495 1771142289033083 s002 sum(A045529[n]/(exp(pi*n)+1),n=1..infinity) 1771142291950575 m001 LaplaceLimit-LandauRamanujan2nd-Si(Pi) 1771142295297722 m001 MertensB2^ln(5)+TravellingSalesman 1771142295557696 m001 1/exp(GAMMA(17/24))^2/TwinPrimes/cos(Pi/5)^2 1771142300567491 s002 sum(A045529[n]/(exp(pi*n)),n=1..infinity) 1771142300675847 m004 5+150/Pi+5*E^(Sqrt[5]*Pi)*Pi 1771142310492736 m001 MinimumGamma/ln(Artin)/Catalan^2 1771142312101900 s002 sum(A045529[n]/(exp(pi*n)-1),n=1..infinity) 1771142312846213 k007 concat of cont frac of 1771142315399109 m003 -6+Sqrt[5]/8+(15*Sin[1/2+Sqrt[5]/2])/2 1771142321865764 a007 Real Root Of 534*x^4+469*x^3-371*x^2+803*x-63 1771142322315112 k008 concat of cont frac of 1771142330605486 r005 Im(z^2+c),c=19/60+21/50*I,n=44 1771142340023128 l006 ln(1609/9457) 1771142341066235 m001 1/Zeta(1,2)^2*ln(Riemann1stZero)*sin(Pi/5) 1771142345054081 r005 Re(z^2+c),c=5/21+28/51*I,n=46 1771142348247234 a003 sin(Pi*29/103)+sin(Pi*32/67) 1771142356270016 s002 sum(A222410[n]/((exp(n)+1)*n),n=1..infinity) 1771142358968061 h001 (3/4*exp(2)+4/5)/(2/5*exp(2)+5/8) 1771142371368795 r005 Im(z^2+c),c=-23/40+16/49*I,n=62 1771142371943957 a001 1/2207*(1/2*5^(1/2)+1/2)^15*3^(23/24) 1771142380260246 r009 Re(z^3+c),c=-17/98+3/55*I,n=6 1771142385227080 r005 Re(z^2+c),c=27/94+26/55*I,n=6 1771142387841975 a007 Real Root Of 272*x^4+354*x^3-655*x^2-682*x+137 1771142392722418 a001 3/4*167761^(1/14) 1771142393417995 a001 3/4*15127^(5/56) 1771142396549150 m001 Chi(1)*(Backhouse-FeigenbaumMu) 1771142401218603 a007 Real Root Of -170*x^4-567*x^3-864*x^2-459*x+420 1771142402885422 a001 317811/3571*18^(5/21) 1771142407091704 m001 (Zeta(1/2)-KhinchinLevy)/(Porter+Trott2nd) 1771142407806318 l006 ln(1560/9169) 1771142411113158 k006 concat of cont frac of 1771142411152112 k006 concat of cont frac of 1771142416301952 a001 199/2*63245986^(5/12) 1771142417330652 a007 Real Root Of -343*x^4-92*x^3+742*x^2+260*x+997 1771142418856715 a003 cos(Pi*1/65)+sin(Pi*25/89) 1771142419182015 r005 Re(z^2+c),c=-2/17+7/20*I,n=5 1771142419313114 k008 concat of cont frac of 1771142420111122 k008 concat of cont frac of 1771142421114161 k008 concat of cont frac of 1771142424059903 a001 199/5*55^(19/51) 1771142427289066 m001 1/BesselJ(0,1)^2*Conway*exp(Zeta(5))^2 1771142431704608 a007 Real Root Of -50*x^4+553*x^3+485*x^2-795*x+635 1771142432148115 m005 (1/2*5^(1/2)-7/8)/(4/5*5^(1/2)-5/12) 1771142432731745 a003 sin(Pi*28/93)-sin(Pi*37/119) 1771142433234421 q001 4775/2696 1771142437535401 m005 (1/3*exp(1)-2/5)/(5/12*2^(1/2)-7/8) 1771142451311111 k007 concat of cont frac of 1771142458502712 a003 cos(Pi*9/109)+cos(Pi*17/84) 1771142466829577 m001 exp(Zeta(1,2))/Tribonacci/Zeta(3) 1771142470153691 r002 16th iterates of z^2 + 1771142470341095 a007 Real Root Of 210*x^4-332*x^3-753*x^2+459*x-736 1771142471048920 m001 3^(1/3)*ThueMorse+Salem 1771142479985764 l006 ln(1511/8881) 1771142483331134 r002 51th iterates of z^2 + 1771142486963468 r005 Re(z^2+c),c=-1+31/223*I,n=48 1771142487759133 m001 1+arctan(1/2)+HardyLittlewoodC4 1771142492942370 m001 1/Paris^2/exp(Conway)^2*GAMMA(7/12)^2 1771142496236472 a007 Real Root Of 773*x^4+823*x^3-693*x^2+576*x+160 1771142501092579 a007 Real Root Of 963*x^4+790*x^3-895*x^2-895*x-127 1771142502507923 a001 15127/610*8^(52/55) 1771142503300109 m001 Cahen^OneNinth/(Cahen^OrthogonalArrays) 1771142503791008 r005 Im(z^2+c),c=-99/94+9/44*I,n=46 1771142504225807 m001 (GAMMA(11/12)-Mills)/(Riemann1stZero+Trott2nd) 1771142511457421 m001 (5^(1/2)-GAMMA(2/3))/(-GaussAGM+MertensB3) 1771142521315926 r005 Re(z^2+c),c=-7/78+7/15*I,n=38 1771142522636787 a007 Real Root Of -525*x^4-455*x^3+797*x^2-17*x+108 1771142526850077 q001 1/5646073 1771142528058252 a007 Real Root Of -189*x^4-562*x^3+63*x^2+973*x-171 1771142531537903 a007 Real Root Of -186*x^4-64*x^3-58*x^2+640*x+115 1771142532238460 r005 Re(z^2+c),c=-1/31+32/57*I,n=44 1771142541282151 k006 concat of cont frac of 1771142541510046 m005 (1/3*3^(1/2)+1/10)/(9/10*Catalan+3) 1771142542884053 a007 Real Root Of 738*x^4+744*x^3-389*x^2+689*x-688 1771142548209337 l006 ln(2503/2988) 1771142553906174 a007 Real Root Of -322*x^4-286*x^3-75*x^2-621*x+715 1771142554598612 a007 Real Root Of 521*x^4-749*x^3+556*x^2-643*x-136 1771142554943027 m001 (BesselJ(1,1)+5)/(BesselJZeros(0,1)+2/3) 1771142557003499 l006 ln(1462/8593) 1771142557756365 r005 Re(z^2+c),c=-1+31/223*I,n=56 1771142561270279 q001 5131/2897 1771142564524278 r005 Re(z^2+c),c=-1+31/223*I,n=64 1771142567553514 r005 Re(z^2+c),c=-1+31/223*I,n=60 1771142569711434 m005 (1/3*Zeta(3)-2/9)/(5/12*exp(1)-1/8) 1771142570111815 a003 sin(Pi*3/77)/sin(Pi*23/95) 1771142575642815 m009 (1/5*Pi^2-5)/(Psi(1,3/4)-5/6) 1771142577780510 r005 Im(z^2+c),c=-97/98+7/38*I,n=36 1771142584987928 r005 Re(z^2+c),c=-25/54+19/35*I,n=63 1771142589442218 r005 Re(z^2+c),c=-1+31/223*I,n=52 1771142589967273 r005 Im(z^2+c),c=-19/30+40/103*I,n=55 1771142590871638 r005 Im(z^2+c),c=-5/8+37/122*I,n=52 1771142594310105 m001 (gamma(1)+gamma(2))/(FeigenbaumDelta-Trott) 1771142598424508 m001 1/Zeta(1/2)*Catalan*ln(sin(Pi/5))^2 1771142606562051 a007 Real Root Of -812*x^4-586*x^3+886*x^2-877*x+402 1771142609247615 m006 (2/3*exp(Pi)-4)/(1/4*exp(Pi)+2/3) 1771142610119320 a007 Real Root Of 711*x^4+592*x^3-787*x^2+893*x+343 1771142611116122 k008 concat of cont frac of 1771142612867145 m005 (1/2+1/4*5^(1/2))/(1/11*gamma+6/11) 1771142613920065 a007 Real Root Of 854*x^4+999*x^3-550*x^2+153*x-857 1771142617986784 a001 1364/9227465*6557470319842^(17/24) 1771142619331959 a007 Real Root Of -76*x^4+249*x^3-102*x^2+291*x-831 1771142622311514 k006 concat of cont frac of 1771142630519749 a007 Real Root Of -427*x^4-292*x^3+859*x^2+585*x+921 1771142630959702 a007 Real Root Of 622*x^4+171*x^3-865*x^2+838*x-973 1771142633505922 r002 56th iterates of z^2 + 1771142639362867 l006 ln(1413/8305) 1771142651325757 m001 (ln(3)+gamma(2))/(BesselJ(1,1)+ZetaP(3)) 1771142655869072 r005 Re(z^2+c),c=-1+31/223*I,n=62 1771142656904529 m001 (1+LambertW(1))/(-HardyLittlewoodC3+Sarnak) 1771142662761915 r002 39th iterates of z^2 + 1771142666267704 r005 Im(z^2+c),c=-33/82+41/44*I,n=4 1771142671038390 a001 341/646*63245986^(17/24) 1771142672692059 q001 5487/3098 1771142682513379 a001 1/5778*(1/2*5^(1/2)+1/2)^17*3^(23/24) 1771142684295208 m001 1/FeigenbaumC*MinimumGamma^2/ln(GAMMA(11/24)) 1771142703578706 a003 cos(Pi*3/68)/cos(Pi*14/45) 1771142708861194 m006 (2/5*Pi^2-3)/(exp(2*Pi)-1/3) 1771142711190487 r005 Re(z^2+c),c=-5/74+32/63*I,n=34 1771142712003211 a003 cos(Pi*7/82)+sin(Pi*26/87) 1771142713917804 a007 Real Root Of -206*x^4+323*x^3+899*x^2-714*x-263 1771142715948169 a001 514229/199*521^(4/13) 1771142715982410 m009 (8/3*Catalan+1/3*Pi^2-6)/(1/6*Psi(1,2/3)+1) 1771142724695149 a007 Real Root Of 969*x^4-22*x^3+342*x^2-944*x-179 1771142724712131 k009 concat of cont frac of 1771142726387291 b008 2+KelvinBei[2,E/2] 1771142727194850 m001 (3^(1/3))^2*ln(TreeGrowth2nd)*Zeta(5) 1771142727639544 l006 ln(1364/8017) 1771142727824856 a001 1/15127*(1/2*5^(1/2)+1/2)^19*3^(23/24) 1771142734235980 a007 Real Root Of 754*x^4+800*x^3-520*x^2+482*x-490 1771142734435711 a001 1/39603*(1/2*5^(1/2)+1/2)^21*3^(23/24) 1771142735996323 a001 1/64079*(1/2*5^(1/2)+1/2)^22*3^(23/24) 1771142737996009 m005 (1/2*Pi+7/11)/(5/11*Pi-2/11) 1771142738521445 a001 1/24476*(1/2*5^(1/2)+1/2)^20*3^(23/24) 1771142744111341 k008 concat of cont frac of 1771142744232519 a007 Real Root Of -520*x^4+773*x^3+358*x^2+567*x+94 1771142746982348 r002 56th iterates of z^2 + 1771142755828890 a001 1/9349*(1/2*5^(1/2)+1/2)^18*3^(23/24) 1771142764388870 a003 cos(Pi*14/115)+cos(Pi*13/72) 1771142770536526 q001 5843/3299 1771142770677286 a007 Real Root Of 291*x^4+543*x^3-257*x^2-758*x-383 1771142777058713 a007 Real Root Of 536*x^4-893*x^3-108*x^2-368*x+73 1771142786027808 a007 Real Root Of -801*x^4-784*x^3+360*x^2-804*x+973 1771142790164319 m001 (ln(gamma)-Zeta(1,2))/(Porter+Sarnak) 1771142797349779 a003 cos(Pi*11/60)+sin(Pi*13/34) 1771142797563673 a007 Real Root Of -505*x^4-444*x^3+594*x^2-637*x-489 1771142797618200 a007 Real Root Of 585*x^4+547*x^3-810*x^2+478*x+670 1771142804002600 r009 Re(z^3+c),c=-7/23+7/12*I,n=18 1771142815539559 h001 (10/11*exp(2)+5/7)/(5/9*exp(2)+1/11) 1771142818394750 r005 Re(z^2+c),c=-1+31/223*I,n=44 1771142818513444 m001 (Landau+Otter)/(ln(2)+GlaisherKinkelin) 1771142822495006 l006 ln(1315/7729) 1771142822497409 r005 Im(z^2+c),c=-137/126+7/34*I,n=33 1771142838443514 m001 Ei(1)^2*exp(TwinPrimes)^2*log(2+sqrt(3)) 1771142841008249 a007 Real Root Of 266*x^4+297*x^3-497*x^2-956*x+183 1771142841439767 m001 ln(Niven)^2/CopelandErdos^2*sin(Pi/5)^2 1771142843140158 a007 Real Root Of 407*x^4+714*x^3+681*x^2-865*x-171 1771142848111623 m001 (ErdosBorwein+LaplaceLimit)^ArtinRank2 1771142850777282 a007 Real Root Of 288*x^4-160*x^3-88*x^2-563*x+10 1771142857142857 q001 6199/3500 1771142857193765 m001 GAMMA(7/12)^2/exp(GAMMA(3/4))^2*Zeta(1,2)^2 1771142859928622 m001 (Pi+exp(Pi))/(CareFree+Riemann1stZero) 1771142871453420 a007 Real Root Of 514*x^4+927*x^3+352*x^2+617*x+81 1771142874455892 a001 1/3571*(1/2*5^(1/2)+1/2)^16*3^(23/24) 1771142876157268 a007 Real Root Of -274*x^4-379*x^3-125*x^2-316*x+423 1771142879814420 a007 Real Root Of 555*x^4+479*x^3-556*x^2+153*x-785 1771142880896164 a003 cos(Pi*5/66)/sin(Pi*22/119) 1771142885447513 a007 Real Root Of -780*x^4-986*x^3+426*x^2-887*x-710 1771142887049787 m001 Sierpinski^Zeta(3)/(ErdosBorwein^Zeta(3)) 1771142891850776 a007 Real Root Of 723*x^4+791*x^3-640*x^2+270*x-234 1771142898304753 a007 Real Root Of -998*x^4+786*x^3-143*x^2+622*x+120 1771142898739609 a003 cos(Pi*19/110)+sin(Pi*25/68) 1771142903625489 p004 log(37493/6379) 1771142905266772 m001 Pi^(1/2)*ArtinRank2^gamma(3) 1771142907692751 s001 sum(exp(-Pi)^(n-1)*A204149[n],n=1..infinity) 1771142911179959 r005 Im(z^2+c),c=-33/64+19/60*I,n=46 1771142924693139 l006 ln(1266/7441) 1771142925263581 m009 (6*Psi(1,2/3)+1/3)/(4*Psi(1,3/4)+2/5) 1771142928118740 m004 -5*Pi+5*Cot[Sqrt[5]*Pi]+Sinh[Sqrt[5]*Pi]/3 1771142930447212 a003 sin(Pi*26/85)-sin(Pi*47/99) 1771142934342069 q001 6555/3701 1771142939568730 b008 ExpIntegralEi[E^(1/8)+E] 1771142943035016 a007 Real Root Of 716*x^4+907*x^3-128*x^2+979*x+129 1771142949306880 r005 Im(z^2+c),c=-47/50+1/6*I,n=54 1771142952141912 a007 Real Root Of 811*x^4+939*x^3-988*x^2-486*x-525 1771142952954517 a003 cos(Pi*11/54)+sin(Pi*45/107) 1771142956799733 a007 Real Root Of -208*x^4-330*x^3-264*x^2-981*x-696 1771142960154217 p003 LerchPhi(1/8,3,299/166) 1771142966674430 r005 Re(z^2+c),c=11/102+18/49*I,n=40 1771142968303219 m001 (GAMMA(1/6)-GAMMA(2/3)*exp(gamma))/exp(gamma) 1771142970941607 a007 Real Root Of -371*x^4-271*x^3+664*x^2-305*x-478 1771142974317836 m001 (AlladiGrinstead+Cahen)/(DuboisRaymond+Kac) 1771142975540209 r005 Im(z^2+c),c=-7/10+17/222*I,n=34 1771142983945190 m001 GAMMA(1/6)^2/exp(MertensB1)^2/Zeta(5) 1771142983972737 p001 sum((-1)^n/(503*n+462)/(2^n),n=0..infinity) 1771142984611603 a001 3571/139583862445*20365011074^(21/22) 1771142984612893 a001 1/1597*514229^(21/22) 1771142985247363 r005 Im(z^2+c),c=-67/110+2/61*I,n=55 1771142995514238 r005 Im(z^2+c),c=-39/70+2/63*I,n=37 1771142995659351 m001 (OneNinth-Salem)/(Stephens+Trott2nd) 1771142998382513 m001 (1/3)^exp(1/Pi)/((1/3)^Ei(1)) 1771143000623358 m005 (1/2*gamma-1/11)/(10/11*gamma-7/11) 1771143003587903 q001 6911/3902 1771143012238640 r005 Re(z^2+c),c=7/46+33/52*I,n=10 1771143018514431 m001 (Lehmer-OneNinth)/(ln(5)+GAMMA(5/6)) 1771143021300258 m005 (17/4+1/4*5^(1/2))/(8/11*Pi-5) 1771143023114641 s002 sum(A280103[n]/(n!^3),n=1..infinity) 1771143025948195 r009 Re(z^3+c),c=-27/98+39/64*I,n=11 1771143026994013 m001 ln(MinimumGamma)^2*ErdosBorwein*BesselJ(0,1) 1771143028704756 m001 polylog(4,1/2)*(5^(1/2)+KhinchinLevy) 1771143035120856 l006 ln(1217/7153) 1771143038272587 r005 Re(z^2+c),c=-9/86+24/55*I,n=35 1771143038836539 r009 Re(z^3+c),c=-37/122+23/40*I,n=42 1771143042481989 l006 ln(6771/8083) 1771143047447350 r002 37th iterates of z^2 + 1771143050103178 r009 Re(z^3+c),c=-11/54+30/41*I,n=35 1771143051581361 a007 Real Root Of 339*x^4+859*x^3+761*x^2+120*x-738 1771143054561310 m001 (5^(1/2))^GAMMA(11/12)-LambertW(1) 1771143054561310 m001 LambertW(1)-sqrt(5)^GAMMA(11/12) 1771143062058941 r005 Re(z^2+c),c=-11/14+13/139*I,n=2 1771143062691176 a007 Real Root Of 710*x^4+800*x^3-377*x^2+960*x+341 1771143066823774 m001 1/ln(sin(Pi/12))^2*GAMMA(1/24)^2*sin(Pi/5) 1771143074666495 a007 Real Root Of 312*x^4+74*x^3-760*x^2+319*x+290 1771143076905888 a007 Real Root Of -552*x^4-723*x^3+286*x^2-368*x-134 1771143076908332 m001 (KhinchinLevy+Niven)/(Ei(1,1)-CopelandErdos) 1771143078193168 m009 (2*Psi(1,3/4)+1/5)/(2/5*Psi(1,3/4)-4) 1771143083460550 h001 (-3*exp(1/3)-6)/(-7*exp(-1)+2) 1771143091676191 a001 4/10610209857723*121393^(13/18) 1771143093740883 a007 Real Root Of -263*x^4-155*x^3+345*x^2-159*x+363 1771143094524766 r005 Im(z^2+c),c=-23/44+4/13*I,n=26 1771143096728495 m001 1/exp(1)^2*ln(KhintchineLevy)^2/sqrt(5) 1771143097577825 a007 Real Root Of -918*x^4+933*x^3-426*x^2+218*x+4 1771143102094273 r005 Im(z^2+c),c=-115/78+2/19*I,n=3 1771143102392725 m003 25/4+Sqrt[5]/32-6*ProductLog[1/2+Sqrt[5]/2] 1771143103238620 a001 9349/365435296162*20365011074^(21/22) 1771143103239900 a001 9349/14930352*514229^(21/22) 1771143111111546 k007 concat of cont frac of 1771143112211281 k008 concat of cont frac of 1771143113411771 k006 concat of cont frac of 1771143115734958 a001 3536736619241*199^(7/23) 1771143118111423 k007 concat of cont frac of 1771143120546069 a001 24476/956722026041*20365011074^(21/22) 1771143120547348 a001 24476/39088169*514229^(21/22) 1771143121308014 r005 Re(z^2+c),c=-127/126+23/54*I,n=4 1771143122335143 k007 concat of cont frac of 1771143123071191 a001 64079/2504730781961*20365011074^(21/22) 1771143123072470 a001 64079/102334155*514229^(21/22) 1771143123439602 a001 167761/6557470319842*20365011074^(21/22) 1771143123440881 a001 167761/267914296*514229^(21/22) 1771143123494631 a001 439204/701408733*514229^(21/22) 1771143123502473 a001 1149851/1836311903*514229^(21/22) 1771143123503617 a001 3010349/4807526976*514229^(21/22) 1771143123503784 a001 7881196/12586269025*514229^(21/22) 1771143123503808 a001 20633239/32951280099*514229^(21/22) 1771143123503812 a001 54018521/86267571272*514229^(21/22) 1771143123503812 a001 141422324/225851433717*514229^(21/22) 1771143123503813 a001 370248451/591286729879*514229^(21/22) 1771143123503813 a001 969323029/1548008755920*514229^(21/22) 1771143123503813 a001 2537720636/4052739537881*514229^(21/22) 1771143123503813 a001 6643838879/10610209857723*514229^(21/22) 1771143123503813 a001 4106118243/6557470319842*514229^(21/22) 1771143123503813 a001 1568397607/2504730781961*514229^(21/22) 1771143123503813 a001 599074578/956722026041*514229^(21/22) 1771143123503813 a001 228826127/365435296162*514229^(21/22) 1771143123503813 a001 87403803/139583862445*514229^(21/22) 1771143123503814 a001 33385282/53316291173*514229^(21/22) 1771143123503823 a001 12752043/20365011074*514229^(21/22) 1771143123503887 a001 4870847/7778742049*514229^(21/22) 1771143123504324 a001 1860498/2971215073*514229^(21/22) 1771143123507320 a001 710647/1134903170*514229^(21/22) 1771143123526572 a001 90481/3536736619241*20365011074^(21/22) 1771143123527850 a001 271443/433494437*514229^(21/22) 1771143123667292 a001 103682/4052739537881*20365011074^(21/22) 1771143123668571 a001 103682/165580141*514229^(21/22) 1771143124631803 a001 13201/516002918640*20365011074^(21/22) 1771143124633082 a001 39603/63245986*514229^(21/22) 1771143129586032 m001 GAMMA(1/24)/ln(Si(Pi))/arctan(1/2)^2 1771143130305438 a001 13/167761*3571^(52/55) 1771143131242660 a001 15127/591286729879*20365011074^(21/22) 1771143131243938 a001 15127/24157817*514229^(21/22) 1771143138304053 a007 Real Root Of -926*x^4+885*x^3-879*x^2+472*x+117 1771143140319262 k007 concat of cont frac of 1771143141111031 k008 concat of cont frac of 1771143142933113 k007 concat of cont frac of 1771143145631212 r002 3th iterates of z^2 + 1771143146065667 m004 -2-5*Pi-Log[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 1771143146340094 m004 2+5*Pi+(2*Log[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 1771143146614521 m004 -2-5*Pi-Csch[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi] 1771143148991591 r002 14th iterates of z^2 + 1771143153176796 m001 3^(1/3)+BesselI(1,1)*LandauRamanujan2nd 1771143154813899 l006 ln(1168/6865) 1771143155009414 a001 1568397607/233*46368^(7/23) 1771143155059557 a001 54018521/233*2971215073^(7/23) 1771143156615448 m001 Trott^(gamma(2)/ZetaP(4)) 1771143162379811 m001 (Si(Pi)-ln(gamma))/(ln(2)+LaplaceLimit) 1771143171898065 m001 FeigenbaumB-LandauRamanujan-Tribonacci 1771143171908290 a007 Real Root Of 473*x^4+200*x^3-513*x^2+926*x-294 1771143171973779 r005 Im(z^2+c),c=-87/94+9/56*I,n=27 1771143172152162 r009 Re(z^3+c),c=-31/98+25/42*I,n=28 1771143173242112 a007 Real Root Of 669*x^4+603*x^3-983*x^2-124*x-369 1771143176178929 m001 exp(GAMMA(1/6))^2*MinimumGamma*sqrt(Pi) 1771143176554149 a001 1926/75283811239*20365011074^(21/22) 1771143176555423 a001 5778/9227465*514229^(21/22) 1771143177911943 a001 199/317811*46368^(3/31) 1771143188456120 m004 -150/(Pi*Log[Sqrt[5]*Pi])+5*Sec[Sqrt[5]*Pi] 1771143191741122 k006 concat of cont frac of 1771143192863062 m005 (1/2*gamma+4/7)/(5/11*exp(1)-3/4) 1771143195956263 a001 1/10182505537*21^(19/20) 1771143197390750 m001 MadelungNaCl^2*ArtinRank2*ln(Zeta(7)) 1771143204835824 m005 (1/2*3^(1/2)+1/5)/(11/12*Zeta(3)-1/2) 1771143204873894 m001 1/GAMMA(5/12)^2*exp(Tribonacci)*GAMMA(5/6)^2 1771143207194861 r005 Im(z^2+c),c=-31/26+23/99*I,n=5 1771143210070250 a007 Real Root Of 53*x^4+950*x^3+251*x^2+854*x-862 1771143213813619 m001 1/GAMMA(3/4)/Champernowne/exp(log(2+sqrt(3))) 1771143215946669 a001 121393/1364*18^(5/21) 1771143217863912 a001 832040/199*521^(3/13) 1771143218720684 r009 Re(z^3+c),c=-17/90+10/59*I,n=7 1771143224135214 s002 sum(A125634[n]/((10^n+1)/n),n=1..infinity) 1771143224202975 a007 Real Root Of -663*x^4-594*x^3+640*x^2-405*x+499 1771143231574702 p004 log(33461/5693) 1771143233341467 k002 Champernowne real with 9*n^2+27*n-19 1771143244430044 m001 Kolakoski*ZetaQ(4)-Pi^(1/2) 1771143244972579 a007 Real Root Of 40*x^4+664*x^3-799*x^2-166*x+698 1771143246969508 a007 Real Root Of -899*x^4-938*x^3+802*x^2-152*x+850 1771143249867438 m001 ErdosBorwein^KomornikLoreti/HeathBrownMoroz 1771143252258588 a001 13/15127*24476^(29/55) 1771143252527255 m001 (Landau-Stephens)/(Zeta(5)+AlladiGrinstead) 1771143253509273 r009 Im(z^3+c),c=-35/62+29/63*I,n=30 1771143254018502 a007 Real Root Of 775*x^4+849*x^3-49*x^2-398*x-65 1771143261182474 a001 13/1149851*64079^(48/55) 1771143267643112 s002 sum(A121671[n]/(n!^2),n=1..infinity) 1771143271637019 h001 (7/10*exp(1)+1/4)/(3/10*exp(1)+2/5) 1771143281540773 m001 Zeta(5)*exp(ErdosBorwein)/cos(1)^2 1771143282195829 a007 Real Root Of 720*x^4+626*x^3-752*x^2+489*x-382 1771143283049845 m005 (1/3*3^(1/2)-3/4)/(5/8*2^(1/2)+1/11) 1771143284989425 l006 ln(1119/6577) 1771143292299642 a001 1149851/610*610^(17/24) 1771143298417715 a007 Real Root Of 509*x^4+575*x^3+7*x^2+511*x-931 1771143303465641 a001 13/64079*5778^(43/55) 1771143308923602 m001 FeigenbaumC*MinimumGamma*Robbin 1771143308978389 a001 39603/1597*8^(52/55) 1771143310455118 m001 (ln(2)-Grothendieck)/(Kac-Trott) 1771143310896788 p001 sum((-1)^n/(400*n+149)/n/(10^n),n=1..infinity) 1771143312621224 m001 (GAMMA(2/3)-Si(Pi))/(-Gompertz+Magata) 1771143324112221 k007 concat of cont frac of 1771143328620831 m001 Mills^(GAMMA(3/4)*KhinchinHarmonic) 1771143330296915 a007 Real Root Of -754*x^4-27*x^3+431*x^2+711*x+113 1771143332151411 k008 concat of cont frac of 1771143332351812 l006 ln(4268/5095) 1771143333122211 k007 concat of cont frac of 1771143334878622 s002 sum(A125634[n]/((10^n-1)/n),n=1..infinity) 1771143352905665 a007 Real Root Of 196*x^4+293*x^3+348*x^2+614*x-305 1771143358649771 r005 Im(z^2+c),c=-19/18+47/232*I,n=44 1771143363014731 m001 (cos(1)-CopelandErdos)^Backhouse 1771143365809782 r005 Re(z^2+c),c=3/98+21/44*I,n=6 1771143373644779 m001 (-Weierstrass+ZetaP(4))/(Catalan+MertensB3) 1771143375471893 m001 (-gamma(3)+Paris)/(Psi(2,1/3)+sin(1/5*Pi)) 1771143384278792 r002 8th iterates of z^2 + 1771143384984377 p001 sum((-1)^n/(467*n+83)/n/(10^n),n=1..infinity) 1771143391736814 r005 Re(z^2+c),c=-11/62+51/61*I,n=46 1771143392240306 m001 BesselJ(1,1)/ln(FeigenbaumB)/GAMMA(2/3) 1771143392791396 m004 1+Cos[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi]/20 1771143399228689 m001 BesselK(1,1)+BesselI(0,1)^LaplaceLimit 1771143401733925 m005 (1/2*3^(1/2)-1)/(1/6*Catalan-10/11) 1771143404518318 r005 Im(z^2+c),c=-29/122+14/55*I,n=9 1771143409021895 m008 (Pi^2+3/5)/(3/5*Pi^4+2/3) 1771143412458121 k006 concat of cont frac of 1771143417282221 k008 concat of cont frac of 1771143423143171 k008 concat of cont frac of 1771143425712314 r009 Re(z^3+c),c=-37/110+29/47*I,n=48 1771143427087551 l006 ln(1070/6289) 1771143431068665 a001 3571/24157817*6557470319842^(17/24) 1771143436234981 m001 (gamma(3)-Khinchin)/(3^(1/3)-gamma(1)) 1771143436330143 m001 (Si(Pi)-sin(1))/(-GolombDickman+ZetaQ(2)) 1771143438808793 a001 3571/6765*63245986^(17/24) 1771143441013091 r005 Im(z^2+c),c=5/42+1/7*I,n=7 1771143461399890 m005 (1/2*3^(1/2)-3/5)/(1/2*exp(1)+1/7) 1771143466424573 r005 Re(z^2+c),c=-17/14+7/250*I,n=38 1771143467904587 a003 sin(Pi*9/116)*sin(Pi*16/61) 1771143467934333 q001 1/564607 1771143473054760 m001 (1+exp(1/exp(1)))/(Conway+ZetaP(4)) 1771143475804805 r002 42th iterates of z^2 + 1771143477142777 a008 Real Root of (-6+5*x+8*x^2+7*x^4-x^8) 1771143477875030 m001 (exp(Pi)+BesselI(0,1))/(ln(gamma)+Tetranacci) 1771143482397609 h001 (2/3*exp(1)+7/9)/(2/5*exp(1)+3/8) 1771143482442673 a007 Real Root Of 2*x^4-421*x^3+30*x^2+892*x-873 1771143483436082 a007 Real Root Of 233*x^4+76*x^3-469*x^2-728*x+143 1771143487123712 a001 2207/86267571272*20365011074^(21/22) 1771143487124962 a001 2207/3524578*514229^(21/22) 1771143488112480 m001 ln(5)^gamma(3)/BesselI(1,1) 1771143489506678 a007 Real Root Of 590*x^4+546*x^3-806*x^2-406*x-963 1771143492852221 r005 Im(z^2+c),c=17/64+2/45*I,n=55 1771143499360348 a001 64079/2584*8^(52/55) 1771143502567140 a003 cos(Pi*7/67)/cos(Pi*25/78) 1771143503038536 a001 18/514229*4181^(7/36) 1771143513225185 r005 Re(z^2+c),c=-1+31/223*I,n=54 1771143515051333 r005 Im(z^2+c),c=-47/50+1/6*I,n=62 1771143521213941 k007 concat of cont frac of 1771143528316414 r002 43th iterates of z^2 + 1771143528408017 r009 Re(z^3+c),c=-19/58+23/40*I,n=18 1771143536746850 m001 (-gamma+PlouffeB)/(5^(1/2)-Psi(2,1/3)) 1771143539700440 r005 Re(z^2+c),c=-1/30+13/23*I,n=60 1771143546533591 r005 Im(z^2+c),c=-41/102+13/44*I,n=16 1771143549695712 a001 9349/63245986*6557470319842^(17/24) 1771143550824982 a001 9349/17711*63245986^(17/24) 1771143552817492 m001 Khinchin/(Zeta(3)-exp(1)) 1771143553415307 r002 37th iterates of z^2 + 1771143561453337 a007 Real Root Of 216*x^4-847*x^3+160*x^2+649*x+929 1771143561840056 m005 (1/5*Pi-5)/(exp(1)-1/4) 1771143562769376 a005 (1/cos(21/197*Pi))^574 1771143562901997 r005 Im(z^2+c),c=-18/17+4/19*I,n=54 1771143563818222 a003 sin(Pi*11/92)*sin(Pi*17/106) 1771143566425257 m001 (Ei(1)-Riemann3rdZero)/(ZetaP(4)+ZetaQ(2)) 1771143567003165 a001 24476/165580141*6557470319842^(17/24) 1771143567167924 a001 6119/11592*63245986^(17/24) 1771143569086023 l005 ln(tanh(168/65*Pi)) 1771143569528289 a001 64079/433494437*6557470319842^(17/24) 1771143569552327 a001 64079/121393*63245986^(17/24) 1771143569896699 a001 167761/1134903170*6557470319842^(17/24) 1771143569900206 a001 167761/317811*63245986^(17/24) 1771143569950450 a001 439204/2971215073*6557470319842^(17/24) 1771143569950961 a001 109801/208010*63245986^(17/24) 1771143569958292 a001 1149851/7778742049*6557470319842^(17/24) 1771143569958366 a001 1149851/2178309*63245986^(17/24) 1771143569959436 a001 3010349/20365011074*6557470319842^(17/24) 1771143569959447 a001 3010349/5702887*63245986^(17/24) 1771143569959603 a001 7881196/53316291173*6557470319842^(17/24) 1771143569959604 a001 1970299/3732588*63245986^(17/24) 1771143569959627 a001 20633239/139583862445*6557470319842^(17/24) 1771143569959627 a001 20633239/39088169*63245986^(17/24) 1771143569959631 a001 54018521/365435296162*6557470319842^(17/24) 1771143569959631 a001 54018521/102334155*63245986^(17/24) 1771143569959631 a001 141422324/956722026041*6557470319842^(17/24) 1771143569959631 a001 35355581/66978574*63245986^(17/24) 1771143569959631 a001 370248451/2504730781961*6557470319842^(17/24) 1771143569959631 a001 969323029/6557470319842*6557470319842^(17/24) 1771143569959631 a001 224056801/1515744265389*6557470319842^(17/24) 1771143569959631 a001 599074578/4052739537881*6557470319842^(17/24) 1771143569959631 a001 228826127/1548008755920*6557470319842^(17/24) 1771143569959631 a001 370248451/701408733*63245986^(17/24) 1771143569959631 a001 969323029/1836311903*63245986^(17/24) 1771143569959631 a001 634430159/1201881744*63245986^(17/24) 1771143569959631 a001 6643838879/12586269025*63245986^(17/24) 1771143569959631 a001 17393796001/32951280099*63245986^(17/24) 1771143569959631 a001 11384387281/21566892818*63245986^(17/24) 1771143569959631 a001 119218851371/225851433717*63245986^(17/24) 1771143569959631 a001 312119004989/591286729879*63245986^(17/24) 1771143569959631 a001 204284540899/387002188980*63245986^(17/24) 1771143569959631 a001 1322157322203/2504730781961*63245986^(17/24) 1771143569959631 a001 505019158607/956722026041*63245986^(17/24) 1771143569959631 a001 96450076809/182717648081*63245986^(17/24) 1771143569959631 a001 73681302247/139583862445*63245986^(17/24) 1771143569959631 a001 28143753123/53316291173*63245986^(17/24) 1771143569959631 a001 5374978561/10182505537*63245986^(17/24) 1771143569959631 a001 4106118243/7778742049*63245986^(17/24) 1771143569959631 a001 1568397607/2971215073*63245986^(17/24) 1771143569959631 a001 299537289/567451585*63245986^(17/24) 1771143569959631 a001 228826127/433494437*63245986^(17/24) 1771143569959631 a001 87403803/591286729879*6557470319842^(17/24) 1771143569959631 a001 87403803/165580141*63245986^(17/24) 1771143569959633 a001 16692641/31622993*63245986^(17/24) 1771143569959633 a001 4769326/32264490531*6557470319842^(17/24) 1771143569959642 a001 12752043/24157817*63245986^(17/24) 1771143569959642 a001 12752043/86267571272*6557470319842^(17/24) 1771143569959702 a001 4870847/9227465*63245986^(17/24) 1771143569959706 a001 4870847/32951280099*6557470319842^(17/24) 1771143569960114 a001 930249/1762289*63245986^(17/24) 1771143569960143 a001 1860498/12586269025*6557470319842^(17/24) 1771143569962943 a001 710647/1346269*63245986^(17/24) 1771143569963138 a001 101521/686789568*6557470319842^(17/24) 1771143569982330 a001 271443/514229*63245986^(17/24) 1771143569983669 a001 271443/1836311903*6557470319842^(17/24) 1771143570115208 a001 51841/98209*63245986^(17/24) 1771143570124389 a001 103682/701408733*6557470319842^(17/24) 1771143571025969 a001 39603/75025*63245986^(17/24) 1771143571088901 a001 39603/267914296*6557470319842^(17/24) 1771143577268417 a001 15127/28657*63245986^(17/24) 1771143577699759 a001 1/6765*6557470319842^(17/24) 1771143582824847 l006 ln(1021/6001) 1771143584848569 a007 Real Root Of 766*x^4-561*x^3-232*x^2-832*x+157 1771143590170102 m001 exp(Niven)^2/Bloch/BesselK(1,1)^2 1771143595309309 m001 sin(1/5*Pi)*ThueMorse+GAMMA(7/12) 1771143595309309 m001 sin(Pi/5)*ThueMorse+GAMMA(7/12) 1771143595602383 p004 log(26701/22367) 1771143596252102 a007 Real Root Of 759*x^4+987*x^3-463*x^2+827*x+932 1771143601848774 m001 3^(1/3)*GAMMA(19/24)^GlaisherKinkelin 1771143609491550 m001 (GAMMA(7/12)+Tetranacci)/(3^(1/2)+Ei(1,1)) 1771143610659805 m001 Psi(2,1/3)*(Backhouse-FeigenbaumDelta) 1771143615139202 a007 Real Root Of -599*x^4-669*x^3-12*x^2-987*x+467 1771143618916477 h003 exp(Pi*(10^(11/12)+14^(5/7))) 1771143618916477 h008 exp(Pi*(10^(11/12)+14^(5/7))) 1771143620054794 a001 2889/5473*63245986^(17/24) 1771143622989435 r005 Im(z^2+c),c=-5/27+15/62*I,n=11 1771143623011260 a001 5778/39088169*6557470319842^(17/24) 1771143623126201 m001 Bloch^Conway+HardHexagonsEntropy 1771143623151102 r009 Im(z^3+c),c=-37/82+1/26*I,n=55 1771143625000178 m001 (ln(gamma)-Conway)/(FellerTornier+Sarnak) 1771143625033983 r002 5th iterates of z^2 + 1771143629065672 a007 Real Root Of 203*x^4-15*x^3-221*x^2+801*x+31 1771143632687642 a007 Real Root Of -402*x^4+668*x^3-848*x^2+809*x-120 1771143634854137 s001 sum(1/10^(n-1)*A002662[n]/n!^2,n=1..infinity) 1771143635562769 m001 (ArtinRank2+Robbin)/(ln(gamma)+ln(2+3^(1/2))) 1771143642916950 a008 Real Root of (2+3*x-4*x^2+6*x^3+6*x^4-5*x^5) 1771143644261712 k008 concat of cont frac of 1771143644980718 r005 Im(z^2+c),c=-12/25+17/55*I,n=55 1771143648907007 r009 Im(z^3+c),c=-3/31+5/28*I,n=3 1771143655892734 a007 Real Root Of 643*x^4-101*x^3-638*x^2-908*x-142 1771143657680588 l006 ln(6033/7202) 1771143659744738 a007 Real Root Of 25*x^4+466*x^3+424*x^2+234*x+115 1771143661647738 r005 Im(z^2+c),c=13/58+5/59*I,n=22 1771143670785953 m001 (OneNinth-ZetaQ(2))/(arctan(1/3)-Kac) 1771143674653917 s001 sum(1/10^(n-1)*A034358[n]/n!^2,n=1..infinity) 1771143674716650 s001 sum(1/10^(n-1)*A137221[n]/n!^2,n=1..infinity) 1771143676694899 a007 Real Root Of 97*x^4-592*x^3+55*x^2+690*x+940 1771143680380742 m001 ZetaQ(3)*(FeigenbaumD-TwinPrimes) 1771143687537886 a001 1/1364*(1/2*5^(1/2)+1/2)^14*3^(23/24) 1771143698672057 b008 Gudermannian[Khinchin]/81 1771143702503650 a007 Real Root Of 360*x^4+812*x^3+952*x^2+933*x-365 1771143708357129 m001 (exp(1)+Conway)/(-Khinchin+PrimesInBinary) 1771143709276827 a007 Real Root Of -46*x^4-780*x^3+590*x^2-413*x+543 1771143709719128 r009 Re(z^3+c),c=-37/122+27/47*I,n=50 1771143719782356 a001 1346269/199*521^(2/13) 1771143719900005 m001 (MertensB1-Rabbit)/(Sierpinski-ZetaQ(2)) 1771143724543015 m005 (1/2*5^(1/2)+8/9)/(3/8*gamma+11/12) 1771143741146778 a003 cos(Pi*18/107)+sin(Pi*21/58) 1771143744197858 a007 Real Root Of -731*x^4-764*x^3+378*x^2-997*x-3 1771143750115331 a007 Real Root Of 802*x^4+720*x^3+122*x^2-962*x-171 1771143750409477 a007 Real Root Of 330*x^4+503*x^3+283*x^2-909*x+149 1771143754264023 l006 ln(972/5713) 1771143758228845 a007 Real Root Of -534*x^4-926*x^3-280*x^2-239*x+565 1771143760051192 s002 sum(A135868[n]/(2^n+1),n=1..infinity) 1771143770491803 a001 10803977/610 1771143772142847 h001 (7/12*exp(2)+6/7)/(1/3*exp(2)+5/11) 1771143776035987 l002 polylog(8,20/113) 1771143777836613 m001 (Si(Pi)+sin(1))/(-Grothendieck+MertensB1) 1771143777890908 a003 sin(Pi*12/77)-sin(Pi*13/58) 1771143778319931 a001 5/4*843^(25/34) 1771143781826333 m001 Pi^(1/2)-Trott^Porter 1771143783160728 a003 cos(Pi*5/23)+sin(Pi*54/115) 1771143787807322 m004 -18-Cos[Sqrt[5]*Pi]+2/Log[Sqrt[5]*Pi] 1771143795654655 a007 Real Root Of 734*x^4+836*x^3-362*x^2+911*x+171 1771143799548260 r005 Im(z^2+c),c=-37/54+7/46*I,n=15 1771143800265358 r009 Re(z^3+c),c=-9/31+8/15*I,n=25 1771143804882687 a007 Real Root Of 65*x^4+60*x^3+136*x^2-135*x-972 1771143807404917 a001 24476/987*8^(52/55) 1771143809457204 a007 Real Root Of -501*x^4-838*x^3-237*x^2-478*x+171 1771143816110411 k007 concat of cont frac of 1771143820246576 r002 48th iterates of z^2 + 1771143821117113 k007 concat of cont frac of 1771143825608016 m005 (1/3*5^(1/2)-1/5)/(3/4*gamma-1/8) 1771143830426032 m001 HardyLittlewoodC5^Si(Pi)-ReciprocalLucas 1771143830753539 a003 cos(Pi*6/89)-cos(Pi*9/44) 1771143835739472 l006 ln(7798/9309) 1771143835908225 a007 Real Root Of -838*x^4-979*x^3+146*x^2-922*x+716 1771143852287987 m005 (1/2*Zeta(3)+5/8)/(2/7*gamma-6/7) 1771143855368772 a001 1/817138163596*2^(8/15) 1771143855373402 a001 4181/199*1364^(14/15) 1771143864480566 m001 1/exp(Zeta(1/2))/MertensB1*Zeta(5)^2 1771143871921185 r005 Im(z^2+c),c=-33/31+9/46*I,n=15 1771143872434582 m001 1/Paris^2/Si(Pi)^2/exp(sqrt(2))^2 1771143873930113 r005 Im(z^2+c),c=-7/10+35/124*I,n=21 1771143879166277 m005 (1/3*gamma+2/5)/(5/9*Zeta(3)-1/3) 1771143881171448 m001 cosh(1)*FibonacciFactorial*exp(sqrt(5)) 1771143890834234 a001 6765/199*1364^(13/15) 1771143899065626 m001 (ln(Pi)+sin(1/12*Pi))/(gamma(3)-Kolakoski) 1771143900555410 m001 ln(GAMMA(7/24))*DuboisRaymond*cos(Pi/5) 1771143901737662 m001 (Grothendieck-Niven)/(Ei(1)+Zeta(1/2)) 1771143902376695 r005 Im(z^2+c),c=-35/74+4/13*I,n=42 1771143906103362 m001 ln(HardHexagonsEntropy)/Conway*FeigenbaumB^2 1771143910590142 m001 TreeGrowth2nd^2/ln(Rabbit)^2*Zeta(5)^2 1771143913316978 a001 2207/4181*63245986^(17/24) 1771143918765245 a007 Real Root Of 671*x^4+419*x^3-388*x^2-812*x+153 1771143933282896 m005 (1/2*2^(1/2)+7/9)/(19/44+2/11*5^(1/2)) 1771143933580902 a001 2207/14930352*6557470319842^(17/24) 1771143935370827 r009 Im(z^3+c),c=-85/94+13/23*I,n=2 1771143942589462 r005 Im(z^2+c),c=-2/5+12/19*I,n=15 1771143943905808 l006 ln(923/5425) 1771143950573343 a007 Real Root Of -293*x^4+592*x^3-353*x^2+661*x-109 1771143954048188 r002 50th iterates of z^2 + 1771143955180773 r005 Re(z^2+c),c=-93/110+6/61*I,n=10 1771143958898426 h001 (7/9*exp(2)+3/10)/(4/11*exp(2)+8/11) 1771143960035478 r005 Im(z^2+c),c=-53/90+12/35*I,n=39 1771143960353181 a007 Real Root Of 838*x^4+667*x^3-940*x^2+862*x-65 1771143964995717 a001 10946/199*1364^(4/5) 1771143967306260 a001 5/15127*123^(15/43) 1771143969376319 m001 (MertensB2+MertensB3)/(ln(2)+Cahen) 1771143969858329 m001 (Zeta(1,2)+Porter)/(gamma(3)-ln(2)/ln(10)) 1771143970753009 m001 (3^(1/3)+Pi^(1/2))/(5^(1/2)-BesselK(0,1)) 1771143977349921 r005 Re(z^2+c),c=-13/31+5/9*I,n=21 1771143977489321 m006 (4/5/Pi+4)/(3/4*Pi^2-5) 1771143977812051 m003 3+(37*Sqrt[5])/64-E^(1/2+Sqrt[5]/2)/2 1771143985068897 a003 cos(Pi*15/74)+sin(Pi*23/55) 1771143990802694 h001 (1/10*exp(1)+4/5)/(1/10*exp(1)+1/3) 1771143990802694 m005 (1/4*exp(1)+2)/(1/4*exp(1)+5/6) 1771144001246726 m001 (Mills-ZetaQ(3))/(ln(3)-FeigenbaumC) 1771144002815514 h001 (1/5*exp(2)+5/7)/(1/9*exp(2)+5/12) 1771144004621186 r005 Re(z^2+c),c=10/29+10/31*I,n=3 1771144006638041 a007 Real Root Of 541*x^4+481*x^3-345*x^2+970*x+149 1771144008256000 m005 (1/2*2^(1/2)+1/8)/(2/9*Pi+4) 1771144010654736 r004 Im(z^2+c),c=-6/11+3/13*I,z(0)=-1,n=13 1771144011197962 m001 (-2*Pi/GAMMA(5/6)+Kac)/(Si(Pi)-Zeta(1,2)) 1771144015234446 a007 Real Root Of -680*x^4-405*x^3+971*x^2-750*x+67 1771144022448778 m001 (PlouffeB+Tetranacci)/(LandauRamanujan+Lehmer) 1771144024374869 a001 89*1364^(11/15) 1771144026598687 m001 1/BesselK(1,1)*exp(Paris)*cos(Pi/12) 1771144046893497 m001 Pi^(1/2)-ZetaP(4)^Sierpinski 1771144050988827 a007 Real Root Of 697*x^4+651*x^3-596*x^2+602*x-306 1771144051287048 r005 Im(z^2+c),c=-23/58+7/24*I,n=31 1771144055679120 p004 log(29153/24421) 1771144056455704 m001 (GAMMA(2/3)*Zeta(1,2)-GAMMA(5/6))/GAMMA(2/3) 1771144058288824 h005 exp(cos(Pi*2/37)/cos(Pi*18/41)) 1771144060225909 a007 Real Root Of -280*x^4+634*x^3+266*x^2+483*x+81 1771144060857691 s002 sum(A098514[n]/(exp(n)),n=1..infinity) 1771144073403548 m001 5^(1/2)*Salem-Thue 1771144078511400 m005 (1/2*5^(1/2)-1/9)/(6/11*gamma-6) 1771144083588345 s002 sum(A104594[n]/(n^2*2^n+1),n=1..infinity) 1771144089400372 a001 28657/199*1364^(2/3) 1771144093211366 m005 (1/2*Pi+1/4)/(5*5^(1/2)-9/10) 1771144101515399 m001 (-BesselI(1,1)+Salem)/(2^(1/3)-GAMMA(3/4)) 1771144104347695 m005 (1/2*3^(1/2)-7/9)/(2/7*gamma+1/3) 1771144105382472 a001 3010349/1597*610^(17/24) 1771144106548903 r009 Re(z^3+c),c=-3/10+22/39*I,n=36 1771144107456027 m001 GAMMA(7/12)*LandauRamanujan2nd+QuadraticClass 1771144111011922 k007 concat of cont frac of 1771144111112412 k008 concat of cont frac of 1771144113004545 a001 521/89*2584^(23/53) 1771144114111122 k008 concat of cont frac of 1771144117111413 k009 concat of cont frac of 1771144117985203 m001 (-PrimesInBinary+Trott)/(Chi(1)+3^(1/3)) 1771144120896187 a007 Real Root Of 136*x^4-517*x^3-738*x^2+718*x-624 1771144121622131 k009 concat of cont frac of 1771144125222125 k008 concat of cont frac of 1771144127133175 k006 concat of cont frac of 1771144129600873 m001 HardyLittlewoodC4*Rabbit^ln(5) 1771144131211131 k006 concat of cont frac of 1771144132976789 r005 Re(z^2+c),c=-19/118+18/61*I,n=17 1771144134571342 r005 Im(z^2+c),c=-35/102+7/25*I,n=16 1771144141069397 a007 Real Root Of 821*x^4+856*x^3-657*x^2+502*x-373 1771144141115112 k009 concat of cont frac of 1771144142124315 k008 concat of cont frac of 1771144148137885 a007 Real Root Of -39*x^4-743*x^3-878*x^2+841*x-2 1771144151648788 a007 Real Root Of 170*x^4+381*x^3+800*x^2+679*x-863 1771144152269164 a001 46368/199*1364^(3/5) 1771144154811732 l006 ln(874/5137) 1771144158345092 m001 (ln(5)+HardHexagonsEntropy*Paris)/Paris 1771144164396348 r002 2th iterates of z^2 + 1771144171993056 r005 Im(z^2+c),c=15/74+5/52*I,n=5 1771144173343821 m001 (cos(1/12*Pi)+Backhouse)/(Zeta(3)-Zeta(1,-1)) 1771144180825761 m006 (5/6*Pi+3/5)/(1/Pi-1/2) 1771144188520299 m005 (1/2*gamma+4/5)/(1/9*exp(1)-11/12) 1771144192884360 p003 LerchPhi(1/5,5,415/184) 1771144194111688 m001 sin(1)^Mills/(Landau^Mills) 1771144194514005 a007 Real Root Of -140*x^4-456*x^3-430*x^2+797*x-125 1771144197810380 a007 Real Root Of -577*x^4-618*x^3+122*x^2-775*x+489 1771144201254838 a001 29/2*267914296^(13/18) 1771144204573908 a007 Real Root Of 512*x^4+167*x^3-844*x^2+420*x-719 1771144205790623 a007 Real Root Of 202*x^4+186*x^3-228*x^2-372*x-898 1771144215961750 a001 75025/199*1364^(8/15) 1771144221699965 a001 2178309/199*521^(1/13) 1771144221808120 a007 Real Root Of 141*x^4+122*x^3+454*x^2+927*x-492 1771144224009720 a001 7881196/4181*610^(17/24) 1771144225701162 m001 1/FeigenbaumB^2/Cahen/ln(GAMMA(7/24))^2 1771144229729398 m001 (Sierpinski-Tribonacci)/BesselK(0,1) 1771144232129512 m006 (5/Pi-1/5)/(1/6*exp(Pi)+4) 1771144235489613 r005 Re(z^2+c),c=35/118+21/46*I,n=36 1771144236347477 k002 Champernowne real with 19/2*n^2+51/2*n-18 1771144239737314 m005 (1/2*Catalan-5/7)/(3/4*Pi-10/11) 1771144241317204 a001 20633239/10946*610^(17/24) 1771144243842332 a001 54018521/28657*610^(17/24) 1771144244210743 a001 141422324/75025*610^(17/24) 1771144244264494 a001 370248451/196418*610^(17/24) 1771144244272336 a001 969323029/514229*610^(17/24) 1771144244273480 a001 2537720636/1346269*610^(17/24) 1771144244273647 a001 6643838879/3524578*610^(17/24) 1771144244273671 a001 17393796001/9227465*610^(17/24) 1771144244273675 a001 45537549124/24157817*610^(17/24) 1771144244273675 a001 119218851371/63245986*610^(17/24) 1771144244273675 a001 312119004989/165580141*610^(17/24) 1771144244273675 a001 817138163596/433494437*610^(17/24) 1771144244273675 a001 2139295485799/1134903170*610^(17/24) 1771144244273675 a001 5600748293801/2971215073*610^(17/24) 1771144244273675 a001 14662949395604/7778742049*610^(17/24) 1771144244273675 a001 23725150497407/12586269025*610^(17/24) 1771144244273675 a001 3020733700601/1602508992*610^(17/24) 1771144244273675 a001 3461452808002/1836311903*610^(17/24) 1771144244273675 a001 440719107401/233802911*610^(17/24) 1771144244273675 a001 505019158607/267914296*610^(17/24) 1771144244273675 a001 64300051206/34111385*610^(17/24) 1771144244273676 a001 73681302247/39088169*610^(17/24) 1771144244273677 a001 9381251041/4976784*610^(17/24) 1771144244273686 a001 10749957122/5702887*610^(17/24) 1771144244273750 a001 1368706081/726103*610^(17/24) 1771144244274187 a001 1568397607/832040*610^(17/24) 1771144244277182 a001 710646/377*610^(17/24) 1771144244297713 a001 228826127/121393*610^(17/24) 1771144244438434 a001 29134601/15456*610^(17/24) 1771144244762473 a003 sin(Pi*6/109)/cos(Pi*53/113) 1771144245402947 a001 33385282/17711*610^(17/24) 1771144246559900 a007 Real Root Of -945*x^4-124*x^3+302*x^2+317*x-64 1771144252013817 a001 4250681/2255*610^(17/24) 1771144253100182 a003 cos(Pi*13/120)/cos(Pi*57/118) 1771144256263927 a007 Real Root Of -420*x^4-868*x^3-675*x^2-276*x+939 1771144258158061 a007 Real Root Of -325*x^4-897*x^3-972*x^2-203*x+904 1771144258509638 r005 Im(z^2+c),c=-49/102+17/55*I,n=45 1771144261174708 m001 (GAMMA(5/6)+5)/(-Zeta(1/2)+2) 1771144263244153 k006 concat of cont frac of 1771144264896567 m001 (Bloch-Gompertz)/(MasserGramain-Stephens) 1771144266030281 m001 (GAMMA(5/6)-HeathBrownMoroz)/(Kac+Trott) 1771144269069351 m005 (5*gamma-1/6)/(1/4*Pi+3/4) 1771144269388622 l006 ln(1699/9986) 1771144272107167 m001 1/BesselK(1,1)/ln(Khintchine)/GAMMA(7/24)^2 1771144277071044 m001 1/GAMMA(11/24)^2/FeigenbaumDelta/exp(sinh(1)) 1771144278606965 q001 178/1005 1771144278606965 r005 Im(z^2+c),c=-7/10+89/201*I,n=2 1771144279339677 a001 121393/199*1364^(7/15) 1771144280068851 r005 Re(z^2+c),c=-7/86+14/29*I,n=45 1771144291994329 a001 377*29^(17/37) 1771144294157763 a007 Real Root Of 539*x^4+847*x^3+322*x^2-798*x+126 1771144297325400 a001 4870847/2584*610^(17/24) 1771144297797027 m001 (Mills+PlouffeB)/(Backhouse-FeigenbaumKappa) 1771144301302878 m001 1/Magata^2/CopelandErdos^2/exp(sqrt(5))^2 1771144308543216 r005 Re(z^2+c),c=-73/66+9/53*I,n=4 1771144311383329 m005 (1/2*3^(1/2)+5/12)/(1/9*3^(1/2)-11/12) 1771144313085602 r005 Im(z^2+c),c=-3/19+15/64*I,n=7 1771144313182740 m001 (gamma(1)+Artin)^(3^(1/3)) 1771144315191064 b008 14+11*CosIntegral[1] 1771144319090698 m001 (gamma(3)-HardyLittlewoodC5)/(ln(2)+ln(5)) 1771144321233161 k008 concat of cont frac of 1771144323651897 r002 47th iterates of z^2 + 1771144335172455 m001 (Pi-Shi(1))/(Lehmer-Weierstrass) 1771144335746615 r005 Re(z^2+c),c=3/52+47/52*I,n=4 1771144340717794 a001 726103/281*123^(2/5) 1771144341865672 a001 987/199*9349^(17/19) 1771144342837797 a001 196418/199*1364^(2/5) 1771144348362604 r002 12i'th iterates of 2*x/(1-x^2) of 1771144352776195 a001 6/10983760033*144^(7/10) 1771144352928753 a001 317811/11*7^(41/44) 1771144356949339 r005 Re(z^2+c),c=-43/52+1/47*I,n=4 1771144357603224 a001 987/199*24476^(17/21) 1771144358867336 a001 89/2207*7881196^(9/11) 1771144358867360 a001 89/2207*141422324^(9/13) 1771144358867360 a001 89/2207*2537720636^(3/5) 1771144358867360 a001 89/2207*45537549124^(9/17) 1771144358867360 a001 89/2207*14662949395604^(3/7) 1771144358867360 a001 89/2207*(1/2+1/2*5^(1/2))^27 1771144358867360 a001 89/2207*192900153618^(1/2) 1771144358867360 a001 89/2207*10749957122^(9/16) 1771144358867360 a001 89/2207*599074578^(9/14) 1771144358867361 a001 89/2207*33385282^(3/4) 1771144358867820 a001 89/2207*1860498^(9/10) 1771144359677736 a001 987/199*64079^(17/23) 1771144359996555 a001 987/199*45537549124^(1/3) 1771144359996555 a001 987/199*(1/2+1/2*5^(1/2))^17 1771144359996560 a001 987/199*12752043^(1/2) 1771144360113259 a001 987/199*103682^(17/24) 1771144360869173 a001 987/199*39603^(17/22) 1771144365229817 a007 Real Root Of -756*x^4-605*x^3+953*x^2-544*x+125 1771144366575667 a001 987/199*15127^(17/20) 1771144382958609 r005 Im(z^2+c),c=-13/14+31/191*I,n=62 1771144385085040 m005 (1/5*gamma+4)/(21/10+1/10*5^(1/2)) 1771144390770671 l006 ln(825/4849) 1771144391500872 m001 (GAMMA(5/6)+CopelandErdos)^Tribonacci 1771144392083895 r002 36th iterates of z^2 + 1771144393423821 r005 Re(z^2+c),c=-31/86+31/53*I,n=27 1771144396703950 a007 Real Root Of -201*x^4+423*x^3+903*x^2-317*x+934 1771144406290010 a001 317811/199*1364^(1/3) 1771144409019159 a008 Real Root of (1+5*x-4*x^2-2*x^3+x^4+6*x^5) 1771144410100893 a001 987/199*5778^(17/18) 1771144410672585 m004 -E^(Sqrt[5]*Pi)/6+5*Pi-5*Cot[Sqrt[5]*Pi] 1771144410964542 m001 GAMMA(5/12)/exp(GlaisherKinkelin)/gamma^2 1771144418892474 m005 (1/3*2^(1/2)+1/2)/(6/7*3^(1/2)+4) 1771144421229932 r005 Re(z^2+c),c=-13/66+8/55*I,n=10 1771144424165255 a003 cos(Pi*13/63)+sin(Pi*47/110) 1771144432172695 m001 (BesselK(0,1)+ln(2))/(-arctan(1/2)+Zeta(1,-1)) 1771144432828982 m005 (1/2*gamma+4)/(8/11*exp(1)+4/9) 1771144432844349 a007 Real Root Of 18*x^4-638*x^3+436*x^2+905*x+397 1771144433650518 r005 Im(z^2+c),c=-5/6+30/251*I,n=54 1771144440309992 r005 Re(z^2+c),c=-53/44+3/40*I,n=44 1771144444367918 l006 ln(1765/2107) 1771144447082491 m002 3+ProductLog[Pi]+(Pi^5*Sinh[Pi])/2 1771144455986915 h001 (6/7*exp(1)+5/9)/(2/11*exp(2)+2/7) 1771144456192992 a007 Real Root Of 504*x^4-90*x^3+137*x^2-730*x+125 1771144459282112 k008 concat of cont frac of 1771144459328840 b008 ExpIntegralEi[-3*ArcCsc[E]] 1771144463398609 m001 exp(TwinPrimes)^2/Bloch^2/GAMMA(7/24)^2 1771144469759761 a001 514229/199*1364^(4/15) 1771144469909884 a007 Real Root Of -222*x^4-676*x^3-673*x^2+253*x+988 1771144473031812 m001 FeigenbaumKappa*(GAMMA(3/4)+StolarskyHarborth) 1771144473380333 m001 1/ln(ArtinRank2)*FransenRobinson/BesselJ(1,1) 1771144476088205 m001 Niven/FeigenbaumAlpha^2*ln(GAMMA(23/24))^2 1771144488873917 r005 Re(z^2+c),c=-31/30+40/113*I,n=7 1771144491290008 a001 7/75025*21^(4/19) 1771144493193357 p004 log(23669/4027) 1771144495324895 r005 Re(z^2+c),c=-46/31+15/38*I,n=3 1771144497950898 m005 (1/2*5^(1/2)-5/8)/(6/7*Pi+1/11) 1771144499146316 m001 GaussKuzminWirsing^GAMMA(7/12)+ln(5) 1771144499146316 m001 ln(5)+GaussKuzminWirsing^GAMMA(7/12) 1771144499479348 g007 Psi(2,1/5)-Psi(2,7/12)-Psi(2,1/10)-Psi(2,3/5) 1771144512285056 m001 (Shi(1)+exp(1/exp(1)))/(-gamma(1)+Totient) 1771144513484622 a003 cos(Pi*5/26)+sin(Pi*27/68) 1771144519582710 l006 ln(1601/9410) 1771144521502063 m001 (Robbin+ZetaQ(3))/(2^(1/3)-ln(2^(1/2)+1)) 1771144524682222 r005 Im(z^2+c),c=-43/106+12/37*I,n=9 1771144528798271 a007 Real Root Of -483*x^4+955*x^3+274*x^2+795*x+14 1771144531994610 m001 arctan(1/3)*GAMMA(5/6)-cos(1) 1771144533222816 a001 832040/199*1364^(1/5) 1771144533715436 m005 (1/2*Zeta(3)+1/5)/(1/11*Pi+1/6) 1771144539150407 a007 Real Root Of -453*x^4-686*x^3+581*x^2+934*x+478 1771144544864763 m001 PlouffeB/GaussAGM/arctan(1/3) 1771144546011726 r005 Im(z^2+c),c=-23/118+11/45*I,n=14 1771144548015470 a001 2584/199*3571^(15/17) 1771144551653409 m001 (Pi-Chi(1))/(Zeta(3)+Paris) 1771144560457813 m001 1/(2^(1/3))/FeigenbaumC^2*ln(BesselK(0,1))^2 1771144562077757 r005 Re(z^2+c),c=-13/10+91/244*I,n=6 1771144568907421 a007 Real Root Of 672*x^4-219*x^3+514*x^2-271*x-66 1771144571857898 m001 (Chi(1)-ln(2)/ln(10))/(-FellerTornier+Kac) 1771144573207833 m001 1/exp(GAMMA(13/24))*Trott^2*log(1+sqrt(2))^2 1771144575094807 m001 1/2*(2^(1/3)*Pi^(1/2)-ZetaQ(4))*2^(2/3) 1771144583594239 a001 28285179/1597 1771144595387531 m005 (1/3*5^(1/2)-1/8)/(1/8*Zeta(3)+1/5) 1771144596688432 a001 1346269/199*1364^(2/15) 1771144604379430 a007 Real Root Of 827*x^4+994*x^3-968*x^2-244*x-11 1771144606357869 m005 (1/2*Zeta(3)-8/9)/(7/9*Pi-9/11) 1771144607895670 a001 620166/329*610^(17/24) 1771144609667120 a001 6765/199*3571^(13/17) 1771144614761519 m005 (1/2*Catalan+5/6)/(1/4*Zeta(3)+3/7) 1771144620992764 m001 exp(-Pi)^MadelungNaCl/(exp(-Pi)^arctan(1/2)) 1771144620992764 m001 exp(Pi)^arctan(1/2)/(exp(Pi)^MadelungNaCl) 1771144628533782 a001 10946/199*3571^(12/17) 1771144629501121 a001 4181/199*3571^(14/17) 1771144632618106 a001 89*3571^(11/17) 1771144637494798 m001 (Zeta(3)+ln(2))/(HardyLittlewoodC3-Niven) 1771144641022529 m001 (Psi(1,1/3)+5^(1/2))/(-Sarnak+Trott2nd) 1771144642348782 a001 28657/199*3571^(10/17) 1771144649827567 s002 sum(A016973[n]/(n*10^n+1),n=1..infinity) 1771144649922743 a001 46368/199*3571^(9/17) 1771144654568558 a001 2584/199*9349^(15/19) 1771144656528481 l006 ln(776/4561) 1771144658320495 a001 75025/199*3571^(8/17) 1771144659386439 r008 a(0)=0,K{-n^6,54+51*n-24*n^2-25*n^3} 1771144660153073 a001 2178309/199*1364^(1/15) 1771144660398780 m005 (1/3*Zeta(3)-2/5)/(3/4*exp(1)-2) 1771144660452645 r005 Re(z^2+c),c=-2/17+20/49*I,n=30 1771144663768160 a007 Real Root Of -755*x^4-277*x^3+677*x^2+435*x-96 1771144665090257 r005 Re(z^2+c),c=-1/13+12/23*I,n=19 1771144666403587 a001 121393/199*3571^(7/17) 1771144668454636 a001 2584/199*24476^(5/7) 1771144669437130 a001 89/5778*(1/2+1/2*5^(1/2))^29 1771144669437130 a001 89/5778*1322157322203^(1/2) 1771144670285088 a001 2584/199*64079^(15/23) 1771144670528639 a001 2584/199*167761^(3/5) 1771144670561298 a001 2584/199*439204^(5/9) 1771144670566386 a001 2584/199*7881196^(5/11) 1771144670566397 a001 2584/199*20633239^(3/7) 1771144670566399 a001 2584/199*141422324^(5/13) 1771144670566399 a001 2584/199*2537720636^(1/3) 1771144670566399 a001 2584/199*45537549124^(5/17) 1771144670566399 a001 2584/199*312119004989^(3/11) 1771144670566399 a001 2584/199*14662949395604^(5/21) 1771144670566399 a001 2584/199*(1/2+1/2*5^(1/2))^15 1771144670566399 a001 2584/199*192900153618^(5/18) 1771144670566399 a001 2584/199*28143753123^(3/10) 1771144670566399 a001 2584/199*10749957122^(5/16) 1771144670566399 a001 2584/199*599074578^(5/14) 1771144670566399 a001 2584/199*228826127^(3/8) 1771144670566399 a001 2584/199*33385282^(5/12) 1771144670566654 a001 2584/199*1860498^(1/2) 1771144670669373 a001 2584/199*103682^(5/8) 1771144671336356 a001 2584/199*39603^(15/22) 1771144674606869 a001 196418/199*3571^(6/17) 1771144676371498 a001 2584/199*15127^(3/4) 1771144681942800 a007 Real Root Of 569*x^4+730*x^3-265*x^2+594*x+340 1771144682764243 a001 317811/199*3571^(5/17) 1771144688744410 a007 Real Root Of -649*x^4-607*x^3+621*x^2-446*x+276 1771144690939151 a001 514229/199*3571^(4/17) 1771144695863335 r005 Re(z^2+c),c=35/106+8/33*I,n=6 1771144698160890 m005 (1/2*Pi-4/7)/(1/2*2^(1/2)-1/7) 1771144699107363 a001 832040/199*3571^(3/17) 1771144701030589 a001 521/377*514229^(1/53) 1771144702013133 a001 6765/199*9349^(13/19) 1771144702224348 a001 74051560/4181 1771144706416154 r002 3th iterates of z^2 + 1771144707278132 a001 1346269/199*3571^(2/17) 1771144708465291 m001 Mills*(GAMMA(2/3)+ZetaQ(4)) 1771144710154668 a007 Real Root Of -466*x^4-839*x^3+97*x^2+738*x+927 1771144710757041 a001 89*9349^(11/19) 1771144713384177 a001 28657/199*9349^(10/19) 1771144713776256 a001 10946/199*9349^(12/19) 1771144713854598 a001 46368/199*9349^(9/19) 1771144714047734 a001 6765/199*24476^(13/21) 1771144714748658 a001 89/15127*(1/2+1/2*5^(1/2))^31 1771144714748658 a001 89/15127*9062201101803^(1/2) 1771144714776116 a001 2584/199*5778^(5/6) 1771144715148812 a001 75025/199*9349^(8/19) 1771144715447924 a001 2178309/199*3571^(1/17) 1771144715634126 a001 6765/199*64079^(13/23) 1771144715877928 a001 6765/199*141422324^(1/3) 1771144715877928 a001 6765/199*(1/2+1/2*5^(1/2))^13 1771144715877928 a001 6765/199*73681302247^(1/4) 1771144715889947 a001 6765/199*271443^(1/2) 1771144715967172 a001 6765/199*103682^(13/24) 1771144716128364 a001 121393/199*9349^(7/19) 1771144716545224 a001 6765/199*39603^(13/22) 1771144717228107 a001 196418/199*9349^(6/19) 1771144717307081 a007 Real Root Of -426*x^4-59*x^3+673*x^2-559*x+763 1771144718281941 a001 317811/199*9349^(5/19) 1771144719353310 a001 514229/199*9349^(4/19) 1771144719532249 a001 193869501/10946 1771144720417982 a001 832040/199*9349^(3/19) 1771144720596366 a007 Real Root Of -273*x^4-609*x^3-477*x^2+110*x+994 1771144720909015 a001 6765/199*15127^(13/20) 1771144720940165 a001 89*24476^(11/21) 1771144721359521 a001 89/39603*141422324^(11/13) 1771144721359521 a001 89/39603*2537720636^(11/15) 1771144721359521 a001 89/39603*45537549124^(11/17) 1771144721359521 a001 89/39603*312119004989^(3/5) 1771144721359521 a001 89/39603*14662949395604^(11/21) 1771144721359521 a001 89/39603*(1/2+1/2*5^(1/2))^33 1771144721359521 a001 89/39603*192900153618^(11/18) 1771144721359521 a001 89/39603*10749957122^(11/16) 1771144721359521 a001 89/39603*1568397607^(3/4) 1771144721359521 a001 89/39603*599074578^(11/14) 1771144721359522 a001 89/39603*33385282^(11/12) 1771144721485211 a001 1346269/199*9349^(2/19) 1771144722057437 a001 507556943/28657 1771144722186245 a001 46368/199*24476^(3/7) 1771144722282497 a001 89*64079^(11/23) 1771144722324033 a001 89/103682*2537720636^(7/9) 1771144722324033 a001 89/103682*17393796001^(5/7) 1771144722324033 a001 89/103682*312119004989^(7/11) 1771144722324033 a001 89/103682*14662949395604^(5/9) 1771144722324033 a001 89/103682*(1/2+1/2*5^(1/2))^35 1771144722324033 a001 89/103682*505019158607^(5/8) 1771144722324033 a001 89/103682*28143753123^(7/10) 1771144722324033 a001 89/103682*599074578^(5/6) 1771144722324033 a001 89/103682*228826127^(7/8) 1771144722425858 a001 1328801328/75025 1771144722464753 a001 89/271443*(1/2+1/2*5^(1/2))^37 1771144722479609 a001 3478847041/196418 1771144722485284 a001 89/710647*2537720636^(13/15) 1771144722485284 a001 89/710647*45537549124^(13/17) 1771144722485284 a001 89/710647*14662949395604^(13/21) 1771144722485284 a001 89/710647*(1/2+1/2*5^(1/2))^39 1771144722485284 a001 89/710647*192900153618^(13/18) 1771144722485284 a001 89/710647*73681302247^(3/4) 1771144722485284 a001 89/710647*10749957122^(13/16) 1771144722485284 a001 89/710647*599074578^(13/14) 1771144722487452 a001 9107739795/514229 1771144722488280 a001 89/1860498*(1/2+1/2*5^(1/2))^41 1771144722488596 a001 23844372344/1346269 1771144722488717 a001 89/4870847*(1/2+1/2*5^(1/2))^43 1771144722488763 a001 701408733/39602 1771144722488780 a001 89/12752043*45537549124^(15/17) 1771144722488780 a001 89/12752043*312119004989^(9/11) 1771144722488780 a001 89/12752043*14662949395604^(5/7) 1771144722488780 a001 89/12752043*(1/2+1/2*5^(1/2))^45 1771144722488780 a001 89/12752043*192900153618^(5/6) 1771144722488780 a001 89/12752043*28143753123^(9/10) 1771144722488780 a001 89/12752043*10749957122^(15/16) 1771144722488782 a001 89*7881196^(1/3) 1771144722488787 a001 163431759367/9227465 1771144722488790 a001 89/33385282*(1/2+1/2*5^(1/2))^47 1771144722488791 a001 427869900864/24157817 1771144722488791 a001 89/87403803*14662949395604^(7/9) 1771144722488791 a001 89/87403803*505019158607^(7/8) 1771144722488791 a001 1120177943225/63245986 1771144722488791 a001 89/228826127*14662949395604^(17/21) 1771144722488791 a001 89/228826127*192900153618^(17/18) 1771144722488791 a001 2932663928811/165580141 1771144722488791 a001 7677813843208/433494437 1771144722488791 a001 89/1568397607*3461452808002^(11/12) 1771144722488791 a001 20100777600813/1134903170 1771144722488791 a001 89/4106118243*14662949395604^(19/21) 1771144722488791 a001 52624518959231/2971215073 1771144722488791 a001 137772779276880/7778742049 1771144722488791 a001 360693818871409/20365011074 1771144722488791 a001 944308677337347/53316291173 1771144722488791 a001 89*312119004989^(1/5) 1771144722488791 a001 583614858465938/32951280099 1771144722488791 a001 222921039594529/12586269025 1771144722488791 a001 89/17393796001*14662949395604^(20/21) 1771144722488791 a001 85148260317649/4807526976 1771144722488791 a001 32523741358418/1836311903 1771144722488791 a001 89*1568397607^(1/4) 1771144722488791 a001 89/2537720636*14662949395604^(8/9) 1771144722488791 a001 139583862445/7880997 1771144722488791 a001 89/969323029*14662949395604^(6/7) 1771144722488791 a001 4745149914397/267914296 1771144722488791 a001 89/370248451*23725150497407^(13/16) 1771144722488791 a001 89/370248451*505019158607^(13/14) 1771144722488791 a001 1812485985586/102334155 1771144722488791 a001 89/141422324*312119004989^(10/11) 1771144722488791 a001 89/141422324*3461452808002^(5/6) 1771144722488791 a001 692308042361/39088169 1771144722488792 a001 89/54018521*45537549124^(16/17) 1771144722488792 a001 89/54018521*14662949395604^(16/21) 1771144722488792 a001 89/54018521*192900153618^(8/9) 1771144722488792 a001 89/54018521*73681302247^(12/13) 1771144722488793 a001 264438141497/14930352 1771144722488795 a001 89/20633239*(1/2+1/2*5^(1/2))^46 1771144722488795 a001 89/20633239*10749957122^(23/24) 1771144722488802 a001 101006382130/5702887 1771144722488820 a001 89/7881196*312119004989^(4/5) 1771144722488820 a001 89/7881196*(1/2+1/2*5^(1/2))^44 1771144722488820 a001 89/7881196*23725150497407^(11/16) 1771144722488820 a001 89/7881196*73681302247^(11/13) 1771144722488820 a001 89/7881196*10749957122^(11/12) 1771144722488820 a001 89/7881196*4106118243^(22/23) 1771144722488866 a001 38581004893/2178309 1771144722488987 a001 89/3010349*2537720636^(14/15) 1771144722488987 a001 89/3010349*17393796001^(6/7) 1771144722488987 a001 89/3010349*45537549124^(14/17) 1771144722488987 a001 89/3010349*14662949395604^(2/3) 1771144722488987 a001 89/3010349*(1/2+1/2*5^(1/2))^42 1771144722488987 a001 89/3010349*505019158607^(3/4) 1771144722488987 a001 89/3010349*192900153618^(7/9) 1771144722488987 a001 89/3010349*10749957122^(7/8) 1771144722488987 a001 89/3010349*4106118243^(21/23) 1771144722488987 a001 89/3010349*1568397607^(21/22) 1771144722489303 a001 14736632549/832040 1771144722490131 a001 89/1149851*2537720636^(8/9) 1771144722490131 a001 89/1149851*312119004989^(8/11) 1771144722490131 a001 89/1149851*(1/2+1/2*5^(1/2))^40 1771144722490131 a001 89/1149851*23725150497407^(5/8) 1771144722490131 a001 89/1149851*73681302247^(10/13) 1771144722490131 a001 89/1149851*28143753123^(4/5) 1771144722490131 a001 89/1149851*10749957122^(5/6) 1771144722490131 a001 89/1149851*4106118243^(20/23) 1771144722490131 a001 89/1149851*1568397607^(10/11) 1771144722490131 a001 89/1149851*599074578^(20/21) 1771144722492298 a001 5628892754/317811 1771144722497973 a001 89/439204*817138163596^(2/3) 1771144722497973 a001 89/439204*(1/2+1/2*5^(1/2))^38 1771144722497973 a001 89/439204*10749957122^(19/24) 1771144722497973 a001 89/439204*4106118243^(19/23) 1771144722497973 a001 89/439204*1568397607^(19/22) 1771144722497973 a001 89/439204*599074578^(19/21) 1771144722497973 a001 89/439204*228826127^(19/20) 1771144722512830 a001 2150045713/121393 1771144722551464 a001 2178309/199*9349^(1/19) 1771144722551723 a001 89/167761*141422324^(12/13) 1771144722551723 a001 89/167761*2537720636^(4/5) 1771144722551723 a001 89/167761*45537549124^(12/17) 1771144722551723 a001 89/167761*14662949395604^(4/7) 1771144722551723 a001 89/167761*(1/2+1/2*5^(1/2))^36 1771144722551723 a001 89/167761*192900153618^(2/3) 1771144722551723 a001 89/167761*73681302247^(9/13) 1771144722551723 a001 89/167761*10749957122^(3/4) 1771144722551723 a001 89/167761*4106118243^(18/23) 1771144722551723 a001 89/167761*1568397607^(9/11) 1771144722551723 a001 89/167761*599074578^(6/7) 1771144722551723 a001 89/167761*228826127^(9/10) 1771144722551724 a001 89/167761*87403803^(18/19) 1771144722554720 a001 75025/199*24476^(8/21) 1771144722564305 a001 89*103682^(11/24) 1771144722608534 a001 121393/199*24476^(1/3) 1771144722641562 a001 28657/199*24476^(10/21) 1771144722653554 a001 821244385/46368 1771144722782538 a001 196418/199*24476^(2/7) 1771144722910633 a001 317811/199*24476^(5/21) 1771144722920134 a001 89/64079*45537549124^(2/3) 1771144722920134 a001 89/64079*(1/2+1/2*5^(1/2))^34 1771144722920134 a001 89/64079*10749957122^(17/24) 1771144722920134 a001 89/64079*4106118243^(17/23) 1771144722920134 a001 89/64079*1568397607^(17/22) 1771144722920134 a001 89/64079*599074578^(17/21) 1771144722920134 a001 89/64079*228826127^(17/20) 1771144722920134 a001 89/64079*87403803^(17/19) 1771144722920136 a001 89/64079*33385282^(17/18) 1771144723053426 a001 89*39603^(1/2) 1771144723056264 a001 514229/199*24476^(4/21) 1771144723195197 a001 832040/199*24476^(1/7) 1771144723284517 a001 46368/199*64079^(9/23) 1771144723336689 a001 1346269/199*24476^(2/21) 1771144723450243 a001 46368/199*439204^(1/3) 1771144723453295 a001 46368/199*7881196^(3/11) 1771144723453303 a001 46368/199*141422324^(3/13) 1771144723453303 a001 46368/199*2537720636^(1/5) 1771144723453303 a001 46368/199*45537549124^(3/17) 1771144723453303 a001 46368/199*14662949395604^(1/7) 1771144723453303 a001 46368/199*(1/2+1/2*5^(1/2))^9 1771144723453303 a001 46368/199*192900153618^(1/6) 1771144723453303 a001 46368/199*10749957122^(3/16) 1771144723453303 a001 46368/199*599074578^(3/14) 1771144723453304 a001 46368/199*33385282^(1/4) 1771144723453457 a001 46368/199*1860498^(3/10) 1771144723462745 a001 121393/199*64079^(7/23) 1771144723477203 a001 2178309/199*24476^(1/21) 1771144723514719 a001 196418/199*64079^(6/23) 1771144723515087 a001 46368/199*103682^(3/8) 1771144723520784 a001 317811/199*64079^(5/23) 1771144723530961 a001 75025/199*64079^(8/23) 1771144723544385 a001 514229/199*64079^(4/23) 1771144723561288 a001 832040/199*64079^(3/23) 1771144723580749 a001 1346269/199*64079^(2/23) 1771144723594023 a001 121393/199*20633239^(1/5) 1771144723594024 a001 121393/199*17393796001^(1/7) 1771144723594024 a001 121393/199*14662949395604^(1/9) 1771144723594024 a001 121393/199*(1/2+1/2*5^(1/2))^7 1771144723594024 a001 121393/199*599074578^(1/6) 1771144723594900 a001 121393/199*710647^(1/4) 1771144723597524 a007 Real Root Of 736*x^4-577*x^3+597*x^2-623*x-133 1771144723599233 a001 2178309/199*64079^(1/23) 1771144723601968 a001 317811/199*167761^(1/5) 1771144723614554 a001 317811/199*20633239^(1/7) 1771144723614554 a001 317811/199*2537720636^(1/9) 1771144723614554 a001 317811/199*312119004989^(1/11) 1771144723614554 a001 317811/199*(1/2+1/2*5^(1/2))^5 1771144723614554 a001 317811/199*28143753123^(1/10) 1771144723614554 a001 317811/199*228826127^(1/8) 1771144723614640 a001 317811/199*1860498^(1/6) 1771144723616530 a001 832040/199*439204^(1/9) 1771144723617547 a001 832040/199*7881196^(1/11) 1771144723617550 a001 832040/199*141422324^(1/13) 1771144723617550 a001 832040/199*2537720636^(1/15) 1771144723617550 a001 832040/199*45537549124^(1/17) 1771144723617550 a001 832040/199*14662949395604^(1/21) 1771144723617550 a001 832040/199*(1/2+1/2*5^(1/2))^3 1771144723617550 a001 832040/199*192900153618^(1/18) 1771144723617550 a001 832040/199*10749957122^(1/16) 1771144723617550 a001 832040/199*599074578^(1/14) 1771144723617550 a001 832040/199*33385282^(1/12) 1771144723617601 a001 832040/199*1860498^(1/10) 1771144723617987 a001 2178309/398+2178309/398*5^(1/2) 1771144723618090 a001 3524578/199 1771144723618257 a001 1346269/199*(1/2+1/2*5^(1/2))^2 1771144723618257 a001 1346269/199*10749957122^(1/24) 1771144723618257 a001 1346269/199*4106118243^(1/23) 1771144723618257 a001 1346269/199*1568397607^(1/22) 1771144723618257 a001 1346269/199*599074578^(1/21) 1771144723618257 a001 1346269/199*228826127^(1/20) 1771144723618257 a001 1346269/199*87403803^(1/19) 1771144723618257 a001 1346269/199*33385282^(1/18) 1771144723618258 a001 1346269/199*12752043^(1/17) 1771144723618262 a001 1346269/199*4870847^(1/16) 1771144723618291 a001 1346269/199*1860498^(1/15) 1771144723618507 a001 1346269/199*710647^(1/14) 1771144723619401 a001 514229/199*(1/2+1/2*5^(1/2))^4 1771144723619401 a001 514229/199*23725150497407^(1/16) 1771144723619401 a001 514229/199*73681302247^(1/13) 1771144723619401 a001 514229/199*10749957122^(1/12) 1771144723619401 a001 514229/199*4106118243^(2/23) 1771144723619401 a001 514229/199*1568397607^(1/11) 1771144723619401 a001 514229/199*599074578^(2/21) 1771144723619401 a001 514229/199*228826127^(1/10) 1771144723619401 a001 514229/199*87403803^(2/19) 1771144723619401 a001 514229/199*33385282^(1/9) 1771144723619402 a001 514229/199*12752043^(2/17) 1771144723619410 a001 514229/199*4870847^(1/8) 1771144723619469 a001 514229/199*1860498^(2/15) 1771144723619902 a001 514229/199*710647^(1/7) 1771144723620106 a001 1346269/199*271443^(1/13) 1771144723623099 a001 514229/199*271443^(2/13) 1771144723624852 a001 2178309/199*103682^(1/24) 1771144723625203 a001 196418/199*439204^(2/9) 1771144723627238 a001 196418/199*7881196^(2/11) 1771144723627243 a001 196418/199*141422324^(2/13) 1771144723627243 a001 196418/199*2537720636^(2/15) 1771144723627243 a001 196418/199*45537549124^(2/17) 1771144723627243 a001 196418/199*14662949395604^(2/21) 1771144723627243 a001 196418/199*(1/2+1/2*5^(1/2))^6 1771144723627243 a001 196418/199*10749957122^(1/8) 1771144723627243 a001 196418/199*4106118243^(3/23) 1771144723627243 a001 196418/199*1568397607^(3/22) 1771144723627243 a001 196418/199*599074578^(1/7) 1771144723627243 a001 196418/199*228826127^(3/20) 1771144723627243 a001 196418/199*87403803^(3/19) 1771144723627243 a001 196418/199*33385282^(1/6) 1771144723627245 a001 196418/199*12752043^(3/17) 1771144723627257 a001 196418/199*4870847^(3/16) 1771144723627345 a001 196418/199*1860498^(1/5) 1771144723627995 a001 196418/199*710647^(3/14) 1771144723631987 a001 1346269/199*103682^(1/12) 1771144723632790 a001 196418/199*271443^(3/13) 1771144723638145 a001 832040/199*103682^(1/8) 1771144723642078 a001 121393/199*103682^(7/24) 1771144723646861 a001 514229/199*103682^(1/6) 1771144723648879 a001 317811/199*103682^(5/24) 1771144723668433 a001 196418/199*103682^(1/4) 1771144723669317 a001 2178309/199*39603^(1/22) 1771144723680994 a001 75025/199*(1/2+1/2*5^(1/2))^8 1771144723680994 a001 75025/199*23725150497407^(1/8) 1771144723680994 a001 75025/199*73681302247^(2/13) 1771144723680994 a001 75025/199*10749957122^(1/6) 1771144723680994 a001 75025/199*4106118243^(4/23) 1771144723680994 a001 75025/199*1568397607^(2/11) 1771144723680994 a001 75025/199*599074578^(4/21) 1771144723680994 a001 75025/199*228826127^(1/5) 1771144723680994 a001 75025/199*87403803^(4/19) 1771144723680994 a001 75025/199*33385282^(2/9) 1771144723680996 a001 75025/199*12752043^(4/17) 1771144723681012 a001 75025/199*4870847^(1/4) 1771144723681130 a001 75025/199*1860498^(4/15) 1771144723681996 a001 75025/199*710647^(2/7) 1771144723688390 a001 75025/199*271443^(4/13) 1771144723720918 a001 1346269/199*39603^(1/11) 1771144723735913 a001 75025/199*103682^(1/3) 1771144723771541 a001 832040/199*39603^(3/22) 1771144723824723 a001 514229/199*39603^(2/11) 1771144723861864 a001 28657/199*64079^(10/23) 1771144723871207 a001 317811/199*39603^(5/22) 1771144723915277 a001 46368/199*39603^(9/22) 1771144723935226 a001 196418/199*39603^(3/11) 1771144723953337 a001 121393/199*39603^(7/22) 1771144724004993 a001 2178309/199*15127^(1/20) 1771144724024231 a001 28657/199*167761^(2/5) 1771144724049403 a001 28657/199*20633239^(2/7) 1771144724049404 a001 28657/199*2537720636^(2/9) 1771144724049404 a001 28657/199*312119004989^(2/11) 1771144724049404 a001 28657/199*(1/2+1/2*5^(1/2))^10 1771144724049404 a001 28657/199*28143753123^(1/5) 1771144724049404 a001 28657/199*10749957122^(5/24) 1771144724049404 a001 28657/199*4106118243^(5/23) 1771144724049404 a001 28657/199*1568397607^(5/22) 1771144724049404 a001 28657/199*599074578^(5/21) 1771144724049404 a001 28657/199*228826127^(1/4) 1771144724049404 a001 28657/199*87403803^(5/19) 1771144724049405 a001 28657/199*33385282^(5/18) 1771144724049407 a001 28657/199*12752043^(5/17) 1771144724049428 a001 28657/199*4870847^(5/16) 1771144724049575 a001 28657/199*1860498^(1/3) 1771144724050657 a001 28657/199*710647^(5/14) 1771144724058650 a001 28657/199*271443^(5/13) 1771144724091637 a001 75025/199*39603^(4/11) 1771144724118054 a001 28657/199*103682^(5/12) 1771144724392270 a001 1346269/199*15127^(1/10) 1771144724562709 a001 28657/199*39603^(5/11) 1771144724778570 a001 832040/199*15127^(3/20) 1771144724885119 a001 10946/199*24476^(4/7) 1771144725167428 a001 514229/199*15127^(1/5) 1771144725445259 a001 89/24476*(1/2+1/2*5^(1/2))^32 1771144725445259 a001 89/24476*23725150497407^(1/2) 1771144725445259 a001 89/24476*73681302247^(8/13) 1771144725445259 a001 89/24476*10749957122^(2/3) 1771144725445259 a001 89/24476*4106118243^(16/23) 1771144725445259 a001 89/24476*1568397607^(8/11) 1771144725445259 a001 89/24476*599074578^(16/21) 1771144725445259 a001 89/24476*228826127^(4/5) 1771144725445259 a001 89/24476*87403803^(16/19) 1771144725445260 a001 89/24476*33385282^(8/9) 1771144725445269 a001 89/24476*12752043^(16/17) 1771144725549588 a001 317811/199*15127^(1/4) 1771144725949283 a001 196418/199*15127^(3/10) 1771144726303070 a001 121393/199*15127^(7/20) 1771144726349481 a001 10946/199*64079^(12/23) 1771144726565301 a001 2178309/199*5778^(1/18) 1771144726570449 a001 10946/199*439204^(4/9) 1771144726574519 a001 10946/199*7881196^(4/11) 1771144726574529 a001 10946/199*141422324^(4/13) 1771144726574529 a001 10946/199*2537720636^(4/15) 1771144726574529 a001 10946/199*45537549124^(4/17) 1771144726574529 a001 10946/199*14662949395604^(4/21) 1771144726574529 a001 10946/199*(1/2+1/2*5^(1/2))^12 1771144726574529 a001 10946/199*192900153618^(2/9) 1771144726574529 a001 10946/199*73681302247^(3/13) 1771144726574529 a001 10946/199*10749957122^(1/4) 1771144726574529 a001 10946/199*4106118243^(6/23) 1771144726574529 a001 10946/199*1568397607^(3/11) 1771144726574529 a001 10946/199*599074578^(2/7) 1771144726574529 a001 10946/199*228826127^(3/10) 1771144726574529 a001 10946/199*87403803^(6/19) 1771144726574530 a001 10946/199*33385282^(1/3) 1771144726574533 a001 10946/199*12752043^(6/17) 1771144726574557 a001 10946/199*4870847^(3/8) 1771144726574734 a001 10946/199*1860498^(2/5) 1771144726576032 a001 10946/199*710647^(3/7) 1771144726585624 a001 10946/199*271443^(6/13) 1771144726656908 a001 10946/199*103682^(1/2) 1771144726745865 a001 89*15127^(11/20) 1771144726777047 a001 75025/199*15127^(2/5) 1771144726936363 a001 46368/199*15127^(9/20) 1771144727190495 a001 10946/199*39603^(6/11) 1771144727919471 a001 28657/199*15127^(1/2) 1771144728950675 a001 4181/199*9349^(14/19) 1771144729512886 a001 1346269/199*5778^(1/9) 1771144730229120 a001 119817941/6765 1771144731218609 a001 10946/199*15127^(3/5) 1771144731788113 a001 1597/199*3571^(16/17) 1771144732459493 a001 832040/199*5778^(1/6) 1771144735408659 a001 514229/199*5778^(2/9) 1771144737289846 r005 Re(z^2+c),c=-3/22+19/59*I,n=5 1771144738351127 a001 317811/199*5778^(5/18) 1771144739088864 a007 Real Root Of 120*x^4-436*x^3-970*x^2+103*x-378 1771144739921356 r005 Im(z^2+c),c=-27/56+13/42*I,n=62 1771144741311131 a001 196418/199*5778^(1/3) 1771144741911015 a001 4181/199*24476^(2/3) 1771144742752698 a001 89/9349*7881196^(10/11) 1771144742752720 a001 89/9349*20633239^(6/7) 1771144742752723 a001 89/9349*141422324^(10/13) 1771144742752723 a001 89/9349*2537720636^(2/3) 1771144742752723 a001 89/9349*45537549124^(10/17) 1771144742752723 a001 89/9349*312119004989^(6/11) 1771144742752723 a001 89/9349*14662949395604^(10/21) 1771144742752723 a001 89/9349*(1/2+1/2*5^(1/2))^30 1771144742752723 a001 89/9349*192900153618^(5/9) 1771144742752723 a001 89/9349*28143753123^(3/5) 1771144742752723 a001 89/9349*10749957122^(5/8) 1771144742752723 a001 89/9349*4106118243^(15/23) 1771144742752723 a001 89/9349*1568397607^(15/22) 1771144742752723 a001 89/9349*599074578^(5/7) 1771144742752723 a001 89/9349*228826127^(3/4) 1771144742752724 a001 89/9349*87403803^(15/19) 1771144742752725 a001 89/9349*33385282^(5/6) 1771144742752733 a001 89/9349*12752043^(15/17) 1771144742752793 a001 89/9349*4870847^(15/16) 1771144743263992 m008 (5/6*Pi^4+5)/(5*Pi^4-1/2) 1771144743619437 a001 4181/199*64079^(14/23) 1771144743881992 a001 4181/199*20633239^(2/5) 1771144743881993 a001 4181/199*17393796001^(2/7) 1771144743881993 a001 4181/199*14662949395604^(2/9) 1771144743881993 a001 4181/199*(1/2+1/2*5^(1/2))^14 1771144743881993 a001 4181/199*10749957122^(7/24) 1771144743881993 a001 4181/199*4106118243^(7/23) 1771144743881993 a001 4181/199*1568397607^(7/22) 1771144743881993 a001 4181/199*599074578^(1/3) 1771144743881993 a001 4181/199*228826127^(7/20) 1771144743881994 a001 4181/199*87403803^(7/19) 1771144743881994 a001 4181/199*33385282^(7/18) 1771144743881998 a001 4181/199*12752043^(7/17) 1771144743882026 a001 4181/199*4870847^(7/16) 1771144743882232 a001 4181/199*1860498^(7/15) 1771144743883747 a001 4181/199*710647^(1/2) 1771144743894937 a001 4181/199*271443^(7/13) 1771144743978102 a001 4181/199*103682^(7/12) 1771144744225226 a001 121393/199*5778^(7/18) 1771144744600620 a001 4181/199*39603^(7/11) 1771144746344329 a001 2178309/199*2207^(1/16) 1771144747259510 a001 75025/199*5778^(4/9) 1771144749300087 a001 4181/199*15127^(7/10) 1771144749979134 a001 46368/199*5778^(1/2) 1771144751670881 a007 Real Root Of 740*x^4+834*x^3-755*x^2+324*x+294 1771144753522550 a001 28657/199*5778^(5/9) 1771144754193018 a001 6765/199*5778^(13/18) 1771144754909252 a001 89*5778^(11/18) 1771144757908714 a007 Real Root Of 286*x^4+821*x^3+479*x^2-59*x+140 1771144761942304 a001 10946/199*5778^(2/3) 1771144764539246 m005 (19/42+1/6*5^(1/2))/(1/9*5^(1/2)-5/7) 1771144769070941 a001 1346269/199*2207^(1/8) 1771144769340708 r002 20th iterates of z^2 + 1771144775541795 a001 45766381/2584 1771144781617432 h001 (11/12*exp(1)+5/9)/(3/7*exp(1)+5/9) 1771144784411518 m001 (KomornikLoreti+Trott)/(Zeta(3)-Conway) 1771144785144398 a001 4181/199*5778^(7/9) 1771144791694488 s001 sum(exp(-Pi/2)^n*A270363[n],n=1..infinity) 1771144791796577 a001 832040/199*2207^(3/16) 1771144794797196 m001 1/arctan(1/2)/exp(Zeta(3))*sqrt(1+sqrt(3))^2 1771144802403497 l006 ln(1503/8834) 1771144803404593 m005 (1/2*exp(1)-2/5)/(-37/60+3/10*5^(1/2)) 1771144806039537 a007 Real Root Of 358*x^4-123*x^3-618*x^2+858*x-748 1771144814524771 a001 514229/199*2207^(1/4) 1771144820615729 a007 Real Root Of -322*x^4+900*x^3-19*x^2+869*x-158 1771144821213954 k008 concat of cont frac of 1771144825247062 r009 Re(z^3+c),c=-4/23+2/33*I,n=5 1771144825641128 m002 -4+(E^Pi*Pi^4*Sech[Pi])/ProductLog[Pi] 1771144827363785 a007 Real Root Of -529*x^4-677*x^3-232*x^2-791*x+771 1771144834387756 m005 (-9/28+1/4*5^(1/2))/(7/10*Zeta(3)+1/2) 1771144837246267 a001 317811/199*2207^(5/16) 1771144837256888 m001 1/Pi^2/OneNinth/ln(sin(Pi/5)) 1771144838995371 a007 Real Root Of 823*x^4-260*x^3-444*x^2-224*x-28 1771144843402636 m005 (1/2*Pi-1/12)/(3/10*gamma+2/3) 1771144845444753 a001 1597/199*9349^(16/19) 1771144846832189 a007 Real Root Of -286*x^4+221*x^3+625*x^2-906*x+477 1771144849035942 m005 (1/2*Pi+1/5)/(3/11*2^(1/2)-2/7) 1771144851985003 m001 (Pi+1)*(Si(Pi)-BesselI(0,2)) 1771144852507788 m001 Tribonacci*Porter/exp(BesselK(0,1)) 1771144858046922 a007 Real Root Of 646*x^4+502*x^3-649*x^2+459*x-719 1771144859936660 r005 Im(z^2+c),c=-16/27+20/57*I,n=64 1771144859985299 a001 196418/199*2207^(3/8) 1771144860256571 a001 1597/199*24476^(16/21) 1771144861379855 a001 89/3571*20633239^(4/5) 1771144861379858 a001 89/3571*17393796001^(4/7) 1771144861379858 a001 89/3571*14662949395604^(4/9) 1771144861379858 a001 89/3571*(1/2+1/2*5^(1/2))^28 1771144861379858 a001 89/3571*73681302247^(7/13) 1771144861379858 a001 89/3571*10749957122^(7/12) 1771144861379858 a001 89/3571*4106118243^(14/23) 1771144861379858 a001 89/3571*1568397607^(7/11) 1771144861379858 a001 89/3571*599074578^(2/3) 1771144861379858 a001 89/3571*228826127^(7/10) 1771144861379859 a001 89/3571*87403803^(14/19) 1771144861379860 a001 89/3571*33385282^(7/9) 1771144861379867 a001 89/3571*12752043^(14/17) 1771144861379924 a001 89/3571*4870847^(7/8) 1771144861380336 a001 89/3571*1860498^(14/15) 1771144862209053 a001 1597/199*64079^(16/23) 1771144862509118 a001 1597/199*(1/2+1/2*5^(1/2))^16 1771144862509118 a001 1597/199*23725150497407^(1/4) 1771144862509118 a001 1597/199*73681302247^(4/13) 1771144862509118 a001 1597/199*10749957122^(1/3) 1771144862509118 a001 1597/199*4106118243^(8/23) 1771144862509118 a001 1597/199*1568397607^(4/11) 1771144862509118 a001 1597/199*599074578^(8/21) 1771144862509118 a001 1597/199*228826127^(2/5) 1771144862509118 a001 1597/199*87403803^(8/19) 1771144862509119 a001 1597/199*33385282^(4/9) 1771144862509123 a001 1597/199*12752043^(8/17) 1771144862509155 a001 1597/199*4870847^(1/2) 1771144862509391 a001 1597/199*1860498^(8/15) 1771144862511122 a001 1597/199*710647^(4/7) 1771144862523910 a001 1597/199*271443^(8/13) 1771144862618957 a001 1597/199*103682^(2/3) 1771144863330405 a001 1597/199*39603^(8/11) 1771144865440553 a003 cos(Pi*23/113)+sin(Pi*50/119) 1771144867708799 m001 BesselI(1,1)^(ln(gamma)*MasserGramainDelta) 1771144868097752 r005 Re(z^2+c),c=-31/54+23/37*I,n=8 1771144868701225 a001 1597/199*15127^(4/5) 1771144870741443 a007 Real Root Of 739*x^4+952*x^3-503*x^2+197*x-56 1771144871229933 r005 Re(z^2+c),c=-117/98+2/21*I,n=30 1771144873000427 m001 Artin^exp(1/Pi)/Zeta(1/2) 1771144873052999 a007 Real Root Of 116*x^4-311*x^3-403*x^2+838*x-121 1771144873733401 a008 Real Root of (1+5*x-4*x^2-3*x^3-5*x^4+4*x^5) 1771144875807192 m001 Robbin^2*ln(Backhouse)*OneNinth 1771144877475441 r005 Im(z^2+c),c=-57/122+16/51*I,n=18 1771144879727353 a007 Real Root Of 552*x^4+980*x^3+47*x^2-260*x-595 1771144881389339 a003 cos(Pi*22/103)+sin(Pi*41/91) 1771144882678423 a001 121393/199*2207^(7/16) 1771144892724887 a007 Real Root Of -323*x^4-318*x^3+548*x^2+562*x+688 1771144898458386 r005 Re(z^2+c),c=15/46+5/16*I,n=26 1771144901639219 a001 2178309/199*843^(1/14) 1771144905491737 a001 75025/199*2207^(1/2) 1771144907214752 b008 ArcSec[-5*Coth[3]] 1771144909666155 a001 1597/199*5778^(8/9) 1771144910001417 r002 5th iterates of z^2 + 1771144910133176 m001 (Chi(1)-ln(3))/(HardHexagonsEntropy+ZetaP(4)) 1771144915216779 m005 (1/2*2^(1/2)+3/10)/(3/7*Pi-7/9) 1771144919632814 r009 Re(z^3+c),c=-23/126+33/37*I,n=61 1771144922757379 a007 Real Root Of -670*x^4-833*x^3-915*x^2+504*x+114 1771144923175604 a007 Real Root Of 795*x^4+761*x^3-244*x^2-736*x+133 1771144927990391 a001 46368/199*2207^(9/16) 1771144935511040 r005 Re(z^2+c),c=1/94+37/64*I,n=28 1771144943097015 a007 Real Root Of -859*x^4-426*x^3+412*x^2+601*x+92 1771144946764076 r005 Re(z^2+c),c=-1/48+50/63*I,n=39 1771144947104759 r005 Re(z^2+c),c=-99/94+19/46*I,n=5 1771144948126423 r005 Im(z^2+c),c=35/114+30/61*I,n=44 1771144951312837 a001 28657/199*2207^(5/8) 1771144952502449 m005 (1/2*2^(1/2)-5/8)/(7/9*2^(1/2)-7/11) 1771144953081379 a007 Real Root Of 759*x^4+606*x^3+800*x^2-449*x-102 1771144953980090 s002 sum(A275096[n]/((pi^n+1)/n),n=1..infinity) 1771144958110505 l006 ln(727/4273) 1771144958110505 p004 log(4273/727) 1771144961325842 a007 Real Root Of -768*x^4-713*x^3+681*x^2-617*x+367 1771144961632184 r005 Re(z^2+c),c=-2/11+37/61*I,n=21 1771144967739190 r005 Re(z^2+c),c=-139/126+13/61*I,n=16 1771144968086086 a007 Real Root Of 51*x^4+943*x^3+751*x^2+836*x-116 1771144970756608 a007 Real Root Of -712*x^4-639*x^3+949*x^2-812*x-959 1771144972478569 a001 89*2207^(11/16) 1771144975815109 h001 (2/11*exp(2)+1/11)/(1/12*exp(1)+7/12) 1771144978838875 m001 (5^(1/2)-Bloch)/(-Conway+HardyLittlewoodC4) 1771144980995089 m001 (Bloch-Gompertz)/(LandauRamanujan-Porter) 1771144995040928 a007 Real Root Of -29*x^4-562*x^3-827*x^2+512*x-238 1771144995565938 m005 (1/3*Zeta(3)-1/8)/(7/9*Pi-4) 1771144999290653 a001 10946/199*2207^(3/4) 1771145009251012 a007 Real Root Of 749*x^4+575*x^3-866*x^2+436*x-687 1771145010950338 m001 (Tribonacci-ZetaP(3))/(BesselI(0,2)-Totient) 1771145011320395 a001 6765/199*2207^(13/16) 1771145011461548 a001 2584/199*2207^(15/16) 1771145011930981 r005 Re(z^2+c),c=-9/50+8/35*I,n=14 1771145014956729 h001 (9/10*exp(2)+1/11)/(5/12*exp(2)+8/11) 1771145016768013 v002 sum(1/(3^n+(3+4*n^2-n)),n=1..infinity) 1771145016823989 a007 Real Root Of -650*x^4-592*x^3+677*x^2+800*x-159 1771145020320415 m005 (1/3*Pi+1/7)/(56/9+2/9*5^(1/2)) 1771145027105068 m001 GAMMA(7/24)*GAMMA(13/24)^2/exp(cosh(1)) 1771145031246160 l006 ln(8087/9654) 1771145033418108 a003 sin(Pi*30/107)+sin(Pi*51/103) 1771145036476212 m001 Niven^MertensB3/(Niven^MertensB1) 1771145037365821 m001 1/Tribonacci*exp(Khintchine)^2/TwinPrimes 1771145040457578 m001 Zeta(7)*Riemann1stZero/ln(sqrt(5)) 1771145048822781 a007 Real Root Of 367*x^4+950*x^3+844*x^2+442*x-198 1771145051320979 a007 Real Root Of 365*x^4+188*x^3-121*x^2+836*x-687 1771145059323295 m001 (BesselI(1,2)+Paris)/(BesselK(0,1)-exp(1/Pi)) 1771145061856823 a007 Real Root Of -862*x^4-921*x^3+916*x^2+96*x+662 1771145062050811 a001 4181/199*2207^(7/8) 1771145069315030 m005 (1/3*Pi-3/4)/(5/11*Pi+1/4) 1771145072753839 m005 (4*2^(1/2)-1/4)/(5*gamma+1/6) 1771145075213681 m001 Trott2nd^Trott+AlladiGrinstead 1771145079660740 a001 1346269/199*843^(1/7) 1771145081412450 m005 (1/2*Pi+7/11)/(9/11*5^(1/2)-7/12) 1771145082788231 a007 Real Root Of -660*x^4-796*x^3+598*x^2-248*x-243 1771145084479408 h001 (-3*exp(-2)-5)/(-exp(2/3)+5) 1771145086119554 a001 17481202/987 1771145092829598 s002 sum(A143794[n]/(n*2^n+1),n=1..infinity) 1771145108704251 r005 Im(z^2+c),c=-165/122+2/27*I,n=4 1771145112232144 k008 concat of cont frac of 1771145113273448 a007 Real Root Of 564*x^4+661*x^3-319*x^2-514*x-9 1771145114842745 m003 -2-Cos[1/2+Sqrt[5]/2]^2+Tanh[1/2+Sqrt[5]/2]/4 1771145118592088 r002 18th iterates of z^2 + 1771145121221316 k008 concat of cont frac of 1771145124678189 l006 ln(1405/8258) 1771145131321911 k009 concat of cont frac of 1771145132926850 p003 LerchPhi(1/125,3,335/188) 1771145135476782 m001 (Tetranacci+Thue)/(Ei(1)-arctan(1/3)) 1771145138446503 r004 Re(z^2+c),c=-3/22+4/11*I,z(0)=I,n=26 1771145147820599 m001 OneNinth^GAMMA(5/6)-Si(Pi) 1771145147820599 m001 Si(Pi)-OneNinth^GAMMA(5/6) 1771145151040189 m001 (Artin*GAMMA(19/24)+GAMMA(13/24))/GAMMA(19/24) 1771145151040189 m001 (GAMMA(13/24)+GAMMA(19/24)*Artin)/GAMMA(19/24) 1771145158543971 m001 1/ln(GAMMA(1/24))/FeigenbaumB/arctan(1/2)^2 1771145158938761 m001 FeigenbaumB*((1+3^(1/2))^(1/2)+Weierstrass) 1771145161224314 m001 (-PrimesInBinary+Trott2nd)/(gamma+ln(5)) 1771145161741099 m001 (Niven-ln(Pi)*gamma(2))/gamma(2) 1771145175123121 k007 concat of cont frac of 1771145176425519 m001 Artin^Chi(1)-MertensB1 1771145176891232 r005 Im(z^2+c),c=-53/66+5/39*I,n=8 1771145177383769 m001 (Magata+Robbin)/(BesselK(0,1)-exp(1)) 1771145178093887 m001 1/GAMMA(23/24)/Robbin^2*exp(Zeta(5))^2 1771145182141116 k009 concat of cont frac of 1771145184329458 a007 Real Root Of -536*x^4-771*x^3+391*x^2-143*x-489 1771145184928913 l006 ln(7387/7519) 1771145191664764 a003 sin(Pi*26/81)+sin(Pi*44/117) 1771145192820758 a007 Real Root Of 396*x^4+642*x^3-7*x^2+280*x+188 1771145192947712 m005 (23/44+1/4*5^(1/2))/(5/8*gamma+1/4) 1771145195093053 l006 ln(6322/7547) 1771145203170469 a007 Real Root Of 677*x^4+990*x^3+252*x^2+725*x-668 1771145204440034 m001 (-ln(3)+BesselJ(1,1))/(1+exp(1)) 1771145207726842 r005 Im(z^2+c),c=-83/114+9/59*I,n=14 1771145208521626 r002 56th iterates of z^2 + 1771145212821907 r005 Re(z^2+c),c=-1+31/223*I,n=36 1771145214347385 m001 (cos(1/5*Pi)-exp(1))/(Kac+ZetaP(2)) 1771145215368401 a007 Real Root Of -275*x^4-91*x^3+951*x^2-73*x-912 1771145222122913 k008 concat of cont frac of 1771145222271883 m008 (5/6*Pi^4+4/5)/(1/5*Pi+4) 1771145227681777 p003 LerchPhi(1/16,2,268/111) 1771145227997799 p003 LerchPhi(1/256,9,61/65) 1771145234040700 a001 199/3*21^(10/31) 1771145235579680 m005 (1/3*2^(1/2)+2/7)/(1/11*gamma+3/8) 1771145238281222 a001 3/29*199^(22/41) 1771145239353487 k002 Champernowne real with 10*n^2+24*n-17 1771145239458233 r002 3th iterates of z^2 + 1771145241175514 a001 76/514229*317811^(17/45) 1771145245451061 a007 Real Root Of 329*x^4+63*x^3-621*x^2+754*x+396 1771145245958913 a007 Real Root Of -760*x^4+317*x^3+85*x^2+701*x+124 1771145253916767 a007 Real Root Of -43*x^4-812*x^3-848*x^2+774*x-342 1771145255556395 m001 Sarnak+FeigenbaumC^ZetaP(4) 1771145256215474 r005 Re(z^2+c),c=-7/13+29/55*I,n=63 1771145256799558 r009 Im(z^3+c),c=-33/62+5/31*I,n=31 1771145257681301 a001 832040/199*843^(3/14) 1771145258083000 s002 sum(A279260[n]/(n^2*10^n+1),n=1..infinity) 1771145260900700 m004 -4+5*Cos[Sqrt[5]*Pi]-(5*Tan[Sqrt[5]*Pi])/Pi 1771145261382711 k006 concat of cont frac of 1771145284624944 s001 sum(exp(-Pi/2)^n*A182209[n],n=1..infinity) 1771145287812739 m001 GAMMA(1/3)*DuboisRaymond^2/ln(sqrt(Pi)) 1771145298799242 r005 Re(z^2+c),c=-33/46+25/49*I,n=6 1771145303283919 l006 ln(678/3985) 1771145305981551 m001 (ln(2)+BesselI(0,2)*Porter)/BesselI(0,2) 1771145309671258 a007 Real Root Of -870*x^4-998*x^3+758*x^2-72*x+511 1771145312988658 h001 (2/7*exp(1)+1/6)/(2/3*exp(2)+2/5) 1771145324989978 m001 (1-cos(1))/(FeigenbaumC+LandauRamanujan) 1771145326398857 m001 (-HardyLittlewoodC3+Lehmer)/(Si(Pi)-ln(gamma)) 1771145327081206 b008 E^(-3/14)+Tanh[2] 1771145341815485 m001 1/FeigenbaumC*KhintchineHarmonic/exp(sin(1))^2 1771145345014183 m005 (1/2*3^(1/2)+9/11)/(4/9*Zeta(3)+5/12) 1771145353901576 m001 (BesselI(0,2)-Shi(1))/(LaplaceLimit+Trott2nd) 1771145359857716 r002 3th iterates of z^2 + 1771145361622535 m005 (1/2*gamma+1/6)/(8/11*Pi+2/7) 1771145370577107 a007 Real Root Of -738*x^4-659*x^3+655*x^2-812*x+108 1771145372607658 b008 50/3+ArcCoth[Glaisher] 1771145374832512 m005 (1/3*5^(1/2)+2/7)/(1/12*2^(1/2)-7/10) 1771145378924967 r002 55th iterates of z^2 + 1771145385955157 m001 (Champernowne-ZetaP(4))^BesselI(1,1) 1771145397054207 m001 ErdosBorwein^BesselI(0,2)-Salem 1771145403879002 a007 Real Root Of -560*x^4-405*x^3+665*x^2-339*x+574 1771145411640426 a003 sin(Pi*4/65)*sin(Pi*28/75) 1771145425826972 b008 CosIntegral[9/94] 1771145425826972 l003 Ci(9/94) 1771145425826972 l004 Ci(9/94) 1771145430013222 h001 (9/11*exp(2)+1/11)/(4/11*exp(2)+7/9) 1771145431715727 r005 Re(z^2+c),c=-7/58+23/57*I,n=13 1771145432945758 a007 Real Root Of -685*x^4-352*x^3+948*x^2-742*x+497 1771145435704438 a001 514229/199*843^(2/7) 1771145441363884 r005 Im(z^2+c),c=-5/6+21/109*I,n=18 1771145447693969 b008 1/4-(2*(-5+E))/3 1771145450749132 m005 (1/2*exp(1)+5/7)/(3/5*Pi-5/7) 1771145453845038 m001 Zeta(1/2)/(GAMMA(1/3)+GAMMA(1/6)) 1771145462204341 p001 sum((-1)^n/(419*n+261)/n/(8^n),n=1..infinity) 1771145463139337 a007 Real Root Of -380*x^4-525*x^3+86*x^2-128*x+326 1771145463411664 m001 Robbin*(exp(Pi)+Pi*2^(1/2)/GAMMA(3/4)) 1771145465825772 a007 Real Root Of -846*x^4+239*x^3-908*x^2+750*x-13 1771145466923205 m004 -1/4+3*Csch[Sqrt[5]*Pi]-ProductLog[Sqrt[5]*Pi] 1771145471146357 m004 -1/4+6/E^(Sqrt[5]*Pi)-ProductLog[Sqrt[5]*Pi] 1771145475369503 m004 -1/4-ProductLog[Sqrt[5]*Pi]+3*Sech[Sqrt[5]*Pi] 1771145479017821 r005 Im(z^2+c),c=-11/14+13/146*I,n=59 1771145479297142 m002 5-Cosh[Pi]+Log[Pi]+Sinh[Pi]/Pi 1771145481557303 a007 Real Root Of 627*x^4+363*x^3-922*x^2+704*x-14 1771145483673444 m005 (1/3*3^(1/2)+1/5)/(8/9*2^(1/2)-9/11) 1771145485075227 a003 cos(Pi*14/83)/cos(Pi*24/71) 1771145485861057 l006 ln(4557/5440) 1771145488317012 r005 Re(z^2+c),c=-5/24+1/62*I,n=9 1771145495281628 l006 ln(1307/7682) 1771145496186521 r002 61th iterates of z^2 + 1771145501555204 b008 Cosh[3+Csch[4/3]] 1771145503672180 a005 (1/sin(62/213*Pi))^42 1771145504649428 a007 Real Root Of -457*x^4-562*x^3+562*x^2+217*x-4 1771145508008816 m006 (3*Pi-4/5)/(Pi^2-5) 1771145508008816 m008 (3*Pi-4/5)/(Pi^2-5) 1771145509805489 m001 MertensB2^MadelungNaCl+Rabbit 1771145520465146 r005 Im(z^2+c),c=-23/26+14/97*I,n=39 1771145520555626 m001 FeigenbaumD^2/exp(MadelungNaCl)/sin(1)^2 1771145521424219 r005 Im(z^2+c),c=-65/122+40/61*I,n=16 1771145522995119 m001 (exp(Pi)+exp(1/Pi))/(exp(-1/2*Pi)+Salem) 1771145527590097 r002 3th iterates of z^2 + 1771145529595388 a007 Real Root Of 494*x^4+599*x^3-641*x^2-89*x+320 1771145542291084 q001 6973/3937 1771145542811789 a003 cos(Pi*17/82)+sin(Pi*46/107) 1771145548443657 b008 Log[5+Cos[1/2]] 1771145564039225 h001 (2/7*exp(2)+1/4)/(4/9*exp(1)+1/8) 1771145566163495 r002 5th iterates of z^2 + 1771145573192999 a007 Real Root Of 717*x^4+777*x^3-201*x^2+891*x-530 1771145592457986 r005 Re(z^2+c),c=-129/122+11/41*I,n=48 1771145593886878 m005 (1/2*Zeta(3)-10/11)/(8/11*Pi-6/11) 1771145605090625 a007 Real Root Of 532*x^4+639*x^3-456*x^2+693*x+973 1771145607044283 m001 Tribonacci^2*FeigenbaumB/exp(arctan(1/2)) 1771145610278372 q001 6617/3736 1771145611083665 r005 Im(z^2+c),c=-51/110+53/60*I,n=4 1771145613720895 a001 317811/199*843^(5/14) 1771145615799164 a001 281/10983760033*20365011074^(21/22) 1771145615800248 a001 843/1346269*514229^(21/22) 1771145624054363 m001 (MadelungNaCl-Otter)/(GAMMA(3/4)-Landau) 1771145631474052 a003 cos(Pi*13/68)+sin(Pi*32/81) 1771145633664609 m005 (1/3*exp(1)+1/12)/(-47/112+7/16*5^(1/2)) 1771145644275346 m001 1/ln(BesselJ(1,1))*Niven^2*sqrt(5)^2 1771145645315022 m004 2+5*Pi+(5*Pi)/(4*E^(Sqrt[5]*Pi)) 1771145650964184 r009 Im(z^3+c),c=-5/78+28/31*I,n=14 1771145653807860 a007 Real Root Of 25*x^4+448*x^3+63*x^2-541*x-378 1771145656394105 a001 610/199*9349^(18/19) 1771145667813532 r005 Re(z^2+c),c=17/52+16/57*I,n=19 1771145670368955 m001 exp(Zeta(7))/FeigenbaumD^2/arctan(1/2)^2 1771145673057408 a001 610/199*24476^(6/7) 1771145674226175 a007 Real Root Of -326*x^4+60*x^3+895*x^2-451*x-65 1771145674462765 a001 89/1364*141422324^(2/3) 1771145674462765 a001 89/1364*(1/2+1/2*5^(1/2))^26 1771145674462765 a001 89/1364*73681302247^(1/2) 1771145674462765 a001 89/1364*10749957122^(13/24) 1771145674462765 a001 89/1364*4106118243^(13/23) 1771145674462765 a001 89/1364*1568397607^(13/22) 1771145674462765 a001 89/1364*599074578^(13/21) 1771145674462765 a001 89/1364*228826127^(13/20) 1771145674462765 a001 89/1364*87403803^(13/19) 1771145674462766 a001 89/1364*33385282^(13/18) 1771145674462773 a001 89/1364*12752043^(13/17) 1771145674462826 a001 89/1364*4870847^(13/16) 1771145674463209 a001 89/1364*1860498^(13/15) 1771145674466022 a001 89/1364*710647^(13/14) 1771145675253951 a001 610/199*64079^(18/23) 1771145675585403 a001 610/199*439204^(2/3) 1771145675591509 a001 610/199*7881196^(6/11) 1771145675591524 a001 610/199*141422324^(6/13) 1771145675591524 a001 610/199*2537720636^(2/5) 1771145675591524 a001 610/199*45537549124^(6/17) 1771145675591524 a001 610/199*14662949395604^(2/7) 1771145675591524 a001 610/199*(1/2+1/2*5^(1/2))^18 1771145675591524 a001 610/199*192900153618^(1/3) 1771145675591524 a001 610/199*10749957122^(3/8) 1771145675591524 a001 610/199*4106118243^(9/23) 1771145675591524 a001 610/199*1568397607^(9/22) 1771145675591524 a001 610/199*599074578^(3/7) 1771145675591524 a001 610/199*228826127^(9/20) 1771145675591524 a001 610/199*87403803^(9/19) 1771145675591525 a001 610/199*33385282^(1/2) 1771145675591530 a001 610/199*12752043^(9/17) 1771145675591566 a001 610/199*4870847^(9/16) 1771145675591831 a001 610/199*1860498^(3/5) 1771145675593779 a001 610/199*710647^(9/14) 1771145675608166 a001 610/199*271443^(9/13) 1771145675715093 a001 610/199*103682^(3/4) 1771145676515473 a001 610/199*39603^(9/11) 1771145682557648 a001 610/199*15127^(9/10) 1771145685997171 q001 6261/3535 1771145687157043 a003 cos(Pi*1/80)+sin(Pi*16/57) 1771145689566034 l005 2*exp(221/108)/(exp(221/108)+1) 1771145691557094 r009 Re(z^3+c),c=-5/98+14/19*I,n=55 1771145702236191 l006 ln(629/3697) 1771145707224854 a007 Real Root Of -504*x^4-474*x^3+39*x^2-980*x+468 1771145710156091 r005 Im(z^2+c),c=-13/14+31/191*I,n=59 1771145711280196 r005 Im(z^2+c),c=-109/90+1/62*I,n=9 1771145712382850 r005 Re(z^2+c),c=-1/16+16/31*I,n=33 1771145712622824 s002 sum(A044197[n]/(64^n-1),n=1..infinity) 1771145718345287 m001 ln(TwinPrimes)^2*Trott/GAMMA(11/12) 1771145719454295 m001 ln(OneNinth)/FeigenbaumDelta^2/gamma 1771145721023218 a007 Real Root Of -143*x^4-30*x^3+37*x^2-754*x-211 1771145729564203 m001 PrimesInBinary+QuadraticClass+Weierstrass 1771145731239648 a007 Real Root Of 307*x^4+709*x^3+955*x^2+644*x-937 1771145731637169 r005 Re(z^2+c),c=-7/106+19/34*I,n=22 1771145731682543 a001 7/20365011074*6557470319842^(1/18) 1771145731682543 a001 7/12586269025*1134903170^(1/18) 1771145731683053 a001 7/7778742049*196418^(1/18) 1771145735995126 l006 ln(7349/8773) 1771145736819341 b008 1/35+(5+Sqrt[3])^(-1) 1771145741029843 m001 Riemann1stZero*DuboisRaymond^2/ln(gamma)^2 1771145744235921 r009 Re(z^3+c),c=-7/31+19/59*I,n=9 1771145745100811 r005 Re(z^2+c),c=23/70+23/60*I,n=21 1771145748135613 m001 1/exp(cos(1))/GlaisherKinkelin^2*sqrt(5)^2 1771145754164788 m005 (1/2*3^(1/2)-4/11)/(5/11*Catalan-7/10) 1771145760622387 a001 3/89*1346269^(14/15) 1771145761036178 a003 cos(Pi*13/107)+cos(Pi*15/83) 1771145761107630 r002 41th iterates of z^2 + 1771145768729324 r005 Im(z^2+c),c=-23/118+2/3*I,n=20 1771145769092634 p003 LerchPhi(1/8,4,305/197) 1771145770845830 q001 5905/3334 1771145773069874 m001 exp(Rabbit)^2*Porter*cos(1)^2 1771145773619516 m001 (3^(1/3))^(2^(1/3))*(3^(1/3))^(ln(2)/ln(10)) 1771145779328233 m001 PlouffeB^(Pi^(1/2)/exp(-1/2*Pi)) 1771145780717040 m005 (1/3*gamma+1/5)/(7/8*3^(1/2)+7/10) 1771145781212418 m005 (1/2*2^(1/2)+1/5)/(-19/24+1/8*5^(1/2)) 1771145784996231 m002 (2*Csch[Pi])/E^Pi+Tanh[Pi]/Pi^4 1771145788507731 a003 cos(Pi*16/107)+cos(Pi*3/19) 1771145791754906 a001 196418/199*843^(3/7) 1771145810521571 r005 Im(z^2+c),c=-53/98+9/28*I,n=64 1771145817005394 r008 a(0)=0,K{-n^6,8-22*n^3+2*n^2+66*n} 1771145829004086 a007 Real Root Of -605*x^4-823*x^3-454*x^2+868*x+164 1771145837930886 a007 Real Root Of 115*x^4-73*x^3+191*x^2-669*x-125 1771145842746995 m001 (CareFree-exp(Pi))/(-Porter+Riemann1stZero) 1771145845727951 p001 sum((-1)^n/(553*n+325)/n/(64^n),n=1..infinity) 1771145846144231 r009 Re(z^3+c),c=-1/106+25/31*I,n=10 1771145847006815 a007 Real Root Of 593*x^4+729*x^3-226*x^2+432*x-311 1771145852092935 a007 Real Root Of 678*x^4+857*x^3-273*x^2+909*x+556 1771145854346986 p001 sum((-1)^n/(570*n+113)/n/(8^n),n=1..infinity) 1771145855687436 a007 Real Root Of -183*x^4-475*x^3-738*x^2-770*x+113 1771145861372565 a007 Real Root Of 333*x^4+113*x^3-876*x^2-599*x-962 1771145863957977 a007 Real Root Of -781*x^4-754*x^3+415*x^2-833*x+719 1771145865072174 m001 GAMMA(19/24)/Riemann2ndZero*exp(gamma)^2 1771145866581551 q001 5549/3133 1771145879488664 m001 1/Si(Pi)^2/ln(GaussKuzminWirsing)^2/OneNinth^2 1771145890887587 m001 2^(1/3)+OneNinth^(ln(2)/ln(10)) 1771145893226430 m004 -5*Pi+Cosh[Sqrt[5]*Pi]/3+5*Cot[Sqrt[5]*Pi] 1771145899315827 m001 (2^(1/2)+GaussKuzminWirsing)/(-Paris+ZetaQ(4)) 1771145900003217 m005 (1/5*Catalan-1/2)/(3/4*exp(1)-1/4) 1771145901840278 a007 Real Root Of -608*x^4-797*x^3+517*x^2+79*x+73 1771145904630019 a007 Real Root Of 378*x^4-13*x^3-913*x^2+468*x-99 1771145906704185 r005 Im(z^2+c),c=-38/31+1/34*I,n=39 1771145909381086 a007 Real Root Of -542*x^4-706*x^3+905*x^2+730*x-135 1771145910125163 a007 Real Root Of -555*x^4+379*x^3+909*x^2+615*x-139 1771145918776711 a001 9349/377*8^(52/55) 1771145921738295 m002 -Pi^3-Log[Pi]+Pi^3/(2*ProductLog[Pi]) 1771145923365739 a001 843/1597*63245986^(17/24) 1771145925966179 l006 ln(1209/7106) 1771145930202629 m005 (1/3*Zeta(3)-1/7)/(109/144+5/16*5^(1/2)) 1771145930747525 a005 (1/sin(103/239*Pi))^704 1771145935304364 m001 exp(GAMMA(7/24))/GAMMA(3/4)/Zeta(9)^2 1771145940049078 m001 Pi/(Psi(2,1/3)*arctan(1/3)-gamma(3)) 1771145958279913 m001 BesselI(0,1)*(GolombDickman-LandauRamanujan) 1771145958279913 m001 BesselI(0,1)*(LandauRamanujan-GolombDickman) 1771145959172432 a007 Real Root Of -52*x^4+397*x^3+930*x^2+495*x-119 1771145967357631 r009 Re(z^3+c),c=-23/106+28/39*I,n=62 1771145967600753 a007 Real Root Of 692*x^4+546*x^3-612*x^2+602*x-790 1771145969579377 h001 (-9*exp(2)+10)/(-11*exp(1)-2) 1771145969743026 a001 121393/199*843^(1/2) 1771145973677667 a007 Real Root Of 725*x^4+494*x^3-927*x^2+626*x-373 1771145973976831 r005 Re(z^2+c),c=-26/31+9/44*I,n=2 1771145974622533 a003 cos(Pi*12/97)/cos(Pi*13/40) 1771145975443383 q001 5193/2932 1771145985670026 m001 CareFree^2*exp(Bloch)^2/FeigenbaumD^2 1771145990900252 a007 Real Root Of 567*x^4+526*x^3-636*x^2-662 1771145991546893 a007 Real Root Of -277*x^4-62*x^3-16*x^2-924*x+795 1771145994761102 a007 Real Root Of 362*x^4-72*x^3-515*x^2+840*x-859 1771146003201772 a007 Real Root Of 305*x^4-84*x^3-442*x^2+876*x-530 1771146005676353 a003 sin(Pi*23/79)+sin(Pi*43/99) 1771146006461584 m001 (FeigenbaumDelta+2)/(exp(-Pi)+1/3) 1771146008839257 a005 (1/sin(75/157*Pi))^1171 1771146014668109 m001 (Conway+DuboisRaymond)^(2^(1/2)) 1771146030660079 p001 sum((-1)^n/(544*n+7)/n/(10^n),n=1..infinity) 1771146035957692 m001 KhintchineLevy^2*CopelandErdos*ln(Niven) 1771146041477890 a007 Real Root Of 404*x^4+280*x^3-282*x^2+497*x-655 1771146044062580 a003 cos(Pi*24/61)-cos(Pi*14/31) 1771146044646601 m001 Psi(2,1/3)*FellerTornier-gamma(1) 1771146047049065 r005 Re(z^2+c),c=-13/122+16/37*I,n=21 1771146056058502 a007 Real Root Of -197*x^4-56*x^3+687*x^2+137*x-285 1771146058178104 a007 Real Root Of -392*x^4-127*x^3+749*x^2-108*x+611 1771146062188692 a007 Real Root Of -457*x^4-268*x^3+897*x^2-331*x-392 1771146062256901 a001 843/5702887*6557470319842^(17/24) 1771146063310682 m001 BesselJ(1,1)/Robbin/exp(GAMMA(1/4)) 1771146065810725 m001 (-Bloch+MasserGramain)/(BesselJ(0,1)+Ei(1,1)) 1771146068538499 m005 (1/2*exp(1)+5/6)/(1/6*Pi+5/7) 1771146083812042 r005 Im(z^2+c),c=-73/74+11/60*I,n=59 1771146088107563 r005 Im(z^2+c),c=-5/8+85/208*I,n=20 1771146088728757 a007 Real Root Of 85*x^4-860*x^3+747*x^2+540*x+642 1771146090141582 h001 (1/9*exp(1)+7/8)/(9/11*exp(2)+3/5) 1771146090675278 a001 29/63245986*12586269025^(15/23) 1771146090846025 a001 29/46368*196418^(15/23) 1771146097066400 a007 Real Root Of -619*x^4-894*x^3+534*x^2+127*x-326 1771146099575670 a007 Real Root Of -548*x^4-582*x^3+702*x^2+397*x+660 1771146100329549 q001 4837/2731 1771146107362692 m005 (1/2*Zeta(3)-1/6)/(9/10*Pi-3/8) 1771146108111083 r002 7th iterates of z^2 + 1771146109018214 s001 sum(exp(-4*Pi/5)^n*A093437[n],n=1..infinity) 1771146109348353 a007 Real Root Of -806*x^4-725*x^3+731*x^2-519*x+691 1771146110678297 m001 (Chi(1)-sin(1))/(-Cahen+TreeGrowth2nd) 1771146111114022 k007 concat of cont frac of 1771146115711211 k007 concat of cont frac of 1771146125714345 k008 concat of cont frac of 1771146136012603 a007 Real Root Of 758*x^4+908*x^3-438*x^2+296*x-516 1771146142222444 r005 Im(z^2+c),c=-67/82+7/48*I,n=6 1771146143274135 a001 7/121393*75025^(25/49) 1771146144254765 l006 ln(2792/3333) 1771146146635843 m005 (1/2*2^(1/2)+5/6)/(3/4*Catalan-3/5) 1771146146800168 r002 32i'th iterates of 2*x/(1-x^2) of 1771146147150916 a001 2178309/199*322^(1/12) 1771146147851354 a001 75025/199*843^(4/7) 1771146148906033 r005 Re(z^2+c),c=-21/106+4/29*I,n=12 1771146153102579 r009 Re(z^3+c),c=-1/78+32/37*I,n=17 1771146164831039 m001 (-GAMMA(23/24)+Backhouse)/(Si(Pi)+gamma) 1771146166809276 a007 Real Root Of 463*x^4+317*x^3-482*x^2+302*x-748 1771146168597438 l006 ln(580/3409) 1771146170688367 a007 Real Root Of -263*x^4-515*x^3+x^2+706*x+974 1771146174663963 b008 7*Sqrt[2]*CosIntegral[2]^2 1771146176388650 r005 Im(z^2+c),c=-19/18+43/230*I,n=3 1771146180755298 g005 GAMMA(9/11)*GAMMA(2/9)^2/GAMMA(7/8) 1771146185651803 r009 Im(z^3+c),c=-17/118+26/29*I,n=52 1771146191214965 a007 Real Root Of -396*x^4-300*x^3+226*x^2-607*x+446 1771146197045264 a001 29/21*832040^(21/40) 1771146197962790 m005 (1/2*2^(1/2)+1/4)/(-3/11+4/11*5^(1/2)) 1771146205755709 r002 63th iterates of z^2 + 1771146206367686 a007 Real Root Of 689*x^4+650*x^3-515*x^2+410*x-827 1771146213026947 m005 (1/3*Pi+1/12)/(5/6*Catalan-1/8) 1771146214814773 a001 48/281*64079^(13/31) 1771146215720961 a007 Real Root Of -354*x^4-45*x^3+604*x^2-617*x+246 1771146233652201 a003 cos(Pi*1/107)*cos(Pi*43/97) 1771146242359497 k002 Champernowne real with 21/2*n^2+45/2*n-16 1771146244354624 m001 (Chi(1)+ln(Pi))/(BesselK(1,1)+polylog(4,1/2)) 1771146245059288 q001 4481/2530 1771146265177355 a007 Real Root Of -497*x^4-640*x^3-42*x^2-775*x+94 1771146275520418 m001 (Grothendieck-Psi(1,1/3)*ZetaP(3))/Psi(1,1/3) 1771146278656590 r005 Im(z^2+c),c=-67/110+11/45*I,n=9 1771146279914806 s002 sum(A159713[n]/(n^3*2^n+1),n=1..infinity) 1771146279937316 s002 sum(A159713[n]/(n^3*2^n-1),n=1..infinity) 1771146287487926 a007 Real Root Of 169*x^4+485*x^3+508*x^2+57*x-461 1771146288907843 r009 Re(z^3+c),c=-1/102+35/44*I,n=11 1771146290075483 m001 (-cos(Pi/5)+1/3)/(-BesselK(1,1)+1/3) 1771146291160883 r008 a(0)=2,K{-n^6,-34+46*n+42*n^2-50*n^3} 1771146292392567 m005 (1/2*exp(1)+1/10)/(5/12*gamma+7/12) 1771146298671101 m009 (3*Pi^2-1)/(5*Psi(1,2/3)+5/6) 1771146306309256 m005 (1/2*Pi+7/11)/(6/11*Catalan-3/8) 1771146316436154 r005 Re(z^2+c),c=-31/102+20/33*I,n=36 1771146319095879 m001 Mills^exp(1)/(DuboisRaymond^exp(1)) 1771146319922978 a007 Real Root Of 125*x^4-220*x^3+490*x^2-696*x+109 1771146325645039 a001 46368/199*843^(9/14) 1771146334211608 m001 Conway^Artin*Conway^Grothendieck 1771146342069425 l006 ln(1691/9939) 1771146342602956 r005 Im(z^2+c),c=19/62+2/47*I,n=5 1771146355191029 m001 (Cahen+RenyiParking)^(3^(1/2)) 1771146355191029 m001 (RenyiParking+Cahen)^sqrt(3) 1771146355738170 b008 1+11*Csc[1/16] 1771146356783759 r005 Im(z^2+c),c=-51/98+16/51*I,n=31 1771146359058955 r005 Re(z^2+c),c=-5/24+16/61*I,n=3 1771146359162704 m003 -4+2*Sin[1/2+Sqrt[5]/2]+Tanh[1/2+Sqrt[5]/2]/4 1771146361771146 k006 concat of cont frac of 1771146369840085 r002 43th iterates of z^2 + 1771146373249569 m001 (CopelandErdos+Mills)/(QuadraticClass-Trott) 1771146374920132 a007 Real Root Of 124*x^4-964*x^3+897*x^2+481*x+470 1771146381730765 a007 Real Root Of -503*x^4+442*x^3+424*x^2+964*x-186 1771146403416720 m001 (Pi*2^(1/2)/GAMMA(3/4)+ln(2))/(ln(3)+Totient) 1771146404946338 r005 Im(z^2+c),c=-17/66+13/50*I,n=16 1771146414770287 q001 4125/2329 1771146416074438 m006 (2/3*Pi^2-4/5)/(4/5*Pi+3/4) 1771146416074438 m008 (2/3*Pi^2-4/5)/(4/5*Pi+3/4) 1771146420673745 a001 832040/2207*29^(17/37) 1771146421211675 m005 (1/2*2^(1/2)-5/9)/(6/11*Zeta(3)+1/5) 1771146427329590 a007 Real Root Of -713*x^4+175*x^3-609*x^2+436*x+98 1771146429435205 r005 Im(z^2+c),c=-7/6+40/151*I,n=3 1771146430572853 m006 (Pi^2+1/2)/(3/4*ln(Pi)-4/5) 1771146431022850 m001 1/exp((3^(1/3)))*Rabbit*GAMMA(11/12) 1771146431496369 r009 Re(z^3+c),c=-31/106+20/37*I,n=36 1771146432027070 r009 Re(z^3+c),c=-29/98+16/29*I,n=37 1771146432630846 l006 ln(1111/6530) 1771146439000047 r009 Re(z^3+c),c=-73/118+8/17*I,n=22 1771146439289504 a007 Real Root Of -143*x^4+422*x^3+813*x^2-614*x+114 1771146441421231 k006 concat of cont frac of 1771146442012277 a001 123/610*12586269025^(11/16) 1771146449462667 h001 (6/7*exp(1)+2/5)/(3/11*exp(1)+4/5) 1771146449508509 r005 Im(z^2+c),c=-11/27+5/17*I,n=26 1771146453377660 a007 Real Root Of -906*x^4+955*x^3-134*x^2+115*x-2 1771146459953487 m001 (Riemann3rdZero-Shi(1)*MertensB3)/MertensB3 1771146469394336 a001 5702887/2207*123^(2/5) 1771146472132220 m006 (1/6*ln(Pi)-2/3)/(3/5*ln(Pi)+2) 1771146473535246 g007 Psi(2,3/11)+Psi(2,3/8)+Psi(2,1/3)+14*Zeta(3) 1771146481749269 r005 Im(z^2+c),c=-29/54+8/25*I,n=56 1771146481889564 m001 OneNinth^2/Riemann3rdZero^2*exp(GAMMA(5/6))^2 1771146482548028 m001 (OneNinth-ZetaQ(2))/(ln(Pi)+Ei(1)) 1771146492986232 m009 (3/4*Psi(1,3/4)+2)/(1/5*Psi(1,2/3)-5/6) 1771146504262534 a001 28657/199*843^(5/7) 1771146504797500 a003 cos(Pi*1/120)+cos(Pi*9/41) 1771146511238439 m001 1/exp(FeigenbaumD)^2/Porter^2/GAMMA(3/4) 1771146512426450 a007 Real Root Of 539*x^4+998*x^3+312*x^2+573*x+277 1771146517088681 m005 (1/2*3^(1/2)+3/4)/(7/9*Catalan+1/5) 1771146523554363 m001 1/Niven*GolombDickman^2*ln(PrimesInBinary)^2 1771146524222590 r005 Re(z^2+c),c=-4/31+12/13*I,n=4 1771146525894762 l006 ln(1642/9651) 1771146529126106 m001 (Khinchin+MadelungNaCl)/FeigenbaumAlpha 1771146535674308 a007 Real Root Of 180*x^4-111*x^3+76*x^2+942*x-958 1771146536494156 a007 Real Root Of 559*x^4+148*x^3-815*x^2+730*x-829 1771146538636076 m005 (1/2*3^(1/2)+8/9)/(19/44+1/4*5^(1/2)) 1771146543401306 m001 (KomornikLoreti+MasserGramain)/(1+Artin) 1771146547042199 r005 Re(z^2+c),c=-133/110+2/59*I,n=50 1771146558630279 a007 Real Root Of -572*x^4-549*x^3+153*x^2-819*x+648 1771146559398343 m001 FibonacciFactorial/(Landau^BesselK(1,1)) 1771146560962013 m001 (MinimumGamma*Totient+PrimesInBinary)/Totient 1771146575958774 a007 Real Root Of 781*x^4+833*x^3-856*x^2+546*x+595 1771146579134061 a007 Real Root Of 64*x^4+77*x^3-206*x^2-462*x-75 1771146584954159 m001 (GAMMA(2/3)-ln(5))/(cos(1/12*Pi)+PlouffeB) 1771146588241625 r005 Im(z^2+c),c=-75/58+7/16*I,n=3 1771146588334936 a007 Real Root Of -451*x^4-895*x^3-345*x^2+645*x-98 1771146598089278 l006 ln(6611/7892) 1771146612511428 a003 cos(Pi*9/106)/cos(Pi*19/60) 1771146614381687 a007 Real Root Of -573*x^4-907*x^3+287*x^2+721*x+976 1771146616541353 q001 3769/2128 1771146617624147 a001 144/199*7^(23/50) 1771146620552926 a007 Real Root Of -110*x^4+770*x^3-945*x^2+272*x-713 1771146625963611 r005 Im(z^2+c),c=-59/94+2/7*I,n=43 1771146629518030 m001 gamma(1)*(GAMMA(5/6)+Conway) 1771146636486232 m001 (Bloch+Grothendieck)/(cos(1/5*Pi)+arctan(1/2)) 1771146636956797 m005 (7/4+5/2*5^(1/2))/(1/4*gamma+4) 1771146644398124 r005 Im(z^2+c),c=-3/50+13/63*I,n=5 1771146644678219 a001 1/49*(1/2*5^(1/2)+1/2)^27*7^(7/20) 1771146645741163 m002 -1+E^Pi/Pi^2+Pi^2/E^Pi 1771146647480067 r005 Re(z^2+c),c=-1/17+11/23*I,n=9 1771146649063888 r005 Im(z^2+c),c=-5/48+39/47*I,n=15 1771146654982186 m001 (Zeta(3)+3^(1/3))^Otter 1771146658634755 r005 Re(z^2+c),c=-1/8+9/23*I,n=27 1771146660907903 m001 ln(3)+exp(1/exp(1))*GAMMA(1/12) 1771146663739923 m005 (1/3*3^(1/2)-2/11)/(29/24+11/24*5^(1/2)) 1771146680723331 a001 89*843^(11/14) 1771146682296269 m001 (1+sin(1/5*Pi))/(-BesselI(1,1)+MinimumGamma) 1771146685856264 r009 Re(z^3+c),c=-13/46+27/53*I,n=21 1771146691061493 m001 FeigenbaumC*exp(FeigenbaumDelta)^2/sinh(1) 1771146692654096 r005 Im(z^2+c),c=-49/46+7/27*I,n=33 1771146699955607 g004 Im(Psi(7/2+I*13/24)) 1771146702932402 h001 (2/11*exp(1)+5/7)/(9/11*exp(2)+7/9) 1771146711902133 m001 ln(5)+arctan(1/3)^ErdosBorwein 1771146712503064 r005 Im(z^2+c),c=-103/98+9/44*I,n=61 1771146713048823 r005 Im(z^2+c),c=-9/8+49/254*I,n=13 1771146717820759 a007 Real Root Of 50*x^4+110*x^3+332*x^2+737*x+383 1771146721028840 l006 ln(531/3121) 1771146728243278 p003 LerchPhi(1/8,2,474/193) 1771146731244313 a001 726103/1926*29^(17/37) 1771146732429099 q001 7182/4055 1771146734277687 m001 (FeigenbaumB-Gompertz)/MertensB3 1771146735325403 m005 (1/3*Pi+3/7)/(1/12*Pi+4/7) 1771146736578897 a001 710647/377*610^(17/24) 1771146746520234 r002 6th iterates of z^2 + 1771146750452750 a007 Real Root Of 355*x^4-211*x^3-906*x^2+845*x-327 1771146759182811 r009 Im(z^3+c),c=-49/102+7/62*I,n=7 1771146759262999 a007 Real Root Of -635*x^4-723*x^3+232*x^2-459*x+691 1771146765312367 r005 Re(z^2+c),c=-101/82+1/36*I,n=50 1771146766330905 a007 Real Root Of 447*x^4+685*x^3-435*x^2-23*x+731 1771146779964485 a001 2584*123^(2/5) 1771146788952006 a007 Real Root Of -414*x^4-85*x^3+990*x^2+136*x+737 1771146811373456 r005 Im(z^2+c),c=-47/102+18/59*I,n=33 1771146818101414 m001 (GolombDickman-OneNinth)/(ln(Pi)+Pi^(1/2)) 1771146823020421 a007 Real Root Of 54*x^4-533*x^3+371*x^2-448*x-94 1771146823925869 p004 log(16519/16229) 1771146825251594 a007 Real Root Of 676*x^4-138*x^3+384*x^2-553*x+86 1771146825276069 a001 39088169/15127*123^(2/5) 1771146831886940 a001 34111385/13201*123^(2/5) 1771146832851453 a001 133957148/51841*123^(2/5) 1771146832992173 a001 233802911/90481*123^(2/5) 1771146833012704 a001 1836311903/710647*123^(2/5) 1771146833015700 a001 267084832/103361*123^(2/5) 1771146833016137 a001 12586269025/4870847*123^(2/5) 1771146833016201 a001 10983760033/4250681*123^(2/5) 1771146833016210 a001 43133785636/16692641*123^(2/5) 1771146833016211 a001 75283811239/29134601*123^(2/5) 1771146833016211 a001 591286729879/228826127*123^(2/5) 1771146833016211 a001 86000486440/33281921*123^(2/5) 1771146833016211 a001 4052739537881/1568397607*123^(2/5) 1771146833016211 a001 3536736619241/1368706081*123^(2/5) 1771146833016211 a001 3278735159921/1268860318*123^(2/5) 1771146833016211 a001 2504730781961/969323029*123^(2/5) 1771146833016211 a001 956722026041/370248451*123^(2/5) 1771146833016212 a001 182717648081/70711162*123^(2/5) 1771146833016212 a001 139583862445/54018521*123^(2/5) 1771146833016216 a001 53316291173/20633239*123^(2/5) 1771146833016240 a001 10182505537/3940598*123^(2/5) 1771146833016407 a001 7778742049/3010349*123^(2/5) 1771146833017551 a001 2971215073/1149851*123^(2/5) 1771146833025393 a001 567451585/219602*123^(2/5) 1771146833079144 a001 433494437/167761*123^(2/5) 1771146833447555 a001 165580141/64079*123^(2/5) 1771146835972683 a001 31622993/12238*123^(2/5) 1771146853280168 a001 24157817/9349*123^(2/5) 1771146853325317 r005 Re(z^2+c),c=13/29+2/55*I,n=5 1771146858209781 m001 (1+3^(1/2))^(1/2)+AlladiGrinstead^Psi(1,1/3) 1771146860404774 q001 3413/1927 1771146862830503 a001 10946/199*843^(6/7) 1771146864432241 r005 Im(z^2+c),c=-81/82+9/49*I,n=35 1771146868994814 m005 (1/2*exp(1)+3/11)/(11/12*2^(1/2)-3/8) 1771146871495328 a003 cos(Pi*20/107)+sin(Pi*45/116) 1771146872979127 r002 36th iterates of z^2 + 1771146877386601 a007 Real Root Of -218*x^4+769*x^3-238*x^2-390*x-690 1771146880458583 m001 MertensB3^exp(1/Pi)/Chi(1) 1771146881266621 a007 Real Root Of -720*x^4-741*x^3+544*x^2+998*x-189 1771146886548328 m005 (1/2*5^(1/2)+3/11)/(1/12*gamma-5/6) 1771146890113869 a008 Real Root of x^6-2*x^5+x^4-3*x^3+2*x^2+2*x+1 1771146898504361 b008 13*BesselK[0,5]^2 1771146912599725 r005 Im(z^2+c),c=-23/50+29/50*I,n=40 1771146915705038 m001 1/GAMMA(19/24)/BesselJ(1,1)^2*ln(Zeta(9))^2 1771146923187535 a001 1346269/3571*29^(17/37) 1771146926428369 m001 (3^(1/2)-cos(1))/(-ln(Pi)+Bloch) 1771146928548330 l006 ln(1544/9075) 1771146929745064 r002 42th iterates of z^2 + 1771146929879251 l006 ln(3819/4559) 1771146930303632 a007 Real Root Of 635*x^4+560*x^3-917*x^2-401*x-971 1771146936696916 a003 cos(Pi*3/86)+sin(Pi*17/60) 1771146938274850 r004 Re(z^2+c),c=3/20+1/13*I,z(0)=exp(3/8*I*Pi),n=7 1771146939438325 r005 Re(z^2+c),c=-71/60+5/39*I,n=32 1771146946835595 r008 a(0)=2,K{-n^6,-4-54*n^3+69*n^2-7*n} 1771146949889679 m001 (Weierstrass-ZetaQ(3))/(ln(Pi)-QuadraticClass) 1771146964321110 m006 (2/5*exp(2*Pi)+2)/(2/3/Pi-1/5) 1771146971907448 a001 9227465/3571*123^(2/5) 1771146971941600 a003 cos(Pi*2/91)-sin(Pi*34/111) 1771146974410753 m005 (1/2*Zeta(3)+1/6)/(6/11*Zeta(3)-2/9) 1771146976850112 a008 Real Root of (1+5*x-3*x^2+4*x^3+3*x^4+6*x^5) 1771146980721972 a007 Real Root Of 390*x^4-31*x^3-707*x^2+672*x-602 1771146984082655 a001 3/233*832040^(5/26) 1771146992014791 m001 (ErdosBorwein+TwinPrimes)/(ln(2)-BesselI(1,1)) 1771146994745482 a001 521/514229*514229^(26/35) 1771147002463728 q001 647/3653 1771147004130068 r005 Im(z^2+c),c=21/74+3/46*I,n=4 1771147006541903 m005 (-1/3+1/4*5^(1/2))/(8/11*Zeta(3)+2/5) 1771147007117952 a001 47/2971215073*39088169^(8/15) 1771147007117952 a001 47/139583862445*53316291173^(8/15) 1771147007143381 a001 4106118243/5*89^(13/19) 1771147007348002 a001 47/63245986*28657^(8/15) 1771147012866550 r005 Im(z^2+c),c=-29/60+4/13*I,n=26 1771147017821646 m001 (MertensB3*MinimumGamma+ThueMorse)/MertensB3 1771147018230810 a001 7/121393*13^(7/16) 1771147019314671 m005 (1/2*gamma+1/9)/(-1/3+1/4*5^(1/2)) 1771147020413512 r005 Im(z^2+c),c=-11/23+23/54*I,n=14 1771147021184067 a003 cos(Pi*3/89)+cos(Pi*18/83) 1771147022886798 m001 (Shi(1)+GAMMA(3/4))/(BesselI(1,1)+Sarnak) 1771147025982093 m001 (GAMMA(7/12)+Thue)/(Ei(1,1)+GAMMA(5/6)) 1771147029434337 r009 Re(z^3+c),c=-15/74+7/30*I,n=6 1771147030155335 a001 6765/199*843^(13/14) 1771147037327038 l006 ln(1013/5954) 1771147037447034 r002 22th iterates of z^2 + 1771147042883706 a007 Real Root Of -809*x^4-661*x^3+500*x^2-992*x+963 1771147043154557 r008 a(0)=2,K{-n^6,2+8*n^3-7*n^2+3*n} 1771147054275497 a007 Real Root Of 404*x^4+8*x^3-453*x^2+926*x-870 1771147055207511 m001 (Psi(2,1/3)-Zeta(1,2)*Otter)/Otter 1771147056339568 r002 17th iterates of z^2 + 1771147064978923 m001 (Catalan-gamma)/(-Zeta(1/2)+ZetaP(2)) 1771147067492164 r005 Re(z^2+c),c=-1/13+28/57*I,n=47 1771147073856385 a007 Real Root Of -301*x^4+51*x^3+683*x^2-263*x+637 1771147075041520 m001 (GAMMA(5/6)+DuboisRaymond)/(Lehmer-Totient) 1771147082223289 a007 Real Root Of -583*x^4-932*x^3-249*x^2-280*x+844 1771147090816789 m004 5*Pi+2*Cos[Sqrt[5]*Pi]^2+Tan[Sqrt[5]*Pi] 1771147092133209 r005 Re(z^2+c),c=-23/20+1/5*I,n=48 1771147111131611 k008 concat of cont frac of 1771147111573392 a007 Real Root Of -675*x^4-899*x^3+610*x^2+629*x+848 1771147115322128 m001 ReciprocalFibonacci^CareFree-gamma 1771147122321175 k006 concat of cont frac of 1771147126950759 r002 51th iterates of z^2 + 1771147131114251 k006 concat of cont frac of 1771147137308771 p004 log(25247/21149) 1771147139197599 m001 (BesselJ(0,1)+CopelandErdos)/(-Stephens+Trott) 1771147139851562 a007 Real Root Of 499*x^4+672*x^3-530*x^2-62*x+376 1771147143849719 p003 LerchPhi(1/32,5,99/70) 1771147144198196 m005 (1/2*2^(1/2)+1/7)/(3/7*gamma-8/11) 1771147149671056 l006 ln(1495/8787) 1771147151125388 a003 cos(Pi*4/101)+sin(Pi*27/95) 1771147155224426 a007 Real Root Of 362*x^4+423*x^3+482*x^2-626*x-124 1771147156805116 r005 Re(z^2+c),c=13/50+21/53*I,n=6 1771147161066048 q001 3057/1726 1771147161511351 k007 concat of cont frac of 1771147164762088 a007 Real Root Of -684*x^4-873*x^3+636*x^2-374*x-777 1771147172916298 m002 2+5*Pi+ProductLog[Pi]/Pi^5 1771147174371212 m001 (FeigenbaumKappa+Niven)/(GAMMA(2/3)+Artin) 1771147174850990 s002 sum(A019067[n]/(n^2*2^n+1),n=1..infinity) 1771147183477847 m001 (Zeta(3)-LaplaceLimit)/(Niven+Totient) 1771147186693660 m001 (BesselI(0,2)+GaussAGM)/(MertensB2+Sarnak) 1771147191132663 k008 concat of cont frac of 1771147191441833 p004 log(32027/5449) 1771147199111407 m001 sin(1)*(BesselI(0,2)-ZetaP(3)) 1771147212212252 k008 concat of cont frac of 1771147214854111 a001 6677225/377 1771147216343219 r002 26th iterates of z^2 + 1771147221122418 k008 concat of cont frac of 1771147222979104 p003 LerchPhi(1/3,5,451/199) 1771147223953475 m001 (Si(Pi)-exp(1))/(-sin(1/5*Pi)+Paris) 1771147231171161 k007 concat of cont frac of 1771147232453493 a001 18/1836311903*55^(13/18) 1771147245365507 k002 Champernowne real with 11*n^2+21*n-15 1771147255414992 r005 Im(z^2+c),c=-89/118+6/41*I,n=3 1771147279790567 a007 Real Root Of 109*x^4+102*x^3-285*x^2-349*x-230 1771147281614079 a003 cos(Pi*4/107)+cos(Pi*8/37) 1771147286890828 m002 4-E^Pi+5*Csch[Pi]+Tanh[Pi] 1771147291057661 a007 Real Root Of 268*x^4+125*x^3-258*x^2+422*x-386 1771147296381704 m001 exp(CopelandErdos)/Champernowne^2*Zeta(1/2)^2 1771147298330280 a007 Real Root Of 773*x^4+890*x^3-838*x^2-350*x-653 1771147299740923 r005 Re(z^2+c),c=-7/54+13/20*I,n=25 1771147307699525 a001 1/15456*2584^(5/7) 1771147311024699 m001 2*Pi/GAMMA(5/6)/Robbin/Weierstrass 1771147322989355 a003 cos(Pi*8/77)/cos(Pi*33/103) 1771147327111985 s002 sum(A005564[n]/(n^3*pi^n+1),n=1..infinity) 1771147330820103 a007 Real Root Of 522*x^4+933*x^3-437*x^2-691*x+194 1771147339280221 q001 5758/3251 1771147339757058 a007 Real Root Of 525*x^4+483*x^3-994*x^2-339*x+35 1771147345428825 a001 3/5702887*2178309^(5/7) 1771147345428867 a001 3/63245986*63245986^(5/7) 1771147345428867 a001 3/7778742049*53316291173^(5/7) 1771147345428867 a001 3/86267571272*1548008755920^(5/7) 1771147345428867 a001 1/233802911*1836311903^(5/7) 1771147345472479 a001 3/514229*75025^(5/7) 1771147359876350 m001 (1+FeigenbaumMu)/(OrthogonalArrays+Salem) 1771147365244554 a001 439204/55*2584^(11/16) 1771147381616493 m001 (GaussAGM+TreeGrowth2nd)/(2^(1/3)-cos(1)) 1771147382513059 l006 ln(4846/5785) 1771147385779916 l006 ln(482/2833) 1771147389342800 m001 Trott/exp(Cahen)/LambertW(1)^2 1771147395649155 a007 Real Root Of 524*x^4+192*x^3-786*x^2+699*x-386 1771147397220075 m001 BesselI(0,1)/(ln(2)^Catalan) 1771147398108095 a001 521/832040*3^(53/56) 1771147402339449 a007 Real Root Of 137*x^4-568*x^3+652*x^2-488*x+69 1771147402802530 r005 Re(z^2+c),c=-7/27+5/8*I,n=12 1771147414906532 a007 Real Root Of -321*x^4-367*x^3+224*x^2-760*x-929 1771147415712849 a007 Real Root Of -566*x^4+918*x^3-348*x^2+296*x+69 1771147417834813 a008 Real Root of (1+5*x-3*x^2+3*x^3-3*x^4+4*x^5) 1771147419388884 r005 Im(z^2+c),c=-63/122+4/13*I,n=24 1771147425020325 a007 Real Root Of -798*x^4-527*x^3+761*x^2-981*x+800 1771147425495772 m001 (1+Kac)/(-MertensB3+PrimesInBinary) 1771147428890860 r005 Re(z^2+c),c=-77/64+2/23*I,n=54 1771147431519797 a003 cos(Pi*10/63)+sin(Pi*13/37) 1771147436660097 a001 199/987*2178309^(28/45) 1771147438677642 a007 Real Root Of 311*x^4+473*x^3+153*x^2+29*x-861 1771147441092463 a007 Real Root Of -89*x^4+137*x^3+294*x^2+108*x+906 1771147442556929 p004 log(36541/6217) 1771147443735270 m001 LambertW(1)/(FeigenbaumDelta-Porter) 1771147445993989 a007 Real Root Of -897*x^4-945*x^3+771*x^2-280*x+662 1771147446251781 m001 (FeigenbaumDelta-Pi*Magata)/Magata 1771147446956310 r005 Im(z^2+c),c=-9/17+20/63*I,n=42 1771147455793776 m004 20-(5*E^(Sqrt[5]*Pi))/Pi-Log[Sqrt[5]*Pi] 1771147457529596 a007 Real Root Of -279*x^4-741*x^3-516*x^2-8*x+233 1771147462627979 h003 exp(Pi*((19+6^(1/3))^(1/2)*6^(1/2))) 1771147467917857 m001 (FeigenbaumC*MasserGramain-Thue)/FeigenbaumC 1771147473328215 r009 Re(z^3+c),c=-17/50+15/28*I,n=8 1771147473875465 a007 Real Root Of -604*x^4+840*x^3-42*x^2+471*x+90 1771147476915871 r005 Re(z^2+c),c=-39/122+42/61*I,n=6 1771147477696990 a007 Real Root Of -323*x^4-286*x^3+876*x^2+426*x-404 1771147481143556 m002 E^Pi/6+Pi^2+4*Tanh[Pi] 1771147486353168 a001 199/2971215073*5702887^(4/19) 1771147486353171 a001 199/20365011074*53316291173^(4/19) 1771147487480271 m001 ln(Magata)/Artin*cos(1) 1771147493711649 a007 Real Root Of 139*x^4+425*x^3+564*x^2+202*x-418 1771147497711648 m001 1/ln(Sierpinski)^2/Magata/FeigenbaumKappa^2 1771147498408744 a008 Real Root of (-4+6*x-6*x^2-6*x^3-6*x^4+6*x^5) 1771147502548828 m001 BesselK(0,1)+OrthogonalArrays-ZetaQ(2) 1771147503050796 r005 Re(z^2+c),c=-5/6+27/94*I,n=9 1771147508224838 a007 Real Root Of 764*x^4+901*x^3-101*x^2+750*x-867 1771147510057848 a001 521/89*21^(4/11) 1771147513468808 r009 Re(z^3+c),c=-11/21+27/62*I,n=28 1771147514790680 r009 Re(z^3+c),c=-49/122+25/44*I,n=11 1771147515454455 m005 (9/8+1/4*5^(1/2))/(37/220+7/20*5^(1/2)) 1771147523785909 r005 Im(z^2+c),c=-83/86+7/38*I,n=18 1771147524133261 m005 (1/2*5^(1/2)-1/2)/(7/9*gamma-1/10) 1771147532895529 m005 (1/2*Zeta(3)+7/12)/(3/4*Catalan+6) 1771147540983606 q001 2701/1525 1771147552066931 r009 Re(z^3+c),c=-3/16+6/37*I,n=5 1771147554153573 a005 (1/cos(2/87*Pi))^219 1771147559215840 r009 Re(z^3+c),c=-23/94+12/31*I,n=16 1771147560400827 r005 Im(z^2+c),c=27/106+1/18*I,n=12 1771147570685260 a001 1346269/199*322^(1/6) 1771147570750594 a007 Real Root Of -22*x^4+478*x^3+874*x^2+387*x+816 1771147571636004 a007 Real Root Of 222*x^4-678*x^3-204*x^2-994*x+186 1771147577234547 m001 (2^(1/3))^2*ln(Lehmer)*Zeta(1/2)^2 1771147587623427 m001 (MertensB2-Niven)/(FeigenbaumB-Kolakoski) 1771147591406744 s002 sum(A042254[n]/(n*2^n+1),n=1..infinity) 1771147594614147 a007 Real Root Of 611*x^4+402*x^3-866*x^2+68*x-942 1771147598143109 m001 ln(2)/ln(10)*Otter+ln(2^(1/2)+1) 1771147598858344 m007 (-5*gamma-1/5)/(-3*gamma-9*ln(2)+3/2*Pi+5) 1771147599344082 a007 Real Root Of 724*x^4-426*x^3+329*x^2-201*x-49 1771147602191036 r008 a(0)=0,K{-n^6,34+21*n^2+2*n} 1771147606044468 m001 (cos(1)+HardyLittlewoodC3*PlouffeB)/PlouffeB 1771147617993351 m001 (Pi-BesselI(1,1))/(Kolakoski+TwinPrimes) 1771147619270958 a003 sin(Pi*1/110)*sin(Pi*23/108) 1771147621791658 a005 (1/sin(81/169*Pi))^1357 1771147623997747 a007 Real Root Of 516*x^4+750*x^3-599*x^2-820*x-484 1771147625060390 m001 (5^(1/2)+ln(Pi))/(-Bloch+LaplaceLimit) 1771147628572323 r005 Re(z^2+c),c=-13/86+11/34*I,n=13 1771147632440030 h001 (1/8*exp(2)+2/5)/(11/12*exp(2)+7/10) 1771147638451826 l006 ln(1397/8211) 1771147645248822 m001 ln(cos(Pi/5))/Ei(1)^2/gamma^2 1771147649045658 m001 Tribonacci/FeigenbaumKappa^2/exp(sqrt(3)) 1771147651225257 a007 Real Root Of 394*x^4+633*x^3+132*x^2-10*x-792 1771147651947897 r009 Re(z^3+c),c=-5/9+32/53*I,n=42 1771147662327765 m004 Cos[Sqrt[5]*Pi]/3+16*Cot[Sqrt[5]*Pi] 1771147663948052 r005 Re(z^2+c),c=-5/32+13/42*I,n=11 1771147666924102 r009 Re(z^3+c),c=-35/122+18/31*I,n=16 1771147676844481 l006 ln(5873/7011) 1771147684528348 r009 Re(z^3+c),c=-5/66+48/59*I,n=18 1771147685209611 m001 (ln(gamma)-Ei(1))/(Zeta(1,-1)+Trott2nd) 1771147686451013 a007 Real Root Of -50*x^4+404*x^3+575*x^2-634*x-190 1771147686768906 a001 199/433494437*610^(4/19) 1771147689312138 m001 (Pi-Champernowne)^polylog(4,1/2) 1771147700820631 m002 -E^Pi+Pi^3*Csch[Pi]+Pi/Log[Pi] 1771147701959829 m001 ln(3)+ln(1+sqrt(2))^Pi 1771147701959829 m001 ln(3)+ln(2^(1/2)+1)^Pi 1771147704100230 r005 Im(z^2+c),c=-19/15+3/59*I,n=18 1771147711094056 a007 Real Root Of -400*x^4+112*x^3+939*x^2-822*x+157 1771147714567845 m001 1/GAMMA(11/24)/Salem*ln(Zeta(9))^2 1771147716500222 m001 (BesselI(0,2)-GAMMA(17/24))/(Paris-TwinPrimes) 1771147722150185 m005 (1/2*Zeta(3)-7/8)/(17/24+3/8*5^(1/2)) 1771147733344814 m001 (Pi^(1/2)-Bloch)/(KhinchinLevy-ZetaP(2)) 1771147735973034 m001 (FeigenbaumMu-KhinchinLevy)/(Khinchin-Totient) 1771147736183128 r005 Re(z^2+c),c=-5/54+29/63*I,n=23 1771147736272533 a001 514229/1364*29^(17/37) 1771147738847164 a007 Real Root Of -847*x^4-777*x^3+802*x^2-996*x-262 1771147754254595 h001 (5/11*exp(1)+3/5)/(1/6*exp(1)+7/12) 1771147756801015 a007 Real Root Of -438*x^4-322*x^3+858*x^2-194*x-514 1771147757390119 r005 Re(z^2+c),c=1/110+26/47*I,n=22 1771147757652971 a007 Real Root Of 888*x^4+786*x^3-748*x^2+599*x-964 1771147761008273 a007 Real Root Of -258*x^4-350*x^3+409*x^2+320*x-122 1771147765348857 a001 2207/55*5702887^(11/16) 1771147767968737 m005 (1/3*Pi-2/5)/(1/5*Zeta(3)+1/8) 1771147771147771 q001 5046/2849 1771147771553288 l006 ln(915/5378) 1771147780247910 r005 Re(z^2+c),c=-17/14+15/244*I,n=36 1771147783209173 r005 Re(z^2+c),c=-187/126+15/38*I,n=3 1771147783623895 m001 (BesselI(1,2)+Conway)/(ErdosBorwein+Trott2nd) 1771147784991348 a001 1762289/682*123^(2/5) 1771147785424761 a001 11/17711*4181^(40/59) 1771147801130125 a007 Real Root Of -332*x^4-108*x^3+305*x^2-685*x+497 1771147804415303 s002 sum(A079907[n]/(pi^n),n=1..infinity) 1771147810257242 m001 Niven*GAMMA(13/24)^ZetaP(4) 1771147815114413 a007 Real Root Of 677*x^4-348*x^3-16*x^2-960*x-17 1771147816827393 r009 Re(z^3+c),c=-7/38+59/64*I,n=57 1771147817241652 a007 Real Root Of -853*x^4-863*x^3+592*x^2-428*x+984 1771147820181102 a003 sin(Pi*28/93)+sin(Pi*25/61) 1771147821123186 a007 Real Root Of -789*x^4-665*x^3+939*x^2-630*x+8 1771147821595028 m001 (Kac+Totient)/(Zeta(5)-gamma(1)) 1771147825136845 m001 (BesselI(0,1)+ln(3))/(-MadelungNaCl+ThueMorse) 1771147826579345 m006 (1/2/Pi-4/5)/(1/4*ln(Pi)-1/4) 1771147845721438 r005 Im(z^2+c),c=-9/10+38/255*I,n=19 1771147861366047 m001 ErdosBorwein^(exp(Pi)/Porter) 1771147865604283 r005 Re(z^2+c),c=-5/94+9/17*I,n=31 1771147873384463 m001 (2^(1/3)-Zeta(1,-1))/(Landau+MertensB1) 1771147876245706 a001 18/24157817*89^(12/17) 1771147877578744 a007 Real Root Of -430*x^4-710*x^3+623*x^2+552*x-690 1771147883558979 l006 ln(6900/8237) 1771147886632209 m001 Khinchin^(Artin/MasserGramain) 1771147889334243 m001 Kolakoski+RenyiParking^StolarskyHarborth 1771147894913956 m001 sin(1/12*Pi)/((Pi^(1/2))^LaplaceLimit) 1771147909492989 l006 ln(1348/7923) 1771147912475657 m001 (-Salem+Trott)/(2^(1/3)-BesselK(1,1)) 1771147912777150 a001 123/610*987^(37/57) 1771147919797241 m001 (-BesselI(1,2)+1/3)/(exp(-Pi)+2/3) 1771147924605738 m001 ln(GAMMA(3/4))*MertensB1^2*GAMMA(5/6)^2 1771147927178760 a005 (1/sin(48/155*Pi))^3 1771147927629217 r005 Im(z^2+c),c=-39/44+6/41*I,n=28 1771147928578316 m001 (Gompertz+Porter)/(Totient-ZetaP(3)) 1771147928994082 r005 Re(z^2+c),c=2/13+1/50*I,n=2 1771147930434684 r005 Re(z^2+c),c=7/46+26/41*I,n=12 1771147935365757 a007 Real Root Of -185*x^4+211*x^3+298*x^2-887*x+487 1771147936811855 m005 (1/2*5^(1/2)-3/11)/(7/99+2/11*5^(1/2)) 1771147942143387 a003 cos(Pi*2/37)+cos(Pi*24/113) 1771147954116336 b008 E*(6+SinIntegral[Pi/6]) 1771147957451406 m001 (MertensB1+ZetaP(4))/(BesselI(0,1)+Cahen) 1771147960082717 p001 sum(1/(529*n+204)/n/(8^n),n=1..infinity) 1771147966752674 r002 35th iterates of z^2 + 1771147978021058 m001 (Magata+Stephens)/(2^(1/2)+GaussAGM) 1771147985456960 a007 Real Root Of -310*x^4+461*x^3+942*x^2-940*x+992 1771147995013466 a007 Real Root Of -682*x^4-582*x^3+675*x^2-222*x+967 1771147997790598 a007 Real Root Of -382*x^4-613*x^3+539*x^2+784*x+51 1771148005775358 a007 Real Root Of -64*x^4+6*x^3-187*x^2+660*x-111 1771148006068266 a007 Real Root Of -30*x^4-494*x^3+693*x^2+530*x-518 1771148006228898 r005 Im(z^2+c),c=-51/58+6/43*I,n=24 1771148016059993 m005 (1/2*3^(1/2)-2/9)/(exp(1)+11/12) 1771148017481651 a007 Real Root Of -610*x^4-632*x^3+669*x^2+239*x+816 1771148026691918 r005 Re(z^2+c),c=-29/34+1/42*I,n=22 1771148031172134 r009 Re(z^3+c),c=-3/122+13/32*I,n=15 1771148034452629 m001 (MinimumGamma+Stephens)/(Ei(1,1)-exp(-1/2*Pi)) 1771148036253776 q001 2345/1324 1771148036710768 l006 ln(7927/9463) 1771148036710768 p004 log(9463/7927) 1771148039316903 p004 log(28571/4861) 1771148039974484 m001 Porter*(MadelungNaCl-cos(1)) 1771148045488485 m001 (Pi-Bloch)/(MertensB3+ZetaP(3)) 1771148050369522 a007 Real Root Of 387*x^4+380*x^3-58*x^2+913*x+102 1771148052112319 r005 Im(z^2+c),c=-8/27+7/26*I,n=27 1771148053690241 r009 Re(z^3+c),c=-8/27+21/38*I,n=46 1771148055796861 g002 Psi(11/12)+Psi(7/10)+Psi(3/5)-Psi(5/9) 1771148059324255 r005 Im(z^2+c),c=-51/52+9/50*I,n=21 1771148059960303 s001 sum(exp(-Pi/2)^n*A215503[n],n=1..infinity) 1771148067675835 m005 (19/10+5/2*5^(1/2))/(1/4*Catalan+4) 1771148072248611 r002 5th iterates of z^2 + 1771148072411112 a007 Real Root Of 61*x^4-553*x^3+612*x^2+42*x+478 1771148075645904 m001 (2^(1/3))^exp(1/2)+HardyLittlewoodC4 1771148082893417 r005 Re(z^2+c),c=-9/98+15/26*I,n=22 1771148092513123 a003 cos(Pi*11/116)+sin(Pi*27/89) 1771148096928509 r005 Im(z^2+c),c=-15/16+2/127*I,n=6 1771148105792625 m001 Trott^Bloch+(1+3^(1/2))^(1/2) 1771148106803388 m005 (1/2*Zeta(3)-1/11)/(5/8*Pi+11/12) 1771148108398195 m001 1/exp(ArtinRank2)/Champernowne*LaplaceLimit^2 1771148109633178 a007 Real Root Of 689*x^4+800*x^3-164*x^2+927*x-179 1771148112120494 m005 (1/2*Zeta(3)+5/9)/(5/9*exp(1)-6/7) 1771148114104134 a003 sin(Pi*5/54)/cos(Pi*48/97) 1771148114701789 m001 GAMMA(19/24)^GaussAGM-cos(1/12*Pi) 1771148118427890 a007 Real Root Of 741*x^4+834*x^3-965*x^2-428*x-389 1771148122793048 a007 Real Root Of -817*x^4+659*x^3-99*x^2+392*x+77 1771148124199143 a007 Real Root Of 376*x^4-37*x^3-889*x^2+809*x+316 1771148124466297 r005 Im(z^2+c),c=-69/82+7/57*I,n=28 1771148124978857 a001 3/4052739537881*12586269025^(12/19) 1771148124978980 a001 3/12586269025*1346269^(12/19) 1771148131522317 a007 Real Root Of -722*x^4+880*x^3-340*x^2+501*x+105 1771148143269785 m001 (sin(1)+ln(2))/(-Mills+TreeGrowth2nd) 1771148145316286 a001 1364/987*514229^(1/53) 1771148148973553 a001 1/6*2^(5/57) 1771148149426507 a007 Real Root Of -932*x^4+114*x^3-24*x^2+565*x-10 1771148150381111 a007 Real Root Of 187*x^4-102*x^3-423*x^2+542*x-120 1771148155836977 r009 Re(z^3+c),c=-19/60+24/37*I,n=61 1771148156606213 a001 8/87403803*2^(20/21) 1771148158851859 r005 Re(z^2+c),c=4/15+26/59*I,n=14 1771148161132134 k008 concat of cont frac of 1771148162062448 r002 50th iterates of z^2 + 1771148166852222 r005 Im(z^2+c),c=-25/42+7/18*I,n=13 1771148167708226 m001 FeigenbaumC^2/LaplaceLimit^2*exp(sin(1)) 1771148167891678 a007 Real Root Of -652*x^4-770*x^3+698*x^2-475*x-893 1771148173424302 r002 6th iterates of z^2 + 1771148177224173 k009 concat of cont frac of 1771148182258870 a007 Real Root Of -336*x^4-424*x^3+99*x^2-17*x+610 1771148188818358 m001 (Ei(1)+FeigenbaumC)/(Chi(1)+BesselI(0,1)) 1771148189661156 p003 LerchPhi(1/5,4,340/219) 1771148193216792 l006 ln(4421/4500) 1771148195224355 a007 Real Root Of 742*x^4+906*x^3-516*x^2-189*x-984 1771148198982497 m001 ln(2+3^(1/2))*(2^(1/3))^GlaisherKinkelin 1771148200982133 l006 ln(433/2545) 1771148203834027 r005 Im(z^2+c),c=-43/90+19/53*I,n=14 1771148205514474 a007 Real Root Of 512*x^4+674*x^3-251*x^2+436*x+266 1771148209551370 m005 (1/2*3^(1/2)+6/11)/(6/11*Pi-11/12) 1771148210052220 r002 60th iterates of z^2 + 1771148211949751 r005 Im(z^2+c),c=-115/86+3/46*I,n=20 1771148215323796 a007 Real Root Of 683*x^4+454*x^3-668*x^2+930*x-456 1771148216053895 r005 Re(z^2+c),c=-5/24+1/60*I,n=12 1771148217996025 r005 Re(z^2+c),c=-11/54+10/13*I,n=37 1771148221453665 a007 Real Root Of -182*x^4-307*x^3-117*x^2-239*x+29 1771148230992908 m005 (1/2*Zeta(3)+4/9)/(7/10*exp(1)+4) 1771148231762186 b008 57*ArcCosh[3]^2 1771148235493400 m001 1/GolombDickman*exp(ArtinRank2)*GAMMA(1/24)^2 1771148236542031 q001 6679/3771 1771148241818629 a001 161*832040^(10/29) 1771148246013022 m001 Riemann1stZero^cos(1)*Riemann1stZero^(2^(1/2)) 1771148246556250 s002 sum(A119163[n]/(n^2*10^n-1),n=1..infinity) 1771148247518845 m001 Robbin^2*exp(HardHexagonsEntropy)*Zeta(9) 1771148248371517 k002 Champernowne real with 23/2*n^2+39/2*n-14 1771148250771567 m001 GAMMA(1/24)*Paris/exp(GAMMA(17/24))^2 1771148254973830 m001 (exp(-1/2*Pi)+Pi^(1/2))/(Bloch+MasserGramain) 1771148262802496 r005 Im(z^2+c),c=-37/106+9/32*I,n=27 1771148262989043 m001 (Cahen+MertensB3*Porter)/Porter 1771148275845741 a003 cos(Pi*43/115)-cos(Pi*19/50) 1771148276861863 s001 sum(exp(-Pi)^(n-1)*A037687[n],n=1..infinity) 1771148278741851 p003 LerchPhi(1/64,5,263/186) 1771148278786426 a001 21/2207*3571^(23/36) 1771148294292691 r005 Re(z^2+c),c=-5/58+19/24*I,n=3 1771148298988588 r005 Im(z^2+c),c=-119/122+7/39*I,n=50 1771148301672379 a007 Real Root Of 985*x^4+855*x^3-977*x^2+980*x-142 1771148302833245 a007 Real Root Of 258*x^4+535*x^3-125*x^2-744*x-492 1771148312520188 b008 EulerGamma*(2+Cosh[E^(-1)]) 1771148315339314 s001 sum(exp(-Pi)^n*A252123[n],n=1..infinity) 1771148315339314 s002 sum(A252123[n]/(exp(pi*n)),n=1..infinity) 1771148316166209 r005 Im(z^2+c),c=-97/102+11/64*I,n=11 1771148323716661 r005 Im(z^2+c),c=-39/38+11/56*I,n=46 1771148329449768 r005 Im(z^2+c),c=-13/24+11/34*I,n=43 1771148331254535 a001 144/2207*9349^(19/31) 1771148340246413 m001 (Niven+OneNinth)/(GAMMA(17/24)-MertensB1) 1771148341838709 m001 Catalan/Champernowne^2*ln(GAMMA(1/6))^2 1771148344912137 q001 4334/2447 1771148346717471 a001 1/2*610^(54/59) 1771148349669153 m005 (1/2*gamma+4/5)/(2/9*Catalan-9/11) 1771148350739721 m001 (-Lehmer+ZetaQ(3))/(Si(Pi)+exp(1/exp(1))) 1771148353661242 a007 Real Root Of 868*x^4+990*x^3-871*x^2-327*x-888 1771148358354458 p003 LerchPhi(1/12,6,402/205) 1771148363254548 m004 (5*Pi*Sec[Sqrt[5]*Pi])/3+5*Pi*Sin[Sqrt[5]*Pi] 1771148363701514 a007 Real Root Of 2*x^4-702*x^3+628*x^2+574*x+894 1771148367318872 a001 21/2207*64079^(17/36) 1771148371403602 m001 BesselK(0,1)^2*ln(BesselJ(0,1))*GAMMA(11/24)^2 1771148377489628 m004 4-(5*E^(Sqrt[5]*Pi))/Pi+2*Sqrt[5]*Pi 1771148379037799 a007 Real Root Of -499*x^4-717*x^3-66*x^2-499*x+250 1771148383699277 m001 (MertensB1+RenyiParking)/(Psi(2,1/3)-Si(Pi)) 1771148386146435 a007 Real Root Of 694*x^4+992*x^3-3*x^2+986*x+438 1771148387809705 m001 (Artin-ZetaP(4))/(ln(gamma)-GAMMA(5/6)) 1771148390863855 a007 Real Root Of -675*x^4+690*x^3-250*x^2+862*x-148 1771148398326120 m001 (2^(1/2)+3^(1/3))/(-PrimesInBinary+Stephens) 1771148400889599 a007 Real Root Of -626*x^4-322*x^3+713*x^2-697*x+900 1771148407955198 m001 (ln(2)/ln(10)-polylog(4,1/2))/(Gompertz+Kac) 1771148408283847 a007 Real Root Of -9*x^4-139*x^3+355*x^2-106*x+122 1771148408829533 m001 exp(Kolakoski)^2*Conway^2*GAMMA(5/12) 1771148411556895 a007 Real Root Of 619*x^4+781*x^3-602*x^2-374*x-526 1771148414072003 a003 cos(Pi*5/41)/cos(Pi*37/114) 1771148415003389 h001 (1/2*exp(1)+4/7)/(1/10*exp(1)+9/11) 1771148415003389 m005 (1/2*exp(1)+4/7)/(1/10*exp(1)+9/11) 1771148420791004 r005 Im(z^2+c),c=-9/14+53/128*I,n=48 1771148423025851 a007 Real Root Of -94*x^4-292*x^3-574*x^2-261*x+641 1771148426183872 a007 Real Root Of -646*x^4+426*x^3+192*x^2+199*x-43 1771148434450500 l006 ln(1683/9892) 1771148438773413 m004 (-5*E^(Sqrt[5]*Pi))/Pi+5*Pi+(Sqrt[5]*Pi)/3 1771148442423426 k008 concat of cont frac of 1771148444799606 a007 Real Root Of -738*x^4-715*x^3+400*x^2-673*x+843 1771148447792413 m001 Lehmer^GlaisherKinkelin+2^(1/3) 1771148452968779 m001 Zeta(1,-1)^cos(1/5*Pi)/ln(2+3^(1/2)) 1771148459383753 q001 6323/3570 1771148469305757 m001 1/GAMMA(17/24)^2/Cahen/ln(sin(Pi/5)) 1771148471093047 m003 1/10+(3*Sqrt[5])/4+Cos[1/2+Sqrt[5]/2]/8 1771148474490113 a001 521/196418*4181^(39/50) 1771148482944621 m001 (exp(1/exp(1))-Conway)/(FeigenbaumC-MertensB2) 1771148493972052 m001 (Catalan+GAMMA(7/12))/(Conway+ZetaP(4)) 1771148497225625 r009 Re(z^3+c),c=-17/90+10/59*I,n=8 1771148503747324 a007 Real Root Of -451*x^4-257*x^3+626*x^2-837*x-436 1771148505598614 m001 StolarskyHarborth*(Backhouse+Sarnak) 1771148507985200 a005 (1/cos(24/227*Pi))^215 1771148512075810 h005 exp(cos(Pi*10/41)*sin(Pi*7/24)) 1771148515323930 l006 ln(1250/7347) 1771148521337705 a007 Real Root Of 256*x^4+296*x^3-219*x^2-7*x-200 1771148523842975 m005 (1/2*3^(1/2)+3/7)/(2/9*2^(1/2)+5/12) 1771148532468711 m005 (1/3*3^(1/2)-3/4)/(3/10*Catalan+7/10) 1771148545160565 m001 exp(GAMMA(11/12))^2*MinimumGamma^2*Zeta(9)^2 1771148545804379 m001 (Champernowne+Paris)/(ln(gamma)-CareFree) 1771148552950607 a003 cos(Pi*4/71)-sin(Pi*38/91) 1771148555898966 m001 (Shi(1)-exp(1))/(-Pi^(1/2)+GaussAGM) 1771148556788332 l004 Si(393/100) 1771148557420884 p001 sum((-1)^n/(563*n+467)/(2^n),n=0..infinity) 1771148559026457 p001 sum(1/(329*n+57)/(16^n),n=0..infinity) 1771148559678343 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)-Cahen^Ei(1,1) 1771148567730739 r002 46th iterates of z^2 + 1771148569715311 r002 7th iterates of z^2 + 1771148575411780 r005 Im(z^2+c),c=-57/98+20/63*I,n=39 1771148579322116 m008 (1/4*Pi^3+3)/(1/5*Pi^5-1/2) 1771148584361315 a003 sin(Pi*3/116)/cos(Pi*23/66) 1771148601271727 r002 9th iterates of z^2 + 1771148606666662 m001 (1-Chi(1))/(-GAMMA(3/4)+ln(2+3^(1/2))) 1771148607732846 m001 1/exp(GAMMA(17/24))^2/GolombDickman*Zeta(3)^2 1771148613451461 m001 (-arctan(1/2)+FeigenbaumMu)/(Chi(1)+Catalan) 1771148620320636 r005 Im(z^2+c),c=-23/56+17/57*I,n=16 1771148624087867 m002 Pi^6-Cosh[Pi]+E^Pi*Pi^3*Log[Pi] 1771148624411948 m002 -Pi^3+Cosh[Pi]+2*Pi^2*Sech[Pi] 1771148626313109 a007 Real Root Of 37*x^4-277*x^3-793*x^2+24*x+627 1771148631284765 a007 Real Root Of -359*x^4-145*x^3+45*x^2-909*x+976 1771148640968516 a001 1292/161*3571^(3/31) 1771148645182344 a007 Real Root Of 351*x^4+69*x^3-935*x^2+76*x-3 1771148645625813 b008 Sqrt[ProductLog[23*Pi]] 1771148647830105 a001 3571/2584*514229^(1/53) 1771148664199730 r005 Re(z^2+c),c=-3/110+33/58*I,n=50 1771148664488556 a007 Real Root Of -343*x^4-299*x^3-41*x^2-753*x+509 1771148675955836 a007 Real Root Of -986*x^4-803*x^3+976*x^2-845*x+683 1771148681921195 l006 ln(817/4802) 1771148696701543 h001 (-8*exp(1)+4)/(-2*exp(4)+9) 1771148699807616 m001 1/GAMMA(5/24)/exp(GAMMA(1/3))/log(1+sqrt(2)) 1771148703687779 a007 Real Root Of 781*x^4+785*x^3-976*x^2+3*x-257 1771148704366147 a001 72/51841*24476^(29/31) 1771148707528939 m005 (29/36+1/4*5^(1/2))/(4/11*Zeta(3)+1/3) 1771148708815672 q001 1989/1123 1771148711510986 p003 LerchPhi(1/2,12,41/43) 1771148714471114 r009 Im(z^3+c),c=-63/118+11/54*I,n=23 1771148715185573 r005 Im(z^2+c),c=-21/26+1/117*I,n=55 1771148720837044 m001 exp(GAMMA(23/24))*GAMMA(2/3)/Zeta(1/2)^2 1771148721145868 a001 9349/6765*514229^(1/53) 1771148722718276 m001 (Zeta(1/2)-Ei(1,1))/(Zeta(1,2)-Trott) 1771148725845992 a001 123/165580141*86267571272^(5/23) 1771148725846036 a001 41/4976784*1346269^(5/23) 1771148727951203 a001 4106118243/610*46368^(7/23) 1771148727975058 a001 4181/322*15127^(1/31) 1771148728001347 a001 70711162/305*2971215073^(7/23) 1771148731842494 a001 24476/17711*514229^(1/53) 1771148734367624 a001 39603/28657*514229^(1/53) 1771148736919089 a007 Real Root Of -572*x^4+670*x^3+927*x^2+998*x-209 1771148737857999 m005 (1/2*3^(1/2)+8/9)/(5/11*Zeta(3)+4/9) 1771148738453372 a001 15127/10946*514229^(1/53) 1771148744865903 a007 Real Root Of -435*x^4-555*x^3+615*x^2-62*x-842 1771148746195163 m005 (1/2*Pi-5/7)/(1/8*Zeta(3)+1/3) 1771148751608643 a001 3/1346269*1597^(35/59) 1771148759638832 m005 (1/2*3^(1/2)+2/9)/(1/4*gamma+6) 1771148761064485 a007 Real Root Of -727*x^4-836*x^3+680*x^2-738*x-931 1771148766457500 a001 5778/4181*514229^(1/53) 1771148768276398 m001 (Otter+Thue)/(FeigenbaumC+FellerTornier) 1771148774203716 r005 Im(z^2+c),c=-91/114+1/11*I,n=16 1771148775553110 a007 Real Root Of -885*x^4-775*x^3+790*x^2-722*x+646 1771148778112076 r009 Re(z^3+c),c=-13/70+56/61*I,n=21 1771148780430427 r002 4th iterates of z^2 + 1771148786625822 m001 ln((3^(1/3)))^2*FeigenbaumAlpha/Ei(1) 1771148788771456 a001 46368/521*18^(5/21) 1771148789940568 a007 Real Root Of 275*x^4+372*x^3-499*x^2-380*x+253 1771148790144716 a007 Real Root Of 137*x^4+12*x^3+76*x^2+988*x+230 1771148790637725 m001 (gamma(3)+PisotVijayaraghavan)/(ln(2)-3^(1/3)) 1771148800181737 m005 (1/3*Zeta(3)-2/3)/(1/3*Pi+5/11) 1771148801214618 p004 log(30781/5237) 1771148811409617 m001 sin(1/5*Pi)*CareFree^exp(Pi) 1771148814223382 m001 (Shi(1)+3^(1/3))/(Conway+OneNinth) 1771148818952374 a007 Real Root Of -749*x^4-561*x^3+963*x^2-591*x+186 1771148835462926 s002 sum(A287036[n]/(n*2^n-1),n=1..infinity) 1771148836735913 m005 (1/3*5^(1/2)-1/8)/(5/8*Catalan-2/9) 1771148838125644 r005 Re(z^2+c),c=-55/46+1/13*I,n=30 1771148840167780 r009 Re(z^3+c),c=-13/36+17/29*I,n=23 1771148844262013 a005 (1/sin(57/193*Pi))^261 1771148849423656 r005 Im(z^2+c),c=-29/42+4/23*I,n=22 1771148850581778 m003 -2*Csc[1/2+Sqrt[5]/2]+Tanh[1/2+Sqrt[5]/2]/4 1771148855315488 l006 ln(1201/7059) 1771148856560972 m005 (1/3*2^(1/2)-1/4)/(1/7*5^(1/2)-4/9) 1771148866109971 r005 Re(z^2+c),c=-5/122+31/56*I,n=59 1771148866835672 a001 4/51841*123^(28/43) 1771148868042137 m001 (FeigenbaumD-ln(2)/ln(10))/(-MertensB3+Porter) 1771148870971438 m005 (1/2*Zeta(3)-5)/(10/11*3^(1/2)+10/11) 1771148872490120 m001 gamma*(5^(1/2)+FeigenbaumB) 1771148872515659 a007 Real Root Of -601*x^4-971*x^3+449*x^2-x-891 1771148872538397 m001 (2^(1/2)+GAMMA(2/3))/(-MertensB3+Salem) 1771148873745332 a007 Real Root Of -990*x^4+362*x^3-496*x^2+889*x+176 1771148882918357 m001 1/exp(Porter)*KhintchineHarmonic*BesselJ(1,1) 1771148884955388 m001 1/GAMMA(5/24)^2/ln(RenyiParking)/Zeta(9)^2 1771148886926143 m005 (1/2*exp(1)-1/6)/(4/5*Catalan+6) 1771148891079901 a007 Real Root Of 723*x^4-636*x^3+945*x^2-637*x+86 1771148895957416 b008 -7+E^Pi+Pi/2 1771148895957416 m002 -7+E^Pi+Pi/2 1771148896058120 a007 Real Root Of -536*x^4-601*x^3+812*x^2+123*x-394 1771148897278678 m001 1/Riemann2ndZero*Artin*ln(GAMMA(1/24))^2 1771148901573900 m005 (1/2*Pi-1/6)/(10/11*Zeta(3)-3/10) 1771148903689579 a007 Real Root Of -913*x^4-944*x^3+993*x^2+164*x+915 1771148909178084 a007 Real Root Of -346*x^4-652*x^3-198*x^2-540*x-553 1771148914025934 a007 Real Root Of -134*x^4-388*x^3-946*x^2-684*x+919 1771148926556526 m001 (MertensB1+Robbin)/(FeigenbaumDelta+Landau) 1771148940222756 r009 Re(z^3+c),c=-37/110+21/34*I,n=40 1771148944692850 l006 ln(1585/9316) 1771148958400637 a001 2207/1597*514229^(1/53) 1771148961606794 a007 Real Root Of 889*x^4+914*x^3-824*x^2+659*x+82 1771148968068166 m005 (1/2*exp(1)+4/9)/(-125/198+5/18*5^(1/2)) 1771148971647401 m001 1/cos(Pi/12)/ln(Sierpinski)^2*cosh(1) 1771148972911649 a007 Real Root Of -384*x^4-690*x^3-49*x^2+292*x+616 1771148980642997 a007 Real Root Of -455*x^4-841*x^3-39*x^2+110*x+122 1771148981755308 r005 Im(z^2+c),c=-8/29+15/53*I,n=5 1771148983676750 a001 36/341*1364^(22/31) 1771148986678388 a001 123*(1/2*5^(1/2)+1/2)^13*4^(11/15) 1771148989898989 q001 5611/3168 1771148993418093 a007 Real Root Of -481*x^4-982*x^3-442*x^2+91*x+825 1771148994219771 a001 832040/199*322^(1/4) 1771148994665277 a007 Real Root Of -393*x^4-873*x^3-185*x^2+794*x-14 1771148994698826 m001 (Ei(1,1)-BesselI(0,2))/(GAMMA(11/12)+OneNinth) 1771148995964724 m005 (1/2*Pi+3/8)/(1/10*5^(1/2)+7/8) 1771148997125476 m001 (OrthogonalArrays+Thue)/(Zeta(1/2)+MertensB3) 1771148998664873 m001 (GAMMA(23/24)-sin(1))/(Trott2nd+ZetaP(4)) 1771149008160611 r009 Re(z^3+c),c=-17/98+3/55*I,n=5 1771149011505938 a007 Real Root Of 516*x^4+483*x^3+13*x^2+896*x-848 1771149011907055 m001 (-Paris+Rabbit)/(BesselJ(0,1)+Khinchin) 1771149013321304 a007 Real Root Of -521*x^4-840*x^3+388*x^2+947*x+920 1771149013548806 m005 (1/4*2^(1/2)-5/6)/(4*gamma+2/5) 1771149015687777 m001 (exp(Pi)-ln(2))/(-Tetranacci+TwinPrimes) 1771149018298746 m001 ln(Riemann2ndZero)*Niven^2*sqrt(2)^2 1771149022074056 r005 Im(z^2+c),c=-27/56+13/42*I,n=56 1771149028848397 a007 Real Root Of 510*x^4+554*x^3-943*x^2-509*x+116 1771149034613374 r009 Re(z^3+c),c=-11/48+38/39*I,n=27 1771149034838419 r002 22th iterates of z^2 + 1771149035223753 a007 Real Root Of -821*x^4-837*x^3+703*x^2-859*x-298 1771149036758086 r005 Re(z^2+c),c=13/50+11/51*I,n=16 1771149039129350 a007 Real Root Of 341*x^4+584*x^3-258*x^2-304*x+160 1771149042602115 m001 gamma(2)^(ReciprocalFibonacci/Salem) 1771149044061555 a007 Real Root Of 152*x^4+86*x^3-536*x^2+37*x+729 1771149045873152 a007 Real Root Of 148*x^4+161*x^3+521*x^2+969*x-480 1771149050087675 m001 (BesselI(1,2)-Si(Pi))/(-Tetranacci+ZetaP(2)) 1771149056582768 m001 (2^(1/2)+FellerTornier)/(-ZetaP(3)+ZetaP(4)) 1771149058762676 h001 (-7*exp(2/3)-6)/(-exp(3)+9) 1771149061224489 r005 Im(z^2+c),c=-11/50+33/35*I,n=3 1771149062088502 r002 34th iterates of z^2 + 1771149063366530 a007 Real Root Of 701*x^4+350*x^3-779*x^2+966*x-799 1771149065675984 l006 ln(1027/1226) 1771149067694306 a007 Real Root Of 353*x^4+380*x^3+996*x^2-817*x+111 1771149068705181 r008 a(0)=0,K{-n^6,-50-49*n+14*n^2+29*n^3} 1771149069335602 m001 (3^(1/2))^sin(1/5*Pi)*GlaisherKinkelin 1771149075142546 r009 Re(z^3+c),c=-23/102+8/25*I,n=6 1771149075239746 r005 Re(z^2+c),c=13/42+11/42*I,n=51 1771149086043536 a007 Real Root Of -369*x^4+226*x^3-787*x^2+778*x-114 1771149091386438 m001 (Pi+Psi(2,1/3))/LambertW(1)/polylog(4,1/2) 1771149102616753 m003 3*Cos[1/2+Sqrt[5]/2]+(3*Cot[1/2+Sqrt[5]/2])/4 1771149104043993 r005 Im(z^2+c),c=-19/56+12/43*I,n=31 1771149109937641 a007 Real Root Of -292*x^4+120*x^3+849*x^2-101*x+698 1771149111161321 k008 concat of cont frac of 1771149111332121 k008 concat of cont frac of 1771149113308910 m001 1/ln(Ei(1))^2*FeigenbaumB/GAMMA(1/12) 1771149115173490 a007 Real Root Of 769*x^4+744*x^3-868*x^2+748*x+614 1771149122914883 m001 (RenyiParking-TwinPrimes)/(Zeta(5)-Landau) 1771149127487515 a007 Real Root Of 272*x^4+180*x^3+210*x^2+925*x-697 1771149127761683 m001 (Pi-1-arctan(1/2))*GAMMA(11/12) 1771149135192771 k009 concat of cont frac of 1771149136627904 m001 (Rabbit-RenyiParking)/(BesselI(1,2)+Landau) 1771149140717062 m001 ln(Zeta(5))^2*PisotVijayaraghavan*Zeta(7)^2 1771149144254278 q001 3622/2045 1771149149509858 a007 Real Root Of -503*x^4-547*x^3+304*x^2-450*x+160 1771149161893017 r005 Im(z^2+c),c=-103/94+1/48*I,n=17 1771149162193240 p003 LerchPhi(1/8,6,363/185) 1771149167337853 m001 (CopelandErdos+DuboisRaymond)/(Si(Pi)+gamma) 1771149183728287 r005 Re(z^2+c),c=-2/29+50/59*I,n=10 1771149185748297 a007 Real Root Of 160*x^4-150*x^3-62*x^2+693*x-986 1771149185835694 r005 Re(z^2+c),c=-123/94+17/47*I,n=5 1771149186668522 r005 Re(z^2+c),c=-11/10+52/235*I,n=48 1771149189003542 m001 1/log(2+sqrt(3))/ln(GAMMA(2/3))/sqrt(2) 1771149191431521 s003 concatenated sequence A105414 1771149195672996 m001 (Cahen-Stephens)/(BesselI(0,2)+GAMMA(7/12)) 1771149199897127 b008 Tanh[1]/43 1771149202615305 m001 (Psi(2,1/3)-ln(2))/(-Grothendieck+Porter) 1771149208883525 m001 MasserGramain/(Weierstrass^GAMMA(2/3)) 1771149215018329 r005 Re(z^2+c),c=-9/82+20/47*I,n=27 1771149216123218 m006 (1/5*exp(Pi)-5/6)/(4*exp(2*Pi)+3/5) 1771149216677830 r005 Im(z^2+c),c=-5/18+15/59*I,n=6 1771149220664787 m001 (arctan(1/3)+BesselI(0,2))/(Porter+ZetaQ(4)) 1771149224229808 l006 ln(384/2257) 1771149225441103 r005 Im(z^2+c),c=-17/18+35/206*I,n=22 1771149228161071 a007 Real Root Of 409*x^4+390*x^3-623*x^2+277*x+587 1771149232466942 r009 Im(z^3+c),c=-29/90+1/8*I,n=3 1771149237453275 m001 (Cahen+Conway)/(GolombDickman+Weierstrass) 1771149240885209 m001 HardyLittlewoodC4*ZetaP(4)+MadelungNaCl 1771149241730018 m001 (Ei(1)+Zeta(1,2))/(Psi(2,1/3)+Shi(1)) 1771149244382214 h001 (2/11*exp(1)+7/11)/(7/9*exp(2)+7/11) 1771149251377527 k002 Champernowne real with 12*n^2+18*n-13 1771149254558937 m001 (MertensB2+Niven)^LambertW(1) 1771149258262879 m005 (1/2*3^(1/2)-1/12)/(1/10*2^(1/2)-7/12) 1771149260396535 r002 20th iterates of z^2 + 1771149260504878 a001 1/521*(1/2*5^(1/2)+1/2)^12*3^(23/24) 1771149260788382 m001 Catalan-cos(1)+HardHexagonsEntropy 1771149264732156 m001 (Otter+Sarnak)/(3^(1/3)+HardyLittlewoodC3) 1771149273121548 r005 Re(z^2+c),c=31/78+19/52*I,n=14 1771149274981122 a007 Real Root Of 375*x^4+629*x^3+127*x^2+289*x-82 1771149275049635 a007 Real Root Of -203*x^4+171*x^3+967*x^2-462*x-904 1771149278801549 a008 Real Root of x^3-x^2-247*x+1495 1771149279688438 g006 Psi(1,1/12)+2*Psi(1,1/4)-Psi(1,5/7) 1771149280861567 r005 Im(z^2+c),c=-21/62+19/32*I,n=29 1771149285106040 m001 Si(Pi)^GaussAGM+Paris 1771149293284041 a003 cos(Pi*15/73)+sin(Pi*17/40) 1771149298066216 a007 Real Root Of 320*x^4+601*x^3+710*x^2+629*x-923 1771149299796218 m001 (5^(1/2)-Zeta(5))/(-LaplaceLimit+Totient) 1771149301033354 m008 (1/2*Pi^4-3)/(4/5*Pi^3+1) 1771149309066397 q001 5255/2967 1771149312773850 m001 Rabbit^2/ln(Porter)^2/BesselJ(1,1)^2 1771149319641098 r005 Im(z^2+c),c=-15/16+22/87*I,n=48 1771149324273480 r002 36th iterates of z^2 + 1771149324383811 m001 Pi^(1/2)-gamma(3)*HardyLittlewoodC3 1771149324527099 r009 Re(z^3+c),c=-9/32+14/29*I,n=7 1771149342634771 r005 Re(z^2+c),c=27/74+15/62*I,n=44 1771149347728861 s002 sum(A220908[n]/(exp(n)+1),n=1..infinity) 1771149352000368 a001 322/2504730781961*3^(7/24) 1771149352864675 r005 Im(z^2+c),c=-9/10+35/232*I,n=53 1771149353164889 r005 Im(z^2+c),c=-43/48+9/40*I,n=24 1771149357238580 a001 2/28657*2178309^(41/59) 1771149365156841 m001 exp(Zeta(5))^2*Sierpinski^2*gamma^2 1771149365468150 r005 Im(z^2+c),c=-67/114+22/57*I,n=48 1771149366115882 m001 (FeigenbaumMu-exp(1))/(-KomornikLoreti+Mills) 1771149368573986 a007 Real Root Of -239*x^4-163*x^3-256*x^2-973*x+526 1771149369809331 r008 a(0)=0,K{-n^6,-48+29*n^3+15*n^2-52*n} 1771149370955451 r009 Re(z^3+c),c=-16/17+2/55*I,n=2 1771149373410564 m001 MadelungNaCl/(Zeta(1,2)^exp(-1/2*Pi)) 1771149373437137 m001 5^(1/2)/(sin(1)+BesselK(0,1)) 1771149373437137 m001 sqrt(5)/(sin(1)+BesselK(0,1)) 1771149378262491 a007 Real Root Of 10*x^4-669*x^3+578*x^2-780*x-14 1771149379318296 m001 Ei(1)-exp(-1/2*Pi)*Gompertz 1771149395731550 q001 6888/3889 1771149396849838 a007 Real Root Of 339*x^4+518*x^3-330*x^2-864*x-953 1771149399178156 m005 (1/3*2^(1/2)-1/12)/(9/10*Pi-7/11) 1771149399623280 a007 Real Root Of 562*x^4+930*x^3+356*x^2+747*x-157 1771149400681670 m001 (Psi(1,1/3)+BesselK(0,1))/(-Conway+Rabbit) 1771149400949887 m001 (cos(1/5*Pi)+ln(gamma))/(gamma(3)-Porter) 1771149420519928 m001 Zeta(7)^2*exp(TwinPrimes)^2/arctan(1/2)^2 1771149421083743 a003 sin(Pi*30/107)+sin(Pi*52/105) 1771149421303478 r009 Im(z^3+c),c=-17/36+19/35*I,n=60 1771149421469304 r002 6th iterates of z^2 + 1771149422139535 m001 (2^(1/3)-Psi(2,1/3))/(HardyLittlewoodC4+Trott) 1771149428325609 r005 Im(z^2+c),c=-47/122+36/55*I,n=8 1771149434224974 r005 Im(z^2+c),c=-7/8+13/93*I,n=40 1771149443168534 m001 Salem*(Zeta(3)+GaussKuzminWirsing) 1771149445127535 m001 (CopelandErdos+Gompertz)/(LambertW(1)-Zeta(5)) 1771149445694524 r005 Im(z^2+c),c=-6/25+12/47*I,n=11 1771149448211711 k008 concat of cont frac of 1771149448526953 a007 Real Root Of -610*x^4-611*x^3+744*x^2-537*x-677 1771149452446612 r002 3th iterates of z^2 + 1771149456340176 a007 Real Root Of -575*x^4-772*x^3+420*x^2-2*x+48 1771149467571804 a007 Real Root Of 903*x^4+959*x^3-669*x^2+729*x-168 1771149468423636 a007 Real Root Of 916*x^4-899*x^3-928*x^2-778*x+171 1771149468757692 r005 Im(z^2+c),c=9/23+32/47*I,n=6 1771149468908144 m005 (1/2*Zeta(3)-3)/(35/44+1/4*5^(1/2)) 1771149469841423 r002 5th iterates of z^2 + 1771149471318568 a007 Real Root Of -528*x^4-668*x^3+842*x^2+529*x-220 1771149472516507 r005 Im(z^2+c),c=-9/16+16/93*I,n=5 1771149475302002 r009 Re(z^3+c),c=-23/126+57/62*I,n=57 1771149477433899 m001 (cos(1/5*Pi)+gamma(2))/(Magata-Otter) 1771149478146012 m001 (FeigenbaumMu+MertensB1)/(5^(1/2)+gamma(1)) 1771149481313022 r009 Re(z^3+c),c=-17/90+10/59*I,n=11 1771149485664442 a007 Real Root Of 187*x^4+95*x^3+655*x^2-915*x+16 1771149485830246 r002 51th iterates of z^2 + 1771149486643854 r009 Re(z^3+c),c=-1/106+25/28*I,n=18 1771149489146544 r009 Re(z^3+c),c=-17/90+10/59*I,n=12 1771149490348664 r009 Re(z^3+c),c=-17/90+10/59*I,n=15 1771149490360141 r009 Re(z^3+c),c=-17/90+10/59*I,n=16 1771149490361581 r009 Re(z^3+c),c=-17/90+10/59*I,n=19 1771149490361598 r009 Re(z^3+c),c=-17/90+10/59*I,n=20 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=23 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=24 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=27 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=28 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=31 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=32 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=35 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=36 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=39 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=40 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=43 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=47 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=46 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=51 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=50 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=54 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=55 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=57 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=58 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=59 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=62 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=56 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=52 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=53 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=48 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=49 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=44 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=45 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=42 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=41 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=38 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=37 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=34 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=33 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=30 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=29 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=26 1771149490361599 r009 Re(z^3+c),c=-17/90+10/59*I,n=25 1771149490361600 r009 Re(z^3+c),c=-17/90+10/59*I,n=22 1771149490361600 r009 Re(z^3+c),c=-17/90+10/59*I,n=21 1771149490361650 r009 Re(z^3+c),c=-17/90+10/59*I,n=18 1771149490362087 r009 Re(z^3+c),c=-17/90+10/59*I,n=17 1771149490403811 r009 Re(z^3+c),c=-17/90+10/59*I,n=14 1771149490704091 r009 Re(z^3+c),c=-17/90+10/59*I,n=13 1771149494946033 r005 Re(z^2+c),c=-4/3+53/125*I,n=4 1771149495458262 r009 Re(z^3+c),c=-15/56+17/41*I,n=5 1771149499674790 r009 Im(z^3+c),c=-15/98+11/64*I,n=7 1771149509431632 a007 Real Root Of -385*x^4+116*x^3+911*x^2-501*x+688 1771149515135006 r005 Re(z^2+c),c=-43/66+39/46*I,n=3 1771149515701121 a007 Real Root Of 446*x^4+475*x^3-669*x^2-525*x-581 1771149520066787 r002 60th iterates of z^2 + 1771149522189426 l006 ln(1487/8740) 1771149523030707 m002 -Pi^3+(Pi^4*Log[Pi])/3+Sinh[Pi] 1771149525172851 r009 Re(z^3+c),c=-17/90+10/59*I,n=10 1771149536844172 r005 Re(z^2+c),c=-1/13+29/59*I,n=31 1771149539607876 r002 2th iterates of z^2 + 1771149541035384 a001 10749957122/1597*46368^(7/23) 1771149541085528 a001 370248451/1597*2971215073^(7/23) 1771149548275265 m005 (1/2*Zeta(3)-3/4)/(55/84+1/12*5^(1/2)) 1771149555605918 m001 Salem^2*exp(Champernowne)^2 1771149556420788 m001 FibonacciFactorial+Gompertz^Salem 1771149556689020 m005 (1/3*Zeta(3)-1/3)/(5*gamma+11/12) 1771149558166478 m001 (-OneNinth+StronglyCareFree)/(2^(1/2)-Zeta(5)) 1771149567918266 r005 Im(z^2+c),c=-9/17+15/47*I,n=53 1771149586006759 r002 57th iterates of z^2 + 1771149588545271 a007 Real Root Of 946*x^4-456*x^3-557*x^2-926*x-150 1771149589985849 r005 Re(z^2+c),c=1/28+18/31*I,n=39 1771149593977007 r009 Im(z^3+c),c=-25/46+9/40*I,n=5 1771149603889103 m001 (-MadelungNaCl+Thue)/(3^(1/2)-Grothendieck) 1771149607321701 a007 Real Root Of 580*x^4-280*x^3-699*x^2-136*x+47 1771149610995004 m005 (1/3*exp(1)-1/6)/(1/3*2^(1/2)-8/9) 1771149621099031 a007 Real Root Of -708*x^4-756*x^3+111*x^2-854*x+906 1771149623414132 k006 concat of cont frac of 1771149625921493 l006 ln(1103/6483) 1771149630909550 h001 (7/9*exp(1)+7/10)/(1/5*exp(2)+1/9) 1771149638143343 m005 (1/6*Catalan-1/2)/(16/15+2/5*5^(1/2)) 1771149642528818 m001 (-MadelungNaCl+Rabbit)/(Kac-LambertW(1)) 1771149646229188 a007 Real Root Of 46*x^4-649*x^3+502*x^2+754*x+243 1771149651040478 a003 cos(Pi*1/70)+cos(Pi*16/73) 1771149652800670 a007 Real Root Of -92*x^4+314*x^3+865*x^2+85*x+87 1771149653115505 m001 FeigenbaumMu^(sin(1/5*Pi)*LandauRamanujan) 1771149653597273 m004 2+2*Sech[Sqrt[5]*Pi]+5*Pi*Tanh[Sqrt[5]*Pi] 1771149653878816 m004 2+4/E^(Sqrt[5]*Pi)+5*Pi*Tanh[Sqrt[5]*Pi] 1771149654160360 m004 2+2*Csch[Sqrt[5]*Pi]+5*Pi*Tanh[Sqrt[5]*Pi] 1771149655661039 r005 Re(z^2+c),c=-29/22+95/123*I,n=2 1771149657386401 a003 sin(Pi*10/87)-sin(Pi*21/118) 1771149657690158 m005 (7/12+1/4*5^(1/2))/(1/10*3^(1/2)-9/11) 1771149659662830 a001 28143753123/4181*46368^(7/23) 1771149659712974 a001 969323029/4181*2971215073^(7/23) 1771149659819178 a001 36/341*39603^(15/31) 1771149661264307 m001 (3^(1/2)+ErdosBorwein)/(FeigenbaumC+ZetaQ(2)) 1771149670426824 r002 61th iterates of z^2 + 1771149673127792 a001 305/161*5778^(8/31) 1771149674620390 q001 1633/922 1771149675825793 m005 (1/2*2^(1/2)-1/12)/(-43/84+1/14*5^(1/2)) 1771149676970342 a001 73681302247/10946*46368^(7/23) 1771149677020486 a001 1268860318/5473*2971215073^(7/23) 1771149678564863 r005 Im(z^2+c),c=-37/30+1/65*I,n=49 1771149679495474 a001 192900153618/28657*46368^(7/23) 1771149679545618 a001 6643838879/28657*2971215073^(7/23) 1771149679863886 a001 505019158607/75025*46368^(7/23) 1771149679914030 a001 17393796001/75025*2971215073^(7/23) 1771149679917637 a001 1322157322203/196418*46368^(7/23) 1771149679925479 a001 3461452808002/514229*46368^(7/23) 1771149679926623 a001 9062201101803/1346269*46368^(7/23) 1771149679926790 a001 23725150497407/3524578*46368^(7/23) 1771149679926893 a001 14662949395604/2178309*46368^(7/23) 1771149679927330 a001 5600748293801/832040*46368^(7/23) 1771149679930325 a001 2139295485799/317811*46368^(7/23) 1771149679950856 a001 817138163596/121393*46368^(7/23) 1771149679967781 a001 22768774562/98209*2971215073^(7/23) 1771149679975623 a001 119218851371/514229*2971215073^(7/23) 1771149679976767 a001 312119004989/1346269*2971215073^(7/23) 1771149679976934 a001 408569081798/1762289*2971215073^(7/23) 1771149679976958 a001 2139295485799/9227465*2971215073^(7/23) 1771149679976962 a001 5600748293801/24157817*2971215073^(7/23) 1771149679976962 a001 7331474697802/31622993*2971215073^(7/23) 1771149679976962 a001 23725150497407/102334155*2971215073^(7/23) 1771149679976962 a001 9062201101803/39088169*2971215073^(7/23) 1771149679976964 a001 1730726404001/7465176*2971215073^(7/23) 1771149679976973 a001 1322157322203/5702887*2971215073^(7/23) 1771149679977037 a001 10745088481/46347*2971215073^(7/23) 1771149679977474 a001 96450076809/416020*2971215073^(7/23) 1771149679980469 a001 73681302247/317811*2971215073^(7/23) 1771149680001000 a001 28143753123/121393*2971215073^(7/23) 1771149680091577 a001 312119004989/46368*46368^(7/23) 1771149680141721 a001 5374978561/23184*2971215073^(7/23) 1771149681056092 a001 119218851371/17711*46368^(7/23) 1771149681106236 a001 4106118243/17711*2971215073^(7/23) 1771149683929354 r005 Re(z^2+c),c=7/114+32/55*I,n=36 1771149686081669 m001 GAMMA(19/24)/(BesselK(0,1)^PlouffeB) 1771149687666973 a001 45537549124/6765*46368^(7/23) 1771149687717117 a001 1568397607/6765*2971215073^(7/23) 1771149688177049 m001 (1-exp(Pi))/(GAMMA(11/12)+DuboisRaymond) 1771149693568198 r005 Re(z^2+c),c=37/118+5/19*I,n=48 1771149695381186 a007 Real Root Of 151*x^4+70*x^3-53*x^2-12*x-952 1771149700890595 m001 (BesselJ(0,1)+exp(1/exp(1)))/(CareFree+Landau) 1771149708335230 p001 sum(1/(405*n+37)/n/(128^n),n=1..infinity) 1771149712694761 a007 Real Root Of -178*x^4-324*x^3-36*x^2+194*x+408 1771149716419863 r005 Re(z^2+c),c=-5/118+16/29*I,n=63 1771149716691676 a007 Real Root Of -50*x^4-861*x^3+438*x^2+96*x+840 1771149727217748 a007 Real Root Of 462*x^4+174*x^3-676*x^2+485*x-600 1771149728874031 r009 Re(z^3+c),c=-17/90+10/59*I,n=9 1771149729889952 a003 cos(Pi*15/89)*cos(Pi*33/76) 1771149730029380 b008 JacobiNC[Sqrt[Pi],2/7] 1771149730589069 r005 Im(z^2+c),c=-16/17+7/38*I,n=9 1771149732978631 a001 17393796001/2584*46368^(7/23) 1771149733028775 a001 299537289/1292*2971215073^(7/23) 1771149738080141 r009 Re(z^3+c),c=-13/64+4/17*I,n=8 1771149743338664 a007 Real Root Of 939*x^4+961*x^3-963*x^2+26*x-834 1771149762465909 m001 (GAMMA(2/3)-gamma(3))^Ei(1) 1771149765004823 a001 305/161*2207^(9/31) 1771149767925574 m001 (-ZetaP(3)+ZetaQ(3))/(2^(1/3)-FellerTornier) 1771149773110444 m001 (5^(1/2)+ln(2))/(-BesselI(0,2)+Kac) 1771149790816069 p001 sum(1/(141*n+37)/n/(32^n),n=0..infinity) 1771149790923751 a007 Real Root Of 898*x^4+927*x^3+775*x^2-719*x+97 1771149797314939 m001 Psi(1,1/3)^MertensB1*QuadraticClass^MertensB1 1771149798619932 r005 Im(z^2+c),c=-97/102+7/41*I,n=46 1771149819988433 m009 (Psi(1,3/4)+3/5)/(2*Pi^2-2) 1771149826727875 a001 17/9*123^(20/43) 1771149832593605 r005 Re(z^2+c),c=-35/29+1/13*I,n=64 1771149833071397 m005 (1/2*Pi-9/11)/(1/10*Catalan+1/3) 1771149837836225 m005 (1/2*exp(1)-3/10)/(-13/18+1/18*5^(1/2)) 1771149839508905 m001 (Zeta(5)-GAMMA(5/6))/(KhinchinLevy-Niven) 1771149840454955 l006 ln(719/4226) 1771149842816587 a007 Real Root Of 451*x^4+184*x^3-862*x^2+578*x+312 1771149844552543 a007 Real Root Of -755*x^4-932*x^3+962*x^2+466*x+59 1771149851087287 m001 exp(Catalan)*Artin*Ei(1) 1771149866643917 a007 Real Root Of 939*x^4+949*x^3-501*x^2+804*x-972 1771149873616360 m005 (43/44+1/4*5^(1/2))/(7/11*5^(1/2)-5/9) 1771149874323992 m005 (1/4*Pi-3/4)/(2*Catalan+1/6) 1771149879057873 a001 13/521*2207^(14/55) 1771149889421761 m001 1/exp(FeigenbaumB)^2*FransenRobinson/sqrt(3)^2 1771149890464410 a007 Real Root Of 338*x^4-482*x^3+336*x^2-697*x-137 1771149891785886 a005 (1/cos(27/146*Pi))^273 1771149899193232 a007 Real Root Of -161*x^4-242*x^3-383*x^2-602*x+375 1771149899620206 r005 Re(z^2+c),c=-77/62+4/39*I,n=18 1771149902383849 m005 (1/3*Pi-3/7)/(6/7*Pi+4/5) 1771149903015572 p003 LerchPhi(1/10,2,539/221) 1771149904116100 r005 Im(z^2+c),c=-14/29+1/45*I,n=7 1771149905241895 m005 (2/5*gamma-3/5)/(Catalan-3) 1771149920072631 m001 (Pi^(1/2)+KhinchinHarmonic)/(sin(1)+ln(Pi)) 1771149922955697 m001 1/Ei(1)^2/exp(FeigenbaumAlpha)^2*GAMMA(7/24)^2 1771149923872156 a001 322*(1/2*5^(1/2)+1/2)^26*3^(9/14) 1771149930477557 b008 ArcCot[3*ArcSinh[Pi]] 1771149934905882 m001 (Backhouse+Rabbit)/(3^(1/3)-Ei(1,1)) 1771149939351439 r009 Re(z^3+c),c=-9/64+46/63*I,n=20 1771149942773981 r005 Im(z^2+c),c=-37/82+17/57*I,n=6 1771149943402942 m001 (-ArtinRank2+Cahen)/(Si(Pi)+Zeta(3)) 1771149944556446 a007 Real Root Of 491*x^4+791*x^3+123*x^2+709*x+433 1771149949256899 a007 Real Root Of 37*x^4-580*x^3+729*x^2+168*x+274 1771149968915316 a007 Real Root Of -739*x^4-804*x^3+263*x^2-620*x+882 1771149969292502 r005 Re(z^2+c),c=-23/114+1/9*I,n=12 1771149973172590 r005 Im(z^2+c),c=-29/34+13/101*I,n=29 1771149974545588 m001 Tribonacci*exp(CopelandErdos)/GAMMA(1/4)^2 1771149979274351 r005 Im(z^2+c),c=-13/16+12/77*I,n=37 1771149981732320 r002 33th iterates of z^2 + 1771149982136893 a007 Real Root Of 92*x^4+286*x^3+718*x^2+740*x-258 1771149984141116 m001 BesselI(0,2)^Mills/(BesselI(0,2)^Magata) 1771149985661026 q001 6176/3487 1771149989731644 m005 (1/3*Catalan-2/3)/(6/7*3^(1/2)+5/9) 1771149992507537 r005 Re(z^2+c),c=1/46+13/62*I,n=5 1771149995294167 m001 (Ei(1,1)-Champernowne)/(Landau-ZetaQ(4)) 1771149996311405 p001 sum((-1)^n/(597*n+56)/(10^n),n=0..infinity) 1771150008145957 r005 Im(z^2+c),c=-11/30+37/59*I,n=26 1771150010633801 m001 (1-Chi(1))/(-BesselJ(1,1)+FeigenbaumKappa) 1771150020533680 m001 sin(1/12*Pi)+GAMMA(5/6)*Totient 1771150022944252 m004 1+25*Pi+25*Pi*Sec[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 1771150023369432 p004 log(22811/3881) 1771150029288690 a003 cos(Pi*33/101)*cos(Pi*7/18) 1771150031746839 m005 (1/2*Pi-10/11)/(6*gamma+3/11) 1771150034553315 a007 Real Root Of -290*x^4-21*x^3+840*x^2+140*x+350 1771150043062874 h001 (1/12*exp(2)+3/5)/(11/12*exp(2)+1/11) 1771150043549417 a001 6643838879/987*46368^(7/23) 1771150043599561 a001 4868641/21*2971215073^(7/23) 1771150044094551 a001 521/18*(1/2*5^(1/2)+1/2)^5*18^(13/22) 1771150048437424 r005 Re(z^2+c),c=-3/17+14/55*I,n=6 1771150052013656 m001 sinh(1)^2*CareFree/ln(sqrt(3)) 1771150055552121 q001 1/5646049 1771150060678448 r009 Im(z^3+c),c=-11/60+59/64*I,n=10 1771150064961935 l006 ln(1054/6195) 1771150067532469 a007 Real Root Of -371*x^4-485*x^3+411*x^2-219*x-721 1771150067566750 a007 Real Root Of -816*x^4-915*x^3+557*x^2-442*x+416 1771150072907879 m001 BesselI(1,1)-Gompertz^FeigenbaumC 1771150075247046 m001 Ei(1)/(LandauRamanujan2nd-Weierstrass) 1771150076209181 m005 (1/2*exp(1)+4/11)/(3/4*Catalan+2/7) 1771150081506497 m005 (1/3*3^(1/2)+3/7)/(6/7*3^(1/2)-11/12) 1771150082718455 a007 Real Root Of -847*x^4-313*x^3-886*x^2+904*x+187 1771150084516521 s002 sum(A222216[n]/(n*pi^n+1),n=1..infinity) 1771150084561724 r005 Im(z^2+c),c=-19/14+5/148*I,n=6 1771150087418424 r002 7th iterates of z^2 + 1771150097465886 q001 4543/2565 1771150099703776 r005 Im(z^2+c),c=-35/74+4/13*I,n=46 1771150100111488 r002 34th iterates of z^2 + 1771150101931849 m001 BesselI(0,2)^Sarnak/(MertensB2^Sarnak) 1771150102384888 a007 Real Root Of -638*x^4+476*x^3-61*x^2+622*x-11 1771150102915083 r005 Im(z^2+c),c=-37/110+16/57*I,n=12 1771150103945104 a007 Real Root Of 481*x^4+803*x^3-363*x^2-149*x+603 1771150109945607 a001 199/5*8^(28/39) 1771150110759984 a007 Real Root Of 517*x^4-251*x^3-745*x^2-789*x+164 1771150111543044 a007 Real Root Of -485*x^4-249*x^3+905*x^2+58*x+653 1771150118482686 a007 Real Root Of 424*x^4+206*x^3-354*x^2+999*x-148 1771150119491376 m005 (1/3*gamma+1/10)/(1/9*Pi-2) 1771150121528964 a007 Real Root Of -42*x^4-794*x^3-929*x^2-740*x-134 1771150128337207 r005 Re(z^2+c),c=-91/106+11/60*I,n=6 1771150133272001 a007 Real Root Of -601*x^4+633*x^3-307*x^2+679*x+134 1771150133601327 a007 Real Root Of 364*x^4+164*x^3-946*x^2+69*x+419 1771150136241267 a007 Real Root Of 850*x^4+937*x^3-330*x^2+912*x-508 1771150141036191 m001 BesselJ(1,1)^Cahen/(BesselJ(1,1)^Totient) 1771150143761598 r005 Re(z^2+c),c=-21/122+36/59*I,n=24 1771150148943955 a001 7/121393*75025^(18/59) 1771150153436167 a007 Real Root Of 156*x^4+323*x^3+434*x^2+909*x+508 1771150156216300 a007 Real Root Of 191*x^4-457*x^3-836*x^2+965*x-87 1771150156423030 l006 ln(7478/8927) 1771150157495701 a001 341/36*55^(19/26) 1771150166905987 m001 (Psi(2,1/3)+TwinPrimes)/HardyLittlewoodC4 1771150174248023 m001 (GaussAGM-Zeta(1/2)*Khinchin)/Khinchin 1771150175278676 a003 cos(Pi*12/91)-sin(Pi*23/87) 1771150176663746 s002 sum(A112126[n]/((2^n+1)/n),n=1..infinity) 1771150177677208 m005 (1/3*Pi-1/9)/(8/11*2^(1/2)-1/2) 1771150178422150 s001 sum(exp(-Pi/2)^n*A126728[n],n=1..infinity) 1771150181175391 l006 ln(1389/8164) 1771150183040613 m001 Weierstrass^(ZetaP(2)/DuboisRaymond) 1771150188123120 a007 Real Root Of -712*x^4-668*x^3-344*x^2+498*x-73 1771150190037630 a007 Real Root Of -150*x^4+33*x^3+10*x^2-878*x+73 1771150195006961 a001 521/2*14930352^(20/21) 1771150195656740 a001 89/3*18^(34/55) 1771150207000574 m004 (-6*Csc[Sqrt[5]*Pi])/5+3*Csch[Sqrt[5]*Pi] 1771150211223727 m004 -6/E^(Sqrt[5]*Pi)+(6*Csc[Sqrt[5]*Pi])/5 1771150212329196 m001 (ln(2)-ln(3))/(gamma(2)-BesselI(0,2)) 1771150212813077 m001 (-Grothendieck+Porter)/(gamma+Zeta(3)) 1771150213735877 r009 Re(z^3+c),c=-9/98+38/45*I,n=52 1771150215446873 m004 (-6*Csc[Sqrt[5]*Pi])/5+3*Sech[Sqrt[5]*Pi] 1771150221231114 k007 concat of cont frac of 1771150233100072 m001 (2^(1/2)-Zeta(3))/(-arctan(1/2)+PlouffeB) 1771150233389479 a007 Real Root Of 476*x^4+485*x^3-916*x^2-214*x+505 1771150236090102 r002 3th iterates of z^2 + 1771150247565784 m001 KomornikLoreti/(FransenRobinson^ZetaQ(3)) 1771150248614511 h005 exp(sin(Pi*7/60)/sin(Pi*11/51)) 1771150249283988 m001 (Zeta(3)+Zeta(1/2))/(2^(1/3)-exp(1)) 1771150253263093 a007 Real Root Of -366*x^4-433*x^3-506*x^2+951*x+17 1771150254383537 k002 Champernowne real with 25/2*n^2+33/2*n-12 1771150261123542 m001 (-CareFree+ZetaP(2))/(2^(1/2)-gamma(2)) 1771150273997774 a001 843/610*514229^(1/53) 1771150276383242 m001 Sierpinski^2/Kolakoski/exp(GAMMA(7/24))^2 1771150292473200 a007 Real Root Of -491*x^4-903*x^3-303*x^2-786*x-627 1771150292700078 h001 (1/2*exp(2)+2/7)/(1/4*exp(2)+2/5) 1771150293275669 h001 (1/12*exp(1)+1/6)/(4/7*exp(1)+2/3) 1771150294477157 r005 Im(z^2+c),c=-1/30+44/61*I,n=42 1771150294616200 r005 Re(z^2+c),c=-1/5+29/45*I,n=24 1771150297987985 r009 Re(z^3+c),c=-1/74+17/24*I,n=13 1771150304646822 m008 (3/4*Pi^2-3/5)/(2/5*Pi^6-1/2) 1771150304812199 s002 sum(A116876[n]/((2*n+1)!),n=1..infinity) 1771150305307434 m001 (Ei(1,1)-Gompertz)/(MertensB1+Riemann2ndZero) 1771150305717697 m005 (1/3*3^(1/2)-3/4)/(4/7*2^(1/2)+1/6) 1771150309983708 m005 (1/3*3^(1/2)+3/5)/(1/3*gamma-6/7) 1771150310213128 a007 Real Root Of -106*x^4+692*x^3+986*x^2-796*x+385 1771150310779526 m004 -3/2-25*Sqrt[5]*Pi+3*Csch[Sqrt[5]*Pi] 1771150310821757 m004 -3/2+6/E^(Sqrt[5]*Pi)-25*Sqrt[5]*Pi 1771150310863989 m004 -3/2-25*Sqrt[5]*Pi+3*Sech[Sqrt[5]*Pi] 1771150312833313 m005 (1/3*gamma+2/7)/(1/4*Zeta(3)-3) 1771150313334352 m001 (MertensB1-Robbin)/(FeigenbaumB-GaussAGM) 1771150314384109 r005 Re(z^2+c),c=-15/38+19/33*I,n=37 1771150315053576 r005 Re(z^2+c),c=-5/24+1/60*I,n=14 1771150315544645 r002 42th iterates of z^2 + 1771150317648155 k006 concat of cont frac of 1771150318413833 a007 Real Root Of 33*x^4-363*x^3-797*x^2+138*x+403 1771150321494917 a007 Real Root Of 641*x^4+967*x^3-344*x^2+83*x+291 1771150330070084 l006 ln(6451/7701) 1771150334753499 q001 291/1643 1771150343056039 a007 Real Root Of 204*x^4+157*x^3-452*x^2-460*x-532 1771150347420951 a007 Real Root Of 37*x^4+701*x^3+774*x^2-619*x+4 1771150355881662 a007 Real Root Of -547*x^4-932*x^3+166*x^2-193*x-658 1771150356257424 r005 Im(z^2+c),c=-55/54+7/29*I,n=60 1771150356912377 a007 Real Root Of 787*x^4-224*x^3-386*x^2-471*x+96 1771150357725777 m002 (16*Tanh[Pi])/9 1771150362495737 a001 72/161*18^(10/21) 1771150366339920 m001 (-ErdosBorwein+Trott)/(Zeta(3)-ln(2)/ln(10)) 1771150370785466 a007 Real Root Of -10*x^4-117*x^3-342*x^2+180*x+840 1771150376323982 a007 Real Root Of -346*x^4-224*x^3+791*x^2-293*x-840 1771150382356362 m001 MertensB1*ArtinRank2*ln(GAMMA(1/3))^2 1771150393807638 m001 (ln(gamma)-sin(1))^(3^(1/2)) 1771150393807638 m001 (log(gamma)-sin(1))^sqrt(3) 1771150394073565 m001 (Grothendieck-ZetaQ(2))/(BesselK(1,1)+Artin) 1771150396213327 m008 (4*Pi^6-3/4)/(1/2*Pi+3/5) 1771150398669191 r005 Im(z^2+c),c=-73/82+11/48*I,n=48 1771150405413573 r005 Im(z^2+c),c=-111/106+12/59*I,n=55 1771150417757984 a001 514229/199*322^(1/3) 1771150420522630 a003 cos(Pi*2/103)+cos(Pi*7/32) 1771150420713260 g002 -ln(2)-1/2*Pi+Psi(7/10)-Psi(5/9) 1771150421299426 r005 Re(z^2+c),c=-95/64+15/38*I,n=3 1771150422280741 a007 Real Root Of 640*x^4+800*x^3-567*x^2+531*x+866 1771150422434415 m001 (ArtinRank2+GaussAGM)^Totient 1771150433162477 r005 Im(z^2+c),c=-79/86+8/47*I,n=10 1771150440046271 r005 Im(z^2+c),c=-5/14+15/53*I,n=25 1771150448533286 a003 cos(Pi*11/53)+sin(Pi*31/72) 1771150451428798 r005 Re(z^2+c),c=2/13+18/47*I,n=12 1771150470905850 a003 cos(Pi*14/101)-sin(Pi*19/73) 1771150476691848 a001 21/29*322^(20/21) 1771150477045315 h001 (1/7*exp(2)+5/6)/(1/8*exp(2)+1/7) 1771150481110547 r009 Re(z^3+c),c=-41/94+17/44*I,n=3 1771150486648365 q001 7097/4007 1771150490813291 m001 Mills/BesselK(1,1)/GAMMA(3/4) 1771150493560412 a007 Real Root Of 851*x^4+735*x^3-972*x^2+911*x+372 1771150497827244 m001 KhinchinHarmonic+Trott2nd-ZetaQ(4) 1771150500242339 r005 Re(z^2+c),c=7/32+11/63*I,n=16 1771150501932434 r005 Re(z^2+c),c=-33/26+18/109*I,n=6 1771150507523683 s002 sum(A038258[n]/(n!^3),n=1..infinity) 1771150507925138 r005 Re(z^2+c),c=-5/6+17/228*I,n=4 1771150511533526 a001 13/521*843^(16/55) 1771150516621697 r005 Im(z^2+c),c=-101/106+6/35*I,n=60 1771150528888525 m001 (-Artin+HeathBrownMoroz)/(Chi(1)+BesselI(0,1)) 1771150532374919 s002 sum(A289884[n]/(64^n-1),n=1..infinity) 1771150532514918 r005 Re(z^2+c),c=-5/24+1/60*I,n=16 1771150535177342 r009 Im(z^3+c),c=-15/98+11/64*I,n=8 1771150535421622 m004 -5+Sech[Sqrt[5]*Pi]+5*Tanh[Sqrt[5]*Pi] 1771150536970498 m001 (-Riemann3rdZero+Thue)/(BesselI(0,2)-Catalan) 1771150543574168 r005 Re(z^2+c),c=2/13+30/53*I,n=40 1771150546814059 l006 ln(335/1969) 1771150546941364 r002 46th iterates of z^2 + 1771150550049518 m001 1/Zeta(5)^2*ln(GAMMA(17/24))/log(2+sqrt(3)) 1771150552390558 r005 Im(z^2+c),c=-11/36+3/11*I,n=12 1771150553456458 r005 Re(z^2+c),c=-5/24+1/60*I,n=18 1771150553560462 m001 (ln(2)+exp(-1/2*Pi))/(polylog(4,1/2)-ZetaQ(3)) 1771150555229462 r005 Re(z^2+c),c=-5/24+1/60*I,n=20 1771150555331981 r005 Re(z^2+c),c=-5/24+1/60*I,n=23 1771150555334841 r005 Re(z^2+c),c=-5/24+1/60*I,n=25 1771150555335850 r005 Re(z^2+c),c=-5/24+1/60*I,n=27 1771150555336056 r005 Re(z^2+c),c=-5/24+1/60*I,n=29 1771150555336091 r005 Re(z^2+c),c=-5/24+1/60*I,n=31 1771150555336097 r005 Re(z^2+c),c=-5/24+1/60*I,n=33 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=35 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=37 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=39 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=41 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=43 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=45 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=47 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=49 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=51 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=53 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=55 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=57 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=59 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=61 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=63 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=64 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=62 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=60 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=58 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=56 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=54 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=52 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=50 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=48 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=46 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=44 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=42 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=40 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=38 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=36 1771150555336098 r005 Re(z^2+c),c=-5/24+1/60*I,n=34 1771150555336101 r005 Re(z^2+c),c=-5/24+1/60*I,n=32 1771150555336115 r005 Re(z^2+c),c=-5/24+1/60*I,n=30 1771150555336202 r005 Re(z^2+c),c=-5/24+1/60*I,n=28 1771150555336672 r005 Re(z^2+c),c=-5/24+1/60*I,n=26 1771150555338605 r005 Re(z^2+c),c=-5/24+1/60*I,n=24 1771150555339347 r005 Re(z^2+c),c=-5/24+1/60*I,n=22 1771150555350489 r005 Re(z^2+c),c=-5/24+1/60*I,n=21 1771150555821136 r005 Re(z^2+c),c=-5/24+1/60*I,n=19 1771150562050722 r005 Re(z^2+c),c=-5/24+1/60*I,n=17 1771150569475070 l006 ln(5424/6475) 1771150573072094 m001 Artin^(Pi^(1/2))*Artin^FeigenbaumDelta 1771150573072094 m001 Artin^FeigenbaumDelta*Artin^sqrt(Pi) 1771150573228808 a001 843/8*17711^(41/54) 1771150585135548 r005 Re(z^2+c),c=7/46+10/17*I,n=12 1771150592216582 q001 4187/2364 1771150592870656 r009 Im(z^3+c),c=-33/82+2/27*I,n=19 1771150595732495 r005 Re(z^2+c),c=-103/122+11/54*I,n=22 1771150597824199 a007 Real Root Of -330*x^4-378*x^3-151*x^2-787*x+227 1771150605839272 r005 Im(z^2+c),c=-15/14+39/184*I,n=33 1771150616965973 a007 Real Root Of -499*x^4-52*x^3+936*x^2-418*x+945 1771150617662109 a007 Real Root Of 157*x^4-217*x^3-538*x^2+293*x-544 1771150617967843 a007 Real Root Of 778*x^4+945*x^3-410*x^2+750*x+209 1771150622000749 m005 (1/2*Pi+11/12)/(7/8*3^(1/2)-1/9) 1771150622558902 r005 Re(z^2+c),c=33/98+1/13*I,n=44 1771150623431972 m001 Pi^(1/2)/(MadelungNaCl^HeathBrownMoroz) 1771150628459029 r005 Im(z^2+c),c=-31/54+15/44*I,n=48 1771150630311608 r005 Re(z^2+c),c=-5/24+1/60*I,n=15 1771150635026865 m001 gamma(2)/(Psi(2,1/3)+HardyLittlewoodC5) 1771150636431189 g007 Psi(2,3/7)+Psi(2,2/5)+Psi(2,1/4)-Psi(2,7/12) 1771150642360880 a007 Real Root Of 607*x^4+998*x^3-291*x^2+33*x+543 1771150642747360 r005 Re(z^2+c),c=-1/10+7/16*I,n=14 1771150659134995 m001 (Khinchin+ZetaQ(3))/(Ei(1)-Artin) 1771150659785076 m006 (Pi^2-2/5)/(exp(2*Pi)-5/6) 1771150660426262 a007 Real Root Of -163*x^4+240*x^3+651*x^2-558*x-93 1771150662345015 m001 (ErdosBorwein-Trott)/(ln(2)+exp(-1/2*Pi)) 1771150663941710 r005 Re(z^2+c),c=-13/66+13/17*I,n=40 1771150665297482 h001 (1/7*exp(1)+11/12)/(8/9*exp(2)+4/5) 1771150667273357 m001 exp(Kolakoski)^2/GlaisherKinkelin*arctan(1/2) 1771150668423519 m001 (ln(2)-Artin)/(MinimumGamma+PolyaRandomWalk3D) 1771150669966058 m001 (Ei(1)+2*Pi/GAMMA(5/6))/(FellerTornier+Paris) 1771150672210095 r002 28th iterates of z^2 + 1771150673181663 r009 Re(z^3+c),c=-61/106+17/23*I,n=2 1771150673665593 r009 Im(z^3+c),c=-15/98+11/64*I,n=11 1771150674046146 r005 Re(z^2+c),c=-113/118+9/59*I,n=30 1771150674551561 m001 1/ln(Trott)^2*GAMMA(1/4) 1771150674622330 r009 Im(z^3+c),c=-15/98+11/64*I,n=14 1771150674624370 r009 Im(z^3+c),c=-15/98+11/64*I,n=15 1771150674624698 r009 Im(z^3+c),c=-15/98+11/64*I,n=18 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=21 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=22 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=25 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=28 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=29 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=32 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=35 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=36 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=39 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=42 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=43 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=46 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=47 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=49 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=50 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=51 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=52 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=53 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=54 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=48 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=45 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=44 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=40 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=41 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=38 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=37 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=33 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=34 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=31 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=30 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=27 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=26 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=24 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=23 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=20 1771150674624700 r009 Im(z^3+c),c=-15/98+11/64*I,n=19 1771150674624702 r009 Im(z^3+c),c=-15/98+11/64*I,n=17 1771150674624778 r009 Im(z^3+c),c=-15/98+11/64*I,n=16 1771150674644926 r009 Im(z^3+c),c=-15/98+11/64*I,n=13 1771150674667458 r009 Im(z^3+c),c=-15/98+11/64*I,n=12 1771150675344226 m001 FeigenbaumD^2*Magata^2*ln(cos(Pi/5)) 1771150675491305 r009 Im(z^3+c),c=-15/98+11/64*I,n=10 1771150682471790 m001 1/ln(Tribonacci)*LandauRamanujan/sin(1)^2 1771150682939568 h001 (9/10*exp(1)+5/11)/(1/8*exp(2)+5/7) 1771150686657910 a007 Real Root Of -31*x^4-513*x^3+657*x^2+353*x+486 1771150692239869 a007 Real Root Of -37*x^4-604*x^3+937*x^2+531*x+639 1771150695474410 a007 Real Root Of 360*x^4+308*x^3+643*x^2-289*x-70 1771150712122834 r009 Im(z^3+c),c=-15/98+11/64*I,n=9 1771150717452824 a007 Real Root Of 107*x^4-514*x^3-777*x^2+772*x-104 1771150722341097 r005 Re(z^2+c),c=13/122+7/12*I,n=44 1771150722776536 a001 89/3*39603^(32/53) 1771150729335494 q001 5464/3085 1771150735412466 r005 Im(z^2+c),c=-21/106+13/53*I,n=17 1771150737780667 p001 sum((-1)^n/(367*n+93)/n/(12^n),n=1..infinity) 1771150739484984 m001 (gamma(3)-Grothendieck)/(Lehmer+ThueMorse) 1771150740191104 a007 Real Root Of -465*x^4-983*x^3-55*x^2+56*x-614 1771150746590210 s002 sum(A005327[n]/((pi^n+1)/n),n=1..infinity) 1771150766736083 m001 BesselI(1,1)^Zeta(3)*BesselI(1,1)^FeigenbaumC 1771150766831021 g002 Psi(3/10)-Psi(5/12)-2*Psi(7/11) 1771150773280011 v002 sum(1/(2^n*(3/2*n^2+51/2*n-24)),n=1..infinity) 1771150789744094 r009 Re(z^3+c),c=-8/25+18/29*I,n=63 1771150792340788 a007 Real Root Of -247*x^4-458*x^3+77*x^2+347*x+259 1771150797796722 l004 Si(247/100) 1771150799203289 m001 ln(TreeGrowth2nd)^2/GolombDickman*GAMMA(13/24) 1771150802850177 m001 (FeigenbaumMu-Sarnak)/(Zeta(1,-1)+Pi^(1/2)) 1771150806964162 m001 exp(Magata)*ArtinRank2*sin(1) 1771150809907184 a007 Real Root Of 727*x^4+549*x^3-715*x^2+516*x-947 1771150814311122 k008 concat of cont frac of 1771150814343152 m001 ReciprocalFibonacci-Salem-ThueMorse 1771150814503415 q001 6741/3806 1771150815196836 a003 cos(Pi*16/103)+sin(Pi*8/23) 1771150818656136 r005 Re(z^2+c),c=11/102+18/49*I,n=35 1771150820417567 m001 GAMMA(13/24)+StolarskyHarborth^cos(1/5*Pi) 1771150823772350 a007 Real Root Of -32*x^4+640*x^3-818*x^2-44*x-597 1771150826548525 r005 Re(z^2+c),c=-23/114+3/28*I,n=6 1771150833116601 m001 (polylog(4,1/2)+GolombDickman)/(Mills-Robbin) 1771150833605405 m005 (1/3*Zeta(3)-1/2)/(2/11*Catalan-8/11) 1771150835776300 a003 cos(Pi*2/91)+cos(Pi*26/119) 1771150840042359 a007 Real Root Of -576*x^4-754*x^3+746*x^2+414*x-128 1771150856075405 m004 2+5*Pi+5*Sqrt[5]*Pi+5*E^(Sqrt[5]*Pi)*Pi 1771150857069186 p003 LerchPhi(1/5,6,347/120) 1771150858317110 r005 Re(z^2+c),c=11/34+13/48*I,n=38 1771150859158423 l006 ln(1626/9557) 1771150867191943 s002 sum(A260752[n]/(n!^3),n=1..infinity) 1771150870243050 s002 sum(A005327[n]/((pi^n-1)/n),n=1..infinity) 1771150877863478 a008 Real Root of (-5+3*x-5*x^2+2*x^3+2*x^4-x^5) 1771150878485105 r002 44th iterates of z^2 + 1771150889909706 m005 (1/2*exp(1)+4/11)/(9/11*3^(1/2)-4/9) 1771150895120855 m001 (3^(1/3))^gamma/ArtinRank2 1771150899599147 m001 HeathBrownMoroz/gamma*StronglyCareFree 1771150910080860 a007 Real Root Of -844*x^4-782*x^3+683*x^2-607*x+743 1771150916105601 r005 Re(z^2+c),c=31/94+11/40*I,n=64 1771150917275445 a007 Real Root Of 527*x^4+970*x^3+514*x^2+699*x-171 1771150920714896 l006 ln(4397/5249) 1771150924892078 a003 cos(Pi*11/120)+cos(Pi*22/111) 1771150929641293 m001 (BesselI(0,1)*Pi^(1/2)-ZetaQ(4))/BesselI(0,1) 1771150933723534 a007 Real Root Of -749*x^4-965*x^3+387*x^2-249*x+354 1771150937230375 m001 GAMMA(1/4)^GolombDickman-arctan(1/2) 1771150939666999 a007 Real Root Of 790*x^4+850*x^3-574*x^2+464*x-429 1771150940208262 l006 ln(1291/7588) 1771150942250688 a007 Real Root Of 54*x^4+941*x^3-221*x^2+958*x+612 1771150949164243 m004 -2+(115*Pi)/2-ProductLog[Sqrt[5]*Pi] 1771150950974035 g006 -Psi(1,1/12)-Psi(1,3/11)-Psi(1,2/7)-Psi(1,3/5) 1771150952579723 m001 (Robbin-Tetranacci)/(Bloch-KhinchinLevy) 1771150954492920 a007 Real Root Of 76*x^4-533*x^3-929*x^2+769*x+567 1771150972457543 m001 1/ArtinRank2^2/Backhouse^2*ln(sin(Pi/12))^2 1771150976368571 m001 LambertW(1)+ln(2^(1/2)+1)+FellerTornier 1771150977608032 a007 Real Root Of -239*x^4+41*x^3+628*x^2-517*x-306 1771150979985418 m005 (1/3*3^(1/2)-3/4)/(2*Catalan-6/7) 1771150987135451 a007 Real Root Of -55*x^4+242*x^3+621*x^2+497*x+818 1771151002668283 a003 cos(Pi*25/109)-cos(Pi*29/95) 1771151015188000 m001 1/(2^(1/3))^2*Bloch^2*ln(log(1+sqrt(2))) 1771151023251337 r005 Im(z^2+c),c=-31/54+19/61*I,n=37 1771151023970185 a001 89/3*2207^(44/53) 1771151027351967 a005 (1/sin(55/122*Pi))^1777 1771151041637046 r002 3th iterates of z^2 + 1771151051322111 k008 concat of cont frac of 1771151051552504 a007 Real Root Of 481*x^4+633*x^3-536*x^2-275*x-22 1771151051808842 m001 1/Bloch^2/ln(GaussAGM(1,1/sqrt(2)))^2*Trott 1771151052362481 m001 Psi(1,1/3)+exp(Pi)^MasserGramain 1771151071583300 m005 (1/2*5^(1/2)+3/4)/(2/3*3^(1/2)-1/10) 1771151075842136 a007 Real Root Of 311*x^4-829*x^3+207*x^2-848*x+148 1771151078060796 l006 ln(956/5619) 1771151097049196 r005 Im(z^2+c),c=-9/58+11/47*I,n=15 1771151097301774 a001 144/3571*843^(28/31) 1771151097343867 m001 (Ei(1)-ArtinRank2)/(MertensB1+PrimesInBinary) 1771151106388787 m001 (OneNinth-Si(Pi)*MertensB3)/MertensB3 1771151109678723 r002 61th iterates of z^2 + 1771151109882494 r002 56th iterates of z^2 + 1771151111111115 k008 concat of cont frac of 1771151111114381 k009 concat of cont frac of 1771151111211251 k008 concat of cont frac of 1771151111913112 k008 concat of cont frac of 1771151112111413 k009 concat of cont frac of 1771151112219161 k007 concat of cont frac of 1771151114322241 k007 concat of cont frac of 1771151114572464 k007 concat of cont frac of 1771151115123141 k006 concat of cont frac of 1771151115244132 k006 concat of cont frac of 1771151115441069 r009 Re(z^3+c),c=-13/82+41/46*I,n=11 1771151118247265 a007 Real Root Of -47*x^4-781*x^3+896*x^2-252*x+273 1771151118666893 a007 Real Root Of 499*x^4+936*x^3+307*x^2+26*x-627 1771151119711131 k008 concat of cont frac of 1771151121431154 k006 concat of cont frac of 1771151121613282 k008 concat of cont frac of 1771151121771217 k008 concat of cont frac of 1771151121941121 k006 concat of cont frac of 1771151122360967 r005 Im(z^2+c),c=5/16+21/50*I,n=18 1771151123301271 k007 concat of cont frac of 1771151127196544 m001 (-PolyaRandomWalk3D+ZetaP(3))/(Catalan-Si(Pi)) 1771151132437645 b008 3/28+Sinh[Glaisher] 1771151138411112 k009 concat of cont frac of 1771151138987922 a007 Real Root Of 848*x^4+961*x^3-911*x^2+198*x+203 1771151139372718 s002 sum(A199846[n]/(exp(n)-1),n=1..infinity) 1771151140336020 a003 cos(Pi*13/120)+cos(Pi*7/37) 1771151143592088 m001 (Magata+Stephens)/(FeigenbaumB-Shi(1)) 1771151145232615 a001 3/2*521^(45/59) 1771151148050522 a007 Real Root Of -927*x^4-818*x^3+797*x^2-720*x+802 1771151148828348 a001 1/39603*76^(53/54) 1771151151211211 k006 concat of cont frac of 1771151152231421 k007 concat of cont frac of 1771151158281902 r002 17th iterates of z^2 + 1771151159224677 p001 sum(1/(585*n+569)/(64^n),n=0..infinity) 1771151162891525 k006 concat of cont frac of 1771151164467238 m001 ln(3)*(cos(1/12*Pi)+MasserGramain) 1771151165999403 l006 ln(7767/9272) 1771151166349461 k008 concat of cont frac of 1771151167337189 r009 Re(z^3+c),c=-1/90+26/31*I,n=15 1771151167513645 p003 LerchPhi(1/6,3,59/71) 1771151171207988 m005 (23/20+1/4*5^(1/2))/(2/7*gamma+4/5) 1771151171222723 k008 concat of cont frac of 1771151171720205 m005 (-1/3+1/6*5^(1/2))/(7/11*Pi+2/9) 1771151178918169 q001 1277/721 1771151181124117 k008 concat of cont frac of 1771151186905212 m005 (1/2*Pi-5/7)/(-68/99+1/11*5^(1/2)) 1771151189100205 m001 ln(FeigenbaumC)*GolombDickman/Zeta(1/2)^2 1771151190152332 m001 ln(MinimumGamma)/FransenRobinson^2/exp(1) 1771151190912794 l006 ln(1577/9269) 1771151201173537 k007 concat of cont frac of 1771151209070900 m001 ((2^(1/3))+BesselI(1,2))/ln(5) 1771151209070900 m001 (2^(1/3)+BesselI(1,2))/ln(5) 1771151210526086 a007 Real Root Of -685*x^4-245*x^3+566*x^2+617*x-125 1771151211112091 k008 concat of cont frac of 1771151211117218 k006 concat of cont frac of 1771151211220120 k007 concat of cont frac of 1771151211222711 k007 concat of cont frac of 1771151211321210 k006 concat of cont frac of 1771151211415211 k008 concat of cont frac of 1771151213222211 k009 concat of cont frac of 1771151213950101 r002 27th iterates of z^2 + 1771151219959716 m001 (Si(Pi)+gamma)/(Rabbit+Robbin) 1771151221111231 k009 concat of cont frac of 1771151221120146 k008 concat of cont frac of 1771151221703816 m001 (BesselK(1,1)-exp(Pi))/(-DuboisRaymond+Porter) 1771151222111421 k008 concat of cont frac of 1771151229477524 a007 Real Root Of -444*x^4-248*x^3+761*x^2+31*x+659 1771151232116531 k008 concat of cont frac of 1771151232131172 k008 concat of cont frac of 1771151244159248 a007 Real Root Of -53*x^4-936*x^3+60*x^2+239*x+469 1771151245162383 m001 Landau/(GAMMA(17/24)+Grothendieck) 1771151245725551 a001 233/199*24476^(20/21) 1771151247427847 a001 89/521*439204^(8/9) 1771151247435988 a001 89/521*7881196^(8/11) 1771151247436008 a001 89/521*141422324^(8/13) 1771151247436008 a001 89/521*2537720636^(8/15) 1771151247436008 a001 89/521*45537549124^(8/17) 1771151247436008 a001 89/521*14662949395604^(8/21) 1771151247436008 a001 89/521*(1/2+1/2*5^(1/2))^24 1771151247436008 a001 89/521*192900153618^(4/9) 1771151247436008 a001 89/521*73681302247^(6/13) 1771151247436008 a001 89/521*10749957122^(1/2) 1771151247436008 a001 89/521*4106118243^(12/23) 1771151247436008 a001 89/521*1568397607^(6/11) 1771151247436008 a001 89/521*599074578^(4/7) 1771151247436008 a001 89/521*228826127^(3/5) 1771151247436008 a001 89/521*87403803^(12/19) 1771151247436009 a001 89/521*33385282^(2/3) 1771151247436016 a001 89/521*12752043^(12/17) 1771151247436064 a001 89/521*4870847^(3/4) 1771151247436418 a001 89/521*1860498^(4/5) 1771151247439014 a001 89/521*710647^(6/7) 1771151247458197 a001 89/521*271443^(12/13) 1771151248119740 r005 Re(z^2+c),c=1/52+23/42*I,n=19 1771151248166163 a001 233/199*64079^(20/23) 1771151248490899 a001 233/199*167761^(4/5) 1771151248541242 a001 233/199*20633239^(4/7) 1771151248541245 a001 233/199*2537720636^(4/9) 1771151248541245 a001 233/199*(1/2+1/2*5^(1/2))^20 1771151248541245 a001 233/199*23725150497407^(5/16) 1771151248541245 a001 233/199*505019158607^(5/14) 1771151248541245 a001 233/199*73681302247^(5/13) 1771151248541245 a001 233/199*28143753123^(2/5) 1771151248541245 a001 233/199*10749957122^(5/12) 1771151248541245 a001 233/199*4106118243^(10/23) 1771151248541245 a001 233/199*1568397607^(5/11) 1771151248541245 a001 233/199*599074578^(10/21) 1771151248541245 a001 233/199*228826127^(1/2) 1771151248541245 a001 233/199*87403803^(10/19) 1771151248541246 a001 233/199*33385282^(5/9) 1771151248541251 a001 233/199*12752043^(10/17) 1771151248541291 a001 233/199*4870847^(5/8) 1771151248541586 a001 233/199*1860498^(2/3) 1771151248543750 a001 233/199*710647^(5/7) 1771151248559735 a001 233/199*271443^(10/13) 1771151248678544 a001 233/199*103682^(5/6) 1771151249567858 a001 233/199*39603^(10/11) 1771151252412214 k008 concat of cont frac of 1771151252413182 k009 concat of cont frac of 1771151257389547 k002 Champernowne real with 13*n^2+15*n-11 1771151259963921 a001 4/2178309*2584^(15/52) 1771151260648220 r005 Im(z^2+c),c=-29/44+15/56*I,n=60 1771151262753127 k006 concat of cont frac of 1771151263524844 r005 Re(z^2+c),c=-1/102+4/7*I,n=38 1771151276105647 m002 1+(24*Tanh[Pi])/Pi^3 1771151284300699 a007 Real Root Of 590*x^4+562*x^3-563*x^2+820*x+535 1771151284410014 a007 Real Root Of 550*x^4+764*x^3-114*x^2+988*x+940 1771151288615800 m001 KomornikLoreti^gamma(1)*KomornikLoreti^Shi(1) 1771151297102414 a001 39603/13*13^(35/51) 1771151310820541 r005 Re(z^2+c),c=-5/24+1/60*I,n=13 1771151310865396 m001 (exp(1/Pi)+BesselI(0,2))/(Chi(1)+GAMMA(3/4)) 1771151311201261 k007 concat of cont frac of 1771151311225136 k007 concat of cont frac of 1771151312213115 k006 concat of cont frac of 1771151313055687 b008 1-15*Sqrt[141] 1771151313324222 k008 concat of cont frac of 1771151313513213 k008 concat of cont frac of 1771151316563126 r005 Im(z^2+c),c=2/29+8/49*I,n=6 1771151318151211 k008 concat of cont frac of 1771151321819847 a007 Real Root Of 542*x^4+416*x^3-287*x^2+673*x-930 1771151331111177 k009 concat of cont frac of 1771151335612184 r005 Re(z^2+c),c=-3/58+29/54*I,n=36 1771151343354851 m001 (-PlouffeB+Rabbit)/(3^(1/2)-HardyLittlewoodC5) 1771151343420900 a001 682/305*75025^(22/37) 1771151343876799 m005 (1/3*gamma+2)/(23/24+1/8*5^(1/2)) 1771151344911942 k008 concat of cont frac of 1771151349686170 m001 (-FellerTornier+Trott)/(LambertW(1)+ln(gamma)) 1771151351211911 k006 concat of cont frac of 1771151353072287 m001 (sin(1)+GaussKuzminWirsing)/(Trott+ZetaQ(2)) 1771151358312551 k006 concat of cont frac of 1771151364593989 m001 (ln(3)-Ei(1,1))/(Rabbit-TwinPrimes) 1771151364643058 l006 ln(621/3650) 1771151370679128 r005 Im(z^2+c),c=-17/30+35/107*I,n=61 1771151374076761 a007 Real Root Of 924*x^4+750*x^3-873*x^2+939*x-524 1771151387211701 r005 Re(z^2+c),c=-89/66+18/43*I,n=4 1771151390938150 r005 Re(z^2+c),c=-1/66+34/57*I,n=40 1771151393631616 m001 1/PrimesInBinary*Bloch^2/ln(GAMMA(2/3)) 1771151398540304 m005 (1/3*Zeta(3)+1/3)/(1/4*gamma+4) 1771151407071819 m001 GAMMA(17/24)-MertensB1+RenyiParking 1771151410101112 k006 concat of cont frac of 1771151410804787 r005 Re(z^2+c),c=-21/34+78/101*I,n=4 1771151411321615 k006 concat of cont frac of 1771151412815112 k008 concat of cont frac of 1771151421558637 a007 Real Root Of -608*x^4-515*x^3+586*x^2-400*x+575 1771151422924361 a001 47/2504730781961*1597^(7/23) 1771151426638120 p003 LerchPhi(1/16,10,17/18) 1771151427566713 m001 (cos(1)+Zeta(3))/(-FellerTornier+Mills) 1771151430020112 m001 (FibonacciFactorial+Magata)/(2^(1/2)+Zeta(3)) 1771151432007814 a007 Real Root Of -313*x^4-468*x^3+183*x+804 1771151433728065 a007 Real Root Of 31*x^4+531*x^3-329*x^2-187*x-431 1771151434542208 m001 MadelungNaCl/(MinimumGamma-Weierstrass) 1771151434882646 m005 (1/3*exp(1)+1/6)/(4*2^(1/2)+2/5) 1771151437087482 p003 LerchPhi(1/12,4,593/215) 1771151441006595 m003 7/24+Sqrt[5]/32+(Sqrt[5]*E^(1/2+Sqrt[5]/2))/8 1771151441111081 k006 concat of cont frac of 1771151443121721 k008 concat of cont frac of 1771151447157137 m001 (gamma(2)+Gompertz)/(Si(Pi)-Zeta(1/2)) 1771151451358476 a007 Real Root Of -214*x^4-14*x^3+790*x^2+454*x+354 1771151451459975 a007 Real Root Of 147*x^4-292*x^3-671*x^2+96*x-794 1771151453620425 m005 (1/2*2^(1/2)+1/10)/(1/4*gamma-3/5) 1771151457576994 m005 (1/2*2^(1/2)-10/11)/(1/5*Zeta(3)+9/10) 1771151458648599 m001 (Cahen-OneNinth)/(Sierpinski+TreeGrowth2nd) 1771151459421417 r009 Re(z^3+c),c=-31/54+3/10*I,n=12 1771151462867086 r002 31th iterates of z^2 + 1771151463377708 r005 Re(z^2+c),c=-5/6+10/107*I,n=60 1771151475134491 m001 MasserGramain^Bloch-Sierpinski 1771151481112698 g007 Psi(2,10/11)+Psi(2,2/3)-Psi(2,2/9)-Psi(2,5/6) 1771151481911012 k008 concat of cont frac of 1771151481977846 r009 Re(z^3+c),c=-4/13+4/7*I,n=18 1771151482559000 a007 Real Root Of -393*x^4-403*x^3+317*x^2-844*x-861 1771151486033808 l006 ln(3370/4023) 1771151487554812 a007 Real Root Of 203*x^4+115*x^3-34*x^2+463*x-432 1771151488804670 m003 1/2+(17*Sqrt[5])/32+Sin[1/2+Sqrt[5]/2]/12 1771151491365797 a007 Real Root Of 343*x^4+394*x^3+317*x^2+989*x-429 1771151497523490 m001 cos(1)*exp(BesselK(0,1))^2/sin(1)^2 1771151498152918 a007 Real Root Of 335*x^4+213*x^3-769*x^2-327*x-280 1771151507199292 r005 Re(z^2+c),c=-67/122+27/40*I,n=11 1771151508688166 h001 (7/8*exp(1)+4/7)/(2/7*exp(1)+8/9) 1771151511531229 k007 concat of cont frac of 1771151513151741 k008 concat of cont frac of 1771151521871251 k008 concat of cont frac of 1771151524206041 r009 Re(z^3+c),c=-5/29+2/55*I,n=3 1771151524792308 a007 Real Root Of 369*x^4+373*x^3+45*x^2+612*x-616 1771151527479891 r002 50th iterates of z^2 + 1771151528301235 a007 Real Root Of 447*x^4+473*x^3-819*x^2-470*x-34 1771151528952194 m001 (-CopelandErdos+Lehmer)/(sin(1)+GAMMA(19/24)) 1771151529724324 r002 4th iterates of z^2 + 1771151530010229 m001 1/GAMMA(1/24)^2*ln(KhintchineLevy)^2*gamma^2 1771151530721869 m005 (1/2*2^(1/2)+3/11)/(1/3*Catalan-1/4) 1771151536907471 a001 161/133957148*3^(6/17) 1771151538437286 m005 (1/2*3^(1/2)+5/7)/(3/7*exp(1)-3/11) 1771151540688198 r005 Im(z^2+c),c=-43/44+9/50*I,n=38 1771151542681797 a007 Real Root Of 805*x^4+924*x^3-431*x^2+892*x+144 1771151543944483 l006 ln(1528/8981) 1771151544831419 r005 Re(z^2+c),c=-9/70+35/38*I,n=4 1771151545361922 r005 Im(z^2+c),c=-37/36+7/31*I,n=7 1771151546642082 m001 Zeta(9)*LambertW(1)^2*ln(gamma) 1771151554226111 k008 concat of cont frac of 1771151570861544 p004 log(34981/29303) 1771151572150506 r005 Im(z^2+c),c=-2/3+112/181*I,n=6 1771151576183199 a007 Real Root Of -446*x^4-161*x^3+742*x^2-154*x+894 1771151576447384 r005 Im(z^2+c),c=-113/122+10/61*I,n=22 1771151576890376 m001 (FellerTornier+MertensB2)/(Ei(1)-GAMMA(5/6)) 1771151581645271 r009 Im(z^3+c),c=-17/22+41/47*I,n=2 1771151586368977 q001 6029/3404 1771151587172702 a007 Real Root Of -543*x^4-478*x^3+592*x^2-819*x-620 1771151597528143 m001 1/ln(Riemann1stZero)*CareFree/GAMMA(3/4)^2 1771151598479297 a007 Real Root Of 646*x^4+633*x^3+771*x^2-896*x-180 1771151601791644 r002 5th iterates of z^2 + 1771151609464657 m001 (-GaussAGM(1,1/sqrt(2))+1/3)/(-ln(3)+4) 1771151612251406 r002 43th iterates of z^2 + 1771151612254417 a007 Real Root Of 95*x^4-574*x^3+504*x^2-677*x-139 1771151613937317 a008 Real Root of (-1+x^3+x^6+x^8+x^9-x^10) 1771151615591212 r005 Re(z^2+c),c=-7/106+23/45*I,n=61 1771151615840234 r005 Im(z^2+c),c=-9/14+22/247*I,n=10 1771151616135581 k008 concat of cont frac of 1771151619704399 m005 (1/3*3^(1/2)-1/5)/(8/9*exp(1)-2/7) 1771151636200342 b008 ArcCosh[2*ArcSec[17]] 1771151642135859 a007 Real Root Of -96*x^4+250*x^3+111*x^2-627*x+875 1771151643120105 r004 Re(z^2+c),c=1/46-1/14*I,z(0)=exp(3/8*I*Pi),n=9 1771151644648286 m001 (-Artin+Riemann3rdZero)/(ln(gamma)-sin(1)) 1771151649206050 r005 Im(z^2+c),c=-8/27+7/26*I,n=29 1771151651490921 a007 Real Root Of 571*x^4+177*x^3-741*x^2+961*x-609 1771151653242632 a003 sin(Pi*32/111)-sin(Pi*29/70) 1771151658938802 m001 (2^(1/2))^(Zeta(5)*BesselI(1,2)) 1771151658938802 m001 sqrt(2)^(Zeta(5)*BesselI(1,2)) 1771151661426806 a007 Real Root Of 232*x^4+562*x^3+999*x^2-771*x-165 1771151663558930 m005 (1/2*Zeta(3)+4/7)/(1/11*exp(1)-10/11) 1771151666707624 l006 ln(907/5331) 1771151669771210 a001 7/514229*144^(48/49) 1771151681490484 a001 5/505019158607*3^(9/17) 1771151684861396 a007 Real Root Of -695*x^4-971*x^3+104*x^2-109*x+925 1771151692078836 r005 Im(z^2+c),c=-49/82+10/31*I,n=33 1771151694326454 m001 GAMMA(1/6)/ln(GAMMA(1/24))*Zeta(9)^2 1771151695862840 q001 4752/2683 1771151709766272 a001 3/2*89^(11/20) 1771151710470433 r009 Im(z^3+c),c=-41/94+62/63*I,n=3 1771151711181617 k008 concat of cont frac of 1771151714064375 r009 Re(z^3+c),c=-6/25+14/39*I,n=5 1771151714912832 k008 concat of cont frac of 1771151717093440 m001 (Niven+Sierpinski)/(Ei(1)-(1+3^(1/2))^(1/2)) 1771151724012194 p001 sum((-1)^n/(544*n+491)/(3^n),n=0..infinity) 1771151726925891 r002 4th iterates of z^2 + 1771151733933462 a007 Real Root Of 615*x^4+689*x^3-642*x^2+79*x-70 1771151734646815 m009 (16*Catalan+2*Pi^2+1/5)/(5/6*Psi(1,2/3)-3/5) 1771151737086904 m001 (-Robbin+TravellingSalesman)/(Si(Pi)+ln(Pi)) 1771151743305354 a001 3/7*9349^(51/56) 1771151743842635 m001 Shi(1)+FibonacciFactorial*LandauRamanujan2nd 1771151744253718 m001 (Khinchin+Tribonacci)/(ln(3)+Backhouse) 1771151751121211 k006 concat of cont frac of 1771151755350028 a007 Real Root Of -696*x^4-995*x^3-22*x^2-582*x+359 1771151756487905 r009 Im(z^3+c),c=-37/114+34/45*I,n=7 1771151758260460 b008 (EulerGamma*Pi)^(4*Pi) 1771151760502006 r005 Re(z^2+c),c=-7/106+23/45*I,n=56 1771151770514969 m001 1/GAMMA(7/12)^2*Sierpinski^2/ln(sinh(1)) 1771151781088969 a001 2889/4*8^(22/51) 1771151784919792 r009 Re(z^3+c),c=-59/110+23/27*I,n=3 1771151793105925 r002 39th iterates of z^2 + 1771151811586072 m001 TwinPrimes^ln(3)-BesselJZeros(0,1) 1771151821884151 k006 concat of cont frac of 1771151822929339 m004 5*Pi+2*Sech[Sqrt[5]*Pi]+2*Tanh[Sqrt[5]*Pi] 1771151823210882 m004 4/E^(Sqrt[5]*Pi)+5*Pi+2*Tanh[Sqrt[5]*Pi] 1771151823492426 m004 5*Pi+2*Csch[Sqrt[5]*Pi]+2*Tanh[Sqrt[5]*Pi] 1771151823943209 l006 ln(1193/7012) 1771151828786710 m001 Pi^(1/2)-ZetaQ(4)^Zeta(5) 1771151831192304 m001 (Robbin+Trott)/(sin(1)+Otter) 1771151841290643 a001 317811/199*322^(5/12) 1771151843439710 a005 (1/cos(43/144*Pi))^23 1771151844447739 a001 18/13*4181^(32/55) 1771151847750379 m001 Zeta(5)+FransenRobinson*MertensB1 1771151850129961 b008 E*Pi^(2+Sqrt[E]) 1771151852356994 m005 (1/2*Catalan-5/12)/(5/6*gamma-5/7) 1771151857005850 a007 Real Root Of -588*x^4-139*x^3+989*x^2-876*x+360 1771151857866080 m005 (2/5*Pi+2)/(3/4*exp(1)-1/5) 1771151864737648 r005 Re(z^2+c),c=-9/86+24/55*I,n=30 1771151868295628 r009 Re(z^3+c),c=-8/27+28/51*I,n=17 1771151868749304 m001 1/GAMMA(7/12)^2/exp(BesselJ(1,1))^2/Zeta(9) 1771151869589047 a007 Real Root Of 133*x^4-69*x^3-542*x^2+44*x+86 1771151870525586 r005 Im(z^2+c),c=-81/70+11/46*I,n=16 1771151873232873 m001 Sarnak^ZetaR(2)/ZetaQ(2) 1771151876439504 m005 (1/2*exp(1)+1/12)/(4*5^(1/2)-4/5) 1771151878792465 a003 cos(Pi*4/107)/sin(Pi*18/95) 1771151880531679 b008 -3+EulerGamma^(-3/8) 1771151882907650 r005 Re(z^2+c),c=-7/78+7/15*I,n=40 1771151885830784 q001 3475/1962 1771151886851507 m005 (1/2*exp(1)+6/11)/(1/6*Zeta(3)+7/8) 1771151887821367 r005 Im(z^2+c),c=-13/94+14/61*I,n=11 1771151890002919 a001 199/832040*46368^(34/41) 1771151898912399 r005 Im(z^2+c),c=-87/70+4/27*I,n=10 1771151902182114 a007 Real Root Of 885*x^4+837*x^3-850*x^2+655*x-232 1771151903840937 a007 Real Root Of -687*x^4-700*x^3+790*x^2+210*x+765 1771151908147000 a001 6*(1/2*5^(1/2)+1/2)^24*3^(20/21) 1771151915562736 m001 ln(5)*FeigenbaumAlpha*GAMMA(5/24) 1771151920368264 l006 ln(1479/8693) 1771151921121108 k006 concat of cont frac of 1771151921130452 l006 ln(5713/6820) 1771151928682671 a007 Real Root Of 636*x^4+916*x^3-50*x^2+269*x-536 1771151932259403 m001 cos(Pi/5)^2*ln(DuboisRaymond)*sqrt(1+sqrt(3)) 1771151939052248 a007 Real Root Of -487*x^4-435*x^3+917*x^2-184*x-827 1771151949112036 h001 (-12*exp(4)-10)/(-4*exp(2)-8) 1771151955490727 a007 Real Root Of 882*x^4-837*x^3-868*x^2-621*x+141 1771151965440298 a001 55/4870847*18^(20/21) 1771151974311172 k007 concat of cont frac of 1771151975078909 l006 ln(5876/5981) 1771151978264135 a007 Real Root Of 190*x^4-156*x^3-600*x^2+226*x-454 1771151979880435 m005 (1/2*2^(1/2)+8/11)/(1/12*exp(1)+7/12) 1771151981182759 m004 1+5*Pi+2*Sech[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 1771151981464302 m004 1+4/E^(Sqrt[5]*Pi)+5*Pi+Tanh[Sqrt[5]*Pi] 1771151981745846 m004 1+5*Pi+2*Csch[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 1771151985686120 m001 (sin(1)+Pi^(1/2))/(Porter+ZetaQ(3)) 1771151988120182 r009 Re(z^3+c),c=-23/90+11/26*I,n=17 1771151991111155 k008 concat of cont frac of 1771151993901668 m005 (1/2*5^(1/2)-1/6)/(4/9*2^(1/2)-6) 1771151995449214 a007 Real Root Of -440*x^4-999*x^3-509*x^2+232*x+787 1771152002815912 p004 log(32803/5581) 1771152007365385 a007 Real Root Of -55*x^4-989*x^3-309*x^2-787*x+395 1771152012640410 a008 Real Root of (-4+4*x+5*x^4-3*x^5) 1771152013248702 m001 FeigenbaumD^2/Bloch^2/exp(BesselK(1,1)) 1771152014613197 a007 Real Root Of 465*x^4+161*x^3-892*x^2+777*x+493 1771152018693978 a007 Real Root Of -647*x^4-214*x^3+957*x^2-700*x+936 1771152018867968 m004 40*Pi+(25*Pi)/ProductLog[Sqrt[5]*Pi] 1771152023252731 m001 Niven/(QuadraticClass+StolarskyHarborth) 1771152027389536 a007 Real Root Of 413*x^4+165*x^3-589*x^2+792*x+103 1771152030984498 m001 1/Catalan^2/KhintchineLevy*exp(LambertW(1)) 1771152033454169 m001 (BesselI(1,1)+Bloch)/(Gompertz-Trott) 1771152033752344 r005 Im(z^2+c),c=-17/16+17/82*I,n=57 1771152037847270 m009 (2/5*Psi(1,1/3)+2/3)/(3/4*Psi(1,3/4)+3/4) 1771152044251691 a007 Real Root Of -361*x^4-295*x^3-69*x^2-940*x+465 1771152044957852 q001 5673/3203 1771152052139511 k008 concat of cont frac of 1771152052153798 m001 Psi(1,1/3)*GAMMA(5/6)/Cahen 1771152056197849 a007 Real Root Of 398*x^4+48*x^3-853*x^2+61*x-866 1771152062717416 a001 440719107401/7*377^(9/16) 1771152063148361 m005 (1/2*Catalan+9/10)/(6/7*gamma-4/7) 1771152065220639 m001 1/GAMMA(13/24)/exp(Si(Pi))/cos(1) 1771152066876551 a007 Real Root Of -735*x^4-842*x^3+615*x^2-859*x-896 1771152068341956 p004 log(35671/29881) 1771152072352592 r009 Re(z^3+c),c=-3/98+29/47*I,n=25 1771152081619610 r005 Re(z^2+c),c=-17/30+29/63*I,n=31 1771152101102012 k006 concat of cont frac of 1771152103140835 l006 ln(8056/9617) 1771152104407429 h001 (2/5*exp(1)+1/7)/(9/11*exp(2)+9/10) 1771152111113011 k009 concat of cont frac of 1771152111124111 k007 concat of cont frac of 1771152111512811 k006 concat of cont frac of 1771152111735181 k008 concat of cont frac of 1771152112212111 k008 concat of cont frac of 1771152113122512 k008 concat of cont frac of 1771152115655339 b008 3+44*ExpIntegralEi[5] 1771152115923410 a007 Real Root Of 467*x^4+216*x^3-821*x^2+485*x+39 1771152116111312 k007 concat of cont frac of 1771152116117394 m003 33/2+(17*Sqrt[5])/32-Cos[1/2+Sqrt[5]/2]/2 1771152116442878 a007 Real Root Of -237*x^4+271*x^3+456*x^2-802*x+987 1771152121116121 k009 concat of cont frac of 1771152122111922 k008 concat of cont frac of 1771152122743384 m005 (1/3*exp(1)+2/11)/(7/11*2^(1/2)-2/7) 1771152122947466 r009 Re(z^3+c),c=-4/15+28/61*I,n=19 1771152126250129 m001 Gompertz+(3^(1/3))^TreeGrowth2nd 1771152126421813 k008 concat of cont frac of 1771152128411121 k009 concat of cont frac of 1771152134999752 m001 1/Paris^2*ln(Bloch)/TwinPrimes^2 1771152136048708 r002 10th iterates of z^2 + 1771152138873093 m004 2+5*Pi+2*Sech[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 1771152139154636 m004 2+5*Pi+(4*Tanh[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 1771152139154636 m004 2+5*Pi+E^(Sqrt[5]*Pi)*Sech[Sqrt[5]*Pi]^2 1771152139436179 m004 -2-5*Pi-2*Sech[Sqrt[5]*Pi] 1771152139717722 m004 -2-4/E^(Sqrt[5]*Pi)-5*Pi 1771152139999265 m004 -2-5*Pi-2*Csch[Sqrt[5]*Pi] 1771152140280809 m004 2+5*Pi+(4*Coth[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 1771152140280809 m004 2+5*Pi+E^(Sqrt[5]*Pi)*Csch[Sqrt[5]*Pi]^2 1771152140562353 m004 2+5*Pi+2*Coth[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 1771152141145112 k008 concat of cont frac of 1771152142136411 k007 concat of cont frac of 1771152145121411 k006 concat of cont frac of 1771152150281837 m005 (1/3*Zeta(3)+2/11)/(8/11*gamma-1/11) 1771152151041630 a007 Real Root Of -77*x^4+156*x^3+645*x^2+656*x+763 1771152158261032 a007 Real Root Of -331*x^4-253*x^3+326*x^2-835*x-650 1771152161481311 k007 concat of cont frac of 1771152164132894 h001 (5/8*exp(2)+3/4)/(7/9*exp(1)+11/12) 1771152168111345 a007 Real Root Of 469*x^4+921*x^3+359*x^2-45*x-704 1771152168746619 r005 Im(z^2+c),c=-47/82+1/3*I,n=52 1771152170256224 r005 Re(z^2+c),c=-29/34+2/93*I,n=16 1771152170641885 a007 Real Root Of 694*x^4+774*x^3-831*x^2-27*x+30 1771152172236182 a001 2537720636/377*46368^(7/23) 1771152172286326 a001 87403803/377*2971215073^(7/23) 1771152173613551 k008 concat of cont frac of 1771152176351670 a007 Real Root Of -227*x^4+967*x^3+122*x^2+510*x+9 1771152177802242 m001 exp(RenyiParking)^2*Champernowne*LambertW(1)^2 1771152178025607 r005 Im(z^2+c),c=-19/18+34/165*I,n=45 1771152179341693 m008 (1/2*Pi^3+3/4)/(3*Pi^5-2/5) 1771152181212258 k009 concat of cont frac of 1771152182656977 r005 Re(z^2+c),c=-17/14+1/124*I,n=36 1771152190381467 r005 Im(z^2+c),c=-33/29+5/21*I,n=33 1771152190442479 r005 Im(z^2+c),c=-33/29+5/21*I,n=39 1771152190552293 r005 Im(z^2+c),c=-33/29+5/21*I,n=45 1771152190568554 r005 Im(z^2+c),c=-33/29+5/21*I,n=51 1771152190570247 r005 Im(z^2+c),c=-33/29+5/21*I,n=57 1771152190570389 r005 Im(z^2+c),c=-33/29+5/21*I,n=63 1771152193131517 k008 concat of cont frac of 1771152194485665 a007 Real Root Of -265*x^4+12*x^3+849*x^2-397*x-692 1771152194854440 m005 (1/2*gamma-3/4)/(3*Catalan-1/7) 1771152201781407 m001 (Niven-ZetaQ(4))/(gamma(1)+MertensB2) 1771152204547496 r005 Im(z^2+c),c=-33/29+5/21*I,n=27 1771152214991323 r005 Im(z^2+c),c=-27/56+13/42*I,n=63 1771152216485080 r005 Im(z^2+c),c=-9/40+58/61*I,n=3 1771152217224764 a007 Real Root Of -128*x^4+440*x^3+937*x^2-280*x+269 1771152226112843 a007 Real Root Of -341*x^4-523*x^3-130*x^2-775*x-515 1771152238112244 a007 Real Root Of -573*x^4-573*x^3+173*x^2-750*x+584 1771152248304922 m005 (1/2*3^(1/2)-8/11)/(1/10*Catalan-7/8) 1771152251235565 m005 (1/2*exp(1)-2/11)/(31/5+1/5*5^(1/2)) 1771152260395557 k002 Champernowne real with 27/2*n^2+27/2*n-10 1771152261254152 k006 concat of cont frac of 1771152262123550 r005 Im(z^2+c),c=13/58+5/59*I,n=23 1771152268684131 m001 1/Kolakoski^2/exp(Cahen)*GAMMA(5/12) 1771152275093457 s002 sum(A039799[n]/(pi^n-1),n=1..infinity) 1771152276836698 r002 12th iterates of z^2 + 1771152282308771 m001 (BesselK(0,1)+Grothendieck)^Sarnak 1771152282600452 r005 Re(z^2+c),c=37/98+5/28*I,n=64 1771152287726722 m001 1/ln(Sierpinski)^2*GaussKuzminWirsing^2/gamma 1771152288904690 a007 Real Root Of 684*x^4+542*x^3-474*x^2+836*x-752 1771152296535052 q001 2198/1241 1771152296836781 r005 Re(z^2+c),c=-5/56+31/63*I,n=16 1771152297530242 r005 Re(z^2+c),c=-5/82+23/33*I,n=15 1771152297689599 m004 -3-5*Pi-2*Sech[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 1771152297971142 m004 -3-4/E^(Sqrt[5]*Pi)-5*Pi+Tanh[Sqrt[5]*Pi] 1771152298252685 m004 -3-5*Pi-2*Csch[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 1771152300334150 r005 Im(z^2+c),c=-39/70+10/23*I,n=54 1771152300661040 r002 6th iterates of z^2 + 1771152301441823 m001 (Mills+MinimumGamma)/(Ei(1,1)-Grothendieck) 1771152303932491 m001 Ei(1)*(Chi(1)-Pi^(1/2)) 1771152311333171 k007 concat of cont frac of 1771152312431177 k006 concat of cont frac of 1771152313111921 k009 concat of cont frac of 1771152314709837 m005 (1/3*exp(1)+2/11)/(4/11*Pi+5) 1771152315337834 m006 (3/5*Pi^2-3/5)/(2/Pi-2/3) 1771152316465296 r002 7th iterates of z^2 + 1771152320884678 a001 521/34*2178309^(25/39) 1771152321272570 a001 7881196/5*13^(1/22) 1771152322588763 l006 ln(286/1681) 1771152324438033 a007 Real Root Of 23*x^4+444*x^3+618*x^2-603*x-999 1771152331221113 k007 concat of cont frac of 1771152340082303 m001 (StolarskyHarborth+Totient)/(Artin-Salem) 1771152343502393 r005 Im(z^2+c),c=-11/12+22/101*I,n=22 1771152370371418 h001 (6/7*exp(1)+7/12)/(1/2*exp(1)+2/7) 1771152373404968 m005 (1/2*exp(1)+8/11)/(9/11*Catalan+3/7) 1771152373555265 a007 Real Root Of -46*x^4+111*x^3+207*x^2+140*x+668 1771152373806718 r005 Re(z^2+c),c=-23/98+19/32*I,n=12 1771152375673227 a007 Real Root Of -459*x^4-446*x^3+341*x^2-633*x-152 1771152382839705 m006 (3*Pi+1/5)/(3*ln(Pi)+2) 1771152386615534 r005 Re(z^2+c),c=-65/64+11/46*I,n=26 1771152389900636 a007 Real Root Of 893*x^4-122*x^3-172*x^2-428*x+81 1771152391028658 m001 1/GAMMA(11/12)^2*FeigenbaumD^2*exp(Zeta(7)) 1771152391202117 k006 concat of cont frac of 1771152391697484 r009 Im(z^3+c),c=-11/52+5/31*I,n=4 1771152394463994 m001 MinimumGamma^(BesselI(0,2)/ln(2)*ln(10)) 1771152400650011 a001 2/39603*76^(23/28) 1771152405431444 h005 exp(sin(Pi*11/57)/sin(Pi*28/59)) 1771152409126675 a007 Real Root Of 522*x^4+916*x^3+404*x^2+215*x-934 1771152411131115 k007 concat of cont frac of 1771152411141438 k008 concat of cont frac of 1771152413122143 k007 concat of cont frac of 1771152416496519 a001 28657/47*4^(10/13) 1771152419918078 r002 3th iterates of z^2 + 1771152424253455 r002 26th iterates of z^2 + 1771152433691184 m001 MasserGramain^Zeta(5)*Khinchin^Zeta(5) 1771152437402505 m005 (1/3*2^(1/2)-3/8)/(1/4*gamma+2/5) 1771152441079340 a007 Real Root Of -954*x^4-989*x^3+919*x^2-633*x-111 1771152443734473 m001 GolombDickman+FeigenbaumMu^OneNinth 1771152443893694 a007 Real Root Of -523*x^4-544*x^3+65*x^2-532*x+978 1771152444409085 r005 Im(z^2+c),c=-79/98+4/43*I,n=19 1771152446188173 p004 log(28289/4813) 1771152449623177 a007 Real Root Of 498*x^4+815*x^3-367*x^2-110*x+584 1771152453937118 r005 Re(z^2+c),c=13/74+13/28*I,n=8 1771152455162270 r009 Re(z^3+c),c=-41/90+27/61*I,n=6 1771152455943519 m004 5*Pi+2*Coth[Sqrt[5]*Pi]+2*Sech[Sqrt[5]*Pi] 1771152456225062 m004 4/E^(Sqrt[5]*Pi)+5*Pi+2*Coth[Sqrt[5]*Pi] 1771152456506606 m004 5*Pi+2*Coth[Sqrt[5]*Pi]+2*Csch[Sqrt[5]*Pi] 1771152468417116 a007 Real Root Of -491*x^4-717*x^3+108*x^2+224*x+906 1771152475594198 a007 Real Root Of -501*x^4+204*x^3-974*x^2+541*x+128 1771152481192526 r005 Re(z^2+c),c=-1+31/223*I,n=46 1771152487088595 r002 10th iterates of z^2 + 1771152492756461 b008 Sqrt[6]*Cosh[8/3] 1771152496158182 m001 (ln(5)+MertensB2)/(GAMMA(3/4)-exp(1)) 1771152499130851 a007 Real Root Of 304*x^4+169*x^3-190*x^2+369*x-803 1771152500132914 m001 (ln(5)+Ei(1,1))/((1+3^(1/2))^(1/2)-Khinchin) 1771152510311763 s002 sum(A183852[n]/(n!^3),n=1..infinity) 1771152516570309 r005 Im(z^2+c),c=-33/29+5/21*I,n=21 1771152521340930 r002 55th iterates of z^2 + 1771152536332177 r002 41th iterates of z^2 + 1771152537421177 k008 concat of cont frac of 1771152546941640 l006 ln(2343/2797) 1771152548192008 a007 Real Root Of -523*x^4-765*x^3+106*x^2-508*x-336 1771152549416102 g007 Psi(2,2/9)+Psi(2,5/8)-Psi(2,4/7)-Psi(2,5/6) 1771152564956695 q001 5317/3002 1771152567724024 a001 1364/1346269*514229^(26/35) 1771152568128293 m001 (Zeta(1/2)-ZetaP(2))^QuadraticClass 1771152569086823 m001 BesselJ(1,1)/(Zeta(1,-1)+Riemann3rdZero) 1771152576878160 m001 (gamma(2)+Sarnak)/(Shi(1)+Zeta(1/2)) 1771152577303927 r002 24th iterates of z^2 + 1771152581186517 r005 Im(z^2+c),c=-7/10+28/193*I,n=29 1771152581231024 k008 concat of cont frac of 1771152581820571 m001 Kolakoski+Mills*RenyiParking 1771152586185537 a007 Real Root Of 127*x^4-185*x^3-382*x^2+121*x-865 1771152588671079 r005 Im(z^2+c),c=-29/34+14/109*I,n=25 1771152588867552 a007 Real Root Of -775*x^4+996*x^3-665*x^2+942*x+194 1771152588991415 a007 Real Root Of 333*x^4+296*x^3-715*x^2+7*x+623 1771152593484397 m001 ln(TreeGrowth2nd)/LaplaceLimit^2/GAMMA(11/12) 1771152594946205 a007 Real Root Of -355*x^4+691*x^3-620*x^2-77*x+10 1771152598102412 r005 Im(z^2+c),c=-9/32+11/40*I,n=7 1771152616788123 a007 Real Root Of -606*x^4-754*x^3+562*x^2+110*x+206 1771152619738407 r008 a(0)=2,K{-n^6,-54+10*n^3-10*n^2+59*n} 1771152620259267 m005 (1/2*exp(1)+4/5)/(181/198+3/22*5^(1/2)) 1771152623416255 r002 61th iterates of z^2 + 1771152630838038 v003 sum((n^3+6*n^2-3*n+3)/n^n,n=1..infinity) 1771152631767437 m001 BesselJ(1,1)*Conway/exp(sinh(1)) 1771152639182829 a003 cos(Pi*27/115)*cos(Pi*11/26) 1771152647552512 a007 Real Root Of 147*x^4+305*x^3+232*x^2+272*x+2 1771152648296093 a007 Real Root Of 292*x^4+707*x^3+658*x^2+400*x-301 1771152649229174 m001 Trott2nd*BesselK(1,1)^Thue 1771152649551884 r009 Im(z^3+c),c=-33/40+29/42*I,n=2 1771152661105828 m001 (gamma(2)+Bloch)/(1+ln(5)) 1771152663535803 a001 46/141*8^(48/59) 1771152664131878 m005 (1/2*Zeta(3)-1/9)/(1/6*Catalan-1/8) 1771152668153857 r005 Im(z^2+c),c=-41/46+13/58*I,n=11 1771152668925946 a007 Real Root Of -334*x^4-364*x^3+626*x^2-41*x-772 1771152670171373 a003 cos(Pi*16/81)+sin(Pi*35/86) 1771152677961894 r005 Re(z^2+c),c=29/118+13/63*I,n=13 1771152679447726 l006 ln(1667/9798) 1771152683384361 m001 1/exp(MinimumGamma)^2*Kolakoski*PrimesInBinary 1771152685186626 r005 Re(z^2+c),c=-7/48+20/59*I,n=21 1771152685292188 g006 Psi(1,3/10)+Psi(1,7/9)+1/2*Pi^2-Psi(1,11/12) 1771152695723374 a007 Real Root Of -370*x^4-384*x^3-132*x^2-548*x+951 1771152697243480 b008 EllipticPi[1/9,3/14] 1771152698449875 r005 Re(z^2+c),c=-11/70+34/49*I,n=52 1771152703609355 r005 Re(z^2+c),c=-11/60+3/14*I,n=9 1771152708818657 a001 (2+2^(1/2))^(27/58) 1771152710287859 m001 1/ln(TwinPrimes)^2*FeigenbaumDelta/GAMMA(7/12) 1771152716137731 r009 Re(z^3+c),c=-31/60+19/47*I,n=20 1771152720015112 k006 concat of cont frac of 1771152728040812 m005 (1/2*Catalan-2)/(5/11*3^(1/2)+1/12) 1771152730205069 a007 Real Root Of -591*x^4-901*x^3-65*x^2-849*x-490 1771152732729946 a007 Real Root Of -56*x^4+617*x^3-400*x^2-519*x-703 1771152734053863 a007 Real Root Of 95*x^4+537*x^3+805*x^2-715*x-149 1771152745129400 a007 Real Root Of 471*x^4-759*x^3+474*x^2-362*x+53 1771152748282239 m001 (Pi+exp(Pi))/(KhinchinHarmonic-MertensB1) 1771152748296885 a007 Real Root Of 619*x^4+980*x^3+124*x^2+728*x+254 1771152751237595 a007 Real Root Of 160*x^4-386*x^3+741*x^2-155*x-53 1771152753351883 l006 ln(1381/8117) 1771152753351883 p004 log(8117/1381) 1771152754116978 q001 3119/1761 1771152755130594 r005 Im(z^2+c),c=-35/94+18/53*I,n=7 1771152763202205 m001 1/ln(Lehmer)^2/Champernowne^2*exp(1)^2 1771152781034685 p001 sum((-1)^n/(286*n+61)/n/(16^n),n=1..infinity) 1771152781481610 r005 Im(z^2+c),c=-8/27+7/26*I,n=20 1771152784229496 m001 (3^(1/3))/RenyiParking^2/exp(GAMMA(1/3)) 1771152788483172 m001 (GAMMA(3/4)-TreeGrowth2nd)/(ZetaP(2)-ZetaQ(3)) 1771152790967493 m001 Pi*ln(2)/ln(10)-BesselJ(0,1)+BesselI(1,2) 1771152792145177 a007 Real Root Of 747*x^4+800*x^3-469*x^2+691*x-211 1771152792801769 a007 Real Root Of -855*x^4-778*x^3+914*x^2-446*x+434 1771152793297532 m008 (3*Pi^6-1/6)/(1/5*Pi+1) 1771152798228300 m001 (3^(1/3)-Chi(1))/(GAMMA(13/24)+Pi^(1/2)) 1771152801135881 m005 (1/2*Zeta(3)+1/9)/(2/3+3/2*5^(1/2)) 1771152805693304 p003 LerchPhi(1/6,5,333/235) 1771152815980082 m001 LandauRamanujan2nd^HardyLittlewoodC5/ZetaP(2) 1771152818798440 h001 (2/9*exp(2)+7/11)/(1/6*exp(1)+5/6) 1771152820176162 a001 2/13*3^(5/39) 1771152821112264 k006 concat of cont frac of 1771152834851190 r005 Im(z^2+c),c=-45/82+17/53*I,n=49 1771152847313435 a007 Real Root Of 579*x^4+788*x^3+42*x^2+440*x-672 1771152849932958 r005 Re(z^2+c),c=5/114+17/30*I,n=23 1771152853776668 r009 Re(z^3+c),c=-12/31+33/56*I,n=45 1771152861600462 a007 Real Root Of -794*x^4-976*x^3+761*x^2+295*x+526 1771152862243560 m005 (1/2*2^(1/2)+5/12)/(4*3^(1/2)-7/12) 1771152864301011 a007 Real Root Of -132*x^4+900*x^3-783*x^2-567*x-241 1771152865861672 l006 ln(1095/6436) 1771152868855373 a007 Real Root Of -890*x^4-806*x^3-404*x^2+711*x+135 1771152870486954 r005 Re(z^2+c),c=-17/82+3/50*I,n=4 1771152871513285 m001 (Si(Pi)-sin(1/5*Pi))/(-Lehmer+Mills) 1771152881611729 b008 1/18+Csch[1]/7 1771152882933934 m005 (1/2*5^(1/2)-3/11)/(1/4*Zeta(3)-7/9) 1771152886481507 r005 Re(z^2+c),c=-2/31+24/43*I,n=22 1771152889623054 a007 Real Root Of -421*x^4-366*x^3+641*x^2+527*x-111 1771152891422863 m005 (1/2*3^(1/2)+1/2)/(4/9*Pi-5/8) 1771152891895581 a007 Real Root Of -355*x^4-325*x^3+869*x^2+571*x-27 1771152892749199 m001 (Catalan-ln(2))/(Landau+TravellingSalesman) 1771152894606630 q001 7159/4042 1771152896215658 m001 (Riemann1stZero-Trott2nd)/(ln(3)-Ei(1)) 1771152899939117 m001 1/ln(Riemann1stZero)^2*Cahen^2/gamma^2 1771152904599238 a003 sin(Pi*39/115)+sin(Pi*29/82) 1771152906246295 r005 Re(z^2+c),c=33/106+16/61*I,n=33 1771152913654460 a007 Real Root Of 524*x^4+93*x^3-726*x^2+938*x-701 1771152917670944 p004 log(17627/2999) 1771152921113124 m001 1/GAMMA(7/24)^2/ln(GAMMA(13/24))/Zeta(3) 1771152921864118 r009 Re(z^3+c),c=-17/58+32/59*I,n=33 1771152923719915 r005 Im(z^2+c),c=-113/122+5/31*I,n=38 1771152926908866 a003 cos(Pi*26/109)*cos(Pi*19/45) 1771152934931497 a007 Real Root Of -427*x^4-576*x^3+650*x^2+396*x-336 1771152938969216 a007 Real Root Of -4*x^4+345*x^3-416*x^2+593*x+120 1771152945834144 a007 Real Root Of -436*x^4-617*x^3+895*x^2+729*x-654 1771152964718504 a007 Real Root Of 482*x^4+607*x^3-304*x^2-271*x-897 1771152964890197 a001 2/3571*4^(49/59) 1771152967113344 a007 Real Root Of -567*x^4-875*x^3+491*x^2+729*x+469 1771152969592538 a001 3571/1597*75025^(22/37) 1771152971086324 a001 1364/2178309*3^(53/56) 1771152975372932 l006 ln(8345/9962) 1771152996416379 r009 Re(z^3+c),c=-8/29+21/43*I,n=25 1771152997470829 m001 (Trott2nd+ZetaQ(3))/(exp(1/exp(1))+Gompertz) 1771153000482881 r005 Re(z^2+c),c=-1/31+34/61*I,n=37 1771153002089637 a007 Real Root Of -622*x^4-878*x^3+878*x^2+880*x+47 1771153003068829 q001 404/2281 1771153009572620 m001 (BesselJ(0,1)-ln(2)/ln(10))/(ln(2)+Tetranacci) 1771153009663836 a007 Real Root Of 848*x^4+687*x^3-985*x^2+363*x-795 1771153012222423 m003 -119/40+Sqrt[5]/8+Tanh[1/2+Sqrt[5]/2] 1771153035648903 r005 Re(z^2+c),c=-29/34+3/128*I,n=36 1771153039110993 a001 516002918640*521^(13/23) 1771153045833939 a007 Real Root Of -602*x^4-650*x^3+658*x^2-177*x-65 1771153053064108 a007 Real Root Of 719*x^4+877*x^3-678*x^2+219*x+312 1771153057619277 a003 -1/2+cos(4/21*Pi)-3^(1/2)-cos(8/21*Pi) 1771153057920998 l006 ln(809/4755) 1771153058163879 m001 1/Riemann2ndZero^2/exp(Artin)/Zeta(1,2)^2 1771153060077950 a007 Real Root Of 548*x^4+450*x^3-906*x^2+418*x+690 1771153061929219 a007 Real Root Of 335*x^4+500*x^3-792*x^2-752*x+634 1771153064394814 m001 (BesselI(1,1)-sin(Pi/12)*ThueMorse)/sin(Pi/12) 1771153065274415 a007 Real Root Of 163*x^4+99*x^3+272*x^2+803*x-485 1771153081923438 m009 (5/6*Psi(1,3/4)+1/5)/(4*Psi(1,2/3)+5/6) 1771153082965600 m005 (1/2*Catalan+1/9)/(11/12*Pi+1/3) 1771153086200574 r005 Im(z^2+c),c=-29/44+3/22*I,n=7 1771153086788420 r005 Re(z^2+c),c=-5/6+21/239*I,n=24 1771153090139345 m001 (1+3^(1/2))^(1/2)+MertensB1*ZetaP(2) 1771153099810266 m001 1/LaplaceLimit*FeigenbaumAlpha^2/ln(Niven) 1771153101037439 m001 sin(1)*(TwinPrimes+exp(1/exp(1))) 1771153101037439 m001 sin(1)*(exp(1/exp(1))+TwinPrimes) 1771153102133281 a007 Real Root Of -644*x^4-319*x^3+596*x^2-986*x+949 1771153102164618 m005 (1/2*3^(1/2)-4/9)/(6/11*Pi+2/3) 1771153109707120 p001 sum((-1)^n/(561*n+556)/(32^n),n=0..infinity) 1771153111331411 k007 concat of cont frac of 1771153117274969 r002 51th iterates of z^2 + 1771153122469549 r005 Re(z^2+c),c=-9/122+33/34*I,n=46 1771153123182211 k006 concat of cont frac of 1771153126140370 a007 Real Root Of 631*x^4+464*x^3-993*x^2+776*x+858 1771153126814127 k009 concat of cont frac of 1771153131115123 k006 concat of cont frac of 1771153132212121 k007 concat of cont frac of 1771153134528415 k007 concat of cont frac of 1771153134533858 r005 Im(z^2+c),c=-115/122+7/45*I,n=3 1771153134701323 k008 concat of cont frac of 1771153136966789 m001 (Niven+Stephens)^ln(2) 1771153142619598 l006 ln(6002/7165) 1771153147107638 r005 Im(z^2+c),c=-8/27+7/26*I,n=32 1771153150593787 h001 (1/3*exp(2)+1/8)/(2/9*exp(1)+6/7) 1771153154743038 m001 (Grothendieck-Kac)/(Robbin-ZetaQ(3)) 1771153155648825 h001 (6/11*exp(1)+5/7)/(2/9*exp(1)+7/11) 1771153157748592 a007 Real Root Of -622*x^4+782*x^3-846*x^2+782*x+170 1771153159585862 q001 4961/2801 1771153164042818 m005 (1/2*Pi+11/12)/(2*gamma+1/4) 1771153166868463 a001 317811/322*123^(3/5) 1771153169279743 m005 (1/2*3^(1/2)-6/11)/(6*Pi-3/4) 1771153174594595 a007 Real Root Of 26*x^4+511*x^3+857*x^2-671*x-141 1771153179978062 a007 Real Root Of -52*x^4-943*x^3-353*x^2+679*x+526 1771153194735580 r009 Re(z^3+c),c=-55/94+17/37*I,n=18 1771153195051815 m005 (1/2*Zeta(3)-1/5)/(6/7*Pi-3/7) 1771153195174626 a007 Real Root Of 321*x^4-101*x^3+850*x^2-985*x-202 1771153196082228 a007 Real Root Of -346*x^4+376*x^3+703*x^2+602*x+87 1771153200761206 r005 Re(z^2+c),c=-101/122+8/43*I,n=2 1771153203323118 a007 Real Root Of 340*x^4+683*x^3+514*x^2+186*x-834 1771153206847907 a001 9349/4181*75025^(22/37) 1771153207538099 r005 Re(z^2+c),c=-69/110+14/33*I,n=26 1771153207542798 m001 Zeta(7)^2/ln(GAMMA(1/24))^2*log(2+sqrt(3))^2 1771153209397577 m001 ln(PrimesInBinary)^2/LaplaceLimit^2*Zeta(9)^2 1771153211113111 k008 concat of cont frac of 1771153214043011 m001 CopelandErdos^exp(1/exp(1))-Ei(1) 1771153214738651 a007 Real Root Of -749*x^4-892*x^3+986*x^2+103*x-496 1771153215807579 l006 ln(1332/7829) 1771153215881927 a007 Real Root Of -472*x^4-255*x^3+982*x^2-448*x-646 1771153216996423 r005 Re(z^2+c),c=8/23+10/19*I,n=8 1771153224728789 h001 (1/2*exp(2)+8/9)/(5/8*exp(1)+8/9) 1771153227919291 r005 Im(z^2+c),c=-2/5+1/35*I,n=22 1771153233527131 k008 concat of cont frac of 1771153234660500 r002 56th iterates of z^2 + 1771153236356755 m001 1/log(2+sqrt(3))^2/Lehmer/ln(sqrt(3)) 1771153237184709 m001 (Chi(1)-Zeta(3))/(MertensB3+Sarnak) 1771153241463001 a001 12238/5473*75025^(22/37) 1771153244072733 p004 log(26561/4519) 1771153249634517 a001 39603/17711*75025^(22/37) 1771153249873523 m001 (exp(Pi)+ln(2))/(-Khinchin+Totient) 1771153262856307 a001 15127/6765*75025^(22/37) 1771153263401567 k002 Champernowne real with 14*n^2+12*n-9 1771153264841982 a001 196418/199*322^(1/2) 1771153265397523 m005 (1/2*gamma+1/7)/(5^(1/2)+1/5) 1771153267088226 q001 5882/3321 1771153269120852 a007 Real Root Of -25*x^4-474*x^3-570*x^2-286*x+328 1771153271053211 k006 concat of cont frac of 1771153275168779 r009 Im(z^3+c),c=-37/66+19/52*I,n=22 1771153283133800 m001 GAMMA(19/24)*ln(GAMMA(1/6))*Zeta(1,2)^2 1771153303115111 k007 concat of cont frac of 1771153303255795 r009 Re(z^3+c),c=-5/36+50/59*I,n=27 1771153305342602 r005 Im(z^2+c),c=-9/14+41/144*I,n=41 1771153309260106 a001 196418/521*29^(17/37) 1771153311115152 k008 concat of cont frac of 1771153311322565 m001 exp(Paris)^2*KhintchineLevy*GAMMA(3/4) 1771153311619972 r002 7th iterates of z^2 + 1771153317115213 k006 concat of cont frac of 1771153318089066 r005 Im(z^2+c),c=-43/32+1/48*I,n=45 1771153322990789 a007 Real Root Of 77*x^4-929*x^3+819*x^2+552*x+857 1771153329571855 m001 1/FeigenbaumKappa*Artin^2*ln(GAMMA(1/6)) 1771153335497040 r009 Re(z^3+c),c=-19/126+29/43*I,n=3 1771153338332351 m004 -5+5*Coth[Sqrt[5]*Pi]-Csch[Sqrt[5]*Pi] 1771153338481844 a007 Real Root Of 276*x^4-121*x^3-676*x^2+849*x+236 1771153339350679 a007 Real Root Of 496*x^4+230*x^3-507*x^2+644*x-872 1771153340008495 r005 Im(z^2+c),c=-5/56+11/51*I,n=8 1771153345482947 q001 6803/3841 1771153350854443 m004 -5+Csch[Sqrt[5]*Pi]+5*Tanh[Sqrt[5]*Pi] 1771153352643703 r005 Im(z^2+c),c=-5/13+11/38*I,n=21 1771153352928470 a001 6643838879/8*5^(8/17) 1771153353479805 a001 2889/1292*75025^(22/37) 1771153357971399 a001 1346269/521*123^(2/5) 1771153360686270 m001 (2^(1/3)+3^(1/2))/(BesselI(1,2)+Paris) 1771153361712118 a003 cos(Pi*1/39)/cos(Pi*35/113) 1771153366753756 a001 4/75025*10946^(34/39) 1771153372184957 r005 Im(z^2+c),c=33/74+13/24*I,n=5 1771153372311165 r005 Im(z^2+c),c=-61/94+14/59*I,n=29 1771153377277740 m001 (Pi+FeigenbaumB)/(FeigenbaumC+ThueMorse) 1771153386362500 a007 Real Root Of 118*x^4-160*x^3+118*x^2+855*x-906 1771153387521031 m001 ln(Robbin)^2*KhintchineLevy^2/FeigenbaumKappa 1771153389219526 p004 log(20269/16979) 1771153394880593 p004 log(29347/4993) 1771153396914147 m005 (1/2*2^(1/2)+9/10)/(2/3*5^(1/2)-7/12) 1771153400113648 m005 (21/4+1/4*5^(1/2))/(11/12*Pi+2/5) 1771153402166716 m001 1/Paris^2/DuboisRaymond^2/exp(Zeta(1,2))^2 1771153406823422 a003 cos(Pi*21/104)-sin(Pi*37/84) 1771153418233508 r009 Re(z^3+c),c=-37/122+27/47*I,n=59 1771153422004731 r002 46i'th iterates of 2*x/(1-x^2) of 1771153426101575 r005 Im(z^2+c),c=-8/27+7/26*I,n=34 1771153430251793 r009 Re(z^3+c),c=-7/23+26/45*I,n=63 1771153431517360 r009 Im(z^3+c),c=-41/114+35/53*I,n=45 1771153433208531 m005 (1/2*Zeta(3)+8/11)/(5*2^(1/2)+3/7) 1771153433771285 a007 Real Root Of -371*x^4-603*x^3-333*x^2-458*x+534 1771153436292036 m001 2/3*exp(1/Pi)/polylog(4,1/2) 1771153439227080 a007 Real Root Of -209*x^4+153*x^3+832*x^2+139*x+543 1771153444406771 r005 Im(z^2+c),c=-9/14+65/249*I,n=36 1771153447308204 a007 Real Root Of 737*x^4+860*x^3+214*x^2-674*x-12 1771153460033618 l006 ln(523/3074) 1771153461161660 r005 Im(z^2+c),c=-41/70+6/37*I,n=3 1771153464642600 a001 17393796001/21*832040^(9/16) 1771153464642692 a001 3010349/21*4052739537881^(9/16) 1771153464642887 a001 228826127/21*1836311903^(9/16) 1771153466352381 r005 Re(z^2+c),c=-23/106+45/64*I,n=16 1771153471210392 r005 Im(z^2+c),c=-77/82+1/6*I,n=30 1771153479387956 m004 2+Sqrt[5]*Pi+(25*Cot[Sqrt[5]*Pi])/Pi 1771153483484294 r009 Re(z^3+c),c=-11/56+39/44*I,n=51 1771153491684134 a007 Real Root Of -573*x^4-552*x^3+902*x^2+62*x-148 1771153502438222 a007 Real Root Of -18*x^4+478*x^3-263*x^2-657*x-490 1771153505737383 m001 (ln(5)-3^(1/3))/(ErdosBorwein-LaplaceLimit) 1771153508308123 m001 Pi^(1/2)/(KhinchinHarmonic^HeathBrownMoroz) 1771153510759272 m001 (ln(2+3^(1/2))+BesselI(1,1))/(Pi^(1/2)-Rabbit) 1771153511111112 k006 concat of cont frac of 1771153514247649 r005 Re(z^2+c),c=-3/110+30/59*I,n=3 1771153519808083 m001 (Cahen-Khinchin)/(sin(1/5*Pi)+BesselI(1,1)) 1771153524055341 l006 ln(3659/4368) 1771153530495794 m001 Riemann3rdZero*(Rabbit-ZetaQ(4)) 1771153534924047 m005 (1/2*Catalan-1/5)/(1/4*Catalan-1/12) 1771153540612568 a007 Real Root Of 474*x^4+334*x^3-272*x^2+614*x-868 1771153541390411 m005 (1/2*Catalan-5/11)/(7/12*5^(1/2)+7/11) 1771153561225086 r005 Re(z^2+c),c=-5/6+17/182*I,n=54 1771153561311766 m001 (3^(1/2)-Pi^(1/2))/(Niven+Stephens) 1771153561947871 m001 (Thue-ZetaP(2))/(ln(gamma)-MadelungNaCl) 1771153565024730 a003 sin(Pi*30/107)+sin(Pi*53/107) 1771153567328707 a007 Real Root Of 227*x^4+693*x^3+928*x^2+347*x-680 1771153568624157 r002 5th iterates of z^2 + 1771153571272658 m005 (1/2*2^(1/2)-2/11)/(-15/22+7/22*5^(1/2)) 1771153573731426 m001 Kolakoski^ZetaP(2)*Trott2nd^ZetaP(2) 1771153580783887 r002 37th iterates of z^2 + 1771153582144209 r009 Im(z^3+c),c=-1/19+47/52*I,n=26 1771153588726985 r005 Re(z^2+c),c=-14/19+17/46*I,n=9 1771153595748734 a003 cos(Pi*22/105)+sin(Pi*24/55) 1771153599655941 r005 Re(z^2+c),c=-1/16+15/29*I,n=28 1771153601928495 r005 Im(z^2+c),c=-8/27+7/26*I,n=37 1771153602817673 a003 cos(Pi*24/107)-cos(Pi*25/83) 1771153604606663 r009 Im(z^3+c),c=-1/19+47/52*I,n=28 1771153606049482 r009 Re(z^3+c),c=-33/122+30/59*I,n=4 1771153608452356 a007 Real Root Of 632*x^4+858*x^3+194*x^2+757*x-720 1771153611432512 k009 concat of cont frac of 1771153612088437 m001 (-ZetaP(4)+ZetaQ(2))/(3^(1/2)-TreeGrowth2nd) 1771153614187676 m001 (cos(1/5*Pi)+Conway)/(BesselK(0,1)-cos(1)) 1771153614479578 m001 (Riemann2ndZero-Salem)/(3^(1/3)-arctan(1/3)) 1771153619513526 r005 Im(z^2+c),c=-13/27+1/33*I,n=40 1771153620497489 r005 Re(z^2+c),c=-7/11+42/59*I,n=5 1771153621046969 m002 -3+ProductLog[Pi]+(Pi^3*Sinh[Pi])/2 1771153621331378 r005 Im(z^2+c),c=-8/27+7/26*I,n=39 1771153623669919 m001 (ln(5)-Backhouse)/(FellerTornier+Landau) 1771153626715370 r009 Im(z^3+c),c=-1/19+47/52*I,n=30 1771153633356624 r009 Im(z^3+c),c=-1/19+47/52*I,n=32 1771153633388747 r009 Im(z^3+c),c=-1/19+47/52*I,n=40 1771153633388764 r009 Im(z^3+c),c=-1/19+47/52*I,n=42 1771153633392716 r009 Im(z^3+c),c=-1/19+47/52*I,n=44 1771153633394261 r009 Im(z^3+c),c=-1/19+47/52*I,n=46 1771153633394421 r009 Im(z^3+c),c=-1/19+47/52*I,n=56 1771153633394422 r009 Im(z^3+c),c=-1/19+47/52*I,n=58 1771153633394422 r009 Im(z^3+c),c=-1/19+47/52*I,n=60 1771153633394422 r009 Im(z^3+c),c=-1/19+47/52*I,n=64 1771153633394422 r009 Im(z^3+c),c=-1/19+47/52*I,n=62 1771153633394422 r009 Im(z^3+c),c=-1/19+47/52*I,n=54 1771153633394433 r009 Im(z^3+c),c=-1/19+47/52*I,n=52 1771153633394471 r009 Im(z^3+c),c=-1/19+47/52*I,n=50 1771153633394512 r009 Im(z^3+c),c=-1/19+47/52*I,n=48 1771153633432834 r009 Im(z^3+c),c=-1/19+47/52*I,n=38 1771153633625847 r009 Im(z^3+c),c=-1/19+47/52*I,n=36 1771153633977214 r009 Im(z^3+c),c=-1/19+47/52*I,n=34 1771153636539090 m001 (Kolakoski+Otter)/(GAMMA(17/24)+FeigenbaumB) 1771153637348563 r002 28th iterates of z^2 + 1771153641045671 r005 Im(z^2+c),c=-8/27+7/26*I,n=42 1771153642114407 r005 Im(z^2+c),c=-8/27+7/26*I,n=44 1771153644248158 r005 Im(z^2+c),c=-8/27+7/26*I,n=47 1771153644267742 r005 Im(z^2+c),c=-8/27+7/26*I,n=49 1771153644357743 r005 Im(z^2+c),c=-8/27+7/26*I,n=46 1771153644463470 r005 Im(z^2+c),c=-8/27+7/26*I,n=41 1771153644480133 r005 Im(z^2+c),c=-8/27+7/26*I,n=51 1771153644485445 r005 Im(z^2+c),c=-8/27+7/26*I,n=54 1771153644492029 r005 Im(z^2+c),c=-8/27+7/26*I,n=52 1771153644505035 r005 Im(z^2+c),c=-8/27+7/26*I,n=56 1771153644506947 r005 Im(z^2+c),c=-8/27+7/26*I,n=59 1771153644508422 r005 Im(z^2+c),c=-8/27+7/26*I,n=57 1771153644508701 r005 Im(z^2+c),c=-8/27+7/26*I,n=61 1771153644509022 r005 Im(z^2+c),c=-8/27+7/26*I,n=64 1771153644509245 r005 Im(z^2+c),c=-8/27+7/26*I,n=62 1771153644509440 r005 Im(z^2+c),c=-8/27+7/26*I,n=63 1771153644510624 r005 Im(z^2+c),c=-8/27+7/26*I,n=60 1771153644511749 r005 Im(z^2+c),c=-8/27+7/26*I,n=58 1771153644522334 r005 Im(z^2+c),c=-8/27+7/26*I,n=55 1771153644538661 r005 Im(z^2+c),c=-8/27+7/26*I,n=53 1771153644629148 r005 Im(z^2+c),c=-8/27+7/26*I,n=50 1771153644840791 r005 Im(z^2+c),c=-8/27+7/26*I,n=48 1771153645566535 r005 Im(z^2+c),c=-8/27+7/26*I,n=45 1771153647108116 m001 (GAMMA(19/24)-OneNinth)/BesselK(1,1) 1771153648130071 r005 Im(z^2+c),c=-8/27+7/26*I,n=43 1771153653376505 r005 Im(z^2+c),c=-8/27+7/26*I,n=40 1771153654774283 r005 Im(z^2+c),c=-11/19+1/31*I,n=64 1771153659154840 r005 Im(z^2+c),c=-8/27+7/26*I,n=36 1771153671573329 a007 Real Root Of -397*x^4-24*x^3+510*x^2-841*x+684 1771153680482821 a007 Real Root Of -32*x^4-587*x^3-333*x^2+487*x+683 1771153683001402 r005 Im(z^2+c),c=-8/27+7/26*I,n=38 1771153691597478 a001 123/4181*1346269^(37/60) 1771153695385171 r002 58th iterates of z^2 + 1771153710547459 s001 sum(exp(-3*Pi/5)^n*A201387[n],n=1..infinity) 1771153713571974 r005 Im(z^2+c),c=-8/27+7/26*I,n=35 1771153713587010 l006 ln(1283/7541) 1771153713587010 p004 log(7541/1283) 1771153721501834 m007 (-3*gamma-9*ln(2)-3/2*Pi+4/5)/(-3/4*gamma+1/2) 1771153724509939 a007 Real Root Of 444*x^4+671*x^3-52*x^2+83*x-331 1771153728993717 a001 76/55*21^(31/37) 1771153731011258 r009 Im(z^3+c),c=-1/19+47/52*I,n=24 1771153733531331 k007 concat of cont frac of 1771153740581370 r005 Im(z^2+c),c=-25/26+18/103*I,n=38 1771153741305994 m003 35/2+Sqrt[5]/32-3*Cos[1/2+Sqrt[5]/2] 1771153741479705 a007 Real Root Of 39*x^4-730*x^3-763*x^2+908*x-438 1771153743880827 r002 3th iterates of z^2 + 1771153744774813 a007 Real Root Of -789*x^4-867*x^3+511*x^2-209*x+974 1771153754005067 b008 (2^(6/7))!! 1771153758147597 r009 Re(z^3+c),c=-17/50+22/37*I,n=28 1771153759346695 a007 Real Root Of -600*x^4-667*x^3+618*x^2-678*x-941 1771153761834692 r005 Im(z^2+c),c=-9/14+63/221*I,n=47 1771153765883397 r005 Re(z^2+c),c=-27/118+1/39*I,n=2 1771153770677935 m005 (1/2*3^(1/2)-4/7)/(5/6*Catalan+9/10) 1771153772773328 g006 Psi(1,1/12)+Psi(1,1/6)-2*Psi(1,7/10) 1771153774555281 m005 (1/3*Zeta(3)+1/12)/(10/11*5^(1/2)+7/10) 1771153776783668 r009 Re(z^3+c),c=-5/21+21/61*I,n=3 1771153779690879 m006 (5/6*ln(Pi)-1/5)/(1/6*exp(Pi)+2/5) 1771153785230359 r009 Im(z^3+c),c=-63/82+12/13*I,n=2 1771153785871379 m005 (-13/30+1/6*5^(1/2))/(2/3*gamma-8/11) 1771153786029533 a001 11/3*317811^(20/41) 1771153800836538 m001 (Catalan-Otter)/(-StronglyCareFree+Tetranacci) 1771153808504302 m005 (1/2*5^(1/2)-5)/(2/5*Zeta(3)-7/10) 1771153811132386 r005 Re(z^2+c),c=-107/98+7/37*I,n=4 1771153812031010 m005 (1/2*Catalan-8/9)/(3/4*gamma+2) 1771153822679204 r005 Im(z^2+c),c=-29/27+12/55*I,n=58 1771153826243581 m001 (KhinchinLevy+Porter)/(exp(1/Pi)+Champernowne) 1771153829888733 r005 Re(z^2+c),c=-101/82+1/22*I,n=60 1771153833437178 a007 Real Root Of -724*x^4-842*x^3+457*x^2-110*x+818 1771153846153846 q001 921/520 1771153856980710 m001 1/ln(GAMMA(7/24))^2/GAMMA(13/24)/exp(1) 1771153857825624 r005 Re(z^2+c),c=-121/102+32/57*I,n=3 1771153859996528 m001 (Magata+ZetaP(4))/(Ei(1,1)+MadelungNaCl) 1771153861114520 r005 Re(z^2+c),c=-7/23+47/64*I,n=3 1771153870210501 g006 Psi(1,4/11)-Psi(1,6/11)-Psi(1,5/9)-Psi(1,7/8) 1771153870592385 a003 cos(Pi*34/115)-cos(Pi*30/83) 1771153877564254 a007 Real Root Of 35*x^4+567*x^3-959*x^2-393*x-62 1771153878324233 r005 Re(z^2+c),c=-3/82+22/39*I,n=55 1771153878569429 m001 ln(5)*GaussKuzminWirsing+GlaisherKinkelin 1771153879965517 m005 (1/5*exp(1)+1/4)/(5/6*gamma+4) 1771153880624305 a001 2207/21*89^(5/43) 1771153883325797 a001 1/987*514229^(26/35) 1771153887831795 m001 (GAMMA(3/4)-Pi^(1/2))/(Grothendieck+Mills) 1771153888071741 l006 ln(760/4467) 1771153893651255 g005 GAMMA(8/11)*GAMMA(7/10)*GAMMA(3/4)/GAMMA(5/6) 1771153894959581 a003 cos(Pi*29/85)*cos(Pi*11/29) 1771153911172864 m005 (3/5*2^(1/2)+2/3)/(3*exp(1)+2/5) 1771153920118425 p003 LerchPhi(1/5,7,106/115) 1771153932011150 r005 Re(z^2+c),c=-7/26+44/63*I,n=11 1771153933918129 m005 (1/2*Zeta(3)+1/3)/(1/3*Catalan+2/9) 1771153937142870 a003 cos(Pi*24/119)+sin(Pi*42/101) 1771153938936544 a007 Real Root Of -418*x^4-801*x^3+99*x^2-138*x-892 1771153942670401 r005 Im(z^2+c),c=-8/27+7/26*I,n=31 1771153946344825 r005 Im(z^2+c),c=-123/106+5/58*I,n=4 1771153955371638 r005 Im(z^2+c),c=-89/94+1/6*I,n=15 1771153957757372 a007 Real Root Of 446*x^4+501*x^3-437*x^2+531*x+706 1771153965814452 a007 Real Root Of -549*x^4-345*x^3+964*x^2+112*x+660 1771153969530183 a007 Real Root Of 588*x^4+645*x^3-254*x^2+643*x-267 1771153974622628 a001 2207/987*75025^(22/37) 1771153984231670 l006 ln(4975/5939) 1771153991585756 a007 Real Root Of -595*x^4-731*x^3+924*x^2+691*x+119 1771153994938436 r002 16th iterates of z^2 + 1771153999006996 h001 (3/7*exp(2)+4/7)/(5/11*exp(1)+7/8) 1771154004476200 m001 (Khinchin+OrthogonalArrays)/(5^(1/2)-gamma(1)) 1771154006303104 m005 (1/3*Zeta(3)-1/5)/(4/11*Catalan+4/5) 1771154007058664 m001 (Grothendieck+MertensB3)/(Mills+ZetaP(2)) 1771154007966913 m001 1/Salem/ln(Champernowne)*TwinPrimes^2 1771154011115660 r002 51th iterates of z^2 + 1771154020455176 a001 1/615*13^(1/30) 1771154029929018 r009 Re(z^3+c),c=-7/40+44/49*I,n=35 1771154030700472 r005 Re(z^2+c),c=-17/14+29/253*I,n=4 1771154032756543 s002 sum(A075538[n]/(n^3*10^n+1),n=1..infinity) 1771154032761402 s002 sum(A075538[n]/(n^3*10^n-1),n=1..infinity) 1771154036118144 m005 (1/2*3^(1/2)+7/9)/(3/8*Pi-1/4) 1771154036312806 m001 Pi*(Psi(2,1/3)-5^(1/2)/exp(gamma)) 1771154040196870 a007 Real Root Of -220*x^4+336*x^3+943*x^2-561*x+80 1771154043830587 r005 Im(z^2+c),c=-8/27+7/26*I,n=33 1771154043986873 a007 Real Root Of 474*x^4+533*x^3-919*x^2-416*x+443 1771154047480008 a001 1364/514229*4181^(39/50) 1771154048431296 r009 Re(z^3+c),c=-19/110+35/39*I,n=49 1771154050119146 r009 Im(z^3+c),c=-51/118+1/31*I,n=59 1771154053543670 a007 Real Root Of 619*x^4+953*x^3-513*x^2-477*x-32 1771154067179103 m001 1/GaussAGM(1,1/sqrt(2))*ln(sin(Pi/5))^3 1771154075253509 r005 Im(z^2+c),c=-12/17+3/19*I,n=17 1771154076415759 a003 cos(Pi*13/109)+sin(Pi*34/107) 1771154076749330 a001 1/15174*(1/2*5^(1/2)+1/2)^32*18^(13/22) 1771154089588204 r009 Im(z^3+c),c=-13/86+35/41*I,n=18 1771154090545252 v002 sum(1/(2^n*(19*n^2-50*n+76)),n=1..infinity) 1771154094348375 r009 Im(z^3+c),c=-31/58+15/44*I,n=4 1771154096426699 a007 Real Root Of 185*x^4+336*x^3+92*x^2-412*x-972 1771154097578003 a007 Real Root Of 728*x^4+635*x^3-902*x^2-102*x-987 1771154099781760 r009 Re(z^3+c),c=-19/62+31/53*I,n=47 1771154111921329 k008 concat of cont frac of 1771154112609219 l006 ln(997/5860) 1771154114212131 k008 concat of cont frac of 1771154114378487 a007 Real Root Of 680*x^4+839*x^3-562*x^2+384*x+413 1771154115397626 r005 Im(z^2+c),c=-14/29+37/61*I,n=50 1771154116262079 m001 (2^(1/2)-GAMMA(7/12))/(Lehmer+ZetaQ(2)) 1771154117300761 a007 Real Root Of -159*x^4+357*x^3+583*x^2-571*x+708 1771154117429439 r005 Im(z^2+c),c=-8/27+7/26*I,n=30 1771154120076055 r002 8th iterates of z^2 + 1771154120800577 a007 Real Root Of 13*x^4-415*x^3+367*x^2+98*x+853 1771154122136776 m005 (1/2*exp(1)+8/11)/(5/11*Pi-1/4) 1771154126179745 r005 Im(z^2+c),c=-5/6+29/241*I,n=45 1771154126712704 s002 sum(A106858[n]/(n*pi^n-1),n=1..infinity) 1771154130131588 r009 Re(z^3+c),c=-1/46+8/27*I,n=7 1771154136376794 a007 Real Root Of 314*x^4+305*x^3-772*x^2-680*x-178 1771154144800261 m001 MinimumGamma^(LaplaceLimit/BesselJ(1,1)) 1771154145151715 a007 Real Root Of -118*x^4+430*x^3+998*x^2+125*x+641 1771154148531304 a003 cos(Pi*10/83)+sin(Pi*36/113) 1771154153212211 k006 concat of cont frac of 1771154161113431 k008 concat of cont frac of 1771154162691705 r005 Re(z^2+c),c=-23/114+1/9*I,n=10 1771154163722172 s002 sum(A273392[n]/(10^n-1),n=1..infinity) 1771154169041954 r005 Im(z^2+c),c=-41/98+8/27*I,n=12 1771154172185042 a007 Real Root Of 115*x^4-79*x^3-593*x^2-644*x-851 1771154173536606 m001 (Landau-ZetaQ(3))/(FeigenbaumC+KhinchinLevy) 1771154177583448 a007 Real Root Of 805*x^4+685*x^3-469*x^2+985*x-900 1771154193585519 m001 (Si(Pi)-sin(1/5*Pi))/(MertensB1+ZetaP(2)) 1771154194222519 r009 Im(z^3+c),c=-17/44+3/34*I,n=18 1771154201287165 a007 Real Root Of 166*x^4+143*x^3+397*x^2+977*x-354 1771154202210669 r002 42th iterates of z^2 + 1771154206155783 a007 Real Root Of -387*x^4-971*x^3-681*x^2-670*x-637 1771154211452272 k007 concat of cont frac of 1771154211671007 a007 Real Root Of 576*x^4+329*x^3-872*x^2+512*x-198 1771154215312786 k007 concat of cont frac of 1771154216503766 m001 Robbin/Backhouse/ln(GAMMA(19/24))^2 1771154224463294 m003 -9/5+(Sqrt[5]*Csch[1/2+Sqrt[5]/2])/32 1771154225106420 a007 Real Root Of -344*x^4+66*x^3+794*x^2-668*x+78 1771154231065452 m001 Landau/KhinchinLevy/Sierpinski 1771154232843962 m001 (ln(2)/ln(10)+sin(1))/(Cahen+ZetaQ(4)) 1771154245903517 m001 (Zeta(1/2)-Kac)/(KhinchinLevy-ZetaQ(3)) 1771154246661834 m001 (exp(1)+Salem)/(Totient+Thue) 1771154250898079 l006 ln(1234/7253) 1771154251881507 l006 ln(6291/7510) 1771154255751657 l006 ln(7331/7462) 1771154258368748 m001 (sin(1)+sin(1/5*Pi))/(-cos(1/5*Pi)+gamma(3)) 1771154259658912 r002 46th iterates of z^2 + 1771154265188150 a007 Real Root Of -64*x^4+384*x^3+402*x^2-462*x+684 1771154266407577 k002 Champernowne real with 29/2*n^2+21/2*n-8 1771154268630410 s002 sum(A273453[n]/(10^n-1),n=1..infinity) 1771154268801520 r005 Im(z^2+c),c=-43/98+17/55*I,n=16 1771154270077469 h001 (3/5*exp(2)+8/11)/(3/8*exp(2)+1/7) 1771154274663524 m005 (1/20+1/4*5^(1/2))/(-37/120+7/24*5^(1/2)) 1771154293929240 s002 sum(A176179[n]/(n*10^n-1),n=1..infinity) 1771154296674777 a007 Real Root Of -31*x^4-555*x^3-129*x^2-444*x-412 1771154297573316 r005 Im(z^2+c),c=25/62+28/45*I,n=6 1771154301581965 a007 Real Root Of 207*x^4-974*x^3+985*x^2-169*x+584 1771154301962790 m001 Pi^(1/2)-ZetaQ(3)*ZetaR(2) 1771154302206667 m005 (1/2*exp(1)-5/11)/(2/9*Catalan-5/7) 1771154302302977 m005 (1/3*exp(1)+2/5)/(5/7*2^(1/2)-3/11) 1771154308421103 m001 1/Salem^2/exp(LaplaceLimit)^2/Trott 1771154311111220 k007 concat of cont frac of 1771154314497008 a001 521/591286729879*514229^(13/14) 1771154314557855 m001 DuboisRaymond^2*ln(Conway)^2/GAMMA(3/4)^2 1771154314954611 m001 (Pi+LandauRamanujan2nd)/(Tetranacci+ZetaP(3)) 1771154315374312 m001 Robbin/ln(LandauRamanujan)^2*TreeGrowth2nd^2 1771154321483852 m001 exp(Rabbit)/LaplaceLimit*gamma 1771154322541238 m001 (gamma-sin(1))/(-BesselI(1,2)+Paris) 1771154323257184 r005 Im(z^2+c),c=-47/50+1/6*I,n=61 1771154323445113 m001 1/BesselJ(0,1)^2/OneNinth^2*ln(cos(Pi/12))^2 1771154324144393 p004 log(33191/5647) 1771154331901995 q001 7012/3959 1771154335680758 h001 (2/9*exp(2)+5/9)/(1/12*exp(2)+5/8) 1771154336273537 a007 Real Root Of -630*x^4-469*x^3+926*x^2-909*x-921 1771154340076590 r009 Re(z^3+c),c=-4/25+44/51*I,n=25 1771154344626139 l006 ln(1471/8646) 1771154348421319 p001 sum(1/(446*n+289)/n/(8^n),n=1..infinity) 1771154354815740 m005 (1/2*Zeta(3)-3/8)/(1/2*Catalan+9/11) 1771154355681208 m001 (Si(Pi)+GAMMA(17/24))^(1/2) 1771154359695779 m005 (1/2*2^(1/2)+7/11)/(6*2^(1/2)-9/10) 1771154363521813 p004 log(35977/6121) 1771154363986860 a007 Real Root Of -861*x^4-136*x^3+283*x^2+851*x-158 1771154367926055 m001 (BesselI(0,2)-exp(1))/(Pi^(1/2)+CareFree) 1771154369632867 m001 (5^(1/2)-LambertW(1))/(GaussAGM+OneNinth) 1771154370560525 r005 Re(z^2+c),c=-5/6+13/134*I,n=16 1771154373289636 a007 Real Root Of -677*x^4-518*x^3+650*x^2-747*x+422 1771154373619950 h001 (5/12*exp(1)+8/9)/(3/11*exp(1)+2/5) 1771154377783968 m005 (1/2*gamma-5/11)/(4/7*Zeta(3)+1/4) 1771154381545982 m001 (Si(Pi)-exp(Pi))/(-ln(2)+Ei(1)) 1771154388332429 r005 Re(z^2+c),c=-23/27+2/63*I,n=32 1771154393041173 m005 (1/3*Catalan-2/7)/(3^(1/2)-5/8) 1771154397281270 a007 Real Root Of -652*x^4-419*x^3+807*x^2-382*x+880 1771154401614490 m006 (Pi^2+1/4)/(1/3*exp(Pi)-2) 1771154405350392 q001 6091/3439 1771154407826532 a007 Real Root Of -522*x^4-441*x^3+441*x^2-541*x+345 1771154409879601 r002 41th iterates of z^2 + 1771154412343011 l006 ln(1708/10039) 1771154416289138 m001 (Shi(1)+sin(1/5*Pi))/(Zeta(1,2)+ZetaQ(3)) 1771154419556496 m001 1/PrimesInBinary*Niven^2/exp(Tribonacci)^2 1771154426925271 l006 ln(7607/9081) 1771154427621865 a007 Real Root Of 271*x^4-772*x^3+86*x^2+600*x+290 1771154432192867 r005 Re(z^2+c),c=5/58+28/57*I,n=6 1771154432809423 a007 Real Root Of -645*x^4-646*x^3+555*x^2-472*x+181 1771154440039190 a003 sin(Pi*11/52)/cos(Pi*41/106) 1771154441629159 r005 Im(z^2+c),c=-25/58+28/31*I,n=4 1771154444507192 a007 Real Root Of 538*x^4+808*x^3+293*x^2+537*x-773 1771154460773067 a007 Real Root Of 532*x^4+703*x^3-176*x^2+388*x-90 1771154462522329 a001 76/121393*1346269^(9/38) 1771154467027197 m002 -(Sinh[Pi]/Pi^2)+Tanh[Pi]-Tanh[Pi]/Pi^5 1771154472797539 r005 Re(z^2+c),c=37/114+11/50*I,n=17 1771154476991310 r005 Re(z^2+c),c=-11/106+48/61*I,n=57 1771154489890023 m005 (-5/44+1/4*5^(1/2))/(2/9*3^(1/2)-7/11) 1771154491538095 r005 Re(z^2+c),c=21/58+1/3*I,n=44 1771154504967454 q001 517/2919 1771154508818719 a007 Real Root Of 333*x^4+68*x^3-540*x^2+445*x-417 1771154513312116 k007 concat of cont frac of 1771154525128128 a007 Real Root Of 738*x^4+936*x^3-371*x^2+17*x-868 1771154531472024 a007 Real Root Of 635*x^4+983*x^3-454*x^2+166*x+931 1771154533450814 m001 GolombDickman*exp(FibonacciFactorial)/Zeta(3) 1771154538831266 a007 Real Root Of -165*x^4-122*x^3-325*x^2-964*x+258 1771154539518232 a007 Real Root Of -234*x^4-438*x^3-422*x^2-861*x-332 1771154540183375 m001 ln(2^(1/2)+1)+Chi(1)^TwinPrimes 1771154548821283 m005 (1/3*exp(1)-1/7)/(4/11*2^(1/2)-1/12) 1771154552061575 m001 (Paris+Rabbit)/(HardHexagonsEntropy-Si(Pi)) 1771154554664803 a007 Real Root Of 186*x^4+83*x^3-309*x^2-100*x-577 1771154561115329 m002 -Cosh[Pi]-Sinh[Pi]/Pi^6+Pi^2*Tanh[Pi] 1771154562566934 m001 (exp(Pi)+Chi(1))/(-Gompertz+Riemann1stZero) 1771154563079239 m001 ln(Catalan)*LandauRamanujan^2*sin(Pi/5)^2 1771154567772910 m005 (1/2*Zeta(3)+9/10)/(1/9*exp(1)+6/11) 1771154567804918 a007 Real Root Of -475*x^4-679*x^3+151*x^2+9*x+444 1771154569931161 a001 123*317811^(4/19) 1771154570574886 r002 38i'th iterates of 2*x/(1-x^2) of 1771154573311527 a007 Real Root Of 699*x^4+836*x^3-240*x^2+656*x-319 1771154583073181 r009 Re(z^3+c),c=-8/31+9/19*I,n=4 1771154590116608 r005 Im(z^2+c),c=3/50+1/6*I,n=10 1771154590974547 a007 Real Root Of -839*x^4-771*x^3+970*x^2-294*x+409 1771154593580602 m005 (1/2*Zeta(3)-1/10)/(3/4*2^(1/2)-7/9) 1771154600205827 r005 Re(z^2+c),c=-8/29+23/57*I,n=3 1771154601800376 r009 Re(z^3+c),c=-33/106+21/37*I,n=20 1771154603028779 r005 Re(z^2+c),c=11/102+18/49*I,n=39 1771154611052010 m001 1/exp(arctan(1/2))*KhintchineLevy^2*sqrt(2)^2 1771154611498293 m001 (-GAMMA(2/3)+2/3)/(ln(1+sqrt(2))+3) 1771154611533165 m001 Ei(1,1)^Magata*Rabbit^Magata 1771154612841413 a007 Real Root Of 205*x^4-58*x^3-830*x^2-454*x-540 1771154617830273 a007 Real Root Of 849*x^4-549*x^3+125*x^2-913*x+160 1771154622560315 m003 1/2+(33*Sqrt[5])/64-(5*Cot[1/2+Sqrt[5]/2])/2 1771154623255192 m001 StronglyCareFree+Trott2nd^HeathBrownMoroz 1771154625279019 m004 2+5*Pi*Coth[Sqrt[5]*Pi]+2*Sech[Sqrt[5]*Pi] 1771154625560562 m004 2+4/E^(Sqrt[5]*Pi)+5*Pi*Coth[Sqrt[5]*Pi] 1771154625842105 m004 2+5*Pi*Coth[Sqrt[5]*Pi]+2*Csch[Sqrt[5]*Pi] 1771154627335361 r005 Im(z^2+c),c=-45/56+5/48*I,n=59 1771154628095312 m001 Salem^2*Cahen^2/exp(GAMMA(19/24)) 1771154633125147 r009 Im(z^3+c),c=-1/19+47/52*I,n=22 1771154636065525 r005 Re(z^2+c),c=-97/86+10/53*I,n=16 1771154637448404 s001 sum(exp(-4*Pi/5)^n*A252848[n],n=1..infinity) 1771154641888348 m001 (5^(1/2))^arctan(1/3)+PlouffeB 1771154647769904 q001 4249/2399 1771154653789307 a007 Real Root Of -3*x^4+747*x^3-686*x^2-870*x-428 1771154658556016 r002 35th iterates of z^2 + 1771154666790841 r005 Im(z^2+c),c=-111/106+13/64*I,n=49 1771154667264912 r005 Re(z^2+c),c=-3/86+31/50*I,n=22 1771154670217915 m001 GlaisherKinkelin*(GAMMA(13/24)-sin(1/12*Pi)) 1771154671220691 r009 Re(z^3+c),c=-13/54+16/45*I,n=3 1771154671339762 m001 sin(1)*ln(2)*GaussKuzminWirsing 1771154671432878 r005 Im(z^2+c),c=13/58+35/64*I,n=8 1771154678985853 r005 Re(z^2+c),c=-3/52+10/19*I,n=45 1771154682844833 m005 (1/2*Pi-8/11)/(7/8*2^(1/2)-6) 1771154684403898 r005 Im(z^2+c),c=-29/30+3/17*I,n=46 1771154688348557 a001 121393/199*322^(7/12) 1771154690004727 a001 1/105937*4181^(4/53) 1771154692341875 m001 1/LaplaceLimit^2/ln(Artin)*BesselJ(0,1) 1771154694844614 a001 6/2255*1597^(52/59) 1771154695177552 h001 (3/10*exp(2)+6/11)/(3/11*exp(1)+9/11) 1771154695526370 m005 (1/2*5^(1/2)+11/12)/(1/7*Pi+7/10) 1771154707367754 m001 (Robbin-Trott)/(BesselI(1,1)-BesselK(1,1)) 1771154708088638 r005 Re(z^2+c),c=43/126+7/22*I,n=18 1771154717055686 m001 GAMMA(3/4)^(5^(1/2))*GAMMA(3/4)^Stephens 1771154724324752 a007 Real Root Of -676*x^4-740*x^3+591*x^2+161*x+972 1771154728523420 a007 Real Root Of 144*x^4-258*x^3-525*x^2+159*x-922 1771154731042341 a003 cos(Pi*9/98)+sin(Pi*16/53) 1771154740203045 h001 (1/9*exp(2)+3/8)/(1/6*exp(1)+2/9) 1771154750052162 a007 Real Root Of -108*x^4+269*x^3+735*x^2+357*x+884 1771154785531286 r008 a(0)=0,K{-n^6,-40-54*n+4*n^2+34*n^3} 1771154792579062 a003 cos(Pi*22/117)-sin(Pi*17/75) 1771154797426160 m001 BesselK(1,1)/FeigenbaumD/ln(GAMMA(7/24))^2 1771154799865758 a007 Real Root Of 794*x^4+953*x^3-123*x^2+849*x-629 1771154803504000 m001 (GAMMA(11/12)-Psi(2,1/3))/(-Salem+Thue) 1771154807444593 m005 (1/3*Zeta(3)-3/7)/(2/9*gamma-2/7) 1771154811016198 r005 Im(z^2+c),c=31/118+1/21*I,n=24 1771154813583698 m005 (1/2*Zeta(3)+4/5)/(5*3^(1/2)-3/4) 1771154817454007 a007 Real Root Of -882*x^4-848*x^3+653*x^2-968*x+205 1771154823883291 s002 sum(A240180[n]/(n^3*exp(n)-1),n=1..infinity) 1771154827547302 a007 Real Root Of -988*x^4+478*x^3-678*x^2+616*x+134 1771154828311261 k008 concat of cont frac of 1771154832644674 l006 ln(237/1393) 1771154834557669 a007 Real Root Of -55*x^4-946*x^3+524*x^2+438*x-299 1771154844264089 a007 Real Root Of 496*x^4+467*x^3-640*x^2+242*x+150 1771154847508553 a007 Real Root Of 478*x^4+139*x^3-906*x^2+352*x-466 1771154848514131 h005 exp(sin(Pi*1/20)/cos(Pi*7/17)) 1771154848623971 a007 Real Root Of -83*x^4-38*x^3-205*x^2-779*x-131 1771154849832383 a007 Real Root Of 382*x^4+428*x^3-790*x^2-642*x-40 1771154850573522 a007 Real Root Of -353*x^4-641*x^3+104*x^2+446*x+376 1771154851069518 m002 1+(Pi^6*Coth[Pi]*Csch[Pi])/5 1771154854134829 a007 Real Root Of -131*x^4-371*x^3-610*x^2-160*x+858 1771154860415672 a007 Real Root Of -616*x^4-833*x^3+375*x^2-663*x-917 1771154860568276 a001 3571/1346269*4181^(39/50) 1771154862058464 m001 (2^(1/2)+BesselI(0,1))/(ln(3)+PrimesInBinary) 1771154864523981 a007 Real Root Of -692*x^4-401*x^3+958*x^2-439*x+799 1771154865768496 m005 (-7/4+1/4*5^(1/2))/(3/8*gamma-8/9) 1771154867187834 m005 (1/3*exp(1)+2/9)/(1/10*Catalan+6/11) 1771154869611495 q001 3328/1879 1771154869933367 s001 sum(1/10^(n-1)*A032611[n]/n!^2,n=1..infinity) 1771154871276245 m005 (1/2*gamma+7/10)/(5*Zeta(3)-3/7) 1771154878786235 a007 Real Root Of -781*x^4-571*x^3+868*x^2-799*x+375 1771154880480837 a005 (1/cos(3/239*Pi))^735 1771154881722887 m001 (ln(2)+arctan(1/2))/(Kac+Trott2nd) 1771154891367746 r005 Re(z^2+c),c=-5/52+19/42*I,n=15 1771154892265713 a001 13/3571*322^(37/55) 1771154904593695 m005 (1/2*Zeta(3)+5/11)/(4/7*Zeta(3)-1/11) 1771154915544102 a007 Real Root Of -45*x^4-758*x^3+649*x^2-726*x+348 1771154916223433 a007 Real Root Of 329*x^4+576*x^3-x^2-5*x-43 1771154929051465 a003 cos(Pi*15/113)+cos(Pi*5/29) 1771154931369401 m009 (5/6*Psi(1,1/3)-1/2)/(5/6*Psi(1,2/3)-3) 1771154937379335 m005 (1/2*Pi+3/7)/(6/7*2^(1/2)-1/12) 1771154939869048 a007 Real Root Of 158*x^4-301*x^3-455*x^2+940*x-135 1771154959131560 m001 StronglyCareFree+LandauRamanujan2nd^ZetaQ(3) 1771154961606377 m001 (Psi(2,1/3)+Grothendieck)/(Mills+Niven) 1771154973964959 a001 23725150497407/233*21^(2/11) 1771154975443710 r002 27th iterates of z^2 + 1771154977714393 m001 GAMMA(11/24)^2*ErdosBorwein/ln(Zeta(3))^2 1771154979551296 a007 Real Root Of 796*x^4+960*x^3-756*x^2-471*x-962 1771154980437668 m003 -23-Tan[1/2+Sqrt[5]/2]/4 1771154980857858 a007 Real Root Of -572*x^4-509*x^3+549*x^2-644*x-62 1771154985399632 m001 BesselI(0,1)*ZetaQ(2)-Tribonacci 1771154992311811 a001 5/39603*2^(21/43) 1771155007017670 r005 Re(z^2+c),c=-38/31+2/39*I,n=52 1771155011220018 h001 (9/11*exp(1)+10/11)/(5/12*exp(1)+7/11) 1771155017711550 k006 concat of cont frac of 1771155026877990 m005 (2/3*gamma-1/6)/(3*gamma-1/2) 1771155026877990 m007 (-2/3*gamma+1/6)/(-3*gamma+1/2) 1771155033452067 a007 Real Root Of -839*x^4-612*x^3+997*x^2-990*x-25 1771155033971587 q001 5735/3238 1771155038007771 r009 Re(z^3+c),c=-11/56+58/61*I,n=39 1771155041627305 p004 log(34217/28663) 1771155042673217 r005 Im(z^2+c),c=-2/21+5/23*I,n=11 1771155048854852 a007 Real Root Of -54*x^4-967*x^3-240*x^2-950*x-301 1771155052512379 a001 1926/726103*4181^(39/50) 1771155054518769 r005 Re(z^2+c),c=-7/106+23/45*I,n=62 1771155055465120 h001 (-3*exp(1/2)+2)/(-7*exp(2/3)-3) 1771155069095621 m001 KhinchinLevy+Bloch^TravellingSalesman 1771155070073047 a003 cos(Pi*11/89)+cos(Pi*19/106) 1771155077403692 a007 Real Root Of -626*x^4-469*x^3+862*x^2-42*x+776 1771155087289154 m001 (FeigenbaumDelta-Si(Pi))/BesselI(1,2) 1771155087289154 m001 (Si(Pi)-FeigenbaumDelta)/BesselI(1,2) 1771155089943179 r005 Im(z^2+c),c=-33/64+8/27*I,n=19 1771155094258164 m001 (Psi(2,1/3)+sin(1))/(GAMMA(3/4)+Tribonacci) 1771155110247842 a007 Real Root Of -823*x^3+884*x^2+535*x+852 1771155111112316 k009 concat of cont frac of 1771155114195787 r008 a(0)=2,K{-n^6,-38-37*n^3+n^2+78*n} 1771155116313125 k007 concat of cont frac of 1771155116374430 r005 Re(z^2+c),c=-11/30+35/57*I,n=46 1771155118798638 g002 -Psi(7/12)-Psi(9/11)-Psi(1/10)-Psi(2/9) 1771155121023262 k008 concat of cont frac of 1771155128327770 h005 exp(cos(Pi*12/37)/sin(Pi*17/46)) 1771155130954628 r009 Re(z^3+c),c=-29/98+29/49*I,n=18 1771155133294509 m005 (1/2*Zeta(3)-3/7)/(5/11*2^(1/2)-6/11) 1771155140401202 m005 (5/8+1/4*5^(1/2))/(1/11*Zeta(3)-7/9) 1771155151547632 r005 Im(z^2+c),c=-33/70+9/29*I,n=21 1771155155229417 m001 (Stephens-Tetranacci)/(Landau-Mills) 1771155156134587 m006 (4*ln(Pi)-1/6)/(4/5*ln(Pi)-2/3) 1771155157243848 a001 29/47*(1/2*5^(1/2)+1/2)^10*47^(9/11) 1771155159694565 s002 sum(A220181[n]/(n!^2),n=1..infinity) 1771155161263018 r005 Re(z^2+c),c=5/34+22/31*I,n=5 1771155164235486 a001 4/161*123^(20/49) 1771155165016664 r005 Im(z^2+c),c=-11/10+28/143*I,n=4 1771155165985123 r009 Re(z^3+c),c=-33/94+19/29*I,n=44 1771155168592835 r005 Im(z^2+c),c=-29/70+13/44*I,n=40 1771155171311111 k007 concat of cont frac of 1771155172022837 a007 Real Root Of 617*x^4+794*x^3+113*x^2+941*x-348 1771155179421732 m001 (FellerTornier+ThueMorse)/(BesselK(1,1)-Cahen) 1771155181756102 a007 Real Root Of 423*x^4+449*x^3-263*x^2+350*x-223 1771155189979733 m005 (1/2*Zeta(3)+8/11)/(4*3^(1/2)+4/7) 1771155194656881 r009 Im(z^3+c),c=-61/110+31/51*I,n=21 1771155196123212 k009 concat of cont frac of 1771155197079113 r002 3th iterates of z^2 + 1771155198475892 a001 521/1134903170*610^(13/14) 1771155205783350 r005 Re(z^2+c),c=-55/122+8/15*I,n=18 1771155206975602 r002 51th iterates of z^2 + 1771155211215111 k008 concat of cont frac of 1771155211563988 r005 Im(z^2+c),c=-37/78+19/46*I,n=4 1771155215212816 a007 Real Root Of -312*x^4-835*x^3-474*x^2+135*x+157 1771155225232979 m001 exp(GAMMA(1/6))/Riemann1stZero^2/exp(1)^2 1771155230246074 m001 GlaisherKinkelin-MertensB3^ln(2+3^(1/2)) 1771155232484176 m003 1/2+(9*Sqrt[5])/16+Log[1/2+Sqrt[5]/2]/36 1771155234925207 m001 (-ErdosBorwein+Rabbit)/(BesselI(0,1)-Pi^(1/2)) 1771155237128239 m001 GAMMA(13/24)/exp(Magata)^2/Zeta(7)^2 1771155244929881 s001 sum(1/10^(n-1)*A205222[n],n=1..infinity) 1771155244929881 s001 sum(1/10^n*A205222[n],n=1..infinity) 1771155255729185 a007 Real Root Of 850*x^4+969*x^3-787*x^2-74*x-643 1771155259263298 m001 1/Ei(1)*ln(ErdosBorwein)^2/sin(Pi/12)^2 1771155261221486 q001 2407/1359 1771155262331111 k008 concat of cont frac of 1771155263703586 l006 ln(1316/1571) 1771155264618542 a001 521/17711*34^(28/55) 1771155269078795 h002 exp(12^(1/10)+18^(5/3)) 1771155269078795 h007 exp(12^(1/10)+18^(5/3)) 1771155269366956 r005 Re(z^2+c),c=-7/90+19/37*I,n=19 1771155269413587 k002 Champernowne real with 15*n^2+9*n-7 1771155277027733 m006 (2/3*ln(Pi)-3/5)/(1/6*ln(Pi)-1/5) 1771155278529724 l006 ln(1610/9463) 1771155282037497 a003 cos(Pi*2/73)+cos(Pi*22/101) 1771155285314441 m001 (Psi(2,1/3)+ReciprocalFibonacci)^Ei(1) 1771155285438844 a007 Real Root Of 755*x^4+782*x^3-945*x^2-465*x-944 1771155288869768 m001 (Kac-Paris)/(ln(Pi)+FeigenbaumC) 1771155301929849 r005 Re(z^2+c),c=-11/56+31/64*I,n=6 1771155302684494 m001 1/cos(Pi/5)/exp(BesselJ(1,1))^2*sin(Pi/5)^2 1771155303876491 m001 BesselJ(0,1)^2*exp(GlaisherKinkelin)*Catalan^2 1771155309597010 m005 (1/2*Catalan-10/11)/(2*Zeta(3)+1/7) 1771155320551872 m009 (4/5*Psi(1,3/4)-3/4)/(1/12*Pi^2-3/4) 1771155322627644 r009 Im(z^3+c),c=-25/31+47/64*I,n=2 1771155324156306 a007 Real Root Of -232*x^4+216*x^3+446*x^2-913*x+467 1771155328150457 m001 exp(Pi)^2*Si(Pi)^2/Zeta(5) 1771155329427271 m001 (GlaisherKinkelin-ln(2)/ln(10))/(Landau+Trott) 1771155329764670 m001 DuboisRaymond^(1/3*3^(1/2)*FeigenbaumC) 1771155335078391 a003 cos(Pi*16/75)+sin(Pi*49/109) 1771155336377996 a007 Real Root Of -827*x^4+674*x^3-60*x^2+867*x+160 1771155339623206 a007 Real Root Of -895*x^4-798*x^3+944*x^2-383*x+734 1771155349514603 m001 1/Trott^2*ln(MinimumGamma)^2*Zeta(3)^2 1771155352711295 r005 Re(z^2+c),c=19/58+28/55*I,n=54 1771155355204978 m001 Grothendieck*(Zeta(5)+Zeta(1,2)) 1771155355496023 l006 ln(1373/8070) 1771155359015298 a007 Real Root Of 790*x^4-563*x^3-679*x^2-815*x+168 1771155362042339 m005 (1/3*2^(1/2)+1/8)/(7/11*gamma+3) 1771155363084462 a001 2207/832040*4181^(39/50) 1771155366211325 r002 18th iterates of z^2 + 1771155367956829 a007 Real Root Of 26*x^4-175*x^3-351*x^2-232*x-538 1771155378550687 a007 Real Root Of -285*x^4+116*x^3+836*x^2+55*x+924 1771155398411383 a007 Real Root Of -40*x^4+583*x^3+928*x^2-447*x-70 1771155400757265 a007 Real Root Of 461*x^4+223*x^3-656*x^2+600*x-177 1771155401521206 r009 Re(z^3+c),c=-19/60+21/31*I,n=5 1771155401529342 a007 Real Root Of 751*x^4+973*x^3-874*x^2-907*x-849 1771155407213097 r005 Re(z^2+c),c=-17/94+9/40*I,n=12 1771155407497163 b008 -2+PolyLog[3,2/9] 1771155414619111 k008 concat of cont frac of 1771155421345816 r005 Re(z^2+c),c=-11/106+48/61*I,n=63 1771155423544130 a007 Real Root Of -485*x^4-166*x^3+417*x^2-960*x+842 1771155424712968 m008 (2*Pi^5+1/6)/(1/3*Pi^2+1/6) 1771155424811530 m001 GAMMA(3/4)*ZetaQ(2)+Niven 1771155425153892 a007 Real Root Of -588*x^4-932*x^3+60*x^2-75*x+287 1771155429662289 r005 Re(z^2+c),c=11/30+1/3*I,n=53 1771155432285088 m001 Zeta(5)*(ln(5)+Paris) 1771155435329664 a007 Real Root Of 453*x^3-495*x^2-253*x-516 1771155444293937 m001 1/ln(MertensB1)/GaussAGM(1,1/sqrt(2))^2*Niven 1771155444903564 m001 1/ln(Magata)/GlaisherKinkelin/Ei(1)^2 1771155450431110 a007 Real Root Of -570*x^4-427*x^3+520*x^2-509*x+704 1771155451402222 a007 Real Root Of 540*x^4+755*x^3+609*x^2-867*x-169 1771155455354701 m001 1/exp(Ei(1))/MertensB1*GAMMA(7/24) 1771155464576772 l006 ln(1136/6677) 1771155466927071 a007 Real Root Of 359*x^4+325*x^3-572*x^2+377*x+735 1771155468091087 q001 63/3557 1771155478125705 m001 1/exp(OneNinth)^2/Conway^2/GAMMA(1/3) 1771155488686018 r005 Im(z^2+c),c=-7/6+20/87*I,n=52 1771155490227401 h001 (7/9*exp(1)+4/11)/(1/11*exp(2)+8/11) 1771155492628442 a001 3/2*1364^(39/59) 1771155502073567 r005 Re(z^2+c),c=-7/6+29/192*I,n=18 1771155502345008 a001 24476/89*28657^(47/55) 1771155506814632 m001 1/Zeta(3)*ln(Si(Pi))*sin(Pi/5)^2 1771155507136426 r009 Im(z^3+c),c=-7/48+9/11*I,n=24 1771155507401521 r002 27th iterates of z^2 + 1771155513221111 k009 concat of cont frac of 1771155513690256 m001 1/ln(Catalan)*PisotVijayaraghavan^2/GAMMA(5/6) 1771155514755371 a007 Real Root Of -367*x^4-973*x^3-209*x^2+940*x+168 1771155517599747 m001 (Zeta(5)+CareFree)/(Landau+TreeGrowth2nd) 1771155522355203 r005 Re(z^2+c),c=9/70+11/31*I,n=33 1771155531009961 m001 Zeta(1,2)*ln(FransenRobinson)^2*sqrt(Pi) 1771155532872664 r005 Im(z^2+c),c=-145/126+13/64*I,n=39 1771155535839954 a001 2/121393*75025^(43/52) 1771155537277919 a007 Real Root Of 360*x^4+89*x^3-611*x^2+81*x-988 1771155542082020 r005 Im(z^2+c),c=-12/25+17/55*I,n=56 1771155546102840 a007 Real Root Of -852*x^4-820*x^3+985*x^2-383*x+60 1771155548800026 r005 Im(z^2+c),c=-53/118+18/59*I,n=21 1771155549832474 a007 Real Root Of -222*x^4+20*x^3+295*x^2-501*x+483 1771155551616006 m003 33/8+Sqrt[5]/2+6/Log[1/2+Sqrt[5]/2] 1771155552862399 m001 exp(CareFree)^2/GolombDickman^2/Lehmer 1771155557751025 s002 sum(A108009[n]/((2^n-1)/n),n=1..infinity) 1771155559574050 r005 Im(z^2+c),c=-8/17+19/62*I,n=31 1771155559839727 a007 Real Root Of -563*x^4-956*x^3-601*x^2-852*x+605 1771155582028592 a007 Real Root Of 592*x^4+999*x^3-209*x^2-684*x-831 1771155584585583 r002 10th iterates of z^2 + 1771155590065127 m001 1/exp(Tribonacci)*Cahen*sqrt(3) 1771155590281255 r005 Re(z^2+c),c=-9/106+10/21*I,n=32 1771155590708607 m005 (1/2*gamma+2/7)/(3*2^(1/2)-1) 1771155595996360 q001 3893/2198 1771155609346309 a007 Real Root Of 40*x^4-279*x^3+520*x^2-530*x+464 1771155613628914 m001 exp(1)^GAMMA(2/3)/(Grothendieck^GAMMA(2/3)) 1771155614250273 r005 Re(z^2+c),c=-3/23+21/53*I,n=9 1771155617081543 a001 682/9*(1/2*5^(1/2)+1/2)^3*18^(13/22) 1771155626852554 a007 Real Root Of 186*x^4+407*x^3+290*x^2+639*x+653 1771155631170595 l006 ln(899/5284) 1771155641102457 m001 KhinchinLevy^OneNinth-sin(1) 1771155652076879 m001 (ln(2)-PlouffeB)/(StronglyCareFree+ZetaP(2)) 1771155654070292 a003 sin(Pi*7/71)*sin(Pi*15/76) 1771155660227886 m001 (-Gompertz+Magata)/(Catalan-FeigenbaumAlpha) 1771155665428953 r005 Im(z^2+c),c=-37/106+9/32*I,n=22 1771155666008080 m008 (3/5*Pi^5+3/5)/(1/3*Pi^5+2) 1771155667166942 a001 843/89*1346269^(23/33) 1771155673466753 a007 Real Root Of -270*x^4-221*x^3+32*x^2-530*x+390 1771155673881766 a003 cos(Pi*8/65)+sin(Pi*33/103) 1771155683608418 m001 (GaussAGM+Totient)/(GAMMA(7/12)-ln(2)/ln(10)) 1771155683802928 m001 (2^(1/2)+3^(1/2))/(-KomornikLoreti+Trott) 1771155688225303 h001 (3/11*exp(1)+3/5)/(11/12*exp(2)+4/5) 1771155695965041 r005 Im(z^2+c),c=-85/74+15/61*I,n=45 1771155698040617 r005 Re(z^2+c),c=-5/6+9/98*I,n=28 1771155699193456 r002 14th iterates of z^2 + 1771155702705975 m001 (-ln(3)+LandauRamanujan)/(2^(1/2)-GAMMA(3/4)) 1771155702812507 a003 cos(Pi*6/95)+cos(Pi*13/62) 1771155706923969 r009 Im(z^3+c),c=-9/110+55/61*I,n=10 1771155717909886 a005 (1/sin(40/107*Pi))^378 1771155719243759 a007 Real Root Of -84*x^4+80*x^3-264*x^2-982*x+360 1771155724027439 r005 Im(z^2+c),c=-1/34+10/49*I,n=3 1771155735072714 m001 ln(BesselK(1,1))/Bloch^2*log(1+sqrt(2))^2 1771155740031806 a007 Real Root Of -127*x^4+448*x^3+852*x^2-777*x-310 1771155745801778 q001 5379/3037 1771155747698340 m005 (1/2*5^(1/2)+7/10)/(5/6*gamma+6/11) 1771155752407338 l006 ln(1561/9175) 1771155765088620 r005 Im(z^2+c),c=-11/14+1/106*I,n=22 1771155767661087 m002 -15/4+Pi^2+Cosh[Pi] 1771155768869550 a007 Real Root Of 993*x^4+925*x^3+832*x^2-644*x-136 1771155769583714 m001 GAMMA(1/24)/(MadelungNaCl+GAMMA(1/12)) 1771155775201375 s002 sum(A172550[n]/(10^n+1),n=1..infinity) 1771155775201729 s002 sum(A172550[n]/(10^n-1),n=1..infinity) 1771155781045626 l006 ln(8786/8943) 1771155781393892 m003 1/2+Sqrt[5]/4-(17*Sin[1/2+Sqrt[5]/2])/6 1771155782942943 m001 cos(Pi/12)*GAMMA(2/3)^2 1771155786052224 a007 Real Root Of 364*x^4-914*x^3-128*x^2-775*x+146 1771155789402437 m001 FeigenbaumB^2*exp(DuboisRaymond)^2/gamma 1771155793068300 r009 Re(z^3+c),c=-23/126+48/55*I,n=56 1771155806843689 m001 (Khinchin-Landau)/(ZetaP(3)-ZetaQ(2)) 1771155816549507 a001 53316291173/3*1364^(22/23) 1771155817250172 m001 1/ln(CareFree)^2/GaussKuzminWirsing*TwinPrimes 1771155819527177 a007 Real Root Of 779*x^4+907*x^3-811*x^2-452*x-883 1771155830753353 q001 6865/3876 1771155834716982 m005 (1/2*2^(1/2)+7/8)/(3*exp(1)+7/9) 1771155843450840 m001 (-Kolakoski+Sarnak)/(exp(1)+GlaisherKinkelin) 1771155847260707 s002 sum(A074429[n]/(n^2*10^n+1),n=1..infinity) 1771155848180258 r009 Re(z^3+c),c=-4/15+28/61*I,n=22 1771155866715709 s002 sum(A166976[n]/(pi^n+1),n=1..infinity) 1771155867987536 a001 7/5*4181^(7/23) 1771155870877039 a007 Real Root Of -27*x^4-524*x^3-848*x^2-667*x-199 1771155873952410 a007 Real Root Of 648*x^4+694*x^3-320*x^2+568*x-511 1771155875329397 m001 QuadraticClass/(Paris-Gompertz) 1771155890711914 m005 (1/2*exp(1)+5/11)/(5/8*Zeta(3)+3/11) 1771155898187750 a007 Real Root Of -374*x^4-588*x^3-278*x^2-793*x-119 1771155904104556 p004 log(35597/29819) 1771155917047545 l006 ln(662/3891) 1771155917636588 r002 58th iterates of z^2 + 1771155922458938 a001 5/5778*4^(31/60) 1771155926307978 a007 Real Root Of 390*x^4-226*x^3+227*x^2-645*x-123 1771155928754494 m005 (1/2*Pi+3/5)/(3/5*3^(1/2)-11/12) 1771155929665662 r005 Im(z^2+c),c=-23/58+7/24*I,n=30 1771155930004505 m001 ln(GlaisherKinkelin)*ErdosBorwein^2/GAMMA(1/4) 1771155930207300 a003 cos(Pi*10/119)/sin(Pi*20/109) 1771155933521641 a007 Real Root Of 511*x^4+329*x^3-876*x^2+456*x+355 1771155934338461 a007 Real Root Of 285*x^4+490*x^3-619*x^2-954*x+170 1771155934959471 r005 Re(z^2+c),c=-49/34+27/68*I,n=3 1771155938459417 a007 Real Root Of -679*x^4-930*x^3+693*x^2+934*x+995 1771155953644979 b008 1+LogBarnesG[13*Pi] 1771155959713985 r005 Re(z^2+c),c=-5/114+11/20*I,n=58 1771155960201700 m001 (Zeta(1,-1)+ln(2+3^(1/2)))/(Gompertz+ZetaQ(2)) 1771155963346998 a007 Real Root Of 478*x^4+345*x^3-689*x^2+124*x-406 1771155967372965 m001 Niven^2*exp(MinimumGamma)/sin(1)^2 1771155973632516 m005 (3/4*2^(1/2)+1/5)/(4/5*gamma+1/4) 1771155974587237 r005 Im(z^2+c),c=-15/14+49/253*I,n=9 1771155976611122 m001 GAMMA(19/24)^(5^(1/2))*GAMMA(19/24)^MertensB3 1771155977699320 a007 Real Root Of -569*x^4-243*x^3+878*x^2-459*x+682 1771155980224768 a007 Real Root Of -390*x^4-166*x^3+659*x^2-711*x-411 1771155980419677 a007 Real Root Of 385*x^4+72*x^3-869*x^2+548*x+308 1771155983935751 m001 1-GolombDickman+HardHexagonsEntropy 1771155990344196 m001 (-ReciprocalLucas+Salem)/(Bloch-Catalan) 1771155990997014 r009 Re(z^3+c),c=-2/7+26/43*I,n=18 1771155992607866 a007 Real Root Of x^4+176*x^3-197*x^2+106*x+265 1771156008049233 m001 (Sierpinski-Thue)/(cos(1/5*Pi)-Zeta(1,-1)) 1771156012014181 a001 843/832040*514229^(26/35) 1771156012078394 r002 49th iterates of z^2 + 1771156020479126 a007 Real Root Of 100*x^4-112*x^3-380*x^2+475*x+427 1771156020814578 a007 Real Root Of -23*x^4-366*x^3+689*x^2-817*x-776 1771156021482527 a007 Real Root Of 842*x^4+964*x^3-892*x^2+277*x+359 1771156021604832 a001 76/2504730781961*53316291173^(1/14) 1771156021604832 a001 19/387002188980*63245986^(1/14) 1771156021609327 a001 76/956722026041*75025^(1/14) 1771156025289789 m001 Psi(1,1/3)^FeigenbaumAlpha*Landau 1771156025935799 r005 Im(z^2+c),c=-8/27+7/26*I,n=25 1771156029145155 m005 (1/2*5^(1/2)+5/7)/(7/12*Zeta(3)+1/3) 1771156034301490 r009 Re(z^3+c),c=-5/34+29/34*I,n=45 1771156037276444 a007 Real Root Of -477*x^4-511*x^3+321*x^2-219*x+460 1771156039232951 a007 Real Root Of -423*x^4-597*x^3+181*x^2-595*x-776 1771156041391079 l006 ln(8185/9771) 1771156048484659 a007 Real Root Of -224*x^4+109*x^3+855*x^2+139*x+374 1771156048866820 a001 1346269/843*123^(1/2) 1771156049933960 m001 GlaisherKinkelin+MasserGramain^GAMMA(13/24) 1771156056280763 a007 Real Root Of 732*x^4-142*x^3+232*x^2-786*x-148 1771156064662704 r002 60th iterates of z^2 + 1771156086571186 p004 log(37253/36599) 1771156089978464 a001 5778*233^(27/43) 1771156090507894 a003 cos(Pi*2/85)+sin(Pi*20/71) 1771156090984548 m001 (Artin+RenyiParking)/(cos(1/5*Pi)-3^(1/3)) 1771156102792666 r005 Im(z^2+c),c=-25/42+21/58*I,n=29 1771156110362481 a007 Real Root Of 289*x^4-53*x^3-978*x^2+601*x+994 1771156111976466 a001 75025/199*322^(2/3) 1771156112647999 a007 Real Root Of -899*x^4-955*x^3+587*x^2-606*x+626 1771156112811121 k007 concat of cont frac of 1771156118911217 m001 (Ei(1)+exp(1/Pi))/(MadelungNaCl+Paris) 1771156123741121 k006 concat of cont frac of 1771156131033137 a007 Real Root Of 464*x^4+679*x^3-350*x^2-151*x+37 1771156138259833 q001 1486/839 1771156144118526 r002 63th iterates of z^2 + 1771156144294959 m001 (Zeta(3)-KhinchinLevy)/(Lehmer-Porter) 1771156145865880 r009 Re(z^3+c),c=-9/50+11/13*I,n=11 1771156148281260 m001 (Zeta(1/2)+GAMMA(17/24))/(Bloch-MinimumGamma) 1771156150533202 m005 (1/2*2^(1/2)+1/3)/(7/10*3^(1/2)-5/8) 1771156153481133 l006 ln(1087/6389) 1771156153481133 p004 log(6389/1087) 1771156155133289 r002 10th iterates of z^2 + 1771156161731727 r009 Re(z^3+c),c=-13/74+39/55*I,n=16 1771156171312221 k008 concat of cont frac of 1771156176095776 m001 2*Pi/GAMMA(5/6)/Magata*Trott 1771156177115617 k006 concat of cont frac of 1771156181401284 r009 Re(z^3+c),c=-11/29+41/60*I,n=60 1771156190384628 l006 ln(6869/8200) 1771156191277324 a007 Real Root Of -787*x^4-862*x^3+831*x^2-234*x-66 1771156192249988 a007 Real Root Of -207*x^4+305*x^3+493*x^2-974*x+460 1771156194700609 r002 47th iterates of z^2 + 1771156196806974 m001 1/Ei(1)^2/FeigenbaumKappa/exp(GAMMA(3/4))^2 1771156207559548 r002 54th iterates of z^2 + 1771156212077262 r004 Im(z^2+c),c=5/42+5/22*I,z(0)=exp(1/8*I*Pi),n=2 1771156217108970 a003 cos(Pi*4/37)+sin(Pi*32/103) 1771156222180984 r002 3th iterates of z^2 + 1771156223256063 m001 (cos(1/12*Pi)+BesselJ(1,1))/(3^(1/3)-5^(1/2)) 1771156232877001 a003 cos(Pi*8/99)+cos(Pi*13/64) 1771156233952839 m001 (Pi+BesselJ(0,1))/(ln(5)+Gompertz) 1771156234285330 a007 Real Root Of -726*x^4-530*x^3+964*x^2-937*x-484 1771156234898037 a001 7/3*4181^(27/52) 1771156238905655 r005 Im(z^2+c),c=-29/56+19/60*I,n=59 1771156248382413 a007 Real Root Of -780*x^4-738*x^3+979*x^2+71*x+630 1771156251322512 k008 concat of cont frac of 1771156253420570 a007 Real Root Of -68*x^4+607*x^3+586*x^2+939*x-188 1771156256998996 l006 ln(1512/8887) 1771156271148043 m005 (1/2*exp(1)+2/11)/(3*exp(1)+6/11) 1771156272005177 a001 305/161*322^(12/31) 1771156272419597 k002 Champernowne real with 31/2*n^2+15/2*n-6 1771156273766792 b008 LogGamma[-8+E^3] 1771156281379586 a001 4181/322*123^(2/31) 1771156282508163 m001 (Kac+MasserGramain)/(Ei(1,1)+Zeta(1,2)) 1771156293475947 r005 Re(z^2+c),c=-9/46+33/43*I,n=64 1771156295790994 m001 (Pi-exp(-1/2*Pi))/(Artin+GlaisherKinkelin) 1771156309810697 a001 18/956722026041*17711^(7/10) 1771156310362314 m001 TreeGrowth2nd/ln(Magata)^2/sqrt(1+sqrt(3)) 1771156313748890 a005 (1/sin(29/79*Pi))^519 1771156326421338 a007 Real Root Of 622*x^4+880*x^3-877*x^2-382*x+843 1771156332423461 m001 GolombDickman*exp(ArtinRank2)/sin(1)^2 1771156332697648 m005 (1/2*Pi-5/11)/(3/11*exp(1)-1/9) 1771156338368469 m001 1/Bloch/ln(CopelandErdos)^2*KhintchineHarmonic 1771156340393130 a005 (1/cos(70/173*Pi))^25 1771156340846586 r005 Re(z^2+c),c=-9/110+23/49*I,n=9 1771156343646668 a003 cos(Pi*22/67)-cos(Pi*34/87) 1771156346673948 m004 5*Pi+(37*Log[Sqrt[5]*Pi])/36 1771156356204715 r005 Re(z^2+c),c=-11/9+1/97*I,n=32 1771156357594139 m001 TwinPrimes^GAMMA(5/24)-GAMMA(11/24) 1771156360315197 m001 Totient^GAMMA(2/3)*exp(-1/2*Pi)^GAMMA(2/3) 1771156363017164 s002 sum(A054026[n]/(n!^3),n=1..infinity) 1771156367460054 r009 Re(z^3+c),c=-37/110+25/53*I,n=5 1771156369655861 m001 (ln(2)+GAMMA(17/24))/(CareFree+ThueMorse) 1771156371552246 a007 Real Root Of -571*x^4-723*x^3+533*x^2+332*x+518 1771156377488384 a007 Real Root Of -358*x^4-182*x^3+234*x^2-731*x+483 1771156386591224 m001 (Si(Pi)+1/3)/(LambertW(1)+2/3) 1771156389991441 m001 (Mills+ZetaQ(2))/(2^(1/2)-MasserGramain) 1771156390833047 a007 Real Root Of 707*x^4-641*x^3+653*x^2-777*x+120 1771156392854983 m001 Trott*ln(Champernowne)^2*GAMMA(11/24)^2 1771156393879606 m001 KomornikLoreti+gamma(1)^PisotVijayaraghavan 1771156398332650 r009 Im(z^3+c),c=-91/110+24/35*I,n=2 1771156409997843 l006 ln(5553/6629) 1771156411692291 p004 log(21377/3637) 1771156415376289 a001 843/1346269*3^(53/56) 1771156417415358 a007 Real Root Of 82*x^4-332*x^3-604*x^2+228*x-353 1771156422049447 m001 (-Backhouse+Niven)/(sin(1)+BesselI(1,1)) 1771156422052738 m001 ln(2)^GAMMA(1/12)/(GAMMA(1/3)^GAMMA(1/12)) 1771156422380440 r005 Re(z^2+c),c=-1/42+34/59*I,n=54 1771156423143414 a007 Real Root Of -105*x^4+84*x^3+146*x^2-354*x+415 1771156424882846 a007 Real Root Of -5*x^4-882*x^3+635*x^2+220*x-15 1771156430169388 a001 3571/18*(1/2*5^(1/2)+1/2)*18^(13/22) 1771156431769275 a001 2178309/199*123^(1/10) 1771156440126583 a007 Real Root Of -871*x^4-966*x^3-115*x^2+852*x+150 1771156443587391 h005 exp(cos(Pi*12/43)*sin(Pi*19/54)) 1771156449041208 a007 Real Root Of 287*x^4+389*x^3-146*x^2-985*x-168 1771156453843754 m001 Lehmer^2*LandauRamanujan/exp(exp(1)) 1771156455074208 r005 Re(z^2+c),c=-15/82+31/46*I,n=21 1771156458357308 a007 Real Root Of 873*x^4-590*x^3-347*x^2-896*x+172 1771156460202333 m001 GAMMA(23/24)/FeigenbaumAlpha/exp(Pi) 1771156460202333 m001 GAMMA(23/24)/exp(Pi)/FeigenbaumAlpha 1771156460202333 m001 exp(-Pi)/FeigenbaumAlpha*GAMMA(23/24) 1771156462585034 q001 6509/3675 1771156465755151 m001 GlaisherKinkelin*(DuboisRaymond+KhinchinLevy) 1771156469377991 m001 Champernowne-MadelungNaCl^ln(Pi) 1771156473711177 m005 (1/3*Pi-1/8)/(5/9*gamma+1/5) 1771156475683465 r009 Re(z^3+c),c=-1/74+23/30*I,n=8 1771156478832123 m005 (1/2*Catalan+6)/(4/11*Pi-7/9) 1771156481110032 r002 26th iterates of z^2 + 1771156491637471 a007 Real Root Of 824*x^4+748*x^3-859*x^2-943*x+189 1771156495371490 m001 (-exp(sqrt(2))+2)/(ln(2)+1/2) 1771156496743699 a007 Real Root Of 641*x^4+994*x^3+5*x^2+429*x-41 1771156497374161 a007 Real Root Of 862*x^4+996*x^3-129*x^2+882*x-982 1771156509859861 a001 514229/4*3^(7/24) 1771156512407330 m001 (-DuboisRaymond+Kolakoski)/(Catalan-gamma) 1771156521761106 l006 ln(425/2498) 1771156523849328 a007 Real Root Of -955*x^4-504*x^3-507*x^2+570*x+115 1771156530032619 p003 LerchPhi(1/1024,2,347/146) 1771156535940976 m001 (BesselJ(0,1)-exp(Pi))/(-Stephens+Tribonacci) 1771156536347548 a007 Real Root Of -808*x^4-786*x^3+413*x^2-810*x+854 1771156539212276 a001 4/13*832040^(36/37) 1771156541491366 r002 42th iterates of z^2 + 1771156556559632 m005 (1/3*2^(1/2)-1/3)/(4/9*exp(1)-3/7) 1771156558533145 q001 5023/2836 1771156559213643 v002 sum(1/(5^n*(n^3-5*n^2+8*n+10)),n=1..infinity) 1771156567956242 r009 Re(z^3+c),c=-9/29+18/31*I,n=23 1771156569061373 a001 1/18*(1/2*5^(1/2)+1/2)^18*18^(13/22) 1771156572517401 h001 (3/5*exp(1)+7/9)/(2/7*exp(1)+7/12) 1771156585571520 h001 (1/11*exp(2)+3/11)/(5/8*exp(2)+5/7) 1771156586039439 r002 35th iterates of z^2 + 1771156601095104 m001 (1-LambertW(1))/(Grothendieck+Robbin) 1771156601413628 r002 43th iterates of z^2 + 1771156602355984 r005 Re(z^2+c),c=13/62+13/29*I,n=29 1771156602764906 m001 exp(Paris)^2*Bloch*GAMMA(7/24) 1771156611218514 s002 sum(A156489[n]/((pi^n+1)/n),n=1..infinity) 1771156612121791 m001 (Pi+Psi(2,1/3)*Zeta(1,-1))*exp(1/exp(1)) 1771156628443875 m001 FransenRobinson-MertensB2^GAMMA(11/12) 1771156632029991 a005 (1/sin(94/203*Pi))^1790 1771156642596045 a001 365435296162/3*3571^(14/23) 1771156643751287 a007 Real Root Of -349*x^4-730*x^3-895*x^2-795*x+778 1771156672216152 r004 Im(z^2+c),c=-13/18+2/15*I,z(0)=-1,n=25 1771156673548086 r005 Im(z^2+c),c=29/78+23/34*I,n=13 1771156678167815 p004 log(26861/22501) 1771156679367235 m001 LambertW(1)^((1+3^(1/2))^(1/2))*ZetaP(2) 1771156687204902 r005 Im(z^2+c),c=-41/74+15/47*I,n=30 1771156687769900 a007 Real Root Of 511*x^4+800*x^3-552*x^2-822*x-308 1771156688567162 r005 Re(z^2+c),c=-101/122+1/29*I,n=4 1771156695623068 r002 7th iterates of z^2 + 1771156696100585 m001 GAMMA(19/24)/ErdosBorwein/ThueMorse 1771156706580399 m008 (2/3*Pi-3/4)/(1/4*Pi^5-3/5) 1771156706650311 m005 (1/2*2^(1/2)-5/9)/(1/12*3^(1/2)-1) 1771156708637025 a001 12586269025/3*9349^(21/23) 1771156711515990 a007 Real Root Of -31*x^4-500*x^3+865*x^2-77*x-139 1771156714189666 r002 9th iterates of z^2 + 1771156724696685 a001 12586269025/3*24476^(19/23) 1771156726326805 r005 Re(z^2+c),c=3/26+17/58*I,n=7 1771156727128057 a001 6557470319842/3*167761^(4/23) 1771156727138477 a001 75283811239*1149851^(9/23) 1771156727138989 a001 53316291173/3*7881196^(10/23) 1771156727138991 a001 5702887/3*2139295485799^(13/23) 1771156727138999 a001 433494437/3*20633239^(16/23) 1771156727139001 a001 34111385*54018521^(17/23) 1771156727139001 a001 39088169/3*2537720636^(15/23) 1771156727139001 a001 2971215073/3*141422324^(12/23) 1771156727139001 a001 267914296/3*119218851371^(11/23) 1771156727139001 a001 4052739537881/3*370248451^(3/23) 1771156727139001 a001 591286729879/3*969323029^(5/23) 1771156727139001 a001 20365011074/3*6643838879^(8/23) 1771156727139001 a001 12586269025/3*817138163596^(7/23) 1771156727139001 a001 956722026041/3*23725150497407^(3/23) 1771156727139001 a001 53316291173/3*312119004989^(6/23) 1771156727139001 a001 6557470319842/3*28143753123^(2/23) 1771156727139001 a001 956722026041/3*10749957122^(4/23) 1771156727139001 a001 2971215073/3*73681302247^(9/23) 1771156727139001 a001 433494437/3*505019158607^(10/23) 1771156727139001 a001 433494437/3*228826127^(14/23) 1771156727139002 a001 2971215073/3*33385282^(13/23) 1771156727139005 a001 365435296162/3*12752043^(7/23) 1771156727139006 a001 9227465/3*9062201101803^(12/23) 1771156727139021 a001 956722026041/3*4870847^(6/23) 1771156727139197 a001 1346269/3*1568397607^(19/23) 1771156727139197 a001 1346269/3*87403803^(22/23) 1771156727139246 a001 53316291173/3*1860498^(11/23) 1771156727140341 a001 514229/3*17393796001^(18/23) 1771156727140341 a001 514229/3*14662949395604^(14/23) 1771156727140341 a001 514229/3*599074578^(21/23) 1771156727142051 a001 433494437/3*710647^(20/23) 1771156727148183 a001 196418/3*1322157322203^(16/23) 1771156727157814 a001 2971215073/3*271443^(18/23) 1771156727196309 a001 956722026041/3*103682^(8/23) 1771156727570347 a001 28657/3*45537549124^(20/23) 1771156727570347 a001 28657/3*3461452808002^(17/23) 1771156727875487 a001 53316291173/3*39603^(15/23) 1771156728821650 a001 6557470319842/3*15127^(5/23) 1771156732651042 m001 cos(1)*(Khinchin+Lehmer) 1771156735102653 q001 3537/1997 1771156751283949 s002 sum(A087623[n]/(n*exp(n)-1),n=1..infinity) 1771156753499807 m001 (exp(Pi)+1)/(-MinimumGamma+Paris) 1771156754206259 r005 Im(z^2+c),c=-13/14+31/191*I,n=52 1771156766033512 l006 ln(4237/5058) 1771156768652980 a007 Real Root Of 347*x^4+194*x^3-606*x^2+193*x-94 1771156769286079 h005 exp(sin(Pi*8/49)/cos(Pi*6/35)) 1771156773119158 a007 Real Root Of 104*x^4-296*x^3-532*x^2+445*x-211 1771156776337324 a007 Real Root Of -636*x^4-964*x^3+116*x^2+60*x+645 1771156781710099 r005 Im(z^2+c),c=-12/25+17/55*I,n=62 1771156782551534 a007 Real Root Of 347*x^4+18*x^3+648*x^2-759*x-155 1771156783704382 m001 (Paris-Weierstrass)/(GlaisherKinkelin-Magata) 1771156783772701 m001 1/OneNinth/ln(Si(Pi))^2/sinh(1)^2 1771156787984007 r005 Im(z^2+c),c=-1/8+37/55*I,n=63 1771156789235688 m001 Si(Pi)^(1/3*3^(1/2)*ErdosBorwein) 1771156790926536 r005 Im(z^2+c),c=-23/25+6/19*I,n=7 1771156790952797 m001 ln(Pi)+BesselI(0,2)^Magata 1771156795140673 m005 (21/4+1/4*5^(1/2))/(9/10*exp(1)+5/6) 1771156795390772 l006 ln(1463/8599) 1771156798880166 a007 Real Root Of -130*x^4+372*x^3+650*x^2-703*x+62 1771156800606202 r005 Im(z^2+c),c=-91/114+6/59*I,n=54 1771156802898578 r009 Re(z^3+c),c=-39/118+22/35*I,n=33 1771156804369300 m004 1+(151*Sqrt[5]*Pi)/6-Sin[Sqrt[5]*Pi] 1771156809669380 r009 Im(z^3+c),c=-1/19+47/52*I,n=18 1771156809694595 m001 (Si(Pi)+BesselI(0,1))/(cos(1/12*Pi)+Kolakoski) 1771156810242058 a003 cos(Pi*6/113)+sin(Pi*25/87) 1771156819534314 a007 Real Root Of -725*x^4-641*x^3+631*x^2-526*x+662 1771156820102629 m001 1/GAMMA(5/6)*BesselK(0,1)*exp(GAMMA(7/24))^2 1771156825284382 m001 MasserGramain+FibonacciFactorial^Stephens 1771156828203698 m001 Magata*exp(LaplaceLimit)^2*sinh(1)^2 1771156835848193 r002 3th iterates of z^2 + 1771156835848193 r002 3th iterates of z^2 + 1771156837597076 m001 GolombDickman^ErdosBorwein-MasserGramain 1771156840822507 m001 (ln(2)+ArtinRank2)/(Champernowne+Robbin) 1771156847305461 a007 Real Root Of -338*x^4-479*x^3+13*x^2-686*x-591 1771156848773539 m004 2+5*Pi+3*Sech[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 1771156849058809 m004 2+5*Pi+(6*Sin[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 1771156849344078 m004 2+5*Pi+3*Csch[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 1771156858603703 m001 (FeigenbaumMu+GolombDickman)/(exp(Pi)+cos(1)) 1771156860120340 m001 (MertensB2+MinimumGamma)/(Zeta(1,2)-Bloch) 1771156879520599 m009 (1/12*Pi^2-1/5)/(16*Catalan+2*Pi^2+3/4) 1771156889288120 a003 sin(Pi*6/101)*sin(Pi*44/109) 1771156893819334 q001 5588/3155 1771156897387472 r005 Im(z^2+c),c=-19/18+36/211*I,n=4 1771156897676415 a007 Real Root Of -118*x^4-210*x^3-957*x^2+593*x+134 1771156907426018 l006 ln(1038/6101) 1771156913174079 r005 Im(z^2+c),c=-61/70+9/61*I,n=14 1771156913736416 a007 Real Root Of -567*x^4-960*x^3+460*x^2+694*x+32 1771156914581271 r009 Im(z^3+c),c=-1/19+47/52*I,n=20 1771156915201982 m001 (CareFree-MertensB2)/(ln(3)-GAMMA(17/24)) 1771156916855846 a001 956722026041/3*2207^(12/23) 1771156932292793 a007 Real Root Of 705*x^4+702*x^3-753*x^2+292*x-158 1771156932549438 a007 Real Root Of 23*x^4-767*x^3+472*x^2+959*x+856 1771156932685311 a001 2207/18*(1/2*5^(1/2)+1/2)^2*18^(13/22) 1771156940796580 a007 Real Root Of 233*x^4+205*x^3-187*x^2-58*x-670 1771156943823904 r005 Re(z^2+c),c=-11/106+48/61*I,n=54 1771156951700116 s001 sum(exp(-Pi/3)^(n-1)*A259099[n],n=1..infinity) 1771156958378284 r009 Re(z^3+c),c=-11/102+30/37*I,n=39 1771156965375666 m001 GAMMA(1/24)-GAMMA(5/24)-GAMMA(2/3) 1771156966180742 m001 (3^(1/2)+GAMMA(7/12))/(Artin+Porter) 1771156971745939 m001 1/ln(GAMMA(1/4))/LaplaceLimit^2*Zeta(9) 1771156972896525 m001 ln(3)^arctan(1/3)/LandauRamanujan2nd 1771156973359021 r009 Re(z^3+c),c=-23/114+14/61*I,n=8 1771156993144141 m001 Zeta(1,2)^polylog(4,1/2)*FeigenbaumC 1771156996265448 m001 (BesselI(1,2)+FeigenbaumMu)/(GaussAGM-Landau) 1771157000931326 m001 (cos(1/12*Pi)-gamma)/(Grothendieck+ThueMorse) 1771157004023579 r005 Im(z^2+c),c=-71/74+4/23*I,n=25 1771157004971939 r005 Im(z^2+c),c=-19/56+12/43*I,n=36 1771157006703758 l006 ln(1651/9704) 1771157013749672 a007 Real Root Of 938*x^4+387*x^3+70*x^2-322*x-58 1771157016513299 a007 Real Root Of 477*x^4+121*x^3-913*x^2+268*x-683 1771157016856834 r005 Im(z^2+c),c=-47/50+1/6*I,n=60 1771157024767651 a001 7/610*17711^(17/33) 1771157029071078 m006 (1/Pi+3/5)/(1/2*Pi^2+1/4) 1771157031354675 r004 Re(z^2+c),c=2/11-2/9*I,z(0)=exp(5/24*I*Pi),n=2 1771157032014272 m001 LaplaceLimit^Shi(1)/(Magata^Shi(1)) 1771157032014885 r005 Im(z^2+c),c=-19/56+12/43*I,n=34 1771157034037757 h001 (7/8*exp(1)+1/11)/(2/11*exp(1)+9/10) 1771157042237201 l006 ln(7158/8545) 1771157052244343 a003 cos(Pi*8/43)+sin(Pi*46/119) 1771157055573201 r005 Im(z^2+c),c=-15/26+4/117*I,n=26 1771157056120769 m001 (OneNinth+ZetaP(4))/(gamma+arctan(1/2)) 1771157061365356 m001 ln(TwinPrimes)^2*MinimumGamma^2/(3^(1/3))^2 1771157063980424 r005 Im(z^2+c),c=-135/122+27/50*I,n=4 1771157065673912 r005 Re(z^2+c),c=-15/94+23/33*I,n=52 1771157071951658 m001 (exp(Pi)-ln(3))/(GaussAGM+HardyLittlewoodC5) 1771157074853161 a007 Real Root Of -604*x^4-673*x^3+597*x^2-36*x+268 1771157075670579 r002 21th iterates of z^2 + 1771157077222339 s002 sum(A018616[n]/(n*2^n-1),n=1..infinity) 1771157077705642 b008 Sqrt[Pi*Erf[9/4]] 1771157083332557 r009 Im(z^3+c),c=-73/118+31/64*I,n=9 1771157083808425 m001 (BesselI(0,2)-Khinchin)/(Tribonacci+ZetaP(2)) 1771157083977646 a007 Real Root Of 85*x^4-520*x^3-662*x^2+494*x-774 1771157087629063 p004 log(37423/6367) 1771157093171240 m001 MadelungNaCl/KhintchineHarmonic^2/exp(sinh(1)) 1771157093704217 a007 Real Root Of -372*x^4+297*x^3+855*x^2-971*x+909 1771157100207861 a007 Real Root Of -673*x^4-323*x^3+839*x^2-934*x+542 1771157115559520 r005 Re(z^2+c),c=11/74+33/52*I,n=19 1771157118014015 b008 Gudermannian[3^(-1/2*Pi)] 1771157127045905 r005 Im(z^2+c),c=13/34+10/63*I,n=16 1771157131161232 k009 concat of cont frac of 1771157133367547 a007 Real Root Of -378*x^4-887*x^3-634*x^2-680*x-424 1771157135144112 k008 concat of cont frac of 1771157139115466 m001 exp(Riemann2ndZero)*Rabbit/cos(1) 1771157140770633 m001 (-MertensB1+Trott2nd)/(1+arctan(1/3)) 1771157142489041 r005 Re(z^2+c),c=-19/90+37/49*I,n=54 1771157146794663 a001 9/1292*377^(6/11) 1771157158202586 m001 (5^(1/2)-Psi(2,1/3))^Rabbit 1771157160426661 m001 (FellerTornier+Tribonacci)/(gamma+Cahen) 1771157167530224 q001 2051/1158 1771157174050129 m001 (2^(1/2)+5^(1/2))/(-Riemann2ndZero+ThueMorse) 1771157174811881 l006 ln(613/3603) 1771157197078804 a008 Real Root of (15+6*x+6*x^2-8*x^3) 1771157201878787 a007 Real Root Of -768*x^4-687*x^3+691*x^2-590*x+528 1771157203988126 r005 Im(z^2+c),c=-33/29+5/21*I,n=15 1771157208688068 r005 Re(z^2+c),c=-153/106+25/63*I,n=3 1771157213119132 k006 concat of cont frac of 1771157215202437 r009 Re(z^3+c),c=-23/94+12/31*I,n=10 1771157215286566 r005 Im(z^2+c),c=-9/13+13/53*I,n=26 1771157216032330 m001 (1-BesselI(1,2))/(FellerTornier+Trott) 1771157220036100 r005 Re(z^2+c),c=15/74+28/53*I,n=46 1771157224855984 a001 76*(1/2*5^(1/2)+1/2)*7^(3/16) 1771157225349142 m001 1/Zeta(1/2)^2/Zeta(1,2)/ln(sin(Pi/5))^2 1771157226246627 m009 (5/6*Psi(1,2/3)+2/5)/(1/4*Pi^2-4/5) 1771157231853245 m001 cos(1)^FeigenbaumD-ReciprocalLucas 1771157248046341 a007 Real Root Of 146*x^4-481*x^3-384*x^2+820*x+988 1771157249442841 m001 1/sqrt(3)^2/exp(LaplaceLimit)^2/sqrt(5)^2 1771157251223794 k009 concat of cont frac of 1771157252201458 a003 cos(Pi*23/109)-sin(Pi*47/113) 1771157264814517 m001 Catalan^2*exp(Bloch)*log(2+sqrt(3)) 1771157275425607 k002 Champernowne real with 16*n^2+6*n-5 1771157284357179 r005 Re(z^2+c),c=-27/50+34/57*I,n=53 1771157284960165 a007 Real Root Of 220*x^4+69*x^3-984*x^2-589*x+262 1771157288740265 a007 Real Root Of -831*x^4-698*x^3+917*x^2-892*x-157 1771157291931837 r004 Im(z^2+c),c=-9/14+5/21*I,z(0)=-1,n=37 1771157302564795 m001 GAMMA(23/24)^GAMMA(3/4)/(Cahen^GAMMA(3/4)) 1771157306903701 m001 (ln(gamma)-gamma(2))/(OneNinth-ThueMorse) 1771157307047971 r002 57th iterates of z^2 + 1771157308714732 r002 62th iterates of z^2 + 1771157310662812 a007 Real Root Of -348*x^4-152*x^3+909*x^2-391*x-964 1771157314602259 r002 58th iterates of z^2 + 1771157325254110 m001 (ThueMorse-ZetaQ(3))/(exp(1/exp(1))+GaussAGM) 1771157338820167 r005 Im(z^2+c),c=-43/74+20/59*I,n=57 1771157340207688 a007 Real Root Of 94*x^4+42*x^3+331*x^2+450*x-933 1771157345065245 m001 1*GlaisherKinkelin*sinh(1)^2 1771157348124492 m001 MinimumGamma^BesselJ(0,1)*PisotVijayaraghavan 1771157348179179 a007 Real Root Of -521*x^4-510*x^3+290*x^2-316*x+824 1771157351903261 p004 log(36847/6269) 1771157353931519 a007 Real Root Of 595*x^4+848*x^3+324*x^2+865*x-628 1771157363508625 m001 (3^(1/2)-Conway)/(Gompertz+MasserGramainDelta) 1771157364893899 m001 (BesselK(1,1)+GaussAGM)/(cos(1/5*Pi)+gamma(3)) 1771157365534280 a007 Real Root Of -917*x^4-914*x^3+957*x^2+20*x+979 1771157370514598 m001 (Psi(2,1/3)-Shi(1))/(-Zeta(5)+GAMMA(2/3)) 1771157371096508 l006 ln(1414/8311) 1771157372740471 a007 Real Root Of -759*x^4-780*x^3+431*x^2-724*x+501 1771157373254725 m001 ln(Porter)^2*MertensB1^2/LambertW(1) 1771157374004947 m001 DuboisRaymond^(MadelungNaCl/(1+3^(1/2))^(1/2)) 1771157395201687 q001 6718/3793 1771157405546893 m005 (1/2*5^(1/2)-2/11)/(1/5*3^(1/2)-7/8) 1771157417428085 m003 -1-E^(1/2+Sqrt[5]/2)+5*Tanh[1/2+Sqrt[5]/2]^2 1771157429650358 r005 Im(z^2+c),c=-14/23+3/10*I,n=41 1771157437583592 a007 Real Root Of 355*x^4+594*x^3-795*x^2-923*x+666 1771157439197120 h001 (7/12*exp(2)+4/11)/(7/11*exp(1)+10/11) 1771157442879101 l006 ln(2921/3487) 1771157445290029 a007 Real Root Of -16*x^4-278*x^3+112*x^2+244*x-892 1771157445883540 r009 Re(z^3+c),c=-4/21+8/45*I,n=5 1771157446012337 m001 GAMMA(13/24)^PrimesInBinary/ln(2) 1771157449931967 a001 (2+3^(1/2))^(579/53) 1771157465414938 r005 Im(z^2+c),c=-25/46+17/53*I,n=38 1771157474422487 a003 cos(Pi*23/118)+sin(Pi*43/107) 1771157475545607 m001 (exp(Pi)-gamma(3)*Mills)/Mills 1771157477887388 a007 Real Root Of 125*x^4-739*x^3+855*x^2+106*x+6 1771157482963443 a003 sin(Pi*30/107)+sin(Pi*54/109) 1771157485758459 r005 Re(z^2+c),c=-7/34+4/57*I,n=7 1771157486587282 r002 13th iterates of z^2 + 1771157491513767 a001 34/7*17393796001^(8/23) 1771157491513767 a001 34/7*505019158607^(7/23) 1771157491515902 a001 34/7*710647^(14/23) 1771157491777183 a001 1/377*4181^(39/50) 1771157495256166 q001 4667/2635 1771157496405233 m001 OneNinth/(exp(1)+ReciprocalFibonacci) 1771157498832082 r005 Im(z^2+c),c=-51/62+6/47*I,n=20 1771157501392136 m009 (1/6*Psi(1,2/3)-4/5)/(1/8*Pi^2+2/5) 1771157505275680 m001 (Khinchin+Porter)/(GAMMA(3/4)-FeigenbaumMu) 1771157513696363 m005 (1/2*exp(1)-4)/(9/10*Catalan+2/3) 1771157521311808 l006 ln(801/4708) 1771157523360839 r002 44th iterates of z^2 + 1771157524079840 a007 Real Root Of 163*x^4-630*x^3-965*x^2+860*x-554 1771157535290857 a001 46368/199*322^(3/4) 1771157535547853 m005 (1/2*Zeta(3)-1/8)/(-52/77+2/11*5^(1/2)) 1771157541669303 a007 Real Root Of 496*x^4+518*x^3-351*x^2+88*x-746 1771157548652466 a007 Real Root Of -131*x^4-144*x^3-98*x^2-531*x-144 1771157549824423 h001 (1/7*exp(2)+7/8)/(1/10*exp(1)+9/11) 1771157557556143 r009 Re(z^3+c),c=-1/34+33/56*I,n=17 1771157558058653 r005 Re(z^2+c),c=3/94+25/44*I,n=5 1771157558154009 m001 Kolakoski/ln(Artin)^2/arctan(1/2) 1771157564857097 a007 Real Root Of -791*x^4-958*x^3+944*x^2+463*x+320 1771157569086101 m001 1/(3^(1/3))^2*Lehmer^2*exp(sinh(1))^2 1771157574557823 m001 DuboisRaymond-gamma(3)-ZetaP(3) 1771157604865109 m001 (Pi^(1/2))^Otter-exp(Pi) 1771157606298917 a007 Real Root Of 154*x^4+33*x^3-267*x^2+723*x+786 1771157623823226 p001 sum((-1)^n/(555*n+323)/n/(64^n),n=1..infinity) 1771157626621834 a001 3940598*610^(20/21) 1771157630857232 a003 cos(Pi*9/119)*cos(Pi*53/120) 1771157631518382 m006 (1/4*Pi-4)/(1/3*exp(2*Pi)+3) 1771157635153280 m001 1/exp(GAMMA(5/6))^2/BesselK(0,1)^2/gamma^2 1771157635999225 a007 Real Root Of 651*x^4+626*x^3-811*x^2+52*x-292 1771157636332584 a001 646*29^(59/60) 1771157644549745 r002 15th iterates of z^2 + 1771157645184469 r005 Im(z^2+c),c=-1/58+44/63*I,n=3 1771157645376765 h001 (11/12*exp(1)+5/6)/(4/11*exp(1)+8/9) 1771157647336256 a003 cos(Pi*9/41)+sin(Pi*30/61) 1771157648210936 r005 Re(z^2+c),c=11/28+40/47*I,n=2 1771157648947371 h001 (-5*exp(-2)+2)/(-4*exp(-1)-6) 1771157653898669 r005 Im(z^2+c),c=23/78+2/63*I,n=19 1771157653986256 a001 17711/29*7^(29/53) 1771157657808029 r002 49th iterates of z^2 + 1771157669172709 r005 Im(z^2+c),c=-21/22+21/122*I,n=40 1771157669477879 r005 Re(z^2+c),c=-7/106+23/45*I,n=59 1771157675471308 r005 Re(z^2+c),c=-2/29+30/59*I,n=29 1771157677822008 s002 sum(A114479[n]/(exp(pi*n)+1),n=1..infinity) 1771157680226085 a001 39603/8*46368^(7/59) 1771157680965973 a007 Real Root Of 88*x^4-743*x^3+783*x^2+328*x+225 1771157681696328 h001 (-8*exp(6)+8)/(-9*exp(3)-1) 1771157684331380 m009 (2*Catalan+1/4*Pi^2+5)/(2*Psi(1,3/4)+1/6) 1771157684821401 m005 (2/5*exp(1)+3/5)/(1/6*Catalan+4/5) 1771157691215255 a001 5/7*14662949395604^(15/19) 1771157691641328 r005 Im(z^2+c),c=-8/27+7/26*I,n=28 1771157705201261 r005 Re(z^2+c),c=1/34+13/22*I,n=45 1771157707698405 r005 Re(z^2+c),c=-5/24+1/60*I,n=11 1771157710029639 b008 -1/3+ArcSinh[7*EulerGamma] 1771157714199513 k009 concat of cont frac of 1771157716989576 r005 Im(z^2+c),c=31/118+3/62*I,n=48 1771157731331663 m008 (1/2*Pi^6+3/5)/(1/4*Pi^2+1/4) 1771157733850329 a003 cos(Pi*5/92)*cos(Pi*50/113) 1771157736078638 l006 ln(989/5813) 1771157739310909 a007 Real Root Of 427*x^4+324*x^3-211*x^2+516*x-826 1771157739897059 m005 (1/2*3^(1/2)-1/10)/(4/7*Catalan-1/11) 1771157749062183 m001 (cos(1/12*Pi)-GAMMA(17/24))/(Lehmer-ThueMorse) 1771157752200406 q001 2616/1477 1771157753138800 a007 Real Root Of 380*x^4+356*x^3-37*x^2+789*x-248 1771157753716658 m001 exp(FibonacciFactorial)^2/Conway^2*sin(Pi/12) 1771157753985985 a007 Real Root Of -618*x^4-755*x^3+179*x^2-423*x+576 1771157756628022 a007 Real Root Of -467*x^4-937*x^3-871*x^2-656*x+960 1771157764099906 a007 Real Root Of 290*x^4+529*x^3+198*x^2+674*x+658 1771157765009318 m005 (1/2*Pi+6/7)/(7+3*5^(1/2)) 1771157765980836 r009 Im(z^3+c),c=-29/94+7/53*I,n=6 1771157766226166 m001 (ReciprocalLucas-gamma(2))^sin(1) 1771157770104855 r005 Re(z^2+c),c=-1/24+17/31*I,n=40 1771157771773813 a007 Real Root Of 467*x^4+686*x^3+262*x^2+616*x-515 1771157774228982 r005 Im(z^2+c),c=-67/74+4/17*I,n=43 1771157775626507 a007 Real Root Of -699*x^4-934*x^3+549*x^2+245*x+401 1771157783024733 r005 Re(z^2+c),c=-11/56+34/43*I,n=64 1771157787779191 a001 1364*34^(2/27) 1771157791809244 r005 Im(z^2+c),c=-81/110+11/64*I,n=21 1771157794583608 m001 (ln(gamma)-GAMMA(5/6))/(GaussAGM-Grothendieck) 1771157798257973 a007 Real Root Of -454*x^4-329*x^3+178*x^2-785*x+691 1771157800467568 a007 Real Root Of 670*x^4+401*x^3-877*x^2+882*x-52 1771157801745388 a008 Real Root of x^3-166*x-2616 1771157807588532 a005 (1/sin(88/181*Pi))^607 1771157809555266 a007 Real Root Of 81*x^4-3*x^3-422*x^2-262*x+46 1771157813409070 a008 Real Root of x^2-31370 1771157814383913 m001 1/sin(1)^2*DuboisRaymond^2/ln(sqrt(3))^2 1771157814745672 s001 sum(exp(-4*Pi/5)^n*A004213[n],n=1..infinity) 1771157814765526 r005 Im(z^2+c),c=-7/10+43/178*I,n=25 1771157815140546 h001 (5/8*exp(2)+7/11)/(3/10*exp(2)+3/4) 1771157816700549 a007 Real Root Of 948*x^4+982*x^3-777*x^2+413*x-704 1771157817711578 k006 concat of cont frac of 1771157820331886 h001 (3/7*exp(1)+8/9)/(2/9*exp(1)+5/9) 1771157827973047 l006 ln(7447/8890) 1771157829178718 a007 Real Root Of 809*x^4-106*x^3-966*x^2-694*x-94 1771157829227875 a007 Real Root Of -354*x^4+911*x^3+605*x^2+517*x+78 1771157831338593 m001 (Chi(1)-LambertW(1))^PisotVijayaraghavan 1771157834231312 k009 concat of cont frac of 1771157835630411 r009 Re(z^3+c),c=-3/106+23/43*I,n=20 1771157841169946 a007 Real Root Of -22*x^4-409*x^3-345*x^2-25*x+299 1771157847182571 g006 Psi(1,1/5)-Psi(1,7/12)-Psi(1,4/11)-Psi(1,2/11) 1771157855470509 a001 55/7*29^(7/29) 1771157861931828 h001 (5/8*exp(1)+4/5)/(2/11*exp(1)+11/12) 1771157863287371 h001 (7/12*exp(2)+5/9)/(1/4*exp(2)+9/10) 1771157863936623 r005 Im(z^2+c),c=-61/60+6/31*I,n=35 1771157864918396 a003 sin(Pi*11/96)-sin(Pi*19/107) 1771157880238924 a007 Real Root Of -468*x^4-886*x^3+139*x^2+628*x+359 1771157882236837 l006 ln(1177/6918) 1771157883922422 r005 Im(z^2+c),c=-101/106+6/35*I,n=55 1771157885681189 r005 Im(z^2+c),c=-19/18+7/31*I,n=27 1771157885816757 m001 (KomornikLoreti-Lehmer)/(3^(1/3)-exp(1/Pi)) 1771157897940613 a007 Real Root Of 35*x^4+562*x^3-992*x^2+616*x+372 1771157898878042 m005 (11/20+1/4*5^(1/2))/(4*3^(1/2)-2/3) 1771157902993662 m005 (1/2*3^(1/2)-4/9)/(10/11*exp(1)-1/11) 1771157910477735 h001 (-3*exp(2)+9)/(-4*exp(3)+6) 1771157916332912 a003 sin(Pi*29/101)+sin(Pi*30/67) 1771157918184193 m001 (Zeta(1,2)-PlouffeB)^((1+3^(1/2))^(1/2)) 1771157921104932 p004 log(21859/3719) 1771157925033627 a007 Real Root Of 111*x^4-126*x^3+102*x^2+951*x-428 1771157927897073 r009 Re(z^3+c),c=-11/56+49/51*I,n=43 1771157931767293 m005 (1/2*5^(1/2)-3)/(5/8*exp(1)-7/11) 1771157934663181 a003 cos(Pi*8/51)+sin(Pi*29/83) 1771157935355151 a007 Real Root Of 3*x^4-136*x^3+252*x^2+552*x-598 1771157939055041 a007 Real Root Of -146*x^4-35*x^3-55*x^2-547*x+446 1771157941397294 a007 Real Root Of -734*x^4-635*x^3+645*x^2-443*x+887 1771157943228287 r005 Im(z^2+c),c=-17/30+25/127*I,n=7 1771157944384145 h001 (1/12*exp(1)+5/7)/(1/7*exp(1)+1/7) 1771157944525615 l005 ln(tanh(1065/116*Pi)) 1771157945492830 a007 Real Root Of 365*x^4+191*x^3-704*x^2-368*x-974 1771157952007963 m001 2^(1/3)*5^(1/2)/BesselI(1,2) 1771157952007963 m001 sqrt(5)*(2^(1/3))/BesselI(1,2) 1771157959058967 q001 5797/3273 1771157960188811 m009 (4*Psi(1,1/3)+3/5)/(Psi(1,2/3)-3/4) 1771157963020107 a007 Real Root Of 300*x^4+229*x^3-274*x^2+217*x-436 1771157967001320 s002 sum(A287090[n]/((2*n+1)!),n=1..infinity) 1771157967532941 r005 Im(z^2+c),c=-30/29+1/53*I,n=5 1771157972403798 m001 GAMMA(17/24)/(LandauRamanujan2nd^Lehmer) 1771157973624847 m001 (GAMMA(2/3)+ZetaR(2))^OrthogonalArrays 1771157977888887 m001 (1+Cahen)/(PlouffeB+ZetaP(2)) 1771157978414519 m001 (Backhouse+FeigenbaumC)/(Trott+ZetaP(3)) 1771157988134595 l006 ln(1365/8023) 1771158015747849 a001 11/89*832040^(27/31) 1771158019218704 m001 (Zeta(3)+ln(2))/(HardyLittlewoodC5+TwinPrimes) 1771158022013651 r005 Im(z^2+c),c=-19/56+12/43*I,n=33 1771158023479299 a007 Real Root Of 29*x^4-425*x^3-47*x^2+912*x-884 1771158023517018 r009 Re(z^3+c),c=-27/86+34/53*I,n=56 1771158024700330 m001 Bloch^2/FibonacciFactorial*ln(Khintchine)^2 1771158024980568 m001 (Psi(1,1/3)+3^(1/2))/(Zeta(1,-1)+Paris) 1771158025240756 a007 Real Root Of 46*x^4+758*x^3-971*x^2+544*x-976 1771158031540326 a007 Real Root Of -227*x^4+22*x^3+587*x^2+51*x+605 1771158041305136 m001 (ZetaP(2)-ZetaQ(3))/(GAMMA(17/24)-MertensB2) 1771158043637618 a007 Real Root Of 721*x^4+786*x^3-950*x^2+245*x+686 1771158048353394 p003 LerchPhi(1/256,1,134/237) 1771158049714416 m001 (Backhouse+Sierpinski)/(3^(1/2)-ln(gamma)) 1771158053452072 a005 (1/sin(103/229*Pi))^967 1771158057917746 m005 (3/4*exp(1)-1/6)/(1/4*gamma-1/4) 1771158060870969 r002 19th iterates of z^2 + 1771158061578896 r005 Im(z^2+c),c=-27/56+13/42*I,n=64 1771158068393224 l006 ln(1553/9128) 1771158076505830 l006 ln(4526/5403) 1771158079475087 h001 (2/9*exp(2)+2/7)/(1/11*exp(2)+5/12) 1771158083181666 m001 MertensB1/(Backhouse^Zeta(5)) 1771158092892604 a001 377/2207*521^(23/31) 1771158108290963 m001 Artin*ZetaP(4)+ZetaR(2) 1771158114365270 r005 Im(z^2+c),c=-8/27+7/26*I,n=26 1771158115423715 a007 Real Root Of -481*x^4-895*x^3-488*x^2-758*x-51 1771158120478538 a001 11/75025*2584^(28/31) 1771158121121253 k008 concat of cont frac of 1771158126430515 r002 4th iterates of z^2 + 1771158127293773 r005 Im(z^2+c),c=-19/56+12/43*I,n=38 1771158127377313 a003 cos(Pi*3/74)+sin(Pi*31/109) 1771158127664729 b008 13+67*Sqrt[6] 1771158129175946 q001 3181/1796 1771158132049210 a007 Real Root Of 408*x^4-851*x^3-242*x^2-738*x-13 1771158133117813 m001 (CopelandErdos-Gompertz)/(ln(3)-Zeta(1,2)) 1771158135270302 r002 48th iterates of z^2 + 1771158135889224 a007 Real Root Of 501*x^4+849*x^3-338*x^2-637*x-281 1771158138253927 a007 Real Root Of -301*x^4-87*x^3+714*x^2+266*x+710 1771158148049230 r005 Re(z^2+c),c=-75/74+3/43*I,n=10 1771158150413419 s002 sum(A098862[n]/(pi^n),n=1..infinity) 1771158151137903 a007 Real Root Of -212*x^4-43*x^3+293*x^2-777*x-448 1771158152425430 a007 Real Root Of -710*x^4-775*x^3+311*x^2-619*x+609 1771158154452494 a007 Real Root Of -281*x^4-351*x^3+529*x^2+894*x+739 1771158155504124 m001 (MinimumGamma-Robbin)/(Pi+exp(1/Pi)) 1771158158595453 m001 Kolakoski-Riemann3rdZero^ln(5) 1771158174914417 a007 Real Root Of -291*x^4+74*x^3+729*x^2-730*x-305 1771158175042690 m001 1/exp(FeigenbaumD)/Sierpinski*sin(Pi/12)^2 1771158176059670 r009 Re(z^3+c),c=-19/32+12/23*I,n=42 1771158177557203 a001 3524578/2207*123^(1/2) 1771158178698473 h001 (4/7*exp(2)+3/4)/(9/11*exp(1)+7/12) 1771158182823363 a007 Real Root Of 322*x^4+517*x^3+162*x^2-28*x-854 1771158195383060 a007 Real Root Of -689*x^4-509*x^3-359*x^2+552*x-83 1771158199681573 g005 GAMMA(9/11)*GAMMA(6/11)*GAMMA(4/5)/GAMMA(3/4) 1771158205801886 a007 Real Root Of -582*x^4-965*x^3+323*x^2-138*x-892 1771158208847938 m001 (-Pi^(1/2)+2/3)/GolombDickman 1771158208847938 m001 (2/3-sqrt(Pi))/GolombDickman 1771158214206032 a001 2/98209*514229^(32/37) 1771158214968854 m004 -25+(15*ProductLog[Sqrt[5]*Pi])/Pi 1771158215617660 p003 LerchPhi(1/12,4,303/196) 1771158232004733 a001 843/377*75025^(22/37) 1771158232558171 m001 (ln(Pi)+Zeta(1,-1))/(gamma(1)+Kac) 1771158234789732 m004 2+5*Pi+(3*Sec[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 1771158235383820 r005 Im(z^2+c),c=-19/56+12/43*I,n=41 1771158246949340 m001 Sierpinski/ln(Kolakoski)^2*GAMMA(1/4) 1771158265615602 m001 (LambertW(1)-Zeta(1/2))/ln(Pi) 1771158267814737 m004 6+(5*Sqrt[5]*Pi)/3+2*Sech[Sqrt[5]*Pi] 1771158268096280 m004 6+4/E^(Sqrt[5]*Pi)+(5*Sqrt[5]*Pi)/3 1771158268377823 m004 6+(5*Sqrt[5]*Pi)/3+2*Csch[Sqrt[5]*Pi] 1771158270071604 m001 (exp(1/exp(1))+BesselI(1,2))/(Artin+Totient) 1771158271265950 s002 sum(A198626[n]/((exp(n)+1)/n),n=1..infinity) 1771158271541805 q001 6927/3911 1771158278431617 k002 Champernowne real with 33/2*n^2+9/2*n-4 1771158282671464 r009 Im(z^3+c),c=-43/82+4/41*I,n=2 1771158286849711 r009 Re(z^3+c),c=-1/3+31/48*I,n=63 1771158291882885 m001 (Bloch+FeigenbaumD)/(Mills+Weierstrass) 1771158296854729 a007 Real Root Of 170*x^4-86*x^3-214*x^2+588*x-438 1771158298155546 r005 Re(z^2+c),c=-9/50+8/35*I,n=16 1771158299403531 a007 Real Root Of -170*x^4+245*x^3+537*x^2-478*x+503 1771158314429734 m001 (1+ln(gamma))/(-Otter+ThueMorse) 1771158315540844 m001 RenyiParking*exp(1/exp(1))*GAMMA(13/24) 1771158315540844 m001 exp(1/exp(1))*GAMMA(13/24)*RenyiParking 1771158320951500 r009 Re(z^3+c),c=-7/22+8/13*I,n=60 1771158328271645 r005 Re(z^2+c),c=-35/94+40/63*I,n=8 1771158328476756 m001 -BesselK(1,1)/(-TwinPrimes+1) 1771158328476756 m001 BesselK(1,1)/(1-TwinPrimes) 1771158330940270 r005 Im(z^2+c),c=-123/122+8/33*I,n=15 1771158333789848 m001 (Grothendieck+Tetranacci)/(2^(1/3)+GaussAGM) 1771158334891676 r005 Re(z^2+c),c=-7/48+20/59*I,n=20 1771158336891112 m001 (-BesselI(1,2)+Lehmer)/(GAMMA(3/4)-Psi(2,1/3)) 1771158340378810 m001 (ThueMorse+ZetaQ(4))/(KhinchinHarmonic+Lehmer) 1771158350047455 r005 Im(z^2+c),c=-127/114+6/29*I,n=34 1771158350893990 m001 (Magata-Sarnak)/(3^(1/3)-gamma(1)) 1771158351583366 r005 Im(z^2+c),c=-19/56+12/43*I,n=43 1771158359216790 a001 47/1548008755920*144^(9/11) 1771158362746487 a007 Real Root Of -632*x^4-316*x^3+949*x^2-762*x+137 1771158366361626 r002 32th iterates of z^2 + 1771158376995833 m002 Pi^2+Pi^3+5*Pi^5*Sinh[Pi] 1771158377968765 m009 (32/5*Catalan+4/5*Pi^2-2/5)/(Psi(1,3/4)+5) 1771158378385391 l006 ln(6131/7319) 1771158382273914 m009 (Pi^2-1)/(5*Psi(1,1/3)-2/5) 1771158384837701 r005 Im(z^2+c),c=-19/56+12/43*I,n=39 1771158392434988 q001 3746/2115 1771158395251516 a001 89/11*64079^(41/59) 1771158398501689 a007 Real Root Of 338*x^4+380*x^3-357*x^2+411*x+633 1771158400100420 r005 Im(z^2+c),c=-19/56+12/43*I,n=46 1771158408171557 r005 Im(z^2+c),c=-19/56+12/43*I,n=48 1771158411641395 r005 Im(z^2+c),c=-17/18-43/255*I,n=17 1771158418514488 r005 Im(z^2+c),c=-19/56+12/43*I,n=53 1771158418714825 r005 Im(z^2+c),c=-19/56+12/43*I,n=51 1771158419543268 r005 Im(z^2+c),c=-19/56+12/43*I,n=50 1771158419917172 r005 Im(z^2+c),c=-19/56+12/43*I,n=55 1771158420094651 r005 Im(z^2+c),c=-19/56+12/43*I,n=58 1771158420102447 m001 Riemann1stZero*(Rabbit-ReciprocalLucas) 1771158420235381 r005 Im(z^2+c),c=-19/56+12/43*I,n=60 1771158420302287 r005 Im(z^2+c),c=-19/56+12/43*I,n=63 1771158420307661 r005 Im(z^2+c),c=-19/56+12/43*I,n=56 1771158420337782 r005 Im(z^2+c),c=-19/56+12/43*I,n=62 1771158420350575 r005 Im(z^2+c),c=-19/56+12/43*I,n=64 1771158420354033 r005 Im(z^2+c),c=-19/56+12/43*I,n=61 1771158420498822 r005 Im(z^2+c),c=-19/56+12/43*I,n=59 1771158420536536 r005 Im(z^2+c),c=-19/56+12/43*I,n=57 1771158421402245 r005 Im(z^2+c),c=-19/56+12/43*I,n=54 1771158422541131 r005 Im(z^2+c),c=-19/56+12/43*I,n=52 1771158425831198 r005 Im(z^2+c),c=-19/56+12/43*I,n=49 1771158426734792 a007 Real Root Of 540*x^4+395*x^3-650*x^2+156*x-804 1771158430619151 r005 Im(z^2+c),c=-19/56+12/43*I,n=45 1771158437302661 m005 (1/3*Pi+1/11)/(3/11*gamma-4/5) 1771158438665367 r005 Im(z^2+c),c=-19/56+12/43*I,n=44 1771158438911457 r005 Im(z^2+c),c=-19/56+12/43*I,n=47 1771158444175306 p004 log(25703/4373) 1771158449284769 m005 (4*gamma+3/5)/(13/12+1/4*5^(1/2)) 1771158451663028 m001 1/ln(Bloch)*FransenRobinson^2/Lehmer 1771158453189354 a001 9/133957148*591286729879^(6/11) 1771158453189356 a001 1/829464*2971215073^(6/11) 1771158453189865 a001 9/416020*14930352^(6/11) 1771158453388441 a001 1/2576*75025^(6/11) 1771158454403070 a007 Real Root Of 324*x^4+206*x^3-734*x^2-128*x+32 1771158455530762 a007 Real Root Of 300*x^4+522*x^3-163*x^2+194*x+803 1771158457162701 r005 Im(z^2+c),c=-39/82+13/38*I,n=14 1771158462033592 m001 (Zeta(1/2)+Ei(1,1))/(PlouffeB-Salem) 1771158463402032 r001 6i'th iterates of 2*x^2-1 of 1771158469207592 m001 (PrimesInBinary-exp(1/2))^exp(1) 1771158469816900 a007 Real Root Of -473*x^4-444*x^3+409*x^2-661*x-266 1771158470829336 a007 Real Root Of -265*x^4+339*x^3+866*x^2+775*x-14 1771158486248388 m001 Porter/Magata*exp(sqrt(2)) 1771158488129373 a001 9227465/5778*123^(1/2) 1771158491009600 r005 Im(z^2+c),c=-47/50+1/6*I,n=59 1771158501066891 m001 (Zeta(5)+arctan(1/3))/(Kolakoski-Trott2nd) 1771158502644698 r005 Im(z^2+c),c=-11/10+53/256*I,n=9 1771158511190119 r009 Re(z^3+c),c=-3/10+13/23*I,n=32 1771158512663760 m001 exp(Kolakoski)*Artin^2/MadelungNaCl 1771158514979840 r005 Im(z^2+c),c=-13/31+16/55*I,n=15 1771158518375322 a007 Real Root Of 40*x^4+652*x^3-962*x^2+623*x-904 1771158520439677 r002 6th iterates of z^2 + 1771158523034412 h001 (1/8*exp(1)+2/5)/(5/11*exp(2)+9/11) 1771158528104980 m001 exp(Zeta(1,2))*MadelungNaCl*sin(Pi/12) 1771158533357641 a007 Real Root Of 331*x^4+605*x^3+607*x^2+520*x-879 1771158533441250 a001 24157817/15127*123^(1/2) 1771158538317226 a007 Real Root Of -766*x^4-882*x^3+489*x^2-640*x-30 1771158538684318 r002 10th iterates of z^2 + 1771158540052165 a001 63245986/39603*123^(1/2) 1771158541016684 a001 165580141/103682*123^(1/2) 1771158541157405 a001 433494437/271443*123^(1/2) 1771158541177936 a001 1134903170/710647*123^(1/2) 1771158541180932 a001 2971215073/1860498*123^(1/2) 1771158541181369 a001 7778742049/4870847*123^(1/2) 1771158541181433 a001 20365011074/12752043*123^(1/2) 1771158541181442 a001 53316291173/33385282*123^(1/2) 1771158541181443 a001 139583862445/87403803*123^(1/2) 1771158541181443 a001 365435296162/228826127*123^(1/2) 1771158541181443 a001 956722026041/599074578*123^(1/2) 1771158541181443 a001 2504730781961/1568397607*123^(1/2) 1771158541181443 a001 6557470319842/4106118243*123^(1/2) 1771158541181443 a001 10610209857723/6643838879*123^(1/2) 1771158541181443 a001 4052739537881/2537720636*123^(1/2) 1771158541181443 a001 1548008755920/969323029*123^(1/2) 1771158541181443 a001 591286729879/370248451*123^(1/2) 1771158541181444 a001 225851433717/141422324*123^(1/2) 1771158541181444 a001 86267571272/54018521*123^(1/2) 1771158541181448 a001 32951280099/20633239*123^(1/2) 1771158541181472 a001 12586269025/7881196*123^(1/2) 1771158541181639 a001 4807526976/3010349*123^(1/2) 1771158541182783 a001 1836311903/1149851*123^(1/2) 1771158541190625 a001 701408733/439204*123^(1/2) 1771158541244376 a001 267914296/167761*123^(1/2) 1771158541612790 a001 102334155/64079*123^(1/2) 1771158544137934 a001 39088169/24476*123^(1/2) 1771158553425561 r005 Im(z^2+c),c=-19/56+12/43*I,n=42 1771158554569181 r005 Re(z^2+c),c=-19/16+3/121*I,n=10 1771158555002100 l006 ln(7736/9235) 1771158555587718 a008 Real Root of (2+5*x+5*x^2+6*x^3+x^4-4*x^5) 1771158556995535 a007 Real Root Of 227*x^4-110*x^3-586*x^2+189*x-672 1771158559416674 h001 (1/4*exp(1)+1/6)/(4/7*exp(2)+5/9) 1771158561445532 a001 14930352/9349*123^(1/2) 1771158566886788 h001 (1/3*exp(1)+2/7)/(5/6*exp(2)+4/7) 1771158569285104 a001 365435296162/3*843^(17/23) 1771158570103222 a001 9/416020*4181^(28/53) 1771158574877318 m001 BesselI(1,2)-sin(Pi/5)*BesselJZeros(0,1) 1771158576955209 a007 Real Root Of -663*x^4-662*x^3+349*x^2-483*x+896 1771158585829256 r002 8th iterates of z^2 + 1771158586688578 q001 4311/2434 1771158590257049 r005 Re(z^2+c),c=-23/114+1/9*I,n=14 1771158590761104 m001 exp(Pi)/(MinimumGamma^CareFree) 1771158593867635 s002 sum(A247351[n]/(n*exp(pi*n)-1),n=1..infinity) 1771158595052539 r005 Im(z^2+c),c=-19/56+12/43*I,n=40 1771158595376984 m001 1/Catalan^2*ln(Niven)/Ei(1)^2 1771158608475923 m001 GlaisherKinkelin+(ln(2)/ln(10))^Gompertz 1771158615846570 a003 cos(Pi*8/117)+cos(Pi*21/101) 1771158623121393 m005 (1/2*Zeta(3)-1/4)/(7/10*5^(1/2)+5/12) 1771158623146144 a008 Real Root of (-2-2*x^2-9*x^4+x^8) 1771158623611555 m005 (1/3*3^(1/2)+1/4)/(2/9*Zeta(3)+1/5) 1771158633181302 a007 Real Root Of 511*x^4+93*x^3-758*x^2+996*x-370 1771158638985883 a007 Real Root Of -177*x^4+65*x^3+711*x^2+588*x+914 1771158644595526 a007 Real Root Of -413*x^4-172*x^3+484*x^2-545*x+625 1771158648249704 r005 Im(z^2+c),c=-53/110+13/42*I,n=46 1771158651121903 l006 ln(188/1105) 1771158653316807 m001 (3^(1/3)-Zeta(1/2))/(KhinchinLevy+ZetaP(2)) 1771158653898300 m001 1/ln(Magata)/FeigenbaumDelta/Paris 1771158658705044 m005 (1/3*Catalan-1/10)/(5/11*5^(1/2)+1/7) 1771158662229400 a007 Real Root Of 616*x^4+551*x^3-226*x^2+876*x-740 1771158668870788 m001 (3^(1/2)+Shi(1))/(Ei(1,1)+FeigenbaumKappa) 1771158680073583 a001 1597*123^(1/2) 1771158682166116 m001 GAMMA(5/12)^2*FeigenbaumB/exp(GAMMA(7/12))^2 1771158686206107 m001 Shi(1)+Cahen^LandauRamanujan 1771158689542590 m001 (ZetaQ(2)-ln(2)/ln(10)*ZetaQ(4))/ln(2)*ln(10) 1771158694774454 a001 1201881744*3^(6/17) 1771158697023393 a007 Real Root Of -857*x^4-928*x^3+810*x^2-815*x-707 1771158697456072 m001 (ln(2)/ln(10)+2^(1/3))/(-GAMMA(2/3)+3^(1/3)) 1771158699824188 m001 (-TwinPrimes+ZetaP(4))/(exp(1)+Stephens) 1771158701757651 r009 Re(z^3+c),c=-53/94+39/61*I,n=16 1771158709566606 m001 (ln(5)+Ei(1,1))/(Lehmer+TreeGrowth2nd) 1771158710562801 a007 Real Root Of 215*x^4+64*x^3+849*x^2-974*x-199 1771158710912344 m001 BesselK(1,1)^2/LaplaceLimit*exp(sin(Pi/5))^2 1771158717421971 m001 (-GAMMA(11/12)+Bloch)/(exp(1)+gamma) 1771158735924446 q001 4876/2753 1771158736324177 m001 (5^(1/2)-Shi(1))/(-GAMMA(19/24)+Tribonacci) 1771158746209647 m001 (exp(1/Pi)+OneNinth)/(2^(1/2)-gamma) 1771158753904220 m001 exp(CopelandErdos)^2*Artin/Tribonacci^2 1771158756860362 m001 (MasserGramainDelta-sin(1))/(Otter+Sierpinski) 1771158765423899 m001 gamma(1)+Grothendieck*MertensB2 1771158768991292 a007 Real Root Of 795*x^4+960*x^3-530*x^2+363*x-184 1771158770149143 h001 (9/10*exp(1)+1/8)/(3/10*exp(1)+7/11) 1771158772660359 a007 Real Root Of 429*x^4+69*x^3-560*x^2+832*x-608 1771158773250304 r002 60th iterates of z^2 + 1771158789413329 m001 (ArtinRank2+Niven)/(ln(2)/ln(10)+GAMMA(11/12)) 1771158792631966 a007 Real Root Of 356*x^4+9*x^3-943*x^2+183*x-171 1771158797244473 r005 Re(z^2+c),c=11/54+11/25*I,n=3 1771158804984439 m001 1/MadelungNaCl/exp(FransenRobinson)^2/Salem 1771158807719464 p004 log(33967/5779) 1771158826002662 r005 Re(z^2+c),c=-11/106+48/61*I,n=60 1771158830890975 b008 Log[1/2+Sqrt[5]+Pi] 1771158831355370 a001 12586269025/3*123^(7/9) 1771158840775887 a001 521/18*(1/2*5^(1/2)+1/2)^19*18^(13/20) 1771158841376614 r005 Re(z^2+c),c=-5/32+13/42*I,n=20 1771158842261168 m001 (Stephens-ZetaQ(4))/(Zeta(1/2)-Grothendieck) 1771158844453862 r005 Re(z^2+c),c=-2/25+25/52*I,n=21 1771158845698830 p004 log(27337/4651) 1771158854166666 q001 5441/3072 1771158859465232 m001 (gamma(2)-Artin)/(CareFree+MinimumGamma) 1771158864343112 m001 (GAMMA(2/3)+HardHexagonsEntropy)^BesselI(1,1) 1771158865913716 a007 Real Root Of 657*x^4+525*x^3-795*x^2+745*x+265 1771158866117034 m001 OrthogonalArrays/cos(1)/Porter 1771158870999102 r005 Re(z^2+c),c=-1/12+25/63*I,n=5 1771158878523250 m001 (ln(3)+FeigenbaumC)/Zeta(1,-1) 1771158887071743 m001 FellerTornier+GAMMA(3/4)^MasserGramainDelta 1771158900951286 a008 Real Root of x^5-10*x^2+9*x-2 1771158901480226 r008 a(0)=2,K{-n^6,-16+47*n+9*n^2-36*n^3} 1771158902811569 p003 LerchPhi(1/100,5,511/228) 1771158907408090 r002 54th iterates of z^2 + 1771158913012239 a007 Real Root Of -192*x^4-120*x^3+270*x^2+73*x+505 1771158915149821 p003 LerchPhi(1/2,1,145/194) 1771158933909785 m005 (1/2*Catalan+7/11)/(2/11*2^(1/2)-7/8) 1771158934008981 m004 -5+5*E^(Sqrt[5]*Pi)*Pi+25*Pi*Cos[Sqrt[5]*Pi] 1771158938990064 a007 Real Root Of -631*x^4-601*x^3+736*x^2+155*x+836 1771158943872619 r005 Im(z^2+c),c=-2/3+11/164*I,n=28 1771158949945746 a007 Real Root Of 245*x^4+431*x^3+515*x^2+525*x-702 1771158950162194 q001 6006/3391 1771158956487382 r002 44th iterates of z^2 + 1771158959180945 m001 (Chi(1)-GAMMA(3/4))/(Riemann2ndZero+Thue) 1771158959425180 h001 (-8*exp(1)-2)/(-9*exp(5)-5) 1771158959430189 a001 28657/199*322^(5/6) 1771158961049986 a003 sin(Pi*34/79)-sin(Pi*33/71) 1771158962884256 m001 (2^(1/2))^Otter/((2^(1/2))^Mills) 1771158977097562 a007 Real Root Of -841*x^4-849*x^3+366*x^2-818*x+962 1771158979834259 m001 ln(2+3^(1/2))+Trott2nd^Ei(1,1) 1771158986731538 a003 sin(Pi*1/114)*sin(Pi*2/9) 1771158988653672 a007 Real Root Of 472*x^4+492*x^3-250*x^2+791*x+274 1771158988660720 m001 1/GAMMA(5/6)*exp((2^(1/3)))*LambertW(1) 1771158989337635 a007 Real Root Of 694*x^4+932*x^3+300*x^2+912*x-977 1771158990307075 h001 (5/9*exp(1)+3/4)/(3/7*exp(1)+1/9) 1771158991089542 a007 Real Root Of -317*x^4-144*x^3+37*x^2+745*x-132 1771159002480524 m004 75*Pi*Cos[Sqrt[5]*Pi]+5*Sin[Sqrt[5]*Pi] 1771159012705727 m008 (4*Pi+1/5)/(3/4*Pi^6-1/4) 1771159015763481 b008 E^(-6)-2*Sech[1/2] 1771159023473787 m001 (BesselI(1,2)*Gompertz+OneNinth)/Gompertz 1771159027588683 m001 exp(FeigenbaumD)*Bloch^2/Tribonacci 1771159027762050 a005 (1/sin(114/233*Pi))^1006 1771159028659276 m001 1/ln(GAMMA(7/12))^3*GAMMA(2/3) 1771159029649595 q001 6571/3710 1771159034445722 r005 Im(z^2+c),c=4/11+21/31*I,n=10 1771159036530122 s002 sum(A244097[n]/(n*2^n+1),n=1..infinity) 1771159036619704 a007 Real Root Of -631*x^4-623*x^3+528*x^2-779*x-288 1771159039081771 m005 (1/3*Catalan+1/8)/(9/11*Pi-5) 1771159041410593 r002 3th iterates of z^2 + 1771159051184189 r005 Re(z^2+c),c=-9/106+17/27*I,n=46 1771159053055728 s002 sum(A042478[n]/(n^2*exp(n)-1),n=1..infinity) 1771159059611905 r009 Re(z^3+c),c=-13/74+41/57*I,n=12 1771159060996640 r005 Im(z^2+c),c=-47/50+1/6*I,n=64 1771159061376924 a001 281/6*(1/2*5^(1/2)+1/2)^4*18^(13/22) 1771159062011097 m001 exp(1/Pi)^BesselI(1,1)/((1/2)^BesselI(1,1)) 1771159063280597 r005 Im(z^2+c),c=-21/38+2/63*I,n=48 1771159064569236 a007 Real Root Of 597*x^4-299*x^3-920*x^2-740*x+161 1771159065756963 m001 (KhinchinLevy-Otter)/(FeigenbaumB-FeigenbaumC) 1771159067474874 a007 Real Root Of -15*x^4+44*x^3-400*x^2+481*x+98 1771159069708989 m001 (gamma(3)+OneNinth)/(Robbin-Sarnak) 1771159070306153 m001 (Weierstrass+ZetaQ(4))/(Trott2nd-exp(1)) 1771159072480897 r009 Re(z^3+c),c=-17/56+34/59*I,n=37 1771159072943294 a007 Real Root Of 26*x^4-233*x^3-56*x^2+438*x-599 1771159074694658 a007 Real Root Of -144*x^4+502*x^3+842*x^2-385*x+883 1771159081493907 a007 Real Root Of -579*x^4-765*x^3-146*x^2-916*x+283 1771159082399389 a008 Real Root of (-1-x^2+x^4+x^7-x^9-x^10-x^11+x^12) 1771159087584418 m001 1/ln(Riemann2ndZero)*FeigenbaumB/cosh(1) 1771159093732223 a001 4/28657*89^(30/53) 1771159096550012 q001 7136/4029 1771159097250045 a007 Real Root Of -647*x^4-266*x^3-761*x^2+316*x+79 1771159101293241 m001 GAMMA(17/24)*Riemann1stZero-ZetaP(2) 1771159103626317 r005 Re(z^2+c),c=-13/10+1/7*I,n=4 1771159106457081 h001 (4/9*exp(2)+1/11)/(2/5*exp(1)+9/11) 1771159106699795 a007 Real Root Of 597*x^4+711*x^3-115*x^2+888*x+9 1771159107220194 m001 (ln(2)+Niven)/GAMMA(2/3) 1771159113559256 m005 (1/3*2^(1/2)+1/7)/(1/6*2^(1/2)+1/9) 1771159122031050 r009 Im(z^3+c),c=-91/118+31/35*I,n=2 1771159127533124 m001 Zeta(1,-1)/ln(3)*Salem 1771159131662913 m003 7/4+(Sqrt[5]*Sinh[1/2+Sqrt[5]/2])/256 1771159132159117 k006 concat of cont frac of 1771159133917832 a007 Real Root Of 75*x^4-721*x^3-715*x^2+996*x-737 1771159134107486 r005 Re(z^2+c),c=7/17+15/41*I,n=5 1771159137087609 a003 cos(Pi*12/55)+sin(Pi*29/61) 1771159145669865 m001 (Mills+ZetaQ(2))/(ln(5)-sin(1)) 1771159146129661 m001 Pi-arctan(1/2)*Otter 1771159147658201 a007 Real Root Of 818*x^4+932*x^3-936*x^2+34*x+125 1771159152499112 a007 Real Root Of 699*x^4+762*x^3-622*x^2+696*x+539 1771159164797494 a007 Real Root Of -3*x^4-535*x^3-645*x^2+332*x+87 1771159176162808 m001 (2^(1/3)+Sarnak)^GaussAGM 1771159199207620 a007 Real Root Of -174*x^4-224*x^3+162*x^2+483*x+815 1771159201929649 l006 ln(1643/9657) 1771159206144828 m004 -3/2+5/E^(Sqrt[5]*Pi)-25*Sqrt[5]*Pi 1771159208540418 a007 Real Root Of 829*x^4-431*x^3-445*x^2-614*x-98 1771159214620656 r005 Re(z^2+c),c=-7/44+16/23*I,n=7 1771159216051246 a001 76/591286729879*89^(1/14) 1771159220668514 a007 Real Root Of 399*x^4+636*x^3+281*x^2-693*x+110 1771159222117115 k007 concat of cont frac of 1771159225618955 r002 17th iterates of z^2 + 1771159226171736 m001 (1+GAMMA(2/3))/(-BesselI(1,2)+MertensB1) 1771159226748309 m001 gamma(2)^(Riemann1stZero/CopelandErdos) 1771159229666896 l006 ln(1605/1916) 1771159231161813 k008 concat of cont frac of 1771159232951914 m009 (1/3*Pi^2+1/6)/(5/6*Psi(1,3/4)-1/6) 1771159232971665 m001 1/OneNinth*ln(FibonacciFactorial)*cos(Pi/12)^2 1771159236484863 r005 Im(z^2+c),c=-19/56+12/43*I,n=37 1771159240139749 m001 (PlouffeB+ReciprocalLucas)/(FeigenbaumD-Mills) 1771159242465864 m001 (-GAMMA(19/24)+Kolakoski)/(exp(1)-gamma) 1771159248297429 r005 Im(z^2+c),c=-21/32+8/29*I,n=40 1771159253939153 r005 Im(z^2+c),c=-7/16+5/16*I,n=14 1771159255444733 m001 (Cahen+RenyiParking)/(GAMMA(3/4)-BesselJ(1,1)) 1771159256988080 r005 Re(z^2+c),c=-13/110+24/59*I,n=23 1771159273099288 l006 ln(1455/8552) 1771159274475782 r005 Re(z^2+c),c=-3/62+27/49*I,n=22 1771159277756577 r005 Im(z^2+c),c=-33/86+13/45*I,n=35 1771159281437627 k002 Champernowne real with 17*n^2+3*n-3 1771159283053965 h001 (1/3*exp(1)+5/12)/(9/10*exp(2)+9/11) 1771159285769805 a007 Real Root Of 345*x^4+197*x^3-507*x^2+428*x+48 1771159286172040 m001 (sin(1)+BesselK(0,1))/(-Sarnak+Trott) 1771159291202189 a001 322/233*514229^(1/53) 1771159301093473 p004 log(24551/4177) 1771159306731212 r005 Im(z^2+c),c=-37/46+2/19*I,n=60 1771159313496334 m001 (Artin-Psi(1,1/3))/(-Sarnak+ZetaP(3)) 1771159314451879 m001 FeigenbaumC/KhintchineHarmonic^2*exp(cos(1))^2 1771159316542702 m005 (1/3*gamma+3/4)/(9/11*2^(1/2)-5/8) 1771159330089028 g003 Im(GAMMA(229/60+I*(-17/4))) 1771159334602271 a007 Real Root Of -135*x^4-206*x^3-106*x^2+608*x+110 1771159334645671 m001 OrthogonalArrays/Pi^(1/2)*5^(1/2) 1771159346609759 a001 1/72*(1/2*5^(1/2)+1/2)^23*18^(5/21) 1771159347858349 r005 Re(z^2+c),c=11/102+18/49*I,n=44 1771159356902378 r005 Im(z^2+c),c=-33/70+7/23*I,n=24 1771159364352248 r009 Im(z^3+c),c=-21/118+46/51*I,n=40 1771159365389506 l006 ln(1267/7447) 1771159365615604 b008 EulerGamma*(2+Sqrt[-2+Pi]) 1771159367935039 a001 11/1597*24157817^(1/18) 1771159369560295 m005 (9/8+1/4*5^(1/2))/(5/12*exp(1)-2/11) 1771159371414898 a007 Real Root Of 459*x^4+142*x^3-706*x^2+838*x-29 1771159371543566 a007 Real Root Of 298*x^4-302*x^3-658*x^2+986*x-800 1771159375592620 m005 (1/3*gamma+1/8)/(7/9*Zeta(3)+6/7) 1771159378554673 r005 Re(z^2+c),c=-39/62+36/53*I,n=3 1771159385635447 a007 Real Root Of -663*x^4-468*x^3+434*x^2-932*x+912 1771159395003781 a007 Real Root Of -486*x^4-852*x^3+492*x^2+832*x-21 1771159395059083 a001 3/2207*2^(21/55) 1771159400065613 m001 (ArtinRank2-MertensB1)/(ln(Pi)+ln(2+3^(1/2))) 1771159400208520 r005 Im(z^2+c),c=-8/21+10/49*I,n=3 1771159419259357 l005 720/97/(exp(360/97)+1) 1771159422187507 r009 Re(z^3+c),c=-13/44+11/20*I,n=46 1771159425130739 r005 Im(z^2+c),c=-29/70+13/44*I,n=37 1771159441475636 r005 Im(z^2+c),c=33/98+28/61*I,n=11 1771159448581657 m001 BesselI(0,1)+cos(1/5*Pi)*GolombDickman 1771159448581657 m001 BesselI(0,1)+cos(Pi/5)*GolombDickman 1771159453616675 a007 Real Root Of -499*x^4-783*x^3+92*x^2+378*x+941 1771159460334134 a007 Real Root Of 901*x^4+795*x^3-707*x^2+736*x-928 1771159466519684 q001 1/5646019 1771159472032883 r005 Re(z^2+c),c=-5/21+43/59*I,n=30 1771159474044520 r009 Re(z^3+c),c=-18/31+17/29*I,n=50 1771159481608877 r005 Im(z^2+c),c=1/74+11/60*I,n=11 1771159489840157 l006 ln(1079/6342) 1771159493162770 a001 2178309/1364*123^(1/2) 1771159499131805 m001 (gamma+arctan(1/3))/(-Artin+QuadraticClass) 1771159531874371 m005 (1/2*Zeta(3)+7/10)/(35/72+1/9*5^(1/2)) 1771159540676426 a007 Real Root Of -732*x^4-866*x^3+848*x^2+169*x+31 1771159540903996 a007 Real Root Of -786*x^4-809*x^3+675*x^2-129*x+894 1771159541155312 a007 Real Root Of -482*x^4+817*x^2-772*x+813 1771159541555133 p004 log(17921/3049) 1771159550101490 h001 (2/7*exp(2)+3/7)/(1/12*exp(2)+9/11) 1771159550610733 m001 (2^(1/3)+ln(3)*GolombDickman)/ln(3) 1771159550610733 m001 (ln(3)*GolombDickman+(2^(1/3)))/ln(3) 1771159554779547 m005 (1/3*Catalan+2/5)/(1/9*Catalan-1/2) 1771159559879351 a001 11/2584*139583862445^(1/18) 1771159561591373 a007 Real Root Of -27*x^4+89*x^3-892*x^2+861*x+181 1771159562687177 m001 Conway/exp(1/exp(1))*ReciprocalLucas 1771159563258186 p003 LerchPhi(1/32,5,112/199) 1771159567361228 m005 (3*Pi-1/3)/(5/6*Catalan-1/4) 1771159568026893 a007 Real Root Of -573*x^4+610*x^3+431*x^2+788*x+130 1771159568170851 m001 Pi*csc(5/12*Pi)/GAMMA(7/12)/CareFree/Niven 1771159575362108 a003 sin(Pi*1/24)/sin(Pi*24/91) 1771159576559536 a003 cos(Pi*19/96)+sin(Pi*42/103) 1771159581214656 a007 Real Root Of -117*x^4+259*x^3+840*x^2+268*x+430 1771159581272464 a007 Real Root Of 39*x^4+748*x^3+975*x^2-647*x+759 1771159582623513 r005 Im(z^2+c),c=-15/26+39/61*I,n=10 1771159590213256 a007 Real Root Of -318*x^4-288*x^3-379*x^2-987*x+970 1771159590458263 r005 Im(z^2+c),c=-19/18+39/187*I,n=39 1771159601146981 r005 Im(z^2+c),c=-33/34+1/60*I,n=5 1771159606028958 m005 (1/2*Pi+7/10)/(4/9*Catalan+7/8) 1771159612080249 r005 Im(z^2+c),c=-17/38+13/43*I,n=34 1771159618148099 m001 BesselJ(1,1)^(MinimumGamma/ln(2)) 1771159621571511 m001 exp(1)*exp(GAMMA(1/3))/sqrt(5) 1771159622750015 r009 Im(z^3+c),c=-23/50+2/29*I,n=16 1771159627613075 a007 Real Root Of 823*x^4+856*x^3-946*x^2-32*x-432 1771159636428017 m001 (ln(3)+ln(2^(1/2)+1))/(Porter-Sierpinski) 1771159644176219 a007 Real Root Of 428*x^4+545*x^3-204*x^2+27*x-496 1771159648289579 a001 521/2*6557470319842^(11/18) 1771159653628131 a007 Real Root Of -495*x^4-561*x^3-139*x^2-768*x+830 1771159657189112 m001 (2*Pi/GAMMA(5/6)-gamma(3))/Pi 1771159657982597 a007 Real Root Of -208*x^4+124*x^3+203*x^2-817*x+652 1771159660960632 a007 Real Root Of -677*x^4-759*x^3+516*x^2-20*x+791 1771159662240079 a007 Real Root Of 598*x^4+790*x^3-431*x^2-229*x-549 1771159664206844 r005 Im(z^2+c),c=-27/29+8/49*I,n=54 1771159666808678 l006 ln(891/5237) 1771159683923889 m001 1/CareFree/exp(Bloch)*sqrt(2)^2 1771159685817919 a008 Real Root of (-4+6*x-3*x^2-2*x^3-4*x^4-3*x^5) 1771159685887962 m001 1/Sierpinski/Porter^2*ln(GAMMA(1/3)) 1771159700437659 a001 161/305*63245986^(17/24) 1771159704402728 r005 Im(z^2+c),c=-4/5+8/75*I,n=54 1771159714070543 m001 Psi(2,1/3)*(Pi*2^(1/2)/GAMMA(3/4)-ThueMorse) 1771159714155326 r009 Im(z^3+c),c=-15/98+11/64*I,n=6 1771159717145438 m005 (1/2*5^(1/2)+6)/(11/12*Zeta(3)-7/10) 1771159720474408 a007 Real Root Of 620*x^4+865*x^3-783*x^2-935*x-495 1771159729193149 m001 (FeigenbaumB+MertensB3)/(BesselI(0,2)-Shi(1)) 1771159731061171 r005 Im(z^2+c),c=-23/114+1/42*I,n=9 1771159732075849 r005 Im(z^2+c),c=17/64+2/45*I,n=51 1771159734175309 a007 Real Root Of 661*x^4+981*x^3-211*x^2+392*x+302 1771159735079238 m001 exp(exp(1))^2/RenyiParking/log(2+sqrt(3))^2 1771159736091954 m006 (3/5/Pi+2)/(1/2*exp(Pi)+4/5) 1771159737312886 r002 27th iterates of z^2 + 1771159743932092 r005 Im(z^2+c),c=-5/4+20/211*I,n=13 1771159747415490 h001 (10/11*exp(1)+7/12)/(3/10*exp(1)+10/11) 1771159748098038 m001 1/arctan(1/2)/GAMMA(5/12)/ln(sqrt(Pi)) 1771159752603055 a001 2/3010349*76^(12/53) 1771159755323668 r005 Im(z^2+c),c=-61/106+16/49*I,n=62 1771159759779908 m001 Zeta(1,2)/(GAMMA(1/4)^GAMMA(7/24)) 1771159759792755 r002 11th iterates of z^2 + 1771159775016595 m001 Shi(1)*sin(1)+QuadraticClass 1771159776168489 r005 Re(z^2+c),c=-7/52+4/11*I,n=11 1771159782357743 m005 (1/2*Catalan+4/11)/(2/7*5^(1/2)+4) 1771159786010431 m001 (Artin+Riemann3rdZero)/(GAMMA(17/24)-exp(1)) 1771159786601027 l006 ln(1594/9369) 1771159790685200 a007 Real Root Of 536*x^4+980*x^3-696*x^2-801*x+935 1771159806397623 a007 Real Root Of -227*x^4+420*x^3+948*x^2-889*x+19 1771159807839511 m001 (FeigenbaumMu+PrimesInBinary)/(Cahen-exp(Pi)) 1771159813344207 m001 (3^(1/2)+Chi(1))/(-cos(1/5*Pi)+Kolakoski) 1771159813581362 a003 cos(Pi*11/63)-cos(Pi*29/110) 1771159815227086 m001 1/FeigenbaumB^2*CareFree/exp(MadelungNaCl) 1771159822735319 r005 Re(z^2+c),c=1/20+11/63*I,n=6 1771159822922411 a007 Real Root Of 212*x^4+52*x^3+40*x^2-710*x+124 1771159824782306 m001 (Si(Pi)-arctan(1/2))/(Artin+HardyLittlewoodC5) 1771159831916690 r009 Re(z^3+c),c=-2/7+14/27*I,n=23 1771159851978901 r005 Re(z^2+c),c=-19/18+84/173*I,n=2 1771159857428084 l006 ln(8314/9925) 1771159864823420 m001 FeigenbaumAlpha^GolombDickman-gamma(3) 1771159866336754 h001 (-4*exp(2/3)-1)/(-2*exp(3/2)+4) 1771159870784094 r005 Re(z^2+c),c=8/29+10/43*I,n=23 1771159871173781 a007 Real Root Of -571*x^4-597*x^3+267*x^2-662*x+292 1771159871577644 a001 11/987*4181^(1/18) 1771159874608150 q001 113/638 1771159874608150 r002 2th iterates of z^2 + 1771159874608150 r005 Im(z^2+c),c=-13/22+113/116*I,n=2 1771159876489287 r005 Im(z^2+c),c=-63/122+1/33*I,n=21 1771159882386937 b008 SinIntegral[1+(E+Pi)/2] 1771159884379907 a007 Real Root Of 831*x^4+790*x^3-989*x^2+289*x-174 1771159885899966 h001 (1/6*exp(1)+7/12)/(2/11*exp(1)+1/11) 1771159887497437 a001 1/1134903780*514229^(13/14) 1771159889024318 m001 FeigenbaumC^2/MinimumGamma/exp(sin(Pi/12)) 1771159893008715 m001 OneNinth^2*Bloch*exp(sinh(1)) 1771159903174908 r005 Im(z^2+c),c=7/26+1/26*I,n=29 1771159906688612 m003 -1/4+Sqrt[5]/8+Cos[1/2+Sqrt[5]/2] 1771159920235258 m001 (1/2)^GAMMA(1/12)*polylog(4,1/2)^GAMMA(1/12) 1771159921866578 h001 (7/11*exp(2)+7/10)/(3/10*exp(2)+5/6) 1771159926114368 r005 Im(z^2+c),c=-13/14+31/191*I,n=60 1771159926348653 m005 (1/2*gamma-5/11)/(1/4*2^(1/2)+7/12) 1771159928099521 m001 (MinimumGamma-Thue)/(arctan(1/2)-Champernowne) 1771159929360166 r005 Re(z^2+c),c=-9/10+67/227*I,n=2 1771159935407977 m001 Paris*GaussAGM(1,1/sqrt(2))*ln(cos(Pi/5)) 1771159938428864 l006 ln(703/4132) 1771159938589866 a007 Real Root Of 504*x^4+798*x^3+686*x^2-835*x-15 1771159941981583 a007 Real Root Of -45*x^4+505*x^3+205*x^2-950*x+923 1771159946268767 a007 Real Root Of -689*x^4+547*x^3+468*x^2+491*x+76 1771159948251939 m001 (Champernowne+Mills)/(ln(5)-GAMMA(7/12)) 1771159955889325 r009 Re(z^3+c),c=-19/62+34/55*I,n=33 1771159960950036 a003 sin(Pi*29/115)-sin(Pi*38/109) 1771159967527927 r005 Im(z^2+c),c=-25/34+17/91*I,n=27 1771159971345730 m001 HardyLittlewoodC5^BesselK(1,1)+KhinchinLevy 1771159974599690 m001 (2^(1/3)-BesselI(0,2))/(Champernowne+ZetaP(2)) 1771159985152985 m001 (-Trott2nd+ThueMorse)/(sin(1)+MertensB3) 1771159988861123 m001 (3^(1/3)-5^(1/2))/(OneNinth+PolyaRandomWalk3D) 1771159998242733 r005 Re(z^2+c),c=-1/19+31/58*I,n=59 1771160001252940 r005 Re(z^2+c),c=15/46+3/11*I,n=63 1771160007149291 m001 (GAMMA(2/3)+5)/(-ThueMorse+4) 1771160007607942 l006 ln(6709/8009) 1771160007607942 p004 log(8009/6709) 1771160012745869 g005 GAMMA(11/12)*GAMMA(3/7)*GAMMA(4/5)/GAMMA(5/8) 1771160022055248 a007 Real Root Of 512*x^4+360*x^3-782*x^2-123*x-803 1771160025153156 a007 Real Root Of 582*x^4+848*x^3-712*x^2-416*x+481 1771160025328239 a007 Real Root Of 436*x^4+286*x^3-967*x^2-92*x+169 1771160025761293 m001 (2^(1/3))^2/exp(LaplaceLimit)^2/cosh(1)^2 1771160028756514 m001 GAMMA(1/12)^2/ln(GlaisherKinkelin)*gamma^2 1771160029789801 a001 167761/3*10946^(13/15) 1771160032245986 m001 (-Chi(1)+ZetaQ(4))/(2^(1/3)-3^(1/2)) 1771160040540782 a003 cos(Pi*3/77)+cos(Pi*19/88) 1771160040730349 m001 (MertensB2+Mills)/(1+arctan(1/3)) 1771160040735547 m005 (1/2*gamma+5)/(-1/2+5/14*5^(1/2)) 1771160041203463 m001 (Lehmer-Psi(2,1/3))/(Mills+Tribonacci) 1771160052766228 m001 ZetaP(4)*(FeigenbaumB-Pi) 1771160054336936 r005 Im(z^2+c),c=-25/36+1/29*I,n=4 1771160055018455 r005 Im(z^2+c),c=-13/19+13/54*I,n=21 1771160058858363 a007 Real Root Of 502*x^4+384*x^3-928*x^2+42*x+179 1771160062623355 r005 Re(z^2+c),c=-29/26+23/113*I,n=22 1771160064762578 m001 (PisotVijayaraghavan+Riemann3rdZero)^ZetaP(3) 1771160066424488 a007 Real Root Of 273*x^4+441*x^3+488*x^2+633*x-646 1771160071304304 a003 sin(Pi*7/93)-sin(Pi*3/37) 1771160078883297 m001 (3^(1/2)-FeigenbaumD)/(Magata+ReciprocalLucas) 1771160086290375 r005 Re(z^2+c),c=33/106+5/19*I,n=41 1771160087373247 m005 (1/3*Catalan+2/3)/(1/4*Catalan-7/9) 1771160088380713 a003 cos(Pi*12/107)/cos(Pi*29/90) 1771160089055308 a007 Real Root Of 58*x^4-201*x^3-30*x^2+588*x-552 1771160091113090 m001 (FeigenbaumB-Kac)/(BesselJ(1,1)-ErdosBorwein) 1771160095374736 r005 Re(z^2+c),c=-2/29+29/46*I,n=63 1771160097230358 s002 sum(A227008[n]/(n^2*2^n-1),n=1..infinity) 1771160097573582 a008 Real Root of x^4-2*x^3-36*x^2-14*x+139 1771160102192601 r009 Re(z^3+c),c=-11/74+37/43*I,n=7 1771160105066596 p004 log(25609/4357) 1771160106628120 a007 Real Root Of -702*x^4-638*x^3+557*x^2-821*x+162 1771160107217689 m001 (Riemann1stZero+Sarnak)/(Zeta(1,2)+Paris) 1771160114392849 r009 Re(z^3+c),c=-35/74+33/64*I,n=14 1771160115321311 k007 concat of cont frac of 1771160118360017 a007 Real Root Of 642*x^4+883*x^3-834*x^2-994*x-556 1771160121114014 k009 concat of cont frac of 1771160122188451 m005 (1/2*2^(1/2)+4/9)/(9/11*Zeta(3)-1/3) 1771160128195369 m001 Artin^3*ln(Zeta(3))^2 1771160128535336 r005 Re(z^2+c),c=-19/18+71/138*I,n=4 1771160136514720 a007 Real Root Of -52*x^4+229*x^3+121*x^2-260*x+944 1771160136850534 r005 Im(z^2+c),c=-5/7+18/119*I,n=53 1771160137126342 l006 ln(1218/7159) 1771160143076551 r005 Im(z^2+c),c=-10/11+9/58*I,n=16 1771160143569729 r009 Re(z^3+c),c=-5/16+16/27*I,n=35 1771160152418809 a003 cos(Pi*11/115)+sin(Pi*24/79) 1771160153343233 a007 Real Root Of -376*x^4-120*x^3+879*x^2+249*x+717 1771160162326000 r005 Re(z^2+c),c=29/102+1/60*I,n=16 1771160163056231 p004 log(31663/5387) 1771160173689151 a007 Real Root Of 355*x^4+568*x^3-92*x^2+118*x+160 1771160173740729 m005 (1/2*exp(1)-1/3)/(2/3*2^(1/2)-4/11) 1771160181246199 m001 (Thue+Weierstrass)/(sin(1/5*Pi)-Zeta(1,-1)) 1771160190080664 a007 Real Root Of -665*x^4-918*x^3+590*x^2+637*x+721 1771160190224898 a007 Real Root Of -257*x^4-62*x^3+273*x^2-187*x+997 1771160193050133 h001 (1/10*exp(2)+7/8)/(1/8*exp(1)+4/7) 1771160200610301 r005 Im(z^2+c),c=-19/56+12/43*I,n=35 1771160205957708 a001 322/514229*514229^(21/22) 1771160205957769 a001 322/12586269025*20365011074^(21/22) 1771160213309814 s002 sum(A070988[n]/(n^2*2^n+1),n=1..infinity) 1771160219835180 m001 (ln(2)/ln(10)+PisotVijayaraghavan)^Salem 1771160220990952 r002 42th iterates of z^2 + 1771160226757852 p003 LerchPhi(1/1024,6,237/121) 1771160228757517 m005 (1/2*3^(1/2)+7/11)/(6/7*3^(1/2)-7/11) 1771160237262807 m001 (-exp(-1/2*Pi)+CareFree)/(2^(1/2)-3^(1/3)) 1771160247019836 r005 Re(z^2+c),c=39/122+12/47*I,n=5 1771160247230719 a007 Real Root Of 511*x^4+393*x^3-661*x^2+37*x-706 1771160248472414 a001 55/5778*2^(43/48) 1771160248847975 a001 4/161*9349^(7/15) 1771160249687635 m008 (1/4*Pi^4+3)/(5*Pi^3-3/5) 1771160250784242 m001 (Zeta(3)-MasserGramain)/(Paris-ThueMorse) 1771160250827157 a007 Real Root Of -884*x^4-803*x^3+944*x^2-868*x-261 1771160252238685 l006 ln(5104/6093) 1771160253461795 m001 (FeigenbaumKappa+Robbin)/(ln(2)/ln(10)+Chi(1)) 1771160257056262 a001 4/161*24476^(19/45) 1771160258164392 b008 EulerGamma*LogIntegral[1+Pi] 1771160276504015 p004 log(29453/5011) 1771160277627818 r005 Im(z^2+c),c=-111/122+13/55*I,n=12 1771160280733596 a001 123*(1/2*5^(1/2)+1/2)^22*47^(14/15) 1771160284443637 k002 Champernowne real with 35/2*n^2+3/2*n-2 1771160284443638 k004 Champernowne real with floor(log(3)*(16*n^2+n-1)) 1771160286837871 b008 -1/20+11^(1/4) 1771160288568524 h001 (1/2*exp(1)+7/9)/(1/7*exp(1)+9/11) 1771160288568524 m005 (1/2*exp(1)+7/9)/(1/7*exp(1)+9/11) 1771160290276322 r005 Re(z^2+c),c=23/74+11/42*I,n=47 1771160290460787 r009 Re(z^3+c),c=-7/22+24/41*I,n=25 1771160290854592 a007 Real Root Of -550*x^4-764*x^3+275*x^2+301*x+838 1771160296079986 r005 Re(z^2+c),c=-5/26+25/33*I,n=37 1771160304870408 a007 Real Root Of 438*x^4+866*x^3+925*x^2+881*x-840 1771160308339584 s001 sum(exp(-2*Pi/3)^n*A106097[n],n=1..infinity) 1771160309448003 a003 cos(Pi*1/108)*cos(Pi*43/97) 1771160312702756 r005 Re(z^2+c),c=11/102+18/49*I,n=43 1771160321857295 r004 Re(z^2+c),c=1/46+11/23*I,z(0)=I,n=9 1771160322191835 r005 Im(z^2+c),c=-11/10+37/107*I,n=8 1771160323734940 a007 Real Root Of -384*x^4-124*x^3+752*x^2+100*x+908 1771160328047949 m005 (1/2*3^(1/2)+3/11)/(-53/72+1/24*5^(1/2)) 1771160329294922 m001 MadelungNaCl^(BesselK(1,1)/sin(1/5*Pi)) 1771160329294922 m001 MadelungNaCl^(BesselK(1,1)/sin(Pi/5)) 1771160330346599 r005 Im(z^2+c),c=-39/70+20/61*I,n=50 1771160333005531 m001 (GAMMA(3/4)+Otter)/(Riemann2ndZero+Sierpinski) 1771160333200274 g005 GAMMA(5/11)*GAMMA(2/9)/GAMMA(5/8)/GAMMA(2/7) 1771160335564122 m001 (Sierpinski-MertensB3)*2^(1/2) 1771160341050946 m001 (5^(1/2)+FeigenbaumMu)/(Khinchin+Lehmer) 1771160344891017 r004 Re(z^2+c),c=1/9+13/23*I,z(0)=I,n=28 1771160350242286 a007 Real Root Of -56*x^4-958*x^3+650*x^2+946*x+924 1771160357285837 r009 Re(z^3+c),c=-71/122+37/63*I,n=41 1771160357844139 r002 32th iterates of z^2 + 1771160372031199 a007 Real Root Of 51*x^4+898*x^3-135*x^2-764*x-584 1771160373335012 m005 (1/3*Pi+2/7)/(1/7*3^(1/2)-1) 1771160374932605 r005 Re(z^2+c),c=-13/86+20/47*I,n=6 1771160381255832 m001 Zeta(1,-1)+MinimumGamma+Weierstrass 1771160381413934 a001 89*322^(11/12) 1771160383192860 r005 Im(z^2+c),c=-4/23+11/46*I,n=10 1771160386447038 a001 29/89*4807526976^(16/23) 1771160386884235 r005 Re(z^2+c),c=-23/114+1/9*I,n=16 1771160386956010 s002 sum(A208407[n]/((10^n+1)/n),n=1..infinity) 1771160387363827 r002 4th iterates of z^2 + 1771160390470881 a001 3571/144*8^(52/55) 1771160390517051 s002 sum(A208407[n]/((10^n-1)/n),n=1..infinity) 1771160391024812 m001 (Landau+Porter)/(ln(Pi)+gamma(2)) 1771160395859686 a007 Real Root Of 680*x^4+647*x^3-438*x^2+918*x-97 1771160398082010 r005 Im(z^2+c),c=-22/27+4/35*I,n=22 1771160398867596 a007 Real Root Of 557*x^4+663*x^3-431*x^2+133*x-210 1771160400967934 r005 Re(z^2+c),c=13/86+15/26*I,n=55 1771160408357982 l006 ln(515/3027) 1771160420930582 a007 Real Root Of 399*x^4-676*x^3-187*x^2-674*x+12 1771160431133356 m001 (Zeta(1/2)+GAMMA(7/12))/(Magata+ZetaP(2)) 1771160451863622 m002 -2+Cosh[Pi]*Log[Pi]+6*ProductLog[Pi] 1771160458874478 a003 cos(Pi*13/111)+cos(Pi*9/49) 1771160467352599 r005 Im(z^2+c),c=5/16+14/33*I,n=22 1771160468075214 r005 Im(z^2+c),c=-57/98+13/33*I,n=42 1771160471276319 r002 10th iterates of z^2 + 1771160471647592 a007 Real Root Of -462*x^4-297*x^3+512*x^2-231*x+881 1771160482022466 r005 Im(z^2+c),c=-23/58+7/24*I,n=35 1771160483336333 r009 Re(z^3+c),c=-25/98+35/51*I,n=41 1771160484578254 a001 13201/7*28657^(41/46) 1771160486057597 m001 ln(3)+Robbin+Trott 1771160495443782 r005 Im(z^2+c),c=-93/94+7/38*I,n=46 1771160499762084 m001 (2^(1/3)+BesselI(0,2))^ZetaP(2) 1771160501222103 m002 -18*Pi^2+ProductLog[Pi]/2 1771160505291822 a007 Real Root Of 976*x^4+914*x^3-656*x^2+872*x-924 1771160509241207 r005 Re(z^2+c),c=-23/114+1/9*I,n=19 1771160515765928 m001 (3^(1/3)-exp(Pi))/(Zeta(1/2)+Khinchin) 1771160515974284 r005 Im(z^2+c),c=13/58+5/59*I,n=21 1771160519546195 r009 Re(z^3+c),c=-1/34+15/26*I,n=19 1771160519911187 r005 Re(z^2+c),c=-23/114+1/9*I,n=21 1771160522409412 r005 Re(z^2+c),c=-23/114+1/9*I,n=23 1771160522618560 r005 Re(z^2+c),c=-23/114+1/9*I,n=26 1771160522631424 r005 Re(z^2+c),c=-23/114+1/9*I,n=28 1771160522634860 r005 Re(z^2+c),c=-23/114+1/9*I,n=30 1771160522635201 r005 Re(z^2+c),c=-23/114+1/9*I,n=33 1771160522635216 r005 Re(z^2+c),c=-23/114+1/9*I,n=35 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=37 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=40 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=42 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=44 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=47 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=49 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=46 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=51 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=53 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=54 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=56 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=58 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=60 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=61 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=63 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=64 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=62 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=59 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=57 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=55 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=52 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=50 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=48 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=45 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=43 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=39 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=41 1771160522635221 r005 Re(z^2+c),c=-23/114+1/9*I,n=38 1771160522635223 r005 Re(z^2+c),c=-23/114+1/9*I,n=36 1771160522635233 r005 Re(z^2+c),c=-23/114+1/9*I,n=34 1771160522635238 r005 Re(z^2+c),c=-23/114+1/9*I,n=32 1771160522635275 r005 Re(z^2+c),c=-23/114+1/9*I,n=31 1771160522636548 r005 Re(z^2+c),c=-23/114+1/9*I,n=29 1771160522644165 r005 Re(z^2+c),c=-23/114+1/9*I,n=27 1771160522653987 r005 Re(z^2+c),c=-23/114+1/9*I,n=25 1771160522657310 r005 Re(z^2+c),c=-23/114+1/9*I,n=24 1771160523539956 r005 Re(z^2+c),c=-23/114+1/9*I,n=22 1771160526250892 r005 Re(z^2+c),c=-23/114+1/9*I,n=17 1771160527335142 g001 abs(Psi(14/3+I*25/8)) 1771160528681371 m001 (HardyLittlewoodC5+Khinchin)/ZetaP(3) 1771160529361576 r005 Re(z^2+c),c=-23/114+1/9*I,n=20 1771160532161595 a001 329/1926*521^(23/31) 1771160533990076 a001 47/34*832040^(1/55) 1771160537437893 m001 BesselJ(0,1)/BesselJZeros(0,1)*GAMMA(1/6) 1771160540763109 r005 Re(z^2+c),c=-23/114+1/9*I,n=18 1771160541894850 m001 exp(Niven)^2*FeigenbaumDelta^2*FeigenbaumD 1771160556163421 m001 (gamma+Pi^(1/2))/(-FeigenbaumAlpha+Salem) 1771160556322286 m001 (sin(1)-Sarnak)^AlladiGrinstead 1771160559149108 m008 (1/3*Pi^3-3)/(Pi+1) 1771160560787269 r005 Re(z^2+c),c=-11/122+25/54*I,n=18 1771160561588087 m001 BesselJ(1,1)/(MasserGramainDelta+Robbin) 1771160563493022 p004 log(25033/4259) 1771160566367151 h001 (5/7*exp(1)+1/4)/(1/7*exp(2)+2/11) 1771160582773757 a003 cos(Pi*17/118)+sin(Pi*30/89) 1771160583754226 r005 Re(z^2+c),c=-21/22+16/99*I,n=40 1771160595311109 r005 Im(z^2+c),c=-17/74+4/15*I,n=5 1771160599972936 m001 exp(1)^2*ln(TwinPrimes)*gamma 1771160604930727 m001 (-Tribonacci+Thue)/(Ei(1,1)-Psi(2,1/3)) 1771160612978644 p004 log(18979/3229) 1771160626880254 a007 Real Root Of 243*x^4+578*x^3+527*x^2+476*x+10 1771160634808636 m001 ((1+3^(1/2))^(1/2))^(BesselJ(1,1)*Sierpinski) 1771160645604374 a007 Real Root Of 665*x^4-74*x^3+10*x^2-506*x-91 1771160646145781 m001 (5^(1/2)-BesselI(0,2))/(FeigenbaumC+Kac) 1771160651806805 l006 ln(1357/7976) 1771160652419247 a001 46/311187*6557470319842^(17/24) 1771160655161327 s001 sum(exp(-Pi)^(n-1)*A220285[n],n=1..infinity) 1771160660236878 a007 Real Root Of -401*x^4-299*x^3+248*x^2-988*x-243 1771160661338693 m001 (Catalan*RenyiParking-Zeta(1,2))/Catalan 1771160667488557 m005 (1/2*exp(1)+6)/(1/6*Catalan-1/9) 1771160669031931 q001 6989/3946 1771160669390253 a007 Real Root Of -865*x^4-907*x^3+763*x^2-64*x+966 1771160669966937 a007 Real Root Of 429*x^4+809*x^3+125*x^2+516*x+795 1771160670810061 m009 (2/5*Psi(1,2/3)-3/5)/(1/3*Psi(1,1/3)+1/6) 1771160677159235 b008 1/2+3^(1/3)*ArcCsch[1] 1771160677159235 m001 1/2+ln(1+sqrt(2))*(3^(1/3)) 1771160677407822 m005 (1/2*exp(1)-7/10)/(1/8*gamma+3/10) 1771160684105925 m001 (Pi*2^(1/2)/GAMMA(3/4)+ln(2))/(Ei(1)+Landau) 1771160688681383 a003 cos(Pi*1/19)+cos(Pi*10/47) 1771160689792999 r005 Im(z^2+c),c=-71/82+8/59*I,n=42 1771160690681001 r005 Im(z^2+c),c=-73/90+5/47*I,n=35 1771160691114486 a001 2/1597*13^(5/37) 1771160691881498 a007 Real Root Of 594*x^4+821*x^3-690*x^2-552*x-97 1771160700418088 a007 Real Root Of -366*x^4-57*x^3+497*x^2-612*x+642 1771160700587242 a001 3571/4052739537881*514229^(13/14) 1771160702802563 r005 Re(z^2+c),c=-3/110+31/53*I,n=35 1771160709024481 m001 ZetaP(3)*(GaussKuzminWirsing+Rabbit) 1771160717457964 m001 (2^(1/3))^2*FeigenbaumAlpha^2*exp(gamma) 1771160719889552 m001 (-exp(1/exp(1))+Conway)/(gamma+Ei(1,1)) 1771160721294873 l006 ln(3499/4177) 1771160721294873 p004 log(4177/3499) 1771160724953513 a007 Real Root Of -364*x^4-466*x^3+104*x^2+182*x+989 1771160736492311 v002 sum(1/(3^n*(33/2*n^2+3/2*n+3)),n=1..infinity) 1771160738902674 q001 6424/3627 1771160741191241 m002 -3*Pi^3-Pi^4/Log[Pi]+Tanh[Pi] 1771160741491614 r005 Re(z^2+c),c=-19/118+13/44*I,n=12 1771160746216006 m001 (cos(1/5*Pi)-ln(3))/(Stephens-ThueMorse) 1771160749648532 a007 Real Root Of 144*x^4-494*x^3-536*x^2-344*x-47 1771160760109080 m001 (arctan(1/2)+FeigenbaumMu)^HardyLittlewoodC5 1771160760662492 r005 Im(z^2+c),c=-109/110+19/49*I,n=7 1771160762269712 a007 Real Root Of -629*x^4-810*x^3+226*x^2-387*x+295 1771160763340795 a007 Real Root Of -363*x^4-726*x^3-630*x^2-521*x+592 1771160766325970 m005 (1/3*2^(1/2)+2/3)/(3/7*Catalan+1/4) 1771160768563567 a007 Real Root Of 620*x^4+824*x^3-202*x^2+951*x+795 1771160769157516 m001 1/GAMMA(13/24)/exp(MinimumGamma)^2*cos(1) 1771160770301632 m001 (-Cahen+ZetaP(2))/(Psi(1,1/3)+ArtinRank2) 1771160771479103 a001 1364/2971215073*610^(13/14) 1771160788715360 m004 (151*Sqrt[5]*Pi)/6+Log[Sqrt[5]*Pi]/6 1771160789465702 p001 sum(1/(463*n+57)/(12^n),n=0..infinity) 1771160790599199 a007 Real Root Of 190*x^4+160*x^3+153*x^2+661*x-290 1771160798757265 a007 Real Root Of x^4-477*x^3-553*x^2+265*x-456 1771160800153592 a007 Real Root Of -409*x^4-612*x^3+121*x^2-258*x-212 1771160800522196 m001 1/ln(Riemann1stZero)^2/RenyiParking/OneNinth 1771160800709559 l006 ln(842/4949) 1771160804007035 m001 (gamma(3)-BesselI(0,2))/(Kac+TwinPrimes) 1771160815827745 m004 -6+Sqrt[5]*Pi-Sinh[Sqrt[5]*Pi]/30 1771160819215445 a001 9349/10610209857723*514229^(13/14) 1771160822249093 q001 5859/3308 1771160825791449 m001 1/TreeGrowth2nd^2*exp(Lehmer)*Ei(1) 1771160831730244 a007 Real Root Of -755*x^4-904*x^3+305*x^2-864*x-80 1771160836657440 a001 341/11592*34^(28/55) 1771160839187888 h001 (4/11*exp(1)+4/11)/(10/11*exp(2)+11/12) 1771160840115853 m008 (3/5*Pi^5-4)/(Pi^4+4) 1771160843837721 m001 (LambertW(1)-cos(1))/(MinimumGamma+ZetaQ(2)) 1771160845021265 a007 Real Root Of -461*x^4-98*x^3+705*x^2-474*x+941 1771160845172710 r005 Re(z^2+c),c=7/22+47/51*I,n=3 1771160846602272 r005 Re(z^2+c),c=-3/19+39/46*I,n=7 1771160850362581 a007 Real Root Of 684*x^4+487*x^3-793*x^2+928*x+106 1771160850627481 h001 (10/11*exp(2)+5/12)/(1/2*exp(2)+1/3) 1771160852349062 r005 Im(z^2+c),c=-12/25+17/55*I,n=63 1771160858288107 a007 Real Root Of -351*x^4-297*x^3+779*x^2+202*x-282 1771160859307219 r002 9th iterates of z^2 + 1771160860317738 a007 Real Root Of -533*x^4+587*x^3+268*x^2+688*x-133 1771160862073779 m003 1/6+Sin[1/2+Sqrt[5]/2]+Sinh[1/2+Sqrt[5]/2]/4 1771160888046216 a001 2584/15127*521^(23/31) 1771160892531707 a001 2889/3278735159921*514229^(13/14) 1771160892807615 m001 1/DuboisRaymond^2*exp(Cahen)^2/cos(1) 1771160905696023 r009 Re(z^3+c),c=-7/22+37/61*I,n=28 1771160911331688 a001 228826127/233*21^(19/20) 1771160912867177 r005 Re(z^2+c),c=-73/66+14/57*I,n=34 1771160912956745 m005 (1/2*3^(1/2)+3/7)/(2/7*Pi-1/6) 1771160913664762 g001 GAMMA(1/11,10/117) 1771160913861560 r005 Re(z^2+c),c=-1/66+25/43*I,n=37 1771160915607166 m001 Pi^(1/2)-polylog(4,1/2)^Psi(1,1/3) 1771160923229257 a007 Real Root Of 552*x^4+447*x^3-232*x^2+910*x-609 1771160923385747 q001 5294/2989 1771160930883393 a001 1/416020*10946^(45/47) 1771160936258562 r005 Im(z^2+c),c=-23/98+53/62*I,n=22 1771160939969084 a001 2255/13201*521^(23/31) 1771160943588575 a007 Real Root Of -592*x^4-727*x^3+260*x^2-630*x-145 1771160944035184 a007 Real Root Of 903*x^4+842*x^3-954*x^2+628*x-103 1771160944484434 m001 (GolombDickman-Thue)/(Zeta(3)+Champernowne) 1771160947544528 a001 17711/103682*521^(23/31) 1771160948649771 a001 15456/90481*521^(23/31) 1771160948811023 a001 121393/710647*521^(23/31) 1771160948834550 a001 105937/620166*521^(23/31) 1771160948837982 a001 832040/4870847*521^(23/31) 1771160948840104 a001 514229/3010349*521^(23/31) 1771160948849090 a001 196418/1149851*521^(23/31) 1771160948910683 a001 75025/439204*521^(23/31) 1771160949332848 a001 28657/167761*521^(23/31) 1771160952226410 a001 10946/64079*521^(23/31) 1771160952536833 r005 Re(z^2+c),c=-6/29+2/37*I,n=6 1771160958977882 r009 Im(z^3+c),c=-35/106+6/49*I,n=14 1771160959778740 a007 Real Root Of -362*x^4-473*x^3+278*x^2+237*x+482 1771160969267214 m005 (1/3*Zeta(3)-1/2)/(2/9*2^(1/2)-7/8) 1771160972059181 a001 4181/24476*521^(23/31) 1771160973559007 l006 ln(1169/6871) 1771160974984833 h005 exp(cos(Pi*2/39)-cos(Pi*4/11)) 1771160982054921 a007 Real Root Of -140*x^4-62*x^3+387*x^2+368*x+471 1771160984661859 m001 (BesselI(0,2)+ZetaQ(3))/(3^(1/2)-BesselJ(1,1)) 1771160986481764 m008 (1/6*Pi-1/5)/(3/5*Pi^3-1/3) 1771160986987373 r005 Re(z^2+c),c=-3/13+25/33*I,n=58 1771160987552894 m005 (1/2*5^(1/2)+1/9)/(2/3*Catalan+1/12) 1771160988439517 a001 199/55*4181^(4/21) 1771160996924193 p003 LerchPhi(1/512,1,113/200) 1771160998629824 m001 (exp(Pi)+BesselI(0,2))/(-polylog(4,1/2)+Artin) 1771160999183428 a007 Real Root Of 213*x^4-414*x^3-709*x^2+943*x-502 1771161000947773 p003 LerchPhi(1/100,9,61/65) 1771161001847819 m001 1/ln(GAMMA(11/12))/Riemann1stZero/exp(1)^2 1771161005848442 m006 (4/5*exp(Pi)+3)/(1/4*Pi-2) 1771161018560401 m001 (RenyiParking+ZetaQ(3))/(Pi+GAMMA(5/6)) 1771161019151126 k008 concat of cont frac of 1771161023316448 a008 Real Root of (18+13*x+14*x^2+7*x^3) 1771161026112802 r005 Re(z^2+c),c=13/70+12/23*I,n=22 1771161029680638 m001 1/sqrt(1+sqrt(3))*ln(Khintchine)^2*sqrt(3)^2 1771161031384210 m005 (1/3*gamma-2/11)/(-59/80+1/16*5^(1/2)) 1771161037436587 r005 Re(z^2+c),c=-9/8+69/208*I,n=9 1771161042467883 a007 Real Root Of 933*x^4-538*x^3+241*x^2-940*x+161 1771161045599870 r005 Im(z^2+c),c=-67/62+1/49*I,n=11 1771161047829293 a007 Real Root Of -198*x^4+104*x^3+756*x^2+331*x+741 1771161048689138 q001 4729/2670 1771161049337783 a007 Real Root Of 272*x^4+453*x^3+297*x^2+81*x-948 1771161050813701 a007 Real Root Of -517*x^4-423*x^3+272*x^2-659*x+717 1771161053223136 r005 Im(z^2+c),c=-27/40+8/29*I,n=35 1771161063075248 r005 Im(z^2+c),c=-79/62+7/36*I,n=4 1771161065375985 b008 10+E^E^(5/7) 1771161065616895 b008 2^(-1/4)+Erf[Glaisher] 1771161066795050 m001 (BesselK(0,1)-Landau)/(LaplaceLimit+Trott2nd) 1771161070307432 a007 Real Root Of 440*x^4+107*x^3-641*x^2+928*x-81 1771161070844579 l006 ln(1496/8793) 1771161071869966 m005 (1/3*3^(1/2)-1/11)/(9/10*exp(1)+3/10) 1771161078444605 m001 5^(1/2)+sin(1)-Mills 1771161087672477 a007 Real Root Of 7*x^4-497*x^3-159*x^2+981*x-594 1771161088563248 r005 Re(z^2+c),c=-17/66+27/52*I,n=6 1771161091180529 a008 Real Root of x^2-x-31193 1771161092391455 a001 1/6*7^(1/32) 1771161093665168 r005 Re(z^2+c),c=21/94+25/57*I,n=62 1771161097461455 r009 Re(z^3+c),c=-16/27+16/31*I,n=42 1771161098967739 m005 (3*exp(1)+1/5)/(1/5*2^(1/2)-5) 1771161102305005 m005 (1/2*gamma-1/11)/(8/11*Catalan-7/9) 1771161105595076 m005 (1/3*Zeta(3)+1/6)/(1/11*5^(1/2)+3) 1771161107995017 a001 1597/9349*521^(23/31) 1771161110079098 a007 Real Root Of 478*x^4+691*x^3-59*x^2+876*x+872 1771161111132051 k008 concat of cont frac of 1771161111314111 k006 concat of cont frac of 1771161111342113 k009 concat of cont frac of 1771161111456131 k008 concat of cont frac of 1771161111501131 k008 concat of cont frac of 1771161111531127 k008 concat of cont frac of 1771161111811318 k006 concat of cont frac of 1771161112236372 k007 concat of cont frac of 1771161112630903 b008 Csch[6-4/Pi] 1771161113294605 m001 GaussAGM(1,1/sqrt(2))^cos(Pi/12)*exp(-1/2*Pi) 1771161114716869 m001 Kolakoski*Otter-gamma 1771161116579583 r005 Re(z^2+c),c=-147/122+1/36*I,n=36 1771161116621125 k006 concat of cont frac of 1771161117491467 r008 a(0)=0,K{-n^6,50-44*n^3+31*n^2+19*n} 1771161118112211 k009 concat of cont frac of 1771161121131622 k009 concat of cont frac of 1771161121142124 k009 concat of cont frac of 1771161124151317 k006 concat of cont frac of 1771161128661211 k008 concat of cont frac of 1771161129110112 k009 concat of cont frac of 1771161129948349 r005 Re(z^2+c),c=-23/114+1/9*I,n=15 1771161133083340 a007 Real Root Of -59*x^4+276*x^3+462*x^2+139*x+911 1771161134411425 k006 concat of cont frac of 1771161141059694 m002 (3*Cosh[Pi])/5+Sinh[Pi]/ProductLog[Pi] 1771161141111360 m001 1/ln(Ei(1))*BesselK(0,1)*GAMMA(13/24)^2 1771161141321413 k007 concat of cont frac of 1771161142423267 m001 (-Khinchin+Robbin)/(BesselI(0,1)-Champernowne) 1771161146900478 m001 Zeta(1/2)^cos(1/5*Pi)/ZetaP(4) 1771161148836252 a007 Real Root Of -697*x^4+410*x^3-139*x^2+591*x+112 1771161148850054 a007 Real Root Of -986*x^4+557*x^3-385*x^2+417*x+90 1771161151311111 k006 concat of cont frac of 1771161159153144 k007 concat of cont frac of 1771161161312131 k009 concat of cont frac of 1771161162155508 a007 Real Root Of -208*x^4+117*x^3+172*x^2-964*x+450 1771161162976939 a001 322/3*6765^(11/19) 1771161165215264 l006 ln(5393/6438) 1771161172542111 a001 2/7*199^(46/59) 1771161177520723 a007 Real Root Of 201*x^4-817*x^3+43*x^2-869*x-160 1771161177859640 r005 Re(z^2+c),c=4/13+21/62*I,n=12 1771161178029644 m001 Kolakoski*(Riemann3rdZero-exp(1)) 1771161191040219 a003 sin(Pi*30/107)+sin(Pi*55/111) 1771161191241121 k006 concat of cont frac of 1771161191759862 r002 4th iterates of z^2 + 1771161197379854 h001 (-2*exp(2)+7)/(-4*exp(7)-5) 1771161199624791 a007 Real Root Of -794*x^4+359*x^3+911*x^2+750*x+13 1771161203089653 a008 Real Root of x^4-x^3+6*x^2-135*x+216 1771161203104377 a001 2207/2504730781961*514229^(13/14) 1771161206140346 p003 LerchPhi(1/10,4,533/193) 1771161207996597 q001 4164/2351 1771161210111916 k008 concat of cont frac of 1771161211111126 k007 concat of cont frac of 1771161211118114 k008 concat of cont frac of 1771161211142138 k006 concat of cont frac of 1771161211312141 k008 concat of cont frac of 1771161212437788 m001 (GAMMA(17/24)+MertensB3)/(Porter+Trott) 1771161213908463 r005 Im(z^2+c),c=-101/106+6/35*I,n=59 1771161213996951 r005 Re(z^2+c),c=-7/50+5/12*I,n=4 1771161218735075 a007 Real Root Of -498*x^4-845*x^3+228*x^2+33*x-451 1771161223518418 a007 Real Root Of 279*x^4+671*x^3+558*x^2+490*x+100 1771161224167343 a001 4181/3*3^(12/55) 1771161225803636 a007 Real Root Of -693*x^4-649*x^3+295*x^2-855*x+774 1771161228414172 m001 log(1+sqrt(2))^2*exp(LaplaceLimit)*sinh(1) 1771161234379200 m001 ZetaQ(3)*(GaussAGM-Zeta(5)) 1771161236276862 a003 cos(Pi*16/95)+sin(Pi*25/69) 1771161239421131 k007 concat of cont frac of 1771161241131321 k009 concat of cont frac of 1771161241221111 k008 concat of cont frac of 1771161260074100 a007 Real Root Of -44*x^4-27*x^3-48*x^2+269*x+910 1771161262390727 r005 Im(z^2+c),c=-10/23+13/44*I,n=17 1771161272825546 m001 ln(gamma)^2/Champernowne/sinh(1)^2 1771161273349193 a007 Real Root Of -900*x^4+939*x^3-256*x^2+992*x-172 1771161276957152 r005 Re(z^2+c),c=-5/24+39/50*I,n=63 1771161287449647 k002 Champernowne real with 18*n^2-1 1771161287449647 s003 concatenated sequence A157910 1771161289307576 m001 Psi(2,1/3)^(Zeta(3)*Gompertz) 1771161291681112 k008 concat of cont frac of 1771161293307226 m001 Paris^2/Si(Pi)^2/ln(GAMMA(19/24)) 1771161298185526 a007 Real Root Of -18*x^4-303*x^3+257*x^2-398*x+167 1771161298297800 r005 Im(z^2+c),c=-47/62+5/59*I,n=15 1771161298681927 a001 3/28657*2^(22/29) 1771161303825105 r005 Re(z^2+c),c=-3/122+21/34*I,n=7 1771161310414111 k007 concat of cont frac of 1771161315310947 a007 Real Root Of 493*x^4+281*x^3-570*x^2+681*x-296 1771161315518210 k006 concat of cont frac of 1771161316122079 a007 Real Root Of 499*x^4+411*x^3-650*x^2+848*x+914 1771161319466425 m005 (1/2*2^(1/2)+5/9)/(6*Zeta(3)-1/12) 1771161321915510 p001 sum(1/(187*n+57)/(25^n),n=0..infinity) 1771161322111212 k007 concat of cont frac of 1771161326928518 a001 90481/48*610^(17/24) 1771161327238188 a007 Real Root Of -397*x^4+67*x^3+543*x^2+796*x-158 1771161328332548 a007 Real Root Of 169*x^4-187*x^3-610*x^2-46*x-870 1771161328912873 a007 Real Root Of -127*x^4+119*x^3+416*x^2-743*x-710 1771161331340157 a007 Real Root Of 52*x^4+922*x^3-9*x^2-434*x+671 1771161332141481 k006 concat of cont frac of 1771161343833448 m001 (-exp(gamma)+2)/(-5^(1/2)+1) 1771161346352740 r005 Im(z^2+c),c=-65/114+2/61*I,n=30 1771161349854389 a005 (1/cos(2/143*Pi))^592 1771161355840373 r009 Re(z^3+c),c=-7/52+39/55*I,n=10 1771161359019168 m002 -3/2+Log[Pi]^(-1)-Log[Pi] 1771161361214684 a007 Real Root Of 439*x^4+303*x^3-254*x^2+582*x-809 1771161366013782 m004 2+5*Pi+(4*Sech[Sqrt[5]*Pi])/Log[Sqrt[5]*Pi] 1771161366591470 m004 2+5*Pi+(4*Csch[Sqrt[5]*Pi])/Log[Sqrt[5]*Pi] 1771161371141132 k008 concat of cont frac of 1771161371915287 m001 FeigenbaumDelta/(ReciprocalFibonacci-Sarnak) 1771161378372585 l006 ln(7287/8699) 1771161378401504 a007 Real Root Of 10*x^4-284*x^3+402*x^2-120*x+431 1771161384044719 a007 Real Root Of -688*x^4+529*x^3+474*x^2+434*x-94 1771161389450960 a001 3524578/29*76^(2/23) 1771161389474897 a007 Real Root Of -523*x^4-641*x^3+194*x^2-635*x-148 1771161392226112 m001 1/RenyiParking/FeigenbaumAlpha/ln(sqrt(3))^2 1771161397590889 h001 (-8*exp(4)+7)/(-6*exp(6)-6) 1771161406239321 r005 Im(z^2+c),c=-33/34+11/62*I,n=30 1771161412111091 k008 concat of cont frac of 1771161413321111 k006 concat of cont frac of 1771161414158174 k008 concat of cont frac of 1771161416431049 a007 Real Root Of 773*x^4+630*x^3-613*x^2+714*x-919 1771161417322834 q001 3599/2032 1771161418632984 l006 ln(327/1922) 1771161421831112 k008 concat of cont frac of 1771161426776762 a007 Real Root Of 705*x^4+686*x^3-581*x^2+268*x-829 1771161431713111 k007 concat of cont frac of 1771161454996374 r005 Im(z^2+c),c=-33/86+13/45*I,n=38 1771161467191714 k006 concat of cont frac of 1771161467929738 r005 Im(z^2+c),c=-67/64+12/59*I,n=62 1771161468390254 a007 Real Root Of 195*x^4-374*x^3-674*x^2+561*x-889 1771161472699238 r002 33th iterates of z^2 + 1771161473822284 m001 (FeigenbaumAlpha+Magata)^arctan(1/3) 1771161483554830 r005 Im(z^2+c),c=-8/31+38/51*I,n=12 1771161488684643 m001 BesselI(1,1)+Landau+LaplaceLimit 1771161495547820 a007 Real Root Of -852*x^4+297*x^3+410*x^2+578*x+92 1771161500279474 a003 cos(Pi*29/88)/cos(Pi*35/86) 1771161504733334 m003 -7/2+(17*Sqrt[5])/32+Coth[1/2+Sqrt[5]/2]/2 1771161509619350 r005 Im(z^2+c),c=-71/114+9/29*I,n=6 1771161511111171 k007 concat of cont frac of 1771161511134521 k008 concat of cont frac of 1771161513072666 m001 MertensB2*QuadraticClass+Thue 1771161521513122 k007 concat of cont frac of 1771161529365971 r005 Re(z^2+c),c=33/82+31/36*I,n=2 1771161530643738 p002 log(12^(5/6)-11^(3/10)) 1771161532123081 k008 concat of cont frac of 1771161534578369 p004 log(35141/29437) 1771161541009311 a007 Real Root Of -853*x^4-600*x^3+957*x^2-741*x+746 1771161542391768 m001 MinimumGamma+Sarnak^(Pi*2^(1/2)/GAMMA(3/4)) 1771161544212130 k008 concat of cont frac of 1771161545099187 m001 Si(Pi)/(GAMMA(3/4)^Ei(1,1)) 1771161546333954 m009 (2*Psi(1,3/4)-5)/(1/2*Psi(1,3/4)-6) 1771161547088313 b008 -1/2+5^(1/2+E) 1771161548731642 q001 6633/3745 1771161558114654 m001 (Si(Pi)-ln(gamma))/(-Riemann1stZero+Stephens) 1771161558292313 m001 1/exp(Niven)*MertensB1/FeigenbaumD 1771161561966407 r005 Im(z^2+c),c=-57/110+19/60*I,n=52 1771161562358390 m001 (PlouffeB+Thue)/(GaussKuzminWirsing-Shi(1)) 1771161564912308 r005 Im(z^2+c),c=-11/17+23/55*I,n=48 1771161566650133 a007 Real Root Of 714*x^4+696*x^3-175*x^2+995*x-848 1771161567061746 a003 sin(Pi*32/113)+sin(Pi*48/103) 1771161568639944 a007 Real Root Of -528*x^4+30*x^3+985*x^2+786*x+109 1771161568866569 m001 ln(3)*OneNinth+(1+3^(1/2))^(1/2) 1771161568866569 m001 ln(3)*OneNinth+sqrt(1+sqrt(3)) 1771161571191011 a007 Real Root Of -708*x^4-507*x^3+882*x^2-780*x+2 1771161578248993 r002 22th iterates of z^2 + 1771161579020442 m004 5/4+25*Sqrt[5]*Pi+Cos[Sqrt[5]*Pi]/3 1771161579586775 r005 Im(z^2+c),c=-4/7+7/18*I,n=35 1771161581778836 b008 EllipticE[-24/43] 1771161584569313 a001 3571/7778742049*610^(13/14) 1771161586224881 m001 (Gompertz+ZetaQ(4))/(ln(2)+FeigenbaumD) 1771161586663412 a007 Real Root Of 121*x^4-467*x^3+531*x^2-320*x+305 1771161594370368 a007 Real Root Of -540*x^4-649*x^3+575*x^2+386*x+588 1771161594724886 r008 a(0)=0,K{-n^6,16+2*n^3+6*n^2+33*n} 1771161602089786 a007 Real Root Of 421*x^4+768*x^3-222*x^2-841*x-669 1771161604316862 a005 (1/cos(5/81*Pi))^882 1771161604823593 r005 Im(z^2+c),c=-101/106+6/35*I,n=56 1771161607505259 a007 Real Root Of -88*x^4+626*x^3-302*x^2-604*x-595 1771161611843241 k006 concat of cont frac of 1771161614819645 m001 (FeigenbaumD-Trott)/(Zeta(5)+Bloch) 1771161617889054 m001 BesselJ(1,1)-MadelungNaCl-arctan(1/2) 1771161617889054 m001 BesselJ(1,1)-arctan(1/2)-MadelungNaCl 1771161618531608 h001 (5/11*exp(2)+5/9)/(6/11*exp(1)+8/11) 1771161621411821 k008 concat of cont frac of 1771161624721167 a007 Real Root Of 289*x^4+267*x^3-568*x^2-440*x-358 1771161637482168 m005 (1/2*5^(1/2)+2/5)/(9/11*2^(1/2)-3/10) 1771161645365894 m001 (FeigenbaumDelta+Sarnak)/(Ei(1)-BesselI(1,2)) 1771161648937807 m001 1/FeigenbaumKappa^2/exp(Paris)*Ei(1)^2 1771161649606959 a001 3571/121393*34^(28/55) 1771161669104532 r005 Im(z^2+c),c=-2/31+5/24*I,n=12 1771161669183118 k008 concat of cont frac of 1771161673809088 m001 FeigenbaumC^2*Kolakoski/exp(FeigenbaumKappa)^2 1771161675367045 r005 Re(z^2+c),c=-9/52+23/49*I,n=6 1771161680456618 r002 13th iterates of z^2 + 1771161688314664 m005 (1/3*Zeta(3)-1/2)/(1/8*Pi-6) 1771161689127960 r005 Im(z^2+c),c=-161/122+23/48*I,n=3 1771161703197576 a001 9349/20365011074*610^(13/14) 1771161704611792 q001 3034/1713 1771161714131113 k006 concat of cont frac of 1771161714348178 r001 55i'th iterates of 2*x^2-1 of 1771161714412652 m001 1/Tribonacci/Artin/ln(BesselJ(1,1)) 1771161715496936 a007 Real Root Of -492*x^4-603*x^3+221*x^2-428*x+40 1771161720505207 a001 24476/53316291173*610^(13/14) 1771161723030356 a001 64079/139583862445*610^(13/14) 1771161723398770 a001 167761/365435296162*610^(13/14) 1771161723452521 a001 439204/956722026041*610^(13/14) 1771161723460363 a001 1149851/2504730781961*610^(13/14) 1771161723461507 a001 3010349/6557470319842*610^(13/14) 1771161723461777 a001 1/2178309*610^(13/14) 1771161723462214 a001 1860498/4052739537881*610^(13/14) 1771161723465210 a001 710647/1548008755920*610^(13/14) 1771161723485741 a001 271443/591286729879*610^(13/14) 1771161723626463 a001 103682/225851433717*610^(13/14) 1771161724590984 a001 39603/86267571272*610^(13/14) 1771161729832759 r002 36th iterates of z^2 + 1771161731201910 a001 15127/32951280099*610^(13/14) 1771161733920516 m005 (1/2*5^(1/2)-1/7)/(1/14+3/14*5^(1/2)) 1771161735440765 m001 (Artin-Kolakoski)/(MertensB2+Totient) 1771161742973381 r005 Im(z^2+c),c=-13/16+4/33*I,n=21 1771161745563631 a001 199/10610209857723*63245986^(1/8) 1771161745563655 a001 199/6557470319842*1346269^(1/8) 1771161745617549 a001 199/4052739537881*28657^(1/8) 1771161754201181 a007 Real Root Of 218*x^4+600*x^3+302*x^2-603*x-827 1771161754628953 r005 Im(z^2+c),c=31/94+1/17*I,n=59 1771161756164558 m005 (1/2*gamma-3/8)/(Zeta(3)-5/7) 1771161766612885 m001 StronglyCareFree+MasserGramain^Trott 1771161768214695 a001 9349/317811*34^(28/55) 1771161771677094 m001 (cos(1/5*Pi)-HardyLittlewoodC3)/(Niven-Sarnak) 1771161772158423 a007 Real Root Of 582*x^4+628*x^3-598*x^2+410*x+364 1771161775052287 m001 GAMMA(1/3)/ArtinRank2^2*ln(LambertW(1))^2 1771161775375306 h001 (1/7*exp(1)+2/7)/(1/2*exp(2)+1/9) 1771161776513875 a001 5778/12586269025*610^(13/14) 1771161778198478 l006 ln(1447/8505) 1771161779511286 r005 Re(z^2+c),c=7/25+9/38*I,n=31 1771161779745509 a007 Real Root Of -125*x^4+570*x^3+939*x^2-518*x+534 1771161785519331 a001 6119/208010*34^(28/55) 1771161786784872 m001 Catalan*ReciprocalFibonacci-Mills 1771161787551337 r005 Im(z^2+c),c=-25/24+13/57*I,n=27 1771161788044043 a001 64079/2178309*34^(28/55) 1771161788703795 a007 Real Root Of -208*x^4-104*x^3+763*x^2+649*x+225 1771161789604401 a001 39603/1346269*34^(28/55) 1771161796214184 a001 15127/514229*34^(28/55) 1771161800460418 m001 (Sierpinski-Trott2nd)/(ln(5)+Zeta(1,-1)) 1771161808834384 a001 47/2*89^(26/27) 1771161810496204 m001 (-Magata+TwinPrimes)/(Si(Pi)-ln(2)/ln(10)) 1771161811123132 k006 concat of cont frac of 1771161812149521 k007 concat of cont frac of 1771161812462754 m001 GAMMA(7/24)/(GAMMA(5/24)^Artin) 1771161814199456 a007 Real Root Of 183*x^4-286*x^3-513*x^2+775*x-408 1771161815467666 m006 (3/4*Pi-3/5)/(5/Pi-3/5) 1771161823379769 r005 Re(z^2+c),c=13/122+21/37*I,n=34 1771161823734421 r005 Im(z^2+c),c=-47/50+1/6*I,n=53 1771161824382797 a007 Real Root Of -410*x^4-587*x^3+173*x^2+256*x+684 1771161834237343 r002 47th iterates of z^2 + 1771161836773956 a001 4/161*843^(19/30) 1771161841212313 k007 concat of cont frac of 1771161841518308 a001 2889/98209*34^(28/55) 1771161843219993 m006 (5/Pi-4/5)/(5/6*exp(2*Pi)+2/3) 1771161855288431 m005 (1/2*Pi+10/11)/(2/7*exp(1)-11/12) 1771161860327460 h001 (1/10*exp(2)+2/5)/(5/6*exp(2)+3/11) 1771161863139062 m001 (ln(2)+Robbin*Sarnak)/Robbin 1771161863648650 m001 (Kac+Weierstrass)/(Backhouse-GaussAGM) 1771161864561429 a001 199/2504730781961*610^(1/8) 1771161872621481 r004 Re(z^2+c),c=-43/46+8/15*I,z(0)=-1,n=4 1771161874409414 a007 Real Root Of 26*x^4+492*x^3+562*x^2+91*x+319 1771161876740108 a007 Real Root Of 275*x^4-187*x^3-829*x^2+657*x+19 1771161877111711 k007 concat of cont frac of 1771161883056226 a007 Real Root Of 377*x^4+432*x^3-413*x^2-477*x-859 1771161883057673 a007 Real Root Of 811*x^4+969*x^3-828*x^2-422*x-747 1771161883178736 l006 ln(1120/6583) 1771161886678693 m001 (-GAMMA(19/24)+ZetaQ(4))/(Zeta(3)-cos(1)) 1771161887197750 a007 Real Root Of -967*x^4-969*x^3+774*x^2-751*x+374 1771161891753855 r005 Re(z^2+c),c=-3/62+35/61*I,n=22 1771161892500804 q001 5503/3107 1771161892707806 m001 1/exp(Paris)^3*cosh(1)^2 1771161913126131 k007 concat of cont frac of 1771161913380223 m001 (ln(Pi)-exp(-1/2*Pi))/(ZetaP(2)+ZetaP(4)) 1771161924499739 a001 11/18*(1/2*5^(1/2)+1/2)^30*18^(19/20) 1771161926872626 m002 (-23*Pi^5)/4-Sinh[Pi] 1771161933785869 a008 Real Root of (-6+x-5*x^2+6*x^3+4*x^4-x^5) 1771161936092578 a007 Real Root Of 722*x^4+536*x^3-581*x^2+881*x-744 1771161942152038 m001 (Backhouse+TwinPrimes)/(2^(1/2)-Ei(1,1)) 1771161945944625 a007 Real Root Of -643*x^4-337*x^3+656*x^2-986*x+651 1771161949035965 a001 46368/199*18^(40/57) 1771161950672581 a001 1/199*(1/2*5^(1/2)+1/2)^7*3^(3/17) 1771161951369657 a007 Real Root Of -572*x^4-692*x^3-131*x^2-747*x+872 1771161973239975 r009 Re(z^3+c),c=-5/17+6/11*I,n=33 1771161978863406 a007 Real Root Of 597*x^4+766*x^3-874*x^2-840*x-365 1771161979465262 r005 Re(z^2+c),c=-17/86+9/64*I,n=9 1771161980007366 a001 3010349/2*63245986^(13/20) 1771161981571718 r009 Re(z^3+c),c=-6/17+34/55*I,n=59 1771161983539377 a001 3/10946*21^(19/31) 1771161984505964 r005 Re(z^2+c),c=-7/78+7/15*I,n=41 1771161984615193 r005 Re(z^2+c),c=-13/86+12/37*I,n=4 1771161985319462 l006 ln(1894/2261) 1771161988795658 a007 Real Root Of -257*x^4+181*x^3+844*x^2-384*x+207 1771161990682612 r005 Re(z^2+c),c=-15/28+25/43*I,n=53 1771161993179245 a001 1568397607/2*4181^(13/20) 1771161995832149 r005 Re(z^2+c),c=-99/82+1/19*I,n=60 1771162004577473 b008 -1/28+AiryBi[Pi] 1771162006064274 m001 1/Niven^2*ln(GaussKuzminWirsing)^2*GAMMA(1/4) 1771162008265691 m001 cos(1)/(KhinchinLevy-QuadraticClass) 1771162009185957 h001 (1/5*exp(1)+1/3)/(5/8*exp(2)+1/3) 1771162014543326 m001 cos(1/12*Pi)+(2^(1/3))^Zeta(1,2) 1771162014543326 m001 cos(Pi/12)+(2^(1/3))^Zeta(1,2) 1771162015985281 a007 Real Root Of -409*x^4-247*x^3+831*x^2-552*x-932 1771162018481605 h001 (-5*exp(1/2)-9)/(-2*exp(-1)-9) 1771162023540459 a007 Real Root Of -696*x^4-908*x^3+554*x^2-335*x-527 1771162033059741 a001 2889*956722026041^(13/20) 1771162039713167 a001 610/3571*521^(23/31) 1771162043305603 a007 Real Root Of -413*x^4-365*x^3+304*x^2-443*x+298 1771162045522010 m002 5/Pi+(Coth[Pi]*ProductLog[Pi])/6 1771162045547227 a007 Real Root Of -15*x^4-243*x^3+415*x^2+267*x+525 1771162045768872 a003 cos(Pi*16/119)+cos(Pi*13/76) 1771162050686202 a001 34/123*7^(21/22) 1771162061957578 m001 (HardyLittlewoodC5-ln(5))^Pi 1771162064897423 a007 Real Root Of 193*x^4-449*x^3+7*x^2-695*x-126 1771162068490343 a007 Real Root Of 301*x^4+318*x^3+128*x^2+403*x-883 1771162071140195 a007 Real Root Of -38*x^4-688*x^3-308*x^2-757*x+101 1771162074737892 l006 ln(793/4661) 1771162078935614 a007 Real Root Of 43*x^4+116*x^3+497*x^2+980*x+398 1771162081936234 m001 (HardHexagonsEntropy+ReciprocalLucas)^Bloch 1771162083108253 a005 (1/cos(2/239*Pi))^1654 1771162087086699 a001 2207/4807526976*610^(13/14) 1771162089295505 r002 62th iterates of z^2 + 1771162093401489 a007 Real Root Of -411*x^4-390*x^3+691*x^2+590*x+755 1771162097289293 m005 (1/2*5^(1/2)+6)/(6*gamma+5/9) 1771162097568853 r005 Re(z^2+c),c=-2/17+20/49*I,n=31 1771162101721082 k009 concat of cont frac of 1771162102322363 m005 (1/2*5^(1/2)-4/9)/(1/9*gamma-4/9) 1771162102710176 m005 (1/2*5^(1/2)-3/7)/(6/11*Catalan-8/9) 1771162106819524 a007 Real Root Of -528*x^4-767*x^3+192*x^2+907*x+16 1771162107821411 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)*TreeGrowth2nd+Lehmer 1771162108627652 a001 55/6643838879*3^(9/13) 1771162111122121 k008 concat of cont frac of 1771162112786310 a007 Real Root Of 16*x^4-221*x^3-177*x^2+537*x+121 1771162112855509 m001 Zeta(1/2)^Zeta(3)*Zeta(1/2)^HardyLittlewoodC4 1771162113212212 k008 concat of cont frac of 1771162114321154 k006 concat of cont frac of 1771162115174001 r005 Im(z^2+c),c=-49/62+6/59*I,n=57 1771162119518113 k006 concat of cont frac of 1771162120196290 a007 Real Root Of 344*x^4+437*x^3-153*x^2+130*x-247 1771162123385939 q001 2469/1394 1771162125082495 r005 Im(z^2+c),c=-13/48+5/19*I,n=16 1771162127251116 k007 concat of cont frac of 1771162137511011 k006 concat of cont frac of 1771162138430851 b008 Log[(-1+Sqrt[10])*E] 1771162149296352 r009 Re(z^3+c),c=-67/122+31/52*I,n=33 1771162149757635 a007 Real Root Of -487*x^4-899*x^3-556*x^2-836*x+61 1771162150742998 r009 Re(z^3+c),c=-9/106+23/28*I,n=26 1771162151412112 k007 concat of cont frac of 1771162152037393 a001 2207/75025*34^(28/55) 1771162153340002 a007 Real Root Of 5*x^4+885*x^3-98*x^2+874*x+518 1771162161149573 m002 2/Log[Pi]+(2*Sinh[Pi])/Pi^6 1771162163985312 r009 Re(z^3+c),c=-23/78+17/31*I,n=37 1771162164976760 b008 1+(3/11)^(1/5) 1771162170276241 r005 Im(z^2+c),c=-26/25+5/14*I,n=18 1771162171410112 k008 concat of cont frac of 1771162171751609 r005 Im(z^2+c),c=-31/114+1/39*I,n=10 1771162173457305 r005 Re(z^2+c),c=-17/14+3/56*I,n=34 1771162174784950 a003 sin(Pi*2/81)/sin(Pi*16/111) 1771162175667436 p001 sum((-1)^n/(25*n+19)/n/(128^n),,n=0..infinity) 1771162177327177 a007 Real Root Of -286*x^4-54*x^3-22*x^2-920*x+954 1771162177506111 m005 (1/2*Catalan-4/11)/(7/11*gamma-9/10) 1771162181870210 a001 1/76*(1/2*5^(1/2)+1/2)^3*18^(2/5) 1771162182668667 m001 (1-exp(Pi))/(GolombDickman+Kac) 1771162200933127 m001 (-Kac+ZetaQ(3))/(exp(1)+BesselJ(0,1)) 1771162201502487 m001 exp(LandauRamanujan)/Conway*Zeta(5)^2 1771162203074784 m005 (1/2*exp(1)-5/7)/(1/2*exp(1)-5) 1771162210784675 m001 (GAMMA(13/24)-Kolakoski)/(Paris-Stephens) 1771162217591888 m005 (-3/4+1/4*5^(1/2))/(1/4*Zeta(3)+7/9) 1771162221185161 k008 concat of cont frac of 1771162221223138 k006 concat of cont frac of 1771162221561311 k008 concat of cont frac of 1771162223253527 k008 concat of cont frac of 1771162228225620 s002 sum(A043337[n]/(exp(n)-1),n=1..infinity) 1771162230896935 m005 (1/2*Pi-1/2)/(1/10*3^(1/2)-7/9) 1771162233088453 a003 cos(Pi*1/9)+cos(Pi*3/16) 1771162236841363 s002 sum(A023710[n]/(exp(n)-1),n=1..infinity) 1771162237542614 m001 1/Magata^2*exp(Kolakoski)/OneNinth 1771162241401805 a001 7/34*55^(29/54) 1771162242279465 a007 Real Root Of -354*x^4-859*x^3+86*x^2+844*x-64 1771162245147913 l006 ln(1259/7400) 1771162250097548 m001 FransenRobinson*exp(Conway)^2/arctan(1/2)^2 1771162255906954 r005 Im(z^2+c),c=-21/22+16/93*I,n=52 1771162262638269 a007 Real Root Of 248*x^4+123*x^3-233*x^2+742*x+288 1771162264462446 m002 Pi/4+(E^Pi*Pi^5)/4 1771162271241612 k009 concat of cont frac of 1771162277234688 a007 Real Root Of 245*x^4-25*x^3-663*x^2+39*x-401 1771162284005550 a007 Real Root Of -712*x^4-814*x^3+843*x^2+72*x-33 1771162284056792 r005 Re(z^2+c),c=11/46+12/61*I,n=17 1771162288600110 r008 a(0)=0,K{-n^6,52-46*n^3+38*n^2+12*n} 1771162289453653 k004 Champernowne real with floor(Catalan*(20*n^2-n)) 1771162290455657 k002 Champernowne real with 37/2*n^2-3/2*n 1771162296409611 r005 Re(z^2+c),c=-7/46+9/28*I,n=14 1771162300671795 b008 3+37*ExpIntegralEi[-1/2] 1771162308188729 m001 BesselJ(0,1)*Landau+FeigenbaumKappa 1771162309086202 q001 6842/3863 1771162315476220 m004 5+(5*Sqrt[5]*Pi)/4+6/ProductLog[Sqrt[5]*Pi] 1771162316242494 m001 (exp(Pi)+BesselI(1,1))/(-Rabbit+Stephens) 1771162319819603 m005 (1/3*exp(1)+3/7)/(1/4*2^(1/2)+2/5) 1771162321308652 b008 Pi*Gudermannian[5/6]^2 1771162332983385 m001 FeigenbaumB^2*ln(FeigenbaumDelta)^2*OneNinth 1771162334235821 a003 sin(Pi*8/61)*sin(Pi*7/48) 1771162335483847 m001 (BesselI(0,1)-Cahen)/(FeigenbaumB+FeigenbaumD) 1771162343479260 h001 (10/11*exp(1)+4/5)/(5/12*exp(1)+5/7) 1771162347941412 m002 E^(2*Pi)+4*Pi^5+Cosh[Pi] 1771162356768996 r005 Re(z^2+c),c=-2/17+20/49*I,n=33 1771162361279293 k009 concat of cont frac of 1771162366604196 a007 Real Root Of 52*x^4+871*x^3-884*x^2+29*x-7 1771162367556439 a003 cos(Pi*31/80)-cos(Pi*33/74) 1771162367840479 r002 39th iterates of z^2 + 1771162373626681 r005 Im(z^2+c),c=-89/90+7/38*I,n=50 1771162373809865 a003 cos(Pi*45/118)-cos(Pi*43/111) 1771162376776706 m001 TreeGrowth2nd/ln(Porter)*cosh(1) 1771162379575384 a001 76/591286729879*13^(1/8) 1771162381361103 k008 concat of cont frac of 1771162384745245 a001 1/3*28657^(12/31) 1771162389499392 m005 (1/3*Pi-1/9)/(7/9*2^(1/2)-4/7) 1771162391384882 a007 Real Root Of -54*x^4-911*x^3+818*x^2+204*x-591 1771162391733640 m001 1/ln(GAMMA(1/12))/DuboisRaymond*sin(1) 1771162393948576 m008 (5/6*Pi^4+4)/(1/2*Pi^6+1/5) 1771162397169311 m005 (4*Pi+1/3)/(2*Pi+1) 1771162397169311 m006 (4*Pi+1/3)/(2*Pi+1) 1771162397169311 m008 (4*Pi+1/3)/(2*Pi+1) 1771162397916013 b008 5+46*Sqrt[14] 1771162407570568 a007 Real Root Of 517*x^4+219*x^3-384*x^2+960*x-966 1771162407618816 m005 (1/2*Zeta(3)+5/12)/(10/11*3^(1/2)-1) 1771162413932766 q001 4373/2469 1771162414008658 r005 Re(z^2+c),c=-43/110+23/40*I,n=37 1771162417121215 k007 concat of cont frac of 1771162418852267 a007 Real Root Of 979*x^4-647*x^3-868*x^2-766*x-113 1771162421116356 m001 (ln(2^(1/2)+1)-Totient)/sin(1/12*Pi) 1771162425341558 a007 Real Root Of -422*x^4-310*x^3+367*x^2-397*x+576 1771162434094932 m001 exp(Pi)^Catalan/(StolarskyHarborth^Catalan) 1771162443153789 m001 Pi^(1/2)-ZetaQ(3)^OrthogonalArrays 1771162446599585 r005 Im(z^2+c),c=-43/122+11/39*I,n=24 1771162451144317 m009 (1/12*Pi^2+5/6)/(4*Catalan+1/2*Pi^2+3/4) 1771162463104089 r005 Im(z^2+c),c=-19/56+12/43*I,n=32 1771162463272667 a007 Real Root Of -410*x^4-617*x^3-342*x^2-837*x+197 1771162471551449 m001 1/BesselK(0,1)*(3^(1/3))^2/exp(GAMMA(23/24)) 1771162472112873 r009 Re(z^3+c),c=-3/14+9/34*I,n=3 1771162472297675 m001 (2^(1/2)-Ei(1,1))/(Paris+Stephens) 1771162472609313 m005 (1/2*Catalan+1/11)/(9/11*exp(1)+7/8) 1771162474040277 a007 Real Root Of -356*x^4-732*x^3-18*x^2+711*x+752 1771162474426835 m001 2*Pi/GAMMA(5/6)*(exp(1)+arctan(1/2)) 1771162474426835 m001 GAMMA(1/6)*(exp(1)+arctan(1/2)) 1771162476254269 b008 -1/2+(2+Sqrt[2+Pi])^2 1771162481387670 a005 (1/cos(21/227*Pi))^1357 1771162482514509 a007 Real Root Of -413*x^4-425*x^3+366*x^2-36*x+491 1771162485246117 k006 concat of cont frac of 1771162485514960 m001 ln(Pi)+arctan(1/3)^ThueMorse 1771162486257862 r005 Re(z^2+c),c=-34/29+3/25*I,n=4 1771162498112452 m001 (Robbin+ZetaQ(4))/(Zeta(1,2)-FransenRobinson) 1771162506829130 m001 1/(3^(1/3))*exp(Lehmer)/sin(1)^2 1771162511118152 k009 concat of cont frac of 1771162520199059 m001 (FellerTornier-Khinchin)/(Thue+Weierstrass) 1771162528216704 q001 6277/3544 1771162529493239 r005 Re(z^2+c),c=-143/126+11/48*I,n=48 1771162530388272 a007 Real Root Of 137*x^4-741*x^3-960*x^2+923*x-819 1771162535137432 l006 ln(466/2739) 1771162537296956 r009 Re(z^3+c),c=-4/13+37/62*I,n=36 1771162539379343 a007 Real Root Of 274*x^4+114*x^3-837*x^2+3*x+568 1771162541263299 s002 sum(A237191[n]/(n^2*exp(n)-1),n=1..infinity) 1771162545253843 m006 (1/6*exp(2*Pi)-3)/(Pi^2-5) 1771162545563375 r005 Im(z^2+c),c=-5/21+12/47*I,n=13 1771162547661692 l006 ln(7865/9389) 1771162557133950 a007 Real Root Of -8*x^4+396*x^3+271*x^2+363*x+58 1771162560737922 m001 (ln(gamma)+Champernowne)/(exp(Pi)+Catalan) 1771162567316858 r002 40th iterates of z^2 + 1771162570405065 r005 Re(z^2+c),c=-19/118+44/63*I,n=25 1771162574170998 r005 Re(z^2+c),c=25/114+10/57*I,n=4 1771162579875969 m001 1/exp(cos(1))*PisotVijayaraghavan^2/gamma 1771162590140691 r002 61th iterates of z^2 + 1771162598979128 a003 1/2+cos(4/27*Pi)+cos(5/24*Pi)-2*cos(13/30*Pi) 1771162600047353 m001 TwinPrimes*ln(FeigenbaumD)*exp(1) 1771162603615078 a007 Real Root Of 598*x^4+508*x^3-365*x^2+593*x-867 1771162603685354 m005 (1/2*gamma-5/8)/(3/4*5^(1/2)+2/9) 1771162604418372 a007 Real Root Of -106*x^4+867*x^3-505*x^2-809*x-757 1771162606752191 r005 Im(z^2+c),c=11/42+1/19*I,n=16 1771162612242043 s002 sum(A250670[n]/(pi^n-1),n=1..infinity) 1771162616320780 r005 Im(z^2+c),c=1/90+7/38*I,n=7 1771162619254728 a001 312119004989*121393^(13/24) 1771162619267749 a001 599074578*12586269025^(13/24) 1771162626443601 m001 (Zeta(5)+ln(3))/(GlaisherKinkelin-ZetaP(4)) 1771162639836409 r005 Re(z^2+c),c=1/70+11/63*I,n=3 1771162641312131 k008 concat of cont frac of 1771162646901690 a007 Real Root Of -360*x^4-331*x^3+572*x^2+189*x+244 1771162647813720 r005 Im(z^2+c),c=-29/98+15/56*I,n=11 1771162648319384 m001 (gamma(3)-BesselI(1,2)*Pi^(1/2))/BesselI(1,2) 1771162652243781 m005 (1/2*2^(1/2)-2/11)/(1/8*exp(1)-7/11) 1771162655670209 a007 Real Root Of -196*x^4+486*x^3+903*x^2+563*x-1 1771162655933673 a007 Real Root Of 747*x^4+230*x^3-864*x^2-406*x+97 1771162659122294 a007 Real Root Of 955*x^4-953*x^3+504*x^2-203*x-58 1771162660411164 r005 Re(z^2+c),c=19/106+14/27*I,n=18 1771162662314193 a007 Real Root Of -61*x^4+463*x^3+757*x^2-677*x-401 1771162666603698 a003 cos(Pi*1/13)/cos(Pi*35/111) 1771162667344391 r005 Re(z^2+c),c=19/94+17/41*I,n=59 1771162671960196 m001 (BesselI(0,2)-GAMMA(11/12))/(ln(2)-gamma(3)) 1771162678467376 m001 (2^(1/3))*Bloch*ln(sin(1))^2 1771162679990774 m001 (Psi(1,1/3)+BesselI(1,1))/BesselK(1,1) 1771162691605937 m001 GAMMA(1/4)/Lehmer^2/exp(log(1+sqrt(2)))^2 1771162701783727 h001 (5/9*exp(2)+3/10)/(5/7*exp(1)+6/11) 1771162708819082 m001 (1+BesselJ(0,1))/(-FeigenbaumC+GaussAGM) 1771162723127580 a001 521/5702887*17711^(7/13) 1771162723735644 a001 521/139583862445*2504730781961^(7/13) 1771162723735644 a001 521/4807526976*4807526976^(7/13) 1771162723735646 a001 521/165580141*9227465^(7/13) 1771162726036528 l006 ln(5971/7128) 1771162729341187 a007 Real Root Of -272*x^4-90*x^3+686*x^2+370*x+680 1771162740176567 s001 sum(exp(-Pi/4)^(n-1)*A138342[n],n=1..infinity) 1771162747164833 r009 Re(z^3+c),c=-1/12+26/45*I,n=4 1771162756620448 b008 Pi+19*Sec[9] 1771162758595499 m001 (Si(Pi)-exp(1/exp(1)))/(FeigenbaumB+Porter) 1771162759883857 a001 1/686789568*34^(1/18) 1771162760933227 a001 377/3571*1364^(22/31) 1771162767115673 a007 Real Root Of -52*x^4+341*x^3+870*x^2+547*x+646 1771162772675953 l006 ln(1537/9034) 1771162773999007 m001 (Landau-polylog(4,1/2))^(3^(1/2)) 1771162776076006 m001 (Zeta(3)-ln(5))/(GAMMA(13/24)+TwinPrimes) 1771162782785715 r009 Re(z^3+c),c=-35/114+17/29*I,n=62 1771162786400023 s001 sum(exp(-Pi/4)^(n-1)*A068380[n],n=1..infinity) 1771162787276378 m007 (-4*gamma-8*ln(2)-4/5)/(-5*gamma-2) 1771162787724161 m001 GAMMA(1/12)/FeigenbaumC*exp(Zeta(5)) 1771162789400387 r005 Re(z^2+c),c=1/11+37/43*I,n=4 1771162790697674 q001 1904/1075 1771162791522858 m005 (1/2*5^(1/2)-1/5)/(4*Zeta(3)+3/8) 1771162805900691 m001 exp(GAMMA(11/12))*BesselK(1,1)^2/sin(Pi/5) 1771162807910078 a005 (1/cos(29/167*Pi))^356 1771162812418111 k008 concat of cont frac of 1771162814633771 m001 (Paris-Robbin)/(Totient+Tribonacci) 1771162818992164 r005 Im(z^2+c),c=-41/94+15/62*I,n=5 1771162820881807 a007 Real Root Of 539*x^4+927*x^3-155*x^2-535*x-615 1771162826116969 a007 Real Root Of -556*x^4-154*x^3+916*x^2-431*x+979 1771162830766596 r005 Im(z^2+c),c=47/126+9/49*I,n=33 1771162835051884 a001 4*(1/2*5^(1/2)+1/2)^6*18^(5/16) 1771162842472127 g005 GAMMA(1/11)*GAMMA(4/9)*GAMMA(2/3)/GAMMA(5/9) 1771162847927317 m001 (GAMMA(23/24)-GAMMA(3/4))^FeigenbaumAlpha 1771162847927317 m001 (GAMMA(3/4)-GAMMA(23/24))^FeigenbaumAlpha 1771162868980592 a007 Real Root Of 739*x^4+960*x^3-476*x^2+497*x+435 1771162874311157 k008 concat of cont frac of 1771162876030698 l006 ln(1071/6295) 1771162876762676 m001 (Catalan-Ei(1))/(FeigenbaumDelta+Thue) 1771162881290493 r005 Re(z^2+c),c=-147/122+1/19*I,n=50 1771162883723641 m001 ln(2^(1/2)+1)/(Zeta(1,2)+TreeGrowth2nd) 1771162883945023 h005 exp(sin(Pi*1/14)/sin(Pi*7/55)) 1771162884071409 a001 701408733/47*11^(1/14) 1771162898164885 r002 38th iterates of z^2 + 1771162905800671 h001 (-7*exp(8)-3)/(-8*exp(5)+9) 1771162910544382 r005 Im(z^2+c),c=-33/58+7/36*I,n=7 1771162911675577 r002 11th iterates of z^2 + 1771162918483956 r005 Re(z^2+c),c=11/102+18/49*I,n=47 1771162933194771 p001 sum(1/(584*n+583)/(16^n),n=0..infinity) 1771162933835831 a001 377/2207*64079^(13/31) 1771162933903379 a007 Real Root Of -696*x^4-333*x^3+979*x^2-988*x+178 1771162934613112 a007 Real Root Of 777*x^4+771*x^3-555*x^2+863*x-93 1771162934646718 r008 a(0)=0,K{-n^6,-40+13*n^3+19*n^2-47*n} 1771162937114713 m001 Lehmer^2/exp(FibonacciFactorial)^2/Niven 1771162937259287 a007 Real Root Of -17*x^4+368*x^3+370*x^2-816*x-394 1771162941795736 m001 (sin(1)+GAMMA(5/6))/(TwinPrimes+ZetaP(2)) 1771162942457081 a007 Real Root Of -525*x^4-459*x^3+601*x^2+126*x+954 1771162945476758 m001 Mills+PlouffeB-Trott 1771162947862590 p004 log(25997/4423) 1771162952518913 m001 cos(1/5*Pi)*Riemann2ndZero+CareFree 1771162959312159 m001 (Pi^(1/2))^(LandauRamanujan/BesselJ(0,1)) 1771162959312159 m001 sqrt(Pi)^(LandauRamanujan/BesselJ(0,1)) 1771162959624008 a007 Real Root Of -691*x^4-628*x^3+860*x^2-765*x-742 1771162961564887 r009 Re(z^3+c),c=-35/114+17/29*I,n=59 1771162968044605 a007 Real Root Of 603*x^4+925*x^3-236*x^2+532*x+888 1771162969864547 r005 Im(z^2+c),c=-37/42+7/51*I,n=12 1771162970813650 l006 ln(1676/9851) 1771162980459772 a007 Real Root Of -642*x^4-463*x^3+719*x^2+732*x-149 1771162981500608 a007 Real Root Of -184*x^4+534*x^3+598*x^2+522*x-114 1771162984776016 m001 (MertensB2+Sarnak)/(BesselK(0,1)-arctan(1/3)) 1771162986232490 r002 4th iterates of z^2 + 1771162991516325 r005 Re(z^2+c),c=-17/90+24/35*I,n=3 1771162997164062 m001 (KomornikLoreti-Niven)/(Trott+ZetaP(2)) 1771163003491851 m005 (1/3*exp(1)-2/11)/(5/9*5^(1/2)-5/6) 1771163010155013 a001 4/21*121393^(4/21) 1771163013562132 a007 Real Root Of 300*x^4+226*x^3+155*x^2+936*x-525 1771163015050257 a003 sin(Pi*21/67)+sin(Pi*43/111) 1771163015637661 r005 Im(z^2+c),c=-101/106+6/35*I,n=45 1771163018919714 a007 Real Root Of 642*x^4+811*x^3-2*x^2+627*x-695 1771163024365737 q001 7051/3981 1771163030591991 a007 Real Root Of 229*x^4+417*x^3+763*x^2+812*x-892 1771163032041623 r005 Im(z^2+c),c=-13/106+21/32*I,n=9 1771163034143514 m001 GAMMA(3/4)*ln(CopelandErdos)^2/Zeta(3)^2 1771163034708831 a007 Real Root Of 150*x^4-113*x^3-263*x^2+210*x-907 1771163035239684 m001 1/Lehmer/FransenRobinson*ln(GAMMA(1/6))^2 1771163037123053 a007 Real Root Of -581*x^4-853*x^3+338*x^2-110*x-277 1771163042146486 r005 Re(z^2+c),c=-87/70+1/23*I,n=60 1771163047933922 m001 PrimesInBinary^KhinchinLevy-ZetaP(3) 1771163049715199 r005 Im(z^2+c),c=-103/90+7/37*I,n=48 1771163066181180 p001 sum(1/(584*n+569)/(64^n),n=0..infinity) 1771163070142009 l006 ln(4077/4867) 1771163070338332 r005 Re(z^2+c),c=-7/106+21/50*I,n=5 1771163071434687 m001 1/(3^(1/3))^2*exp(Tribonacci)*BesselJ(0,1)^2 1771163072273320 b008 5*(3+Sqrt[5/17]) 1771163090777895 m006 (5/6*Pi-4)/(1/6/Pi-5/6) 1771163091715976 r005 Re(z^2+c),c=-31/26+51/80*I,n=2 1771163094052233 a001 1/9378*(1/2*5^(1/2)+1/2)^31*18^(13/22) 1771163107876857 r002 7th iterates of z^2 + 1771163110565666 r005 Re(z^2+c),c=-7/82+17/35*I,n=19 1771163110805230 q001 5147/2906 1771163111219682 k008 concat of cont frac of 1771163111431511 k009 concat of cont frac of 1771163112122112 k008 concat of cont frac of 1771163112213233 k007 concat of cont frac of 1771163112931111 k008 concat of cont frac of 1771163114151315 k008 concat of cont frac of 1771163121141101 k008 concat of cont frac of 1771163121616231 k007 concat of cont frac of 1771163122411185 k007 concat of cont frac of 1771163126193210 k007 concat of cont frac of 1771163129022356 r005 Re(z^2+c),c=-4/23+35/58*I,n=21 1771163133994529 a007 Real Root Of -33*x^4-562*x^3+443*x^2+798*x+88 1771163135348241 a003 cos(Pi*7/43)/cos(Pi*40/119) 1771163138231663 r002 18th iterates of z^2 + 1771163138602953 l006 ln(605/3556) 1771163141261886 a007 Real Root Of -445*x^4-599*x^3+157*x^2+81*x+702 1771163145174385 a001 76/1597*2971215073^(19/21) 1771163148482706 m001 (FransenRobinson-gamma(1))^cos(1) 1771163149865844 r009 Im(z^3+c),c=-35/106+6/49*I,n=13 1771163154905689 r005 Im(z^2+c),c=-5/6+35/199*I,n=4 1771163155023773 a007 Real Root Of 55*x^4-429*x^3+472*x^2-287*x+870 1771163155259788 m001 1/GAMMA(3/4)/LaplaceLimit^2/exp(sinh(1))^2 1771163167131617 k006 concat of cont frac of 1771163167970960 r005 Im(z^2+c),c=-1/58+6/31*I,n=8 1771163175736056 m001 Magata^2*ErdosBorwein^2/exp(sqrt(2))^2 1771163181112214 k009 concat of cont frac of 1771163191824568 r005 Re(z^2+c),c=11/102+18/49*I,n=48 1771163193096065 m001 exp(Pi)/(UniversalParabolic^arctan(1/3)) 1771163199324697 a007 Real Root Of -841*x^4-475*x^3-340*x^2+564*x+1 1771163206647520 a007 Real Root Of -470*x^4-259*x^3+597*x^2-549*x+341 1771163207594861 r005 Im(z^2+c),c=-4/7+37/114*I,n=60 1771163208093707 m001 (gamma+BesselJ(0,1))/(-GaussAGM+ZetaP(4)) 1771163208380328 r009 Im(z^3+c),c=-31/58+13/34*I,n=27 1771163208877085 m001 (Backhouse+OneNinth)/(Zeta(1,2)+GAMMA(23/24)) 1771163209726404 r002 8th iterates of z^2 + 1771163210112089 a007 Real Root Of -799*x^4-881*x^3+721*x^2-87*x+552 1771163211128121 k007 concat of cont frac of 1771163213215540 p004 log(22153/3769) 1771163221151113 k008 concat of cont frac of 1771163230587168 m001 (Trott+ZetaP(4))/(BesselK(1,1)-OneNinth) 1771163231215861 k008 concat of cont frac of 1771163232169787 a001 377/5778*9349^(19/31) 1771163236370415 r005 Re(z^2+c),c=-67/98+7/8*I,n=3 1771163236691496 r005 Im(z^2+c),c=-15/82+37/44*I,n=29 1771163240791722 m001 (-MadelungNaCl+Paris)/(Pi^(1/2)-sin(1)) 1771163244188023 m001 (Bloch+Sarnak)/(ln(2)/ln(10)+Artin) 1771163244222485 a007 Real Root Of 356*x^4+205*x^3-120*x^2+704*x-741 1771163244783291 a007 Real Root Of 140*x^4+179*x^3+599*x^2+803*x-840 1771163245118549 m004 8+Sqrt[5]*Pi+Cos[Sqrt[5]*Pi]+Log[Sqrt[5]*Pi] 1771163246946051 m001 Rabbit/exp(FibonacciFactorial)/sinh(1) 1771163248849445 m001 (BesselK(0,1)+Ei(1))/(HeathBrownMoroz+Mills) 1771163250496607 m001 Totient^(Salem/BesselK(1,1)) 1771163257579536 m001 (Ei(1)+gamma(2))/(Psi(1,1/3)-ln(gamma)) 1771163259052728 m009 (2*Catalan+1/4*Pi^2+5/6)/(3/4*Psi(1,2/3)+3/5) 1771163263917604 m001 1/BesselJ(0,1)/ln(Magata)/BesselK(1,1) 1771163265619297 a003 cos(Pi*11/102)+cos(Pi*18/95) 1771163265946833 m005 (1/4*5^(1/2)+3/4)/(-5/84+5/14*5^(1/2)) 1771163269011230 m001 FeigenbaumC/GAMMA(5/6)/Catalan 1771163276464045 a001 2255/281*3571^(3/31) 1771163278449442 a007 Real Root Of 544*x^4+747*x^3+294*x^2+934*x-471 1771163279846980 r005 Re(z^2+c),c=-129/106+1/30*I,n=26 1771163280582754 h001 (7/11*exp(1)+4/7)/(5/12*exp(1)+1/6) 1771163282316073 s001 sum(1/10^(n-1)*A116521[n]/n!^2,n=1..infinity) 1771163283428675 a007 Real Root Of 214*x^4-65*x^3-702*x^2-323*x-837 1771163284333028 r005 Im(z^2+c),c=-151/126+19/56*I,n=9 1771163293330012 a001 7/377*13^(51/58) 1771163293461667 k002 Champernowne real with 19*n^2-3*n+1 1771163294852169 a001 377/271443*24476^(29/31) 1771163298743855 q001 3243/1831 1771163300166708 a001 3/4*123^(5/28) 1771163300851654 a001 10946/843*15127^(1/31) 1771163301868310 m001 BesselI(0,1)-Sierpinski-ZetaP(2) 1771163311914359 m005 (1/3*Pi+3/4)/(7/8*Catalan-7/10) 1771163316172246 a007 Real Root Of 110*x^4-128*x^3+147*x^2+748*x-930 1771163318849478 m001 (ln(3)+GAMMA(13/24))/(MasserGramain-Robbin) 1771163320288524 r002 5th iterates of z^2 + 1771163326550177 a001 199/1346269*34^(2/39) 1771163328607563 h001 (1/2*exp(2)+5/7)/(7/9*exp(1)+3/8) 1771163331801122 a001 843/956722026041*514229^(13/14) 1771163333000634 r005 Re(z^2+c),c=21/82+10/29*I,n=6 1771163334104260 r002 24th iterates of z^2 + 1771163338395314 a007 Real Root Of 904*x^4+897*x^3-870*x^2+594*x-131 1771163342667186 r005 Re(z^2+c),c=-15/82+10/47*I,n=7 1771163344020927 m001 (ln(Pi)-TreeGrowth2nd)/(ThueMorse-ZetaP(2)) 1771163344837572 a001 15127/34*121393^(19/21) 1771163346766765 m005 (1/2*exp(1)+1/6)/(3/5*2^(1/2)-6/7) 1771163347064643 l006 ln(1349/7929) 1771163348559885 r005 Re(z^2+c),c=-41/34+3/64*I,n=46 1771163352011349 a007 Real Root Of -994*x^4-919*x^3+930*x^2-829*x+290 1771163355752764 m001 ArtinRank2*Otter*Thue 1771163361990436 m001 2^(1/2)-GAMMA(2/3)-FeigenbaumC 1771163363999145 r005 Im(z^2+c),c=31/118+3/62*I,n=58 1771163365819002 m006 (3/4*exp(Pi)+2/5)/(3*Pi+3/5) 1771163367292761 r005 Im(z^2+c),c=-27/34+8/93*I,n=28 1771163371644020 a001 39603/5*1346269^(23/60) 1771163380917787 m001 (gamma(1)-BesselI(1,1))/(MasserGramain+Otter) 1771163385515058 a007 Real Root Of 364*x^4+327*x^3-450*x^2-269*x-830 1771163391221378 m008 (1/6*Pi-4)/(1/5*Pi^6+4) 1771163392665700 r005 Im(z^2+c),c=-36/31+1/44*I,n=50 1771163396436937 m001 (Zeta(1,2)-Landau)^Backhouse 1771163398361459 l006 ln(6260/7473) 1771163402215301 s001 sum(1/10^(n-1)*A244235[n]/n!^2,n=1..infinity) 1771163405835448 m002 Pi^3+Cosh[Pi]+Log[Pi]+Sinh[Pi]^2 1771163409672810 r005 Re(z^2+c),c=11/46+3/14*I,n=8 1771163410100165 r005 Im(z^2+c),c=-31/110+4/15*I,n=4 1771163411118226 k008 concat of cont frac of 1771163416332033 g005 GAMMA(3/5)/GAMMA(8/11)/GAMMA(6/11)/GAMMA(2/9) 1771163419573079 g007 Psi(2,3/7)-Psi(2,5/9)-Psi(2,2/9)-Psi(2,2/3) 1771163422363060 r005 Re(z^2+c),c=-17/94+8/47*I,n=2 1771163426099079 r005 Re(z^2+c),c=23/64+25/29*I,n=3 1771163437080915 a001 377/3571*39603^(15/31) 1771163440557300 a007 Real Root Of 507*x^4+400*x^3-785*x^2+475*x+537 1771163449083892 m001 (Grothendieck+Salem)/(cos(1/12*Pi)+CareFree) 1771163450228880 a001 1597/843*5778^(8/31) 1771163453106367 a001 55/843*29^(50/51) 1771163458910324 g005 GAMMA(3/11)/GAMMA(10/11)/GAMMA(4/7)/GAMMA(5/6) 1771163466220589 l006 ln(1455/1481) 1771163474679537 r005 Im(z^2+c),c=-23/22+25/124*I,n=44 1771163476332507 a005 (1/cos(11/239*Pi))^1152 1771163477240267 m001 Ei(1,1)^GaussAGM/(KhinchinHarmonic^GaussAGM) 1771163481256448 s001 sum(1/10^(n-1)*A112410[n]/n!^2,n=1..infinity) 1771163484172570 m001 1/Ei(1)/Niven*ln(sqrt(Pi)) 1771163488047261 m001 1/DuboisRaymond*Cahen*exp(Pi)^2 1771163488205499 a007 Real Root Of -394*x^4-627*x^3+32*x^2-624*x-812 1771163490201069 m001 sin(1/12*Pi)*ArtinRank2+BesselI(1,2) 1771163492349798 a007 Real Root Of -583*x^4-632*x^3+422*x^2-315*x+344 1771163503620532 m001 1/GAMMA(11/24)*exp((3^(1/3)))*cos(Pi/5) 1771163504397069 m001 Pi^(1/2)/FeigenbaumAlpha*Riemann3rdZero 1771163508763009 r005 Im(z^2+c),c=-47/50+1/6*I,n=63 1771163509856977 q001 4582/2587 1771163514285106 a007 Real Root Of 871*x^4+838*x^3-773*x^2+540*x-534 1771163516579828 l006 ln(744/4373) 1771163541814995 m001 (GAMMA(17/24)+GAMMA(23/24))/(Mills-ZetaQ(4)) 1771163542106626 a001 1597/843*2207^(9/31) 1771163544456409 m001 GAMMA(11/24)^sqrt(5)*GAMMA(11/24)^GAMMA(5/12) 1771163549298845 b008 Sqrt[ArcCot[11]]/17 1771163554123083 p004 log(35801/6091) 1771163556107734 r002 20th iterates of z^2 + 1771163556853779 l006 ln(8443/10079) 1771163556853779 p004 log(10079/8443) 1771163558311553 a007 Real Root Of -164*x^4+670*x^3+613*x^2+961*x-193 1771163563651225 m006 (1/6*Pi^2-3/5)/(2/5*Pi-2/3) 1771163563651225 m008 (1/6*Pi^2-3/5)/(2/5*Pi-2/3) 1771163564337974 r005 Re(z^2+c),c=11/60+6/49*I,n=6 1771163566848340 r009 Im(z^3+c),c=-31/54+23/39*I,n=24 1771163569273648 a007 Real Root Of -427*x^4+30*x^3+737*x^2-674*x+863 1771163569752629 a003 cos(Pi*6/101)+sin(Pi*24/83) 1771163583833052 a007 Real Root Of 717*x^4+654*x^3-896*x^2+811*x+825 1771163586591990 a007 Real Root Of 86*x^4+189*x^3+369*x^2+473*x-116 1771163591232184 m005 (-3/20+1/4*5^(1/2))/(2/7*Pi-2/3) 1771163592946263 m005 (3*2^(1/2)-3/5)/(2/5*Pi+4/5) 1771163595068219 m005 (1/3*Pi-1/3)/(Pi+8/9) 1771163595068219 m006 (1/4*Pi-1/4)/(3/4*Pi+2/3) 1771163595068219 m008 (1/4*Pi-1/4)/(3/4*Pi+2/3) 1771163597343525 a007 Real Root Of -361*x^4-831*x^3-272*x^2+300*x+320 1771163600843198 a007 Real Root Of 337*x^4+18*x^3-628*x^2+724*x+36 1771163621095139 a007 Real Root Of 313*x^4+137*x^3-357*x^2+205*x-836 1771163622775285 a007 Real Root Of 725*x^4+837*x^3-278*x^2+498*x-730 1771163624751940 r005 Re(z^2+c),c=23/94+13/64*I,n=31 1771163625486090 q001 5921/3343 1771163627233494 r005 Im(z^2+c),c=-5/28+24/37*I,n=64 1771163631226468 r005 Re(z^2+c),c=15/52+29/63*I,n=25 1771163633789982 a007 Real Root Of -490*x^4-493*x^3+148*x^2-452*x+818 1771163633873953 r005 Im(z^2+c),c=-63/106+5/16*I,n=46 1771163645505734 a007 Real Root Of 857*x^4+552*x^3-981*x^2+991*x-534 1771163649601997 a007 Real Root Of 631*x^3-583*x^2-511*x-772 1771163651527377 p003 LerchPhi(1/32,4,39/80) 1771163656736695 a007 Real Root Of 115*x^4-831*x^3+944*x^2+148*x+262 1771163657130504 l006 ln(1627/9563) 1771163657279099 a007 Real Root Of 811*x^4-249*x^3+141*x^2-612*x-115 1771163657686370 r009 Im(z^3+c),c=-23/38+13/25*I,n=3 1771163659919006 b008 ArcSinh[2+Sech[EulerGamma]] 1771163661696897 a007 Real Root Of 667*x^4+761*x^3-302*x^2+248*x-949 1771163662137393 m001 Porter*Rabbit^ln(gamma) 1771163667211476 a003 cos(Pi*7/73)+cos(Pi*10/51) 1771163670808289 a007 Real Root Of -535*x^4-910*x^3-808*x^2+711*x-95 1771163674551731 r005 Re(z^2+c),c=-17/14+3/82*I,n=16 1771163679688353 r005 Im(z^2+c),c=7/74+55/59*I,n=4 1771163683935716 r005 Im(z^2+c),c=3/11+1/30*I,n=49 1771163686594872 h001 (6/7*exp(2)+9/10)/(4/9*exp(2)+4/5) 1771163687898578 r005 Im(z^2+c),c=-4/11+2/7*I,n=5 1771163688866747 a007 Real Root Of -131*x^4+199*x^3+138*x^2-918*x+336 1771163691730761 r005 Im(z^2+c),c=-1/8+7/31*I,n=12 1771163692274191 a007 Real Root Of 25*x^4+415*x^3-483*x^2+197*x+596 1771163692906934 a007 Real Root Of -666*x^4-611*x^3+923*x^2-425*x-489 1771163696605571 a007 Real Root Of 327*x^4+852*x^3+888*x^2+486*x-409 1771163697110950 m001 1/GAMMA(5/6)^2/ErdosBorwein^2/exp(cos(1)) 1771163697988475 a007 Real Root Of 224*x^4-172*x^3-567*x^2+252*x-935 1771163698186823 m001 1/exp(Zeta(3))/LaplaceLimit^2*sin(Pi/12) 1771163700217267 m001 FeigenbaumD^2/ln(GolombDickman)*OneNinth^2 1771163717900992 m001 (ReciprocalLucas-ZetaP(3))/Psi(1,1/3) 1771163719796019 r005 Re(z^2+c),c=7/26+26/57*I,n=26 1771163739034292 r005 Re(z^2+c),c=-11/86+27/49*I,n=7 1771163753427079 a007 Real Root Of -148*x^4-143*x^3-164*x^2-680*x-28 1771163762213886 m001 Zeta(3)*(exp(1/Pi)+Paris) 1771163764577514 a007 Real Root Of 588*x^4+302*x^3-883*x^2+614*x-251 1771163766106306 a007 Real Root Of -542*x^4-497*x^3+672*x^2-60*x+358 1771163775555974 l006 ln(883/5190) 1771163780935436 m004 -6+Sqrt[5]*Pi-Cosh[Sqrt[5]*Pi]/30 1771163783082430 r002 41th iterates of z^2 + 1771163799373270 r002 14th iterates of z^2 + 1771163804568538 a007 Real Root Of 380*x^4+191*x^3-720*x^2-217*x-804 1771163804958969 a007 Real Root Of -718*x^4-296*x^3-200*x^2+907*x-16 1771163806251170 m001 LandauRamanujan2nd^StolarskyHarborth/cos(1) 1771163810994308 p004 log(31957/5437) 1771163812631152 k008 concat of cont frac of 1771163821622214 b008 (35*ArcSec[19])/3 1771163824964893 r005 Im(z^2+c),c=-71/118+20/59*I,n=48 1771163828042550 p004 log(21577/3671) 1771163829163193 m001 (sin(1)+HardHexagonsEntropy)^FeigenbaumMu 1771163841123974 a001 121393/47*9349^(57/59) 1771163849248606 r005 Re(z^2+c),c=11/102+18/49*I,n=51 1771163879201869 r005 Im(z^2+c),c=-29/23+14/37*I,n=10 1771163884772482 m001 GAMMA(5/12)/ln(GAMMA(1/4))^2*sinh(1)^2 1771163885778117 g006 Psi(1,1/9)+Psi(1,1/5)-Psi(1,1/11)-Psi(1,4/7) 1771163895238195 m001 (exp(1)+BesselK(0,1))/Pi^(1/2) 1771163895238195 m001 (exp(1)+BesselK(0,1))/sqrt(Pi) 1771163899322024 m001 (MertensB1+Totient)/(ln(3)-DuboisRaymond) 1771163900603018 l004 Ci(492/95) 1771163904359936 m001 exp(Zeta(3))*Tribonacci/sin(Pi/5)^2 1771163911549046 a007 Real Root Of 527*x^4+538*x^3-727*x^2+204*x+445 1771163914065290 m001 RenyiParking^2*exp(Conway)^2*GAMMA(7/12)^2 1771163930073494 p003 LerchPhi(1/16,4,72/83) 1771163930435929 m001 1/5*(1-5^(1/2)*GolombDickman)*5^(1/2) 1771163934044132 a007 Real Root Of -505*x^4-249*x^3+631*x^2-565*x+606 1771163937920466 r009 Re(z^3+c),c=-9/29+37/62*I,n=62 1771163938743097 a007 Real Root Of 788*x^4+859*x^3-582*x^2+703*x+89 1771163942801371 r005 Re(z^2+c),c=-1/29+33/59*I,n=44 1771163955904128 m001 Salem*ln(Magata)^2*Zeta(9) 1771163959818115 s002 sum(A038635[n]/(2^n-1),n=1..infinity) 1771163964086511 l006 ln(1022/6007) 1771163967173654 m005 (1/3*5^(1/2)+3/5)/(1/5*Zeta(3)-1) 1771163971056636 a007 Real Root Of 191*x^4-949*x^3+470*x^2+534*x+973 1771163974450186 g002 -2*gamma-3*ln(3)-Psi(9/11)-Psi(6/11) 1771163975777693 a001 3461452808002/89*32951280099^(8/23) 1771163982801090 r005 Re(z^2+c),c=53/114+1/6*I,n=5 1771163982846299 m001 (GAMMA(5/6)-LambertW(1))/(FeigenbaumC+Totient) 1771163986647917 m001 1/ln(CopelandErdos)/Backhouse/FeigenbaumD 1771163991992601 a001 17/299537289*521^(11/20) 1771163992970454 m001 (TravellingSalesman+Trott)/(3^(1/3)-Si(Pi)) 1771163993020137 m001 (Zeta(5)+Pi^(1/2))/(GAMMA(19/24)+ThueMorse) 1771163995668917 r005 Re(z^2+c),c=15/94+24/55*I,n=63 1771164005988846 r005 Re(z^2+c),c=-6/29+3/47*I,n=4 1771164009157880 m001 (1-Artin)/(ReciprocalFibonacci+ZetaP(3)) 1771164010688828 a007 Real Root Of 409*x^4-126*x^3-855*x^2+761*x-695 1771164011348465 l006 ln(2183/2606) 1771164020301078 p003 LerchPhi(1/12,2,128/169) 1771164021164021 q001 1339/756 1771164021164021 r005 Im(z^2+c),c=-10/7+103/108*I,n=2 1771164022354676 r005 Re(z^2+c),c=-21/106+4/29*I,n=8 1771164025660420 m001 Magata/CareFree*ln((3^(1/3))) 1771164034425557 a007 Real Root Of -430*x^4-570*x^3-386*x^2-754*x+940 1771164035222362 a007 Real Root Of 633*x^4+381*x^3-913*x^2+746*x+73 1771164035392299 a007 Real Root Of -488*x^4-656*x^3+155*x^2-816*x-774 1771164048369895 r005 Re(z^2+c),c=11/102+18/49*I,n=52 1771164048482593 a007 Real Root Of -700*x^4+193*x^3-436*x^2+596*x+121 1771164050654656 m005 (1/2*gamma-8/11)/(5/8*exp(1)+7/9) 1771164068391076 r005 Re(z^2+c),c=-29/34+2/85*I,n=30 1771164069187433 m001 ((1+3^(1/2))^(1/2)+Artin)/(gamma+LambertW(1)) 1771164072077132 m008 (3*Pi^2-1/2)/(1/6*Pi^4+1/5) 1771164074169222 a007 Real Root Of 584*x^4+409*x^3-562*x^2+950*x-29 1771164081807779 h001 (-9*exp(5)+9)/(-5*exp(5)-7) 1771164087646473 r005 Im(z^2+c),c=31/118+3/62*I,n=57 1771164091245174 m001 Tribonacci/DuboisRaymond/ln((2^(1/3)))^2 1771164097454719 m001 (MinimumGamma-Thue)/(cos(1/12*Pi)-Kac) 1771164099614829 m004 -6-5*Pi+(5*Pi*ProductLog[Sqrt[5]*Pi])/6 1771164105444209 m001 (BesselK(1,1)+GAMMA(11/12))/(Thue+ZetaP(4)) 1771164107473623 l006 ln(1161/6824) 1771164110131121 k006 concat of cont frac of 1771164111611221 k008 concat of cont frac of 1771164114121111 k008 concat of cont frac of 1771164115335083 a007 Real Root Of 630*x^4+869*x^3-39*x^2+891*x+329 1771164115915870 m005 (1/2*Pi+2/5)/(-47/80+5/16*5^(1/2)) 1771164118826639 m005 (1/3*Pi-1/6)/(8/11*2^(1/2)-6) 1771164120257169 b008 1/7+ArcSinh[Sqrt[6]] 1771164123912129 r005 Im(z^2+c),c=3/52+33/53*I,n=13 1771164125653760 a007 Real Root Of -556*x^4-628*x^3+673*x^2+612*x+955 1771164130850555 m001 1/Pi/ln(Porter)*Zeta(1/2)^2 1771164135812816 m001 (cos(1/5*Pi)+MertensB2)/(Trott2nd+ZetaP(4)) 1771164138763345 m001 (ln(Pi)-Ei(1,1))/(ln(2+3^(1/2))-Kolakoski) 1771164142327219 a003 cos(Pi*14/111)+cos(Pi*11/62) 1771164143102402 p003 LerchPhi(1/100,6,509/177) 1771164144956587 r005 Re(z^2+c),c=11/102+18/49*I,n=55 1771164150104668 m001 RenyiParking^2*ln(Kolakoski)*GAMMA(19/24)^2 1771164151589935 a007 Real Root Of 739*x^4-809*x^3-982*x^2-934*x+200 1771164165814529 r005 Im(z^2+c),c=-47/106+19/63*I,n=26 1771164168252845 a007 Real Root Of -803*x^4-950*x^3+543*x^2-365*x+274 1771164168779340 s002 sum(A172077[n]/(exp(n)-1),n=1..infinity) 1771164170857567 m001 (Pi*BesselI(1,2)+LambertW(1))/Pi 1771164172974492 m001 (Pi-gamma)/(Zeta(1,-1)-GlaisherKinkelin) 1771164178996270 m001 GAMMA(7/12)^2*exp(Champernowne)*sin(Pi/12)^2 1771164185548629 r002 3th iterates of z^2 + 1771164188892788 a007 Real Root Of 351*x^4-126*x^3+752*x^2-890*x-16 1771164189784121 a007 Real Root Of 957*x^4-182*x^3-11*x^2-516*x-93 1771164190020256 a001 4/102334155*377^(9/14) 1771164191964475 a007 Real Root Of -26*x^4+37*x^3-152*x^2-60*x+832 1771164195178358 a001 144/11*29^(41/53) 1771164197304533 m001 (QuadraticClass+Sarnak)/(Catalan+gamma(2)) 1771164198622887 m001 1/BesselK(1,1)^2/ln((2^(1/3)))^2/cos(1)^2 1771164199156473 m001 Pi*Artin+Gompertz 1771164201976876 a007 Real Root Of 175*x^4-601*x^3+932*x^2-468*x+8 1771164204487859 m001 GAMMA(1/3)^2*Khintchine*ln(GAMMA(2/3))^2 1771164211064131 k006 concat of cont frac of 1771164211400028 m001 (Grothendieck+Magata)/(ln(3)+FeigenbaumC) 1771164212141927 a007 Real Root Of -189*x^4+341*x^3+866*x^2-918*x-588 1771164213177910 a007 Real Root Of 122*x^4-716*x^3+671*x^2+80*x+531 1771164214313142 k009 concat of cont frac of 1771164215784506 a001 843/1836311903*610^(13/14) 1771164220197938 l006 ln(1300/7641) 1771164226657270 r005 Re(z^2+c),c=11/102+18/49*I,n=56 1771164226769239 r009 Re(z^3+c),c=-21/118+43/50*I,n=19 1771164227020808 m001 Khinchin+Riemann2ndZero*TravellingSalesman 1771164227431521 k007 concat of cont frac of 1771164229088753 m001 (sin(1/5*Pi)+MertensB1)/(Otter+Tribonacci) 1771164232226495 r005 Re(z^2+c),c=11/102+18/49*I,n=59 1771164239085017 r009 Re(z^3+c),c=-2/19+13/16*I,n=7 1771164242264154 a007 Real Root Of -259*x^4+176*x^3+698*x^2-380*x+664 1771164245921847 r005 Im(z^2+c),c=-19/74+13/49*I,n=7 1771164256617670 r005 Re(z^2+c),c=11/102+18/49*I,n=63 1771164260104727 r005 Re(z^2+c),c=11/102+18/49*I,n=60 1771164265237670 r005 Re(z^2+c),c=11/102+18/49*I,n=64 1771164265896032 a001 121393/3*76^(15/44) 1771164266036689 a007 Real Root Of -191*x^4+125*x^3+904*x^2+259*x+197 1771164266776426 r005 Re(z^2+c),c=11/102+18/49*I,n=62 1771164272332808 r005 Im(z^2+c),c=31/118+3/62*I,n=59 1771164278977686 r005 Im(z^2+c),c=-59/102+1/31*I,n=52 1771164280366863 a001 843/28657*34^(28/55) 1771164280369815 r005 Re(z^2+c),c=11/102+18/49*I,n=58 1771164282428967 r005 Re(z^2+c),c=11/102+18/49*I,n=61 1771164282472982 r005 Im(z^2+c),c=-1/10+14/61*I,n=3 1771164284375933 m001 sin(1/5*Pi)^exp(Pi)*sin(1/5*Pi)^Grothendieck 1771164287980828 m006 (1/3*Pi^2-5/6)/(Pi^2+4) 1771164287980828 m008 (1/3*Pi^2-5/6)/(Pi^2+4) 1771164287980828 m009 (1/3*Pi^2-5/6)/(Pi^2+4) 1771164293943667 a007 Real Root Of -435*x^4-140*x^3+589*x^2-554*x+674 1771164294587524 r005 Re(z^2+c),c=-1/17+31/58*I,n=29 1771164296467677 k002 Champernowne real with 39/2*n^2-9/2*n+2 1771164305093600 r005 Re(z^2+c),c=-1/13+10/19*I,n=19 1771164311145066 l006 ln(1439/8458) 1771164315699468 h001 (4/7*exp(1)+6/7)/(3/10*exp(1)+6/11) 1771164323275910 a007 Real Root Of 658*x^4+353*x^3-918*x^2+860*x-111 1771164324695159 m001 Totient/(BesselJ(0,1)-ZetaQ(3)) 1771164328602820 r002 14th iterates of z^2 + 1771164328846235 r005 Re(z^2+c),c=11/102+18/49*I,n=57 1771164331068624 r002 45th iterates of z^2 + 1771164335864115 s002 sum(A079945[n]/(n*2^n-1),n=1..infinity) 1771164336837544 r005 Im(z^2+c),c=3/50+1/6*I,n=13 1771164338008248 a007 Real Root Of 81*x^4-379*x^3+130*x^2+289*x+389 1771164343819059 a007 Real Root Of 412*x^4+328*x^3-900*x^2-191*x+253 1771164345988231 r005 Im(z^2+c),c=-25/62+17/58*I,n=35 1771164352466384 r005 Im(z^2+c),c=-31/54+16/49*I,n=62 1771164358887696 r005 Re(z^2+c),c=11/102+18/49*I,n=54 1771164361594722 m001 Magata^(Pi*ZetaR(2)) 1771164364226643 r005 Im(z^2+c),c=-13/27+1/33*I,n=42 1771164364594722 m001 Landau^exp(-1/2*Pi)/(Landau^ln(Pi)) 1771164372638202 a007 Real Root Of -566*x^4-670*x^3+181*x^2-544*x+316 1771164378876042 a003 cos(Pi*6/73)+cos(Pi*16/79) 1771164386069816 l006 ln(1578/9275) 1771164389714379 a005 (1/cos(13/144*Pi))^1313 1771164390111522 m002 -9+Pi^3-4*ProductLog[Pi] 1771164403351632 q001 613/3461 1771164413790559 a001 682/9*(1/2*5^(1/2)+1/2)^17*18^(13/20) 1771164420952508 a007 Real Root Of 507*x^4+365*x^3-717*x^2+87*x-558 1771164424014423 m005 (1/2*Zeta(3)+3/11)/(4*Zeta(3)+1/8) 1771164430673833 r005 Re(z^2+c),c=11/70+13/30*I,n=53 1771164437699536 m001 (Pi+Artin)/(PisotVijayaraghavan+TwinPrimes) 1771164439095237 m005 (1/2*2^(1/2)+7/8)/(5/9*2^(1/2)-7/8) 1771164441161721 k009 concat of cont frac of 1771164445448517 m001 MadelungNaCl^(Rabbit/ln(2)) 1771164448863472 l006 ln(1717/10092) 1771164449891570 a001 2/2178309*34^(47/56) 1771164452476681 r009 Re(z^3+c),c=-49/90+21/34*I,n=11 1771164455116039 a003 cos(Pi*23/104)-cos(Pi*23/77) 1771164458637386 a007 Real Root Of -762*x^4-627*x^3+753*x^2-809*x+220 1771164468348922 a007 Real Root Of 702*x^4-229*x^3-831*x^2-983*x-150 1771164474233112 a001 72/161*7^(29/41) 1771164476511717 r005 Im(z^2+c),c=-2/3+53/216*I,n=33 1771164476852753 r005 Re(z^2+c),c=-133/110+1/21*I,n=56 1771164482963562 r002 53th iterates of z^2 + 1771164483113129 r009 Re(z^3+c),c=-5/28+5/47*I,n=3 1771164485846829 m001 Lehmer^2/Champernowne^2*ln(arctan(1/2)) 1771164487263548 a007 Real Root Of -552*x^4-516*x^3+409*x^2-397*x+579 1771164488799946 a007 Real Root Of 631*x^4+722*x^3-979*x^2-406*x+154 1771164490729599 r005 Re(z^2+c),c=11/102+18/49*I,n=53 1771164491581645 m001 (polylog(4,1/2)-Bloch)/(Rabbit-ZetaP(2)) 1771164493357924 s002 sum(A224703[n]/(n*exp(n)-1),n=1..infinity) 1771164501093695 a007 Real Root Of 20*x^4+40*x^3+423*x^2+474*x-462 1771164510166358 q001 4791/2705 1771164511493338 m001 Psi(2,1/3)*(FellerTornier-HeathBrownMoroz) 1771164512003754 m001 Niven^(2^(1/3)/Salem) 1771164516288149 m005 (1/2*5^(1/2)+2/7)/(3/7*Catalan+2/5) 1771164524574097 m001 (Sarnak-Sierpinski)/(Stephens+Weierstrass) 1771164526382459 m001 (TreeGrowth2nd-ThueMorse)/(Pi-BesselI(1,2)) 1771164526950985 m009 (4/5*Psi(1,3/4)+1/6)/(4*Psi(1,2/3)+1/6) 1771164527090945 a007 Real Root Of -47*x^4+269*x^3-164*x^2-832*x+998 1771164530114534 m005 (1/3*Zeta(3)+1/12)/(4/5*Catalan+2) 1771164534556983 r005 Im(z^2+c),c=19/102+11/19*I,n=7 1771164537032028 r002 57th iterates of z^2 + 1771164537659302 a007 Real Root Of 229*x^4-97*x^3-307*x^2+553*x-850 1771164538984751 m001 (BesselJZeros(0,1)+ThueMorse)/BesselI(1,2) 1771164544392928 a007 Real Root Of -185*x^4-117*x^3+655*x^2+768*x+476 1771164551832530 r005 Re(z^2+c),c=5/16+13/58*I,n=10 1771164553609368 m001 2*Pi/GAMMA(5/6)*DuboisRaymond-2^(1/3) 1771164555523136 m001 Grothendieck^(2*ln(5)*Pi/GAMMA(5/6)) 1771164565724512 a007 Real Root Of -727*x^4-647*x^3+957*x^2-785*x-833 1771164566964214 a007 Real Root Of 459*x^4-311*x^3-957*x^2-450*x+111 1771164569825320 a001 144/3010349*47^(17/50) 1771164572521093 l006 ln(6838/8163) 1771164579004334 r005 Im(z^2+c),c=-57/118+17/57*I,n=15 1771164586800606 r009 Re(z^3+c),c=-4/13+29/47*I,n=33 1771164588860073 r005 Im(z^2+c),c=-29/30+2/121*I,n=5 1771164592036979 a007 Real Root Of -205*x^4-39*x^3+537*x^2-537*x-835 1771164603037684 r005 Im(z^2+c),c=-17/22+5/78*I,n=30 1771164603281801 m001 (3^(1/3)+Backhouse)/(MinimumGamma+ZetaP(3)) 1771164603420550 a003 cos(Pi*1/81)+cos(Pi*25/114) 1771164608863784 m005 (1/2*Catalan+7/10)/(1/6*gamma-3/4) 1771164610736614 m001 1/5*(5^(1/2)*MertensB1-GolombDickman)*5^(1/2) 1771164619840056 r005 Re(z^2+c),c=-63/52+1/12*I,n=54 1771164619872854 a007 Real Root Of -224*x^4+47*x^3+383*x^2-332*x+676 1771164622285391 m001 (-Tetranacci+TreeGrowth2nd)/(Chi(1)+gamma(3)) 1771164624791510 p003 LerchPhi(1/10,7,65/98) 1771164627931400 r005 Re(z^2+c),c=-71/60+4/33*I,n=32 1771164635891991 a007 Real Root Of -577*x^4-661*x^3+848*x^2+124*x-435 1771164638073961 a007 Real Root Of 514*x^4+548*x^3-941*x^2-933*x-714 1771164643533346 r005 Im(z^2+c),c=-14/25+17/52*I,n=57 1771164646430755 a007 Real Root Of -811*x^4-596*x^3+948*x^2-430*x+934 1771164647882776 a007 Real Root Of -770*x^4-650*x^3+741*x^2-990*x-112 1771164650028228 r005 Im(z^2+c),c=11/102+9/61*I,n=9 1771164651779396 a007 Real Root Of -537*x^4-760*x^3+983*x^2+783*x-635 1771164658419864 r002 3th iterates of z^2 + 1771164659180142 a007 Real Root Of 51*x^4+850*x^3-941*x^2-x-935 1771164669801868 a007 Real Root Of -815*x^4-890*x^3+682*x^2-184*x+610 1771164676847652 m001 sqrt(2)*(BesselI(0,2)-BesselJZeros(0,1)) 1771164695668436 a007 Real Root Of 23*x^4-470*x^3+344*x^2+481*x+454 1771164699686313 r009 Im(z^3+c),c=-65/114+1/4*I,n=40 1771164699846074 q001 3452/1949 1771164703979851 a003 sin(Pi*30/107)+sin(Pi*56/113) 1771164712244094 m001 (-BesselI(0,2)+Totient)/(cos(1)+gamma(2)) 1771164717219092 a007 Real Root Of -321*x^4-336*x^3-73*x^2-747*x+198 1771164726359093 m001 exp(GAMMA(7/24))*TreeGrowth2nd^2/cosh(1)^2 1771164728498928 m001 BesselJ(1,1)*ln(Magata)^2/GAMMA(11/24)^2 1771164736505069 m005 (3/5*2^(1/2)+5/6)/(3/5*Catalan+2/5) 1771164739211049 a001 89/843*199^(30/31) 1771164741534444 r005 Re(z^2+c),c=11/27+15/64*I,n=42 1771164743740716 m001 OneNinth^Trott2nd/(OneNinth^ln(2+3^(1/2))) 1771164747374743 r009 Re(z^3+c),c=-27/106+8/19*I,n=12 1771164749027512 r005 Im(z^2+c),c=-33/34+19/107*I,n=31 1771164749675826 r005 Re(z^2+c),c=-79/98+9/41*I,n=12 1771164750589357 s002 sum(A258326[n]/(pi^n),n=1..infinity) 1771164750811310 a007 Real Root Of 814*x^4+904*x^3-468*x^2+902*x+78 1771164751060530 r005 Re(z^2+c),c=-5/52+26/45*I,n=6 1771164753628989 r005 Re(z^2+c),c=11/102+18/49*I,n=50 1771164755484394 r009 Re(z^3+c),c=-27/106+23/36*I,n=15 1771164771006800 a001 987/9349*1364^(22/31) 1771164775798164 m001 exp(GAMMA(11/12))^2*OneNinth^2/cos(1) 1771164781836515 r005 Im(z^2+c),c=-1/25+1/5*I,n=5 1771164787059560 m001 Si(Pi)^BesselK(0,1)+Weierstrass 1771164792381431 r005 Im(z^2+c),c=-17/94+21/26*I,n=3 1771164793641979 a007 Real Root Of -852*x^4-878*x^3+752*x^2-843*x-346 1771164798875829 a007 Real Root Of 746*x^4+665*x^3-955*x^2+194*x-307 1771164799550795 r004 Re(z^2+c),c=-3/16+1/5*I,z(0)=-1,n=13 1771164802098481 m001 (-Bloch+KhinchinLevy)/(exp(1)+ln(2+3^(1/2))) 1771164803194957 r009 Re(z^3+c),c=-7/23+9/16*I,n=18 1771164804290341 m001 1/ln(GlaisherKinkelin)*Cahen/Zeta(1/2) 1771164806467062 m001 (Ei(1)-Si(Pi)*GAMMA(1/24))/GAMMA(1/24) 1771164806669446 r005 Im(z^2+c),c=-105/122+2/15*I,n=43 1771164810566374 r005 Im(z^2+c),c=-13/20+18/47*I,n=27 1771164810754069 m005 (1/3*gamma-1/5)/(2/11*Pi-1) 1771164815352706 m001 1/ln(KhintchineLevy)^2*Si(Pi)^2/Robbin 1771164828938760 r005 Im(z^2+c),c=-53/90+11/37*I,n=28 1771164831656676 m006 (3/5/Pi-3/4)/(3/4*Pi+4/5) 1771164835687538 l006 ln(4655/5557) 1771164843167946 r005 Im(z^2+c),c=-17/18+37/220*I,n=34 1771164847781626 a003 cos(Pi*38/119)-cos(Pi*44/115) 1771164857014961 r005 Im(z^2+c),c=-11/16+23/66*I,n=35 1771164859646177 m001 Pi+Psi(1,1/3)+Psi(2,1/3)/exp(gamma) 1771164863144493 q001 5565/3142 1771164875088254 a001 98209/161*123^(7/10) 1771164875475000 b008 Cosh[LogGamma[1/3+Pi]] 1771164875783590 m001 (ln(Pi)+Artin)/(Thue-ZetaQ(4)) 1771164876606893 m001 (Pi*2^(1/2)/GAMMA(3/4))^Lehmer*Sarnak^Lehmer 1771164881287087 r005 Im(z^2+c),c=-36/31+1/44*I,n=46 1771164881873119 m005 (1/2*exp(1)+1/5)/(2/5*gamma-1/7) 1771164890664087 a001 29/21*121393^(17/41) 1771164895093276 m001 (ln(3)+PlouffeB)/(ln(2)/ln(10)+sin(1/5*Pi)) 1771164896562038 r005 Im(z^2+c),c=5/106+6/35*I,n=13 1771164900091620 a008 Real Root of (-6+6*x^2+6*x^3-5*x^4-4*x^5) 1771164901546587 r005 Im(z^2+c),c=3/50+1/6*I,n=14 1771164907022549 r005 Im(z^2+c),c=-55/118+15/49*I,n=38 1771164908069051 a007 Real Root Of -376*x^4-281*x^3+476*x^2-906*x-959 1771164910536701 r005 Re(z^2+c),c=-25/122+11/50*I,n=3 1771164912628723 r005 Im(z^2+c),c=-9/14+4/121*I,n=57 1771164912765709 m005 (1/3*Zeta(3)-1/4)/(3/8*Zeta(3)+2/5) 1771164921522450 a007 Real Root Of 64*x^4-359*x^3-533*x^2+435*x-182 1771164940425158 m005 (1/2*3^(1/2)+1/7)/(3*3^(1/2)+1/2) 1771164943286963 r005 Re(z^2+c),c=-27/19+10/61*I,n=5 1771164959610326 p001 sum((-1)^n/(155*n+56)/(32^n),n=0..infinity) 1771164959740147 m001 (ln(3)+sin(1/12*Pi))/(HardyLittlewoodC5-Salem) 1771164970257307 p003 LerchPhi(1/64,2,229/96) 1771164976362404 r005 Im(z^2+c),c=-57/122+19/62*I,n=45 1771164982858122 a001 29/144*514229^(16/47) 1771164990196472 m005 (1/2*Pi-5/9)/(3^(1/2)+4) 1771164998492442 r005 Re(z^2+c),c=-39/46+3/44*I,n=12 1771164999802298 m001 Pi^(1/2)*Cahen^ZetaQ(4) 1771165006140515 a001 123/13*13^(11/45) 1771165009035905 a007 Real Root Of -72*x^4+41*x^3+429*x^2+741*x+903 1771165021196535 r005 Re(z^2+c),c=11/102+18/49*I,n=49 1771165023077989 m005 (1/3*Catalan-1/10)/(4/9*Zeta(3)+5/8) 1771165023654804 r005 Re(z^2+c),c=8/25+45/49*I,n=3 1771165026417799 m002 -(E^Pi*Log[Pi])+(3*Pi)/ProductLog[Pi] 1771165045136136 r005 Re(z^2+c),c=-2/7+43/55*I,n=7 1771165051647827 r002 52th iterates of z^2 + 1771165055596405 a007 Real Root Of 800*x^4+845*x^3-525*x^2+665*x-353 1771165056502641 r005 Im(z^2+c),c=5/106+6/35*I,n=12 1771165062865179 r005 Im(z^2+c),c=41/118+5/57*I,n=28 1771165064272559 a001 646/6119*1364^(22/31) 1771165066179057 a001 832040/521*123^(1/2) 1771165078457244 a007 Real Root Of 175*x^4+257*x^3+380*x^2+628*x-374 1771165083439020 p003 LerchPhi(1/100,3,401/225) 1771165084615449 m001 cosh(1)^2/exp(ArtinRank2)^2/gamma^2 1771165088182570 l006 ln(7127/8508) 1771165089963071 m001 (-BesselI(1,2)+FeigenbaumMu)/(gamma+cos(1)) 1771165091149373 a007 Real Root Of -397*x^4+880*x^3-425*x^2+691*x+141 1771165092323780 a007 Real Root Of -588*x^4-796*x^3-67*x^2-953*x-114 1771165093889250 m001 1/Niven/ln(FeigenbaumB)^2*Zeta(7)^2 1771165095452620 r005 Im(z^2+c),c=-57/110+23/56*I,n=19 1771165102749375 r005 Re(z^2+c),c=-9/16+77/125*I,n=3 1771165105714281 s002 sum(A132242[n]/(exp(n)),n=1..infinity) 1771165107059457 a001 6765/64079*1364^(22/31) 1771165107807351 m001 exp(Pi)*Sarnak+cos(1/12*Pi) 1771165108836552 a007 Real Root Of -790*x^4-352*x^3+179*x^2+729*x-132 1771165111213331 k008 concat of cont frac of 1771165113301981 a001 17711/167761*1364^(22/31) 1771165114212753 a001 11592/109801*1364^(22/31) 1771165114345633 a001 121393/1149851*1364^(22/31) 1771165114365019 a001 317811/3010349*1364^(22/31) 1771165114369596 a001 514229/4870847*1364^(22/31) 1771165114377001 a001 98209/930249*1364^(22/31) 1771165114427757 a001 75025/710647*1364^(22/31) 1771165114775641 a001 28657/271443*1364^(22/31) 1771165115450204 a005 (1/cos(3/116*Pi))^173 1771165115942184 a007 Real Root Of -125*x^4-519*x^3-814*x^2-354*x+273 1771165117160073 a001 5473/51841*1364^(22/31) 1771165122289645 m001 (Totient+ZetaQ(3))/(LaplaceLimit+Paris) 1771165129924559 q001 2113/1193 1771165132977295 a001 47/377*5^(12/55) 1771165133503213 a001 4181/39603*1364^(22/31) 1771165136434170 m005 (1/2*Pi+1/4)/(3/7*3^(1/2)+2/7) 1771165139102936 a007 Real Root Of 692*x^4+951*x^3-243*x^2+635*x+361 1771165140820531 a007 Real Root Of -592*x^4-481*x^3+842*x^2-599*x-549 1771165145416318 m005 (4/5*2^(1/2)+5)/(4/5*gamma+3) 1771165147221256 r005 Im(z^2+c),c=-5/86+13/63*I,n=8 1771165151219526 r005 Re(z^2+c),c=4/25+11/30*I,n=18 1771165151755272 k008 concat of cont frac of 1771165151821721 a003 cos(Pi*10/101)+cos(Pi*7/36) 1771165157912480 m005 (1/2*5^(1/2)-5)/(11/12*exp(1)-3/10) 1771165160402273 m001 (ln(3)+Zeta(1,-1))/(BesselK(1,1)-GAMMA(5/6)) 1771165161729311 l006 ln(139/817) 1771165163319658 m005 (1/3*gamma+1/9)/(1/2*Pi+1/7) 1771165164615948 r009 Re(z^3+c),c=-27/118+23/32*I,n=15 1771165168300479 a007 Real Root Of -255*x^4-260*x^3+59*x^2-106*x+692 1771165170773733 m001 gamma(1)-sin(1)+Khinchin 1771165177861494 m001 (Otter-StronglyCareFree)/(gamma(1)+Conway) 1771165182224627 a007 Real Root Of -28*x^4+647*x^3-486*x^2-648*x-647 1771165184805194 m001 exp(1)/FellerTornier*Riemann2ndZero 1771165190401403 a003 cos(Pi*5/58)/sin(Pi*13/71) 1771165192580441 r009 Re(z^3+c),c=-59/94+38/49*I,n=3 1771165194011175 m005 (23/44+1/4*5^(1/2))/(1/11*exp(1)+4/11) 1771165194730011 h001 (7/12*exp(2)+5/6)/(3/11*exp(2)+8/9) 1771165197004499 m001 Catalan^2*RenyiParking*ln(sin(Pi/5))^2 1771165197830096 a007 Real Root Of 737*x^4+799*x^3-589*x^2+740*x+345 1771165206177240 a007 Real Root Of 48*x^4+887*x^3+694*x^2+740*x+91 1771165209751168 h001 (1/3*exp(2)+7/12)/(4/7*exp(1)+1/6) 1771165214242641 a007 Real Root Of -599*x^4+644*x^3-208*x^2+466*x-79 1771165214945775 h001 (-8*exp(8)+8)/(-7*exp(3)+6) 1771165220146729 m005 (1/2*3^(1/2)-5/6)/(9/10*5^(1/2)-1/6) 1771165221549432 m001 DuboisRaymond*sin(1)^Landau 1771165222476759 m001 FeigenbaumB-ln(2+3^(1/2))+Robbin 1771165222941222 r009 Re(z^3+c),c=-25/102+24/59*I,n=3 1771165225979731 a008 Real Root of x^3-x^2-80*x-133 1771165226882441 a001 3571/18*(1/2*5^(1/2)+1/2)^15*18^(13/20) 1771165237284792 m001 AlladiGrinstead-Zeta(1,2)*GAMMA(23/24) 1771165240290519 a007 Real Root Of -386*x^4+145*x^3-197*x^2+439*x-72 1771165245520764 a001 1597/15127*1364^(22/31) 1771165249505402 m001 ln(GAMMA(23/24))/Trott^2/GAMMA(3/4) 1771165249694131 a007 Real Root Of -91*x^4+171*x^3+754*x^2+115*x-316 1771165254442376 a003 cos(Pi*18/119)*cos(Pi*41/94) 1771165270753829 m001 GAMMA(17/24)^2*Niven/exp(arctan(1/2)) 1771165276409327 a007 Real Root Of -548*x^4-797*x^3+556*x^2+609*x+299 1771165279984131 r005 Im(z^2+c),c=-9/10+35/232*I,n=64 1771165285333687 m005 (1/2*Catalan-1)/(2/3*Catalan-11/12) 1771165290636459 m002 1-Log[Pi]/3+ProductLog[Pi]^2 1771165296144472 a003 cos(Pi*12/65)/cos(Pi*34/99) 1771165297230139 r005 Re(z^2+c),c=-2/25+22/23*I,n=9 1771165298730364 r009 Re(z^3+c),c=-5/27+16/17*I,n=27 1771165299473687 k002 Champernowne real with 20*n^2-6*n+3 1771165320824489 r005 Re(z^2+c),c=-9/44+7/33*I,n=3 1771165331543445 r002 45th iterates of z^2 + 1771165335298638 a007 Real Root Of 509*x^4+587*x^3-960*x^2-673*x+72 1771165336262713 r005 Im(z^2+c),c=-107/114+15/44*I,n=7 1771165338645418 q001 7113/4016 1771165340058726 a007 Real Root Of 866*x^4+747*x^3-770*x^2+733*x-658 1771165343934718 m001 (Catalan-Shi(1))/(-FeigenbaumAlpha+Niven) 1771165345510948 a001 9349/18*(1/2*5^(1/2)+1/2)^13*18^(13/20) 1771165346832816 a003 cos(Pi*4/45)/sin(Pi*21/115) 1771165347886576 a007 Real Root Of 496*x^4+414*x^3-143*x^2+803*x-710 1771165348838825 r005 Im(z^2+c),c=3/50+1/6*I,n=18 1771165355839750 r005 Im(z^2+c),c=3/50+1/6*I,n=17 1771165357045069 r005 Im(z^2+c),c=3/50+1/6*I,n=19 1771165357738628 r005 Im(z^2+c),c=3/50+1/6*I,n=22 1771165357806497 r005 Im(z^2+c),c=3/50+1/6*I,n=23 1771165357848252 r005 Im(z^2+c),c=3/50+1/6*I,n=27 1771165357848738 r005 Im(z^2+c),c=3/50+1/6*I,n=26 1771165357849097 r005 Im(z^2+c),c=3/50+1/6*I,n=28 1771165357849138 r005 Im(z^2+c),c=3/50+1/6*I,n=31 1771165357849146 r005 Im(z^2+c),c=3/50+1/6*I,n=32 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=36 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=35 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=37 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=40 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=41 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=45 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=44 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=49 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=50 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=53 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=54 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=58 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=59 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=62 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=63 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=64 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=61 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=60 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=57 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=55 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=56 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=52 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=51 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=46 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=48 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=47 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=43 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=42 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=39 1771165357849150 r005 Im(z^2+c),c=3/50+1/6*I,n=38 1771165357849151 r005 Im(z^2+c),c=3/50+1/6*I,n=34 1771165357849151 r005 Im(z^2+c),c=3/50+1/6*I,n=33 1771165357849170 r005 Im(z^2+c),c=3/50+1/6*I,n=30 1771165357849259 r005 Im(z^2+c),c=3/50+1/6*I,n=29 1771165357855738 r005 Im(z^2+c),c=3/50+1/6*I,n=25 1771165357858370 r005 Im(z^2+c),c=3/50+1/6*I,n=24 1771165358078765 r005 Im(z^2+c),c=3/50+1/6*I,n=21 1771165358490724 r002 44th iterates of z^2 + 1771165358916258 r005 Im(z^2+c),c=3/50+1/6*I,n=20 1771165362818614 a001 12238/9*(1/2*5^(1/2)+1/2)^11*18^(13/20) 1771165363292659 m001 Pi+Psi(1,1/3)*3^(1/3)-gamma(2) 1771165365343769 a001 64079/18*(1/2*5^(1/2)+1/2)^9*18^(13/20) 1771165365631971 a007 Real Root Of 222*x^4+145*x^3-376*x^2-448*x-993 1771165365775117 a001 1/18*(1/2*5^(1/2)+1/2)^32*18^(13/20) 1771165366904400 a001 13201/6*(1/2*5^(1/2)+1/2)^10*18^(13/20) 1771165373111489 a001 329/1926*64079^(13/31) 1771165373515340 a001 15127/18*(1/2*5^(1/2)+1/2)^12*18^(13/20) 1771165375640128 m001 (Niven-StolarskyHarborth)/(Ei(1,1)+ArtinRank2) 1771165381387221 m001 (GAMMA(2/3)-CareFree)/(Niven+ReciprocalLucas) 1771165387356370 r009 Re(z^3+c),c=-9/58+31/36*I,n=49 1771165387413235 a003 cos(Pi*3/91)+cos(Pi*23/106) 1771165400686344 m001 (Cahen+GaussAGM)/(cos(1)-exp(1/Pi)) 1771165406184460 a001 141/2161*9349^(19/31) 1771165411774222 a001 17711/2207*3571^(3/31) 1771165418827398 a001 321*(1/2*5^(1/2)+1/2)^14*18^(13/20) 1771165423575391 a001 141/101521*24476^(29/31) 1771165424011690 m001 exp(-1/2*Pi)/((2^(1/3))^ln(2)) 1771165425878576 r005 Im(z^2+c),c=3/50+1/6*I,n=16 1771165426850867 q001 1/5646 1771165426850867 q001 5/2823 1771165427025766 a001 28657/2207*15127^(1/31) 1771165432949354 a007 Real Root Of -467*x^4-613*x^3-334*x^2-994*x+477 1771165435677213 r005 Im(z^2+c),c=3/50+1/6*I,n=15 1771165439470749 s002 sum(A076632[n]/(2^n-1),n=1..infinity) 1771165441271880 h001 (9/10*exp(2)+7/12)/(4/9*exp(2)+4/5) 1771165441483892 r005 Re(z^2+c),c=13/46+33/41*I,n=4 1771165447155255 a001 987/9349*39603^(15/31) 1771165447706510 a007 Real Root Of 410*x^4+673*x^3-26*x^2+149*x+50 1771165458080895 a003 cos(Pi*8/49)+sin(Pi*31/87) 1771165460299814 a001 4181/2207*5778^(8/31) 1771165462235268 m001 (KhinchinHarmonic+Salem)/ZetaQ(4) 1771165465057180 m001 KhinchinLevy/BesselJ(0,1)/ZetaQ(3) 1771165467350775 m001 Lehmer^MertensB1/(Lehmer^GAMMA(2/3)) 1771165472333396 a007 Real Root Of 390*x^4+945*x^3+639*x^2+835*x+887 1771165474115924 m001 OrthogonalArrays*(2^(1/3)+ZetaQ(4)) 1771165474132105 a007 Real Root Of 12*x^4-527*x^3-729*x^2+440*x+20 1771165477863883 m001 (1-Psi(1,1/3))/(-LaplaceLimit+Salem) 1771165479711170 m001 2^(1/2)*gamma(3)/GAMMA(13/24) 1771165484223574 a007 Real Root Of -797*x^4-46*x^3+157*x^2+633*x-116 1771165487526908 r002 25th iterates of z^2 + 1771165494273693 a007 Real Root Of -346*x^4-701*x^3-260*x^2-163*x+37 1771165495096167 r005 Im(z^2+c),c=-19/66+7/10*I,n=10 1771165496572587 m001 1/Catalan^2*Robbin*exp(cos(Pi/5)) 1771165497448979 r005 Re(z^2+c),c=-29/32+17/56*I,n=2 1771165499498101 m001 1/cos(Pi/5)^2*ln(DuboisRaymond)*sin(1)^2 1771165501693634 s001 sum(1/10^(n-1)*A269307[n]/n^n,n=1..infinity) 1771165511512703 a007 Real Root Of 574*x^4+515*x^3-429*x^2+802*x-21 1771165516065544 a007 Real Root Of -808*x^4-932*x^3+825*x^2-428*x-573 1771165517850160 a007 Real Root Of 488*x^4+520*x^3-581*x^2-116*x-296 1771165520466304 r005 Re(z^2+c),c=-23/114+1/9*I,n=13 1771165521136940 a007 Real Root Of 879*x^4+753*x^3-838*x^2-631*x+133 1771165528505538 r005 Im(z^2+c),c=-57/44+15/34*I,n=3 1771165533978022 m004 3-(5*E^(Sqrt[5]*Pi))/Pi+5*Pi-Sin[Sqrt[5]*Pi] 1771165535942939 m001 (polylog(4,1/2)/ZetaQ(4))^(1/2) 1771165538785598 r002 9th iterates of z^2 + 1771165538937209 m001 (-Cahen+FeigenbaumDelta)/(Si(Pi)+BesselK(0,1)) 1771165543412026 r005 Re(z^2+c),c=-11/106+48/61*I,n=51 1771165552177664 a001 4181/2207*2207^(9/31) 1771165553426294 a007 Real Root Of -640*x^4-914*x^3+607*x^2+571*x+327 1771165558056835 a007 Real Root Of 516*x^4+716*x^3+68*x^2+839*x+173 1771165559518526 m001 ln((2^(1/3)))*Trott/sqrt(2) 1771165560168480 a003 sin(Pi*34/101)+sin(Pi*36/101) 1771165563653580 l006 ln(2472/2951) 1771165563778680 r002 26th iterates of z^2 + 1771165564004369 a007 Real Root Of -535*x^4-772*x^3+525*x^2+256*x-218 1771165568725071 a003 sin(Pi*34/115)-sin(Pi*29/95) 1771165569038256 a001 377/9349*843^(28/31) 1771165575934318 r005 Im(z^2+c),c=-17/70+11/43*I,n=8 1771165576767460 s002 sum(A125055[n]/(n*10^n+1),n=1..infinity) 1771165576769567 s002 sum(A125055[n]/(n*10^n-1),n=1..infinity) 1771165579421841 a001 55/39603*2^(20/57) 1771165584107742 a007 Real Root Of 933*x^4-647*x^3-674*x^2-794*x-124 1771165584403853 r005 Re(z^2+c),c=2/9+22/39*I,n=4 1771165589437216 r005 Im(z^2+c),c=-33/86+13/45*I,n=40 1771165592917044 r005 Im(z^2+c),c=-115/122+10/59*I,n=22 1771165598697905 r009 Re(z^3+c),c=-13/42+22/37*I,n=42 1771165605038855 r005 Re(z^2+c),c=-1/94+31/55*I,n=8 1771165609650614 m001 polylog(4,1/2)/(KhinchinHarmonic+Salem) 1771165620623425 a007 Real Root Of 436*x^4+680*x^3+555*x^2+968*x-539 1771165621196499 m001 LandauRamanujan/(GAMMA(13/24)^Otter) 1771165622411112 k007 concat of cont frac of 1771165624870394 m001 (Pi-exp(1/exp(1)))/(Champernowne+GaussAGM) 1771165635477184 m005 (1/2*Zeta(3)-1/11)/(2/11*Pi-3/5) 1771165644171779 q001 2887/1630 1771165644384951 a007 Real Root Of 214*x^4+7*x^3-452*x^2+585*x+387 1771165647417474 m001 (gamma*cos(1/5*Pi)+cos(1/12*Pi))/cos(1/5*Pi) 1771165647417474 m001 (gamma*cos(Pi/5)+cos(Pi/12))/cos(Pi/5) 1771165653404783 a001 305/9*11^(20/29) 1771165654916213 m001 GAMMA(11/12)*(3^(1/3)+CopelandErdos) 1771165656287970 r005 Re(z^2+c),c=-13/74+13/53*I,n=13 1771165664389634 a007 Real Root Of 4*x^4-103*x^3+136*x^2+427*x-282 1771165666824390 m001 1/Paris*exp(Lehmer)*cos(Pi/12) 1771165679966119 m001 (HeathBrownMoroz-PlouffeB)/(Pi-arctan(1/2)) 1771165681910186 r005 Re(z^2+c),c=-9/52+13/51*I,n=14 1771165687047557 m001 BesselK(1,1)^2/Artin^2*exp(GAMMA(1/6))^2 1771165699725525 a007 Real Root Of -362*x^4+47*x^3+950*x^2-160*x+560 1771165710883880 m004 -25+(125*Pi)/Log[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi] 1771165712497985 m001 GAMMA(1/6)^2/exp(FransenRobinson)/GAMMA(11/12) 1771165714263979 m001 (Bloch+ZetaP(4))/(Zeta(3)+Ei(1)) 1771165716765223 m001 HardyLittlewoodC3^(Tribonacci/Zeta(1/2)) 1771165721463055 m005 (1/2*gamma-1)/(2/7*exp(1)-3/8) 1771165723261011 h001 (-3*exp(-3)+5)/(-5*exp(2/3)+7) 1771165723312207 a001 2576/321*3571^(3/31) 1771165723368936 a001 2584/39603*9349^(19/31) 1771165729400861 a001 2207/18*(1/2*5^(1/2)+1/2)^16*18^(13/20) 1771165731271950 m001 (Artin-FeigenbaumB)/sin(1/12*Pi) 1771165734151924 a001 1292/930249*24476^(29/31) 1771165735380189 m005 (1/2*3^(1/2)+4/9)/(2/11*5^(1/2)+1/3) 1771165737230815 a001 75025/5778*15127^(1/31) 1771165740421127 a001 646/6119*39603^(15/31) 1771165745243963 m001 MinimumGamma/(1-ZetaP(3)) 1771165746993820 r005 Im(z^2+c),c=-5/7+1/85*I,n=53 1771165747119069 r009 Re(z^3+c),c=-33/106+37/63*I,n=28 1771165747994183 r002 20th iterates of z^2 + 1771165748749040 r005 Im(z^2+c),c=-17/14+19/148*I,n=20 1771165748992487 r005 Im(z^2+c),c=-19/18+37/172*I,n=33 1771165750803800 r005 Re(z^2+c),c=1/26+30/49*I,n=34 1771165751666492 r005 Im(z^2+c),c=-31/34+35/86*I,n=6 1771165753565615 a001 5473/2889*5778^(8/31) 1771165756652044 h001 (11/12*exp(1)+3/7)/(3/10*exp(1)+5/6) 1771165761861683 r005 Im(z^2+c),c=-29/26+3/116*I,n=3 1771165765644527 m006 (3/5*exp(2*Pi)+1/6)/(1/3*exp(2*Pi)+3) 1771165767144920 r002 29th iterates of z^2 + 1771165767384909 r005 Re(z^2+c),c=13/40+11/37*I,n=16 1771165768764996 a001 121393/15127*3571^(3/31) 1771165769351920 r005 Im(z^2+c),c=-31/54+10/61*I,n=3 1771165769645527 a001 6765/103682*9349^(19/31) 1771165775396469 a001 105937/13201*3571^(3/31) 1771165776363988 a001 416020/51841*3571^(3/31) 1771165776397191 a001 17711/271443*9349^(19/31) 1771165776505147 a001 726103/90481*3571^(3/31) 1771165776592388 a001 1346269/167761*3571^(3/31) 1771165776961947 a001 514229/64079*3571^(3/31) 1771165777382245 a001 6624/101521*9349^(19/31) 1771165777525963 a001 121393/1860498*9349^(19/31) 1771165777546931 a001 317811/4870847*9349^(19/31) 1771165777559890 a001 196418/3010349*9349^(19/31) 1771165777614785 a001 75025/1149851*9349^(19/31) 1771165777991043 a001 28657/439204*9349^(19/31) 1771165778850900 b008 2+31*Tan[12] 1771165779464429 a001 6765/4870847*24476^(29/31) 1771165779494944 a001 98209/12238*3571^(3/31) 1771165780569949 a001 10946/167761*9349^(19/31) 1771165781048200 r005 Re(z^2+c),c=11/82+19/55*I,n=6 1771165782055983 r005 Re(z^2+c),c=5/66+28/45*I,n=21 1771165782489131 a001 196418/15127*15127^(1/31) 1771165783208040 a001 6765/64079*39603^(15/31) 1771165783679761 r005 Im(z^2+c),c=-43/98+11/35*I,n=11 1771165785614803 m001 FeigenbaumC/MertensB3/StronglyCareFree 1771165787832565 a007 Real Root Of -598*x^4-948*x^3-12*x^2-768*x-705 1771165789092231 a001 514229/39603*15127^(1/31) 1771165789450567 a001 17711/167761*39603^(15/31) 1771165790055610 a001 1346269/103682*15127^(1/31) 1771165790283033 a001 2178309/167761*15127^(1/31) 1771165790361339 a001 11592/109801*39603^(15/31) 1771165790494219 a001 121393/1149851*39603^(15/31) 1771165790513606 a001 317811/3010349*39603^(15/31) 1771165790518182 a001 514229/4870847*39603^(15/31) 1771165790525588 a001 98209/930249*39603^(15/31) 1771165790576343 a001 75025/710647*39603^(15/31) 1771165790651011 a001 832040/64079*15127^(1/31) 1771165790924227 a001 28657/271443*39603^(15/31) 1771165792229601 a001 4/7778742049*317811^(9/14) 1771165792231856 a001 4/591286729879*267914296^(9/14) 1771165793173170 a001 10959/844*15127^(1/31) 1771165793308660 a001 5473/51841*39603^(15/31) 1771165796230756 a001 199/55*75025^(16/29) 1771165796287985 m001 ln(GAMMA(1/3))*FeigenbaumD*sin(Pi/12)^2 1771165796352527 a001 28657/15127*5778^(8/31) 1771165796856366 a001 75025/9349*3571^(3/31) 1771165798246034 a001 4181/64079*9349^(19/31) 1771165798606915 l003 exp(Pi*43/47) 1771165800236184 s002 sum(A066921[n]/((2^n+1)/n),n=1..infinity) 1771165802595053 a001 75025/39603*5778^(8/31) 1771165803505826 a001 98209/51841*5778^(8/31) 1771165803638706 a001 514229/271443*5778^(8/31) 1771165803658093 a001 1346269/710647*5778^(8/31) 1771165803662669 a001 2178309/1149851*5778^(8/31) 1771165803670074 a001 208010/109801*5778^(8/31) 1771165803720830 a001 317811/167761*5778^(8/31) 1771165804068714 a001 121393/64079*5778^(8/31) 1771165805933192 a007 Real Root Of -683*x^4-947*x^3+151*x^2-57*x+885 1771165806453147 a001 11592/6119*5778^(8/31) 1771165806907446 m001 Stephens^HeathBrownMoroz*Pi^(1/2) 1771165807469098 a001 4181/3010349*24476^(29/31) 1771165809651807 a001 4181/39603*39603^(15/31) 1771165810116310 q001 6548/3697 1771165810410737 a007 Real Root Of 594*x^4+325*x^3-802*x^2+962*x+180 1771165810460310 a001 121393/9349*15127^(1/31) 1771165818848928 m001 GAMMA(13/24)-MertensB3^PisotVijayaraghavan 1771165821122336 m001 (exp(Pi)-gamma(3))/(MasserGramain+TwinPrimes) 1771165822796294 a001 17711/9349*5778^(8/31) 1771165824127116 r002 11th iterates of z^2 + 1771165831131181 k008 concat of cont frac of 1771165839656423 m001 (Zeta(1,-1)+GAMMA(23/24))/(Trott+Weierstrass) 1771165841152457 a007 Real Root Of 979*x^4-50*x^3+226*x^2-565*x+1 1771165845443480 a001 5473/2889*2207^(9/31) 1771165846686022 a007 Real Root Of 387*x^4+348*x^3-15*x^2+630*x-712 1771165852744719 m001 (5^(1/2))^Conway/((3^(1/3))^Conway) 1771165853700157 a007 Real Root Of 671*x^4+834*x^3-48*x^2+866*x-285 1771165857040337 m005 (1/2*gamma+9/10)/(-17/22+1/22*5^(1/2)) 1771165860641208 m005 (1/2*Pi+7/9)/(4/7*3^(1/2)-6/7) 1771165864128464 m001 (-exp(-1/2*Pi)+MasserGramain)/(exp(Pi)+ln(5)) 1771165868935699 s002 sum(A253037[n]/(n!^3),n=1..infinity) 1771165875176476 r002 3th iterates of z^2 + 1771165876045172 a001 843/89*5^(7/18) 1771165880748098 m001 (ln(2)+MasserGramain)/(Shi(1)-ln(2)/ln(10)) 1771165881082677 m001 ln(3)+Ei(1,1)^MertensB1 1771165888230394 a001 28657/15127*2207^(9/31) 1771165889867228 l006 ln(5641/5651) 1771165889867228 p004 log(5651/5641) 1771165891333083 m001 (Paris-Rabbit)/(KhinchinHarmonic+Niven) 1771165891796862 a001 2207/2*2584^(31/33) 1771165892192457 a007 Real Root Of 770*x^4+717*x^3-454*x^2+828*x-703 1771165894472921 a001 75025/39603*2207^(9/31) 1771165895383693 a001 98209/51841*2207^(9/31) 1771165895516573 a001 514229/271443*2207^(9/31) 1771165895535960 a001 1346269/710647*2207^(9/31) 1771165895540537 a001 2178309/1149851*2207^(9/31) 1771165895547942 a001 208010/109801*2207^(9/31) 1771165895598698 a001 317811/167761*2207^(9/31) 1771165895946582 a001 121393/64079*2207^(9/31) 1771165896628105 p004 log(12149/10177) 1771165897615182 m006 (1/4*exp(Pi)-3/5)/(3*Pi^2-1/3) 1771165898331015 a001 11592/6119*2207^(9/31) 1771165903540912 r009 Re(z^3+c),c=-9/34+13/29*I,n=7 1771165909761191 a007 Real Root Of -311*x^4-295*x^3+742*x^2+908*x+702 1771165910037869 a005 (1/cos(7/150*Pi))^53 1771165912143232 m004 7+Sqrt[5]*Pi+5*Cos[Sqrt[5]*Pi] 1771165914471879 a007 Real Root Of 770*x^4+792*x^3-780*x^2+231*x-321 1771165914674163 a001 17711/9349*2207^(9/31) 1771165915304795 r005 Re(z^2+c),c=-21/106+4/29*I,n=15 1771165915853326 a001 28657/3571*3571^(3/31) 1771165917745213 l006 ln(1619/9516) 1771165919399723 a001 1597/24476*9349^(19/31) 1771165920197942 m001 (Si(Pi)+sin(1/12*Pi))^BesselJ(0,1) 1771165920197942 m001 (Si(Pi)+sin(Pi/12))^BesselJ(0,1) 1771165921445736 a005 (1/cos(7/132*Pi))^41 1771165921669400 a001 1597/15127*39603^(15/31) 1771165926098777 a001 1597/1149851*24476^(29/31) 1771165928108345 m001 GaussAGM^Robbin/(Trott^Robbin) 1771165928948134 a001 46368/3571*15127^(1/31) 1771165929240997 r005 Im(z^2+c),c=17/64+2/45*I,n=54 1771165929532769 a007 Real Root Of -520*x^4-440*x^3+850*x^2+350*x+626 1771165934813899 a001 6765/3571*5778^(8/31) 1771165937671269 r005 Im(z^2+c),c=-23/25+9/58*I,n=18 1771165940977261 q001 3661/2067 1771165948946485 a001 1597/9349*64079^(13/31) 1771165963106667 m005 (1/2*3^(1/2)-10/11)/(8/11*exp(1)+5/11) 1771165966752732 r005 Im(z^2+c),c=-19/34+33/104*I,n=37 1771165975225059 a007 Real Root Of -211*x^4-493*x^3-626*x^2+564*x+117 1771165985530935 m001 (Cahen-ZetaP(2))/(ln(2)-Pi^(1/2)) 1771165986298634 r005 Re(z^2+c),c=-143/118+5/58*I,n=24 1771165988749380 l006 ln(1480/8699) 1771166003456530 l006 ln(7705/9198) 1771166013300453 a001 305/2889*1364^(22/31) 1771166016549728 a007 Real Root Of 66*x^4-349*x^3-376*x^2+406*x-690 1771166018666229 m001 (Lehmer+Magata)/(ln(gamma)+FransenRobinson) 1771166026691773 a001 6765/3571*2207^(9/31) 1771166035423368 m001 1/Ei(1)^2*LaplaceLimit^2/exp(GAMMA(11/24)) 1771166038974517 m001 FeigenbaumAlpha^(LambertW(1)*ln(3)) 1771166047174607 p003 LerchPhi(1/12,2,488/201) 1771166061620522 a001 144/47*11^(30/41) 1771166064325338 r005 Im(z^2+c),c=-89/110+6/53*I,n=29 1771166065767307 r005 Im(z^2+c),c=31/118+3/62*I,n=60 1771166074473270 l006 ln(1341/7882) 1771166075562778 r005 Im(z^2+c),c=-19/48+7/24*I,n=23 1771166075957796 s002 sum(A065994[n]/((pi^n+1)/n),n=1..infinity) 1771166081770441 m001 (GAMMA(11/12)+ArtinRank2)/(Bloch-MinimumGamma) 1771166083753040 a007 Real Root Of -500*x^4-349*x^3-285*x^2+231*x-4 1771166103799769 m001 ln(GAMMA(1/4))^2/Paris/GAMMA(7/24)^2 1771166108028745 r005 Re(z^2+c),c=-25/94+7/12*I,n=9 1771166110246775 m001 (BesselJ(1,1)-MertensB2)/(cos(1/5*Pi)-ln(Pi)) 1771166111268124 k009 concat of cont frac of 1771166120529089 a003 cos(Pi*7/78)+sin(Pi*34/113) 1771166121512111 k008 concat of cont frac of 1771166122071397 r005 Re(z^2+c),c=-3/16+9/44*I,n=5 1771166123133221 k007 concat of cont frac of 1771166124363694 p004 log(14947/2543) 1771166126020992 m001 GAMMA(2/3)-cos(1)-Sierpinski 1771166131334930 m001 1/exp(1)*exp(MinimumGamma)^2*sin(Pi/12) 1771166134185303 q001 4435/2504 1771166134414846 r005 Re(z^2+c),c=11/102+18/49*I,n=33 1771166135537070 m005 (1/2*Catalan-1/11)/(7/9*5^(1/2)+1/3) 1771166142478906 r005 Im(z^2+c),c=-75/74+5/26*I,n=48 1771166150215116 k008 concat of cont frac of 1771166153940666 p001 sum((-1)^n/(493*n+56)/(12^n),n=0..infinity) 1771166154199950 m005 (1/3*exp(1)-2/5)/(4/11*2^(1/2)-4/5) 1771166156375772 a007 Real Root Of -120*x^4-2*x^3-160*x^2-932*x+21 1771166170087652 m005 (1/2*3^(1/2)-5/9)/(4/11*3^(1/2)-5/11) 1771166171151324 k009 concat of cont frac of 1771166172289772 m001 (-Sarnak+TreeGrowth2nd)/(1+BesselK(1,1)) 1771166173297390 a001 20633239/2*196418^(11/18) 1771166173456543 a001 51841*1134903170^(11/18) 1771166174756339 r005 Im(z^2+c),c=5/106+6/35*I,n=17 1771166180023474 l006 ln(1202/7065) 1771166187438380 a001 54018521/55*832040^(11/20) 1771166187462700 a001 271443/55*12586269025^(11/20) 1771166188762577 r005 Im(z^2+c),c=-17/31+19/58*I,n=39 1771166192757060 r002 5th iterates of z^2 + 1771166194093539 r005 Im(z^2+c),c=5/106+6/35*I,n=18 1771166195545465 r005 Im(z^2+c),c=5/106+6/35*I,n=21 1771166195776036 r005 Im(z^2+c),c=5/106+6/35*I,n=22 1771166195840456 r005 Im(z^2+c),c=5/106+6/35*I,n=25 1771166195842406 r005 Im(z^2+c),c=5/106+6/35*I,n=26 1771166195843962 r005 Im(z^2+c),c=5/106+6/35*I,n=30 1771166195843963 r005 Im(z^2+c),c=5/106+6/35*I,n=29 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=34 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=35 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=38 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=39 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=42 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=43 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=46 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=47 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=51 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=52 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=50 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=55 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=56 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=59 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=60 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=63 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=64 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=62 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=61 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=58 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=57 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=54 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=53 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=48 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=49 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=45 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=44 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=41 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=40 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=37 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=33 1771166195843992 r005 Im(z^2+c),c=5/106+6/35*I,n=36 1771166195843994 r005 Im(z^2+c),c=5/106+6/35*I,n=31 1771166195843996 r005 Im(z^2+c),c=5/106+6/35*I,n=32 1771166195844215 r005 Im(z^2+c),c=5/106+6/35*I,n=28 1771166195844338 r005 Im(z^2+c),c=5/106+6/35*I,n=27 1771166195854735 r005 Im(z^2+c),c=5/106+6/35*I,n=24 1771166195877395 r005 Im(z^2+c),c=5/106+6/35*I,n=23 1771166196229580 r005 Im(z^2+c),c=5/106+6/35*I,n=20 1771166197792240 m001 FeigenbaumDelta*exp(ErdosBorwein)/GAMMA(1/4)^2 1771166198399414 r005 Im(z^2+c),c=5/106+6/35*I,n=19 1771166198974164 r005 Im(z^2+c),c=5/106+6/35*I,n=16 1771166203040358 a001 192900153618*377^(16/21) 1771166204761389 a007 Real Root Of -283*x^4+372*x^3+853*x^2-721*x+899 1771166205568981 m001 2^(1/2)*Salem+OneNinth 1771166206281954 a007 Real Root Of -736*x^4-608*x^3+821*x^2-816*x-156 1771166210111612 k008 concat of cont frac of 1771166211213620 l006 ln(5233/6247) 1771166211213620 p004 log(6247/5233) 1771166215069752 a007 Real Root Of -212*x^4+174*x^3+515*x^2-850*x-68 1771166217214757 a007 Real Root Of 539*x^4+683*x^3-711*x^2-616*x-370 1771166220210623 a007 Real Root Of 575*x^4+821*x^3+425*x^2-985*x+156 1771166221656372 m001 GaussAGM-MertensB3^Zeta(1/2) 1771166221689881 a007 Real Root Of 488*x^4+619*x^3-859*x^2-395*x+632 1771166223167765 a007 Real Root Of -531*x^4-652*x^3+192*x^2-347*x+386 1771166224449495 g007 Psi(2,2/5)+14*Zeta(3)-Psi(2,2/9)-Psi(2,5/8) 1771166225454995 a007 Real Root Of 47*x^4-70*x^3-404*x^2-704*x-831 1771166230257845 r008 a(0)=3,K{-n^6,4+4*n^3-3*n^2-8*n} 1771166240340664 r005 Re(z^2+c),c=31/110+9/41*I,n=10 1771166245015475 m001 (BesselI(0,2)-Trott)/(sin(1/5*Pi)+ln(2)) 1771166253248344 a007 Real Root Of 153*x^4+17*x^3-474*x^2-224*x-321 1771166256533150 r005 Im(z^2+c),c=5/106+6/35*I,n=14 1771166256868702 m001 (exp(1)-sin(1))/(sin(1/5*Pi)+Bloch) 1771166260441430 a007 Real Root Of -160*x^4+992*x^3-975*x^2-347*x-264 1771166267630119 h001 (-9*exp(1)+9)/(-4*exp(1)+10) 1771166267630119 m005 (3/4*exp(1)-3/4)/(1/3*exp(1)-5/6) 1771166269043664 r005 Im(z^2+c),c=-35/62+25/48*I,n=7 1771166269976198 q001 5209/2941 1771166289890811 a005 (1/sin(46/229*Pi))^84 1771166291746284 m001 StronglyCareFree+sin(1)^Trott2nd 1771166293655827 a007 Real Root Of -103*x^4+405*x^3+772*x^2-843*x-651 1771166302479697 k002 Champernowne real with 41/2*n^2-15/2*n+4 1771166303094175 s002 sum(A063773[n]/((exp(n)+1)/n),n=1..infinity) 1771166312231712 k008 concat of cont frac of 1771166313177573 l006 ln(1063/6248) 1771166313315397 m005 (1/2*Pi-2/7)/(3/112+5/16*5^(1/2)) 1771166317527111 a005 (1/sin(72/161*Pi))^208 1771166319802111 a007 Real Root Of -438*x^4-42*x^3+805*x^2-823*x+94 1771166322615889 a003 sin(Pi*1/102)-sin(Pi*1/15) 1771166334291762 m001 1/FeigenbaumKappa*exp(MinimumGamma)*GAMMA(1/6) 1771166337202503 r005 Re(z^2+c),c=-33/34+13/56*I,n=18 1771166340817118 m001 (GAMMA(23/24)+Landau)/(ln(Pi)-sin(1/12*Pi)) 1771166342115111 k008 concat of cont frac of 1771166344729011 r005 Re(z^2+c),c=-1/40+17/26*I,n=14 1771166355691890 a003 cos(Pi*8/95)-sin(Pi*44/111) 1771166355841751 m001 (Si(Pi)+GAMMA(11/12))/(GAMMA(13/24)+ZetaQ(4)) 1771166356510742 a007 Real Root Of -780*x^4-919*x^3+553*x^2-686*x-380 1771166361034891 r005 Im(z^2+c),c=-107/110+5/28*I,n=45 1771166364117435 r005 Im(z^2+c),c=5/106+6/35*I,n=15 1771166364798783 a003 sin(Pi*19/67)+sin(Pi*32/69) 1771166370633510 q001 5983/3378 1771166377766894 m001 PisotVijayaraghavan*(OneNinth-exp(1/exp(1))) 1771166379531950 a001 1/15124*(1/2*5^(1/2)+1/2)*199^(2/21) 1771166386794747 m005 (1/2*5^(1/2)+4/11)/(1/11*Zeta(3)+8/11) 1771166399756159 a007 Real Root Of -951*x^4-926*x^3+901*x^2-484*x+530 1771166404679696 a003 cos(Pi*5/77)+cos(Pi*23/110) 1771166411459849 l006 ln(7994/9543) 1771166413611303 a007 Real Root Of 31*x^4+544*x^3-100*x^2-128*x+980 1771166421938730 a007 Real Root Of 472*x^4+593*x^3+127*x^2+461*x-932 1771166428642161 m001 (2^(1/2))^GAMMA(17/24)/ln(2^(1/2)+1) 1771166428642161 m001 sqrt(2)^GAMMA(17/24)/ln(1+sqrt(2)) 1771166430791929 a001 4/17711*21^(23/34) 1771166431623121 k009 concat of cont frac of 1771166440239856 m001 ln(Riemann2ndZero)^2*Lehmer^2/Tribonacci 1771166441390286 r005 Re(z^2+c),c=-21/106+4/29*I,n=17 1771166445649944 r005 Re(z^2+c),c=-10/23+35/61*I,n=16 1771166447744002 r005 Im(z^2+c),c=-23/26+13/90*I,n=44 1771166448230668 q001 6757/3815 1771166450944681 h001 (-exp(2/3)+8)/(-2*exp(3)+6) 1771166453796086 m001 1/Zeta(3)^2*ln(Tribonacci)/cosh(1)^2 1771166453993344 p004 log(33403/5683) 1771166456982329 r005 Re(z^2+c),c=-19/98+9/55*I,n=11 1771166458348716 a007 Real Root Of -244*x^4-46*x^3+377*x^2+575*x+90 1771166458508111 h001 (4/7*exp(1)+3/5)/(1/12*exp(2)+3/5) 1771166462653000 a007 Real Root Of 754*x^4+999*x^3-346*x^2+450*x+13 1771166468946024 r005 Im(z^2+c),c=-11/17+1/54*I,n=21 1771166472628956 m001 (ln(3)+Landau)/(MertensB2-OneNinth) 1771166472680063 a005 (1/sin(11/32*Pi))^481 1771166473201836 m001 Pi*ln(2)/ln(10)*(sin(1/5*Pi)+GAMMA(17/24)) 1771166475075536 r009 Re(z^3+c),c=-15/94+34/45*I,n=61 1771166478828331 r005 Re(z^2+c),c=25/82+18/19*I,n=3 1771166484041899 m002 -Pi^4/6+Pi^6/5+ProductLog[Pi] 1771166484329348 a001 299537289/305*21^(19/20) 1771166486393161 l006 ln(924/5431) 1771166487728021 a007 Real Root Of -771*x^4-800*x^3+791*x^2-332*x+73 1771166495120203 a007 Real Root Of 374*x^4+128*x^3-881*x^2+430*x+556 1771166497048998 r005 Re(z^2+c),c=-15/106+16/51*I,n=5 1771166498720597 m001 GAMMA(23/24)^2/exp(GAMMA(13/24))^2/sqrt(5) 1771166499083467 m003 7/12+Sqrt[5]/2+(Sqrt[5]*Sin[1/2+Sqrt[5]/2])/32 1771166501114547 m001 (FeigenbaumMu-Robbin)/(Zeta(1,2)-CareFree) 1771166502565498 a007 Real Root Of 102*x^4-137*x^3+567*x^2-544*x-115 1771166504666059 r002 45th iterates of z^2 + 1771166508935941 r009 Im(z^3+c),c=-23/78+7/51*I,n=9 1771166511617809 a007 Real Root Of 667*x^4+602*x^3+254*x^2-954*x+157 1771166514794611 m001 MasserGramainDelta^ZetaQ(4)/BesselI(1,1) 1771166526609168 r002 34th iterates of z^2 + 1771166530118681 a007 Real Root Of 100*x^4-266*x^3-473*x^2+318*x-415 1771166531272944 a007 Real Root Of -508*x^4-800*x^3-183*x^2-405*x+411 1771166531365929 m001 (KomornikLoreti*Niven-Trott2nd)/Niven 1771166531623439 h001 (4/7*exp(2)+1/12)/(3/5*exp(1)+4/5) 1771166541700340 m005 (1/2*exp(1)-5/8)/(1/8*Catalan+3/10) 1771166543426938 m001 GAMMA(5/6)*(cos(1/12*Pi)-cos(1/5*Pi)) 1771166543426938 m001 GAMMA(5/6)*(cos(Pi/12)-cos(Pi/5)) 1771166543684818 m001 FeigenbaumC*(Ei(1,1)-KhinchinLevy) 1771166544384714 a008 Real Root of (7+13*x-17*x^2-x^3) 1771166548177979 r005 Im(z^2+c),c=-5/86+13/63*I,n=7 1771166551087755 r009 Re(z^3+c),c=-3/13+18/53*I,n=9 1771166552662671 g006 Psi(1,4/11)+Psi(1,4/9)+1/2*Pi^2-Psi(1,10/11) 1771166564220894 r005 Im(z^2+c),c=-13/40+14/51*I,n=13 1771166572397997 r008 a(0)=1,K{-n^6,62-29*n-63*n^2+27*n^3} 1771166581317413 r005 Re(z^2+c),c=11/102+18/49*I,n=46 1771166586576584 a007 Real Root Of -641*x^4-492*x^3+361*x^2+881*x-164 1771166591977523 a007 Real Root Of 46*x^4+781*x^3-592*x^2+68*x-531 1771166594091927 a007 Real Root Of -217*x^4-158*x^3+100*x^2-905*x-659 1771166594133443 l006 ln(1709/10045) 1771166594924146 m001 (Magata+ZetaQ(3))/(5^(1/2)-HardyLittlewoodC4) 1771166601984122 m001 1/exp(Paris)^2*KhintchineHarmonic/cos(Pi/5) 1771166605977557 a007 Real Root Of -648*x^4-591*x^3+591*x^2-165*x+947 1771166608740511 r005 Re(z^2+c),c=11/102+18/49*I,n=45 1771166611771477 k006 concat of cont frac of 1771166612136081 m001 1/cos(1)^2/FeigenbaumDelta*exp(log(1+sqrt(2))) 1771166612728497 a007 Real Root Of 214*x^4-346*x^3-888*x^2+814*x+199 1771166614830259 p003 LerchPhi(1/64,4,310/201) 1771166628226788 r005 Re(z^2+c),c=13/40+19/62*I,n=21 1771166630467434 m001 exp(GAMMA(23/24))^2*BesselJ(1,1)/GAMMA(5/24)^2 1771166636759928 m001 (gamma(3)+Kac)/(Niven+Tribonacci) 1771166641170146 m001 ln(3)^exp(1)*ln(3)^ReciprocalFibonacci 1771166650270625 a007 Real Root Of 350*x^4-134*x^3-886*x^2+754*x-74 1771166651553773 r005 Im(z^2+c),c=21/94+11/20*I,n=8 1771166658087692 m001 (LaplaceLimit-sin(1))/(MertensB1+RenyiParking) 1771166660092371 a007 Real Root Of -135*x^4+431*x^3+490*x^2-891*x+608 1771166663148740 a001 7/41*7^(1/53) 1771166664130859 r005 Im(z^2+c),c=-25/54+18/59*I,n=26 1771166665548555 m001 BesselI(0,1)^GaussKuzminWirsing*exp(1/2) 1771166666996815 m001 (gamma(1)+GAMMA(23/24))/(Kolakoski-MertensB3) 1771166670599625 a007 Real Root Of 562*x^4+708*x^3-559*x^2-x+155 1771166674953422 a007 Real Root Of -461*x^4-157*x^3+410*x^2-847*x+878 1771166676559177 g007 Psi(2,4/9)+Psi(2,4/7)-Psi(2,5/12)-Psi(2,2/9) 1771166682339879 m001 1/GAMMA(23/24)/Salem/exp(cosh(1)) 1771166683397526 r005 Re(z^2+c),c=-21/106+4/29*I,n=14 1771166688170070 r005 Re(z^2+c),c=-21/106+4/29*I,n=19 1771166689449383 a001 305/2889*39603^(15/31) 1771166695695672 m001 (ln(2)/ln(10)-GAMMA(7/12))/ln(2) 1771166702594386 a001 646/341*5778^(8/31) 1771166708685664 r005 Re(z^2+c),c=-21/106+4/29*I,n=22 1771166710865650 r005 Re(z^2+c),c=-21/106+4/29*I,n=24 1771166711299872 r005 Re(z^2+c),c=-21/106+4/29*I,n=27 1771166711310642 r005 Re(z^2+c),c=-21/106+4/29*I,n=29 1771166711314112 r005 Re(z^2+c),c=-21/106+4/29*I,n=26 1771166711315971 r005 Re(z^2+c),c=-21/106+4/29*I,n=31 1771166711316434 r005 Re(z^2+c),c=-21/106+4/29*I,n=34 1771166711316480 r005 Re(z^2+c),c=-21/106+4/29*I,n=36 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=39 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=41 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=38 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=43 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=46 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=48 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=51 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=50 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=53 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=55 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=58 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=60 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=63 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=62 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=64 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=61 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=59 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=56 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=57 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=54 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=52 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=49 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=44 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=47 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=45 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=42 1771166711316490 r005 Re(z^2+c),c=-21/106+4/29*I,n=40 1771166711316492 r005 Re(z^2+c),c=-21/106+4/29*I,n=37 1771166711316505 r005 Re(z^2+c),c=-21/106+4/29*I,n=32 1771166711316517 r005 Re(z^2+c),c=-21/106+4/29*I,n=35 1771166711316566 r005 Re(z^2+c),c=-21/106+4/29*I,n=33 1771166711318600 r005 Re(z^2+c),c=-21/106+4/29*I,n=30 1771166711328660 r005 Re(z^2+c),c=-21/106+4/29*I,n=28 1771166711426104 r005 Re(z^2+c),c=-21/106+4/29*I,n=25 1771166711636929 r005 Re(z^2+c),c=-21/106+4/29*I,n=20 1771166712572902 r005 Re(z^2+c),c=-21/106+4/29*I,n=23 1771166714240246 m001 GAMMA(11/12)/(Cahen^GAMMA(19/24)) 1771166714954375 r005 Re(z^2+c),c=-21/106+4/29*I,n=21 1771166716428088 m001 (Riemann3rdZero-Sarnak)/(ArtinRank2-GaussAGM) 1771166720951290 l006 ln(785/4614) 1771166723961033 m001 GAMMA(17/24)^2/TreeGrowth2nd/ln(cos(Pi/5)) 1771166728022808 a005 (1/sin(68/201*Pi))^516 1771166731471054 a001 5473/682*3571^(3/31) 1771166739198695 a001 305/219602*24476^(29/31) 1771166740088185 m001 Zeta(5)^GaussAGM/LandauRamanujan2nd 1771166741076188 a001 17711/1364*15127^(1/31) 1771166748459494 a007 Real Root Of -386*x^4+166*x^3+926*x^2-782*x+431 1771166749799476 a001 610/9349*9349^(19/31) 1771166749835424 m001 (Magata-Trott2nd)/(GlaisherKinkelin+Kac) 1771166750024116 a007 Real Root Of 226*x^4-541*x^3-581*x^2+955*x+913 1771166762610049 a001 969323029/144*46368^(7/23) 1771166762660195 a001 16692641/72*2971215073^(7/23) 1771166764353767 m001 BesselK(0,1)/(Sierpinski-exp(-1/2*Pi)) 1771166766534303 h001 (-8*exp(7)-1)/(-9*exp(4)-4) 1771166767441070 m007 (-3/5*gamma-6/5*ln(2)-3/4)/(-1/2*gamma-4/5) 1771166769407984 m001 GAMMA(13/24)^2/exp(LandauRamanujan)*sqrt(2) 1771166775770190 a001 4/377*2584^(3/46) 1771166777489907 r005 Im(z^2+c),c=3/50+1/6*I,n=8 1771166777768764 m001 1/Trott*Lehmer*exp(sin(Pi/5))^2 1771166778449870 a007 Real Root Of 527*x^4+659*x^3-554*x^2-296*x-311 1771166780609280 r009 Im(z^3+c),c=-47/110+2/33*I,n=9 1771166783303069 m005 (1/2*2^(1/2)-7/12)/(11/12*3^(1/2)-8/9) 1771166790832919 r009 Re(z^3+c),c=-23/122+19/21*I,n=5 1771166790992078 l006 ln(2761/3296) 1771166794472301 a001 646/341*2207^(9/31) 1771166794562801 a007 Real Root Of -679*x^4-776*x^3+714*x^2+68*x+251 1771166796067150 a007 Real Root Of -31*x^4+826*x^3-966*x^2-389*x-565 1771166796109343 r002 20th iterates of z^2 + 1771166804073963 m001 GAMMA(7/12)^(Niven/BesselI(0,1)) 1771166807605726 r005 Re(z^2+c),c=-21/106+4/29*I,n=18 1771166809925718 b008 Sqrt[Pi]*ModularLambda[I/10*Pi] 1771166810965806 a007 Real Root Of -671*x^4-896*x^3+256*x^2-796*x-588 1771166815617018 a007 Real Root Of -471*x^4-916*x^3+60*x^2+395*x+57 1771166817344677 a007 Real Root Of 685*x^4+910*x^3-357*x^2+673*x+627 1771166817914694 m005 (1/2*Catalan-1/4)/(3/4*Zeta(3)+3/11) 1771166818297483 r005 Re(z^2+c),c=-11/60+36/49*I,n=43 1771166819592693 a007 Real Root Of 256*x^4+179*x^3+195*x^2+907*x-530 1771166821037735 r005 Re(z^2+c),c=-49/94+24/41*I,n=63 1771166822539719 m001 (5^(1/2)-exp(Pi))/(-exp(1/Pi)+DuboisRaymond) 1771166839494027 a001 521/8*1597^(19/25) 1771166844059335 a007 Real Root Of -287*x^4-119*x^3+152*x^2-772*x+319 1771166847084237 r005 Im(z^2+c),c=17/50+2/25*I,n=29 1771166847228140 a007 Real Root Of 643*x^4+441*x^3-740*x^2+345*x-945 1771166847383895 m001 (MadelungNaCl+Tribonacci)/(exp(1)-ln(2)) 1771166849787075 a005 (1/cos(11/191*Pi))^1154 1771166851191923 m001 (Chi(1)-Pi*csc(5/12*Pi)/GAMMA(7/12))/gamma(1) 1771166861073597 r005 Re(z^2+c),c=-3/50+12/23*I,n=52 1771166870598081 r005 Im(z^2+c),c=-41/46+11/64*I,n=12 1771166871586336 p001 sum(1/(468*n+113)/n/(10^n),n=1..infinity) 1771166872405986 l006 ln(1431/8411) 1771166880667182 a001 610/3571*64079^(13/31) 1771166883122272 s002 sum(A181782[n]/(16^n),n=1..infinity) 1771166886569143 p001 sum(1/(401*n+41)/n/(128^n),n=1..infinity) 1771166900863364 a007 Real Root Of -609*x^4-728*x^3+937*x^2+563*x+6 1771166906404300 a007 Real Root Of -380*x^4-655*x^3-99*x^2-145*x+154 1771166907011343 a007 Real Root Of 298*x^4+722*x^3+385*x^2+167*x+167 1771166908359005 m002 Pi^4/6+Log[Pi]+Tanh[Pi]/3 1771166918113462 a007 Real Root Of -501*x^4-648*x^3+102*x^2-280*x+514 1771166918254053 m001 1/3*(3^(1/3)*Sierpinski-GAMMA(19/24))*3^(2/3) 1771166919691373 m005 (1/2*Zeta(3)+6/7)/(7/10*2^(1/2)-1/6) 1771166921270856 r009 Re(z^3+c),c=-19/110+2/47*I,n=9 1771166921344084 r009 Re(z^3+c),c=-19/110+2/47*I,n=10 1771166921378946 r009 Re(z^3+c),c=-19/110+2/47*I,n=11 1771166921384306 r009 Re(z^3+c),c=-19/110+2/47*I,n=12 1771166921384891 r009 Re(z^3+c),c=-19/110+2/47*I,n=13 1771166921384939 r009 Re(z^3+c),c=-19/110+2/47*I,n=14 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=21 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=22 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=23 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=24 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=25 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=26 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=34 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=33 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=35 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=36 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=37 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=38 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=39 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=40 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=41 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=42 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=46 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=32 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=31 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=30 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=29 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=28 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=27 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=20 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=19 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=18 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=17 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=16 1771166921384941 r009 Re(z^3+c),c=-19/110+2/47*I,n=15 1771166923444781 r009 Re(z^3+c),c=-19/110+2/47*I,n=8 1771166927069678 a007 Real Root Of 317*x^4+657*x^3+681*x^2-508*x-108 1771166933011544 m001 (Zeta(3)+ln(2^(1/2)+1))/(Bloch+CareFree) 1771166935478291 p003 LerchPhi(1/25,1,51/89) 1771166937763255 a007 Real Root Of -417*x^4-318*x^3+267*x^2+603*x-113 1771166939906417 m001 exp(sin(Pi/5))*BesselJ(1,1)*sqrt(5) 1771166940456389 r009 Re(z^3+c),c=-19/36+1/57*I,n=5 1771166941695615 m001 (Psi(2,1/3)+cos(1))/(Ei(1)+KhinchinLevy) 1771166943949927 r002 4th iterates of z^2 + 1771166952117820 m005 (1/2*5^(1/2)-1/9)/(2/11*3^(1/2)-6) 1771166953184593 a007 Real Root Of -162*x^4+441*x^3+928*x^2-702*x-110 1771166961406848 g006 -Psi(1,4/9)-Psi(1,3/7)-Psi(1,5/6)-Psi(1,2/3) 1771166968193892 r009 Re(z^3+c),c=-19/110+2/47*I,n=7 1771166973884697 r005 Im(z^2+c),c=-103/110+20/49*I,n=6 1771166975500707 m001 1/arctan(1/2)^2/GAMMA(1/6)*ln(cos(Pi/5)) 1771166982326323 a007 Real Root Of -28*x^4-526*x^3-578*x^2-828*x-438 1771166987746786 m001 BesselJ(0,1)^Rabbit/FeigenbaumDelta 1771166990654660 h001 (1/7*exp(1)+2/11)/(11/12*exp(1)+8/11) 1771166991977896 m001 cos(1)*GAMMA(1/3)^2/exp(cosh(1))^2 1771166996613416 b008 1+E^E+Tan[1] 1771166998440509 m001 (Gompertz+Riemann1stZero)/(Bloch-Conway) 1771167012818989 r002 21th iterates of z^2 + 1771167013635789 r005 Re(z^2+c),c=-1/32+26/45*I,n=58 1771167014839650 m001 Kolakoski/DuboisRaymond*exp(Porter) 1771167015698629 m001 (-Ei(1,1)+Lehmer)/(2^(1/2)+ln(2)) 1771167020209379 a007 Real Root Of -316*x^4+143*x^3+730*x^2-567*x+610 1771167022247203 r005 Im(z^2+c),c=-101/106+9/52*I,n=17 1771167023517377 h005 exp(cos(Pi*1/30)*cos(Pi*18/59)) 1771167027244741 m001 (Bloch+Niven)/(OrthogonalArrays-ZetaP(3)) 1771167033290397 m001 1/ln(log(1+sqrt(2)))/ErdosBorwein^2/sqrt(3) 1771167040200901 m005 (1/2*Zeta(3)+3/7)/(4/11*5^(1/2)+5) 1771167043662312 k007 concat of cont frac of 1771167048054919 q001 387/2185 1771167048054919 r005 Im(z^2+c),c=-33/23+18/19*I,n=2 1771167055487237 r005 Re(z^2+c),c=-17/14+37/218*I,n=20 1771167056449200 l006 ln(646/3797) 1771167057592266 r005 Im(z^2+c),c=-23/22+21/103*I,n=48 1771167058561884 m001 (cos(1/12*Pi)+Salem)/(ZetaP(3)-ZetaQ(2)) 1771167066025129 m005 (1/3*Pi+2/7)/(5*2^(1/2)+5/11) 1771167070065233 m001 (MertensB2-exp(1))/(PlouffeB+Weierstrass) 1771167078532187 m004 -620*Pi+25*Sqrt[5]*Pi+Tanh[Sqrt[5]*Pi] 1771167086201964 r005 Im(z^2+c),c=31/118+3/62*I,n=56 1771167095473527 a007 Real Root Of -427*x^4-138*x^3+597*x^2-592*x+514 1771167098328570 r005 Re(z^2+c),c=-15/46+7/11*I,n=18 1771167112837763 m001 (Artin-Pi*csc(1/24*Pi)/GAMMA(23/24))/Conway 1771167123206099 s002 sum(A163151[n]/(64^n),n=1..infinity) 1771167132557394 a007 Real Root Of -770*x^4-923*x^3+521*x^2-639*x-317 1771167133067383 m001 1/exp(GAMMA(5/12))/Riemann3rdZero^2/Zeta(5)^2 1771167134580441 m001 Landau*Otter-Zeta(1,-1) 1771167135163737 r005 Re(z^2+c),c=-9/110+19/39*I,n=22 1771167140484736 g001 Re(GAMMA(6/5+I*39/20)) 1771167146575490 r005 Im(z^2+c),c=-43/50+5/38*I,n=25 1771167147948631 m001 (gamma*polylog(4,1/2)+Sarnak)/gamma 1771167164558792 m001 1/(2^(1/3))*exp(ErdosBorwein)^2/GAMMA(11/12)^2 1771167178557346 m001 (FellerTornier+ZetaP(4))/(arctan(1/2)-exp(1)) 1771167183955046 r005 Im(z^2+c),c=-9/25+32/51*I,n=18 1771167190643352 m001 Psi(2,1/3)^(arctan(1/2)*HardyLittlewoodC4) 1771167195657486 p001 sum(1/(197*n+146)/n/(2^n),n=1..infinity) 1771167199620124 r005 Im(z^2+c),c=-13/14+32/197*I,n=33 1771167201726219 r005 Im(z^2+c),c=-1+28/149*I,n=55 1771167204027381 s002 sum(A215226[n]/(exp(n)-1),n=1..infinity) 1771167206217772 m001 (Gompertz+Porter)/(ln(2)+Bloch) 1771167211914332 a007 Real Root Of 717*x^4-400*x^3-760*x^2-811*x+169 1771167213450214 r002 40th iterates of z^2 + 1771167224060708 a007 Real Root Of -640*x^4-432*x^3+841*x^2-281*x+762 1771167234350421 m009 (1/2*Psi(1,3/4)-3)/(Psi(1,1/3)-1/3) 1771167239923462 a001 199/5*9227465^(11/21) 1771167242156272 m001 (Pi+cos(1))/exp(-1/2*Pi) 1771167242605897 m005 (11/12+1/6*5^(1/2))/(3*5^(1/2)+4/7) 1771167251765244 a001 521/987*144^(41/58) 1771167254955857 m001 (BesselK(1,1)-Artin)/(GAMMA(2/3)-GAMMA(3/4)) 1771167260619808 a007 Real Root Of 566*x^4+638*x^3+115*x^2+857*x-868 1771167264426942 m001 1/cos(Pi/5)^2*DuboisRaymond/exp(sin(Pi/12))^2 1771167272875781 m001 1/Rabbit^2/GlaisherKinkelin^2*ln(GAMMA(5/6))^2 1771167275492378 h001 (1/2*exp(2)+1/12)/(1/4*exp(2)+2/7) 1771167276192048 l004 Shi(478/99) 1771167276365480 m001 ln(Niven)^2/Artin^2/GAMMA(1/12) 1771167279665842 h001 (3/5*exp(1)+5/12)/(1/3*exp(1)+1/4) 1771167279926748 r005 Re(z^2+c),c=-21/106+4/29*I,n=16 1771167282971999 a007 Real Root Of 610*x^4+929*x^3-299*x^2-399*x-610 1771167283985245 m009 (16/5*Catalan+2/5*Pi^2+2)/(1/10*Pi^2-6) 1771167284867053 l006 ln(1153/6777) 1771167284987770 r009 Re(z^3+c),c=-37/122+19/33*I,n=39 1771167288990003 h001 (1/5*exp(1)+2/3)/(6/7*exp(2)+1/2) 1771167289106257 a007 Real Root Of 737*x^4-110*x^3-481*x^2-686*x-12 1771167295619964 a001 7/620166*2^(13/20) 1771167296357449 r008 a(0)=2,K{-n^6,9+7*n^3-8*n^2-n} 1771167296357449 r008 a(0)=2,K{-n^6,9-n-8*n^2+7*n^3} 1771167297421680 a001 1568397607/1597*21^(19/20) 1771167304308686 a007 Real Root Of 924*x^4+777*x^3-924*x^2+497*x-997 1771167305485707 k002 Champernowne real with 21*n^2-9*n+5 1771167309490722 m005 (1/2*5^(1/2)-11/12)/(1/2*exp(1)-2/9) 1771167310626838 a007 Real Root Of -125*x^4+966*x^3+993*x^2+749*x+107 1771167310990015 h001 (5/11*exp(2)+7/11)/(1/5*exp(2)+7/9) 1771167313101957 l006 ln(5811/6937) 1771167313224875 m001 (LambertW(1)+Backhouse)/(MertensB2+OneNinth) 1771167313483735 a007 Real Root Of -914*x^4-185*x^3+666*x^2+943*x+146 1771167321459358 m007 (-5/6*gamma-5/3*ln(2)-1/4)/(-3*gamma+2/3) 1771167321859562 m001 (5^(1/2)+Zeta(3))/(GAMMA(7/12)+ThueMorse) 1771167323131122 k007 concat of cont frac of 1771167329719689 m001 (ln(3)+MasserGramain)/(MertensB1+Sarnak) 1771167337059031 r005 Re(z^2+c),c=33/122+13/57*I,n=29 1771167340797710 r005 Im(z^2+c),c=-83/66+1/63*I,n=43 1771167346237062 r005 Re(z^2+c),c=-3/23+14/37*I,n=24 1771167346482547 a007 Real Root Of 67*x^4-613*x^3-778*x^2+635*x-500 1771167351557935 p001 sum(1/(67*n+54)/n/(5^n),n=0..infinity) 1771167356698460 s002 sum(A215465[n]/(n!^3),n=1..infinity) 1771167361982114 r005 Re(z^2+c),c=-93/94+14/59*I,n=50 1771167369231376 m001 1/MinimumGamma*exp(Artin)^2*GAMMA(3/4) 1771167373757361 l006 ln(1660/9757) 1771167381980610 a007 Real Root Of 642*x^4+959*x^3-656*x^2-361*x+429 1771167383660816 m001 (Riemann2ndZero-ZetaQ(3))/(GAMMA(17/24)-Paris) 1771167387573980 r005 Re(z^2+c),c=-5/24+1/59*I,n=10 1771167403984395 s001 sum(exp(-Pi)^(n-1)*A226020[n],n=1..infinity) 1771167405535028 r005 Re(z^2+c),c=-1/54+23/40*I,n=47 1771167407825568 r005 Im(z^2+c),c=-69/82+7/37*I,n=43 1771167411913264 p001 sum((-1)^n/(213*n+56)/(25^n),n=0..infinity) 1771167416050315 a001 4106118243/4181*21^(19/20) 1771167420524579 g007 Psi(2,1/10)+Psi(2,2/5)-Psi(2,4/7)-Psi(2,1/5) 1771167430965513 a007 Real Root Of 101*x^4-97*x^3-545*x^2+187*x+508 1771167433358001 a001 5374978561/5473*21^(19/20) 1771167434027612 r005 Im(z^2+c),c=-29/70+13/44*I,n=42 1771167435883158 a001 28143753123/28657*21^(19/20) 1771167436251574 a001 73681302247/75025*21^(19/20) 1771167436305325 a001 96450076809/98209*21^(19/20) 1771167436313167 a001 505019158607/514229*21^(19/20) 1771167436314311 a001 1322157322203/1346269*21^(19/20) 1771167436314478 a001 1730726404001/1762289*21^(19/20) 1771167436314503 a001 9062201101803/9227465*21^(19/20) 1771167436314506 a001 23725150497407/24157817*21^(19/20) 1771167436314508 a001 192933544679/196452*21^(19/20) 1771167436314518 a001 5600748293801/5702887*21^(19/20) 1771167436314581 a001 2139295485799/2178309*21^(19/20) 1771167436315018 a001 204284540899/208010*21^(19/20) 1771167436318014 a001 312119004989/317811*21^(19/20) 1771167436338545 a001 119218851371/121393*21^(19/20) 1771167436479267 a001 11384387281/11592*21^(19/20) 1771167437443792 a001 17393796001/17711*21^(19/20) 1771167444054739 a001 6643838879/6765*21^(19/20) 1771167446590711 a003 sin(Pi*5/82)*sin(Pi*35/92) 1771167448801433 a001 17/22768774562*3571^(19/20) 1771167453549258 r009 Re(z^3+c),c=-23/94+12/31*I,n=19 1771167469053586 m001 (MertensB1+Niven)/(LambertW(1)+Landau) 1771167471316251 a001 4/987*4181^(35/48) 1771167477550040 m001 (Pi^(1/2)+Backhouse)/MasserGramainDelta 1771167485985847 r009 Re(z^3+c),c=-49/94+17/43*I,n=27 1771167488499659 r009 Im(z^3+c),c=-35/106+6/49*I,n=15 1771167489366852 a001 33391061/34*21^(19/20) 1771167504214828 a007 Real Root Of 616*x^4+886*x^3-727*x^2-833*x-334 1771167504269459 m001 (ln(2)-Zeta(1/2))/(HeathBrownMoroz+Trott) 1771167507316488 s001 sum(exp(-Pi/4)^(n-1)*A101950[n],n=1..infinity) 1771167509531384 m005 (1/3*exp(1)-1/10)/(1/7*Pi-5) 1771167516632486 m005 (1/3*exp(1)+3)/(3/4*exp(1)+1/6) 1771167522948977 r005 Im(z^2+c),c=-61/98+17/56*I,n=37 1771167526293540 r009 Re(z^3+c),c=-19/110+2/47*I,n=6 1771167532963483 r005 Re(z^2+c),c=-143/118+1/14*I,n=44 1771167533539289 r005 Re(z^2+c),c=-36/29+17/48*I,n=10 1771167536169651 g007 Psi(2,7/11)+Psi(2,7/10)+Psi(2,3/10)+Psi(2,2/7) 1771167536455019 a007 Real Root Of -779*x^4-433*x^3+921*x^2-795*x+963 1771167536961996 r005 Im(z^2+c),c=-19/54+11/39*I,n=17 1771167538403314 m001 (Shi(1)-Salem)^Ei(1) 1771167544870392 r002 61th iterates of z^2 + 1771167545412085 m001 ln(3)/(CareFree-PisotVijayaraghavan) 1771167558155029 r002 59th iterates of z^2 + 1771167559976134 a007 Real Root Of 506*x^4+150*x^3-790*x^2+796*x-258 1771167563525075 a001 17/22768774562*9349^(17/20) 1771167575908266 l006 ln(507/2980) 1771167580306163 a001 34/87403803*24476^(3/20) 1771167580728070 a001 17/16692641*64079^(1/20) 1771167580745508 a001 34/6643838879*439204^(9/20) 1771167580749171 a001 17/1268860318*1149851^(7/20) 1771167580749512 a001 34/312119004989*3010349^(13/20) 1771167580749624 a001 34/119218851371*7881196^(11/20) 1771167580749639 a001 34/87403803*14662949395604^(1/20) 1771167580749639 a001 34/1568397607*5600748293801^(3/20) 1771167580749639 a001 34/505019158607*6643838879^(9/20) 1771167580749639 a001 34/73681302247*17393796001^(7/20) 1771167580749639 a001 34/23725150497407*119218851371^(11/20) 1771167580749639 a001 34/370248451*370248451^(3/20) 1771167580749640 a001 34/54018521*969323029^(1/20) 1771167582589949 r005 Im(z^2+c),c=-97/110+13/61*I,n=60 1771167583995637 r002 3th iterates of z^2 + 1771167594343167 a007 Real Root Of -53*x^4-966*x^3-455*x^2+503*x+64 1771167595100072 r009 Im(z^3+c),c=-47/110+1/24*I,n=49 1771167597857422 a007 Real Root Of -866*x^4-704*x^3+956*x^2-766*x+255 1771167607417575 r005 Im(z^2+c),c=-12/25+17/55*I,n=64 1771167612935077 q001 7175/4051 1771167617120464 a007 Real Root Of 698*x^4+953*x^3-189*x^2+734*x+319 1771167631674000 r005 Im(z^2+c),c=-49/106+7/23*I,n=13 1771167633923809 v002 sum(1/(2^n+(25+9/2*n^2-27/2*n)),n=1..infinity) 1771167635542527 m001 (ReciprocalLucas-ThueMorse)^Conway 1771167639086438 m001 exp(1)^2*Zeta(1,2)^2*exp(sqrt(1+sqrt(3)))^2 1771167640845260 a007 Real Root Of -326*x^4+202*x^3+908*x^2-642*x+345 1771167642358974 m001 (BesselI(1,1)-Catalan)/(Artin+ErdosBorwein) 1771167647680568 r005 Re(z^2+c),c=-19/98+8/49*I,n=9 1771167650471494 a007 Real Root Of 539*x^4+898*x^3-365*x^2-305*x+290 1771167651198916 a007 Real Root Of 733*x^4+627*x^3-780*x^2+180*x-964 1771167657867387 r005 Im(z^2+c),c=-22/19+8/47*I,n=12 1771167662649335 m001 exp(Pi)/RenyiParking/ZetaP(3) 1771167669438830 m001 (Chi(1)+GAMMA(17/24))/(Sarnak+Weierstrass) 1771167672691284 m005 (-1/3+1/6*5^(1/2))/(3/7*Pi+7/8) 1771167672707124 a001 514229/123*7^(23/31) 1771167680435992 a001 987/24476*843^(28/31) 1771167680566968 r002 24th iterates of z^2 + 1771167681239623 q001 6401/3614 1771167684267328 m001 (exp(-1/2*Pi)+Pi^(1/2))/(CareFree-Lehmer) 1771167688224115 a005 (1/cos(13/179*Pi))^811 1771167696480221 m001 (MertensB2+Otter)/(ln(2+3^(1/2))-FeigenbaumMu) 1771167706202861 r005 Im(z^2+c),c=-113/102+11/52*I,n=37 1771167707939845 m001 (Conway-Robbin)/(ln(2)-GAMMA(11/12)) 1771167711356733 r009 Re(z^3+c),c=-45/106+35/57*I,n=40 1771167712342696 m001 (Si(Pi)+cos(1/12*Pi))/(PrimesInBinary+Salem) 1771167719911803 a007 Real Root Of -83*x^4+108*x^3+66*x^2-984*x-533 1771167720514646 m001 (exp(1)+KhinchinHarmonic)/(Lehmer+Tetranacci) 1771167725035784 a007 Real Root Of -602*x^4-538*x^3+704*x^2-924*x-910 1771167726076143 m001 AlladiGrinstead/MadelungNaCl/MertensB1 1771167726246122 m004 -3+3125*Pi+Sqrt[5]*E^(Sqrt[5]*Pi)*Pi 1771167726975580 a008 Real Root of (-3-6*x-2*x^2+x^3+5*x^4-2*x^5) 1771167727868299 r008 a(0)=0,K{-n^6,32+32*n+43*n^2-51*n^3} 1771167736415468 a007 Real Root Of 74*x^4-211*x^3-392*x^2+691*x+553 1771167741302328 m005 (1/2*5^(1/2)+1/7)/(1/11*2^(1/2)+7/12) 1771167741854991 a003 sin(Pi*34/109)+sin(Pi*23/59) 1771167745903407 m006 (3*ln(Pi)-5/6)/(3/5*exp(Pi)+4/5) 1771167752279047 m001 ln(Pi)*Trott^ThueMorse 1771167753832693 m001 (polylog(4,1/2)+LandauRamanujan)/Sarnak 1771167757092267 a001 832040/843*123^(3/5) 1771167760132381 r005 Im(z^2+c),c=1/74+11/60*I,n=12 1771167764966737 m006 (2/3*Pi^2+1/6)/(3/5/Pi-4) 1771167768334907 q001 5627/3177 1771167771601999 m005 (1/2*Catalan-10/11)/(1/6*exp(1)-3) 1771167771757842 m001 FeigenbaumKappa*ln(Paris)/BesselK(0,1)^2 1771167773025596 m001 (Psi(2,1/3)+Si(Pi))/(GAMMA(3/4)+Grothendieck) 1771167780960860 a007 Real Root Of 524*x^4+182*x^3-663*x^2+902*x-468 1771167781942674 r002 21th iterates of z^2 + 1771167785739761 l006 ln(3050/3641) 1771167792290337 m001 (Pi+BesselK(0,1))/(Zeta(3)+AlladiGrinstead) 1771167797520040 r005 Re(z^2+c),c=-3/56+14/25*I,n=22 1771167799940751 a001 969323029/987*21^(19/20) 1771167803869837 a007 Real Root Of 921*x^4-619*x^3+240*x^2-813*x+139 1771167810014516 m002 -31/6-Sinh[Pi]-Tanh[Pi] 1771167811402970 a007 Real Root Of 305*x^4+157*x^3-975*x^2-859*x-592 1771167815392349 m001 gamma(2)^ZetaQ(2)/TreeGrowth2nd 1771167815914569 m001 exp(Zeta(9))^2/Trott*sin(Pi/12) 1771167818723338 l006 ln(1382/8123) 1771167821864244 m002 -4+Pi^4-Pi^5+Pi^3*Log[Pi] 1771167823449496 a007 Real Root Of 206*x^4+200*x^3+210*x^2+521*x-652 1771167826858464 h001 (6/11*exp(1)+2/11)/(1/8*exp(1)+3/5) 1771167832857527 p001 sum((-1)^n/(156*n+19)/n/(32^n),n=0..infinity) 1771167838592275 a007 Real Root Of 558*x^4+115*x^3-904*x^2+658*x-851 1771167838952387 m001 Ei(1,1)/(Zeta(1/2)^BesselI(1,1)) 1771167841728877 m001 (Otter+Riemann1stZero)/(sin(1)+Champernowne) 1771167844898992 m005 (1/2*Pi+5/7)/(1/4*3^(1/2)+6/7) 1771167850434085 m001 BesselK(0,1)/exp(CareFree)/sinh(1) 1771167851376613 m001 TreeGrowth2nd/(GAMMA(13/24)^Tribonacci) 1771167856111108 a001 76/6765*1346269^(1/31) 1771167856463388 a007 Real Root Of -136*x^4-166*x^3+10*x^2+169*x+684 1771167857602210 r005 Im(z^2+c),c=-89/70+1/64*I,n=5 1771167858103046 a001 281/6*(1/2*5^(1/2)+1/2)^18*18^(13/20) 1771167859833121 a007 Real Root Of -248*x^4+523*x^3-52*x^2+954*x-170 1771167859934970 m008 (1/6*Pi^4-5/6)/(4/5*Pi^2+4/5) 1771167860371585 r005 Im(z^2+c),c=-19/18+37/175*I,n=48 1771167861003080 m005 (1/2*2^(1/2)-6/11)/(2/5*exp(1)-2) 1771167862184028 a007 Real Root Of 136*x^4+59*x^3+309*x^2+704*x-733 1771167874755315 a001 4181/3*123^(28/53) 1771167883211678 q001 4853/2740 1771167883407117 r005 Im(z^2+c),c=-41/94+29/61*I,n=12 1771167884792604 b008 7/4+Pi/E^5 1771167885432395 r009 Re(z^3+c),c=-53/98+16/49*I,n=62 1771167897317465 r002 42th iterates of z^2 + 1771167901965598 a007 Real Root Of -795*x^4-784*x^3+752*x^2-81*x+965 1771167903632602 a007 Real Root Of -461*x^4+141*x^3+927*x^2-961*x+710 1771167903846351 m005 (1/2*Catalan+4/5)/(2/3*3^(1/2)-4/9) 1771167909448631 m001 (Chi(1)-Sierpinski)/Paris 1771167909959635 r005 Im(z^2+c),c=-19/56+12/43*I,n=28 1771167912098819 a007 Real Root Of 10*x^4-339*x^3-341*x^2+401*x-202 1771167915395821 s002 sum(A280737[n]/((exp(n)+1)*n),n=1..infinity) 1771167922347219 h001 (-4*exp(2)+9)/(-5*exp(-1)+3) 1771167923440891 m005 (1/2*5^(1/2)+4/7)/(3*gamma-7/9) 1771167926669215 m005 (1/2*exp(1)+2/11)/(1/14+5/14*5^(1/2)) 1771167931748815 r005 Im(z^2+c),c=13/58+5/59*I,n=24 1771167936273310 m005 (1/2*Catalan+1/11)/(-35/48+3/16*5^(1/2)) 1771167943215701 m001 gamma*(3^(1/3))*GAMMA(5/12) 1771167943215701 m001 gamma*3^(1/3)*Pi*csc(5/12*Pi)/GAMMA(7/12) 1771167944820663 s002 sum(A079626[n]/(n^2*2^n+1),n=1..infinity) 1771167947647354 m001 Porter^(sin(1)*Pi^(1/2)) 1771167950838355 m001 (BesselJ(1,1)-TravellingSalesman)^Totient 1771167951185727 m001 (Mills-PolyaRandomWalk3D)/(gamma(3)+Landau) 1771167953939396 r005 Re(z^2+c),c=-93/74+21/55*I,n=37 1771167958570924 r005 Im(z^2+c),c=-11/20+14/43*I,n=48 1771167959417301 l006 ln(875/5143) 1771167961899795 r005 Im(z^2+c),c=3/50+1/6*I,n=12 1771167966011306 r005 Re(z^2+c),c=11/78+12/29*I,n=28 1771167966184199 a007 Real Root Of -478*x^4-445*x^3+312*x^2-294*x+732 1771167981272331 a007 Real Root Of 25*x^4-414*x^3-439*x^2+668*x+14 1771167985985179 m001 Champernowne-FeigenbaumDelta^PrimesInBinary 1771167988484767 a001 2584/64079*843^(28/31) 1771167989277232 m001 (3^(1/2)+ln(2)*ErdosBorwein)/ErdosBorwein 1771167989659793 a007 Real Root Of 955*x^4+546*x^3-825*x^2-599*x+128 1771167995364573 m001 (Otter+Totient)/(BesselI(1,2)+GaussAGM) 1771167996830616 m005 (5/8+1/4*5^(1/2))/(8/9*Zeta(3)-2/5) 1771167998719555 s002 sum(A117118[n]/((exp(n)+1)*n),n=1..infinity) 1771168012555101 s001 sum(exp(-Pi/3)^n*A272718[n],n=1..infinity) 1771168017711680 k006 concat of cont frac of 1771168021396482 a003 cos(Pi*23/98)/cos(Pi*37/102) 1771168026677470 m001 FeigenbaumC^2*Cahen*ln(BesselJ(1,1)) 1771168027171654 m001 GAMMA(1/12)^2/exp(FransenRobinson)^2/exp(1) 1771168033253846 a005 (1/cos(3/206*Pi))^546 1771168033428477 a001 615/15251*843^(28/31) 1771168034856909 a001 521/2*86267571272^(8/15) 1771168035237992 a003 sin(Pi*30/107)+sin(Pi*57/115) 1771168035886823 m001 1/Si(Pi)^2*CopelandErdos*ln(BesselK(1,1))^2 1771168036254785 a003 cos(Pi*10/79)+cos(Pi*17/96) 1771168039985676 a001 17711/439204*843^(28/31) 1771168040942359 a001 46368/1149851*843^(28/31) 1771168041081937 a001 121393/3010349*843^(28/31) 1771168041114887 a001 196418/4870847*843^(28/31) 1771168041168201 a001 75025/1860498*843^(28/31) 1771168041533621 a001 28657/710647*843^(28/31) 1771168041684759 q001 4079/2303 1771168044038248 a001 10946/271443*843^(28/31) 1771168044522522 r002 60th iterates of z^2 + 1771168045565938 m006 (1/2/Pi+3/5)/(1/4*ln(Pi)+4) 1771168046834378 m005 (1/3*exp(1)+2/3)/(11/12*Pi+6) 1771168047359200 m005 (-7/12+1/4*5^(1/2))/(7/8*Catalan+4/7) 1771168049621843 a007 Real Root Of 480*x^4+491*x^3-978*x^2-151*x+805 1771168061205218 a001 4181/103682*843^(28/31) 1771168064701065 m001 Si(Pi)/FransenRobinson^2/exp(Sierpinski) 1771168065049823 a003 cos(Pi*4/19)+sin(Pi*40/91) 1771168067138850 m005 (1/2*Pi-3)/(4*5^(1/2)-7/8) 1771168078925900 r005 Im(z^2+c),c=31/118+3/62*I,n=61 1771168079846789 a007 Real Root Of -825*x^4-950*x^3+253*x^2-980*x+311 1771168082191316 a007 Real Root Of -700*x^4-486*x^3+705*x^2-792*x+574 1771168089569982 m001 GAMMA(1/12)^2/FeigenbaumC^2*ln(cos(Pi/5))^2 1771168092779534 a001 6119/2*8^(38/45) 1771168098862010 a007 Real Root Of -649*x^4-745*x^3+103*x^2-676*x+727 1771168100997808 a007 Real Root Of 432*x^4+58*x^3-734*x^2+955*x+65 1771168101439744 m004 -3/2-25*Sqrt[5]*Pi+2*Csch[Sqrt[5]*Pi] 1771168101467899 m004 -3/2+4/E^(Sqrt[5]*Pi)-25*Sqrt[5]*Pi 1771168101496053 m004 -3/2-25*Sqrt[5]*Pi+2*Sech[Sqrt[5]*Pi] 1771168101960131 a001 87403803*9227465^(16/21) 1771168102984759 a001 7/233*2584^(7/31) 1771168103089412 a001 39603*225851433717^(16/21) 1771168104378352 r002 8th iterates of z^2 + 1771168115844516 l006 ln(1243/7306) 1771168123618255 m001 FransenRobinson^ln(Pi)*Landau 1771168124343493 m001 1/OneNinth^2*Lehmer*exp(sqrt(Pi))^2 1771168124458329 a007 Real Root Of 456*x^4+435*x^3-703*x^2-451*x-664 1771168124782753 a001 11592/19*76^(7/9) 1771168125087984 r005 Im(z^2+c),c=-10/31+12/41*I,n=5 1771168126268550 a001 2/17*377^(2/29) 1771168127920921 r005 Re(z^2+c),c=5/32+4/7*I,n=44 1771168139998229 a001 1346269/199*123^(1/5) 1771168143549650 b008 19*BesselY[2,3/2] 1771168147838315 m001 (Ei(1)-GAMMA(5/6))/(Pi^(1/2)-Totient) 1771168153843618 m001 (BesselJ(1,1)+3)/(3^(1/3)+1/2) 1771168165538361 b008 19/2+ExpIntegralEi[E] 1771168166311175 r009 Re(z^3+c),c=-5/29+1/35*I,n=2 1771168166472242 r005 Re(z^2+c),c=19/46+16/53*I,n=4 1771168168624906 a007 Real Root Of -229*x^4+54*x^3+664*x^2-644*x-670 1771168171416160 m001 (arctan(1/2)-exp(1))/(-Conway+Salem) 1771168178869379 a001 1597/39603*843^(28/31) 1771168189994910 a007 Real Root Of -300*x^4+271*x^3+998*x^2-379*x+656 1771168190909447 m001 (GAMMA(5/6)-sin(1))/(GAMMA(23/24)+Gompertz) 1771168194802122 m001 FeigenbaumD*PrimesInBinary^Bloch 1771168200806525 l006 ln(1611/9469) 1771168202324992 a007 Real Root Of 349*x^4+10*x^3+596*x^2-801*x+14 1771168203022354 m001 gamma(1)^Weierstrass/(gamma(1)^ln(2)) 1771168207561871 m001 (GAMMA(3/4)-FeigenbaumMu)/(Pi+Psi(1,1/3)) 1771168209364692 m001 GAMMA(7/12)*GAMMA(1/3)^2*ln(sinh(1)) 1771168210586674 a007 Real Root Of 783*x^4+821*x^3+860*x^2-719*x-13 1771168214802262 a003 cos(Pi*7/75)+cos(Pi*15/76) 1771168215618953 l006 ln(6389/7627) 1771168217097171 m001 1/(3^(1/3))*CareFree*ln(Zeta(5)) 1771168227417971 r009 Re(z^3+c),c=-3/5+7/13*I,n=12 1771168227791074 r005 Re(z^2+c),c=-5/118+11/20*I,n=30 1771168234003229 g002 -Psi(1/8)-Psi(8/11)-Psi(2/11)-Psi(3/7) 1771168240775000 r009 Im(z^3+c),c=-55/126+3/44*I,n=10 1771168241775157 m001 (Bloch+ErdosBorwein)/(Grothendieck-Otter) 1771168243915339 m001 ln(Magata)^2*CareFree^2/BesselK(0,1) 1771168245605192 m001 (-Ei(1,1)+BesselI(1,1))/(2^(1/2)-ln(5)) 1771168255991081 a007 Real Root Of -255*x^4+50*x^3+374*x^2-603*x+546 1771168256575132 m005 (1/2*2^(1/2)-1/5)/(9/10*exp(1)+5/12) 1771168256662825 a001 161/4*832040^(5/46) 1771168257172860 a007 Real Root Of -612*x^4-580*x^3+272*x^2-617*x+854 1771168267174502 m001 BesselJ(0,1)^Pi+Totient 1771168267801044 s002 sum(A209812[n]/((3*n+1)!),n=1..infinity) 1771168268978709 b008 (11*Sqrt[7/30])/3 1771168269090651 m001 (Shi(1)-Si(Pi))/(TreeGrowth2nd+ZetaQ(3)) 1771168272171876 m005 (1/3*3^(1/2)+1/4)/(3*2^(1/2)+3/7) 1771168274383708 q001 3305/1866 1771168278970567 a007 Real Root Of 789*x^4-359*x^3+244*x^2-980*x-184 1771168280508547 p003 LerchPhi(1/32,6,446/155) 1771168288186348 a007 Real Root Of -188*x^4+816*x^3-251*x^2-549*x-924 1771168288364283 a007 Real Root Of -201*x^4-93*x^3-13*x^2-406*x+783 1771168296154458 a001 341/3732588*17711^(7/13) 1771168296762533 a001 124/1144206275*4807526976^(7/13) 1771168296762533 a001 682/182717648081*2504730781961^(7/13) 1771168296762535 a001 1364/433494437*9227465^(7/13) 1771168300599398 a007 Real Root Of 463*x^4+204*x^3-363*x^2+882*x-722 1771168301902054 r005 Re(z^2+c),c=1/27+19/33*I,n=23 1771168304213727 a007 Real Root Of 623*x^4+750*x^3-211*x^2+962*x+402 1771168305108742 a007 Real Root Of 346*x^4+x^3-664*x^2+623*x-213 1771168308491717 k002 Champernowne real with 43/2*n^2-21/2*n+6 1771168311114121 k008 concat of cont frac of 1771168313518849 m001 (1/3+exp(1/Pi)*GAMMA(7/12))/exp(1/Pi) 1771168317827698 a007 Real Root Of -687*x^4-872*x^3+650*x^2+488*x+741 1771168327008605 a007 Real Root Of -483*x^4-818*x^3-392*x^2-363*x+795 1771168327175056 r005 Re(z^2+c),c=-2/31+29/45*I,n=34 1771168333623038 r005 Im(z^2+c),c=-17/18+17/101*I,n=38 1771168337826007 p004 log(18121/3083) 1771168345461830 m003 3/2+(3*Sqrt[5])/4+6*Sinh[1/2+Sqrt[5]/2] 1771168353614782 a001 24476/5*86267571272^(18/23) 1771168356396612 a007 Real Root Of -197*x^4+204*x^3+143*x^2-959*x+925 1771168356571442 a001 141422324/5*1346269^(18/23) 1771168356787943 a007 Real Root Of -405*x^4-619*x^3+4*x^2+165*x+826 1771168357396967 r005 Im(z^2+c),c=-29/54+7/29*I,n=7 1771168365612791 a007 Real Root Of 471*x^4-447*x^3-66*x^2-406*x+76 1771168375905153 m001 1/sin(Pi/5)/exp(Magata)*sqrt(Pi)^2 1771168380215447 r008 a(0)=2,K{-n^6,22-32*n^3+16*n^2-2*n} 1771168380687359 a001 123/10946*34^(4/31) 1771168411514301 r005 Im(z^2+c),c=-5/8+82/245*I,n=50 1771168413552868 a007 Real Root Of 652*x^4+832*x^3-878*x^2-591*x-86 1771168414477925 m001 (Bloch+ErdosBorwein)/(Psi(1,1/3)+GAMMA(13/24)) 1771168425807728 a001 233/1364*521^(23/31) 1771168437025796 q001 5836/3295 1771168438359423 m001 (Zeta(3)+FeigenbaumMu)/(MertensB1-Otter) 1771168443248379 m001 (-Ei(1,1)+Niven)/(2^(1/3)-BesselK(0,1)) 1771168443892883 a007 Real Root Of -644*x^4-646*x^3+951*x^2+415*x+500 1771168457581302 a008 Real Root of x^4-2*x^3-3*x^2+2*x-8 1771168464646424 a001 123/1597*4807526976^(19/22) 1771168464674095 a005 (1/cos(26/121*Pi))^272 1771168465247866 m005 (1/2*3^(1/2)-4/7)/(7/12*gamma-2) 1771168470649102 r009 Im(z^3+c),c=-21/50+1/19*I,n=34 1771168472149548 a001 13/322*969323029^(17/23) 1771168474080835 m001 ln(Salem)^2*ArtinRank2^2*sinh(1)^2 1771168477186488 m005 (1/2*2^(1/2)-5/7)/(1/3*Catalan+1/10) 1771168477485254 m005 (1/2*exp(1)-9/11)/(5^(1/2)+9/11) 1771168479223674 h001 (5/12*exp(2)+2/11)/(7/11*exp(1)+1/9) 1771168481697322 r005 Im(z^2+c),c=-33/86+13/45*I,n=36 1771168487784127 l006 ln(368/2163) 1771168489396141 s001 sum(exp(-2*Pi/3)^n*A120216[n],n=1..infinity) 1771168493770763 a007 Real Root Of 479*x^4+517*x^3-469*x^2-236*x-788 1771168495118384 h001 (3/8*exp(1)+9/10)/(1/12*exp(1)+6/7) 1771168495310619 r005 Im(z^2+c),c=-99/122+6/49*I,n=21 1771168503015627 r002 45th iterates of z^2 + 1771168505228881 m001 3^(1/3)*(FibonacciFactorial+HeathBrownMoroz) 1771168508388460 a007 Real Root Of 102*x^4-81*x^3-198*x^2+482*x+21 1771168513344000 p004 log(31543/26423) 1771168519787677 h001 (5/11*exp(2)+9/11)/(3/5*exp(1)+8/11) 1771168522665784 m005 (1/2*Zeta(3)-1/3)/(5/7*Catalan+6/7) 1771168525138025 a007 Real Root Of 379*x^4-108*x^3-828*x^2+536*x-783 1771168529416875 a007 Real Root Of 252*x^4+720*x^3+369*x^2-188*x+30 1771168530232151 k009 concat of cont frac of 1771168533338977 m001 (3^(1/3)-Zeta(1/2))/(ln(2+3^(1/2))-Otter) 1771168539407590 r005 Im(z^2+c),c=-109/122+2/13*I,n=11 1771168542036396 a007 Real Root Of -700*x^4-771*x^3+260*x^2-554*x+808 1771168550645887 m005 (1/2*3^(1/2)+4/9)/(1/8*2^(1/2)-11/12) 1771168552326850 a008 Real Root of (-5+4*x-3*x^2+2*x^3-2*x^4-3*x^5) 1771168552352422 m005 (1/6+1/4*5^(1/2))/(7/10*exp(1)-6) 1771168557088968 m001 ln(Magata)/FibonacciFactorial*sqrt(Pi) 1771168563646658 m001 TravellingSalesman/(FeigenbaumD-BesselI(0,2)) 1771168564809846 m001 (Zeta(1/2)-sin(1))/(Sarnak+Stephens) 1771168568201736 p004 log(33791/5749) 1771168573079851 r005 Re(z^2+c),c=-2/17+20/49*I,n=36 1771168576582577 a008 Real Root of (2+6*x+3*x^2+6*x^3+5*x^4-6*x^5) 1771168584334104 m001 sin(1)*(FellerTornier+Grothendieck) 1771168584693729 r005 Re(z^2+c),c=-1/24+33/59*I,n=45 1771168584802086 m001 Zeta(3)^2*FeigenbaumB^2/exp(sqrt(3)) 1771168590200232 a007 Real Root Of 256*x^4+492*x^3+268*x^2+584*x+408 1771168594287552 a001 521/20365011074*46368^(14/23) 1771168597690299 m004 -4+25*Sqrt[5]*Pi+6*Tan[Sqrt[5]*Pi] 1771168602035705 a001 514229/29*199^(10/23) 1771168603488100 a007 Real Root Of 610*x^4+978*x^3-917*x^2-963*x+602 1771168603922079 p001 sum(1/(373*n+109)/n/(12^n),n=1..infinity) 1771168607972018 m001 (3^(1/2))^Lehmer/(TwinPrimes^Lehmer) 1771168607972018 m001 sqrt(3)^Lehmer/(TwinPrimes^Lehmer) 1771168608290855 l006 ln(3339/3986) 1771168610659953 a001 956722026041/3*322^(16/23) 1771168612388105 a001 39603/55*121393^(19/22) 1771168614495838 a007 Real Root Of -749*x^4-806*x^3+617*x^2-699*x-281 1771168614973038 a007 Real Root Of 416*x^4+966*x^3+311*x^2-311*x-253 1771168617078659 m005 (1/2*2^(1/2)-4/11)/(3/5*3^(1/2)+9/10) 1771168617531216 a008 Real Root of (-3-2*x-4*x^3+3*x^4+3*x^5) 1771168621835268 r009 Re(z^3+c),c=-5/29+2/55*I,n=11 1771168621836856 r009 Re(z^3+c),c=-5/29+2/55*I,n=12 1771168621837188 r009 Re(z^3+c),c=-5/29+2/55*I,n=13 1771168621837232 r009 Re(z^3+c),c=-5/29+2/55*I,n=14 1771168621837236 r009 Re(z^3+c),c=-5/29+2/55*I,n=15 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=16 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=17 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=25 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=26 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=27 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=28 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=29 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=30 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=31 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=39 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=40 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=41 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=42 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=43 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=44 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=38 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=37 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=36 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=35 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=34 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=33 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=32 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=24 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=23 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=22 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=21 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=20 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=19 1771168621837237 r009 Re(z^3+c),c=-5/29+2/55*I,n=18 1771168621840244 r009 Re(z^3+c),c=-5/29+2/55*I,n=10 1771168622093329 r009 Re(z^3+c),c=-5/29+2/55*I,n=9 1771168626203072 r009 Re(z^3+c),c=-5/29+2/55*I,n=8 1771168643866842 a007 Real Root Of -659*x^4-419*x^3+921*x^2-612*x+184 1771168646183635 a007 Real Root Of 280*x^4+573*x^3+634*x^2+692*x-335 1771168646333182 r009 Im(z^3+c),c=-9/16+27/46*I,n=3 1771168649405178 q001 2531/1429 1771168650407704 m001 GAMMA(19/24)+PlouffeB^ln(2) 1771168653936573 m001 (Zeta(1,2)-KhinchinLevy)/(PlouffeB+Sarnak) 1771168655210186 r009 Re(z^3+c),c=-3/31+33/38*I,n=22 1771168658733583 a005 (1/sin(68/157*Pi))^647 1771168659445553 a007 Real Root Of -376*x^4+930*x^3-643*x^2-4*x+25 1771168661577178 m005 (1/2*2^(1/2)-6/7)/(3/7*Catalan+5/11) 1771168662508839 r009 Re(z^3+c),c=-3/31+31/36*I,n=16 1771168667539161 m001 (ln(5)-FeigenbaumC)/(MertensB3-Sierpinski) 1771168675337657 r009 Re(z^3+c),c=-5/29+2/55*I,n=7 1771168675431241 m001 (Si(Pi)-ln(2))/(Cahen+Trott) 1771168676926888 a003 cos(Pi*13/71)+sin(Pi*34/89) 1771168692529649 m001 ln(GAMMA(11/24))^2*Artin^2*cos(1)^2 1771168694375640 a007 Real Root Of -433*x^4-933*x^3-7*x^2+394*x-203 1771168700613210 m001 1/Zeta(3)/exp(DuboisRaymond)^2*sqrt(Pi)^2 1771168706718906 r005 Re(z^2+c),c=-77/64+4/55*I,n=48 1771168710710741 m001 (KhinchinLevy-Lehmer)/(ln(Pi)-AlladiGrinstead) 1771168711235456 p004 log(12161/2069) 1771168714015269 r009 Im(z^3+c),c=-27/52+5/62*I,n=9 1771168717077019 m003 1/5+E^(1/2+Sqrt[5]/2)+6/Log[1/2+Sqrt[5]/2] 1771168721138183 m001 BesselJ(0,1)+3^(1/3)*ArtinRank2 1771168731319108 m001 Magata^(Si(Pi)*BesselI(0,1)) 1771168732454845 m001 (2^(1/3)-Artin)/(-FeigenbaumB+MertensB3) 1771168734066242 r005 Re(z^2+c),c=-3/110+7/12*I,n=35 1771168744498747 a007 Real Root Of 330*x^4+245*x^3-775*x^2-647*x-601 1771168746733588 a003 cos(Pi*13/49)/cos(Pi*44/117) 1771168748392134 a001 1597/47*7^(28/33) 1771168748875736 p003 LerchPhi(1/6,2,87/35) 1771168759577653 l006 ln(1701/9998) 1771168763254700 m001 Khinchin/(OrthogonalArrays^FibonacciFactorial) 1771168767202992 r005 Im(z^2+c),c=-121/122+5/27*I,n=48 1771168768969971 m001 ArtinRank2*ln(DuboisRaymond)^2/GAMMA(11/12) 1771168777574691 b008 10*Sqrt[3]+ArcCoth[Khinchin] 1771168780183836 a007 Real Root Of 647*x^4+964*x^3-584*x^2-288*x+311 1771168782858238 r005 Im(z^2+c),c=-7/6+57/235*I,n=28 1771168788027919 g007 Psi(2,1/10)+Psi(2,5/6)-14*Zeta(3)-Psi(2,1/5) 1771168789909128 r005 Re(z^2+c),c=-2/17+20/49*I,n=34 1771168792972685 m005 (1/6*Pi-1/6)/(5/6*exp(1)-1/4) 1771168794444378 m001 gamma/GAMMA(5/6)*exp(sqrt(Pi))^2 1771168798423937 a008 Real Root of (-5+4*x-x^2+x^3-4*x^4+2*x^5) 1771168800887077 r005 Im(z^2+c),c=-33/86+13/45*I,n=45 1771168802956688 m005 (1/2*5^(1/2)+8/11)/(4*exp(1)-5/11) 1771168819947801 a007 Real Root Of -115*x^4+284*x^3+768*x^2+369*x+954 1771168831168831 q001 6819/3850 1771168834611412 l006 ln(1333/7835) 1771168840033996 m001 (ln(2+3^(1/2))-Artin)/(Landau-Trott) 1771168840709276 r004 Im(z^2+c),c=-21/46+7/23*I,z(0)=-1,n=46 1771168842555204 m001 ln(2+3^(1/2))^(BesselI(0,1)*GAMMA(13/24)) 1771168842555204 m001 ln(2+sqrt(3))^(BesselI(0,1)*GAMMA(13/24)) 1771168848737763 m001 (Magata+Sarnak)/(Pi-AlladiGrinstead) 1771168849772697 r009 Im(z^3+c),c=-7/36+58/61*I,n=8 1771168850282699 m001 (Kolakoski+Sierpinski)/(Cahen-GolombDickman) 1771168850761487 a007 Real Root Of 400*x^4+465*x^3-269*x^2+66*x-392 1771168863331172 m001 GAMMA(3/4)^((1+3^(1/2))^(1/2)/sin(1/5*Pi)) 1771168863331172 m001 GAMMA(3/4)^(sqrt(1+sqrt(3))/sin(Pi/5)) 1771168864226759 r005 Im(z^2+c),c=-33/86+13/45*I,n=43 1771168867271627 r005 Im(z^2+c),c=-29/56+20/63*I,n=14 1771168872761587 s002 sum(A022106[n]/(n*10^n+1),n=1..infinity) 1771168873689175 r009 Re(z^3+c),c=-27/110+9/23*I,n=3 1771168874447125 m002 -2-E^Pi+5*Pi^5*Cosh[Pi] 1771168890354213 r002 51th iterates of z^2 + 1771168901546241 m009 (6*Psi(1,2/3)-1/6)/(48*Catalan+6*Pi^2-1/3) 1771168904751639 a003 sin(Pi*31/115)-sin(Pi*23/61) 1771168906628532 a007 Real Root Of -441*x^4-193*x^3+399*x^2-879*x+459 1771168913775675 m001 3/2*Trott2nd/Pi*GAMMA(2/3) 1771168917906655 m001 GAMMA(17/24)^exp(-Pi)*GAMMA(17/24)^sqrt(5) 1771168918813789 s001 sum(exp(-2*Pi/3)^n*A265933[n],n=1..infinity) 1771168930348210 r005 Re(z^2+c),c=-63/52+3/29*I,n=20 1771168936814712 m001 1/MinimumGamma*ln(Backhouse)^2*GAMMA(2/3)^2 1771168938455183 q001 4288/2421 1771168943107521 r005 Im(z^2+c),c=1/74+11/60*I,n=15 1771168950807654 m005 (1/3*Catalan+2/9)/(6/7*Pi+2/7) 1771168958897566 a007 Real Root Of -55*x^4+341*x^3+14*x^2-839*x+906 1771168959354035 m001 (gamma(1)+Backhouse)/(Catalan-Chi(1)) 1771168959448397 a001 4/514229*21^(10/37) 1771168963448809 a007 Real Root Of -878*x^4-986*x^3+983*x^2+23*x+119 1771168965519221 r005 Im(z^2+c),c=-9/10+11/73*I,n=33 1771168966872977 l006 ln(965/5672) 1771168968385686 l006 ln(6967/8317) 1771168968385686 p004 log(8317/6967) 1771168969203793 a007 Real Root Of -554*x^4-407*x^3-931*x^2+186*x-3 1771168969630059 m001 (sin(1/5*Pi)-Zeta(1/2))/(arctan(1/3)+GaussAGM) 1771168974974202 r009 Re(z^3+c),c=-15/52+19/34*I,n=9 1771168980916540 m001 (Bloch+ZetaQ(4))/(ln(Pi)+GAMMA(7/12)) 1771168981117220 r009 Re(z^3+c),c=-13/32+17/29*I,n=38 1771168981541292 m001 (GAMMA(13/24)+Rabbit)/(ln(2+3^(1/2))-gamma(2)) 1771168984771603 a003 cos(Pi*9/115)/sin(Pi*19/103) 1771168985351536 a001 610/15127*843^(28/31) 1771168985959235 h001 (1/3*exp(1)+3/7)/(10/11*exp(2)+9/11) 1771168991609731 s002 sum(A067840[n]/(pi^n+1),n=1..infinity) 1771168992337848 a007 Real Root Of -402*x^4+836*x^3-810*x^2+850*x+181 1771169006559756 m001 (2^(1/3)+ln(Pi))/(ArtinRank2+TwinPrimes) 1771169006566941 m006 (2/5*exp(Pi)-3/5)/(3/4/Pi+1/4) 1771169007825757 m001 1/exp(GAMMA(5/24))/FeigenbaumD^2/cos(Pi/12) 1771169026771591 a007 Real Root Of -844*x^4-862*x^3+802*x^2-706*x-250 1771169034886500 m001 Zeta(1/2)^(2^(1/3)/GaussAGM) 1771169036779858 r002 34th iterates of z^2 + 1771169049137206 r005 Im(z^2+c),c=2/29+8/49*I,n=9 1771169050643114 a001 3/4*(1/2*5^(1/2)+1/2)^10*4^(8/17) 1771169059478464 q001 6045/3413 1771169063185082 m001 cos(1/12*Pi)+BesselJ(0,1)^AlladiGrinstead 1771169075991983 m001 BesselJ(0,1)+MertensB2^ZetaP(3) 1771169079744068 l006 ln(1562/9181) 1771169085237979 m001 1/MinimumGamma/ln(Bloch)^2*Zeta(1/2) 1771169088629928 r005 Im(z^2+c),c=-11/10+31/151*I,n=21 1771169088869135 m001 (Pi^(1/2)+Conway)/(MadelungNaCl-Trott) 1771169097876996 r005 Re(z^2+c),c=-7/82+31/46*I,n=9 1771169099491263 r005 Re(z^2+c),c=-9/106+26/53*I,n=6 1771169109248121 a001 3571/39088169*17711^(7/13) 1771169109686644 b008 4/9+ProductLog[5] 1771169109856198 a001 3571/32951280099*4807526976^(7/13) 1771169109856198 a001 3571/956722026041*2504730781961^(7/13) 1771169109856200 a001 3571/1134903170*9227465^(7/13) 1771169112792991 r005 Im(z^2+c),c=1/74+11/60*I,n=19 1771169113635557 r005 Im(z^2+c),c=1/74+11/60*I,n=18 1771169115343242 r005 Im(z^2+c),c=1/74+11/60*I,n=22 1771169115383152 r005 Im(z^2+c),c=1/74+11/60*I,n=23 1771169115414777 r005 Im(z^2+c),c=1/74+11/60*I,n=26 1771169115416177 r005 Im(z^2+c),c=1/74+11/60*I,n=27 1771169115416457 r005 Im(z^2+c),c=1/74+11/60*I,n=30 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=31 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=34 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=33 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=37 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=38 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=41 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=42 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=45 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=46 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=49 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=48 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=52 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=53 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=56 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=57 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=60 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=61 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=64 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=63 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=62 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=59 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=58 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=55 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=54 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=50 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=51 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=47 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=44 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=43 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=40 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=39 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=36 1771169115416488 r005 Im(z^2+c),c=1/74+11/60*I,n=35 1771169115416492 r005 Im(z^2+c),c=1/74+11/60*I,n=32 1771169115416511 r005 Im(z^2+c),c=1/74+11/60*I,n=29 1771169115416727 r005 Im(z^2+c),c=1/74+11/60*I,n=28 1771169115419897 r005 Im(z^2+c),c=1/74+11/60*I,n=25 1771169115428110 r005 Im(z^2+c),c=1/74+11/60*I,n=24 1771169115720153 r005 Im(z^2+c),c=1/74+11/60*I,n=21 1771169115826314 r005 Im(z^2+c),c=1/74+11/60*I,n=20 1771169117455213 r005 Im(z^2+c),c=1/74+11/60*I,n=16 1771169118788456 m001 (5^(1/2)+KhinchinLevy)/(Lehmer+Totient) 1771169119172821 m002 -3-5*Pi+Tanh[Pi] 1771169126042928 m001 1/exp(GAMMA(11/24))^2/KhintchineLevy*Zeta(9) 1771169128651612 m001 (Zeta(5)-3^(1/3))/(Backhouse+FeigenbaumB) 1771169137107243 r005 Im(z^2+c),c=1/74+11/60*I,n=17 1771169140170245 m002 -Sinh[Pi]/6+(Pi^3*Sinh[Pi])/2 1771169144242996 a007 Real Root Of -274*x^4-180*x^3+106*x^2-250*x+921 1771169144725957 m001 MertensB1^StronglyCareFree/(MertensB1^Zeta(3)) 1771169149955527 a007 Real Root Of -715*x^4-945*x^3+709*x^2+400*x+270 1771169152015045 r009 Re(z^3+c),c=-5/29+2/55*I,n=6 1771169157707232 a007 Real Root Of 241*x^4+440*x^3+303*x^2+837*x+605 1771169163571532 s002 sum(A228488[n]/(exp(n)+1),n=1..infinity) 1771169168530420 m005 (1/2*exp(1)+4/11)/(1/6*5^(1/2)+3/5) 1771169178426975 a007 Real Root Of -857*x^4-961*x^3+952*x^2+165*x+400 1771169180558798 r005 Re(z^2+c),c=-31/26+14/111*I,n=56 1771169181407037 b004 Shamos Catalog of real numbers 1771169184000658 s002 sum(A149017[n]/(n^2*2^n+1),n=1..infinity) 1771169185445719 m001 (Riemann3rdZero-Sarnak)/(Ei(1,1)-BesselI(1,2)) 1771169185452458 r005 Im(z^2+c),c=-23/29+43/50*I,n=3 1771169186045988 a007 Real Root Of -208*x^4+473*x^3-530*x^2+769*x-122 1771169188026218 a007 Real Root Of -113*x^4+127*x^3+233*x^2+695*x-131 1771169188889466 a003 cos(Pi*5/101)*cos(Pi*27/61) 1771169190502696 a007 Real Root Of 984*x^4-802*x^3+548*x^2-595*x-128 1771169194781620 r005 Im(z^2+c),c=1/74+11/60*I,n=14 1771169197581050 a007 Real Root Of 657*x^4+803*x^3-244*x^2+754*x+97 1771169203236904 m001 (2/3*Pi*3^(1/2)/GAMMA(2/3))^Mills-Si(Pi) 1771169204951337 m001 (sin(1)+gamma(3))/(FeigenbaumKappa+Magata) 1771169207824961 a007 Real Root Of -240*x^4+161*x^3+785*x^2-27*x+746 1771169210506123 a007 Real Root Of -966*x^4-995*x^3+650*x^2-704*x+692 1771169213453738 r005 Im(z^2+c),c=-35/44+1/12*I,n=20 1771169216416071 r005 Im(z^2+c),c=-23/48+16/37*I,n=14 1771169218978747 a007 Real Root Of -127*x^4+161*x^3+54*x^2-695*x+744 1771169227876888 a001 9349/102334155*17711^(7/13) 1771169228484965 a001 9349/86267571272*4807526976^(7/13) 1771169228484965 a001 9349/2504730781961*2504730781961^(7/13) 1771169228484967 a001 9349/2971215073*9227465^(7/13) 1771169236489757 a001 3/29*39603^(11/41) 1771169245184592 a001 1/10946*17711^(7/13) 1771169245792669 a001 844/7787980473*4807526976^(7/13) 1771169245792669 a001 12238/3278735159921*2504730781961^(7/13) 1771169245792671 a001 24476/7778742049*9227465^(7/13) 1771169246532761 a007 Real Root Of -451*x^4-585*x^3+20*x^2-681*x-81 1771169247709752 a001 64079/701408733*17711^(7/13) 1771169248078168 a001 167761/1836311903*17711^(7/13) 1771169248131919 a001 109801/1201881744*17711^(7/13) 1771169248139761 a001 1149851/12586269025*17711^(7/13) 1771169248140905 a001 3010349/32951280099*17711^(7/13) 1771169248141072 a001 1970299/21566892818*17711^(7/13) 1771169248141097 a001 711491/7787980473*17711^(7/13) 1771169248141100 a001 54018521/591286729879*17711^(7/13) 1771169248141101 a001 35355581/387002188980*17711^(7/13) 1771169248141101 a001 370248451/4052739537881*17711^(7/13) 1771169248141101 a001 969323029/10610209857723*17711^(7/13) 1771169248141101 a001 299537289/3278735159921*17711^(7/13) 1771169248141101 a001 228826127/2504730781961*17711^(7/13) 1771169248141101 a001 87403803/956722026041*17711^(7/13) 1771169248141102 a001 16692641/182717648081*17711^(7/13) 1771169248141112 a001 12752043/139583862445*17711^(7/13) 1771169248141175 a001 4870847/53316291173*17711^(7/13) 1771169248141613 a001 930249/10182505537*17711^(7/13) 1771169248144608 a001 710647/7778742049*17711^(7/13) 1771169248165139 a001 271443/2971215073*17711^(7/13) 1771169248305861 a001 51841/567451585*17711^(7/13) 1771169248317829 a001 64079/591286729879*4807526976^(7/13) 1771169248317831 a001 64079/20365011074*9227465^(7/13) 1771169248686245 a001 15251/140728068720*4807526976^(7/13) 1771169248686247 a001 167761/53316291173*9227465^(7/13) 1771169248739996 a001 439204/4052739537881*4807526976^(7/13) 1771169248739998 a001 439204/139583862445*9227465^(7/13) 1771169248747838 a001 1149851/10610209857723*4807526976^(7/13) 1771169248747840 a001 1149851/365435296162*9227465^(7/13) 1771169248748985 a001 3010349/956722026041*9227465^(7/13) 1771169248749152 a001 7881196/2504730781961*9227465^(7/13) 1771169248749176 a001 20633239/6557470319842*9227465^(7/13) 1771169248749182 a001 4769326/1515744265389*9227465^(7/13) 1771169248749191 a001 12752043/4052739537881*9227465^(7/13) 1771169248749255 a001 4870847/1548008755920*9227465^(7/13) 1771169248749692 a001 1860498/591286729879*9227465^(7/13) 1771169248752685 a001 710647/6557470319842*4807526976^(7/13) 1771169248752687 a001 1/317811*9227465^(7/13) 1771169248773216 a001 271443/2504730781961*4807526976^(7/13) 1771169248773218 a001 271443/86267571272*9227465^(7/13) 1771169248913938 a001 103682/956722026041*4807526976^(7/13) 1771169248913941 a001 103682/32951280099*9227465^(7/13) 1771169249163749 a007 Real Root Of 86*x^4-885*x^3+827*x^2+430*x+715 1771169249270387 a001 39603/433494437*17711^(7/13) 1771169249878464 a001 39603/365435296162*4807526976^(7/13) 1771169249878464 a001 13201/3536736619241*2504730781961^(7/13) 1771169249878466 a001 39603/12586269025*9227465^(7/13) 1771169253864160 m001 FeigenbaumKappa/BesselI(1,1)/GAMMA(2/3) 1771169254295183 m001 Tribonacci^2/FeigenbaumAlpha*ln(Pi)^2 1771169255881341 a001 15127/165580141*17711^(7/13) 1771169256489418 a001 15127/139583862445*4807526976^(7/13) 1771169256489418 a001 15127/4052739537881*2504730781961^(7/13) 1771169256489421 a001 2161/686789568*9227465^(7/13) 1771169259405040 m005 (1/2*exp(1)-2/7)/(1/7*Zeta(3)-7/9) 1771169262190613 l006 ln(597/3509) 1771169262834470 m001 GAMMA(2/3)/(HardyLittlewoodC5^(ln(2)/ln(10))) 1771169262935180 m001 MasserGramainDelta^(3^(1/3)*TwinPrimes) 1771169268039496 a007 Real Root Of 432*x^4-27*x^3-812*x^2+747*x-531 1771169272540748 m001 Riemann1stZero*(Landau+Rabbit) 1771169275054394 r002 50th iterates of z^2 + 1771169277733697 r005 Im(z^2+c),c=-9/14+64/211*I,n=18 1771169280809512 a005 (1/cos(4/187*Pi))^1272 1771169283355671 r005 Re(z^2+c),c=-11/54+2/21*I,n=7 1771169297541537 m001 (Zeta(1,-1)-Champernowne)/(Gompertz+MertensB2) 1771169298926098 m008 (2/3*Pi^5-1/4)/(3/5*Pi-2) 1771169299795994 l006 ln(3628/4331) 1771169301193498 a001 2889/31622993*17711^(7/13) 1771169301801575 a001 5778/53316291173*4807526976^(7/13) 1771169301801575 a001 321/86000486440*2504730781961^(7/13) 1771169301801578 a001 5778/1836311903*9227465^(7/13) 1771169304882017 a007 Real Root Of 24*x^4+428*x^3+52*x^2-31*x-641 1771169306937202 h001 (1/10*exp(1)+4/7)/(5/8*exp(2)+1/7) 1771169311409780 m005 (2/3*gamma-1/6)/(4*Pi-1/4) 1771169311497727 k002 Champernowne real with 22*n^2-12*n+7 1771169312134971 m001 1/GAMMA(1/4)/LaplaceLimit^2*exp(Zeta(5)) 1771169321138455 r005 Im(z^2+c),c=-1+31/165*I,n=60 1771169328028938 r005 Re(z^2+c),c=-11/118+1/2*I,n=6 1771169333255512 r005 Im(z^2+c),c=-29/98+23/32*I,n=8 1771169354838709 q001 1757/992 1771169354838709 r002 2th iterates of z^2 + 1771169355248080 r005 Re(z^2+c),c=-109/90+1/50*I,n=28 1771169359875138 m001 (Pi-ln(3))/(AlladiGrinstead-ReciprocalLucas) 1771169360938440 a001 5600748293801/21*144^(8/21) 1771169369243385 p001 sum((-1)^n/(557*n+321)/n/(64^n),n=1..infinity) 1771169374925630 r005 Re(z^2+c),c=7/60+19/50*I,n=31 1771169377010751 m001 (Zeta(5)+Landau)/(TreeGrowth2nd+ZetaP(2)) 1771169377506546 a007 Real Root Of 794*x^4-397*x^3+262*x^2-682*x-132 1771169379296474 r005 Im(z^2+c),c=-21/50+5/17*I,n=17 1771169387309473 m001 KhinchinHarmonic/(sin(1/12*Pi)^Trott) 1771169388613780 r009 Re(z^3+c),c=-5/22+17/52*I,n=8 1771169396045096 m001 (BesselI(1,1)+RenyiParking)/(1-sin(1/12*Pi)) 1771169407416080 r005 Re(z^2+c),c=-3/32+27/59*I,n=21 1771169407451930 a007 Real Root Of -630*x^4-883*x^3-273*x^2-690*x+928 1771169416116112 m001 exp(Pi)/BesselI(0,1)*gamma(2) 1771169417671699 r005 Im(z^2+c),c=-9/10+27/179*I,n=48 1771169421727095 r005 Re(z^2+c),c=19/56+16/55*I,n=53 1771169421946774 a007 Real Root Of -408*x^4-301*x^3+423*x^2-543*x+54 1771169429189283 r005 Im(z^2+c),c=-67/66+11/57*I,n=43 1771169430518931 a003 cos(Pi*21/107)-sin(Pi*49/106) 1771169430863873 r009 Re(z^3+c),c=-67/110+31/43*I,n=4 1771169451567412 m001 exp(1)*GAMMA(23/24)*HardyLittlewoodC3 1771169452135685 a007 Real Root Of 976*x^4+843*x^3-886*x^2+745*x-822 1771169452473869 m005 (1/2*gamma-1/4)/(11/12*Pi-7/10) 1771169460470846 a007 Real Root Of 541*x^4+494*x^3-638*x^2+167*x-282 1771169462458671 l006 ln(1423/8364) 1771169479097087 r005 Re(z^2+c),c=-29/24+4/63*I,n=58 1771169482548196 r005 Im(z^2+c),c=23/86+1/24*I,n=40 1771169483901294 m005 (1/3*2^(1/2)+3/7)/(4/9*exp(1)-7/10) 1771169485530704 a007 Real Root Of 487*x^4+929*x^3+320*x^2+517*x+281 1771169486268452 m001 FeigenbaumD^2*Kolakoski^2/ln(GAMMA(19/24))^2 1771169491813394 r005 Im(z^2+c),c=-33/86+13/45*I,n=47 1771169496010975 a007 Real Root Of -561*x^4-606*x^3+772*x^2+227*x+134 1771169501130777 m001 (KhinchinHarmonic+Niven*RenyiParking)/Niven 1771169502332898 r005 Re(z^2+c),c=1/60+28/45*I,n=44 1771169502733907 m001 arctan(1/3)/Zeta(3)*Robbin 1771169509464885 r005 Im(z^2+c),c=-13/22+27/59*I,n=36 1771169510094647 m001 (Totient-TwinPrimes)/(ln(2^(1/2)+1)+Otter) 1771169513082030 r005 Im(z^2+c),c=-11/24+35/64*I,n=58 1771169522283779 r005 Im(z^2+c),c=-35/64+11/35*I,n=33 1771169523554731 a001 7/1597*317811^(36/43) 1771169539595245 r005 Im(z^2+c),c=-3/70+16/25*I,n=9 1771169544025827 m001 1/Sierpinski^2/FibonacciFactorial^2*exp(gamma) 1771169546977650 r005 Re(z^2+c),c=-5/98+29/54*I,n=53 1771169547753100 r005 Im(z^2+c),c=-31/54+27/62*I,n=37 1771169552857857 a007 Real Root Of -21*x^4-361*x^3+223*x^2+504*x-213 1771169556793287 a001 3/8*13^(23/38) 1771169557094107 m001 (arctan(1/3)-cos(1))/(-MertensB3+Paris) 1771169558620138 m001 exp(1/exp(1))^Niven/Shi(1) 1771169561029125 m003 35/2+Sqrt[5]/32-3*Cot[1/2+Sqrt[5]/2] 1771169564520515 m005 (1/2*Zeta(3)-3/8)/(2/5*3^(1/2)+7/12) 1771169567531554 r005 Im(z^2+c),c=11/58+30/53*I,n=19 1771169568347944 m007 (-4*gamma-3/5)/(-2/3*gamma-4/3*ln(2)-1/3) 1771169569621856 a007 Real Root Of 555*x^4-527*x^3+759*x^2-834*x-175 1771169578395637 r005 Im(z^2+c),c=-13/27+1/33*I,n=44 1771169578699510 m001 1/exp(TwinPrimes)^2*Porter^2*GAMMA(7/24) 1771169594202044 g007 Psi(2,11/12)+Psi(2,3/10)-Psi(2,5/6)-Psi(2,1/5) 1771169599824282 m005 (1/2*exp(1)+7/10)/(2/3*gamma+7/9) 1771169600893883 h001 (-3*exp(2)+6)/(-11*exp(2)-10) 1771169605817935 l006 ln(7545/9007) 1771169605921117 m001 (Conway-FeigenbaumC)/(MertensB2-MertensB3) 1771169607204447 l006 ln(826/4855) 1771169608106038 m005 (-7/12+1/4*5^(1/2))/(11/30+9/20*5^(1/2)) 1771169608264518 m001 BesselK(1,1)*ln(Sierpinski)*GAMMA(1/6)^2 1771169611767642 a001 2207/24157817*17711^(7/13) 1771169612375719 a001 2207/20365011074*4807526976^(7/13) 1771169612375719 a001 2207/591286729879*2504730781961^(7/13) 1771169612375722 a001 2207/701408733*9227465^(7/13) 1771169612764494 a007 Real Root Of -431*x^4+118*x^3-851*x^2+810*x-117 1771169614365147 r005 Im(z^2+c),c=-27/56+13/42*I,n=61 1771169615754195 r005 Im(z^2+c),c=-33/86+13/45*I,n=50 1771169621807504 m005 (1/2*exp(1)-2)/(exp(1)+9/10) 1771169627061862 m001 1/GAMMA(1/3)^2*ln((2^(1/3)))^2*cosh(1)^2 1771169635414602 a007 Real Root Of -200*x^4+349*x^3+699*x^2-675*x+519 1771169635496076 a007 Real Root Of 478*x^4+492*x^3+172*x^2+870*x-969 1771169639248232 m005 (1/2*Catalan+7/11)/(7/12*Zeta(3)-1/12) 1771169640328518 q001 6254/3531 1771169642755868 a007 Real Root Of -279*x^4-211*x^3+761*x^2+638*x+316 1771169644452860 a007 Real Root Of -643*x^4-143*x^3+919*x^2+743*x-159 1771169648324647 a001 521/3524578*2^(6/23) 1771169649260320 m001 (5^(1/2)-ln(2+3^(1/2)))/(Grothendieck+Magata) 1771169650408880 r009 Re(z^3+c),c=-11/48+53/55*I,n=30 1771169652361938 h001 (3/11*exp(2)+5/12)/(2/5*exp(1)+2/7) 1771169655334687 m001 (Gompertz-PlouffeB)/(GAMMA(11/12)-Artin) 1771169658498640 r002 13th iterates of z^2 + 1771169660178631 a007 Real Root Of 24*x^4-194*x^3+132*x^2-535*x-100 1771169660942613 a007 Real Root Of 398*x^4+816*x^3+11*x^2-255*x+131 1771169663270251 a007 Real Root Of 729*x^4+480*x^3-273*x^2-541*x+101 1771169667722866 r009 Re(z^3+c),c=-10/31+37/64*I,n=18 1771169669167658 a003 sin(Pi*28/99)-sin(Pi*35/87) 1771169674951460 a003 cos(Pi*4/69)+cos(Pi*15/71) 1771169678695127 p004 log(36373/30469) 1771169679770440 r005 Im(z^2+c),c=-33/86+13/45*I,n=52 1771169680713704 r002 25th iterates of z^2 + 1771169684055505 r005 Re(z^2+c),c=-3/40+43/50*I,n=4 1771169686564859 r005 Re(z^2+c),c=-3/25+17/26*I,n=42 1771169693941567 r005 Re(z^2+c),c=-5/36+5/14*I,n=17 1771169698128288 a007 Real Root Of 398*x^4+277*x^3-187*x^2+887*x-220 1771169708982837 a007 Real Root Of 369*x^4-20*x^3-956*x^2+234*x-329 1771169710612778 m001 exp(FransenRobinson)*Artin^2*LandauRamanujan 1771169725881829 r009 Re(z^3+c),c=-13/42+34/57*I,n=23 1771169731036548 m001 (exp(Pi)+GAMMA(17/24))/(-Khinchin+Mills) 1771169744995220 m001 LandauRamanujan+GAMMA(19/24)^exp(-Pi) 1771169746046978 m005 (1/2*exp(1)-4)/(1/2*3^(1/2)+5/8) 1771169748190009 m001 1/FeigenbaumAlpha^2*Cahen*ln(TwinPrimes)^2 1771169750550218 a005 (1/cos(6/131*Pi))^720 1771169751870815 q001 4497/2539 1771169753062555 r005 Im(z^2+c),c=-33/86+13/45*I,n=57 1771169755873006 a007 Real Root Of 191*x^4-132*x^3-632*x^2+470*x+202 1771169759084885 r005 Im(z^2+c),c=-33/86+13/45*I,n=55 1771169764205716 m001 Lehmer/Conway*exp(FeigenbaumC)^2 1771169765126661 r005 Im(z^2+c),c=-33/86+13/45*I,n=54 1771169765795353 r005 Im(z^2+c),c=-33/86+13/45*I,n=59 1771169769929469 r005 Im(z^2+c),c=-33/86+13/45*I,n=62 1771169770783168 r005 Im(z^2+c),c=-33/86+13/45*I,n=64 1771169772148641 r005 Im(z^2+c),c=-33/86+13/45*I,n=42 1771169774393140 r005 Im(z^2+c),c=-33/86+13/45*I,n=61 1771169774446196 r005 Im(z^2+c),c=-33/86+13/45*I,n=60 1771169775590968 r005 Im(z^2+c),c=-33/86+13/45*I,n=63 1771169786541850 r005 Im(z^2+c),c=-33/86+13/45*I,n=58 1771169794131249 r005 Im(z^2+c),c=-33/86+13/45*I,n=56 1771169799371080 a007 Real Root Of 676*x^4+875*x^3-234*x^2+792*x+346 1771169799630023 r005 Im(z^2+c),c=-33/86+13/45*I,n=48 1771169802439711 l006 ln(1055/6201) 1771169804941688 r005 Re(z^2+c),c=-17/94+27/37*I,n=43 1771169808858603 a007 Real Root Of -634*x^4-882*x^3-170*x^2-551*x+896 1771169810036668 r005 Re(z^2+c),c=4/15+28/61*I,n=14 1771169815341238 m002 5*Pi+(4*Cosh[Pi])/E^Pi 1771169817484395 r005 Im(z^2+c),c=-33/86+13/45*I,n=53 1771169832862026 r005 Im(z^2+c),c=31/118+3/62*I,n=62 1771169837573018 a007 Real Root Of -686*x^4-870*x^3+543*x^2-395*x-486 1771169840597586 m001 (-Grothendieck+Mills)/(Si(Pi)+GaussAGM) 1771169848262359 q001 7237/4086 1771169849634786 m001 (5^(1/2)+sin(1/12*Pi))/(Artin+MertensB2) 1771169856471518 h001 (7/11*exp(2)+9/11)/(11/12*exp(1)+5/8) 1771169864224820 a007 Real Root Of -540*x^4-876*x^3+306*x^2+297*x+13 1771169869094150 m001 (Tribonacci+Thue)/(3^(1/3)+StolarskyHarborth) 1771169870053505 m005 (1/3*Zeta(3)+1/4)/(2/11*Zeta(3)-2/11) 1771169879499919 m001 (sin(1/5*Pi)-HeathBrownMoroz)/(Kac+Khinchin) 1771169885797325 a001 987*123^(3/5) 1771169886098335 r005 Im(z^2+c),c=-33/86+13/45*I,n=49 1771169889261277 l006 ln(3917/4676) 1771169893461138 r005 Re(z^2+c),c=13/102+8/25*I,n=26 1771169896138738 a007 Real Root Of 244*x^4-45*x^3-234*x^2+646*x-773 1771169897217853 a007 Real Root Of 270*x^4+394*x^3-63*x^2+427*x+486 1771169898013315 a007 Real Root Of -440*x^4-831*x^3+107*x^2+512*x+284 1771169911677037 r005 Im(z^2+c),c=-33/86+13/45*I,n=51 1771169913804912 m001 (3^(1/3)-Kac)/(ZetaP(2)+ZetaQ(3)) 1771169919468906 h001 (2/3*exp(1)+1/8)/(1/9*exp(2)+3/11) 1771169923316859 m005 (1/2*Zeta(3)+2/3)/(4/11*exp(1)-3/11) 1771169924014264 m005 (1/2*Zeta(3)+7/12)/(4/7*Zeta(3)+6) 1771169927368857 a007 Real Root Of -162*x^4+340*x^3+394*x^2-986*x+501 1771169928034961 l006 ln(1284/7547) 1771169928648857 a001 370248451/377*21^(19/20) 1771169929185615 r009 Re(z^3+c),c=-31/126+37/63*I,n=8 1771169929375630 r005 Re(z^2+c),c=-9/50+8/35*I,n=19 1771169934651511 m005 (1/2*gamma+4/9)/(2*5^(1/2)-1/3) 1771169937044027 r005 Im(z^2+c),c=-79/98+3/28*I,n=24 1771169937551236 m001 ln(gamma)*KhinchinLevy+Weierstrass 1771169937951289 r005 Im(z^2+c),c=-117/106+7/34*I,n=58 1771169943568304 r005 Im(z^2+c),c=-47/46+3/13*I,n=38 1771169947698092 m001 BesselJ(1,1)^2/exp(MertensB1)^2*cosh(1) 1771169951434788 b008 2/5+Zeta[1/13] 1771169980165429 m001 Conway*ThueMorse-TravellingSalesman 1771169985248430 a003 cos(Pi*12/101)+sin(Pi*20/63) 1771169987053756 r005 Im(z^2+c),c=-119/122+7/39*I,n=23 1771169989718639 r005 Re(z^2+c),c=-17/14+128/245*I,n=3 1771169991848107 m005 (-7/12+1/6*5^(1/2))/(6/7*5^(1/2)-8/11) 1771169992240556 m001 (MasserGramainDelta-ln(gamma))^Robbin 1771169993283776 a001 76/10610209857723*5^(9/16) 1771170006464124 q001 274/1547 1771170006464124 r005 Im(z^2+c),c=-9/14+137/221*I,n=2 1771170010401272 p003 LerchPhi(1/5,2,231/92) 1771170015611284 l006 ln(1513/8893) 1771170020053998 a007 Real Root Of 334*x^4+675*x^3+628*x^2+898*x+84 1771170020583653 m005 (1/3*gamma+2/7)/(10/11*5^(1/2)+2/3) 1771170035574113 r002 60th iterates of z^2 + 1771170040299747 m001 (ln(5)+GAMMA(23/24))/(LandauRamanujan+Sarnak) 1771170043037719 r005 Re(z^2+c),c=9/50+32/55*I,n=56 1771170043825309 r009 Re(z^3+c),c=-31/122+23/55*I,n=16 1771170049157595 a001 1597/843*322^(12/31) 1771170061633110 a007 Real Root Of 655*x^4+692*x^3-493*x^2+208*x-686 1771170067354309 m001 1/TwinPrimes^2*Bloch^2*ln(cos(Pi/12)) 1771170069214623 a003 cos(Pi*13/61)+sin(Pi*35/78) 1771170076258557 a001 4/987*13^(23/40) 1771170080383111 m001 FeigenbaumB^Psi(1,1/3)/(FeigenbaumB^Robbin) 1771170082081705 a005 (1/cos(5/49*Pi))^1288 1771170095931580 m005 (1/2*2^(1/2)+6/7)/(1/8*3^(1/2)+2/3) 1771170096045573 a007 Real Root Of 46*x^4+848*x^3+607*x^2+318*x+24 1771170101750892 a007 Real Root Of -329*x^4-683*x^3-577*x^2+482*x+100 1771170112259807 a007 Real Root Of -792*x^4+597*x^3+42*x^2+69*x+15 1771170115948710 r009 Re(z^3+c),c=-31/98+23/39*I,n=23 1771170119115421 k008 concat of cont frac of 1771170119262856 a007 Real Root Of 626*x^4+559*x^3-218*x^2+906*x-766 1771170121182133 m005 (1/2*Zeta(3)+9/10)/(1/10*Zeta(3)+8/11) 1771170121710211 h001 (5/9*exp(2)+5/7)/(7/10*exp(1)+9/11) 1771170123550598 m005 (1/2*Pi+5/8)/(4/7*3^(1/2)+1/4) 1771170139897970 r002 58th iterates of z^2 + 1771170145307751 r005 Re(z^2+c),c=-1/62+25/39*I,n=13 1771170150004775 g006 Psi(1,4/5)+Psi(1,2/5)+Psi(1,1/3)-Psi(1,8/9) 1771170150824215 a007 Real Root Of 687*x^4+738*x^3-302*x^2+586*x-675 1771170152535923 l006 ln(8123/9697) 1771170152535923 p004 log(9697/8123) 1771170155504339 r005 Re(z^2+c),c=-7/102+31/61*I,n=32 1771170157783505 a007 Real Root Of 821*x^4+683*x^3+426*x^2-873*x-165 1771170168463514 r009 Im(z^3+c),c=-19/118+7/41*I,n=4 1771170172388485 m005 (1/2*5^(1/2)-1/6)/(2/11*3^(1/2)+2/9) 1771170176302035 a007 Real Root Of -518*x^4-869*x^3-9*x^2+365*x+944 1771170178475737 m001 (Pi^(1/2)*GAMMA(17/24)-ZetaQ(4))/GAMMA(17/24) 1771170179137598 m001 1/exp(log(2+sqrt(3)))*log(1+sqrt(2))^2/sinh(1) 1771170179203599 r005 Im(z^2+c),c=-45/74+19/64*I,n=28 1771170181209226 m004 Cos[Sqrt[5]*Pi]/3+3125*Pi*Sech[Sqrt[5]*Pi] 1771170183611948 q001 6463/3649 1771170189689752 a007 Real Root Of -265*x^4-42*x^3+918*x^2+309*x+42 1771170193374563 m005 (1/2*Catalan+6/11)/(2/11*Catalan+2/5) 1771170196371636 a001 5702887/5778*123^(3/5) 1771170199805058 m005 (1/2*5^(1/2)+1/11)/(1/12*exp(1)-10/11) 1771170202779301 r002 8th iterates of z^2 + 1771170209258931 m005 (1/3*exp(1)+3/7)/(2/5*Zeta(3)+3/11) 1771170209724393 a003 sin(Pi*13/103)-sin(Pi*4/21) 1771170212422619 r005 Re(z^2+c),c=-1+31/223*I,n=28 1771170213974998 a007 Real Root Of 41*x^4-184*x^3-306*x^2+184*x-140 1771170215163523 m008 (1/2*Pi^2+3/4)/(1/3*Pi^6+1/2) 1771170221285885 a007 Real Root Of -102*x^4+500*x^3+775*x^2-399*x+644 1771170229394300 a007 Real Root Of 504*x^4+645*x^3-581*x^2+94*x+613 1771170234277491 r005 Re(z^2+c),c=-91/74+6/35*I,n=36 1771170241683826 a001 14930352/15127*123^(3/5) 1771170244900854 b008 -17/11+Sqrt[11] 1771170248294786 a001 39088169/39603*123^(3/5) 1771170248487033 a007 Real Root Of -781*x^4-790*x^3+433*x^2-878*x+383 1771170249259312 a001 102334155/103682*123^(3/5) 1771170249400034 a001 267914296/271443*123^(3/5) 1771170249420565 a001 701408733/710647*123^(3/5) 1771170249423561 a001 1836311903/1860498*123^(3/5) 1771170249423998 a001 4807526976/4870847*123^(3/5) 1771170249424061 a001 12586269025/12752043*123^(3/5) 1771170249424071 a001 32951280099/33385282*123^(3/5) 1771170249424072 a001 86267571272/87403803*123^(3/5) 1771170249424072 a001 225851433717/228826127*123^(3/5) 1771170249424072 a001 591286729879/599074578*123^(3/5) 1771170249424072 a001 1548008755920/1568397607*123^(3/5) 1771170249424072 a001 4052739537881/4106118243*123^(3/5) 1771170249424072 a001 4807525989/4870846*123^(3/5) 1771170249424072 a001 6557470319842/6643838879*123^(3/5) 1771170249424072 a001 2504730781961/2537720636*123^(3/5) 1771170249424072 a001 956722026041/969323029*123^(3/5) 1771170249424072 a001 365435296162/370248451*123^(3/5) 1771170249424072 a001 139583862445/141422324*123^(3/5) 1771170249424073 a001 53316291173/54018521*123^(3/5) 1771170249424076 a001 20365011074/20633239*123^(3/5) 1771170249424101 a001 7778742049/7881196*123^(3/5) 1771170249424268 a001 2971215073/3010349*123^(3/5) 1771170249425412 a001 1134903170/1149851*123^(3/5) 1771170249433254 a001 433494437/439204*123^(3/5) 1771170249487005 a001 165580141/167761*123^(3/5) 1771170249783886 m005 (1/2*3^(1/2)-4/7)/(6/7*exp(1)-2/3) 1771170249855421 a001 63245986/64079*123^(3/5) 1771170252380583 a001 24157817/24476*123^(3/5) 1771170253763029 m001 1/GAMMA(2/3)^2*BesselJ(0,1)*ln(GAMMA(7/12)) 1771170258681089 a007 Real Root Of -567*x^4-963*x^3-615*x^2-732*x+862 1771170259145525 a007 Real Root Of -359*x^4-313*x^3+674*x^2-81*x-464 1771170259820010 m005 (1/6*2^(1/2)-1/3)/(1/5*gamma-2/3) 1771170269688301 a001 9227465/9349*123^(3/5) 1771170270929405 a007 Real Root Of 560*x^4+450*x^3-946*x^2-22*x-82 1771170271074755 m001 GAMMA(23/24)^KhinchinLevy/LandauRamanujan2nd 1771170274190497 a007 Real Root Of 339*x^4+379*x^3-529*x^2+97*x+601 1771170276520549 a003 cos(Pi*7/48)/sin(Pi*12/71) 1771170277494078 m005 (39/44+1/4*5^(1/2))/(1/9*Catalan+5/7) 1771170280456602 r005 Im(z^2+c),c=-41/50+6/59*I,n=15 1771170286488654 m005 (1/2*3^(1/2)+1/8)/(3/11*exp(1)-2/11) 1771170298148693 a005 (1/cos(2/195*Pi))^1101 1771170306815148 a007 Real Root Of -912*x^4-834*x^3+936*x^2-442*x+622 1771170313986679 q001 3723/2102 1771170314503737 k002 Champernowne real with 45/2*n^2-27/2*n+8 1771170316688870 m006 (exp(Pi)+3/5)/(1/4*exp(2*Pi)+1/6) 1771170319409695 m005 (1/2*5^(1/2)-1/12)/(5/12*Zeta(3)+1/12) 1771170326138001 m001 (DuboisRaymond-exp(Pi))/(-Mills+Trott) 1771170341205042 a007 Real Root Of 201*x^4-465*x^3-740*x^2+982*x-501 1771170342876514 a007 Real Root Of -690*x^4-989*x^3+615*x^2+240*x-209 1771170343531877 m001 3^(1/3)+TreeGrowth2nd^GAMMA(2/3) 1771170357582435 a007 Real Root Of -333*x^4-18*x^3+666*x^2-722*x-191 1771170368968843 r002 44th iterates of z^2 + 1771170376653068 m001 (Ei(1,1)-GAMMA(19/24))/(Lehmer-ZetaQ(2)) 1771170380902212 a007 Real Root Of 18*x^4-886*x^3+909*x^2+655*x+734 1771170386029670 r005 Im(z^2+c),c=-21/52+17/58*I,n=27 1771170387530898 a003 cos(Pi*20/93)+sin(Pi*53/116) 1771170388317170 a001 3524578/3571*123^(3/5) 1771170395593688 a003 sin(Pi*8/75)*sin(Pi*21/116) 1771170395812149 a007 Real Root Of 624*x^4+342*x^3-906*x^2+374*x-736 1771170397465106 m002 2+5*Pi+Log[Pi]/Pi^5 1771170397720604 l006 ln(4206/5021) 1771170398168435 m009 (2/3*Psi(1,2/3)-3/4)/(3/4*Psi(1,2/3)+5) 1771170398729072 r005 Im(z^2+c),c=-33/86+13/45*I,n=46 1771170402676326 a007 Real Root Of -315*x^4-10*x^3+897*x^2+532*x-122 1771170405920090 a007 Real Root Of 129*x^4-537*x^3+424*x^2+170*x+83 1771170407608235 r005 Im(z^2+c),c=-23/60+31/48*I,n=19 1771170410299099 r002 4th iterates of z^2 + 1771170414122206 m001 (Trott2nd+ZetaP(2))/(ln(3)+ln(5)) 1771170415646611 a001 6643838879/34*2584^(13/15) 1771170417902428 r008 a(0)=2,K{-n^6,16-29*n^3+4*n^2+13*n} 1771170418771550 v002 sum(1/(3^n+(19*n^2-22*n+7)),n=1..infinity) 1771170422620309 m005 (1/3*Zeta(3)-1/9)/(7/9*Zeta(3)+7/10) 1771170431281561 r005 Im(z^2+c),c=1/74+11/60*I,n=13 1771170431436458 m001 (GAMMA(11/12)-Trott)/(sin(1/5*Pi)+gamma(3)) 1771170434638878 a001 1/208010*8^(37/59) 1771170442660482 a007 Real Root Of 27*x^4-294*x^3-486*x^2+290*x+139 1771170449353068 r005 Im(z^2+c),c=-51/50+7/36*I,n=63 1771170453736893 m001 (exp(1/exp(1))+GAMMA(19/24))/(Conway+ZetaP(3)) 1771170456566995 a007 Real Root Of 799*x^4+785*x^3-674*x^2+625*x-280 1771170458668876 a001 12238/17*4807526976^(13/15) 1771170461625423 a001 12752043/34*3524578^(13/15) 1771170467877299 m005 (1/2*Catalan-3)/(11/12*Zeta(3)+1/3) 1771170478937543 r009 Re(z^3+c),c=-49/110+25/49*I,n=14 1771170482353330 m001 Khinchin-cos(1/12*Pi)^Sierpinski 1771170489252810 m001 BesselJ(0,1)+(3^(1/2))^Trott 1771170489929233 r005 Re(z^2+c),c=-133/110+3/64*I,n=56 1771170490256708 m001 Stephens^ZetaP(2)/TreeGrowth2nd 1771170491224297 a005 (1/cos(2/233*Pi))^1572 1771170493037260 q001 4706/2657 1771170504122953 a007 Real Root Of -560*x^4-234*x^3+780*x^2-481*x+912 1771170506650433 l006 ln(229/1346) 1771170513230994 a007 Real Root Of 813*x^4+901*x^3-481*x^2+788*x-90 1771170514114628 m002 -5*Pi-E^Pi*Csch[Pi] 1771170516649318 a007 Real Root Of 637*x^4+965*x^3-184*x^2+154*x-57 1771170530433358 m001 (Robbin+Sarnak)/(exp(1/Pi)-Lehmer) 1771170533259001 m001 ln(log(2+sqrt(3)))*LambertW(1)^2*sqrt(2)^2 1771170533664636 m001 (1-cos(1/5*Pi))/(-MertensB1+Totient) 1771170536233931 a007 Real Root Of 385*x^4+115*x^3-413*x^2+519*x-935 1771170541091073 r005 Im(z^2+c),c=-9/10+35/232*I,n=35 1771170542755084 m005 (1/2*gamma-1/2)/(7/11*Zeta(3)+3/7) 1771170547527341 r005 Re(z^2+c),c=-7/106+19/37*I,n=32 1771170547795855 r005 Im(z^2+c),c=-53/102+17/22*I,n=5 1771170553176227 r009 Im(z^3+c),c=-27/64+3/46*I,n=11 1771170562398726 r005 Im(z^2+c),c=-19/56+12/43*I,n=27 1771170572459937 a007 Real Root Of 822*x^4+972*x^3-884*x^2-282*x-415 1771170572497012 m001 (1-ln(3))/(2*Pi/GAMMA(5/6)+HeathBrownMoroz) 1771170574869336 s001 sum(exp(-Pi/4)^n*A273408[n],n=1..infinity) 1771170575818906 a007 Real Root Of -747*x^4-677*x^3+901*x^2+49*x+850 1771170583309829 a008 Real Root of x^4-13*x^2-9*x+15 1771170585450931 m001 GAMMA(1/4)^Zeta(1,2)*MadelungNaCl^Zeta(1,2) 1771170589508565 a007 Real Root Of -558*x^4-712*x^3-64*x^2-533*x+792 1771170590342541 a007 Real Root Of -463*x^4-166*x^3+861*x^2-594*x-119 1771170598150902 m004 9*Log[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi]/6 1771170602261422 a001 322/317811*514229^(26/35) 1771170610211706 q001 5689/3212 1771170619792854 m005 (1/3*exp(1)-1/9)/(-41/88+9/22*5^(1/2)) 1771170624526471 m004 1/6+9*Log[Sqrt[5]*Pi] 1771170627447564 m001 (2^(1/3)+Psi(2,1/3))/(-ln(3)+Kolakoski) 1771170630769496 a007 Real Root Of -492*x^4-610*x^3+750*x^2+191*x-562 1771170635877933 a005 (1/cos(16/117*Pi))^6 1771170640703965 m001 (-cos(1)+1/2)/(-Pi^(1/2)+2) 1771170648259860 p004 log(19139/18803) 1771170651120498 r005 Re(z^2+c),c=11/102+18/49*I,n=41 1771170659274396 m001 LambertW(1)*exp(Catalan)^2*sqrt(5)^2 1771170660252422 a007 Real Root Of -305*x^4+455*x^3+979*x^2-824*x+999 1771170664092809 r005 Im(z^2+c),c=-17/30+28/57*I,n=61 1771170669110074 a001 11/317811*55^(11/27) 1771170673838407 r002 29th iterates of z^2 + 1771170679773132 b008 1+Erf[Csch[1]] 1771170683950516 m001 GAMMA(17/24)^CareFree*ZetaR(2) 1771170683994747 a007 Real Root Of -966*x^4-935*x^3+772*x^2-771*x+524 1771170691515575 m001 ln(Zeta(3))^2*BesselJ(1,1)/sin(1) 1771170692859039 q001 6672/3767 1771170701437199 a007 Real Root Of 781*x^4+795*x^3-405*x^2+869*x-459 1771170703671676 h005 exp(sin(Pi*3/28)/sin(Pi*10/51)) 1771170706104673 a007 Real Root Of 481*x^4+804*x^3-166*x^2-138*x+10 1771170724999350 a007 Real Root Of 432*x^4+929*x^3-100*x^2-537*x+273 1771170726841866 m005 (1/2*Zeta(3)-1/10)/(5/7*2^(1/2)-8/11) 1771170729372602 a001 123/377*233^(9/29) 1771170734698921 r009 Re(z^3+c),c=-23/94+12/31*I,n=22 1771170736591023 r005 Im(z^2+c),c=-7/8+32/231*I,n=23 1771170745186305 a007 Real Root Of 598*x^4+658*x^3-244*x^2+815*x-20 1771170746268010 b008 -23+ArcSinh[99] 1771170753321670 m006 (1/4*exp(2*Pi)-4/5)/(4/5*Pi+5) 1771170754009843 r005 Re(z^2+c),c=-2/17+20/49*I,n=39 1771170758315893 s001 sum(exp(-2*Pi/5)^n*A014694[n],n=1..infinity) 1771170758315893 s002 sum(A014694[n]/(exp(2/5*pi*n)),n=1..infinity) 1771170763822867 r005 Re(z^2+c),c=29/110+13/56*I,n=13 1771170768971880 a007 Real Root Of -30*x^4+766*x^3-851*x^2-235*x-875 1771170773388370 h001 (1/3*exp(2)+3/10)/(1/8*exp(2)+7/11) 1771170778436971 a007 Real Root Of 276*x^4+479*x^3-419*x^2-377*x+592 1771170780917432 a003 sin(Pi*4/71)/sin(Pi*47/101) 1771170781925093 r005 Re(z^2+c),c=-9/118+31/63*I,n=20 1771170786409401 r005 Im(z^2+c),c=-67/110+16/51*I,n=25 1771170799093279 a008 Real Root of x^3-x^2-234*x-1098 1771170805892946 a007 Real Root Of 446*x^4+808*x^3+381*x^2+573*x-80 1771170806842684 m001 LandauRamanujan/(HardyLittlewoodC3^Si(Pi)) 1771170810759763 a003 -1/2+2*cos(1/10*Pi)-cos(3/10*Pi)-cos(1/24*Pi) 1771170814948257 a007 Real Root Of -447*x^4-951*x^3-836*x^2-474*x+898 1771170827607365 m001 ln(2+sqrt(3))*exp(1/2)^Lehmer 1771170830897664 r009 Re(z^3+c),c=-47/74+30/49*I,n=2 1771170835493635 a007 Real Root Of -217*x^4-90*x^3+142*x^2-826*x-273 1771170840798488 l006 ln(4495/5366) 1771170843035826 m001 exp(cosh(1))^2*cos(Pi/5) 1771170846595197 a003 cos(Pi*19/89)-sin(Pi*16/39) 1771170847277665 m001 (Niven+TwinPrimes)/(3^(1/2)-KhinchinHarmonic) 1771170851567765 m001 StolarskyHarborth/GAMMA(23/24)*5^(1/2) 1771170853735029 m001 (-Si(Pi)+2/3)/(-FeigenbaumDelta+4) 1771170854318331 a001 10946/843*123^(2/31) 1771170856282046 g006 Psi(1,7/10)+Psi(1,1/5)+Psi(1,1/3)-Psi(1,2/9) 1771170858503260 p003 LerchPhi(1/3,3,158/189) 1771170859765323 s002 sum(A067692[n]/(10^n+1),n=1..infinity) 1771170859956411 m005 (1/2*2^(1/2)+2/11)/(11/12*Zeta(3)-3/5) 1771170861811890 a001 2/3010349*4^(29/41) 1771170864843544 a007 Real Root Of 38*x^4-713*x^3-881*x^2+346*x-959 1771170867919862 m001 HardyLittlewoodC4*(BesselI(1,1)+Trott) 1771170869209565 a005 (1/sin(59/185*Pi))^178 1771170873447403 r009 Im(z^3+c),c=-35/106+6/49*I,n=20 1771170873981174 a007 Real Root Of 425*x^4+312*x^3-175*x^2+870*x-359 1771170875411470 m001 (cos(1)-gamma)/(-FransenRobinson+Sarnak) 1771170879532706 p001 sum((-1)^n/(470*n+459)/(2^n),n=0..infinity) 1771170880401192 r002 51th iterates of z^2 + 1771170885743798 m001 1/GAMMA(11/24)^2/ln((2^(1/3)))/cos(Pi/5)^2 1771170889393754 m001 Pi^(1/2)*gamma^HeathBrownMoroz 1771170891442285 a007 Real Root Of -401*x^4-507*x^3+378*x^2+286*x+450 1771170895234197 r009 Im(z^3+c),c=-35/106+6/49*I,n=21 1771170896697969 a007 Real Root Of -559*x^4-239*x^3+701*x^2-786*x+582 1771170901794082 m001 (ln(2)*BesselI(0,2)-FransenRobinson)/ln(2) 1771170903324831 m001 (Sierpinski+Weierstrass)/(Pi+Riemann1stZero) 1771170907193583 a007 Real Root Of -20*x^4-317*x^3+671*x^2+168*x-638 1771170909739511 r005 Im(z^2+c),c=-8/21+11/26*I,n=5 1771170911177284 k006 concat of cont frac of 1771170912702229 a007 Real Root Of 818*x^4+875*x^3-516*x^2+723*x-289 1771170915756823 a003 sin(Pi*5/49)*sin(Pi*19/100) 1771170915949918 m005 (1/3*Catalan+2/5)/(1/10*3^(1/2)-4/7) 1771170916150594 a007 Real Root Of -810*x^4-771*x^3+602*x^2-975*x+72 1771170919736676 r009 Im(z^3+c),c=-35/106+6/49*I,n=22 1771170919876731 r005 Im(z^2+c),c=-33/86+13/45*I,n=44 1771170923401425 a007 Real Root Of -713*x^4-469*x^3+698*x^2-904*x+620 1771170924135080 m005 (1/3*Pi+3/7)/(3/7*3^(1/2)+1/11) 1771170924316670 r009 Im(z^3+c),c=-35/106+6/49*I,n=27 1771170924349457 r009 Im(z^3+c),c=-35/106+6/49*I,n=26 1771170924446503 r009 Im(z^3+c),c=-35/106+6/49*I,n=28 1771170924510892 r009 Im(z^3+c),c=-35/106+6/49*I,n=33 1771170924511343 r009 Im(z^3+c),c=-35/106+6/49*I,n=34 1771170924511822 r009 Im(z^3+c),c=-35/106+6/49*I,n=35 1771170924511905 r009 Im(z^3+c),c=-35/106+6/49*I,n=40 1771170924511906 r009 Im(z^3+c),c=-35/106+6/49*I,n=39 1771170924511908 r009 Im(z^3+c),c=-35/106+6/49*I,n=41 1771170924511909 r009 Im(z^3+c),c=-35/106+6/49*I,n=46 1771170924511909 r009 Im(z^3+c),c=-35/106+6/49*I,n=47 1771170924511909 r009 Im(z^3+c),c=-35/106+6/49*I,n=48 1771170924511909 r009 Im(z^3+c),c=-35/106+6/49*I,n=53 1771170924511909 r009 Im(z^3+c),c=-35/106+6/49*I,n=52 1771170924511909 r009 Im(z^3+c),c=-35/106+6/49*I,n=54 1771170924511909 r009 Im(z^3+c),c=-35/106+6/49*I,n=59 1771170924511909 r009 Im(z^3+c),c=-35/106+6/49*I,n=60 1771170924511909 r009 Im(z^3+c),c=-35/106+6/49*I,n=61 1771170924511909 r009 Im(z^3+c),c=-35/106+6/49*I,n=64 1771170924511909 r009 Im(z^3+c),c=-35/106+6/49*I,n=63 1771170924511909 r009 Im(z^3+c),c=-35/106+6/49*I,n=62 1771170924511909 r009 Im(z^3+c),c=-35/106+6/49*I,n=58 1771170924511909 r009 Im(z^3+c),c=-35/106+6/49*I,n=57 1771170924511909 r009 Im(z^3+c),c=-35/106+6/49*I,n=55 1771170924511909 r009 Im(z^3+c),c=-35/106+6/49*I,n=56 1771170924511909 r009 Im(z^3+c),c=-35/106+6/49*I,n=51 1771170924511909 r009 Im(z^3+c),c=-35/106+6/49*I,n=50 1771170924511909 r009 Im(z^3+c),c=-35/106+6/49*I,n=49 1771170924511909 r009 Im(z^3+c),c=-35/106+6/49*I,n=45 1771170924511909 r009 Im(z^3+c),c=-35/106+6/49*I,n=42 1771170924511909 r009 Im(z^3+c),c=-35/106+6/49*I,n=44 1771170924511909 r009 Im(z^3+c),c=-35/106+6/49*I,n=43 1771170924511921 r009 Im(z^3+c),c=-35/106+6/49*I,n=38 1771170924511957 r009 Im(z^3+c),c=-35/106+6/49*I,n=37 1771170924511973 r009 Im(z^3+c),c=-35/106+6/49*I,n=36 1771170924512260 r009 Im(z^3+c),c=-35/106+6/49*I,n=32 1771170924516538 r009 Im(z^3+c),c=-35/106+6/49*I,n=29 1771170924518219 r009 Im(z^3+c),c=-35/106+6/49*I,n=31 1771170924526513 r009 Im(z^3+c),c=-35/106+6/49*I,n=30 1771170925123878 r009 Im(z^3+c),c=-35/106+6/49*I,n=25 1771170926970782 r009 Im(z^3+c),c=-35/106+6/49*I,n=24 1771170927681430 r009 Im(z^3+c),c=-35/106+6/49*I,n=23 1771170932473024 r005 Re(z^2+c),c=-2/17+20/49*I,n=37 1771170937631241 r002 15th iterates of z^2 + 1771170940725231 a007 Real Root Of 125*x^4-301*x^3-666*x^2-294*x-5 1771170942747633 m001 Trott2nd*(MasserGramainDelta-Salem) 1771170944698374 a007 Real Root Of -337*x^4-510*x^3+75*x^2-601*x-817 1771170945482026 l006 ln(1693/9951) 1771170946598296 r009 Im(z^3+c),c=-35/106+6/49*I,n=19 1771170949120773 m001 (gamma(3)-GAMMA(17/24))/(Kac+Paris) 1771170956859116 a007 Real Root Of -589*x^4-701*x^3+223*x^2-739*x-107 1771170964373962 m001 (ln(3)+3)/exp(Pi) 1771170966291564 a007 Real Root Of -130*x^4+174*x^3+465*x^2-562*x-208 1771170967615196 a007 Real Root Of 197*x^4-431*x^3-810*x^2+575*x-774 1771170968009433 a007 Real Root Of -497*x^4-237*x^3+714*x^2-842*x-157 1771170968916958 a007 Real Root Of 852*x^4+487*x^3-266*x^2-673*x+124 1771170970165044 h003 exp(Pi*(11^(1/5)+2^(7/12))) 1771170970165044 h008 exp(Pi*(11^(1/5)+2^(7/12))) 1771170973708549 m001 (Pi-3^(1/2))/(HeathBrownMoroz+Kolakoski) 1771170974432433 m005 (2/3*2^(1/2)-1)/(1/4*Catalan+3) 1771170978909315 a007 Real Root Of -459*x^4-782*x^3-149*x^2-11*x+620 1771170980320367 m001 (Paris-ZetaP(4))/(Lehmer+MasserGramain) 1771170983108524 m001 1/GAMMA(3/4)^2*Riemann1stZero*ln(cosh(1))^2 1771170985210045 a007 Real Root Of 196*x^4+97*x^3-741*x^2-657*x-229 1771171005622713 a001 322/514229*3^(53/56) 1771171014124382 l006 ln(1464/8605) 1771171014333881 m005 (1/3*Pi-1/11)/(2/7*gamma+3/8) 1771171015067634 m005 (-7/36+1/4*5^(1/2))/(5/7*exp(1)-4) 1771171021241119 k006 concat of cont frac of 1771171021980287 a007 Real Root Of 393*x^4+848*x^3+646*x^2+549*x-210 1771171022730821 a003 cos(Pi*20/109)+sin(Pi*44/115) 1771171024604847 r005 Im(z^2+c),c=-11/28+52/55*I,n=4 1771171035744680 m001 exp(TwinPrimes)*Artin^2*cos(Pi/5)^2 1771171038362062 m009 (5*Psi(1,3/4)-4/5)/(3/5*Psi(1,1/3)+2/3) 1771171040837259 r005 Im(z^2+c),c=-25/62+18/61*I,n=12 1771171042966504 g007 Psi(2,4/5)-Psi(2,5/12)-Psi(2,8/11)-Psi(13/10) 1771171055009848 m001 (sin(1/12*Pi)+FeigenbaumD)/(Shi(1)-exp(1)) 1771171063927410 m006 (1/2*Pi+3/5)/(2/5*exp(Pi)+3) 1771171066050515 m001 StronglyCareFree+Catalan^ZetaQ(2) 1771171066347041 r005 Im(z^2+c),c=31/118+3/62*I,n=63 1771171069958706 m001 LambertW(1)/(Sierpinski^GAMMA(3/4)) 1771171075043483 m001 AlladiGrinstead*Backhouse+Lehmer 1771171077121614 k008 concat of cont frac of 1771171081763440 a003 cos(Pi*12/109)+cos(Pi*19/101) 1771171085326369 r005 Re(z^2+c),c=-4/25+25/37*I,n=4 1771171086309437 a007 Real Root Of 800*x^4+948*x^3-616*x^2+135*x-434 1771171089784680 m001 FeigenbaumD-KhinchinHarmonic^Zeta(1,-1) 1771171092375784 a007 Real Root Of 380*x^4+452*x^3-790*x^2-441*x+469 1771171101983310 m001 1/Zeta(7)^2*GolombDickman/ln(cos(Pi/12)) 1771171102180347 a007 Real Root Of -701*x^4-852*x^3+822*x^2+708*x+840 1771171102583395 r002 28th iterates of z^2 + 1771171102633532 m005 (1/3*gamma+1/2)/(3*2^(1/2)-1/3) 1771171108138665 m001 (Pi-Cahen)/(LandauRamanujan+MasserGramain) 1771171108222763 l006 ln(1235/7259) 1771171110111132 k007 concat of cont frac of 1771171110439321 a007 Real Root Of -53*x^4-933*x^3+135*x^2+553*x-770 1771171111111111 s003 concatenated sequence A070642 1771171111113223 k006 concat of cont frac of 1771171111121131 k007 concat of cont frac of 1771171111131613 k008 concat of cont frac of 1771171111133193 k008 concat of cont frac of 1771171111141157 k008 concat of cont frac of 1771171111662618 a007 Real Root Of -836*x^4-922*x^3+538*x^2-793*x+12 1771171112015173 k008 concat of cont frac of 1771171112074183 k007 concat of cont frac of 1771171112830190 r009 Im(z^3+c),c=-35/106+6/49*I,n=16 1771171117639252 r002 8th iterates of z^2 + 1771171120758776 m005 (1/2*gamma+3)/(5/9*2^(1/2)-3/5) 1771171121111341 k008 concat of cont frac of 1771171121412231 k007 concat of cont frac of 1771171122161311 k008 concat of cont frac of 1771171122211831 k007 concat of cont frac of 1771171122637377 a007 Real Root Of 551*x^4+860*x^3+327*x^2+844*x-175 1771171123128394 r005 Im(z^2+c),c=-47/82+21/64*I,n=55 1771171123160179 a003 cos(Pi*13/75)-cos(Pi*15/86) 1771171127117252 k007 concat of cont frac of 1771171127213173 k006 concat of cont frac of 1771171128236121 k008 concat of cont frac of 1771171132199681 k008 concat of cont frac of 1771171132394880 m001 (3^(1/3))/exp(Cahen)*GAMMA(7/12)^2 1771171141215218 k006 concat of cont frac of 1771171141225841 m001 (HardyLittlewoodC5+Landau)/ZetaQ(2) 1771171143238198 r005 Im(z^2+c),c=-23/54+14/47*I,n=31 1771171144214413 k009 concat of cont frac of 1771171145995957 m001 (Psi(1,1/3)+arctan(1/2))/(-Pi^(1/2)+Salem) 1771171146813192 m001 1/ln(Riemann3rdZero)*Kolakoski*GAMMA(1/3)^2 1771171151620370 s002 sum(A027738[n]/(n!^3),n=1..infinity) 1771171156415007 a007 Real Root Of -424*x^4-738*x^3-64*x^2-608*x-804 1771171156738962 a007 Real Root Of 658*x^4+908*x^3-854*x^2-316*x+689 1771171159272917 r005 Re(z^2+c),c=-11/56+10/13*I,n=61 1771171159697819 r009 Re(z^3+c),c=-23/94+12/31*I,n=25 1771171160275874 a001 281*377^(9/29) 1771171168681820 a007 Real Root Of 51*x^4+910*x^3+76*x^2-762*x-96 1771171170586776 b008 16+ArcSinh[Gamma[1/3]] 1771171171163114 k006 concat of cont frac of 1771171171171171 q001 983/555 1771171171564223 k006 concat of cont frac of 1771171177539143 r005 Re(z^2+c),c=-19/94+4/37*I,n=9 1771171178992133 a007 Real Root Of -581*x^4-733*x^3+473*x^2-253*x-287 1771171181211518 k008 concat of cont frac of 1771171192471792 r009 Re(z^3+c),c=-23/94+12/31*I,n=24 1771171196480109 r009 Re(z^3+c),c=-23/94+12/31*I,n=27 1771171197130191 a003 sin(Pi*30/107)+sin(Pi*58/117) 1771171201411962 a001 1346269/1364*123^(3/5) 1771171202272794 m005 (1/2*3^(1/2)-1/11)/(5/11*gamma-7/10) 1771171202792913 r009 Re(z^3+c),c=-23/94+12/31*I,n=28 1771171203572689 r009 Re(z^3+c),c=-23/94+12/31*I,n=30 1771171204863184 a007 Real Root Of -619*x^4-812*x^3-123*x^2-652*x+811 1771171205153261 r009 Re(z^3+c),c=-23/94+12/31*I,n=33 1771171205400266 r009 Re(z^3+c),c=-23/94+12/31*I,n=36 1771171205430852 r009 Re(z^3+c),c=-23/94+12/31*I,n=39 1771171205432076 r009 Re(z^3+c),c=-23/94+12/31*I,n=38 1771171205433152 r009 Re(z^3+c),c=-23/94+12/31*I,n=41 1771171205433764 r009 Re(z^3+c),c=-23/94+12/31*I,n=44 1771171205433769 r009 Re(z^3+c),c=-23/94+12/31*I,n=42 1771171205433888 r009 Re(z^3+c),c=-23/94+12/31*I,n=47 1771171205433906 r009 Re(z^3+c),c=-23/94+12/31*I,n=50 1771171205433908 r009 Re(z^3+c),c=-23/94+12/31*I,n=53 1771171205433908 r009 Re(z^3+c),c=-23/94+12/31*I,n=52 1771171205433909 r009 Re(z^3+c),c=-23/94+12/31*I,n=55 1771171205433909 r009 Re(z^3+c),c=-23/94+12/31*I,n=58 1771171205433909 r009 Re(z^3+c),c=-23/94+12/31*I,n=56 1771171205433909 r009 Re(z^3+c),c=-23/94+12/31*I,n=61 1771171205433909 r009 Re(z^3+c),c=-23/94+12/31*I,n=64 1771171205433909 r009 Re(z^3+c),c=-23/94+12/31*I,n=63 1771171205433909 r009 Re(z^3+c),c=-23/94+12/31*I,n=62 1771171205433909 r009 Re(z^3+c),c=-23/94+12/31*I,n=60 1771171205433909 r009 Re(z^3+c),c=-23/94+12/31*I,n=59 1771171205433909 r009 Re(z^3+c),c=-23/94+12/31*I,n=57 1771171205433909 r009 Re(z^3+c),c=-23/94+12/31*I,n=54 1771171205433910 r009 Re(z^3+c),c=-23/94+12/31*I,n=49 1771171205433910 r009 Re(z^3+c),c=-23/94+12/31*I,n=51 1771171205433916 r009 Re(z^3+c),c=-23/94+12/31*I,n=48 1771171205433928 r009 Re(z^3+c),c=-23/94+12/31*I,n=45 1771171205433933 r009 Re(z^3+c),c=-23/94+12/31*I,n=46 1771171205434192 r009 Re(z^3+c),c=-23/94+12/31*I,n=43 1771171205436328 r009 Re(z^3+c),c=-23/94+12/31*I,n=40 1771171205450347 r009 Re(z^3+c),c=-23/94+12/31*I,n=37 1771171205453394 r009 Re(z^3+c),c=-23/94+12/31*I,n=35 1771171205516488 r009 Re(z^3+c),c=-23/94+12/31*I,n=34 1771171205596327 r009 Re(z^3+c),c=-23/94+12/31*I,n=31 1771171205808697 r009 Re(z^3+c),c=-23/94+12/31*I,n=32 1771171209418469 r009 Re(z^3+c),c=-23/94+12/31*I,n=29 1771171211131811 k007 concat of cont frac of 1771171213025130 r005 Re(z^2+c),c=-5/98+7/13*I,n=36 1771171213110513 k006 concat of cont frac of 1771171222819857 b008 5*(4+Cot[2]) 1771171230343952 l006 ln(4784/5711) 1771171230959230 m001 ZetaQ(3)/(Magata^Conway) 1771171231432011 k009 concat of cont frac of 1771171235235343 a007 Real Root Of -18*x^4+963*x^3-961*x^2-901*x-563 1771171235666879 b008 3*(1+E^2)^3 1771171237919345 r009 Re(z^3+c),c=-23/94+12/31*I,n=26 1771171243814432 r009 Im(z^3+c),c=-5/12+2/35*I,n=26 1771171245161145 l006 ln(1006/5913) 1771171250576607 r005 Re(z^2+c),c=-9/50+8/35*I,n=21 1771171250627092 l006 ln(8674/8829) 1771171251321520 s002 sum(A202740[n]/(n^2*exp(n)+1),n=1..infinity) 1771171253081896 r009 Im(z^3+c),c=-35/106+6/49*I,n=18 1771171253431029 m001 (Zeta(5)+ln(5))/(MinimumGamma-Otter) 1771171253876007 s002 sum(A202740[n]/(n^2*exp(n)-1),n=1..infinity) 1771171255211078 m001 1/Riemann2ndZero^2*ln(Artin)^2*cos(Pi/5) 1771171256244085 a007 Real Root Of 908*x^4-486*x^3-228*x^2-500*x-85 1771171258927531 a007 Real Root Of 226*x^4+x^3-55*x^2+826*x-583 1771171261679986 m001 GAMMA(5/12)*ln(FeigenbaumC)^2/GAMMA(5/24) 1771171275739677 a001 233/2207*1364^(22/31) 1771171280386908 p004 log(28219/4801) 1771171280859435 m001 1/Paris/Niven*ln(sin(1))^2 1771171281121511 k007 concat of cont frac of 1771171283468475 a007 Real Root Of -443*x^4+13*x^3+904*x^2-481*x+744 1771171283811964 a007 Real Root Of -423*x^4-328*x^3+139*x^2+185*x+27 1771171284089311 m001 gamma^2*GAMMA(1/6)^2/exp(log(1+sqrt(2)))^2 1771171284194217 m009 (1/3*Psi(1,2/3)-1/4)/(1/4*Psi(1,3/4)-1/5) 1771171284547401 r005 Im(z^2+c),c=7/29+15/28*I,n=24 1771171290642406 r005 Re(z^2+c),c=19/56+13/62*I,n=18 1771171295169001 a007 Real Root Of 688*x^4+311*x^3-882*x^2+722*x-997 1771171296723356 m001 (cos(1/5*Pi)-ln(3))/(Zeta(1,2)-ArtinRank2) 1771171300884109 m001 GAMMA(11/24)-Zeta(1,2)-ln(3) 1771171300884109 m001 Pi*csc(11/24*Pi)/GAMMA(13/24)-Zeta(1,2)-ln(3) 1771171302740539 r005 Re(z^2+c),c=-1/32+30/53*I,n=53 1771171304701256 r005 Re(z^2+c),c=-151/126+5/58*I,n=44 1771171307765480 r005 Re(z^2+c),c=-9/52+12/47*I,n=11 1771171312684801 a007 Real Root Of -298*x^4+40*x^3+700*x^2-730*x-334 1771171314178141 k006 concat of cont frac of 1771171317509747 k002 Champernowne real with 23*n^2-15*n+9 1771171322122311 k008 concat of cont frac of 1771171327243181 k007 concat of cont frac of 1771171328741296 m001 (Shi(1)-HardyLittlewoodC4)/(Pi-exp(1)) 1771171333524631 a005 (1/cos(1/39*Pi))^176 1771171341421112 k006 concat of cont frac of 1771171341994854 m001 (exp(1/exp(1))-GAMMA(17/24))/(OneNinth-Paris) 1771171342052023 r009 Re(z^3+c),c=-35/118+16/29*I,n=28 1771171342059623 r005 Re(z^2+c),c=-3/16+25/41*I,n=21 1771171344325424 a007 Real Root Of 144*x^4-402*x^3+357*x^2-567*x-114 1771171344759980 m001 GAMMA(1/24)^2/Bloch/ln(GAMMA(11/24)) 1771171345365553 a005 (1/sin(109/235*Pi))^1156 1771171346024629 a007 Real Root Of 561*x^4+660*x^3-408*x^2-222*x-967 1771171346410985 m001 (BesselK(0,1)+cos(1/12*Pi))^MadelungNaCl 1771171346410985 m001 (BesselK(0,1)+cos(Pi/12))^MadelungNaCl 1771171349086542 a007 Real Root Of -8*x^4-140*x^3-15*x^2-797*x 1771171354522655 h001 (4/11*exp(2)+1/6)/(1/7*exp(2)+5/9) 1771171354656826 a003 cos(Pi*6/97)+cos(Pi*25/119) 1771171355663753 m001 (Landau+PrimesInBinary)/(Psi(2,1/3)+Zeta(5)) 1771171360947383 b008 (19*Pi)/3+Tan[2] 1771171365204861 m005 (17/5+2/5*5^(1/2))/(4/5*exp(1)+1/4) 1771171369627022 h001 (1/9*exp(1)+1/4)/(11/12*exp(1)+5/8) 1771171370008820 m005 (1/2*Pi+7/9)/(4/11*Zeta(3)+8/9) 1771171371523108 r005 Re(z^2+c),c=3/56+25/38*I,n=34 1771171378940618 m005 (1/2*3^(1/2)+2/3)/(1/4*Catalan+7/11) 1771171384669256 h001 (-9*exp(-1)+4)/(-exp(2)+7) 1771171385372301 m009 (2/3*Psi(1,3/4)+2/5)/(1/6*Psi(1,1/3)-1/2) 1771171390575229 r005 Re(z^2+c),c=-9/50+8/35*I,n=22 1771171392227002 m005 (19/44+1/4*5^(1/2))/(1/7*Catalan+3/7) 1771171395642176 m001 (3^(1/3))^2*Magata*exp(Catalan) 1771171396051777 r005 Re(z^2+c),c=-9/50+8/35*I,n=24 1771171406876462 m001 (GAMMA(17/24)-MertensB3)/(Paris+Sierpinski) 1771171407555213 r005 Re(z^2+c),c=-93/94+10/57*I,n=44 1771171412221131 k008 concat of cont frac of 1771171415354746 r005 Re(z^2+c),c=-12/25+20/37*I,n=50 1771171415550845 r009 Re(z^3+c),c=-23/94+12/31*I,n=23 1771171421866445 r005 Re(z^2+c),c=-9/122+15/31*I,n=6 1771171425243981 a007 Real Root Of 31*x^4-779*x^3+928*x^2+192*x+772 1771171428436007 a007 Real Root Of -604*x^4-766*x^3+379*x^2+249*x+940 1771171428921121 k008 concat of cont frac of 1771171433311107 k008 concat of cont frac of 1771171433555285 m001 Pi^(1/2)/((3^(1/2))^HeathBrownMoroz) 1771171437617020 r005 Re(z^2+c),c=-9/50+8/35*I,n=27 1771171441198292 r005 Re(z^2+c),c=-9/50+8/35*I,n=29 1771171441371111 k008 concat of cont frac of 1771171441781722 m005 (1/2*5^(1/2)-8/11)/(6/5+9/20*5^(1/2)) 1771171441883605 r005 Re(z^2+c),c=-9/50+8/35*I,n=32 1771171441951111 k006 concat of cont frac of 1771171441991785 r005 Re(z^2+c),c=-9/50+8/35*I,n=30 1771171442026126 r005 Re(z^2+c),c=-9/50+8/35*I,n=35 1771171442034960 r005 Re(z^2+c),c=-9/50+8/35*I,n=37 1771171442037410 r005 Re(z^2+c),c=-9/50+8/35*I,n=34 1771171442037810 r005 Re(z^2+c),c=-9/50+8/35*I,n=40 1771171442038280 r005 Re(z^2+c),c=-9/50+8/35*I,n=43 1771171442038285 r005 Re(z^2+c),c=-9/50+8/35*I,n=42 1771171442038299 r005 Re(z^2+c),c=-9/50+8/35*I,n=45 1771171442038310 r005 Re(z^2+c),c=-9/50+8/35*I,n=48 1771171442038311 r005 Re(z^2+c),c=-9/50+8/35*I,n=50 1771171442038311 r005 Re(z^2+c),c=-9/50+8/35*I,n=51 1771171442038311 r005 Re(z^2+c),c=-9/50+8/35*I,n=53 1771171442038311 r005 Re(z^2+c),c=-9/50+8/35*I,n=56 1771171442038311 r005 Re(z^2+c),c=-9/50+8/35*I,n=58 1771171442038311 r005 Re(z^2+c),c=-9/50+8/35*I,n=61 1771171442038311 r005 Re(z^2+c),c=-9/50+8/35*I,n=59 1771171442038311 r005 Re(z^2+c),c=-9/50+8/35*I,n=64 1771171442038311 r005 Re(z^2+c),c=-9/50+8/35*I,n=63 1771171442038311 r005 Re(z^2+c),c=-9/50+8/35*I,n=62 1771171442038311 r005 Re(z^2+c),c=-9/50+8/35*I,n=60 1771171442038311 r005 Re(z^2+c),c=-9/50+8/35*I,n=57 1771171442038311 r005 Re(z^2+c),c=-9/50+8/35*I,n=55 1771171442038311 r005 Re(z^2+c),c=-9/50+8/35*I,n=54 1771171442038311 r005 Re(z^2+c),c=-9/50+8/35*I,n=52 1771171442038312 r005 Re(z^2+c),c=-9/50+8/35*I,n=49 1771171442038313 r005 Re(z^2+c),c=-9/50+8/35*I,n=47 1771171442038313 r005 Re(z^2+c),c=-9/50+8/35*I,n=46 1771171442038339 r005 Re(z^2+c),c=-9/50+8/35*I,n=44 1771171442038518 r005 Re(z^2+c),c=-9/50+8/35*I,n=41 1771171442038567 r005 Re(z^2+c),c=-9/50+8/35*I,n=38 1771171442038932 r005 Re(z^2+c),c=-9/50+8/35*I,n=39 1771171442047159 r005 Re(z^2+c),c=-9/50+8/35*I,n=36 1771171442091866 r005 Re(z^2+c),c=-9/50+8/35*I,n=33 1771171442272401 r005 Re(z^2+c),c=-9/50+8/35*I,n=31 1771171443376551 a007 Real Root Of 349*x^4+225*x^3-593*x^2+135*x-85 1771171443928001 r005 Re(z^2+c),c=-9/50+8/35*I,n=26 1771171444718204 r005 Re(z^2+c),c=-9/50+8/35*I,n=28 1771171446957245 m004 -1+(5*Cos[Sqrt[5]*Pi])/Pi+2*Sech[Sqrt[5]*Pi] 1771171448127836 m001 (gamma(1)-Trott2nd)/(cos(1/5*Pi)-exp(1/Pi)) 1771171454912528 r005 Re(z^2+c),c=-9/50+8/35*I,n=25 1771171460081178 a007 Real Root Of 166*x^4-559*x^3-222*x^2-599*x+116 1771171461945617 r008 a(0)=2,K{-n^6,22+4*n+7*n^2-29*n^3} 1771171462139333 a007 Real Root Of 388*x^4+236*x^3-464*x^2+837*x+431 1771171462591330 h001 (9/10*exp(2)+5/11)/(4/9*exp(2)+8/11) 1771171462817351 l006 ln(777/4567) 1771171464338576 a007 Real Root Of -416*x^4-384*x^3-485*x^2+535*x-77 1771171466070482 a007 Real Root Of 425*x^4+377*x^3-790*x^2+129*x+619 1771171469809974 m001 (ln(5)+gamma(2))/(FeigenbaumKappa-ZetaP(2)) 1771171471824131 k007 concat of cont frac of 1771171475111551 m004 -1+4/E^(Sqrt[5]*Pi)+(5*Cos[Sqrt[5]*Pi])/Pi 1771171475181412 r005 Im(z^2+c),c=-13/12+27/128*I,n=59 1771171481101251 k009 concat of cont frac of 1771171482682895 r002 46th iterates of z^2 + 1771171485559441 h001 (7/8*exp(1)+1/3)/(1/3*exp(1)+5/8) 1771171497881690 r002 47th iterates of z^2 + 1771171498813614 r009 Re(z^3+c),c=-11/106+46/57*I,n=7 1771171501727650 r005 Re(z^2+c),c=-9/58+9/13*I,n=22 1771171503265901 m004 -1+(5*Cos[Sqrt[5]*Pi])/Pi+2*Csch[Sqrt[5]*Pi] 1771171509215479 r005 Im(z^2+c),c=-33/86+13/45*I,n=41 1771171511211032 k006 concat of cont frac of 1771171511211921 k008 concat of cont frac of 1771171511240112 k008 concat of cont frac of 1771171511746468 m005 (1/3*Pi+1/12)/(2/7*Catalan-9/10) 1771171512811152 k008 concat of cont frac of 1771171513826632 r002 9th iterates of z^2 + 1771171518261659 r005 Re(z^2+c),c=-2/17+20/49*I,n=42 1771171524147167 a001 17*15127^(14/29) 1771171524340432 r005 Re(z^2+c),c=-9/50+8/35*I,n=23 1771171527674677 a007 Real Root Of 659*x^4+626*x^3-908*x^2-278*x-651 1771171531739640 s001 sum(exp(-Pi/4)^n*A036601[n],n=1..infinity) 1771171536075157 r005 Im(z^2+c),c=-21/40+7/22*I,n=62 1771171543474067 m004 25*Pi*Sin[Sqrt[5]*Pi]+10*Pi*Sinh[Sqrt[5]*Pi] 1771171550979853 p003 LerchPhi(1/256,4,85/31) 1771171553255719 m001 Robbin*FransenRobinson/exp(sinh(1))^2 1771171553489862 a007 Real Root Of 121*x^4-69*x^3-434*x^2+386*x+471 1771171555445689 r009 Re(z^3+c),c=-23/94+12/31*I,n=21 1771171556825839 h001 (5/6*exp(1)+5/11)/(5/11*exp(1)+3/10) 1771171567592064 m001 (sin(1/12*Pi)+Porter)/(cos(1/5*Pi)-Zeta(1,-1)) 1771171568143435 m001 gamma(1)+BesselJ(1,1)+OrthogonalArrays 1771171575505947 l006 ln(5073/6056) 1771171575913397 a007 Real Root Of 653*x^4-733*x^3-211*x^2-852*x-149 1771171580485417 m001 Pi^(1/2)-gamma(3)*GolombDickman 1771171581986816 m001 Kolakoski*(GAMMA(11/12)+GAMMA(19/24)) 1771171588287022 a007 Real Root Of 662*x^4-822*x^3+793*x^2-566*x+1 1771171596994937 r005 Re(z^2+c),c=-21/106+4/29*I,n=13 1771171600305714 a007 Real Root Of 763*x^4+734*x^3-800*x^2+62*x-811 1771171608395458 m001 (BesselK(1,1)+Khinchin)/(Trott+ZetaP(3)) 1771171608617224 a001 199/1548008755920*21^(2/19) 1771171608871780 m001 1/Niven*DuboisRaymond*exp(TreeGrowth2nd) 1771171609725856 m001 exp(Champernowne)^2*Backhouse/GAMMA(23/24)^2 1771171611103161 k008 concat of cont frac of 1771171614425017 h001 (2/9*exp(1)+1/12)/(3/7*exp(2)+5/7) 1771171614680201 r009 Re(z^3+c),c=-10/27+30/49*I,n=62 1771171614892901 r005 Re(z^2+c),c=-2/17+20/49*I,n=40 1771171615467882 h001 (5/12*exp(2)+3/11)/(3/7*exp(1)+8/11) 1771171621284036 q001 709/4003 1771171626614005 r002 14th iterates of z^2 + 1771171628071767 l006 ln(1325/7788) 1771171629648991 a007 Real Root Of 683*x^4+657*x^3-793*x^2+877*x+970 1771171634911363 m001 (-ArtinRank2+ZetaQ(2))/(exp(1)+Catalan) 1771171642280389 a007 Real Root Of -616*x^4-553*x^3+838*x^2+300*x+892 1771171649589749 a007 Real Root Of 472*x^4-67*x^3-907*x^2+848*x-670 1771171661797742 m001 (Si(Pi)+Zeta(5))/(-Otter+PisotVijayaraghavan) 1771171664735658 r009 Im(z^3+c),c=-35/106+6/49*I,n=17 1771171665610895 r005 Re(z^2+c),c=-1/7+17/49*I,n=24 1771171665986995 m005 (15/28+1/4*5^(1/2))/(1/6*gamma-5/7) 1771171668756101 m001 (LaplaceLimit-Salem)/(ln(Pi)-GAMMA(19/24)) 1771171671315540 r005 Im(z^2+c),c=-75/82+4/27*I,n=7 1771171681657969 s002 sum(A100920[n]/(pi^n-1),n=1..infinity) 1771171688382698 a007 Real Root Of 44*x^4-342*x^3+11*x^2-573*x+103 1771171693735498 q001 6107/3448 1771171694968045 m001 1/Salem/ArtinRank2^2/exp(GAMMA(1/12)) 1771171698134506 h001 (7/12*exp(2)+7/8)/(3/4*exp(1)+8/9) 1771171701349425 r005 Im(z^2+c),c=-29/56+7/22*I,n=14 1771171712757095 r005 Im(z^2+c),c=31/118+3/62*I,n=64 1771171713979309 r005 Im(z^2+c),c=-55/54+10/51*I,n=24 1771171721211261 k006 concat of cont frac of 1771171721310511 k006 concat of cont frac of 1771171722925189 m009 (1/6*Psi(1,1/3)-3/5)/(5/12*Pi^2+2) 1771171724953267 r005 Im(z^2+c),c=-73/118+2/57*I,n=36 1771171728121122 k006 concat of cont frac of 1771171737552152 a007 Real Root Of 668*x^4+670*x^3-183*x^2+948*x-598 1771171739840576 a001 17*2207^(35/58) 1771171740474489 a001 843/9227465*17711^(7/13) 1771171741082571 a001 843/7778742049*4807526976^(7/13) 1771171741082571 a001 1/267913919*2504730781961^(7/13) 1771171741082573 a001 843/267914296*9227465^(7/13) 1771171742210964 m006 (3*Pi^2-2/3)/(1/4*Pi^2-5/6) 1771171742210964 m008 (3*Pi^2-2/3)/(1/4*Pi^2-5/6) 1771171742210964 m009 (3*Pi^2-2/3)/(1/4*Pi^2-5/6) 1771171746074164 r009 Re(z^3+c),c=-10/31+13/22*I,n=18 1771171747304268 a007 Real Root Of 362*x^4+306*x^3-590*x^2-548*x-982 1771171748290965 a007 Real Root Of 250*x^4-150*x^3-873*x^2+865*x+977 1771171760483034 a001 377/4*47^(16/21) 1771171764380068 a007 Real Root Of 531*x^4+620*x^3-438*x^2+246*x+29 1771171764531318 r005 Re(z^2+c),c=25/78+21/61*I,n=30 1771171766400243 m001 1/GAMMA(23/24)*exp(Bloch)^2/sqrt(2) 1771171769110695 m001 (ln(5)+Ei(1))/(ln(2+3^(1/2))+Robbin) 1771171771280353 r005 Re(z^2+c),c=17/78+19/45*I,n=32 1771171775385264 g006 Psi(1,3/10)-Psi(1,7/9)-Psi(1,5/9)-Psi(1,4/7) 1771171779421521 r005 Im(z^2+c),c=-51/94+13/40*I,n=36 1771171780009450 b008 23-5*ExpIntegralEi[2] 1771171780741369 a007 Real Root Of -409*x^4+91*x^3+738*x^2-920*x+586 1771171781754386 a007 Real Root Of 225*x^4+581*x^3+497*x^2+327*x+34 1771171784229514 r009 Re(z^3+c),c=-13/38+8/11*I,n=34 1771171785772701 r005 Re(z^2+c),c=-2/17+20/49*I,n=45 1771171793985482 q001 5124/2893 1771171794957943 a007 Real Root Of -634*x^4-959*x^3+247*x^2-210*x-236 1771171799458509 a007 Real Root Of 328*x^4+316*x^3-920*x^2-271*x+934 1771171804556329 r002 30th iterates of z^2 + 1771171806449842 r005 Im(z^2+c),c=33/98+11/29*I,n=33 1771171806851232 r005 Re(z^2+c),c=37/114+5/18*I,n=50 1771171810729316 r002 3th iterates of z^2 + 1771171811111621 k006 concat of cont frac of 1771171813083373 a007 Real Root Of 176*x^4+227*x^3+196*x^2+915*x+535 1771171814702138 a007 Real Root Of -538*x^4-375*x^3+844*x^2-82*x+418 1771171815218625 a007 Real Root Of -488*x^4-765*x^3+281*x^2-326*x-907 1771171816365393 r005 Im(z^2+c),c=-35/114+16/55*I,n=5 1771171817021114 m001 Zeta(5)^Trott2nd/BesselI(1,1) 1771171821542125 r009 Re(z^3+c),c=-53/90+13/43*I,n=36 1771171822009600 r005 Im(z^2+c),c=-33/122+5/19*I,n=20 1771171826386505 a007 Real Root Of -689*x^4-899*x^3+896*x^2+584*x+9 1771171827413175 m001 (ln(3)+ln(2^(1/2)+1))/(Otter-Riemann1stZero) 1771171830108611 m001 (GaussAGM+Magata)/(BesselI(0,1)+GAMMA(5/6)) 1771171830962031 r005 Re(z^2+c),c=-2/17+20/49*I,n=43 1771171831141518 k008 concat of cont frac of 1771171839682735 m001 (Niven+Trott)/(FellerTornier+MasserGramain) 1771171842691959 m004 -5/6+25*Sqrt[5]*Pi+ProductLog[Sqrt[5]*Pi]^2 1771171858340002 r005 Re(z^2+c),c=-101/82+7/54*I,n=6 1771171862383183 l006 ln(548/3221) 1771171865553512 r002 62th iterates of z^2 + 1771171877197679 m008 (2*Pi^5-3/4)/(5/6*Pi+5/6) 1771171879308984 r005 Re(z^2+c),c=-2/17+20/49*I,n=48 1771171883460987 l006 ln(5362/6401) 1771171889018842 m001 (gamma+KhinchinHarmonic)/(Thue+ZetaP(2)) 1771171889193926 m001 (CareFree+Magata)/(exp(Pi)-gamma(1)) 1771171891350773 m001 Pi*csc(7/24*Pi)/GAMMA(17/24)-Pi+FeigenbaumC 1771171892899224 a007 Real Root Of -672*x^4-902*x^3+644*x^2+132*x-185 1771171895419059 a007 Real Root Of 736*x^4+448*x^3-761*x^2+793*x-962 1771171898902726 r005 Re(z^2+c),c=-2/17+20/49*I,n=46 1771171899868418 m001 AlladiGrinstead^Conway-LandauRamanujan2nd 1771171906193655 r002 54i'th iterates of 2*x/(1-x^2) of 1771171908342918 m001 (2^(1/2)-Psi(1,1/3))/(-cos(1/12*Pi)+Backhouse) 1771171911311126 k006 concat of cont frac of 1771171911980736 r005 Re(z^2+c),c=-2/17+20/49*I,n=51 1771171915630895 m005 (1/2*Zeta(3)+8/9)/(10/11*2^(1/2)-4/9) 1771171915843577 a007 Real Root Of 195*x^4+217*x^3+522*x^2+831*x-879 1771171915870851 a001 47/1597*121393^(7/20) 1771171920092003 r005 Re(z^2+c),c=-2/17+20/49*I,n=49 1771171920184281 r005 Im(z^2+c),c=-29/34+10/77*I,n=55 1771171920387522 a007 Real Root Of 169*x^4+430*x^3+220*x^2-184*x-290 1771171923381595 r005 Re(z^2+c),c=-2/17+20/49*I,n=54 1771171924346569 m001 (Gompertz-MertensB2)/(Cahen+FeigenbaumC) 1771171926635863 r005 Re(z^2+c),c=-2/17+20/49*I,n=52 1771171927356191 r005 Re(z^2+c),c=-2/17+20/49*I,n=57 1771171928632588 r005 Re(z^2+c),c=-2/17+20/49*I,n=55 1771171928740569 r005 Re(z^2+c),c=-2/17+20/49*I,n=60 1771171929222336 r005 Re(z^2+c),c=-2/17+20/49*I,n=63 1771171929232690 r005 Re(z^2+c),c=-2/17+20/49*I,n=58 1771171929409541 r005 Re(z^2+c),c=-2/17+20/49*I,n=61 1771171929460296 r005 Re(z^2+c),c=-2/17+20/49*I,n=64 1771171929889140 r005 Re(z^2+c),c=-2/17+20/49*I,n=62 1771171930691179 r005 Re(z^2+c),c=-2/17+20/49*I,n=59 1771171933059292 r005 Re(z^2+c),c=-2/17+20/49*I,n=56 1771171934498891 a007 Real Root Of -596*x^4-400*x^3+966*x^2-361*x-27 1771171939073863 m001 (Catalan+PrimesInBinary)/(-Salem+Tetranacci) 1771171940047157 r005 Re(z^2+c),c=-2/17+20/49*I,n=53 1771171940574472 a007 Real Root Of 783*x^4-760*x^3+383*x^2-988*x-192 1771171941209297 m001 (MadelungNaCl+TwinPrimes)/(Bloch-FeigenbaumC) 1771171941830624 q001 4141/2338 1771171943141029 r005 Im(z^2+c),c=-23/18+1/10*I,n=11 1771171946541957 m008 (1/6*Pi^6+1/6)/(2/3*Pi-3) 1771171949222170 a007 Real Root Of -173*x^4-37*x^3+879*x^2+675*x-65 1771171951890615 a001 233/2207*39603^(15/31) 1771171954250147 r009 Re(z^3+c),c=-16/31+1/9*I,n=11 1771171954335631 r009 Re(z^3+c),c=-35/118+31/56*I,n=43 1771171960654685 r005 Re(z^2+c),c=-2/17+20/49*I,n=50 1771171961487348 r005 Re(z^2+c),c=-17/114+39/64*I,n=24 1771171962115214 k008 concat of cont frac of 1771171965059111 a001 987/521*5778^(8/31) 1771171965519202 r005 Re(z^2+c),c=-113/126+3/11*I,n=4 1771171966221636 a007 Real Root Of 102*x^4-476*x^3-508*x^2+765*x-700 1771171977043060 r005 Re(z^2+c),c=-20/23+10/39*I,n=24 1771171980415956 r005 Re(z^2+c),c=33/122+13/57*I,n=40 1771171995593312 m001 1/GAMMA(5/6)*GAMMA(11/24)^2*exp(Pi)^2 1771172000243990 a001 12238/17*514229^(19/32) 1771172004741747 m001 (3^(1/2)+cos(1/12*Pi))^Stephens 1771172005029899 a007 Real Root Of 775*x^4+943*x^3-900*x^2+210*x+808 1771172006837453 a008 Real Root of (-6-7*x^2-7*x^4+x^8) 1771172007205938 a007 Real Root Of 878*x^4+337*x^3+458*x^2-616*x+92 1771172008548371 r005 Im(z^2+c),c=-35/82+17/57*I,n=26 1771172011359211 m001 (cos(1/5*Pi)+gamma(2))/(FransenRobinson+Niven) 1771172011513822 k008 concat of cont frac of 1771172012989411 r005 Im(z^2+c),c=-43/94+7/23*I,n=36 1771172013061873 a007 Real Root Of -504*x^4-675*x^3+103*x^2-877*x-667 1771172014432421 k006 concat of cont frac of 1771172016189966 m001 1/ln(ArtinRank2)^2*FransenRobinson^2/Si(Pi)^2 1771172018213848 m001 (1+exp(1))/(gamma(3)+exp(-1/2*Pi)) 1771172018994899 m005 (1/2*exp(1)-5/11)/(1/5*3^(1/2)-6/7) 1771172021293116 r009 Re(z^3+c),c=-23/94+12/31*I,n=17 1771172021391327 r005 Re(z^2+c),c=-2/17+20/49*I,n=47 1771172029638456 r005 Re(z^2+c),c=11/38+12/49*I,n=46 1771172034239974 r002 5th iterates of z^2 + 1771172040626897 a007 Real Root Of -315*x^4-67*x^3+891*x^2-487*x-930 1771172049122701 a007 Real Root Of 23*x^4+456*x^3+815*x^2-862*x-734 1771172054937214 a001 47/46368*1836311903^(7/20) 1771172056937299 a001 987/521*2207^(9/31) 1771172058960946 m005 (-15/4+1/4*5^(1/2))/(6*Pi-5/6) 1771172059236017 a001 4181/2207*322^(12/31) 1771172077642913 r005 Im(z^2+c),c=-13/27+1/33*I,n=46 1771172078909776 r009 Re(z^3+c),c=-25/78+27/43*I,n=53 1771172081791349 l006 ln(1415/8317) 1771172082054149 a001 322/121393*4181^(39/50) 1771172086561106 p003 LerchPhi(1/5,1,2/35) 1771172087275114 a007 Real Root Of -243*x^4-556*x^3-742*x^2-569*x+622 1771172092362070 m005 (1/2*3^(1/2)-3)/(4/7*gamma+7/8) 1771172099565362 a007 Real Root Of -541*x^4-732*x^3+114*x^2-908*x-709 1771172108550852 m005 (1/2*Zeta(3)-1)/(10/11*gamma-3/4) 1771172111921311 k006 concat of cont frac of 1771172121341934 m002 (Pi*ProductLog[Pi])/4+Tanh[Pi]/ProductLog[Pi] 1771172121428421 k008 concat of cont frac of 1771172122484121 k007 concat of cont frac of 1771172124599312 k008 concat of cont frac of 1771172124615251 a007 Real Root Of -246*x^4+486*x^3+992*x^2+471*x-117 1771172133918548 a007 Real Root Of 285*x^4+221*x^3-862*x^2-265*x+658 1771172136089150 m001 (sin(1)+Grothendieck)^Lehmer 1771172137213511 k008 concat of cont frac of 1771172139691311 r008 a(0)=0,K{-n^6,55-13*n+7*n^2+8*n^3} 1771172139887865 r005 Im(z^2+c),c=-77/90+2/17*I,n=10 1771172141211411 k007 concat of cont frac of 1771172141718834 a007 Real Root Of 421*x^4+471*x^3-135*x^2+784*x+286 1771172141785666 r005 Re(z^2+c),c=-13/110+25/43*I,n=9 1771172152312141 k007 concat of cont frac of 1771172156881189 r005 Re(z^2+c),c=-67/82+5/41*I,n=60 1771172159917522 l006 ln(5651/6746) 1771172160066291 m001 (2^(1/3))^BesselI(0,2)*(2^(1/3))^DuboisRaymond 1771172168966268 r009 Re(z^3+c),c=-23/94+12/31*I,n=20 1771172180093040 m005 (1/2*5^(1/2)+2/5)/(8/9*2^(1/2)-2/5) 1771172181716208 q001 3158/1783 1771172182426538 a007 Real Root Of 267*x^4+914*x^3+915*x^2-151*x-687 1771172182690898 a007 Real Root Of -780*x^4-776*x^3+534*x^2-860*x+166 1771172188419612 b008 Sqrt[2]+Sqrt[3*E]/8 1771172189992361 r004 Re(z^2+c),c=1/18+1/22*I,z(0)=exp(7/8*I*Pi),n=8 1771172200296494 r005 Re(z^2+c),c=-2/17+20/49*I,n=44 1771172203238036 r005 Im(z^2+c),c=-13/25+13/41*I,n=58 1771172205734424 m001 1/exp(TreeGrowth2nd)*FeigenbaumC*GAMMA(3/4)^2 1771172205800149 m005 (1/3*2^(1/2)-1/4)/(9/11*gamma+7/9) 1771172212471233 k008 concat of cont frac of 1771172213509066 a007 Real Root Of 36*x^4-233*x^3+191*x^2+865*x-716 1771172217059719 a001 17393796001/5*34^(6/13) 1771172218174041 m001 1/Rabbit*exp(DuboisRaymond)^2/GAMMA(19/24) 1771172219847609 m001 (-polylog(4,1/2)+OneNinth)/(exp(Pi)-gamma(3)) 1771172220471457 l006 ln(867/5096) 1771172221111312 k007 concat of cont frac of 1771172223501589 r005 Re(z^2+c),c=-9/50+8/35*I,n=20 1771172232793857 r009 Re(z^3+c),c=-35/114+27/46*I,n=42 1771172240217831 a007 Real Root Of -785*x^4-941*x^3+459*x^2-350*x+437 1771172241571321 k009 concat of cont frac of 1771172254353545 m001 ArtinRank2^PlouffeB*Riemann2ndZero 1771172263341237 r002 28th iterates of z^2 + 1771172266353679 m005 (1/2*2^(1/2)+3/4)/(2/9*Zeta(3)+5/9) 1771172269586085 a007 Real Root Of -575*x^4-944*x^3+270*x^2-107*x-623 1771172272627636 m001 (-KhinchinLevy+ZetaP(4))/(5^(1/2)-ln(5)) 1771172272854509 m005 (1/2*2^(1/2)-3/5)/(6/11*2^(1/2)-1/6) 1771172278161066 a007 Real Root Of 547*x^4+424*x^3-914*x^2-940*x-136 1771172278558996 a007 Real Root Of 594*x^4+710*x^3-606*x^2+513*x+909 1771172284029561 r005 Im(z^2+c),c=29/82+1/37*I,n=5 1771172287625165 a007 Real Root Of -420*x^4-714*x^3-674*x^2-872*x+736 1771172289846602 m006 (3*ln(Pi)-1/2)/(4*Pi+4) 1771172294908086 a007 Real Root Of 174*x^4-339*x^3-424*x^2+735*x-964 1771172303797837 r005 Im(z^2+c),c=-49/58+8/63*I,n=40 1771172307504752 a001 6765/521*15127^(1/31) 1771172312268444 a001 233/167761*24476^(29/31) 1771172314797345 r002 20th iterates of z^2 + 1771172318426141 k006 concat of cont frac of 1771172320515757 k002 Champernowne real with 47/2*n^2-33/2*n+10 1771172321270994 a007 Real Root Of 737*x^4+835*x^3-825*x^2+453*x+777 1771172321818288 a001 4181/521*3571^(3/31) 1771172327584451 l004 Si(289/117) 1771172329420389 r002 4th iterates of z^2 + 1771172335757296 a007 Real Root Of 506*x^4+501*x^3-531*x^2+821*x+924 1771172336336014 k008 concat of cont frac of 1771172337617177 r004 Re(z^2+c),c=-1/30-9/17*I,z(0)=I,n=5 1771172349667467 a007 Real Root Of 420*x^4+613*x^3+210*x^2+463*x-566 1771172352502911 a001 5473/2889*322^(12/31) 1771172357990180 a001 123/75025*514229^(52/59) 1771172360314575 a007 Real Root Of -445*x^4-229*x^3+831*x^2-284*x-3 1771172367984058 q001 5333/3011 1771172368743749 m001 1/(3^(1/3))*exp(FransenRobinson)^2/Zeta(5)^2 1771172373952684 r005 Im(z^2+c),c=-37/34+8/37*I,n=61 1771172375093875 a007 Real Root Of 675*x^4+494*x^3-773*x^2+874*x+75 1771172377899001 a003 cos(Pi*11/79)/cos(Pi*26/79) 1771172379321511 k009 concat of cont frac of 1771172379700237 r002 4th iterates of z^2 + 1771172380575633 r008 a(0)=0,K{-n^6,26-58*n^3+61*n^2+27*n} 1771172382581178 m001 ln(ArtinRank2)^2/Champernowne^2*(3^(1/3))^2 1771172385928727 l006 ln(1186/6971) 1771172393814618 m001 gamma*ArtinRank2*TreeGrowth2nd 1771172395289982 a001 28657/15127*322^(12/31) 1771172396320453 s001 sum(exp(-Pi/4)^(n-1)*A241491[n],n=1..infinity) 1771172397380463 h001 (1/11*exp(1)+6/11)/(6/11*exp(2)+4/9) 1771172398368343 m001 FransenRobinson^(TreeGrowth2nd/Kolakoski) 1771172401532532 a001 75025/39603*322^(12/31) 1771172402443308 a001 98209/51841*322^(12/31) 1771172402576188 a001 514229/271443*322^(12/31) 1771172402595575 a001 1346269/710647*322^(12/31) 1771172402600152 a001 2178309/1149851*322^(12/31) 1771172402607557 a001 208010/109801*322^(12/31) 1771172402658313 a001 317811/167761*322^(12/31) 1771172403006198 a001 121393/64079*322^(12/31) 1771172405028080 a007 Real Root Of -581*x^4-468*x^3+927*x^2+163*x+498 1771172405390640 a001 11592/6119*322^(12/31) 1771172409439924 r005 Im(z^2+c),c=-17/110+24/31*I,n=12 1771172409473060 l006 ln(5940/7091) 1771172409530811 m001 Lehmer/GlaisherKinkelin*ln(Porter) 1771172411183921 a007 Real Root Of 285*x^4+753*x^3+709*x^2-70*x-969 1771172412724256 a007 Real Root Of 324*x^4+363*x^3-374*x^2-303*x-535 1771172421733848 a001 17711/9349*322^(12/31) 1771172423073953 m001 MadelungNaCl^2*ln(LandauRamanujan)/arctan(1/2) 1771172426158121 m001 GAMMA(1/24)*exp(FeigenbaumDelta)*sin(1)^2 1771172427486947 r005 Re(z^2+c),c=4/15+11/49*I,n=33 1771172441444489 a001 233/3571*9349^(19/31) 1771172455904211 r009 Re(z^3+c),c=-37/122+27/47*I,n=60 1771172457941151 m001 (3^(1/2)-Zeta(1,2))/(Kac+QuadraticClass) 1771172459472771 m004 5+(25*Pi)/6-Cos[Sqrt[5]*Pi]/Log[Sqrt[5]*Pi] 1771172467096132 m001 (Cahen+Kac)/(LaplaceLimit+ZetaQ(2)) 1771172468538797 a007 Real Root Of 367*x^4+349*x^3-843*x^2-271*x+492 1771172475031253 r005 Im(z^2+c),c=-27/34+7/72*I,n=42 1771172477202931 a003 cos(Pi*1/36)/cos(Pi*22/71) 1771172481245295 l006 ln(1505/8846) 1771172481595127 r002 20th iterates of z^2 + 1771172493128297 a007 Real Root Of -541*x^4+780*x^3+839*x^2+722*x-158 1771172498700738 r005 Re(z^2+c),c=23/94+13/64*I,n=32 1771172502220854 m001 (Si(Pi)+ln(2^(1/2)+1))/(QuadraticClass+Robbin) 1771172507349114 a007 Real Root Of -434*x^4-204*x^3+556*x^2-501*x+506 1771172510607476 a007 Real Root Of -48*x^4-885*x^3-601*x^2+230*x-954 1771172511549645 m001 Trott/(arctan(1/2)+ZetaR(2)) 1771172514231601 a001 341/646*144^(41/58) 1771172517796041 r005 Im(z^2+c),c=-45/98+20/61*I,n=11 1771172522116374 m001 FeigenbaumB^Weierstrass/polylog(4,1/2) 1771172525667815 a007 Real Root Of -641*x^4-931*x^3+224*x^2-251*x-12 1771172527444758 m001 Zeta(1,2)*GAMMA(1/6)/exp(cos(1))^2 1771172530294634 a007 Real Root Of -318*x^4-825*x^3-957*x^2-565*x+547 1771172533751870 a001 6765/3571*322^(12/31) 1771172540263856 a007 Real Root Of 645*x^4+602*x^3-579*x^2+226*x-786 1771172540764670 m001 (sin(1/5*Pi)-GAMMA(2/3))/(Pi^(1/2)-Totient) 1771172542382217 r005 Re(z^2+c),c=-23/16+16/113*I,n=4 1771172549865015 a007 Real Root Of -633*x^4-881*x^3+176*x^2-117*x+575 1771172558363411 r005 Re(z^2+c),c=-1/7+17/49*I,n=20 1771172559622923 a007 Real Root Of -655*x^4-905*x^3+549*x^2+460*x+510 1771172561265780 m004 -2+5*Pi*Cot[Sqrt[5]*Pi]+5/Log[Sqrt[5]*Pi] 1771172570244112 r005 Im(z^2+c),c=-25/34+20/109*I,n=42 1771172571032760 r002 28th iterates of z^2 + 1771172576204980 a007 Real Root Of -483*x^4-640*x^3-149*x^2-421*x+919 1771172580700746 a007 Real Root Of -26*x^4+513*x^3+190*x^2-930*x+863 1771172583730399 m001 1+Zeta(1,2)*Otter 1771172586567562 r009 Re(z^3+c),c=-9/94+31/36*I,n=12 1771172587284081 m005 (1/2*2^(1/2)+3/5)/(1/7*Pi-3/8) 1771172591222415 a007 Real Root Of -578*x^4-436*x^3+296*x^2-782*x+952 1771172610597938 a007 Real Root Of -571*x^4-108*x^3+956*x^2-681*x+814 1771172611129311 p001 sum((-1)^n/(571*n+548)/(16^n),n=0..infinity) 1771172612121013 k009 concat of cont frac of 1771172617441566 m001 (3^(1/3)-Mills)/(StronglyCareFree-ZetaQ(3)) 1771172626318896 h001 (1/12*exp(1)+1/7)/(3/5*exp(1)+5/11) 1771172634255602 a007 Real Root Of 777*x^4+548*x^3-876*x^2+609*x-775 1771172635217675 a001 23725150497407/55*377^(5/21) 1771172635871891 l006 ln(6229/7436) 1771172638436482 q001 2175/1228 1771172638522302 a007 Real Root Of -925*x^4-854*x^3+764*x^2-768*x+601 1771172646758694 a007 Real Root Of -576*x^4-461*x^3+677*x^2-803*x-439 1771172646761549 r005 Im(z^2+c),c=31/118+3/62*I,n=55 1771172650696071 r002 35th iterates of z^2 + 1771172651120958 a007 Real Root Of 403*x^4+570*x^3-131*x^2+682*x+820 1771172651752304 r005 Re(z^2+c),c=-7/48+20/59*I,n=17 1771172652931290 r005 Im(z^2+c),c=-101/106+6/35*I,n=63 1771172654117593 r005 Re(z^2+c),c=-9/50+8/35*I,n=18 1771172659099238 a001 144/1149851*199^(29/31) 1771172662770672 a007 Real Root Of -451*x^4-152*x^3+960*x^2-506*x-314 1771172681360624 r005 Im(z^2+c),c=-51/122+19/34*I,n=10 1771172681652607 r004 Re(z^2+c),c=3/11-4/23*I,z(0)=exp(3/8*I*Pi),n=2 1771172682065091 m001 GAMMA(1/12)*FeigenbaumDelta/ln(GAMMA(2/3)) 1771172696093516 r005 Re(z^2+c),c=-15/31+16/29*I,n=3 1771172699842806 m001 ZetaQ(4)/Thue/Trott 1771172704257747 a007 Real Root Of -22*x^4-374*x^3+291*x^2+214*x-498 1771172718655315 m005 (1/2*Catalan+5/8)/(1/8*Catalan+6) 1771172726975006 r005 Re(z^2+c),c=-2/17+20/49*I,n=41 1771172736406191 a007 Real Root Of 874*x^4+898*x^3-916*x^2+109*x-545 1771172736878267 a001 9349/89*34^(4/27) 1771172739057395 r002 52th iterates of z^2 + 1771172741893210 a007 Real Root Of -713*x^4-713*x^3+851*x^2+2*x+389 1771172742945313 h001 (7/8*exp(1)+1/12)/(4/9*exp(1)+2/11) 1771172743209526 m001 (Catalan-Ei(1))/(-GAMMA(5/6)+Stephens) 1771172747503456 r009 Re(z^3+c),c=-19/110+2/47*I,n=5 1771172752045997 m001 (exp(-1/2*Pi)+FeigenbaumB)/(3^(1/2)-ln(Pi)) 1771172755703527 m001 1/exp(Paris)/Niven/sqrt(3)^2 1771172760528600 a007 Real Root Of -328*x^4-252*x^3+250*x^2-68*x+923 1771172764718566 r005 Re(z^2+c),c=-23/34+28/85*I,n=34 1771172772069122 m001 (-CopelandErdos+Trott)/(2^(1/3)-gamma(2)) 1771172775822339 m009 (1/6*Psi(1,3/4)-3/4)/(2/3*Psi(1,2/3)-1/5) 1771172779711151 m001 1/Porter*Paris^2/exp(TwinPrimes)^2 1771172781903354 m001 Salem/Rabbit/exp(sqrt(5)) 1771172785447128 r009 Re(z^3+c),c=-25/64+14/29*I,n=2 1771172786391229 r009 Im(z^3+c),c=-43/90+1/19*I,n=53 1771172788815440 r005 Re(z^2+c),c=-9/56+15/52*I,n=7 1771172789529235 a007 Real Root Of 481*x^4+581*x^3-249*x^2+567*x+280 1771172792489953 m001 (3^(1/3)+Khinchin)/(KomornikLoreti+Landau) 1771172801718075 r002 62th iterates of z^2 + 1771172809766781 a007 Real Root Of 793*x^4+899*x^3-749*x^2+768*x+901 1771172811311407 a007 Real Root Of -686*x^4-490*x^3+765*x^2-854*x+116 1771172813268868 a007 Real Root Of -541*x^4-940*x^3-313*x^2-935*x-573 1771172815879917 r002 58th iterates of z^2 + 1771172817152820 m004 500/(3*Pi)+5*E^(Sqrt[5]*Pi)*Pi 1771172819585525 l006 ln(7219/7348) 1771172821601314 a007 Real Root Of -548*x^4-255*x^3+951*x^2-460*x+178 1771172829171460 r009 Re(z^3+c),c=-19/62+31/53*I,n=49 1771172829896497 r009 Re(z^3+c),c=-5/29+2/55*I,n=5 1771172833009369 a007 Real Root Of 40*x^4+761*x^3+917*x^2-286*x-858 1771172835619666 l006 ln(319/1875) 1771172838507644 m005 (1/3*Zeta(3)+1/7)/(4/5*Pi+5/9) 1771172841141231 k008 concat of cont frac of 1771172841876071 a005 (1/cos(4/57*Pi))^1433 1771172842194232 l006 ln(6518/7781) 1771172860461561 m005 (1/3*2^(1/2)+2/11)/(4/9*5^(1/2)-5/8) 1771172867612732 m005 (1/2*3^(1/2)-6/11)/(11/12*3^(1/2)+2/9) 1771172869870397 r005 Im(z^2+c),c=-1+46/241*I,n=5 1771172871650420 r005 Im(z^2+c),c=-109/122+30/37*I,n=3 1771172874194683 a007 Real Root Of -16*x^4+217*x^3-979*x^2+740*x+163 1771172880530345 r005 Im(z^2+c),c=-53/102+21/64*I,n=20 1771172895552797 r005 Re(z^2+c),c=-49/90+27/44*I,n=15 1771172896972741 a007 Real Root Of -181*x^4+202*x^3+753*x^2-208*x+173 1771172898402862 m001 exp(Bloch)/FibonacciFactorial*FeigenbaumKappa 1771172898689677 q001 5542/3129 1771172904400006 r005 Re(z^2+c),c=-27/22+35/69*I,n=3 1771172906086412 r005 Re(z^2+c),c=-31/26+19/70*I,n=14 1771172910031498 a007 Real Root Of -528*x^4-226*x^3+824*x^2-789*x-42 1771172911317744 r005 Im(z^2+c),c=-28/31+7/46*I,n=45 1771172919541233 k008 concat of cont frac of 1771172921015670 m003 8*E^(-1/2-Sqrt[5]/2)+Tanh[1/2+Sqrt[5]/2]/5 1771172922994796 m001 1/ln(Rabbit)^2/Artin/GAMMA(17/24) 1771172924434081 s002 sum(A153361[n]/(exp(n)-1),n=1..infinity) 1771172931480993 a003 cos(Pi*8/37)+sin(Pi*31/67) 1771172936734349 a007 Real Root Of 522*x^4+897*x^3+97*x^2-41*x-530 1771172938705615 r005 Im(z^2+c),c=-57/56+13/61*I,n=5 1771172940748148 m004 5*E^(Sqrt[5]*Pi)*Pi+25*Pi*Sin[Sqrt[5]*Pi] 1771172945253934 m004 Cos[Sqrt[5]*Pi]/3+3125*Pi*Csch[Sqrt[5]*Pi] 1771172947858046 a007 Real Root Of -724*x^4-874*x^3+888*x^2-240*x-942 1771172954165587 a007 Real Root Of -475*x^4-537*x^3+278*x^2-128*x+592 1771172963968905 m005 (1/2*3^(1/2)+8/9)/(16/5+3*5^(1/2)) 1771172965450065 r009 Im(z^3+c),c=-7/122+1/57*I,n=2 1771172966973716 r005 Im(z^2+c),c=-35/82+14/47*I,n=27 1771172969551387 a007 Real Root Of 14*x^4-953*x^3-946*x^2+838*x-981 1771172971767086 a007 Real Root Of 305*x^4-23*x^3-310*x^2+831*x-685 1771172971825604 m001 exp(Khintchine)^2/Champernowne*Zeta(7)^2 1771172976824343 a007 Real Root Of 245*x^4+42*x^3-159*x^2+551*x-703 1771172978527267 r005 Im(z^2+c),c=-6/11+16/49*I,n=39 1771172980501510 a001 28657/2207*123^(2/31) 1771172985621023 a007 Real Root Of 319*x^4-240*x^3-835*x^2+986*x-107 1771172985716240 m001 1/LaplaceLimit/CareFree^2/ln(GAMMA(1/6)) 1771173004712011 h001 (1/7*exp(2)+1/12)/(5/6*exp(2)+3/11) 1771173012461900 r005 Im(z^2+c),c=-11/14+12/119*I,n=58 1771173017688555 m008 (1/6*Pi^5+2/3)/(3*Pi^4-1/2) 1771173020168700 m001 1/exp(BesselJ(1,1))/Lehmer^2*cos(Pi/12) 1771173022470460 a007 Real Root Of -742*x^4+911*x^3+145*x^2+458*x-90 1771173030997206 l006 ln(6807/8126) 1771173031297727 r005 Im(z^2+c),c=-37/30+16/93*I,n=10 1771173032994188 a008 Real Root of x^4-x^3-23*x^2+47*x+140 1771173033248793 m005 (1/2*3^(1/2)-1/4)/(1/12*Catalan-1/9) 1771173040937588 m001 (2^(1/3)+GAMMA(5/6))/(-ArtinRank2+FeigenbaumB) 1771173043559639 m001 cos(1)*ln(GAMMA(7/24))^2*sin(Pi/12) 1771173043901344 m001 (1+GAMMA(17/24))/(ArtinRank2+Lehmer) 1771173048722538 r005 Im(z^2+c),c=-19/56+12/43*I,n=30 1771173049924212 r002 61i'th iterates of 2*x/(1-x^2) of 1771173051820133 a007 Real Root Of -491*x^4+7*x^3+835*x^2-859*x+730 1771173052017709 m005 (1/2*Catalan+1/12)/(7/10*Pi+6/7) 1771173054447467 r002 38th iterates of z^2 + 1771173057224905 m001 exp(gamma)^BesselJZeros(0,1)-sqrt(5) 1771173063073216 m001 (2^(1/3)+Ei(1))/(Mills+Weierstrass) 1771173066806943 q001 3367/1901 1771173075812567 s002 sum(A180002[n]/((2^n+1)/n),n=1..infinity) 1771173080021742 m005 (1/2*3^(1/2)+1)/(1/4*2^(1/2)+7/10) 1771173083867926 r005 Im(z^2+c),c=-23/18+45/188*I,n=3 1771173089043202 r005 Im(z^2+c),c=-25/42+8/25*I,n=48 1771173100148612 m001 gamma(3)/(DuboisRaymond-GAMMA(2/3)) 1771173102791949 a007 Real Root Of 23*x^4-390*x^3-370*x^2+417*x-494 1771173111221357 k008 concat of cont frac of 1771173111719723 m009 (5/6*Psi(1,3/4)-2/5)/(3/8*Pi^2+6) 1771173113411111 k006 concat of cont frac of 1771173113922261 k007 concat of cont frac of 1771173115111111 k009 concat of cont frac of 1771173116121713 k007 concat of cont frac of 1771173117035786 r002 37th iterates of z^2 + 1771173117272676 a007 Real Root Of -312*x^4-300*x^3+234*x^2+72*x+797 1771173125292293 a007 Real Root Of 599*x^4+943*x^3+210*x^2+935*x+342 1771173129117646 p003 LerchPhi(1/3,2,39/163) 1771173129510607 b008 11/14+SinIntegral[Pi/3] 1771173141480815 m001 cos(1)/(exp(gamma)^GAMMA(11/24)) 1771173143159366 a007 Real Root Of 417*x^4+104*x^3-703*x^2+675*x-125 1771173145568268 r005 Re(z^2+c),c=-113/114+10/59*I,n=56 1771173152137915 l006 ln(1685/9904) 1771173166970708 a003 sin(Pi*28/89)+sin(Pi*32/83) 1771173170275220 m001 exp(PisotVijayaraghavan)*Bloch/Zeta(9) 1771173176866870 a003 cos(Pi*10/93)+cos(Pi*11/58) 1771173180830324 m001 (Lehmer-Porter)/(StolarskyHarborth+ThueMorse) 1771173185306804 a007 Real Root Of -86*x^4+508*x^3+984*x^2-782*x-803 1771173186707647 r002 3th iterates of z^2 + 1771173187148922 m001 (ArtinRank2-Sierpinski)/(Ei(1,1)-GAMMA(17/24)) 1771173190162996 r005 Im(z^2+c),c=-53/56+10/59*I,n=21 1771173192220669 m004 11-(5*E^(Sqrt[5]*Pi))/Pi+Sqrt[5]*Pi 1771173193154110 k006 concat of cont frac of 1771173193457315 m001 (cos(1/5*Pi)-ThueMorse)/(Zeta(3)+Zeta(5)) 1771173204105590 a007 Real Root Of 110*x^4-269*x^3-574*x^2+212*x-401 1771173204421355 l006 ln(7096/8471) 1771173207238255 r009 Re(z^3+c),c=-19/66+29/55*I,n=17 1771173210215181 k006 concat of cont frac of 1771173212645271 k008 concat of cont frac of 1771173214316415 r002 27th iterates of z^2 + 1771173214455536 r005 Re(z^2+c),c=-9/82+23/54*I,n=22 1771173215887648 h001 (8/11*exp(2)+11/12)/(1/10*exp(1)+1/12) 1771173226053948 l006 ln(1366/8029) 1771173227302266 a007 Real Root Of -162*x^4-273*x^3-413*x^2-437*x+599 1771173227326822 r005 Re(z^2+c),c=-129/106+1/46*I,n=24 1771173228632039 a001 192900153618/55*225851433717^(5/21) 1771173228632040 a001 2139295485799/55*9227465^(5/21) 1771173229008766 a007 Real Root Of 36*x^4+143*x^3+320*x^2+146*x-305 1771173231041515 a007 Real Root Of 509*x^4-185*x^3-280*x^2-758*x-127 1771173238959306 r005 Im(z^2+c),c=-25/58+16/59*I,n=8 1771173239262939 a001 17*843^(20/29) 1771173241214312 k007 concat of cont frac of 1771173243642304 m001 HardyLittlewoodC4/(KhinchinLevy-ln(gamma)) 1771173245868914 a007 Real Root Of 945*x^4+954*x^3-916*x^2+443*x-341 1771173250054497 r009 Re(z^3+c),c=-31/64+27/52*I,n=20 1771173250520173 r009 Im(z^3+c),c=-9/56+40/47*I,n=48 1771173251533912 m005 (1/2*5^(1/2)+2/11)/(1/3*Catalan+3/7) 1771173253795483 a007 Real Root Of -612*x^4-766*x^3+102*x^2-469*x+616 1771173257871896 m001 (cos(1)*Zeta(3)+HardyLittlewoodC4)/cos(1) 1771173259143069 r005 Im(z^2+c),c=-13/27+1/33*I,n=48 1771173262385301 r005 Im(z^2+c),c=-79/86+5/32*I,n=17 1771173266278138 a007 Real Root Of 649*x^4+443*x^3-853*x^2+876*x+302 1771173266779198 a001 233/1364*64079^(13/31) 1771173271173271 q001 4559/2574 1771173277685428 r005 Re(z^2+c),c=-1/7+17/49*I,n=23 1771173282014941 a001 3571/6765*144^(41/58) 1771173282972747 m001 1/Zeta(3)^2*exp(Bloch)^2/Zeta(9)^2 1771173288739439 r005 Re(z^2+c),c=-51/94+30/53*I,n=8 1771173290707882 a001 75025/5778*123^(2/31) 1771173291567762 a007 Real Root Of -38*x^4-679*x^3-152*x^2-800*x+431 1771173296773647 m005 (25/42+1/6*5^(1/2))/(5*Zeta(3)-6/11) 1771173301535218 a001 646/341*322^(12/31) 1771173305185655 a007 Real Root Of -405*x^4-419*x^3+466*x^2-364*x-449 1771173306691342 r005 Re(z^2+c),c=-39/46+3/58*I,n=38 1771173312531192 k008 concat of cont frac of 1771173312708272 m001 (Sarnak+Totient)/(ln(2)+Bloch) 1771173317737781 r005 Re(z^2+c),c=13/94+31/54*I,n=32 1771173323521767 k002 Champernowne real with 24*n^2-18*n+11 1771173325493950 p004 log(34919/29251) 1771173326621374 m001 (GAMMA(19/24)+ZetaP(2))/(Catalan+gamma(3)) 1771173329698644 p001 sum((-1)^n/(80*n+27)/n/(5^n),n=0..infinity) 1771173330156671 a007 Real Root Of -585*x^4-685*x^3+338*x^2-233*x+478 1771173331189886 a007 Real Root Of -510*x^4-527*x^3+557*x^2-601*x-721 1771173331913276 b008 Pi*(-1+ArcCosh[5]^(-1)) 1771173335966391 a001 196418/15127*123^(2/31) 1771173336787497 h001 (1/10*exp(2)+1/5)/(2/3*exp(2)+3/8) 1771173342091150 m001 (Artin-Conway)/(KhinchinLevy-Robbin) 1771173342569519 a001 514229/39603*123^(2/31) 1771173343532902 a001 1346269/103682*123^(2/31) 1771173343760326 a001 2178309/167761*123^(2/31) 1771173344128306 a001 832040/64079*123^(2/31) 1771173345011450 l006 ln(1047/6154) 1771173346650476 a001 10959/844*123^(2/31) 1771173352405003 m001 BesselI(1,2)-ErdosBorwein+KomornikLoreti 1771173363937689 a001 121393/9349*123^(2/31) 1771173364272155 l006 ln(7385/8816) 1771173379522762 r005 Im(z^2+c),c=-11/38+13/21*I,n=27 1771173379652329 m001 LaplaceLimit*FeigenbaumDelta*ln(sqrt(Pi)) 1771173390428241 h001 (3/4*exp(1)+5/8)/(2/7*exp(1)+8/11) 1771173390822297 q001 5751/3247 1771173394033017 a001 9349/17711*144^(41/58) 1771173395633822 r005 Im(z^2+c),c=-29/56+19/60*I,n=51 1771173400835479 r005 Im(z^2+c),c=-35/32+9/43*I,n=45 1771173401813179 m005 (1/2*gamma+4)/(7/10*Pi+2/9) 1771173410376234 a001 6119/11592*144^(41/58) 1771173412760677 a001 64079/121393*144^(41/58) 1771173412929714 a001 39603/55*10946^(3/31) 1771173414234344 a001 39603/75025*144^(41/58) 1771173414875650 a007 Real Root Of -465*x^4-241*x^3+505*x^2-831*x+181 1771173417195887 r005 Im(z^2+c),c=-21/44+22/63*I,n=14 1771173418929896 r002 56th iterates of z^2 + 1771173420476898 a001 15127/28657*144^(41/58) 1771173422511972 m001 Artin*(HeathBrownMoroz-Weierstrass) 1771173425166292 r005 Re(z^2+c),c=3/17+11/18*I,n=9 1771173431861122 k007 concat of cont frac of 1771173432478852 a007 Real Root Of 168*x^4-465*x^3-696*x^2+854*x-541 1771173433710179 a007 Real Root Of 689*x^4+972*x^3-207*x^2+81*x-587 1771173434851445 a007 Real Root Of 260*x^4+402*x^3+519*x^2+777*x-577 1771173436387848 m005 (3/4*2^(1/2)-3/4)/(2/5*exp(1)+2/3) 1771173439277007 m005 (1/2*Pi+5/12)/(1/11*exp(1)+7/8) 1771173440488218 m005 (1/2*5^(1/2)+1/3)/(1/7*5^(1/2)+1/2) 1771173447673514 r005 Re(z^2+c),c=23/86+9/40*I,n=28 1771173455255916 m001 (Khinchin-MertensB3)/(Salem-ThueMorse) 1771173455545994 m001 (-FeigenbaumMu+LaplaceLimit)/(CareFree-cos(1)) 1771173457746922 a008 Real Root of x^3-x^2-227*x-1222 1771173463263995 a001 2889/5473*144^(41/58) 1771173469387755 q001 6943/3920 1771173469776767 a007 Real Root Of -335*x^4-198*x^3+943*x^2+631*x+356 1771173471692968 r009 Re(z^3+c),c=-8/29+29/60*I,n=13 1771173481262384 m005 (1/2*exp(1)+5/6)/(2/11*Pi+2/3) 1771173482426018 a001 46368/3571*123^(2/31) 1771173485509794 m001 (GAMMA(2/3)-Conway)/(MinimumGamma-Salem) 1771173486250351 a007 Real Root Of 147*x^4+413*x^3+721*x^2+530*x-475 1771173491526273 m001 (-exp(1/Pi)+RenyiParking)/(1-GAMMA(2/3)) 1771173507315719 m001 RenyiParking^2*Rabbit^2*ln(GAMMA(17/24))^2 1771173511363698 m001 Zeta(9)^2*FeigenbaumB*ln(cos(Pi/5)) 1771173512083109 l006 ln(7674/9161) 1771173519808848 r009 Im(z^3+c),c=-17/27+5/16*I,n=13 1771173524055894 m001 (Kolakoski+PrimesInBinary)/(2^(1/3)-gamma) 1771173524137825 r005 Im(z^2+c),c=-61/58+5/28*I,n=10 1771173525440034 m001 (-Totient+ZetaQ(4))/(BesselJ(0,1)+gamma(2)) 1771173530176916 p004 log(36107/6143) 1771173532423181 m001 (Trott+Weierstrass)/(ln(5)-ErdosBorwein) 1771173537092376 a007 Real Root Of -718*x^4-77*x^3-808*x^2+578*x+128 1771173537656837 m001 (cos(Pi/5)+GAMMA(2/3)*GAMMA(19/24))/GAMMA(2/3) 1771173539657673 a007 Real Root Of -291*x^4-449*x^3-326*x^2-469*x+561 1771173543204659 m006 (4*Pi+3)/(2/3/Pi+2/3) 1771173551611409 a007 Real Root Of 226*x^4+128*x^3+133*x^2+655*x-770 1771173562132061 k008 concat of cont frac of 1771173568220130 l006 ln(728/4279) 1771173568565953 r009 Im(z^3+c),c=-43/114+2/21*I,n=11 1771173570138308 r002 3th iterates of z^2 + 1771173571786262 a007 Real Root Of 263*x^4+224*x^3-609*x^2-560*x-425 1771173575192574 r005 Im(z^2+c),c=-31/58+20/63*I,n=40 1771173579889480 m001 (LambertW(1)-sin(1/5*Pi))/(-Salem+Trott) 1771173580267198 r005 Im(z^2+c),c=-47/106+19/63*I,n=42 1771173590188149 m001 (FeigenbaumMu-MasserGramainDelta)/Paris 1771173590836596 r005 Im(z^2+c),c=-21/40+19/59*I,n=30 1771173597277081 h001 (11/12*exp(1)+9/10)/(3/7*exp(1)+3/4) 1771173599132883 r009 Re(z^3+c),c=-35/118+37/56*I,n=62 1771173608533962 m001 (Si(Pi)+polylog(4,1/2))/(Kolakoski+Landau) 1771173615011961 a007 Real Root Of -406*x^4-257*x^3+624*x^2-520*x-311 1771173617711736 k006 concat of cont frac of 1771173620022894 a007 Real Root Of -506*x^4-321*x^3+698*x^2-195*x+661 1771173620571657 a007 Real Root Of 37*x^4-507*x^3-480*x^2+702*x-432 1771173622127310 k006 concat of cont frac of 1771173627593426 r005 Re(z^2+c),c=-2/25+33/61*I,n=19 1771173635181925 a007 Real Root Of -429*x^4-350*x^3+106*x^2-714*x+680 1771173639328995 m001 (-Champernowne+ZetaP(4))/(1+GAMMA(13/24)) 1771173644289519 m001 Sierpinski^BesselK(1,1) 1771173646744983 m005 (1/3*3^(1/2)-1/3)/(3/11*exp(1)+7/11) 1771173649165098 l006 ln(7963/9506) 1771173650689296 r005 Re(z^2+c),c=19/106+7/59*I,n=5 1771173650790068 m005 (1/2*Zeta(3)+9/11)/(2/7*gamma+7/11) 1771173651646289 a001 161/9*(1/2*5^(1/2)+1/2)^6*18^(13/22) 1771173655695321 m001 Ei(1)*ArtinRank2-ln(Pi) 1771173658347185 p004 log(15241/2593) 1771173659106221 a007 Real Root Of 634*x^4+804*x^3-797*x^2-541*x-230 1771173661020359 m001 (-CopelandErdos+ZetaQ(3))/(Psi(1,1/3)+exp(1)) 1771173661270253 a007 Real Root Of -249*x^4-548*x^3-274*x^2-397*x-438 1771173661611770 m007 (-3/4*gamma-3/2*ln(2)-5)/(-1/5*gamma-1/4) 1771173673250797 m001 BesselJ(1,1)/(ln(Pi)+Totient) 1771173677700775 r008 a(0)=2,K{-n^6,-7-8*n^3+7*n^2+9*n} 1771173682326774 m001 (Catalan+ln(3))/(ArtinRank2+TreeGrowth2nd) 1771173685336314 r002 57th iterates of z^2 + 1771173689395351 r009 Re(z^3+c),c=-1/6+43/49*I,n=43 1771173699854497 m001 (Pi-Zeta(1,-1))/(BesselI(0,2)-ThueMorse) 1771173707439822 h001 (4/9*exp(2)+7/11)/(2/9*exp(2)+4/7) 1771173708059873 m001 (Pi+exp(1))/(gamma(2)+PolyaRandomWalk3D) 1771173708835397 a007 Real Root Of 374*x^4-909*x^3-74*x^2-735*x-13 1771173710036488 m001 sinh(1)/(DuboisRaymond^Psi(1,1/3)) 1771173711250889 r005 Im(z^2+c),c=-27/32+1/8*I,n=25 1771173714723565 a007 Real Root Of -340*x^4+10*x^3+391*x^2-848*x+673 1771173718382263 a007 Real Root Of -306*x^4+122*x^3+709*x^2-712*x+204 1771173725658163 r005 Re(z^2+c),c=-1/27+19/36*I,n=3 1771173726471241 r005 Re(z^2+c),c=-7/44+2/7*I,n=4 1771173727995888 a007 Real Root Of 20*x^4-114*x^3+627*x^2-320*x-77 1771173732736660 a007 Real Root Of -305*x^4+147*x^3+823*x^2-662*x+64 1771173732837470 a007 Real Root Of -517*x^4-948*x^3-655*x^2-781*x+492 1771173733912453 s002 sum(A137192[n]/(n*exp(pi*n)-1),n=1..infinity) 1771173734210936 a007 Real Root Of 657*x^4+437*x^3-735*x^2+486*x-871 1771173737005469 r005 Re(z^2+c),c=-9/8+23/121*I,n=16 1771173743502172 r005 Re(z^2+c),c=3/70+22/25*I,n=6 1771173749398327 a007 Real Root Of -55*x^4+208*x^3+10*x^2-465*x+842 1771173754877312 a007 Real Root Of -304*x^4-140*x^3+256*x^2-696*x+178 1771173756531121 a001 2207/4181*144^(41/58) 1771173760557216 m001 Zeta(3)^2/ln(OneNinth)*sqrt(1+sqrt(3))^2 1771173773760534 l006 ln(1137/6683) 1771173773805906 a007 Real Root Of 337*x^4+244*x^3-306*x^2+604*x+69 1771173775282169 m001 (exp(1)+sin(1))/(exp(1/exp(1))+BesselI(1,1)) 1771173775290255 m001 (2^(1/2)+5^(1/2))/(BesselK(0,1)+GAMMA(13/24)) 1771173776645366 l006 ln(8252/9851) 1771173792666385 r005 Re(z^2+c),c=13/48+23/47*I,n=30 1771173793574186 r005 Im(z^2+c),c=-125/122+7/36*I,n=34 1771173799276576 a007 Real Root Of -638*x^4+210*x^3-453*x^2+766*x-122 1771173808887171 r005 Im(z^2+c),c=-13/27+1/33*I,n=50 1771173810579492 m001 1/ln(CopelandErdos)^2/Artin^2/GAMMA(5/24)^2 1771173813835027 r005 Re(z^2+c),c=-1/25+26/47*I,n=47 1771173813959690 m001 (ln(5)+1/2)/(-cos(Pi/5)+2) 1771173818088193 a005 (1/sin(100/207*Pi))^405 1771173825950208 m001 MinimumGamma^HardHexagonsEntropy-gamma(1) 1771173826314419 m001 1/BesselK(0,1)*ln((2^(1/3)))/GAMMA(1/6)^2 1771173827991822 r009 Re(z^3+c),c=-1/106+8/9*I,n=10 1771173828150262 a003 cos(Pi*19/99)+sin(Pi*44/111) 1771173832930460 m005 (1/3*3^(1/2)+2/3)/(4/63+2/7*5^(1/2)) 1771173832980174 r005 Im(z^2+c),c=-41/90+1/34*I,n=17 1771173847594522 a007 Real Root Of 618*x^4+992*x^3+263*x^2+970*x+323 1771173847757080 r005 Re(z^2+c),c=-3/31+19/42*I,n=26 1771173848362130 m006 (1/5*exp(Pi)-1/2)/(exp(Pi)+1/6) 1771173848439821 q001 1192/673 1771173848624638 a007 Real Root Of -521*x^4-337*x^3+506*x^2-964*x-40 1771173854543987 m001 (3^(1/2)-gamma)/(gamma(2)+Robbin) 1771173854891476 s002 sum(A063251[n]/((exp(n)+1)*n),n=1..infinity) 1771173869313948 m001 1/GAMMA(1/3)^2*ln(Magata)*Zeta(5) 1771173870547979 l006 ln(1546/9087) 1771173875000030 m001 (-gamma+5)/(-FeigenbaumAlpha+5) 1771173879122451 m005 (1/2*Pi-2/5)/(5*Zeta(3)+3/5) 1771173880443521 a003 cos(Pi*1/63)+cos(Pi*23/105) 1771173884571095 r002 25th iterates of z^2 + 1771173885573719 m001 1/exp(Porter)*LaplaceLimit*OneNinth^2 1771173890425667 b008 6-17*Log[Glaisher] 1771173904504976 v002 sum(1/(2^n*(18*n^2-n+19)),n=1..infinity) 1771173907549178 r002 5th iterates of z^2 + 1771173915517803 a007 Real Root Of 376*x^4+537*x^3-128*x^2-118*x-524 1771173918321074 m001 1/GAMMA(1/12)^2/ln(MertensB1)*Pi 1771173921847993 a007 Real Root Of 420*x^4+746*x^3+287*x^2+561*x+105 1771173928121054 r005 Im(z^2+c),c=-97/94+16/61*I,n=5 1771173935600150 r002 44th iterates of z^2 + 1771173937323765 a007 Real Root Of -565*x^4-205*x^3+961*x^2-885*x-161 1771173942226246 a007 Real Root Of 896*x^4+980*x^3-550*x^2+537*x-696 1771173943704964 a007 Real Root Of -311*x^4-67*x^3+917*x^2+265*x+281 1771173950796298 m001 1/ln(GAMMA(7/12))^2*GAMMA(19/24)*exp(1) 1771173961343704 a007 Real Root Of -485*x^4-336*x^3+460*x^2-590*x+418 1771173965762040 m001 Pi^(1/2)-StronglyCareFree*ZetaQ(4) 1771173979377844 r005 Im(z^2+c),c=-23/38+2/61*I,n=58 1771173984023391 m001 (ln(2)-gamma(2))/(GAMMA(17/24)+FeigenbaumD) 1771173984294110 a007 Real Root Of 618*x^4+793*x^3-842*x^2-801*x-453 1771173985785194 h001 (1/4*exp(2)+1/12)/(1/10*exp(1)+9/11) 1771173996860129 m002 -18-Pi/4+ProductLog[Pi] 1771173999652195 a003 cos(Pi*1/109)*cos(Pi*43/97) 1771174001899988 a003 cos(Pi*3/49)+sin(Pi*31/107) 1771174003566297 a007 Real Root Of -269*x^4+354*x^3+719*x^2-963*x+653 1771174004310459 l004 Pi/cosh(855/101*Pi) 1771174004310459 l004 Pi/sinh(855/101*Pi) 1771174006215843 r005 Im(z^2+c),c=25/106+40/59*I,n=4 1771174012630665 m001 1/Zeta(9)^2/exp(Salem)/log(2+sqrt(3))^2 1771174016701286 h005 exp(cos(Pi*19/59)/sin(Pi*14/37)) 1771174019727906 a003 cos(Pi*13/115)/sin(Pi*19/107) 1771174026180198 a003 -1/2+2*cos(5/21*Pi)+cos(8/27*Pi)+cos(13/30*Pi) 1771174028296263 r009 Re(z^3+c),c=-3/10+31/55*I,n=38 1771174030548697 m001 1/exp(GAMMA(13/24))^2/Lehmer^2*sqrt(1+sqrt(3)) 1771174031043891 r005 Re(z^2+c),c=-19/26+17/25*I,n=4 1771174033597694 a001 18/1597*21^(19/21) 1771174034635105 m001 1/Riemann2ndZero^2*exp(Conway)^2*gamma 1771174045020866 m005 (1/2*5^(1/2)-6/7)/(1/4*3^(1/2)-2/7) 1771174045591995 m001 (3^(1/2)-5^(1/2))/(ln(2+3^(1/2))+GAMMA(7/12)) 1771174049628836 m005 (1/2*Zeta(3)+5/6)/(3/11*5^(1/2)+1/5) 1771174051977530 m005 (1/2*gamma-2/5)/(5/9*3^(1/2)-1/3) 1771174054740767 a007 Real Root Of 686*x^4+393*x^3-853*x^2+885*x-324 1771174055222765 a007 Real Root Of 635*x^4+177*x^3-976*x^2+774*x-833 1771174059900797 r005 Im(z^2+c),c=-13/27+1/33*I,n=52 1771174062299461 p001 sum((-1)^n/(125*n+98)/n/(25^n),n=0..infinity) 1771174062483704 a007 Real Root Of -799*x^4-832*x^3+713*x^2-426*x+249 1771174064568322 m001 (3^(1/2)+ln(2^(1/2)+1))/(-Ei(1)+MadelungNaCl) 1771174067697219 a007 Real Root Of 315*x^4+88*x^3-465*x^2+615*x-63 1771174077945999 m009 (32*Catalan+4*Pi^2+2/5)/(3/4*Psi(1,3/4)+2) 1771174078593726 b008 3*Sqrt[Pi]*ArcCosh[14] 1771174086334805 m005 (1/2*gamma-1/12)/(3/7*3^(1/2)+5/12) 1771174086977719 s002 sum(A216543[n]/(n^3*exp(n)-1),n=1..infinity) 1771174088628478 m005 (1/3*exp(1)-2/3)/(7/8*Zeta(3)+3/10) 1771174093520546 h001 (1/4*exp(2)+7/11)/(5/11*exp(1)+1/6) 1771174094317739 r005 Im(z^2+c),c=-43/74+7/22*I,n=39 1771174098642575 r005 Im(z^2+c),c=-45/64+1/4*I,n=43 1771174102512625 m001 (Khinchin-Si(Pi))/(-LaplaceLimit+Rabbit) 1771174102584786 m005 1/4*5^(1/2)/(3/4*Pi+4/5) 1771174106665872 m005 (1/3*exp(1)+2/5)/(3/5*2^(1/2)-1/9) 1771174109625058 m001 (GlaisherKinkelin+Mills)/MinimumGamma 1771174110844866 r005 Im(z^2+c),c=-107/110+5/28*I,n=51 1771174114088644 a008 Real Root of x^4-x^3-3*x^2+65*x-110 1771174115011361 r005 Im(z^2+c),c=-35/64+21/64*I,n=41 1771174115832251 r005 Im(z^2+c),c=-53/102+13/41*I,n=60 1771174116418551 h001 (1/10*exp(1)+3/5)/(4/7*exp(2)+7/10) 1771174126428426 a007 Real Root Of 385*x^4+326*x^3+23*x^2+845*x-553 1771174132163627 h001 (5/8*exp(2)+7/9)/(2/5*exp(2)+1/11) 1771174133950221 a007 Real Root Of -273*x^4+145*x^3+952*x^2-298*x-22 1771174134067415 r005 Re(z^2+c),c=-5/48+48/55*I,n=4 1771174139612296 l006 ln(409/2404) 1771174144231780 m001 (-Conway+FeigenbaumMu)/(1-BesselI(0,2)) 1771174145574894 a007 Real Root Of -35*x^4-110*x^3-656*x^2-834*x+314 1771174158564246 m001 cos(1)^(LaplaceLimit/CopelandErdos) 1771174164102913 r005 Im(z^2+c),c=-2/3+141/143*I,n=3 1771174165370309 a007 Real Root Of -483*x^4-288*x^3+942*x^2+144*x+453 1771174167332913 a001 1364/53316291173*46368^(14/23) 1771174171877713 r005 Im(z^2+c),c=-13/27+1/33*I,n=54 1771174173261805 r005 Re(z^2+c),c=-9/50+8/35*I,n=17 1771174174296259 m001 Zeta(1,2)/ln(Porter)/sinh(1)^2 1771174174803105 m001 (gamma(3)+OrthogonalArrays)/(3^(1/3)-5^(1/2)) 1771174186337362 a001 21/47*521^(10/17) 1771174191826342 a007 Real Root Of 787*x^4-21*x^3-409*x^2-361*x-52 1771174192029506 s001 sum(exp(-Pi/3)^(n-1)*A161328[n],n=1..infinity) 1771174200945881 a003 sin(Pi*30/107)+sin(Pi*59/119) 1771174201934935 m001 (GAMMA(19/24)-Shi(1))/(-FeigenbaumB+ZetaP(3)) 1771174203990912 m008 (1/2*Pi^5-1/4)/(3*Pi-4/5) 1771174208320142 a007 Real Root Of 542*x^4+669*x^3-427*x^2+589*x+766 1771174209897665 m005 (1/2*gamma+4/9)/(5/7*Zeta(3)-9/10) 1771174213315623 k007 concat of cont frac of 1771174220348602 r005 Im(z^2+c),c=-13/27+1/33*I,n=56 1771174221141254 k007 concat of cont frac of 1771174222391125 k008 concat of cont frac of 1771174222631379 a007 Real Root Of -179*x^4+802*x^3-892*x^2+115*x-100 1771174230314752 a007 Real Root Of 385*x^4+291*x^3-950*x^2-47*x+725 1771174231211346 k008 concat of cont frac of 1771174240477294 r005 Im(z^2+c),c=-13/27+1/33*I,n=58 1771174243547802 m001 PisotVijayaraghavan/(GaussAGM^ErdosBorwein) 1771174245732752 r005 Im(z^2+c),c=-29/70+13/44*I,n=38 1771174248330607 r005 Im(z^2+c),c=-13/27+1/33*I,n=60 1771174249834677 m001 1/exp(Porter)^2*FeigenbaumB^2/(3^(1/3))^2 1771174250981211 r005 Im(z^2+c),c=-13/27+1/33*I,n=63 1771174251082104 r005 Im(z^2+c),c=-13/27+1/33*I,n=62 1771174251840524 r005 Im(z^2+c),c=-13/27+1/33*I,n=64 1771174252495082 r005 Im(z^2+c),c=-13/27+1/33*I,n=61 1771174254503005 m008 (2*Pi^4+3)/(1/3*Pi^3+5/6) 1771174255802022 m001 (Ei(1,1)+Pi^(1/2))/(Artin-MertensB1) 1771174257228695 r005 Im(z^2+c),c=-13/27+1/33*I,n=59 1771174259832717 r002 35th iterates of z^2 + 1771174265050573 a007 Real Root Of -737*x^4-684*x^3+855*x^2-637*x-358 1771174265119113 k008 concat of cont frac of 1771174267156579 m001 exp(1)/(ReciprocalLucas^HardyLittlewoodC3) 1771174269924705 r005 Im(z^2+c),c=-13/27+1/33*I,n=57 1771174271557470 m001 HardHexagonsEntropy^Zeta(3)*KhinchinLevy 1771174275050244 q001 6169/3483 1771174276583533 r005 Re(z^2+c),c=-2/17+20/49*I,n=38 1771174277150052 m004 5*Pi+250*Sqrt[5]*Pi-Cos[Sqrt[5]*Pi] 1771174282238031 a007 Real Root Of -575*x^4-321*x^3+990*x^2-562*x-226 1771174286921811 k008 concat of cont frac of 1771174293728197 a007 Real Root Of -53*x^4-896*x^3+741*x^2-318*x-711 1771174294557536 a001 17711/1364*123^(2/31) 1771174295308738 m001 1/Salem^2/exp(MertensB1)/Pi 1771174298411583 a007 Real Root Of 22*x^4+356*x^3-612*x^2-330*x-872 1771174300273686 a007 Real Root Of -379*x^4-488*x^3+580*x^2+917*x+823 1771174301353653 r005 Im(z^2+c),c=-13/27+1/33*I,n=55 1771174307489969 r005 Re(z^2+c),c=-3/82+32/53*I,n=54 1771174312318132 k008 concat of cont frac of 1771174321282002 r005 Re(z^2+c),c=10/27+12/37*I,n=64 1771174322709209 m001 Backhouse/(FellerTornier-ln(Pi)) 1771174326527777 k002 Champernowne real with 49/2*n^2-39/2*n+12 1771174327116419 m001 (arctan(1/2)+gamma(3))/(FeigenbaumD-ZetaQ(2)) 1771174338022228 m004 10*Pi*Cosh[Sqrt[5]*Pi]+25*Pi*Sin[Sqrt[5]*Pi] 1771174340602181 m001 exp(-1/2*Pi)^Otter*Tribonacci 1771174345354687 r005 Im(z^2+c),c=-25/18+2/197*I,n=26 1771174345782491 a007 Real Root Of -679*x^4+669*x^3-864*x^2+662*x+12 1771174348569917 m005 (1/2*exp(1)-5)/(7/8*2^(1/2)+9/11) 1771174352159003 m001 Sarnak^Cahen*ReciprocalFibonacci^Cahen 1771174353806437 r005 Im(z^2+c),c=-21/46+17/55*I,n=18 1771174356281979 m005 (1/3*Zeta(3)+2/5)/(1/4*Pi-1/3) 1771174361668172 a007 Real Root Of -598*x^4-949*x^3-104*x^2-99*x+763 1771174371004940 m001 (Pi+GAMMA(3/4))/(ln(2)+Pi^(1/2)) 1771174375345894 r005 Im(z^2+c),c=-13/27+1/33*I,n=53 1771174377224199 q001 4977/2810 1771174382169818 r005 Im(z^2+c),c=-37/30+2/75*I,n=61 1771174382606192 m001 (sin(1)+ZetaQ(3))/(Shi(1)-gamma) 1771174387498952 a007 Real Root Of -789*x^4-585*x^3+693*x^2-803*x+918 1771174402008395 a007 Real Root Of -145*x^4-124*x^3+570*x^2+585*x-14 1771174402579006 a007 Real Root Of 611*x^4-383*x^3-625*x^2-976*x+194 1771174405811670 a007 Real Root Of 644*x^4+740*x^3-300*x^2+953*x+403 1771174415546300 a007 Real Root Of -630*x^4-635*x^3+668*x^2-183*x+252 1771174424154018 m001 ln(2)-sin(1/5*Pi)^MertensB1 1771174426469773 a007 Real Root Of -462*x^4-497*x^3-121*x^2-766*x+808 1771174427701481 m001 (MinimumGamma+Totient)/(2^(1/3)+arctan(1/3)) 1771174434537657 a007 Real Root Of -925*x^4+791*x^3-951*x^2+513*x+126 1771174434927137 r005 Re(z^2+c),c=1/86+35/64*I,n=19 1771174438184983 a001 5473/161*29^(25/51) 1771174441060225 r005 Im(z^2+c),c=-11/28+23/58*I,n=7 1771174444300324 a007 Real Root Of 19*x^4-631*x^3-836*x^2+964*x+637 1771174444500027 a003 cos(Pi*6/119)+cos(Pi*16/75) 1771174444936382 m001 BesselK(1,1)+FibonacciFactorial^BesselJ(0,1) 1771174453256416 r005 Im(z^2+c),c=-15/26+43/128*I,n=52 1771174453369767 m009 (Psi(1,2/3)+3)/(1/6*Psi(1,3/4)+3) 1771174455461432 l006 ln(1317/7741) 1771174463645398 a007 Real Root Of 462*x^4+448*x^3-127*x^2+389*x-970 1771174475446706 r004 Re(z^2+c),c=-3/22+4/11*I,z(0)=I,n=22 1771174475977479 r005 Im(z^2+c),c=-12/23+18/61*I,n=17 1771174480759849 r009 Re(z^3+c),c=-27/106+20/29*I,n=48 1771174482408116 r002 12th iterates of z^2 + 1771174487370450 r005 Re(z^2+c),c=-4/3+79/185*I,n=3 1771174489901039 r005 Re(z^2+c),c=-15/122+41/64*I,n=37 1771174495422826 a007 Real Root Of -250*x^4-220*x^3+182*x^2-612*x-417 1771174497922520 a007 Real Root Of 414*x^4+449*x^3-683*x^2-314*x+7 1771174513062310 a001 233/5778*843^(28/31) 1771174514555232 a001 47/34*2178309^(53/55) 1771174522607762 a001 317811/76*47^(36/37) 1771174525513958 a007 Real Root Of -395*x^4+214*x^3-889*x^2+944*x+17 1771174527171121 k008 concat of cont frac of 1771174535406502 r002 34th iterates of z^2 + 1771174536662413 m001 (ln(5)-BesselI(1,1))/(Cahen-ZetaQ(2)) 1771174540853817 r005 Im(z^2+c),c=-7/8+19/137*I,n=21 1771174543547384 r005 Im(z^2+c),c=-13/27+1/33*I,n=51 1771174543752924 q001 3785/2137 1771174548049341 m001 (Bloch-sin(1))/(-FeigenbaumD+Gompertz) 1771174555078067 s001 sum(exp(-2*Pi/3)^n*A106290[n],n=1..infinity) 1771174556933492 a001 12238*63245986^(8/15) 1771174559800798 a001 1149851/2*46368^(8/15) 1771174561064191 h001 (7/11*exp(1)+2/3)/(1/6*exp(1)+9/10) 1771174562986724 r005 Re(z^2+c),c=11/102+18/49*I,n=42 1771174571637609 m001 ln(GAMMA(19/24))^2/CareFree^2/cos(1)^2 1771174574442473 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=34 1771174574851910 s002 sum(A108007[n]/(n^2*pi^n+1),n=1..infinity) 1771174576690980 s002 sum(A108007[n]/(n^2*pi^n-1),n=1..infinity) 1771174578091093 m001 Pi^(1/2)-ZetaQ(2)^BesselI(0,2) 1771174578492568 m005 (1/2*5^(1/2)-1/5)/(1/5*Catalan+5) 1771174579530047 r002 33th iterates of z^2 + 1771174587668884 m001 (3^(1/2)-GAMMA(11/12))/(Magata+ThueMorse) 1771174597732651 l006 ln(908/5337) 1771174606301512 m001 GAMMA(5/6)*(GAMMA(23/24)+Landau) 1771174611453997 r009 Im(z^3+c),c=-15/98+11/64*I,n=5 1771174613599443 r002 44th iterates of z^2 + 1771174616567666 a007 Real Root Of 211*x^4-391*x^3-787*x^2+537*x-829 1771174619452382 a007 Real Root Of 449*x^4+799*x^3+378*x^2+284*x-662 1771174619864440 a007 Real Root Of -813*x^4-972*x^3+485*x^2-622*x-23 1771174624051765 r002 51th iterates of z^2 + 1771174630728314 r005 Re(z^2+c),c=-6/29+2/37*I,n=11 1771174635276199 a003 cos(Pi*17/97)+sin(Pi*23/62) 1771174638843736 a007 Real Root Of 880*x^4+761*x^3-669*x^2+965*x-624 1771174640187808 m001 (-exp(1)+1/2)/(-MadelungNaCl+3) 1771174652133593 r005 Im(z^2+c),c=-23/26+13/90*I,n=42 1771174657814192 a007 Real Root Of 610*x^4+756*x^3-466*x^2+587*x+699 1771174663166029 m005 (1/2*5^(1/2)+6/11)/(6/7*gamma+4/9) 1771174664266908 m001 Ei(1,1)*(AlladiGrinstead-gamma(3)) 1771174667654883 m001 1/RenyiParking/FibonacciFactorial/ln(cos(1)) 1771174670135865 a001 7*(1/2*5^(1/2)+1/2)^2*76^(11/21) 1771174671776563 m005 (1/3*gamma-3/7)/(3/4*2^(1/2)+3/11) 1771174673701749 q001 6378/3601 1771174674643727 m005 (11/12+1/6*5^(1/2))/(1/10*Catalan+7/11) 1771174674909849 m001 Pi-(1+BesselK(0,1))/Zeta(5) 1771174682521389 m001 (GaussAGM-HardyLittlewoodC4)/(Pi+Zeta(1,-1)) 1771174699411825 m005 (1/2*3^(1/2)-1/8)/(5/6*Zeta(3)-7/12) 1771174705104951 a001 521/1597*13^(31/47) 1771174706911600 m001 GAMMA(7/12)/Zeta(5)/FeigenbaumB 1771174715842761 m001 arctan(1/2)^2/Tribonacci*exp(exp(1)) 1771174721031656 p004 log(26947/22573) 1771174723832178 m001 FeigenbaumKappa^(Catalan/ZetaQ(2)) 1771174729651309 m001 1/exp(log(2+sqrt(3)))^2*Magata/sinh(1)^2 1771174730584692 m005 (13/42+1/6*5^(1/2))/(1/4*3^(1/2)-9/11) 1771174730903347 l006 ln(1407/8270) 1771174739545456 m001 (GAMMA(7/12)-Shi(1))/(FeigenbaumKappa+Mills) 1771174741695292 a003 cos(Pi*5/64)+sin(Pi*21/71) 1771174747186256 m001 (-gamma(1)+MinimumGamma)/(Si(Pi)-exp(1)) 1771174755011700 m001 -1/3*(-GAMMA(11/24)+5)*3^(1/2) 1771174762277329 m001 TwinPrimes^2/Champernowne^2/ln(sinh(1)) 1771174771350220 m005 (1/36+1/4*5^(1/2))/(3/4*Catalan-4) 1771174783616996 r004 Im(z^2+c),c=3/26+4/9*I,z(0)=exp(5/8*I*Pi),n=4 1771174784284180 a003 cos(Pi*5/24)+sin(Pi*29/67) 1771174785920250 a007 Real Root Of 126*x^4+111*x^3+476*x^2-495*x+72 1771174789931510 a007 Real Root Of -263*x^4+707*x^3-157*x^2+372*x+75 1771174791039227 a007 Real Root Of -9*x^4+763*x^3+916*x^2+689*x-155 1771174798846061 a003 cos(Pi*7/117)-cos(Pi*20/99) 1771174810995476 m005 (1/2*gamma-1)/(9/11*Zeta(3)-5) 1771174812307862 b008 9-(24*Pi)/7 1771174827151488 m005 (1/2*3^(1/2)+1/2)/(7/11*gamma-4/9) 1771174840987129 a007 Real Root Of -498*x^4-220*x^3+548*x^2-562*x+964 1771174841500623 m001 (ln(3)+Zeta(1/2))/(MertensB3+Rabbit) 1771174850543140 a003 cos(Pi*2/43)+cos(Pi*3/14) 1771174850985994 a007 Real Root Of -643*x^4-363*x^3+830*x^2-917*x+83 1771174860537032 b008 ArcSech[(2*Pi)/19] 1771174861435192 r005 Im(z^2+c),c=-71/102+6/13*I,n=8 1771174863387978 q001 2593/1464 1771174867444813 r002 4th iterates of z^2 + 1771174871494426 m001 1/Porter*Lehmer^2/ln(sin(Pi/12)) 1771174873221585 m001 gamma(2)^(LandauRamanujan*Riemann1stZero) 1771174883852493 s002 sum(A174795[n]/((10^n-1)/n),n=1..infinity) 1771174886162882 r005 Re(z^2+c),c=-17/106+20/59*I,n=6 1771174888517649 a007 Real Root Of 26*x^4+502*x^3+686*x^2-850*x+298 1771174892030413 m005 (1/2*Pi-9/10)/(5/11*3^(1/2)+3) 1771174899302987 a007 Real Root Of -302*x^4+221*x^3+596*x^2-934*x+676 1771174901597998 r005 Im(z^2+c),c=-57/122+15/49*I,n=13 1771174907030704 m005 (1/2*Zeta(3)-11/12)/(9/11*2^(1/2)+5/8) 1771174908435991 m002 -5+5*Pi^3+Pi^3/Log[Pi] 1771174915894874 s002 sum(A127800[n]/((2^n-1)/n),n=1..infinity) 1771174915985504 r005 Im(z^2+c),c=-13/27+1/33*I,n=49 1771174924004825 a001 11/89*1597^(2/41) 1771174926379580 a007 Real Root Of 289*x^4+368*x^3-206*x^2-123*x-371 1771174929959357 a007 Real Root Of -600*x^4-634*x^3+871*x^2+667*x+831 1771174942306779 a007 Real Root Of -873*x^4-197*x^3+822*x^2+622*x-134 1771174942447648 m001 (FellerTornier+Porter)/(Si(Pi)-sin(1)) 1771174947967182 s002 sum(A140327[n]/((pi^n-1)/n),n=1..infinity) 1771174959667709 a007 Real Root Of -169*x^4+406*x^3+799*x^2-531*x+472 1771174966266331 m001 1/FeigenbaumC*Champernowne*exp(cos(Pi/12)) 1771174969799724 r005 Re(z^2+c),c=5/94+29/47*I,n=40 1771174970841690 m001 1/BesselK(0,1)^2*exp(Niven)^2*Zeta(5) 1771174973225932 l006 ln(499/2933) 1771174974901973 m001 (-GaussAGM(1,1/sqrt(2))+1/2)/(-Zeta(1/2)+1/2) 1771174975431022 m001 polylog(4,1/2)^Zeta(1/2)*polylog(4,1/2)^Lehmer 1771174980429274 a001 3571/139583862445*46368^(14/23) 1771174987872593 a007 Real Root Of -830*x^4-908*x^3+180*x^2-986*x+812 1771174988286832 m001 Niven+Paris^GAMMA(19/24) 1771174993903356 p001 sum(1/(583*n+569)/(64^n),n=0..infinity) 1771175030769464 a007 Real Root Of -342*x^4-305*x^3+678*x^2+315*x+102 1771175032707790 a007 Real Root Of -126*x^4-104*x^3+395*x^2+83*x-430 1771175033273724 h003 exp(Pi*(12+10^(3/4)-12^(3/4))) 1771175047055660 q001 6587/3719 1771175051626441 a005 (1/cos(17/166*Pi))^754 1771175058277676 m005 (1/3*Catalan+3/4)/(3/7*5^(1/2)+5) 1771175062379867 a007 Real Root Of -586*x^4-447*x^3+602*x^2-779*x+15 1771175063814268 m001 exp(BesselK(1,1))*PrimesInBinary^2/sqrt(Pi) 1771175066469470 r005 Im(z^2+c),c=-131/114+9/46*I,n=57 1771175075092043 r002 33th iterates of z^2 + 1771175096503185 m001 gamma(2)*BesselK(1,1)*GaussKuzminWirsing 1771175098675929 m005 (1/3*2^(1/2)+1/2)/(1/9*5^(1/2)+3/10) 1771175099058434 a001 9349/365435296162*46368^(14/23) 1771175101537327 m001 (Lehmer-exp(1))/(-MertensB1+MinimumGamma) 1771175106551406 m001 (2^(1/3))^2*ln(FeigenbaumDelta)/sinh(1)^2 1771175109701359 m001 1/ln(LandauRamanujan)^2/Khintchine/Niven^2 1771175114890388 m005 (15/44+1/4*5^(1/2))/(4*Zeta(3)+3/11) 1771175116366195 a001 24476/956722026041*46368^(14/23) 1771175118152824 m001 (-MertensB3+Tribonacci)/(3^(1/2)+GAMMA(5/6)) 1771175118735650 s002 sum(A007279[n]/((exp(n)-1)/n),n=1..infinity) 1771175118891363 a001 64079/2504730781961*46368^(14/23) 1771175119259780 a001 167761/6557470319842*46368^(14/23) 1771175119346752 a001 90481/3536736619241*46368^(14/23) 1771175119487475 a001 103682/4052739537881*46368^(14/23) 1771175120452003 a001 13201/516002918640*46368^(14/23) 1771175123485983 a001 4/233*317811^(7/38) 1771175127062980 a001 15127/591286729879*46368^(14/23) 1771175130571222 m001 1/Riemann2ndZero/ln(DuboisRaymond)^2/Zeta(9) 1771175133615403 m005 (1/2*3^(1/2)-6/11)/(7/9*Zeta(3)+7/8) 1771175134504278 a003 cos(Pi*14/81)+sin(Pi*32/87) 1771175140139827 a007 Real Root Of -484*x^4-797*x^3+45*x^2-146*x-65 1771175142771989 a003 cos(Pi*23/110)-sin(Pi*45/107) 1771175143161116 a001 505019158607*12586269025^(9/20) 1771175157666656 p004 log(32467/27197) 1771175158876791 p004 log(21589/3673) 1771175166297117 q001 3994/2255 1771175168237519 r005 Re(z^2+c),c=-19/27+19/56*I,n=48 1771175171618974 m001 Magata*(BesselJ(0,1)-GAMMA(17/24)) 1771175172375287 a001 1926/75283811239*46368^(14/23) 1771175180644718 l006 ln(5764/5867) 1771175182818470 p001 sum((-1)^n/(7*n+2)/n/(6^n),,n=0..infinity) 1771175186364591 h003 exp(Pi*(14^(5/3)-11^(2/7))) 1771175186364591 h008 exp(Pi*(14^(5/3)-11^(2/7))) 1771175186397874 r005 Im(z^2+c),c=11/46+4/55*I,n=19 1771175188063864 l006 ln(1587/9328) 1771175192290627 m005 (1/2*5^(1/2)+2/5)/(10/11*2^(1/2)-3/7) 1771175192985800 v002 sum(1/(2^n*(32*n^2-56*n+61)),n=1..infinity) 1771175198066382 a003 cos(Pi*15/94)+sin(Pi*31/88) 1771175201217780 a007 Real Root Of 588*x^4-808*x^3+680*x^2-742*x+114 1771175202069429 a007 Real Root Of -14*x^4+40*x^3-794*x^2+959*x+195 1771175202522580 a007 Real Root Of -518*x^4-9*x^3+980*x^2-597*x+916 1771175208577524 a003 cos(Pi*52/113)+cos(Pi*29/60) 1771175211568596 a007 Real Root Of -567*x^4-502*x^3+959*x^2+36*x-154 1771175216791213 r005 Im(z^2+c),c=-6/11+10/31*I,n=52 1771175218752437 a007 Real Root Of 336*x^4-850*x^3-445*x^2-365*x+83 1771175221373349 a001 1364/9227465*2^(6/23) 1771175225319853 k007 concat of cont frac of 1771175232081531 r002 21th iterates of z^2 + 1771175236021876 m005 (1/3*exp(1)-1/2)/(6/7*Pi-2/5) 1771175246230925 a007 Real Root Of 522*x^4+853*x^3-296*x^2-118*x+322 1771175251584894 m001 ThueMorse^TreeGrowth2nd*MertensB1 1771175257236130 a007 Real Root Of -357*x^4-905*x^3-573*x^2-715*x-984 1771175261322490 a005 (1/cos(1/102*Pi))^1205 1771175270109317 r005 Im(z^2+c),c=-83/94+13/55*I,n=14 1771175277357447 m005 (1/2*5^(1/2)-9/10)/(5/6*gamma+3/4) 1771175283292161 a007 Real Root Of -354*x^4-83*x^3+604*x^2-853*x-383 1771175286597055 l006 ln(1088/6395) 1771175289991468 a003 sin(Pi*7/114)*sin(Pi*3/8) 1771175311884438 q001 5395/3046 1771175312533721 p004 log(35437/6029) 1771175317918992 a007 Real Root Of 606*x^4+713*x^3-672*x^2+437*x+880 1771175319328685 m001 (Pi-Psi(1,1/3))*(ln(5)-Zeta(1,2)) 1771175321452288 r005 Re(z^2+c),c=-2/21+29/63*I,n=9 1771175329533787 k002 Champernowne real with 25*n^2-21*n+13 1771175333443533 a001 47/2584*6765^(8/31) 1771175336084104 m009 (Pi^2+4/5)/(6*Psi(1,1/3)-1/3) 1771175337444935 a001 521/4181*21^(34/39) 1771175338698521 m001 Grothendieck/gamma(1)*Sarnak 1771175347295630 a007 Real Root Of 409*x^4+676*x^3+422*x^2+582*x-562 1771175347497772 a007 Real Root Of -579*x^4-579*x^3+92*x^2-724*x+910 1771175348130948 a007 Real Root Of -691*x^4-723*x^3+591*x^2-852*x-580 1771175351072256 r005 Im(z^2+c),c=-27/52+13/44*I,n=19 1771175357179898 p001 sum(1/(175*n+68)/(2^n),n=0..infinity) 1771175365239583 a007 Real Root Of -778*x^4-675*x^3+949*x^2-5*x+920 1771175372302957 r005 Im(z^2+c),c=-9/8+44/195*I,n=15 1771175378929398 a001 521/2*610^(25/38) 1771175379842230 l006 ln(1677/9857) 1771175380901358 h005 exp(cos(Pi*9/29)/sin(Pi*18/41)) 1771175386601075 m001 (ln(Pi)-ln(2^(1/2)+1))/(MertensB2+ZetaP(2)) 1771175394245051 a005 (1/sin(94/191*Pi))^1878 1771175397445921 q001 6796/3837 1771175401666220 r005 Re(z^2+c),c=7/22+15/53*I,n=33 1771175404647681 m005 (1/12+1/6*5^(1/2))/(4/5*exp(1)+2/5) 1771175407352766 a007 Real Root Of -627*x^4-564*x^3+831*x^2-36*x+366 1771175408144117 r002 2th iterates of z^2 + 1771175408144117 r005 Re(z^2+c),c=-7/8+19/73*I,n=2 1771175410460817 r005 Im(z^2+c),c=-33/56+12/37*I,n=62 1771175413275474 r005 Re(z^2+c),c=-11/23+17/28*I,n=23 1771175415307985 a001 3/2207*199^(1/20) 1771175423693626 a003 cos(Pi*6/59)+cos(Pi*11/57) 1771175428298747 m001 FeigenbaumD-arctan(1/3)^StolarskyHarborth 1771175428384524 a007 Real Root Of 519*x^4+848*x^3-136*x^2-298*x-497 1771175430090933 a008 Real Root of (-6+2*x-3*x^2+6*x^3-3*x^5) 1771175433454956 a007 Real Root Of 23*x^4+354*x^3-912*x^2+590*x+9 1771175434690321 r005 Im(z^2+c),c=-2/31+5/24*I,n=15 1771175437780241 r005 Im(z^2+c),c=-113/122+5/31*I,n=20 1771175447038172 a007 Real Root Of 696*x^4+814*x^3-903*x^2+206*x+871 1771175447713456 r005 Re(z^2+c),c=1/62+29/61*I,n=6 1771175447828823 b008 ArcCosh[-2/17+Pi] 1771175452938217 m006 (2/5/Pi+1/3)/(3*ln(Pi)-5/6) 1771175462307922 a003 cos(Pi*5/97)+sin(Pi*33/115) 1771175463767921 r005 Im(z^2+c),c=-49/60+6/53*I,n=50 1771175468934854 m005 (1/3*Pi+1/2)/(5/7*3^(1/2)-4/11) 1771175470764511 a007 Real Root Of 16*x^4+311*x^3+458*x^2-540*x+178 1771175472683519 r005 Im(z^2+c),c=-10/19+16/47*I,n=25 1771175477762186 r005 Im(z^2+c),c=-11/16+7/97*I,n=22 1771175481561828 r009 Re(z^3+c),c=-1/52+4/23*I,n=4 1771175482950460 a001 2207/86267571272*46368^(14/23) 1771175485949443 r005 Im(z^2+c),c=-15/22+83/86*I,n=3 1771175489126723 m001 (AlladiGrinstead+ZetaQ(2))/(Pi+3^(1/2)) 1771175491829132 m001 1/GAMMA(3/4)*exp(GAMMA(23/24))^3 1771175504480926 m001 Pi^(1/2)-Trott2nd^Si(Pi) 1771175504813582 r005 Im(z^2+c),c=-27/56+13/42*I,n=57 1771175513506477 m001 (polylog(4,1/2)-AlladiGrinstead)/(Bloch+Salem) 1771175516699333 m001 (gamma(3)+CopelandErdos)/(gamma+BesselJ(0,1)) 1771175518157695 m006 (1/3*Pi-1/2)/(2*ln(Pi)+4/5) 1771175520741381 m005 (-1/20+1/4*5^(1/2))/(7/8*Pi+1/8) 1771175521406632 a001 11/139583862445*75025^(11/16) 1771175522678460 b008 5*(2+Cot[10]) 1771175526707428 m001 (1+cos(1/12*Pi))/(ArtinRank2+ThueMorse) 1771175530554020 a001 1/3*6765^(37/52) 1771175534383729 a007 Real Root Of -226*x^4+176*x^3+249*x^2-809*x+988 1771175534756827 a007 Real Root Of -212*x^4+752*x^3-298*x^2-279*x-663 1771175537068589 p001 sum(1/(399*n+43)/n/(128^n),n=1..infinity) 1771175548681707 m006 (2/5*exp(2*Pi)+4/5)/(1/3*Pi+1/6) 1771175550487461 m001 1/ln(GAMMA(3/4))^2/GAMMA(11/24)*sqrt(2) 1771175551873115 a007 Real Root Of -552*x^4-552*x^3+862*x^2+66*x-222 1771175552084567 l006 ln(589/3462) 1771175553390759 m001 (Pi^(1/2)*ErdosBorwein-gamma(3))/ErdosBorwein 1771175555352071 a007 Real Root Of -749*x^4-999*x^3+394*x^2-73*x+455 1771175556752101 m009 (4/5*Psi(1,3/4)-1/4)/(Pi^2+1/5) 1771175561666601 a003 cos(Pi*11/100)+sin(Pi*29/93) 1771175564096139 a003 sin(Pi*39/119)+sin(Pi*29/79) 1771175564638209 p003 LerchPhi(1/64,9,61/65) 1771175567342976 r005 Re(z^2+c),c=-7/48+20/59*I,n=23 1771175576325861 a007 Real Root Of -740*x^4-856*x^3+666*x^2+201*x+793 1771175585982973 r005 Re(z^2+c),c=1/24+41/60*I,n=8 1771175588260491 a007 Real Root Of -378*x^4-348*x^3-214*x^2-836*x+977 1771175590833093 m001 (Porter+StronglyCareFree)/(Bloch+Kolakoski) 1771175591688892 r005 Re(z^2+c),c=-9/82+20/47*I,n=34 1771175595939048 a003 sin(Pi*1/41)/cos(Pi*53/109) 1771175597724078 r005 Re(z^2+c),c=-131/110+13/58*I,n=2 1771175599715298 m001 1/exp(LaplaceLimit)/CareFree^2*Niven 1771175602708620 r005 Re(z^2+c),c=-1/70+23/39*I,n=64 1771175605619418 a003 cos(Pi*18/115)+sin(Pi*37/106) 1771175606728243 m001 FeigenbaumB^2/Artin*exp(GAMMA(5/6))^2 1771175607688127 p001 sum(1/(607*n+603)/(8^n),n=0..infinity) 1771175609444381 m001 gamma(1)^exp(1/exp(1))/GlaisherKinkelin 1771175617332515 r005 Im(z^2+c),c=-12/25+17/55*I,n=61 1771175621732395 m005 (1/3*Catalan+1/3)/(5/11*exp(1)-7/8) 1771175634160123 a007 Real Root Of 846*x^4+817*x^3-833*x^2+258*x-716 1771175636362798 a007 Real Root Of 275*x^4+203*x^3-363*x^2+408*x+283 1771175638743444 m001 (Ei(1)-BesselJ(1,1))/(FeigenbaumB-Trott) 1771175644018494 r005 Im(z^2+c),c=-17/32+1/31*I,n=22 1771175657655916 r005 Im(z^2+c),c=3/50+1/6*I,n=11 1771175658452488 a007 Real Root Of 617*x^4+380*x^3-901*x^2+336*x-539 1771175673575101 b008 8/7+Pi/5 1771175677191236 a007 Real Root Of 4*x^4+714*x^3+979*x^2-69*x+709 1771175679170708 a001 29/34*89^(7/43) 1771175686221378 m001 1/Kolakoski*MertensB1*exp(sin(1))^2 1771175688929574 m005 (1/3*Catalan-1/6)/(1/5*2^(1/2)+1/2) 1771175692386283 r005 Re(z^2+c),c=7/118+31/59*I,n=9 1771175692522132 m001 (Psi(2,1/3)-Shi(1))/(MertensB3+Tribonacci) 1771175692749807 m001 HeathBrownMoroz*KomornikLoreti+ZetaP(3) 1771175701134673 v002 sum(1/(2^n*(3/2*n^2+11/2*n+41)),n=1..infinity) 1771175704223100 r002 4th iterates of z^2 + 1771175705502964 r005 Re(z^2+c),c=-7/78+7/15*I,n=44 1771175712729412 r009 Re(z^3+c),c=-17/70+8/21*I,n=13 1771175715904120 m001 (ln(gamma)+Cahen)/(3^(1/2)-Zeta(3)) 1771175717360507 m001 ln(GAMMA(11/12))*Riemann1stZero^2*GAMMA(13/24) 1771175718501415 a007 Real Root Of 447*x^4+741*x^3+388*x^2+341*x-895 1771175723233589 m005 (1/3*Catalan+2/9)/(7/8*exp(1)+3/5) 1771175723335672 r005 Im(z^2+c),c=-17/16+17/80*I,n=48 1771175723620043 a001 3/15127*521^(7/20) 1771175723646171 r005 Im(z^2+c),c=-13/27+1/33*I,n=47 1771175725907449 r002 19th iterates of z^2 + 1771175726927939 q001 1401/791 1771175727237149 r005 Re(z^2+c),c=-23/118+29/38*I,n=61 1771175727522281 a003 cos(Pi*20/119)+sin(Pi*38/105) 1771175730017331 m006 (4/5*Pi^2+1/5)/(1/2*Pi+3) 1771175730017331 m008 (4/5*Pi^2+1/5)/(1/2*Pi+3) 1771175730695532 m001 (Chi(1)-ReciprocalLucas)/HardyLittlewoodC3 1771175734565438 m006 (5/6*exp(2*Pi)+3/5)/(3/4*Pi+1/6) 1771175734692913 r009 Re(z^3+c),c=-17/54+36/61*I,n=30 1771175750606024 a003 sin(Pi*23/89)/cos(Pi*56/115) 1771175759042836 a007 Real Root Of -111*x^4+274*x^3+308*x^2-653*x+492 1771175764311347 r005 Re(z^2+c),c=-19/23+5/52*I,n=22 1771175766613751 a001 843/1597*144^(41/58) 1771175766700179 m001 (1+Zeta(5))/(-FibonacciFactorial+ZetaP(4)) 1771175771331192 m001 Ei(1,1)^Artin*Riemann2ndZero^Artin 1771175775805361 m006 (1/5*Pi^2+3)/(Pi-1/3) 1771175775805361 m008 (1/5*Pi^2+3)/(Pi-1/3) 1771175777820781 r005 Im(z^2+c),c=-23/54+14/47*I,n=34 1771175779884522 l006 ln(1268/7453) 1771175785577075 a007 Real Root Of -719*x^4-466*x^3+840*x^2-540*x+895 1771175793350081 a007 Real Root Of 772*x^4+885*x^3-419*x^2+880*x+193 1771175798345935 r005 Im(z^2+c),c=-61/50+7/22*I,n=21 1771175802838542 r002 23th iterates of z^2 + 1771175812155440 a007 Real Root Of -66*x^4+202*x^3+945*x^2+644*x-52 1771175817845536 m001 (BesselJ(0,1)-Shi(1))/(-MadelungNaCl+Paris) 1771175818104801 r005 Re(z^2+c),c=-59/70+2/29*I,n=46 1771175825034945 r005 Im(z^2+c),c=-49/114+1/36*I,n=11 1771175837068065 b008 56*Pi+Csc[1] 1771175840546366 r005 Im(z^2+c),c=-19/42+17/56*I,n=32 1771175847605450 m009 (4/5*Psi(1,1/3)+1/4)/(3/8*Pi^2+1) 1771175847788274 b008 23-3*ArcCosh[3] 1771175847788274 b008 23-6*ArcCsch[1] 1771175856884930 m005 (1/2*5^(1/2)-1/11)/(3*5^(1/2)-10/11) 1771175860721224 m001 KhinchinHarmonic/(GAMMA(7/12)-Landau) 1771175862374070 h001 (8/9*exp(2)+1/7)/(2/5*exp(2)+5/6) 1771175864324732 r002 35th iterates of z^2 + 1771175868680176 a001 2537720636/21*86267571272^(8/21) 1771175868680187 a001 119218851371/21*3524578^(8/21) 1771175873806555 r005 Im(z^2+c),c=-83/118+4/47*I,n=49 1771175878133593 a007 Real Root Of -586*x^4-623*x^3+945*x^2+799*x+756 1771175887381626 r005 Im(z^2+c),c=5/106+6/35*I,n=11 1771175894251328 m001 (arctan(1/2)+Pi^(1/2))/(sin(1)+BesselK(0,1)) 1771175894867861 r005 Re(z^2+c),c=-41/34+4/113*I,n=44 1771175900632619 m001 FeigenbaumKappa/(Gompertz^polylog(4,1/2)) 1771175901338207 r005 Im(z^2+c),c=-41/48+5/38*I,n=5 1771175903518437 m004 -50/Pi-2*Sec[Sqrt[5]*Pi]+Tan[Sqrt[5]*Pi] 1771175913121151 k006 concat of cont frac of 1771175915060509 b008 -2/13+Zeta[Sqrt[Pi]] 1771175915883494 m001 (Pi*csc(11/24*Pi)/GAMMA(13/24))^exp(1)*Otter 1771175915971190 m001 1/CareFree/FeigenbaumDelta/exp(cos(1)) 1771175921153603 m001 (Pi-sin(1/12*Pi))/(GAMMA(11/12)-FeigenbaumD) 1771175921964864 a001 1/4*(1/2*5^(1/2)+1/2)^22*3^(9/17) 1771175927665429 a003 cos(Pi*11/51)-sin(Pi*31/109) 1771175929962255 a003 cos(Pi*5/34)+sin(Pi*35/103) 1771175932473857 m008 (1/6*Pi+1/4)/(1/6*Pi^3-4/5) 1771175936538165 m005 (1/3*5^(1/2)-2/5)/(5/11*exp(1)+5/7) 1771175945864916 s002 sum(A149017[n]/(n^2*2^n-1),n=1..infinity) 1771175947892707 m001 Pi^2/FeigenbaumAlpha*ln(cos(Pi/5))^2 1771175950563294 a007 Real Root Of -505*x^4+835*x^3-595*x^2+306*x+78 1771175957702983 m001 GAMMA(11/12)-Tribonacci^Niven 1771175969353458 r005 Re(z^2+c),c=-7/106+23/45*I,n=58 1771175974071432 m001 1/ln(CareFree)^2/Bloch*GAMMA(23/24) 1771175977490037 l006 ln(679/3991) 1771175978618027 r002 3th iterates of z^2 + 1771175983384308 r002 5th iterates of z^2 + 1771175985099117 m005 (1/2*Pi+1/10)/(6/11*Zeta(3)-3/4) 1771175990478113 a007 Real Root Of 372*x^4+820*x^3+888*x^2+518*x-973 1771175995864812 a007 Real Root Of -19*x^4+792*x^3+708*x^2-863*x+838 1771175997755492 m001 1/GAMMA(11/24)*Kolakoski/exp(Zeta(1/2)) 1771176007450806 h001 (3/10*exp(2)+1/7)/(2/7*exp(1)+5/9) 1771176013391603 r005 Im(z^2+c),c=-4/5+4/41*I,n=26 1771176016074742 r009 Re(z^3+c),c=-11/29+43/61*I,n=12 1771176019053262 a007 Real Root Of 9*x^4+144*x^3-243*x^2+511*x-318 1771176034470197 a001 3571/24157817*2^(6/23) 1771176037318929 q001 7214/4073 1771176037474846 m001 (gamma(2)+GAMMA(7/12))/(MertensB3-Weierstrass) 1771176041485654 s002 sum(A180002[n]/((2^n-1)/n),n=1..infinity) 1771176042975691 a003 cos(Pi*47/106)/sin(Pi*15/31) 1771176044760109 m001 ln(Ei(1))*Sierpinski/cos(Pi/12)^2 1771176046948222 a007 Real Root Of -201*x^4-365*x^3-752*x^2-843*x+816 1771176051757725 r005 Re(z^2+c),c=-55/98+44/61*I,n=6 1771176054081365 r005 Im(z^2+c),c=-67/66+11/57*I,n=52 1771176055976288 m005 (1/3*3^(1/2)-3/4)/(3/8*2^(1/2)+4/9) 1771176057251307 a007 Real Root Of -358*x^4+117*x^3+919*x^2-650*x+139 1771176058044066 a007 Real Root Of 783*x^4+747*x^3-640*x^2+584*x-513 1771176061095111 a007 Real Root Of 4*x^4-391*x^3-379*x^2+398*x-318 1771176069949460 m001 (Ei(1,1)-FeigenbaumB)/(Magata+ZetaQ(2)) 1771176084836871 r002 15th iterates of z^2 + 1771176088634006 a001 121393/29*1364^(31/37) 1771176091177625 r005 Re(z^2+c),c=5/24+16/37*I,n=30 1771176091192251 s002 sum(A280809[n]/(n*exp(pi*n)-1),n=1..infinity) 1771176092987014 r005 Im(z^2+c),c=-119/110+14/41*I,n=5 1771176095601377 m001 1/exp(Tribonacci)^2/MertensB1*GAMMA(2/3)^2 1771176096088297 m004 16+Sqrt[5]/Pi+Tanh[Sqrt[5]*Pi] 1771176106393884 a007 Real Root Of -222*x^4-363*x^3-998*x^2+940*x+196 1771176110731527 a007 Real Root Of -345*x^4-228*x^3+437*x^2-955*x-934 1771176112126751 q001 5813/3282 1771176114716152 a007 Real Root Of -606*x^4-882*x^3+801*x^2+670*x-263 1771176117133471 a007 Real Root Of 41*x^4-657*x^3+665*x^2-601*x-131 1771176134336807 a007 Real Root Of 862*x^4+874*x^3-901*x^2+125*x-579 1771176135212131 k009 concat of cont frac of 1771176138179613 r009 Re(z^3+c),c=-37/114+18/29*I,n=53 1771176141702861 m004 -17-(Sqrt[5]*Tanh[Sqrt[5]*Pi])/Pi 1771176146393427 r002 20th iterates of z^2 + 1771176150531299 l006 ln(1448/8511) 1771176153099428 a001 9349/63245986*2^(6/23) 1771176154164090 h001 (3/11*exp(2)+1/10)/(2/11*exp(1)+7/10) 1771176158418213 a007 Real Root Of -513*x^4-732*x^3+825*x^2+827*x-142 1771176159865568 r002 53th iterates of z^2 + 1771176168579597 m001 (exp(Pi)*KhinchinHarmonic+Gompertz)/exp(Pi) 1771176170407200 a001 24476/165580141*2^(6/23) 1771176172932369 a001 64079/433494437*2^(6/23) 1771176173300787 a001 167761/1134903170*2^(6/23) 1771176173354538 a001 439204/2971215073*2^(6/23) 1771176173362380 a001 1149851/7778742049*2^(6/23) 1771176173363524 a001 3010349/20365011074*2^(6/23) 1771176173363691 a001 7881196/53316291173*2^(6/23) 1771176173363716 a001 20633239/139583862445*2^(6/23) 1771176173363719 a001 54018521/365435296162*2^(6/23) 1771176173363720 a001 141422324/956722026041*2^(6/23) 1771176173363720 a001 370248451/2504730781961*2^(6/23) 1771176173363720 a001 969323029/6557470319842*2^(6/23) 1771176173363720 a001 224056801/1515744265389*2^(6/23) 1771176173363720 a001 599074578/4052739537881*2^(6/23) 1771176173363720 a001 228826127/1548008755920*2^(6/23) 1771176173363720 a001 87403803/591286729879*2^(6/23) 1771176173363721 a001 4769326/32264490531*2^(6/23) 1771176173363731 a001 12752043/86267571272*2^(6/23) 1771176173363795 a001 4870847/32951280099*2^(6/23) 1771176173364232 a001 1860498/12586269025*2^(6/23) 1771176173367227 a001 101521/686789568*2^(6/23) 1771176173387758 a001 271443/1836311903*2^(6/23) 1771176173388879 m001 (Khinchin+4)/(-GAMMA(3/4)+5) 1771176173528481 a001 103682/701408733*2^(6/23) 1771176174493010 a001 39603/267914296*2^(6/23) 1771176176186577 r009 Re(z^3+c),c=-9/29+24/41*I,n=28 1771176177962856 m005 (1/2*Pi+7/10)/(9/11*2^(1/2)+1/8) 1771176179610265 r009 Re(z^3+c),c=-5/46+19/23*I,n=9 1771176181103991 a001 1/6765*2^(6/23) 1771176203609974 a007 Real Root Of 624*x^4+621*x^3-974*x^2-192*x+25 1771176207960705 m004 2+5*Pi+(3*Sqrt[5]*Sech[Sqrt[5]*Pi])/Pi 1771176208261293 m004 2+(6*Sqrt[5])/(E^(Sqrt[5]*Pi)*Pi)+5*Pi 1771176208561881 m004 2+5*Pi+(3*Sqrt[5]*Csch[Sqrt[5]*Pi])/Pi 1771176212422973 r009 Re(z^3+c),c=-39/58+21/59*I,n=4 1771176214056994 m001 ln(5)^(CareFree*Niven) 1771176214746740 m001 Pi^(1/2)-Zeta(1/2)-MinimumGamma 1771176217348210 a007 Real Root Of 639*x^4+865*x^3-176*x^2+930*x+717 1771176218135160 a007 Real Root Of -635*x^4-868*x^3+682*x^2+21*x-676 1771176219595895 r005 Im(z^2+c),c=-2/31+5/24*I,n=18 1771176220837485 h001 (-7*exp(1)-9)/(-4*exp(1/3)+4) 1771176222094074 m001 (OneNinth+ZetaP(2))/(BesselI(0,1)+Ei(1)) 1771176222216062 m001 (5^(1/2))^MertensB3/(Backhouse^MertensB3) 1771176223901515 a007 Real Root Of 844*x^4-795*x^3+76*x^2-778*x+139 1771176225264043 m001 (Pi+BesselI(1,1))/(Khinchin-Lehmer) 1771176226416325 a001 5778/39088169*2^(6/23) 1771176234443998 q001 4412/2491 1771176241509505 r005 Im(z^2+c),c=-2/31+5/24*I,n=16 1771176249370461 b008 -2*Sqrt[2]+SinhIntegral[1] 1771176258908876 r005 Im(z^2+c),c=-2/31+5/24*I,n=19 1771176259207007 m001 log(2+sqrt(3))^2*gamma/exp(sqrt(3)) 1771176261703019 a007 Real Root Of 335*x^4+967*x^3+903*x^2+6*x-746 1771176262344666 r005 Im(z^2+c),c=-2/31+5/24*I,n=21 1771176264035589 r005 Im(z^2+c),c=-2/31+5/24*I,n=22 1771176264537941 r005 Im(z^2+c),c=-2/31+5/24*I,n=24 1771176264592985 r005 Im(z^2+c),c=-2/31+5/24*I,n=25 1771176264640962 r005 Im(z^2+c),c=-2/31+5/24*I,n=27 1771176264641177 r005 Im(z^2+c),c=-2/31+5/24*I,n=28 1771176264644905 r005 Im(z^2+c),c=-2/31+5/24*I,n=31 1771176264645090 r005 Im(z^2+c),c=-2/31+5/24*I,n=30 1771176264645174 r005 Im(z^2+c),c=-2/31+5/24*I,n=34 1771176264645193 r005 Im(z^2+c),c=-2/31+5/24*I,n=37 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=40 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=43 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=46 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=49 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=52 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=50 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=53 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=55 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=56 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=58 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=59 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=61 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=62 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=64 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=63 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=60 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=57 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=54 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=51 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=47 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=48 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=45 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=44 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=42 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=41 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=39 1771176264645194 r005 Im(z^2+c),c=-2/31+5/24*I,n=38 1771176264645195 r005 Im(z^2+c),c=-2/31+5/24*I,n=36 1771176264645198 r005 Im(z^2+c),c=-2/31+5/24*I,n=33 1771176264645200 r005 Im(z^2+c),c=-2/31+5/24*I,n=35 1771176264645312 r005 Im(z^2+c),c=-2/31+5/24*I,n=32 1771176264647273 r005 Im(z^2+c),c=-2/31+5/24*I,n=29 1771176264680387 r005 Im(z^2+c),c=-2/31+5/24*I,n=26 1771176265220205 r005 Im(z^2+c),c=-2/31+5/24*I,n=23 1771176272388134 r005 Im(z^2+c),c=-71/110+13/44*I,n=19 1771176273719367 r005 Im(z^2+c),c=-2/31+5/24*I,n=20 1771176273817709 m001 1/GAMMA(5/24)^2*TreeGrowth2nd^2/exp(sqrt(3)) 1771176283011026 m001 sin(1/12*Pi)+Totient^(2^(1/2)) 1771176283081651 m001 (Otter+TwinPrimes)/(5^(1/2)-DuboisRaymond) 1771176290449735 m005 (3/4*gamma+1/4)/(1/4*gamma-4) 1771176290449735 m007 (-3/4*gamma-1/4)/(-1/4*gamma+4) 1771176292294136 a003 sin(Pi*1/18)/sin(Pi*45/103) 1771176294402842 a007 Real Root Of -563*x^4-432*x^3+675*x^2-897*x-566 1771176297019977 a003 sin(Pi*4/69)*sin(Pi*42/97) 1771176303320632 l006 ln(769/4520) 1771176304316111 k006 concat of cont frac of 1771176305515607 a007 Real Root Of -639*x^4-811*x^3+387*x^2-3*x+563 1771176324279668 a003 cos(Pi*1/66)/cos(Pi*30/97) 1771176325477613 a007 Real Root Of -530*x^4-704*x^3+704*x^2+392*x-210 1771176326401671 m001 (Trott+ZetaP(2))/(FeigenbaumB+Grothendieck) 1771176327121815 m005 (1/2*gamma+2/3)/(1/6*5^(1/2)+1/6) 1771176332539797 k002 Champernowne real with 51/2*n^2-45/2*n+14 1771176336953052 r002 4th iterates of z^2 + 1771176350002335 m005 (1/4*Catalan+2/3)/(4*2^(1/2)-3/5) 1771176350664946 r005 Im(z^2+c),c=-49/94+20/63*I,n=57 1771176363151026 m001 Pi-ln(2)/ln(10)-GAMMA(5/6)/GAMMA(11/12) 1771176367428986 a007 Real Root Of -202*x^4+444*x^3+895*x^2-519*x+728 1771176368301121 m005 (1/2*2^(1/2)+7/12)/(1/11*2^(1/2)-6/7) 1771176371649271 m001 GAMMA(1/6)*Cahen^2*ln(arctan(1/2)) 1771176371998117 r005 Im(z^2+c),c=-5/7+9/68*I,n=34 1771176379842988 r002 61th iterates of z^2 + 1771176383171939 m001 (Stephens+Weierstrass)/(Ei(1,1)+Artin) 1771176384626896 r005 Im(z^2+c),c=-15/46+8/29*I,n=15 1771176402724759 r005 Im(z^2+c),c=-2/31+5/24*I,n=17 1771176406924431 r005 Im(z^2+c),c=-47/54+10/61*I,n=16 1771176408632272 m005 (1/2*Catalan-2/3)/(2/5*exp(1)+1/11) 1771176410816318 m005 (1/2*exp(1)-1/5)/(1/3*5^(1/2)-1/11) 1771176412454338 r005 Re(z^2+c),c=-29/54+33/56*I,n=15 1771176412595137 m004 -18-Sqrt[5]/Pi+Tanh[Sqrt[5]*Pi] 1771176415225280 m005 (1/2*gamma-2)/(3/5*Catalan+5/12) 1771176422455722 m001 (Pi-gamma(2))/(Conway+PlouffeB) 1771176423287436 r005 Im(z^2+c),c=-9/16+7/17*I,n=33 1771176426933771 a001 1/11592*2584^(5/13) 1771176429264348 r009 Re(z^3+c),c=-3/94+32/57*I,n=2 1771176432869121 a001 1292/161*29^(34/37) 1771176439216777 l006 ln(1628/9569) 1771176441572507 m001 (Backhouse-Gompertz)/(TwinPrimes-ZetaP(3)) 1771176443418553 a007 Real Root Of 303*x^4-611*x^3+533*x^2-88*x-36 1771176447172597 a001 4/514229*1346269^(5/13) 1771176447173861 a001 2/31622993*365435296162^(5/13) 1771176447173872 a001 4/5702887*701408733^(5/13) 1771176449567061 a007 Real Root Of 387*x^4+204*x^3-775*x^2+346*x+369 1771176452696324 a003 cos(Pi*53/118)+cos(Pi*43/87) 1771176459997667 s002 sum(A232294[n]/((2^n-1)/n),n=1..infinity) 1771176463927425 a007 Real Root Of -4*x^4-707*x^3+259*x^2-263*x-572 1771176465745427 a007 Real Root Of 15*x^4-436*x^3-403*x^2+634*x-183 1771176476398150 m001 (exp(1)+ln(2+3^(1/2)))/(-GAMMA(5/6)+Magata) 1771176482645578 a005 (1/cos(19/205*Pi))^870 1771176487486437 a007 Real Root Of -746*x^4-532*x^3+870*x^2-523*x+730 1771176493147446 a007 Real Root Of -549*x^4-737*x^3+529*x^2+552*x+626 1771176495758817 r005 Re(z^2+c),c=-117/98+5/39*I,n=46 1771176497405457 r002 12th iterates of z^2 + 1771176498361245 r005 Im(z^2+c),c=-89/114+1/10*I,n=42 1771176499967127 a007 Real Root Of 205*x^4+435*x^3-117*x^2-972*x-955 1771176513454651 a007 Real Root Of 218*x^4+261*x^3-447*x^2-913*x-910 1771176516443408 m005 (1/2*5^(1/2)-2/9)/(1/10*gamma+5) 1771176533082755 m001 ln(GAMMA(23/24))^2/PrimesInBinary*GAMMA(5/6) 1771176534271530 a007 Real Root Of 544*x^4+309*x^3-503*x^2+709*x-803 1771176534432786 b005 Number DB table 1771176534970033 r005 Im(z^2+c),c=-5/6+11/91*I,n=41 1771176536991685 a001 2207/14930352*2^(6/23) 1771176538827042 r005 Im(z^2+c),c=-33/86+13/45*I,n=39 1771176541127083 v002 sum(1/(2^n+(10+6*n)),n=1..infinity) 1771176542438756 m001 Porter^GAMMA(13/24)/(Porter^ZetaR(2)) 1771176543470524 m001 (gamma(2)-MertensB2)/(cos(1/5*Pi)-Ei(1,1)) 1771176552448244 m001 1/exp(MinimumGamma)^2*FeigenbaumDelta^2/Robbin 1771176555350841 a007 Real Root Of 100*x^4+140*x^3+195*x^2+140*x-570 1771176558660224 h001 (3/7*exp(1)+1/7)/(10/11*exp(2)+2/3) 1771176560874660 l006 ln(859/5049) 1771176565247094 m001 1/GAMMA(5/24)/TwinPrimes^2/exp(cos(1))^2 1771176579537873 a007 Real Root Of -169*x^4-177*x^3-119*x^2-201*x+697 1771176583339533 a001 121393/322*123^(4/5) 1771176585925340 m001 (1-GAMMA(19/24))/(-MertensB2+ZetaQ(2)) 1771176597043262 m001 BesselK(0,1)*BesselJ(1,1)*exp(GAMMA(5/6))^2 1771176599266591 a007 Real Root Of 746*x^4+833*x^3-901*x^2+443*x+898 1771176602228072 g005 GAMMA(5/8)/GAMMA(8/11)/GAMMA(5/11)/GAMMA(3/11) 1771176607643836 r005 Re(z^2+c),c=-7/36+31/40*I,n=19 1771176610801249 m001 1/exp(PrimesInBinary)*Paris*exp(1) 1771176613366432 m002 -6-4*Pi+Pi^2*Csch[Pi] 1771176615968295 m001 1/exp(FeigenbaumB)*Cahen^2/Zeta(7)^2 1771176616850557 a007 Real Root Of -704*x^4-853*x^3+703*x^2+115*x+187 1771176619395335 s002 sum(A024413[n]/((pi^n-1)/n),n=1..infinity) 1771176620154330 r005 Re(z^2+c),c=35/86+16/51*I,n=32 1771176620742294 m009 (1/2*Psi(1,2/3)+2)/(2*Psi(1,1/3)-1/4) 1771176621880804 a007 Real Root Of 33*x^4+601*x^3+281*x^2-217*x-251 1771176625969221 a007 Real Root Of 16*x^4-312*x^3+355*x^2+151*x+195 1771176626270702 a007 Real Root Of -513*x^4-245*x^3+875*x^2-274*x+457 1771176629102326 r005 Im(z^2+c),c=-101/106+6/35*I,n=61 1771176630028265 a007 Real Root Of 618*x^4+933*x^3-327*x^2-590*x-917 1771176637540391 m001 (2^(1/3)+LambertW(1))/(arctan(1/3)+Rabbit) 1771176640007029 r002 35th iterates of z^2 + 1771176650056487 m001 (LaplaceLimit+ZetaQ(4))/(BesselI(0,1)-Conway) 1771176652532147 a007 Real Root Of 235*x^4-762*x^3-511*x^2-858*x+172 1771176655298151 r005 Re(z^2+c),c=1/19+7/41*I,n=3 1771176664296440 m001 GAMMA(2/3)^KhinchinLevy/cos(1/5*Pi) 1771176664720673 a007 Real Root Of 490*x^4+655*x^3-599*x^2+45*x+776 1771176665274161 r005 Re(z^2+c),c=5/56+15/58*I,n=19 1771176670192649 m001 1/ln(BesselK(0,1))^2*Conway*Zeta(7)^2 1771176671992760 m005 (1/3*2^(1/2)+1/9)/(4*Catalan-3/8) 1771176674270853 a003 cos(Pi*12/73)-sin(Pi*28/115) 1771176675747879 r005 Im(z^2+c),c=-57/122+19/62*I,n=40 1771176677294505 r005 Im(z^2+c),c=-5/6+53/253*I,n=18 1771176679458078 m005 (1/2*gamma-5/11)/(1/4*Zeta(3)+7/11) 1771176679914139 a001 17/2889*4^(31/39) 1771176684140416 a007 Real Root Of 347*x^4+230*x^3-577*x^2+5*x-318 1771176685696438 m001 Tribonacci*ln(Khintchine)/GAMMA(23/24) 1771176688859268 m001 (2*Pi/GAMMA(5/6)+Magata)/(3^(1/2)-GAMMA(3/4)) 1771176690596223 m001 1/Riemann1stZero/Cahen^2*ln(Riemann3rdZero)^2 1771176696052127 q001 4621/2609 1771176699759037 r009 Re(z^3+c),c=-3/106+15/28*I,n=19 1771176702119709 m001 Conway^ErdosBorwein/(Conway^ln(gamma)) 1771176704771527 m001 1/2*(Pi/ln(2)*ln(10)-gamma)/Pi*GAMMA(5/6) 1771176706227656 m004 3/2+24*Sin[Sqrt[5]*Pi] 1771176713892303 a007 Real Root Of -500*x^4-56*x^3+919*x^2-601*x+662 1771176715096740 a003 cos(Pi*15/86)+sin(Pi*27/73) 1771176717128632 r005 Im(z^2+c),c=-31/50+9/58*I,n=7 1771176722210187 m001 sin(1)+ln(1+sqrt(2))^gamma 1771176722210187 m001 sin(1)+ln(2^(1/2)+1)^gamma 1771176724740016 r005 Im(z^2+c),c=29/118+4/59*I,n=14 1771176731701609 m005 (-4/15+2/5*5^(1/2))/(2*gamma-4/5) 1771176734377408 m001 1/Bloch^2/FransenRobinson^2*exp(LambertW(1))^2 1771176740416469 r005 Im(z^2+c),c=-11/30+7/25*I,n=10 1771176753643540 r005 Im(z^2+c),c=-23/70+13/47*I,n=20 1771176754953528 r002 60i'th iterates of 2*x/(1-x^2) of 1771176762316648 a007 Real Root Of -383*x^4-236*x^3+551*x^2-820*x-723 1771176762327156 r009 Re(z^3+c),c=-23/94+12/31*I,n=18 1771176767952446 m001 GAMMA(3/4)/exp(Kolakoski)^2*sin(1)^2 1771176769577506 l006 ln(949/5578) 1771176769888042 a007 Real Root Of -179*x^4+377*x^3+987*x^2-402*x+48 1771176774448071 a007 Real Root Of -654*x^4-574*x^3+588*x^2-235*x+986 1771176774466671 a001 514229/521*123^(3/5) 1771176783753627 m001 1/ln(Cahen)/GaussAGM(1,1/sqrt(2))*Robbin 1771176787364901 r005 Re(z^2+c),c=-23/114+1/9*I,n=11 1771176794880898 m001 (Khinchin+Tribonacci)/(arctan(1/3)-gamma) 1771176795479016 m001 cos(Pi/5)*exp(GAMMA(5/6))*sin(1)^2 1771176797034404 r002 59th iterates of z^2 + 1771176799929191 a001 10959*3571^(23/37) 1771176801766028 m001 1/MinimumGamma^2/exp(Conway)/GAMMA(1/3)^2 1771176803959005 s001 sum(exp(-2*Pi/3)^n*A105736[n],n=1..infinity) 1771176805002842 q001 6231/3518 1771176806650447 r005 Re(z^2+c),c=-21/118+45/62*I,n=19 1771176820950187 m001 Zeta(1,2)/CopelandErdos/exp(cos(Pi/5)) 1771176824200834 m001 1/ln(GAMMA(13/24))^2/GAMMA(1/24)*Zeta(7)^2 1771176826066250 b008 13*ArcCosh[2/3+Sqrt[2]] 1771176826712483 r009 Re(z^3+c),c=-35/118+29/54*I,n=12 1771176827146845 r009 Im(z^3+c),c=-23/56+3/46*I,n=21 1771176832421091 a007 Real Root Of 759*x^4+461*x^3-823*x^2+895*x-741 1771176837207683 m005 (1/3*2^(1/2)+2/3)/(9/10*Catalan-2/11) 1771176846824044 a007 Real Root Of 100*x^4-116*x^3-522*x^2-523*x-77 1771176848534183 m001 (Cahen+MertensB3)/(Sarnak-Tribonacci) 1771176855745069 a007 Real Root Of 402*x^4+544*x^3+269*x^2+444*x-991 1771176858683064 m001 exp(sqrt(2))^polylog(4,1/2)/GAMMA(19/24) 1771176866299049 m002 4/5+(E^Pi*Pi^5)/4 1771176868337060 m001 (Zeta(1,-1)+Bloch)/(Champernowne+ErdosBorwein) 1771176870126482 h001 (5/11*exp(2)+1/3)/(5/7*exp(1)+1/7) 1771176872063602 r002 27th iterates of z^2 + 1771176872867354 g006 Psi(1,1/6)+Psi(1,3/5)-Psi(1,4/9)-Psi(1,1/4) 1771176880334167 r005 Im(z^2+c),c=-111/94+1/43*I,n=45 1771176881122721 a007 Real Root Of -580*x^4-766*x^3+495*x^2+122*x+115 1771176882703843 m001 (gamma(1)+BesselI(1,2))/(MertensB3-PlouffeB) 1771176888347930 a007 Real Root Of -575*x^4-557*x^3+681*x^2-11*x+408 1771176889200899 a001 1346269/29*15127^(14/37) 1771176897346561 m001 (Shi(1)-GAMMA(19/24)*Sarnak)/GAMMA(19/24) 1771176898857360 r005 Im(z^2+c),c=-33/86+13/45*I,n=37 1771176904501170 r005 Im(z^2+c),c=-19/21+4/29*I,n=6 1771176905557355 r004 Im(z^2+c),c=-2/5+4/5*I,z(0)=exp(5/8*I*Pi),n=3 1771176907088838 a001 47/610*514229^(46/49) 1771176908285870 r005 Re(z^2+c),c=-6/5+3/26*I,n=64 1771176913192536 m004 -75/Pi+125*Pi-25*Sqrt[5]*Pi*Cot[Sqrt[5]*Pi] 1771176917055495 r005 Re(z^2+c),c=-13/10+102/229*I,n=3 1771176919888134 r005 Re(z^2+c),c=-9/62+17/50*I,n=13 1771176921077682 m005 (1/2*Catalan+6/11)/(4*Zeta(3)+6/7) 1771176925862778 r009 Im(z^3+c),c=-71/82+21/34*I,n=2 1771176932586654 a001 28657/29*5778^(32/37) 1771176933128524 r005 Im(z^2+c),c=-9/10+35/232*I,n=63 1771176942123907 l006 ln(1039/6107) 1771176943423994 m001 Psi(1,1/3)*FeigenbaumC-StronglyCareFree 1771176949131499 a007 Real Root Of -575*x^4-474*x^3+615*x^2-954*x-594 1771176951836667 r009 Im(z^3+c),c=-35/64+18/25*I,n=4 1771176958199452 m001 (MadelungNaCl-Mills)/(DuboisRaymond-Khinchin) 1771176958947515 h001 (1/3*exp(1)+1/7)/(7/10*exp(2)+3/4) 1771176960043308 m001 FransenRobinson*CopelandErdos*ln(BesselJ(0,1)) 1771176964018706 r002 44th iterates of z^2 + 1771176964602651 r005 Im(z^2+c),c=-101/94+5/24*I,n=47 1771176965308490 a007 Real Root Of 258*x^4+183*x^3-485*x^2-130*x-231 1771176974046498 a001 1364/89*377^(1/41) 1771176975763995 p003 LerchPhi(1/5,3,421/232) 1771176977929035 m001 ZetaP(3)^(ln(gamma)*Gompertz) 1771176980074856 a007 Real Root Of 546*x^4+466*x^3-396*x^2+320*x-975 1771176983973432 a007 Real Root Of 646*x^4+73*x^3+992*x^2-732*x-161 1771176991441267 r002 8th iterates of z^2 + 1771176994922653 r002 4th iterates of z^2 + 1771176996790969 m004 -3/2+3/E^(Sqrt[5]*Pi)-25*Sqrt[5]*Pi 1771177011626021 a007 Real Root Of -734*x^4-905*x^3-518*x^2+723*x+140 1771177019369648 m001 (sin(1/5*Pi)+Pi^(1/2))/MertensB3 1771177024220100 b008 (8+(4+E)^2)/3 1771177025634401 a007 Real Root Of -460*x^4-732*x^3+436*x^2+922*x+725 1771177025725791 r005 Im(z^2+c),c=-2/31+5/24*I,n=13 1771177040517625 a007 Real Root Of 400*x^4+695*x^3+713*x^2+771*x-946 1771177047536014 g006 Psi(1,11/12)+Psi(1,3/8)+Psi(1,5/7)+1/2*Pi^2 1771177049356882 m001 (ArtinRank2+GaussAGM)/(3^(1/3)-gamma) 1771177049870818 m003 -6+(3*Sqrt[5]*E^(1/2+Sqrt[5]/2))/8 1771177050751827 a007 Real Root Of 578*x^4+152*x^3-886*x^2+978*x-332 1771177060782669 m001 PisotVijayaraghavan+Stephens^MinimumGamma 1771177070384269 a007 Real Root Of 375*x^4+515*x^3-652*x^2-846*x-282 1771177082902037 a007 Real Root Of 666*x^4+915*x^3-450*x^2+356*x+572 1771177087160673 l006 ln(1129/6636) 1771177093872068 r005 Im(z^2+c),c=-9/16+41/113*I,n=20 1771177098370620 r005 Re(z^2+c),c=3/10+19/35*I,n=44 1771177100505481 a007 Real Root Of 47*x^4+804*x^3-544*x^2-747*x-669 1771177104333128 r009 Im(z^3+c),c=-23/54+2/49*I,n=37 1771177109908708 a001 322/3*14930352^(13/15) 1771177114207507 r004 Im(z^2+c),c=-35/46+1/14*I,z(0)=-1,n=18 1771177117711771 q001 161/909 1771177117711771 r002 2th iterates of z^2 + 1771177117711771 r005 Im(z^2+c),c=-8/9+23/101*I,n=2 1771177117711771 s001 sum(1/10^(n-1)*A070376[n],n=1..infinity) 1771177117711771 s001 sum(1/10^n*A070376[n],n=1..infinity) 1771177124111411 k008 concat of cont frac of 1771177133869770 m005 (1/2*exp(1)+4/11)/(9/11*gamma-3/8) 1771177149204478 a007 Real Root Of -336*x^4-112*x^3+326*x^2-928*x+18 1771177155966939 h001 (-12*exp(3)-5)/(-exp(2)+6) 1771177162657698 r002 29th iterates of z^2 + 1771177167535861 a007 Real Root Of 525*x^4+740*x^3-327*x^2+113*x+171 1771177180605025 m001 1/BesselJ(1,1)/ln(FeigenbaumDelta)^2/cos(1) 1771177182568490 a003 sin(Pi*6/97)*sin(Pi*17/46) 1771177192000342 a007 Real Root Of -162*x^4+700*x^3-821*x^2+848*x+180 1771177192648604 m001 (-Cahen+4)/Ei(1) 1771177210651473 m001 GAMMA(2/3)*(FeigenbaumB+PlouffeB) 1771177210781000 l006 ln(1219/7165) 1771177213566605 r009 Re(z^3+c),c=-9/50+33/37*I,n=61 1771177217731774 k001 Champernowne real with n+1770 1771177220264183 r005 Im(z^2+c),c=-49/122+12/41*I,n=25 1771177226695954 m001 ln(GAMMA(5/24))/GAMMA(13/24)^2*LambertW(1)^2 1771177228687161 a007 Real Root Of -763*x^4-809*x^3+643*x^2-255*x+545 1771177231555321 a001 8/9349*3571^(14/15) 1771177236974300 m001 ZetaQ(2)^FransenRobinson*ZetaQ(2)^ZetaR(2) 1771177237440854 m001 (GAMMA(23/24)+ZetaP(4))/(Chi(1)+Zeta(1/2)) 1771177239657158 a003 cos(Pi*2/63)+sin(Pi*28/99) 1771177240503624 a001 28657/29*2207^(36/37) 1771177260761419 a007 Real Root Of -582*x^4-929*x^3+135*x^2-414*x-591 1771177261807543 r002 37i'th iterates of 2*x/(1-x^2) of 1771177262617953 a007 Real Root Of -139*x^4-442*x^3-649*x^2-236*x+530 1771177279093848 m001 1/ln(OneNinth)^2*CopelandErdos/GAMMA(1/3) 1771177280829086 m001 GolombDickman*Khinchin^GAMMA(11/12) 1771177289189275 l006 ln(289/345) 1771177293777221 m005 (1/2*Zeta(3)+1/9)/(1/11*gamma-5/11) 1771177295306419 r005 Re(z^2+c),c=11/102+18/49*I,n=37 1771177295833926 m001 (Backhouse+Gompertz)/(Si(Pi)-ln(2)) 1771177300842323 a007 Real Root Of -456*x^4-187*x^3+947*x^2+47*x+561 1771177311223504 r005 Im(z^2+c),c=-149/126+8/47*I,n=11 1771177317402340 l006 ln(1309/7694) 1771177317751777 k001 Champernowne real with 2*n+1769 1771177318880418 a007 Real Root Of -714*x^4-803*x^3+404*x^2-509*x+396 1771177324536919 a007 Real Root Of 632*x^4+971*x^3+249*x^2+465*x-782 1771177330316130 m001 (ln(Pi)-GAMMA(5/6))/(HardyLittlewoodC4+Lehmer) 1771177332868458 a001 8/15127*64079^(11/15) 1771177334050571 a001 8/15127*39603^(23/30) 1771177335545807 k002 Champernowne real with 26*n^2-24*n+15 1771177338737936 m001 1+Niven*ZetaP(2) 1771177340901019 a001 8/271443*17393796001^(7/15) 1771177340924376 a001 4/930249*3010349^(13/15) 1771177340925057 a001 4/299537289*119218851371^(11/15) 1771177340925057 a001 8/505019158607*5600748293801^(13/15) 1771177340925057 a001 8/5600748293801*9062201101803^(14/15) 1771177340925057 a001 8/6643838879*6643838879^(14/15) 1771177340925057 a001 8/969323029*4106118243^(13/15) 1771177340925086 a001 2/1970299*23725150497407^(7/15) 1771177340925086 a001 2/1970299*505019158607^(8/15) 1771177340925156 a001 2/1970299*4870847^(14/15) 1771177340925253 a001 8/3010349*87403803^(11/15) 1771177340987991 a001 8/167761*370248451^(8/15) 1771177346066261 p003 LerchPhi(1/2,4,650/227) 1771177348487763 a001 2207/21*2178309^(28/55) 1771177351255644 m005 (1/3*Zeta(3)-1/8)/(5*Pi-1/7) 1771177356738929 m002 -4*Coth[Pi]+ProductLog[Pi]+Sinh[Pi]/Pi^2 1771177358955546 a001 8/9349*24476^(34/45) 1771177361189368 a001 8/9349*12752043^(7/15) 1771177369034734 b008 Sqrt[E]+Sqrt[2]*Csch[Pi] 1771177378529325 a007 Real Root Of 657*x^4+534*x^3-925*x^2+853*x+914 1771177381131941 a007 Real Root Of 601*x^4+719*x^3-704*x^2+240*x+714 1771177382599339 m001 BesselK(1,1)^2*Khintchine/ln(sqrt(3)) 1771177383181348 r005 Re(z^2+c),c=-19/18+35/173*I,n=2 1771177384764444 h001 (1/4*exp(2)+2/3)/(3/8*exp(1)+2/5) 1771177384972779 m001 (-FeigenbaumB+Otter)/(3^(1/2)-Si(Pi)) 1771177387932939 r005 Im(z^2+c),c=-25/26+18/119*I,n=4 1771177389707414 r005 Re(z^2+c),c=-5/26+9/49*I,n=5 1771177396106108 m005 (1/3*5^(1/2)+1/4)/(3/4*Catalan-1/8) 1771177397058285 a007 Real Root Of -238*x^4+338*x^3+695*x^2-896*x+453 1771177397816299 m001 1/exp(BesselJ(1,1))*RenyiParking/exp(1) 1771177400567422 r009 Re(z^3+c),c=-81/86+3/64*I,n=2 1771177405509295 a001 3/53316291173*6765^(15/23) 1771177408717245 r005 Re(z^2+c),c=-13/74+13/53*I,n=15 1771177410305414 l006 ln(1399/8223) 1771177410761854 q001 6649/3754 1771177417771780 k001 Champernowne real with 3*n+1768 1771177422139049 m001 (Zeta(5)+ln(5))/(HardHexagonsEntropy+Paris) 1771177424080009 m002 Pi^2/E^Pi+ProductLog[Pi]+Pi*Sech[Pi] 1771177429792149 r005 Re(z^2+c),c=-1/30+23/41*I,n=47 1771177432646480 r002 15th iterates of z^2 + 1771177439718374 a007 Real Root Of -353*x^4-258*x^3+700*x^2+391*x+537 1771177439906766 r009 Re(z^3+c),c=-19/58+11/16*I,n=25 1771177440075638 a007 Real Root Of 25*x^4-347*x^3-532*x^2+550*x+469 1771177445198604 r005 Im(z^2+c),c=-13/27+1/33*I,n=45 1771177445582056 m001 ln(Zeta(9))^2*Zeta(3)/sqrt(1+sqrt(3))^2 1771177449356683 m001 (Magata-ZetaP(2))/(FeigenbaumAlpha-GaussAGM) 1771177453653910 a007 Real Root Of -272*x^4+36*x^3+850*x^2-523*x-716 1771177457355347 a007 Real Root Of -25*x^4-420*x^3+381*x^2-402*x+10 1771177458288379 a007 Real Root Of -507*x^4-462*x^3+70*x^2-809*x+770 1771177466385184 b008 11+(2*Cosh[3])/3 1771177467619393 r005 Re(z^2+c),c=-93/118+1/9*I,n=28 1771177474572761 s002 sum(A160897[n]/((2^n+1)/n),n=1..infinity) 1771177475066033 a001 5600748293801/2*6557470319842^(1/16) 1771177475066033 a001 9062201101803/2*2971215073^(1/16) 1771177475066045 a001 7331474697802*1346269^(1/16) 1771177475652698 a007 Real Root Of -319*x^4+134*x^3+959*x^2-68*x+755 1771177479818683 a001 8/3571*73681302247^(4/15) 1771177479831503 a001 8/3571*271443^(8/15) 1771177480095777 r005 Im(z^2+c),c=-43/34+46/121*I,n=10 1771177490939167 a001 18/514229*75025^(55/57) 1771177491977753 l006 ln(1489/8752) 1771177493265623 m001 (BesselJ(1,1)-Otter)/(ln(3)+arctan(1/3)) 1771177495146937 g006 Psi(1,4/11)+Psi(1,4/9)+Psi(1,3/7)-Psi(1,5/8) 1771177504393673 q001 5039/2845 1771177504686288 m001 (Conway+ZetaQ(4))/((1+3^(1/2))^(1/2)-Catalan) 1771177505668934 r009 Re(z^3+c),c=-12/25+46/63*I,n=2 1771177511440832 r005 Im(z^2+c),c=-93/106+4/27*I,n=3 1771177515534214 b008 Sqrt[3]+2*BesselJ[3,1] 1771177517791783 k001 Champernowne real with 4*n+1767 1771177525807951 a003 sin(Pi*3/94)/cos(Pi*21/68) 1771177528842645 m005 (1/3*Pi-1/3)/(4*Zeta(3)-7/9) 1771177531060305 m009 (3/4*Psi(1,3/4)+5)/(2*Catalan+1/4*Pi^2-2/5) 1771177531207396 a003 cos(Pi*1/66)+sin(Pi*25/89) 1771177534565459 a001 23725150497407/2*610^(1/16) 1771177538588960 a007 Real Root Of -650*x^4-886*x^3+398*x^2-571*x-786 1771177539184133 r005 Re(z^2+c),c=-8/29+47/63*I,n=7 1771177539273553 a001 21/47*1364^(26/51) 1771177554113112 r005 Im(z^2+c),c=19/82+3/38*I,n=23 1771177555809590 r002 2th iterates of z^2 + 1771177555926110 m001 1/Riemann2ndZero^2/exp(Kolakoski)/gamma 1771177556162837 m005 (1/2*2^(1/2)-7/10)/(9/10*5^(1/2)+2) 1771177564006206 m005 (1/2*gamma-5/6)/(1/9*3^(1/2)-1/2) 1771177564339750 l006 ln(1579/9281) 1771177564339750 p004 log(9281/1579) 1771177566533087 m001 (Psi(1,1/3)+GAMMA(2/3))/(Lehmer+ZetaQ(2)) 1771177568275912 r005 Re(z^2+c),c=-5/24+1/55*I,n=8 1771177576937773 a007 Real Root Of -926*x^4-860*x^3+870*x^2-580*x+578 1771177580190734 a007 Real Root Of 835*x^4+772*x^3+905*x^2-957*x+136 1771177582370202 a007 Real Root Of -415*x^4-378*x^3+796*x^2+663*x+661 1771177598180126 r009 Im(z^3+c),c=-5/114+2/11*I,n=5 1771177598650562 g007 Psi(2,4/11)-Psi(2,7/8)-Psi(2,2/7)-Psi(2,1/4) 1771177602992993 r005 Re(z^2+c),c=9/29+14/57*I,n=22 1771177603952918 h001 (1/8*exp(1)+1/2)/(5/9*exp(2)+7/11) 1771177604065110 m005 (29/10+5/2*5^(1/2))/(1/4*Pi-5/6) 1771177611664368 a001 281/10983760033*46368^(14/23) 1771177612153142 m001 (FeigenbaumC-Totient)/(ZetaP(2)-ZetaP(3)) 1771177614208942 a007 Real Root Of -608*x^4-875*x^3-403*x^2-870*x+845 1771177617811786 k001 Champernowne real with 5*n+1766 1771177622092557 r005 Im(z^2+c),c=-5/8+15/52*I,n=43 1771177625968250 a007 Real Root Of -318*x^4-6*x^3+48*x^2+208*x-38 1771177626611612 h001 (9/11*exp(1)+5/12)/(2/7*exp(1)+5/7) 1771177628897573 l006 ln(1669/9810) 1771177631225169 a007 Real Root Of 60*x^4-304*x^3-299*x^2+430*x-580 1771177635524158 a007 Real Root Of -252*x^4-184*x^3+169*x^2-789*x-470 1771177645224722 a007 Real Root Of -556*x^4-362*x^3+445*x^2-724*x+782 1771177645673997 r005 Re(z^2+c),c=-7/44+11/36*I,n=9 1771177646449664 a007 Real Root Of 449*x^4+969*x^3+65*x^2-824*x-698 1771177650956627 b008 1-7*LogGamma[1/15] 1771177651529052 a001 3/2207*39603^(1/40) 1771177656628278 m001 1/Porter^2*exp(Khintchine)^2*BesselK(0,1)^2 1771177668402244 h001 (3/11*exp(2)+2/11)/(2/9*exp(1)+7/11) 1771177669454804 r005 Im(z^2+c),c=41/110+3/17*I,n=14 1771177678685392 r005 Re(z^2+c),c=3/122+11/19*I,n=13 1771177685950413 q001 3429/1936 1771177689644754 p003 LerchPhi(1/5,1,116/189) 1771177690424742 m001 (FeigenbaumC-Robbin)/(Zeta(5)+2*Pi/GAMMA(5/6)) 1771177696375444 a007 Real Root Of -605*x^4-608*x^3-64*x^2+971*x-166 1771177708269326 m004 -2-(750*Cos[Sqrt[5]*Pi])/Pi+Tan[Sqrt[5]*Pi] 1771177715265887 r009 Re(z^3+c),c=-17/90+10/59*I,n=6 1771177717831789 k001 Champernowne real with 6*n+1765 1771177721952941 a007 Real Root Of -116*x^4+475*x^3-6*x^2-394*x-781 1771177730138697 m001 (GAMMA(3/4)+1/2)/(-GAMMA(23/24)+2) 1771177731830380 m001 (gamma(3)-ln(5)*Pi^(1/2))/ln(5) 1771177733848211 m001 MertensB2^GAMMA(23/24)/(Lehmer^GAMMA(23/24)) 1771177734498827 a008 Real Root of (10+11*x+3*x^2-7*x^3) 1771177739649176 a003 cos(Pi*14/83)+sin(Pi*33/91) 1771177748373206 r009 Re(z^3+c),c=-19/82+12/35*I,n=14 1771177760321158 m001 (HardyLittlewoodC5+Paris)/(ln(3)+Pi^(1/2)) 1771177762752918 r002 8th iterates of z^2 + 1771177764785286 r005 Re(z^2+c),c=-1/17+32/61*I,n=41 1771177764967373 a007 Real Root Of -986*x^4+27*x^3-367*x^2+606*x-95 1771177767531510 r005 Re(z^2+c),c=-1/10+32/59*I,n=6 1771177772015459 m005 (1/3*Zeta(3)-2/9)/(3/10*2^(1/2)+7/12) 1771177772342645 r002 58th iterates of z^2 + 1771177779151586 r005 Re(z^2+c),c=-5/32+13/42*I,n=18 1771177781397376 a007 Real Root Of -426*x^4-398*x^3+773*x^2+756*x+895 1771177790533263 m001 FeigenbaumMu^Psi(1,1/3)/(Khinchin^Psi(1,1/3)) 1771177791127657 m001 1/exp(Salem)/PisotVijayaraghavan/GAMMA(1/4)^2 1771177793201014 m001 (sin(Pi/5)+1/2)/(Pi+3) 1771177794963145 a001 8/3571*2207^(13/15) 1771177805726792 a007 Real Root Of 664*x^4+985*x^3-235*x^2+160*x-41 1771177807793570 b008 Tanh[(1+(-1+Pi)^2)^(-1)] 1771177810171822 r009 Re(z^3+c),c=-69/118+14/45*I,n=36 1771177811019137 a003 cos(Pi*1/71)+cos(Pi*16/73) 1771177817851792 k001 Champernowne real with 7*n+1764 1771177823586664 a007 Real Root Of 985*x^4-399*x^3-808*x^2-262*x+73 1771177824885467 m001 (cos(1/5*Pi)-Robbin)/(Trott2nd-Thue) 1771177832537402 a003 cos(Pi*4/81)+cos(Pi*22/103) 1771177835948789 m005 (1/3*5^(1/2)+1/11)/(1/8*gamma+2/5) 1771177841874250 m001 (BesselI(0,1)-Catalan)/(-3^(1/3)+GAMMA(13/24)) 1771177842774553 b008 (53+E^(-2))/3 1771177844640960 m001 Pi^(1/2)*MasserGramain^ZetaQ(4) 1771177860276746 q001 5248/2963 1771177861953960 r005 Re(z^2+c),c=-2/19+38/61*I,n=46 1771177872610271 a001 10946/11*7^(8/27) 1771177878398132 r009 Re(z^3+c),c=-13/22+50/63*I,n=3 1771177882176464 m001 (-Grothendieck+Kolakoski)/(Cahen-Psi(2,1/3)) 1771177895722207 p001 sum(1/(572*n+57)/(10^n),n=0..infinity) 1771177900633031 m001 Catalan/(Psi(2,1/3)+Magata) 1771177912608217 m001 (cos(1)-exp(1))/(-Mills+ZetaP(4)) 1771177916382022 r005 Im(z^2+c),c=-4/7+41/125*I,n=55 1771177917064765 m001 Zeta(1/2)*((1+3^(1/2))^(1/2)-BesselJ(1,1)) 1771177917064765 m001 Zeta(1/2)*(BesselJ(1,1)-sqrt(1+sqrt(3))) 1771177917871795 k001 Champernowne real with 8*n+1763 1771177922105665 a001 161/182717648081*514229^(13/14) 1771177922266940 r005 Re(z^2+c),c=-1/66+1/18*I,n=4 1771177928606001 b008 Log[SinIntegral[1]!!] 1771177929063994 m001 (Ei(1,1)-cos(1))/(-Tribonacci+Trott2nd) 1771177932765357 m001 (Pi-gamma(2))/(KhinchinLevy+Lehmer) 1771177935855388 r005 Re(z^2+c),c=17/42+9/26*I,n=64 1771177936075283 a007 Real Root Of 398*x^4+370*x^3-729*x^2-175*x+116 1771177940875662 m001 exp(FeigenbaumKappa)/Bloch^2*Zeta(7)^2 1771177941242378 a001 1/1926*3571^(3/20) 1771177941447735 a007 Real Root Of 711*x^4+999*x^3-654*x^2-191*x+267 1771177943923263 r004 Im(z^2+c),c=1/7-5/7*I,z(0)=exp(5/24*I*Pi),n=14 1771177944862155 q001 7067/3990 1771177945554040 m005 (1/2*exp(1)+5/7)/(5/6*3^(1/2)-3/11) 1771177945734997 m005 (1/2*Catalan-3/4)/(3^(1/2)-1/12) 1771177947068820 m001 Si(Pi)/(arctan(1/2)+LandauRamanujan2nd) 1771177948304631 a005 (1/cos(4/193*Pi))^1355 1771177949921989 a003 cos(Pi*1/16)+cos(Pi*17/81) 1771177952353313 a001 1364*21^(16/19) 1771177953776557 r005 Re(z^2+c),c=-15/56+37/60*I,n=45 1771177953983089 a003 cos(Pi*1/44)+cos(Pi*19/87) 1771177960137838 g006 -Psi(1,1/12)-Psi(1,2/9)-Psi(1,7/8)-Psi(1,3/8) 1771177960921332 m001 (Otter+Totient)/(BesselI(1,1)-FellerTornier) 1771177962076428 a001 1/1926*45537549124^(1/20) 1771177963528544 a007 Real Root Of -327*x^4+834*x^3-510*x^2+706*x+146 1771177965889101 m006 (1/2*Pi^2+3/4)/(3/5*exp(2*Pi)-1/3) 1771177966807148 p003 LerchPhi(1/5,4,103/37) 1771177971520679 m001 (cos(1/12*Pi)+Conway)^ArtinRank2 1771177972546076 r005 Im(z^2+c),c=-155/126+1/52*I,n=53 1771177972714190 a007 Real Root Of 302*x^4-309*x^3-823*x^2+703*x-862 1771177973949657 m005 (1/2*Pi+1)/(8/11*Pi-5/6) 1771177977941413 m001 (3^(1/3)+Lehmer)/(Salem-Trott2nd) 1771177978177394 r002 13th iterates of z^2 + 1771177978336201 a007 Real Root Of -346*x^4-218*x^3+649*x^2+445*x+946 1771177986839526 r009 Re(z^3+c),c=-23/78+33/56*I,n=21 1771177988890420 r005 Im(z^2+c),c=-1/21+13/64*I,n=8 1771177991424720 m001 Catalan^2/Champernowne*ln(sinh(1))^2 1771177991595144 a007 Real Root Of -424*x^4-776*x^3-186*x^2+819*x+147 1771177994638984 a007 Real Root Of 52*x^4+918*x^3-35*x^2+302*x-410 1771177997053931 m005 (1/2*Zeta(3)+5/11)/(7/8*gamma+1/11) 1771177998523633 r005 Im(z^2+c),c=1/12+46/57*I,n=6 1771178005591039 r009 Re(z^3+c),c=-8/27+31/56*I,n=26 1771178005845384 a001 3/103682*9349^(9/20) 1771178006748227 a001 3/15127*24476^(13/60) 1771178007425433 r005 Im(z^2+c),c=-29/70+13/44*I,n=47 1771178008464079 m001 1/ln(Niven)^2*ArtinRank2^2*Zeta(5) 1771178010480295 m001 (ln(Pi)+Zeta(1/2))/(Mills+PlouffeB) 1771178013512180 a001 3/439204*24476^(11/20) 1771178014341532 m001 (3^(1/2)+BesselJ(0,1))/(Zeta(3)+exp(-1/2*Pi)) 1771178014762442 a001 3/20633239*64079^(17/20) 1771178014964325 a001 3/103682*817138163596^(3/20) 1771178015123147 a001 3/7881196*439204^(13/20) 1771178015127814 a001 3/969323029*1149851^(19/20) 1771178015129075 a001 1/4250681*119218851371^(7/20) 1771178015129086 a001 1/29134601*370248451^(11/20) 1771178015129086 a001 1/199691526*2139295485799^(9/20) 1771178015129086 a001 3/73681302247*969323029^(17/20) 1771178015129086 a001 1/1368706081*6643838879^(13/20) 1771178015129086 a001 1/3020733700601*17393796001^(19/20) 1771178015129086 a001 3/17393796001*5600748293801^(11/20) 1771178015129115 a001 3/7881196*141422324^(9/20) 1771178015138258 a001 3/439204*7881196^(7/20) 1771178015731146 a001 3/439204*39603^(21/40) 1771178015802130 a007 Real Root Of 150*x^4+499*x^3+332*x^2-704*x-992 1771178016261957 r009 Im(z^3+c),c=-65/118+13/37*I,n=20 1771178017891798 k001 Champernowne real with 9*n+1762 1771178018085610 a001 3/24476*54018521^(3/20) 1771178019084334 a007 Real Root Of 677*x^4+845*x^3+10*x^2+604*x-929 1771178024609616 a001 21/47*271443^(5/17) 1771178024882121 a007 Real Root Of -346*x^4-717*x^3-350*x^2-43*x+443 1771178025296906 m001 (CareFree-KhinchinLevy)/(Kolakoski+Tetranacci) 1771178027562065 a001 21/47*15127^(13/34) 1771178029317243 m005 (1/3*Zeta(3)-1/12)/(11/12*exp(1)-7/10) 1771178034167695 r005 Re(z^2+c),c=9/38+4/19*I,n=8 1771178040164338 a001 3/103682*5778^(19/40) 1771178040194474 a007 Real Root Of -676*x^4-623*x^3+627*x^2-821*x-230 1771178045384042 r009 Im(z^3+c),c=-11/52+24/25*I,n=32 1771178045581358 a007 Real Root Of -385*x^4-572*x^3+21*x^2+34*x+605 1771178048042629 m001 (5^(1/2)+LambertW(1))/(exp(1/Pi)+exp(-1/2*Pi)) 1771178050599173 p004 log(15629/2659) 1771178056099614 m001 ZetaQ(4)^gamma/(KomornikLoreti^gamma) 1771178060709424 m005 (1/2*Zeta(3)-7/12)/(8/9*Catalan-5/7) 1771178068278357 a007 Real Root Of -528*x^4-279*x^3+879*x^2+37*x+954 1771178069414488 a007 Real Root Of -484*x^4+102*x^3+914*x^2-985*x+718 1771178076091522 a007 Real Root Of 745*x^4+995*x^3-4*x^2+797*x-379 1771178079084094 m009 (1/5*Pi^2-1/2)/(3/4*Psi(1,1/3)+3/4) 1771178088685242 a007 Real Root Of -850*x^4-719*x^3+968*x^2-265*x+864 1771178100675345 s002 sum(A213748[n]/(16^n-1),n=1..infinity) 1771178110781865 a007 Real Root Of 517*x^4+404*x^3-891*x^2-459*x-861 1771178115361121 m001 exp(FransenRobinson)^2/Artin/PrimesInBinary 1771178117911801 k001 Champernowne real with 10*n+1761 1771178117983341 m001 (Kolakoski+Tribonacci)/(2^(1/2)-gamma(1)) 1771178129440591 m001 ZetaP(3)*GlaisherKinkelin^ZetaQ(2) 1771178130004732 r005 Im(z^2+c),c=-33/106+3/11*I,n=22 1771178130537269 a007 Real Root Of -577*x^4-513*x^3+663*x^2-218*x+362 1771178140751392 r002 44th iterates of z^2 + 1771178144217757 m001 1/Robbin/GlaisherKinkelin/exp(Ei(1)) 1771178145128558 g002 Psi(1/12)+Psi(4/11)+Psi(3/11)-Psi(5/8) 1771178154022755 a001 3/3571*3010349^(1/20) 1771178165411113 k007 concat of cont frac of 1771178170074988 r002 5th iterates of z^2 + 1771178179853040 m001 LandauRamanujan+Ei(1)^Trott 1771178184401921 m001 ln(Magata)*Artin/sin(Pi/12) 1771178187593344 m001 (exp(Pi)+Gompertz)/(LandauRamanujan+Stephens) 1771178188899707 q001 1819/1027 1771178189863254 m001 1/GAMMA(3/4)^2*exp(Robbin)^2*sin(1)^2 1771178195528433 a007 Real Root Of -273*x^4-5*x^3+835*x^2+181*x+360 1771178198473402 r005 Re(z^2+c),c=-7/8+25/83*I,n=9 1771178202296981 r002 50th iterates of z^2 + 1771178204405267 a007 Real Root Of 345*x^4+22*x^3-323*x^2-781*x+148 1771178206980189 m001 (Champernowne-Si(Pi)*GAMMA(7/12))/GAMMA(7/12) 1771178212985499 a001 7/63245986*34^(2/15) 1771178217931804 k001 Champernowne real with 11*n+1760 1771178219099630 a007 Real Root Of -766*x^4-588*x^3+865*x^2-871*x+15 1771178219666630 b008 -1/11+LogIntegral[Khinchin] 1771178227358118 r005 Re(z^2+c),c=9/118+11/47*I,n=20 1771178230931432 r005 Re(z^2+c),c=-83/70+14/45*I,n=21 1771178233484760 a001 1346269/29*843^(20/37) 1771178233616018 m001 arctan(1/2)*DuboisRaymond^sin(1/5*Pi) 1771178237146107 a007 Real Root Of -606*x^4-543*x^3+704*x^2+14*x+763 1771178237794126 a007 Real Root Of -539*x^4+733*x^3+621*x^2+993*x+161 1771178238887709 r005 Im(z^2+c),c=-49/62+4/35*I,n=31 1771178239166257 m005 (1/3*exp(1)+1/7)/(3/7*Catalan-1/3) 1771178245080966 a007 Real Root Of -107*x^4+93*x^3+484*x^2-208*x-317 1771178246547768 g004 Re(GAMMA(107/30+I*52/15)) 1771178247260739 m001 (ln(5)+CareFree)/(MasserGramain+TwinPrimes) 1771178249542517 a007 Real Root Of 500*x^4+371*x^3-733*x^2+106*x-372 1771178255949097 p004 log(21977/3739) 1771178257185908 r002 41th iterates of z^2 + 1771178269357997 m001 ln(2)*polylog(4,1/2)^(2*Pi/GAMMA(5/6)) 1771178269357997 m001 ln(2)*polylog(4,1/2)^GAMMA(1/6) 1771178270106368 a003 cos(Pi*1/35)+sin(Pi*24/85) 1771178271122223 k009 concat of cont frac of 1771178271813463 r009 Re(z^3+c),c=-31/58+5/26*I,n=4 1771178277549607 a005 (1/cos(5/217*Pi))^218 1771178280186578 m001 (Chi(1)+cos(1))/(-Zeta(5)+sin(1/12*Pi)) 1771178281218533 r005 Im(z^2+c),c=-2/31+5/24*I,n=14 1771178284996262 a007 Real Root Of 506*x^4+221*x^3-852*x^2+516*x-165 1771178292862511 a007 Real Root Of -628*x^4-880*x^3-302*x^2-974*x+513 1771178293808937 m001 1/ln(GAMMA(3/4))^2/BesselK(0,1)*GAMMA(7/24) 1771178296389716 a007 Real Root Of -271*x^4-508*x^3+110*x^2+849*x+15 1771178317951807 k001 Champernowne real with 12*n+1759 1771178324252489 r005 Im(z^2+c),c=-29/26+26/125*I,n=28 1771178325676552 m001 (Catalan+Zeta(3)*ln(5))/ln(5) 1771178328267857 r002 4th iterates of z^2 + 1771178330646603 a003 cos(Pi*4/119)+cos(Pi*18/83) 1771178336332428 a003 cos(Pi*17/84)+sin(Pi*43/103) 1771178338551817 k002 Champernowne real with 53/2*n^2-51/2*n+16 1771178339036256 m001 ln(GAMMA(1/6))^2/Backhouse^2*GAMMA(5/6)^2 1771178354204559 a005 (1/cos(3/202*Pi))^525 1771178356527332 m001 cos(1/12*Pi)*(Khinchin-Riemann2ndZero) 1771178357513252 m001 1/ln(GAMMA(11/24))^2*TwinPrimes^2/LambertW(1) 1771178361367014 r002 38th iterates of z^2 + 1771178361822759 a003 cos(Pi*9/41)+sin(Pi*31/63) 1771178368540965 m005 (1/2*gamma-5/7)/(2*Catalan+4/7) 1771178370026386 m001 (Otter+ThueMorse)/(BesselJ(1,1)+MinimumGamma) 1771178373802360 a007 Real Root Of -625*x^4-304*x^3+917*x^2-883*x+21 1771178375444639 a007 Real Root Of 5*x^4+98*x^3+193*x^2+448*x-153 1771178378431113 r005 Re(z^2+c),c=5/66+22/49*I,n=3 1771178383380499 p004 log(29383/4999) 1771178411874882 r002 43th iterates of z^2 + 1771178412638371 a007 Real Root Of -459*x^4-351*x^3+57*x^2-970*x+670 1771178414942365 r005 Im(z^2+c),c=-15/16+13/84*I,n=3 1771178417971810 k001 Champernowne real with 13*n+1758 1771178421391393 a007 Real Root Of -765*x^4+611*x^3-881*x^2+786*x+171 1771178429248684 m001 (GAMMA(13/24)+Sarnak)/(Si(Pi)-polylog(4,1/2)) 1771178433807064 m001 (BesselI(0,2)+GAMMA(11/12))/(Bloch-TwinPrimes) 1771178437933598 m005 (1/2*Zeta(3)+3/10)/(2/11*Zeta(3)-8/11) 1771178440685736 a001 843/5*6765^(4/15) 1771178445841691 a007 Real Root Of -386*x^4-831*x^3+96*x^2+224*x-723 1771178446692123 a007 Real Root Of -357*x^4-249*x^3+372*x^2-97*x+791 1771178450562503 p004 log(35731/6079) 1771178455578949 m005 (1/3*Pi-1/7)/(8/11*Zeta(3)-4/11) 1771178465537895 m001 (KhinchinLevy+Riemann1stZero)/(3^(1/3)-gamma) 1771178466977505 r009 Im(z^3+c),c=-4/11+5/46*I,n=3 1771178474170465 m009 (1/3*Psi(1,1/3)+1)/(3/4*Psi(1,2/3)+1/6) 1771178476056077 a003 -1/2+1/2*2^(1/2)-2*cos(1/8*Pi)-cos(11/24*Pi) 1771178479688630 a007 Real Root Of -621*x^4-741*x^3+378*x^2-737*x-497 1771178482827673 a001 3/29*18^(8/43) 1771178484381881 a007 Real Root Of -763*x^4-850*x^3+117*x^2-883*x+855 1771178485360152 m001 (Shi(1)+Kolakoski)/(MertensB2+Trott) 1771178493279149 q001 5666/3199 1771178496163691 a007 Real Root Of 380*x^4+334*x^3-796*x^2-130*x+383 1771178496987910 r009 Re(z^3+c),c=-17/78+13/47*I,n=3 1771178498656699 a007 Real Root Of -734*x^4-37*x^3+397*x^2+903*x+148 1771178511905132 a007 Real Root Of -317*x^4-274*x^3+66*x^2-375*x+726 1771178512290919 m001 1/exp(TwinPrimes)/Riemann1stZero^2/Zeta(1/2) 1771178517991813 k001 Champernowne real with 14*n+1757 1771178522360087 a007 Real Root Of -632*x^4-625*x^3+171*x^2-780*x+829 1771178537353444 a001 433494437/7*3^(22/23) 1771178538786993 r005 Im(z^2+c),c=-25/24+1/5*I,n=30 1771178548274700 r005 Re(z^2+c),c=-9/86+24/55*I,n=27 1771178549251099 m001 BesselI(1,2)*ArtinRank2+Robbin 1771178556387284 a003 cos(Pi*16/89)-cos(Pi*27/101) 1771178559579318 a007 Real Root Of -268*x^4-194*x^3+708*x^2+190*x-325 1771178564019550 a001 987/521*322^(12/31) 1771178567241183 r009 Re(z^3+c),c=-6/25+27/62*I,n=3 1771178567721001 s002 sum(A052109[n]/(n*2^n+1),n=1..infinity) 1771178577843034 a007 Real Root Of 390*x^4-108*x^3-144*x^2-775*x+142 1771178581723130 a001 3665737348901/36*21^(2/11) 1771178582485660 a007 Real Root Of -505*x^4-624*x^3+92*x^2-983*x-527 1771178584327993 a007 Real Root Of 473*x^4+116*x^3-847*x^2+414*x-620 1771178584480738 r005 Re(z^2+c),c=11/102+35/58*I,n=25 1771178618011816 k001 Champernowne real with 15*n+1756 1771178619241786 m005 (Catalan-3)/(4*Pi-4/5) 1771178624220016 m001 ln(gamma)+arctan(1/2)^GAMMA(17/24) 1771178624220016 m001 log(gamma)+arctan(1/2)^GAMMA(17/24) 1771178629541109 a007 Real Root Of -446*x^4-560*x^3+357*x^2-565*x-843 1771178633681149 m001 (GaussAGM+TravellingSalesman)/(Shi(1)-ln(Pi)) 1771178634086965 m001 Ei(1)/(3^(1/3))/exp(Zeta(9))^2 1771178637200736 q001 3847/2172 1771178640188614 a003 cos(Pi*7/34)+sin(Pi*49/115) 1771178648401338 m001 (Magata-OneNinth)/(ln(3)+LandauRamanujan) 1771178650582354 a007 Real Root Of -703*x^4-953*x^3+374*x^2+26*x+496 1771178657301442 m001 Backhouse^exp(1/exp(1))*Backhouse^ZetaP(4) 1771178657854797 r005 Re(z^2+c),c=29/118+19/35*I,n=16 1771178665706868 a001 843/5702887*2^(6/23) 1771178665884480 r005 Re(z^2+c),c=-67/54+2/49*I,n=64 1771178673230442 r005 Im(z^2+c),c=-12/17+5/59*I,n=45 1771178688118582 r009 Im(z^3+c),c=-10/23+1/29*I,n=60 1771178693609622 a007 Real Root Of 490*x^4+437*x^3-84*x^2+771*x-765 1771178695053064 a007 Real Root Of -120*x^4+222*x^3+839*x^2+640*x+916 1771178698410998 a007 Real Root Of -866*x^4-380*x^3-415*x^2+700*x-108 1771178705310773 m001 (gamma(2)+FeigenbaumMu)/(ln(2)+ln(2+3^(1/2))) 1771178706270953 r005 Re(z^2+c),c=-39/46+3/58*I,n=28 1771178707687303 r005 Im(z^2+c),c=-23/40+14/45*I,n=37 1771178708670985 a001 55/5778*3^(13/23) 1771178711346242 a001 45537549124/55*121393^(11/24) 1771178711357259 a001 228826127/55*12586269025^(11/24) 1771178718031819 k001 Champernowne real with 16*n+1755 1771178720195610 r005 Re(z^2+c),c=19/118+13/43*I,n=4 1771178728775361 m005 (1/2*5^(1/2)+8/9)/(2/11*3^(1/2)+9/11) 1771178739696886 m001 (Chi(1)+BesselK(0,1))/(-ln(2)+LandauRamanujan) 1771178740692515 r005 Im(z^2+c),c=-8/15+14/41*I,n=13 1771178749364485 m005 (1/2*exp(1)+7/10)/(3/7*gamma-4/11) 1771178754653693 a007 Real Root Of 196*x^4+125*x^3+279*x^2+972*x-388 1771178758301869 m001 GAMMA(11/12)*GaussKuzminWirsing^2/ln(gamma) 1771178760957290 m001 3^(1/3)/(FibonacciFactorial-ThueMorse) 1771178761528034 l006 ln(90/529) 1771178776002411 q001 5875/3317 1771178778818732 a007 Real Root Of -967*x^4+937*x^3-535*x^2+969*x-17 1771178780707595 a001 76*377^(34/37) 1771178786893469 h005 exp(sin(Pi*3/23)/cos(Pi*14/55)) 1771178792480191 r005 Im(z^2+c),c=31/78+8/63*I,n=17 1771178795288614 r005 Re(z^2+c),c=-7/74+28/61*I,n=22 1771178802036187 a007 Real Root Of -291*x^4+28*x^3+377*x^2-517*x+921 1771178804809191 r005 Im(z^2+c),c=-5/6+27/185*I,n=3 1771178806096332 a001 322/701408733*610^(13/14) 1771178811799362 m001 GAMMA(1/4)^exp(sqrt(2))/GAMMA(5/6) 1771178817400781 a001 3/15127*843^(13/40) 1771178817682431 r005 Re(z^2+c),c=-135/94+6/43*I,n=4 1771178818051822 k001 Champernowne real with 17*n+1754 1771178819648593 a007 Real Root Of 898*x^4+933*x^3-941*x^2+243*x-271 1771178819692260 a007 Real Root Of -741*x^4-348*x^3+460*x^2+995*x-188 1771178821373451 m001 BesselK(0,1)*(Pi+ln(2)/ln(10))+arctan(1/3) 1771178823356881 m001 BesselK(1,1)^ZetaQ(4)-Salem 1771178826323048 a003 cos(Pi*1/45)+sin(Pi*29/103) 1771178829875665 r005 Im(z^2+c),c=-119/94+17/42*I,n=7 1771178833329806 r005 Re(z^2+c),c=-2/17+20/49*I,n=35 1771178836840148 a007 Real Root Of 618*x^4+803*x^3-704*x^2-807*x-841 1771178842803473 m001 1/ln(GAMMA(11/12))*GAMMA(1/12)^2/sinh(1)^2 1771178845532417 r009 Im(z^3+c),c=-11/64+41/48*I,n=16 1771178846458519 a003 cos(Pi*11/83)+sin(Pi*37/113) 1771178851889881 s002 sum(A192678[n]/(n*2^n+1),n=1..infinity) 1771178852360498 m001 (Pi+Zeta(1,-1))/(Artin+Mills) 1771178855091708 m001 Zeta(9)*exp(Lehmer)^2*cos(1) 1771178855130181 a007 Real Root Of -545*x^4-844*x^3+138*x^2-249*x-200 1771178857662900 m005 (4*Pi+1/4)/(5+5^(1/2)) 1771178864181541 a007 Real Root Of 588*x^4+994*x^3-275*x^2-450*x-198 1771178868154047 a001 161/5473*34^(28/55) 1771178869798926 a007 Real Root Of 411*x^4+163*x^3-964*x^2+516*x+799 1771178879971025 a007 Real Root Of -19*x^4-383*x^3-780*x^2+712*x-933 1771178888770111 r005 Im(z^2+c),c=1/24+7/40*I,n=4 1771178895285275 m001 (ErdosBorwein-Stephens)/LandauRamanujan2nd 1771178895562328 m001 (-Niven+ZetaQ(3))/(Psi(1,1/3)-polylog(4,1/2)) 1771178899008056 m001 ln(Rabbit)*CopelandErdos^2/Zeta(5)^2 1771178914783220 m005 (43/44+1/4*5^(1/2))/(5/12*exp(1)-2) 1771178916169570 q001 1/5645957 1771178917775501 m001 (MertensB3-Mills)/(Riemann1stZero+TwinPrimes) 1771178918071825 k001 Champernowne real with 18*n+1753 1771178921090731 a007 Real Root Of -438*x^4-354*x^3+995*x^2-30*x-831 1771178924847378 m001 Pi^(1/2)*CareFree^gamma(3) 1771178928582711 r009 Re(z^3+c),c=-29/94+24/41*I,n=35 1771178930145357 r002 13th iterates of z^2 + 1771178930367307 b008 3*InverseEllipticNomeQ[1/18] 1771178939237023 h001 (1/4*exp(1)+4/11)/(7/9*exp(2)+1/7) 1771178939892930 a007 Real Root Of -144*x^4+461*x^3+179*x^2+491*x-95 1771178947808791 m001 (GAMMA(2/3)-exp(Pi))/(-ArtinRank2+Tetranacci) 1771178948431923 r009 Re(z^3+c),c=-113/118+3/20*I,n=2 1771178953590720 a007 Real Root Of 850*x^4-684*x^3-67*x^2-807*x+148 1771178959770735 a007 Real Root Of 857*x^4+700*x^3-872*x^2+507*x-911 1771178959930596 m001 (-Robbin+Trott)/(Si(Pi)+MasserGramainDelta) 1771178966961196 a007 Real Root Of 407*x^4+353*x^3-317*x^2+85*x-899 1771178968576348 m005 (1/2*gamma-1/4)/(37/18+1/18*5^(1/2)) 1771178969180282 r005 Im(z^2+c),c=-121/90+1/48*I,n=61 1771178998308438 m001 cos(Pi/12)/(GAMMA(1/4)^ln(2+sqrt(3))) 1771179015225167 a007 Real Root Of 703*x^4+844*x^3-354*x^2+960*x+582 1771179018091828 k001 Champernowne real with 19*n+1752 1771179021725928 a007 Real Root Of -40*x^4-687*x^3+374*x^2-64*x+843 1771179034865737 a007 Real Root Of -524*x^4-918*x^3-249*x^2-991*x-918 1771179036065853 m005 (-15/4+1/4*5^(1/2))/(exp(1)-11/12) 1771179039301310 q001 2028/1145 1771179042222326 h001 (3/10*exp(1)+4/9)/(8/9*exp(2)+6/11) 1771179045384095 m009 (3*Psi(1,2/3)+1/3)/(2*Psi(1,2/3)-3/4) 1771179052217348 a007 Real Root Of -18*x^4-297*x^3+396*x^2+179*x+138 1771179054146653 m001 FeigenbaumB/ErdosBorwein^2*ln(sqrt(3)) 1771179054754404 a007 Real Root Of 652*x^4+929*x^3-498*x^2-583*x-725 1771179073690594 a007 Real Root Of -457*x^4-551*x^3+894*x^2+561*x-375 1771179075869627 h001 (-7*exp(1)-8)/(-7*exp(3)-12) 1771179094427262 r005 Im(z^2+c),c=-19/34+39/112*I,n=34 1771179096114531 p003 LerchPhi(1/1024,3,81/98) 1771179096350671 r002 19th iterates of z^2 + 1771179098996850 m005 (1/2*5^(1/2)+1/11)/(4/55+3/11*5^(1/2)) 1771179100402791 m001 BesselJ(1,1)*ln(DuboisRaymond)^2*GAMMA(3/4)^2 1771179108956602 p004 log(31981/5441) 1771179109271050 m005 (1/2*Zeta(3)+1/10)/(9/10*Catalan-3/7) 1771179112312212 k007 concat of cont frac of 1771179112711216 k008 concat of cont frac of 1771179118111831 k001 Champernowne real with 20*n+1751 1771179119595901 a007 Real Root Of 38*x^4-96*x^3+50*x^2+117*x-857 1771179123595518 m001 1/FeigenbaumKappa/exp(Si(Pi))^2/GAMMA(23/24) 1771179123763064 m001 (gamma(3)+BesselJ(1,1))/(Pi^(1/2)+Sarnak) 1771179127180086 m001 (5^(1/2)-Zeta(1,2))/(-FeigenbaumKappa+Salem) 1771179129119588 r005 Im(z^2+c),c=-13/70+5/6*I,n=18 1771179133002693 a007 Real Root Of 464*x^4-942*x^3+843*x^2-880*x-188 1771179136199550 l006 ln(4309/4386) 1771179136311633 r005 Im(z^2+c),c=-29/70+13/44*I,n=45 1771179138194476 a001 610/7*4^(22/43) 1771179141462817 m001 Ei(1)^2*Cahen^2/exp(GAMMA(5/12)) 1771179148366630 p004 log(37223/31181) 1771179149952231 m005 (1/3*Zeta(3)-1/5)/(11/12*5^(1/2)-11/12) 1771179150694791 a007 Real Root Of -522*x^4-70*x^3+964*x^2-734*x+424 1771179151488349 r005 Im(z^2+c),c=-47/110+29/32*I,n=4 1771179154997285 a007 Real Root Of -469*x^4-82*x^3+731*x^2-884*x+301 1771179161937516 a007 Real Root Of 665*x^4+572*x^3-834*x^2+101*x-571 1771179161942944 p004 log(27749/4721) 1771179162061598 m001 (BesselJ(1,1)-Champernowne)/(Pi-GAMMA(2/3)) 1771179162177417 r005 Im(z^2+c),c=-5/7+12/107*I,n=9 1771179170744756 r009 Re(z^3+c),c=-9/29+37/62*I,n=51 1771179172759623 s002 sum(A254237[n]/(64^n),n=1..infinity) 1771179172766626 m001 1/exp(FeigenbaumB)*Bloch/OneNinth^2 1771179174518863 m001 StolarskyHarborth/cos(1/12*Pi)/Weierstrass 1771179175070172 h001 (8/11*exp(2)+5/8)/(4/11*exp(2)+7/10) 1771179182128843 a007 Real Root Of 452*x^4-721*x^3+752*x^2-299*x-81 1771179183347410 a007 Real Root Of 711*x^4+568*x^3-683*x^2+933*x-46 1771179185823402 a007 Real Root Of -697*x^4-891*x^3+638*x^2-423*x-842 1771179191976987 r005 Re(z^2+c),c=-1/6+12/43*I,n=9 1771179191984145 h001 (-2*exp(4)+3)/(-11*exp(4)+1) 1771179193689613 a003 sin(Pi*21/73)+sin(Pi*37/83) 1771179193952215 k007 concat of cont frac of 1771179204315316 m001 (Kac+MasserGramainDelta)/(Artin-CopelandErdos) 1771179207561613 m005 (1/2*gamma-3/5)/(7/10*Zeta(3)+11/12) 1771179208844900 m001 (1-CareFree)/(-KhinchinHarmonic+ZetaP(4)) 1771179212077033 m001 (Lehmer*ZetaP(4)-OrthogonalArrays)/ZetaP(4) 1771179212258904 a001 2/13*75025^(27/43) 1771179218131834 k001 Champernowne real with 21*n+1750 1771179222362254 m001 (-Ei(1,1)+ZetaP(2))/(BesselJ(0,1)-ln(gamma)) 1771179222708413 m004 -3-5*Pi+2*Cos[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 1771179226046417 a007 Real Root Of 8*x^4-198*x^3-155*x^2-706*x+131 1771179232795512 m001 (PlouffeB+ZetaQ(4))/(BesselI(1,1)-GaussAGM) 1771179233358518 a007 Real Root Of 667*x^4+712*x^3-477*x^2+596*x-56 1771179233449503 s003 concatenated sequence A141959 1771179235911607 a007 Real Root Of -850*x^4-900*x^3+723*x^2-213*x+719 1771179237971006 h005 exp(cos(Pi*6/35)-cos(Pi*11/27)) 1771179242267969 m001 (Gompertz+Porter)/(gamma+sin(1/5*Pi)) 1771179248623651 r005 Im(z^2+c),c=-131/106+1/24*I,n=46 1771179253586961 a007 Real Root Of 353*x^4+368*x^3-681*x^2-336*x+112 1771179258806991 m001 1/GAMMA(7/12)^2*GAMMA(1/12)^2/exp(sqrt(3))^2 1771179261786257 m001 (2^(1/3)+GAMMA(23/24))/(-Niven+PrimesInBinary) 1771179269479193 m001 1/ln(Si(Pi))^2/Cahen^2/Ei(1)^2 1771179269731468 a001 3/4181*89^(5/7) 1771179271919893 r005 Re(z^2+c),c=23/122+8/17*I,n=43 1771179276758817 r005 Re(z^2+c),c=15/52+25/51*I,n=36 1771179279498374 m005 (1/2*Catalan-1/5)/(7/8*5^(1/2)-1/2) 1771179285111173 q001 6293/3553 1771179286242937 r002 14th iterates of z^2 + 1771179291641163 g005 GAMMA(7/12)/GAMMA(7/11)/GAMMA(2/9)/GAMMA(3/5) 1771179297529665 r005 Im(z^2+c),c=-13/22+32/99*I,n=60 1771179305205525 m003 -3/2+(33*Sqrt[5])/64+Cosh[1/2+Sqrt[5]/2]/5 1771179306213513 a003 cos(Pi*2/51)/cos(Pi*32/103) 1771179310041640 m001 (1-2^(1/3))/(cos(1)+Riemann1stZero) 1771179314312421 m001 (Pi+Backhouse)/(Sierpinski+Trott) 1771179315018360 a007 Real Root Of -653*x^4-970*x^3+710*x^2+360*x-553 1771179316523179 r005 Re(z^2+c),c=-7/78+7/15*I,n=43 1771179318151837 k001 Champernowne real with 22*n+1749 1771179318230338 r005 Im(z^2+c),c=-53/66+5/54*I,n=15 1771179318458869 a007 Real Root Of 670*x^4-799*x^3-308*x^2-325*x-53 1771179320290121 m001 (MertensB2-PlouffeB)/(ln(Pi)+Zeta(1/2)) 1771179330170120 r009 Re(z^3+c),c=-37/122+27/47*I,n=55 1771179332437339 h001 (2/5*exp(1)+8/9)/(1/12*exp(2)+1/2) 1771179336935673 r005 Im(z^2+c),c=-61/110+17/44*I,n=25 1771179339057190 m001 Artin-Niven-TreeGrowth2nd 1771179341557827 k002 Champernowne real with 27*n^2-27*n+17 1771179343612932 m001 1/Kolakoski^2/Khintchine^2/exp(OneNinth)^2 1771179345330119 r002 6th iterates of z^2 + 1771179361219374 m006 (3/4*exp(Pi)-3/5)/(3/4/Pi-1/3) 1771179362185654 a001 47/233*75025^(32/53) 1771179362562177 a007 Real Root Of -163*x^4-237*x^3-315*x^2-588*x+234 1771179365122589 r005 Im(z^2+c),c=-87/98+7/48*I,n=32 1771179367522110 m001 (GaussAGM+Salem)/(Catalan+Ei(1,1)) 1771179369732300 a007 Real Root Of -550*x^4-491*x^3+344*x^2-667*x+424 1771179375245180 m001 1/Riemann1stZero^2*Bloch^2/exp(Tribonacci) 1771179384608563 s002 sum(A063237[n]/(n*pi^n+1),n=1..infinity) 1771179387694171 g001 GAMMA(2/7,3/76) 1771179388101295 m006 (1/6*exp(2*Pi)+1/4)/(1/6/Pi+5) 1771179393439175 p003 LerchPhi(1/512,2,523/220) 1771179394845353 m001 Grothendieck-MertensB1^ReciprocalFibonacci 1771179401993355 q001 4265/2408 1771179404201628 a007 Real Root Of 317*x^4-119*x^3-744*x^2+656*x-285 1771179407517974 a007 Real Root Of -835*x^4-835*x^3+714*x^2-533*x+394 1771179408163668 r005 Re(z^2+c),c=-1/7+17/49*I,n=26 1771179408807759 a003 sin(Pi*29/97)+sin(Pi*46/111) 1771179414293703 a007 Real Root Of 35*x^4+625*x^3+72*x^2-315*x+100 1771179418171840 k001 Champernowne real with 23*n+1748 1771179427255549 b008 -30+Sqrt[151] 1771179437171209 m001 ln(TwinPrimes)^2*Paris^2*GAMMA(11/12) 1771179439451644 r009 Re(z^3+c),c=-16/27+16/31*I,n=48 1771179447605789 s002 sum(A135684[n]/((2^n-1)/n),n=1..infinity) 1771179451188200 p004 log(16111/2741) 1771179464011672 m001 (Magata+Paris)/(BesselI(1,2)-FeigenbaumMu) 1771179464659482 m002 Pi^3-(E^Pi*Coth[Pi]*Log[Pi])/2 1771179465272288 a007 Real Root Of 35*x^4-418*x^3-867*x^2+231*x+462 1771179465397669 a001 514229/843*123^(7/10) 1771179465767610 r005 Im(z^2+c),c=-26/27+5/26*I,n=7 1771179467663953 r005 Re(z^2+c),c=1/32+5/44*I,n=5 1771179467875013 m001 (Pi-BesselJ(0,1))/(Zeta(1,-1)-Salem) 1771179470965879 m001 GAMMA(23/24)*(FellerTornier+OrthogonalArrays) 1771179476078096 m001 (Paris-Tetranacci)/(gamma(3)-MertensB2) 1771179477192524 m001 1/HardHexagonsEntropy^2*exp(CareFree)*Niven 1771179480038691 r004 Re(z^2+c),c=2/9-11/14*I,z(0)=exp(5/8*I*Pi),n=2 1771179482464556 m001 (KomornikLoreti+Stephens)/(CareFree-Chi(1)) 1771179484054148 m001 (Khinchin-MertensB3)/(Stephens-Totient) 1771179492013821 a007 Real Root Of -732*x^4-976*x^3+776*x^2+85*x-503 1771179492540189 a007 Real Root Of -471*x^4-722*x^3-67*x^2+12*x+855 1771179509106568 m001 RenyiParking/(exp(sqrt(2))+OneNinth) 1771179510679468 r005 Im(z^2+c),c=-101/94+11/60*I,n=10 1771179511897048 m001 (GAMMA(3/4)+GAMMA(23/24))^CareFree 1771179515118496 q001 6502/3671 1771179518191843 k001 Champernowne real with 24*n+1747 1771179523820449 m001 (-BesselK(1,1)+ZetaQ(2))/(Catalan-GAMMA(3/4)) 1771179527573670 m001 exp(1)*FeigenbaumDelta*HardHexagonsEntropy 1771179530433126 a007 Real Root Of 378*x^4+707*x^3+579*x^2+651*x-455 1771179532500250 r005 Re(z^2+c),c=-1/8+9/23*I,n=30 1771179538372177 m001 (Zeta(3)+3^(1/3))/(Rabbit-Thue) 1771179542845416 m008 (2/3*Pi-1/2)/(3*Pi^3-3) 1771179543172593 a001 377/843*18^(10/21) 1771179546824060 r005 Im(z^2+c),c=-2/21+5/23*I,n=12 1771179550812178 r004 Re(z^2+c),c=-5/46+3/7*I,z(0)=I,n=22 1771179552342647 p001 sum(1/(452*n+29)/n/(12^n),n=1..infinity) 1771179553475450 m009 (2*Psi(1,1/3)+3/4)/(5/6*Psi(1,3/4)-2) 1771179556064157 a007 Real Root Of -250*x^4-710*x^3-635*x^2+89*x+665 1771179556648037 a003 cos(Pi*21/109)+sin(Pi*35/88) 1771179561550127 a007 Real Root Of -x^4+520*x^3+521*x^2-919*x-363 1771179574439242 a007 Real Root Of 733*x^4+776*x^3-684*x^2+244*x-324 1771179576157413 m001 (1-GAMMA(2/3))/(Backhouse+Landau) 1771179582484322 r005 Re(z^2+c),c=-5/24+1/61*I,n=9 1771179583249916 h001 (9/11*exp(1)+7/10)/(1/8*exp(2)+8/11) 1771179583438195 m001 MertensB1/Kolakoski*ZetaQ(2) 1771179591505673 m001 (-Zeta(1/2)+GAMMA(13/24))/(Shi(1)+ln(2)) 1771179593216276 m001 Tribonacci^2*FeigenbaumB*ln(GAMMA(17/24))^2 1771179604503568 r009 Re(z^3+c),c=-29/94+15/26*I,n=23 1771179607987295 a007 Real Root Of -713*x^4-867*x^3+288*x^2+748*x-136 1771179611370897 a007 Real Root Of 742*x^4+991*x^3-458*x^2+253*x+89 1771179613120483 p001 sum((-1)^n/(545*n+516)/(5^n),n=0..infinity) 1771179618211846 k001 Champernowne real with 25*n+1746 1771179619574306 m001 Stephens^GaussKuzminWirsing/(Stephens^Totient) 1771179635533115 a007 Real Root Of 212*x^4+97*x^3-153*x^2+881*x+493 1771179636448377 r005 Re(z^2+c),c=-7/52+32/51*I,n=10 1771179638970483 m009 (2/5*Psi(1,3/4)-3)/(8*Catalan+Pi^2-6) 1771179642849712 m001 1/GAMMA(11/24)^2/ln(DuboisRaymond)^2*sqrt(Pi) 1771179647820943 h005 exp(sin(Pi*1/17)/cos(Pi*19/48)) 1771179647901327 a007 Real Root Of -265*x^4+671*x^3+740*x^2+764*x-162 1771179648751473 r008 a(0)=0,K{-n^6,19+13*n^3-26*n^2+51*n} 1771179660240275 a007 Real Root Of 994*x^4+878*x^3-870*x^2+885*x-607 1771179661274357 m001 FibonacciFactorial^2/FeigenbaumDelta*ln(gamma) 1771179666105897 a003 cos(Pi*38/97)-cos(Pi*9/20) 1771179667643852 m009 (1/8*Pi^2+1/6)/(3/4*Psi(1,3/4)+6) 1771179668209348 m001 Pi^CareFree/(HardHexagonsEntropy^CareFree) 1771179670617704 h001 (9/11*exp(2)+1/10)/(5/11*exp(2)+1/9) 1771179671284710 h001 (6/11*exp(2)+4/9)/(2/3*exp(1)+5/7) 1771179680526536 a007 Real Root Of 11*x^4-437*x^3-529*x^2+123*x-659 1771179682067151 m005 (1/2*gamma+1/5)/(3/11*Catalan-2/9) 1771179684228691 h001 (3/5*exp(2)+8/11)/(3/4*exp(1)+7/8) 1771179689489338 r005 Re(z^2+c),c=-5/32+13/42*I,n=23 1771179703316032 m005 (1/2*Zeta(3)+4/11)/(9/10*exp(1)+3) 1771179705491671 m001 (-Porter+Rabbit)/(2^(1/3)-FeigenbaumB) 1771179714687790 m001 (Totient-Thue)/(ln(2)-Magata) 1771179718231849 k001 Champernowne real with 26*n+1745 1771179720441907 p003 LerchPhi(1/2,4,17/62) 1771179730799683 q001 2237/1263 1771179731378613 r005 Im(z^2+c),c=-9/23+9/31*I,n=18 1771179731570252 m001 1/exp(Magata)^2*Backhouse^2/GAMMA(1/4)^2 1771179732779790 r008 a(0)=2,K{-n^6,48-29*n+11*n^2-26*n^3} 1771179733305558 a007 Real Root Of -394*x^4-604*x^3-214*x^2-591*x+146 1771179734226256 m001 GAMMA(5/12)/ln(FibonacciFactorial)/sin(Pi/5) 1771179739126171 m001 (Thue-ZetaP(4))/(MinimumGamma+Otter) 1771179747931683 r005 Im(z^2+c),c=-55/54+15/53*I,n=8 1771179749469659 a007 Real Root Of 282*x^4+311*x^3-372*x^2-438*x-656 1771179752518566 a007 Real Root Of -775*x^4-519*x^3+668*x^2-976*x+919 1771179757208600 m001 (3^(1/2)+cos(1/5*Pi))/(-ln(5)+ZetaP(3)) 1771179757555538 m001 FeigenbaumD^PrimesInBinary*Salem 1771179764064204 m001 (Otter-Riemann3rdZero)/(Ei(1,1)+GAMMA(23/24)) 1771179764380295 a008 Real Root of (-5+5*x-x^2+2*x^3-6*x^4-5*x^5) 1771179770922693 r005 Im(z^2+c),c=-10/9+8/39*I,n=40 1771179774994142 r009 Im(z^3+c),c=-2/13+31/33*I,n=2 1771179776304725 m001 GAMMA(5/6)+Sarnak-StolarskyHarborth 1771179779614682 a001 75025/47*2^(3/20) 1771179780548459 a007 Real Root Of -262*x^4-466*x^3-6*x^2+418*x-71 1771179784472608 a007 Real Root Of 526*x^4+985*x^3+104*x^2-353*x-655 1771179789114373 r005 Re(z^2+c),c=-27/32+3/43*I,n=18 1771179797553415 m001 (ArtinRank2-Cahen)/(MadelungNaCl+Mills) 1771179799393374 h001 (-7*exp(3/2)-1)/(-9*exp(3)-2) 1771179807429618 m001 (Zeta(5)+KhinchinLevy)/(LaplaceLimit+Lehmer) 1771179818251852 k001 Champernowne real with 27*n+1744 1771179818865472 a001 2/317811*233^(30/49) 1771179824816836 r009 Re(z^3+c),c=-13/50+7/16*I,n=20 1771179824850101 a007 Real Root Of -489*x^4-970*x^3-808*x^2-767*x+599 1771179825306757 m001 1/cos(Pi/5)^2/exp(Catalan)^2/sinh(1)^2 1771179827278230 r009 Re(z^3+c),c=-37/122+27/47*I,n=62 1771179832367505 r009 Re(z^3+c),c=-21/64+26/45*I,n=13 1771179835891100 m001 (BesselK(0,1)+Zeta(1/2))/(Stephens+Trott) 1771179838920948 a001 29/4052739537881*46368^(8/11) 1771179840190825 r005 Re(z^2+c),c=41/114+11/21*I,n=47 1771179846522422 r002 26th iterates of z^2 + 1771179848303604 a001 832040/199*123^(3/10) 1771179849937810 a007 Real Root Of -400*x^4-917*x^3-592*x^2-59*x+594 1771179857557991 a007 Real Root Of 30*x^4-443*x^3-436*x^2+988*x+361 1771179858677056 r005 Im(z^2+c),c=-23/26+14/97*I,n=55 1771179861009839 a001 6765/521*123^(2/31) 1771179872075438 m001 (MasserGramain+PlouffeB*ThueMorse)/PlouffeB 1771179874437854 m001 KhinchinLevy/ln(2)*MertensB2 1771179883070228 r009 Im(z^3+c),c=-13/31+3/62*I,n=18 1771179884597027 r002 18th iterates of z^2 + 1771179893727654 a007 Real Root Of 400*x^4+484*x^3-242*x^2+74*x-357 1771179895160287 a007 Real Root Of -657*x^4-683*x^3+914*x^2+640*x+937 1771179896730736 a007 Real Root Of -368*x^4-442*x^3-162*x^2-892*x+94 1771179899612376 l006 ln(1661/9763) 1771179905873473 m001 PlouffeB*(Zeta(1,2)+BesselI(1,1)) 1771179914695920 a007 Real Root Of 487*x^4-365*x^3-219*x^2-534*x+103 1771179918271855 k001 Champernowne real with 28*n+1743 1771179918588623 r005 Im(z^2+c),c=-13/22+4/121*I,n=36 1771179931046179 m001 ZetaQ(4)*(FeigenbaumD-ln(5)) 1771179932534741 m004 (-25*Pi)/4+(4*Sqrt[5]*Sin[Sqrt[5]*Pi])/Pi 1771179933452777 q001 692/3907 1771179946488025 a007 Real Root Of 534*x^4+596*x^3-793*x^2+57*x+645 1771179948490117 a007 Real Root Of -537*x^4-961*x^3-129*x^2+257*x+805 1771179956830558 a007 Real Root Of 559*x^4+760*x^3-138*x^2+828*x+621 1771179957648468 m001 (GAMMA(5/6)+Khinchin)/(ln(2)-Zeta(1/2)) 1771179960087126 s002 sum(A042322[n]/((2*n)!),n=1..infinity) 1771179962281647 m001 cos(1/5*Pi)^Rabbit/(cos(1/5*Pi)^Magata) 1771179963066437 m001 exp(1)^Bloch/(AlladiGrinstead^Bloch) 1771179964811313 l006 ln(1571/9234) 1771179966369296 m001 1/GAMMA(5/6)*ln(GAMMA(3/4))/Zeta(7)^2 1771179968076751 a007 Real Root Of 951*x^4+660*x^3-989*x^2+899*x-997 1771179974315488 m001 (1+ln(gamma))/(ln(3)+exp(1/exp(1))) 1771179977458710 a007 Real Root Of 25*x^4-825*x^3-977*x^2+948*x-86 1771179977637186 a007 Real Root Of -820*x^4-839*x^3+616*x^2-443*x+691 1771179989861762 m001 GAMMA(7/24)^2/GAMMA(19/24)*exp(cosh(1))^2 1771179991318850 a007 Real Root Of 849*x^4-437*x^3-610*x^2-530*x-78 1771180001556774 m001 FeigenbaumC^ZetaQ(4)/BesselI(1,1) 1771180003001509 m001 Paris*ln(MertensB1)^2/Zeta(9) 1771180011681050 a007 Real Root Of -539*x^4-693*x^3-159*x^2-753*x+619 1771180012719119 m001 ln(Grothendieck/Pi/csc(5/12*Pi)*GAMMA(7/12)) 1771180014796479 m001 CareFree^2*ln(ErdosBorwein)^2*(2^(1/3))^2 1771180014938312 a007 Real Root Of -954*x^4+123*x^3-542*x^2+800*x-14 1771180015384419 r005 Re(z^2+c),c=-99/82+1/50*I,n=30 1771180018291858 k001 Champernowne real with 29*n+1742 1771180027506263 a007 Real Root Of 592*x^4+882*x^3+495*x^2+930*x-831 1771180029862524 r009 Re(z^3+c),c=-11/74+39/46*I,n=43 1771180030257186 q001 4683/2644 1771180036872204 r005 Im(z^2+c),c=-25/82+17/63*I,n=11 1771180037934490 l006 ln(1481/8705) 1771180041363475 m004 6+15*Pi+5*E^(Sqrt[5]*Pi)*Pi 1771180042662778 a007 Real Root Of 49*x^4+869*x^3-34*x^2-902*x+923 1771180042930621 r005 Im(z^2+c),c=-17/40+20/27*I,n=6 1771180059401819 r005 Im(z^2+c),c=-17/44+11/38*I,n=31 1771180059748610 m004 18+5*Sqrt[5]*Pi+5*E^(Sqrt[5]*Pi)*Pi 1771180066666587 r009 Im(z^3+c),c=-19/94+8/49*I,n=9 1771180070672510 a001 6/726103*377^(31/60) 1771180071323241 a001 3/439204*843^(33/40) 1771180074038824 r009 Re(z^3+c),c=-18/31+15/26*I,n=5 1771180090144975 r002 50th iterates of z^2 + 1771180091613808 m001 (ln(gamma)+Kolakoski)/(Mills+ZetaP(4)) 1771180094560611 m004 -3+15/Pi-Csch[Sqrt[5]*Pi]*Log[Sqrt[5]*Pi] 1771180100049153 m004 -3+15/Pi-Log[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 1771180102742816 r005 Re(z^2+c),c=-5/78+16/23*I,n=33 1771180109705763 m005 (1/2*exp(1)-5/11)/(9/22+1/22*5^(1/2)) 1771180111773581 m001 (Pi+gamma(1))/(FeigenbaumC-Paris) 1771180112483229 m001 GAMMA(11/24)^2*CareFree^2*exp(GAMMA(5/6))^2 1771180118311861 k001 Champernowne real with 30*n+1741 1771180119751499 r002 44th iterates of z^2 + 1771180120004509 r009 Re(z^3+c),c=-6/25+13/35*I,n=12 1771180120520042 l006 ln(1391/8176) 1771180121973906 r005 Im(z^2+c),c=5/106+6/35*I,n=10 1771180124223602 q001 7129/4025 1771180127270564 a001 3665737348901/2*1836311903^(3/14) 1771180127270564 a001 1730726404001/4*1548008755920^(3/14) 1771180129150785 m001 (GlaisherKinkelin-Robbin)/(ln(5)+Ei(1)) 1771180135067734 m001 Trott2nd*(Trott+ZetaQ(2)) 1771180135662764 m001 1/Salem^2/ln(Riemann2ndZero)^2/TreeGrowth2nd 1771180137074777 a007 Real Root Of 634*x^4+908*x^3-139*x^2+397*x-55 1771180143751292 r005 Im(z^2+c),c=-135/122+13/64*I,n=32 1771180148488683 r005 Im(z^2+c),c=13/46+1/34*I,n=34 1771180153101442 r005 Im(z^2+c),c=3/110+5/28*I,n=7 1771180158332212 k008 concat of cont frac of 1771180164305522 a007 Real Root Of 395*x^4+410*x^3-582*x^2+20*x+252 1771180196895998 a003 sin(Pi*5/99)/cos(Pi*10/67) 1771180198137980 m001 1-MinimumGamma^Khinchin 1771180201807395 a001 29/2178309*55^(31/48) 1771180203823992 m001 (Zeta(1,-1)-Riemann3rdZero)/(Zeta(3)+Ei(1,1)) 1771180205734073 s002 sum(A025347[n]/(n^3*pi^n+1),n=1..infinity) 1771180206618780 a007 Real Root Of 29*x^4-584*x^3-475*x^2+646*x-896 1771180210842746 r005 Im(z^2+c),c=-7/8+23/164*I,n=33 1771180214531719 l006 ln(1301/7647) 1771180215436408 l004 Si(224/57) 1771180218331864 k001 Champernowne real with 31*n+1740 1771180219514816 a007 Real Root Of -11*x^4-140*x^3+930*x^2-769*x-716 1771180225363331 a007 Real Root Of 618*x^4+833*x^3-397*x^2+345*x+403 1771180229500346 r002 36th iterates of z^2 + 1771180229949371 a007 Real Root Of 475*x^4+463*x^3-125*x^2+809*x-277 1771180231378800 r005 Im(z^2+c),c=-9/28+11/40*I,n=10 1771180232395543 a007 Real Root Of -655*x^4-915*x^3+322*x^2-276*x-137 1771180234379488 a001 38*610^(6/25) 1771180239760799 a003 cos(Pi*5/67)+cos(Pi*22/107) 1771180240903958 m001 BesselI(1,1)-TwinPrimes^BesselI(0,2) 1771180246263182 m001 (5^(1/2)+ln(2+3^(1/2)))/(FeigenbaumC+ZetaP(3)) 1771180246675695 m005 (1/2*5^(1/2)-3/7)/(2*3^(1/2)+3/7) 1771180251288347 r002 22th iterates of z^2 + 1771180252778566 r005 Re(z^2+c),c=-7/66+53/55*I,n=17 1771180262418198 g007 Psi(2,2/5)-Psi(2,8/11)-Psi(2,7/9)-Psi(2,5/6) 1771180263852110 a007 Real Root Of 795*x^4-187*x^3+352*x^2-276*x-5 1771180269564598 h001 (7/12*exp(1)+5/6)/(1/12*exp(2)+3/4) 1771180284912334 a007 Real Root Of -747*x^4-954*x^3+425*x^2-929*x-928 1771180289184461 a007 Real Root Of 486*x^4+168*x^3-821*x^2+949*x+407 1771180294520618 m001 (Ei(1,1)-Porter)/CareFree 1771180304127443 q001 2446/1381 1771180307478224 m005 (1/2*3^(1/2)-4)/(2/5*5^(1/2)+7/8) 1771180313404449 a007 Real Root Of -149*x^4-146*x^3-421*x^2-665*x+798 1771180315788651 m001 (gamma(1)-CareFree)/(FeigenbaumD+Niven) 1771180318351867 k001 Champernowne real with 32*n+1739 1771180318500115 a007 Real Root Of 238*x^4-162*x^3-618*x^2+443*x-519 1771180321422648 r002 13th iterates of z^2 + 1771180322517045 l006 ln(1211/7118) 1771180339889855 m005 (1/2*Catalan-7/11)/(2/11*2^(1/2)+3/4) 1771180341342881 a007 Real Root Of 417*x^4+55*x^3-760*x^2+568*x-408 1771180341648410 r002 3th iterates of z^2 + 1771180341785309 m001 (HeathBrownMoroz-Pi^(1/2)*MertensB2)/MertensB2 1771180342737521 g001 Re(Psi(-119/24+I*13/6)) 1771180344563837 k002 Champernowne real with 55/2*n^2-57/2*n+18 1771180345515221 r005 Im(z^2+c),c=-47/98+17/55*I,n=44 1771180347650566 r009 Re(z^3+c),c=-7/32+19/64*I,n=7 1771180353368803 a007 Real Root Of 578*x^4+644*x^3-658*x^2+556*x+939 1771180365762889 h001 (-7*exp(1)+7)/(-4*exp(2/3)+1) 1771180368361724 h001 (4/11*exp(1)+8/11)/(1/9*exp(1)+2/3) 1771180368383087 r009 Re(z^3+c),c=-27/82+15/22*I,n=40 1771180370020917 a003 cos(Pi*17/93)+sin(Pi*29/76) 1771180371550776 a003 cos(Pi*8/85)+cos(Pi*13/66) 1771180372289811 m005 (1/2*gamma-9/11)/(7/10*2^(1/2)+2) 1771180382122160 h001 (1/8*exp(2)+2/7)/(4/5*exp(2)+11/12) 1771180388853719 a007 Real Root Of 835*x^4+817*x^3-954*x^2-75*x-818 1771180394226238 r005 Re(z^2+c),c=-1/12+23/47*I,n=6 1771180396799045 a001 1364/4181*13^(31/47) 1771180402831434 r005 Im(z^2+c),c=-23/50+17/56*I,n=13 1771180403407027 h001 (7/12*exp(2)+3/8)/(3/10*exp(2)+3/7) 1771180405360341 m001 (Mills-ZetaQ(2))/(gamma(2)-ArtinRank2) 1771180407291267 m001 (-TwinPrimes+3)/(-GAMMA(1/3)+4) 1771180411033015 r009 Im(z^3+c),c=-19/94+8/49*I,n=8 1771180414155652 h005 exp(cos(Pi*11/34)/sin(Pi*19/51)) 1771180414719883 p001 sum((-1)^n/(577*n+539)/(10^n),n=0..infinity) 1771180417967050 a007 Real Root Of 285*x^4+573*x^3+248*x^2+778*x+979 1771180418371870 k001 Champernowne real with 33*n+1738 1771180424207359 r005 Im(z^2+c),c=31/118+3/62*I,n=54 1771180427108400 r005 Re(z^2+c),c=-9/46+49/64*I,n=58 1771180430071235 m005 (1/2*Catalan+5/7)/(3/8*3^(1/2)-7/12) 1771180446590037 a001 199/832040*987^(23/24) 1771180447554521 g002 -Psi(6/11)-Psi(1/11)-Psi(3/10)-Psi(7/9) 1771180447841659 l006 ln(1121/6589) 1771180447969504 r005 Re(z^2+c),c=-73/74+9/49*I,n=48 1771180454517225 h001 (4/9*exp(2)+3/11)/(4/9*exp(1)+4/5) 1771180456397585 m005 (1/2*2^(1/2)-3/5)/(1/3*Pi+5) 1771180458009937 m001 (GAMMA(3/4)+RenyiParking)/(Robbin+ZetaP(2)) 1771180461942873 m001 (KomornikLoreti+Mills)/(ln(Pi)+BesselK(1,1)) 1771180462665915 a007 Real Root Of 95*x^4-231*x^3-825*x^2-692*x-856 1771180463626236 m001 (2/3)^GAMMA(1/4)*(2/3)^Cahen 1771180467551315 a007 Real Root Of -724*x^4-868*x^3+987*x^2+454*x+10 1771180473559926 a003 cos(Pi*13/79)+sin(Pi*39/109) 1771180479496701 m004 -5/3+(25*Pi*Csc[Sqrt[5]*Pi])/6 1771180481376641 a007 Real Root Of -508*x^4-414*x^3+124*x^2-852*x+801 1771180482751110 a007 Real Root Of 680*x^4+877*x^3-273*x^2+141*x-713 1771180492604683 r005 Im(z^2+c),c=-29/70+13/44*I,n=49 1771180493027210 m005 (-17/44+1/4*5^(1/2))/(5/8*2^(1/2)+1/11) 1771180495890435 r009 Im(z^3+c),c=-5/22+34/37*I,n=28 1771180497457465 a007 Real Root Of -235*x^4-299*x^3+595*x^2+659*x-48 1771180500075937 m001 ln(3)*GaussAGM^Psi(1,1/3) 1771180502347755 a007 Real Root Of 196*x^4-178*x^3-528*x^2+592*x-213 1771180508036777 m001 (Stephens-Trott2nd)/(Zeta(3)+Ei(1)) 1771180512358069 a007 Real Root Of -625*x^4-895*x^3+286*x^2+169*x+580 1771180513723663 a007 Real Root Of -501*x^4-808*x^3+3*x^2-557*x-555 1771180514651841 s002 sum(A041008[n]/(pi^n-1),n=1..infinity) 1771180517690494 r005 Im(z^2+c),c=-17/42+9/32*I,n=6 1771180517699220 a007 Real Root Of -494*x^4-18*x^3+601*x^2+914*x+16 1771180518391873 k001 Champernowne real with 34*n+1737 1771180524367696 r002 39th iterates of z^2 + 1771180529583116 a007 Real Root Of -251*x^4-396*x^3-39*x^2+333*x+982 1771180531601842 b008 18+BesselY[0,6] 1771180537019317 m005 (1/2*exp(1)-4/5)/(5/9*gamma-7/11) 1771180540910862 a007 Real Root Of 42*x^4+803*x^3+990*x^2-997*x+173 1771180540917270 m001 (Riemann1stZero+Sarnak)/(2^(1/3)-BesselK(0,1)) 1771180548827060 a001 89/7*2^(11/23) 1771180555555555 q001 5101/2880 1771180561847156 s002 sum(A121022[n]/(16^n),n=1..infinity) 1771180572360966 m001 (2*Pi/GAMMA(5/6)+ZetaQ(4))/(Pi+gamma(3)) 1771180574577558 a007 Real Root Of -29*x^4+715*x^3-523*x^2-788*x-651 1771180576463832 m001 (Zeta(3)-GAMMA(3/4))/(ln(2)+Kac) 1771180584499314 m001 TreeGrowth2nd/FeigenbaumB^2*exp(GAMMA(23/24)) 1771180585633493 r005 Im(z^2+c),c=-69/110+7/58*I,n=8 1771180587214190 r009 Im(z^3+c),c=-19/94+8/49*I,n=10 1771180587553408 r009 Re(z^3+c),c=-25/94+35/52*I,n=32 1771180592475453 a007 Real Root Of -72*x^4+482*x^3-890*x^2+728*x-467 1771180595046400 l006 ln(1031/6060) 1771180595050336 r009 Im(z^3+c),c=-19/94+8/49*I,n=13 1771180595848675 r009 Im(z^3+c),c=-19/94+8/49*I,n=14 1771180595917080 r009 Im(z^3+c),c=-19/94+8/49*I,n=17 1771180595918160 r009 Im(z^3+c),c=-19/94+8/49*I,n=18 1771180595918362 r009 Im(z^3+c),c=-19/94+8/49*I,n=21 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=22 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=25 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=26 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=30 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=29 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=31 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=34 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=35 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=38 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=39 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=42 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=43 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=46 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=47 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=51 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=50 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=52 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=55 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=56 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=58 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=59 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=60 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=61 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=62 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=63 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=57 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=54 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=53 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=48 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=49 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=45 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=44 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=41 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=40 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=37 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=36 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=33 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=32 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=27 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=28 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=24 1771180595918363 r009 Im(z^3+c),c=-19/94+8/49*I,n=23 1771180595918373 r009 Im(z^3+c),c=-19/94+8/49*I,n=20 1771180595918410 r009 Im(z^3+c),c=-19/94+8/49*I,n=19 1771180595922302 r009 Im(z^3+c),c=-19/94+8/49*I,n=16 1771180595952223 r009 Im(z^3+c),c=-19/94+8/49*I,n=15 1771180596796448 m001 Lehmer/FransenRobinson^2/ln(GAMMA(7/12)) 1771180596950627 r009 Im(z^3+c),c=-19/94+8/49*I,n=12 1771180601295413 b008 1/50+Sqrt[313] 1771180605047360 m006 (1/4/Pi-3/4)/(1/4*exp(Pi)-2) 1771180617608622 r009 Im(z^3+c),c=-19/94+8/49*I,n=11 1771180618411876 k001 Champernowne real with 35*n+1736 1771180625290289 m001 cos(1)*(ln(2)+Sierpinski) 1771180628226745 m001 ln(5)*(3^(1/3))^MertensB1 1771180633702028 a007 Real Root Of -101*x^4+669*x^3+765*x^2-899*x+719 1771180641582900 a007 Real Root Of -229*x^4+145*x^3+932*x^2+422*x+883 1771180646352174 p003 LerchPhi(1/5,6,211/232) 1771180649352969 m001 ln(Pi)+BesselJ(0,1)^MadelungNaCl 1771180649852237 a007 Real Root Of -164*x^4+349*x^3-325*x^2+909*x-16 1771180652417983 b008 (4+E^(3/11))/3 1771180659196716 r001 19i'th iterates of 2*x^2-1 of 1771180669140264 h001 (1/2*exp(2)+3/8)/(3/5*exp(1)+2/3) 1771180671733840 a008 Real Root of x^3-325*x-200 1771180673027747 a007 Real Root Of -219*x^4-26*x^3+639*x^2+381*x+681 1771180674873698 r005 Re(z^2+c),c=-15/16+25/122*I,n=30 1771180682865555 a001 64079/8*20365011074^(3/23) 1771180683320488 a001 271443/8*317811^(3/23) 1771180707420245 m004 (-5*Pi)/4+25*Sqrt[5]*Pi+4*Sec[Sqrt[5]*Pi] 1771180712967450 m005 (1/3*2^(1/2)+3/7)/(4/7*2^(1/2)-3/10) 1771180718431879 k001 Champernowne real with 36*n+1735 1771180728537864 a007 Real Root Of 116*x^4-419*x^3+988*x^2-325*x-91 1771180732887628 a007 Real Root Of -385*x^4-563*x^3+10*x^2+915*x+159 1771180743547118 m001 Pi*(Psi(2,1/3)-Zeta(5)-Ei(1,1)) 1771180744104908 a007 Real Root Of 551*x^4+846*x^3+111*x^2+524*x-142 1771180749608431 m005 (4/5*Catalan+5)/(5/6*Catalan-4) 1771180757698652 m001 (-Porter+QuadraticClass)/(exp(1)+sin(1/5*Pi)) 1771180758323874 a007 Real Root Of -505*x^4-291*x^3+737*x^2-197*x+692 1771180766798650 r009 Re(z^3+c),c=-17/98+13/15*I,n=15 1771180769431762 r005 Re(z^2+c),c=15/56+7/31*I,n=30 1771180770409298 l006 ln(941/5531) 1771180770409298 p004 log(5531/941) 1771180771906053 r005 Im(z^2+c),c=-47/50+1/6*I,n=57 1771180774416432 r005 Re(z^2+c),c=11/48+26/59*I,n=37 1771180786938829 a007 Real Root Of 541*x^4+593*x^3-848*x^2-721*x-646 1771180787191460 q001 2655/1499 1771180789729429 h005 exp(sin(Pi*1/30)-sin(Pi*13/55)) 1771180791718201 m001 (MinimumGamma+OneNinth)/(Si(Pi)-cos(1/12*Pi)) 1771180792160540 m001 (Pi+BesselI(1,1))/(Kac+Porter) 1771180795067234 a001 199/53316291173*102334155^(23/24) 1771180798416422 q001 1/5645951 1771180802442544 b008 Pi/3+Tanh[Catalan] 1771180802592872 a003 sin(Pi*17/83)/cos(Pi*39/100) 1771180805944294 a007 Real Root Of 689*x^4+597*x^3-718*x^2+240*x-786 1771180806255786 a007 Real Root Of -443*x^4-633*x^3-112*x^2-608*x+117 1771180808231104 a007 Real Root Of -886*x^4-963*x^3+863*x^2-558*x-327 1771180814977152 l006 ln(8221/9814) 1771180817428627 r005 Re(z^2+c),c=-1/106+29/48*I,n=24 1771180818451882 k001 Champernowne real with 37*n+1734 1771180818690902 m001 Robbin^2/exp(Riemann2ndZero)/GAMMA(2/3)^2 1771180835322976 m001 1/Kolakoski^2*ln(GolombDickman)^2*Rabbit^2 1771180842362410 a007 Real Root Of -30*x^4-492*x^3+731*x^2+593*x-152 1771180844461979 m001 (2^(1/3)+GAMMA(17/24)*ZetaP(4))/ZetaP(4) 1771180849839268 m008 (1/4*Pi^6+3/5)/(3/5*Pi^3-5) 1771180853461194 m001 GAMMA(13/24)^ln(gamma)*GAMMA(13/24)^Niven 1771180854757169 m001 ln(2)/ln(10)/((2^(1/3))^UniversalParabolic) 1771180857707004 r005 Im(z^2+c),c=13/58+5/59*I,n=25 1771180858146992 m001 gamma(3)+HardyLittlewoodC4+MinimumGamma 1771180858478244 a007 Real Root Of 324*x^4+82*x^3-851*x^2-399*x-770 1771180862385006 r005 Re(z^2+c),c=19/66+8/33*I,n=26 1771180863657966 a001 4181/322*3^(13/46) 1771180869755961 m005 (1/2*exp(1)-5)/(5/9*exp(1)+6/11) 1771180876876642 r009 Re(z^3+c),c=-1/114+35/43*I,n=31 1771180877845324 m005 (1/2*Pi-3/7)/(7/9*gamma+6) 1771180884494898 r005 Im(z^2+c),c=-3/5+31/79*I,n=13 1771180884962340 r005 Re(z^2+c),c=13/126+13/40*I,n=12 1771180885106419 a007 Real Root Of -720*x^4+102*x^3+788*x^2+742*x-156 1771180893767097 m001 1/ErdosBorwein^2/exp(Artin)^2*cos(Pi/12) 1771180901693370 a007 Real Root Of -841*x^4+859*x^3-782*x^2+997*x-156 1771180903164454 m001 (sin(1)+Zeta(1,-1))/(HardyLittlewoodC5+Magata) 1771180910140546 a007 Real Root Of 673*x^4+901*x^3-127*x^2+933*x+434 1771180912189875 m005 (1/2*2^(1/2)-1/3)/(7/11*Pi+1/9) 1771180918471885 k001 Champernowne real with 38*n+1733 1771180920067038 r005 Im(z^2+c),c=-5/8+61/213*I,n=27 1771180923207057 r002 6th iterates of z^2 + 1771180927819332 a001 682/5473*21^(34/39) 1771180931904957 s002 sum(A121018[n]/(n^2*exp(n)-1),n=1..infinity) 1771180934296702 a007 Real Root Of -120*x^4+336*x^3+22*x^2+83*x-902 1771180935648947 a003 cos(Pi*17/109)+sin(Pi*23/66) 1771180943438135 l006 ln(7932/9469) 1771180945073207 a001 5/710647*47^(31/37) 1771180948034495 m001 (Zeta(1/2)+Conway*Weierstrass)/Weierstrass 1771180949803162 p004 log(35543/6047) 1771180974711176 a003 cos(Pi*23/109)+sin(Pi*15/34) 1771180976377234 m001 (sin(1/5*Pi)-ln(2+3^(1/2)))/(Magata+Rabbit) 1771180977293360 a007 Real Root Of -519*x^4-886*x^3-614*x^2-726*x+825 1771180977988442 a007 Real Root Of -41*x^4+195*x^3+470*x^2-85*x-138 1771180979398901 a007 Real Root Of -35*x^4+245*x^3+532*x^2-263*x-429 1771180980532570 a007 Real Root Of 812*x^4+695*x^3-857*x^2+861*x+84 1771180982864190 l006 ln(851/5002) 1771180985335697 a001 47/34*28657^(47/51) 1771180986855471 m001 (Cahen+Robbin)/(Ei(1,1)+polylog(4,1/2)) 1771180988683650 a007 Real Root Of 106*x^4-894*x^3+955*x^2-966*x+146 1771180994798728 h001 (2/7*exp(2)+7/12)/(5/11*exp(1)+2/7) 1771180999434610 r005 Im(z^2+c),c=-101/106+6/35*I,n=64 1771181001283697 q001 5519/3116 1771181004118044 r005 Im(z^2+c),c=17/64+2/45*I,n=53 1771181017711810 k006 concat of cont frac of 1771181018491888 k001 Champernowne real with 39*n+1732 1771181021520211 r009 Re(z^3+c),c=-9/25+9/14*I,n=30 1771181023398603 a007 Real Root Of -480*x^4-12*x^3+865*x^2-605*x+872 1771181024482404 a007 Real Root Of 348*x^4+128*x^3-878*x^2-451*x-758 1771181027459755 a007 Real Root Of 582*x^4+509*x^3-916*x^2-336*x-621 1771181031653198 m001 GAMMA(5/6)*FeigenbaumC^2*exp(cosh(1)) 1771181045971536 r002 18th iterates of z^2 + 1771181046283868 m001 (Salem-Tetranacci)/(GaussAGM+Magata) 1771181052674212 m005 (1/2*Zeta(3)-3/10)/(10/11*3^(1/2)+1/8) 1771181056333466 m001 sqrt(2)^GAMMA(1/4)/(BesselI(0,2)^GAMMA(1/4)) 1771181057150979 m001 Riemann3rdZero^(Ei(1,1)*AlladiGrinstead) 1771181060982711 r005 Im(z^2+c),c=-13/27+1/33*I,n=43 1771181067592065 a007 Real Root Of -370*x^4-824*x^3-32*x^2+36*x-773 1771181069700410 a007 Real Root Of 787*x^4+969*x^3-562*x^2+57*x-497 1771181070059516 m001 (Trott2nd-exp(1))/(Thue+TwinPrimes) 1771181071336497 m005 (1/2*exp(1)+11/12)/(7/11*Pi-5/7) 1771181081416885 r005 Re(z^2+c),c=-103/90+15/64*I,n=30 1771181081613945 l006 ln(7643/9124) 1771181082123926 p001 sum((-1)^n/(559*n+319)/n/(64^n),n=1..infinity) 1771181091870263 a007 Real Root Of -700*x^4-769*x^3+658*x^2+183*x+876 1771181092310101 a007 Real Root Of 655*x^4+967*x^3+377*x^2+932*x-605 1771181101435647 a007 Real Root Of 693*x^4+671*x^3-454*x^2+636*x-541 1771181102110296 m001 (Backhouse-Shi(1))/(Tribonacci+ThueMorse) 1771181102134221 k007 concat of cont frac of 1771181105860403 m001 (Catalan+Pi^(1/2))/(-GAMMA(7/12)+Trott) 1771181106884053 l006 ln(1612/9475) 1771181107284261 m001 Pi^(1/2)-cos(1/12*Pi)*HeathBrownMoroz 1771181107399107 r005 Re(z^2+c),c=-20/29+41/55*I,n=3 1771181108533302 r005 Im(z^2+c),c=-1/86+30/47*I,n=38 1771181110873087 r005 Re(z^2+c),c=-6/29+35/43*I,n=61 1771181111111811 k009 concat of cont frac of 1771181111611111 k007 concat of cont frac of 1771181112631191 k007 concat of cont frac of 1771181113212148 k007 concat of cont frac of 1771181115488629 r005 Im(z^2+c),c=-17/32+14/53*I,n=7 1771181118511891 k001 Champernowne real with 40*n+1731 1771181121422533 m006 (4/5*Pi^2-4/5)/(3/4*exp(2*Pi)-1) 1771181121711343 k006 concat of cont frac of 1771181122103511 k006 concat of cont frac of 1771181122130415 k006 concat of cont frac of 1771181123342131 k008 concat of cont frac of 1771181131111211 k009 concat of cont frac of 1771181131260228 m001 (Shi(1)+BesselK(0,1))/GaussAGM 1771181142341111 k008 concat of cont frac of 1771181144642101 k009 concat of cont frac of 1771181145281921 k008 concat of cont frac of 1771181148178819 m001 3^(1/3)+CopelandErdos*HardHexagonsEntropy 1771181150477305 r005 Im(z^2+c),c=-29/42+1/54*I,n=45 1771181154227941 p001 sum((-1)^n/(457*n+4)/n/(12^n),n=1..infinity) 1771181160539817 m001 BesselJ(0,1)+cos(1)^gamma(2) 1771181160994824 m001 ZetaQ(2)/(sin(1/12*Pi)^ln(2^(1/2)+1)) 1771181161979783 m001 (ln(2)/ln(10)-sin(1))/(-MertensB2+Totient) 1771181162485667 a007 Real Root Of 936*x^4-886*x^3-152*x^2-519*x-93 1771181164378638 p004 log(32369/5507) 1771181164972724 r005 Im(z^2+c),c=-43/50+7/51*I,n=6 1771181171112281 k008 concat of cont frac of 1771181174962714 k007 concat of cont frac of 1771181176132461 r005 Im(z^2+c),c=-45/118+11/26*I,n=5 1771181192226161 k007 concat of cont frac of 1771181196094502 m001 sin(1/5*Pi)/Zeta(1/2)*BesselJ(1,1) 1771181196094502 m001 sin(Pi/5)/Zeta(1/2)*BesselJ(1,1) 1771181199752628 q001 2864/1617 1771181207009553 r009 Re(z^3+c),c=-8/25+34/55*I,n=60 1771181212233151 k008 concat of cont frac of 1771181213123112 k009 concat of cont frac of 1771181214515667 a003 sin(Pi*6/107)/sin(Pi*54/119) 1771181214922816 r005 Re(z^2+c),c=-4/25+17/57*I,n=17 1771181218531894 k001 Champernowne real with 41*n+1730 1771181219045173 r005 Im(z^2+c),c=17/64+2/45*I,n=52 1771181221113317 k008 concat of cont frac of 1771181221212110 k008 concat of cont frac of 1771181227206086 a001 3571/10946*13^(31/47) 1771181229294579 m005 (1/2*exp(1)-1)/(-11/45+1/5*5^(1/2)) 1771181229829709 m008 (1/6*Pi^3-5/6)/(4/5*Pi^3-1/3) 1771181230649914 l006 ln(7354/8779) 1771181232425095 r005 Re(z^2+c),c=-1/32+27/46*I,n=55 1771181241619101 k008 concat of cont frac of 1771181245571162 l006 ln(761/4473) 1771181246110542 a007 Real Root Of -53*x^4+620*x^3-777*x^2+8*x-500 1771181253734530 r005 Re(z^2+c),c=-7/6+25/136*I,n=24 1771181262303065 m001 (Ei(1)+MinimumGamma)/(Zeta(3)+ln(2)) 1771181268122112 k006 concat of cont frac of 1771181269649053 a007 Real Root Of 364*x^4+95*x^3-482*x^2+392*x-848 1771181278758726 a007 Real Root Of 78*x^4-569*x^3-821*x^2+207*x-987 1771181279575232 r002 61th iterates of z^2 + 1771181279962439 m005 (1/2*2^(1/2)-1)/(7/10*Pi-6/11) 1771181281086675 m006 (3/5*Pi^2-5)/(1/4/Pi-3/5) 1771181285903044 m001 (-OneNinth+Robbin)/(exp(1)+HardyLittlewoodC5) 1771181286659865 m006 (1/3/Pi-1/2)/(1/5*Pi^2+1/4) 1771181291946533 m007 (-1/2*gamma-3/2*ln(2)-1/4*Pi+4)/(-3*gamma+2/3) 1771181302121161 k007 concat of cont frac of 1771181309406290 m001 GAMMA(5/6)/ln(GAMMA(17/24))^2*Pi^2 1771181310186466 a007 Real Root Of -420*x^4-566*x^3+434*x^2+61*x-265 1771181311112331 k006 concat of cont frac of 1771181312648429 r009 Re(z^3+c),c=-11/50+40/53*I,n=14 1771181318551897 k001 Champernowne real with 42*n+1729 1771181321374651 s002 sum(A092173[n]/(pi^n),n=1..infinity) 1771181321849975 a007 Real Root Of -812*x^4-940*x^3+442*x^2-216*x+999 1771181322590608 a007 Real Root Of 16*x^4-595*x^3+206*x^2-515*x-101 1771181323458739 m005 (1/2*3^(1/2)-7/12)/(3/4*Catalan+10/11) 1771181327999577 a007 Real Root Of -544*x^4-290*x^3+481*x^2-750*x+905 1771181328504685 a007 Real Root Of -342*x^4-42*x^3+920*x^2+272*x+728 1771181331888266 m001 (Ei(1,1)+Zeta(1,-1))/(BesselI(1,2)+Backhouse) 1771181332442580 p004 log(30253/5147) 1771181335986496 m001 Weierstrass^(Ei(1)*FibonacciFactorial) 1771181336253059 r002 45th iterates of z^2 + 1771181342121181 a003 sin(Pi*6/113)-sin(Pi*1/17) 1771181345497212 a007 Real Root Of -47*x^4+789*x^3-560*x^2-963*x-459 1771181346118112 k007 concat of cont frac of 1771181347569847 k002 Champernowne real with 28*n^2-30*n+19 1771181348360841 a001 9349/28657*13^(31/47) 1771181366037082 a001 24476/75025*13^(31/47) 1771181368616011 a001 64079/196418*13^(31/47) 1771181370209876 a001 39603/121393*13^(31/47) 1771181371427228 a007 Real Root Of 666*x^4+819*x^3-962*x^2-270*x+536 1771181376405784 a001 521/832040*46368^(3/31) 1771181376961600 a001 2161/6624*13^(31/47) 1771181379129852 r005 Im(z^2+c),c=-7/12+16/37*I,n=52 1771181379958763 r005 Im(z^2+c),c=-5/19+34/43*I,n=3 1771181384248210 q001 5937/3352 1771181388564478 a007 Real Root Of -384*x^4+626*x^3+160*x^2+797*x+140 1771181389887281 a007 Real Root Of 513*x^4+717*x^3-407*x^2-371*x-445 1771181391878773 l006 ln(7065/8434) 1771181392739054 r005 Im(z^2+c),c=-17/26+26/103*I,n=31 1771181396331409 a007 Real Root Of 276*x^4+58*x^3-450*x^2+873*x+564 1771181397579741 m001 FeigenbaumAlpha^Pi/(FeigenbaumAlpha^ZetaQ(3)) 1771181401435401 a007 Real Root Of -304*x^4-429*x^3-41*x^2-281*x+239 1771181401690985 l006 ln(1432/8417) 1771181401770578 a007 Real Root Of 690*x^4+676*x^3-834*x^2+39*x-349 1771181402741465 r005 Im(z^2+c),c=-155/126+2/21*I,n=42 1771181403985702 m001 1/exp(LambertW(1))^2*GAMMA(5/12)*sin(Pi/12) 1771181406827295 r005 Re(z^2+c),c=-27/31+14/53*I,n=13 1771181409017656 a007 Real Root Of 599*x^4+749*x^3-974*x^2-344*x+713 1771181412213629 k006 concat of cont frac of 1771181412354347 k007 concat of cont frac of 1771181412819712 m001 1/exp(FeigenbaumB)^2*ErdosBorwein^2*GAMMA(1/4) 1771181415168870 m001 sin(Pi/12)^2/LandauRamanujan^2/ln(sqrt(5))^2 1771181418571900 k001 Champernowne real with 43*n+1728 1771181418728753 m001 Zeta(1,2)*(2^(1/2)+Weierstrass) 1771181420277280 r005 Im(z^2+c),c=-43/98+1/34*I,n=26 1771181421112218 k008 concat of cont frac of 1771181423238599 a001 5778/17711*13^(31/47) 1771181423734595 m005 (1/2*exp(1)+4/5)/(2/9*5^(1/2)-3/8) 1771181424537413 r002 23th iterates of z^2 + 1771181425025739 r005 Re(z^2+c),c=-23/19+1/42*I,n=46 1771181431530657 r005 Im(z^2+c),c=-14/13+5/24*I,n=47 1771181439650960 r005 Re(z^2+c),c=-5/6+19/179*I,n=14 1771181444685336 a007 Real Root Of -532*x^4-300*x^3+675*x^2-384*x+771 1771181445469613 a001 4/17711*832040^(8/25) 1771181451070061 m001 1/2*(arctan(1/2)+Trott)/Pi*3^(1/2)*GAMMA(2/3) 1771181452018676 m002 -18+ProductLog[Pi]^2/4 1771181453881827 m001 1/FeigenbaumC*exp(Backhouse)/GAMMA(1/12)^2 1771181456682643 m001 Psi(1,1/3)*MinimumGamma+Otter 1771181462251021 m008 (5/6*Pi^2-4)/(1/4*Pi^4-1/2) 1771181465328111 k006 concat of cont frac of 1771181469327411 a007 Real Root Of 32*x^4+623*x^3+966*x^2-527*x+12 1771181470818330 a007 Real Root Of 292*x^4+159*x^3-461*x^2-913*x+175 1771181471044490 m001 GAMMA(1/3)*Champernowne^2*ln(cosh(1)) 1771181474837017 a007 Real Root Of 231*x^4-719*x^3+730*x^2-355*x-90 1771181479191635 h001 (1/10*exp(1)+1/7)/(4/5*exp(1)+1/6) 1771181479191635 m005 (1/2*exp(1)+5/7)/(4*exp(1)+5/6) 1771181481721593 r005 Im(z^2+c),c=-11/14+23/227*I,n=63 1771181484675412 r005 Re(z^2+c),c=-61/102+24/37*I,n=3 1771181485257151 r002 55th iterates of z^2 + 1771181486813590 m001 1/Trott*Sierpinski^2*exp(GAMMA(11/12)) 1771181503946115 r005 Im(z^2+c),c=-29/70+13/44*I,n=52 1771181511261118 k006 concat of cont frac of 1771181513111141 k006 concat of cont frac of 1771181518591903 k001 Champernowne real with 44*n+1727 1771181520707866 r009 Re(z^3+c),c=-15/122+45/59*I,n=8 1771181533558263 a007 Real Root Of -702*x^4-641*x^3+908*x^2+59*x+603 1771181539226424 a007 Real Root Of -180*x^4+615*x^3+947*x^2-827*x+753 1771181544494763 a007 Real Root Of -14*x^4+187*x^3+122*x^2-559*x-196 1771181544790243 r005 Im(z^2+c),c=-29/70+13/44*I,n=44 1771181545530325 r005 Im(z^2+c),c=-39/110+13/45*I,n=5 1771181551224251 k008 concat of cont frac of 1771181552226131 k008 concat of cont frac of 1771181554791378 h001 (8/11*exp(2)+1/2)/(3/8*exp(2)+6/11) 1771181556195965 q001 3073/1735 1771181563516850 a001 161*55^(1/42) 1771181566860622 l006 ln(6776/8089) 1771181571443803 m001 (3^(1/3)-GAMMA(17/24))/(Totient-ZetaP(2)) 1771181573672060 a007 Real Root Of -442*x^4-14*x^3+995*x^2-775*x-222 1771181577865031 r005 Im(z^2+c),c=-29/70+13/44*I,n=54 1771181578750844 l006 ln(671/3944) 1771181582951686 r002 10th iterates of z^2 + 1771181592368253 a007 Real Root Of -425*x^4-420*x^3+878*x^2+164*x-615 1771181592517195 r005 Re(z^2+c),c=17/70+13/58*I,n=7 1771181594115218 a001 1346269/2207*123^(7/10) 1771181594428637 m005 (1/2*Catalan-1/4)/(7/11*exp(1)-5/9) 1771181598365108 h001 (5/12*exp(2)+1/7)/(5/11*exp(1)+7/12) 1771181607000358 r005 Re(z^2+c),c=-137/126+19/64*I,n=11 1771181609843674 a007 Real Root Of 290*x^4+240*x^3-979*x^2-425*x+798 1771181611121582 k008 concat of cont frac of 1771181611751511 k006 concat of cont frac of 1771181617033499 m001 ErdosBorwein*MinimumGamma-gamma 1771181617364273 a007 Real Root Of -478*x^4-687*x^3-74*x^2-275*x+632 1771181618611906 k001 Champernowne real with 45*n+1726 1771181623691194 m004 5/3+25*Sqrt[5]*Pi-Sin[Sqrt[5]*Pi]/4 1771181628689174 a003 cos(Pi*4/115)+cos(Pi*13/60) 1771181629427529 a007 Real Root Of 819*x^4+939*x^3-551*x^2+830*x+356 1771181637622337 a007 Real Root Of -218*x^4+655*x^3+966*x^2+600*x-140 1771181643816508 m005 (-1/44+1/4*5^(1/2))/(1/5*5^(1/2)-3/4) 1771181645450908 r009 Im(z^3+c),c=-5/114+2/11*I,n=3 1771181647988142 r005 Im(z^2+c),c=-5/6+28/233*I,n=48 1771181648422055 m005 (1/3*Catalan+1/3)/(23/132+1/12*5^(1/2)) 1771181654247399 m004 -6-20*Sqrt[5]*Pi-5*Pi*Log[Sqrt[5]*Pi] 1771181655878049 a001 123/2584*832040^(13/49) 1771181658413231 r005 Im(z^2+c),c=-27/29+8/49*I,n=46 1771181659355271 m001 1/BesselK(0,1)^2/exp(MinimumGamma)*GAMMA(2/3) 1771181667669927 a007 Real Root Of -639*x^4-868*x^3+673*x^2+972*x+17 1771181669353123 a007 Real Root Of -323*x^4-443*x^3-419*x^2-801*x+613 1771181669431246 m001 (BesselI(0,2)*Conway-LaplaceLimit)/Conway 1771181677323344 a007 Real Root Of -633*x^4-755*x^3+904*x^2+20*x-766 1771181686177927 a003 cos(Pi*10/91)+cos(Pi*16/85) 1771181693760051 a007 Real Root Of 401*x^4+501*x^3+572*x^2-825*x+125 1771181697568666 m001 (gamma(3)+GAMMA(17/24))/(BesselJ(0,1)-Chi(1)) 1771181699729349 a007 Real Root Of -74*x^4+960*x^3-944*x^2-693*x-417 1771181700249487 a007 Real Root Of 36*x^4+679*x^3+704*x^2-542*x-559 1771181703403847 r005 Re(z^2+c),c=-6/29+25/51*I,n=6 1771181704711137 r005 Re(z^2+c),c=2/9+5/28*I,n=24 1771181708215969 p004 log(31321/26237) 1771181711151121 k008 concat of cont frac of 1771181715211131 k008 concat of cont frac of 1771181715798796 r005 Im(z^2+c),c=-31/118+17/61*I,n=5 1771181716833890 q001 6355/3588 1771181718631909 k001 Champernowne real with 46*n+1725 1771181725410793 r005 Im(z^2+c),c=-9/10+18/119*I,n=27 1771181727495148 r005 Im(z^2+c),c=-9/16+23/71*I,n=56 1771181730060088 m005 (1/2*exp(1)+5/6)/(8/11*Zeta(3)+4/11) 1771181734856879 r009 Re(z^3+c),c=-37/126+19/35*I,n=25 1771181740425869 a001 2207/6765*13^(31/47) 1771181741349497 a007 Real Root Of 417*x^4+274*x^3-578*x^2+904*x+833 1771181743443974 a001 3571/28657*21^(34/39) 1771181746191239 r005 Re(z^2+c),c=-1/7+17/49*I,n=27 1771181746797058 h001 (1/11*exp(2)+3/7)/(9/11*exp(2)+1/6) 1771181747307023 m001 Salem-KhinchinHarmonic-Zeta(3) 1771181757433575 l006 ln(6487/7744) 1771181766487442 r009 Re(z^3+c),c=-23/74+34/57*I,n=50 1771181778793027 r002 6th iterates of z^2 + 1771181781266555 l006 ln(1252/7359) 1771181783352560 m001 (Magata+Robbin)/(3^(1/2)+BesselI(1,1)) 1771181786115876 g001 abs(GAMMA(173/60+I*17/60)) 1771181789338287 r005 Im(z^2+c),c=-19/54+17/29*I,n=16 1771181792395040 a007 Real Root Of -47*x^4+168*x^3-44*x^2-651*x+381 1771181811311911 k008 concat of cont frac of 1771181813729817 r005 Im(z^2+c),c=-87/122+7/46*I,n=51 1771181818651912 k001 Champernowne real with 47*n+1724 1771181819446624 a003 cos(Pi*7/87)*cos(Pi*49/111) 1771181824017065 a007 Real Root Of 647*x^4+768*x^3-114*x^2+846*x-244 1771181824832941 m001 (BesselI(0,1)-MertensB3)/(-ZetaP(2)+ZetaP(4)) 1771181826234478 r005 Im(z^2+c),c=-73/74+11/61*I,n=20 1771181831193885 r005 Im(z^2+c),c=-37/64+1/31*I,n=50 1771181841672350 a007 Real Root Of 261*x^4+695*x^3+629*x^2-123*x-898 1771181842330927 a007 Real Root Of 495*x^4+182*x^3-397*x^2+945*x-941 1771181846954638 m001 Porter^2*exp(Cahen)^2/BesselJ(1,1) 1771181847149732 m006 (1/5*Pi-1/4)/(2/5*exp(2*Pi)-3/5) 1771181862442005 a001 9349/75025*21^(34/39) 1771181864671240 m001 ReciprocalLucas/Conway*Salem 1771181865513926 m001 (Zeta(1,2)-HardHexagonsEntropy)/(Mills+Trott) 1771181867242309 q001 3282/1853 1771181872406697 s002 sum(A271237[n]/(2^n-1),n=1..infinity) 1771181879803584 a001 12238/98209*21^(34/39) 1771181882336604 a001 64079/514229*21^(34/39) 1771181883814513 s002 sum(A273646[n]/(n^2*2^n-1),n=1..infinity) 1771181883902097 a001 13201/105937*21^(34/39) 1771181884682987 m001 1/exp(MertensB1)^2/FransenRobinson*Catalan^2 1771181888932675 h005 exp(cos(Pi*6/49)*cos(Pi*15/52)) 1771181890533630 a001 15127/121393*21^(34/39) 1771181893823826 r005 Re(z^2+c),c=-7/106+29/57*I,n=30 1771181901526045 m005 (1/2*Catalan+9/10)/(6*2^(1/2)-9/11) 1771181904691351 a001 1762289/2889*123^(7/10) 1771181905078731 r005 Re(z^2+c),c=-3/23+41/62*I,n=55 1771181905939353 m001 Magata/ln(DuboisRaymond)^2/GAMMA(1/3)^2 1771181910500873 a007 Real Root Of -533*x^4-692*x^3+463*x^2+498*x+830 1771181912418321 k007 concat of cont frac of 1771181918671915 k001 Champernowne real with 48*n+1723 1771181921181512 k008 concat of cont frac of 1771181935795809 a007 Real Root Of 399*x^4+344*x^3-970*x^2-386*x+344 1771181935986833 a001 321/2576*21^(34/39) 1771181939244554 a007 Real Root Of -427*x^4-469*x^3+758*x^2+111*x-585 1771181941201200 a007 Real Root Of 399*x^4+359*x^3-49*x^2+672*x-588 1771181946733071 r005 Re(z^2+c),c=-5/29+9/35*I,n=13 1771181950003807 a001 9227465/15127*123^(7/10) 1771181955744642 a007 Real Root Of 696*x^4-822*x^3-350*x^2-667*x+133 1771181956614805 a001 24157817/39603*123^(7/10) 1771181957579337 a001 31622993/51841*123^(7/10) 1771181957720060 a001 165580141/271443*123^(7/10) 1771181957740591 a001 433494437/710647*123^(7/10) 1771181957743587 a001 567451585/930249*123^(7/10) 1771181957744024 a001 2971215073/4870847*123^(7/10) 1771181957744088 a001 7778742049/12752043*123^(7/10) 1771181957744097 a001 10182505537/16692641*123^(7/10) 1771181957744098 a001 53316291173/87403803*123^(7/10) 1771181957744098 a001 139583862445/228826127*123^(7/10) 1771181957744099 a001 182717648081/299537289*123^(7/10) 1771181957744099 a001 956722026041/1568397607*123^(7/10) 1771181957744099 a001 2504730781961/4106118243*123^(7/10) 1771181957744099 a001 3278735159921/5374978561*123^(7/10) 1771181957744099 a001 10610209857723/17393796001*123^(7/10) 1771181957744099 a001 4052739537881/6643838879*123^(7/10) 1771181957744099 a001 1134903780/1860499*123^(7/10) 1771181957744099 a001 591286729879/969323029*123^(7/10) 1771181957744099 a001 225851433717/370248451*123^(7/10) 1771181957744099 a001 21566892818/35355581*123^(7/10) 1771181957744099 a001 32951280099/54018521*123^(7/10) 1771181957744103 a001 1144206275/1875749*123^(7/10) 1771181957744127 a001 1201881744/1970299*123^(7/10) 1771181957744294 a001 1836311903/3010349*123^(7/10) 1771181957745438 a001 701408733/1149851*123^(7/10) 1771181957753280 a001 66978574/109801*123^(7/10) 1771181957807032 a001 9303105/15251*123^(7/10) 1771181958175450 a001 39088169/64079*123^(7/10) 1771181960700627 a001 3732588/6119*123^(7/10) 1771181963071074 a007 Real Root Of -641*x^4-945*x^3+55*x^2-979*x-849 1771181965778573 l006 ln(6198/7399) 1771181975903810 a007 Real Root Of 679*x^4+350*x^3-853*x^2+618*x-967 1771181978008446 a001 5702887/9349*123^(7/10) 1771181981432185 r009 Re(z^3+c),c=-23/74+26/43*I,n=44 1771181983724033 m001 (3^(1/3)+Gompertz)/(Psi(1,1/3)+2^(1/2)) 1771181985389417 m001 (3^(1/3)-Zeta(1,2))/(Champernowne-Porter) 1771181990013179 r005 Re(z^2+c),c=-19/34+50/83*I,n=37 1771181991124593 r005 Re(z^2+c),c=-3/4+151/224*I,n=4 1771182001261601 m001 GAMMA(2/3)*(Pi-1)-GAMMA(5/6) 1771182005005685 m001 (gamma(3)-Zeta(1,2))/(Mills-StronglyCareFree) 1771182008368200 q001 6773/3824 1771182009827657 r005 Im(z^2+c),c=-29/70+13/44*I,n=56 1771182015152979 l006 ln(581/3415) 1771182015945443 r005 Im(z^2+c),c=-33/62+15/47*I,n=44 1771182018691918 k001 Champernowne real with 49*n+1722 1771182030344917 h001 (7/12*exp(2)+1/7)/(7/9*exp(1)+2/5) 1771182030664297 a007 Real Root Of -564*x^4-474*x^3+634*x^2+826*x-163 1771182031959640 h001 (5/8*exp(1)+3/7)/(3/8*exp(1)+2/11) 1771182031970660 a007 Real Root Of -42*x^4-751*x^3-126*x^2-33*x-527 1771182036795962 r005 Re(z^2+c),c=-17/94+41/56*I,n=19 1771182047877766 m005 (1/2*Catalan+4/7)/(-23/110+1/11*5^(1/2)) 1771182050535211 h005 exp(sin(Pi*4/51)-sin(Pi*17/56)) 1771182051382897 r005 Im(z^2+c),c=-29/70+13/44*I,n=59 1771182051937530 a007 Real Root Of 514*x^4+398*x^3-792*x^2-133*x-598 1771182053249879 q001 1/5645947 1771182061588059 r002 38th iterates of z^2 + 1771182063030357 m001 (Grothendieck+Sarnak)/(ln(2)-GaussAGM) 1771182068167083 a007 Real Root Of -625*x^4-231*x^3+507*x^2+613*x+92 1771182069569456 r005 Re(z^2+c),c=31/94+17/48*I,n=13 1771182070177118 r002 4th iterates of z^2 + 1771182081000408 a007 Real Root Of 253*x^4+629*x^3+698*x^2+146*x-926 1771182081940898 h001 (-3*exp(6)-3)/(-9*exp(2)-2) 1771182082037765 m001 (Chi(1)+GAMMA(2/3))/(FibonacciFactorial+Trott) 1771182086489602 m005 (15/44+1/4*5^(1/2))/(2/9*gamma-7/11) 1771182093099798 a001 7/5*2^(19/56) 1771182094108257 r005 Im(z^2+c),c=-29/70+13/44*I,n=61 1771182096638011 a001 2178309/3571*123^(7/10) 1771182101121181 k008 concat of cont frac of 1771182102934553 m001 (GAMMA(17/24)-CareFree)/(Khinchin+Lehmer) 1771182105111123 k008 concat of cont frac of 1771182108704136 r005 Im(z^2+c),c=-91/118+7/55*I,n=5 1771182112484994 r002 56th iterates of z^2 + 1771182118711921 k001 Champernowne real with 50*n+1721 1771182126266887 a007 Real Root Of -660*x^4-794*x^3+356*x^2-329*x+384 1771182133325542 m005 (1/2*gamma-2/5)/(1/6*Zeta(3)+3/7) 1771182134986185 m001 Ei(1,1)*OneNinth+MadelungNaCl 1771182137689893 r005 Im(z^2+c),c=-55/114+13/42*I,n=43 1771182138955593 r009 Im(z^3+c),c=-5/114+2/11*I,n=7 1771182141045154 q001 3491/1971 1771182142306547 a007 Real Root Of 714*x^4+790*x^3-800*x^2-94*x-294 1771182144127355 m001 Khinchin-ln(2^(1/2)+1)^Rabbit 1771182145211211 k008 concat of cont frac of 1771182147212029 m001 (Porter-TwinPrimes)/(Pi+2^(1/2)) 1771182151023499 m001 1/GAMMA(1/6)^2/FeigenbaumC^2*ln(Zeta(3)) 1771182161094364 m001 (sin(1)+arctan(1/2))/(Ei(1,1)+polylog(4,1/2)) 1771182161377868 m001 Salem^GAMMA(7/12)/Sarnak 1771182162124028 r005 Im(z^2+c),c=-29/70+13/44*I,n=63 1771182162211338 k008 concat of cont frac of 1771182163531732 r005 Im(z^2+c),c=-29/70+13/44*I,n=64 1771182164853005 r005 Im(z^2+c),c=-13/36+9/32*I,n=13 1771182167824319 m005 (1/2*Zeta(3)-7/8)/(5/8*Pi-5/12) 1771182168809129 h005 exp(cos(Pi*5/56)-sin(Pi*7/55)) 1771182175512303 r005 Im(z^2+c),c=-29/70+13/44*I,n=57 1771182177479214 m001 1/GolombDickman^2/exp(Si(Pi))*TreeGrowth2nd 1771182183655061 m005 (1/2*5^(1/2)-7/12)/(2/11*Zeta(3)+1/12) 1771182183860772 r005 Im(z^2+c),c=-49/46+10/37*I,n=20 1771182189267573 r005 Re(z^2+c),c=-11/14+23/165*I,n=40 1771182192301038 l006 ln(1653/9716) 1771182194503227 l006 ln(5909/7054) 1771182195180637 r009 Im(z^3+c),c=-5/114+2/11*I,n=9 1771182195297777 a007 Real Root Of 111*x^4-366*x^3-994*x^2-130*x-238 1771182195434264 r009 Im(z^3+c),c=-5/114+2/11*I,n=12 1771182195434678 r009 Im(z^3+c),c=-5/114+2/11*I,n=14 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=16 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=19 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=21 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=23 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=26 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=28 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=30 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=33 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=35 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=37 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=40 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=41 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=42 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=44 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=47 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=39 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=38 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=36 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=34 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=32 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=31 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=29 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=27 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=25 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=24 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=22 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=20 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=18 1771182195434683 r009 Im(z^3+c),c=-5/114+2/11*I,n=17 1771182195434684 r009 Im(z^3+c),c=-5/114+2/11*I,n=15 1771182195434736 r009 Im(z^3+c),c=-5/114+2/11*I,n=13 1771182195435794 r009 Im(z^3+c),c=-5/114+2/11*I,n=10 1771182195436972 r009 Im(z^3+c),c=-5/114+2/11*I,n=11 1771182199954374 r009 Im(z^3+c),c=-5/114+2/11*I,n=8 1771182201196455 m001 -Artin/(exp(1/exp(1))+2/3) 1771182201196455 m001 Artin/(2/3+exp(1/exp(1))) 1771182205819592 a007 Real Root Of -294*x^4-284*x^3+331*x^2-22*x+238 1771182209219947 g001 Re(Psi(-17/4+I*83/24)) 1771182214851960 r005 Im(z^2+c),c=-29/70+13/44*I,n=62 1771182216900545 a003 sin(Pi*18/95)-sin(Pi*14/53) 1771182217233629 a007 Real Root Of -33*x^4+984*x^3-996*x^2-904*x-417 1771182218731924 k001 Champernowne real with 51*n+1720 1771182228982536 m001 1/ArtinRank2^2*exp(Bloch)^2*FeigenbaumC^2 1771182229389955 m005 (4*2^(1/2)+2/3)/(1/6*2^(1/2)-1/5) 1771182230366490 a001 47/75025*6765^(16/25) 1771182233033240 m001 Zeta(5)/cos(1/5*Pi)/Sarnak 1771182241052092 a007 Real Root Of 162*x^4+681*x^3+766*x^2-334*x-805 1771182241621411 k006 concat of cont frac of 1771182241812421 r005 Re(z^2+c),c=-1/7+17/49*I,n=29 1771182247527725 a001 2207/17711*21^(34/39) 1771182250111513 a007 Real Root Of -675*x^4-769*x^3+999*x^2-52*x-856 1771182250824035 a007 Real Root Of -976*x^4-997*x^3+670*x^2-854*x+451 1771182251642301 a007 Real Root Of -480*x^4-612*x^3+672*x^2-34*x-845 1771182252618421 k008 concat of cont frac of 1771182252662021 m001 GAMMA(7/24)^2/ArtinRank2/ln(arctan(1/2)) 1771182258492360 r005 Im(z^2+c),c=-5/6+20/177*I,n=9 1771182259130540 r002 11th iterates of z^2 + 1771182259526750 r009 Re(z^3+c),c=-6/19+22/37*I,n=28 1771182261307897 r005 Re(z^2+c),c=7/62+17/30*I,n=38 1771182262888732 r005 Im(z^2+c),c=-29/70+13/44*I,n=58 1771182263796844 m001 (Lehmer+Porter)/(GolombDickman-KomornikLoreti) 1771182265421259 r005 Im(z^2+c),c=-39/74+7/22*I,n=45 1771182266009852 q001 7191/4060 1771182269962209 m006 (3/4*exp(2*Pi)-4)/(1/6*Pi^2+3/5) 1771182275042871 v003 sum((7*n^2-20*n+25)/(n!+1),n=1..infinity) 1771182284037867 r005 Im(z^2+c),c=-29/70+13/44*I,n=60 1771182287040144 m001 (FeigenbaumC+KomornikLoreti)/(Pi-ln(3)) 1771182288311308 l006 ln(1072/6301) 1771182291776291 r002 12th iterates of z^2 + 1771182300105263 s002 sum(A128285[n]/(n*10^n-1),n=1..infinity) 1771182301697362 a007 Real Root Of 461*x^4+968*x^3+917*x^2+909*x-425 1771182303116511 m004 5*Pi+(Sqrt[5]*Pi)/3-Sin[Sqrt[5]*Pi]/2 1771182304675241 a001 123/2*10610209857723^(22/23) 1771182307085179 m001 1/Magata^2/Cahen^2/ln(Rabbit)^2 1771182311356010 a007 Real Root Of 483*x^4+895*x^3+710*x^2-270*x-5 1771182316042373 m002 -6+Pi^3-5*Pi^5*Cosh[Pi] 1771182318751927 k001 Champernowne real with 52*n+1719 1771182319197908 l006 ln(7163/7291) 1771182323983474 r002 15th iterates of z^2 + 1771182327917688 a007 Real Root Of -166*x^4-262*x^3-171*x^2-842*x-777 1771182329276991 m001 ln(TwinPrimes)^2/Khintchine/GAMMA(1/4) 1771182338953796 m005 (1/2*5^(1/2)+3/7)/(1/10*3^(1/2)+7/10) 1771182342163167 a003 sin(Pi*20/69)+sin(Pi*32/73) 1771182343761659 r005 Re(z^2+c),c=-11/94+38/43*I,n=10 1771182346282417 m001 1/GAMMA(11/24)^2*exp(Trott)/GAMMA(7/12) 1771182350575857 k002 Champernowne real with 57/2*n^2-63/2*n+20 1771182350694514 a007 Real Root Of -728*x^4-917*x^3+254*x^2-483*x+417 1771182353065268 m005 (1/3*2^(1/2)-1/6)/(3/7*exp(1)+5/9) 1771182357667659 a007 Real Root Of -108*x^4+254*x^3+934*x^2+206*x-91 1771182360495140 h001 (5/6*exp(2)+3/10)/(3/8*exp(2)+7/8) 1771182364227386 r009 Re(z^3+c),c=-17/30+13/16*I,n=3 1771182365772795 a003 sin(Pi*23/91)/cos(Pi*19/39) 1771182369301614 r009 Im(z^3+c),c=-21/29+13/51*I,n=3 1771182371962036 a001 196418/7*29^(29/53) 1771182376820350 m002 -E^Pi-Pi^3/6+Pi^2*ProductLog[Pi] 1771182380354651 m001 ln(1+sqrt(2))/(BesselK(1,1)^exp(1/Pi)) 1771182380354651 m001 ln(2^(1/2)+1)/(BesselK(1,1)^exp(1/Pi)) 1771182383353915 a007 Real Root Of 923*x^4+786*x^3-770*x^2+823*x-843 1771182383915749 q001 37/2089 1771182389118181 m005 (1/2*5^(1/2)+5/7)/(1/12*2^(1/2)+11/12) 1771182389849989 l006 ln(1563/9187) 1771182396752417 m001 Khinchin/Riemann3rdZero*ZetaQ(4) 1771182406445050 a007 Real Root Of 462*x^4+791*x^3-589*x^2-856*x+180 1771182409259105 r009 Re(z^3+c),c=-3/10+23/41*I,n=28 1771182412131225 k008 concat of cont frac of 1771182417583497 a007 Real Root Of 687*x^4+643*x^3-446*x^2+607*x-714 1771182418771930 k001 Champernowne real with 53*n+1718 1771182423125351 k008 concat of cont frac of 1771182431211481 k008 concat of cont frac of 1771182444256441 a007 Real Root Of -73*x^4+441*x^3+69*x^2-833*x-473 1771182446751512 l006 ln(5620/6709) 1771182448444875 a001 161/9*(1/2*5^(1/2)+1/2)^20*18^(13/20) 1771182451248251 r009 Re(z^3+c),c=-27/122+18/29*I,n=5 1771182453044875 m001 (ln(gamma)+gamma(1))/(PolyaRandomWalk3D+Trott) 1771182455888391 a007 Real Root Of 547*x^4+657*x^3-718*x^2-307*x-24 1771182456783342 r005 Im(z^2+c),c=-29/70+13/44*I,n=51 1771182467454746 a007 Real Root Of -823*x^4-796*x^3+334*x^2-980*x+893 1771182467904137 a007 Real Root Of 470*x^4+419*x^3-230*x^2+792*x-173 1771182477383742 r005 Im(z^2+c),c=-65/114+20/61*I,n=55 1771182480366551 a007 Real Root Of -602*x^4+585*x^3+441*x^2+511*x-107 1771182483351623 a005 (1/sin(68/205*Pi))^98 1771182484055289 m001 1/Sierpinski/ln(GolombDickman)/arctan(1/2) 1771182487414891 a007 Real Root Of 367*x^4+541*x^3-636*x^2-881*x-171 1771182488036105 m001 (gamma(3)+FeigenbaumDelta)/(Rabbit+Tetranacci) 1771182491569647 a007 Real Root Of -356*x^4-209*x^3+949*x^2-148*x-897 1771182496898766 r005 Re(z^2+c),c=31/126+5/12*I,n=5 1771182500209475 a007 Real Root Of -2*x^4+413*x^3-718*x^2+488*x-887 1771182500950283 a007 Real Root Of -224*x^4-430*x^3-332*x^2-377*x+189 1771182503949552 a007 Real Root Of -386*x^4+124*x^3+880*x^2-524*x+799 1771182505150664 r005 Im(z^2+c),c=-93/86+1/49*I,n=16 1771182509487799 m005 (1/2*gamma-5/8)/(7/12*3^(1/2)+8/9) 1771182512072404 a007 Real Root Of -755*x^4-473*x^3+873*x^2-619*x+967 1771182513297060 p004 log(20731/3527) 1771182517211111 k008 concat of cont frac of 1771182518791933 k001 Champernowne real with 54*n+1717 1771182519229460 m001 1/MertensB1/exp(Cahen)*log(1+sqrt(2)) 1771182521939318 r005 Im(z^2+c),c=-53/118+33/64*I,n=25 1771182522973234 m001 (GAMMA(23/24)+Stephens)/(cos(1)-exp(1/exp(1))) 1771182525442835 m001 (Zeta(1,-1)-exp(Pi))/(-GAMMA(13/24)+Otter) 1771182527499728 r005 Re(z^2+c),c=33/98+15/62*I,n=28 1771182527783348 a007 Real Root Of 754*x^4+888*x^3-622*x^2-57*x-636 1771182534243980 m005 (1/2*Catalan-1/6)/(6/11*3^(1/2)+7/10) 1771182537853898 m001 exp(1/Pi)^(2*Pi/GAMMA(5/6)*FellerTornier) 1771182538612915 m001 (2^(1/3)+GAMMA(3/4))/(-ln(Pi)+GAMMA(17/24)) 1771182541720850 m001 ln(3)^(exp(1)*5^(1/2)) 1771182541720850 m001 ln(3)^(exp(1)*sqrt(5)) 1771182542112211 k008 concat of cont frac of 1771182543203209 m001 (-Champernowne+Landau)/(sin(1)+GAMMA(7/12)) 1771182545206584 a007 Real Root Of 435*x^4-734*x^3-106*x^2-401*x+78 1771182546316634 m001 1/Lehmer^2/exp(HardHexagonsEntropy)^2/Paris 1771182549761305 r005 Im(z^2+c),c=-29/70+13/44*I,n=55 1771182552578519 a007 Real Root Of 806*x^4+902*x^3-398*x^2+482*x-818 1771182556448242 a007 Real Root Of -109*x^4+264*x^3+493*x^2-708*x-261 1771182557450954 m001 (Catalan+CareFree)/(TreeGrowth2nd+Weierstrass) 1771182559623287 m001 (Otter-ZetaP(2))/Riemann1stZero 1771182564398657 a007 Real Root Of -183*x^4+720*x^3-316*x^2-545*x-243 1771182574324776 r005 Im(z^2+c),c=-9/16+35/108*I,n=47 1771182575472899 m001 (Si(Pi)-sin(1))/(Bloch+Paris) 1771182582030539 m001 (ln(3)-FeigenbaumAlpha)/(Kolakoski-ZetaQ(4)) 1771182586995076 a003 cos(Pi*5/43)+cos(Pi*7/38) 1771182593455661 r005 Im(z^2+c),c=-51/98+17/37*I,n=17 1771182593678867 m005 (1/2*2^(1/2)-7/9)/(4*Zeta(3)-9/11) 1771182600400076 m001 exp(1/2)*exp(gamma)^exp(sqrt(2)) 1771182600815586 q001 3909/2207 1771182602620050 r005 Im(z^2+c),c=-75/86+5/36*I,n=46 1771182603518859 r005 Re(z^2+c),c=-23/110+18/25*I,n=39 1771182607050924 a007 Real Root Of 565*x^4+885*x^3-50*x^2+454*x+318 1771182609675508 r002 25th iterates of z^2 + 1771182610937492 s001 sum(1/10^(n-1)*A006479[n]/n!^2,n=1..infinity) 1771182611539295 l006 ln(491/2886) 1771182613998334 a001 21/439204*29^(7/18) 1771182614504755 p002 log(11^(5/6)-2^(7/12)) 1771182618811936 k001 Champernowne real with 55*n+1716 1771182621123113 k008 concat of cont frac of 1771182621429466 m001 gamma(1)*(Zeta(5)+HardHexagonsEntropy) 1771182638347760 r002 51th iterates of z^2 + 1771182642311757 a007 Real Root Of -459*x^4-434*x^3+863*x^2+701*x+640 1771182643119687 m008 (1/6*Pi^3-3)/(4*Pi^5-1/5) 1771182647407338 a001 41/329*28657^(29/41) 1771182650342399 s001 sum(1/10^(n-1)*A056782[n]/n!^2,n=1..infinity) 1771182653645755 p004 log(25801/21613) 1771182653856032 m001 1/Ei(1)/ln(sin(1))^2 1771182656106510 h001 (10/11*exp(1)+1/5)/(4/9*exp(1)+3/10) 1771182661099872 a007 Real Root Of 359*x^4+352*x^3-495*x^2+134*x+213 1771182662277726 r005 Im(z^2+c),c=-53/118+11/35*I,n=16 1771182673748963 a001 3/121393*10946^(41/58) 1771182674202528 r002 44th iterates of z^2 + 1771182676011846 a001 89/3010349*7^(23/25) 1771182679731232 r005 Im(z^2+c),c=-29/70+13/44*I,n=50 1771182683188349 m001 (ln(5)-Ei(1,1))/(gamma(2)+Kolakoski) 1771182683829966 r005 Im(z^2+c),c=-119/110+12/55*I,n=23 1771182689728988 m001 (GAMMA(11/12)+Rabbit)/(Zeta(1/2)+arctan(1/2)) 1771182690254412 m008 (3/5*Pi^4-4/5)/(1/3*Pi^6+5) 1771182690258869 a003 cos(Pi*11/69)+sin(Pi*25/71) 1771182698240297 a003 -1/2+cos(5/21*Pi)-cos(13/27*Pi)-2*cos(2/27*Pi) 1771182701155968 b008 Pi+94*Sec[1] 1771182701240670 r005 Im(z^2+c),c=-17/44+11/38*I,n=33 1771182701256302 m001 exp(1/exp(1))^(Bloch/GaussKuzminWirsing) 1771182703374743 a007 Real Root Of 880*x^4+938*x^3-846*x^2+190*x-458 1771182704566171 a008 Real Root of x^2-x-31548 1771182713288156 a001 8/710647*2^(17/26) 1771182715864014 a007 Real Root Of -246*x^4-52*x^3-26*x^2-701*x+972 1771182718831939 k001 Champernowne real with 56*n+1715 1771182719005090 m001 (Artin-Paris)/(Zeta(5)+polylog(4,1/2)) 1771182720498442 a007 Real Root Of 689*x^4+999*x^3-807*x^2-980*x-434 1771182724442059 a003 cos(Pi*13/108)/sin(Pi*16/91) 1771182726349164 l006 ln(5331/6364) 1771182734954737 a007 Real Root Of 553*x^4+882*x^3-578*x^2-788*x-124 1771182741369534 m001 FibonacciFactorial^BesselJ(0,1)/TwinPrimes 1771182741720806 a003 cos(Pi*23/84)-sin(Pi*33/106) 1771182748480476 r005 Im(z^2+c),c=31/118+3/62*I,n=49 1771182748669265 m001 Pi*(Psi(2,1/3)-BesselI(0,1)-gamma(2)) 1771182761318392 m001 Salem*Paris^2*exp(GAMMA(1/24)) 1771182763826669 r009 Im(z^3+c),c=-5/114+2/11*I,n=6 1771182764596564 m001 ln(Pi)/(GAMMA(7/12)^GAMMA(5/24)) 1771182766113265 r005 Im(z^2+c),c=-10/13+3/46*I,n=27 1771182768611452 m002 -6+(5*Cosh[Pi])/3-Sinh[Pi] 1771182769725853 m001 (Niven+Salem)/(FeigenbaumB+Kolakoski) 1771182770964654 m001 (1-Psi(2,1/3))/(GAMMA(13/24)+GAMMA(7/12)) 1771182783040726 a007 Real Root Of -446*x^4-343*x^3-645*x^2+995*x+195 1771182790185541 a007 Real Root Of 956*x^4+382*x^3+784*x^2-997*x-200 1771182790992743 a007 Real Root Of 713*x^4+390*x^3-883*x^2+901*x-484 1771182793556384 r005 Re(z^2+c),c=-31/26+10/81*I,n=62 1771182794228790 a007 Real Root Of 87*x^4-658*x^3+148*x^2+819*x+885 1771182795194543 a007 Real Root Of 757*x^4-662*x^2-943*x-147 1771182795698924 q001 4118/2325 1771182796249510 m004 -Cos[Sqrt[5]*Pi]/2+Cot[Sqrt[5]*Pi]/2 1771182807808830 a007 Real Root Of -548*x^4-348*x^3+439*x^2-720*x+807 1771182813323176 m001 BesselI(0,1)+PrimesInBinary^StronglyCareFree 1771182818851942 k001 Champernowne real with 57*n+1714 1771182825188866 m005 (1/3*5^(1/2)+1/11)/(7/9*3^(1/2)-7/8) 1771182827088299 r009 Re(z^3+c),c=-23/126+39/41*I,n=7 1771182831277861 r005 Re(z^2+c),c=11/36+35/37*I,n=3 1771182831967130 a003 cos(Pi*1/82)+cos(Pi*25/114) 1771182834278212 m001 (Niven+ThueMorse)/((1+3^(1/2))^(1/2)-Pi^(1/2)) 1771182834625034 r005 Im(z^2+c),c=5/74+43/61*I,n=8 1771182841907535 h001 (11/12*exp(2)+5/9)/(1/11*exp(1)+1/6) 1771182848103119 a007 Real Root Of 665*x^4+712*x^3+300*x^2-739*x-137 1771182851542654 r005 Im(z^2+c),c=-97/90+9/44*I,n=30 1771182855762441 m005 (1/2*5^(1/2)-1/10)/(4*2^(1/2)+1/11) 1771182859173238 h001 (-3*exp(1/3)-5)/(-3*exp(1/3)-1) 1771182861396912 r005 Re(z^2+c),c=11/29+35/54*I,n=7 1771182862081814 l006 ln(1383/8129) 1771182862808266 b008 Sqrt[55]+Sqrt[106] 1771182865159537 r002 17th iterates of z^2 + 1771182866085763 m005 (1/2*3^(1/2)+11/12)/(3/10*gamma+5/6) 1771182866702227 a007 Real Root Of 718*x^4+454*x^3-746*x^2+860*x-680 1771182876349782 m003 1/2+Sqrt[5]/16-(25*Sec[1/2+Sqrt[5]/2])/3 1771182876367125 s001 sum(exp(-4*Pi)^n*A193366[n],n=1..infinity) 1771182878243378 m001 exp(Sierpinski)^2*Si(Pi)/Tribonacci 1771182889331057 a007 Real Root Of 211*x^4-230*x^3-793*x^2+119*x-656 1771182892795060 m005 (1/3*Pi+1/6)/(2/9*Catalan-8/9) 1771182895432442 r005 Im(z^2+c),c=-13/22+23/95*I,n=14 1771182903381087 m001 (1-ln(2))/(-GAMMA(7/12)+FeigenbaumKappa) 1771182904663113 r005 Im(z^2+c),c=-29/70+13/44*I,n=53 1771182908689178 m005 (1/3*Zeta(3)-2/3)/(5/6*Zeta(3)+1/2) 1771182909737574 a001 610*123^(7/10) 1771182911116239 a003 cos(Pi*7/93)+cos(Pi*23/112) 1771182918871945 k001 Champernowne real with 58*n+1713 1771182923552475 a007 Real Root Of -440*x^4-389*x^3-22*x^2-910*x+626 1771182923865131 r005 Im(z^2+c),c=-1/40+10/51*I,n=10 1771182931163115 k008 concat of cont frac of 1771182939785157 a007 Real Root Of -490*x^4-825*x^3+152*x^2+535*x+709 1771182943710403 m002 -5/2+(Pi^5*Cosh[Pi])/2 1771182947258365 a007 Real Root Of 18*x^4-652*x^3-682*x^2+951*x+24 1771182961468891 p004 log(29101/4951) 1771182969703792 m001 (BesselI(0,1)+ln(2+3^(1/2)))/(2^(1/3)-exp(1)) 1771182971073122 r005 Re(z^2+c),c=-41/34+5/106*I,n=54 1771182971756037 q001 4327/2443 1771182989690196 m005 (1/2*gamma+3/4)/(1/2*gamma-7/8) 1771182996076882 a007 Real Root Of 8*x^4-491*x^3+681*x^2+240*x+88 1771182999992523 l006 ln(892/5243) 1771183008682514 r005 Im(z^2+c),c=-13/12+18/91*I,n=28 1771183009328875 r005 Re(z^2+c),c=-75/62+1/27*I,n=46 1771183011762532 r005 Re(z^2+c),c=-5/94+10/19*I,n=27 1771183015658396 m005 (1/3*2^(1/2)-1/6)/(5/6*5^(1/2)-1/7) 1771183018891948 k001 Champernowne real with 59*n+1712 1771183020970282 r005 Re(z^2+c),c=-7/48+20/59*I,n=24 1771183023743994 p003 LerchPhi(1/3,3,313/170) 1771183031422515 k008 concat of cont frac of 1771183033516298 m001 (2^(1/3)+sin(1/12*Pi))/(-Robbin+Stephens) 1771183037999056 l006 ln(5042/6019) 1771183044678415 b008 50/3+LogIntegral[2] 1771183049113483 m001 (Zeta(5)-ln(2+3^(1/2)))/(GAMMA(5/6)+ZetaP(2)) 1771183049738143 r005 Re(z^2+c),c=-13/90+15/44*I,n=11 1771183053006705 a007 Real Root Of -34*x^4+320*x^3-x^2-674*x+922 1771183054309411 m001 (Kac+Rabbit)/(ln(gamma)+Conway) 1771183056364895 r005 Re(z^2+c),c=-139/114+1/63*I,n=28 1771183058325931 a007 Real Root Of 738*x^4+632*x^3-977*x^2+453*x+116 1771183059310138 a007 Real Root Of 679*x^4+744*x^3-432*x^2+371*x-536 1771183060670553 m005 (1/2*2^(1/2)+1/11)/(8/9*Catalan-4/11) 1771183062496436 a001 13/843*54018521^(21/23) 1771183076812073 m005 (1/2*Zeta(3)+3/5)/(5/9*Zeta(3)-3/5) 1771183099399811 r005 Re(z^2+c),c=7/25+22/51*I,n=9 1771183103461582 r002 57th iterates of z^2 + 1771183111435057 m001 ln(Cahen)^2*Backhouse*Riemann3rdZero^2 1771183112598986 r005 Re(z^2+c),c=-3/14+17/57*I,n=3 1771183113867742 a007 Real Root Of 852*x^4-684*x^3+618*x^2-838*x+132 1771183118911951 k001 Champernowne real with 60*n+1711 1771183122423981 r002 9th iterates of z^2 + 1771183126597104 a007 Real Root Of 885*x^4+744*x^3-813*x^2+729*x-734 1771183127488777 a001 11/75025*2584^(36/59) 1771183131589222 q001 4536/2561 1771183131636154 a007 Real Root Of 469*x^4+271*x^3-747*x^2+562*x+229 1771183134456547 m001 (Zeta(5)*Pi^(1/2)-HeathBrownMoroz)/Zeta(5) 1771183135190936 a001 38/305*832040^(4/11) 1771183141311261 k007 concat of cont frac of 1771183142301242 r005 Re(z^2+c),c=-3/28+27/62*I,n=12 1771183143410977 m005 (1/3*2^(1/2)+1/4)/(1/8*Pi-4/5) 1771183147502564 l006 ln(1293/7600) 1771183148967702 r005 Re(z^2+c),c=-95/78+1/33*I,n=38 1771183155570799 m005 (1/3*Pi+5)/(2+2^(1/2)) 1771183166856210 m004 -4-26*Sqrt[5]*Pi+Sqrt[5]*Pi*Sec[Sqrt[5]*Pi] 1771183167886843 r005 Re(z^2+c),c=-19/122+51/61*I,n=19 1771183175322605 m001 Kolakoski-ln(3)-Porter 1771183178246493 a003 cos(Pi*47/105)*cos(Pi*27/58) 1771183182155392 m001 (MertensB1-Stephens)/(Bloch+Conway) 1771183186627998 m001 GAMMA(1/24)^2*(2^(1/3))/exp(Zeta(1,2)) 1771183188618401 m005 (1/2*2^(1/2)-1/9)/(-127/198+3/22*5^(1/2)) 1771183196792139 a007 Real Root Of -3*x^4-534*x^3-470*x^2-273*x-833 1771183196795580 a007 Real Root Of -656*x^4-721*x^3+505*x^2-911*x-748 1771183199408207 v003 sum((2*n^3-3*n^2+5*n+2)/(n!+2),n=1..infinity) 1771183201721091 k006 concat of cont frac of 1771183209937480 a001 1762289/161*47^(1/8) 1771183212903920 r005 Re(z^2+c),c=-1/7+17/49*I,n=32 1771183213277504 a003 cos(Pi*1/33)+cos(Pi*5/23) 1771183218931954 k001 Champernowne real with 61*n+1710 1771183221548701 r005 Re(z^2+c),c=-1/7+9/26*I,n=13 1771183224960099 m001 (ln(2)/ln(10)+Psi(2,1/3))/(5^(1/2)+Thue) 1771183225176084 l006 ln(1694/9957) 1771183228065153 a007 Real Root Of 273*x^4+41*x^3-370*x^2+786*x+94 1771183228916244 m005 (1/2*Pi+3/5)/(5/12*2^(1/2)+7/11) 1771183232832754 m001 (GAMMA(19/24)+ZetaQ(2))/(Zeta(3)-Ei(1)) 1771183233968924 r005 Re(z^2+c),c=17/62+26/57*I,n=30 1771183235654595 m006 (3/4*exp(2*Pi)-2/5)/(5/6/Pi+2) 1771183240619786 r002 13th iterates of z^2 + 1771183241780061 m001 (1+ln(2))/(-BesselK(1,1)+ArtinRank2) 1771183250695726 r009 Im(z^3+c),c=-1/114+43/48*I,n=2 1771183251431945 m001 (-BesselK(0,1)+3)/Backhouse 1771183257433512 r005 Im(z^2+c),c=-17/28+1/31*I,n=41 1771183258061002 m001 1/ln(Catalan)^2/GolombDickman/GAMMA(19/24) 1771183264017035 a007 Real Root Of 496*x^4+606*x^3+36*x^2+830*x-157 1771183265162528 m001 2^(1/3)*ZetaQ(3)-Grothendieck 1771183272061701 r005 Re(z^2+c),c=43/98+14/41*I,n=8 1771183272193865 r005 Im(z^2+c),c=-49/94+1/3*I,n=13 1771183272764641 m001 2/3-GaussAGM(1,1/sqrt(2))-BesselI(1,2) 1771183273137885 m001 ThueMorse/(ReciprocalFibonacci^ArtinRank2) 1771183273907633 m001 StronglyCareFree/ReciprocalFibonacci*ZetaP(4) 1771183274349891 r005 Im(z^2+c),c=-31/58+12/35*I,n=14 1771183275941028 a007 Real Root Of -448*x^4-519*x^3+739*x^2+231*x-384 1771183276718456 m001 (ln(Pi)+gamma(1))/(2^(1/2)-cos(1/5*Pi)) 1771183277342291 q001 4745/2679 1771183277342291 r002 2th iterates of z^2 + 1771183281288109 r009 Re(z^3+c),c=-3/10+3/5*I,n=26 1771183282635952 r005 Re(z^2+c),c=-9/74+27/55*I,n=7 1771183285238852 m001 Khinchin*TwinPrimes-ZetaQ(4) 1771183287692457 r005 Re(z^2+c),c=-9/110+27/56*I,n=35 1771183288448602 r005 Re(z^2+c),c=-15/98+7/22*I,n=13 1771183291515657 a007 Real Root Of 12*x^4+161*x^3-969*x^2-961*x+577 1771183296235240 p004 log(23041/19301) 1771183310597667 m001 GAMMA(7/12)^Artin/Robbin 1771183314885674 r002 2th iterates of z^2 + 1771183317511540 m001 gamma(3)/(HardyLittlewoodC4-Porter) 1771183318289242 p004 log(31699/5393) 1771183318951957 k001 Champernowne real with 62*n+1709 1771183321121812 k008 concat of cont frac of 1771183322284707 m001 (exp(1/exp(1))+MadelungNaCl)/(Catalan-exp(1)) 1771183323243928 r005 Re(z^2+c),c=-17/20+3/61*I,n=14 1771183343834697 m005 (1/2*Zeta(3)-4/7)/(7/8*Catalan-9/11) 1771183346237869 a007 Real Root Of 243*x^4+625*x^3+500*x^2-259*x-946 1771183349005124 a007 Real Root Of -219*x^4+544*x^3+946*x^2-825*x+749 1771183349995108 h001 (3/8*exp(1)+1/5)/(11/12*exp(2)+1/9) 1771183353374908 a007 Real Root Of -556*x^4-907*x^3+374*x^2+253*x-293 1771183353581867 k002 Champernowne real with 29*n^2-33*n+21 1771183355362066 a003 -1-cos(3/10*Pi)-2*cos(10/27*Pi)+cos(7/24*Pi) 1771183361176383 m005 (1/2*gamma-4/11)/(1/10*5^(1/2)+1/5) 1771183370922701 m001 (Totient-ThueMorse)/(cos(1/5*Pi)-MertensB3) 1771183373253360 r005 Im(z^2+c),c=-19/18+17/83*I,n=49 1771183375715897 r005 Re(z^2+c),c=-2/13+20/29*I,n=37 1771183377871466 m005 (1/3*3^(1/2)-1/10)/(4/5*Pi+2/11) 1771183379186045 m001 GAMMA(2/3)^StolarskyHarborth-Zeta(3) 1771183386878810 m001 (Rabbit+Sierpinski)/(ln(2+3^(1/2))+Landau) 1771183387547872 l006 ln(4753/5674) 1771183395220463 r005 Re(z^2+c),c=-5/114+5/9*I,n=42 1771183395834330 r005 Im(z^2+c),c=-17/46+2/7*I,n=22 1771183401853157 a007 Real Root Of 787*x^4+838*x^3-405*x^2+785*x-428 1771183404640325 s002 sum(A054285[n]/(n!^3),n=1..infinity) 1771183410797282 q001 4954/2797 1771183414558217 a007 Real Root Of 597*x^4+557*x^3-546*x^2+273*x-584 1771183418971960 k001 Champernowne real with 63*n+1708 1771183422946621 m005 (1/3*exp(1)+1/7)/(5/12*2^(1/2)-7/12) 1771183424581641 a007 Real Root Of 484*x^4-958*x^3-774*x^2-578*x-10 1771183432712309 r005 Re(z^2+c),c=-1/7+17/49*I,n=30 1771183436327768 r005 Im(z^2+c),c=9/46+17/31*I,n=64 1771183437774719 r005 Im(z^2+c),c=-17/18+31/181*I,n=11 1771183443237822 h001 (-2*exp(1/3)+8)/(-5*exp(3/2)-7) 1771183449256293 r005 Im(z^2+c),c=4/19+5/53*I,n=13 1771183451092718 r002 24th iterates of z^2 + 1771183451965592 a007 Real Root Of -197*x^4+949*x^3-572*x^2-464*x-718 1771183455461187 m001 (-CopelandErdos+Kac)/(1+Zeta(3)) 1771183459177237 r002 59th iterates of z^2 + 1771183473903138 r005 Re(z^2+c),c=-5/44+22/53*I,n=17 1771183475629561 l006 ln(401/2357) 1771183475629561 p004 log(2357/401) 1771183481126573 r009 Im(z^3+c),c=-5/102+2/11*I,n=2 1771183486016941 g002 -Psi(4/11)-Psi(1/11)-2*Psi(5/9) 1771183489583944 r002 20th iterates of z^2 + 1771183489777409 a007 Real Root Of -559*x^4-939*x^3-195*x^2-867*x-640 1771183500613308 m001 KhintchineLevy^2/exp(Kolakoski)/Ei(1)^2 1771183502548719 a001 832040/123*47^(1/4) 1771183502893187 r005 Re(z^2+c),c=-1/7+17/49*I,n=35 1771183511377807 a003 sin(Pi*39/113)+sin(Pi*33/95) 1771183511547311 k008 concat of cont frac of 1771183515760879 r005 Im(z^2+c),c=-67/64+12/59*I,n=35 1771183518323425 h001 (2/3*exp(2)+9/10)/(10/11*exp(1)+9/11) 1771183518991963 k001 Champernowne real with 64*n+1707 1771183523011753 a007 Real Root Of 638*x^4+947*x^3+332*x^2+881*x-498 1771183524810610 r005 Re(z^2+c),c=1/44+21/38*I,n=5 1771183530012047 r005 Im(z^2+c),c=-23/58+7/24*I,n=38 1771183533447684 q001 5163/2915 1771183535742676 m008 (1/5*Pi^2-2/3)/(3/4*Pi^4+3/4) 1771183537147969 m001 MinimumGamma*exp(FeigenbaumDelta)^3 1771183543225873 r009 Re(z^3+c),c=-1/34+23/38*I,n=17 1771183553167978 a007 Real Root Of 438*x^4+283*x^3-841*x^2+36*x-36 1771183571034336 r002 3th iterates of z^2 + 1771183573938558 r005 Im(z^2+c),c=-25/27+5/31*I,n=56 1771183582194000 r005 Re(z^2+c),c=-1/7+17/49*I,n=38 1771183583629214 r002 11th iterates of z^2 + 1771183584530678 m001 ZetaR(2)-Weierstrass-exp(1/exp(1)) 1771183584927076 a007 Real Root Of -535*x^4-422*x^3+708*x^2+58*x+802 1771183586236202 a007 Real Root Of -770*x^4-851*x^3+292*x^2-960*x+233 1771183602452375 r005 Re(z^2+c),c=-1/7+17/49*I,n=41 1771183607313801 a007 Real Root Of -325*x^4-416*x^3-402*x^2-878*x+593 1771183607322726 r005 Re(z^2+c),c=-1/7+17/49*I,n=44 1771183608423893 r005 Re(z^2+c),c=-1/7+17/49*I,n=47 1771183608646812 r005 Re(z^2+c),c=-1/7+17/49*I,n=46 1771183608655921 r005 Re(z^2+c),c=-1/7+17/49*I,n=50 1771183608659091 r005 Re(z^2+c),c=-1/7+17/49*I,n=49 1771183608688899 r005 Re(z^2+c),c=-1/7+17/49*I,n=52 1771183608700434 r005 Re(z^2+c),c=-1/7+17/49*I,n=53 1771183608702164 r005 Re(z^2+c),c=-1/7+17/49*I,n=55 1771183608706646 r005 Re(z^2+c),c=-1/7+17/49*I,n=58 1771183608707761 r005 Re(z^2+c),c=-1/7+17/49*I,n=56 1771183608707973 r005 Re(z^2+c),c=-1/7+17/49*I,n=61 1771183608708334 r005 Re(z^2+c),c=-1/7+17/49*I,n=64 1771183608708561 r005 Re(z^2+c),c=-1/7+17/49*I,n=62 1771183608708563 r005 Re(z^2+c),c=-1/7+17/49*I,n=63 1771183608708597 r005 Re(z^2+c),c=-1/7+17/49*I,n=59 1771183608709053 r005 Re(z^2+c),c=-1/7+17/49*I,n=60 1771183608711384 r005 Re(z^2+c),c=-1/7+17/49*I,n=57 1771183608721722 r005 Re(z^2+c),c=-1/7+17/49*I,n=54 1771183608764825 r005 Re(z^2+c),c=-1/7+17/49*I,n=51 1771183608933975 r005 Re(z^2+c),c=-1/7+17/49*I,n=48 1771183609058491 r005 Re(z^2+c),c=-1/7+17/49*I,n=43 1771183609554386 r005 Re(z^2+c),c=-1/7+17/49*I,n=45 1771183611640669 r005 Re(z^2+c),c=-1/7+17/49*I,n=42 1771183612574439 r005 Re(z^2+c),c=-1/7+17/49*I,n=40 1771183614385952 r005 Im(z^2+c),c=-7/11+19/61*I,n=55 1771183614551304 m001 OneNinth^2*Artin*ln(Ei(1))^2 1771183614716299 m001 Catalan^Khinchin/(exp(sqrt(2))^Khinchin) 1771183617772936 r005 Re(z^2+c),c=-1/7+17/49*I,n=39 1771183617820757 a005 (1/cos(16/197*Pi))^717 1771183619011966 k001 Champernowne real with 65*n+1706 1771183621915197 m001 (ArtinRank2-cos(1))/(-Totient+ZetaP(2)) 1771183621936217 m001 1/MertensB1/exp(GaussKuzminWirsing)^2/Salem 1771183624283765 a007 Real Root Of 351*x^4+340*x^3-623*x^2-685*x-824 1771183624405045 m001 Pi/(2^(1/3)*GAMMA(2/3)-GAMMA(7/12)) 1771183629077121 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)*GolombDickman+Paris 1771183631300789 r005 Re(z^2+c),c=-1/7+17/49*I,n=36 1771183632927903 a007 Real Root Of 698*x^4+745*x^3-579*x^2+160*x-630 1771183633759995 r005 Re(z^2+c),c=-1/7+17/49*I,n=37 1771183634953864 r005 Re(z^2+c),c=-1/7+17/49*I,n=33 1771183637559421 h001 (8/9*exp(1)+5/7)/(7/12*exp(1)+2/11) 1771183641358591 a007 Real Root Of -841*x^4+610*x^3+456*x^2+136*x+14 1771183646554566 q001 5372/3033 1771183661732544 m005 (-13/44+1/4*5^(1/2))/(6/7*5^(1/2)-3/7) 1771183663282373 m001 (MertensB3+QuadraticClass)/(GolombDickman+Kac) 1771183669786537 m001 GAMMA(19/24)/(TravellingSalesman^GAMMA(3/4)) 1771183670818044 r009 Re(z^3+c),c=-23/78+26/47*I,n=24 1771183671181468 r005 Re(z^2+c),c=-5/26+28/37*I,n=46 1771183684028680 a007 Real Root Of -537*x^4-985*x^3-501*x^2-553*x+404 1771183689318115 r009 Re(z^3+c),c=-3/16+19/30*I,n=5 1771183693677563 r005 Im(z^2+c),c=-25/78+2/61*I,n=4 1771183693939765 a007 Real Root Of 775*x^4-288*x^3+623*x^2-870*x-176 1771183700156737 m001 exp(GAMMA(11/12))*GAMMA(1/4)^2/Zeta(1/2)^2 1771183705584870 a007 Real Root Of -679*x^4-598*x^3+702*x^2-995*x-605 1771183717434815 m001 Trott*(Grothendieck-ZetaR(2)) 1771183719031969 k001 Champernowne real with 66*n+1705 1771183721299901 a007 Real Root Of 299*x^4+659*x^3+216*x^2-676*x+109 1771183726488621 r005 Re(z^2+c),c=3/44+37/61*I,n=54 1771183727705111 a007 Real Root Of 425*x^4+138*x^3-197*x^2-816*x-138 1771183729497452 m001 TwinPrimes*(KhinchinHarmonic-Zeta(1,2)) 1771183729712011 m005 (-3/4+1/4*5^(1/2))/(1/11*5^(1/2)+7/8) 1771183733628166 r002 52i'th iterates of 2*x/(1-x^2) of 1771183734523063 a007 Real Root Of 342*x^4+366*x^3-176*x^2+424*x-29 1771183735069663 m001 sin(1/5*Pi)+Conway^HardyLittlewoodC3 1771183739683089 m001 FeigenbaumD^exp(1)*FeigenbaumAlpha^exp(1) 1771183742731517 r005 Im(z^2+c),c=-67/126+15/47*I,n=51 1771183743691253 r005 Re(z^2+c),c=-1/7+17/49*I,n=34 1771183751190098 q001 5581/3151 1771183755859468 l006 ln(1514/8899) 1771183778730159 r002 13th iterates of z^2 + 1771183782356353 l006 ln(4464/5329) 1771183790497811 m001 (exp(Pi)+exp(1))/(-MinimumGamma+ZetaQ(4)) 1771183798565515 r009 Re(z^3+c),c=-13/24+6/37*I,n=20 1771183800616158 a001 987/2207*18^(10/21) 1771183806480892 m001 (BesselI(0,2)+MasserGramain)/(PlouffeB+Salem) 1771183817114112 k007 concat of cont frac of 1771183819051972 k001 Champernowne real with 67*n+1704 1771183820285852 a007 Real Root Of -159*x^4-553*x^3-812*x^2-610*x-41 1771183822292585 a007 Real Root Of 196*x^4+x^3-334*x^2+168*x-578 1771183833096734 r002 29th iterates of z^2 + 1771183833096734 r002 29th iterates of z^2 + 1771183833756198 a007 Real Root Of 545*x^4+194*x^3-865*x^2+992*x+185 1771183834690099 b008 1/4+E*Sqrt[ArcCsch[Pi]] 1771183835724521 a007 Real Root Of 456*x^4+357*x^3-451*x^2+222*x-696 1771183836299472 a001 3571/21*1346269^(54/55) 1771183836364404 m001 Mills^(Otter*Sarnak) 1771183837132000 m001 (Ei(1)-exp(-1/2*Pi))/(GaussAGM-KomornikLoreti) 1771183845173932 a007 Real Root Of 586*x^4+646*x^3-858*x^2+35*x+576 1771183846742757 m001 1/Riemann2ndZero^2/ln(Porter)*sqrt(3)^2 1771183848271642 q001 579/3269 1771183856822784 l006 ln(1113/6542) 1771183865992442 a001 8/521*54018521^(4/15) 1771183881387577 m001 (3^(1/2)+Ei(1))/(-Landau+Riemann2ndZero) 1771183884606664 a001 233/18*2^(19/42) 1771183888160942 m001 1/exp(sinh(1))*Zeta(7)^2/sqrt(Pi) 1771183891363711 r005 Im(z^2+c),c=-19/18+37/178*I,n=54 1771183894495928 a007 Real Root Of 53*x^4-428*x^3-930*x^2-202*x-340 1771183895155750 r009 Re(z^3+c),c=-3/16+55/59*I,n=59 1771183897737141 r002 21th iterates of z^2 + 1771183899963074 m006 (5/6*Pi+2/5)/(5/6*ln(Pi)+3/4) 1771183907269179 m001 (Si(Pi)+GaussAGM)/(PolyaRandomWalk3D+Salem) 1771183911146608 m001 (BesselJ(0,1)+Riemann2ndZero)/(Salem+ZetaQ(2)) 1771183913356331 m001 (-Zeta(5)+MinimumGamma)/(exp(Pi)+Chi(1)) 1771183914067863 s001 sum(exp(-Pi/2)^(n-1)*A038373[n],n=1..infinity) 1771183914383780 a001 17711/4*199^(11/42) 1771183914459829 a001 843/2584*13^(31/47) 1771183917096403 m003 -3+3*Log[1/2+Sqrt[5]/2]^2*Sec[1/2+Sqrt[5]/2] 1771183919071975 k001 Champernowne real with 68*n+1703 1771183919683941 a007 Real Root Of 619*x^4+983*x^3+76*x^2+156*x-592 1771183923349115 m005 (1/2*5^(1/2)+5/6)/(6*3^(1/2)+5/8) 1771183923848938 m001 (GAMMA(1/3)-Si(Pi))/FeigenbaumDelta 1771183929432223 r005 Im(z^2+c),c=-11/13+6/47*I,n=23 1771183938588721 q001 5999/3387 1771183938643865 r005 Im(z^2+c),c=-43/42+9/46*I,n=64 1771183943317629 r002 48th iterates of z^2 + 1771183944663214 r002 49th iterates of z^2 + 1771183945697030 r009 Im(z^3+c),c=-85/98+8/13*I,n=2 1771183948772500 r009 Re(z^3+c),c=-31/102+19/33*I,n=43 1771183951116724 r005 Re(z^2+c),c=1/82+9/50*I,n=12 1771183953055759 a007 Real Root Of 464*x^4+956*x^3-281*x^2-367*x+977 1771183954849381 a007 Real Root Of 196*x^4+321*x^3+194*x^2+149*x-490 1771183962354724 m001 (GAMMA(13/24)+Grothendieck)/(Kac+Mills) 1771183965682485 m001 1/TreeGrowth2nd*exp(FeigenbaumC)^2*sqrt(2)^2 1771183974458902 m006 (1/5/Pi-3)/(4/5*ln(Pi)-3/4) 1771183976237531 r005 Re(z^2+c),c=-7/48+20/59*I,n=26 1771183977168380 g006 -Psi(1,5/9)-2*Psi(1,1/9)-Psi(1,3/8) 1771183991328979 r005 Re(z^2+c),c=-7/6+128/215*I,n=3 1771184012886959 r005 Im(z^2+c),c=-77/106+1/59*I,n=60 1771184014358032 a007 Real Root Of 42*x^4+694*x^3-861*x^2+399*x-77 1771184016396516 a007 Real Root Of -475*x^4-384*x^3+980*x^2+536*x+416 1771184019091978 k001 Champernowne real with 69*n+1702 1771184020212020 s002 sum(A231700[n]/(n^2*2^n+1),n=1..infinity) 1771184022824536 q001 6208/3505 1771184025538947 a003 cos(Pi*11/75)+sin(Pi*37/109) 1771184028902903 r005 Re(z^2+c),c=8/19+20/31*I,n=4 1771184031084801 a007 Real Root Of -4*x^4-713*x^3-799*x^2+478*x-244 1771184032069297 a007 Real Root Of 68*x^4-386*x^3+359*x^2+169*x+50 1771184039037979 r005 Re(z^2+c),c=31/86+13/24*I,n=6 1771184057551413 r002 39th iterates of z^2 + 1771184059189440 m001 Khinchin-LandauRamanujan^(1/3) 1771184066066628 r005 Re(z^2+c),c=-151/114+22/51*I,n=3 1771184066920849 a001 76/4181*165580141^(4/11) 1771184071511599 l006 ln(712/4185) 1771184074102057 m004 20/Pi+25*Pi+3*Sinh[Sqrt[5]*Pi] 1771184078899269 r009 Im(z^3+c),c=-9/34+8/55*I,n=3 1771184079954979 a007 Real Root Of -280*x^4+256*x^3+488*x^2-961*x+945 1771184085321696 r005 Im(z^2+c),c=-99/106+3/14*I,n=20 1771184085443358 r005 Im(z^2+c),c=-37/66+7/27*I,n=14 1771184086753879 a001 76/28657*32951280099^(4/11) 1771184087176049 a001 38/98209*6557470319842^(4/11) 1771184090230651 a001 8/521*2207^(37/60) 1771184101573281 q001 6417/3623 1771184109468689 a007 Real Root Of -422*x^4-368*x^3+527*x^2-109*x+262 1771184112312311 k006 concat of cont frac of 1771184114531984 m001 Zeta(1,-1)*(Artin-exp(1/exp(1))) 1771184119111981 k001 Champernowne real with 70*n+1701 1771184123740893 r005 Re(z^2+c),c=-7/78+7/15*I,n=47 1771184129660082 r005 Re(z^2+c),c=-5/32+13/42*I,n=26 1771184135803357 m001 cos(1/5*Pi)^Backhouse/PrimesInBinary 1771184140600998 a003 sin(Pi*5/84)*sin(Pi*47/117) 1771184153184026 a007 Real Root Of -840*x^4-952*x^3+694*x^2-634*x-323 1771184153561438 r004 Re(z^2+c),c=-49/38-2/21*I,z(0)=-1,n=39 1771184154215012 k008 concat of cont frac of 1771184155631590 a007 Real Root Of 987*x^4+923*x^3-779*x^2+677*x-942 1771184159269409 r002 47th iterates of z^2 + 1771184163973248 a007 Real Root Of -174*x^4+912*x^3-676*x^2-134*x-997 1771184173912605 m005 (1/2*2^(1/2)-2/9)/(5/11*gamma-3) 1771184174421719 a007 Real Root Of 193*x^4+249*x^3+272*x^2+384*x-689 1771184175354183 q001 6626/3741 1771184181112218 k007 concat of cont frac of 1771184181437049 r005 Re(z^2+c),c=-49/52+4/19*I,n=42 1771184182569817 r002 18th iterates of z^2 + 1771184186469150 a007 Real Root Of -743*x^4-671*x^3+795*x^2-180*x+771 1771184195550319 a003 cos(Pi*9/44)+sin(Pi*41/97) 1771184204694473 a007 Real Root Of 173*x^4-213*x^3-483*x^2+984*x+372 1771184206675106 m001 FeigenbaumDelta/(GAMMA(1/24)^Zeta(5)) 1771184219131984 k001 Champernowne real with 71*n+1700 1771184221325487 a007 Real Root Of -198*x^4+410*x^3+998*x^2-136*x+855 1771184223387334 m001 1/2*MertensB2/arctan(1/2)*2^(2/3) 1771184224872965 r005 Im(z^2+c),c=-85/118+8/59*I,n=25 1771184228880795 p001 sum(1/(397*n+45)/n/(128^n),n=1..infinity) 1771184231823332 l006 ln(4175/4984) 1771184232141375 a007 Real Root Of 366*x^4+93*x^3-458*x^2+798*x-235 1771184235867603 r005 Re(z^2+c),c=-32/29+9/52*I,n=4 1771184237017399 r005 Re(z^2+c),c=-41/34+1/61*I,n=30 1771184240910026 a007 Real Root Of 603*x^4+828*x^3-340*x^2-92*x-430 1771184244500604 a007 Real Root Of 637*x^4+735*x^3-573*x^2+352*x+236 1771184244622959 q001 6835/3859 1771184254551979 m005 (1/2*Catalan-10/11)/(6/11*Pi+5/6) 1771184256754287 r005 Im(z^2+c),c=-47/50+1/6*I,n=43 1771184263769303 r005 Re(z^2+c),c=-1/7+17/49*I,n=31 1771184271974325 m001 Ei(1,1)^KhinchinHarmonic*Riemann3rdZero 1771184275563401 m001 (GAMMA(17/24)-PrimesInBinary)/(Pi+Pi^(1/2)) 1771184278213299 r005 Im(z^2+c),c=-49/54+10/63*I,n=13 1771184281044686 m005 (-17/28+1/4*5^(1/2))/(1/5*2^(1/2)-3) 1771184281250259 m001 (ln(2+3^(1/2))-Gompertz)/(Thue-ZetaP(2)) 1771184282248811 k009 concat of cont frac of 1771184284601789 m001 (ZetaP(3)+ZetaQ(2))/(Niven-PrimesInBinary) 1771184290085240 m001 (ln(2+3^(1/2))+gamma(1))/(Kac+ZetaP(4)) 1771184291615171 a001 3/2207*199^(23/25) 1771184291789894 r009 Re(z^3+c),c=-33/106+35/58*I,n=49 1771184292529524 a007 Real Root Of -490*x^4-986*x^3-645*x^2-725*x+83 1771184296025796 m009 (24*Catalan+3*Pi^2-2/3)/(Psi(1,3/4)+1/3) 1771184296725525 m001 -LambertW(1)/(Zeta(3)+2) 1771184302664073 a001 305/161*11^(55/59) 1771184305087942 l006 ln(1023/6013) 1771184307088529 m001 3^(1/3)/(Sarnak^HardyLittlewoodC3) 1771184309781242 q001 7044/3977 1771184310654361 a007 Real Root Of -231*x^4+10*x^3+155*x^2-775*x+470 1771184313524893 a007 Real Root Of 489*x^4+246*x^3-113*x^2-922*x+165 1771184314748775 r005 Im(z^2+c),c=-73/86+6/47*I,n=44 1771184317856672 r005 Im(z^2+c),c=2/7+2/49*I,n=6 1771184318533362 r002 37th iterates of z^2 + 1771184319151987 k001 Champernowne real with 72*n+1699 1771184321975446 m001 1/OneNinth^2/ln(PisotVijayaraghavan)*gamma 1771184325708673 a001 7/5*610^(40/53) 1771184341122111 k008 concat of cont frac of 1771184342256464 m001 GAMMA(1/24)^2/Riemann3rdZero*ln(sqrt(5)) 1771184356343963 r002 26th iterates of z^2 + 1771184356587877 k002 Champernowne real with 59/2*n^2-69/2*n+22 1771184363064700 p004 log(33721/5737) 1771184364905617 m001 1/Robbin^2/Lehmer^2*exp(Zeta(9)) 1771184367861224 r005 Im(z^2+c),c=-8/19+19/64*I,n=32 1771184368883863 a007 Real Root Of -451*x^4-990*x^3-12*x^2+836*x+456 1771184371184371 q001 7253/4095 1771184373821108 r002 56th iterates of z^2 + 1771184374298192 a007 Real Root Of 593*x^4-992*x^3+636*x^2-672*x+104 1771184381385784 r005 Im(z^2+c),c=-15/22+33/127*I,n=61 1771184382860774 a001 281/2255*21^(34/39) 1771184382950933 s002 sum(A188233[n]/(64^n-1),n=1..infinity) 1771184385427028 r005 Re(z^2+c),c=13/32+31/38*I,n=3 1771184396000296 b008 Pi+22*ArcCot[Glaisher] 1771184399063938 s002 sum(A124627[n]/(16^n-1),n=1..infinity) 1771184400578023 m001 1/GAMMA(3/4)^2*exp(Magata)*log(1+sqrt(2)) 1771184406899007 p003 LerchPhi(1/10,6,239/179) 1771184408578516 r005 Im(z^2+c),c=-101/106+6/35*I,n=62 1771184411860480 s001 sum(exp(-Pi/2)^(n-1)*A079906[n],n=1..infinity) 1771184414903854 a001 1/72*4052739537881^(13/18) 1771184417929570 m005 (1/2*Catalan+1)/(5*3^(1/2)-3/7) 1771184419171990 k001 Champernowne real with 73*n+1698 1771184421769659 a001 1292/2889*18^(10/21) 1771184423552127 m001 cos(Pi/12)*exp(GAMMA(7/24))*sin(1) 1771184427298063 m005 (1/2*3^(1/2)+4/11)/(3/7*5^(1/2)-8/9) 1771184429755352 l006 ln(1334/7841) 1771184430130845 m001 1/log(2+sqrt(3))^2/exp(Riemann3rdZero)*sqrt(5) 1771184433037101 r009 Im(z^3+c),c=-7/40+42/47*I,n=58 1771184441275972 r002 63th iterates of z^2 + 1771184444122288 r005 Re(z^2+c),c=-29/122+19/24*I,n=13 1771184452225116 r005 Im(z^2+c),c=-93/86+8/35*I,n=63 1771184452997121 m002 -Pi^3+Pi^5/E^Pi+Pi^3*Log[Pi] 1771184453336220 a008 Real Root of (-6+3*x-x^2+6*x^3-4*x^4-5*x^5) 1771184454104341 m001 cos(Pi/12)*(BesselI(0,2)-exp(sqrt(2))) 1771184454873608 a001 1/5473*514229^(8/23) 1771184455877078 a005 (1/sin(62/165*Pi))^184 1771184457828337 a001 2/514229*32951280099^(8/23) 1771184458046245 r005 Re(z^2+c),c=-9/82+20/47*I,n=30 1771184458399199 m001 1/BesselK(0,1)^2*ln(Rabbit)*Catalan 1771184458656999 m001 (2^(1/3)-GAMMA(3/4))/(FeigenbaumKappa+Lehmer) 1771184459105310 m005 (1/2*exp(1)-5/12)/(3*3^(1/2)+1/8) 1771184463457834 r005 Im(z^2+c),c=-12/25+17/55*I,n=57 1771184464555071 r005 Re(z^2+c),c=23/90+13/29*I,n=62 1771184464720367 r005 Im(z^2+c),c=-71/110+1/29*I,n=52 1771184474670062 a007 Real Root Of -239*x^4-65*x^3+715*x^2+170*x+49 1771184480727999 l006 ln(8061/9623) 1771184482917248 a007 Real Root Of 49*x^4+889*x^3+352*x^2-428*x-658 1771184484848239 m001 exp(BesselJ(0,1))/Artin*GAMMA(7/24) 1771184496394950 m001 (-GaussAGM+MasserGramain)/(Psi(1,1/3)+cos(1)) 1771184507284075 l006 ln(1645/9669) 1771184512394751 a001 6765/15127*18^(10/21) 1771184515856508 m001 Pi*(Psi(2,1/3)-Shi(1)/sin(1)) 1771184519168998 a001 35355581/36*21^(19/20) 1771184519191993 k001 Champernowne real with 74*n+1697 1771184523587627 m001 ln(GlaisherKinkelin)^2/ErdosBorwein^2*exp(1)^2 1771184525616775 a001 17711/39603*18^(10/21) 1771184526038757 m002 -6*Sech[Pi]+(ProductLog[Pi]*Tanh[Pi])/Pi 1771184527545842 a001 23184/51841*18^(10/21) 1771184527827289 a001 121393/271443*18^(10/21) 1771184527868351 a001 317811/710647*18^(10/21) 1771184527874342 a001 416020/930249*18^(10/21) 1771184527875216 a001 2178309/4870847*18^(10/21) 1771184527875344 a001 5702887/12752043*18^(10/21) 1771184527875363 a001 7465176/16692641*18^(10/21) 1771184527875365 a001 39088169/87403803*18^(10/21) 1771184527875366 a001 102334155/228826127*18^(10/21) 1771184527875366 a001 133957148/299537289*18^(10/21) 1771184527875366 a001 701408733/1568397607*18^(10/21) 1771184527875366 a001 1836311903/4106118243*18^(10/21) 1771184527875366 a001 2403763488/5374978561*18^(10/21) 1771184527875366 a001 12586269025/28143753123*18^(10/21) 1771184527875366 a001 32951280099/73681302247*18^(10/21) 1771184527875366 a001 43133785636/96450076809*18^(10/21) 1771184527875366 a001 225851433717/505019158607*18^(10/21) 1771184527875366 a001 10610209857723/23725150497407*18^(10/21) 1771184527875366 a001 182717648081/408569081798*18^(10/21) 1771184527875366 a001 139583862445/312119004989*18^(10/21) 1771184527875366 a001 53316291173/119218851371*18^(10/21) 1771184527875366 a001 10182505537/22768774562*18^(10/21) 1771184527875366 a001 7778742049/17393796001*18^(10/21) 1771184527875366 a001 2971215073/6643838879*18^(10/21) 1771184527875366 a001 567451585/1268860318*18^(10/21) 1771184527875366 a001 433494437/969323029*18^(10/21) 1771184527875366 a001 165580141/370248451*18^(10/21) 1771184527875366 a001 31622993/70711162*18^(10/21) 1771184527875367 a001 24157817/54018521*18^(10/21) 1771184527875374 a001 9227465/20633239*18^(10/21) 1771184527875423 a001 1762289/3940598*18^(10/21) 1771184527875757 a001 1346269/3010349*18^(10/21) 1771184527878045 a001 514229/1149851*18^(10/21) 1771184527893729 a001 98209/219602*18^(10/21) 1771184528001233 a001 75025/167761*18^(10/21) 1771184528738071 a001 28657/64079*18^(10/21) 1771184533788434 a001 5473/12238*18^(10/21) 1771184545523365 m001 1/Trott/Riemann3rdZero^2*ln(sqrt(2))^2 1771184547855658 a007 Real Root Of -729*x^4-894*x^3+124*x^2-883*x+254 1771184553683151 a007 Real Root Of -397*x^4+2*x^3+869*x^2-708*x-62 1771184553880349 r005 Im(z^2+c),c=-35/82+14/27*I,n=20 1771184558039670 r005 Re(z^2+c),c=-97/98+4/23*I,n=48 1771184568387710 a001 8/3571*29^(35/57) 1771184568404141 a001 4181/9349*18^(10/21) 1771184572934575 b008 67*Pi*Sin[1] 1771184573375201 r005 Im(z^2+c),c=-47/118+7/22*I,n=9 1771184575341521 a003 cos(Pi*13/77)+sin(Pi*41/113) 1771184577310628 m001 (Landau-LaplaceLimit)/(Paris+Stephens) 1771184584531153 a001 29/86267571272*233^(8/11) 1771184588088548 r005 Im(z^2+c),c=6/23+3/56*I,n=16 1771184590091182 v002 sum(1/(5^n*(30*n^2-85*n+68)),n=1..infinity) 1771184598095802 s002 sum(A269245[n]/(n*pi^n-1),n=1..infinity) 1771184609376503 m005 (1/2*2^(1/2)+1/12)/(1/11*Zeta(3)-5/9) 1771184611918096 m001 (5^(1/2)-Lehmer)/(PlouffeB+ZetaP(2)) 1771184613711962 m005 (1/2*exp(1)+1/10)/(7/9*Zeta(3)-1/9) 1771184615592731 a007 Real Root Of -55*x^4-993*x^3-309*x^2+462*x+390 1771184619174142 r005 Im(z^2+c),c=-101/102+5/27*I,n=25 1771184619211996 k001 Champernowne real with 75*n+1696 1771184625987932 a007 Real Root Of 724*x^4+892*x^3-664*x^2-362*x-727 1771184636288202 m005 (1/2*3^(1/2)-8/9)/(8/9*gamma+7/9) 1771184642824276 a001 196418/29*521^(12/23) 1771184645131408 a007 Real Root Of -70*x^4+191*x^3+538*x^2-444*x-724 1771184647525282 r009 Re(z^3+c),c=-39/118+34/61*I,n=13 1771184650507398 r005 Im(z^2+c),c=-33/32+10/51*I,n=25 1771184653689635 m001 ZetaR(2)*(BesselI(0,1)+gamma(1)) 1771184660135490 a007 Real Root Of -567*x^4-379*x^3+837*x^2-540*x-108 1771184661366353 m001 PlouffeB^arctan(1/3)*gamma(2)^arctan(1/3) 1771184663308656 r005 Im(z^2+c),c=-73/74+11/60*I,n=63 1771184663312001 m001 (1+3^(1/2))^(1/2)/(ArtinRank2+CopelandErdos) 1771184667941389 m009 (4/5*Psi(1,1/3)-5)/(1/10*Pi^2+3/4) 1771184668756145 r009 Re(z^3+c),c=-43/122+35/52*I,n=9 1771184671548575 m005 (1/2*Catalan+8/11)/(41/88+1/11*5^(1/2)) 1771184686056830 m001 (Pi-cos(1/5*Pi))/ln(2+3^(1/2)) 1771184686056830 m001 (Pi-cos(Pi/5))/ln(2+sqrt(3)) 1771184688512331 m001 (BesselI(0,1)+GAMMA(7/12))/(Landau+MertensB2) 1771184690485112 a001 47/20365011074*17711^(5/24) 1771184690653486 m005 (2/5*Catalan+4)/(5/6*exp(1)+1/5) 1771184690720382 a001 47/225851433717*1836311903^(5/24) 1771184691890861 a007 Real Root Of -119*x^4-90*x^3+202*x^2-182*x-285 1771184699093308 r002 8th iterates of z^2 + 1771184699606211 m006 (3/4*Pi^2+5)/(3*exp(Pi)+3/5) 1771184701481600 a007 Real Root Of 690*x^4+928*x^3-16*x^2+332*x-996 1771184702741729 r005 Im(z^2+c),c=-89/78+11/58*I,n=26 1771184707498158 h001 (1/10*exp(2)+5/11)/(7/8*exp(2)+3/11) 1771184710325769 m005 (1/3*Pi+3/7)/(2/7*5^(1/2)-5/9) 1771184712278747 r005 Im(z^2+c),c=-27/56+13/42*I,n=59 1771184719142324 m001 1/exp(OneNinth)*Bloch^2/GAMMA(5/6) 1771184719231999 k001 Champernowne real with 76*n+1695 1771184721396820 m001 (ln(Pi)+Magata)/(3^(1/2)+Chi(1)) 1771184724665376 a008 Real Root of (-7+2*x+6*x^2+9*x^4-x^8) 1771184731324266 m001 exp(GolombDickman)/ArtinRank2*Robbin 1771184733645946 r005 Im(z^2+c),c=-38/31+10/59*I,n=28 1771184733808790 m004 2+5*Pi+2*Cot[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 1771184734116124 m004 2+5*Pi+(4*Cot[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 1771184734423459 m004 2+5*Pi+2*Cot[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 1771184739568901 a007 Real Root Of -860*x^4-727*x^3+812*x^2-945*x+203 1771184748143582 l006 ln(3886/4639) 1771184749712603 a007 Real Root Of 448*x^4+662*x^3-492*x^2-75*x+680 1771184757317162 a007 Real Root Of 560*x^4+600*x^3-447*x^2+227*x-373 1771184762907893 r009 Re(z^3+c),c=-3/28+14/17*I,n=16 1771184763353078 m001 (Pi-gamma(2))/(GAMMA(11/12)+Sarnak) 1771184768472081 r005 Im(z^2+c),c=-41/86+9/26*I,n=14 1771184777765093 a007 Real Root Of -216*x^4+730*x^3-476*x^2+193*x-779 1771184778380389 r005 Re(z^2+c),c=15/56+20/43*I,n=28 1771184780377698 r005 Im(z^2+c),c=23/110+2/21*I,n=20 1771184784299619 a005 (1/cos(22/169*Pi))^836 1771184788988887 a007 Real Root Of 505*x^4+410*x^3-495*x^2+350*x-519 1771184789263327 a007 Real Root Of 585*x^4+691*x^3-51*x^2+779*x-378 1771184797440114 m005 (2/5*gamma+2/5)/(3/4*Pi-2) 1771184797527318 r009 Re(z^3+c),c=-23/122+59/63*I,n=47 1771184797807641 r005 Im(z^2+c),c=21/62+3/47*I,n=60 1771184798553339 a007 Real Root Of -25*x^4+935*x^3-841*x^2-844*x-816 1771184805663743 a001 1597/3571*18^(10/21) 1771184806634651 r005 Re(z^2+c),c=9/118+11/47*I,n=21 1771184808063086 a001 55/29*521^(5/14) 1771184819252002 k001 Champernowne real with 77*n+1694 1771184830203585 m001 (Sarnak+ZetaQ(3))/(BesselI(1,1)+FeigenbaumMu) 1771184830374473 m001 (ln(5)+2*Pi/GAMMA(5/6))/(GAMMA(5/6)-Sarnak) 1771184832138433 b008 43*Erfc[ArcSinh[2]] 1771184834742635 m001 KhinchinLevy^Lehmer/(ZetaP(2)^Lehmer) 1771184839834861 l006 ln(311/1828) 1771184851031650 a007 Real Root Of -36*x^4-614*x^3+463*x^2+772*x-296 1771184854925330 r005 Im(z^2+c),c=19/82+3/38*I,n=24 1771184856618402 m006 (2/Pi-1)/(3/5*Pi+1/6) 1771184863281639 m002 -2-Cosh[Pi]+Pi*Csch[Pi]+Sinh[Pi] 1771184864847312 m001 1/GAMMA(7/12)^2*Artin*exp(Zeta(3))^2 1771184870434418 h001 (2/7*exp(2)+7/10)/(5/12*exp(1)+5/11) 1771184872603629 m001 ln(2)*(Ei(1)+TwinPrimes) 1771184880956378 m001 (ln(3)-MinimumGamma)/(Rabbit+Totient) 1771184882806376 a001 8/64079*47^(31/45) 1771184883014846 r005 Re(z^2+c),c=-9/106+10/21*I,n=34 1771184884183024 r005 Re(z^2+c),c=-1/7+36/37*I,n=8 1771184885055963 m001 (Zeta(1/2)-Ei(1,1))/(FellerTornier+Kac) 1771184890852851 g002 Psi(1/5)-Psi(1/12)-Psi(8/11)-Psi(1/9) 1771184894741368 r009 Im(z^3+c),c=-43/122+1/9*I,n=9 1771184902864150 a007 Real Root Of 850*x^4+788*x^3+242*x^2-428*x+63 1771184910261897 r005 Im(z^2+c),c=-34/31+11/51*I,n=42 1771184911129587 a007 Real Root Of -640*x^4-585*x^3-239*x^2+617*x+11 1771184913793982 m001 Riemann1stZero/(TwinPrimes^Landau) 1771184919272005 k001 Champernowne real with 78*n+1693 1771184920951501 r005 Re(z^2+c),c=9/118+11/47*I,n=24 1771184922894721 m001 (Bloch+MertensB2)/(ln(2)/ln(10)-ln(gamma)) 1771184927026699 r005 Re(z^2+c),c=-5/32+13/42*I,n=29 1771184930093727 r005 Im(z^2+c),c=-41/98+2/7*I,n=6 1771184930152419 a007 Real Root Of 40*x^4+666*x^3-756*x^2-97*x-555 1771184938554271 m002 -1+(4*E^Pi)/Pi^5-ProductLog[Pi] 1771184943870138 m001 (Trott+ZetaQ(4))/(GlaisherKinkelin-gamma) 1771184947167623 a007 Real Root Of 375*x^4+422*x^3-87*x^2+486*x-212 1771184947436371 r009 Re(z^3+c),c=-11/52+33/46*I,n=62 1771184949618147 r009 Re(z^3+c),c=-85/118+2/21*I,n=3 1771184950603684 a007 Real Root Of -694*x^4-849*x^3+348*x^2-429*x+261 1771184958072554 a007 Real Root Of 918*x^4+948*x^3-932*x^2+515*x+69 1771184960629181 b008 Sech[2-Cos[2]] 1771184963634364 m004 E^(Sqrt[5]*Pi)+20/Pi+25*Pi+Sinh[Sqrt[5]*Pi] 1771184975103472 m001 (FeigenbaumDelta+Landau)/(2^(1/2)+GAMMA(7/12)) 1771184978478376 r005 Re(z^2+c),c=-5/32+13/42*I,n=28 1771184982853614 m005 (1/2*Catalan+1/7)/(3/5*3^(1/2)-7/10) 1771184991362105 m001 1/GolombDickman^2*Bloch*exp(FeigenbaumD) 1771185006185126 r005 Re(z^2+c),c=5/22+8/43*I,n=7 1771185013348578 m001 (FeigenbaumB-Riemann1stZero)/(Sarnak+Trott2nd) 1771185013388597 a007 Real Root Of -624*x^4+694*x^3-334*x^2+564*x+1 1771185015447874 r005 Re(z^2+c),c=-5/32+13/42*I,n=31 1771185019135139 a001 73681302247/3*4807526976^(17/24) 1771185019292008 k001 Champernowne real with 79*n+1692 1771185028095255 r002 52th iterates of z^2 + 1771185034665312 m001 Khinchin-Rabbit^MertensB1 1771185036214805 l006 ln(7483/8933) 1771185039356739 a007 Real Root Of 500*x^4+408*x^3-591*x^2+220*x-410 1771185043828630 r005 Re(z^2+c),c=-5/32+13/42*I,n=34 1771185044171888 r005 Re(z^2+c),c=-5/32+13/42*I,n=32 1771185048328321 r005 Re(z^2+c),c=31/110+7/33*I,n=11 1771185052527143 r005 Re(z^2+c),c=-5/32+13/42*I,n=37 1771185053190289 a007 Real Root Of -13*x^4+343*x^3-283*x^2-52*x-798 1771185054555383 r005 Re(z^2+c),c=-5/32+13/42*I,n=40 1771185054950467 r005 Re(z^2+c),c=-5/32+13/42*I,n=43 1771185055010072 r005 Re(z^2+c),c=-5/32+13/42*I,n=45 1771185055014937 r005 Re(z^2+c),c=-5/32+13/42*I,n=46 1771185055018769 r005 Re(z^2+c),c=-5/32+13/42*I,n=48 1771185055018937 r005 Re(z^2+c),c=-5/32+13/42*I,n=42 1771185055022191 r005 Re(z^2+c),c=-5/32+13/42*I,n=51 1771185055023059 r005 Re(z^2+c),c=-5/32+13/42*I,n=49 1771185055023081 r005 Re(z^2+c),c=-5/32+13/42*I,n=54 1771185055023269 r005 Re(z^2+c),c=-5/32+13/42*I,n=57 1771185055023302 r005 Re(z^2+c),c=-5/32+13/42*I,n=60 1771185055023304 r005 Re(z^2+c),c=-5/32+13/42*I,n=59 1771185055023306 r005 Re(z^2+c),c=-5/32+13/42*I,n=62 1771185055023307 r005 Re(z^2+c),c=-5/32+13/42*I,n=63 1771185055023308 r005 Re(z^2+c),c=-5/32+13/42*I,n=64 1771185055023312 r005 Re(z^2+c),c=-5/32+13/42*I,n=61 1771185055023320 r005 Re(z^2+c),c=-5/32+13/42*I,n=56 1771185055023331 r005 Re(z^2+c),c=-5/32+13/42*I,n=58 1771185055023397 r005 Re(z^2+c),c=-5/32+13/42*I,n=55 1771185055023522 r005 Re(z^2+c),c=-5/32+13/42*I,n=53 1771185055023532 r005 Re(z^2+c),c=-5/32+13/42*I,n=52 1771185055025001 r005 Re(z^2+c),c=-5/32+13/42*I,n=50 1771185055033665 r005 Re(z^2+c),c=-5/32+13/42*I,n=47 1771185055076375 r005 Re(z^2+c),c=-5/32+13/42*I,n=44 1771185055250364 r005 Re(z^2+c),c=-5/32+13/42*I,n=41 1771185055335635 r005 Re(z^2+c),c=-5/32+13/42*I,n=39 1771185055760800 r005 Re(z^2+c),c=-5/32+13/42*I,n=38 1771185055956712 r005 Re(z^2+c),c=-5/32+13/42*I,n=35 1771185058105982 r005 Re(z^2+c),c=-5/32+13/42*I,n=36 1771185059893225 m001 (Pi+exp(1))/(FeigenbaumMu-MertensB1) 1771185061608342 a007 Real Root Of 51*x^4-512*x^3-995*x^2-325*x-801 1771185065873504 r005 Im(z^2+c),c=-11/56+12/49*I,n=13 1771185068514319 m001 ln(Pi)^FeigenbaumDelta/(ln(Pi)^BesselJ(1,1)) 1771185073238124 a007 Real Root Of -19*x^4-384*x^3-848*x^2-154*x-490 1771185075946934 r005 Re(z^2+c),c=-5/32+13/42*I,n=33 1771185085398889 r005 Re(z^2+c),c=-7/50+31/46*I,n=52 1771185093152744 r005 Im(z^2+c),c=-5/6+4/253*I,n=6 1771185095530234 a007 Real Root Of -637*x^4-207*x^3+856*x^2-929*x+788 1771185096882432 a001 36/341*76^(28/43) 1771185109566914 m001 Salem^Otter*Salem^BesselI(1,1) 1771185110909970 r005 Im(z^2+c),c=-5/14+27/43*I,n=50 1771185111080990 a001 47/144*1597^(35/41) 1771185111122111 k008 concat of cont frac of 1771185119312011 k001 Champernowne real with 80*n+1691 1771185122475562 m001 Robbin^2*ArtinRank2^2*ln(Zeta(7)) 1771185124118976 a007 Real Root Of 806*x^4+977*x^3-867*x^2-309*x-331 1771185124404591 a007 Real Root Of 277*x^4-981*x^3+390*x^2+497*x+621 1771185125861748 b008 1/3+ArcCos[Csch[E]] 1771185126868270 m001 1/exp(Paris)*Si(Pi)*GAMMA(11/12) 1771185131311132 k008 concat of cont frac of 1771185143749763 m001 (-MasserGramain+Mills)/(Catalan-Landau) 1771185148096185 r005 Im(z^2+c),c=1/74+11/60*I,n=10 1771185148372019 r002 25th iterates of z^2 + 1771185159267849 r005 Im(z^2+c),c=-8/31+15/58*I,n=8 1771185163104387 m001 ln(Pi)*Cahen+MertensB2 1771185165902386 p003 LerchPhi(1/32,2,467/195) 1771185168290898 r005 Im(z^2+c),c=-31/34+19/122*I,n=37 1771185171305402 r005 Re(z^2+c),c=-5/32+13/42*I,n=30 1771185171378180 a007 Real Root Of 824*x^4+846*x^3-550*x^2+493*x-810 1771185171764259 r005 Im(z^2+c),c=-111/82+1/34*I,n=5 1771185172610839 s002 sum(A202415[n]/(exp(2*pi*n)-1),n=1..infinity) 1771185187359073 a007 Real Root Of -428*x^4+12*x^3+974*x^2-484*x+366 1771185195348966 r002 22th iterates of z^2 + 1771185201610383 r005 Re(z^2+c),c=-6/29+2/37*I,n=13 1771185211399863 r005 Re(z^2+c),c=9/118+11/47*I,n=25 1771185212097525 a007 Real Root Of -903*x^4-810*x^3+606*x^2-992*x+728 1771185213236148 r005 Im(z^2+c),c=-29/70+13/44*I,n=48 1771185213244997 l006 ln(1465/8611) 1771185213894144 m001 Riemann2ndZero/Porter/cos(1/5*Pi) 1771185215479448 a001 1/24476*76^(47/54) 1771185219332014 k001 Champernowne real with 81*n+1690 1771185222140922 m005 (1/2*Zeta(3)-3/8)/(2/3*2^(1/2)+1/3) 1771185222266369 p003 LerchPhi(1/2,2,459/163) 1771185230111015 r005 Re(z^2+c),c=9/118+11/47*I,n=19 1771185231991059 a007 Real Root Of -590*x^4-655*x^3+204*x^2-402*x+815 1771185232268640 m001 (-OneNinth+TwinPrimes)/(2^(1/2)+Niven) 1771185250852293 m001 (Thue+ZetaQ(2))/(gamma(3)-polylog(4,1/2)) 1771185257777718 r005 Re(z^2+c),c=-29/23+13/32*I,n=9 1771185266465045 m001 (Zeta(3)-GaussAGM)/(Magata-MertensB3) 1771185272654386 a003 cos(Pi*1/3)-cos(Pi*35/103) 1771185274733322 r005 Re(z^2+c),c=9/118+11/47*I,n=28 1771185285249985 r005 Re(z^2+c),c=9/118+11/47*I,n=29 1771185288938307 m001 (Kac-Trott2nd)/(ln(3)+BesselI(0,2)) 1771185291690985 r005 Re(z^2+c),c=9/118+11/47*I,n=32 1771185291907716 r005 Re(z^2+c),c=9/118+11/47*I,n=33 1771185292252345 r009 Re(z^3+c),c=-9/50+56/61*I,n=31 1771185292390557 r005 Re(z^2+c),c=9/118+11/47*I,n=37 1771185292400325 r005 Re(z^2+c),c=9/118+11/47*I,n=36 1771185292421484 r005 Re(z^2+c),c=9/118+11/47*I,n=41 1771185292423214 r005 Re(z^2+c),c=9/118+11/47*I,n=40 1771185292423288 r005 Re(z^2+c),c=9/118+11/47*I,n=45 1771185292423296 r005 Re(z^2+c),c=9/118+11/47*I,n=42 1771185292423370 r005 Re(z^2+c),c=9/118+11/47*I,n=46 1771185292423385 r005 Re(z^2+c),c=9/118+11/47*I,n=49 1771185292423388 r005 Re(z^2+c),c=9/118+11/47*I,n=50 1771185292423390 r005 Re(z^2+c),c=9/118+11/47*I,n=53 1771185292423390 r005 Re(z^2+c),c=9/118+11/47*I,n=54 1771185292423390 r005 Re(z^2+c),c=9/118+11/47*I,n=58 1771185292423390 r005 Re(z^2+c),c=9/118+11/47*I,n=57 1771185292423390 r005 Re(z^2+c),c=9/118+11/47*I,n=62 1771185292423390 r005 Re(z^2+c),c=9/118+11/47*I,n=61 1771185292423390 r005 Re(z^2+c),c=9/118+11/47*I,n=63 1771185292423390 r005 Re(z^2+c),c=9/118+11/47*I,n=64 1771185292423390 r005 Re(z^2+c),c=9/118+11/47*I,n=59 1771185292423390 r005 Re(z^2+c),c=9/118+11/47*I,n=60 1771185292423390 r005 Re(z^2+c),c=9/118+11/47*I,n=56 1771185292423390 r005 Re(z^2+c),c=9/118+11/47*I,n=55 1771185292423390 r005 Re(z^2+c),c=9/118+11/47*I,n=52 1771185292423391 r005 Re(z^2+c),c=9/118+11/47*I,n=51 1771185292423396 r005 Re(z^2+c),c=9/118+11/47*I,n=48 1771185292423412 r005 Re(z^2+c),c=9/118+11/47*I,n=47 1771185292423443 r005 Re(z^2+c),c=9/118+11/47*I,n=44 1771185292423834 r005 Re(z^2+c),c=9/118+11/47*I,n=43 1771185292426524 r005 Re(z^2+c),c=9/118+11/47*I,n=38 1771185292431385 r005 Re(z^2+c),c=9/118+11/47*I,n=39 1771185292555170 r005 Re(z^2+c),c=9/118+11/47*I,n=35 1771185292560250 r005 Re(z^2+c),c=9/118+11/47*I,n=34 1771185294382380 r005 Re(z^2+c),c=9/118+11/47*I,n=31 1771185296103243 r005 Re(z^2+c),c=9/118+11/47*I,n=30 1771185297274672 m005 (1/2*3^(1/2)+2/3)/(3/10*gamma-2/11) 1771185299736754 g005 Pi^(1/2)*GAMMA(4/11)/GAMMA(8/11)/GAMMA(5/11) 1771185300510838 r005 Im(z^2+c),c=-27/26+25/126*I,n=31 1771185311262355 m001 (DuboisRaymond-ZetaP(2))/(Ei(1)-BesselJ(1,1)) 1771185311413811 k008 concat of cont frac of 1771185313878034 l006 ln(1154/6783) 1771185314599925 a003 cos(Pi*4/107)/cos(Pi*27/56) 1771185317429447 r005 Re(z^2+c),c=9/118+11/47*I,n=27 1771185319352017 k001 Champernowne real with 82*n+1689 1771185323162435 a001 17393796001/21*39088169^(1/23) 1771185323162435 a001 10749957122/21*2504730781961^(1/23) 1771185323774074 m001 1/GAMMA(1/12)^2*Ei(1)^2/exp(Zeta(1,2))^2 1771185324671756 a001 521/2584*2178309^(28/45) 1771185325919107 r005 Im(z^2+c),c=-23/26+16/111*I,n=26 1771185336939683 r005 Im(z^2+c),c=-27/34+15/118*I,n=5 1771185340600277 m001 (exp(Pi)+cos(1))/(-exp(1/exp(1))+OneNinth) 1771185341789264 m001 (2^(1/2)+Si(Pi))/(AlladiGrinstead+MertensB2) 1771185347431024 l006 ln(3597/4294) 1771185348799967 m001 (Sarnak+Totient)/(gamma+sin(1/5*Pi)) 1771185352421168 m001 GaussAGM(1,1/sqrt(2))-Lehmer^BesselJ(0,1) 1771185355741960 r009 Re(z^3+c),c=-21/118+52/57*I,n=37 1771185359593887 k002 Champernowne real with 30*n^2-36*n+23 1771185361622979 p001 sum((-1)^n/(545*n+6)/n/(10^n),n=1..infinity) 1771185364457662 r005 Im(z^2+c),c=-67/122+8/45*I,n=5 1771185364553524 a001 9381251041/7*610^(1/23) 1771185365264475 m001 1/GAMMA(19/24)^2/ln(Khintchine)^2*cosh(1)^2 1771185367816066 r005 Im(z^2+c),c=-23/58+7/24*I,n=40 1771185370635814 s001 sum(exp(-Pi/3)^n*A252105[n],n=1..infinity) 1771185374627943 r005 Re(z^2+c),c=9/118+11/47*I,n=26 1771185376234963 a001 5/2537720636*29^(15/23) 1771185379075950 m001 BesselI(0,2)/(ln(3)^FeigenbaumD) 1771185385587782 a007 Real Root Of 353*x^4-12*x^3-923*x^2+821*x+809 1771185386105282 r005 Re(z^2+c),c=-5/32+13/42*I,n=25 1771185389883742 m001 exp(FeigenbaumB)/HardHexagonsEntropy*Zeta(5)^2 1771185390296857 m001 (Ei(1,1)-BesselI(1,2))/(ArtinRank2+ZetaP(4)) 1771185395004407 m001 RenyiParking/FeigenbaumC*ln(GAMMA(11/24))^2 1771185402405279 a007 Real Root Of 276*x^4+445*x^3+267*x^2+554*x-100 1771185404081069 a007 Real Root Of 974*x^4-994*x^3+59*x^2-442*x+81 1771185417962251 r009 Re(z^3+c),c=-6/31+39/44*I,n=59 1771185419372020 k001 Champernowne real with 83*n+1688 1771185423155257 a007 Real Root Of 56*x^4+989*x^3-42*x^2+157*x+44 1771185433732103 a007 Real Root Of 829*x^4+696*x^3-914*x^2+529*x-487 1771185438102881 a007 Real Root Of -648*x^4+878*x^3+561*x^2+701*x-146 1771185439908934 a007 Real Root Of -322*x^4-840*x^3-425*x^2+480*x+685 1771185441058187 r005 Re(z^2+c),c=-6/31+27/34*I,n=46 1771185449013521 a007 Real Root Of -262*x^4-500*x^3+234*x^2+936*x+724 1771185452298227 m005 (1/2*gamma-3/8)/(2*gamma-2/3) 1771185461949002 m001 (arctan(1/3)-ln(2))^MadelungNaCl 1771185465681187 m001 1/FeigenbaumD^2*Riemann2ndZero^2/ln(sqrt(2)) 1771185470192644 a007 Real Root Of 55*x^4-187*x^3+277*x^2+899*x-857 1771185471196610 a001 1/15456*3^(11/12) 1771185472720610 m001 (Cahen+Robbin)/(TwinPrimes+ZetaP(4)) 1771185487732331 r002 3th iterates of z^2 + 1771185488762232 l006 ln(843/4955) 1771185496275491 m001 (Artin+FeigenbaumB)/(ln(Pi)-arctan(1/2)) 1771185500119049 r005 Re(z^2+c),c=-24/25+10/63*I,n=6 1771185501233339 r002 56th iterates of z^2 + 1771185512111422 k006 concat of cont frac of 1771185516281876 r005 Re(z^2+c),c=-1/12+23/48*I,n=38 1771185517590134 r005 Re(z^2+c),c=13/40+16/59*I,n=41 1771185519392023 k001 Champernowne real with 84*n+1687 1771185523495807 r005 Re(z^2+c),c=9/118+11/47*I,n=23 1771185528847344 r002 4th iterates of z^2 + 1771185533988477 r009 Re(z^3+c),c=-7/38+20/27*I,n=24 1771185535305328 m001 Sarnak+GAMMA(11/12)^Thue 1771185536391935 r005 Im(z^2+c),c=-13/18+27/118*I,n=10 1771185543153968 a007 Real Root Of -347*x^4-163*x^3+67*x^2+574*x+99 1771185547108956 a001 13/15127*5600748293801^(15/23) 1771185547676210 r002 45th iterates of z^2 + 1771185549919389 r005 Re(z^2+c),c=-7/94+25/52*I,n=15 1771185554684506 a001 13/103682*119218851371^(19/23) 1771185554849265 a001 13*20633239^(13/23) 1771185554849272 a001 13/20633239*14662949395604^(20/23) 1771185554850607 a001 13/1149851*45537549124^(22/23) 1771185557335440 m001 (Shi(1)+GAMMA(11/12))^LandauRamanujan 1771185566076424 m001 KhinchinHarmonic-polylog(4,1/2)+Landau 1771185566139556 r005 Re(z^2+c),c=-26/27+9/46*I,n=36 1771185571460966 r005 Re(z^2+c),c=-49/40+2/41*I,n=38 1771185579144404 r009 Re(z^3+c),c=-9/122+19/24*I,n=15 1771185590196573 r005 Re(z^2+c),c=-23/18+35/83*I,n=2 1771185591814641 m001 Psi(1,1/3)^FeigenbaumB*Sierpinski 1771185599891579 r005 Re(z^2+c),c=-5/32+13/42*I,n=27 1771185601966448 m001 cos(1/12*Pi)*(MasserGramainDelta+Trott) 1771185605607388 a007 Real Root Of 193*x^4+13*x^3-581*x^2-531*x-945 1771185606534844 m001 (2^(1/2)+Si(Pi))/(KhinchinHarmonic+Paris) 1771185611716753 h001 (7/10*exp(1)+3/4)/(1/4*exp(1)+9/11) 1771185612076776 a007 Real Root Of 36*x^4+650*x^3+256*x^2+699*x+821 1771185613058335 a007 Real Root Of -77*x^4+552*x^3+836*x^2-427*x+446 1771185619412026 k001 Champernowne real with 85*n+1686 1771185626126601 m001 (1+HardyLittlewoodC3)/(MertensB1+Robbin) 1771185633622129 r009 Re(z^3+c),c=-5/22+18/55*I,n=14 1771185635537747 l006 ln(1375/8082) 1771185637429169 m001 (MasserGramainDelta+PrimesInBinary)^Rabbit 1771185638631107 a007 Real Root Of 468*x^4+851*x^3+29*x^2+331*x+618 1771185638886895 a007 Real Root Of 109*x^4-557*x^3-928*x^2+278*x-764 1771185643639523 a001 123/6557470319842*2178309^(2/13) 1771185646757135 a001 123/2504730781961*4181^(2/13) 1771185647402920 r005 Im(z^2+c),c=1/18+33/53*I,n=13 1771185647806441 b008 3*Pi*ArcCsch[Sqrt[5]]^2 1771185649508515 a007 Real Root Of -734*x^4-878*x^3+702*x^2-464*x-679 1771185653568813 m001 (ErdosBorwein+Trott)/(Shi(1)-cos(1/12*Pi)) 1771185654765861 r009 Re(z^3+c),c=-9/94+25/29*I,n=30 1771185657390301 r005 Re(z^2+c),c=-7/48+19/62*I,n=5 1771185659605512 m005 (1/2*Zeta(3)+2/3)/(1/4*gamma+4/7) 1771185661801095 m008 (3*Pi^4-1/4)/(1/6*Pi^4+1/4) 1771185673015198 r005 Im(z^2+c),c=7/74+11/18*I,n=14 1771185678444258 m009 (5/6*Psi(1,3/4)+2)/(3/5*Psi(1,3/4)+4/5) 1771185678773020 m005 (1/2*2^(1/2)-6/7)/(41/55+1/22*5^(1/2)) 1771185679241290 r005 Re(z^2+c),c=17/98+33/61*I,n=6 1771185680243288 r002 12th iterates of z^2 + 1771185684698350 l006 ln(6905/8243) 1771185684942926 a001 521/7778742049*5702887^(4/19) 1771185684942928 a001 521/53316291173*53316291173^(4/19) 1771185685551190 m001 (gamma(1)-Sierpinski)/(Zeta(5)+arctan(1/2)) 1771185689551924 m001 BesselI(0,1)+FellerTornier-ReciprocalFibonacci 1771185690820415 r005 Im(z^2+c),c=-9/25+37/55*I,n=20 1771185693217471 a007 Real Root Of -266*x^4-665*x^3-619*x^2-150*x+599 1771185693743537 a001 13/3571*6643838879^(18/23) 1771185700392618 m005 (1/2*5^(1/2)+11/12)/(1/3*3^(1/2)+4/7) 1771185701676629 m005 (1/2*Catalan-3/8)/(6/11*gamma-5) 1771185709056199 h001 (-7*exp(4)+7)/(-10*exp(1)+6) 1771185709909535 m001 GolombDickman^2*ln(Bloch)/sqrt(1+sqrt(3)) 1771185711889200 a003 cos(Pi*11/119)+cos(Pi*18/91) 1771185715719123 m005 (1/2*Zeta(3)+1/12)/(4*Catalan+1/5) 1771185718206815 r005 Re(z^2+c),c=1/29+14/59*I,n=12 1771185719432029 k001 Champernowne real with 86*n+1685 1771185726300723 m001 BesselJ(1,1)/TwinPrimes*exp(GAMMA(13/24))^2 1771185742556362 m005 (-17/44+1/4*5^(1/2))/(3/10*Catalan+7/10) 1771185744806552 a007 Real Root Of 587*x^4+919*x^3+308*x^2+805*x-211 1771185746657680 r002 31th iterates of z^2 + 1771185746657680 r002 31th iterates of z^2 + 1771185753757574 r005 Re(z^2+c),c=-9/19+19/29*I,n=9 1771185757753911 r002 33th iterates of z^2 + 1771185757853196 m001 (Trott+ZetaQ(4))/(1-Niven) 1771185777988511 r005 Re(z^2+c),c=-3/38+19/39*I,n=36 1771185779051509 a007 Real Root Of -336*x^4+94*x^3+945*x^2-505*x-30 1771185779491381 a007 Real Root Of -723*x^4-930*x^3+668*x^2-274*x-633 1771185788398982 b008 Zeta[2,Sqrt[5]]^3 1771185796591998 r005 Re(z^2+c),c=41/118+9/32*I,n=43 1771185799317275 a007 Real Root Of 584*x^4+728*x^3-474*x^2+370*x+440 1771185806527891 a001 7/10946*3^(51/55) 1771185810631173 m005 (1/3*5^(1/2)+2/11)/(1/12*exp(1)-3/4) 1771185819452032 k001 Champernowne real with 87*n+1684 1771185822199143 a007 Real Root Of 39*x^4+669*x^3-355*x^2+553*x+241 1771185825360389 h001 (-12*exp(1)+7)/(-9*exp(1)+10) 1771185832703188 a005 (1/sin(83/175*Pi))^175 1771185835088496 m006 (3/4*Pi^2+5)/(3/4*Pi^2-2/5) 1771185835088496 m008 (3/4*Pi^2+5)/(3/4*Pi^2-2/5) 1771185840461558 r009 Im(z^3+c),c=-11/26+1/21*I,n=36 1771185850841887 a003 sin(Pi*27/101)/cos(Pi*38/105) 1771185851008367 m009 (1/2*Pi^2-3/5)/(5/2*Pi^2-1/5) 1771185851731558 r005 Im(z^2+c),c=-55/58+9/53*I,n=38 1771185853166671 m004 E^(Sqrt[5]*Pi)+20/Pi+25*Pi+Cosh[Sqrt[5]*Pi] 1771185856258838 r005 Re(z^2+c),c=-35/27+7/20*I,n=6 1771185856394941 p003 LerchPhi(1/10,2,439/180) 1771185868116196 l006 ln(532/3127) 1771185872255536 m001 (Ei(1,1)+Cahen*DuboisRaymond)/DuboisRaymond 1771185885362986 a001 521/1134903170*610^(4/19) 1771185889615238 r009 Im(z^3+c),c=-17/32+29/47*I,n=9 1771185892099963 m004 -3/2-25*Sqrt[5]*Pi+Csch[Sqrt[5]*Pi] 1771185892114040 m004 -3/2+2/E^(Sqrt[5]*Pi)-25*Sqrt[5]*Pi 1771185892128117 m004 -3/2-25*Sqrt[5]*Pi+Sech[Sqrt[5]*Pi] 1771185897141834 r005 Im(z^2+c),c=-25/114+43/56*I,n=30 1771185897226889 r005 Re(z^2+c),c=-25/118+39/59*I,n=15 1771185898917138 a007 Real Root Of -266*x^4-292*x^3+494*x^2-41*x-627 1771185901733203 r005 Re(z^2+c),c=39/118+14/51*I,n=14 1771185902752772 a008 Real Root of (3+11*x-16*x^2-12*x^3) 1771185903332112 a007 Real Root Of 147*x^4-452*x^3-868*x^2+716*x+33 1771185910841123 r002 5th iterates of z^2 + 1771185916007956 a007 Real Root Of 458*x^4+849*x^3+746*x^2+685*x-917 1771185919472035 k001 Champernowne real with 88*n+1683 1771185920760594 m005 (1/3*exp(1)-3/8)/(1/2*5^(1/2)-9/11) 1771185928678716 m001 (3^(1/2))^(3^(1/3))/(gamma(2)^(3^(1/3))) 1771185936188902 m001 exp(1)^(2^(1/2))*FransenRobinson^(2^(1/2)) 1771185937035769 r005 Re(z^2+c),c=-3/20+37/54*I,n=61 1771185937205381 m001 BesselI(0,2)-BesselK(1,1)^MertensB3 1771185966529042 r002 3th iterates of z^2 + 1771185971048877 m001 (sin(1/5*Pi)-cos(1/5*Pi))/(Trott+ZetaQ(4)) 1771185986850091 r005 Re(z^2+c),c=-23/62+24/37*I,n=46 1771185990860393 r005 Im(z^2+c),c=-95/122+4/49*I,n=17 1771185992177034 m001 (Lehmer-OrthogonalArrays)/(Ei(1)+Khinchin) 1771185993945178 m005 (1/2*3^(1/2)-2/5)/(5/36+1/18*5^(1/2)) 1771185996977199 m001 (MadelungNaCl+Magata)/(Conway+ErdosBorwein) 1771186003646818 p003 LerchPhi(1/10,1,125/213) 1771186007586054 a003 cos(Pi*1/52)+cos(Pi*7/32) 1771186010457581 a001 199/2178309*196418^(9/37) 1771186015638215 m005 (1/2*gamma-2/9)/(3/11*Catalan+1/8) 1771186016370689 m001 cos(1)*exp(GAMMA(23/24))*sinh(1) 1771186019492038 k001 Champernowne real with 89*n+1682 1771186020187475 r002 49th iterates of z^2 + 1771186020641628 m005 (-5/44+1/4*5^(1/2))/(-57/20+3/20*5^(1/2)) 1771186023573363 m001 (ln(2)-GAMMA(17/24))/(Artin-PolyaRandomWalk3D) 1771186025268670 m005 (1/3*exp(1)+1/8)/(1/12*2^(1/2)-7/10) 1771186027310989 a001 2/9*(1/2*5^(1/2)+1/2)^17*18^(5/18) 1771186035087973 s002 sum(A201401[n]/((pi^n+1)/n),n=1..infinity) 1771186036792741 a003 cos(Pi*21/103)+sin(Pi*8/19) 1771186039744630 h001 (1/5*exp(2)+3/5)/(1/8*exp(1)+5/6) 1771186043305445 a008 Real Root of x^2-31371 1771186049781229 m001 (GAMMA(5/6)-exp(1))/(CopelandErdos+Robbin) 1771186051430674 l006 ln(3308/3949) 1771186063516378 m001 sqrt(1+sqrt(3))*exp(exp(1))/sqrt(2) 1771186067819899 r009 Re(z^3+c),c=-7/23+26/45*I,n=64 1771186071841528 r005 Re(z^2+c),c=-3/38+21/43*I,n=28 1771186076748324 a003 cos(Pi*3/22)+sin(Pi*39/118) 1771186096547977 a007 Real Root Of -74*x^4+172*x^3-8*x^2-935*x+53 1771186104149084 m001 exp(ArtinRank2)*Backhouse/GAMMA(17/24)^2 1771186105276501 r005 Im(z^2+c),c=-95/98+11/62*I,n=43 1771186111340663 k008 concat of cont frac of 1771186111480935 m001 (Cahen+FeigenbaumAlpha)/(KomornikLoreti-Trott) 1771186112181122 k008 concat of cont frac of 1771186114730602 m001 ln(DuboisRaymond)*Champernowne^2*Rabbit 1771186116984127 l006 ln(1285/7553) 1771186119512041 k001 Champernowne real with 90*n+1681 1771186123351745 r005 Im(z^2+c),c=-20/27+5/54*I,n=13 1771186127035886 a007 Real Root Of -597*x^4-861*x^3-488*x^2-952*x+936 1771186140225240 m004 -5/4+25*Sqrt[5]*Pi+3*Tan[Sqrt[5]*Pi] 1771186142803851 a007 Real Root Of -989*x^4-934*x^3+929*x^2-607*x+554 1771186143892068 r005 Re(z^2+c),c=-2/13+19/60*I,n=14 1771186144876211 a007 Real Root Of -199*x^4+99*x^3+711*x^2+293*x+797 1771186158110225 m001 1/cosh(1)^2/HardHexagonsEntropy*exp(sqrt(Pi)) 1771186165174514 m001 (KhinchinLevy+Trott)/(sin(1)+Zeta(1,-1)) 1771186172240473 r005 Im(z^2+c),c=-33/62+19/59*I,n=41 1771186177347381 a003 sin(Pi*2/75)/sin(Pi*13/83) 1771186179225599 m001 ln(PrimesInBinary)/Paris/Rabbit^2 1771186181192382 m001 GAMMA(7/12)*GlaisherKinkelin/exp(Zeta(3))^2 1771186191295526 m001 GaussAGM(1,1/sqrt(2))/(GAMMA(11/12)-gamma) 1771186195187930 a007 Real Root Of -244*x^4-201*x^3-16*x^2-338*x+736 1771186200454676 r002 53th iterates of z^2 + 1771186207472714 s002 sum(A268061[n]/((exp(n)+1)*n),n=1..infinity) 1771186213117310 r005 Im(z^2+c),c=-71/98+6/25*I,n=32 1771186213784576 a001 3/24476*7^(7/37) 1771186214036818 m001 gamma^MasserGramainDelta+OrthogonalArrays 1771186219532044 k001 Champernowne real with 91*n+1680 1771186228091787 r002 12th iterates of z^2 + 1771186245193697 r002 28th iterates of z^2 + 1771186252469979 g006 Psi(1,3/4)+1/2*Pi^2-Psi(1,6/7)-Psi(1,3/5) 1771186254978313 a001 7/75025*233^(27/50) 1771186271902383 a007 Real Root Of -551*x^4-771*x^3-399*x^2-842*x+899 1771186272580697 a007 Real Root Of 904*x^4+968*x^3-882*x^2+100*x-574 1771186280898498 r005 Re(z^2+c),c=-13/40+35/59*I,n=30 1771186281843866 a007 Real Root Of 389*x^4-337*x^3+40*x^2-302*x-57 1771186282686047 m004 15*Pi+(25*Sqrt[5]*Pi*Csc[Sqrt[5]*Pi])/2 1771186283651533 m005 (25/36+1/4*5^(1/2))/(10/11*Catalan-1/8) 1771186292811101 l006 ln(753/4426) 1771186302427757 r005 Re(z^2+c),c=-16/19+4/57*I,n=28 1771186305943409 m001 1/ln(Paris)^2/Backhouse*Salem^2 1771186318864146 a007 Real Root Of -41*x^4+564*x^3+661*x^2-504*x+571 1771186319552047 k001 Champernowne real with 92*n+1679 1771186326586254 a007 Real Root Of -318*x^4-15*x^3+725*x^2-499*x-112 1771186330661692 a003 cos(Pi*5/73)+sin(Pi*26/89) 1771186330848276 a001 161/1762289*17711^(7/13) 1771186331456388 a001 322/2971215073*4807526976^(7/13) 1771186331456388 a001 161/43133785636*2504730781961^(7/13) 1771186331456390 a001 46/14619165*9227465^(7/13) 1771186334377696 p003 LerchPhi(1/3,5,67/119) 1771186335041313 m001 (-ZetaP(2)+ZetaQ(2))/(3^(1/2)+polylog(4,1/2)) 1771186347018649 s002 sum(A165043[n]/(n^2*pi^n-1),n=1..infinity) 1771186348500962 m005 (1/2*Pi+4/11)/(1/11*5^(1/2)+8/9) 1771186358965300 a007 Real Root Of 452*x^4+87*x^3-934*x^2+241*x-608 1771186362599897 k002 Champernowne real with 61/2*n^2-75/2*n+24 1771186371784022 m001 Paris^2*ln(FransenRobinson)^2/BesselJ(0,1)^2 1771186372153166 m001 LambertW(1)*GAMMA(7/12)^FeigenbaumD 1771186373418554 a001 9/2*(1/2*5^(1/2)+1/2)^2*4^(5/17) 1771186374544864 h001 (1/8*exp(2)+10/11)/(1/8*exp(2)+1/9) 1771186377894075 h005 exp(sin(Pi*6/31)/sin(Pi*21/43)) 1771186381512312 r002 46th iterates of z^2 + 1771186385305591 a007 Real Root Of -580*x^4-979*x^3-358*x^2-278*x+899 1771186402220087 m005 (1/3*Pi+1/2)/(5/11*5^(1/2)-1/7) 1771186410448605 a007 Real Root Of -347*x^4-168*x^3+569*x^2-837*x-786 1771186419572050 k001 Champernowne real with 93*n+1678 1771186422661732 a007 Real Root Of -45*x^4-817*x^3-327*x^2+523*x+907 1771186422740607 a007 Real Root Of -624*x^4-342*x^3+835*x^2-768*x+261 1771186424710323 a001 1/2576*17711^(9/58) 1771186426771090 a007 Real Root Of 353*x^4-90*x^3-864*x^2+325*x-688 1771186429401165 r005 Re(z^2+c),c=1/74+29/55*I,n=12 1771186430733492 a007 Real Root Of 28*x^4-655*x^3+958*x^2-199*x+711 1771186431866104 a001 305/682*18^(10/21) 1771186438108760 a007 Real Root Of 266*x^4+355*x^3+63*x^2+634*x+280 1771186438996943 r005 Re(z^2+c),c=5/56+15/58*I,n=24 1771186439865067 m001 1/Lehmer/ln(MertensB1)*KhintchineLevy^2 1771186440136489 m001 GAMMA(5/6)^2*BesselK(1,1)^2/ln(sinh(1))^2 1771186440677966 q001 209/118 1771186447835799 m001 Backhouse^(GaussAGM*MasserGramainDelta) 1771186451665636 l006 ln(6327/7553) 1771186451843178 a007 Real Root Of -230*x^3+233*x^2+249*x+106 1771186454573413 a007 Real Root Of 272*x^4+226*x^3-286*x^2+739*x+785 1771186463067183 m005 (1/2*Zeta(3)+11/12)/(4/11*2^(1/2)-3/7) 1771186464548452 a007 Real Root Of -490*x^4-591*x^3+761*x^2+879*x+708 1771186470155931 m001 RenyiParking^2*MinimumGamma/exp(GAMMA(7/12)) 1771186471843404 a007 Real Root Of -859*x^4-820*x^3+585*x^2-794*x+656 1771186472190980 r005 Re(z^2+c),c=-3/20+33/50*I,n=60 1771186480543933 r005 Re(z^2+c),c=-5/24+1/59*I,n=12 1771186484372163 r002 10th iterates of z^2 + 1771186486493401 a005 (1/cos(52/215*Pi))^102 1771186495893567 a007 Real Root Of 161*x^4-57*x^3-839*x^2-40*x+660 1771186495939317 m001 (Paris-Sarnak)/(GAMMA(23/24)+FeigenbaumAlpha) 1771186496415755 r005 Im(z^2+c),c=-1/28+43/56*I,n=18 1771186499412586 r005 Im(z^2+c),c=-43/74+22/59*I,n=48 1771186500081401 m001 MasserGramainDelta/(DuboisRaymond+GaussAGM) 1771186504220839 a007 Real Root Of 56*x^4+960*x^3-590*x^2-494*x-712 1771186506614755 m001 1/TwinPrimes*KhintchineLevy*ln(GAMMA(1/3)) 1771186506845189 a001 13/1364*28143753123^(16/23) 1771186506845189 a001 13/1364*228826127^(20/23) 1771186507650362 r002 39th iterates of z^2 + 1771186511275910 r005 Im(z^2+c),c=13/58+5/59*I,n=33 1771186515267249 m001 (FeigenbaumMu+Weierstrass)/(sin(1)+3^(1/3)) 1771186518694122 a007 Real Root Of -192*x^4+214*x^3+376*x^2-546*x+932 1771186519592053 k001 Champernowne real with 94*n+1677 1771186523154030 a007 Real Root Of -512*x^4-847*x^3+333*x^2+454*x+92 1771186524779905 l006 ln(974/5725) 1771186526325220 r009 Im(z^3+c),c=-41/98+3/56*I,n=18 1771186527222216 m001 (KhinchinLevy+Salem)/(Thue+Weierstrass) 1771186527759335 r005 Im(z^2+c),c=13/58+5/59*I,n=32 1771186529557566 a007 Real Root Of 493*x^4+562*x^3-159*x^2+794*x+176 1771186533763015 a007 Real Root Of -508*x^4-845*x^3+171*x^2+43*x-156 1771186537095923 m001 (polylog(4,1/2)*Porter+Tribonacci)/Porter 1771186542446031 m001 (-ZetaP(3)+ZetaQ(4))/(Psi(1,1/3)-arctan(1/3)) 1771186544522776 r005 Im(z^2+c),c=-19/102+15/22*I,n=30 1771186554129960 r005 Re(z^2+c),c=-49/44+3/16*I,n=10 1771186558114711 r005 Re(z^2+c),c=-1/7+17/49*I,n=28 1771186560056043 r005 Re(z^2+c),c=-51/98+49/64*I,n=3 1771186570774967 r002 12th iterates of z^2 + 1771186578176681 a005 (1/cos(30/179*Pi))^352 1771186583579009 r005 Im(z^2+c),c=-11/14+24/235*I,n=40 1771186589934191 r005 Im(z^2+c),c=-29/70+13/44*I,n=46 1771186600043383 a007 Real Root Of 44*x^4+778*x^3-34*x^2-170*x+309 1771186607588087 r005 Im(z^2+c),c=-23/56+18/61*I,n=23 1771186613903100 a003 sin(Pi*4/79)-sin(Pi*11/101) 1771186615519477 p001 sum(1/(306*n+53)/n/(16^n),n=1..infinity) 1771186617538185 r005 Im(z^2+c),c=13/58+5/59*I,n=34 1771186619214042 m001 1/exp(MadelungNaCl)*Zeta(7)^2 1771186619612056 k001 Champernowne real with 95*n+1676 1771186624907150 a007 Real Root Of 246*x^4-68*x^3-859*x^2-446*x-894 1771186626303276 r002 6th iterates of z^2 + 1771186627330309 a007 Real Root Of 643*x^4+877*x^3-411*x^2+447*x+626 1771186631966215 m001 BesselJ(1,1)/exp(Riemann3rdZero)^2*Zeta(1/2)^2 1771186640262675 a007 Real Root Of -589*x^4-284*x^3+757*x^2-757*x+503 1771186643871164 p001 sum(1/(197*n+57)/(24^n),n=0..infinity) 1771186646962476 m001 (sin(1)+arctan(1/2))/(TwinPrimes+ZetaP(4)) 1771186647422070 m008 (4/5*Pi+2)/(5/6*Pi^5-1/5) 1771186648075740 r005 Re(z^2+c),c=-3/82+9/16*I,n=64 1771186651119263 r005 Re(z^2+c),c=-17/110+51/56*I,n=9 1771186670949341 l006 ln(1195/7024) 1771186675512683 r002 18th iterates of z^2 + 1771186677672296 m005 (1/2*gamma+2)/(9/11*3^(1/2)-1/8) 1771186677892417 m001 GAMMA(1/3)/exp(FeigenbaumAlpha)^2*Pi^2 1771186684350267 a007 Real Root Of -498*x^4-23*x^3+958*x^2-490*x+900 1771186686892619 a001 322/13*144^(19/48) 1771186693620135 g002 Psi(1/10)+Psi(3/8)+Psi(1/5)-Psi(9/10) 1771186704442968 a007 Real Root Of 647*x^4+602*x^3-176*x^2+947*x-793 1771186704831867 r005 Im(z^2+c),c=-45/56+5/47*I,n=23 1771186707006925 r005 Re(z^2+c),c=-131/102+9/38*I,n=7 1771186707191918 r005 Re(z^2+c),c=37/110+11/63*I,n=12 1771186710641227 a007 Real Root Of -250*x^4-784*x^3-448*x^2+994*x+186 1771186719632059 k001 Champernowne real with 96*n+1675 1771186722961884 r009 Re(z^3+c),c=-27/52+29/62*I,n=57 1771186724234675 r005 Re(z^2+c),c=29/66+27/64*I,n=3 1771186731604372 h001 (7/8*exp(1)+2/5)/(1/5*exp(2)+1/11) 1771186733631169 a007 Real Root Of 60*x^4+204*x^3-10*x^2-993*x+175 1771186734928176 r005 Im(z^2+c),c=13/58+5/59*I,n=35 1771186736316658 m005 (1/2*gamma+2/11)/(10/11*Pi-1/5) 1771186742698978 m004 20/Pi+25*Pi+3*Cosh[Sqrt[5]*Pi] 1771186744461181 a007 Real Root Of -722*x^4-540*x^3+682*x^2-828*x+499 1771186751442916 r005 Im(z^2+c),c=-29/56+1/28*I,n=14 1771186758089988 v002 sum(1/(3^n+(13/2*n^2-19/2*n+9)),n=1..infinity) 1771186761102614 r005 Im(z^2+c),c=-41/98+5/18*I,n=10 1771186761218381 r009 Im(z^3+c),c=-7/48+25/28*I,n=14 1771186767526837 r002 53th iterates of z^2 + 1771186771492430 l006 ln(1416/8323) 1771186775141415 m001 (Grothendieck+MasserGramainDelta)/(Salem+Thue) 1771186780098831 m002 6/Pi^3+5*Csch[Pi]+Log[Pi] 1771186780265653 a007 Real Root Of -123*x^4+886*x^3+770*x^2+610*x-137 1771186789984565 r005 Im(z^2+c),c=-17/26+11/78*I,n=14 1771186791138456 r005 Re(z^2+c),c=-7/48+20/59*I,n=29 1771186798828528 r005 Im(z^2+c),c=-33/26+31/126*I,n=8 1771186800779972 m009 (2/3*Psi(1,1/3)+1)/(1/4*Psi(1,3/4)-5) 1771186804919761 m001 (BesselJ(1,1)-GAMMA(5/6))/(Conway+Sierpinski) 1771186815136257 r005 Im(z^2+c),c=13/58+5/59*I,n=36 1771186818186264 r005 Re(z^2+c),c=-6/29+2/37*I,n=15 1771186818784595 m001 (FellerTornier-Gompertz)/(Robbin-TwinPrimes) 1771186819652062 k001 Champernowne real with 97*n+1674 1771186826985882 r005 Im(z^2+c),c=13/58+5/59*I,n=43 1771186827447145 r005 Im(z^2+c),c=13/58+5/59*I,n=44 1771186828143189 r005 Im(z^2+c),c=13/58+5/59*I,n=42 1771186828388276 r005 Im(z^2+c),c=13/58+5/59*I,n=45 1771186829186592 r005 Im(z^2+c),c=13/58+5/59*I,n=46 1771186829565831 r005 Im(z^2+c),c=13/58+5/59*I,n=54 1771186829567594 r005 Im(z^2+c),c=13/58+5/59*I,n=53 1771186829572022 r005 Im(z^2+c),c=13/58+5/59*I,n=55 1771186829579180 r005 Im(z^2+c),c=13/58+5/59*I,n=56 1771186829584185 r005 Im(z^2+c),c=13/58+5/59*I,n=57 1771186829585119 r005 Im(z^2+c),c=13/58+5/59*I,n=64 1771186829585197 r005 Im(z^2+c),c=13/58+5/59*I,n=63 1771186829585464 r005 Im(z^2+c),c=13/58+5/59*I,n=62 1771186829585967 r005 Im(z^2+c),c=13/58+5/59*I,n=61 1771186829586561 r005 Im(z^2+c),c=13/58+5/59*I,n=58 1771186829586615 r005 Im(z^2+c),c=13/58+5/59*I,n=60 1771186829587049 r005 Im(z^2+c),c=13/58+5/59*I,n=59 1771186829587793 r005 Im(z^2+c),c=13/58+5/59*I,n=52 1771186829636367 r005 Im(z^2+c),c=13/58+5/59*I,n=51 1771186829645205 r005 Im(z^2+c),c=13/58+5/59*I,n=47 1771186829713014 r005 Im(z^2+c),c=13/58+5/59*I,n=50 1771186829791949 r005 Im(z^2+c),c=13/58+5/59*I,n=49 1771186829806254 r005 Im(z^2+c),c=13/58+5/59*I,n=48 1771186832340659 r005 Im(z^2+c),c=13/58+5/59*I,n=41 1771186835347909 s002 sum(A113110[n]/(pi^n),n=1..infinity) 1771186838355870 r005 Im(z^2+c),c=13/58+5/59*I,n=31 1771186838463504 r005 Re(z^2+c),c=39/98+11/31*I,n=3 1771186840444024 r005 Im(z^2+c),c=13/58+5/59*I,n=40 1771186843785796 a001 55/29*1364^(13/42) 1771186843978267 a007 Real Root Of -459*x^4+705*x^3+541*x^2+596*x-126 1771186844888264 l006 ln(1637/9622) 1771186845229755 a007 Real Root Of 284*x^4-224*x^3-910*x^2+228*x-781 1771186846254292 m001 (-Lehmer+ZetaQ(2))/(2^(1/3)+Grothendieck) 1771186851148605 r005 Im(z^2+c),c=13/58+5/59*I,n=39 1771186852138249 r005 Im(z^2+c),c=13/58+5/59*I,n=37 1771186858852615 r005 Im(z^2+c),c=13/58+5/59*I,n=38 1771186862881015 m005 (1/2*2^(1/2)-1/12)/(5^(1/2)+9/7) 1771186865434256 r002 54th iterates of z^2 + 1771186867136670 r005 Re(z^2+c),c=-5/32+19/62*I,n=8 1771186867414585 m008 (3*Pi^4+3/4)/(5*Pi+5/6) 1771186870459467 a007 Real Root Of 39*x^4-218*x^3+68*x^2+457*x-999 1771186871997730 a001 196418/29*3^(7/8) 1771186873491758 m001 (CopelandErdos-Trott)/(BesselI(1,1)+CareFree) 1771186874309231 r002 19th iterates of z^2 + 1771186881972237 s002 sum(A045077[n]/(exp(n)-1),n=1..infinity) 1771186888259213 m001 (BesselI(1,1)-Landau)^GAMMA(11/12) 1771186889006349 r005 Re(z^2+c),c=-17/78+35/54*I,n=43 1771186889104517 s001 sum(exp(-2*Pi/3)^n*A115938[n],n=1..infinity) 1771186890213897 l006 ln(3019/3604) 1771186902265888 r005 Im(z^2+c),c=-9/10+35/232*I,n=61 1771186908912821 m001 (Pi-BesselK(0,1))/(GAMMA(3/4)+Riemann1stZero) 1771186916464236 m001 (HardyLittlewoodC4+ZetaQ(2))/(Chi(1)+Zeta(3)) 1771186918608886 a003 sin(Pi*5/106)/cos(Pi*19/102) 1771186919029999 a007 Real Root Of -184*x^4+28*x^3+23*x^2-991*x+139 1771186919322185 m001 (cos(1/5*Pi)+3^(1/3))^CareFree 1771186919672065 k001 Champernowne real with 98*n+1673 1771186925103285 a007 Real Root Of -570*x^4-706*x^3+47*x^2-453*x+737 1771186926135122 a005 (1/cos(4/181*Pi))^237 1771186926190634 r002 35th iterates of z^2 + 1771186928372904 a003 cos(Pi*23/105)+sin(Pi*46/95) 1771186929724438 r005 Im(z^2+c),c=-79/126+11/35*I,n=52 1771186930639509 r005 Re(z^2+c),c=9/118+11/47*I,n=22 1771186935587242 a003 cos(Pi*16/73)+sin(Pi*52/107) 1771186940142771 r009 Re(z^3+c),c=-6/23+25/62*I,n=5 1771186942445657 p001 sum(1/(582*n+569)/(64^n),n=0..infinity) 1771186942481476 b008 1+6^(5*EulerGamma) 1771186944394673 r005 Im(z^2+c),c=35/82+9/29*I,n=5 1771186949490928 a001 1364/2178309*46368^(3/31) 1771186962640722 m001 (Zeta(1,-1)+LandauRamanujan)/(5^(1/2)+ln(Pi)) 1771186964345641 m001 (2^(1/2)+sin(1))/(-Bloch+KhinchinHarmonic) 1771186965837225 a007 Real Root Of -103*x^4+254*x^3+639*x^2-549*x-552 1771186966246413 m005 (1/2*5^(1/2)-1/8)/(3/4*2^(1/2)-1/2) 1771186974861302 a007 Real Root Of 28*x^4-162*x^3+427*x^2-848*x+787 1771186985397209 a007 Real Root Of 734*x^4+778*x^3-771*x^2+284*x+21 1771186986173618 r008 a(0)=2,K{-n^6,22+30*n-32*n^2-16*n^3} 1771186986424768 a001 89*18^(5/21) 1771186988504191 r005 Re(z^2+c),c=-71/52+2/55*I,n=48 1771186990561269 m001 (Cahen+Conway)/(FeigenbaumDelta-FeigenbaumMu) 1771186990812699 m001 ln(sin(1))/TwinPrimes^2/sqrt(5) 1771186992189838 m001 HardHexagonsEntropy^FellerTornier*BesselI(1,2) 1771186995652946 m008 (1/3*Pi^5+1/4)/(3/5*Pi^6+1/2) 1771186997822056 m006 (1/4*exp(Pi)-5/6)/(1/4/Pi+1/5) 1771186999293410 a007 Real Root Of -117*x^4+870*x^3-499*x^2+612*x+129 1771187002758270 a007 Real Root Of 241*x^4+191*x^3+381*x^2+932*x-855 1771187003420701 m004 -4+26*Sqrt[5]*Pi-ProductLog[Sqrt[5]*Pi] 1771187007818238 m005 (3/4*2^(1/2)-1/3)/(2/3*Catalan-1/5) 1771187008412034 r002 3th iterates of z^2 + 1771187009785715 r009 Re(z^3+c),c=-1/50+13/60*I,n=5 1771187017411151 m001 (GAMMA(23/24)-Magata)/(GAMMA(2/3)+gamma(2)) 1771187018344078 r005 Re(z^2+c),c=5/22+7/38*I,n=18 1771187019503652 r005 Re(z^2+c),c=-6/29+2/37*I,n=17 1771187019692068 k001 Champernowne real with 99*n+1672 1771187036949506 a007 Real Root Of 35*x^4-277*x^3-474*x^2-291*x-912 1771187039355873 r005 Re(z^2+c),c=-6/29+2/37*I,n=19 1771187040413083 r005 Re(z^2+c),c=-6/29+2/37*I,n=22 1771187040470595 r005 Re(z^2+c),c=-6/29+2/37*I,n=24 1771187040486988 r005 Re(z^2+c),c=-6/29+2/37*I,n=26 1771187040489893 r005 Re(z^2+c),c=-6/29+2/37*I,n=28 1771187040490300 r005 Re(z^2+c),c=-6/29+2/37*I,n=30 1771187040490346 r005 Re(z^2+c),c=-6/29+2/37*I,n=32 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=34 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=35 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=37 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=39 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=41 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=43 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=45 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=47 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=50 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=52 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=54 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=56 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=58 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=60 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=62 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=63 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=64 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=61 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=59 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=57 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=55 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=53 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=51 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=49 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=48 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=46 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=44 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=42 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=40 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=38 1771187040490350 r005 Re(z^2+c),c=-6/29+2/37*I,n=36 1771187040490351 r005 Re(z^2+c),c=-6/29+2/37*I,n=33 1771187040490366 r005 Re(z^2+c),c=-6/29+2/37*I,n=31 1771187040490507 r005 Re(z^2+c),c=-6/29+2/37*I,n=29 1771187040491622 r005 Re(z^2+c),c=-6/29+2/37*I,n=27 1771187040498774 r005 Re(z^2+c),c=-6/29+2/37*I,n=25 1771187040532616 r005 Re(z^2+c),c=-6/29+2/37*I,n=23 1771187040567936 r005 Re(z^2+c),c=-6/29+2/37*I,n=20 1771187040584972 r005 Re(z^2+c),c=-6/29+2/37*I,n=21 1771187045988398 a007 Real Root Of -880*x^4-859*x^3+692*x^2-832*x+243 1771187045997559 r005 Re(z^2+c),c=-6/29+2/37*I,n=18 1771187046943292 r009 Re(z^3+c),c=-7/60+45/59*I,n=5 1771187048420413 r005 Im(z^2+c),c=-17/30+22/69*I,n=44 1771187050043449 a003 cos(Pi*6/77)+cos(Pi*19/93) 1771187057468079 r002 5i'th iterates of 2*x/(1-x^2) of 1771187065493621 m001 (Zeta(1,-1)+gamma(3))/(RenyiParking+ZetaP(3)) 1771187066692498 r009 Im(z^3+c),c=-13/86+55/61*I,n=12 1771187067166572 h001 (-8*exp(2/3)+3)/(-3*exp(-1)-6) 1771187070337859 a007 Real Root Of -477*x^4-851*x^3+72*x^2+319*x+305 1771187071295609 a007 Real Root Of 48*x^4+806*x^3-823*x^2-716*x+77 1771187104208473 r005 Re(z^2+c),c=-5/102+20/37*I,n=59 1771187107927701 m001 ln(Kolakoski)^2/Artin^2/MinimumGamma^2 1771187111486554 r005 Re(z^2+c),c=-6/29+2/37*I,n=16 1771187112371638 m001 (OneNinth+Paris)/(GAMMA(19/24)-Shi(1)) 1771187115604801 m002 4-Cosh[Pi]+3*Pi^4*Csch[Pi] 1771187119712071 k001 Champernowne real with 100*n+1671 1771187120555398 r005 Re(z^2+c),c=-5/32+13/42*I,n=24 1771187121117311 k008 concat of cont frac of 1771187124922987 l006 ln(2854/2905) 1771187128783868 m001 GAMMA(7/12)^Sierpinski/(GAMMA(3/4)^Sierpinski) 1771187128851735 m001 (Pi-Si(Pi))/(2/3*Pi*3^(1/2)/GAMMA(2/3)-Magata) 1771187136080171 g006 -Psi(1,5/11)-2*Psi(1,5/9)-Psi(1,3/5) 1771187138835714 m005 (1/2*5^(1/2)-1)/(4/11*Catalan+1/3) 1771187140248219 a001 55/29*15127^(13/56) 1771187140422730 m001 ZetaP(2)/(GAMMA(13/24)^Ei(1)) 1771187153674099 b008 ArcCsch[2*(-1/3+Pi)] 1771187157400810 m005 (1/2*gamma+5/6)/(1/12*3^(1/2)-7/9) 1771187166590458 r005 Re(z^2+c),c=-1/90+22/45*I,n=3 1771187174421670 r002 22th iterates of z^2 + 1771187176559356 r005 Im(z^2+c),c=1/98+8/43*I,n=4 1771187177112812 k006 concat of cont frac of 1771187177936121 r005 Re(z^2+c),c=-1/82+32/53*I,n=32 1771187178824455 h001 (-7*exp(4)+6)/(-4*exp(4)+6) 1771187198950960 a007 Real Root Of 613*x^4-395*x^3-358*x+65 1771187202949256 r005 Re(z^2+c),c=-13/122+23/26*I,n=39 1771187206741844 m001 (-MertensB1+MinimumGamma)/(BesselK(0,1)-ln(3)) 1771187210501010 a007 Real Root Of 438*x^4-843*x^3+401*x^2-380*x-85 1771187212538106 m001 RenyiParking*exp(Champernowne)^2/cos(1) 1771187216450440 a007 Real Root Of 597*x^4+860*x^3+20*x^2+723*x+121 1771187219732074 k001 Champernowne real with 101*n+1670 1771187220902287 a001 2/1346269*233^(1/31) 1771187221712372 r005 Re(z^2+c),c=23/52+15/19*I,n=3 1771187223374703 a007 Real Root Of 301*x^4-746*x^3-242*x^2-500*x+100 1771187223475750 m001 (BesselK(1,1)-FeigenbaumMu)/(Ei(1)-Ei(1,1)) 1771187228100071 a007 Real Root Of 510*x^4+813*x^3-119*x^2+352*x+495 1771187232411460 m001 ln(2)/ln(10)/Conway*ZetaP(4) 1771187238994108 m001 (Catalan+Rabbit)^Salem 1771187240473048 a003 cos(Pi*11/85)-sin(Pi*21/79) 1771187243072831 m005 (1/3*gamma-2/3)/(-19/42+3/14*5^(1/2)) 1771187249640728 a001 377/3010349*199^(29/31) 1771187263869691 m001 Psi(1,1/3)^ln(3)*FeigenbaumKappa^ln(3) 1771187267759148 a007 Real Root Of -656*x^4-887*x^3+835*x^2+568*x-86 1771187287269140 r009 Re(z^3+c),c=-11/60+40/43*I,n=29 1771187289343741 m001 Grothendieck*Paris+HeathBrownMoroz 1771187294056083 m005 (1/2*2^(1/2)+3)/(8/11*3^(1/2)+5/6) 1771187294840931 r002 31th iterates of z^2 + 1771187294840931 r002 31th iterates of z^2 + 1771187295930880 m005 (1/3*2^(1/2)-1/7)/(6*Pi-3/10) 1771187303879254 h001 (2/5*exp(2)+4/5)/(1/6*exp(2)+8/9) 1771187305755419 r002 18th iterates of z^2 + 1771187310279340 r002 61th iterates of z^2 + 1771187315152846 l006 ln(221/1299) 1771187318220764 a003 cos(Pi*1/110)*cos(Pi*43/97) 1771187319752077 k001 Champernowne real with 102*n+1669 1771187320008459 r002 2th iterates of z^2 + 1771187322823434 a007 Real Root Of 951*x^4+952*x^3-775*x^2+755*x-301 1771187332750432 a007 Real Root Of 376*x^4+936*x^3+577*x^2-38*x-377 1771187333583510 a003 cos(Pi*13/62)+sin(Pi*45/103) 1771187338352739 a007 Real Root Of -297*x^4-315*x^3-448*x^2-935*x+922 1771187344487864 m001 1/GAMMA(1/3)*Porter/exp(GAMMA(5/6)) 1771187345756216 a007 Real Root Of -240*x^4+355*x^3+772*x^2-749*x+586 1771187347536528 a007 Real Root Of 60*x^4-325*x^3-68*x^2+979*x-449 1771187350524597 a003 cos(Pi*3/52)+sin(Pi*28/97) 1771187355757763 a007 Real Root Of -849*x^4-838*x^3+648*x^2-567*x+662 1771187359448619 a007 Real Root Of -389*x^4-565*x^3+392*x^2-104*x-725 1771187360283674 r002 3th iterates of z^2 + 1771187362851424 a003 cos(Pi*15/79)+sin(Pi*11/28) 1771187365605907 k002 Champernowne real with 31*n^2-39*n+25 1771187369787572 a007 Real Root Of -375*x^4-156*x^3+268*x^2-743*x+667 1771187372853437 l006 ln(5749/6863) 1771187372853437 p004 log(6863/5749) 1771187373210211 a008 Real Root of x^5-2*x^4+3*x^3-7*x^2+2*x+4 1771187376115999 r005 Im(z^2+c),c=-95/122+1/14*I,n=25 1771187384678700 a007 Real Root Of 517*x^4+688*x^3-618*x^2+129*x+902 1771187384736103 m005 (1/2*2^(1/2)-4)/(3/10*Pi+11/12) 1771187385851400 a007 Real Root Of 467*x^4+566*x^3-116*x^2+690*x+135 1771187386311909 q001 1/564593 1771187405886169 p001 sum((-1)^n/(589*n+469)/(2^n),n=0..infinity) 1771187407687621 m001 (Khinchin+Lehmer)/(FeigenbaumB-FeigenbaumD) 1771187412811244 a001 161/72*75025^(22/37) 1771187416988167 a007 Real Root Of 863*x^4+867*x^3-396*x^2+942*x-765 1771187417142112 k008 concat of cont frac of 1771187419772080 k001 Champernowne real with 103*n+1668 1771187426176848 a001 46368/29*1364^(15/23) 1771187426637904 m001 (2*Pi/GAMMA(5/6)+Kac)/(2^(1/3)+5^(1/2)) 1771187436540132 r005 Im(z^2+c),c=-11/12+16/101*I,n=21 1771187438272510 h001 (2/5*exp(1)+2/11)/(7/8*exp(2)+7/10) 1771187440057720 a007 Real Root Of -500*x^4-551*x^3+326*x^2+50*x+925 1771187441927386 r009 Re(z^3+c),c=-23/122+49/53*I,n=57 1771187447753236 h001 (5/7*exp(2)+1/5)/(7/8*exp(1)+5/7) 1771187447802101 m005 1/6*5^(1/2)/(2*Zeta(3)-3/10) 1771187449407241 r008 a(0)=2,K{-n^6,-12*n^3-55*n^2+71*n} 1771187451035950 r005 Re(z^2+c),c=-19/94+27/34*I,n=58 1771187452630347 r005 Re(z^2+c),c=6/19+13/48*I,n=33 1771187456789709 r002 40th iterates of z^2 + 1771187459132899 a001 1/199*(1/2*5^(1/2)+1/2)^10*3^(23/24) 1771187460286343 m001 (BesselI(0,2)+ZetaQ(4))^ln(2) 1771187466025761 s001 sum(exp(-Pi/3)^n*A016891[n],n=1..infinity) 1771187467992005 m006 (2*exp(2*Pi)-1/2)/(1/5*ln(Pi)-5/6) 1771187474067988 a007 Real Root Of -96*x^4-44*x^3+55*x^2-425*x-225 1771187475226465 a001 1/17*2178309^(51/59) 1771187486389460 m001 (Chi(1)-Shi(1))/(-FeigenbaumC+Lehmer) 1771187486389460 m001 Ei(1,1)/(FeigenbaumC-Lehmer) 1771187491204095 a007 Real Root Of -531*x^4-134*x^3+579*x^2-949*x+984 1771187495259782 r009 Re(z^3+c),c=-27/98+19/39*I,n=20 1771187495794618 r005 Im(z^2+c),c=-30/29+18/49*I,n=7 1771187497807627 r005 Im(z^2+c),c=-11/16+18/91*I,n=39 1771187503495849 a001 2207/2*196418^(5/12) 1771187504205894 r002 53th iterates of z^2 + 1771187504422266 r001 54i'th iterates of 2*x^2-1 of 1771187509178648 m001 exp(GAMMA(3/4))^2*GAMMA(17/24)/sin(1) 1771187514576458 r009 Im(z^3+c),c=-47/110+1/25*I,n=47 1771187515842601 m005 (-17/44+1/4*5^(1/2))/(4/7*2^(1/2)+1/6) 1771187517832473 r002 8th iterates of z^2 + 1771187519792083 k001 Champernowne real with 104*n+1667 1771187523731556 m001 (Bloch-Gompertz)/(ln(2)-gamma(2)) 1771187523862678 m003 4*E^(-1/2-Sqrt[5]/2)+Sinh[1/2+Sqrt[5]/2]^2/6 1771187532134244 a007 Real Root Of -293*x^3+230*x^2-24*x+949 1771187533570316 a001 12238*610^(5/12) 1771187538565334 m001 GAMMA(5/24)^2*Backhouse^2/exp(Pi) 1771187540940468 r005 Im(z^2+c),c=-33/38+9/61*I,n=3 1771187545006825 m005 (1/3*exp(1)-1/4)/(5*gamma+9/11) 1771187551767780 m001 1/exp(Tribonacci)/TreeGrowth2nd^2/arctan(1/2) 1771187561203981 m001 (5^(1/2)-polylog(4,1/2))/(Artin+Gompertz) 1771187567379740 r005 Re(z^2+c),c=21/64+7/32*I,n=12 1771187569779214 r009 Im(z^3+c),c=-73/86+20/31*I,n=2 1771187583646352 r009 Re(z^3+c),c=-27/86+32/53*I,n=37 1771187584646711 r005 Re(z^2+c),c=-7/48+20/59*I,n=27 1771187587088706 a003 sin(Pi*36/115)/cos(Pi*21/61) 1771187587160088 p003 LerchPhi(1/5,6,167/125) 1771187592960698 r005 Re(z^2+c),c=-7/48+20/59*I,n=32 1771187596932704 r005 Im(z^2+c),c=1/19+43/55*I,n=7 1771187601621745 m001 (FeigenbaumD-Riemann1stZero)/(Trott+ZetaQ(2)) 1771187606066498 a001 18/233*34^(4/17) 1771187611952149 r005 Im(z^2+c),c=13/58+5/59*I,n=30 1771187612445454 m006 (1/6/Pi-1/3)/(4/5*ln(Pi)+2/3) 1771187617998626 a007 Real Root Of 193*x^4+129*x^3-29*x^2+172*x-787 1771187619455948 m001 1/2*ArtinRank2/Pi*GAMMA(5/6)*Riemann1stZero 1771187619812086 k001 Champernowne real with 105*n+1666 1771187631250756 m001 (Otter+ZetaP(3))/(Cahen-Kac) 1771187634027675 m001 Ei(1)^MadelungNaCl-GAMMA(17/24) 1771187634923973 a007 Real Root Of 244*x^4-703*x^3-447*x^2-843*x+167 1771187635101516 r005 Im(z^2+c),c=-13/66+11/45*I,n=9 1771187637196480 r002 34th iterates of z^2 + 1771187639515083 m001 (2^(1/3)-ln(5))/(-FeigenbaumD+Rabbit) 1771187641723356 r005 Re(z^2+c),c=-5/56+13/42*I,n=2 1771187647946042 m005 (1/2*Pi-2/11)/(5*3^(1/2)-9/11) 1771187660645316 r005 Re(z^2+c),c=19/50+13/57*I,n=53 1771187675861300 r005 Im(z^2+c),c=-127/126+4/21*I,n=43 1771187677584638 a007 Real Root Of -624*x^4-560*x^3-110*x^2+435*x+78 1771187678182312 h003 exp(Pi*(12+19*12^(2/3))) 1771187679120638 m001 BesselJ(1,1)*Totient-ThueMorse 1771187680405628 a007 Real Root Of -532*x^4-632*x^3+894*x^2+688*x+138 1771187687284993 a007 Real Root Of 23*x^4-166*x^3-614*x^2-789*x-620 1771187689683733 m001 Pi-1+LambertW(1)+Zeta(1,2) 1771187691990160 a005 (1/sin(37/94*Pi))^900 1771187693680020 a007 Real Root Of -105*x^4+508*x^3-746*x^2+128*x+49 1771187696509327 r005 Re(z^2+c),c=-6/29+2/37*I,n=14 1771187698108839 s001 sum(exp(-Pi/2)^n*A097679[n],n=1..infinity) 1771187698244557 p004 log(23623/4019) 1771187699628342 b008 Sqrt[Pi]*JacobiND[2,-4] 1771187704584062 m001 1/Catalan^2/ln(TreeGrowth2nd)^2*Zeta(9) 1771187714691032 m001 1/3*ln(gamma)^BesselI(0,2)*3^(2/3) 1771187714691032 m001 log(gamma)^BesselI(0,2)/(3^(1/3)) 1771187716059304 r005 Im(z^2+c),c=-39/44+9/62*I,n=41 1771187719832089 k001 Champernowne real with 106*n+1665 1771187733659689 r005 Im(z^2+c),c=-33/86+13/45*I,n=30 1771187737458528 a007 Real Root Of 596*x^4+784*x^3+32*x^2+456*x-802 1771187743838058 r002 11th iterates of z^2 + 1771187750053287 a007 Real Root Of 411*x^4-4*x^3-938*x^2+387*x-439 1771187767924712 p004 log(26417/22129) 1771187772650108 h005 exp(cos(Pi*1/56)-sin(Pi*8/57)) 1771187773926842 l006 ln(1678/9863) 1771187779162438 v002 sum(1/(5^n+(5+7*n^2-10*n)),n=1..infinity) 1771187779263163 m001 (-ArtinRank2+Niven)/(Pi^(1/2)-Psi(2,1/3)) 1771187793579744 a007 Real Root Of 316*x^4+101*x^3-735*x^2-39*x-312 1771187799032606 r005 Re(z^2+c),c=-7/48+20/59*I,n=35 1771187808246840 m005 (1/2*Zeta(3)-9/11)/(1/8*Pi+5/6) 1771187812902553 v002 sum(1/(5^n*(25/2*n^2-15/2*n+7)),n=1..infinity) 1771187815398396 a007 Real Root Of 45*x^4+777*x^3-324*x^2+567*x+365 1771187817906448 m001 (MadelungNaCl*ZetaQ(2)+Thue)/ZetaQ(2) 1771187819852092 k001 Champernowne real with 107*n+1664 1771187821583902 b008 17+5*ArcCsch[7] 1771187829781338 r005 Im(z^2+c),c=-25/23+1/5*I,n=15 1771187832750869 a007 Real Root Of 171*x^4-230*x^3-825*x^2+106*x-185 1771187834253387 a007 Real Root Of 256*x^4-295*x^3-x^2-534*x+96 1771187837264124 a007 Real Root Of -466*x^4+373*x^3+443*x^2+928*x+153 1771187843514368 l006 ln(1457/8564) 1771187847823842 r005 Re(z^2+c),c=-7/48+20/59*I,n=38 1771187848582303 m001 Si(Pi)^2/ln(FibonacciFactorial)^2/arctan(1/2) 1771187851986778 m005 (1/3*Zeta(3)+1/10)/(3/10*gamma-3) 1771187858512751 r005 Re(z^2+c),c=-7/48+20/59*I,n=41 1771187860660426 r005 Re(z^2+c),c=-7/48+20/59*I,n=44 1771187860686788 r005 Re(z^2+c),c=-7/48+20/59*I,n=43 1771187860762544 r005 Re(z^2+c),c=-7/48+20/59*I,n=40 1771187860936837 r005 Re(z^2+c),c=-7/48+20/59*I,n=46 1771187861044836 r005 Re(z^2+c),c=-7/48+20/59*I,n=47 1771187861051835 r005 Re(z^2+c),c=-7/48+20/59*I,n=49 1771187861089566 r005 Re(z^2+c),c=-7/48+20/59*I,n=52 1771187861100192 r005 Re(z^2+c),c=-7/48+20/59*I,n=55 1771187861101166 r005 Re(z^2+c),c=-7/48+20/59*I,n=50 1771187861102900 r005 Re(z^2+c),c=-7/48+20/59*I,n=58 1771187861103537 r005 Re(z^2+c),c=-7/48+20/59*I,n=61 1771187861103675 r005 Re(z^2+c),c=-7/48+20/59*I,n=64 1771187861103702 r005 Re(z^2+c),c=-7/48+20/59*I,n=63 1771187861103765 r005 Re(z^2+c),c=-7/48+20/59*I,n=60 1771187861103808 r005 Re(z^2+c),c=-7/48+20/59*I,n=62 1771187861104056 r005 Re(z^2+c),c=-7/48+20/59*I,n=59 1771187861104305 r005 Re(z^2+c),c=-7/48+20/59*I,n=57 1771187861104733 r005 Re(z^2+c),c=-7/48+20/59*I,n=56 1771187861105712 r005 Re(z^2+c),c=-7/48+20/59*I,n=53 1771187861107607 r005 Re(z^2+c),c=-7/48+20/59*I,n=54 1771187861125019 r005 Re(z^2+c),c=-7/48+20/59*I,n=51 1771187861208179 r005 Re(z^2+c),c=-7/48+20/59*I,n=48 1771187861574570 r005 Re(z^2+c),c=-7/48+20/59*I,n=45 1771187863067652 r005 Re(z^2+c),c=-7/48+20/59*I,n=42 1771187866094228 r005 Re(z^2+c),c=-7/48+20/59*I,n=37 1771187868503993 m001 (FeigenbaumAlpha-Paris)/(ln(3)+sin(1/12*Pi)) 1771187868635177 r005 Re(z^2+c),c=-7/48+20/59*I,n=39 1771187875041518 m001 UniversalParabolic^HardyLittlewoodC5*2^(1/3) 1771187882239484 a008 Real Root of (-6+6*x-x^2-3*x^3-2*x^4+2*x^5) 1771187883504813 a001 1364/233*2584^(23/53) 1771187883799014 a003 sin(Pi*7/100)*sin(Pi*19/63) 1771187887011551 r005 Re(z^2+c),c=-7/48+20/59*I,n=36 1771187891589344 r005 Re(z^2+c),c=-13/82+16/23*I,n=43 1771187891981061 r005 Re(z^2+c),c=-15/31+29/53*I,n=43 1771187895686272 m001 Conway/(Kolakoski^MertensB3) 1771187895987089 m001 (Zeta(3)-Zeta(1,-1))/(ErdosBorwein-GaussAGM) 1771187900367310 m009 (1/5*Psi(1,3/4)-4/5)/(16/3*Catalan+2/3*Pi^2+5) 1771187904644815 r005 Re(z^2+c),c=-31/26+9/37*I,n=6 1771187904676091 a007 Real Root Of -48*x^4+271*x^3-66*x^2-217*x-442 1771187906585561 l006 ln(2730/3259) 1771187908870776 a007 Real Root Of 745*x^4+984*x^3-703*x^2-402*x-371 1771187909142780 r005 Re(z^2+c),c=-7/48+20/59*I,n=34 1771187913378914 r009 Re(z^3+c),c=-29/122+15/41*I,n=7 1771187915951278 a007 Real Root Of 346*x^4+74*x^3-945*x^2-347*x-644 1771187918581936 m005 (5/6*2^(1/2)+1/6)/(1/3*gamma-1/5) 1771187919747094 m001 exp(-Pi)/(GAMMA(11/24)^GAMMA(2/3)) 1771187919872095 k001 Champernowne real with 108*n+1663 1771187919927807 a007 Real Root Of 55*x^4-603*x^3-483*x^2+841*x-887 1771187928623338 m001 MertensB3*(BesselI(1,2)-MertensB1) 1771187931867754 s002 sum(A245582[n]/(n*2^n-1),n=1..infinity) 1771187932135250 r005 Re(z^2+c),c=-16/19+5/59*I,n=14 1771187935647299 r005 Re(z^2+c),c=-7/48+20/59*I,n=33 1771187937986747 l006 ln(1236/7265) 1771187939826617 m001 (-GAMMA(5/6)+MertensB2)/(LambertW(1)-ln(3)) 1771187946695753 a001 4181/29*3571^(20/23) 1771187948786879 a007 Real Root Of 444*x^4+779*x^3-385*x^2-124*x+947 1771187949398980 a003 cos(Pi*17/80)+sin(Pi*25/56) 1771187969268368 m001 (ln(Pi)+Backhouse)/(HeathBrownMoroz+Porter) 1771187971449204 r009 Re(z^3+c),c=-29/98+29/52*I,n=24 1771187977577609 m001 (exp(Pi)+Totient*TreeGrowth2nd)/Totient 1771187982453117 r009 Re(z^3+c),c=-35/114+7/12*I,n=38 1771187982928114 a001 13/199*9349^(6/55) 1771187993095195 a007 Real Root Of 195*x^4+308*x^3-468*x^2-470*x+428 1771187994156139 a001 2584/29*7881196^(11/23) 1771187994966301 a001 2584/29*39603^(33/46) 1771187994989577 m001 (gamma-ln(2^(1/2)+1))/(GAMMA(11/12)+Robbin) 1771187995932416 r005 Re(z^2+c),c=-7/48+20/59*I,n=30 1771187998581945 m001 (exp(Pi)+Chi(1))/(-FeigenbaumKappa+ZetaQ(4)) 1771187999872311 r009 Re(z^3+c),c=-17/70+8/21*I,n=14 1771188009174881 a007 Real Root Of -496*x^4-736*x^3+729*x^2+961*x+207 1771188009792549 r005 Im(z^2+c),c=-19/34+19/51*I,n=21 1771188014129172 r005 Im(z^2+c),c=-25/34+13/50*I,n=10 1771188014957725 m005 (1/2*Catalan+4/11)/(2*5^(1/2)+1/6) 1771188016081517 a007 Real Root Of -326*x^4-571*x^3-381*x^2-193*x+889 1771188019132742 m001 polylog(4,1/2)*(exp(1)+CareFree) 1771188019892098 k001 Champernowne real with 109*n+1662 1771188025047949 m001 1/exp(1)^2/ln(Artin)/log(1+sqrt(2))^2 1771188031278341 m001 ln(FeigenbaumKappa)/Khintchine^2/cosh(1)^2 1771188041038172 a001 10959*9349^(7/23) 1771188046432797 a007 Real Root Of 716*x^4+805*x^3-439*x^2+938*x+465 1771188047019725 a001 46368/29*167761^(9/23) 1771188047044351 a001 46368/29*2537720636^(5/23) 1771188047208427 a001 832040/29*1149851^(3/23) 1771188047209039 a001 2178309/29*370248451^(1/23) 1771188047209309 a001 1346269/29*23725150497407^(1/23) 1771188047209315 a001 1346269/29*4870847^(2/23) 1771188047210453 a001 514229/29*312119004989^(2/23) 1771188047218295 a001 196418/29*141422324^(4/23) 1771188047218295 a001 196418/29*73681302247^(3/23) 1771188047224566 a001 196418/29*271443^(6/23) 1771188047455953 a001 514229/29*39603^(5/23) 1771188047640399 a001 28657/29*3010349^(8/23) 1771188047640467 a001 28657/29*9062201101803^(4/23) 1771188048366020 a001 10946/29*24476^(14/23) 1771188049061400 a001 514229/29*15127^(11/46) 1771188049515792 a001 3524578/29*5778^(1/23) 1771188050165654 a001 10946/29*17393796001^(6/23) 1771188050165654 a001 10946/29*599074578^(7/23) 1771188067473546 a001 4181/29*12752043^(10/23) 1771188070308807 m002 4/5-E^Pi/9 1771188073085889 a007 Real Root Of 682*x^4+707*x^3-431*x^2+278*x-939 1771188073194649 a001 4181/29*15127^(17/23) 1771188073598806 l006 ln(1015/5966) 1771188075877482 a001 46368/29*5778^(25/46) 1771188076909830 m005 (1/3*2^(1/2)+1/9)/(8/11*gamma-1/11) 1771188086884033 r005 Im(z^2+c),c=-13/14+21/130*I,n=28 1771188099884670 r005 Im(z^2+c),c=-31/54+1/45*I,n=13 1771188108146673 r005 Im(z^2+c),c=-53/54+11/61*I,n=19 1771188109292412 m001 (FeigenbaumB+MasserGramain)^MinimumGamma 1771188110182131 k008 concat of cont frac of 1771188110449373 a001 1346269/29*2207^(4/23) 1771188112033355 r005 Im(z^2+c),c=13/58+5/59*I,n=26 1771188114355368 a007 Real Root Of 96*x^4-165*x^3-235*x^2+619*x-28 1771188119912101 k001 Champernowne real with 110*n+1661 1771188122315617 a003 cos(Pi*10/63)/cos(Pi*46/95) 1771188124142696 r005 Re(z^2+c),c=17/94+17/29*I,n=37 1771188125981833 r005 Im(z^2+c),c=-25/36+11/56*I,n=28 1771188126387017 r009 Re(z^3+c),c=-11/54+39/55*I,n=23 1771188126732508 a007 Real Root Of -36*x^4-623*x^3+226*x^2-545*x+726 1771188132532449 a001 29/55*610^(39/43) 1771188132900809 m005 (2/3*gamma+2/3)/(2*exp(1)+1/2) 1771188139070490 r005 Im(z^2+c),c=-17/26+11/104*I,n=12 1771188145726303 r005 Re(z^2+c),c=31/102+17/41*I,n=45 1771188159503301 m005 (4/5*Catalan-3/4)/(-7/30+1/10*5^(1/2)) 1771188168005864 r005 Re(z^2+c),c=-7/48+20/59*I,n=31 1771188177422820 m009 (2*Psi(1,1/3)+2/5)/(3*Psi(1,3/4)+4) 1771188177711124 a001 233/4870847*47^(17/50) 1771188179675021 m001 Zeta(1,-1)-ln(3)*MinimumGamma 1771188182327997 r005 Re(z^2+c),c=-65/54+2/27*I,n=26 1771188185679728 r005 Im(z^2+c),c=-21/122+39/61*I,n=3 1771188190124488 m005 (-17/44+1/4*5^(1/2))/(2*Catalan-6/7) 1771188191842928 a007 Real Root Of -764*x^4-873*x^3+772*x^2-532*x-696 1771188193661317 r002 34th iterates of z^2 + 1771188195533687 p001 sum((-1)^n/(466*n+215)/n/(8^n),n=1..infinity) 1771188201036578 r005 Re(z^2+c),c=-89/126+14/51*I,n=31 1771188202960251 m001 (-Sierpinski+TwinPrimes)/(BesselJ(0,1)-Si(Pi)) 1771188204467641 m005 (2*Catalan+1/5)/(7+2*5^(1/2)) 1771188212571060 a007 Real Root Of 225*x^4-45*x^3-396*x^2+546*x-255 1771188215307075 r009 Re(z^3+c),c=-13/22+27/53*I,n=24 1771188219932104 k001 Champernowne real with 111*n+1660 1771188224817886 a001 5/5600748293801*11^(2/7) 1771188232576914 a007 Real Root Of -26*x^4-438*x^3+452*x^2+901*x-770 1771188235135878 a007 Real Root Of 503*x^4+829*x^3-387*x^2-39*x+801 1771188241003012 h001 (4/7*exp(2)+5/9)/(7/9*exp(1)+7/12) 1771188242019330 r005 Im(z^2+c),c=-107/106+6/31*I,n=21 1771188248537181 m005 (5/6*Pi-3/5)/(23/30+1/6*5^(1/2)) 1771188258699541 r005 Im(z^2+c),c=-13/10+19/116*I,n=7 1771188261943900 m001 (Mills+ZetaQ(4))/(1-MertensB1) 1771188263271870 m001 1/GAMMA(7/12)^2/ln(KhintchineLevy)*sin(1)^2 1771188264074820 a001 1364/13*89^(17/27) 1771188267982689 m001 ZetaP(4)/(KhinchinHarmonic+Sierpinski) 1771188271711897 r009 Re(z^3+c),c=-27/56+26/53*I,n=33 1771188277443555 m001 FellerTornier/(gamma(2)+FeigenbaumC) 1771188277667657 m001 (BesselI(1,2)+GolombDickman)/(Niven-Otter) 1771188281079476 m001 (3^(1/2)+CareFree)/(FeigenbaumB+Landau) 1771188284702679 l006 ln(794/4667) 1771188291554977 m005 (1/3*Pi+2/7)/(3/8*2^(1/2)+2/9) 1771188291788402 a001 75025/322*123^(9/10) 1771188292695729 a001 28657/29*2207^(31/46) 1771188294944735 l006 ln(7901/9432) 1771188297960490 a008 Real Root of x^4-2*x^3-9*x^2-25*x-37 1771188311737015 r005 Re(z^2+c),c=37/122+10/39*I,n=56 1771188313991471 a001 4181/4*2^(35/46) 1771188316150324 m005 (1/2*5^(1/2)-5/7)/(7/10*5^(1/2)+5/7) 1771188319411261 k008 concat of cont frac of 1771188319651367 p004 log(36037/6131) 1771188319952107 k001 Champernowne real with 112*n+1659 1771188323625260 r005 Im(z^2+c),c=-71/70+11/53*I,n=5 1771188326163789 b008 -1/5*Pi^2+ArcCoth[5] 1771188341593194 r002 24th iterates of z^2 + 1771188353388728 g002 -Psi(1/8)-Psi(4/11)-Psi(5/9)-Psi(2/9) 1771188360193813 a007 Real Root Of -124*x^4+30*x^3+143*x^2-846*x-560 1771188361707756 r009 Re(z^3+c),c=-1/10+57/64*I,n=26 1771188365353948 m001 (-TwinPrimes+ZetaP(4))/(Si(Pi)+3^(1/3)) 1771188366911897 r005 Im(z^2+c),c=-5/8+65/219*I,n=50 1771188367756905 m001 (Champernowne+ZetaP(4))/(Shi(1)-gamma(1)) 1771188368611917 k002 Champernowne real with 63/2*n^2-81/2*n+26 1771188369537273 a008 Real Root of x^4-x^3+17*x^2-60*x-175 1771188372555958 a005 (1/sin(74/179*Pi))^1736 1771188379161125 m005 (1/2*exp(1)-6/11)/(5/7*3^(1/2)-7/9) 1771188386094685 r005 Im(z^2+c),c=-65/98+7/50*I,n=11 1771188390747435 m001 ln(gamma)^polylog(4,1/2)+(1+3^(1/2))^(1/2) 1771188390747435 m001 log(gamma)^polylog(4,1/2)+sqrt(1+sqrt(3)) 1771188393256156 a005 (1/sin(77/186*Pi))^1012 1771188402179448 m001 Robbin^2*FeigenbaumDelta^2/exp(Zeta(1/2))^2 1771188409283990 r005 Re(z^2+c),c=-3/74+5/9*I,n=64 1771188411912993 m001 PrimesInBinary/MinimumGamma/ln(GAMMA(19/24)) 1771188412172034 m001 MertensB1/(LambertW(1)-TravellingSalesman) 1771188413504180 m001 1/FeigenbaumD^2/FibonacciFactorial/ln(Ei(1)) 1771188413585903 m001 1/exp(Riemann1stZero)/Khintchine*cos(Pi/5)^2 1771188415710918 m001 (3^(1/3))^ZetaP(3)/BesselK(1,1) 1771188416385725 r005 Im(z^2+c),c=-109/102+5/24*I,n=48 1771188419637585 m005 (1/2*Catalan-4/7)/(5/12*gamma+2/5) 1771188419892435 r009 Re(z^3+c),c=-19/82+12/35*I,n=17 1771188419972110 k001 Champernowne real with 113*n+1658 1771188420340487 m001 (arctan(1/3)+FeigenbaumMu)/(sin(1/5*Pi)+ln(5)) 1771188421772531 r005 Im(z^2+c),c=-25/62+17/58*I,n=31 1771188422155556 m001 (Pi^(1/2)*Conway-ZetaQ(4))/Conway 1771188430163459 r005 Re(z^2+c),c=-83/98+5/27*I,n=18 1771188431495069 m004 4+2*Sqrt[5]*Pi-Sin[Sqrt[5]*Pi]/2 1771188441447663 l006 ln(1367/8035) 1771188441515211 k007 concat of cont frac of 1771188454417929 a007 Real Root Of -271*x^4-303*x^3+369*x^2-40*x-245 1771188461527225 a007 Real Root Of 697*x^4+483*x^3-697*x^2+917*x-365 1771188465917773 m001 FeigenbaumD^2/MadelungNaCl^2*exp(Zeta(7))^2 1771188468962629 a003 -1-cos(5/12*Pi)-2*cos(13/27*Pi)-cos(10/27*Pi) 1771188477694473 a007 Real Root Of -358*x^4-814*x^3-818*x^2-636*x+440 1771188478011918 r005 Re(z^2+c),c=13/66+13/31*I,n=19 1771188482824984 a001 317811/521*123^(7/10) 1771188495116492 r009 Re(z^3+c),c=-1/4+17/42*I,n=19 1771188496398300 r005 Re(z^2+c),c=-5/27+11/54*I,n=7 1771188497505966 r005 Re(z^2+c),c=-9/70+18/47*I,n=21 1771188499642148 a007 Real Root Of -505*x^4-378*x^3+855*x^2-77*x+51 1771188499976744 l006 ln(5171/6173) 1771188499976744 p004 log(6173/5171) 1771188500037142 r009 Im(z^3+c),c=-11/50+41/49*I,n=7 1771188511217295 r009 Re(z^3+c),c=-8/27+21/38*I,n=51 1771188513326879 a007 Real Root Of 608*x^4+860*x^3-596*x^2-360*x+27 1771188519953563 a007 Real Root Of 632*x^4+806*x^3-906*x^2-337*x+504 1771188519992113 k001 Champernowne real with 114*n+1657 1771188527990403 a007 Real Root Of -575*x^4-422*x^3+678*x^2-782*x-198 1771188528598100 a007 Real Root Of 195*x^4-214*x^3-493*x^2+522*x-637 1771188534717074 q001 7168/4047 1771188543976571 r005 Re(z^2+c),c=-5/24+1/59*I,n=14 1771188548761882 a007 Real Root Of -566*x^4-511*x^3+965*x^2+702*x+947 1771188553854961 b008 1/4+ArcTan[17+Pi] 1771188555272947 m001 1/(2^(1/3))*PrimesInBinary*exp(sin(1))^2 1771188556977837 r005 Im(z^2+c),c=-13/27+1/33*I,n=41 1771188557530234 s002 sum(A267370[n]/(n^2*10^n-1),n=1..infinity) 1771188564459841 a005 (1/sin(63/139*Pi))^478 1771188572647880 r005 Im(z^2+c),c=-75/74+5/26*I,n=58 1771188579592300 r005 Re(z^2+c),c=-89/106+5/64*I,n=46 1771188582055573 m005 (1/2*Catalan-3/4)/(2/11*5^(1/2)-4/7) 1771188582119736 r009 Im(z^3+c),c=-11/46+33/35*I,n=45 1771188584043648 m001 (Zeta(1,-1)-sin(1))/(Artin+DuboisRaymond) 1771188587538999 a007 Real Root Of 728*x^4+906*x^3-476*x^2+694*x+592 1771188588059284 m008 (1/4*Pi^6+3)/(1/5*Pi^2-3/5) 1771188595932804 a003 cos(Pi*12/115)+cos(Pi*9/47) 1771188596032396 m001 (FeigenbaumAlpha+PlouffeB)/(GAMMA(3/4)-Shi(1)) 1771188597396779 m001 ln(GAMMA(17/24))^2*KhintchineLevy^2*sqrt(2)^2 1771188597607533 q001 6959/3929 1771188599981877 r005 Re(z^2+c),c=-5/8+39/92*I,n=12 1771188604378004 a003 sin(Pi*1/34)/cos(Pi*14/43) 1771188607042205 m001 (Khinchin+Sarnak)/(Si(Pi)-gamma(1)) 1771188607737583 m001 GAMMA(17/24)^Psi(2,1/3)*KomornikLoreti 1771188612648189 a007 Real Root Of 825*x^4+993*x^3-600*x^2+645*x+423 1771188620012116 k001 Champernowne real with 115*n+1656 1771188624756045 r005 Re(z^2+c),c=-6/29+3/61*I,n=5 1771188630910800 a007 Real Root Of 103*x^4-447*x^3+69*x^2+535*x+306 1771188639157811 r005 Re(z^2+c),c=-5/4+3/58*I,n=48 1771188642611417 m001 (MertensB2+Sarnak)/(Kolakoski-KomornikLoreti) 1771188647149393 m001 HeathBrownMoroz-MertensB3-TreeGrowth2nd 1771188650868071 a007 Real Root Of -904*x^4+662*x^3-431*x^2+135*x+42 1771188654628475 m001 (ln(gamma)*exp(-1/2*Pi)-Thue)/ln(gamma) 1771188655173270 m001 (GAMMA(5/6)-gamma)/(KhinchinLevy+Tetranacci) 1771188658647477 l006 ln(573/3368) 1771188659246022 m001 1/cos(1)^2*GAMMA(5/12)^2/exp(sqrt(5))^2 1771188664392547 q001 675/3811 1771188664504426 m006 (4/5*ln(Pi)+3/5)/(5/6*Pi^2+1/3) 1771188669362760 r005 Re(z^2+c),c=-5/122+18/31*I,n=42 1771188671157274 m001 (2^(1/2)-GAMMA(2/3))/(FeigenbaumD+Rabbit) 1771188674437749 m005 (1/3*exp(1)+1/3)/(1/9*Zeta(3)-5/6) 1771188705358380 m001 (GolombDickman-PlouffeB)/(Ei(1)-GAMMA(11/12)) 1771188706775552 m001 (-LambertW(1)+Robbin)/(Psi(2,1/3)+3^(1/2)) 1771188711918750 r005 Im(z^2+c),c=-11/12+25/112*I,n=12 1771188712793068 l006 ln(7612/9087) 1771188717522821 r009 Im(z^3+c),c=-35/86+4/59*I,n=14 1771188720032119 k001 Champernowne real with 116*n+1655 1771188721346480 a007 Real Root Of 425*x^4+547*x^3+97*x^2+522*x-523 1771188722409285 m008 (1/2*Pi^2-1/2)/(5/6*Pi^3-4/5) 1771188722441777 r009 Re(z^3+c),c=-1/22+20/29*I,n=22 1771188723322118 k009 concat of cont frac of 1771188725920411 a007 Real Root Of -107*x^4+729*x^3-623*x^2-244*x-611 1771188735355745 m001 (-Chi(1)+GAMMA(3/4))/(2^(1/3)-exp(Pi)) 1771188735445437 q001 6541/3693 1771188738213372 r005 Re(z^2+c),c=33/98+15/44*I,n=56 1771188750804624 r009 Im(z^3+c),c=-53/110+9/17*I,n=30 1771188751203850 m005 (1/3*Pi-2/3)/(6/11*gamma-1/10) 1771188755594340 r005 Re(z^2+c),c=-5/24+1/59*I,n=16 1771188756956576 r005 Im(z^2+c),c=-11/114+17/26*I,n=27 1771188759915315 r002 6th iterates of z^2 + 1771188763106697 m003 1/2+(5*Sqrt[5])/8-ProductLog[1/2+Sqrt[5]/2]/6 1771188765058979 a007 Real Root Of -229*x^4+164*x^3+689*x^2-990*x-750 1771188770882226 m001 1/cos(Pi/5)^2/ln(GAMMA(5/6))^2/sin(Pi/5) 1771188771088711 k006 concat of cont frac of 1771188772046491 a007 Real Root Of 170*x^4-457*x^3+845*x^2-394*x-99 1771188775621829 r005 Re(z^2+c),c=-5/24+1/59*I,n=18 1771188777257443 r005 Re(z^2+c),c=-5/24+1/59*I,n=20 1771188777335529 r005 Re(z^2+c),c=-5/24+1/59*I,n=23 1771188777339434 r005 Re(z^2+c),c=-5/24+1/59*I,n=25 1771188777340585 r005 Re(z^2+c),c=-5/24+1/59*I,n=27 1771188777340810 r005 Re(z^2+c),c=-5/24+1/59*I,n=29 1771188777340848 r005 Re(z^2+c),c=-5/24+1/59*I,n=31 1771188777340853 r005 Re(z^2+c),c=-5/24+1/59*I,n=33 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=35 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=37 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=39 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=41 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=43 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=45 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=47 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=49 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=51 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=53 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=55 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=57 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=59 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=61 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=63 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=64 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=62 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=60 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=58 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=56 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=54 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=52 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=50 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=48 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=46 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=44 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=42 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=40 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=38 1771188777340854 r005 Re(z^2+c),c=-5/24+1/59*I,n=36 1771188777340855 r005 Re(z^2+c),c=-5/24+1/59*I,n=34 1771188777340857 r005 Re(z^2+c),c=-5/24+1/59*I,n=32 1771188777340872 r005 Re(z^2+c),c=-5/24+1/59*I,n=30 1771188777340966 r005 Re(z^2+c),c=-5/24+1/59*I,n=28 1771188777341488 r005 Re(z^2+c),c=-5/24+1/59*I,n=26 1771188777343807 r005 Re(z^2+c),c=-5/24+1/59*I,n=24 1771188777346513 r005 Re(z^2+c),c=-5/24+1/59*I,n=21 1771188777347365 r005 Re(z^2+c),c=-5/24+1/59*I,n=22 1771188777764580 r005 Re(z^2+c),c=-5/24+1/59*I,n=19 1771188782004856 a003 sin(Pi*13/80)-sin(Pi*16/69) 1771188783638178 r005 Re(z^2+c),c=-5/24+1/59*I,n=17 1771188784583671 m008 (4*Pi^6-2/3)/(1/2*Pi+3/5) 1771188787470042 a007 Real Root Of 589*x^4+460*x^3-686*x^2+312*x-536 1771188795395396 m001 Zeta(1/2)^BesselI(1,2)-sin(1/12*Pi) 1771188795395396 m001 Zeta(1/2)^BesselI(1,2)-sin(Pi/12) 1771188797213938 m005 (1/2*5^(1/2)+4/9)/(7/12*gamma+6/11) 1771188800057754 r005 Re(z^2+c),c=-73/98+1/16*I,n=49 1771188801522539 m001 (Gompertz+Riemann1stZero)/(Trott2nd-Thue) 1771188806993886 r008 a(0)=2,K{-n^6,36+7*n-22*n^2-17*n^3} 1771188811188811 q001 6332/3575 1771188816055404 p001 sum(1/(475*n+61)/(2^n),n=0..infinity) 1771188820052122 k001 Champernowne real with 117*n+1654 1771188833306848 r005 Im(z^2+c),c=-13/40+5/18*I,n=12 1771188837364660 r009 Re(z^3+c),c=-17/78+33/47*I,n=7 1771188837965581 a003 cos(Pi*22/101)+sin(Pi*26/55) 1771188840049661 r005 Im(z^2+c),c=-47/118+12/41*I,n=21 1771188845714704 h001 (5/7*exp(2)+1/9)/(10/11*exp(1)+4/7) 1771188847240759 m001 (BesselJ(0,1)+ln(2)*Rabbit)/Rabbit 1771188849575266 r005 Re(z^2+c),c=-5/24+1/59*I,n=15 1771188852417618 m001 1/GAMMA(23/24)^2/Kolakoski*ln(GAMMA(5/24)) 1771188856853141 l006 ln(1498/8805) 1771188860430197 m005 (1/2*Pi+6/7)/(5*Pi-2) 1771188860603092 r005 Im(z^2+c),c=13/58+5/59*I,n=29 1771188863034123 h001 (3/8*exp(1)+6/11)/(1/11*exp(1)+7/11) 1771188873217005 r009 Re(z^3+c),c=-13/110+48/59*I,n=33 1771188875555888 a007 Real Root Of -738*x^4+303*x^3+131*x^2+169*x-35 1771188876032914 r005 Re(z^2+c),c=-139/114+5/62*I,n=46 1771188876176265 l005 1092/59/(exp(546/59)+1) 1771188882025125 a001 9/10182505537*987^(10/23) 1771188884640032 a007 Real Root Of -791*x^4-552*x^3+996*x^2-927*x-49 1771188892102979 q001 6123/3457 1771188895050139 a003 cos(Pi*21/107)+sin(Pi*36/89) 1771188900220912 r005 Im(z^2+c),c=-103/118+4/31*I,n=12 1771188901607887 m001 (ln(3)-Conway)/(StronglyCareFree-TwinPrimes) 1771188903245264 r005 Re(z^2+c),c=-7/78+7/15*I,n=50 1771188907032020 a001 7/75025*1346269^(23/43) 1771188910221603 m001 (cos(1/5*Pi)-ln(3))/(Salem-Totient) 1771188920072125 k001 Champernowne real with 118*n+1653 1771188921706025 m001 gamma(2)*Pi*csc(5/12*Pi)/GAMMA(7/12)*Thue 1771188923404913 m001 (exp(1)+arctan(1/3))/(-RenyiParking+Stephens) 1771188923581690 r005 Im(z^2+c),c=-13/66+41/49*I,n=9 1771188926670983 r002 31i'th iterates of 2*x/(1-x^2) of 1771188927513706 r005 Im(z^2+c),c=19/82+3/38*I,n=16 1771188933708693 m001 1/exp(FeigenbaumDelta)*ErdosBorwein*Trott^2 1771188936701609 m001 Pi/(gamma(1)^TwinPrimes) 1771188943532067 r009 Im(z^3+c),c=-79/114+4/55*I,n=2 1771188947834001 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=37 1771188950911515 r005 Im(z^2+c),c=-29/70+13/44*I,n=43 1771188953326539 r005 Im(z^2+c),c=-93/86+9/49*I,n=4 1771188958349295 m001 (BesselI(1,2)+Niven)/(PlouffeB-Robbin) 1771188958644331 m001 (Niven-Tetranacci)/(LaplaceLimit+Lehmer) 1771188965879208 r005 Im(z^2+c),c=-11/16+55/123*I,n=54 1771188966699325 m001 (gamma+Catalan)/(-BesselI(1,2)+RenyiParking) 1771188969537065 m001 (Trott+ZetaP(3))/(ArtinRank2-KhinchinHarmonic) 1771188969823883 a007 Real Root Of 779*x^4+876*x^3-638*x^2+229*x-392 1771188971606753 a007 Real Root Of 74*x^4+115*x^3+240*x^2+174*x-534 1771188975257268 a007 Real Root Of 259*x^4+265*x^3-557*x^2-254*x+221 1771188978736148 q001 5914/3339 1771188979270164 a007 Real Root Of 54*x^4+923*x^3-569*x^2+398*x-267 1771188979633495 l006 ln(925/5437) 1771188981518032 m001 (-Cahen+5)/(-cos(1)+3) 1771188982261926 r005 Im(z^2+c),c=-16/29+15/49*I,n=28 1771188983029254 a007 Real Root Of 488*x^4+295*x^3-985*x^2-882*x+185 1771188984413591 m001 1/GAMMA(23/24)/Conway^2/exp(sinh(1)) 1771188994488417 r009 Re(z^3+c),c=-8/27+21/38*I,n=48 1771188995998597 m001 GAMMA(1/6)^(Cahen/GAMMA(11/24)) 1771188999199475 a001 610/29*439204^(16/23) 1771188999205862 a001 610/29*192900153618^(8/23) 1771188999205862 a001 610/29*10749957122^(9/23) 1771188999205863 a001 610/29*33385282^(12/23) 1771188999334807 a001 610/29*103682^(18/23) 1771189008216006 r002 12th iterates of z^2 + 1771189008282155 a007 Real Root Of -751*x^4-597*x^3+946*x^2-262*x+642 1771189020092128 k001 Champernowne real with 119*n+1652 1771189024122674 a007 Real Root Of -697*x^4+377*x^3-255*x^2+611*x+119 1771189025400383 r005 Re(z^2+c),c=29/122+9/46*I,n=16 1771189025495828 r009 Re(z^3+c),c=-2/21+43/50*I,n=24 1771189026055830 a001 28657/843*29^(25/51) 1771189027191224 m001 (ln(2+3^(1/2))+KhinchinLevy)/Riemann1stZero 1771189029429643 a007 Real Root Of 110*x^4-781*x^3+328*x^2+839*x+742 1771189035254562 a007 Real Root Of 15*x^4-830*x^3+876*x^2+441*x+935 1771189040125397 a001 18/2504730781961*63245986^(10/23) 1771189045157732 s002 sum(A201049[n]/((pi^n+1)/n),n=1..infinity) 1771189045387330 m001 (Zeta(5)+Pi^(1/2))/(HardyLittlewoodC5+Salem) 1771189046024838 m001 (Landau+TwinPrimes)/(ZetaP(4)-ZetaQ(3)) 1771189052001834 m001 Psi(1,1/3)^(5^(1/2))+Zeta(3) 1771189060529494 r009 Re(z^3+c),c=-25/82+16/27*I,n=29 1771189061591576 b008 1/2+Zeta[1/11,E] 1771189063407289 m001 (-GAMMA(13/24)+3)/(GAMMA(1/3)+5) 1771189064399820 m006 (2/5*Pi+3/5)/(1/3*ln(Pi)+2/3) 1771189065397777 m001 (BesselJ(0,1)+MadelungNaCl)/(gamma+sin(1)) 1771189069658858 r005 Im(z^2+c),c=-119/122+11/58*I,n=18 1771189071716858 q001 5705/3221 1771189072759418 r005 Re(z^2+c),c=5/18+13/51*I,n=12 1771189075252679 a003 cos(Pi*2/59)+sin(Pi*32/113) 1771189076658161 a001 10959*843^(19/46) 1771189083894351 r005 Im(z^2+c),c=-17/78+34/47*I,n=36 1771189087940695 a007 Real Root Of 574*x^4+426*x^3-973*x^2-422*x-977 1771189102618024 a007 Real Root Of 731*x^4+580*x^3-545*x^2+928*x-618 1771189103336706 a001 2178309/2*3571^(47/52) 1771189107968889 m005 (1/2*5^(1/2)+7/12)/(4/11*Pi-2/11) 1771189111504451 m005 (1/2*Zeta(3)-2/9)/(3/4*exp(1)+1/10) 1771189116513087 a007 Real Root Of -442*x^4-648*x^3+69*x^2-739*x-776 1771189120112131 k001 Champernowne real with 120*n+1651 1771189123662426 l006 ln(1277/7506) 1771189124171782 s001 sum(1/10^(n-1)*A255200[n]/n!^2,n=1..infinity) 1771189124938996 m005 (1/2*2^(1/2)-6/7)/(7/10*2^(1/2)-1/7) 1771189125902210 r009 Re(z^3+c),c=-13/110+49/60*I,n=5 1771189147794477 a007 Real Root Of 573*x^4+565*x^3-986*x^2-208*x+225 1771189148071536 r005 Im(z^2+c),c=-12/31+16/43*I,n=7 1771189148943083 a007 Real Root Of 933*x^4+897*x^3-992*x^2+376*x-420 1771189151005554 a007 Real Root Of -56*x^4-978*x^3+209*x^2-676*x-494 1771189151373462 m001 (-Zeta(1/2)+Sierpinski)/(exp(Pi)-ln(2)/ln(10)) 1771189152115890 m001 (-GAMMA(5/6)+Otter)/(Psi(1,1/3)+Ei(1,1)) 1771189156124166 r005 Im(z^2+c),c=-17/31+10/31*I,n=53 1771189156418737 m001 GAMMA(23/24)*MertensB2+Rabbit 1771189159779664 a003 cos(Pi*13/101)-cos(Pi*18/77) 1771189163621900 l006 ln(2441/2914) 1771189169514010 a007 Real Root Of 82*x^4-571*x^3+67*x^2+780*x+774 1771189171769255 q001 5496/3103 1771189174781594 m001 Zeta(5)^2*(3^(1/3))^2/ln(log(1+sqrt(2))) 1771189174826453 m001 Zeta(3)/Chi(1)*Champernowne 1771189189505450 r005 Im(z^2+c),c=-65/106+1/51*I,n=15 1771189193154797 m005 (1/2*Pi-3/8)/(-7/36+7/18*5^(1/2)) 1771189193905969 a007 Real Root Of 342*x^4+238*x^3-849*x^2-852*x-889 1771189197631966 m009 (8/3*Catalan+1/3*Pi^2-1/4)/(3*Psi(1,1/3)+2/3) 1771189202525273 a007 Real Root Of -467*x^4-255*x^3+604*x^2-213*x+907 1771189205446801 l006 ln(1629/9575) 1771189208049428 m005 (1/2*Pi+9/11)/(1/7*Pi+9/10) 1771189211957958 r005 Im(z^2+c),c=31/118+3/62*I,n=53 1771189220132134 k001 Champernowne real with 121*n+1650 1771189226430738 a001 416020*24476^(43/52) 1771189226770193 m001 (QuadraticClass+ZetaP(4))/(GAMMA(2/3)-Ei(1)) 1771189229960830 m001 (BesselJ(0,1)-cos(1/12*Pi))/(MertensB2+Paris) 1771189231510028 r005 Im(z^2+c),c=21/74+1/33*I,n=33 1771189233250460 r002 21th iterates of z^2 + 1771189242947025 r009 Re(z^3+c),c=-31/98+32/53*I,n=38 1771189243673697 p001 sum(1/(357*n+226)/n/(10^n),n=1..infinity) 1771189248068925 m001 1/GAMMA(1/24)/BesselJ(1,1)^2*ln(sqrt(5)) 1771189256844394 a007 Real Root Of 346*x^4+171*x^3-653*x^2+199*x-54 1771189259484657 r002 6th iterates of z^2 + 1771189264695554 r005 Im(z^2+c),c=-9/10+49/206*I,n=24 1771189265349342 a007 Real Root Of 716*x^4+701*x^3-816*x^2-68*x-712 1771189267201171 r009 Re(z^3+c),c=-19/82+12/35*I,n=20 1771189269701647 r005 Im(z^2+c),c=-43/106+17/63*I,n=8 1771189279731993 q001 5287/2985 1771189280526480 m001 TreeGrowth2nd*KhintchineLevy/ln(GAMMA(1/6))^2 1771189280826813 a003 cos(Pi*12/91)+cos(Pi*9/52) 1771189283213202 a007 Real Root Of -274*x^4-778*x^3-951*x^2-935*x-299 1771189301327863 m001 (Shi(1)-arctan(1/2))/(-RenyiParking+ThueMorse) 1771189305720016 r005 Re(z^2+c),c=-29/34+3/128*I,n=34 1771189308131657 m005 (1/3*gamma-3/4)/(6/7*exp(1)+9/11) 1771189316540394 a007 Real Root Of 217*x^4+273*x^3+352*x^2+765*x-368 1771189320152137 k001 Champernowne real with 122*n+1649 1771189323033334 m001 (GAMMA(11/24)*GAMMA(1/12)-Si(Pi))/GAMMA(1/12) 1771189326589440 l005 2*exp(88/43)/(exp(88/43)+1) 1771189330656665 r009 Re(z^3+c),c=-19/82+12/35*I,n=23 1771189331804507 r005 Im(z^2+c),c=-47/106+11/21*I,n=30 1771189332561200 m001 HardyLittlewoodC4^AlladiGrinstead-exp(-1/2*Pi) 1771189333673939 r009 Re(z^3+c),c=-19/82+12/35*I,n=22 1771189334977238 r009 Re(z^3+c),c=-19/82+12/35*I,n=25 1771189335088765 r009 Re(z^3+c),c=-19/82+12/35*I,n=26 1771189335332114 r009 Re(z^3+c),c=-19/82+12/35*I,n=28 1771189335369888 r009 Re(z^3+c),c=-19/82+12/35*I,n=29 1771189335379758 r009 Re(z^3+c),c=-19/82+12/35*I,n=31 1771189335384957 r009 Re(z^3+c),c=-19/82+12/35*I,n=34 1771189335385010 r009 Re(z^3+c),c=-19/82+12/35*I,n=32 1771189335385465 r009 Re(z^3+c),c=-19/82+12/35*I,n=37 1771189335385511 r009 Re(z^3+c),c=-19/82+12/35*I,n=40 1771189335385515 r009 Re(z^3+c),c=-19/82+12/35*I,n=43 1771189335385516 r009 Re(z^3+c),c=-19/82+12/35*I,n=46 1771189335385516 r009 Re(z^3+c),c=-19/82+12/35*I,n=49 1771189335385516 r009 Re(z^3+c),c=-19/82+12/35*I,n=48 1771189335385516 r009 Re(z^3+c),c=-19/82+12/35*I,n=51 1771189335385516 r009 Re(z^3+c),c=-19/82+12/35*I,n=52 1771189335385516 r009 Re(z^3+c),c=-19/82+12/35*I,n=54 1771189335385516 r009 Re(z^3+c),c=-19/82+12/35*I,n=55 1771189335385516 r009 Re(z^3+c),c=-19/82+12/35*I,n=57 1771189335385516 r009 Re(z^3+c),c=-19/82+12/35*I,n=58 1771189335385516 r009 Re(z^3+c),c=-19/82+12/35*I,n=60 1771189335385516 r009 Re(z^3+c),c=-19/82+12/35*I,n=63 1771189335385516 r009 Re(z^3+c),c=-19/82+12/35*I,n=61 1771189335385516 r009 Re(z^3+c),c=-19/82+12/35*I,n=64 1771189335385516 r009 Re(z^3+c),c=-19/82+12/35*I,n=62 1771189335385516 r009 Re(z^3+c),c=-19/82+12/35*I,n=59 1771189335385516 r009 Re(z^3+c),c=-19/82+12/35*I,n=56 1771189335385516 r009 Re(z^3+c),c=-19/82+12/35*I,n=53 1771189335385516 r009 Re(z^3+c),c=-19/82+12/35*I,n=50 1771189335385516 r009 Re(z^3+c),c=-19/82+12/35*I,n=47 1771189335385516 r009 Re(z^3+c),c=-19/82+12/35*I,n=45 1771189335385516 r009 Re(z^3+c),c=-19/82+12/35*I,n=44 1771189335385516 r009 Re(z^3+c),c=-19/82+12/35*I,n=42 1771189335385517 r009 Re(z^3+c),c=-19/82+12/35*I,n=41 1771189335385522 r009 Re(z^3+c),c=-19/82+12/35*I,n=39 1771189335385523 r009 Re(z^3+c),c=-19/82+12/35*I,n=38 1771189335385539 r009 Re(z^3+c),c=-19/82+12/35*I,n=35 1771189335385609 r009 Re(z^3+c),c=-19/82+12/35*I,n=36 1771189335386847 r009 Re(z^3+c),c=-19/82+12/35*I,n=33 1771189335403231 r009 Re(z^3+c),c=-19/82+12/35*I,n=30 1771189335607986 r009 Re(z^3+c),c=-19/82+12/35*I,n=27 1771189338028920 r009 Re(z^3+c),c=-19/82+12/35*I,n=24 1771189343001803 p004 log(17851/3037) 1771189345232930 a007 Real Root Of 215*x^4+384*x^3+612*x^2+869*x-363 1771189352709306 a007 Real Root Of -524*x^4-619*x^3+709*x^2+635*x+618 1771189355926102 r009 Re(z^3+c),c=-19/82+12/35*I,n=19 1771189362368006 m005 (1/3*3^(1/2)-2/9)/(4/7*5^(1/2)+8/11) 1771189363867379 m001 (Zeta(1/2)-ErdosBorwein)/(OneNinth-Tribonacci) 1771189364995170 r009 Re(z^3+c),c=-19/82+12/35*I,n=21 1771189371617927 k002 Champernowne real with 32*n^2-42*n+27 1771189374556782 r005 Im(z^2+c),c=-97/82+7/41*I,n=6 1771189374858318 r005 Re(z^2+c),c=-1/56+11/20*I,n=25 1771189385659733 m001 Chi(1)/(FellerTornier^Robbin) 1771189387784969 a007 Real Root Of -276*x^4+217*x^3+945*x^2-999*x-812 1771189388994422 m001 (-FibonacciFactorial+Robbin)/(exp(1)+Bloch) 1771189390747587 a007 Real Root Of 635*x^4+727*x^3-510*x^2+101*x-431 1771189396581792 q001 5078/2867 1771189396723484 a007 Real Root Of -23*x^4-378*x^3+488*x^2-577*x-99 1771189399100728 a007 Real Root Of -416*x^4+133*x^3+939*x^2-864*x+357 1771189400749591 a007 Real Root Of 538*x^4+201*x^3-907*x^2+732*x-36 1771189400942039 a008 Real Root of x^2-x-31194 1771189405453547 m001 GAMMA(11/12)^2/FeigenbaumDelta^2*ln(sqrt(2)) 1771189405959161 a001 3571^(32/35) 1771189406687437 r005 Re(z^2+c),c=1/58+30/49*I,n=62 1771189408542417 a001 4/5374978561*18^(3/10) 1771189409042177 m001 (Paris-ZetaQ(2))/(ln(2)-BesselJ(1,1)) 1771189412309067 m001 (gamma+ln(5))/Champernowne 1771189414299741 a001 199/3524578*267914296^(15/23) 1771189417711894 k006 concat of cont frac of 1771189420172140 k001 Champernowne real with 123*n+1648 1771189424242120 m001 (sin(1/5*Pi)-gamma(1))/(FellerTornier+Magata) 1771189425566459 a007 Real Root Of 647*x^4+878*x^3+210*x^2+941*x-481 1771189427432110 a007 Real Root Of 754*x^4+812*x^3-913*x^2-308*x-590 1771189435804332 r005 Im(z^2+c),c=-10/19+23/62*I,n=23 1771189438964303 r009 Re(z^3+c),c=-16/27+16/31*I,n=54 1771189440709435 m001 (sin(1/12*Pi)+MertensB1)/(exp(1)+Ei(1,1)) 1771189445694282 a001 89/199*64079^(22/23) 1771189446106863 a001 89/199*7881196^(2/3) 1771189446106882 a001 89/199*312119004989^(2/5) 1771189446106882 a001 89/199*(1/2+1/2*5^(1/2))^22 1771189446106882 a001 89/199*10749957122^(11/24) 1771189446106882 a001 89/199*4106118243^(11/23) 1771189446106882 a001 89/199*1568397607^(1/2) 1771189446106882 a001 89/199*599074578^(11/21) 1771189446106882 a001 89/199*228826127^(11/20) 1771189446106882 a001 89/199*87403803^(11/19) 1771189446106883 a001 89/199*33385282^(11/18) 1771189446106889 a001 89/199*12752043^(11/17) 1771189446106933 a001 89/199*4870847^(11/16) 1771189446107257 a001 89/199*1860498^(11/15) 1771189446109637 a001 89/199*710647^(11/14) 1771189446127222 a001 89/199*271443^(11/13) 1771189446257914 a001 89/199*103682^(11/12) 1771189449216103 r005 Re(z^2+c),c=-131/118+16/47*I,n=8 1771189450017247 m001 1/(2^(1/3))^2*ln(Salem)^2/Zeta(1,2) 1771189451736922 r002 30th iterates of z^2 + 1771189454834324 a003 cos(Pi*1/38)+cos(Pi*17/78) 1771189477090885 m001 (MasserGramainDelta-MertensB1)/QuadraticClass 1771189480568714 a001 199/2584*4181^(15/23) 1771189493732688 a007 Real Root Of -485*x^4-590*x^3-15*x^2-608*x+465 1771189501590679 m001 (gamma(2)-MasserGramain)/(Otter+RenyiParking) 1771189501917572 a001 1597/11*29^(26/35) 1771189502147445 l006 ln(352/2069) 1771189504356105 m005 (1/2*2^(1/2)-1/6)/(2/7*3^(1/2)-4/5) 1771189506173857 a007 Real Root Of 367*x^4+463*x^3-17*x^2+914*x+633 1771189507489793 a001 1346269/3*18^(19/40) 1771189510199441 a007 Real Root Of -519*x^4-948*x^3-637*x^2-806*x+411 1771189513037998 a007 Real Root Of -20*x^4+172*x^3+72*x^2-220*x+537 1771189514373723 a007 Real Root Of -308*x^4+734*x^3+582*x^2+626*x+97 1771189514740681 a007 Real Root Of -521*x^4-564*x^3+912*x^2+706*x+383 1771189515567785 r005 Re(z^2+c),c=-5/24+1/59*I,n=13 1771189518104434 r005 Re(z^2+c),c=-7/48+20/59*I,n=28 1771189520192143 k001 Champernowne real with 124*n+1647 1771189520809747 a007 Real Root Of 198*x^4-181*x^3-519*x^2+515*x-414 1771189522913290 a007 Real Root Of 943*x^4+894*x^3-921*x^2+403*x-710 1771189523463077 q001 4869/2749 1771189524028654 m006 (3/4*exp(2*Pi)-3/4)/(4/5*Pi-1/4) 1771189524207615 m001 exp(1)^(FeigenbaumB/Backhouse) 1771189524207615 m001 exp(FeigenbaumB/Backhouse) 1771189525755849 m005 (1/2*3^(1/2)-3/7)/(2/11*Pi-9/11) 1771189528156949 m005 (1/4*2^(1/2)+4)/(1/2*Catalan+2) 1771189528689416 m001 1/Zeta(5)/GAMMA(1/4)^2*exp(log(1+sqrt(2))) 1771189531616154 m001 KhintchineHarmonic*Bloch*exp(Khintchine)^2 1771189531697914 r005 Im(z^2+c),c=-107/110+5/28*I,n=53 1771189532948482 a001 (1/2+1/2*5^(1/2))^(544/35) 1771189535902307 a007 Real Root Of 123*x^4-339*x^3-197*x^2+266*x+820 1771189539220406 s002 sum(A180251[n]/(n^3*exp(n)-1),n=1..infinity) 1771189543917811 a001 161/305*144^(41/58) 1771189548913602 m001 Grothendieck/((Pi^(1/2))^Trott) 1771189563121173 m001 (Khinchin+Sierpinski)/(Chi(1)-cos(1)) 1771189564684027 m001 1/Champernowne^3*exp(BesselK(1,1))^2 1771189565810390 r005 Im(z^2+c),c=-16/27+10/29*I,n=39 1771189568891759 a007 Real Root Of -518*x^4-843*x^3+151*x^2+490*x+808 1771189572232909 m005 (1/2*5^(1/2)-6/7)/(3/4*Zeta(3)+4/7) 1771189575612923 m001 Robbin*(Khinchin-ZetaQ(3)) 1771189577052989 a007 Real Root Of -96*x^4+153*x^3-58*x^2-678*x+776 1771189580676384 m001 ln(2+3^(1/2))^Artin+LaplaceLimit 1771189580711033 s002 sum(A178392[n]/(n^3*pi^n+1),n=1..infinity) 1771189582163491 a007 Real Root Of 803*x^4+715*x^3-869*x^2+246*x-768 1771189582525387 r009 Re(z^3+c),c=-5/22+18/55*I,n=12 1771189586743256 r005 Re(z^2+c),c=-7/122+10/19*I,n=52 1771189588595856 r002 24th iterates of z^2 + 1771189589069386 a007 Real Root Of 225*x^4-515*x^3+552*x^2-472*x-104 1771189603561143 a003 cos(Pi*9/112)+sin(Pi*27/91) 1771189614049576 a005 (1/cos(5/199*Pi))^1660 1771189614232348 a001 11/46368*13^(29/37) 1771189618959843 a007 Real Root Of 273*x^4+325*x^3-382*x^2+142*x+569 1771189620212146 k001 Champernowne real with 125*n+1646 1771189621177514 a007 Real Root Of 460*x^4+932*x^3+457*x^2+668*x+401 1771189623280507 r005 Im(z^2+c),c=-11/14+19/246*I,n=27 1771189625525694 a007 Real Root Of -62*x^4+617*x^3+763*x^2-678*x+444 1771189626717351 r009 Re(z^3+c),c=-29/110+22/49*I,n=16 1771189627979673 r002 52th iterates of z^2 + 1771189628280816 m001 (cos(1)+ln(2+3^(1/2)))/(Gompertz+ZetaP(2)) 1771189630002036 a007 Real Root Of 563*x^4+768*x^3-533*x^2-220*x+9 1771189633840875 m005 (1/2*exp(1)-1/7)/(5/9*5^(1/2)-5/9) 1771189633875708 m001 1/PrimesInBinary/Bloch*ln(sqrt(2)) 1771189635298561 r005 Re(z^2+c),c=-7/78+7/15*I,n=46 1771189638651198 a001 1/522*(1/2*5^(1/2)+1/2)^29*29^(13/21) 1771189644293420 r009 Re(z^3+c),c=-19/82+12/35*I,n=18 1771189648654036 p004 log(19391/3299) 1771189651496354 l006 ln(7034/8397) 1771189653768770 s002 sum(A053516[n]/(n*pi^n+1),n=1..infinity) 1771189659751114 a007 Real Root Of 420*x^4+147*x^3-942*x^2-37*x-427 1771189661725579 q001 466/2631 1771189669447002 a003 sin(Pi*6/79)*sin(Pi*24/89) 1771189673628318 m005 (1/2*Zeta(3)+1/11)/(2/11*gamma+2/7) 1771189681947517 h001 (-exp(8)+9)/(-3*exp(4)-4) 1771189687326078 a007 Real Root Of -611*x^4-665*x^3+660*x^2-124*x+28 1771189688613698 a003 cos(Pi*35/79)*sin(Pi*37/79) 1771189689878065 a007 Real Root Of -18*x^4-163*x^3-862*x^2+942*x+193 1771189700005372 a007 Real Root Of 926*x^4+905*x^3-976*x^2+617*x+70 1771189702159365 r009 Re(z^3+c),c=-5/22+18/55*I,n=17 1771189704096984 r005 Im(z^2+c),c=-17/18+17/101*I,n=43 1771189705840467 r005 Im(z^2+c),c=-9/14+29/234*I,n=10 1771189708106929 a007 Real Root Of 486*x^4+90*x^3+689*x^2-900*x-181 1771189710149393 m001 (1+MertensB3)/ln(2+3^(1/2)) 1771189715314022 p004 log(22277/18661) 1771189717279078 a001 98209/2*9349^(43/48) 1771189720232149 k001 Champernowne real with 126*n+1645 1771189727497802 m001 cos(1)+Zeta(3)^GAMMA(5/6) 1771189727886128 a007 Real Root Of -341*x^4-640*x^3-401*x^2-770*x-306 1771189732523944 s001 sum(1/10^(n-1)*A269660[n]/n!,n=1..infinity) 1771189737631224 a007 Real Root Of -815*x^4+168*x^3+34*x^2+874*x-156 1771189740558657 a007 Real Root Of 408*x^4-141*x^3-231*x^2-482*x+93 1771189741286947 r005 Im(z^2+c),c=-57/64+9/40*I,n=10 1771189750587800 m005 (1/15+1/6*5^(1/2))/(9/10*gamma-3) 1771189753182887 m005 (1/3*Catalan-1/8)/(1/3*5^(1/2)+3/11) 1771189755887290 m001 (HardyLittlewoodC4+ZetaQ(4))/KhinchinHarmonic 1771189763890092 r005 Im(z^2+c),c=-37/54+7/58*I,n=11 1771189774416662 s002 sum(A152040[n]/(n^3*exp(n)-1),n=1..infinity) 1771189777327033 m002 6/Pi^6+ProductLog[Pi]/(2*Pi) 1771189781514732 r005 Im(z^2+c),c=-9/10+35/232*I,n=62 1771189785736290 a007 Real Root Of -595*x^4-898*x^3-643*x^2+789*x-114 1771189787641535 m001 1/ln(MinimumGamma)/ArtinRank2/Zeta(1/2)^2 1771189788460605 a007 Real Root Of -511*x^4+36*x^3-576*x^2+532*x+113 1771189793951757 p004 log(29207/4969) 1771189797053935 a007 Real Root Of -45*x^4-806*x^3-209*x^2-883*x+115 1771189799151485 r005 Im(z^2+c),c=-121/114+5/24*I,n=59 1771189799793839 m001 (Magata+Salem)/(Tetranacci+TwinPrimes) 1771189803567768 a007 Real Root Of 499*x^4+672*x^3-626*x^2-984*x-956 1771189804423941 m001 1/GAMMA(1/6)/Conway/exp(GAMMA(23/24))^2 1771189804673836 m001 (GAMMA(13/24)+Thue)/(cos(1/5*Pi)+BesselK(1,1)) 1771189812972542 q001 4451/2513 1771189813464518 a007 Real Root Of 144*x^4-521*x^3+118*x^2+474*x+268 1771189813838719 m005 (1/2*Pi+1/10)/(2/7*exp(1)+1/6) 1771189816198909 l006 ln(1539/9046) 1771189818649996 a007 Real Root Of 37*x^4+708*x^3+957*x^2+445*x+260 1771189820252152 k001 Champernowne real with 127*n+1644 1771189826099614 r005 Im(z^2+c),c=-75/82+8/51*I,n=37 1771189829094827 s002 sum(A078111[n]/((2^n+1)/n),n=1..infinity) 1771189829797668 r005 Im(z^2+c),c=-13/14+37/228*I,n=13 1771189831522451 k006 concat of cont frac of 1771189834103002 r009 Re(z^3+c),c=-33/82+19/26*I,n=2 1771189836151089 m001 BesselI(1,1)^LandauRamanujan*Trott2nd 1771189840817479 r002 49th iterates of z^2 + 1771189842440053 m001 (exp(1/exp(1))+GlaisherKinkelin*Otter)/Otter 1771189845030836 m001 GAMMA(3/4)*ln(1+sqrt(2))*GAMMA(13/24) 1771189845030836 m001 GAMMA(3/4)*ln(2^(1/2)+1)*GAMMA(13/24) 1771189846795783 r005 Im(z^2+c),c=-39/40+7/39*I,n=35 1771189852094136 m005 (1/2*Catalan-2/11)/(2*Catalan-3/11) 1771189853404330 r009 Im(z^3+c),c=-11/48+30/41*I,n=41 1771189853507903 r004 Im(z^2+c),c=-47/46-2/9*I,z(0)=-1,n=13 1771189854163159 r005 Im(z^2+c),c=-5/6+31/238*I,n=24 1771189856939770 a005 (1/sin(100/233*Pi))^392 1771189860051764 m005 (1/2*Zeta(3)+3/8)/(2/9*Zeta(3)-9/11) 1771189861268790 v002 sum(1/(2^n+(5/2*n^2+61/2*n-27)),n=1..infinity) 1771189866158203 m001 1/ln(GAMMA(2/3))*Tribonacci*cos(1)^2 1771189871539228 m004 -3+(5*Pi)/3+25*Sqrt[5]*Pi-Cos[Sqrt[5]*Pi] 1771189874547059 m004 2+5*Pi+3*Cos[Sqrt[5]*Pi]*Sech[Sqrt[5]*Pi] 1771189874858461 m004 2+5*Pi+(6*Cos[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 1771189875097501 m001 (-LandauRamanujan2nd+Niven)/(2^(1/3)-Kac) 1771189875169863 m004 2+5*Pi+3*Cos[Sqrt[5]*Pi]*Csch[Sqrt[5]*Pi] 1771189877512145 r005 Im(z^2+c),c=-12/25+17/55*I,n=59 1771189880536484 a003 cos(Pi*11/120)*cos(Pi*41/93) 1771189886189739 a001 2207^(34/35) 1771189888939446 m001 exp(FeigenbaumKappa)^2*Rabbit^2*GAMMA(7/12)^2 1771189891279434 m004 25*Sqrt[5]*Pi+(5*Pi*ProductLog[Sqrt[5]*Pi])/16 1771189894313175 r009 Re(z^3+c),c=-25/82+22/37*I,n=31 1771189903387116 a007 Real Root Of 63*x^4-568*x^3-597*x^2+576*x-883 1771189905045492 a007 Real Root Of 19*x^4+304*x^3-538*x^2+663*x-209 1771189907980998 r002 55th iterates of z^2 + 1771189909329568 l006 ln(1187/6977) 1771189909329568 p004 log(6977/1187) 1771189910782550 l006 ln(4593/5483) 1771189915872632 a007 Real Root Of -708*x^4-645*x^3+669*x^2-821*x-169 1771189920272155 k001 Champernowne real with 128*n+1643 1771189933792424 r005 Im(z^2+c),c=-51/110+23/55*I,n=12 1771189938104040 m001 1/GAMMA(3/4)/Ei(1)*exp(sqrt(2)) 1771189938104040 m001 exp(sqrt(2))/Ei(1)/GAMMA(3/4) 1771189940330141 a007 Real Root Of -607*x^4-714*x^3+826*x^2+36*x-521 1771189946222141 a007 Real Root Of -114*x^4+824*x^3-806*x^2-26*x-882 1771189947658170 m001 LandauRamanujan2nd^HeathBrownMoroz*Pi^(1/2) 1771189954286789 m008 (1/6*Pi^5+4/5)/(3*Pi^4+1/4) 1771189954781143 r005 Re(z^2+c),c=-75/62+3/29*I,n=32 1771189956119984 a007 Real Root Of 446*x^4+711*x^3+143*x^2+816*x+558 1771189956402816 a001 7/317811*6765^(13/55) 1771189956588910 a001 9/98209*10946^(48/59) 1771189963745554 r005 Re(z^2+c),c=-109/90+1/31*I,n=46 1771189969572628 r005 Im(z^2+c),c=6/25+3/44*I,n=9 1771189973537479 m001 1/BesselK(1,1)^2*DuboisRaymond/ln(GAMMA(2/3)) 1771189973759071 r005 Re(z^2+c),c=-17/122+16/37*I,n=4 1771189974700092 a007 Real Root Of 267*x^4+171*x^3-27*x^2+971*x+127 1771189974835418 m005 (1/3*Catalan+2/3)/(1/10*Zeta(3)+3/7) 1771189979123173 q001 4242/2395 1771189980591373 m001 (Bloch+FeigenbaumDelta)/(3^(1/3)-Zeta(1/2)) 1771189984883004 m001 (ln(2)/ln(10)+gamma(1))/(Kac+LaplaceLimit) 1771189986110851 m001 (-Bloch+Landau)/(Shi(1)+Zeta(1/2)) 1771189992115641 r005 Im(z^2+c),c=-39/70+25/58*I,n=42 1771189995824255 a007 Real Root Of 180*x^4-12*x^3-491*x^2-209*x-668 1771189995951051 r009 Re(z^3+c),c=-5/22+18/55*I,n=20 1771190008606462 m001 (gamma(3)+KhinchinLevy)/(OneNinth-ZetaP(3)) 1771190016718719 r009 Re(z^3+c),c=-5/22+18/55*I,n=23 1771190017277198 a007 Real Root Of 111*x^4+13*x^3+100*x^2+372*x-675 1771190018157911 r009 Re(z^3+c),c=-5/22+18/55*I,n=26 1771190018255747 r009 Re(z^3+c),c=-5/22+18/55*I,n=29 1771190018262270 r009 Re(z^3+c),c=-5/22+18/55*I,n=32 1771190018262696 r009 Re(z^3+c),c=-5/22+18/55*I,n=35 1771190018262723 r009 Re(z^3+c),c=-5/22+18/55*I,n=38 1771190018262724 r009 Re(z^3+c),c=-5/22+18/55*I,n=37 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=41 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=40 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=43 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=44 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=46 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=47 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=49 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=50 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=52 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=53 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=55 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=58 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=56 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=61 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=64 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=62 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=63 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=59 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=60 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=57 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=54 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=51 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=48 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=45 1771190018262725 r009 Re(z^3+c),c=-5/22+18/55*I,n=42 1771190018262726 r009 Re(z^3+c),c=-5/22+18/55*I,n=39 1771190018262729 r009 Re(z^3+c),c=-5/22+18/55*I,n=34 1771190018262737 r009 Re(z^3+c),c=-5/22+18/55*I,n=36 1771190018262888 r009 Re(z^3+c),c=-5/22+18/55*I,n=33 1771190018262947 r009 Re(z^3+c),c=-5/22+18/55*I,n=31 1771190018264864 r009 Re(z^3+c),c=-5/22+18/55*I,n=30 1771190018268335 r009 Re(z^3+c),c=-5/22+18/55*I,n=28 1771190018289704 r009 Re(z^3+c),c=-5/22+18/55*I,n=27 1771190018377864 r009 Re(z^3+c),c=-5/22+18/55*I,n=25 1771190018586424 r009 Re(z^3+c),c=-5/22+18/55*I,n=24 1771190019093827 r005 Im(z^2+c),c=-23/60+13/36*I,n=7 1771190020292158 k001 Champernowne real with 129*n+1642 1771190020400328 r009 Re(z^3+c),c=-5/22+18/55*I,n=22 1771190021827665 a003 cos(Pi*19/118)+sin(Pi*23/65) 1771190021865602 r009 Re(z^3+c),c=-5/22+18/55*I,n=21 1771190024182733 m001 (Zeta(5)+arctan(1/2))/GaussAGM(1,1/sqrt(2)) 1771190031275673 m001 exp(GAMMA(1/12))*FeigenbaumB/arctan(1/2) 1771190031553036 m001 (exp(Pi)+3^(1/2))/(-ln(3)+FeigenbaumAlpha) 1771190033135413 r005 Im(z^2+c),c=-11/38+39/64*I,n=16 1771190033722035 m001 (FeigenbaumMu-Robbin)/(gamma(3)+GAMMA(13/24)) 1771190038835960 m001 (2^(1/3)-Catalan)/(LambertW(1)+exp(1/Pi)) 1771190040786356 r005 Re(z^2+c),c=21/62+19/63*I,n=49 1771190046010385 a007 Real Root Of 139*x^4+68*x^3+510*x^2-645*x-130 1771190047634608 m004 4/5+25*Sqrt[5]*Pi+125*Pi*Sech[Sqrt[5]*Pi] 1771190050013878 r009 Im(z^3+c),c=-5/12+4/57*I,n=10 1771190051334896 a003 sin(Pi*37/117)/cos(Pi*35/102) 1771190051783109 r005 Im(z^2+c),c=6/23+3/59*I,n=30 1771190053336438 r009 Re(z^3+c),c=-5/22+18/55*I,n=18 1771190055587963 r009 Re(z^3+c),c=-5/22+18/55*I,n=19 1771190058690786 m004 4/5+25*Sqrt[5]*Pi+125*Pi*Csch[Sqrt[5]*Pi] 1771190073657336 m001 (MinimumGamma+StronglyCareFree)^Rabbit 1771190074063515 r004 Im(z^2+c),c=5/38-3/22*I,z(0)=exp(1/8*I*Pi),n=8 1771190078401271 m005 (4*Pi+3/5)/(2/5*Pi-2) 1771190078401271 m006 (3/5/Pi+4)/(2/Pi-2/5) 1771190078401271 m008 (4*Pi+3/5)/(2/5*Pi-2) 1771190080979946 l006 ln(835/4908) 1771190082526908 r009 Re(z^3+c),c=-19/82+12/35*I,n=16 1771190085156949 r005 Re(z^2+c),c=-1/8+9/23*I,n=33 1771190087630540 m001 (BesselI(0,1)-PrimesInBinary)/(-Totient+Thue) 1771190088687213 a001 521/2178309*46368^(34/41) 1771190089579534 a007 Real Root Of -353*x^4-697*x^3-141*x^2+505*x+938 1771190092222866 a007 Real Root Of 488*x^4+231*x^3-835*x^2+513*x+9 1771190093511193 m001 Rabbit/(FeigenbaumDelta-Robbin) 1771190095350582 a007 Real Root Of -86*x^4+489*x^3+753*x^2-305*x+661 1771190103274266 a001 5/9349*7^(8/13) 1771190103461061 r005 Im(z^2+c),c=-33/32+12/61*I,n=40 1771190103535221 r005 Re(z^2+c),c=-5/32+13/42*I,n=21 1771190106421174 a003 cos(Pi*37/103)/cos(Pi*32/65) 1771190112751493 m009 (3/8*Pi^2-5/6)/(2*Psi(1,1/3)-4) 1771190117925449 a001 34/199*76^(27/50) 1771190119995275 m001 (GAMMA(17/24)+GolombDickman)/(Zeta(5)-ln(Pi)) 1771190120312161 k001 Champernowne real with 130*n+1641 1771190121547381 m002 Pi/ProductLog[Pi]-Sinh[Pi]/10 1771190122171200 p001 sum((-1)^n/(544*n+523)/(6^n),n=0..infinity) 1771190123177609 h001 (7/8*exp(1)+4/9)/(6/11*exp(1)+1/9) 1771190127556229 r005 Im(z^2+c),c=-53/94+17/64*I,n=10 1771190134133037 b008 RiemannSiegelZ[2+10*Sqrt[3]] 1771190135541298 a007 Real Root Of -418*x^4-983*x^3-291*x^2+794*x+971 1771190142098826 r009 Re(z^3+c),c=-15/82+8/59*I,n=5 1771190152900151 r005 Re(z^2+c),c=-3/31+51/59*I,n=10 1771190152931074 r005 Im(z^2+c),c=-25/24+7/29*I,n=41 1771190162494510 q001 4033/2277 1771190163509466 m003 35/2+(Sqrt[5]*ProductLog[1/2+Sqrt[5]/2])/8 1771190164794269 a007 Real Root Of -906*x^4-969*x^3+872*x^2-762*x-553 1771190168439975 r002 39th iterates of z^2 + 1771190170858922 m001 (ln(gamma)+3^(1/3))/(3^(1/2)-5^(1/2)) 1771190174750808 h001 (2/11*exp(1)+7/11)/(1/7*exp(1)+1/4) 1771190175705778 m005 (1/2*Pi+3)/(2/5*5^(1/2)-7/11) 1771190180929056 m005 (3/4*exp(1)-5/6)/(7/3+2*5^(1/2)) 1771190181178258 l006 ln(6745/8052) 1771190188333828 b008 ProductLog[10+Sin[E]] 1771190191047892 r005 Im(z^2+c),c=13/58+5/59*I,n=28 1771190206370812 m001 (OneNinth+ReciprocalLucas)/(Kac+Landau) 1771190214168510 r005 Im(z^2+c),c=-47/46+5/27*I,n=9 1771190217088516 r005 Im(z^2+c),c=-61/62+9/52*I,n=12 1771190220332164 k001 Champernowne real with 131*n+1640 1771190221510731 m001 MertensB1*CopelandErdos*exp(GAMMA(11/12)) 1771190226415769 m001 1/Trott^2/FeigenbaumKappa^2/exp(GAMMA(1/6)) 1771190226737356 m005 (1/2*Pi+1/9)/(10/11*3^(1/2)-5/8) 1771190227200596 p003 LerchPhi(1/12,3,13/73) 1771190235219608 m001 (FeigenbaumKappa-sin(1))/(-Otter+ZetaQ(2)) 1771190235569449 l006 ln(1318/7747) 1771190236226928 m001 (Pi+Khinchin)/(MasserGramainDelta+Porter) 1771190245081234 a007 Real Root Of 36*x^4-108*x^3+86*x^2+445*x-436 1771190245198674 r005 Re(z^2+c),c=-5/32+13/42*I,n=22 1771190257734642 a003 cos(Pi*9/82)+sin(Pi*24/77) 1771190261098193 a007 Real Root Of -648*x^4-344*x^3+751*x^2-774*x+739 1771190261702705 m001 (CareFree+Landau)/CareFree 1771190262708599 r009 Re(z^3+c),c=-5/22+18/55*I,n=15 1771190269936354 m001 (ln(5)+Magata)^Grothendieck 1771190276621137 m005 (1/2*gamma+3/11)/(1/7*5^(1/2)-7/11) 1771190277667462 a007 Real Root Of -18*x^4+338*x^3+975*x^2+435*x-233 1771190283346281 a003 cos(Pi*14/113)+sin(Pi*26/81) 1771190286340555 m005 (1/2*Catalan+4)/(7/9*5^(1/2)+7/9) 1771190287657019 b008 ArcCsc[20+Pi^Pi] 1771190289689673 m001 ln(5)^QuadraticClass/(sin(1)^QuadraticClass) 1771190291782841 a007 Real Root Of 823*x^4+958*x^3-801*x^2-252*x-710 1771190298533734 m002 1-Csch[Pi]*Log[Pi]+Tanh[Pi]/Log[Pi] 1771190313013548 m009 (1/10*Pi^2-5/6)/(40*Catalan+5*Pi^2+3/4) 1771190320352167 k001 Champernowne real with 132*n+1639 1771190325262869 m005 (1/3*gamma+1/12)/(3/11*Pi+7/10) 1771190325798421 a001 10946/29*843^(21/23) 1771190329359779 m006 (1/4*exp(Pi)-2/3)/(1/3*Pi^2-2/5) 1771190334993545 r005 Im(z^2+c),c=-95/98+11/62*I,n=34 1771190338990438 a007 Real Root Of -840*x^4+637*x^3+589*x^2+795*x-162 1771190341326152 a007 Real Root Of -972*x^4+339*x^3+664*x^2+374*x-88 1771190353873796 s002 sum(A160079[n]/(n^3*pi^n+1),n=1..infinity) 1771190359290042 m005 (1/3*2^(1/2)+1/11)/(3/10*Pi-5/8) 1771190365910143 q001 3824/2159 1771190373024996 r005 Im(z^2+c),c=-5/8+3/11*I,n=10 1771190374623937 k002 Champernowne real with 65/2*n^2-87/2*n+28 1771190377330484 r005 Im(z^2+c),c=-3/4+133/149*I,n=3 1771190377764198 r005 Re(z^2+c),c=-39/46+7/59*I,n=8 1771190393559070 m001 (HardyLittlewoodC3+Khinchin)/(Chi(1)+Zeta(5)) 1771190393846969 a001 843/1346269*46368^(3/31) 1771190400228966 a007 Real Root Of 390*x^4+50*x^3-721*x^2+177*x-985 1771190404350089 r005 Im(z^2+c),c=-9/8+32/119*I,n=35 1771190409336023 a007 Real Root Of 249*x^4+26*x^3-330*x^2+770*x+93 1771190411820855 r002 6th iterates of z^2 + 1771190415976749 a007 Real Root Of -296*x^4+218*x^3+745*x^2-943*x+117 1771190419486469 m001 ZetaP(2)^(GAMMA(5/6)/polylog(4,1/2)) 1771190420372170 k001 Champernowne real with 133*n+1638 1771190430507420 h001 (1/9*exp(2)+2/7)/(5/6*exp(2)+1/11) 1771190432867515 a001 4/233*24157817^(3/11) 1771190439578922 a007 Real Root Of 338*x^4-87*x^3-870*x^2+356*x-450 1771190450627282 m001 1/Paris/ln(sqrt(Pi)) 1771190452809730 a007 Real Root Of 201*x^4+410*x^3+12*x^2-689*x-958 1771190455040591 m002 -5+5*E^Pi-Pi^3-Pi^4 1771190467425697 m001 (-exp(gamma)+1)/(OneNinth+1/3) 1771190468362464 a007 Real Root Of 519*x^4+947*x^3-96*x^2-383*x-223 1771190468723646 a005 (1/cos(7/117*Pi))^1328 1771190479696058 a007 Real Root Of 695*x^4+763*x^3-351*x^2+786*x-107 1771190481879473 a007 Real Root Of -826*x^4-650*x^3+982*x^2-578*x+413 1771190483074276 a001 3/75025*1836311903^(14/15) 1771190483137209 a001 3/63245986*2504730781961^(14/15) 1771190489765348 m001 1/FeigenbaumAlpha/ln(Conway)*Trott^2 1771190492948726 a007 Real Root Of 116*x^4-285*x^3+550*x^2-913*x+16 1771190495950566 r005 Re(z^2+c),c=5/56+15/58*I,n=25 1771190499107808 r005 Im(z^2+c),c=2/27+5/31*I,n=9 1771190502820398 l006 ln(483/2839) 1771190503702505 m001 (FeigenbaumC+OneNinth)/(gamma+polylog(4,1/2)) 1771190507612197 a007 Real Root Of -788*x^4-511*x^3+966*x^2-982*x+146 1771190508364552 r005 Re(z^2+c),c=-5/86+28/53*I,n=35 1771190512503441 a007 Real Root Of 649*x^4+702*x^3-797*x^2-390*x-677 1771190520392173 k001 Champernowne real with 134*n+1637 1771190522675666 a007 Real Root Of -437*x^4-757*x^3-5*x^2+368*x+762 1771190528824360 m001 (MadelungNaCl-Sarnak)/(sin(1/5*Pi)+gamma(2)) 1771190535544618 a007 Real Root Of -388*x^4-953*x^3-790*x^2-474*x+162 1771190539371506 a007 Real Root Of 200*x^4+106*x^3-633*x^2-518*x-311 1771190540968455 r005 Im(z^2+c),c=13/58+5/59*I,n=27 1771190545463704 m001 exp((2^(1/3)))^2*Paris*Zeta(3)^2 1771190546529057 r005 Im(z^2+c),c=-33/122+5/19*I,n=22 1771190550604128 m005 (1/2*Zeta(3)+1/5)/(5/16+1/16*5^(1/2)) 1771190553970778 a007 Real Root Of -622*x^4-693*x^3+406*x^2-30*x+944 1771190557660444 r005 Im(z^2+c),c=-13/25+13/41*I,n=51 1771190558653779 a003 sin(Pi*24/65)/cos(Pi*44/91) 1771190561932756 a007 Real Root Of 774*x^4+827*x^3-392*x^2+715*x-526 1771190564107456 r009 Re(z^3+c),c=-29/98+17/30*I,n=21 1771190565588002 m001 ArtinRank2^2/CopelandErdos^2*exp(CareFree) 1771190567861861 m002 2+(2*Pi^4*Csch[Pi])/ProductLog[Pi] 1771190576583019 a007 Real Root Of 282*x^4-956*x^3-447*x^2-728*x+148 1771190578062760 r002 25th iterates of z^2 + 1771190580466704 a007 Real Root Of -451*x^4-947*x^3-848*x^2-630*x+721 1771190582358494 m005 (1/2*3^(1/2)+1/10)/(21/10+3/2*5^(1/2)) 1771190582745714 a001 1/6624*13^(24/25) 1771190587119501 m005 (1/3*3^(1/2)-1/2)/(3/11*3^(1/2)-10/11) 1771190591220879 r005 Re(z^2+c),c=-37/31+13/56*I,n=2 1771190592067193 a003 cos(Pi*19/115)*cos(Pi*38/77) 1771190592846643 q001 3615/2041 1771190596100250 r002 3th iterates of z^2 + 1771190596626682 a007 Real Root Of 575*x^4+565*x^3-5*x^2+993*x-745 1771190596654854 h001 (-4*exp(4)-11)/(-6*exp(3)-9) 1771190597117158 m001 (Tetranacci+ZetaP(2))/(Champernowne-Porter) 1771190602979284 a008 Real Root of x^4-24*x^2-33*x+7 1771190603894047 r009 Im(z^3+c),c=-21/52+37/58*I,n=19 1771190608047087 m001 exp(1/Pi)+BesselK(1,1)^MasserGramainDelta 1771190609958603 r009 Re(z^3+c),c=-1/60+49/52*I,n=5 1771190613378642 a007 Real Root Of 244*x^4+535*x^3+330*x^2+490*x+404 1771190613575144 m001 (5^(1/2)-gamma(1))/Conway 1771190614863876 a007 Real Root Of -789*x^4-677*x^3+649*x^2-991*x+212 1771190620267492 m001 ((2^(1/3))-exp(gamma)*Cahen)/Cahen 1771190620412176 k001 Champernowne real with 135*n+1636 1771190621901286 m001 Khintchine*HardHexagonsEntropy^2*ln(Zeta(3))^2 1771190622980183 h003 exp(Pi*(14^(7/5)-12^(4/7))) 1771190622980183 h008 exp(Pi*(14^(7/5)-12^(4/7))) 1771190624529008 r005 Im(z^2+c),c=-9/17+4/63*I,n=8 1771190626943703 g004 abs(GAMMA(-58/15+I*(-53/15))) 1771190628185813 m001 (exp(1/Pi)+MertensB2)/(Stephens-TreeGrowth2nd) 1771190638947233 s002 sum(A017151[n]/(n*exp(pi*n)+1),n=1..infinity) 1771190639917260 m001 (Conway+GaussAGM)/(Gompertz-PlouffeB) 1771190642707801 r009 Re(z^3+c),c=-5/22+18/55*I,n=16 1771190644273223 p001 sum((-1)^n/(597*n+554)/(25^n),n=0..infinity) 1771190644618998 r005 Im(z^2+c),c=-71/106+10/53*I,n=22 1771190645263743 a003 cos(Pi*12/89)+cos(Pi*7/41) 1771190647257970 a001 305/2*29^(2/45) 1771190649821565 r005 Im(z^2+c),c=-45/34+9/86*I,n=27 1771190662376097 m001 MadelungNaCl*(BesselI(0,1)-BesselI(0,2)) 1771190667167956 r005 Im(z^2+c),c=-17/26+57/115*I,n=17 1771190671743496 m004 -2/5+5*Pi+(5*Sqrt[5]*Sin[Sqrt[5]*Pi])/Pi 1771190675437021 r005 Im(z^2+c),c=-101/118+8/61*I,n=48 1771190678589846 a007 Real Root Of 440*x^4+488*x^3-461*x^2+496*x+706 1771190688026574 a007 Real Root Of -695*x^4-401*x^3+705*x^2-887*x+829 1771190689455572 a007 Real Root Of 447*x^4+479*x^3-539*x^2+482*x+807 1771190694000348 a001 610/4870847*199^(29/31) 1771190694361208 m001 exp(MadelungNaCl)/Backhouse^2/GAMMA(7/12) 1771190700029760 m001 GAMMA(11/12)/(ZetaQ(4)^Otter) 1771190704138887 b008 9*15^(1/4) 1771190711787871 a007 Real Root Of -244*x^4+789*x^3-202*x^2-236*x-931 1771190713493823 h005 exp(sin(Pi*2/51)/cos(Pi*25/58)) 1771190714664346 r009 Re(z^3+c),c=-19/102+47/50*I,n=33 1771190716448032 q001 7021/3964 1771190717707659 m001 ((1+3^(1/2))^(1/2)-ln(3)*Stephens)/Stephens 1771190718013443 a007 Real Root Of 486*x^4+312*x^3-341*x^2+937*x-320 1771190718654249 m001 Zeta(1,-1)+Riemann3rdZero*TravellingSalesman 1771190720432179 k001 Champernowne real with 136*n+1635 1771190725754995 l006 ln(1580/9287) 1771190725959100 m001 Zeta(1,2)^GAMMA(7/24)-cos(Pi/12) 1771190727024933 r005 Re(z^2+c),c=17/114+23/59*I,n=46 1771190731632291 m004 -1/36+25*Sqrt[5]*Pi+ProductLog[Sqrt[5]*Pi] 1771190732992147 m001 Sierpinski/exp(Paris)/GAMMA(1/12)^2 1771190742843983 r005 Re(z^2+c),c=-9/82+20/47*I,n=37 1771190745709646 r002 40th iterates of z^2 + 1771190745709646 r002 40th iterates of z^2 + 1771190747362169 m001 BesselI(1,1)^ThueMorse/(BesselI(1,1)^sqrt(2)) 1771190752830450 m001 (MertensB1-Otter)/(Ei(1)-Artin) 1771190758282085 l006 ln(2152/2569) 1771190760379676 m005 (1/2*gamma+4/7)/(1/4*gamma-5) 1771190764814748 m004 6-Sin[Sqrt[5]*Pi]+Pi*Sinh[Sqrt[5]*Pi] 1771190764952646 a007 Real Root Of -571*x^4+909*x^3+583*x^2+862*x+140 1771190765374616 m005 (1/2*2^(1/2)-4)/(5*exp(1)+5) 1771190767678587 r005 Re(z^2+c),c=4/21+34/59*I,n=34 1771190769822147 g007 Psi(2,2/11)+Psi(2,1/9)-2*Psi(2,4/7) 1771190770772101 r005 Re(z^2+c),c=25/98+3/14*I,n=20 1771190773333985 m001 Khinchin^(HardHexagonsEntropy*PrimesInBinary) 1771190780970671 a007 Real Root Of 594*x^4+491*x^3-206*x^2-767*x+139 1771190781453953 m001 Tribonacci^(Landau/Trott2nd) 1771190782253541 m001 (Pi^(1/2)+GAMMA(7/12))/(BesselJ(0,1)+ln(3)) 1771190783765531 h001 (-exp(1/3)-6)/(-4*exp(1/3)+6) 1771190784378280 a003 cos(Pi*25/113)*cos(Pi*23/54) 1771190784721276 a001 199/233*121393^(45/53) 1771190792072422 p004 log(28631/4871) 1771190801860423 r005 Re(z^2+c),c=5/56+15/58*I,n=28 1771190804453882 a007 Real Root Of 58*x^4+72*x^3+73*x^2-165*x-692 1771190806061469 a007 Real Root Of 104*x^4+307*x^3+829*x^2-376*x-91 1771190807784672 a007 Real Root Of 686*x^4+975*x^3-654*x^2-433*x-49 1771190810211058 k008 concat of cont frac of 1771190814808710 m001 CareFree^2*DuboisRaymond*ln(FeigenbaumB) 1771190815037863 m001 (1-Pi*csc(7/24*Pi)/GAMMA(17/24))/sinh(1) 1771190818242754 r005 Im(z^2+c),c=-73/74+11/60*I,n=47 1771190819968069 a007 Real Root Of -328*x^4-119*x^3+579*x^2+28*x+800 1771190820452182 k001 Champernowne real with 137*n+1634 1771190823911233 l006 ln(1097/6448) 1771190828038638 a007 Real Root Of 85*x^4-543*x^3-994*x^2+820*x+717 1771190832031473 m001 1/Zeta(9)^2*GAMMA(1/6)*exp(sqrt(3))^2 1771190833755639 r005 Re(z^2+c),c=-5/6+10/107*I,n=58 1771190839471970 a007 Real Root Of 315*x^4+354*x^3+284*x^2+804*x-600 1771190841643977 a001 34/271443*76^(2/25) 1771190846391276 b008 2*Sqrt[3]+Sqrt[203] 1771190846820219 r005 Im(z^2+c),c=-7/36+12/49*I,n=8 1771190847633905 q001 3406/1923 1771190852457049 a001 124/615*2178309^(28/45) 1771190853851187 m002 -Pi-Pi^2+ProductLog[Pi]-Sinh[Pi]/2 1771190858050487 a007 Real Root Of 244*x^4-943*x^3+466*x^2+330*x+792 1771190860507943 a007 Real Root Of -446*x^4-487*x^3+676*x^2-207*x-804 1771190862887386 l003 sinh(1+37/110) 1771190862887386 l004 sinh(147/110) 1771190864503020 r005 Im(z^2+c),c=-19/32+11/35*I,n=44 1771190881908374 r005 Im(z^2+c),c=-8/17+11/40*I,n=8 1771190884566874 r005 Im(z^2+c),c=23/110+2/21*I,n=21 1771190889486377 a007 Real Root Of 4*x^4+708*x^3-89*x^2-815*x+843 1771190890297760 m001 1/GolombDickman^2/Artin/exp(GAMMA(2/3)) 1771190890447889 r009 Re(z^3+c),c=-17/64+37/56*I,n=27 1771190900043870 a007 Real Root Of 38*x^4+652*x^3-388*x^2-319*x-907 1771190900432168 r005 Re(z^2+c),c=-53/42+3/40*I,n=19 1771190912476915 a003 cos(Pi*14/73)*cos(Pi*25/58) 1771190914552286 l006 ln(1711/10057) 1771190920472185 k001 Champernowne real with 138*n+1633 1771190922156764 l003 hypergeom([1/4,3/4],[1],39/40) 1771190924470325 m001 1/cosh(1)^2*MinimumGamma/ln(sqrt(2)) 1771190936139197 v002 sum(1/(2^n*(10*n^2+10*n+18)),n=1..infinity) 1771190936802542 a001 2/121393*13^(25/27) 1771190937954591 a007 Real Root Of -664*x^4-849*x^3+215*x^2-560*x+151 1771190944568786 r005 Re(z^2+c),c=37/122+10/39*I,n=50 1771190947807068 a007 Real Root Of 108*x^4-235*x^3-305*x^2+381*x-737 1771190949835682 m001 exp(GAMMA(2/3))*Backhouse^2/arctan(1/2) 1771190950970034 a005 (1/sin(43/132*Pi))^266 1771190951740001 a007 Real Root Of -853*x^4-992*x^3+878*x^2-103*x-54 1771190955719103 a007 Real Root Of -16*x^4+517*x^3-411*x^2-241*x-999 1771190973675467 r009 Re(z^3+c),c=-13/31+15/34*I,n=3 1771190981387821 s002 sum(A139835[n]/(n^2*pi^n+1),n=1..infinity) 1771190982513935 r005 Im(z^2+c),c=-11/14+40/197*I,n=4 1771190983703797 a007 Real Root Of 301*x^4+236*x^3-663*x^2-398*x-276 1771190987124463 q001 6603/3728 1771190990380645 a008 Real Root of x^4-18*x^2-112*x+245 1771190993299249 a007 Real Root Of -634*x^4-648*x^3+708*x^2-442*x-365 1771191001677680 r002 4th iterates of z^2 + 1771191002179175 a007 Real Root Of 655*x^4+646*x^3-288*x^2+672*x-763 1771191003372387 m001 (Porter+Trott)/(gamma(3)+FeigenbaumB) 1771191003428606 m001 (exp(Pi)+2^(1/3))/(-Ei(1)+polylog(4,1/2)) 1771191005353559 s002 sum(A101767[n]/(n^2*10^n-1),n=1..infinity) 1771191011049004 r005 Im(z^2+c),c=-5/6+7/58*I,n=43 1771191011332141 k008 concat of cont frac of 1771191013441968 r009 Im(z^3+c),c=-47/110+2/57*I,n=36 1771191020492188 k001 Champernowne real with 139*n+1632 1771191025613552 h001 (5/11*exp(2)+2/11)/(5/8*exp(1)+3/10) 1771191027751020 a003 cos(Pi*13/67)-sin(Pi*29/61) 1771191053927178 r005 Re(z^2+c),c=5/56+15/58*I,n=29 1771191068594303 a001 2255/281*29^(34/37) 1771191071250909 a007 Real Root Of -376*x^4-146*x^3+853*x^2-576*x-807 1771191071884574 h001 (-2*exp(1/2)-9)/(-8*exp(-1)-4) 1771191076495646 l006 ln(614/3609) 1771191076921499 a007 Real Root Of 708*x^4+570*x^3+95*x^2-304*x+47 1771191083352839 a007 Real Root Of -561*x^4-964*x^3+69*x^2-270*x-530 1771191089589352 m007 (-4*gamma-1/2)/(-gamma-3*ln(2)+1/2*Pi-1/2) 1771191090313536 m001 (5^(1/2))^cos(1/5*Pi)/((5^(1/2))^Paris) 1771191095566178 a007 Real Root Of 32*x^4-956*x^3+858*x^2+820*x+853 1771191098817032 r005 Re(z^2+c),c=-77/64+5/52*I,n=34 1771191103123811 k009 concat of cont frac of 1771191104702115 a007 Real Root Of -751*x^4+533*x^3-741*x^2+269*x+5 1771191111211984 k008 concat of cont frac of 1771191111271225 k008 concat of cont frac of 1771191112111316 k008 concat of cont frac of 1771191112314519 k006 concat of cont frac of 1771191112741191 k006 concat of cont frac of 1771191120512191 k001 Champernowne real with 140*n+1631 1771191121162461 k008 concat of cont frac of 1771191122811411 k008 concat of cont frac of 1771191125871008 r005 Re(z^2+c),c=15/56+7/31*I,n=26 1771191127161114 k008 concat of cont frac of 1771191131902968 m001 (LaplaceLimit+Otter)/(Pi-ln(3)) 1771191134868927 a007 Real Root Of -850*x^4+688*x^3+642*x^2+923*x+148 1771191134983572 m001 (Pi^(1/2)*Mills-ZetaQ(4))/Mills 1771191135734072 q001 3197/1805 1771191136799552 r005 Re(z^2+c),c=5/56+15/58*I,n=32 1771191142689924 m001 (GAMMA(13/24)+Mills)/(gamma(1)-BesselI(1,2)) 1771191146637587 a007 Real Root Of -62*x^4+635*x^3-65*x^2-991*x-959 1771191147382211 k008 concat of cont frac of 1771191149169218 r005 Re(z^2+c),c=5/56+15/58*I,n=33 1771191149298819 a007 Real Root Of 710*x^4+829*x^3-494*x^2+269*x-355 1771191149947874 m001 (sin(1/5*Pi)+Cahen)/(3^(1/2)-Zeta(5)) 1771191151342431 k007 concat of cont frac of 1771191154417593 a001 75025/2207*29^(25/51) 1771191160387057 r005 Re(z^2+c),c=5/56+15/58*I,n=36 1771191160625495 r005 Re(z^2+c),c=5/56+15/58*I,n=37 1771191161214132 k007 concat of cont frac of 1771191161807858 r005 Re(z^2+c),c=5/56+15/58*I,n=41 1771191161855514 r005 Re(z^2+c),c=5/56+15/58*I,n=40 1771191161918569 r005 Re(z^2+c),c=5/56+15/58*I,n=45 1771191161927902 r005 Re(z^2+c),c=5/56+15/58*I,n=44 1771191161928172 r005 Re(z^2+c),c=5/56+15/58*I,n=49 1771191161928592 r005 Re(z^2+c),c=5/56+15/58*I,n=46 1771191161928856 r005 Re(z^2+c),c=5/56+15/58*I,n=50 1771191161928949 r005 Re(z^2+c),c=5/56+15/58*I,n=53 1771191161928989 r005 Re(z^2+c),c=5/56+15/58*I,n=54 1771191161929007 r005 Re(z^2+c),c=5/56+15/58*I,n=57 1771191161929009 r005 Re(z^2+c),c=5/56+15/58*I,n=58 1771191161929011 r005 Re(z^2+c),c=5/56+15/58*I,n=62 1771191161929011 r005 Re(z^2+c),c=5/56+15/58*I,n=61 1771191161929011 r005 Re(z^2+c),c=5/56+15/58*I,n=63 1771191161929011 r005 Re(z^2+c),c=5/56+15/58*I,n=64 1771191161929012 r005 Re(z^2+c),c=5/56+15/58*I,n=60 1771191161929012 r005 Re(z^2+c),c=5/56+15/58*I,n=59 1771191161929019 r005 Re(z^2+c),c=5/56+15/58*I,n=56 1771191161929028 r005 Re(z^2+c),c=5/56+15/58*I,n=55 1771191161929072 r005 Re(z^2+c),c=5/56+15/58*I,n=52 1771191161929242 r005 Re(z^2+c),c=5/56+15/58*I,n=51 1771191161929344 r005 Re(z^2+c),c=5/56+15/58*I,n=48 1771191161931997 r005 Re(z^2+c),c=5/56+15/58*I,n=47 1771191161941654 r005 Re(z^2+c),c=5/56+15/58*I,n=42 1771191161964897 r005 Re(z^2+c),c=5/56+15/58*I,n=43 1771191162281984 r005 Re(z^2+c),c=5/56+15/58*I,n=38 1771191162330480 r005 Re(z^2+c),c=5/56+15/58*I,n=39 1771191166064233 r005 Re(z^2+c),c=5/56+15/58*I,n=35 1771191168282521 r005 Re(z^2+c),c=5/56+15/58*I,n=34 1771191170281323 m005 (1/2*Catalan+3/7)/(5/8*2^(1/2)-8/9) 1771191171996782 r005 Im(z^2+c),c=-36/31+1/44*I,n=54 1771191173773770 a001 377*123^(4/5) 1771191176043527 m001 HardyLittlewoodC5/(BesselI(0,1)-MertensB2) 1771191177911420 a001 34/29*2^(25/42) 1771191184418899 r005 Im(z^2+c),c=-17/30+23/91*I,n=12 1771191185809179 m001 3^(1/3)-Shi(1)-exp(-1/2*Pi) 1771191186057946 m001 (ln(gamma)+FeigenbaumC)/Sarnak 1771191191541412 k008 concat of cont frac of 1771191192991504 a007 Real Root Of 347*x^4+356*x^3-96*x^2+814*x+306 1771191195245982 a007 Real Root Of -619*x^4-670*x^3+513*x^2-849*x-744 1771191199945784 r005 Re(z^2+c),c=5/56+15/58*I,n=31 1771191203106767 a003 cos(Pi*6/115)+sin(Pi*29/101) 1771191205407672 m001 (Zeta(5)-FeigenbaumB)/(Lehmer-MadelungNaCl) 1771191208025824 a007 Real Root Of 395*x^4+360*x^3-877*x^2-716*x-404 1771191208289958 m008 (2/5*Pi+1)/(2/5*Pi^5+5) 1771191211211321 k008 concat of cont frac of 1771191211359653 a007 Real Root Of -940*x^4-463*x^3+272*x^2+762*x-140 1771191211516171 k009 concat of cont frac of 1771191214521102 k006 concat of cont frac of 1771191216934087 p004 log(11597/1973) 1771191219388041 r009 Re(z^3+c),c=-25/86+31/58*I,n=28 1771191220532194 k001 Champernowne real with 141*n+1630 1771191221212112 k008 concat of cont frac of 1771191226194708 l006 ln(8319/9931) 1771191227823306 a007 Real Root Of -161*x^4-60*x^3+689*x^2+938*x+751 1771191229172049 m001 (MertensB3+Salem)/(Totient+ZetaP(4)) 1771191232265319 k006 concat of cont frac of 1771191233524510 r005 Im(z^2+c),c=-41/40+11/56*I,n=43 1771191238896712 r009 Re(z^3+c),c=-5/29+2/55*I,n=4 1771191242140918 m005 (1/2*Catalan+3/10)/(1/8*5^(1/2)+4) 1771191247623425 m001 CopelandErdos^ln(2)+OrthogonalArrays 1771191248964114 a007 Real Root Of -47*x^4-870*x^3-698*x^2-588*x-33 1771191251777980 m005 (1/2*Pi-11/12)/(53/198+1/22*5^(1/2)) 1771191258042063 a001 682/10182505537*5702887^(4/19) 1771191258042066 a001 1364/139583862445*53316291173^(4/19) 1771191258266910 r005 Re(z^2+c),c=5/56+15/58*I,n=30 1771191261115311 k008 concat of cont frac of 1771191267660202 r009 Re(z^3+c),c=-25/78+31/50*I,n=58 1771191269816207 r005 Re(z^2+c),c=5/56+15/58*I,n=21 1771191271413641 a001 47*(1/2*5^(1/2)+1/2)^5*4^(15/17) 1771191277956911 m001 Riemann3rdZero^2/ln(Si(Pi))^2*Zeta(5)^2 1771191280384562 l006 ln(1359/7988) 1771191280642068 a001 1364/233*21^(4/11) 1771191281308075 h001 (-5*exp(1)+5)/(-3*exp(-3)+5) 1771191285781069 a007 Real Root Of -19*x^4+379*x^3+608*x^2-378*x-284 1771191286351288 m001 Ei(1)^(Lehmer/LaplaceLimit) 1771191288375937 m009 (2/5*Psi(1,2/3)-3)/(48*Catalan+6*Pi^2-3) 1771191292542391 a001 199/591286729879*21^(6/11) 1771191294387170 q001 6185/3492 1771191299765851 m001 ln(5)^(Chi(1)/ArtinRank2) 1771191308868772 m001 exp(PrimesInBinary)/ArtinRank2/GAMMA(3/4) 1771191311141715 a005 (1/cos(19/201*Pi))^733 1771191311904219 a001 4/1346269*89^(51/56) 1771191314807391 s002 sum(A285520[n]/((pi^n-1)/n),n=1..infinity) 1771191315357381 r002 40th iterates of z^2 + 1771191316114221 k006 concat of cont frac of 1771191316182925 a001 48/41*7^(10/47) 1771191318221904 r002 40th iterates of z^2 + 1771191320552197 k001 Champernowne real with 142*n+1629 1771191321341522 k006 concat of cont frac of 1771191331780930 a007 Real Root Of 71*x^4-10*x^3-226*x^2+204*x+316 1771191332706212 a007 Real Root Of 437*x^4+972*x^3-43*x^2-673*x+43 1771191334498881 a003 cos(Pi*25/117)+sin(Pi*23/51) 1771191336214121 k006 concat of cont frac of 1771191338091734 a007 Real Root Of 115*x^4-605*x^3-354*x^2-50*x+1 1771191340676949 a007 Real Root Of 230*x^4-669*x^3-99*x^2+733*x+466 1771191342443682 a007 Real Root Of 961*x^4-864*x^3+604*x^2-380*x-92 1771191346313703 r005 Re(z^2+c),c=-29/24+2/51*I,n=56 1771191349046802 m001 (RenyiParking-ZetaP(4))/(Pi+MasserGramain) 1771191349599915 a007 Real Root Of -884*x^4-958*x^3+982*x^2-563*x-701 1771191352115721 k008 concat of cont frac of 1771191361261942 m001 KomornikLoreti-ZetaQ(2)^(2^(1/2)) 1771191361531364 a007 Real Root Of -456*x^4-358*x^3+533*x^2-186*x+497 1771191377629947 k002 Champernowne real with 33*n^2-45*n+29 1771191381530056 p003 LerchPhi(1/3,2,365/139) 1771191383786332 r005 Im(z^2+c),c=-5/21+12/47*I,n=17 1771191384027708 a007 Real Root Of 798*x^4+642*x^3-714*x^2+632*x-927 1771191384789149 a007 Real Root Of 478*x^4+588*x^3+9*x^2+934*x+189 1771191387529871 m004 2+5*Pi+(3*Csc[Sqrt[5]*Pi])/E^(Sqrt[5]*Pi) 1771191389474736 l006 ln(6167/7362) 1771191391850463 m001 (Pi-1)/(Champernowne-MertensB3) 1771191392678380 m001 MasserGramainDelta^GAMMA(13/24)*Robbin 1771191393201337 m001 1/ln(MertensB1)/Cahen^2/Zeta(7)^2 1771191405518692 a001 1/105937*1597^(22/31) 1771191409892203 m001 GAMMA(17/24)^BesselK(1,1)/(Trott^BesselK(1,1)) 1771191412044163 a007 Real Root Of -658*x^4-402*x^3+817*x^2-590*x+634 1771191416687495 a007 Real Root Of 288*x^4-679*x^3+530*x^2-126*x-43 1771191419531626 r005 Im(z^2+c),c=-103/102+5/26*I,n=32 1771191420572200 k001 Champernowne real with 143*n+1628 1771191436657841 h001 (1/12*exp(2)+1/4)/(3/5*exp(2)+5/11) 1771191444367596 m001 (exp(1)+5^(1/2))/(cos(1/12*Pi)+FeigenbaumC) 1771191444552834 r005 Im(z^2+c),c=-35/64+10/23*I,n=31 1771191447009870 a007 Real Root Of 771*x^4+792*x^3-548*x^2+494*x-593 1771191447560657 r005 Re(z^2+c),c=5/56+15/58*I,n=27 1771191447805850 a008 Real Root of x^2-x-296 1771191448421838 l006 ln(745/4379) 1771191450791009 r002 44th iterates of z^2 + 1771191451313139 k007 concat of cont frac of 1771191451599676 a001 123/20365011074*317811^(4/15) 1771191451600611 a001 123/956722026041*591286729879^(4/15) 1771191451600611 a001 123/139583862445*433494437^(4/15) 1771191458462755 a001 1364/2971215073*610^(4/19) 1771191464137522 q001 2988/1687 1771191464373501 b008 9*E*Tanh[Catalan] 1771191464557484 q001 1/5645917 1771191464941818 a001 98209/2889*29^(25/51) 1771191466259129 m001 (Bloch+FeigenbaumB)/(Salem-TreeGrowth2nd) 1771191472127598 m005 (1/3*Zeta(3)-1/11)/(47/55+2/5*5^(1/2)) 1771191476386716 v003 sum((5/6*n^3+25/6*n)/n^(n-1),n=1..infinity) 1771191480857118 r005 Re(z^2+c),c=-7/78+7/15*I,n=53 1771191484056365 m001 (Bloch-Psi(2,1/3))/(-FellerTornier+ZetaQ(3)) 1771191486913164 a001 233/322*3^(22/27) 1771191488506187 r005 Re(z^2+c),c=-7/18+29/49*I,n=19 1771191502891107 r009 Re(z^3+c),c=-9/52+55/63*I,n=51 1771191508029198 a001 75025/199*29^(17/37) 1771191510246700 a001 514229/15127*29^(25/51) 1771191511127915 g006 Psi(1,8/11)+Psi(1,7/10)+Psi(1,2/5)+1/2*Pi^2 1771191511231645 k008 concat of cont frac of 1771191512372313 k008 concat of cont frac of 1771191512591062 a007 Real Root Of 128*x^4-629*x^3-894*x^2+537*x-999 1771191515228406 r009 Re(z^3+c),c=-37/122+37/58*I,n=43 1771191515671138 m001 exp(Zeta(1/2))^2/GAMMA(5/24)*Zeta(3)^2 1771191516856594 a001 1346269/39603*29^(25/51) 1771191518416978 a001 2178309/64079*29^(25/51) 1771191519216061 a007 Real Root Of -777*x^4+372*x^3+140*x^2+229*x+39 1771191520592203 k001 Champernowne real with 144*n+1627 1771191520941733 a001 208010/6119*29^(25/51) 1771191527629856 r005 Im(z^2+c),c=-25/48+20/63*I,n=55 1771191529217991 m001 (Pi-ln(5))^Totient 1771191532387697 r002 33th iterates of z^2 + 1771191533307569 r005 Re(z^2+c),c=17/106+14/33*I,n=19 1771191538246659 a001 317811/9349*29^(25/51) 1771191538834647 r005 Im(z^2+c),c=-1+28/149*I,n=45 1771191542272386 m001 ZetaP(4)*(3^(1/2)+gamma) 1771191542810504 m001 (MertensB1-ZetaQ(4))/Porter 1771191547269819 m001 (GlaisherKinkelin+GolombDickman)/OneNinth 1771191556688935 a001 514229/199*123^(2/5) 1771191567230008 m001 (LambertW(1)+FeigenbaumC)/GAMMA(2/3) 1771191571108231 s002 sum(A227286[n]/(exp(n)+1),n=1..infinity) 1771191577011424 a007 Real Root Of 418*x^4+527*x^3-682*x^2-826*x-509 1771191577832310 m001 (Niven+Trott2nd)/(cos(1/5*Pi)-KomornikLoreti) 1771191586109644 m001 (ln(Pi)+gamma(2))/(Conway-LaplaceLimit) 1771191589299459 l006 ln(1621/9528) 1771191592927070 m001 BesselJ(0,1)*ZetaQ(4)-Pi^(1/2) 1771191597562615 m001 (ArtinRank2+FellerTornier)/Stephens 1771191597845912 r005 Re(z^2+c),c=-2/31+19/37*I,n=43 1771191600490477 a007 Real Root Of 730*x^4+866*x^3-912*x^2-395*x-211 1771191608666042 m001 ln(Ei(1))^2*Magata^2*GAMMA(11/24)^2 1771191611345211 k006 concat of cont frac of 1771191615663153 a007 Real Root Of 596*x^4+955*x^3+116*x^2+144*x-668 1771191620612206 k001 Champernowne real with 145*n+1626 1771191625416403 r005 Im(z^2+c),c=-17/52+4/15*I,n=8 1771191626193224 a007 Real Root Of 225*x^4+2*x^3-226*x^2+554*x-513 1771191627416239 a003 cos(Pi*7/99)+sin(Pi*29/99) 1771191632522348 h005 exp(cos(Pi*4/31)-cos(Pi*12/31)) 1771191635851815 r009 Re(z^3+c),c=-15/28+24/41*I,n=21 1771191638020502 b008 -18+Erfi[1/4] 1771191642121614 k007 concat of cont frac of 1771191646191646 q001 5767/3256 1771191649224891 m001 DuboisRaymond^(cos(1/5*Pi)/BesselJ(0,1)) 1771191654986994 m005 (1/2*5^(1/2)-1/7)/(2/11*exp(1)-6) 1771191656398909 a007 Real Root Of -303*x^4-229*x^3+520*x^2+106*x+266 1771191656856397 a001 121393/3571*29^(25/51) 1771191657195960 r002 4th iterates of z^2 + 1771191658950031 a001 3571/17711*2178309^(28/45) 1771191660339687 r002 13th iterates of z^2 + 1771191663064597 r009 Im(z^3+c),c=-6/29+56/59*I,n=58 1771191669896564 a007 Real Root Of 539*x^4+728*x^3-254*x^2+338*x+136 1771191676444821 a005 (1/sin(69/146*Pi))^775 1771191680026398 a007 Real Root Of -745*x^4+972*x^3+430*x^2+911*x+154 1771191680615470 m005 1/4*5^(1/2)/(8/9*Pi+4/11) 1771191680754317 r005 Re(z^2+c),c=-1/82+34/41*I,n=3 1771191681629360 m001 BesselJ(1,1)-arctan(1/3)+(1+3^(1/2))^(1/2) 1771191688936126 a007 Real Root Of 270*x^4-80*x^3-768*x^2+527*x+241 1771191694432056 b008 ArcCsch[2*(-1+Sinh[1])] 1771191697239724 m001 (Khinchin+Rabbit)/(ln(5)+HardyLittlewoodC4) 1771191704201190 a007 Real Root Of 115*x^4-432*x^3-914*x^2-126*x-888 1771191704670182 m001 GAMMA(3/4)*(ReciprocalLucas-polylog(4,1/2)) 1771191709109749 l006 ln(876/5149) 1771191711124114 k008 concat of cont frac of 1771191711411129 k006 concat of cont frac of 1771191713163169 m005 (3/5*Pi+1/4)/(3/4*exp(1)-5/6) 1771191714871719 k006 concat of cont frac of 1771191720632209 k001 Champernowne real with 146*n+1625 1771191721481132 s002 sum(A013705[n]/(n^3*exp(n)-1),n=1..infinity) 1771191727165062 m001 (Pi+Zeta(1,-1))/(PolyaRandomWalk3D+Totient) 1771191727787692 l006 ln(4015/4793) 1771191733478114 a007 Real Root Of 200*x^4-614*x^3-222*x^2-812*x+154 1771191733720751 r009 Re(z^3+c),c=-16/27+16/31*I,n=63 1771191735364536 a007 Real Root Of 48*x^4+893*x^3+796*x^2+678*x+265 1771191736094432 a001 2207/233*1346269^(23/33) 1771191743535756 m001 CopelandErdos-KhinchinHarmonic-MertensB1 1771191749520213 m001 (3^(1/2)-Zeta(1,-1))/(Gompertz+Weierstrass) 1771191751330478 r009 Im(z^3+c),c=-6/11+7/31*I,n=31 1771191752527940 m001 (GAMMA(5/6)+ErdosBorwein)/(GaussAGM+Rabbit) 1771191772034519 m005 (1/2*exp(1)+2/9)/(5/11*2^(1/2)+1/4) 1771191776615770 a001 9349/46368*2178309^(28/45) 1771191790574073 m001 ZetaQ(4)/(Riemann3rdZero^ln(2)) 1771191792310190 m005 (1/3*2^(1/2)-1/2)/(2/9*Zeta(3)-3/7) 1771191793782971 a001 24476/121393*2178309^(28/45) 1771191797835597 a001 39603/196418*2178309^(28/45) 1771191804368936 m005 (1/2*5^(1/2)+6/11)/(8/9*Catalan+1/8) 1771191804392884 a001 15127/75025*2178309^(28/45) 1771191810800765 a007 Real Root Of -48*x^4+561*x^3+896*x^2-434*x+10 1771191811740495 r005 Re(z^2+c),c=-7/6+31/230*I,n=18 1771191811955511 m001 (3^(1/3))^2*RenyiParking^2*exp(BesselK(0,1)) 1771191814859362 r009 Re(z^3+c),c=-16/27+16/31*I,n=60 1771191818865640 r002 25th iterates of z^2 + 1771191820652212 k001 Champernowne real with 147*n+1624 1771191824367854 m001 (Bloch+Tetranacci)/(5^(1/2)-ln(2^(1/2)+1)) 1771191826386557 a005 (1/sin(64/199*Pi))^156 1771191827800752 m001 (Pi+gamma(1))/(Niven+Trott2nd) 1771191829002137 a007 Real Root Of 532*x^4+315*x^3-672*x^2+803*x+45 1771191831619850 r009 Re(z^3+c),c=-2/7+25/48*I,n=17 1771191833887940 h005 exp(cos(Pi*15/49)*sin(Pi*19/39)) 1771191838006131 m002 Pi^6+E^Pi*Pi^3*Log[Pi]-Sinh[Pi] 1771191841618345 r005 Re(z^2+c),c=-1/17+31/57*I,n=26 1771191841937539 q001 2779/1569 1771191844190951 m001 ln(BesselJ(1,1))^2*GolombDickman*BesselK(0,1) 1771191844944390 m001 (RenyiParking-Robbin)/(3^(1/3)+Magata) 1771191845156641 a007 Real Root Of 921*x^4-591*x^3-349*x^2-495*x+101 1771191849337197 a001 5778/28657*2178309^(28/45) 1771191852000817 m001 Zeta(5)/GAMMA(13/24)/FeigenbaumMu 1771191853667199 m001 Cahen-MasserGramain^MadelungNaCl 1771191860316719 r005 Im(z^2+c),c=-23/50+1/43*I,n=7 1771191861866032 a007 Real Root Of -285*x^4-736*x^3-619*x^2-244*x+225 1771191865863255 m001 (GAMMA(23/24)+OneNinth)/(LambertW(1)-gamma(1)) 1771191880169653 a007 Real Root Of 331*x^4-285*x^3-913*x^2-676*x-93 1771191883184988 a007 Real Root Of -140*x^4+188*x^3+454*x^2-480*x+148 1771191884259446 h001 (5/6*exp(1)+9/10)/(1/6*exp(2)+5/9) 1771191891493309 a007 Real Root Of -173*x^4+390*x^3+732*x^2-742*x+259 1771191893409221 a007 Real Root Of -605*x^4-970*x^3-51*x^2-501*x-163 1771191893906254 r009 Re(z^3+c),c=-17/40+30/53*I,n=61 1771191894134636 a007 Real Root Of 560*x^4+617*x^3-228*x^2+928*x+276 1771191901972162 l006 ln(1007/5919) 1771191902555110 r005 Im(z^2+c),c=-37/62+13/20*I,n=8 1771191904217957 m001 BesselJ(0,1)/MinimumGamma/Otter 1771191906448354 m001 Lehmer^Zeta(3)/ln(2)*ln(10) 1771191909230859 m005 (43/44+1/4*5^(1/2))/(-33/20+7/20*5^(1/2)) 1771191910060876 a003 cos(Pi*9/107)+cos(Pi*24/119) 1771191913018926 m001 1/Robbin/ln(RenyiParking)^2/Zeta(7) 1771191913134388 k007 concat of cont frac of 1771191916461177 a007 Real Root Of 421*x^4+157*x^3-796*x^2+355*x-145 1771191920672215 k001 Champernowne real with 148*n+1623 1771191921007166 r005 Re(z^2+c),c=-23/114+31/49*I,n=23 1771191924124853 a007 Real Root Of -77*x^4+290*x^3+530*x^2-94*x+540 1771191926207150 m001 (1+Shi(1))/(BesselI(1,1)+Gompertz) 1771191931694773 m001 (5^(1/2)+Conway)^ZetaP(2) 1771191935285831 m004 125*Pi*Sec[Sqrt[5]*Pi]+100*Pi*Sinh[Sqrt[5]*Pi] 1771191938578704 r005 Im(z^2+c),c=-29/90+8/29*I,n=14 1771191945657823 r005 Re(z^2+c),c=-6/29+2/37*I,n=12 1771191955716160 p001 sum((-1)^n/(571*n+112)/n/(8^n),n=1..infinity) 1771191956483842 a007 Real Root Of 613*x^4+149*x^3-342*x^2-992*x+185 1771191956505245 r005 Im(z^2+c),c=-61/118+19/59*I,n=27 1771191960973409 m001 Sierpinski*Salem/ln(GAMMA(1/6)) 1771191968514810 l006 ln(7107/7234) 1771191971746553 a001 5702887/3*14662949395604^(10/11) 1771191971746562 a001 4976784*23725150497407^(19/22) 1771191971746563 a001 2504730781961/3*54018521^(9/11) 1771191971746564 a001 86267571272/3*370248451^(10/11) 1771191971746564 a001 516002918640*969323029^(8/11) 1771191971746564 a001 233802911*73681302247^(10/11) 1771191971746564 a001 1602508992*505019158607^(17/22) 1771191971746564 a001 10983760033*192900153618^(8/11) 1771191971746564 a001 591286729879/3*5600748293801^(6/11) 1771191971746564 a001 3536736619241*3461452808002^(5/11) 1771191971746564 a001 139583862445/3*817138163596^(7/11) 1771191971746564 a001 3536736619241*28143753123^(6/11) 1771191971746564 a001 7778742049/3*9062201101803^(15/22) 1771191971746564 a001 10983760033*10749957122^(9/11) 1771191971746564 a001 4052739537881/3*4106118243^(7/11) 1771191971746564 a001 433494437/3*2139295485799^(9/11) 1771191971746564 a001 139583862445/3*599074578^(19/22) 1771191971746564 a001 3536736619241*228826127^(15/22) 1771191971746564 a001 139583862445/3*87403803^(21/22) 1771191971747029 a001 3536736619241*1860498^(10/11) 1771191973749574 m005 (1/2*Pi-5/7)/(1/10*2^(1/2)-5/8) 1771191974477739 m001 (-exp(-Pi)+1/2)/(-BesselK(0,1)+3) 1771191981648992 m009 (8*Catalan+Pi^2-4)/(4/5*Psi(1,2/3)+5) 1771191986740972 m001 (Riemann3rdZero-Stephens)/(Conway-FeigenbaumD) 1771191987736887 m004 -1/3+25*Sqrt[5]*Pi+2*Tan[Sqrt[5]*Pi] 1771191990876630 m001 (BesselK(1,1)+Salem)/(cos(1)+arctan(1/2)) 1771191992268581 m001 (-Zeta(5)+ln(2^(1/2)+1))/(ln(2)/ln(10)+gamma) 1771192004074597 a005 (1/cos(15/163*Pi))^937 1771192007623885 r005 Re(z^2+c),c=2/29+41/50*I,n=4 1771192008768392 b008 5+63*(1+Sqrt[3]) 1771192015073401 h001 (5/9*exp(2)+9/11)/(9/11*exp(1)+5/9) 1771192020621474 m001 (exp(1)*MinimumGamma+sin(1))/exp(1) 1771192020692218 k001 Champernowne real with 149*n+1622 1771192024234255 m002 -3/(Pi^4*ProductLog[Pi])+ProductLog[Pi]/E^Pi 1771192026750254 r005 Im(z^2+c),c=-2/21+5/23*I,n=14 1771192040333506 a007 Real Root Of 43*x^4+742*x^3-369*x^2-418*x-620 1771192046421447 m001 (exp(1)+Ei(1))/(sin(1/12*Pi)+ZetaQ(4)) 1771192047280186 r002 47th iterates of z^2 + 1771192050432131 l006 ln(1138/6689) 1771192052980132 q001 5349/3020 1771192059105649 s002 sum(A158788[n]/(n!^2),n=1..infinity) 1771192060262320 r005 Re(z^2+c),c=-79/64+1/29*I,n=30 1771192063253089 a007 Real Root Of -277*x^4-188*x^3+609*x^2-424*x-980 1771192066882451 r005 Re(z^2+c),c=-16/19+1/44*I,n=6 1771192068985217 a007 Real Root Of -25*x^4+304*x^3+395*x^2-96*x+526 1771192071146269 a001 3571/53316291173*5702887^(4/19) 1771192071146272 a001 3571/365435296162*53316291173^(4/19) 1771192072269709 m001 (Chi(1)+Zeta(1,2))/(-Bloch+MertensB2) 1771192072824492 a007 Real Root Of 59*x^4-356*x^3-746*x^2+505*x+676 1771192073946788 a007 Real Root Of -364*x^4-369*x^3+234*x^2-774*x-573 1771192079635462 m001 CopelandErdos^PisotVijayaraghavan/FeigenbaumB 1771192079946912 a001 13/521*1322157322203^(13/23) 1771192079960625 h001 (-12*exp(2)+7)/(-exp(2)+12) 1771192080999855 r002 5th iterates of z^2 + 1771192082734260 l006 ln(5878/7017) 1771192083399948 r005 Re(z^2+c),c=-1/114+33/62*I,n=15 1771192083759661 a003 cos(Pi*5/91)+cos(Pi*7/33) 1771192094454170 m001 ReciprocalFibonacci^(BesselI(1,1)*GaussAGM) 1771192099028245 r005 Im(z^2+c),c=-39/46+8/63*I,n=46 1771192102631112 k006 concat of cont frac of 1771192108152742 r002 3th iterates of z^2 + 1771192110436096 a001 34/3010349*199^(13/25) 1771192111111214 k008 concat of cont frac of 1771192114252566 a003 sin(Pi*3/74)/cos(Pi*27/110) 1771192120712221 k001 Champernowne real with 150*n+1621 1771192122142223 k006 concat of cont frac of 1771192123633511 k008 concat of cont frac of 1771192124661405 r009 Re(z^3+c),c=-13/44+11/20*I,n=51 1771192128333417 p004 log(37309/31253) 1771192131904293 m001 (BesselK(0,1)-exp(1/2))/ln(2) 1771192138130296 a007 Real Root Of -364*x^4-399*x^3+233*x^2+137*x+877 1771192142132111 k008 concat of cont frac of 1771192142969353 m001 BesselJ(1,1)/(FransenRobinson^QuadraticClass) 1771192153094115 r005 Re(z^2+c),c=-1/29+37/52*I,n=63 1771192156330014 m005 (2/5*Catalan-1/4)/(5*2^(1/2)-1/2) 1771192157390102 a001 2207/10946*2178309^(28/45) 1771192161323715 m001 (-Riemann2ndZero+Salem)/(gamma+Landau) 1771192161568245 m001 (2^(1/2))^ZetaP(2)*FeigenbaumAlpha^ZetaP(2) 1771192163762963 r005 Im(z^2+c),c=-5/14+17/58*I,n=9 1771192166041366 m005 (1/2*Pi-1/9)/(1/11*3^(1/2)+2/3) 1771192166830628 m001 GAMMA(13/24)/ln(GAMMA(1/6))^2/Pi 1771192168240775 l006 ln(1269/7459) 1771192168700223 r005 Im(z^2+c),c=-11/14+11/130*I,n=60 1771192168827211 s002 sum(A008698[n]/(exp(pi*n)+1),n=1..infinity) 1771192169148044 a005 (1/sin(62/133*Pi))^101 1771192172881079 h001 (-6*exp(3)+5)/(-12*exp(4)+3) 1771192180410904 m005 (1/2*Zeta(3)-5/11)/(1/7*2^(1/2)+5/8) 1771192180905278 m001 (sin(1/5*Pi)+Khinchin)/(Tribonacci+ZetaQ(3)) 1771192189776574 a001 9349/139583862445*5702887^(4/19) 1771192189776577 a001 9349/956722026041*53316291173^(4/19) 1771192191427063 g007 Psi(2,1/7)+Psi(2,2/3)-Psi(2,2/11)-Psi(2,2/9) 1771192191642044 p001 sum((-1)^n/(377*n+302)/n/(8^n),n=1..infinity) 1771192192571576 a007 Real Root Of -505*x^4-727*x^3+720*x^2+226*x-928 1771192194371744 m005 (1/2*Zeta(3)+3/5)/(2/3*2^(1/2)-7/8) 1771192197881308 m001 BesselI(1,2)^(2/3/OneNinth) 1771192201800543 m001 (Chi(1)-exp(Pi))/(-exp(-1/2*Pi)+Porter) 1771192202086544 a001 322/12586269025*46368^(14/23) 1771192202186835 a001 46/1515744265389*2971215073^(14/23) 1771192203655752 m001 (-DuboisRaymond+Rabbit)/(Chi(1)-GAMMA(5/6)) 1771192207084503 a001 12238/182717648081*5702887^(4/19) 1771192207084505 a001 24476/2504730781961*53316291173^(4/19) 1771192209609695 a001 64079/956722026041*5702887^(4/19) 1771192209609698 a001 64079/6557470319842*53316291173^(4/19) 1771192209978116 a001 167761/2504730781961*5702887^(4/19) 1771192210031868 a001 219602/3278735159921*5702887^(4/19) 1771192210044557 a001 101521/1515744265389*5702887^(4/19) 1771192210065088 a001 271443/4052739537881*5702887^(4/19) 1771192210165522 a007 Real Root Of -403*x^4-148*x^3+811*x^2-334*x+8 1771192210205812 a001 51841/774004377960*5702887^(4/19) 1771192210205815 a001 2206/225749145909*53316291173^(4/19) 1771192211077022 r008 a(0)=0,K{-n^6,25+31*n+26*n^2-22*n^3} 1771192211146141 k009 concat of cont frac of 1771192211170350 a001 39603/591286729879*5702887^(4/19) 1771192211170353 a001 39603/4052739537881*53316291173^(4/19) 1771192211207319 r009 Re(z^3+c),c=-11/38+17/32*I,n=38 1771192217781391 a001 2161/32264490531*5702887^(4/19) 1771192217781393 a001 15127/1548008755920*53316291173^(4/19) 1771192218708137 p001 sum(1/(328*n+57)/(16^n),n=0..infinity) 1771192219003685 a007 Real Root Of -322*x^4+786*x^3+171*x^2+958*x+169 1771192220623090 m005 (1/2*Zeta(3)-1/8)/(8/9*5^(1/2)+7/10) 1771192220732224 k001 Champernowne real with 151*n+1620 1771192221515450 m001 (Conway+DuboisRaymond)/(Artin+Bloch) 1771192225367338 r005 Re(z^2+c),c=-2/17+20/49*I,n=32 1771192226811639 a007 Real Root Of -109*x^4+994*x^3-882*x^2+354*x+96 1771192228553719 m001 BesselJ(0,1)*FeigenbaumC^2*exp(cos(Pi/12))^2 1771192232500518 a001 7/514229*1597^(35/36) 1771192235742642 m001 1/Catalan*ln(CopelandErdos)^2*log(1+sqrt(2))^2 1771192236381799 a007 Real Root Of 768*x^4+708*x^3-576*x^2+807*x-388 1771192237725370 a007 Real Root Of -414*x^4-816*x^3+47*x^2-101*x-786 1771192240399513 a007 Real Root Of -428*x^4-940*x^3-617*x^2-211*x+551 1771192243780087 a007 Real Root Of 854*x^4+727*x^3-879*x^2+347*x-993 1771192244865715 r005 Im(z^2+c),c=-20/23+50/61*I,n=3 1771192252742882 r009 Re(z^3+c),c=-19/82+12/35*I,n=15 1771192263094135 a001 2889/43133785636*5702887^(4/19) 1771192263094137 a001 5778/591286729879*53316291173^(4/19) 1771192264002362 l006 ln(1400/8229) 1771192264365204 r005 Re(z^2+c),c=19/60+16/53*I,n=27 1771192265293203 a007 Real Root Of -29*x^4+816*x^3+967*x^2-560*x+794 1771192266833270 l006 ln(7741/9241) 1771192266833270 p004 log(9241/7741) 1771192270260809 a007 Real Root Of 249*x^4+172*x^3-299*x^2+582*x+474 1771192271567053 a001 3571/7778742049*610^(4/19) 1771192272414138 a007 Real Root Of -619*x^4-713*x^3+677*x^2-287*x-502 1771192273370203 r009 Re(z^3+c),c=-17/58+29/51*I,n=14 1771192279509166 r005 Re(z^2+c),c=-19/118+18/61*I,n=15 1771192281185389 q001 257/1451 1771192283325186 m001 (MertensB1+ZetaQ(3))/(BesselJ(1,1)-Lehmer) 1771192296978078 r002 7th iterates of z^2 + 1771192302196358 r005 Im(z^2+c),c=-83/78+9/41*I,n=48 1771192306239013 m005 (1/2*2^(1/2)+1/8)/(4/9*3^(1/2)-3/10) 1771192309312420 r005 Re(z^2+c),c=5/56+15/58*I,n=23 1771192313751213 m001 (Si(Pi)-Zeta(3))/(-sin(1/12*Pi)+Kac) 1771192314653919 m001 LambertW(1)+GAMMA(19/24)*GAMMA(23/24) 1771192320752227 k001 Champernowne real with 152*n+1619 1771192325661930 m001 (-exp(1/exp(1))+Thue)/(exp(1)+sin(1/5*Pi)) 1771192325950916 m005 (1/2*Catalan+5/11)/(3/4*2^(1/2)-6/11) 1771192329707635 a003 cos(Pi*19/119)+sin(Pi*37/105) 1771192337182177 m006 (5/6*Pi^2-1/4)/(5/6*exp(2*Pi)+4) 1771192339014947 r002 4th iterates of z^2 + 1771192343376264 l006 ln(1531/8999) 1771192343376264 p004 log(8999/1531) 1771192343528141 a007 Real Root Of -529*x^4-583*x^3+710*x^2-90*x-420 1771192347114353 m001 (Psi(2,1/3)+ln(2+3^(1/2)))/(MertensB3+Niven) 1771192351433481 m005 (1/2*gamma-5/8)/(6*Pi+1/7) 1771192364357777 a003 cos(Pi*3/23)/cos(Pi*33/101) 1771192366878958 m005 (1/2+1/6*5^(1/2))/(1/9*gamma+3/7) 1771192371399257 r005 Im(z^2+c),c=-59/60+3/17*I,n=11 1771192373911723 a007 Real Root Of 22*x^4-95*x^3+338*x^2+565*x-804 1771192378418425 a007 Real Root Of -214*x^4-84*x^3+198*x^2-375*x+354 1771192379035066 r005 Re(z^2+c),c=-13/82+16/23*I,n=46 1771192379144252 m001 Backhouse/(Magata-Sierpinski) 1771192380635957 k002 Champernowne real with 67/2*n^2-93/2*n+30 1771192383476222 v002 sum(1/(3^n*(30*n^2-41*n+32)),n=1..infinity) 1771192385929676 r005 Im(z^2+c),c=-17/29+11/31*I,n=55 1771192389626421 m001 1/exp(Riemann3rdZero)^2*Niven^2/GAMMA(1/6)^2 1771192390197371 a001 9349/20365011074*610^(4/19) 1771192399356588 r002 51th iterates of z^2 + 1771192399421184 m001 (LambertW(1)+GAMMA(3/4))/(-ln(2)+Niven) 1771192400046749 a007 Real Root Of -314*x^4-136*x^3+759*x^2+260*x+414 1771192401092941 m002 4*Pi^3+Pi^6/E^Pi+Sinh[Pi] 1771192407505301 a001 24476/53316291173*610^(4/19) 1771192410030494 a001 64079/139583862445*610^(4/19) 1771192410237549 l006 ln(1662/9769) 1771192410398915 a001 167761/365435296162*610^(4/19) 1771192410452667 a001 439204/956722026041*610^(4/19) 1771192410460509 a001 1149851/2504730781961*610^(4/19) 1771192410461653 a001 3010349/6557470319842*610^(4/19) 1771192410461923 a001 1/2178309*610^(4/19) 1771192410462360 a001 1860498/4052739537881*610^(4/19) 1771192410465356 a001 710647/1548008755920*610^(4/19) 1771192410485887 a001 271443/591286729879*610^(4/19) 1771192410626611 a001 103682/225851433717*610^(4/19) 1771192411591149 a001 39603/86267571272*610^(4/19) 1771192414197606 m001 GAMMA(2/3)^GAMMA(5/6)*GAMMA(3/4)^GAMMA(5/6) 1771192418202190 a001 15127/32951280099*610^(4/19) 1771192419541809 m001 Conway*(3^(1/3)-Mills) 1771192420772230 k001 Champernowne real with 153*n+1618 1771192424088400 m001 Zeta(7)/ln(Catalan)^2/exp(1)^2 1771192426519111 r005 Re(z^2+c),c=-69/70+8/43*I,n=56 1771192430331496 r005 Re(z^2+c),c=-21/25+4/53*I,n=22 1771192432982998 a007 Real Root Of -54*x^4+700*x^3-454*x^2-534*x-988 1771192433757949 m001 (Porter-Sarnak)/(Bloch-FeigenbaumDelta) 1771192439488286 r009 Re(z^3+c),c=-59/126+27/37*I,n=2 1771192440029686 m001 ln(GAMMA(23/24))^2*MinimumGamma^2*GAMMA(5/6)^2 1771192449850149 s002 sum(A109686[n]/(64^n),n=1..infinity) 1771192452518081 m001 1/2*PrimesInBinary*2^(2/3)*ZetaQ(2) 1771192459424802 a007 Real Root Of -765*x^4-998*x^3+528*x^2+175*x+637 1771192463514940 a001 5778/12586269025*610^(4/19) 1771192465424213 a007 Real Root Of 885*x^4-802*x^3+676*x^2-777*x+120 1771192469820062 a001 11592/341*29^(25/51) 1771192478751935 r005 Re(z^2+c),c=5/56+15/58*I,n=26 1771192478787949 m001 LambertW(1)^2/exp(Lehmer)/Zeta(9)^2 1771192480106988 a007 Real Root Of -617*x^4-484*x^3+846*x^2-774*x-642 1771192488354659 r005 Re(z^2+c),c=-109/118+15/58*I,n=20 1771192489252820 m001 1/3*sqrt(5)+GAMMA(23/24) 1771192500194294 r002 15th iterates of z^2 + 1771192500648789 m005 (1/2*Catalan-2/7)/(2*gamma-2/11) 1771192510374197 m001 1/Lehmer/FeigenbaumAlpha*exp(cos(Pi/12)) 1771192513321943 a007 Real Root Of 455*x^4+312*x^3-492*x^2+381*x-526 1771192519876338 a003 cos(Pi*12/67)+sin(Pi*38/101) 1771192520654146 a007 Real Root Of 83*x^4-243*x^3-486*x^2-98*x-816 1771192520792233 k001 Champernowne real with 154*n+1617 1771192521364573 m001 ln(GAMMA(1/4))^2*OneNinth/Zeta(7) 1771192522358329 r002 4th iterates of z^2 + 1771192522580186 a007 Real Root Of -406*x^4+749*x^3+53*x^2+791*x+143 1771192525412458 r005 Im(z^2+c),c=-47/118+12/41*I,n=19 1771192528735632 q001 4931/2784 1771192529125659 a007 Real Root Of 681*x^4+996*x^3-928*x^2-431*x+980 1771192531126120 k007 concat of cont frac of 1771192537508874 b008 Pi+CosIntegral[ArcCsc[7]] 1771192543977870 a005 (1/cos(11/199*Pi))^1861 1771192546081567 m001 (GAMMA(5/6)+GaussKuzminWirsing)^BesselI(1,2) 1771192546081567 m001 (GaussKuzminWirsing+GAMMA(5/6))^BesselI(1,2) 1771192554873024 m001 LandauRamanujan-Champernowne-arctan(1/2) 1771192556418443 r005 Re(z^2+c),c=-49/40+26/51*I,n=3 1771192560388726 m005 (1/3*Pi-3/8)/(1/2*gamma+1/11) 1771192561595200 r009 Re(z^3+c),c=-2/13+30/41*I,n=29 1771192564965039 m001 (-Kac+TreeGrowth2nd)/(gamma+Bloch) 1771192568681363 r005 Im(z^2+c),c=-5/54+13/60*I,n=8 1771192573672305 a001 2207/32951280099*5702887^(4/19) 1771192573672308 a001 2207/225851433717*53316291173^(4/19) 1771192576119493 a007 Real Root Of 797*x^4+665*x^3-855*x^2+964*x+241 1771192576278022 m001 BesselJ(0,1)/Conway*ln(sqrt(3))^2 1771192581814770 m001 1/Paris^2*exp(Khintchine)*sinh(1) 1771192582376743 a007 Real Root Of 257*x^4+379*x^3-111*x^2+43*x+1 1771192583553071 a007 Real Root Of 316*x^4+392*x^3-587*x^2-941*x-757 1771192585102598 m005 (5*gamma-3/4)/(5/6+1/6*5^(1/2)) 1771192592729730 a003 sin(Pi*7/94)*sin(Pi*31/112) 1771192594380634 r009 Re(z^3+c),c=-16/27+16/31*I,n=57 1771192598777117 a007 Real Root Of 401*x^4-123*x^3-791*x^2+811*x-712 1771192609074802 m001 1/Zeta(3)^2*ln(FeigenbaumKappa)*sin(1) 1771192620812236 k001 Champernowne real with 155*n+1616 1771192628841420 m001 ln(gamma)+MinimumGamma+Thue 1771192632931436 a007 Real Root Of -267*x^4-242*x^3+805*x^2+925*x+396 1771192633408556 a001 2207/89*1597^(49/55) 1771192635000192 m004 1/(4*Log[Sqrt[5]*Pi])-Tan[Sqrt[5]*Pi]/3 1771192636803606 r009 Im(z^3+c),c=-11/94+3/17*I,n=4 1771192636863320 a007 Real Root Of 47*x^4+785*x^3-788*x^2+879*x-938 1771192639247816 r005 Im(z^2+c),c=-23/30+4/41*I,n=48 1771192641812973 a007 Real Root Of -618*x^4-442*x^3+649*x^2-419*x+848 1771192645416397 a007 Real Root Of -781*x^4-923*x^3+607*x^2-208*x+285 1771192646696424 m001 (Zeta(3)+ln(3)*KomornikLoreti)/KomornikLoreti 1771192653119017 a005 (1/cos(13/210*Pi))^393 1771192658453928 g007 Psi(2,2/11)+Psi(2,1/9)+14*Zeta(3)-Psi(2,5/7) 1771192662294796 r009 Re(z^3+c),c=-41/70+17/29*I,n=15 1771192667543575 b008 -1+5^Pi^(-2) 1771192669720949 r009 Re(z^3+c),c=-1/25+34/49*I,n=2 1771192671421843 a007 Real Root Of 27*x^4+430*x^3-864*x^2-152*x+412 1771192675873665 r002 51th iterates of z^2 + 1771192677010692 g004 Im(GAMMA(13/4+I*9/10)) 1771192677183255 p004 log(31481/26371) 1771192679317715 a007 Real Root Of -746*x^4-925*x^3+735*x^2-226*x-504 1771192683140457 r005 Im(z^2+c),c=-37/34+31/81*I,n=5 1771192685266835 r005 Re(z^2+c),c=-10/9+23/121*I,n=10 1771192688923878 p003 LerchPhi(1/5,3,99/119) 1771192691384758 r009 Re(z^3+c),c=-7/29+35/51*I,n=31 1771192695673912 m005 (1/2*Catalan-1/8)/(7/11*3^(1/2)+7/9) 1771192697030001 a007 Real Root Of -102*x^4+362*x^3+904*x^2+115*x+383 1771192697417368 a001 4181/4*521^(19/42) 1771192697617893 a007 Real Root Of -528*x^4-357*x^3+798*x^2-602*x-357 1771192712116411 k008 concat of cont frac of 1771192717867426 r009 Im(z^3+c),c=-15/26+19/40*I,n=54 1771192719342449 r002 56th iterates of z^2 + 1771192720832239 k001 Champernowne real with 156*n+1615 1771192726153686 m004 (15*Sqrt[5])/Pi+Sqrt[5]*Pi+6*Sech[Sqrt[5]*Pi] 1771192727842946 m004 (15*Sqrt[5])/Pi+Sqrt[5]*Pi+6*Csch[Sqrt[5]*Pi] 1771192730326448 a007 Real Root Of 662*x^4+657*x^3-765*x^2+784*x+924 1771192730491938 m001 (ln(2)-GAMMA(7/12))/(GaussAGM-Mills) 1771192732172328 a007 Real Root Of -843*x^4-997*x^3+819*x^2+338*x+786 1771192734414537 h005 exp(cos(Pi*3/37)-cos(Pi*10/27)) 1771192739864509 b008 3+Sqrt[5]*Log[EulerGamma] 1771192751754966 m001 1/exp(Porter)^2/CareFree^2*sqrt(1+sqrt(3)) 1771192753965593 a007 Real Root Of 71*x^4-356*x^3-925*x^2-271*x-255 1771192754961776 m005 (1/2*2^(1/2)-2/9)/(8/9*5^(1/2)+3/4) 1771192762599600 p001 sum((-1)^n/(561*n+317)/n/(64^n),n=1..infinity) 1771192765858637 m005 (1/2*exp(1)-8/9)/(4/5*gamma-8/11) 1771192768307985 m001 (ln(3)+ArtinRank2)/(Chi(1)-Si(Pi)) 1771192768326163 r009 Re(z^3+c),c=-11/42+45/61*I,n=14 1771192773083637 m001 (Pi-cos(1))/(CareFree+LandauRamanujan) 1771192774093145 a001 2207/4807526976*610^(4/19) 1771192779921294 r005 Im(z^2+c),c=-19/24+5/49*I,n=57 1771192780665649 m001 (Chi(1)+MertensB3)/GAMMA(3/4) 1771192781641319 m001 Tribonacci^ZetaQ(4)/BesselI(1,1) 1771192785072787 m001 Niven/(QuadraticClass^(ln(2)/ln(10))) 1771192785730019 r005 Re(z^2+c),c=-7/90+37/43*I,n=4 1771192791975240 a003 sin(Pi*25/82)+sin(Pi*35/87) 1771192794788990 r005 Re(z^2+c),c=-117/98+1/23*I,n=10 1771192798199549 q001 2361/1333 1771192798199549 s002 sum(A088256[n]/(n^3*2^n-1),n=1..infinity) 1771192800256369 a007 Real Root Of -53*x^4-934*x^3+100*x^2+326*x+697 1771192804588469 a007 Real Root Of -547*x^4-478*x^3+359*x^2-725*x+317 1771192818336543 r005 Im(z^2+c),c=-77/74+10/51*I,n=15 1771192819122065 r005 Re(z^2+c),c=-7/78+7/15*I,n=56 1771192820144491 r005 Im(z^2+c),c=-22/29+34/57*I,n=5 1771192820852242 k001 Champernowne real with 157*n+1614 1771192826537226 a007 Real Root Of 421*x^4+549*x^3-769*x^2-762*x-30 1771192827827089 r005 Im(z^2+c),c=-19/18+35/153*I,n=56 1771192834251976 m001 (GAMMA(11/12)-Salem)/(ln(2)-exp(1/Pi)) 1771192842713091 a007 Real Root Of -505*x^4-259*x^3+543*x^2-597*x+770 1771192844746039 r005 Im(z^2+c),c=-15/29+19/60*I,n=44 1771192847605572 a007 Real Root Of -544*x^4-679*x^3+784*x^2+37*x-813 1771192847688845 l006 ln(1863/2224) 1771192854036513 m001 GAMMA(5/6)-gamma*exp(1/2) 1771192856161392 a007 Real Root Of 592*x^4+905*x^3+31*x^2+359*x-259 1771192857122745 r009 Re(z^3+c),c=-5/54+50/59*I,n=44 1771192857704300 p004 log(22859/3889) 1771192858700769 a007 Real Root Of 309*x^4-113*x^3-769*x^2+435*x-486 1771192860827156 m001 (GolombDickman-LambertW(1))/(Khinchin+Landau) 1771192864856883 g005 4/3*GAMMA(2/7)*Pi^2/GAMMA(2/3)^2/GAMMA(5/7) 1771192872150598 a007 Real Root Of 648*x^4+687*x^3-655*x^2+624*x+600 1771192875304578 m001 ln(GAMMA(2/3))^2*HardHexagonsEntropy*sinh(1)^2 1771192877579988 a007 Real Root Of -477*x^4-589*x^3+390*x^2-528*x-737 1771192883676525 m001 LandauRamanujan^exp(1)/(exp(1/exp(1))^exp(1)) 1771192884686661 r005 Im(z^2+c),c=-77/60+19/55*I,n=9 1771192885189173 r005 Im(z^2+c),c=-63/52+7/52*I,n=62 1771192887722606 m001 Pi*sin(1/12*Pi)^(Pi*csc(5/12*Pi)/GAMMA(7/12)) 1771192887722606 m001 Pi*sin(Pi/12)^GAMMA(5/12) 1771192889454212 m001 (ln(5)+Cahen)/(MadelungNaCl-PlouffeB) 1771192894947445 a007 Real Root Of 897*x^4+968*x^3-971*x^2-79*x-543 1771192895957489 r009 Re(z^3+c),c=-15/52+18/29*I,n=23 1771192905752233 a007 Real Root Of -542*x^4-594*x^3+805*x^2+250*x-49 1771192909529093 a007 Real Root Of -442*x^4-233*x^3+976*x^2-518*x-924 1771192913174420 m001 Trott2nd/GAMMA(2/3)*ZetaQ(3) 1771192913981012 r002 3th iterates of z^2 + 1771192920872245 k001 Champernowne real with 158*n+1613 1771192935592905 r005 Im(z^2+c),c=-13/82+38/59*I,n=53 1771192942167732 r005 Im(z^2+c),c=-4/11+8/27*I,n=9 1771192944024574 m001 Rabbit^GolombDickman*Ei(1,1) 1771192952600931 a007 Real Root Of 149*x^4-219*x^3-429*x^2+610*x-257 1771192957075123 m001 FellerTornier+StronglyCareFree^Zeta(1/2) 1771192961246331 r005 Re(z^2+c),c=-11/114+29/64*I,n=29 1771192962302603 p001 sum(1/(395*n+47)/n/(128^n),n=1..infinity) 1771192966073709 r004 Im(z^2+c),c=1/26+2/11*I,z(0)=exp(5/8*I*Pi),n=9 1771192970159024 r005 Re(z^2+c),c=-17/14+6/97*I,n=48 1771192985372962 m001 BesselK(1,1)/ln(Artin)/sin(Pi/5)^2 1771192990453067 r004 Im(z^2+c),c=-21/46+7/23*I,z(0)=-1,n=48 1771192991497036 q001 6874/3881 1771192997028341 r005 Re(z^2+c),c=-9/86+24/55*I,n=32 1771193007334506 r005 Im(z^2+c),c=-37/42+8/35*I,n=14 1771193008287905 m001 (Si(Pi)+cos(1))/(gamma(1)+exp(-1/2*Pi)) 1771193009925972 m005 (1/3*gamma-3/5)/(7/11*exp(1)+4/7) 1771193010002457 m001 (ln(3)+FransenRobinson)/(Otter-Riemann3rdZero) 1771193020892248 k001 Champernowne real with 159*n+1612 1771193022185288 a007 Real Root Of -688*x^4-862*x^3+706*x^2+365*x+413 1771193026137894 a007 Real Root Of -218*x^4-349*x^3-583*x^2-729*x+744 1771193026180127 a007 Real Root Of 40*x^4+653*x^3-995*x^2-266*x-824 1771193028698689 r002 33th iterates of z^2 + 1771193029522801 a007 Real Root Of 483*x^4+498*x^3-691*x^2+111*x+378 1771193043639904 m001 (Chi(1)+3^(1/3))/(GAMMA(23/24)+MertensB1) 1771193064709905 a003 cos(Pi*17/70)/cos(Pi*26/71) 1771193067132095 r005 Im(z^2+c),c=-26/25+12/61*I,n=23 1771193079797362 m001 (2^(1/3)-GAMMA(19/24))^Sierpinski 1771193085216734 m001 Pi-(Psi(1,1/3)-BesselK(1,1))*polylog(4,1/2) 1771193087568615 m001 (Pi^(1/2)-Champernowne)/(FeigenbaumB+Paris) 1771193088038640 a007 Real Root Of -734*x^4-810*x^3+791*x^2+330*x+826 1771193092621664 q001 4513/2548 1771193092877267 a007 Real Root Of 438*x^4+918*x^3+168*x^2-174*x-45 1771193095592894 r005 Re(z^2+c),c=-32/27+5/37*I,n=32 1771193101112901 m001 (DuboisRaymond+Riemann1stZero)/cos(1/5*Pi) 1771193102402180 v002 sum(1/(3^n+(14*n^2-5*n-5)),n=1..infinity) 1771193104509057 a007 Real Root Of 420*x^4+620*x^3-790*x^2-761*x+442 1771193106482016 a007 Real Root Of 833*x^4+793*x^3-979*x^2+59*x-616 1771193109379120 r005 Re(z^2+c),c=11/36+17/58*I,n=8 1771193110862277 a003 sin(Pi*25/79)+sin(Pi*31/81) 1771193111828718 a007 Real Root Of 803*x^4+597*x^3-970*x^2+321*x-974 1771193115312112 k007 concat of cont frac of 1771193120339630 r008 a(0)=2,K{-n^6,18-11*n^3-49*n^2+46*n} 1771193120912251 k001 Champernowne real with 160*n+1611 1771193126028491 m001 3^(1/2)/(TwinPrimes^ZetaQ(2)) 1771193141270455 r009 Re(z^3+c),c=-49/52+1/19*I,n=2 1771193147831126 a007 Real Root Of 30*x^4+524*x^3-169*x^2-648*x+656 1771193157235692 a007 Real Root Of -859*x^4-856*x^3+690*x^2-682*x+325 1771193160334085 a007 Real Root Of 401*x^4+221*x^3-571*x^2+292*x-410 1771193162455399 m001 exp(sqrt(2))*(MadelungNaCl-ln(2+sqrt(3))) 1771193163371262 a007 Real Root Of 526*x^4+712*x^3-185*x^2+87*x-486 1771193170764947 a007 Real Root Of -498*x^4-622*x^3+239*x^2-458*x-116 1771193176036631 m001 Grothendieck/(Gompertz+HardyLittlewoodC5) 1771193178460677 p003 LerchPhi(1/16,1,100/173) 1771193179841545 a007 Real Root Of 481*x^4+898*x^3+724*x^2+855*x-501 1771193180753474 m001 ln(5)^(Landau/ZetaP(2)) 1771193181337090 h001 (9/10*exp(1)+1/10)/(3/7*exp(1)+3/11) 1771193183393090 r002 36th iterates of z^2 + 1771193183484187 r005 Re(z^2+c),c=-41/34+11/52*I,n=13 1771193184556811 a007 Real Root Of 106*x^4-507*x^3-570*x^2+751*x-742 1771193186661348 m001 Tribonacci^2*ln(Backhouse)/GAMMA(1/3)^2 1771193191623682 a001 123/2971215073*233^(4/15) 1771193191646577 l006 ln(131/770) 1771193194382029 a007 Real Root Of 225*x^4+58*x^3-130*x^2+519*x-565 1771193195181243 m001 gamma(1)/gamma(2)*CopelandErdos 1771193195634403 r005 Re(z^2+c),c=-7/78+7/15*I,n=49 1771193196889124 m002 Log[Pi]/3+Pi^3/ProductLog[Pi]-Sinh[Pi] 1771193196917353 q001 6665/3763 1771193199676420 m001 LandauRamanujan*ZetaQ(4)-Pi^(1/2) 1771193203937986 a001 17711/2207*29^(34/37) 1771193208611234 m001 (Tetranacci+Thue)/(5^(1/2)-LaplaceLimit) 1771193211562877 r005 Im(z^2+c),c=-11/14+20/231*I,n=51 1771193213122261 k008 concat of cont frac of 1771193213625233 r009 Im(z^3+c),c=-19/94+8/49*I,n=7 1771193215625963 m005 (1/2*3^(1/2)+1/4)/(1/12*gamma-1/9) 1771193220932254 k001 Champernowne real with 161*n+1610 1771193223823489 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=40 1771193239634301 m001 Robbin^2*MadelungNaCl^2/ln(GAMMA(5/12)) 1771193248659009 r005 Re(z^2+c),c=3/20+25/39*I,n=48 1771193250350060 a003 sin(Pi*1/22)/sin(Pi*30/101) 1771193251298753 r005 Im(z^2+c),c=-11/12+13/79*I,n=14 1771193255978674 m001 (3^(1/3))^(GaussKuzminWirsing/DuboisRaymond) 1771193256137791 a001 46/311187*2^(6/23) 1771193261590806 r005 Im(z^2+c),c=1/6+3/25*I,n=10 1771193276409756 a007 Real Root Of -410*x^4-349*x^3+390*x^2-64*x+759 1771193277378226 r009 Im(z^3+c),c=-11/62+41/46*I,n=62 1771193283704242 r005 Im(z^2+c),c=23/110+2/21*I,n=19 1771193287663796 a007 Real Root Of -610*x^4-475*x^3+699*x^2-681*x-35 1771193293744482 a001 9/133957148*3^(15/17) 1771193295199538 m001 ln(GAMMA(1/3))/Kolakoski^2/log(1+sqrt(2)) 1771193298303323 m001 FibonacciFactorial/ErdosBorwein*exp(sin(1)) 1771193302509531 a001 832040/2207*123^(4/5) 1771193313138131 a007 Real Root Of 553*x^4+491*x^3-736*x^2-36*x-469 1771193320952257 k001 Champernowne real with 162*n+1609 1771193329988458 a007 Real Root Of -355*x^4+499*x^3+795*x^2+445*x+57 1771193330972537 m001 GlaisherKinkelin*(Chi(1)+Landau) 1771193332559912 m004 5*E^(Sqrt[5]*Pi)*Pi+(25*Pi*Sec[Sqrt[5]*Pi])/2 1771193346831007 q001 1/5645911 1771193347446736 r005 Im(z^2+c),c=-45/62+1/61*I,n=16 1771193350978003 a007 Real Root Of 432*x^4+483*x^3-858*x^2-678*x-77 1771193353320451 m001 ln(ln(2)/ln(10)*BesselI(1,1)) 1771193354690166 m001 (FellerTornier*GaussAGM-MadelungNaCl)/GaussAGM 1771193355331548 a005 (1/sin(74/155*Pi))^227 1771193356102421 r005 Im(z^2+c),c=5/13+20/41*I,n=7 1771193356603592 a007 Real Root Of -42*x^4-746*x^3-52*x^2-211*x+914 1771193365652199 a008 Real Root of (18+16*x-13*x^2-x^3) 1771193367927636 r005 Im(z^2+c),c=-55/82+5/36*I,n=5 1771193368121364 r005 Re(z^2+c),c=-1/74+28/53*I,n=15 1771193372509882 m005 (1/2*2^(1/2)+7/8)/(1/7*Pi+4/9) 1771193373611907 k002 Champernowne real with 29*n^2-81*n+53 1771193374102099 m001 Zeta(5)*Artin/exp(cosh(1))^2 1771193381051780 r005 Im(z^2+c),c=-23/58+7/24*I,n=42 1771193383133892 p003 LerchPhi(1/512,3,187/105) 1771193383641967 k002 Champernowne real with 34*n^2-48*n+31 1771193384800117 m005 (1/2*5^(1/2)+6/7)/(3/7*Zeta(3)+3/5) 1771193396845055 p004 log(37201/6329) 1771193398049381 m001 Zeta(1/2)/(cos(1/12*Pi)^(2*Pi/GAMMA(5/6))) 1771193398049381 m001 Zeta(1/2)/(cos(Pi/12)^GAMMA(1/6)) 1771193405403210 m005 (1/2*Zeta(3)-1/4)/(4/7*exp(1)+3/7) 1771193410014430 m001 HeathBrownMoroz^ln(5)*BesselJ(0,1) 1771193410740465 r002 33th iterates of z^2 + 1771193412223135 k006 concat of cont frac of 1771193415637860 q001 2152/1215 1771193416366865 a007 Real Root Of 797*x^4+786*x^3-694*x^2+681*x-93 1771193416588580 a007 Real Root Of 712*x^4+507*x^3-777*x^2+461*x-936 1771193420911168 m005 (1/6*gamma-3/5)/(2/3*Pi+3/4) 1771193420972260 k001 Champernowne real with 163*n+1608 1771193421353750 a007 Real Root Of 474*x^4+274*x^3-858*x^2+709*x+805 1771193427206688 m001 (gamma(3)+Lehmer)/(ThueMorse-ZetaP(4)) 1771193437691485 m001 (ln(2)+Stephens)/(BesselI(0,1)+ln(gamma)) 1771193438651820 r005 Re(z^2+c),c=-9/46+3/20*I,n=6 1771193440871080 a007 Real Root Of -36*x^4-624*x^3+234*x^2-105*x+464 1771193447548598 h001 (7/11*exp(2)+9/11)/(3/10*exp(2)+9/10) 1771193449135811 r005 Re(z^2+c),c=-1/8+9/23*I,n=36 1771193450307736 m001 Thue*(ln(5)+ZetaP(2)) 1771193451415036 a003 cos(Pi*5/69)+sin(Pi*32/109) 1771193455227901 l003 sinh(3+25/44) 1771193455227901 l004 sinh(157/44) 1771193464416499 a007 Real Root Of -503*x^4-244*x^3+895*x^2-722*x-492 1771193467740096 m001 ln(CareFree)^2*FibonacciFactorial*Salem 1771193469760942 r005 Im(z^2+c),c=-45/62+2/11*I,n=52 1771193470578591 m001 FeigenbaumB^KhinchinHarmonic/HardyLittlewoodC5 1771193475415040 l006 ln(7163/8551) 1771193484706238 r002 43th iterates of z^2 + 1771193488892371 m001 (cos(1/5*Pi)+PlouffeB)/(Sarnak+ZetaQ(4)) 1771193491468355 a007 Real Root Of 324*x^4-198*x^3-597*x^2-302*x+73 1771193493115480 r005 Re(z^2+c),c=-7/78+7/15*I,n=59 1771193498269250 m001 (-BesselI(1,1)+BesselI(1,2))/(1-BesselK(0,1)) 1771193509818510 r005 Re(z^2+c),c=-3/74+5/8*I,n=63 1771193515480859 a001 2576/321*29^(34/37) 1771193520992263 k001 Champernowne real with 164*n+1607 1771193521198585 g002 Psi(10/11)+Psi(6/11)-Psi(7/11)-Psi(4/11) 1771193524538556 m001 (Bloch-GaussAGM)/(sin(1/5*Pi)-Zeta(1/2)) 1771193528372350 r005 Re(z^2+c),c=-5/32+22/49*I,n=6 1771193530225431 a007 Real Root Of 620*x^4+884*x^3-711*x^2-207*x+674 1771193530791754 a007 Real Root Of -717*x^4-816*x^3+650*x^2-493*x-390 1771193534066916 m005 (1/2*Zeta(3)-9/11)/(1/2*Zeta(3)+5/8) 1771193536599917 a007 Real Root Of 832*x^4-856*x^3+797*x^2-566*x+1 1771193539633597 a007 Real Root Of 512*x^4+959*x^3+91*x^2+482*x+858 1771193542466122 m005 (1/2*Zeta(3)+1/5)/(2/11*Catalan+2/7) 1771193543528288 h001 (1/4*exp(2)+3/11)/(1/8*exp(1)+6/7) 1771193544519252 m005 (1/2*exp(1)+1/10)/(3*exp(1)+1/12) 1771193558334072 m001 1/Pi^2/exp(Tribonacci)^2/Zeta(3)^2 1771193558895700 m001 arctan(1/2)*Bloch^2/exp(log(1+sqrt(2)))^2 1771193558909028 v002 sum(1/(3^n*(27*n^2-53*n+48)),n=1..infinity) 1771193558982978 a007 Real Root Of -471*x^4-277*x^3+738*x^2-568*x-225 1771193559362909 m004 6+Pi*Cosh[Sqrt[5]*Pi]-Sin[Sqrt[5]*Pi] 1771193559413782 r005 Re(z^2+c),c=-7/9+7/107*I,n=2 1771193560934361 a001 121393/15127*29^(34/37) 1771193567565938 a001 105937/13201*29^(34/37) 1771193568533472 a001 416020/51841*29^(34/37) 1771193568674633 a001 726103/90481*29^(34/37) 1771193568761876 a001 1346269/167761*29^(34/37) 1771193569106322 r002 3th iterates of z^2 + 1771193569131441 a001 514229/64079*29^(34/37) 1771193571664478 a001 98209/12238*29^(34/37) 1771193578592535 a001 843/34*2584^(46/55) 1771193579461617 m009 (3*Psi(1,3/4)+4)/(2/3*Psi(1,1/3)-1/6) 1771193583191128 a005 (1/cos(19/194*Pi))^1448 1771193583240978 a005 (1/cos(11/172*Pi))^708 1771193583386970 r005 Im(z^2+c),c=-21/26+13/127*I,n=46 1771193589026171 a001 75025/9349*29^(34/37) 1771193592777662 r005 Im(z^2+c),c=-15/14+48/199*I,n=13 1771193603312703 r008 a(0)=2,K{-n^6,38+10*n-30*n^2-14*n^3} 1771193613088321 a001 726103/1926*123^(4/5) 1771193619933830 a001 18/121393*2^(10/39) 1771193621012266 k001 Champernowne real with 165*n+1606 1771193624586042 r002 60th iterates of z^2 + 1771193643421565 m001 BesselK(1,1)/(Magata-ZetaQ(3)) 1771193648107172 m001 (Chi(1)-sin(1))/(GAMMA(3/4)+AlladiGrinstead) 1771193648993478 q001 6247/3527 1771193652523605 m001 ln(2+3^(1/2))-Otter^exp(1) 1771193655142467 a001 377/843*7^(29/41) 1771193658401165 a001 5702887/15127*123^(4/5) 1771193658621350 m001 (cos(1)+gamma(2))/(GAMMA(7/12)+Porter) 1771193660393520 h002 exp(19^(6/5)-7^(7/5)) 1771193660393520 h007 exp(19^(6/5)-7^(7/5)) 1771193665012220 a001 4976784/13201*123^(4/5) 1771193665976759 a001 39088169/103682*123^(4/5) 1771193666117484 a001 34111385/90481*123^(4/5) 1771193666138015 a001 267914296/710647*123^(4/5) 1771193666141011 a001 233802911/620166*123^(4/5) 1771193666141448 a001 1836311903/4870847*123^(4/5) 1771193666141512 a001 1602508992/4250681*123^(4/5) 1771193666141521 a001 12586269025/33385282*123^(4/5) 1771193666141522 a001 10983760033/29134601*123^(4/5) 1771193666141523 a001 86267571272/228826127*123^(4/5) 1771193666141523 a001 267913919/710646*123^(4/5) 1771193666141523 a001 591286729879/1568397607*123^(4/5) 1771193666141523 a001 516002918640/1368706081*123^(4/5) 1771193666141523 a001 4052739537881/10749957122*123^(4/5) 1771193666141523 a001 3536736619241/9381251041*123^(4/5) 1771193666141523 a001 6557470319842/17393796001*123^(4/5) 1771193666141523 a001 2504730781961/6643838879*123^(4/5) 1771193666141523 a001 956722026041/2537720636*123^(4/5) 1771193666141523 a001 365435296162/969323029*123^(4/5) 1771193666141523 a001 139583862445/370248451*123^(4/5) 1771193666141523 a001 53316291173/141422324*123^(4/5) 1771193666141523 a001 20365011074/54018521*123^(4/5) 1771193666141527 a001 7778742049/20633239*123^(4/5) 1771193666141551 a001 2971215073/7881196*123^(4/5) 1771193666141718 a001 1134903170/3010349*123^(4/5) 1771193666142862 a001 433494437/1149851*123^(4/5) 1771193666150704 a001 165580141/439204*123^(4/5) 1771193666204456 a001 63245986/167761*123^(4/5) 1771193666572878 a001 24157817/64079*123^(4/5) 1771193669098076 a001 9227465/24476*123^(4/5) 1771193676524366 h001 (5/6*exp(1)+3/11)/(4/11*exp(1)+4/9) 1771193676851386 r005 Re(z^2+c),c=-11/70+34/49*I,n=46 1771193677282568 m005 (1/3*3^(1/2)+3/5)/(31/5+1/5*5^(1/2)) 1771193681328612 r009 Re(z^3+c),c=-7/22+30/49*I,n=48 1771193686406043 a001 3524578/9349*123^(4/5) 1771193687278444 a003 cos(Pi*19/91)+sin(Pi*33/76) 1771193690194568 m001 (arctan(1/3)-LaplaceLimit)/(Lehmer+MertensB3) 1771193691754227 r005 Im(z^2+c),c=-69/86+4/41*I,n=23 1771193696066710 l006 ln(5300/6327) 1771193699019844 r005 Im(z^2+c),c=-31/114+47/61*I,n=11 1771193699760115 m005 (1/3*Pi+3/7)/(2/11*Catalan+2/3) 1771193703390794 r005 Re(z^2+c),c=-79/66+3/62*I,n=24 1771193707904505 a007 Real Root Of 388*x^4+485*x^3-393*x^2-47*x+26 1771193708024999 a001 28657/3571*29^(34/37) 1771193713137840 m001 1/LambertW(1)^2*ln(FeigenbaumD)*gamma 1771193716930881 r005 Im(z^2+c),c=-8/27+7/26*I,n=23 1771193720053979 m001 (gamma(2)-MertensB1)/(Riemann1stZero+Salem) 1771193720272974 m001 (3^(1/2)*exp(1/Pi)+ZetaQ(2))/exp(1/Pi) 1771193721032269 k001 Champernowne real with 166*n+1605 1771193721416620 r005 Im(z^2+c),c=-49/34+1/104*I,n=5 1771193722830040 r002 47th iterates of z^2 + 1771193722834864 a007 Real Root Of 658*x^4+694*x^3-815*x^2+569*x+945 1771193733224111 r009 Re(z^3+c),c=-25/82+13/22*I,n=31 1771193739920466 m001 (Zeta(3)+Khinchin)^BesselK(0,1) 1771193740079605 r005 Re(z^2+c),c=-69/106+46/63*I,n=4 1771193749950057 r009 Re(z^3+c),c=-7/23+37/64*I,n=47 1771193756704201 a007 Real Root Of -665*x^4-737*x^3+691*x^2-709*x-974 1771193757686625 a005 (1/cos(8/135*Pi))^297 1771193762839946 a007 Real Root Of 638*x^4-907*x^3-115*x^2-361*x-66 1771193766609762 a007 Real Root Of 516*x^4+703*x^3-671*x^2-800*x-484 1771193771626297 q001 4095/2312 1771193771626297 r005 Re(z^2+c),c=-43/34+27/68*I,n=2 1771193771962123 m001 Ei(1)^(3^(1/3))*CareFree 1771193772168440 r005 Im(z^2+c),c=-47/50+1/6*I,n=55 1771193772684497 r005 Im(z^2+c),c=-1+29/154*I,n=40 1771193774044916 m005 (1/2*Catalan-5/9)/(5/9*Catalan+5) 1771193774873079 m005 (3/28+1/4*5^(1/2))/(5*gamma+7/8) 1771193779797082 r009 Re(z^3+c),c=-1/30+33/47*I,n=50 1771193782580298 m001 (AlladiGrinstead-Magata*PrimesInBinary)/Magata 1771193786691143 m001 (ln(2^(1/2)+1)+Landau)/(LaplaceLimit-Porter) 1771193786720649 a007 Real Root Of -797*x^4+83*x^3-848*x^2-129*x+5 1771193805036623 a001 1346269/3571*123^(4/5) 1771193806535987 r009 Re(z^3+c),c=-41/86+24/55*I,n=9 1771193807540125 m001 1/Sierpinski*exp(FeigenbaumC)^2*sinh(1) 1771193816815634 m001 (Mills-ThueMorse)/(3^(1/3)+Zeta(1,2)) 1771193821052272 k001 Champernowne real with 167*n+1604 1771193823879015 r005 Re(z^2+c),c=-7/78+7/15*I,n=62 1771193827086831 r005 Im(z^2+c),c=-83/114+9/61*I,n=3 1771193836951552 m001 (-Landau+Lehmer)/(3^(1/2)+GAMMA(11/12)) 1771193837790033 m005 (-1/6+1/3*5^(1/2))/(4/5*Catalan-4) 1771193841112233 k009 concat of cont frac of 1771193843661103 a005 (1/cos(37/233*Pi))^341 1771193844298961 r005 Re(z^2+c),c=27/86+9/34*I,n=52 1771193846117144 m001 (2*Pi/GAMMA(5/6)+Bloch)/(Khinchin+Sarnak) 1771193849686991 m006 (1/2*Pi^2+5/6)/(2/5*Pi+2) 1771193849686991 m008 (1/2*Pi^2+5/6)/(2/5*Pi+2) 1771193852682052 a007 Real Root Of 20*x^4-580*x^3-672*x^2+728*x-22 1771193855463806 a007 Real Root Of -337*x^4+101*x^3+831*x^2-359*x+635 1771193855482024 m001 (gamma(3)-gamma)/(-FeigenbaumMu+FellerTornier) 1771193857292328 a007 Real Root Of -457*x^4-698*x^3+65*x^2-414*x-318 1771193859434197 a001 18/28657*2584^(17/40) 1771193860784173 r005 Im(z^2+c),c=-9/14+49/215*I,n=14 1771193867833708 m008 (1/3*Pi^4+3/5)/(2/3*Pi^3-2) 1771193868580895 a007 Real Root Of 951*x^4+761*x^3-959*x^2+654*x-964 1771193870758133 r005 Im(z^2+c),c=-73/66+13/45*I,n=6 1771193870868764 r009 Re(z^3+c),c=-7/31+19/59*I,n=11 1771193880071137 r005 Im(z^2+c),c=-23/58+7/24*I,n=45 1771193880444705 a007 Real Root Of 452*x^4+425*x^3-591*x^2+512*x+674 1771193881577964 m001 Khinchin-Artin-cos(1) 1771193881577964 m001 cos(1)+Artin-Khinchin 1771193896997942 m002 -3-E^Pi/2-Pi 1771193898503960 q001 6038/3409 1771193905563912 r009 Im(z^3+c),c=-14/27+7/43*I,n=5 1771193912267035 s002 sum(A177598[n]/(2^n-1),n=1..infinity) 1771193912662046 a007 Real Root Of -449*x^4-419*x^3+398*x^2-537*x-109 1771193913106760 m001 FeigenbaumD^Zeta(1,2)+exp(1/Pi) 1771193921072275 k001 Champernowne real with 168*n+1603 1771193927468084 m001 1/cos(1)^2*Paris^2*ln(sin(Pi/5)) 1771193944409348 m001 (-ln(2)+Artin)/(BesselJ(0,1)+Zeta(5)) 1771193946867355 a001 1/15127*29^(12/41) 1771193950017629 r005 Re(z^2+c),c=-5/46+4/9*I,n=9 1771193950175721 a007 Real Root Of 407*x^4+162*x^3-6*x^2-808*x+142 1771193955438463 p004 log(29983/5101) 1771193960188392 m005 (1/2*Zeta(3)-5/12)/(8/11*Zeta(3)+1/6) 1771193960554031 r005 Re(z^2+c),c=-1/21+27/50*I,n=40 1771193966411101 r009 Re(z^3+c),c=-11/31+14/23*I,n=25 1771193967542428 a007 Real Root Of -435*x^4-550*x^3+553*x^2+722*x+769 1771193984160199 m001 (ln(5)+FibonacciFactorial)/(MertensB1+Totient) 1771193985578801 m001 KomornikLoreti-ZetaP(4)^ln(5) 1771193990741549 r005 Re(z^2+c),c=-4/5+14/107*I,n=2 1771193991775261 m001 (Landau-Shi(1))/(-Otter+ZetaQ(2)) 1771193994071320 a007 Real Root Of 472*x^4+327*x^3-795*x^2+672*x+856 1771193996792750 l006 ln(1613/9481) 1771194000528955 m001 (Chi(1)+gamma)/(-CopelandErdos+MertensB2) 1771194006223415 m001 Artin^Chi(1)+MertensB3 1771194014874595 m001 1/ln(Magata)^2*GaussAGM(1,1/sqrt(2))*Pi 1771194014874595 m001 GAMMA(3/4)^2/ln(Magata)^2*sqrt(Pi) 1771194016044900 r002 21th iterates of z^2 + 1771194017711940 k006 concat of cont frac of 1771194020561639 m001 Backhouse*GAMMA(2/3)^MasserGramain 1771194021092278 k001 Champernowne real with 169*n+1602 1771194021366477 b008 EllipticK[1/8+Sech[2]] 1771194023625564 r002 10th iterates of z^2 + 1771194032859985 r005 Im(z^2+c),c=-11/15+7/33*I,n=18 1771194037331101 m005 (1/3*gamma-2/5)/(2/11*3^(1/2)+6/7) 1771194039411394 r009 Re(z^3+c),c=-1/4+17/42*I,n=14 1771194046275528 p003 LerchPhi(1/3,1,101/153) 1771194047206858 m001 GAMMA(5/6)^2*exp((3^(1/3)))^2*log(1+sqrt(2))^2 1771194047500352 a001 144/3010349*7^(37/55) 1771194051100845 r005 Im(z^2+c),c=-19/50+11/26*I,n=5 1771194054250129 r005 Im(z^2+c),c=-89/126+37/61*I,n=4 1771194057490479 a007 Real Root Of -647*x^4-410*x^3+909*x^2-552*x+260 1771194066768899 b008 Sqrt[Pi]+ExpIntegralEi[-4]/3 1771194066950769 a001 123/55*377^(15/43) 1771194067962859 l006 ln(1482/8711) 1771194071137855 m001 (MertensB3-Salem)/(GAMMA(7/12)-MasserGramain) 1771194071941896 m005 (1/2*exp(1)+11/12)/(2/9*3^(1/2)+9/10) 1771194094322489 r005 Im(z^2+c),c=-23/118+11/45*I,n=12 1771194121112281 k001 Champernowne real with 170*n+1601 1771194121211716 m001 FeigenbaumAlpha/(MasserGramainDelta^Stephens) 1771194126621915 m001 (Catalan+FeigenbaumKappa)/GlaisherKinkelin 1771194130623520 h001 (-3*exp(7)-3)/(-5*exp(1)-5) 1771194132562331 m001 (exp(Pi)+FellerTornier)/PisotVijayaraghavan 1771194136152313 k007 concat of cont frac of 1771194137585594 h001 (2/5*exp(1)+1/5)/(8/9*exp(2)+7/10) 1771194137633517 r004 Im(z^2+c),c=-19/24+1/10*I,z(0)=-1,n=56 1771194150284367 a007 Real Root Of -612*x^4-599*x^3+637*x^2+124*x+916 1771194151586234 m001 ln(BesselJ(1,1))^2/Champernowne/GAMMA(7/24) 1771194152935012 l006 ln(1351/7941) 1771194155761708 b008 35/2+(2+E)^(-1) 1771194155923522 l006 ln(3437/4103) 1771194165907019 q001 1943/1097 1771194173322762 a007 Real Root Of 578*x^4-742*x^3+235*x^2-536*x-107 1771194175119284 a007 Real Root Of -505*x^4+797*x^3+716*x^2+935*x-192 1771194176129370 a007 Real Root Of 591*x^4+920*x^3-26*x^2+477*x+222 1771194191892198 m005 (17/30+1/6*5^(1/2))/(1/9*Catalan+3/7) 1771194199004188 m005 (1/2*gamma-6/7)/(4/11*gamma+3) 1771194202785600 a007 Real Root Of -44*x^4+487*x^3+886*x^2+317*x+921 1771194208092755 a007 Real Root Of 590*x^4+656*x^3-622*x^2+139*x+36 1771194210103711 r005 Im(z^2+c),c=-27/52+20/63*I,n=46 1771194213853185 m001 (Robbin-Weierstrass)/(ln(2)-MadelungNaCl) 1771194213934691 m005 (1/3*Zeta(3)+3/5)/(3/7*exp(1)-3/5) 1771194217040502 r005 Re(z^2+c),c=11/54+10/53*I,n=3 1771194220158000 r005 Re(z^2+c),c=-7/78+7/15*I,n=64 1771194220955042 a007 Real Root Of 722*x^4+333*x^3-858*x^2+963*x-858 1771194221132284 k001 Champernowne real with 171*n+1600 1771194221211115 k006 concat of cont frac of 1771194221826284 a003 sin(Pi*20/71)+sin(Pi*51/107) 1771194222628438 r005 Re(z^2+c),c=-7/78+7/15*I,n=63 1771194224065491 m001 exp(1/exp(1))^(GAMMA(23/24)/TwinPrimes) 1771194224238192 a005 (1/sin(65/201*Pi))^216 1771194226746895 a007 Real Root Of -88*x^4-225*x^3+201*x^2+864*x-158 1771194227288166 r005 Im(z^2+c),c=-21/20+11/52*I,n=22 1771194231913115 k008 concat of cont frac of 1771194232797321 a007 Real Root Of -29*x^4+627*x^3+804*x^2-852*x-262 1771194237469064 a003 cos(Pi*1/8)+cos(Pi*18/101) 1771194238612331 k008 concat of cont frac of 1771194239336306 r005 Re(z^2+c),c=-7/78+7/15*I,n=52 1771194244304469 r009 Im(z^3+c),c=-1/19+47/52*I,n=10 1771194244790206 g005 GAMMA(3/11)*GAMMA(1/7)/GAMMA(6/7)^2 1771194247597576 r005 Re(z^2+c),c=31/98+14/57*I,n=21 1771194251240920 m001 (ln(2)+AlladiGrinstead)/(Kolakoski+ZetaQ(2)) 1771194253330768 a007 Real Root Of 986*x^4+447*x^3+366*x^2-536*x+80 1771194256155272 l006 ln(1220/7171) 1771194259891623 m005 (1/2*exp(1)+1/12)/(3/8*Zeta(3)+4/11) 1771194268816101 a001 843/4181*2178309^(28/45) 1771194269692557 a001 3571/610*2584^(23/53) 1771194273441533 a005 (1/sin(71/179*Pi))^311 1771194275383287 r005 Im(z^2+c),c=-7/6+50/193*I,n=26 1771194281267033 r005 Im(z^2+c),c=-17/22+5/79*I,n=35 1771194281331111 k006 concat of cont frac of 1771194290235286 r005 Re(z^2+c),c=-7/78+7/15*I,n=61 1771194292640122 r005 Re(z^2+c),c=-53/44+5/47*I,n=58 1771194292772578 m005 (1/2*gamma-3/8)/(1/12*exp(1)-5/7) 1771194295670875 p004 log(20743/3529) 1771194299687207 r005 Re(z^2+c),c=-7/50+6/17*I,n=10 1771194309184430 m001 ln(cos(Pi/12))*FransenRobinson^2/cosh(1) 1771194312774452 r005 Re(z^2+c),c=-11/98+32/43*I,n=9 1771194315642212 m001 1/GAMMA(11/12)^2*ln(Paris)/GAMMA(19/24) 1771194317610602 a007 Real Root Of 709*x^4+726*x^3-817*x^2-99*x-556 1771194321152287 k001 Champernowne real with 172*n+1599 1771194328294025 a007 Real Root Of -613*x^4-641*x^3+592*x^2-673*x-578 1771194337451251 a007 Real Root Of 407*x^4+68*x^3-775*x^2+208*x-828 1771194338678571 m005 (1/3*3^(1/2)-1/2)/(2/9*3^(1/2)-3/7) 1771194346361019 r002 4th iterates of z^2 + 1771194357482363 m008 (1/6*Pi+5/6)/(4/5*Pi^6-3) 1771194359494554 m001 GAMMA(5/6)*GolombDickman^2*ln(Zeta(9))^2 1771194366151121 k006 concat of cont frac of 1771194367542120 p001 sum((-1)^n/(599*n+56)/(10^n),n=0..infinity) 1771194367866826 r002 29th iterates of z^2 + 1771194377621927 k003 Champernowne real with 1/6*n^3+28*n^2-475/6*n+52 1771194378271937 m001 Niven*exp(FeigenbaumAlpha)/Salem 1771194378350509 r005 Re(z^2+c),c=-7/78+7/15*I,n=58 1771194379144995 m001 (Mills+Stephens)/(Ei(1)-FeigenbaumB) 1771194383311834 r005 Im(z^2+c),c=-103/94+7/31*I,n=25 1771194384209042 l006 ln(1089/6401) 1771194384234056 r005 Re(z^2+c),c=-1/17+29/56*I,n=27 1771194386647977 k002 Champernowne real with 69/2*n^2-99/2*n+32 1771194390966137 a007 Real Root Of 773*x^4+760*x^3-906*x^2-944*x+17 1771194391603443 m001 (-GaussAGM+Landau)/(Shi(1)+sin(1/5*Pi)) 1771194394221420 a007 Real Root Of -20*x^4-323*x^3+599*x^2+794*x-273 1771194398865181 r005 Im(z^2+c),c=-139/114+1/62*I,n=42 1771194404056151 r005 Re(z^2+c),c=-7/78+7/15*I,n=60 1771194408775785 l006 ln(6205/6216) 1771194409943180 a007 Real Root Of 837*x^4+905*x^3-772*x^2+752*x+545 1771194413734170 m002 (6*Pi^5)/E^Pi+Pi^4*Coth[Pi] 1771194415028860 r005 Re(z^2+c),c=-1/11+51/59*I,n=4 1771194416363435 a003 sin(Pi*1/30)/cos(Pi*32/107) 1771194421172290 k001 Champernowne real with 173*n+1598 1771194429369539 r005 Re(z^2+c),c=-7/78+7/15*I,n=55 1771194434988382 a005 (1/cos(1/43*Pi))^214 1771194441305590 p001 sum((-1)^n/(193*n+153)/n/(16^n),n=1..infinity) 1771194441475868 a007 Real Root Of -593*x^4-523*x^3+812*x^2+86*x+535 1771194444422694 l006 ln(8448/10085) 1771194453198865 q001 562/3173 1771194454029859 s002 sum(A094119[n]/(n^3*exp(n)-1),n=1..infinity) 1771194456703375 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=36 1771194460773606 h001 (1/9*exp(1)+6/11)/(5/8*exp(2)+1/6) 1771194461181969 r009 Im(z^3+c),c=-19/94+8/49*I,n=6 1771194464696038 m001 (Grothendieck*Kolakoski-ZetaQ(3))/Kolakoski 1771194467140049 m001 1/FeigenbaumKappa*Magata*exp(GAMMA(5/12))^2 1771194469432200 a007 Real Root Of -649*x^4-637*x^3+382*x^2-523*x+723 1771194480512233 r005 Re(z^2+c),c=9/118+11/47*I,n=17 1771194480795310 r002 28th iterates of z^2 + 1771194484817985 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=43 1771194491264771 a007 Real Root Of -855*x^4-999*x^3+445*x^2-277*x+977 1771194492122725 a001 47/6765*75025^(47/52) 1771194492567040 r005 Re(z^2+c),c=-6/31+41/54*I,n=43 1771194495568534 r005 Re(z^2+c),c=5/13+14/61*I,n=18 1771194504943291 m001 GAMMA(17/24)^2/GAMMA(13/24)^2/ln(cos(Pi/12)) 1771194512441576 a003 cos(Pi*5/119)/cos(Pi*37/119) 1771194514412329 r005 Re(z^2+c),c=-1/8+9/23*I,n=39 1771194519929471 r005 Re(z^2+c),c=33/122+13/57*I,n=44 1771194521192293 k001 Champernowne real with 174*n+1597 1771194523655526 a001 5473/682*29^(34/37) 1771194529279402 r005 Im(z^2+c),c=-41/102+13/45*I,n=15 1771194529852006 m001 1/BesselK(1,1)^2/exp(Sierpinski)^2*GAMMA(5/6) 1771194531276792 s002 sum(A180096[n]/(n*exp(n)+1),n=1..infinity) 1771194532425872 a007 Real Root Of -213*x^4+27*x^3+179*x^2-884*x+119 1771194532610380 r008 a(0)=0,K{-n^6,37+43*n-40*n^2+3*n^3} 1771194535502381 m001 (PrimesInBinary+ZetaQ(2))/(Zeta(3)+Zeta(1,2)) 1771194538831826 m001 (Pi+CareFree)/(MinimumGamma+Rabbit) 1771194540426592 r002 56th iterates of z^2 + 1771194540649256 a001 199/1597*832040^(47/54) 1771194543031189 m001 GAMMA(13/24)^(1/2*Backhouse*2^(2/3)) 1771194543031189 m001 GAMMA(13/24)^(Backhouse/(2^(1/3))) 1771194543080385 m001 1/Salem/ln(MinimumGamma)^2/gamma^2 1771194547283757 l006 ln(958/5631) 1771194548718340 r005 Im(z^2+c),c=-37/44+3/25*I,n=15 1771194553549749 a007 Real Root Of -663*x^4-717*x^3+496*x^2-140*x+737 1771194557293995 m001 (-Cahen+Porter)/(2*Pi/GAMMA(5/6)-Catalan) 1771194560491341 a001 2/55*610^(55/57) 1771194560519509 r005 Im(z^2+c),c=-17/18+17/101*I,n=45 1771194565395977 a005 (1/sin(94/213*Pi))^1650 1771194566022357 m001 Rabbit/exp(Si(Pi))^2/Pi^2 1771194566898165 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=39 1771194568628991 s002 sum(A239757[n]/((2*n+1)!),n=1..infinity) 1771194570225945 m001 GAMMA(1/3)/(GAMMA(1/4)+GAMMA(1/12)) 1771194575689219 m001 1/LambertW(1)/exp(FibonacciFactorial)/cos(1)^2 1771194586799169 a001 2/17*987^(8/11) 1771194597431257 a007 Real Root Of -394*x^4-377*x^3+905*x^2+156*x-780 1771194599226364 a007 Real Root Of -51*x^4-911*x^3-191*x^2-959*x+200 1771194605009633 q001 3677/2076 1771194606832134 s001 sum(exp(-Pi/3)^n*A268569[n],n=1..infinity) 1771194618143143 a001 514229/1364*123^(4/5) 1771194621212296 k001 Champernowne real with 175*n+1596 1771194621578221 a003 cos(Pi*1/55)-cos(Pi*23/119) 1771194621823260 m005 (1/2*3^(1/2)+10/11)/(7/11*3^(1/2)-1/10) 1771194623267419 m001 ln(PisotVijayaraghavan)/Lehmer/GAMMA(1/3) 1771194624267541 m001 1/OneNinth*Conway/exp(GAMMA(1/6))^2 1771194630953710 m001 (Psi(1,1/3)+Salem)^KhinchinLevy 1771194635481177 a007 Real Root Of 367*x^4+601*x^3+92*x^2-175*x-871 1771194638569898 a007 Real Root Of -159*x^4-33*x^3+82*x^2-104*x+940 1771194641590677 r005 Re(z^2+c),c=-5/31+17/58*I,n=8 1771194642301686 l006 ln(5011/5982) 1771194643023241 m001 GAMMA(1/6)^2/ArtinRank2/ln(GAMMA(17/24)) 1771194645859365 m005 (1/2*2^(1/2)-1/11)/(2/5*Catalan-5/7) 1771194647826681 r005 Im(z^2+c),c=-1/4+17/62*I,n=5 1771194653623205 a007 Real Root Of -150*x^4+191*x^3+939*x^2+554*x+573 1771194661111486 a001 610/47*3^(15/53) 1771194662495611 a007 Real Root Of -27*x^4-434*x^3+765*x^2-275*x+860 1771194667302500 a003 sin(Pi*2/99)*sin(Pi*10/111) 1771194671740094 m006 (1/6*Pi^2+2/3)/(3/5*exp(Pi)-5/6) 1771194674456445 r005 Re(z^2+c),c=-7/106+22/43*I,n=28 1771194675062330 m001 1/Tribonacci*MinimumGamma*ln(OneNinth) 1771194680184511 a007 Real Root Of 62*x^4-372*x^3-133*x^2+717*x-990 1771194682043649 r005 Im(z^2+c),c=-51/98+19/60*I,n=47 1771194684490661 a007 Real Root Of 284*x^4+193*x^3-143*x^2+354*x-647 1771194688288158 a007 Real Root Of 268*x^4+239*x^3+50*x^2+951*x+218 1771194690140787 m001 FransenRobinson*ln(Conway)^2/GAMMA(11/12)^2 1771194691674759 r005 Re(z^2+c),c=19/106+23/60*I,n=20 1771194697602179 a007 Real Root Of 523*x^4+432*x^3-496*x^2+259*x-732 1771194699972892 r002 46th iterates of z^2 + 1771194702406753 a001 843/12586269025*5702887^(4/19) 1771194702406755 a001 843/86267571272*53316291173^(4/19) 1771194712872385 m001 (Zeta(5)+Kolakoski)/(5^(1/2)-Zeta(3)) 1771194715473074 a007 Real Root Of -180*x^4-38*x^3+192*x^2-319*x+393 1771194718248213 r002 28th iterates of z^2 + 1771194721232299 k001 Champernowne real with 176*n+1595 1771194727641519 r005 Re(z^2+c),c=-7/118+23/40*I,n=29 1771194728094814 a007 Real Root Of -841*x^4-712*x^3+995*x^2-808*x-232 1771194729833992 m004 100*Pi*Cosh[Sqrt[5]*Pi]+125*Pi*Sec[Sqrt[5]*Pi] 1771194734274021 a001 9/5473*21^(1/41) 1771194735464314 m005 (1/3*exp(1)-1/11)/(5/8*5^(1/2)-6) 1771194744754211 m001 (Thue+ThueMorse)/(GAMMA(17/24)-LambertW(1)) 1771194748254528 a007 Real Root Of -791*x^4-578*x^3-616*x^2+983*x+191 1771194762021764 l006 ln(827/4861) 1771194762021764 p004 log(4861/827) 1771194762684124 q001 5411/3055 1771194763143051 a007 Real Root Of -184*x^4+244*x^3+224*x^2-857*x+946 1771194775914366 r005 Im(z^2+c),c=-23/58+7/24*I,n=47 1771194777259353 r005 Re(z^2+c),c=-21/110+50/63*I,n=28 1771194779440053 r009 Re(z^3+c),c=-5/54+31/41*I,n=9 1771194783967948 m005 (1/2*5^(1/2)-2/9)/(2/11*exp(1)-1) 1771194784465720 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=42 1771194787437110 m004 -3/2+E^(-(Sqrt[5]*Pi))-25*Sqrt[5]*Pi 1771194801093606 a007 Real Root Of -409*x^4-674*x^3-629*x^2-833*x+778 1771194803210435 m001 (ln(gamma)+exp(1/Pi))/(gamma(2)+PlouffeB) 1771194812615552 a007 Real Root Of 215*x^4-977*x^3+820*x^2+261*x+278 1771194815106372 a008 Real Root of (-3-6*x+5*x^2-4*x^3+6*x^4+6*x^5) 1771194820901736 r002 12th iterates of z^2 + 1771194821011083 m001 1/exp(Trott)*KhintchineHarmonic*GAMMA(23/24) 1771194821252302 k001 Champernowne real with 177*n+1594 1771194824960597 m001 (ln(gamma)+GAMMA(7/12))/(FeigenbaumDelta+Thue) 1771194832128258 r002 6th iterates of z^2 + 1771194843827466 q001 7145/4034 1771194844304542 m001 (Shi(1)*Zeta(1,2)-ln(2^(1/2)+1))/Shi(1) 1771194844878074 m001 (2^(1/3)-polylog(4,1/2))/(-TreeGrowth2nd+Thue) 1771194849596759 r005 Re(z^2+c),c=-1/8+9/23*I,n=42 1771194850929855 r005 Re(z^2+c),c=-7/78+7/15*I,n=57 1771194853073484 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=46 1771194858390654 a007 Real Root Of -580*x^4-939*x^3+377*x^2+913*x+925 1771194865823458 a007 Real Root Of -494*x^4-758*x^3-206*x^2-528*x+361 1771194872429417 m001 (BesselJ(1,1)-Artin)/(Otter+StronglyCareFree) 1771194877378677 a003 cos(Pi*5/48)+sin(Pi*33/107) 1771194879455332 m001 MadelungNaCl^(Magata/Robbin) 1771194883826865 a007 Real Root Of -200*x^4+288*x^3+887*x^2-717*x-484 1771194892442252 a007 Real Root Of 156*x^4-485*x^3-840*x^2+424*x-844 1771194896163750 l006 ln(6585/7861) 1771194896466255 m001 sin(1/12*Pi)*(Thue-ZetaP(3)) 1771194897096599 l006 ln(1523/8952) 1771194898193077 m001 (GAMMA(3/4)-Psi(2,1/3))/(Gompertz+Sierpinski) 1771194901763615 r009 Re(z^3+c),c=-31/118+25/56*I,n=17 1771194902815228 r005 Im(z^2+c),c=-89/106+4/31*I,n=17 1771194902827834 a001 843/1836311903*610^(4/19) 1771194908868825 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=45 1771194914556580 r005 Im(z^2+c),c=-2/21+5/23*I,n=15 1771194921272305 k001 Champernowne real with 178*n+1593 1771194921493348 m005 (1/2*Zeta(3)+7/12)/(1/5*Zeta(3)-10/11) 1771194924992081 s002 sum(A208592[n]/(10^n-1),n=1..infinity) 1771194934134385 m001 (Bloch-FeigenbaumB)/(Salem+Thue) 1771194946065979 a007 Real Root Of 49*x^4-198*x^3+101*x^2-31*x+356 1771194949426406 m001 Pi*2^(1/2)/GAMMA(3/4)/(Trott^Psi(2,1/3)) 1771194950746711 r002 38th iterates of z^2 + 1771194954399964 r005 Re(z^2+c),c=-1/8+9/23*I,n=45 1771194959073842 a007 Real Root Of 506*x^4+510*x^3-613*x^2+188*x+110 1771194959428959 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=49 1771194960724256 h001 (1/9*exp(1)+1/4)/(3/10*exp(2)+9/10) 1771194965011287 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=48 1771194970304407 a007 Real Root Of 363*x^4+652*x^3+480*x^2+295*x-933 1771194971509622 m001 (PlouffeB+Totient)/(gamma(2)+MertensB2) 1771194986965357 r005 Re(z^2+c),c=-1/8+9/23*I,n=48 1771194987805487 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=51 1771194989750732 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=52 1771194992215813 a007 Real Root Of 571*x^4+643*x^3-988*x^2-106*x+865 1771194996513658 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=54 1771194997021163 r005 Re(z^2+c),c=-1/8+9/23*I,n=51 1771194998262896 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=55 1771194999283144 m001 (sin(1/12*Pi)+Robbin)/(arctan(1/3)-sin(1)) 1771194999709951 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=57 1771195000106549 r005 Re(z^2+c),c=-1/8+9/23*I,n=54 1771195000607414 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=58 1771195000849998 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=60 1771195001047030 r005 Re(z^2+c),c=-1/8+9/23*I,n=57 1771195001237592 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=61 1771195001247871 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=63 1771195001331747 r005 Re(z^2+c),c=-1/8+9/23*I,n=60 1771195001401492 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=64 1771195001417317 r005 Re(z^2+c),c=-1/8+9/23*I,n=63 1771195001451759 r005 Re(z^2+c),c=-1/8+9/23*I,n=62 1771195001464073 r005 Re(z^2+c),c=-1/8+9/23*I,n=59 1771195001479905 r005 Re(z^2+c),c=-1/8+9/23*I,n=64 1771195001534873 r005 Re(z^2+c),c=-1/8+9/23*I,n=61 1771195001539069 r005 Re(z^2+c),c=-1/8+9/23*I,n=56 1771195001702132 r005 Re(z^2+c),c=-1/8+9/23*I,n=58 1771195001883715 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=62 1771195001892236 r005 Re(z^2+c),c=-1/8+9/23*I,n=53 1771195002206179 r005 Re(z^2+c),c=-1/8+9/23*I,n=55 1771195002853975 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=59 1771195003379976 r005 Re(z^2+c),c=-1/8+9/23*I,n=50 1771195003708567 r005 Re(z^2+c),c=-1/8+9/23*I,n=52 1771195005009356 r005 Im(z^2+c),c=-23/26+14/97*I,n=57 1771195005983547 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=56 1771195008129855 r005 Re(z^2+c),c=-1/8+9/23*I,n=49 1771195009263181 r005 Re(z^2+c),c=-1/8+9/23*I,n=47 1771195015055730 m001 1/exp(Tribonacci)^2/MadelungNaCl*GAMMA(3/4) 1771195016015184 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=53 1771195019651005 m005 (27/28+1/4*5^(1/2))/(5/6*3^(1/2)-7/12) 1771195020944533 r005 Re(z^2+c),c=-1/8+9/23*I,n=46 1771195021292308 k001 Champernowne real with 179*n+1592 1771195023585358 r005 Im(z^2+c),c=-7/13+30/49*I,n=25 1771195025326304 m005 (1/2*3^(1/2)-5/9)/(1/11*exp(1)-2) 1771195027977199 m001 (CareFree-Catalan)/(-ErdosBorwein+ThueMorse) 1771195031588176 r005 Re(z^2+c),c=-1/8+9/23*I,n=44 1771195040765099 a008 Real Root of x^4-2*x^3+2*x^2-x-29 1771195041438686 r002 19th iterates of z^2 + 1771195047060114 b008 47*BesselY[0,3] 1771195047970255 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=50 1771195049380384 m001 (Magata-MertensB2)^Robbin 1771195052077805 l006 ln(8159/9740) 1771195057398288 r005 Re(z^2+c),c=-1/8+9/23*I,n=43 1771195057594978 l006 ln(696/4091) 1771195061552462 r005 Re(z^2+c),c=-1/13+28/57*I,n=50 1771195062063133 r009 Re(z^3+c),c=-13/44+11/20*I,n=48 1771195065176591 m001 BesselJ(1,1)/(Zeta(3)+GlaisherKinkelin) 1771195067870312 m001 1/exp(sinh(1))^2/GaussKuzminWirsing/sqrt(Pi) 1771195072256062 a003 cos(Pi*12/61)+sin(Pi*15/37) 1771195091825840 r005 Im(z^2+c),c=-63/62+6/31*I,n=46 1771195091960017 a008 Real Root of x^4-x^3+17*x^2+58*x+34 1771195094483893 r009 Im(z^3+c),c=-13/25+37/61*I,n=9 1771195097037793 q001 1734/979 1771195098005242 m001 (exp(Pi)+Shi(1))/(-ln(2+3^(1/2))+FeigenbaumD) 1771195101211441 k008 concat of cont frac of 1771195102742953 r005 Re(z^2+c),c=-13/11+7/54*I,n=38 1771195106394098 r005 Im(z^2+c),c=-25/48+1/2*I,n=51 1771195113854213 r005 Re(z^2+c),c=-1/8+9/23*I,n=41 1771195116179403 a001 3/139583862445*55^(10/19) 1771195117963851 a007 Real Root Of 706*x^4+662*x^3-985*x^2+517*x+736 1771195121312311 k001 Champernowne real with 180*n+1591 1771195126179739 m004 -15/Pi-25*Sqrt[5]*Pi+5/ProductLog[Sqrt[5]*Pi] 1771195126949914 a003 cos(Pi*27/110)*cos(Pi*45/107) 1771195129934320 b008 5/3+Sin[Pi/30] 1771195132062581 h001 (5/8*exp(2)+9/10)/(4/11*exp(2)+3/7) 1771195132360131 k007 concat of cont frac of 1771195143418549 r005 Im(z^2+c),c=13/32+19/54*I,n=41 1771195144852486 a007 Real Root Of 711*x^4+999*x^3-32*x^2+428*x-588 1771195149115341 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=47 1771195152240531 s002 sum(A287038[n]/((exp(n)+1)*n),n=1..infinity) 1771195152999293 a007 Real Root Of 163*x^4-840*x^3+466*x^2+689*x+381 1771195155036684 a007 Real Root Of 455*x^4+178*x^3-633*x^2+310*x-954 1771195158649077 r005 Re(z^2+c),c=-1/8+9/23*I,n=40 1771195161807024 a007 Real Root Of 265*x^4-15*x^3-408*x^2+645*x-269 1771195172756425 p003 LerchPhi(1/12,1,102/175) 1771195173860815 m001 GAMMA(5/6)^Psi(2,1/3)-Pi^(1/2) 1771195175484675 m004 -18+(5*E^(Sqrt[5]*Pi)*Tanh[Sqrt[5]*Pi])/Pi 1771195183794227 m001 Robbin^2/exp(Riemann1stZero)*GAMMA(1/6) 1771195184035999 a007 Real Root Of -617*x^4-708*x^3+291*x^2-584*x+191 1771195184812427 m001 exp(Pi)^(GAMMA(19/24)*OrthogonalArrays) 1771195196767126 r005 Re(z^2+c),c=19/60+19/63*I,n=27 1771195201428152 a001 9349/1597*2584^(23/53) 1771195205500622 a007 Real Root Of 392*x^4+388*x^3-544*x^2-347*x-610 1771195218834702 l006 ln(4253/4329) 1771195221332314 k001 Champernowne real with 181*n+1590 1771195230713023 g005 GAMMA(7/12)*GAMMA(7/11)*Pi*csc(1/8*Pi) 1771195233786998 m001 exp(-1/2*Pi)^Sarnak*TreeGrowth2nd^Sarnak 1771195239723029 r002 30th iterates of z^2 + 1771195242755561 a007 Real Root Of -778*x^4-985*x^3+197*x^2-513*x+657 1771195247965699 m001 (Pi+exp(Pi))/(3^(1/3)-BesselI(1,2)) 1771195248132034 m002 (54*Coth[Pi])/Pi^5 1771195251440330 l006 ln(1261/7412) 1771195252817618 m001 exp(BesselJ(0,1))*Lehmer^2*GAMMA(1/24) 1771195253927497 a007 Real Root Of 5*x^4+890*x^3+781*x^2+223*x+165 1771195258062418 m001 1/ln(Conway)^2*Champernowne*Zeta(7) 1771195264499630 a007 Real Root Of -371*x^4-688*x^3+197*x^2+950*x+893 1771195269117715 m001 1/BesselK(0,1)^2/MinimumGamma/exp(GAMMA(7/24)) 1771195271487667 r005 Re(z^2+c),c=-43/40+5/21*I,n=64 1771195274295971 m001 Si(Pi)/(GAMMA(23/24)^MadelungNaCl) 1771195275840148 a003 cos(Pi*1/25)+sin(Pi*29/102) 1771195284292250 a003 sin(Pi*5/68)*sin(Pi*29/103) 1771195289457389 a007 Real Root Of -276*x^4-236*x^3+621*x^2+222*x-150 1771195290988312 a007 Real Root Of -562*x^4-802*x^3+400*x^2+515*x+732 1771195292151374 m001 (Landau+Sarnak)/(GlaisherKinkelin-LambertW(1)) 1771195292345571 r005 Re(z^2+c),c=-23/118+27/37*I,n=10 1771195295655179 m005 (1/3*exp(1)+3/7)/(4/9*2^(1/2)+1/8) 1771195297894141 a003 sin(Pi*19/73)/cos(Pi*27/74) 1771195311025650 r005 Im(z^2+c),c=-13/14+25/154*I,n=43 1771195316376058 a007 Real Root Of 507*x^4+706*x^3-197*x^2+97*x-277 1771195321352317 k001 Champernowne real with 182*n+1589 1771195323684938 m001 (Ei(1)+gamma(2))/(Bloch+Lehmer) 1771195326051507 r005 Re(z^2+c),c=5/34+28/53*I,n=19 1771195326461229 m001 TwinPrimes^2/ln(FeigenbaumKappa)/cos(Pi/5) 1771195327552152 m002 153/25+Cosh[Pi] 1771195327662397 h001 (7/8*exp(2)+4/11)/(2/5*exp(2)+9/10) 1771195332382342 m001 (-ArtinRank2+GolombDickman)/(5^(1/2)+Ei(1)) 1771195332407267 m005 (1/3*Pi+1/8)/(1/11*gamma-5/7) 1771195335067627 r009 Re(z^3+c),c=-5/54+38/45*I,n=14 1771195335276967 r005 Im(z^2+c),c=-83/70+2/7*I,n=3 1771195337253486 m005 (1/2*Catalan+6/11)/(-11/24+11/24*5^(1/2)) 1771195337366614 a001 24476/4181*2584^(23/53) 1771195341613428 p001 sum((-1)^n/(401*n+148)/n/(10^n),n=1..infinity) 1771195354348604 m001 (2/3*Pi*3^(1/2)/GAMMA(2/3)-PlouffeB)^Sarnak 1771195354513873 r005 Re(z^2+c),c=4/13+31/54*I,n=22 1771195360984199 m005 (-23/36+1/4*5^(1/2))/(2/5*exp(1)-7/11) 1771195362002170 a007 Real Root Of -285*x^4-539*x^3-603*x^2-701*x+460 1771195362169186 m001 ln(2)+FeigenbaumDelta^Tribonacci 1771195363559963 a007 Real Root Of 483*x^4+803*x^3+715*x^2+941*x-868 1771195365982095 q001 6727/3798 1771195367612117 r005 Im(z^2+c),c=-7/9+11/126*I,n=31 1771195369457335 a001 13201/2255*2584^(23/53) 1771195370425895 m005 (1/2*Pi-8/11)/(-23/55+2/5*5^(1/2)) 1771195370527376 r004 Re(z^2+c),c=-55/46+2/19*I,z(0)=-1,n=35 1771195370585999 a003 -2*cos(4/9*Pi)+2*cos(7/24*Pi)+cos(1/7*Pi) 1771195380059646 a007 Real Root Of 322*x^4-22*x^3-745*x^2+782*x+431 1771195380851198 r005 Im(z^2+c),c=-13/27+17/55*I,n=38 1771195381386064 a007 Real Root Of 486*x^4+91*x^3-443*x^2-949*x+181 1771195381631947 k003 Champernowne real with 1/3*n^3+27*n^2-232/3*n+51 1771195384396323 m001 ln(BesselK(1,1))^2/GolombDickman^2*GAMMA(1/3) 1771195385492564 a007 Real Root Of 392*x^4+522*x^3-484*x^2-363*x-82 1771195387835287 r005 Re(z^2+c),c=-9/122+13/27*I,n=15 1771195389653987 k002 Champernowne real with 35*n^2-51*n+33 1771195390976986 a007 Real Root Of -791*x^4-800*x^3+371*x^2-880*x+617 1771195393769332 m001 exp(GAMMA(11/12))*LaplaceLimit/Zeta(5)^2 1771195398082395 m001 BesselK(1,1)^exp(sqrt(2))-Ei(1) 1771195400344569 m005 (1/2*Catalan-2/9)/(4/7*exp(1)-2/9) 1771195406771977 a007 Real Root Of -878*x^4-691*x^3+897*x^2-632*x+868 1771195406926724 r005 Re(z^2+c),c=27/118+20/39*I,n=40 1771195410340117 r005 Re(z^2+c),c=-1/8+9/23*I,n=38 1771195416237182 m001 ZetaQ(3)^Cahen*ZetaQ(3)^exp(-1/2*Pi) 1771195420636118 r005 Im(z^2+c),c=-107/86+2/51*I,n=41 1771195421372320 k001 Champernowne real with 183*n+1588 1771195421381214 a001 15127/2584*2584^(23/53) 1771195430998810 r005 Re(z^2+c),c=-1/8+9/23*I,n=37 1771195432045981 r005 Re(z^2+c),c=-17/118+11/32*I,n=21 1771195434618024 a007 Real Root Of 752*x^4+880*x^3-695*x^2-100*x-508 1771195436798972 a001 10946/843*3^(13/46) 1771195445338841 a007 Real Root Of -510*x^4-996*x^3-258*x-972 1771195459382759 q001 4993/2819 1771195461691536 r005 Im(z^2+c),c=-2/21+5/23*I,n=17 1771195464250574 m001 1/sqrt(2)^2*BesselK(1,1)*exp(sqrt(Pi)) 1771195467173093 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=44 1771195469942545 m005 (-15/4+1/4*5^(1/2))/(2/5*exp(1)+5/7) 1771195478328150 a007 Real Root Of 562*x^4+424*x^3-475*x^2+927*x-43 1771195489899453 r005 Im(z^2+c),c=-37/48+4/35*I,n=7 1771195490230305 l006 ln(565/3321) 1771195491296959 a007 Real Root Of 482*x^4+323*x^3-414*x^2+384*x-970 1771195491382698 m001 (Pi^(1/2)-ln(2)/ln(10))/(-Mills+PlouffeB) 1771195491840272 a005 (1/sin(101/207*Pi))^794 1771195493712323 m001 (HardyLittlewoodC3-Kac)/(GAMMA(5/6)-Gompertz) 1771195496118413 m001 (Catalan+GAMMA(5/6))/(-ErdosBorwein+ZetaP(2)) 1771195509072567 r005 Im(z^2+c),c=-30/31+10/49*I,n=7 1771195516774897 a007 Real Root Of 207*x^4-357*x^3-493*x^2-792*x-127 1771195519719055 a001 646*3571^(17/42) 1771195521392323 k001 Champernowne real with 184*n+1587 1771195522778436 s002 sum(A000219[n]/(n*2^n-1),n=1..infinity) 1771195545540474 m001 (3^(1/2)+LambertW(1))/(-exp(1/Pi)+ZetaP(4)) 1771195552302194 m005 (1/2*3^(1/2)+6)/(5/8*Zeta(3)-4/11) 1771195553300609 a003 sin(Pi*1/11)/cos(Pi*53/118) 1771195560537651 m001 (Stephens+ZetaP(4))/(Pi+Landau) 1771195560592175 m001 Zeta(1,2)^HardyLittlewoodC3-ln(Pi) 1771195560968775 r005 Re(z^2+c),c=-9/82+20/47*I,n=33 1771195563262544 m001 (-MertensB2+ZetaP(4))/(Psi(2,1/3)+Zeta(5)) 1771195566066846 a001 76/13*377^(23/40) 1771195571470434 a007 Real Root Of -656*x^4-743*x^3+887*x^2+590*x+590 1771195573007728 a007 Real Root Of -518*x^4-312*x^3+393*x^2-693*x+904 1771195577550483 r005 Im(z^2+c),c=-4/3+16/163*I,n=10 1771195585596003 m001 ln(GAMMA(1/24))^2/MertensB1/arctan(1/2)^2 1771195589619841 m001 (2*Pi/GAMMA(5/6)+FeigenbaumAlpha)/(Pi+2^(1/2)) 1771195590448645 r005 Im(z^2+c),c=-125/106+1/54*I,n=18 1771195597232008 m001 polylog(4,1/2)/(FeigenbaumDelta-MadelungNaCl) 1771195597232008 m001 polylog(4,1/2)/(MadelungNaCl-FeigenbaumDelta) 1771195607906196 r002 30th iterates of z^2 + 1771195609418679 a007 Real Root Of 452*x^4-218*x^3+988*x^2-719*x-160 1771195612162585 b008 -13/2+3^Sqrt[2] 1771195613714848 a007 Real Root Of 716*x^4+789*x^3-479*x^2+547*x-191 1771195616396328 r005 Im(z^2+c),c=-23/58+7/24*I,n=52 1771195621412326 k001 Champernowne real with 185*n+1586 1771195624721634 a007 Real Root Of 358*x^4+32*x^3-890*x^2+811*x+883 1771195635265658 r005 Re(z^2+c),c=33/122+13/57*I,n=45 1771195637043049 h005 exp(sin(Pi*4/49)/sin(Pi*6/41)) 1771195642983831 a001 4181/4*9349^(13/42) 1771195643394588 g007 Psi(2,4/11)-Psi(2,5/9)-Psi(2,4/9)-Psi(2,2/9) 1771195650444275 r005 Im(z^2+c),c=-1+28/149*I,n=38 1771195652173913 q001 3259/1840 1771195657261486 m001 (gamma+GAMMA(13/24)*GAMMA(5/24))/GAMMA(5/24) 1771195658086140 a001 144*7^(5/47) 1771195658611897 m001 Porter*(BesselI(1,1)-Pi^(1/2)) 1771195664116960 r005 Re(z^2+c),c=-3/29+29/50*I,n=19 1771195664577620 m001 (GaussKuzminWirsing+Salem)/(ln(2)-GAMMA(7/12)) 1771195667581812 m001 (BesselK(0,1)+ln(5))/(ln(Pi)+ZetaQ(4)) 1771195670483553 r005 Im(z^2+c),c=-23/58+7/24*I,n=43 1771195682758498 l006 ln(1564/9193) 1771195683017396 r005 Im(z^2+c),c=-23/58+7/24*I,n=50 1771195692173458 m009 (16/3*Catalan+2/3*Pi^2-4/5)/(1/3*Psi(1,2/3)+5) 1771195697257416 r005 Re(z^2+c),c=5/34+14/25*I,n=13 1771195699681009 s002 sum(A182820[n]/(64^n-1),n=1..infinity) 1771195704361167 l006 ln(1574/1879) 1771195705035406 s002 sum(A287038[n]/(n*exp(n)+1),n=1..infinity) 1771195707048056 a007 Real Root Of 757*x^4+243*x^3+150*x^2-389*x-73 1771195707386985 b008 3*ModularLambda[(22*I)/3*Pi] 1771195716685473 m001 (Zeta(1/2)+Zeta(1,-1))^Salem 1771195718467149 a001 199/196418*75025^(23/50) 1771195718850451 a007 Real Root Of 211*x^4+153*x^3+97*x^2+377*x-863 1771195719481908 m001 (HeathBrownMoroz+OneNinth)/(Ei(1,1)-GaussAGM) 1771195720193978 m005 (1/2*2^(1/2)+6/11)/(3*5^(1/2)+4/11) 1771195721432329 k001 Champernowne real with 186*n+1585 1771195728193504 s002 sum(A216548[n]/(n^3*exp(n)-1),n=1..infinity) 1771195731524599 b008 3*E^(3+Sqrt[5])*Pi 1771195733389017 m001 (MadelungNaCl+Rabbit)/(Chi(1)-ln(gamma)) 1771195740036552 m005 (1/2*gamma+1/12)/(7/9*2^(1/2)+1) 1771195742787937 a007 Real Root Of -377*x^4-501*x^3+345*x^2+652*x+999 1771195751859117 r005 Im(z^2+c),c=-2/21+5/23*I,n=18 1771195754045884 b008 11+14*Sin[1/2] 1771195755798060 r002 62th iterates of z^2 + 1771195763241787 r005 Im(z^2+c),c=-2/21+5/23*I,n=20 1771195769341555 m001 MasserGramain/KhinchinLevy/HardyLittlewoodC4 1771195774407402 r005 Re(z^2+c),c=-1/16+14/27*I,n=38 1771195777272845 a001 1926/329*2584^(23/53) 1771195784929965 s002 sum(A287038[n]/(n*exp(n)-1),n=1..infinity) 1771195788398050 m001 Catalan^2/PrimesInBinary*exp(sqrt(5))^2 1771195788668454 r005 Im(z^2+c),c=-2/21+5/23*I,n=23 1771195788873658 r005 Im(z^2+c),c=-23/58+7/24*I,n=54 1771195788930548 a007 Real Root Of -279*x^4-360*x^3+191*x^2+364*x+791 1771195789640122 r009 Re(z^3+c),c=-9/52+43/48*I,n=55 1771195789810548 m005 (1/2*Zeta(3)+5/11)/(1/10*2^(1/2)+5/11) 1771195790030844 r005 Im(z^2+c),c=-2/21+5/23*I,n=21 1771195790746143 r005 Im(z^2+c),c=-2/21+5/23*I,n=26 1771195790911545 r005 Im(z^2+c),c=-2/21+5/23*I,n=29 1771195790924415 r005 Im(z^2+c),c=-2/21+5/23*I,n=32 1771195790925395 r005 Im(z^2+c),c=-2/21+5/23*I,n=35 1771195790925469 r005 Im(z^2+c),c=-2/21+5/23*I,n=38 1771195790925474 r005 Im(z^2+c),c=-2/21+5/23*I,n=41 1771195790925474 r005 Im(z^2+c),c=-2/21+5/23*I,n=44 1771195790925474 r005 Im(z^2+c),c=-2/21+5/23*I,n=47 1771195790925474 r005 Im(z^2+c),c=-2/21+5/23*I,n=46 1771195790925474 r005 Im(z^2+c),c=-2/21+5/23*I,n=50 1771195790925474 r005 Im(z^2+c),c=-2/21+5/23*I,n=49 1771195790925474 r005 Im(z^2+c),c=-2/21+5/23*I,n=52 1771195790925474 r005 Im(z^2+c),c=-2/21+5/23*I,n=53 1771195790925474 r005 Im(z^2+c),c=-2/21+5/23*I,n=55 1771195790925474 r005 Im(z^2+c),c=-2/21+5/23*I,n=56 1771195790925474 r005 Im(z^2+c),c=-2/21+5/23*I,n=58 1771195790925474 r005 Im(z^2+c),c=-2/21+5/23*I,n=59 1771195790925474 r005 Im(z^2+c),c=-2/21+5/23*I,n=61 1771195790925474 r005 Im(z^2+c),c=-2/21+5/23*I,n=62 1771195790925474 r005 Im(z^2+c),c=-2/21+5/23*I,n=64 1771195790925474 r005 Im(z^2+c),c=-2/21+5/23*I,n=63 1771195790925474 r005 Im(z^2+c),c=-2/21+5/23*I,n=60 1771195790925474 r005 Im(z^2+c),c=-2/21+5/23*I,n=57 1771195790925474 r005 Im(z^2+c),c=-2/21+5/23*I,n=54 1771195790925474 r005 Im(z^2+c),c=-2/21+5/23*I,n=51 1771195790925474 r005 Im(z^2+c),c=-2/21+5/23*I,n=48 1771195790925474 r005 Im(z^2+c),c=-2/21+5/23*I,n=43 1771195790925474 r005 Im(z^2+c),c=-2/21+5/23*I,n=45 1771195790925475 r005 Im(z^2+c),c=-2/21+5/23*I,n=42 1771195790925475 r005 Im(z^2+c),c=-2/21+5/23*I,n=40 1771195790925476 r005 Im(z^2+c),c=-2/21+5/23*I,n=39 1771195790925479 r005 Im(z^2+c),c=-2/21+5/23*I,n=37 1771195790925494 r005 Im(z^2+c),c=-2/21+5/23*I,n=36 1771195790925564 r005 Im(z^2+c),c=-2/21+5/23*I,n=34 1771195790925690 r005 Im(z^2+c),c=-2/21+5/23*I,n=33 1771195790926979 r005 Im(z^2+c),c=-2/21+5/23*I,n=31 1771195790927593 r005 Im(z^2+c),c=-2/21+5/23*I,n=30 1771195790943031 r005 Im(z^2+c),c=-2/21+5/23*I,n=27 1771195790949265 r005 Im(z^2+c),c=-2/21+5/23*I,n=28 1771195791010658 r005 Im(z^2+c),c=-2/21+5/23*I,n=24 1771195791286643 r005 Im(z^2+c),c=-2/21+5/23*I,n=25 1771195791645797 l006 ln(999/5872) 1771195796237367 r005 Im(z^2+c),c=-2/21+5/23*I,n=22 1771195796897032 m001 Zeta(3)^2*GAMMA(1/6)^2/exp(arctan(1/2))^2 1771195799911399 m001 (exp(1)+Rabbit)/(-ReciprocalLucas+Trott2nd) 1771195799923820 a007 Real Root Of -821*x^4-963*x^3+434*x^2-793*x-37 1771195803733434 a007 Real Root Of 986*x^4-287*x^3+838*x^2-859*x-181 1771195813070696 m005 (1/2*2^(1/2)-8/11)/(3/10*2^(1/2)+5/7) 1771195813873842 r009 Re(z^3+c),c=-13/90+49/58*I,n=39 1771195821452332 k001 Champernowne real with 187*n+1584 1771195824417826 r009 Re(z^3+c),c=-29/94+13/22*I,n=62 1771195826673447 r005 Re(z^2+c),c=-5/24+1/59*I,n=11 1771195829784280 r005 Im(z^2+c),c=-23/58+7/24*I,n=49 1771195835333721 m001 (Artin+HardyLittlewoodC3)/(Psi(2,1/3)-Si(Pi)) 1771195836158706 a007 Real Root Of 523*x^4+450*x^3-389*x^2+479*x-578 1771195837139445 r005 Im(z^2+c),c=6/25+29/43*I,n=6 1771195844903572 r005 Im(z^2+c),c=-23/58+7/24*I,n=57 1771195853387634 q001 4784/2701 1771195855313673 r005 Im(z^2+c),c=-23/58+7/24*I,n=59 1771195856535261 q001 1/5645903 1771195858482145 m001 (FeigenbaumB-MertensB3)/(OneNinth+ZetaP(3)) 1771195864997802 a007 Real Root Of -150*x^4-425*x^3-674*x^2-633*x+108 1771195867025064 r005 Im(z^2+c),c=-2/21+5/23*I,n=19 1771195868115806 m001 1/Zeta(3)^2*exp((3^(1/3)))/sqrt(1+sqrt(3)) 1771195869913695 r005 Re(z^2+c),c=-33/122+39/58*I,n=9 1771195880561910 r005 Im(z^2+c),c=-23/58+7/24*I,n=64 1771195880905063 r005 Im(z^2+c),c=-23/58+7/24*I,n=61 1771195884696200 a007 Real Root Of 596*x^4+921*x^3+141*x^2+527*x-257 1771195885107760 r005 Im(z^2+c),c=-23/58+7/24*I,n=62 1771195889195026 m001 1/GAMMA(11/24)*ln(Lehmer)/GAMMA(7/12) 1771195892811798 r005 Im(z^2+c),c=-23/58+7/24*I,n=63 1771195893100430 h001 (1/12*exp(1)+5/12)/(5/11*exp(2)+3/11) 1771195897265736 r005 Im(z^2+c),c=-71/110+24/61*I,n=11 1771195897595038 m001 (FeigenbaumC+MadelungNaCl)/(1-Zeta(3)) 1771195899426140 b008 4+13*2^(1/13) 1771195905071257 r005 Im(z^2+c),c=-23/58+7/24*I,n=60 1771195905275728 a007 Real Root Of -700*x^4-910*x^3+923*x^2+311*x-512 1771195909560117 r005 Im(z^2+c),c=-23/58+7/24*I,n=56 1771195910487191 l006 ln(1433/8423) 1771195910487191 p004 log(8423/1433) 1771195910847053 r005 Im(z^2+c),c=-23/58+7/24*I,n=55 1771195911752592 m001 (ln(2)+ErdosBorwein*Totient)/ErdosBorwein 1771195913170594 r005 Re(z^2+c),c=-7/78+7/15*I,n=54 1771195914025971 r005 Re(z^2+c),c=-7/48+20/59*I,n=25 1771195921472335 k001 Champernowne real with 188*n+1583 1771195929232902 r005 Im(z^2+c),c=-23/58+7/24*I,n=58 1771195934961622 m005 (1/2*2^(1/2)+8/11)/(3/11*5^(1/2)+1/5) 1771195938212229 b008 E+5*(-1/7+Pi) 1771195940797627 r002 28th iterates of z^2 + 1771195942885144 a007 Real Root Of 567*x^4-577*x^3-314*x^2-949*x-162 1771195946873104 r005 Im(z^2+c),c=-7/23+1/36*I,n=6 1771195947573322 m001 Gompertz^GAMMA(19/24)/(Gompertz^BesselI(0,2)) 1771195950659938 m001 Riemann1stZero*FeigenbaumC^2/ln(BesselJ(0,1)) 1771195950851468 b008 Sqrt[3]-3*ExpIntegralEi[-3] 1771195952285537 a003 cos(Pi*1/3)-cos(Pi*17/43) 1771195956467397 a007 Real Root Of -231*x^4-59*x^3-74*x^2-919*x+550 1771195957327344 q001 6309/3562 1771195957721768 a007 Real Root Of 4*x^4+68*x^3-51*x^2-61*x-905 1771195963826995 v003 sum((2*n^3-4*n^2+2*n+8)/(n!+1),n=1..infinity) 1771195968019484 r005 Re(z^2+c),c=-13/74+15/58*I,n=6 1771195968731574 a003 cos(Pi*1/39)-cos(Pi*20/103) 1771195972723403 m002 -6+4/Pi^2+E^Pi/Pi 1771195977730459 a007 Real Root Of 924*x^4+936*x^3-825*x^2+762*x+45 1771195978778171 r004 Re(z^2+c),c=9/38+3/16*I,z(0)=exp(5/8*I*Pi),n=8 1771195989051190 r005 Im(z^2+c),c=-9/29+23/36*I,n=34 1771195992334529 r004 Im(z^2+c),c=-39/34-7/23*I,z(0)=-1,n=4 1771195994527496 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=33 1771195996277550 r002 40th iterates of z^2 + 1771195998047149 p001 sum(1/(409*n+173)/n/(10^n),n=1..infinity) 1771195999091496 m001 ln(Robbin)/Riemann3rdZero^2*FeigenbaumD 1771196007105072 m001 (2^(1/2)+1)/(GAMMA(11/12)+HardyLittlewoodC4) 1771196009376779 a007 Real Root Of 320*x^4-295*x^3-943*x^2+904*x-229 1771196012043498 a007 Real Root Of 558*x^4+828*x^3-627*x^2-65*x+961 1771196018441659 m001 (Catalan+ln(5))/(Champernowne+Riemann1stZero) 1771196018612362 a007 Real Root Of -153*x^4+677*x^3-241*x^2-586*x-462 1771196019432416 r002 5th iterates of z^2 + 1771196020517355 m001 (-Trott+ThueMorse)/(FransenRobinson-cos(1)) 1771196021492338 k001 Champernowne real with 189*n+1582 1771196022360297 b008 SinIntegral[3]^E/3 1771196022703562 r005 Im(z^2+c),c=-89/82+11/52*I,n=30 1771196024184766 a007 Real Root Of -48*x^4-830*x^3+306*x^2-897*x+213 1771196029838797 m006 (2/5*exp(Pi)+2/5)/(1/4*exp(Pi)-1/3) 1771196039053906 r002 9th iterates of z^2 + 1771196040241648 a007 Real Root Of 211*x^4-678*x^3-249*x^2-969*x+183 1771196040666088 m001 1/ln(Zeta(7))/BesselJ(1,1)/cosh(1) 1771196041869685 a001 2/7*64079^(22/59) 1771196042470766 a001 2/7*39603^(23/59) 1771196050717339 m001 (Zeta(5)-exp(1))/(-ln(5)+TwinPrimes) 1771196052884110 r005 Re(z^2+c),c=-1/21+19/35*I,n=59 1771196055669729 a001 4*(1/2*5^(1/2)+1/2)^2*18^(2/11) 1771196060079981 a001 4/121393*121393^(29/54) 1771196060365091 a005 (1/cos(3/128*Pi))^1908 1771196060511891 r005 Re(z^2+c),c=-3/62+21/41*I,n=18 1771196062477427 r005 Im(z^2+c),c=-17/22+9/128*I,n=37 1771196064214583 m002 (6*Pi*Sinh[Pi])/(Log[Pi]*ProductLog[Pi]) 1771196069478056 s002 sum(A197077[n]/(n^3*10^n+1),n=1..infinity) 1771196074507143 m001 Magata^Gompertz/(Mills^Gompertz) 1771196076658953 r005 Im(z^2+c),c=-23/58+7/24*I,n=53 1771196078647118 r005 Re(z^2+c),c=-1/7+17/49*I,n=25 1771196078837631 a007 Real Root Of 26*x^4-526*x^3-903*x^2+425*x+407 1771196079395103 m001 (-Porter+Riemann1stZero)/(Pi^(1/2)-Shi(1)) 1771196081165085 m001 (-Shi(1)+Paris)/(1+Psi(2,1/3)) 1771196083820126 a003 cos(Pi*1/12)+cos(Pi*20/99) 1771196086169963 m005 (1/2*2^(1/2)+1/3)/(8/11*Zeta(3)+5) 1771196089350493 a003 sin(Pi*7/90)/cos(Pi*57/115) 1771196089930232 a007 Real Root Of 447*x^4-86*x^3-693*x^2+992*x-946 1771196090044862 m001 (TwinPrimes+ZetaQ(2))/(Shi(1)+Zeta(1/2)) 1771196094040649 p001 sum(1/(183*n+59)/(6^n),n=0..infinity) 1771196096620516 a007 Real Root Of 802*x^4-66*x^3+899*x^2-873*x+126 1771196107310284 m005 (1/2*exp(1)-2/7)/(1/5*2^(1/2)-8/9) 1771196121512341 k001 Champernowne real with 190*n+1581 1771196123440708 m001 Pi*Psi(2,1/3)-3^(1/2)*BesselI(0,2) 1771196130631006 r005 Re(z^2+c),c=-1/8+9/23*I,n=34 1771196135796454 m001 (Zeta(3)+Zeta(1/2))/(Porter-ZetaQ(3)) 1771196136253616 r005 Re(z^2+c),c=-9/86+18/29*I,n=43 1771196149156839 m001 (Grothendieck-MasserGramain)/(gamma(3)-Cahen) 1771196164904417 a007 Real Root Of 741*x^4+956*x^3-153*x^2+963*x+205 1771196165691589 r005 Re(z^2+c),c=-41/34+3/121*I,n=32 1771196171079767 a007 Real Root Of 270*x^4-29*x^3-333*x^2+635*x-649 1771196173938013 m005 (39/44+1/4*5^(1/2))/(7/11*gamma-2/7) 1771196176188252 k008 concat of cont frac of 1771196182000365 r005 Im(z^2+c),c=-23/58+7/24*I,n=51 1771196184041406 l006 ln(434/2551) 1771196185598703 m001 Riemann2ndZero^2/Magata^2/exp(BesselJ(0,1)) 1771196197381800 r005 Im(z^2+c),c=-29/52+14/43*I,n=55 1771196202646961 r005 Im(z^2+c),c=-79/94+1/8*I,n=40 1771196204711917 r009 Im(z^3+c),c=-11/102+11/62*I,n=6 1771196205515664 m001 1/Magata*Kolakoski^2*exp(GAMMA(5/6))^2 1771196205953064 b008 -1+(-3+EulerGamma)/Pi 1771196220267529 m001 (Gompertz+Landau)/Cahen 1771196220465996 b008 -20+Gamma[Pi] 1771196221532344 k001 Champernowne real with 191*n+1580 1771196221975980 r005 Im(z^2+c),c=-43/48+6/43*I,n=5 1771196227132661 m001 MertensB2*(LambertW(1)+ln(Pi)) 1771196239197598 a001 47/6765*3^(23/27) 1771196242413934 m001 (-HardyLittlewoodC3+Totient)/(2^(1/3)+exp(1)) 1771196248737949 m001 (MadelungNaCl+TwinPrimes)/(Pi-Grothendieck) 1771196250749804 r005 Im(z^2+c),c=-5/8+67/217*I,n=52 1771196256322103 m001 (BesselI(0,2)+Khinchin)/(5^(1/2)+LambertW(1)) 1771196262147458 a007 Real Root Of 48*x^4+891*x^3+742*x^2+279*x-986 1771196264270489 a003 cos(Pi*15/101)+sin(Pi*29/85) 1771196266048452 r009 Re(z^3+c),c=-8/25+25/42*I,n=30 1771196267091283 a001 233/1860498*199^(29/31) 1771196283391405 q001 1525/861 1771196283391405 r002 2th iterates of z^2 + 1771196283391405 r002 2th iterates of z^2 + 1771196285184421 r005 Re(z^2+c),c=-63/74+1/29*I,n=12 1771196287441132 m001 (FeigenbaumAlpha+5)/(5^(1/2)+2) 1771196301608609 a007 Real Root Of -422*x^4-523*x^3+685*x^2+62*x-792 1771196305397615 a007 Real Root Of 687*x^4-129*x^3-557*x^2-748*x+150 1771196306323304 m008 (1/2*Pi^5-1/4)/(5/6*Pi^2+2/5) 1771196308351705 g004 Re(GAMMA(11/3+I*23/10)) 1771196308865434 r009 Im(z^3+c),c=-11/78+17/19*I,n=14 1771196310539837 m001 (BesselI(1,1)-Robbin)/(cos(1/5*Pi)-GAMMA(2/3)) 1771196312714411 k007 concat of cont frac of 1771196321552347 k001 Champernowne real with 192*n+1579 1771196322979451 m001 (Gompertz-HardyLittlewoodC3)/(MertensB3+Thue) 1771196323916667 a007 Real Root Of -422*x^4-338*x^3+49*x^2-689*x+901 1771196330002976 m001 (3^(1/2)+gamma(3))/(-Artin+Bloch) 1771196330549141 m001 1/(2^(1/3))^2*Si(Pi)/ln(GAMMA(11/24)) 1771196331670655 r005 Im(z^2+c),c=-59/114+19/60*I,n=60 1771196339311841 a001 76*(1/2*5^(1/2)+1/2)^22*11^(17/23) 1771196341475220 m001 (MertensB1+ThueMorse)/(ln(Pi)-LandauRamanujan) 1771196341650565 r009 Im(z^3+c),c=-5/48+8/45*I,n=6 1771196370460151 a007 Real Root Of 736*x^4+609*x^3-907*x^2+196*x-667 1771196371574079 a007 Real Root Of 511*x^4+822*x^3-567*x^2-607*x+242 1771196383110056 s002 sum(A034891[n]/((exp(n)-1)/n),n=1..infinity) 1771196385014666 h001 (5/8*exp(2)+4/9)/(5/7*exp(1)+11/12) 1771196385641967 k003 Champernowne real with 1/2*n^3+26*n^2-151/2*n+50 1771196387217734 m001 (1/2+ln(2+sqrt(3)))/GAMMA(23/24) 1771196387217734 m001 (ln(2+sqrt(3))+1/2)/GAMMA(23/24) 1771196387914123 r009 Im(z^3+c),c=-13/21+31/64*I,n=21 1771196392659997 k002 Champernowne real with 71/2*n^2-105/2*n+34 1771196393032684 m001 (-Tetranacci+Trott2nd)/(1-gamma(1)) 1771196397441811 r002 49th iterates of z^2 + 1771196398349424 r005 Im(z^2+c),c=-23/58+7/24*I,n=48 1771196398970023 m001 (HeathBrownMoroz+Magata)/(ln(gamma)-exp(1/Pi)) 1771196406376678 l006 ln(7581/9050) 1771196416068646 r009 Re(z^3+c),c=-13/102+22/27*I,n=63 1771196417351777 r005 Im(z^2+c),c=-5/8+1/254*I,n=12 1771196421572350 k001 Champernowne real with 193*n+1578 1771196423624150 a007 Real Root Of 317*x^4-385*x^3-878*x^2+950*x-822 1771196423771044 h001 (7/9*exp(1)+3/5)/(1/12*exp(2)+11/12) 1771196428280090 l006 ln(1605/9434) 1771196429141542 a007 Real Root Of -659*x^4-913*x^3+456*x^2-131*x-250 1771196440370450 m001 (Pi+exp(1))/(Magata-Paris) 1771196447464889 a007 Real Root Of -937*x^4-912*x^3+729*x^2-725*x+583 1771196451607352 m001 (GAMMA(17/24)-Paris)/(Sarnak-ZetaQ(2)) 1771196453571496 a005 (1/cos(19/221*Pi))^1512 1771196453871063 m001 GAMMA(23/24)/FeigenbaumKappa^2*exp(gamma)^2 1771196459855246 a007 Real Root Of 437*x^4+370*x^3-462*x^2+898*x+795 1771196460240807 r005 Re(z^2+c),c=-1/8+9/23*I,n=35 1771196460303316 m005 (1/2*exp(1)+8/9)/(9/11*Zeta(3)+2/7) 1771196460521152 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=41 1771196467560725 r002 32th iterates of z^2 + 1771196474967400 m001 (BesselJ(1,1)+Conway)/(Shi(1)+gamma(1)) 1771196482445878 m005 (1/2*exp(1)-4/5)/(2/5*2^(1/2)-1/4) 1771196485119405 r005 Im(z^2+c),c=-55/102+9/28*I,n=55 1771196509398269 r009 Re(z^3+c),c=-11/38+17/32*I,n=41 1771196512922010 a007 Real Root Of -583*x^4-555*x^3+197*x^2-722*x+757 1771196518800646 l006 ln(1171/6883) 1771196518800646 p004 log(6883/1171) 1771196521093118 a003 cos(Pi*13/93)/cos(Pi*27/82) 1771196521592353 k001 Champernowne real with 194*n+1577 1771196522850518 a007 Real Root Of -520*x^4-738*x^3+517*x^2-109*x-798 1771196523308846 a007 Real Root Of 688*x^4+34*x^3-756*x^2-955*x+192 1771196525790849 h001 (1/3*exp(2)+5/8)/(2/11*exp(2)+2/5) 1771196532457527 r005 Im(z^2+c),c=-69/122+10/29*I,n=39 1771196541321244 a008 Real Root of x^4-x^3+16*x^2-90*x-225 1771196545360697 r005 Re(z^2+c),c=-23/28+6/53*I,n=40 1771196557195724 r009 Re(z^3+c),c=-7/50+38/51*I,n=57 1771196560065211 r005 Re(z^2+c),c=-9/82+20/47*I,n=40 1771196560925478 a001 41/329*3^(8/25) 1771196566825990 a005 (1/sin(89/211*Pi))^623 1771196567359383 m004 -5+5*Cos[Sqrt[5]*Pi]-Tan[Sqrt[5]*Pi]/2 1771196567739896 r005 Re(z^2+c),c=-1/10+17/36*I,n=13 1771196578435036 m001 (gamma(2)-MadelungNaCl)/(Porter-Weierstrass) 1771196582167315 r005 Im(z^2+c),c=-137/126+10/47*I,n=45 1771196588216105 a007 Real Root Of -39*x^4+430*x^3+655*x^2+10*x+736 1771196590324134 l006 ln(6007/7171) 1771196591217072 m004 -18+(10*Sinh[Sqrt[5]*Pi])/Pi 1771196592865951 r002 10th iterates of z^2 + 1771196597439578 r005 Im(z^2+c),c=-9/8+37/201*I,n=20 1771196600119653 r002 58th iterates of z^2 + 1771196600510713 a007 Real Root Of -646*x^4-941*x^3+435*x^2-313*x-790 1771196601817162 a007 Real Root Of -614*x^4-482*x^3+508*x^2-442*x+988 1771196606493207 a007 Real Root Of -881*x^4-953*x^3+871*x^2-316*x+83 1771196607347340 m001 gamma(1)^Thue*FeigenbaumC^Thue 1771196614947636 r005 Im(z^2+c),c=31/118+3/62*I,n=50 1771196620909562 m001 FeigenbaumKappa+FellerTornier^StronglyCareFree 1771196621612356 k001 Champernowne real with 195*n+1576 1771196632591701 q001 5891/3326 1771196632879281 a007 Real Root Of 747*x^4+732*x^3-533*x^2+991*x+143 1771196636678629 r002 59th iterates of z^2 + 1771196637362931 p004 log(33151/32569) 1771196640644725 a007 Real Root Of -382*x^4-85*x^3+567*x^2-422*x+761 1771196640924020 m001 Zeta(1/2)^MertensB2*Zeta(1/2)^Weierstrass 1771196645605542 r005 Im(z^2+c),c=-73/102+8/37*I,n=8 1771196647209675 a008 Real Root of x^4-x^3-20*x^2-2*x+62 1771196652779537 r005 Im(z^2+c),c=-37/70+15/47*I,n=37 1771196657399870 r005 Re(z^2+c),c=11/106+15/53*I,n=12 1771196666805697 a007 Real Root Of 42*x^4-419*x^3+222*x^2+230*x+811 1771196682101467 r002 3th iterates of z^2 + 1771196687685137 a007 Real Root Of -488*x^4-593*x^3+377*x^2-166*x+31 1771196692654560 m001 3^(1/3)*Tribonacci-QuadraticClass 1771196694969512 a007 Real Root Of 301*x^4-357*x^3+649*x^2-736*x-153 1771196699460800 m001 (MertensB2+Thue)/(Psi(1,1/3)+Gompertz) 1771196715169798 m001 1/exp(BesselK(1,1))*Salem^2*GAMMA(7/12)^2 1771196715931544 l006 ln(737/4332) 1771196716137193 m001 (GAMMA(23/24)+FeigenbaumC)/(2^(1/3)-ln(3)) 1771196721632359 k001 Champernowne real with 196*n+1575 1771196731934706 a007 Real Root Of -403*x^4-51*x^3+785*x^2+898*x-183 1771196733801771 m001 (Tetranacci+Trott)/(Zeta(3)-OneNinth) 1771196736042165 m001 exp(1/Pi)*BesselI(1,1)*BesselI(0,2) 1771196743916563 m001 (exp(1)+Chi(1))/(-gamma+Sierpinski) 1771196745151411 k009 concat of cont frac of 1771196747003274 m001 (GaussAGM-MasserGramain)^Zeta(5) 1771196751989602 m001 1/Pi^2*ln(Trott)/sin(Pi/12) 1771196754563894 q001 4366/2465 1771196754840775 r005 Im(z^2+c),c=-19/14+14/193*I,n=10 1771196766598695 m001 (ln(5)-exp(1/Pi))/(Cahen-StronglyCareFree) 1771196772433510 a007 Real Root Of 565*x^4+226*x^3-655*x^2+787*x-856 1771196772808559 m005 (1/2*2^(1/2)+3/11)/(18/77+1/7*5^(1/2)) 1771196785433205 r002 16th iterates of z^2 + 1771196796407310 a007 Real Root Of -94*x^4+756*x^3-772*x^2-93*x-689 1771196797676189 q001 1/56459 1771196808684277 r005 Re(z^2+c),c=-31/58+27/47*I,n=8 1771196813121795 m005 (1/2*3^(1/2)+4/5)/(9/11*5^(1/2)-8/9) 1771196814179336 s002 sum(A048052[n]/((pi^n+1)/n),n=1..infinity) 1771196815465852 a007 Real Root Of -274*x^4-108*x^3+960*x^2+113*x-715 1771196817419524 m005 (1/3*gamma-1/7)/(2*3^(1/2)-2/3) 1771196821652362 k001 Champernowne real with 197*n+1574 1771196821944442 h001 (3/4*exp(2)+1/5)/(11/12*exp(1)+3/4) 1771196832980280 a003 cos(Pi*31/119)/cos(Pi*43/115) 1771196838021462 m001 ln(2^(1/2)+1)/(CareFree-Zeta(3)) 1771196841894860 a007 Real Root Of 621*x^4+445*x^3-840*x^2+27*x-956 1771196846913767 a007 Real Root Of -260*x^4-208*x^3+385*x^2+211*x+569 1771196850483134 m002 -6+E^Pi+Pi^2/6-ProductLog[Pi] 1771196852609184 a007 Real Root Of -779*x^4-669*x^3+491*x^2-826*x+946 1771196853997486 a007 Real Root Of 603*x^4+341*x^3-914*x^2+125*x-951 1771196854263946 q001 7207/4069 1771196855023957 r005 Im(z^2+c),c=31/118+3/62*I,n=52 1771196856393099 r005 Im(z^2+c),c=-2/21+5/23*I,n=16 1771196874809442 r005 Re(z^2+c),c=-29/26+21/113*I,n=10 1771196875846313 a007 Real Root Of -852*x^4-812*x^3+753*x^2-752*x+179 1771196877999071 b008 EllipticK[ArcCsch[3/2]^2] 1771196879626558 r005 Re(z^2+c),c=9/106+28/47*I,n=17 1771196881461275 s001 sum(exp(-Pi/4)^n*A134532[n],n=1..infinity) 1771196897606467 m001 gamma(2)^Kolakoski+Trott 1771196903731069 a007 Real Root Of 700*x^4-787*x^3+233*x^2-873*x+151 1771196904897927 l006 ln(4433/5292) 1771196906806947 a003 cos(Pi*15/59)/cos(Pi*36/97) 1771196921672365 k001 Champernowne real with 198*n+1573 1771196922291637 m001 Pi-(exp(Pi)-GAMMA(5/6))/GAMMA(11/12) 1771196924049306 r005 Re(z^2+c),c=-9/86+24/55*I,n=24 1771196927044019 m001 MadelungNaCl-Sierpinski^PisotVijayaraghavan 1771196927340444 a007 Real Root Of -15*x^4+74*x^3-371*x^2-504*x+830 1771196931894635 m005 (1/2*3^(1/2)+2/5)/(1/8*exp(1)+3/8) 1771196934749530 r005 Re(z^2+c),c=17/62+19/41*I,n=39 1771196937694563 a001 4/4181*956722026041^(3/11) 1771196937893307 l006 ln(1040/6113) 1771196938642097 a007 Real Root Of 167*x^4+364*x^3+536*x^2+566*x-300 1771196941621545 m004 -150/Pi-(125*Pi)/3+ProductLog[Sqrt[5]*Pi] 1771196943838495 m004 (75*Sqrt[5])/(4*Pi)+4*Cot[Sqrt[5]*Pi] 1771196945110872 g005 GAMMA(7/11)^2*GAMMA(7/8)/GAMMA(3/4) 1771196949655302 r005 Re(z^2+c),c=15/86+7/64*I,n=12 1771196952106673 r005 Im(z^2+c),c=-67/98+20/49*I,n=4 1771196954357318 a001 121393/11*47^(31/43) 1771196960197272 s002 sum(A087478[n]/(n^3*exp(n)-1),n=1..infinity) 1771196961734858 r005 Re(z^2+c),c=-9/94+21/46*I,n=22 1771196962186039 m001 Pi*2^(1/2)/GAMMA(3/4)*gamma^Conway 1771196965551086 h001 (-6*exp(2/3)+9)/(-3*exp(2)+7) 1771196966002787 m001 GAMMA(2/3)/(Landau^BesselJ(1,1)) 1771196975913625 p001 sum(1/(373*n+364)/n/(8^n),n=1..infinity) 1771196984475715 a007 Real Root Of -757*x^4-766*x^3+841*x^2+129*x+784 1771196986060548 m001 1/Porter*exp(MadelungNaCl)*GAMMA(5/12)^2 1771196996511443 p001 sum((-1)^n/(553*n+55)/(3^n),n=0..infinity) 1771196998610082 a001 2889/305*1346269^(23/33) 1771197006615042 a007 Real Root Of 348*x^4-8*x^3+728*x^2-106*x-42 1771197007481296 q001 2841/1604 1771197016008813 m001 KhinchinLevy^BesselK(1,1)+LaplaceLimit 1771197017105939 m005 (1/2*gamma-5/9)/(5*Pi-7/11) 1771197019373636 r002 7th iterates of z^2 + 1771197021692368 k001 Champernowne real with 199*n+1572 1771197022067561 m003 1/4+(17*Sqrt[5])/32-E^(1/2+Sqrt[5]/2)/4 1771197029253849 s002 sum(A247385[n]/(n^3*exp(n)-1),n=1..infinity) 1771197029601084 a007 Real Root Of -343*x^4+534*x^3+969*x^2+870*x+127 1771197030376849 s002 sum(A271452[n]/(n^3*exp(n)-1),n=1..infinity) 1771197031074081 a007 Real Root Of -34*x^4+448*x^3+522*x^2-641*x+51 1771197035630459 r009 Re(z^3+c),c=-19/62+37/63*I,n=36 1771197036116438 s002 sum(A114609[n]/(n^3*exp(n)-1),n=1..infinity) 1771197036596042 s002 sum(A190457[n]/(n^3*exp(n)-1),n=1..infinity) 1771197037102334 a007 Real Root Of -536*x^4-306*x^3+812*x^2-164*x+737 1771197038571848 s002 sum(A253214[n]/(n^3*exp(n)-1),n=1..infinity) 1771197038595201 s002 sum(A112602[n]/(n^3*exp(n)-1),n=1..infinity) 1771197038595201 s002 sum(A000796[n]/(n^3*exp(n)-1),n=1..infinity) 1771197038595201 s002 sum(A212131[n]/(n^3*exp(n)-1),n=1..infinity) 1771197053386382 a007 Real Root Of -63*x^4+752*x^3+731*x^2-991*x+750 1771197057607882 s002 sum(A068089[n]/(n^3*exp(n)-1),n=1..infinity) 1771197059699554 l006 ln(1343/7894) 1771197070004320 m001 GAMMA(5/6)^2*FeigenbaumB^2*ln(Zeta(9)) 1771197072742614 a007 Real Root Of -52*x^4-239*x^3-459*x^2+108*x+815 1771197072978856 a007 Real Root Of 41*x^4+717*x^3-221*x^2-975*x+993 1771197076260721 r002 55th iterates of z^2 + 1771197078317112 r005 Re(z^2+c),c=-3/74+34/59*I,n=42 1771197084997869 r002 5th iterates of z^2 + 1771197099786120 a001 13/2*7^(17/33) 1771197101307683 a003 cos(Pi*3/94)/sin(Pi*15/79) 1771197110763968 m001 1/exp(Sierpinski)*Niven*GAMMA(19/24)^2 1771197113212111 k008 concat of cont frac of 1771197114598288 m004 5*E^(Sqrt[5]*Pi)*Pi+36*Csc[Sqrt[5]*Pi] 1771197120828810 a007 Real Root Of 6*x^4-59*x^3+352*x^2+314*x-935 1771197121712371 k001 Champernowne real with 200*n+1571 1771197123147055 r005 Re(z^2+c),c=17/62+11/24*I,n=24 1771197125440980 r005 Im(z^2+c),c=-49/114+18/61*I,n=17 1771197125784106 m005 (1/2*Pi-1/8)/(45/88+3/22*5^(1/2)) 1771197128852961 m005 (1/2*Zeta(3)+2/11)/(1/4*3^(1/2)-7/8) 1771197133533086 a007 Real Root Of -519*x^4-633*x^3+64*x^2-473*x+552 1771197135337469 a007 Real Root Of 484*x^4+495*x^3-420*x^2+462*x+123 1771197135848291 a007 Real Root Of 427*x^4+224*x^3-580*x^2+799*x+277 1771197136660967 l006 ln(1646/9675) 1771197138462763 h001 (5/12*exp(1)+1/12)/(1/5*exp(1)+1/7) 1771197140103906 r009 Re(z^3+c),c=-67/118+6/13*I,n=9 1771197145093844 m005 (1/2*Pi-5/7)/(2*5^(1/2)+4/11) 1771197146879441 m001 (Niven+Totient)/(Zeta(1/2)-sin(1/12*Pi)) 1771197148951063 a007 Real Root Of 451*x^4+812*x^3+4*x^2-452*x+8 1771197159530261 m005 (-15/4+1/4*5^(1/2))/(5/12*Catalan-4/11) 1771197164037357 l006 ln(7292/8705) 1771197165274614 q001 6998/3951 1771197174439822 r002 14th iterates of z^2 + 1771197181091724 r005 Re(z^2+c),c=1/38+19/31*I,n=51 1771197186957965 a007 Real Root Of 308*x^4+452*x^3+296*x^2+497*x-568 1771197193225688 m001 1/BesselK(0,1)*Salem^2*exp(Zeta(1/2))^2 1771197193902135 a003 cos(Pi*9/41)+sin(Pi*32/65) 1771197194305395 a007 Real Root Of 244*x^4+224*x^3-465*x^2-345*x-309 1771197198452229 a007 Real Root Of 244*x^4+288*x^3+400*x^2+599*x-995 1771197199977879 m005 (1/3*Pi+1/4)/(141/22+9/22*5^(1/2)) 1771197207370077 m001 1/ln(Pi)/ArtinRank2*sqrt(2) 1771197207370077 m001 2^(1/2)/ln(Pi)/ArtinRank2 1771197209157199 m001 1/BesselJ(1,1)^2*ln(Rabbit)^2*cos(1)^2 1771197209389002 r009 Im(z^3+c),c=-25/56+1/19*I,n=17 1771197221732374 k001 Champernowne real with 201*n+1570 1771197228134075 a008 Real Root of (13+8*x+11*x^2+6*x^3) 1771197231314974 m001 Pi*(2^(1/3)-Psi(2,1/3))+gamma(2) 1771197233325417 r002 43th iterates of z^2 + 1771197246450165 a007 Real Root Of -614*x^4-502*x^3+909*x^2-460*x-413 1771197248375928 m001 (-Paris+PlouffeB)/(5^(1/2)-OneNinth) 1771197249862618 a007 Real Root Of -240*x^4-150*x^3+897*x^2+955*x+406 1771197261500569 m002 -E^Pi+(E^Pi*Pi^2*Coth[Pi])/Log[Pi] 1771197261705386 m005 (1/2*2^(1/2)-4/7)/(1/2*3^(1/2)-1/10) 1771197264190992 a007 Real Root Of -858*x^4+309*x^3-207*x^2+794*x-14 1771197269814849 a007 Real Root Of -488*x^4-314*x^3+691*x^2-34*x+830 1771197270323292 p004 log(31817/5413) 1771197270949179 a007 Real Root Of 78*x^4+159*x^3+748*x^2+849*x-727 1771197273114614 q001 4157/2347 1771197273364531 a007 Real Root Of -998*x^4+223*x^3-224*x^2+614*x+118 1771197280421509 m001 (exp(1/Pi)-Riemann1stZero)^GAMMA(5/6) 1771197280679986 m001 (5^(1/2)-gamma(1))/(Cahen+TwinPrimes) 1771197285971226 r005 Im(z^2+c),c=-11/8+11/49*I,n=6 1771197287953127 r009 Re(z^3+c),c=-47/86+22/37*I,n=33 1771197288919218 a005 (1/cos(21/197*Pi))^856 1771197295491202 m001 (gamma(2)+MertensB1)/(cos(1)+ln(2^(1/2)+1)) 1771197297164746 m005 (1/2*Catalan-5/11)/(7/8*Zeta(3)+8/9) 1771197305689468 r005 Im(z^2+c),c=-15/26+35/121*I,n=23 1771197308697144 a007 Real Root Of -340*x^4-551*x^3-145*x^2-173*x+433 1771197316347780 a007 Real Root Of -15*x^4+623*x^3+997*x^2-653*x-675 1771197316699879 m001 (exp(gamma)+1/2)/(-GAMMA(5/6)+1) 1771197321591397 a001 4/987*4807526976^(3/11) 1771197321752377 k001 Champernowne real with 202*n+1569 1771197331496928 a007 Real Root Of -223*x^4-713*x^3-733*x^2+133*x+768 1771197335708907 m005 (1/2*5^(1/2)+10/11)/(9/10*gamma+5/8) 1771197337714924 r005 Re(z^2+c),c=-81/98+3/22*I,n=28 1771197342876893 r009 Re(z^3+c),c=-35/114+21/34*I,n=33 1771197348464131 m002 -1+Pi^3-Pi^2*Log[Pi]-Tanh[Pi] 1771197355656599 r005 Im(z^2+c),c=-31/82+38/39*I,n=4 1771197375651542 m001 (Chi(1)+cos(1))^Grothendieck 1771197381546193 a007 Real Root Of -289*x^4-735*x^3-921*x^2-968*x-65 1771197381804041 r009 Re(z^3+c),c=-29/90+32/53*I,n=33 1771197383965480 a007 Real Root Of -253*x^4-425*x^3-461*x^2-408*x+852 1771197386452033 a007 Real Root Of -642*x^4-628*x^3+955*x^2-101*x-346 1771197388365227 a007 Real Root Of 202*x^4-385*x^3-697*x^2+657*x-777 1771197389651987 k003 Champernowne real with 2/3*n^3+25*n^2-221/3*n+49 1771197394509602 a007 Real Root Of 112*x^4+530*x^3+940*x^2-623*x-137 1771197395665100 k002 Champernowne real with 36*n^2-54*n+35 1771197404002163 r005 Re(z^2+c),c=-28/25+24/43*I,n=2 1771197405879574 m001 1/exp(BesselK(1,1))/CopelandErdos^2/GAMMA(1/6) 1771197407982173 m001 (Ei(1,1)-LambertW(1))/(GAMMA(5/6)+GaussAGM) 1771197411003236 q001 5473/3090 1771197411983360 a007 Real Root Of -504*x^4-814*x^3+758*x^2+967*x-228 1771197414516083 m005 (1+1/3*5^(1/2))/(13/2+3/2*5^(1/2)) 1771197416022742 r005 Re(z^2+c),c=-1/6+22/41*I,n=9 1771197421772380 k001 Champernowne real with 203*n+1568 1771197425921346 r005 Re(z^2+c),c=5/36+29/53*I,n=7 1771197437898283 m005 (1/2*gamma-5/9)/(8/9*exp(1)-10/11) 1771197441031704 a007 Real Root Of -445*x^4-377*x^3+454*x^2+72*x+988 1771197444702370 a007 Real Root Of 277*x^4-112*x^3-838*x^2+627*x+391 1771197445612013 m005 (gamma-3/5)/(1/6*exp(1)+5/6) 1771197449880690 a007 Real Root Of -10*x^4+470*x^3+484*x^2-771*x-174 1771197455403745 a007 Real Root Of -902*x^4-840*x^3+922*x^2-567*x+313 1771197459681835 r005 Im(z^2+c),c=-5/54+41/63*I,n=15 1771197461025630 m001 (Ei(1,1)+BesselI(1,1))/(CareFree-MertensB1) 1771197474726176 r005 Re(z^2+c),c=-127/126+7/31*I,n=8 1771197477780292 l006 ln(303/1781) 1771197480096936 a003 cos(Pi*3/83)+sin(Pi*19/67) 1771197480667406 r005 Re(z^2+c),c=-11/70+34/49*I,n=49 1771197482292971 m001 Riemann2ndZero/(MertensB2-Catalan) 1771197487051874 m005 (1/2*5^(1/2)-4/7)/(5*gamma+1/5) 1771197495434385 q001 6789/3833 1771197500281093 m001 exp(FeigenbaumD)*PrimesInBinary*cos(1)^2 1771197500797714 m001 (1-Conway)/(Niven+ZetaQ(3)) 1771197502675878 m001 exp(-1/2*Pi)*(Pi+ln(2)/ln(10))+GAMMA(11/12) 1771197506077795 r002 43i'th iterates of 2*x/(1-x^2) of 1771197509728555 r009 Im(z^3+c),c=-41/98+1/15*I,n=11 1771197513735047 m001 (exp(1/Pi)+Kac)/(Rabbit-Tribonacci) 1771197521792383 k001 Champernowne real with 204*n+1567 1771197522765864 a007 Real Root Of -679*x^4-671*x^3-700*x^2+640*x-87 1771197529674323 r005 Im(z^2+c),c=-23/58+7/24*I,n=44 1771197530416088 r005 Im(z^2+c),c=-33/86+13/45*I,n=34 1771197544764256 m005 (1/2*3^(1/2)-9/11)/(7/12*Zeta(3)+2) 1771197545792711 m001 (HeathBrownMoroz+Sarnak)/(exp(1)+exp(1/Pi)) 1771197547766779 m001 (2/3)^exp(-1/2*Pi)*GAMMA(1/24)^exp(-1/2*Pi) 1771197549224910 m001 (KomornikLoreti+TwinPrimes)/(sin(1)+cos(1)) 1771197550992484 l006 ln(9905/10082) 1771197563011660 a001 28657/2207*3^(13/46) 1771197564461310 a007 Real Root Of 336*x^4+417*x^3-123*x^2+324*x-30 1771197565843952 l006 ln(2859/3413) 1771197567005168 a005 (1/sin(84/205*Pi))^1314 1771197575405264 a001 1/76*24476^(1/34) 1771197575933359 r005 Im(z^2+c),c=-4/9+13/44*I,n=6 1771197578063088 a001 233/521*18^(10/21) 1771197579141415 r009 Re(z^3+c),c=-19/60+25/42*I,n=23 1771197582483654 a007 Real Root Of 882*x^4+470*x^3+942*x^2-114*x-48 1771197583477129 p001 sum(1/(253*n+61)/(3^n),n=0..infinity) 1771197589719794 r005 Im(z^2+c),c=-23/58+7/24*I,n=46 1771197591907603 m001 (-gamma(2)+ThueMorse)/(exp(Pi)+ln(2)) 1771197600166533 a007 Real Root Of 46*x^4-91*x^3+891*x^2-494*x-116 1771197604909425 g007 2*Psi(2,8/11)+Psi(2,4/7)-Psi(2,3/4) 1771197613209350 a007 Real Root Of -636*x^4-792*x^3+298*x^2-32*x+867 1771197617404084 m001 1/cosh(1)^2*exp(CopelandErdos)*gamma^2 1771197620114052 a007 Real Root Of 509*x^4+924*x^3+401*x^2+528*x-198 1771197620639516 a007 Real Root Of 485*x^4+953*x^3-168*x^2-91*x+888 1771197621812386 k001 Champernowne real with 205*n+1566 1771197627096719 a007 Real Root Of 845*x^4-824*x^3-819*x^2-500*x+118 1771197633365788 r005 Re(z^2+c),c=-39/32+13/31*I,n=5 1771197634262037 a001 1346269/2*521^(23/44) 1771197635112884 r009 Re(z^3+c),c=-25/82+31/54*I,n=30 1771197646681390 r005 Im(z^2+c),c=-22/31+5/36*I,n=34 1771197662227438 m001 (exp(1/Pi)+gamma(1))/(FellerTornier+ThueMorse) 1771197662876658 b008 1/4+43*E^Sqrt[2] 1771197665291460 r005 Im(z^2+c),c=-12/23+13/41*I,n=49 1771197666842061 a001 3571/610*21^(4/11) 1771197671555602 a002 11^(7/6)+5^(1/6) 1771197674335142 r004 Re(z^2+c),c=2/7+11/23*I,z(0)=exp(7/8*I*Pi),n=3 1771197676735396 a007 Real Root Of -611*x^4+981*x^3-393*x^2+910*x-16 1771197684012174 m001 (Kolakoski+TwinPrimes)/(Ei(1,1)+BesselK(1,1)) 1771197684125892 m001 (Zeta(1,-1)+Weierstrass)/MadelungNaCl 1771197702441162 r002 54th iterates of z^2 + 1771197702456182 r002 46th iterates of z^2 + 1771197702743735 a001 196418/29*322^(13/23) 1771197705652590 g006 Psi(1,7/10)+Psi(1,2/7)+Psi(1,3/5)-Psi(1,5/6) 1771197714459269 a007 Real Root Of 807*x^4+957*x^3-408*x^2+705*x-96 1771197721832389 k001 Champernowne real with 206*n+1565 1771197726288597 m001 1/exp(Zeta(1,2))^2/FibonacciFactorial*gamma^2 1771197735359980 r005 Im(z^2+c),c=-73/74+11/60*I,n=61 1771197747530192 b008 -19+LogGamma[1/4] 1771197748498509 m001 (FeigenbaumC+HeathBrownMoroz)/MertensB2 1771197748568343 r005 Im(z^2+c),c=-7/62+37/58*I,n=6 1771197751985402 m001 Riemann1stZero/(Sarnak^ArtinRank2) 1771197755713936 m005 (1/2*Pi+5/11)/(3/8*Catalan+4/5) 1771197756599561 r002 52th iterates of z^2 + 1771197757068293 m003 -5+3*Coth[1/2+Sqrt[5]/2]-Tan[1/2+Sqrt[5]/2]/6 1771197757787336 a007 Real Root Of -30*x^4-522*x^3+128*x^2-699*x-531 1771197758197538 m001 1/exp(Zeta(1,2))^2*GAMMA(7/24)*log(1+sqrt(2)) 1771197760264094 a007 Real Root Of 805*x^4-798*x^3+667*x^2-617*x+92 1771197760572891 a003 cos(Pi*1/28)+cos(Pi*21/97) 1771197761803766 m006 (2*exp(Pi)+1)/(1/2*exp(2*Pi)-4/5) 1771197763125070 a007 Real Root Of -701*x^4-885*x^3+462*x^2+241*x+959 1771197764027199 r009 Re(z^3+c),c=-17/90+59/63*I,n=41 1771197766403536 a001 15127/1597*1346269^(23/33) 1771197767836577 a007 Real Root Of 557*x^4+23*x^3+643*x^2-900*x-180 1771197775693452 r005 Re(z^2+c),c=-1/19+8/15*I,n=43 1771197783182646 p004 log(21613/3677) 1771197786671692 r004 Im(z^2+c),c=-5/34+5/24*I,z(0)=I,n=11 1771197793660418 m001 OneNinth^2/exp(FeigenbaumD)*sqrt(5) 1771197800405750 a001 9227465/843*47^(1/8) 1771197801599302 r005 Re(z^2+c),c=-1/8+9/23*I,n=31 1771197810609112 l006 ln(1687/9916) 1771197813608174 a007 Real Root Of 762*x^4-734*x^3+803*x^2-604*x-137 1771197817474693 r005 Im(z^2+c),c=-8/29+14/53*I,n=4 1771197821852392 k001 Champernowne real with 207*n+1564 1771197825319327 a007 Real Root Of 541*x^4+965*x^3+451*x^2+515*x-465 1771197827654685 a007 Real Root Of 200*x^4+386*x^3+319*x^2-719*x+115 1771197845922792 r005 Im(z^2+c),c=-23/56+11/20*I,n=20 1771197846020666 m001 (Zeta(3)+CareFree)/(PrimesInBinary+Robbin) 1771197846567967 q001 1316/743 1771197851360020 r004 Im(z^2+c),c=-45/34+5/14*I,z(0)=-1,n=3 1771197858499157 a003 cos(Pi*3/76)+sin(Pi*27/95) 1771197871592172 a007 Real Root Of 490*x^4+291*x^3-931*x^2-340*x-887 1771197873222338 a001 75025/5778*3^(13/46) 1771197873277564 a007 Real Root Of 85*x^4-806*x^3+754*x^2+653*x+120 1771197878423150 a001 39603/4181*1346269^(23/33) 1771197883475523 l006 ln(1384/8135) 1771197886026191 m001 (Magata-Porter)/(GAMMA(2/3)-sin(1/12*Pi)) 1771197886950258 r009 Re(z^3+c),c=-16/27+16/31*I,n=51 1771197890572805 m001 (ErdosBorwein+KomornikLoreti)/(Pi-GAMMA(3/4)) 1771197891014248 a007 Real Root Of 15*x^4-715*x^3+762*x^2+626*x+326 1771197900572234 m001 (exp(Pi)-Mills*ZetaQ(4))/Mills 1771197901870335 m001 Mills^TwinPrimes/(ln(gamma)^TwinPrimes) 1771197903792205 a007 Real Root Of -507*x^4-317*x^3+432*x^2-581*x+844 1771197905103112 a007 Real Root Of 787*x^4+817*x^3-563*x^2+614*x-352 1771197908250114 m001 (GAMMA(17/24)-Mills)/(Zeta(3)+gamma(3)) 1771197910335442 r005 Im(z^2+c),c=-1+37/197*I,n=33 1771197911877802 a001 8/521*322^(37/45) 1771197912619954 a001 987/2207*7^(29/41) 1771197918481475 a001 196418/15127*3^(13/46) 1771197921015855 m001 1/GAMMA(17/24)/Backhouse/ln(sqrt(3))^2 1771197921872395 k001 Champernowne real with 208*n+1563 1771197922079154 m001 LaplaceLimit*exp(FransenRobinson)^2*Paris^2 1771197923944847 a007 Real Root Of 827*x^4-556*x^3-992*x^2-568*x+134 1771197925084695 a001 514229/39603*3^(13/46) 1771197925832900 r005 Im(z^2+c),c=-175/122+1/36*I,n=9 1771197926048091 a001 1346269/103682*3^(13/46) 1771197926275518 a001 2178309/167761*3^(13/46) 1771197926643503 a001 832040/64079*3^(13/46) 1771197928356223 m005 (1/2*3^(1/2)+1/5)/(3/11*gamma+4/9) 1771197928630405 r005 Im(z^2+c),c=-87/82+5/24*I,n=47 1771197929165709 a001 10959/844*3^(13/46) 1771197941643869 m001 Gompertz+OrthogonalArrays^Weierstrass 1771197942107397 h001 (10/11*exp(2)+1/12)/(4/9*exp(2)+5/9) 1771197946453161 a001 121393/9349*3^(13/46) 1771197946501959 a007 Real Root Of 117*x^4+90*x^3+99*x^2+765*x+393 1771197947655087 a001 6119/646*1346269^(23/33) 1771197951119385 m005 (17/20+1/4*5^(1/2))/(6/7*2^(1/2)-5/12) 1771197956584591 m001 (Niven-ZetaQ(2))/(GAMMA(7/12)-Gompertz) 1771197958160974 m001 1/GAMMA(1/12)*KhintchineLevy*exp(cos(1)) 1771197971496650 a007 Real Root Of -728*x^4-896*x^3+132*x^2-979*x+38 1771197973121372 a007 Real Root Of 218*x^4-152*x^3-483*x^2+735*x-173 1771197978466049 m004 (-5*E^(Sqrt[5]*Pi))/Pi+18*Coth[Sqrt[5]*Pi] 1771197984232295 l006 ln(7003/8360) 1771197996686663 m001 Cahen^KhinchinHarmonic/MertensB1 1771197997190253 l006 ln(1081/6354) 1771197997963930 a007 Real Root Of -51*x^4-882*x^3+384*x^2+84*x-564 1771197999706724 a007 Real Root Of -74*x^4+500*x^3+803*x^2-90*x+828 1771198006951709 m004 -18+(5*E^(Sqrt[5]*Pi))/Pi 1771198012278934 r009 Re(z^3+c),c=-4/13+35/58*I,n=36 1771198019241495 r005 Re(z^2+c),c=-33/62+37/58*I,n=10 1771198021892398 k001 Champernowne real with 209*n+1562 1771198031207154 m001 1/Robbin^2*LandauRamanujan/ln(GAMMA(1/3)) 1771198035437325 m004 (-5*E^(Sqrt[5]*Pi))/Pi+18*Tanh[Sqrt[5]*Pi] 1771198038882325 r005 Im(z^2+c),c=-9/17+7/22*I,n=47 1771198038954674 r005 Im(z^2+c),c=-15/74+10/39*I,n=5 1771198039283764 a007 Real Root Of 441*x^4+263*x^3-528*x^2+361*x-583 1771198040269498 a007 Real Root Of 626*x^4+946*x^3-692*x^2-435*x+496 1771198040422869 a007 Real Root Of 584*x^4+743*x^3-39*x^2+670*x-310 1771198041086980 r002 24th iterates of z^2 + 1771198041848011 m001 (GaussAGM+Niven)/(Zeta(1/2)+ln(2+3^(1/2))) 1771198041976007 a001 17711/521*29^(25/51) 1771198046305191 m006 (4/5*Pi+5/6)/(2*ln(Pi)-2/5) 1771198046447592 r005 Im(z^2+c),c=-97/118+5/39*I,n=20 1771198049974582 m005 (1/2*5^(1/2)+5/11)/(1/8*exp(1)-3/7) 1771198050830204 a007 Real Root Of 398*x^4+707*x^3+612*x^2+824*x-449 1771198057784316 m001 (Otter+Tribonacci)/(Chi(1)-LambertW(1)) 1771198057988513 m001 (Artin+Lehmer)/(Psi(2,1/3)-ln(gamma)) 1771198059291367 a007 Real Root Of 384*x^4+212*x^3+644*x^2-535*x+73 1771198061829350 m001 (-Magata+ZetaQ(4))/(2^(1/3)+LaplaceLimit) 1771198064943135 a001 46368/3571*3^(13/46) 1771198068940165 r005 Re(z^2+c),c=-5/29+9/35*I,n=12 1771198076546847 a001 47*(1/2*5^(1/2)+1/2)^19*521^(13/22) 1771198080034532 a001 1597/843*11^(55/59) 1771198082685068 m005 (1/2*gamma-2/7)/(3/10*exp(1)+9/11) 1771198087339103 r005 Im(z^2+c),c=-29/102+13/49*I,n=11 1771198098348474 a007 Real Root Of -489*x^4-554*x^3+339*x^2-827*x-794 1771198100394966 m001 (Porter-TreeGrowth2nd)/(GAMMA(11/12)-PlouffeB) 1771198100495679 m001 DuboisRaymond^(2^(1/2)*RenyiParking) 1771198108869941 s002 sum(A143611[n]/((exp(n)-1)/n),n=1..infinity) 1771198114152174 k008 concat of cont frac of 1771198121304343 g005 1/GAMMA(8/11)/GAMMA(3/11)^2/GAMMA(2/9) 1771198121378715 m001 1/exp(GAMMA(1/12))*Bloch^2/GAMMA(5/6)^2 1771198121398732 m001 exp(gamma)^exp(1/Pi)-BesselJ(1,1) 1771198121912401 k001 Champernowne real with 210*n+1561 1771198122492743 r009 Re(z^3+c),c=-4/15+28/61*I,n=20 1771198124259805 m004 3/2+25*Sqrt[5]*Pi*Tanh[Sqrt[5]*Pi]^2 1771198132673315 a003 cos(Pi*8/89)+sin(Pi*31/103) 1771198136129528 a007 Real Root Of -685*x^4-596*x^3+942*x^2-657*x-689 1771198143840837 a007 Real Root Of -461*x^4-988*x^3-949*x^2-912*x+409 1771198148526149 a007 Real Root Of 405*x^4+812*x^3+170*x^2-351*x-629 1771198154105451 s002 sum(A283005[n]/(n^2*10^n-1),n=1..infinity) 1771198154896928 m001 Pi^(1/2)-gamma+Stephens 1771198159513599 m005 (1/2*Pi-3/11)/(2/9*Zeta(3)-1) 1771198159723363 r005 Re(z^2+c),c=-143/102+23/37*I,n=2 1771198163487384 l002 exp(polylog(5,23/41)) 1771198179286980 g005 Pi^(1/2)*GAMMA(11/12)*GAMMA(9/10)/GAMMA(5/6) 1771198186173585 m001 (Psi(1,1/3)+ln(2^(1/2)+1))/(gamma(1)+Trott) 1771198191041976 m001 (FeigenbaumAlpha+MertensB3)/(Mills+Thue) 1771198195736264 m001 (Zeta(1,-1)-BesselI(1,2))/(PlouffeB-Porter) 1771198199479663 l006 ln(778/4573) 1771198202187503 r002 26th iterates of z^2 + 1771198203630241 a007 Real Root Of -328*x^4+153*x^3+780*x^2-943*x-39 1771198206372893 a001 199/5*317811^(49/58) 1771198209512101 r002 64th iterates of z^2 + 1771198210696480 a007 Real Root Of 28*x^4+456*x^3-698*x^2+142*x-414 1771198212149679 m005 (1/2*3^(1/2)+2)/(8/11*Pi-2/3) 1771198216593736 a001 2207/377*2584^(23/53) 1771198220739505 q001 6371/3597 1771198221932404 k001 Champernowne real with 211*n+1560 1771198226239173 r005 Im(z^2+c),c=-43/66+5/58*I,n=20 1771198226862801 r009 Re(z^3+c),c=-35/114+35/61*I,n=23 1771198228439623 m005 (1/5*Catalan+3)/(1/3*Pi+3/4) 1771198235423840 a003 cos(Pi*2/29)+sin(Pi*19/65) 1771198237799782 g007 Psi(2,6/7)+Psi(2,5/7)-Psi(2,9/10)-Psi(2,2/9) 1771198240926340 a001 9349/987*1346269^(23/33) 1771198242091165 a007 Real Root Of -448*x^4-429*x^3+29*x^2-960*x+234 1771198246134639 m001 Lehmer*(GAMMA(23/24)+ReciprocalLucas) 1771198247214057 m006 (3/5*exp(Pi)-4/5)/(3/4/Pi+1/2) 1771198257631524 a007 Real Root Of 677*x^4+783*x^3-818*x^2+254*x+704 1771198265606617 m001 (ln(5)+Pi^(1/2))/(GAMMA(17/24)+GolombDickman) 1771198267012517 r002 20th iterates of z^2 + 1771198268135579 m001 (Zeta(5)+ln(3))/(Zeta(1/2)+Totient) 1771198272883896 l006 ln(4144/4947) 1771198274059288 r005 Re(z^2+c),c=-6/5+10/109*I,n=54 1771198284908552 m001 (FeigenbaumC+TwinPrimes)/(sin(1)+BesselI(1,1)) 1771198285910839 a007 Real Root Of 938*x^4+975*x^3-571*x^2+806*x-595 1771198286000605 a007 Real Root Of 912*x^4+912*x^3-903*x^2+860*x+448 1771198290373901 a007 Real Root Of -603*x^4-746*x^3+695*x^2+634*x+732 1771198291913850 a007 Real Root Of -39*x^4-664*x^3+455*x^2-296*x+750 1771198296625728 p003 LerchPhi(1/125,6,670/233) 1771198300858549 m001 (gamma(1)+FeigenbaumB)/(MertensB3+Otter) 1771198307009165 a007 Real Root Of 825*x^4+605*x^3-789*x^2+990*x-529 1771198307752442 r008 a(0)=0,K{-n^6,12+10*n^3-30*n^2-49*n} 1771198309266358 m008 (1/4*Pi^3+5/6)/(1/2*Pi^6+4) 1771198310731628 r002 52th iterates of z^2 + 1771198315083468 m001 (Pi-exp(1))/(LambertW(1)+MasserGramainDelta) 1771198318149964 q001 5055/2854 1771198318685501 s002 sum(A068079[n]/(n^3*exp(n)-1),n=1..infinity) 1771198319553282 m001 (Cahen+ReciprocalFibonacci)/(Pi-ln(2^(1/2)+1)) 1771198321952407 k001 Champernowne real with 212*n+1559 1771198324483767 a007 Real Root Of 178*x^4+377*x^3+724*x^2+899*x-336 1771198326466425 a001 6119/2*75025^(17/30) 1771198331267328 a007 Real Root Of 504*x^4+545*x^3+182*x^2+949*x-822 1771198333642804 r009 Re(z^3+c),c=-1/4+17/42*I,n=22 1771198337028493 a007 Real Root Of 565*x^4+890*x^3-421*x^2-636*x-421 1771198343522292 m005 (1/3*exp(1)-2/9)/(5^(1/2)+13/8) 1771198351864721 r005 Im(z^2+c),c=-37/78+9/29*I,n=25 1771198362151777 m002 -E^Pi-5*Pi-Pi^2+Pi^3 1771198366066097 r005 Re(z^2+c),c=-7/78+7/15*I,n=51 1771198366940125 a003 cos(Pi*17/92)+sin(Pi*5/13) 1771198372340426 a007 Real Root Of 696*x^4+968*x^3-611*x^2-115*x+242 1771198372632185 m001 1/Pi^2*exp(Niven)^2/sqrt(3) 1771198373823279 a007 Real Root Of -917*x^4-926*x^3+986*x^2-956*x-907 1771198374000662 l006 ln(1253/7365) 1771198377001555 a007 Real Root Of -608*x^4-179*x^3+989*x^2-990*x+133 1771198379267270 r002 32th iterates of z^2 + 1771198382854681 m005 (4/5*exp(1)-3/5)/(33/10+5/2*5^(1/2)) 1771198383183947 a007 Real Root Of 658*x^4+363*x^3-740*x^2+711*x-878 1771198393661100 k003 Champernowne real with 5/6*n^3+24*n^2-431/6*n+48 1771198395171151 a007 Real Root Of 247*x^4+337*x^3+26*x^2+114*x-438 1771198397737687 a007 Real Root Of 498*x^4+549*x^3-995*x^2-381*x+596 1771198398671101 k002 Champernowne real with 73/2*n^2-111/2*n+36 1771198399033679 m001 Pi-2^(1/2)-BesselJ(0,1)+cos(1/5*Pi) 1771198403646004 a007 Real Root Of -592*x^4+804*x^3-165*x^2+648*x+125 1771198404024203 h001 (-4*exp(2)-7)/(-4*exp(4)+12) 1771198405661020 m001 (Shi(1)+BesselK(0,1))/(Zeta(1/2)+Kac) 1771198408917615 a007 Real Root Of 206*x^4+424*x^3+293*x^2-42*x-665 1771198412406917 m001 1/exp(Salem)^2*FeigenbaumC*Zeta(7)^2 1771198412546287 r008 a(0)=0,K{-n^6,50-7*n^3+50*n^2-36*n} 1771198419090208 r002 31th iterates of z^2 + 1771198420084846 m001 1/BesselJ(1,1)^2/exp((2^(1/3)))^2/GAMMA(1/24) 1771198421972410 k001 Champernowne real with 213*n+1558 1771198424282559 m002 -5*Pi^5*Cosh[Pi]+E^Pi*ProductLog[Pi] 1771198438025250 a007 Real Root Of 251*x^4+64*x^3-889*x^2-532*x-268 1771198438847994 a005 (1/sin(59/219*Pi))^209 1771198441575296 m001 (GAMMA(5/6)-GolombDickman)/(OneNinth-Otter) 1771198445367944 m001 Niven/MinimumGamma/ln(GAMMA(11/24)) 1771198452380294 r002 51th iterates of z^2 + 1771198452735847 m001 gamma(3)^(Robbin/MasserGramain) 1771198460408950 a007 Real Root Of 140*x^4+349*x^3+342*x^2+732*x+785 1771198463649639 a007 Real Root Of 467*x^4+403*x^3-216*x^2-675*x-111 1771198484130743 q001 3739/2111 1771198487854613 r005 Im(z^2+c),c=-15/26+25/77*I,n=39 1771198493773308 m005 (4*Pi+1/4)/(1/6*Pi+1/5) 1771198493773308 m006 (1/4/Pi+4)/(1/5/Pi+1/6) 1771198493773308 m008 (4*Pi+1/4)/(1/6*Pi+1/5) 1771198495300488 r005 Re(z^2+c),c=9/44+16/31*I,n=54 1771198496650240 s002 sum(A036368[n]/(n^3*exp(n)-1),n=1..infinity) 1771198496674519 m001 (Khinchin+Sarnak)/(gamma(3)-DuboisRaymond) 1771198499249607 r009 Im(z^3+c),c=-11/102+11/62*I,n=9 1771198500713593 a008 Real Root of x^5+3*x^4-83*x^3+95*x^2+104*x-68 1771198503722837 r009 Im(z^3+c),c=-11/102+11/62*I,n=12 1771198503731508 r009 Im(z^3+c),c=-11/102+11/62*I,n=15 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=18 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=21 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=24 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=27 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=30 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=33 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=36 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=39 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=42 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=44 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=45 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=46 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=48 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=50 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=43 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=41 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=40 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=38 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=37 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=35 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=34 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=32 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=31 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=29 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=28 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=26 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=25 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=23 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=22 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=20 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=19 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=17 1771198503731525 r009 Im(z^3+c),c=-11/102+11/62*I,n=16 1771198503731617 r009 Im(z^3+c),c=-11/102+11/62*I,n=14 1771198503731844 r009 Im(z^3+c),c=-11/102+11/62*I,n=13 1771198503783756 r009 Im(z^3+c),c=-11/102+11/62*I,n=11 1771198503859212 r009 Im(z^3+c),c=-11/102+11/62*I,n=10 1771198504703178 m001 1/ln(Champernowne)*Backhouse^2*MadelungNaCl 1771198506282061 m001 1/GAMMA(19/24)^2/(2^(1/3))^2*exp(GAMMA(2/3)) 1771198514715454 a007 Real Root Of 564*x^4+503*x^3-611*x^2+306*x-297 1771198518912561 r005 Re(z^2+c),c=29/98+46/63*I,n=5 1771198519559955 a007 Real Root Of -552*x^4-373*x^3+872*x^2-457*x-185 1771198521992413 k001 Champernowne real with 214*n+1557 1771198528418596 r004 Re(z^2+c),c=1/4+5/7*I,z(0)=exp(11/24*I*Pi),n=3 1771198533087610 r009 Im(z^3+c),c=-11/102+11/62*I,n=8 1771198533669018 r009 Im(z^3+c),c=-5/48+8/45*I,n=9 1771198533778403 a001 1292/2889*7^(29/41) 1771198536753385 r005 Im(z^2+c),c=-125/122+12/61*I,n=35 1771198536773286 a007 Real Root Of 404*x^4+573*x^3-458*x^2-762*x-705 1771198537707272 r009 Im(z^3+c),c=-5/48+8/45*I,n=12 1771198537714520 r009 Im(z^3+c),c=-5/48+8/45*I,n=15 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=18 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=21 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=20 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=23 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=24 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=26 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=27 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=29 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=30 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=32 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=33 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=35 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=36 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=38 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=41 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=39 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=44 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=45 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=46 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=47 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=50 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=43 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=42 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=40 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=37 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=34 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=31 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=28 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=25 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=22 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=19 1771198537714533 r009 Im(z^3+c),c=-5/48+8/45*I,n=17 1771198537714534 r009 Im(z^3+c),c=-5/48+8/45*I,n=16 1771198537714565 r009 Im(z^3+c),c=-5/48+8/45*I,n=14 1771198537715103 r009 Im(z^3+c),c=-5/48+8/45*I,n=13 1771198537741139 r009 Im(z^3+c),c=-5/48+8/45*I,n=11 1771198537965685 r009 Im(z^3+c),c=-5/48+8/45*I,n=10 1771198545162085 m001 (5^(1/2)+BesselI(1,2))/(Backhouse+CareFree) 1771198549334090 r009 Im(z^3+c),c=-11/102+11/62*I,n=7 1771198551697501 m001 (TreeGrowth2nd+Trott)/(2^(1/3)+GAMMA(17/24)) 1771198552653113 h001 (7/10*exp(1)+2/3)/(3/7*exp(1)+2/7) 1771198553634890 m005 (1/2*gamma-2/9)/(1/12*3^(1/2)-2/11) 1771198557039608 r009 Im(z^3+c),c=-5/48+8/45*I,n=8 1771198565449006 r005 Im(z^2+c),c=-25/18+51/157*I,n=3 1771198565452911 a003 cos(Pi*9/38)-sin(Pi*22/81) 1771198574414981 a001 119218851371/3*5^(13/14) 1771198581291876 m006 (5*exp(Pi)+3/5)/(2/5*Pi-3/5) 1771198598579442 a001 9349/1597*21^(4/11) 1771198601811824 a007 Real Root Of -7*x^4+511*x^3+703*x^2-512*x-204 1771198605467629 a007 Real Root Of -155*x^4+245*x^3+239*x^2-756*x+798 1771198608234450 a007 Real Root Of -236*x^4+45*x^3+458*x^2-831*x-336 1771198610078473 r002 5th iterates of z^2 + 1771198617305009 m001 (Kolakoski+Totient)/(Grothendieck-gamma) 1771198619036555 a007 Real Root Of -178*x^4+435*x^3+856*x^2-920*x-146 1771198620293187 q001 6162/3479 1771198622012416 k001 Champernowne real with 215*n+1556 1771198623963678 r005 Im(z^2+c),c=-111/118+15/56*I,n=7 1771198624404218 a001 6765/15127*7^(29/41) 1771198625931054 r005 Im(z^2+c),c=-35/74+4/13*I,n=34 1771198627288018 m001 Robbin/exp(GolombDickman)^2*cos(Pi/12)^2 1771198634214835 a007 Real Root Of 679*x^4+757*x^3-759*x^2-442*x-878 1771198634400988 a007 Real Root Of 671*x^4+832*x^3-315*x^2+710*x+265 1771198636059351 b008 CosIntegral[1+Pi+Coth[2]] 1771198637316781 r009 Im(z^3+c),c=-5/48+8/45*I,n=7 1771198637626346 a001 17711/39603*7^(29/41) 1771198638179432 r009 Re(z^3+c),c=-45/82+22/37*I,n=21 1771198639363563 h005 exp(cos(Pi*1/26)/cos(Pi*27/59)) 1771198639555429 a001 23184/51841*7^(29/41) 1771198639613989 a007 Real Root Of -606*x^4-829*x^3+497*x^2+658*x+964 1771198639836878 a001 121393/271443*7^(29/41) 1771198639877941 a001 317811/710647*7^(29/41) 1771198639883932 a001 416020/930249*7^(29/41) 1771198639884806 a001 2178309/4870847*7^(29/41) 1771198639885347 a001 1346269/3010349*7^(29/41) 1771198639887635 a001 514229/1149851*7^(29/41) 1771198639903320 a001 98209/219602*7^(29/41) 1771198640010824 a001 75025/167761*7^(29/41) 1771198640545032 a007 Real Root Of -483*x^4-629*x^3+802*x^2+920*x+372 1771198640747668 a001 28657/64079*7^(29/41) 1771198642336312 k006 concat of cont frac of 1771198645222649 l006 ln(5429/6481) 1771198645798071 a001 5473/12238*7^(29/41) 1771198646861142 m001 (Bloch+HardyLittlewoodC5)/(GAMMA(2/3)-Si(Pi)) 1771198655784670 a007 Real Root Of -277*x^4+351*x^3+820*x^2-909*x+494 1771198657509484 h001 (3/7*exp(2)+9/10)/(7/9*exp(1)+2/11) 1771198659847621 l006 ln(475/2792) 1771198670592453 m005 (1/12+1/6*5^(1/2))/(10/11*3^(1/2)+1) 1771198672810952 r002 47th iterates of z^2 + 1771198672823806 m001 (MertensB1+Otter)/(BesselI(1,2)-Magata) 1771198678660207 a007 Real Root Of 41*x^4+778*x^3+969*x^2+886*x-422 1771198680414054 a001 4181/9349*7^(29/41) 1771198682672660 m006 (1/4*exp(2*Pi)+3)/(1/3/Pi+2/3) 1771198692207408 a007 Real Root Of 677*x^4+752*x^3-403*x^2+887*x+351 1771198692927535 m001 (ZetaP(4)+ZetaQ(2))/(Ei(1,1)+polylog(4,1/2)) 1771198709249447 r009 Re(z^3+c),c=-1/4+17/42*I,n=21 1771198709330345 m001 (5^(1/2)+1)/(exp(1/Pi)+ZetaP(2)) 1771198713112771 m005 (1/2*Pi-3/5)/(5/6*gamma+5) 1771198714676657 a007 Real Root Of -837*x^4-868*x^3+702*x^2-668*x+29 1771198720732034 h001 (8/11*exp(2)+1/6)/(11/12*exp(1)+7/11) 1771198722032419 k001 Champernowne real with 216*n+1555 1771198730741212 a007 Real Root Of 842*x^4+935*x^3-650*x^2+930*x+595 1771198731425470 m005 (1/2*Catalan+1/4)/(4*Catalan+1/3) 1771198733819568 r008 a(0)=2,K{-n^6,71+32*n^3-14*n^2-84*n} 1771198734360852 a007 Real Root Of 602*x^4+840*x^3+327*x^2+935*x-627 1771198734518166 a001 24476/4181*21^(4/11) 1771198736146322 a007 Real Root Of -10*x^4+812*x^3+987*x^2-516*x+600 1771198736360180 m001 GAMMA(5/6)^2*ln(Bloch)/cos(1) 1771198745385381 a003 cos(Pi*5/49)/cos(Pi*8/25) 1771198750813553 a007 Real Root Of 134*x^4+87*x^3-175*x^2-360*x-924 1771198754351360 a001 64079/10946*21^(4/11) 1771198757244984 a001 167761/28657*21^(4/11) 1771198757667158 a001 439204/75025*21^(4/11) 1771198757728752 a001 1149851/196418*21^(4/11) 1771198757737739 a001 3010349/514229*21^(4/11) 1771198757739050 a001 7881196/1346269*21^(4/11) 1771198757739241 a001 20633239/3524578*21^(4/11) 1771198757739269 a001 54018521/9227465*21^(4/11) 1771198757739273 a001 141422324/24157817*21^(4/11) 1771198757739274 a001 370248451/63245986*21^(4/11) 1771198757739274 a001 969323029/165580141*21^(4/11) 1771198757739274 a001 2537720636/433494437*21^(4/11) 1771198757739274 a001 6643838879/1134903170*21^(4/11) 1771198757739274 a001 17393796001/2971215073*21^(4/11) 1771198757739274 a001 45537549124/7778742049*21^(4/11) 1771198757739274 a001 119218851371/20365011074*21^(4/11) 1771198757739274 a001 312119004989/53316291173*21^(4/11) 1771198757739274 a001 817138163596/139583862445*21^(4/11) 1771198757739274 a001 2139295485799/365435296162*21^(4/11) 1771198757739274 a001 14662949395604/2504730781961*21^(4/11) 1771198757739274 a001 440719107401/75283811239*21^(4/11) 1771198757739274 a001 505019158607/86267571272*21^(4/11) 1771198757739274 a001 64300051206/10983760033*21^(4/11) 1771198757739274 a001 73681302247/12586269025*21^(4/11) 1771198757739274 a001 9381251041/1602508992*21^(4/11) 1771198757739274 a001 10749957122/1836311903*21^(4/11) 1771198757739274 a001 1368706081/233802911*21^(4/11) 1771198757739274 a001 1568397607/267914296*21^(4/11) 1771198757739274 a001 199691526/34111385*21^(4/11) 1771198757739274 a001 228826127/39088169*21^(4/11) 1771198757739276 a001 29134601/4976784*21^(4/11) 1771198757739286 a001 33385282/5702887*21^(4/11) 1771198757739359 a001 4250681/726103*21^(4/11) 1771198757739860 a001 4870847/832040*21^(4/11) 1771198757743293 a001 620166/105937*21^(4/11) 1771198757766820 a001 710647/121393*21^(4/11) 1771198757928076 a001 90481/15456*21^(4/11) 1771198759033342 a001 103682/17711*21^(4/11) 1771198759877988 a007 Real Root Of -610*x^4-976*x^3-271*x^2-575*x+412 1771198766608948 a001 13201/2255*21^(4/11) 1771198770024461 h001 (9/11*exp(2)+5/11)/(2/5*exp(2)+5/7) 1771198775495502 a007 Real Root Of 488*x^4+304*x^3-431*x^2+894*x-178 1771198781165233 r005 Im(z^2+c),c=-23/94+10/39*I,n=11 1771198785114853 a001 39603/34*2^(26/43) 1771198790371295 r005 Re(z^2+c),c=-9/82+20/47*I,n=43 1771198793460078 a007 Real Root Of 583*x^4+465*x^3-659*x^2+863*x+442 1771198799606924 m001 (-Cahen+ReciprocalLucas)/(Catalan-sin(1)) 1771198803593639 r009 Im(z^3+c),c=-10/21+16/27*I,n=21 1771198811479416 a005 (1/sin(73/191*Pi))^41 1771198815513265 a001 46/141*13^(31/47) 1771198818532926 a001 15127/2584*21^(4/11) 1771198822052422 k001 Champernowne real with 217*n+1554 1771198826264345 m001 FeigenbaumC*ZetaQ(3)-KomornikLoreti 1771198830409356 q001 2423/1368 1771198830870886 a007 Real Root Of -411*x^4-445*x^3-x^2-527*x+642 1771198840624543 m001 (ErdosBorwein+Sierpinski)/(Chi(1)+GAMMA(7/12)) 1771198842886703 m003 -18*Csc[1/2+Sqrt[5]/2]+Tanh[1/2+Sqrt[5]/2]/3 1771198845678956 r005 Re(z^2+c),c=13/126+17/29*I,n=45 1771198862124397 r005 Im(z^2+c),c=-1/25+23/36*I,n=44 1771198862216118 s002 sum(A011088[n]/(n^3*exp(n)-1),n=1..infinity) 1771198868891915 r005 Re(z^2+c),c=-15/14+47/208*I,n=4 1771198871695141 m002 6-E^Pi-(Log[Pi]*Sinh[Pi])/E^Pi 1771198871708169 m001 1/exp(GAMMA(13/24))/Rabbit/cosh(1) 1771198871791023 m005 (1/2*exp(1)+4/5)/(3/11*2^(1/2)+5/6) 1771198874419824 a001 377/3571*76^(28/43) 1771198875036730 l006 ln(6714/8015) 1771198877085925 a001 17711/1364*3^(13/46) 1771198884121979 l006 ln(1597/9387) 1771198884843178 a007 Real Root Of -788*x^4+990*x^3-730*x^2+270*x+77 1771198885134331 a007 Real Root Of 318*x^4-946*x^3-458*x^2-879*x+175 1771198885574658 a007 Real Root Of -210*x^4+501*x^3+428*x^2-814*x-618 1771198885734133 a007 Real Root Of 383*x^4+365*x^3-846*x^2-556*x-72 1771198888463973 a007 Real Root Of 296*x^4+592*x^3+607*x^2+669*x-343 1771198899823740 m007 (-3/4*gamma-1)/(-2/3*gamma-4/3*ln(2)+1/2) 1771198903067263 a007 Real Root Of -817*x^4+135*x^3-666*x^2+579*x+125 1771198911862722 p001 sum(1/(581*n+569)/(64^n),n=0..infinity) 1771198911892666 a007 Real Root Of 361*x^4+506*x^3-446*x^2-503*x-233 1771198914442125 a007 Real Root Of -467*x^4-127*x^3+631*x^2-901*x+315 1771198915895184 r005 Im(z^2+c),c=-73/102+11/58*I,n=46 1771198917675546 a001 1597/3571*7^(29/41) 1771198922072425 k001 Champernowne real with 218*n+1553 1771198924015842 m001 Salem^GAMMA(3/4)*FeigenbaumKappa^GAMMA(3/4) 1771198926385739 r005 Re(z^2+c),c=-9/82+20/47*I,n=36 1771198926977312 r005 Re(z^2+c),c=-9/50+8/35*I,n=15 1771198930517715 m001 1/FeigenbaumC^2/ln(Si(Pi))/sqrt(1+sqrt(3))^2 1771198933091808 r009 Re(z^3+c),c=-19/60+39/62*I,n=53 1771198933457448 m005 (1/3*Zeta(3)-2/11)/(1/6*2^(1/2)+1) 1771198934033004 a007 Real Root Of 313*x^4-605*x^3-948*x^2-227*x+73 1771198935360374 r002 7th iterates of z^2 + 1771198939511556 a007 Real Root Of 346*x^4+995*x^3+814*x^2+419*x+312 1771198941109367 r005 Re(z^2+c),c=-11/54+8/43*I,n=3 1771198943854023 a007 Real Root Of 678*x^4+921*x^3-320*x^2+742*x+763 1771198944341350 a007 Real Root Of -822*x^4-872*x^3+848*x^2+10*x+602 1771198947127875 a001 2207/21*28657^(55/58) 1771198947625305 r005 Re(z^2+c),c=21/118+11/61*I,n=2 1771198951661690 m001 (Si(Pi)+Ei(1,1))/(-KhinchinHarmonic+Stephens) 1771198952400300 r002 38th iterates of z^2 + 1771198958117336 m001 Shi(1)*GAMMA(3/4)+PlouffeB 1771198975815310 r002 9i'th iterates of 2*x/(1-x^2) of 1771198979068773 l006 ln(1122/6595) 1771198979725572 r005 Im(z^2+c),c=-83/70+3/16*I,n=14 1771198981631169 r005 Im(z^2+c),c=-75/122+14/53*I,n=23 1771199003976519 m005 (1/2*3^(1/2)+6/7)/(2/3*3^(1/2)-2/11) 1771199006266829 r008 a(0)=0,K{-n^6,68-20*n^3+9*n^2-63*n} 1771199011477772 m005 (1/2*5^(1/2)-6/7)/(8/11*2^(1/2)+4/9) 1771199014851610 a005 (1/cos(20/197*Pi))^456 1771199017608777 m005 (1/2*3^(1/2)+5/8)/(11/12*2^(1/2)-5/11) 1771199018651648 a001 161/1292*21^(34/39) 1771199021904512 a007 Real Root Of -18*x^4+336*x^3-378*x^2+758*x+148 1771199022092428 k001 Champernowne real with 219*n+1552 1771199023525085 m001 1/exp(Tribonacci)/KhintchineLevy*GAMMA(1/12)^2 1771199031013806 l006 ln(7999/9549) 1771199033979323 r005 Re(z^2+c),c=-43/64+19/64*I,n=29 1771199039518337 m001 (arctan(1/3)+Lehmer)/(Chi(1)-GAMMA(2/3)) 1771199040557259 r005 Im(z^2+c),c=-11/16+2/113*I,n=44 1771199045240483 a007 Real Root Of 173*x^4-725*x^3+315*x^2+373*x+677 1771199046924966 m001 GAMMA(17/24)/(GAMMA(11/12)-exp(gamma)) 1771199047902409 q001 5953/3361 1771199049520746 r002 20th iterates of z^2 + 1771199049708544 m001 (cos(1)-sin(1))/(GAMMA(3/4)+Weierstrass) 1771199068999994 r009 Re(z^3+c),c=-1/4+17/42*I,n=24 1771199072176138 a007 Real Root Of 569*x^4+922*x^3+235*x^2+297*x-688 1771199074914809 m005 (1/2*gamma+3/11)/(1/8*Zeta(3)+1/6) 1771199082542422 a007 Real Root Of -508*x^4-163*x^3+899*x^2-251*x+829 1771199085827591 r009 Re(z^3+c),c=-15/56+17/25*I,n=7 1771199089444260 a007 Real Root Of 842*x^4+822*x^3-845*x^2+300*x-537 1771199091193409 m001 (MertensB3+Totient)/(Zeta(5)+Bloch) 1771199093613790 a007 Real Root Of -211*x^4+126*x^3+176*x^2-841*x+735 1771199094889085 a005 (1/cos(1/122*Pi))^1724 1771199100652686 m005 (1/3*Zeta(3)-3/4)/(5/7*5^(1/2)+3/8) 1771199101649528 a007 Real Root Of -373*x^4-599*x^3-543*x^2-817*x+599 1771199105823285 g006 -Psi(1,5/12)-Psi(1,8/9)-Psi(1,3/7)-Psi(1,3/4) 1771199106851139 m001 (Khinchin+QuadraticClass)/(GAMMA(13/24)+Artin) 1771199111533788 m003 2-Cos[1/2+Sqrt[5]/2]/4-Log[1/2+Sqrt[5]/2]/2 1771199111818228 a007 Real Root Of -418*x^4-881*x^3-275*x^2-12*x+60 1771199112216349 a007 Real Root Of 227*x^4+83*x^3-553*x^2-258*x-495 1771199113630155 r009 Im(z^3+c),c=-69/86+44/59*I,n=2 1771199116587439 a007 Real Root Of 534*x^4-894*x^3-393*x^2-925*x-157 1771199117447138 b008 2+23*Sqrt[7/15] 1771199122112431 k001 Champernowne real with 220*n+1551 1771199132313034 m002 -Pi^3-(3*Pi^4)/2 1771199133683987 r002 40th iterates of z^2 + 1771199135538992 m001 (Riemann3rdZero-ZetaP(3))/(Conway+Paris) 1771199139228305 r009 Re(z^3+c),c=-29/98+25/47*I,n=15 1771199141400647 m001 BesselI(1,2)-LambertW(1)*FransenRobinson 1771199146788664 r009 Re(z^3+c),c=-3/122+13/32*I,n=13 1771199149597163 m001 (sin(1/12*Pi)+Magata)^BesselJ(1,1) 1771199150518408 a007 Real Root Of 640*x^4+613*x^3-901*x^2-367*x-716 1771199162826353 a003 cos(Pi*10/39)/cos(Pi*16/43) 1771199163596883 h001 (-3*exp(3)-4)/(-9*exp(6)+3) 1771199174425240 a001 1926/329*21^(4/11) 1771199175744228 a001 123/233*102334155^(4/21) 1771199177368977 m001 exp(Pi)^Salem*TreeGrowth2nd 1771199181081317 r002 22th iterates of z^2 + 1771199194142638 r005 Im(z^2+c),c=-115/118+7/39*I,n=34 1771199195675850 a007 Real Root Of 219*x^4-12*x^3-642*x^2+175*x+102 1771199197190165 q001 353/1993 1771199199816743 a007 Real Root Of 535*x^4+400*x^3-660*x^2+327*x-393 1771199211015995 r005 Re(z^2+c),c=-5/86+31/59*I,n=48 1771199213427359 l006 ln(647/3803) 1771199213427359 p004 log(3803/647) 1771199220355595 m002 -2*Pi+Pi^4-E^Pi*Cosh[Pi] 1771199222132434 k001 Champernowne real with 221*n+1550 1771199229357391 m002 -5/(2*Pi^2)+Pi*Sech[Pi] 1771199234673896 m005 (2/5*exp(1)-3/4)/(2*gamma+3/4) 1771199239115269 g002 -gamma+1/2*Pi*3^(1/2)-3/2*ln(3)+Psi(4/9) 1771199244556932 a003 cos(Pi*4/61)+sin(Pi*23/79) 1771199254809077 a001 1/1860621*(1/2*5^(1/2)+1/2)^2*123^(10/19) 1771199256674151 r005 Im(z^2+c),c=-5/8+39/256*I,n=7 1771199261420144 a001 1/4871169*(1/2*5^(1/2)+1/2)^4*123^(10/19) 1771199262980805 a001 1/7881717*(1/2*5^(1/2)+1/2)^5*123^(10/19) 1771199265506007 a001 1/3010548*(1/2*5^(1/2)+1/2)^3*123^(10/19) 1771199266976612 m005 (1/2*5^(1/2)+1/5)/(1/7*Catalan-7/8) 1771199272385720 a001 1/843*29^(5/42) 1771199282814005 a001 1/1149927*(1/2*5^(1/2)+1/2)*123^(10/19) 1771199284819592 a007 Real Root Of -442*x^4-558*x^3-122*x^2-388*x+945 1771199290686034 r005 Re(z^2+c),c=-1/78+23/38*I,n=40 1771199292606310 h001 (1/7*exp(2)+1/8)/(7/8*exp(2)+1/5) 1771199295014705 a007 Real Root Of -379*x^4-825*x^3-536*x^2+76*x+962 1771199296993849 a007 Real Root Of -832*x^4-887*x^3+530*x^2-494*x+722 1771199305887538 l006 ln(5652/5753) 1771199322152437 k001 Champernowne real with 222*n+1549 1771199323401807 m001 (5^(1/2)-sin(1))/(-Zeta(3)+PrimesInBinary) 1771199323738145 r009 Im(z^3+c),c=-31/82+4/43*I,n=7 1771199326814609 a007 Real Root Of 100*x^4-437*x^3-691*x^2+264*x-777 1771199334290184 a007 Real Root Of 677*x^4-931*x^3+331*x^2-564*x-1 1771199334474385 a007 Real Root Of 44*x^4-318*x^3-637*x^2+561*x+792 1771199343178388 r009 Im(z^3+c),c=-51/118+2/57*I,n=43 1771199353431860 r009 Re(z^3+c),c=-1/4+17/42*I,n=27 1771199355029104 m005 (1/2*gamma-4/9)/(4/11*3^(1/2)+1/4) 1771199370531870 r005 Re(z^2+c),c=35/114+7/27*I,n=64 1771199372344964 r005 Re(z^2+c),c=-89/70+7/18*I,n=8 1771199372717583 m001 1/exp(TwinPrimes)^2/MertensB1*log(2+sqrt(3))^2 1771199382327687 r005 Re(z^2+c),c=-3/106+21/38*I,n=31 1771199388846447 q001 4637/2618 1771199390660706 r009 Re(z^3+c),c=-1/110+34/39*I,n=14 1771199392793170 l006 ln(1466/8617) 1771199395541868 m009 (6*Catalan+3/4*Pi^2+6)/(Pi^2+4/5) 1771199397671102 k003 Champernowne real with n^3+23*n^2-70*n+47 1771199398408277 a008 Real Root of x^4-x^3-31*x^2+22*x+54 1771199401677102 k002 Champernowne real with 37*n^2-57*n+37 1771199401829041 a007 Real Root Of -914*x^4-998*x^3+603*x^2-965*x-151 1771199404113410 r009 Re(z^3+c),c=-1/4+17/42*I,n=25 1771199411211272 k006 concat of cont frac of 1771199412743910 r005 Im(z^2+c),c=23/110+2/21*I,n=22 1771199419900560 r009 Re(z^3+c),c=-1/4+17/42*I,n=30 1771199422172440 k001 Champernowne real with 223*n+1548 1771199422686346 m004 -18+(10*Cosh[Sqrt[5]*Pi])/Pi 1771199425106485 m001 ((1+3^(1/2))^(1/2)+Magata)/(ln(5)-Ei(1)) 1771199430631164 r009 Re(z^3+c),c=-1/4+17/42*I,n=33 1771199431430564 r009 Re(z^3+c),c=-1/4+17/42*I,n=32 1771199431568672 r009 Re(z^3+c),c=-1/4+17/42*I,n=35 1771199431842074 r009 Re(z^3+c),c=-1/4+17/42*I,n=38 1771199431870927 r009 Re(z^3+c),c=-1/4+17/42*I,n=36 1771199431910943 r009 Re(z^3+c),c=-1/4+17/42*I,n=41 1771199431922572 r009 Re(z^3+c),c=-1/4+17/42*I,n=44 1771199431923730 r009 Re(z^3+c),c=-1/4+17/42*I,n=46 1771199431923847 r009 Re(z^3+c),c=-1/4+17/42*I,n=43 1771199431923988 r009 Re(z^3+c),c=-1/4+17/42*I,n=49 1771199431923991 r009 Re(z^3+c),c=-1/4+17/42*I,n=47 1771199431924058 r009 Re(z^3+c),c=-1/4+17/42*I,n=52 1771199431924071 r009 Re(z^3+c),c=-1/4+17/42*I,n=55 1771199431924072 r009 Re(z^3+c),c=-1/4+17/42*I,n=57 1771199431924073 r009 Re(z^3+c),c=-1/4+17/42*I,n=58 1771199431924073 r009 Re(z^3+c),c=-1/4+17/42*I,n=60 1771199431924073 r009 Re(z^3+c),c=-1/4+17/42*I,n=63 1771199431924073 r009 Re(z^3+c),c=-1/4+17/42*I,n=64 1771199431924073 r009 Re(z^3+c),c=-1/4+17/42*I,n=61 1771199431924073 r009 Re(z^3+c),c=-1/4+17/42*I,n=62 1771199431924073 r009 Re(z^3+c),c=-1/4+17/42*I,n=54 1771199431924073 r009 Re(z^3+c),c=-1/4+17/42*I,n=59 1771199431924074 r009 Re(z^3+c),c=-1/4+17/42*I,n=56 1771199431924078 r009 Re(z^3+c),c=-1/4+17/42*I,n=53 1771199431924087 r009 Re(z^3+c),c=-1/4+17/42*I,n=50 1771199431924087 r009 Re(z^3+c),c=-1/4+17/42*I,n=51 1771199431924228 r009 Re(z^3+c),c=-1/4+17/42*I,n=48 1771199431925185 r009 Re(z^3+c),c=-1/4+17/42*I,n=45 1771199431929824 r009 Re(z^3+c),c=-1/4+17/42*I,n=42 1771199431935887 r009 Re(z^3+c),c=-1/4+17/42*I,n=40 1771199431941031 r009 Re(z^3+c),c=-1/4+17/42*I,n=39 1771199432063611 r009 Re(z^3+c),c=-1/4+17/42*I,n=37 1771199432968115 r009 Re(z^3+c),c=-1/4+17/42*I,n=34 1771199433754098 a007 Real Root Of 18*x^4-821*x^3+911*x^2+722*x+248 1771199437602083 r009 Re(z^3+c),c=-1/4+17/42*I,n=31 1771199441076218 a007 Real Root Of -404*x^4-329*x^3+553*x^2+101*x+592 1771199441315939 r009 Re(z^3+c),c=-1/4+17/42*I,n=29 1771199450906355 r009 Re(z^3+c),c=-1/4+17/42*I,n=28 1771199452329417 m002 1+Log[Pi]/Pi^2-Sinh[Pi]/4 1771199454398883 m001 (FeigenbaumMu+Tribonacci)/(Si(Pi)+Zeta(3)) 1771199457777649 m001 ln(RenyiParking)/CopelandErdos^2*Tribonacci^2 1771199468285020 m001 1/ln(GAMMA(1/3))^2/GAMMA(1/12)^2/GAMMA(5/24) 1771199479316064 b008 15+ProductLog[13*Pi] 1771199481498849 r005 Re(z^2+c),c=5/28+9/16*I,n=28 1771199481538770 p004 log(23059/3923) 1771199481959403 a007 Real Root Of -547*x^4-489*x^3+693*x^2-624*x-613 1771199489133187 a007 Real Root Of -484*x^4-105*x^3+623*x^2-920*x+596 1771199497313982 l005 sec(89/41) 1771199501819152 b008 ArcCos[-1/5*Erf[2]] 1771199505552767 m005 (1/3*3^(1/2)+3/7)/(5/9*gamma-6) 1771199505621284 r005 Re(z^2+c),c=6/25+9/52*I,n=6 1771199506187900 a007 Real Root Of 49*x^4-448*x^3+370*x^2-592*x-119 1771199506629663 q001 5744/3243 1771199510422743 m001 1/ln(Riemann1stZero)^2*Si(Pi)^2*BesselK(1,1)^2 1771199510568217 m002 -Cosh[Pi]-Cosh[Pi]/Pi^6+Pi^2*Tanh[Pi] 1771199514719601 r005 Re(z^2+c),c=-7/74+47/54*I,n=46 1771199516739785 m005 (1/3*Catalan-2/7)/(1/6*2^(1/2)-1/8) 1771199518289516 m005 (2/3*Pi-2/5)/(4*Pi-3) 1771199518289516 m006 (2/3*Pi-2/5)/(4*Pi-3) 1771199518289516 m008 (2/3*Pi-2/5)/(4*Pi-3) 1771199522192443 k001 Champernowne real with 224*n+1547 1771199524532112 r002 6th iterates of z^2 + 1771199527884064 a007 Real Root Of 49*x^4+891*x^3+402*x^2-76*x+964 1771199533306506 p004 log(24889/20849) 1771199534489947 l006 ln(819/4814) 1771199539018808 r009 Re(z^3+c),c=-31/102+34/59*I,n=45 1771199540595859 r004 Re(z^2+c),c=-1/8+9/23*I,z(0)=I,n=38 1771199554185005 r005 Im(z^2+c),c=-9/31+15/56*I,n=19 1771199555960901 r009 Re(z^3+c),c=-1/4+17/42*I,n=26 1771199557356660 r005 Re(z^2+c),c=-139/118+23/40*I,n=3 1771199558670923 m001 (cos(1)+cos(1/5*Pi))/(gamma(1)+GaussAGM) 1771199560761377 a007 Real Root Of -735*x^4-905*x^3+333*x^2-676*x-37 1771199562432423 a007 Real Root Of -458*x^4-515*x^3+494*x^2+241*x+523 1771199570614463 r008 a(0)=0,K{-n^6,-9+9*n^3-6*n^2+2*n} 1771199570614463 r008 a(0)=0,K{-n^6,9-9*n^3+6*n^2-2*n} 1771199585155951 m009 (1/6*Psi(1,3/4)-5)/(1/5*Psi(1,3/4)-1/4) 1771199586349534 q001 6851/3868 1771199595561251 a007 Real Root Of -321*x^4-539*x^3-505*x^2-636*x+622 1771199598132595 m001 exp(TreeGrowth2nd)/FeigenbaumB*GAMMA(7/24)^2 1771199598447619 a001 34/3010349*2^(37/57) 1771199600633563 h001 (9/11*exp(1)+2/5)/(1/6*exp(2)+1/4) 1771199600685245 p001 sum((-1)^n/(287*n+60)/n/(16^n),n=1..infinity) 1771199608974133 m001 (Pi^(1/2)+Magata)^MadelungNaCl 1771199609642770 r005 Im(z^2+c),c=-15/82+7/29*I,n=16 1771199610329006 h001 (5/11*exp(2)+5/12)/(1/6*exp(2)+9/10) 1771199610356008 a007 Real Root Of -443*x^4-262*x^3+388*x^2+628*x+11 1771199617602782 r005 Re(z^2+c),c=11/106+14/37*I,n=8 1771199621104977 q001 1/5645891 1771199622212446 k001 Champernowne real with 225*n+1546 1771199631653404 m001 BesselJ(1,1)*(BesselI(0,2)+KhinchinHarmonic) 1771199631735234 m001 (Zeta(5)-(1+3^(1/2))^(1/2))/(Pi^(1/2)+Niven) 1771199633427111 m001 RenyiParking+FeigenbaumKappa^ZetaP(4) 1771199641263559 r009 Re(z^3+c),c=-15/82+51/56*I,n=63 1771199644293710 r005 Re(z^2+c),c=-9/82+20/47*I,n=46 1771199644893310 m001 ArtinRank2^BesselJ(0,1)-LandauRamanujan2nd 1771199647994821 r009 Im(z^3+c),c=-15/106+53/59*I,n=20 1771199649796907 a007 Real Root Of -409*x^4-76*x^3+723*x^2-368*x+683 1771199650933076 r002 5th iterates of z^2 + 1771199665276392 s001 sum(exp(-Pi/4)^n*A076973[n],n=1..infinity) 1771199683458477 a003 cos(Pi*13/63)+sin(Pi*50/117) 1771199684357611 r005 Re(z^2+c),c=-5/58+41/61*I,n=9 1771199691715681 a007 Real Root Of 425*x^4+637*x^3-26*x^2+880*x+997 1771199692320895 b008 14+15*ArcCsch[4] 1771199692530115 m001 Psi(2,1/3)^Mills+Riemann2ndZero 1771199713854174 r009 Im(z^3+c),c=-3/34+55/61*I,n=16 1771199715987965 r005 Im(z^2+c),c=-22/27+6/55*I,n=62 1771199717486345 m001 Zeta(3)^2*Paris/ln(sqrt(5)) 1771199720131787 a007 Real Root Of -659*x^4-609*x^3+445*x^2-801*x+287 1771199720696406 m001 gamma(2)-sin(1/5*Pi)-GAMMA(19/24) 1771199722232449 k001 Champernowne real with 226*n+1545 1771199723448146 r005 Re(z^2+c),c=-3/34+14/27*I,n=16 1771199725070133 m001 Rabbit*Cahen^2/ln(GAMMA(1/4))^2 1771199744103913 l006 ln(991/5825) 1771199749252851 r005 Im(z^2+c),c=-33/38+8/57*I,n=13 1771199753931840 m005 (1/2*exp(1)+2/9)/(4*3^(1/2)+2) 1771199783340085 r005 Re(z^2+c),c=-1/11+27/58*I,n=25 1771199789108766 m001 (ZetaP(4)+ZetaQ(4))/(exp(1)+Niven) 1771199793355539 r009 Im(z^3+c),c=-49/122+34/53*I,n=58 1771199796740807 a003 cos(Pi*3/100)/cos(Pi*31/100) 1771199797176669 m005 (1/2*Catalan-5/7)/(4/5*Catalan+5/7) 1771199804133019 a007 Real Root Of -759*x^4-972*x^3+520*x^2-500*x-448 1771199807303866 a001 1/10959*7778742049^(14/19) 1771199811316202 r005 Im(z^2+c),c=-17/18+35/208*I,n=28 1771199811538665 r002 51th iterates of z^2 + 1771199820920969 a007 Real Root Of -6*x^4+556*x^3+957*x^2+473*x+984 1771199822252452 k001 Champernowne real with 227*n+1544 1771199831743310 a007 Real Root Of 581*x^4+419*x^3-910*x^2+686*x+680 1771199833230121 m001 FeigenbaumDelta^(2^(1/3))/(ZetaP(4)^(2^(1/3))) 1771199835791362 m001 1/Lehmer/ln(Conway)^2/FeigenbaumKappa 1771199840774438 m001 1/ln(Sierpinski)/FeigenbaumAlpha*BesselK(0,1) 1771199840809177 r002 41th iterates of z^2 + 1771199845978813 l006 ln(1285/1534) 1771199853965702 b008 ArcSec[-4*Sqrt[1+EulerGamma]] 1771199882038829 m009 (1/3*Pi^2-1/6)/(6*Psi(1,2/3)-3/4) 1771199883676347 r005 Re(z^2+c),c=-39/46+5/64*I,n=10 1771199887201196 r005 Re(z^2+c),c=-9/82+20/47*I,n=39 1771199887330629 a007 Real Root Of 752*x^4+703*x^3-813*x^2+506*x-48 1771199887701844 m001 BesselI(0,2)^DuboisRaymond/LaplaceLimit 1771199891716817 l006 ln(1163/6836) 1771199895527547 a007 Real Root Of 507*x^4+195*x^3-598*x^2+965*x-321 1771199911070770 r002 25th iterates of z^2 + 1771199918683619 r002 12th iterates of z^2 + 1771199921010486 a007 Real Root Of 443*x^4+910*x^3+267*x^2+227*x+261 1771199921827076 r005 Re(z^2+c),c=-19/94+32/43*I,n=9 1771199922272455 k001 Champernowne real with 228*n+1543 1771199922947882 m002 5+(Pi^2*Cosh[Pi])/9 1771199926466794 a007 Real Root Of 304*x^4-963*x^3-351*x^2-194*x-29 1771199929146476 a001 24157817/2207*47^(1/8) 1771199944513411 r002 54th iterates of z^2 + 1771199944514838 a001 521/10610209857723*28657^(1/8) 1771199950166003 m001 (gamma-ln(5))/(2*Pi/GAMMA(5/6)+MertensB1) 1771199951745103 m001 (GaussKuzminWirsing+Stephens)/(Zeta(5)-cos(1)) 1771199954412554 m001 (3^(1/3)-arctan(1/2))/(OneNinth-TwinPrimes) 1771199961253756 a007 Real Root Of -312*x^4-275*x^3+64*x^2-285*x+837 1771199964597079 m001 (FeigenbaumD-Kac)/(GAMMA(17/24)-Champernowne) 1771199970806709 r005 Re(z^2+c),c=-9/82+20/47*I,n=49 1771199977764111 r005 Re(z^2+c),c=4/23+11/19*I,n=15 1771199982174068 m005 (1/2*Pi+4/5)/(1/2+3/8*5^(1/2)) 1771199983031473 m005 (1/2*Zeta(3)+1/11)/(5/8*Catalan-2/11) 1771199984111587 r005 Im(z^2+c),c=-23/50+8/27*I,n=17 1771199986099661 r005 Re(z^2+c),c=-2/23+25/53*I,n=30 1771199999011075 m001 (gamma(3)-Porter)/(PrimesInBinary+ThueMorse)