2100900015928883 r005 Im(z^2+c),c=7/27+4/51*I,n=29 2100900017169405 m001 Niven^Cahen*Niven^RenyiParking 2100900028314873 a004 Fibonacci(15)*Lucas(11)/(1/2+sqrt(5)/2)^18 2100900034666023 r005 Im(z^2+c),c=-1/82+10/43*I,n=15 2100900052409862 a007 Real Root Of -603*x^4-869*x^3+573*x^2-516*x+76 2100900052593738 m001 (Kolakoski+ZetaP(4))/PrimesInBinary 2100900055510211 r002 11i'th iterates of 2*x/(1-x^2) of 2100900059393642 m001 KomornikLoreti^Grothendieck/Totient 2100900063869278 r002 2th iterates of z^2 + 2100900073911908 r005 Im(z^2+c),c=-6/13+23/55*I,n=19 2100900079897494 r005 Re(z^2+c),c=19/56+23/61*I,n=40 2100900081022732 g005 GAMMA(6/7)/GAMMA(3/11)/GAMMA(9/10)/GAMMA(3/5) 2100900081083830 m001 (exp(1/exp(1))-GAMMA(19/24))/(Pi-Si(Pi)) 2100900083679473 m004 5-E^(Sqrt[5]*Pi)/5+5*Log[Sqrt[5]*Pi] 2100900085788231 a007 Real Root Of 672*x^4-856*x^3+432*x^2-841*x-205 2100900089814064 a007 Real Root Of 665*x^4+778*x^3-946*x^2+678*x-141 2100900093524025 m001 Zeta(1,2)/GolombDickman/TravellingSalesman 2100900096102001 r005 Im(z^2+c),c=31/94+1/11*I,n=11 2100900096874319 r009 Re(z^3+c),c=-31/106+23/61*I,n=6 2100900101763372 a007 Real Root Of 567*x^4+983*x^3-664*x^2-149*x+687 2100900102744023 a005 (1/cos(21/227*Pi))^1146 2100900111344437 a001 9349/10946*10946^(3/31) 2100900115216819 m001 BesselK(1,1)-HardyLittlewoodC4^Kolakoski 2100900115831286 a007 Real Root Of 949*x^4-164*x^3-743*x^2-707*x+181 2100900118663988 s001 sum(exp(-Pi/2)^n*A035041[n],n=1..infinity) 2100900120804759 a007 Real Root Of 713*x^4+806*x^3-985*x^2+602*x-804 2100900126571276 r005 Re(z^2+c),c=-9/56+37/40*I,n=9 2100900129762677 m007 (-1/4*gamma-4)/(-3/4*gamma-3/2*ln(2)-1/2) 2100900134869499 a001 24476/28657*10946^(3/31) 2100900140423013 a001 13201/15456*10946^(3/31) 2100900140583629 a007 Real Root Of 225*x^4+397*x^3-423*x^2-496*x+123 2100900140928223 m001 (GAMMA(13/24)+ArtinRank2)/(Lehmer-Niven) 2100900149408787 a001 15127/17711*10946^(3/31) 2100900149560430 m001 KomornikLoreti+Robbin^FransenRobinson 2100900149646423 a007 Real Root Of 44*x^4+948*x^3+488*x^2-191*x-528 2100900157139230 r005 Re(z^2+c),c=-9/98+11/19*I,n=47 2100900166514665 a001 1/105937*4181^(16/43) 2100900168408172 l006 ln(559/4569) 2100900177592590 r005 Im(z^2+c),c=9/32+1/21*I,n=50 2100900180549567 r002 27th iterates of z^2 + 2100900181069195 r005 Im(z^2+c),c=-13/14+41/187*I,n=32 2100900190155045 r005 Re(z^2+c),c=-11/82+17/32*I,n=18 2100900206524327 a007 Real Root Of -726*x^4-738*x^3+801*x^2+704*x-175 2100900210998199 a001 1926/2255*10946^(3/31) 2100900212080940 m001 1/exp(GolombDickman)/Bloch/cos(1) 2100900216871504 a001 2/377*53316291173^(17/19) 2100900219346116 a007 Real Root Of 175*x^4+431*x^3-46*x^2-559*x-384 2100900220207739 r005 Im(z^2+c),c=-13/14+4/225*I,n=52 2100900220207746 r005 Im(z^2+c),c=-13/14+4/225*I,n=50 2100900220207746 r005 Im(z^2+c),c=-13/14+4/225*I,n=51 2100900220207747 r005 Im(z^2+c),c=-13/14+4/225*I,n=54 2100900220207748 r005 Im(z^2+c),c=-13/14+4/225*I,n=49 2100900220207751 r005 Im(z^2+c),c=-13/14+4/225*I,n=53 2100900220207752 r005 Im(z^2+c),c=-13/14+4/225*I,n=56 2100900220207754 r005 Im(z^2+c),c=-13/14+4/225*I,n=55 2100900220207754 r005 Im(z^2+c),c=-13/14+4/225*I,n=58 2100900220207755 r005 Im(z^2+c),c=-13/14+4/225*I,n=57 2100900220207755 r005 Im(z^2+c),c=-13/14+4/225*I,n=60 2100900220207756 r005 Im(z^2+c),c=-13/14+4/225*I,n=59 2100900220207756 r005 Im(z^2+c),c=-13/14+4/225*I,n=62 2100900220207756 r005 Im(z^2+c),c=-13/14+4/225*I,n=61 2100900220207756 r005 Im(z^2+c),c=-13/14+4/225*I,n=64 2100900220207756 r005 Im(z^2+c),c=-13/14+4/225*I,n=63 2100900220207816 r005 Im(z^2+c),c=-13/14+4/225*I,n=47 2100900220207882 r005 Im(z^2+c),c=-13/14+4/225*I,n=48 2100900220208240 r005 Im(z^2+c),c=-13/14+4/225*I,n=45 2100900220208697 r005 Im(z^2+c),c=-13/14+4/225*I,n=46 2100900220210255 r005 Im(z^2+c),c=-13/14+4/225*I,n=43 2100900220212506 r005 Im(z^2+c),c=-13/14+4/225*I,n=44 2100900220218641 r005 Im(z^2+c),c=-13/14+4/225*I,n=41 2100900220228213 r005 Im(z^2+c),c=-13/14+4/225*I,n=42 2100900220250676 r005 Im(z^2+c),c=-13/14+4/225*I,n=39 2100900220287810 r005 Im(z^2+c),c=-13/14+4/225*I,n=40 2100900220365106 r005 Im(z^2+c),c=-13/14+4/225*I,n=37 2100900220499460 r005 Im(z^2+c),c=-13/14+4/225*I,n=38 2100900220749852 r005 Im(z^2+c),c=-13/14+4/225*I,n=35 2100900221207115 r005 Im(z^2+c),c=-13/14+4/225*I,n=36 2100900221965969 r005 Im(z^2+c),c=-13/14+4/225*I,n=33 2100900222664402 m001 GAMMA(11/12)^KhinchinLevy+MertensB2 2100900222856949 a001 55/3571*123^(2/31) 2100900223430278 r005 Im(z^2+c),c=-13/14+4/225*I,n=34 2100900225544014 r005 Im(z^2+c),c=-13/14+4/225*I,n=31 2100900225856388 m001 (3^(1/2)+Zeta(5))/(ln(3)+Ei(1,1)) 2100900229921535 r005 Im(z^2+c),c=-13/14+4/225*I,n=32 2100900230682093 m002 -E^Pi+Pi^2/10+Log[Pi] 2100900235100886 r005 Im(z^2+c),c=-13/14+4/225*I,n=29 2100900237524174 m005 (1/2*gamma+2/11)/(7/9*5^(1/2)+1/2) 2100900238846561 s002 sum(A033146[n]/((10^n+1)/n),n=1..infinity) 2100900240231334 r005 Im(z^2+c),c=-47/50+13/64*I,n=52 2100900247064638 r005 Im(z^2+c),c=-13/14+4/225*I,n=30 2100900251863974 r005 Im(z^2+c),c=-13/14+4/225*I,n=24 2100900253293298 m001 Riemann2ndZero-ZetaQ(3)^Catalan 2100900256313397 r005 Im(z^2+c),c=-13/14+4/225*I,n=23 2100900256822386 r005 Im(z^2+c),c=-13/14+4/225*I,n=27 2100900274239697 h001 (3/7*exp(1)+1/12)/(3/4*exp(2)+2/5) 2100900281265077 a007 Real Root Of -361*x^4-926*x^3+99*x^2+970*x+47 2100900284411383 a007 Real Root Of -484*x^4-621*x^3+786*x^2-132*x-76 2100900285186959 r005 Im(z^2+c),c=-13/14+4/225*I,n=28 2100900286344562 r002 48i'th iterates of 2*x/(1-x^2) of 2100900289760816 r005 Im(z^2+c),c=-13/14+4/225*I,n=25 2100900290788128 r005 Re(z^2+c),c=-7/78+29/50*I,n=62 2100900299743233 r005 Im(z^2+c),c=-6/19+21/64*I,n=23 2100900303126732 a005 (1/sin(53/227*Pi))^174 2100900306265714 a007 Real Root Of 999*x^4-489*x^3-984*x^2-890*x+233 2100900315303993 s001 sum(exp(-3*Pi/5)^n*A276125[n],n=1..infinity) 2100900324029271 a007 Real Root Of -387*x^4-895*x^3+115*x^2+461*x-299 2100900334156297 a001 377/2207*199^(10/11) 2100900338723807 r005 Im(z^2+c),c=-13/14+4/225*I,n=26 2100900352580799 m001 LandauRamanujan*ln(GaussAGM(1,1/sqrt(2)))^2 2100900352941881 a001 1368706081/329*225851433717^(5/21) 2100900352941882 a001 45537549124/987*9227465^(5/21) 2100900362104624 a007 Real Root Of -571*x^4-668*x^3+865*x^2-324*x+431 2100900372536140 m005 (1/2*3^(1/2)-3/10)/(5/6*2^(1/2)-10/11) 2100900381874751 m001 BesselJ(1,1)/FeigenbaumC^2/exp(Catalan)^2 2100900386879489 m001 (Zeta(3)-KhinchinLevy)/(Rabbit+Trott2nd) 2100900395183286 r005 Re(z^2+c),c=11/34+17/49*I,n=12 2100900395268871 m001 1/TreeGrowth2nd*exp(Bloch)/log(2+sqrt(3))^2 2100900411863395 l006 ln(899/7348) 2100900413786323 a001 75025/4*2^(9/55) 2100900423098831 a007 Real Root Of 520*x^4+6*x^3+614*x^2-133*x-56 2100900426944307 l006 ln(2267/2797) 2100900426944307 p004 log(2797/2267) 2100900436269228 m001 (Pi*2^(1/2)/GAMMA(3/4)+ZetaP(4))^LambertW(1) 2100900456287143 r002 3th iterates of z^2 + 2100900457351635 m001 BesselK(1,1)^ln(2^(1/2)+1)+MinimumGamma 2100900457525580 a007 Real Root Of -338*x^4-226*x^3+626*x^2-813*x+18 2100900487159304 m005 (1/2*Pi-1/8)/(-17/180+7/20*5^(1/2)) 2100900489533646 a007 Real Root Of -383*x^4-229*x^3-529*x^2+538*x+135 2100900494609482 m001 (Otter-cos(1))/(Rabbit+TreeGrowth2nd) 2100900503563381 m001 ln(Riemann3rdZero)/Riemann1stZero/Trott 2100900504501148 m005 (1/4+1/6*5^(1/2))/(4*Catalan-7/10) 2100900516257893 m001 (ln(Pi)+3^(1/3))/(CopelandErdos-Porter) 2100900517084523 r002 3th iterates of z^2 + 2100900517338682 m005 (1/2*Pi-4/7)/(4*2^(1/2)-9/10) 2100900521461287 m001 (OneNinth+Sierpinski)/(gamma+CareFree) 2100900522258823 m001 (LaplaceLimit-Zeta(1/2)*MertensB2)/MertensB2 2100900528403970 a003 cos(Pi*6/59)/sin(Pi*10/67) 2100900529072973 r009 Im(z^3+c),c=-43/70+6/23*I,n=14 2100900529231746 m004 2*Cos[Sqrt[5]*Pi]-Cosh[Sqrt[5]*Pi]/25 2100900529237949 r009 Re(z^3+c),c=-23/52+32/61*I,n=37 2100900540426025 r005 Im(z^2+c),c=-59/122+20/49*I,n=21 2100900540905817 l002 exp(polylog(6,11/15)) 2100900562208171 v002 sum(1/(2^n*(15*n^2-29*n+49)),n=1..infinity) 2100900577268227 g006 Psi(1,7/9)+Psi(1,6/7)+Psi(1,3/7)+Psi(1,1/3) 2100900592878002 m001 2^(1/2)*(sin(1/12*Pi)+FibonacciFactorial) 2100900611666163 r005 Im(z^2+c),c=-17/18+42/205*I,n=11 2100900613656941 r005 Im(z^2+c),c=37/110+1/9*I,n=8 2100900615376992 m009 (3*Pi^2+1)/(5*Psi(1,2/3)-3/4) 2100900628771446 p001 sum(1/(490*n+127)/n/(8^n),n=1..infinity) 2100900628836938 r005 Re(z^2+c),c=-31/122+1/61*I,n=12 2100900632357496 a007 Real Root Of 628*x^4+655*x^3-930*x^2+989*x+22 2100900632380505 a001 3571/5*20365011074^(1/22) 2100900633138323 a001 2207/2584*10946^(3/31) 2100900633792877 r009 Re(z^3+c),c=-11/30+24/41*I,n=64 2100900639313667 m001 (GAMMA(17/24)+Conway)/(Pi^(1/2)-cos(1)) 2100900643860422 r005 Re(z^2+c),c=-3/16+11/30*I,n=18 2100900661106554 m005 (1/2*Pi-4/11)/(10/11*3^(1/2)-1) 2100900670609755 r002 59th iterates of z^2 + 2100900677070121 a007 Real Root Of -301*x^4-391*x^3-591*x^2+709*x+172 2100900677083590 s001 sum(exp(-Pi/4)^n*A025052[n],n=1..infinity) 2100900677176806 m001 1/BesselJ(1,1)^2/Conway^2*ln(Zeta(7))^2 2100900677565452 m001 Ei(1)+LandauRamanujan*Riemann3rdZero 2100900679954415 r005 Im(z^2+c),c=-71/102+16/37*I,n=4 2100900700482712 m001 exp(BesselK(0,1))^2*Rabbit^2/GAMMA(1/6) 2100900702679186 h005 exp(cos(Pi*1/38)-cos(Pi*23/55)) 2100900702785838 r005 Im(z^2+c),c=-6/7+12/79*I,n=11 2100900714951424 r005 Im(z^2+c),c=-25/122+19/64*I,n=16 2100900720341159 r005 Im(z^2+c),c=-43/90+17/46*I,n=47 2100900721101053 r005 Re(z^2+c),c=-73/52+1/17*I,n=8 2100900729032614 m001 (GolombDickman*Trott2nd-Lehmer)/Trott2nd 2100900735143094 s001 sum(exp(-3*Pi/5)^n*A099278[n],n=1..infinity) 2100900738934278 m001 exp(Trott)/Magata*sin(1)^2 2100900741626579 r005 Re(z^2+c),c=1/74+29/49*I,n=35 2100900778181137 s002 sum(A097527[n]/(n*2^n+1),n=1..infinity) 2100900785386672 r002 5th iterates of z^2 + 2100900789933957 a007 Real Root Of 315*x^4+250*x^3-450*x^2+706*x-349 2100900801936265 p003 LerchPhi(1/25,3,29/80) 2100900807381298 m001 (Chi(1)+cos(1))/(-Rabbit+ZetaQ(2)) 2100900808421590 s002 sum(A015401[n]/(exp(n)-1),n=1..infinity) 2100900811145859 m006 (5/6*Pi-5)/(2/Pi-3/4) 2100900812132296 l006 ln(340/2779) 2100900812170652 m001 Riemann2ndZero-Zeta(3)*Trott 2100900831742482 m002 Pi^5/6+Pi^6/6-Log[Pi] 2100900833000622 v002 sum(1/(2^n*(3*n^2+17*n+14)),n=1..infinity) 2100900834861931 a001 7331474697802*701408733^(5/18) 2100900834861931 a001 1322157322203/2*4052739537881^(5/18) 2100900836788384 a001 8/1149851*18^(13/34) 2100900836820263 m001 ln(GAMMA(17/24))^2*FeigenbaumC^2/Zeta(9)^2 2100900838952340 s004 Continued Fraction of A039456 2100900838952340 s004 Continued fraction of A039456 2100900840366710 m001 Niven^2/exp(Lehmer)/BesselJ(0,1) 2100900840506391 h001 (10/11*exp(2)+1/4)/(3/8*exp(2)+6/11) 2100900851804652 r005 Im(z^2+c),c=-63/122+17/45*I,n=38 2100900859808882 a001 15127/8*13^(46/49) 2100900860059663 a001 5778/5*514229^(1/22) 2100900862966183 r005 Im(z^2+c),c=-11/98+15/56*I,n=18 2100900868785646 r005 Re(z^2+c),c=-23/114+12/37*I,n=13 2100900870018505 m006 (1/3*ln(Pi)-5/6)/(2/5*exp(2*Pi)+5/6) 2100900878420025 a001 1/4*(1/2*5^(1/2)+1/2)^13*47^(13/18) 2100900880151411 m005 (1/2*gamma-3/7)/(7/11*2^(1/2)-5/6) 2100900882564875 r009 Im(z^3+c),c=-11/70+49/55*I,n=10 2100900897788486 p004 log(34337/4201) 2100900900900900 q001 1166/555 2100900902245368 a005 (1/sin(44/149*Pi))^86 2100900902484413 a001 832040/47*29^(3/59) 2100900902978314 r005 Im(z^2+c),c=-11/98+15/56*I,n=23 2100900912109514 m001 1/GAMMA(13/24)^2*ln(Paris)^2/GAMMA(7/24)^2 2100900919161242 r005 Re(z^2+c),c=-67/118+17/40*I,n=19 2100900924319277 m005 (1/3*Catalan-1/3)/(6*5^(1/2)-1/12) 2100900929389046 r005 Im(z^2+c),c=-7/8+43/252*I,n=48 2100900931159466 m001 (-Cahen+Conway)/(LambertW(1)-ln(2^(1/2)+1)) 2100900932954338 m001 Zeta(1,2)*FeigenbaumD+PrimesInBinary 2100900938572825 m001 (Riemann1stZero+Weierstrass)/(Pi-Psi(1,1/3)) 2100900940009086 a007 Real Root Of 847*x^4-175*x^3-392*x^2-657*x-124 2100900945872124 m001 1/exp(Catalan)*Cahen/GAMMA(3/4) 2100900952039900 r005 Im(z^2+c),c=-4/9+13/36*I,n=62 2100900954132586 p004 log(33469/27127) 2100900956484824 m001 (LaplaceLimit+Otter)/(3^(1/2)+gamma(2)) 2100900968064960 a007 Real Root Of 486*x^4+940*x^3-357*x^2-736*x-722 2100900973961824 m001 MertensB1*OrthogonalArrays-gamma 2100900981040010 m001 (Pi+ln(2)/ln(10))*Shi(1)*gamma 2100900985195829 a007 Real Root Of -301*x^4+934*x^3+618*x^2+203*x-78 2100900991597725 m001 BesselK(0,1)+GAMMA(11/12)+GolombDickman 2100900991597725 m001 BesselK(0,1)+GolombDickman+GAMMA(11/12) 2100900996490633 r008 a(0)=2,K{-n^6,67-99*n^3-18*n^2+40*n} 2100901002207236 l006 ln(6215/7668) 2100901009760828 m005 (-1/3+1/4*5^(1/2))/(8/11*Zeta(3)+1/5) 2100901013846514 m001 PlouffeB*Trott2nd-Riemann2ndZero 2100901015348945 m001 (GAMMA(3/4)-Ei(1))/(Ei(1,1)-Magata) 2100901022673853 r005 Im(z^2+c),c=-79/110+11/63*I,n=3 2100901027547754 r005 Im(z^2+c),c=-101/102+7/33*I,n=19 2100901030128725 a001 17/51841*123^(22/57) 2100901031153757 m001 1/GAMMA(1/4)/exp(MertensB1)^2*GAMMA(17/24) 2100901040485846 r005 Im(z^2+c),c=-113/126+10/51*I,n=26 2100901044245660 r005 Re(z^2+c),c=31/118+11/56*I,n=9 2100901052469384 r005 Im(z^2+c),c=-11/98+15/56*I,n=26 2100901057423217 m001 (ln(2)-FibonacciFactorial)/(GaussAGM+Niven) 2100901072131136 r005 Im(z^2+c),c=-11/98+15/56*I,n=29 2100901073893526 r005 Im(z^2+c),c=-53/86+15/46*I,n=46 2100901074643796 r005 Im(z^2+c),c=-11/98+15/56*I,n=32 2100901074955959 r005 Im(z^2+c),c=-11/98+15/56*I,n=35 2100901074993620 r005 Im(z^2+c),c=-11/98+15/56*I,n=38 2100901074998018 r005 Im(z^2+c),c=-11/98+15/56*I,n=41 2100901074998361 r005 Im(z^2+c),c=-11/98+15/56*I,n=40 2100901074998513 r005 Im(z^2+c),c=-11/98+15/56*I,n=44 2100901074998515 r005 Im(z^2+c),c=-11/98+15/56*I,n=43 2100901074998561 r005 Im(z^2+c),c=-11/98+15/56*I,n=46 2100901074998566 r005 Im(z^2+c),c=-11/98+15/56*I,n=47 2100901074998570 r005 Im(z^2+c),c=-11/98+15/56*I,n=49 2100901074998571 r005 Im(z^2+c),c=-11/98+15/56*I,n=50 2100901074998571 r005 Im(z^2+c),c=-11/98+15/56*I,n=52 2100901074998572 r005 Im(z^2+c),c=-11/98+15/56*I,n=55 2100901074998572 r005 Im(z^2+c),c=-11/98+15/56*I,n=53 2100901074998572 r005 Im(z^2+c),c=-11/98+15/56*I,n=58 2100901074998572 r005 Im(z^2+c),c=-11/98+15/56*I,n=61 2100901074998572 r005 Im(z^2+c),c=-11/98+15/56*I,n=56 2100901074998572 r005 Im(z^2+c),c=-11/98+15/56*I,n=64 2100901074998572 r005 Im(z^2+c),c=-11/98+15/56*I,n=63 2100901074998572 r005 Im(z^2+c),c=-11/98+15/56*I,n=62 2100901074998572 r005 Im(z^2+c),c=-11/98+15/56*I,n=59 2100901074998572 r005 Im(z^2+c),c=-11/98+15/56*I,n=60 2100901074998572 r005 Im(z^2+c),c=-11/98+15/56*I,n=57 2100901074998572 r005 Im(z^2+c),c=-11/98+15/56*I,n=54 2100901074998572 r005 Im(z^2+c),c=-11/98+15/56*I,n=51 2100901074998578 r005 Im(z^2+c),c=-11/98+15/56*I,n=48 2100901074998618 r005 Im(z^2+c),c=-11/98+15/56*I,n=45 2100901074998847 r005 Im(z^2+c),c=-11/98+15/56*I,n=37 2100901074998929 r005 Im(z^2+c),c=-11/98+15/56*I,n=42 2100901075001225 r005 Im(z^2+c),c=-11/98+15/56*I,n=39 2100901075016000 r005 Im(z^2+c),c=-11/98+15/56*I,n=34 2100901075017610 r005 Im(z^2+c),c=-11/98+15/56*I,n=36 2100901075129553 r005 Im(z^2+c),c=-11/98+15/56*I,n=33 2100901075252855 r005 Im(z^2+c),c=-11/98+15/56*I,n=31 2100901075850973 r005 Im(z^2+c),c=-11/98+15/56*I,n=30 2100901076116320 m008 (2/5*Pi^5+1/6)/(1/6*Pi^3+2/3) 2100901077871698 r005 Im(z^2+c),c=-11/98+15/56*I,n=28 2100901080104250 r005 Im(z^2+c),c=-11/98+15/56*I,n=27 2100901092134295 m001 (Otter-ZetaP(3))/(Pi+Psi(1,1/3)) 2100901100940906 h001 (-3*exp(2)-6)/(-9*exp(5)-5) 2100901101347987 r005 Im(z^2+c),c=-11/98+15/56*I,n=24 2100901103884300 r005 Im(z^2+c),c=-11/98+15/56*I,n=25 2100901114828714 r005 Im(z^2+c),c=-21/22+4/19*I,n=55 2100901116850956 s002 sum(A130412[n]/((pi^n+1)/n),n=1..infinity) 2100901127506190 l006 ln(1141/9326) 2100901128405033 p003 LerchPhi(1/100,6,337/177) 2100901130527713 p004 log(12539/10163) 2100901140771397 m001 PisotVijayaraghavan/Bloch*ln(BesselK(0,1))^2 2100901146697061 r005 Re(z^2+c),c=-4/25+17/39*I,n=20 2100901146783346 m001 (ln(gamma)+Trott2nd)/(2^(1/3)+GAMMA(3/4)) 2100901154374108 a007 Real Root Of -156*x^4+250*x^3+882*x^2-430*x+561 2100901158659001 a007 Real Root Of 162*x^4-242*x^3-889*x^2+884*x+381 2100901166131141 a007 Real Root Of -593*x^4-927*x^3+799*x^2+318*x+98 2100901166279359 m001 1/Zeta(9)^2*Pi^2/exp(cosh(1)) 2100901166910743 r005 Im(z^2+c),c=-11/98+15/56*I,n=21 2100901171092656 m001 (-Zeta(5)+Pi^(1/2))/(BesselI(0,1)-Catalan) 2100901178900376 m001 (Shi(1)+ln(2^(1/2)+1))/(-exp(1/Pi)+Porter) 2100901182249534 m001 (sin(1/12*Pi)+ReciprocalFibonacci)^gamma 2100901186454744 m001 (gamma(3)+CareFree)/(FeigenbaumDelta-Mills) 2100901188764088 r005 Im(z^2+c),c=-13/32+16/39*I,n=12 2100901196051322 m005 (1/2*Catalan-5/8)/(4/5*Zeta(3)-1/6) 2100901206134094 m001 1/GAMMA(1/4)*ln(Si(Pi))/cos(Pi/5) 2100901207929453 r002 14th iterates of z^2 + 2100901209820906 s001 sum(exp(-4*Pi/5)^n*A016592[n],n=1..infinity) 2100901211209879 r009 Re(z^3+c),c=-4/17+13/60*I,n=5 2100901214167521 a007 Real Root Of -535*x^4-809*x^3+703*x^2-128*x-451 2100901221984237 m008 (1/5*Pi+3/4)/(2/3*Pi^4+2/3) 2100901231198110 a007 Real Root Of 20*x^4+466*x^3+926*x^2-745*x+515 2100901235233934 h001 (-exp(-1)+7)/(-3*exp(2/3)+9) 2100901254246114 r005 Im(z^2+c),c=-11/29+10/29*I,n=39 2100901257531843 r005 Im(z^2+c),c=-3/4+34/197*I,n=3 2100901261372732 l006 ln(801/6547) 2100901274971288 a007 Real Root Of 4*x^4-178*x^3-291*x^2+328*x+245 2100901295081493 p001 sum((-1)^n/(351*n+29)/n/(125^n),n=1..infinity) 2100901297216944 a007 Real Root Of -283*x^4-52*x^3+673*x^2-551*x+903 2100901298044453 m001 (Khinchin+MertensB1)/(OneNinth-Riemann1stZero) 2100901309234049 r005 Re(z^2+c),c=-9/44+4/5*I,n=30 2100901314356790 a001 1/10983760033*121393^(1/14) 2100901314358827 a001 3/53316291173*102334155^(1/14) 2100901314358827 a001 3/86267571272*86267571272^(1/14) 2100901324572496 m001 MinimumGamma*exp(MertensB1)^2/GAMMA(19/24) 2100901332531704 l006 ln(3948/4871) 2100901344625443 m001 (-MertensB3+Stephens)/(Catalan+Khinchin) 2100901345212719 a007 Real Root Of -181*x^4-206*x^3+350*x^2-338*x-639 2100901345660398 r005 Im(z^2+c),c=-11/98+15/56*I,n=22 2100901346785680 a007 Real Root Of -317*x^4-740*x^3-179*x^2+290*x+713 2100901350315640 g007 2*Psi(2,3/10)-Psi(2,2/11)-Psi(2,3/7) 2100901367750655 r009 Re(z^3+c),c=-61/106+35/62*I,n=29 2100901368089044 m001 (Cahen-CareFree)/(Zeta(1/2)-exp(1/exp(1))) 2100901369018180 r002 28th iterates of z^2 + 2100901375239230 m001 Riemann2ndZero/(Backhouse^ZetaQ(4)) 2100901379143101 a001 4/3*53316291173^(9/23) 2100901387010056 a001 682/305*832040^(21/25) 2100901392800717 m005 (2*Pi+1/4)/(1/4*gamma+1/6) 2100901397077507 r009 Re(z^3+c),c=-31/90+23/44*I,n=40 2100901397864675 r005 Im(z^2+c),c=-39/56+1/5*I,n=27 2100901405754496 m005 (1/2*Catalan-2/9)/(4/5*5^(1/2)-2/3) 2100901406709697 m001 GaussKuzminWirsing^2/exp(Conway)*Catalan^2 2100901417699600 r005 Re(z^2+c),c=-9/86+23/42*I,n=41 2100901430485522 m003 21/10+(Sqrt[5]*Csch[1/2+Sqrt[5]/2])/1024 2100901436913722 r005 Im(z^2+c),c=-11/10+29/131*I,n=33 2100901437714139 m005 (1/2*exp(1)+7/12)/(2/7*5^(1/2)+2/7) 2100901438670120 p004 log(14083/1723) 2100901444406008 b008 2+ArcCoth[1+4*Sqrt[5]] 2100901444877194 m008 (3/4*Pi^6-3/5)/(1/2*Pi-5) 2100901451257586 r009 Re(z^3+c),c=-23/78+20/51*I,n=9 2100901462232197 r005 Im(z^2+c),c=-57/56+5/22*I,n=58 2100901468562909 s002 sum(A130412[n]/((pi^n-1)/n),n=1..infinity) 2100901478142960 a001 7/17711*1346269^(31/51) 2100901483304871 m001 Mills^exp(Pi)/(Niven^exp(Pi)) 2100901485091701 m001 GAMMA(2/3)*Paris^2*ln(log(1+sqrt(2)))^2 2100901488809992 a007 Real Root Of 99*x^4-599*x^3-925*x^2-675*x+188 2100901489719871 r005 Im(z^2+c),c=-27/31+11/64*I,n=43 2100901493414012 a007 Real Root Of 140*x^4+92*x^3-104*x^2+409*x-556 2100901510567562 m005 (1/2*3^(1/2)+7/9)/(4/9*2^(1/2)-7/11) 2100901514268093 a007 Real Root Of -165*x^4-x^3+485*x^2-877*x-778 2100901522416865 a007 Real Root Of -459*x^4-534*x^3+681*x^2-867*x-837 2100901523501980 m001 Robbin^2*Khintchine^2*exp(Ei(1)) 2100901524164680 m009 (1/4*Pi^2+1/3)/(20/3*Catalan+5/6*Pi^2-1) 2100901529261639 r005 Im(z^2+c),c=-57/98+17/45*I,n=63 2100901531689918 m007 (-5*gamma-10*ln(2)+1/6)/(-2*gamma-4*ln(2)-2/3) 2100901532132891 m001 (FeigenbaumB*Riemann2ndZero-Trott)/FeigenbaumB 2100901543152452 m001 (-GAMMA(2/3)+Conway)/(exp(Pi)+Catalan) 2100901549096289 m001 (LaplaceLimit+ZetaQ(2))/(cos(1)-ln(2^(1/2)+1)) 2100901560156803 b008 E^Sqrt[2]*Sinh[7/3] 2100901561757694 m005 (1/2*exp(1)-7/12)/(3/10*3^(1/2)-8/9) 2100901565507876 a007 Real Root Of 36*x^4+728*x^3-567*x^2+558*x-667 2100901570008925 a007 Real Root Of -319*x^4-999*x^3-602*x^2+505*x+669 2100901570852027 m001 (Artin-Trott2nd)/ZetaQ(4) 2100901575814702 m001 KhinchinHarmonic*(Salem+Trott2nd) 2100901578047655 m005 (1/2*5^(1/2)+2)/(1/2*exp(1)+1/8) 2100901592699605 l006 ln(461/3768) 2100901611879907 r005 Im(z^2+c),c=2/17+11/63*I,n=4 2100901614810891 a007 Real Root Of -603*x^4-930*x^3+703*x^2-373*x-763 2100901618872702 a005 (1/cos(11/205*Pi))^52 2100901624246971 m001 (gamma+PrimesInBinary)/(2^(1/3)-3^(1/2)) 2100901626197303 m003 3+Sqrt[5]/32-(2*Sinh[1/2+Sqrt[5]/2])/5 2100901634120672 m001 Kolakoski/(ZetaP(2)^GAMMA(3/4)) 2100901634569455 a001 1/188*(1/2*5^(1/2)+1/2)^20*4^(9/13) 2100901638344501 m005 (1/2*5^(1/2)-9/10)/(1/11*Pi-2/11) 2100901643849059 a007 Real Root Of -45*x^4+495*x^3+967*x^2-264*x+644 2100901646458022 r005 Im(z^2+c),c=-29/36+7/51*I,n=47 2100901650763410 m001 (Sarnak+Trott)/(cos(1)+Otter) 2100901654365550 m001 (2^(1/2)+gamma)/(-GAMMA(11/12)+OneNinth) 2100901660520039 r002 54th iterates of z^2 + 2100901665330766 a007 Real Root Of -459*x^4-925*x^3-126*x^2-324*x+240 2100901666190902 r005 Im(z^2+c),c=-59/114+19/50*I,n=52 2100901668841405 m002 -Pi+ProductLog[Pi]-Sinh[Pi]/(Pi^5*Log[Pi]) 2100901671145633 m003 1+(3*Sqrt[5])/16+4*Csch[1/2+Sqrt[5]/2]^2 2100901674497879 a007 Real Root Of 343*x^4+313*x^3-741*x^2+130*x-236 2100901677069082 m001 (arctan(1/3)*ThueMorse+Landau)/arctan(1/3) 2100901679151730 m001 (exp(1)+BesselK(0,1))/(HardyLittlewoodC3+Thue) 2100901680270973 a003 cos(Pi*1/42)*sin(Pi*5/74) 2100901681081554 a007 Real Root Of -281*x^4-471*x^3-294*x^2-787*x+751 2100901683350591 m001 1/ln(MinimumGamma)*CopelandErdos*Tribonacci^2 2100901684349960 a007 Real Root Of 517*x^4+695*x^3-922*x^2-171*x+83 2100901697244175 l006 ln(5629/6945) 2100901698330876 r005 Re(z^2+c),c=-7/50+12/25*I,n=48 2100901705059343 r005 Im(z^2+c),c=8/29+4/57*I,n=13 2100901711727416 a007 Real Root Of -639*x^4-184*x^3-286*x^2+975*x+217 2100901715843249 m005 (1/2*exp(1)+5/7)/(3*Pi+4/9) 2100901716603917 a007 Real Root Of 37*x^4+824*x^3+967*x^2-317*x-739 2100901719525114 m001 exp(-1/2*Pi)*GAMMA(23/24)^PrimesInBinary 2100901723459420 b008 Tanh[(1+Sqrt[Pi])/13] 2100901734680276 r005 Im(z^2+c),c=2/25+10/51*I,n=5 2100901734759634 r004 Re(z^2+c),c=5/38-11/19*I,z(0)=I,n=60 2100901736474908 r005 Re(z^2+c),c=17/118+14/33*I,n=36 2100901754103946 a007 Real Root Of 169*x^4-133*x^3-359*x^2-920*x-179 2100901756692771 m001 GAMMA(7/24)*BesselK(1,1)^2/ln(sin(Pi/5)) 2100901763144341 m001 Khintchine^2/exp(CareFree)^2/Catalan^2 2100901784319512 m001 cos(Pi/12)*CareFree/exp(sinh(1)) 2100901785883891 a007 Real Root Of 990*x^4-256*x^3-556*x^2-933*x+221 2100901786372713 r005 Re(z^2+c),c=-19/82+13/61*I,n=16 2100901795891128 m001 (Catalan+ln(5))/Zeta(3) 2100901803936872 m003 1/2+Sqrt[5]/2-(11*Tan[1/2+Sqrt[5]/2])/12 2100901804727857 r005 Im(z^2+c),c=-8/7+31/123*I,n=64 2100901808449587 r005 Im(z^2+c),c=-19/46+8/23*I,n=18 2100901810658834 a003 cos(Pi*35/109)/cos(Pi*41/98) 2100901811080718 r005 Im(z^2+c),c=-11/106+36/43*I,n=9 2100901815590473 a001 3/312119004989*521^(1/8) 2100901819864716 m001 (-Gompertz+ZetaQ(2))/(exp(Pi)+FeigenbaumD) 2100901840390966 r005 Im(z^2+c),c=-117/118+7/29*I,n=57 2100901840697921 a001 4181/18*18^(16/21) 2100901840833371 a007 Real Root Of -211*x^4+889*x^3-799*x^2+816*x-144 2100901847150945 l006 ln(1043/8525) 2100901851866475 m001 gamma(1)^ZetaR(2)/FellerTornier 2100901853328673 r009 Im(z^3+c),c=-11/98+36/41*I,n=22 2100901870569052 r004 Im(z^2+c),c=-41/38-4/15*I,z(0)=-1,n=16 2100901874658489 a007 Real Root Of -16*x^4-299*x^3+775*x^2-125*x-258 2100901894218839 l006 ln(7310/9019) 2100901895739248 a007 Real Root Of 410*x^4+567*x^3-130*x^2+643*x-805 2100901898074509 a007 Real Root Of 262*x^4-902*x^3+244*x^2+625*x+870 2100901908910278 a007 Real Root Of -317*x^4-65*x^3-820*x^2+356*x+111 2100901917133659 h001 (11/12*exp(1)+8/9)/(1/2*exp(1)+1/4) 2100901923847663 a007 Real Root Of 894*x^4-492*x^3+666*x^2-612*x+102 2100901925949498 a007 Real Root Of 695*x^4+886*x^3-932*x^2+101*x-998 2100901934737037 a001 76/5*1346269^(26/31) 2100901945767773 m004 1/4-Log[Sqrt[5]*Pi]+Log[Sqrt[5]*Pi]^2 2100901952056200 m005 (1/2*5^(1/2)-6)/(5/7*2^(1/2)-7/9) 2100901952235768 m001 (Stephens+ZetaQ(3))/(ln(5)+GAMMA(19/24)) 2100901966609925 r009 Im(z^3+c),c=-35/62+26/43*I,n=42 2100901983200731 a001 3/23725150497407*1364^(17/24) 2100901983923209 a007 Real Root Of -640*x^4-951*x^3+968*x^2+366*x+146 2100901988343773 m005 (17/66+1/6*5^(1/2))/(1/9*2^(1/2)+1/7) 2100902003281555 m005 (1/2*Catalan-1/7)/(7/11*2^(1/2)+3/5) 2100902010383960 s002 sum(A075727[n]/(exp(2*pi*n)-1),n=1..infinity) 2100902010388202 s002 sum(A246306[n]/(exp(2*pi*n)-1),n=1..infinity) 2100902016750158 a001 13/1860498*29^(17/52) 2100902017587093 a007 Real Root Of 799*x^4+904*x^3+641*x^2-707*x-170 2100902036323255 a007 Real Root Of 58*x^4+141*x^3-146*x^2-852*x-968 2100902036926538 m005 (11/20+1/4*5^(1/2))/(3/5*Zeta(3)-6) 2100902037362644 m001 exp(-Pi)^GAMMA(7/24)/(exp(-Pi)^Si(Pi)) 2100902037362644 m001 exp(Pi)^Si(Pi)/(exp(Pi)^GAMMA(7/24)) 2100902045209060 m004 (15*Sqrt[5])/Pi+5*Pi-(25*Sin[Sqrt[5]*Pi])/Pi 2100902048700843 l006 ln(582/4757) 2100902051680326 m005 (-11/20+1/4*5^(1/2))/(3/7*gamma+2/11) 2100902056564874 r004 Re(z^2+c),c=-9/38+4/19*I,z(0)=-1,n=12 2100902064166487 m001 5^(1/2)/Zeta(1,-1)/Cahen 2100902077999630 h001 (5/12*exp(2)+7/9)/(7/12*exp(1)+1/4) 2100902095036459 m001 GAMMA(11/24)/GAMMA(11/12)^2*ln(GAMMA(5/6)) 2100902100887633 r009 Im(z^3+c),c=-2/29+38/43*I,n=18 2100902101879197 m001 (Psi(1,1/3)+1)/(-LandauRamanujan2nd+ZetaQ(2)) 2100902106884213 p004 log(29531/3613) 2100902112622018 r005 Im(z^2+c),c=-7/6+37/189*I,n=55 2100902114987905 r009 Im(z^3+c),c=-31/110+4/23*I,n=2 2100902117907236 r009 Re(z^3+c),c=-5/14+39/61*I,n=18 2100902118742386 a007 Real Root Of 453*x^4-438*x^3-412*x^2-955*x+222 2100902132922995 m005 (1/3*gamma-2/9)/(5/9*exp(1)-1/11) 2100902133682402 h001 (2/3*exp(2)+4/7)/(3/10*exp(2)+2/5) 2100902140521428 m001 (MadelungNaCl+ZetaQ(3))/(Catalan-FeigenbaumB) 2100902157378620 r005 Re(z^2+c),c=-2/5+38/51*I,n=3 2100902174057580 a001 192900153618/377*377^(5/21) 2100902177418550 a007 Real Root Of 390*x^4+963*x^3+592*x^2+247*x-762 2100902180488394 m001 (-Paris+Stephens)/(BesselK(0,1)-exp(Pi)) 2100902188303394 r005 Im(z^2+c),c=-61/74+3/20*I,n=5 2100902188382540 m009 (3/5*Psi(1,1/3)+1/3)/(Psi(1,3/4)+1/2) 2100902190441745 r009 Re(z^3+c),c=-19/52+13/35*I,n=3 2100902191729669 a007 Real Root Of 402*x^4+896*x^3-495*x^2-999*x+563 2100902203140495 m001 GAMMA(1/3)^2/ln(Bloch)^2*GAMMA(17/24)^2 2100902214337543 m005 (1/2*Pi+7/11)/(2^(1/2)-4/11) 2100902214653274 p001 sum(1/(553*n+48)/(10^n),n=0..infinity) 2100902217180208 a007 Real Root Of -250*x^4-333*x^3-141*x^2-821*x+680 2100902218723212 s001 sum(exp(-Pi/3)^n*A163792[n],n=1..infinity) 2100902221936756 a007 Real Root Of 407*x^4+884*x^3-90*x^2+74*x+821 2100902234356804 m001 (Psi(2,1/3)-gamma)/(Sarnak+Tetranacci) 2100902245617800 m001 (3^(1/3)-Psi(1,1/3))/(BesselI(0,2)+Tribonacci) 2100902247339446 m001 exp(1/Pi)^GAMMA(23/24)*exp(1/Pi)^Mills 2100902252093617 h001 (1/4*exp(1)+7/12)/(4/5*exp(2)+1/10) 2100902255388561 m001 sin(1)/(Backhouse-GAMMA(11/12)) 2100902283794634 s001 sum(exp(-2*Pi/3)^n*A284932[n],n=1..infinity) 2100902297420848 a001 521/317811*3^(7/31) 2100902299133051 s002 sum(A250756[n]/(n*pi^n-1),n=1..infinity) 2100902300056631 r005 Im(z^2+c),c=21/86+32/63*I,n=16 2100902300781120 a007 Real Root Of -463*x^4-633*x^3+576*x^2-266*x+49 2100902302942656 m001 (DuboisRaymond+Mills)/(Champernowne-Chi(1)) 2100902317397138 m001 (Porter-Tribonacci)/(Ei(1)-Champernowne) 2100902322394683 m001 (-GAMMA(23/24)+1/2)/FeigenbaumAlpha 2100902322394683 m001 (1/2-GAMMA(23/24))/FeigenbaumAlpha 2100902326109925 r005 Re(z^2+c),c=21/106+23/57*I,n=27 2100902335101127 r002 4th iterates of z^2 + 2100902347728569 l006 ln(703/5746) 2100902354648527 a003 cos(Pi*15/71)-sin(Pi*34/71) 2100902359605818 a001 3/2139295485799*1364^(3/8) 2100902362501564 m001 (-ZetaQ(2)+ZetaQ(3))/(1+ln(Pi)) 2100902367174570 r005 Im(z^2+c),c=-23/56+22/63*I,n=20 2100902376399785 a007 Real Root Of -369*x^4-553*x^3-646*x^2+842*x+201 2100902377409730 m001 (Conway+Khinchin)/(Shi(1)+sin(1)) 2100902381102392 m001 (Backhouse-GAMMA(11/12))^Niven 2100902383118184 r005 Re(z^2+c),c=-97/82+5/63*I,n=2 2100902385221598 r005 Im(z^2+c),c=-17/58+19/59*I,n=18 2100902387096519 a001 2178309/29*1364^(32/41) 2100902391650533 m001 HardHexagonsEntropy*ReciprocalLucas*ZetaP(4) 2100902399616758 m001 (Paris+TreeGrowth2nd)/(2^(1/3)+Conway) 2100902405635438 m001 (Niven+Stephens)/(3^(1/2)-MasserGramain) 2100902406717094 s001 sum(exp(-2*Pi/3)^n*A044933[n],n=1..infinity) 2100902408398475 m001 (sin(1/12*Pi)+FellerTornier)/(gamma+ln(gamma)) 2100902416189118 b008 -4+Cosh[(2*Pi)/5] 2100902417665192 a007 Real Root Of -34*x^4-153*x^3-668*x^2-803*x+505 2100902417807247 a007 Real Root Of -501*x^4-906*x^3-105*x^2-906*x-81 2100902419391743 a008 Real Root of x^2-x-44348 2100902420758833 r009 Im(z^3+c),c=-37/106+7/51*I,n=4 2100902424914727 k006 concat of cont frac of 2100902425626720 a007 Real Root Of -290*x^4-508*x^3+165*x^2+201*x+633 2100902432422087 m001 (Artin-FransenRobinson)^GaussAGM 2100902432808951 a007 Real Root Of 188*x^4+151*x^3-412*x^2+593*x+802 2100902436290052 m001 (BesselK(0,1)+1/3)/(BesselI(1,2)+2) 2100902440593310 a007 Real Root Of -455*x^4-527*x^3+681*x^2-302*x+337 2100902445233691 r005 Re(z^2+c),c=-19/106+7/18*I,n=37 2100902452318566 a007 Real Root Of -568*x^4-861*x^3+443*x^2-894*x-752 2100902455319979 r008 a(0)=2,K{-n^6,-5+6*n^3-7*n^2-8*n} 2100902457689412 m001 Sierpinski*MasserGramain^Weierstrass 2100902463599972 r009 Re(z^3+c),c=-5/14+33/56*I,n=38 2100902465222100 m001 (OneNinth+StronglyCareFree)/(Artin-Kolakoski) 2100902470151881 a003 cos(Pi*5/93)/cos(Pi*41/119) 2100902473232998 a007 Real Root Of -40*x^4-86*x^3-232*x^2-652*x-364 2100902478056380 m008 (5/6*Pi^5+3/4)/(2/5*Pi^5-2/3) 2100902484888917 h001 (1/7*exp(1)+5/6)/(2/3*exp(2)+8/9) 2100902485412065 h001 (3/11*exp(2)+4/7)/(2/7*exp(1)+5/11) 2100902486712814 a007 Real Root Of 179*x^4-302*x^3-947*x^2+850*x-322 2100902487201150 a007 Real Root Of 448*x^4+485*x^3-884*x^2+184*x+58 2100902489530836 a003 cos(Pi*35/81)*sin(Pi*41/89) 2100902495345549 r005 Im(z^2+c),c=-5/6+37/244*I,n=55 2100902506930956 m005 (1/2*2^(1/2)+2/5)/(61/12+1/12*5^(1/2)) 2100902508585634 m001 (Champernowne+MadelungNaCl)/(3^(1/2)-sin(1)) 2100902511646084 m001 (Conway-sin(1/5*Pi))/Magata 2100902531098665 r005 Re(z^2+c),c=7/25+11/34*I,n=6 2100902539485869 m005 (1/2*Catalan+5/8)/(3*exp(1)-3) 2100902543828763 m001 1/Zeta(1/2)^2*GAMMA(7/24)^2/ln(cos(Pi/5)) 2100902544850972 b008 Pi^(-1)+(3*Csc[1])/2 2100902547272219 r005 Im(z^2+c),c=9/110+33/50*I,n=7 2100902553808570 l006 ln(1681/2074) 2100902554645068 a007 Real Root Of 33*x^4-311*x^3+186*x^2+476*x+420 2100902555863635 m005 (1/3*Zeta(3)+1/6)/(2/11*gamma-3/8) 2100902558659028 a003 cos(Pi*4/79)/cos(Pi*21/61) 2100902558934992 l006 ln(824/6735) 2100902568828528 a007 Real Root Of -528*x^4-660*x^3+949*x^2-143*x-323 2100902573987052 m002 -Pi^2-Cosh[Pi]/Pi^6+Pi^3*Tanh[Pi] 2100902584191193 r005 Im(z^2+c),c=-85/78+7/31*I,n=33 2100902586792324 m001 1/ArtinRank2^2/ln(Bloch)^2/log(2+sqrt(3))^2 2100902617918280 a007 Real Root Of -310*x^4-123*x^3+502*x^2-872*x+851 2100902637496770 m005 (1/3*Catalan+1/12)/(7/9*2^(1/2)+3/4) 2100902648663155 m005 (1/2*Catalan-7/10)/(7/8*Catalan-11/12) 2100902649320948 r009 Re(z^3+c),c=-9/25+33/59*I,n=42 2100902650119049 m001 (GAMMA(19/24)+Kolakoski)/(ln(Pi)-exp(-1/2*Pi)) 2100902653763146 r005 Re(z^2+c),c=25/122+17/41*I,n=25 2100902655571995 a007 Real Root Of 530*x^4+848*x^3-158*x^2+430*x-861 2100902659765792 m008 (4*Pi^2-5/6)/(3/5*Pi^5+1/3) 2100902660670482 a007 Real Root Of -897*x^4+352*x^3-840*x^2+804*x+211 2100902673046120 b008 Gamma[E+2*(4+Pi)] 2100902680092689 a001 3/23725150497407*3571^(5/8) 2100902686401811 a007 Real Root Of -611*x^4-840*x^3+652*x^2-626*x-79 2100902698592375 m001 (GAMMA(17/24)+GlaisherKinkelin)/(Gompertz+Kac) 2100902706857167 r002 6th iterates of z^2 + 2100902708117873 a007 Real Root Of -733*x^4-571*x^3-402*x^2+924*x+208 2100902711369495 r005 Im(z^2+c),c=-18/17+5/23*I,n=3 2100902715426241 r005 Re(z^2+c),c=3/58+18/35*I,n=2 2100902716054662 l006 ln(945/7724) 2100902716770172 m001 (BesselJ(1,1)+Pi^(1/2)*Totient)/Totient 2100902725547193 m001 (Conway+Porter)/(3^(1/3)-Champernowne) 2100902725895411 m001 Stephens^Psi(2,1/3)/(Robbin^Psi(2,1/3)) 2100902727999677 r008 a(0)=0,K{-n^6,1-61*n+34*n^2-22*n^3} 2100902729758868 m001 (2^(1/3))^2/FeigenbaumDelta^2/ln(sqrt(2)) 2100902731348728 a007 Real Root Of 17*x^4+328*x^3-615*x^2-73*x-424 2100902736010973 a001 1/64300051206*1364^(1/24) 2100902781454287 a001 3/14662949395604*24476^(11/24) 2100902781589056 a007 Real Root Of -36*x^4-710*x^3+994*x^2+399*x-779 2100902782623258 a001 3/505019158607*24476^(1/8) 2100902782869753 a001 1/3020733700601*64079^(3/8) 2100902783059353 a001 3/2139295485799*439204^(5/24) 2100902783061424 a001 3/817138163596*1149851^(1/8) 2100902783061612 a001 3/14662949395604*7881196^(7/24) 2100902783061622 a001 1/440719107401*54018521^(1/8) 2100902783061622 a001 3/312119004989*141422324^(1/24) 2100902783061622 a001 3/2139295485799*2537720636^(1/8) 2100902783061622 a001 3/23725150497407*45537549124^(5/24) 2100902783061622 a001 3/3461452808002*119218851371^(1/8) 2100902783061622 a001 3/505019158607*14662949395604^(1/24) 2100902783061622 a001 3/5600748293801*5600748293801^(1/8) 2100902783061622 a001 1/3020733700601*4106118243^(3/16) 2100902783061622 a001 3/505019158607*599074578^(1/16) 2100902783061626 a001 3/23725150497407*12752043^(5/16) 2100902783061736 a001 3/2139295485799*1860498^(3/16) 2100902783063404 a001 3/312119004989*271443^(1/16) 2100902783470992 m001 GlaisherKinkelin^2*ln(Champernowne)^2*cos(1)^2 2100902783647663 a001 3/14662949395604*39603^(7/16) 2100902787805684 h001 (7/11*exp(2)+1/12)/(1/5*exp(2)+4/5) 2100902795818483 a007 Real Root Of 324*x^4+283*x^3-754*x^2+424*x+531 2100902797837941 r005 Re(z^2+c),c=-11/56+14/41*I,n=19 2100902802726938 a001 3/2139295485799*5778^(5/16) 2100902806226339 m001 (3^(1/2)*ErdosBorwein+Lehmer)/ErdosBorwein 2100902817995310 a007 Real Root Of 525*x^4+785*x^3-776*x^2-273*x-97 2100902821743043 r005 Im(z^2+c),c=-39/74+25/63*I,n=42 2100902822698490 m001 Magata/exp(KhintchineLevy)^2*Robbin 2100902829431402 m001 (BesselI(1,1)-exp(1))/(-Pi^(1/2)+RenyiParking) 2100902829931278 r005 Im(z^2+c),c=-31/52+13/34*I,n=43 2100902831486135 m001 (gamma(2)+FeigenbaumB)/(Si(Pi)+Zeta(1/2)) 2100902834196433 m001 BesselJ(0,1)/(Shi(1)+Sierpinski) 2100902837505496 l006 ln(1066/8713) 2100902857241171 m001 1/ln(Pi)/Khintchine^2*log(2+sqrt(3))^2 2100902857435181 m001 (ln(Pi)+FibonacciFactorial)/GAMMA(5/6) 2100902865543104 s002 sum(A090161[n]/(exp(n)),n=1..infinity) 2100902867617978 m001 Riemann2ndZero-Trott2nd*Weierstrass 2100902873921380 a007 Real Root Of 150*x^4+321*x^3+268*x^2+570*x+69 2100902877693838 r005 Im(z^2+c),c=-7/17+6/17*I,n=37 2100902877944656 a001 1568397607/377*225851433717^(5/21) 2100902877944658 a001 599786069/13*9227465^(5/21) 2100902880885676 r009 Re(z^3+c),c=-15/46+29/61*I,n=32 2100902900926489 m005 (1/2*gamma-7/8)/(11/12*gamma-1/4) 2100902901463617 p003 LerchPhi(1/5,6,458/163) 2100902934195493 l006 ln(1187/9702) 2100902941428233 m001 (CopelandErdos+ZetaP(4))/(2^(1/2)-gamma(1)) 2100902950985609 r002 24th iterates of z^2 + 2100902973425178 a007 Real Root Of 391*x^4+577*x^3-510*x^2-369*x-791 2100902980248570 r005 Im(z^2+c),c=-151/122+20/59*I,n=6 2100902982045693 r005 Im(z^2+c),c=-37/86+19/53*I,n=31 2100902982141295 m005 (1/2*exp(1)-1/6)/(1/9*Pi-11/12) 2100902985239001 s001 sum(exp(-Pi/3)^(n-1)*A002171[n],n=1..infinity) 2100902989241784 a007 Real Root Of 82*x^4-612*x^3+379*x^2+919*x+474 2100902990632036 m005 (1/2*exp(1)+2/3)/(5/12*2^(1/2)+3/8) 2100903011266597 m001 (arctan(1/2)-PolyaRandomWalk3D)/(Pi+exp(1)) 2100903015268196 m005 (1/3*2^(1/2)+2/11)/(5/11*Catalan-8/11) 2100903018563986 r009 Re(z^3+c),c=-7/23+18/43*I,n=6 2100903020370465 r009 Re(z^3+c),c=-1/110+34/41*I,n=52 2100903030153196 a007 Real Root Of -690*x^4-886*x^3+912*x^2-853*x-591 2100903037511258 a007 Real Root Of -553*x^4-961*x^3+460*x^2-175*x-536 2100903037890942 h001 (4/7*exp(1)+5/6)/(1/11*exp(1)+8/9) 2100903043764036 m005 (1/2*gamma+6/7)/(5/11*Zeta(3)-6) 2100903055720275 m001 (Ei(1,1)+GAMMA(17/24))/(Champernowne+Lehmer) 2100903060324056 a007 Real Root Of 394*x^4+628*x^3+53*x^2+617*x-790 2100903070244710 m001 (-exp(1/Pi)+DuboisRaymond)/(Psi(2,1/3)-Shi(1)) 2100903080307677 a007 Real Root Of 804*x^4+222*x^3+710*x^2-491*x-134 2100903080879546 m001 Conway^(3^(1/3))+HardyLittlewoodC3 2100903092095597 r005 Im(z^2+c),c=-47/56+9/52*I,n=45 2100903095314398 m001 (exp(Pi)*Riemann2ndZero-ln(2)/ln(10))/exp(Pi) 2100903095314398 m001 Riemann2ndZero-ln(2)/ln(10)*exp(-Pi) 2100903096853164 r005 Re(z^2+c),c=-11/56+14/41*I,n=22 2100903106483234 p001 sum((-1)^n/(308*n+47)/(10^n),n=0..infinity) 2100903112622688 m001 GAMMA(19/24)/(gamma(3)+ZetaQ(2)) 2100903121537252 a003 sin(Pi*8/119)/sin(Pi*57/119) 2100903121920235 m001 1/Salem/CopelandErdos/ln(GAMMA(1/6)) 2100903123084781 r002 23th iterates of z^2 + 2100903132334724 r002 34th iterates of z^2 + 2100903132371518 a007 Real Root Of 30*x^4+625*x^3-117*x^2-134*x-51 2100903152027857 r005 Re(z^2+c),c=-5/24+38/63*I,n=23 2100903152761550 m001 (Pi+FellerTornier)/(MadelungNaCl-Paris) 2100903154058949 r005 Im(z^2+c),c=-13/14+35/167*I,n=29 2100903161815859 r009 Re(z^3+c),c=-10/29+36/61*I,n=8 2100903162053922 m001 (cos(1)+ln(2))/(arctan(1/2)+Champernowne) 2100903170460395 l006 ln(7819/9647) 2100903176921329 m001 (BesselK(1,1)+GAMMA(5/6))/(GaussAGM-Trott) 2100903190185510 m001 (Zeta(3)-arctan(1/2))/(Magata+OneNinth) 2100903192149715 m009 (2*Psi(1,3/4)-3)/(24/5*Catalan+3/5*Pi^2-2/5) 2100903200925051 r005 Re(z^2+c),c=-99/82+6/37*I,n=30 2100903202216777 a001 5600748293801/89*144^(12/17) 2100903213017932 a001 11/2584*12586269025^(4/15) 2100903225148545 m001 (sin(1/12*Pi)-MertensB3)/(Paris+ThueMorse) 2100903227551900 a001 329/1926*199^(10/11) 2100903230012909 m005 (1/2*Pi+11/12)/(5/12*Pi-1/8) 2100903230098378 a007 Real Root Of 580*x^4+914*x^3-598*x^2-125*x-447 2100903231094581 s002 sum(A004919[n]/(exp(2*pi*n)-1),n=1..infinity) 2100903231094581 s002 sum(A172330[n]/(exp(2*pi*n)-1),n=1..infinity) 2100903241234861 m001 1/Sierpinski*exp(Niven)*Pi^2 2100903241608402 m001 (GAMMA(3/4)+exp(1/Pi))/(Robbin+Stephens) 2100903244950619 a007 Real Root Of 404*x^4+861*x^3+390*x^2+802*x+77 2100903246980850 m006 (1/2*ln(Pi)+2/5)/(1/5*Pi+4) 2100903247226428 a007 Real Root Of -194*x^4+814*x^3-458*x^2-488*x-722 2100903249611262 m001 1/exp(BesselJ(1,1))/FransenRobinson*Catalan 2100903250556274 m005 (1/2*Catalan+7/12)/(11/144+3/16*5^(1/2)) 2100903255423474 a007 Real Root Of 784*x^4+420*x^3+20*x^2-429*x+9 2100903257694125 m005 (1/2*2^(1/2)-5/6)/(3*5^(1/2)-7/10) 2100903260865350 m001 1/Salem^2*exp(KhintchineHarmonic)^2/GAMMA(5/6) 2100903267260779 r005 Re(z^2+c),c=-6/29+17/55*I,n=16 2100903269485263 a001 121393/29*39603^(33/41) 2100903273095257 m001 1/TreeGrowth2nd^2/CopelandErdos^2/exp(Ei(1))^2 2100903273676031 p004 log(32261/3947) 2100903273809909 a001 2178309/29*15127^(24/41) 2100903274775526 r005 Im(z^2+c),c=-2/9+18/59*I,n=8 2100903281229017 a007 Real Root Of 284*x^4-306*x^3+121*x^2-957*x+198 2100903289750182 r009 Re(z^3+c),c=-12/23+15/28*I,n=17 2100903296040779 m001 ZetaP(3)*(KhinchinHarmonic-Landau) 2100903296730348 r005 Re(z^2+c),c=-5/6+2/129*I,n=54 2100903310956200 m001 (Zeta(3)-sin(1/5*Pi))/(MadelungNaCl+Salem) 2100903312671837 r005 Re(z^2+c),c=-1/7+10/21*I,n=13 2100903315939654 a001 3571/1597*832040^(21/25) 2100903316578739 m001 1/5*(5^(1/2)*gamma+Magata)*5^(1/2) 2100903322544979 r005 Im(z^2+c),c=-35/66+12/31*I,n=44 2100903337372056 a001 3/505019158607*843^(3/16) 2100903338210732 a007 Real Root Of -419*x^4-369*x^3+524*x^2-924*x+487 2100903339341411 l006 ln(6138/7573) 2100903363720828 h001 (-2*exp(1)-8)/(-exp(1/3)-5) 2100903372539231 m005 (1/3*3^(1/2)-2/9)/(7/8*Catalan+8/9) 2100903376443648 a007 Real Root Of -429*x^4-558*x^3+725*x^2+344*x+706 2100903380150208 m002 -1+E^Pi+4/Pi^5-Log[Pi] 2100903383465192 m001 ln(Salem)/FibonacciFactorial*(2^(1/3))^2 2100903388364382 a007 Real Root Of -504*x^4-961*x^3+325*x^2-138*x-817 2100903388457036 q001 7/33319 2100903395255829 r005 Re(z^2+c),c=-2/15+4/7*I,n=21 2100903397857171 m001 1/ln(Bloch)*Champernowne^2/cos(Pi/12) 2100903406554321 a007 Real Root Of 162*x^4-70*x^3-990*x^2-590*x-675 2100903410043000 r005 Im(z^2+c),c=-115/122+8/39*I,n=49 2100903411589229 r009 Re(z^3+c),c=-29/106+1/3*I,n=9 2100903412296790 m001 (MertensB1+TwinPrimes)/(BesselI(0,2)-exp(1)) 2100903412593264 a007 Real Root Of -208*x^4+45*x^3+779*x^2-229*x+550 2100903417156418 r009 Re(z^3+c),c=-65/114+14/47*I,n=27 2100903434732050 m005 (1/2*2^(1/2)+1)/(1/12*Catalan-8/9) 2100903463355468 m001 1/Sierpinski/ln(CopelandErdos)/GAMMA(5/6)^2 2100903488606579 r005 Im(z^2+c),c=-11/98+15/56*I,n=19 2100903491155970 m001 Weierstrass^(MinimumGamma/ArtinRank2) 2100903499107510 m005 (1/2*Zeta(3)-1/4)/(7/8*5^(1/2)-2/7) 2100903500024966 r008 a(0)=0,K{-n^6,-9-42*n+23*n^2-20*n^3} 2100903505655423 m001 gamma(2)*(exp(Pi)+Zeta(1/2)) 2100903509343224 m001 (OneNinth-Sarnak)/(Zeta(5)+Ei(1)) 2100903513789387 m001 (-FeigenbaumMu+ZetaP(4))/(GAMMA(11/12)-exp(1)) 2100903521702662 r005 Im(z^2+c),c=-65/126+11/29*I,n=56 2100903522667622 m001 (Kac-LaplaceLimit)/(sin(1/5*Pi)+GAMMA(19/24)) 2100903522930172 h001 (1/8*exp(1)+2/9)/(3/4*exp(1)+7/11) 2100903523596241 m001 (ln(Pi)-GaussAGM)/(Kac+Riemann1stZero) 2100903526530353 a001 281/329*10946^(3/31) 2100903531894299 a007 Real Root Of -537*x^4-561*x^3+688*x^2-989*x+145 2100903543380900 a007 Real Root Of 457*x^4+531*x^3+544*x^2-914*x-212 2100903553858202 h001 (-exp(3)-7)/(-6*exp(1/2)-3) 2100903555323996 p001 sum(1/(207*n+77)/n/(2^n),n=1..infinity) 2100903557020866 a007 Real Root Of -656*x^4-473*x^3-925*x^2+683*x-97 2100903559938557 m001 (HardyLittlewoodC4-Zeta(1/2))/sin(1) 2100903566826245 r005 Im(z^2+c),c=-65/114+17/61*I,n=7 2100903569764543 r005 Re(z^2+c),c=21/58+23/53*I,n=9 2100903574635194 m001 (BesselJ(0,1)+gamma(3))/(-Artin+ZetaQ(3)) 2100903584036960 a001 2178309/29*2207^(30/41) 2100903589059034 r005 Im(z^2+c),c=-19/98+13/21*I,n=3 2100903597366837 a001 9349/4181*832040^(21/25) 2100903605360575 m002 Pi/5-Sinh[Pi]-Sinh[Pi]/Log[Pi] 2100903608056459 m001 (2^(1/3)-sin(1))/(cos(1/12*Pi)+GAMMA(23/24)) 2100903614457831 q001 1395/664 2100903618232139 m001 Magata/(Totient^((1+3^(1/2))^(1/2))) 2100903623439751 m001 (MertensB1-Rabbit)/(ln(5)-MasserGramainDelta) 2100903635612588 l006 ln(4457/5499) 2100903638426513 a001 12238/5473*832040^(21/25) 2100903648119388 a001 39603/17711*832040^(21/25) 2100903649692715 a001 2584/15127*199^(10/11) 2100903650749618 a007 Real Root Of 777*x^4-877*x^3-316*x^2-816*x+192 2100903657250492 a001 199/4181*34^(8/19) 2100903658940963 a007 Real Root Of 361*x^4+500*x^3-352*x^2+354*x-99 2100903659281000 r005 Re(z^2+c),c=-27/122+15/58*I,n=11 2100903663802789 a001 15127/6765*832040^(21/25) 2100903664198572 m001 (3^(1/2)-cos(1/12*Pi))/(FeigenbaumMu+ZetaP(4)) 2100903669769943 r002 48th iterates of z^2 + 2100903676910038 m001 ErdosBorwein^sin(1/12*Pi)/ZetaQ(2) 2100903682663210 r004 Re(z^2+c),c=5/24+7/17*I,z(0)=I,n=28 2100903688983097 m001 exp(CareFree)/FibonacciFactorial*GAMMA(5/6)^2 2100903692729037 r005 Im(z^2+c),c=-11/26+1/29*I,n=29 2100903695221686 b008 ArcSinh[1/2+3*Sinh[1]] 2100903700751653 m008 (2/3*Pi^4-4)/(Pi^3-2) 2100903711282231 a001 2255/13201*199^(10/11) 2100903711954626 r005 Im(z^2+c),c=-47/58+1/8*I,n=33 2100903713038497 a007 Real Root Of -468*x^4-629*x^3+285*x^2-513*x+949 2100903713617807 a007 Real Root Of 66*x^4-698*x^3+626*x^2+780*x+785 2100903715264505 m008 (5/6*Pi^5+2/5)/(2/5*Pi^5-5/6) 2100903720268021 a001 17711/103682*199^(10/11) 2100903721579030 a001 15456/90481*199^(10/11) 2100903721770303 a001 121393/710647*199^(10/11) 2100903721798210 a001 105937/620166*199^(10/11) 2100903721802281 a001 832040/4870847*199^(10/11) 2100903721802875 a001 726103/4250681*199^(10/11) 2100903721802962 a001 5702887/33385282*199^(10/11) 2100903721802974 a001 4976784/29134601*199^(10/11) 2100903721802976 a001 39088169/228826127*199^(10/11) 2100903721802977 a001 34111385/199691526*199^(10/11) 2100903721802977 a001 267914296/1568397607*199^(10/11) 2100903721802977 a001 233802911/1368706081*199^(10/11) 2100903721802977 a001 1836311903/10749957122*199^(10/11) 2100903721802977 a001 1602508992/9381251041*199^(10/11) 2100903721802977 a001 12586269025/73681302247*199^(10/11) 2100903721802977 a001 10983760033/64300051206*199^(10/11) 2100903721802977 a001 86267571272/505019158607*199^(10/11) 2100903721802977 a001 75283811239/440719107401*199^(10/11) 2100903721802977 a001 2504730781961/14662949395604*199^(10/11) 2100903721802977 a001 139583862445/817138163596*199^(10/11) 2100903721802977 a001 53316291173/312119004989*199^(10/11) 2100903721802977 a001 20365011074/119218851371*199^(10/11) 2100903721802977 a001 7778742049/45537549124*199^(10/11) 2100903721802977 a001 2971215073/17393796001*199^(10/11) 2100903721802977 a001 1134903170/6643838879*199^(10/11) 2100903721802977 a001 433494437/2537720636*199^(10/11) 2100903721802977 a001 165580141/969323029*199^(10/11) 2100903721802977 a001 63245986/370248451*199^(10/11) 2100903721802977 a001 24157817/141422324*199^(10/11) 2100903721802982 a001 9227465/54018521*199^(10/11) 2100903721803015 a001 3524578/20633239*199^(10/11) 2100903721803242 a001 1346269/7881196*199^(10/11) 2100903721804797 a001 514229/3010349*199^(10/11) 2100903721815457 a001 196418/1149851*199^(10/11) 2100903721888517 a001 75025/439204*199^(10/11) 2100903722389278 a001 28657/167761*199^(10/11) 2100903723838624 r005 Re(z^2+c),c=6/19+19/53*I,n=15 2100903725821544 a001 10946/64079*199^(10/11) 2100903726381628 m005 (1/2*gamma+2/9)/(8/11*exp(1)+5/11) 2100903728685688 a008 Real Root of x^3-x^2-96*x-188 2100903739147996 a001 13/20633239*18^(5/12) 2100903742193709 m001 Zeta(5)/GaussAGM(1,1/sqrt(2))*exp(cos(1)) 2100903744384140 r005 Im(z^2+c),c=-27/52+17/45*I,n=60 2100903749346646 a001 4181/24476*199^(10/11) 2100903755171754 r005 Re(z^2+c),c=1/42+3/55*I,n=6 2100903761842552 b008 3+(4+EulerGamma^(-1))*Pi 2100903763919193 a007 Real Root Of 25*x^4+126*x^3+508*x^2+504*x-502 2100903765401203 m001 (Pi+BesselK(0,1))/(Pi^(1/2)-ZetaP(4)) 2100903771298421 a001 2889/1292*832040^(21/25) 2100903771365687 r005 Re(z^2+c),c=-19/106+7/18*I,n=40 2100903771459940 m001 exp(gamma)^(BesselI(0,2)/sqrt(Pi)) 2100903782908019 r009 Re(z^3+c),c=-37/118+27/61*I,n=24 2100903786003164 v002 sum(1/(2^n*(5*n^2+2*n+29)),n=1..infinity) 2100903786025971 l006 ln(121/989) 2100903789547658 m001 1/ln(GAMMA(7/24))^2*FeigenbaumD/Zeta(7) 2100903789727107 a007 Real Root Of -417*x^4-612*x^3+416*x^2+182*x+995 2100903807270405 s002 sum(A150740[n]/((pi^n-1)/n),n=1..infinity) 2100903807285840 r002 23th iterates of z^2 + 2100903814761509 m003 1/30+Sqrt[5]/64-3*Cot[1/2+Sqrt[5]/2] 2100903822031661 r005 Im(z^2+c),c=1/9+7/41*I,n=3 2100903831121128 m008 (5*Pi+2/5)/(1/4*Pi^5+1/6) 2100903849637463 m001 (Landau+Trott2nd)/(exp(1)-gamma(3)) 2100903867020894 m002 -2+4/Pi^2-Pi^3+Cosh[Pi] 2100903873053828 r002 14th iterates of z^2 + 2100903887031423 l006 ln(7233/8924) 2100903887752594 m001 (5^(1/2)-BesselJ(0,1))/(gamma(2)+Rabbit) 2100903899340041 a007 Real Root Of 284*x^4+543*x^3+417*x^2+675*x-920 2100903910590097 a001 1597/9349*199^(10/11) 2100903917061870 m001 FeigenbaumDelta/(Catalan-exp(Pi)) 2100903922651143 a003 cos(Pi*1/92)*sin(Pi*6/89) 2100903930604049 r005 Im(z^2+c),c=-75/86+11/63*I,n=39 2100903945574497 r005 Re(z^2+c),c=13/36+13/40*I,n=33 2100903946600863 a007 Real Root Of -558*x^4-665*x^3+930*x^2-93*x+404 2100903948164431 r009 Im(z^3+c),c=-49/54+2/33*I,n=2 2100903958223660 a007 Real Root Of 289*x^4-810*x^3-416*x^2-227*x+73 2100903961304602 m001 LandauRamanujan2nd^(5^(1/2)/StronglyCareFree) 2100903970039229 r005 Im(z^2+c),c=-27/94+16/49*I,n=10 2100903972521309 a001 7/144*89^(15/46) 2100903983042703 m006 (exp(Pi)+1/5)/(1/5*exp(2*Pi)+4) 2100903988621575 g004 Re(GAMMA(11/3+I*41/12)) 2100903990961924 m001 Conway^2/exp(Backhouse)^2/GAMMA(5/24) 2100903993651846 a007 Real Root Of 167*x^4-608*x^3+978*x^2-661*x-188 2100903995065314 r009 Re(z^3+c),c=-41/122+29/57*I,n=20 2100904000153251 r005 Re(z^2+c),c=-15/122+27/56*I,n=14 2100904001482513 m001 cos(1/12*Pi)/(Pi+Backhouse) 2100904001482513 m001 cos(Pi/12)/(Pi+Backhouse) 2100904013348285 r009 Im(z^3+c),c=-17/62+8/45*I,n=6 2100904013714927 s001 sum(exp(-3*Pi)^(n-1)*A157265[n],n=1..infinity) 2100904028375312 a005 (1/cos(2/223*Pi))^1870 2100904034091867 a005 (1/cos(1/78*Pi))^915 2100904038136420 a001 5/29*64079^(1/56) 2100904042583807 m005 (1/3*exp(1)+1/3)/(7/10*2^(1/2)-2/5) 2100904042713933 r005 Im(z^2+c),c=-11/10+19/85*I,n=48 2100904045814002 r009 Re(z^3+c),c=-5/19+40/57*I,n=18 2100904055221522 r005 Re(z^2+c),c=-17/122+24/49*I,n=21 2100904055570714 m001 LambertW(1)/(exp(1/Pi)+PisotVijayaraghavan) 2100904058618032 m001 (-Bloch+Totient)/(5^(1/2)+Ei(1)) 2100904059624442 m005 (5/6+1/6*5^(1/2))/(6/11*gamma-8/9) 2100904067053382 a007 Real Root Of 557*x^4-938*x^3-621*x^2-917*x-19 2100904073290259 m001 GAMMA(3/4)^Conway*(3^(1/3))^Conway 2100904075494670 m001 1/cos(Pi/5)/GAMMA(1/24)^2*exp(sqrt(5)) 2100904077356286 m001 (-LaplaceLimit+ZetaP(4))/(Si(Pi)-Zeta(1,2)) 2100904090442198 a001 63245986/7*4^(14/23) 2100904097079877 m001 Si(Pi)*ln(Conway)/GAMMA(7/12)^2 2100904097413513 r005 Im(z^2+c),c=-25/24+13/61*I,n=9 2100904098421069 r002 7th iterates of z^2 + 2100904100709187 r002 48th iterates of z^2 + 2100904105200379 a007 Real Root Of -289*x^4-673*x^3-384*x^2-529*x-27 2100904116411680 a007 Real Root Of 484*x^4+590*x^3-569*x^2+442*x-518 2100904122655264 a007 Real Root Of -762*x^4+119*x^3-114*x^2+335*x+78 2100904122830196 p001 sum(1/(448*n+41)/n/(10^n),n=1..infinity) 2100904127406038 h001 (5/9*exp(1)+11/12)/(4/11*exp(1)+1/6) 2100904130175144 a007 Real Root Of 37*x^4+738*x^3-825*x^2+47*x+378 2100904145187436 m001 log(gamma)/(GAMMA(5/24)-exp(gamma)) 2100904149140467 h001 (3/10*exp(2)+2/9)/(2/11*exp(1)+2/3) 2100904158352784 a007 Real Root Of -313*x^4-449*x^3+308*x^2-37*x+497 2100904164769980 m005 (3/5*Catalan-4)/(13/12+1/4*5^(1/2)) 2100904165238929 m001 (Magata-OneNinth)/(ln(3)+Bloch) 2100904166379807 a007 Real Root Of 147*x^4-606*x^3+152*x^2+800*x+404 2100904169797836 b008 ArcCsch[2+E^(-5)+E] 2100904176140691 r005 Im(z^2+c),c=-7/10+15/89*I,n=15 2100904186208826 m005 (1/2*gamma+5)/(6/11*exp(1)-4) 2100904186577205 m001 exp(1/Pi)/(arctan(1/3)^Artin) 2100904187628559 r009 Re(z^3+c),c=-1/3+33/61*I,n=11 2100904197785595 m001 ln(GolombDickman)^2*FeigenbaumAlpha^2/Robbin 2100904200426217 a007 Real Root Of 739*x^4+349*x^3+263*x^2-534*x-122 2100904207499233 m001 (BesselI(0,1)+Zeta(5))/(Bloch+GolombDickman) 2100904211699881 m001 BesselK(0,1)*ln(ErdosBorwein)*GAMMA(23/24)^2 2100904215364729 r009 Re(z^3+c),c=-1/15+31/50*I,n=8 2100904225156902 a003 sin(Pi*40/113)/cos(Pi*41/114) 2100904226341281 r005 Re(z^2+c),c=-19/106+7/18*I,n=35 2100904232711733 r009 Re(z^3+c),c=-43/122+31/57*I,n=52 2100904246686493 r009 Re(z^3+c),c=-10/29+32/61*I,n=36 2100904249612630 m005 (1/2*3^(1/2)+5/9)/(2/7*exp(1)-1/10) 2100904253998436 a007 Real Root Of -134*x^4-69*x^3+844*x^2+491*x-723 2100904255881682 a007 Real Root Of 228*x^4+236*x^3-635*x^2-192*x+146 2100904256652164 a007 Real Root Of 535*x^4+903*x^3-754*x^2-474*x+283 2100904257277640 a007 Real Root Of 976*x^4+653*x^3-297*x^2-363*x-59 2100904259163433 a007 Real Root Of -108*x^4+198*x^3+881*x^2+104*x+270 2100904264494914 r005 Re(z^2+c),c=-19/106+7/18*I,n=43 2100904269306781 r005 Re(z^2+c),c=-27/118+12/53*I,n=18 2100904275804092 r005 Re(z^2+c),c=25/74+11/46*I,n=61 2100904276574571 r005 Re(z^2+c),c=-13/86+21/46*I,n=27 2100904290696305 l006 ln(2776/3425) 2100904295702164 r005 Im(z^2+c),c=-7/10+26/123*I,n=63 2100904301531335 m001 (2^(1/3)+Khinchin)/(-LaplaceLimit+Weierstrass) 2100904308736570 m005 (1/3*gamma-1/8)/(-17/42+1/6*5^(1/2)) 2100904317083428 m006 (1/5*exp(2*Pi)-3)/(3/Pi+4) 2100904317136544 m001 Grothendieck*(5^(1/2)-Shi(1)) 2100904317910518 p003 LerchPhi(1/100,4,573/218) 2100904321411995 a001 4/55*233^(29/47) 2100904322456265 r002 14th iterates of z^2 + 2100904328472166 a007 Real Root Of 493*x^4+909*x^3-311*x^2-311*x-456 2100904334126161 s002 sum(A055186[n]/((10^n-1)/n),n=1..infinity) 2100904334126161 s002 sum(A217760[n]/((10^n-1)/n),n=1..infinity) 2100904343332996 m002 -3/Pi+6*Pi^5*Log[Pi] 2100904345993397 r005 Re(z^2+c),c=33/94+15/58*I,n=45 2100904346699314 m001 Catalan/FeigenbaumKappa*exp(LambertW(1))^2 2100904372303787 a007 Real Root Of 518*x^4+562*x^3-741*x^2+936*x+357 2100904373593583 m005 (-7/12+1/4*5^(1/2))/(3/11*gamma+1) 2100904383959125 a007 Real Root Of -461*x^4-710*x^3+565*x^2+85*x+82 2100904396140663 m005 (1/2*Catalan+5/7)/(5*Catalan+1) 2100904397586993 m005 (1/2*exp(1)-2/9)/(8/11*Catalan-1/8) 2100904397692094 m001 GAMMA(3/4)*FransenRobinson-Totient 2100904417644251 m005 (1/2*3^(1/2)+4/7)/(1/2*3^(1/2)-2/11) 2100904417758736 r005 Im(z^2+c),c=5/122+11/52*I,n=8 2100904420752233 r005 Re(z^2+c),c=-19/106+7/18*I,n=46 2100904443109289 r005 Re(z^2+c),c=15/62+23/51*I,n=19 2100904447622238 r005 Re(z^2+c),c=-19/106+7/18*I,n=45 2100904449783508 r005 Re(z^2+c),c=-19/106+7/18*I,n=48 2100904454089081 s002 sum(A056115[n]/(exp(2*pi*n)-1),n=1..infinity) 2100904456116747 a007 Real Root Of -38*x^4-803*x^3-69*x^2+617*x+240 2100904460211083 r005 Re(z^2+c),c=-19/106+7/18*I,n=51 2100904462376915 r005 Re(z^2+c),c=-19/106+7/18*I,n=49 2100904466315034 r005 Re(z^2+c),c=-19/106+7/18*I,n=54 2100904468896889 r005 Re(z^2+c),c=-19/106+7/18*I,n=57 2100904469321420 r005 Im(z^2+c),c=-21/94+13/43*I,n=15 2100904469805786 r005 Re(z^2+c),c=-19/106+7/18*I,n=60 2100904470078898 r005 Re(z^2+c),c=-19/106+7/18*I,n=63 2100904470088582 r005 Re(z^2+c),c=-19/106+7/18*I,n=62 2100904470189394 r005 Re(z^2+c),c=-19/106+7/18*I,n=59 2100904470250802 r005 Re(z^2+c),c=-19/106+7/18*I,n=64 2100904470432279 r005 Re(z^2+c),c=-19/106+7/18*I,n=61 2100904470772002 r005 Re(z^2+c),c=-19/106+7/18*I,n=52 2100904470827660 r005 Re(z^2+c),c=-19/106+7/18*I,n=58 2100904470962601 r005 Re(z^2+c),c=-19/106+7/18*I,n=56 2100904471371483 r005 Re(z^2+c),c=-19/106+7/18*I,n=55 2100904473168359 r004 Im(z^2+c),c=-21/22+4/19*I,z(0)=-1,n=36 2100904473380946 m005 (1/2*Catalan-6/7)/(7/9*2^(1/2)+4/5) 2100904474374820 r005 Re(z^2+c),c=-19/106+7/18*I,n=53 2100904476054984 m002 -E^Pi+(5*E^Pi*Log[Pi])/3 2100904486398310 r005 Re(z^2+c),c=-19/106+7/18*I,n=50 2100904498647193 m001 (3^(1/3)+OneNinth)/(Psi(1,1/3)-exp(1)) 2100904500063598 r005 Re(z^2+c),c=13/40+4/17*I,n=42 2100904501492495 r005 Im(z^2+c),c=19/90+3/26*I,n=4 2100904508084593 a001 2207/987*832040^(21/25) 2100904509983503 m001 CopelandErdos/Backhouse*ln(ArtinRank2)^2 2100904511248741 r005 Re(z^2+c),c=-23/122+10/31*I,n=4 2100904512541014 a005 (1/cos(9/151*Pi))^1609 2100904512648356 r005 Re(z^2+c),c=-57/46+2/39*I,n=46 2100904513757357 m001 GAMMA(7/12)/(Otter^FeigenbaumC) 2100904522407914 r005 Re(z^2+c),c=-19/106+7/18*I,n=47 2100904525001374 r005 Im(z^2+c),c=-51/122+7/20*I,n=20 2100904527440099 r009 Re(z^3+c),c=-15/74+1/21*I,n=6 2100904527924193 m001 Zeta(5)^2*GAMMA(1/12)/exp(sqrt(Pi)) 2100904529921100 m001 (Robbin-ThueMorse)/(GAMMA(17/24)-Paris) 2100904531766730 b008 20+ArcSinh[2^(1/4)] 2100904531870594 r005 Re(z^2+c),c=-19/106+7/18*I,n=42 2100904543741582 r005 Re(z^2+c),c=-5/6+3/194*I,n=32 2100904543907147 r005 Re(z^2+c),c=-9/110+36/53*I,n=18 2100904547063336 r005 Im(z^2+c),c=-7/34+7/25*I,n=4 2100904548208146 r005 Im(z^2+c),c=-77/102+7/64*I,n=16 2100904550716570 r005 Im(z^2+c),c=1/50+11/50*I,n=12 2100904551056046 m001 1/GAMMA(5/24)^2*LandauRamanujan/ln(cosh(1))^2 2100904551259432 a007 Real Root Of 527*x^4+726*x^3-996*x^2-778*x-773 2100904555863775 r005 Im(z^2+c),c=-23/26+17/81*I,n=38 2100904558477452 m001 (OneNinth+Sarnak)/(ln(5)-2*Pi/GAMMA(5/6)) 2100904563166704 m001 (Trott2nd-ZetaQ(4))/GAMMA(3/4) 2100904563498903 b008 3*EllipticK[-15] 2100904567085330 a008 Real Root of x^2-44138 2100904568274352 m001 Stephens^Rabbit/arctan(1/3) 2100904570314461 m001 1/(3^(1/3))^2*ln(TwinPrimes)*GAMMA(23/24)^2 2100904572762039 h001 (-4*exp(4)-1)/(-5*exp(3)-4) 2100904574163389 m002 -4+E^Pi-4/Pi+Pi 2100904579513170 m001 sin(1)^MertensB3+Mills 2100904583434610 r005 Re(z^2+c),c=-25/102+8/59*I,n=11 2100904586102669 r002 22th iterates of z^2 + 2100904586886264 r005 Re(z^2+c),c=-7/122+25/47*I,n=9 2100904591860040 a007 Real Root Of 192*x^4+222*x^3-49*x^2+660*x-79 2100904598948179 m001 cosh(1)/Catalan^2/exp(sqrt(5))^2 2100904602719384 r005 Im(z^2+c),c=-13/36+35/61*I,n=29 2100904604265958 m001 (exp(1)+GAMMA(2/3))/(Tetranacci+Trott) 2100904606076199 l006 ln(1233/10078) 2100904607004389 r008 a(0)=0,K{-n^6,-48+44*n^3-55*n^2+12*n} 2100904613577551 r005 Re(z^2+c),c=-19/106+7/18*I,n=44 2100904618424242 m001 (Pi+GAMMA(3/4))/(CopelandErdos-Riemann2ndZero) 2100904625745107 a007 Real Root Of -354*x^4-462*x^3+864*x^2+596*x+51 2100904633823439 r005 Im(z^2+c),c=-21/22+14/61*I,n=25 2100904634739305 r002 19th iterates of z^2 + 2100904640633208 m001 (-MasserGramain+Paris)/(Chi(1)-gamma) 2100904643438299 a007 Real Root Of 47*x^4+950*x^3-812*x^2-537*x+76 2100904648891246 r005 Re(z^2+c),c=-4/21+19/53*I,n=15 2100904653389953 m003 1/200+Sqrt[5]/16+Tan[1/2+Sqrt[5]/2] 2100904656248998 r002 62th iterates of z^2 + 2100904656586760 m001 KomornikLoreti^sin(1)/StronglyCareFree 2100904662986249 m005 (-9/28+1/4*5^(1/2))/(2/5*gamma+9/10) 2100904663151795 a001 521/11*(1/2*5^(1/2)+1/2)^18*11^(17/20) 2100904663382133 a007 Real Root Of -820*x^4+304*x^3-16*x^2+523*x+115 2100904682982541 r009 Re(z^3+c),c=-15/46+29/61*I,n=34 2100904690627455 a007 Real Root Of 106*x^4-416*x^3-829*x^2+630*x-940 2100904691566510 m001 ln(FeigenbaumD)^2*Sierpinski^2/GAMMA(1/6)^2 2100904695308242 l006 ln(1112/9089) 2100904706079974 m006 (1/6*exp(2*Pi)+4/5)/(1/4*ln(Pi)+4) 2100904717233724 m001 FeigenbaumC^2*ln(FransenRobinson)^2*sin(Pi/5) 2100904718093731 r005 Re(z^2+c),c=-20/31+23/54*I,n=33 2100904723231357 m001 (Zeta(1/2)*PlouffeB+Kolakoski)/PlouffeB 2100904729948293 l006 ln(6647/8201) 2100904729992880 a001 4/3*377^(29/34) 2100904741302058 r005 Re(z^2+c),c=-19/32+14/29*I,n=13 2100904747801233 a007 Real Root Of 44*x^4-535*x^3-80*x^2-821*x-174 2100904756923070 m005 (1/2*Pi-2/7)/(1/9*2^(1/2)+5/11) 2100904768154707 m005 (1/2*3^(1/2)-1/9)/(exp(1)+7/8) 2100904771147860 m001 cos(1)^2*ln(HardHexagonsEntropy)^2/cosh(1) 2100904772395165 a003 cos(Pi*25/67)/cos(Pi*41/93) 2100904787793754 m005 (1/3*Pi-3/7)/(2/9*Catalan+1/11) 2100904788774072 a007 Real Root Of -955*x^4+627*x^3+550*x^2+889*x-215 2100904792929024 r005 Re(z^2+c),c=-19/106+7/18*I,n=41 2100904793491173 b008 10+E^(2/3+Sqrt[3]) 2100904797348573 s001 sum(exp(-Pi/4)^(n-1)*A091533[n],n=1..infinity) 2100904806330542 l006 ln(991/8100) 2100904806650927 h001 (7/10*exp(2)+1/7)/(6/7*exp(1)+1/5) 2100904812719400 m002 -Pi^4+3/Log[Pi]+Pi^5*Tanh[Pi] 2100904815533927 a001 3/14662949395604*843^(11/16) 2100904822645835 r005 Re(z^2+c),c=-89/98+21/59*I,n=2 2100904826343828 r005 Re(z^2+c),c=-7/44+46/55*I,n=3 2100904827207766 r008 a(0)=2,K{-n^6,84-92*n^3-29*n^2+27*n} 2100904827473064 m001 2^(1/2)+LambertW(1)^LaplaceLimit 2100904829102674 r005 Im(z^2+c),c=-33/98+31/52*I,n=37 2100904835255788 a001 322*(1/2*5^(1/2)+1/2)^6*47^(14/15) 2100904838831992 a001 34/73681302247*76^(7/20) 2100904841494153 r008 a(0)=2,K{-n^6,92-77*n^3-70*n^2+45*n} 2100904842480759 m001 (Ei(1)+FeigenbaumMu)/(Pi-cos(1)) 2100904852174570 a007 Real Root Of 21*x^4-161*x^3-186*x^2+444*x+972 2100904852557453 a007 Real Root Of 613*x^4+945*x^3-460*x^2+812*x+557 2100904854121395 a007 Real Root Of 197*x^4-988*x^3+774*x^2+481*x+897 2100904862885628 m005 (1/2*3^(1/2)+6)/(3/8*2^(1/2)-6/7) 2100904915122894 r008 a(0)=0,K{-n^6,-6+47*n-20*n^2-2*n^3} 2100904916474426 m001 GaussAGM*(GAMMA(11/12)+MinimumGamma) 2100904921886509 r009 Re(z^3+c),c=-8/23+23/62*I,n=3 2100904932644511 m001 (-FeigenbaumC+KhinchinLevy)/(Chi(1)-ln(Pi)) 2100904937906795 r002 50th iterates of z^2 + 2100904938768926 a005 (1/cos(19/149*Pi))^9 2100904938870034 r008 a(0)=0,K{-n^6,-21-13*n^3+62*n^2+20*n} 2100904948234888 l006 ln(870/7111) 2100904948297784 r005 Re(z^2+c),c=35/118+13/49*I,n=8 2100904957821759 r005 Re(z^2+c),c=-19/106+7/18*I,n=38 2100904962594273 r005 Im(z^2+c),c=-23/26+14/75*I,n=28 2100904974857772 p004 log(36857/29873) 2100904979306696 a007 Real Root Of 471*x^4+663*x^3-134*x^2+797*x-762 2100904981743928 r005 Re(z^2+c),c=-2/15+27/55*I,n=26 2100904993675221 a007 Real Root Of 155*x^4-181*x^3-681*x^2-393*x+114 2100904996424640 m001 BesselI(1,1)*cos(1/5*Pi)^FeigenbaumDelta 2100904996424640 m001 cos(Pi/5)^FeigenbaumDelta*BesselI(1,1) 2100904998239254 a007 Real Root Of 530*x^4+912*x^3-897*x^2-623*x+782 2100905008767063 m001 Shi(1)*exp(-1/2*Pi)+gamma(2) 2100905009730507 m001 (cos(1)+BesselI(1,1))/(FeigenbaumDelta+Lehmer) 2100905011566889 m001 cos(1)*ln(Zeta(9))^2*cos(Pi/12) 2100905015769233 a001 610/3571*199^(10/11) 2100905019097187 m005 (1/3*Pi-2/3)/(89/80+5/16*5^(1/2)) 2100905025182427 r005 Re(z^2+c),c=-19/106+7/18*I,n=39 2100905042659764 m001 1/GaussKuzminWirsing*exp(Conway)/gamma 2100905044947899 l006 ln(3871/4776) 2100905051925532 s002 sum(A225533[n]/(n^3*pi^n+1),n=1..infinity) 2100905057078189 m001 (2^(1/3))^GAMMA(5/12)*GAMMA(17/24) 2100905058236813 m001 (GaussAGM*Riemann2ndZero-Trott)/GaussAGM 2100905058656023 b005 Number DB table 2100905059308685 a007 Real Root Of -680*x^4-928*x^3+870*x^2-319*x+132 2100905059868925 m001 GAMMA(11/12)-LandauRamanujan^GolombDickman 2100905059868925 m001 LandauRamanujan^GolombDickman-GAMMA(11/12) 2100905060051917 a007 Real Root Of -576*x^4-986*x^3+891*x^2+470*x-867 2100905064470845 m001 1/MinimumGamma*Artin*ln(TreeGrowth2nd) 2100905065984742 a007 Real Root Of -987*x^4-787*x^3-5*x^2+678*x-133 2100905066137417 m001 (LambertW(1)*MinimumGamma-Rabbit)/LambertW(1) 2100905067309087 a001 29/1597*317811^(3/8) 2100905072556389 m001 1/Zeta(1,2)^2*ln(Robbin)/sqrt(5) 2100905072898824 r005 Im(z^2+c),c=-17/26+27/118*I,n=16 2100905073028388 r009 Re(z^3+c),c=-7/60+20/23*I,n=16 2100905084947716 m001 (Robbin+ZetaP(3))/(5^(1/2)+KhinchinHarmonic) 2100905087876381 a007 Real Root Of 371*x^4+531*x^3-482*x^2-235*x-670 2100905096104557 p003 LerchPhi(1/16,4,64/77) 2100905107063531 m001 1/BesselK(1,1)^2/Niven/ln(Catalan)^2 2100905119740913 m001 (GAMMA(19/24)-Mills)/(OrthogonalArrays-Porter) 2100905126585286 r005 Re(z^2+c),c=4/13+12/55*I,n=52 2100905135988138 l006 ln(749/6122) 2100905137802393 r005 Im(z^2+c),c=-2/3+79/115*I,n=4 2100905157628268 s002 sum(A176545[n]/(pi^n),n=1..infinity) 2100905173770266 a001 5778/13*832040^(18/29) 2100905174734474 m005 (1/3*5^(1/2)+1/6)/(-101/176+1/16*5^(1/2)) 2100905175338349 r005 Re(z^2+c),c=-13/86+21/34*I,n=45 2100905177281195 b008 15*InverseErfc[1/21] 2100905181544979 a001 1/54*(1/2*5^(1/2)+1/2)^13*3^(17/24) 2100905183619870 a007 Real Root Of -70*x^4-109*x^3-536*x^2-949*x+725 2100905199963340 h001 (8/11*exp(1)+7/10)/(4/11*exp(1)+2/7) 2100905203065914 m005 (1/2*3^(1/2)-3/10)/(1/3*Pi-7/9) 2100905213246421 a007 Real Root Of -50*x^4-226*x^3-827*x^2-888*x+663 2100905226775344 m005 (1/2*3^(1/2)+5/6)/(5/9*Catalan+3/10) 2100905226824830 r009 Re(z^3+c),c=-9/74+40/41*I,n=16 2100905230875188 r009 Re(z^3+c),c=-3/10+24/59*I,n=15 2100905231549464 a001 29/28657*701408733^(3/8) 2100905232059527 a001 29/514229*1548008755920^(3/8) 2100905232089629 a001 29/121393*32951280099^(3/8) 2100905240294855 m009 (16/3*Catalan+2/3*Pi^2-1)/(5*Psi(1,1/3)-2/3) 2100905241242345 a001 29/6765*14930352^(3/8) 2100905247991080 m009 (1/5*Psi(1,1/3)+1/3)/(8*Catalan+Pi^2-6) 2100905250684187 r005 Im(z^2+c),c=-93/110+10/61*I,n=46 2100905254376341 r009 Im(z^3+c),c=-2/13+13/15*I,n=34 2100905274075656 m005 (1/2*5^(1/2)+6/11)/(3/10*5^(1/2)-3/4) 2100905281883773 p004 log(10903/8837) 2100905285327711 m005 (1/3*Zeta(3)-1/12)/(4/5*Catalan+7/9) 2100905286362241 m001 (-Catalan+arctan(1/2))/(ln(2)/ln(10)+Si(Pi)) 2100905291853842 r005 Re(z^2+c),c=-9/118+37/62*I,n=57 2100905295795901 a001 299537289/305*121393^(11/24) 2100905295808738 a001 3010349/610*12586269025^(11/24) 2100905305749587 r009 Im(z^3+c),c=-35/78+3/32*I,n=7 2100905307433851 m001 (3^(1/2)+gamma)/(-MasserGramainDelta+Sarnak) 2100905307893225 h001 (1/10*exp(2)+1/7)/(6/11*exp(2)+1/6) 2100905310802422 h001 (-9*exp(3)-11)/(-11*exp(2)-10) 2100905312475485 r005 Re(z^2+c),c=35/114+20/47*I,n=7 2100905316572343 r005 Re(z^2+c),c=-4/13+27/43*I,n=9 2100905319895234 m004 -6+(5*Pi*Sec[Sqrt[5]*Pi])/3+Tanh[Sqrt[5]*Pi] 2100905322101275 p004 log(21521/2633) 2100905322775657 m001 Zeta(1/2)*(LaplaceLimit+StronglyCareFree) 2100905323697372 m001 PlouffeB*(Shi(1)+ReciprocalFibonacci) 2100905331210989 a001 29/196418*1597^(9/25) 2100905337256488 r005 Im(z^2+c),c=5/17+1/30*I,n=45 2100905355096643 r002 46th iterates of z^2 + 2100905362293978 a007 Real Root Of 203*x^4-545*x^3+51*x^2-693*x+148 2100905365752998 m005 (1/2*5^(1/2)-2/9)/(-13/20+1/10*5^(1/2)) 2100905388063309 m001 BesselI(0,1)^(FeigenbaumC/LandauRamanujan2nd) 2100905390153158 r005 Re(z^2+c),c=-4/19+11/37*I,n=14 2100905390642981 m001 1/Pi/CopelandErdos^2/exp(sqrt(1+sqrt(3)))^2 2100905396092104 l006 ln(628/5133) 2100905405779860 m005 (1/3*gamma+1/5)/(11/12*2^(1/2)+4/7) 2100905417803416 r005 Im(z^2+c),c=-31/44+5/19*I,n=17 2100905422580402 m005 (3/4*gamma+1/3)/(16/5+1/5*5^(1/2)) 2100905431305326 m001 (MertensB1+OneNinth)/(ln(2)/ln(10)+Backhouse) 2100905433217951 m001 (Pi+GAMMA(2/3))/(FeigenbaumD-Landau) 2100905439161664 m001 GAMMA(1/12)/exp(FeigenbaumB)/cosh(1)^2 2100905452256052 m001 (-Tetranacci+TwinPrimes)/(3^(1/2)-GAMMA(5/6)) 2100905456761928 h005 exp(sin(Pi*1/19)+sin(Pi*10/51)) 2100905457632499 m001 Psi(1,1/3)^(1/2*KomornikLoreti/Pi*GAMMA(5/6)) 2100905460158974 m001 (cos(1)+ln(2^(1/2)+1))/(-PlouffeB+Weierstrass) 2100905463464850 m005 (1/2*Catalan+3/8)/(1/42+1/6*5^(1/2)) 2100905466575426 l006 ln(4966/6127) 2100905469253868 m001 (1-3^(1/3))/(Cahen+MinimumGamma) 2100905471229020 m001 (Si(Pi)+LambertW(1))/(-ln(gamma)+BesselK(1,1)) 2100905476894097 a007 Real Root Of 532*x^4+765*x^3-520*x^2+369*x-200 2100905477855354 a007 Real Root Of 481*x^4+396*x^3-746*x^2+752*x-826 2100905482115263 r005 Im(z^2+c),c=-39/70+17/38*I,n=11 2100905510362326 m001 (exp(Pi)-ln(5))/(-Pi^(1/2)+RenyiParking) 2100905510792641 r005 Re(z^2+c),c=11/46+8/51*I,n=22 2100905515426571 a007 Real Root Of 221*x^4-49*x^3-747*x^2+235*x-969 2100905521300889 a007 Real Root Of 51*x^4+18*x^3+428*x^2+949*x-722 2100905529269832 m001 exp(GAMMA(5/24))^2/Catalan*cos(1)^2 2100905535653856 m001 GAMMA(1/3)^2*Niven*ln(GAMMA(1/6)) 2100905541310264 r005 Im(z^2+c),c=-11/18+9/31*I,n=23 2100905547887976 m001 1/BesselK(0,1)*Salem^2*ln(Ei(1)) 2100905553003407 r005 Im(z^2+c),c=-17/29+15/49*I,n=21 2100905555107289 a007 Real Root Of -623*x^4-849*x^3+730*x^2-151*x+725 2100905562742561 q001 1624/773 2100905564240326 s002 sum(A172548[n]/(n*exp(n)-1),n=1..infinity) 2100905567737768 l006 ln(1135/9277) 2100905573456819 r005 Re(z^2+c),c=4/23+16/27*I,n=28 2100905574207918 a007 Real Root Of -540*x^4+230*x^3+612*x^2+637*x+110 2100905584958629 m001 (Psi(2,1/3)+MertensB2)/(-Trott2nd+ZetaQ(4)) 2100905596428974 m005 (1/2*gamma+8/11)/(3/8*gamma-7/10) 2100905609275191 m001 (BesselI(1,1)+FeigenbaumAlpha)/Zeta(1/2) 2100905609275191 m001 (FeigenbaumAlpha+BesselI(1,1))/Zeta(1/2) 2100905611686227 m005 (1/2*Catalan+1/10)/(5/7*exp(1)+5/7) 2100905623023570 h001 (-6*exp(-1)+9)/(-5*exp(-2)+1) 2100905626633738 r005 Re(z^2+c),c=-9/46+11/32*I,n=22 2100905627644514 m001 (Weierstrass+ZetaP(4))/(FeigenbaumC+Kolakoski) 2100905632818423 a005 (1/sin(97/235*Pi))^1412 2100905636765507 a007 Real Root Of -307*x^4-558*x^3+30*x^2-477*x-328 2100905638399398 r009 Re(z^3+c),c=-7/58+48/59*I,n=7 2100905640197400 a005 (1/cos(4/49*Pi))^1615 2100905642339905 a001 1364*(1/2*5^(1/2)+1/2)^14*4^(10/23) 2100905646953725 m001 (Khinchin+Rabbit)/(ln(3)+polylog(4,1/2)) 2100905649254016 r005 Im(z^2+c),c=-5/16+18/55*I,n=30 2100905650828157 a001 123/196418*1597^(41/52) 2100905659504610 r005 Im(z^2+c),c=-105/106+8/37*I,n=27 2100905664372336 m001 gamma(2)*Totient+Riemann2ndZero 2100905664593343 a001 199*514229^(9/17) 2100905666812820 a001 233/322*199^(7/11) 2100905677372505 r005 Re(z^2+c),c=19/62+5/23*I,n=45 2100905681014699 m001 (Mills+TreeGrowth2nd)/(FeigenbaumD-Si(Pi)) 2100905683831135 a007 Real Root Of 98*x^4+310*x^3+978*x^2-626*x-172 2100905683904236 m001 (ln(2)+Cahen)/(GlaisherKinkelin-MasserGramain) 2100905697436780 m005 (3/5*2^(1/2)+2/5)/(2/3*2^(1/2)+5) 2100905710271317 r005 Im(z^2+c),c=-17/27+1/34*I,n=12 2100905711205709 s001 sum(exp(-2*Pi)^n*A016071[n],n=1..infinity) 2100905722576350 p004 log(34141/4177) 2100905730340580 m001 Zeta(5)^2*GAMMA(3/4)*ln(log(1+sqrt(2)))^2 2100905735857739 l006 ln(6061/7478) 2100905739032996 r005 Re(z^2+c),c=3/23+19/32*I,n=18 2100905746685269 a001 28143753123/13*225851433717^(8/13) 2100905746685269 a001 1322157322203/13*433494437^(8/13) 2100905752068607 m001 1/GAMMA(11/12)^2/Salem^2*exp(sinh(1)) 2100905764003220 m001 ArtinRank2-exp(1/Pi)*TwinPrimes 2100905766607025 m001 (MadelungNaCl+MasserGramain)/(3^(1/2)-Lehmer) 2100905769775142 m004 -6+625/Pi+5*Pi*Cot[Sqrt[5]*Pi] 2100905772415906 m005 (1/2*exp(1)+6/7)/(10/11*Catalan+2/9) 2100905779371032 r009 Im(z^3+c),c=-8/27+10/59*I,n=10 2100905780348135 l006 ln(507/4144) 2100905784819692 r005 Re(z^2+c),c=11/102+15/53*I,n=17 2100905786232194 r004 Im(z^2+c),c=7/46-1/24*I,z(0)=exp(3/8*I*Pi),n=4 2100905791688585 m001 (Mills-Zeta(3)*ln(2+3^(1/2)))/ln(2+3^(1/2)) 2100905796661353 m001 Cahen*(FeigenbaumDelta-OrthogonalArrays) 2100905799718698 a007 Real Root Of -569*x^4-843*x^3+740*x^2+300*x+632 2100905809122669 r005 Im(z^2+c),c=3/23+8/47*I,n=7 2100905814616814 r005 Re(z^2+c),c=-1/38+14/23*I,n=56 2100905821229135 m005 (1/3*5^(1/2)-2/5)/(4/11*Zeta(3)-3/11) 2100905825914485 a007 Real Root Of -271*x^4-380*x^3+620*x^2+67*x-840 2100905834952602 a007 Real Root Of 328*x^4+106*x^3-941*x^2+621*x+51 2100905845398915 m005 (1/3*5^(1/2)-1/8)/(1/3*Pi-4) 2100905846004237 a001 13/4*1364^(26/29) 2100905849145735 r005 Im(z^2+c),c=-57/46+1/11*I,n=54 2100905859249433 r002 22th iterates of z^2 + 2100905873782977 s002 sum(A064100[n]/(n^2*2^n-1),n=1..infinity) 2100905875339881 a005 (1/cos(8/237*Pi))^1358 2100905895485961 a007 Real Root Of 428*x^4+764*x^3+34*x^2+512*x-328 2100905899619423 m005 (1/2*2^(1/2)+8/11)/(9/10*Pi+4) 2100905922729726 l006 ln(7156/8829) 2100905927793595 a007 Real Root Of 514*x^4+767*x^3-829*x^2+61*x+886 2100905953575835 m001 Porter^GAMMA(11/12)*Porter^ln(2^(1/2)+1) 2100905957082245 m001 (Magata+Trott)/(FeigenbaumB+Kolakoski) 2100905959221012 a007 Real Root Of -266*x^4-487*x^3+111*x^2+57*x+296 2100905961489809 m001 (-PisotVijayaraghavan+Thue)/(sin(1)+exp(1/Pi)) 2100905961650817 a001 12586269025/18*76^(11/14) 2100905961949708 r009 Re(z^3+c),c=-1/32+21/46*I,n=8 2100905975238767 a007 Real Root Of -360*x^4-185*x^3+701*x^2-910*x+292 2100905991041140 m001 (Porter-Trott)/ln(2) 2100905994186456 r009 Re(z^3+c),c=-23/90+9/32*I,n=10 2100905997840663 r005 Re(z^2+c),c=15/46+29/51*I,n=44 2100905998309484 m005 (3/5*exp(1)-3)/(-19/12+5/12*5^(1/2)) 2100906002705996 a001 4106118243/55*5^(9/14) 2100906025207475 m001 Paris-Riemann2ndZero^sin(1/12*Pi) 2100906027147069 m001 (-GAMMA(5/6)+Robbin)/(2^(1/2)+cos(1/5*Pi)) 2100906027576613 a007 Real Root Of -300*x^4-456*x^3+631*x^2+100*x-959 2100906050575133 l006 ln(893/7299) 2100906058599620 m001 (GAMMA(5/6)+MertensB1)/(Zeta(3)-cos(1)) 2100906060225684 m001 (GAMMA(5/6)+Artin)/(CareFree+Trott) 2100906065962217 a007 Real Root Of -416*x^4-352*x^3+796*x^2-881*x-524 2100906067983924 m001 (ErdosBorwein+Tetranacci)/(ln(5)-gamma(1)) 2100906071060063 m006 (2/3*Pi-2/3)/(1/4/Pi+3/5) 2100906072399868 m001 exp(1/Pi)^(Backhouse/GolombDickman) 2100906081091798 h001 (7/8*exp(1)+10/11)/(1/6*exp(2)+1/3) 2100906081877549 m005 (1/2*Pi+3)/(9/10*Catalan-3) 2100906090279841 r005 Re(z^2+c),c=-99/122+4/45*I,n=36 2100906094419830 r002 30th iterates of z^2 + 2100906097712847 a007 Real Root Of -251*x^4-163*x^3+583*x^2+48*x+906 2100906099793363 r005 Im(z^2+c),c=-107/114+13/64*I,n=59 2100906101359369 r008 a(0)=2,K{-n^6,67-98*n^3-19*n^2+40*n} 2100906106417588 a001 11/377*9227465^(4/15) 2100906108538238 r008 a(0)=2,K{-n^6,83-92*n^3-29*n^2+28*n} 2100906117141511 r009 Re(z^3+c),c=-71/118+13/24*I,n=54 2100906118240879 r005 Re(z^2+c),c=3/56+37/58*I,n=40 2100906119489306 a007 Real Root Of 343*x^4+241*x^3-899*x^2+569*x+716 2100906122887811 r008 a(0)=2,K{-n^6,91-77*n^3-70*n^2+46*n} 2100906123051608 r005 Re(z^2+c),c=3/16+4/47*I,n=12 2100906132134318 m005 (1/2*2^(1/2)+4)/(175/132+9/22*5^(1/2)) 2100906132166388 r005 Re(z^2+c),c=5/78+39/50*I,n=4 2100906137930822 a007 Real Root Of -635*x^4+543*x^3+37*x^2+869*x-188 2100906144902669 r005 Im(z^2+c),c=-5/27+16/55*I,n=19 2100906161652457 m005 (1/2*exp(1)+2/11)/(1/5*Catalan-11/12) 2100906165538733 a007 Real Root Of -958*x^4+40*x^3+467*x^2+830*x+156 2100906169987747 a007 Real Root Of 304*x^4+267*x^3-942*x^2-399*x-127 2100906179249932 r009 Im(z^3+c),c=-2/5+17/25*I,n=49 2100906202590082 m001 ReciprocalFibonacci/(Robbin-Zeta(1,2)) 2100906204408326 m003 25/6+Sqrt[5]/2+6*Cosh[1/2+Sqrt[5]/2] 2100906204427860 m001 (-FeigenbaumD+Kolakoski)/(gamma+arctan(1/3)) 2100906208652052 a007 Real Root Of 303*x^4+733*x^3-183*x^2-970*x-336 2100906210124775 r005 Re(z^2+c),c=-3/50+32/51*I,n=13 2100906215302357 a007 Real Root Of -355*x^4-646*x^3+192*x^2+226*x+553 2100906216897851 a001 7/2*6765^(13/28) 2100906217698066 r005 Re(z^2+c),c=-1/5+17/30*I,n=15 2100906223738831 m001 FeigenbaumC^2*GlaisherKinkelin/ln(Trott)^2 2100906233993517 m001 (Artin+Gompertz)/(BesselI(1,2)-GAMMA(5/6)) 2100906244363617 r005 Im(z^2+c),c=-17/14+29/222*I,n=6 2100906249698673 m001 MertensB2-CareFree-cos(1) 2100906252387248 m001 (ln(5)+GaussAGM)/(LandauRamanujan-Tetranacci) 2100906257836235 a001 29/75025*832040^(17/58) 2100906258258723 m001 RenyiParking/(FeigenbaumAlpha+GAMMA(11/12)) 2100906258258723 m001 RenyiParking/(GAMMA(11/12)+FeigenbaumAlpha) 2100906260261976 a001 1568397607/1597*121393^(11/24) 2100906260275011 a001 7881196/1597*12586269025^(11/24) 2100906275450067 p004 log(19919/2437) 2100906279336536 m001 (1+3^(1/2))^(1/2)-GAMMA(13/24)-Riemann2ndZero 2100906288208429 a007 Real Root Of -245*x^4-766*x^3-218*x^2+871*x+462 2100906300535891 r002 20th iterates of z^2 + 2100906302124132 r009 Im(z^3+c),c=-7/62+20/23*I,n=10 2100906310475359 m005 (11/15+2/5*5^(1/2))/(3*Catalan+5) 2100906318807541 m001 (3^(1/3)-HardyLittlewoodC5)/(Landau-MertensB2) 2100906321338174 a005 (1/cos(2/177*Pi))^1178 2100906327475146 a003 cos(Pi*51/118)*sin(Pi*33/71) 2100906329317913 s002 sum(A092116[n]/(2^n-1),n=1..infinity) 2100906337037935 m001 (Si(Pi)+Shi(1))/(sin(1)+Landau) 2100906337127220 p001 sum(1/(587*n+506)/(8^n),n=0..infinity) 2100906337344384 h001 (2/9*exp(1)+6/7)/(11/12*exp(2)+2/11) 2100906349454238 r004 Im(z^2+c),c=2/5-4/19*I,z(0)=exp(5/8*I*Pi),n=43 2100906360194888 p003 LerchPhi(1/100,2,433/198) 2100906363269286 r009 Im(z^3+c),c=-27/44+11/42*I,n=13 2100906368383476 r002 43th iterates of z^2 + 2100906386129602 m001 (sin(1)-sin(1/12*Pi))/(-Bloch+DuboisRaymond) 2100906388590343 m006 (5/6/Pi-1/5)/(3/4*Pi+3/4) 2100906392559028 m001 ln(2+3^(1/2))*(BesselK(0,1)-MertensB1) 2100906400975754 a001 4106118243/4181*121393^(11/24) 2100906400988818 a001 20633239/4181*12586269025^(11/24) 2100906405510482 l006 ln(386/3155) 2100906412183886 m001 (GAMMA(2/3)+3^(1/3))/(Totient-ZetaQ(3)) 2100906417009679 r002 59th iterates of z^2 + 2100906417069576 b008 85*Zeta[-2/5] 2100906421505619 a001 5374978561/5473*121393^(11/24) 2100906421518687 a001 54018521/10946*12586269025^(11/24) 2100906421839421 m001 (Zeta(3)+ArtinRank2)/(FeigenbaumAlpha-Magata) 2100906424500886 a001 28143753123/28657*121393^(11/24) 2100906424513955 a001 141422324/28657*12586269025^(11/24) 2100906424937890 a001 73681302247/75025*121393^(11/24) 2100906424950959 a001 370248451/75025*12586269025^(11/24) 2100906425001648 a001 96450076809/98209*121393^(11/24) 2100906425010950 a001 505019158607/514229*121393^(11/24) 2100906425012307 a001 1322157322203/1346269*121393^(11/24) 2100906425012505 a001 1730726404001/1762289*121393^(11/24) 2100906425012534 a001 9062201101803/9227465*121393^(11/24) 2100906425012538 a001 23725150497407/24157817*121393^(11/24) 2100906425012541 a001 192933544679/196452*121393^(11/24) 2100906425012552 a001 5600748293801/5702887*121393^(11/24) 2100906425012628 a001 2139295485799/2178309*121393^(11/24) 2100906425013146 a001 204284540899/208010*121393^(11/24) 2100906425014717 a001 969323029/196418*12586269025^(11/24) 2100906425016699 a001 312119004989/317811*121393^(11/24) 2100906425024019 a001 2537720636/514229*12586269025^(11/24) 2100906425025376 a001 6643838879/1346269*12586269025^(11/24) 2100906425025574 a001 17393796001/3524578*12586269025^(11/24) 2100906425025603 a001 45537549124/9227465*12586269025^(11/24) 2100906425025607 a001 119218851371/24157817*12586269025^(11/24) 2100906425025608 a001 312119004989/63245986*12586269025^(11/24) 2100906425025608 a001 817138163596/165580141*12586269025^(11/24) 2100906425025608 a001 2139295485799/433494437*12586269025^(11/24) 2100906425025608 a001 5600748293801/1134903170*12586269025^(11/24) 2100906425025608 a001 14662949395604/2971215073*12586269025^(11/24) 2100906425025608 a001 23725150497407/4807526976*12586269025^(11/24) 2100906425025608 a001 9062201101803/1836311903*12586269025^(11/24) 2100906425025608 a001 3461452808002/701408733*12586269025^(11/24) 2100906425025608 a001 1322157322203/267914296*12586269025^(11/24) 2100906425025608 a001 505019158607/102334155*12586269025^(11/24) 2100906425025608 a001 192900153618/39088169*12586269025^(11/24) 2100906425025610 a001 73681302247/14930352*12586269025^(11/24) 2100906425025621 a001 28143753123/5702887*12586269025^(11/24) 2100906425025696 a001 4870846/987*12586269025^(11/24) 2100906425026215 a001 4106118243/832040*12586269025^(11/24) 2100906425029768 a001 1568397607/317811*12586269025^(11/24) 2100906425041052 a001 119218851371/121393*121393^(11/24) 2100906425054121 a001 599074578/121393*12586269025^(11/24) 2100906425207973 a001 11384387281/11592*121393^(11/24) 2100906425221042 a001 228826127/46368*12586269025^(11/24) 2100906425386502 m001 (-Stephens+ZetaQ(2))/(2^(1/3)+GAMMA(3/4)) 2100906426352063 a001 17393796001/17711*121393^(11/24) 2100906426365132 a001 87403803/17711*12586269025^(11/24) 2100906427486909 m005 (1/2*Zeta(3)+1/6)/(1/5*Zeta(3)+1/8) 2100906433865292 m008 (3/4*Pi^3-2/3)/(1/4*Pi^3+3) 2100906434193774 a001 6643838879/6765*121393^(11/24) 2100906434206845 a001 33385282/6765*12586269025^(11/24) 2100906438517863 p004 log(35221/28547) 2100906439810728 a007 Real Root Of -340*x^4-476*x^3+509*x^2+107*x+188 2100906440705016 r005 Re(z^2+c),c=-21/118+20/51*I,n=25 2100906442333836 g006 Psi(1,3/10)+Psi(1,6/7)+Psi(1,1/3)-Psi(1,5/8) 2100906444499458 m001 GAMMA(3/4)/(OneNinth+PlouffeB) 2100906449027489 a007 Real Root Of -130*x^4+121*x^3+900*x^2-250*x-843 2100906456923378 a003 cos(Pi*1/119)/cos(Pi*16/33) 2100906459396305 m001 (Catalan-sin(1))/(-Kolakoski+TreeGrowth2nd) 2100906460321679 a001 34/199*2^(17/57) 2100906473476631 m001 (Pi+Chi(1))/(sin(1/5*Pi)+Mills) 2100906474561808 a003 cos(Pi*9/97)/sin(Pi*11/73) 2100906487941661 a001 33391061/34*121393^(11/24) 2100906487954743 a001 12752043/2584*12586269025^(11/24) 2100906496461253 m005 (9/8+1/4*5^(1/2))/(2/9*3^(1/2)+5/12) 2100906498706363 m001 1/FeigenbaumB^2/MertensB1/exp(cos(Pi/12)) 2100906530795567 m001 FibonacciFactorial*Totient^Tribonacci 2100906541172515 q001 2/95197 2100906547834165 m001 (Pi/Psi(2,1/3)-cos(1/12*Pi))*gamma(3) 2100906548490756 r009 Re(z^3+c),c=-27/98+31/49*I,n=6 2100906549954236 m001 1/Conway^2*exp(Backhouse)*FeigenbaumB 2100906550592875 a001 7/1597*6557470319842^(5/6) 2100906556026569 m005 (1/2*Catalan+1/2)/(1/5*gamma-4/7) 2100906582577847 q001 533/2537 2100906582577847 r002 2th iterates of z^2 + 2100906582577847 r002 2th iterates of z^2 + 2100906586175248 b008 1/7+PolyLog[3,1/15] 2100906589811909 m009 (8*Catalan+Pi^2-2)/(1/8*Pi^2+6) 2100906593202712 m001 (-AlladiGrinstead+Gompertz)/(Chi(1)-Si(Pi)) 2100906595612901 m001 1/exp(GAMMA(1/4))/GAMMA(1/24)/cos(1) 2100906606682900 m001 exp(GAMMA(5/12))^2/BesselJ(1,1)^2/sqrt(3) 2100906606806733 a001 3571*(1/2*5^(1/2)+1/2)^12*4^(10/23) 2100906610437100 a007 Real Root Of -346*x^4-280*x^3+855*x^2+194*x+778 2100906612836585 r005 Im(z^2+c),c=-35/86+21/40*I,n=20 2100906617055979 m008 (1/3*Pi^5+1/4)/(4/5*Pi-3) 2100906622204041 a007 Real Root Of 421*x^4+708*x^3+302*x^2+976*x-919 2100906626710970 r008 a(0)=2,K{-n^6,-8+7*n^3+2*n^2-9*n} 2100906638844084 a004 Fibonacci(13)*Lucas(11)/(1/2+sqrt(5)/2)^16 2100906640693775 r005 Im(z^2+c),c=-33/70+1/28*I,n=28 2100906640780025 m001 (Lehmer+Trott)/(ArtinRank2-FeigenbaumMu) 2100906643207944 m005 (1/2*5^(1/2)+5/8)/(13/110+7/22*5^(1/2)) 2100906651351585 m001 (1+GolombDickman)/(-MertensB1+MertensB2) 2100906660024882 a001 72/161*521^(8/13) 2100906666759124 a007 Real Root Of -616*x^4-986*x^3+549*x^2-301*x-198 2100906700037534 r009 Im(z^3+c),c=-3/7+2/25*I,n=26 2100906703139785 m001 MasserGramain/(Pi^(1/2)+Conway) 2100906711158662 l006 ln(1037/8476) 2100906714443568 a007 Real Root Of 222*x^4+330*x^3-44*x^2+46*x-974 2100906717400643 a001 377/1364*199^(9/11) 2100906721640688 m005 (1/2*3^(1/2)+3)/(-3/8+1/4*5^(1/2)) 2100906725023802 a008 Real Root of x^2-x-43928 2100906728546692 r009 Re(z^3+c),c=-9/17+22/37*I,n=42 2100906745341492 r009 Im(z^3+c),c=-9/32+7/41*I,n=3 2100906747520547 a001 9349*(1/2*5^(1/2)+1/2)^10*4^(10/23) 2100906768050416 a001 24476*(1/2*5^(1/2)+1/2)^8*4^(10/23) 2100906770022990 m001 (CareFree+Landau*ZetaP(2))/ZetaP(2) 2100906771045683 a001 64079*(1/2*5^(1/2)+1/2)^6*4^(10/23) 2100906771555747 a001 1149851*2^(20/23) 2100906771557336 a001 (1/2*5^(1/2)+1/2)^29*4^(10/23) 2100906772896860 a001 39603*(1/2*5^(1/2)+1/2)^7*4^(10/23) 2100906775813288 r005 Re(z^2+c),c=-31/122+1/57*I,n=10 2100906779592714 a007 Real Root Of -447*x^4-620*x^3+603*x^2-372*x-484 2100906780127314 r005 Re(z^2+c),c=-5/6+3/193*I,n=40 2100906780738572 a001 15127*(1/2*5^(1/2)+1/2)^9*4^(10/23) 2100906785080039 p001 sum((-1)^n/(493*n+416)/(3^n),n=0..infinity) 2100906800046546 m001 1/2*Pi*2^(2/3)-LambertW(1)/exp(1/exp(1)) 2100906800905933 m005 (1/4*Pi+2)/(5*exp(1)-1/3) 2100906801586644 a007 Real Root Of 375*x^4+367*x^3-562*x^2+871*x+408 2100906803526468 r005 Im(z^2+c),c=-65/94+2/49*I,n=20 2100906811738223 a007 Real Root Of -524*x^4-580*x^3+916*x^2-30*x+724 2100906821381741 b008 Sqrt[2]*(8+Sqrt[47]) 2100906832684040 a007 Real Root Of -585*x^4+997*x^3-337*x^2+651*x-130 2100906834486467 a001 5778*(1/2*5^(1/2)+1/2)^11*4^(10/23) 2100906843526708 r005 Im(z^2+c),c=-17/18+17/73*I,n=58 2100906846282423 m001 (GaussAGM-Tribonacci)/(Ei(1,1)+sin(1/12*Pi)) 2100906849841294 m001 Pi^(1/2)*(Ei(1,1)+cos(1/12*Pi)) 2100906850297812 m001 sin(1)*GAMMA(1/24)+BesselI(0,1) 2100906850737342 r009 Re(z^3+c),c=-7/19+24/41*I,n=36 2100906852317298 b008 (3+3^Sqrt[2])*E 2100906856335234 a001 969323029/987*121393^(11/24) 2100906856348392 a001 4870847/987*12586269025^(11/24) 2100906859236330 m009 (4/5*Psi(1,3/4)+5)/(2/5*Pi^2-3/5) 2100906863259740 r005 Im(z^2+c),c=-5/8+80/237*I,n=60 2100906864579732 a001 13/4*15127^(39/58) 2100906873390188 m009 (3/5*Psi(1,3/4)+1/4)/(1/6*Pi^2-4/5) 2100906876684587 m005 (1/2*2^(1/2)+3/11)/(4*Catalan+1) 2100906877065883 r009 Re(z^3+c),c=-17/78+9/61*I,n=6 2100906877459283 m005 (1/2*Zeta(3)-7/11)/(5/6*exp(1)-7/12) 2100906879987192 m001 GAMMA(13/24)*(2^(1/2))^TravellingSalesman 2100906883501384 a007 Real Root Of 337*x^4+226*x^3-899*x^2-83*x-676 2100906886700452 m004 -3-(30*Sech[Sqrt[5]*Pi])/Pi+Tan[Sqrt[5]*Pi] 2100906887472577 m001 (cos(1/5*Pi)+Zeta(1,-1))/(OneNinth+Otter) 2100906891717019 a005 (1/cos(1/94*Pi))^1329 2100906891733768 a007 Real Root Of -97*x^4-91*x^3-154*x^2-452*x+776 2100906892387800 l006 ln(651/5321) 2100906895788769 r005 Re(z^2+c),c=-9/86+28/51*I,n=63 2100906896855850 r005 Im(z^2+c),c=-71/82+9/53*I,n=46 2100906902429432 m004 -5+(5*Pi*Sec[Sqrt[5]*Pi])/3 2100906904599557 a007 Real Root Of -516*x^4-833*x^3+154*x^2-361*x+890 2100906907419076 m001 (5^(1/2)+ln(2))/(gamma(1)+Porter) 2100906910393477 m005 (1/2*3^(1/2)-1/3)/(1/4*2^(1/2)-1/10) 2100906912052683 r005 Re(z^2+c),c=-39/40+3/47*I,n=12 2100906913585855 m004 -3-(30*Csch[Sqrt[5]*Pi])/Pi+Tan[Sqrt[5]*Pi] 2100906916660226 m001 ln(2)+RenyiParking+TwinPrimes 2100906922038755 a007 Real Root Of -405*x^4-479*x^3+336*x^2-647*x+606 2100906923201780 m001 Otter^(3^(1/3)*Weierstrass) 2100906928597083 a001 5/39603*2^(36/49) 2100906957095976 l006 ln(1095/1351) 2100906962249039 m005 (1/2*5^(1/2)-7/11)/(4/9*Catalan-7/11) 2100906970843857 r002 10th iterates of z^2 + 2100906971190639 r002 13th iterates of z^2 + 2100906972342088 r008 a(0)=1,K{-n^6,-19-4*n+59*n^2-36*n^3} 2100906972743925 m001 LambertW(1)*ln(Lehmer)^2/exp(1)^2 2100906974358680 m001 (Sarnak-Thue)/(Cahen+HeathBrownMoroz) 2100906982311898 r002 32th iterates of z^2 + 2100906991206523 m002 Pi^4+Cosh[Pi]/Pi^2+Pi^4*Log[Pi] 2100906992185175 a007 Real Root Of -549*x^4-840*x^3+723*x^2+159*x+49 2100906995809128 h001 (-2*exp(3)+3)/(-7*exp(1/3)+8) 2100906999075268 l005 563/68/(exp(563/68)-1) 2100907001306271 m002 2*Pi*Csch[Pi]-E^Pi/ProductLog[Pi] 2100907004930522 m005 (1/2*Catalan-7/11)/(1/9*Pi+1/2) 2100907015677365 r005 Im(z^2+c),c=-69/82+9/58*I,n=53 2100907017980994 r005 Re(z^2+c),c=-19/106+7/18*I,n=36 2100907020841388 h001 (3/7*exp(2)+5/11)/(2/5*exp(1)+7/11) 2100907028851293 m001 (1-cosh(1))/Sierpinski 2100907029478458 q001 1853/882 2100907029478458 r005 Re(z^2+c),c=-7/10+1/105*I,n=2 2100907044188018 m005 (1/2*Catalan+1/7)/(-13/22+3/22*5^(1/2)) 2100907046568726 r002 7th iterates of z^2 + 2100907066979494 a007 Real Root Of 619*x^4-456*x^3-418*x^2-705*x+15 2100907068932341 m002 -Pi^2-Sinh[Pi]/Pi^6+Pi^3*Tanh[Pi] 2100907068998380 r002 38th iterates of z^2 + 2100907069294729 m005 (39/44+1/4*5^(1/2))/(11/12*Pi+4) 2100907075742660 r005 Re(z^2+c),c=-9/14+65/223*I,n=9 2100907077526228 m008 (4*Pi^2+5/6)/(1/5*Pi^6-2/5) 2100907088404759 a008 Real Root of x^4-2*x^3-28*x^2-65*x-51 2100907089594373 a001 3/377*2584^(22/31) 2100907097556554 l006 ln(916/7487) 2100907100359608 r005 Re(z^2+c),c=-25/24+1/4*I,n=12 2100907115266518 m001 (Shi(1)-gamma)/(-GAMMA(17/24)+FeigenbaumMu) 2100907115758021 r005 Im(z^2+c),c=-11/26+19/53*I,n=24 2100907129369085 r005 Im(z^2+c),c=-43/48+13/61*I,n=23 2100907135333859 m001 arctan(1/3)*exp(1/Pi)*Weierstrass 2100907145744476 r005 Re(z^2+c),c=-31/122+1/64*I,n=11 2100907149502292 b008 JacobiNS[1/21,1/7] 2100907152283966 m001 (Kolakoski+Lehmer)/(GAMMA(3/4)-BesselI(1,1)) 2100907152811451 m001 BesselJ(1,1)^(2^(1/3))+KhinchinHarmonic 2100907163655582 r005 Im(z^2+c),c=-26/21+1/53*I,n=40 2100907182056317 m001 Stephens/gamma/Weierstrass 2100907185949596 r009 Im(z^3+c),c=-77/122+32/49*I,n=6 2100907191714417 m005 (1/3*5^(1/2)-1/10)/(2/5*3^(1/2)-1) 2100907194709322 p001 sum(1/(383*n+107)/n/(10^n),n=1..infinity) 2100907194787567 m002 -9+E^Pi+6*Log[Pi] 2100907202880014 a001 2207*(1/2*5^(1/2)+1/2)^13*4^(10/23) 2100907208128698 r002 56th iterates of z^2 + 2100907210378079 s002 sum(A093365[n]/(n*10^n+1),n=1..infinity) 2100907210651252 l006 ln(1181/9653) 2100907210967004 m001 (BesselJ(1,1)+BesselJZeros(0,1))/GAMMA(2/3) 2100907211447262 b008 (77*Sqrt[67])/3 2100907250319037 r005 Re(z^2+c),c=-2/17+21/40*I,n=52 2100907256923035 a007 Real Root Of -102*x^4+738*x^3-460*x^2+951*x+2 2100907268446279 a007 Real Root Of -669*x^4+378*x^3-294*x^2+715*x+168 2100907269735203 a008 Real Root of x^4-2*x^3-29*x^2+30*x+153 2100907287966698 r005 Re(z^2+c),c=-31/122+1/62*I,n=13 2100907290185902 a007 Real Root Of -432*x^4-911*x^3+41*x^2-34*x-284 2100907293252526 r002 49th iterates of z^2 + 2100907306775953 r005 Im(z^2+c),c=-59/106+15/41*I,n=36 2100907307227769 m001 MertensB1*GlaisherKinkelin^2/ln(Trott)^2 2100907310772063 a007 Real Root Of 488*x^4+273*x^3-971*x^2+929*x-738 2100907323146476 m001 1/GAMMA(7/12)^2/KhintchineLevy/exp(cos(1)) 2100907334225768 m005 (1/2*exp(1)+7/9)/(5/6*Zeta(3)-9/10) 2100907340842856 a007 Real Root Of 392*x^4-72*x^3-260*x^2-381*x-70 2100907341837295 m005 (1/3*exp(1)+1/2)/(6/7*Pi+4) 2100907348974840 a001 3/13*13^(31/36) 2100907362314774 m005 (1/3*exp(1)+1/10)/(4/5*5^(1/2)+3) 2100907365285000 r009 Re(z^3+c),c=-17/74+10/51*I,n=5 2100907369160329 m009 (5*Psi(1,2/3)-3/4)/(1/2*Pi^2+2) 2100907377798520 b008 (8*Pi)/3+Sinh[6] 2100907384525789 m001 Catalan+cos(1/12*Pi)*FibonacciFactorial 2100907387991595 r005 Im(z^2+c),c=-5/28+13/45*I,n=20 2100907388492828 a007 Real Root Of 863*x^4-354*x^3-821*x^2-234*x+87 2100907390135243 a007 Real Root Of -109*x^4-208*x^3+115*x^2+623*x+996 2100907390373553 a007 Real Root Of 114*x^4+34*x^3-362*x^2-71*x-457 2100907392208379 a007 Real Root Of -352*x^4+97*x^3-922*x^2+765*x+203 2100907392268088 r005 Im(z^2+c),c=-45/46+5/23*I,n=64 2100907404038366 a007 Real Root Of -451*x^4-926*x^3+396*x^2+787*x+105 2100907404064247 m001 (TravellingSalesman-exp(1/Pi))/Pi 2100907414348595 a007 Real Root Of 954*x^4-139*x^3+432*x^2-494*x-126 2100907417872676 a007 Real Root Of 207*x^4-970*x^3+878*x^2+15*x-45 2100907421267950 m005 (1/2*2^(1/2)+2/11)/(57/14+1/14*5^(1/2)) 2100907426613842 r005 Im(z^2+c),c=-17/90+16/53*I,n=3 2100907428842247 m001 1/MadelungNaCl^2/exp(Artin)^2*FeigenbaumKappa 2100907446337907 a007 Real Root Of 564*x^4+669*x^3-789*x^2+174*x-936 2100907448193931 r005 Re(z^2+c),c=2/19+37/62*I,n=52 2100907454569324 a001 377/843*199^(8/11) 2100907454609172 g002 Psi(4/9)+Psi(3/7)-Psi(6/11)-Psi(8/9) 2100907457587853 m001 1/ln(MinimumGamma)/Artin/FeigenbaumC^2 2100907461713898 p004 log(26981/3301) 2100907465129923 r009 Im(z^3+c),c=-31/90+5/34*I,n=9 2100907465636874 h001 (7/8*exp(2)+5/8)/(4/9*exp(2)+1/11) 2100907473950356 a007 Real Root Of 235*x^4+85*x^3-683*x^2+737*x+773 2100907475064793 m005 (1/2*Pi-1/6)/(9/11*Zeta(3)-11/12) 2100907479099897 m001 (Zeta(5)+Champernowne)/(PlouffeB+ZetaP(4)) 2100907482078619 a007 Real Root Of -169*x^4-398*x^3+31*x^2+679*x-140 2100907483477923 a007 Real Root Of 216*x^4+364*x^3+287*x^2+599*x-841 2100907492744963 m001 Porter*(GAMMA(13/24)-exp(-1/2*Pi)) 2100907497742055 b008 20+Csch[7/8] 2100907500854649 m001 Landau^ZetaQ(3)/(Landau^GAMMA(3/4)) 2100907501207997 m001 KhintchineLevy^2*FransenRobinson/ln(cosh(1))^2 2100907507596493 r002 16th iterates of z^2 + 2100907507824752 a007 Real Root Of 398*x^4+733*x^3-491*x^2-184*x+824 2100907508215108 m001 (ln(2)-Bloch)/(Cahen+HardyLittlewoodC5) 2100907514981863 r005 Im(z^2+c),c=-29/34+1/73*I,n=20 2100907519896454 m001 (Pi-Psi(2,1/3))*(sin(1)-Zeta(3)) 2100907523526118 p003 LerchPhi(1/64,2,143/207) 2100907528274158 m006 (1/4*Pi-3/5)/(5/6*Pi^2+3/5) 2100907528274158 m008 (1/4*Pi-3/5)/(5/6*Pi^2+3/5) 2100907531324970 m001 (cos(1)+Kolakoski)/(-LaplaceLimit+Trott2nd) 2100907534499337 s002 sum(A282907[n]/((10^n+1)/n),n=1..infinity) 2100907549072716 r005 Im(z^2+c),c=1/70+2/9*I,n=9 2100907550958378 m001 Tribonacci^2/TreeGrowth2nd^2*ln(cos(Pi/12))^2 2100907569920851 a003 cos(Pi*49/113)/sin(Pi*53/119) 2100907570209988 a007 Real Root Of 482*x^4+610*x^3-985*x^2-158*x+282 2100907573879689 m001 1/Salem*ln(LaplaceLimit)^2*Zeta(1/2) 2100907578045997 a008 Real Root of x^4+52*x^2-249 2100907578990934 a007 Real Root Of 362*x^4+871*x^3+634*x^2+941*x+203 2100907579363431 r002 4th iterates of z^2 + 2100907595743384 h001 (4/9*exp(2)+1/12)/(1/5*exp(2)+1/8) 2100907599432612 m005 (1/2*Zeta(3)-1/11)/(2/3*2^(1/2)-7/10) 2100907601574713 l006 ln(265/2166) 2100907607636148 r005 Im(z^2+c),c=-5/6+25/149*I,n=49 2100907614943462 a007 Real Root Of -700*x^4-812*x^3-787*x^2+102*x+50 2100907623821550 m005 (1/3*gamma-1/3)/(1/2*Pi-9/10) 2100907634810464 q001 787/3746 2100907639156327 a007 Real Root Of 576*x^4+654*x^3-902*x^2+413*x-308 2100907639401805 a007 Real Root Of -682*x^4+377*x^3-97*x^2+485*x+111 2100907643319922 a007 Real Root Of -429*x^4-582*x^3+865*x^2+81*x-687 2100907644872635 r009 Re(z^3+c),c=-13/102+32/51*I,n=2 2100907650778360 m005 (13/12+1/4*5^(1/2))/(1/7+2/7*5^(1/2)) 2100907653974779 a007 Real Root Of 448*x^4+709*x^3-418*x^2+310*x+343 2100907671262858 m001 (Kac+Trott2nd)/(ln(2)/ln(10)+FransenRobinson) 2100907683423883 p002 log(14^(3/5)+6^(2/3)) 2100907688381923 m001 ThueMorse^PlouffeB+exp(1/exp(1)) 2100907690578178 m001 1/Trott*exp(HardHexagonsEntropy)/sqrt(Pi) 2100907695818915 m004 (25*Pi)/4+(3*Tan[Sqrt[5]*Pi])/2 2100907696217320 m001 (ThueMorse+ZetaQ(3))/(Landau+MinimumGamma) 2100907701146511 a007 Real Root Of -694*x^4-952*x^3+455*x^2-923*x+745 2100907702859972 a007 Real Root Of 163*x^4+177*x^3-220*x^2+289*x+44 2100907723745953 h001 (-4*exp(7)+2)/(-7*exp(8)-3) 2100907734057116 r005 Re(z^2+c),c=-3/28+13/23*I,n=15 2100907743566124 a001 9349/144*317811^(37/58) 2100907749110722 b008 -5+ExpIntegralEi[4+Pi] 2100907749865407 a007 Real Root Of 212*x^4-178*x^3-843*x^2+752*x-480 2100907754574403 m005 (1/2*3^(1/2)-11/12)/(4/7*exp(1)+6/7) 2100907757858964 m005 (1/2*gamma+7/11)/(4/11*5^(1/2)-6/7) 2100907775271779 m001 ReciprocalLucas^(exp(Pi)/Riemann2ndZero) 2100907782426415 r005 Im(z^2+c),c=-63/122+19/49*I,n=12 2100907798272887 m001 1/ln((3^(1/3)))^2/MinimumGamma^2*BesselK(1,1) 2100907803391640 h001 (5/6*exp(2)+1/10)/(7/8*exp(1)+3/5) 2100907805794501 p004 log(21521/17443) 2100907810117031 m001 (BesselI(0,1)-Si(Pi))/(Backhouse+MertensB3) 2100907812013775 m001 (CareFree+Salem)/(Zeta(1/2)+BesselI(1,1)) 2100907812396026 a007 Real Root Of -497*x^4-838*x^3+172*x^2-74*x+997 2100907813611730 s002 sum(A150024[n]/(n^2*exp(n)+1),n=1..infinity) 2100907819491213 h001 (-4*exp(1/2)+5)/(-5*exp(1)+6) 2100907824241360 r005 Im(z^2+c),c=-28/25+8/39*I,n=26 2100907832530423 p004 log(16339/1999) 2100907841593794 a007 Real Root Of 465*x^4+682*x^3-720*x^2-31*x+378 2100907854080024 a007 Real Root Of -525*x^4-726*x^3+782*x^2-229*x-437 2100907856701141 r005 Re(z^2+c),c=8/29+5/26*I,n=7 2100907862640895 l006 ln(8174/10085) 2100907869732466 r002 3th iterates of z^2 + 2100907880281497 m001 (-OneNinth+Tetranacci)/(Catalan-Grothendieck) 2100907880781608 a007 Real Root Of 597*x^4+820*x^3-644*x^2+151*x-867 2100907883377186 m001 Trott^2/Backhouse^2*ln(cos(1))^2 2100907901373112 m001 (ln(Pi)-ErdosBorwein)/(Totient+Thue) 2100907904443051 m005 (1/2*Zeta(3)-7/8)/(2/9*exp(1)+7/10) 2100907907755365 r005 Im(z^2+c),c=-43/40+7/34*I,n=16 2100907918634333 m001 (gamma+arctan(1/2))/(exp(1)+5^(1/2)) 2100907922529038 l004 sinh(443/52*Pi) 2100907922529038 l004 cosh(443/52*Pi) 2100907924113923 a001 121393/7*11^(2/25) 2100907930330663 m001 cos(Pi/12)^BesselI(1,1)-GAMMA(7/24) 2100907933745410 a007 Real Root Of -437*x^4-842*x^3+374*x^2+903*x+952 2100907947865987 a007 Real Root Of -354*x^4-940*x^3-44*x^2+316*x-962 2100907953449101 a005 (1/cos(2/229*Pi))^1972 2100907956567314 r005 Im(z^2+c),c=-21/44+17/55*I,n=10 2100907959050102 m005 (5/8+1/8*5^(1/2))/(1/3*Catalan+4) 2100907969549637 r005 Re(z^2+c),c=-53/54+10/47*I,n=52 2100907976946616 m001 (Gompertz+Tribonacci)/(ln(2)/ln(10)+Zeta(1/2)) 2100907977849833 r005 Im(z^2+c),c=-115/114+11/36*I,n=15 2100907985030219 l006 ln(1204/9841) 2100907989139500 a001 505019158607/13*32951280099^(9/20) 2100908002713170 l006 ln(7079/8734) 2100908008907010 s001 sum(1/10^(n-1)*A187360[n],n=1..infinity) 2100908008907010 s001 sum(1/10^n*A187360[n],n=1..infinity) 2100908010869020 r005 Re(z^2+c),c=-5/6+2/129*I,n=52 2100908020815100 m003 -1+3*Sech[1/2+Sqrt[5]/2]+Tan[1/2+Sqrt[5]/2] 2100908022600225 m001 Tribonacci^(3^(1/2))*GaussAGM^(3^(1/2)) 2100908028265792 m001 1/GAMMA(13/24)*exp(Lehmer)^2/GAMMA(7/24)^2 2100908030732767 r005 Re(z^2+c),c=-21/86+1/57*I,n=3 2100908033828518 m001 sin(Pi/12)^sin(1)/(sqrt(1+sqrt(3))^sin(1)) 2100908039549247 a007 Real Root Of 457*x^4+841*x^3-38*x^2+474*x+59 2100908042261622 r005 Im(z^2+c),c=-5/8+99/239*I,n=20 2100908047947690 a007 Real Root Of 302*x^4+791*x^3+898*x^2+814*x-802 2100908053705062 m001 1/Tribonacci^2/ln(Lehmer)/GAMMA(13/24)^2 2100908055648680 m001 (ln(2+3^(1/2))+Gompertz)/(Kolakoski-Niven) 2100908061315730 r005 Im(z^2+c),c=-23/58+22/63*I,n=43 2100908074404399 a001 521/89*6557470319842^(14/17) 2100908076797976 m005 (1/2*5^(1/2)-1/4)/(4/7*gamma+1/12) 2100908093247134 l006 ln(939/7675) 2100908103218664 r005 Im(z^2+c),c=-39/98+29/44*I,n=5 2100908122253427 m001 Riemann2ndZero-gamma(2)^arctan(1/2) 2100908124610258 a007 Real Root Of 578*x^4+200*x^3-325*x^2-919*x-178 2100908124724278 r005 Re(z^2+c),c=-5/6+3/193*I,n=36 2100908146906251 m001 1/BesselJ(0,1)/exp(GolombDickman)/gamma^2 2100908163580286 a007 Real Root Of -445*x^4-808*x^3-321*x^2+521*x+117 2100908171242596 a007 Real Root Of -421*x^4-732*x^3+12*x^2-337*x+653 2100908173562058 q001 2082/991 2100908179186372 a007 Real Root Of -161*x^4-468*x^3-579*x^2-539*x+220 2100908184949758 a001 1/13*6765^(3/8) 2100908194048523 l006 ln(5984/7383) 2100908202681418 a007 Real Root Of 669*x^4+853*x^3-798*x^2+319*x-931 2100908206726600 m001 1/cos(Pi/5)*GAMMA(1/24)^2/exp(sinh(1)) 2100908212020986 m005 (1/3*Zeta(3)+1/7)/(-31/55+3/22*5^(1/2)) 2100908221114378 m005 (1/2*Zeta(3)-1/9)/(2*Catalan+1/2) 2100908222077559 r002 10th iterates of z^2 + 2100908232719802 a007 Real Root Of 221*x^4+367*x^3+317*x^2+827*x-564 2100908235926084 r009 Re(z^3+c),c=-19/62+13/31*I,n=11 2100908246596534 s002 sum(A098065[n]/(n*10^n+1),n=1..infinity) 2100908253839526 h001 (2/3*exp(2)+1/6)/(9/11*exp(1)+1/5) 2100908258802753 a007 Real Root Of -196*x^4+36*x^3+612*x^2-991*x-631 2100908259727384 m001 1+gamma(1)+GAMMA(19/24) 2100908268630504 m001 (Pi-ln(2)/ln(10))/(GAMMA(2/3)-gamma(3)) 2100908273513868 m001 Pi/(ln(2)/ln(10)*Psi(2,1/3)+GAMMA(13/24)) 2100908277943029 a001 987/3571*199^(9/11) 2100908281100682 m005 (1/2*Catalan-3/7)/(8/9*2^(1/2)+1/7) 2100908282065953 r002 24th iterates of z^2 + 2100908286560409 l006 ln(674/5509) 2100908290316098 m001 GAMMA(11/24)/Riemann1stZero/ln(GAMMA(23/24))^2 2100908307798484 m005 (1/2*Pi-4/7)/(-1/12+1/4*5^(1/2)) 2100908308908495 a007 Real Root Of 682*x^4+834*x^3-955*x^2+740*x+217 2100908317506655 m001 (-GAMMA(2/3)+Mills)/(3^(1/2)+cos(1)) 2100908333669036 r005 Re(z^2+c),c=-13/66+18/53*I,n=16 2100908337551138 r002 7th iterates of z^2 + 2100908353852962 m005 (5/6*gamma+1/2)/(2/5*Catalan-5/6) 2100908361729511 m005 (1/3*gamma+2/7)/(83/63+3/7*5^(1/2)) 2100908362351391 a007 Real Root Of -989*x^4-535*x^3-748*x^2+319*x+97 2100908371265554 m001 (Pi+Gompertz)/(KhinchinLevy+Lehmer) 2100908374249394 s002 sum(A281730[n]/((10^n+1)/n),n=1..infinity) 2100908376654700 m001 RenyiParking^(Zeta(1/2)*MadelungNaCl) 2100908389623654 m001 GAMMA(2/3)/Riemann1stZero*ln(GAMMA(5/24))^2 2100908390576742 m001 (Artin*CopelandErdos+ArtinRank2)/Artin 2100908391155717 m001 BesselI(0,1)+Zeta(1,2)^CopelandErdos 2100908392424791 r002 58th iterates of z^2 + 2100908404438117 h001 (4/11*exp(2)+3/10)/(1/11*exp(2)+3/4) 2100908405449041 m001 GAMMA(2/3)*GAMMA(5/6)^(Pi*2^(1/2)/GAMMA(3/4)) 2100908405449041 m001 GAMMA(2/3)*GAMMA(5/6)^GAMMA(1/4) 2100908423139920 m001 ln(2)+Grothendieck-Khinchin 2100908426220868 r005 Re(z^2+c),c=-33/82+28/53*I,n=13 2100908426529171 m001 1/MinimumGamma/ln(Cahen)*GAMMA(2/3) 2100908431524155 m001 cos(1/5*Pi)/LandauRamanujan2nd/Robbin 2100908437482826 a007 Real Root Of 402*x^4+58*x^3-232*x^2-781*x+173 2100908443636183 r002 21th iterates of z^2 + 2100908447054633 m001 (CareFree-Landau)/(ln(2)+Zeta(1/2)) 2100908454169949 l006 ln(1083/8852) 2100908455288997 r005 Im(z^2+c),c=-61/64+9/43*I,n=63 2100908457560413 a007 Real Root Of 254*x^4+458*x^3+144*x^2+237*x-839 2100908467435182 s002 sum(A282954[n]/((10^n+1)/n),n=1..infinity) 2100908471091464 l006 ln(4889/6032) 2100908472750589 s002 sum(A282984[n]/((10^n+1)/n),n=1..infinity) 2100908477251577 r005 Im(z^2+c),c=-23/58+22/63*I,n=44 2100908478072578 a007 Real Root Of 704*x^4-730*x^3+724*x^2-531*x+85 2100908482567202 r009 Re(z^3+c),c=-1/28+36/61*I,n=20 2100908482642608 m001 (GAMMA(19/24)+Khinchin)/(exp(1)-ln(2^(1/2)+1)) 2100908484963631 m004 -4+(5*Pi*Sec[Sqrt[5]*Pi])/3-Tanh[Sqrt[5]*Pi] 2100908487219818 s003 concatenated sequence A174646 2100908490655476 a005 (1/cos(12/191*Pi))^1682 2100908493511020 a003 cos(Pi*7/44)-cos(Pi*27/101) 2100908494392108 m005 (1/3*5^(1/2)+3/7)/(11/12*3^(1/2)+4) 2100908505622975 a001 2584/9349*199^(9/11) 2100908505889293 a007 Real Root Of 621*x^4-820*x^3-473*x^2-865*x+209 2100908506285761 m001 1/Paris*ln(GolombDickman)*TreeGrowth2nd 2100908506933047 m001 (-gamma(3)+GlaisherKinkelin)/(1-ln(5)) 2100908507738499 a003 cos(Pi*13/77)*cos(Pi*35/83) 2100908510910378 m005 (1/2*2^(1/2)+7/9)/(2/5*2^(1/2)-7/11) 2100908513348569 a007 Real Root Of -229*x^4-280*x^3+303*x^2-213*x+80 2100908520711118 r005 Re(z^2+c),c=-3/13+5/23*I,n=12 2100908520779127 m001 (Riemann3rdZero+ZetaQ(3))/(BesselI(1,1)+Kac) 2100908525333237 a007 Real Root Of -168*x^4+185*x^3+800*x^2-985*x-612 2100908529548278 a007 Real Root Of 260*x^4+482*x^3-315*x^2+13*x+822 2100908537277494 m001 (LambertW(1)-Zeta(5))/(arctan(1/2)+Pi^(1/2)) 2100908538667161 r002 10th iterates of z^2 + 2100908538841029 a001 6765/24476*199^(9/11) 2100908543687478 a001 17711/64079*199^(9/11) 2100908544394565 a001 46368/167761*199^(9/11) 2100908544497728 a001 121393/439204*199^(9/11) 2100908544512779 a001 317811/1149851*199^(9/11) 2100908544514975 a001 832040/3010349*199^(9/11) 2100908544515296 a001 2178309/7881196*199^(9/11) 2100908544515342 a001 5702887/20633239*199^(9/11) 2100908544515349 a001 14930352/54018521*199^(9/11) 2100908544515350 a001 39088169/141422324*199^(9/11) 2100908544515350 a001 102334155/370248451*199^(9/11) 2100908544515350 a001 267914296/969323029*199^(9/11) 2100908544515350 a001 701408733/2537720636*199^(9/11) 2100908544515350 a001 1836311903/6643838879*199^(9/11) 2100908544515350 a001 4807526976/17393796001*199^(9/11) 2100908544515350 a001 12586269025/45537549124*199^(9/11) 2100908544515350 a001 32951280099/119218851371*199^(9/11) 2100908544515350 a001 86267571272/312119004989*199^(9/11) 2100908544515350 a001 225851433717/817138163596*199^(9/11) 2100908544515350 a001 1548008755920/5600748293801*199^(9/11) 2100908544515350 a001 139583862445/505019158607*199^(9/11) 2100908544515350 a001 53316291173/192900153618*199^(9/11) 2100908544515350 a001 20365011074/73681302247*199^(9/11) 2100908544515350 a001 7778742049/28143753123*199^(9/11) 2100908544515350 a001 2971215073/10749957122*199^(9/11) 2100908544515350 a001 1134903170/4106118243*199^(9/11) 2100908544515350 a001 433494437/1568397607*199^(9/11) 2100908544515350 a001 165580141/599074578*199^(9/11) 2100908544515350 a001 63245986/228826127*199^(9/11) 2100908544515351 a001 24157817/87403803*199^(9/11) 2100908544515353 a001 9227465/33385282*199^(9/11) 2100908544515371 a001 3524578/12752043*199^(9/11) 2100908544515494 a001 1346269/4870847*199^(9/11) 2100908544516332 a001 514229/1860498*199^(9/11) 2100908544522081 a001 196418/710647*199^(9/11) 2100908544561486 a001 75025/271443*199^(9/11) 2100908544831569 a001 28657/103682*199^(9/11) 2100908545307930 a007 Real Root Of -566*x^4-828*x^3+525*x^2-955*x-975 2100908546682748 a001 10946/39603*199^(9/11) 2100908552704225 a007 Real Root Of -19*x^4-385*x^3+328*x^2+669*x+705 2100908559370915 a001 4181/15127*199^(9/11) 2100908560892933 p004 log(22777/18461) 2100908564329469 a007 Real Root Of 476*x^4+824*x^3-579*x^2-161*x+585 2100908571948021 a007 Real Root Of 24*x^4+493*x^3-204*x^2+712*x+975 2100908574102617 a007 Real Root Of 68*x^4-457*x^3+864*x^2-689*x+547 2100908583615147 m001 (Gompertz+Landau)/(exp(1/Pi)-FeigenbaumB) 2100908587760886 h001 (4/9*exp(1)+2/9)/(10/11*exp(2)+1/11) 2100908592122220 a001 10946/843*76^(1/9) 2100908594499970 a007 Real Root Of -127*x^4+478*x^3+x^2+889*x-191 2100908597305798 m001 1/(3^(1/3))/exp(MinimumGamma)/BesselJ(0,1) 2100908605285624 r005 Im(z^2+c),c=-83/98+7/44*I,n=63 2100908606036785 m002 Sinh[Pi]-Sinh[Pi]/Pi^3+Pi^2*Tanh[Pi] 2100908612531440 b008 JacobiCS[1/21,Pi] 2100908614731002 p001 sum(1/(605*n+499)/(10^n),n=0..infinity) 2100908626419009 m001 Catalan^2*ln(Artin)^2*sin(Pi/12) 2100908633617656 a007 Real Root Of -920*x^4-953*x^3-173*x^2+720*x-133 2100908637784995 a007 Real Root Of -168*x^4+47*x^3+368*x^2-976*x+34 2100908642259275 m005 (1/2*Zeta(3)+2/11)/(1/9*5^(1/2)-2/7) 2100908646336905 a001 1597/5778*199^(9/11) 2100908658950016 m001 (Niven-PrimesInBinary)/(Zeta(3)-sin(1/5*Pi)) 2100908659237727 r005 Re(z^2+c),c=-7/78+3/5*I,n=56 2100908663815600 m005 (1/2*Zeta(3)-11/12)/(1/2*3^(1/2)+7/11) 2100908671395007 a007 Real Root Of 657*x^4+770*x^3-628*x^2+906*x-984 2100908682402790 r008 a(0)=2,K{-n^6,83-92*n^3-28*n^2+27*n} 2100908683619010 m001 1/GAMMA(1/3)*exp(Champernowne)^2*GAMMA(5/24) 2100908689985653 a007 Real Root Of 133*x^4-872*x^3+754*x^2+753*x+585 2100908692028699 a001 11/233*55^(19/51) 2100908694747879 m001 (sin(1)+ln(5))/(HardyLittlewoodC4+Thue) 2100908696902809 r008 a(0)=2,K{-n^6,91-77*n^3-69*n^2+45*n} 2100908698205843 m008 (1/6*Pi^5-1/5)/(4/5*Pi^5-3) 2100908701701066 a001 305/161*199^(5/11) 2100908711416383 a007 Real Root Of 825*x^4-865*x^3-335*x^2-967*x-198 2100908717254009 a001 199/317811*6765^(7/51) 2100908723935101 h001 (5/9*exp(1)+3/7)/(2/11*exp(1)+3/7) 2100908724583575 m001 1/Lehmer*Cahen*exp(TwinPrimes) 2100908729502502 m001 RenyiParking^2/ln(CareFree)*log(2+sqrt(3)) 2100908729770371 r005 Re(z^2+c),c=-11/90+16/31*I,n=46 2100908730377296 l006 ln(409/3343) 2100908730377296 p004 log(3343/409) 2100908734704662 r005 Re(z^2+c),c=-5/6+8/41*I,n=8 2100908756267984 r005 Im(z^2+c),c=-53/102+3/8*I,n=48 2100908763923585 m005 (1/2*Pi-2/5)/(2/5*5^(1/2)-9/10) 2100908766160708 m006 (3/5*Pi-5)/(2/3*exp(Pi)-3/5) 2100908769770261 m008 (4*Pi+1/4)/(1/5*Pi^5-1/5) 2100908775303626 a005 (1/cos(13/173*Pi))^845 2100908776895748 a003 cos(Pi*19/98)/cos(Pi*35/94) 2100908779149519 r005 Im(z^2+c),c=-1/4+13/18*I,n=3 2100908780580903 m001 (Ei(1)*MertensB1+ZetaQ(2))/MertensB1 2100908787618037 r002 15th iterates of z^2 + 2100908800130919 a007 Real Root Of -316*x^4-381*x^3+337*x^2-731*x-400 2100908807451379 r005 Re(z^2+c),c=-19/23+3/58*I,n=52 2100908810737030 r005 Re(z^2+c),c=41/126+13/56*I,n=55 2100908814516574 a007 Real Root Of 629*x^4+851*x^3-691*x^2+384*x-506 2100908835284053 a005 (1/cos(22/227*Pi))^896 2100908844811109 b008 -22+Sech[E^(-2)] 2100908847623383 r002 25th iterates of z^2 + 2100908857572676 b008 13*SinIntegral[22] 2100908876198812 r008 a(0)=2,K{-n^6,5-5*n^3-3*n^2-8*n} 2100908876886669 a007 Real Root Of 524*x^4+838*x^3-656*x^2-226*x-17 2100908887872489 m009 (1/6*Psi(1,1/3)+1/5)/(3/10*Pi^2+6) 2100908895215681 m001 1/ln(Sierpinski)/HardHexagonsEntropy/Ei(1)^2 2100908896187383 m001 BesselK(1,1)^2/Conway^2*ln(GAMMA(1/3)) 2100908907981552 a001 1/610*3^(7/31) 2100908908051110 l006 ln(3794/4681) 2100908924300318 m001 (Zeta(3)+sin(1/5*Pi))/(1-Si(Pi)) 2100908931676752 m001 1/cos(Pi/12)^2/exp(DuboisRaymond)*cosh(1)^2 2100908932864847 r009 Re(z^3+c),c=-41/114+30/53*I,n=44 2100908937952566 r005 Re(z^2+c),c=-7/54+24/43*I,n=16 2100908939652944 a007 Real Root Of -683*x^4-813*x^3+958*x^2-938*x-432 2100908941431294 r005 Im(z^2+c),c=7/23+34/43*I,n=3 2100908952856507 m001 Zeta(3)^2*ln(BesselK(1,1))^2/sqrt(Pi) 2100908954169466 m001 (-CopelandErdos+MadelungNaCl)/(2^(1/3)-cos(1)) 2100908956541610 m001 1/GAMMA(5/24)*DuboisRaymond*exp(GAMMA(7/24))^2 2100908961349172 m001 (GAMMA(2/3)-exp(1))/(-Trott+TwinPrimes) 2100908961415432 m001 (exp(1/Pi)+StolarskyHarborth)/(Zeta(3)-Ei(1)) 2100908980134893 r009 Re(z^3+c),c=-9/58+49/60*I,n=21 2100908981971432 m001 GAMMA(19/24)^2*ln(LandauRamanujan)*LambertW(1) 2100908986813196 p004 log(19069/2333) 2100908987669856 m001 1/KhintchineLevy*MertensB1/exp(sinh(1))^2 2100908987910567 m005 (1/2*exp(1)+6/11)/(2/11*5^(1/2)+1/2) 2100909006879557 r002 10th iterates of z^2 + 2100909020118598 m001 (Catalan-FellerTornier)/(OneNinth+ZetaP(3)) 2100909028316112 a007 Real Root Of 915*x^4+555*x^3+149*x^2-851*x-182 2100909036669305 b008 77*E*Coth[Pi] 2100909037237551 r002 29th iterates of z^2 + 2100909040111546 r005 Im(z^2+c),c=-13/62+17/57*I,n=24 2100909041325809 l006 ln(962/7863) 2100909047009496 m001 (FeigenbaumC-exp(Pi)*Thue)/Thue 2100909049856173 m001 (Pi^(1/2)+MertensB1)/(OneNinth-Trott) 2100909061708997 m005 (1/2*exp(1)-1/10)/(7/9*Zeta(3)-7/8) 2100909064673650 s004 Continued Fraction of A353622 2100909069581188 m005 (1/2*3^(1/2)-2)/(5/8*5^(1/2)+4) 2100909071980679 a007 Real Root Of 622*x^4+697*x^3-822*x^2+567*x-835 2100909076684772 s004 Continued Fraction of A069307 2100909076684772 s004 Continued fraction of A069307 2100909079022112 a007 Real Root Of -319*x^4-529*x^3+400*x^2-255*x-992 2100909079486584 a007 Real Root Of 333*x^4-729*x^3+610*x^2-913*x+171 2100909083633855 m001 (BesselK(0,1)+cos(1/12*Pi))/(-Cahen+Conway) 2100909085429171 r009 Im(z^3+c),c=-29/86+21/29*I,n=30 2100909086091213 m001 (ArtinRank2+HardyLittlewoodC5)/(Kac-Paris) 2100909087720227 a007 Real Root Of 292*x^4+614*x^3+391*x^2+821*x+4 2100909093085449 a007 Real Root Of 26*x^4-470*x^3-693*x^2+853*x-14 2100909093679221 r005 Re(z^2+c),c=-85/106+11/60*I,n=49 2100909095770155 r005 Im(z^2+c),c=1/50+11/50*I,n=15 2100909109264639 a008 Real Root of (-3-x-3*x^2+x^3-3*x^4-2*x^5) 2100909109667747 r005 Im(z^2+c),c=7/58+7/40*I,n=7 2100909111069700 m001 (Zeta(5)+LaplaceLimit)/cos(1/5*Pi) 2100909115109742 m001 MertensB1^2*Si(Pi)*ln(GAMMA(1/4))^2 2100909139496931 m001 ln(GAMMA(5/12))^2/FeigenbaumC^2/cos(Pi/5) 2100909144390621 m001 (Zeta(1,2)+FeigenbaumMu)/(Salem+ZetaP(4)) 2100909149341136 m007 (-1/4*gamma+1)/(-1/5*gamma-2/5*ln(2)+4/5) 2100909151381289 a007 Real Root Of -355*x^4-497*x^3-56*x^2-897*x+670 2100909155260127 a007 Real Root Of -165*x^4+658*x^3-511*x^2+795*x+196 2100909158289676 r005 Im(z^2+c),c=-21/22+21/100*I,n=63 2100909164845068 p001 sum((-1)^n/(387*n+187)/n/(8^n),n=1..infinity) 2100909169202975 m001 (Catalan-Zeta(3))/(GAMMA(17/24)+ZetaP(4)) 2100909170862620 a007 Real Root Of -461*x^4-819*x^3+32*x^2-389*x+428 2100909173935123 m005 (1/3*3^(1/2)-1/11)/(3^(1/2)+7/12) 2100909182212632 m005 (1/2*Pi+1/5)/(1/7*exp(1)+5/11) 2100909183196327 a007 Real Root Of -37*x^4+248*x^3+526*x^2-187*x+306 2100909190101260 a007 Real Root Of -115*x^4+89*x^3+337*x^2-825*x-155 2100909192752259 m001 (Zeta(1,2)-GolombDickman)/(Porter-Sarnak) 2100909201866083 m005 (1/2*Catalan+1)/(2/3*Catalan+1/12) 2100909205333511 m001 1/Rabbit/ln(ArtinRank2)^2*TreeGrowth2nd^2 2100909213691550 m001 ZetaQ(2)^TwinPrimes*ZetaQ(2)^Robbin 2100909216595727 r005 Im(z^2+c),c=-18/13+1/42*I,n=3 2100909218243268 m001 GAMMA(11/12)^2*Conway/ln(Zeta(7))^2 2100909223427894 r009 Re(z^3+c),c=-1/66+31/42*I,n=37 2100909228313509 a007 Real Root Of 13*x^4+16*x^3-196*x^2-785*x-889 2100909231295459 m001 FransenRobinson^2/Backhouse/ln(BesselK(1,1))^2 2100909235019761 m001 (Conway+Sarnak)/(sin(1)+Champernowne) 2100909237066300 l006 ln(6493/8011) 2100909237248629 m001 (Pi^(1/2)+4)/(RenyiParking+2) 2100909242410549 a001 610/2207*199^(9/11) 2100909254138736 a007 Real Root Of -37*x^4-784*x^3-175*x^2-690*x+954 2100909259199361 m009 (6*Catalan+3/4*Pi^2+1/3)/(3/4*Psi(1,2/3)+4) 2100909260081575 a007 Real Root Of -309*x^4-203*x^3+921*x^2+304*x+711 2100909260116914 m001 (2^(1/3)+GAMMA(13/24))/(Conway+ZetaP(4)) 2100909271303942 l006 ln(553/4520) 2100909272332819 r002 21th iterates of z^2 + 2100909273321135 r005 Re(z^2+c),c=-9/44+19/60*I,n=17 2100909273994551 r009 Re(z^3+c),c=-31/64+20/39*I,n=18 2100909280872880 m005 (1/2*Zeta(3)-7/12)/(5/9*5^(1/2)-2/5) 2100909283281356 m001 (-Cahen+Otter)/(BesselI(0,1)+Zeta(1,-1)) 2100909293982887 r002 6th iterates of z^2 + 2100909302796018 a003 cos(Pi*30/77)/cos(Pi*13/29) 2100909321377970 r005 Re(z^2+c),c=-37/46+6/53*I,n=30 2100909322241651 p003 LerchPhi(1/25,4,281/190) 2100909329594883 m001 Sierpinski^2/KhintchineLevy^2*exp(Ei(1))^2 2100909332342374 a007 Real Root Of -428*x^4-777*x^3-302*x^2-922*x+529 2100909336216253 r005 Im(z^2+c),c=-43/118+20/59*I,n=18 2100909336313240 m005 (3/5*Pi+4)/(1/3*Catalan-1/3) 2100909339703642 m001 GAMMA(1/12)*Rabbit^2*ln(Zeta(5)) 2100909347297683 r005 Im(z^2+c),c=-5/13+17/49*I,n=24 2100909348089891 r005 Re(z^2+c),c=37/114+12/41*I,n=3 2100909348884366 a007 Real Root Of -335*x^4+360*x^3-818*x^2+704*x+188 2100909350447566 r005 Im(z^2+c),c=-25/26+25/111*I,n=27 2100909364572006 m001 (exp(1/Pi)+Landau)/(Psi(1,1/3)-cos(1/12*Pi)) 2100909367016618 a007 Real Root Of 206*x^4-698*x^3-344*x^2-827*x+195 2100909367432594 m001 (Artin-exp(Pi))/(-FeigenbaumC+RenyiParking) 2100909371838991 r005 Im(z^2+c),c=-5/28+13/45*I,n=18 2100909378411948 m001 GAMMA(23/24)/ln(2)/CareFree 2100909381292915 r009 Re(z^3+c),c=-5/27+23/25*I,n=3 2100909381345826 a001 370248451/377*121393^(11/24) 2100909381359502 a001 1860498/377*12586269025^(11/24) 2100909381672434 a007 Real Root Of 29*x^4+635*x^3+519*x^2-460*x-88 2100909422569457 m004 -1+15/Pi+5*Pi+ProductLog[Sqrt[5]*Pi] 2100909423674773 r005 Re(z^2+c),c=29/106+26/63*I,n=5 2100909425088778 a001 1/10959*2178309^(2/35) 2100909439911745 p003 LerchPhi(1/3,10,59/80) 2100909448912365 r004 Re(z^2+c),c=-17/46-1/11*I,z(0)=-1,n=4 2100909450961377 a007 Real Root Of 409*x^4+813*x^3+40*x^2-182*x-988 2100909456313999 r005 Im(z^2+c),c=-13/62+17/57*I,n=19 2100909458153653 a001 5778/13*317811^(7/23) 2100909459587550 r005 Im(z^2+c),c=-49/46+7/29*I,n=41 2100909460003175 a007 Real Root Of -735*x^4-457*x^3-111*x^2+869*x-172 2100909488646025 m005 (1/3*gamma+1/7)/(5*Pi+1/4) 2100909497131588 m001 gamma(1)*GAMMA(17/24)+GaussKuzminWirsing 2100909508269026 a001 29/5*17711^(5/38) 2100909510805716 r005 Im(z^2+c),c=-71/110+3/43*I,n=8 2100909522368715 r005 Im(z^2+c),c=-8/7+17/62*I,n=12 2100909523487598 m001 ln(Pi)/(polylog(4,1/2)+Trott2nd) 2100909535508459 r002 56th iterates of z^2 + 2100909542120295 m001 log(1+sqrt(2))^2/GAMMA(3/4)/ln(sqrt(3))^2 2100909542640127 p003 LerchPhi(1/64,4,589/224) 2100909558099095 a001 843/377*832040^(21/25) 2100909559996644 m001 (FeigenbaumB+Porter)/(2^(1/3)+Zeta(1,-1)) 2100909577069280 m005 (1/2*exp(1)-10/11)/(6/11*Pi+3/7) 2100909587825584 m001 1/ln(cosh(1))/Kolakoski/sinh(1)^2 2100909588719871 l006 ln(697/5697) 2100909594706187 r005 Im(z^2+c),c=-91/110+6/35*I,n=3 2100909596835644 a007 Real Root Of 544*x^4+547*x^3-927*x^2+378*x-640 2100909597194130 m005 (1/2*Pi-5/12)/(7/11*gamma-11/12) 2100909597626569 m001 (Pi+arctan(1/3))/(FeigenbaumD-MertensB2) 2100909603268537 m001 exp(1)^Landau/(ln(2)^Landau) 2100909604845016 a001 7/832040*5^(29/51) 2100909612855454 m001 Zeta(1,2)/exp(BesselJ(1,1))^2*cos(1) 2100909625974630 m001 1/ln(FeigenbaumKappa)^2/CareFree^2/Zeta(5) 2100909629273325 b008 Pi/5^(1/4) 2100909629273325 m001 Pi/sqrt(5)^(1/2) 2100909639903251 a007 Real Root Of 581*x^4+973*x^3-362*x^2+292*x-85 2100909641855320 r005 Im(z^2+c),c=-3/34+7/27*I,n=5 2100909644662728 r002 62th iterates of z^2 + 2100909646486411 a007 Real Root Of 32*x^4+660*x^3-268*x^2-184*x+449 2100909646497677 m001 (Psi(2,1/3)-Si(Pi))/(-gamma(2)+MertensB1) 2100909647005922 r005 Re(z^2+c),c=-21/86+11/19*I,n=17 2100909655686998 s002 sum(A268977[n]/(n^2*exp(n)+1),n=1..infinity) 2100909657171276 a007 Real Root Of 585*x^4+983*x^3-752*x^2-800*x-643 2100909660039972 r005 Re(z^2+c),c=-91/110+1/22*I,n=10 2100909667278748 v003 sum((1/2*n^3+7/2*n^2+8*n-2)/n^n,n=1..infinity) 2100909667650768 b008 3+7*CosIntegral[(5*Pi)/4] 2100909668967289 m005 (1/3*Zeta(3)-1/2)/(9/10*2^(1/2)-6) 2100909680889630 s002 sum(A268977[n]/(n^2*exp(n)-1),n=1..infinity) 2100909681231373 m008 (4*Pi^4+1/3)/(3/4*Pi-1/2) 2100909691832473 r005 Re(z^2+c),c=-17/48+11/19*I,n=6 2100909699564848 l006 ln(2699/3330) 2100909712083565 m001 (Si(Pi)+BesselI(0,2))/(Mills+TwinPrimes) 2100909715737798 m001 (LaplaceLimit+MertensB1)/TreeGrowth2nd 2100909716120958 r005 Im(z^2+c),c=-17/32+19/49*I,n=44 2100909722688815 m001 GaussKuzminWirsing/(sin(1/12*Pi)+KhinchinLevy) 2100909727886950 a001 843*(1/2*5^(1/2)+1/2)^15*4^(10/23) 2100909732262360 a007 Real Root Of 188*x^4-205*x^3-893*x^2+674*x-206 2100909735422528 m001 (PlouffeB+Salem)/(arctan(1/2)+FellerTornier) 2100909741371665 a007 Real Root Of -148*x^4+186*x^3+787*x^2-569*x-61 2100909748169062 a007 Real Root Of -547*x^4-566*x^3+892*x^2-425*x+578 2100909756190622 r005 Im(z^2+c),c=-49/66+5/62*I,n=37 2100909765236398 a001 1/726103*317811^(1/30) 2100909769464300 p003 LerchPhi(1/8,2,475/211) 2100909787516694 p003 LerchPhi(1/10,2,123/55) 2100909787923412 r002 13th iterates of z^2 + 2100909797436831 l006 ln(841/6874) 2100909801061881 r002 25th iterates of z^2 + 2100909809504620 m007 (-1/4*gamma-1/2*ln(2)-3/5)/(-1/3*gamma-5) 2100909812823863 r002 14th iterates of z^2 + 2100909820123550 m001 (Sierpinski+ZetaQ(4))/(sin(1/5*Pi)+Cahen) 2100909842845326 q001 254/1209 2100909861182000 a007 Real Root Of -501*x^4+10*x^3-622*x^2+959*x+230 2100909865032953 r008 a(0)=2,K{-n^6,-1-4*n^3-9*n^2+3*n} 2100909866713789 m001 (Psi(1,1/3)+RenyiParking)/(-Salem+TwinPrimes) 2100909872449361 a001 3571/2178309*3^(7/31) 2100909873055335 m001 2*GAMMA(2/3)-2*GaussKuzminWirsing 2100909873314641 r009 Re(z^3+c),c=-19/56+27/53*I,n=29 2100909883926910 a007 Real Root Of -49*x^4+433*x^3+749*x^2-752*x+84 2100909884112838 a007 Real Root Of 337*x^4+537*x^3+748*x^2-744*x-185 2100909885462922 m001 ln(2)^gamma(3)/PlouffeB 2100909890333725 r002 10th iterates of z^2 + 2100909892190140 r005 Im(z^2+c),c=-11/13+2/13*I,n=41 2100909892704167 m001 (gamma(3)-FeigenbaumC)/(QuadraticClass-Trott) 2100909893849904 r008 a(0)=0,K{-n^6,47+11*n^3+23*n^2-33*n} 2100909899006453 m001 (ln(Pi)+arctan(1/3)*Cahen)/Cahen 2100909905056274 h001 (7/11*exp(2)+1/10)/(4/5*exp(1)+1/9) 2100909908625265 a007 Real Root Of 561*x^4+863*x^3-303*x^2+419*x-709 2100909910287964 a007 Real Root Of -251*x^4-120*x^3+768*x^2+46*x+484 2100909911934941 m001 (-Ei(1)+GAMMA(19/24))/(BesselI(0,1)-ln(5)) 2100909912671527 a007 Real Root Of 671*x^4+977*x^3-984*x^2-393*x-495 2100909914460505 m005 (1/2*exp(1)+5/8)/(4/7*5^(1/2)-1/3) 2100909920341275 m003 -1+Cosh[1/2+Sqrt[5]/2]^2/6+Tan[1/2+Sqrt[5]/2] 2100909920712627 r002 28th iterates of z^2 + 2100909924532930 r002 36th iterates of z^2 + 2100909924630428 m001 (Pi^(1/2)+Bloch)/(Lehmer+PlouffeB) 2100909930738827 a007 Real Root Of 323*x^4+876*x^3+666*x^2+605*x+162 2100909942409803 m001 1/BesselK(0,1)/Sierpinski^2/exp(sqrt(2))^2 2100909945127891 l006 ln(985/8051) 2100909950665889 a007 Real Root Of -22*x^4-489*x^3-525*x^2+784*x-319 2100909965282283 a001 1/75640*121393^(17/27) 2100909965690594 r002 33th iterates of z^2 + 2100909967165097 r005 Re(z^2+c),c=-15/62+3/19*I,n=10 2100909967916461 p003 LerchPhi(1/100,4,263/178) 2100909985353113 h001 (-10*exp(1)-2)/(-exp(2)+6) 2100909989188892 a007 Real Root Of 480*x^4+587*x^3-855*x^2-18*x-172 2100910001786148 m001 1/ln(FeigenbaumB)^2*FeigenbaumDelta/TwinPrimes 2100910001924881 m001 (sin(1)+ln(2))/(-Pi^(1/2)+FeigenbaumAlpha) 2100910028821441 r009 Re(z^3+c),c=-47/110+13/24*I,n=42 2100910046760737 p003 LerchPhi(1/16,9,77/108) 2100910053251747 a001 3/29*11^(13/44) 2100910055143982 l006 ln(1129/9228) 2100910056740396 m001 (GAMMA(17/24)-Cahen)/(ln(5)+exp(1/exp(1))) 2100910060938896 m001 1/ln(Niven)/ErdosBorwein^2/sin(Pi/5)^2 2100910061208265 b008 3+18*Coth[1+Pi] 2100910064472128 m005 (1/2*Catalan+3/11)/(1/12*Catalan-1/9) 2100910065036562 a007 Real Root Of 9*x^4-236*x^3-353*x^2+215*x-354 2100910066925815 m001 1/Zeta(9)/ln(ArtinRank2)^2*sqrt(1+sqrt(3))^2 2100910067168963 m008 (2/5*Pi^5-5)/(3/5*Pi^2-1/3) 2100910074140010 r009 Re(z^3+c),c=-9/28+22/47*I,n=15 2100910075169423 m008 (1/6*Pi^4-1/3)/(3/4*Pi^2+1/6) 2100910081210102 m001 (Chi(1)*Riemann2ndZero-Trott)/Chi(1) 2100910085676831 m001 GAMMA(11/24)^2/ln(CopelandErdos)^2*sinh(1) 2100910089630653 r005 Im(z^2+c),c=-63/52+9/46*I,n=7 2100910112446665 r005 Im(z^2+c),c=-4/7+5/18*I,n=12 2100910124325204 a007 Real Root Of 334*x^4-544*x^3-878*x^2-580*x+165 2100910127775617 m001 (Champernowne-FeigenbaumD)/(Khinchin-Porter) 2100910128442731 l006 ln(7002/8639) 2100910134374711 a007 Real Root Of -248*x^4-588*x^3-430*x^2-207*x+842 2100910138965687 r002 36th iterates of z^2 + 2100910149822056 m001 (-Sarnak+Sierpinski)/(2^(1/3)-Artin) 2100910161199329 m008 (1/2*Pi^3+4)/(2*Pi+3) 2100910163029579 r009 Re(z^3+c),c=-29/78+34/59*I,n=53 2100910165516706 a007 Real Root Of -445*x^4-576*x^3+655*x^2-427*x-460 2100910178764491 m001 (Landau+ZetaQ(2))/(Zeta(3)+GAMMA(13/24)) 2100910179688436 m001 (Conway-Stephens)/(Pi+arctan(1/3)) 2100910182340038 m005 (1/2*Zeta(3)-1)/(5/7*2^(1/2)+8/9) 2100910184349939 a007 Real Root Of 736*x^4-810*x^3+753*x^2-537*x-155 2100910184392572 s002 sum(A161851[n]/(n^3*2^n-1),n=1..infinity) 2100910184860223 r009 Re(z^3+c),c=-19/58+10/21*I,n=14 2100910191653810 m001 1/LandauRamanujan*Khintchine^2/ln(cos(Pi/5))^2 2100910195012682 m001 (3^(1/2)+BesselI(0,1))/(-GAMMA(7/12)+Otter) 2100910195346983 m009 (8/5*Catalan+1/5*Pi^2+3/4)/(2*Psi(1,1/3)-1/4) 2100910196647561 r005 Im(z^2+c),c=-9/58+9/32*I,n=9 2100910199738414 a007 Real Root Of -469*x^4-646*x^3+794*x^2-20*x-400 2100910201652315 r005 Im(z^2+c),c=-11/30+14/41*I,n=25 2100910202769349 a007 Real Root Of 225*x^4+353*x^3-70*x^2+506*x+262 2100910218050528 a001 18*(1/2*5^(1/2)+1/2)^11*7^(10/11) 2100910218225971 a007 Real Root Of -421*x^4-523*x^3+346*x^2-514*x+745 2100910219852888 r005 Re(z^2+c),c=1/46+2/61*I,n=5 2100910225178285 m001 (Artin-Magata)/(MertensB1-Niven) 2100910232680848 a007 Real Root Of 352*x^4+470*x^3-239*x^2+628*x-125 2100910233017366 a007 Real Root Of 290*x^4+314*x^3-124*x^2+750*x-615 2100910235611054 m001 (Backhouse-Niven)/(sin(1/12*Pi)-exp(1/exp(1))) 2100910240180540 m001 1/Magata/ln(GaussKuzminWirsing)^2*Zeta(7)^2 2100910240882223 m001 (2^(1/3)-3^(1/3))/(Thue+ZetaQ(3)) 2100910248866879 m001 sin(1/5*Pi)*Niven+ln(3) 2100910251246422 m005 (1/2*2^(1/2)+4/5)/(109/180+1/20*5^(1/2)) 2100910253119502 r002 36th iterates of z^2 + 2100910253123947 r005 Im(z^2+c),c=-7/30+12/41*I,n=3 2100910257878990 a007 Real Root Of -517*x^4-957*x^3+405*x^2+652*x+780 2100910275464728 a001 39088169/3*521^(4/9) 2100910276626297 m001 (Zeta(1,2)+LaplaceLimit)/(Mills+ZetaQ(4)) 2100910285513927 h001 (7/11*exp(2)+1/8)/(3/5*exp(1)+2/3) 2100910291953980 r005 Im(z^2+c),c=1/32+39/64*I,n=13 2100910312252282 m006 (1/6/Pi+1/4)/(3*Pi+5) 2100910320442578 m001 GAMMA(1/4)/exp((3^(1/3)))^2*Zeta(5) 2100910323643390 r005 Re(z^2+c),c=-4/19+19/64*I,n=20 2100910330282837 m001 (Chi(1)-Landau)/(-OrthogonalArrays+ZetaQ(4)) 2100910330989281 m001 Riemann2ndZero-StolarskyHarborth^(3^(1/2)) 2100910338120512 m001 2*Shi(1)*Pi/GAMMA(5/6)*FeigenbaumMu 2100910343584915 a007 Real Root Of 72*x^4-216*x^3+484*x^2-921*x-217 2100910345161417 m001 (cos(1)+Magata)/(OrthogonalArrays+Weierstrass) 2100910350659806 p003 LerchPhi(1/125,3,372/221) 2100910356859976 a007 Real Root Of -538*x^4-580*x^3+975*x^2+16*x+833 2100910361985991 a007 Real Root Of 584*x^4+811*x^3-574*x^2+351*x-586 2100910377932028 m001 1/Porter^2/ln(LaplaceLimit)^2*BesselJ(0,1) 2100910395040299 b008 6^Erfc[EulerGamma] 2100910397450718 l006 ln(4303/5309) 2100910402360673 m001 (cos(1/5*Pi)-ln(Pi))/(ErdosBorwein-ZetaQ(3)) 2100910404477171 m001 (ln(Pi)+TwinPrimes)/Thue 2100910408423117 b008 ArcCot[34+5*E] 2100910409612073 a001 199/10946*1597^(1/51) 2100910410109245 p004 log(17467/2137) 2100910416684609 r005 Im(z^2+c),c=-41/62+32/55*I,n=4 2100910419487215 m004 -1+625/Pi+(25*ProductLog[Sqrt[5]*Pi])/Pi 2100910431217775 a001 1/709804*(1/2*5^(1/2)+1/2)^4*24476^(1/13) 2100910435979167 m003 1/3+Cos[1/2+Sqrt[5]/2]/4-Sinh[1/2+Sqrt[5]/2] 2100910437468514 m002 Cosh[Pi]/Pi^5+(4*Tanh[Pi])/E^Pi 2100910440672761 r002 5th iterates of z^2 + 2100910445648058 a001 15127/13*34^(32/39) 2100910446236466 a005 (1/sin(69/206*Pi))^185 2100910460710781 a007 Real Root Of 14*x^4-280*x^3+348*x^2-3*x+794 2100910462509363 a003 sin(Pi*5/93)/sin(Pi*31/105) 2100910468523248 a001 2207/1346269*3^(7/31) 2100910473474763 g005 1/2*csc(1/8*Pi)/GAMMA(8/9)*2^(1/2)*GAMMA(3/4) 2100910480014482 r005 Im(z^2+c),c=-41/118+19/60*I,n=8 2100910483281271 a007 Real Root Of 466*x^4+394*x^3-815*x^2+651*x-460 2100910499402977 m005 (1/2*Zeta(3)-7/8)/(2/7*2^(1/2)+9/10) 2100910509885535 r005 Re(z^2+c),c=-1/20+25/62*I,n=2 2100910511346491 a007 Real Root Of -486*x^4-804*x^3+783*x^2+965*x+584 2100910513340159 m001 (-Tribonacci+Trott)/(Shi(1)-Tetranacci) 2100910513607492 q001 1/4759841 2100910520957500 m006 (3*exp(Pi)-1)/(1/6*exp(Pi)-3/5) 2100910538614910 r005 Im(z^2+c),c=-17/58+18/53*I,n=7 2100910542108998 m001 1/Niven*exp(MertensB1)/GAMMA(1/4) 2100910552965342 r005 Re(z^2+c),c=-15/11+11/58*I,n=4 2100910560372756 m001 (TravellingSalesman+ZetaP(4))/(Pi+Kac) 2100910565138382 m001 (LambertW(1)+ln(5))/(-Ei(1)+Thue) 2100910565260987 m002 -2+Pi^4-Pi^5+6*Csch[Pi] 2100910568452941 r005 Re(z^2+c),c=33/98+13/55*I,n=56 2100910571397188 p001 sum(1/(326*n+295)/n/(8^n),n=1..infinity) 2100910584318503 m001 DuboisRaymond*(Psi(1,1/3)+CareFree) 2100910585833122 r005 Im(z^2+c),c=-23/98+4/13*I,n=10 2100910597393827 r005 Im(z^2+c),c=-39/118+27/43*I,n=22 2100910602214359 h001 (7/9*exp(1)+1/11)/(1/10*exp(1)+7/9) 2100910614000961 h001 (10/11*exp(1)+1/7)/(2/11*exp(1)+3/4) 2100910616372014 p004 log(36299/4441) 2100910628801785 r009 Re(z^3+c),c=-4/21+38/45*I,n=2 2100910634374848 a007 Real Root Of 897*x^4+84*x^3+646*x^2-876*x+153 2100910636274041 a001 228826127/2*2584^(22/23) 2100910638193743 m001 (exp(1/Pi)+Kolakoski)/(Lehmer+TreeGrowth2nd) 2100910642042265 a007 Real Root Of -155*x^4+116*x^3-428*x^2+13*x+23 2100910654673533 m004 -3+375*Pi*Log[Sqrt[5]*Pi]*Tan[Sqrt[5]*Pi] 2100910655437711 a007 Real Root Of -510*x^4-37*x^3-862*x^2+811*x-131 2100910657891371 r009 Im(z^3+c),c=-5/102+12/55*I,n=5 2100910663313598 m001 (LaplaceLimit+PlouffeB)/(Psi(2,1/3)-Zeta(1,2)) 2100910665112022 m001 Zeta(1,2)/exp(BesselJ(0,1))^2/cos(Pi/12) 2100910667421192 r005 Im(z^2+c),c=-71/82+6/31*I,n=27 2100910675728767 r005 Im(z^2+c),c=9/62+8/51*I,n=4 2100910680601798 r005 Re(z^2+c),c=19/78+24/47*I,n=13 2100910683622500 m001 1/exp(Ei(1))^2*Riemann3rdZero/GAMMA(13/24)^2 2100910687333290 r005 Im(z^2+c),c=-11/14+10/111*I,n=20 2100910687801165 a001 4/5*17711^(33/41) 2100910690362429 m001 Khintchine^2*CareFree*exp(Rabbit)^2 2100910693361675 a007 Real Root Of -851*x^4+503*x^3+733*x^2+222*x-82 2100910701733929 a007 Real Root Of 483*x^4+788*x^3-572*x^2-41*x+336 2100910703618469 b008 17/2+LogGamma[Pi^2] 2100910705662132 r005 Im(z^2+c),c=-79/78+17/64*I,n=5 2100910712942532 m005 (2/5*gamma+4/5)/(4*2^(1/2)-3/4) 2100910714824848 a007 Real Root Of 599*x^4+872*x^3-951*x^2-20*x+572 2100910716325590 l006 ln(5907/7288) 2100910735553332 m001 Zeta(1,-1)^GolombDickman/(Zeta(1,-1)^Zeta(5)) 2100910742001620 r005 Re(z^2+c),c=19/64+13/62*I,n=42 2100910756253003 m001 cos(1/12*Pi)*(Landau-exp(1)) 2100910759396483 a001 2889*165580141^(22/23) 2100910762198535 m001 (Magata+MasserGramain)/(Conway+Kac) 2100910774582242 a007 Real Root Of 798*x^4-812*x^3+490*x^2-798*x+152 2100910774678740 r005 Re(z^2+c),c=-91/110+4/43*I,n=10 2100910776432880 m001 sin(Pi/5)*ln(FeigenbaumKappa)*sinh(1) 2100910790400508 r005 Im(z^2+c),c=-41/40+11/47*I,n=49 2100910796796762 m003 -49/10+Sqrt[5]/2+E^(1/2+Sqrt[5]/2)/3 2100910802581452 m001 Zeta(3)+Landau^ZetaP(3) 2100910807684276 l006 ln(144/1177) 2100910820724351 a001 72/161*1364^(8/15) 2100910827820688 m001 GolombDickman-FeigenbaumB-gamma(3) 2100910838084566 a001 199/3*34^(17/52) 2100910841766955 a007 Real Root Of -691*x^4-845*x^3+813*x^2-543*x+897 2100910843002367 b008 ProductLog[E^(1/8+E)] 2100910850020405 a007 Real Root Of 243*x^4+507*x^3-84*x^2-338*x-372 2100910853451628 a001 322/5*8^(29/51) 2100910853527914 r005 Re(z^2+c),c=-11/82+31/63*I,n=28 2100910854749828 r002 40th iterates of z^2 + 2100910855012688 r005 Im(z^2+c),c=-61/118+20/53*I,n=60 2100910872568312 r005 Im(z^2+c),c=-9/14+11/24*I,n=18 2100910877112754 r005 Re(z^2+c),c=-5/36+27/56*I,n=34 2100910880339349 m001 (5^(1/2)+KhinchinHarmonic)/Ei(1) 2100910881500826 a007 Real Root Of -431*x^4-517*x^3+524*x^2-185*x+901 2100910884235413 m001 1/Kolakoski^2*exp(DuboisRaymond)/Catalan 2100910889812661 m001 (ln(Pi)+BesselI(1,1))/(Artin+TreeGrowth2nd) 2100910889887604 m005 (1/3*gamma-1/5)/(-3/35+1/5*5^(1/2)) 2100910891604024 m001 (Si(Pi)+Zeta(3))/(-GAMMA(2/3)+FransenRobinson) 2100910892333733 a007 Real Root Of 233*x^4-92*x^3-846*x^2+657*x-278 2100910893055616 r005 Im(z^2+c),c=-35/66+16/43*I,n=38 2100910895177714 a007 Real Root Of -136*x^4+196*x^3+732*x^2-913*x-682 2100910899006796 l006 ln(7511/9267) 2100910915966300 m003 -5/4+18*Cot[1/2+Sqrt[5]/2] 2100910917671258 h001 (2/5*exp(1)+1/3)/(6/7*exp(2)+3/7) 2100910919824731 a007 Real Root Of -254*x^4-34*x^3+575*x^2-834*x+343 2100910962352474 a007 Real Root Of 36*x^4-292*x^3-505*x^2+546*x-33 2100910994361776 m005 (1/2*Catalan-7/9)/(-47/176+3/16*5^(1/2)) 2100911006617706 m001 (Chi(1)+ErdosBorwein)/(Sarnak+TreeGrowth2nd) 2100911007940472 a003 cos(Pi*8/35)-sin(Pi*31/75) 2100911008793081 a003 sin(Pi*22/67)/cos(Pi*41/112) 2100911011056163 r005 Re(z^2+c),c=7/64+11/30*I,n=6 2100911018685439 m001 (FeigenbaumC+LaplaceLimit)/(2^(1/3)+gamma(1)) 2100911022019864 a003 -cos(3/7*Pi)-cos(1/9*Pi)-3^(1/2)+cos(5/24*Pi) 2100911035672541 m001 (exp(Pi)+1)/(-Gompertz+KhinchinHarmonic) 2100911037192582 m001 Zeta(1,2)*Sierpinski+FellerTornier 2100911043421235 h001 (7/12*exp(2)+9/11)/(6/7*exp(1)+1/9) 2100911065737357 m001 1/GAMMA(13/24)/exp(ArtinRank2)/Zeta(3)^2 2100911067872930 a007 Real Root Of -558*x^4-699*x^3+990*x^2-469*x-966 2100911069436150 m001 1/Khintchine/sqrt(Pi) 2100911069436150 m001 1/Pi^(1/2)/Khinchin 2100911069436150 m001 sqrt(Pi)/Khinchin/Pi 2100911070735084 m005 (1/3*Zeta(3)+1/2)/(1/9*Pi-7/9) 2100911071946209 s002 sum(A036474[n]/((2*n)!),n=1..infinity) 2100911075100858 a007 Real Root Of -242*x^4-204*x^3+303*x^2-570*x+288 2100911079735236 r009 Re(z^3+c),c=-23/78+29/43*I,n=40 2100911083901274 a007 Real Root Of 477*x^4+729*x^3-609*x^2-250*x-370 2100911088988235 m005 (1/2*5^(1/2)+7/10)/(1/4*Catalan+7/11) 2100911102694658 a007 Real Root Of 723*x^4+579*x^3+210*x^2-346*x-78 2100911104579356 r005 Re(z^2+c),c=-11/74+28/39*I,n=9 2100911110606766 r005 Im(z^2+c),c=-45/98+4/11*I,n=34 2100911114135553 a001 28657/2207*76^(1/9) 2100911115795303 a007 Real Root Of 312*x^4+394*x^3-813*x^2-859*x-641 2100911131150616 m001 (Pi-Zeta(5))/(ln(gamma)-ZetaP(2)) 2100911139897517 m001 GAMMA(19/24)/Salem/Weierstrass 2100911140339816 m005 (1/6*Catalan-4/5)/(3*Catalan+1/3) 2100911147949239 r005 Im(z^2+c),c=-83/126+1/48*I,n=23 2100911162836815 r005 Re(z^2+c),c=-11/94+37/64*I,n=28 2100911172340348 r005 Im(z^2+c),c=-9/14+43/163*I,n=25 2100911172687137 b008 13*SinIntegral[7*Pi] 2100911175978895 r005 Re(z^2+c),c=7/23+11/51*I,n=54 2100911198090347 m001 MadelungNaCl/Tribonacci/ZetaP(2) 2100911206232665 r002 43th iterates of z^2 + 2100911232948370 m005 (19/28+1/4*5^(1/2))/(1/11*Zeta(3)-6) 2100911235685152 s002 sum(A203861[n]/(n^3*exp(n)+1),n=1..infinity) 2100911240519702 r009 Re(z^3+c),c=-21/86+4/5*I,n=2 2100911249663472 a001 1/4*76^(29/59) 2100911252948392 r005 Im(z^2+c),c=-41/106+13/37*I,n=17 2100911259809704 r005 Im(z^2+c),c=-37/44+1/54*I,n=6 2100911260293048 a007 Real Root Of -585*x^4-929*x^3+812*x^2+662*x+589 2100911264602858 a007 Real Root Of -671*x^4-994*x^3+703*x^2-545*x-393 2100911264668802 m001 Porter*ln(Lehmer)^3 2100911269702732 r002 21th iterates of z^2 + 2100911269870526 a007 Real Root Of 314*x^4+420*x^3-542*x^2+142*x+468 2100911271323520 r002 19th iterates of z^2 + 2100911271930356 a001 64300051206*21^(7/18) 2100911273723496 a001 124*(1/2*5^(1/2)+1/2)^16*11^(17/20) 2100911280339802 m001 (Si(Pi)+Catalan)/(ln(2)+GolombDickman) 2100911298425328 m005 (1/2*gamma+2/3)/(1/6*exp(1)-5) 2100911309205470 m001 1/exp(GAMMA(1/4))^2/Tribonacci^2*Zeta(9) 2100911309474252 g001 Psi(9/11,29/43) 2100911313477442 a007 Real Root Of -708*x^4-998*x^3+928*x^2-135*x+159 2100911315237112 r005 Im(z^2+c),c=-53/114+22/61*I,n=27 2100911322592274 m005 (1/2*Zeta(3)-1)/(7/10*2^(1/2)+10/11) 2100911326265602 m001 Bloch*Trott2nd-Riemann2ndZero 2100911337866153 a007 Real Root Of -746*x^4-768*x^3+730*x^2+980*x+168 2100911344745988 m001 (1-LandauRamanujan)/(Rabbit+ThueMorse) 2100911345445187 a001 72/161*3571^(8/17) 2100911350891625 m001 Lehmer^GAMMA(11/24)/sqrt(3) 2100911354891626 r002 5th iterates of z^2 + 2100911363366799 m001 (Lehmer+QuadraticClass)/(BesselK(1,1)-Conway) 2100911369726575 r005 Im(z^2+c),c=-67/126+13/43*I,n=12 2100911370750612 a007 Real Root Of -114*x^4-65*x^3+72*x^2-757*x-290 2100911373008551 g007 Psi(2,2/9)+Psi(2,3/8)-Psi(2,5/8)-Psi(2,6/7) 2100911393772499 r008 a(0)=2,K{-n^6,-9-3*n^3-3*n^2+3*n} 2100911404891167 r005 Re(z^2+c),c=-3/17+21/53*I,n=23 2100911406598063 m005 (1/2*gamma-3/4)/(3*3^(1/2)-3) 2100911406927098 a007 Real Root Of 93*x^4-73*x^3-250*x^2+320*x-713 2100911412854280 a001 72/161*9349^(8/19) 2100911414016586 a007 Real Root Of -382*x^4-595*x^3+402*x^2+57*x+270 2100911418976547 m001 (BesselI(0,2)+Mills)/(Niven+ZetaQ(4)) 2100911420140225 r005 Re(z^2+c),c=-133/110+5/29*I,n=40 2100911420830257 g005 GAMMA(3/7)*GAMMA(1/7)/GAMMA(5/11)/GAMMA(3/11) 2100911421639083 a001 72/161*24476^(8/21) 2100911422797089 a001 72/161*64079^(8/23) 2100911422975056 a001 72/161*(1/2+1/2*5^(1/2))^8 2100911422975056 a001 72/161*23725150497407^(1/8) 2100911422975056 a001 72/161*505019158607^(1/7) 2100911422975056 a001 72/161*73681302247^(2/13) 2100911422975056 a001 72/161*10749957122^(1/6) 2100911422975056 a001 72/161*4106118243^(4/23) 2100911422975056 a001 72/161*1568397607^(2/11) 2100911422975056 a001 72/161*599074578^(4/21) 2100911422975056 a001 72/161*228826127^(1/5) 2100911422975056 a001 72/161*87403803^(4/19) 2100911422975056 a001 72/161*33385282^(2/9) 2100911422975059 a001 72/161*12752043^(4/17) 2100911422975078 a001 72/161*4870847^(1/4) 2100911422975218 a001 72/161*1860498^(4/15) 2100911422976245 a001 72/161*710647^(2/7) 2100911422983829 a001 72/161*271443^(4/13) 2100911423040201 a001 72/161*103682^(1/3) 2100911423462157 a001 72/161*39603^(4/11) 2100911426647559 a001 72/161*15127^(2/5) 2100911429197155 p003 LerchPhi(1/256,2,49/71) 2100911439320362 a003 sin(Pi*38/89)-sin(Pi*36/77) 2100911439414784 a007 Real Root Of -465*x^4-628*x^3+542*x^2-875*x-995 2100911443486118 m001 Riemann2ndZero-ZetaR(2)^BesselI(0,2) 2100911450548989 a007 Real Root Of 225*x^4-37*x^3-623*x^2+562*x-796 2100911450943620 a001 72/161*5778^(4/9) 2100911451821803 p004 log(10781/1319) 2100911452705767 r005 Im(z^2+c),c=-7/5+7/107*I,n=4 2100911455523482 m001 Trott*(Paris+Tribonacci) 2100911461749287 m001 (GAMMA(5/6)-FeigenbaumMu)/(Landau-Niven) 2100911463061345 a001 1/64300051206*123^(1/16) 2100911480214513 r002 26th iterates of z^2 + 2100911481657638 m001 ZetaQ(3)/(Otter^ln(2+3^(1/2))) 2100911482092846 a001 75025/5778*76^(1/9) 2100911496641437 a007 Real Root Of -434*x^4-496*x^3+742*x^2-700*x-890 2100911497703587 m001 exp(Catalan)^2/Riemann2ndZero/sqrt(2) 2100911502270639 m009 (1/3*Psi(1,2/3)-2/3)/(1/3*Psi(1,2/3)+2/3) 2100911508364200 m005 (1/2*3^(1/2)-7/12)/(1/5*gamma-1/4) 2100911509217489 m001 FransenRobinson-ln(3)*Cahen 2100911512534918 a007 Real Root Of -358*x^4-165*x^3+907*x^2-348*x+710 2100911517510402 a001 39603/8*89^(19/59) 2100911520064226 a007 Real Root Of -382*x^4+999*x^3-306*x^2+940*x+221 2100911529238383 m001 (exp(Pi)-gamma(3))/(Kac+PlouffeB) 2100911530762884 l006 ln(1175/9604) 2100911533486638 a007 Real Root Of -84*x^4+245*x^3+684*x^2-132*x+612 2100911535777102 a001 196418/15127*76^(1/9) 2100911540262754 m005 (1/2*5^(1/2)-1/6)/(3*2^(1/2)+2/7) 2100911543609530 a001 514229/39603*76^(1/9) 2100911544752265 a001 1346269/103682*76^(1/9) 2100911544918988 a001 3524578/271443*76^(1/9) 2100911544943313 a001 9227465/710647*76^(1/9) 2100911544946862 a001 24157817/1860498*76^(1/9) 2100911544947380 a001 63245986/4870847*76^(1/9) 2100911544947455 a001 165580141/12752043*76^(1/9) 2100911544947466 a001 433494437/33385282*76^(1/9) 2100911544947468 a001 1134903170/87403803*76^(1/9) 2100911544947468 a001 2971215073/228826127*76^(1/9) 2100911544947468 a001 7778742049/599074578*76^(1/9) 2100911544947468 a001 20365011074/1568397607*76^(1/9) 2100911544947468 a001 53316291173/4106118243*76^(1/9) 2100911544947468 a001 139583862445/10749957122*76^(1/9) 2100911544947468 a001 365435296162/28143753123*76^(1/9) 2100911544947468 a001 956722026041/73681302247*76^(1/9) 2100911544947468 a001 2504730781961/192900153618*76^(1/9) 2100911544947468 a001 10610209857723/817138163596*76^(1/9) 2100911544947468 a001 4052739537881/312119004989*76^(1/9) 2100911544947468 a001 1548008755920/119218851371*76^(1/9) 2100911544947468 a001 591286729879/45537549124*76^(1/9) 2100911544947468 a001 7787980473/599786069*76^(1/9) 2100911544947468 a001 86267571272/6643838879*76^(1/9) 2100911544947468 a001 32951280099/2537720636*76^(1/9) 2100911544947468 a001 12586269025/969323029*76^(1/9) 2100911544947468 a001 4807526976/370248451*76^(1/9) 2100911544947468 a001 1836311903/141422324*76^(1/9) 2100911544947469 a001 701408733/54018521*76^(1/9) 2100911544947473 a001 9238424/711491*76^(1/9) 2100911544947502 a001 102334155/7881196*76^(1/9) 2100911544947700 a001 39088169/3010349*76^(1/9) 2100911544949055 a001 14930352/1149851*76^(1/9) 2100911544958346 a001 5702887/439204*76^(1/9) 2100911545022029 a001 2178309/167761*76^(1/9) 2100911545458515 a001 832040/64079*76^(1/9) 2100911547370039 b008 ArcSech[LogGamma[E^(-1/3)]] 2100911548450236 a001 10959/844*76^(1/9) 2100911549741055 m005 (3/5*Pi+1/5)/(1/3*gamma+4/5) 2100911557159998 m001 (sin(1/12*Pi)+Pi^(1/2))/(3^(1/2)-BesselJ(0,1)) 2100911568955798 a001 121393/9349*76^(1/9) 2100911569497633 r009 Re(z^3+c),c=-41/102+37/62*I,n=50 2100911570306807 r009 Re(z^3+c),c=-1/4+14/53*I,n=13 2100911571761059 l006 ln(1604/1979) 2100911576656614 r005 Im(z^2+c),c=-6/7+21/128*I,n=61 2100911594232715 m001 ZetaP(2)/Totient/ErdosBorwein 2100911597588854 r005 Im(z^2+c),c=-5/7+33/112*I,n=6 2100911604328117 a007 Real Root Of -48*x^4-275*x^3-944*x^2-760*x+955 2100911619847759 s001 sum(exp(-Pi/3)^(n-1)*A263227[n],n=1..infinity) 2100911620280412 m005 (1/2*Catalan+5/11)/(3/8*Catalan+4) 2100911623246873 r009 Im(z^3+c),c=-3/122+41/47*I,n=2 2100911623463248 m001 1/MinimumGamma*exp(ArtinRank2)*GAMMA(7/12) 2100911631755393 l006 ln(1031/8427) 2100911634263121 a007 Real Root Of 615*x^4-525*x^3+147*x^2-418*x+85 2100911638636861 a001 72/161*2207^(1/2) 2100911641542496 r005 Im(z^2+c),c=-3/8+11/32*I,n=34 2100911646014283 m008 (5/6*Pi^4-2/5)/(4*Pi^6-5/6) 2100911648628403 a007 Real Root Of -619*x^4-778*x^3+843*x^2-535*x 2100911653471436 a007 Real Root Of 546*x^4+462*x^3-525*x^2-911*x-165 2100911656100925 m001 ln(Ei(1))*FibonacciFactorial*GAMMA(1/3) 2100911656519828 r009 Re(z^3+c),c=-41/110+33/58*I,n=34 2100911664869069 s002 sum(A014347[n]/((2^n-1)/n),n=1..infinity) 2100911664963482 m002 -6+Pi^4*Log[Pi]+Pi^4*ProductLog[Pi] 2100911666149778 m001 BesselI(1,1)^HeathBrownMoroz/PlouffeB 2100911667360330 r005 Im(z^2+c),c=-47/82+17/48*I,n=28 2100911673145008 r005 Im(z^2+c),c=1/50+11/50*I,n=14 2100911684110049 a007 Real Root Of -119*x^4+306*x^3+708*x^2-891*x+159 2100911688937521 m005 (1/3*exp(1)-2/3)/(11/12*Catalan+3/10) 2100911697351102 a007 Real Root Of 680*x^4+888*x^3-723*x^2+555*x-656 2100911698168358 r009 Im(z^3+c),c=-23/54+5/59*I,n=15 2100911703619181 a007 Real Root Of -533*x^4-505*x^3+765*x^2-846*x+547 2100911709503024 a001 46368/3571*76^(1/9) 2100911718019225 m001 1/CopelandErdos*exp(Artin)*Magata 2100911723140393 r005 Im(z^2+c),c=1/50+11/50*I,n=18 2100911732766942 r009 Re(z^3+c),c=-1/24+29/45*I,n=18 2100911740827889 a007 Real Root Of -343*x^4-458*x^3+593*x^2-246*x-699 2100911741798274 a007 Real Root Of -454*x^4-628*x^3+386*x^2-610*x+36 2100911743649172 r005 Im(z^2+c),c=1/50+11/50*I,n=19 2100911744574271 m001 1/Ei(1)^2/LaplaceLimit^2/ln(sqrt(3))^2 2100911751099626 r009 Re(z^3+c),c=-69/118+9/16*I,n=11 2100911757467484 r005 Re(z^2+c),c=23/62+9/49*I,n=11 2100911759505970 m001 Bloch+(3^(1/3))^MertensB3 2100911765539140 l006 ln(887/7250) 2100911775137996 m001 (-Mills+Robbin)/(1-ln(2)) 2100911777656451 a007 Real Root Of -365*x^4+263*x^3-588*x^2+842*x+206 2100911784178594 m001 (Salem-Weierstrass)/(Pi-FransenRobinson) 2100911787786721 a007 Real Root Of -834*x^4-253*x^3-626*x^2+674*x-110 2100911788556086 m001 (Ei(1)*MertensB3+Backhouse)/Ei(1) 2100911803734617 r009 Im(z^3+c),c=-55/98+7/29*I,n=25 2100911811743557 r005 Im(z^2+c),c=1/50+11/50*I,n=22 2100911815558534 r005 Im(z^2+c),c=1/50+11/50*I,n=23 2100911816799484 r005 Im(z^2+c),c=1/50+11/50*I,n=26 2100911816998425 r005 Im(z^2+c),c=1/50+11/50*I,n=27 2100911817000392 r005 Im(z^2+c),c=1/50+11/50*I,n=30 2100911817004928 r005 Im(z^2+c),c=1/50+11/50*I,n=29 2100911817006696 r005 Im(z^2+c),c=1/50+11/50*I,n=33 2100911817006807 r005 Im(z^2+c),c=1/50+11/50*I,n=34 2100911817006960 r005 Im(z^2+c),c=1/50+11/50*I,n=37 2100911817006971 r005 Im(z^2+c),c=1/50+11/50*I,n=38 2100911817006974 r005 Im(z^2+c),c=1/50+11/50*I,n=41 2100911817006974 r005 Im(z^2+c),c=1/50+11/50*I,n=45 2100911817006974 r005 Im(z^2+c),c=1/50+11/50*I,n=44 2100911817006974 r005 Im(z^2+c),c=1/50+11/50*I,n=48 2100911817006974 r005 Im(z^2+c),c=1/50+11/50*I,n=49 2100911817006974 r005 Im(z^2+c),c=1/50+11/50*I,n=52 2100911817006974 r005 Im(z^2+c),c=1/50+11/50*I,n=53 2100911817006974 r005 Im(z^2+c),c=1/50+11/50*I,n=56 2100911817006974 r005 Im(z^2+c),c=1/50+11/50*I,n=60 2100911817006974 r005 Im(z^2+c),c=1/50+11/50*I,n=59 2100911817006974 r005 Im(z^2+c),c=1/50+11/50*I,n=63 2100911817006974 r005 Im(z^2+c),c=1/50+11/50*I,n=64 2100911817006974 r005 Im(z^2+c),c=1/50+11/50*I,n=62 2100911817006974 r005 Im(z^2+c),c=1/50+11/50*I,n=61 2100911817006974 r005 Im(z^2+c),c=1/50+11/50*I,n=57 2100911817006974 r005 Im(z^2+c),c=1/50+11/50*I,n=58 2100911817006974 r005 Im(z^2+c),c=1/50+11/50*I,n=55 2100911817006974 r005 Im(z^2+c),c=1/50+11/50*I,n=54 2100911817006974 r005 Im(z^2+c),c=1/50+11/50*I,n=51 2100911817006974 r005 Im(z^2+c),c=1/50+11/50*I,n=50 2100911817006974 r005 Im(z^2+c),c=1/50+11/50*I,n=42 2100911817006974 r005 Im(z^2+c),c=1/50+11/50*I,n=47 2100911817006974 r005 Im(z^2+c),c=1/50+11/50*I,n=46 2100911817006974 r005 Im(z^2+c),c=1/50+11/50*I,n=43 2100911817006975 r005 Im(z^2+c),c=1/50+11/50*I,n=40 2100911817006977 r005 Im(z^2+c),c=1/50+11/50*I,n=39 2100911817006998 r005 Im(z^2+c),c=1/50+11/50*I,n=36 2100911817007040 r005 Im(z^2+c),c=1/50+11/50*I,n=35 2100911817007961 r005 Im(z^2+c),c=1/50+11/50*I,n=31 2100911817008058 r005 Im(z^2+c),c=1/50+11/50*I,n=32 2100911817044875 r005 Im(z^2+c),c=1/50+11/50*I,n=28 2100911817164273 r005 Im(z^2+c),c=1/50+11/50*I,n=25 2100911818084586 r005 Im(z^2+c),c=1/50+11/50*I,n=24 2100911821435904 a007 Real Root Of 356*x^4+425*x^3-587*x^2+640*x+941 2100911824214365 m008 (5*Pi^6-4/5)/(3/4*Pi^5-3/4) 2100911827886028 r005 Im(z^2+c),c=1/50+11/50*I,n=21 2100911832576825 a001 167761/144*832040^(11/20) 2100911834362410 r002 6th iterates of z^2 + 2100911840707975 r005 Im(z^2+c),c=1/50+11/50*I,n=20 2100911842744606 m001 GAMMA(13/24)+gamma(2)^ZetaR(2) 2100911851823503 m005 (1/2*Catalan-3/7)/(7/9*exp(1)-5/7) 2100911854103343 a001 6912/329 2100911859095284 r005 Im(z^2+c),c=-23/26+23/128*I,n=39 2100911862212521 r002 7th iterates of z^2 + 2100911862310153 m005 (1/3*3^(1/2)-3/5)/(3/8*3^(1/2)+3/7) 2100911867421644 r002 44th iterates of z^2 + 2100911868909883 p004 log(32719/4003) 2100911871088456 m001 (GolombDickman-Kac)/(Zeta(1,2)+ErdosBorwein) 2100911876449842 m005 (1/3*gamma+1/7)/(9/10*5^(1/2)-5/12) 2100911880582826 m005 (1/2*2^(1/2)+4)/(5/12*gamma+2) 2100911881207299 b008 21+5*Sech[7] 2100911882723811 b008 21+5*Csch[7] 2100911883827923 m001 (Artin*Khinchin-BesselJ(1,1))/Khinchin 2100911898145487 m001 exp(Pi)*FeigenbaumB+MadelungNaCl 2100911899162705 m001 cosh(1)*Bloch/ln(sqrt(2)) 2100911901970358 r002 32th iterates of z^2 + 2100911907235628 p001 sum((-1)^n/(466*n+449)/(8^n),n=0..infinity) 2100911911682778 r002 57th iterates of z^2 + 2100911912399710 r005 Im(z^2+c),c=-10/21+13/42*I,n=10 2100911913618387 a007 Real Root Of -521*x^4-995*x^3-135*x^2-805*x-172 2100911913867338 m001 (Chi(1)+exp(-1/2*Pi))/(-Kac+Stephens) 2100911922980476 p003 LerchPhi(1/12,4,57/217) 2100911923684847 m003 -5/12+(3*Sqrt[5])/4+E^(1/2+Sqrt[5]/2)/6 2100911932511347 m001 (2^(1/2)-Zeta(1/2))/(-Riemann1stZero+ZetaP(2)) 2100911937770024 m001 (exp(1)+arctan(1/2))/(Totient+ZetaP(3)) 2100911951179816 l006 ln(743/6073) 2100911951179816 p004 log(6073/743) 2100911963880585 a001 141/46*199^(4/11) 2100911964573323 a007 Real Root Of 377*x^4+372*x^3-381*x^2+906*x-310 2100911966304589 r009 Im(z^3+c),c=-11/32+6/41*I,n=5 2100911977551396 b008 7/E^2+E^(1/7) 2100911980761631 a005 (1/sin(62/151*Pi))^825 2100911985440614 a007 Real Root Of 362*x^4+321*x^3-865*x^2-902*x+224 2100911992223189 a007 Real Root Of -162*x^4-83*x^3+568*x^2-162*x-461 2100912001407529 r005 Re(z^2+c),c=19/62+5/23*I,n=55 2100912009823839 m001 (MertensB1+Thue)/(BesselI(1,2)-Shi(1)) 2100912011216311 a007 Real Root Of -338*x^4-482*x^3+664*x^2+570*x+382 2100912017476957 a007 Real Root Of 417*x^4+618*x^3-395*x^2+37*x-572 2100912032243019 a007 Real Root Of -660*x^4-853*x^3+857*x^2-302*x+531 2100912043017291 r005 Im(z^2+c),c=-31/122+14/45*I,n=24 2100912053093612 r005 Im(z^2+c),c=-17/20+8/51*I,n=38 2100912058477436 a007 Real Root Of 119*x^4-219*x^3+260*x^2-125*x-40 2100912058667442 a007 Real Root Of 844*x^4+137*x^3+476*x^2-398*x-105 2100912060731114 r009 Re(z^3+c),c=-9/26+31/59*I,n=29 2100912063932123 r009 Re(z^3+c),c=-13/50+60/61*I,n=12 2100912067689078 m001 FeigenbaumB*LandauRamanujan/exp(Niven)^2 2100912067861323 m001 (-GAMMA(2/3)+Sierpinski)/(BesselI(0,1)-Si(Pi)) 2100912075022214 a007 Real Root Of -375*x^4-38*x^3+135*x^2+924*x-199 2100912077736777 a008 Real Root of x^4-2*x^3+38*x^2+152*x-488 2100912085469345 r005 Im(z^2+c),c=-13/14+14/69*I,n=40 2100912098229848 a007 Real Root Of -177*x^4-138*x^3+344*x^2-171*x+291 2100912099418707 r005 Im(z^2+c),c=1/50+11/50*I,n=16 2100912102527596 b008 5/21+ProductLog[12] 2100912102626280 r005 Im(z^2+c),c=-2/3+40/141*I,n=33 2100912104090699 r005 Im(z^2+c),c=-23/70+2/61*I,n=8 2100912116330260 r005 Im(z^2+c),c=-13/62+17/57*I,n=26 2100912124303202 s002 sum(A126308[n]/((10^n+1)/n),n=1..infinity) 2100912127510133 m001 (3^(1/3)-Conway)/(Robbin-ZetaQ(4)) 2100912128129286 r005 Re(z^2+c),c=13/64+5/27*I,n=2 2100912137486946 m001 (BesselI(1,2)+Conway)/(Zeta(1,2)-BesselJ(1,1)) 2100912159441249 r005 Re(z^2+c),c=-13/10+9/169*I,n=12 2100912178982322 p004 log(35449/4337) 2100912181313206 a007 Real Root Of 472*x^4+816*x^3-117*x^2+676*x+308 2100912182981941 m001 Sierpinski^2/ArtinRank2*ln(GAMMA(5/24))^2 2100912186220965 r005 Re(z^2+c),c=2/23+24/47*I,n=6 2100912186389421 a007 Real Root Of 734*x^4-290*x^3+643*x^2-567*x+92 2100912192935907 r009 Re(z^3+c),c=-1/110+34/41*I,n=54 2100912195871382 a001 5/103682*123^(40/51) 2100912200684150 q001 737/3508 2100912209612389 a007 Real Root Of 844*x^4-892*x^3+687*x^2-670*x-181 2100912217078232 m001 FeigenbaumB*(1-RenyiParking) 2100912217292434 m001 1/ln(GAMMA(1/6))^2/Catalan*LambertW(1) 2100912226076712 l006 ln(599/4896) 2100912238192909 a001 3571/11*(1/2*5^(1/2)+1/2)^14*11^(17/20) 2100912270881693 h001 (-6*exp(3)-11)/(-exp(4)-8) 2100912276863630 r005 Im(z^2+c),c=1/50+11/50*I,n=17 2100912279138970 q001 1/4759837 2100912293314785 a007 Real Root Of -436*x^4-611*x^3+584*x^2+341*x+967 2100912293998661 r005 Re(z^2+c),c=-9/82+32/59*I,n=21 2100912301444368 l006 ln(6925/8544) 2100912308327383 m005 (1/3*5^(1/2)+3/7)/(5/7*gamma-6) 2100912308410297 a001 3571/8*21^(29/57) 2100912318533552 r005 Im(z^2+c),c=-5/6+23/129*I,n=63 2100912320174044 m005 (4*exp(1)+1/4)/(22/5+2/5*5^(1/2)) 2100912320713574 a007 Real Root Of -482*x^4-908*x^3-272*x^2-871*x+341 2100912323723760 a007 Real Root Of 669*x^4-394*x^3-926*x^2-632*x+176 2100912329221619 m001 CareFree^2*ln(ArtinRank2)*sinh(1) 2100912338315533 a001 39603/233*1597^(15/44) 2100912339611986 r005 Im(z^2+c),c=-11/36+16/49*I,n=15 2100912343702417 r005 Im(z^2+c),c=-89/78+1/53*I,n=6 2100912348979907 a001 2971215073/11*123^(19/21) 2100912365851718 p003 LerchPhi(1/5,3,363/212) 2100912367019783 r005 Im(z^2+c),c=-15/82+36/43*I,n=6 2100912378591659 a001 46368/29*2^(13/33) 2100912378907100 a001 9349/11*(1/2*5^(1/2)+1/2)^12*11^(17/20) 2100912379315864 r002 15th iterates of z^2 + 2100912389469992 m001 (OrthogonalArrays+Paris)/(Pi^(1/2)-Shi(1)) 2100912396516792 r005 Re(z^2+c),c=-31/30+45/91*I,n=2 2100912399437024 a001 24476/11*(1/2*5^(1/2)+1/2)^10*11^(17/20) 2100912402432299 a001 64079/11*(1/2*5^(1/2)+1/2)^8*11^(17/20) 2100912402943953 a001 1/11*(1/2*5^(1/2)+1/2)^31*11^(17/20) 2100912403615442 m006 (1/5*Pi-1/4)/(1/4*Pi^2-2/3) 2100912403615442 m008 (1/5*Pi-1/4)/(1/4*Pi^2-2/3) 2100912404283481 a001 39603/11*(1/2*5^(1/2)+1/2)^9*11^(17/20) 2100912404596929 a008 Real Root of (1+6*x+6*x^2-6*x^3+5*x^4-2*x^5) 2100912408433093 m001 (GAMMA(23/24)+Kolakoski)/(Mills-TreeGrowth2nd) 2100912412125214 a001 15127/11*(1/2*5^(1/2)+1/2)^11*11^(17/20) 2100912419860722 l006 ln(1054/8615) 2100912426208270 r005 Im(z^2+c),c=-41/48+7/43*I,n=64 2100912427523967 r002 39th iterates of z^2 + 2100912430033539 s002 sum(A260577[n]/(exp(pi*n)-1),n=1..infinity) 2100912431028731 m001 (Champernowne+MertensB2)/(Psi(2,1/3)-gamma(3)) 2100912431546765 a007 Real Root Of -40*x^4-816*x^3+524*x^2+284*x+620 2100912433101958 m005 (1/2*Catalan+1/3)/(2*gamma-7/9) 2100912433164524 m001 1/TreeGrowth2nd^2/exp(Porter)/LambertW(1) 2100912438475172 m001 1/GAMMA(1/3)^2*ln(TreeGrowth2nd)^2*sqrt(5) 2100912459417753 r005 Re(z^2+c),c=19/60+9/40*I,n=63 2100912464185188 a003 cos(Pi*55/113)-cos(Pi*58/119) 2100912465873253 a001 5778/11*(1/2*5^(1/2)+1/2)^13*11^(17/20) 2100912466567359 m001 BesselI(1,2)*Conway+Trott2nd 2100912474046921 r005 Re(z^2+c),c=19/74+9/52*I,n=11 2100912477501527 r005 Re(z^2+c),c=-7/78+27/47*I,n=32 2100912488756496 r005 Re(z^2+c),c=17/52+13/56*I,n=50 2100912495132742 r005 Re(z^2+c),c=-29/122+9/41*I,n=5 2100912501974605 a001 377/18*11^(25/26) 2100912504590908 a001 987/2207*199^(8/11) 2100912509409148 m001 (ln(gamma)+Robbin)/(Psi(2,1/3)+3^(1/2)) 2100912512304838 r005 Im(z^2+c),c=-11/25+19/37*I,n=30 2100912521405272 l006 ln(5321/6565) 2100912530533829 r005 Re(z^2+c),c=29/126+20/47*I,n=16 2100912552098337 m003 19/20+(Sqrt[5]*Sec[1/2+Sqrt[5]/2])/64 2100912556768317 a007 Real Root Of 185*x^4-997*x^3-314*x^2-501*x+128 2100912559052513 a007 Real Root Of -502*x^4-944*x^3+172*x^2-287*x-336 2100912562116840 m006 (2/3*exp(2*Pi)-3)/(3/5*Pi-1/5) 2100912563897312 a007 Real Root Of 824*x^4-625*x^3-432*x^2-403*x-73 2100912566597015 r008 a(0)=2,K{-n^6,72-95*n^3-23*n^2+36*n} 2100912574411161 m009 (2/5*Psi(1,3/4)+5)/(Psi(1,2/3)-1/5) 2100912575678837 g004 Im(GAMMA(-167/60+I*34/15)) 2100912578559712 m001 1/GAMMA(23/24)*exp(FeigenbaumB)*Zeta(1,2) 2100912584361866 a003 cos(Pi*37/92)*cos(Pi*54/113) 2100912585662869 m001 (exp(1)+gamma(1))/(-exp(-1/2*Pi)+Porter) 2100912590783713 a001 233/1364*199^(10/11) 2100912594016785 m005 (1/2*Pi+5/6)/(5/7*Zeta(3)+2/7) 2100912595449219 a001 7/55*1597^(9/13) 2100912597123766 r009 Re(z^3+c),c=-3/118+12/37*I,n=3 2100912604186898 r005 Im(z^2+c),c=-13/14+41/206*I,n=62 2100912610314026 m008 (1/2*Pi^3-2)/(2/3*Pi^4-2/3) 2100912612227605 m001 1/Pi^2*CopelandErdos^2*exp(log(2+sqrt(3))) 2100912619100204 m003 21/10+Sqrt[5]/64-4*Log[1/2+Sqrt[5]/2] 2100912624489471 a007 Real Root Of 375*x^4+402*x^3-955*x^2-72*x+486 2100912635298145 m002 -2+4*Coth[Pi]+Sech[Pi]*Tanh[Pi] 2100912641513394 a007 Real Root Of -100*x^4+94*x^3+914*x^2+747*x+355 2100912643253531 m001 gamma(2)*MertensB3+Riemann2ndZero 2100912644495282 m001 (5^(1/2)+GaussAGM)^Robbin 2100912645254724 m005 (1/2*Catalan+1/5)/(4/5*2^(1/2)-9/11) 2100912649226021 m001 exp(Pi)^(GaussKuzminWirsing/GAMMA(17/24)) 2100912657918687 r005 Re(z^2+c),c=-19/118+7/16*I,n=18 2100912672828543 a001 17711/1364*76^(1/9) 2100912674974119 l006 ln(455/3719) 2100912675620160 m001 (KhinchinHarmonic+Stephens)^QuadraticClass 2100912682456990 r005 Re(z^2+c),c=-47/36+2/49*I,n=56 2100912689524915 m001 Otter^(exp(Pi)/ZetaP(3)) 2100912693375233 s002 sum(A180531[n]/((pi^n+1)/n),n=1..infinity) 2100912703718247 a007 Real Root Of 388*x^4+392*x^3-840*x^2-86*x-397 2100912708030949 r005 Im(z^2+c),c=-23/18+6/193*I,n=19 2100912708889629 a007 Real Root Of 932*x^4+200*x^3+316*x^2-636*x+116 2100912714582261 r005 Re(z^2+c),c=-13/86+17/37*I,n=21 2100912714671563 r005 Im(z^2+c),c=-137/102+1/62*I,n=38 2100912719769756 m001 (BesselJ(0,1)+Zeta(5))/(-HeathBrownMoroz+Thue) 2100912734088597 m001 (exp(Pi)+2^(1/2))/(ln(2)+PlouffeB) 2100912735787809 m001 (Bloch+CareFree)/(OneNinth+ZetaP(2)) 2100912737162168 r005 Im(z^2+c),c=-31/60+11/29*I,n=59 2100912738588086 m005 (1/3*Catalan-2/5)/(7/11*gamma+1/12) 2100912740325664 a001 1/46347*2178309^(16/51) 2100912743796884 m001 Totient-FeigenbaumC-ln(5) 2100912745043353 a007 Real Root Of 194*x^4+103*x^3-447*x^2+311*x-198 2100912745407697 m005 (1/2*gamma+1)/(1/9*Zeta(3)+6) 2100912750120179 r009 Re(z^3+c),c=-10/29+22/35*I,n=4 2100912753449078 a001 1346269/3*1364^(23/27) 2100912757832813 m004 E^(Sqrt[5]*Pi)+255*Pi+25*Sqrt[5]*Pi 2100912760627570 r009 Re(z^3+c),c=-17/56+23/50*I,n=6 2100912774712607 a001 4/987*1597^(50/59) 2100912785782107 m001 (Riemann1stZero+ZetaQ(4))/(ln(Pi)-Bloch) 2100912793094223 m008 (1/6*Pi^5-1/3)/(1/4*Pi^6+5/6) 2100912798258116 g007 Psi(2,3/10)+Psi(2,3/8)+Psi(2,3/5)-Psi(2,2/11) 2100912802410485 m005 (1/2*gamma-1/2)/(4/9*5^(1/2)-2) 2100912803401316 a007 Real Root Of 214*x^4+39*x^3-484*x^2+973*x+373 2100912803604332 b008 21+Zeta[-8/3] 2100912804833939 p003 LerchPhi(1/12,6,425/223) 2100912810658481 a007 Real Root Of -178*x^4+987*x^3-758*x^2-833*x-589 2100912815975679 m009 (2*Psi(1,2/3)+2/3)/(1/4*Psi(1,2/3)-4) 2100912821308119 m001 (BesselI(0,1)-BesselK(1,1))/(Backhouse+Niven) 2100912825177244 m001 ln(3)*arctan(1/2)*ThueMorse 2100912827408294 r005 Im(z^2+c),c=-17/22+7/83*I,n=63 2100912829969886 m005 (1/3*Zeta(3)-1/12)/(7/9*gamma-3/5) 2100912832346688 m001 cos(Pi/5)^2/LambertW(1)/ln(sqrt(3)) 2100912834267787 a001 2207/11*(1/2*5^(1/2)+1/2)^15*11^(17/20) 2100912835728920 r002 33th iterates of z^2 + 2100912839509089 m005 (1/2*Zeta(3)-5)/(1/12*Catalan-2/7) 2100912842477733 m001 Catalan*(2^(1/3))/ln(sqrt(3)) 2100912845052914 a007 Real Root Of -810*x^4-773*x^3-438*x^2+739*x+169 2100912849368735 m001 (Catalan-cos(1))/(-ReciprocalLucas+ZetaP(3)) 2100912851596606 m001 Rabbit^2/exp(LaplaceLimit)*cos(Pi/5) 2100912860476313 a001 29/5*1346269^(39/43) 2100912863906488 m005 (-17/28+1/4*5^(1/2))/(2/3*5^(1/2)+4/5) 2100912865967943 a001 29/14930352*3^(1/14) 2100912867802623 m001 1/GAMMA(13/24)^2/exp(Niven)/LambertW(1)^2 2100912878233358 b008 CosIntegral[-1/4+Csch[1]] 2100912887477862 a007 Real Root Of -756*x^4-342*x^3+899*x^2+809*x-205 2100912893046717 a007 Real Root Of 235*x^4-914*x^3-513*x^2-430*x+121 2100912895194804 l006 ln(1221/9980) 2100912896279258 a008 Real Root of x^5-2*x^4-11*x^3+9*x^2+38*x+18 2100912900430403 m001 GAMMA(7/12)^2/Khintchine*exp(log(1+sqrt(2))) 2100912904546927 m001 exp(1/exp(1))-polylog(4,1/2)+GAMMA(19/24) 2100912904546927 m001 polylog(4,1/2)-exp(1/exp(1))-GAMMA(19/24) 2100912906662339 m001 1/exp((3^(1/3)))*ArtinRank2*GAMMA(5/6)^2 2100912908534707 m001 1/GAMMA(1/12)*FeigenbaumKappa^2*ln(Zeta(5))^2 2100912910255684 p003 LerchPhi(1/6,2,526/231) 2100912910738231 b008 21+SphericalBesselY[2,4] 2100912912438253 m001 (Trott2nd+ZetaQ(4))/(Artin-CopelandErdos) 2100912927267493 a007 Real Root Of -161*x^4+141*x^3+704*x^2-939*x-636 2100912929180813 m001 BesselI(1,2)+Rabbit^ReciprocalLucas 2100912931205976 l006 ln(3717/4586) 2100912931900425 m001 (Landau+Lehmer)/(Psi(2,1/3)+GAMMA(11/12)) 2100912938793356 r005 Im(z^2+c),c=29/102+2/47*I,n=26 2100912960175029 m001 BesselK(1,1)*FeigenbaumKappa+GAMMA(17/24) 2100912961723599 b008 Tan[(1+Pi)/20] 2100912964871164 r005 Im(z^2+c),c=-37/66+23/35*I,n=6 2100912966097748 m001 1/exp(GAMMA(1/3))^2/CareFree*Pi 2100912976220458 m001 Trott^ZetaR(2)/(Trott^Tribonacci) 2100912979559683 a007 Real Root Of -244*x^4-650*x^3-491*x^2-419*x+13 2100912979815914 m001 Champernowne^(Pi*sin(1/5*Pi)) 2100912980228243 r005 Im(z^2+c),c=-79/118+1/16*I,n=14 2100912983443856 a001 199/89*514229^(19/55) 2100912988386866 m001 (BesselI(0,2)+PrimesInBinary)/GlaisherKinkelin 2100912993532752 a001 843/514229*3^(7/31) 2100912994625172 m001 FeigenbaumB*GaussAGM(1,1/sqrt(2))*ln(sin(1))^2 2100913005514224 a007 Real Root Of -657*x^4-965*x^3+365*x^2-833*x+490 2100913008220317 s002 sum(A016071[n]/(exp(2*pi*n)-1),n=1..infinity) 2100913011249835 s002 sum(A014801[n]/(exp(2*pi*n)-1),n=1..infinity) 2100913020351892 m005 (1/2*Catalan+4/7)/(1/12*Zeta(3)-5) 2100913026004719 l006 ln(766/6261) 2100913032218843 m008 (1/3*Pi^5-1)/(5*Pi^6+4/5) 2100913038818188 p001 sum((-1)^n/(554*n+23)/n/(8^n),n=1..infinity) 2100913039106322 m001 (Cahen+MadelungNaCl)/(Psi(1,1/3)+GAMMA(17/24)) 2100913043029129 r005 Re(z^2+c),c=-55/42+1/62*I,n=16 2100913043660414 r002 14th iterates of z^2 + 2100913059344272 m005 (1/3*Catalan+1/11)/(1/8*5^(1/2)-1/11) 2100913061184135 m001 (FeigenbaumDelta-Mills)/(GAMMA(5/6)+Bloch) 2100913071913921 r005 Im(z^2+c),c=-41/58+7/36*I,n=49 2100913090549339 m001 (Magata-TwinPrimes)/(Landau+LandauRamanujan) 2100913093411521 m001 1/gamma*exp(BesselJ(0,1))/sqrt(Pi) 2100913094060151 r005 Im(z^2+c),c=-13/62+17/57*I,n=29 2100913103346678 a007 Real Root Of 465*x^4+719*x^3-145*x^2+384*x-945 2100913109297646 m001 1/GAMMA(19/24)^2/exp(Si(Pi))^2*sinh(1) 2100913112309495 a001 72/161*843^(4/7) 2100913114193167 r005 Im(z^2+c),c=-9/8+48/217*I,n=61 2100913119621925 r005 Im(z^2+c),c=-79/90+4/27*I,n=10 2100913120006455 m001 Salem^(Pi^(1/2)/ZetaQ(2)) 2100913123676921 m005 (5*gamma-1/6)/(2/3*Pi-4/5) 2100913135478468 r005 Im(z^2+c),c=-131/110+2/63*I,n=19 2100913135873616 r005 Im(z^2+c),c=1/114+11/49*I,n=8 2100913159607513 p004 log(11779/9547) 2100913160325031 a001 29/5*46368^(45/59) 2100913164185052 m001 exp(Salem)*Paris^2/GAMMA(3/4)^2 2100913174304517 l006 ln(1077/8803) 2100913181523876 p001 sum((-1)^n/(353*n+27)/n/(125^n),n=1..infinity) 2100913191608684 m001 (MertensB1-Otter)/GlaisherKinkelin 2100913192857045 m001 (Pi^(1/2))^Robbin/(gamma^Robbin) 2100913195036090 r005 Im(z^2+c),c=-13/14+29/159*I,n=16 2100913197122074 m001 -ln(5)/(-BesselI(0,1)+1/2) 2100913197122074 m001 ln(5)/(1/2-BesselI(0,1)) 2100913198859243 r009 Re(z^3+c),c=-13/106+55/57*I,n=26 2100913203744327 b008 -4+Sqrt[3+1/Sqrt[E]] 2100913206047708 m001 arctan(1/3)*(GAMMA(13/24)-Niven) 2100913208700173 m001 ln(2)/ln(10)-sinh(1)-FibonacciFactorial 2100913216650462 s001 sum(1/10^(n-1)*A278353[n]/n!^2,n=1..infinity) 2100913220874890 a005 (1/sin(51/125*Pi))^398 2100913228374347 m005 (1/2*Pi+9/10)/(4/5*gamma+5/7) 2100913229172355 a007 Real Root Of 558*x^4+370*x^3+607*x^2-788*x-190 2100913231767355 m001 (Zeta(1/2)+GolombDickman)/(ThueMorse-ZetaP(2)) 2100913234871692 m005 (1/3*Zeta(3)+1/9)/(5^(1/2)+1/5) 2100913241380142 a001 1292/2889*199^(8/11) 2100913269420198 a007 Real Root Of -510*x^4-933*x^3+263*x^2+256*x+661 2100913273487611 m001 GAMMA(13/24)^2/Cahen^2*exp(GAMMA(19/24)) 2100913277135254 a001 1322157322203/89*2^(1/2) 2100913284053920 a001 329*28143753123^(5/9) 2100913293729999 r002 31th iterates of z^2 + 2100913294791505 a007 Real Root Of 464*x^4+264*x^3+407*x^2+2*x-16 2100913300687246 m001 1/Robbin^2/DuboisRaymond*exp((3^(1/3)))^2 2100913301233050 v003 sum((2*n^3-3*n^2+n+8)/n^(n-1),n=1..infinity) 2100913302014475 a005 (1/sin(99/215*Pi))^96 2100913305228181 l006 ln(5830/7193) 2100913312360419 m001 (-Gompertz+ZetaQ(4))/(3^(1/2)+ln(3)) 2100913312610448 m005 (1/2*5^(1/2)-5/6)/(1/3*3^(1/2)+7/9) 2100913313561606 r005 Im(z^2+c),c=-15/16+18/89*I,n=51 2100913316196320 m001 (ArtinRank2-exp(Pi))/(Lehmer+PlouffeB) 2100913324092258 s001 sum(exp(-3*Pi/4)^n*A078433[n],n=1..infinity) 2100913324167989 a001 55/103682*18^(10/21) 2100913326604114 r005 Im(z^2+c),c=-61/56+5/23*I,n=34 2100913327954454 a001 233/843*199^(9/11) 2100913334624669 a007 Real Root Of -368*x^4-883*x^3-605*x^2-650*x+286 2100913337709950 m001 (Pi^(1/2)+Salem)/(ln(Pi)+sin(1/12*Pi)) 2100913343800404 m001 (-FeigenbaumAlpha+ZetaP(4))/(3^(1/2)-gamma) 2100913348876264 a001 6765/15127*199^(8/11) 2100913348963790 r002 64th iterates of z^2 + 2100913349532934 a007 Real Root Of 560*x^4+856*x^3-81*x^2+997*x-520 2100913352540108 a007 Real Root Of 110*x^4+121*x^3-74*x^2-810*x-166 2100913356658782 a001 4/233*233^(17/37) 2100913364559738 a001 17711/39603*199^(8/11) 2100913366847926 a001 23184/51841*199^(8/11) 2100913367181768 a001 121393/271443*199^(8/11) 2100913367230475 a001 317811/710647*199^(8/11) 2100913367237581 a001 416020/930249*199^(8/11) 2100913367238618 a001 2178309/4870847*199^(8/11) 2100913367238769 a001 5702887/12752043*199^(8/11) 2100913367238791 a001 7465176/16692641*199^(8/11) 2100913367238794 a001 39088169/87403803*199^(8/11) 2100913367238795 a001 102334155/228826127*199^(8/11) 2100913367238795 a001 133957148/299537289*199^(8/11) 2100913367238795 a001 701408733/1568397607*199^(8/11) 2100913367238795 a001 1836311903/4106118243*199^(8/11) 2100913367238795 a001 2403763488/5374978561*199^(8/11) 2100913367238795 a001 12586269025/28143753123*199^(8/11) 2100913367238795 a001 32951280099/73681302247*199^(8/11) 2100913367238795 a001 43133785636/96450076809*199^(8/11) 2100913367238795 a001 225851433717/505019158607*199^(8/11) 2100913367238795 a001 591286729879/1322157322203*199^(8/11) 2100913367238795 a001 10610209857723/23725150497407*199^(8/11) 2100913367238795 a001 139583862445/312119004989*199^(8/11) 2100913367238795 a001 53316291173/119218851371*199^(8/11) 2100913367238795 a001 10182505537/22768774562*199^(8/11) 2100913367238795 a001 7778742049/17393796001*199^(8/11) 2100913367238795 a001 2971215073/6643838879*199^(8/11) 2100913367238795 a001 567451585/1268860318*199^(8/11) 2100913367238795 a001 433494437/969323029*199^(8/11) 2100913367238795 a001 165580141/370248451*199^(8/11) 2100913367238795 a001 31622993/70711162*199^(8/11) 2100913367238796 a001 24157817/54018521*199^(8/11) 2100913367238805 a001 9227465/20633239*199^(8/11) 2100913367238863 a001 1762289/3940598*199^(8/11) 2100913367239259 a001 1346269/3010349*199^(8/11) 2100913367241973 a001 514229/1149851*199^(8/11) 2100913367260577 a001 98209/219602*199^(8/11) 2100913367388094 a001 75025/167761*199^(8/11) 2100913368262104 a001 28657/64079*199^(8/11) 2100913373278997 r005 Im(z^2+c),c=-51/62+10/63*I,n=21 2100913374252657 a001 5473/12238*199^(8/11) 2100913375442152 a007 Real Root Of 445*x^4+974*x^3+31*x^2+231*x+711 2100913376221530 b008 3*E^E*Tanh[1/2] 2100913377660574 m002 -3*Pi+Pi^3-Log[Pi]/2 2100913379285272 m005 (1/3*gamma+1/8)/(5*Pi-3/5) 2100913388593532 a007 Real Root Of -884*x^4+987*x^3-793*x^2+805*x+215 2100913390050822 m001 ln(CareFree)/CopelandErdos*Riemann1stZero 2100913403814585 a007 Real Root Of -487*x^4-424*x^3+638*x^2-871*x+910 2100913411694830 a001 4*(1/2*5^(1/2)+1/2)^30*7^(8/15) 2100913415312524 a001 4181/9349*199^(8/11) 2100913423070535 m001 ln(GAMMA(1/3))^2/CopelandErdos^2*Zeta(3) 2100913436981426 a007 Real Root Of 406*x^4+693*x^3-379*x^2-460*x-777 2100913440626359 q001 483/2299 2100913442740203 r004 Im(z^2+c),c=-21/26+1/8*I,z(0)=-1,n=31 2100913457400131 m001 LambertW(1)/exp(CopelandErdos)/Zeta(1/2)^2 2100913464428411 a001 38/305*2178309^(56/57) 2100913465740077 r005 Re(z^2+c),c=3/28+30/47*I,n=54 2100913469860416 r005 Im(z^2+c),c=-13/62+17/57*I,n=27 2100913470115713 r005 Im(z^2+c),c=-13/62+17/57*I,n=32 2100913474511622 a007 Real Root Of -850*x^4-967*x^3-826*x^2+781*x-117 2100913474970300 r005 Re(z^2+c),c=31/86+13/41*I,n=59 2100913477227289 a001 2/7*843^(37/58) 2100913480255312 l006 ln(7943/9800) 2100913490309450 r005 Re(z^2+c),c=37/126+13/63*I,n=30 2100913499074520 m005 (1/2*Pi+9/11)/(2/5*2^(1/2)+4/7) 2100913503727589 m001 (GaussKuzminWirsing-Mills)/(PlouffeB+ZetaQ(4)) 2100913518157533 r005 Im(z^2+c),c=-13/62+17/57*I,n=34 2100913518809203 a003 cos(Pi*3/34)*cos(Pi*46/107) 2100913520053654 a007 Real Root Of -190*x^4-396*x^3-352*x^2-328*x+894 2100913530463565 a007 Real Root Of 417*x^4+661*x^3-488*x^2+342*x+878 2100913530874975 r004 Re(z^2+c),c=2/9-4/19*I,z(0)=exp(5/8*I*Pi),n=7 2100913533138949 r005 Im(z^2+c),c=-13/62+17/57*I,n=37 2100913535934229 a007 Real Root Of 69*x^4-51*x^3+44*x^2+648*x-650 2100913536013206 m005 (1/3*5^(1/2)-3/4)/(313/264+11/24*5^(1/2)) 2100913538838010 r005 Im(z^2+c),c=-13/62+17/57*I,n=35 2100913538945237 r005 Im(z^2+c),c=-13/62+17/57*I,n=40 2100913539570165 l006 ln(311/2542) 2100913539695416 r005 Im(z^2+c),c=-13/62+17/57*I,n=42 2100913539924945 r005 Im(z^2+c),c=-13/62+17/57*I,n=45 2100913540011337 r005 Im(z^2+c),c=-13/62+17/57*I,n=43 2100913540014591 r005 Im(z^2+c),c=-13/62+17/57*I,n=48 2100913540026304 r005 Im(z^2+c),c=-13/62+17/57*I,n=50 2100913540029820 r005 Im(z^2+c),c=-13/62+17/57*I,n=53 2100913540031129 r005 Im(z^2+c),c=-13/62+17/57*I,n=51 2100913540031204 r005 Im(z^2+c),c=-13/62+17/57*I,n=56 2100913540031387 r005 Im(z^2+c),c=-13/62+17/57*I,n=58 2100913540031440 r005 Im(z^2+c),c=-13/62+17/57*I,n=61 2100913540031460 r005 Im(z^2+c),c=-13/62+17/57*I,n=59 2100913540031462 r005 Im(z^2+c),c=-13/62+17/57*I,n=64 2100913540031467 r005 Im(z^2+c),c=-13/62+17/57*I,n=63 2100913540031476 r005 Im(z^2+c),c=-13/62+17/57*I,n=62 2100913540031499 r005 Im(z^2+c),c=-13/62+17/57*I,n=60 2100913540031509 r005 Im(z^2+c),c=-13/62+17/57*I,n=55 2100913540031671 r005 Im(z^2+c),c=-13/62+17/57*I,n=57 2100913540032106 r005 Im(z^2+c),c=-13/62+17/57*I,n=54 2100913540033569 r005 Im(z^2+c),c=-13/62+17/57*I,n=52 2100913540034073 r005 Im(z^2+c),c=-13/62+17/57*I,n=47 2100913540044708 r005 Im(z^2+c),c=-13/62+17/57*I,n=49 2100913540073117 r005 Im(z^2+c),c=-13/62+17/57*I,n=46 2100913540166856 r005 Im(z^2+c),c=-13/62+17/57*I,n=44 2100913540186609 r005 Im(z^2+c),c=-13/62+17/57*I,n=39 2100913540888323 r005 Im(z^2+c),c=-13/62+17/57*I,n=41 2100913542742715 r005 Im(z^2+c),c=-13/62+17/57*I,n=38 2100913543569336 p001 sum((-1)^n/(565*n+456)/(10^n),n=0..infinity) 2100913545774530 m005 (1/3*3^(1/2)-3/5)/(6/7*gamma+7/12) 2100913548746142 r005 Im(z^2+c),c=-13/62+17/57*I,n=36 2100913549193213 r005 Im(z^2+c),c=-13/62+17/57*I,n=31 2100913560117459 m001 (exp(1/exp(1))-gamma(3))/(ArtinRank2-Trott) 2100913567717030 a007 Real Root Of 709*x^4+985*x^3-852*x^2+249*x-395 2100913571444644 m005 (1/2*Zeta(3)+7/8)/(1/5*3^(1/2)-5/12) 2100913571843205 a007 Real Root Of 686*x^4+885*x^3-874*x^2+161*x-962 2100913572924440 r005 Im(z^2+c),c=-33/106+17/52*I,n=24 2100913578730162 r009 Re(z^3+c),c=-19/70+21/64*I,n=8 2100913593348606 r009 Re(z^3+c),c=-11/40+37/54*I,n=44 2100913594566533 r005 Im(z^2+c),c=-2/3+49/159*I,n=48 2100913595474126 r005 Im(z^2+c),c=-13/62+17/57*I,n=33 2100913636633162 r009 Re(z^3+c),c=-23/66+8/15*I,n=62 2100913636943329 m001 (FeigenbaumB+Riemann3rdZero)/(Salem+ZetaQ(2)) 2100913639419944 m001 (-Conway+Grothendieck)/(BesselJ(1,1)-exp(1)) 2100913649717524 m001 Ei(1)+FeigenbaumD*ZetaP(4) 2100913652447273 a001 2584/3*1149851^(8/9) 2100913652448685 a001 2584/3*1322157322203^(4/9) 2100913654031792 r005 Re(z^2+c),c=-19/106+7/18*I,n=33 2100913665555758 s002 sum(A209042[n]/(n*exp(pi*n)-1),n=1..infinity) 2100913670540996 a007 Real Root Of 564*x^4+601*x^3-846*x^2+650*x-315 2100913678766656 a001 34111385*3571^(2/9) 2100913686816037 r005 Re(z^2+c),c=15/58+28/57*I,n=25 2100913691247289 m009 (4/5*Psi(1,1/3)+1/5)/(16*Catalan+2*Pi^2+5) 2100913691421149 a007 Real Root Of 670*x^4+978*x^3-738*x^2+242*x-218 2100913692063683 m003 1/8+Sqrt[5]/8+3*Cosh[1/2+Sqrt[5]/2]^2 2100913692905900 a001 11/2*121393^(31/44) 2100913694995790 r005 Re(z^2+c),c=-31/110+5/57*I,n=2 2100913696684271 a001 514229/3*9349^(7/9) 2100913696741061 a001 1597/3571*199^(8/11) 2100913703380952 b008 3*E*ProductLog[1/3] 2100913712911772 a001 514229/3*24476^(19/27) 2100913714038495 a001 17711/3*17393796001^(4/9) 2100913714038495 a001 17711/3*505019158607^(7/18) 2100913714041731 a001 17711/3*710647^(7/9) 2100913714815023 m001 1/FeigenbaumD^2*exp(FeigenbaumAlpha)^2/Pi^2 2100913715094003 a001 1346269/3*64079^(5/9) 2100913715349510 a001 121393/3*23725150497407^(5/18) 2100913715349510 a001 121393/3*228826127^(4/9) 2100913715349559 a001 121393/3*4870847^(5/9) 2100913715369729 a001 165580141/3*167761^(1/9) 2100913715377314 a001 832040/3*3010349^(4/9) 2100913715377417 a001 832040/3*9062201101803^(2/9) 2100913715377935 a001 726103*119218851371^(2/9) 2100913715378011 a001 5702887/3*1568397607^(2/9) 2100913715378021 a001 4976784*20633239^(2/9) 2100913715378023 a001 39088169/3*73681302247^(1/9) 2100913715378024 a001 165580141/3*28143753123^(1/18) 2100913715378024 a001 63245986/3*969323029^(1/9) 2100913715378024 a001 24157817/3*5600748293801^(1/9) 2100913715378025 a001 34111385*12752043^(1/9) 2100913715378029 a001 267914296/3*4870847^(1/18) 2100913715378256 a001 1346269/3*4106118243^(5/18) 2100913715379177 a001 4976784*710647^(5/18) 2100913715379613 a001 514229/3*87403803^(7/18) 2100913715384360 a001 39088169/3*271443^(2/9) 2100913715473266 a001 75025/3*271443^(13/18) 2100913715889686 a001 28657/3*12752043^(11/18) 2100913715973357 a001 5702887/3*39603^(4/9) 2100913716503832 r005 Im(z^2+c),c=-13/62+17/57*I,n=30 2100913716521533 a007 Real Root Of -612*x^4-995*x^3+379*x^2-539*x-109 2100913717110419 k007 concat of cont frac of 2100913717154789 a001 28657/3*39603^(17/18) 2100913718884956 a001 10946/3*370248451^(5/9) 2100913718948514 a001 4976784*15127^(7/18) 2100913721244065 a001 1346269/3*15127^(23/36) 2100913721702289 a001 832040/3*15127^(31/45) 2100913722405335 a007 Real Root Of -395*x^4+498*x^3+102*x^2+322*x-76 2100913723510636 a001 121393/3*15127^(8/9) 2100913730904543 m001 Catalan^2/exp(Si(Pi))^2*Zeta(7)^2 2100913738590407 m001 (Riemann3rdZero+Thue)/(CopelandErdos-Porter) 2100913751390926 a007 Real Root Of -594*x^4-905*x^3+538*x^2+5*x+816 2100913759533568 m001 (exp(Pi)+exp(-1/2*Pi))/(MertensB2+ZetaP(4)) 2100913762810894 r002 44th iterates of z^2 + 2100913763302920 a001 267914296/3*2207^(1/9) 2100913765211755 a007 Real Root Of 773*x^4+207*x^3+280*x^2-600*x-138 2100913766067411 r005 Im(z^2+c),c=21/106+35/59*I,n=4 2100913771637929 r002 9th iterates of z^2 + 2100913772521875 p001 sum(1/(561*n+500)/(10^n),n=0..infinity) 2100913778723179 a007 Real Root Of -236*x^4-89*x^3+746*x^2+201*x+902 2100913795253338 a005 (1/cos(7/148*Pi))^67 2100913796969082 a007 Real Root Of 596*x^4+943*x^3-759*x^2+26*x+538 2100913807521605 a007 Real Root Of 472*x^4+706*x^3-75*x^2+819*x-597 2100913808499912 a007 Real Root Of 445*x^4+739*x^3-654*x^2-317*x+404 2100913815844835 r005 Re(z^2+c),c=19/60+4/9*I,n=14 2100913817506729 a007 Real Root Of 227*x^4-305*x^3-817*x^2-907*x+229 2100913825662176 s002 sum(A162840[n]/(n!^2),n=1..infinity) 2100913831816278 m005 (1/3*2^(1/2)-2/5)/(4/9*gamma+1/12) 2100913834033302 m001 (2^(1/2)*GAMMA(23/24)+CareFree)/GAMMA(23/24) 2100913835400264 m001 (gamma(2)-sin(1))/(-GAMMA(5/6)+Sarnak) 2100913837141449 m001 (Kolakoski-PlouffeB)/(gamma(1)+BesselI(1,2)) 2100913839304497 m005 (1/2*5^(1/2)+7/11)/(1/8*5^(1/2)+5/9) 2100913863853420 m005 (1/3*Zeta(3)-2/3)/(1/2*3^(1/2)+2/5) 2100913869953948 r008 a(0)=2,K{-n^6,71-95*n^3-23*n^2+37*n} 2100913871711704 a007 Real Root Of 15*x^4+327*x^3+292*x^2+888*x-222 2100913872410686 a007 Real Root Of 946*x^4+777*x^3+613*x^2-387*x-103 2100913875135944 r008 a(0)=2,K{-n^6,83-91*n^3-29*n^2+27*n} 2100913875902401 r005 Im(z^2+c),c=-23/58+22/63*I,n=48 2100913879618992 a001 433494437/3*843^(1/18) 2100913890014010 r008 a(0)=2,K{-n^6,91-76*n^3-70*n^2+45*n} 2100913893340769 m001 ln(Catalan)^2/PrimesInBinary^2/Zeta(1/2)^2 2100913897198310 l006 ln(1100/8991) 2100913897545432 q001 6/28559 2100913898724167 r005 Re(z^2+c),c=-15/106+35/64*I,n=18 2100913922506390 r005 Re(z^2+c),c=-111/106+16/41*I,n=4 2100913922892546 m001 (Pi+Psi(1,1/3))*ln(3)*exp(1/exp(1)) 2100913923295778 m001 (arctan(1/2)*Khinchin+GAMMA(5/24))/Khinchin 2100913929965782 m001 (Shi(1)-sin(1))/(CareFree+FellerTornier) 2100913933584202 r009 Im(z^3+c),c=-8/29+10/57*I,n=2 2100913941735354 r004 Re(z^2+c),c=-3/34+7/16*I,z(0)=I,n=9 2100913958075025 a001 3571/89*1836311903^(16/17) 2100913963174450 l006 ln(2113/2607) 2100913964300843 r005 Im(z^2+c),c=-30/29+11/45*I,n=19 2100913966588866 r005 Im(z^2+c),c=-53/94+7/18*I,n=54 2100913978964952 a001 5702887/3*2207^(11/18) 2100913979266851 a007 Real Root Of 41*x^4+897*x^3+711*x^2-830*x-905 2100913982090570 m001 exp(GAMMA(11/24))^2/Si(Pi)/GAMMA(3/4) 2100913989805347 a007 Real Root Of -904*x^4-151*x^3-909*x^2+801*x-125 2100913995832851 r005 Im(z^2+c),c=-57/118+10/27*I,n=63 2100913996069790 m001 (Porter+ZetaQ(3))/(GAMMA(5/6)-FeigenbaumC) 2100914005945325 a008 Real Root of (2+5*x+6*x^2-5*x^3+3*x^4+3*x^5) 2100914012989750 m001 (Bloch+Magata)/(StolarskyHarborth-Tetranacci) 2100914012994623 m001 AlladiGrinstead/((ln(2)/ln(10))^Kolakoski) 2100914014285997 m005 (13/36+1/4*5^(1/2))/(4*Zeta(3)-3/7) 2100914024901262 r005 Re(z^2+c),c=-5/6+3/193*I,n=38 2100914025189886 a007 Real Root Of -197*x^4-150*x^3-390*x^2+752*x-139 2100914026479971 a007 Real Root Of -179*x^4-425*x^3-95*x^2-25*x-87 2100914027508123 r005 Im(z^2+c),c=-18/29+11/29*I,n=60 2100914037040651 a007 Real Root Of 317*x^4+626*x^3+691*x^2-960*x-227 2100914038164503 l006 ln(789/6449) 2100914041461496 a007 Real Root Of -549*x^4-926*x^3+931*x^2+947*x-11 2100914042124211 r005 Im(z^2+c),c=-127/86+1/46*I,n=6 2100914048712532 a007 Real Root Of 248*x^4+719*x^3+141*x^2-738*x-337 2100914052436133 r005 Re(z^2+c),c=41/122+1/11*I,n=7 2100914054439372 b008 Erfc[Sqrt[Pi]/2] 2100914054774388 m001 (-cos(1)+5)/(Backhouse+2/3) 2100914057592930 a007 Real Root Of 324*x^4+768*x^3+761*x^2+826*x-814 2100914068265808 r005 Im(z^2+c),c=-39/94+17/48*I,n=22 2100914069811182 m001 (Ei(1,1)-Kac)/(KhinchinLevy+RenyiParking) 2100914069987187 a007 Real Root Of -601*x^4+788*x^3+77*x^2+383*x-90 2100914073737664 r002 59th iterates of z^2 + 2100914076142158 r005 Im(z^2+c),c=-13/62+17/57*I,n=23 2100914082483497 p001 sum((-1)^n/(452*n+303)/n/(6^n),n=1..infinity) 2100914086795389 a001 832040/3*2207^(31/36) 2100914087108180 r005 Im(z^2+c),c=-5/14+21/62*I,n=23 2100914089873065 m001 Lehmer^Thue/GaussKuzminWirsing 2100914100940945 r005 Im(z^2+c),c=-13/62+17/57*I,n=28 2100914101592046 m009 (32*Catalan+4*Pi^2+4/5)/(5/12*Pi^2-4/5) 2100914103463463 m001 (FeigenbaumC-Mills)/(Riemann3rdZero-Trott2nd) 2100914103738473 m001 (Riemann3rdZero+Salem)/(GAMMA(2/3)-OneNinth) 2100914104523886 r009 Re(z^3+c),c=-1/4+14/53*I,n=16 2100914110498289 m001 1/GAMMA(1/12)^2*Catalan^2/ln(gamma)^2 2100914117154461 r005 Im(z^2+c),c=-5/12+3/5*I,n=52 2100914117979742 a001 199/10946*6557470319842^(16/17) 2100914122827666 a001 7881196/89*514229^(16/17) 2100914125094794 m001 (2^(1/2)-ln(2+3^(1/2)))/(-KhinchinLevy+Sarnak) 2100914137205985 r002 40th iterates of z^2 + 2100914145739940 a007 Real Root Of -438*x^4-239*x^3-296*x^2+525*x+122 2100914151504751 r009 Re(z^3+c),c=-1/4+14/53*I,n=17 2100914158122486 a007 Real Root Of -564*x^4-694*x^3+387*x^2-933*x+884 2100914175439962 r005 Im(z^2+c),c=-17/30+43/117*I,n=36 2100914179031023 r009 Re(z^3+c),c=-1/4+14/53*I,n=20 2100914180804178 a003 sin(Pi*11/109)-sin(Pi*18/103) 2100914181271674 r009 Re(z^3+c),c=-1/4+14/53*I,n=23 2100914181359961 r009 Re(z^3+c),c=-1/4+14/53*I,n=24 2100914181369623 r009 Re(z^3+c),c=-1/4+14/53*I,n=27 2100914181369736 r009 Re(z^3+c),c=-1/4+14/53*I,n=26 2100914181371294 r009 Re(z^3+c),c=-1/4+14/53*I,n=30 2100914181371394 r009 Re(z^3+c),c=-1/4+14/53*I,n=33 2100914181371396 r009 Re(z^3+c),c=-1/4+14/53*I,n=34 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=37 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=40 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=41 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=43 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=44 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=47 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=50 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=51 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=54 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=53 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=57 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=58 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=60 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=61 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=64 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=63 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=62 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=59 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=56 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=55 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=52 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=48 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=49 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=46 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=45 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=42 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=39 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=36 2100914181371397 r009 Re(z^3+c),c=-1/4+14/53*I,n=38 2100914181371398 r009 Re(z^3+c),c=-1/4+14/53*I,n=35 2100914181371402 r009 Re(z^3+c),c=-1/4+14/53*I,n=31 2100914181371410 r009 Re(z^3+c),c=-1/4+14/53*I,n=32 2100914181371517 r009 Re(z^3+c),c=-1/4+14/53*I,n=29 2100914181371981 r009 Re(z^3+c),c=-1/4+14/53*I,n=28 2100914181387119 r009 Re(z^3+c),c=-1/4+14/53*I,n=25 2100914181607501 r009 Re(z^3+c),c=-1/4+14/53*I,n=22 2100914181756330 r009 Re(z^3+c),c=-1/4+14/53*I,n=21 2100914182048921 r009 Re(z^3+c),c=-1/4+14/53*I,n=19 2100914185688827 m001 (ln(gamma)+gamma(2))/(FeigenbaumKappa+Mills) 2100914186000144 m001 Pi^2/ln(Robbin)*Zeta(1,2)^2 2100914187562260 m005 (1/2*5^(1/2)-2/11)/(69/20+9/20*5^(1/2)) 2100914192429620 m005 (1/2*Pi+1/2)/(7/12*exp(1)-3/5) 2100914197768155 r009 Re(z^3+c),c=-1/4+14/53*I,n=18 2100914208146336 a007 Real Root Of -296*x^4-198*x^3+397*x^2-875*x+340 2100914208627761 b008 1+EulerGamma+FresnelC[Pi] 2100914215676917 r005 Re(z^2+c),c=-91/74+4/47*I,n=26 2100914223466516 m001 (GAMMA(2/3)-GAMMA(11/12))/(ArtinRank2+Sarnak) 2100914233047884 a007 Real Root Of -86*x^4+845*x^3-939*x^2-681*x-585 2100914240729240 r009 Re(z^3+c),c=-1/4+14/53*I,n=14 2100914247947585 r005 Re(z^2+c),c=-1/10+24/43*I,n=56 2100914254729191 r005 Re(z^2+c),c=-5/6+2/129*I,n=50 2100914272117654 m001 (cos(1/5*Pi)+arctan(1/2))/(BesselI(1,1)-Kac) 2100914272819295 a001 161/416020*233^(9/29) 2100914272937237 a008 Real Root of x^4-x^3+2*x^2-40*x+65 2100914283748310 m001 CareFree+HardyLittlewoodC5*Magata 2100914284030204 m001 GAMMA(23/24)*RenyiParking*Trott2nd 2100914285730584 m001 (BesselK(1,1)+Bloch)/(Paris+ThueMorse) 2100914300832406 a007 Real Root Of 550*x^4+624*x^3-611*x^2+791*x-570 2100914302725284 r002 64th iterates of z^2 + 2100914316556217 m001 (Zeta(1,-1)+ReciprocalLucas)^BesselI(0,1) 2100914320263674 h001 (-7*exp(3/2)-1)/(-5*exp(3/2)+7) 2100914323349986 a007 Real Root Of -441*x^4-718*x^3+600*x^2+583*x+510 2100914323870925 r009 Re(z^3+c),c=-7/78+49/62*I,n=51 2100914349648993 m001 1/ArtinRank2^2/ErdosBorwein^2/ln(cos(1))^2 2100914358551427 m001 1/Lehmer/Kolakoski/exp(Trott) 2100914360628474 a007 Real Root Of 122*x^4-207*x^3-815*x^2+60*x-573 2100914362563614 l006 ln(478/3907) 2100914365885106 m001 (BesselJ(0,1)-FeigenbaumD)/(Thue+ZetaQ(2)) 2100914367362871 r002 13th iterates of z^2 + 2100914371351503 m001 (FeigenbaumD+ZetaQ(3))/(GAMMA(2/3)+gamma(1)) 2100914375243489 m001 (Zeta(1,2)+CopelandErdos)/(Mills-Totient) 2100914392421422 l004 Shi(420/83) 2100914402441402 r005 Im(z^2+c),c=-13/12+20/89*I,n=54 2100914406137484 m005 (1/2*gamma-5/11)/(5/8*exp(1)-10/11) 2100914415731457 a001 38*89^(8/21) 2100914417704214 a007 Real Root Of 174*x^4+32*x^3-597*x^2-148*x-769 2100914434223030 m001 (GAMMA(23/24)-FransenRobinson)^GAMMA(17/24) 2100914446274360 b008 -1/3+3*(67+Pi) 2100914446827217 r005 Re(z^2+c),c=-1/14+13/22*I,n=43 2100914448521162 m001 Kolakoski+MasserGramain+TwinPrimes 2100914452993596 a007 Real Root Of 315*x^4+530*x^3-224*x^2+529*x+878 2100914460162414 r002 47th iterates of z^2 + 2100914478922894 m001 Riemann2ndZero-gamma(3)-Trott 2100914481342237 r005 Im(z^2+c),c=-71/126+2/55*I,n=25 2100914483894974 m001 exp(BesselJ(0,1))/Conway*GAMMA(5/6)^2 2100914484916065 r002 24i'th iterates of 2*x/(1-x^2) of 2100914494412677 m006 (5/6*Pi-3/4)/(5/6*Pi^2+2/3) 2100914494412677 m008 (5/6*Pi-3/4)/(5/6*Pi^2+2/3) 2100914496337726 r005 Im(z^2+c),c=-63/106+7/33*I,n=7 2100914501260092 m001 GAMMA(13/24)*exp(Sierpinski)*cos(Pi/12) 2100914509340988 r005 Re(z^2+c),c=-7/32+15/56*I,n=13 2100914520046751 r009 Re(z^3+c),c=-1/4+14/53*I,n=15 2100914523312667 l006 ln(6848/8449) 2100914528293524 a007 Real Root Of -447*x^4-373*x^3+681*x^2-612*x+958 2100914528444771 a007 Real Root Of 16*x^4-252*x^3+46*x^2-674*x-146 2100914551702989 a001 13/123*7881196^(11/23) 2100914552663972 a001 13/123*39603^(33/46) 2100914558599968 r005 Re(z^2+c),c=7/29+13/62*I,n=3 2100914562058112 m001 (GAMMA(5/6)+StolarskyHarborth)/Stephens 2100914563071421 a007 Real Root Of 38*x^4+833*x^3+730*x^2+56*x+302 2100914573361009 a007 Real Root Of -286*x^4-428*x^3+369*x^2-389*x-843 2100914573505147 m001 Ei(1)*GaussAGM(1,1/sqrt(2))/LandauRamanujan 2100914582480507 a007 Real Root Of 383*x^4+301*x^3-634*x^2+466*x-893 2100914590480647 l006 ln(1123/9179) 2100914594711011 m005 (1/3*exp(1)-1/4)/(3*Catalan+3/8) 2100914603196129 a007 Real Root Of -479*x^4-681*x^3+775*x^2+583*x+821 2100914626231617 a007 Real Root Of -259*x^4+230*x^3-212*x^2+865*x-174 2100914634631402 a007 Real Root Of 42*x^4+907*x^3+484*x^2-705*x-176 2100914636110802 m001 (RenyiParking-ZetaP(2))/(GolombDickman-Kac) 2100914637543709 m001 ln(OneNinth)/DuboisRaymond*GAMMA(2/3)^2 2100914641533133 r005 Im(z^2+c),c=-13/14+37/189*I,n=17 2100914642449672 m001 (BesselJ(0,1)+sin(1/12*Pi))/(Magata+Porter) 2100914644042498 a001 2504730781961/199*2^(17/23) 2100914644557341 m001 1/arctan(1/2)^2*Sierpinski/ln(sqrt(Pi)) 2100914650022942 s001 sum(exp(-2*Pi/5)^n*A046437[n],n=1..infinity) 2100914650022942 s002 sum(A046437[n]/(exp(2/5*pi*n)),n=1..infinity) 2100914653124370 m001 CopelandErdos-MinimumGamma^(5^(1/2)) 2100914657295150 r005 Im(z^2+c),c=-14/29+24/59*I,n=21 2100914657376657 g001 abs(GAMMA(251/60+I*13/4)) 2100914667442113 r002 4th iterates of z^2 + 2100914669461172 r005 Re(z^2+c),c=-41/42+3/55*I,n=16 2100914672520557 m001 (1+3^(1/2))^(1/2)-exp(1/Pi)+MasserGramainDelta 2100914675551239 a001 1/75640*34^(40/51) 2100914684753289 r005 Im(z^2+c),c=-11/18+3/86*I,n=29 2100914688689886 a007 Real Root Of -163*x^4-524*x^3-377*x^2+243*x+491 2100914692003613 a005 (1/sin(89/229*Pi))^233 2100914695255466 a007 Real Root Of 997*x^4-761*x^3-279*x^2-606*x-124 2100914707554171 a001 161/1762289*4807526976^(19/22) 2100914719219289 m001 1/ln(Ei(1))*RenyiParking/GAMMA(1/6) 2100914724107406 q001 712/3389 2100914740481401 m001 Kolakoski^KhinchinLevy+Totient 2100914741894138 a005 (1/cos(9/230*Pi))^98 2100914742417282 a007 Real Root Of 281*x^4+498*x^3-170*x^2-346*x-833 2100914743545501 m001 (-CopelandErdos+Tribonacci)/(Conway-cos(1)) 2100914748723282 m005 (-23/6+1/6*5^(1/2))/(6/5+1/5*5^(1/2)) 2100914749616499 a007 Real Root Of -420*x^4-478*x^3+570*x^2-555*x+68 2100914759386570 l006 ln(645/5272) 2100914759478574 m001 (cos(1/5*Pi)-CareFree)/(Kac-Stephens) 2100914767575561 m001 ln(Pi)/(ZetaP(2)^BesselJ(0,1)) 2100914770201636 m001 ln(GAMMA(1/6))*Backhouse^2*gamma 2100914773275076 l006 ln(4735/5842) 2100914782350469 m005 (1/2*exp(1)-1/5)/(6/11*Catalan-4/9) 2100914788988544 a001 281/48*12586269025^(11/20) 2100914794482089 r005 Im(z^2+c),c=-65/114+20/53*I,n=57 2100914815100424 m004 (-5*Pi*Sec[Sqrt[5]*Pi])/3+5*Tanh[Sqrt[5]*Pi] 2100914824392025 r002 10th iterates of z^2 + 2100914839247265 a007 Real Root Of 449*x^4+527*x^3-690*x^2+703*x+662 2100914844599186 a001 610/3*54018521^(7/9) 2100914845692222 m001 (Salem+ZetaQ(4))/(Zeta(1,2)-FeigenbaumDelta) 2100914848133655 m001 KhinchinHarmonic^BesselI(0,1)+ZetaP(4) 2100914856171122 a007 Real Root Of 373*x^4+393*x^3-891*x^2+136*x+596 2100914858550054 a007 Real Root Of 241*x^4+230*x^3-789*x^2-735*x-624 2100914863455786 h001 (2/11*exp(1)+3/4)/(7/10*exp(2)+3/4) 2100914869792712 a007 Real Root Of 687*x^4-736*x^3+101*x^2-671*x+142 2100914871560956 r005 Re(z^2+c),c=31/102+3/14*I,n=35 2100914879377655 m001 Pi+exp(Pi)*(Zeta(1,-1)-Zeta(1,2)) 2100914885767873 r005 Re(z^2+c),c=19/122+25/57*I,n=57 2100914887439023 r002 12th iterates of z^2 + 2100914908985134 r005 Re(z^2+c),c=-15/14+67/256*I,n=4 2100914911538728 m009 (1/6*Psi(1,1/3)-1/4)/(32*Catalan+4*Pi^2-3/5) 2100914914435670 r005 Im(z^2+c),c=-25/28+10/53*I,n=25 2100914925699250 m001 (-sqrt(1+sqrt(3))+1)/(OneNinth+3) 2100914927975494 a001 610/3*199^(15/34) 2100914935599024 r008 a(0)=2,K{-n^6,-43-14*n^3+68*n^2-20*n} 2100914939552444 h001 (1/2*exp(2)+2/5)/(5/8*exp(1)+1/4) 2100914972151741 m006 (2/5*ln(Pi)-5)/(2/5*exp(2*Pi)+2) 2100914976807666 r005 Re(z^2+c),c=-1/11+24/43*I,n=33 2100914981307104 m001 FeigenbaumMu-ln(2)-StronglyCareFree 2100914992984247 l006 ln(812/6637) 2100914994651301 r009 Re(z^3+c),c=-17/28+2/7*I,n=7 2100914994667377 a003 cos(Pi*34/117)*cos(Pi*40/103) 2100915004674789 r002 7th iterates of z^2 + 2100915005943628 l006 ln(7357/9077) 2100915024199320 r009 Re(z^3+c),c=-13/36+25/44*I,n=57 2100915025834243 m001 Pi^(1/2)*(Ei(1)-Rabbit) 2100915025862723 m005 (1/3*2^(1/2)-1/11)/(2/5*5^(1/2)+11/12) 2100915029272764 r005 Re(z^2+c),c=-27/118+12/53*I,n=16 2100915031904124 a007 Real Root Of 609*x^4+929*x^3-957*x^2-240*x+470 2100915040037712 m001 (2^(1/2)+Catalan)/(-Zeta(5)+GAMMA(23/24)) 2100915041177998 a007 Real Root Of 46*x^4+918*x^3-994*x^2+489*x-3 2100915042759851 r009 Re(z^3+c),c=-37/122+6/13*I,n=6 2100915045227790 h001 (5/9*exp(2)+10/11)/(4/7*exp(1)+5/6) 2100915051517234 m001 exp(CopelandErdos)^2/Artin^2*GAMMA(2/3)^2 2100915054729164 r005 Im(z^2+c),c=-17/36+18/49*I,n=44 2100915075595553 s002 sum(A192492[n]/(16^n-1),n=1..infinity) 2100915086726226 a001 521/89*317811^(13/46) 2100915092533648 m001 (5^(1/2))^Totient*TravellingSalesman 2100915099066163 m005 (1/3*gamma+1/11)/(3/5*2^(1/2)+1/2) 2100915114747664 m005 (1/2*exp(1)-1/11)/(1/12*gamma+5/9) 2100915137849260 m001 (Catalan+ZetaQ(3))/(Pi+2^(1/3)) 2100915138883639 r005 Re(z^2+c),c=7/60+23/41*I,n=24 2100915141102793 m001 (Stephens+Weierstrass)/(FeigenbaumB-MertensB3) 2100915142483428 m005 (1/2*3^(1/2)+7/9)/(3/11*gamma+5/8) 2100915146886669 l006 ln(979/8002) 2100915150626285 m005 (47/44+1/4*5^(1/2))/(3/8*3^(1/2)+1/8) 2100915152339205 r009 Im(z^3+c),c=-25/122+38/39*I,n=12 2100915152694482 m001 GAMMA(1/3)/Riemann2ndZero^2*ln(sqrt(2)) 2100915157378064 b008 1+Sqrt[5]*FresnelC[1/2] 2100915169012353 a007 Real Root Of 540*x^4-878*x^3-217*x^2-811*x-170 2100915181265154 a003 sin(Pi*3/52)/cos(Pi*17/99) 2100915199989736 m001 Cahen+LaplaceLimit-Magata 2100915202691260 m005 (1/2*Zeta(3)-1/10)/(2/3*gamma+2) 2100915203582646 a007 Real Root Of -673*x^4-983*x^3-16*x^2+905*x-179 2100915218300600 r002 49th iterates of z^2 + 2100915222554599 h001 (5/12*exp(2)+7/10)/(1/8*exp(2)+7/8) 2100915242551897 m005 (1/2*exp(1)-5/7)/(5^(1/2)+5/6) 2100915254139461 m001 (-3^(1/3)+KhinchinLevy)/(ln(2)/ln(10)+Catalan) 2100915255934445 l006 ln(1146/9367) 2100915256237282 r005 Re(z^2+c),c=-59/56+23/48*I,n=4 2100915265853291 r002 7th iterates of z^2 + 2100915273983963 m001 (Bloch+DuboisRaymond)/(Zeta(5)-GAMMA(2/3)) 2100915275033441 m005 (5*2^(1/2)+4/5)/(5*Catalan-5/6) 2100915284743068 r005 Re(z^2+c),c=-31/66+27/47*I,n=20 2100915288117630 m005 (1/3*Zeta(3)+2/3)/(9/11*3^(1/2)-10/11) 2100915288197549 m001 (Zeta(3)+Niven)/(Sarnak+TwinPrimes) 2100915289497549 r005 Im(z^2+c),c=-31/48+3/25*I,n=10 2100915300517500 r005 Im(z^2+c),c=-5/122+9/37*I,n=16 2100915308832783 a007 Real Root Of -227*x^4-358*x^3+196*x^2-144*x-65 2100915309048452 a007 Real Root Of -201*x^4+128*x^3+710*x^2-892*x+95 2100915312879962 b008 22-ExpIntegralEi[2]/5 2100915318067644 g007 -Psi(2,9/10)-Psi(2,1/10)-Psi(2,5/8)-Psi(2,2/7) 2100915322767930 r009 Im(z^3+c),c=-6/13+3/50*I,n=40 2100915325473571 a007 Real Root Of -496*x^4-929*x^3+352*x^2+558*x+667 2100915330644833 r005 Re(z^2+c),c=4/23+3/58*I,n=12 2100915332948384 m004 6+25*Sqrt[5]*Pi+6*Sqrt[5]*Pi*Sin[Sqrt[5]*Pi] 2100915357788278 a001 4976784*843^(5/9) 2100915359281492 a001 843/11*(1/2*5^(1/2)+1/2)^17*11^(17/20) 2100915384002979 m005 (1/3+1/4*5^(1/2))/(1/7*3^(1/2)+4) 2100915387416267 a005 (1/sin(89/223*Pi))^1141 2100915387970528 a007 Real Root Of 597*x^4+900*x^3-930*x^2-336*x+114 2100915388939096 m005 (4/3+2*5^(1/2))/(5/6*Catalan+2) 2100915400578421 a007 Real Root Of -435*x^4-621*x^3+783*x^2+614*x+550 2100915409441402 a003 sin(Pi*8/23)/cos(Pi*13/36) 2100915417000786 m001 Chi(1)^ZetaR(2)/arctan(1/2) 2100915418857094 r009 Im(z^3+c),c=-2/5+4/41*I,n=6 2100915419798726 a001 3/3571*123^(4/21) 2100915426113557 l006 ln(2622/3235) 2100915430334757 m004 (200*Pi)/3+(Sqrt[5]*Tan[Sqrt[5]*Pi])/Pi 2100915445449912 r005 Re(z^2+c),c=-85/94+18/61*I,n=6 2100915454489199 r005 Im(z^2+c),c=-9/10+16/87*I,n=39 2100915460374115 r005 Re(z^2+c),c=-71/60+20/41*I,n=2 2100915471855938 p004 log(28289/3461) 2100915480441311 m001 (Khinchin+ZetaP(4))/(BesselJ(0,1)-ln(gamma)) 2100915488526386 a007 Real Root Of -462*x^4-804*x^3+462*x^2-19*x-534 2100915492360062 m001 (-ln(5)+Gompertz)/(5^(1/2)-exp(1)) 2100915496251200 r005 Re(z^2+c),c=-21/82+13/58*I,n=3 2100915509373701 a003 cos(Pi*11/103)-sin(Pi*42/101) 2100915512592975 m002 -20+2/Pi^3-ProductLog[Pi] 2100915517371957 m003 -1+Sqrt[5]/2+10*E^(-1/2-Sqrt[5]/2) 2100915526561924 r002 4th iterates of z^2 + 2100915528890041 m001 1/OneNinth^2*ErdosBorwein*exp(exp(1)) 2100915529845878 r005 Im(z^2+c),c=-17/18+2/101*I,n=4 2100915531654244 a007 Real Root Of -874*x^4+593*x^3+466*x^2+730*x+140 2100915533166937 m001 1/exp(Zeta(7))^2/GAMMA(2/3)^2/sin(Pi/5)^2 2100915534476427 r009 Re(z^3+c),c=-61/106+35/62*I,n=26 2100915540345989 p004 log(33749/4129) 2100915545807458 r005 Im(z^2+c),c=-55/74+5/38*I,n=14 2100915566571630 m001 1/GAMMA(1/12)^2/exp(Niven)*GAMMA(7/12) 2100915566902572 p004 log(36479/4463) 2100915570755461 m007 (-2*gamma+1/5)/(-1/2*gamma-3/2*ln(2)+1/4*Pi-4) 2100915570884649 r005 Im(z^2+c),c=-8/25+23/41*I,n=13 2100915585601967 r005 Im(z^2+c),c=23/62+4/21*I,n=57 2100915589923514 m001 Conway^(Otter/GAMMA(11/12)) 2100915596493111 m001 TwinPrimes^2/FeigenbaumAlpha^2*ln(gamma)^2 2100915597299823 r005 Re(z^2+c),c=-3/26+9/17*I,n=52 2100915598505125 r005 Re(z^2+c),c=-1/7+26/55*I,n=22 2100915600067189 m001 (gamma(3)+TwinPrimes)/(5^(1/2)+Catalan) 2100915619657723 r009 Re(z^3+c),c=-7/25+14/33*I,n=4 2100915622945853 m001 (sin(1)*Riemann2ndZero-Trott)/sin(1) 2100915623775767 a007 Real Root Of -641*x^4+417*x^3+289*x^2+222*x+39 2100915625681961 a001 305/682*199^(8/11) 2100915644256713 m005 (1/2*5^(1/2)+1/8)/(6/7*5^(1/2)+4) 2100915645095959 h001 (7/11*exp(2)+1/12)/(7/10*exp(1)+3/8) 2100915657127287 a007 Real Root Of -479*x^4-746*x^3+753*x^2+847*x+870 2100915675729205 m001 (5^(1/2))^(Stephens/GolombDickman) 2100915679739564 a007 Real Root Of 89*x^4-278*x^3+524*x^2-329*x-95 2100915683368745 m001 (1/2*Pi*2^(1/2)-BesselJ(0,1))/ln(2) 2100915689567612 r005 Re(z^2+c),c=-115/98+10/59*I,n=56 2100915697929009 m001 (ln(2+3^(1/2))+ZetaR(2))/ArtinRank2 2100915714805687 a007 Real Root Of 804*x^4+994*x^3-989*x^2+969*x-45 2100915719087344 r002 60th iterates of z^2 + 2100915729331097 m001 (-Pi^(1/2)+Kac)/(Psi(2,1/3)+cos(1)) 2100915729951237 r005 Re(z^2+c),c=-7/10+2/209*I,n=2 2100915731236622 r002 60th iterates of z^2 + 2100915744818559 h001 (1/10*exp(1)+3/4)/(6/11*exp(2)+5/6) 2100915749226720 m005 (1/2*Zeta(3)+5/9)/(1/4*Zeta(3)+1/4) 2100915755226997 r005 Im(z^2+c),c=-63/62+5/22*I,n=36 2100915757146162 m005 (1/3*Zeta(3)+1/12)/(3/10*3^(1/2)-3/4) 2100915761928454 a007 Real Root Of -463*x^4-884*x^3-86*x^2-152*x+883 2100915764692019 r005 Im(z^2+c),c=5/74+1/5*I,n=10 2100915766094136 m005 (3/4*2^(1/2)-3/4)/(11/15+1/3*5^(1/2)) 2100915767173355 a007 Real Root Of -635*x^4-755*x^3+681*x^2-724*x+843 2100915771826636 m001 exp(GAMMA(7/24))*KhintchineLevy^2/Zeta(1/2) 2100915781944436 b008 5*(42+E^(-4)) 2100915790034053 a007 Real Root Of -205*x^4-39*x^3+625*x^2-233*x+384 2100915791498531 r005 Im(z^2+c),c=-23/58+22/63*I,n=51 2100915792066945 r002 4th iterates of z^2 + 2100915793255782 r002 44th iterates of z^2 + 2100915812163042 r005 Im(z^2+c),c=-63/64+11/50*I,n=64 2100915814198233 a001 439204/89*1836311903^(14/17) 2100915814210433 a001 370248451/89*514229^(14/17) 2100915821597318 m001 exp(cos(1))^2*LandauRamanujan*cos(Pi/12)^2 2100915833521279 m001 GAMMA(7/12)*GAMMA(1/3)^2/exp(sqrt(1+sqrt(3))) 2100915838001624 r005 Re(z^2+c),c=-3/13+27/46*I,n=20 2100915842740498 m001 (arctan(1/3)*Sierpinski-exp(1/Pi))/Sierpinski 2100915847396571 r005 Im(z^2+c),c=-16/15+9/41*I,n=15 2100915858211450 r005 Re(z^2+c),c=17/106+29/52*I,n=47 2100915870327862 a001 521/10610209857723*233^(4/15) 2100915872414088 s001 sum(1/10^(n-1)*A159639[n]/n^n,n=1..infinity) 2100915872662631 m001 Totient^GAMMA(13/24)*GAMMA(19/24)^GAMMA(13/24) 2100915883180864 r008 a(0)=0,K{-n^6,72-53*n^3+94*n^2-66*n} 2100915895202304 l006 ln(167/1365) 2100915898323229 m001 (GAMMA(7/12)-KhinchinLevy)/(Salem+ZetaP(2)) 2100915900098669 r005 Re(z^2+c),c=-9/38+19/36*I,n=9 2100915919296392 r002 28th iterates of z^2 + 2100915922303040 a007 Real Root Of 9*x^4-435*x^3-832*x^2+28*x-478 2100915933437455 a007 Real Root Of 44*x^4-634*x^3+855*x^2+120*x+996 2100915940960570 a007 Real Root Of -961*x^4-54*x^3+700*x^2+721*x-180 2100915955045133 r009 Re(z^3+c),c=-6/23+17/54*I,n=4 2100915962713790 m001 (Cahen+Niven)/(Porter-Sierpinski) 2100915963431483 l006 ln(5753/7098) 2100915963482564 m001 (Kolakoski*Paris-MadelungNaCl)/Kolakoski 2100915964202494 a007 Real Root Of -196*x^4-267*x^3+656*x^2+574*x-347 2100915968520561 m001 1/Trott^2/Niven^2/exp(log(2+sqrt(3)))^2 2100915968770234 a007 Real Root Of 83*x^4+87*x^3-92*x^2-246*x-921 2100915972684325 m005 (1/3*2^(1/2)-1/4)/(3/10*3^(1/2)-5/8) 2100915978747562 a007 Real Root Of 213*x^4-2*x^3-343*x^2+954*x-650 2100915980409559 s001 sum(exp(-3*Pi/5)^n*A033488[n],n=1..infinity) 2100915989024093 h001 (7/10*exp(2)+3/11)/(11/12*exp(1)+1/10) 2100915999892969 m001 (FeigenbaumKappa+Magata)/(Bloch-exp(Pi)) 2100916004643916 m001 ln(Si(Pi))/GaussKuzminWirsing/cos(Pi/12) 2100916017331212 m001 Sierpinski/exp(Niven)/sqrt(5) 2100916028380549 m001 (Pi+Zeta(3))/(polylog(4,1/2)-Sierpinski) 2100916031432879 m005 (1/2*5^(1/2)-4/9)/(3*Zeta(3)-2/5) 2100916031442455 r005 Re(z^2+c),c=-3/46+49/60*I,n=63 2100916051113916 r002 28th iterates of z^2 + 2100916065835028 b008 ArcCsc[68]/7 2100916075734960 m005 (1/2*3^(1/2)-9/10)/(9/11*3^(1/2)+1/5) 2100916078613453 r005 Re(z^2+c),c=-25/46+19/33*I,n=53 2100916081637370 r009 Re(z^3+c),c=-47/126+25/43*I,n=61 2100916088164465 m005 (1/2*3^(1/2)-5/11)/(2/11*gamma+1/11) 2100916095388892 a007 Real Root Of 900*x^4+569*x^3+308*x^2-528*x-121 2100916105632959 a008 Real Root of x^4-2*x^3-19*x^2-38*x-34 2100916106633001 a001 1364/3*4181^(39/53) 2100916120303246 r005 Re(z^2+c),c=17/58+16/55*I,n=6 2100916124351517 m001 Si(Pi)^GAMMA(13/24)-MasserGramain 2100916124804957 m005 (1/2*2^(1/2)-5/6)/(2/11*3^(1/2)-3/8) 2100916136086388 r005 Im(z^2+c),c=-29/86+19/35*I,n=8 2100916140695675 m001 Backhouse/FeigenbaumDelta/ZetaR(2) 2100916143329949 m001 (Stephens-ZetaP(4))/(Pi-BesselJ(0,1)) 2100916150546035 r002 28th iterates of z^2 + 2100916171045806 a007 Real Root Of 300*x^4+180*x^3-692*x^2+952*x+879 2100916173299364 s002 sum(A083969[n]/(2^n-1),n=1..infinity) 2100916177609076 m001 (exp(Pi)-exp(sqrt(2))*GAMMA(1/12))/GAMMA(1/12) 2100916184489368 m005 (-31/8+1/8*5^(1/2))/(1/2*gamma-2) 2100916187999352 m001 ArtinRank2*Champernowne/HardyLittlewoodC5 2100916192334532 m007 (-2/3*gamma-4/3*ln(2)+4/5)/(-gamma+3) 2100916204463910 r005 Re(z^2+c),c=-19/16+9/61*I,n=44 2100916233475604 h001 (-8*exp(2)+9)/(-8*exp(8)-5) 2100916233598018 a001 76/89*28657^(5/57) 2100916238296804 r009 Re(z^3+c),c=-31/110+23/53*I,n=4 2100916242948727 m001 (GAMMA(17/24)-Conway)/(cos(1/5*Pi)-gamma(1)) 2100916246434123 a007 Real Root Of -388*x^4-402*x^3+727*x^2-737*x-926 2100916254194008 m005 (7/8+1/4*5^(1/2))/(1/12*exp(1)-10/11) 2100916255035355 r005 Re(z^2+c),c=-29/60+33/56*I,n=35 2100916256752636 r005 Re(z^2+c),c=-5/44+17/32*I,n=41 2100916268976725 a007 Real Root Of 579*x^4+978*x^3-389*x^2-99*x-702 2100916269895341 a001 2178309/4*47^(37/39) 2100916271364667 m001 (Psi(2,1/3)*Riemann2ndZero+Rabbit)/Psi(2,1/3) 2100916274003060 s002 sum(A149530[n]/(n*exp(n)-1),n=1..infinity) 2100916284703559 r005 Re(z^2+c),c=-3/32+22/39*I,n=48 2100916291164404 a007 Real Root Of -491*x^4-778*x^3+455*x^2+110*x+574 2100916294311645 a007 Real Root Of -320*x^4-628*x^3+203*x^2+409*x+374 2100916294572914 m005 (1/2*Catalan-1/7)/(7/9*2^(1/2)+2/5) 2100916295514470 m001 (sin(1)+ln(5))/(gamma(2)+Salem) 2100916297038698 r005 Re(z^2+c),c=-6/5+3/98*I,n=6 2100916299951174 m001 Zeta(1/2)*FeigenbaumDelta^2/exp(exp(1)) 2100916308889586 r002 40th iterates of z^2 + 2100916309948579 a007 Real Root Of -2*x^4-418*x^3+456*x^2-568*x-817 2100916320227113 m001 ln(2+3^(1/2))^(Pi^(1/2))+Bloch 2100916333795229 a003 sin(Pi*23/103)-sin(Pi*33/101) 2100916337169474 m001 Riemann1stZero/GolombDickman^2/ln(sin(1)) 2100916346229317 a007 Real Root Of -358*x^4-855*x^3-565*x^2-524*x+439 2100916355377126 m001 (Bloch-Lehmer)/(gamma(2)-BesselI(1,1)) 2100916359217148 r005 Re(z^2+c),c=-87/74+11/57*I,n=22 2100916362614722 m005 (1/3*Pi-1/10)/(-11/40+1/8*5^(1/2)) 2100916362853767 a001 610/843*199^(7/11) 2100916363802317 m001 (-Zeta(1,2)+GaussAGM)/(sin(1)+gamma(3)) 2100916370412688 m001 HardyLittlewoodC5^(Pi^(1/2))+Ei(1) 2100916392788938 a007 Real Root Of -244*x^4-298*x^3+222*x^2-63*x+878 2100916392797592 a007 Real Root Of 374*x^4+228*x^3-988*x^2+695*x+649 2100916394564414 a007 Real Root Of 579*x^4+871*x^3-960*x^2-189*x+637 2100916402887900 r005 Re(z^2+c),c=1/46+2/61*I,n=6 2100916413398756 l006 ln(3131/3863) 2100916419548476 m005 (1/2*5^(1/2)-3/5)/(4/9*Zeta(3)-3) 2100916425348951 m001 (exp(-1/2*Pi)-Bloch)/(Gompertz+TwinPrimes) 2100916428894396 m001 (2^(1/3))^HardyLittlewoodC3/Psi(2,1/3) 2100916430112532 m001 GolombDickman*ln(Si(Pi))/FeigenbaumC 2100916433432898 r009 Re(z^3+c),c=-7/40+17/19*I,n=3 2100916453842181 a007 Real Root Of -231*x^4-295*x^3+762*x^2+293*x-983 2100916455390954 a007 Real Root Of -793*x^4-651*x^3+299*x^2+811*x-176 2100916467424480 r005 Re(z^2+c),c=-27/118+12/53*I,n=20 2100916474713139 b008 3/4+(4+Pi)^E 2100916479779696 m001 GlaisherKinkelin*OneNinth+ReciprocalLucas 2100916488156706 r008 a(0)=2,K{-n^6,71-95*n^3-22*n^2+36*n} 2100916488975694 m005 (1/2*3^(1/2)+5/6)/(7/8*2^(1/2)-3/7) 2100916497299684 r002 20th iterates of z^2 + 2100916499580247 m001 Si(Pi)^(Zeta(5)/Zeta(1,-1)) 2100916506802893 a007 Real Root Of 658*x^4+829*x^3-784*x^2+786*x-20 2100916507019881 m001 1/Conway/exp(Backhouse)^2*Rabbit^2 2100916509800046 l006 ln(1192/9743) 2100916520853643 m001 (Porter+ZetaQ(2))/(FeigenbaumD-Magata) 2100916529787387 p001 sum(1/(133*n+48)/(32^n),n=0..infinity) 2100916529811081 r009 Im(z^3+c),c=-49/102+2/25*I,n=40 2100916530916653 m001 (2^(1/3)+gamma)/(-Lehmer+Porter) 2100916533604859 g007 Psi(2,9/10)+Psi(2,2/9)+Psi(2,3/7)-Psi(2,10/11) 2100916544669449 a007 Real Root Of -354*x^4-512*x^3+460*x^2-262*x-432 2100916551393114 a007 Real Root Of -555*x^4+227*x^3-44*x^2+810*x-17 2100916562101753 a007 Real Root Of -932*x^4-390*x^3-749*x^2+746*x+16 2100916563949127 a001 24476/233*832040^(3/59) 2100916570034917 r009 Re(z^3+c),c=-29/90+25/54*I,n=16 2100916572462331 m001 (Conway-RenyiParking)/(Zeta(5)+ln(5)) 2100916581183736 a007 Real Root Of 614*x^4+803*x^3-548*x^2+960*x-80 2100916583420452 a007 Real Root Of 166*x^4-341*x^3-323*x^2-704*x+165 2100916590518070 r005 Im(z^2+c),c=-5/8+80/171*I,n=11 2100916592352711 r005 Im(z^2+c),c=-16/13+7/58*I,n=42 2100916594308645 b008 34/11+Cos[3] 2100916600550565 m001 1/ln(Lehmer)*Backhouse/PisotVijayaraghavan 2100916609934471 l006 ln(1025/8378) 2100916612415948 m002 -2+E^Pi/Log[Pi]+3/ProductLog[Pi] 2100916612582829 h001 (2/9*exp(2)+5/6)/(2/5*exp(1)+1/11) 2100916621499291 r005 Im(z^2+c),c=-5/44+11/41*I,n=13 2100916632170193 r009 Re(z^3+c),c=-17/90+11/13*I,n=2 2100916634538728 a007 Real Root Of 163*x^4-200*x^3-660*x^2+615*x-825 2100916636256516 a007 Real Root Of 239*x^4+6*x^3-957*x^2+243*x+134 2100916642351100 m005 (1/2*Pi+7/11)/(9/10*2^(1/2)-2/9) 2100916642877856 r005 Im(z^2+c),c=-6/7+18/109*I,n=20 2100916646748196 a007 Real Root Of 433*x^4+672*x^3+70*x^2+834*x-761 2100916646823426 m002 -E^Pi+6/Pi^4+ProductLog[Pi]+Tanh[Pi] 2100916649379800 r002 62th iterates of z^2 + 2100916649641065 a007 Real Root Of 39*x^4+827*x^3+180*x^2+364*x-932 2100916655686884 a007 Real Root Of -66*x^4+327*x^3+978*x^2+234*x+493 2100916662754344 r005 Im(z^2+c),c=2/17+3/17*I,n=9 2100916667764234 r002 8th iterates of z^2 + 2100916677991142 a001 29/34*4181^(4/37) 2100916681675431 m001 GAMMA(2/3)^2*Tribonacci^2*ln(Zeta(3))^2 2100916683646237 r005 Re(z^2+c),c=-157/126+3/34*I,n=8 2100916695329639 a007 Real Root Of 533*x^4+823*x^3-915*x^2-451*x+339 2100916702511721 a007 Real Root Of 706*x^4-508*x^3+641*x^2-993*x-243 2100916713621353 r005 Im(z^2+c),c=-2/3+53/209*I,n=25 2100916737729349 a007 Real Root Of 639*x^4+887*x^3-566*x^2+481*x-715 2100916748335717 r008 a(0)=1,K{-n^6,3+4*n^3-3*n} 2100916749048948 l006 ln(858/7013) 2100916750362797 r005 Re(z^2+c),c=-9/50+17/44*I,n=19 2100916755515045 r005 Re(z^2+c),c=11/54+26/63*I,n=25 2100916757187908 r005 Re(z^2+c),c=-45/46+2/61*I,n=22 2100916758765344 r002 7th iterates of z^2 + 2100916758865950 r005 Re(z^2+c),c=-45/46+2/61*I,n=24 2100916759243022 r002 38th iterates of z^2 + 2100916759282969 r005 Re(z^2+c),c=-45/46+2/61*I,n=26 2100916759294316 r002 40th iterates of z^2 + 2100916759302640 r005 Re(z^2+c),c=1/46+2/61*I,n=10 2100916759305557 r005 Re(z^2+c),c=1/46+2/61*I,n=11 2100916759306581 r002 42th iterates of z^2 + 2100916759307126 r005 Re(z^2+c),c=1/46+2/61*I,n=12 2100916759307219 r005 Re(z^2+c),c=-45/46+2/61*I,n=34 2100916759307231 r005 Re(z^2+c),c=-45/46+2/61*I,n=36 2100916759307237 r005 Re(z^2+c),c=-45/46+2/61*I,n=38 2100916759307237 r002 50th iterates of z^2 + 2100916759307238 r002 52th iterates of z^2 + 2100916759307238 r002 54th iterates of z^2 + 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=17 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=16 2100916759307238 r005 Re(z^2+c),c=-45/46+2/61*I,n=48 2100916759307238 r005 Re(z^2+c),c=-45/46+2/61*I,n=46 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=18 2100916759307238 r005 Re(z^2+c),c=-45/46+2/61*I,n=50 2100916759307238 r002 64th iterates of z^2 + 2100916759307238 r002 62th iterates of z^2 + 2100916759307238 r005 Re(z^2+c),c=-45/46+2/61*I,n=52 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=19 2100916759307238 r005 Re(z^2+c),c=-45/46+2/61*I,n=60 2100916759307238 r005 Re(z^2+c),c=-45/46+2/61*I,n=62 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=23 2100916759307238 r005 Re(z^2+c),c=-45/46+2/61*I,n=64 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=24 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=25 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=29 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=30 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=31 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=35 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=36 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=37 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=41 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=42 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=43 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=44 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=45 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=46 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=47 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=48 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=49 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=50 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=51 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=52 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=53 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=54 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=55 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=38 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=39 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=40 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=34 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=33 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=32 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=28 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=27 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=26 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=22 2100916759307238 r005 Re(z^2+c),c=-45/46+2/61*I,n=58 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=21 2100916759307238 r005 Re(z^2+c),c=-45/46+2/61*I,n=56 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=20 2100916759307238 r005 Re(z^2+c),c=-45/46+2/61*I,n=54 2100916759307238 r002 60th iterates of z^2 + 2100916759307238 r002 58th iterates of z^2 + 2100916759307238 r002 56th iterates of z^2 + 2100916759307238 r005 Re(z^2+c),c=-45/46+2/61*I,n=44 2100916759307238 r005 Re(z^2+c),c=-45/46+2/61*I,n=42 2100916759307238 r005 Re(z^2+c),c=-45/46+2/61*I,n=40 2100916759307238 r005 Re(z^2+c),c=1/46+2/61*I,n=15 2100916759307239 r005 Re(z^2+c),c=1/46+2/61*I,n=14 2100916759307240 r005 Re(z^2+c),c=1/46+2/61*I,n=13 2100916759307242 r002 48th iterates of z^2 + 2100916759307290 r002 46th iterates of z^2 + 2100916759307379 r005 Re(z^2+c),c=-45/46+2/61*I,n=32 2100916759307444 r002 44th iterates of z^2 + 2100916759309005 r005 Re(z^2+c),c=-45/46+2/61*I,n=30 2100916759313944 r005 Re(z^2+c),c=-45/46+2/61*I,n=28 2100916759378097 r002 36th iterates of z^2 + 2100916759507936 r005 Re(z^2+c),c=1/46+2/61*I,n=9 2100916762243658 r005 Re(z^2+c),c=-45/46+2/61*I,n=20 2100916762398338 r002 34th iterates of z^2 + 2100916762416465 a001 55/29*1364^(15/23) 2100916762634519 r005 Re(z^2+c),c=1/46+2/61*I,n=8 2100916766859419 r002 30th iterates of z^2 + 2100916768865530 r005 Re(z^2+c),c=13/62+13/27*I,n=54 2100916771540514 r005 Re(z^2+c),c=1/46+2/61*I,n=7 2100916772248751 m001 (exp(Pi)+exp(1))/(-Chi(1)+TravellingSalesman) 2100916773990339 g005 GAMMA(7/11)/Pi/csc(1/5*Pi)/GAMMA(8/11) 2100916778156314 r002 32th iterates of z^2 + 2100916790489600 p001 sum((-1)^n/(510*n+469)/(32^n),n=0..infinity) 2100916795714752 l006 ln(6771/8354) 2100916797859359 m001 ZetaQ(3)*(cos(1/5*Pi)+BesselI(1,2)) 2100916804158930 s002 sum(A250704[n]/(64^n-1),n=1..infinity) 2100916808383538 a007 Real Root Of 255*x^4+284*x^3-395*x^2-120*x-843 2100916810610709 m002 -E^Pi+5*Coth[Pi]-Sinh[Pi]/4 2100916818772816 s002 sum(A256721[n]/(n*pi^n+1),n=1..infinity) 2100916826162576 a007 Real Root Of 308*x^4+477*x^3+50*x^2+752*x-218 2100916833688668 m001 (GAMMA(17/24)+Backhouse)/(Mills-ZetaQ(4)) 2100916835345066 h001 (3/10*exp(1)+4/9)/(7/9*exp(2)+1/4) 2100916836409817 b008 Cos[8/9]/3 2100916838451622 m005 (1/2*exp(1)-1/11)/(2*exp(1)+3/5) 2100916842794233 m001 Backhouse*TreeGrowth2nd-Zeta(1/2) 2100916850442305 r005 Im(z^2+c),c=-21/44+20/57*I,n=17 2100916865522623 r005 Re(z^2+c),c=-45/46+2/61*I,n=18 2100916871550227 a007 Real Root Of 387*x^4+361*x^3-467*x^2+542*x-992 2100916873513762 m006 (4*ln(Pi)-3/5)/(1/3/Pi-2) 2100916876531806 r005 Re(z^2+c),c=-45/46+2/61*I,n=14 2100916877959903 r009 Im(z^3+c),c=-13/44+9/53*I,n=7 2100916884231698 a007 Real Root Of -429*x^4-827*x^3+224*x^2+186*x+91 2100916888535224 a007 Real Root Of 426*x^4+781*x^3-314*x^2+219*x+789 2100916893148679 a003 cos(Pi*38/113)*cos(Pi*32/89) 2100916893555399 b008 E^2*(1/8+E) 2100916894703225 r005 Im(z^2+c),c=-27/40+25/58*I,n=62 2100916895833598 a007 Real Root Of -390*x^4-949*x^3-245*x^2+325*x+562 2100916896053092 r005 Re(z^2+c),c=25/78+14/61*I,n=38 2100916898746074 a003 2^(1/2)+cos(4/9*Pi)+cos(3/10*Pi)-cos(10/21*Pi) 2100916909311549 r005 Im(z^2+c),c=-25/42+16/45*I,n=56 2100916916243138 a007 Real Root Of 329*x^4+160*x^3-671*x^2+557*x-794 2100916924206272 m001 ln(TreeGrowth2nd)/FeigenbaumB^2*BesselK(0,1)^2 2100916939246217 r009 Re(z^3+c),c=-21/52+33/53*I,n=18 2100916941717426 r005 Im(z^2+c),c=-4/5+3/121*I,n=4 2100916949966926 a007 Real Root Of -455*x^4+109*x^3+747*x^2+919*x+162 2100916955031501 a007 Real Root Of -490*x^4-450*x^3+911*x^2-429*x+451 2100916955405408 l006 ln(691/5648) 2100916961909256 m005 (1/2*2^(1/2)-1/7)/(2/9*2^(1/2)-3) 2100916963207657 m001 1/ln(sin(1))^2*Trott/sqrt(3) 2100916978016781 r005 Im(z^2+c),c=-33/106+17/52*I,n=26 2100916979387103 r009 Re(z^3+c),c=-12/23+15/28*I,n=20 2100916983126534 m005 (1/2*Catalan+6)/(1/11*Zeta(3)-5/12) 2100917010671739 p003 LerchPhi(1/125,2,165/239) 2100917012726615 a001 8/4870847*199^(2/43) 2100917013177094 r009 Re(z^3+c),c=-19/56+25/58*I,n=5 2100917014043166 r005 Im(z^2+c),c=-71/94+6/55*I,n=16 2100917034532440 h003 exp(Pi*(11^(2/7)+18^(7/4))) 2100917034532440 h008 exp(Pi*(11^(2/7)+18^(7/4))) 2100917035399055 p004 log(30809/24971) 2100917058726516 m001 KhintchineLevy*DuboisRaymond^2*exp(cosh(1)) 2100917060261093 r005 Re(z^2+c),c=-5/28+25/64*I,n=30 2100917069409960 a007 Real Root Of 56*x^4-394*x^3-727*x^2+592*x-292 2100917071732733 m009 (4/3*Catalan+1/6*Pi^2-6)/(1/5*Psi(1,3/4)-2) 2100917073242535 r005 Re(z^2+c),c=-5/56+41/61*I,n=18 2100917076579357 m001 (FeigenbaumB-Zeta(5)*Lehmer)/Zeta(5) 2100917085889486 m005 (-1/6+1/4*5^(1/2))/(3/7*3^(1/2)-5/9) 2100917098922148 p002 log(18^(1/10)+3^(7/4)) 2100917101128709 l006 ln(1215/9931) 2100917115668332 m005 (1/3*gamma-2/11)/(2/7*exp(1)-3/11) 2100917124569517 l006 ln(3640/4491) 2100917127319466 r005 Im(z^2+c),c=-13/62+17/57*I,n=25 2100917143705325 m005 (13/12+1/12*5^(1/2))/(1/4*Catalan-5/6) 2100917156385237 b008 1/48+3^(2/3) 2100917156977151 m005 (1/2*5^(1/2)-8/11)/(6*Pi-1/4) 2100917163426484 m001 (-Trott+ZetaP(3))/(5^(1/2)+2*Pi/GAMMA(5/6)) 2100917180316771 a007 Real Root Of -255*x^4-467*x^3-70*x^2-162*x+606 2100917180559028 b008 20+Cosh[E^(-2)] 2100917187354713 a007 Real Root Of 524*x^4-948*x^3-449*x^2-833*x-165 2100917195657025 m001 (arctan(1/2)+Zeta(1,2))/(2^(1/2)+sin(1)) 2100917211700681 r005 Re(z^2+c),c=-3/23+20/39*I,n=21 2100917215549855 m009 (5*Psi(1,1/3)-1)/(1/6*Pi^2-4) 2100917223335534 a001 4/51841*3^(31/34) 2100917257415537 m001 (-Bloch+ZetaP(3))/(3^(1/2)-BesselI(1,2)) 2100917259388739 a007 Real Root Of 215*x^4-944*x^3+956*x^2-561*x+84 2100917276289064 h001 (7/12*exp(2)+2/5)/(2/9*exp(2)+3/5) 2100917293294328 l006 ln(524/4283) 2100917294587072 r009 Im(z^3+c),c=-21/46+3/53*I,n=34 2100917297583198 r009 Im(z^3+c),c=-3/38+38/43*I,n=2 2100917302648057 m001 ((3^(1/3))+BesselJ(1,1))^GAMMA(19/24) 2100917302648057 m001 (3^(1/3)+BesselJ(1,1))^GAMMA(19/24) 2100917305070335 h001 (5/9*exp(2)+5/12)/(5/11*exp(1)+11/12) 2100917307648920 m001 GAMMA(13/24)+ZetaP(2)+ZetaQ(3) 2100917308377822 a003 sin(Pi*13/66)/cos(Pi*30/73) 2100917309184508 a001 144/969323029*2^(1/2) 2100917317899457 a007 Real Root Of 535*x^4+856*x^3-933*x^2-446*x+696 2100917319454449 a007 Real Root Of -551*x^4-751*x^3+505*x^2-342*x+823 2100917337152536 r005 Im(z^2+c),c=27/94+2/41*I,n=6 2100917338503537 a007 Real Root Of -376*x^4-477*x^3+419*x^2-957*x-958 2100917340291685 r005 Re(z^2+c),c=-107/110+4/51*I,n=18 2100917352616222 a003 sin(Pi*21/85)-sin(Pi*43/118) 2100917362059691 m005 (1/2*Pi+7/9)/(1/4*Catalan+8/9) 2100917363322929 m001 (-Ei(1)+2/3)/(GaussAGM(1,1/sqrt(2))+5) 2100917370059119 s002 sum(A236551[n]/(n^3*10^n+1),n=1..infinity) 2100917370138285 r005 Im(z^2+c),c=-1/62+11/47*I,n=12 2100917372760146 a007 Real Root Of -264*x^4-383*x^3+229*x^2-643*x-770 2100917376186225 s004 Continued Fraction of A039611 2100917376186225 s004 Continued fraction of A039611 2100917382688124 a001 1597/322*199^(3/11) 2100917386735466 r005 Re(z^2+c),c=-45/46+2/61*I,n=16 2100917387098238 m001 1/ln(Rabbit)*MertensB1^2/GAMMA(7/24)^2 2100917388411665 a007 Real Root Of 315*x^4+757*x^3-21*x^2-759*x-619 2100917402621149 a007 Real Root Of 314*x^4+439*x^3-331*x^2+421*x+299 2100917410218771 s002 sum(A257600[n]/(exp(n)),n=1..infinity) 2100917410443896 l006 ln(7789/9610) 2100917415950350 r005 Im(z^2+c),c=-13/30+23/64*I,n=31 2100917427020698 b008 1/11+2*Cosh[1/10] 2100917431192660 q001 229/109 2100917443036308 r005 Im(z^2+c),c=-61/106+15/41*I,n=54 2100917444773485 m001 (5^(1/2)-Psi(1,1/3))/(GAMMA(11/12)+Khinchin) 2100917462244171 m001 Psi(2,1/3)/KhinchinLevy*ZetaP(2) 2100917472245629 a007 Real Root Of 559*x^4+658*x^3-563*x^2+731*x-768 2100917475457327 m001 1/5*5^(1/2)*Backhouse*FellerTornier 2100917476394153 m002 4+Cosh[Pi]+Pi^3/(5*Log[Pi]) 2100917477543619 r005 Re(z^2+c),c=1/15+7/12*I,n=30 2100917481492226 a007 Real Root Of 586*x^4+929*x^3-867*x^2-377*x+233 2100917483065000 p004 log(30169/3691) 2100917483299706 r002 12th iterates of z^2 + 2100917491327244 a007 Real Root Of -56*x^4+397*x^3+686*x^2-689*x+297 2100917498256513 r005 Im(z^2+c),c=-3/4+5/48*I,n=13 2100917498837234 a001 55/29*167761^(9/23) 2100917498866445 a001 55/29*2537720636^(5/23) 2100917499205661 a003 sin(Pi*17/91)/cos(Pi*22/53) 2100917504048022 r005 Re(z^2+c),c=-7/54+29/55*I,n=16 2100917505518758 a001 167761/89*6557470319842^(12/17) 2100917505593406 a001 54018521/89*1836311903^(12/17) 2100917505594529 a001 17393796001/89*514229^(12/17) 2100917506225235 s002 sum(A171584[n]/(n^3*2^n-1),n=1..infinity) 2100917531122400 r009 Re(z^3+c),c=-1/110+34/41*I,n=56 2100917531127504 m005 (1/2*Pi+3/4)/(2*Catalan-8/11) 2100917533067234 a001 55/29*5778^(25/46) 2100917533958312 m005 (1/2*Zeta(3)-6/7)/(181/198+3/22*5^(1/2)) 2100917538074040 a007 Real Root Of -328*x^4-880*x^3-568*x^2-692*x-717 2100917539774418 m001 (Pi+arctan(1/2))/(Conway+ThueMorse) 2100917542948406 a007 Real Root Of 242*x^4+769*x^3+591*x^2+121*x+62 2100917543336919 m001 KhinchinLevy^(Mills/ln(2)*ln(10)) 2100917543342262 m005 (1/2*exp(1)+9/10)/(2/11*2^(1/2)+9/11) 2100917558289562 m005 (1/2*Zeta(3)-5/12)/(1/8*Zeta(3)+8/11) 2100917558312687 l006 ln(881/7201) 2100917559148725 m001 (FeigenbaumKappa+Porter)/(exp(1)-exp(1/Pi)) 2100917563669772 r004 Re(z^2+c),c=-57/46-1/22*I,z(0)=-1,n=53 2100917566209163 r005 Re(z^2+c),c=-11/12+29/122*I,n=6 2100917572331357 r005 Im(z^2+c),c=-29/34+1/74*I,n=36 2100917573847267 r005 Im(z^2+c),c=17/118+7/43*I,n=12 2100917575549243 r005 Im(z^2+c),c=-1/42+14/59*I,n=7 2100917578262137 r005 Im(z^2+c),c=-55/56+9/41*I,n=36 2100917581875660 a007 Real Root Of 252*x^4+634*x^3+756*x^2+864*x-552 2100917585528687 r002 36th iterates of z^2 + 2100917587622306 m006 (4/5*Pi^2+1)/(3*ln(Pi)+4/5) 2100917591177845 m005 (1/3*exp(1)+3/4)/(7/8*3^(1/2)-8/11) 2100917596143127 a001 2504730781961/18*3^(3/8) 2100917600269252 a001 29/46368*610^(39/43) 2100917602335233 a007 Real Root Of -688*x^4-936*x^3+729*x^2-578*x+292 2100917602510187 m001 KhinchinLevy*Trott-Riemann2ndZero 2100917604220489 m001 (Si(Pi)+Lehmer)/(Sarnak+TreeGrowth2nd) 2100917608934343 l006 ln(471/481) 2100917610324062 m001 (-Stephens+Tetranacci)/(Chi(1)-DuboisRaymond) 2100917621046951 a007 Real Root Of 203*x^4-10*x^3-576*x^2+785*x+144 2100917637220061 m001 1/FeigenbaumKappa*Rabbit^2*exp(sqrt(3)) 2100917639870885 m001 1/BesselJ(0,1)/Kolakoski^2/ln(GAMMA(1/3)) 2100917654743734 h005 exp(cos(Pi*17/47)+cos(Pi*19/48)) 2100917661247153 l006 ln(4149/5119) 2100917663874521 a001 322/377*121393^(19/22) 2100917678832552 m001 GAMMA(5/24)*exp(MertensB1)/exp(1) 2100917680312238 m005 (1/3*2^(1/2)-1/8)/(9/10*5^(1/2)-4/11) 2100917692368164 r009 Re(z^3+c),c=-1/4+14/53*I,n=12 2100917711445252 m001 1/ln(BesselK(1,1))^2*Backhouse/GAMMA(13/24)^2 2100917713413259 m009 (1/2*Psi(1,1/3)-5)/(3/5*Psi(1,3/4)+3/4) 2100917719026764 a007 Real Root Of -414*x^4-409*x^3+607*x^2-294*x+976 2100917720246330 r002 23th iterates of z^2 + 2100917720555330 r005 Im(z^2+c),c=-7/12+20/61*I,n=26 2100917723787927 r005 Im(z^2+c),c=-25/21+8/25*I,n=3 2100917724045778 a007 Real Root Of -758*x^4+990*x^3+9*x^2-10*x-6 2100917728845084 r005 Im(z^2+c),c=-3/32+11/38*I,n=3 2100917733796811 r005 Re(z^2+c),c=-27/118+12/53*I,n=23 2100917737925453 r005 Im(z^2+c),c=-49/122+20/57*I,n=29 2100917752291507 m001 (-ln(3)+Porter)/(Chi(1)+Catalan) 2100917752986517 a007 Real Root Of 935*x^4+735*x^3+249*x^2-476*x-106 2100917761348590 a007 Real Root Of 282*x^4+408*x^3-744*x^2-757*x-17 2100917770846953 r009 Re(z^3+c),c=-41/114+9/16*I,n=62 2100917772285072 a007 Real Root Of 473*x^4+615*x^3-891*x^2+122*x+677 2100917786867994 p003 LerchPhi(1/1024,2,515/236) 2100917788199618 r005 Re(z^2+c),c=-17/62+2/19*I,n=2 2100917790097437 m005 (1/3*exp(1)+1/4)/(2/5*Catalan-11/12) 2100917798655286 r005 Im(z^2+c),c=19/86+41/62*I,n=4 2100917805698374 a003 cos(Pi*2/57)/cos(Pi*35/102) 2100917808937571 a001 11/233*8^(28/39) 2100917812211200 a007 Real Root Of -37*x^4+218*x^3+589*x^2+192*x+546 2100917812294260 r005 Im(z^2+c),c=-17/54+20/61*I,n=23 2100917817192652 h001 (1/12*exp(1)+3/11)/(5/6*exp(1)+1/9) 2100917820780009 m001 (Ei(1)+Kolakoski)/(MertensB3-Riemann1stZero) 2100917823309635 m001 (Zeta(1,-1)+polylog(4,1/2))/(Ei(1)-Ei(1,1)) 2100917825722577 a008 Real Root of x^3-343*x-2067 2100917833938719 p004 log(24709/3023) 2100917846264115 r005 Re(z^2+c),c=7/58+11/28*I,n=47 2100917865313867 s002 sum(A211570[n]/((pi^n+1)/n),n=1..infinity) 2100917868552752 m001 MadelungNaCl/exp(DuboisRaymond)*Zeta(1/2) 2100917882035259 m008 (4/5*Pi-1)/(3/4*Pi^6-3/4) 2100917888715986 m001 (Otter-ZetaQ(4))/(ln(3)+HardyLittlewoodC4) 2100917890482073 a007 Real Root Of -208*x^4-224*x^3+340*x^2-420*x-408 2100917898763226 s001 sum(exp(-4*Pi)^(n-1)*A221779[n],n=1..infinity) 2100917919058939 r005 Re(z^2+c),c=-13/66+18/53*I,n=18 2100917923399841 a001 1597/2207*199^(7/11) 2100917924470103 m005 (1/2*Pi+9/11)/(4/11*Zeta(3)+7/10) 2100917925673623 r009 Re(z^3+c),c=-15/46+29/61*I,n=31 2100917930309534 m005 (1/3*2^(1/2)-1/12)/(7/9*3^(1/2)+1/2) 2100917930962391 s001 sum(1/10^(n-1)*A087708[n]/n!,n=1..infinity) 2100917936647229 m004 -5+300*Sqrt[5]*Pi-ProductLog[Sqrt[5]*Pi] 2100917947303091 l006 ln(357/2918) 2100917948553697 r005 Re(z^2+c),c=-17/70+31/50*I,n=29 2100917948978397 m005 (1/2*5^(1/2)+5/7)/(1/8*gamma+4/5) 2100917950348196 r005 Im(z^2+c),c=-65/74+11/62*I,n=30 2100917951413423 a007 Real Root Of 274*x^4+259*x^3-461*x^2+838*x+859 2100917964857557 r005 Re(z^2+c),c=-27/118+12/53*I,n=21 2100917965060978 a007 Real Root Of -852*x^4-570*x^3+237*x^2+624*x+13 2100917975328317 a007 Real Root Of -142*x^4+69*x^3+505*x^2-231*x+692 2100917978201286 p002 log(7^(10/7)-10^(9/10)) 2100917997439490 a007 Real Root Of 313*x^4+343*x^3-185*x^2-956*x-20 2100918024445065 m005 (1/3*3^(1/2)-1/2)/(1/7*gamma+2/7) 2100918030859089 s002 sum(A266071[n]/((10^n+1)/n),n=1..infinity) 2100918036375000 m001 (-CopelandErdos+LaplaceLimit)/(Artin-gamma) 2100918037184516 a007 Real Root Of -149*x^4+90*x^3+379*x^2-838*x+304 2100918044126807 b008 1+22*ArcCoth[20] 2100918053104232 r005 Im(z^2+c),c=-13/14+46/217*I,n=40 2100918056200360 m001 (-GaussAGM+MertensB3)/(sin(1)+GAMMA(7/12)) 2100918072828241 r005 Im(z^2+c),c=-29/46+2/55*I,n=37 2100918073072634 a007 Real Root Of 811*x^4+353*x^3+169*x^2-915*x-198 2100918074992820 a007 Real Root Of 31*x^4+652*x^3+35*x^2+383*x-768 2100918080634552 l006 ln(4658/5747) 2100918083515283 r002 22th iterates of z^2 + 2100918087431745 a001 281*377^(8/11) 2100918092301382 m001 exp(cosh(1))*Zeta(9)^2/sqrt(5) 2100918099024602 b008 CosIntegral[Tanh[2]/2] 2100918100068430 a007 Real Root Of 522*x^4+666*x^3-944*x^2-356*x-575 2100918104008317 a007 Real Root Of -469*x^4-643*x^3+613*x^2-424*x-422 2100918104287724 a007 Real Root Of 416*x^4+472*x^3-849*x^2-354*x-724 2100918117831086 m001 (MertensB2-Trott)/(ln(2)-2*Pi/GAMMA(5/6)) 2100918121577686 m003 -5/2+E^(1+Sqrt[5])*Tanh[1/2+Sqrt[5]/2] 2100918127821397 m001 1/GAMMA(5/12)/ln(Conway)^2*Pi 2100918128239321 b008 5/4+Csch[1] 2100918130168220 m005 (1/2*2^(1/2)-7/9)/(Pi+2/9) 2100918130226368 r002 50th iterates of z^2 + 2100918139875229 m004 -5+(5*Pi*Coth[Sqrt[5]*Pi]*Sec[Sqrt[5]*Pi])/3 2100918142267781 r005 Im(z^2+c),c=-6/19+34/57*I,n=35 2100918151080758 a001 4181/5778*199^(7/11) 2100918154526870 r005 Re(z^2+c),c=-5/42+25/48*I,n=38 2100918169943642 h001 (3/4*exp(2)+5/6)/(1/3*exp(2)+4/7) 2100918174281850 m001 (GAMMA(13/24)+Otter)/(BesselI(0,1)-exp(Pi)) 2100918180732118 m001 BesselI(0,1)*(CopelandErdos-Ei(1)) 2100918182249674 r005 Im(z^2+c),c=-69/70+7/32*I,n=35 2100918184185007 r005 Im(z^2+c),c=-25/52+17/46*I,n=51 2100918184298963 a001 10946/15127*199^(7/11) 2100918184671951 a007 Real Root Of 340*x^4-968*x^3+330*x^2-713*x-174 2100918187125608 r005 Re(z^2+c),c=5/102+13/44*I,n=5 2100918189145434 a001 28657/39603*199^(7/11) 2100918189852525 a001 75025/103682*199^(7/11) 2100918189955688 a001 196418/271443*199^(7/11) 2100918189970739 a001 514229/710647*199^(7/11) 2100918189972935 a001 1346269/1860498*199^(7/11) 2100918189973255 a001 3524578/4870847*199^(7/11) 2100918189973302 a001 9227465/12752043*199^(7/11) 2100918189973309 a001 24157817/33385282*199^(7/11) 2100918189973310 a001 63245986/87403803*199^(7/11) 2100918189973310 a001 165580141/228826127*199^(7/11) 2100918189973310 a001 433494437/599074578*199^(7/11) 2100918189973310 a001 1134903170/1568397607*199^(7/11) 2100918189973310 a001 2971215073/4106118243*199^(7/11) 2100918189973310 a001 7778742049/10749957122*199^(7/11) 2100918189973310 a001 20365011074/28143753123*199^(7/11) 2100918189973310 a001 53316291173/73681302247*199^(7/11) 2100918189973310 a001 139583862445/192900153618*199^(7/11) 2100918189973310 a001 10610209857723/14662949395604*199^(7/11) 2100918189973310 a001 225851433717/312119004989*199^(7/11) 2100918189973310 a001 86267571272/119218851371*199^(7/11) 2100918189973310 a001 32951280099/45537549124*199^(7/11) 2100918189973310 a001 12586269025/17393796001*199^(7/11) 2100918189973310 a001 4807526976/6643838879*199^(7/11) 2100918189973310 a001 1836311903/2537720636*199^(7/11) 2100918189973310 a001 701408733/969323029*199^(7/11) 2100918189973310 a001 267914296/370248451*199^(7/11) 2100918189973310 a001 102334155/141422324*199^(7/11) 2100918189973311 a001 39088169/54018521*199^(7/11) 2100918189973313 a001 14930352/20633239*199^(7/11) 2100918189973331 a001 5702887/7881196*199^(7/11) 2100918189973453 a001 2178309/3010349*199^(7/11) 2100918189974292 a001 832040/1149851*199^(7/11) 2100918189980041 a001 317811/439204*199^(7/11) 2100918190019446 a001 121393/167761*199^(7/11) 2100918190289531 a001 46368/64079*199^(7/11) 2100918190440737 r005 Im(z^2+c),c=27/98+25/52*I,n=20 2100918191641985 m002 -Pi^3+Pi^5-6*Pi^5*Cosh[Pi] 2100918192140718 a001 17711/24476*199^(7/11) 2100918203530442 r005 Re(z^2+c),c=-37/30+11/101*I,n=62 2100918204792519 m001 (Kac-LaplaceLimit)/(Magata-Riemann2ndZero) 2100918204828944 a001 6765/9349*199^(7/11) 2100918205579860 r009 Re(z^3+c),c=-23/66+25/57*I,n=5 2100918211472739 m001 (GAMMA(11/12)+FellerTornier)/(Rabbit-ZetaQ(2)) 2100918211976699 r005 Im(z^2+c),c=-9/20+19/51*I,n=16 2100918220063932 a007 Real Root Of -473*x^4-603*x^3+833*x^2+331*x+642 2100918220784389 a007 Real Root Of 379*x^4+617*x^3+8*x^2+659*x-313 2100918224958939 a001 521/2*46368^(36/43) 2100918226466147 r002 7th iterates of z^2 + 2100918231482749 m001 (Khinchin+Landau)/(CareFree+FeigenbaumB) 2100918234865144 a007 Real Root Of -133*x^4+508*x^3-593*x^2-153*x-1 2100918236851675 m005 (31/44+1/4*5^(1/2))/(3*3^(1/2)+9/11) 2100918239678902 m009 (2/5*Psi(1,3/4)-5/6)/(2/3*Psi(1,1/3)+2) 2100918240702965 r005 Im(z^2+c),c=-5/122+9/37*I,n=19 2100918255886053 r005 Re(z^2+c),c=6/19+7/16*I,n=15 2100918256796515 r005 Re(z^2+c),c=-27/118+12/53*I,n=25 2100918264505633 m001 BesselJ(0,1)^(Riemann1stZero*ThueMorse) 2100918268871501 a007 Real Root Of 205*x^4+248*x^3+132*x^2+790*x-617 2100918277435935 a007 Real Root Of 60*x^4-18*x^3-19*x^2+198*x-836 2100918281625676 r005 Im(z^2+c),c=13/122+2/11*I,n=8 2100918283409908 m005 (1/2*2^(1/2)-1/12)/(3/11*exp(1)-4/9) 2100918291795344 a001 2584/3571*199^(7/11) 2100918292731850 m001 (Thue-ZetaP(2))/(FibonacciFactorial+Rabbit) 2100918292939653 r005 Re(z^2+c),c=-27/118+12/53*I,n=28 2100918293768600 r005 Re(z^2+c),c=-27/118+12/53*I,n=26 2100918298316879 r002 4th iterates of z^2 + 2100918299121194 r005 Im(z^2+c),c=-7/8+39/226*I,n=64 2100918309959698 r002 17th iterates of z^2 + 2100918313008436 a007 Real Root Of -22*x^4+279*x^3+744*x^2+398*x-119 2100918315081311 r005 Re(z^2+c),c=-27/118+12/53*I,n=30 2100918315378882 r009 Re(z^3+c),c=-27/86+37/55*I,n=53 2100918315587767 r005 Re(z^2+c),c=-27/118+12/53*I,n=31 2100918315905636 r005 Re(z^2+c),c=-27/118+12/53*I,n=33 2100918316811549 r005 Re(z^2+c),c=-27/118+12/53*I,n=36 2100918316832051 r005 Re(z^2+c),c=-27/118+12/53*I,n=35 2100918316838747 r005 Re(z^2+c),c=-27/118+12/53*I,n=38 2100918316874567 r005 Re(z^2+c),c=-27/118+12/53*I,n=41 2100918316876246 r005 Re(z^2+c),c=-27/118+12/53*I,n=43 2100918316877077 r005 Re(z^2+c),c=-27/118+12/53*I,n=40 2100918316877645 r005 Re(z^2+c),c=-27/118+12/53*I,n=46 2100918316877736 r005 Re(z^2+c),c=-27/118+12/53*I,n=48 2100918316877790 r005 Re(z^2+c),c=-27/118+12/53*I,n=51 2100918316877795 r005 Re(z^2+c),c=-27/118+12/53*I,n=53 2100918316877797 r005 Re(z^2+c),c=-27/118+12/53*I,n=56 2100918316877797 r005 Re(z^2+c),c=-27/118+12/53*I,n=58 2100918316877797 r005 Re(z^2+c),c=-27/118+12/53*I,n=61 2100918316877797 r005 Re(z^2+c),c=-27/118+12/53*I,n=63 2100918316877797 r005 Re(z^2+c),c=-27/118+12/53*I,n=64 2100918316877797 r005 Re(z^2+c),c=-27/118+12/53*I,n=62 2100918316877797 r005 Re(z^2+c),c=-27/118+12/53*I,n=60 2100918316877797 r005 Re(z^2+c),c=-27/118+12/53*I,n=59 2100918316877797 r005 Re(z^2+c),c=-27/118+12/53*I,n=55 2100918316877797 r005 Re(z^2+c),c=-27/118+12/53*I,n=57 2100918316877798 r005 Re(z^2+c),c=-27/118+12/53*I,n=54 2100918316877800 r005 Re(z^2+c),c=-27/118+12/53*I,n=50 2100918316877802 r005 Re(z^2+c),c=-27/118+12/53*I,n=52 2100918316877814 r005 Re(z^2+c),c=-27/118+12/53*I,n=49 2100918316877815 r005 Re(z^2+c),c=-27/118+12/53*I,n=45 2100918316877920 r005 Re(z^2+c),c=-27/118+12/53*I,n=47 2100918316878290 r005 Re(z^2+c),c=-27/118+12/53*I,n=44 2100918316880712 r005 Re(z^2+c),c=-27/118+12/53*I,n=42 2100918316891583 r005 Re(z^2+c),c=-27/118+12/53*I,n=39 2100918316946198 r005 Re(z^2+c),c=-27/118+12/53*I,n=37 2100918317254088 r005 Re(z^2+c),c=-27/118+12/53*I,n=34 2100918318461718 r005 Re(z^2+c),c=-27/118+12/53*I,n=32 2100918321540780 r002 54th iterates of z^2 + 2100918324679197 r005 Re(z^2+c),c=-19/74+13/57*I,n=3 2100918326396471 l006 ln(904/7389) 2100918326940775 r005 Re(z^2+c),c=-27/118+12/53*I,n=29 2100918330931720 m001 (GAMMA(7/12)+Kac)/(BesselI(1,1)-BesselI(1,2)) 2100918343130249 a007 Real Root Of 5*x^4+93*x^3-244*x^2+166*x-518 2100918343927911 a007 Real Root Of -317*x^4-295*x^3+417*x^2-522*x+503 2100918344893830 a003 cos(Pi*14/113)*cos(Pi*41/96) 2100918345252690 r005 Im(z^2+c),c=-33/86+9/26*I,n=29 2100918353013929 r005 Re(z^2+c),c=-27/118+12/53*I,n=27 2100918360442770 m001 Gompertz-Magata+Rabbit 2100918386216117 m005 (-17/44+1/4*5^(1/2))/(4/11*exp(1)-1/6) 2100918388624377 a007 Real Root Of 581*x^4+741*x^3-833*x^2+624*x+540 2100918393458049 a007 Real Root Of 501*x^4+980*x^3+273*x^2+484*x-861 2100918395606047 m001 ln(OneNinth)^2/ErdosBorwein^2/Catalan 2100918397550701 m005 (1/3*5^(1/2)-1/11)/(1/10*exp(1)-7/12) 2100918401410931 m005 (1/3*Catalan-1/3)/(6/7*5^(1/2)-7/12) 2100918410194390 r005 Im(z^2+c),c=-5/122+9/37*I,n=20 2100918410744720 a007 Real Root Of -358*x^4-54*x^3+935*x^2-653*x+975 2100918417394422 l006 ln(5167/6375) 2100918417608755 m001 (KhinchinLevy+MertensB3)/(Psi(1,1/3)+Ei(1)) 2100918420805636 m001 (BesselK(0,1)*polylog(4,1/2)+2/3)/BesselK(0,1) 2100918421124874 m001 HardyLittlewoodC3^ZetaQ(4)/PlouffeB 2100918426852055 r005 Im(z^2+c),c=-5/6+47/252*I,n=17 2100918428337553 a001 161*34^(4/53) 2100918429936760 a007 Real Root Of 115*x^4+258*x^3-109*x^2-586*x-598 2100918430556556 m001 (FeigenbaumD+ZetaQ(4))/(Chi(1)+BesselJ(1,1)) 2100918441317614 r005 Re(z^2+c),c=33/98+20/63*I,n=37 2100918444825684 a007 Real Root Of -676*x^4+297*x^3-760*x^2+692*x+183 2100918445971713 a001 14662949395604/3*6765^(11/16) 2100918449642963 r005 Im(z^2+c),c=-5/122+9/37*I,n=23 2100918449850617 r005 Im(z^2+c),c=-5/122+9/37*I,n=22 2100918452283847 a001 73681302247/3*14930352^(11/16) 2100918452283848 a001 370248451/3*32951280099^(11/16) 2100918457530981 m001 (-MertensB1+Thue)/(Shi(1)+KomornikLoreti) 2100918457710627 r005 Im(z^2+c),c=-5/122+9/37*I,n=26 2100918458673272 r005 Im(z^2+c),c=-5/122+9/37*I,n=29 2100918458760661 r005 Im(z^2+c),c=-5/122+9/37*I,n=32 2100918458765335 r005 Im(z^2+c),c=-5/122+9/37*I,n=33 2100918458766664 r005 Im(z^2+c),c=-5/122+9/37*I,n=36 2100918458766711 r005 Im(z^2+c),c=-5/122+9/37*I,n=35 2100918458766915 r005 Im(z^2+c),c=-5/122+9/37*I,n=39 2100918458766944 r005 Im(z^2+c),c=-5/122+9/37*I,n=42 2100918458766947 r005 Im(z^2+c),c=-5/122+9/37*I,n=45 2100918458766947 r005 Im(z^2+c),c=-5/122+9/37*I,n=46 2100918458766947 r005 Im(z^2+c),c=-5/122+9/37*I,n=49 2100918458766947 r005 Im(z^2+c),c=-5/122+9/37*I,n=48 2100918458766947 r005 Im(z^2+c),c=-5/122+9/37*I,n=52 2100918458766947 r005 Im(z^2+c),c=-5/122+9/37*I,n=55 2100918458766947 r005 Im(z^2+c),c=-5/122+9/37*I,n=58 2100918458766947 r005 Im(z^2+c),c=-5/122+9/37*I,n=59 2100918458766947 r005 Im(z^2+c),c=-5/122+9/37*I,n=56 2100918458766947 r005 Im(z^2+c),c=-5/122+9/37*I,n=62 2100918458766947 r005 Im(z^2+c),c=-5/122+9/37*I,n=61 2100918458766947 r005 Im(z^2+c),c=-5/122+9/37*I,n=64 2100918458766947 r005 Im(z^2+c),c=-5/122+9/37*I,n=63 2100918458766947 r005 Im(z^2+c),c=-5/122+9/37*I,n=60 2100918458766947 r005 Im(z^2+c),c=-5/122+9/37*I,n=57 2100918458766947 r005 Im(z^2+c),c=-5/122+9/37*I,n=54 2100918458766947 r005 Im(z^2+c),c=-5/122+9/37*I,n=53 2100918458766947 r005 Im(z^2+c),c=-5/122+9/37*I,n=51 2100918458766947 r005 Im(z^2+c),c=-5/122+9/37*I,n=50 2100918458766947 r005 Im(z^2+c),c=-5/122+9/37*I,n=43 2100918458766947 r005 Im(z^2+c),c=-5/122+9/37*I,n=47 2100918458766947 r005 Im(z^2+c),c=-5/122+9/37*I,n=44 2100918458766951 r005 Im(z^2+c),c=-5/122+9/37*I,n=41 2100918458766954 r005 Im(z^2+c),c=-5/122+9/37*I,n=40 2100918458766961 r005 Im(z^2+c),c=-5/122+9/37*I,n=38 2100918458767084 r005 Im(z^2+c),c=-5/122+9/37*I,n=37 2100918458768722 r005 Im(z^2+c),c=-5/122+9/37*I,n=34 2100918458770192 r005 Im(z^2+c),c=-5/122+9/37*I,n=30 2100918458784794 r005 Im(z^2+c),c=-5/122+9/37*I,n=31 2100918458897585 r005 Im(z^2+c),c=-5/122+9/37*I,n=28 2100918459027290 r005 Im(z^2+c),c=-5/122+9/37*I,n=27 2100918459123947 m001 ln(Catalan)^2/FransenRobinson^2*arctan(1/2)^2 2100918459129416 r005 Im(z^2+c),c=-5/122+9/37*I,n=25 2100918460507307 a007 Real Root Of 509*x^4+764*x^3-656*x^2+141*x+360 2100918463442607 r005 Im(z^2+c),c=-5/122+9/37*I,n=24 2100918468220847 a007 Real Root Of -399*x^4-984*x^3-703*x^2-471*x+762 2100918468355205 a007 Real Root Of -310*x^4-423*x^3+763*x^2+712*x+245 2100918481386043 r005 Re(z^2+c),c=-23/94+5/36*I,n=12 2100918503849220 m005 (1/3*exp(1)-3/7)/(145/112+7/16*5^(1/2)) 2100918504157233 a001 199/13*196418^(33/34) 2100918504829565 r004 Im(z^2+c),c=-1/30+1/4*I,z(0)=exp(7/8*I*Pi),n=6 2100918518025697 r005 Im(z^2+c),c=-5/122+9/37*I,n=21 2100918522325538 m001 (-3^(1/3)+MertensB2)/(sin(1)+ln(3)) 2100918529500578 r005 Im(z^2+c),c=-43/66+14/45*I,n=36 2100918538064188 m001 PlouffeB^(KhinchinLevy/BesselI(1,1)) 2100918549418806 m006 (4*Pi+2/5)/(3/5*Pi^2+1/4) 2100918549418806 m008 (4*Pi+2/5)/(3/5*Pi^2+1/4) 2100918552076721 m001 MinimumGamma^TravellingSalesman/GolombDickman 2100918560570062 m005 (3/4*Catalan-4/5)/(5*Catalan+4/5) 2100918562015307 m001 1/exp((2^(1/3)))*FeigenbaumD/BesselK(1,1)^2 2100918562596303 m005 (1/3*Zeta(3)-3/4)/(3/4*3^(1/2)+4/11) 2100918563385893 r005 Im(z^2+c),c=-107/110+13/64*I,n=11 2100918568444196 m001 1/ln(PrimesInBinary)^2*Si(Pi)*Zeta(1,2)^2 2100918573811999 l006 ln(547/4471) 2100918574987226 m001 (Rabbit-ZetaP(2))/(CopelandErdos-MinimumGamma) 2100918576381685 m001 (Tribonacci-gamma(2)*ZetaQ(3))/ZetaQ(3) 2100918581413374 r005 Re(z^2+c),c=-27/118+12/53*I,n=24 2100918581468101 r005 Re(z^2+c),c=-7/62+27/49*I,n=18 2100918583389934 r002 33th iterates of z^2 + 2100918587835671 m001 (Cahen+FeigenbaumDelta)/(1+GAMMA(7/12)) 2100918591070563 m005 (1/3*Catalan+1/7)/(7/11*3^(1/2)-8/9) 2100918592436629 r005 Im(z^2+c),c=-55/48+5/28*I,n=8 2100918593689579 r005 Im(z^2+c),c=-79/70+7/32*I,n=31 2100918593744207 a007 Real Root Of 70*x^4-290*x^3-644*x^2+807*x+485 2100918610924764 a003 cos(Pi*1/120)/cos(Pi*16/33) 2100918615980253 a007 Real Root Of -46*x^4-979*x^3-233*x^2+615*x-869 2100918625727094 r005 Re(z^2+c),c=25/94+11/60*I,n=30 2100918628350825 r005 Im(z^2+c),c=-5/122+9/37*I,n=17 2100918632305895 m001 (-Artin+Lehmer)/(gamma+arctan(1/2)) 2100918637569794 m001 GAMMA(19/24)+GAMMA(23/24)-Paris 2100918642296888 m001 ln(GAMMA(5/6))^2*KhintchineLevy^2*Zeta(7)^2 2100918643489677 a007 Real Root Of -708*x^4+274*x^3+998*x^2+851*x-224 2100918652485676 m001 (FeigenbaumB-MertensB1)/(MertensB2-Mills) 2100918663443284 r005 Im(z^2+c),c=-13/50+18/25*I,n=8 2100918664796050 m001 (Si(Pi)+Ei(1))/(Grothendieck+HeathBrownMoroz) 2100918665771198 a007 Real Root Of -290*x^4-28*x^3+896*x^2-281*x+845 2100918668915184 a007 Real Root Of 125*x^4+290*x^3+2*x^2-21*x+201 2100918669471510 r002 37th iterates of z^2 + 2100918673648401 r005 Im(z^2+c),c=-17/32+19/46*I,n=45 2100918674841019 r005 Re(z^2+c),c=-45/62+17/50*I,n=10 2100918681285029 a001 1/11*(1/2*5^(1/2)+1/2)^9*7^(4/7) 2100918684016323 r005 Im(z^2+c),c=25/64+4/19*I,n=7 2100918693755844 l006 ln(5676/7003) 2100918696928907 a007 Real Root Of 331*x^4+631*x^3+32*x-530 2100918702054551 m001 BesselJ(1,1)^2*ln((3^(1/3)))^2*cos(Pi/5) 2100918704486489 m001 GAMMA(5/6)*(FeigenbaumB-MasserGramain) 2100918706164849 a007 Real Root Of -579*x^4-681*x^3+993*x^2+18*x+620 2100918706501833 m001 (-DuboisRaymond+Magata)/(Shi(1)+Bloch) 2100918706593264 h001 (2/5*exp(2)+1/3)/(3/10*exp(1)+3/4) 2100918715351369 r005 Im(z^2+c),c=35/106+23/57*I,n=32 2100918723646288 h001 (5/6*exp(1)+3/10)/(1/9*exp(2)+2/5) 2100918723677033 a007 Real Root Of 404*x^4-267*x^3+119*x^2-702*x-156 2100918725877601 r002 24i'th iterates of 2*x/(1-x^2) of 2100918728254460 m001 (Paris+ThueMorse)/(exp(Pi)+KhinchinLevy) 2100918730302328 a007 Real Root Of 194*x^4+891*x^3+918*x^2-492*x-136 2100918732607628 a007 Real Root Of -461*x^4-821*x^3+380*x^2+280*x+279 2100918736729600 a001 2207/21*34^(11/56) 2100918742777751 r005 Im(z^2+c),c=-77/86+9/49*I,n=60 2100918743708297 a007 Real Root Of 54*x^4-425*x^3+426*x^2+166*x+660 2100918761051050 r005 Re(z^2+c),c=-4/5+15/113*I,n=48 2100918772016014 r002 24th iterates of z^2 + 2100918773819997 m001 (ln(2)/ln(10)+Ei(1,1))/(-ThueMorse+TwinPrimes) 2100918775153939 r005 Re(z^2+c),c=17/62+16/33*I,n=54 2100918779330212 r005 Im(z^2+c),c=3/29+11/60*I,n=8 2100918779494446 r005 Re(z^2+c),c=-155/106+43/63*I,n=2 2100918779549872 p003 LerchPhi(1/1024,6,205/232) 2100918786870079 m001 (GlaisherKinkelin+Magata)/(Otter-Sarnak) 2100918788585536 m001 ln(gamma)^OrthogonalArrays/gamma(3) 2100918810697411 m001 StolarskyHarborth/arctan(1/3)/Zeta(3) 2100918810957380 m001 (Bloch*Robbin-Conway)/Bloch 2100918818713611 a007 Real Root Of 313*x^4+277*x^3-842*x^2+196*x+599 2100918822806867 m001 1/GAMMA(1/12)*ln(KhintchineLevy)/sin(1)^2 2100918831373814 m001 Pi^(Thue/PisotVijayaraghavan) 2100918844493942 a007 Real Root Of 223*x^4+122*x^3-988*x^2-324*x+467 2100918849057709 a003 cos(Pi*7/37)/cos(Pi*23/62) 2100918852097663 m005 (1/3*Zeta(3)+1/3)/(-103/198+7/18*5^(1/2)) 2100918864518989 r002 22th iterates of z^2 + 2100918867031934 a007 Real Root Of 497*x^4-921*x^3-10*x^2-395*x+91 2100918877290392 l006 ln(737/6024) 2100918886047084 r005 Im(z^2+c),c=-17/27+16/61*I,n=12 2100918887872231 a001 987/1364*199^(7/11) 2100918901342303 r005 Re(z^2+c),c=-11/40+11/37*I,n=3 2100918905623276 a007 Real Root Of 588*x^4+640*x^3-910*x^2+843*x+267 2100918905896463 a007 Real Root Of 316*x^4+162*x^3-967*x^2-100*x-596 2100918906123069 m001 Pi*2^(1/2)/GAMMA(3/4)-Zeta(3)-FellerTornier 2100918908651995 a008 Real Root of x^4-2*x^3-39*x+81 2100918909612560 a007 Real Root Of 341*x^4-241*x^3+385*x^2-843*x-197 2100918909673709 a007 Real Root Of 521*x^4+379*x^3-964*x^2+780*x-742 2100918912673645 m001 1/ln(Catalan)*Rabbit^2/sqrt(1+sqrt(3))^2 2100918914745840 r002 40th iterates of z^2 + 2100918924630449 l006 ln(6185/7631) 2100918934217236 r005 Im(z^2+c),c=-5/14+18/53*I,n=22 2100918934886759 r005 Im(z^2+c),c=-79/118+27/59*I,n=16 2100918935218944 a007 Real Root Of -527*x^4-487*x^3+943*x^2-870*x-239 2100918940083297 m001 GAMMA(2/3)^(2^(1/2))*GAMMA(2/3)^MertensB2 2100918947355765 m005 (1/2*exp(1)+5/7)/(7/12*Zeta(3)+2/7) 2100918951716041 s002 sum(A265266[n]/(n^2*pi^n+1),n=1..infinity) 2100918958885804 r005 Re(z^2+c),c=-1/11+25/41*I,n=47 2100918968776874 a007 Real Root Of 43*x^4+890*x^3-265*x^2+345*x 2100918974873671 h001 (-9*exp(1/2)-5)/(-5*exp(3)+6) 2100918978240918 h001 (7/9*exp(1)+3/7)/(1/5*exp(1)+2/3) 2100918981295788 m005 (1/6*2^(1/2)-1/4)/(7/3+2*5^(1/2)) 2100918981574663 a007 Real Root Of 251*x^4+362*x^3-280*x^2+280*x+291 2100918987674024 a007 Real Root Of -438*x^4-359*x^3+715*x^2-884*x+191 2100918990894401 m005 (1/2*Pi+7/10)/(7/10*2^(1/2)+1/11) 2100918996796132 m001 (Ei(1)+ln(2+3^(1/2)))/(gamma(1)-Backhouse) 2100919000162351 m001 GAMMA(5/24)/ln(LandauRamanujan)^2*sin(Pi/5)^2 2100919003905621 r005 Im(z^2+c),c=-3/14+21/34*I,n=11 2100919007720866 m001 (sqrt(2)*GAMMA(5/6)+exp(1/Pi))/sqrt(2) 2100919007720866 m001 1/2*(2^(1/2)*GAMMA(5/6)+exp(1/Pi))*2^(1/2) 2100919010409214 r005 Re(z^2+c),c=25/82+8/29*I,n=6 2100919015612627 m001 AlladiGrinstead*Champernowne/PlouffeB 2100919030250535 m005 (1/2*2^(1/2)-2/7)/(1/8*gamma-3/11) 2100919041488273 r005 Im(z^2+c),c=-5/122+9/37*I,n=18 2100919043377105 b008 EulerGamma*ArcSinh[7*E] 2100919045161963 m001 sin(1/12*Pi)+FeigenbaumC+Trott 2100919053200448 a007 Real Root Of 722*x^4+846*x^3-551*x^2-885*x+201 2100919054580624 m001 (ln(2)/ln(10)-ln(5))/(-MertensB3+Rabbit) 2100919055026462 r005 Im(z^2+c),c=-15/32+23/62*I,n=24 2100919055703202 a001 119218851371/3*20365011074^(15/23) 2100919056365518 l006 ln(927/7577) 2100919070382701 r002 62th iterates of z^2 + 2100919071310402 a007 Real Root Of 883*x^4-484*x^3-787*x^2-964*x-174 2100919093253001 a007 Real Root Of 144*x^4+444*x^3+370*x^2+300*x+309 2100919095420466 m005 (1/2*Catalan-1/2)/(7/9*2^(1/2)+9/10) 2100919102748348 m001 (1+GAMMA(19/24))/MertensB2 2100919104881962 m009 (16/3*Catalan+2/3*Pi^2-1/6)/(2*Psi(1,2/3)-3/4) 2100919105627118 m001 (Pi+BesselI(0,1))/(FransenRobinson-Rabbit) 2100919116828605 r008 a(0)=2,K{-n^6,39-95*n^3-37*n^2+83*n} 2100919120394450 l006 ln(6694/8259) 2100919127262557 r005 Re(z^2+c),c=-27/118+12/53*I,n=22 2100919131244481 a008 Real Root of x^4-2*x^3-10*x^2-11*x-17 2100919147344432 m002 16+2*Pi^4*Tanh[Pi] 2100919152964826 a001 17*9349^(11/40) 2100919165238494 m002 -3*Pi^4*Csch[Pi]+4*ProductLog[Pi] 2100919174519813 l006 ln(1117/9130) 2100919175629779 m001 (Pi^(1/2)+Artin)/(sin(1/5*Pi)-ln(5)) 2100919179372125 m001 exp(GAMMA(7/24))*GAMMA(1/6)*sqrt(3) 2100919179931112 s002 sum(A265266[n]/(n^2*pi^n-1),n=1..infinity) 2100919181632575 m008 (4*Pi^4+4/5)/(Pi-5) 2100919188597613 r002 24th iterates of z^2 + 2100919196979050 a001 54018521/89*6557470319842^(10/17) 2100919196979051 a001 6643838879/89*1836311903^(10/17) 2100919196979986 a001 817138163596/89*514229^(10/17) 2100919201756971 a005 (1/sin(112/229*Pi))^1262 2100919202619021 m001 (BesselI(1,2)+FellerTornier)/(Chi(1)-gamma(1)) 2100919214862950 m001 Trott/RenyiParking/exp(cos(Pi/12))^2 2100919214872433 r009 Im(z^3+c),c=-17/122+6/29*I,n=2 2100919223896629 m001 (ErdosBorwein-MertensB3)/(Mills-ZetaQ(4)) 2100919224514471 r004 Re(z^2+c),c=-5/42+12/23*I,z(0)=I,n=49 2100919229475746 r005 Re(z^2+c),c=29/86+13/43*I,n=33 2100919237099559 r002 20th iterates of z^2 + 2100919237345806 b008 Sqrt[3]*PolyLog[2,-1/8] 2100919238525758 r009 Re(z^3+c),c=-25/44+17/57*I,n=31 2100919239482364 a007 Real Root Of 496*x^4+663*x^3-570*x^2+596*x+253 2100919241406679 m001 exp(MadelungNaCl)*FeigenbaumB*GAMMA(5/24) 2100919252014516 m001 MadelungNaCl*GolombDickman^2/exp(Salem) 2100919257439388 a007 Real Root Of 128*x^4+289*x^3+386*x^2+461*x-549 2100919259948540 r005 Im(z^2+c),c=-49/62+4/33*I,n=21 2100919275583689 a001 6765/521*76^(1/9) 2100919277827544 a001 28374454999/5*987^(11/21) 2100919281663229 m001 1/log(2+sqrt(3))^2*ln(Pi)/sqrt(Pi)^2 2100919282149011 m001 1/MinimumGamma^2*MertensB1^2/exp(BesselK(0,1)) 2100919284457891 a007 Real Root Of -476*x^4-853*x^3+297*x^2+14*x+82 2100919288491122 l006 ln(7203/8887) 2100919290404852 m001 1/exp(Champernowne)^2*GAMMA(13/24)^2 2100919294596478 a007 Real Root Of -328*x^4-835*x^3-691*x^2-476*x+697 2100919300127680 s002 sum(A103179[n]/(10^n+1),n=1..infinity) 2100919323117739 m001 (Pi+Artin)/(GlaisherKinkelin-Otter) 2100919328883969 r009 Re(z^3+c),c=-61/126+32/63*I,n=50 2100919330664848 m005 (1/3*Zeta(3)-1/4)/(9/10*2^(1/2)-5/9) 2100919332388582 r005 Im(z^2+c),c=-59/62+6/29*I,n=26 2100919346829897 a001 2/102334155*144^(16/17) 2100919350323472 r008 a(0)=0,K{-n^6,7+33*n-6*n^2+14*n^3} 2100919353426492 m001 HardyLittlewoodC5/cos(1/5*Pi)*PrimesInBinary 2100919359082539 a007 Real Root Of -176*x^4-621*x^3-951*x^2-771*x+248 2100919360051163 a007 Real Root Of -50*x^4+309*x^3-132*x^2-294*x-691 2100919368964077 m005 (1/2*Zeta(3)-1/3)/(97/120+5/24*5^(1/2)) 2100919372451611 r005 Re(z^2+c),c=-7/6+39/233*I,n=20 2100919376533585 a007 Real Root Of 269*x^4+466*x^3+94*x^2+449*x-391 2100919388981335 m001 1/Salem/exp(Riemann2ndZero)*gamma^2 2100919390162878 r005 Re(z^2+c),c=-21/86+1/58*I,n=3 2100919397381518 m003 6+3*E^(1/2+Sqrt[5]/2)-Log[1/2+Sqrt[5]/2]/4 2100919397685541 a007 Real Root Of 441*x^4+438*x^3-497*x^2+657*x-956 2100919399310147 m001 (-GolombDickman+MertensB2)/(2^(1/3)+ln(2)) 2100919402662758 m001 (Robbin+ZetaQ(2))/(HeathBrownMoroz-Magata) 2100919407869959 a007 Real Root Of -281*x^4-230*x^3+598*x^2+28*x+761 2100919412119148 m002 -2*ProductLog[Pi]+ProductLog[Pi]/E^Pi 2100919416766631 r005 Im(z^2+c),c=-41/64+19/64*I,n=30 2100919431402641 m001 1/TwinPrimes^2/exp(Riemann1stZero)*(2^(1/3)) 2100919432040256 r005 Re(z^2+c),c=-29/23+4/55*I,n=12 2100919432827668 m001 (Champernowne-FeigenbaumD)/(Kac+Lehmer) 2100919433699196 r005 Re(z^2+c),c=-3/94+29/53*I,n=15 2100919434398683 l006 ln(7712/9515) 2100919434810420 m001 (-BesselK(0,1)+3)/(-Pi^(1/2)+3) 2100919438478483 m001 CareFree+(2*Pi/GAMMA(5/6))^DuboisRaymond 2100919452243521 m008 (1/6*Pi^5+2)/(3/4*Pi+1/6) 2100919455853672 m005 (1/2*Catalan-1/4)/(6/7*2^(1/2)-2/9) 2100919458906185 r005 Re(z^2+c),c=-1+38/249*I,n=46 2100919463356699 m001 GAMMA(19/24)-KhinchinLevy+Riemann2ndZero 2100919465607269 m001 (KhinchinHarmonic-ZetaP(3))/RenyiParking 2100919469983620 p003 LerchPhi(1/256,4,423/161) 2100919470043108 m005 (1/2*5^(1/2)-3/7)/(exp(1)-6) 2100919475959860 v003 sum((19/2*n^2-35/2*n+14)/(n!+1),n=1..infinity) 2100919477174029 a007 Real Root Of -436*x^4-566*x^3+507*x^2-206*x+575 2100919479801953 m001 (LambertW(1)+GAMMA(5/6))/(-GaussAGM+Trott2nd) 2100919480206231 a001 8/4870847*39603^(1/43) 2100919480841638 a001 73681302247/144*377^(5/21) 2100919482065189 m001 (2*Pi/GAMMA(5/6)-Trott)/(Zeta(3)+3^(1/3)) 2100919500268630 r005 Im(z^2+c),c=-23/52+22/61*I,n=45 2100919502523464 a007 Real Root Of 248*x^4+490*x^3+277*x^2+618*x-212 2100919503759817 a001 7881196/55*591286729879^(11/21) 2100919503759851 a001 1568397607/55*24157817^(11/21) 2100919506945732 m001 Trott^2*PrimesInBinary/exp(sin(1)) 2100919510246356 r005 Im(z^2+c),c=-25/34+1/31*I,n=4 2100919511081487 m001 sqrt(1+sqrt(3))^2*ln(GAMMA(11/24))^2*sqrt(Pi) 2100919517011167 m001 (Trott2nd-ZetaQ(4))^GAMMA(11/12) 2100919524364938 m005 (1/2*Catalan-3/4)/(7/10*2^(1/2)+2/5) 2100919524881038 m001 Porter*ZetaQ(3)-Riemann2ndZero 2100919542775047 a007 Real Root Of -592*x^4-866*x^3+366*x^2-668*x+484 2100919543924080 a007 Real Root Of -600*x^4-769*x^3+842*x^2+32*x+909 2100919555064453 r005 Im(z^2+c),c=-6/11+16/41*I,n=58 2100919579694565 m001 (1-ln(3))/(exp(-1/2*Pi)+MertensB1) 2100919596563313 s002 sum(A111713[n]/(exp(pi*n)+1),n=1..infinity) 2100919625045182 a001 329/281*199^(6/11) 2100919625532899 a007 Real Root Of -21*x^4+266*x^3-158*x^2-269*x-795 2100919626711959 r002 3th iterates of z^2 + 2100919629848212 a007 Real Root Of 224*x^4+407*x^3+169*x^2+731*x+200 2100919646817125 r005 Re(z^2+c),c=11/60+19/54*I,n=7 2100919654915691 r005 Re(z^2+c),c=-7/44+25/57*I,n=24 2100919663179996 r005 Re(z^2+c),c=-5/8+99/241*I,n=40 2100919664454876 a007 Real Root Of -823*x^4+237*x^3+571*x^2+892*x+166 2100919667659158 m005 (1/2*5^(1/2)-7/10)/(169/140+7/20*5^(1/2)) 2100919675269027 a007 Real Root Of -26*x^4-549*x^3-20*x^2+808*x+201 2100919675466389 r005 Re(z^2+c),c=-7/50+12/25*I,n=51 2100919677505672 r009 Re(z^3+c),c=-7/58+55/56*I,n=14 2100919677785799 m005 (1/3*gamma+1/4)/(7/8*exp(1)-3/11) 2100919700936508 a007 Real Root Of 517*x^4+711*x^3-551*x^2+357*x-297 2100919702555490 m004 30/ProductLog[Sqrt[5]*Pi]+Sec[Sqrt[5]*Pi] 2100919705056744 a001 2/4181*13^(15/26) 2100919708514738 m001 (Backhouse+Champernowne)/(MinimumGamma-Rabbit) 2100919709944768 p004 log(32941/26699) 2100919710899780 m001 (Si(Pi)+sin(1/5*Pi))^FeigenbaumB 2100919732610742 r009 Im(z^3+c),c=-37/122+1/6*I,n=10 2100919733668640 r002 56th iterates of z^2 + 2100919739331210 r002 39th iterates of z^2 + 2100919746475492 b008 -3+E^(-5/47) 2100919750988200 l006 ln(190/1553) 2100919752125297 r005 Im(z^2+c),c=-53/122+19/51*I,n=19 2100919759752166 h001 (3/11*exp(2)+5/9)/(1/8*exp(2)+3/10) 2100919761731607 r009 Re(z^3+c),c=-1/27+19/30*I,n=31 2100919763735342 r009 Im(z^3+c),c=-19/90+8/41*I,n=3 2100919766444637 m001 ((1+3^(1/2))^(1/2))^GAMMA(11/12)/cos(1/5*Pi) 2100919766444637 m001 sqrt(1+sqrt(3))^GAMMA(11/12)/cos(Pi/5) 2100919769077520 m001 (Champernowne+Khinchin)/(Catalan+BesselK(0,1)) 2100919769284283 m001 (ln(2^(1/2)+1)*CareFree+Thue)/CareFree 2100919772826826 r002 36th iterates of z^2 + 2100919774411641 m001 PisotVijayaraghavan/ln(Paris)^2/Trott^2 2100919775660334 p004 log(11399/9239) 2100919783402904 a001 682*89^(42/55) 2100919784310950 r005 Im(z^2+c),c=-23/58+22/63*I,n=53 2100919797393781 r005 Re(z^2+c),c=-19/18+57/235*I,n=54 2100919802253115 p001 sum(1/(562*n+483)/(32^n),n=0..infinity) 2100919806390299 a003 cos(Pi*2/75)/sin(Pi*14/89) 2100919807178410 b008 7/4+E^(-1/3*Pi) 2100919807861807 b008 ArcSinh[ArcSinh[28]] 2100919809698663 m001 (Pi-ln(gamma))/(GAMMA(17/24)+Bloch) 2100919821622874 r005 Re(z^2+c),c=21/62+17/42*I,n=62 2100919832149442 m001 Porter^2*ArtinRank2^2*ln(Zeta(9)) 2100919834802077 a007 Real Root Of 576*x^4+748*x^3-699*x^2+130*x-927 2100919835395446 p003 LerchPhi(1/256,3,54/149) 2100919844101467 r005 Re(z^2+c),c=4/23+3/58*I,n=13 2100919854142530 m001 (Otter+Robbin)/(Zeta(1/2)-MertensB1) 2100919856199575 a007 Real Root Of 62*x^4-95*x^3-336*x^2+206*x-173 2100919862406151 m005 (1/2*5^(1/2)-7/8)/(3/11*Pi+3/10) 2100919863889446 m001 (GaussAGM-Salem)/(Conway+FellerTornier) 2100919867272515 a007 Real Root Of -436*x^4-276*x^3+850*x^2-932*x+225 2100919867434853 a007 Real Root Of 568*x^4+834*x^3-797*x^2-206*x-247 2100919874719681 m005 (1/2*5^(1/2)-1/6)/(3/11*Zeta(3)+1/8) 2100919875224481 p001 sum((-1)^n/(537*n+467)/(24^n),n=0..infinity) 2100919888327213 r005 Im(z^2+c),c=-4/11+15/43*I,n=10 2100919890996514 m001 1/FeigenbaumD^2/Champernowne^2/ln(cosh(1)) 2100919891718641 m005 (1/2*5^(1/2)+4/7)/(2/15+3/10*5^(1/2)) 2100919893046557 r005 Im(z^2+c),c=1/114+39/49*I,n=13 2100919893600700 p004 log(36709/29753) 2100919895976459 r009 Re(z^3+c),c=-5/126+23/33*I,n=47 2100919898860362 r009 Im(z^3+c),c=-49/106+4/59*I,n=22 2100919911445452 p004 log(32801/4013) 2100919914383752 m005 (1/2*Pi-1/8)/(5/12*exp(1)-4/9) 2100919917184510 a007 Real Root Of 968*x^4-738*x^3+970*x^2-283*x-111 2100919922289983 h001 (4/5*exp(2)+6/7)/(5/12*exp(2)+1/7) 2100919924893376 p004 log(26683/26627) 2100919925107666 m001 exp(FeigenbaumKappa)^2/Paris*GAMMA(19/24)^2 2100919928830912 r005 Im(z^2+c),c=-1/90+13/56*I,n=12 2100919933824036 r005 Im(z^2+c),c=-47/114+13/35*I,n=14 2100919936128765 m006 (Pi^2-1/6)/(1/3*ln(Pi)-5) 2100919938801085 m001 sin(Pi/5)*ln(arctan(1/2))^2/sqrt(1+sqrt(3)) 2100919949158311 s001 sum(exp(-Pi/4)^n*A083643[n],n=1..infinity) 2100919952020428 a007 Real Root Of -647*x^4-216*x^3+214*x^2+415*x+77 2100919959530664 s002 sum(A099543[n]/(2^n+1),n=1..infinity) 2100919964221053 r005 Im(z^2+c),c=-2/9+16/53*I,n=17 2100919964397555 g007 Psi(2,7/11)+Psi(2,5/7)+Psi(2,3/5)-Psi(2,7/8) 2100919964647071 m005 (5/36+1/4*5^(1/2))/(5/9*Zeta(3)-1) 2100919978323174 a007 Real Root Of 933*x^4-711*x^3+626*x^2-818*x+149 2100919979104057 r005 Im(z^2+c),c=-15/32+12/55*I,n=3 2100919981570218 r005 Im(z^2+c),c=-5/6+31/212*I,n=43 2100919988090726 a003 cos(Pi*46/99)+cos(Pi*37/79) 2100919995801132 m001 (-Bloch+MertensB3)/(3^(1/3)-Si(Pi)) 2100919999641478 m001 (FeigenbaumKappa-Si(Pi))/(-Lehmer+Otter) 2100920003431786 a007 Real Root Of -557*x^4-841*x^3+658*x^2+302*x+783 2100920005367568 m001 ln(Zeta(3))^2*LaplaceLimit^2/sin(1)^2 2100920006702229 r009 Re(z^3+c),c=-8/23+5/9*I,n=20 2100920014371431 a007 Real Root Of -173*x^4+589*x^3-795*x^2+935*x+20 2100920016178229 a007 Real Root Of -707*x^4-833*x^3+774*x^2-902*x+738 2100920024367726 m005 (23/30+1/6*5^(1/2))/(3/7*3^(1/2)-1/5) 2100920027384738 r002 55th iterates of z^2 + 2100920028054487 m001 (ln(2)+KhinchinLevy)^Salem 2100920058439306 m001 1/Zeta(7)*ArtinRank2^2/exp(exp(1))^2 2100920067234298 m005 (1/2*Zeta(3)-1/3)/(4/11*exp(1)+2/7) 2100920074809740 s001 sum(exp(-3*Pi)^(n-1)*A158091[n],n=1..infinity) 2100920075721762 p001 sum((-1)^n/(392*n+47)/(8^n),n=0..infinity) 2100920079529167 m001 1/exp(PrimesInBinary)*Artin^2/GAMMA(5/24) 2100920087464545 m001 2/3+BesselI(0,1)^GAMMA(7/12) 2100920088900183 m001 (cos(1/5*Pi)-Khinchin)/(Kolakoski+Paris) 2100920092840951 a007 Real Root Of -322*x^4-231*x^3+466*x^2-875*x+236 2100920093943541 a007 Real Root Of -552*x^4-564*x^3+911*x^2-298*x+877 2100920105790065 m001 MadelungNaCl^Mills+Trott2nd 2100920127514264 m001 (AlladiGrinstead+Kac)/(Landau-Weierstrass) 2100920128705443 r005 Im(z^2+c),c=-9/10+29/159*I,n=28 2100920135340836 a007 Real Root Of 22*x^4-371*x^3+536*x^2+227*x+169 2100920136797459 m009 (Pi^2-5/6)/(3/8*Pi^2+3/5) 2100920140704809 a001 1/29*(1/2*5^(1/2)+1/2)^31*123^(5/8) 2100920150136424 a005 (1/cos(3/212*Pi))^751 2100920157477992 m005 (-11/4+1/4*5^(1/2))/(4*exp(1)-4/9) 2100920163218615 m001 (Ei(1,1)+exp(1/Pi))/(Paris+TwinPrimes) 2100920170913232 a007 Real Root Of 794*x^4-688*x^3-67*x^2-657*x-143 2100920171709864 m001 (RenyiParking+Sarnak)/(Lehmer+OneNinth) 2100920172460212 b008 3+5*Pi*ArcSech[EulerGamma] 2100920183997469 m001 BesselJ(0,1)^2*ln(ArtinRank2)/Zeta(9)^2 2100920184734513 a001 33281921/8*225851433717^(5/21) 2100920184734514 a001 6643838879/144*9227465^(5/21) 2100920190620668 m001 (-Zeta(1,2)+FeigenbaumC)/(Ei(1)-gamma) 2100920191689843 m001 (2^(1/3)+Bloch)/(RenyiParking+ZetaP(4)) 2100920195864436 m001 TwinPrimes/exp(Tribonacci)^2*(2^(1/3)) 2100920196618029 r005 Re(z^2+c),c=-91/82+13/58*I,n=42 2100920205562938 r009 Im(z^3+c),c=-87/110+3/41*I,n=2 2100920219198133 r005 Im(z^2+c),c=-33/122+6/19*I,n=20 2100920233930628 a007 Real Root Of 25*x^4+499*x^3-567*x^2-341*x-134 2100920237819735 a007 Real Root Of -896*x^4+725*x^3-782*x^2+814*x+214 2100920255113362 m006 (3*ln(Pi)-1/5)/(5/6*ln(Pi)-4/5) 2100920259139568 g006 Psi(1,1/12)+Psi(1,1/8)+Psi(1,3/4)-Psi(1,7/11) 2100920264063773 m001 gamma(2)*PisotVijayaraghavan+Riemann2ndZero 2100920268215303 m005 (5/6*2^(1/2)-2/5)/(-23/5+2/5*5^(1/2)) 2100920293470323 r005 Re(z^2+c),c=-67/94+31/34*I,n=3 2100920299594590 m001 Zeta(3)/ln(Porter)*sin(Pi/12)^2 2100920301314937 m001 (Gompertz-Paris)^(5^(1/2)) 2100920302517874 r005 Im(z^2+c),c=-19/14+1/44*I,n=37 2100920304655290 l006 ln(1163/9506) 2100920314588525 r005 Re(z^2+c),c=13/46+12/61*I,n=19 2100920325938867 a005 (1/cos(6/215*Pi))^1988 2100920326568184 m005 (1/2*2^(1/2)-5/6)/(5/7*3^(1/2)-7/11) 2100920342748333 q001 662/3151 2100920349907426 a007 Real Root Of -112*x^4-273*x^3-262*x^2-68*x+664 2100920352740131 r009 Re(z^3+c),c=-14/23+13/45*I,n=8 2100920356430824 a007 Real Root Of -550*x^4-747*x^3+705*x^2-83*x+502 2100920356867489 r005 Im(z^2+c),c=-13/22+4/115*I,n=25 2100920357629467 m001 1/FeigenbaumC^2/ArtinRank2^2*ln(Rabbit) 2100920358109583 m001 FransenRobinson/Zeta(5)*StronglyCareFree 2100920361074556 m001 FeigenbaumDelta^ln(2)-cos(1/5*Pi) 2100920361074556 m001 FeigenbaumDelta^ln(2)-cos(Pi/5) 2100920363086362 r005 Re(z^2+c),c=17/50+7/30*I,n=51 2100920371968963 a007 Real Root Of -20*x^4-421*x^3-19*x^2-13*x+547 2100920380327409 r005 Im(z^2+c),c=7/118+11/54*I,n=8 2100920393266740 m001 Zeta(3)^2*GAMMA(7/24)/ln(cos(Pi/5)) 2100920396213874 a001 196418/123*521^(39/50) 2100920403178509 a003 cos(Pi*5/36)/cos(Pi*29/81) 2100920409005924 m001 (Pi-Riemann3rdZero)/(Trott2nd+ZetaP(4)) 2100920412771130 l006 ln(973/7953) 2100920427926487 m001 (ln(5)-BesselI(1,1))/(AlladiGrinstead-Thue) 2100920447720320 r005 Re(z^2+c),c=-1/110+27/50*I,n=12 2100920454312499 m005 (1/2*2^(1/2)-2/5)/(4/5*gamma+1) 2100920456479678 m001 (gamma(2)+Khinchin)/(exp(1)-exp(1/exp(1))) 2100920459578870 a003 cos(Pi*3/115)-cos(Pi*25/118) 2100920460800948 a003 -1/2-2*cos(1/12*Pi)+cos(1/9*Pi)-cos(7/24*Pi) 2100920467708345 r005 Re(z^2+c),c=-17/94+5/13*I,n=21 2100920472017012 a005 (1/sin(80/187*Pi))^1715 2100920477550778 a007 Real Root Of -255*x^4-59*x^3+594*x^2-773*x+175 2100920482472386 m001 (Otter+Porter)/(BesselI(0,1)-GAMMA(11/12)) 2100920487543986 m001 1/GAMMA(3/4)*exp(RenyiParking)^2*gamma 2100920490182104 m001 ln(Catalan)*TwinPrimes*GAMMA(1/4) 2100920492884078 r005 Im(z^2+c),c=-19/18+49/187*I,n=42 2100920498458389 a007 Real Root Of 304*x^4+465*x^3+87*x^2+838*x-234 2100920505443364 r005 Im(z^2+c),c=-35/94+12/35*I,n=25 2100920509952480 m005 (1/2*Pi-1/5)/(10/11*gamma+6) 2100920511816981 p004 log(20753/2539) 2100920513082872 m001 Kolakoski*(Zeta(3)+3^(1/3)) 2100920534850029 r005 Im(z^2+c),c=-131/94+3/62*I,n=8 2100920537464132 r005 Re(z^2+c),c=-29/114+2/29*I,n=4 2100920541862843 r002 41th iterates of z^2 + 2100920546801571 a007 Real Root Of -301*x^4-446*x^3+151*x^2+711*x-15 2100920548825024 r005 Im(z^2+c),c=-17/32+25/62*I,n=47 2100920557863364 m005 (1/3*Catalan-3/7)/(4/5*Zeta(3)-3/8) 2100920570409169 a007 Real Root Of -118*x^4-343*x^3-542*x^2-778*x-124 2100920570728381 m001 ln(GAMMA(5/6))^2/GAMMA(3/4)^2*arctan(1/2)^2 2100920571711515 a007 Real Root Of -405*x^4-758*x^3+412*x^2+637*x+381 2100920573356960 l006 ln(783/6400) 2100920573801587 a007 Real Root Of -201*x^4-614*x^3-710*x^2-258*x+814 2100920580517249 a007 Real Root Of 513*x^4+823*x^3-105*x^2+754*x-315 2100920586164387 m005 (1/2*Zeta(3)-8/9)/(4/11*3^(1/2)-2) 2100920589891314 h001 (-9*exp(2)+4)/(-exp(8)+6) 2100920600662227 r009 Re(z^3+c),c=-1/110+34/41*I,n=58 2100920601839147 r005 Im(z^2+c),c=-17/46+46/63*I,n=5 2100920607912347 m001 (-Salem+Totient)/(FeigenbaumKappa-gamma) 2100920621768129 m002 (Pi^4*Coth[Pi])/4-3*Log[Pi] 2100920646753337 r005 Im(z^2+c),c=-47/118+7/20*I,n=29 2100920647804310 a008 Real Root of (16+x-2*x^2-x^3) 2100920648988945 r009 Re(z^3+c),c=-57/110+11/26*I,n=62 2100920649832428 r009 Re(z^3+c),c=-7/22+16/35*I,n=10 2100920652271887 m001 Mills^MadelungNaCl*ln(2+3^(1/2)) 2100920652740677 m002 -(E^Pi/ProductLog[Pi])+(5*ProductLog[Pi])/Pi^2 2100920658961284 r005 Re(z^2+c),c=7/60+36/59*I,n=18 2100920667156875 a007 Real Root Of -627*x^4-950*x^3+603*x^2-617*x-552 2100920678522677 m006 (3*ln(Pi)+5)/(3/4*exp(2*Pi)-1/6) 2100920683897254 r009 Re(z^3+c),c=-6/13+15/28*I,n=3 2100920692534379 r005 Re(z^2+c),c=-1/25+5/9*I,n=18 2100920703710079 p001 sum((-1)^n/(557*n+463)/(16^n),n=0..infinity) 2100920717921051 m005 (5*exp(1)+2/5)/(Catalan-1/4) 2100920724552408 s001 sum(exp(-Pi/3)^n*A119803[n],n=1..infinity) 2100920725678136 r009 Re(z^3+c),c=-35/106+15/31*I,n=14 2100920746622747 m001 (Zeta(5)-Ei(1,1))/(Mills+Sierpinski) 2100920764434447 a007 Real Root Of -348*x^4-879*x^3-54*x^2+832*x+615 2100920766887945 r005 Re(z^2+c),c=-7/30+13/64*I,n=9 2100920780887308 m001 (ln(2)-GlaisherKinkelin)/(MadelungNaCl-Porter) 2100920781438860 a007 Real Root Of -489*x^4-342*x^3+835*x^2-979*x+613 2100920786594636 m001 (GAMMA(3/4)-Ei(1))/(3^(1/3)+KhinchinHarmonic) 2100920788617813 a001 123/89*317811^(23/58) 2100920798757990 r009 Im(z^3+c),c=-3/64+31/35*I,n=14 2100920804185171 m001 (ln(2)-arctan(1/2))/(exp(-1/2*Pi)-Paris) 2100920814423872 m001 ln(PisotVijayaraghavan)*Artin*Riemann1stZero^2 2100920815749700 r005 Im(z^2+c),c=-11/42+19/61*I,n=11 2100920819151682 a007 Real Root Of -336*x^4-284*x^3-502*x^2+775*x+183 2100920824227637 m005 (1/2*Zeta(3)-1/4)/(5/9*5^(1/2)+3/7) 2100920833904899 m001 (LaplaceLimit+OrthogonalArrays)/(ln(5)-Kac) 2100920836241436 r005 Re(z^2+c),c=27/110+20/39*I,n=33 2100920836604538 m001 (exp(1/Pi)-ln(2)/ln(10))/(Paris+ThueMorse) 2100920836847650 l006 ln(593/4847) 2100920855608215 r005 Re(z^2+c),c=27/74+3/22*I,n=6 2100920859762441 m002 1+6*Pi^3+E^Pi*Tanh[Pi] 2100920871240626 m001 (Mills+TreeGrowth2nd)/(GAMMA(7/12)-ArtinRank2) 2100920888366057 a001 817138163596/89*1836311903^(8/17) 2100920888366057 a001 17393796001/89*6557470319842^(8/17) 2100920891873205 m008 (2/5*Pi-5/6)/(1/5*Pi^4+2/3) 2100920892528661 h001 (2/9*exp(1)+6/11)/(2/3*exp(2)+6/11) 2100920893376028 a005 (1/cos(24/191*Pi))^297 2100920895619315 a007 Real Root Of -825*x^4-104*x^3-478*x^2+760*x-136 2100920899910941 r005 Re(z^2+c),c=-1/7+20/43*I,n=17 2100920903786944 r008 a(0)=0,K{-n^6,-37-24*n+16*n^2-4*n^3} 2100920904374479 r005 Im(z^2+c),c=-75/86+7/41*I,n=64 2100920905240047 m001 GAMMA(19/24)+Weierstrass+ZetaP(2) 2100920907176917 m001 (GAMMA(3/4)-gamma)/(-arctan(1/3)+Magata) 2100920914417389 a001 12586269025/123*11^(3/10) 2100920921790539 m001 (exp(Pi)-ln(2))/(-Tetranacci+Thue) 2100920921955722 m001 (BesselK(0,1)+GAMMA(19/24))^BesselI(1,2) 2100920926611231 r005 Im(z^2+c),c=-13/14+47/221*I,n=29 2100920931175621 a007 Real Root Of -525*x^4-628*x^3+901*x^2-126*x+163 2100920934502478 m001 (cos(1)-gamma)/(ln(2+3^(1/2))+BesselJ(1,1)) 2100920937109706 r005 Re(z^2+c),c=-65/82+7/62*I,n=44 2100920937963528 r005 Re(z^2+c),c=1/26+25/43*I,n=26 2100920947471622 m001 3^(1/3)*(FeigenbaumB+GolombDickman) 2100920947867295 m005 (1/2*Zeta(3)+3/7)/(2*5^(1/2)+3/7) 2100920975721840 m005 (1/2*Catalan+5/8)/(1/9*5^(1/2)-3/10) 2100920986691429 m005 (1/2*2^(1/2)-5/11)/(2/9*Catalan-1/12) 2100920988413656 m005 (1/2*5^(1/2)-3/8)/(3/5*gamma-7/10) 2100920995234996 a007 Real Root Of 335*x^4+280*x^3-626*x^2+733*x+373 2100921002730297 r002 50th iterates of z^2 + 2100921010735355 a007 Real Root Of -234*x^4-514*x^3+85*x^2+602*x+682 2100921010942928 a007 Real Root Of 667*x^4+844*x^3-731*x^2+590*x-702 2100921017177556 h001 (9/10*exp(2)+3/11)/(7/8*exp(1)+11/12) 2100921021546287 m005 (1/3*exp(1)-2/3)/(8/11*2^(1/2)+1/9) 2100921038699357 a007 Real Root Of -791*x^4-107*x^3+68*x^2+897*x+186 2100921039843658 m001 (2^(1/3)+BesselJ(0,1))/(-GAMMA(3/4)+MertensB1) 2100921042305992 r005 Im(z^2+c),c=-61/118+14/37*I,n=64 2100921043989379 l006 ln(996/8141) 2100921049837102 m001 Zeta(1,-1)/(PrimesInBinary-Zeta(3)) 2100921050554382 m001 (exp(Pi)+ErdosBorwein)/(Salem+ZetaQ(4)) 2100921056206213 r005 Re(z^2+c),c=-11/82+31/63*I,n=37 2100921060433300 m005 (1/2*Zeta(3)+5/9)/(2/7*3^(1/2)-6) 2100921063353598 a007 Real Root Of 858*x^4+529*x^3+83*x^2-658*x+128 2100921069522705 m001 (cos(1/12*Pi)+Otter)^Landau 2100921075193091 r005 Re(z^2+c),c=-17/110+23/51*I,n=21 2100921093823936 m001 1/GAMMA(17/24)^2/exp(OneNinth)/sin(Pi/12) 2100921103889294 m005 (1/2*gamma-5/6)/(6/7*Pi-1/10) 2100921106840872 q001 1/4759817 2100921117896266 r002 62th iterates of z^2 + 2100921120830036 a007 Real Root Of -568*x^4-903*x^3+384*x^2-865*x-820 2100921124702623 r005 Re(z^2+c),c=-21/17+1/42*I,n=44 2100921132509791 r009 Re(z^3+c),c=-37/106+17/37*I,n=3 2100921139223476 r005 Re(z^2+c),c=-13/22+41/104*I,n=14 2100921144413948 r005 Re(z^2+c),c=-11/86+17/28*I,n=25 2100921147765557 a007 Real Root Of 271*x^4+245*x^3-603*x^2+101*x-134 2100921161812235 r005 Re(z^2+c),c=-13/90+8/17*I,n=42 2100921168009182 m001 GAMMA(3/4)^2*exp(FeigenbaumKappa)^2/Zeta(5)^2 2100921170933882 r005 Re(z^2+c),c=-49/40+5/58*I,n=8 2100921173985940 r005 Re(z^2+c),c=9/52+17/40*I,n=13 2100921185531655 r005 Im(z^2+c),c=-15/14+34/151*I,n=21 2100921190539413 m005 (1/3*2^(1/2)+1/2)/(5/11*gamma+1/5) 2100921213887400 r005 Re(z^2+c),c=29/106+7/43*I,n=5 2100921218247171 m001 (Salem+Sarnak)/(DuboisRaymond+Rabbit) 2100921221251358 b008 -68/3+ArcCosh[E] 2100921227017671 m001 (cos(1)-sin(1))/(-Ei(1,1)+(1+3^(1/2))^(1/2)) 2100921242011925 a003 cos(Pi*23/100)*cos(Pi*34/83) 2100921247966496 p004 log(24611/3011) 2100921252378110 m005 (1/2*Catalan-4/5)/(5*Pi+4/7) 2100921258205757 r005 Re(z^2+c),c=-1/4+2/23*I,n=6 2100921265688048 a001 123/4181*317811^(9/58) 2100921267149625 r005 Im(z^2+c),c=-1/21+14/57*I,n=11 2100921273063506 m001 ThueMorse^CareFree*ThueMorse^Shi(1) 2100921275840681 a007 Real Root Of 501*x^4+658*x^3+50*x^2-920*x+184 2100921277671496 m005 (1/3*5^(1/2)-1/5)/(9/10*5^(1/2)+7/12) 2100921279041081 r005 Im(z^2+c),c=-33/38+4/23*I,n=44 2100921304202266 h001 (-3*exp(1)-2)/(-9*exp(3/2)-8) 2100921330709315 a007 Real Root Of 581*x^4+768*x^3-461*x^2+739*x-610 2100921340135213 r009 Re(z^3+c),c=-10/27+18/31*I,n=55 2100921348676940 m001 Zeta(5)*GAMMA(13/24)/AlladiGrinstead 2100921348790902 l006 ln(403/3294) 2100921353240319 p003 LerchPhi(1/256,4,103/124) 2100921354515620 r005 Im(z^2+c),c=-1+39/176*I,n=52 2100921358984000 m002 -6*Pi^5*Log[Pi]+ProductLog[Pi]/Log[Pi] 2100921363464612 m005 (1/2*Catalan+1/3)/(2/7*exp(1)-2/5) 2100921366388578 r005 Im(z^2+c),c=-21/46+1/36*I,n=7 2100921368041722 m001 LambertW(1)^HeathBrownMoroz/PlouffeB 2100921369658296 a003 cos(Pi*19/88)-sin(Pi*52/115) 2100921393239690 m001 Mills^(KomornikLoreti/Cahen) 2100921402488937 m001 (Shi(1)+ZetaQ(4))/(3^(1/2)-5^(1/2)) 2100921403737565 m005 (1/2*Zeta(3)+5/8)/(1/3*Catalan-8/9) 2100921408177942 b008 Sech[3+SinIntegral[(5*Pi)/2]] 2100921413086599 m008 (2/3*Pi^5+3/5)/(1/5*Pi^2-1) 2100921432198439 r005 Re(z^2+c),c=-7/10+97/208*I,n=18 2100921437414810 p003 LerchPhi(1/16,3,301/178) 2100921452180667 r005 Re(z^2+c),c=-11/106+35/57*I,n=58 2100921453953526 a005 (1/sin(111/233*Pi))^1943 2100921458907487 a007 Real Root Of -94*x^4-351*x^3-654*x^2-447*x+524 2100921462494937 a007 Real Root Of -124*x^4+16*x^3+631*x^2-20*x-263 2100921465502563 m001 GAMMA(17/24)/(GaussKuzminWirsing^ThueMorse) 2100921468240245 m005 (1/3*2^(1/2)+3/4)/(1/12*5^(1/2)-6) 2100921476802291 r009 Re(z^3+c),c=-45/122+32/59*I,n=21 2100921477456476 m001 Zeta(9)*GAMMA(11/12)^2/ln(sin(Pi/5)) 2100921483089954 r002 10th iterates of z^2 + 2100921485353853 a007 Real Root Of 182*x^4-80*x^3-849*x^2+597*x+714 2100921488309363 r009 Re(z^3+c),c=-12/23+17/29*I,n=33 2100921489489587 r002 15th iterates of z^2 + 2100921489765556 r002 35th iterates of z^2 + 2100921495333197 r002 16th iterates of z^2 + 2100921496662199 m001 (Catalan+3^(1/3))/(-Salem+ZetaQ(2)) 2100921499176759 l006 ln(509/628) 2100921499343722 a001 123*(1/2*5^(1/2)+1/2)^18*18^(3/8) 2100921503392578 m005 (1/2*3^(1/2)-7/9)/(7/12*gamma+1/12) 2100921521997621 r002 2th iterates of z^2 + 2100921524903228 m005 (1/2*exp(1)+7/11)/(-34/99+1/9*5^(1/2)) 2100921527091806 m001 GAMMA(1/6)^2*Riemann1stZero^2/exp(cos(1))^2 2100921542090662 m001 KhinchinHarmonic^(Si(Pi)/Trott) 2100921551080961 a007 Real Root Of 534*x^4+833*x^3-470*x^2+688*x+841 2100921568218713 r005 Im(z^2+c),c=3/19+5/32*I,n=6 2100921576450595 m001 (TreeGrowth2nd-(1+3^(1/2))^(1/2))*3^(1/2) 2100921583606436 m009 (3/5*Psi(1,2/3)-6)/(1/5*Psi(1,1/3)-4) 2100921594021799 h001 (3/7*exp(1)+1/5)/(7/9*exp(2)+3/4) 2100921597742688 a007 Real Root Of 37*x^4+812*x^3+733*x^2+101*x-15 2100921601480401 m005 (1/3*2^(1/2)+1/10)/(5/6*exp(1)+5/11) 2100921610118600 r005 Re(z^2+c),c=-7/66+6/11*I,n=45 2100921613727903 m001 (-FeigenbaumMu+ThueMorse)/(1-FeigenbaumAlpha) 2100921631634548 a007 Real Root Of 32*x^4+629*x^3-919*x^2-152*x+959 2100921636519613 a007 Real Root Of 388*x^4+726*x^3-768*x^2-952*x+563 2100921637018712 m002 Cosh[Pi]*Sinh[Pi]+(Pi^5*Tanh[Pi])/4 2100921639171699 m001 ReciprocalLucas*(CopelandErdos+GaussAGM) 2100921646064148 b008 8+9*ArcSec[8] 2100921646712615 l006 ln(1019/8329) 2100921646712615 p004 log(8329/1019) 2100921649096785 m001 (ErdosBorwein+Stephens)/(3^(1/2)-ln(2)) 2100921655176568 r002 6th iterates of z^2 + 2100921658983239 r005 Im(z^2+c),c=35/122+15/34*I,n=13 2100921669843456 b008 18+82^(1/4) 2100921670329804 a007 Real Root Of 472*x^4+860*x^3-499*x^2-48*x+881 2100921686448107 r005 Re(z^2+c),c=-7/40+24/61*I,n=13 2100921687895167 r005 Im(z^2+c),c=-53/78+1/36*I,n=45 2100921702683905 m001 1/FibonacciFactorial^3*exp(FeigenbaumKappa) 2100921712779311 r009 Re(z^3+c),c=-23/102+7/39*I,n=6 2100921722511117 m001 (Landau-LandauRamanujan)/(Ei(1,1)+FeigenbaumB) 2100921727474464 m001 (BesselI(1,2)-CareFree)/(PlouffeB-ZetaQ(2)) 2100921735117106 a007 Real Root Of -540*x^4-838*x^3+866*x^2+901*x+820 2100921738779677 b008 17*KelvinKer[0,1/3] 2100921752671308 m001 Tribonacci^2*Porter^2/ln(sqrt(2)) 2100921770720759 r008 a(0)=2,K{-n^6,71-94*n^3-23*n^2+36*n} 2100921773247534 a001 119218851371*46368^(16/23) 2100921773383488 a001 54018521*2971215073^(16/23) 2100921776284855 m001 GaussAGM*HardHexagonsEntropy-exp(1/Pi) 2100921777134502 a007 Real Root Of -416*x^4-483*x^3+899*x^2-105*x-563 2100921782593964 r005 Im(z^2+c),c=-11/98+15/56*I,n=16 2100921787837834 a007 Real Root Of 244*x^4-117*x^3-958*x^2+378*x-816 2100921789731564 m001 (exp(1)+ln(Pi))/(-ln(2^(1/2)+1)+ArtinRank2) 2100921792354464 a007 Real Root Of 426*x^4+921*x^3+157*x^2-101*x-664 2100921798197057 m001 (BesselI(0,1)-Conway)/(-Tribonacci+ZetaQ(2)) 2100921801227517 r008 a(0)=2,K{-n^6,-1+3*n-2*n^2-n^3} 2100921801227517 r008 a(0)=2,K{-n^6,-1-n^3-2*n^2+3*n} 2100921806337854 s002 sum(A042322[n]/(16^n),n=1..infinity) 2100921807012227 m001 (GAMMA(19/24)+FransenRobinson)/(Shi(1)+Chi(1)) 2100921807012227 m001 (GAMMA(19/24)+FransenRobinson)/Ei(1) 2100921808017575 m005 (1/2*3^(1/2)-3)/(1/9*Pi+2/3) 2100921808653286 r005 Re(z^2+c),c=-20/29+22/63*I,n=16 2100921810432957 a007 Real Root Of -516*x^4-669*x^3+584*x^2-519*x+181 2100921815564990 m005 (1/2*3^(1/2)+3/4)/(1/9*gamma-5/6) 2100921818239254 a007 Real Root Of -377*x^4+828*x^3+647*x^2+632*x+13 2100921818429594 m002 -1+Pi^4/6+Sinh[Pi]/2 2100921826585213 a007 Real Root Of 612*x^4+959*x^3-491*x^2+584*x+364 2100921841619142 l006 ln(616/5035) 2100921846452958 r009 Im(z^3+c),c=-8/23+8/55*I,n=8 2100921848722673 a007 Real Root Of 483*x^4+915*x^3-227*x^2-99*x-131 2100921869892440 a007 Real Root Of -438*x^4-662*x^3+797*x^2+847*x+656 2100921877787225 m001 (Paris+Rabbit)/(Ei(1,1)-Zeta(1,-1)) 2100921881982852 m001 Landau^Stephens/(Landau^(2*Pi/GAMMA(5/6))) 2100921882581271 q001 433/2061 2100921886407300 m001 1/ArtinRank2/FeigenbaumDelta^2*exp(sqrt(3))^2 2100921890433196 m001 exp(GAMMA(1/6))*Khintchine^2*GAMMA(11/12)^2 2100921890831112 a007 Real Root Of 324*x^4+436*x^3-323*x^2+173*x-480 2100921890985737 r005 Im(z^2+c),c=15/74+25/46*I,n=42 2100921900270964 m001 5^(1/2)*GAMMA(13/24)/KhinchinHarmonic 2100921900605633 r005 Im(z^2+c),c=-59/122+17/48*I,n=22 2100921901042318 a007 Real Root Of 747*x^4-182*x^3+699*x^2-874*x+153 2100921915810298 p004 log(21881/2677) 2100921918882043 b008 SinIntegral[Sech[Sqrt[2]+Pi]] 2100921935694579 r005 Im(z^2+c),c=7/122+1/54*I,n=3 2100921940634825 m001 1/LambertW(1)*exp(RenyiParking)/sqrt(Pi) 2100921953327831 m001 (GAMMA(3/4)*Landau+PlouffeB)/Landau 2100921957412068 a001 20633239/21*14930352^(15/17) 2100921960446884 a001 17/38*7^(31/39) 2100921962239384 m001 (gamma-exp(sqrt(2)))^sin(Pi/5) 2100921962643164 a007 Real Root Of -810*x^4-299*x^3+469*x^2+322*x-84 2100921966593377 a001 2161/3*53316291173^(15/17) 2100921971599615 r005 Re(z^2+c),c=-25/106+2/11*I,n=6 2100921977750468 a001 1292/161*199^(2/11) 2100921978621159 a001 9381251041/7*4181^(15/17) 2100921987899993 m001 (ln(gamma)+ln(2))/(Zeta(1/2)+GAMMA(7/12)) 2100921999731713 a007 Real Root Of 305*x^4+70*x^3-879*x^2+299*x-785 2100922007043910 a007 Real Root Of -25*x^4+144*x^3-340*x^2+765*x-147 2100922010134576 a007 Real Root Of 704*x^4+705*x^3-806*x^2-687*x+172 2100922014068281 m001 1/ln(Pi)*Lehmer^2/Zeta(1/2) 2100922017468303 m004 (-135*Pi)/2+3/ProductLog[Sqrt[5]*Pi] 2100922018492930 m005 (1/2*Catalan-1/8)/(1/8*3^(1/2)-3/8) 2100922024397761 a007 Real Root Of 296*x^4+491*x^3-191*x^2+392*x+453 2100922025492980 a008 Real Root of (1+4*x-3*x^2-4*x^3+x^5) 2100922028585862 p001 sum(1/(611*n+485)/(24^n),n=0..infinity) 2100922029003473 a007 Real Root Of 175*x^4-88*x^3-863*x^2+399*x+422 2100922035260153 a007 Real Root Of 430*x^4+895*x^3-142*x^2+100*x+759 2100922040977844 r002 43th iterates of z^2 + 2100922045603500 m001 (-Champernowne+Sarnak)/(gamma+BesselI(0,2)) 2100922053802483 r002 10th iterates of z^2 + 2100922054775926 a007 Real Root Of 491*x^4-359*x^3-340*x^2-884*x-175 2100922055623975 m003 1/50+(Sqrt[5]*Tanh[1/2+Sqrt[5]/2])/2048 2100922057251597 r005 Im(z^2+c),c=-47/44+13/59*I,n=36 2100922069260805 r002 17th iterates of z^2 + 2100922069761094 r002 21th iterates of z^2 + 2100922074570750 b008 13*Gamma[3+Sqrt[3]] 2100922077690539 r005 Im(z^2+c),c=-29/74+17/49*I,n=23 2100922079072592 m001 exp(-1/2*Pi)*(Psi(1,1/3)+Trott) 2100922081196595 l006 ln(829/6776) 2100922082172136 a005 (1/sin(58/127*Pi))^576 2100922084937595 r005 Re(z^2+c),c=-103/110+12/53*I,n=46 2100922093213074 m001 cos(1/5*Pi)+GAMMA(3/4)^(2^(1/3)) 2100922093213074 m001 cos(Pi/5)+GAMMA(3/4)^(2^(1/3)) 2100922093569941 r005 Im(z^2+c),c=11/94+7/40*I,n=4 2100922099843884 m001 (cos(1)-ln(3))/(GaussAGM+MasserGramainDelta) 2100922139176528 r009 Im(z^3+c),c=-8/13+2/53*I,n=3 2100922142043083 a007 Real Root Of 360*x^4+483*x^3-312*x^2+580*x+61 2100922146021264 m009 (1/2*Psi(1,3/4)+3)/(4/3*Catalan+1/6*Pi^2-5/6) 2100922146716317 a005 (1/sin(31/180*Pi))^15 2100922164243999 m001 1/Riemann2ndZero*ln(GolombDickman)*Zeta(1,2) 2100922166201557 m001 (-Bloch+CopelandErdos)/(Psi(1,1/3)+ln(Pi)) 2100922175145486 r005 Im(z^2+c),c=-23/58+22/63*I,n=56 2100922175839508 a003 sin(Pi*1/50)+sin(Pi*4/85) 2100922188021185 m005 (1/3*exp(1)+1/12)/(7/10*gamma-7/8) 2100922193836105 m001 (GAMMA(2/3)+Ei(1))/(CareFree-Thue) 2100922198941728 r005 Im(z^2+c),c=-73/122+19/47*I,n=34 2100922199664174 m001 BesselI(1,2)^Rabbit/Robbin 2100922204910335 m001 1/ln(FeigenbaumD)/RenyiParking^2*OneNinth^2 2100922218463808 r005 Re(z^2+c),c=11/38+4/19*I,n=13 2100922220640622 a007 Real Root Of -448*x^4-695*x^3+528*x^2+152*x+272 2100922222827768 l006 ln(1042/8517) 2100922236800554 p003 LerchPhi(1/16,3,79/101) 2100922241372596 h001 (-7*exp(4)-6)/(-9*exp(3)-4) 2100922243030769 a007 Real Root Of 353*x^4+595*x^3-222*x^2+335*x+324 2100922243483311 r009 Re(z^3+c),c=-15/44+16/37*I,n=5 2100922253514065 r005 Im(z^2+c),c=-22/19+2/7*I,n=28 2100922285408891 r009 Re(z^3+c),c=-13/38+15/29*I,n=34 2100922306156121 m001 GlaisherKinkelin^CareFree/LambertW(1) 2100922309883556 r005 Re(z^2+c),c=-5/6+2/129*I,n=48 2100922310015841 m001 Zeta(7)/exp((3^(1/3)))*log(1+sqrt(2)) 2100922314354207 h001 (1/12*exp(2)+7/10)/(8/11*exp(2)+8/9) 2100922318729513 a007 Real Root Of 141*x^4-103*x^3-734*x^2+281*x+128 2100922323443349 m005 (1/3*3^(1/2)-3/5)/(2/7*gamma-3/11) 2100922325078654 m001 Pi-exp(Pi)-LambertW(1)*exp(gamma) 2100922327717541 a007 Real Root Of -813*x^4-120*x^3-468*x^2+780*x+185 2100922328478749 a008 Real Root of x^4-x^3-16*x^2+14*x+31 2100922331313734 a007 Real Root Of -995*x^4-776*x^3-11*x^2+889*x+182 2100922341310509 r009 Re(z^3+c),c=-1/110+34/41*I,n=60 2100922345226948 r005 Re(z^2+c),c=3/14+15/28*I,n=58 2100922349922819 h001 (5/9*exp(2)+11/12)/(5/6*exp(1)+1/8) 2100922350938750 m001 GAMMA(1/24)*exp(FransenRobinson)*cos(1) 2100922358503119 a008 Real Root of (1+6*x+5*x^2-4*x^3+x^4-2*x^5) 2100922361447384 m001 (Conway-GaussAGM)/(Otter-Sarnak) 2100922390918865 m001 exp(sin(1))^2/Zeta(1,2)/sqrt(1+sqrt(3))^2 2100922399743510 a007 Real Root Of 839*x^4-874*x^3-138*x^2-202*x+55 2100922403463670 m001 (Pi-sin(1))/(BesselI(1,2)-Khinchin) 2100922412205598 a007 Real Root Of -58*x^4+170*x^3+161*x^2-959*x-19 2100922412426055 a007 Real Root Of -490*x^4-616*x^3+718*x^2-395*x-165 2100922423484133 m005 (3*gamma-2)/(2/3*Catalan+2/3) 2100922436315760 m001 exp(Pi)^(FeigenbaumMu/Bloch) 2100922442441055 s001 sum(exp(-Pi/4)^n*A220487[n],n=1..infinity) 2100922443133609 m001 (-MinimumGamma+Totient)/(MertensB1-sin(1)) 2100922449638584 r005 Im(z^2+c),c=1/106+13/58*I,n=9 2100922455036480 m001 1/Trott^2/ln(Robbin)^2*BesselK(0,1) 2100922458876364 r005 Re(z^2+c),c=-11/118+25/44*I,n=60 2100922463440633 m001 (-GAMMA(3/4)+KomornikLoreti)/(2^(1/3)+2^(1/2)) 2100922472580849 a007 Real Root Of 461*x^4+481*x^3-589*x^2+923*x+18 2100922472801165 m005 (1/2*Zeta(3)+6/11)/(1/4*exp(1)-5/8) 2100922480578072 r005 Im(z^2+c),c=-37/44+9/58*I,n=63 2100922480934622 a001 4/4181*4181^(5/53) 2100922494262601 m001 (-Paris+TwinPrimes)/(sin(1)+FeigenbaumC) 2100922495925969 a007 Real Root Of 158*x^4-17*x^3-319*x^2+890*x+42 2100922498648650 a007 Real Root Of -166*x^4+31*x^3+493*x^2-748*x-226 2100922508228059 a007 Real Root Of 473*x^4+499*x^3-841*x^2+27*x-819 2100922508358682 m005 (1/3*gamma-3/7)/(3/5*gamma+7/9) 2100922518463368 a001 2584/2207*199^(6/11) 2100922525612458 r005 Re(z^2+c),c=-23/102+13/54*I,n=17 2100922526479381 m005 (1/2*gamma+6/7)/(1/3*5^(1/2)-1/5) 2100922527738018 a007 Real Root Of -540*x^4-666*x^3+662*x^2-213*x+975 2100922529359725 m002 -3+Pi^3+5*Pi*Cosh[Pi] 2100922535137658 m001 (Paris+StronglyCareFree)/(FeigenbaumMu+Lehmer) 2100922552992114 a007 Real Root Of 198*x^4+22*x^3-465*x^2+902*x+294 2100922564563532 r005 Im(z^2+c),c=-5/122+9/37*I,n=15 2100922569230139 r009 Im(z^3+c),c=-27/52+5/53*I,n=54 2100922577381877 a007 Real Root Of -232*x^4-198*x^3+495*x^2-465*x-478 2100922579754424 a001 5600748293801/89*6557470319842^(6/17) 2100922582236310 r005 Re(z^2+c),c=-31/122+1/61*I,n=14 2100922590535741 a007 Real Root Of -307*x^4-881*x^3-799*x^2+268*x+84 2100922598557116 m001 (-Bloch+ZetaQ(4))/(5^(1/2)+gamma(3)) 2100922599363272 m001 (gamma(3)+PolyaRandomWalk3D)/(3^(1/2)-Ei(1)) 2100922606063415 r005 Im(z^2+c),c=-23/58+22/63*I,n=58 2100922613859341 a007 Real Root Of -548*x^4-880*x^3+472*x^2-352*x-307 2100922614241884 h005 exp(cos(Pi*13/54)/sin(Pi*17/39)) 2100922614681887 m001 (FeigenbaumMu+Salem)/(exp(Pi)+ln(gamma)) 2100922627625703 a007 Real Root Of 166*x^4-982*x^3+700*x^2+996*x+690 2100922633871026 a007 Real Root Of -196*x^4-13*x^3+466*x^2-556*x+473 2100922634803097 r005 Im(z^2+c),c=-27/34+19/126*I,n=25 2100922659357953 r005 Im(z^2+c),c=-91/118+3/31*I,n=15 2100922670094998 s001 sum(1/10^(n-1)*A044347[n]/n!,n=1..infinity) 2100922680367819 a007 Real Root Of -258*x^4-586*x^3-590*x^2-887*x+333 2100922683388088 m001 gamma^ln(2)*HardyLittlewoodC4 2100922684008934 r005 Re(z^2+c),c=-61/62+8/59*I,n=26 2100922689372889 a007 Real Root Of 285*x^4+289*x^3-256*x^2+808*x-45 2100922691089643 m005 (1/2*5^(1/2)-11/12)/(4/45+7/18*5^(1/2)) 2100922693843619 a008 Real Root of (15+12*x+14*x^2-11*x^3) 2100922694555718 r009 Im(z^3+c),c=-17/114+34/39*I,n=62 2100922696546332 a007 Real Root Of 4*x^4-321*x^3-135*x^2+929*x-507 2100922700102055 r005 Im(z^2+c),c=1/38+11/50*I,n=3 2100922704781344 m001 Riemann2ndZero*ln(Champernowne)^2/Robbin^2 2100922714164781 a007 Real Root Of 214*x^4+60*x^3-212*x^2+952*x-677 2100922715685942 a007 Real Root Of -149*x^4+34*x^3+241*x^2-876*x+314 2100922722830856 s001 sum(exp(-Pi/3)^(n-1)*A202308[n],n=1..infinity) 2100922726906052 m006 (1/6*exp(2*Pi)+1/3)/(4/5*exp(2*Pi)-2) 2100922728194259 r005 Re(z^2+c),c=-3/22+40/47*I,n=51 2100922728411276 a007 Real Root Of -434*x^4-760*x^3-76*x^2-794*x+75 2100922735127880 m002 -1+Pi-(Cosh[Pi]*ProductLog[Pi])/Pi^5 2100922740694064 m001 (Trott2nd-ThueMorse)/(cos(1/5*Pi)-Kac) 2100922744998779 a001 5/124*29^(25/51) 2100922745971693 a001 24476*(1/2*5^(1/2)+1/2)^31*7^(7/13) 2100922748966983 a001 64079*(1/2*5^(1/2)+1/2)^29*7^(7/13) 2100922750818174 a001 39603*(1/2*5^(1/2)+1/2)^30*7^(7/13) 2100922751913265 r005 Re(z^2+c),c=-83/64+27/35*I,n=2 2100922758659946 a001 15127*(1/2*5^(1/2)+1/2)^32*7^(7/13) 2100922761528160 m008 (1/5*Pi+1)/(1/4*Pi^5+1) 2100922762239508 m001 Pi-2^(1/3)-GAMMA(3/4)+exp(1/exp(1)) 2100922763368576 m005 (1/2*Catalan-2/9)/(7/11*2^(1/2)+2/9) 2100922774058763 l006 ln(213/1741) 2100922775908954 a001 48/281*521^(10/13) 2100922782335892 m005 (1/12+1/4*5^(1/2))/(3/11*Catalan-5/9) 2100922800110940 a007 Real Root Of 648*x^4+946*x^3-684*x^2+198*x-417 2100922809857823 m006 (5/6*exp(Pi)+1/6)/(3*Pi-1/6) 2100922811047399 m005 (1/2*gamma-1/2)/(9/10*Catalan+2/11) 2100922835784405 a001 13/15127*76^(31/42) 2100922840599095 a007 Real Root Of -787*x^4-957*x^3+983*x^2-617*x+823 2100922850297452 r009 Im(z^3+c),c=-47/82+27/56*I,n=3 2100922851398917 g005 GAMMA(5/6)*GAMMA(3/5)/GAMMA(5/11)/GAMMA(2/9) 2100922853901680 m001 1/GAMMA(1/12)/Artin/exp(Zeta(3))^2 2100922859273972 m005 (1/3*exp(1)+2/7)/(1/10*gamma-5/8) 2100922862921491 h001 (6/11*exp(1)+5/12)/(2/9*exp(1)+3/10) 2100922864380856 r009 Re(z^3+c),c=-39/106+27/47*I,n=39 2100922879077135 r005 Im(z^2+c),c=-43/114+1/30*I,n=16 2100922884981453 h001 (4/9*exp(2)+6/11)/(1/3*exp(1)+11/12) 2100922890489817 m001 (FeigenbaumC-Tetranacci)/(Pi+3^(1/3)) 2100922898048836 m001 (cos(1)-exp(1))/(GAMMA(23/24)+Trott) 2100922917294481 g005 GAMMA(5/11)*GAMMA(7/9)/GAMMA(1/11)^2 2100922922568561 r009 Re(z^3+c),c=-1/10+13/16*I,n=24 2100922925810178 m001 Zeta(5)*(ln(Pi)+ln(1+sqrt(2))) 2100922925810178 m001 Zeta(5)*(ln(Pi)+ln(2^(1/2)+1)) 2100922931915469 m002 2*Tanh[Pi]+(ProductLog[Pi]*Tanh[Pi])/Pi^2 2100922935680969 p001 sum(1/(116*n+85)/n/(24^n),n=0..infinity) 2100922940607974 a001 2255/1926*199^(6/11) 2100922945692904 m001 (ln(Pi)-cos(1/12*Pi))/(GAMMA(23/24)-ZetaP(3)) 2100922965986887 a005 (1/cos(2/19*Pi))^220 2100922969372502 a007 Real Root Of -890*x^4+864*x^3-250*x^2+101*x+42 2100922972111904 a007 Real Root Of 266*x^4+14*x^3+657*x^2-893*x-217 2100922973458729 a001 377/521*199^(7/11) 2100922977047130 r009 Im(z^3+c),c=-53/126+5/56*I,n=26 2100922987792473 r009 Im(z^3+c),c=-41/126+8/51*I,n=11 2100922995714184 m001 (BesselJ(1,1)+ZetaP(3))/(ln(5)+ln(2+3^(1/2))) 2100922996418125 m005 (1/2*Catalan-3/4)/(3/4*3^(1/2)+1/11) 2100922998092581 h001 (3/4*exp(2)+4/5)/(1/3*exp(2)+5/9) 2100922998223812 m001 Gompertz^GAMMA(11/12)*Pi*2^(1/2)/GAMMA(3/4) 2100923002198054 a001 17711/15127*199^(6/11) 2100923010373850 a001 47/14930352*55^(9/19) 2100923011183926 a001 15456/13201*199^(6/11) 2100923012494947 a001 121393/103682*199^(6/11) 2100923012686223 a001 105937/90481*199^(6/11) 2100923012714129 a001 832040/710647*199^(6/11) 2100923012718201 a001 726103/620166*199^(6/11) 2100923012718795 a001 5702887/4870847*199^(6/11) 2100923012718881 a001 4976784/4250681*199^(6/11) 2100923012718894 a001 39088169/33385282*199^(6/11) 2100923012718896 a001 34111385/29134601*199^(6/11) 2100923012718896 a001 267914296/228826127*199^(6/11) 2100923012718896 a001 233802911/199691526*199^(6/11) 2100923012718896 a001 1836311903/1568397607*199^(6/11) 2100923012718896 a001 1602508992/1368706081*199^(6/11) 2100923012718896 a001 12586269025/10749957122*199^(6/11) 2100923012718896 a001 10983760033/9381251041*199^(6/11) 2100923012718896 a001 86267571272/73681302247*199^(6/11) 2100923012718896 a001 75283811239/64300051206*199^(6/11) 2100923012718896 a001 2504730781961/2139295485799*199^(6/11) 2100923012718896 a001 365435296162/312119004989*199^(6/11) 2100923012718896 a001 139583862445/119218851371*199^(6/11) 2100923012718896 a001 53316291173/45537549124*199^(6/11) 2100923012718896 a001 20365011074/17393796001*199^(6/11) 2100923012718896 a001 7778742049/6643838879*199^(6/11) 2100923012718896 a001 2971215073/2537720636*199^(6/11) 2100923012718896 a001 1134903170/969323029*199^(6/11) 2100923012718896 a001 433494437/370248451*199^(6/11) 2100923012718896 a001 165580141/141422324*199^(6/11) 2100923012718897 a001 63245986/54018521*199^(6/11) 2100923012718902 a001 24157817/20633239*199^(6/11) 2100923012718935 a001 9227465/7881196*199^(6/11) 2100923012719162 a001 3524578/3010349*199^(6/11) 2100923012720717 a001 1346269/1149851*199^(6/11) 2100923012731376 a001 514229/439204*199^(6/11) 2100923012804437 a001 196418/167761*199^(6/11) 2100923013305203 a001 75025/64079*199^(6/11) 2100923014204485 m001 (5^(1/2)+BesselJ(1,1))/(PrimesInBinary+Thue) 2100923016737500 a001 28657/24476*199^(6/11) 2100923022805740 m001 PrimesInBinary*(3^(1/2)-GAMMA(3/4)) 2100923027880234 m001 (5^(1/2)+Cahen)/(-MasserGramainDelta+ZetaP(2)) 2100923032608762 a001 64079/377*1597^(15/44) 2100923035202801 h001 (1/4*exp(1)+4/9)/(3/5*exp(2)+11/12) 2100923037165734 a001 2178309/29*322^(40/41) 2100923039591294 r005 Im(z^2+c),c=-43/34+45/127*I,n=8 2100923040262819 a001 10946/9349*199^(6/11) 2100923041648998 r009 Re(z^3+c),c=-17/38+32/57*I,n=8 2100923044907160 r005 Im(z^2+c),c=-53/122+21/58*I,n=24 2100923058627621 a007 Real Root Of -266*x^4-262*x^3+145*x^2-651*x+745 2100923063416072 m001 DuboisRaymond*Backhouse/exp(Riemann2ndZero) 2100923076891309 r002 52th iterates of z^2 + 2100923083680546 a007 Real Root Of 42*x^4+893*x^3+228*x^2+130*x+505 2100923084745423 m003 -1/10+(7*Sqrt[5])/64+Tan[1/2+Sqrt[5]/2] 2100923090407545 s002 sum(A143259[n]/(n*exp(n)+1),n=1..infinity) 2100923090612516 m001 (GAMMA(3/4)-3^(1/3))/(BesselJ(1,1)-Landau) 2100923092644544 m001 (Niven-ZetaQ(4))/(BesselI(1,1)-MasserGramain) 2100923092684925 r002 3th iterates of z^2 + 2100923099922466 m001 ReciprocalLucas-Zeta(1,-1)*GaussAGM 2100923100309086 r002 23th iterates of z^2 + 2100923108022746 m009 (5/6*Psi(1,1/3)+1/6)/(2*Psi(1,3/4)-1) 2100923123718677 m001 (Pi+2^(1/2))/(LaplaceLimit+Riemann2ndZero) 2100923128577373 r005 Re(z^2+c),c=-49/52+8/43*I,n=42 2100923129545197 b008 EllipticK[7-2*Pi] 2100923134079081 m001 (Conway+MertensB1)/(Catalan-sin(1)) 2100923144948394 m001 Pi*csc(5/24*Pi)/GAMMA(19/24)*PlouffeB-gamma(2) 2100923162594695 r005 Im(z^2+c),c=-21/22+24/127*I,n=5 2100923172460147 a007 Real Root Of 153*x^4-112*x^3-378*x^2+812*x-645 2100923184088254 m005 (1/3*5^(1/2)-1/11)/(3/5*Pi-5) 2100923187917422 a007 Real Root Of -43*x^4-863*x^3+839*x^2-171*x+693 2100923197097276 a007 Real Root Of -688*x^4+190*x^3+268*x^2+508*x+98 2100923201507762 a001 4181/3571*199^(6/11) 2100923203970552 m001 HardyLittlewoodC3+Grothendieck^Robbin 2100923204653413 m005 (1/3*Pi+1/3)/(5*2^(1/2)-1/2) 2100923205002326 m001 1/Porter^2/exp(GlaisherKinkelin)^2*sin(Pi/5) 2100923207234230 m001 Pi*ln(2)/ln(10)*2^(1/3)/LambertW(1) 2100923215079820 a001 2584/3*199^(35/58) 2100923217924425 m001 Trott2nd^Bloch*Trott2nd^BesselK(1,1) 2100923229103891 m001 1/Cahen^2/ln(Artin)^2*sin(1) 2100923232102439 s002 sum(A214529[n]/(n*exp(n)+1),n=1..infinity) 2100923237807962 r005 Im(z^2+c),c=5/18+2/37*I,n=30 2100923240830588 a007 Real Root Of 456*x^4+770*x^3-509*x^2-546*x-644 2100923241086446 a007 Real Root Of -506*x^4-545*x^3+995*x^2-370*x-365 2100923241996133 a007 Real Root Of 597*x^4+769*x^3-498*x^2+790*x-642 2100923256779327 a007 Real Root Of 267*x^4+608*x^3+44*x^2+296*x+864 2100923265426084 r002 50th iterates of z^2 + 2100923277505198 r005 Re(z^2+c),c=15/58+22/47*I,n=9 2100923286436902 r005 Re(z^2+c),c=-3/32+4/7*I,n=56 2100923289779070 m001 ln(2)^Zeta(1/2)/(ln(2)^BesselI(1,1)) 2100923300296837 r005 Im(z^2+c),c=-55/54+12/53*I,n=41 2100923301596877 m001 exp(GAMMA(3/4))^2/Tribonacci*gamma^2 2100923301983752 l006 ln(1088/8893) 2100923303416842 a007 Real Root Of -605*x^4-939*x^3+498*x^2-586*x-350 2100923303484875 r005 Re(z^2+c),c=-24/29+3/64*I,n=32 2100923310721345 m005 (1/3*Zeta(3)-3/4)/(4/9*exp(1)+5/11) 2100923311149487 r005 Im(z^2+c),c=-53/122+14/39*I,n=36 2100923312179205 r009 Re(z^3+c),c=-1/110+34/41*I,n=62 2100923315891626 m001 KhinchinLevy^BesselI(0,1)+Thue 2100923319914507 p004 log(32371/26237) 2100923333318377 r002 19th iterates of z^2 + 2100923334728791 m001 (Sarnak+Sierpinski)/(Ei(1,1)+FeigenbaumKappa) 2100923342134437 a007 Real Root Of -326*x^4-687*x^3-345*x^2-459*x+539 2100923346652441 m001 exp(MertensB1)*GlaisherKinkelin^2/Zeta(7)^2 2100923347247368 m001 MertensB3/ln(3)*3^(1/2) 2100923351219455 m005 (1/2*gamma-1/3)/(6/7*2^(1/2)+11/12) 2100923353196503 r009 Re(z^3+c),c=-5/27+37/57*I,n=3 2100923355954920 m001 (-Khinchin+Riemann1stZero)/(Psi(2,1/3)+Kac) 2100923358161667 a001 322/377*10946^(3/31) 2100923366692279 m006 (4/5*Pi^2+1/2)/(3/4*exp(2*Pi)-2) 2100923383296792 m006 (1/3*Pi-2/3)/(4/5*exp(Pi)-2/5) 2100923385022749 a001 3571/21*2^(18/59) 2100923389509621 a007 Real Root Of -112*x^4+362*x^3+909*x^2-770*x-91 2100923390777140 m001 (arctan(1/3)-FeigenbaumAlpha)/(Kac+ThueMorse) 2100923399903531 a007 Real Root Of 231*x^4-328*x^3+378*x^2-42*x-29 2100923406036320 a007 Real Root Of 53*x^4-321*x^3-898*x^2-212*x-491 2100923406240432 m001 1/2*OneNinth^Gompertz*2^(2/3) 2100923409020921 a007 Real Root Of x^4+210*x^3-21*x^2-335*x+236 2100923411756828 h001 (11/12*exp(2)+3/10)/(11/12*exp(1)+7/8) 2100923414034121 m006 (2/5*Pi+3)/(1/5*Pi^2-4) 2100923414034121 m008 (2/5*Pi+3)/(1/5*Pi^2-4) 2100923418240543 m001 1/Pi/ln(GaussKuzminWirsing)^2*Zeta(1,2) 2100923422126617 a001 2/5702887*144^(14/17) 2100923423808693 a007 Real Root Of 595*x^4+957*x^3-252*x^2+666*x-206 2100923425306952 r002 63i'th iterates of 2*x/(1-x^2) of 2100923428356503 h001 (-7*exp(2/3)-8)/(-2*exp(1/2)-7) 2100923430495735 l006 ln(875/7152) 2100923432806453 m001 (FeigenbaumC-Grothendieck)^polylog(4,1/2) 2100923437234399 m005 (1/2*gamma-2/9)/(1/4*5^(1/2)-7/8) 2100923438441326 r005 Im(z^2+c),c=-11/60+15/49*I,n=5 2100923443876878 r002 10th iterates of z^2 + 2100923452380813 r005 Re(z^2+c),c=1/42+10/17*I,n=32 2100923458899573 r005 Re(z^2+c),c=5/44+24/61*I,n=12 2100923463141101 m001 1/Paris^2/Lehmer^2/exp(log(2+sqrt(3)))^2 2100923463490465 m001 (Champernowne-Sarnak)/(ln(5)-Ei(1)) 2100923470106837 m001 ZetaQ(3)/(BesselI(1,1)-ZetaR(2)) 2100923473090891 l006 ln(8067/9953) 2100923473389627 a008 Real Root of (1+11*x-16*x^2-10*x^3) 2100923474775138 a007 Real Root Of 506*x^4+658*x^3-830*x^2-369*x-868 2100923474970814 r009 Im(z^3+c),c=-15/31+5/62*I,n=54 2100923482065228 r005 Re(z^2+c),c=-5/6+1/69*I,n=26 2100923482555234 a007 Real Root Of -768*x^4-194*x^3+660*x^2+697*x+117 2100923482849604 q001 637/3032 2100923499566924 r005 Re(z^2+c),c=-17/14+7/82*I,n=34 2100923508751499 m001 Pi/Psi(1,1/3)*GAMMA(11/12)+Pi^(1/2) 2100923509150376 g002 Psi(1/9)-Psi(7/11)-Psi(5/11)-Psi(2/7) 2100923509580987 m001 (Salem-Sarnak)/(GAMMA(7/12)+Kac) 2100923509906936 a007 Real Root Of -348*x^4-849*x^3+25*x^2+500*x-153 2100923512495539 r005 Im(z^2+c),c=17/110+8/51*I,n=9 2100923521123006 r002 12i'th iterates of 2*x/(1-x^2) of 2100923529471079 r005 Im(z^2+c),c=3/50+13/64*I,n=7 2100923534452917 a003 sin(Pi*3/97)/cos(Pi*25/72) 2100923537173923 s002 sum(A231024[n]/(exp(2/5*pi*n)),n=1..infinity) 2100923541330199 m001 GAMMA(11/12)+ln(3)^Bloch 2100923545468003 r002 60th iterates of z^2 + 2100923549888061 a007 Real Root Of -3*x^4+443*x^3+617*x^2-348*x+712 2100923551911189 a007 Real Root Of -716*x^4-836*x^3+936*x^2-590*x+826 2100923585050753 a007 Real Root Of 247*x^4-154*x^3-972*x^2+782*x-307 2100923585381751 m001 (KhinchinLevy+Magata)/(GAMMA(2/3)+FeigenbaumB) 2100923595797954 m005 (1/2*5^(1/2)+1/12)/(exp(1)+3) 2100923603841284 a007 Real Root Of -334*x^4+759*x^3+207*x^2+602*x-142 2100923605055757 m009 (3/5*Psi(1,3/4)-1/5)/(3/5*Psi(1,1/3)+1/4) 2100923605404074 b008 1/4+E*Sqrt[ArcCot[2]] 2100923606025820 l006 ln(7558/9325) 2100923615299216 r005 Im(z^2+c),c=-7/8+7/41*I,n=17 2100923617034187 m005 (1/2*Catalan+8/11)/(1/10*Pi+1/4) 2100923620518163 r005 Im(z^2+c),c=-6/13+14/39*I,n=17 2100923625644578 m005 (1/2*exp(1)+2/7)/(1/4*Zeta(3)-2/9) 2100923641705727 l006 ln(662/5411) 2100923648651852 a001 119218851371/21*46368^(13/17) 2100923648720836 a007 Real Root Of -264*x^4-32*x^3+944*x^2-207*x+245 2100923648790411 a001 439204/21*591286729879^(13/17) 2100923648801303 a001 228826127/21*165580141^(13/17) 2100923654350889 a001 9349/34*233^(35/44) 2100923656952736 m001 (GAMMA(3/4)-Robbin)/FeigenbaumD 2100923658311823 m001 ThueMorse/(ln(2+3^(1/2))+MasserGramain) 2100923668542330 m001 ArtinRank2*ln(CopelandErdos)^2*(3^(1/3)) 2100923670460515 a007 Real Root Of -346*x^4-362*x^3+744*x^2+49*x+203 2100923678173630 r005 Im(z^2+c),c=-23/58+22/63*I,n=63 2100923678355273 r002 20th iterates of z^2 + 2100923699389338 r005 Im(z^2+c),c=13/50+1/13*I,n=19 2100923702625748 m001 Backhouse*Tribonacci-gamma 2100923706710266 r002 59th iterates of z^2 + 2100923708274177 m001 1/LandauRamanujan*Conway/exp(GAMMA(5/24)) 2100923708404244 m001 Otter^FeigenbaumMu/BesselI(0,2) 2100923709654160 m001 ln(GaussKuzminWirsing)^2*Conway/log(1+sqrt(2)) 2100923710472346 m001 Lehmer^FeigenbaumMu/(Lehmer^sin(1/5*Pi)) 2100923711497515 a003 -1+cos(1/5*Pi)+2*cos(1/24*Pi)+cos(2/5*Pi) 2100923719783101 p003 LerchPhi(1/5,5,207/95) 2100923722059257 m001 (ln(3)+Mills)/ln(Pi) 2100923723618601 m005 (1/2*Catalan-4/11)/(2/3*5^(1/2)+3) 2100923727096340 a007 Real Root Of -415*x^4-983*x^3+88*x^2+900*x+472 2100923727252723 r005 Im(z^2+c),c=-89/106+7/47*I,n=46 2100923727795537 m009 (4*Psi(1,2/3)-3/5)/(5*Psi(1,1/3)+5) 2100923730582019 m001 (Tetranacci-Totient)/(3^(1/3)+FeigenbaumKappa) 2100923731718789 m005 (1/3*3^(1/2)-1/3)/(3/8*5^(1/2)-2) 2100923742828424 m006 (1/6*exp(Pi)-4)/(1/Pi-1) 2100923743873053 m001 (-exp(1/Pi)+FeigenbaumC)/(2^(1/2)-exp(Pi)) 2100923745394524 h001 (5/8*exp(2)+5/12)/(7/11*exp(1)+2/3) 2100923746572137 r008 a(0)=0,K{-n^6,-45-39*n+45*n^2-10*n^3} 2100923758158895 l006 ln(7049/8697) 2100923768686248 m001 CopelandErdos/ln(Conway)^2*FeigenbaumAlpha^2 2100923772777009 m009 (2*Psi(1,1/3)-2)/(40*Catalan+5*Pi^2+3/5) 2100923786359485 r005 Im(z^2+c),c=-23/58+22/63*I,n=61 2100923788641747 m001 (MertensB2-Porter)/(gamma(3)-exp(-1/2*Pi)) 2100923801668045 m001 TreeGrowth2nd*exp(MadelungNaCl)/Zeta(3) 2100923805008370 r009 Re(z^3+c),c=-3/106+12/29*I,n=5 2100923808050198 l006 ln(1111/9081) 2100923811082002 a007 Real Root Of -36*x^4-719*x^3+825*x^2+838*x-346 2100923816399334 h001 (3/7*exp(1)+2/3)/(1/10*exp(1)+3/5) 2100923818171192 m001 MasserGramainDelta^MinimumGamma/ln(Pi) 2100923824355691 a007 Real Root Of 528*x^4+349*x^3+674*x^2-521*x-137 2100923824944407 r005 Im(z^2+c),c=-28/23+4/23*I,n=8 2100923828572031 a003 cos(Pi*3/100)/sin(Pi*11/70) 2100923837505176 a007 Real Root Of 692*x^4+465*x^3-954*x^2-669*x+177 2100923841676704 a007 Real Root Of 709*x^4-479*x^3-869*x^2-355*x+116 2100923842775952 r009 Re(z^3+c),c=-1/110+34/41*I,n=64 2100923844820777 a003 sin(Pi*38/105)-sin(Pi*25/66) 2100923847211218 r009 Im(z^3+c),c=-11/46+10/53*I,n=8 2100923860104099 p004 log(34583/4231) 2100923863098979 r005 Re(z^2+c),c=29/86+11/45*I,n=29 2100923867391031 r005 Re(z^2+c),c=-11/52+22/27*I,n=46 2100923871014579 m005 (5/6*gamma-1/4)/(3/4*gamma+2/3) 2100923871014579 m007 (-5/6*gamma+1/4)/(-3/4*gamma-2/3) 2100923880484796 m001 1/GAMMA(1/3)^2*Khintchine/exp(gamma) 2100923880687645 m001 1/LaplaceLimit*exp(GaussKuzminWirsing)/Paris^2 2100923889814069 r005 Im(z^2+c),c=-6/7+13/82*I,n=40 2100923895475280 r005 Re(z^2+c),c=-31/122+1/44*I,n=8 2100923910533555 m005 (1/2*gamma-3/11)/(9/10*3^(1/2)+6) 2100923911581902 a007 Real Root Of -634*x^4-924*x^3+628*x^2-896*x-871 2100923916724838 m001 (Gompertz-Grothendieck)/(Pi+FeigenbaumAlpha) 2100923917005042 r005 Im(z^2+c),c=-31/34+11/59*I,n=27 2100923923444678 a001 29/196418*4181^(22/37) 2100923926395542 m001 1/GAMMA(5/6)^2/ln(GAMMA(11/24))/LambertW(1) 2100923928927735 m001 GAMMA(19/24)^2/GAMMA(11/12)^2/exp(sqrt(Pi)) 2100923933972621 l006 ln(6540/8069) 2100923946141344 a004 Fibonacci(12)*Lucas(13)/(1/2+sqrt(5)/2)^17 2100923951888903 r005 Im(z^2+c),c=-7/10+1/210*I,n=34 2100923954588330 r005 Re(z^2+c),c=-35/44+3/46*I,n=4 2100923957091635 a007 Real Root Of -541*x^4-890*x^3+481*x^2-433*x-746 2100923960786984 a007 Real Root Of -445*x^4-939*x^3+396*x^2+989*x+292 2100923972049091 r009 Im(z^3+c),c=-11/46+10/53*I,n=9 2100923973688761 a007 Real Root Of 28*x^4-61*x^3-263*x^2+132*x+327 2100923977935480 r005 Re(z^2+c),c=-13/106+17/33*I,n=59 2100923978383043 a007 Real Root Of 457*x^4+560*x^3-298*x^2+962*x-374 2100923980614359 r009 Re(z^3+c),c=-12/23+15/28*I,n=23 2100923985322793 a001 55/5778*29^(34/37) 2100924001016494 a007 Real Root Of -15*x^4+545*x^3+844*x^2-573*x+417 2100924013103174 a001 377/199*15127^(30/31) 2100924013689166 r009 Re(z^3+c),c=-61/102+31/61*I,n=15 2100924017076217 r005 Re(z^2+c),c=17/60+29/64*I,n=13 2100924025578789 m003 -5-Cos[1/2+Sqrt[5]/2]/4+6*Log[1/2+Sqrt[5]/2] 2100924030876433 a007 Real Root Of -430*x^4-242*x^3+813*x^2-870*x+717 2100924031085377 r005 Re(z^2+c),c=-15/98+23/51*I,n=25 2100924033164334 r005 Im(z^2+c),c=-4/9+13/36*I,n=64 2100924040259559 a007 Real Root Of -249*x^4+187*x^3+929*x^2-978*x+430 2100924053306361 l006 ln(449/3670) 2100924053991221 m005 (1/2*2^(1/2)-3/4)/(5/7*5^(1/2)+4/9) 2100924074464398 m001 Riemann2ndZero*Backhouse/exp(GAMMA(1/3)) 2100924082922406 r005 Im(z^2+c),c=-17/54+20/61*I,n=24 2100924084515738 a007 Real Root Of -504*x^4-970*x^3+220*x^2-20*x-189 2100924086331514 a007 Real Root Of 215*x^4+183*x^3-370*x^2-34*x-930 2100924086580118 a007 Real Root Of -9*x^4+210*x^3+680*x^2+671*x+531 2100924091370656 m004 -30*Sqrt[5]*Pi+(Sqrt[5]*Tan[Sqrt[5]*Pi])/Pi 2100924096127898 a007 Real Root Of 193*x^4-766*x^3+937*x^2-353*x-123 2100924097736223 a001 47*(1/2*5^(1/2)+1/2)^9*76^(9/22) 2100924099810667 r005 Re(z^2+c),c=2/27+15/23*I,n=30 2100924110188186 a001 144/2207*521^(12/13) 2100924112905129 r005 Im(z^2+c),c=-23/58+22/63*I,n=60 2100924118496309 m001 (-gamma(1)+GAMMA(11/12))/(Psi(2,1/3)+2^(1/2)) 2100924119035050 a003 sin(Pi*3/31)*sin(Pi*26/105) 2100924127440352 m001 MadelungNaCl^2*Artin^2/ln(GAMMA(3/4)) 2100924139462744 l006 ln(6031/7441) 2100924141072001 r005 Im(z^2+c),c=-31/46+16/63*I,n=51 2100924142867529 m001 LandauRamanujan2nd/Ei(1)/MinimumGamma 2100924155585892 r005 Re(z^2+c),c=17/64+23/47*I,n=50 2100924156706017 m006 (Pi^2+5/6)/(2/3*Pi+3) 2100924156706017 m008 (Pi^2+5/6)/(2/3*Pi+3) 2100924159657578 a007 Real Root Of -682*x^4-984*x^3+827*x^2-137*x+224 2100924182381429 r005 Im(z^2+c),c=-23/58+22/63*I,n=49 2100924188740383 m001 (-Robbin+Weierstrass)/(Backhouse-LambertW(1)) 2100924190892314 m001 (-Lehmer+OneNinth)/(HardyLittlewoodC5-exp(1)) 2100924192044608 m005 (1/2*Catalan-8/11)/(1/6*5^(1/2)+10/11) 2100924201350389 m001 (exp(1/Pi)+Paris)/(Salem-Weierstrass) 2100924203817690 m001 (GAMMA(3/4)+MadelungNaCl)/(Chi(1)+gamma) 2100924211208020 r008 a(0)=0,K{-n^6,-42+52*n^3-76*n^2+19*n} 2100924211265389 m001 RenyiParking/Lehmer^2*ln(FeigenbaumD) 2100924225519445 a001 1/199*(1/2*5^(1/2)+1/2)^20*4^(11/15) 2100924228573209 m001 ln(GAMMA(2/3))^2*DuboisRaymond*sinh(1) 2100924236498703 a005 (1/cos(6/203*Pi))^1772 2100924237141268 m001 1/Khintchine/exp(Artin)^2/Catalan^2 2100924245324344 m001 (-BesselI(0,1)+ErdosBorwein)/(1-Chi(1)) 2100924247412063 a007 Real Root Of 979*x^4-885*x^3-720*x^2-547*x+153 2100924257784991 s002 sum(A187985[n]/(exp(2*pi*n)+1),n=1..infinity) 2100924258024766 m005 (1/2*2^(1/2)+10/11)/(6/7*Pi+5) 2100924265572943 p004 log(31477/3851) 2100924292841718 m001 MinimumGamma*ZetaQ(3)-Riemann2ndZero 2100924293588135 l006 ln(1134/9269) 2100924295544924 r009 Re(z^3+c),c=-41/114+32/57*I,n=58 2100924298182748 a007 Real Root Of -133*x^4+721*x^3-718*x^2-86*x-745 2100924299738343 m001 (ArtinRank2-BesselJ(1,1))/GAMMA(3/4) 2100924301679663 r005 Im(z^2+c),c=-91/86+11/48*I,n=43 2100924306697628 a001 1597/1364*199^(6/11) 2100924306769922 q001 841/4003 2100924315955734 r005 Re(z^2+c),c=-2/9+15/59*I,n=10 2100924316803800 r009 Im(z^3+c),c=-23/62+7/53*I,n=6 2100924329207920 m005 (1/2*5^(1/2)-11/12)/(2/7*exp(1)+2/11) 2100924329561598 m001 (ErdosBorwein+Khinchin)/(Pi-ln(3)) 2100924330122676 p004 log(24137/2953) 2100924333089525 a007 Real Root Of 592*x^4+836*x^3-907*x^2+47*x+321 2100924348112033 r002 43th iterates of z^2 + 2100924355068168 m001 (exp(1)+BesselI(1,2))/(-Kac+MasserGramain) 2100924355105811 m005 (1/2*5^(1/2)+5/11)/(9/10*Zeta(3)-1/3) 2100924355621350 a001 1597/199*76^(2/9) 2100924358738182 m001 ln(BesselK(1,1))*PrimesInBinary/Zeta(9) 2100924361835287 m001 Bloch^2*FeigenbaumDelta^2/ln((2^(1/3))) 2100924371557726 b008 10/9+Cos[1/7] 2100924375664893 a001 20365011074/3*76^(6/23) 2100924377060543 a001 123/2584*89^(27/32) 2100924377157430 m001 (-ln(Pi)+Stephens)/(Chi(1)-LambertW(1)) 2100924382835684 l006 ln(5522/6813) 2100924385165626 m001 (Si(Pi)-sin(1))/(-Rabbit+Robbin) 2100924386042151 a007 Real Root Of -129*x^4+343*x^3-562*x^2+670*x+169 2100924389082978 a001 47/10946*46368^(34/43) 2100924401035845 a007 Real Root Of -136*x^4+393*x^3-657*x^2+755*x-133 2100924403110737 a007 Real Root Of 524*x^4+671*x^3-408*x^2+600*x-925 2100924404305265 r009 Re(z^3+c),c=-29/70+16/33*I,n=8 2100924422803136 r005 Im(z^2+c),c=-29/34+11/67*I,n=44 2100924426420264 r005 Im(z^2+c),c=-29/66+9/25*I,n=43 2100924426989806 p001 sum((-1)^n/(389*n+364)/n/(6^n),n=1..infinity) 2100924428606452 r002 25th iterates of z^2 + 2100924429705711 r009 Re(z^3+c),c=-31/86+22/39*I,n=59 2100924432416587 a003 sin(Pi*14/107)-sin(Pi*24/115) 2100924436932436 m001 (Bloch*Tribonacci+Champernowne)/Bloch 2100924451086667 l006 ln(685/5599) 2100924460871603 a007 Real Root Of 420*x^4+553*x^3-868*x^2-493*x-259 2100924461571395 r005 Im(z^2+c),c=-3/58+12/49*I,n=5 2100924462098412 h001 (1/12*exp(1)+5/11)/(11/12*exp(1)+3/4) 2100924473829397 h001 (7/8*exp(1)+4/5)/(1/4*exp(1)+5/6) 2100924475286872 a008 Real Root of x^4+4*x^2-41*x+49 2100924478836847 a003 cos(Pi*5/53)/sin(Pi*17/113) 2100924479394940 r002 26th iterates of z^2 + 2100924486073977 r002 48th iterates of z^2 + 2100924487927418 m001 (2^(1/3))^(ln(2+3^(1/2))/HardyLittlewoodC5) 2100924489685585 m001 Totient^Mills/ArtinRank2 2100924490834332 r005 Im(z^2+c),c=-17/60+32/53*I,n=22 2100924495948300 r005 Re(z^2+c),c=31/98+9/41*I,n=28 2100924496476947 b008 -1/2+E^Haversine[E] 2100924497291912 r005 Im(z^2+c),c=-23/58+22/63*I,n=64 2100924498524682 r005 Re(z^2+c),c=-35/26+5/127*I,n=12 2100924500006394 m001 (-2*Pi/GAMMA(5/6)+Artin)/(2^(1/2)+Shi(1)) 2100924509977280 s002 sum(A212807[n]/((exp(n)-1)/n),n=1..infinity) 2100924511449153 b008 -1/6+Erfc[5/8] 2100924515404610 m001 GAMMA(23/24)-OrthogonalArrays^GolombDickman 2100924517768988 m001 Lehmer/Cahen^2*ln(GAMMA(5/6))^2 2100924526648845 a007 Real Root Of 86*x^4-185*x^3+817*x^2-600*x-164 2100924529224051 m001 (FeigenbaumC+Stephens)/(ln(5)-arctan(1/2)) 2100924529399714 m002 E^Pi/12+2*Sech[Pi] 2100924533415773 m008 (1/2*Pi^3-3)/(1/5*Pi^3-1/4) 2100924541678135 a007 Real Root Of -96*x^4+552*x^3-578*x^2-102*x-483 2100924544990781 r009 Re(z^3+c),c=-31/86+22/39*I,n=55 2100924549836149 a007 Real Root Of 25*x^4-4*x^3+273*x^2+695*x-269 2100924556213017 r005 Re(z^2+c),c=-7/10+1/104*I,n=2 2100924562171737 p002 log(10^(2/3)+19^(3/7)) 2100924565051939 a005 (1/sin(92/193*Pi))^1134 2100924565122996 h005 exp(sin(Pi*1/15)+sin(Pi*7/39)) 2100924589498148 a005 (1/cos(4/123*Pi))^142 2100924595526222 r002 63th iterates of z^2 + 2100924596520585 r005 Re(z^2+c),c=5/23+16/31*I,n=34 2100924603044020 r002 55th iterates of z^2 + 2100924608808998 m001 ln(PisotVijayaraghavan)/Si(Pi)*Salem^2 2100924619939810 a007 Real Root Of -294*x^4-261*x^3+463*x^2-405*x+413 2100924628402729 r005 Re(z^2+c),c=-71/90+5/57*I,n=32 2100924639455924 a001 41/15456*377^(15/43) 2100924641318266 m001 ln(Pi)/(Psi(2,1/3)+HardyLittlewoodC3) 2100924644817476 m005 (1/2*exp(1)+7/9)/(9/11*3^(1/2)-2/5) 2100924645009908 l006 ln(921/7528) 2100924651921363 a007 Real Root Of 282*x^4-29*x^3-815*x^2+690*x-716 2100924662079473 m001 1/GAMMA(7/24)*Salem^2*exp(cosh(1)) 2100924669003347 m001 (PolyaRandomWalk3D+Trott)/(Chi(1)+GaussAGM) 2100924673844878 r005 Im(z^2+c),c=-41/94+14/39*I,n=42 2100924674271379 a001 24476/55*433494437^(17/22) 2100924675630848 l006 ln(5013/6185) 2100924677644771 m001 1/exp(BesselK(0,1))*Khintchine/Catalan^2 2100924680488246 a001 87403803/55*10946^(17/22) 2100924685901999 b008 22/9+Erfi[2] 2100924693540525 m001 (exp(1)+3^(1/3))/(exp(-1/2*Pi)+Pi^(1/2)) 2100924699424742 m001 (BesselK(0,1)+cos(1/12*Pi))/TwinPrimes 2100924699424742 m001 (BesselK(0,1)+cos(Pi/12))/TwinPrimes 2100924713670467 a007 Real Root Of 26*x^4-112*x^3-120*x^2+193*x-610 2100924728051084 r005 Im(z^2+c),c=-9/14+1/218*I,n=42 2100924730215021 a007 Real Root Of 19*x^4-510*x^3+993*x^2-325*x+659 2100924731394498 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)-gamma(3)-Stephens 2100924739187173 r005 Im(z^2+c),c=-23/58+22/63*I,n=62 2100924744220051 a007 Real Root Of -280*x^4-248*x^3+741*x^2+93*x+80 2100924747045134 a001 521/1836311903*832040^(6/19) 2100924747045326 a001 1/63246219*7778742049^(6/19) 2100924749999592 r005 Im(z^2+c),c=-21/62+16/49*I,n=11 2100924750130693 r002 15th iterates of z^2 + 2100924759821835 l006 ln(1157/9457) 2100924774950329 a008 Real Root of x^5-x^4-5*x^3+9*x^2-8*x+2 2100924789568469 r009 Re(z^3+c),c=-3/118+35/64*I,n=5 2100924796702868 m001 (Khinchin-exp(Pi)*(2^(1/3)))/(2^(1/3)) 2100924796702868 m001 1/2*(Khinchin-exp(Pi)*2^(1/3))*2^(2/3) 2100924803290742 a007 Real Root Of 512*x^4+615*x^3-853*x^2+316*x+157 2100924809926163 r005 Re(z^2+c),c=-1/12+6/11*I,n=18 2100924811447732 m005 (1/2*Pi+1/5)/(1/9*2^(1/2)-1) 2100924818629142 r005 Re(z^2+c),c=-5/6+2/185*I,n=22 2100924821461464 m001 exp(Riemann3rdZero)^2/Backhouse/sqrt(3) 2100924829525337 r004 Re(z^2+c),c=-14/11+2/13*I,z(0)=-1,n=5 2100924848098907 r009 Im(z^3+c),c=-16/29+29/61*I,n=24 2100924848222116 r002 3th iterates of z^2 + 2100924849899008 r005 Im(z^2+c),c=-21/40+34/57*I,n=20 2100924853532126 m002 -5/Pi^5+(6*Sinh[Pi])/Pi^5 2100924869267457 r005 Im(z^2+c),c=-47/40+1/49*I,n=14 2100924874758618 a007 Real Root Of -489*x^4-577*x^3+830*x^2-433*x-397 2100924898150160 m001 (gamma(1)-Cahen)/(Khinchin+Sarnak) 2100924907633294 s001 sum(exp(-Pi/2)^n*A131944[n],n=1..infinity) 2100924913872289 r009 Re(z^3+c),c=-4/21+47/61*I,n=14 2100924918397169 r009 Re(z^3+c),c=-43/122+25/46*I,n=59 2100924920068851 b008 14*E^5+E^Pi 2100924925781324 m006 (3*exp(Pi)-4)/(ln(Pi)-5/6) 2100924931639665 a001 72/161*322^(2/3) 2100924932883525 m001 (Gompertz+Tribonacci)/(gamma-ln(2)) 2100924938644159 m009 (4*Psi(1,1/3)-1/2)/(6*Psi(1,2/3)+3/5) 2100924942564490 a001 1/86000486440*3^(7/13) 2100924943029521 a007 Real Root Of 583*x^4+707*x^3-711*x^2+731*x-128 2100924959042951 r005 Im(z^2+c),c=-23/58+22/63*I,n=59 2100924963193162 a001 832040/199*521^(8/31) 2100924966890435 r005 Re(z^2+c),c=31/90+11/41*I,n=39 2100924967205872 m008 (1/5*Pi^5-2)/(5/6*Pi+1/5) 2100924979552978 a007 Real Root Of -575*x^4-923*x^3+434*x^2-263*x+175 2100924981996416 h001 (1/11*exp(1)+1/4)/(7/11*exp(1)+7/11) 2100924983696454 b008 13*JacobiCD[1,-8] 2100924984650364 m001 1/Lehmer*ln(GlaisherKinkelin)/Riemann1stZero^2 2100924987804171 m005 (1/3*gamma-1/4)/(1/5*gamma-1/7) 2100924994134891 m001 (OneNinth+Otter)/(gamma(3)+Backhouse) 2100924999809536 m001 Landau/sin(1/5*Pi)/TreeGrowth2nd 2100925001777233 m001 gamma(3)^CareFree-Riemann2ndZero 2100925005082250 g005 GAMMA(1/9)/GAMMA(7/12)/GAMMA(6/11)^2 2100925005914856 r009 Im(z^3+c),c=-27/62+1/33*I,n=56 2100925009207534 r005 Im(z^2+c),c=-95/102+9/47*I,n=13 2100925013460378 m001 Rabbit^Magata*Rabbit^ln(Pi) 2100925018934110 m002 2*Pi^4+4/ProductLog[Pi]+Sinh[Pi] 2100925021704090 m005 (1/3*Zeta(3)-1/7)/(7/11*3^(1/2)+1/8) 2100925022467351 m001 1/ln(GAMMA(7/24))/Robbin^2/cos(Pi/12) 2100925023586270 r009 Im(z^3+c),c=-13/70+8/9*I,n=62 2100925025649873 r005 Im(z^2+c),c=-13/62+17/57*I,n=22 2100925030701012 a007 Real Root Of -341*x^4-242*x^3+831*x^2+75*x+889 2100925034603949 l006 ln(4504/5557) 2100925035548057 m001 (-ArtinRank2+Weierstrass)/(Shi(1)+gamma(3)) 2100925041532537 r005 Re(z^2+c),c=-11/82+25/47*I,n=18 2100925043872481 a001 1597/843*199^(5/11) 2100925046271820 m004 5*Pi+3*Cot[Sqrt[5]*Pi]+3*Sin[Sqrt[5]*Pi] 2100925049395740 r005 Im(z^2+c),c=-23/58+22/63*I,n=55 2100925061976973 r005 Re(z^2+c),c=25/94+11/60*I,n=32 2100925074276045 m001 GaussKuzminWirsing/GAMMA(13/24)/ln(2^(1/2)+1) 2100925074276045 m001 GaussKuzminWirsing/ln(1+sqrt(2))/GAMMA(13/24) 2100925077719074 a007 Real Root Of -687*x^4+479*x^3+577*x^2+841*x+157 2100925082900781 m001 (Si(Pi)*Ei(1)+Bloch)/Ei(1) 2100925084885044 r005 Re(z^2+c),c=1/78+42/47*I,n=3 2100925087663884 a005 (1/cos(6/167*Pi))^477 2100925103782599 s002 sum(A262085[n]/(16^n),n=1..infinity) 2100925106383170 a005 (1/sin(74/187*Pi))^772 2100925108463591 a007 Real Root Of 318*x^4-937*x^3+825*x^2-939*x-243 2100925116626884 a007 Real Root Of -533*x^4-735*x^3+933*x^2+514*x+530 2100925117499089 b008 3+ArcCsch[18]^(-1) 2100925117657831 r005 Im(z^2+c),c=-15/26+35/113*I,n=7 2100925138322128 r005 Im(z^2+c),c=-47/110+5/14*I,n=36 2100925152587717 r005 Re(z^2+c),c=27/98+20/43*I,n=49 2100925156071370 r009 Im(z^3+c),c=-23/110+11/56*I,n=8 2100925156768354 r005 Im(z^2+c),c=-9/23+8/23*I,n=33 2100925157592235 a001 377/322*521^(6/13) 2100925159053212 a007 Real Root Of 367*x^4+807*x^3+190*x^2+398*x+331 2100925162432095 a007 Real Root Of 626*x^4+972*x^3-496*x^2+645*x+362 2100925164297014 a007 Real Root Of 553*x^4+624*x^3-666*x^2+660*x-661 2100925168386034 r005 Re(z^2+c),c=-27/118+12/53*I,n=19 2100925170939585 a007 Real Root Of 145*x^4-74*x^3-261*x^2+695*x-899 2100925176618505 a007 Real Root Of -254*x^4-163*x^3+434*x^2-608*x+244 2100925179128289 p002 log(11^(3/7)+19^(4/7)) 2100925180677726 r005 Re(z^2+c),c=-25/86+21/38*I,n=11 2100925187513217 h001 (7/10*exp(2)+3/5)/(2/7*exp(2)+7/11) 2100925191167073 m001 (FransenRobinson+MertensB2)/(Paris-Tetranacci) 2100925191476836 a007 Real Root Of -385*x^4-519*x^3+821*x^2+425*x-43 2100925202778017 a007 Real Root Of 684*x^4+943*x^3-524*x^2+985*x-199 2100925203258435 m001 sin(1/5*Pi)^BesselI(0,1)+BesselI(1,2) 2100925203258435 m001 sin(Pi/5)^BesselI(0,1)+BesselI(1,2) 2100925207880119 l006 ln(236/1929) 2100925210232155 m001 (ErdosBorwein+ZetaQ(3))/(ln(gamma)-Ei(1,1)) 2100925210666542 r002 48th iterates of z^2 + 2100925212577331 b008 5*(3+Sqrt[13]/3) 2100925216391392 a007 Real Root Of 503*x^4+784*x^3-287*x^2+254*x-729 2100925219205953 r002 4th iterates of z^2 + 2100925221757141 m001 (BesselJ(0,1)+TravellingSalesman)/CareFree 2100925222554400 m001 (Kac-Otter)/(Conway-DuboisRaymond) 2100925224875426 a001 1/23184*610^(55/57) 2100925242115852 s002 sum(A028295[n]/(n^2*10^n-1),n=1..infinity) 2100925263502690 r005 Re(z^2+c),c=13/74+6/13*I,n=50 2100925282056363 m001 (ln(5)+GAMMA(23/24))/(Lehmer+Robbin) 2100925290655050 s001 sum(exp(-3*Pi/5)^n*A118679[n],n=1..infinity) 2100925297183932 a007 Real Root Of -225*x^4-78*x^3-771*x^2+873*x-18 2100925303499710 a007 Real Root Of 563*x^4+918*x^3-266*x^2+601*x-19 2100925308407114 r009 Re(z^3+c),c=-21/86+14/57*I,n=10 2100925311794158 r002 30th iterates of z^2 + 2100925332794696 r005 Im(z^2+c),c=-4/9+19/54*I,n=20 2100925334251040 a001 14662949395604/21*6765^(11/17) 2100925337261413 r009 Re(z^3+c),c=-7/23+23/55*I,n=19 2100925340191892 a001 370248451/21*86267571272^(11/17) 2100925340191893 a001 10525900321/3*24157817^(11/17) 2100925341607361 m001 1/LaplaceLimit^2/Kolakoski^2/ln(GAMMA(1/6)) 2100925348259568 a007 Real Root Of -407*x^4-361*x^3+670*x^2-638*x+284 2100925355251753 b008 4+(4+Sqrt[2])*Pi 2100925366025162 r009 Im(z^3+c),c=-6/19+5/31*I,n=11 2100925388883926 h001 (-7*exp(-1)+4)/(-9*exp(-2)+8) 2100925391491230 a007 Real Root Of 121*x^4-151*x^3-672*x^2+431*x+114 2100925411422746 m001 Zeta(1/2)*ZetaQ(3)+Riemann2ndZero 2100925416625879 r005 Re(z^2+c),c=-9/46+11/32*I,n=19 2100925418971200 b008 Pi+ExpIntegralEi[1/6] 2100925427469907 m001 (sin(1/5*Pi)+GaussAGM)/(LaplaceLimit-Totient) 2100925427718477 a007 Real Root Of -422*x^4-519*x^3+522*x^2-334*x+403 2100925435246475 r005 Re(z^2+c),c=-1/19+3/5*I,n=52 2100925444053197 m001 (Khinchin-Shi(1))/(RenyiParking+Trott2nd) 2100925449912956 r005 Im(z^2+c),c=-59/102+26/41*I,n=5 2100925461805039 m005 (1/3*2^(1/2)-2/5)/(1/10*3^(1/2)+1/6) 2100925470808926 r005 Re(z^2+c),c=-1/10+24/43*I,n=53 2100925485050027 l006 ln(3995/4929) 2100925491893461 r005 Re(z^2+c),c=-11/60+17/45*I,n=19 2100925503832678 s002 sum(A100440[n]/((10^n+1)/n),n=1..infinity) 2100925503856800 a001 123/2*5702887^(3/8) 2100925510150750 m001 (Bloch+ZetaQ(3))/(Catalan-ln(Pi)) 2100925512769982 m001 (Riemann1stZero+Sarnak)/(Conway-Gompertz) 2100925520086268 m001 (MadelungNaCl-Sarnak)/(Pi+3^(1/2)) 2100925531343374 m001 GAMMA(1/3)^Zeta(1/2)/GAMMA(5/6) 2100925532994549 m001 (KhinchinLevy+Porter)/(Totient-ZetaP(4)) 2100925537781872 r005 Im(z^2+c),c=-9/58+17/56*I,n=3 2100925537795049 m001 MertensB2-ln(2^(1/2)+1)*Riemann3rdZero 2100925538384007 m001 1/ln(sin(Pi/5))^2*Catalan^2/sqrt(2) 2100925540675170 a001 39603/89*21^(26/51) 2100925560501676 r005 Im(z^2+c),c=-10/23+14/39*I,n=38 2100925562037233 m001 1/exp(FransenRobinson)^2*Artin*cosh(1) 2100925562304299 r005 Im(z^2+c),c=-23/58+22/63*I,n=54 2100925566823278 r005 Im(z^2+c),c=-15/46+1/35*I,n=5 2100925571040458 r005 Re(z^2+c),c=-83/82+2/23*I,n=4 2100925572949075 r005 Re(z^2+c),c=33/122+3/16*I,n=29 2100925581384675 a007 Real Root Of -489*x^4-782*x^3+228*x^2-702*x-206 2100925592624854 b008 -39+Csch[1/18] 2100925597600548 m005 (1/3*5^(1/2)+1/4)/(-13/18+1/9*5^(1/2)) 2100925614855621 r002 7th iterates of z^2 + 2100925617088021 m001 (Kac-Si(Pi))/(-Lehmer+Salem) 2100925619166358 r009 Re(z^3+c),c=-5/9+28/45*I,n=41 2100925620047394 m005 (1/3+1/4*5^(1/2))/(10/11*gamma-1/10) 2100925631543919 m006 (1/6*Pi^2-3)/(2*Pi+1/6) 2100925631543919 m008 (1/6*Pi^2-3)/(2*Pi+1/6) 2100925634134238 r005 Re(z^2+c),c=-13/114+23/38*I,n=43 2100925635627759 p004 log(33247/26947) 2100925638805477 l006 ln(1203/9833) 2100925647466817 a008 Real Root of x^4+39*x^2-26*x-137 2100925652882273 a007 Real Root Of -588*x^4-960*x^3+719*x^2+161*x-282 2100925662201251 s002 sum(A038740[n]/(pi^n+1),n=1..infinity) 2100925667246224 a007 Real Root Of -544*x^4-915*x^3+164*x^2-788*x-266 2100925669719061 m001 PlouffeB/(ln(2)/ln(10)+ReciprocalLucas) 2100925679877774 m005 (1/2*3^(1/2)-5)/(4/9*Pi+4/7) 2100925680826144 b008 -22+Tanh[Khinchin] 2100925693851539 a007 Real Root Of 497*x^4-308*x^3+556*x^2-479*x-129 2100925695050263 m001 (Shi(1)+arctan(1/2))/(-FeigenbaumD+Magata) 2100925698918670 m001 (cos(1/5*Pi)-ln(3))/(GAMMA(13/24)-MertensB1) 2100925699100181 a008 Real Root of x^4-23*x^2-40*x-2 2100925702537782 a003 cos(Pi*5/74)-sin(Pi*22/79) 2100925710185216 a007 Real Root Of -167*x^4+306*x^3+895*x^2-592*x+897 2100925718309596 r009 Re(z^3+c),c=-47/78+14/25*I,n=6 2100925719750911 b008 -1/4+ArcSinh[26/5] 2100925723438051 m001 (ln(gamma)+Artin)/(PolyaRandomWalk3D-Salem) 2100925731519499 a001 843/5*21^(29/35) 2100925735050243 m001 (2^(1/2)-sin(1))/(-FeigenbaumD+Otter) 2100925743974409 l006 ln(967/7904) 2100925751303221 a003 cos(Pi*1/51)-cos(Pi*19/90) 2100925756244929 l006 ln(7481/9230) 2100925759065141 a007 Real Root Of 89*x^4-644*x^3+996*x^2-101*x+54 2100925760844713 h001 (7/10*exp(1)+7/12)/(1/10*exp(2)+4/9) 2100925765079060 r005 Im(z^2+c),c=-8/23+1/31*I,n=11 2100925769040337 m001 (Ei(1,1)+GAMMA(7/12))/(CopelandErdos+Gompertz) 2100925773486865 a007 Real Root Of -189*x^4-246*x^3+289*x^2-370*x-652 2100925778207773 a007 Real Root Of 307*x^4+698*x^3+401*x^2+152*x-959 2100925783036122 r005 Im(z^2+c),c=-11/9+43/120*I,n=3 2100925784713131 r009 Im(z^3+c),c=-3/22+43/49*I,n=6 2100925797686794 r005 Im(z^2+c),c=-13/14+48/229*I,n=29 2100925801933551 a007 Real Root Of 662*x^4+749*x^3-825*x^2+686*x-869 2100925812864591 m001 (Si(Pi)+gamma(3))/(-GAMMA(7/12)+MasserGramain) 2100925813657430 m001 (ln(3)+GAMMA(7/12))/(Niven-Otter) 2100925816040404 m005 (1/3*2^(1/2)+3/7)/(2/7*Catalan+1/6) 2100925816724801 m001 (Salem-ZetaQ(3))/(Backhouse-MinimumGamma) 2100925853292769 r009 Re(z^3+c),c=-37/106+23/43*I,n=50 2100925858143960 m001 (MertensB3-Thue)/(cos(1/5*Pi)+exp(1/exp(1))) 2100925858454541 r009 Re(z^3+c),c=-11/30+32/55*I,n=56 2100925860096563 m005 (1/2*Catalan-3/4)/(7/11*Zeta(3)+5/8) 2100925864949491 m001 FeigenbaumD/Grothendieck*HardHexagonsEntropy 2100925868126924 a007 Real Root Of -959*x^4-89*x^3-798*x^2+350*x-7 2100925868739968 a007 Real Root Of 32*x^4+643*x^3-649*x^2-711*x-148 2100925876774992 r009 Re(z^3+c),c=-21/106+38/41*I,n=58 2100925878299491 b008 -15+Coth[1/36] 2100925881107214 m001 1/exp(Zeta(5))*Robbin^2/exp(1)^2 2100925881241292 h001 (7/9*exp(1)+1/5)/(1/12*exp(1)+7/8) 2100925883395148 m001 (PlouffeB-Tetranacci)/(ln(2)-gamma(3)) 2100925884456576 r005 Im(z^2+c),c=1/66+2/9*I,n=7 2100925891646310 r002 7th iterates of z^2 + 2100925896498531 m005 (1/2*Pi+8/11)/(4/7*2^(1/2)+2/7) 2100925906441388 s004 Continued Fraction of A222347 2100925906441388 s004 Continued fraction of A222347 2100925907368788 a007 Real Root Of 129*x^4-81*x^3-485*x^2+680*x+305 2100925907502856 a001 18/13*1134903170^(3/23) 2100925909768941 r005 Re(z^2+c),c=-17/98+21/52*I,n=23 2100925910518290 a007 Real Root Of 177*x^4-198*x^3-835*x^2+643*x-248 2100925912695898 b008 21+ArcCsch[108] 2100925915286555 r009 Re(z^3+c),c=-5/9+28/45*I,n=47 2100925917049932 l006 ln(731/5975) 2100925920064159 m005 (1/2*2^(1/2)-8/9)/(7/10*5^(1/2)-7/10) 2100925920155183 m001 GAMMA(1/12)^(2^(1/3))/(GAMMA(23/24)^(2^(1/3))) 2100925923601277 m006 (3/4*exp(Pi)+3/5)/(4/5/Pi+3/5) 2100925936276617 p001 sum(1/(401*n+218)/n/(8^n),n=1..infinity) 2100925937429545 p004 log(22133/17939) 2100925939501756 m001 (2^(1/3)+Zeta(1/2))/(-GAMMA(5/6)+ZetaP(3)) 2100925952388361 b008 21+ArcCoth[108] 2100925966554118 m001 MinimumGamma/MasserGramain/OneNinth 2100925984572874 r009 Re(z^3+c),c=-15/122+29/32*I,n=34 2100925989876725 a007 Real Root Of 301*x^4+375*x^3-836*x^2-835*x-451 2100925993227949 r009 Re(z^3+c),c=-5/9+28/45*I,n=53 2100925995427727 r009 Re(z^3+c),c=-5/9+28/45*I,n=59 2100925995465691 r005 Re(z^2+c),c=-3/14+11/39*I,n=10 2100925996580649 m005 (1/3*Zeta(3)-1/9)/(1/5*Pi+3/4) 2100926004604874 r005 Im(z^2+c),c=-103/114+8/29*I,n=44 2100926008985381 m005 (1/2*Zeta(3)-1/2)/(5/8*5^(1/2)-11/12) 2100926018105233 r009 Re(z^3+c),c=-33/94+27/50*I,n=57 2100926019818983 a007 Real Root Of 234*x^4-953*x^3+636*x^2-479*x-138 2100926020216055 a001 19/387002188980*2971215073^(5/18) 2100926020216497 a001 76/139583862445*514229^(5/18) 2100926021452255 m001 (PlouffeB+ZetaQ(2))/(Zeta(1,-1)+Khinchin) 2100926025745342 s002 sum(A227022[n]/((3*n)!),n=1..infinity) 2100926026951973 r009 Re(z^3+c),c=-12/23+15/28*I,n=26 2100926031785084 b008 JacobiNS[1/21,1/6] 2100926039984675 r005 Im(z^2+c),c=23/94+21/41*I,n=24 2100926044303303 r009 Im(z^3+c),c=-29/48+6/25*I,n=8 2100926045150974 r009 Re(z^3+c),c=-1/16+10/13*I,n=22 2100926053562172 l006 ln(1226/10021) 2100926067037700 l006 ln(3486/4301) 2100926069709899 r009 Re(z^3+c),c=-23/66+8/15*I,n=53 2100926073316483 s002 sum(A134097[n]/(n^2*10^n+1),n=1..infinity) 2100926073316512 s002 sum(A134097[n]/(n^2*10^n-1),n=1..infinity) 2100926077140679 m001 (Bloch-ln(2^(1/2)+1))^MadelungNaCl 2100926077327265 r005 Im(z^2+c),c=-121/102+8/49*I,n=48 2100926077717957 a001 2/5*610^(21/34) 2100926085586611 m001 Pi-Zeta(1/2)^(Pi^(1/2)) 2100926085586611 m001 Pi-Zeta(1/2)^sqrt(Pi) 2100926087185484 r005 Re(z^2+c),c=29/114+5/29*I,n=24 2100926090726785 a007 Real Root Of 312*x^4+362*x^3-152*x^2+958*x-38 2100926093075850 r005 Im(z^2+c),c=-73/60+20/63*I,n=15 2100926094123865 r005 Re(z^2+c),c=-31/122+1/61*I,n=16 2100926094412787 a005 (1/cos(7/232*Pi))^165 2100926094511797 a007 Real Root Of -676*x^4-298*x^3+658*x^2+400*x-109 2100926104384616 m001 (5^(1/2)-sin(1))/(BesselI(1,1)+Paris) 2100926109592044 h005 exp(cos(Pi*1/11)/sin(Pi*5/49)) 2100926114311557 r005 Re(z^2+c),c=21/82+1/2*I,n=33 2100926124682507 a007 Real Root Of 797*x^4+310*x^3+300*x^2-543*x-126 2100926137035170 m001 (sin(1/12*Pi)-Gompertz)/(Niven-Paris) 2100926138386329 m001 GAMMA(23/24)/Bloch^2/ln(GAMMA(5/24))^2 2100926162048422 a008 Real Root of x^2-x-44349 2100926163990539 p004 log(22159/2711) 2100926172789600 r009 Im(z^3+c),c=-29/126+9/47*I,n=4 2100926180007044 r009 Im(z^3+c),c=-13/27+16/25*I,n=7 2100926182152782 b008 LogIntegral[20/3]^2 2100926187683666 a007 Real Root Of 425*x^4+967*x^3+633*x^2+632*x-779 2100926194881772 m005 (1/2*Catalan+5/12)/(5*Catalan-5/12) 2100926200701386 a007 Real Root Of -304*x^4+21*x^3-978*x^2+979*x+21 2100926206698819 m001 (-ArtinRank2+Sarnak)/(cos(1/12*Pi)-sin(1)) 2100926207848633 r002 30th iterates of z^2 + 2100926214898778 r005 Im(z^2+c),c=-29/74+10/29*I,n=15 2100926226838838 h001 (7/10*exp(1)+1/4)/(1/7*exp(1)+7/11) 2100926241928138 m001 (-Niven+Salem)/(Shi(1)-Zeta(1/2)) 2100926249363924 r005 Im(z^2+c),c=-65/94+7/29*I,n=56 2100926251905756 r005 Re(z^2+c),c=-3/22+18/37*I,n=29 2100926255159000 l006 ln(495/4046) 2100926259444005 b008 3+Csc[1/18] 2100926260313405 r009 Re(z^3+c),c=-3/17+23/32*I,n=14 2100926266115581 a001 36/341*521^(11/13) 2100926268805465 m001 (ln(5)+CareFree)/(Kac+PlouffeB) 2100926272699293 m002 (5*Pi^4)/E^Pi-Cosh[Pi]/Pi^5 2100926280397427 r005 Im(z^2+c),c=-85/126+13/57*I,n=31 2100926284000467 m001 2*TreeGrowth2nd^KhinchinLevy*Pi/GAMMA(5/6) 2100926291461315 a007 Real Root Of 603*x^4+710*x^3-575*x^2+871*x-796 2100926293410582 m005 (1/2*Pi-2/7)/(1/7*exp(1)-1) 2100926296989073 r005 Im(z^2+c),c=-23/58+22/63*I,n=57 2100926300647616 p003 LerchPhi(1/64,4,71/152) 2100926301712132 a008 Real Root of x^4-14*x^2-13*x+15 2100926302095890 m001 (Pi-gamma(1))/(ErdosBorwein-ZetaP(4)) 2100926304403990 m001 (3^(1/3))^Conway*(3^(1/3))^Sarnak 2100926320022660 m001 Pi-2^(1/2)/(sin(1)+polylog(4,1/2)) 2100926331702102 p004 log(26393/3229) 2100926335770085 r002 20th iterates of z^2 + 2100926340687762 a007 Real Root Of -346*x^4-560*x^3+565*x^2+703*x+531 2100926346618541 a007 Real Root Of 131*x^4+32*x^3-61*x^2+656*x-608 2100926359603147 m001 (exp(1)+5^(1/2))/(Grothendieck+Stephens) 2100926360519485 p003 LerchPhi(1/100,1,85/178) 2100926363197004 m009 (3*Psi(1,3/4)-2/3)/(5/12*Pi^2-4/5) 2100926364087121 a001 832040/123*3571^(21/50) 2100926365546527 p004 log(18301/2239) 2100926366606083 r002 13th iterates of z^2 + 2100926375210229 m006 (4/5*Pi+1/3)/(3/Pi+2/5) 2100926384898274 m001 (Pi*csc(7/24*Pi)/GAMMA(17/24))^gamma(3)+ln(3) 2100926386766567 m005 (1/2*5^(1/2)-7/10)/(5/12*exp(1)+6/7) 2100926402313819 a007 Real Root Of -247*x^4+504*x^3-164*x^2+622*x-13 2100926404499967 r005 Re(z^2+c),c=-21/106+17/29*I,n=18 2100926410729146 m001 (Psi(1,1/3)+Ei(1,1))/(FeigenbaumMu+Totient) 2100926412458477 m001 ln(2+3^(1/2))+GAMMA(23/24)*LandauRamanujan 2100926412458477 m001 ln(2+sqrt(3))+LandauRamanujan*GAMMA(23/24) 2100926418080691 r005 Re(z^2+c),c=-7/94+25/42*I,n=23 2100926421866813 m005 (1/2*2^(1/2)-1/12)/(2/9*5^(1/2)-1/5) 2100926426784048 l006 ln(6463/7974) 2100926432090659 a001 832040/123*24476^(17/50) 2100926434139331 m001 (Landau+Otter)/(GAMMA(3/4)+BesselJ(1,1)) 2100926450025015 r009 Re(z^3+c),c=-12/23+15/28*I,n=29 2100926458127768 m001 (Tetranacci-Trott)/(exp(-1/2*Pi)+CareFree) 2100926459132927 a007 Real Root Of 499*x^4+958*x^3+216*x^2+598*x-535 2100926477510750 a007 Real Root Of -426*x^4+781*x^3-110*x^2+678*x-144 2100926483708504 m005 (1/3*Pi+2/5)/(1/11*gamma+7/11) 2100926488500798 r005 Re(z^2+c),c=-4/7+62/103*I,n=3 2100926492724676 r009 Re(z^3+c),c=-12/23+15/28*I,n=50 2100926492726921 r009 Re(z^3+c),c=-12/23+15/28*I,n=53 2100926492728066 r009 Re(z^3+c),c=-12/23+15/28*I,n=56 2100926492728400 r009 Re(z^3+c),c=-12/23+15/28*I,n=59 2100926492728469 r009 Re(z^3+c),c=-12/23+15/28*I,n=62 2100926492728665 r009 Re(z^3+c),c=-12/23+15/28*I,n=47 2100926492794921 r009 Re(z^3+c),c=-12/23+15/28*I,n=44 2100926493188013 r009 Re(z^3+c),c=-12/23+15/28*I,n=41 2100926494419633 a007 Real Root Of -162*x^4-238*x^3+328*x^2+472*x+493 2100926494790252 r009 Re(z^3+c),c=-12/23+15/28*I,n=38 2100926499163723 a007 Real Root Of -120*x^4+103*x^3+822*x^2+626*x+980 2100926499212458 r009 Re(z^3+c),c=-12/23+15/28*I,n=35 2100926501845780 m005 (1/2*3^(1/2)+6)/(7/11*gamma-2/5) 2100926502552297 r009 Re(z^3+c),c=-12/23+15/28*I,n=32 2100926513849509 a003 sin(Pi*7/104)/sin(Pi*17/35) 2100926515898399 m005 (1/3*2^(1/2)-1/8)/(3/10*exp(1)+5/6) 2100926521835590 a001 1364/21*2178309^(37/52) 2100926523651545 m008 (3/4*Pi^4-4)/(1/3*Pi^4+2/5) 2100926526801624 a001 55/322*7^(5/47) 2100926537232496 a007 Real Root Of 206*x^4+463*x^3+162*x^2+554*x+729 2100926554397292 a007 Real Root Of -452*x^4-929*x^3-443*x^2-818*x+428 2100926554663312 r005 Im(z^2+c),c=-79/54+8/55*I,n=5 2100926555206461 r005 Im(z^2+c),c=-67/86+1/46*I,n=6 2100926563345184 m001 Zeta(9)^2/GAMMA(2/3)^2/ln(sinh(1))^2 2100926568649096 m005 (1/2*5^(1/2)-7/9)/(2/3*Zeta(3)+9/11) 2100926570095228 b008 ArcCsc[10*Erfc[1/2]] 2100926571019489 m005 (5*gamma+1/6)/(1/6*exp(1)+1) 2100926571227293 a007 Real Root Of 259*x^4+450*x^3-597*x^2-873*x-72 2100926580895007 r005 Im(z^2+c),c=-49/102+17/46*I,n=53 2100926582954287 l006 ln(754/6163) 2100926585645412 r005 Re(z^2+c),c=1/66+41/50*I,n=40 2100926593468541 m001 (sin(1)+GAMMA(5/6)*FeigenbaumKappa)/GAMMA(5/6) 2100926603229947 m001 (Grothendieck+Khinchin)/(sin(1)+GAMMA(17/24)) 2100926619335159 a007 Real Root Of -384*x^4-814*x^3-72*x^2+83*x+425 2100926624708433 m009 (5/6*Psi(1,2/3)+5/6)/(5*Psi(1,2/3)+4/5) 2100926626846001 m001 (ln(2)-KhinchinLevy)/(Porter+QuadraticClass) 2100926632737115 a001 514229/199*1364^(9/31) 2100926635409321 m001 (Pi-exp(Pi))/ln(2)*gamma(1) 2100926638181562 r009 Re(z^3+c),c=-5/9+28/45*I,n=35 2100926642001740 r005 Re(z^2+c),c=-31/122+1/61*I,n=18 2100926644460148 m001 (ln(gamma)+OneNinth)/(Riemann2ndZero+Trott) 2100926647789272 m004 2/3+15*Sec[Sqrt[5]*Pi] 2100926660289500 r002 3th iterates of z^2 + 2100926662632411 s001 sum(exp(-3*Pi/4)^n*A250530[n],n=1..infinity) 2100926677455355 l004 Shi(203/115) 2100926679465071 m003 -5/12+(257*Sqrt[5])/1024+Tan[1/2+Sqrt[5]/2] 2100926682992843 a007 Real Root Of -673*x^4-913*x^3+760*x^2-690*x-159 2100926683027507 m005 (1/3*Catalan-3/7)/(1/9*Zeta(3)-6) 2100926688185890 a007 Real Root Of 212*x^4+216*x^3-9*x^2+679*x-661 2100926688189256 a001 35355581/36*121393^(11/24) 2100926688206485 a001 710647/144*12586269025^(11/24) 2100926694453522 m005 (1/2*Zeta(3)-7/8)/(7/10*gamma+9/10) 2100926697706344 a007 Real Root Of 743*x^4+899*x^3-110*x^2-528*x+106 2100926709561987 m001 (5^(1/2)+Landau)/(LaplaceLimit+TwinPrimes) 2100926713020545 h001 (4/5*exp(2)+7/12)/(4/5*exp(1)+11/12) 2100926717641190 a007 Real Root Of 533*x^4+411*x^3+769*x^2-756*x-190 2100926718172963 r009 Im(z^3+c),c=-8/27+10/59*I,n=11 2100926724745457 r005 Re(z^2+c),c=-31/122+1/61*I,n=20 2100926727830347 r005 Re(z^2+c),c=-123/122+3/25*I,n=24 2100926733375750 p003 LerchPhi(1/512,6,299/107) 2100926735930354 m001 Zeta(1,2)^2/Catalan*exp(cosh(1))^2 2100926736033317 a007 Real Root Of -442*x^4-325*x^3+964*x^2-906*x-561 2100926736525899 m001 (Otter+PlouffeB)/(Zeta(5)+Gompertz) 2100926736580023 r009 Im(z^3+c),c=-17/38+17/30*I,n=3 2100926736693334 r005 Re(z^2+c),c=-31/122+1/61*I,n=22 2100926738304654 r005 Re(z^2+c),c=-31/122+1/61*I,n=24 2100926738497221 r005 Re(z^2+c),c=-31/122+1/61*I,n=26 2100926738512657 r005 Re(z^2+c),c=-31/122+1/61*I,n=29 2100926738513278 r005 Re(z^2+c),c=-31/122+1/61*I,n=31 2100926738513612 r005 Re(z^2+c),c=-31/122+1/61*I,n=33 2100926738513710 r005 Re(z^2+c),c=-31/122+1/61*I,n=35 2100926738513734 r005 Re(z^2+c),c=-31/122+1/61*I,n=37 2100926738513739 r005 Re(z^2+c),c=-31/122+1/61*I,n=39 2100926738513740 r005 Re(z^2+c),c=-31/122+1/61*I,n=41 2100926738513741 r005 Re(z^2+c),c=-31/122+1/61*I,n=43 2100926738513741 r005 Re(z^2+c),c=-31/122+1/61*I,n=45 2100926738513741 r005 Re(z^2+c),c=-31/122+1/61*I,n=47 2100926738513741 r005 Re(z^2+c),c=-31/122+1/61*I,n=49 2100926738513741 r005 Re(z^2+c),c=-31/122+1/61*I,n=51 2100926738513741 r005 Re(z^2+c),c=-31/122+1/61*I,n=53 2100926738513741 r005 Re(z^2+c),c=-31/122+1/61*I,n=55 2100926738513741 r005 Re(z^2+c),c=-31/122+1/61*I,n=57 2100926738513741 r005 Re(z^2+c),c=-31/122+1/61*I,n=59 2100926738513741 r005 Re(z^2+c),c=-31/122+1/61*I,n=61 2100926738513741 r005 Re(z^2+c),c=-31/122+1/61*I,n=63 2100926738513741 r005 Re(z^2+c),c=-31/122+1/61*I,n=64 2100926738513741 r005 Re(z^2+c),c=-31/122+1/61*I,n=62 2100926738513741 r005 Re(z^2+c),c=-31/122+1/61*I,n=60 2100926738513741 r005 Re(z^2+c),c=-31/122+1/61*I,n=58 2100926738513741 r005 Re(z^2+c),c=-31/122+1/61*I,n=56 2100926738513741 r005 Re(z^2+c),c=-31/122+1/61*I,n=54 2100926738513741 r005 Re(z^2+c),c=-31/122+1/61*I,n=52 2100926738513741 r005 Re(z^2+c),c=-31/122+1/61*I,n=50 2100926738513741 r005 Re(z^2+c),c=-31/122+1/61*I,n=48 2100926738513741 r005 Re(z^2+c),c=-31/122+1/61*I,n=46 2100926738513741 r005 Re(z^2+c),c=-31/122+1/61*I,n=44 2100926738513741 r005 Re(z^2+c),c=-31/122+1/61*I,n=42 2100926738513741 r005 Re(z^2+c),c=-31/122+1/61*I,n=40 2100926738513744 r005 Re(z^2+c),c=-31/122+1/61*I,n=38 2100926738513755 r005 Re(z^2+c),c=-31/122+1/61*I,n=36 2100926738513805 r005 Re(z^2+c),c=-31/122+1/61*I,n=34 2100926738513992 r005 Re(z^2+c),c=-31/122+1/61*I,n=32 2100926738514482 r005 Re(z^2+c),c=-31/122+1/61*I,n=28 2100926738514520 r005 Re(z^2+c),c=-31/122+1/61*I,n=30 2100926738516339 r005 Re(z^2+c),c=-31/122+1/61*I,n=27 2100926738577458 r005 Re(z^2+c),c=-31/122+1/61*I,n=25 2100926739146152 r005 Re(z^2+c),c=-31/122+1/61*I,n=23 2100926743130621 l006 ln(1013/8280) 2100926743581283 r005 Re(z^2+c),c=-31/122+1/61*I,n=21 2100926745121298 a007 Real Root Of -451*x^4-929*x^3-329*x^2-316*x+960 2100926748837900 a001 2584/199*3571^(28/31) 2100926763919317 m001 1/Niven^2/CareFree^2*ln(GAMMA(2/3)) 2100926766474114 r005 Re(z^2+c),c=-11/82+33/62*I,n=18 2100926769424189 a007 Real Root Of 555*x^4-940*x^3-561*x^2-674*x+174 2100926772004704 m001 (Salem+StronglyCareFree)/(Ei(1)-cos(1/12*Pi)) 2100926775235000 r005 Re(z^2+c),c=-31/122+1/61*I,n=19 2100926777783034 a007 Real Root Of -608*x^4+181*x^3+635*x^2+840*x-205 2100926778290258 h001 (3/5*exp(2)+3/7)/(7/9*exp(1)+1/5) 2100926784036581 a007 Real Root Of 377*x^4+522*x^3-455*x^2+128*x-227 2100926784770665 a007 Real Root Of -177*x^4-30*x^3+367*x^2-429*x+649 2100926788757432 a007 Real Root Of -475*x^4-912*x^3-302*x^2+991*x+214 2100926792883393 m001 HardyLittlewoodC3-HeathBrownMoroz+Porter 2100926804430377 a007 Real Root Of 957*x^4+347*x^3-114*x^2-976*x+205 2100926810185006 m005 (7/8+1/4*5^(1/2))/(4/55+3/11*5^(1/2)) 2100926833920666 m001 FeigenbaumB^PlouffeB/(ZetaP(3)^PlouffeB) 2100926834676951 m001 Trott2nd/((Pi^(1/2))^arctan(1/2)) 2100926848038909 l006 ln(2977/3673) 2100926859670659 m001 (Sierpinski+ZetaQ(3))/Champernowne 2100926863928186 m001 GAMMA(23/24)+HardyLittlewoodC3+TreeGrowth2nd 2100926874546769 m001 (-ln(5)+ErdosBorwein)/(cos(1)+BesselJ(0,1)) 2100926879505664 q001 204/971 2100926882372003 r009 Re(z^3+c),c=-1/28+25/42*I,n=30 2100926883534164 r002 4th iterates of z^2 + 2100926884247916 m005 (1/2*Catalan+2/5)/(9/10*gamma-1/9) 2100926885530601 r005 Im(z^2+c),c=-119/122+13/60*I,n=55 2100926887471501 a001 4181/322*199^(1/11) 2100926890869179 a007 Real Root Of -210*x^4+595*x^3+231*x^2-742*x-887 2100926891437249 r005 Im(z^2+c),c=-17/29+11/61*I,n=6 2100926893713947 r005 Re(z^2+c),c=8/27+5/24*I,n=30 2100926896902609 r002 63th iterates of z^2 + 2100926900133319 r005 Re(z^2+c),c=11/94+19/49*I,n=43 2100926902871900 p001 sum((-1)^(n+1)/(43*n+39)/(2^n),n=0..infinity) 2100926904827937 r005 Re(z^2+c),c=23/102+7/17*I,n=12 2100926904871899 a007 Real Root Of 38*x^4+820*x^3+439*x^2-291*x+862 2100926918133625 r009 Im(z^3+c),c=-13/70+49/54*I,n=24 2100926930989297 a007 Real Root Of -391*x^4-966*x^3-248*x^2+205*x+185 2100926932802560 r005 Im(z^2+c),c=-29/82+17/50*I,n=14 2100926938951452 p002 log(10^(2/5)-19^(1/12)) 2100926939757307 r005 Im(z^2+c),c=13/64+6/47*I,n=9 2100926951242891 a001 121393/199*9349^(12/31) 2100926954772147 r005 Im(z^2+c),c=-23/98+11/36*I,n=22 2100926959927894 a001 89*39603^(16/31) 2100926959943516 m001 Chi(1)+KhinchinHarmonic*Sarnak 2100926960349714 a001 2178309/199*24476^(2/31) 2100926966511134 r005 Im(z^2+c),c=15/52+1/35*I,n=56 2100926968855362 r005 Re(z^2+c),c=-17/122+23/54*I,n=8 2100926971691514 r005 Im(z^2+c),c=-29/25+9/49*I,n=30 2100926976398175 r005 Re(z^2+c),c=13/70+17/42*I,n=17 2100926976434091 s001 sum(exp(-Pi/3)^(n-1)*A003286[n],n=1..infinity) 2100926977046176 m001 (ArtinRank2+Otter)/(BesselI(1,1)+GAMMA(19/24)) 2100926978522977 a001 7/144*365435296162^(5/6) 2100926987264197 a007 Real Root Of 633*x^4+986*x^3-441*x^2+569*x-47 2100926987503360 r005 Im(z^2+c),c=-71/70+7/31*I,n=27 2100926989148599 r005 Re(z^2+c),c=-31/122+1/61*I,n=17 2100926991105326 m002 -Pi/3+(6*Sinh[Pi])/Pi 2100926992838341 r005 Re(z^2+c),c=-35/64+27/58*I,n=24 2100926998084536 a001 6765/199*5778^(23/31) 2100927015716901 a001 11/1597*13^(10/23) 2100927018312176 r005 Im(z^2+c),c=-61/74+1/7*I,n=51 2100927021208045 a007 Real Root Of 495*x^4+706*x^3-866*x^2-45*x+631 2100927026452070 m001 (gamma(1)-FellerTornier)/(ln(2)-ln(2^(1/2)+1)) 2100927026939750 p003 LerchPhi(1/2,3,285/161) 2100927028679329 m001 CopelandErdos^(Weierstrass/TreeGrowth2nd) 2100927030910881 m005 (1/3*Pi-1/8)/(2/11*2^(1/2)+2/11) 2100927031583844 a001 119218851371/21*32951280099^(9/17) 2100927031583846 a001 3020733700601/7*9227465^(9/17) 2100927031802452 m005 (1/3*2^(1/2)+1/9)/(10/11*Pi-1/12) 2100927034541960 a001 322*(1/2*5^(1/2)+1/2)^17*4^(10/23) 2100927038516463 a007 Real Root Of -98*x^4-60*x^3+124*x^2-283*x+211 2100927039437785 r005 Re(z^2+c),c=-7/10+66/145*I,n=8 2100927055504999 a007 Real Root Of 458*x^4+721*x^3-272*x^2+390*x-217 2100927057968096 m001 Zeta(3)/(Otter^ln(5)) 2100927062118778 a007 Real Root Of -985*x^4+581*x^3+958*x^2+282*x-105 2100927071698504 a007 Real Root Of 679*x^4+810*x^3-918*x^2+528*x-556 2100927073074661 r009 Re(z^3+c),c=-13/56+37/50*I,n=13 2100927080485190 m001 TreeGrowth2nd/(GolombDickman-exp(1)) 2100927090407609 m001 exp(1)/(ArtinRank2+Gompertz) 2100927105908748 r005 Re(z^2+c),c=-21/118+20/51*I,n=21 2100927114204698 r005 Im(z^2+c),c=1/50+11/50*I,n=13 2100927115325502 a007 Real Root Of -114*x^4-187*x^3-270*x^2-918*x-250 2100927125212671 r005 Im(z^2+c),c=-19/86+19/63*I,n=18 2100927127368325 m006 (3*ln(Pi)+5)/(4*Pi^2+2/3) 2100927130546370 r005 Re(z^2+c),c=15/98+30/49*I,n=14 2100927130584687 m001 Zeta(1/2)^Landau*Khinchin^Landau 2100927147393222 h001 (1/5*exp(2)+2/3)/(2/9*exp(1)+5/12) 2100927151114520 m005 (1/3*2^(1/2)+2/7)/(4/9*Pi-5) 2100927158271701 a007 Real Root Of -586*x^4-976*x^3+40*x^2-817*x+473 2100927168861574 m001 1/(2^(1/3))*LandauRamanujan*exp(sqrt(Pi))^2 2100927175763973 m001 exp((2^(1/3)))^2*Bloch^2/log(2+sqrt(3)) 2100927183816130 r005 Im(z^2+c),c=-5/122+9/37*I,n=12 2100927195213281 m005 (-13/20+1/4*5^(1/2))/(5/11*5^(1/2)-7/12) 2100927196684990 m001 (gamma(2)-Khinchin)/(Mills-Riemann1stZero) 2100927198252973 s002 sum(A279965[n]/(exp(n)+1),n=1..infinity) 2100927209435327 l006 ln(259/2117) 2100927212576864 a007 Real Root Of -683*x^4-983*x^3+815*x^2-729*x-938 2100927220020517 a007 Real Root Of 345*x^4+426*x^3-794*x^2-749*x-840 2100927227272207 r005 Re(z^2+c),c=-11/82+38/45*I,n=21 2100927230172572 m008 (1/5*Pi^2+1/4)/(1/3*Pi^3+1/4) 2100927245911356 m001 1/exp(Bloch)^2*FransenRobinson^2/Zeta(1/2) 2100927246674951 a001 2178309/199*843^(3/31) 2100927247541656 r009 Re(z^3+c),c=-47/110+18/41*I,n=6 2100927249701360 r009 Im(z^3+c),c=-33/74+3/53*I,n=50 2100927264961552 a001 39603/377*832040^(3/59) 2100927265339417 a001 89*2207^(22/31) 2100927269408330 a003 cos(Pi*43/108)*cos(Pi*45/94) 2100927284546864 m001 (Lehmer+Tetranacci)/(ln(5)-HardyLittlewoodC5) 2100927287373096 r002 48th iterates of z^2 + 2100927293929216 r009 Im(z^3+c),c=-37/122+1/6*I,n=11 2100927295345074 p001 sum(1/(235*n+46)/n/(2^n),n=1..infinity) 2100927308391297 m001 (sin(1/12*Pi)+Robbin)/(Catalan-GAMMA(2/3)) 2100927318638513 a007 Real Root Of 482*x^4+793*x^3-411*x^2+146*x+84 2100927320530277 m005 (1/3*gamma+1/12)/(9/10*5^(1/2)-7/10) 2100927330074177 m001 (gamma(1)+Otter)/(Riemann1stZero-ThueMorse) 2100927339138141 v003 sum((-16+2*n^2+16*n)/n^(n-1),n=1..infinity) 2100927346909747 a001 9/1762289*55^(6/17) 2100927348051772 l006 ln(5445/6718) 2100927359342677 a003 cos(Pi*26/105)-sin(Pi*40/107) 2100927364955880 m001 Otter*(OrthogonalArrays-ln(2)) 2100927365496187 m001 (KomornikLoreti-ZetaP(2))/(gamma(2)-Kac) 2100927366224483 r009 Im(z^3+c),c=-49/114+4/51*I,n=33 2100927381069755 m001 gamma*exp(-1/2*Pi)^Cahen 2100927394182664 m001 Catalan*GAMMA(19/24)+GAMMA(23/24) 2100927395781081 m001 Pi-2^(1/3)-5^(1/2)*exp(gamma) 2100927399881438 b008 Sqrt[Pi]+LogGamma[1/3]/3 2100927428185664 a001 4181/2207*199^(5/11) 2100927438125661 m001 Backhouse*(Ei(1)-ZetaP(2)) 2100927438393736 a007 Real Root Of -41*x^4+501*x^3-706*x^2-128*x-462 2100927438896486 m001 1/GAMMA(5/6)/ln(GAMMA(23/24))^2*cosh(1) 2100927441974667 a007 Real Root Of 7*x^4-681*x^3+980*x^2-590*x+87 2100927448207962 m001 (BesselI(0,2)+Conway)/(Grothendieck-ZetaP(4)) 2100927449418599 r005 Re(z^2+c),c=-33/34+10/111*I,n=28 2100927450873171 r005 Im(z^2+c),c=33/98+9/23*I,n=46 2100927465192434 m001 (Gompertz+Paris)/(Si(Pi)+Backhouse) 2100927472137534 a007 Real Root Of 35*x^4-813*x^3-846*x^2-296*x+107 2100927477005760 r005 Im(z^2+c),c=47/98+1/40*I,n=4 2100927478046974 a007 Real Root Of -221*x^4-434*x^3-62*x^2+13*x+582 2100927492879422 r002 50th iterates of z^2 + 2100927497435377 a001 2/317811*144^(12/17) 2100927516926235 r005 Re(z^2+c),c=-1/8+26/51*I,n=38 2100927518517196 a007 Real Root Of -529*x^4-618*x^3+681*x^2-738*x+19 2100927536164781 l006 ln(7913/9763) 2100927548658110 r009 Re(z^3+c),c=-8/31+33/53*I,n=8 2100927553226512 m009 (4/5*Psi(1,1/3)+1/4)/(4*Psi(1,1/3)-3/4) 2100927555751191 m005 (1/2*exp(1)+7/12)/(3/5*Catalan+3/8) 2100927564775445 m001 1/ln(Riemann3rdZero)/MinimumGamma^2*Zeta(3)^2 2100927573000064 m001 (-HardyLittlewoodC4+Kac)/(Zeta(1,2)-gamma) 2100927573463407 m008 (3/5*Pi^5-5)/(1/4*Pi^3+3/4) 2100927580363182 m005 (7/15+3/10*5^(1/2))/(2^(1/2)+4) 2100927598095107 r002 15th iterates of z^2 + 2100927598504311 m005 (1/2*5^(1/2)+7/10)/(3/10*gamma-2/11) 2100927601505718 r005 Re(z^2+c),c=-103/86+4/15*I,n=12 2100927606882918 p004 log(19429/2377) 2100927612366330 m001 1/ln(Zeta(5))*Magata*sqrt(5) 2100927627027931 r005 Im(z^2+c),c=-53/52+5/21*I,n=35 2100927634683175 m001 (Salem+Weierstrass)/(5^(1/2)-Psi(1,1/3)) 2100927639888965 a007 Real Root Of -14*x^4-250*x^3+969*x^2+869*x-221 2100927640169464 h002 exp(18^(7/4)-18^(2/7)) 2100927640169464 h007 exp(18^(7/4)-18^(2/7)) 2100927644674888 a007 Real Root Of -8*x^4+766*x^3+878*x^2+362*x-8 2100927649780864 a007 Real Root Of 85*x^4-130*x^3-165*x^2+587*x-900 2100927655484856 l006 ln(1059/8656) 2100927661685454 m001 (ln(2)/ln(10)+GAMMA(17/24))^ln(5) 2100927674834975 m001 (RenyiParking+Stephens)/(Chi(1)-exp(-1/2*Pi)) 2100927683686151 m001 MertensB2*(BesselI(1,2)+TreeGrowth2nd) 2100927686469817 m005 (1/2*2^(1/2)+6)/(1/9*3^(1/2)+3) 2100927692020124 a007 Real Root Of -41*x^4+380*x^3-398*x^2-251*x-441 2100927700633394 r005 Re(z^2+c),c=21/74+11/26*I,n=14 2100927700818019 m001 GAMMA(17/24)*GAMMA(19/24)+Lehmer 2100927700818019 m001 Lehmer+GAMMA(17/24)*GAMMA(19/24) 2100927704103220 r005 Im(z^2+c),c=-5/122+9/37*I,n=14 2100927712747576 r002 33th iterates of z^2 + 2100927717335146 a007 Real Root Of 524*x^4+930*x^3-228*x^2+330*x+115 2100927723363771 m001 GAMMA(13/24)^(Shi(1)/CareFree) 2100927732766454 r005 Re(z^2+c),c=7/52+9/14*I,n=16 2100927738885613 m001 Porter/LaplaceLimit^2*ln(GAMMA(17/24))^2 2100927744223815 a001 1346269/4*29^(31/57) 2100927773317503 a007 Real Root Of -370*x^4-895*x^3-500*x^2-415*x+244 2100927776052749 a001 5473/2889*199^(5/11) 2100927781107080 m001 1/BesselJ(0,1)/Paris^2/ln(Ei(1)) 2100927783844063 m001 ln(2+3^(1/2))*gamma(2)+Riemann2ndZero 2100927784946086 m001 LambertW(1)*FeigenbaumDelta^2/exp(sqrt(Pi)) 2100927788938063 m008 (2*Pi^5+1/3)/(3*Pi^4-3/4) 2100927791450183 r005 Im(z^2+c),c=-45/98+18/49*I,n=28 2100927799893348 l006 ln(800/6539) 2100927803390479 m001 Riemann2ndZero^QuadraticClass/ArtinRank2 2100927807716485 m001 (2^(1/3))^GaussAGM/gamma 2100927824578445 m005 (1/2*exp(1)+4/9)/(-1/90+7/18*5^(1/2)) 2100927826805883 a001 28657/15127*199^(5/11) 2100927829898994 r005 Im(z^2+c),c=-91/122+5/39*I,n=14 2100927832897604 r005 Im(z^2+c),c=-17/18+15/71*I,n=29 2100927834210665 a001 75025/39603*199^(5/11) 2100927835291008 a001 98209/51841*199^(5/11) 2100927835448628 a001 514229/271443*199^(5/11) 2100927835471625 a001 1346269/710647*199^(5/11) 2100927835474980 a001 1762289/930249*199^(5/11) 2100927835475470 a001 9227465/4870847*199^(5/11) 2100927835475541 a001 24157817/12752043*199^(5/11) 2100927835475551 a001 31622993/16692641*199^(5/11) 2100927835475553 a001 165580141/87403803*199^(5/11) 2100927835475553 a001 433494437/228826127*199^(5/11) 2100927835475553 a001 567451585/299537289*199^(5/11) 2100927835475553 a001 2971215073/1568397607*199^(5/11) 2100927835475553 a001 7778742049/4106118243*199^(5/11) 2100927835475553 a001 10182505537/5374978561*199^(5/11) 2100927835475553 a001 53316291173/28143753123*199^(5/11) 2100927835475553 a001 139583862445/73681302247*199^(5/11) 2100927835475553 a001 182717648081/96450076809*199^(5/11) 2100927835475553 a001 956722026041/505019158607*199^(5/11) 2100927835475553 a001 10610209857723/5600748293801*199^(5/11) 2100927835475553 a001 591286729879/312119004989*199^(5/11) 2100927835475553 a001 225851433717/119218851371*199^(5/11) 2100927835475553 a001 21566892818/11384387281*199^(5/11) 2100927835475553 a001 32951280099/17393796001*199^(5/11) 2100927835475553 a001 12586269025/6643838879*199^(5/11) 2100927835475553 a001 1201881744/634430159*199^(5/11) 2100927835475553 a001 1836311903/969323029*199^(5/11) 2100927835475553 a001 701408733/370248451*199^(5/11) 2100927835475553 a001 66978574/35355581*199^(5/11) 2100927835475554 a001 102334155/54018521*199^(5/11) 2100927835475558 a001 39088169/20633239*199^(5/11) 2100927835475585 a001 3732588/1970299*199^(5/11) 2100927835475772 a001 5702887/3010349*199^(5/11) 2100927835477054 a001 2178309/1149851*199^(5/11) 2100927835485837 a001 208010/109801*199^(5/11) 2100927835546043 a001 317811/167761*199^(5/11) 2100927835958697 a001 121393/64079*199^(5/11) 2100927837994663 a007 Real Root Of -910*x^4+38*x^3+253*x^2+144*x-40 2100927838787073 a001 11592/6119*199^(5/11) 2100927843864413 m001 (-ln(5)+ThueMorse)/(Psi(2,1/3)-Si(Pi)) 2100927847013228 r005 Re(z^2+c),c=-5/62+19/33*I,n=23 2100927847051852 m001 GAMMA(11/12)^2/Porter/exp(GAMMA(17/24)) 2100927857329317 r009 Re(z^3+c),c=-17/110+26/37*I,n=5 2100927858173046 a001 17711/9349*199^(5/11) 2100927872733966 m001 1/exp(RenyiParking)*Cahen^2/cos(Pi/12)^2 2100927877874510 m002 -6*Pi^5*Log[Pi]+ProductLog[Pi]^(-1) 2100927878265865 s002 sum(A123690[n]/(n*10^n+1),n=1..infinity) 2100927885747956 r005 Im(z^2+c),c=-15/38+15/43*I,n=27 2100927888453811 m001 (BesselI(1,1)-Zeta(1,2))^MasserGramainDelta 2100927894013454 r005 Im(z^2+c),c=-49/78+1/56*I,n=7 2100927897700933 a008 Real Root of (-3-3*x+6*x^2+3*x^3+2*x^4+x^5) 2100927898541039 a007 Real Root Of 246*x^4+397*x^3-603*x^2-301*x+918 2100927901451766 r002 9th iterates of z^2 + 2100927906152001 m001 Shi(1)*Pi*csc(5/12*Pi)/GAMMA(7/12)-ZetaR(2) 2100927906344392 r005 Re(z^2+c),c=-19/86+17/62*I,n=5 2100927907133705 r009 Re(z^3+c),c=-12/23+15/28*I,n=14 2100927913580929 a007 Real Root Of -329*x^4-294*x^3+369*x^2-720*x+542 2100927918143415 r009 Re(z^3+c),c=-3/26+53/62*I,n=46 2100927919182668 r009 Re(z^3+c),c=-18/29+19/63*I,n=20 2100927930122780 m001 (Sierpinski+ZetaP(4))/(Landau+Sarnak) 2100927937717841 p003 LerchPhi(1/8,3,134/171) 2100927938006582 r002 27th iterates of z^2 + 2100927948350618 m001 (Shi(1)-Zeta(1,-1))/(-CareFree+MasserGramain) 2100927950540935 a001 2178309/29*4^(23/31) 2100927951187189 l006 ln(2468/3045) 2100927960269919 m001 Backhouse/(Si(Pi)^Pi) 2100927963780815 r005 Re(z^2+c),c=-17/21+6/49*I,n=30 2100927964718091 r005 Im(z^2+c),c=-7/6+10/187*I,n=8 2100927966644121 m001 Cahen/(ErdosBorwein-FeigenbaumDelta) 2100927970708149 r009 Re(z^3+c),c=-37/102+29/50*I,n=54 2100927976824473 a001 48/281*1364^(2/3) 2100927987804768 a007 Real Root Of -990*x^4-859*x^3+897*x^2+882*x-215 2100927991046491 a001 6765/3571*199^(5/11) 2100928003154735 a001 521/3*1346269^(34/41) 2100928007830300 m001 BesselI(0,2)^exp(gamma)/(ThueMorse^exp(gamma)) 2100928014876197 m001 Rabbit/Artin*exp(Zeta(3))^2 2100928018382165 r005 Im(z^2+c),c=-43/122+16/63*I,n=3 2100928020351548 m005 (1/4*gamma+2)/(4*exp(1)-2/3) 2100928021789669 m004 -(Sqrt[5]*Pi)+20*Sin[Sqrt[5]*Pi]^2 2100928021920732 m005 (1/2*Catalan+8/11)/(1/6*exp(1)+1/9) 2100928037153654 s002 sum(A243376[n]/(n^2*pi^n-1),n=1..infinity) 2100928056631090 r005 Im(z^2+c),c=-71/122+9/25*I,n=49 2100928064910055 a005 (1/cos(12/229*Pi))^562 2100928068473804 m001 (2^(1/2)-Catalan)/(cos(1)+FeigenbaumC) 2100928070334113 a007 Real Root Of -977*x^4+241*x^3+518*x^2+465*x-10 2100928074245939 q001 1811/862 2100928082104151 a007 Real Root Of 232*x^4+412*x^3+190*x^2+634*x-206 2100928082570910 l006 ln(541/4422) 2100928090797445 a007 Real Root Of -363*x^4+707*x^3+696*x^2+402*x+61 2100928096842084 r005 Im(z^2+c),c=-33/70+19/61*I,n=10 2100928105540246 m001 FransenRobinson/Psi(2,1/3)*ThueMorse 2100928106295279 m005 (1/2*Pi+5)/(-59/110+1/10*5^(1/2)) 2100928111549885 r009 Re(z^3+c),c=-8/27+23/58*I,n=17 2100928113440324 a007 Real Root Of -19*x^4+476*x^3-297*x^2+720*x-15 2100928127363657 m001 (-Lehmer+MertensB2)/(Chi(1)+BesselI(0,1)) 2100928128900153 r005 Re(z^2+c),c=31/118+11/61*I,n=31 2100928134015610 m001 (OneNinth+TreeGrowth2nd)/(ln(Pi)+MinimumGamma) 2100928136914386 a007 Real Root Of 708*x^4+160*x^3+976*x^2+57*x-31 2100928140148891 r002 2th iterates of z^2 + 2100928149910957 m001 1/BesselJ(1,1)/ln(RenyiParking)*GAMMA(13/24)^2 2100928210565912 r005 Im(z^2+c),c=-1+49/218*I,n=14 2100928227560126 m001 (GAMMA(5/6)+Magata)/(ln(gamma)-ln(5)) 2100928231628379 r009 Im(z^3+c),c=-43/102+3/34*I,n=26 2100928243806396 a007 Real Root Of -394*x^4-780*x^3+357*x^2+880*x+716 2100928244827600 r002 29th iterates of z^2 + 2100928245937688 a007 Real Root Of 349*x^4+528*x^3-272*x^2+560*x+474 2100928247558071 r005 Im(z^2+c),c=-13/29+21/58*I,n=55 2100928253313475 r009 Re(z^3+c),c=-1/82+29/32*I,n=4 2100928255068015 a007 Real Root Of -181*x^4-36*x^3+369*x^2-503*x+507 2100928256735238 m001 sin(1/12*Pi)*MinimumGamma^ln(gamma) 2100928259808476 a007 Real Root Of 209*x^4-38*x^3-391*x^2+856*x-900 2100928260139233 a007 Real Root Of 533*x^4+904*x^3-891*x^2-601*x+669 2100928271930336 a007 Real Root Of 26*x^4+591*x^3+927*x^2-246*x+723 2100928272459229 m001 (Pi+ln(5))/(FibonacciFactorial+MertensB2) 2100928278143539 a001 377/322*1364^(2/5) 2100928278397046 a007 Real Root Of 788*x^4+367*x^3+838*x^2-642*x-170 2100928289139687 r005 Re(z^2+c),c=-17/14+7/83*I,n=34 2100928291593558 m005 (1/3*3^(1/2)+1/10)/(-10/21+5/14*5^(1/2)) 2100928303702137 r009 Re(z^3+c),c=-1/4+14/53*I,n=11 2100928306375645 a007 Real Root Of -578*x^4-675*x^3+672*x^2-627*x+718 2100928307934460 m005 (1/3*3^(1/2)-1/4)/(4/7*2^(1/2)+3/4) 2100928311698299 m005 (1/2*Catalan+1/11)/(8/9*5^(1/2)+5/8) 2100928313819085 a007 Real Root Of 183*x^4-722*x^3+931*x^2+272*x+9 2100928324983424 m001 (ln(5)+GAMMA(19/24))/(Cahen-StronglyCareFree) 2100928331372783 s002 sum(A088720[n]/(pi^n),n=1..infinity) 2100928335976909 r005 Im(z^2+c),c=-31/102+13/40*I,n=22 2100928338957702 r005 Re(z^2+c),c=-7/50+12/25*I,n=54 2100928343690043 r009 Im(z^3+c),c=-23/48+5/39*I,n=7 2100928346943214 r005 Im(z^2+c),c=-5/27+16/55*I,n=21 2100928357348535 l006 ln(823/6727) 2100928357843742 m001 Paris^Grothendieck/ZetaP(4) 2100928362531739 a001 34/3010349*76^(27/40) 2100928363904496 m001 (GlaisherKinkelin-PlouffeB)/(GAMMA(3/4)-ln(5)) 2100928365957160 m001 1/Sierpinski/CopelandErdos^2*ln(sqrt(3))^2 2100928366222894 a008 Real Root of x^2-44139 2100928370621180 m001 1/(3^(1/3))^2/Paris/exp(sin(1)) 2100928381072005 r005 Im(z^2+c),c=7/32+19/35*I,n=19 2100928381145778 r005 Re(z^2+c),c=-31/122+1/61*I,n=15 2100928384822796 r005 Im(z^2+c),c=-7/46+29/43*I,n=27 2100928390454114 a007 Real Root Of -708*x^4-376*x^3-750*x^2+357*x+106 2100928391001774 a007 Real Root Of 9*x^4+210*x^3+458*x^2+367*x-482 2100928414520924 a007 Real Root Of -481*x^4+364*x^3+336*x^2+626*x+121 2100928416923649 h005 exp(cos(Pi*5/57)*cos(Pi*9/41)) 2100928419623830 a007 Real Root Of 68*x^4-120*x^3-486*x^2+54*x-179 2100928421683138 r002 2th iterates of z^2 + 2100928421683138 r002 2th iterates of z^2 + 2100928424569688 b008 1+E^(5/52) 2100928427484821 l006 ln(6895/8507) 2100928429091160 m006 (1/5/Pi-1)/(1/6*exp(Pi)+3/5) 2100928429394429 m001 (BesselI(1,1)-Conway)/(Magata+OneNinth) 2100928431013603 a007 Real Root Of -259*x^4+12*x^3+775*x^2-946*x-251 2100928431793054 a001 123/34*987^(12/13) 2100928433124344 p001 sum((-1)^n/(468*n+427)/n/(5^n),n=1..infinity) 2100928437761923 a001 13/103682*2^(35/47) 2100928445622790 a001 17/38*1364^(3/14) 2100928447915789 m001 FibonacciFactorial^GAMMA(5/6)+sin(1) 2100928455914638 r009 Im(z^3+c),c=-4/23+52/59*I,n=42 2100928460711966 m005 (1/2*Catalan-1/11)/(1/3*Pi+7/10) 2100928467796995 r002 3th iterates of z^2 + 2100928476348644 a007 Real Root Of -577*x^4-788*x^3+459*x^2-625*x+595 2100928477106017 r005 Re(z^2+c),c=-13/31+14/25*I,n=62 2100928490584412 a007 Real Root Of 169*x^4+314*x^3+126*x^2+306*x-294 2100928491877644 l006 ln(1105/9032) 2100928495293323 m001 (Chi(1)-FeigenbaumAlpha)^Backhouse 2100928499293075 r005 Re(z^2+c),c=8/27+11/53*I,n=16 2100928508757046 m001 (GAMMA(23/24)+Gompertz)/(Zeta(1,-1)-Zeta(1,2)) 2100928514489406 a007 Real Root Of 302*x^4+644*x^3+62*x^2-125*x-448 2100928520962551 m005 (1/2*3^(1/2)+2/7)/(1/10*3^(1/2)+3/8) 2100928521772675 r005 Im(z^2+c),c=41/106+4/9*I,n=4 2100928522118430 m001 (2^(1/3)+ln(2))/(-Artin+Conway) 2100928534740397 r005 Re(z^2+c),c=4/19+6/49*I,n=13 2100928548215963 r009 Re(z^3+c),c=-1/52+53/57*I,n=7 2100928549818042 s001 sum(exp(-Pi/2)^(n-1)*A227960[n],n=1..infinity) 2100928550265024 a007 Real Root Of -615*x^4+39*x^3-699*x^2-140*x+3 2100928552877670 m001 1/exp(TwinPrimes)^2*Backhouse*cos(1) 2100928558281813 r005 Im(z^2+c),c=-5/6+31/240*I,n=11 2100928561454392 a007 Real Root Of -597*x^4-722*x^3+876*x^2-616*x-225 2100928561696410 a003 cos(Pi*8/95)-sin(Pi*46/117) 2100928571333564 m001 (ln(2^(1/2)+1)-exp(1/Pi))/(Cahen+Niven) 2100928576510656 a007 Real Root Of -90*x^4+637*x^3-941*x^2+454*x-954 2100928580477484 m008 (3*Pi^5+2/5)/(1/5*Pi-5) 2100928581443960 r005 Re(z^2+c),c=-2/31+19/33*I,n=6 2100928596205976 r005 Re(z^2+c),c=23/90+9/52*I,n=18 2100928608614965 m001 (GolombDickman-Paris)/(Riemann3rdZero+Trott) 2100928610445817 q001 1/47598 2100928629201216 r005 Re(z^2+c),c=-25/48+9/17*I,n=53 2100928632408072 m001 Riemann2ndZero/(exp(1/exp(1))^ZetaQ(4)) 2100928632730895 a001 48/281*3571^(10/17) 2100928637203767 a007 Real Root Of -561*x^4-994*x^3+180*x^2-45*x+823 2100928639130610 a007 Real Root Of -424*x^4-510*x^3+933*x^2+386*x+224 2100928643318986 m001 (2^(1/3)-Zeta(3))/(Ei(1)+Thue) 2100928648696981 r005 Re(z^2+c),c=-29/86+28/47*I,n=16 2100928659398458 a007 Real Root Of -998*x^4+190*x^3+471*x^2+704*x-15 2100928662096768 a007 Real Root Of 252*x^4+157*x^3-773*x^2+47*x+57 2100928663195786 r005 Im(z^2+c),c=-9/14+40/219*I,n=3 2100928671687424 a001 377/322*3571^(6/17) 2100928675987877 a007 Real Root Of -48*x^4-964*x^3+957*x^2+518*x+631 2100928676206871 m005 (1/2*Catalan-3/4)/(4/9*exp(1)+2/11) 2100928687600529 a001 17/38*2537720636^(1/14) 2100928689076100 a001 17/38*15127^(9/56) 2100928693015092 l006 ln(4427/5462) 2100928694401077 m001 cos(1)+Pi^FeigenbaumDelta 2100928695222644 m005 (1/3*Pi+3/5)/(7/10*Catalan+1/7) 2100928698837991 a001 17/38*5778^(5/28) 2100928702983484 s002 sum(A158230[n]/(n^2*2^n+1),n=1..infinity) 2100928705228914 m001 (MertensB3+Porter)/MertensB3 2100928706201796 a001 76/55*144^(23/42) 2100928716992955 a001 48/281*9349^(10/19) 2100928722244660 a001 377/322*9349^(6/19) 2100928722977157 a001 494493258286/3*2504730781961^(7/17) 2100928727974049 a001 48/281*24476^(10/21) 2100928728552364 m001 BesselI(0,2)^ZetaQ(4)/(BesselI(0,2)^Ei(1)) 2100928728833317 a001 377/322*24476^(2/7) 2100928729421569 a001 48/281*64079^(10/23) 2100928729614169 a001 48/281*167761^(2/5) 2100928729644027 a001 48/281*20633239^(2/7) 2100928729644029 a001 48/281*2537720636^(2/9) 2100928729644029 a001 48/281*312119004989^(2/11) 2100928729644029 a001 48/281*(1/2+1/2*5^(1/2))^10 2100928729644029 a001 48/281*28143753123^(1/5) 2100928729644029 a001 48/281*10749957122^(5/24) 2100928729644029 a001 48/281*4106118243^(5/23) 2100928729644029 a001 48/281*1568397607^(5/22) 2100928729644029 a001 48/281*599074578^(5/21) 2100928729644029 a001 48/281*228826127^(1/4) 2100928729644029 a001 48/281*87403803^(5/19) 2100928729644029 a001 48/281*33385282^(5/18) 2100928729644033 a001 48/281*12752043^(5/17) 2100928729644056 a001 48/281*4870847^(5/16) 2100928729644231 a001 48/281*1860498^(1/3) 2100928729645515 a001 48/281*710647^(5/14) 2100928729654996 a001 48/281*271443^(5/13) 2100928729701829 a001 377/322*64079^(6/23) 2100928729725460 a001 48/281*103682^(5/12) 2100928729832884 a001 377/322*439204^(2/9) 2100928729835299 a001 377/322*7881196^(2/11) 2100928729835305 a001 377/322*141422324^(2/13) 2100928729835305 a001 377/322*2537720636^(2/15) 2100928729835305 a001 377/322*45537549124^(2/17) 2100928729835305 a001 377/322*14662949395604^(2/21) 2100928729835305 a001 377/322*(1/2+1/2*5^(1/2))^6 2100928729835305 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^6/Lucas(12) 2100928729835305 a001 377/322*10749957122^(1/8) 2100928729835305 a001 377/322*4106118243^(3/23) 2100928729835305 a001 377/322*1568397607^(3/22) 2100928729835305 a001 377/322*599074578^(1/7) 2100928729835305 a001 377/322*228826127^(3/20) 2100928729835305 a001 377/322*87403803^(3/19) 2100928729835305 a001 377/322*33385282^(1/6) 2100928729835307 a001 377/322*12752043^(3/17) 2100928729835321 a001 377/322*4870847^(3/16) 2100928729835426 a001 377/322*1860498^(1/5) 2100928729836196 a001 377/322*710647^(3/14) 2100928729841885 a001 377/322*271443^(3/13) 2100928729884164 a001 377/322*103682^(1/4) 2100928730200633 a001 377/322*39603^(3/11) 2100928730252910 a001 48/281*39603^(5/11) 2100928730783371 r005 Re(z^2+c),c=-4/27+17/37*I,n=13 2100928732589704 a001 377/322*15127^(3/10) 2100928734234695 a001 48/281*15127^(1/2) 2100928740439607 a007 Real Root Of 376*x^4+728*x^3-244*x^2-451*x-445 2100928747797459 h001 (5/8*exp(1)+1/7)/(2/7*exp(1)+1/10) 2100928748394191 m001 (ln(Pi)+BesselI(0,2))/(GAMMA(11/12)-Khinchin) 2100928750811901 a001 377/322*5778^(1/3) 2100928756063271 m001 Riemann2ndZero-Salem*Trott 2100928760493994 a007 Real Root Of 118*x^4+43*x^3-471*x^2+42*x+267 2100928764605022 a001 48/281*5778^(5/9) 2100928773019334 a007 Real Root Of -183*x^4+79*x^3-47*x^2+499*x+108 2100928774996243 m001 (Zeta(5)-arctan(1/3))/(BesselK(1,1)-MertensB1) 2100928782414073 a007 Real Root Of -43*x^4-881*x^3+432*x^2-800*x+228 2100928792569659 a001 6786/323 2100928792676301 r005 Im(z^2+c),c=-91/106+6/37*I,n=52 2100928795662350 m001 ln(GAMMA(1/3))*FransenRobinson/log(2+sqrt(3)) 2100928809622546 a007 Real Root Of 845*x^4-718*x^3+271*x^2-966*x+196 2100928813368684 r005 Re(z^2+c),c=1/5+3/28*I,n=11 2100928816738713 s002 sum(A041356[n]/(64^n-1),n=1..infinity) 2100928832645343 r009 Re(z^3+c),c=-13/106+37/41*I,n=32 2100928846887245 a001 233/521*199^(8/11) 2100928848741581 m001 exp(1)/MasserGramainDelta/Rabbit 2100928848805683 s001 sum(exp(-3*Pi)^(n-1)*A219154[n],n=1..infinity) 2100928850836054 m001 ln(2+3^(1/2))^KhinchinLevy-Salem 2100928854049327 m001 GAMMA(23/24)*Bloch-Sierpinski 2100928867775302 r005 Re(z^2+c),c=-21/52+29/55*I,n=13 2100928868954384 m003 3/5-Cosh[1/2+Sqrt[5]/2]-Log[1/2+Sqrt[5]/2]/6 2100928873182271 a007 Real Root Of -529*x^4-912*x^3+560*x^2-32*x-690 2100928873373269 a001 141/46*521^(4/13) 2100928876076805 r002 3th iterates of z^2 + 2100928880461707 m005 (1/3*exp(1)+2/11)/(5/11*2^(1/2)-1/8) 2100928880572217 r005 Im(z^2+c),c=-93/70+1/64*I,n=8 2100928884492635 l006 ln(282/2305) 2100928887202941 m005 (1/3*Pi-3/4)/(8/9*3^(1/2)-1/8) 2100928889356454 r005 Im(z^2+c),c=-43/98+13/38*I,n=5 2100928889552572 r005 Re(z^2+c),c=-17/18+37/211*I,n=28 2100928891582989 a001 377/322*2207^(3/8) 2100928891591781 b008 67*E^(8/7) 2100928893627383 a007 Real Root Of -176*x^4-253*x^3-128*x^2-820*x-75 2100928895702428 m001 (Trott+ZetaP(2))/(exp(Pi)-ln(3)) 2100928896729604 m001 (Chi(1)-arctan(1/2))/(Pi^(1/2)+ZetaQ(3)) 2100928896947323 m001 (Cahen+HeathBrownMoroz)/(Pi+gamma(1)) 2100928900677358 r002 13th iterates of z^2 + 2100928901775117 a001 646/341*199^(5/11) 2100928913010478 r005 Im(z^2+c),c=5/29+9/16*I,n=48 2100928920923089 m008 (1/5*Pi^4+5/6)/(Pi^2-1/5) 2100928935206520 m001 Ei(1)^2*Sierpinski^2*exp(sqrt(5))^2 2100928940341541 m001 (Bloch-Psi(2,1/3))/(Mills+Totient) 2100928949722684 m001 (exp(1/Pi)+exp(-1/2*Pi))/(Si(Pi)-ln(3)) 2100928955934502 r009 Re(z^3+c),c=-12/23+19/39*I,n=21 2100928960243393 a007 Real Root Of 5*x^4+128*x^3+505*x^2+431*x-992 2100928965033885 s002 sum(A023607[n]/((pi^n-1)/n),n=1..infinity) 2100928979709607 l006 ln(6386/7879) 2100928986500502 p004 log(34763/4253) 2100928991876297 m001 Otter^(2^(1/3)/Tribonacci) 2100928998530502 p001 sum(1/(277*n+215)/n/(10^n),n=1..infinity) 2100928999223510 a001 48/281*2207^(5/8) 2100929003574178 r005 Re(z^2+c),c=-33/34+10/111*I,n=26 2100929005061350 a007 Real Root Of 209*x^4+154*x^3-476*x^2+156*x-215 2100929007374733 r005 Re(z^2+c),c=-31/52+23/57*I,n=21 2100929009612137 r005 Re(z^2+c),c=7/66+16/43*I,n=35 2100929017605802 r005 Im(z^2+c),c=-23/34+2/43*I,n=4 2100929033534063 m001 FeigenbaumC^GAMMA(3/4)*FeigenbaumC^ZetaQ(4) 2100929034139471 r005 Im(z^2+c),c=-17/40+21/59*I,n=22 2100929041687782 m005 (1/3*gamma+1/10)/(6/11*exp(1)-1/11) 2100929048319121 m005 (1/2*Catalan-1/2)/(10/11*2^(1/2)+5/7) 2100929066739532 r009 Re(z^3+c),c=-23/66+8/15*I,n=64 2100929066889920 m001 (Pi-ArtinRank2)/(LandauRamanujan-Tetranacci) 2100929071890298 s002 sum(A222549[n]/(n^3*pi^n+1),n=1..infinity) 2100929079286113 p003 LerchPhi(1/2,5,174/79) 2100929104162538 a007 Real Root Of -576*x^4-716*x^3+532*x^2-932*x+276 2100929109667062 m005 (1/2*Zeta(3)-1/10)/(8/11*Pi+1/10) 2100929110186177 a005 (1/sin(76/189*Pi))^303 2100929115250970 r005 Im(z^2+c),c=-45/94+2/31*I,n=6 2100929116230823 a001 208010/19*199^(24/43) 2100929123369455 a008 Real Root of (1+5*x+2*x^2+4*x^3-x^4-3*x^5) 2100929125714722 m001 Ei(1)*ln(KhintchineLevy)/cosh(1) 2100929126535213 m001 ZetaQ(2)^GAMMA(23/24)*BesselK(0,1) 2100929128211917 m001 ln(LandauRamanujan)/Backhouse/Zeta(1,2)^2 2100929129850141 r005 Im(z^2+c),c=-7/10+71/240*I,n=25 2100929130364106 m001 (-gamma(2)+Weierstrass)/(exp(Pi)+gamma(1)) 2100929137307082 m005 (1/2*5^(1/2)+3/11)/(1/11*exp(1)-10/11) 2100929138770298 a007 Real Root Of -585*x^4-951*x^3+736*x^2+379*x+126 2100929150882871 m001 ln(Zeta(7))*GAMMA(7/12)*sqrt(1+sqrt(3)) 2100929158213130 m001 Backhouse*ZetaQ(3)-Riemann2ndZero 2100929158405115 m001 (Magata-RenyiParking)/(Robbin-Tetranacci) 2100929163264000 p001 sum((-1)^n/(237*n+224)/n/(10^n),n=1..infinity) 2100929167739544 m002 -Pi^3-Pi^6/(5*ProductLog[Pi]) 2100929172529286 h001 (8/9*exp(1)+8/11)/(5/12*exp(1)+4/11) 2100929172758331 p003 LerchPhi(1/32,4,241/163) 2100929173488331 a007 Real Root Of -413*x^4-620*x^3+476*x^2-137*x-92 2100929175815136 a007 Real Root Of 38*x^4-265*x^3-881*x^2-633*x-639 2100929181410681 a003 sin(Pi*9/50)/cos(Pi*28/67) 2100929190152787 m005 (3/5*Catalan-1/2)/(1/6*Pi-1/2) 2100929190723037 m001 (-Tribonacci+ZetaP(3))/(MertensB3-cos(1)) 2100929202803752 a007 Real Root Of 75*x^4-31*x^3-659*x^2-645*x-195 2100929204554804 m001 1/Ei(1)/ln(Conway)*GAMMA(11/12) 2100929227175264 r002 62th iterates of z^2 + 2100929234785068 m005 (1/2*2^(1/2)+6/7)/(1/12*3^(1/2)-8/9) 2100929236795946 r005 Im(z^2+c),c=-27/31+8/47*I,n=45 2100929237511749 m001 (ln(2^(1/2)+1)+Backhouse)/(Lehmer-Niven) 2100929260138035 m001 (ln(3)-Pi^(1/2))/(CareFree+FeigenbaumAlpha) 2100929261416525 l006 ln(1151/9408) 2100929287334272 m001 (ln(2)-MertensB1)/(Totient+TravellingSalesman) 2100929294912693 a007 Real Root Of -495*x^4-717*x^3+677*x^2+439*x+929 2100929296142007 m004 3+16*Cos[Sqrt[5]*Pi]*ProductLog[Sqrt[5]*Pi] 2100929298938679 a007 Real Root Of -490*x^4-501*x^3+852*x^2-623*x-169 2100929299797811 r005 Re(z^2+c),c=-13/58+14/55*I,n=8 2100929300705872 a001 15127/55*8^(44/45) 2100929302621168 a001 15127/2*987^(27/56) 2100929312130173 p001 sum((-1)^n/(179*n+47)/(16^n),n=0..infinity) 2100929312776728 m001 MertensB2+Totient^Ei(1,1) 2100929315048580 a007 Real Root Of 988*x^4+794*x^3-948*x^2-797*x+200 2100929320426445 s002 sum(A189389[n]/((2^n+1)/n),n=1..infinity) 2100929327400251 m001 GAMMA(5/12)^(BesselJ(0,1)*GAMMA(17/24)) 2100929331123375 a001 17711/18*3^(29/42) 2100929342703924 r005 Im(z^2+c),c=-9/16+35/92*I,n=54 2100929347818485 r005 Re(z^2+c),c=-21/110+5/14*I,n=18 2100929349114344 s002 sum(A131965[n]/((10^n-1)/n),n=1..infinity) 2100929355421516 p004 log(37511/30403) 2100929358260119 m001 (Totient+TreeGrowth2nd)/(Champernowne+Sarnak) 2100929359459897 r005 Re(z^2+c),c=-53/64+2/33*I,n=14 2100929360181597 a007 Real Root Of 278*x^4+335*x^3-583*x^2-552*x-896 2100929360953889 a007 Real Root Of -x^4-209*x^3+226*x^2-762*x-389 2100929364095487 r005 Im(z^2+c),c=-55/94+3/59*I,n=18 2100929365310029 a007 Real Root Of -369*x^4-754*x^3-152*x^2-544*x-275 2100929366593148 a001 18/233*5^(23/37) 2100929372419243 a005 (1/cos(7/219*Pi))^147 2100929373554344 m005 (1/2*Pi-2/3)/(4/9*exp(1)-7/9) 2100929377027285 s001 sum(1/10^(n-1)*A201299[n],n=1..infinity) 2100929377027285 s001 sum(1/10^n*A201299[n],n=1..infinity) 2100929377027285 s003 concatenated sequence A201299 2100929381726027 a001 55/3571*3^(13/46) 2100929383732417 l006 ln(869/7103) 2100929389598282 m005 (1/3*Zeta(3)-2/11)/(53/126+5/18*5^(1/2)) 2100929401803617 m001 (Catalan+StronglyCareFree)/(-Thue+ZetaQ(2)) 2100929418245438 m001 2^(1/3)*GaussAGM-sin(1) 2100929424546908 m001 1/(3^(1/3))^2/exp(Porter)*Ei(1) 2100929431164360 r005 Re(z^2+c),c=-75/58+1/29*I,n=40 2100929439338713 a001 514229/7*7^(27/50) 2100929445048648 m001 (5^(1/2)-GAMMA(5/6))/(Khinchin+Sierpinski) 2100929457398098 s002 sum(A189389[n]/((2^n-1)/n),n=1..infinity) 2100929459415420 a007 Real Root Of -3*x^4+964*x^3+899*x^2+811*x-219 2100929460772221 h001 (6/7*exp(1)+2/9)/(1/8*exp(1)+7/8) 2100929461000586 r009 Re(z^3+c),c=-5/114+42/59*I,n=34 2100929461475367 m001 (2^(1/2)-MertensB2)/(-Otter+Riemann2ndZero) 2100929481026825 h001 (-3*exp(-3)+8)/(-6*exp(1/3)+8) 2100929484992578 b008 Cot[8]/7 2100929485016100 r004 Re(z^2+c),c=1/34+2/5*I,z(0)=I,n=6 2100929493940317 a007 Real Root Of 87*x^4-211*x^3-689*x^2+74*x-455 2100929494623195 m001 (Chi(1)*Backhouse+cos(1))/Chi(1) 2100929498448510 a007 Real Root Of 295*x^4+471*x^3-36*x^2+998*x+876 2100929499874378 r005 Re(z^2+c),c=-41/94+26/47*I,n=28 2100929502811461 a008 Real Root of (3+17*x+14*x^2+5*x^3) 2100929503628506 m001 1/GAMMA(1/12)^3*exp(sqrt(3))^2 2100929504417996 m005 (5/6*2^(1/2)-5/6)/(1/6*2^(1/2)-2/5) 2100929504542806 r002 3th iterates of z^2 + 2100929511159256 m001 1/ln(GAMMA(1/3))^2*Salem*log(2+sqrt(3))^2 2100929513763869 r005 Re(z^2+c),c=23/70+9/38*I,n=15 2100929530965179 m001 1/GAMMA(23/24)*exp(GAMMA(1/4))^2*GAMMA(7/12) 2100929545271924 r005 Re(z^2+c),c=-75/62+5/44*I,n=16 2100929546578038 m005 (1/2*2^(1/2)+4)/(9/11*exp(1)-2) 2100929547097108 m001 BesselJ(0,1)/MertensB1/exp(log(2+sqrt(3)))^2 2100929547611851 m001 GAMMA(3/4)*FeigenbaumKappa+TreeGrowth2nd 2100929551197601 m002 -Pi^4+Pi^5+5/(Pi*ProductLog[Pi]) 2100929553746399 b008 2+Sqrt[2]*ArcCsch[14] 2100929569267209 a007 Real Root Of -352*x^4-532*x^3+991*x^2+879*x-603 2100929575906995 r005 Re(z^2+c),c=31/118+27/58*I,n=60 2100929583283863 h001 (1/11*exp(2)+7/12)/(8/11*exp(2)+3/5) 2100929586253844 a007 Real Root Of 773*x^4+10*x^3+15*x^2-977*x+203 2100929609315676 a007 Real Root Of -494*x^4-905*x^3+458*x^2+134*x-508 2100929614873837 q001 1582/753 2100929623571543 l006 ln(587/4798) 2100929623690761 a007 Real Root Of -335*x^4-849*x^3-548*x^2-906*x-831 2100929627589422 l006 ln(1959/2417) 2100929638867991 r005 Im(z^2+c),c=-33/50+11/46*I,n=14 2100929638951582 a001 2584/843*199^(4/11) 2100929645605132 a007 Real Root Of -568*x^4-812*x^3+523*x^2-859*x-577 2100929648798799 r002 64th iterates of z^2 + 2100929661945203 r005 Im(z^2+c),c=-27/28+13/59*I,n=54 2100929663542457 m004 -24+75*Pi-ProductLog[Sqrt[5]*Pi] 2100929677485242 r002 27th iterates of z^2 + 2100929689820585 a007 Real Root Of 4*x^4+843*x^3+548*x^2-874*x-427 2100929696263755 m005 (1/2*3^(1/2)+10/11)/(5/11*Catalan+3/7) 2100929697057361 r005 Im(z^2+c),c=-13/24+14/33*I,n=59 2100929699239409 m001 GAMMA(19/24)*Khintchine/exp(GAMMA(2/3))^2 2100929701882442 a007 Real Root Of -364*x^4-220*x^3+882*x^2-926*x-787 2100929703721680 r009 Re(z^3+c),c=-43/126+17/32*I,n=20 2100929704932739 r005 Im(z^2+c),c=-29/60+13/35*I,n=45 2100929715485995 m005 (1/2*Zeta(3)-2/11)/(5/4+1/3*5^(1/2)) 2100929717562740 a007 Real Root Of -492*x^4-895*x^3-103*x^2-371*x+961 2100929719998313 m005 (1/3*5^(1/2)+2/11)/(5*Catalan-1/6) 2100929737225295 a005 (1/sin(83/213*Pi))^613 2100929744035062 m005 (1/3*Zeta(3)-1/2)/(3/10*Zeta(3)-5/6) 2100929747556675 b008 ArcCosh[7/2+Sech[1]] 2100929751574216 m002 6/5-E^Pi+ProductLog[Pi]^(-1) 2100929754848691 r002 22th iterates of z^2 + 2100929770608600 m001 GAMMA(5/6)*Artin^2/exp(Zeta(7))^2 2100929776212526 r005 Im(z^2+c),c=-25/82+1/27*I,n=4 2100929792560865 m001 LandauRamanujan-ln(Pi)*FeigenbaumAlpha 2100929796344520 s002 sum(A172679[n]/(exp(2/5*pi*n)),n=1..infinity) 2100929802445708 m005 (3/5*Catalan+3)/(3/4*Pi-2/3) 2100929804260336 r005 Im(z^2+c),c=-95/106+8/43*I,n=48 2100929817360457 a007 Real Root Of 793*x^4+886*x^3-526*x^2-688*x+158 2100929832581318 a001 521/701408733*8^(1/2) 2100929838555365 a001 305/161*521^(5/13) 2100929839104629 m005 (1/2*gamma+7/10)/(-28/5+2/5*5^(1/2)) 2100929840118645 m001 (exp(1)+Catalan)/(KhinchinLevy+Landau) 2100929848956292 a007 Real Root Of 567*x^4-618*x^3-867*x^2-486*x+145 2100929857169108 r005 Im(z^2+c),c=5/28+1/7*I,n=14 2100929857226420 l006 ln(892/7291) 2100929874045399 m001 (exp(1)+sin(1))/(-Niven+Trott) 2100929874506314 a007 Real Root Of -790*x^4-581*x^3-186*x^2+955*x+205 2100929879522966 m005 (1/2*Pi-3/5)/(6*Catalan-7/8) 2100929885875981 a007 Real Root Of -36*x^4-728*x^3+619*x^2+523*x+524 2100929891337008 a007 Real Root Of -35*x^4-782*x^3-968*x^2+239*x-540 2100929910509281 r005 Re(z^2+c),c=-17/18+14/67*I,n=32 2100929912294511 m008 (Pi+4/5)/(3/5*Pi^5+4) 2100929918237386 s002 sum(A285787[n]/(16^n-1),n=1..infinity) 2100929924187192 m005 (1/2*exp(1)-1/3)/(2/3*2^(1/2)-5/11) 2100929928506302 a007 Real Root Of -932*x^4-443*x^3-640*x^2+143*x+56 2100929933212746 m002 -2+Pi^4-Pi^5+6*Sech[Pi] 2100929941290551 a007 Real Root Of -132*x^4+825*x^3-648*x^2-719*x-708 2100929945976751 r005 Im(z^2+c),c=-19/44+5/14*I,n=30 2100929949010086 p004 log(36643/4483) 2100929957056904 a007 Real Root Of 443*x^4+375*x^3-974*x^2+477*x+148 2100929959482735 a007 Real Root Of 299*x^4+233*x^3-208*x^2+877*x-904 2100929959927934 m001 (Otter+QuadraticClass)/(Catalan-ln(3)) 2100929971809035 l006 ln(1197/9784) 2100929981232882 a007 Real Root Of 344*x^4+412*x^3-921*x^2-652*x-186 2100929982003531 a007 Real Root Of -835*x^4+434*x^3-833*x^2+968*x-169 2100929986158063 m005 (1/2*2^(1/2)-9/10)/(1/6*5^(1/2)+6/11) 2100929991348394 m001 (5^(1/2)-cos(1/5*Pi))/(-Conway+GolombDickman) 2100929995081513 m003 21/4+Sqrt[5]/64+6*Cosh[1/2+Sqrt[5]/2] 2100929996846444 a001 377/322*843^(3/7) 2100929998887890 a007 Real Root Of -613*x^4-924*x^3+157*x^2-964*x+656 2100930004571559 r005 Re(z^2+c),c=10/29+15/62*I,n=55 2100930008785986 r002 10th iterates of z^2 + 2100930009237971 a007 Real Root Of -41*x^4+181*x^3+343*x^2-736*x-583 2100930010374360 r005 Im(z^2+c),c=-111/110+11/48*I,n=51 2100930011591626 a007 Real Root Of 591*x^4+915*x^3-309*x^2+458*x-703 2100930018467722 m001 1/exp(Sierpinski)/Lehmer*GAMMA(17/24)^2 2100930020875749 m001 (1+gamma)/(Stephens+ZetaP(3)) 2100930034694733 r005 Im(z^2+c),c=-5/24+16/57*I,n=4 2100930036022694 r002 16i'th iterates of 2*x/(1-x^2) of 2100930048231178 a001 11/10946*317811^(35/58) 2100930048688290 h005 exp(sin(Pi*5/49)/sin(Pi*6/43)) 2100930060906363 h001 (9/10*exp(1)+3/5)/(1/2*exp(1)+1/11) 2100930063309796 a001 55/103682*7^(29/41) 2100930064827587 a001 1597/322*521^(3/13) 2100930068724863 r005 Re(z^2+c),c=7/23+8/63*I,n=7 2100930072366161 r005 Re(z^2+c),c=-11/62+11/28*I,n=19 2100930075667720 m001 TreeGrowth2nd^2*exp(KhintchineHarmonic)*Ei(1) 2100930080991621 a007 Real Root Of -250*x^4-499*x^3+151*x^2-67*x-564 2100930082900980 m001 (Tribonacci+Trott*ZetaQ(3))/ZetaQ(3) 2100930087897967 r005 Im(z^2+c),c=-13/14+37/158*I,n=59 2100930091389281 r005 Im(z^2+c),c=-13/86+33/58*I,n=3 2100930098201944 r002 42th iterates of z^2 + 2100930099506721 a007 Real Root Of 342*x^4+358*x^3-642*x^2+718*x+999 2100930104838945 m001 (Champernowne-gamma)/(Riemann2ndZero+Stephens) 2100930104951004 h001 (7/10*exp(2)+7/10)/(8/11*exp(1)+9/11) 2100930105504574 a003 sin(Pi*7/114)/cos(Pi*11/82) 2100930107319843 m005 (1/2*3^(1/2)+5/11)/(10/11*2^(1/2)+5) 2100930116613445 p003 LerchPhi(1/6,6,283/218) 2100930123676017 r005 Im(z^2+c),c=-5/62+57/58*I,n=8 2100930129827074 a007 Real Root Of -408*x^4-987*x^3-71*x^2+837*x+868 2100930133185357 a003 cos(Pi*1/93)*sin(Pi*6/89) 2100930133551535 a007 Real Root Of 396*x^4+895*x^3+138*x^2+115*x+217 2100930136476198 a007 Real Root Of -343*x^4-531*x^3+636*x^2+375*x-261 2100930144947786 r005 Im(z^2+c),c=-1/25+43/55*I,n=33 2100930145789046 m001 Rabbit^2/exp(Niven)/TwinPrimes^2 2100930147489307 a007 Real Root Of 256*x^4+51*x^3-410*x^2-443*x-75 2100930156331049 a007 Real Root Of 468*x^4+859*x^3-431*x^2-23*x+702 2100930166336507 a007 Real Root Of 49*x^4-276*x^3+98*x^2+349*x+439 2100930172012360 m001 (ReciprocalLucas+Totient)/(ArtinRank2-cos(1)) 2100930173633111 m001 ErdosBorwein+gamma^GlaisherKinkelin 2100930174094594 a003 cos(Pi*3/65)-cos(Pi*25/116) 2100930174854378 r005 Re(z^2+c),c=-21/86+1/59*I,n=3 2100930176020385 r005 Im(z^2+c),c=-29/36+6/49*I,n=34 2100930185705394 r009 Re(z^3+c),c=-13/38+12/23*I,n=23 2100930185874026 r009 Im(z^3+c),c=-47/106+3/50*I,n=32 2100930192262583 l006 ln(7327/9040) 2100930193135540 a007 Real Root Of -392*x^4-155*x^3+811*x^2-784*x+973 2100930198906523 m001 (ln(3)+FeigenbaumDelta)/(Magata-Robbin) 2100930207124041 m005 (1/2*2^(1/2)-3/4)/(5/7*exp(1)+1/10) 2100930211591686 r009 Im(z^3+c),c=-43/94+7/60*I,n=7 2100930218113068 m001 (3^(1/3))/HardHexagonsEntropy*ln(GAMMA(3/4)) 2100930223271596 a007 Real Root Of -136*x^4+77*x^3+602*x^2-649*x-657 2100930224536385 r005 Re(z^2+c),c=-29/122+5/34*I,n=4 2100930226949108 m001 (cos(1/12*Pi)+FeigenbaumKappa)^QuadraticClass 2100930227372642 m001 (Zeta(1,2)-Magata)/(ln(2)+exp(1/Pi)) 2100930237792253 r005 Im(z^2+c),c=-93/118+8/53*I,n=36 2100930242151977 a007 Real Root Of 303*x^4+273*x^3-227*x^2+700*x-899 2100930246102625 a007 Real Root Of -725*x^4+990*x^3+616*x^2+931*x+179 2100930247599435 a001 123/2*377^(25/42) 2100930249394636 r005 Im(z^2+c),c=-57/58+11/53*I,n=20 2100930257477713 m001 Pi/Psi(2,1/3)/Zeta(1,-1)/GAMMA(13/24) 2100930257920279 a007 Real Root Of 141*x^4+128*x^3+3*x^2-751*x-157 2100930263375763 m001 Zeta(1,-1)*(2^(1/3))^MertensB2 2100930266560054 m001 (BesselI(1,2)-MertensB2)/(Zeta(5)+ln(5)) 2100930268216020 r009 Im(z^3+c),c=-13/114+34/39*I,n=8 2100930271729439 m005 (1/3*Zeta(3)+2/7)/(2/9*Zeta(3)+3) 2100930274868702 m001 Salem/(Zeta(3)+Pi*csc(5/24*Pi)/GAMMA(19/24)) 2100930282781827 a007 Real Root Of 82*x^4-408*x^3-811*x^2+757*x-211 2100930297135640 m001 (Pi+gamma(2))/(FeigenbaumC-PolyaRandomWalk3D) 2100930299694151 m001 Trott2nd^Zeta(1/2)*ln(3) 2100930300205361 a001 161/98209*3^(7/31) 2100930303661661 r009 Re(z^3+c),c=-25/78+28/61*I,n=16 2100930306916146 l006 ln(305/2493) 2100930308825884 a007 Real Root Of 159*x^4+12*x^3-633*x^2-164*x-537 2100930309946706 m001 FeigenbaumD*exp(Champernowne)/Zeta(3)^2 2100930310747571 a007 Real Root Of -524*x^4-85*x^3+801*x^2+567*x+84 2100930314625893 a007 Real Root Of -602*x^4-989*x^3+942*x^2+314*x-941 2100930315053473 m009 (Psi(1,2/3)+5/6)/(6*Psi(1,2/3)+1/6) 2100930316038965 m001 (-Ei(1,1)+FeigenbaumDelta)/(Catalan+Zeta(3)) 2100930331054954 b008 5/2+Zeta[-1/8] 2100930332729661 m001 (Catalan-GAMMA(19/24))/(-Conway+ZetaP(4)) 2100930333894781 p004 log(28909/23431) 2100930346801435 r009 Re(z^3+c),c=-8/21+23/40*I,n=27 2100930351292317 a001 144/2207*1364^(4/5) 2100930365499126 m006 (4/5/Pi-3/5)/(3/4*Pi-4) 2100930371021850 m001 (Chi(1)+KhinchinHarmonic)/(-Niven+PlouffeB) 2100930376159923 m001 FeigenbaumKappa^2/exp(FransenRobinson)*Ei(1) 2100930383100343 m001 (Khinchin-Robbin)/(sin(1/12*Pi)+CareFree) 2100930385769934 m001 MinimumGamma/GlaisherKinkelin^2/exp((3^(1/3))) 2100930394894959 m005 (1/2*2^(1/2)-3/4)/(6/7*5^(1/2)+1/8) 2100930398334617 l006 ln(5368/6623) 2100930418991980 r005 Re(z^2+c),c=4/23+3/58*I,n=14 2100930421747193 m005 (1/2*2^(1/2)+4/11)/(3/11*Zeta(3)+2/11) 2100930422443970 r005 Re(z^2+c),c=-1/52+16/25*I,n=49 2100930423429128 m001 (Cahen+Niven)/(Otter-Riemann1stZero) 2100930424612906 m001 (5^(1/2)+1)/(cos(1)+1) 2100930425296466 g007 -Psi(2,3/11)-Psi(13/10)-Psi(2,1/10)-Psi(2,4/7) 2100930428886579 r005 Re(z^2+c),c=29/114+5/29*I,n=32 2100930431725299 r002 12th iterates of z^2 + 2100930432520097 a001 1292/161*521^(2/13) 2100930436089242 m008 (1/6*Pi+1/2)/(5*Pi^4+1/6) 2100930442222543 m001 OneNinth*exp(Salem)*BesselK(1,1) 2100930443451216 m001 (GAMMA(3/4)-exp(Pi))/(-CareFree+MadelungNaCl) 2100930450236080 r002 6th iterates of z^2 + 2100930456165401 r005 Im(z^2+c),c=-3/58+35/37*I,n=5 2100930456277711 r005 Re(z^2+c),c=-9/86+17/31*I,n=51 2100930463663495 r009 Re(z^3+c),c=-27/106+17/61*I,n=10 2100930473519225 r005 Im(z^2+c),c=-119/122+7/30*I,n=23 2100930485921347 m001 GAMMA(7/12)*PrimesInBinary/ln(sqrt(3))^2 2100930497449416 m001 (Pi-sin(1))/(CopelandErdos+Thue) 2100930500981434 m001 (Si(Pi)+FeigenbaumD)/(-HardyLittlewoodC5+Kac) 2100930508321258 m001 1/BesselK(0,1)^2/ln(Si(Pi))^2*sqrt(2) 2100930509839955 m003 49/2+Sqrt[5]/64+Tan[1/2+Sqrt[5]/2]/6 2100930510574592 r005 Im(z^2+c),c=-23/58+22/63*I,n=50 2100930510899826 m009 (5*Psi(1,2/3)-2/5)/(1/3*Pi^2-4) 2100930512786160 r002 3th iterates of z^2 + 2100930513942615 r009 Re(z^3+c),c=-43/126+21/40*I,n=15 2100930515784351 r005 Im(z^2+c),c=-21/26+12/97*I,n=33 2100930520865911 r009 Re(z^3+c),c=-9/32+21/58*I,n=7 2100930526185322 s002 sum(A044597[n]/(n*pi^n-1),n=1..infinity) 2100930526477043 s002 sum(A288504[n]/(n^2*exp(n)+1),n=1..infinity) 2100930529912180 s002 sum(A288504[n]/(n^2*exp(n)-1),n=1..infinity) 2100930532509431 m005 (1/3*Pi+1/8)/(2*exp(1)+1/7) 2100930537772709 b008 7^SinIntegral[1]/3 2100930556773720 a004 Fibonacci(12)*Lucas(15)/(1/2+sqrt(5)/2)^19 2100930563874033 m005 (1/2*2^(1/2)-3/7)/(3/8*Zeta(3)+7/8) 2100930565497494 q001 587/2794 2100930568254968 a007 Real Root Of 392*x^4+989*x^3+489*x^2+181*x-244 2100930569125912 a001 8/321*1364^(14/15) 2100930580911495 a008 Real Root of x^2-x-43929 2100930588447235 a007 Real Root Of -375*x^4-589*x^3+205*x^2-41*x+853 2100930593101751 m005 (1/3*3^(1/2)+1/10)/(9/11*exp(1)+1) 2100930604533882 m001 1/MadelungNaCl*Bloch*exp(GAMMA(23/24))^2 2100930617005118 m001 1/DuboisRaymond/Cahen^2*exp(sqrt(2))^2 2100930623611586 m001 GAMMA(7/12)*ArtinRank2+MertensB2 2100930627168353 a007 Real Root Of 634*x^4+838*x^3-959*x^2+416*x+526 2100930648273240 b008 17*Sqrt[ArcSec[23]] 2100930650019439 a007 Real Root Of 867*x^4-178*x^3-553*x^2-855*x+204 2100930669178696 m001 (5^(1/2)+ln(2))/(gamma(2)+OrthogonalArrays) 2100930672755293 a007 Real Root Of -89*x^4+503*x^3+971*x^2-778*x+478 2100930674624664 r009 Im(z^3+c),c=-3/17+51/58*I,n=58 2100930677302573 a007 Real Root Of 306*x^4+340*x^3-982*x^2-443*x+595 2100930682227970 m005 (3*Pi+2/5)/(-49/10+1/10*5^(1/2)) 2100930695389734 m005 (-1/12+1/4*5^(1/2))/(5/12*Zeta(3)-8/11) 2100930698882539 s002 sum(A162108[n]/(n*2^n+1),n=1..infinity) 2100930702403516 p004 log(33161/4057) 2100930708274444 a001 521/5702887*2504730781961^(4/21) 2100930708275038 a001 521/832040*102334155^(4/21) 2100930712881433 a001 1/233*4181^(4/21) 2100930717053734 a003 cos(Pi*21/76)-cos(Pi*31/87) 2100930723012757 m001 Catalan*LaplaceLimit^2*exp(sqrt(1+sqrt(3))) 2100930731354339 a007 Real Root Of 256*x^4+176*x^3-737*x^2-333*x-802 2100930734552669 l006 ln(938/7667) 2100930739335321 a007 Real Root Of -975*x^4+885*x^3-683*x^2+856*x-156 2100930741001499 m001 ((1+3^(1/2))^(1/2)+MertensB3)/(1+BesselK(0,1)) 2100930743385806 a007 Real Root Of 268*x^4+191*x^3-667*x^2+704*x+973 2100930752302423 r005 Im(z^2+c),c=-35/78+14/45*I,n=5 2100930758854828 m001 (Mills-Thue)/(Artin-FeigenbaumAlpha) 2100930759731941 a007 Real Root Of 291*x^4+673*x^3-423*x^2-957*x+428 2100930764355270 r005 Im(z^2+c),c=-7/8+38/213*I,n=42 2100930778943123 r005 Im(z^2+c),c=-15/26+27/98*I,n=12 2100930779799070 m001 (BesselI(1,1)-gamma(1))/GaussKuzminWirsing 2100930798073169 a007 Real Root Of 124*x^4+205*x^3+454*x^2+889*x-651 2100930799782146 a007 Real Root Of -769*x^4+944*x^3-817*x^2+603*x+173 2100930801641080 a001 521/34*5^(10/51) 2100930802214593 a007 Real Root Of -199*x^4-469*x^3-522*x^2-980*x-227 2100930808258379 m006 (2*exp(2*Pi)+4/5)/(1/2*Pi^2+1/6) 2100930814555865 h001 (7/8*exp(2)+4/9)/(2/5*exp(2)+1/3) 2100930814702176 m005 (3*Pi+1/3)/(1/4*2^(1/2)-2/5) 2100930817575652 p004 log(12841/1571) 2100930822929336 m001 cos(1)/ln(Zeta(3))^2*log(2+sqrt(3)) 2100930841247419 l006 ln(3409/4206) 2100930841329685 a001 48/281*843^(5/7) 2100930872090287 a001 144/3571*1364^(13/15) 2100930872475584 p004 log(23189/2837) 2100930874170734 b008 E-5*Erf[EulerGamma] 2100930875322367 r005 Re(z^2+c),c=-13/14+33/166*I,n=30 2100930876105445 m004 -6-(100*Sqrt[5])/Pi+25*Pi+Cos[Sqrt[5]*Pi] 2100930894902943 a007 Real Root Of -526*x^4-780*x^3+765*x^2+624*x+949 2100930895107611 r005 Re(z^2+c),c=43/118+16/49*I,n=53 2100930899483554 r005 Re(z^2+c),c=-45/56+38/43*I,n=3 2100930899995155 m005 (1/2*5^(1/2)+1/5)/(6*Catalan+7/9) 2100930910704925 m001 1/Riemann1stZero^2*RenyiParking/exp(gamma) 2100930913154416 m005 (1/2*gamma-1/7)/(Catalan-2/9) 2100930914258561 h001 (6/11*exp(1)+9/10)/(1/4*exp(1)+5/11) 2100930924817474 r005 Re(z^2+c),c=-49/82+33/59*I,n=8 2100930934702085 a001 46/311187*28657^(29/41) 2100930939102543 r009 Re(z^3+c),c=-9/62+8/11*I,n=13 2100930940601798 l006 ln(633/5174) 2100930941879648 b008 E*(E^2+ArcCsc[3]) 2100930950952559 a007 Real Root Of -557*x^4+591*x^3-156*x^2+326*x-66 2100930953743969 a001 141/46*1364^(4/15) 2100930967424575 m005 (1/2*2^(1/2)+2/3)/(1/7*gamma+4/7) 2100930968147936 r005 Im(z^2+c),c=-15/14+39/178*I,n=15 2100930978002093 r009 Re(z^3+c),c=-1/18+20/29*I,n=6 2100930978383183 m005 (1/2*Pi+4/11)/(1/11*3^(1/2)-1/6) 2100930978736902 a007 Real Root Of -379*x^4-448*x^3+551*x^2-103*x+581 2100930980716043 a007 Real Root Of -555*x^4-827*x^3+456*x^2-932*x-827 2100930981489526 r009 Re(z^3+c),c=-5/22+11/59*I,n=6 2100930983034905 a007 Real Root Of 528*x^4+489*x^3-964*x^2+487*x-474 2100930988250235 m001 Psi(1,1/3)^Shi(1)/(Psi(1,1/3)^(3^(1/2))) 2100930996398272 m001 ZetaR(2)/(TravellingSalesman^MertensB2) 2100931002201739 r005 Re(z^2+c),c=-3/32+30/53*I,n=54 2100931004805403 m002 -(Pi^5*Csch[Pi])+(2*Pi)/Log[Pi] 2100931013299447 r005 Im(z^2+c),c=-29/62+1/28*I,n=22 2100931024408333 m001 (1+2^(1/3))/(-gamma+(1+3^(1/2))^(1/2)) 2100931038999815 m001 LandauRamanujan*ln(Bloch)/sqrt(1+sqrt(3))^2 2100931039903659 m005 (3/4*2^(1/2)+3/5)/(5*2^(1/2)+5/6) 2100931042052352 m001 1/TreeGrowth2nd^2/ln(Salem)^2/cos(Pi/12)^2 2100931044857580 p004 log(14407/11677) 2100931055193160 m005 (1/2*3^(1/2)+2/7)/(2/5*Catalan+2/11) 2100931058652918 a001 12238*2^(46/59) 2100931070188248 m001 (OneNinth-Porter)/(cos(1/5*Pi)-Backhouse) 2100931080022939 m001 (ln(Pi)-Sarnak)/(Tetranacci+ZetaP(4)) 2100931094070282 a001 123/39088169*121393^(5/9) 2100931094086122 a001 41/1602508992*701408733^(5/9) 2100931094086122 a001 123/53316291173*53316291173^(5/9) 2100931094086122 a001 123/591286729879*4052739537881^(5/9) 2100931094086125 a001 123/433494437*9227465^(5/9) 2100931094796099 m001 Riemann2ndZero/cos(1)/Si(Pi) 2100931098954106 a007 Real Root Of -536*x^4-973*x^3+572*x^2+129*x-834 2100931100046348 a007 Real Root Of -602*x^4-904*x^3+809*x^2+113*x+12 2100931110371049 m009 (1/5*Psi(1,2/3)+1)/(4/5*Psi(1,1/3)-2/5) 2100931110515927 r008 a(0)=0,K{-n^6,37+5*n^3+36*n^2-30*n} 2100931113258442 m001 (KhinchinHarmonic-gamma(2)*GaussAGM)/GaussAGM 2100931114861941 a001 4181/322*521^(1/13) 2100931117767127 a003 cos(Pi*10/83)/cos(Pi*17/48) 2100931122630601 m006 (3/5*Pi-1)/(2/3/Pi+4) 2100931125778669 h005 exp(cos(Pi*9/35)/sin(Pi*8/21)) 2100931138380938 a001 144/2207*3571^(12/17) 2100931141140891 m001 (sin(1/5*Pi)+Zeta(1,2))/(Pi^(1/2)-OneNinth) 2100931141719429 l006 ln(961/7855) 2100931150927241 m001 Lehmer/ln(GaussAGM(1,1/sqrt(2)))*sin(Pi/5) 2100931152014019 a007 Real Root Of 360*x^4+237*x^3-746*x^2+844*x+250 2100931154091122 r005 Re(z^2+c),c=-19/70+30/49*I,n=53 2100931163740598 m001 (exp(1)+Khinchin)/(Rabbit+Riemann3rdZero) 2100931164241021 r009 Re(z^3+c),c=-35/102+3/5*I,n=29 2100931172507317 m005 (1/2*Catalan+7/9)/(-7/10+1/20*5^(1/2)) 2100931175196921 m001 exp(Salem)*FeigenbaumC^2*GAMMA(11/24) 2100931178808208 a005 (1/cos(8/139*Pi))^1306 2100931179696508 m005 (1/2*Zeta(3)+1/5)/(4/9*2^(1/2)-2/3) 2100931180994710 r002 7th iterates of z^2 + 2100931182119951 r008 a(0)=2,K{-n^6,72-73*n^3-82*n^2+73*n} 2100931185615259 a001 123/3524578*1597^(5/9) 2100931189742174 m008 (2/3*Pi-1/6)/(3*Pi^5-1/2) 2100931197286842 p003 LerchPhi(1/3,4,283/105) 2100931208263130 r005 Im(z^2+c),c=-89/110+8/63*I,n=32 2100931212636834 a003 cos(Pi*54/119)+cos(Pi*23/48) 2100931213664861 p004 log(28927/3539) 2100931216106885 a001 141/46*3571^(4/17) 2100931216773611 m001 GAMMA(13/24)^GAMMA(23/24)+TreeGrowth2nd 2100931218578643 m001 ln(CopelandErdos)/Conway*Ei(1) 2100931221713741 b008 14+3^Sqrt[Pi] 2100931226410690 r005 Im(z^2+c),c=-11/14+18/179*I,n=46 2100931230786310 a007 Real Root Of 198*x^4+181*x^3+7*x^2+842*x-441 2100931231666739 a007 Real Root Of 231*x^4+424*x^3+21*x^2+201*x-239 2100931239495531 a001 144/2207*9349^(12/19) 2100931242936709 r002 3th iterates of z^2 + 2100931246151921 a001 5778/5*2178309^(18/35) 2100931246646905 r009 Re(z^3+c),c=-63/122+33/62*I,n=8 2100931246792200 m001 1/exp(Tribonacci)^2*Salem/sqrt(2) 2100931248291389 r005 Im(z^2+c),c=-2/3+13/249*I,n=38 2100931248363219 m001 Zeta(1,-1)^exp(1/exp(1))+Riemann2ndZero 2100931249811750 a001 141/46*9349^(4/19) 2100931250067710 m002 -3+(Pi*Log[Pi])/4 2100931251248895 m001 exp(sin(Pi/5))^2/cos(Pi/12)^2/sqrt(1+sqrt(3)) 2100931251458229 r009 Re(z^3+c),c=-14/23+7/24*I,n=3 2100931252672860 a001 144/2207*24476^(4/7) 2100931253335197 a007 Real Root Of -139*x^4+84*x^3+692*x^2-125*x+170 2100931254204193 a001 141/46*24476^(4/21) 2100931254409885 a001 144/2207*64079^(12/23) 2100931254671997 a001 144/2207*439204^(4/9) 2100931254676825 a001 144/2207*7881196^(4/11) 2100931254676838 a001 144/2207*141422324^(4/13) 2100931254676838 a001 144/2207*2537720636^(4/15) 2100931254676838 a001 144/2207*45537549124^(4/17) 2100931254676838 a001 144/2207*817138163596^(4/19) 2100931254676838 a001 144/2207*14662949395604^(4/21) 2100931254676838 a001 144/2207*(1/2+1/2*5^(1/2))^12 2100931254676838 a001 144/2207*192900153618^(2/9) 2100931254676838 a001 144/2207*73681302247^(3/13) 2100931254676838 a001 144/2207*10749957122^(1/4) 2100931254676838 a001 144/2207*4106118243^(6/23) 2100931254676838 a001 144/2207*1568397607^(3/11) 2100931254676838 a001 144/2207*599074578^(2/7) 2100931254676838 a001 144/2207*228826127^(3/10) 2100931254676838 a001 144/2207*87403803^(6/19) 2100931254676838 a001 144/2207*33385282^(1/3) 2100931254676842 a001 144/2207*12752043^(6/17) 2100931254676871 a001 144/2207*4870847^(3/8) 2100931254677081 a001 144/2207*1860498^(2/5) 2100931254678621 a001 144/2207*710647^(3/7) 2100931254689998 a001 144/2207*271443^(6/13) 2100931254774556 a001 144/2207*103682^(1/2) 2100931254783201 a001 141/46*64079^(4/23) 2100931254872185 a001 141/46*(1/2+1/2*5^(1/2))^4 2100931254872185 a001 141/46*23725150497407^(1/16) 2100931254872185 a001 141/46*73681302247^(1/13) 2100931254872185 a001 141/46*10749957122^(1/12) 2100931254872185 a001 141/46*4106118243^(2/23) 2100931254872185 a001 141/46*1568397607^(1/11) 2100931254872185 a001 141/46*599074578^(2/21) 2100931254872185 a001 141/46*228826127^(1/10) 2100931254872185 a001 141/46*87403803^(2/19) 2100931254872186 a001 141/46*33385282^(1/9) 2100931254872187 a001 141/46*12752043^(2/17) 2100931254872196 a001 141/46*4870847^(1/8) 2100931254872266 a001 141/46*1860498^(2/15) 2100931254872780 a001 141/46*710647^(1/7) 2100931254876572 a001 141/46*271443^(2/13) 2100931254904758 a001 141/46*103682^(1/6) 2100931255115738 a001 141/46*39603^(2/11) 2100931255407496 a001 144/2207*39603^(6/11) 2100931256708454 a001 141/46*15127^(1/5) 2100931260185644 a001 144/2207*15127^(3/5) 2100931261743560 a007 Real Root Of -432*x^4+74*x^3+102*x^2+679*x-147 2100931263858093 a001 47376/2255 2100931268856599 a001 141/46*5778^(2/9) 2100931271123122 m001 (Sarnak-ZetaQ(2))/(GAMMA(3/4)+ReciprocalLucas) 2100931273486576 r005 Re(z^2+c),c=-5/6+2/133*I,n=28 2100931277864324 r005 Im(z^2+c),c=-14/27+33/59*I,n=37 2100931278105731 a007 Real Root Of -417*x^4-625*x^3+72*x^2-561*x+832 2100931278535497 r005 Im(z^2+c),c=-1/10+42/47*I,n=57 2100931287758211 h001 (-4*exp(6)+2)/(-7*exp(7)+5) 2100931296630080 a001 144/2207*5778^(2/3) 2100931303681166 h001 (8/11*exp(1)+5/8)/(4/11*exp(1)+1/4) 2100931309748626 a007 Real Root Of -325*x^4-274*x^3+895*x^2-332*x-857 2100931310302328 p003 LerchPhi(1/256,5,235/172) 2100931319369236 m001 (-sin(1/5*Pi)+Kac)/(cos(1)+BesselI(0,1)) 2100931321336126 m001 (2^(1/3)+Rabbit)/Zeta(1,2) 2100931326894359 m001 sin(1/5*Pi)+(Pi^(1/2))^Sarnak 2100931328312993 a007 Real Root Of 25*x^4+121*x^3+185*x^2-143*x-482 2100931329086854 m005 (1/3*Pi+2/9)/(1/11*5^(1/2)-1/7) 2100931330557116 l006 ln(4859/5995) 2100931333544791 a007 Real Root Of -217*x^4+82*x^3+707*x^2-758*x+275 2100931345535343 r005 Re(z^2+c),c=-133/110+17/61*I,n=8 2100931349170689 m001 (BesselJ(0,1)-KomornikLoreti)/(PlouffeB+Trott) 2100931350044515 m002 -6*Pi^5*Log[Pi]+Tanh[Pi]/ProductLog[Pi] 2100931350215981 r002 11th iterates of z^2 + 2100931357680030 a001 341/1201881744*832040^(6/19) 2100931357680222 a001 341/21566892818*7778742049^(6/19) 2100931361076940 r005 Im(z^2+c),c=-5/16+18/55*I,n=32 2100931362704103 a001 141/46*2207^(1/4) 2100931371447914 m001 ln(1+sqrt(2))^exp(-1/2*Pi)/arctan(1/2) 2100931371447914 m001 ln(2^(1/2)+1)^exp(-1/2*Pi)/arctan(1/2) 2100931375066156 a007 Real Root Of -465*x^4-930*x^3-349*x^2-839*x+213 2100931375600951 r005 Re(z^2+c),c=-14/17+2/41*I,n=8 2100931387874959 m001 Shi(1)^exp(1)-Zeta(1,2) 2100931392259894 r005 Im(z^2+c),c=-23/58+22/63*I,n=52 2100931393727949 m005 (1/5*Pi+2/3)/(2/5*Catalan+1/4) 2100931406292547 r009 Im(z^3+c),c=-3/32+37/42*I,n=14 2100931408633819 r009 Re(z^3+c),c=-17/60+35/51*I,n=29 2100931414659735 a005 (1/cos(21/167*Pi))^354 2100931414943200 m001 gamma(1)*ZetaP(3)+Riemann2ndZero 2100931418238115 a007 Real Root Of 9*x^4-360*x^3-864*x^2+130*x+573 2100931430768160 r005 Re(z^2+c),c=-2/9+13/51*I,n=11 2100931440972181 r002 26th iterates of z^2 + 2100931443898511 a007 Real Root Of -623*x^4-948*x^3+869*x^2+31*x-424 2100931448960147 m005 (1/2*2^(1/2)-5/9)/(51/8+3/8*5^(1/2)) 2100931454388545 g007 -Psi(2,7/11)-Psi(2,1/10)-Psi(2,6/7)-Psi(2,2/7) 2100931456453789 m001 (-Artin+3)/(GAMMA(1/12)+1) 2100931456687025 a007 Real Root Of 215*x^4-59*x^3-745*x^2+887*x+416 2100931464974453 a005 (1/cos(1/44*Pi))^291 2100931465648410 b008 Sqrt[3*Gudermannian[3]] 2100931470688111 m006 (1/2/Pi-5/6)/(3/5*exp(2*Pi)-2/5) 2100931472705961 a001 1292/161*1364^(2/15) 2100931474126205 m001 ln(BesselK(0,1))/TreeGrowth2nd^2/GAMMA(5/12) 2100931477820731 a007 Real Root Of -337*x^4-927*x^3-236*x^2+50*x-884 2100931485062287 m002 -Pi+Coth[Pi]+Log[Pi]/Pi^3 2100931487396094 a001 8/321*3571^(14/17) 2100931494820850 m001 5^(1/2)/(Zeta(5)+Trott2nd) 2100931497517561 b008 ArcSinh[1+E^ArcTan[2]] 2100931515251477 m001 HardyLittlewoodC5/(FeigenbaumDelta-exp(1)) 2100931521251985 a004 Fibonacci(12)*Lucas(17)/(1/2+sqrt(5)/2)^21 2100931521443046 p004 log(21563/17477) 2100931521761967 a001 144/15127*3571^(16/17) 2100931527799754 m001 GAMMA(19/24)*Trott-Riemann2ndZero 2100931529851815 l006 ln(328/2681) 2100931530189749 a007 Real Root Of 218*x^4-873*x^3-537*x^2-498*x+136 2100931536779505 a007 Real Root Of -220*x^4-367*x^3+136*x^2+242*x+791 2100931547454541 m001 Riemann1stZero^2*Magata/exp(sin(Pi/5))^2 2100931554748705 s001 sum(exp(-2*Pi)^n*A187985[n],n=1..infinity) 2100931555506288 b008 Zeta[33/53] 2100931561574229 a007 Real Root Of 702*x^4+888*x^3+373*x^2-819*x+146 2100931562008198 m001 (CopelandErdos-Tetranacci)/(Thue-ZetaQ(2)) 2100931562671793 m001 (Grothendieck+ZetaQ(2))/(2^(1/2)-cos(1)) 2100931564640776 m001 1/BesselK(0,1)*Tribonacci^2*exp(GAMMA(1/6)) 2100931564671711 a001 144/9349*3571^(15/17) 2100931574083275 a001 2/17711*144^(10/17) 2100931575127975 m001 1/BesselJ(1,1)/(2^(1/3))^2*ln(GAMMA(5/6))^2 2100931577725423 m001 gamma(1)^GAMMA(2/3)+Riemann2ndZero 2100931578172608 a001 144/2207*2207^(3/4) 2100931584321764 a007 Real Root Of -512*x^4-817*x^3+254*x^2-819*x-443 2100931594950315 l006 ln(6309/7784) 2100931595051329 r009 Re(z^3+c),c=-19/90+52/55*I,n=19 2100931603887448 a001 1292/161*3571^(2/17) 2100931604869878 b008 E^(13/3)*Csch[2] 2100931605363139 a001 8/321*9349^(14/19) 2100931613193035 m001 1-Ei(1,1)*Riemann1stZero 2100931617632051 m001 2^(1/2)+HardyLittlewoodC3-Tribonacci 2100931620736693 a001 8/321*24476^(2/3) 2100931620739883 a001 1292/161*9349^(2/19) 2100931622763223 a001 8/321*64079^(14/23) 2100931622936105 a001 1292/161*24476^(2/21) 2100931623074665 a001 8/321*20633239^(2/5) 2100931623074667 a001 8/321*17393796001^(2/7) 2100931623074667 a001 8/321*14662949395604^(2/9) 2100931623074667 a001 8/321*(1/2+1/2*5^(1/2))^14 2100931623074667 a001 8/321*10749957122^(7/24) 2100931623074667 a001 8/321*4106118243^(7/23) 2100931623074667 a001 8/321*1568397607^(7/22) 2100931623074667 a001 8/321*599074578^(1/3) 2100931623074667 a001 8/321*228826127^(7/20) 2100931623074667 a001 8/321*87403803^(7/19) 2100931623074668 a001 8/321*33385282^(7/18) 2100931623074672 a001 8/321*12752043^(7/17) 2100931623074706 a001 8/321*4870847^(7/16) 2100931623074950 a001 8/321*1860498^(7/15) 2100931623076747 a001 8/321*710647^(1/2) 2100931623090021 a001 8/321*271443^(7/13) 2100931623188672 a001 8/321*103682^(7/12) 2100931623225609 a001 1292/161*64079^(2/23) 2100931623270101 a001 1292/161*(1/2+1/2*5^(1/2))^2 2100931623270101 a001 1292/161*10749957122^(1/24) 2100931623270101 a001 1292/161*4106118243^(1/23) 2100931623270101 a001 1292/161*1568397607^(1/22) 2100931623270101 a001 1292/161*599074578^(1/21) 2100931623270101 a001 1292/161*228826127^(1/20) 2100931623270101 a001 1292/161*87403803^(1/19) 2100931623270102 a001 1292/161*33385282^(1/18) 2100931623270102 a001 1292/161*12752043^(1/17) 2100931623270107 a001 1292/161*4870847^(1/16) 2100931623270142 a001 1292/161*1860498^(1/15) 2100931623270399 a001 1292/161*710647^(1/14) 2100931623272295 a001 1292/161*271443^(1/13) 2100931623286388 a001 1292/161*103682^(1/12) 2100931623391878 a001 1292/161*39603^(1/11) 2100931623927102 a001 8/321*39603^(7/11) 2100931624188236 a001 1292/161*15127^(1/10) 2100931624414205 a001 372096/17711 2100931625106304 a001 1597/322*1364^(1/5) 2100931625606469 h001 (-exp(2)-9)/(-4*exp(-3)+8) 2100931629501609 a001 8/321*15127^(7/10) 2100931630262310 a001 1292/161*5778^(1/9) 2100931632278113 a007 Real Root Of 537*x^4+817*x^3-446*x^2+706*x+566 2100931633123709 r005 Re(z^2+c),c=-5/36+10/21*I,n=20 2100931633850645 a007 Real Root Of 184*x^4+586*x^3+83*x^2-872*x-349 2100931634954978 a001 4181/322*1364^(1/15) 2100931635646896 r005 Im(z^2+c),c=-9/10+58/255*I,n=41 2100931648826713 r002 12th iterates of z^2 + 2100931655966930 m001 1/TwinPrimes/ln(Conway)^2/GAMMA(23/24) 2100931656581450 a001 144/15127*9349^(16/19) 2100931661893037 a001 48/13201*9349^(18/19) 2100931661967468 a004 Fibonacci(12)*Lucas(19)/(1/2+sqrt(5)/2)^23 2100931665950997 r002 5th iterates of z^2 + 2100931666379833 m001 Backhouse-gamma(2)+HardyLittlewoodC3 2100931668004648 a001 36/6119*9349^(17/19) 2100931672020125 a001 8/321*5778^(7/9) 2100931674151226 a001 144/15127*24476^(16/21) 2100931676467260 a001 144/15127*64079^(16/23) 2100931676823197 a001 144/15127*(1/2+1/2*5^(1/2))^16 2100931676823197 a001 144/15127*23725150497407^(1/4) 2100931676823197 a001 144/15127*73681302247^(4/13) 2100931676823197 a001 144/15127*10749957122^(1/3) 2100931676823197 a001 144/15127*4106118243^(8/23) 2100931676823197 a001 144/15127*1568397607^(4/11) 2100931676823197 a001 144/15127*599074578^(8/21) 2100931676823197 a001 144/15127*228826127^(2/5) 2100931676823197 a001 144/15127*87403803^(8/19) 2100931676823198 a001 144/15127*33385282^(4/9) 2100931676823203 a001 144/15127*12752043^(8/17) 2100931676823241 a001 144/15127*4870847^(1/2) 2100931676823521 a001 144/15127*1860498^(8/15) 2100931676825574 a001 144/15127*710647^(4/7) 2100931676840744 a001 144/15127*271443^(8/13) 2100931676953488 a001 144/15127*103682^(2/3) 2100931677018633 a001 6765/322 2100931677018633 q001 1353/644 2100931677186069 a001 1292/161*2207^(1/8) 2100931677797408 a001 144/15127*39603^(8/11) 2100931681194738 a001 1597/18*18^(17/57) 2100931681659035 a001 48/13201*24476^(6/7) 2100931682469142 a001 72/51841*24476^(20/21) 2100931682497580 a004 Fibonacci(12)*Lucas(21)/(1/2+sqrt(5)/2)^25 2100931683343235 a001 144/64079*24476^(19/21) 2100931684168273 a001 144/15127*15127^(4/5) 2100931684264573 a001 48/13201*64079^(18/23) 2100931684657741 a001 48/13201*439204^(2/3) 2100931684664983 a001 48/13201*7881196^(6/11) 2100931684665002 a001 48/13201*141422324^(6/13) 2100931684665002 a001 48/13201*2537720636^(2/5) 2100931684665002 a001 48/13201*45537549124^(6/17) 2100931684665002 a001 48/13201*14662949395604^(2/7) 2100931684665002 a001 48/13201*(1/2+1/2*5^(1/2))^18 2100931684665002 a001 48/13201*192900153618^(1/3) 2100931684665002 a001 48/13201*10749957122^(3/8) 2100931684665002 a001 48/13201*4106118243^(9/23) 2100931684665002 a001 48/13201*1568397607^(9/22) 2100931684665002 a001 48/13201*599074578^(3/7) 2100931684665002 a001 48/13201*228826127^(9/20) 2100931684665002 a001 48/13201*87403803^(9/19) 2100931684665003 a001 48/13201*33385282^(1/2) 2100931684665009 a001 48/13201*12752043^(9/17) 2100931684665052 a001 48/13201*4870847^(9/16) 2100931684665366 a001 48/13201*1860498^(3/5) 2100931684667676 a001 48/13201*710647^(9/14) 2100931684684742 a001 48/13201*271443^(9/13) 2100931684693516 a001 2550384/121393 2100931684811579 a001 48/13201*103682^(3/4) 2100931684860438 a004 Fibonacci(22)/Lucas(12)/(1/2+sqrt(5)/2)^2 2100931685364185 a001 72/51841*64079^(20/23) 2100931685486615 a001 48/90481*64079^(22/23) 2100931685492883 a004 Fibonacci(12)*Lucas(23)/(1/2+sqrt(5)/2)^27 2100931685612025 a001 144/167761*64079^(21/23) 2100931685749386 a001 72/51841*167761^(4/5) 2100931685760989 a001 48/13201*39603^(9/11) 2100931685809103 a001 72/51841*20633239^(4/7) 2100931685809106 a001 72/51841*2537720636^(4/9) 2100931685809106 a001 72/51841*(1/2+1/2*5^(1/2))^20 2100931685809106 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^20/Lucas(24) 2100931685809106 a001 72/51841*23725150497407^(5/16) 2100931685809106 a001 72/51841*505019158607^(5/14) 2100931685809106 a001 72/51841*73681302247^(5/13) 2100931685809106 a001 72/51841*28143753123^(2/5) 2100931685809106 a001 72/51841*10749957122^(5/12) 2100931685809106 a001 72/51841*4106118243^(10/23) 2100931685809106 a001 72/51841*1568397607^(5/11) 2100931685809106 a001 72/51841*599074578^(10/21) 2100931685809106 a001 72/51841*228826127^(1/2) 2100931685809106 a001 72/51841*87403803^(10/19) 2100931685809107 a001 72/51841*33385282^(5/9) 2100931685809113 a001 72/51841*12752043^(10/17) 2100931685809161 a001 72/51841*4870847^(5/8) 2100931685809510 a001 72/51841*1860498^(2/3) 2100931685812077 a001 72/51841*710647^(5/7) 2100931685813266 a001 2225664/105937 2100931685831039 a001 72/51841*271443^(10/13) 2100931685929892 a004 Fibonacci(12)*Lucas(25)/(1/2+sqrt(5)/2)^29 2100931685971969 a001 72/51841*103682^(5/6) 2100931685976006 a001 48/90481*7881196^(2/3) 2100931685976028 a001 48/90481*312119004989^(2/5) 2100931685976028 a001 48/90481*(1/2+1/2*5^(1/2))^22 2100931685976028 a001 48/90481*10749957122^(11/24) 2100931685976028 a001 48/90481*4106118243^(11/23) 2100931685976028 a001 48/90481*1568397607^(1/2) 2100931685976028 a001 48/90481*599074578^(11/21) 2100931685976028 a001 48/90481*228826127^(11/20) 2100931685976028 a001 48/90481*87403803^(11/19) 2100931685976029 a001 48/90481*33385282^(11/18) 2100931685976037 a001 48/90481*12752043^(11/17) 2100931685976089 a001 48/90481*4870847^(11/16) 2100931685976473 a001 48/90481*1860498^(11/15) 2100931685976635 a001 2185074/104005 2100931685979297 a001 48/90481*710647^(11/14) 2100931685990701 a001 144/710647*439204^(8/9) 2100931685993651 a004 Fibonacci(12)*Lucas(27)/(1/2+sqrt(5)/2)^31 2100931686000155 a001 48/90481*271443^(11/13) 2100931686000357 a001 144/710647*7881196^(8/11) 2100931686000382 a001 144/710647*141422324^(8/13) 2100931686000382 a001 144/710647*2537720636^(8/15) 2100931686000382 a001 144/710647*45537549124^(8/17) 2100931686000382 a001 144/710647*14662949395604^(8/21) 2100931686000382 a001 144/710647*(1/2+1/2*5^(1/2))^24 2100931686000382 a001 144/710647*192900153618^(4/9) 2100931686000382 a001 144/710647*73681302247^(6/13) 2100931686000382 a001 144/710647*10749957122^(1/2) 2100931686000382 a001 144/710647*4106118243^(12/23) 2100931686000382 a001 144/710647*1568397607^(6/11) 2100931686000382 a001 144/710647*599074578^(4/7) 2100931686000382 a001 144/710647*228826127^(3/5) 2100931686000382 a001 144/710647*87403803^(12/19) 2100931686000383 a001 144/710647*33385282^(2/3) 2100931686000391 a001 144/710647*12752043^(12/17) 2100931686000448 a001 144/710647*4870847^(3/4) 2100931686000471 a001 15254928/726103 2100931686000868 a001 144/710647*1860498^(4/5) 2100931686002953 a004 Fibonacci(12)*Lucas(29)/(1/2+sqrt(5)/2)^33 2100931686003935 a001 8/103361*141422324^(2/3) 2100931686003935 a001 8/103361*(1/2+1/2*5^(1/2))^26 2100931686003935 a001 8/103361*73681302247^(1/2) 2100931686003935 a001 8/103361*10749957122^(13/24) 2100931686003935 a001 8/103361*4106118243^(13/23) 2100931686003935 a001 8/103361*1568397607^(13/22) 2100931686003935 a001 8/103361*599074578^(13/21) 2100931686003935 a001 8/103361*228826127^(13/20) 2100931686003935 a001 8/103361*87403803^(13/19) 2100931686003936 a001 8/103361*33385282^(13/18) 2100931686003945 a001 8/103361*12752043^(13/17) 2100931686003948 a001 144/710647*710647^(6/7) 2100931686003948 a001 119813760/5702887 2100931686004007 a001 8/103361*4870847^(13/16) 2100931686004310 a004 Fibonacci(12)*Lucas(31)/(1/2+sqrt(5)/2)^35 2100931686004450 a001 144/4870847*20633239^(4/5) 2100931686004454 a001 144/4870847*17393796001^(4/7) 2100931686004454 a001 144/4870847*14662949395604^(4/9) 2100931686004454 a001 144/4870847*(1/2+1/2*5^(1/2))^28 2100931686004454 a001 144/4870847*505019158607^(1/2) 2100931686004454 a001 144/4870847*73681302247^(7/13) 2100931686004454 a001 144/4870847*10749957122^(7/12) 2100931686004454 a001 144/4870847*4106118243^(14/23) 2100931686004454 a001 144/4870847*1568397607^(7/11) 2100931686004454 a001 144/4870847*599074578^(2/3) 2100931686004454 a001 144/4870847*228826127^(7/10) 2100931686004454 a001 144/4870847*87403803^(14/19) 2100931686004455 a001 144/4870847*33385282^(7/9) 2100931686004455 a001 726103/34561 2100931686004461 a001 8/103361*1860498^(13/15) 2100931686004464 a001 144/4870847*12752043^(14/17) 2100931686004498 a001 48/4250681*7881196^(10/11) 2100931686004508 a004 Fibonacci(12)*Lucas(33)/(1/2+sqrt(5)/2)^37 2100931686004525 a001 48/4250681*20633239^(6/7) 2100931686004529 a001 48/4250681*141422324^(10/13) 2100931686004529 a001 48/4250681*2537720636^(2/3) 2100931686004529 a001 48/4250681*45537549124^(10/17) 2100931686004529 a001 48/4250681*312119004989^(6/11) 2100931686004529 a001 48/4250681*14662949395604^(10/21) 2100931686004529 a001 48/4250681*(1/2+1/2*5^(1/2))^30 2100931686004529 a001 48/4250681*192900153618^(5/9) 2100931686004529 a001 48/4250681*28143753123^(3/5) 2100931686004529 a001 48/4250681*10749957122^(5/8) 2100931686004529 a001 48/4250681*4106118243^(15/23) 2100931686004529 a001 48/4250681*1568397607^(15/22) 2100931686004529 a001 48/4250681*599074578^(5/7) 2100931686004529 a001 48/4250681*228826127^(3/4) 2100931686004529 a001 48/4250681*87403803^(15/19) 2100931686004529 a001 821215728/39088169 2100931686004531 a001 48/4250681*33385282^(5/6) 2100931686004531 a001 144/4870847*4870847^(7/8) 2100931686004537 a004 Fibonacci(12)*Lucas(35)/(1/2+sqrt(5)/2)^39 2100931686004540 a001 72/16692641*(1/2+1/2*5^(1/2))^32 2100931686004540 a001 72/16692641*23725150497407^(1/2) 2100931686004540 a001 72/16692641*73681302247^(8/13) 2100931686004540 a001 72/16692641*10749957122^(2/3) 2100931686004540 a001 72/16692641*4106118243^(16/23) 2100931686004540 a001 72/16692641*1568397607^(8/11) 2100931686004540 a001 72/16692641*599074578^(16/21) 2100931686004540 a001 72/16692641*228826127^(4/5) 2100931686004540 a001 716656896/34111385 2100931686004540 a001 72/16692641*87403803^(16/19) 2100931686004541 a001 48/4250681*12752043^(15/17) 2100931686004541 a004 Fibonacci(12)*Lucas(37)/(1/2+sqrt(5)/2)^41 2100931686004542 a001 48/29134601*45537549124^(2/3) 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^34/Lucas(38) 2100931686004542 a001 48/29134601*10749957122^(17/24) 2100931686004542 a001 48/29134601*4106118243^(17/23) 2100931686004542 a001 48/29134601*1568397607^(17/22) 2100931686004542 a001 48/29134601*599074578^(17/21) 2100931686004542 a001 703587042/33489287 2100931686004542 a001 48/29134601*228826127^(17/20) 2100931686004542 a001 72/16692641*33385282^(8/9) 2100931686004542 a001 144/228826127*141422324^(12/13) 2100931686004542 a004 Fibonacci(12)*Lucas(39)/(1/2+sqrt(5)/2)^43 2100931686004542 a001 144/228826127*2537720636^(4/5) 2100931686004542 a001 144/228826127*45537549124^(12/17) 2100931686004542 a001 144/228826127*14662949395604^(4/7) 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^36/Lucas(40) 2100931686004542 a001 144/228826127*505019158607^(9/14) 2100931686004542 a001 144/228826127*192900153618^(2/3) 2100931686004542 a001 144/228826127*73681302247^(9/13) 2100931686004542 a001 144/228826127*10749957122^(3/4) 2100931686004542 a001 144/228826127*4106118243^(18/23) 2100931686004542 a001 144/228826127*1568397607^(9/11) 2100931686004542 a001 4912039440/233802911 2100931686004542 a001 144/228826127*599074578^(6/7) 2100931686004542 a001 48/29134601*87403803^(17/19) 2100931686004542 a004 Fibonacci(12)*Lucas(41)/(1/2+sqrt(5)/2)^45 2100931686004542 a001 8/33281921*817138163596^(2/3) 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^38/Lucas(42) 2100931686004542 a001 8/33281921*10749957122^(19/24) 2100931686004542 a001 8/33281921*4106118243^(19/23) 2100931686004542 a001 38579658624/1836311903 2100931686004542 a001 8/33281921*1568397607^(19/22) 2100931686004542 a001 144/228826127*228826127^(9/10) 2100931686004542 a004 Fibonacci(12)*Lucas(43)/(1/2+sqrt(5)/2)^47 2100931686004542 a001 144/1568397607*2537720636^(8/9) 2100931686004542 a001 144/1568397607*312119004989^(8/11) 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^40/Lucas(44) 2100931686004542 a001 144/1568397607*23725150497407^(5/8) 2100931686004542 a001 144/1568397607*73681302247^(10/13) 2100931686004542 a001 144/1568397607*28143753123^(4/5) 2100931686004542 a001 144/1568397607*10749957122^(5/6) 2100931686004542 a001 701408733/33385604 2100931686004542 a001 144/1568397607*4106118243^(20/23) 2100931686004542 a001 8/33281921*599074578^(19/21) 2100931686004542 a001 48/1368706081*2537720636^(14/15) 2100931686004542 a004 Fibonacci(12)*Lucas(45)/(1/2+sqrt(5)/2)^49 2100931686004542 a001 48/1368706081*17393796001^(6/7) 2100931686004542 a001 48/1368706081*45537549124^(14/17) 2100931686004542 a001 48/1368706081*817138163596^(14/19) 2100931686004542 a001 48/1368706081*14662949395604^(2/3) 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^42/Lucas(46) 2100931686004542 a001 48/1368706081*505019158607^(3/4) 2100931686004542 a001 48/1368706081*192900153618^(7/9) 2100931686004542 a001 264428914032/12586269025 2100931686004542 a001 48/1368706081*10749957122^(7/8) 2100931686004542 a001 144/1568397607*1568397607^(10/11) 2100931686004542 a004 Fibonacci(12)*Lucas(47)/(1/2+sqrt(5)/2)^51 2100931686004542 a001 72/5374978561*312119004989^(4/5) 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^44/Lucas(48) 2100931686004542 a001 72/5374978561*23725150497407^(11/16) 2100931686004542 a001 72/5374978561*73681302247^(11/13) 2100931686004542 a001 230761294848/10983760033 2100931686004542 a001 48/1368706081*4106118243^(21/23) 2100931686004542 a004 Fibonacci(12)*Lucas(49)/(1/2+sqrt(5)/2)^53 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^46/Lucas(50) 2100931686004542 a001 226552842450/10783446409 2100931686004542 a001 72/5374978561*10749957122^(11/12) 2100931686004542 a001 144/73681302247*45537549124^(16/17) 2100931686004542 a004 Fibonacci(12)*Lucas(51)/(1/2+sqrt(5)/2)^55 2100931686004542 a001 144/73681302247*14662949395604^(16/21) 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^48/Lucas(52) 2100931686004542 a001 144/73681302247*192900153618^(8/9) 2100931686004542 a004 Fibonacci(12)*Lucas(53)/(1/2+sqrt(5)/2)^57 2100931686004542 a001 8/10716675201*312119004989^(10/11) 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^50/Lucas(54) 2100931686004542 a001 12422530263168/591286729879 2100931686004542 a001 144/73681302247*73681302247^(12/13) 2100931686004542 a004 Fibonacci(12)*Lucas(55)/(1/2+sqrt(5)/2)^59 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^52/Lucas(56) 2100931686004542 a001 144/505019158607*23725150497407^(13/16) 2100931686004542 a004 Fibonacci(12)*Lucas(57)/(1/2+sqrt(5)/2)^61 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^54/Lucas(58) 2100931686004542 a004 Fibonacci(12)*Lucas(59)/(1/2+sqrt(5)/2)^63 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^56/Lucas(60) 2100931686004542 a004 Fibonacci(12)*Lucas(61)/(1/2+sqrt(5)/2)^65 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^58/Lucas(62) 2100931686004542 a004 Fibonacci(12)*Lucas(63)/(1/2+sqrt(5)/2)^67 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^60/Lucas(64) 2100931686004542 a004 Fibonacci(12)*Lucas(65)/(1/2+sqrt(5)/2)^69 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^62/Lucas(66) 2100931686004542 a004 Fibonacci(12)*Lucas(67)/(1/2+sqrt(5)/2)^71 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^64/Lucas(68) 2100931686004542 a004 Fibonacci(12)*Lucas(69)/(1/2+sqrt(5)/2)^73 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^66/Lucas(70) 2100931686004542 a004 Fibonacci(12)*Lucas(71)/(1/2+sqrt(5)/2)^75 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^68/Lucas(72) 2100931686004542 a004 Fibonacci(12)*Lucas(73)/(1/2+sqrt(5)/2)^77 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^70/Lucas(74) 2100931686004542 a004 Fibonacci(12)*Lucas(75)/(1/2+sqrt(5)/2)^79 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^72/Lucas(76) 2100931686004542 a004 Fibonacci(12)*Lucas(77)/(1/2+sqrt(5)/2)^81 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^74/Lucas(78) 2100931686004542 a004 Fibonacci(12)*Lucas(79)/(1/2+sqrt(5)/2)^83 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^76/Lucas(80) 2100931686004542 a004 Fibonacci(12)*Lucas(81)/(1/2+sqrt(5)/2)^85 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^78/Lucas(82) 2100931686004542 a004 Fibonacci(12)*Lucas(83)/(1/2+sqrt(5)/2)^87 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^80/Lucas(84) 2100931686004542 a004 Fibonacci(12)*Lucas(85)/(1/2+sqrt(5)/2)^89 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^82/Lucas(86) 2100931686004542 a004 Fibonacci(12)*Lucas(87)/(1/2+sqrt(5)/2)^91 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^84/Lucas(88) 2100931686004542 a004 Fibonacci(12)*Lucas(89)/(1/2+sqrt(5)/2)^93 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^86/Lucas(90) 2100931686004542 a004 Fibonacci(12)*Lucas(91)/(1/2+sqrt(5)/2)^95 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^88/Lucas(92) 2100931686004542 a004 Fibonacci(12)*Lucas(93)/(1/2+sqrt(5)/2)^97 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^90/Lucas(94) 2100931686004542 a004 Fibonacci(12)*Lucas(95)/(1/2+sqrt(5)/2)^99 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^92/Lucas(96) 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^94/Lucas(98) 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^95/Lucas(99) 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^96/Lucas(100) 2100931686004542 a004 Fibonacci(6)*Lucas(6)/(1/2+sqrt(5)/2)^4 2100931686004542 m005 (1/2*5^(1/2)-1/10)/(17/72+1/9*5^(1/2)) 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^93/Lucas(97) 2100931686004542 a004 Fibonacci(12)*Lucas(96)/(1/2+sqrt(5)/2)^100 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^91/Lucas(95) 2100931686004542 a004 Fibonacci(12)*Lucas(94)/(1/2+sqrt(5)/2)^98 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^89/Lucas(93) 2100931686004542 a004 Fibonacci(12)*Lucas(92)/(1/2+sqrt(5)/2)^96 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^87/Lucas(91) 2100931686004542 a004 Fibonacci(12)*Lucas(90)/(1/2+sqrt(5)/2)^94 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^85/Lucas(89) 2100931686004542 a004 Fibonacci(12)*Lucas(88)/(1/2+sqrt(5)/2)^92 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^83/Lucas(87) 2100931686004542 a004 Fibonacci(12)*Lucas(86)/(1/2+sqrt(5)/2)^90 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^81/Lucas(85) 2100931686004542 a004 Fibonacci(12)*Lucas(84)/(1/2+sqrt(5)/2)^88 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^79/Lucas(83) 2100931686004542 a004 Fibonacci(12)*Lucas(82)/(1/2+sqrt(5)/2)^86 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^77/Lucas(81) 2100931686004542 a004 Fibonacci(12)*Lucas(80)/(1/2+sqrt(5)/2)^84 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^75/Lucas(79) 2100931686004542 a004 Fibonacci(12)*Lucas(78)/(1/2+sqrt(5)/2)^82 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^73/Lucas(77) 2100931686004542 a004 Fibonacci(12)*Lucas(76)/(1/2+sqrt(5)/2)^80 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^71/Lucas(75) 2100931686004542 a004 Fibonacci(12)*Lucas(74)/(1/2+sqrt(5)/2)^78 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^69/Lucas(73) 2100931686004542 a004 Fibonacci(12)*Lucas(72)/(1/2+sqrt(5)/2)^76 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^67/Lucas(71) 2100931686004542 a004 Fibonacci(12)*Lucas(70)/(1/2+sqrt(5)/2)^74 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^65/Lucas(69) 2100931686004542 a004 Fibonacci(12)*Lucas(68)/(1/2+sqrt(5)/2)^72 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^63/Lucas(67) 2100931686004542 a004 Fibonacci(12)*Lucas(66)/(1/2+sqrt(5)/2)^70 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^61/Lucas(65) 2100931686004542 a004 Fibonacci(12)*Lucas(64)/(1/2+sqrt(5)/2)^68 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^59/Lucas(63) 2100931686004542 a004 Fibonacci(12)*Lucas(62)/(1/2+sqrt(5)/2)^66 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^57/Lucas(61) 2100931686004542 a004 Fibonacci(12)*Lucas(60)/(1/2+sqrt(5)/2)^64 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^55/Lucas(59) 2100931686004542 a001 144/2139295485799*3461452808002^(11/12) 2100931686004542 a004 Fibonacci(12)*Lucas(58)/(1/2+sqrt(5)/2)^62 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^53/Lucas(57) 2100931686004542 a004 Fibonacci(12)*Lucas(56)/(1/2+sqrt(5)/2)^60 2100931686004542 a001 144/312119004989*14662949395604^(17/21) 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^51/Lucas(55) 2100931686004542 a004 Fibonacci(12)*Lucas(54)/(1/2+sqrt(5)/2)^58 2100931686004542 a001 144/312119004989*192900153618^(17/18) 2100931686004542 a001 144/119218851371*14662949395604^(7/9) 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^49/Lucas(53) 2100931686004542 a001 144/119218851371*505019158607^(7/8) 2100931686004542 a004 Fibonacci(12)*Lucas(52)/(1/2+sqrt(5)/2)^56 2100931686004542 a001 2932561594656/139583862445 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^47/Lucas(51) 2100931686004542 a004 Fibonacci(12)*Lucas(50)/(1/2+sqrt(5)/2)^54 2100931686004542 a001 144/17393796001*45537549124^(15/17) 2100931686004542 a001 1120138855056/53316291173 2100931686004542 a001 144/17393796001*312119004989^(9/11) 2100931686004542 a001 144/17393796001*14662949395604^(5/7) 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^45/Lucas(49) 2100931686004542 a001 144/17393796001*192900153618^(5/6) 2100931686004542 a001 144/17393796001*28143753123^(9/10) 2100931686004542 a001 48/9381251041*10749957122^(23/24) 2100931686004542 a004 Fibonacci(12)*Lucas(48)/(1/2+sqrt(5)/2)^52 2100931686004542 a001 144/17393796001*10749957122^(15/16) 2100931686004542 a001 213927485256/10182505537 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^43/Lucas(47) 2100931686004542 a001 72/5374978561*4106118243^(22/23) 2100931686004542 a004 Fibonacci(12)*Lucas(46)/(1/2+sqrt(5)/2)^50 2100931686004542 a001 163426056480/7778742049 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^41/Lucas(45) 2100931686004542 a001 48/1368706081*1568397607^(21/22) 2100931686004542 a004 Fibonacci(12)*Lucas(44)/(1/2+sqrt(5)/2)^48 2100931686004542 a001 144/969323029*2537720636^(13/15) 2100931686004542 a001 62423198928/2971215073 2100931686004542 a001 144/969323029*45537549124^(13/17) 2100931686004542 a001 144/969323029*14662949395604^(13/21) 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^39/Lucas(43) 2100931686004542 a001 144/969323029*192900153618^(13/18) 2100931686004542 a001 144/969323029*73681302247^(3/4) 2100931686004542 a001 144/969323029*10749957122^(13/16) 2100931686004542 a001 144/1568397607*599074578^(20/21) 2100931686004542 a004 Fibonacci(12)*Lucas(42)/(1/2+sqrt(5)/2)^46 2100931686004542 a001 144/969323029*599074578^(13/14) 2100931686004542 a001 11921770152/567451585 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^37/Lucas(41) 2100931686004542 a001 8/33281921*228826127^(19/20) 2100931686004542 a004 Fibonacci(12)*Lucas(40)/(1/2+sqrt(5)/2)^44 2100931686004542 a001 9107421984/433494437 2100931686004542 a001 36/35355581*2537720636^(7/9) 2100931686004542 a001 36/35355581*17393796001^(5/7) 2100931686004542 a001 36/35355581*312119004989^(7/11) 2100931686004542 a001 36/35355581*14662949395604^(5/9) 2100931686004542 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^35/Lucas(39) 2100931686004542 a001 36/35355581*505019158607^(5/8) 2100931686004542 a001 36/35355581*28143753123^(7/10) 2100931686004542 a001 36/35355581*599074578^(5/6) 2100931686004542 a001 36/35355581*228826127^(7/8) 2100931686004542 a001 144/228826127*87403803^(18/19) 2100931686004542 a004 Fibonacci(12)*Lucas(38)/(1/2+sqrt(5)/2)^42 2100931686004543 a001 144/54018521*141422324^(11/13) 2100931686004543 a001 3478725648/165580141 2100931686004543 a001 144/54018521*2537720636^(11/15) 2100931686004543 a001 144/54018521*45537549124^(11/17) 2100931686004543 a001 144/54018521*312119004989^(3/5) 2100931686004543 a001 144/54018521*14662949395604^(11/21) 2100931686004543 a004 Fibonacci(12)*(1/2+sqrt(5)/2)^33/Lucas(37) 2100931686004543 a001 144/54018521*192900153618^(11/18) 2100931686004543 a001 144/54018521*10749957122^(11/16) 2100931686004543 a001 144/54018521*1568397607^(3/4) 2100931686004543 a001 144/54018521*599074578^(11/14) 2100931686004544 a001 48/29134601*33385282^(17/18) 2100931686004544 a004 Fibonacci(12)*Lucas(36)/(1/2+sqrt(5)/2)^40 2100931686004545 a001 144/54018521*33385282^(11/12) 2100931686004547 a001 664377480/31622993 2100931686004547 a001 144/20633239*(1/2+1/2*5^(1/2))^31 2100931686004547 a001 144/20633239*9062201101803^(1/2) 2100931686004552 a001 72/16692641*12752043^(16/17) 2100931686004555 a004 Fibonacci(12)*Lucas(34)/(1/2+sqrt(5)/2)^38 2100931686004575 a001 507539232/24157817 2100931686004576 a001 36/1970299*(1/2+1/2*5^(1/2))^29 2100931686004576 a001 36/1970299*1322157322203^(1/2) 2100931686004612 a001 48/4250681*4870847^(15/16) 2100931686004631 a004 Fibonacci(12)*Lucas(32)/(1/2+sqrt(5)/2)^36 2100931686004746 a001 144/3010349*7881196^(9/11) 2100931686004769 a001 193862736/9227465 2100931686004774 a001 144/3010349*141422324^(9/13) 2100931686004774 a001 144/3010349*2537720636^(3/5) 2100931686004774 a001 144/3010349*45537549124^(9/17) 2100931686004774 a001 144/3010349*14662949395604^(3/7) 2100931686004774 a001 144/3010349*(1/2+1/2*5^(1/2))^27 2100931686004774 a001 144/3010349*192900153618^(1/2) 2100931686004774 a001 144/3010349*10749957122^(9/16) 2100931686004774 a001 144/3010349*599074578^(9/14) 2100931686004775 a001 144/3010349*33385282^(3/4) 2100931686005020 a001 144/4870847*1860498^(14/15) 2100931686005149 a004 Fibonacci(12)*Lucas(30)/(1/2+sqrt(5)/2)^34 2100931686005320 a001 144/3010349*1860498^(9/10) 2100931686006097 a001 37024488/1762289 2100931686006128 a001 144/1149851*20633239^(5/7) 2100931686006131 a001 144/1149851*2537720636^(5/9) 2100931686006131 a001 144/1149851*312119004989^(5/11) 2100931686006131 a001 144/1149851*(1/2+1/2*5^(1/2))^25 2100931686006131 a001 144/1149851*3461452808002^(5/12) 2100931686006131 a001 144/1149851*28143753123^(1/2) 2100931686006131 a001 144/1149851*228826127^(5/8) 2100931686006637 a001 144/1149851*1860498^(5/6) 2100931686007798 a001 8/103361*710647^(13/14) 2100931686008702 a004 Fibonacci(12)*Lucas(28)/(1/2+sqrt(5)/2)^32 2100931686015202 a001 28284192/1346269 2100931686015433 a001 36/109801*(1/2+1/2*5^(1/2))^23 2100931686015433 a001 36/109801*4106118243^(1/2) 2100931686026702 a001 144/710647*271443^(12/13) 2100931686033056 a004 Fibonacci(12)*Lucas(26)/(1/2+sqrt(5)/2)^30 2100931686070721 a001 144/167761*439204^(7/9) 2100931686077603 a001 10803600/514229 2100931686079171 a001 144/167761*7881196^(7/11) 2100931686079189 a001 144/167761*20633239^(3/5) 2100931686079192 a001 144/167761*141422324^(7/13) 2100931686079192 a001 144/167761*2537720636^(7/15) 2100931686079192 a001 144/167761*17393796001^(3/7) 2100931686079192 a001 144/167761*45537549124^(7/17) 2100931686079192 a001 144/167761*14662949395604^(1/3) 2100931686079192 a001 144/167761*(1/2+1/2*5^(1/2))^21 2100931686079192 a001 144/167761*192900153618^(7/18) 2100931686079192 a001 144/167761*10749957122^(7/16) 2100931686079192 a001 144/167761*599074578^(1/2) 2100931686079193 a001 144/167761*33385282^(7/12) 2100931686079617 a001 144/167761*1860498^(7/10) 2100931686082312 a001 144/167761*710647^(3/4) 2100931686093526 a001 144/64079*64079^(19/23) 2100931686155178 a001 48/90481*103682^(11/12) 2100931686171465 a004 Fibonacci(26)/Lucas(12)/(1/2+sqrt(5)/2)^6 2100931686195818 a004 Fibonacci(28)/Lucas(12)/(1/2+sqrt(5)/2)^8 2100931686199371 a004 Fibonacci(30)/Lucas(12)/(1/2+sqrt(5)/2)^10 2100931686199890 a004 Fibonacci(32)/Lucas(12)/(1/2+sqrt(5)/2)^12 2100931686199965 a004 Fibonacci(34)/Lucas(12)/(1/2+sqrt(5)/2)^14 2100931686199976 a004 Fibonacci(36)/Lucas(12)/(1/2+sqrt(5)/2)^16 2100931686199978 a004 Fibonacci(38)/Lucas(12)/(1/2+sqrt(5)/2)^18 2100931686199978 a004 Fibonacci(40)/Lucas(12)/(1/2+sqrt(5)/2)^20 2100931686199978 a004 Fibonacci(42)/Lucas(12)/(1/2+sqrt(5)/2)^22 2100931686199978 a004 Fibonacci(44)/Lucas(12)/(1/2+sqrt(5)/2)^24 2100931686199978 a004 Fibonacci(46)/Lucas(12)/(1/2+sqrt(5)/2)^26 2100931686199978 a004 Fibonacci(12)*Lucas(24)/(1/2+sqrt(5)/2)^28 2100931686199978 a004 Fibonacci(50)/Lucas(12)/(1/2+sqrt(5)/2)^30 2100931686199978 a004 Fibonacci(52)/Lucas(12)/(1/2+sqrt(5)/2)^32 2100931686199978 a004 Fibonacci(54)/Lucas(12)/(1/2+sqrt(5)/2)^34 2100931686199978 a004 Fibonacci(56)/Lucas(12)/(1/2+sqrt(5)/2)^36 2100931686199978 a004 Fibonacci(58)/Lucas(12)/(1/2+sqrt(5)/2)^38 2100931686199978 a004 Fibonacci(60)/Lucas(12)/(1/2+sqrt(5)/2)^40 2100931686199978 a004 Fibonacci(62)/Lucas(12)/(1/2+sqrt(5)/2)^42 2100931686199978 a004 Fibonacci(64)/Lucas(12)/(1/2+sqrt(5)/2)^44 2100931686199978 a004 Fibonacci(66)/Lucas(12)/(1/2+sqrt(5)/2)^46 2100931686199978 a004 Fibonacci(68)/Lucas(12)/(1/2+sqrt(5)/2)^48 2100931686199978 a004 Fibonacci(70)/Lucas(12)/(1/2+sqrt(5)/2)^50 2100931686199978 a004 Fibonacci(72)/Lucas(12)/(1/2+sqrt(5)/2)^52 2100931686199978 a004 Fibonacci(74)/Lucas(12)/(1/2+sqrt(5)/2)^54 2100931686199978 a004 Fibonacci(76)/Lucas(12)/(1/2+sqrt(5)/2)^56 2100931686199978 a004 Fibonacci(78)/Lucas(12)/(1/2+sqrt(5)/2)^58 2100931686199978 a004 Fibonacci(80)/Lucas(12)/(1/2+sqrt(5)/2)^60 2100931686199978 a004 Fibonacci(82)/Lucas(12)/(1/2+sqrt(5)/2)^62 2100931686199978 a004 Fibonacci(84)/Lucas(12)/(1/2+sqrt(5)/2)^64 2100931686199978 a004 Fibonacci(86)/Lucas(12)/(1/2+sqrt(5)/2)^66 2100931686199978 a004 Fibonacci(88)/Lucas(12)/(1/2+sqrt(5)/2)^68 2100931686199978 a004 Fibonacci(90)/Lucas(12)/(1/2+sqrt(5)/2)^70 2100931686199978 a004 Fibonacci(92)/Lucas(12)/(1/2+sqrt(5)/2)^72 2100931686199978 a004 Fibonacci(94)/Lucas(12)/(1/2+sqrt(5)/2)^74 2100931686199978 a004 Fibonacci(96)/Lucas(12)/(1/2+sqrt(5)/2)^76 2100931686199978 a004 Fibonacci(100)/Lucas(12)/(1/2+sqrt(5)/2)^80 2100931686199978 a004 Fibonacci(98)/Lucas(12)/(1/2+sqrt(5)/2)^78 2100931686199978 a004 Fibonacci(99)/Lucas(12)/(1/2+sqrt(5)/2)^79 2100931686199978 a004 Fibonacci(97)/Lucas(12)/(1/2+sqrt(5)/2)^77 2100931686199978 a004 Fibonacci(95)/Lucas(12)/(1/2+sqrt(5)/2)^75 2100931686199978 a004 Fibonacci(93)/Lucas(12)/(1/2+sqrt(5)/2)^73 2100931686199978 a004 Fibonacci(91)/Lucas(12)/(1/2+sqrt(5)/2)^71 2100931686199978 a004 Fibonacci(89)/Lucas(12)/(1/2+sqrt(5)/2)^69 2100931686199978 a004 Fibonacci(87)/Lucas(12)/(1/2+sqrt(5)/2)^67 2100931686199978 a004 Fibonacci(85)/Lucas(12)/(1/2+sqrt(5)/2)^65 2100931686199978 a004 Fibonacci(83)/Lucas(12)/(1/2+sqrt(5)/2)^63 2100931686199978 a004 Fibonacci(81)/Lucas(12)/(1/2+sqrt(5)/2)^61 2100931686199978 a004 Fibonacci(79)/Lucas(12)/(1/2+sqrt(5)/2)^59 2100931686199978 a004 Fibonacci(77)/Lucas(12)/(1/2+sqrt(5)/2)^57 2100931686199978 a004 Fibonacci(75)/Lucas(12)/(1/2+sqrt(5)/2)^55 2100931686199978 a004 Fibonacci(73)/Lucas(12)/(1/2+sqrt(5)/2)^53 2100931686199978 a004 Fibonacci(71)/Lucas(12)/(1/2+sqrt(5)/2)^51 2100931686199978 a004 Fibonacci(69)/Lucas(12)/(1/2+sqrt(5)/2)^49 2100931686199978 a004 Fibonacci(67)/Lucas(12)/(1/2+sqrt(5)/2)^47 2100931686199978 a004 Fibonacci(65)/Lucas(12)/(1/2+sqrt(5)/2)^45 2100931686199978 a004 Fibonacci(63)/Lucas(12)/(1/2+sqrt(5)/2)^43 2100931686199978 a004 Fibonacci(61)/Lucas(12)/(1/2+sqrt(5)/2)^41 2100931686199978 a004 Fibonacci(59)/Lucas(12)/(1/2+sqrt(5)/2)^39 2100931686199978 a004 Fibonacci(57)/Lucas(12)/(1/2+sqrt(5)/2)^37 2100931686199978 a004 Fibonacci(55)/Lucas(12)/(1/2+sqrt(5)/2)^35 2100931686199978 a004 Fibonacci(53)/Lucas(12)/(1/2+sqrt(5)/2)^33 2100931686199978 a004 Fibonacci(51)/Lucas(12)/(1/2+sqrt(5)/2)^31 2100931686199978 a004 Fibonacci(49)/Lucas(12)/(1/2+sqrt(5)/2)^29 2100931686199978 a004 Fibonacci(47)/Lucas(12)/(1/2+sqrt(5)/2)^27 2100931686199978 a004 Fibonacci(45)/Lucas(12)/(1/2+sqrt(5)/2)^25 2100931686199978 a004 Fibonacci(43)/Lucas(12)/(1/2+sqrt(5)/2)^23 2100931686199978 a004 Fibonacci(41)/Lucas(12)/(1/2+sqrt(5)/2)^21 2100931686199978 a004 Fibonacci(39)/Lucas(12)/(1/2+sqrt(5)/2)^19 2100931686199979 a004 Fibonacci(37)/Lucas(12)/(1/2+sqrt(5)/2)^17 2100931686199983 a004 Fibonacci(35)/Lucas(12)/(1/2+sqrt(5)/2)^15 2100931686200012 a004 Fibonacci(33)/Lucas(12)/(1/2+sqrt(5)/2)^13 2100931686200210 a004 Fibonacci(31)/Lucas(12)/(1/2+sqrt(5)/2)^11 2100931686201567 a004 Fibonacci(29)/Lucas(12)/(1/2+sqrt(5)/2)^9 2100931686202726 a001 36/109801*103682^(23/24) 2100931686210870 a004 Fibonacci(27)/Lucas(12)/(1/2+sqrt(5)/2)^7 2100931686250199 a001 144/167761*103682^(7/8) 2100931686274628 a004 Fibonacci(25)/Lucas(12)/(1/2+sqrt(5)/2)^5 2100931686505310 a001 2063304/98209 2100931686516201 a001 144/64079*817138163596^(1/3) 2100931686516201 a001 144/64079*(1/2+1/2*5^(1/2))^19 2100931686516201 a001 144/64079*87403803^(1/2) 2100931686670921 a001 144/64079*103682^(19/24) 2100931686672535 a001 36/6119*24476^(17/21) 2100931686711637 a004 Fibonacci(23)/Lucas(12)/(1/2+sqrt(5)/2)^3 2100931687026870 a001 72/51841*39603^(10/11) 2100931687344082 a004 Fibonacci(12)*Lucas(22)/(1/2+sqrt(5)/2)^26 2100931687357844 a001 144/167761*39603^(21/22) 2100931687673077 a001 144/64079*39603^(19/22) 2100931688345403 m001 1/Niven^2*Si(Pi)/ln(GAMMA(2/3)) 2100931689133321 a001 36/6119*64079^(17/23) 2100931689436854 a001 1576224/75025 2100931689511504 a001 36/6119*45537549124^(1/3) 2100931689511504 a001 36/6119*(1/2+1/2*5^(1/2))^17 2100931689511510 a001 36/6119*12752043^(1/2) 2100931689649938 a001 36/6119*103682^(17/24) 2100931689706940 a004 Fibonacci(21)/Lucas(12)/(1/2+sqrt(5)/2) 2100931690546603 a001 36/6119*39603^(17/22) 2100931691064979 a001 144/9349*9349^(15/19) 2100931691712702 a003 sin(Pi*31/107)-sin(Pi*32/65) 2100931692928213 a001 48/13201*15127^(9/10) 2100931695185887 a004 Fibonacci(12)*Lucas(20)/(1/2+sqrt(5)/2)^24 2100931695238479 a001 144/64079*15127^(19/20) 2100931697315647 a001 36/6119*15127^(17/20) 2100931697618283 m001 (3^(1/3))^2*exp(FeigenbaumDelta)/GAMMA(11/12) 2100931700181079 q001 1/4759793 2100931700545725 a001 4181/322*3571^(1/17) 2100931703452531 m001 DuboisRaymond^Otter/(DuboisRaymond^Gompertz) 2100931707536644 a001 144/9349*24476^(5/7) 2100931708002500 a007 Real Root Of -516*x^4-976*x^3+282*x^2+381*x+558 2100931708971943 a001 4181/322*9349^(1/19) 2100931709529957 a001 602064/28657 2100931709707926 a001 144/9349*64079^(15/23) 2100931709996826 a001 144/9349*167761^(3/5) 2100931710035566 a001 144/9349*439204^(5/9) 2100931710041601 a001 144/9349*7881196^(5/11) 2100931710041614 a001 144/9349*20633239^(3/7) 2100931710041616 a001 144/9349*141422324^(5/13) 2100931710041616 a001 144/9349*2537720636^(1/3) 2100931710041616 a001 144/9349*45537549124^(5/17) 2100931710041616 a001 144/9349*312119004989^(3/11) 2100931710041616 a001 144/9349*14662949395604^(5/21) 2100931710041616 a001 144/9349*(1/2+1/2*5^(1/2))^15 2100931710041616 a001 144/9349*192900153618^(5/18) 2100931710041616 a001 144/9349*28143753123^(3/10) 2100931710041616 a001 144/9349*10749957122^(5/16) 2100931710041616 a001 144/9349*599074578^(5/14) 2100931710041616 a001 144/9349*228826127^(3/8) 2100931710041617 a001 144/9349*33385282^(5/12) 2100931710041920 a001 144/9349*1860498^(1/2) 2100931710070054 a001 4181/322*24476^(1/21) 2100931710163764 a001 144/9349*103682^(5/8) 2100931710214806 a001 4181/322*64079^(1/23) 2100931710237052 a001 4181/644+4181/644*5^(1/2) 2100931710245196 a001 4181/322*103682^(1/24) 2100931710297941 a001 4181/322*39603^(1/22) 2100931710696120 a001 4181/322*15127^(1/20) 2100931710954939 a001 144/9349*39603^(15/22) 2100931713203359 a001 76/75025*10946^(4/51) 2100931713733157 a001 4181/322*5778^(1/18) 2100931716927625 a001 144/9349*15127^(3/4) 2100931718570628 a001 123/5*267914296^(8/23) 2100931723293592 m001 1/Niven*Khintchine^2*ln(OneNinth)^2 2100931724769851 a001 144/3571*3571^(13/17) 2100931732760865 a001 144/15127*5778^(8/9) 2100931734427281 r005 Re(z^2+c),c=-7/74+19/34*I,n=12 2100931737195037 a001 4181/322*2207^(1/16) 2100931738521892 a007 Real Root Of 749*x^4+958*x^3-848*x^2+799*x-287 2100931740772484 m001 (Mills+Tetranacci)/(Conway+CopelandErdos) 2100931748934419 a004 Fibonacci(12)*Lucas(18)/(1/2+sqrt(5)/2)^22 2100931748945277 a001 36/6119*5778^(17/18) 2100931749336528 a007 Real Root Of -296*x^4-331*x^3+310*x^2-724*x-192 2100931750993521 a007 Real Root Of -980*x^4+958*x^3-873*x^2+600*x+13 2100931752821543 r009 Re(z^3+c),c=-9/26+29/55*I,n=48 2100931758677311 a007 Real Root Of -743*x^4+526*x^3-421*x^2+881*x+210 2100931760524039 l006 ln(7759/9573) 2100931761170035 r009 Re(z^3+c),c=-19/90+52/55*I,n=37 2100931762483181 a001 144/9349*5778^(5/6) 2100931767229208 m001 (Khinchin+MinimumGamma)/(Robbin-Thue) 2100931785188729 m001 sin(Pi/12)^(BesselJZeros(0,1)/sin(1)) 2100931791359278 r005 Re(z^2+c),c=11/36+8/37*I,n=36 2100931795760490 m001 Porter^2/ln(KhintchineHarmonic)/Tribonacci 2100931803433008 h001 (1/8*exp(2)+5/9)/(2/9*exp(1)+1/10) 2100931812475085 r009 Re(z^3+c),c=-5/46+38/47*I,n=22 2100931821878551 a001 1597/322*3571^(3/17) 2100931831150540 a007 Real Root Of -448*x^4-883*x^3+291*x^2+85*x-566 2100931834310691 a001 144/3571*9349^(13/19) 2100931840334912 p004 log(32297/26177) 2100931847157207 a001 1597/322*9349^(3/19) 2100931847250137 a001 114984/5473 2100931848445113 r002 14th iterates of z^2 + 2100931848492081 m003 E^(1/2+Sqrt[5]/2)/30+Sec[1/2+Sqrt[5]/2] 2100931848586135 a001 144/3571*24476^(13/21) 2100931850451540 a001 1597/322*24476^(1/7) 2100931850467913 a001 144/3571*64079^(13/23) 2100931850757112 a001 144/3571*141422324^(1/3) 2100931850757112 a001 144/3571*(1/2+1/2*5^(1/2))^13 2100931850757112 a001 144/3571*73681302247^(1/4) 2100931850771368 a001 144/3571*271443^(1/2) 2100931850862973 a001 144/3571*103682^(13/24) 2100931850885797 a001 1597/322*64079^(3/23) 2100931850951325 a001 1597/322*439204^(1/9) 2100931850952532 a001 1597/322*7881196^(1/11) 2100931850952535 a001 1597/322*141422324^(1/13) 2100931850952535 a001 1597/322*2537720636^(1/15) 2100931850952535 a001 1597/322*45537549124^(1/17) 2100931850952535 a001 1597/322*14662949395604^(1/21) 2100931850952535 a001 1597/322*(1/2+1/2*5^(1/2))^3 2100931850952535 a001 1597/322*192900153618^(1/18) 2100931850952535 a001 1597/322*10749957122^(1/16) 2100931850952535 a001 1597/322*599074578^(1/14) 2100931850952535 a001 1597/322*33385282^(1/12) 2100931850952596 a001 1597/322*1860498^(1/10) 2100931850976964 a001 1597/322*103682^(1/8) 2100931851135200 a001 1597/322*39603^(3/22) 2100931851548658 a001 144/3571*39603^(13/22) 2100931852329737 a001 1597/322*15127^(3/20) 2100931855274805 m005 (-35/12+1/12*5^(1/2))/(3/5*Catalan+3/4) 2100931856724986 a001 144/3571*15127^(13/20) 2100931861440848 a001 1597/322*5778^(1/6) 2100931865521557 a007 Real Root Of -218*x^4-181*x^3+209*x^2-359*x+892 2100931866494578 a007 Real Root Of 224*x^4+56*x^3-550*x^2+378*x-623 2100931875145742 m001 (cos(1)+exp(-1/2*Pi))/(-FeigenbaumMu+ZetaQ(3)) 2100931879895976 r002 22th iterates of z^2 + 2100931881808976 a001 610/521*199^(6/11) 2100931884397603 m005 (1/2*2^(1/2)+5/9)/(1/8*2^(1/2)-7/9) 2100931886322158 m001 (ln(gamma)+GAMMA(19/24))/(Bloch-ZetaP(3)) 2100931893366871 a001 18/377*2504730781961^(7/9) 2100931896206470 a001 144/3571*5778^(13/18) 2100931899254967 m001 exp(OneNinth)^2/Backhouse^2*Ei(1)^2 2100931899351132 a007 Real Root Of 296*x^4+119*x^3-551*x^2+825*x-498 2100931900254081 l006 ln(1007/8231) 2100931903232037 r005 Im(z^2+c),c=7/18+46/53*I,n=3 2100931905185218 h001 (-4*exp(7)+3)/(-7*exp(8)+2) 2100931911132118 k008 concat of cont frac of 2100931911633537 a007 Real Root Of -243*x^4-53*x^3+826*x^2-217*x+141 2100931913153813 r005 Re(z^2+c),c=-4/9+27/49*I,n=59 2100931919629662 r009 Re(z^3+c),c=-7/23+23/55*I,n=22 2100931921405822 a001 4181/322*843^(1/14) 2100931928216933 r005 Im(z^2+c),c=-7/10+25/99*I,n=36 2100931931826496 a001 1597/322*2207^(3/16) 2100931932868164 a007 Real Root Of 645*x^4+982*x^3-663*x^2-144*x-836 2100931934757734 r005 Im(z^2+c),c=-14/29+17/40*I,n=24 2100931938201533 r005 Im(z^2+c),c=-17/14+29/225*I,n=16 2100931941620926 r005 Im(z^2+c),c=-17/40+17/53*I,n=6 2100931944596745 m006 (exp(Pi)-1/2)/(1/5*exp(2*Pi)+2/3) 2100931945115563 r009 Re(z^3+c),c=-37/102+39/58*I,n=9 2100931954755214 a007 Real Root Of 67*x^4-211*x^3-358*x^2+890*x+188 2100931956835245 r009 Re(z^3+c),c=-13/110+44/45*I,n=4 2100931966478824 r005 Im(z^2+c),c=-5/4+4/47*I,n=21 2100931972089998 m001 5^(1/2)*GAMMA(5/6)*FeigenbaumB 2100931973204723 r005 Re(z^2+c),c=23/102+1/2*I,n=63 2100931973404597 m001 (3^(1/2)+Kac)/(Rabbit+ThueMorse) 2100931974631716 a003 sin(Pi*8/115)*sin(Pi*45/107) 2100931980424887 r005 Im(z^2+c),c=-83/98+2/13*I,n=44 2100931982320492 r005 Im(z^2+c),c=-101/126+9/56*I,n=60 2100931983235272 m008 (1/2*Pi^6+4/5)/(3/4*Pi^5-1/3) 2100931985526597 r005 Re(z^2+c),c=-5/56+6/11*I,n=18 2100931987132864 a001 36/341*1364^(11/15) 2100931988651887 m005 (1/2*exp(1)-5/12)/(3/10*5^(1/2)-2/9) 2100931991902847 m001 (Ei(1,1)-gamma(3))/(Zeta(3)-ln(3)) 2100931993380730 r008 a(0)=0,K{-n^6,13-61*n+13*n^2-13*n^3} 2100931996868203 h001 (-7*exp(1/2)+2)/(-4*exp(-2)-4) 2100932000486470 a001 8/321*2207^(7/8) 2100932014917213 r002 27th iterates of z^2 + 2100932016488852 m001 (Ei(1)+Robbin)/(ln(2)/ln(10)+Catalan) 2100932021239476 l004 sinh(559/67) 2100932022943545 a005 (1/cos(17/206*Pi))^767 2100932030843577 s002 sum(A250890[n]/(n^2*2^n+1),n=1..infinity) 2100932032637156 a007 Real Root Of 369*x^4+575*x^3-198*x^2-982*x+209 2100932034324701 r002 44th iterates of z^2 + 2100932043502321 s002 sum(A250890[n]/(n^2*2^n-1),n=1..infinity) 2100932045607645 a001 1292/161*843^(1/7) 2100932048627424 a007 Real Root Of 194*x^4+433*x^3+419*x^2+869*x+212 2100932048774084 r005 Im(z^2+c),c=-77/78+7/32*I,n=35 2100932050379807 m001 (FeigenbaumB-Sarnak)/polylog(4,1/2) 2100932055335298 m001 (FeigenbaumC+Paris)/(Zeta(5)-GAMMA(5/6)) 2100932060009000 m001 (-ln(3)+ln(2^(1/2)+1))/(5^(1/2)-Zeta(3)) 2100932060879167 a007 Real Root Of 886*x^4-717*x^3+812*x^2-256*x-98 2100932065354534 m005 (1/2*Catalan+5/11)/(2/7*Zeta(3)+4) 2100932067200462 m001 (Totient+Thue)/(GAMMA(2/3)-HardyLittlewoodC4) 2100932068939888 a007 Real Root Of 444*x^4+989*x^3+540*x^2-978*x-221 2100932068982584 m005 (1/3*2^(1/2)+1/12)/(-26/9+1/9*5^(1/2)) 2100932078698553 a007 Real Root Of -505*x^4-663*x^3+877*x^2+94*x+17 2100932079181784 l006 ln(679/5550) 2100932084636781 a007 Real Root Of 103*x^4-410*x^3-630*x^2+981*x-967 2100932087859116 m001 (GAMMA(17/24)-Gompertz)/(Khinchin+Lehmer) 2100932087912465 m001 (exp(1)+2^(1/2))/(Pi^(1/2)+DuboisRaymond) 2100932093826837 r005 Im(z^2+c),c=-19/18+47/201*I,n=45 2100932095503758 m001 ln(Riemann1stZero)^2*FransenRobinson/Zeta(1,2) 2100932095940282 m001 Trott*(GAMMA(19/24)+LandauRamanujan) 2100932099547209 a001 141/46*843^(2/7) 2100932100276239 r005 Re(z^2+c),c=-2/13+9/20*I,n=35 2100932102421954 r005 Im(z^2+c),c=-47/50+12/59*I,n=42 2100932109831194 m005 (1/2*5^(1/2)+1/8)/(1/12*exp(1)-9/11) 2100932109867150 a007 Real Root Of -350*x^4-310*x^3+608*x^2-679*x-166 2100932114411424 a001 144/9349*2207^(15/16) 2100932117332335 a004 Fibonacci(12)*Lucas(16)/(1/2+sqrt(5)/2)^20 2100932125340407 m005 (1/2*Zeta(3)-7/11)/(7/8*2^(1/2)+4/9) 2100932128348175 r002 58th iterates of z^2 + 2100932136687864 r005 Im(z^2+c),c=-9/14+39/139*I,n=34 2100932138150435 m001 1/exp(BesselJ(0,1))*sqrt(1+sqrt(3))^3 2100932140546545 m004 -3+25*Sqrt[5]*Pi+Sinh[Sqrt[5]*Pi]/15 2100932157829735 r005 Re(z^2+c),c=5/106+5/32*I,n=9 2100932162931813 r005 Im(z^2+c),c=-81/106+1/50*I,n=8 2100932165289314 r005 Im(z^2+c),c=-15/34+22/61*I,n=38 2100932165320286 b008 (8*Pi)/3+Cosh[6] 2100932165533503 a007 Real Root Of 518*x^4+602*x^3-736*x^2+454*x-307 2100932178544506 m005 (1/3*2^(1/2)+3/4)/(1/2*exp(1)-7/9) 2100932179296586 a007 Real Root Of 417*x^4+719*x^3-738*x^2-572*x+599 2100932185207288 r002 10th iterates of z^2 + 2100932192927645 p001 sum(1/(270*n+137)/n/(12^n),n=1..infinity) 2100932194547268 a001 55/24476*11^(55/59) 2100932198041081 a001 1597/123*47^(1/8) 2100932201210964 a001 144/3571*2207^(13/16) 2100932201307076 a001 123/8*377^(1/19) 2100932210292126 m001 (GaussAGM-ReciprocalFibonacci)/(ln(2)-Ei(1)) 2100932212527822 r005 Re(z^2+c),c=-33/122+35/46*I,n=3 2100932213357353 a007 Real Root Of 574*x^4+978*x^3-477*x^2+409*x+851 2100932217734029 a001 6765/2207*199^(4/11) 2100932220742471 m001 (-FeigenbaumB+Robbin)/(2^(1/2)-BesselK(1,1)) 2100932222358931 m001 (Artin+OrthogonalArrays)/(Paris+RenyiParking) 2100932222903502 a007 Real Root Of -696*x^4-885*x^3-79*x^2+857*x-167 2100932227949905 m001 (Bloch+GaussKuzminWirsing)/(cos(1)-gamma) 2100932236100550 a007 Real Root Of -347*x^4-537*x^3-36*x^2-858*x+137 2100932236124916 r004 Re(z^2+c),c=1/5+3/20*I,z(0)=exp(3/8*I*Pi),n=6 2100932245875721 r005 Im(z^2+c),c=-107/110+10/41*I,n=43 2100932247360986 r008 a(0)=2,K{-n^6,-50-9*n^3+15*n^2+36*n} 2100932254113982 l006 ln(1030/8419) 2100932259229076 l004 cosh(559/67) 2100932263373530 s002 sum(A118159[n]/(exp(n)-1),n=1..infinity) 2100932270256176 m001 gamma(3)*(BesselK(0,1)+BesselK(1,1)) 2100932279720159 m005 (-1/6+1/4*5^(1/2))/(7/12*3^(1/2)+6/7) 2100932283596373 m001 ((1+3^(1/2))^(1/2))^(GAMMA(19/24)/Kolakoski) 2100932292976447 m001 (Zeta(1,-1)-GAMMA(5/6))/(Cahen-Trott2nd) 2100932298918206 m001 (Artin+Khinchin)/(Kolakoski+Robbin) 2100932302394216 m001 FeigenbaumKappa/exp(Khintchine)^2/sqrt(3)^2 2100932306988498 r005 Im(z^2+c),c=-97/118+7/45*I,n=58 2100932313605119 m001 (Shi(1)-ln(5))/(Conway+PisotVijayaraghavan) 2100932314003000 a007 Real Root Of 34*x^4-503*x^3+774*x^2+116*x+342 2100932322158664 a001 3571/12586269025*832040^(6/19) 2100932322158855 a001 3571/225851433717*7778742049^(6/19) 2100932322239701 m008 (2/5*Pi^6+1/2)/(3/5*Pi^5-1/3) 2100932340089747 r005 Re(z^2+c),c=-5/6+2/129*I,n=46 2100932355018406 m001 (1+BesselI(0,1))/(-Zeta(3)+Champernowne) 2100932357487661 r005 Im(z^2+c),c=-83/62+5/51*I,n=4 2100932384235840 m001 (ln(2+3^(1/2))+ThueMorse)/(Ei(1)-exp(1)) 2100932393522825 m005 (4*Pi+1/6)/(3/4*2^(1/2)+5) 2100932397322567 m001 Landau^Artin/(Landau^BesselI(1,2)) 2100932399166177 a001 89*3^(43/55) 2100932399579930 m001 polylog(4,1/2)/Psi(1,1/3)*HardyLittlewoodC5 2100932403554937 r005 Re(z^2+c),c=-31/122+1/60*I,n=12 2100932404310730 m005 (1/5*gamma-2/5)/(2*gamma+1/5) 2100932404310730 m007 (-1/5*gamma+2/5)/(-2*gamma-1/5) 2100932405463616 s001 sum(exp(-3*Pi)^(n-1)*A046302[n],n=1..infinity) 2100932410830963 r005 Im(z^2+c),c=-55/118+1/2*I,n=37 2100932411091233 m001 (Sarnak+TreeGrowth2nd)/(MertensB1-Psi(2,1/3)) 2100932412254316 m001 (2^(1/3))/ln(PisotVijayaraghavan)/Zeta(1/2)^2 2100932414823660 m001 (Khinchin+Tetranacci)/(3^(1/2)+arctan(1/2)) 2100932421945086 a007 Real Root Of 290*x^4-455*x^3-120*x^2-883*x-185 2100932422132983 s002 sum(A100655[n]/(pi^n+1),n=1..infinity) 2100932426640443 b008 3+(7*(5+E))/3 2100932429468383 r005 Re(z^2+c),c=-11/13+10/49*I,n=4 2100932436096152 m005 (1/2*5^(1/2)+1/9)/(5/6*Zeta(3)-5/12) 2100932437057314 m004 -3+E^(Sqrt[5]*Pi)/30+25*Sqrt[5]*Pi 2100932439020257 a001 305/161*1364^(1/3) 2100932448134230 s002 sum(A171753[n]/(n!^2),n=1..infinity) 2100932449650640 a005 (1/cos(7/167*Pi))^1939 2100932453187112 b008 Zeta[1/7+E/3] 2100932453229916 r005 Im(z^2+c),c=-71/118+20/43*I,n=4 2100932462874200 a001 9349/32951280099*832040^(6/19) 2100932462874391 a001 9349/591286729879*7778742049^(6/19) 2100932463468612 r005 Re(z^2+c),c=-7/50+12/25*I,n=57 2100932467005705 r005 Re(z^2+c),c=7/18+11/61*I,n=39 2100932468588053 m001 (cos(1/12*Pi)-BesselI(1,2))/(Rabbit-ThueMorse) 2100932471910905 m006 (2/3*exp(Pi)-4/5)/(3*exp(Pi)+1/5) 2100932472643950 m001 Shi(1)+3^(1/3)*Sarnak 2100932480940990 l006 ln(1450/1789) 2100932483404320 a001 6119/21566892818*832040^(6/19) 2100932483404511 a001 6119/387002188980*7778742049^(6/19) 2100932484458950 a001 1597/322*843^(3/14) 2100932485586195 r005 Im(z^2+c),c=-5/27+16/55*I,n=24 2100932486399624 a001 64079/225851433717*832040^(6/19) 2100932486399816 a001 64079/4052739537881*7778742049^(6/19) 2100932486836633 a001 167761/591286729879*832040^(6/19) 2100932486836825 a001 167761/10610209857723*7778742049^(6/19) 2100932486900392 a001 109801/387002188980*832040^(6/19) 2100932486909694 a001 1149851/4052739537881*832040^(6/19) 2100932486911051 a001 3010349/10610209857723*832040^(6/19) 2100932486911890 a001 930249/3278735159921*832040^(6/19) 2100932486915443 a001 710647/2504730781961*832040^(6/19) 2100932486939797 a001 271443/956722026041*832040^(6/19) 2100932487106719 a001 51841/182717648081*832040^(6/19) 2100932487106911 a001 51841/3278735159921*7778742049^(6/19) 2100932487900828 r005 Im(z^2+c),c=-5/46+4/15*I,n=13 2100932488250824 a001 39603/139583862445*832040^(6/19) 2100932488251015 a001 39603/2504730781961*7778742049^(6/19) 2100932491417925 m005 (1/2*2^(1/2)-3/10)/(241/264+11/24*5^(1/2)) 2100932496092632 a001 15127/53316291173*832040^(6/19) 2100932496092823 a001 15127/956722026041*7778742049^(6/19) 2100932504489982 m001 (MertensB2+MertensB3)/(gamma-ln(gamma)) 2100932512551582 a007 Real Root Of -573*x^4-843*x^3+852*x^2+233*x+75 2100932516221930 r005 Re(z^2+c),c=-19/106+7/18*I,n=30 2100932522890069 s002 sum(A138685[n]/(64^n),n=1..infinity) 2100932528798683 q001 383/1823 2100932535044233 r005 Im(z^2+c),c=-13/25+19/54*I,n=24 2100932537295783 m001 MinimumGamma/(arctan(1/3)+Artin) 2100932538839748 r002 51th iterates of z^2 + 2100932539277448 r008 a(0)=2,K{-n^6,71-73*n^3-82*n^2+74*n} 2100932544764217 a007 Real Root Of 437*x^4+338*x^3-735*x^2+865*x-318 2100932549231155 r005 Re(z^2+c),c=-25/122+17/54*I,n=13 2100932549841184 a001 2889/10182505537*832040^(6/19) 2100932549841375 a001 2889/182717648081*7778742049^(6/19) 2100932561103593 m005 (1/2*2^(1/2)-10/11)/(1/11*exp(1)+5/7) 2100932561300651 r009 Re(z^3+c),c=-9/44+17/18*I,n=15 2100932566997951 a007 Real Root Of -364*x^4-396*x^3+750*x^2-10*x+88 2100932567488843 m004 -6-5*Pi+125*Pi*Csch[Sqrt[5]*Pi] 2100932569838140 b008 (53*2^(1/4))/3 2100932572174182 m001 (AlladiGrinstead-Sarnak)^HardyLittlewoodC3 2100932576985615 a007 Real Root Of 652*x^4+874*x^3-836*x^2+711*x+586 2100932585666855 r005 Im(z^2+c),c=-1+37/160*I,n=37 2100932586061378 m001 (LandauRamanujan2nd+Niven)/(3^(1/2)-Cahen) 2100932591160980 r005 Im(z^2+c),c=-22/31+9/59*I,n=17 2100932592515498 l006 ln(351/2869) 2100932593973836 a001 17711/5778*199^(4/11) 2100932600175225 a001 1149851/3*8^(9/11) 2100932606417217 m001 exp(-1/2*Pi)/(TreeGrowth2nd-ln(gamma)) 2100932612502669 m001 (cos(1/5*Pi)-gamma(1))/(Bloch-FeigenbaumDelta) 2100932617993289 m005 (1/2*5^(1/2)-3/8)/(3/10*Zeta(3)-5/7) 2100932622769781 m004 -6-5*Pi+(250*Pi)/E^(Sqrt[5]*Pi) 2100932623795072 h005 exp(sin(Pi*9/59)/cos(Pi*14/31)) 2100932627482468 a007 Real Root Of -397*x^4-731*x^3+30*x^2-202*x+399 2100932641623902 r005 Re(z^2+c),c=-7/78+35/58*I,n=44 2100932642314508 a001 6624*199^(32/49) 2100932643899594 r005 Re(z^2+c),c=-27/34+14/117*I,n=28 2100932648866495 a001 6624/2161*199^(4/11) 2100932654047510 m001 1/ln(Catalan)*FibonacciFactorial^2*GAMMA(3/4) 2100932656153347 m001 Pi/exp(Pi)+3^(1/2)/ln(2^(1/2)+1) 2100932656875226 a001 121393/39603*199^(4/11) 2100932658043684 a001 317811/103682*199^(4/11) 2100932658214160 a001 832040/271443*199^(4/11) 2100932658239032 a001 311187/101521*199^(4/11) 2100932658242661 a001 5702887/1860498*199^(4/11) 2100932658243190 a001 14930352/4870847*199^(4/11) 2100932658243268 a001 39088169/12752043*199^(4/11) 2100932658243279 a001 14619165/4769326*199^(4/11) 2100932658243281 a001 267914296/87403803*199^(4/11) 2100932658243281 a001 701408733/228826127*199^(4/11) 2100932658243281 a001 1836311903/599074578*199^(4/11) 2100932658243281 a001 686789568/224056801*199^(4/11) 2100932658243281 a001 12586269025/4106118243*199^(4/11) 2100932658243281 a001 32951280099/10749957122*199^(4/11) 2100932658243281 a001 86267571272/28143753123*199^(4/11) 2100932658243281 a001 32264490531/10525900321*199^(4/11) 2100932658243281 a001 591286729879/192900153618*199^(4/11) 2100932658243281 a001 1548008755920/505019158607*199^(4/11) 2100932658243281 a001 1515744265389/494493258286*199^(4/11) 2100932658243281 a001 956722026041/312119004989*199^(4/11) 2100932658243281 a001 365435296162/119218851371*199^(4/11) 2100932658243281 a001 139583862445/45537549124*199^(4/11) 2100932658243281 a001 53316291173/17393796001*199^(4/11) 2100932658243281 a001 20365011074/6643838879*199^(4/11) 2100932658243281 a001 7778742049/2537720636*199^(4/11) 2100932658243281 a001 2971215073/969323029*199^(4/11) 2100932658243281 a001 1134903170/370248451*199^(4/11) 2100932658243281 a001 433494437/141422324*199^(4/11) 2100932658243282 a001 165580141/54018521*199^(4/11) 2100932658243286 a001 63245986/20633239*199^(4/11) 2100932658243315 a001 24157817/7881196*199^(4/11) 2100932658243518 a001 9227465/3010349*199^(4/11) 2100932658244904 a001 3524578/1149851*199^(4/11) 2100932658254404 a001 1346269/439204*199^(4/11) 2100932658319520 a001 514229/167761*199^(4/11) 2100932658323069 r005 Im(z^2+c),c=-89/90+5/22*I,n=17 2100932658765831 a001 196418/64079*199^(4/11) 2100932661490842 m008 (2/3*Pi^6+3/5)/(Pi^5-2/3) 2100932661824894 a001 75025/24476*199^(4/11) 2100932664609029 m001 (Zeta(3)-exp(1))/(gamma(1)+Kolakoski) 2100932665982891 a001 322/11*(1/2*5^(1/2)+1/2)^19*11^(17/20) 2100932670019750 r002 8th iterates of z^2 + 2100932678050631 m004 -6-5*Pi+125*Pi*Sech[Sqrt[5]*Pi] 2100932681108727 m001 (1-exp(1))/(-2^(1/2)+Gompertz) 2100932682792025 a001 28657/9349*199^(4/11) 2100932688995480 m001 (exp(-1/2*Pi)+Kolakoski*Tribonacci)/Kolakoski 2100932691103502 a007 Real Root Of 294*x^4+158*x^3-560*x^2+990*x+289 2100932695093701 a007 Real Root Of -304*x^4-532*x^3-49*x^2-531*x+90 2100932699161704 m001 (Zeta(1,2)+FeigenbaumD)^MertensB3 2100932700811659 s001 sum(exp(-2*Pi/3)^n*A054612[n],n=1..infinity) 2100932708631317 a001 36/341*3571^(11/17) 2100932717727830 r005 Re(z^2+c),c=-13/106+28/45*I,n=33 2100932718897557 m001 Pi^(MadelungNaCl/MertensB1) 2100932720658971 r005 Re(z^2+c),c=-2/27+30/53*I,n=30 2100932727401916 m001 (exp(1)+ln(5))/(CareFree+FeigenbaumKappa) 2100932732477759 r005 Im(z^2+c),c=-41/66+2/51*I,n=61 2100932733066286 m001 ReciprocalLucas*(3^(1/2)-Robbin) 2100932733568083 m004 -3+25*Sqrt[5]*Pi+Cosh[Sqrt[5]*Pi]/15 2100932738345615 m001 (CareFree+Sarnak)/(exp(-1/2*Pi)+Bloch) 2100932738434147 r005 Im(z^2+c),c=-5/27+16/55*I,n=22 2100932738828169 b008 15+11*Tan[1/2] 2100932744179180 b008 2+E^Sqrt[3]/56 2100932747907975 m008 (1/2*Pi^3+1/2)/(1/4*Pi^5-1/3) 2100932751374075 s002 sum(A222139[n]/(n*10^n+1),n=1..infinity) 2100932751924193 a007 Real Root Of 640*x^4+924*x^3-641*x^2+664*x+324 2100932752215101 r009 Im(z^3+c),c=-13/24+29/59*I,n=6 2100932753969541 a007 Real Root Of -697*x^4-872*x^3+991*x^2-187*x+726 2100932762866159 r005 Re(z^2+c),c=-4/21+19/53*I,n=21 2100932766974139 a001 305/161*3571^(5/17) 2100932769064479 m002 -1-E^Pi+Pi-Tanh[Pi]/Pi^4 2100932786170184 r005 Re(z^2+c),c=-33/34+10/111*I,n=30 2100932786710904 m005 (1/2*3^(1/2)-4/9)/(2/5*Pi+3/4) 2100932787921321 s002 sum(A222139[n]/(n*10^n-1),n=1..infinity) 2100932790302676 m001 (arctan(1/3)+gamma(3))/(GAMMA(5/6)+ThueMorse) 2100932791198277 a001 87840/4181 2100932792473032 r005 Im(z^2+c),c=-51/40+3/56*I,n=42 2100932793920486 p003 LerchPhi(1/12,2,383/172) 2100932801319763 a001 36/341*9349^(11/19) 2100932808340964 h001 (9/11*exp(2)+4/5)/(4/11*exp(2)+4/7) 2100932809105251 a001 305/161*9349^(5/19) 2100932811078926 m001 (-Rabbit+ZetaP(3))/(sin(1)+Niven) 2100932813398990 a001 36/341*24476^(11/21) 2100932814595809 a001 305/161*24476^(5/21) 2100932814991265 a001 36/341*64079^(11/23) 2100932815235960 a001 36/341*7881196^(1/3) 2100932815235971 a001 36/341*312119004989^(1/5) 2100932815235971 a001 36/341*(1/2+1/2*5^(1/2))^11 2100932815235971 a001 36/341*1568397607^(1/4) 2100932815319570 a001 305/161*64079^(5/23) 2100932815325546 a001 36/341*103682^(11/24) 2100932815415871 a001 305/161*167761^(1/5) 2100932815430800 a001 305/161*20633239^(1/7) 2100932815430801 a001 305/161*2537720636^(1/9) 2100932815430801 a001 305/161*312119004989^(1/11) 2100932815430801 a001 305/161*(1/2+1/2*5^(1/2))^5 2100932815430801 a001 305/161*28143753123^(1/10) 2100932815430801 a001 305/161*228826127^(1/8) 2100932815430902 a001 305/161*1860498^(1/6) 2100932815471516 a001 305/161*103682^(5/24) 2100932815735242 a001 305/161*39603^(5/22) 2100932815905742 a001 36/341*39603^(1/2) 2100932817309444 r005 Im(z^2+c),c=-18/29+13/36*I,n=63 2100932817726138 a001 305/161*15127^(1/4) 2100932820285714 a001 36/341*15127^(11/20) 2100932820843846 r005 Re(z^2+c),c=-3/44+13/22*I,n=52 2100932826502890 a001 10946/3571*199^(4/11) 2100932826769503 r009 Im(z^3+c),c=-57/106+25/51*I,n=30 2100932832776056 m001 Pi^(1/2)*(BesselK(1,1)-KomornikLoreti) 2100932832911331 a001 305/161*5778^(5/18) 2100932834716233 r005 Im(z^2+c),c=-21/34+9/40*I,n=6 2100932839428560 m001 Pi*(2^(1/3)+Psi(2,1/3)/cos(1/5*Pi)) 2100932847579158 r005 Re(z^2+c),c=13/36+12/61*I,n=50 2100932850358145 a001 3461452808002/5*20365011074^(10/23) 2100932851936412 r005 Im(z^2+c),c=-9/10+27/133*I,n=23 2100932853298568 m001 (-Pi^(1/2)+Kac)/(BesselJ(0,1)-Ei(1,1)) 2100932853693139 a001 36/341*5778^(11/18) 2100932864225094 m008 (3/5*Pi^4+4)/(3*Pi^4+5) 2100932865512935 m001 (Paris+TravellingSalesman)/(Catalan+Otter) 2100932868933242 a007 Real Root Of 321*x^4+274*x^3-668*x^2+263*x-212 2100932879359735 m004 (5*Sin[Sqrt[5]*Pi])/(4*Pi)+2*Tan[Sqrt[5]*Pi] 2100932886656909 a007 Real Root Of -218*x^4-616*x^3-370*x^2-99*x-40 2100932886964900 m005 (1/2*gamma+7/12)/(1/8*Zeta(3)+4) 2100932896761874 m001 (Chi(1)-Zeta(5))/(Bloch+PlouffeB) 2100932897335439 r009 Re(z^3+c),c=-6/29+3/34*I,n=3 2100932906532635 m002 -2*E^Pi+Pi^3-2*Pi^4 2100932907336748 a007 Real Root Of -113*x^4-172*x^3-225*x^2-492*x+566 2100932908602807 s001 sum(exp(-Pi)^n*A223250[n],n=1..infinity) 2100932908602807 s002 sum(A223250[n]/(exp(pi*n)),n=1..infinity) 2100932916449928 l006 ln(1076/8795) 2100932918239240 a001 2207/7778742049*832040^(6/19) 2100932918239432 a001 2207/139583862445*7778742049^(6/19) 2100932926656228 p004 log(15473/12541) 2100932931186344 m002 -2+6*Pi^5*Log[Pi]+ProductLog[Pi] 2100932939420947 a007 Real Root Of -181*x^4-596*x^3-413*x^2+323*x+501 2100932942725420 m001 1/ln(Sierpinski)/LaplaceLimit*GAMMA(1/12)^2 2100932943301411 m005 (1/2*5^(1/2)+1/3)/(3*5^(1/2)+1/5) 2100932947801628 m001 (2^(1/3)+Backhouse)/(-Niven+ThueMorse) 2100932950220799 a001 305/161*2207^(5/16) 2100932953717321 a007 Real Root Of -372*x^4-336*x^3+994*x^2+453*x+696 2100932956771268 m001 Zeta(5)+((1+3^(1/2))^(1/2))^Champernowne 2100932964736717 a007 Real Root Of 51*x^4-419*x^3-72*x^2-891*x-188 2100932966949519 m001 1/GAMMA(1/24)*GolombDickman/ln(GAMMA(7/24))^2 2100932968660182 r005 Im(z^2+c),c=-19/40+15/41*I,n=34 2100932977991025 a007 Real Root Of 200*x^4-157*x^3-881*x^2+632*x-136 2100932981304252 m001 (Pi-BesselK(0,1))/(Zeta(1/2)-Zeta(1,-1)) 2100932986133965 m001 (MertensB1-Salem)/(ln(2)-ArtinRank2) 2100932992558068 m001 1/2*(KhinchinHarmonic-Stephens)/Pi*GAMMA(5/6) 2100933000431871 m001 (ln(2)-ln(3))/(GAMMA(23/24)-Otter) 2100933002930242 a007 Real Root Of 739*x^4-362*x^3+757*x^2+x-38 2100933006691046 r005 Re(z^2+c),c=-7/66+31/57*I,n=21 2100933008107197 m001 Paris^(Salem/arctan(1/3)) 2100933016423910 a007 Real Root Of 682*x^4+882*x^3-720*x^2+724*x-409 2100933021372377 p004 log(26573/3251) 2100933022644450 a007 Real Root Of -604*x^4-935*x^3+410*x^2-379*x+491 2100933024556138 r005 Im(z^2+c),c=-1/21+33/61*I,n=3 2100933045514255 r005 Im(z^2+c),c=-59/58+3/14*I,n=20 2100933052829419 r005 Im(z^2+c),c=-5/6+27/182*I,n=42 2100933060078606 m001 1/exp(LaplaceLimit)/Cahen^2/Lehmer 2100933073278835 l006 ln(725/5926) 2100933077499945 a007 Real Root Of -454*x^4-555*x^3+624*x^2-477*x-58 2100933080368230 r008 a(0)=0,K{-n^6,55-27*n^3+58*n^2-32*n} 2100933082236717 m001 1/ln(BesselJ(1,1))^2/Backhouse^2/gamma^2 2100933093855470 h001 (1/6*exp(2)+1/8)/(4/5*exp(2)+6/11) 2100933094511063 m001 ln(3)^(2^(1/2))*Tribonacci 2100933096399940 a007 Real Root Of -29*x^4-52*x^3+103*x^2+990*x-212 2100933103029076 m001 (exp(1/2)*GAMMA(19/24)+GAMMA(7/12))/exp(1/2) 2100933110584177 r005 Im(z^2+c),c=-10/11+4/21*I,n=56 2100933111773979 a001 36/341*2207^(11/16) 2100933122516219 a007 Real Root Of -455*x^4-893*x^3+174*x^2+322*x+492 2100933132453113 a001 521/832040*4807526976^(6/23) 2100933132667416 a001 521/46368*75025^(6/23) 2100933133326934 a001 55/439204*76^(28/43) 2100933138550855 r005 Im(z^2+c),c=-31/34+16/83*I,n=19 2100933146637342 m002 -Pi^2-Log[Pi]/Pi^4+Pi^3*Tanh[Pi] 2100933148591544 m005 (1/2*5^(1/2)+1/8)/(13/9+2*5^(1/2)) 2100933149345166 r002 3th iterates of z^2 + 2100933158349024 r009 Re(z^3+c),c=-19/122+47/64*I,n=20 2100933160356754 a003 sin(Pi*4/53)-sin(Pi*16/109) 2100933164097967 r005 Re(z^2+c),c=-9/82+34/63*I,n=56 2100933164693853 m001 1/ln(CareFree)^2/FransenRobinson/sinh(1)^2 2100933170830730 m008 (2/3*Pi^6+1/4)/(Pi^5-5/6) 2100933172147312 r005 Im(z^2+c),c=-39/64+13/28*I,n=18 2100933185090155 r009 Re(z^3+c),c=-3/13+1/5*I,n=5 2100933187367649 m005 (1/2*exp(1)-3/5)/(5*gamma+8/11) 2100933194296543 m001 1/sin(1)*exp(FeigenbaumKappa)^2*sinh(1) 2100933208478461 m005 (1/2*Zeta(3)+9/11)/(1/4*Zeta(3)+3/8) 2100933218381432 r005 Im(z^2+c),c=-11/25+9/25*I,n=47 2100933223563131 a001 1/72*377^(3/43) 2100933226825585 l006 ln(1099/8983) 2100933230931017 m001 1/exp(GAMMA(5/6))*FeigenbaumAlpha^2*Zeta(5) 2100933237078607 m001 (Zeta(3)-Cahen)/(Conway+FeigenbaumKappa) 2100933247617300 a007 Real Root Of 468*x^4+526*x^3-598*x^2+957*x+410 2100933252628133 a007 Real Root Of -527*x^4-842*x^3+664*x^2+135*x-188 2100933255460651 m001 ln(Rabbit)^2*MadelungNaCl^2*BesselJ(0,1)^2 2100933262956098 a001 6/7*34^(15/59) 2100933263378607 m001 1/exp(GAMMA(1/12))/Khintchine*GAMMA(1/6) 2100933267460184 m001 (PlouffeB-TreeGrowth2nd)/(Pi-3^(1/3)) 2100933270263992 m001 TwinPrimes^2/Riemann1stZero/ln(GAMMA(5/6))^2 2100933275732448 s002 sum(A016483[n]/(n!^3),n=1..infinity) 2100933280066713 m001 ReciprocalLucas^Niven-Shi(1) 2100933281833309 m005 (1/2*5^(1/2)+8/11)/(57/154+5/22*5^(1/2)) 2100933289539819 a007 Real Root Of 694*x^4+978*x^3-727*x^2+998*x+854 2100933291891661 a007 Real Root Of 196*x^4-269*x^3-978*x^2-527*x+156 2100933295809394 r005 Im(z^2+c),c=-61/106+20/59*I,n=24 2100933303605824 m001 (Niven+Sierpinski)/(Cahen-Khinchin) 2100933307555547 a007 Real Root Of 581*x^4+929*x^3-328*x^2+681*x+174 2100933310152486 l006 ln(6741/8317) 2100933310275030 a003 cos(Pi*9/38)-sin(Pi*15/38) 2100933313845180 r002 5th iterates of z^2 + 2100933321464258 s002 sum(A181829[n]/(n^3*exp(n)+1),n=1..infinity) 2100933323205410 r005 Im(z^2+c),c=-18/23+6/35*I,n=3 2100933335183274 b008 5/11+SinIntegral[(2*Pi)/3] 2100933339116546 m001 (CareFree+GaussAGM)/(LambertW(1)-Zeta(1,-1)) 2100933340734340 m008 (5*Pi^6+1)/(3/4*Pi^5-2/3) 2100933346680785 m001 (-Ei(1,1)+GAMMA(5/6))/(1-LambertW(1)) 2100933349106491 m005 (1/3*3^(1/2)-1/4)/(5/8*Catalan-5/12) 2100933350229912 m002 3+Pi^6+Cosh[Pi]+Pi^4*Sinh[Pi] 2100933359532107 r005 Im(z^2+c),c=-8/19+21/59*I,n=31 2100933359861994 m001 (-ErdosBorwein+Gompertz)/(2^(1/2)-Ei(1)) 2100933364071184 a007 Real Root Of 272*x^4+321*x^3+75*x^2+848*x-872 2100933365333704 a007 Real Root Of 405*x^4+185*x^3-958*x^2+628*x-627 2100933368307218 m001 Riemann2ndZero*ln(2)^ZetaQ(4) 2100933381850962 m005 (1/2*Catalan-2/7)/(4/9*Zeta(3)+2/7) 2100933382162723 a007 Real Root Of -21*x^4-431*x^3+188*x^2-589*x-805 2100933384369458 m001 (exp(1/Pi)+GAMMA(11/12))/(ln(2)+arctan(1/2)) 2100933385058612 m001 (ZetaQ(2)-ZetaQ(4))/(GAMMA(2/3)+GAMMA(5/6)) 2100933387392442 r005 Im(z^2+c),c=-23/44+13/30*I,n=43 2100933398831684 a001 4181/322*322^(1/12) 2100933400802517 r009 Re(z^3+c),c=-13/42+26/61*I,n=11 2100933401005367 a007 Real Root Of 347*x^4+95*x^3-945*x^2+935*x+256 2100933404717673 a007 Real Root Of -408*x^4-351*x^3+762*x^2-521*x+236 2100933410174518 m001 ln(Riemann1stZero)^2*Magata*Zeta(1,2)^2 2100933416694500 a007 Real Root Of -348*x^4-670*x^3+155*x^2-294*x-735 2100933417327564 r009 Re(z^3+c),c=-43/110+32/55*I,n=53 2100933419054708 m001 ZetaQ(4)*(exp(1)-exp(1/exp(1))) 2100933420748734 s002 sum(A214316[n]/(exp(n)-1),n=1..infinity) 2100933422175079 r009 Im(z^3+c),c=-5/102+12/55*I,n=7 2100933424038881 p003 LerchPhi(1/8,4,307/207) 2100933427294686 s002 sum(A208784[n]/(64^n),n=1..infinity) 2100933427294686 s002 sum(A208784[n]/(64^n-1),n=1..infinity) 2100933438631795 r005 Im(z^2+c),c=-63/94+20/59*I,n=26 2100933444240258 m005 (7/44+1/4*5^(1/2))/(-19/36+7/18*5^(1/2)) 2100933448827217 r005 Im(z^2+c),c=-79/102+2/27*I,n=28 2100933460165488 r005 Im(z^2+c),c=-25/102+11/31*I,n=5 2100933464393704 r005 Im(z^2+c),c=-61/90+13/58*I,n=33 2100933471915008 m001 (Sierpinski+ZetaP(2))/(FeigenbaumAlpha-Shi(1)) 2100933477036363 r005 Re(z^2+c),c=15/58+11/60*I,n=4 2100933478032514 a001 3571/89*610^(41/42) 2100933485085853 r005 Im(z^2+c),c=-29/42+2/37*I,n=46 2100933492001728 m001 exp(Paris)^2*MadelungNaCl*Pi^2 2100933499873754 r009 Re(z^3+c),c=-11/78+7/8*I,n=10 2100933504600979 r005 Re(z^2+c),c=-5/38+34/39*I,n=57 2100933510700366 r005 Re(z^2+c),c=-7/10+2/207*I,n=2 2100933511791455 m001 BesselJ(1,1)/(2^(1/3)+GaussAGM) 2100933522217082 r005 Re(z^2+c),c=-33/34+10/111*I,n=38 2100933524476302 l006 ln(374/3057) 2100933526396750 m001 Bloch/(Otter-Rabbit) 2100933531519203 m005 (1/2*Pi-8/11)/(3/7*Zeta(3)-11/12) 2100933534074076 m005 (1/2*3^(1/2)+1/7)/(8/11*gamma-9/10) 2100933535223018 r005 Re(z^2+c),c=-33/34+10/111*I,n=36 2100933536773993 r005 Im(z^2+c),c=-75/82+5/28*I,n=7 2100933537398112 l006 ln(5291/6528) 2100933538367314 r002 43th iterates of z^2 + 2100933543764257 a007 Real Root Of -312*x^4-333*x^3+292*x^2-869*x-124 2100933546264100 a003 cos(Pi*24/109)/cos(Pi*43/113) 2100933546907046 r005 Im(z^2+c),c=-37/122+1/32*I,n=13 2100933552580125 m005 (1/2*Catalan-4/7)/(3/7*exp(1)-5/8) 2100933554636233 m001 (CareFree+MertensB1)/(Pi+Backhouse) 2100933555724636 r009 Re(z^3+c),c=-1/24+17/26*I,n=20 2100933563861962 r005 Re(z^2+c),c=-33/34+10/111*I,n=40 2100933564464518 r005 Re(z^2+c),c=-7/52+30/61*I,n=22 2100933566832816 m005 (1/3*Pi+1/11)/(2/11*Zeta(3)-3/11) 2100933567130392 a007 Real Root Of 263*x^4+586*x^3-227*x^2-745*x-253 2100933569743514 r005 Re(z^2+c),c=-33/34+10/111*I,n=48 2100933569851896 r005 Re(z^2+c),c=-33/34+10/111*I,n=46 2100933570068467 r005 Re(z^2+c),c=-33/34+10/111*I,n=50 2100933570115443 r005 Re(z^2+c),c=-33/34+10/111*I,n=58 2100933570116343 r005 Re(z^2+c),c=-33/34+10/111*I,n=56 2100933570117979 r005 Re(z^2+c),c=-33/34+10/111*I,n=60 2100933570118511 r005 Re(z^2+c),c=-33/34+10/111*I,n=64 2100933570118704 r005 Re(z^2+c),c=-33/34+10/111*I,n=62 2100933570135460 r005 Re(z^2+c),c=-33/34+10/111*I,n=54 2100933570160501 r005 Re(z^2+c),c=-33/34+10/111*I,n=52 2100933572290682 r005 Re(z^2+c),c=-33/34+10/111*I,n=44 2100933575529715 r005 Re(z^2+c),c=-33/34+10/111*I,n=42 2100933577152178 p002 log(18^(6/7)-3^(6/5)) 2100933584419566 m001 Backhouse/(Ei(1)-Zeta(3)) 2100933588194402 r005 Re(z^2+c),c=-13/18+11/113*I,n=2 2100933595936860 a007 Real Root Of -584*x^4-709*x^3+945*x^2+70*x+779 2100933601442140 a005 (1/sin(70/143*Pi))^1367 2100933603186059 a001 726103*322^(53/54) 2100933606719446 r009 Im(z^3+c),c=-11/25+1/25*I,n=42 2100933618045278 r009 Im(z^3+c),c=-8/31+11/60*I,n=5 2100933620999782 p004 log(27701/3389) 2100933621205822 a007 Real Root Of 395*x^4+67*x^3-962*x^2+923*x-889 2100933627828494 m001 Riemann2ndZero-ZetaP(3)^FeigenbaumAlpha 2100933660876799 m001 (MertensB1+Paris)/(cos(1/12*Pi)-Kolakoski) 2100933669594379 r009 Re(z^3+c),c=-39/106+37/63*I,n=28 2100933680727236 m008 (4*Pi^6-3/5)/(3/5*Pi^5-3/5) 2100933686090500 r005 Im(z^2+c),c=-9/14+19/111*I,n=5 2100933692892168 r005 Re(z^2+c),c=-1/6+21/50*I,n=25 2100933721365853 m002 -13/5+Sinh[Pi]/E^Pi 2100933730001342 m001 (3^(1/2)-arctan(1/3))/(sin(1/12*Pi)+ThueMorse) 2100933730183151 r005 Re(z^2+c),c=-7/54+1/2*I,n=32 2100933733038592 a003 sin(Pi*32/109)/cos(Pi*41/109) 2100933737460485 a007 Real Root Of -463*x^4-561*x^3+722*x^2-310*x-20 2100933740453662 m001 (GAMMA(23/24)+MertensB1)/(Catalan-GAMMA(7/12)) 2100933746444956 a003 cos(Pi*16/95)/cos(Pi*42/115) 2100933748195050 m001 (Shi(1)+MertensB1)^FeigenbaumD 2100933755386328 m001 sin(1)+ln(2+3^(1/2))^Chi(1) 2100933765564626 m001 (Pi^(1/2))^arctan(1/3)*MadelungNaCl 2100933770934471 m001 (BesselK(0,1)-exp(1))/(sin(1/12*Pi)+GaussAGM) 2100933772058754 m001 ln(Pi)^2*TwinPrimes^2/exp(1) 2100933772425698 r002 29th iterates of z^2 + 2100933774273684 m001 (exp(1)+gamma(3))/(-Conway+ZetaQ(3)) 2100933788702926 a001 144/2207*843^(6/7) 2100933791195957 m005 (19/6+5/2*5^(1/2))/(1/5*Catalan-3/5) 2100933792098936 m005 (1/2*gamma-2/5)/(1/9*exp(1)+5) 2100933794170546 m001 (sin(1/12*Pi)+BesselK(1,1))/(3^(1/3)-Si(Pi)) 2100933795676247 m001 1/Bloch*Conway/ln(Zeta(5))^2 2100933797609653 a007 Real Root Of 172*x^4+141*x^3-300*x^2+221*x-255 2100933800472536 p001 sum(1/(97*n+49)/(12^n),n=0..infinity) 2100933810168916 l006 ln(1145/9359) 2100933811512331 a001 4181/1364*199^(4/11) 2100933825536646 m001 (FeigenbaumC+MertensB2)/(ln(Pi)+Ei(1,1)) 2100933825649640 m005 (29/36+1/4*5^(1/2))/(2/9*gamma-7/9) 2100933828163613 m001 Riemann2ndZero-arctan(1/2)*Trott2nd 2100933831294901 r005 Re(z^2+c),c=-67/46+29/43*I,n=2 2100933834377848 r005 Im(z^2+c),c=-14/29+17/46*I,n=46 2100933841663046 r005 Re(z^2+c),c=13/46+8/19*I,n=51 2100933846322305 r005 Re(z^2+c),c=-33/34+10/111*I,n=34 2100933855036361 m001 (sin(1)*Gompertz+BesselI(0,1))/sin(1) 2100933858454118 m001 FeigenbaumC/Gompertz/MinimumGamma 2100933865075591 m001 Lehmer^2/MertensB1/ln(Ei(1)) 2100933865242214 a007 Real Root Of -343*x^4-644*x^3-366*x^2-882*x+473 2100933869268440 a007 Real Root Of 981*x^4+682*x^3-381*x^2-735*x+163 2100933871275417 a001 305/161*843^(5/14) 2100933872792976 m001 (polylog(4,1/2)+FransenRobinson)/(Sarnak+Thue) 2100933882315837 a001 11/10946*55^(22/29) 2100933882798174 m001 (Zeta(1/2)-exp(1/Pi))/(gamma(2)-Totient) 2100933884412701 r009 Re(z^3+c),c=-17/60+13/36*I,n=12 2100933886543560 r008 a(0)=2,K{-n^6,88-90*n^3-22*n^2+14*n} 2100933896525694 a007 Real Root Of 186*x^4+276*x^3-436*x^2-249*x+337 2100933899023466 a005 (1/cos(3/112*Pi))^859 2100933915418233 m005 (1/2*3^(1/2)+2/9)/(5*Catalan+3/5) 2100933931464769 m001 (Gompertz-ZetaP(4))/(ln(3)+exp(1/Pi)) 2100933933473003 a003 cos(Pi*4/99)/sin(Pi*18/115) 2100933934579650 a007 Real Root Of -396*x^4-263*x^3+579*x^2-858*x+918 2100933936216835 l006 ln(3841/4739) 2100933943882969 m001 (FransenRobinson+TreeGrowth2nd)^Sierpinski 2100933947663942 m009 (24*Catalan+3*Pi^2+2/3)/(5/2*Pi^2+1/5) 2100933948753890 l006 ln(771/6302) 2100933953733555 a007 Real Root Of 634*x^4+907*x^3-367*x^2+745*x-756 2100933958867133 a001 19/11592*610^(28/37) 2100933960798043 m001 (GAMMA(2/3)+Cahen)/(Psi(1,1/3)-sin(1/5*Pi)) 2100933961058188 m001 (Porter+Trott2nd)/(CopelandErdos+PlouffeB) 2100933967138208 m004 -5+E^(Sqrt[5]*Pi)+(625*Pi)/2 2100933974259930 r005 Re(z^2+c),c=-31/122+1/63*I,n=11 2100933982103677 a007 Real Root Of -273*x^4-88*x^3+686*x^2-295*x+855 2100933983953919 m001 gamma(1)/(exp(1)+RenyiParking) 2100933992229054 a007 Real Root Of -420*x^4-443*x^3+589*x^2-474*x+479 2100933998004681 a003 cos(Pi*9/59)*cos(Pi*39/92) 2100933998913839 r009 Re(z^3+c),c=-5/126+23/33*I,n=49 2100934005378911 m005 (1/2*3^(1/2)+5/7)/(2/11*gamma-6/7) 2100934020967925 m008 (1/2*Pi^6-1/4)/(3/4*Pi^5-5/6) 2100934030681844 a007 Real Root Of 294*x^4+651*x^3+39*x^2+219*x+597 2100934033355354 m005 (1/3*2^(1/2)-3/7)/(3/11*2^(1/2)-2/11) 2100934067506647 a001 144/521*521^(9/13) 2100934070100617 m005 (1/2*Pi+2/11)/(1/7*gamma-11/12) 2100934084609860 l006 ln(1168/9547) 2100934087113648 m001 BesselI(0,2)^GAMMA(1/4)+GAMMA(19/24) 2100934090264592 r005 Im(z^2+c),c=-26/31+13/63*I,n=39 2100934091962762 a007 Real Root Of -352*x^4-932*x^3-580*x^2-22*x+729 2100934093239380 r009 Im(z^3+c),c=-11/46+10/53*I,n=13 2100934098013607 s001 sum(1/10^(n-1)*A094479[n],n=1..infinity) 2100934098013607 s001 sum(1/10^n*A094479[n],n=1..infinity) 2100934101881538 h005 exp(sin(Pi*1/49)+sin(Pi*14/59)) 2100934102682675 a001 55/64079*3^(22/27) 2100934105937324 h001 (7/10*exp(1)+10/11)/(1/11*exp(2)+2/3) 2100934107633287 r005 Im(z^2+c),c=-5/27+16/55*I,n=27 2100934110818390 m001 ln(GAMMA(1/12))^2*CareFree*sqrt(5)^2 2100934111159544 m001 (1+GAMMA(7/12)*MadelungNaCl)/MadelungNaCl 2100934114468818 s002 sum(A237102[n]/(n^2*pi^n+1),n=1..infinity) 2100934115223152 a001 17/38*322^(15/56) 2100934118727716 m005 (1/2*gamma-4/11)/(2/11*Pi+3) 2100934120120009 r009 Im(z^3+c),c=-5/102+12/55*I,n=9 2100934130106434 r009 Im(z^3+c),c=-5/102+12/55*I,n=12 2100934130115439 r009 Im(z^3+c),c=-5/102+12/55*I,n=11 2100934130119322 r009 Im(z^3+c),c=-5/102+12/55*I,n=14 2100934130119944 r009 Im(z^3+c),c=-5/102+12/55*I,n=16 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=18 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=19 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=21 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=23 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=25 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=28 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=30 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=32 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=34 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=35 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=37 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=39 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=41 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=42 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=44 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=46 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=47 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=48 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=49 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=51 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=45 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=43 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=40 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=38 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=36 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=33 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=31 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=29 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=27 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=26 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=24 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=22 2100934130119956 r009 Im(z^3+c),c=-5/102+12/55*I,n=20 2100934130119957 r009 Im(z^3+c),c=-5/102+12/55*I,n=17 2100934130120049 r009 Im(z^3+c),c=-5/102+12/55*I,n=15 2100934130123470 r009 Im(z^3+c),c=-5/102+12/55*I,n=13 2100934130180662 a007 Real Root Of 12*x^4-255*x^3-307*x^2+777*x+389 2100934130889476 r009 Im(z^3+c),c=-5/102+12/55*I,n=10 2100934137058599 b008 4/Pi+LogGamma[Pi] 2100934137409095 r005 Re(z^2+c),c=-25/118+32/41*I,n=52 2100934137604571 r009 Im(z^3+c),c=-11/46+10/53*I,n=12 2100934145858591 s002 sum(A236922[n]/((pi^n-1)/n),n=1..infinity) 2100934147781998 r002 5th iterates of z^2 + 2100934154021627 m004 -100*Pi+(75*Sqrt[5]*Log[Sqrt[5]*Pi])/Pi 2100934155727040 r009 Im(z^3+c),c=-11/46+10/53*I,n=17 2100934155818800 r009 Im(z^3+c),c=-11/46+10/53*I,n=14 2100934156078113 r009 Im(z^3+c),c=-11/46+10/53*I,n=18 2100934156098169 r009 Im(z^3+c),c=-11/46+10/53*I,n=21 2100934156100048 r009 Im(z^3+c),c=-11/46+10/53*I,n=22 2100934156100288 r009 Im(z^3+c),c=-11/46+10/53*I,n=25 2100934156100297 r009 Im(z^3+c),c=-11/46+10/53*I,n=26 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=29 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=30 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=33 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=34 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=37 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=38 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=42 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=41 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=46 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=45 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=47 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=50 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=51 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=54 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=55 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=58 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=59 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=62 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=63 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=64 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=61 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=60 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=57 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=56 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=53 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=52 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=49 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=48 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=43 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=44 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=40 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=39 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=36 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=35 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=32 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=31 2100934156100299 r009 Im(z^3+c),c=-11/46+10/53*I,n=28 2100934156100300 r009 Im(z^3+c),c=-11/46+10/53*I,n=27 2100934156100323 r009 Im(z^3+c),c=-11/46+10/53*I,n=24 2100934156100457 r009 Im(z^3+c),c=-11/46+10/53*I,n=23 2100934156102793 r009 Im(z^3+c),c=-11/46+10/53*I,n=20 2100934156128641 r009 Im(z^3+c),c=-11/46+10/53*I,n=19 2100934156254994 r009 Im(z^3+c),c=-11/46+10/53*I,n=16 2100934157321117 r005 Im(z^2+c),c=7/36+23/42*I,n=4 2100934160967685 r009 Im(z^3+c),c=-11/46+10/53*I,n=15 2100934162081696 r005 Re(z^2+c),c=7/22+2/9*I,n=24 2100934164886321 r005 Im(z^2+c),c=-33/32+9/40*I,n=48 2100934171524974 r005 Re(z^2+c),c=-7/26+16/57*I,n=3 2100934174870380 r002 52th iterates of z^2 + 2100934183954529 m001 Shi(1)^Si(Pi)*Ei(1) 2100934188478196 a007 Real Root Of 428*x^4+814*x^3+603*x^2-727*x+15 2100934191615821 m005 (5/6*2^(1/2)+2)/(1/4*exp(1)+5/6) 2100934203114863 p004 log(25589/25057) 2100934210908544 m001 (Robbin+ZetaP(2))/(Ei(1)+Magata) 2100934215620447 a007 Real Root Of -96*x^4+844*x^3-955*x^2+142*x+80 2100934219068368 m005 (1/2*Catalan-5/6)/(7/11*5^(1/2)+4/11) 2100934219500956 m001 (-exp(-Pi)+3)/(-Lehmer+2) 2100934222775757 r009 Im(z^3+c),c=-5/102+12/55*I,n=8 2100934227597217 h001 (7/12*exp(2)+5/6)/(7/10*exp(1)+6/11) 2100934245329951 m001 (Zeta(3)-GAMMA(17/24))/(Landau+Magata) 2100934265206986 r005 Re(z^2+c),c=-33/34+10/111*I,n=32 2100934267736846 r005 Im(z^2+c),c=23/106+7/60*I,n=15 2100934272788290 p003 LerchPhi(1/2,2,41/16) 2100934274670244 m001 Cahen+ErdosBorwein^Kolakoski 2100934274815966 l006 ln(6232/7689) 2100934285143515 m001 QuadraticClass^(Psi(1,1/3)*GAMMA(3/4)) 2100934296014487 r005 Im(z^2+c),c=-35/62+22/53*I,n=25 2100934303814640 a007 Real Root Of 34*x^4-246*x^3+213*x^2-33*x+748 2100934307324102 m005 (1/2*3^(1/2)-5/12)/(6/7*5^(1/2)+2/9) 2100934309171275 r009 Im(z^3+c),c=-25/78+7/44*I,n=9 2100934312645345 m001 1/exp(GAMMA(17/24))^2/Robbin^2*Zeta(3) 2100934313079296 m002 20+4/Pi^5+Tanh[Pi] 2100934325168348 r005 Re(z^2+c),c=29/86+7/32*I,n=22 2100934329737376 b008 2+Coth[Khinchin]/10 2100934329737376 b008 20+Coth[Khinchin] 2100934338853116 a007 Real Root Of -26*x^4-562*x^3-330*x^2+62*x+841 2100934345962587 r005 Im(z^2+c),c=-99/122+10/61*I,n=15 2100934348450999 l006 ln(397/3245) 2100934348532823 q001 1/4759787 2100934353846450 r009 Re(z^3+c),c=-4/13+21/53*I,n=5 2100934361990911 r002 35th iterates of z^2 + 2100934362864949 r002 51th iterates of z^2 + 2100934367329539 r005 Re(z^2+c),c=-1/29+21/40*I,n=6 2100934369030683 a001 6/2255*1346269^(26/55) 2100934370149866 m008 (Pi^4+5)/(5*Pi^4+2/5) 2100934372619922 m001 Gompertz^FeigenbaumC*Gompertz^Psi(1,1/3) 2100934381991654 a001 521/5*6765^(44/51) 2100934398808174 m001 (Psi(1,1/3)-Si(Pi))/(-LambertW(1)+ZetaP(3)) 2100934400384552 r005 Re(z^2+c),c=-7/50+12/25*I,n=60 2100934401031993 r005 Im(z^2+c),c=-11/23+19/62*I,n=8 2100934408489540 m001 FransenRobinson^gamma/(StronglyCareFree^gamma) 2100934410206277 m001 GAMMA(19/24)^2*Ei(1)*ln(sqrt(5)) 2100934413112476 a007 Real Root Of -734*x^4-441*x^3-732*x^2+637*x-96 2100934425149007 s002 sum(A252263[n]/(64^n),n=1..infinity) 2100934425640415 p004 log(10639/8623) 2100934428927856 p001 sum(1/(566*n+485)/(25^n),n=0..infinity) 2100934429197971 a001 38*13^(2/3) 2100934434095842 a007 Real Root Of 398*x^4+887*x^3+222*x^2+689*x+939 2100934438589693 m001 Riemann2ndZero/((3^(1/3))^ZetaQ(4)) 2100934442508187 r005 Im(z^2+c),c=-5/27+16/55*I,n=30 2100934442981453 p003 LerchPhi(1/1024,4,549/209) 2100934453956071 m001 (Niven-ZetaQ(4))/(GAMMA(2/3)-Landau) 2100934458568792 r005 Im(z^2+c),c=-5/27+16/55*I,n=29 2100934460595824 r002 6th iterates of z^2 + 2100934464865492 s002 sum(A082837[n]/(n^3*2^n-1),n=1..infinity) 2100934467033924 r005 Im(z^2+c),c=-5/27+16/55*I,n=32 2100934468118412 m006 (1/4/Pi+1/5)/(1/4*exp(2*Pi)-4/5) 2100934469577191 m005 (1/2*3^(1/2)+1/11)/(5/11*Zeta(3)-1/11) 2100934475094686 m001 1/exp(PrimesInBinary)/FeigenbaumC^2/Zeta(1,2) 2100934480616593 r005 Im(z^2+c),c=-5/27+16/55*I,n=35 2100934481393158 m001 GAMMA(13/24)^GAMMA(5/6)*Zeta(3) 2100934484315912 r005 Im(z^2+c),c=-5/27+16/55*I,n=38 2100934484857553 r005 Im(z^2+c),c=-5/27+16/55*I,n=40 2100934484938017 r005 Im(z^2+c),c=-5/27+16/55*I,n=41 2100934484940748 r005 Im(z^2+c),c=-5/27+16/55*I,n=43 2100934484976558 r005 Im(z^2+c),c=-5/27+16/55*I,n=46 2100934484984230 r005 Im(z^2+c),c=-5/27+16/55*I,n=49 2100934484984816 r005 Im(z^2+c),c=-5/27+16/55*I,n=48 2100934484984877 r005 Im(z^2+c),c=-5/27+16/55*I,n=51 2100934484985167 r005 Im(z^2+c),c=-5/27+16/55*I,n=54 2100934484985250 r005 Im(z^2+c),c=-5/27+16/55*I,n=57 2100934484985259 r005 Im(z^2+c),c=-5/27+16/55*I,n=52 2100934484985263 r005 Im(z^2+c),c=-5/27+16/55*I,n=59 2100934484985265 r005 Im(z^2+c),c=-5/27+16/55*I,n=60 2100934484985265 r005 Im(z^2+c),c=-5/27+16/55*I,n=62 2100934484985266 r005 Im(z^2+c),c=-5/27+16/55*I,n=63 2100934484985266 r005 Im(z^2+c),c=-5/27+16/55*I,n=64 2100934484985268 r005 Im(z^2+c),c=-5/27+16/55*I,n=61 2100934484985272 r005 Im(z^2+c),c=-5/27+16/55*I,n=56 2100934484985276 r005 Im(z^2+c),c=-5/27+16/55*I,n=58 2100934484985299 r005 Im(z^2+c),c=-5/27+16/55*I,n=55 2100934484985397 r005 Im(z^2+c),c=-5/27+16/55*I,n=53 2100934484986209 r005 Im(z^2+c),c=-5/27+16/55*I,n=50 2100934484989524 r005 Im(z^2+c),c=-5/27+16/55*I,n=47 2100934484992787 r005 Im(z^2+c),c=-5/27+16/55*I,n=45 2100934484994268 r005 Im(z^2+c),c=-5/27+16/55*I,n=44 2100934485063062 r005 Im(z^2+c),c=-5/27+16/55*I,n=42 2100934485190480 r005 Im(z^2+c),c=-5/27+16/55*I,n=37 2100934485408598 r005 Im(z^2+c),c=-5/27+16/55*I,n=33 2100934485433623 r005 Im(z^2+c),c=-5/27+16/55*I,n=39 2100934486561346 r005 Im(z^2+c),c=-5/27+16/55*I,n=36 2100934490485231 r005 Im(z^2+c),c=-5/27+16/55*I,n=34 2100934493231828 a007 Real Root Of -313*x^4-214*x^3+647*x^2-414*x+388 2100934498675944 a007 Real Root Of 272*x^4+621*x^3+145*x^2+174*x+185 2100934503585269 r005 Re(z^2+c),c=-7/50+12/25*I,n=53 2100934524546844 a007 Real Root Of 17*x^4-258*x^3+481*x^2-295*x+558 2100934526236965 r005 Im(z^2+c),c=-5/27+16/55*I,n=31 2100934529506827 a001 47/5*34^(13/57) 2100934531502783 r005 Re(z^2+c),c=-5/6+2/129*I,n=34 2100934539994413 r005 Re(z^2+c),c=19/82+22/43*I,n=5 2100934541098942 r005 Im(z^2+c),c=-5/13+21/61*I,n=16 2100934541802633 a007 Real Root Of -577*x^4+337*x^3-430*x^2+651*x+160 2100934542575639 m001 1/log(1+sqrt(2))^2/ln(GAMMA(11/24))^2*sin(1)^2 2100934544724526 r005 Re(z^2+c),c=-11/10+26/125*I,n=4 2100934548690518 a001 4181/843*199^(3/11) 2100934558349719 a007 Real Root Of 95*x^4+72*x^3+95*x^2+322*x-926 2100934562522899 m001 Landau*(Grothendieck-HardHexagonsEntropy) 2100934565804252 a007 Real Root Of 351*x^4+534*x^3-22*x^2+489*x-762 2100934565834822 b008 21+ArcCsch[107] 2100934566970782 m005 (1/3*Pi-3/5)/(1/11*2^(1/2)+2) 2100934567595593 r005 Im(z^2+c),c=-7/10+6/115*I,n=52 2100934568171643 r005 Re(z^2+c),c=15/52+13/64*I,n=28 2100934576242321 r005 Re(z^2+c),c=21/86+6/37*I,n=27 2100934578428652 m005 (-29/44+1/4*5^(1/2))/(1/12*Catalan+2/5) 2100934579439252 q001 1124/535 2100934585472020 m001 BesselK(1,1)*PisotVijayaraghavan+Conway 2100934587917319 a005 (1/cos(2/163*Pi))^999 2100934589384968 m006 (5*Pi^2-3/4)/(3/5*ln(Pi)-3) 2100934591578591 p003 LerchPhi(1/25,3,400/237) 2100934595952957 a001 144/3571*843^(13/14) 2100934597451800 m001 (Sarnak+StronglyCareFree)/(Lehmer-Mills) 2100934599815731 a007 Real Root Of 92*x^4+13*x^3-82*x^2-860*x+184 2100934602294797 l006 ln(1214/9923) 2100934602929195 a003 cos(Pi*10/91)/sin(Pi*17/115) 2100934606650607 b008 21+ArcCoth[107] 2100934615637538 a007 Real Root Of -502*x^4-706*x^3+979*x^2+851*x+700 2100934616093246 a001 377/2537720636*2^(1/2) 2100934633370413 m005 (1/2*Catalan+10/11)/(3/10*3^(1/2)-5/11) 2100934634080735 r005 Im(z^2+c),c=-31/70+13/40*I,n=5 2100934636106557 a007 Real Root Of -626*x^4-944*x^3+815*x^2+121*x+99 2100934642369215 a004 Fibonacci(12)*Lucas(14)/(1/2+sqrt(5)/2)^18 2100934645267329 r005 Re(z^2+c),c=11/34+13/57*I,n=46 2100934647147967 r005 Im(z^2+c),c=-27/50+18/47*I,n=46 2100934647907297 r005 Im(z^2+c),c=-31/58+35/62*I,n=20 2100934648190946 a001 2/75025*13^(33/41) 2100934649317111 r005 Re(z^2+c),c=-7/50+12/25*I,n=56 2100934657614555 a007 Real Root Of -990*x^4-523*x^3-402*x^2+77*x+31 2100934662783659 m001 3^(1/2)/(Cahen-HardyLittlewoodC3) 2100934664826374 m005 (1/2*Pi+1/10)/(3/11*Catalan+6/11) 2100934672702420 m001 exp(GAMMA(3/4))^2*BesselK(1,1)^2*sqrt(5)^2 2100934674579575 m001 exp(GAMMA(5/24))*GAMMA(1/3)*cos(Pi/12) 2100934677593978 r009 Im(z^3+c),c=-11/46+10/53*I,n=10 2100934678499484 r005 Im(z^2+c),c=-5/27+16/55*I,n=28 2100934682399760 g007 Psi(2,6/11)-Psi(13/10)-Psi(2,3/8)-Psi(2,2/3) 2100934684529476 m005 (1/2*Zeta(3)-1/4)/(1+3/10*5^(1/2)) 2100934687943095 m001 (gamma+Salem)/GaussAGM 2100934690748398 h001 (1/8*exp(2)+1/6)/(5/8*exp(2)+4/7) 2100934692046416 r005 Im(z^2+c),c=-14/27+23/63*I,n=27 2100934692139066 m001 Khintchine*Cahen^2/ln(Kolakoski)^2 2100934696342366 r005 Im(z^2+c),c=-111/122+12/61*I,n=23 2100934700803903 r002 3th iterates of z^2 + 2100934702193763 m008 (1/3*Pi^6-2/5)/(1/2*Pi^5-2/3) 2100934703599705 m001 FeigenbaumDelta/GAMMA(11/12)*Weierstrass 2100934719489707 m001 (Pi^(1/2)+4)/(MadelungNaCl+1) 2100934721120449 r002 8th iterates of z^2 + 2100934722783393 r002 30th iterates of z^2 + 2100934725643596 l006 ln(817/6678) 2100934726078741 r002 48th iterates of z^2 + 2100934731806896 m001 FeigenbaumKappa-exp(Pi)+StronglyCareFree 2100934751028441 a007 Real Root Of 4*x^4+839*x^3-287*x^2+342*x-868 2100934754766153 a007 Real Root Of -112*x^4+556*x^3+7*x^2-989*x-927 2100934759022869 r005 Im(z^2+c),c=-47/78+8/43*I,n=5 2100934767072894 a007 Real Root Of -43*x^4-932*x^3-603*x^2-45*x+14 2100934768221020 s001 sum(exp(-2*Pi)^(n-1)*A040427[n],n=1..infinity) 2100934773047420 r009 Re(z^3+c),c=-63/118+10/51*I,n=41 2100934776241345 r005 Im(z^2+c),c=43/110+11/39*I,n=5 2100934781670786 r009 Re(z^3+c),c=-35/122+17/54*I,n=3 2100934783249884 r005 Im(z^2+c),c=-5/27+16/55*I,n=26 2100934783417738 m003 1/3+4*Cos[1/2+Sqrt[5]/2]+Tan[1/2+Sqrt[5]/2] 2100934786794155 h001 (8/9*exp(1)+5/6)/(1/11*exp(2)+7/8) 2100934791074875 m001 (Otter-ZetaQ(2))/(ln(5)-MadelungNaCl) 2100934798208392 m001 (ln(3)-Conway)/(Mills-OrthogonalArrays) 2100934804878992 m001 (exp(sqrt(2))+GAMMA(7/12))/Khinchin 2100934805589582 m005 (1/2*Zeta(3)+2)/(2/3*3^(1/2)+1/12) 2100934811977313 b008 -2+Pi*CosIntegral[7/2] 2100934818755407 l006 ln(2391/2950) 2100934826931173 m005 (1/12+1/6*5^(1/2))/(163/140+9/20*5^(1/2)) 2100934830583460 m001 (Pi*2^(1/2)/GAMMA(3/4))^(Gompertz/MertensB2) 2100934833973254 m005 (1/2*3^(1/2)+4/5)/(7/8*2^(1/2)-4/9) 2100934834701201 a007 Real Root Of 888*x^4-417*x^3-133*x^2-990*x+216 2100934841490284 r009 Re(z^3+c),c=-7/23+23/55*I,n=23 2100934846698911 p004 log(10111/1237) 2100934852453225 m001 DuboisRaymond*Rabbit+ReciprocalLucas 2100934854165145 m001 (BesselK(0,1)-gamma)/(-Gompertz+Totient) 2100934854970996 m006 (3*exp(2*Pi)-1/6)/(4/5*Pi^2-1/4) 2100934860297688 a007 Real Root Of -932*x^4-111*x^3+368*x^2+555*x-130 2100934865210722 m001 (Catalan+Cahen)/(-OrthogonalArrays+Robbin) 2100934872300636 r005 Re(z^2+c),c=-27/32+5/24*I,n=42 2100934875063997 r002 32th iterates of z^2 + 2100934876726320 a007 Real Root Of -597*x^4-426*x^3-346*x^2+269*x+69 2100934881697743 m008 (1/3*Pi^5-1)/(5*Pi^6+3/4) 2100934891119326 r009 Re(z^3+c),c=-1/28+28/47*I,n=27 2100934893116254 r005 Re(z^2+c),c=-9/22+30/53*I,n=57 2100934898475419 r005 Im(z^2+c),c=-6/29+12/19*I,n=40 2100934910466676 m001 (Mills+Niven)/(Rabbit+Sarnak) 2100934918978771 a007 Real Root Of 326*x^4+624*x^3-313*x^2-285*x+218 2100934925662417 a003 cos(Pi*50/109)/cos(Pi*49/102) 2100934927646266 h001 (2/5*exp(2)+1/4)/(1/2*exp(1)+1/6) 2100934935520282 a007 Real Root Of -113*x^4+321*x^3+607*x^2-803*x+812 2100934935940649 a007 Real Root Of -184*x^4-499*x^3-157*x^2+214*x+100 2100934936792110 r009 Im(z^3+c),c=-53/118+29/52*I,n=40 2100934940692124 r005 Im(z^2+c),c=-5/27+16/55*I,n=25 2100934946856299 r002 11th iterates of z^2 + 2100934947718704 m003 -2-Sinh[1/2+Sqrt[5]/2]/24 2100934951035539 a007 Real Root Of -71*x^4+472*x^3+780*x^2-797*x+643 2100934955161608 p004 log(30661/24851) 2100934955400753 m001 (Rabbit+Tetranacci)/(ln(2^(1/2)+1)+Artin) 2100934960141731 r009 Im(z^3+c),c=-11/46+10/53*I,n=11 2100934963643825 r009 Re(z^3+c),c=-33/118+40/59*I,n=37 2100934971701691 r002 2th iterates of z^2 + 2100934974908534 a007 Real Root Of 333*x^4+127*x^3-614*x^2+950*x-604 2100934984585792 r005 Re(z^2+c),c=-97/118+3/47*I,n=26 2100934993343272 m001 (ZetaQ(2)-ZetaQ(4))/(sin(1/5*Pi)+Ei(1)) 2100934995133264 a005 (1/cos(5/112*Pi))^1242 2100935000460582 a001 1292/161*322^(1/6) 2100935009390132 m001 1/ln(FeigenbaumC)^2/Niven^2*sqrt(5) 2100935009927722 m004 Csc[Sqrt[5]*Pi]+Log[Sqrt[5]*Pi]/Pi 2100935018032066 a007 Real Root Of 414*x^4+579*x^3-541*x^2+46*x-212 2100935020345403 m001 Ei(1)^(Kolakoski*MinimumGamma) 2100935020981693 p003 LerchPhi(1/10,3,246/145) 2100935026918346 r005 Re(z^2+c),c=-7/50+12/25*I,n=59 2100935026971270 m001 (cos(1/12*Pi)*Paris+OneNinth)/cos(1/12*Pi) 2100935027273805 r002 6th iterates of z^2 + 2100935027294495 m009 (6*Psi(1,3/4)-1/2)/(1/3*Psi(1,2/3)+6) 2100935030250199 m001 (GAMMA(2/3)-LandauRamanujan)/FransenRobinson 2100935037498163 a007 Real Root Of -440*x^4-897*x^3-492*x^2-801*x+743 2100935038594216 r005 Re(z^2+c),c=17/94+2/25*I,n=4 2100935048787602 m001 Trott*Backhouse/exp(Zeta(7))^2 2100935050204724 s002 sum(A237102[n]/(n^2*pi^n-1),n=1..infinity) 2100935052244484 m001 (Artin-ZetaQ(2))/(Zeta(3)+arctan(1/3)) 2100935062096417 a007 Real Root Of -623*x^4-716*x^3+835*x^2-955*x-194 2100935064156045 a007 Real Root Of 470*x^4+757*x^3-623*x^2+80*x+781 2100935067983764 m001 GAMMA(1/3)^Si(Pi)/(polylog(4,1/2)^Si(Pi)) 2100935082180278 l006 ln(420/3433) 2100935085419496 r005 Im(z^2+c),c=-9/38+15/49*I,n=17 2100935087514596 r005 Re(z^2+c),c=-1/4+5/54*I,n=11 2100935101888807 r002 8th iterates of z^2 + 2100935102537395 a007 Real Root Of 41*x^4+851*x^3-189*x^2+627*x+307 2100935104294467 a003 cos(Pi*20/89)/cos(Pi*34/89) 2100935115171882 r009 Im(z^3+c),c=-7/46+11/12*I,n=2 2100935117449437 a001 521/3*196418^(9/44) 2100935120232517 r002 33th iterates of z^2 + 2100935138094827 a001 36/341*843^(11/14) 2100935144024488 a001 987/521*199^(5/11) 2100935145860482 a007 Real Root Of -673*x^4-843*x^3+868*x^2-378*x+669 2100935149355915 a007 Real Root Of -474*x^4+831*x^3-738*x^2+594*x+166 2100935161544454 m002 125+Pi^4/Log[Pi] 2100935179004850 r005 Re(z^2+c),c=-43/46+11/58*I,n=28 2100935185439879 m005 (1/2*Pi-6)/(7/10*Pi-1/11) 2100935189085233 r004 Im(z^2+c),c=-3/7+5/14*I,z(0)=-1,n=58 2100935195053253 m001 Zeta(1,-1)*ZetaP(4)+Riemann2ndZero 2100935197023134 a007 Real Root Of -27*x^4-554*x^3+294*x^2+324*x-67 2100935198644592 r005 Re(z^2+c),c=-29/98+16/47*I,n=3 2100935200039535 r005 Re(z^2+c),c=29/114+5/29*I,n=27 2100935202746964 a007 Real Root Of 787*x^4-667*x^3-806*x^2-937*x-169 2100935212397197 m005 (-23/4+1/4*5^(1/2))/(1/2*Pi+9/10) 2100935220202472 m001 Niven^2*FeigenbaumDelta^2/ln(sqrt(3))^2 2100935223633164 a007 Real Root Of 250*x^4+152*x^3-644*x^2-34*x-690 2100935231124591 m001 (ZetaP(2)-ZetaP(4))/(sin(1/12*Pi)+GAMMA(7/12)) 2100935235492907 m002 -4+E^Pi/Pi^3+ProductLog[Pi]^2 2100935236530911 l006 ln(8114/10011) 2100935240808537 a007 Real Root Of -8*x^4+255*x^3+263*x^2-225*x+887 2100935242800594 m001 Weierstrass*(exp(1)+Niven) 2100935244462822 a007 Real Root Of 723*x^4+966*x^3-892*x^2+463*x-218 2100935248171523 a007 Real Root Of -188*x^4-76*x^3+270*x^2-666*x+367 2100935252013098 a001 1/36*832040^(19/29) 2100935258425635 a001 233/322*521^(7/13) 2100935265610524 a007 Real Root Of 486*x^4+84*x^3-957*x^2-583*x+163 2100935265839977 r008 a(0)=2,K{-n^6,71-73*n^3-81*n^2+73*n} 2100935265971219 a007 Real Root Of -82*x^4+325*x^3+966*x^2-620*x-955 2100935273758156 m001 (Catalan+GAMMA(3/4))/(arctan(1/3)+ArtinRank2) 2100935277683667 m001 Si(Pi)/Bloch^2/exp(Tribonacci)^2 2100935283453017 m001 1/Kolakoski^2/ArtinRank2*ln(FeigenbaumKappa)^2 2100935285281313 m002 -Pi+6/Log[Pi]+ProductLog[Pi]/Pi^6 2100935295735210 r005 Re(z^2+c),c=-7/50+12/25*I,n=63 2100935309218768 p004 log(10487/1283) 2100935315464737 m001 (cos(1/12*Pi)+FeigenbaumMu)/(ln(gamma)-ln(5)) 2100935324575894 a001 5778/5*832040^(10/47) 2100935332241664 m005 (1/2*Catalan+4/9)/(1/6*gamma+1/3) 2100935336494774 m001 (MertensB2-Salem)/(ln(2)-Kac) 2100935336653906 m005 (1/24+1/6*5^(1/2))/(5/7*5^(1/2)+3/8) 2100935351822707 r002 64th iterates of z^2 + 2100935368832762 r005 Re(z^2+c),c=-7/50+12/25*I,n=62 2100935400396475 a001 1/846*(1/2*5^(1/2)+1/2)^7*47^(8/17) 2100935406173212 m005 (1/2*Catalan-8/11)/(7/9*2^(1/2)+2/11) 2100935411072445 l006 ln(5723/7061) 2100935413353799 r005 Re(z^2+c),c=-5/46+13/24*I,n=56 2100935413588318 r005 Re(z^2+c),c=-7/50+12/25*I,n=50 2100935419384308 r005 Re(z^2+c),c=1/30+10/41*I,n=13 2100935419553607 a007 Real Root Of -67*x^4+79*x^3+151*x^2-470*x+384 2100935419712569 l006 ln(863/7054) 2100935423656113 a007 Real Root Of 425*x^4+881*x^3+40*x^2-120*x-539 2100935424514668 m005 (-19/36+1/4*5^(1/2))/(8/9*gamma-2) 2100935424986686 m005 (1/2*Catalan+8/11)/(4*Zeta(3)+5/6) 2100935443205254 m001 GAMMA(13/24)+Bloch-Trott 2100935443277083 a001 843/2971215073*832040^(6/19) 2100935443277275 a001 843/53316291173*7778742049^(6/19) 2100935445164582 a007 Real Root Of 511*x^4+563*x^3-558*x^2+761*x-673 2100935445635248 r005 Re(z^2+c),c=7/58+11/28*I,n=48 2100935454595677 m001 1/exp(Ei(1))^2/Kolakoski*exp(1)^2 2100935463149794 m001 1/exp(GAMMA(1/6))^2*CareFree^2/sin(Pi/5)^2 2100935470558071 r005 Re(z^2+c),c=-9/62+29/60*I,n=18 2100935499738799 m005 (1/2*2^(1/2)+2/7)/(5/12*Catalan+1/11) 2100935499896277 a007 Real Root Of 177*x^4+154*x^3-193*x^2+708*x+319 2100935502418324 s002 sum(A236015[n]/((pi^n-1)/n),n=1..infinity) 2100935508592880 m001 (MinimumGamma+Salem)/(Gompertz-Si(Pi)) 2100935510316410 r009 Re(z^3+c),c=-15/74+1/21*I,n=5 2100935510487949 m001 GlaisherKinkelin*ln(ErdosBorwein)*sin(Pi/5)^2 2100935513565744 m001 CopelandErdos*ZetaQ(2)-Riemann2ndZero 2100935516404239 m005 (1/2*2^(1/2)+4/5)/(19/12+5/2*5^(1/2)) 2100935522086109 r009 Re(z^3+c),c=-15/34+23/47*I,n=2 2100935528573003 m001 MadelungNaCl*KhintchineLevy/ln(FeigenbaumD) 2100935546452990 a007 Real Root Of -351*x^4+551*x^3-980*x^2+756*x-120 2100935551613233 a003 sin(Pi*2/113)+sin(Pi*4/81) 2100935555299658 m002 -3+3/Pi+E^Pi*Tanh[Pi] 2100935558018144 m006 (2/5*Pi^2+1)/(1/6*Pi^2-4) 2100935558018144 m008 (2/5*Pi^2+1)/(1/6*Pi^2-4) 2100935558018144 m009 (1/5*Pi^2+1/2)/(1/12*Pi^2-2) 2100935571092678 b008 2+Coth[2/3]/17 2100935579829401 m001 Riemann2ndZero/(Shi(1)^Trott) 2100935589205910 a007 Real Root Of -390*x^4-586*x^3+278*x^2-10*x+916 2100935596241169 a007 Real Root Of -14*x^4+467*x^3+855*x^2-768*x-784 2100935602549185 s002 sum(A004359[n]/((3*n)!),n=1..infinity) 2100935603643912 a007 Real Root Of 304*x^4+251*x^3-842*x^2+125*x+384 2100935617628258 m001 (Pi-BesselI(0,1))/(ln(gamma)+3^(1/3)) 2100935630973465 r009 Re(z^3+c),c=-33/94+27/50*I,n=63 2100935632449299 m001 (Psi(1,1/3)-cos(1/5*Pi))/(-Lehmer+MertensB2) 2100935636975334 r002 55th iterates of z^2 + 2100935637201301 a003 cos(Pi*2/117)/cos(Pi*38/111) 2100935639353558 q001 741/3527 2100935639385770 r009 Re(z^3+c),c=-23/66+8/15*I,n=57 2100935639768525 m001 (ln(gamma)-ln(3))/(Zeta(1,2)+Thue) 2100935641415930 r005 Im(z^2+c),c=21/62+10/29*I,n=10 2100935643142083 b008 1/2+E^(8/17) 2100935646469912 m002 -E^Pi+2*ProductLog[Pi]*Tanh[Pi]^2 2100935648021246 a001 123/377*121393^(7/44) 2100935648989310 r002 28th iterates of z^2 + 2100935656468130 a007 Real Root Of 635*x^4+760*x^3-676*x^2+832*x-592 2100935658654243 r009 Re(z^3+c),c=-17/106+23/29*I,n=3 2100935661243709 a007 Real Root Of -602*x^4-976*x^3+487*x^2-458*x-434 2100935662802807 m005 (1/3*Zeta(3)-1/9)/(4/5*Zeta(3)+5/12) 2100935670169767 m001 FeigenbaumD*Paris^2*ln(sqrt(5)) 2100935670184548 m005 (1/2*Zeta(3)-4/11)/(9/10*2^(1/2)-1/7) 2100935681349846 r002 10th iterates of z^2 + 2100935687168512 m001 Khinchin/HardHexagonsEntropy/Catalan 2100935688410373 r005 Re(z^2+c),c=-129/110+9/40*I,n=28 2100935688488448 m001 (Paris-Trott)/(Zeta(1,2)+FeigenbaumKappa) 2100935694391798 a007 Real Root Of 751*x^4+395*x^3-334*x^2-573*x+130 2100935699581301 m001 1/Niven^2*exp(FeigenbaumAlpha)*sqrt(5)^2 2100935700923178 a007 Real Root Of -473*x^4+735*x^3+691*x^2+912*x-228 2100935705209931 m005 (1/3*Pi+1/4)/(3/8*Zeta(3)+1/6) 2100935714556748 m001 (Chi(1)+BesselK(0,1))/(Magata+Sierpinski) 2100935717974172 r008 a(0)=0,K{-n^6,-6+52*n^3-58*n^2-35*n} 2100935723617390 r005 Im(z^2+c),c=-29/74+14/31*I,n=10 2100935725547359 r005 Re(z^2+c),c=13/48+26/53*I,n=36 2100935725897749 m008 (1/3*Pi^6-3/4)/(1/2*Pi^5-5/6) 2100935739720505 l006 ln(443/3621) 2100935743036707 m001 (Magata+MertensB2)/(Zeta(1,-1)+BesselI(0,2)) 2100935757631955 a003 sin(Pi*11/102)*sin(Pi*22/101) 2100935760647455 m001 GAMMA(1/4)^2*exp(FransenRobinson)/Zeta(5) 2100935763926309 a007 Real Root Of -670*x^4-933*x^3+605*x^2-396*x+899 2100935769608016 r009 Re(z^3+c),c=-11/29+38/61*I,n=46 2100935779631606 m001 FeigenbaumKappa^Psi(1,1/3)-Landau 2100935780800537 r009 Re(z^3+c),c=-17/126+7/8*I,n=10 2100935795226058 a007 Real Root Of -324*x^4-288*x^3+551*x^2-868*x-614 2100935799610745 a005 (1/cos(19/172*Pi))^87 2100935814603751 a003 sin(Pi*3/83)/cos(Pi*29/91) 2100935836111451 l006 ln(3332/4111) 2100935838249889 r005 Re(z^2+c),c=-5/34+20/43*I,n=33 2100935856104655 r002 55th iterates of z^2 + 2100935868036882 r005 Re(z^2+c),c=-9/94+21/37*I,n=52 2100935885784604 a008 Real Root of x^4-x^3-30*x^2-66*x-35 2100935891836963 a007 Real Root Of 416*x^4+438*x^3-639*x^2+957*x+788 2100935900020694 r005 Re(z^2+c),c=-11/70+39/61*I,n=63 2100935901162420 m001 Sarnak/FransenRobinson/FibonacciFactorial 2100935901360633 h001 (11/12*exp(2)+3/10)/(3/7*exp(2)+1/5) 2100935902611833 r009 Re(z^3+c),c=-15/122+38/41*I,n=12 2100935905853678 r009 Re(z^3+c),c=-67/110+9/17*I,n=51 2100935926120281 r005 Im(z^2+c),c=-155/126+3/26*I,n=48 2100935931432408 m001 (Chi(1)-Zeta(5))/(arctan(1/3)+Kac) 2100935933404758 a007 Real Root Of 728*x^4+956*x^3-856*x^2+523*x-441 2100935942144724 r008 a(0)=3,K{-n^6,2*n^3+n^2} 2100935945451811 a007 Real Root Of -954*x^4-800*x^3-411*x^2+735*x+167 2100935956820241 r005 Im(z^2+c),c=29/102+2/35*I,n=12 2100935957382689 a007 Real Root Of -457*x^4-705*x^3+571*x^2+381*x+646 2100935959440408 r005 Im(z^2+c),c=-107/118+1/60*I,n=18 2100935961662426 a001 3*4181^(11/14) 2100935969196249 a007 Real Root Of 94*x^4+322*x^3+574*x^2+693*x+77 2100935976847408 r009 Re(z^3+c),c=-13/118+50/59*I,n=20 2100935984299379 r005 Im(z^2+c),c=-97/94+9/49*I,n=4 2100935984727922 r005 Re(z^2+c),c=-4/5+14/83*I,n=60 2100935987704946 a007 Real Root Of -918*x^4+611*x^3+760*x^2+762*x+134 2100936000667295 m001 ThueMorse^Stephens/(ThueMorse^(2^(1/2))) 2100936006552410 m001 (Lehmer+2/3)/(-BesselI(0,1)+2/3) 2100936010975324 a007 Real Root Of 377*x^4+442*x^3-627*x^2-63*x-611 2100936014886431 a003 cos(Pi*23/68)*cos(Pi*34/95) 2100936035383480 r009 Im(z^3+c),c=-21/64+7/45*I,n=11 2100936035766533 m006 (1/4*exp(2*Pi)-1/3)/(3/4*Pi+4) 2100936037128956 a007 Real Root Of 565*x^4+873*x^3-380*x^2+553*x-73 2100936037905538 m001 OneNinth/ln(RenyiParking)^2*GAMMA(17/24)^2 2100936040700771 r005 Re(z^2+c),c=-1/50+27/44*I,n=3 2100936043534326 l006 ln(909/7430) 2100936045385168 b008 1+14*E^(5/14) 2100936052733018 r009 Im(z^3+c),c=-37/82+1/19*I,n=57 2100936059489698 a007 Real Root Of 316*x^4+300*x^3-824*x^2-35*x+189 2100936063972286 m001 ln(3)+Conway^ZetaQ(3) 2100936071256009 a007 Real Root Of -319*x^4-475*x^3+75*x^2-863*x-334 2100936078789717 r005 Im(z^2+c),c=11/27+20/63*I,n=16 2100936079392852 a001 2/987*144^(8/17) 2100936080331215 m005 (1/2*exp(1)-2/7)/(1/11*Zeta(3)+5) 2100936082200442 r004 Im(z^2+c),c=-39/46+3/19*I,z(0)=-1,n=56 2100936093251527 r009 Im(z^3+c),c=-41/70+13/41*I,n=25 2100936094602263 m001 (Chi(1)-polylog(4,1/2))/(-Backhouse+Conway) 2100936096141777 a007 Real Root Of 596*x^4+688*x^3-896*x^2+612*x+9 2100936100629541 a001 123/121393*610^(26/55) 2100936100700842 a005 (1/sin(28/181*Pi))^4 2100936105990645 r005 Im(z^2+c),c=-6/7+13/73*I,n=42 2100936107665217 r005 Re(z^2+c),c=-61/106+17/37*I,n=29 2100936121457012 r005 Re(z^2+c),c=-27/118+12/53*I,n=17 2100936124646272 m005 (1/2*Catalan-1/9)/(4/11*gamma-3/8) 2100936131259864 r009 Re(z^3+c),c=-43/114+25/47*I,n=19 2100936136652559 a007 Real Root Of 938*x^4+194*x^3+267*x^2-873*x+168 2100936149968155 r005 Re(z^2+c),c=-7/10+79/95*I,n=3 2100936155966564 l006 ln(7605/9383) 2100936163209929 m001 (2*Pi/GAMMA(5/6)+Conway)/(Ei(1)+exp(1/Pi)) 2100936166739988 r005 Re(z^2+c),c=-1/10+31/52*I,n=46 2100936172771811 a001 121393/29*18^(24/43) 2100936181860960 a007 Real Root Of -336*x^4+726*x^3-821*x^2+967*x-173 2100936183331738 a007 Real Root Of 436*x^4+963*x^3+569*x^2+592*x-832 2100936185825649 s002 sum(A211244[n]/(n^2*2^n-1),n=1..infinity) 2100936186438503 m001 ln(2)/ln(10)+polylog(4,1/2)+GlaisherKinkelin 2100936187454346 r005 Re(z^2+c),c=-79/74+17/32*I,n=2 2100936215802038 r005 Im(z^2+c),c=-159/110+2/59*I,n=6 2100936225074172 r005 Im(z^2+c),c=-9/14+37/109*I,n=59 2100936234273382 m001 Pi*(2^(1/2)-sin(1)/GAMMA(5/6)) 2100936238180504 h001 (7/9*exp(2)+4/5)/(8/9*exp(1)+7/10) 2100936238368434 r005 Re(z^2+c),c=9/110+25/43*I,n=28 2100936249594885 m003 -3/8+Sqrt[5]/32+5*Log[1/2+Sqrt[5]/2] 2100936249775995 m001 exp(Zeta(9))^2/MinimumGamma^2/sqrt(1+sqrt(3)) 2100936254102154 a007 Real Root Of 568*x^4-86*x^3+253*x^2-602*x+115 2100936260306503 m001 (PlouffeB-Totient)/(FeigenbaumMu+Landau) 2100936268103407 b008 Gamma[ArcTan[Pi/7]] 2100936269380554 a007 Real Root Of 193*x^4-534*x^3+184*x^2-431*x-104 2100936269558325 a007 Real Root Of -411*x^4-837*x^3+303*x^2+553*x+70 2100936279550906 a007 Real Root Of 387*x^4+754*x^3-369*x^2-783*x-564 2100936282346321 r009 Re(z^3+c),c=-17/106+51/64*I,n=3 2100936292880187 r005 Im(z^2+c),c=-67/126+21/52*I,n=42 2100936298870236 b008 Sqrt[3]-12*ExpIntegralEi[1] 2100936309828273 m005 (1/2*gamma-2)/(2/5*exp(1)-3/11) 2100936318566425 m003 -21+E^(-1/2-Sqrt[5]/2)*Cos[1/2+Sqrt[5]/2] 2100936326788777 a007 Real Root Of -35*x^4-706*x^3+583*x^2-652*x+937 2100936330733894 r005 Re(z^2+c),c=17/50+33/64*I,n=11 2100936330981345 b008 2+(3*Tan[1/6])/5 2100936332352958 l006 ln(466/3809) 2100936339783698 g006 -Psi(1,5/12)-Psi(1,7/10)-Psi(1,5/9)-Psi(1,2/5) 2100936345782037 m001 1/ln(Rabbit)^2*KhintchineHarmonic*sqrt(2) 2100936355887143 r005 Im(z^2+c),c=-69/86+7/48*I,n=25 2100936356173691 r002 4th iterates of z^2 + 2100936357094061 m001 exp(Zeta(5))^2/MinimumGamma^2/sqrt(Pi) 2100936363573602 r005 Im(z^2+c),c=-6/13+23/63*I,n=46 2100936371212665 m001 arctan(1/2)^DuboisRaymond/HardyLittlewoodC5 2100936378589694 a007 Real Root Of 328*x^4+967*x^3+464*x^2-475*x-469 2100936380303734 m005 (1/5*gamma+1/3)/(5*gamma-3/4) 2100936380303734 m007 (-1/5*gamma-1/3)/(-5*gamma+3/4) 2100936381377572 r009 Im(z^3+c),c=-23/110+11/56*I,n=11 2100936384367640 r009 Im(z^3+c),c=-23/110+11/56*I,n=12 2100936394510278 a007 Real Root Of 235*x^4+497*x^3-506*x^2-712*x+768 2100936394561522 a001 7/1597*63245986^(3/5) 2100936394609560 p004 log(34469/4217) 2100936397649294 r005 Re(z^2+c),c=-1/16+33/50*I,n=6 2100936398158437 m001 BesselK(0,1)^KhinchinHarmonic-Trott 2100936405383181 l006 ln(4273/5272) 2100936407081953 r005 Re(z^2+c),c=-3/20+11/24*I,n=26 2100936415827886 a001 1/233*75025^(16/29) 2100936419114878 m001 (Totient-Thue)/(FeigenbaumKappa-MertensB3) 2100936420193238 r009 Im(z^3+c),c=-23/110+11/56*I,n=15 2100936420416631 r009 Im(z^3+c),c=-23/110+11/56*I,n=16 2100936420512549 r009 Im(z^3+c),c=-23/110+11/56*I,n=19 2100936420513925 r009 Im(z^3+c),c=-23/110+11/56*I,n=20 2100936420514115 r009 Im(z^3+c),c=-23/110+11/56*I,n=23 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=24 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=27 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=26 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=30 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=31 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=34 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=35 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=38 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=39 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=42 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=45 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=46 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=49 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=50 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=53 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=54 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=57 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=60 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=61 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=64 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=63 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=62 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=58 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=59 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=56 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=55 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=52 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=51 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=48 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=47 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=41 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=43 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=44 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=40 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=37 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=36 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=33 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=32 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=29 2100936420514121 r009 Im(z^3+c),c=-23/110+11/56*I,n=28 2100936420514122 r009 Im(z^3+c),c=-23/110+11/56*I,n=25 2100936420514128 r009 Im(z^3+c),c=-23/110+11/56*I,n=22 2100936420514222 r009 Im(z^3+c),c=-23/110+11/56*I,n=21 2100936420518731 r009 Im(z^3+c),c=-23/110+11/56*I,n=18 2100936420537382 r009 Im(z^3+c),c=-23/110+11/56*I,n=17 2100936422439789 r009 Im(z^3+c),c=-23/110+11/56*I,n=14 2100936424478339 r009 Im(z^3+c),c=-23/110+11/56*I,n=13 2100936425943984 m001 1/GAMMA(5/12)^2/ln(CareFree)*gamma^2 2100936426636432 s002 sum(A212571[n]/(n^3*2^n-1),n=1..infinity) 2100936426970941 r005 Im(z^2+c),c=-37/70+21/55*I,n=52 2100936430670515 r005 Im(z^2+c),c=-35/34+17/74*I,n=54 2100936443232216 a001 1364/1836311903*8^(1/2) 2100936452031356 r005 Re(z^2+c),c=-29/118+3/25*I,n=6 2100936453482689 r002 24th iterates of z^2 + 2100936462879134 b008 Csc[(4/5)^Pi] 2100936463837345 r005 Im(z^2+c),c=-61/114+8/21*I,n=60 2100936477946181 m001 (-GaussAGM+MertensB1)/(exp(1)-gamma(2)) 2100936482432089 a007 Real Root Of 144*x^4-261*x^3-71*x^2-459*x-96 2100936488733381 m001 GAMMA(17/24)^Backhouse+TwinPrimes 2100936490170732 h001 (7/10*exp(2)+1/6)/(8/9*exp(1)+1/8) 2100936502045431 a007 Real Root Of -605*x^4+277*x^3+273*x^2+882*x+177 2100936505195879 a007 Real Root Of -97*x^4-459*x^3-617*x^2+62*x+487 2100936506811728 m005 (1/2*Zeta(3)-3)/(4*exp(1)+6/11) 2100936524453694 q001 2019/961 2100936526234836 m001 1/Trott^2/Porter^2/ln(cosh(1))^2 2100936541741851 h001 (-10*exp(1)-8)/(-8*exp(1)+5) 2100936541741851 m005 (1/2*exp(1)+2/5)/(2/5*exp(1)-1/4) 2100936543143644 a007 Real Root Of 72*x^4-84*x^3+27*x^2+752*x-721 2100936545398163 r005 Im(z^2+c),c=-119/114+3/16*I,n=4 2100936547590802 r005 Im(z^2+c),c=-25/24+7/29*I,n=29 2100936551042300 m001 ln(1+sqrt(2))^BesselJ(0,1)*exp(Pi) 2100936551042300 m001 ln(1+sqrt(2))^BesselJ(0,1)/exp(-Pi) 2100936551042300 m001 ln(2^(1/2)+1)^BesselJ(0,1)*exp(Pi) 2100936558802788 a001 7/28657*7778742049^(3/5) 2100936559312859 a001 7/514229*956722026041^(3/5) 2100936559314536 a001 1/311187*10610209857723^(3/5) 2100936559342961 a001 7/121393*86267571272^(3/5) 2100936561653544 m001 (GolombDickman+Lehmer)/(ln(gamma)+GAMMA(5/6)) 2100936562917814 g004 Im(GAMMA(23/30+I*6/5)) 2100936564216039 m005 (1/2*exp(1)+1/7)/(2/11*3^(1/2)+2/5) 2100936568495814 a001 7/6765*701408733^(3/5) 2100936572519316 a007 Real Root Of 254*x^4+640*x^3-66*x^2-809*x-422 2100936573168998 r009 Im(z^3+c),c=-23/110+11/56*I,n=9 2100936574761510 r005 Im(z^2+c),c=-5/28+13/45*I,n=17 2100936579145618 m001 Zeta(1/2)-exp(-1/2*Pi)*GAMMA(7/24) 2100936586810839 m005 (3*exp(1)-2/5)/(2/5*gamma-3/5) 2100936596144416 m002 -1-E^Pi-Pi^(-4)+Pi 2100936598824984 r005 Re(z^2+c),c=-5/46+19/35*I,n=21 2100936606702969 m001 LambertW(1)^2*exp(FeigenbaumB)^2/cos(Pi/5) 2100936607259830 l006 ln(955/7806) 2100936608989499 r005 Re(z^2+c),c=-7/74+29/47*I,n=62 2100936615567111 m001 (sin(1/5*Pi)+Kac)/(Stephens+ZetaQ(4)) 2100936629010120 m005 (1/2*exp(1)+2)/(7/8*3^(1/2)+1/12) 2100936631051188 r005 Im(z^2+c),c=-29/78+16/47*I,n=18 2100936642330643 m009 (5/6*Psi(1,2/3)-6)/(1/5*Pi^2-1/3) 2100936643782555 m001 (1-2^(1/2))/(-Mills+Riemann2ndZero) 2100936644874262 m002 -(Pi*Log[Pi])+Sinh[Pi]/E^Pi+Tanh[Pi] 2100936649040101 m001 (Artin+Backhouse)/(Champernowne+RenyiParking) 2100936657750852 m001 (Psi(2,1/3)+2^(1/2))/(Si(Pi)+CareFree) 2100936660659822 p004 log(19609/2399) 2100936661444457 h001 (1/11*exp(2)+8/11)/(8/9*exp(2)+1/11) 2100936663529256 m001 (Zeta(1,2)+FeigenbaumMu)/(Niven-ZetaP(2)) 2100936669468757 m005 (-1/5+2/5*5^(1/2))/(1/3*Catalan+3) 2100936673372087 m001 (Si(Pi)+ln(2))/(BesselI(1,1)+MasserGramain) 2100936688587444 r005 Re(z^2+c),c=2/7+23/58*I,n=2 2100936698438544 a007 Real Root Of 263*x^4-53*x^3-687*x^2+853*x-791 2100936714831989 a007 Real Root Of 182*x^4-895*x^3-350*x^2-475*x-93 2100936726077512 a007 Real Root Of 932*x^4-486*x^3-383*x^2-892*x+207 2100936740622056 m005 (1/2*Pi-5/11)/(4/7*Zeta(3)-6) 2100936746075565 a007 Real Root Of -405*x^4-262*x^3+828*x^2-507*x+741 2100936752805631 a007 Real Root Of -442*x^4-841*x^3+148*x^2-339*x-553 2100936761196956 p001 sum((-1)^n/(357*n+23)/n/(125^n),n=1..infinity) 2100936768149080 a003 cos(Pi*23/75)*cos(Pi*19/50) 2100936769175533 l006 ln(5214/6433) 2100936770301653 a007 Real Root Of 461*x^4+584*x^3-474*x^2+760*x+123 2100936780137404 m005 (1/2*Catalan+1/2)/(3*3^(1/2)-7/11) 2100936792021558 r005 Im(z^2+c),c=-17/62+19/60*I,n=19 2100936795070496 r005 Im(z^2+c),c=-7/16+23/64*I,n=49 2100936797623019 a007 Real Root Of 37*x^4+782*x^3+77*x^2-469*x-688 2100936799021910 m003 -3+E^(1/2+Sqrt[5]/2)+Tanh[1/2+Sqrt[5]/2]/16 2100936805183616 m001 Zeta(1/2)^(2^(1/3))/ZetaP(4) 2100936805488094 r005 Im(z^2+c),c=-109/118+13/64*I,n=42 2100936810531539 h001 (1/12*exp(1)+3/8)/(9/10*exp(1)+5/12) 2100936816437427 r005 Re(z^2+c),c=-53/62+11/54*I,n=58 2100936819049289 m001 (Pi+gamma)/(GAMMA(19/24)+Gompertz) 2100936824537014 m005 (1/2*exp(1)-3)/(5/6*gamma+3/10) 2100936832855646 a007 Real Root Of -509*x^4-615*x^3+280*x^2-978*x+923 2100936864960995 m001 Cahen/Grothendieck*LandauRamanujan2nd 2100936869236451 l006 ln(489/3997) 2100936871575687 r005 Re(z^2+c),c=-17/114+29/63*I,n=34 2100936892789898 a007 Real Root Of 539*x^4+660*x^3-711*x^2+312*x-587 2100936905081941 m001 (Pi^(1/2)-exp(Pi))/(-GAMMA(23/24)+ZetaQ(3)) 2100936906116471 m001 ArtinRank2^gamma(3)/PlouffeB 2100936909413913 m001 1/CareFree^2*Backhouse^2/exp(Rabbit) 2100936910245357 m001 (CareFree-Riemann3rdZero)/(Ei(1,1)-Zeta(1,2)) 2100936916740841 a001 1597/322*322^(1/4) 2100936917335117 m001 (exp(1/exp(1))-exp(Pi))/(BesselJ(1,1)+Lehmer) 2100936926543802 r008 a(0)=0,K{-n^6,-10+63*n+44*n^2-50*n^3} 2100936935601661 b008 -1/8+Sqrt[E]+EulerGamma 2100936936331879 a003 sin(Pi*1/110)*sin(Pi*5/19) 2100936939376404 a007 Real Root Of 102*x^4+138*x^3+97*x^2+76*x-976 2100936942079789 r002 54th iterates of z^2 + 2100936948719483 h001 (7/12*exp(2)+5/9)/(6/11*exp(1)+5/6) 2100936950607540 r009 Re(z^3+c),c=-29/118+42/59*I,n=43 2100936950975957 m001 (QuadraticClass-Shi(1))/(Robbin+ZetaP(3)) 2100936951274905 m001 (gamma(3)-Bloch)/(Riemann2ndZero+Totient) 2100936954824018 r009 Re(z^3+c),c=-2/27+28/37*I,n=19 2100936976090393 m001 (GAMMA(17/24)+Conway)/(OneNinth-Totient) 2100936977907310 m001 (TreeGrowth2nd-ZetaQ(4))/(Zeta(1/2)-Kac) 2100936994103578 m001 (sin(1/5*Pi)-ErdosBorwein)/(Lehmer-OneNinth) 2100937001462689 r005 Im(z^2+c),c=-59/90+7/20*I,n=57 2100937004083314 a003 cos(Pi*7/111)/cos(Pi*19/55) 2100937007208996 a007 Real Root Of -285*x^4-902*x^3-997*x^2-740*x+34 2100937007222419 m001 (Bloch+DuboisRaymond)/(MertensB3+Tribonacci) 2100937011476319 m004 -2-750*Pi+(125*Pi)/ProductLog[Sqrt[5]*Pi] 2100937011896301 r005 Re(z^2+c),c=-7/50+12/25*I,n=64 2100937016170956 m005 (1/2*Pi+2/5)/(6/11*2^(1/2)+1/6) 2100937021666265 m005 (1/2*Pi+7/10)/(4/7*2^(1/2)+3/11) 2100937021731937 l006 ln(6155/7594) 2100937024136886 a007 Real Root Of 604*x^4+657*x^3-951*x^2+697*x-13 2100937026315014 a007 Real Root Of -11*x^4+260*x^3+655*x^2-72*x-417 2100937048022990 m001 1/TreeGrowth2nd*MertensB1^2*ln(sin(Pi/12)) 2100937053143218 r009 Re(z^3+c),c=-27/118+5/26*I,n=6 2100937053200156 a001 10946/2207*199^(3/11) 2100937068306189 b008 (2/9)^Coth[2] 2100937068895560 b008 3/80+ArcCosh[4] 2100937070930869 r009 Im(z^3+c),c=-23/110+11/56*I,n=10 2100937071392169 m001 (GAMMA(7/12)-KhinchinLevy)/(Niven-ZetaP(4)) 2100937090793488 a007 Real Root Of 455*x^4+799*x^3-323*x^2-64*x-164 2100937097575819 b008 Sqrt[2]*ArcSec[47/4] 2100937101535546 m001 (-Kolakoski+ZetaQ(4))/(exp(1)+GAMMA(11/12)) 2100937105836492 m001 GAMMA(1/24)^2/exp(BesselJ(0,1))^2/LambertW(1) 2100937118843178 a007 Real Root Of -497*x^4-353*x^3+911*x^2-707*x+903 2100937119174123 l006 ln(1001/8182) 2100937133848203 a007 Real Root Of 233*x^4+569*x^3+396*x^2+484*x+6 2100937140070026 a001 2584/3*24476^(3/34) 2100937141137201 a001 987/6643838879*2^(1/2) 2100937141687758 m006 (1/4*Pi+1/3)/(exp(2*Pi)-3) 2100937143550733 a007 Real Root Of -345*x^4-766*x^3-9*x^2-296*x-964 2100937148908005 m001 (Zeta(1,-1)+BesselI(1,1))/(GAMMA(7/12)+Artin) 2100937152915008 m001 (GAMMA(3/4)+ArtinRank2)/(FellerTornier+Lehmer) 2100937156138193 r002 40th iterates of z^2 + 2100937156173362 a007 Real Root Of -416*x^4+485*x^3-718*x^2+852*x+216 2100937156770853 r009 Re(z^3+c),c=-35/74+24/53*I,n=15 2100937158692376 r005 Im(z^2+c),c=-1/34+3/4*I,n=51 2100937163780143 a007 Real Root Of 249*x^4+699*x^3+444*x^2+326*x+356 2100937167738909 p002 log(11^(7/10)+12^(5/12)) 2100937178132650 m001 Riemann1stZero^ln(2)/(ZetaP(3)^ln(2)) 2100937186279090 r005 Re(z^2+c),c=-31/122+1/61*I,n=13 2100937198244053 a007 Real Root Of 444*x^4-581*x^3-523*x^2-875*x-167 2100937198782419 m005 (1/2*gamma+6/11)/(7/10*Zeta(3)-4/9) 2100937201737586 m001 (Salem+StronglyCareFree)/(Ei(1,1)+Rabbit) 2100937207305368 l006 ln(7096/8755) 2100937223386922 a007 Real Root Of 18*x^4+347*x^3-623*x^2+714*x+949 2100937224845359 r005 Im(z^2+c),c=-5/16+18/55*I,n=35 2100937229174721 a007 Real Root Of -581*x^4-734*x^3+890*x^2-371*x-195 2100937233987545 m001 GAMMA(11/24)/ln(GAMMA(11/12))*sin(Pi/5) 2100937237395074 m001 (sin(1/5*Pi)+gamma(1))/(2^(1/2)+Zeta(5)) 2100937243216032 a007 Real Root Of 16*x^4+379*x^3+870*x^2-667*x-660 2100937258473210 m001 Niven*ln(KhintchineLevy)^2*BesselK(0,1) 2100937259036738 m001 (Rabbit-ZetaQ(2))/(exp(1/Pi)+MadelungNaCl) 2100937265002339 l004 sinh(305/74*Pi) 2100937265026138 l004 cosh(305/74*Pi) 2100937265498315 b008 3*ArcSinh[SinIntegral[Pi/4]] 2100937270908518 a007 Real Root Of -591*x^4-453*x^3+993*x^2-926*x+985 2100937271229854 b008 3*(3/5+Sqrt[41]) 2100937271521970 a007 Real Root Of -242*x^4-434*x^3-277*x^2-801*x+230 2100937281193201 a007 Real Root Of -276*x^4-426*x^3+277*x^2-249*x-319 2100937293465041 r002 57th iterates of z^2 + 2100937303458086 m001 (-Rabbit+ZetaQ(3))/(Shi(1)+BesselI(0,2)) 2100937314029074 a001 47/233*3^(1/27) 2100937318928086 a001 341/3732588*2504730781961^(4/21) 2100937318928173 a001 1364/2178309*102334155^(4/21) 2100937319855982 r009 Re(z^3+c),c=-29/122+12/17*I,n=38 2100937323510747 a001 1364/317811*4181^(4/21) 2100937324655891 m001 (-QuadraticClass+Salem)/(Chi(1)+BesselI(1,1)) 2100937325161569 m001 exp(1)*(ln(2)/ln(10)+Bloch) 2100937349423626 l006 ln(8037/9916) 2100937357884067 l006 ln(512/4185) 2100937361339750 m001 (Sierpinski-2/3*Pi*3^(1/2)/GAMMA(2/3))*5^(1/2) 2100937364609382 m001 MinimumGamma/Conway/ln(Niven) 2100937364820955 m005 (1/3*gamma+1/12)/(5/8*2^(1/2)+3/7) 2100937372054815 a001 2178309/76*199^(43/53) 2100937379559911 a007 Real Root Of -664*x^4-977*x^3+580*x^2-222*x+850 2100937388947383 r005 Im(z^2+c),c=-6/7+9/56*I,n=39 2100937407713184 a001 3571/4807526976*8^(1/2) 2100937416629346 a003 cos(Pi*1/10)/sin(Pi*16/107) 2100937417243452 m005 (1/2*Zeta(3)-2/5)/(9/10*Zeta(3)-1/8) 2100937418603691 a001 28657/5778*199^(3/11) 2100937418903395 a007 Real Root Of -493*x^4-641*x^3+766*x^2+92*x+473 2100937424129872 p004 log(29483/3607) 2100937431057369 r005 Re(z^2+c),c=11/78+21/50*I,n=45 2100937432318915 a007 Real Root Of 609*x^4+931*x^3-606*x^2+284*x+40 2100937441933082 m001 KomornikLoreti/(FeigenbaumB^ln(2^(1/2)+1)) 2100937443029076 a007 Real Root Of 379*x^4-225*x^3+58*x^2-160*x-39 2100937447186925 r009 Im(z^3+c),c=-1/6+8/39*I,n=5 2100937452375599 r005 Im(z^2+c),c=-11/23+17/46*I,n=43 2100937460691724 a001 1/116*(1/2*5^(1/2)+1/2)^6*29^(1/11) 2100937463561065 a002 18^(5/6)-14^(5/6) 2100937471915359 a001 75025/15127*199^(3/11) 2100937475294399 r005 Im(z^2+c),c=-29/30+11/48*I,n=62 2100937477137267 h001 (4/5*exp(2)+1/11)/(3/4*exp(1)+9/11) 2100937479472022 m001 (Cahen+KomornikLoreti)/(Ei(1,1)-Zeta(1,2)) 2100937479693427 a001 196418/39603*199^(3/11) 2100937480828232 a001 514229/103682*199^(3/11) 2100937480993797 a001 1346269/271443*199^(3/11) 2100937481017953 a001 3524578/710647*199^(3/11) 2100937481021477 a001 9227465/1860498*199^(3/11) 2100937481021992 a001 24157817/4870847*199^(3/11) 2100937481022067 a001 63245986/12752043*199^(3/11) 2100937481022078 a001 165580141/33385282*199^(3/11) 2100937481022079 a001 433494437/87403803*199^(3/11) 2100937481022079 a001 1134903170/228826127*199^(3/11) 2100937481022079 a001 2971215073/599074578*199^(3/11) 2100937481022079 a001 7778742049/1568397607*199^(3/11) 2100937481022079 a001 20365011074/4106118243*199^(3/11) 2100937481022079 a001 53316291173/10749957122*199^(3/11) 2100937481022079 a001 139583862445/28143753123*199^(3/11) 2100937481022079 a001 365435296162/73681302247*199^(3/11) 2100937481022079 a001 956722026041/192900153618*199^(3/11) 2100937481022079 a001 2504730781961/505019158607*199^(3/11) 2100937481022079 a001 10610209857723/2139295485799*199^(3/11) 2100937481022079 a001 140728068720/28374454999*199^(3/11) 2100937481022079 a001 591286729879/119218851371*199^(3/11) 2100937481022079 a001 225851433717/45537549124*199^(3/11) 2100937481022079 a001 86267571272/17393796001*199^(3/11) 2100937481022079 a001 32951280099/6643838879*199^(3/11) 2100937481022079 a001 1144206275/230701876*199^(3/11) 2100937481022079 a001 4807526976/969323029*199^(3/11) 2100937481022079 a001 1836311903/370248451*199^(3/11) 2100937481022080 a001 701408733/141422324*199^(3/11) 2100937481022080 a001 267914296/54018521*199^(3/11) 2100937481022084 a001 9303105/1875749*199^(3/11) 2100937481022113 a001 39088169/7881196*199^(3/11) 2100937481022309 a001 14930352/3010349*199^(3/11) 2100937481023656 a001 5702887/1149851*199^(3/11) 2100937481032882 a001 2178309/439204*199^(3/11) 2100937481096123 a001 75640/15251*199^(3/11) 2100937481529580 a001 317811/64079*199^(3/11) 2100937482395656 m001 Ei(1)^(2^(1/3))/(Ei(1)^Paris) 2100937484500537 a001 121393/24476*199^(3/11) 2100937492377791 m001 (2^(1/3)+FransenRobinson)/(Gompertz+Totient) 2100937504863783 a001 46368/9349*199^(3/11) 2100937509536149 a001 2584/17393796001*2^(1/2) 2100937511154502 p004 log(12743/1559) 2100937513461200 p001 sum((-1)^n/(461*n+441)/(6^n),n=0..infinity) 2100937519097801 h001 (5/7*exp(1)+5/8)/(1/7*exp(1)+5/6) 2100937526057023 m001 exp(sinh(1))/FeigenbaumDelta^2*sqrt(2) 2100937548429061 a001 9349/12586269025*8^(1/2) 2100937554897552 r005 Im(z^2+c),c=23/78+23/52*I,n=4 2100937555274425 m001 (cos(1/5*Pi)-exp(1))/(ln(2^(1/2)+1)+Trott2nd) 2100937563284831 a001 6765/45537549124*2^(1/2) 2100937565310551 p001 sum(1/(325*n+49)/(5^n),n=0..infinity) 2100937566790868 m001 ln(Ei(1))^2/(2^(1/3))^2/GAMMA(3/4) 2100937568959231 a001 24476/32951280099*8^(1/2) 2100937569495175 r002 39th iterates of z^2 + 2100937571126658 a001 17711/119218851371*2^(1/2) 2100937571954542 a001 64079/86267571272*8^(1/2) 2100937572270765 a001 46368/312119004989*2^(1/2) 2100937572391552 a001 167761/225851433717*8^(1/2) 2100937572437688 a001 121393/817138163596*2^(1/2) 2100937572455311 a001 439204/591286729879*8^(1/2) 2100937572462042 a001 317811/2139295485799*2^(1/2) 2100937572464613 a001 1149851/1548008755920*8^(1/2) 2100937572465595 a001 832040/5600748293801*2^(1/2) 2100937572465970 a001 1/1346269*8^(1/2) 2100937572466114 a001 2178309/14662949395604*2^(1/2) 2100937572466168 a001 7881196/10610209857723*8^(1/2) 2100937572466236 a001 3524578/23725150497407*2^(1/2) 2100937572466291 a001 4870847/6557470319842*8^(1/2) 2100937572466434 a001 1346269/9062201101803*2^(1/2) 2100937572466809 a001 1860498/2504730781961*8^(1/2) 2100937572467791 a001 514229/3461452808002*2^(1/2) 2100937572470362 a001 710647/956722026041*8^(1/2) 2100937572477093 a001 196418/1322157322203*2^(1/2) 2100937572494716 a001 271443/365435296162*8^(1/2) 2100937572540852 a001 75025/505019158607*2^(1/2) 2100937572661639 a001 103682/139583862445*8^(1/2) 2100937572977862 a001 28657/192900153618*2^(1/2) 2100937573805746 a001 39603/53316291173*8^(1/2) 2100937574363090 a001 646*7^(20/33) 2100937575910502 s002 sum(A269298[n]/((exp(n)+1)/n),n=1..infinity) 2100937575973174 a001 10946/73681302247*2^(1/2) 2100937581647573 a001 15127/20365011074*8^(1/2) 2100937586106225 l006 ln(1047/8558) 2100937588925525 m001 exp(-1/2*Pi)*(5^(1/2)-GAMMA(3/4)) 2100937588925525 m001 exp(-1/2*Pi)*(GAMMA(3/4)-sqrt(5)) 2100937596503344 a001 4181/28143753123*2^(1/2) 2100937604513473 m004 -1+30*Sqrt[5]*Pi+(125*Pi)/E^(Sqrt[5]*Pi) 2100937611653921 r009 Re(z^3+c),c=-37/98+41/60*I,n=19 2100937622446734 a001 1/199*(1/2*5^(1/2)+1/2)^29*47^(14/15) 2100937622557785 s002 sum(A286924[n]/((exp(n)+1)/n),n=1..infinity) 2100937626953732 a007 Real Root Of -828*x^4-483*x^3+418*x^2+341*x-84 2100937630916164 a005 (1/cos(4/235*Pi))^519 2100937635357728 m001 (BesselJ(0,1)-gamma(2))/(Zeta(1,2)+Mills) 2100937635396255 a001 5778/7778742049*8^(1/2) 2100937642992301 r005 Im(z^2+c),c=-103/126+5/37*I,n=35 2100937644435559 a001 17711/3571*199^(3/11) 2100937648982066 v003 sum((n^2+20*n-14)/(n!+2),n=1..infinity) 2100937650380233 r005 Re(z^2+c),c=-55/58+9/40*I,n=14 2100937658596086 r009 Re(z^3+c),c=-31/98+22/49*I,n=16 2100937662870613 p003 LerchPhi(1/125,6,131/101) 2100937665272281 m001 (Zeta(1,-1)+Bloch)/(gamma+ln(2^(1/2)+1)) 2100937680541635 m001 (Trott2nd+Weierstrass)/(Zeta(5)+GAMMA(2/3)) 2100937682805913 r002 9th iterates of z^2 + 2100937685173626 r005 Im(z^2+c),c=-9/10+40/191*I,n=14 2100937686561173 a007 Real Root Of -374*x^4-871*x^3-582*x^2-598*x+522 2100937689595643 r009 Im(z^3+c),c=-51/110+4/31*I,n=2 2100937698231455 r002 13th iterates of z^2 + 2100937700297006 a007 Real Root Of 258*x^4-196*x^3-794*x^2-836*x+212 2100937709459784 r009 Re(z^3+c),c=-7/30+7/10*I,n=24 2100937716084481 m001 GAMMA(5/12)*CareFree^2/ln(sqrt(1+sqrt(3))) 2100937718342846 r005 Im(z^2+c),c=-17/21+7/60*I,n=20 2100937719519145 r009 Re(z^3+c),c=-11/38+19/55*I,n=2 2100937726408533 m002 -(E^Pi*Pi)+Pi^5-E^Pi*Coth[Pi] 2100937736238411 a007 Real Root Of -93*x^4-208*x^3-373*x^2-678*x+105 2100937737204134 r005 Im(z^2+c),c=-12/25+26/57*I,n=22 2100937737219220 a001 1597/10749957122*2^(1/2) 2100937741348688 r005 Im(z^2+c),c=-31/34+5/26*I,n=43 2100937742719197 m004 -5/Pi+3*Sqrt[5]*Pi+ProductLog[Sqrt[5]*Pi] 2100937746805820 a007 Real Root Of 31*x^4+625*x^3-591*x^2-780*x+672 2100937747983167 a007 Real Root Of -513*x^4+929*x^3-411*x^2+488*x-92 2100937750458862 b008 -3/2+Zeta[4/3] 2100937752788553 r009 Re(z^3+c),c=-43/102+7/9*I,n=4 2100937753497711 m001 (BesselJ(0,1)+FeigenbaumMu)/(Sarnak+Totient) 2100937773433064 a007 Real Root Of -32*x^4-667*x^3+147*x^2+748*x-20 2100937777636939 r009 Re(z^3+c),c=-17/110+21/25*I,n=64 2100937777749527 r005 Im(z^2+c),c=-103/118+9/53*I,n=38 2100937803123634 r005 Re(z^2+c),c=-6/31+44/63*I,n=28 2100937804516914 l006 ln(535/4373) 2100937805600396 m005 (1/2*5^(1/2)+1/5)/(3/5*5^(1/2)-5/7) 2100937809442349 a007 Real Root Of 289*x^4+341*x^3-298*x^2+277*x-571 2100937815534045 m001 (ln(2^(1/2)+1)+Cahen)/(BesselI(0,1)-cos(1)) 2100937816566489 a007 Real Root Of 221*x^4-170*x^3+714*x^2-849*x+148 2100937817532378 r002 15th iterates of z^2 + 2100937818725634 a007 Real Root Of 319*x^4-6*x^3-924*x^2+953*x-190 2100937819116951 a007 Real Root Of 262*x^4+110*x^3-540*x^2+861*x+108 2100937820609201 r005 Im(z^2+c),c=-5/27+16/55*I,n=23 2100937825562169 r005 Im(z^2+c),c=-13/17+11/43*I,n=4 2100937827817405 a001 521/5*3^(30/47) 2100937846404492 m001 TreeGrowth2nd-3^(1/3)-ln(3) 2100937853397436 m001 (Psi(2,1/3)+2^(1/2))/(-ln(2^(1/2)+1)+Kac) 2100937854130848 a007 Real Root Of 416*x^4+882*x^3-260*x^2-643*x-129 2100937854740842 a001 199*(1/2*5^(1/2)+1/2)^13*3^(9/14) 2100937859483619 h001 (-12*exp(1)+8)/(-exp(1)-9) 2100937877316840 r009 Re(z^3+c),c=-39/110+19/35*I,n=26 2100937890069916 a007 Real Root Of 216*x^4+2*x^3-640*x^2+246*x-848 2100937891661317 m001 (GAMMA(2/3)+ErdosBorwein)/(MertensB3+ZetaP(4)) 2100937892904401 r005 Im(z^2+c),c=-11/29+10/29*I,n=41 2100937901752893 m001 (Zeta(5)-BesselK(1,1))/(LandauRamanujan+Mills) 2100937916382732 p003 LerchPhi(1/10,5,480/221) 2100937921908255 m001 (Rabbit-Robbin)/(gamma(2)-BesselI(0,2)) 2100937924011453 m009 (5*Psi(1,3/4)-1/4)/(2/3*Psi(1,1/3)-4/5) 2100937924751713 m005 (1/2*2^(1/2)-4/7)/(1/2*Catalan+6) 2100937929597772 r005 Re(z^2+c),c=-31/110+11/18*I,n=47 2100937929822847 m005 (1/2*Zeta(3)-5/12)/(89/132+1/11*5^(1/2)) 2100937931316706 r005 Im(z^2+c),c=-23/58+22/63*I,n=38 2100937932616440 m001 Trott^(LandauRamanujan2nd*Porter) 2100937934165943 r005 Re(z^2+c),c=9/62+11/19*I,n=15 2100937935241814 a007 Real Root Of 361*x^4+598*x^3-545*x^2-196*x+506 2100937936065534 m001 (1+Zeta(1,2))/(-Artin+ZetaP(4)) 2100937938375297 m001 exp(1/Pi)^GAMMA(23/24)+TravellingSalesman 2100937952153759 m001 FeigenbaumAlpha^polylog(4,1/2)/BesselJ(0,1) 2100937959827810 r009 Re(z^3+c),c=-13/36+31/52*I,n=56 2100937966117774 m002 -6+6*Csch[Pi]+E^Pi*Log[Pi] 2100937966153956 m001 ln(MinimumGamma)^2/Artin/GAMMA(2/3)^2 2100937967202689 a001 610/3*1364^(11/34) 2100937970093941 r005 Im(z^2+c),c=-5/98+17/18*I,n=5 2100937971426421 m001 1/exp(Si(Pi))^2/GaussAGM(1,1/sqrt(2))/Salem^2 2100937976097729 m001 (3^(1/2)+Chi(1))/(PlouffeB+RenyiParking) 2100937980925132 r005 Re(z^2+c),c=-7/50+12/25*I,n=61 2100937982137251 r005 Im(z^2+c),c=-55/114+23/62*I,n=30 2100937984848348 a003 -2*cos(7/30*Pi)-cos(11/30*Pi)-cos(13/30*Pi) 2100937989945361 r005 Im(z^2+c),c=1/23+13/62*I,n=6 2100937992198539 m001 ln(2)/ln(10)*GAMMA(3/4)+3^(1/2) 2100937993650905 m005 (1/2*exp(1)+2/9)/(3/11*5^(1/2)+1/7) 2100937998097560 a007 Real Root Of 864*x^4-896*x^3+769*x^2-581*x-166 2100938003795204 a001 2207/2971215073*8^(1/2) 2100938009257391 a001 141/46*322^(1/3) 2100938013735525 l006 ln(1093/8934) 2100938027269582 m002 -Pi^2+Pi^3-(ProductLog[Pi]*Sinh[Pi])/Pi^4 2100938029299130 m001 (ln(3)-Landau)/(Porter+Salem) 2100938036260978 m001 gamma(2)*Mills+Riemann2ndZero 2100938038693599 a007 Real Root Of -568*x^4-757*x^3+676*x^2-183*x+678 2100938040369724 r002 8th iterates of z^2 + 2100938049819395 m005 (3/5*exp(1)+5)/(3/4*Pi+4/5) 2100938051926461 r005 Re(z^2+c),c=1/19+6/35*I,n=7 2100938055311445 m001 1/log(2+sqrt(3))*Bloch^2/ln(sqrt(5)) 2100938065601735 m001 Khintchine^2*Champernowne^2/ln(Lehmer) 2100938065915749 a007 Real Root Of 430*x^4+657*x^3-530*x^2+333*x+754 2100938079067802 r005 Re(z^2+c),c=-101/122+1/22*I,n=40 2100938088484259 m005 (5/6*Catalan+4)/(4/5*Catalan-3) 2100938093514771 r005 Im(z^2+c),c=-6/19+21/64*I,n=26 2100938094794512 m001 GAMMA(5/6)/GAMMA(5/12)/ln(sqrt(1+sqrt(3)))^2 2100938095675905 m001 MadelungNaCl^((2^(1/3))*GAMMA(11/12)) 2100938095675905 m001 MadelungNaCl^(2^(1/3)*GAMMA(11/12)) 2100938116010395 a007 Real Root Of -427*x^4-554*x^3+265*x^2-981*x-49 2100938118434590 a007 Real Root Of 29*x^4-438*x^3-227*x^2-228*x-42 2100938128319504 a001 11/233*9227465^(11/21) 2100938129724871 r002 44th iterates of z^2 + 2100938143682071 m001 (OneNinth+Totient)/(BesselI(0,2)-BesselI(1,2)) 2100938144409128 a007 Real Root Of 720*x^4+963*x^3-926*x^2+704*x+469 2100938160788908 r005 Im(z^2+c),c=-9/22+17/48*I,n=24 2100938169544331 m001 (GaussKuzminWirsing+Lehmer)/(Magata+Thue) 2100938170991929 h001 (5/7*exp(2)+9/11)/(5/6*exp(1)+7/11) 2100938173976739 r005 Im(z^2+c),c=-3/70+10/41*I,n=11 2100938174954390 r005 Re(z^2+c),c=-13/110+11/21*I,n=62 2100938176785129 a007 Real Root Of -282*x^4-695*x^3-279*x^2-571*x-919 2100938181746182 a007 Real Root Of -5*x^4-139*x^3-707*x^2+165*x+671 2100938184523799 a001 75025/76*3^(11/16) 2100938185580710 r002 3th iterates of z^2 + 2100938187774153 s002 sum(A204961[n]/(n^2*10^n+1),n=1..infinity) 2100938199471330 r009 Im(z^3+c),c=-9/74+51/58*I,n=12 2100938206604205 m001 (BesselJ(1,1)-ln(2)/ln(10))/Robbin 2100938206992455 r005 Re(z^2+c),c=-3/62+30/47*I,n=28 2100938207914049 s002 sum(A204961[n]/(n^2*10^n-1),n=1..infinity) 2100938214330389 l006 ln(558/4561) 2100938221678665 m005 (1/3*Catalan+2/5)/(5/11*2^(1/2)-4) 2100938231942033 a007 Real Root Of 698*x^4+849*x^3-882*x^2+662*x-442 2100938232339719 r005 Im(z^2+c),c=-19/30+2/51*I,n=53 2100938242118863 m001 (Ei(1,1)+Artin)/(OneNinth+ZetaP(3)) 2100938263010873 a007 Real Root Of 400*x^4+555*x^3-679*x^2-492*x-683 2100938263199734 s002 sum(A097824[n]/((2*n+1)!),n=1..infinity) 2100938279733721 r002 26th iterates of z^2 + 2100938283409455 a001 3571/39088169*2504730781961^(4/21) 2100938283409467 a001 1/1597*102334155^(4/21) 2100938284240906 a007 Real Root Of -532*x^4-700*x^3+907*x^2+475*x+868 2100938287318673 m001 (ln(Pi)+Kolakoski)/(3^(1/2)-cos(1/5*Pi)) 2100938287988566 a001 3571/832040*4181^(4/21) 2100938290197112 m001 (Si(Pi)-gamma(2))/(AlladiGrinstead+ZetaP(4)) 2100938291372120 a007 Real Root Of -42*x^4+234*x^3+341*x^2+323*x-85 2100938292779534 s001 sum(1/10^(n-1)*A093553[n]/n!^2,n=1..infinity) 2100938297210669 m001 (GAMMA(2/3)+ln(5))/(GaussAGM+Stephens) 2100938307323244 a007 Real Root Of -631*x^4-730*x^3+713*x^2-812*x+671 2100938312425360 a001 123/1346269*832040^(48/53) 2100938318328185 a005 (1/cos(87/182*Pi))^2 2100938318491013 a007 Real Root Of 568*x^4+806*x^3-516*x^2+647*x+45 2100938320908428 m001 1/GAMMA(2/3)^2*ln(Catalan)^2*sqrt(5)^2 2100938330397970 m001 Artin^Salem*Rabbit^Salem 2100938331535532 m001 1/Ei(1)/GaussKuzminWirsing^2/exp(Zeta(9)) 2100938336254553 m005 (1/2*Catalan+2/9)/(4/9*Catalan-1/12) 2100938341815369 a003 cos(Pi*13/35)-cos(Pi*49/111) 2100938342428611 r005 Re(z^2+c),c=33/106+13/28*I,n=4 2100938344046270 h001 (9/10*exp(1)+2/11)/(1/4*exp(1)+4/7) 2100938348372484 r005 Im(z^2+c),c=-95/98+11/51*I,n=45 2100938359208922 m005 (1/3*Catalan-2/7)/(7/9*2^(1/2)-1/6) 2100938361350351 a007 Real Root Of 343*x^4+42*x^3-923*x^2+615*x-927 2100938365101820 r005 Re(z^2+c),c=4/23+3/58*I,n=15 2100938371321889 h001 (-7*exp(2)-5)/(-5*exp(4)+3) 2100938374635555 a007 Real Root Of 430*x^4+727*x^3-115*x^2+171*x-769 2100938377296748 b008 1-3*LogGamma[Pi^(-1)] 2100938381617025 h002 exp(14^(10/7)+19^(5/12)) 2100938381617025 h007 exp(14^(10/7)+19^(5/12)) 2100938388628319 r005 Im(z^2+c),c=-17/98+31/46*I,n=54 2100938394318976 m001 (Pi+ArtinRank2)/(Bloch+FeigenbaumKappa) 2100938402621511 m001 (3^(1/2)+MertensB3)/(Riemann1stZero+ZetaP(2)) 2100938406823930 l006 ln(1139/9310) 2100938407532921 m001 (Khinchin+Otter)/(sin(1/12*Pi)-gamma(2)) 2100938411026705 a005 (1/cos(39/236*Pi))^266 2100938418168427 a001 2/225851433717*514229^(16/17) 2100938419160558 q001 9/42838 2100938419329752 a007 Real Root Of -343*x^4-115*x^3+662*x^2-913*x+776 2100938421125118 l006 ln(941/1161) 2100938424125390 a001 9349/102334155*2504730781961^(4/21) 2100938424125392 a001 9349/14930352*102334155^(4/21) 2100938428703983 a001 9349/2178309*4181^(4/21) 2100938441118633 h001 (2/11*exp(1)+2/9)/(2/5*exp(2)+5/11) 2100938444655568 a001 1/10946*2504730781961^(4/21) 2100938444655568 a001 24476/39088169*102334155^(4/21) 2100938445334878 a007 Real Root Of -898*x^4+280*x^3-324*x^2+897*x-175 2100938447017761 a007 Real Root Of 355*x^4+452*x^3-431*x^2+351*x-85 2100938447650881 a001 64079/701408733*2504730781961^(4/21) 2100938447650881 a001 64079/102334155*102334155^(4/21) 2100938448087891 a001 167761/267914296*102334155^(4/21) 2100938448087891 a001 167761/1836311903*2504730781961^(4/21) 2100938448151650 a001 439204/701408733*102334155^(4/21) 2100938448151650 a001 109801/1201881744*2504730781961^(4/21) 2100938448160952 a001 1149851/1836311903*102334155^(4/21) 2100938448160952 a001 1149851/12586269025*2504730781961^(4/21) 2100938448162309 a001 3010349/4807526976*102334155^(4/21) 2100938448162309 a001 3010349/32951280099*2504730781961^(4/21) 2100938448162507 a001 7881196/12586269025*102334155^(4/21) 2100938448162507 a001 1970299/21566892818*2504730781961^(4/21) 2100938448162536 a001 20633239/32951280099*102334155^(4/21) 2100938448162536 a001 711491/7787980473*2504730781961^(4/21) 2100938448162540 a001 54018521/86267571272*102334155^(4/21) 2100938448162540 a001 54018521/591286729879*2504730781961^(4/21) 2100938448162541 a001 141422324/225851433717*102334155^(4/21) 2100938448162541 a001 35355581/387002188980*2504730781961^(4/21) 2100938448162541 a001 370248451/591286729879*102334155^(4/21) 2100938448162541 a001 370248451/4052739537881*2504730781961^(4/21) 2100938448162541 a001 969323029/1548008755920*102334155^(4/21) 2100938448162541 a001 2537720636/4052739537881*102334155^(4/21) 2100938448162541 a001 6643838879/10610209857723*102334155^(4/21) 2100938448162541 a001 4106118243/6557470319842*102334155^(4/21) 2100938448162541 a001 1568397607/2504730781961*102334155^(4/21) 2100938448162541 a001 969323029/10610209857723*2504730781961^(4/21) 2100938448162541 a001 599074578/956722026041*102334155^(4/21) 2100938448162541 a001 299537289/3278735159921*2504730781961^(4/21) 2100938448162541 a001 228826127/365435296162*102334155^(4/21) 2100938448162541 a001 228826127/2504730781961*2504730781961^(4/21) 2100938448162541 a001 87403803/139583862445*102334155^(4/21) 2100938448162541 a001 87403803/956722026041*2504730781961^(4/21) 2100938448162543 a001 33385282/53316291173*102334155^(4/21) 2100938448162543 a001 16692641/182717648081*2504730781961^(4/21) 2100938448162554 a001 12752043/20365011074*102334155^(4/21) 2100938448162554 a001 12752043/139583862445*2504730781961^(4/21) 2100938448162630 a001 4870847/7778742049*102334155^(4/21) 2100938448162630 a001 4870847/53316291173*2504730781961^(4/21) 2100938448163148 a001 1860498/2971215073*102334155^(4/21) 2100938448163148 a001 930249/10182505537*2504730781961^(4/21) 2100938448166701 a001 710647/1134903170*102334155^(4/21) 2100938448166701 a001 710647/7778742049*2504730781961^(4/21) 2100938448191055 a001 271443/433494437*102334155^(4/21) 2100938448191055 a001 271443/2971215073*2504730781961^(4/21) 2100938448357978 a001 103682/165580141*102334155^(4/21) 2100938448357978 a001 51841/567451585*2504730781961^(4/21) 2100938449234086 a001 24476/5702887*4181^(4/21) 2100938449502086 a001 39603/63245986*102334155^(4/21) 2100938449502086 a001 39603/433494437*2504730781961^(4/21) 2100938451759282 m001 (GAMMA(23/24)-GaussAGM)/(Landau-ZetaP(2)) 2100938452229388 a001 64079/14930352*4181^(4/21) 2100938452666396 a001 167761/39088169*4181^(4/21) 2100938452730155 a001 439204/102334155*4181^(4/21) 2100938452739457 a001 1149851/267914296*4181^(4/21) 2100938452740814 a001 3010349/701408733*4181^(4/21) 2100938452741012 a001 7881196/1836311903*4181^(4/21) 2100938452741041 a001 20633239/4807526976*4181^(4/21) 2100938452741045 a001 54018521/12586269025*4181^(4/21) 2100938452741046 a001 271444/63246219*4181^(4/21) 2100938452741046 a001 370248451/86267571272*4181^(4/21) 2100938452741046 a001 969323029/225851433717*4181^(4/21) 2100938452741046 a001 2537720636/591286729879*4181^(4/21) 2100938452741046 a001 6643838879/1548008755920*4181^(4/21) 2100938452741046 a001 17393796001/4052739537881*4181^(4/21) 2100938452741046 a001 45537549124/10610209857723*4181^(4/21) 2100938452741046 a001 28143753123/6557470319842*4181^(4/21) 2100938452741046 a001 10749957122/2504730781961*4181^(4/21) 2100938452741046 a001 4106118243/956722026041*4181^(4/21) 2100938452741046 a001 1568397607/365435296162*4181^(4/21) 2100938452741046 a001 599074578/139583862445*4181^(4/21) 2100938452741046 a001 228826127/53316291173*4181^(4/21) 2100938452741046 a001 87403803/20365011074*4181^(4/21) 2100938452741048 a001 33385282/7778742049*4181^(4/21) 2100938452741059 a001 12752043/2971215073*4181^(4/21) 2100938452741135 a001 4870847/1134903170*4181^(4/21) 2100938452741653 a001 1860498/433494437*4181^(4/21) 2100938452745206 a001 710647/165580141*4181^(4/21) 2100938452769560 a001 271443/63245986*4181^(4/21) 2100938452936482 a001 103682/24157817*4181^(4/21) 2100938453023198 a007 Real Root Of -669*x^4+642*x^3-366*x^2-21*x+19 2100938454080586 a001 39603/9227465*4181^(4/21) 2100938457343915 a001 15127/24157817*102334155^(4/21) 2100938457343916 a001 15127/165580141*2504730781961^(4/21) 2100938458848977 r005 Re(z^2+c),c=-13/16+2/89*I,n=6 2100938461911920 a007 Real Root Of 757*x^4+982*x^3-983*x^2+150*x-988 2100938461922387 a001 15127/3524578*4181^(4/21) 2100938469348172 r005 Im(z^2+c),c=-17/23+8/59*I,n=7 2100938470577914 m001 Paris^2/exp(LandauRamanujan)*arctan(1/2) 2100938473209002 m001 1/Catalan/ErdosBorwein*exp(GAMMA(5/6)) 2100938482889311 m005 (1/2*exp(1)-4/9)/(3*2^(1/2)+1/9) 2100938492552112 r005 Im(z^2+c),c=-93/82+11/51*I,n=19 2100938502002793 a007 Real Root Of -758*x^4-175*x^3-187*x^2+980*x+214 2100938508565597 a007 Real Root Of 561*x^4+818*x^3-963*x^2+16*x+940 2100938509735856 r005 Im(z^2+c),c=17/60+4/59*I,n=13 2100938511092616 a001 5778/9227465*102334155^(4/21) 2100938511092621 a001 2889/31622993*2504730781961^(4/21) 2100938515670894 a001 5778/1346269*4181^(4/21) 2100938524988781 m005 (1/2*2^(1/2)-1/7)/(1/11*3^(1/2)+1/9) 2100938525583825 a005 (1/sin(66/151*Pi))^1326 2100938535381454 m001 (ln(gamma)-Zeta(1,2))/(Conway+Landau) 2100938541753436 m001 ln(2^(1/2)+1)+(2^(1/3))^Thue 2100938549938705 r008 a(0)=2,K{-n^6,75+11*n^3-14*n^2-79*n} 2100938552645010 a007 Real Root Of 206*x^4+134*x^3-161*x^2+844*x-287 2100938577650851 a007 Real Root Of 367*x^4+537*x^3-199*x^2+446*x-355 2100938579134849 m001 (Ei(1)-BesselI(0,2))/(Cahen+KhinchinLevy) 2100938580630398 h001 (4/11*exp(2)+2/3)/(1/4*exp(1)+11/12) 2100938583850831 m001 (Kolakoski-Riemann1stZero)/(ln(3)-arctan(1/2)) 2100938584458046 a003 sin(Pi*19/67)/cos(Pi*11/29) 2100938584568479 r005 Re(z^2+c),c=3/118+19/31*I,n=14 2100938591697210 l006 ln(581/4749) 2100938591981089 m009 (5/6*Psi(1,2/3)+2/3)/(1/4*Pi^2-4) 2100938594085949 r009 Im(z^3+c),c=-37/86+25/41*I,n=53 2100938599879576 a007 Real Root Of -254*x^4-377*x^3+55*x^2-434*x+298 2100938601075248 a001 615/124*199^(3/11) 2100938605639447 a001 1346269/29*7^(45/58) 2100938607675797 m005 (1/2*5^(1/2)+1/3)/(2*Pi+5/8) 2100938608089306 h001 (-exp(1)+9)/(-exp(8)-9) 2100938608633344 r005 Im(z^2+c),c=-15/56+11/28*I,n=5 2100938612094507 r005 Re(z^2+c),c=7/58+11/28*I,n=51 2100938614158935 m005 (1/2*3^(1/2)+7/8)/(1/12+1/3*5^(1/2)) 2100938618541311 a007 Real Root Of 490*x^4+888*x^3+34*x^2+524*x-361 2100938621839753 a008 Real Root of x^5-13*x^3-6*x^2+41*x+33 2100938630189646 m001 (-ln(Pi)+MadelungNaCl)/(2^(1/3)+ln(5)) 2100938631917386 g005 GAMMA(6/11)*GAMMA(4/11)*GAMMA(7/8)/GAMMA(3/7) 2100938632065895 m001 Chi(1)*ArtinRank2-Kolakoski 2100938633133023 a007 Real Root Of -242*x^4+200*x^3-666*x^2+820*x+204 2100938633413038 a007 Real Root Of -455*x^4-777*x^3+146*x^2-246*x+498 2100938636865028 m001 (-KhinchinHarmonic+Niven)/(Gompertz-gamma) 2100938649913754 a001 3/2161*199^(55/58) 2100938658832035 a007 Real Root Of -141*x^4+765*x^3-614*x^2-554*x-473 2100938660103871 r005 Im(z^2+c),c=-29/42+11/45*I,n=64 2100938661971864 h001 (1/12*exp(2)+8/9)/(10/11*exp(2)+4/9) 2100938671923706 h001 (7/12*exp(2)+3/7)/(1/5*exp(2)+7/9) 2100938672436441 a007 Real Root Of -534*x^4+685*x^3+397*x^2+722*x+15 2100938676338375 r005 Im(z^2+c),c=-35/54+13/41*I,n=15 2100938680488701 b008 2+3*SphericalBesselJ[1,8] 2100938681322608 r005 Im(z^2+c),c=-25/58+25/64*I,n=14 2100938686638461 r009 Im(z^3+c),c=-5/102+12/55*I,n=6 2100938694518598 a007 Real Root Of 289*x^4+552*x^3+135*x-228 2100938701700188 a001 610/4106118243*2^(1/2) 2100938719591328 a007 Real Root Of -583*x^4-711*x^3+988*x^2-51*x+297 2100938739224389 a001 9/5473*6765^(1/36) 2100938748355192 a001 144/521*1364^(3/5) 2100938749324511 a007 Real Root Of -149*x^4-549*x^3-872*x^2-959*x-354 2100938751148339 m004 -1-(Sqrt[5]*Pi)/6+(25*Pi)/E^(Sqrt[5]*Pi) 2100938751746798 m009 (5/6*Psi(1,3/4)+2/3)/(4*Psi(1,2/3)+1) 2100938752517678 a007 Real Root Of -396*x^4-473*x^3+613*x^2-160*x+287 2100938769393942 l006 ln(1185/9686) 2100938773297875 p001 sum((-1)^n/(559*n+459)/(12^n),n=0..infinity) 2100938779828689 m001 (3^(1/3)-Shi(1))/(-Lehmer+StronglyCareFree) 2100938780151078 r005 Im(z^2+c),c=-2/3+59/174*I,n=36 2100938791455557 g005 GAMMA(4/11)*GAMMA(7/8)/GAMMA(1/9)/GAMMA(3/5) 2100938794973539 a007 Real Root Of -256*x^4-484*x^3+409*x^2+446*x-369 2100938797906449 m001 cos(1)^2/TreeGrowth2nd^2*exp(log(2+sqrt(3)))^2 2100938801102720 m001 (Khinchin+Kolakoski)/(Artin+GlaisherKinkelin) 2100938809583583 a007 Real Root Of 429*x^4+717*x^3-383*x^2+402*x+826 2100938811271450 m005 (1/2*5^(1/2)+1/4)/(4*3^(1/2)-5/12) 2100938828714960 p001 sum(1/(432*n+409)/n/(6^n),n=1..infinity) 2100938830947715 a007 Real Root Of -425*x^4-419*x^3+886*x^2-227*x+7 2100938838379255 m001 (gamma+sin(1/12*Pi))/(-ThueMorse+ZetaP(2)) 2100938851763314 s002 sum(A187985[n]/(exp(2*pi*n)-1),n=1..infinity) 2100938856110294 m004 -36-25*Sqrt[5]*Pi+ProductLog[Sqrt[5]*Pi] 2100938857885421 r002 18th iterates of z^2 + 2100938860302594 p001 sum((-1)^n/(498*n+467)/(25^n),n=0..infinity) 2100938860883711 a007 Real Root Of -348*x^4+698*x^3-716*x^2+163*x+73 2100938861409080 a001 377/322*322^(1/2) 2100938867142724 a007 Real Root Of 287*x^4+189*x^3-773*x^2+39*x-345 2100938879296860 m001 gamma(2)*(PlouffeB-sin(1/12*Pi)) 2100938879491689 a001 2207/3524578*102334155^(4/21) 2100938879491722 a001 2207/24157817*2504730781961^(4/21) 2100938882461368 m001 (-Artin+CopelandErdos)/(2^(1/3)-BesselK(1,1)) 2100938884068639 a001 2207/514229*4181^(4/21) 2100938889198791 r005 Im(z^2+c),c=-35/86+19/54*I,n=38 2100938899086776 a001 233/322*1364^(7/15) 2100938902030795 a007 Real Root Of -448*x^4-705*x^3+32*x^2-776*x+419 2100938917233560 r005 Re(z^2+c),c=-13/14+91/240*I,n=2 2100938921676890 r005 Im(z^2+c),c=-17/52+7/22*I,n=8 2100938928390546 r009 Re(z^3+c),c=-12/23+31/52*I,n=15 2100938933293797 b008 Sin[2/Pi]^3 2100938934200324 m001 Riemann2ndZero-Si(Pi)+Tribonacci 2100938938420886 m001 (Sarnak-TwinPrimes)/(DuboisRaymond+OneNinth) 2100938940324047 l006 ln(604/4937) 2100938945241881 m001 (arctan(1/2)-Thue)/(ln(2)-ln(2^(1/2)+1)) 2100938947333049 m001 Shi(1)*HardyLittlewoodC4*MasserGramain 2100938948631128 r009 Re(z^3+c),c=-19/52+7/12*I,n=40 2100938954073583 a007 Real Root Of -338*x^4-953*x^3-673*x^2-32*x+651 2100938958347826 b008 2+19*Zeta[11] 2100938958354900 r005 Im(z^2+c),c=-7/8+34/197*I,n=38 2100938963489173 m005 (1/2*3^(1/2)+1)/(5/9*Pi-6/7) 2100938967136150 q001 179/852 2100938967136150 r005 Im(z^2+c),c=-5/8+179/213*I,n=2 2100938983299609 r009 Re(z^3+c),c=-1/126+39/49*I,n=59 2100938986556079 a007 Real Root Of 868*x^4+623*x^3+421*x^2-783*x-179 2100938990736244 r009 Re(z^3+c),c=-35/58+31/61*I,n=18 2100939000261104 m001 exp((3^(1/3)))*GolombDickman^2*GAMMA(5/6)^2 2100939005188798 r005 Re(z^2+c),c=17/86+25/62*I,n=51 2100939009812126 a003 cos(Pi*2/79)-cos(Pi*18/85) 2100939023074959 r009 Im(z^3+c),c=-8/19+4/45*I,n=38 2100939033145062 m001 cos(1)^Otter/(Catalan^Otter) 2100939034652231 a007 Real Root Of -142*x^4+657*x^3-620*x^2+431*x-69 2100939044017018 m001 exp(BesselJ(1,1))^2/Robbin/log(2+sqrt(3))^2 2100939050002388 a008 Real Root of x^4-2*x^3-2*x^2+2*x-25 2100939051366953 a007 Real Root Of 521*x^4+836*x^3-211*x^2+284*x-870 2100939066219064 a005 (1/sin(80/183*Pi))^390 2100939066381473 m005 (1/2*3^(1/2)+2)/(7/9*5^(1/2)-3/8) 2100939068887139 m001 CareFree*FibonacciFactorial/exp(sqrt(2)) 2100939077234201 r005 Im(z^2+c),c=-25/54+26/51*I,n=30 2100939078920115 a007 Real Root Of -34*x^4-732*x^3-371*x^2+52*x+889 2100939090357417 g006 Psi(1,11/12)+Psi(1,3/10)+Psi(1,8/9)+1/2*Pi^2 2100939094432691 m001 1/Magata/ln(Khintchine)/sqrt(2) 2100939104112673 a007 Real Root Of 532*x^4+502*x^3-766*x^2-954*x-163 2100939104584079 a007 Real Root Of 181*x^4-758*x^3-673*x^2-468*x-76 2100939104866810 l006 ln(1231/10062) 2100939115029604 m001 (3^(1/2)-Zeta(5))/(Sarnak+Sierpinski) 2100939117662165 a007 Real Root Of 628*x^4+925*x^3-917*x^2-151*x+73 2100939121495243 m001 cos(1)^ln(Pi)+ErdosBorwein 2100939130263061 m001 (Porter+Riemann3rdZero)/(LambertW(1)+ln(2)) 2100939132796398 m001 GAMMA(7/12)^2/ln(Rabbit)*GAMMA(7/24) 2100939133922758 m001 (Lehmer+Sarnak)/(GAMMA(3/4)-Si(Pi)) 2100939145212675 m001 Riemann2ndZero-exp(1/exp(1))*ZetaQ(3) 2100939151732325 m001 (ln(5)+MertensB2)/(StolarskyHarborth-Totient) 2100939152149628 a007 Real Root Of 243*x^4+210*x^3-925*x^2-396*x+464 2100939154986035 b008 -6*E^(E+Pi)+Pi 2100939155621589 a003 cos(Pi*4/103)/sin(Pi*13/83) 2100939159501909 a007 Real Root Of 330*x^4+128*x^3-535*x^2+960*x-864 2100939159621833 m001 Riemann2ndZero-Trott^cos(1/12*Pi) 2100939160414742 a007 Real Root Of -489*x^4-605*x^3-83*x^2+257*x+53 2100939183977632 r009 Re(z^3+c),c=-39/110+13/24*I,n=27 2100939185531947 m001 (MasserGramain-ZetaQ(2))/(Pi-arctan(1/3)) 2100939188474670 m001 (-MasserGramain+Sarnak)/(exp(1)+cos(1/12*Pi)) 2100939203956287 r009 Im(z^3+c),c=-57/118+4/49*I,n=46 2100939231423240 r009 Re(z^3+c),c=-5/24+61/62*I,n=11 2100939240110683 m005 (1/2*Pi+7/9)/(1/3*5^(1/2)-6/7) 2100939242357221 m005 (1/2*Pi-9/11)/(1/11*exp(1)+1/9) 2100939261114589 a001 33552/1597 2100939262000475 r005 Re(z^2+c),c=-5/29+24/59*I,n=20 2100939262244069 a001 1/89*55^(19/26) 2100939263373688 l006 ln(627/5125) 2100939270876646 m001 (FeigenbaumC+Rabbit)/(ZetaP(3)-ZetaQ(2)) 2100939273019705 r002 38th iterates of z^2 + 2100939275064595 s001 sum(exp(-2*Pi/5)^n*A197580[n],n=1..infinity) 2100939275064595 s002 sum(A197580[n]/(exp(2/5*pi*n)),n=1..infinity) 2100939277668684 m005 (3/4*exp(1)+3)/(3*gamma+2/3) 2100939280493011 r005 Im(z^2+c),c=-11/28+21/61*I,n=18 2100939282054612 m005 (1/3*Pi+1/11)/(9/11*3^(1/2)+4) 2100939285681668 a007 Real Root Of -473*x^4-705*x^3+485*x^2+976*x-219 2100939293065224 m001 (LaplaceLimit+ZetaQ(3))/(Catalan-Gompertz) 2100939293868190 m001 (Artin+FeigenbaumKappa)/(Ei(1)-exp(1)) 2100939308026178 a007 Real Root Of 502*x^4+647*x^3-848*x^2+94*x+160 2100939308184027 m008 (5/6*Pi^5-3/4)/(4*Pi^3-3) 2100939311343749 m005 (1/3*3^(1/2)+2/3)/(5/6*gamma+1/9) 2100939313854870 m001 1/exp(cos(1))*GAMMA(11/24)^2*cos(Pi/12) 2100939317523517 r009 Re(z^3+c),c=-15/44+39/61*I,n=9 2100939327949502 m001 1/ln(TreeGrowth2nd)/Magata*sin(Pi/5) 2100939328549695 r002 10th iterates of z^2 + 2100939328706240 m001 (Paris-PolyaRandomWalk3D)/(sin(1/12*Pi)-Artin) 2100939333270985 s002 sum(A250189[n]/(n*2^n+1),n=1..infinity) 2100939335759003 r009 Re(z^3+c),c=-15/62+5/21*I,n=7 2100939336780713 s002 sum(A163785[n]/(2^n-1),n=1..infinity) 2100939337623212 r002 20th iterates of z^2 + 2100939338255116 a001 2255/281*199^(2/11) 2100939338673989 a001 144/521*3571^(9/17) 2100939341000064 b008 LogGamma[1+E]^2 2100939358223637 a001 233/322*3571^(7/17) 2100939367300769 m001 PrimesInBinary*(Trott-polylog(4,1/2)) 2100939376600850 m005 (1/3*Zeta(3)+1/2)/(3*3^(1/2)-10/11) 2100939379892345 a001 121393/199*322^(19/31) 2100939382920241 m005 (-1/12+1/6*5^(1/2))/(gamma+4/5) 2100939384633272 m001 PlouffeB*(ln(5)+FransenRobinson) 2100939385153709 m005 (1/2*3^(1/2)-5/7)/(4/7*5^(1/2)-2) 2100939391170172 m001 (2^(1/3)-BesselI(0,1))/(-ln(5)+ln(2+3^(1/2))) 2100939393074078 a003 cos(Pi*41/113)/cos(Pi*39/79) 2100939394358826 r005 Im(z^2+c),c=-10/13+1/63*I,n=12 2100939395479951 a007 Real Root Of -928*x^4+584*x^3-734*x^2-22*x+35 2100939395821049 r009 Im(z^3+c),c=-49/122+4/37*I,n=21 2100939403367540 r005 Im(z^2+c),c=-23/90+19/61*I,n=19 2100939404413442 a007 Real Root Of -334*x^4-127*x^3+641*x^2-884*x+643 2100939409342049 r005 Re(z^2+c),c=-135/122+17/52*I,n=8 2100939411732831 m001 MadelungNaCl^2*FeigenbaumAlpha^2/exp(Magata)^2 2100939413489922 a001 18/75025*514229^(45/52) 2100939414510229 a001 144/521*9349^(9/19) 2100939417207380 a001 233/322*9349^(7/19) 2100939418338516 m005 (1/5*gamma+1/4)/(1/3*exp(1)+5/6) 2100939418415365 b008 3/2+ExpIntegralEi[6/11] 2100939423260753 s002 sum(A184482[n]/((exp(n)+1)/n),n=1..infinity) 2100939424393265 a001 144/521*24476^(3/7) 2100939424894185 a001 233/322*24476^(1/3) 2100939425696039 a001 144/521*64079^(9/23) 2100939425892623 a001 144/521*439204^(1/3) 2100939425896245 a001 144/521*7881196^(3/11) 2100939425896254 a001 144/521*141422324^(3/13) 2100939425896254 a001 144/521*2537720636^(1/5) 2100939425896254 a001 144/521*45537549124^(3/17) 2100939425896254 a001 144/521*14662949395604^(1/7) 2100939425896254 a001 144/521*(1/2+1/2*5^(1/2))^9 2100939425896254 a001 144/521*192900153618^(1/6) 2100939425896254 a001 144/521*10749957122^(3/16) 2100939425896254 a001 144/521*599074578^(3/14) 2100939425896254 a001 144/521*33385282^(1/4) 2100939425896436 a001 144/521*1860498^(3/10) 2100939425907454 a001 233/322*64079^(7/23) 2100939425969543 a001 144/521*103682^(3/8) 2100939426063176 a001 233/322*20633239^(1/5) 2100939426063177 a001 233/322*17393796001^(1/7) 2100939426063177 a001 233/322*14662949395604^(1/9) 2100939426063177 a001 233/322*(1/2+1/2*5^(1/2))^7 2100939426063177 a001 233/322*599074578^(1/6) 2100939426064217 a001 233/322*710647^(1/4) 2100939426120179 a001 233/322*103682^(7/24) 2100939426444250 a001 144/521*39603^(9/22) 2100939426489396 a001 233/322*39603^(7/22) 2100939429276660 a001 233/322*15127^(7/20) 2100939430027874 a001 144/521*15127^(9/20) 2100939434751805 m001 (BesselK(0,1)-Si(Pi))/(-ln(Pi)+arctan(1/2)) 2100939439101921 m001 (Lehmer-Magata)/(CareFree+HardyLittlewoodC3) 2100939440277771 r005 Im(z^2+c),c=-13/28+23/63*I,n=30 2100939446909910 a007 Real Root Of -606*x^4-654*x^3+937*x^2-594*x+358 2100939447350886 r005 Re(z^2+c),c=-5/6+3/196*I,n=30 2100939450535997 a001 233/322*5778^(7/18) 2100939457361308 a001 144/521*5778^(1/2) 2100939463494346 r005 Re(z^2+c),c=-43/54+2/19*I,n=20 2100939479764641 m001 (Bloch-Khinchin)/(sin(1/5*Pi)-ln(2)) 2100939482659565 a007 Real Root Of -445*x^4-434*x^3-953*x^2+881*x+224 2100939488911595 r002 21th iterates of z^2 + 2100939489987176 m005 (1/3*3^(1/2)-1/8)/(5/7*Pi-1/11) 2100939490400323 m001 (BesselJ(0,1)+GAMMA(3/4))/(Bloch+PlouffeB) 2100939492128618 r005 Im(z^2+c),c=-107/114+12/59*I,n=42 2100939503193455 l006 ln(7960/9821) 2100939505053993 m001 Porter*exp(FeigenbaumDelta)^2*(2^(1/3)) 2100939508004365 m001 (PisotVijayaraghavan-Riemann2ndZero)/Zeta(1,2) 2100939512637786 r002 10th iterates of z^2 + 2100939513539360 m001 Pi-1/2*2^(5/6)/Pi*GAMMA(3/4)-ln(2) 2100939515690131 a001 7/377*5702887^(3/5) 2100939525522237 m005 (1/2*Pi+1/9)/(5/8*2^(1/2)-1/12) 2100939528633874 a007 Real Root Of 422*x^4+714*x^3-614*x^2-214*x+660 2100939533285896 m001 (Paris-cos(1))/Riemann2ndZero 2100939535259699 m001 (MertensB1-Robbin)/(Ei(1,1)-HardyLittlewoodC5) 2100939536129459 m009 (2/5*Psi(1,1/3)-3/4)/(6*Psi(1,3/4)+2/5) 2100939537637353 a007 Real Root Of -431*x^4-339*x^3+953*x^2-485*x+28 2100939540188028 r005 Im(z^2+c),c=-43/102+16/45*I,n=34 2100939541734470 r005 Re(z^2+c),c=-19/82+3/14*I,n=10 2100939542010477 a007 Real Root Of -14*x^4-325*x^3-630*x^2+432*x+898 2100939544419605 h001 (-4*exp(3/2)+9)/(-5*exp(-3)-4) 2100939546174055 a007 Real Root Of 37*x^4-915*x^3+376*x^2-599*x-151 2100939555983806 r005 Im(z^2+c),c=-107/126+8/49*I,n=45 2100939558179057 s002 sum(A261952[n]/((2^n-1)/n),n=1..infinity) 2100939563561260 l006 ln(650/5313) 2100939565322728 s002 sum(A198735[n]/((10^n+1)/n),n=1..infinity) 2100939569448241 l006 ln(9467/9668) 2100939569946994 a003 cos(Pi*25/67)-cos(Pi*35/79) 2100939579292031 r005 Re(z^2+c),c=-7/50+12/25*I,n=47 2100939580771920 p003 LerchPhi(1/10,4,455/172) 2100939587730954 m005 (1/2*gamma-7/11)/(5/9*Zeta(3)-5/6) 2100939592255820 m001 (-GAMMA(23/24)+KhinchinLevy)/(Chi(1)+gamma(1)) 2100939594842969 m001 (5^(1/2)+1)/(Catalan+GolombDickman) 2100939599113037 a007 Real Root Of 644*x^4+980*x^3-992*x^2-422*x+33 2100939607755921 m001 (Zeta(3)+gamma(3))/(GaussAGM-MertensB1) 2100939608465493 p004 log(35801/29017) 2100939612444052 m002 -1+2*Cosh[Pi]-Cosh[Pi]/Pi^2 2100939614769771 a001 233/322*2207^(7/16) 2100939622565036 a003 sin(Pi*38/103)/cos(Pi*35/72) 2100939633925426 r005 Re(z^2+c),c=-15/98+11/23*I,n=15 2100939635835072 m001 Lehmer/(Otter^(Pi*csc(7/24*Pi)/GAMMA(17/24))) 2100939640374623 m005 (1/2*3^(1/2)-5/6)/(5/8*exp(1)-1/7) 2100939640486138 m001 (ln(Pi)+GAMMA(11/12))/(GAMMA(13/24)-Lehmer) 2100939644742119 m001 (-MertensB2+Robbin)/(BesselK(0,1)+GAMMA(2/3)) 2100939648260593 l006 ln(7019/8660) 2100939649202461 a007 Real Root Of -275*x^4+173*x^3+576*x^2+488*x+10 2100939650626534 r005 Im(z^2+c),c=-3/4+17/113*I,n=20 2100939652278590 m005 (1/3*Zeta(3)-2/7)/(3/11*3^(1/2)+5) 2100939654047273 r005 Im(z^2+c),c=-1+25/107*I,n=21 2100939656324413 p003 LerchPhi(1/10,9,77/108) 2100939658772351 m001 Artin*(GAMMA(3/4)-KomornikLoreti) 2100939658957900 p004 log(16127/1973) 2100939662303317 m001 FeigenbaumKappa/MinimumGamma^2/ln(gamma)^2 2100939668519020 a001 144/521*2207^(9/16) 2100939678929918 h001 (-5*exp(-2)+2)/(-6*exp(-3)-6) 2100939679431237 a007 Real Root Of 568*x^4+795*x^3-873*x^2-163*x-183 2100939681873873 m005 (1/2*5^(1/2)-2/9)/(4*Catalan+3/5) 2100939699467840 r009 Re(z^3+c),c=-39/110+21/37*I,n=33 2100939699584581 m001 1/GAMMA(2/3)^2*BesselJ(1,1)*exp(sqrt(5))^2 2100939700274876 m001 1/exp(MinimumGamma)/Kolakoski*FeigenbaumD^2 2100939727454262 r005 Im(z^2+c),c=-7/6+45/248*I,n=46 2100939727776494 r005 Re(z^2+c),c=-11/14+26/213*I,n=52 2100939730233812 m001 (BesselI(0,1)-exp(1))/(-ln(2+3^(1/2))+Kac) 2100939731634925 h001 (7/8*exp(1)+4/9)/(1/5*exp(1)+4/5) 2100939736888547 r005 Re(z^2+c),c=35/118+13/62*I,n=44 2100939741986212 a003 cos(Pi*43/99)*cos(Pi*50/107) 2100939743113875 a001 1364/2178309*4807526976^(6/23) 2100939743161775 a001 1364/121393*75025^(6/23) 2100939748148346 r005 Re(z^2+c),c=-15/118+26/45*I,n=21 2100939748187571 m005 (1/3*Catalan+1/9)/(5/11*5^(1/2)-9/11) 2100939750513004 r009 Im(z^3+c),c=-3/20+48/55*I,n=48 2100939751109141 m001 (sin(1)+Ei(1))/(-GlaisherKinkelin+Sierpinski) 2100939757286976 a001 7/233*5702887^(8/19) 2100939765177426 a007 Real Root Of -579*x^4-881*x^3+327*x^2-489*x+640 2100939768123165 a001 199/139583862445*3^(6/17) 2100939769831788 a007 Real Root Of -560*x^4-574*x^3+988*x^2-649*x-137 2100939772982999 r005 Im(z^2+c),c=2/7+1/35*I,n=52 2100939780168575 m001 exp(Pi)^(ThueMorse/KhinchinHarmonic) 2100939788318147 m001 Zeta(1/2)^(GAMMA(7/12)*GlaisherKinkelin) 2100939796839726 a008 Real Root of (1+x+6*x^2+5*x^4+3*x^5) 2100939797219164 m001 1/2+(3^(1/3))^GAMMA(17/24) 2100939814891217 a007 Real Root Of -157*x^4-554*x^3-770*x^2-932*x-638 2100939823148530 m002 -Pi^2-Cosh[Pi]+(6*Sech[Pi])/Log[Pi] 2100939827978296 r009 Re(z^3+c),c=-15/44+11/24*I,n=3 2100939834178308 r002 17th iterates of z^2 + 2100939835101119 m008 (1/3*Pi^6+5/6)/(5*Pi^5-4/5) 2100939838246510 l006 ln(6078/7499) 2100939838907010 m001 BesselJ(0,1)^2*Artin^2*ln(GAMMA(19/24))^2 2100939842009008 m001 1/LandauRamanujan^2/Bloch^2/ln(FeigenbaumC)^2 2100939843230730 l006 ln(673/5501) 2100939843230730 p004 log(5501/673) 2100939847866194 r005 Re(z^2+c),c=-7/50+12/25*I,n=58 2100939848093756 m001 (cos(1)*BesselK(1,1)+Zeta(1/2))/cos(1) 2100939869773545 a007 Real Root Of 237*x^4+742*x^3+941*x^2-999*x-245 2100939870259242 m001 (Zeta(3)+arctan(1/3))/(Sarnak+ZetaQ(4)) 2100939875836049 m001 GaussAGM/(LandauRamanujan2nd^Niven) 2100939880628890 a007 Real Root Of -58*x^4+255*x^3+433*x^2-530*x+470 2100939880903997 a007 Real Root Of 730*x^4-471*x^3+705*x^2-762*x-197 2100939882630603 r005 Im(z^2+c),c=-16/13+9/58*I,n=29 2100939912214618 r002 37th iterates of z^2 + 2100939917043531 m001 MadelungNaCl+ZetaP(3)^Gompertz 2100939924780190 a007 Real Root Of 5*x^4+87*x^3-401*x^2-488*x-611 2100939927891657 r005 Im(z^2+c),c=-9/14+70/153*I,n=16 2100939928693332 a007 Real Root Of 147*x^4+35*x^3-652*x^2-609*x-941 2100939931076170 a007 Real Root Of 123*x^4+415*x^3+765*x^2+739*x-372 2100939931159247 r009 Re(z^3+c),c=-11/102+31/37*I,n=24 2100939932401328 m001 (Landau-Mills)/(Zeta(5)-FeigenbaumDelta) 2100939934107680 a007 Real Root Of -22*x^4-447*x^3+346*x^2+574*x+356 2100939939182525 r005 Im(z^2+c),c=-67/114+17/50*I,n=33 2100939952187334 a007 Real Root Of -975*x^4-48*x^3+998*x^2+782*x-206 2100939957111592 r005 Im(z^2+c),c=-31/66+21/58*I,n=18 2100939964426176 m001 (1+ln(gamma))/(-FeigenbaumMu+Riemann3rdZero) 2100939981008756 m001 Catalan^arctan(1/3)+GAMMA(5/6) 2100939982849084 r005 Im(z^2+c),c=-13/62+11/34*I,n=5 2100939993327545 m001 (ln(3)+StolarskyHarborth)/(Psi(2,1/3)-Zeta(5)) 2100939995835302 m001 (LambertW(1)-Zeta(5))/sqrt(5) 2100939995835302 m001 1/5*(Zeta(5)-LambertW(1))*5^(1/2) 2100940002639378 m005 (43/44+1/4*5^(1/2))/(31/18+5/2*5^(1/2)) 2100940018832423 r005 Im(z^2+c),c=-13/14+41/186*I,n=50 2100940018868690 m005 (1/2*2^(1/2)-5)/(2*gamma+8/9) 2100940026163987 m001 (cos(1/5*Pi)-ln(2))/(gamma(1)+GolombDickman) 2100940028505706 m001 (exp(1/Pi)+Cahen)/(Champernowne-Trott2nd) 2100940046246317 a003 cos(Pi*39/118)/cos(Pi*32/65) 2100940047026151 m001 (Mills+Porter)/(5^(1/2)-Catalan) 2100940050421659 r005 Re(z^2+c),c=-47/114+29/42*I,n=6 2100940052016443 m001 (Chi(1)+gamma)/(-ln(2+3^(1/2))+Cahen) 2100940059782166 r005 Re(z^2+c),c=-13/114+29/55*I,n=32 2100940060753517 m005 (1/2*5^(1/2)+1/8)/(1/7*Pi+1/7) 2100940061274691 r005 Im(z^2+c),c=-4/9+13/36*I,n=58 2100940081892276 m001 (exp(Pi)-FeigenbaumKappa)/Zeta(5) 2100940084666917 m005 (1/2*gamma-7/9)/(5/9*exp(1)+9/11) 2100940091181997 a003 cos(Pi*5/23)*cos(Pi*26/63) 2100940097835981 l006 ln(5137/6338) 2100940104416227 l006 ln(696/5689) 2100940109569412 a001 2/4052739537881*1836311903^(14/17) 2100940109570720 a001 1/2403763488*514229^(14/17) 2100940118951976 m001 1/ln(MertensB1)*Artin^2/CareFree^2 2100940120355339 m005 (1/3*5^(1/2)-1/4)/(8/9*3^(1/2)+9/11) 2100940121955221 a007 Real Root Of 173*x^4-149*x^3-635*x^2+995*x+141 2100940122737956 m005 (1/2*Zeta(3)+4/5)/(3/11*Catalan-11/12) 2100940130002512 r002 9th iterates of z^2 + 2100940132170956 b008 Sqrt[Pi]+SinIntegral[Pi/3]/3 2100940135545323 p001 sum((-1)^n/(528*n+47)/(6^n),n=0..infinity) 2100940162830465 m001 (exp(Pi)-gamma)/(Paris+ZetaQ(3)) 2100940165224129 a007 Real Root Of 120*x^4+17*x^3-538*x^2-212*x-251 2100940167732176 m001 (Robbin+ZetaQ(3))/(cos(1/12*Pi)-GAMMA(17/24)) 2100940172900880 m001 Magata^Champernowne-Zeta(1,2) 2100940184163159 m001 (GaussAGM-Stephens)/(sin(1/5*Pi)+Cahen) 2100940188929654 s002 sum(A075153[n]/(n*pi^n+1),n=1..infinity) 2100940191597472 m001 ln(HardHexagonsEntropy)^2/Artin/Riemann1stZero 2100940198487735 m001 Ei(1,1)*Totient*TravellingSalesman 2100940213553562 r002 15th iterates of z^2 + 2100940215608221 r005 Re(z^2+c),c=-5/66+18/31*I,n=42 2100940216335222 a005 (1/sin(58/165*Pi))^353 2100940220354259 r005 Im(z^2+c),c=-33/26+1/120*I,n=24 2100940233236151 r009 Re(z^3+c),c=-39/70+3/4*I,n=2 2100940241148086 a007 Real Root Of 69*x^4-530*x^3+573*x^2+222*x+575 2100940247040378 r005 Im(z^2+c),c=-5/27+16/55*I,n=18 2100940252500004 a003 sin(Pi*7/106)/sin(Pi*45/103) 2100940255563058 a007 Real Root Of 468*x^4+538*x^3-935*x^2-249*x-525 2100940257507717 a001 47/4181*4181^(3/40) 2100940261154594 a001 11/377*377^(31/43) 2100940261853390 r002 7th iterates of z^2 + 2100940263999545 r009 Re(z^3+c),c=-9/25+33/62*I,n=19 2100940284739306 m005 (1/2*Catalan-3/10)/(1/7*exp(1)+4/11) 2100940289241989 r005 Im(z^2+c),c=-19/40+16/35*I,n=24 2100940304592692 m001 (Cahen+Magata)/(Backhouse+Bloch) 2100940309679277 v003 sum((2*n^3-n^2+n+5)/(n!+2),n=1..infinity) 2100940318893149 m001 Rabbit^2*LaplaceLimit*exp(Tribonacci) 2100940329054167 m006 (1/6*Pi^2-3/5)/(5*ln(Pi)-3/4) 2100940336569333 a001 6119/36*1597^(15/44) 2100940341256687 m001 cos(1/12*Pi)*MertensB2*Riemann2ndZero 2100940341920810 r005 Re(z^2+c),c=17/86+8/49*I,n=2 2100940348891603 l006 ln(719/5877) 2100940349041815 r005 Im(z^2+c),c=-31/42+6/47*I,n=41 2100940349482419 m001 (1+GAMMA(2/3))/(-Grothendieck+Robbin) 2100940357185786 a007 Real Root Of 458*x^4+803*x^3+197*x^2+814*x-636 2100940360701080 a001 45537549124/233*144^(16/17) 2100940364417385 a007 Real Root Of 824*x^4+484*x^3-372*x^2-998*x+220 2100940367935556 m005 (1/2*2^(1/2)+7/8)/(1/6*exp(1)+3/10) 2100940373271385 m001 1/exp(CareFree)^2/Artin^2*Zeta(3) 2100940375611741 m005 (1/2*3^(1/2)-4/7)/(7/11*3^(1/2)+3/10) 2100940385751548 a003 sin(Pi*17/63)-sin(Pi*43/105) 2100940388642036 r005 Re(z^2+c),c=-43/78+27/55*I,n=5 2100940389828886 m005 (1/3*gamma+1/11)/(3/8*2^(1/2)+9/11) 2100940392844837 a007 Real Root Of 869*x^4+685*x^3-387*x^2-532*x-11 2100940393986391 m002 (5*Pi^4)/E^Pi-Sinh[Pi]/Pi^5 2100940394097932 a007 Real Root Of -382*x^4-974*x^3-91*x^2+933*x+772 2100940399918946 a007 Real Root Of 475*x^4+685*x^3-903*x^2-641*x-263 2100940404129893 m001 1/exp(Riemann2ndZero)^2*MertensB1*Zeta(1/2) 2100940412141455 m001 exp(Zeta(1,2))/Ei(1)*Zeta(7)^2 2100940413895778 m001 (Rabbit+ThueMorse)/(Psi(2,1/3)+Niven) 2100940422967206 r005 Re(z^2+c),c=-21/86+1/60*I,n=3 2100940428337873 m001 Magata/(2/3*Pi*3^(1/2)/GAMMA(2/3)-Shi(1)) 2100940432789466 m005 (1/2*gamma+7/11)/(1/6*Pi-1/12) 2100940436256156 r005 Im(z^2+c),c=-135/122+17/64*I,n=56 2100940437470981 h001 (-3*exp(4)+6)/(-5*exp(5)-9) 2100940445743266 m008 (1/3*Pi^2-2/3)/(4*Pi^3+5/6) 2100940448416326 r005 Re(z^2+c),c=-7/38+20/53*I,n=11 2100940448746626 m009 (16*Catalan+2*Pi^2+4/5)/(2/5*Psi(1,3/4)-1) 2100940452278874 m005 (1/2*Pi-5/6)/(5/9*exp(1)+2) 2100940463667833 a007 Real Root Of -545*x^4-734*x^3-280*x^2+756*x+16 2100940463681362 a007 Real Root Of 131*x^4+486*x^3+561*x^2+105*x-301 2100940464874432 r005 Re(z^2+c),c=29/106+4/21*I,n=27 2100940466521278 m001 (Pi-(1+3^(1/2))^(1/2))/(Kolakoski-Sarnak) 2100940471875387 m001 BesselJ(0,1)/OneNinth*Otter 2100940473857135 l006 ln(4196/5177) 2100940480161000 r005 Re(z^2+c),c=-2/13+26/45*I,n=7 2100940483065219 a007 Real Root Of -444*x^4-348*x^3+760*x^2-928*x+119 2100940488947836 r009 Im(z^3+c),c=-9/23+7/60*I,n=18 2100940499041627 r005 Im(z^2+c),c=-5/8+80/217*I,n=25 2100940501011106 r005 Im(z^2+c),c=-35/64+17/43*I,n=63 2100940505830413 r005 Re(z^2+c),c=-3/52+20/33*I,n=61 2100940510860410 a007 Real Root Of 270*x^4+245*x^3-518*x^2-129*x-973 2100940513534260 r002 45th iterates of z^2 + 2100940516157038 h001 (-8*exp(4)-5)/(-7*exp(1)-2) 2100940520943024 m001 1/Tribonacci/ln(FeigenbaumKappa)*Trott^2 2100940521003757 m001 Ei(1,1)/(Pi*csc(1/12*Pi)/GAMMA(11/12)-Shi(1)) 2100940521088011 r009 Re(z^3+c),c=-5/9+28/45*I,n=29 2100940526056355 m001 (Pi^(1/2)+Mills)^TwinPrimes 2100940528839159 a001 843/1134903170*8^(1/2) 2100940546824431 m005 (1/2*5^(1/2)+4)/(5^(1/2)+1/5) 2100940562891814 a001 1597/521*199^(4/11) 2100940564078500 m001 (Zeta(3)+Magata)/(Chi(1)-Shi(1)) 2100940564078500 m001 (Zeta(3)+Magata)/Ei(1,1) 2100940564754359 a007 Real Root Of 129*x^4+112*x^3-268*x^2+146*x+15 2100940572869712 a001 3/196418*2^(23/50) 2100940578210770 l006 ln(742/6065) 2100940585975602 m001 exp(Kolakoski)^2*GaussKuzminWirsing/sin(1)^2 2100940603212838 m005 (1/3*5^(1/2)+1/8)/(2/9*2^(1/2)+1/10) 2100940608691418 a007 Real Root Of -259*x^4-384*x^3+288*x^2+249*x+737 2100940614353899 m001 (cos(1)-sin(1))/(-3^(1/3)+ZetaQ(3)) 2100940619063522 a007 Real Root Of 297*x^4+475*x^3-140*x^2+531*x+352 2100940628666180 a005 (1/cos(7/214*Pi))^1011 2100940632210867 a007 Real Root Of -20*x^4+404*x^3-400*x^2+412*x+108 2100940632302347 r005 Im(z^2+c),c=-43/102+1/29*I,n=20 2100940632437294 m001 Niven*GaussAGM(1,1/sqrt(2))^2*exp(cos(1)) 2100940637660136 r005 Im(z^2+c),c=-115/126+12/53*I,n=29 2100940638528195 m002 2*Coth[Pi]^2+Sech[Pi]*Tanh[Pi] 2100940649016866 p003 LerchPhi(1/512,6,205/232) 2100940650988075 r001 58i'th iterates of 2*x^2-1 of 2100940660289915 m001 (1+ln(3))/(-FeigenbaumB+FeigenbaumC) 2100940667805847 a007 Real Root Of 559*x^4+937*x^3-90*x^2+639*x-462 2100940671254044 a003 cos(Pi*25/106)-sin(Pi*25/63) 2100940673198259 a001 199/514229*8^(48/59) 2100940673214733 m005 (1/3*gamma+2/3)/(8/11*Zeta(3)-5/6) 2100940673403043 a003 cos(Pi*26/103)-cos(Pi*28/107) 2100940673689510 r002 3th iterates of z^2 + 2100940688398696 r005 Im(z^2+c),c=-9/29+16/49*I,n=21 2100940697996908 a007 Real Root Of -473*x^4-854*x^3+253*x^2-200*x-241 2100940702538112 a007 Real Root Of 477*x^4+711*x^3-848*x^2-189*x+646 2100940703569215 r009 Im(z^3+c),c=-11/60+44/47*I,n=2 2100940707596282 a001 1/1597*4807526976^(6/23) 2100940707619904 a001 3571/317811*75025^(6/23) 2100940711129536 a003 sin(Pi*9/58)-sin(Pi*7/43) 2100940713632060 m001 (ArtinRank2+GaussAGM)/(Artin-ln(2)/ln(10)) 2100940719226014 l006 ln(8996/9187) 2100940732026284 m001 (Robbin-TwinPrimes)/(gamma(1)-LaplaceLimit) 2100940733100271 l006 ln(7451/9193) 2100940736120008 r005 Im(z^2+c),c=-7/8+33/191*I,n=63 2100940737906991 m009 (1/6*Pi^2+1/2)/(1/2*Psi(1,3/4)-1/4) 2100940747746611 r005 Re(z^2+c),c=-5/106+39/56*I,n=4 2100940750158464 m001 gamma(2)*Conway+Riemann2ndZero 2100940753801794 a007 Real Root Of 339*x^4+129*x^3-866*x^2+287*x-983 2100940756100718 a001 76/12586269025*89^(5/18) 2100940765692090 r005 Re(z^2+c),c=-3/20+21/46*I,n=20 2100940767331419 a007 Real Root Of 291*x^4+908*x^3+247*x^2-966*x-206 2100940768149338 r008 a(0)=2,K{-n^6,71-72*n^3-82*n^2+73*n} 2100940792257396 m001 (Chi(1)+sin(1))/(cos(1/5*Pi)+gamma(2)) 2100940793740762 l006 ln(765/6253) 2100940802403701 m001 (Zeta(3)+GAMMA(2/3))/(BesselI(1,2)-Artin) 2100940809378456 h001 (1/3*exp(1)+5/11)/(6/7*exp(2)+1/7) 2100940823835447 r005 Im(z^2+c),c=-9/10+34/181*I,n=25 2100940824704998 a007 Real Root Of -16*x^4-382*x^3-989*x^2-533*x+159 2100940826269935 m001 Chi(1)-Shi(1)^sin(1) 2100940828490347 a007 Real Root Of -913*x^4-646*x^3+520*x^2+472*x+72 2100940830530419 m001 (Ei(1,1)+Gompertz)/(Magata+PlouffeB) 2100940834747952 r005 Re(z^2+c),c=-37/30+8/43*I,n=10 2100940835458853 r002 24th iterates of z^2 + 2100940840178843 a007 Real Root Of 344*x^4+503*x^3-247*x^2+479*x+59 2100940848312369 a001 9349/14930352*4807526976^(6/23) 2100940848332448 a001 9349/832040*75025^(6/23) 2100940868842570 a001 24476/39088169*4807526976^(6/23) 2100940868862132 a001 24476/2178309*75025^(6/23) 2100940871837885 a001 64079/102334155*4807526976^(6/23) 2100940871857372 a001 64079/5702887*75025^(6/23) 2100940872274896 a001 167761/267914296*4807526976^(6/23) 2100940872294372 a001 167761/14930352*75025^(6/23) 2100940872338655 a001 439204/701408733*4807526976^(6/23) 2100940872347957 a001 1149851/1836311903*4807526976^(6/23) 2100940872349315 a001 3010349/4807526976*4807526976^(6/23) 2100940872349513 a001 7881196/12586269025*4807526976^(6/23) 2100940872349542 a001 20633239/32951280099*4807526976^(6/23) 2100940872349546 a001 54018521/86267571272*4807526976^(6/23) 2100940872349546 a001 141422324/225851433717*4807526976^(6/23) 2100940872349546 a001 370248451/591286729879*4807526976^(6/23) 2100940872349547 a001 969323029/1548008755920*4807526976^(6/23) 2100940872349547 a001 2537720636/4052739537881*4807526976^(6/23) 2100940872349547 a001 6643838879/10610209857723*4807526976^(6/23) 2100940872349547 a001 4106118243/6557470319842*4807526976^(6/23) 2100940872349547 a001 1568397607/2504730781961*4807526976^(6/23) 2100940872349547 a001 599074578/956722026041*4807526976^(6/23) 2100940872349547 a001 228826127/365435296162*4807526976^(6/23) 2100940872349547 a001 87403803/139583862445*4807526976^(6/23) 2100940872349548 a001 33385282/53316291173*4807526976^(6/23) 2100940872349559 a001 12752043/20365011074*4807526976^(6/23) 2100940872349635 a001 4870847/7778742049*4807526976^(6/23) 2100940872350153 a001 1860498/2971215073*4807526976^(6/23) 2100940872353707 a001 710647/1134903170*4807526976^(6/23) 2100940872358129 a001 439204/39088169*75025^(6/23) 2100940872367432 a001 1149851/102334155*75025^(6/23) 2100940872368789 a001 3010349/267914296*75025^(6/23) 2100940872368987 a001 39604/3524667*75025^(6/23) 2100940872369016 a001 20633239/1836311903*75025^(6/23) 2100940872369020 a001 54018521/4807526976*75025^(6/23) 2100940872369020 a001 141422324/12586269025*75025^(6/23) 2100940872369021 a001 370248451/32951280099*75025^(6/23) 2100940872369021 a001 969323029/86267571272*75025^(6/23) 2100940872369021 a001 2537720636/225851433717*75025^(6/23) 2100940872369021 a001 6643838879/591286729879*75025^(6/23) 2100940872369021 a001 17393796001/1548008755920*75025^(6/23) 2100940872369021 a001 45537549124/4052739537881*75025^(6/23) 2100940872369021 a001 119218851371/10610209857723*75025^(6/23) 2100940872369021 a001 73681302247/6557470319842*75025^(6/23) 2100940872369021 a001 28143753123/2504730781961*75025^(6/23) 2100940872369021 a001 10749957122/956722026041*75025^(6/23) 2100940872369021 a001 4106118243/365435296162*75025^(6/23) 2100940872369021 a001 1568397607/139583862445*75025^(6/23) 2100940872369021 a001 599074578/53316291173*75025^(6/23) 2100940872369021 a001 228826127/20365011074*75025^(6/23) 2100940872369021 a001 87403803/7778742049*75025^(6/23) 2100940872369022 a001 33385282/2971215073*75025^(6/23) 2100940872369033 a001 12752043/1134903170*75025^(6/23) 2100940872369109 a001 4870847/433494437*75025^(6/23) 2100940872369627 a001 1860498/165580141*75025^(6/23) 2100940872373181 a001 710647/63245986*75025^(6/23) 2100940872378060 a001 271443/433494437*4807526976^(6/23) 2100940872397534 a001 271443/24157817*75025^(6/23) 2100940872433012 m001 (ln(2)*Riemann2ndZero-ZetaQ(3))/ln(2) 2100940872510956 a007 Real Root Of 90*x^4-99*x^3-446*x^2-455*x-77 2100940872544984 a001 103682/165580141*4807526976^(6/23) 2100940872564453 a001 103682/9227465*75025^(6/23) 2100940873689092 a001 39603/63245986*4807526976^(6/23) 2100940873708533 a001 39603/3524578*75025^(6/23) 2100940876535534 r005 Im(z^2+c),c=-31/90+1/28*I,n=6 2100940878192864 m005 (1/2*exp(1)-7/10)/(3/7*3^(1/2)-3/7) 2100940878238301 m008 (2/5*Pi^6-3)/(3/5*Pi^5-2) 2100940879425494 m009 (3*Psi(1,3/4)-1/5)/(3/8*Pi^2-1/6) 2100940880480293 m001 GAMMA(13/24)^Ei(1,1)-PisotVijayaraghavan 2100940881530931 a001 15127/24157817*4807526976^(6/23) 2100940881550174 a001 15127/1346269*75025^(6/23) 2100940884828072 r005 Re(z^2+c),c=-3/23+1/2*I,n=39 2100940886443148 m001 exp(-Pi)-ln(2)/ln(10)*sin(1) 2100940890237063 m005 (1/2*Zeta(3)+1/2)/(4/11*Catalan-6/7) 2100940897344688 m001 1/exp(CareFree)^2/MertensB1^2*sin(Pi/5) 2100940897935901 a007 Real Root Of -663*x^4-255*x^3+895*x^2+867*x-218 2100940898701348 a001 123/1597*377^(52/55) 2100940904250439 a001 233/322*843^(1/2) 2100940907358944 a005 (1/cos(88/233*Pi))^43 2100940908121420 a007 Real Root Of 266*x^4+260*x^3-352*x^2+492*x-184 2100940912629013 b008 21+Zeta[5,Khinchin] 2100940915990728 a007 Real Root Of -103*x^4+203*x^3+610*x^2-156*x+869 2100940935279694 a001 5778/9227465*4807526976^(6/23) 2100940935297584 a001 5778/514229*75025^(6/23) 2100940946131894 l003 log(log(3547)) 2100940946889547 a001 47*(1/2*5^(1/2)+1/2)^16*199^(2/15) 2100940952813189 a007 Real Root Of 47*x^4-756*x^3-110*x^2-696*x+158 2100940954434706 r009 Im(z^3+c),c=-55/126+2/29*I,n=44 2100940955304950 a007 Real Root Of 236*x^4+610*x^3+594*x^2+387*x-750 2100940958740357 a007 Real Root Of 342*x^4+811*x^3+310*x^2+354*x+233 2100940959932830 r002 14th iterates of z^2 + 2100940965787873 r005 Im(z^2+c),c=-61/98+2/25*I,n=4 2100940968000420 b008 1+(2*ExpIntegralEi[2])/9 2100940975000312 p004 log(33289/26981) 2100940981501842 r009 Re(z^3+c),c=-1/26+44/61*I,n=58 2100940981771365 a007 Real Root Of -195*x^4+85*x^3+913*x^2+15*x+589 2100940985865139 m001 (exp(1)+FeigenbaumC)/(Mills+Thue) 2100940990101974 m001 (ln(Pi)+ln(2+3^(1/2)))/(Lehmer-Rabbit) 2100940992040595 r002 37th iterates of z^2 + 2100940996689011 l006 ln(788/6441) 2100941006601614 a001 3/8*196418^(27/52) 2100941009094854 m001 (2^(1/3)+HeathBrownMoroz)/(-Salem+Stephens) 2100941016896726 a007 Real Root Of -304*x^4-476*x^3+92*x^2-402*x+258 2100941025980841 m005 (1/3*exp(1)+2/3)/(3*5^(1/2)+7/9) 2100941046509732 r002 6th iterates of z^2 + 2100941046880550 m003 3/4-Sinh[1/2+Sqrt[5]/2]/4+Tan[1/2+Sqrt[5]/2] 2100941060097909 m001 Conway*Backhouse*exp(Zeta(3))^2 2100941061755031 a007 Real Root Of -364*x^4-408*x^3+405*x^2-303*x+884 2100941067288955 l006 ln(3255/4016) 2100941077348113 r009 Re(z^3+c),c=-15/122+53/58*I,n=14 2100941093281848 a001 89/11*76^(13/59) 2100941115824102 h001 (5/12*exp(2)+1/5)/(1/11*exp(2)+8/9) 2100941131311127 k009 concat of cont frac of 2100941142364797 r002 33th iterates of z^2 + 2100941143318487 r009 Re(z^3+c),c=-27/98+39/64*I,n=6 2100941149207671 m001 1/GAMMA(1/3)/Riemann1stZero*exp(Zeta(5))^2 2100941150285356 m001 1/GAMMA(1/24)*exp(Salem)^2/Zeta(1/2)^2 2100941152689482 m001 (ErdosBorwein+ZetaP(4))/(exp(1/exp(1))-Cahen) 2100941154647871 r005 Re(z^2+c),c=9/32+12/61*I,n=31 2100941159301853 r005 Im(z^2+c),c=-17/18+12/71*I,n=6 2100941166637653 r005 Re(z^2+c),c=-27/22+5/112*I,n=20 2100941168495136 m001 (-arctan(1/3)+GAMMA(5/6))/(5^(1/2)-Si(Pi)) 2100941175479211 m001 ErdosBorwein^(exp(1)*Stephens) 2100941181504367 m001 GAMMA(1/3)^2*Conway*exp(cos(Pi/5)) 2100941188125978 l006 ln(811/6629) 2100941199692264 m001 FeigenbaumD^2*exp(ErdosBorwein)^2*GAMMA(19/24) 2100941217046298 m001 exp(GolombDickman)*Cahen^2*exp(1) 2100941222768963 r005 Im(z^2+c),c=7/58+7/40*I,n=12 2100941231780672 a007 Real Root Of 545*x^4-42*x^3-975*x^2-598*x+168 2100941253104756 a004 Fibonacci(14)*Lucas(13)/(1/2+sqrt(5)/2)^19 2100941258421972 a001 305/161*322^(5/12) 2100941262446192 m001 3^(1/3)*ZetaQ(3)-Riemann2ndZero 2100941273618200 a001 377/843*521^(8/13) 2100941277310019 m005 (1/2*3^(1/2)+1/7)/(5*Catalan+2/9) 2100941298004921 r005 Im(z^2+c),c=-16/29+11/29*I,n=59 2100941298866149 r005 Re(z^2+c),c=-1/8+20/39*I,n=28 2100941298868699 r002 33th iterates of z^2 + 2100941303679192 a001 2207/3524578*4807526976^(6/23) 2100941303687808 a001 2207/196418*75025^(6/23) 2100941308922991 h001 (5/7*exp(2)+4/11)/(1/3*exp(2)+2/9) 2100941313265585 m001 BesselJZeros(0,1)*(cos(1)+1/3) 2100941326422925 a001 144/521*843^(9/14) 2100941330424637 a001 89/322*199^(9/11) 2100941331593524 a003 sin(Pi*15/83)-sin(Pi*32/119) 2100941332357031 a007 Real Root Of 342*x^4+392*x^3-960*x^2-965*x-818 2100941344031399 a003 cos(Pi*8/93)/cos(Pi*31/89) 2100941366127539 r002 58th iterates of z^2 + 2100941369004038 l006 ln(834/6817) 2100941372311311 k009 concat of cont frac of 2100941375009312 a001 46368/47*29^(11/49) 2100941387385810 a007 Real Root Of -999*x^4-384*x^3+371*x^2+548*x-126 2100941387617918 a007 Real Root Of 777*x^4+921*x^3-934*x^2+741*x-918 2100941391255942 m002 -8-Pi+Pi^3+Log[Pi] 2100941392191971 r005 Re(z^2+c),c=23/62+2/13*I,n=56 2100941397551104 r005 Im(z^2+c),c=-5/17+12/37*I,n=12 2100941399726928 r005 Re(z^2+c),c=3/16+4/47*I,n=19 2100941404536498 a001 843/1346269*102334155^(4/21) 2100941404536725 a001 843/9227465*2504730781961^(4/21) 2100941409040825 s001 sum(exp(-Pi/2)^n*A064457[n],n=1..infinity) 2100941409104350 a001 843/196418*4181^(4/21) 2100941410134072 a007 Real Root Of -372*x^4-769*x^3+415*x^2+539*x-583 2100941412355185 r008 a(0)=2,K{-n^6,28+41*n^3-64*n^2-14*n} 2100941413251701 r009 Re(z^3+c),c=-13/38+31/60*I,n=22 2100941414553323 m001 Riemann2ndZero/(Totient^gamma(3)) 2100941414969640 r009 Re(z^3+c),c=-25/106+14/19*I,n=11 2100941429660683 r009 Re(z^3+c),c=-5/46+37/44*I,n=20 2100941453318346 r005 Im(z^2+c),c=-17/70+33/52*I,n=22 2100941455956801 r005 Im(z^2+c),c=-59/122+25/59*I,n=24 2100941457388647 m001 GAMMA(5/24)/exp(GAMMA(2/3))/cos(1) 2100941457616410 m005 (1/2*Pi-3/11)/(5/6*2^(1/2)+5) 2100941458432469 a001 3/4870847*76^(17/60) 2100941463684137 a007 Real Root Of -296*x^4-761*x^3-308*x^2-172*x-292 2100941471610164 r005 Im(z^2+c),c=-15/22+25/73*I,n=62 2100941489227234 r009 Re(z^3+c),c=-17/50+32/63*I,n=21 2100941492947436 a001 8/843*3^(34/47) 2100941496510869 m005 (1/2*2^(1/2)-4)/(101/180+9/20*5^(1/2)) 2100941496658822 a007 Real Root Of -779*x^4+671*x^3-175*x^2+588*x+139 2100941498530602 a001 29/196418*4807526976^(16/19) 2100941499111997 a007 Real Root Of 480*x^4+542*x^3-879*x^2+592*x+798 2100941499417356 a001 521/102334155*89^(6/19) 2100941501877610 a007 Real Root Of -511*x^4-426*x^3+765*x^2-789*x+971 2100941502356681 a007 Real Root Of 906*x^4-855*x^3+72*x^2-191*x-53 2100941505975499 a003 sin(Pi*19/113)-sin(Pi*20/79) 2100941514414073 l006 ln(5569/6871) 2100941514414073 p004 log(6871/5569) 2100941514791142 r009 Re(z^3+c),c=-10/29+25/43*I,n=27 2100941523864150 b008 1/4+6*(Pi^(-1)+Pi) 2100941524976368 m001 GaussAGM*GlaisherKinkelin*ReciprocalLucas 2100941526996136 r005 Im(z^2+c),c=-18/31+23/61*I,n=49 2100941532616001 m001 exp(cos(Pi/12))^2*Porter^2*sqrt(2) 2100941536722957 m006 (3/4*Pi^2+1/2)/(3/4/Pi-4) 2100941540173327 l006 ln(857/7005) 2100941547907300 r009 Re(z^3+c),c=-19/62+23/54*I,n=12 2100941549557614 r008 a(0)=2,K{-n^6,-7+3*n^3+6*n^2-8*n} 2100941560651058 m001 1/GAMMA(1/12)^2/ArtinRank2^2*ln(sin(Pi/12)) 2100941566101301 p003 LerchPhi(1/2,4,627/229) 2100941573967323 a007 Real Root Of -366*x^4+494*x^3-278*x^2+773*x-154 2100941575000439 r009 Re(z^3+c),c=-29/126+9/46*I,n=4 2100941579823227 s002 sum(A001777[n]/((3*n)!),n=1..infinity) 2100941581194364 m003 -19/2+Sqrt[5]/2+4*Cosh[1/2+Sqrt[5]/2] 2100941588069470 m001 sin(1)/exp(GAMMA(1/24))/sin(Pi/12) 2100941588245380 r005 Im(z^2+c),c=-19/40+27/59*I,n=24 2100941613499921 m001 GAMMA(5/12)/ln(GolombDickman)/arctan(1/2)^2 2100941624632903 m008 (5/6*Pi^4-1/3)/(4*Pi^2-1) 2100941634722157 r005 Re(z^2+c),c=3/16+4/47*I,n=18 2100941649271659 p004 log(21391/2617) 2100941667277983 m005 (1/2*2^(1/2)+7/10)/(3/10*Pi-3/11) 2100941667829563 p003 LerchPhi(1/64,2,300/137) 2100941670986363 b008 2+(3*ArcCoth[6])/5 2100941676534385 a007 Real Root Of 757*x^4+464*x^3-515*x^2-381*x+97 2100941679525269 r002 62th iterates of z^2 + 2100941690426990 m003 1/216+Sqrt[5]/16+Tan[1/2+Sqrt[5]/2] 2100941699038228 l006 ln(7883/9726) 2100941702395104 l006 ln(880/7193) 2100941703106361 a001 47/46368*34^(49/57) 2100941710836909 r009 Re(z^3+c),c=-11/32+31/53*I,n=27 2100941713925124 m001 (BesselI(0,2)+MinimumGamma)/(exp(1)+Zeta(1,2)) 2100941724961460 m002 Pi+(5*Pi^6*Tanh[Pi])/E^Pi 2100941742504032 m001 exp(Zeta(7))*Riemann2ndZero^2*log(2+sqrt(3))^2 2100941749864719 a007 Real Root Of -489*x^4-750*x^3+597*x^2+466*x+916 2100941754600904 p004 log(21767/2663) 2100941756377124 b008 (7*EllipticK[-2*Pi])/3 2100941757937256 m005 (1/3*exp(1)+1/7)/(1/8*gamma-4/7) 2100941767439890 m001 GAMMA(2/3)*(CopelandErdos-KomornikLoreti) 2100941776216044 b008 19*Sqrt[Erfc[-1/5]] 2100941779810206 a007 Real Root Of 333*x^4+521*x^3-607*x^2-217*x+567 2100941781114527 m001 (ArtinRank2+FeigenbaumD)/(Catalan+ln(2)) 2100941781460863 r005 Re(z^2+c),c=11/94+19/49*I,n=44 2100941785552561 a001 377/5778*521^(12/13) 2100941786079759 m001 (-Artin+Totient)/(Zeta(5)-gamma) 2100941787512466 r005 Im(z^2+c),c=-115/86+3/58*I,n=48 2100941788160875 m001 FeigenbaumC*ln(Niven)*arctan(1/2)^2 2100941797138596 a007 Real Root Of 306*x^4-37*x^3-912*x^2+628*x-960 2100941800973254 a001 2/32951280099*1836311903^(12/17) 2100941800973254 a001 2/10610209857723*6557470319842^(12/17) 2100941800974375 a001 2/102334155*514229^(12/17) 2100941801414904 m001 (Si(Pi)-ln(gamma))/(-arctan(1/2)+ErdosBorwein) 2100941803581190 g003 abs(GAMMA(-18/5+I*(-37/20))) 2100941808550179 a007 Real Root Of 55*x^4-633*x^3+988*x^2-54*x+551 2100941809579595 r009 Im(z^3+c),c=-31/56+11/29*I,n=32 2100941811847678 a001 521/987*4181^(28/39) 2100941820627121 r005 Im(z^2+c),c=-43/82+17/46*I,n=34 2100941821839658 r005 Im(z^2+c),c=-53/48+1/40*I,n=18 2100941821988068 m001 (Zeta(5)-sin(1/5*Pi))/(ln(2)+exp(1/exp(1))) 2100941832344721 m001 Pi-2^(1/3)*cos(1)*GAMMA(7/12) 2100941840505671 p002 log(1/4*4^(2/3)+1/4*6^(1/4)) 2100941849668003 m001 (Zeta(5)+Weierstrass)/(2^(1/3)-cos(1)) 2100941856353066 l006 ln(903/7381) 2100941871142518 a001 17711/2207*199^(2/11) 2100941877772052 h001 (-7*exp(2)+5)/(-4*exp(4)-4) 2100941882178504 p003 LerchPhi(1/10,6,608/217) 2100941887141344 m001 GAMMA(5/6)^2/KhintchineLevy^2*exp(Zeta(1/2)) 2100941898769716 a007 Real Root Of 37*x^4+751*x^3-587*x^2-669*x+702 2100941907443501 m001 GaussAGM/(StolarskyHarborth^ln(gamma)) 2100941908965321 m005 (1/3*Pi-1/8)/(3/11*Zeta(3)+1/9) 2100941927824258 r005 Im(z^2+c),c=-5/16+18/55*I,n=37 2100941931174944 r002 6th iterates of z^2 + 2100941932177694 r009 Re(z^3+c),c=-15/38+4/7*I,n=18 2100941939483456 a007 Real Root Of -469*x^4-587*x^3+821*x^2-160*x-266 2100941945320002 r005 Im(z^2+c),c=-16/29+2/47*I,n=18 2100941948486815 m001 (gamma(2)+GAMMA(19/24))/(OneNinth-Robbin) 2100941951575521 m001 1/exp(GAMMA(1/24))/(3^(1/3))/Zeta(1/2)^2 2100941953433198 r005 Im(z^2+c),c=-9/7+3/70*I,n=19 2100941955465153 r005 Im(z^2+c),c=-6/11+9/22*I,n=52 2100941965621401 r009 Re(z^3+c),c=-10/29+37/59*I,n=2 2100941972445623 r002 32th iterates of z^2 + 2100941979949374 m001 1/GAMMA(1/6)/Tribonacci^2/exp(arctan(1/2))^2 2100941983506675 m001 ln(2^(1/2)+1)*(GAMMA(19/24)-Riemann3rdZero) 2100941985344093 a001 4/930249*199^(36/49) 2100941987524500 b008 -1+6^ArcSinh[E] 2100941988205314 m001 (Totient+Thue)/(Zeta(5)-gamma(2)) 2100941989310188 m005 (1/2*Zeta(3)+6)/(8/11*Pi+6/7) 2100941991266836 a007 Real Root Of 273*x^4+410*x^3-483*x^2+107*x+840 2100941995356351 a007 Real Root Of 296*x^4+388*x^3-524*x^2-367*x-627 2100941996052530 l006 ln(8525/8706) 2100942002662988 l006 ln(926/7569) 2100942038004264 m001 GAMMA(5/24)*DuboisRaymond^2*ln(log(1+sqrt(2))) 2100942040482379 a007 Real Root Of -784*x^4-795*x^3-863*x^2+451*x+127 2100942059828056 m001 (Riemann2ndZero*Thue-Trott)/Thue 2100942062541388 a003 cos(Pi*7/103)-sin(Pi*27/97) 2100942066857287 s002 sum(A288863[n]/(exp(n)-1),n=1..infinity) 2100942081290145 a007 Real Root Of -366*x^4-621*x^3+113*x^2-408*x+16 2100942081797872 m008 (3/5*Pi^3+5)/(1/6*Pi^4-5) 2100942083270891 a007 Real Root Of 513*x^4+402*x^3+828*x^2-434*x-125 2100942086829030 r009 Re(z^3+c),c=-33/94+27/50*I,n=58 2100942089370882 a001 1/5778*29^(43/58) 2100942089460022 m005 (1/2*2^(1/2)-1/5)/(3/4*exp(1)+3/8) 2100942098240984 a007 Real Root Of -271*x^4-8*x^3+511*x^2-933*x+990 2100942107623886 m001 1/Sierpinski^2*exp(Conway)^2/cos(Pi/12) 2100942112271209 h003 exp(Pi*(2^(2/3)*(23^(1/2)+6^(1/3)))) 2100942114684229 r002 17th iterates of z^2 + 2100942120491433 a007 Real Root Of -431*x^4-865*x^3+125*x^2+120*x+76 2100942123913224 r005 Re(z^2+c),c=7/22+7/31*I,n=51 2100942126514131 q001 1561/743 2100942132213173 a007 Real Root Of 103*x^4+36*x^3-213*x^2+354*x+11 2100942134968829 a007 Real Root Of 444*x^4+994*x^3+451*x^2+667*x-22 2100942140850437 r005 Re(z^2+c),c=-2/19+31/57*I,n=30 2100942141801935 a003 cos(Pi*13/94)/cos(Pi*34/95) 2100942141880943 l006 ln(949/7757) 2100942143364887 l006 ln(2314/2855) 2100942146526335 m001 (Artin+Thue)/(gamma(2)-gamma) 2100942150495069 b008 2+EulerGamma/(3+E) 2100942155841030 m001 1/Zeta(7)*exp(GAMMA(1/3))^2/Zeta(9) 2100942159541256 a007 Real Root Of -526*x^4-916*x^3+610*x^2+257*x-399 2100942167507569 m001 Riemann1stZero/FeigenbaumB^2/ln(GAMMA(1/3))^2 2100942169391309 m001 (2^(1/2)-Chi(1))/(-sin(1)+LambertW(1)) 2100942201285050 r005 Re(z^2+c),c=-5/24+11/36*I,n=9 2100942205768647 a007 Real Root Of -308*x^4-745*x^3-678*x^2-849*x+301 2100942209268215 s002 sum(A267874[n]/((2^n+1)/n),n=1..infinity) 2100942211585948 m001 (KhinchinLevy+MertensB2)/(Chi(1)-Ei(1)) 2100942211585948 m001 (KhinchinLevy+MertensB2)/Shi(1) 2100942213798677 m001 1/exp(Riemann1stZero)*Khintchine*OneNinth 2100942217809646 m001 (3^(1/3)-Catalan)/(-Artin+Champernowne) 2100942226317941 a007 Real Root Of -261*x^4-287*x^3+201*x^2-826*x-199 2100942232482738 m001 KhinchinLevy+QuadraticClass^Rabbit 2100942240474235 a001 3524578/47*7^(9/17) 2100942240686319 a001 2576/321*199^(2/11) 2100942241599034 m001 ZetaQ(4)/(Champernowne+Robbin) 2100942242933121 r005 Im(z^2+c),c=-37/36+11/39*I,n=25 2100942253818718 r002 62th iterates of z^2 + 2100942267862002 m001 FeigenbaumDelta^(gamma*GaussAGM) 2100942274510377 l006 ln(972/7945) 2100942279281319 m005 (1/2*3^(1/2)+4/11)/(-131/22+1/22*5^(1/2)) 2100942286120085 m001 1/KhintchineHarmonic/CareFree^2/ln(gamma) 2100942286313526 r009 Re(z^3+c),c=-13/56+8/39*I,n=5 2100942288797868 a007 Real Root Of -295*x^4-194*x^3+583*x^2-427*x+478 2100942291267639 m009 (1/6*Pi^2+3)/(3/10*Pi^2-3/4) 2100942294602043 a001 121393/15127*199^(2/11) 2100942302468242 a001 105937/13201*199^(2/11) 2100942303615905 a001 416020/51841*199^(2/11) 2100942303783346 a001 726103/90481*199^(2/11) 2100942303807776 a001 5702887/710647*199^(2/11) 2100942303811340 a001 829464/103361*199^(2/11) 2100942303811860 a001 39088169/4870847*199^(2/11) 2100942303811936 a001 34111385/4250681*199^(2/11) 2100942303811947 a001 133957148/16692641*199^(2/11) 2100942303811949 a001 233802911/29134601*199^(2/11) 2100942303811949 a001 1836311903/228826127*199^(2/11) 2100942303811949 a001 267084832/33281921*199^(2/11) 2100942303811949 a001 12586269025/1568397607*199^(2/11) 2100942303811949 a001 10983760033/1368706081*199^(2/11) 2100942303811949 a001 43133785636/5374978561*199^(2/11) 2100942303811949 a001 75283811239/9381251041*199^(2/11) 2100942303811949 a001 591286729879/73681302247*199^(2/11) 2100942303811949 a001 86000486440/10716675201*199^(2/11) 2100942303811949 a001 4052739537881/505019158607*199^(2/11) 2100942303811949 a001 3536736619241/440719107401*199^(2/11) 2100942303811949 a001 3278735159921/408569081798*199^(2/11) 2100942303811949 a001 2504730781961/312119004989*199^(2/11) 2100942303811949 a001 956722026041/119218851371*199^(2/11) 2100942303811949 a001 182717648081/22768774562*199^(2/11) 2100942303811949 a001 139583862445/17393796001*199^(2/11) 2100942303811949 a001 53316291173/6643838879*199^(2/11) 2100942303811949 a001 10182505537/1268860318*199^(2/11) 2100942303811949 a001 7778742049/969323029*199^(2/11) 2100942303811949 a001 2971215073/370248451*199^(2/11) 2100942303811949 a001 567451585/70711162*199^(2/11) 2100942303811950 a001 433494437/54018521*199^(2/11) 2100942303811954 a001 165580141/20633239*199^(2/11) 2100942303811983 a001 31622993/3940598*199^(2/11) 2100942303812181 a001 24157817/3010349*199^(2/11) 2100942303813543 a001 9227465/1149851*199^(2/11) 2100942303822874 a001 1762289/219602*199^(2/11) 2100942303886831 a001 1346269/167761*199^(2/11) 2100942304325199 a001 514229/64079*199^(2/11) 2100942304595100 m001 FeigenbaumB*exp(ArtinRank2)^2*Riemann3rdZero^2 2100942307329820 a001 98209/12238*199^(2/11) 2100942310083348 a001 7/4*(1/2*5^(1/2)+1/2)^22*4^(4/5) 2100942317336277 p004 log(24023/2939) 2100942327923795 a001 75025/9349*199^(2/11) 2100942338282717 a007 Real Root Of 493*x^4+793*x^3-105*x^2+642*x-439 2100942343068275 a007 Real Root Of -142*x^4-133*x^3+104*x^2-71*x+925 2100942354327561 a007 Real Root Of -514*x^4-354*x^3+937*x^2-838*x+835 2100942354974559 m005 (1/2*Pi+7/12)/(1/9*gamma-1/6) 2100942356991667 b008 9*AiryBi[Glaisher]^2 2100942365616424 a007 Real Root Of -653*x^4-664*x^3+981*x^2-998*x+138 2100942368487785 p003 LerchPhi(1/12,3,371/219) 2100942372911592 a007 Real Root Of 311*x^4+953*x^3+726*x^2+358*x+326 2100942385234730 a007 Real Root Of 393*x^4+643*x^3-549*x^2-716*x-775 2100942393039463 m001 Riemann1stZero*(Sierpinski-ln(3)) 2100942401008182 l006 ln(995/8133) 2100942408423026 m001 1/FeigenbaumD/exp(DuboisRaymond)/Zeta(1/2) 2100942411725343 a007 Real Root Of 304*x^4+269*x^3-326*x^2+984*x+78 2100942412980557 a007 Real Root Of 277*x^4-82*x^3-842*x^2+819*x-720 2100942424591100 m001 ln(Pi)^(FeigenbaumDelta*Salem) 2100942443384537 a007 Real Root Of 842*x^4-397*x^3+136*x^2-265*x-67 2100942445481659 m005 (2/3+1/4*5^(1/2))/(1/11*Catalan-2/3) 2100942462826422 a005 (1/cos(43/194*Pi))^81 2100942465427423 a007 Real Root Of 490*x^4+480*x^3-759*x^2+557*x-575 2100942466020526 m005 (1/2*Catalan+3)/(1/5*3^(1/2)-2/11) 2100942467042248 m006 (1/2*exp(Pi)-3/4)/(1/Pi-5/6) 2100942469077013 a001 28657/3571*199^(2/11) 2100942490204500 r005 Re(z^2+c),c=-5/62+37/64*I,n=45 2100942503674594 h001 (11/12*exp(1)+1/9)/(1/10*exp(2)+1/2) 2100942505917636 m001 HardHexagonsEntropy/exp(Bloch)^2/Sierpinski 2100942506925952 a007 Real Root Of 785*x^4-50*x^3+815*x^2-776*x-201 2100942521789961 l006 ln(1018/8321) 2100942525080380 m001 (BesselJ(0,1)+GAMMA(3/4))/(arctan(1/3)+Kac) 2100942528026519 a001 123/5702887*2971215073^(8/19) 2100942528053269 a001 123/121393*317811^(8/19) 2100942528160848 a007 Real Root Of -293*x^4-57*x^3+967*x^2-46*x+815 2100942535725144 q001 691/3289 2100942537768041 r005 Re(z^2+c),c=-1/114+34/57*I,n=41 2100942539572064 p003 LerchPhi(1/512,2,227/104) 2100942547049102 a007 Real Root Of -807*x^4+498*x^3+965*x^2+630*x-178 2100942551473857 a007 Real Root Of 692*x^4+863*x^3-945*x^2+278*x-724 2100942552010229 m001 Pi-2^(1/3)*GAMMA(2/3)-GAMMA(3/4) 2100942563224948 m001 (-GAMMA(2/3)+Thue)/(exp(Pi)+BesselK(0,1)) 2100942567560172 h001 (1/11*exp(1)+2/11)/(5/7*exp(1)+1/10) 2100942568622940 m001 GAMMA(3/4)/gamma(2)/BesselK(1,1) 2100942571590420 r005 Im(z^2+c),c=-11/18+35/89*I,n=50 2100942573036243 a005 (1/sin(66/155*Pi))^951 2100942575117341 r005 Im(z^2+c),c=-4/29+17/62*I,n=7 2100942592396890 m005 (1/2*2^(1/2)-6/11)/(2/5*5^(1/2)-1/8) 2100942594035421 r005 Im(z^2+c),c=-57/52+8/37*I,n=14 2100942595909133 r005 Re(z^2+c),c=-7/10+1/103*I,n=2 2100942602056631 r005 Im(z^2+c),c=-95/106+1/62*I,n=16 2100942607909180 a001 377/2207*521^(10/13) 2100942608614307 a001 377/3571*521^(11/13) 2100942609058106 a007 Real Root Of -370*x^4-743*x^3-459*x^2-679*x+918 2100942611823737 h001 (4/9*exp(1)+1/12)/(7/9*exp(2)+2/5) 2100942611914868 r005 Re(z^2+c),c=3/16+4/47*I,n=20 2100942619806297 a007 Real Root Of -324*x^4-552*x^3+490*x^2+736*x+577 2100942628684199 m001 (3^(1/2)+BesselI(0,1))/(Champernowne+Conway) 2100942629083004 m001 (Khinchin+TwinPrimes)/(arctan(1/2)+GAMMA(5/6)) 2100942637234588 l006 ln(1041/8509) 2100942640905575 r005 Im(z^2+c),c=-4/9+13/36*I,n=59 2100942642064110 r005 Im(z^2+c),c=-5/16+18/55*I,n=40 2100942651865202 r002 62th iterates of z^2 + 2100942654160991 m001 (Paris-QuadraticClass)/(MertensB3-Niven) 2100942661568455 r002 10th iterates of z^2 + 2100942661952645 m005 (1/2*exp(1)+7/9)/(2/9*Zeta(3)+3/4) 2100942673178256 m005 (1/2*exp(1)+2/11)/(2/11*Catalan-9/10) 2100942683336885 m001 1/10*MertensB1/Pi*GAMMA(5/6)*5^(1/2) 2100942705383190 a007 Real Root Of -579*x^4-930*x^3+12*x^2-935*x+639 2100942711404748 p004 log(25903/3169) 2100942712216402 r005 Im(z^2+c),c=-1/10+39/64*I,n=6 2100942713847848 m001 Thue^Totient+GAMMA(17/24) 2100942727038752 l006 ln(6001/7404) 2100942727924288 r005 Im(z^2+c),c=-19/22+12/61*I,n=38 2100942732365068 m001 (ln(3)*3^(1/3)+Sarnak)/ln(3) 2100942737886058 m001 (-CareFree+PisotVijayaraghavan)/(Shi(1)+Ei(1)) 2100942742929483 r001 45i'th iterates of 2*x^2-1 of 2100942747489952 m001 (sin(1/5*Pi)+ln(gamma))/(FeigenbaumC-Trott) 2100942747688175 l006 ln(1064/8697) 2100942760456207 r005 Re(z^2+c),c=8/27+9/43*I,n=40 2100942769038703 m005 (1/2*gamma+6/11)/(-7/12+1/12*5^(1/2)) 2100942774002928 r009 Im(z^3+c),c=-23/110+11/56*I,n=7 2100942776355072 r009 Re(z^3+c),c=-19/62+25/59*I,n=20 2100942781881710 a007 Real Root Of 311*x^4+332*x^3-296*x^2+425*x-781 2100942787776786 m001 BesselI(0,1)^BesselK(1,1)*MasserGramainDelta 2100942802240396 m005 (1/2*exp(1)-6/11)/(5/11*3^(1/2)-2/5) 2100942822723067 r002 45th iterates of z^2 + 2100942823517671 m008 (2/5*Pi^2-3/4)/(1/2*Pi^5-4/5) 2100942829917522 r005 Im(z^2+c),c=-11/98+53/61*I,n=12 2100942830027447 a001 1597/11*76^(29/47) 2100942833654362 a007 Real Root Of 352*x^4-955*x^3-723*x^2-71*x+55 2100942836646025 a007 Real Root Of -484*x^4-656*x^3+412*x^2-999*x-571 2100942839078397 r005 Re(z^2+c),c=4/23+3/58*I,n=16 2100942847699924 m001 1/cos(1)*ln(BesselK(1,1))*sqrt(5) 2100942850444145 a003 cos(Pi*22/97)/cos(Pi*31/81) 2100942853467542 l006 ln(1087/8885) 2100942857511209 m001 (2^(1/3))^2/exp(FeigenbaumD)*BesselJ(1,1)^2 2100942861945399 a007 Real Root Of -374*x^4-506*x^3-58*x^2-944*x+867 2100942867737032 m001 (sin(1)+GAMMA(2/3))/(-Niven+TwinPrimes) 2100942868309164 m001 (Si(Pi)-polylog(4,1/2))/(GolombDickman+Trott) 2100942875341327 r002 4th iterates of z^2 + 2100942875952385 r005 Im(z^2+c),c=-31/66+25/59*I,n=17 2100942877453741 r005 Im(z^2+c),c=-4/9+13/36*I,n=63 2100942879071454 m001 Psi(2,1/3)/(sin(1)+Grothendieck) 2100942881164454 a003 sin(Pi*3/41)*sin(Pi*31/83) 2100942904663024 m001 FeigenbaumKappa-Psi(2,1/3)^RenyiParking 2100942911550562 m005 (23/66+1/6*5^(1/2))/(exp(1)+5/7) 2100942913924001 a007 Real Root Of -853*x^4-717*x^3-769*x^2+995*x+238 2100942921534815 p004 log(27031/3307) 2100942927524331 r002 14th iterates of z^2 + 2100942936358146 a007 Real Root Of 435*x^4+378*x^3-860*x^2+473*x-180 2100942943676985 s001 sum(exp(-Pi/3)^(n-1)*A011288[n],n=1..infinity) 2100942951734871 b008 ArcCsch[27*ArcCosh[3]] 2100942954863249 l006 ln(1110/9073) 2100942955494505 r008 a(0)=2,K{-n^6,5-4*n^3-6*n^2-6*n} 2100942961758019 a007 Real Root Of 244*x^4+177*x^3-612*x^2+546*x+736 2100942978523338 m001 (cos(1)+OrthogonalArrays)/(Psi(1,1/3)-sin(1)) 2100942980508153 m001 (2^(1/3))^FeigenbaumD-exp(1/2) 2100942989067182 a007 Real Root Of 603*x^4-126*x^3-684*x^2-794*x+197 2100942996300501 m006 (1/5/Pi+3/4)/(4*Pi^2-3/4) 2100942999772250 r005 Re(z^2+c),c=1/126+48/55*I,n=3 2100943000712166 r005 Im(z^2+c),c=33/122+3/47*I,n=22 2100943009780529 m001 (Pi+exp(1/Pi))/(Riemann2ndZero+Weierstrass) 2100943014122538 m001 (GAMMA(5/6)+Cahen)/(sin(1)+gamma(3)) 2100943026416043 m005 (1/2*Pi+2/3)/(3*gamma-2/3) 2100943026475144 a001 1364/317811*75025^(16/29) 2100943031999695 a007 Real Root Of -x^4+140*x^3-75*x^2-761*x+50 2100943042930637 m009 (3*Psi(1,1/3)+1/5)/(4/5*Psi(1,2/3)-1) 2100943049866371 m005 (3/4*gamma+2/5)/(1/4*2^(1/2)-3/4) 2100943052142262 l006 ln(1133/9261) 2100943056412726 a003 sin(Pi*5/113)/cos(Pi*57/119) 2100943058624740 s002 sum(A163152[n]/(exp(n)-1),n=1..infinity) 2100943063455012 m001 (Zeta(1/2)-Pi^(1/2))/(Bloch-Kac) 2100943074724947 m001 exp(FeigenbaumDelta)^2/Cahen^2*BesselJ(0,1) 2100943077002177 a007 Real Root Of -426*x^4-457*x^3+509*x^2-843*x+44 2100943080217778 a007 Real Root Of -378*x^4-789*x^3+67*x^2+336*x+458 2100943091526213 a007 Real Root Of -322*x^4-62*x^3+809*x^2-948*x+136 2100943093264601 r009 Im(z^3+c),c=-17/40+5/49*I,n=3 2100943093358595 l006 ln(3687/4549) 2100943096342028 m003 1+(5*Sqrt[5])/64-24*Tanh[1/2+Sqrt[5]/2] 2100943101275578 m001 Robbin^Psi(2,1/3)*LandauRamanujan^Psi(2,1/3) 2100943101657655 m005 (1/2*Pi-6)/(13/12+11/24*5^(1/2)) 2100943111137884 m001 (ReciprocalLucas+StronglyCareFree)/Conway 2100943113790152 r005 Re(z^2+c),c=-11/118+43/52*I,n=9 2100943116474082 r005 Re(z^2+c),c=-3/16+29/35*I,n=16 2100943117967890 m001 GAMMA(7/24)*ln(GAMMA(1/24))^2/Zeta(1/2) 2100943124753889 a007 Real Root Of -678*x^4-772*x^3+891*x^2-897*x+233 2100943128545554 m001 (ln(2+3^(1/2))-MadelungNaCl)/(Rabbit+Totient) 2100943129015605 h001 (2/3*exp(2)+1/2)/(11/12*exp(1)+1/11) 2100943135160058 m001 (ln(3)-GAMMA(17/24))/(ThueMorse+Weierstrass) 2100943145550303 l006 ln(1156/9449) 2100943148439129 r009 Re(z^3+c),c=-41/118+26/49*I,n=51 2100943156591519 m001 ((1+3^(1/2))^(1/2)*GaussAGM+Artin)/GaussAGM 2100943157392668 m001 (Zeta(5)-exp(Pi))/(-GAMMA(5/6)+ZetaP(4)) 2100943169868385 a007 Real Root Of -100*x^4-59*x^3+205*x^2-221*x+32 2100943174489436 m005 (1/2*exp(1)-1/8)/(8/11*Zeta(3)+5) 2100943177201638 g001 abs(GAMMA(113/60+I*143/60)) 2100943180038787 a007 Real Root Of -292*x^4-636*x^3+74*x^2+693*x+137 2100943194629097 m001 GAMMA(17/24)^2*exp(Conway)*sin(Pi/5)^2 2100943196862372 m001 1/Tribonacci*ln(Niven)/sinh(1)^2 2100943203103952 m001 (FeigenbaumMu+MertensB2)/(MertensB3+Thue) 2100943204666952 a007 Real Root Of -812*x^4+947*x^3-746*x^2+189*x+83 2100943210368076 r002 50th iterates of z^2 + 2100943210441403 r002 9th iterates of z^2 + 2100943214981570 a003 -1/2-cos(1/8*Pi)+2*cos(13/27*Pi)-cos(5/24*Pi) 2100943220218892 m008 (1/6*Pi^2-5/6)/(2/5*Pi^4-1/3) 2100943220675304 a007 Real Root Of -578*x^4-726*x^3+449*x^2-840*x+782 2100943223653138 a007 Real Root Of 681*x^4+888*x^3-608*x^2+767*x-738 2100943223700551 m005 (1/2*Pi+7/9)/(7/12*Zeta(3)+5/12) 2100943226071802 m005 (5/6*exp(1)+4/5)/(-7/2+3/2*5^(1/2)) 2100943235313916 l006 ln(1179/9637) 2100943236104188 r005 Re(z^2+c),c=-103/106+5/31*I,n=38 2100943244827672 m001 (ln(3)-GaussAGM)/(Gompertz+TwinPrimes) 2100943245974990 b008 -3/2+Pi*ArcSinh[Sqrt[2]] 2100943252061201 m001 ZetaQ(2)^Robbin*ZetaQ(2)^(5^(1/2)) 2100943252104694 r005 Re(z^2+c),c=3/8+30/53*I,n=4 2100943260496796 a007 Real Root Of 484*x^4-681*x^3-516*x^2-507*x-91 2100943265583074 m001 1/GAMMA(5/12)^2/ln(GAMMA(3/4))*GAMMA(5/24)^2 2100943268230061 a007 Real Root Of -494*x^4-616*x^3+717*x^2+46*x+844 2100943274558349 r005 Im(z^2+c),c=23/118+20/37*I,n=4 2100943280322464 m001 gamma(3)/(Champernowne^Trott) 2100943283833891 r005 Im(z^2+c),c=-7/8+35/212*I,n=21 2100943285231255 r009 Re(z^3+c),c=-7/24+41/60*I,n=64 2100943293235618 p004 log(29287/3583) 2100943294139725 a001 4/13*4807526976^(12/17) 2100943299099716 m001 GAMMA(19/24)^2*exp(FibonacciFactorial)/sqrt(5) 2100943299529044 a007 Real Root Of -161*x^4+202*x^3+797*x^2-625*x+179 2100943303857050 p001 sum((-1)^n/(409*n+331)/n/(64^n),n=1..infinity) 2100943304267588 m001 1/Zeta(5)^2/GAMMA(2/3)^2/exp(log(1+sqrt(2))) 2100943308631842 r005 Im(z^2+c),c=-53/58+10/47*I,n=42 2100943310214961 m001 (CareFree-FellerTornier)/(ln(5)+exp(-1/2*Pi)) 2100943311820084 m001 1/FeigenbaumB^2*exp(CopelandErdos)*GAMMA(1/12) 2100943313795251 m001 (BesselK(1,1)-Conway)/(Ei(1)+exp(1/exp(1))) 2100943316010477 a007 Real Root Of -616*x^4-920*x^3+583*x^2-660*x-490 2100943319277145 a007 Real Root Of -233*x^4-133*x^3+516*x^2-293*x+413 2100943321642309 l006 ln(1202/9825) 2100943321848519 m001 (PrimesInBinary+ZetaQ(2))/(2^(1/3)-Zeta(5)) 2100943323221804 m001 (3^(1/3)-GAMMA(5/6))/(ArtinRank2+Kolakoski) 2100943357208193 m001 ln(FeigenbaumD)/MertensB1*GAMMA(1/6) 2100943369973737 s004 Continued Fraction of A041854 2100943369973737 s004 Continued fraction of A041854 2100943370127265 a007 Real Root Of 89*x^4-760*x^3-535*x^2-645*x+166 2100943371683984 a001 2/377*13^(22/41) 2100943387209314 s004 Continued Fraction of A219820 2100943387209314 s004 Continued fraction of A219820 2100943389414666 r005 Re(z^2+c),c=-25/122+25/34*I,n=4 2100943397007792 a007 Real Root Of -36*x^4+254*x^3-238*x^2+953*x-192 2100943403131199 m001 (exp(Pi)+Zeta(5))/(-BesselI(0,2)+GAMMA(5/6)) 2100943404728975 l006 ln(1225/10013) 2100943406320467 r005 Re(z^2+c),c=-7/50+12/25*I,n=55 2100943413097379 r002 37th iterates of z^2 + 2100943414495141 a007 Real Root Of 636*x^4+896*x^3-998*x^2-49*x+220 2100943416544871 m001 (FellerTornier-Si(Pi))^MadelungNaCl 2100943422217316 l006 ln(8054/8225) 2100943429509689 m001 (GAMMA(23/24)+Porter)/KhinchinLevy 2100943430876133 r009 Im(z^3+c),c=-17/40+5/59*I,n=23 2100943433714495 m001 GAMMA(11/12)^2*CopelandErdos^2/exp(cos(1))^2 2100943436556066 a001 5473/682*199^(2/11) 2100943438174653 a007 Real Root Of 5*x^4+62*x^3-940*x^2-758*x-210 2100943448089905 m005 (1/2*exp(1)-1/11)/(11/12*Catalan-9/10) 2100943451289976 r002 8th iterates of z^2 + 2100943458291763 r005 Re(z^2+c),c=-5/21+9/50*I,n=11 2100943462323494 r005 Im(z^2+c),c=-11/31+21/61*I,n=4 2100943465992495 b008 2+Tanh[Pi]/Pi^2 2100943465992495 m002 -2-Tanh[Pi]/Pi^2 2100943466621731 s002 sum(A268037[n]/(n*exp(pi*n)-1),n=1..infinity) 2100943467350111 r005 Re(z^2+c),c=-11/56+14/41*I,n=25 2100943467895233 m001 exp(GAMMA(1/6))^2/GAMMA(1/4)*GAMMA(11/12)^2 2100943470470441 a007 Real Root Of -243*x^4-707*x^3-724*x^2-255*x+838 2100943473172027 m001 GAMMA(19/24)^2/(3^(1/3))^2*exp(gamma)^2 2100943477107821 m001 (Chi(1)+arctan(1/3))/(-GolombDickman+Salem) 2100943477849407 m005 (1/2*gamma-3)/(3/11*3^(1/2)+9/11) 2100943478302962 m001 Pi-1-BesselI(0,1)+GAMMA(3/4) 2100943479023585 r005 Re(z^2+c),c=-119/118+7/59*I,n=22 2100943483972501 m001 1/Zeta(5)^2/HardHexagonsEntropy/exp(gamma)^2 2100943485619367 r002 16th iterates of z^2 + 2100943489117712 r005 Im(z^2+c),c=-5/16+18/55*I,n=42 2100943491099524 m001 Tribonacci^2*ln(CareFree)*BesselK(0,1)^2 2100943492378457 a001 2/32951280099*6557470319842^(10/17) 2100943492378457 a001 1/133957148*1836311903^(10/17) 2100943492379481 a001 2/2178309*514229^(10/17) 2100943492605116 a007 Real Root Of -325*x^4-257*x^3+803*x^2+106*x+627 2100943494872049 r005 Im(z^2+c),c=-55/114+7/19*I,n=39 2100943498199733 m009 (32/5*Catalan+4/5*Pi^2+1/6)/(2*Psi(1,2/3)+1/2) 2100943499181616 a007 Real Root Of -159*x^4+277*x^3+776*x^2-667*x+840 2100943505517984 h001 (-5*exp(1/3)-5)/(-6*exp(-3)+6) 2100943509407484 r005 Im(z^2+c),c=5/58+35/44*I,n=3 2100943515074734 m001 Lehmer*PlouffeB^HardHexagonsEntropy 2100943517236181 r005 Im(z^2+c),c=-37/40+9/47*I,n=14 2100943527802328 l006 ln(5060/6243) 2100943528443783 a001 34/271443*11^(11/51) 2100943533941116 a007 Real Root Of 577*x^4+988*x^3-163*x^2+585*x-131 2100943541100603 h005 exp(sin(Pi*2/39)-sin(Pi*19/53)) 2100943547265697 a007 Real Root Of -308*x^4-372*x^3+325*x^2-966*x-913 2100943554023824 a007 Real Root Of 44*x^4-392*x^3-612*x^2+972*x+251 2100943556310854 r005 Im(z^2+c),c=19/66+1/25*I,n=43 2100943558286395 m001 Ei(1)-gamma(3)+exp(-1/2*Pi) 2100943560715409 a003 cos(Pi*14/113)-cos(Pi*17/69) 2100943561762243 m001 (-MinimumGamma+Weierstrass)/(Kolakoski-sin(1)) 2100943563746657 r005 Im(z^2+c),c=-5/16+18/55*I,n=45 2100943573135543 a008 Real Root of (-5+5*x-4*x^2-4*x^3+4*x^4+2*x^5) 2100943580672299 r005 Im(z^2+c),c=-5/9-34/89*I,n=62 2100943585941387 m009 (2*Psi(1,1/3)+3/4)/(4*Psi(1,3/4)-1/5) 2100943590058054 a001 3/63245986*956722026041^(7/23) 2100943590058143 a001 1/726103*14930352^(7/23) 2100943591674963 p001 sum((-1)^n/(187*n+25)/n/(2^n),n=0..infinity) 2100943595446236 m005 (1/2*Pi+2/5)/(4/7*Pi-6/7) 2100943595907939 r005 Im(z^2+c),c=-5/16+18/55*I,n=38 2100943596824611 m007 (-3/5*gamma-1/4)/(-2*gamma-6*ln(2)+Pi-2/3) 2100943601006118 r005 Re(z^2+c),c=-65/118+25/54*I,n=22 2100943601345287 a007 Real Root Of 702*x^4+996*x^3-878*x^2-37*x-643 2100943604614868 r009 Re(z^3+c),c=-19/66+5/13*I,n=7 2100943619670363 a007 Real Root Of 45*x^4+928*x^3-381*x^2-309*x+93 2100943621135363 m001 (HardyLittlewoodC5+Trott2nd)/(ln(5)+Bloch) 2100943628460612 m001 GAMMA(5/12)^2*ln(BesselJ(0,1))^2/cosh(1) 2100943636258599 r002 16th iterates of z^2 + 2100943647049546 r005 Re(z^2+c),c=-1/30+28/39*I,n=33 2100943648958948 r005 Re(z^2+c),c=11/42+7/39*I,n=24 2100943650198096 m001 exp(Si(Pi))^2*Artin*Salem^2 2100943661705916 m001 1/ln(BesselK(0,1))^2/Backhouse^2/sqrt(3)^2 2100943667820069 r009 Re(z^3+c),c=-11/50+3/17*I,n=2 2100943681312904 m001 Zeta(1,-1)/Zeta(5)*ln(2+3^(1/2)) 2100943682534181 a001 1/23184*34^(22/49) 2100943683476003 a007 Real Root Of -546*x^4-721*x^3+918*x^2+470*x+887 2100943685093074 m001 (-Champernowne+Lehmer)/(cos(1/5*Pi)-exp(Pi)) 2100943691616823 r005 Im(z^2+c),c=-5/16+18/55*I,n=43 2100943692350683 r005 Re(z^2+c),c=3/16+4/47*I,n=21 2100943692993326 m005 (1/2*gamma-5/7)/(6/7*Pi-2/3) 2100943713316464 r005 Im(z^2+c),c=19/64+1/16*I,n=14 2100943714096251 r005 Im(z^2+c),c=-33/40+8/57*I,n=47 2100943714196494 m001 (3^(1/2)+cos(1/5*Pi))/(-ZetaP(3)+ZetaQ(2)) 2100943714323181 r005 Im(z^2+c),c=-5/16+18/55*I,n=47 2100943717003624 m001 1/ln(Niven)^2*Artin^2/GAMMA(7/12)^2 2100943719321019 r005 Im(z^2+c),c=-5/16+18/55*I,n=50 2100943720246207 g007 Psi(2,3/11)+Psi(2,1/10)+Psi(2,3/4)-Psi(2,5/7) 2100943720373621 a007 Real Root Of 376*x^4+637*x^3-466*x^2-193*x+233 2100943721864111 b008 27*LogGamma[Sinh[1]] 2100943722199694 m001 (Kolakoski-ZetaP(4))/(ln(gamma)+exp(-1/2*Pi)) 2100943723497539 m003 (3*Log[1/2+Sqrt[5]/2])/10+Tan[1/2+Sqrt[5]/2] 2100943727328112 a007 Real Root Of 285*x^4+709*x^3+570*x^2+671*x-84 2100943735327344 r005 Im(z^2+c),c=-5/16+18/55*I,n=48 2100943745380025 r005 Im(z^2+c),c=-5/16+18/55*I,n=55 2100943745784172 r005 Im(z^2+c),c=-5/16+18/55*I,n=52 2100943747150063 r005 Im(z^2+c),c=-5/16+18/55*I,n=53 2100943749712128 r005 Im(z^2+c),c=-5/16+18/55*I,n=60 2100943749856416 r005 Im(z^2+c),c=-5/16+18/55*I,n=58 2100943749983641 r005 Im(z^2+c),c=-5/16+18/55*I,n=57 2100943750425835 r005 Im(z^2+c),c=-5/16+18/55*I,n=63 2100943750505588 r005 Im(z^2+c),c=-5/16+18/55*I,n=62 2100943750753365 r005 Im(z^2+c),c=-5/16+18/55*I,n=64 2100943750994822 r005 Im(z^2+c),c=-5/16+18/55*I,n=61 2100943751643062 r005 Im(z^2+c),c=-5/16+18/55*I,n=59 2100943753356515 r005 Im(z^2+c),c=-5/16+18/55*I,n=56 2100943756709757 r005 Im(z^2+c),c=-5/16+18/55*I,n=54 2100943768512937 r005 Im(z^2+c),c=-5/16+18/55*I,n=51 2100943774077451 a007 Real Root Of -298*x^4-726*x^3-251*x^2+96*x+383 2100943776798751 l006 ln(6433/7937) 2100943778156688 a004 Fibonacci(16)*Lucas(13)/(1/2+sqrt(5)/2)^21 2100943783340172 q001 512/2437 2100943785239253 r005 Im(z^2+c),c=-5/16+18/55*I,n=49 2100943789334364 m008 (4*Pi^2+3/4)/(1/5*Pi^6-4/5) 2100943797210316 a008 Real Root of x^3-370*x-1500 2100943811502842 a007 Real Root Of 103*x^4+228*x^3+458*x^2+951*x+84 2100943813324470 a007 Real Root Of -576*x^4-899*x^3+568*x^2+930*x-211 2100943814438409 a007 Real Root Of 174*x^4-84*x^3-800*x^2-150*x-953 2100943816507742 m001 Pi/GAMMA(5/6)/PisotVijayaraghavan 2100943828671970 a001 843/75025*75025^(6/23) 2100943828726915 a001 843/1346269*4807526976^(6/23) 2100943834682147 r005 Im(z^2+c),c=-99/122+1/5*I,n=22 2100943839321120 m001 ln(ln(3)/FeigenbaumKappa) 2100943850746616 m001 (-OneNinth+Porter)/(KomornikLoreti-Si(Pi)) 2100943858449150 a007 Real Root Of 545*x^4+746*x^3-773*x^2-146*x-595 2100943859715067 m005 (1/3*Pi+1/7)/(1/9*Zeta(3)-7/10) 2100943864726294 r005 Im(z^2+c),c=-5/16+18/55*I,n=46 2100943869623324 r009 Re(z^3+c),c=-53/94+16/55*I,n=20 2100943870455240 r009 Re(z^3+c),c=-1/58+41/54*I,n=8 2100943873308338 a001 161/3278735159921*233^(4/15) 2100943882057992 r009 Re(z^3+c),c=-31/102+8/19*I,n=10 2100943887030843 s002 sum(A138496[n]/(n*2^n+1),n=1..infinity) 2100943899243872 m006 (2*exp(Pi)-1/4)/(3/5/Pi+2) 2100943899896128 a007 Real Root Of -380*x^4-337*x^3+307*x^2-974*x+877 2100943910932426 r005 Im(z^2+c),c=-13/98+5/8*I,n=6 2100943915638336 a001 521/34*121393^(29/47) 2100943918468593 m005 (1/3+1/4*5^(1/2))/(3/7*gamma+4) 2100943930841968 a007 Real Root Of 520*x^4+644*x^3-406*x^2+961*x-348 2100943933731732 m001 (-HeathBrownMoroz+Sarnak)/(5^(1/2)+Zeta(3)) 2100943938203040 l006 ln(7806/9631) 2100943941798677 h001 (2/7*exp(1)+3/8)/(2/3*exp(2)+5/9) 2100943943815494 r005 Im(z^2+c),c=-5/16+18/55*I,n=44 2100943980373168 m005 (1/2*5^(1/2)-5/7)/(5/11*gamma-5/11) 2100943980700651 m007 (-2*gamma+2/5)/(-3*gamma-9*ln(2)+3/2*Pi-1/3) 2100943987266402 m005 (1/2*3^(1/2)+3/7)/(5*2^(1/2)-10/11) 2100943990955581 a001 3571/832040*75025^(16/29) 2100943994237108 a007 Real Root Of 460*x^4+639*x^3-843*x^2-332*x-13 2100943997517299 a007 Real Root Of -743*x^4+812*x^3-576*x^2+931*x+230 2100944004865040 m001 (GaussAGM+Tetranacci)/(BesselJ(0,1)-ln(gamma)) 2100944018298036 s002 sum(A141204[n]/((exp(n)+1)/n),n=1..infinity) 2100944019063062 m001 (gamma(2)-Pi^(1/2))/(Trott-Thue) 2100944032780566 r005 Im(z^2+c),c=-5/16+18/55*I,n=33 2100944035916678 g006 Psi(1,8/9)-Psi(1,5/11)-Psi(1,3/11)-Psi(1,3/4) 2100944036419804 a007 Real Root Of -286*x^4-724*x^3-556*x^2-974*x-734 2100944040177081 m008 (1/6*Pi^6+2/5)/(4/5*Pi^2-1/4) 2100944040485914 l005 ln(sec(611/108)) 2100944055888477 r002 8th iterates of z^2 + 2100944056160817 m001 1/sin(Pi/12)^2*cosh(1)^2/exp(sqrt(2))^2 2100944062184463 m002 E^Pi/3+2/Log[Pi]+Sinh[Pi] 2100944068743667 m001 (Sierpinski+ZetaQ(3))/(BesselJ(1,1)+Kolakoski) 2100944072045106 r005 Im(z^2+c),c=-13/36+12/35*I,n=14 2100944088183778 r002 19th iterates of z^2 + 2100944103448139 r009 Re(z^3+c),c=-6/19+27/59*I,n=12 2100944110102644 r009 Im(z^3+c),c=-37/58+17/27*I,n=5 2100944121617579 m001 (Conway+Sierpinski)/(Tetranacci-ZetaP(4)) 2100944131671380 a001 9349/2178309*75025^(16/29) 2100944146556800 a004 Fibonacci(18)*Lucas(13)/(1/2+sqrt(5)/2)^23 2100944155689694 a007 Real Root Of -216*x^4-578*x^3-496*x^2-313*x+380 2100944156063330 m006 (1/6*ln(Pi)-1/2)/(3/5*exp(Pi)+5/6) 2100944156777674 r005 Im(z^2+c),c=-63/94+2/43*I,n=10 2100944164200640 m009 (8/3*Catalan+1/3*Pi^2+1/2)/(4/5*Psi(1,3/4)-5) 2100944165050500 a007 Real Root Of 109*x^4-70*x^3-382*x^2+601*x+176 2100944168038037 r002 62th iterates of z^2 + 2100944171740160 a001 161/72*832040^(21/25) 2100944173737631 a001 10946/843*199^(1/11) 2100944181588878 r005 Re(z^2+c),c=-21/40+11/20*I,n=18 2100944188878830 m001 (Cahen+MertensB1)/(BesselK(0,1)-gamma(2)) 2100944200038833 r009 Re(z^3+c),c=-13/114+45/53*I,n=48 2100944200305652 a004 Fibonacci(20)*Lucas(13)/(1/2+sqrt(5)/2)^25 2100944203922336 m001 (cos(1/5*Pi)+Ei(1))/(gamma(3)+GAMMA(17/24)) 2100944204476419 r005 Re(z^2+c),c=-5/6+2/129*I,n=44 2100944207081218 r005 Im(z^2+c),c=31/114+23/42*I,n=12 2100944208147504 a004 Fibonacci(22)*Lucas(13)/(1/2+sqrt(5)/2)^27 2100944209291615 a004 Fibonacci(24)*Lucas(13)/(1/2+sqrt(5)/2)^29 2100944209458538 a004 Fibonacci(26)*Lucas(13)/(1/2+sqrt(5)/2)^31 2100944209482892 a004 Fibonacci(28)*Lucas(13)/(1/2+sqrt(5)/2)^33 2100944209486445 a004 Fibonacci(30)*Lucas(13)/(1/2+sqrt(5)/2)^35 2100944209486963 a004 Fibonacci(32)*Lucas(13)/(1/2+sqrt(5)/2)^37 2100944209487039 a004 Fibonacci(34)*Lucas(13)/(1/2+sqrt(5)/2)^39 2100944209487050 a004 Fibonacci(36)*Lucas(13)/(1/2+sqrt(5)/2)^41 2100944209487052 a004 Fibonacci(38)*Lucas(13)/(1/2+sqrt(5)/2)^43 2100944209487052 a004 Fibonacci(40)*Lucas(13)/(1/2+sqrt(5)/2)^45 2100944209487052 a004 Fibonacci(42)*Lucas(13)/(1/2+sqrt(5)/2)^47 2100944209487052 a004 Fibonacci(44)*Lucas(13)/(1/2+sqrt(5)/2)^49 2100944209487052 a004 Fibonacci(46)*Lucas(13)/(1/2+sqrt(5)/2)^51 2100944209487052 a004 Fibonacci(48)*Lucas(13)/(1/2+sqrt(5)/2)^53 2100944209487052 a004 Fibonacci(50)*Lucas(13)/(1/2+sqrt(5)/2)^55 2100944209487052 a004 Fibonacci(52)*Lucas(13)/(1/2+sqrt(5)/2)^57 2100944209487052 a004 Fibonacci(54)*Lucas(13)/(1/2+sqrt(5)/2)^59 2100944209487052 a004 Fibonacci(56)*Lucas(13)/(1/2+sqrt(5)/2)^61 2100944209487052 a004 Fibonacci(58)*Lucas(13)/(1/2+sqrt(5)/2)^63 2100944209487052 a004 Fibonacci(60)*Lucas(13)/(1/2+sqrt(5)/2)^65 2100944209487052 a004 Fibonacci(62)*Lucas(13)/(1/2+sqrt(5)/2)^67 2100944209487052 a004 Fibonacci(64)*Lucas(13)/(1/2+sqrt(5)/2)^69 2100944209487052 a004 Fibonacci(66)*Lucas(13)/(1/2+sqrt(5)/2)^71 2100944209487052 a004 Fibonacci(68)*Lucas(13)/(1/2+sqrt(5)/2)^73 2100944209487052 a004 Fibonacci(70)*Lucas(13)/(1/2+sqrt(5)/2)^75 2100944209487052 a004 Fibonacci(72)*Lucas(13)/(1/2+sqrt(5)/2)^77 2100944209487052 a004 Fibonacci(74)*Lucas(13)/(1/2+sqrt(5)/2)^79 2100944209487052 a004 Fibonacci(76)*Lucas(13)/(1/2+sqrt(5)/2)^81 2100944209487052 a004 Fibonacci(78)*Lucas(13)/(1/2+sqrt(5)/2)^83 2100944209487052 a004 Fibonacci(80)*Lucas(13)/(1/2+sqrt(5)/2)^85 2100944209487052 a004 Fibonacci(82)*Lucas(13)/(1/2+sqrt(5)/2)^87 2100944209487052 a004 Fibonacci(84)*Lucas(13)/(1/2+sqrt(5)/2)^89 2100944209487052 a004 Fibonacci(86)*Lucas(13)/(1/2+sqrt(5)/2)^91 2100944209487052 a004 Fibonacci(88)*Lucas(13)/(1/2+sqrt(5)/2)^93 2100944209487052 a004 Fibonacci(90)*Lucas(13)/(1/2+sqrt(5)/2)^95 2100944209487052 a004 Fibonacci(92)*Lucas(13)/(1/2+sqrt(5)/2)^97 2100944209487052 a004 Fibonacci(94)*Lucas(13)/(1/2+sqrt(5)/2)^99 2100944209487052 a004 Fibonacci(95)*Lucas(13)/(1/2+sqrt(5)/2)^100 2100944209487052 a004 Fibonacci(93)*Lucas(13)/(1/2+sqrt(5)/2)^98 2100944209487052 a004 Fibonacci(91)*Lucas(13)/(1/2+sqrt(5)/2)^96 2100944209487052 a004 Fibonacci(89)*Lucas(13)/(1/2+sqrt(5)/2)^94 2100944209487052 a004 Fibonacci(87)*Lucas(13)/(1/2+sqrt(5)/2)^92 2100944209487052 a004 Fibonacci(85)*Lucas(13)/(1/2+sqrt(5)/2)^90 2100944209487052 a004 Fibonacci(83)*Lucas(13)/(1/2+sqrt(5)/2)^88 2100944209487052 a004 Fibonacci(81)*Lucas(13)/(1/2+sqrt(5)/2)^86 2100944209487052 a004 Fibonacci(79)*Lucas(13)/(1/2+sqrt(5)/2)^84 2100944209487052 a004 Fibonacci(77)*Lucas(13)/(1/2+sqrt(5)/2)^82 2100944209487052 a004 Fibonacci(75)*Lucas(13)/(1/2+sqrt(5)/2)^80 2100944209487052 a004 Fibonacci(73)*Lucas(13)/(1/2+sqrt(5)/2)^78 2100944209487052 a004 Fibonacci(71)*Lucas(13)/(1/2+sqrt(5)/2)^76 2100944209487052 a004 Fibonacci(69)*Lucas(13)/(1/2+sqrt(5)/2)^74 2100944209487052 a004 Fibonacci(67)*Lucas(13)/(1/2+sqrt(5)/2)^72 2100944209487052 a004 Fibonacci(65)*Lucas(13)/(1/2+sqrt(5)/2)^70 2100944209487052 a004 Fibonacci(63)*Lucas(13)/(1/2+sqrt(5)/2)^68 2100944209487052 a004 Fibonacci(61)*Lucas(13)/(1/2+sqrt(5)/2)^66 2100944209487052 a004 Fibonacci(59)*Lucas(13)/(1/2+sqrt(5)/2)^64 2100944209487052 a004 Fibonacci(57)*Lucas(13)/(1/2+sqrt(5)/2)^62 2100944209487052 a004 Fibonacci(55)*Lucas(13)/(1/2+sqrt(5)/2)^60 2100944209487052 a004 Fibonacci(53)*Lucas(13)/(1/2+sqrt(5)/2)^58 2100944209487052 a004 Fibonacci(51)*Lucas(13)/(1/2+sqrt(5)/2)^56 2100944209487052 a004 Fibonacci(49)*Lucas(13)/(1/2+sqrt(5)/2)^54 2100944209487052 a004 Fibonacci(47)*Lucas(13)/(1/2+sqrt(5)/2)^52 2100944209487052 a004 Fibonacci(45)*Lucas(13)/(1/2+sqrt(5)/2)^50 2100944209487052 a004 Fibonacci(43)*Lucas(13)/(1/2+sqrt(5)/2)^48 2100944209487052 a004 Fibonacci(41)*Lucas(13)/(1/2+sqrt(5)/2)^46 2100944209487052 a004 Fibonacci(39)*Lucas(13)/(1/2+sqrt(5)/2)^44 2100944209487053 a004 Fibonacci(37)*Lucas(13)/(1/2+sqrt(5)/2)^42 2100944209487057 a004 Fibonacci(35)*Lucas(13)/(1/2+sqrt(5)/2)^40 2100944209487086 a004 Fibonacci(33)*Lucas(13)/(1/2+sqrt(5)/2)^38 2100944209487284 a004 Fibonacci(31)*Lucas(13)/(1/2+sqrt(5)/2)^36 2100944209488641 a004 Fibonacci(29)*Lucas(13)/(1/2+sqrt(5)/2)^34 2100944209497943 a004 Fibonacci(27)*Lucas(13)/(1/2+sqrt(5)/2)^32 2100944209515566 a001 2/233*(1/2+1/2*5^(1/2))^21 2100944209561702 a004 Fibonacci(25)*Lucas(13)/(1/2+sqrt(5)/2)^30 2100944209998714 a004 Fibonacci(23)*Lucas(13)/(1/2+sqrt(5)/2)^28 2100944212994035 a004 Fibonacci(21)*Lucas(13)/(1/2+sqrt(5)/2)^26 2100944218638527 a001 5778/1346269*75025^(16/29) 2100944219688275 m001 2^(1/3)-Sierpinski-StronglyCareFree 2100944230903928 m001 1/PrimesInBinary*ln(Porter)/TreeGrowth2nd 2100944231018948 m001 ln(FeigenbaumB)/Bloch*cos(1) 2100944233524269 a004 Fibonacci(19)*Lucas(13)/(1/2+sqrt(5)/2)^24 2100944233762215 a007 Real Root Of -450*x^4-874*x^3-159*x^2-190*x+965 2100944245344368 r008 a(0)=2,K{-n^6,72+35*n^3-24*n^2-92*n} 2100944249030521 r005 Re(z^2+c),c=-5/46+27/50*I,n=27 2100944252830719 a007 Real Root Of 121*x^4-195*x^3-947*x^2-359*x-740 2100944254582479 m009 (1/4*Psi(1,3/4)+3)/(2/3*Psi(1,1/3)-5) 2100944255455798 r002 52th iterates of z^2 + 2100944260520434 s002 sum(A153498[n]/(n*2^n-1),n=1..infinity) 2100944265611927 m008 (2/5*Pi^3+5)/(2*Pi+2) 2100944268983527 m001 ln(GAMMA(1/3))/ErdosBorwein/cos(1)^2 2100944271569313 r002 13th iterates of z^2 + 2100944274557714 r005 Re(z^2+c),c=-9/46+11/32*I,n=25 2100944276355004 a007 Real Root Of 502*x^4-259*x^3+808*x^2+262*x+16 2100944278788546 s002 sum(A129918[n]/(n*pi^n-1),n=1..infinity) 2100944280754536 h001 (1/4*exp(1)+2/7)/(1/2*exp(2)+9/10) 2100944281834575 r005 Re(z^2+c),c=3/16+4/47*I,n=22 2100944285355429 r009 Re(z^3+c),c=-1/3+17/35*I,n=16 2100944287993579 m005 (1/3*5^(1/2)+2/5)/(4/7*gamma-7/8) 2100944295408830 r005 Im(z^2+c),c=-13/14+37/174*I,n=29 2100944297068256 r002 56th iterates of z^2 + 2100944297242758 r008 a(0)=0,K{-n^6,7+6*n^3+18*n^2+17*n} 2100944300483094 b008 Sech[Coth[E^(-3/2)]] 2100944301910061 m005 (1/2*5^(1/2)-7/10)/(4/7*3^(1/2)+1) 2100944312334916 a007 Real Root Of -391*x^4-359*x^3+915*x^2+288*x+855 2100944330526952 m005 (1/3*gamma-2/9)/(3/8*2^(1/2)+8/9) 2100944332806057 a001 3/199*47^(5/58) 2100944337242205 a007 Real Root Of -98*x^4+260*x^3+900*x^2+229*x+829 2100944337821760 a007 Real Root Of -88*x^4+19*x^3+815*x^2+819*x+14 2100944338732315 m005 (1/2*2^(1/2)+7/9)/(4/11*gamma-11/12) 2100944340341325 m001 (FibonacciFactorial+Khinchin)/(5^(1/2)-Artin) 2100944341319579 s001 sum(exp(-3*Pi)^(n-1)*A054257[n],n=1..infinity) 2100944343930684 r005 Re(z^2+c),c=9/86+31/49*I,n=7 2100944361902801 a008 Real Root of x^4-x^3+5*x^2+28*x+8 2100944362031571 a007 Real Root Of -219*x^4-87*x^3+791*x^2-273*x-605 2100944364353987 a001 141/2161*521^(12/13) 2100944364730854 a007 Real Root Of -463*x^4-777*x^3-39*x^2-756*x+399 2100944374240591 a004 Fibonacci(17)*Lucas(13)/(1/2+sqrt(5)/2)^22 2100944377406256 a007 Real Root Of 596*x^4+951*x^3-446*x^2+428*x+75 2100944380510995 m008 (2/5*Pi-3/4)/(1/4*Pi^6+4/5) 2100944387804082 a007 Real Root Of -197*x^4-235*x^3+85*x^2-225*x+811 2100944389438084 p001 sum(1/(503*n+486)/(24^n),n=0..infinity) 2100944401925087 m003 -21+Cos[1/2+Sqrt[5]/2]/5 2100944412635134 r005 Re(z^2+c),c=3/16+4/47*I,n=29 2100944413678999 r005 Re(z^2+c),c=3/16+4/47*I,n=30 2100944413887284 m005 (1/2*5^(1/2)-2/7)/(4/5*Zeta(3)+3) 2100944413952673 r005 Re(z^2+c),c=3/16+4/47*I,n=28 2100944414646928 m001 (RenyiParking-StronglyCareFree)/(ln(5)-Otter) 2100944414902410 r005 Re(z^2+c),c=3/16+4/47*I,n=31 2100944415656272 r005 Re(z^2+c),c=3/16+4/47*I,n=32 2100944415922861 r005 Re(z^2+c),c=3/16+4/47*I,n=39 2100944415923530 r005 Re(z^2+c),c=3/16+4/47*I,n=40 2100944415924847 r005 Re(z^2+c),c=3/16+4/47*I,n=41 2100944415925735 r005 Re(z^2+c),c=3/16+4/47*I,n=38 2100944415925779 r005 Re(z^2+c),c=3/16+4/47*I,n=42 2100944415926216 r005 Re(z^2+c),c=3/16+4/47*I,n=43 2100944415926230 r005 Re(z^2+c),c=3/16+4/47*I,n=49 2100944415926230 r005 Re(z^2+c),c=3/16+4/47*I,n=50 2100944415926231 r005 Re(z^2+c),c=3/16+4/47*I,n=51 2100944415926232 r005 Re(z^2+c),c=3/16+4/47*I,n=52 2100944415926233 r005 Re(z^2+c),c=3/16+4/47*I,n=53 2100944415926233 r005 Re(z^2+c),c=3/16+4/47*I,n=60 2100944415926233 r005 Re(z^2+c),c=3/16+4/47*I,n=59 2100944415926233 r005 Re(z^2+c),c=3/16+4/47*I,n=61 2100944415926233 r005 Re(z^2+c),c=3/16+4/47*I,n=62 2100944415926233 r005 Re(z^2+c),c=3/16+4/47*I,n=63 2100944415926233 r005 Re(z^2+c),c=3/16+4/47*I,n=64 2100944415926233 r005 Re(z^2+c),c=3/16+4/47*I,n=58 2100944415926233 r005 Re(z^2+c),c=3/16+4/47*I,n=57 2100944415926233 r005 Re(z^2+c),c=3/16+4/47*I,n=56 2100944415926233 r005 Re(z^2+c),c=3/16+4/47*I,n=54 2100944415926233 r005 Re(z^2+c),c=3/16+4/47*I,n=55 2100944415926235 r005 Re(z^2+c),c=3/16+4/47*I,n=48 2100944415926251 r005 Re(z^2+c),c=3/16+4/47*I,n=47 2100944415926283 r005 Re(z^2+c),c=3/16+4/47*I,n=46 2100944415926326 r005 Re(z^2+c),c=3/16+4/47*I,n=45 2100944415926338 r005 Re(z^2+c),c=3/16+4/47*I,n=44 2100944415937477 r005 Re(z^2+c),c=3/16+4/47*I,n=37 2100944415954061 s002 sum(A022080[n]/(n*2^n-1),n=1..infinity) 2100944415964090 r005 Re(z^2+c),c=3/16+4/47*I,n=36 2100944415968363 r005 Re(z^2+c),c=3/16+4/47*I,n=33 2100944416004525 r005 Re(z^2+c),c=3/16+4/47*I,n=35 2100944416032568 r005 Re(z^2+c),c=3/16+4/47*I,n=34 2100944422139851 r005 Re(z^2+c),c=3/16+4/47*I,n=27 2100944422943140 m001 (Pi*csc(1/12*Pi)/GAMMA(11/12))^Trott2nd-Thue 2100944429591135 r005 Im(z^2+c),c=-3/70+5/19*I,n=3 2100944430479670 r005 Re(z^2+c),c=-5/6+29/198*I,n=6 2100944433857464 r009 Im(z^3+c),c=-39/86+5/56*I,n=3 2100944436038550 a001 817138163596/233*144^(14/17) 2100944443312074 r005 Re(z^2+c),c=3/16+4/47*I,n=26 2100944443358093 s002 sum(A008133[n]/(2^n-1),n=1..infinity) 2100944444579912 a007 Real Root Of 296*x^4+453*x^3+190*x^2+909*x-495 2100944446548308 m001 PisotVijayaraghavan*(CareFree+QuadraticClass) 2100944455552781 a001 1/1515744265389*55^(19/22) 2100944469530974 r005 Im(z^2+c),c=-5/16+18/55*I,n=41 2100944473367361 r002 30th iterates of z^2 + 2100944473975496 a007 Real Root Of 168*x^4+283*x^3+40*x^2+657*x+555 2100944479871037 r005 Re(z^2+c),c=3/16+4/47*I,n=25 2100944493350505 r005 Re(z^2+c),c=3/16+4/47*I,n=23 2100944496595988 a007 Real Root Of -395*x^4-844*x^3+110*x^2+45*x-522 2100944502616493 r005 Re(z^2+c),c=-17/18-37/256*I,n=8 2100944506075537 a007 Real Root Of -461*x^4-907*x^3-149*x^2-667*x-173 2100944509943359 b008 2*EulerGamma+Zeta[1/2,Pi] 2100944514724339 r009 Re(z^3+c),c=-11/106+22/29*I,n=9 2100944516223062 r005 Re(z^2+c),c=3/16+4/47*I,n=24 2100944519586454 m001 (Bloch-Kac)/(GAMMA(5/6)-GAMMA(11/12)) 2100944519923773 a007 Real Root Of -444*x^4-789*x^3+131*x^2-84*x+579 2100944520322799 m001 (Tribonacci-ZetaQ(3))/(ln(gamma)-arctan(1/3)) 2100944532047710 r005 Im(z^2+c),c=-21/94+13/43*I,n=16 2100944535624351 m005 (1/2*Zeta(3)-5/8)/(7/9*Catalan+3/7) 2100944543388540 a007 Real Root Of 300*x^4+564*x^3-390*x^2-602*x-158 2100944548972579 a007 Real Root Of 766*x^4+411*x^3-268*x^2-364*x+83 2100944551379866 r005 Re(z^2+c),c=-11/114+31/55*I,n=12 2100944568126821 m001 (cos(1)+Ei(1,1))/(Otter+TwinPrimes) 2100944578111889 a007 Real Root Of 396*x^4+83*x^3-938*x^2+964*x-780 2100944578246835 m005 (1/2*Pi+1/8)/(2/7*Catalan+6/11) 2100944579794157 a001 15127/144*832040^(3/59) 2100944587037273 a001 2207/514229*75025^(16/29) 2100944587357311 h001 (-5*exp(2)+3)/(-4*exp(6)-2) 2100944587966604 m001 1/exp(MertensB1)/FeigenbaumDelta*GAMMA(5/6)^2 2100944593057193 s002 sum(A169778[n]/((2^n-1)/n),n=1..infinity) 2100944596146043 a007 Real Root Of -469*x^4-961*x^3-183*x^2-213*x+586 2100944597125816 m001 Conway/ln(ErdosBorwein)*LandauRamanujan 2100944599082397 r002 60th iterates of z^2 + 2100944600494819 m002 -E^Pi+Cosh[Pi]/6+Tanh[Pi]/5 2100944601550424 r005 Im(z^2+c),c=-13/62+17/57*I,n=15 2100944620891878 a007 Real Root Of -707*x^4-972*x^3+593*x^2-884*x+286 2100944642192475 m001 (sqrt(2)-(3^(1/3))*GAMMA(7/24))/(3^(1/3)) 2100944646504078 r009 Re(z^3+c),c=-33/94+23/44*I,n=19 2100944648381673 r005 Im(z^2+c),c=-1/22+12/49*I,n=10 2100944649692322 r005 Im(z^2+c),c=-11/16+4/113*I,n=12 2100944658466883 m001 TravellingSalesman*(ErdosBorwein+MertensB3) 2100944658513728 a007 Real Root Of -342*x^4-393*x^3+416*x^2-877*x-660 2100944667489150 a007 Real Root Of 512*x^4+756*x^3-157*x^2+947*x-282 2100944670500171 h001 (-7*exp(3)+4)/(-12*exp(4)+5) 2100944675482221 r005 Re(z^2+c),c=11/62+35/64*I,n=21 2100944681288168 m001 (BesselK(1,1)-Gompertz)/(Zeta(5)+ln(5)) 2100944694420409 a007 Real Root Of 671*x^4+985*x^3-966*x^2-447*x-614 2100944694440286 l006 ln(1373/1694) 2100944703163181 m001 (ln(2)+Zeta(1,-1))/(OneNinth+Riemann3rdZero) 2100944706344438 m001 (3^(1/3)+3)/(exp(gamma)+1/3) 2100944714972569 s002 sum(A008393[n]/(n*exp(pi*n)-1),n=1..infinity) 2100944718357061 r002 4th iterates of z^2 + 2100944720056991 a007 Real Root Of -418*x^4-777*x^3+21*x^2-146*x+539 2100944728529867 r005 Im(z^2+c),c=2/25+7/36*I,n=13 2100944736442570 a007 Real Root Of -992*x^4-189*x^3-785*x^2+215*x+80 2100944739110521 a007 Real Root Of 622*x^4+820*x^3-794*x^2+144*x-707 2100944739800275 r005 Im(z^2+c),c=-1+49/215*I,n=30 2100944740596056 a001 2584/39603*521^(12/13) 2100944744739871 a005 (1/cos(3/230*Pi))^884 2100944763855557 a001 377/1364*521^(9/13) 2100944770673331 r005 Re(z^2+c),c=-15/14+55/98*I,n=4 2100944771744656 b008 -7/18+E^(-1) 2100944780478322 m001 (Conway-PolyaRandomWalk3D)/(Pi+3^(1/3)) 2100944789999025 m005 (1/2*Catalan+1/2)/(3/4*gamma-8/9) 2100944794778054 m002 -2+ProductLog[Pi]-2*Pi^4*ProductLog[Pi] 2100944795489034 a001 6765/103682*521^(12/13) 2100944803497812 a001 17711/271443*521^(12/13) 2100944803580308 q001 845/4022 2100944804666277 a001 6624/101521*521^(12/13) 2100944804836753 a001 121393/1860498*521^(12/13) 2100944804861625 a001 317811/4870847*521^(12/13) 2100944804865254 a001 832040/12752043*521^(12/13) 2100944804865784 a001 311187/4769326*521^(12/13) 2100944804865861 a001 5702887/87403803*521^(12/13) 2100944804865872 a001 14930352/228826127*521^(12/13) 2100944804865874 a001 39088169/599074578*521^(12/13) 2100944804865874 a001 14619165/224056801*521^(12/13) 2100944804865874 a001 267914296/4106118243*521^(12/13) 2100944804865874 a001 701408733/10749957122*521^(12/13) 2100944804865874 a001 1836311903/28143753123*521^(12/13) 2100944804865874 a001 686789568/10525900321*521^(12/13) 2100944804865874 a001 12586269025/192900153618*521^(12/13) 2100944804865874 a001 32951280099/505019158607*521^(12/13) 2100944804865874 a001 86267571272/1322157322203*521^(12/13) 2100944804865874 a001 32264490531/494493258286*521^(12/13) 2100944804865874 a001 1548008755920/23725150497407*521^(12/13) 2100944804865874 a001 139583862445/2139295485799*521^(12/13) 2100944804865874 a001 53316291173/817138163596*521^(12/13) 2100944804865874 a001 20365011074/312119004989*521^(12/13) 2100944804865874 a001 7778742049/119218851371*521^(12/13) 2100944804865874 a001 2971215073/45537549124*521^(12/13) 2100944804865874 a001 1134903170/17393796001*521^(12/13) 2100944804865874 a001 433494437/6643838879*521^(12/13) 2100944804865874 a001 165580141/2537720636*521^(12/13) 2100944804865874 a001 63245986/969323029*521^(12/13) 2100944804865875 a001 24157817/370248451*521^(12/13) 2100944804865879 a001 9227465/141422324*521^(12/13) 2100944804865909 a001 3524578/54018521*521^(12/13) 2100944804866111 a001 1346269/20633239*521^(12/13) 2100944804867497 a001 514229/7881196*521^(12/13) 2100944804876997 a001 196418/3010349*521^(12/13) 2100944804942114 a001 75025/1149851*521^(12/13) 2100944805388428 a001 28657/439204*521^(12/13) 2100944805654829 m001 (OneNinth-ZetaQ(4))/(Zeta(3)-ArtinRank2) 2100944808407068 m001 (-GAMMA(11/12)+ZetaQ(3))/(2^(1/2)-Catalan) 2100944808447508 a001 10946/167761*521^(12/13) 2100944811917827 r005 Im(z^2+c),c=-5/16+18/55*I,n=39 2100944817122404 a007 Real Root Of 627*x^4+840*x^3-637*x^2+609*x-335 2100944824090313 r002 43th iterates of z^2 + 2100944825348573 b008 EulerGamma+Sqrt[2+ArcCot[3]] 2100944829414760 a001 4181/64079*521^(12/13) 2100944837085258 r005 Im(z^2+c),c=-7/24+7/22*I,n=9 2100944858173687 m005 (1/2*2^(1/2)+1/11)/(4/11*3^(1/2)-1/4) 2100944863131821 r005 Re(z^2+c),c=27/62+11/19*I,n=5 2100944868366997 a007 Real Root Of -184*x^4-458*x^3-745*x^2-991*x+544 2100944878709955 a001 18/17711*3^(39/59) 2100944881255078 m001 1/exp(Kolakoski)/Khintchine^2*FeigenbaumC^2 2100944881270647 r005 Re(z^2+c),c=-3/28+25/46*I,n=21 2100944883830253 m001 GAMMA(17/24)^2/Si(Pi)/ln(GAMMA(7/12)) 2100944892543773 a001 7/233*75025^(14/37) 2100944893929016 a001 9349/55*377^(1/28) 2100944893995667 r002 41th iterates of z^2 + 2100944897192083 m001 KhinchinLevy/(Tribonacci^Zeta(1,2)) 2100944918273341 m001 (BesselI(1,1)+RenyiParking)/(Zeta(3)-gamma) 2100944921568265 a001 3/24476*18^(11/59) 2100944929632804 m001 1/Magata/exp(Bloch)^2*Tribonacci 2100944943006000 r005 Re(z^2+c),c=4/23+3/58*I,n=17 2100944944950283 m001 (HardyLittlewoodC5-Thue)/(Conway+GaussAGM) 2100944953955344 r009 Im(z^3+c),c=-8/27+10/59*I,n=15 2100944957865023 a001 29/46368*832040^(4/45) 2100944961755185 a007 Real Root Of 170*x^4-879*x^3-859*x^2-459*x-67 2100944965941051 a007 Real Root Of -334*x^4+355*x^3+21*x^2+890*x+190 2100944966961087 a007 Real Root Of -110*x^4-24*x^3+207*x^2-940*x-968 2100944973126444 a001 1597/24476*521^(12/13) 2100944985068639 m001 (GolombDickman-exp(-1/2*Pi))^exp(gamma) 2100944985807843 r005 Re(z^2+c),c=4/29+21/64*I,n=19 2100944988413671 r002 7th iterates of z^2 + 2100944989427737 a001 329/281*521^(6/13) 2100944992951483 a001 987/9349*521^(11/13) 2100944996945077 m001 (BesselJ(0,1)+FeigenbaumMu)/(Gompertz+Porter) 2100945004055205 m001 OneNinth^ReciprocalLucas-Riemann2ndZero 2100945004447267 r005 Im(z^2+c),c=-43/114+19/52*I,n=12 2100945004613874 r005 Re(z^2+c),c=19/64+9/43*I,n=35 2100945009793788 p001 sum(1/(267*n+11)/n/(2^n),n=1..infinity) 2100945019015421 m001 (FeigenbaumC-Psi(2,1/3))/(-FeigenbaumMu+Thue) 2100945025547741 l006 ln(7583/7744) 2100945026972112 r005 Im(z^2+c),c=-33/62+16/53*I,n=12 2100945034200686 m001 (-Mills+ZetaP(3))/(2^(1/3)+Psi(2,1/3)) 2100945036447009 a007 Real Root Of -119*x^4+553*x^3-171*x^2+762*x+173 2100945039645512 v004 sum(1/(16+6*n^2)/(exp(Pi*n)-1),n=1..infinity) 2100945045218650 m001 Si(Pi)^(BesselJ(0,1)/HardyLittlewoodC3) 2100945045911729 a005 (1/sin(58/197*Pi))^249 2100945049625147 a003 cos(Pi*9/67)-sin(Pi*28/113) 2100945058418288 r005 Re(z^2+c),c=-109/110+12/59*I,n=26 2100945059763285 m001 Zeta(1,-1)*Ei(1)^Artin 2100945060064654 m001 Bloch+(Pi*csc(7/24*Pi)/GAMMA(17/24))^Khinchin 2100945060316914 h001 (2/3*exp(1)+5/9)/(1/5*exp(1)+7/12) 2100945070615575 a007 Real Root Of -242*x^4-583*x^3-211*x^2-434*x-672 2100945073967843 r005 Re(z^2+c),c=-5/26+6/17*I,n=8 2100945079954704 a001 19/2*121393^(4/59) 2100945090192133 a007 Real Root Of -334*x^4-238*x^3+780*x^2-608*x-420 2100945093567362 m005 (1/2*3^(1/2)-8/9)/(1/2*3^(1/2)+2/9) 2100945096718581 r005 Im(z^2+c),c=-4/3+4/39*I,n=4 2100945101001997 m001 (cos(1/12*Pi)+Grothendieck)/(Landau-ThueMorse) 2100945101874259 m001 KomornikLoreti+Ei(1,1)^LandauRamanujan 2100945113746848 r009 Re(z^3+c),c=-8/23+25/47*I,n=44 2100945128589043 m005 (1/2*exp(1)+2/11)/(9/10*Catalan-1/11) 2100945136353451 a007 Real Root Of -352*x^4-810*x^3+17*x^2+441*x+198 2100945136698204 r009 Re(z^3+c),c=-7/23+23/55*I,n=25 2100945143253030 r009 Im(z^3+c),c=-8/27+10/59*I,n=16 2100945145350032 a007 Real Root Of -80*x^4+406*x^3+778*x^2-769*x+274 2100945147768509 a007 Real Root Of -346*x^4-44*x^3+242*x^2+378*x+69 2100945151203201 a007 Real Root Of -387*x^4-696*x^3-337*x^2-972*x+531 2100945152030007 a007 Real Root Of 359*x^4+520*x^3+73*x^2+995*x-404 2100945152700022 m001 MinimumGamma^2*exp(FeigenbaumDelta)/Trott 2100945158004858 a001 2584/521*199^(3/11) 2100945167051392 m005 (1/3*Pi+1/9)/(4/5*Pi+3) 2100945169321099 a007 Real Root Of -415*x^4-533*x^3+623*x^2-18*x+355 2100945183785023 a001 2/102334155*6557470319842^(8/17) 2100945183785111 a001 2/2178309*1836311903^(8/17) 2100945183981208 a001 1/23184*514229^(8/17) 2100945184565999 m001 (GAMMA(3/4)-Psi(1,1/3))/(-exp(1/Pi)+MertensB3) 2100945189201018 r005 Im(z^2+c),c=25/62+11/52*I,n=37 2100945202110531 m005 (1/3*5^(1/2)-1/9)/(11/12*Zeta(3)-4/5) 2100945202188305 h001 (1/10*exp(2)+5/6)/(9/10*exp(2)+5/6) 2100945203065328 m001 (gamma(2)-ErdosBorwein)/(OneNinth+Robbin) 2100945209208206 r002 7th iterates of z^2 + 2100945211828874 a007 Real Root Of 254*x^4-584*x^3-895*x^2-255*x+98 2100945234860844 g004 Re(GAMMA(-3/4+I*137/60)) 2100945242010064 a001 7/4052739537881*365435296162^(11/14) 2100945242010064 a001 7/20365011074*433494437^(11/14) 2100945242011313 a001 1/14619165*514229^(11/14) 2100945247703987 m005 (1/3*2^(1/2)-3/7)/(73/72+11/24*5^(1/2)) 2100945247996207 r005 Im(z^2+c),c=-13/98+14/51*I,n=17 2100945253833354 r005 Im(z^2+c),c=-47/78+1/35*I,n=19 2100945259245384 r009 Im(z^3+c),c=-8/27+10/59*I,n=20 2100945260839742 r009 Im(z^3+c),c=-8/27+10/59*I,n=21 2100945261557991 r009 Im(z^3+c),c=-8/27+10/59*I,n=25 2100945261570800 r009 Im(z^3+c),c=-8/27+10/59*I,n=26 2100945261575101 r009 Im(z^3+c),c=-8/27+10/59*I,n=30 2100945261575200 r009 Im(z^3+c),c=-8/27+10/59*I,n=31 2100945261575220 r009 Im(z^3+c),c=-8/27+10/59*I,n=29 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=35 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=34 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=36 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=40 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=39 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=41 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=44 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=45 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=46 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=49 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=50 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=51 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=54 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=55 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=59 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=60 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=64 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=63 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=61 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=62 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=58 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=56 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=57 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=53 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=52 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=48 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=47 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=43 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=42 2100945261575225 r009 Im(z^3+c),c=-8/27+10/59*I,n=38 2100945261575226 r009 Im(z^3+c),c=-8/27+10/59*I,n=37 2100945261575231 r009 Im(z^3+c),c=-8/27+10/59*I,n=33 2100945261575237 r009 Im(z^3+c),c=-8/27+10/59*I,n=32 2100945261576131 r009 Im(z^3+c),c=-8/27+10/59*I,n=28 2100945261576653 r009 Im(z^3+c),c=-8/27+10/59*I,n=27 2100945261581125 r009 Im(z^3+c),c=-8/27+10/59*I,n=24 2100945261710295 r009 Im(z^3+c),c=-8/27+10/59*I,n=23 2100945261739446 r009 Im(z^3+c),c=-8/27+10/59*I,n=22 2100945263376135 r009 Im(z^3+c),c=-8/27+10/59*I,n=19 2100945265736039 m001 (2^(1/2)-ln(2+3^(1/2)))/(-GAMMA(11/12)+Lehmer) 2100945268776312 a007 Real Root Of 305*x^4+380*x^3-242*x^2+468*x-367 2100945269263256 b008 ArcCsch[19/12+Pi] 2100945275450672 a003 cos(Pi*7/118)/sin(Pi*11/71) 2100945278804079 r009 Im(z^3+c),c=-8/27+10/59*I,n=17 2100945281172071 a007 Real Root Of 718*x^4+790*x^3-933*x^2+937*x-576 2100945281375144 r009 Im(z^3+c),c=-8/27+10/59*I,n=18 2100945284923027 r009 Re(z^3+c),c=-33/98+37/59*I,n=36 2100945287019240 m005 (1/3*2^(1/2)+1/11)/(2/5*2^(1/2)-5/6) 2100945289791213 m001 Ei(1)/exp((2^(1/3)))^2*GAMMA(19/24)^2 2100945307142712 m001 (Psi(1,1/3)-exp(-1/2*Pi))/(-Cahen+Gompertz) 2100945307328660 a001 18/121393*55^(2/23) 2100945308179502 m001 (exp(1/Pi)+Artin)/FeigenbaumB 2100945312062297 a008 Real Root of (1+4*x-5*x^2-6*x^3+3*x^4+x^5) 2100945312351086 a001 233/1568397607*2^(1/2) 2100945320657508 m001 Pi-2^(1/3)*(LambertW(1)+sin(1/12*Pi)) 2100945320819638 a007 Real Root Of -380*x^4-390*x^3+769*x^2-85*x+214 2100945323905471 m001 (Cahen+FeigenbaumB)/(Kac+ZetaP(4)) 2100945334618297 a007 Real Root Of 527*x^4+825*x^3-768*x^2-594*x-475 2100945337373926 a003 sin(Pi*5/58)*sin(Pi*23/80) 2100945338724605 a004 Fibonacci(15)*Lucas(13)/(1/2+sqrt(5)/2)^20 2100945340821562 a001 646/6119*521^(11/13) 2100945350166670 m001 (PlouffeB+Trott)/(2^(1/3)+GAMMA(11/12)) 2100945362923077 g002 Psi(9/11)+gamma+3*ln(2)-1/2*Pi-2*Psi(1/10) 2100945368215251 m001 MertensB1^Otter*Weierstrass^Otter 2100945383332777 r009 Re(z^3+c),c=-37/90+25/42*I,n=56 2100945391575122 a001 6765/64079*521^(11/13) 2100945391863320 a007 Real Root Of -22*x^4-486*x^3-492*x^2+122*x-905 2100945396000303 a007 Real Root Of 204*x^4-123*x^3-872*x^2+339*x-554 2100945398979967 a001 17711/167761*521^(11/13) 2100945400060319 a001 11592/109801*521^(11/13) 2100945400217940 a001 121393/1149851*521^(11/13) 2100945400240937 a001 317811/3010349*521^(11/13) 2100945400244292 a001 208010/1970299*521^(11/13) 2100945400244781 a001 2178309/20633239*521^(11/13) 2100945400244853 a001 5702887/54018521*521^(11/13) 2100945400244863 a001 3732588/35355581*521^(11/13) 2100945400244865 a001 39088169/370248451*521^(11/13) 2100945400244865 a001 102334155/969323029*521^(11/13) 2100945400244865 a001 66978574/634430159*521^(11/13) 2100945400244865 a001 701408733/6643838879*521^(11/13) 2100945400244865 a001 1836311903/17393796001*521^(11/13) 2100945400244865 a001 1201881744/11384387281*521^(11/13) 2100945400244865 a001 12586269025/119218851371*521^(11/13) 2100945400244865 a001 32951280099/312119004989*521^(11/13) 2100945400244865 a001 21566892818/204284540899*521^(11/13) 2100945400244865 a001 225851433717/2139295485799*521^(11/13) 2100945400244865 a001 182717648081/1730726404001*521^(11/13) 2100945400244865 a001 139583862445/1322157322203*521^(11/13) 2100945400244865 a001 53316291173/505019158607*521^(11/13) 2100945400244865 a001 10182505537/96450076809*521^(11/13) 2100945400244865 a001 7778742049/73681302247*521^(11/13) 2100945400244865 a001 2971215073/28143753123*521^(11/13) 2100945400244865 a001 567451585/5374978561*521^(11/13) 2100945400244865 a001 433494437/4106118243*521^(11/13) 2100945400244865 a001 165580141/1568397607*521^(11/13) 2100945400244865 a001 31622993/299537289*521^(11/13) 2100945400244866 a001 24157817/228826127*521^(11/13) 2100945400244870 a001 9227465/87403803*521^(11/13) 2100945400244897 a001 1762289/16692641*521^(11/13) 2100945400245084 a001 1346269/12752043*521^(11/13) 2100945400246366 a001 514229/4870847*521^(11/13) 2100945400255149 a001 98209/930249*521^(11/13) 2100945400315355 a001 75025/710647*521^(11/13) 2100945400728013 a001 28657/271443*521^(11/13) 2100945403556412 a001 5473/51841*521^(11/13) 2100945408274837 r005 Re(z^2+c),c=-3/46+29/54*I,n=9 2100945410988859 m001 Riemann2ndZero^2/exp(RenyiParking)*Zeta(9)^2 2100945417319197 a007 Real Root Of 679*x^4+899*x^3-839*x^2+365*x-422 2100945421277225 a007 Real Root Of 459*x^4-479*x^3+959*x^2-870*x+144 2100945422942547 a001 4181/39603*521^(11/13) 2100945434244393 m001 1/ln(Niven)^2*Cahen/Zeta(5)^2 2100945434386218 a001 377/843*1364^(8/15) 2100945434480358 m002 -2+Pi-Log[Pi]/Pi^3+Tanh[Pi] 2100945438432360 m001 (-CareFree+MinimumGamma)/(Chi(1)-sin(1)) 2100945438699199 a007 Real Root Of -995*x^4+66*x^3+644*x^2+986*x-21 2100945439226228 a007 Real Root Of -363*x^4-985*x^3+129*x^2+985*x-562 2100945442120395 m001 3^(1/2)+BesselI(1,1)^MadelungNaCl 2100945442120395 m001 BesselI(1,1)^MadelungNaCl+sqrt(3) 2100945446756890 a007 Real Root Of 324*x^4+272*x^3-492*x^2+391*x-797 2100945447510350 m001 (Mills+Niven)/(Catalan+polylog(4,1/2)) 2100945463940848 m001 exp(Zeta(1/2))^2/BesselK(1,1)^2/sin(1)^2 2100945468489179 a007 Real Root Of 38*x^4+845*x^3+988*x^2+214*x+919 2100945481902500 r008 a(0)=0,K{-n^6,4-28*n-59*n^2+33*n^3} 2100945484410915 m001 BesselI(0,2)/Salem*Trott 2100945501363003 a001 329/1926*521^(10/13) 2100945503428567 l006 ln(7297/9003) 2100945511633362 m006 (exp(Pi)+2)/(4*Pi-3/5) 2100945514646004 r002 64th iterates of z^2 + 2100945520553104 a001 322/89*21^(26/45) 2100945521508308 m001 arctan(1/3)+GAMMA(11/12)+Sarnak 2100945527321708 r009 Re(z^3+c),c=-17/58+12/31*I,n=9 2100945529526904 m005 (1/3*Pi+1/6)/(1/5*Zeta(3)-9/11) 2100945535306741 r005 Im(z^2+c),c=-17/29+21/50*I,n=30 2100945539075012 m001 (Catalan+ln(3))/(2^(1/3)-ln(2)/ln(10)) 2100945544201867 m005 (1/2*2^(1/2)-1/3)/(7/8*Zeta(3)+8/11) 2100945550058541 m001 Porter^BesselK(1,1)+sin(1) 2100945555817091 a001 1597/15127*521^(11/13) 2100945568590316 r005 Im(z^2+c),c=-9/74+7/26*I,n=7 2100945569077734 a007 Real Root Of -892*x^4+334*x^3-980*x^2+823*x+221 2100945570047630 r005 Im(z^2+c),c=-2/9+13/43*I,n=13 2100945572239749 r009 Im(z^3+c),c=-8/19+4/45*I,n=37 2100945580817233 r005 Im(z^2+c),c=-41/34+13/83*I,n=54 2100945586521835 m005 (1/2*Pi-4/11)/(6*Catalan+1/4) 2100945594669122 r005 Im(z^2+c),c=-17/22+1/70*I,n=7 2100945598445046 a001 4181/322*123^(1/10) 2100945601967573 r005 Im(z^2+c),c=-29/78+12/35*I,n=33 2100945607106376 a007 Real Root Of -598*x^4-703*x^3+555*x^2-940*x+707 2100945612493239 r002 2th iterates of z^2 + 2100945615627463 a001 48/281*322^(5/6) 2100945618293677 a007 Real Root Of -415*x^4-533*x^3+631*x^2-114*x+118 2100945619144502 m001 1/ln(GAMMA(1/24))/(2^(1/3))^2*GAMMA(23/24)^2 2100945620353723 m001 (LaplaceLimit+Porter)/(ln(2^(1/2)+1)-Ei(1)) 2100945620880507 a007 Real Root Of -405*x^4-954*x^3-229*x^2-362*x-706 2100945621473968 a007 Real Root Of 611*x^4+788*x^3+631*x^2-530*x+75 2100945636063888 m001 (3^(1/3)+Cahen)/(Kolakoski-KomornikLoreti) 2100945638167299 m001 (BesselJ(0,1)-exp(1))/(-Artin+Conway) 2100945639301265 h001 (1/7*exp(1)+3/4)/(5/8*exp(2)+4/5) 2100945641840355 m005 (1/2*2^(1/2)-9/10)/(7/9*2^(1/2)-2/11) 2100945654461326 r009 Im(z^3+c),c=-8/27+10/59*I,n=14 2100945658772682 r005 Re(z^2+c),c=-11/122+29/48*I,n=59 2100945664339121 m001 Cahen+PisotVijayaraghavan^Totient 2100945667479802 m001 (KomornikLoreti+Otter)/(BesselI(1,1)-exp(Pi)) 2100945669379289 a005 (1/cos(5/223*Pi))^299 2100945669435340 a007 Real Root Of -232*x^4-691*x^3-705*x^2-891*x-648 2100945681630749 r005 Im(z^2+c),c=-19/70+19/60*I,n=12 2100945687643447 m001 ln(GAMMA(19/24))^2/Bloch/sin(Pi/12) 2100945690927023 l006 ln(5924/7309) 2100945699276777 r005 Re(z^2+c),c=-7/54+27/47*I,n=21 2100945700445997 m001 ln(Rabbit)^2/Kolakoski^2*GAMMA(5/6) 2100945719493890 a001 3571/34*2178309^(25/48) 2100945726069187 a007 Real Root Of -234*x^4-826*x^3-744*x^2-348*x-548 2100945726947817 m005 (1/2*Zeta(3)+5/9)/(7/8*gamma+5) 2100945743003919 r005 Im(z^2+c),c=-10/21+1/28*I,n=23 2100945746913381 m001 ln(TwinPrimes)^2/Magata^2*sqrt(2) 2100945748254798 a007 Real Root Of 438*x^4+503*x^3-771*x^2+286*x+135 2100945748808656 a003 cos(Pi*15/74)/cos(Pi*3/8) 2100945751046337 h005 exp(cos(Pi*2/47)-cos(Pi*21/50)) 2100945751177543 a007 Real Root Of 118*x^4+315*x^3+210*x^2-329*x-996 2100945756045436 m001 (Riemann3rdZero+Stephens)/(BesselJ(0,1)-Cahen) 2100945764725196 m001 (Pi-1)*(arctan(1/2)-exp(1/exp(1))) 2100945767614272 r005 Re(z^2+c),c=-17/82+17/56*I,n=10 2100945769962529 b008 5/2+E^(1/5+E) 2100945770102547 m001 (KhinchinLevy+ZetaQ(3))/(Pi^(1/2)-Psi(2,1/3)) 2100945776146099 a007 Real Root Of 254*x^4+166*x^3-671*x^2+362*x+313 2100945778762933 r005 Re(z^2+c),c=4/23+3/58*I,n=18 2100945780873178 r005 Im(z^2+c),c=-45/94+26/57*I,n=22 2100945782344466 m001 (Psi(2,1/3)-ln(Pi))/(-sin(1/12*Pi)+MertensB1) 2100945784662306 a007 Real Root Of 7*x^4-235*x^3-36*x^2+632*x+874 2100945788243284 a003 cos(Pi*2/31)*cos(Pi*47/109) 2100945791179227 a007 Real Root Of -236*x^4-154*x^3+734*x^2+267*x+491 2100945799722033 p003 LerchPhi(1/16,6,301/232) 2100945807133438 a001 322/5*5^(36/49) 2100945807449211 a007 Real Root Of 56*x^4-360*x^3-806*x^2-41*x-958 2100945810849050 r009 Re(z^3+c),c=-21/64+25/52*I,n=29 2100945815988872 a007 Real Root Of 475*x^4+853*x^3-793*x^2-625*x+843 2100945827703552 r009 Re(z^3+c),c=-4/15+11/16*I,n=24 2100945830326729 a007 Real Root Of 343*x^4+653*x^3-339*x^2-339*x+157 2100945834446967 m001 1/Magata^2*ln(KhintchineHarmonic)*Robbin^2 2100945835509822 a007 Real Root Of 420*x^4+643*x^3+76*x^2+758*x-963 2100945855300807 a007 Real Root Of -546*x^4-571*x^3+744*x^2-561*x+880 2100945860594686 a007 Real Root Of -600*x^4-671*x^3+867*x^2-688*x+195 2100945861105700 r009 Re(z^3+c),c=-25/94+5/16*I,n=8 2100945868401870 a001 11/46368*225851433717^(11/21) 2100945872588977 s002 sum(A036392[n]/((3*n)!),n=1..infinity) 2100945873263113 r009 Re(z^3+c),c=-43/122+31/57*I,n=49 2100945875580226 a007 Real Root Of 537*x^4+985*x^3-284*x^2+183*x+310 2100945895006401 r009 Im(z^3+c),c=-7/18+7/59*I,n=13 2100945898728181 r009 Re(z^3+c),c=-23/66+8/15*I,n=61 2100945901718329 a007 Real Root Of 667*x^4+999*x^3-373*x^2+858*x-282 2100945910076868 a007 Real Root Of -162*x^4-527*x^3-812*x^2-607*x+578 2100945914763506 a007 Real Root Of 240*x^4-956*x^3+752*x^2+230*x+387 2100945916139838 s002 sum(A010942[n]/(n*2^n+1),n=1..infinity) 2100945923512312 a001 2584/15127*521^(10/13) 2100945926448203 r005 Im(z^2+c),c=-27/26+20/91*I,n=26 2100945927946093 r008 a(0)=2,K{-n^6,-8+5*n} 2100945934551245 m001 (arctan(1/3)+PlouffeB)/(BesselJ(0,1)-ln(Pi)) 2100945945604271 a001 3/75025*233^(7/23) 2100945946731815 m001 1/Catalan*CopelandErdos^2*exp(sqrt(Pi))^2 2100945952446927 a007 Real Root Of -931*x^4-189*x^3+284*x^2+538*x-122 2100945954617238 a001 610/843*521^(7/13) 2100945956347792 a001 47*(1/2*5^(1/2)+1/2)^14*521^(4/15) 2100945958140985 a001 610/9349*521^(12/13) 2100945959115700 a001 377/843*3571^(8/17) 2100945979605800 a007 Real Root Of -744*x^4-863*x^3+947*x^2-945*x+327 2100945985008245 p004 log(24677/3019) 2100945985103068 a001 2255/13201*521^(10/13) 2100945987405089 m001 (Conway-KhinchinHarmonic)/(Ei(1)+exp(-1/2*Pi)) 2100945988915896 m001 1/Pi^2*BesselJ(0,1)^2/ln(sin(Pi/5))^2 2100945991559016 l006 ln(4551/5615) 2100945994089038 a001 17711/103682*521^(10/13) 2100945995400073 a001 15456/90481*521^(10/13) 2100945995591351 a001 121393/710647*521^(10/13) 2100945995619258 a001 105937/620166*521^(10/13) 2100945995623329 a001 832040/4870847*521^(10/13) 2100945995623923 a001 726103/4250681*521^(10/13) 2100945995624010 a001 5702887/33385282*521^(10/13) 2100945995624023 a001 4976784/29134601*521^(10/13) 2100945995624024 a001 39088169/228826127*521^(10/13) 2100945995624025 a001 34111385/199691526*521^(10/13) 2100945995624025 a001 267914296/1568397607*521^(10/13) 2100945995624025 a001 233802911/1368706081*521^(10/13) 2100945995624025 a001 1836311903/10749957122*521^(10/13) 2100945995624025 a001 1602508992/9381251041*521^(10/13) 2100945995624025 a001 12586269025/73681302247*521^(10/13) 2100945995624025 a001 10983760033/64300051206*521^(10/13) 2100945995624025 a001 86267571272/505019158607*521^(10/13) 2100945995624025 a001 75283811239/440719107401*521^(10/13) 2100945995624025 a001 2504730781961/14662949395604*521^(10/13) 2100945995624025 a001 139583862445/817138163596*521^(10/13) 2100945995624025 a001 53316291173/312119004989*521^(10/13) 2100945995624025 a001 20365011074/119218851371*521^(10/13) 2100945995624025 a001 7778742049/45537549124*521^(10/13) 2100945995624025 a001 2971215073/17393796001*521^(10/13) 2100945995624025 a001 1134903170/6643838879*521^(10/13) 2100945995624025 a001 433494437/2537720636*521^(10/13) 2100945995624025 a001 165580141/969323029*521^(10/13) 2100945995624025 a001 63245986/370248451*521^(10/13) 2100945995624026 a001 24157817/141422324*521^(10/13) 2100945995624030 a001 9227465/54018521*521^(10/13) 2100945995624063 a001 3524578/20633239*521^(10/13) 2100945995624290 a001 1346269/7881196*521^(10/13) 2100945995625846 a001 514229/3010349*521^(10/13) 2100945995636505 a001 196418/1149851*521^(10/13) 2100945995709567 a001 75025/439204*521^(10/13) 2100945996210338 a001 28657/167761*521^(10/13) 2100945999642673 a001 10946/64079*521^(10/13) 2100946002871926 a007 Real Root Of -244*x^4-283*x^3+423*x^2-291*x-349 2100946012155358 a007 Real Root Of 407*x^4+203*x^3-990*x^2+518*x-589 2100946013189975 r005 Im(z^2+c),c=-61/118+7/20*I,n=22 2100946021649384 m001 (polylog(4,1/2)-ln(1+sqrt(2)))/sqrt(3) 2100946021649384 m001 1/3*(polylog(4,1/2)-ln(2^(1/2)+1))*3^(1/2) 2100946021964681 r005 Re(z^2+c),c=13/102+13/24*I,n=22 2100946022485746 r005 Re(z^2+c),c=4/23+3/58*I,n=28 2100946022526038 r005 Re(z^2+c),c=4/23+3/58*I,n=29 2100946022549190 r005 Re(z^2+c),c=4/23+3/58*I,n=27 2100946022573120 r005 Re(z^2+c),c=4/23+3/58*I,n=30 2100946022604290 r005 Re(z^2+c),c=4/23+3/58*I,n=31 2100946022620673 r005 Re(z^2+c),c=4/23+3/58*I,n=32 2100946022627946 r005 Re(z^2+c),c=4/23+3/58*I,n=33 2100946022630643 r005 Re(z^2+c),c=4/23+3/58*I,n=34 2100946022631157 r005 Re(z^2+c),c=4/23+3/58*I,n=44 2100946022631157 r005 Re(z^2+c),c=4/23+3/58*I,n=43 2100946022631157 r005 Re(z^2+c),c=4/23+3/58*I,n=45 2100946022631157 r005 Re(z^2+c),c=4/23+3/58*I,n=46 2100946022631157 r005 Re(z^2+c),c=4/23+3/58*I,n=47 2100946022631157 r005 Re(z^2+c),c=4/23+3/58*I,n=48 2100946022631157 r005 Re(z^2+c),c=4/23+3/58*I,n=49 2100946022631157 r005 Re(z^2+c),c=4/23+3/58*I,n=50 2100946022631157 r005 Re(z^2+c),c=4/23+3/58*I,n=59 2100946022631157 r005 Re(z^2+c),c=4/23+3/58*I,n=60 2100946022631157 r005 Re(z^2+c),c=4/23+3/58*I,n=61 2100946022631157 r005 Re(z^2+c),c=4/23+3/58*I,n=62 2100946022631157 r005 Re(z^2+c),c=4/23+3/58*I,n=63 2100946022631157 r005 Re(z^2+c),c=4/23+3/58*I,n=58 2100946022631157 r005 Re(z^2+c),c=4/23+3/58*I,n=64 2100946022631157 r005 Re(z^2+c),c=4/23+3/58*I,n=57 2100946022631157 r005 Re(z^2+c),c=4/23+3/58*I,n=56 2100946022631157 r005 Re(z^2+c),c=4/23+3/58*I,n=55 2100946022631157 r005 Re(z^2+c),c=4/23+3/58*I,n=54 2100946022631157 r005 Re(z^2+c),c=4/23+3/58*I,n=53 2100946022631157 r005 Re(z^2+c),c=4/23+3/58*I,n=52 2100946022631157 r005 Re(z^2+c),c=4/23+3/58*I,n=51 2100946022631158 r005 Re(z^2+c),c=4/23+3/58*I,n=42 2100946022631163 r005 Re(z^2+c),c=4/23+3/58*I,n=41 2100946022631176 r005 Re(z^2+c),c=4/23+3/58*I,n=40 2100946022631207 r005 Re(z^2+c),c=4/23+3/58*I,n=39 2100946022631268 r005 Re(z^2+c),c=4/23+3/58*I,n=38 2100946022631366 r005 Re(z^2+c),c=4/23+3/58*I,n=37 2100946022631394 r005 Re(z^2+c),c=4/23+3/58*I,n=35 2100946022631464 r005 Re(z^2+c),c=4/23+3/58*I,n=36 2100946022998387 r005 Re(z^2+c),c=4/23+3/58*I,n=26 2100946023168248 a001 4181/24476*521^(10/13) 2100946024505411 r005 Re(z^2+c),c=4/23+3/58*I,n=25 2100946026525904 a001 377/843*9349^(8/19) 2100946028364528 a007 Real Root Of 234*x^4+217*x^3-923*x^2-519*x+437 2100946028427227 r005 Re(z^2+c),c=4/23+3/58*I,n=24 2100946035310852 a001 377/843*24476^(8/21) 2100946036468877 a001 377/843*64079^(8/23) 2100946036646846 a001 377/843*(1/2+1/2*5^(1/2))^8 2100946036646846 a001 377/843*23725150497407^(1/8) 2100946036646846 a001 377/843*73681302247^(2/13) 2100946036646846 a001 377/843*10749957122^(1/6) 2100946036646846 a001 377/843*4106118243^(4/23) 2100946036646846 a001 377/843*1568397607^(2/11) 2100946036646846 a001 377/843*599074578^(4/21) 2100946036646846 a001 377/843*228826127^(1/5) 2100946036646846 a001 377/843*87403803^(4/19) 2100946036646847 a001 377/843*33385282^(2/9) 2100946036646849 a001 377/843*12752043^(4/17) 2100946036646868 a001 377/843*4870847^(1/4) 2100946036647008 a001 377/843*1860498^(4/15) 2100946036648035 a001 377/843*710647^(2/7) 2100946036655620 a001 377/843*271443^(4/13) 2100946036711992 a001 377/843*103682^(1/3) 2100946037010990 r005 Re(z^2+c),c=4/23+3/58*I,n=23 2100946037133955 a001 377/843*39603^(4/11) 2100946040189255 m001 (Ei(1)+gamma(2))/(CopelandErdos+Robbin) 2100946040319409 a001 377/843*15127^(2/5) 2100946040537674 r005 Im(z^2+c),c=-81/82+5/23*I,n=46 2100946042674412 r005 Re(z^2+c),c=4/23+3/58*I,n=19 2100946045824094 a001 142129/6765 2100946047926119 m001 (Mills+Sierpinski)/(LambertW(1)+GAMMA(17/24)) 2100946048882666 m001 (ln(3)-GAMMA(13/24))/(Niven-ReciprocalLucas) 2100946052807173 r005 Re(z^2+c),c=4/23+3/58*I,n=22 2100946064615871 a001 377/843*5778^(4/9) 2100946075317705 r005 Re(z^2+c),c=4/23+3/58*I,n=21 2100946084741153 h001 (2/9*exp(1)+3/10)/(6/11*exp(2)+3/11) 2100946090295190 r005 Re(z^2+c),c=4/23+3/58*I,n=20 2100946101273721 s002 sum(A094028[n]/(n*2^n-1),n=1..infinity) 2100946103679738 r005 Re(z^2+c),c=-1/52+20/31*I,n=13 2100946106471230 m001 1/Salem^2*exp(Artin)*sqrt(2)^2 2100946110294797 m004 (200*Pi)/3+ProductLog[Sqrt[5]*Pi]^(-1) 2100946129266938 a001 7/514229*610^(11/14) 2100946145137397 r009 Re(z^3+c),c=-31/82+24/41*I,n=56 2100946152127095 a007 Real Root Of 216*x^4+281*x^3+225*x^2+898*x-709 2100946175624487 m001 exp(1/Pi)*(Ei(1,1)-MadelungNaCl) 2100946178127733 r009 Re(z^3+c),c=-19/70+20/61*I,n=15 2100946180891196 a001 1597/843*521^(5/13) 2100946184414943 a001 1597/9349*521^(10/13) 2100946191548975 r005 Im(z^2+c),c=19/56+24/41*I,n=8 2100946198234761 l006 ln(9985/10006) 2100946202717210 m001 1/LaplaceLimit^2*Artin^2/exp(exp(1)) 2100946205273738 m001 GAMMA(11/24)/exp(MertensB1)/sin(1)^2 2100946212707502 m001 (5^(1/2)-sin(1/5*Pi))/(Ei(1,1)+BesselI(1,1)) 2100946217990554 m001 GAMMA(5/6)+FeigenbaumC-Thue 2100946221982600 l006 ln(7729/9536) 2100946223454747 m005 (1/2*2^(1/2)-5/11)/(1/9*exp(1)-2/11) 2100946239223571 m001 1/GAMMA(11/24)/ln(Riemann1stZero)*Zeta(5)^2 2100946252312205 a001 377/843*2207^(1/2) 2100946252508166 r005 Re(z^2+c),c=-11/54+16/49*I,n=8 2100946254845893 a007 Real Root Of -18*x^4-424*x^3-921*x^2+898*x+391 2100946256505329 m004 3*Sqrt[5]*Pi-Log[Sqrt[5]*Pi]/30 2100946267894381 r005 Im(z^2+c),c=-47/118+7/20*I,n=26 2100946284191840 r009 Re(z^3+c),c=-39/122+11/24*I,n=22 2100946287246675 r005 Re(z^2+c),c=-17/98+23/57*I,n=25 2100946288465934 m001 (Pi-Zeta(1/2))/(GAMMA(7/12)+Robbin) 2100946289425557 a007 Real Root Of 686*x^4-328*x^3+344*x^2-421*x-9 2100946298926263 a007 Real Root Of -713*x^4-976*x^3+834*x^2-518*x+71 2100946302088170 m001 LambertW(1)^Si(Pi)/(ln(2+3^(1/2))^Si(Pi)) 2100946302088170 m001 LambertW(1)^Si(Pi)/(ln(2+sqrt(3))^Si(Pi)) 2100946305578003 m001 (sin(1/12*Pi)-MinimumGamma)/(Zeta(5)-ln(5)) 2100946314746572 r009 Re(z^3+c),c=-16/27+11/16*I,n=52 2100946317471729 a007 Real Root Of 466*x^4+664*x^3-727*x^2+85*x+466 2100946323721077 a001 987/2207*521^(8/13) 2100946324426205 a001 987/3571*521^(9/13) 2100946325529223 h001 (4/5*exp(1)+7/8)/(1/3*exp(1)+6/11) 2100946337816365 m006 (1/6*ln(Pi)-5)/(exp(Pi)-1/4) 2100946351943621 m005 (1/2*5^(1/2)-6/11)/(6/7*gamma-2/9) 2100946358858951 r005 Im(z^2+c),c=-23/58+22/63*I,n=47 2100946362681474 a007 Real Root Of -273*x^4-275*x^3+757*x^2+96*x-371 2100946363672478 a007 Real Root Of -105*x^4-115*x^3+49*x^2-733*x-777 2100946372239747 q001 333/1585 2100946375041728 a007 Real Root Of -173*x^4-94*x^3+654*x^2-41*x-474 2100946380029755 r009 Re(z^3+c),c=-41/114+19/33*I,n=41 2100946382624039 r005 Im(z^2+c),c=-97/126+7/58*I,n=9 2100946385432980 r009 Re(z^3+c),c=-11/90+32/33*I,n=18 2100946391059844 a007 Real Root Of -474*x^4-720*x^3+913*x^2+603*x-205 2100946396590015 m006 (4*exp(Pi)-3/5)/(1/5*ln(Pi)-2/3) 2100946407898899 m001 Pi-exp(Pi)+gamma(1)+Zeta(1,2) 2100946414449084 m001 FeigenbaumAlpha^(PlouffeB/sin(1/5*Pi)) 2100946417505338 a007 Real Root Of 603*x^4+968*x^3-506*x^2-197*x-952 2100946419732977 m001 (Rabbit-Trott)/(ln(2)-GAMMA(23/24)) 2100946422103459 m005 (1/2*Catalan-2/7)/(6*2^(1/2)-2/7) 2100946422208960 m005 (1/2*Pi-1/2)/(8/11*3^(1/2)-3/4) 2100946424792633 r002 5th iterates of z^2 + 2100946426310169 m001 exp(1)*(BesselK(1,1)-exp(1/Pi)) 2100946437210649 r009 Im(z^3+c),c=-43/110+17/28*I,n=8 2100946441335855 r005 Re(z^2+c),c=7/58+11/28*I,n=55 2100946446980932 m001 Bloch/ln(5)/HardHexagonsEntropy 2100946459499812 r005 Im(z^2+c),c=-73/74+4/17*I,n=10 2100946463173337 a007 Real Root Of 724*x^4-653*x^3+544*x^2-864*x-213 2100946463599569 m001 ErdosBorwein*TreeGrowth2nd-FransenRobinson 2100946466530801 a007 Real Root Of -682*x^4-949*x^3+840*x^2-121*x+525 2100946466552739 a001 305/2889*521^(11/13) 2100946475445818 a007 Real Root Of -15*x^4-328*x^3-249*x^2+452*x+165 2100946475490862 r005 Re(z^2+c),c=-7/52+28/57*I,n=25 2100946478573848 m006 (5/6/Pi-3/4)/(1/5*Pi^2+1/3) 2100946484366564 m005 (13/42+1/6*5^(1/2))/(1/11*exp(1)+3) 2100946488383854 m001 (Psi(2,1/3)*Riemann2ndZero+ln(2))/Psi(2,1/3) 2100946495023857 a007 Real Root Of 172*x^4+106*x^3-491*x^2-368*x-974 2100946506760414 a007 Real Root Of -30*x^4+614*x^3-676*x^2-848*x-344 2100946508411893 m001 (-2^(1/2)+1/3)/(ln(Pi)+4) 2100946515782683 a007 Real Root Of -138*x^4-22*x^3+212*x^2-633*x+219 2100946524836939 s002 sum(A126567[n]/(n*exp(n)+1),n=1..infinity) 2100946530940000 m001 UniversalParabolic/(Riemann2ndZero-Psi(1,1/3)) 2100946538661059 r005 Im(z^2+c),c=-125/118+5/19*I,n=34 2100946546789599 a007 Real Root Of -319*x^4-48*x^3+830*x^2-747*x+537 2100946548586526 a001 2584/843*521^(4/13) 2100946549337233 m005 (-17/40+3/8*5^(1/2))/(exp(1)-3/4) 2100946549761228 m001 FeigenbaumD*Paris^2/exp((2^(1/3)))^2 2100946551956703 l006 ln(3178/3921) 2100946552110274 a001 2584/9349*521^(9/13) 2100946557924830 m004 3+5*Pi+(125*Pi*Log[Sqrt[5]*Pi])/4 2100946559549319 a007 Real Root Of -19*x^4-363*x^3+758*x^2-45*x-10 2100946583425450 r005 Re(z^2+c),c=-2/17+19/34*I,n=18 2100946584349174 r009 Re(z^3+c),c=-3/25+50/57*I,n=4 2100946585328929 a001 6765/24476*521^(9/13) 2100946590175466 a001 17711/64079*521^(9/13) 2100946590882566 a001 46368/167761*521^(9/13) 2100946590985730 a001 121393/439204*521^(9/13) 2100946591000782 a001 317811/1149851*521^(9/13) 2100946591002978 a001 832040/3010349*521^(9/13) 2100946591003298 a001 2178309/7881196*521^(9/13) 2100946591003345 a001 5702887/20633239*521^(9/13) 2100946591003352 a001 14930352/54018521*521^(9/13) 2100946591003353 a001 39088169/141422324*521^(9/13) 2100946591003353 a001 102334155/370248451*521^(9/13) 2100946591003353 a001 267914296/969323029*521^(9/13) 2100946591003353 a001 701408733/2537720636*521^(9/13) 2100946591003353 a001 1836311903/6643838879*521^(9/13) 2100946591003353 a001 4807526976/17393796001*521^(9/13) 2100946591003353 a001 12586269025/45537549124*521^(9/13) 2100946591003353 a001 32951280099/119218851371*521^(9/13) 2100946591003353 a001 86267571272/312119004989*521^(9/13) 2100946591003353 a001 1548008755920/5600748293801*521^(9/13) 2100946591003353 a001 139583862445/505019158607*521^(9/13) 2100946591003353 a001 53316291173/192900153618*521^(9/13) 2100946591003353 a001 20365011074/73681302247*521^(9/13) 2100946591003353 a001 7778742049/28143753123*521^(9/13) 2100946591003353 a001 2971215073/10749957122*521^(9/13) 2100946591003353 a001 1134903170/4106118243*521^(9/13) 2100946591003353 a001 433494437/1568397607*521^(9/13) 2100946591003353 a001 165580141/599074578*521^(9/13) 2100946591003353 a001 63245986/228826127*521^(9/13) 2100946591003353 a001 24157817/87403803*521^(9/13) 2100946591003356 a001 9227465/33385282*521^(9/13) 2100946591003374 a001 3524578/12752043*521^(9/13) 2100946591003496 a001 1346269/4870847*521^(9/13) 2100946591004335 a001 514229/1860498*521^(9/13) 2100946591010084 a001 196418/710647*521^(9/13) 2100946591049490 a001 75025/271443*521^(9/13) 2100946591319578 a001 28657/103682*521^(9/13) 2100946593170790 a001 10946/39603*521^(9/13) 2100946605508990 r009 Re(z^3+c),c=-37/122+17/42*I,n=8 2100946605859187 a001 4181/15127*521^(9/13) 2100946605960866 m005 (1/2*3^(1/2)+5/11)/(1/11*Pi+6) 2100946606969886 r005 Im(z^2+c),c=-3/98+33/41*I,n=42 2100946632707866 m001 ln(GAMMA(2/3))*(3^(1/3))^2*gamma^2 2100946635240602 r009 Re(z^3+c),c=-19/58+25/52*I,n=20 2100946640683996 a001 47/843*(1/2*5^(1/2)+1/2)^24*843^(8/15) 2100946641197855 m001 (Grothendieck-ZetaQ(2))/(gamma(2)+FeigenbaumB) 2100946646754023 h001 (3/4*exp(2)+3/8)/(8/9*exp(1)+2/5) 2100946648450665 m005 (1/3*Pi-2/7)/(11/12*gamma-1/6) 2100946651005168 m001 GAMMA(5/12)/Conway^2*exp(sin(Pi/12))^2 2100946654486628 r005 Re(z^2+c),c=-29/70+14/25*I,n=34 2100946669902646 a007 Real Root Of 771*x^4-865*x^3+707*x^2-839*x-217 2100946673919843 b008 21*JacobiNC[1,11] 2100946683645620 r005 Re(z^2+c),c=-17/98+15/37*I,n=4 2100946691152152 a007 Real Root Of -982*x^4+267*x^3+179*x^2+670*x+14 2100946691301061 m001 (ln(2^(1/2)+1)+GaussAGM)^exp(1/Pi) 2100946691873117 s002 sum(A111215[n]/((exp(n)-1)/n),n=1..infinity) 2100946692826752 a001 1597/5778*521^(9/13) 2100946695793677 a001 28657/2207*199^(1/11) 2100946704223533 a007 Real Root Of -253*x^4-530*x^3+294*x^2+985*x+786 2100946710014215 m001 1/Niven*ln(Lehmer)/Zeta(1/2) 2100946712151421 r005 Re(z^2+c),c=-31/122+1/56*I,n=10 2100946712911395 a003 sin(Pi*7/101)*sin(Pi*37/87) 2100946722320179 a007 Real Root Of -256*x^4-423*x^3-95*x^2-657*x+104 2100946724579792 m005 (1/2*Catalan+5/6)/(1/9*exp(1)-11/12) 2100946741616766 m001 (Otter+Stephens)/(Ei(1,1)+MinimumGamma) 2100946749199565 r005 Re(z^2+c),c=-17/25+13/43*I,n=11 2100946752315632 a007 Real Root Of 827*x^4-570*x^3+989*x^2-302*x-114 2100946758950805 m001 (HeathBrownMoroz+Landau)/(Pi+ln(gamma)) 2100946767853967 r009 Im(z^3+c),c=-8/27+10/59*I,n=12 2100946779803108 a007 Real Root Of -30*x^4+519*x^3-975*x^2+170*x-282 2100946785022422 m005 (1/2*3^(1/2)+1/9)/(1/9*Pi-5) 2100946801763625 m001 (Riemann1stZero-TwinPrimes)/(gamma(3)-Cahen) 2100946801795557 a007 Real Root Of 357*x^4-898*x^3-83*x^2-955*x-206 2100946824122558 m001 FeigenbaumD^Landau*MinimumGamma^Landau 2100946826209341 m001 TwinPrimes^2*ErdosBorwein^2/exp(Pi)^2 2100946828228338 m001 ln(Pi)+HardyLittlewoodC3^Paris 2100946829404664 m006 (1/3/Pi+3/5)/(3*Pi^2+4) 2100946829852247 m001 Porter^2*ln(HardHexagonsEntropy)^2*Zeta(1,2)^2 2100946838038100 a007 Real Root Of 500*x^4+777*x^3-838*x^2-157*x+833 2100946841242767 l006 ln(7112/7263) 2100946845843591 m001 (FeigenbaumAlpha+FeigenbaumC)/(OneNinth+Paris) 2100946848666416 m001 (ln(5)+GAMMA(19/24))/PisotVijayaraghavan 2100946852828125 m001 (Psi(2,1/3)+Zeta(1,-1))/(Pi^(1/2)+Thue) 2100946854693216 r005 Re(z^2+c),c=-5/23+16/53*I,n=6 2100946856059912 m001 (Sarnak+Weierstrass)/(Bloch+Paris) 2100946857086727 m001 (exp(1)+CareFree)/(GaussAGM+Kolakoski) 2100946859044815 r005 Im(z^2+c),c=-2/3+59/174*I,n=63 2100946860433209 m001 gamma+(2^(1/3))^MasserGramainDelta 2100946863112328 r008 a(0)=0,K{-n^6,46+6*n^3-28*n^2-72*n} 2100946864463720 l006 ln(8161/10069) 2100946864463720 p004 log(10069/8161) 2100946865733085 s001 sum(exp(-3*Pi)^(n-1)*A079417[n],n=1..infinity) 2100946865845722 m001 1/Catalan/exp(LaplaceLimit)*GAMMA(11/24)^2 2100946868372063 a001 843*144^(11/17) 2100946869474177 r005 Im(z^2+c),c=-9/28+16/53*I,n=6 2100946870069737 a005 (1/cos(51/223*Pi))^254 2100946871162207 r009 Re(z^3+c),c=-41/110+13/22*I,n=36 2100946875197110 a001 2/317811*6557470319842^(6/17) 2100946876532499 a001 2/17711*1836311903^(6/17) 2100946884501638 m001 gamma(1)^polylog(4,1/2)+Riemann2ndZero 2100946884828333 m001 GlaisherKinkelin^(Khinchin/Ei(1,1)) 2100946884925561 a008 Real Root of x^4-x^3-15*x^2+56 2100946888340232 a007 Real Root Of -26*x^4-543*x^3+41*x^2-565*x+136 2100946900686864 a007 Real Root Of -414*x^4-487*x^3+543*x^2-575*x-55 2100946906755000 b008 1/3+ArcCsch[ProductLog[1/2]] 2100946912099703 m001 (-GlaisherKinkelin+Rabbit)/(Cahen-Catalan) 2100946912767263 m005 (1/3*Pi+1/11)/(7/11*Catalan-6) 2100946914147135 a007 Real Root Of -369*x^4+514*x^3+387*x^2+896*x-19 2100946920785957 p003 LerchPhi(1/8,6,443/158) 2100946923113981 r002 37th iterates of z^2 + 2100946923665334 a007 Real Root Of 830*x^4-26*x^3+595*x^2-836*x+148 2100946925891735 m001 gamma(1)^FeigenbaumKappa+Riemann2ndZero 2100946933275590 m001 BesselI(0,1)-gamma(1)-GAMMA(5/6) 2100946938423422 m005 (1/2*Zeta(3)+5/6)/(1/10*gamma+5/8) 2100946944153444 m005 (1/2*3^(1/2)+7/12)/(9/11*3^(1/2)-8/11) 2100946971357198 a001 119218851371/610*144^(16/17) 2100946973822997 m005 (1/2*gamma-2/9)/(8/11*Pi+7/8) 2100946981578208 m001 (Psi(2,1/3)+BesselI(1,2))/(-Magata+Thue) 2100946991367492 r005 Im(z^2+c),c=-17/18-52/255*I,n=54 2100946992911604 m001 (ln(gamma)-Zeta(1,-1))/(GAMMA(17/24)+Landau) 2100946994023751 a007 Real Root Of 121*x^4+49*x^3-946*x^2-907*x+367 2100947000001817 r005 Re(z^2+c),c=3/16+4/47*I,n=17 2100947020343238 a007 Real Root Of -756*x^4-50*x^3+475*x^2+709*x+129 2100947033262046 a001 144/7*15127^(47/49) 2100947039376593 r009 Im(z^3+c),c=-11/74+8/39*I,n=2 2100947042849583 h001 (1/7*exp(1)+3/11)/(9/10*exp(1)+7/10) 2100947045626049 m001 (BesselK(0,1)+GAMMA(3/4))/(-Kolakoski+Trott) 2100947050833867 a007 Real Root Of -412*x^4-533*x^3+306*x^2-749*x+160 2100947060522172 a001 1292/2889*521^(8/13) 2100947063757202 a001 75025/5778*199^(1/11) 2100947063770819 l006 ln(4983/6148) 2100947066126035 b008 E^3+3*Tanh[Pi^(-1)] 2100947069528414 r005 Im(z^2+c),c=-5/8+67/162*I,n=62 2100947078479336 r005 Im(z^2+c),c=-67/110+13/35*I,n=37 2100947082913590 a007 Real Root Of 247*x^4+533*x^3+196*x^2+631*x+591 2100947088569717 a007 Real Root Of 278*x^4+98*x^3-676*x^2+819*x+197 2100947112079838 a001 843/196418*75025^(16/29) 2100947112795202 m001 (Landau-ZetaQ(3))/(GAMMA(23/24)-FeigenbaumMu) 2100947117442368 a001 196418/15127*199^(1/11) 2100947125274928 a001 514229/39603*199^(1/11) 2100947126417683 a001 1346269/103682*199^(1/11) 2100947126584409 a001 3524578/271443*199^(1/11) 2100947126608734 a001 9227465/710647*199^(1/11) 2100947126612283 a001 24157817/1860498*199^(1/11) 2100947126612801 a001 63245986/4870847*199^(1/11) 2100947126612876 a001 165580141/12752043*199^(1/11) 2100947126612887 a001 433494437/33385282*199^(1/11) 2100947126612889 a001 1134903170/87403803*199^(1/11) 2100947126612889 a001 2971215073/228826127*199^(1/11) 2100947126612889 a001 7778742049/599074578*199^(1/11) 2100947126612889 a001 20365011074/1568397607*199^(1/11) 2100947126612889 a001 53316291173/4106118243*199^(1/11) 2100947126612889 a001 139583862445/10749957122*199^(1/11) 2100947126612889 a001 365435296162/28143753123*199^(1/11) 2100947126612889 a001 956722026041/73681302247*199^(1/11) 2100947126612889 a001 2504730781961/192900153618*199^(1/11) 2100947126612889 a001 10610209857723/817138163596*199^(1/11) 2100947126612889 a001 4052739537881/312119004989*199^(1/11) 2100947126612889 a001 1548008755920/119218851371*199^(1/11) 2100947126612889 a001 591286729879/45537549124*199^(1/11) 2100947126612889 a001 7787980473/599786069*199^(1/11) 2100947126612889 a001 86267571272/6643838879*199^(1/11) 2100947126612889 a001 32951280099/2537720636*199^(1/11) 2100947126612889 a001 12586269025/969323029*199^(1/11) 2100947126612889 a001 4807526976/370248451*199^(1/11) 2100947126612889 a001 1836311903/141422324*199^(1/11) 2100947126612890 a001 701408733/54018521*199^(1/11) 2100947126612894 a001 9238424/711491*199^(1/11) 2100947126612923 a001 102334155/7881196*199^(1/11) 2100947126613121 a001 39088169/3010349*199^(1/11) 2100947126614476 a001 14930352/1149851*199^(1/11) 2100947126623768 a001 5702887/439204*199^(1/11) 2100947126687451 a001 2178309/167761*199^(1/11) 2100947127123945 a001 832040/64079*199^(1/11) 2100947127717436 r009 Im(z^3+c),c=-33/74+3/61*I,n=46 2100947130115717 a001 10959/844*199^(1/11) 2100947140429573 m001 (5^(1/2)-LambertW(1))/(-Backhouse+Robbin) 2100947149013495 a007 Real Root Of 232*x^4+91*x^3-771*x^2+565*x+914 2100947150621626 a001 121393/9349*199^(1/11) 2100947153837402 m001 BesselK(1,1)^2/LandauRamanujan^2*ln(Zeta(3))^2 2100947168020024 a001 6765/15127*521^(8/13) 2100947173842014 m005 (3/4*Catalan+4)/(2/5*gamma+2) 2100947183703750 a001 17711/39603*521^(8/13) 2100947185991975 a001 23184/51841*521^(8/13) 2100947186325822 a001 121393/271443*521^(8/13) 2100947186374530 a001 317811/710647*521^(8/13) 2100947186381636 a001 416020/930249*521^(8/13) 2100947186382673 a001 2178309/4870847*521^(8/13) 2100947186382824 a001 5702887/12752043*521^(8/13) 2100947186382846 a001 7465176/16692641*521^(8/13) 2100947186382850 a001 39088169/87403803*521^(8/13) 2100947186382850 a001 102334155/228826127*521^(8/13) 2100947186382850 a001 133957148/299537289*521^(8/13) 2100947186382850 a001 701408733/1568397607*521^(8/13) 2100947186382850 a001 1836311903/4106118243*521^(8/13) 2100947186382850 a001 2403763488/5374978561*521^(8/13) 2100947186382850 a001 12586269025/28143753123*521^(8/13) 2100947186382850 a001 32951280099/73681302247*521^(8/13) 2100947186382850 a001 43133785636/96450076809*521^(8/13) 2100947186382850 a001 225851433717/505019158607*521^(8/13) 2100947186382850 a001 591286729879/1322157322203*521^(8/13) 2100947186382850 a001 10610209857723/23725150497407*521^(8/13) 2100947186382850 a001 139583862445/312119004989*521^(8/13) 2100947186382850 a001 53316291173/119218851371*521^(8/13) 2100947186382850 a001 10182505537/22768774562*521^(8/13) 2100947186382850 a001 7778742049/17393796001*521^(8/13) 2100947186382850 a001 2971215073/6643838879*521^(8/13) 2100947186382850 a001 567451585/1268860318*521^(8/13) 2100947186382850 a001 433494437/969323029*521^(8/13) 2100947186382850 a001 165580141/370248451*521^(8/13) 2100947186382850 a001 31622993/70711162*521^(8/13) 2100947186382852 a001 24157817/54018521*521^(8/13) 2100947186382860 a001 9227465/20633239*521^(8/13) 2100947186382918 a001 1762289/3940598*521^(8/13) 2100947186383314 a001 1346269/3010349*521^(8/13) 2100947186386028 a001 514229/1149851*521^(8/13) 2100947186404633 a001 98209/219602*521^(8/13) 2100947186532151 a001 75025/167761*521^(8/13) 2100947187372460 a007 Real Root Of -398*x^4-622*x^3+270*x^2-4*x+786 2100947187406175 a001 28657/64079*521^(8/13) 2100947193396826 a001 5473/12238*521^(8/13) 2100947195337804 r002 6th iterates of z^2 + 2100947201910822 m001 GAMMA(1/12)^2*ln(CopelandErdos)^2/GAMMA(1/4)^2 2100947216348003 a007 Real Root Of 36*x^4-342*x^3+310*x^2+444*x+169 2100947222926641 a003 sin(Pi*5/106)/cos(Pi*32/67) 2100947226931628 m001 (FeigenbaumKappa+Kac)/(ln(2+3^(1/2))-Artin) 2100947230933604 a001 4181/843*521^(3/13) 2100947234457353 a001 4181/9349*521^(8/13) 2100947259136197 m001 Conway-Zeta(1,-1)-FeigenbaumMu 2100947263170282 r005 Re(z^2+c),c=-1/25+49/59*I,n=6 2100947273510268 r005 Re(z^2+c),c=17/74+29/55*I,n=13 2100947274623590 a007 Real Root Of -481*x^4-804*x^3-174*x^2-986*x+612 2100947282984387 m005 (2/5*Pi-2)/(4/5*gamma-4) 2100947284214187 m001 exp(CareFree)/MertensB1^2/KhintchineLevy^2 2100947288486580 a007 Real Root Of 631*x^4+966*x^3-274*x^2+676*x-706 2100947288911190 a001 610/2207*521^(9/13) 2100947289616318 a001 610/3571*521^(10/13) 2100947291171232 a001 46368/3571*199^(1/11) 2100947292848479 m001 (FeigenbaumB-Mills)/(ln(2^(1/2)+1)+exp(1/Pi)) 2100947303391502 l006 ln(6788/8375) 2100947306524510 a001 2/987*514229^(6/17) 2100947315370022 r005 Im(z^2+c),c=-17/14+5/201*I,n=42 2100947334219518 m001 ErdosBorwein^Sarnak/(Stephens^Sarnak) 2100947350279354 a007 Real Root Of 222*x^4+265*x^3-282*x^2-59*x-747 2100947352248796 m002 Pi^2+Pi^4-Cosh[Pi]+Pi^2*Cosh[Pi] 2100947355134033 m005 (1/3*gamma-2/5)/(1/5*exp(1)+4/9) 2100947364789018 a007 Real Root Of -551*x^4-611*x^3+989*x^2-522*x-393 2100947366096122 r005 Im(z^2+c),c=2/25+7/36*I,n=14 2100947374884278 m001 exp(GaussKuzminWirsing)*Artin*PrimesInBinary 2100947380699946 g007 Psi(2,3/10)+Psi(2,1/10)+Psi(2,2/5)-Psi(2,7/11) 2100947386438494 a007 Real Root Of -449*x^4+296*x^3+504*x^2+880*x-209 2100947386809873 r005 Re(z^2+c),c=33/122+3/16*I,n=34 2100947394373803 m001 1/Khintchine*Conway/ln((2^(1/3))) 2100947410597662 r005 Re(z^2+c),c=-7/48+13/28*I,n=20 2100947412424532 r009 Re(z^3+c),c=-3/82+31/50*I,n=31 2100947413224892 m001 BesselJ(1,1)/(Riemann2ndZero-ZetaP(4)) 2100947417484463 r005 Im(z^2+c),c=-17/18+20/99*I,n=33 2100947437445852 h001 (5/8*exp(1)+3/5)/(2/11*exp(1)+3/5) 2100947438556566 a001 46/311187*3^(8/25) 2100947439525829 r005 Im(z^2+c),c=-39/82+35/62*I,n=47 2100947444201351 m005 (4/5*Catalan+1/5)/(2/3*Catalan-1/6) 2100947446528479 m001 ln(TwinPrimes)^2*Riemann1stZero^2/GAMMA(13/24) 2100947459293852 a007 Real Root Of 972*x^4+896*x^3+645*x^2-371*x-100 2100947459442590 r005 Im(z^2+c),c=-49/94+17/42*I,n=40 2100947460857974 a007 Real Root Of 662*x^4+860*x^3-613*x^2+821*x-492 2100947465594730 a007 Real Root Of -481*x^4-210*x^3+755*x^2+412*x-117 2100947465625223 r005 Re(z^2+c),c=-22/27+4/53*I,n=30 2100947493603589 r005 Re(z^2+c),c=-5/106+34/57*I,n=46 2100947493672926 a001 7/10946*53316291173^(8/19) 2100947502761036 m005 (1/3*5^(1/2)+1/10)/(1/6*2^(1/2)+1/6) 2100947513815107 s001 sum(exp(-Pi/3)^n*A121143[n],n=1..infinity) 2100947515185292 a001 1597/2207*521^(7/13) 2100947515890420 a001 1597/3571*521^(8/13) 2100947521788263 a007 Real Root Of -383*x^4+755*x^3+228*x^2+487*x+100 2100947521865889 r005 Re(z^2+c),c=-11/14+6/7*I,n=3 2100947528261004 r002 11th iterates of z^2 + 2100947539010668 r005 Re(z^2+c),c=-31/118+21/44*I,n=6 2100947549350722 m001 3^(1/2)/(GolombDickman^HardyLittlewoodC5) 2100947552177127 r005 Re(z^2+c),c=-30/31+26/57*I,n=4 2100947558163113 m001 exp(1/exp(1))/((1/2)^cos(1)) 2100947570824873 b008 2+(1/10+Sqrt[2])/15 2100947575440639 r005 Im(z^2+c),c=-5/6+10/67*I,n=31 2100947587042568 r005 Re(z^2+c),c=-5/29+22/57*I,n=7 2100947587720601 m001 (2^(1/3))^CopelandErdos-BesselI(0,1) 2100947588095507 r005 Im(z^2+c),c=-73/126+1/24*I,n=24 2100947599239399 s002 sum(A198739[n]/(n*exp(n)-1),n=1..infinity) 2100947599445095 m001 (-MadelungNaCl+Stephens)/(Cahen-Psi(2,1/3)) 2100947604402648 r005 Re(z^2+c),c=7/58+11/28*I,n=52 2100947623347179 r005 Im(z^2+c),c=-2/3+8/203*I,n=61 2100947623372279 m005 (1/3*exp(1)-1/6)/(9/10*gamma+3) 2100947633409256 a005 (1/cos(8/181*Pi))^791 2100947640411972 m001 (Chi(1)+DuboisRaymond)/(-Landau+MertensB2) 2100947652431114 a007 Real Root Of -413*x^4-743*x^3+119*x^2-704*x-848 2100947661492238 r005 Re(z^2+c),c=-2/13+9/20*I,n=26 2100947668010458 h005 exp(sin(Pi*7/38)/cos(Pi*13/55)) 2100947668252001 r005 Im(z^2+c),c=-27/58+1/27*I,n=14 2100947671682539 m005 (1/2*Pi+1/2)/(10/11*2^(1/2)-3/10) 2100947679909651 a007 Real Root Of 565*x^4+898*x^3-826*x^2-808*x-732 2100947682595396 r009 Im(z^3+c),c=-4/9+3/46*I,n=4 2100947685574892 r005 Im(z^2+c),c=-37/98+11/32*I,n=20 2100947692183587 m005 (1/2*exp(1)+3/8)/(4/5*gamma+4/11) 2100947698388149 m008 (3/5*Pi^3+2/3)/(3*Pi^5-5/6) 2100947701418579 p003 LerchPhi(1/6,4,50/107) 2100947701999470 s002 sum(A212526[n]/(2^n-1),n=1..infinity) 2100947702031747 m001 (Catalan-ln(2)/ln(10))/(ln(Pi)+Grothendieck) 2100947703501538 r005 Re(z^2+c),c=1/44+21/32*I,n=7 2100947704885660 m005 (1/2*5^(1/2)-5/6)/(5/7*Pi-8/9) 2100947707851329 a001 4/701408733*55^(9/10) 2100947711499423 m005 (1/2*5^(1/2)-8/11)/(7/12*5^(1/2)+5/9) 2100947716270334 a007 Real Root Of -236*x^4+575*x^3+442*x^2+398*x-108 2100947717032348 r008 a(0)=0,K{-n^6,-35+12*n^3-21*n^2+92*n} 2100947720570412 r008 a(0)=2,K{-n^6,76-88*n^3-29*n^2+31*n} 2100947720799552 h001 (-5*exp(3)+6)/(-5*exp(2)-8) 2100947726009118 a001 377/843*843^(4/7) 2100947729468665 r005 Re(z^2+c),c=15/44+6/25*I,n=63 2100947731884943 a007 Real Root Of 633*x^4+983*x^3-682*x^2+165*x+140 2100947733846992 a007 Real Root Of -347*x^4-654*x^3+84*x^2+307*x+970 2100947737165262 h001 (-6*exp(3)-4)/(-4*exp(5)+1) 2100947742869416 a001 4181/5778*521^(7/13) 2100947744746648 r009 Re(z^3+c),c=-1/122+22/27*I,n=58 2100947744941476 a007 Real Root Of -637*x^4-951*x^3+641*x^2-439*x-160 2100947746900799 l006 ln(23/188) 2100947753028750 a007 Real Root Of -179*x^4-10*x^3+891*x^2-217*x-994 2100947754276236 r005 Im(z^2+c),c=11/106+11/60*I,n=15 2100947761699585 m005 (1/2*2^(1/2)+1/9)/(1/7*exp(1)-7/9) 2100947764102263 m005 (1/2*Pi+2/3)/(3/7*exp(1)-1/10) 2100947771671035 a007 Real Root Of 421*x^4+559*x^3-149*x^2+682*x-928 2100947773981368 a007 Real Root Of 427*x^4+447*x^3-532*x^2+979*x+231 2100947776088089 a001 10946/15127*521^(7/13) 2100947778089937 h001 (1/7*exp(1)+1/6)/(5/7*exp(1)+7/10) 2100947779443089 m001 (GaussKuzminWirsing+GlaisherKinkelin)^ln(5) 2100947780934628 a001 28657/39603*521^(7/13) 2100947781641729 a001 75025/103682*521^(7/13) 2100947781744893 a001 196418/271443*521^(7/13) 2100947781759945 a001 514229/710647*521^(7/13) 2100947781762141 a001 1346269/1860498*521^(7/13) 2100947781762461 a001 3524578/4870847*521^(7/13) 2100947781762508 a001 9227465/12752043*521^(7/13) 2100947781762515 a001 24157817/33385282*521^(7/13) 2100947781762516 a001 63245986/87403803*521^(7/13) 2100947781762516 a001 165580141/228826127*521^(7/13) 2100947781762516 a001 433494437/599074578*521^(7/13) 2100947781762516 a001 1134903170/1568397607*521^(7/13) 2100947781762516 a001 2971215073/4106118243*521^(7/13) 2100947781762516 a001 7778742049/10749957122*521^(7/13) 2100947781762516 a001 20365011074/28143753123*521^(7/13) 2100947781762516 a001 53316291173/73681302247*521^(7/13) 2100947781762516 a001 139583862445/192900153618*521^(7/13) 2100947781762516 a001 365435296162/505019158607*521^(7/13) 2100947781762516 a001 10610209857723/14662949395604*521^(7/13) 2100947781762516 a001 225851433717/312119004989*521^(7/13) 2100947781762516 a001 86267571272/119218851371*521^(7/13) 2100947781762516 a001 32951280099/45537549124*521^(7/13) 2100947781762516 a001 12586269025/17393796001*521^(7/13) 2100947781762516 a001 4807526976/6643838879*521^(7/13) 2100947781762516 a001 1836311903/2537720636*521^(7/13) 2100947781762516 a001 701408733/969323029*521^(7/13) 2100947781762516 a001 267914296/370248451*521^(7/13) 2100947781762516 a001 102334155/141422324*521^(7/13) 2100947781762516 a001 39088169/54018521*521^(7/13) 2100947781762519 a001 14930352/20633239*521^(7/13) 2100947781762537 a001 5702887/7881196*521^(7/13) 2100947781762659 a001 2178309/3010349*521^(7/13) 2100947781763498 a001 832040/1149851*521^(7/13) 2100947781769247 a001 317811/439204*521^(7/13) 2100947781808653 a001 121393/167761*521^(7/13) 2100947782078741 a001 46368/64079*521^(7/13) 2100947783929954 a001 17711/24476*521^(7/13) 2100947790286904 a001 47/2207*(1/2*5^(1/2)+1/2)^26*2207^(7/15) 2100947793094608 a001 2255/281*521^(2/13) 2100947796618359 a001 6765/9349*521^(7/13) 2100947805183368 r005 Im(z^2+c),c=-13/18+7/121*I,n=54 2100947808873793 a001 377/2207*1364^(2/3) 2100947813414284 r005 Im(z^2+c),c=-79/94+7/47*I,n=23 2100947815100988 r002 39th iterates of z^2 + 2100947820917957 m001 GAMMA(1/24)^2/exp(Conway)^2/GAMMA(11/24) 2100947833835231 m001 (GaussAGM-MertensB3)/(GAMMA(3/4)+ln(Pi)) 2100947841558971 m001 GlaisherKinkelin/Shi(1)*3^(1/2) 2100947851982179 g002 Psi(7/11)-Psi(9/10)-Psi(7/10)-Psi(3/5) 2100947858618933 r002 9th iterates of z^2 + 2100947860921828 m001 1/3*(FibonacciFactorial-BesselI(1,2))*3^(1/2) 2100947863791589 a004 Fibonacci(14)*Lucas(15)/(1/2+sqrt(5)/2)^21 2100947864086685 m001 (Bloch-Kac)/(Sarnak+ZetaQ(3)) 2100947865683790 r005 Re(z^2+c),c=11/54+7/55*I,n=4 2100947868028718 r009 Im(z^3+c),c=-31/74+5/54*I,n=15 2100947872604251 r005 Im(z^2+c),c=-15/14+44/195*I,n=29 2100947873371319 m001 (Zeta(3)+GAMMA(3/4))/(Ei(1,1)-exp(1/Pi)) 2100947875824032 m001 (Pi-GAMMA(11/12))/(Otter-ReciprocalLucas) 2100947876299673 a007 Real Root Of 424*x^4+870*x^3-288*x^2-548*x-73 2100947877227085 r005 Re(z^2+c),c=4/23+3/58*I,n=11 2100947882880855 a001 2584/2207*521^(6/13) 2100947883585984 a001 2584/3571*521^(7/13) 2100947885950792 a007 Real Root Of 570*x^4+996*x^3-97*x^2+672*x-29 2100947890934821 r009 Re(z^3+c),c=-31/56+5/36*I,n=20 2100947893650774 r005 Im(z^2+c),c=-15/16+8/39*I,n=50 2100947897508853 a007 Real Root Of -x^4+585*x^3-815*x^2-576*x-598 2100947899510664 a001 47*(1/2*5^(1/2)+1/2)^5*3571^(11/15) 2100947900207743 r005 Im(z^2+c),c=-7/6+42/143*I,n=23 2100947922648782 r005 Im(z^2+c),c=-1/82+10/43*I,n=12 2100947928233700 r009 Re(z^3+c),c=-1/98+46/61*I,n=19 2100947929892829 a001 377/15127*1364^(14/15) 2100947932652135 m005 (1/2*Catalan-7/12)/(5/6*Catalan-1/6) 2100947935842405 a001 312119004989/1597*144^(16/17) 2100947936002343 a007 Real Root Of -271*x^4-846*x^3-865*x^2-561*x+74 2100947941522976 a007 Real Root Of 555*x^4+782*x^3-819*x^2-493*x-982 2100947950745329 a007 Real Root Of 507*x^4+626*x^3+405*x^2-747*x-170 2100947958163892 m005 (1/2*Pi-1/3)/(3*5^(1/2)-9/11) 2100947958295338 m001 ln(KhinchinHarmonic)/ln(Conway) 2100947963339039 h001 (-9*exp(-3)+8)/(-5*exp(2)+1) 2100947964903863 l006 ln(1805/2227) 2100947978124789 m001 (MertensB3+Totient)/(Kac+MasserGramain) 2100947986946379 h005 exp(cos(Pi*1/15)-cos(Pi*14/33)) 2100947988726620 q001 82/3903 2100947992770917 m001 1/Porter*ln(DuboisRaymond)^2*GAMMA(1/12) 2100947996515960 a001 15127*144^(9/17) 2100947999497853 a001 47*(1/2*5^(1/2)+1/2)*9349^(13/15) 2100948006967163 m002 -Pi^2+Pi^3-Log[Pi]/9 2100948008442212 h001 (1/9*exp(2)+2/3)/(10/11*exp(2)+4/11) 2100948018030726 m008 (4/5*Pi+1/4)/(2/5*Pi^3+3/4) 2100948020364257 a001 47/64079*(1/2*5^(1/2)+1/2)^19*64079^(14/15) 2100948020419450 a001 47*(1/2*5^(1/2)+1/2)^16*39603^(1/15) 2100948022530845 r005 Re(z^2+c),c=-7/94+23/39*I,n=58 2100948023535114 a001 47/9349*(1/2*5^(1/2)+1/2)^20*9349^(13/15) 2100948026709199 a001 377/5778*1364^(4/5) 2100948030344907 a005 (1/sin(46/131*Pi))^635 2100948038394165 a001 377/9349*1364^(13/15) 2100948041010777 a003 cos(Pi*7/97)-sin(Pi*18/65) 2100948044169286 h001 (4/7*exp(2)+7/8)/(5/8*exp(1)+8/11) 2100948051466807 a003 -1+cos(2/5*Pi)+cos(2/27*Pi)-2*cos(11/24*Pi) 2100948052070239 r005 Re(z^2+c),c=-5/38+29/59*I,n=23 2100948053537792 m001 (Catalan+BesselJ(0,1))/(Zeta(1/2)+TwinPrimes) 2100948054135407 a001 341/646*4181^(28/39) 2100948055626595 m001 (BesselK(0,1)-ln(3))/(-cos(1/12*Pi)+Cahen) 2100948055922890 m001 1/ln(Trott)^2/FeigenbaumC^2*(3^(1/3)) 2100948059551596 m009 (2*Catalan+1/4*Pi^2-2/3)/(1/2*Psi(1,3/4)-3) 2100948063715071 a007 Real Root Of 844*x^4-609*x^3+722*x^2-799*x+140 2100948064264505 a001 47/3571*(1/2*5^(1/2)+1/2)^22*3571^(11/15) 2100948067620070 m001 sin(1/12*Pi)*FibonacciFactorial*Robbin 2100948069811352 r002 15th iterates of z^2 + 2100948076558974 a001 817138163596/4181*144^(16/17) 2100948077825784 a001 47/121393*6765^(39/40) 2100948079881272 r005 Re(z^2+c),c=-9/50+12/31*I,n=23 2100948097089247 a001 2139295485799/10946*144^(16/17) 2100948099420569 a007 Real Root Of -217*x^4-245*x^3+481*x^2+191*x+234 2100948100084573 a001 5600748293801/28657*144^(16/17) 2100948100521585 a001 14662949395604/75025*144^(16/17) 2100948100624750 a001 23725150497407/121393*144^(16/17) 2100948100791674 a001 3020733700601/15456*144^(16/17) 2100948101935787 a001 3461452808002/17711*144^(16/17) 2100948109754453 a001 17/70711162*18^(3/4) 2100948109777653 a001 440719107401/2255*144^(16/17) 2100948110008497 a001 329/281*1364^(2/5) 2100948110104964 a001 341/66978574*89^(6/19) 2100948113963185 r009 Im(z^3+c),c=-8/27+10/59*I,n=13 2100948118246427 r005 Re(z^2+c),c=-11/90+15/29*I,n=33 2100948140141377 r009 Im(z^3+c),c=-61/114+22/61*I,n=7 2100948150257682 r005 Re(z^2+c),c=9/70+30/53*I,n=21 2100948152523718 r009 Re(z^3+c),c=-3/52+41/62*I,n=14 2100948155392069 a007 Real Root Of 626*x^4-956*x^3+103*x^2+122*x+11 2100948158460009 m001 ln(KhintchineLevy)*Conway^2/Salem^2 2100948163526606 a001 505019158607/2584*144^(16/17) 2100948168033326 r005 Re(z^2+c),c=8/25+13/57*I,n=54 2100948173049880 m001 1/exp(OneNinth)^2*Lehmer*GAMMA(5/24) 2100948198952520 m001 gamma(3)^exp(1)/CopelandErdos 2100948210302248 m001 (Ei(1)-exp(-1/2*Pi))/(CareFree+Paris) 2100948217151020 m005 (1/2*Catalan+2/7)/(1/4*Pi-3/4) 2100948220858146 r005 Im(z^2+c),c=-5/6+27/155*I,n=63 2100948221618004 a001 47*(1/2*5^(1/2)+1/2)^10*2207^(7/15) 2100948222335466 r009 Re(z^3+c),c=-21/86+14/57*I,n=13 2100948225641422 m001 GAMMA(7/24)*ln(GAMMA(5/24))^2/LambertW(1)^2 2100948231667482 m008 (1/6*Pi-1/5)/(2/5*Pi^3+3) 2100948232927437 m005 (3/5*gamma-2)/(5*2^(1/2)+4/5) 2100948233167257 r005 Im(z^2+c),c=7/78+11/58*I,n=7 2100948237327344 r005 Im(z^2+c),c=-5/16+18/55*I,n=36 2100948239034617 s002 sum(A027373[n]/((10^n+1)/n),n=1..infinity) 2100948249289404 m005 (1/2*Zeta(3)+3/10)/(1/6*3^(1/2)+4) 2100948249883300 r009 Re(z^3+c),c=-9/29+16/37*I,n=14 2100948254513067 a001 17711/1364*199^(1/11) 2100948258201851 m001 (Champernowne+HardyLittlewoodC5)/(Ei(1)+Cahen) 2100948267115333 a007 Real Root Of 353*x^4-988*x^3+281*x^2-409*x+82 2100948270534675 a007 Real Root Of 473*x^4+889*x^3-25*x^2+149*x-548 2100948270995084 a007 Real Root Of 525*x^4+530*x^3+579*x^2-687*x-166 2100948280361131 m002 2+E^Pi/4+Pi^5/E^Pi 2100948286363800 a007 Real Root Of 186*x^4-206*x^3-931*x^2+335*x-721 2100948287695749 r005 Im(z^2+c),c=-6/7+16/103*I,n=23 2100948289977616 r005 Im(z^2+c),c=-7/15+11/30*I,n=50 2100948297890339 m001 (Sarnak-ZetaP(3))/(Kolakoski-Magata) 2100948305030557 a001 2255/1926*521^(6/13) 2100948305582076 a007 Real Root Of 891*x^4+327*x^3+868*x^2-771*x-199 2100948311193035 r005 Re(z^2+c),c=41/122+13/54*I,n=60 2100948314132047 m005 (1/2*3^(1/2)-5/9)/(2/5*5^(1/2)+7/12) 2100948316448023 m002 Cosh[Pi]/(4*Pi^3)+2*Coth[Pi] 2100948324508635 m001 (-MadelungNaCl+Magata)/(2^(1/2)-GolombDickman) 2100948324868828 p001 sum(1/(532*n+531)/(5^n),n=0..infinity) 2100948325353106 r002 31th iterates of z^2 + 2100948329676091 a001 377/3571*1364^(11/15) 2100948333873241 r009 Re(z^3+c),c=-67/110+13/47*I,n=7 2100948343938055 m001 (5^(1/2)+Pi^(1/2))/(FeigenbaumC+ZetaP(4)) 2100948346890248 r005 Im(z^2+c),c=-1/30+17/26*I,n=32 2100948349602137 a007 Real Root Of 314*x^4+412*x^3-709*x^2+25*x+885 2100948359316218 m005 (-2/3+1/4*5^(1/2))/(6/7*Catalan-3/11) 2100948360880722 a007 Real Root Of 201*x^4+292*x^3-82*x^2+538*x+284 2100948366621381 a001 17711/15127*521^(6/13) 2100948369094855 m001 (-MertensB2+MinimumGamma)/(Shi(1)-Zeta(5)) 2100948370214186 m001 exp(1/Pi)*(StolarskyHarborth-ln(5)) 2100948375261292 a007 Real Root Of -332*x^4-784*x^3+338*x^2+792*x-630 2100948375607362 a001 15456/13201*521^(6/13) 2100948376918399 a001 121393/103682*521^(6/13) 2100948377109676 a001 105937/90481*521^(6/13) 2100948377137583 a001 832040/710647*521^(6/13) 2100948377141655 a001 726103/620166*521^(6/13) 2100948377142249 a001 5702887/4870847*521^(6/13) 2100948377142336 a001 4976784/4250681*521^(6/13) 2100948377142348 a001 39088169/33385282*521^(6/13) 2100948377142350 a001 34111385/29134601*521^(6/13) 2100948377142350 a001 267914296/228826127*521^(6/13) 2100948377142350 a001 233802911/199691526*521^(6/13) 2100948377142350 a001 1836311903/1568397607*521^(6/13) 2100948377142350 a001 1602508992/1368706081*521^(6/13) 2100948377142350 a001 12586269025/10749957122*521^(6/13) 2100948377142350 a001 10983760033/9381251041*521^(6/13) 2100948377142350 a001 86267571272/73681302247*521^(6/13) 2100948377142350 a001 75283811239/64300051206*521^(6/13) 2100948377142350 a001 2504730781961/2139295485799*521^(6/13) 2100948377142350 a001 365435296162/312119004989*521^(6/13) 2100948377142350 a001 139583862445/119218851371*521^(6/13) 2100948377142350 a001 53316291173/45537549124*521^(6/13) 2100948377142350 a001 20365011074/17393796001*521^(6/13) 2100948377142350 a001 7778742049/6643838879*521^(6/13) 2100948377142350 a001 2971215073/2537720636*521^(6/13) 2100948377142350 a001 1134903170/969323029*521^(6/13) 2100948377142350 a001 433494437/370248451*521^(6/13) 2100948377142351 a001 165580141/141422324*521^(6/13) 2100948377142351 a001 63245986/54018521*521^(6/13) 2100948377142356 a001 24157817/20633239*521^(6/13) 2100948377142389 a001 9227465/7881196*521^(6/13) 2100948377142616 a001 3524578/3010349*521^(6/13) 2100948377144171 a001 1346269/1149851*521^(6/13) 2100948377154831 a001 514229/439204*521^(6/13) 2100948377227892 a001 196418/167761*521^(6/13) 2100948377728664 a001 75025/64079*521^(6/13) 2100948381161003 a001 28657/24476*521^(6/13) 2100948384474650 m001 GAMMA(17/24)^2*PrimesInBinary^2/ln(sin(Pi/12)) 2100948386534632 m001 (Pi-Zeta(1,2))/(Cahen-Sierpinski) 2100948398525914 m001 RenyiParking^gamma(3)*Riemann2ndZero 2100948400168501 b008 1/3+E*Pi^Sqrt[Pi] 2100948401162854 a001 10946/843*521^(1/13) 2100948404686605 a001 10946/9349*521^(6/13) 2100948406781642 r005 Re(z^2+c),c=-11/16+47/121*I,n=9 2100948418532402 m006 (1/2*exp(Pi)-5)/(2/5/Pi+3) 2100948420885959 g007 -Psi(2,10/11)-Psi(2,5/7)-Psi(2,4/5)-Psi(2,2/3) 2100948426263077 r005 Re(z^2+c),c=-67/54+1/21*I,n=50 2100948428390681 r005 Re(z^2+c),c=-4/31+7/13*I,n=16 2100948429001642 m002 -2+Pi-Log[Pi]+Tanh[Pi]/Pi^6 2100948429690765 m005 (1/2*Zeta(3)-5/12)/(7/9*gamma+3/7) 2100948440856566 a008 Real Root of (-4+4*x-3*x^3-3*x^4+2*x^5) 2100948455471088 p001 sum((-1)^n/(359*n+21)/n/(125^n),n=1..infinity) 2100948455638097 r009 Re(z^3+c),c=-21/86+14/57*I,n=14 2100948463386041 m001 BesselK(1,1)+ErdosBorwein-OneNinth 2100948464786407 a001 377/2207*3571^(10/17) 2100948467565235 r005 Im(z^2+c),c=-17/30+39/109*I,n=40 2100948472164289 a007 Real Root Of -148*x^4-55*x^3+119*x^2-646*x+491 2100948479671267 a001 987/1364*521^(7/13) 2100948485919177 m001 (2^(1/3)-Chi(1))/(GaussKuzminWirsing+Niven) 2100948487304755 m001 (-Otter+ThueMorse)/(LambertW(1)+Cahen) 2100948490791510 r009 Im(z^3+c),c=-11/25+1/32*I,n=43 2100948498372311 b008 Sqrt[6]*BesselY[1,Catalan] 2100948503556098 a001 329/281*3571^(6/17) 2100948505434190 s001 sum(exp(-Pi/2)^(n-1)*A266276[n],n=1..infinity) 2100948511383924 a001 14662949395604/233*144^(12/17) 2100948523043041 a007 Real Root Of -924*x^4+957*x^3+795*x^2+994*x-251 2100948528669536 b008 Coth[(4*E)/21] 2100948530166992 s002 sum(A113346[n]/(n^3*2^n+1),n=1..infinity) 2100948531416599 s002 sum(A113346[n]/(n^3*2^n-1),n=1..infinity) 2100948531927487 a001 64300051206/329*144^(16/17) 2100948536123129 r005 Im(z^2+c),c=-17/18+27/119*I,n=37 2100948549049262 a001 377/2207*9349^(10/19) 2100948551723730 l006 ln(7652/9441) 2100948554113811 a001 329/281*9349^(6/19) 2100948555730999 a007 Real Root Of -918*x^4+927*x^3+130*x^2+778*x-176 2100948557047872 m001 Totient*(exp(1/exp(1))+Champernowne) 2100948558063896 m001 CopelandErdos/ln(2)*ln(10)*FeigenbaumD 2100948560030461 a001 377/2207*24476^(10/21) 2100948560659859 a007 Real Root Of -424*x^4-481*x^3+649*x^2-155*x+610 2100948560702530 a001 329/281*24476^(2/7) 2100948561477994 a001 377/2207*64079^(10/23) 2100948561571050 a001 329/281*64079^(6/23) 2100948561670596 a001 377/2207*167761^(2/5) 2100948561700454 a001 377/2207*20633239^(2/7) 2100948561700456 a001 377/2207*2537720636^(2/9) 2100948561700456 a001 377/2207*312119004989^(2/11) 2100948561700456 a001 377/2207*(1/2+1/2*5^(1/2))^10 2100948561700456 a001 377/2207*28143753123^(1/5) 2100948561700456 a001 377/2207*10749957122^(5/24) 2100948561700456 a001 377/2207*4106118243^(5/23) 2100948561700456 a001 377/2207*1568397607^(5/22) 2100948561700456 a001 377/2207*599074578^(5/21) 2100948561700456 a001 377/2207*228826127^(1/4) 2100948561700456 a001 377/2207*87403803^(5/19) 2100948561700456 a001 377/2207*33385282^(5/18) 2100948561700460 a001 377/2207*12752043^(5/17) 2100948561700483 a001 377/2207*4870847^(5/16) 2100948561700658 a001 377/2207*1860498^(1/3) 2100948561701942 a001 377/2207*710647^(5/14) 2100948561702107 a001 329/281*439204^(2/9) 2100948561704521 a001 329/281*7881196^(2/11) 2100948561704527 a001 329/281*141422324^(2/13) 2100948561704527 a001 329/281*2537720636^(2/15) 2100948561704527 a001 329/281*45537549124^(2/17) 2100948561704527 a001 329/281*14662949395604^(2/21) 2100948561704527 a001 329/281*(1/2+1/2*5^(1/2))^6 2100948561704527 a001 329/281*10749957122^(1/8) 2100948561704527 a001 329/281*4106118243^(3/23) 2100948561704527 a001 329/281*1568397607^(3/22) 2100948561704527 a001 329/281*599074578^(1/7) 2100948561704527 a001 329/281*228826127^(3/20) 2100948561704527 a001 329/281*87403803^(3/19) 2100948561704528 a001 329/281*33385282^(1/6) 2100948561704530 a001 329/281*12752043^(3/17) 2100948561704544 a001 329/281*4870847^(3/16) 2100948561704649 a001 329/281*1860498^(1/5) 2100948561705419 a001 329/281*710647^(3/14) 2100948561711107 a001 329/281*271443^(3/13) 2100948561711423 a001 377/2207*271443^(5/13) 2100948561753387 a001 329/281*103682^(1/4) 2100948561781888 a001 377/2207*103682^(5/12) 2100948562069859 a001 329/281*39603^(3/11) 2100948562309343 a001 377/2207*39603^(5/11) 2100948563039918 a001 372099/17711 2100948563682397 a007 Real Root Of 574*x^4+935*x^3-985*x^2-903*x-62 2100948563982050 a007 Real Root Of 551*x^4+988*x^3-204*x^2+55*x-557 2100948564458953 a001 329/281*15127^(3/10) 2100948565174741 r005 Im(z^2+c),c=-13/14+35/183*I,n=13 2100948565228367 a001 4181/2207*521^(5/13) 2100948565933496 a001 4181/3571*521^(6/13) 2100948566291165 a001 377/2207*15127^(1/2) 2100948574945368 a001 1/47*(1/2*5^(1/2)+1/2)^3*11^(6/17) 2100948575037736 a007 Real Root Of -498*x^4-814*x^3+178*x^2-845*x-407 2100948582681321 a001 329/281*5778^(1/3) 2100948589710656 m005 (1/2*Zeta(3)-5/9)/(7/10*Zeta(3)-5/8) 2100948591167437 a007 Real Root Of -570*x^4-867*x^3+677*x^2-337*x-631 2100948591378051 a007 Real Root Of -954*x^4+128*x^3+250*x^2+598*x-136 2100948594499831 r009 Im(z^3+c),c=-45/106+5/59*I,n=28 2100948596661779 a001 377/2207*5778^(5/9) 2100948598760663 r005 Im(z^2+c),c=-2/3+56/157*I,n=22 2100948610365613 m005 (1/2*Pi-3/4)/(-43/70+1/10*5^(1/2)) 2100948614430631 r005 Im(z^2+c),c=-5/8+65/209*I,n=25 2100948614615344 a007 Real Root Of 94*x^4-858*x^3+885*x^2+851*x+431 2100948618389129 a003 sin(Pi*5/101)/cos(Pi*17/72) 2100948628267107 m001 (CopelandErdos+Sarnak)/(1-2*Pi/GAMMA(5/6)) 2100948628974728 a001 2584/843*1364^(4/15) 2100948651202458 r005 Re(z^2+c),c=11/64+23/57*I,n=13 2100948655606463 s001 sum(exp(-2*Pi/3)^n*A117814[n],n=1..infinity) 2100948655606463 s001 sum(exp(-2*Pi/3)^n*A193238[n],n=1..infinity) 2100948660498040 m001 (ln(5)+CopelandErdos)/(ln(2)/ln(10)+gamma) 2100948665459521 m001 PlouffeB^(2^(1/2))/(Trott^(2^(1/2))) 2100948666267592 s001 sum(exp(-2*Pi/3)^n*A257000[n],n=1..infinity) 2100948668160012 s001 sum(exp(-2*Pi/3)^n*A075053[n],n=1..infinity) 2100948671763673 r009 Re(z^3+c),c=-21/86+14/57*I,n=17 2100948680572541 m001 Khinchin^exp(1/exp(1))/(Khinchin^ln(2)) 2100948683469525 r009 Re(z^3+c),c=-21/86+14/57*I,n=20 2100948683573707 r009 Re(z^3+c),c=-21/86+14/57*I,n=21 2100948683687720 r009 Re(z^3+c),c=-21/86+14/57*I,n=24 2100948683693694 r009 Re(z^3+c),c=-21/86+14/57*I,n=27 2100948683693740 r009 Re(z^3+c),c=-21/86+14/57*I,n=28 2100948683693800 r009 Re(z^3+c),c=-21/86+14/57*I,n=31 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=34 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=35 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=32 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=38 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=41 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=39 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=42 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=45 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=46 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=48 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=49 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=52 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=53 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=55 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=56 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=59 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=60 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=62 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=63 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=64 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=61 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=58 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=57 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=54 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=51 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=50 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=47 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=44 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=43 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=40 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=37 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=36 2100948683693803 r009 Re(z^3+c),c=-21/86+14/57*I,n=33 2100948683693807 r009 Re(z^3+c),c=-21/86+14/57*I,n=30 2100948683693825 r009 Re(z^3+c),c=-21/86+14/57*I,n=29 2100948683693859 r009 Re(z^3+c),c=-21/86+14/57*I,n=25 2100948683694493 r009 Re(z^3+c),c=-21/86+14/57*I,n=26 2100948683701151 r009 Re(z^3+c),c=-21/86+14/57*I,n=23 2100948683737321 r009 Re(z^3+c),c=-21/86+14/57*I,n=22 2100948683926449 r009 Re(z^3+c),c=-21/86+14/57*I,n=18 2100948685028986 r009 Re(z^3+c),c=-21/86+14/57*I,n=19 2100948695911433 r004 Re(z^2+c),c=-47/38+1/23*I,z(0)=-1,n=61 2100948696627004 r005 Im(z^2+c),c=-9/10+22/119*I,n=56 2100948697044374 r009 Re(z^3+c),c=-21/86+14/57*I,n=16 2100948700219066 m006 (1/5*exp(Pi)+4)/(1/6*exp(Pi)+1/4) 2100948709789682 a007 Real Root Of -666*x^4-849*x^3+891*x^2-364*x+405 2100948710978189 r002 25th iterates of z^2 + 2100948710978189 r002 25th iterates of z^2 + 2100948715094382 a007 Real Root Of 260*x^4+377*x^3-218*x^2+706*x+876 2100948723453739 a001 329/281*2207^(3/8) 2100948725459014 r005 Re(z^2+c),c=-7/50+19/39*I,n=13 2100948732878138 l006 ln(5847/7214) 2100948735411938 r009 Im(z^3+c),c=-7/16+2/53*I,n=24 2100948739557245 m005 (1/2*Zeta(3)-1/12)/(2*3^(1/2)-1) 2100948740894267 m002 -2+6/Log[Pi]-Log[Pi]*Tanh[Pi] 2100948744342198 m005 (1/2*Catalan-4/11)/(1/9*Pi+1/10) 2100948752864290 s001 sum(exp(-2*Pi/3)^n*A062301[n],n=1..infinity) 2100948759194415 a007 Real Root Of 585*x^4+874*x^3-580*x^2+223*x-264 2100948764844181 s001 sum(exp(-2*Pi/3)^n*A181712[n],n=1..infinity) 2100948766549342 s001 sum(exp(-2*Pi/3)^n*A184172[n],n=1..infinity) 2100948770404704 r009 Re(z^3+c),c=-21/86+14/57*I,n=15 2100948777212911 s001 sum(exp(-2*Pi/3)^n*A090418[n],n=1..infinity) 2100948781376315 a001 1597/843*1364^(1/3) 2100948785000603 m002 -E^Pi+2/ProductLog[Pi]+ProductLog[Pi]/4 2100948786785818 m001 (MertensB2-ZetaQ(2))/(ln(3)+FeigenbaumMu) 2100948791225069 a001 4181/843*1364^(1/5) 2100948791917380 m005 (1/2*Zeta(3)+5/11)/(5*Catalan+4/9) 2100948796582766 m001 (exp(Pi)+ln(Pi)*Kolakoski)/ln(Pi) 2100948802160855 a007 Real Root Of 236*x^4+415*x^3-243*x^2-288*x-282 2100948813804442 a001 377/5778*3571^(12/17) 2100948828277799 a004 Fibonacci(14)*Lucas(17)/(1/2+sqrt(5)/2)^23 2100948828595706 r002 41th iterates of z^2 + 2100948831282481 a001 377/2207*2207^(5/8) 2100948833289068 a001 2255/281*1364^(2/15) 2100948836629655 a001 377/39603*3571^(16/17) 2100948838326226 a007 Real Root Of 367*x^4+143*x^3+280*x^2-758*x-171 2100948845791786 r005 Im(z^2+c),c=-71/74+5/27*I,n=3 2100948848170598 a001 377/15127*3571^(14/17) 2100948848923830 r005 Im(z^2+c),c=-26/29+8/49*I,n=5 2100948851167603 a001 13/844*3571^(15/17) 2100948855753009 r002 32th iterates of z^2 + 2100948860306339 r009 Re(z^3+c),c=-21/74+16/45*I,n=5 2100948863583473 m001 (Sarnak+Trott)/(2^(1/3)+5^(1/2)) 2100948864164152 m001 1/exp(Tribonacci)*MertensB1^2*GAMMA(5/24)^2 2100948864915740 a001 1970299/2*987^(7/9) 2100948865419953 a007 Real Root Of 480*x^4-55*x^3+547*x^2-635*x-159 2100948873431206 m005 (1/3*gamma-2/7)/(91/22+3/22*5^(1/2)) 2100948881398288 a007 Real Root Of 240*x^4+435*x^3+367*x^2+970*x-224 2100948882431787 r009 Im(z^3+c),c=-63/122+11/29*I,n=7 2100948891080696 a001 377/9349*3571^(13/17) 2100948891339851 a001 2584/843*3571^(4/17) 2100948910762644 m001 Khinchin^(FeigenbaumDelta*TwinPrimes) 2100948910762644 m001 Khinchin^(TwinPrimes*FeigenbaumDelta) 2100948912425660 m001 StolarskyHarborth^(GAMMA(7/12)*ErdosBorwein) 2100948913098951 a001 5473/2889*521^(5/13) 2100948914487024 l006 ln(6641/6782) 2100948914919885 a001 377/5778*9349^(12/19) 2100948916586339 a007 Real Root Of 579*x^4+914*x^3-652*x^2-249*x-450 2100948921260170 a001 10946/843*1364^(1/15) 2100948925045000 a001 2584/843*9349^(4/19) 2100948928097325 a001 377/5778*24476^(4/7) 2100948929437480 a001 2584/843*24476^(4/21) 2100948929834365 a001 377/5778*64079^(12/23) 2100948930016493 a001 2584/843*64079^(4/23) 2100948930096479 a001 377/5778*439204^(4/9) 2100948930101308 a001 377/5778*7881196^(4/11) 2100948930101320 a001 377/5778*141422324^(4/13) 2100948930101320 a001 377/5778*2537720636^(4/15) 2100948930101320 a001 377/5778*45537549124^(4/17) 2100948930101320 a001 377/5778*14662949395604^(4/21) 2100948930101320 a001 377/5778*(1/2+1/2*5^(1/2))^12 2100948930101320 a001 377/5778*192900153618^(2/9) 2100948930101320 a001 377/5778*73681302247^(3/13) 2100948930101320 a001 377/5778*10749957122^(1/4) 2100948930101320 a001 377/5778*4106118243^(6/23) 2100948930101320 a001 377/5778*1568397607^(3/11) 2100948930101320 a001 377/5778*599074578^(2/7) 2100948930101320 a001 377/5778*228826127^(3/10) 2100948930101320 a001 377/5778*87403803^(6/19) 2100948930101321 a001 377/5778*33385282^(1/3) 2100948930101324 a001 377/5778*12752043^(6/17) 2100948930101353 a001 377/5778*4870847^(3/8) 2100948930101563 a001 377/5778*1860498^(2/5) 2100948930103103 a001 377/5778*710647^(3/7) 2100948930105478 a001 2584/843*(1/2+1/2*5^(1/2))^4 2100948930105478 a001 2584/843*23725150497407^(1/16) 2100948930105478 a001 2584/843*73681302247^(1/13) 2100948930105478 a001 2584/843*10749957122^(1/12) 2100948930105478 a001 2584/843*4106118243^(2/23) 2100948930105478 a001 2584/843*1568397607^(1/11) 2100948930105478 a001 2584/843*599074578^(2/21) 2100948930105478 a001 2584/843*228826127^(1/10) 2100948930105478 a001 2584/843*87403803^(2/19) 2100948930105478 a001 2584/843*33385282^(1/9) 2100948930105480 a001 2584/843*12752043^(2/17) 2100948930105489 a001 2584/843*4870847^(1/8) 2100948930105559 a001 2584/843*1860498^(2/15) 2100948930106072 a001 2584/843*710647^(1/7) 2100948930109865 a001 2584/843*271443^(2/13) 2100948930114480 a001 377/5778*271443^(6/13) 2100948930138051 a001 2584/843*103682^(1/6) 2100948930199039 a001 377/5778*103682^(1/2) 2100948930296756 a001 121771/5796 2100948930349033 a001 2584/843*39603^(2/11) 2100948930831984 a001 377/5778*39603^(6/11) 2100948931941762 a001 2584/843*15127^(1/5) 2100948934030436 r009 Im(z^3+c),c=-9/20+3/49*I,n=32 2100948935610172 a001 377/5778*15127^(3/5) 2100948936688495 m001 (Bloch+Trott)/(sin(1)+Backhouse) 2100948942170453 a007 Real Root Of 239*x^4-586*x^3-424*x^2-794*x-154 2100948944090010 a001 2584/843*5778^(2/9) 2100948944591640 m005 (1/2*5^(1/2)+4/7)/(2/11*gamma-10/11) 2100948945843806 m001 (-Magata+Paris)/(Shi(1)+polylog(4,1/2)) 2100948956510905 r005 Im(z^2+c),c=-45/46+8/37*I,n=27 2100948958121236 r009 Re(z^3+c),c=-35/114+17/40*I,n=17 2100948958318350 a001 54018521/34*701408733^(11/19) 2100948958346865 a001 271443/34*6557470319842^(11/19) 2100948958361569 a001 5374978561/17*75025^(11/19) 2100948960661847 m005 (-1/18+1/6*5^(1/2))/(3*gamma-2/9) 2100948963852596 a001 28657/15127*521^(5/13) 2100948964471639 a001 2255/281*3571^(2/17) 2100948964872730 a001 3571/6765*4181^(28/39) 2100948966138618 a001 377/15127*9349^(14/19) 2100948968994441 a004 Fibonacci(14)*Lucas(19)/(1/2+sqrt(5)/2)^25 2100948970064123 a001 377/103682*9349^(18/19) 2100948971257453 a001 75025/39603*521^(5/13) 2100948971450249 a001 377/39603*9349^(16/19) 2100948972036343 a001 377/64079*9349^(17/19) 2100948972054915 a001 377/5778*5778^(2/3) 2100948972337807 a001 98209/51841*521^(5/13) 2100948972495429 a001 514229/271443*521^(5/13) 2100948972518425 a001 1346269/710647*521^(5/13) 2100948972521781 a001 1762289/930249*521^(5/13) 2100948972522270 a001 9227465/4870847*521^(5/13) 2100948972522341 a001 24157817/12752043*521^(5/13) 2100948972522352 a001 31622993/16692641*521^(5/13) 2100948972522353 a001 165580141/87403803*521^(5/13) 2100948972522354 a001 433494437/228826127*521^(5/13) 2100948972522354 a001 567451585/299537289*521^(5/13) 2100948972522354 a001 2971215073/1568397607*521^(5/13) 2100948972522354 a001 7778742049/4106118243*521^(5/13) 2100948972522354 a001 10182505537/5374978561*521^(5/13) 2100948972522354 a001 53316291173/28143753123*521^(5/13) 2100948972522354 a001 139583862445/73681302247*521^(5/13) 2100948972522354 a001 182717648081/96450076809*521^(5/13) 2100948972522354 a001 956722026041/505019158607*521^(5/13) 2100948972522354 a001 10610209857723/5600748293801*521^(5/13) 2100948972522354 a001 591286729879/312119004989*521^(5/13) 2100948972522354 a001 225851433717/119218851371*521^(5/13) 2100948972522354 a001 21566892818/11384387281*521^(5/13) 2100948972522354 a001 32951280099/17393796001*521^(5/13) 2100948972522354 a001 12586269025/6643838879*521^(5/13) 2100948972522354 a001 1201881744/634430159*521^(5/13) 2100948972522354 a001 1836311903/969323029*521^(5/13) 2100948972522354 a001 701408733/370248451*521^(5/13) 2100948972522354 a001 66978574/35355581*521^(5/13) 2100948972522354 a001 102334155/54018521*521^(5/13) 2100948972522358 a001 39088169/20633239*521^(5/13) 2100948972522386 a001 3732588/1970299*521^(5/13) 2100948972522573 a001 5702887/3010349*521^(5/13) 2100948972523854 a001 2178309/1149851*521^(5/13) 2100948972532638 a001 208010/109801*521^(5/13) 2100948972592844 a001 317811/167761*521^(5/13) 2100948973005503 a001 121393/64079*521^(5/13) 2100948975833906 a001 11592/6119*521^(5/13) 2100948977561910 a001 13/844*9349^(15/19) 2100948981324213 a001 2255/281*9349^(2/19) 2100948981512299 a001 377/15127*24476^(2/3) 2100948983520453 a001 2255/281*24476^(2/21) 2100948983538845 a001 377/15127*64079^(14/23) 2100948983809960 a001 2255/281*64079^(2/23) 2100948983850290 a001 377/15127*20633239^(2/5) 2100948983850292 a001 377/15127*17393796001^(2/7) 2100948983850292 a001 377/15127*14662949395604^(2/9) 2100948983850292 a001 377/15127*(1/2+1/2*5^(1/2))^14 2100948983850292 a001 377/15127*10749957122^(7/24) 2100948983850292 a001 377/15127*4106118243^(7/23) 2100948983850292 a001 377/15127*1568397607^(7/22) 2100948983850292 a001 377/15127*599074578^(1/3) 2100948983850292 a001 377/15127*228826127^(7/20) 2100948983850292 a001 377/15127*87403803^(7/19) 2100948983850293 a001 377/15127*33385282^(7/18) 2100948983850298 a001 377/15127*12752043^(7/17) 2100948983850331 a001 377/15127*4870847^(7/16) 2100948983850576 a001 377/15127*1860498^(7/15) 2100948983852372 a001 377/15127*710647^(1/2) 2100948983854452 a001 2255/281*(1/2+1/2*5^(1/2))^2 2100948983854452 a001 2255/281*10749957122^(1/24) 2100948983854452 a001 2255/281*4106118243^(1/23) 2100948983854452 a001 2255/281*1568397607^(1/22) 2100948983854452 a001 2255/281*599074578^(1/21) 2100948983854452 a001 2255/281*228826127^(1/20) 2100948983854452 a001 2255/281*87403803^(1/19) 2100948983854453 a001 2255/281*33385282^(1/18) 2100948983854453 a001 2255/281*12752043^(1/17) 2100948983854458 a001 2255/281*4870847^(1/16) 2100948983854493 a001 2255/281*1860498^(1/15) 2100948983854750 a001 2255/281*710647^(1/14) 2100948983856646 a001 2255/281*271443^(1/13) 2100948983865646 a001 377/15127*271443^(7/13) 2100948983870739 a001 2255/281*103682^(1/12) 2100948983878806 a001 2550405/121393 2100948983964298 a001 377/15127*103682^(7/12) 2100948983976230 a001 2255/281*39603^(1/11) 2100948984702734 a001 377/15127*39603^(7/11) 2100948984772595 a001 2255/281*15127^(1/10) 2100948985166413 r005 Im(z^2+c),c=-16/13+3/29*I,n=24 2100948986851457 a001 10946/843*3571^(1/17) 2100948987998924 a001 4181/843*3571^(3/17) 2100948988268771 a001 521/10946*34^(8/19) 2100948989020169 a001 377/39603*24476^(16/21) 2100948989524723 a004 Fibonacci(14)*Lucas(21)/(1/2+sqrt(5)/2)^27 2100948989663208 a001 377/271443*24476^(20/21) 2100948989830283 a001 377/103682*24476^(6/7) 2100948989933372 a001 377/167761*24476^(19/21) 2100948990277287 a001 377/15127*15127^(7/10) 2100948990704384 a001 377/64079*24476^(17/21) 2100948990846719 a001 2255/281*5778^(1/9) 2100948991336223 a001 377/39603*64079^(16/23) 2100948991692162 a001 377/39603*(1/2+1/2*5^(1/2))^16 2100948991692162 a001 377/39603*23725150497407^(1/4) 2100948991692162 a001 377/39603*73681302247^(4/13) 2100948991692162 a001 377/39603*10749957122^(1/3) 2100948991692162 a001 377/39603*4106118243^(8/23) 2100948991692162 a001 377/39603*1568397607^(4/11) 2100948991692162 a001 377/39603*599074578^(8/21) 2100948991692162 a001 377/39603*228826127^(2/5) 2100948991692162 a001 377/39603*87403803^(8/19) 2100948991692163 a001 377/39603*33385282^(4/9) 2100948991692168 a001 377/39603*12752043^(8/17) 2100948991692206 a001 377/39603*4870847^(1/2) 2100948991692486 a001 377/39603*1860498^(8/15) 2100948991694539 a001 377/39603*710647^(4/7) 2100948991696322 a001 17711/843 2100948991709709 a001 377/39603*271443^(8/13) 2100948991822454 a001 377/39603*103682^(2/3) 2100948992435843 a001 377/103682*64079^(18/23) 2100948992520050 a004 Fibonacci(14)*Lucas(23)/(1/2+sqrt(5)/2)^29 2100948992538136 a001 377/710647*64079^(22/23) 2100948992558275 a001 377/271443*64079^(20/23) 2100948992575434 a001 377/439204*64079^(21/23) 2100948992666381 a001 377/39603*39603^(8/11) 2100948992683686 a001 377/167761*64079^(19/23) 2100948992829014 a001 377/103682*439204^(2/3) 2100948992836257 a001 377/103682*7881196^(6/11) 2100948992836275 a001 377/103682*141422324^(6/13) 2100948992836275 a001 377/103682*2537720636^(2/5) 2100948992836275 a001 377/103682*45537549124^(6/17) 2100948992836275 a001 377/103682*14662949395604^(2/7) 2100948992836275 a001 377/103682*(1/2+1/2*5^(1/2))^18 2100948992836275 a001 377/103682*192900153618^(1/3) 2100948992836275 a001 377/103682*10749957122^(3/8) 2100948992836275 a001 377/103682*4106118243^(9/23) 2100948992836275 a001 377/103682*1568397607^(9/22) 2100948992836275 a001 377/103682*599074578^(3/7) 2100948992836275 a001 377/103682*228826127^(9/20) 2100948992836276 a001 377/103682*87403803^(9/19) 2100948992836276 a001 377/103682*33385282^(1/2) 2100948992836282 a001 377/103682*12752043^(9/17) 2100948992836325 a001 377/103682*4870847^(9/16) 2100948992836640 a001 377/103682*1860498^(3/5) 2100948992836882 a001 2185092/104005 2100948992838950 a001 377/103682*710647^(9/14) 2100948992840436 a004 Fibonacci(24)/Lucas(14)/(1/2+sqrt(5)/2)^2 2100948992856016 a001 377/103682*271443^(9/13) 2100948992943479 a001 377/271443*167761^(4/5) 2100948992957063 a004 Fibonacci(14)*Lucas(25)/(1/2+sqrt(5)/2)^31 2100948992982854 a001 377/103682*103682^(3/4) 2100948993003196 a001 377/271443*20633239^(4/7) 2100948993003199 a001 377/271443*2537720636^(4/9) 2100948993003199 a001 377/271443*(1/2+1/2*5^(1/2))^20 2100948993003199 a001 377/271443*23725150497407^(5/16) 2100948993003199 a001 377/271443*505019158607^(5/14) 2100948993003199 a001 377/271443*73681302247^(5/13) 2100948993003199 a001 377/271443*28143753123^(2/5) 2100948993003199 a001 377/271443*10749957122^(5/12) 2100948993003199 a001 377/271443*4106118243^(10/23) 2100948993003199 a001 377/271443*1568397607^(5/11) 2100948993003199 a001 377/271443*599074578^(10/21) 2100948993003199 a001 377/271443*228826127^(1/2) 2100948993003199 a001 377/271443*87403803^(10/19) 2100948993003200 a001 377/271443*33385282^(5/9) 2100948993003207 a001 377/271443*12752043^(10/17) 2100948993003255 a001 377/271443*4870847^(5/8) 2100948993003288 a001 45765161/2178309 2100948993003604 a001 377/271443*1860498^(2/3) 2100948993006171 a001 377/271443*710647^(5/7) 2100948993007359 a004 Fibonacci(26)/Lucas(14)/(1/2+sqrt(5)/2)^4 2100948993020822 a004 Fibonacci(14)*Lucas(27)/(1/2+sqrt(5)/2)^33 2100948993021425 a001 377/1860498*439204^(8/9) 2100948993025133 a001 377/271443*271443^(10/13) 2100948993027531 a001 377/710647*7881196^(2/3) 2100948993027553 a001 377/710647*312119004989^(2/5) 2100948993027553 a001 377/710647*(1/2+1/2*5^(1/2))^22 2100948993027553 a001 377/710647*10749957122^(11/24) 2100948993027553 a001 377/710647*4106118243^(11/23) 2100948993027553 a001 377/710647*1568397607^(1/2) 2100948993027553 a001 377/710647*599074578^(11/21) 2100948993027553 a001 377/710647*228826127^(11/20) 2100948993027553 a001 377/710647*87403803^(11/19) 2100948993027554 a001 377/710647*33385282^(11/18) 2100948993027562 a001 377/710647*12752043^(11/17) 2100948993027566 a001 119814747/5702887 2100948993027614 a001 377/710647*4870847^(11/16) 2100948993027998 a001 377/710647*1860498^(11/15) 2100948993030124 a004 Fibonacci(14)*Lucas(29)/(1/2+sqrt(5)/2)^35 2100948993030822 a001 377/710647*710647^(11/14) 2100948993031082 a001 377/1860498*7881196^(8/11) 2100948993031106 a001 377/1860498*141422324^(8/13) 2100948993031106 a001 377/1860498*2537720636^(8/15) 2100948993031106 a001 377/1860498*45537549124^(8/17) 2100948993031106 a001 377/1860498*14662949395604^(8/21) 2100948993031106 a001 377/1860498*(1/2+1/2*5^(1/2))^24 2100948993031106 a001 377/1860498*192900153618^(4/9) 2100948993031106 a001 377/1860498*73681302247^(6/13) 2100948993031106 a001 377/1860498*10749957122^(1/2) 2100948993031106 a001 377/1860498*4106118243^(12/23) 2100948993031106 a001 377/1860498*1568397607^(6/11) 2100948993031106 a001 377/1860498*599074578^(4/7) 2100948993031106 a001 377/1860498*228826127^(3/5) 2100948993031106 a001 377/1860498*87403803^(12/19) 2100948993031108 a001 377/1860498*33385282^(2/3) 2100948993031108 a001 39209885/1866294 2100948993031115 a001 377/1860498*12752043^(12/17) 2100948993031173 a001 377/1860498*4870847^(3/4) 2100948993031481 a004 Fibonacci(14)*Lucas(31)/(1/2+sqrt(5)/2)^37 2100948993031592 a001 377/1860498*1860498^(4/5) 2100948993031625 a001 377/4870847*141422324^(2/3) 2100948993031625 a001 377/4870847*(1/2+1/2*5^(1/2))^26 2100948993031625 a001 377/4870847*73681302247^(1/2) 2100948993031625 a001 377/4870847*10749957122^(13/24) 2100948993031625 a001 377/4870847*4106118243^(13/23) 2100948993031625 a001 377/4870847*1568397607^(13/22) 2100948993031625 a001 377/4870847*599074578^(13/21) 2100948993031625 a001 377/4870847*228826127^(13/20) 2100948993031625 a001 377/4870847*87403803^(13/19) 2100948993031625 a001 821222493/39088169 2100948993031626 a001 377/4870847*33385282^(13/18) 2100948993031635 a001 377/4870847*12752043^(13/17) 2100948993031679 a004 Fibonacci(14)*Lucas(33)/(1/2+sqrt(5)/2)^39 2100948993031681 a001 377/33385282*7881196^(10/11) 2100948993031696 a001 377/12752043*20633239^(4/5) 2100948993031697 a001 377/4870847*4870847^(13/16) 2100948993031700 a001 377/12752043*17393796001^(4/7) 2100948993031700 a001 377/12752043*14662949395604^(4/9) 2100948993031700 a001 377/12752043*(1/2+1/2*5^(1/2))^28 2100948993031700 a001 377/12752043*73681302247^(7/13) 2100948993031700 a001 377/12752043*10749957122^(7/12) 2100948993031700 a001 377/12752043*4106118243^(14/23) 2100948993031700 a001 377/12752043*1568397607^(7/11) 2100948993031700 a001 377/12752043*599074578^(2/3) 2100948993031700 a001 377/12752043*228826127^(7/10) 2100948993031700 a001 2149988399/102334155 2100948993031701 a001 377/12752043*87403803^(14/19) 2100948993031702 a001 377/12752043*33385282^(7/9) 2100948993031707 a001 377/33385282*20633239^(6/7) 2100948993031708 a004 Fibonacci(14)*Lucas(35)/(1/2+sqrt(5)/2)^41 2100948993031711 a001 377/12752043*12752043^(14/17) 2100948993031711 a001 377/33385282*141422324^(10/13) 2100948993031711 a001 377/33385282*2537720636^(2/3) 2100948993031711 a001 377/33385282*45537549124^(10/17) 2100948993031711 a001 377/33385282*312119004989^(6/11) 2100948993031711 a001 377/33385282*14662949395604^(10/21) 2100948993031711 a001 377/33385282*(1/2+1/2*5^(1/2))^30 2100948993031711 a001 377/33385282*192900153618^(5/9) 2100948993031711 a001 377/33385282*28143753123^(3/5) 2100948993031711 a001 377/33385282*10749957122^(5/8) 2100948993031711 a001 377/33385282*4106118243^(15/23) 2100948993031711 a001 377/33385282*1568397607^(15/22) 2100948993031711 a001 377/33385282*599074578^(5/7) 2100948993031711 a001 1866294/88831 2100948993031711 a001 377/33385282*228826127^(3/4) 2100948993031712 a001 377/33385282*87403803^(15/19) 2100948993031713 a004 Fibonacci(14)*Lucas(37)/(1/2+sqrt(5)/2)^43 2100948993031713 a001 377/33385282*33385282^(5/6) 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^32/Lucas(38) 2100948993031713 a001 377/87403803*23725150497407^(1/2) 2100948993031713 a001 377/87403803*505019158607^(4/7) 2100948993031713 a001 377/87403803*73681302247^(8/13) 2100948993031713 a001 377/87403803*10749957122^(2/3) 2100948993031713 a001 377/87403803*4106118243^(16/23) 2100948993031713 a001 377/87403803*1568397607^(8/11) 2100948993031713 a001 14736239713/701408733 2100948993031713 a001 377/87403803*599074578^(16/21) 2100948993031713 a001 377/87403803*228826127^(4/5) 2100948993031713 a004 Fibonacci(14)*Lucas(39)/(1/2+sqrt(5)/2)^45 2100948993031713 a001 377/599074578*141422324^(12/13) 2100948993031713 a001 377/87403803*87403803^(16/19) 2100948993031713 a001 377/228826127*45537549124^(2/3) 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^34/Lucas(40) 2100948993031713 a001 377/228826127*10749957122^(17/24) 2100948993031713 a001 377/228826127*4106118243^(17/23) 2100948993031713 a001 38579976435/1836311903 2100948993031713 a001 377/228826127*1568397607^(17/22) 2100948993031713 a001 377/228826127*599074578^(17/21) 2100948993031713 a004 Fibonacci(14)*Lucas(41)/(1/2+sqrt(5)/2)^47 2100948993031713 a001 377/599074578*2537720636^(4/5) 2100948993031713 a001 377/228826127*228826127^(17/20) 2100948993031713 a001 377/599074578*45537549124^(12/17) 2100948993031713 a001 377/599074578*14662949395604^(4/7) 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^36/Lucas(42) 2100948993031713 a001 377/599074578*505019158607^(9/14) 2100948993031713 a001 377/599074578*192900153618^(2/3) 2100948993031713 a001 377/599074578*73681302247^(9/13) 2100948993031713 a001 377/599074578*10749957122^(3/4) 2100948993031713 a001 12625461199/600940872 2100948993031713 a001 377/599074578*4106118243^(18/23) 2100948993031713 a001 377/599074578*1568397607^(9/11) 2100948993031713 a004 Fibonacci(14)*Lucas(43)/(1/2+sqrt(5)/2)^49 2100948993031713 a001 377/1568397607*817138163596^(2/3) 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^38/Lucas(44) 2100948993031713 a001 264431092341/12586269025 2100948993031713 a001 377/1568397607*10749957122^(19/24) 2100948993031713 a001 377/599074578*599074578^(6/7) 2100948993031713 a001 377/1568397607*4106118243^(19/23) 2100948993031713 a001 377/4106118243*2537720636^(8/9) 2100948993031713 a004 Fibonacci(14)*Lucas(45)/(1/2+sqrt(5)/2)^51 2100948993031713 a001 377/10749957122*2537720636^(14/15) 2100948993031713 a001 377/4106118243*312119004989^(8/11) 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^40/Lucas(46) 2100948993031713 a001 377/4106118243*23725150497407^(5/8) 2100948993031713 a001 377/4106118243*73681302247^(10/13) 2100948993031713 a001 692289587431/32951280099 2100948993031713 a001 377/4106118243*28143753123^(4/5) 2100948993031713 a001 377/1568397607*1568397607^(19/22) 2100948993031713 a001 377/4106118243*10749957122^(5/6) 2100948993031713 a004 Fibonacci(14)*Lucas(47)/(1/2+sqrt(5)/2)^53 2100948993031713 a001 377/10749957122*17393796001^(6/7) 2100948993031713 a001 377/10749957122*45537549124^(14/17) 2100948993031713 a001 377/10749957122*14662949395604^(2/3) 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^42/Lucas(48) 2100948993031713 a001 377/10749957122*505019158607^(3/4) 2100948993031713 a001 377/10749957122*192900153618^(7/9) 2100948993031713 a001 226554708744/10783446409 2100948993031713 a001 377/4106118243*4106118243^(20/23) 2100948993031713 a004 Fibonacci(14)*Lucas(49)/(1/2+sqrt(5)/2)^55 2100948993031713 a001 377/28143753123*312119004989^(4/5) 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^44/Lucas(50) 2100948993031713 a001 12586269025/599075421 2100948993031713 a001 377/28143753123*73681302247^(11/13) 2100948993031713 a001 377/10749957122*10749957122^(7/8) 2100948993031713 a004 Fibonacci(14)*Lucas(51)/(1/2+sqrt(5)/2)^57 2100948993031713 a001 377/192900153618*45537549124^(16/17) 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^46/Lucas(52) 2100948993031713 a001 12422632597323/591286729879 2100948993031713 a004 Fibonacci(14)*Lucas(53)/(1/2+sqrt(5)/2)^59 2100948993031713 a001 377/192900153618*14662949395604^(16/21) 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^48/Lucas(54) 2100948993031713 a001 4065359296193/193501094490 2100948993031713 a001 377/505019158607*312119004989^(10/11) 2100948993031713 a004 Fibonacci(14)*Lucas(55)/(1/2+sqrt(5)/2)^61 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^50/Lucas(56) 2100948993031713 a001 377/192900153618*192900153618^(8/9) 2100948993031713 a004 Fibonacci(14)*Lucas(57)/(1/2+sqrt(5)/2)^63 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^52/Lucas(58) 2100948993031713 a004 Fibonacci(14)*Lucas(59)/(1/2+sqrt(5)/2)^65 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^54/Lucas(60) 2100948993031713 a004 Fibonacci(14)*Lucas(61)/(1/2+sqrt(5)/2)^67 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^56/Lucas(62) 2100948993031713 a004 Fibonacci(14)*Lucas(63)/(1/2+sqrt(5)/2)^69 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^58/Lucas(64) 2100948993031713 a004 Fibonacci(14)*Lucas(65)/(1/2+sqrt(5)/2)^71 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^60/Lucas(66) 2100948993031713 a004 Fibonacci(14)*Lucas(67)/(1/2+sqrt(5)/2)^73 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^62/Lucas(68) 2100948993031713 a004 Fibonacci(14)*Lucas(69)/(1/2+sqrt(5)/2)^75 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^64/Lucas(70) 2100948993031713 a004 Fibonacci(14)*Lucas(71)/(1/2+sqrt(5)/2)^77 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^66/Lucas(72) 2100948993031713 a004 Fibonacci(14)*Lucas(73)/(1/2+sqrt(5)/2)^79 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^68/Lucas(74) 2100948993031713 a004 Fibonacci(14)*Lucas(75)/(1/2+sqrt(5)/2)^81 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^70/Lucas(76) 2100948993031713 a004 Fibonacci(14)*Lucas(77)/(1/2+sqrt(5)/2)^83 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^72/Lucas(78) 2100948993031713 a004 Fibonacci(14)*Lucas(79)/(1/2+sqrt(5)/2)^85 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^74/Lucas(80) 2100948993031713 a004 Fibonacci(14)*Lucas(81)/(1/2+sqrt(5)/2)^87 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^76/Lucas(82) 2100948993031713 a004 Fibonacci(14)*Lucas(83)/(1/2+sqrt(5)/2)^89 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^78/Lucas(84) 2100948993031713 a004 Fibonacci(14)*Lucas(85)/(1/2+sqrt(5)/2)^91 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^80/Lucas(86) 2100948993031713 a004 Fibonacci(14)*Lucas(87)/(1/2+sqrt(5)/2)^93 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^82/Lucas(88) 2100948993031713 a004 Fibonacci(14)*Lucas(89)/(1/2+sqrt(5)/2)^95 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^84/Lucas(90) 2100948993031713 a004 Fibonacci(14)*Lucas(91)/(1/2+sqrt(5)/2)^97 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^86/Lucas(92) 2100948993031713 a004 Fibonacci(14)*Lucas(93)/(1/2+sqrt(5)/2)^99 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^88/Lucas(94) 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^90/Lucas(96) 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^92/Lucas(98) 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^93/Lucas(99) 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^94/Lucas(100) 2100948993031713 a004 Fibonacci(7)*Lucas(7)/(1/2+sqrt(5)/2)^6 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^91/Lucas(97) 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^89/Lucas(95) 2100948993031713 a004 Fibonacci(14)*Lucas(94)/(1/2+sqrt(5)/2)^100 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^87/Lucas(93) 2100948993031713 a004 Fibonacci(14)*Lucas(92)/(1/2+sqrt(5)/2)^98 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^85/Lucas(91) 2100948993031713 a004 Fibonacci(14)*Lucas(90)/(1/2+sqrt(5)/2)^96 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^83/Lucas(89) 2100948993031713 a004 Fibonacci(14)*Lucas(88)/(1/2+sqrt(5)/2)^94 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^81/Lucas(87) 2100948993031713 a004 Fibonacci(14)*Lucas(86)/(1/2+sqrt(5)/2)^92 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^79/Lucas(85) 2100948993031713 a004 Fibonacci(14)*Lucas(84)/(1/2+sqrt(5)/2)^90 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^77/Lucas(83) 2100948993031713 a004 Fibonacci(14)*Lucas(82)/(1/2+sqrt(5)/2)^88 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^75/Lucas(81) 2100948993031713 a004 Fibonacci(14)*Lucas(80)/(1/2+sqrt(5)/2)^86 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^73/Lucas(79) 2100948993031713 a004 Fibonacci(14)*Lucas(78)/(1/2+sqrt(5)/2)^84 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^71/Lucas(77) 2100948993031713 a004 Fibonacci(14)*Lucas(76)/(1/2+sqrt(5)/2)^82 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^69/Lucas(75) 2100948993031713 a004 Fibonacci(14)*Lucas(74)/(1/2+sqrt(5)/2)^80 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^67/Lucas(73) 2100948993031713 a004 Fibonacci(14)*Lucas(72)/(1/2+sqrt(5)/2)^78 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^65/Lucas(71) 2100948993031713 a004 Fibonacci(14)*Lucas(70)/(1/2+sqrt(5)/2)^76 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^63/Lucas(69) 2100948993031713 a004 Fibonacci(14)*Lucas(68)/(1/2+sqrt(5)/2)^74 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^61/Lucas(67) 2100948993031713 a004 Fibonacci(14)*Lucas(66)/(1/2+sqrt(5)/2)^72 2100948993031713 a001 13/505618944676*14662949395604^(19/21) 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^59/Lucas(65) 2100948993031713 a004 Fibonacci(14)*Lucas(64)/(1/2+sqrt(5)/2)^70 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^57/Lucas(63) 2100948993031713 a004 Fibonacci(14)*Lucas(62)/(1/2+sqrt(5)/2)^68 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^55/Lucas(61) 2100948993031713 a004 Fibonacci(14)*Lucas(60)/(1/2+sqrt(5)/2)^66 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^53/Lucas(59) 2100948993031713 a004 Fibonacci(14)*Lucas(58)/(1/2+sqrt(5)/2)^64 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^51/Lucas(57) 2100948993031713 a001 377/1322157322203*505019158607^(13/14) 2100948993031713 a004 Fibonacci(14)*Lucas(56)/(1/2+sqrt(5)/2)^62 2100948993031713 a001 52623116141765/2504730781961 2100948993031713 a001 377/312119004989*14662949395604^(7/9) 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^49/Lucas(55) 2100948993031713 a001 377/312119004989*505019158607^(7/8) 2100948993031713 a004 Fibonacci(14)*Lucas(54)/(1/2+sqrt(5)/2)^60 2100948993031713 a001 377/817138163596*192900153618^(17/18) 2100948993031713 a001 377/45537549124*45537549124^(15/17) 2100948993031713 a001 20100241772221/956722026041 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^47/Lucas(53) 2100948993031713 a001 377/192900153618*73681302247^(12/13) 2100948993031713 a004 Fibonacci(14)*Lucas(52)/(1/2+sqrt(5)/2)^58 2100948993031713 a001 377/45537549124*312119004989^(9/11) 2100948993031713 a001 377/45537549124*14662949395604^(5/7) 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^45/Lucas(51) 2100948993031713 a001 377/45537549124*192900153618^(5/6) 2100948993031713 a004 Fibonacci(14)*Lucas(50)/(1/2+sqrt(5)/2)^56 2100948993031713 a001 377/45537549124*28143753123^(9/10) 2100948993031713 a001 2932585752473/139583862445 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^43/Lucas(49) 2100948993031713 a001 377/28143753123*10749957122^(11/12) 2100948993031713 a001 377/73681302247*10749957122^(23/24) 2100948993031713 a001 377/45537549124*10749957122^(15/16) 2100948993031713 a004 Fibonacci(14)*Lucas(48)/(1/2+sqrt(5)/2)^54 2100948993031713 a001 377/2537720636*2537720636^(13/15) 2100948993031713 a001 1120148082521/53316291173 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^41/Lucas(47) 2100948993031713 a001 377/10749957122*4106118243^(21/23) 2100948993031713 a001 377/28143753123*4106118243^(22/23) 2100948993031713 a004 Fibonacci(14)*Lucas(46)/(1/2+sqrt(5)/2)^52 2100948993031713 a001 213929247545/10182505537 2100948993031713 a001 377/2537720636*45537549124^(13/17) 2100948993031713 a001 377/2537720636*14662949395604^(13/21) 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^39/Lucas(45) 2100948993031713 a001 377/2537720636*192900153618^(13/18) 2100948993031713 a001 377/2537720636*73681302247^(3/4) 2100948993031713 a001 377/2537720636*10749957122^(13/16) 2100948993031713 a001 377/4106118243*1568397607^(10/11) 2100948993031713 a001 377/10749957122*1568397607^(21/22) 2100948993031713 a004 Fibonacci(14)*Lucas(44)/(1/2+sqrt(5)/2)^50 2100948993031713 a001 12571338673/598364773 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^37/Lucas(43) 2100948993031713 a001 377/1568397607*599074578^(19/21) 2100948993031713 a001 377/4106118243*599074578^(20/21) 2100948993031713 a001 377/2537720636*599074578^(13/14) 2100948993031713 a004 Fibonacci(14)*Lucas(42)/(1/2+sqrt(5)/2)^48 2100948993031713 a001 377/370248451*2537720636^(7/9) 2100948993031713 a001 62423713157/2971215073 2100948993031713 a001 377/370248451*17393796001^(5/7) 2100948993031713 a001 377/370248451*312119004989^(7/11) 2100948993031713 a001 377/370248451*14662949395604^(5/9) 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^35/Lucas(41) 2100948993031713 a001 377/370248451*505019158607^(5/8) 2100948993031713 a001 377/370248451*28143753123^(7/10) 2100948993031713 a001 377/141422324*141422324^(11/13) 2100948993031713 a001 377/370248451*599074578^(5/6) 2100948993031713 a001 377/599074578*228826127^(9/10) 2100948993031713 a001 377/1568397607*228826127^(19/20) 2100948993031713 a004 Fibonacci(14)*Lucas(40)/(1/2+sqrt(5)/2)^46 2100948993031713 a001 377/370248451*228826127^(7/8) 2100948993031713 a001 11921868361/567451585 2100948993031713 a001 377/141422324*2537720636^(11/15) 2100948993031713 a001 377/141422324*45537549124^(11/17) 2100948993031713 a001 377/141422324*312119004989^(3/5) 2100948993031713 a001 377/141422324*14662949395604^(11/21) 2100948993031713 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^33/Lucas(39) 2100948993031713 a001 377/141422324*192900153618^(11/18) 2100948993031713 a001 377/141422324*10749957122^(11/16) 2100948993031713 a001 377/141422324*1568397607^(3/4) 2100948993031713 a001 377/141422324*599074578^(11/14) 2100948993031713 a001 377/228826127*87403803^(17/19) 2100948993031714 a001 377/599074578*87403803^(18/19) 2100948993031714 a004 Fibonacci(14)*Lucas(38)/(1/2+sqrt(5)/2)^44 2100948993031714 a001 9107497009/433494437 2100948993031714 a004 Fibonacci(14)*(1/2+sqrt(5)/2)^31/Lucas(37) 2100948993031714 a001 377/54018521*9062201101803^(1/2) 2100948993031715 a001 377/87403803*33385282^(8/9) 2100948993031715 a001 377/228826127*33385282^(17/18) 2100948993031715 a001 377/141422324*33385282^(11/12) 2100948993031715 a004 Fibonacci(14)*Lucas(36)/(1/2+sqrt(5)/2)^42 2100948993031718 a001 3478754305/165580141 2100948993031718 a001 13/711491*(1/2+1/2*5^(1/2))^29 2100948993031718 a001 13/711491*1322157322203^(1/2) 2100948993031719 a001 377/7881196*7881196^(9/11) 2100948993031723 a001 377/33385282*12752043^(15/17) 2100948993031725 a001 377/87403803*12752043^(16/17) 2100948993031726 a004 Fibonacci(14)*Lucas(34)/(1/2+sqrt(5)/2)^40 2100948993031747 a001 664382953/31622993 2100948993031747 a001 377/7881196*141422324^(9/13) 2100948993031747 a001 377/7881196*2537720636^(3/5) 2100948993031747 a001 377/7881196*45537549124^(9/17) 2100948993031747 a001 377/7881196*14662949395604^(3/7) 2100948993031747 a001 377/7881196*(1/2+1/2*5^(1/2))^27 2100948993031747 a001 377/7881196*192900153618^(1/2) 2100948993031747 a001 377/7881196*10749957122^(9/16) 2100948993031747 a001 377/7881196*599074578^(9/14) 2100948993031749 a001 377/7881196*33385282^(3/4) 2100948993031778 a001 377/12752043*4870847^(7/8) 2100948993031794 a001 377/33385282*4870847^(15/16) 2100948993031802 a004 Fibonacci(14)*Lucas(32)/(1/2+sqrt(5)/2)^38 2100948993031942 a001 377/3010349*20633239^(5/7) 2100948993031944 a001 507543413/24157817 2100948993031945 a001 377/3010349*2537720636^(5/9) 2100948993031945 a001 377/3010349*312119004989^(5/11) 2100948993031945 a001 377/3010349*(1/2+1/2*5^(1/2))^25 2100948993031945 a001 377/3010349*3461452808002^(5/12) 2100948993031945 a001 377/3010349*28143753123^(1/2) 2100948993031945 a001 377/3010349*228826127^(5/8) 2100948993032151 a001 377/4870847*1860498^(13/15) 2100948993032267 a001 377/12752043*1860498^(14/15) 2100948993032293 a001 377/7881196*1860498^(9/10) 2100948993032320 a004 Fibonacci(14)*Lucas(30)/(1/2+sqrt(5)/2)^36 2100948993032451 a001 377/3010349*1860498^(5/6) 2100948993033297 a001 14912641/709805 2100948993033302 a001 377/1149851*(1/2+1/2*5^(1/2))^23 2100948993033302 a001 377/1149851*4106118243^(1/2) 2100948993034134 a001 377/439204*439204^(7/9) 2100948993034672 a001 377/1860498*710647^(6/7) 2100948993035266 a004 Fibonacci(30)/Lucas(14)/(1/2+sqrt(5)/2)^8 2100948993035488 a001 377/4870847*710647^(13/14) 2100948993035785 a004 Fibonacci(32)/Lucas(14)/(1/2+sqrt(5)/2)^10 2100948993035860 a004 Fibonacci(34)/Lucas(14)/(1/2+sqrt(5)/2)^12 2100948993035872 a004 Fibonacci(36)/Lucas(14)/(1/2+sqrt(5)/2)^14 2100948993035873 a004 Fibonacci(38)/Lucas(14)/(1/2+sqrt(5)/2)^16 2100948993035873 a004 Fibonacci(40)/Lucas(14)/(1/2+sqrt(5)/2)^18 2100948993035873 a004 Fibonacci(42)/Lucas(14)/(1/2+sqrt(5)/2)^20 2100948993035873 a004 Fibonacci(44)/Lucas(14)/(1/2+sqrt(5)/2)^22 2100948993035873 a004 Fibonacci(46)/Lucas(14)/(1/2+sqrt(5)/2)^24 2100948993035873 a004 Fibonacci(48)/Lucas(14)/(1/2+sqrt(5)/2)^26 2100948993035873 a004 Fibonacci(50)/Lucas(14)/(1/2+sqrt(5)/2)^28 2100948993035873 a004 Fibonacci(52)/Lucas(14)/(1/2+sqrt(5)/2)^30 2100948993035873 a004 Fibonacci(54)/Lucas(14)/(1/2+sqrt(5)/2)^32 2100948993035873 a004 Fibonacci(14)*Lucas(28)/(1/2+sqrt(5)/2)^34 2100948993035873 a004 Fibonacci(58)/Lucas(14)/(1/2+sqrt(5)/2)^36 2100948993035873 a004 Fibonacci(60)/Lucas(14)/(1/2+sqrt(5)/2)^38 2100948993035873 a004 Fibonacci(62)/Lucas(14)/(1/2+sqrt(5)/2)^40 2100948993035873 a004 Fibonacci(64)/Lucas(14)/(1/2+sqrt(5)/2)^42 2100948993035873 a004 Fibonacci(66)/Lucas(14)/(1/2+sqrt(5)/2)^44 2100948993035873 a004 Fibonacci(68)/Lucas(14)/(1/2+sqrt(5)/2)^46 2100948993035873 a004 Fibonacci(70)/Lucas(14)/(1/2+sqrt(5)/2)^48 2100948993035873 a004 Fibonacci(72)/Lucas(14)/(1/2+sqrt(5)/2)^50 2100948993035873 a004 Fibonacci(74)/Lucas(14)/(1/2+sqrt(5)/2)^52 2100948993035873 a004 Fibonacci(76)/Lucas(14)/(1/2+sqrt(5)/2)^54 2100948993035873 a004 Fibonacci(78)/Lucas(14)/(1/2+sqrt(5)/2)^56 2100948993035873 a004 Fibonacci(80)/Lucas(14)/(1/2+sqrt(5)/2)^58 2100948993035873 a004 Fibonacci(82)/Lucas(14)/(1/2+sqrt(5)/2)^60 2100948993035873 a004 Fibonacci(84)/Lucas(14)/(1/2+sqrt(5)/2)^62 2100948993035873 a004 Fibonacci(86)/Lucas(14)/(1/2+sqrt(5)/2)^64 2100948993035873 a004 Fibonacci(88)/Lucas(14)/(1/2+sqrt(5)/2)^66 2100948993035873 a004 Fibonacci(90)/Lucas(14)/(1/2+sqrt(5)/2)^68 2100948993035873 a004 Fibonacci(92)/Lucas(14)/(1/2+sqrt(5)/2)^70 2100948993035873 a004 Fibonacci(94)/Lucas(14)/(1/2+sqrt(5)/2)^72 2100948993035873 a004 Fibonacci(96)/Lucas(14)/(1/2+sqrt(5)/2)^74 2100948993035873 a004 Fibonacci(100)/Lucas(14)/(1/2+sqrt(5)/2)^78 2100948993035873 a004 Fibonacci(97)/Lucas(14)/(1/2+sqrt(5)/2)^75 2100948993035873 a004 Fibonacci(98)/Lucas(14)/(1/2+sqrt(5)/2)^76 2100948993035873 a004 Fibonacci(99)/Lucas(14)/(1/2+sqrt(5)/2)^77 2100948993035873 a004 Fibonacci(95)/Lucas(14)/(1/2+sqrt(5)/2)^73 2100948993035873 a004 Fibonacci(93)/Lucas(14)/(1/2+sqrt(5)/2)^71 2100948993035873 a004 Fibonacci(91)/Lucas(14)/(1/2+sqrt(5)/2)^69 2100948993035873 a004 Fibonacci(89)/Lucas(14)/(1/2+sqrt(5)/2)^67 2100948993035873 a004 Fibonacci(87)/Lucas(14)/(1/2+sqrt(5)/2)^65 2100948993035873 a004 Fibonacci(85)/Lucas(14)/(1/2+sqrt(5)/2)^63 2100948993035873 a004 Fibonacci(83)/Lucas(14)/(1/2+sqrt(5)/2)^61 2100948993035873 a004 Fibonacci(81)/Lucas(14)/(1/2+sqrt(5)/2)^59 2100948993035873 a004 Fibonacci(79)/Lucas(14)/(1/2+sqrt(5)/2)^57 2100948993035873 a004 Fibonacci(77)/Lucas(14)/(1/2+sqrt(5)/2)^55 2100948993035873 a004 Fibonacci(75)/Lucas(14)/(1/2+sqrt(5)/2)^53 2100948993035873 a004 Fibonacci(73)/Lucas(14)/(1/2+sqrt(5)/2)^51 2100948993035873 a004 Fibonacci(71)/Lucas(14)/(1/2+sqrt(5)/2)^49 2100948993035873 a004 Fibonacci(69)/Lucas(14)/(1/2+sqrt(5)/2)^47 2100948993035873 a004 Fibonacci(67)/Lucas(14)/(1/2+sqrt(5)/2)^45 2100948993035873 a004 Fibonacci(65)/Lucas(14)/(1/2+sqrt(5)/2)^43 2100948993035873 a004 Fibonacci(63)/Lucas(14)/(1/2+sqrt(5)/2)^41 2100948993035873 a004 Fibonacci(61)/Lucas(14)/(1/2+sqrt(5)/2)^39 2100948993035873 a004 Fibonacci(59)/Lucas(14)/(1/2+sqrt(5)/2)^37 2100948993035873 a004 Fibonacci(57)/Lucas(14)/(1/2+sqrt(5)/2)^35 2100948993035873 a004 Fibonacci(55)/Lucas(14)/(1/2+sqrt(5)/2)^33 2100948993035873 a004 Fibonacci(53)/Lucas(14)/(1/2+sqrt(5)/2)^31 2100948993035873 a004 Fibonacci(51)/Lucas(14)/(1/2+sqrt(5)/2)^29 2100948993035873 a004 Fibonacci(49)/Lucas(14)/(1/2+sqrt(5)/2)^27 2100948993035873 a004 Fibonacci(47)/Lucas(14)/(1/2+sqrt(5)/2)^25 2100948993035873 a004 Fibonacci(45)/Lucas(14)/(1/2+sqrt(5)/2)^23 2100948993035873 a004 Fibonacci(43)/Lucas(14)/(1/2+sqrt(5)/2)^21 2100948993035873 a004 Fibonacci(41)/Lucas(14)/(1/2+sqrt(5)/2)^19 2100948993035874 a004 Fibonacci(39)/Lucas(14)/(1/2+sqrt(5)/2)^17 2100948993035874 a004 Fibonacci(37)/Lucas(14)/(1/2+sqrt(5)/2)^15 2100948993035878 a004 Fibonacci(35)/Lucas(14)/(1/2+sqrt(5)/2)^13 2100948993035907 a004 Fibonacci(33)/Lucas(14)/(1/2+sqrt(5)/2)^11 2100948993036105 a004 Fibonacci(31)/Lucas(14)/(1/2+sqrt(5)/2)^9 2100948993037462 a004 Fibonacci(29)/Lucas(14)/(1/2+sqrt(5)/2)^7 2100948993042571 a001 37024793/1762289 2100948993042583 a001 377/439204*7881196^(7/11) 2100948993042602 a001 377/439204*20633239^(3/5) 2100948993042605 a001 377/439204*141422324^(7/13) 2100948993042605 a001 377/439204*2537720636^(7/15) 2100948993042605 a001 377/439204*17393796001^(3/7) 2100948993042605 a001 377/439204*45537549124^(7/17) 2100948993042605 a001 377/439204*14662949395604^(1/3) 2100948993042605 a001 377/439204*(1/2+1/2*5^(1/2))^21 2100948993042605 a001 377/439204*192900153618^(7/18) 2100948993042605 a001 377/439204*10749957122^(7/16) 2100948993042605 a001 377/439204*599074578^(1/2) 2100948993042606 a001 377/439204*33385282^(7/12) 2100948993043030 a001 377/439204*1860498^(7/10) 2100948993045725 a001 377/439204*710647^(3/4) 2100948993046765 a004 Fibonacci(27)/Lucas(14)/(1/2+sqrt(5)/2)^5 2100948993051680 a001 377/710647*271443^(11/13) 2100948993057427 a001 377/1860498*271443^(12/13) 2100948993060227 a004 Fibonacci(14)*Lucas(26)/(1/2+sqrt(5)/2)^32 2100948993106132 a001 28284425/1346269 2100948993106364 a001 377/167761*817138163596^(1/3) 2100948993106364 a001 377/167761*(1/2+1/2*5^(1/2))^19 2100948993106364 a001 377/167761*87403803^(1/2) 2100948993110524 a004 Fibonacci(25)/Lucas(14)/(1/2+sqrt(5)/2)^3 2100948993165191 a001 377/64079*64079^(17/23) 2100948993166064 a001 377/271443*103682^(5/6) 2100948993206705 a001 377/710647*103682^(11/12) 2100948993213613 a001 377/439204*103682^(7/8) 2100948993220597 a001 377/1149851*103682^(23/24) 2100948993227151 a004 Fibonacci(14)*Lucas(24)/(1/2+sqrt(5)/2)^30 2100948993261086 a001 377/167761*103682^(19/24) 2100948993541787 a001 10803689/514229 2100948993543376 a001 377/64079*45537549124^(1/3) 2100948993543376 a001 377/64079*(1/2+1/2*5^(1/2))^17 2100948993543383 a001 377/64079*12752043^(1/2) 2100948993547536 a004 Fibonacci(23)/Lucas(14)/(1/2+sqrt(5)/2) 2100948993681812 a001 377/64079*103682^(17/24) 2100948993932272 a001 377/103682*39603^(9/11) 2100948994033711 a001 13/844*24476^(5/7) 2100948994220973 a001 377/271443*39603^(10/11) 2100948994263249 a001 377/167761*39603^(19/22) 2100948994321267 a001 377/439204*39603^(21/22) 2100948994371265 a004 Fibonacci(14)*Lucas(22)/(1/2+sqrt(5)/2)^28 2100948994578484 a001 377/64079*39603^(17/22) 2100948995220074 a001 17711/9349*521^(5/13) 2100948995277745 a001 10946/843*9349^(1/19) 2100948996205011 a001 13/844*64079^(15/23) 2100948996375865 a001 10946/843*24476^(1/21) 2100948996493914 a001 13/844*167761^(3/5) 2100948996520618 a001 10946/843*64079^(1/23) 2100948996527813 a001 2063321/98209 2100948996532653 a001 13/844*439204^(5/9) 2100948996538689 a001 13/844*7881196^(5/11) 2100948996538702 a001 13/844*20633239^(3/7) 2100948996538704 a001 13/844*141422324^(5/13) 2100948996538704 a001 13/844*2537720636^(1/3) 2100948996538704 a001 13/844*45537549124^(5/17) 2100948996538704 a001 13/844*312119004989^(3/11) 2100948996538704 a001 13/844*14662949395604^(5/21) 2100948996538704 a001 13/844*(1/2+1/2*5^(1/2))^15 2100948996538704 a001 13/844*192900153618^(5/18) 2100948996538704 a001 13/844*28143753123^(3/10) 2100948996538704 a001 13/844*10749957122^(5/16) 2100948996538704 a001 13/844*599074578^(5/14) 2100948996538704 a001 13/844*228826127^(3/8) 2100948996538705 a001 13/844*33385282^(5/12) 2100948996539007 a001 13/844*1860498^(1/2) 2100948996542864 a001 5473/843+5473/843*5^(1/2) 2100948996551007 a001 10946/843*103682^(1/24) 2100948996603753 a001 10946/843*39603^(1/22) 2100948996660853 a001 13/844*103682^(5/8) 2100948997001935 a001 10946/843*15127^(1/20) 2100948997452034 a001 13/844*39603^(15/22) 2100948997933585 a001 2/987*6557470319842^(4/17) 2100948999037299 a001 377/39603*15127^(4/5) 2100949000038997 a001 10946/843*5778^(1/18) 2100949000622431 a001 377/9349*9349^(13/19) 2100949001099554 a001 377/103682*15127^(9/10) 2100949001347584 a001 377/64079*15127^(17/20) 2100949001828714 a001 377/167761*15127^(19/20) 2100949002213134 a004 Fibonacci(14)*Lucas(20)/(1/2+sqrt(5)/2)^26 2100949003424770 a001 13/844*15127^(3/4) 2100949013277787 a001 4181/843*9349^(3/19) 2100949014897991 a001 377/9349*24476^(13/21) 2100949016572147 a001 4181/843*24476^(1/7) 2100949016779785 a001 377/9349*64079^(13/23) 2100949016994335 a001 1576237/75025 2100949017006407 a001 4181/843*64079^(3/23) 2100949017068986 a001 377/9349*141422324^(1/3) 2100949017068986 a001 377/9349*(1/2+1/2*5^(1/2))^13 2100949017068986 a001 377/9349*73681302247^(1/4) 2100949017071935 a001 4181/843*439204^(1/9) 2100949017073142 a001 4181/843*7881196^(1/11) 2100949017073145 a001 4181/843*141422324^(1/13) 2100949017073145 a001 4181/843*2537720636^(1/15) 2100949017073145 a001 4181/843*45537549124^(1/17) 2100949017073145 a001 4181/843*14662949395604^(1/21) 2100949017073145 a001 4181/843*(1/2+1/2*5^(1/2))^3 2100949017073145 a001 4181/843*10749957122^(1/16) 2100949017073145 a001 4181/843*599074578^(1/14) 2100949017073146 a001 4181/843*33385282^(1/12) 2100949017073206 a001 4181/843*1860498^(1/10) 2100949017083243 a001 377/9349*271443^(1/2) 2100949017097575 a001 4181/843*103682^(1/8) 2100949017174848 a001 377/9349*103682^(13/24) 2100949017255812 a001 4181/843*39603^(3/22) 2100949017860539 a001 377/9349*39603^(13/22) 2100949018450359 a001 4181/843*15127^(3/20) 2100949023036909 a001 377/9349*15127^(13/20) 2100949023501071 a001 10946/843*2207^(1/16) 2100949027402402 m001 Champernowne-GAMMA(2/3)*Zeta(1/2) 2100949027561545 a001 4181/843*5778^(1/6) 2100949028889697 a007 Real Root Of 454*x^4-803*x^3-740*x^2-889*x+226 2100949029644317 m002 -2+Pi^2-Pi^3/ProductLog[Pi] 2100949032796155 a001 377/15127*5778^(7/9) 2100949037638627 m008 (3/4*Pi^4+2/5)/(2/5*Pi^4-4) 2100949037770866 a001 2255/281*2207^(1/8) 2100949037938303 a001 2584/843*2207^(1/4) 2100949038364082 a007 Real Root Of -515*x^4-820*x^3+395*x^2+59*x+810 2100949042060238 a005 (1/cos(11/163*Pi))^1253 2100949047630291 a001 377/39603*5778^(8/9) 2100949048980700 a001 13/844*5778^(5/6) 2100949051180157 a001 377/3571*3571^(11/17) 2100949052977639 a001 377/64079*5778^(17/18) 2100949053333823 r008 a(0)=2,K{-n^6,44-36*n-59*n^2+42*n^3} 2100949055962109 a004 Fibonacci(14)*Lucas(18)/(1/2+sqrt(5)/2)^24 2100949062518716 a001 377/9349*5778^(13/18) 2100949063312728 a003 cos(Pi*40/117)-cos(Pi*41/99) 2100949068836006 m001 exp(GAMMA(7/24))*OneNinth^2/Zeta(3) 2100949074591288 a001 3571/701408733*89^(6/19) 2100949075825562 l006 ln(4042/4987) 2100949090061934 m001 HeathBrownMoroz^TwinPrimes-Riemann2ndZero 2100949092686755 m005 (1/2*Pi-1/8)/(7/8*Zeta(3)-4/11) 2100949093978732 r005 Re(z^2+c),c=-25/23+8/29*I,n=6 2100949094046591 q001 487/2318 2100949097747511 a001 9349/17711*4181^(28/39) 2100949097947767 a001 4181/843*2207^(3/16) 2100949104924160 m001 (1-Zeta(3))/(sin(1/5*Pi)+Artin) 2100949109186811 m001 PlouffeB^(MadelungNaCl/FeigenbaumB) 2100949109332749 a001 1597/843*3571^(5/17) 2100949117133680 a001 6119/11592*4181^(28/39) 2100949117461297 p004 log(31723/3881) 2100949119954439 a007 Real Root Of -855*x^4+804*x^3-56*x^2+572*x-12 2100949121710134 a001 39603/75025*4181^(28/39) 2100949122543754 r005 Im(z^2+c),c=-19/18+42/185*I,n=29 2100949126129489 s002 sum(A115763[n]/((exp(n)+1)*n),n=1..infinity) 2100949126467630 m001 (Champernowne+Paris)^Zeta(5) 2100949127389728 a001 6765/2207*521^(4/13) 2100949128094857 a001 6765/3571*521^(5/13) 2100949129114991 a001 15127/28657*4181^(28/39) 2100949143869323 a001 377/3571*9349^(11/19) 2100949149690291 r009 Im(z^3+c),c=-3/64+31/35*I,n=18 2100949151464189 a001 1597/843*9349^(5/19) 2100949155948645 a001 377/3571*24476^(11/21) 2100949156384058 r005 Re(z^2+c),c=-3/29+39/59*I,n=27 2100949156954789 a001 1597/843*24476^(5/21) 2100949157273964 a001 602069/28657 2100949157540932 a001 377/3571*64079^(11/23) 2100949157678556 a001 1597/843*64079^(5/23) 2100949157774857 a001 1597/843*167761^(1/5) 2100949157785629 a001 377/3571*7881196^(1/3) 2100949157785640 a001 377/3571*312119004989^(1/5) 2100949157785640 a001 377/3571*(1/2+1/2*5^(1/2))^11 2100949157785640 a001 377/3571*1568397607^(1/4) 2100949157789787 a001 1597/843*20633239^(1/7) 2100949157789787 a001 1597/843*2537720636^(1/9) 2100949157789787 a001 1597/843*312119004989^(1/11) 2100949157789787 a001 1597/843*(1/2+1/2*5^(1/2))^5 2100949157789787 a001 1597/843*28143753123^(1/10) 2100949157789787 a001 1597/843*228826127^(1/8) 2100949157789888 a001 1597/843*1860498^(1/6) 2100949157830503 a001 1597/843*103682^(5/24) 2100949157875216 a001 377/3571*103682^(11/24) 2100949158094231 a001 1597/843*39603^(5/22) 2100949158455416 a001 377/3571*39603^(1/2) 2100949160085143 a001 1597/843*15127^(1/4) 2100949160430017 m005 (1/2*exp(1)+5)/(7/9*Pi+7/12) 2100949162835422 a001 377/3571*15127^(11/20) 2100949165339443 m001 Si(Pi)^FransenRobinson/Khinchin 2100949165737061 a007 Real Root Of 604*x^4-186*x^3+264*x^2-367*x+66 2100949166775991 p003 LerchPhi(1/512,3,57/73) 2100949175270454 a001 1597/843*5778^(5/18) 2100949176358466 a001 9349/8*5702887^(7/9) 2100949179868641 a001 2889/5473*4181^(28/39) 2100949184013347 m001 MertensB1^ThueMorse/(MertensB1^cos(1/12*Pi)) 2100949185858192 m001 (3^(1/2)+GAMMA(19/24))/(Mills+ZetaP(4)) 2100949191370927 m005 (1/2*gamma-7/10)/(4/9*exp(1)+3/4) 2100949196243107 a001 377/3571*5778^(11/18) 2100949197213080 m001 (cos(1)+Zeta(5))/(Stephens+ZetaP(3)) 2100949199550605 m001 exp(GAMMA(23/24))^2*GAMMA(13/24)^2*Zeta(9)^2 2100949200482326 a001 271443/8*75025^(7/9) 2100949207713371 a001 10946/843*843^(1/14) 2100949211792333 r005 Re(z^2+c),c=7/58+11/28*I,n=59 2100949213086034 m001 Pi-Psi(1,1/3)*(Si(Pi)+cos(1)) 2100949215307946 a001 9349/1836311903*89^(6/19) 2100949224391305 m001 (Niven*Trott2nd+Trott)/Trott2nd 2100949234970230 m001 Zeta(1,-1)^Magata/(MertensB1^Magata) 2100949235838230 a001 6119/1201881744*89^(6/19) 2100949238833558 a001 64079/12586269025*89^(6/19) 2100949239053932 m001 (Landau+MadelungNaCl)/(ln(gamma)+GAMMA(13/24)) 2100949239270570 a001 167761/32951280099*89^(6/19) 2100949239334329 a001 1/196418*89^(6/19) 2100949239343632 a001 1149851/225851433717*89^(6/19) 2100949239344989 a001 3010349/591286729879*89^(6/19) 2100949239345187 a001 1970299/387002188980*89^(6/19) 2100949239345216 a001 20633239/4052739537881*89^(6/19) 2100949239345220 a001 54018521/10610209857723*89^(6/19) 2100949239345223 a001 16692641/3278735159921*89^(6/19) 2100949239345234 a001 12752043/2504730781961*89^(6/19) 2100949239345309 a001 4870847/956722026041*89^(6/19) 2100949239345828 a001 930249/182717648081*89^(6/19) 2100949239349381 a001 710647/139583862445*89^(6/19) 2100949239373735 a001 271443/53316291173*89^(6/19) 2100949239540659 a001 51841/10182505537*89^(6/19) 2100949240684772 a001 39603/7778742049*89^(6/19) 2100949248526643 a001 15127/2971215073*89^(6/19) 2100949250038598 r005 Re(z^2+c),c=-1/54+24/41*I,n=21 2100949253599811 a001 377/5778*2207^(3/4) 2100949259381804 a007 Real Root Of 350*x^4+724*x^3-506*x^2-935*x+164 2100949268227468 m001 LaplaceLimit^2*HardHexagonsEntropy*ln(Rabbit) 2100949275918694 m002 -6/Pi^3+Pi^5*Csch[Pi]^2 2100949277723062 m001 (BesselI(1,1)+GAMMA(23/24))/(Porter-Rabbit) 2100949278411621 r005 Im(z^2+c),c=-41/70+23/59*I,n=6 2100949288077745 a007 Real Root Of 170*x^4+2*x^3-684*x^2-164*x-619 2100949292580834 a001 1597/843*2207^(5/16) 2100949302275623 a001 2889/567451585*89^(6/19) 2100949313063299 m001 (sin(1/12*Pi)-BesselI(1,1))/(FeigenbaumB+Kac) 2100949318272267 a003 sin(Pi*19/103)-sin(Pi*26/95) 2100949321481619 a001 17711/18*7^(23/59) 2100949324678204 m001 (BesselI(1,1)-GAMMA(7/12))/(Pi+exp(1/exp(1))) 2100949327303586 r005 Re(z^2+c),c=31/114+16/33*I,n=31 2100949343738140 m005 (1/2*Catalan+6/7)/(8/11*3^(1/2)+5) 2100949344721372 p004 log(27211/3329) 2100949348985939 m001 GAMMA(13/24)/Zeta(1,-1)/Bloch 2100949354839578 r005 Im(z^2+c),c=-115/126+10/51*I,n=23 2100949355985489 q001 1/4759753 2100949361265214 a001 377/15127*2207^(7/8) 2100949366798056 a007 Real Root Of 40*x^4+800*x^3-854*x^2-143*x-514 2100949367525702 a001 377/9349*2207^(13/16) 2100949367622418 r005 Im(z^2+c),c=51/122+10/47*I,n=27 2100949375497879 r009 Re(z^3+c),c=-21/86+14/57*I,n=11 2100949382665930 m001 ZetaQ(4)/Robbin/KhinchinLevy 2100949383958856 a007 Real Root Of 223*x^4+319*x^3-80*x^2+935*x+931 2100949395177930 l006 ln(6279/7747) 2100949396163827 m002 -E^Pi-3/Pi^5+Log[Pi]+Tanh[Pi] 2100949400911839 a001 13/844*2207^(15/16) 2100949403353465 m001 (Otter+ZetaP(4))/(sin(1)+BesselK(1,1)) 2100949405604127 r005 Im(z^2+c),c=-36/29+5/16*I,n=10 2100949406195486 a001 2255/281*843^(1/7) 2100949413821671 p004 log(26083/3191) 2100949414451134 m001 1/GAMMA(3/4)*Riemann2ndZero^2/exp(cos(1)) 2100949417835831 m005 (1/3*2^(1/2)-1/2)/(6/7*5^(1/2)-5/9) 2100949422367747 m001 (Catalan+ln(Pi))/(-MertensB2+ZetaQ(2)) 2100949424363059 a004 Fibonacci(14)*Lucas(16)/(1/2+sqrt(5)/2)^22 2100949427609719 m005 (5/4+1/4*5^(1/2))/(1/11*Catalan+7/9) 2100949429512366 h001 (3/11*exp(1)+5/6)/(10/11*exp(2)+7/9) 2100949443640280 m001 ln(Champernowne)/Backhouse/MertensB1^2 2100949444727933 a001 377/1364*1364^(3/5) 2100949444862371 a001 305/682*521^(8/13) 2100949448452383 m001 CopelandErdos-KomornikLoreti^MinimumGamma 2100949454325954 a001 377/3571*2207^(11/16) 2100949455397348 a007 Real Root Of -325*x^4+427*x^3-206*x^2+908*x-185 2100949456149160 s001 sum(exp(-2*Pi/3)^n*A209914[n],n=1..infinity) 2100949465084348 a007 Real Root Of -250*x^4-358*x^3+61*x^2-878*x-563 2100949469802828 a007 Real Root Of 626*x^4+636*x^3-922*x^2+692*x-775 2100949476789500 a007 Real Root Of 584*x^4+901*x^3-791*x^2-215*x+17 2100949477326791 r005 Im(z^2+c),c=-5/16+18/55*I,n=34 2100949483106806 m001 5^(1/2)/(ln(3)^LaplaceLimit) 2100949488424466 a007 Real Root Of 121*x^4-32*x^3-236*x^2+560*x-436 2100949503054386 h001 (4/9*exp(2)+5/7)/(2/3*exp(1)+1/11) 2100949503632563 a001 17711/5778*521^(4/13) 2100949505782010 m001 (MertensB2-Stephens)/(BesselI(1,2)+Lehmer) 2100949513656059 m001 Champernowne^2/Artin*exp(GAMMA(13/24)) 2100949514540206 r002 11th iterates of z^2 + 2100949520357024 a007 Real Root Of 621*x^4+958*x^3-429*x^2+262*x-771 2100949527739327 a001 2207/4181*4181^(28/39) 2100949536083987 r009 Re(z^3+c),c=-8/29+16/47*I,n=15 2100949542903344 a007 Real Root Of -211*x^4-198*x^3+214*x^2-438*x+410 2100949558525664 a001 6624/2161*521^(4/13) 2100949559851243 a007 Real Root Of -24*x^4-510*x^3-111*x^2+183*x-688 2100949565248201 a007 Real Root Of -394*x^4-561*x^3+429*x^2+56*x+698 2100949566534460 a001 121393/39603*521^(4/13) 2100949567331632 m001 Paris^LaplaceLimit*Paris^Trott 2100949567702928 a001 317811/103682*521^(4/13) 2100949567873405 a001 832040/271443*521^(4/13) 2100949567898277 a001 311187/101521*521^(4/13) 2100949567901906 a001 5702887/1860498*521^(4/13) 2100949567902435 a001 14930352/4870847*521^(4/13) 2100949567902512 a001 39088169/12752043*521^(4/13) 2100949567902524 a001 14619165/4769326*521^(4/13) 2100949567902525 a001 267914296/87403803*521^(4/13) 2100949567902526 a001 701408733/228826127*521^(4/13) 2100949567902526 a001 1836311903/599074578*521^(4/13) 2100949567902526 a001 686789568/224056801*521^(4/13) 2100949567902526 a001 12586269025/4106118243*521^(4/13) 2100949567902526 a001 32951280099/10749957122*521^(4/13) 2100949567902526 a001 86267571272/28143753123*521^(4/13) 2100949567902526 a001 32264490531/10525900321*521^(4/13) 2100949567902526 a001 591286729879/192900153618*521^(4/13) 2100949567902526 a001 1548008755920/505019158607*521^(4/13) 2100949567902526 a001 1515744265389/494493258286*521^(4/13) 2100949567902526 a001 2504730781961/817138163596*521^(4/13) 2100949567902526 a001 956722026041/312119004989*521^(4/13) 2100949567902526 a001 365435296162/119218851371*521^(4/13) 2100949567902526 a001 139583862445/45537549124*521^(4/13) 2100949567902526 a001 53316291173/17393796001*521^(4/13) 2100949567902526 a001 20365011074/6643838879*521^(4/13) 2100949567902526 a001 7778742049/2537720636*521^(4/13) 2100949567902526 a001 2971215073/969323029*521^(4/13) 2100949567902526 a001 1134903170/370248451*521^(4/13) 2100949567902526 a001 433494437/141422324*521^(4/13) 2100949567902526 a001 165580141/54018521*521^(4/13) 2100949567902531 a001 63245986/20633239*521^(4/13) 2100949567902560 a001 24157817/7881196*521^(4/13) 2100949567902762 a001 9227465/3010349*521^(4/13) 2100949567904148 a001 3524578/1149851*521^(4/13) 2100949567913649 a001 1346269/439204*521^(4/13) 2100949567978765 a001 514229/167761*521^(4/13) 2100949568425080 a001 196418/64079*521^(4/13) 2100949568515305 s001 sum(exp(-2*Pi/3)^n*A283760[n],n=1..infinity) 2100949571484168 a001 75025/24476*521^(4/13) 2100949574087807 a007 Real Root Of -625*x^4+954*x^3+807*x^2+946*x-242 2100949574290576 a007 Real Root Of -348*x^4-885*x^3-667*x^2-854*x-277 2100949576519790 s001 sum(exp(-Pi/4)^n*A057291[n],n=1..infinity) 2100949578356870 r005 Im(z^2+c),c=-23/52+22/61*I,n=40 2100949584917400 a007 Real Root Of -410*x^4-939*x^3-654*x^2-654*x+793 2100949587053395 a007 Real Root Of 440*x^4+447*x^3-857*x^2+293*x-29 2100949592451468 a001 28657/9349*521^(4/13) 2100949592896502 a007 Real Root Of 112*x^4-707*x^3+482*x^2+780*x+608 2100949592927396 m001 GAMMA(13/24)^2/exp(FeigenbaumKappa)^2*sinh(1) 2100949595296914 a001 610/843*1364^(7/15) 2100949597046293 a007 Real Root Of 750*x^4-290*x^3+417*x^2-559*x-140 2100949597069713 a001 47*(1/2*5^(1/2)+1/2)^10*843^(8/15) 2100949600687051 p001 sum((-1)^n/(493*n+83)/n/(8^n),n=1..infinity) 2100949606406879 m006 (5/6*ln(Pi)-1/3)/(5/6*ln(Pi)+2) 2100949607477427 h001 (3/4*exp(2)+7/9)/(4/5*exp(1)+5/6) 2100949618516906 m001 (GAMMA(13/24)-Shi(1))/(-Bloch+DuboisRaymond) 2100949620498676 m001 (ln(Pi)-Champernowne)/(MertensB1-RenyiParking) 2100949621570525 m001 (3^(1/2)-Paris)/(Sarnak+ZetaQ(2)) 2100949628731572 a007 Real Root Of -285*x^4-228*x^3+450*x^2-813*x-256 2100949635263904 p004 log(13267/10753) 2100949640133372 r005 Im(z^2+c),c=-13/62+17/57*I,n=20 2100949640649099 h001 (7/10*exp(2)+3/11)/(3/10*exp(2)+3/8) 2100949646453329 m009 (5*Psi(1,1/3)+3/4)/(6*Psi(1,2/3)+6) 2100949650584737 a001 4181/843*843^(3/14) 2100949651016443 h001 (7/8*exp(1)+10/11)/(3/8*exp(1)+6/11) 2100949652468319 h001 (2/7*exp(2)+3/8)/(1/10*exp(2)+4/9) 2100949654951572 m001 1/TreeGrowth2nd/Khintchine^2/exp(GAMMA(2/3))^2 2100949662328902 p004 log(22699/2777) 2100949663822116 m005 (1/2*3^(1/2)-4/5)/(2/7*Pi-7/12) 2100949663971831 m001 (Trott+ZetaP(3))/(ln(2^(1/2)+1)+gamma(3)) 2100949664099852 a007 Real Root Of 342*x^4+813*x^3+242*x^2-39*x-274 2100949667875367 m001 ln((3^(1/3)))*MertensB1^2*Catalan^2 2100949670676617 a001 2207/433494437*89^(6/19) 2100949671136705 a001 1597/1364*521^(6/13) 2100949672367853 a007 Real Root Of -456*x^4-448*x^3+809*x^2-326*x+474 2100949681926816 r005 Re(z^2+c),c=19/66+25/56*I,n=44 2100949682895616 m001 (Pi+GolombDickman*GAMMA(5/12))/GAMMA(5/12) 2100949682895616 m001 GolombDickman+cos(Pi/12)*GAMMA(7/12) 2100949682895616 m001 cos(1/12*Pi)*GAMMA(7/12)+GolombDickman 2100949690225798 m005 (1/6*exp(1)+1/4)/(3/5*gamma+3) 2100949691794908 a007 Real Root Of 462*x^4+820*x^3-448*x^2-114*x+341 2100949694676848 m001 1/BesselJ(0,1)^2*exp(Porter)^2/GAMMA(7/12) 2100949695114173 r002 47th iterates of z^2 + 2100949695750825 g001 abs(GAMMA(49/60+I*197/60)) 2100949697672667 m001 1/ln(GAMMA(1/4))/Salem/Pi 2100949707696487 r002 6th iterates of z^2 + 2100949708587911 h001 (1/8*exp(2)+7/11)/(8/9*exp(2)+6/7) 2100949711609318 m001 (cos(1)-sin(1/5*Pi))/(GAMMA(3/4)+MertensB2) 2100949712478885 s001 sum(1/10^(n-1)*A257423[n],n=1..infinity) 2100949712478885 s001 sum(1/10^n*A257423[n],n=1..infinity) 2100949716055135 s002 sum(A014514[n]/((exp(n)+1)/n),n=1..infinity) 2100949716098350 s002 sum(A014522[n]/((exp(n)+1)/n),n=1..infinity) 2100949720470494 s002 sum(A014514[n]/((exp(n)-1)/n),n=1..infinity) 2100949720522716 s002 sum(A014522[n]/((exp(n)-1)/n),n=1..infinity) 2100949723281656 s001 sum(exp(-Pi)^n*A044374[n],n=1..infinity) 2100949723281656 s002 sum(A044374[n]/(exp(pi*n)),n=1..infinity) 2100949724667007 a007 Real Root Of 398*x^4+615*x^3+30*x^2+768*x-570 2100949731159032 m008 (1/3*Pi^5+2)/(1/2*Pi^4+4/5) 2100949734265665 p004 log(18787/15227) 2100949735458360 a001 10946/2207*521^(3/13) 2100949736163489 a001 10946/3571*521^(4/13) 2100949737000557 r005 Im(z^2+c),c=-13/14+38/193*I,n=48 2100949748026325 h001 (2/5*exp(2)+1/5)/(1/2*exp(1)+1/7) 2100949752228502 a007 Real Root Of 393*x^4-838*x^3-404*x^2-901*x-180 2100949765780139 p003 LerchPhi(1/16,3,18/107) 2100949766362321 m001 BesselI(1,1)^(Ei(1)/ln(2)) 2100949766893252 r005 Im(z^2+c),c=-91/118+4/53*I,n=33 2100949767329669 r005 Re(z^2+c),c=-5/54+23/41*I,n=39 2100949774787608 a001 2584/843*843^(2/7) 2100949786660515 m005 (1/2*exp(1)-3/10)/(6*Catalan-5/11) 2100949790766529 r009 Re(z^3+c),c=-55/126+19/55*I,n=3 2100949799301833 r005 Re(z^2+c),c=-9/29+21/58*I,n=3 2100949804025927 a007 Real Root Of -406*x^4-295*x^3+874*x^2-413*x+449 2100949807963019 h001 (5/12*exp(1)+3/5)/(3/11*exp(1)+1/12) 2100949813482866 m001 (Robbin-ZetaP(4))/(Zeta(5)+MadelungNaCl) 2100949820585802 m001 1/FeigenbaumD/ln(Rabbit)*GAMMA(11/24) 2100949828727627 a001 329/281*843^(3/7) 2100949854879322 m001 GAMMA(1/6)/LandauRamanujan/ln(cos(Pi/12)) 2100949855198651 s002 sum(A274163[n]/(2^n-1),n=1..infinity) 2100949858565423 m001 Riemann2ndZero-ZetaP(4)^Niven 2100949859345543 m005 (1/3*5^(1/2)-2/9)/(-29/126+3/14*5^(1/2)) 2100949861602755 r005 Re(z^2+c),c=27/70+17/46*I,n=5 2100949869874451 a007 Real Root Of 195*x^4+218*x^3-164*x^2+750*x+522 2100949877663685 m001 BesselJ(0,1)/(3^(1/3))/ln(sqrt(1+sqrt(3)))^2 2100949881938440 r002 25th iterates of z^2 + 2100949885739995 r005 Im(z^2+c),c=-22/23+12/47*I,n=53 2100949895687290 m005 (1/3*exp(1)-3/5)/(2*Catalan-3/8) 2100949899118909 r005 Im(z^2+c),c=-21/22+14/65*I,n=25 2100949904195764 r009 Re(z^3+c),c=-7/18+17/31*I,n=24 2100949904437425 a008 Real Root of x^2-x-44350 2100949912846948 b008 (1/3+ArcCosh[3])!! 2100949919343475 r002 51th iterates of z^2 + 2100949922854703 a007 Real Root Of 313*x^4+823*x^3+515*x^2+33*x-670 2100949924652548 r005 Re(z^2+c),c=17/66+10/57*I,n=26 2100949932071273 a001 2504730781961/47*969323029^(22/23) 2100949932071273 a001 6557470319842/47*2537720636^(20/23) 2100949932071273 a001 1548008755920/47*45537549124^(19/23) 2100949932071273 a001 1548008755920/47*817138163596^(17/23) 2100949932071273 a001 20365011074/47*505019158607^(21/23) 2100949932071273 a001 6557470319842/47*28143753123^(18/23) 2100949940816057 m001 1/3*Psi(2,1/3)*3^(1/2)*TwinPrimes 2100949945967741 a007 Real Root Of 216*x^4-611*x^3-320*x^2-736*x+174 2100949947868757 s002 sum(A198911[n]/(n^3*exp(n)+1),n=1..infinity) 2100949948351024 m001 1/TreeGrowth2nd*PrimesInBinary*ln(OneNinth) 2100949966441709 m001 (MertensB2+TreeGrowth2nd)/(GAMMA(19/24)-Bloch) 2100949966883458 r005 Im(z^2+c),c=-29/106+19/60*I,n=20 2100949972210660 l006 ln(2237/2760) 2100949996762847 r005 Im(z^2+c),c=-37/82+5/63*I,n=4 2100949999009495 r002 53th iterates of z^2 + 2100950003489894 m001 Zeta(1,2)*LandauRamanujan^2/ln(sinh(1))^2 2100950003593482 m001 1/exp(MinimumGamma)/Champernowne^2*sinh(1)^2 2100950006175288 m001 (PrimesInBinary-ZetaQ(3))/(Kac+Mills) 2100950012275968 m001 1/cosh(1)^2*ln(Zeta(3))*exp(1) 2100950014307837 b008 16+LogIntegral[15/2] 2100950019277886 a007 Real Root Of 677*x^4+762*x^3-919*x^2+825*x-334 2100950021622125 a007 Real Root Of 463*x^4+588*x^3-900*x^2+23*x+453 2100950022343618 r002 60th iterates of z^2 + 2100950026842932 a007 Real Root Of 454*x^4+973*x^3-393*x^2-906*x+9 2100950031752715 r005 Re(z^2+c),c=-13/110+13/23*I,n=25 2100950035049736 a001 377/1364*3571^(9/17) 2100950038434167 r002 24th iterates of z^2 + 2100950038832646 a001 646/341*521^(5/13) 2100950044644906 g006 Psi(1,11/12)+Psi(1,5/9)+Psi(1,3/4)-Psi(1,3/7) 2100950050949059 a007 Real Root Of 214*x^4+56*x^3-924*x^2-440*x-496 2100950051349722 a001 199/6557470319842*20365011074^(21/22) 2100950051351239 a001 199/267914296*514229^(21/22) 2100950054436113 a001 610/843*3571^(7/17) 2100950062974301 a007 Real Root Of 707*x^4-210*x^3-489*x^2-480*x+123 2100950064344243 r005 Re(z^2+c),c=-23/110+16/53*I,n=16 2100950066287486 a007 Real Root Of 269*x^4-29*x^3-804*x^2+734*x-419 2100950067780061 a001 4181/521*199^(2/11) 2100950071493664 a007 Real Root Of -309*x^4-569*x^3-409*x^2-951*x+551 2100950086714064 a007 Real Root Of 605*x^4+980*x^3-980*x^2-955*x-380 2100950086994052 a007 Real Root Of 595*x^4-320*x^3+895*x^2-933*x-20 2100950090813181 r005 Re(z^2+c),c=-113/90+3/43*I,n=12 2100950092802070 a007 Real Root Of -831*x^4+896*x^3-504*x^2+161*x+66 2100950094782773 m001 (3^(1/3)-5^(1/2))/(Zeta(1,-1)+Landau) 2100950096774558 m001 BesselK(0,1)^Zeta(5)/(BesselK(0,1)^Ei(1)) 2100950098934449 m005 (3*Pi+2/3)/(-2/3+1/12*5^(1/2)) 2100950100864101 a001 28657/5778*521^(3/13) 2100950107977160 r005 Re(z^2+c),c=3/46+30/43*I,n=4 2100950110426330 r005 Re(z^2+c),c=-7/50+12/25*I,n=52 2100950110886362 a001 377/1364*9349^(9/19) 2100950113153199 p003 LerchPhi(1/8,2,484/215) 2100950113420156 a001 610/843*9349^(7/19) 2100950118764845 a001 8845/421 2100950118764845 q001 1769/842 2100950120769448 a001 377/1364*24476^(3/7) 2100950121107000 a001 610/843*24476^(1/3) 2100950122072229 a001 377/1364*64079^(9/23) 2100950122120274 a001 610/843*64079^(7/23) 2100950122268814 a001 377/1364*439204^(1/3) 2100950122272435 a001 377/1364*7881196^(3/11) 2100950122272445 a001 377/1364*141422324^(3/13) 2100950122272445 a001 377/1364*2537720636^(1/5) 2100950122272445 a001 377/1364*45537549124^(3/17) 2100950122272445 a001 377/1364*14662949395604^(1/7) 2100950122272445 a001 377/1364*(1/2+1/2*5^(1/2))^9 2100950122272445 a001 377/1364*192900153618^(1/6) 2100950122272445 a001 377/1364*10749957122^(3/16) 2100950122272445 a001 377/1364*599074578^(3/14) 2100950122272445 a001 377/1364*33385282^(1/4) 2100950122272627 a001 377/1364*1860498^(3/10) 2100950122275997 a001 610/843*20633239^(1/5) 2100950122275998 a001 610/843*17393796001^(1/7) 2100950122275998 a001 610/843*14662949395604^(1/9) 2100950122275998 a001 610/843*(1/2+1/2*5^(1/2))^7 2100950122275998 a001 610/843*599074578^(1/6) 2100950122277038 a001 610/843*710647^(1/4) 2100950122333001 a001 610/843*103682^(7/24) 2100950122345734 a001 377/1364*103682^(3/8) 2100950122702219 a001 610/843*39603^(7/22) 2100950122820443 a001 377/1364*39603^(9/22) 2100950124276262 s002 sum(A101661[n]/((10^n-1)/n),n=1..infinity) 2100950124300643 r005 Re(z^2+c),c=7/102+13/62*I,n=8 2100950125489497 a001 610/843*15127^(7/20) 2100950126404086 a001 377/1364*15127^(9/20) 2100950135910484 r005 Re(z^2+c),c=-43/106+23/42*I,n=21 2100950138829766 s002 sum(A198911[n]/(n^3*exp(n)-1),n=1..infinity) 2100950141250586 r005 Re(z^2+c),c=7/58+11/28*I,n=63 2100950146748942 a001 610/843*5778^(7/18) 2100950153737659 a001 377/1364*5778^(1/2) 2100950154176091 a001 75025/15127*521^(3/13) 2100950158460024 r009 Re(z^3+c),c=-23/66+20/41*I,n=11 2100950160991620 m009 (5/2*Pi^2-1/6)/(16/3*Catalan+2/3*Pi^2+1/5) 2100950161954206 a001 196418/39603*521^(3/13) 2100950163089017 a001 514229/103682*521^(3/13) 2100950163254584 a001 1346269/271443*521^(3/13) 2100950163278740 a001 3524578/710647*521^(3/13) 2100950163282264 a001 9227465/1860498*521^(3/13) 2100950163282778 a001 24157817/4870847*521^(3/13) 2100950163282853 a001 63245986/12752043*521^(3/13) 2100950163282864 a001 165580141/33385282*521^(3/13) 2100950163282866 a001 433494437/87403803*521^(3/13) 2100950163282866 a001 1134903170/228826127*521^(3/13) 2100950163282866 a001 2971215073/599074578*521^(3/13) 2100950163282866 a001 7778742049/1568397607*521^(3/13) 2100950163282866 a001 20365011074/4106118243*521^(3/13) 2100950163282866 a001 53316291173/10749957122*521^(3/13) 2100950163282866 a001 139583862445/28143753123*521^(3/13) 2100950163282866 a001 365435296162/73681302247*521^(3/13) 2100950163282866 a001 956722026041/192900153618*521^(3/13) 2100950163282866 a001 2504730781961/505019158607*521^(3/13) 2100950163282866 a001 10610209857723/2139295485799*521^(3/13) 2100950163282866 a001 140728068720/28374454999*521^(3/13) 2100950163282866 a001 591286729879/119218851371*521^(3/13) 2100950163282866 a001 225851433717/45537549124*521^(3/13) 2100950163282866 a001 86267571272/17393796001*521^(3/13) 2100950163282866 a001 32951280099/6643838879*521^(3/13) 2100950163282866 a001 1144206275/230701876*521^(3/13) 2100950163282866 a001 4807526976/969323029*521^(3/13) 2100950163282866 a001 1836311903/370248451*521^(3/13) 2100950163282866 a001 701408733/141422324*521^(3/13) 2100950163282867 a001 267914296/54018521*521^(3/13) 2100950163282871 a001 9303105/1875749*521^(3/13) 2100950163282900 a001 39088169/7881196*521^(3/13) 2100950163283096 a001 14930352/3010349*521^(3/13) 2100950163284442 a001 5702887/1149851*521^(3/13) 2100950163293669 a001 2178309/439204*521^(3/13) 2100950163356910 a001 75640/15251*521^(3/13) 2100950163790369 a001 317811/64079*521^(3/13) 2100950166761345 a001 121393/24476*521^(3/13) 2100950168138237 a007 Real Root Of 440*x^4+532*x^3-348*x^2+684*x-666 2100950169543577 r005 Re(z^2+c),c=-21/86+1/61*I,n=3 2100950178431339 a005 (1/cos(27/205*Pi))^583 2100950181973576 m001 (Rabbit-TwinPrimes)/(FellerTornier-Khinchin) 2100950187124714 a001 46368/9349*521^(3/13) 2100950197379287 p004 log(19853/16091) 2100950199833618 m001 (ln(2)/ln(10)+Zeta(1,-1))/(gamma(3)+Cahen) 2100950211726788 a007 Real Root Of -29*x^4-639*x^3-672*x^2-987*x+232 2100950213642616 a001 1597/843*843^(5/14) 2100950216004789 m001 (ln(2)/ln(10)-ReciprocalLucas)^MinimumGamma 2100950218428306 m005 (1/2*Zeta(3)+1/4)/(Pi+10/11) 2100950220636184 h001 (-2*exp(7)-2)/(-7*exp(5)-6) 2100950231586709 m001 (MertensB2+ThueMorse)/(Magata-exp(1)) 2100950238783499 q001 1/4759751 2100950240829692 a007 Real Root Of 145*x^4+459*x^3+777*x^2+507*x-933 2100950246857067 a001 3571/21*144^(2/47) 2100950249105111 r005 Im(z^2+c),c=-77/64+1/14*I,n=12 2100950249854196 a005 (1/cos(12/131*Pi))^895 2100950250232669 m001 BesselI(0,2)*ln(2^(1/2)+1)^MasserGramain 2100950251272046 h005 exp(cos(Pi*5/47)/cos(Pi*25/51)) 2100950253587533 a007 Real Root Of -966*x^4-611*x^3-598*x^2+822*x-17 2100950259648861 m001 (MadelungNaCl+Niven)/(5^(1/2)-Lehmer) 2100950260820119 m008 (2/5*Pi^3+1)/(2/3*Pi^6-3) 2100950262271482 h001 (-7*exp(1/2)-5)/(-4*exp(1)+3) 2100950265228688 a007 Real Root Of 530*x^4+947*x^3+151*x^2-840*x+160 2100950277332856 m001 GolombDickman^2/exp(Conway)/Rabbit^2 2100950284763547 r005 Re(z^2+c),c=7/58+11/28*I,n=56 2100950287637715 r009 Re(z^3+c),c=-17/98+52/61*I,n=23 2100950289375615 m001 sin(1/5*Pi)/(3^(1/3)+FeigenbaumKappa) 2100950290052319 r002 50th iterates of z^2 + 2100950292682824 m001 1/Zeta(7)^2/exp(GAMMA(5/24))*log(2+sqrt(3))^2 2100950295236735 r005 Im(z^2+c),c=-43/54+3/22*I,n=20 2100950303414755 m001 (Catalan+FeigenbaumB)/(-StronglyCareFree+Thue) 2100950306352533 m001 Pi-Zeta(5)^ln(3) 2100950307116591 r005 Re(z^2+c),c=-10/19+31/58*I,n=18 2100950310983552 a001 610/843*2207^(7/16) 2100950311344441 r002 28th iterates of z^2 + 2100950324684661 r009 Im(z^3+c),c=-5/74+5/23*I,n=2 2100950325992204 a001 17711/2207*521^(2/13) 2100950326697333 a001 17711/3571*521^(3/13) 2100950327894350 a007 Real Root Of -139*x^4+60*x^3+545*x^2+30*x+922 2100950342542821 s002 sum(A008142[n]/((10^n+1)/n),n=1..infinity) 2100950356589582 r005 Im(z^2+c),c=-17/46+17/50*I,n=18 2100950361457962 h001 (3/8*exp(1)+4/9)/(10/11*exp(2)+1/4) 2100950364896446 a001 377/1364*2207^(9/16) 2100950379525740 m001 (gamma(3)+Artin)/(FellerTornier+Porter) 2100950387545812 m009 (3/10*Pi^2+1/2)/(1/3*Psi(1,3/4)+4/5) 2100950388851466 a004 Fibonacci(16)*Lucas(15)/(1/2+sqrt(5)/2)^23 2100950396862327 a007 Real Root Of 714*x^4-53*x^3+768*x^2-832*x+140 2100950405130071 m001 GAMMA(7/12)^2*Rabbit*ln(GAMMA(7/24))^2 2100950410116722 a007 Real Root Of 283*x^4+256*x^3-979*x^2-897*x-703 2100950415395852 m001 FeigenbaumB+KomornikLoreti*Rabbit 2100950419999665 r005 Re(z^2+c),c=7/58+11/28*I,n=62 2100950425528157 a005 (1/cos(18/233*Pi))^1728 2100950426172226 a007 Real Root Of 543*x^4+614*x^3-853*x^2+984*x+947 2100950428771644 g007 Psi(2,5/12)+Psi(2,3/10)+Psi(2,1/10)-Psi(2,7/9) 2100950434448827 r005 Im(z^2+c),c=-4/25+15/53*I,n=10 2100950443959173 a001 199/6765*8^(52/55) 2100950444079222 m001 DuboisRaymond^HeathBrownMoroz/Weierstrass 2100950448855129 m001 (1-GolombDickman)/(-ReciprocalLucas+ZetaP(3)) 2100950457125302 m001 (-Ei(1)+MinimumGamma)/(Chi(1)+GAMMA(3/4)) 2100950458512973 m001 ln(gamma)*BesselK(1,1)*HardyLittlewoodC3 2100950462794660 a001 329/13201*1364^(14/15) 2100950463184887 m002 E^Pi+5*Pi^3+2*Pi^6 2100950466179359 m001 ln(gamma)/MertensB3/ReciprocalLucas 2100950467202565 m001 (Catalan-Zeta(1/2))/(-ErdosBorwein+PlouffeB) 2100950468811584 a007 Real Root Of -418*x^4-634*x^3+569*x^2+188*x+148 2100950477601223 m001 (Catalan+cos(1))/ln(2) 2100950479446879 l006 ln(7143/8813) 2100950483311364 r005 Im(z^2+c),c=-23/38+17/48*I,n=60 2100950484499096 a001 987/2207*1364^(8/15) 2100950491570909 m001 Lehmer^2/ErdosBorwein^2/ln(sqrt(5))^2 2100950505165835 m001 2^(1/3)-Magata^ZetaP(3) 2100950508030154 q001 641/3051 2100950509629230 m001 (2^(1/3)+Gompertz)/(OneNinth+StronglyCareFree) 2100950513469524 a007 Real Root Of -299*x^4-829*x^3-194*x^2+386*x-195 2100950520527527 r005 Re(z^2+c),c=7/58+11/28*I,n=58 2100950523507869 r002 58th iterates of z^2 + 2100950532354256 m009 (1/5*Psi(1,1/3)-3/4)/(6*Psi(1,1/3)-1/6) 2100950542923955 a001 987/24476*1364^(13/15) 2100950548797316 m005 (1/2*5^(1/2)+2/11)/(1/7*2^(1/2)+5/12) 2100950554915911 a003 sin(Pi*10/89)*sin(Pi*21/101) 2100950558758087 m001 1/Zeta(5)^2*Ei(1)^2/exp(arctan(1/2)) 2100950560130768 m005 (1/2*exp(1)+1/4)/(4/7*Catalan-3/5) 2100950560662798 r009 Re(z^3+c),c=-3/7+15/43*I,n=3 2100950563533302 m005 (1/2*Zeta(3)-7/10)/(5/12*2^(1/2)-7/11) 2100950567603374 m001 (sin(1)+3^(1/3))/(-Ei(1,1)+Mills) 2100950568607414 m001 Zeta(5)^2/ln(Robbin)^2*gamma^2 2100950570716846 r005 Im(z^2+c),c=-17/18+28/153*I,n=5 2100950578450699 m005 (1/2*2^(1/2)+1/7)/(2/7*Catalan+1/7) 2100950580758273 r009 Im(z^3+c),c=-23/78+1/60*I,n=2 2100950580942192 a001 199/1134903170*6557470319842^(17/24) 2100950580946353 a001 199/317811*63245986^(17/24) 2100950588790920 m001 (MinimumGamma-Otter)/(Champernowne-GaussAGM) 2100950592619557 m001 (Riemann3rdZero+Sierpinski)/(Chi(1)+PlouffeB) 2100950597743245 r009 Re(z^3+c),c=-11/36+20/47*I,n=10 2100950600371361 a007 Real Root Of -265*x^4+101*x^3-91*x^2+845*x+183 2100950603142166 m001 (-ln(Pi)+2/3)/(-Pi^(1/2)+2) 2100950605518286 a001 141/2161*1364^(4/5) 2100950605845639 r009 Re(z^3+c),c=-15/122+25/26*I,n=18 2100950611340801 a003 cos(Pi*23/85)/cos(Pi*49/100) 2100950612550518 m001 GAMMA(1/6)*ThueMorse-GAMMA(5/24) 2100950613447830 a007 Real Root Of -442*x^4-732*x^3+533*x^2+300*x+101 2100950613979214 m001 (Tribonacci-sin(1)*Zeta(1/2))/Zeta(1/2) 2100950616024853 a007 Real Root Of 577*x^4+845*x^3-412*x^2+467*x-606 2100950618434943 b008 3+E^(5+EulerGamma^2) 2100950622419349 a007 Real Root Of -484*x^4-557*x^3+954*x^2+420*x+936 2100950622872657 r005 Im(z^2+c),c=11/106+11/60*I,n=14 2100950625359790 m001 (Cahen-FeigenbaumDelta)/(Pi-GAMMA(3/4)) 2100950632241386 a003 cos(Pi*5/82)/cos(Pi*29/84) 2100950638939902 r005 Im(z^2+c),c=-26/27+11/52*I,n=58 2100950652563428 m001 1/ln(Catalan)^2*BesselK(1,1)*GAMMA(13/24)^2 2100950673406046 a001 377/2207*843^(5/7) 2100950678203860 r005 Re(z^2+c),c=7/58+11/28*I,n=64 2100950680182782 q001 2/95195 2100950682345512 a001 610/3*521^(43/58) 2100950683934776 r009 Re(z^3+c),c=-23/78+11/28*I,n=16 2100950685151389 a001 10946/843*322^(1/12) 2100950686592213 m001 LambertW(1)^BesselK(1,1)*Otter 2100950694730757 r005 Im(z^2+c),c=-7/8+33/175*I,n=38 2100950695537491 a001 2576/321*521^(2/13) 2100950696328438 a007 Real Root Of -238*x^4-362*x^3+837*x^2+857*x-614 2100950697535679 a007 Real Root Of -861*x^4+819*x^3-461*x^2+830*x+204 2100950698979840 r005 Re(z^2+c),c=7/58+11/28*I,n=60 2100950701269962 r005 Re(z^2+c),c=-7/44+23/57*I,n=8 2100950701678240 r005 Im(z^2+c),c=-7/15+7/32*I,n=3 2100950702334779 a001 329/1926*1364^(2/3) 2100950705107290 a007 Real Root Of 289*x^4-20*x^3-944*x^2+786*x+2 2100950705831168 h001 (-8*exp(1)+1)/(-9*exp(7)-5) 2100950710520421 r005 Im(z^2+c),c=-43/118+15/44*I,n=25 2100950710732526 l006 ln(4906/6053) 2100950713274405 a007 Real Root Of 472*x^4+945*x^3+567*x^2+984*x-868 2100950713771926 a007 Real Root Of -417*x^4-710*x^3-230*x^2-976*x+505 2100950714019760 a001 987/9349*1364^(11/15) 2100950714238968 s002 sum(A286819[n]/(n^2*exp(n)+1),n=1..infinity) 2100950717483977 m005 (2/5*exp(1)+4/5)/(3*gamma-5/6) 2100950717751496 s002 sum(A286819[n]/(n^2*exp(n)-1),n=1..infinity) 2100950721180858 a001 4181/1364*521^(4/13) 2100950728819228 m001 (Backhouse-MinimumGamma)/(Zeta(3)+Zeta(1,2)) 2100950729695524 a008 Real Root of x^4-x^3-4*x^2+x-9 2100950736285179 a007 Real Root Of -366*x^4-576*x^3+78*x^2-555*x+279 2100950738757825 r005 Im(z^2+c),c=-31/26+26/85*I,n=19 2100950749453433 a001 121393/15127*521^(2/13) 2100950749648873 r005 Re(z^2+c),c=1/13+11/19*I,n=10 2100950756124253 a007 Real Root Of -14*x^4+536*x^3+614*x^2-963*x+510 2100950757252737 a004 Fibonacci(18)*Lucas(15)/(1/2+sqrt(5)/2)^25 2100950757319663 a001 105937/13201*521^(2/13) 2100950758467331 a001 416020/51841*521^(2/13) 2100950758634773 a001 726103/90481*521^(2/13) 2100950758659203 a001 5702887/710647*521^(2/13) 2100950758662767 a001 829464/103361*521^(2/13) 2100950758663287 a001 39088169/4870847*521^(2/13) 2100950758663363 a001 34111385/4250681*521^(2/13) 2100950758663374 a001 133957148/16692641*521^(2/13) 2100950758663375 a001 233802911/29134601*521^(2/13) 2100950758663376 a001 1836311903/228826127*521^(2/13) 2100950758663376 a001 267084832/33281921*521^(2/13) 2100950758663376 a001 12586269025/1568397607*521^(2/13) 2100950758663376 a001 10983760033/1368706081*521^(2/13) 2100950758663376 a001 43133785636/5374978561*521^(2/13) 2100950758663376 a001 75283811239/9381251041*521^(2/13) 2100950758663376 a001 591286729879/73681302247*521^(2/13) 2100950758663376 a001 86000486440/10716675201*521^(2/13) 2100950758663376 a001 3536736619241/440719107401*521^(2/13) 2100950758663376 a001 3278735159921/408569081798*521^(2/13) 2100950758663376 a001 2504730781961/312119004989*521^(2/13) 2100950758663376 a001 956722026041/119218851371*521^(2/13) 2100950758663376 a001 182717648081/22768774562*521^(2/13) 2100950758663376 a001 139583862445/17393796001*521^(2/13) 2100950758663376 a001 53316291173/6643838879*521^(2/13) 2100950758663376 a001 10182505537/1268860318*521^(2/13) 2100950758663376 a001 7778742049/969323029*521^(2/13) 2100950758663376 a001 2971215073/370248451*521^(2/13) 2100950758663376 a001 567451585/70711162*521^(2/13) 2100950758663376 a001 433494437/54018521*521^(2/13) 2100950758663381 a001 165580141/20633239*521^(2/13) 2100950758663410 a001 31622993/3940598*521^(2/13) 2100950758663608 a001 24157817/3010349*521^(2/13) 2100950758664970 a001 9227465/1149851*521^(2/13) 2100950758674301 a001 1762289/219602*521^(2/13) 2100950758738258 a001 1346269/167761*521^(2/13) 2100950759176628 a001 514229/64079*521^(2/13) 2100950762181261 a001 98209/12238*521^(2/13) 2100950782775319 a001 75025/9349*521^(2/13) 2100950790053167 r005 Im(z^2+c),c=-43/58+5/46*I,n=49 2100950801229650 m001 (BesselJ(0,1)+Cahen)/(Robbin+ZetaQ(3)) 2100950810789855 m001 GAMMA(23/24)+GAMMA(11/12)^Totient 2100950811001758 a004 Fibonacci(20)*Lucas(15)/(1/2+sqrt(5)/2)^27 2100950818843635 a004 Fibonacci(22)*Lucas(15)/(1/2+sqrt(5)/2)^29 2100950819987749 a004 Fibonacci(24)*Lucas(15)/(1/2+sqrt(5)/2)^31 2100950820154673 a004 Fibonacci(26)*Lucas(15)/(1/2+sqrt(5)/2)^33 2100950820179027 a004 Fibonacci(28)*Lucas(15)/(1/2+sqrt(5)/2)^35 2100950820182580 a004 Fibonacci(30)*Lucas(15)/(1/2+sqrt(5)/2)^37 2100950820183099 a004 Fibonacci(32)*Lucas(15)/(1/2+sqrt(5)/2)^39 2100950820183174 a004 Fibonacci(34)*Lucas(15)/(1/2+sqrt(5)/2)^41 2100950820183185 a004 Fibonacci(36)*Lucas(15)/(1/2+sqrt(5)/2)^43 2100950820183187 a004 Fibonacci(38)*Lucas(15)/(1/2+sqrt(5)/2)^45 2100950820183187 a004 Fibonacci(40)*Lucas(15)/(1/2+sqrt(5)/2)^47 2100950820183187 a004 Fibonacci(42)*Lucas(15)/(1/2+sqrt(5)/2)^49 2100950820183187 a004 Fibonacci(44)*Lucas(15)/(1/2+sqrt(5)/2)^51 2100950820183187 a004 Fibonacci(46)*Lucas(15)/(1/2+sqrt(5)/2)^53 2100950820183187 a004 Fibonacci(48)*Lucas(15)/(1/2+sqrt(5)/2)^55 2100950820183187 a004 Fibonacci(50)*Lucas(15)/(1/2+sqrt(5)/2)^57 2100950820183187 a004 Fibonacci(52)*Lucas(15)/(1/2+sqrt(5)/2)^59 2100950820183187 a004 Fibonacci(54)*Lucas(15)/(1/2+sqrt(5)/2)^61 2100950820183187 a004 Fibonacci(56)*Lucas(15)/(1/2+sqrt(5)/2)^63 2100950820183187 a004 Fibonacci(58)*Lucas(15)/(1/2+sqrt(5)/2)^65 2100950820183187 a004 Fibonacci(60)*Lucas(15)/(1/2+sqrt(5)/2)^67 2100950820183187 a004 Fibonacci(62)*Lucas(15)/(1/2+sqrt(5)/2)^69 2100950820183187 a004 Fibonacci(64)*Lucas(15)/(1/2+sqrt(5)/2)^71 2100950820183187 a004 Fibonacci(66)*Lucas(15)/(1/2+sqrt(5)/2)^73 2100950820183187 a004 Fibonacci(68)*Lucas(15)/(1/2+sqrt(5)/2)^75 2100950820183187 a004 Fibonacci(70)*Lucas(15)/(1/2+sqrt(5)/2)^77 2100950820183187 a004 Fibonacci(72)*Lucas(15)/(1/2+sqrt(5)/2)^79 2100950820183187 a004 Fibonacci(74)*Lucas(15)/(1/2+sqrt(5)/2)^81 2100950820183187 a004 Fibonacci(76)*Lucas(15)/(1/2+sqrt(5)/2)^83 2100950820183187 a004 Fibonacci(78)*Lucas(15)/(1/2+sqrt(5)/2)^85 2100950820183187 a004 Fibonacci(80)*Lucas(15)/(1/2+sqrt(5)/2)^87 2100950820183187 a004 Fibonacci(82)*Lucas(15)/(1/2+sqrt(5)/2)^89 2100950820183187 a004 Fibonacci(84)*Lucas(15)/(1/2+sqrt(5)/2)^91 2100950820183187 a004 Fibonacci(86)*Lucas(15)/(1/2+sqrt(5)/2)^93 2100950820183187 a004 Fibonacci(88)*Lucas(15)/(1/2+sqrt(5)/2)^95 2100950820183187 a004 Fibonacci(90)*Lucas(15)/(1/2+sqrt(5)/2)^97 2100950820183187 a004 Fibonacci(92)*Lucas(15)/(1/2+sqrt(5)/2)^99 2100950820183187 a004 Fibonacci(93)*Lucas(15)/(1/2+sqrt(5)/2)^100 2100950820183187 a004 Fibonacci(91)*Lucas(15)/(1/2+sqrt(5)/2)^98 2100950820183187 a004 Fibonacci(89)*Lucas(15)/(1/2+sqrt(5)/2)^96 2100950820183187 a004 Fibonacci(87)*Lucas(15)/(1/2+sqrt(5)/2)^94 2100950820183187 a004 Fibonacci(85)*Lucas(15)/(1/2+sqrt(5)/2)^92 2100950820183187 a004 Fibonacci(83)*Lucas(15)/(1/2+sqrt(5)/2)^90 2100950820183187 a004 Fibonacci(81)*Lucas(15)/(1/2+sqrt(5)/2)^88 2100950820183187 a004 Fibonacci(79)*Lucas(15)/(1/2+sqrt(5)/2)^86 2100950820183187 a004 Fibonacci(77)*Lucas(15)/(1/2+sqrt(5)/2)^84 2100950820183187 a004 Fibonacci(75)*Lucas(15)/(1/2+sqrt(5)/2)^82 2100950820183187 a004 Fibonacci(73)*Lucas(15)/(1/2+sqrt(5)/2)^80 2100950820183187 a004 Fibonacci(71)*Lucas(15)/(1/2+sqrt(5)/2)^78 2100950820183187 a004 Fibonacci(69)*Lucas(15)/(1/2+sqrt(5)/2)^76 2100950820183187 a004 Fibonacci(67)*Lucas(15)/(1/2+sqrt(5)/2)^74 2100950820183187 a004 Fibonacci(65)*Lucas(15)/(1/2+sqrt(5)/2)^72 2100950820183187 a004 Fibonacci(63)*Lucas(15)/(1/2+sqrt(5)/2)^70 2100950820183187 a004 Fibonacci(61)*Lucas(15)/(1/2+sqrt(5)/2)^68 2100950820183187 a004 Fibonacci(59)*Lucas(15)/(1/2+sqrt(5)/2)^66 2100950820183187 a004 Fibonacci(57)*Lucas(15)/(1/2+sqrt(5)/2)^64 2100950820183187 a004 Fibonacci(55)*Lucas(15)/(1/2+sqrt(5)/2)^62 2100950820183187 a004 Fibonacci(53)*Lucas(15)/(1/2+sqrt(5)/2)^60 2100950820183187 a004 Fibonacci(51)*Lucas(15)/(1/2+sqrt(5)/2)^58 2100950820183187 a004 Fibonacci(49)*Lucas(15)/(1/2+sqrt(5)/2)^56 2100950820183187 a004 Fibonacci(47)*Lucas(15)/(1/2+sqrt(5)/2)^54 2100950820183187 a004 Fibonacci(45)*Lucas(15)/(1/2+sqrt(5)/2)^52 2100950820183187 a004 Fibonacci(43)*Lucas(15)/(1/2+sqrt(5)/2)^50 2100950820183187 a004 Fibonacci(41)*Lucas(15)/(1/2+sqrt(5)/2)^48 2100950820183187 a004 Fibonacci(39)*Lucas(15)/(1/2+sqrt(5)/2)^46 2100950820183188 a004 Fibonacci(37)*Lucas(15)/(1/2+sqrt(5)/2)^44 2100950820183192 a004 Fibonacci(35)*Lucas(15)/(1/2+sqrt(5)/2)^42 2100950820183221 a004 Fibonacci(33)*Lucas(15)/(1/2+sqrt(5)/2)^40 2100950820183419 a004 Fibonacci(31)*Lucas(15)/(1/2+sqrt(5)/2)^38 2100950820183794 a001 1/305*(1/2+1/2*5^(1/2))^23 2100950820184776 a004 Fibonacci(29)*Lucas(15)/(1/2+sqrt(5)/2)^36 2100950820194079 a004 Fibonacci(27)*Lucas(15)/(1/2+sqrt(5)/2)^34 2100950820257838 a004 Fibonacci(25)*Lucas(15)/(1/2+sqrt(5)/2)^32 2100950820694851 a004 Fibonacci(23)*Lucas(15)/(1/2+sqrt(5)/2)^30 2100950822660374 a001 1/322*7^(56/57) 2100950823690181 a004 Fibonacci(21)*Lucas(15)/(1/2+sqrt(5)/2)^28 2100950827246695 a007 Real Root Of 169*x^4-6*x^3+62*x^2-404*x-88 2100950832340059 a001 1292/51841*1364^(14/15) 2100950836313382 m001 (Zeta(5)-Zeta(1,2))/(BesselI(0,2)-Totient) 2100950837030407 r002 46th iterates of z^2 + 2100950840081858 r002 24th iterates of z^2 + 2100950840207216 m005 (1/2*gamma-3)/(50/63+2/9*5^(1/2)) 2100950840552923 m001 (Pi+Catalan)/(GAMMA(17/24)+MasserGramain) 2100950842536676 r005 Im(z^2+c),c=-17/14+23/179*I,n=40 2100950844220480 a004 Fibonacci(19)*Lucas(15)/(1/2+sqrt(5)/2)^26 2100950844857240 r002 57th iterates of z^2 + 2100950845992942 a007 Real Root Of 16*x^4+327*x^3-210*x^2-397*x-520 2100950853995061 r005 Re(z^2+c),c=7/27+11/62*I,n=22 2100950860378962 m008 (2/3*Pi^5+1)/(3*Pi+1/3) 2100950864087979 s002 sum(A192157[n]/(n*exp(pi*n)-1),n=1..infinity) 2100950868487154 r005 Im(z^2+c),c=-107/122+7/40*I,n=29 2100950870231603 r002 28th iterates of z^2 + 2100950873903168 a007 Real Root Of 555*x^4+877*x^3-573*x^2+110*x+80 2100950877798543 a007 Real Root Of -192*x^4-636*x^3-211*x^2+573*x-22 2100950881610573 r005 Im(z^2+c),c=-11/29+10/29*I,n=44 2100950886256006 a001 2255/90481*1364^(14/15) 2100950894122237 a001 17711/710647*1364^(14/15) 2100950895269904 a001 2576/103361*1364^(14/15) 2100950895437347 a001 121393/4870847*1364^(14/15) 2100950895461776 a001 105937/4250681*1364^(14/15) 2100950895465340 a001 416020/16692641*1364^(14/15) 2100950895465860 a001 726103/29134601*1364^(14/15) 2100950895465936 a001 5702887/228826127*1364^(14/15) 2100950895465947 a001 829464/33281921*1364^(14/15) 2100950895465949 a001 39088169/1568397607*1364^(14/15) 2100950895465949 a001 34111385/1368706081*1364^(14/15) 2100950895465949 a001 133957148/5374978561*1364^(14/15) 2100950895465949 a001 233802911/9381251041*1364^(14/15) 2100950895465949 a001 1836311903/73681302247*1364^(14/15) 2100950895465949 a001 267084832/10716675201*1364^(14/15) 2100950895465949 a001 12586269025/505019158607*1364^(14/15) 2100950895465949 a001 10983760033/440719107401*1364^(14/15) 2100950895465949 a001 43133785636/1730726404001*1364^(14/15) 2100950895465949 a001 182717648081/7331474697802*1364^(14/15) 2100950895465949 a001 139583862445/5600748293801*1364^(14/15) 2100950895465949 a001 53316291173/2139295485799*1364^(14/15) 2100950895465949 a001 10182505537/408569081798*1364^(14/15) 2100950895465949 a001 7778742049/312119004989*1364^(14/15) 2100950895465949 a001 2971215073/119218851371*1364^(14/15) 2100950895465949 a001 567451585/22768774562*1364^(14/15) 2100950895465949 a001 433494437/17393796001*1364^(14/15) 2100950895465949 a001 165580141/6643838879*1364^(14/15) 2100950895465949 a001 31622993/1268860318*1364^(14/15) 2100950895465950 a001 24157817/969323029*1364^(14/15) 2100950895465954 a001 9227465/370248451*1364^(14/15) 2100950895465983 a001 1762289/70711162*1364^(14/15) 2100950895466182 a001 1346269/54018521*1364^(14/15) 2100950895467543 a001 514229/20633239*1364^(14/15) 2100950895476874 a001 98209/3940598*1364^(14/15) 2100950895540832 a001 75025/3010349*1364^(14/15) 2100950895738809 s002 sum(A108718[n]/(64^n-1),n=1..infinity) 2100950895979202 a001 28657/1149851*1364^(14/15) 2100950898538666 m001 (MertensB1+Totient)/(gamma(3)-LandauRamanujan) 2100950898755330 r005 Re(z^2+c),c=-11/50+31/42*I,n=58 2100950898983835 a001 5473/219602*1364^(14/15) 2100950899191166 h001 (7/9*exp(1)+2/3)/(1/8*exp(2)+2/5) 2100950899815355 m001 Zeta(5)+FibonacciFactorial^GaussKuzminWirsing 2100950900185184 r009 Re(z^3+c),c=-17/50+22/39*I,n=19 2100950902443084 r009 Re(z^3+c),c=-5/36+29/35*I,n=5 2100950908329923 a001 2584/64079*1364^(13/15) 2100950919577894 a001 4181/167761*1364^(14/15) 2100950923223975 a001 28657/2207*521^(1/13) 2100950923929104 a001 28657/3571*521^(2/13) 2100950928828015 l006 ln(7575/9346) 2100950929187654 a001 4/21*610^(11/15) 2100950951064243 m001 (CareFree-OneNinth)/(Pi-ln(2)/ln(10)) 2100950956816996 a007 Real Root Of 869*x^4-816*x^3+856*x^2-886*x-19 2100950960962264 r005 Im(z^2+c),c=-45/86+20/53*I,n=46 2100950961641935 a001 615/15251*1364^(13/15) 2100950965058992 r009 Re(z^3+c),c=-7/23+23/55*I,n=28 2100950969419023 m001 AlladiGrinstead+FransenRobinson-Magata 2100950969420053 a001 17711/439204*1364^(13/15) 2100950970554865 a001 46368/1149851*1364^(13/15) 2100950970720432 a001 121393/3010349*1364^(13/15) 2100950970744588 a001 317811/7881196*1364^(13/15) 2100950970748112 a001 75640/1875749*1364^(13/15) 2100950970748626 a001 2178309/54018521*1364^(13/15) 2100950970748701 a001 5702887/141422324*1364^(13/15) 2100950970748712 a001 14930352/370248451*1364^(13/15) 2100950970748714 a001 39088169/969323029*1364^(13/15) 2100950970748714 a001 9303105/230701876*1364^(13/15) 2100950970748714 a001 267914296/6643838879*1364^(13/15) 2100950970748714 a001 701408733/17393796001*1364^(13/15) 2100950970748714 a001 1836311903/45537549124*1364^(13/15) 2100950970748714 a001 4807526976/119218851371*1364^(13/15) 2100950970748714 a001 1144206275/28374454999*1364^(13/15) 2100950970748714 a001 32951280099/817138163596*1364^(13/15) 2100950970748714 a001 86267571272/2139295485799*1364^(13/15) 2100950970748714 a001 225851433717/5600748293801*1364^(13/15) 2100950970748714 a001 365435296162/9062201101803*1364^(13/15) 2100950970748714 a001 139583862445/3461452808002*1364^(13/15) 2100950970748714 a001 53316291173/1322157322203*1364^(13/15) 2100950970748714 a001 20365011074/505019158607*1364^(13/15) 2100950970748714 a001 7778742049/192900153618*1364^(13/15) 2100950970748714 a001 2971215073/73681302247*1364^(13/15) 2100950970748714 a001 1134903170/28143753123*1364^(13/15) 2100950970748714 a001 433494437/10749957122*1364^(13/15) 2100950970748714 a001 165580141/4106118243*1364^(13/15) 2100950970748714 a001 63245986/1568397607*1364^(13/15) 2100950970748715 a001 24157817/599074578*1364^(13/15) 2100950970748719 a001 9227465/228826127*1364^(13/15) 2100950970748747 a001 3524578/87403803*1364^(13/15) 2100950970748944 a001 1346269/33385282*1364^(13/15) 2100950970750290 a001 514229/12752043*1364^(13/15) 2100950970759517 a001 196418/4870847*1364^(13/15) 2100950970822758 a001 75025/1860498*1364^(13/15) 2100950971256217 a001 28657/710647*1364^(13/15) 2100950974227194 a001 10946/271443*1364^(13/15) 2100950977177235 a001 144/199*199^(7/11) 2100950978059235 m001 exp(GAMMA(1/6))/Tribonacci^2*exp(1) 2100950980043536 r002 27th iterates of z^2 + 2100950980471599 r005 Im(z^2+c),c=-1+21/92*I,n=38 2100950981666019 a007 Real Root Of 34*x^4+685*x^3-623*x^2-147*x-29 2100950981761472 a001 2584/39603*1364^(4/5) 2100950984937244 a004 Fibonacci(17)*Lucas(15)/(1/2+sqrt(5)/2)^24 2100950994590571 a001 4181/103682*1364^(13/15) 2100951003465913 a001 2584/2207*1364^(2/5) 2100951005302057 a001 987/3571*1364^(3/5) 2100951005451677 m001 (OneNinth-TwinPrimes)/(GAMMA(19/24)+Backhouse) 2100951009229839 a001 987/2207*3571^(8/17) 2100951011099865 a007 Real Root Of -796*x^4-368*x^3+282*x^2+851*x-18 2100951016755239 m001 1/exp(GAMMA(13/24))^2*Artin/sin(Pi/12)^2 2100951020440908 a007 Real Root Of 343*x^4+414*x^3-749*x^2-481*x-548 2100951028292729 r009 Re(z^3+c),c=-31/106+33/34*I,n=5 2100951031941516 a007 Real Root Of 315*x^4+895*x^3+226*x^2-149*x+852 2100951036654613 a001 6765/103682*1364^(4/5) 2100951044663415 a001 17711/271443*1364^(4/5) 2100951045831883 a001 6624/101521*1364^(4/5) 2100951046002360 a001 121393/1860498*1364^(4/5) 2100951046027233 a001 317811/4870847*1364^(4/5) 2100951046030861 a001 832040/12752043*1364^(4/5) 2100951046031391 a001 311187/4769326*1364^(4/5) 2100951046031468 a001 5702887/87403803*1364^(4/5) 2100951046031479 a001 14930352/228826127*1364^(4/5) 2100951046031481 a001 39088169/599074578*1364^(4/5) 2100951046031481 a001 14619165/224056801*1364^(4/5) 2100951046031481 a001 267914296/4106118243*1364^(4/5) 2100951046031481 a001 701408733/10749957122*1364^(4/5) 2100951046031481 a001 1836311903/28143753123*1364^(4/5) 2100951046031481 a001 686789568/10525900321*1364^(4/5) 2100951046031481 a001 12586269025/192900153618*1364^(4/5) 2100951046031481 a001 32951280099/505019158607*1364^(4/5) 2100951046031481 a001 86267571272/1322157322203*1364^(4/5) 2100951046031481 a001 32264490531/494493258286*1364^(4/5) 2100951046031481 a001 1548008755920/23725150497407*1364^(4/5) 2100951046031481 a001 139583862445/2139295485799*1364^(4/5) 2100951046031481 a001 53316291173/817138163596*1364^(4/5) 2100951046031481 a001 20365011074/312119004989*1364^(4/5) 2100951046031481 a001 7778742049/119218851371*1364^(4/5) 2100951046031481 a001 2971215073/45537549124*1364^(4/5) 2100951046031481 a001 1134903170/17393796001*1364^(4/5) 2100951046031481 a001 433494437/6643838879*1364^(4/5) 2100951046031481 a001 165580141/2537720636*1364^(4/5) 2100951046031481 a001 63245986/969323029*1364^(4/5) 2100951046031482 a001 24157817/370248451*1364^(4/5) 2100951046031486 a001 9227465/141422324*1364^(4/5) 2100951046031516 a001 3524578/54018521*1364^(4/5) 2100951046031718 a001 1346269/20633239*1364^(4/5) 2100951046033104 a001 514229/7881196*1364^(4/5) 2100951046042605 a001 196418/3010349*1364^(4/5) 2100951046107721 a001 75025/1149851*1364^(4/5) 2100951046554036 a001 28657/439204*1364^(4/5) 2100951046707491 a001 2139295485799/610*144^(14/17) 2100951049613126 a001 10946/167761*1364^(4/5) 2100951056988167 a001 73681302247/377*144^(16/17) 2100951060731676 a001 1597/64079*1364^(14/15) 2100951061890787 a001 646/6119*1364^(11/15) 2100951070580440 a001 4181/64079*1364^(4/5) 2100951076640205 a001 987/2207*9349^(8/19) 2100951079597204 s001 sum(exp(-Pi)^n*A044755[n],n=1..infinity) 2100951079597204 s002 sum(A044755[n]/(exp(pi*n)),n=1..infinity) 2100951084089051 a001 29/233*610^(4/49) 2100951084806694 m001 (3^(1/3)-FellerTornier)/(Mills-Tribonacci) 2100951085425174 a001 987/2207*24476^(8/21) 2100951085624526 r002 5th iterates of z^2 + 2100951086583202 a001 987/2207*64079^(8/23) 2100951086761172 a001 987/2207*(1/2+1/2*5^(1/2))^8 2100951086761172 a001 987/2207*23725150497407^(1/8) 2100951086761172 a001 987/2207*505019158607^(1/7) 2100951086761172 a001 987/2207*73681302247^(2/13) 2100951086761172 a001 987/2207*10749957122^(1/6) 2100951086761172 a001 987/2207*4106118243^(4/23) 2100951086761172 a001 987/2207*1568397607^(2/11) 2100951086761172 a001 987/2207*599074578^(4/21) 2100951086761172 a001 987/2207*228826127^(1/5) 2100951086761172 a001 987/2207*87403803^(4/19) 2100951086761172 a001 987/2207*33385282^(2/9) 2100951086761175 a001 987/2207*12752043^(4/17) 2100951086761194 a001 987/2207*4870847^(1/4) 2100951086761334 a001 987/2207*1860498^(4/15) 2100951086762360 a001 987/2207*710647^(2/7) 2100951086769945 a001 987/2207*271443^(4/13) 2100951086826318 a001 987/2207*103682^(1/3) 2100951087003803 m005 (1/2*5^(1/2)+11/12)/(7/8*Zeta(3)-1/12) 2100951087248282 a001 987/2207*39603^(4/11) 2100951090433744 a001 987/2207*15127^(2/5) 2100951096333765 m001 (exp(-1/2*Pi)-GaussAGM)/(Otter+Trott2nd) 2100951097228404 m002 -5*E^Pi+E^Pi*Pi^2+Pi^4 2100951102737978 a007 Real Root Of -48*x^4-969*x^3+784*x^2-986*x-869 2100951104672492 s002 sum(A141029[n]/(n*exp(n)-1),n=1..infinity) 2100951105414822 m001 Sierpinski/KhinchinLevy/Zeta(5) 2100951107851312 m001 GAMMA(11/12)^exp(-Pi)+ln(3) 2100951111862232 a003 sin(Pi*16/97)/cos(Pi*14/33) 2100951112644485 a001 6765/64079*1364^(11/15) 2100951114730264 a001 987/2207*5778^(4/9) 2100951118104513 m001 (Otter+Tribonacci)/(cos(1)-polylog(4,1/2)) 2100951120049350 a001 17711/167761*1364^(11/15) 2100951121129705 a001 11592/109801*1364^(11/15) 2100951121287326 a001 121393/1149851*1364^(11/15) 2100951121310323 a001 317811/3010349*1364^(11/15) 2100951121313678 a001 208010/1970299*1364^(11/15) 2100951121314168 a001 2178309/20633239*1364^(11/15) 2100951121314239 a001 5702887/54018521*1364^(11/15) 2100951121314250 a001 3732588/35355581*1364^(11/15) 2100951121314251 a001 39088169/370248451*1364^(11/15) 2100951121314251 a001 102334155/969323029*1364^(11/15) 2100951121314251 a001 66978574/634430159*1364^(11/15) 2100951121314251 a001 701408733/6643838879*1364^(11/15) 2100951121314251 a001 1836311903/17393796001*1364^(11/15) 2100951121314251 a001 1201881744/11384387281*1364^(11/15) 2100951121314251 a001 12586269025/119218851371*1364^(11/15) 2100951121314251 a001 32951280099/312119004989*1364^(11/15) 2100951121314251 a001 21566892818/204284540899*1364^(11/15) 2100951121314251 a001 225851433717/2139295485799*1364^(11/15) 2100951121314251 a001 182717648081/1730726404001*1364^(11/15) 2100951121314251 a001 139583862445/1322157322203*1364^(11/15) 2100951121314251 a001 53316291173/505019158607*1364^(11/15) 2100951121314251 a001 10182505537/96450076809*1364^(11/15) 2100951121314251 a001 7778742049/73681302247*1364^(11/15) 2100951121314251 a001 2971215073/28143753123*1364^(11/15) 2100951121314251 a001 567451585/5374978561*1364^(11/15) 2100951121314251 a001 433494437/4106118243*1364^(11/15) 2100951121314251 a001 165580141/1568397607*1364^(11/15) 2100951121314252 a001 31622993/299537289*1364^(11/15) 2100951121314252 a001 24157817/228826127*1364^(11/15) 2100951121314256 a001 9227465/87403803*1364^(11/15) 2100951121314283 a001 1762289/16692641*1364^(11/15) 2100951121314470 a001 1346269/12752043*1364^(11/15) 2100951121315752 a001 514229/4870847*1364^(11/15) 2100951121324536 a001 98209/930249*1364^(11/15) 2100951121384742 a001 75025/710647*1364^(11/15) 2100951121797401 a001 28657/271443*1364^(11/15) 2100951124485133 a001 2584/15127*1364^(2/3) 2100951124625808 a001 5473/51841*1364^(11/15) 2100951127712008 r005 Im(z^2+c),c=7/25+3/59*I,n=25 2100951134163230 a001 1597/39603*1364^(13/15) 2100951143602182 a007 Real Root Of -28*x^4+46*x^3+209*x^2-204*x-379 2100951144011995 a001 4181/39603*1364^(11/15) 2100951144046229 b008 2+1/(3*6^(2/3)) 2100951150072813 m001 MadelungNaCl^2*ln(GolombDickman)*Zeta(1/2) 2100951151369263 b008 11*(1/4+6*Pi) 2100951153383414 b008 2+CoshIntegral[Catalan]/7 2100951155867673 a001 1597/2207*1364^(7/15) 2100951163415182 r005 Im(z^2+c),c=-95/106+2/11*I,n=41 2100951165716438 a001 4181/2207*1364^(1/3) 2100951167023080 r005 Im(z^2+c),c=-121/94+1/56*I,n=49 2100951178325428 a007 Real Root Of 122*x^4-72*x^3-819*x^2+6*x+583 2100951183294026 a007 Real Root Of 453*x^4+518*x^3-517*x^2+953*x+262 2100951186076041 a001 2255/13201*1364^(2/3) 2100951190708414 a007 Real Root Of 262*x^4+727*x^3+635*x^2+660*x+221 2100951195062033 a001 17711/103682*1364^(2/3) 2100951196373072 a001 15456/90481*1364^(2/3) 2100951196564350 a001 121393/710647*1364^(2/3) 2100951196592257 a001 105937/620166*1364^(2/3) 2100951196596329 a001 832040/4870847*1364^(2/3) 2100951196596923 a001 726103/4250681*1364^(2/3) 2100951196597009 a001 5702887/33385282*1364^(2/3) 2100951196597022 a001 4976784/29134601*1364^(2/3) 2100951196597024 a001 39088169/228826127*1364^(2/3) 2100951196597024 a001 34111385/199691526*1364^(2/3) 2100951196597024 a001 267914296/1568397607*1364^(2/3) 2100951196597024 a001 233802911/1368706081*1364^(2/3) 2100951196597024 a001 1836311903/10749957122*1364^(2/3) 2100951196597024 a001 1602508992/9381251041*1364^(2/3) 2100951196597024 a001 12586269025/73681302247*1364^(2/3) 2100951196597024 a001 10983760033/64300051206*1364^(2/3) 2100951196597024 a001 86267571272/505019158607*1364^(2/3) 2100951196597024 a001 75283811239/440719107401*1364^(2/3) 2100951196597024 a001 2504730781961/14662949395604*1364^(2/3) 2100951196597024 a001 139583862445/817138163596*1364^(2/3) 2100951196597024 a001 53316291173/312119004989*1364^(2/3) 2100951196597024 a001 20365011074/119218851371*1364^(2/3) 2100951196597024 a001 7778742049/45537549124*1364^(2/3) 2100951196597024 a001 2971215073/17393796001*1364^(2/3) 2100951196597024 a001 1134903170/6643838879*1364^(2/3) 2100951196597024 a001 433494437/2537720636*1364^(2/3) 2100951196597024 a001 165580141/969323029*1364^(2/3) 2100951196597024 a001 63245986/370248451*1364^(2/3) 2100951196597025 a001 24157817/141422324*1364^(2/3) 2100951196597030 a001 9227465/54018521*1364^(2/3) 2100951196597063 a001 3524578/20633239*1364^(2/3) 2100951196597290 a001 1346269/7881196*1364^(2/3) 2100951196598845 a001 514229/3010349*1364^(2/3) 2100951196609505 a001 196418/1149851*1364^(2/3) 2100951196682566 a001 75025/439204*1364^(2/3) 2100951197183339 a001 28657/167761*1364^(2/3) 2100951200615682 a001 10946/64079*1364^(2/3) 2100951207780484 a001 6765/2207*1364^(4/15) 2100951208462553 m005 (1/2*Pi-2/5)/(5/6*Zeta(3)-4/9) 2100951211106522 a001 182717648081/9*23725150497407^(14/17) 2100951211106522 a001 182717648081/9*505019158607^(16/17) 2100951211106522 a001 139583862445/18*9062201101803^(15/17) 2100951212974854 r002 3th iterates of z^2 + 2100951213397021 m001 exp(Zeta(5)/PolyaRandomWalk3D) 2100951214292551 a001 1597/24476*1364^(4/5) 2100951221301650 a001 1292/2889*1364^(8/15) 2100951222458166 r009 Re(z^3+c),c=-7/23+23/55*I,n=26 2100951224141316 a001 4181/24476*1364^(2/3) 2100951227401718 r005 Re(z^2+c),c=-13/86+33/61*I,n=7 2100951232986634 a001 2584/9349*1364^(3/5) 2100951236912569 r005 Re(z^2+c),c=11/58+5/56*I,n=13 2100951244776359 a007 Real Root Of -467*x^4-628*x^3+863*x^2+172*x-173 2100951246297510 a001 233/322*322^(7/12) 2100951253128296 r005 Re(z^2+c),c=-4/25+27/62*I,n=25 2100951258957231 a007 Real Root Of 452*x^4+399*x^3-961*x^2-35*x-938 2100951259199078 a007 Real Root Of 531*x^4+982*x^3-105*x^2-74*x-931 2100951264855038 r009 Re(z^3+c),c=-21/86+14/57*I,n=12 2100951265074600 r005 Re(z^2+c),c=4/19+24/55*I,n=26 2100951266205363 a001 6765/24476*1364^(3/5) 2100951271051911 a001 17711/64079*1364^(3/5) 2100951271759012 a001 46368/167761*1364^(3/5) 2100951271862177 a001 121393/439204*1364^(3/5) 2100951271877229 a001 317811/1149851*1364^(3/5) 2100951271879425 a001 832040/3010349*1364^(3/5) 2100951271879745 a001 2178309/7881196*1364^(3/5) 2100951271879792 a001 5702887/20633239*1364^(3/5) 2100951271879799 a001 14930352/54018521*1364^(3/5) 2100951271879800 a001 39088169/141422324*1364^(3/5) 2100951271879800 a001 102334155/370248451*1364^(3/5) 2100951271879800 a001 267914296/969323029*1364^(3/5) 2100951271879800 a001 701408733/2537720636*1364^(3/5) 2100951271879800 a001 1836311903/6643838879*1364^(3/5) 2100951271879800 a001 4807526976/17393796001*1364^(3/5) 2100951271879800 a001 12586269025/45537549124*1364^(3/5) 2100951271879800 a001 32951280099/119218851371*1364^(3/5) 2100951271879800 a001 86267571272/312119004989*1364^(3/5) 2100951271879800 a001 1548008755920/5600748293801*1364^(3/5) 2100951271879800 a001 139583862445/505019158607*1364^(3/5) 2100951271879800 a001 53316291173/192900153618*1364^(3/5) 2100951271879800 a001 20365011074/73681302247*1364^(3/5) 2100951271879800 a001 7778742049/28143753123*1364^(3/5) 2100951271879800 a001 2971215073/10749957122*1364^(3/5) 2100951271879800 a001 1134903170/4106118243*1364^(3/5) 2100951271879800 a001 433494437/1568397607*1364^(3/5) 2100951271879800 a001 165580141/599074578*1364^(3/5) 2100951271879800 a001 63245986/228826127*1364^(3/5) 2100951271879800 a001 24157817/87403803*1364^(3/5) 2100951271879803 a001 9227465/33385282*1364^(3/5) 2100951271879821 a001 3524578/12752043*1364^(3/5) 2100951271879943 a001 1346269/4870847*1364^(3/5) 2100951271880782 a001 514229/1860498*1364^(3/5) 2100951271886531 a001 196418/710647*1364^(3/5) 2100951271925936 a001 75025/271443*1364^(3/5) 2100951272196025 a001 28657/103682*1364^(3/5) 2100951272655615 r005 Im(z^2+c),c=-7/8+32/203*I,n=5 2100951273013911 m001 GAMMA(5/24)*GAMMA(1/24)^GAMMA(3/4) 2100951273192402 r005 Re(z^2+c),c=-47/38+5/43*I,n=6 2100951274047242 a001 10946/39603*1364^(3/5) 2100951274388140 m001 exp(-Pi)^Zeta(5)/(exp(-Pi)^cos(1)) 2100951274388140 m001 exp(Pi)^cos(1)/(exp(Pi)^Zeta(5)) 2100951276886901 a001 1597/15127*1364^(11/15) 2100951283342796 a001 615/124*521^(3/13) 2100951285556083 a007 Real Root Of 742*x^4-557*x^3+187*x^2-786*x-180 2100951286735667 a001 4181/15127*1364^(3/5) 2100951287400417 r009 Im(z^3+c),c=-5/23+49/51*I,n=2 2100951291188240 a001 75025/5778*521^(1/13) 2100951295751686 a001 10946/2207*1364^(1/5) 2100951302427049 a001 987/2207*2207^(1/2) 2100951304262199 l006 ln(6170/6301) 2100951304959817 m001 cos(1)^2*exp((3^(1/3)))/sin(Pi/5) 2100951307388381 g002 -gamma-2*ln(2)+Psi(1/5)-Psi(1/8)-Psi(4/5) 2100951312088538 a007 Real Root Of 34*x^4+744*x^3+648*x^2+497*x-377 2100951317627398 g007 Psi(2,3/11)+Psi(2,1/10)+Psi(2,6/7)-Psi(2,4/5) 2100951319507089 m001 (ArtinRank2+Robbin)/(Sarnak-ZetaP(4)) 2100951320202767 r005 Re(z^2+c),c=-8/31+19/27*I,n=6 2100951320407686 r005 Re(z^2+c),c=7/58+11/28*I,n=61 2100951324764100 m001 (5^(1/2)+Chi(1))/(FeigenbaumKappa+OneNinth) 2100951327320152 r005 Re(z^2+c),c=19/58+11/37*I,n=8 2100951328533000 m001 (-ln(2^(1/2)+1)+Zeta(1,-1))/(2^(1/2)-Catalan) 2100951328799716 a001 6765/15127*1364^(8/15) 2100951329718401 l006 ln(2669/3293) 2100951331142046 m001 (Zeta(5)-gamma)/(Riemann2ndZero+Thue) 2100951340629076 r002 15th iterates of z^2 + 2100951344483472 a001 17711/39603*1364^(8/15) 2100951344873514 a001 196418/15127*521^(1/13) 2100951345207624 m001 (AlladiGrinstead-Bloch)/(Niven-Paris) 2100951346771702 a001 23184/51841*1364^(8/15) 2100951347105550 a001 121393/271443*1364^(8/15) 2100951347154258 a001 317811/710647*1364^(8/15) 2100951347161364 a001 416020/930249*1364^(8/15) 2100951347162401 a001 2178309/4870847*1364^(8/15) 2100951347162552 a001 5702887/12752043*1364^(8/15) 2100951347162574 a001 7465176/16692641*1364^(8/15) 2100951347162577 a001 39088169/87403803*1364^(8/15) 2100951347162578 a001 102334155/228826127*1364^(8/15) 2100951347162578 a001 133957148/299537289*1364^(8/15) 2100951347162578 a001 701408733/1568397607*1364^(8/15) 2100951347162578 a001 1836311903/4106118243*1364^(8/15) 2100951347162578 a001 2403763488/5374978561*1364^(8/15) 2100951347162578 a001 12586269025/28143753123*1364^(8/15) 2100951347162578 a001 32951280099/73681302247*1364^(8/15) 2100951347162578 a001 43133785636/96450076809*1364^(8/15) 2100951347162578 a001 225851433717/505019158607*1364^(8/15) 2100951347162578 a001 591286729879/1322157322203*1364^(8/15) 2100951347162578 a001 10610209857723/23725150497407*1364^(8/15) 2100951347162578 a001 139583862445/312119004989*1364^(8/15) 2100951347162578 a001 53316291173/119218851371*1364^(8/15) 2100951347162578 a001 10182505537/22768774562*1364^(8/15) 2100951347162578 a001 7778742049/17393796001*1364^(8/15) 2100951347162578 a001 2971215073/6643838879*1364^(8/15) 2100951347162578 a001 567451585/1268860318*1364^(8/15) 2100951347162578 a001 433494437/969323029*1364^(8/15) 2100951347162578 a001 165580141/370248451*1364^(8/15) 2100951347162578 a001 31622993/70711162*1364^(8/15) 2100951347162579 a001 24157817/54018521*1364^(8/15) 2100951347162588 a001 9227465/20633239*1364^(8/15) 2100951347162646 a001 1762289/3940598*1364^(8/15) 2100951347163042 a001 1346269/3010349*1364^(8/15) 2100951347165756 a001 514229/1149851*1364^(8/15) 2100951347184361 a001 98209/219602*1364^(8/15) 2100951347311879 a001 75025/167761*1364^(8/15) 2100951348114377 r002 54th iterates of z^2 + 2100951348185905 a001 28657/64079*1364^(8/15) 2100951349743004 r005 Re(z^2+c),c=-5/29+13/32*I,n=32 2100951352706090 a001 514229/39603*521^(1/13) 2100951353338836 a004 Fibonacci(16)*Lucas(17)/(1/2+sqrt(5)/2)^25 2100951353848848 a001 1346269/103682*521^(1/13) 2100951354015574 a001 3524578/271443*521^(1/13) 2100951354039899 a001 9227465/710647*521^(1/13) 2100951354043448 a001 24157817/1860498*521^(1/13) 2100951354043965 a001 63245986/4870847*521^(1/13) 2100951354044041 a001 165580141/12752043*521^(1/13) 2100951354044052 a001 433494437/33385282*521^(1/13) 2100951354044054 a001 1134903170/87403803*521^(1/13) 2100951354044054 a001 2971215073/228826127*521^(1/13) 2100951354044054 a001 7778742049/599074578*521^(1/13) 2100951354044054 a001 20365011074/1568397607*521^(1/13) 2100951354044054 a001 53316291173/4106118243*521^(1/13) 2100951354044054 a001 139583862445/10749957122*521^(1/13) 2100951354044054 a001 365435296162/28143753123*521^(1/13) 2100951354044054 a001 956722026041/73681302247*521^(1/13) 2100951354044054 a001 2504730781961/192900153618*521^(1/13) 2100951354044054 a001 10610209857723/817138163596*521^(1/13) 2100951354044054 a001 4052739537881/312119004989*521^(1/13) 2100951354044054 a001 1548008755920/119218851371*521^(1/13) 2100951354044054 a001 591286729879/45537549124*521^(1/13) 2100951354044054 a001 7787980473/599786069*521^(1/13) 2100951354044054 a001 86267571272/6643838879*521^(1/13) 2100951354044054 a001 32951280099/2537720636*521^(1/13) 2100951354044054 a001 12586269025/969323029*521^(1/13) 2100951354044054 a001 4807526976/370248451*521^(1/13) 2100951354044054 a001 1836311903/141422324*521^(1/13) 2100951354044055 a001 701408733/54018521*521^(1/13) 2100951354044059 a001 9238424/711491*521^(1/13) 2100951354044088 a001 102334155/7881196*521^(1/13) 2100951354044285 a001 39088169/3010349*521^(1/13) 2100951354045641 a001 14930352/1149851*521^(1/13) 2100951354054932 a001 5702887/439204*521^(1/13) 2100951354118616 a001 2178309/167761*521^(1/13) 2100951354176567 a001 5473/12238*1364^(8/15) 2100951354555110 a001 832040/64079*521^(1/13) 2100951356359747 p004 log(36137/4421) 2100951356590299 m001 (Pi^(1/2)+MertensB3)/(Porter+Trott) 2100951357546888 a001 10959/844*521^(1/13) 2100951358248297 a001 329/1926*3571^(10/17) 2100951362834816 a001 21/2206*3571^(16/17) 2100951365074271 a007 Real Root Of -164*x^4-488*x^3-383*x^2-231*x-125 2100951365222636 r005 Im(z^2+c),c=-25/62+25/46*I,n=20 2100951366187917 a001 17711/2207*1364^(2/15) 2100951366795696 a007 Real Root Of 381*x^4+418*x^3+114*x^2-322*x+58 2100951373233335 a001 987/64079*3571^(15/17) 2100951373703426 a001 1597/5778*1364^(3/5) 2100951374207188 q001 795/3784 2100951374207188 r002 2th iterates of z^2 + 2100951374529083 a001 233/843*521^(9/13) 2100951375098176 m001 Magata^2*ln(FeigenbaumB)*Paris 2100951378052839 a001 121393/9349*521^(1/13) 2100951381073537 a001 329/13201*3571^(14/17) 2100951383552192 a001 4181/5778*1364^(7/15) 2100951384724258 r005 Im(z^2+c),c=-109/126+7/36*I,n=39 2100951385388410 a001 1597/9349*1364^(2/3) 2100951389861334 a001 36/341*322^(11/12) 2100951392614495 a001 141/2161*3571^(12/17) 2100951395237177 a001 4181/9349*1364^(8/15) 2100951395611503 a001 987/24476*3571^(13/17) 2100951397014055 a001 2584/2207*3571^(6/17) 2100951397844325 b008 1/6+7*Erf[1/4] 2100951398302784 m001 exp(GAMMA(5/24))/GAMMA(11/24)*sqrt(5)^2 2100951407431709 m001 ZetaP(4)^Landau/(ZetaP(4)^FeigenbaumB) 2100951416770922 a001 10946/15127*1364^(7/15) 2100951421617470 a001 28657/39603*1364^(7/15) 2100951422324571 a001 75025/103682*1364^(7/15) 2100951422427736 a001 196418/271443*1364^(7/15) 2100951422442788 a001 514229/710647*1364^(7/15) 2100951422444984 a001 1346269/1860498*1364^(7/15) 2100951422445304 a001 3524578/4870847*1364^(7/15) 2100951422445351 a001 9227465/12752043*1364^(7/15) 2100951422445358 a001 24157817/33385282*1364^(7/15) 2100951422445359 a001 63245986/87403803*1364^(7/15) 2100951422445359 a001 165580141/228826127*1364^(7/15) 2100951422445359 a001 433494437/599074578*1364^(7/15) 2100951422445359 a001 1134903170/1568397607*1364^(7/15) 2100951422445359 a001 2971215073/4106118243*1364^(7/15) 2100951422445359 a001 7778742049/10749957122*1364^(7/15) 2100951422445359 a001 20365011074/28143753123*1364^(7/15) 2100951422445359 a001 53316291173/73681302247*1364^(7/15) 2100951422445359 a001 139583862445/192900153618*1364^(7/15) 2100951422445359 a001 10610209857723/14662949395604*1364^(7/15) 2100951422445359 a001 225851433717/312119004989*1364^(7/15) 2100951422445359 a001 86267571272/119218851371*1364^(7/15) 2100951422445359 a001 32951280099/45537549124*1364^(7/15) 2100951422445359 a001 12586269025/17393796001*1364^(7/15) 2100951422445359 a001 4807526976/6643838879*1364^(7/15) 2100951422445359 a001 1836311903/2537720636*1364^(7/15) 2100951422445359 a001 701408733/969323029*1364^(7/15) 2100951422445359 a001 267914296/370248451*1364^(7/15) 2100951422445359 a001 102334155/141422324*1364^(7/15) 2100951422445359 a001 39088169/54018521*1364^(7/15) 2100951422445362 a001 14930352/20633239*1364^(7/15) 2100951422445380 a001 5702887/7881196*1364^(7/15) 2100951422445502 a001 2178309/3010349*1364^(7/15) 2100951422446341 a001 832040/1149851*1364^(7/15) 2100951422452090 a001 317811/439204*1364^(7/15) 2100951422491496 a001 121393/167761*1364^(7/15) 2100951422761584 a001 46368/64079*1364^(7/15) 2100951424612801 a001 17711/24476*1364^(7/15) 2100951425616242 a001 2255/1926*1364^(2/5) 2100951426538801 a007 Real Root Of -690*x^4-16*x^3+370*x^2+115*x-39 2100951427189973 m001 exp(GAMMA(1/12))*BesselK(1,1)^2*sin(Pi/5) 2100951435524644 a001 987/9349*3571^(11/17) 2100951436801716 r005 Re(z^2+c),c=-5/62+17/29*I,n=64 2100951437301227 a001 6765/9349*1364^(7/15) 2100951442237348 h001 (7/11*exp(2)+7/9)/(5/7*exp(1)+2/3) 2100951442511268 a001 329/1926*9349^(10/19) 2100951443321916 a001 28657/2207*1364^(1/15) 2100951447571839 a001 2584/2207*9349^(6/19) 2100951453492481 a001 329/1926*24476^(10/21) 2100951454160567 a001 2584/2207*24476^(2/7) 2100951454940016 a001 329/1926*64079^(10/23) 2100951455029088 a001 2584/2207*64079^(6/23) 2100951455132618 a001 329/1926*167761^(2/5) 2100951455160145 a001 2584/2207*439204^(2/9) 2100951455162477 a001 329/1926*20633239^(2/7) 2100951455162479 a001 329/1926*2537720636^(2/9) 2100951455162479 a001 329/1926*312119004989^(2/11) 2100951455162479 a001 329/1926*(1/2+1/2*5^(1/2))^10 2100951455162479 a001 329/1926*28143753123^(1/5) 2100951455162479 a001 329/1926*10749957122^(5/24) 2100951455162479 a001 329/1926*4106118243^(5/23) 2100951455162479 a001 329/1926*1568397607^(5/22) 2100951455162479 a001 329/1926*599074578^(5/21) 2100951455162479 a001 329/1926*228826127^(1/4) 2100951455162479 a001 329/1926*87403803^(5/19) 2100951455162479 a001 329/1926*33385282^(5/18) 2100951455162482 a001 329/1926*12752043^(5/17) 2100951455162506 a001 329/1926*4870847^(5/16) 2100951455162559 a001 2584/2207*7881196^(2/11) 2100951455162565 a001 2584/2207*141422324^(2/13) 2100951455162565 a001 2584/2207*2537720636^(2/15) 2100951455162565 a001 2584/2207*45537549124^(2/17) 2100951455162565 a001 2584/2207*14662949395604^(2/21) 2100951455162565 a001 2584/2207*(1/2+1/2*5^(1/2))^6 2100951455162565 a001 2584/2207*10749957122^(1/8) 2100951455162565 a001 2584/2207*4106118243^(3/23) 2100951455162565 a001 2584/2207*1568397607^(3/22) 2100951455162565 a001 2584/2207*599074578^(1/7) 2100951455162565 a001 2584/2207*228826127^(3/20) 2100951455162565 a001 2584/2207*87403803^(3/19) 2100951455162566 a001 2584/2207*33385282^(1/6) 2100951455162568 a001 2584/2207*12752043^(3/17) 2100951455162582 a001 2584/2207*4870847^(3/16) 2100951455162681 a001 329/1926*1860498^(1/3) 2100951455162687 a001 2584/2207*1860498^(1/5) 2100951455163457 a001 2584/2207*710647^(3/14) 2100951455163964 a001 329/1926*710647^(5/14) 2100951455169145 a001 2584/2207*271443^(3/13) 2100951455173446 a001 329/1926*271443^(5/13) 2100951455190991 a001 2550408/121393 2100951455211425 a001 2584/2207*103682^(1/4) 2100951455243911 a001 329/1926*103682^(5/12) 2100951455527898 a001 2584/2207*39603^(3/11) 2100951455771366 a001 329/1926*39603^(5/11) 2100951456151487 m001 (-sin(1/12*Pi)+MinimumGamma)/(1-Shi(1)) 2100951457916995 a001 2584/2207*15127^(3/10) 2100951459199337 m001 (3^(1/3))^Si(Pi)/(cos(1/12*Pi)^Si(Pi)) 2100951459199337 m001 (3^(1/3))^Si(Pi)/(cos(Pi/12)^Si(Pi)) 2100951459753194 a001 329/1926*15127^(1/2) 2100951464148727 a001 377/5778*843^(6/7) 2100951466169191 r005 Im(z^2+c),c=-79/56+13/57*I,n=3 2100951470145930 a001 6765/2207*3571^(4/17) 2100951476139388 a001 2584/2207*5778^(1/3) 2100951479868819 m001 (gamma(3)+Mills)/(ln(2)/ln(10)+arctan(1/3)) 2100951480662565 a001 377/3571*843^(11/14) 2100951487207158 a001 17711/15127*1364^(2/5) 2100951490123850 a001 329/1926*5778^(5/9) 2100951492525775 a001 10946/2207*3571^(3/17) 2100951493018943 r002 22th iterates of z^2 + 2100951493673244 a001 4181/2207*3571^(5/17) 2100951493730062 a001 141/2161*9349^(12/19) 2100951494055647 a004 Fibonacci(16)*Lucas(19)/(1/2+sqrt(5)/2)^27 2100951495292254 a001 329/90481*9349^(18/19) 2100951496193151 a001 15456/13201*1364^(2/5) 2100951496660540 a001 987/167761*9349^(17/19) 2100951497370646 a001 17711/2207*3571^(2/17) 2100951497504190 a001 121393/103682*1364^(2/5) 2100951497655572 a001 21/2206*9349^(16/19) 2100951497695468 a001 105937/90481*1364^(2/5) 2100951497723375 a001 832040/710647*1364^(2/5) 2100951497727447 a001 726103/620166*1364^(2/5) 2100951497728041 a001 5702887/4870847*1364^(2/5) 2100951497728128 a001 4976784/4250681*1364^(2/5) 2100951497728140 a001 39088169/33385282*1364^(2/5) 2100951497728142 a001 34111385/29134601*1364^(2/5) 2100951497728142 a001 267914296/228826127*1364^(2/5) 2100951497728142 a001 233802911/199691526*1364^(2/5) 2100951497728142 a001 1836311903/1568397607*1364^(2/5) 2100951497728142 a001 1602508992/1368706081*1364^(2/5) 2100951497728142 a001 12586269025/10749957122*1364^(2/5) 2100951497728142 a001 10983760033/9381251041*1364^(2/5) 2100951497728142 a001 86267571272/73681302247*1364^(2/5) 2100951497728142 a001 75283811239/64300051206*1364^(2/5) 2100951497728142 a001 2504730781961/2139295485799*1364^(2/5) 2100951497728142 a001 365435296162/312119004989*1364^(2/5) 2100951497728142 a001 139583862445/119218851371*1364^(2/5) 2100951497728142 a001 53316291173/45537549124*1364^(2/5) 2100951497728142 a001 20365011074/17393796001*1364^(2/5) 2100951497728142 a001 7778742049/6643838879*1364^(2/5) 2100951497728142 a001 2971215073/2537720636*1364^(2/5) 2100951497728142 a001 1134903170/969323029*1364^(2/5) 2100951497728142 a001 433494437/370248451*1364^(2/5) 2100951497728143 a001 165580141/141422324*1364^(2/5) 2100951497728143 a001 63245986/54018521*1364^(2/5) 2100951497728148 a001 24157817/20633239*1364^(2/5) 2100951497728181 a001 9227465/7881196*1364^(2/5) 2100951497728408 a001 3524578/3010349*1364^(2/5) 2100951497729963 a001 1346269/1149851*1364^(2/5) 2100951497740623 a001 514229/439204*1364^(2/5) 2100951497813685 a001 196418/167761*1364^(2/5) 2100951498314457 a001 75025/64079*1364^(2/5) 2100951498365881 a007 Real Root Of 170*x^4-891*x^3+897*x^2+151*x+674 2100951499041699 a001 329/13201*9349^(14/19) 2100951499627795 a001 987/64079*9349^(15/19) 2100951501746801 a001 28657/24476*1364^(2/5) 2100951503851120 a001 6765/2207*9349^(4/19) 2100951505153368 a001 987/24476*9349^(13/19) 2100951506907519 a001 141/2161*24476^(4/7) 2100951508243605 a001 6765/2207*24476^(4/21) 2100951508644561 a001 141/2161*64079^(12/23) 2100951508822619 a001 6765/2207*64079^(4/23) 2100951508906675 a001 141/2161*439204^(4/9) 2100951508911503 a001 141/2161*7881196^(4/11) 2100951508911516 a001 141/2161*141422324^(4/13) 2100951508911516 a001 141/2161*2537720636^(4/15) 2100951508911516 a001 141/2161*45537549124^(4/17) 2100951508911516 a001 141/2161*817138163596^(4/19) 2100951508911516 a001 141/2161*14662949395604^(4/21) 2100951508911516 a001 141/2161*(1/2+1/2*5^(1/2))^12 2100951508911516 a001 141/2161*192900153618^(2/9) 2100951508911516 a001 141/2161*73681302247^(3/13) 2100951508911516 a001 141/2161*10749957122^(1/4) 2100951508911516 a001 141/2161*4106118243^(6/23) 2100951508911516 a001 141/2161*1568397607^(3/11) 2100951508911516 a001 141/2161*599074578^(2/7) 2100951508911516 a001 141/2161*228826127^(3/10) 2100951508911516 a001 141/2161*87403803^(6/19) 2100951508911516 a001 141/2161*33385282^(1/3) 2100951508911520 a001 141/2161*12752043^(6/17) 2100951508911549 a001 141/2161*4870847^(3/8) 2100951508911604 a001 6765/2207*(1/2+1/2*5^(1/2))^4 2100951508911604 a001 6765/2207*23725150497407^(1/16) 2100951508911604 a001 6765/2207*73681302247^(1/13) 2100951508911604 a001 6765/2207*10749957122^(1/12) 2100951508911604 a001 6765/2207*4106118243^(2/23) 2100951508911604 a001 6765/2207*1568397607^(1/11) 2100951508911604 a001 6765/2207*599074578^(2/21) 2100951508911604 a001 6765/2207*228826127^(1/10) 2100951508911604 a001 6765/2207*87403803^(2/19) 2100951508911604 a001 6765/2207*33385282^(1/9) 2100951508911606 a001 6765/2207*12752043^(2/17) 2100951508911615 a001 6765/2207*4870847^(1/8) 2100951508911685 a001 6765/2207*1860498^(2/15) 2100951508911758 a001 141/2161*1860498^(2/5) 2100951508912199 a001 6765/2207*710647^(1/7) 2100951508913281 a001 28657/2207*3571^(1/17) 2100951508913299 a001 141/2161*710647^(3/7) 2100951508915676 a001 2225685/105937 2100951508915991 a001 6765/2207*271443^(2/13) 2100951508924676 a001 141/2161*271443^(6/13) 2100951508944177 a001 6765/2207*103682^(1/6) 2100951509009235 a001 141/2161*103682^(1/2) 2100951509155159 a001 6765/2207*39603^(2/11) 2100951509642181 a001 141/2161*39603^(6/11) 2100951510747891 a001 6765/2207*15127^(1/5) 2100951513026459 h001 (4/5*exp(2)+5/11)/(6/7*exp(1)+7/10) 2100951513587453 a001 5473/2889*1364^(1/3) 2100951514223241 a001 17711/2207*9349^(2/19) 2100951514415398 a001 329/13201*24476^(2/3) 2100951514420375 a001 141/2161*15127^(3/5) 2100951514585953 a004 Fibonacci(16)*Lucas(21)/(1/2+sqrt(5)/2)^29 2100951514748792 a001 141/101521*24476^(20/21) 2100951514930844 a001 987/439204*24476^(19/21) 2100951515058438 a001 329/90481*24476^(6/7) 2100951515225513 a001 21/2206*24476^(16/21) 2100951515328602 a001 987/167761*24476^(17/21) 2100951516099615 a001 987/64079*24476^(5/7) 2100951516419484 a001 17711/2207*24476^(2/21) 2100951516441947 a001 329/13201*64079^(14/23) 2100951516708991 a001 17711/2207*64079^(2/23) 2100951516753393 a001 329/13201*20633239^(2/5) 2100951516753395 a001 329/13201*17393796001^(2/7) 2100951516753395 a001 329/13201*14662949395604^(2/9) 2100951516753395 a001 329/13201*(1/2+1/2*5^(1/2))^14 2100951516753395 a001 329/13201*10749957122^(7/24) 2100951516753395 a001 329/13201*4106118243^(7/23) 2100951516753395 a001 329/13201*1568397607^(7/22) 2100951516753395 a001 329/13201*599074578^(1/3) 2100951516753395 a001 329/13201*228826127^(7/20) 2100951516753395 a001 329/13201*87403803^(7/19) 2100951516753395 a001 329/13201*33385282^(7/18) 2100951516753400 a001 329/13201*12752043^(7/17) 2100951516753433 a001 329/13201*4870847^(7/16) 2100951516753483 a001 17711/2207*(1/2+1/2*5^(1/2))^2 2100951516753483 a001 17711/2207*10749957122^(1/24) 2100951516753483 a001 17711/2207*4106118243^(1/23) 2100951516753483 a001 17711/2207*1568397607^(1/22) 2100951516753483 a001 17711/2207*599074578^(1/21) 2100951516753483 a001 17711/2207*228826127^(1/20) 2100951516753483 a001 17711/2207*87403803^(1/19) 2100951516753483 a001 17711/2207*33385282^(1/18) 2100951516753484 a001 17711/2207*12752043^(1/17) 2100951516753489 a001 17711/2207*4870847^(1/16) 2100951516753524 a001 17711/2207*1860498^(1/15) 2100951516753678 a001 329/13201*1860498^(7/15) 2100951516753780 a001 17711/2207*710647^(1/14) 2100951516754002 a001 17480757/832040 2100951516755475 a001 329/13201*710647^(1/2) 2100951516755677 a001 17711/2207*271443^(1/13) 2100951516768748 a001 329/13201*271443^(7/13) 2100951516769770 a001 17711/2207*103682^(1/12) 2100951516867400 a001 329/13201*103682^(7/12) 2100951516875261 a001 17711/2207*39603^(1/11) 2100951517339579 a001 28657/2207*9349^(1/19) 2100951517541570 a001 21/2206*64079^(16/23) 2100951517581284 a004 Fibonacci(16)*Lucas(23)/(1/2+sqrt(5)/2)^31 2100951517602923 a001 329/620166*64079^(22/23) 2100951517605837 a001 329/13201*39603^(7/11) 2100951517627365 a001 987/1149851*64079^(21/23) 2100951517643863 a001 141/101521*64079^(20/23) 2100951517664001 a001 329/90481*64079^(18/23) 2100951517671627 a001 17711/2207*15127^(1/10) 2100951517681160 a001 987/439204*64079^(19/23) 2100951517789412 a001 987/167761*64079^(17/23) 2100951517804668 a001 10946/2207*9349^(3/19) 2100951517897509 a001 21/2206*(1/2+1/2*5^(1/2))^16 2100951517897509 a001 21/2206*23725150497407^(1/4) 2100951517897509 a001 21/2206*73681302247^(4/13) 2100951517897509 a001 21/2206*10749957122^(1/3) 2100951517897509 a001 21/2206*4106118243^(8/23) 2100951517897509 a001 21/2206*1568397607^(4/11) 2100951517897509 a001 21/2206*599074578^(8/21) 2100951517897510 a001 21/2206*228826127^(2/5) 2100951517897510 a001 21/2206*87403803^(8/19) 2100951517897510 a001 21/2206*33385282^(4/9) 2100951517897516 a001 21/2206*12752043^(8/17) 2100951517897554 a001 21/2206*4870847^(1/2) 2100951517897598 a001 46368/2207 2100951517897833 a001 21/2206*1860498^(8/15) 2100951517899887 a001 21/2206*710647^(4/7) 2100951517915057 a001 21/2206*271443^(8/13) 2100951518018297 a004 Fibonacci(16)*Lucas(25)/(1/2+sqrt(5)/2)^33 2100951518027802 a001 21/2206*103682^(2/3) 2100951518029067 a001 141/101521*167761^(4/5) 2100951518057173 a001 329/90481*439204^(2/3) 2100951518064415 a001 329/90481*7881196^(6/11) 2100951518064434 a001 329/90481*141422324^(6/13) 2100951518064434 a001 329/90481*2537720636^(2/5) 2100951518064434 a001 329/90481*45537549124^(6/17) 2100951518064434 a001 329/90481*14662949395604^(2/7) 2100951518064434 a001 329/90481*(1/2+1/2*5^(1/2))^18 2100951518064434 a001 329/90481*192900153618^(1/3) 2100951518064434 a001 329/90481*10749957122^(3/8) 2100951518064434 a001 329/90481*4106118243^(9/23) 2100951518064434 a001 329/90481*1568397607^(9/22) 2100951518064434 a001 329/90481*599074578^(3/7) 2100951518064434 a001 329/90481*228826127^(9/20) 2100951518064434 a001 329/90481*87403803^(9/19) 2100951518064435 a001 329/90481*33385282^(1/2) 2100951518064440 a001 329/90481*12752043^(9/17) 2100951518064447 a001 119814891/5702887 2100951518064483 a001 329/90481*4870847^(9/16) 2100951518064522 a004 Fibonacci(26)/Lucas(16)/(1/2+sqrt(5)/2)^2 2100951518064798 a001 329/90481*1860498^(3/5) 2100951518067108 a001 329/90481*710647^(9/14) 2100951518082056 a004 Fibonacci(16)*Lucas(27)/(1/2+sqrt(5)/2)^35 2100951518083178 a001 987/4870847*439204^(8/9) 2100951518084174 a001 329/90481*271443^(9/13) 2100951518086066 a001 987/1149851*439204^(7/9) 2100951518088785 a001 141/101521*20633239^(4/7) 2100951518088787 a001 141/101521*2537720636^(4/9) 2100951518088787 a001 141/101521*(1/2+1/2*5^(1/2))^20 2100951518088787 a001 141/101521*23725150497407^(5/16) 2100951518088787 a001 141/101521*505019158607^(5/14) 2100951518088787 a001 141/101521*73681302247^(5/13) 2100951518088787 a001 141/101521*28143753123^(2/5) 2100951518088787 a001 141/101521*10749957122^(5/12) 2100951518088787 a001 141/101521*4106118243^(10/23) 2100951518088787 a001 141/101521*1568397607^(5/11) 2100951518088787 a001 141/101521*599074578^(10/21) 2100951518088788 a001 141/101521*228826127^(1/2) 2100951518088788 a001 141/101521*87403803^(10/19) 2100951518088789 a001 141/101521*33385282^(5/9) 2100951518088789 a001 34853273/1658928 2100951518088795 a001 141/101521*12752043^(10/17) 2100951518088843 a001 141/101521*4870847^(5/8) 2100951518088876 a004 Fibonacci(28)/Lucas(16)/(1/2+sqrt(5)/2)^4 2100951518089192 a001 141/101521*1860498^(2/3) 2100951518091359 a004 Fibonacci(16)*Lucas(29)/(1/2+sqrt(5)/2)^37 2100951518091759 a001 141/101521*710647^(5/7) 2100951518092318 a001 329/620166*7881196^(2/3) 2100951518092341 a001 329/620166*312119004989^(2/5) 2100951518092341 a001 329/620166*(1/2+1/2*5^(1/2))^22 2100951518092341 a001 329/620166*10749957122^(11/24) 2100951518092341 a001 329/620166*4106118243^(11/23) 2100951518092341 a001 329/620166*1568397607^(1/2) 2100951518092341 a001 329/620166*599074578^(11/21) 2100951518092341 a001 329/620166*228826127^(11/20) 2100951518092341 a001 329/620166*87403803^(11/19) 2100951518092341 a001 821223480/39088169 2100951518092342 a001 329/620166*33385282^(11/18) 2100951518092349 a001 329/620166*12752043^(11/17) 2100951518092402 a001 329/620166*4870847^(11/16) 2100951518092429 a004 Fibonacci(30)/Lucas(16)/(1/2+sqrt(5)/2)^6 2100951518092716 a004 Fibonacci(16)*Lucas(31)/(1/2+sqrt(5)/2)^39 2100951518092786 a001 329/620166*1860498^(11/15) 2100951518092834 a001 987/4870847*7881196^(8/11) 2100951518092859 a001 987/4870847*141422324^(8/13) 2100951518092859 a001 987/4870847*2537720636^(8/15) 2100951518092859 a001 987/4870847*45537549124^(8/17) 2100951518092859 a001 987/4870847*14662949395604^(8/21) 2100951518092859 a001 987/4870847*(1/2+1/2*5^(1/2))^24 2100951518092859 a001 987/4870847*192900153618^(4/9) 2100951518092859 a001 987/4870847*73681302247^(6/13) 2100951518092859 a001 987/4870847*10749957122^(1/2) 2100951518092859 a001 987/4870847*4106118243^(12/23) 2100951518092859 a001 987/4870847*1568397607^(6/11) 2100951518092859 a001 987/4870847*599074578^(4/7) 2100951518092859 a001 987/4870847*228826127^(3/5) 2100951518092859 a001 102380523/4873055 2100951518092859 a001 987/4870847*87403803^(12/19) 2100951518092860 a001 987/4870847*33385282^(2/3) 2100951518092868 a001 987/4870847*12752043^(12/17) 2100951518092914 a004 Fibonacci(16)*Lucas(33)/(1/2+sqrt(5)/2)^41 2100951518092917 a001 329/29134601*7881196^(10/11) 2100951518092925 a001 987/20633239*7881196^(9/11) 2100951518092925 a001 987/4870847*4870847^(3/4) 2100951518092935 a001 329/4250681*141422324^(2/3) 2100951518092935 a001 329/4250681*(1/2+1/2*5^(1/2))^26 2100951518092935 a001 329/4250681*73681302247^(1/2) 2100951518092935 a001 329/4250681*10749957122^(13/24) 2100951518092935 a001 329/4250681*4106118243^(13/23) 2100951518092935 a001 329/4250681*1568397607^(13/22) 2100951518092935 a001 329/4250681*599074578^(13/21) 2100951518092935 a001 5628749469/267914296 2100951518092935 a001 329/4250681*228826127^(13/20) 2100951518092935 a001 329/4250681*87403803^(13/19) 2100951518092936 a001 329/4250681*33385282^(13/18) 2100951518092942 a001 141/4769326*20633239^(4/5) 2100951518092943 a004 Fibonacci(16)*Lucas(35)/(1/2+sqrt(5)/2)^43 2100951518092943 a001 329/29134601*20633239^(6/7) 2100951518092945 a001 329/4250681*12752043^(13/17) 2100951518092946 a001 141/4769326*17393796001^(4/7) 2100951518092946 a001 141/4769326*14662949395604^(4/9) 2100951518092946 a001 141/4769326*(1/2+1/2*5^(1/2))^28 2100951518092946 a001 141/4769326*73681302247^(7/13) 2100951518092946 a001 141/4769326*10749957122^(7/12) 2100951518092946 a001 141/4769326*4106118243^(14/23) 2100951518092946 a001 141/4769326*1568397607^(7/11) 2100951518092946 a001 4912085808/233802911 2100951518092946 a001 141/4769326*599074578^(2/3) 2100951518092946 a001 141/4769326*228826127^(7/10) 2100951518092946 a001 141/4769326*87403803^(14/19) 2100951518092947 a004 Fibonacci(16)*Lucas(37)/(1/2+sqrt(5)/2)^45 2100951518092947 a001 141/4769326*33385282^(7/9) 2100951518092947 a001 329/29134601*141422324^(10/13) 2100951518092947 a001 329/29134601*2537720636^(2/3) 2100951518092947 a001 329/29134601*45537549124^(10/17) 2100951518092947 a001 329/29134601*312119004989^(6/11) 2100951518092947 a001 329/29134601*14662949395604^(10/21) 2100951518092947 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^30/Lucas(38) 2100951518092947 a001 329/29134601*192900153618^(5/9) 2100951518092947 a001 329/29134601*28143753123^(3/5) 2100951518092947 a001 329/29134601*10749957122^(5/8) 2100951518092947 a001 329/29134601*4106118243^(15/23) 2100951518092947 a001 38580022803/1836311903 2100951518092947 a001 329/29134601*1568397607^(15/22) 2100951518092947 a001 329/29134601*599074578^(5/7) 2100951518092947 a001 329/29134601*228826127^(3/4) 2100951518092948 a004 Fibonacci(16)*Lucas(39)/(1/2+sqrt(5)/2)^47 2100951518092948 a001 141/224056801*141422324^(12/13) 2100951518092948 a001 987/370248451*141422324^(11/13) 2100951518092948 a001 329/29134601*87403803^(15/19) 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^32/Lucas(40) 2100951518092948 a001 21/4868641*23725150497407^(1/2) 2100951518092948 a001 21/4868641*73681302247^(8/13) 2100951518092948 a001 21/4868641*10749957122^(2/3) 2100951518092948 a001 34111385/1623616 2100951518092948 a001 21/4868641*4106118243^(16/23) 2100951518092948 a001 21/4868641*1568397607^(8/11) 2100951518092948 a001 21/4868641*599074578^(16/21) 2100951518092948 a004 Fibonacci(16)*Lucas(41)/(1/2+sqrt(5)/2)^49 2100951518092948 a001 21/4868641*228826127^(4/5) 2100951518092948 a001 329/199691526*45537549124^(2/3) 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^34/Lucas(42) 2100951518092948 a001 264431410152/12586269025 2100951518092948 a001 329/199691526*10749957122^(17/24) 2100951518092948 a001 329/199691526*4106118243^(17/23) 2100951518092948 a001 329/199691526*1568397607^(17/22) 2100951518092948 a004 Fibonacci(16)*Lucas(43)/(1/2+sqrt(5)/2)^51 2100951518092948 a001 141/224056801*2537720636^(4/5) 2100951518092948 a001 329/199691526*599074578^(17/21) 2100951518092948 a001 141/224056801*45537549124^(12/17) 2100951518092948 a001 141/224056801*14662949395604^(4/7) 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^36/Lucas(44) 2100951518092948 a001 141/224056801*192900153618^(2/3) 2100951518092948 a001 141/224056801*73681302247^(9/13) 2100951518092948 a001 230763473157/10983760033 2100951518092948 a001 141/224056801*10749957122^(3/4) 2100951518092948 a001 141/224056801*4106118243^(18/23) 2100951518092948 a004 Fibonacci(16)*Lucas(45)/(1/2+sqrt(5)/2)^53 2100951518092948 a001 987/10749957122*2537720636^(8/9) 2100951518092948 a001 329/9381251041*2537720636^(14/15) 2100951518092948 a001 987/6643838879*2537720636^(13/15) 2100951518092948 a001 141/224056801*1568397607^(9/11) 2100951518092948 a001 329/1368706081*817138163596^(2/3) 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^38/Lucas(46) 2100951518092948 a001 1812439848261/86267571272 2100951518092948 a001 329/1368706081*10749957122^(19/24) 2100951518092948 a004 Fibonacci(16)*Lucas(47)/(1/2+sqrt(5)/2)^55 2100951518092948 a001 329/1368706081*4106118243^(19/23) 2100951518092948 a001 987/10749957122*312119004989^(8/11) 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^40/Lucas(48) 2100951518092948 a001 987/10749957122*23725150497407^(5/8) 2100951518092948 a001 32279109696/1536404311 2100951518092948 a001 987/10749957122*73681302247^(10/13) 2100951518092948 a001 987/10749957122*28143753123^(4/5) 2100951518092948 a001 329/9381251041*17393796001^(6/7) 2100951518092948 a004 Fibonacci(16)*Lucas(49)/(1/2+sqrt(5)/2)^57 2100951518092948 a001 329/9381251041*45537549124^(14/17) 2100951518092948 a001 987/10749957122*10749957122^(5/6) 2100951518092948 a001 329/9381251041*817138163596^(14/19) 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^42/Lucas(50) 2100951518092948 a001 12422647527675/591286729879 2100951518092948 a001 329/9381251041*192900153618^(7/9) 2100951518092948 a004 Fibonacci(16)*Lucas(51)/(1/2+sqrt(5)/2)^59 2100951518092948 a001 21/10745088481*45537549124^(16/17) 2100951518092948 a001 987/119218851371*45537549124^(15/17) 2100951518092948 a001 141/10525900321*312119004989^(4/5) 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^44/Lucas(52) 2100951518092948 a001 141/10525900321*23725150497407^(11/16) 2100951518092948 a001 3613657050857/172000972880 2100951518092948 a004 Fibonacci(16)*Lucas(53)/(1/2+sqrt(5)/2)^61 2100951518092948 a001 141/10525900321*73681302247^(11/13) 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^46/Lucas(54) 2100951518092948 a004 Fibonacci(16)*Lucas(55)/(1/2+sqrt(5)/2)^63 2100951518092948 a001 329/440719107401*312119004989^(10/11) 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^48/Lucas(56) 2100951518092948 a004 Fibonacci(16)*Lucas(57)/(1/2+sqrt(5)/2)^65 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^50/Lucas(58) 2100951518092948 a004 Fibonacci(16)*Lucas(59)/(1/2+sqrt(5)/2)^67 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^52/Lucas(60) 2100951518092948 a001 141/494493258286*23725150497407^(13/16) 2100951518092948 a004 Fibonacci(16)*Lucas(61)/(1/2+sqrt(5)/2)^69 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^54/Lucas(62) 2100951518092948 a004 Fibonacci(16)*Lucas(63)/(1/2+sqrt(5)/2)^71 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^56/Lucas(64) 2100951518092948 a004 Fibonacci(16)*Lucas(65)/(1/2+sqrt(5)/2)^73 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^58/Lucas(66) 2100951518092948 a004 Fibonacci(16)*Lucas(67)/(1/2+sqrt(5)/2)^75 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^60/Lucas(68) 2100951518092948 a004 Fibonacci(16)*Lucas(69)/(1/2+sqrt(5)/2)^77 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^62/Lucas(70) 2100951518092948 a004 Fibonacci(16)*Lucas(71)/(1/2+sqrt(5)/2)^79 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^64/Lucas(72) 2100951518092948 a004 Fibonacci(16)*Lucas(73)/(1/2+sqrt(5)/2)^81 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^66/Lucas(74) 2100951518092948 a004 Fibonacci(16)*Lucas(75)/(1/2+sqrt(5)/2)^83 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^68/Lucas(76) 2100951518092948 a004 Fibonacci(16)*Lucas(77)/(1/2+sqrt(5)/2)^85 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^70/Lucas(78) 2100951518092948 a004 Fibonacci(16)*Lucas(79)/(1/2+sqrt(5)/2)^87 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^72/Lucas(80) 2100951518092948 a004 Fibonacci(16)*Lucas(81)/(1/2+sqrt(5)/2)^89 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^74/Lucas(82) 2100951518092948 a004 Fibonacci(16)*Lucas(83)/(1/2+sqrt(5)/2)^91 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^76/Lucas(84) 2100951518092948 a004 Fibonacci(16)*Lucas(85)/(1/2+sqrt(5)/2)^93 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^78/Lucas(86) 2100951518092948 a004 Fibonacci(16)*Lucas(87)/(1/2+sqrt(5)/2)^95 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^80/Lucas(88) 2100951518092948 a004 Fibonacci(16)*Lucas(89)/(1/2+sqrt(5)/2)^97 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^82/Lucas(90) 2100951518092948 a004 Fibonacci(16)*Lucas(91)/(1/2+sqrt(5)/2)^99 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^84/Lucas(92) 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^86/Lucas(94) 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^88/Lucas(96) 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^90/Lucas(98) 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^91/Lucas(99) 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^92/Lucas(100) 2100951518092948 a004 Fibonacci(8)*Lucas(8)/(1/2+sqrt(5)/2)^8 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^89/Lucas(97) 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^87/Lucas(95) 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^85/Lucas(93) 2100951518092948 a004 Fibonacci(16)*Lucas(92)/(1/2+sqrt(5)/2)^100 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^83/Lucas(91) 2100951518092948 a004 Fibonacci(16)*Lucas(90)/(1/2+sqrt(5)/2)^98 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^81/Lucas(89) 2100951518092948 a004 Fibonacci(16)*Lucas(88)/(1/2+sqrt(5)/2)^96 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^79/Lucas(87) 2100951518092948 a004 Fibonacci(16)*Lucas(86)/(1/2+sqrt(5)/2)^94 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^77/Lucas(85) 2100951518092948 a004 Fibonacci(16)*Lucas(84)/(1/2+sqrt(5)/2)^92 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^75/Lucas(83) 2100951518092948 a004 Fibonacci(16)*Lucas(82)/(1/2+sqrt(5)/2)^90 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^73/Lucas(81) 2100951518092948 a004 Fibonacci(16)*Lucas(80)/(1/2+sqrt(5)/2)^88 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^71/Lucas(79) 2100951518092948 a004 Fibonacci(16)*Lucas(78)/(1/2+sqrt(5)/2)^86 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^69/Lucas(77) 2100951518092948 a004 Fibonacci(16)*Lucas(76)/(1/2+sqrt(5)/2)^84 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^67/Lucas(75) 2100951518092948 a004 Fibonacci(16)*Lucas(74)/(1/2+sqrt(5)/2)^82 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^65/Lucas(73) 2100951518092948 a004 Fibonacci(16)*Lucas(72)/(1/2+sqrt(5)/2)^80 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^63/Lucas(71) 2100951518092948 a004 Fibonacci(16)*Lucas(70)/(1/2+sqrt(5)/2)^78 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^61/Lucas(69) 2100951518092948 a004 Fibonacci(16)*Lucas(68)/(1/2+sqrt(5)/2)^76 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^59/Lucas(67) 2100951518092948 a004 Fibonacci(16)*Lucas(66)/(1/2+sqrt(5)/2)^74 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^57/Lucas(65) 2100951518092948 a004 Fibonacci(16)*Lucas(64)/(1/2+sqrt(5)/2)^72 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^55/Lucas(63) 2100951518092948 a004 Fibonacci(16)*Lucas(62)/(1/2+sqrt(5)/2)^70 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^53/Lucas(61) 2100951518092948 a004 Fibonacci(16)*Lucas(60)/(1/2+sqrt(5)/2)^68 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^51/Lucas(59) 2100951518092948 a004 Fibonacci(16)*Lucas(58)/(1/2+sqrt(5)/2)^66 2100951518092948 a001 987/817138163596*14662949395604^(7/9) 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^49/Lucas(57) 2100951518092948 a001 141/494493258286*505019158607^(13/14) 2100951518092948 a004 Fibonacci(16)*Lucas(56)/(1/2+sqrt(5)/2)^64 2100951518092948 a001 137769272233215/6557470319842 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^47/Lucas(55) 2100951518092948 a001 21/10745088481*192900153618^(8/9) 2100951518092948 a001 987/2139295485799*192900153618^(17/18) 2100951518092948 a004 Fibonacci(16)*Lucas(54)/(1/2+sqrt(5)/2)^62 2100951518092948 a001 987/119218851371*312119004989^(9/11) 2100951518092948 a001 52623179387751/2504730781961 2100951518092948 a001 987/119218851371*14662949395604^(5/7) 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^45/Lucas(53) 2100951518092948 a001 987/119218851371*192900153618^(5/6) 2100951518092948 a001 21/10745088481*73681302247^(12/13) 2100951518092948 a004 Fibonacci(16)*Lucas(52)/(1/2+sqrt(5)/2)^60 2100951518092948 a001 20100265930038/956722026041 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^43/Lucas(51) 2100951518092948 a001 987/119218851371*28143753123^(9/10) 2100951518092948 a004 Fibonacci(16)*Lucas(50)/(1/2+sqrt(5)/2)^58 2100951518092948 a001 7677618402363/365435296162 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^41/Lucas(49) 2100951518092948 a001 329/9381251041*10749957122^(7/8) 2100951518092948 a001 141/10525900321*10749957122^(11/12) 2100951518092948 a001 987/119218851371*10749957122^(15/16) 2100951518092948 a001 329/64300051206*10749957122^(23/24) 2100951518092948 a004 Fibonacci(16)*Lucas(48)/(1/2+sqrt(5)/2)^56 2100951518092948 a001 987/6643838879*45537549124^(13/17) 2100951518092948 a001 2932589277051/139583862445 2100951518092948 a001 987/6643838879*14662949395604^(13/21) 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^39/Lucas(47) 2100951518092948 a001 987/6643838879*192900153618^(13/18) 2100951518092948 a001 987/6643838879*73681302247^(3/4) 2100951518092948 a001 987/6643838879*10749957122^(13/16) 2100951518092948 a001 987/10749957122*4106118243^(20/23) 2100951518092948 a001 329/9381251041*4106118243^(21/23) 2100951518092948 a001 141/10525900321*4106118243^(22/23) 2100951518092948 a004 Fibonacci(16)*Lucas(46)/(1/2+sqrt(5)/2)^54 2100951518092948 a001 1120149428790/53316291173 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^37/Lucas(45) 2100951518092948 a001 329/1368706081*1568397607^(19/22) 2100951518092948 a001 987/10749957122*1568397607^(10/11) 2100951518092948 a001 329/9381251041*1568397607^(21/22) 2100951518092948 a004 Fibonacci(16)*Lucas(44)/(1/2+sqrt(5)/2)^52 2100951518092948 a001 987/969323029*2537720636^(7/9) 2100951518092948 a001 987/969323029*17393796001^(5/7) 2100951518092948 a001 427859009319/20365011074 2100951518092948 a001 987/969323029*312119004989^(7/11) 2100951518092948 a001 987/969323029*14662949395604^(5/9) 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^35/Lucas(43) 2100951518092948 a001 987/969323029*505019158607^(5/8) 2100951518092948 a001 987/969323029*28143753123^(7/10) 2100951518092948 a001 141/224056801*599074578^(6/7) 2100951518092948 a001 329/1368706081*599074578^(19/21) 2100951518092948 a001 987/6643838879*599074578^(13/14) 2100951518092948 a001 987/10749957122*599074578^(20/21) 2100951518092948 a004 Fibonacci(16)*Lucas(42)/(1/2+sqrt(5)/2)^50 2100951518092948 a001 987/969323029*599074578^(5/6) 2100951518092948 a001 987/370248451*2537720636^(11/15) 2100951518092948 a001 163427599167/7778742049 2100951518092948 a001 987/370248451*45537549124^(11/17) 2100951518092948 a001 987/370248451*312119004989^(3/5) 2100951518092948 a001 987/370248451*14662949395604^(11/21) 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^33/Lucas(41) 2100951518092948 a001 987/370248451*192900153618^(11/18) 2100951518092948 a001 987/370248451*10749957122^(11/16) 2100951518092948 a001 987/370248451*1568397607^(3/4) 2100951518092948 a001 987/370248451*599074578^(11/14) 2100951518092948 a001 329/199691526*228826127^(17/20) 2100951518092948 a001 141/224056801*228826127^(9/10) 2100951518092948 a001 987/969323029*228826127^(7/8) 2100951518092948 a001 329/1368706081*228826127^(19/20) 2100951518092948 a004 Fibonacci(16)*Lucas(40)/(1/2+sqrt(5)/2)^48 2100951518092948 a001 62423788182/2971215073 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^31/Lucas(39) 2100951518092948 a001 987/141422324*9062201101803^(1/2) 2100951518092948 a001 21/4868641*87403803^(16/19) 2100951518092948 a001 329/199691526*87403803^(17/19) 2100951518092948 a001 141/224056801*87403803^(18/19) 2100951518092948 a004 Fibonacci(16)*Lucas(38)/(1/2+sqrt(5)/2)^46 2100951518092948 a001 23843765379/1134903170 2100951518092948 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^29/Lucas(37) 2100951518092948 a001 987/54018521*1322157322203^(1/2) 2100951518092949 a001 329/29134601*33385282^(5/6) 2100951518092949 a001 21/4868641*33385282^(8/9) 2100951518092949 a001 987/370248451*33385282^(11/12) 2100951518092949 a001 329/199691526*33385282^(17/18) 2100951518092950 a004 Fibonacci(16)*Lucas(36)/(1/2+sqrt(5)/2)^44 2100951518092952 a001 987/20633239*141422324^(9/13) 2100951518092953 a001 9107507955/433494437 2100951518092953 a001 987/20633239*2537720636^(3/5) 2100951518092953 a001 987/20633239*45537549124^(9/17) 2100951518092953 a001 987/20633239*817138163596^(9/19) 2100951518092953 a001 987/20633239*14662949395604^(3/7) 2100951518092953 a001 987/20633239*(1/2+1/2*5^(1/2))^27 2100951518092953 a001 987/20633239*192900153618^(1/2) 2100951518092953 a001 987/20633239*10749957122^(9/16) 2100951518092953 a001 987/20633239*599074578^(9/14) 2100951518092954 a001 987/20633239*33385282^(3/4) 2100951518092956 a001 141/4769326*12752043^(14/17) 2100951518092959 a001 329/29134601*12752043^(15/17) 2100951518092960 a001 21/4868641*12752043^(16/17) 2100951518092961 a004 Fibonacci(16)*Lucas(34)/(1/2+sqrt(5)/2)^42 2100951518092978 a001 987/7881196*20633239^(5/7) 2100951518092981 a001 3478758486/165580141 2100951518092981 a001 987/7881196*2537720636^(5/9) 2100951518092981 a001 987/7881196*312119004989^(5/11) 2100951518092981 a001 987/7881196*(1/2+1/2*5^(1/2))^25 2100951518092981 a001 987/7881196*3461452808002^(5/12) 2100951518092981 a001 987/7881196*28143753123^(1/2) 2100951518092981 a001 987/7881196*228826127^(5/8) 2100951518093007 a001 329/4250681*4870847^(13/16) 2100951518093023 a001 141/4769326*4870847^(7/8) 2100951518093023 a004 Fibonacci(34)/Lucas(16)/(1/2+sqrt(5)/2)^10 2100951518093030 a001 329/29134601*4870847^(15/16) 2100951518093034 a004 Fibonacci(36)/Lucas(16)/(1/2+sqrt(5)/2)^12 2100951518093036 a004 Fibonacci(38)/Lucas(16)/(1/2+sqrt(5)/2)^14 2100951518093036 a004 Fibonacci(40)/Lucas(16)/(1/2+sqrt(5)/2)^16 2100951518093036 a004 Fibonacci(42)/Lucas(16)/(1/2+sqrt(5)/2)^18 2100951518093036 a004 Fibonacci(44)/Lucas(16)/(1/2+sqrt(5)/2)^20 2100951518093036 a004 Fibonacci(46)/Lucas(16)/(1/2+sqrt(5)/2)^22 2100951518093036 a004 Fibonacci(48)/Lucas(16)/(1/2+sqrt(5)/2)^24 2100951518093036 a004 Fibonacci(50)/Lucas(16)/(1/2+sqrt(5)/2)^26 2100951518093036 a004 Fibonacci(52)/Lucas(16)/(1/2+sqrt(5)/2)^28 2100951518093036 a004 Fibonacci(54)/Lucas(16)/(1/2+sqrt(5)/2)^30 2100951518093036 a004 Fibonacci(56)/Lucas(16)/(1/2+sqrt(5)/2)^32 2100951518093036 a004 Fibonacci(58)/Lucas(16)/(1/2+sqrt(5)/2)^34 2100951518093036 a004 Fibonacci(60)/Lucas(16)/(1/2+sqrt(5)/2)^36 2100951518093036 a004 Fibonacci(62)/Lucas(16)/(1/2+sqrt(5)/2)^38 2100951518093036 a004 Fibonacci(16)*Lucas(32)/(1/2+sqrt(5)/2)^40 2100951518093036 a004 Fibonacci(66)/Lucas(16)/(1/2+sqrt(5)/2)^42 2100951518093036 a004 Fibonacci(68)/Lucas(16)/(1/2+sqrt(5)/2)^44 2100951518093036 a004 Fibonacci(70)/Lucas(16)/(1/2+sqrt(5)/2)^46 2100951518093036 a004 Fibonacci(72)/Lucas(16)/(1/2+sqrt(5)/2)^48 2100951518093036 a004 Fibonacci(74)/Lucas(16)/(1/2+sqrt(5)/2)^50 2100951518093036 a004 Fibonacci(76)/Lucas(16)/(1/2+sqrt(5)/2)^52 2100951518093036 a004 Fibonacci(78)/Lucas(16)/(1/2+sqrt(5)/2)^54 2100951518093036 a004 Fibonacci(80)/Lucas(16)/(1/2+sqrt(5)/2)^56 2100951518093036 a004 Fibonacci(82)/Lucas(16)/(1/2+sqrt(5)/2)^58 2100951518093036 a004 Fibonacci(84)/Lucas(16)/(1/2+sqrt(5)/2)^60 2100951518093036 a004 Fibonacci(86)/Lucas(16)/(1/2+sqrt(5)/2)^62 2100951518093036 a004 Fibonacci(88)/Lucas(16)/(1/2+sqrt(5)/2)^64 2100951518093036 a004 Fibonacci(90)/Lucas(16)/(1/2+sqrt(5)/2)^66 2100951518093036 a004 Fibonacci(92)/Lucas(16)/(1/2+sqrt(5)/2)^68 2100951518093036 a004 Fibonacci(94)/Lucas(16)/(1/2+sqrt(5)/2)^70 2100951518093036 a004 Fibonacci(96)/Lucas(16)/(1/2+sqrt(5)/2)^72 2100951518093036 a004 Fibonacci(100)/Lucas(16)/(1/2+sqrt(5)/2)^76 2100951518093036 a004 Fibonacci(97)/Lucas(16)/(1/2+sqrt(5)/2)^73 2100951518093036 a004 Fibonacci(98)/Lucas(16)/(1/2+sqrt(5)/2)^74 2100951518093036 a004 Fibonacci(99)/Lucas(16)/(1/2+sqrt(5)/2)^75 2100951518093036 a004 Fibonacci(95)/Lucas(16)/(1/2+sqrt(5)/2)^71 2100951518093036 a004 Fibonacci(93)/Lucas(16)/(1/2+sqrt(5)/2)^69 2100951518093036 a004 Fibonacci(91)/Lucas(16)/(1/2+sqrt(5)/2)^67 2100951518093036 a004 Fibonacci(89)/Lucas(16)/(1/2+sqrt(5)/2)^65 2100951518093036 a004 Fibonacci(87)/Lucas(16)/(1/2+sqrt(5)/2)^63 2100951518093036 a004 Fibonacci(85)/Lucas(16)/(1/2+sqrt(5)/2)^61 2100951518093036 a004 Fibonacci(83)/Lucas(16)/(1/2+sqrt(5)/2)^59 2100951518093036 a004 Fibonacci(81)/Lucas(16)/(1/2+sqrt(5)/2)^57 2100951518093036 a004 Fibonacci(79)/Lucas(16)/(1/2+sqrt(5)/2)^55 2100951518093036 a004 Fibonacci(77)/Lucas(16)/(1/2+sqrt(5)/2)^53 2100951518093036 a004 Fibonacci(75)/Lucas(16)/(1/2+sqrt(5)/2)^51 2100951518093036 a004 Fibonacci(73)/Lucas(16)/(1/2+sqrt(5)/2)^49 2100951518093036 a004 Fibonacci(71)/Lucas(16)/(1/2+sqrt(5)/2)^47 2100951518093036 a004 Fibonacci(69)/Lucas(16)/(1/2+sqrt(5)/2)^45 2100951518093036 a004 Fibonacci(67)/Lucas(16)/(1/2+sqrt(5)/2)^43 2100951518093036 a004 Fibonacci(65)/Lucas(16)/(1/2+sqrt(5)/2)^41 2100951518093036 a004 Fibonacci(63)/Lucas(16)/(1/2+sqrt(5)/2)^39 2100951518093036 a004 Fibonacci(61)/Lucas(16)/(1/2+sqrt(5)/2)^37 2100951518093036 a004 Fibonacci(59)/Lucas(16)/(1/2+sqrt(5)/2)^35 2100951518093036 a004 Fibonacci(57)/Lucas(16)/(1/2+sqrt(5)/2)^33 2100951518093036 a004 Fibonacci(55)/Lucas(16)/(1/2+sqrt(5)/2)^31 2100951518093036 a004 Fibonacci(53)/Lucas(16)/(1/2+sqrt(5)/2)^29 2100951518093036 a004 Fibonacci(51)/Lucas(16)/(1/2+sqrt(5)/2)^27 2100951518093036 a004 Fibonacci(49)/Lucas(16)/(1/2+sqrt(5)/2)^25 2100951518093036 a004 Fibonacci(47)/Lucas(16)/(1/2+sqrt(5)/2)^23 2100951518093036 a004 Fibonacci(45)/Lucas(16)/(1/2+sqrt(5)/2)^21 2100951518093036 a004 Fibonacci(43)/Lucas(16)/(1/2+sqrt(5)/2)^19 2100951518093036 a004 Fibonacci(41)/Lucas(16)/(1/2+sqrt(5)/2)^17 2100951518093036 a004 Fibonacci(39)/Lucas(16)/(1/2+sqrt(5)/2)^15 2100951518093037 a004 Fibonacci(37)/Lucas(16)/(1/2+sqrt(5)/2)^13 2100951518093041 a004 Fibonacci(35)/Lucas(16)/(1/2+sqrt(5)/2)^11 2100951518093070 a004 Fibonacci(33)/Lucas(16)/(1/2+sqrt(5)/2)^9 2100951518093179 a001 1328767503/63245986 2100951518093179 a001 987/3010349*(1/2+1/2*5^(1/2))^23 2100951518093179 a001 987/3010349*4106118243^(1/2) 2100951518093268 a004 Fibonacci(31)/Lucas(16)/(1/2+sqrt(5)/2)^7 2100951518093345 a001 987/4870847*1860498^(4/5) 2100951518093461 a001 329/4250681*1860498^(13/15) 2100951518093487 a001 987/7881196*1860498^(5/6) 2100951518093499 a001 987/20633239*1860498^(9/10) 2100951518093512 a001 141/4769326*1860498^(14/15) 2100951518093555 a004 Fibonacci(16)*Lucas(30)/(1/2+sqrt(5)/2)^38 2100951518094515 a001 987/1149851*7881196^(7/11) 2100951518094534 a001 987/1149851*20633239^(3/5) 2100951518094536 a001 507544023/24157817 2100951518094537 a001 987/1149851*141422324^(7/13) 2100951518094537 a001 987/1149851*2537720636^(7/15) 2100951518094537 a001 987/1149851*17393796001^(3/7) 2100951518094537 a001 987/1149851*45537549124^(7/17) 2100951518094537 a001 987/1149851*14662949395604^(1/3) 2100951518094537 a001 987/1149851*(1/2+1/2*5^(1/2))^21 2100951518094537 a001 987/1149851*192900153618^(7/18) 2100951518094537 a001 987/1149851*10749957122^(7/16) 2100951518094537 a001 987/1149851*599074578^(1/2) 2100951518094538 a001 987/1149851*33385282^(7/12) 2100951518094625 a004 Fibonacci(29)/Lucas(16)/(1/2+sqrt(5)/2)^5 2100951518094962 a001 987/1149851*1860498^(7/10) 2100951518095609 a001 329/620166*710647^(11/14) 2100951518096425 a001 987/4870847*710647^(6/7) 2100951518096798 a001 329/4250681*710647^(13/14) 2100951518097108 a004 Fibonacci(16)*Lucas(28)/(1/2+sqrt(5)/2)^36 2100951518097657 a001 987/1149851*710647^(3/4) 2100951518103834 a001 193864566/9227465 2100951518103839 a001 987/439204*817138163596^(1/3) 2100951518103839 a001 987/439204*(1/2+1/2*5^(1/2))^19 2100951518103839 a001 987/439204*87403803^(1/2) 2100951518103928 a004 Fibonacci(27)/Lucas(16)/(1/2+sqrt(5)/2)^3 2100951518110721 a001 141/101521*271443^(10/13) 2100951518116468 a001 329/620166*271443^(11/13) 2100951518119180 a001 987/4870847*271443^(12/13) 2100951518121462 a004 Fibonacci(16)*Lucas(26)/(1/2+sqrt(5)/2)^34 2100951518167565 a001 74049675/3524578 2100951518167598 a001 987/167761*45537549124^(1/3) 2100951518167598 a001 987/167761*(1/2+1/2*5^(1/2))^17 2100951518167605 a001 987/167761*12752043^(1/2) 2100951518167687 a004 Fibonacci(25)/Lucas(16)/(1/2+sqrt(5)/2) 2100951518211012 a001 329/90481*103682^(3/4) 2100951518251653 a001 141/101521*103682^(5/6) 2100951518258561 a001 987/439204*103682^(19/24) 2100951518265545 a001 987/1149851*103682^(7/8) 2100951518270918 a001 987/64079*64079^(15/23) 2100951518271492 a001 329/620166*103682^(11/12) 2100951518280474 a001 987/3010349*103682^(23/24) 2100951518288386 a004 Fibonacci(16)*Lucas(24)/(1/2+sqrt(5)/2)^32 2100951518306034 a001 987/167761*103682^(17/24) 2100951518437700 a001 28657/2207*24476^(1/21) 2100951518559821 a001 987/64079*167761^(3/5) 2100951518582454 a001 28657/2207*64079^(1/23) 2100951518598561 a001 987/64079*439204^(5/9) 2100951518602728 a001 46368/3571*521^(1/13) 2100951518604379 a001 28284459/1346269 2100951518604596 a001 987/64079*7881196^(5/11) 2100951518604609 a001 987/64079*20633239^(3/7) 2100951518604611 a001 987/64079*141422324^(5/13) 2100951518604611 a001 987/64079*2537720636^(1/3) 2100951518604611 a001 987/64079*45537549124^(5/17) 2100951518604611 a001 987/64079*312119004989^(3/11) 2100951518604611 a001 987/64079*14662949395604^(5/21) 2100951518604611 a001 987/64079*(1/2+1/2*5^(1/2))^15 2100951518604611 a004 Fibonacci(16)*(1/2+sqrt(5)/2)^15/Lucas(23) 2100951518604611 a001 987/64079*192900153618^(5/18) 2100951518604611 a001 987/64079*28143753123^(3/10) 2100951518604611 a001 987/64079*10749957122^(5/16) 2100951518604611 a001 987/64079*599074578^(5/14) 2100951518604611 a001 987/64079*228826127^(3/8) 2100951518604612 a001 987/64079*33385282^(5/12) 2100951518604700 a001 28657/4414+28657/4414*5^(1/2) 2100951518604915 a001 987/64079*1860498^(1/2) 2100951518612843 a001 28657/2207*103682^(1/24) 2100951518665589 a001 28657/2207*39603^(1/22) 2100951518726760 a001 987/64079*103682^(5/8) 2100951518871730 a001 21/2206*39603^(8/11) 2100951519063771 a001 28657/2207*15127^(1/20) 2100951519160431 a001 329/90481*39603^(9/11) 2100951519202707 a001 987/167761*39603^(17/22) 2100951519260726 a001 987/439204*39603^(19/22) 2100951519306563 a001 141/101521*39603^(10/11) 2100951519373201 a001 987/1149851*39603^(21/22) 2100951519428946 a001 987/24476*24476^(13/21) 2100951519432500 a004 Fibonacci(16)*Lucas(22)/(1/2+sqrt(5)/2)^30 2100951519517943 a001 987/64079*39603^(15/22) 2100951521099032 a001 10946/2207*24476^(1/7) 2100951521310741 a001 987/24476*64079^(13/23) 2100951521533292 a001 10946/2207*64079^(3/23) 2100951521598354 a001 10803702/514229 2100951521598821 a001 10946/2207*439204^(1/9) 2100951521599943 a001 987/24476*141422324^(1/3) 2100951521599943 a001 987/24476*(1/2+1/2*5^(1/2))^13 2100951521599943 a001 987/24476*73681302247^(1/4) 2100951521600028 a001 10946/2207*7881196^(1/11) 2100951521600031 a001 10946/2207*141422324^(1/13) 2100951521600031 a001 10946/2207*2537720636^(1/15) 2100951521600031 a001 10946/2207*45537549124^(1/17) 2100951521600031 a001 10946/2207*14662949395604^(1/21) 2100951521600031 a001 10946/2207*(1/2+1/2*5^(1/2))^3 2100951521600031 a001 10946/2207*10749957122^(1/16) 2100951521600031 a001 10946/2207*599074578^(1/14) 2100951521600031 a001 10946/2207*33385282^(1/12) 2100951521600092 a001 10946/2207*1860498^(1/10) 2100951521614200 a001 987/24476*271443^(1/2) 2100951521624461 a001 10946/2207*103682^(1/8) 2100951521705805 a001 987/24476*103682^(13/24) 2100951521782697 a001 10946/2207*39603^(3/22) 2100951522100837 a001 28657/2207*5778^(1/18) 2100951522391497 a001 987/24476*39603^(13/22) 2100951522896153 a001 6765/2207*5778^(2/9) 2100951522977246 a001 10946/2207*15127^(3/20) 2100951523180397 a001 329/13201*15127^(7/10) 2100951523745758 a001 17711/2207*5778^(1/9) 2100951524269003 a001 2584/3571*1364^(7/15) 2100951525242655 a001 21/2206*15127^(4/5) 2100951525272438 a001 10946/9349*1364^(2/5) 2100951525490685 a001 987/64079*15127^(3/4) 2100951525971816 a001 987/167761*15127^(17/20) 2100951526327722 a001 329/90481*15127^(9/10) 2100951526826199 a001 987/439204*15127^(19/20) 2100951527274380 a004 Fibonacci(16)*Lucas(20)/(1/2+sqrt(5)/2)^28 2100951527567873 a001 987/24476*15127^(13/20) 2100951528213917 a001 987/9349*9349^(11/19) 2100951531141896 m001 1/LaplaceLimit^2/Champernowne/ln(Catalan) 2100951532088443 a001 10946/2207*5778^(1/6) 2100951535710118 r005 Im(z^2+c),c=-7/8+36/133*I,n=10 2100951535804732 a001 4181/2207*9349^(5/19) 2100951537334735 m001 Artin*PlouffeB^StronglyCareFree 2100951540293251 a001 987/9349*24476^(11/21) 2100951541295338 a001 4181/2207*24476^(5/21) 2100951541885540 a001 987/9349*64079^(11/23) 2100951542019106 a001 4181/2207*64079^(5/23) 2100951542115407 a001 4181/2207*167761^(1/5) 2100951542119357 a001 4126647/196418 2100951542130238 a001 987/9349*7881196^(1/3) 2100951542130249 a001 987/9349*312119004989^(1/5) 2100951542130249 a001 987/9349*(1/2+1/2*5^(1/2))^11 2100951542130249 a001 987/9349*1568397607^(1/4) 2100951542130336 a001 4181/2207*20633239^(1/7) 2100951542130337 a001 4181/2207*2537720636^(1/9) 2100951542130337 a001 4181/2207*312119004989^(1/11) 2100951542130337 a001 4181/2207*(1/2+1/2*5^(1/2))^5 2100951542130337 a001 4181/2207*28143753123^(1/10) 2100951542130337 a001 4181/2207*228826127^(1/8) 2100951542130438 a001 4181/2207*1860498^(1/6) 2100951542171053 a001 4181/2207*103682^(5/24) 2100951542219825 a001 987/9349*103682^(11/24) 2100951542434781 a001 4181/2207*39603^(5/22) 2100951542800025 a001 987/9349*39603^(1/2) 2100951544425695 a001 4181/2207*15127^(1/4) 2100951545562939 a001 28657/2207*2207^(1/16) 2100951547058664 r005 Re(z^2+c),c=-9/46+8/23*I,n=11 2100951547180037 a001 987/9349*15127^(11/20) 2100951550865163 a001 141/2161*5778^(2/3) 2100951555073196 a001 1346269/18*199^(8/41) 2100951559611024 a001 4181/2207*5778^(5/18) 2100951563653249 m001 PisotVijayaraghavan/(Lehmer^QuadraticClass) 2100951564156122 a007 Real Root Of -280*x^4+711*x^3+14*x^2+568*x-126 2100951564341160 a001 28657/15127*1364^(1/3) 2100951565699316 a001 329/13201*5778^(7/9) 2100951567049727 a001 987/24476*5778^(13/18) 2100951570669961 a001 17711/2207*2207^(1/8) 2100951571046670 a001 987/64079*5778^(5/6) 2100951571177515 r005 Re(z^2+c),c=-5/23+13/50*I,n=7 2100951571746027 a001 75025/39603*1364^(1/3) 2100951572826382 a001 98209/51841*1364^(1/3) 2100951572984004 a001 514229/271443*1364^(1/3) 2100951573007000 a001 1346269/710647*1364^(1/3) 2100951573010356 a001 1762289/930249*1364^(1/3) 2100951573010845 a001 9227465/4870847*1364^(1/3) 2100951573010917 a001 24157817/12752043*1364^(1/3) 2100951573010927 a001 31622993/16692641*1364^(1/3) 2100951573010928 a001 165580141/87403803*1364^(1/3) 2100951573010929 a001 433494437/228826127*1364^(1/3) 2100951573010929 a001 567451585/299537289*1364^(1/3) 2100951573010929 a001 2971215073/1568397607*1364^(1/3) 2100951573010929 a001 7778742049/4106118243*1364^(1/3) 2100951573010929 a001 10182505537/5374978561*1364^(1/3) 2100951573010929 a001 53316291173/28143753123*1364^(1/3) 2100951573010929 a001 139583862445/73681302247*1364^(1/3) 2100951573010929 a001 182717648081/96450076809*1364^(1/3) 2100951573010929 a001 956722026041/505019158607*1364^(1/3) 2100951573010929 a001 10610209857723/5600748293801*1364^(1/3) 2100951573010929 a001 591286729879/312119004989*1364^(1/3) 2100951573010929 a001 225851433717/119218851371*1364^(1/3) 2100951573010929 a001 21566892818/11384387281*1364^(1/3) 2100951573010929 a001 32951280099/17393796001*1364^(1/3) 2100951573010929 a001 12586269025/6643838879*1364^(1/3) 2100951573010929 a001 1201881744/634430159*1364^(1/3) 2100951573010929 a001 1836311903/969323029*1364^(1/3) 2100951573010929 a001 701408733/370248451*1364^(1/3) 2100951573010929 a001 66978574/35355581*1364^(1/3) 2100951573010929 a001 102334155/54018521*1364^(1/3) 2100951573010933 a001 39088169/20633239*1364^(1/3) 2100951573010961 a001 3732588/1970299*1364^(1/3) 2100951573011148 a001 5702887/3010349*1364^(1/3) 2100951573012429 a001 2178309/1149851*1364^(1/3) 2100951573021213 a001 208010/109801*1364^(1/3) 2100951573081419 a001 317811/167761*1364^(1/3) 2100951573494078 a001 121393/64079*1364^(1/3) 2100951573732056 m001 Zeta(9)^2/FeigenbaumD/exp(gamma) 2100951573835706 a001 21/2206*5778^(8/9) 2100951575199938 m001 MadelungNaCl+BesselI(1,1)^MasserGramainDelta 2100951576322486 a001 11592/6119*1364^(1/3) 2100951577601932 a001 987/167761*5778^(17/18) 2100951579529590 m001 KomornikLoreti/(ln(2^(1/2)+1)-3^(1/2)) 2100951580587759 a001 987/9349*5778^(11/18) 2100951581023419 a004 Fibonacci(16)*Lucas(18)/(1/2+sqrt(5)/2)^26 2100951584023692 a001 17711/5778*1364^(4/15) 2100951590574032 a007 Real Root Of -270*x^4-36*x^3+722*x^2-899*x-149 2100951595624299 a001 987/3571*3571^(9/17) 2100951595708678 a001 17711/9349*1364^(1/3) 2100951595811267 m001 (HardyLittlewoodC3+PlouffeB)/(1-GAMMA(7/12)) 2100951600470786 a001 610/843*843^(1/2) 2100951602474749 a001 10946/2207*2207^(3/16) 2100951611949347 a005 (1/sin(84/221*Pi))^612 2100951615007213 a001 1597/2207*3571^(7/17) 2100951615063424 m001 (arctan(1/3)-exp(1))/(cos(1/12*Pi)+ZetaP(3)) 2100951616744562 a001 6765/2207*2207^(1/4) 2100951616911999 a001 2584/2207*2207^(3/8) 2100951617047079 r002 8th iterates of z^2 + 2100951621569684 m005 (1/2*2^(1/2)-3/11)/(5/9*gamma-3/10) 2100951638730929 m001 1/exp(Kolakoski)*Cahen/Salem^2 2100951638916847 a001 6624/2161*1364^(4/15) 2100951643170081 r005 Re(z^2+c),c=-8/13+17/41*I,n=26 2100951646925651 a001 121393/39603*1364^(4/15) 2100951648094119 a001 317811/103682*1364^(4/15) 2100951648264597 a001 832040/271443*1364^(4/15) 2100951648289469 a001 311187/101521*1364^(4/15) 2100951648293098 a001 5702887/1860498*1364^(4/15) 2100951648293627 a001 14930352/4870847*1364^(4/15) 2100951648293705 a001 39088169/12752043*1364^(4/15) 2100951648293716 a001 14619165/4769326*1364^(4/15) 2100951648293717 a001 267914296/87403803*1364^(4/15) 2100951648293718 a001 701408733/228826127*1364^(4/15) 2100951648293718 a001 1836311903/599074578*1364^(4/15) 2100951648293718 a001 686789568/224056801*1364^(4/15) 2100951648293718 a001 12586269025/4106118243*1364^(4/15) 2100951648293718 a001 32951280099/10749957122*1364^(4/15) 2100951648293718 a001 86267571272/28143753123*1364^(4/15) 2100951648293718 a001 32264490531/10525900321*1364^(4/15) 2100951648293718 a001 591286729879/192900153618*1364^(4/15) 2100951648293718 a001 1548008755920/505019158607*1364^(4/15) 2100951648293718 a001 1515744265389/494493258286*1364^(4/15) 2100951648293718 a001 2504730781961/817138163596*1364^(4/15) 2100951648293718 a001 956722026041/312119004989*1364^(4/15) 2100951648293718 a001 365435296162/119218851371*1364^(4/15) 2100951648293718 a001 139583862445/45537549124*1364^(4/15) 2100951648293718 a001 53316291173/17393796001*1364^(4/15) 2100951648293718 a001 20365011074/6643838879*1364^(4/15) 2100951648293718 a001 7778742049/2537720636*1364^(4/15) 2100951648293718 a001 2971215073/969323029*1364^(4/15) 2100951648293718 a001 1134903170/370248451*1364^(4/15) 2100951648293718 a001 433494437/141422324*1364^(4/15) 2100951648293718 a001 165580141/54018521*1364^(4/15) 2100951648293723 a001 63245986/20633239*1364^(4/15) 2100951648293752 a001 24157817/7881196*1364^(4/15) 2100951648293954 a001 9227465/3010349*1364^(4/15) 2100951648295341 a001 3524578/1149851*1364^(4/15) 2100951648304841 a001 1346269/439204*1364^(4/15) 2100951648369957 a001 514229/167761*1364^(4/15) 2100951648816273 a001 196418/64079*1364^(4/15) 2100951651875364 a001 75025/24476*1364^(4/15) 2100951653465983 m001 (GAMMA(3/4)+ln(5))/(cos(1)+cos(1/5*Pi)) 2100951655032783 r005 Re(z^2+c),c=7/58+11/28*I,n=54 2100951660570951 m005 (1/2*Catalan+5/6)/(2/9*Catalan-9/11) 2100951661157698 a001 28657/5778*1364^(1/5) 2100951664408266 a003 cos(Pi*17/76)*cos(Pi*44/107) 2100951665564708 r009 Im(z^3+c),c=-55/126+3/46*I,n=23 2100951666776421 m001 (cos(1/5*Pi)+Artin)/(Paris-Robbin) 2100951671460981 a001 987/3571*9349^(9/19) 2100951672142498 l004 Ssi(391/48) 2100951672842684 a001 28657/9349*1364^(4/15) 2100951673991300 a001 1597/2207*9349^(7/19) 2100951676670801 a001 1597/3571*1364^(8/15) 2100951676921537 a001 4181/2207*2207^(5/16) 2100951681344074 a001 987/3571*24476^(3/7) 2100951681678150 a001 1597/2207*24476^(1/3) 2100951682646856 a001 987/3571*64079^(9/23) 2100951682691424 a001 1597/2207*64079^(7/23) 2100951682772409 a001 1576239/75025 2100951682843442 a001 987/3571*439204^(1/3) 2100951682847063 a001 987/3571*7881196^(3/11) 2100951682847072 a001 987/3571*141422324^(3/13) 2100951682847072 a001 987/3571*2537720636^(1/5) 2100951682847072 a001 987/3571*45537549124^(3/17) 2100951682847072 a001 987/3571*14662949395604^(1/7) 2100951682847072 a001 987/3571*(1/2+1/2*5^(1/2))^9 2100951682847072 a001 987/3571*192900153618^(1/6) 2100951682847072 a001 987/3571*10749957122^(3/16) 2100951682847072 a001 987/3571*599074578^(3/14) 2100951682847073 a001 987/3571*33385282^(1/4) 2100951682847147 a001 1597/2207*20633239^(1/5) 2100951682847148 a001 1597/2207*17393796001^(1/7) 2100951682847148 a001 1597/2207*14662949395604^(1/9) 2100951682847148 a001 1597/2207*(1/2+1/2*5^(1/2))^7 2100951682847148 a001 1597/2207*599074578^(1/6) 2100951682847254 a001 987/3571*1860498^(3/10) 2100951682848188 a001 1597/2207*710647^(1/4) 2100951682904151 a001 1597/2207*103682^(7/24) 2100951682920362 a001 987/3571*103682^(3/8) 2100951683273369 a001 1597/2207*39603^(7/22) 2100951683395071 a001 987/3571*39603^(9/22) 2100951686060649 a001 1597/2207*15127^(7/20) 2100951686519568 a001 4181/3571*1364^(2/5) 2100951686978717 a001 987/3571*15127^(9/20) 2100951688499975 r005 Im(z^2+c),c=-103/110+4/19*I,n=17 2100951689874707 r005 Im(z^2+c),c=23/114+6/47*I,n=11 2100951695431215 m001 GAMMA(7/12)^2*exp(FeigenbaumB)^2/sin(Pi/5) 2100951700255255 m005 (1/2*Zeta(3)-6/7)/(2/9*5^(1/2)-3/8) 2100951701847004 a007 Real Root Of -163*x^4-366*x^3+110*x^2+405*x+147 2100951702377513 m001 BesselJ(0,1)^2*FeigenbaumB/exp(sin(1)) 2100951707320111 a001 1597/2207*5778^(7/18) 2100951710719446 a007 Real Root Of 390*x^4+316*x^3-835*x^2+707*x+503 2100951711376855 r005 Im(z^2+c),c=-1+55/252*I,n=27 2100951714312310 a001 987/3571*5778^(1/2) 2100951714469727 a001 75025/15127*1364^(1/5) 2100951721740276 a004 Fibonacci(18)*Lucas(17)/(1/2+sqrt(5)/2)^27 2100951722247848 a001 196418/39603*1364^(1/5) 2100951723382660 a001 514229/103682*1364^(1/5) 2100951723548227 a001 1346269/271443*1364^(1/5) 2100951723572383 a001 3524578/710647*1364^(1/5) 2100951723575907 a001 9227465/1860498*1364^(1/5) 2100951723576422 a001 24157817/4870847*1364^(1/5) 2100951723576497 a001 63245986/12752043*1364^(1/5) 2100951723576508 a001 165580141/33385282*1364^(1/5) 2100951723576509 a001 433494437/87403803*1364^(1/5) 2100951723576509 a001 1134903170/228826127*1364^(1/5) 2100951723576509 a001 2971215073/599074578*1364^(1/5) 2100951723576509 a001 7778742049/1568397607*1364^(1/5) 2100951723576509 a001 20365011074/4106118243*1364^(1/5) 2100951723576509 a001 53316291173/10749957122*1364^(1/5) 2100951723576509 a001 139583862445/28143753123*1364^(1/5) 2100951723576509 a001 365435296162/73681302247*1364^(1/5) 2100951723576509 a001 956722026041/192900153618*1364^(1/5) 2100951723576509 a001 2504730781961/505019158607*1364^(1/5) 2100951723576509 a001 10610209857723/2139295485799*1364^(1/5) 2100951723576509 a001 140728068720/28374454999*1364^(1/5) 2100951723576509 a001 591286729879/119218851371*1364^(1/5) 2100951723576509 a001 225851433717/45537549124*1364^(1/5) 2100951723576509 a001 86267571272/17393796001*1364^(1/5) 2100951723576509 a001 32951280099/6643838879*1364^(1/5) 2100951723576509 a001 1144206275/230701876*1364^(1/5) 2100951723576509 a001 4807526976/969323029*1364^(1/5) 2100951723576509 a001 1836311903/370248451*1364^(1/5) 2100951723576510 a001 701408733/141422324*1364^(1/5) 2100951723576510 a001 267914296/54018521*1364^(1/5) 2100951723576514 a001 9303105/1875749*1364^(1/5) 2100951723576543 a001 39088169/7881196*1364^(1/5) 2100951723576739 a001 14930352/3010349*1364^(1/5) 2100951723578086 a001 5702887/1149851*1364^(1/5) 2100951723587312 a001 2178309/439204*1364^(1/5) 2100951723650553 a001 75640/15251*1364^(1/5) 2100951724084013 a001 317811/64079*1364^(1/5) 2100951724744875 a001 329/1926*2207^(5/8) 2100951726423709 m001 (Psi(1,1/3)+Ei(1))/(-Grothendieck+Tribonacci) 2100951727054991 a001 121393/24476*1364^(1/5) 2100951728583625 a001 6765/3571*1364^(1/3) 2100951729775461 a001 28657/2207*843^(1/14) 2100951731403182 a001 2584/271443*3571^(16/17) 2100951734642236 m001 GaussKuzminWirsing/exp(Artin)^2*MinimumGamma 2100951734981234 a007 Real Root Of 439*x^4-890*x^3-514*x^2-566*x+149 2100951735733388 a001 2576/321*1364^(2/15) 2100951740010100 r005 Im(z^2+c),c=11/106+11/60*I,n=16 2100951741197766 a001 2584/167761*3571^(15/17) 2100951745450366 r005 Im(z^2+c),c=-13/29+22/61*I,n=32 2100951746032577 a001 1292/2889*3571^(8/17) 2100951747418375 a001 46368/9349*1364^(1/5) 2100951748405059 m001 (LambertW(1)+ln(3))/(-Kolakoski+ZetaQ(4)) 2100951750619097 a001 1292/51841*3571^(14/17) 2100951761017619 a001 2584/64079*3571^(13/17) 2100951761517752 r005 Im(z^2+c),c=-57/64+9/49*I,n=28 2100951762287262 a001 377/9349*843^(13/14) 2100951765732407 m005 (1/2*Pi+4/5)/(4/5*gamma+2/3) 2100951768857822 a001 2584/39603*3571^(12/17) 2100951769621192 r005 Im(z^2+c),c=-13/12+23/104*I,n=21 2100951775489322 a004 Fibonacci(20)*Lucas(17)/(1/2+sqrt(5)/2)^29 2100951780398782 a001 2584/15127*3571^(10/17) 2100951780578130 m001 Chi(1)+Totient-ZetaP(4) 2100951783331202 a004 Fibonacci(22)*Lucas(17)/(1/2+sqrt(5)/2)^31 2100951783395790 a001 646/6119*3571^(11/17) 2100951784475317 a004 Fibonacci(24)*Lucas(17)/(1/2+sqrt(5)/2)^33 2100951784642241 a004 Fibonacci(26)*Lucas(17)/(1/2+sqrt(5)/2)^35 2100951784666595 a004 Fibonacci(28)*Lucas(17)/(1/2+sqrt(5)/2)^37 2100951784670148 a004 Fibonacci(30)*Lucas(17)/(1/2+sqrt(5)/2)^39 2100951784670666 a004 Fibonacci(32)*Lucas(17)/(1/2+sqrt(5)/2)^41 2100951784670742 a004 Fibonacci(34)*Lucas(17)/(1/2+sqrt(5)/2)^43 2100951784670753 a004 Fibonacci(36)*Lucas(17)/(1/2+sqrt(5)/2)^45 2100951784670755 a004 Fibonacci(38)*Lucas(17)/(1/2+sqrt(5)/2)^47 2100951784670755 a004 Fibonacci(40)*Lucas(17)/(1/2+sqrt(5)/2)^49 2100951784670755 a004 Fibonacci(42)*Lucas(17)/(1/2+sqrt(5)/2)^51 2100951784670755 a004 Fibonacci(44)*Lucas(17)/(1/2+sqrt(5)/2)^53 2100951784670755 a004 Fibonacci(46)*Lucas(17)/(1/2+sqrt(5)/2)^55 2100951784670755 a004 Fibonacci(48)*Lucas(17)/(1/2+sqrt(5)/2)^57 2100951784670755 a004 Fibonacci(50)*Lucas(17)/(1/2+sqrt(5)/2)^59 2100951784670755 a004 Fibonacci(52)*Lucas(17)/(1/2+sqrt(5)/2)^61 2100951784670755 a004 Fibonacci(54)*Lucas(17)/(1/2+sqrt(5)/2)^63 2100951784670755 a004 Fibonacci(56)*Lucas(17)/(1/2+sqrt(5)/2)^65 2100951784670755 a004 Fibonacci(58)*Lucas(17)/(1/2+sqrt(5)/2)^67 2100951784670755 a004 Fibonacci(60)*Lucas(17)/(1/2+sqrt(5)/2)^69 2100951784670755 a004 Fibonacci(62)*Lucas(17)/(1/2+sqrt(5)/2)^71 2100951784670755 a004 Fibonacci(64)*Lucas(17)/(1/2+sqrt(5)/2)^73 2100951784670755 a004 Fibonacci(66)*Lucas(17)/(1/2+sqrt(5)/2)^75 2100951784670755 a004 Fibonacci(68)*Lucas(17)/(1/2+sqrt(5)/2)^77 2100951784670755 a004 Fibonacci(70)*Lucas(17)/(1/2+sqrt(5)/2)^79 2100951784670755 a004 Fibonacci(72)*Lucas(17)/(1/2+sqrt(5)/2)^81 2100951784670755 a004 Fibonacci(74)*Lucas(17)/(1/2+sqrt(5)/2)^83 2100951784670755 a004 Fibonacci(76)*Lucas(17)/(1/2+sqrt(5)/2)^85 2100951784670755 a004 Fibonacci(78)*Lucas(17)/(1/2+sqrt(5)/2)^87 2100951784670755 a004 Fibonacci(80)*Lucas(17)/(1/2+sqrt(5)/2)^89 2100951784670755 a004 Fibonacci(82)*Lucas(17)/(1/2+sqrt(5)/2)^91 2100951784670755 a004 Fibonacci(84)*Lucas(17)/(1/2+sqrt(5)/2)^93 2100951784670755 a004 Fibonacci(86)*Lucas(17)/(1/2+sqrt(5)/2)^95 2100951784670755 a004 Fibonacci(88)*Lucas(17)/(1/2+sqrt(5)/2)^97 2100951784670755 a004 Fibonacci(90)*Lucas(17)/(1/2+sqrt(5)/2)^99 2100951784670755 a004 Fibonacci(91)*Lucas(17)/(1/2+sqrt(5)/2)^100 2100951784670755 a004 Fibonacci(89)*Lucas(17)/(1/2+sqrt(5)/2)^98 2100951784670755 a004 Fibonacci(87)*Lucas(17)/(1/2+sqrt(5)/2)^96 2100951784670755 a004 Fibonacci(85)*Lucas(17)/(1/2+sqrt(5)/2)^94 2100951784670755 a004 Fibonacci(83)*Lucas(17)/(1/2+sqrt(5)/2)^92 2100951784670755 a004 Fibonacci(81)*Lucas(17)/(1/2+sqrt(5)/2)^90 2100951784670755 a004 Fibonacci(79)*Lucas(17)/(1/2+sqrt(5)/2)^88 2100951784670755 a004 Fibonacci(77)*Lucas(17)/(1/2+sqrt(5)/2)^86 2100951784670755 a004 Fibonacci(75)*Lucas(17)/(1/2+sqrt(5)/2)^84 2100951784670755 a004 Fibonacci(73)*Lucas(17)/(1/2+sqrt(5)/2)^82 2100951784670755 a004 Fibonacci(71)*Lucas(17)/(1/2+sqrt(5)/2)^80 2100951784670755 a004 Fibonacci(69)*Lucas(17)/(1/2+sqrt(5)/2)^78 2100951784670755 a004 Fibonacci(67)*Lucas(17)/(1/2+sqrt(5)/2)^76 2100951784670755 a004 Fibonacci(65)*Lucas(17)/(1/2+sqrt(5)/2)^74 2100951784670755 a004 Fibonacci(63)*Lucas(17)/(1/2+sqrt(5)/2)^72 2100951784670755 a004 Fibonacci(61)*Lucas(17)/(1/2+sqrt(5)/2)^70 2100951784670755 a004 Fibonacci(59)*Lucas(17)/(1/2+sqrt(5)/2)^68 2100951784670755 a004 Fibonacci(57)*Lucas(17)/(1/2+sqrt(5)/2)^66 2100951784670755 a004 Fibonacci(55)*Lucas(17)/(1/2+sqrt(5)/2)^64 2100951784670755 a004 Fibonacci(53)*Lucas(17)/(1/2+sqrt(5)/2)^62 2100951784670755 a004 Fibonacci(51)*Lucas(17)/(1/2+sqrt(5)/2)^60 2100951784670755 a004 Fibonacci(49)*Lucas(17)/(1/2+sqrt(5)/2)^58 2100951784670755 a004 Fibonacci(47)*Lucas(17)/(1/2+sqrt(5)/2)^56 2100951784670755 a004 Fibonacci(45)*Lucas(17)/(1/2+sqrt(5)/2)^54 2100951784670755 a004 Fibonacci(43)*Lucas(17)/(1/2+sqrt(5)/2)^52 2100951784670755 a004 Fibonacci(41)*Lucas(17)/(1/2+sqrt(5)/2)^50 2100951784670755 a004 Fibonacci(39)*Lucas(17)/(1/2+sqrt(5)/2)^48 2100951784670756 a004 Fibonacci(37)*Lucas(17)/(1/2+sqrt(5)/2)^46 2100951784670760 a004 Fibonacci(35)*Lucas(17)/(1/2+sqrt(5)/2)^44 2100951784670768 a001 2/1597*(1/2+1/2*5^(1/2))^25 2100951784670789 a004 Fibonacci(33)*Lucas(17)/(1/2+sqrt(5)/2)^42 2100951784670987 a004 Fibonacci(31)*Lucas(17)/(1/2+sqrt(5)/2)^40 2100951784672344 a004 Fibonacci(29)*Lucas(17)/(1/2+sqrt(5)/2)^38 2100951784681646 a004 Fibonacci(27)*Lucas(17)/(1/2+sqrt(5)/2)^36 2100951784745406 a004 Fibonacci(25)*Lucas(17)/(1/2+sqrt(5)/2)^34 2100951785176582 a001 6765/710647*3571^(16/17) 2100951785182419 a004 Fibonacci(23)*Lucas(17)/(1/2+sqrt(5)/2)^32 2100951788177750 a004 Fibonacci(21)*Lucas(17)/(1/2+sqrt(5)/2)^30 2100951789649357 a001 121393/15127*1364^(2/15) 2100951791377047 r002 50th iterates of z^2 + 2100951793022015 a001 17711/1860498*3571^(16/17) 2100951794166648 a001 46368/4870847*3571^(16/17) 2100951794333648 a001 121393/12752043*3571^(16/17) 2100951794358013 a001 317811/33385282*3571^(16/17) 2100951794361568 a001 832040/87403803*3571^(16/17) 2100951794362086 a001 46347/4868641*3571^(16/17) 2100951794362162 a001 5702887/599074578*3571^(16/17) 2100951794362173 a001 14930352/1568397607*3571^(16/17) 2100951794362175 a001 39088169/4106118243*3571^(16/17) 2100951794362175 a001 102334155/10749957122*3571^(16/17) 2100951794362175 a001 267914296/28143753123*3571^(16/17) 2100951794362175 a001 701408733/73681302247*3571^(16/17) 2100951794362175 a001 1836311903/192900153618*3571^(16/17) 2100951794362175 a001 102287808/10745088481*3571^(16/17) 2100951794362175 a001 12586269025/1322157322203*3571^(16/17) 2100951794362175 a001 32951280099/3461452808002*3571^(16/17) 2100951794362175 a001 86267571272/9062201101803*3571^(16/17) 2100951794362175 a001 225851433717/23725150497407*3571^(16/17) 2100951794362175 a001 139583862445/14662949395604*3571^(16/17) 2100951794362175 a001 53316291173/5600748293801*3571^(16/17) 2100951794362175 a001 20365011074/2139295485799*3571^(16/17) 2100951794362175 a001 7778742049/817138163596*3571^(16/17) 2100951794362175 a001 2971215073/312119004989*3571^(16/17) 2100951794362175 a001 1134903170/119218851371*3571^(16/17) 2100951794362175 a001 433494437/45537549124*3571^(16/17) 2100951794362175 a001 165580141/17393796001*3571^(16/17) 2100951794362175 a001 63245986/6643838879*3571^(16/17) 2100951794362176 a001 24157817/2537720636*3571^(16/17) 2100951794362180 a001 9227465/969323029*3571^(16/17) 2100951794362209 a001 3524578/370248451*3571^(16/17) 2100951794362407 a001 1346269/141422324*3571^(16/17) 2100951794363765 a001 514229/54018521*3571^(16/17) 2100951794373071 a001 196418/20633239*3571^(16/17) 2100951794436860 a001 75025/7881196*3571^(16/17) 2100951794874071 a001 28657/3010349*3571^(16/17) 2100951794883053 a001 6765/439204*3571^(15/17) 2100951795401691 a007 Real Root Of -81*x^4+558*x^3-409*x^2-408*x-934 2100951797515591 a001 105937/13201*1364^(2/15) 2100951797870759 a001 10946/1149851*3571^(16/17) 2100951798637629 m001 1/GAMMA(5/6)/ln(GAMMA(1/3))*GAMMA(7/12)^2 2100951798663259 a001 416020/51841*1364^(2/15) 2100951798830701 a001 726103/90481*1364^(2/15) 2100951798855131 a001 5702887/710647*1364^(2/15) 2100951798858695 a001 829464/103361*1364^(2/15) 2100951798859215 a001 39088169/4870847*1364^(2/15) 2100951798859291 a001 34111385/4250681*1364^(2/15) 2100951798859302 a001 133957148/16692641*1364^(2/15) 2100951798859304 a001 233802911/29134601*1364^(2/15) 2100951798859304 a001 1836311903/228826127*1364^(2/15) 2100951798859304 a001 267084832/33281921*1364^(2/15) 2100951798859304 a001 12586269025/1568397607*1364^(2/15) 2100951798859304 a001 10983760033/1368706081*1364^(2/15) 2100951798859304 a001 43133785636/5374978561*1364^(2/15) 2100951798859304 a001 75283811239/9381251041*1364^(2/15) 2100951798859304 a001 591286729879/73681302247*1364^(2/15) 2100951798859304 a001 86000486440/10716675201*1364^(2/15) 2100951798859304 a001 4052739537881/505019158607*1364^(2/15) 2100951798859304 a001 3278735159921/408569081798*1364^(2/15) 2100951798859304 a001 2504730781961/312119004989*1364^(2/15) 2100951798859304 a001 956722026041/119218851371*1364^(2/15) 2100951798859304 a001 182717648081/22768774562*1364^(2/15) 2100951798859304 a001 139583862445/17393796001*1364^(2/15) 2100951798859304 a001 53316291173/6643838879*1364^(2/15) 2100951798859304 a001 10182505537/1268860318*1364^(2/15) 2100951798859304 a001 7778742049/969323029*1364^(2/15) 2100951798859304 a001 2971215073/370248451*1364^(2/15) 2100951798859304 a001 567451585/70711162*1364^(2/15) 2100951798859305 a001 433494437/54018521*1364^(2/15) 2100951798859309 a001 165580141/20633239*1364^(2/15) 2100951798859338 a001 31622993/3940598*1364^(2/15) 2100951798859536 a001 24157817/3010349*1364^(2/15) 2100951798860898 a001 9227465/1149851*1364^(2/15) 2100951798870229 a001 1762289/219602*1364^(2/15) 2100951798934186 a001 1346269/167761*1364^(2/15) 2100951799372557 a001 514229/64079*1364^(2/15) 2100951802377191 a001 98209/12238*1364^(2/15) 2100951802715631 a001 17711/1149851*3571^(15/17) 2100951803858389 a001 46368/3010349*3571^(15/17) 2100951804025115 a001 121393/7881196*3571^(15/17) 2100951804049440 a001 10959/711491*3571^(15/17) 2100951804052989 a001 832040/54018521*3571^(15/17) 2100951804053507 a001 2178309/141422324*3571^(15/17) 2100951804053582 a001 5702887/370248451*3571^(15/17) 2100951804053593 a001 14930352/969323029*3571^(15/17) 2100951804053595 a001 39088169/2537720636*3571^(15/17) 2100951804053595 a001 102334155/6643838879*3571^(15/17) 2100951804053595 a001 9238424/599786069*3571^(15/17) 2100951804053595 a001 701408733/45537549124*3571^(15/17) 2100951804053595 a001 1836311903/119218851371*3571^(15/17) 2100951804053595 a001 4807526976/312119004989*3571^(15/17) 2100951804053595 a001 12586269025/817138163596*3571^(15/17) 2100951804053595 a001 32951280099/2139295485799*3571^(15/17) 2100951804053595 a001 86267571272/5600748293801*3571^(15/17) 2100951804053595 a001 7787980473/505618944676*3571^(15/17) 2100951804053595 a001 365435296162/23725150497407*3571^(15/17) 2100951804053595 a001 139583862445/9062201101803*3571^(15/17) 2100951804053595 a001 53316291173/3461452808002*3571^(15/17) 2100951804053595 a001 20365011074/1322157322203*3571^(15/17) 2100951804053595 a001 7778742049/505019158607*3571^(15/17) 2100951804053595 a001 2971215073/192900153618*3571^(15/17) 2100951804053595 a001 1134903170/73681302247*3571^(15/17) 2100951804053595 a001 433494437/28143753123*3571^(15/17) 2100951804053595 a001 165580141/10749957122*3571^(15/17) 2100951804053595 a001 63245986/4106118243*3571^(15/17) 2100951804053596 a001 24157817/1568397607*3571^(15/17) 2100951804053600 a001 9227465/599074578*3571^(15/17) 2100951804053629 a001 3524578/228826127*3571^(15/17) 2100951804053827 a001 1346269/87403803*3571^(15/17) 2100951804055182 a001 514229/33385282*3571^(15/17) 2100951804064473 a001 196418/12752043*3571^(15/17) 2100951804128157 a001 75025/4870847*3571^(15/17) 2100951804535068 a001 2255/90481*3571^(14/17) 2100951804564652 a001 28657/1860498*3571^(15/17) 2100951807556430 a001 10946/710647*3571^(15/17) 2100951808708059 a004 Fibonacci(19)*Lucas(17)/(1/2+sqrt(5)/2)^28 2100951811286272 a001 75025/5778*1364^(1/15) 2100951812401302 a001 17711/710647*3571^(14/17) 2100951813442966 a001 1292/2889*9349^(8/19) 2100951813548970 a001 2576/103361*3571^(14/17) 2100951813716412 a001 121393/4870847*3571^(14/17) 2100951813740842 a001 105937/4250681*3571^(14/17) 2100951813744406 a001 416020/16692641*3571^(14/17) 2100951813744926 a001 726103/29134601*3571^(14/17) 2100951813745002 a001 5702887/228826127*3571^(14/17) 2100951813745013 a001 829464/33281921*3571^(14/17) 2100951813745015 a001 39088169/1568397607*3571^(14/17) 2100951813745015 a001 34111385/1368706081*3571^(14/17) 2100951813745015 a001 133957148/5374978561*3571^(14/17) 2100951813745015 a001 233802911/9381251041*3571^(14/17) 2100951813745015 a001 1836311903/73681302247*3571^(14/17) 2100951813745015 a001 267084832/10716675201*3571^(14/17) 2100951813745015 a001 12586269025/505019158607*3571^(14/17) 2100951813745015 a001 10983760033/440719107401*3571^(14/17) 2100951813745015 a001 43133785636/1730726404001*3571^(14/17) 2100951813745015 a001 75283811239/3020733700601*3571^(14/17) 2100951813745015 a001 182717648081/7331474697802*3571^(14/17) 2100951813745015 a001 139583862445/5600748293801*3571^(14/17) 2100951813745015 a001 53316291173/2139295485799*3571^(14/17) 2100951813745015 a001 10182505537/408569081798*3571^(14/17) 2100951813745015 a001 7778742049/312119004989*3571^(14/17) 2100951813745015 a001 2971215073/119218851371*3571^(14/17) 2100951813745015 a001 567451585/22768774562*3571^(14/17) 2100951813745015 a001 433494437/17393796001*3571^(14/17) 2100951813745015 a001 165580141/6643838879*3571^(14/17) 2100951813745015 a001 31622993/1268860318*3571^(14/17) 2100951813745016 a001 24157817/969323029*3571^(14/17) 2100951813745020 a001 9227465/370248451*3571^(14/17) 2100951813745049 a001 1762289/70711162*3571^(14/17) 2100951813745248 a001 1346269/54018521*3571^(14/17) 2100951813746609 a001 514229/20633239*3571^(14/17) 2100951813755940 a001 98209/3940598*3571^(14/17) 2100951813819898 a001 75025/3010349*3571^(14/17) 2100951814258268 a001 28657/1149851*3571^(14/17) 2100951814329653 a001 615/15251*3571^(13/17) 2100951814396192 r005 Re(z^2+c),c=-7/10+2/205*I,n=2 2100951816554848 a001 10946/3571*1364^(4/15) 2100951817262902 a001 5473/219602*3571^(14/17) 2100951818410371 a001 4181/439204*3571^(16/17) 2100951819164464 a001 2255/1926*3571^(6/17) 2100951822107774 a001 17711/439204*3571^(13/17) 2100951822227938 a001 1292/2889*24476^(8/21) 2100951822971259 a001 75025/9349*1364^(2/15) 2100951823242586 a001 46368/1149851*3571^(13/17) 2100951823308939 a001 2584/9349*3571^(9/17) 2100951823385967 a001 1292/2889*64079^(8/23) 2100951823408153 a001 121393/3010349*3571^(13/17) 2100951823432309 a001 317811/7881196*3571^(13/17) 2100951823435833 a001 75640/1875749*3571^(13/17) 2100951823436347 a001 2178309/54018521*3571^(13/17) 2100951823436422 a001 5702887/141422324*3571^(13/17) 2100951823436433 a001 14930352/370248451*3571^(13/17) 2100951823436435 a001 39088169/969323029*3571^(13/17) 2100951823436435 a001 9303105/230701876*3571^(13/17) 2100951823436435 a001 267914296/6643838879*3571^(13/17) 2100951823436435 a001 701408733/17393796001*3571^(13/17) 2100951823436435 a001 1836311903/45537549124*3571^(13/17) 2100951823436435 a001 4807526976/119218851371*3571^(13/17) 2100951823436435 a001 1144206275/28374454999*3571^(13/17) 2100951823436435 a001 32951280099/817138163596*3571^(13/17) 2100951823436435 a001 86267571272/2139295485799*3571^(13/17) 2100951823436435 a001 225851433717/5600748293801*3571^(13/17) 2100951823436435 a001 365435296162/9062201101803*3571^(13/17) 2100951823436435 a001 139583862445/3461452808002*3571^(13/17) 2100951823436435 a001 53316291173/1322157322203*3571^(13/17) 2100951823436435 a001 20365011074/505019158607*3571^(13/17) 2100951823436435 a001 7778742049/192900153618*3571^(13/17) 2100951823436435 a001 2971215073/73681302247*3571^(13/17) 2100951823436435 a001 1134903170/28143753123*3571^(13/17) 2100951823436435 a001 433494437/10749957122*3571^(13/17) 2100951823436435 a001 165580141/4106118243*3571^(13/17) 2100951823436435 a001 63245986/1568397607*3571^(13/17) 2100951823436436 a001 24157817/599074578*3571^(13/17) 2100951823436440 a001 9227465/228826127*3571^(13/17) 2100951823436469 a001 3524578/87403803*3571^(13/17) 2100951823436665 a001 1346269/33385282*3571^(13/17) 2100951823438011 a001 514229/12752043*3571^(13/17) 2100951823447238 a001 196418/4870847*3571^(13/17) 2100951823510479 a001 75025/1860498*3571^(13/17) 2100951823563937 a001 1292/2889*(1/2+1/2*5^(1/2))^8 2100951823563937 a001 1292/2889*23725150497407^(1/8) 2100951823563937 a001 1292/2889*505019158607^(1/7) 2100951823563937 a001 1292/2889*73681302247^(2/13) 2100951823563937 a001 1292/2889*10749957122^(1/6) 2100951823563937 a001 1292/2889*4106118243^(4/23) 2100951823563937 a001 1292/2889*1568397607^(2/11) 2100951823563937 a001 1292/2889*599074578^(4/21) 2100951823563937 a001 1292/2889*228826127^(1/5) 2100951823563937 a001 1292/2889*87403803^(4/19) 2100951823563937 a001 1292/2889*33385282^(2/9) 2100951823563940 a001 1292/2889*12752043^(4/17) 2100951823563959 a001 1292/2889*4870847^(1/4) 2100951823564099 a001 1292/2889*1860498^(4/15) 2100951823565125 a001 1292/2889*710647^(2/7) 2100951823568095 a001 6677056/317811 2100951823572710 a001 1292/2889*271443^(4/13) 2100951823629083 a001 1292/2889*103682^(1/3) 2100951823750984 a001 6765/103682*3571^(12/17) 2100951823943939 a001 28657/710647*3571^(13/17) 2100951824051047 a001 1292/2889*39603^(4/11) 2100951826914917 a001 10946/271443*3571^(13/17) 2100951827236510 a001 1292/2889*15127^(2/5) 2100951828062385 a001 4181/271443*3571^(15/17) 2100951831759788 a001 17711/271443*3571^(12/17) 2100951832410404 a001 141/2161*2207^(3/4) 2100951832928257 a001 6624/101521*3571^(12/17) 2100951833098734 a001 121393/1860498*3571^(12/17) 2100951833123607 a001 317811/4870847*3571^(12/17) 2100951833127235 a001 832040/12752043*3571^(12/17) 2100951833127765 a001 311187/4769326*3571^(12/17) 2100951833127842 a001 5702887/87403803*3571^(12/17) 2100951833127853 a001 14930352/228826127*3571^(12/17) 2100951833127855 a001 39088169/599074578*3571^(12/17) 2100951833127855 a001 14619165/224056801*3571^(12/17) 2100951833127855 a001 267914296/4106118243*3571^(12/17) 2100951833127855 a001 701408733/10749957122*3571^(12/17) 2100951833127855 a001 1836311903/28143753123*3571^(12/17) 2100951833127855 a001 686789568/10525900321*3571^(12/17) 2100951833127855 a001 12586269025/192900153618*3571^(12/17) 2100951833127855 a001 32951280099/505019158607*3571^(12/17) 2100951833127855 a001 86267571272/1322157322203*3571^(12/17) 2100951833127855 a001 32264490531/494493258286*3571^(12/17) 2100951833127855 a001 1548008755920/23725150497407*3571^(12/17) 2100951833127855 a001 365435296162/5600748293801*3571^(12/17) 2100951833127855 a001 139583862445/2139295485799*3571^(12/17) 2100951833127855 a001 53316291173/817138163596*3571^(12/17) 2100951833127855 a001 20365011074/312119004989*3571^(12/17) 2100951833127855 a001 7778742049/119218851371*3571^(12/17) 2100951833127855 a001 2971215073/45537549124*3571^(12/17) 2100951833127855 a001 1134903170/17393796001*3571^(12/17) 2100951833127855 a001 433494437/6643838879*3571^(12/17) 2100951833127855 a001 165580141/2537720636*3571^(12/17) 2100951833127855 a001 63245986/969323029*3571^(12/17) 2100951833127856 a001 24157817/370248451*3571^(12/17) 2100951833127860 a001 9227465/141422324*3571^(12/17) 2100951833127890 a001 3524578/54018521*3571^(12/17) 2100951833128092 a001 1346269/20633239*3571^(12/17) 2100951833129478 a001 514229/7881196*3571^(12/17) 2100951833138979 a001 196418/3010349*3571^(12/17) 2100951833204095 a001 75025/1149851*3571^(12/17) 2100951833650410 a001 28657/439204*3571^(12/17) 2100951834149506 a001 6765/64079*3571^(11/17) 2100951834663469 a007 Real Root Of 931*x^4-139*x^3+116*x^2-579*x+116 2100951836709502 a001 10946/167761*3571^(12/17) 2100951837856970 a001 4181/167761*3571^(14/17) 2100951838670900 a001 987/9349*2207^(11/16) 2100951841544313 a001 5473/2889*3571^(5/17) 2100951841554373 a001 17711/167761*3571^(11/17) 2100951841989709 a001 2255/13201*3571^(10/17) 2100951842634729 a001 11592/109801*3571^(11/17) 2100951842691781 a001 4181/5778*3571^(7/17) 2100951842792351 a001 121393/1149851*3571^(11/17) 2100951842815347 a001 317811/3010349*3571^(11/17) 2100951842818702 a001 208010/1970299*3571^(11/17) 2100951842819192 a001 2178309/20633239*3571^(11/17) 2100951842819263 a001 5702887/54018521*3571^(11/17) 2100951842819274 a001 3732588/35355581*3571^(11/17) 2100951842819275 a001 39088169/370248451*3571^(11/17) 2100951842819276 a001 102334155/969323029*3571^(11/17) 2100951842819276 a001 66978574/634430159*3571^(11/17) 2100951842819276 a001 701408733/6643838879*3571^(11/17) 2100951842819276 a001 1836311903/17393796001*3571^(11/17) 2100951842819276 a001 1201881744/11384387281*3571^(11/17) 2100951842819276 a001 12586269025/119218851371*3571^(11/17) 2100951842819276 a001 32951280099/312119004989*3571^(11/17) 2100951842819276 a001 21566892818/204284540899*3571^(11/17) 2100951842819276 a001 225851433717/2139295485799*3571^(11/17) 2100951842819276 a001 182717648081/1730726404001*3571^(11/17) 2100951842819276 a001 139583862445/1322157322203*3571^(11/17) 2100951842819276 a001 53316291173/505019158607*3571^(11/17) 2100951842819276 a001 10182505537/96450076809*3571^(11/17) 2100951842819276 a001 7778742049/73681302247*3571^(11/17) 2100951842819276 a001 2971215073/28143753123*3571^(11/17) 2100951842819276 a001 567451585/5374978561*3571^(11/17) 2100951842819276 a001 433494437/4106118243*3571^(11/17) 2100951842819276 a001 165580141/1568397607*3571^(11/17) 2100951842819276 a001 31622993/299537289*3571^(11/17) 2100951842819276 a001 24157817/228826127*3571^(11/17) 2100951842819280 a001 9227465/87403803*3571^(11/17) 2100951842819307 a001 1762289/16692641*3571^(11/17) 2100951842819494 a001 1346269/12752043*3571^(11/17) 2100951842820776 a001 514229/4870847*3571^(11/17) 2100951842829560 a001 98209/930249*3571^(11/17) 2100951842889766 a001 75025/710647*3571^(11/17) 2100951843302425 a001 28657/271443*3571^(11/17) 2100951846130833 a001 5473/51841*3571^(11/17) 2100951846389184 a001 17711/5778*3571^(4/17) 2100951847278301 a001 4181/103682*3571^(13/17) 2100951847890880 r005 Re(z^2+c),c=-121/94+10/43*I,n=6 2100951850975705 a001 17711/103682*3571^(10/17) 2100951851533039 a001 1292/2889*5778^(4/9) 2100951852286744 a001 15456/90481*3571^(10/17) 2100951852458309 r005 Im(z^2+c),c=-31/122+14/45*I,n=22 2100951852478022 a001 121393/710647*3571^(10/17) 2100951852505929 a001 105937/620166*3571^(10/17) 2100951852510000 a001 832040/4870847*3571^(10/17) 2100951852510594 a001 726103/4250681*3571^(10/17) 2100951852510681 a001 5702887/33385282*3571^(10/17) 2100951852510694 a001 4976784/29134601*3571^(10/17) 2100951852510695 a001 39088169/228826127*3571^(10/17) 2100951852510696 a001 34111385/199691526*3571^(10/17) 2100951852510696 a001 267914296/1568397607*3571^(10/17) 2100951852510696 a001 233802911/1368706081*3571^(10/17) 2100951852510696 a001 1836311903/10749957122*3571^(10/17) 2100951852510696 a001 1602508992/9381251041*3571^(10/17) 2100951852510696 a001 12586269025/73681302247*3571^(10/17) 2100951852510696 a001 10983760033/64300051206*3571^(10/17) 2100951852510696 a001 86267571272/505019158607*3571^(10/17) 2100951852510696 a001 75283811239/440719107401*3571^(10/17) 2100951852510696 a001 2504730781961/14662949395604*3571^(10/17) 2100951852510696 a001 139583862445/817138163596*3571^(10/17) 2100951852510696 a001 53316291173/312119004989*3571^(10/17) 2100951852510696 a001 20365011074/119218851371*3571^(10/17) 2100951852510696 a001 7778742049/45537549124*3571^(10/17) 2100951852510696 a001 2971215073/17393796001*3571^(10/17) 2100951852510696 a001 1134903170/6643838879*3571^(10/17) 2100951852510696 a001 433494437/2537720636*3571^(10/17) 2100951852510696 a001 165580141/969323029*3571^(10/17) 2100951852510696 a001 63245986/370248451*3571^(10/17) 2100951852510697 a001 24157817/141422324*3571^(10/17) 2100951852510701 a001 9227465/54018521*3571^(10/17) 2100951852510735 a001 3524578/20633239*3571^(10/17) 2100951852510961 a001 1346269/7881196*3571^(10/17) 2100951852512517 a001 514229/3010349*3571^(10/17) 2100951852523176 a001 196418/1149851*3571^(10/17) 2100951852596238 a001 75025/439204*3571^(10/17) 2100951853097010 a001 28657/167761*3571^(10/17) 2100951853530669 a001 6765/15127*3571^(8/17) 2100951856017280 l006 ln(5770/7119) 2100951856527678 a001 6765/24476*3571^(9/17) 2100951856529355 a001 10946/64079*3571^(10/17) 2100951857676824 a001 4181/64079*3571^(12/17) 2100951857931821 a001 28657/5778*3571^(3/17) 2100951861374227 a001 17711/64079*3571^(9/17) 2100951862081329 a001 46368/167761*3571^(9/17) 2100951862184493 a001 121393/439204*3571^(9/17) 2100951862199545 a001 317811/1149851*3571^(9/17) 2100951862201741 a001 832040/3010349*3571^(9/17) 2100951862202061 a001 2178309/7881196*3571^(9/17) 2100951862202108 a001 5702887/20633239*3571^(9/17) 2100951862202115 a001 14930352/54018521*3571^(9/17) 2100951862202116 a001 39088169/141422324*3571^(9/17) 2100951862202116 a001 102334155/370248451*3571^(9/17) 2100951862202116 a001 267914296/969323029*3571^(9/17) 2100951862202116 a001 701408733/2537720636*3571^(9/17) 2100951862202116 a001 1836311903/6643838879*3571^(9/17) 2100951862202116 a001 4807526976/17393796001*3571^(9/17) 2100951862202116 a001 12586269025/45537549124*3571^(9/17) 2100951862202116 a001 32951280099/119218851371*3571^(9/17) 2100951862202116 a001 86267571272/312119004989*3571^(9/17) 2100951862202116 a001 1548008755920/5600748293801*3571^(9/17) 2100951862202116 a001 139583862445/505019158607*3571^(9/17) 2100951862202116 a001 53316291173/192900153618*3571^(9/17) 2100951862202116 a001 20365011074/73681302247*3571^(9/17) 2100951862202116 a001 7778742049/28143753123*3571^(9/17) 2100951862202116 a001 2971215073/10749957122*3571^(9/17) 2100951862202116 a001 1134903170/4106118243*3571^(9/17) 2100951862202116 a001 433494437/1568397607*3571^(9/17) 2100951862202116 a001 165580141/599074578*3571^(9/17) 2100951862202116 a001 63245986/228826127*3571^(9/17) 2100951862202117 a001 24157817/87403803*3571^(9/17) 2100951862202119 a001 9227465/33385282*3571^(9/17) 2100951862202137 a001 3524578/12752043*3571^(9/17) 2100951862202259 a001 1346269/4870847*3571^(9/17) 2100951862203098 a001 514229/1860498*3571^(9/17) 2100951862208847 a001 196418/710647*3571^(9/17) 2100951862248253 a001 75025/271443*3571^(9/17) 2100951862457112 a004 Fibonacci(18)*Lucas(19)/(1/2+sqrt(5)/2)^29 2100951862518342 a001 28657/103682*3571^(9/17) 2100951862705983 m001 (-Rabbit+Salem)/(exp(Pi)+Zeta(1,2)) 2100951863718073 a001 2584/710647*9349^(18/19) 2100951864369558 a001 10946/39603*3571^(9/17) 2100951864661770 a001 2584/15127*9349^(10/19) 2100951864971559 a001 196418/15127*1364^(1/15) 2100951864998246 a001 34/5779*9349^(17/19) 2100951865179007 s002 sum(A000909[n]/(exp(2*pi*n)+1),n=1..infinity) 2100951865517027 a001 4181/39603*3571^(11/17) 2100951866223962 a001 2584/271443*9349^(16/19) 2100951866916140 a001 2576/321*3571^(2/17) 2100951866986542 m005 (21/4+1/4*5^(1/2))/(7/11*Zeta(3)+2) 2100951867592248 a001 2584/167761*9349^(15/19) 2100951868587280 a001 1292/51841*9349^(14/19) 2100951869214430 a001 17711/39603*3571^(8/17) 2100951869722257 a001 2255/1926*9349^(6/19) 2100951869973408 a001 2584/39603*9349^(12/19) 2100951870559503 a001 2584/64079*9349^(13/19) 2100951870607819 a007 Real Root Of -2*x^4-13*x^3+605*x^2-104*x-121 2100951871502660 a001 23184/51841*3571^(8/17) 2100951871554843 a001 1597/2207*2207^(7/16) 2100951871836508 a001 121393/271443*3571^(8/17) 2100951871885216 a001 317811/710647*3571^(8/17) 2100951871892322 a001 416020/930249*3571^(8/17) 2100951871893359 a001 2178309/4870847*3571^(8/17) 2100951871893511 a001 5702887/12752043*3571^(8/17) 2100951871893533 a001 7465176/16692641*3571^(8/17) 2100951871893536 a001 39088169/87403803*3571^(8/17) 2100951871893536 a001 102334155/228826127*3571^(8/17) 2100951871893536 a001 133957148/299537289*3571^(8/17) 2100951871893536 a001 701408733/1568397607*3571^(8/17) 2100951871893536 a001 1836311903/4106118243*3571^(8/17) 2100951871893536 a001 2403763488/5374978561*3571^(8/17) 2100951871893536 a001 12586269025/28143753123*3571^(8/17) 2100951871893536 a001 32951280099/73681302247*3571^(8/17) 2100951871893536 a001 43133785636/96450076809*3571^(8/17) 2100951871893536 a001 225851433717/505019158607*3571^(8/17) 2100951871893536 a001 10610209857723/23725150497407*3571^(8/17) 2100951871893536 a001 182717648081/408569081798*3571^(8/17) 2100951871893536 a001 139583862445/312119004989*3571^(8/17) 2100951871893536 a001 53316291173/119218851371*3571^(8/17) 2100951871893536 a001 10182505537/22768774562*3571^(8/17) 2100951871893536 a001 7778742049/17393796001*3571^(8/17) 2100951871893536 a001 2971215073/6643838879*3571^(8/17) 2100951871893536 a001 567451585/1268860318*3571^(8/17) 2100951871893536 a001 433494437/969323029*3571^(8/17) 2100951871893536 a001 165580141/370248451*3571^(8/17) 2100951871893537 a001 31622993/70711162*3571^(8/17) 2100951871893538 a001 24157817/54018521*3571^(8/17) 2100951871893546 a001 9227465/20633239*3571^(8/17) 2100951871893604 a001 1762289/3940598*3571^(8/17) 2100951871894000 a001 1346269/3010349*3571^(8/17) 2100951871896714 a001 514229/1149851*3571^(8/17) 2100951871915319 a001 98209/219602*3571^(8/17) 2100951872042838 a001 75025/167761*3571^(8/17) 2100951872057076 a001 987/24476*2207^(13/16) 2100951872804137 a001 514229/39603*1364^(1/15) 2100951872916864 a001 28657/64079*3571^(8/17) 2100951873946895 a001 1346269/103682*1364^(1/15) 2100951874113621 a001 3524578/271443*1364^(1/15) 2100951874137946 a001 9227465/710647*1364^(1/15) 2100951874141495 a001 24157817/1860498*1364^(1/15) 2100951874142012 a001 63245986/4870847*1364^(1/15) 2100951874142088 a001 165580141/12752043*1364^(1/15) 2100951874142099 a001 433494437/33385282*1364^(1/15) 2100951874142101 a001 1134903170/87403803*1364^(1/15) 2100951874142101 a001 2971215073/228826127*1364^(1/15) 2100951874142101 a001 7778742049/599074578*1364^(1/15) 2100951874142101 a001 20365011074/1568397607*1364^(1/15) 2100951874142101 a001 53316291173/4106118243*1364^(1/15) 2100951874142101 a001 139583862445/10749957122*1364^(1/15) 2100951874142101 a001 365435296162/28143753123*1364^(1/15) 2100951874142101 a001 956722026041/73681302247*1364^(1/15) 2100951874142101 a001 2504730781961/192900153618*1364^(1/15) 2100951874142101 a001 10610209857723/817138163596*1364^(1/15) 2100951874142101 a001 4052739537881/312119004989*1364^(1/15) 2100951874142101 a001 1548008755920/119218851371*1364^(1/15) 2100951874142101 a001 591286729879/45537549124*1364^(1/15) 2100951874142101 a001 7787980473/599786069*1364^(1/15) 2100951874142101 a001 86267571272/6643838879*1364^(1/15) 2100951874142101 a001 32951280099/2537720636*1364^(1/15) 2100951874142101 a001 12586269025/969323029*1364^(1/15) 2100951874142101 a001 4807526976/370248451*1364^(1/15) 2100951874142101 a001 1836311903/141422324*1364^(1/15) 2100951874142102 a001 701408733/54018521*1364^(1/15) 2100951874142106 a001 9238424/711491*1364^(1/15) 2100951874142135 a001 102334155/7881196*1364^(1/15) 2100951874142332 a001 39088169/3010349*1364^(1/15) 2100951874143688 a001 14930352/1149851*1364^(1/15) 2100951874152979 a001 5702887/439204*1364^(1/15) 2100951874216663 a001 2178309/167761*1364^(1/15) 2100951874653158 a001 832040/64079*1364^(1/15) 2100951875642985 a001 2584/15127*24476^(10/21) 2100951875910519 a001 10946/15127*3571^(7/17) 2100951876085078 a001 646/6119*9349^(11/19) 2100951876310986 a001 2255/1926*24476^(2/7) 2100951876877649 a001 75025/5778*3571^(1/17) 2100951877057987 a001 4181/15127*3571^(9/17) 2100951877090521 a001 2584/15127*64079^(10/23) 2100951877179508 a001 2255/1926*64079^(6/23) 2100951877283123 a001 2584/15127*167761^(2/5) 2100951877310565 a001 2255/1926*439204^(2/9) 2100951877312979 a001 2255/1926*7881196^(2/11) 2100951877312982 a001 2584/15127*20633239^(2/7) 2100951877312983 a001 2584/15127*2537720636^(2/9) 2100951877312983 a001 2584/15127*312119004989^(2/11) 2100951877312983 a001 2584/15127*(1/2+1/2*5^(1/2))^10 2100951877312983 a001 2584/15127*28143753123^(1/5) 2100951877312983 a001 2584/15127*10749957122^(5/24) 2100951877312983 a001 2584/15127*4106118243^(5/23) 2100951877312983 a001 2584/15127*1568397607^(5/22) 2100951877312983 a001 2584/15127*599074578^(5/21) 2100951877312983 a001 2584/15127*228826127^(1/4) 2100951877312983 a001 2584/15127*87403803^(5/19) 2100951877312984 a001 2584/15127*33385282^(5/18) 2100951877312985 a001 2255/1926*141422324^(2/13) 2100951877312985 a001 2255/1926*2537720636^(2/15) 2100951877312985 a001 2255/1926*45537549124^(2/17) 2100951877312985 a001 2255/1926*14662949395604^(2/21) 2100951877312985 a001 2255/1926*(1/2+1/2*5^(1/2))^6 2100951877312985 a001 2255/1926*10749957122^(1/8) 2100951877312985 a001 2255/1926*4106118243^(3/23) 2100951877312985 a001 2255/1926*1568397607^(3/22) 2100951877312985 a001 2255/1926*599074578^(1/7) 2100951877312985 a001 2255/1926*228826127^(3/20) 2100951877312985 a001 2255/1926*87403803^(3/19) 2100951877312985 a001 2255/1926*33385282^(1/6) 2100951877312987 a001 2584/15127*12752043^(5/17) 2100951877312987 a001 2255/1926*12752043^(3/17) 2100951877313002 a001 2255/1926*4870847^(3/16) 2100951877313011 a001 2584/15127*4870847^(5/16) 2100951877313107 a001 2255/1926*1860498^(1/5) 2100951877313186 a001 2584/15127*1860498^(1/3) 2100951877313590 a001 39729/1891 2100951877313877 a001 2255/1926*710647^(3/14) 2100951877314469 a001 2584/15127*710647^(5/14) 2100951877319565 a001 2255/1926*271443^(3/13) 2100951877323950 a001 2584/15127*271443^(5/13) 2100951877361845 a001 2255/1926*103682^(1/4) 2100951877394416 a001 2584/15127*103682^(5/12) 2100951877644936 a001 10959/844*1364^(1/15) 2100951877678318 a001 2255/1926*39603^(3/11) 2100951877921871 a001 2584/15127*39603^(5/11) 2100951878907527 a001 5473/12238*3571^(8/17) 2100951880054996 a001 4181/24476*3571^(10/17) 2100951880067415 a001 2255/1926*15127^(3/10) 2100951880094380 a001 17711/5778*9349^(4/19) 2100951880755391 a001 17711/15127*3571^(6/17) 2100951880757067 a001 28657/39603*3571^(7/17) 2100951881464169 a001 75025/103682*3571^(7/17) 2100951881567334 a001 196418/271443*3571^(7/17) 2100951881582386 a001 514229/710647*3571^(7/17) 2100951881584582 a001 1346269/1860498*3571^(7/17) 2100951881584902 a001 3524578/4870847*3571^(7/17) 2100951881584949 a001 9227465/12752043*3571^(7/17) 2100951881584956 a001 24157817/33385282*3571^(7/17) 2100951881584957 a001 63245986/87403803*3571^(7/17) 2100951881584957 a001 165580141/228826127*3571^(7/17) 2100951881584957 a001 433494437/599074578*3571^(7/17) 2100951881584957 a001 1134903170/1568397607*3571^(7/17) 2100951881584957 a001 2971215073/4106118243*3571^(7/17) 2100951881584957 a001 7778742049/10749957122*3571^(7/17) 2100951881584957 a001 20365011074/28143753123*3571^(7/17) 2100951881584957 a001 53316291173/73681302247*3571^(7/17) 2100951881584957 a001 139583862445/192900153618*3571^(7/17) 2100951881584957 a001 10610209857723/14662949395604*3571^(7/17) 2100951881584957 a001 591286729879/817138163596*3571^(7/17) 2100951881584957 a001 225851433717/312119004989*3571^(7/17) 2100951881584957 a001 86267571272/119218851371*3571^(7/17) 2100951881584957 a001 32951280099/45537549124*3571^(7/17) 2100951881584957 a001 12586269025/17393796001*3571^(7/17) 2100951881584957 a001 4807526976/6643838879*3571^(7/17) 2100951881584957 a001 1836311903/2537720636*3571^(7/17) 2100951881584957 a001 701408733/969323029*3571^(7/17) 2100951881584957 a001 267914296/370248451*3571^(7/17) 2100951881584957 a001 102334155/141422324*3571^(7/17) 2100951881584957 a001 39088169/54018521*3571^(7/17) 2100951881584960 a001 14930352/20633239*3571^(7/17) 2100951881584978 a001 5702887/7881196*3571^(7/17) 2100951881585100 a001 2178309/3010349*3571^(7/17) 2100951881585939 a001 832040/1149851*3571^(7/17) 2100951881591688 a001 317811/439204*3571^(7/17) 2100951881631093 a001 121393/167761*3571^(7/17) 2100951881901182 a001 46368/64079*3571^(7/17) 2100951881903700 a001 2584/15127*15127^(1/2) 2100951882987421 a004 Fibonacci(18)*Lucas(21)/(1/2+sqrt(5)/2)^31 2100951883150866 a001 2584/39603*24476^(4/7) 2100951883153814 a001 1292/930249*24476^(20/21) 2100951883210718 a001 28657/5778*9349^(3/19) 2100951883323010 a001 2584/1149851*24476^(19/21) 2100951883484260 a001 2584/710647*24476^(6/7) 2100951883666312 a001 34/5779*24476^(17/21) 2100951883675808 a001 5473/2889*9349^(5/19) 2100951883752399 a001 17711/24476*3571^(7/17) 2100951883768738 a001 2576/321*9349^(2/19) 2100951883793906 a001 2584/271443*24476^(16/21) 2100951883960982 a001 1292/51841*24476^(2/3) 2100951884064071 a001 2584/167761*24476^(5/7) 2100951884486866 a001 17711/5778*24476^(4/21) 2100951884835083 a001 2584/64079*24476^(13/21) 2100951884887909 a001 2584/39603*64079^(12/23) 2100951885065881 a001 17711/5778*64079^(4/23) 2100951885150023 a001 2584/39603*439204^(4/9) 2100951885154851 a001 2584/39603*7881196^(4/11) 2100951885154864 a001 2584/39603*141422324^(4/13) 2100951885154864 a001 2584/39603*2537720636^(4/15) 2100951885154864 a001 2584/39603*45537549124^(4/17) 2100951885154864 a001 2584/39603*817138163596^(4/19) 2100951885154864 a001 2584/39603*14662949395604^(4/21) 2100951885154864 a001 2584/39603*(1/2+1/2*5^(1/2))^12 2100951885154864 a001 2584/39603*192900153618^(2/9) 2100951885154864 a001 2584/39603*73681302247^(3/13) 2100951885154864 a001 2584/39603*10749957122^(1/4) 2100951885154864 a001 2584/39603*4106118243^(6/23) 2100951885154864 a001 2584/39603*1568397607^(3/11) 2100951885154864 a001 2584/39603*599074578^(2/7) 2100951885154864 a001 2584/39603*228826127^(3/10) 2100951885154864 a001 2584/39603*87403803^(6/19) 2100951885154864 a001 2584/39603*33385282^(1/3) 2100951885154866 a001 17711/5778*(1/2+1/2*5^(1/2))^4 2100951885154866 a001 17711/5778*23725150497407^(1/16) 2100951885154866 a001 17711/5778*73681302247^(1/13) 2100951885154866 a001 17711/5778*10749957122^(1/12) 2100951885154866 a001 17711/5778*4106118243^(2/23) 2100951885154866 a001 17711/5778*1568397607^(1/11) 2100951885154866 a001 17711/5778*599074578^(2/21) 2100951885154866 a001 17711/5778*228826127^(1/10) 2100951885154866 a001 17711/5778*87403803^(2/19) 2100951885154866 a001 17711/5778*33385282^(1/9) 2100951885154867 a001 17711/5778*12752043^(2/17) 2100951885154868 a001 2584/39603*12752043^(6/17) 2100951885154877 a001 17711/5778*4870847^(1/8) 2100951885154897 a001 2584/39603*4870847^(3/8) 2100951885154947 a001 17711/5778*1860498^(2/15) 2100951885154952 a001 45765224/2178309 2100951885155106 a001 2584/39603*1860498^(2/5) 2100951885155460 a001 17711/5778*710647^(1/7) 2100951885156647 a001 2584/39603*710647^(3/7) 2100951885159252 a001 17711/5778*271443^(2/13) 2100951885168024 a001 2584/39603*271443^(6/13) 2100951885187439 a001 17711/5778*103682^(1/6) 2100951885252583 a001 2584/39603*103682^(1/2) 2100951885303948 a001 75025/5778*9349^(1/19) 2100951885398421 a001 17711/5778*39603^(2/11) 2100951885885529 a001 2584/39603*39603^(6/11) 2100951885964981 a001 2576/321*24476^(2/21) 2100951885982753 a004 Fibonacci(18)*Lucas(23)/(1/2+sqrt(5)/2)^33 2100951885987531 a001 1292/51841*64079^(14/23) 2100951886004911 a001 2584/4870847*64079^(22/23) 2100951886027477 a001 2584/3010349*64079^(21/23) 2100951886048885 a001 1292/930249*64079^(20/23) 2100951886073327 a001 2584/1149851*64079^(19/23) 2100951886089824 a001 2584/710647*64079^(18/23) 2100951886109963 a001 2584/271443*64079^(16/23) 2100951886127122 a001 34/5779*64079^(17/23) 2100951886235374 a001 2584/167761*64079^(15/23) 2100951886254488 a001 2576/321*64079^(2/23) 2100951886298977 a001 1292/51841*20633239^(2/5) 2100951886298979 a001 1292/51841*17393796001^(2/7) 2100951886298979 a001 1292/51841*14662949395604^(2/9) 2100951886298979 a001 1292/51841*(1/2+1/2*5^(1/2))^14 2100951886298979 a001 1292/51841*10749957122^(7/24) 2100951886298979 a001 1292/51841*4106118243^(7/23) 2100951886298979 a001 1292/51841*1568397607^(7/22) 2100951886298979 a001 1292/51841*599074578^(1/3) 2100951886298979 a001 1292/51841*228826127^(7/20) 2100951886298979 a001 1292/51841*87403803^(7/19) 2100951886298979 a001 1292/51841*33385282^(7/18) 2100951886298981 a001 2576/321*(1/2+1/2*5^(1/2))^2 2100951886298981 a001 2576/321*10749957122^(1/24) 2100951886298981 a001 2576/321*4106118243^(1/23) 2100951886298981 a001 2576/321*1568397607^(1/22) 2100951886298981 a001 2576/321*599074578^(1/21) 2100951886298981 a001 2576/321*228826127^(1/20) 2100951886298981 a001 2576/321*87403803^(1/19) 2100951886298981 a001 2576/321*33385282^(1/18) 2100951886298981 a001 2576/321*12752043^(1/17) 2100951886298984 a001 1292/51841*12752043^(7/17) 2100951886298986 a001 2576/321*4870847^(1/16) 2100951886298992 a001 119814912/5702887 2100951886299017 a001 1292/51841*4870847^(7/16) 2100951886299021 a001 2576/321*1860498^(1/15) 2100951886299262 a001 1292/51841*1860498^(7/15) 2100951886299278 a001 2576/321*710647^(1/14) 2100951886301059 a001 1292/51841*710647^(1/2) 2100951886301174 a001 2576/321*271443^(1/13) 2100951886314332 a001 1292/51841*271443^(7/13) 2100951886315267 a001 2576/321*103682^(1/12) 2100951886402070 a001 75025/5778*24476^(1/21) 2100951886412984 a001 1292/51841*103682^(7/12) 2100951886419766 a004 Fibonacci(18)*Lucas(25)/(1/2+sqrt(5)/2)^35 2100951886420758 a001 2576/321*39603^(1/11) 2100951886434089 a001 1292/930249*167761^(4/5) 2100951886465903 a001 2584/271443*(1/2+1/2*5^(1/2))^16 2100951886465903 a001 2584/271443*23725150497407^(1/4) 2100951886465903 a001 2584/271443*73681302247^(4/13) 2100951886465903 a001 2584/271443*10749957122^(1/3) 2100951886465903 a001 2584/271443*4106118243^(8/23) 2100951886465903 a001 2584/271443*1568397607^(4/11) 2100951886465903 a001 2584/271443*599074578^(8/21) 2100951886465903 a001 2584/271443*228826127^(2/5) 2100951886465903 a001 2584/271443*87403803^(8/19) 2100951886465904 a001 2584/271443*33385282^(4/9) 2100951886465905 a001 121393/5778 2100951886465909 a001 2584/271443*12752043^(8/17) 2100951886465947 a001 2584/271443*4870847^(1/2) 2100951886466226 a001 2584/271443*1860498^(8/15) 2100951886468280 a001 2584/271443*710647^(4/7) 2100951886482996 a001 2584/710647*439204^(2/3) 2100951886483450 a001 2584/271443*271443^(8/13) 2100951886483525 a004 Fibonacci(18)*Lucas(27)/(1/2+sqrt(5)/2)^37 2100951886484723 a001 2584/12752043*439204^(8/9) 2100951886486178 a001 2584/3010349*439204^(7/9) 2100951886490238 a001 2584/710647*7881196^(6/11) 2100951886490257 a001 2584/710647*141422324^(6/13) 2100951886490257 a001 2584/710647*2537720636^(2/5) 2100951886490257 a001 2584/710647*45537549124^(6/17) 2100951886490257 a001 2584/710647*14662949395604^(2/7) 2100951886490257 a001 2584/710647*(1/2+1/2*5^(1/2))^18 2100951886490257 a001 2584/710647*192900153618^(1/3) 2100951886490257 a001 2584/710647*10749957122^(3/8) 2100951886490257 a001 2584/710647*4106118243^(9/23) 2100951886490257 a001 2584/710647*1568397607^(9/22) 2100951886490257 a001 2584/710647*599074578^(3/7) 2100951886490257 a001 2584/710647*228826127^(9/20) 2100951886490257 a001 2584/710647*87403803^(9/19) 2100951886490257 a001 821223624/39088169 2100951886490258 a001 2584/710647*33385282^(1/2) 2100951886490259 a004 Fibonacci(28)/Lucas(18)/(1/2+sqrt(5)/2)^2 2100951886490264 a001 2584/710647*12752043^(9/17) 2100951886490306 a001 2584/710647*4870847^(9/16) 2100951886490621 a001 2584/710647*1860498^(3/5) 2100951886492828 a004 Fibonacci(18)*Lucas(29)/(1/2+sqrt(5)/2)^39 2100951886492931 a001 2584/710647*710647^(9/14) 2100951886493807 a001 1292/930249*20633239^(4/7) 2100951886493810 a001 1292/930249*2537720636^(4/9) 2100951886493810 a001 1292/930249*(1/2+1/2*5^(1/2))^20 2100951886493810 a001 1292/930249*23725150497407^(5/16) 2100951886493810 a001 1292/930249*505019158607^(5/14) 2100951886493810 a001 1292/930249*73681302247^(5/13) 2100951886493810 a001 1292/930249*28143753123^(2/5) 2100951886493810 a001 1292/930249*10749957122^(5/12) 2100951886493810 a001 1292/930249*4106118243^(10/23) 2100951886493810 a001 1292/930249*1568397607^(5/11) 2100951886493810 a001 1292/930249*599074578^(10/21) 2100951886493810 a001 1292/930249*228826127^(1/2) 2100951886493810 a001 39090752/1860621 2100951886493810 a001 1292/930249*87403803^(10/19) 2100951886493811 a001 1292/930249*33385282^(5/9) 2100951886493812 a004 Fibonacci(30)/Lucas(18)/(1/2+sqrt(5)/2)^4 2100951886493817 a001 1292/930249*12752043^(10/17) 2100951886493865 a001 1292/930249*4870847^(5/8) 2100951886494185 a004 Fibonacci(18)*Lucas(31)/(1/2+sqrt(5)/2)^41 2100951886494214 a001 1292/930249*1860498^(2/3) 2100951886494306 a001 2584/4870847*7881196^(2/3) 2100951886494328 a001 2584/4870847*312119004989^(2/5) 2100951886494328 a001 2584/4870847*(1/2+1/2*5^(1/2))^22 2100951886494328 a001 2584/4870847*10749957122^(11/24) 2100951886494328 a001 2584/4870847*4106118243^(11/23) 2100951886494328 a001 2584/4870847*1568397607^(1/2) 2100951886494328 a001 2584/4870847*599074578^(11/21) 2100951886494328 a001 703593807/33489287 2100951886494328 a001 2584/4870847*228826127^(11/20) 2100951886494328 a001 2584/4870847*87403803^(11/19) 2100951886494329 a001 2584/4870847*33385282^(11/18) 2100951886494330 a004 Fibonacci(32)/Lucas(18)/(1/2+sqrt(5)/2)^6 2100951886494337 a001 2584/4870847*12752043^(11/17) 2100951886494379 a001 2584/12752043*7881196^(8/11) 2100951886494383 a004 Fibonacci(18)*Lucas(33)/(1/2+sqrt(5)/2)^43 2100951886494386 a001 2584/228826127*7881196^(10/11) 2100951886494389 a001 2584/4870847*4870847^(11/16) 2100951886494390 a001 2584/54018521*7881196^(9/11) 2100951886494404 a001 2584/12752043*141422324^(8/13) 2100951886494404 a001 2584/12752043*2537720636^(8/15) 2100951886494404 a001 2584/12752043*45537549124^(8/17) 2100951886494404 a001 2584/12752043*14662949395604^(8/21) 2100951886494404 a001 2584/12752043*(1/2+1/2*5^(1/2))^24 2100951886494404 a001 2584/12752043*192900153618^(4/9) 2100951886494404 a001 2584/12752043*73681302247^(6/13) 2100951886494404 a001 2584/12752043*10749957122^(1/2) 2100951886494404 a001 2584/12752043*4106118243^(12/23) 2100951886494404 a001 2584/12752043*1568397607^(6/11) 2100951886494404 a001 14736260008/701408733 2100951886494404 a001 2584/12752043*599074578^(4/7) 2100951886494404 a001 2584/12752043*228826127^(3/5) 2100951886494404 a001 2584/12752043*87403803^(12/19) 2100951886494405 a001 2584/12752043*33385282^(2/3) 2100951886494406 a004 Fibonacci(34)/Lucas(18)/(1/2+sqrt(5)/2)^8 2100951886494412 a004 Fibonacci(18)*Lucas(35)/(1/2+sqrt(5)/2)^45 2100951886494413 a001 2584/228826127*20633239^(6/7) 2100951886494413 a001 2584/87403803*20633239^(4/5) 2100951886494413 a001 2584/12752043*12752043^(12/17) 2100951886494415 a001 1292/16692641*141422324^(2/3) 2100951886494415 a001 1292/16692641*(1/2+1/2*5^(1/2))^26 2100951886494415 a001 1292/16692641*73681302247^(1/2) 2100951886494415 a001 1292/16692641*10749957122^(13/24) 2100951886494415 a001 1292/16692641*4106118243^(13/23) 2100951886494415 a001 38580029568/1836311903 2100951886494415 a001 1292/16692641*1568397607^(13/22) 2100951886494415 a001 1292/16692641*599074578^(13/21) 2100951886494415 a001 1292/16692641*228826127^(13/20) 2100951886494415 a001 1292/16692641*87403803^(13/19) 2100951886494416 a004 Fibonacci(18)*Lucas(37)/(1/2+sqrt(5)/2)^47 2100951886494416 a001 1292/16692641*33385282^(13/18) 2100951886494417 a001 2584/87403803*17393796001^(4/7) 2100951886494417 a001 2584/87403803*14662949395604^(4/9) 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^28/Lucas(38) 2100951886494417 a001 2584/87403803*73681302247^(7/13) 2100951886494417 a001 2584/87403803*10749957122^(7/12) 2100951886494417 a001 12625478587/600940872 2100951886494417 a001 2584/87403803*4106118243^(14/23) 2100951886494417 a001 2584/87403803*1568397607^(7/11) 2100951886494417 a001 2584/87403803*599074578^(2/3) 2100951886494417 a001 2584/87403803*228826127^(7/10) 2100951886494417 a001 2584/228826127*141422324^(10/13) 2100951886494417 a004 Fibonacci(18)*Lucas(39)/(1/2+sqrt(5)/2)^49 2100951886494417 a001 2584/4106118243*141422324^(12/13) 2100951886494417 a001 2584/969323029*141422324^(11/13) 2100951886494417 a001 2584/87403803*87403803^(14/19) 2100951886494417 a001 2584/228826127*2537720636^(2/3) 2100951886494417 a001 2584/228826127*45537549124^(10/17) 2100951886494417 a001 2584/228826127*312119004989^(6/11) 2100951886494417 a001 2584/228826127*14662949395604^(10/21) 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^30/Lucas(40) 2100951886494417 a001 2584/228826127*192900153618^(5/9) 2100951886494417 a001 2584/228826127*28143753123^(3/5) 2100951886494417 a001 4807844664/228841255 2100951886494417 a001 2584/228826127*10749957122^(5/8) 2100951886494417 a001 2584/228826127*4106118243^(15/23) 2100951886494417 a001 2584/228826127*1568397607^(15/22) 2100951886494417 a001 2584/228826127*599074578^(5/7) 2100951886494417 a004 Fibonacci(18)*Lucas(41)/(1/2+sqrt(5)/2)^51 2100951886494417 a001 2584/228826127*228826127^(3/4) 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^32/Lucas(42) 2100951886494417 a001 1292/299537289*23725150497407^(1/2) 2100951886494417 a001 1292/299537289*73681302247^(8/13) 2100951886494417 a001 692290540864/32951280099 2100951886494417 a001 1292/299537289*10749957122^(2/3) 2100951886494417 a001 1292/299537289*4106118243^(16/23) 2100951886494417 a001 1292/299537289*1568397607^(8/11) 2100951886494417 a004 Fibonacci(18)*Lucas(43)/(1/2+sqrt(5)/2)^53 2100951886494417 a001 1292/299537289*599074578^(16/21) 2100951886494417 a001 2584/1568397607*45537549124^(2/3) 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^34/Lucas(44) 2100951886494417 a001 701408733/33385283 2100951886494417 a001 2584/1568397607*10749957122^(17/24) 2100951886494417 a001 2584/1568397607*4106118243^(17/23) 2100951886494417 a001 2584/4106118243*2537720636^(4/5) 2100951886494417 a004 Fibonacci(18)*Lucas(45)/(1/2+sqrt(5)/2)^55 2100951886494417 a001 2584/73681302247*2537720636^(14/15) 2100951886494417 a001 2584/28143753123*2537720636^(8/9) 2100951886494417 a001 2584/17393796001*2537720636^(13/15) 2100951886494417 a001 2584/1568397607*1568397607^(17/22) 2100951886494417 a001 2584/4106118243*45537549124^(12/17) 2100951886494417 a001 2584/4106118243*14662949395604^(4/7) 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^36/Lucas(46) 2100951886494417 a001 4745029957352/225851433717 2100951886494417 a001 2584/4106118243*192900153618^(2/3) 2100951886494417 a001 2584/4106118243*73681302247^(9/13) 2100951886494417 a001 2584/4106118243*10749957122^(3/4) 2100951886494417 a004 Fibonacci(18)*Lucas(47)/(1/2+sqrt(5)/2)^57 2100951886494417 a001 2584/4106118243*4106118243^(18/23) 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^38/Lucas(48) 2100951886494417 a001 12422649705984/591286729879 2100951886494417 a004 Fibonacci(18)*Lucas(49)/(1/2+sqrt(5)/2)^59 2100951886494417 a001 2584/73681302247*17393796001^(6/7) 2100951886494417 a001 1292/5374978561*10749957122^(19/24) 2100951886494417 a001 2584/28143753123*312119004989^(8/11) 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^40/Lucas(50) 2100951886494417 a001 2584/28143753123*23725150497407^(5/8) 2100951886494417 a001 2584/28143753123*73681302247^(10/13) 2100951886494417 a001 2584/73681302247*45537549124^(14/17) 2100951886494417 a004 Fibonacci(18)*Lucas(51)/(1/2+sqrt(5)/2)^61 2100951886494417 a001 2584/1322157322203*45537549124^(16/17) 2100951886494417 a001 2584/312119004989*45537549124^(15/17) 2100951886494417 a001 2584/28143753123*28143753123^(4/5) 2100951886494417 a001 2584/73681302247*14662949395604^(2/3) 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^42/Lucas(52) 2100951886494417 a001 2584/73681302247*505019158607^(3/4) 2100951886494417 a001 2584/73681302247*192900153618^(7/9) 2100951886494417 a004 Fibonacci(18)*Lucas(53)/(1/2+sqrt(5)/2)^63 2100951886494417 a001 1292/96450076809*312119004989^(4/5) 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^44/Lucas(54) 2100951886494417 a001 1292/96450076809*23725150497407^(11/16) 2100951886494417 a001 222915404166848/10610209857723 2100951886494417 a004 Fibonacci(18)*Lucas(55)/(1/2+sqrt(5)/2)^65 2100951886494417 a001 1292/1730726404001*312119004989^(10/11) 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^46/Lucas(56) 2100951886494417 a004 Fibonacci(18)*Lucas(57)/(1/2+sqrt(5)/2)^67 2100951886494417 a001 2584/1322157322203*14662949395604^(16/21) 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^48/Lucas(58) 2100951886494417 a004 Fibonacci(18)*Lucas(59)/(1/2+sqrt(5)/2)^69 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^50/Lucas(60) 2100951886494417 a004 Fibonacci(18)*Lucas(61)/(1/2+sqrt(5)/2)^71 2100951886494417 a001 1292/1730726404001*3461452808002^(5/6) 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^52/Lucas(62) 2100951886494417 a004 Fibonacci(18)*Lucas(63)/(1/2+sqrt(5)/2)^73 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^54/Lucas(64) 2100951886494417 a004 Fibonacci(18)*Lucas(65)/(1/2+sqrt(5)/2)^75 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^56/Lucas(66) 2100951886494417 a004 Fibonacci(18)*Lucas(67)/(1/2+sqrt(5)/2)^77 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^58/Lucas(68) 2100951886494417 a004 Fibonacci(18)*Lucas(69)/(1/2+sqrt(5)/2)^79 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^60/Lucas(70) 2100951886494417 a004 Fibonacci(18)*Lucas(71)/(1/2+sqrt(5)/2)^81 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^62/Lucas(72) 2100951886494417 a004 Fibonacci(18)*Lucas(73)/(1/2+sqrt(5)/2)^83 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^64/Lucas(74) 2100951886494417 a004 Fibonacci(18)*Lucas(75)/(1/2+sqrt(5)/2)^85 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^66/Lucas(76) 2100951886494417 a004 Fibonacci(18)*Lucas(77)/(1/2+sqrt(5)/2)^87 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^68/Lucas(78) 2100951886494417 a004 Fibonacci(18)*Lucas(79)/(1/2+sqrt(5)/2)^89 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^70/Lucas(80) 2100951886494417 a004 Fibonacci(18)*Lucas(81)/(1/2+sqrt(5)/2)^91 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^72/Lucas(82) 2100951886494417 a004 Fibonacci(18)*Lucas(83)/(1/2+sqrt(5)/2)^93 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^74/Lucas(84) 2100951886494417 a004 Fibonacci(18)*Lucas(85)/(1/2+sqrt(5)/2)^95 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^76/Lucas(86) 2100951886494417 a004 Fibonacci(18)*Lucas(87)/(1/2+sqrt(5)/2)^97 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^78/Lucas(88) 2100951886494417 a004 Fibonacci(18)*Lucas(89)/(1/2+sqrt(5)/2)^99 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^80/Lucas(90) 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^82/Lucas(92) 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^84/Lucas(94) 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^86/Lucas(96) 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^87/Lucas(97) 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^88/Lucas(98) 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^89/Lucas(99) 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^90/Lucas(100) 2100951886494417 a004 Fibonacci(9)*Lucas(9)/(1/2+sqrt(5)/2)^10 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^85/Lucas(95) 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^83/Lucas(93) 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^81/Lucas(91) 2100951886494417 a004 Fibonacci(18)*Lucas(90)/(1/2+sqrt(5)/2)^100 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^79/Lucas(89) 2100951886494417 a004 Fibonacci(18)*Lucas(88)/(1/2+sqrt(5)/2)^98 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^77/Lucas(87) 2100951886494417 a004 Fibonacci(18)*Lucas(86)/(1/2+sqrt(5)/2)^96 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^75/Lucas(85) 2100951886494417 a004 Fibonacci(18)*Lucas(84)/(1/2+sqrt(5)/2)^94 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^73/Lucas(83) 2100951886494417 a004 Fibonacci(18)*Lucas(82)/(1/2+sqrt(5)/2)^92 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^71/Lucas(81) 2100951886494417 a004 Fibonacci(18)*Lucas(80)/(1/2+sqrt(5)/2)^90 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^69/Lucas(79) 2100951886494417 a004 Fibonacci(18)*Lucas(78)/(1/2+sqrt(5)/2)^88 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^67/Lucas(77) 2100951886494417 a004 Fibonacci(18)*Lucas(76)/(1/2+sqrt(5)/2)^86 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^65/Lucas(75) 2100951886494417 a004 Fibonacci(18)*Lucas(74)/(1/2+sqrt(5)/2)^84 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^63/Lucas(73) 2100951886494417 a004 Fibonacci(18)*Lucas(72)/(1/2+sqrt(5)/2)^82 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^61/Lucas(71) 2100951886494417 a004 Fibonacci(18)*Lucas(70)/(1/2+sqrt(5)/2)^80 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^59/Lucas(69) 2100951886494417 a004 Fibonacci(18)*Lucas(68)/(1/2+sqrt(5)/2)^78 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^57/Lucas(67) 2100951886494417 a004 Fibonacci(18)*Lucas(66)/(1/2+sqrt(5)/2)^76 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^55/Lucas(65) 2100951886494417 a004 Fibonacci(18)*Lucas(64)/(1/2+sqrt(5)/2)^74 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^53/Lucas(63) 2100951886494417 a004 Fibonacci(18)*Lucas(62)/(1/2+sqrt(5)/2)^72 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^51/Lucas(61) 2100951886494417 a004 Fibonacci(18)*Lucas(60)/(1/2+sqrt(5)/2)^70 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^49/Lucas(59) 2100951886494417 a004 Fibonacci(18)*Lucas(58)/(1/2+sqrt(5)/2)^68 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^47/Lucas(57) 2100951886494417 a001 2584/2139295485799*505019158607^(7/8) 2100951886494417 a004 Fibonacci(18)*Lucas(56)/(1/2+sqrt(5)/2)^66 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^45/Lucas(55) 2100951886494417 a001 2584/1322157322203*192900153618^(8/9) 2100951886494417 a004 Fibonacci(18)*Lucas(54)/(1/2+sqrt(5)/2)^64 2100951886494417 a001 2584/312119004989*192900153618^(5/6) 2100951886494417 a001 4052038129148/192866774113 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^43/Lucas(53) 2100951886494417 a001 1292/96450076809*73681302247^(11/13) 2100951886494417 a001 2584/1322157322203*73681302247^(12/13) 2100951886494417 a004 Fibonacci(18)*Lucas(52)/(1/2+sqrt(5)/2)^62 2100951886494417 a001 52623188615216/2504730781961 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^41/Lucas(51) 2100951886494417 a001 2584/312119004989*28143753123^(9/10) 2100951886494417 a004 Fibonacci(18)*Lucas(50)/(1/2+sqrt(5)/2)^60 2100951886494417 a001 2584/17393796001*45537549124^(13/17) 2100951886494417 a001 20100269454616/956722026041 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^39/Lucas(49) 2100951886494417 a001 2584/17393796001*192900153618^(13/18) 2100951886494417 a001 2584/17393796001*73681302247^(3/4) 2100951886494417 a001 2584/28143753123*10749957122^(5/6) 2100951886494417 a001 2584/73681302247*10749957122^(7/8) 2100951886494417 a001 1292/96450076809*10749957122^(11/12) 2100951886494417 a001 2584/312119004989*10749957122^(15/16) 2100951886494417 a001 2584/505019158607*10749957122^(23/24) 2100951886494417 a004 Fibonacci(18)*Lucas(48)/(1/2+sqrt(5)/2)^58 2100951886494417 a001 2584/17393796001*10749957122^(13/16) 2100951886494417 a001 3838809874316/182717648081 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^37/Lucas(47) 2100951886494417 a001 34/33391061*2537720636^(7/9) 2100951886494417 a001 1292/5374978561*4106118243^(19/23) 2100951886494417 a001 2584/28143753123*4106118243^(20/23) 2100951886494417 a001 2584/73681302247*4106118243^(21/23) 2100951886494417 a001 1292/96450076809*4106118243^(22/23) 2100951886494417 a004 Fibonacci(18)*Lucas(46)/(1/2+sqrt(5)/2)^56 2100951886494417 a001 34/33391061*17393796001^(5/7) 2100951886494417 a001 34/33391061*312119004989^(7/11) 2100951886494417 a001 34/33391061*14662949395604^(5/9) 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^35/Lucas(45) 2100951886494417 a001 34/33391061*505019158607^(5/8) 2100951886494417 a001 34/33391061*28143753123^(7/10) 2100951886494417 a001 2584/4106118243*1568397607^(9/11) 2100951886494417 a001 1292/5374978561*1568397607^(19/22) 2100951886494417 a001 2584/28143753123*1568397607^(10/11) 2100951886494417 a001 2584/73681302247*1568397607^(21/22) 2100951886494417 a004 Fibonacci(18)*Lucas(44)/(1/2+sqrt(5)/2)^54 2100951886494417 a001 2584/969323029*2537720636^(11/15) 2100951886494417 a001 2584/969323029*45537549124^(11/17) 2100951886494417 a001 1120149625208/53316291173 2100951886494417 a001 2584/969323029*312119004989^(3/5) 2100951886494417 a001 2584/969323029*817138163596^(11/19) 2100951886494417 a001 2584/969323029*14662949395604^(11/21) 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^33/Lucas(43) 2100951886494417 a001 2584/969323029*192900153618^(11/18) 2100951886494417 a001 2584/969323029*10749957122^(11/16) 2100951886494417 a001 2584/969323029*1568397607^(3/4) 2100951886494417 a001 2584/1568397607*599074578^(17/21) 2100951886494417 a001 2584/4106118243*599074578^(6/7) 2100951886494417 a001 34/33391061*599074578^(5/6) 2100951886494417 a001 1292/5374978561*599074578^(19/21) 2100951886494417 a001 2584/17393796001*599074578^(13/14) 2100951886494417 a001 2584/28143753123*599074578^(20/21) 2100951886494417 a004 Fibonacci(18)*Lucas(42)/(1/2+sqrt(5)/2)^52 2100951886494417 a001 2584/969323029*599074578^(11/14) 2100951886494417 a001 213929542172/10182505537 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^31/Lucas(41) 2100951886494417 a001 2584/370248451*9062201101803^(1/2) 2100951886494417 a001 1292/299537289*228826127^(4/5) 2100951886494417 a001 2584/1568397607*228826127^(17/20) 2100951886494417 a001 34/33391061*228826127^(7/8) 2100951886494417 a001 2584/4106118243*228826127^(9/10) 2100951886494417 a001 1292/5374978561*228826127^(19/20) 2100951886494417 a004 Fibonacci(18)*Lucas(40)/(1/2+sqrt(5)/2)^50 2100951886494417 a001 163427627824/7778742049 2100951886494417 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^29/Lucas(39) 2100951886494417 a001 646/35355581*1322157322203^(1/2) 2100951886494417 a001 2584/228826127*87403803^(15/19) 2100951886494417 a001 1292/299537289*87403803^(16/19) 2100951886494417 a001 2584/1568397607*87403803^(17/19) 2100951886494417 a001 2584/4106118243*87403803^(18/19) 2100951886494417 a004 Fibonacci(18)*Lucas(38)/(1/2+sqrt(5)/2)^48 2100951886494417 a001 2584/54018521*141422324^(9/13) 2100951886494418 a001 2584/54018521*2537720636^(3/5) 2100951886494418 a001 62423799128/2971215073 2100951886494418 a001 2584/54018521*45537549124^(9/17) 2100951886494418 a001 2584/54018521*14662949395604^(3/7) 2100951886494418 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^27/Lucas(37) 2100951886494418 a001 2584/54018521*192900153618^(1/2) 2100951886494418 a001 2584/54018521*10749957122^(9/16) 2100951886494418 a001 2584/54018521*599074578^(9/14) 2100951886494418 a001 2584/87403803*33385282^(7/9) 2100951886494418 a001 2584/20633239*20633239^(5/7) 2100951886494418 a001 2584/228826127*33385282^(5/6) 2100951886494418 a004 Fibonacci(38)/Lucas(18)/(1/2+sqrt(5)/2)^12 2100951886494418 a001 1292/299537289*33385282^(8/9) 2100951886494419 a001 2584/969323029*33385282^(11/12) 2100951886494419 a001 2584/1568397607*33385282^(17/18) 2100951886494419 a004 Fibonacci(40)/Lucas(18)/(1/2+sqrt(5)/2)^14 2100951886494419 a004 Fibonacci(42)/Lucas(18)/(1/2+sqrt(5)/2)^16 2100951886494419 a004 Fibonacci(44)/Lucas(18)/(1/2+sqrt(5)/2)^18 2100951886494419 a004 Fibonacci(46)/Lucas(18)/(1/2+sqrt(5)/2)^20 2100951886494419 a004 Fibonacci(48)/Lucas(18)/(1/2+sqrt(5)/2)^22 2100951886494419 a004 Fibonacci(50)/Lucas(18)/(1/2+sqrt(5)/2)^24 2100951886494419 a004 Fibonacci(52)/Lucas(18)/(1/2+sqrt(5)/2)^26 2100951886494419 a004 Fibonacci(54)/Lucas(18)/(1/2+sqrt(5)/2)^28 2100951886494419 a004 Fibonacci(56)/Lucas(18)/(1/2+sqrt(5)/2)^30 2100951886494419 a004 Fibonacci(58)/Lucas(18)/(1/2+sqrt(5)/2)^32 2100951886494419 a004 Fibonacci(60)/Lucas(18)/(1/2+sqrt(5)/2)^34 2100951886494419 a004 Fibonacci(62)/Lucas(18)/(1/2+sqrt(5)/2)^36 2100951886494419 a004 Fibonacci(64)/Lucas(18)/(1/2+sqrt(5)/2)^38 2100951886494419 a004 Fibonacci(66)/Lucas(18)/(1/2+sqrt(5)/2)^40 2100951886494419 a004 Fibonacci(68)/Lucas(18)/(1/2+sqrt(5)/2)^42 2100951886494419 a004 Fibonacci(70)/Lucas(18)/(1/2+sqrt(5)/2)^44 2100951886494419 a004 Fibonacci(18)*Lucas(36)/(1/2+sqrt(5)/2)^46 2100951886494419 a004 Fibonacci(74)/Lucas(18)/(1/2+sqrt(5)/2)^48 2100951886494419 a004 Fibonacci(76)/Lucas(18)/(1/2+sqrt(5)/2)^50 2100951886494419 a004 Fibonacci(78)/Lucas(18)/(1/2+sqrt(5)/2)^52 2100951886494419 a004 Fibonacci(80)/Lucas(18)/(1/2+sqrt(5)/2)^54 2100951886494419 a004 Fibonacci(82)/Lucas(18)/(1/2+sqrt(5)/2)^56 2100951886494419 a004 Fibonacci(84)/Lucas(18)/(1/2+sqrt(5)/2)^58 2100951886494419 a004 Fibonacci(86)/Lucas(18)/(1/2+sqrt(5)/2)^60 2100951886494419 a004 Fibonacci(88)/Lucas(18)/(1/2+sqrt(5)/2)^62 2100951886494419 a004 Fibonacci(90)/Lucas(18)/(1/2+sqrt(5)/2)^64 2100951886494419 a004 Fibonacci(92)/Lucas(18)/(1/2+sqrt(5)/2)^66 2100951886494419 a004 Fibonacci(94)/Lucas(18)/(1/2+sqrt(5)/2)^68 2100951886494419 a004 Fibonacci(96)/Lucas(18)/(1/2+sqrt(5)/2)^70 2100951886494419 a004 Fibonacci(100)/Lucas(18)/(1/2+sqrt(5)/2)^74 2100951886494419 a004 Fibonacci(98)/Lucas(18)/(1/2+sqrt(5)/2)^72 2100951886494419 a004 Fibonacci(97)/Lucas(18)/(1/2+sqrt(5)/2)^71 2100951886494419 a004 Fibonacci(99)/Lucas(18)/(1/2+sqrt(5)/2)^73 2100951886494419 a004 Fibonacci(95)/Lucas(18)/(1/2+sqrt(5)/2)^69 2100951886494419 a004 Fibonacci(93)/Lucas(18)/(1/2+sqrt(5)/2)^67 2100951886494419 a004 Fibonacci(91)/Lucas(18)/(1/2+sqrt(5)/2)^65 2100951886494419 a004 Fibonacci(89)/Lucas(18)/(1/2+sqrt(5)/2)^63 2100951886494419 a004 Fibonacci(87)/Lucas(18)/(1/2+sqrt(5)/2)^61 2100951886494419 a004 Fibonacci(85)/Lucas(18)/(1/2+sqrt(5)/2)^59 2100951886494419 a004 Fibonacci(83)/Lucas(18)/(1/2+sqrt(5)/2)^57 2100951886494419 a004 Fibonacci(81)/Lucas(18)/(1/2+sqrt(5)/2)^55 2100951886494419 a004 Fibonacci(79)/Lucas(18)/(1/2+sqrt(5)/2)^53 2100951886494419 a004 Fibonacci(77)/Lucas(18)/(1/2+sqrt(5)/2)^51 2100951886494419 a004 Fibonacci(75)/Lucas(18)/(1/2+sqrt(5)/2)^49 2100951886494419 a004 Fibonacci(73)/Lucas(18)/(1/2+sqrt(5)/2)^47 2100951886494419 a004 Fibonacci(71)/Lucas(18)/(1/2+sqrt(5)/2)^45 2100951886494419 a004 Fibonacci(69)/Lucas(18)/(1/2+sqrt(5)/2)^43 2100951886494419 a004 Fibonacci(67)/Lucas(18)/(1/2+sqrt(5)/2)^41 2100951886494419 a004 Fibonacci(65)/Lucas(18)/(1/2+sqrt(5)/2)^39 2100951886494419 a004 Fibonacci(63)/Lucas(18)/(1/2+sqrt(5)/2)^37 2100951886494419 a004 Fibonacci(61)/Lucas(18)/(1/2+sqrt(5)/2)^35 2100951886494419 a004 Fibonacci(59)/Lucas(18)/(1/2+sqrt(5)/2)^33 2100951886494419 a004 Fibonacci(57)/Lucas(18)/(1/2+sqrt(5)/2)^31 2100951886494419 a004 Fibonacci(55)/Lucas(18)/(1/2+sqrt(5)/2)^29 2100951886494419 a004 Fibonacci(53)/Lucas(18)/(1/2+sqrt(5)/2)^27 2100951886494419 a004 Fibonacci(51)/Lucas(18)/(1/2+sqrt(5)/2)^25 2100951886494419 a004 Fibonacci(49)/Lucas(18)/(1/2+sqrt(5)/2)^23 2100951886494419 a004 Fibonacci(47)/Lucas(18)/(1/2+sqrt(5)/2)^21 2100951886494419 a004 Fibonacci(45)/Lucas(18)/(1/2+sqrt(5)/2)^19 2100951886494419 a004 Fibonacci(43)/Lucas(18)/(1/2+sqrt(5)/2)^17 2100951886494419 a004 Fibonacci(41)/Lucas(18)/(1/2+sqrt(5)/2)^15 2100951886494419 a004 Fibonacci(39)/Lucas(18)/(1/2+sqrt(5)/2)^13 2100951886494419 a001 2584/54018521*33385282^(3/4) 2100951886494419 a004 Fibonacci(37)/Lucas(18)/(1/2+sqrt(5)/2)^11 2100951886494422 a001 140257468/6675901 2100951886494422 a001 2584/20633239*2537720636^(5/9) 2100951886494422 a001 2584/20633239*312119004989^(5/11) 2100951886494422 a001 2584/20633239*(1/2+1/2*5^(1/2))^25 2100951886494422 a001 2584/20633239*3461452808002^(5/12) 2100951886494422 a001 2584/20633239*28143753123^(1/2) 2100951886494422 a001 2584/20633239*228826127^(5/8) 2100951886494424 a004 Fibonacci(35)/Lucas(18)/(1/2+sqrt(5)/2)^9 2100951886494425 a001 1292/16692641*12752043^(13/17) 2100951886494427 a001 2584/87403803*12752043^(14/17) 2100951886494428 a001 2584/228826127*12752043^(15/17) 2100951886494429 a001 1292/299537289*12752043^(16/17) 2100951886494430 a004 Fibonacci(18)*Lucas(34)/(1/2+sqrt(5)/2)^44 2100951886494451 a001 9107509552/433494437 2100951886494451 a001 646/1970299*(1/2+1/2*5^(1/2))^23 2100951886494451 a001 646/1970299*4106118243^(1/2) 2100951886494453 a004 Fibonacci(33)/Lucas(18)/(1/2+sqrt(5)/2)^7 2100951886494470 a001 2584/12752043*4870847^(3/4) 2100951886494487 a001 1292/16692641*4870847^(13/16) 2100951886494494 a001 2584/87403803*4870847^(7/8) 2100951886494500 a001 2584/228826127*4870847^(15/16) 2100951886494505 a004 Fibonacci(18)*Lucas(32)/(1/2+sqrt(5)/2)^42 2100951886494627 a001 2584/3010349*7881196^(7/11) 2100951886494646 a001 2584/3010349*20633239^(3/5) 2100951886494649 a001 2584/3010349*141422324^(7/13) 2100951886494649 a001 3478759096/165580141 2100951886494649 a001 2584/3010349*2537720636^(7/15) 2100951886494649 a001 2584/3010349*17393796001^(3/7) 2100951886494649 a001 2584/3010349*45537549124^(7/17) 2100951886494649 a001 2584/3010349*14662949395604^(1/3) 2100951886494649 a001 2584/3010349*(1/2+1/2*5^(1/2))^21 2100951886494649 a001 2584/3010349*192900153618^(7/18) 2100951886494649 a001 2584/3010349*10749957122^(7/16) 2100951886494649 a001 2584/3010349*599074578^(1/2) 2100951886494650 a001 2584/3010349*33385282^(7/12) 2100951886494651 a004 Fibonacci(31)/Lucas(18)/(1/2+sqrt(5)/2)^5 2100951886494773 a001 2584/4870847*1860498^(11/15) 2100951886494889 a001 2584/12752043*1860498^(4/5) 2100951886494928 a001 2584/20633239*1860498^(5/6) 2100951886494941 a001 1292/16692641*1860498^(13/15) 2100951886494964 a001 2584/54018521*1860498^(9/10) 2100951886494983 a001 2584/87403803*1860498^(14/15) 2100951886495024 a004 Fibonacci(18)*Lucas(30)/(1/2+sqrt(5)/2)^40 2100951886495074 a001 2584/3010349*1860498^(7/10) 2100951886496006 a001 664383868/31622993 2100951886496006 a001 2584/1149851*817138163596^(1/3) 2100951886496006 a001 2584/1149851*(1/2+1/2*5^(1/2))^19 2100951886496006 a001 2584/1149851*87403803^(1/2) 2100951886496008 a004 Fibonacci(29)/Lucas(18)/(1/2+sqrt(5)/2)^3 2100951886496781 a001 1292/930249*710647^(5/7) 2100951886497597 a001 2584/4870847*710647^(11/14) 2100951886497769 a001 2584/3010349*710647^(3/4) 2100951886497970 a001 2584/12752043*710647^(6/7) 2100951886498278 a001 1292/16692641*710647^(13/14) 2100951886498577 a004 Fibonacci(18)*Lucas(28)/(1/2+sqrt(5)/2)^38 2100951886505083 a001 28657/5778*24476^(1/7) 2100951886505307 a001 507544112/24157817 2100951886505308 a001 34/5779*45537549124^(1/3) 2100951886505308 a001 34/5779*(1/2+1/2*5^(1/2))^17 2100951886505310 a004 Fibonacci(27)/Lucas(18)/(1/2+sqrt(5)/2) 2100951886505315 a001 34/5779*12752043^(1/2) 2100951886509997 a001 2584/710647*271443^(9/13) 2100951886515744 a001 1292/930249*271443^(10/13) 2100951886518456 a001 2584/4870847*271443^(11/13) 2100951886520725 a001 2584/12752043*271443^(12/13) 2100951886522931 a004 Fibonacci(18)*Lucas(26)/(1/2+sqrt(5)/2)^36 2100951886524277 a001 2584/167761*167761^(3/5) 2100951886546823 a001 75025/5778*64079^(1/23) 2100951886563017 a001 2584/167761*439204^(5/9) 2100951886569052 a001 2584/167761*7881196^(5/11) 2100951886569063 a001 38772920/1845493 2100951886569065 a001 2584/167761*20633239^(3/7) 2100951886569068 a001 2584/167761*141422324^(5/13) 2100951886569068 a001 2584/167761*2537720636^(1/3) 2100951886569068 a001 2584/167761*45537549124^(5/17) 2100951886569068 a001 2584/167761*312119004989^(3/11) 2100951886569068 a001 2584/167761*14662949395604^(5/21) 2100951886569068 a001 2584/167761*(1/2+1/2*5^(1/2))^15 2100951886569068 a001 2584/167761*192900153618^(5/18) 2100951886569068 a001 2584/167761*28143753123^(3/10) 2100951886569068 a001 2584/167761*10749957122^(5/16) 2100951886569068 a001 2584/167761*599074578^(5/14) 2100951886569068 a001 2584/167761*228826127^(3/8) 2100951886569068 a001 2584/167761*33385282^(5/12) 2100951886569069 a001 75025/11556+75025/11556*5^(1/2) 2100951886569371 a001 2584/167761*1860498^(1/2) 2100951886577213 a001 75025/5778*103682^(1/24) 2100951886596195 a001 2584/271443*103682^(2/3) 2100951886629958 a001 75025/5778*39603^(1/22) 2100951886636835 a001 2584/710647*103682^(3/4) 2100951886643744 a001 34/5779*103682^(17/24) 2100951886650728 a001 2584/1149851*103682^(19/24) 2100951886656675 a001 1292/930249*103682^(5/6) 2100951886665657 a001 2584/3010349*103682^(7/8) 2100951886673480 a001 2584/4870847*103682^(11/12) 2100951886681746 a001 646/1970299*103682^(23/24) 2100951886689855 a004 Fibonacci(18)*Lucas(24)/(1/2+sqrt(5)/2)^34 2100951886691216 a001 2584/167761*103682^(5/8) 2100951886716879 a001 2584/64079*64079^(13/23) 2100951886939344 a001 28657/5778*64079^(3/23) 2100951886991097 a001 17711/3571*1364^(1/5) 2100951886991152 a001 17711/5778*15127^(1/5) 2100951887004872 a001 28657/5778*439204^(1/9) 2100951887006047 a001 37024844/1762289 2100951887006079 a001 28657/5778*7881196^(1/11) 2100951887006081 a001 2584/64079*141422324^(1/3) 2100951887006081 a001 2584/64079*(1/2+1/2*5^(1/2))^13 2100951887006081 a001 2584/64079*73681302247^(1/4) 2100951887006082 a001 28657/5778*141422324^(1/13) 2100951887006082 a001 28657/5778*2537720636^(1/15) 2100951887006082 a001 28657/5778*45537549124^(1/17) 2100951887006082 a001 28657/5778*14662949395604^(1/21) 2100951887006082 a001 28657/5778*(1/2+1/2*5^(1/2))^3 2100951887006082 a001 28657/5778*192900153618^(1/18) 2100951887006082 a001 28657/5778*10749957122^(1/16) 2100951887006082 a001 28657/5778*599074578^(1/14) 2100951887006083 a001 28657/5778*33385282^(1/12) 2100951887006143 a001 28657/5778*1860498^(1/10) 2100951887020338 a001 2584/64079*271443^(1/2) 2100951887028141 a001 75025/5778*15127^(1/20) 2100951887030512 a001 28657/5778*103682^(1/8) 2100951887111943 a001 2584/64079*103682^(13/24) 2100951887151422 a001 1292/51841*39603^(7/11) 2100951887188749 a001 28657/5778*39603^(3/22) 2100951887217124 a001 2576/321*15127^(1/10) 2100951887440123 a001 2584/271443*39603^(8/11) 2100951887482399 a001 2584/167761*39603^(15/22) 2100951887540417 a001 34/5779*39603^(17/22) 2100951887586255 a001 2584/710647*39603^(9/11) 2100951887652893 a001 2584/1149851*39603^(19/22) 2100951887711585 a001 1292/930249*39603^(10/11) 2100951887773313 a001 2584/3010349*39603^(21/22) 2100951887797635 a001 2584/64079*39603^(13/22) 2100951887833970 a004 Fibonacci(18)*Lucas(22)/(1/2+sqrt(5)/2)^32 2100951888164415 a001 646/6119*24476^(11/21) 2100951888383297 a001 28657/5778*15127^(3/20) 2100951889166415 a001 5473/2889*24476^(5/21) 2100951889741386 a001 15456/13201*3571^(6/17) 2100951889756704 a001 646/6119*64079^(11/23) 2100951889890183 a001 5473/2889*64079^(5/23) 2100951889986484 a001 5473/2889*167761^(1/5) 2100951890001181 a001 28284464/1346269 2100951890001401 a001 646/6119*7881196^(1/3) 2100951890001412 a001 646/6119*312119004989^(1/5) 2100951890001412 a001 646/6119*(1/2+1/2*5^(1/2))^11 2100951890001412 a004 Fibonacci(18)*(1/2+sqrt(5)/2)^11/Lucas(21) 2100951890001412 a001 646/6119*1568397607^(1/4) 2100951890001414 a001 5473/2889*20633239^(1/7) 2100951890001414 a001 5473/2889*2537720636^(1/9) 2100951890001414 a001 5473/2889*312119004989^(1/11) 2100951890001414 a001 5473/2889*(1/2+1/2*5^(1/2))^5 2100951890001414 a001 5473/2889*28143753123^(1/10) 2100951890001414 a001 5473/2889*228826127^(1/8) 2100951890001515 a001 5473/2889*1860498^(1/6) 2100951890042131 a001 5473/2889*103682^(5/24) 2100951890065207 a001 75025/5778*5778^(1/18) 2100951890066154 r005 Re(z^2+c),c=-3/106+36/59*I,n=41 2100951890090988 a001 646/6119*103682^(11/24) 2100951890305858 a001 5473/2889*39603^(5/22) 2100951890663724 a001 2584/39603*15127^(3/5) 2100951890671189 a001 646/6119*39603^(1/2) 2100951891052425 a001 121393/103682*3571^(6/17) 2100951891243703 a001 105937/90481*3571^(6/17) 2100951891271610 a001 832040/710647*3571^(6/17) 2100951891275682 a001 726103/620166*3571^(6/17) 2100951891276276 a001 5702887/4870847*3571^(6/17) 2100951891276362 a001 4976784/4250681*3571^(6/17) 2100951891276375 a001 39088169/33385282*3571^(6/17) 2100951891276377 a001 34111385/29134601*3571^(6/17) 2100951891276377 a001 267914296/228826127*3571^(6/17) 2100951891276377 a001 233802911/199691526*3571^(6/17) 2100951891276377 a001 1836311903/1568397607*3571^(6/17) 2100951891276377 a001 1602508992/1368706081*3571^(6/17) 2100951891276377 a001 12586269025/10749957122*3571^(6/17) 2100951891276377 a001 10983760033/9381251041*3571^(6/17) 2100951891276377 a001 86267571272/73681302247*3571^(6/17) 2100951891276377 a001 75283811239/64300051206*3571^(6/17) 2100951891276377 a001 2504730781961/2139295485799*3571^(6/17) 2100951891276377 a001 365435296162/312119004989*3571^(6/17) 2100951891276377 a001 139583862445/119218851371*3571^(6/17) 2100951891276377 a001 53316291173/45537549124*3571^(6/17) 2100951891276377 a001 20365011074/17393796001*3571^(6/17) 2100951891276377 a001 7778742049/6643838879*3571^(6/17) 2100951891276377 a001 2971215073/2537720636*3571^(6/17) 2100951891276377 a001 1134903170/969323029*3571^(6/17) 2100951891276377 a001 433494437/370248451*3571^(6/17) 2100951891276377 a001 165580141/141422324*3571^(6/17) 2100951891276378 a001 63245986/54018521*3571^(6/17) 2100951891276383 a001 24157817/20633239*3571^(6/17) 2100951891276416 a001 9227465/7881196*3571^(6/17) 2100951891276643 a001 3524578/3010349*3571^(6/17) 2100951891278198 a001 1346269/1149851*3571^(6/17) 2100951891288858 a001 514229/439204*3571^(6/17) 2100951891361919 a001 196418/167761*3571^(6/17) 2100951891412052 a001 5473/682*521^(2/13) 2100951891862692 a001 75025/64079*3571^(6/17) 2100951892296773 a001 5473/2889*15127^(1/4) 2100951892298028 a001 28657/15127*3571^(5/17) 2100951892725982 a001 1292/51841*15127^(7/10) 2100951892974012 a001 2584/64079*15127^(13/20) 2100951893291256 a001 2576/321*5778^(1/9) 2100951893455143 a001 2584/167761*15127^(3/4) 2100951893811050 a001 2584/271443*15127^(4/5) 2100951894168771 a001 329/13201*2207^(7/8) 2100951894309527 a001 34/5779*15127^(17/20) 2100951894753547 a001 2584/710647*15127^(9/10) 2100951895051201 a001 646/6119*15127^(11/20) 2100951895218368 a001 2584/1149851*15127^(19/20) 2100951895295037 a001 28657/24476*3571^(6/17) 2100951895675850 a004 Fibonacci(18)*Lucas(20)/(1/2+sqrt(5)/2)^30 2100951896440829 a001 6765/9349*3571^(7/17) 2100951897494496 a001 28657/5778*5778^(1/6) 2100951898150892 a001 121393/9349*1364^(1/15) 2100951898289812 a001 2255/1926*5778^(1/3) 2100951899139417 a001 17711/5778*5778^(2/9) 2100951899145630 a001 2584/9349*9349^(9/19) 2100951899308975 a007 Real Root Of -580*x^4-956*x^3+428*x^2+93*x+741 2100951899702895 a001 75025/39603*3571^(5/17) 2100951900783251 a001 98209/51841*3571^(5/17) 2100951900940873 a001 514229/271443*3571^(5/17) 2100951900963869 a001 1346269/710647*3571^(5/17) 2100951900967225 a001 1762289/930249*3571^(5/17) 2100951900967714 a001 9227465/4870847*3571^(5/17) 2100951900967785 a001 24157817/12752043*3571^(5/17) 2100951900967796 a001 31622993/16692641*3571^(5/17) 2100951900967797 a001 165580141/87403803*3571^(5/17) 2100951900967798 a001 433494437/228826127*3571^(5/17) 2100951900967798 a001 567451585/299537289*3571^(5/17) 2100951900967798 a001 2971215073/1568397607*3571^(5/17) 2100951900967798 a001 7778742049/4106118243*3571^(5/17) 2100951900967798 a001 10182505537/5374978561*3571^(5/17) 2100951900967798 a001 53316291173/28143753123*3571^(5/17) 2100951900967798 a001 139583862445/73681302247*3571^(5/17) 2100951900967798 a001 182717648081/96450076809*3571^(5/17) 2100951900967798 a001 956722026041/505019158607*3571^(5/17) 2100951900967798 a001 10610209857723/5600748293801*3571^(5/17) 2100951900967798 a001 591286729879/312119004989*3571^(5/17) 2100951900967798 a001 225851433717/119218851371*3571^(5/17) 2100951900967798 a001 21566892818/11384387281*3571^(5/17) 2100951900967798 a001 32951280099/17393796001*3571^(5/17) 2100951900967798 a001 12586269025/6643838879*3571^(5/17) 2100951900967798 a001 1201881744/634430159*3571^(5/17) 2100951900967798 a001 1836311903/969323029*3571^(5/17) 2100951900967798 a001 701408733/370248451*3571^(5/17) 2100951900967798 a001 66978574/35355581*3571^(5/17) 2100951900967798 a001 102334155/54018521*3571^(5/17) 2100951900967802 a001 39088169/20633239*3571^(5/17) 2100951900967830 a001 3732588/1970299*3571^(5/17) 2100951900968017 a001 5702887/3010349*3571^(5/17) 2100951900969298 a001 2178309/1149851*3571^(5/17) 2100951900978082 a001 208010/109801*3571^(5/17) 2100951901038288 a001 317811/167761*3571^(5/17) 2100951901282346 a001 6624/2161*3571^(4/17) 2100951901450947 a001 121393/64079*3571^(5/17) 2100951901675874 a001 4181/5778*9349^(7/19) 2100951904279355 a001 11592/6119*3571^(5/17) 2100951907482104 a001 5473/2889*5778^(5/18) 2100951909028724 a001 2584/9349*24476^(3/7) 2100951909291151 a001 121393/39603*3571^(4/17) 2100951909362725 a001 4181/5778*24476^(1/3) 2100951910331506 a001 2584/9349*64079^(9/23) 2100951910376000 a001 4181/5778*64079^(7/23) 2100951910459620 a001 317811/103682*3571^(4/17) 2100951910528092 a001 2584/9349*439204^(1/3) 2100951910530133 a001 10803704/514229 2100951910531713 a001 2584/9349*7881196^(3/11) 2100951910531722 a001 2584/9349*141422324^(3/13) 2100951910531722 a001 2584/9349*2537720636^(1/5) 2100951910531722 a001 2584/9349*45537549124^(3/17) 2100951910531722 a001 2584/9349*817138163596^(3/19) 2100951910531722 a001 2584/9349*14662949395604^(1/7) 2100951910531722 a001 2584/9349*(1/2+1/2*5^(1/2))^9 2100951910531722 a001 2584/9349*10749957122^(3/16) 2100951910531722 a001 2584/9349*599074578^(3/14) 2100951910531723 a001 2584/9349*33385282^(1/4) 2100951910531723 a001 4181/5778*20633239^(1/5) 2100951910531724 a001 4181/5778*17393796001^(1/7) 2100951910531724 a001 4181/5778*14662949395604^(1/9) 2100951910531724 a001 4181/5778*(1/2+1/2*5^(1/2))^7 2100951910531724 a001 4181/5778*599074578^(1/6) 2100951910531904 a001 2584/9349*1860498^(3/10) 2100951910532764 a001 4181/5778*710647^(1/4) 2100951910588727 a001 4181/5778*103682^(7/24) 2100951910605012 a001 2584/9349*103682^(3/8) 2100951910630097 a001 832040/271443*3571^(4/17) 2100951910654969 a001 311187/101521*3571^(4/17) 2100951910658598 a001 5702887/1860498*3571^(4/17) 2100951910659128 a001 14930352/4870847*3571^(4/17) 2100951910659205 a001 39088169/12752043*3571^(4/17) 2100951910659216 a001 14619165/4769326*3571^(4/17) 2100951910659218 a001 267914296/87403803*3571^(4/17) 2100951910659218 a001 701408733/228826127*3571^(4/17) 2100951910659218 a001 1836311903/599074578*3571^(4/17) 2100951910659218 a001 686789568/224056801*3571^(4/17) 2100951910659218 a001 12586269025/4106118243*3571^(4/17) 2100951910659218 a001 32951280099/10749957122*3571^(4/17) 2100951910659218 a001 86267571272/28143753123*3571^(4/17) 2100951910659218 a001 32264490531/10525900321*3571^(4/17) 2100951910659218 a001 591286729879/192900153618*3571^(4/17) 2100951910659218 a001 1515744265389/494493258286*3571^(4/17) 2100951910659218 a001 2504730781961/817138163596*3571^(4/17) 2100951910659218 a001 956722026041/312119004989*3571^(4/17) 2100951910659218 a001 365435296162/119218851371*3571^(4/17) 2100951910659218 a001 139583862445/45537549124*3571^(4/17) 2100951910659218 a001 53316291173/17393796001*3571^(4/17) 2100951910659218 a001 20365011074/6643838879*3571^(4/17) 2100951910659218 a001 7778742049/2537720636*3571^(4/17) 2100951910659218 a001 2971215073/969323029*3571^(4/17) 2100951910659218 a001 1134903170/370248451*3571^(4/17) 2100951910659218 a001 433494437/141422324*3571^(4/17) 2100951910659219 a001 165580141/54018521*3571^(4/17) 2100951910659223 a001 63245986/20633239*3571^(4/17) 2100951910659253 a001 24157817/7881196*3571^(4/17) 2100951910659455 a001 9227465/3010349*3571^(4/17) 2100951910660841 a001 3524578/1149851*3571^(4/17) 2100951910670341 a001 1346269/439204*3571^(4/17) 2100951910735458 a001 514229/167761*3571^(4/17) 2100951910957945 a001 4181/5778*39603^(7/22) 2100951911079721 a001 2584/9349*39603^(9/22) 2100951911181773 a001 196418/64079*3571^(4/17) 2100951911243856 a001 75025/15127*3571^(3/17) 2100951912080297 a001 843/1597*4181^(28/39) 2100951912274362 a001 2584/15127*5778^(5/9) 2100951913527313 a001 75025/5778*2207^(1/16) 2100951913745226 a001 4181/5778*15127^(7/20) 2100951914240865 a001 75025/24476*3571^(4/17) 2100951914663367 a001 2584/9349*15127^(9/20) 2100951916206161 a004 Fibonacci(20)*Lucas(19)/(1/2+sqrt(5)/2)^31 2100951917470675 a001 55/15126*9349^(18/19) 2100951918737993 a001 6765/1149851*9349^(17/19) 2100951918820678 a001 10946/9349*3571^(6/17) 2100951919021977 a001 196418/39603*3571^(3/17) 2100951919554849 r008 a(0)=2,K{-n^6,-1+2*n^3+2*n^2-9*n} 2100951919968147 a001 4181/9349*3571^(8/17) 2100951919997365 a001 6765/710647*9349^(16/19) 2100951920156790 a001 514229/103682*3571^(3/17) 2100951920322357 a001 1346269/271443*3571^(3/17) 2100951920346512 a001 3524578/710647*3571^(3/17) 2100951920350037 a001 9227465/1860498*3571^(3/17) 2100951920350551 a001 24157817/4870847*3571^(3/17) 2100951920350626 a001 63245986/12752043*3571^(3/17) 2100951920350637 a001 165580141/33385282*3571^(3/17) 2100951920350638 a001 433494437/87403803*3571^(3/17) 2100951920350639 a001 1134903170/228826127*3571^(3/17) 2100951920350639 a001 2971215073/599074578*3571^(3/17) 2100951920350639 a001 7778742049/1568397607*3571^(3/17) 2100951920350639 a001 20365011074/4106118243*3571^(3/17) 2100951920350639 a001 53316291173/10749957122*3571^(3/17) 2100951920350639 a001 139583862445/28143753123*3571^(3/17) 2100951920350639 a001 365435296162/73681302247*3571^(3/17) 2100951920350639 a001 956722026041/192900153618*3571^(3/17) 2100951920350639 a001 2504730781961/505019158607*3571^(3/17) 2100951920350639 a001 10610209857723/2139295485799*3571^(3/17) 2100951920350639 a001 140728068720/28374454999*3571^(3/17) 2100951920350639 a001 591286729879/119218851371*3571^(3/17) 2100951920350639 a001 225851433717/45537549124*3571^(3/17) 2100951920350639 a001 86267571272/17393796001*3571^(3/17) 2100951920350639 a001 32951280099/6643838879*3571^(3/17) 2100951920350639 a001 1144206275/230701876*3571^(3/17) 2100951920350639 a001 4807526976/969323029*3571^(3/17) 2100951920350639 a001 1836311903/370248451*3571^(3/17) 2100951920350639 a001 701408733/141422324*3571^(3/17) 2100951920350639 a001 267914296/54018521*3571^(3/17) 2100951920350644 a001 9303105/1875749*3571^(3/17) 2100951920350672 a001 39088169/7881196*3571^(3/17) 2100951920350869 a001 14930352/3010349*3571^(3/17) 2100951920352215 a001 5702887/1149851*3571^(3/17) 2100951920361442 a001 2178309/439204*3571^(3/17) 2100951920424683 a001 75640/15251*3571^(3/17) 2100951920832112 a001 121393/15127*3571^(2/17) 2100951920858142 a001 317811/64079*3571^(3/17) 2100951920941062 a001 6765/15127*9349^(8/19) 2100951920956123 p004 log(31249/3823) 2100951921277538 a001 6765/439204*9349^(15/19) 2100951922503254 a001 2255/90481*9349^(14/19) 2100951922978232 a001 987/64079*2207^(15/16) 2100951923077636 s002 sum(A085794[n]/((10^n-1)/n),n=1..infinity) 2100951923665550 a001 17711/9349*3571^(5/17) 2100951923829120 a001 121393/24476*3571^(3/17) 2100951923871540 a001 615/15251*9349^(13/19) 2100951924048042 a004 Fibonacci(22)*Lucas(19)/(1/2+sqrt(5)/2)^33 2100951924837605 p004 log(25183/20411) 2100951924866572 a001 6765/103682*9349^(12/19) 2100951925192157 a004 Fibonacci(24)*Lucas(19)/(1/2+sqrt(5)/2)^35 2100951925313074 a001 17711/4870847*9349^(18/19) 2100951925359081 a004 Fibonacci(26)*Lucas(19)/(1/2+sqrt(5)/2)^37 2100951925383435 a004 Fibonacci(28)*Lucas(19)/(1/2+sqrt(5)/2)^39 2100951925386988 a004 Fibonacci(30)*Lucas(19)/(1/2+sqrt(5)/2)^41 2100951925387506 a004 Fibonacci(32)*Lucas(19)/(1/2+sqrt(5)/2)^43 2100951925387582 a004 Fibonacci(34)*Lucas(19)/(1/2+sqrt(5)/2)^45 2100951925387593 a004 Fibonacci(36)*Lucas(19)/(1/2+sqrt(5)/2)^47 2100951925387594 a004 Fibonacci(38)*Lucas(19)/(1/2+sqrt(5)/2)^49 2100951925387595 a004 Fibonacci(40)*Lucas(19)/(1/2+sqrt(5)/2)^51 2100951925387595 a004 Fibonacci(42)*Lucas(19)/(1/2+sqrt(5)/2)^53 2100951925387595 a004 Fibonacci(44)*Lucas(19)/(1/2+sqrt(5)/2)^55 2100951925387595 a004 Fibonacci(46)*Lucas(19)/(1/2+sqrt(5)/2)^57 2100951925387595 a004 Fibonacci(48)*Lucas(19)/(1/2+sqrt(5)/2)^59 2100951925387595 a004 Fibonacci(50)*Lucas(19)/(1/2+sqrt(5)/2)^61 2100951925387595 a004 Fibonacci(52)*Lucas(19)/(1/2+sqrt(5)/2)^63 2100951925387595 a004 Fibonacci(54)*Lucas(19)/(1/2+sqrt(5)/2)^65 2100951925387595 a004 Fibonacci(56)*Lucas(19)/(1/2+sqrt(5)/2)^67 2100951925387595 a004 Fibonacci(58)*Lucas(19)/(1/2+sqrt(5)/2)^69 2100951925387595 a004 Fibonacci(60)*Lucas(19)/(1/2+sqrt(5)/2)^71 2100951925387595 a004 Fibonacci(62)*Lucas(19)/(1/2+sqrt(5)/2)^73 2100951925387595 a004 Fibonacci(64)*Lucas(19)/(1/2+sqrt(5)/2)^75 2100951925387595 a004 Fibonacci(66)*Lucas(19)/(1/2+sqrt(5)/2)^77 2100951925387595 a004 Fibonacci(68)*Lucas(19)/(1/2+sqrt(5)/2)^79 2100951925387595 a004 Fibonacci(70)*Lucas(19)/(1/2+sqrt(5)/2)^81 2100951925387595 a004 Fibonacci(72)*Lucas(19)/(1/2+sqrt(5)/2)^83 2100951925387595 a004 Fibonacci(74)*Lucas(19)/(1/2+sqrt(5)/2)^85 2100951925387595 a004 Fibonacci(76)*Lucas(19)/(1/2+sqrt(5)/2)^87 2100951925387595 a004 Fibonacci(78)*Lucas(19)/(1/2+sqrt(5)/2)^89 2100951925387595 a004 Fibonacci(80)*Lucas(19)/(1/2+sqrt(5)/2)^91 2100951925387595 a004 Fibonacci(82)*Lucas(19)/(1/2+sqrt(5)/2)^93 2100951925387595 a004 Fibonacci(84)*Lucas(19)/(1/2+sqrt(5)/2)^95 2100951925387595 a004 Fibonacci(86)*Lucas(19)/(1/2+sqrt(5)/2)^97 2100951925387595 a004 Fibonacci(88)*Lucas(19)/(1/2+sqrt(5)/2)^99 2100951925387595 a004 Fibonacci(89)*Lucas(19)/(1/2+sqrt(5)/2)^100 2100951925387595 a004 Fibonacci(87)*Lucas(19)/(1/2+sqrt(5)/2)^98 2100951925387595 a004 Fibonacci(85)*Lucas(19)/(1/2+sqrt(5)/2)^96 2100951925387595 a004 Fibonacci(83)*Lucas(19)/(1/2+sqrt(5)/2)^94 2100951925387595 a004 Fibonacci(81)*Lucas(19)/(1/2+sqrt(5)/2)^92 2100951925387595 a004 Fibonacci(79)*Lucas(19)/(1/2+sqrt(5)/2)^90 2100951925387595 a004 Fibonacci(77)*Lucas(19)/(1/2+sqrt(5)/2)^88 2100951925387595 a004 Fibonacci(75)*Lucas(19)/(1/2+sqrt(5)/2)^86 2100951925387595 a004 Fibonacci(73)*Lucas(19)/(1/2+sqrt(5)/2)^84 2100951925387595 a004 Fibonacci(71)*Lucas(19)/(1/2+sqrt(5)/2)^82 2100951925387595 a004 Fibonacci(69)*Lucas(19)/(1/2+sqrt(5)/2)^80 2100951925387595 a004 Fibonacci(67)*Lucas(19)/(1/2+sqrt(5)/2)^78 2100951925387595 a004 Fibonacci(65)*Lucas(19)/(1/2+sqrt(5)/2)^76 2100951925387595 a004 Fibonacci(63)*Lucas(19)/(1/2+sqrt(5)/2)^74 2100951925387595 a004 Fibonacci(61)*Lucas(19)/(1/2+sqrt(5)/2)^72 2100951925387595 a004 Fibonacci(59)*Lucas(19)/(1/2+sqrt(5)/2)^70 2100951925387595 a004 Fibonacci(57)*Lucas(19)/(1/2+sqrt(5)/2)^68 2100951925387595 a004 Fibonacci(55)*Lucas(19)/(1/2+sqrt(5)/2)^66 2100951925387595 a004 Fibonacci(53)*Lucas(19)/(1/2+sqrt(5)/2)^64 2100951925387595 a004 Fibonacci(51)*Lucas(19)/(1/2+sqrt(5)/2)^62 2100951925387595 a004 Fibonacci(49)*Lucas(19)/(1/2+sqrt(5)/2)^60 2100951925387595 a004 Fibonacci(47)*Lucas(19)/(1/2+sqrt(5)/2)^58 2100951925387595 a004 Fibonacci(45)*Lucas(19)/(1/2+sqrt(5)/2)^56 2100951925387595 a004 Fibonacci(43)*Lucas(19)/(1/2+sqrt(5)/2)^54 2100951925387595 a004 Fibonacci(41)*Lucas(19)/(1/2+sqrt(5)/2)^52 2100951925387595 a004 Fibonacci(39)*Lucas(19)/(1/2+sqrt(5)/2)^50 2100951925387595 a001 2/4181*(1/2+1/2*5^(1/2))^27 2100951925387595 a004 Fibonacci(37)*Lucas(19)/(1/2+sqrt(5)/2)^48 2100951925387600 a004 Fibonacci(35)*Lucas(19)/(1/2+sqrt(5)/2)^46 2100951925387629 a004 Fibonacci(33)*Lucas(19)/(1/2+sqrt(5)/2)^44 2100951925387827 a004 Fibonacci(31)*Lucas(19)/(1/2+sqrt(5)/2)^42 2100951925389184 a004 Fibonacci(29)*Lucas(19)/(1/2+sqrt(5)/2)^40 2100951925398486 a004 Fibonacci(27)*Lucas(19)/(1/2+sqrt(5)/2)^38 2100951925462245 a004 Fibonacci(25)*Lucas(19)/(1/2+sqrt(5)/2)^36 2100951925471254 a001 987/3571*2207^(9/16) 2100951925899259 a004 Fibonacci(23)*Lucas(19)/(1/2+sqrt(5)/2)^34 2100951926252700 a001 2255/13201*9349^(10/19) 2100951926361716 b008 1+Sqrt[6]*LogGamma[E] 2100951926457265 a001 15456/4250681*9349^(18/19) 2100951926578516 a001 17711/3010349*9349^(17/19) 2100951926624200 a001 121393/33385282*9349^(18/19) 2100951926648556 a001 105937/29134601*9349^(18/19) 2100951926652109 a001 832040/228826127*9349^(18/19) 2100951926652628 a001 726103/199691526*9349^(18/19) 2100951926652703 a001 5702887/1568397607*9349^(18/19) 2100951926652714 a001 4976784/1368706081*9349^(18/19) 2100951926652716 a001 39088169/10749957122*9349^(18/19) 2100951926652716 a001 831985/228811001*9349^(18/19) 2100951926652716 a001 267914296/73681302247*9349^(18/19) 2100951926652716 a001 233802911/64300051206*9349^(18/19) 2100951926652716 a001 1836311903/505019158607*9349^(18/19) 2100951926652716 a001 1602508992/440719107401*9349^(18/19) 2100951926652716 a001 12586269025/3461452808002*9349^(18/19) 2100951926652716 a001 10983760033/3020733700601*9349^(18/19) 2100951926652716 a001 86267571272/23725150497407*9349^(18/19) 2100951926652716 a001 53316291173/14662949395604*9349^(18/19) 2100951926652716 a001 20365011074/5600748293801*9349^(18/19) 2100951926652716 a001 7778742049/2139295485799*9349^(18/19) 2100951926652716 a001 2971215073/817138163596*9349^(18/19) 2100951926652716 a001 1134903170/312119004989*9349^(18/19) 2100951926652716 a001 433494437/119218851371*9349^(18/19) 2100951926652716 a001 165580141/45537549124*9349^(18/19) 2100951926652716 a001 63245986/17393796001*9349^(18/19) 2100951926652717 a001 24157817/6643838879*9349^(18/19) 2100951926652721 a001 9227465/2537720636*9349^(18/19) 2100951926652750 a001 3524578/969323029*9349^(18/19) 2100951926652948 a001 1346269/370248451*9349^(18/19) 2100951926654305 a001 514229/141422324*9349^(18/19) 2100951926663608 a001 196418/54018521*9349^(18/19) 2100951926727372 a001 75025/20633239*9349^(18/19) 2100951926838796 a001 6765/64079*9349^(11/19) 2100951927108518 a001 2584/39603*5778^(2/3) 2100951927164414 a001 28657/7881196*9349^(18/19) 2100951927722433 a001 11592/1970299*9349^(17/19) 2100951927842799 a001 17711/1860498*9349^(16/19) 2100951927889328 a001 121393/20633239*9349^(17/19) 2100951927913678 a001 317811/54018521*9349^(17/19) 2100951927917231 a001 208010/35355581*9349^(17/19) 2100951927917749 a001 2178309/370248451*9349^(17/19) 2100951927917825 a001 5702887/969323029*9349^(17/19) 2100951927917836 a001 196452/33391061*9349^(17/19) 2100951927917837 a001 39088169/6643838879*9349^(17/19) 2100951927917837 a001 102334155/17393796001*9349^(17/19) 2100951927917837 a001 66978574/11384387281*9349^(17/19) 2100951927917837 a001 701408733/119218851371*9349^(17/19) 2100951927917837 a001 1836311903/312119004989*9349^(17/19) 2100951927917837 a001 1201881744/204284540899*9349^(17/19) 2100951927917837 a001 12586269025/2139295485799*9349^(17/19) 2100951927917837 a001 32951280099/5600748293801*9349^(17/19) 2100951927917837 a001 1135099622/192933544679*9349^(17/19) 2100951927917837 a001 139583862445/23725150497407*9349^(17/19) 2100951927917837 a001 53316291173/9062201101803*9349^(17/19) 2100951927917837 a001 10182505537/1730726404001*9349^(17/19) 2100951927917837 a001 7778742049/1322157322203*9349^(17/19) 2100951927917837 a001 2971215073/505019158607*9349^(17/19) 2100951927917837 a001 567451585/96450076809*9349^(17/19) 2100951927917837 a001 433494437/73681302247*9349^(17/19) 2100951927917837 a001 165580141/28143753123*9349^(17/19) 2100951927917838 a001 31622993/5374978561*9349^(17/19) 2100951927917838 a001 24157817/4106118243*9349^(17/19) 2100951927917842 a001 9227465/1568397607*9349^(17/19) 2100951927917871 a001 1762289/299537289*9349^(17/19) 2100951927918069 a001 1346269/228826127*9349^(17/19) 2100951927919426 a001 514229/87403803*9349^(17/19) 2100951927928727 a001 98209/16692641*9349^(17/19) 2100951927992475 a001 75025/12752043*9349^(17/19) 2100951928024984 m005 (-1/3+1/4*5^(1/2))/(7/8*Catalan+3/11) 2100951928429413 a001 28657/4870847*9349^(17/19) 2100951928458929 a001 646/6119*5778^(11/18) 2100951928698346 a001 105937/13201*3571^(2/17) 2100951928894590 a004 Fibonacci(21)*Lucas(19)/(1/2+sqrt(5)/2)^32 2100951928987432 a001 46368/4870847*9349^(16/19) 2100951929110116 a001 17711/1149851*9349^(15/19) 2100951929154432 a001 121393/12752043*9349^(16/19) 2100951929178797 a001 317811/33385282*9349^(16/19) 2100951929182352 a001 832040/87403803*9349^(16/19) 2100951929182870 a001 46347/4868641*9349^(16/19) 2100951929182946 a001 5702887/599074578*9349^(16/19) 2100951929182957 a001 14930352/1568397607*9349^(16/19) 2100951929182959 a001 39088169/4106118243*9349^(16/19) 2100951929182959 a001 102334155/10749957122*9349^(16/19) 2100951929182959 a001 267914296/28143753123*9349^(16/19) 2100951929182959 a001 701408733/73681302247*9349^(16/19) 2100951929182959 a001 1836311903/192900153618*9349^(16/19) 2100951929182959 a001 102287808/10745088481*9349^(16/19) 2100951929182959 a001 12586269025/1322157322203*9349^(16/19) 2100951929182959 a001 32951280099/3461452808002*9349^(16/19) 2100951929182959 a001 86267571272/9062201101803*9349^(16/19) 2100951929182959 a001 225851433717/23725150497407*9349^(16/19) 2100951929182959 a001 139583862445/14662949395604*9349^(16/19) 2100951929182959 a001 53316291173/5600748293801*9349^(16/19) 2100951929182959 a001 20365011074/2139295485799*9349^(16/19) 2100951929182959 a001 7778742049/817138163596*9349^(16/19) 2100951929182959 a001 2971215073/312119004989*9349^(16/19) 2100951929182959 a001 1134903170/119218851371*9349^(16/19) 2100951929182959 a001 433494437/45537549124*9349^(16/19) 2100951929182959 a001 165580141/17393796001*9349^(16/19) 2100951929182959 a001 63245986/6643838879*9349^(16/19) 2100951929182960 a001 24157817/2537720636*9349^(16/19) 2100951929182964 a001 9227465/969323029*9349^(16/19) 2100951929182993 a001 3524578/370248451*9349^(16/19) 2100951929183191 a001 1346269/141422324*9349^(16/19) 2100951929184549 a001 514229/54018521*9349^(16/19) 2100951929193855 a001 196418/20633239*9349^(16/19) 2100951929257643 a001 75025/7881196*9349^(16/19) 2100951929694854 a001 28657/3010349*9349^(16/19) 2100951929726035 a001 6765/15127*24476^(8/21) 2100951929846014 a001 416020/51841*3571^(2/17) 2100951930013457 a001 726103/90481*3571^(2/17) 2100951930037886 a001 5702887/710647*3571^(2/17) 2100951930041450 a001 829464/103361*3571^(2/17) 2100951930041970 a001 39088169/4870847*3571^(2/17) 2100951930042046 a001 34111385/4250681*3571^(2/17) 2100951930042057 a001 133957148/16692641*3571^(2/17) 2100951930042059 a001 233802911/29134601*3571^(2/17) 2100951930042059 a001 1836311903/228826127*3571^(2/17) 2100951930042059 a001 267084832/33281921*3571^(2/17) 2100951930042059 a001 12586269025/1568397607*3571^(2/17) 2100951930042059 a001 10983760033/1368706081*3571^(2/17) 2100951930042059 a001 43133785636/5374978561*3571^(2/17) 2100951930042059 a001 75283811239/9381251041*3571^(2/17) 2100951930042059 a001 591286729879/73681302247*3571^(2/17) 2100951930042059 a001 86000486440/10716675201*3571^(2/17) 2100951930042059 a001 3536736619241/440719107401*3571^(2/17) 2100951930042059 a001 3278735159921/408569081798*3571^(2/17) 2100951930042059 a001 2504730781961/312119004989*3571^(2/17) 2100951930042059 a001 956722026041/119218851371*3571^(2/17) 2100951930042059 a001 182717648081/22768774562*3571^(2/17) 2100951930042059 a001 139583862445/17393796001*3571^(2/17) 2100951930042059 a001 53316291173/6643838879*3571^(2/17) 2100951930042059 a001 10182505537/1268860318*3571^(2/17) 2100951930042059 a001 7778742049/969323029*3571^(2/17) 2100951930042059 a001 2971215073/370248451*3571^(2/17) 2100951930042059 a001 567451585/70711162*3571^(2/17) 2100951930042060 a001 433494437/54018521*3571^(2/17) 2100951930042064 a001 165580141/20633239*3571^(2/17) 2100951930042093 a001 31622993/3940598*3571^(2/17) 2100951930042292 a001 24157817/3010349*3571^(2/17) 2100951930043653 a001 9227465/1149851*3571^(2/17) 2100951930052985 a001 1762289/219602*3571^(2/17) 2100951930116942 a001 1346269/167761*3571^(2/17) 2100951930159944 a001 10946/3010349*9349^(18/19) 2100951930252874 a001 46368/3010349*9349^(15/19) 2100951930369488 a001 17711/710647*9349^(14/19) 2100951930419600 a001 121393/7881196*9349^(15/19) 2100951930443925 a001 10959/711491*9349^(15/19) 2100951930447474 a001 832040/54018521*9349^(15/19) 2100951930447992 a001 2178309/141422324*9349^(15/19) 2100951930448067 a001 5702887/370248451*9349^(15/19) 2100951930448078 a001 14930352/969323029*9349^(15/19) 2100951930448080 a001 39088169/2537720636*9349^(15/19) 2100951930448080 a001 102334155/6643838879*9349^(15/19) 2100951930448080 a001 9238424/599786069*9349^(15/19) 2100951930448080 a001 701408733/45537549124*9349^(15/19) 2100951930448080 a001 1836311903/119218851371*9349^(15/19) 2100951930448080 a001 4807526976/312119004989*9349^(15/19) 2100951930448080 a001 12586269025/817138163596*9349^(15/19) 2100951930448080 a001 32951280099/2139295485799*9349^(15/19) 2100951930448080 a001 86267571272/5600748293801*9349^(15/19) 2100951930448080 a001 7787980473/505618944676*9349^(15/19) 2100951930448080 a001 365435296162/23725150497407*9349^(15/19) 2100951930448080 a001 139583862445/9062201101803*9349^(15/19) 2100951930448080 a001 53316291173/3461452808002*9349^(15/19) 2100951930448080 a001 20365011074/1322157322203*9349^(15/19) 2100951930448080 a001 7778742049/505019158607*9349^(15/19) 2100951930448080 a001 2971215073/192900153618*9349^(15/19) 2100951930448080 a001 1134903170/73681302247*9349^(15/19) 2100951930448080 a001 433494437/28143753123*9349^(15/19) 2100951930448080 a001 165580141/10749957122*9349^(15/19) 2100951930448080 a001 63245986/4106118243*9349^(15/19) 2100951930448081 a001 24157817/1568397607*9349^(15/19) 2100951930448085 a001 9227465/599074578*9349^(15/19) 2100951930448114 a001 3524578/228826127*9349^(15/19) 2100951930448312 a001 1346269/87403803*9349^(15/19) 2100951930449667 a001 514229/33385282*9349^(15/19) 2100951930458959 a001 196418/12752043*9349^(15/19) 2100951930522642 a001 75025/4870847*9349^(15/19) 2100951930555312 a001 514229/64079*3571^(2/17) 2100951930562938 a001 196418/15127*3571^(1/17) 2100951930884063 a001 6765/15127*64079^(8/23) 2100951930959137 a001 28657/1860498*9349^(15/19) 2100951931062033 a001 6765/15127*(1/2+1/2*5^(1/2))^8 2100951931062033 a001 6765/15127*23725150497407^(1/8) 2100951931062033 a001 6765/15127*73681302247^(2/13) 2100951931062033 a001 6765/15127*10749957122^(1/6) 2100951931062033 a001 6765/15127*4106118243^(4/23) 2100951931062033 a001 6765/15127*1568397607^(2/11) 2100951931062033 a001 6765/15127*599074578^(4/21) 2100951931062033 a001 6765/15127*228826127^(1/5) 2100951931062033 a001 6765/15127*87403803^(4/19) 2100951931062033 a001 6765/15127*33385282^(2/9) 2100951931062036 a001 6765/15127*12752043^(4/17) 2100951931062055 a001 6765/15127*4870847^(1/4) 2100951931062122 a001 15255075/726103 2100951931062195 a001 6765/15127*1860498^(4/15) 2100951931063222 a001 6765/15127*710647^(2/7) 2100951931070807 a001 6765/15127*271443^(4/13) 2100951931127179 a001 6765/15127*103682^(1/3) 2100951931313186 a001 17711/15127*9349^(6/19) 2100951931424226 a001 5473/930249*9349^(17/19) 2100951931517156 a001 2576/103361*9349^(14/19) 2100951931549143 a001 6765/15127*39603^(4/11) 2100951931649661 a001 17711/439204*9349^(13/19) 2100951931684599 a001 121393/4870847*9349^(14/19) 2100951931709028 a001 105937/4250681*9349^(14/19) 2100951931712593 a001 416020/16692641*9349^(14/19) 2100951931713113 a001 726103/29134601*9349^(14/19) 2100951931713189 a001 5702887/228826127*9349^(14/19) 2100951931713200 a001 829464/33281921*9349^(14/19) 2100951931713201 a001 39088169/1568397607*9349^(14/19) 2100951931713202 a001 34111385/1368706081*9349^(14/19) 2100951931713202 a001 133957148/5374978561*9349^(14/19) 2100951931713202 a001 233802911/9381251041*9349^(14/19) 2100951931713202 a001 1836311903/73681302247*9349^(14/19) 2100951931713202 a001 267084832/10716675201*9349^(14/19) 2100951931713202 a001 12586269025/505019158607*9349^(14/19) 2100951931713202 a001 10983760033/440719107401*9349^(14/19) 2100951931713202 a001 43133785636/1730726404001*9349^(14/19) 2100951931713202 a001 75283811239/3020733700601*9349^(14/19) 2100951931713202 a001 182717648081/7331474697802*9349^(14/19) 2100951931713202 a001 139583862445/5600748293801*9349^(14/19) 2100951931713202 a001 53316291173/2139295485799*9349^(14/19) 2100951931713202 a001 10182505537/408569081798*9349^(14/19) 2100951931713202 a001 7778742049/312119004989*9349^(14/19) 2100951931713202 a001 2971215073/119218851371*9349^(14/19) 2100951931713202 a001 567451585/22768774562*9349^(14/19) 2100951931713202 a001 433494437/17393796001*9349^(14/19) 2100951931713202 a001 165580141/6643838879*9349^(14/19) 2100951931713202 a001 31622993/1268860318*9349^(14/19) 2100951931713202 a001 24157817/969323029*9349^(14/19) 2100951931713206 a001 9227465/370248451*9349^(14/19) 2100951931713235 a001 1762289/70711162*9349^(14/19) 2100951931713434 a001 1346269/54018521*9349^(14/19) 2100951931714796 a001 514229/20633239*9349^(14/19) 2100951931724127 a001 98209/3940598*9349^(14/19) 2100951931788084 a001 75025/3010349*9349^(14/19) 2100951932226454 a001 28657/1149851*9349^(14/19) 2100951932348805 m001 1/Niven^2*ln(Cahen)^2*Pi 2100951932364370 a001 6765/24476*9349^(9/19) 2100951932455873 a001 2584/64079*5778^(13/18) 2100951932691543 a001 10946/1149851*9349^(16/19) 2100951932784474 a001 46368/1149851*9349^(13/19) 2100951932875377 a001 17711/271443*9349^(12/19) 2100951932950041 a001 121393/3010349*9349^(13/19) 2100951932974197 a001 317811/7881196*9349^(13/19) 2100951932977721 a001 75640/1875749*9349^(13/19) 2100951932978235 a001 2178309/54018521*9349^(13/19) 2100951932978310 a001 5702887/141422324*9349^(13/19) 2100951932978321 a001 14930352/370248451*9349^(13/19) 2100951932978323 a001 39088169/969323029*9349^(13/19) 2100951932978323 a001 9303105/230701876*9349^(13/19) 2100951932978323 a001 267914296/6643838879*9349^(13/19) 2100951932978323 a001 701408733/17393796001*9349^(13/19) 2100951932978323 a001 1836311903/45537549124*9349^(13/19) 2100951932978323 a001 4807526976/119218851371*9349^(13/19) 2100951932978323 a001 1144206275/28374454999*9349^(13/19) 2100951932978323 a001 32951280099/817138163596*9349^(13/19) 2100951932978323 a001 86267571272/2139295485799*9349^(13/19) 2100951932978323 a001 225851433717/5600748293801*9349^(13/19) 2100951932978323 a001 365435296162/9062201101803*9349^(13/19) 2100951932978323 a001 139583862445/3461452808002*9349^(13/19) 2100951932978323 a001 53316291173/1322157322203*9349^(13/19) 2100951932978323 a001 20365011074/505019158607*9349^(13/19) 2100951932978323 a001 7778742049/192900153618*9349^(13/19) 2100951932978323 a001 2971215073/73681302247*9349^(13/19) 2100951932978323 a001 1134903170/28143753123*9349^(13/19) 2100951932978323 a001 433494437/10749957122*9349^(13/19) 2100951932978323 a001 165580141/4106118243*9349^(13/19) 2100951932978323 a001 63245986/1568397607*9349^(13/19) 2100951932978324 a001 24157817/599074578*9349^(13/19) 2100951932978328 a001 9227465/228826127*9349^(13/19) 2100951932978356 a001 3524578/87403803*9349^(13/19) 2100951932978553 a001 1346269/33385282*9349^(13/19) 2100951932979899 a001 514229/12752043*9349^(13/19) 2100951932989126 a001 196418/4870847*9349^(13/19) 2100951933052367 a001 75025/1860498*9349^(13/19) 2100951933485827 a001 28657/710647*9349^(13/19) 2100951933559946 a001 98209/12238*3571^(2/17) 2100951933950916 a001 10946/710647*9349^(15/19) 2100951934043846 a001 6624/101521*9349^(12/19) 2100951934214323 a001 121393/1860498*9349^(12/19) 2100951934239196 a001 317811/4870847*9349^(12/19) 2100951934242824 a001 832040/12752043*9349^(12/19) 2100951934243354 a001 311187/4769326*9349^(12/19) 2100951934243431 a001 5702887/87403803*9349^(12/19) 2100951934243442 a001 14930352/228826127*9349^(12/19) 2100951934243444 a001 39088169/599074578*9349^(12/19) 2100951934243444 a001 14619165/224056801*9349^(12/19) 2100951934243444 a001 267914296/4106118243*9349^(12/19) 2100951934243444 a001 701408733/10749957122*9349^(12/19) 2100951934243444 a001 1836311903/28143753123*9349^(12/19) 2100951934243444 a001 686789568/10525900321*9349^(12/19) 2100951934243444 a001 12586269025/192900153618*9349^(12/19) 2100951934243444 a001 32951280099/505019158607*9349^(12/19) 2100951934243444 a001 86267571272/1322157322203*9349^(12/19) 2100951934243444 a001 32264490531/494493258286*9349^(12/19) 2100951934243444 a001 1548008755920/23725150497407*9349^(12/19) 2100951934243444 a001 139583862445/2139295485799*9349^(12/19) 2100951934243444 a001 53316291173/817138163596*9349^(12/19) 2100951934243444 a001 20365011074/312119004989*9349^(12/19) 2100951934243444 a001 7778742049/119218851371*9349^(12/19) 2100951934243444 a001 2971215073/45537549124*9349^(12/19) 2100951934243444 a001 1134903170/17393796001*9349^(12/19) 2100951934243444 a001 433494437/6643838879*9349^(12/19) 2100951934243444 a001 165580141/2537720636*9349^(12/19) 2100951934243444 a001 63245986/969323029*9349^(12/19) 2100951934243445 a001 24157817/370248451*9349^(12/19) 2100951934243449 a001 9227465/141422324*9349^(12/19) 2100951934243479 a001 3524578/54018521*9349^(12/19) 2100951934243663 a001 17711/167761*9349^(11/19) 2100951934243681 a001 1346269/20633239*9349^(12/19) 2100951934245067 a001 514229/7881196*9349^(12/19) 2100951934254568 a001 196418/3010349*9349^(12/19) 2100951934319684 a001 75025/1149851*9349^(12/19) 2100951934429524 a001 28657/15127*9349^(5/19) 2100951934734607 a001 6765/15127*15127^(2/5) 2100951934765999 a001 28657/439204*9349^(12/19) 2100951934894613 a001 10946/15127*9349^(7/19) 2100951934987543 a001 6624/2161*9349^(4/19) 2100951935004689 a001 4181/5778*5778^(7/18) 2100951935208188 a001 28657/9349*3571^(4/17) 2100951935231089 a001 5473/219602*9349^(14/19) 2100951935238696 a001 17711/103682*9349^(10/19) 2100951935244909 a001 1292/51841*5778^(7/9) 2100951935324019 a001 11592/109801*9349^(11/19) 2100951935481641 a001 121393/1149851*9349^(11/19) 2100951935504637 a001 317811/3010349*9349^(11/19) 2100951935507992 a001 208010/1970299*9349^(11/19) 2100951935508482 a001 2178309/20633239*9349^(11/19) 2100951935508553 a001 5702887/54018521*9349^(11/19) 2100951935508564 a001 3732588/35355581*9349^(11/19) 2100951935508565 a001 39088169/370248451*9349^(11/19) 2100951935508566 a001 102334155/969323029*9349^(11/19) 2100951935508566 a001 66978574/634430159*9349^(11/19) 2100951935508566 a001 701408733/6643838879*9349^(11/19) 2100951935508566 a001 1836311903/17393796001*9349^(11/19) 2100951935508566 a001 1201881744/11384387281*9349^(11/19) 2100951935508566 a001 12586269025/119218851371*9349^(11/19) 2100951935508566 a001 32951280099/312119004989*9349^(11/19) 2100951935508566 a001 21566892818/204284540899*9349^(11/19) 2100951935508566 a001 225851433717/2139295485799*9349^(11/19) 2100951935508566 a001 182717648081/1730726404001*9349^(11/19) 2100951935508566 a001 139583862445/1322157322203*9349^(11/19) 2100951935508566 a001 53316291173/505019158607*9349^(11/19) 2100951935508566 a001 10182505537/96450076809*9349^(11/19) 2100951935508566 a001 7778742049/73681302247*9349^(11/19) 2100951935508566 a001 2971215073/28143753123*9349^(11/19) 2100951935508566 a001 567451585/5374978561*9349^(11/19) 2100951935508566 a001 433494437/4106118243*9349^(11/19) 2100951935508566 a001 165580141/1568397607*9349^(11/19) 2100951935508566 a001 31622993/299537289*9349^(11/19) 2100951935508566 a001 24157817/228826127*9349^(11/19) 2100951935508570 a001 9227465/87403803*9349^(11/19) 2100951935508598 a001 1762289/16692641*9349^(11/19) 2100951935508785 a001 1346269/12752043*9349^(11/19) 2100951935510066 a001 514229/4870847*9349^(11/19) 2100951935518850 a001 98209/930249*9349^(11/19) 2100951935579056 a001 75025/710647*9349^(11/19) 2100951935991715 a001 28657/271443*9349^(11/19) 2100951936456805 a001 10946/271443*9349^(13/19) 2100951936522753 a001 75025/15127*9349^(3/19) 2100951936549735 a001 15456/90481*9349^(10/19) 2100951936624823 a001 17711/39603*9349^(8/19) 2100951936736471 a004 Fibonacci(20)*Lucas(21)/(1/2+sqrt(5)/2)^33 2100951936741013 a001 121393/710647*9349^(10/19) 2100951936768920 a001 105937/620166*9349^(10/19) 2100951936772991 a001 832040/4870847*9349^(10/19) 2100951936773586 a001 726103/4250681*9349^(10/19) 2100951936773672 a001 5702887/33385282*9349^(10/19) 2100951936773685 a001 4976784/29134601*9349^(10/19) 2100951936773687 a001 39088169/228826127*9349^(10/19) 2100951936773687 a001 34111385/199691526*9349^(10/19) 2100951936773687 a001 267914296/1568397607*9349^(10/19) 2100951936773687 a001 233802911/1368706081*9349^(10/19) 2100951936773687 a001 1836311903/10749957122*9349^(10/19) 2100951936773687 a001 1602508992/9381251041*9349^(10/19) 2100951936773687 a001 12586269025/73681302247*9349^(10/19) 2100951936773687 a001 10983760033/64300051206*9349^(10/19) 2100951936773687 a001 86267571272/505019158607*9349^(10/19) 2100951936773687 a001 75283811239/440719107401*9349^(10/19) 2100951936773687 a001 2504730781961/14662949395604*9349^(10/19) 2100951936773687 a001 139583862445/817138163596*9349^(10/19) 2100951936773687 a001 53316291173/312119004989*9349^(10/19) 2100951936773687 a001 20365011074/119218851371*9349^(10/19) 2100951936773687 a001 7778742049/45537549124*9349^(10/19) 2100951936773687 a001 2971215073/17393796001*9349^(10/19) 2100951936773687 a001 1134903170/6643838879*9349^(10/19) 2100951936773687 a001 433494437/2537720636*9349^(10/19) 2100951936773687 a001 165580141/969323029*9349^(10/19) 2100951936773687 a001 63245986/370248451*9349^(10/19) 2100951936773688 a001 24157817/141422324*9349^(10/19) 2100951936773693 a001 9227465/54018521*9349^(10/19) 2100951936773726 a001 3524578/20633239*9349^(10/19) 2100951936773953 a001 1346269/7881196*9349^(10/19) 2100951936775508 a001 514229/3010349*9349^(10/19) 2100951936786167 a001 196418/1149851*9349^(10/19) 2100951936859229 a001 75025/439204*9349^(10/19) 2100951936903382 a001 6765/4870847*24476^(20/21) 2100951937070703 a001 6765/3010349*24476^(19/21) 2100951937210919 a001 17711/64079*9349^(9/19) 2100951937233916 a001 2255/13201*24476^(10/21) 2100951937236864 a001 55/15126*24476^(6/7) 2100951937360001 a001 28657/167761*9349^(10/19) 2100951937406059 a001 6765/1149851*24476^(17/21) 2100951937567310 a001 6765/710647*24476^(16/21) 2100951937684710 a001 121393/15127*9349^(2/19) 2100951937749361 a001 6765/439204*24476^(5/7) 2100951937825091 a001 10946/167761*9349^(12/19) 2100951937876956 a001 2255/90481*24476^(2/3) 2100951937901915 a001 17711/15127*24476^(2/7) 2100951937918021 a001 46368/167761*9349^(9/19) 2100951938021186 a001 121393/439204*9349^(9/19) 2100951938036237 a001 317811/1149851*9349^(9/19) 2100951938038433 a001 832040/3010349*9349^(9/19) 2100951938038754 a001 2178309/7881196*9349^(9/19) 2100951938038800 a001 5702887/20633239*9349^(9/19) 2100951938038807 a001 14930352/54018521*9349^(9/19) 2100951938038808 a001 39088169/141422324*9349^(9/19) 2100951938038808 a001 102334155/370248451*9349^(9/19) 2100951938038808 a001 267914296/969323029*9349^(9/19) 2100951938038808 a001 701408733/2537720636*9349^(9/19) 2100951938038808 a001 1836311903/6643838879*9349^(9/19) 2100951938038808 a001 4807526976/17393796001*9349^(9/19) 2100951938038808 a001 12586269025/45537549124*9349^(9/19) 2100951938038808 a001 32951280099/119218851371*9349^(9/19) 2100951938038808 a001 86267571272/312119004989*9349^(9/19) 2100951938038808 a001 225851433717/817138163596*9349^(9/19) 2100951938038808 a001 139583862445/505019158607*9349^(9/19) 2100951938038808 a001 53316291173/192900153618*9349^(9/19) 2100951938038808 a001 20365011074/73681302247*9349^(9/19) 2100951938038808 a001 7778742049/28143753123*9349^(9/19) 2100951938038808 a001 2971215073/10749957122*9349^(9/19) 2100951938038808 a001 1134903170/4106118243*9349^(9/19) 2100951938038808 a001 433494437/1568397607*9349^(9/19) 2100951938038808 a001 165580141/599074578*9349^(9/19) 2100951938038808 a001 63245986/228826127*9349^(9/19) 2100951938038809 a001 24157817/87403803*9349^(9/19) 2100951938038811 a001 9227465/33385282*9349^(9/19) 2100951938038829 a001 3524578/12752043*9349^(9/19) 2100951938038952 a001 1346269/4870847*9349^(9/19) 2100951938039790 a001 514229/1860498*9349^(9/19) 2100951938044031 a001 6765/103682*24476^(4/7) 2100951938045540 a001 196418/710647*9349^(9/19) 2100951938084945 a001 75025/271443*9349^(9/19) 2100951938147120 a001 615/15251*24476^(13/21) 2100951938355034 a001 28657/103682*9349^(9/19) 2100951938395516 a001 514229/39603*3571^(1/17) 2100951938681451 a001 2255/13201*64079^(10/23) 2100951938770436 a001 17711/15127*64079^(6/23) 2100951938820123 a001 5473/51841*9349^(11/19) 2100951938874053 a001 2255/13201*167761^(2/5) 2100951938901493 a001 17711/15127*439204^(2/9) 2100951938903908 a001 17711/15127*7881196^(2/11) 2100951938903912 a001 2255/13201*20633239^(2/7) 2100951938903914 a001 2255/13201*2537720636^(2/9) 2100951938903914 a001 2255/13201*312119004989^(2/11) 2100951938903914 a001 2255/13201*(1/2+1/2*5^(1/2))^10 2100951938903914 a001 2255/13201*28143753123^(1/5) 2100951938903914 a001 2255/13201*10749957122^(5/24) 2100951938903914 a001 2255/13201*4106118243^(5/23) 2100951938903914 a001 2255/13201*1568397607^(5/22) 2100951938903914 a001 2255/13201*599074578^(5/21) 2100951938903914 a001 2255/13201*228826127^(1/4) 2100951938903914 a001 17711/15127*141422324^(2/13) 2100951938903914 a001 17711/15127*2537720636^(2/15) 2100951938903914 a001 17711/15127*45537549124^(2/17) 2100951938903914 a001 17711/15127*14662949395604^(2/21) 2100951938903914 a001 17711/15127*(1/2+1/2*5^(1/2))^6 2100951938903914 a001 17711/15127*10749957122^(1/8) 2100951938903914 a001 17711/15127*4106118243^(3/23) 2100951938903914 a001 17711/15127*1568397607^(3/22) 2100951938903914 a001 17711/15127*599074578^(1/7) 2100951938903914 a001 17711/15127*228826127^(3/20) 2100951938903914 a001 2255/13201*87403803^(5/19) 2100951938903914 a001 17711/15127*87403803^(3/19) 2100951938903914 a001 17711/15127*33385282^(1/6) 2100951938903914 a001 2255/13201*33385282^(5/18) 2100951938903916 a001 17711/15127*12752043^(3/17) 2100951938903917 a001 2255/13201*12752043^(5/17) 2100951938903927 a001 119814915/5702887 2100951938903930 a001 17711/15127*4870847^(3/16) 2100951938903941 a001 2255/13201*4870847^(5/16) 2100951938904035 a001 17711/15127*1860498^(1/5) 2100951938904116 a001 2255/13201*1860498^(1/3) 2100951938904805 a001 17711/15127*710647^(3/14) 2100951938905399 a001 2255/13201*710647^(5/14) 2100951938910494 a001 17711/15127*271443^(3/13) 2100951938913053 a001 23184/51841*9349^(8/19) 2100951938914881 a001 2255/13201*271443^(5/13) 2100951938918133 a001 6765/64079*24476^(11/21) 2100951938952773 a001 17711/15127*103682^(1/4) 2100951938985346 a001 2255/13201*103682^(5/12) 2100951938989237 a001 196418/15127*9349^(1/19) 2100951939011136 a001 2584/167761*5778^(5/6) 2100951939095026 a001 17711/2207*843^(1/7) 2100951939246902 a001 121393/271443*9349^(8/19) 2100951939269246 a001 17711/15127*39603^(3/11) 2100951939295609 a001 317811/710647*9349^(8/19) 2100951939302716 a001 416020/930249*9349^(8/19) 2100951939303753 a001 2178309/4870847*9349^(8/19) 2100951939303904 a001 5702887/12752043*9349^(8/19) 2100951939303926 a001 7465176/16692641*9349^(8/19) 2100951939303929 a001 39088169/87403803*9349^(8/19) 2100951939303930 a001 102334155/228826127*9349^(8/19) 2100951939303930 a001 133957148/299537289*9349^(8/19) 2100951939303930 a001 701408733/1568397607*9349^(8/19) 2100951939303930 a001 1836311903/4106118243*9349^(8/19) 2100951939303930 a001 2403763488/5374978561*9349^(8/19) 2100951939303930 a001 12586269025/28143753123*9349^(8/19) 2100951939303930 a001 32951280099/73681302247*9349^(8/19) 2100951939303930 a001 43133785636/96450076809*9349^(8/19) 2100951939303930 a001 225851433717/505019158607*9349^(8/19) 2100951939303930 a001 10610209857723/23725150497407*9349^(8/19) 2100951939303930 a001 182717648081/408569081798*9349^(8/19) 2100951939303930 a001 139583862445/312119004989*9349^(8/19) 2100951939303930 a001 53316291173/119218851371*9349^(8/19) 2100951939303930 a001 10182505537/22768774562*9349^(8/19) 2100951939303930 a001 7778742049/17393796001*9349^(8/19) 2100951939303930 a001 2971215073/6643838879*9349^(8/19) 2100951939303930 a001 567451585/1268860318*9349^(8/19) 2100951939303930 a001 433494437/969323029*9349^(8/19) 2100951939303930 a001 165580141/370248451*9349^(8/19) 2100951939303930 a001 31622993/70711162*9349^(8/19) 2100951939303931 a001 24157817/54018521*9349^(8/19) 2100951939303940 a001 9227465/20633239*9349^(8/19) 2100951939303997 a001 1762289/3940598*9349^(8/19) 2100951939304393 a001 1346269/3010349*9349^(8/19) 2100951939307108 a001 514229/1149851*9349^(8/19) 2100951939325713 a001 98209/219602*9349^(8/19) 2100951939380030 a001 6624/2161*24476^(4/21) 2100951939453231 a001 75025/167761*9349^(8/19) 2100951939512801 a001 2255/13201*39603^(5/11) 2100951939538274 a001 1346269/103682*3571^(1/17) 2100951939705000 a001 3524578/271443*3571^(1/17) 2100951939729325 a001 9227465/710647*3571^(1/17) 2100951939731803 a004 Fibonacci(20)*Lucas(23)/(1/2+sqrt(5)/2)^35 2100951939732874 a001 24157817/1860498*3571^(1/17) 2100951939733392 a001 63245986/4870847*3571^(1/17) 2100951939733467 a001 165580141/12752043*3571^(1/17) 2100951939733478 a001 433494437/33385282*3571^(1/17) 2100951939733480 a001 1134903170/87403803*3571^(1/17) 2100951939733480 a001 2971215073/228826127*3571^(1/17) 2100951939733480 a001 7778742049/599074578*3571^(1/17) 2100951939733480 a001 20365011074/1568397607*3571^(1/17) 2100951939733480 a001 53316291173/4106118243*3571^(1/17) 2100951939733480 a001 139583862445/10749957122*3571^(1/17) 2100951939733480 a001 365435296162/28143753123*3571^(1/17) 2100951939733480 a001 956722026041/73681302247*3571^(1/17) 2100951939733480 a001 2504730781961/192900153618*3571^(1/17) 2100951939733480 a001 10610209857723/817138163596*3571^(1/17) 2100951939733480 a001 4052739537881/312119004989*3571^(1/17) 2100951939733480 a001 1548008755920/119218851371*3571^(1/17) 2100951939733480 a001 591286729879/45537549124*3571^(1/17) 2100951939733480 a001 7787980473/599786069*3571^(1/17) 2100951939733480 a001 86267571272/6643838879*3571^(1/17) 2100951939733480 a001 32951280099/2537720636*3571^(1/17) 2100951939733480 a001 12586269025/969323029*3571^(1/17) 2100951939733480 a001 4807526976/370248451*3571^(1/17) 2100951939733480 a001 1836311903/141422324*3571^(1/17) 2100951939733481 a001 701408733/54018521*3571^(1/17) 2100951939733485 a001 9238424/711491*3571^(1/17) 2100951939733514 a001 102334155/7881196*3571^(1/17) 2100951939733712 a001 39088169/3010349*3571^(1/17) 2100951939735067 a001 14930352/1149851*3571^(1/17) 2100951939741162 a001 28657/39603*9349^(7/19) 2100951939744358 a001 5702887/439204*3571^(1/17) 2100951939754036 a001 2255/4250681*64079^(22/23) 2100951939776329 a001 6765/7881196*64079^(21/23) 2100951939781074 a001 6765/103682*64079^(12/23) 2100951939798453 a001 6765/4870847*64079^(20/23) 2100951939808042 a001 2178309/167761*3571^(1/17) 2100951939817118 a001 75025/15127*24476^(1/7) 2100951939821020 a001 6765/3010349*64079^(19/23) 2100951939842427 a001 55/15126*64079^(18/23) 2100951939866870 a001 6765/1149851*64079^(17/23) 2100951939880953 a001 121393/15127*24476^(2/21) 2100951939883367 a001 6765/710647*64079^(16/23) 2100951939903505 a001 2255/90481*64079^(14/23) 2100951939920132 a001 28657/15127*24476^(5/21) 2100951939920664 a001 6765/439204*64079^(15/23) 2100951939959044 a001 6624/2161*64079^(4/23) 2100951940028916 a001 615/15251*64079^(13/23) 2100951940043188 a001 6765/103682*439204^(4/9) 2100951940048016 a001 6765/103682*7881196^(4/11) 2100951940048029 a001 6765/103682*141422324^(4/13) 2100951940048029 a001 6765/103682*2537720636^(4/15) 2100951940048029 a001 6765/103682*45537549124^(4/17) 2100951940048029 a001 6765/103682*817138163596^(4/19) 2100951940048029 a001 6765/103682*14662949395604^(4/21) 2100951940048029 a001 6765/103682*(1/2+1/2*5^(1/2))^12 2100951940048029 a001 6765/103682*73681302247^(3/13) 2100951940048029 a001 6765/103682*10749957122^(1/4) 2100951940048029 a001 6765/103682*4106118243^(6/23) 2100951940048029 a001 6765/103682*1568397607^(3/11) 2100951940048029 a001 6765/103682*599074578^(2/7) 2100951940048029 a001 6765/103682*228826127^(3/10) 2100951940048029 a001 6624/2161*(1/2+1/2*5^(1/2))^4 2100951940048029 a001 6624/2161*23725150497407^(1/16) 2100951940048029 a001 6624/2161*73681302247^(1/13) 2100951940048029 a001 6624/2161*10749957122^(1/12) 2100951940048029 a001 6624/2161*4106118243^(2/23) 2100951940048029 a001 6624/2161*1568397607^(1/11) 2100951940048029 a001 6624/2161*599074578^(2/21) 2100951940048029 a001 6624/2161*228826127^(1/10) 2100951940048029 a001 6624/2161*87403803^(2/19) 2100951940048029 a001 6765/103682*87403803^(6/19) 2100951940048029 a001 6624/2161*33385282^(1/9) 2100951940048029 a001 6765/103682*33385282^(1/3) 2100951940048030 a001 6624/2161*12752043^(2/17) 2100951940048031 a001 726110/34561 2100951940048033 a001 6765/103682*12752043^(6/17) 2100951940048040 a001 6624/2161*4870847^(1/8) 2100951940048062 a001 6765/103682*4870847^(3/8) 2100951940048110 a001 6624/2161*1860498^(2/15) 2100951940048271 a001 6765/103682*1860498^(2/5) 2100951940048623 a001 6624/2161*710647^(1/7) 2100951940049812 a001 6765/103682*710647^(3/7) 2100951940052415 a001 6624/2161*271443^(2/13) 2100951940061189 a001 6765/103682*271443^(6/13) 2100951940080602 a001 6624/2161*103682^(1/6) 2100951940087358 a001 196418/15127*24476^(1/21) 2100951940145748 a001 6765/103682*103682^(1/2) 2100951940168816 a004 Fibonacci(20)*Lucas(25)/(1/2+sqrt(5)/2)^37 2100951940170460 a001 121393/15127*64079^(2/23) 2100951940183658 a001 6765/4870847*167761^(4/5) 2100951940206251 a001 10946/39603*9349^(9/19) 2100951940209568 a001 6765/439204*167761^(3/5) 2100951940214951 a001 2255/90481*20633239^(2/5) 2100951940214953 a001 2255/90481*17393796001^(2/7) 2100951940214953 a001 2255/90481*14662949395604^(2/9) 2100951940214953 a001 2255/90481*(1/2+1/2*5^(1/2))^14 2100951940214953 a001 2255/90481*10749957122^(7/24) 2100951940214953 a001 2255/90481*4106118243^(7/23) 2100951940214953 a001 2255/90481*1568397607^(7/22) 2100951940214953 a001 2255/90481*599074578^(1/3) 2100951940214953 a001 2255/90481*228826127^(7/20) 2100951940214953 a001 121393/15127*(1/2+1/2*5^(1/2))^2 2100951940214953 a001 121393/15127*10749957122^(1/24) 2100951940214953 a001 121393/15127*4106118243^(1/23) 2100951940214953 a001 121393/15127*1568397607^(1/22) 2100951940214953 a001 121393/15127*599074578^(1/21) 2100951940214953 a001 121393/15127*228826127^(1/20) 2100951940214953 a001 121393/15127*87403803^(1/19) 2100951940214953 a001 2255/90481*87403803^(7/19) 2100951940214953 a001 121393/15127*33385282^(1/18) 2100951940214953 a001 821223645/39088169 2100951940214953 a001 2255/90481*33385282^(7/18) 2100951940214954 a001 121393/15127*12752043^(1/17) 2100951940214958 a001 2255/90481*12752043^(7/17) 2100951940214958 a001 121393/15127*4870847^(1/16) 2100951940214991 a001 2255/90481*4870847^(7/16) 2100951940214993 a001 121393/15127*1860498^(1/15) 2100951940215236 a001 2255/90481*1860498^(7/15) 2100951940215250 a001 121393/15127*710647^(1/14) 2100951940215468 a001 2576/321*2207^(1/8) 2100951940217033 a001 2255/90481*710647^(1/2) 2100951940217146 a001 121393/15127*271443^(1/13) 2100951940230306 a001 2255/90481*271443^(7/13) 2100951940231239 a001 121393/15127*103682^(1/12) 2100951940232112 a001 196418/15127*64079^(1/23) 2100951940232575 a004 Fibonacci(20)*Lucas(27)/(1/2+sqrt(5)/2)^39 2100951940233784 a001 6765/33385282*439204^(8/9) 2100951940235030 a001 6765/7881196*439204^(7/9) 2100951940235599 a001 55/15126*439204^(2/3) 2100951940239307 a001 6765/710647*(1/2+1/2*5^(1/2))^16 2100951940239307 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^16/Lucas(28) 2100951940239307 a001 6765/710647*23725150497407^(1/4) 2100951940239307 a001 6765/710647*73681302247^(4/13) 2100951940239307 a001 6765/710647*10749957122^(1/3) 2100951940239307 a001 6765/710647*4106118243^(8/23) 2100951940239307 a001 6765/710647*1568397607^(4/11) 2100951940239307 a001 6765/710647*599074578^(8/21) 2100951940239307 a001 6765/710647*228826127^(2/5) 2100951940239307 a001 317811/15127 2100951940239307 a001 6765/710647*87403803^(8/19) 2100951940239307 a001 6765/710647*33385282^(4/9) 2100951940239313 a001 6765/710647*12752043^(8/17) 2100951940239351 a001 6765/710647*4870847^(1/2) 2100951940239630 a001 6765/710647*1860498^(8/15) 2100951940241684 a001 6765/710647*710647^(4/7) 2100951940241878 a004 Fibonacci(20)*Lucas(29)/(1/2+sqrt(5)/2)^41 2100951940242841 a001 55/15126*7881196^(6/11) 2100951940242860 a001 55/15126*141422324^(6/13) 2100951940242860 a001 55/15126*2537720636^(2/5) 2100951940242860 a001 55/15126*45537549124^(6/17) 2100951940242860 a001 55/15126*14662949395604^(2/7) 2100951940242860 a001 55/15126*(1/2+1/2*5^(1/2))^18 2100951940242860 a001 55/15126*192900153618^(1/3) 2100951940242860 a001 55/15126*10749957122^(3/8) 2100951940242860 a001 55/15126*4106118243^(9/23) 2100951940242860 a001 55/15126*1568397607^(9/22) 2100951940242860 a001 55/15126*599074578^(3/7) 2100951940242860 a001 703593825/33489287 2100951940242860 a001 55/15126*228826127^(9/20) 2100951940242860 a004 Fibonacci(30)/Lucas(20)/(1/2+sqrt(5)/2)^2 2100951940242860 a001 55/15126*87403803^(9/19) 2100951940242861 a001 55/15126*33385282^(1/2) 2100951940242867 a001 55/15126*12752043^(9/17) 2100951940242910 a001 55/15126*4870847^(9/16) 2100951940243224 a001 55/15126*1860498^(3/5) 2100951940243235 a004 Fibonacci(20)*Lucas(31)/(1/2+sqrt(5)/2)^43 2100951940243375 a001 6765/4870847*20633239^(4/7) 2100951940243378 a001 6765/4870847*2537720636^(4/9) 2100951940243378 a001 6765/4870847*(1/2+1/2*5^(1/2))^20 2100951940243378 a001 6765/4870847*23725150497407^(5/16) 2100951940243378 a001 6765/4870847*505019158607^(5/14) 2100951940243378 a001 6765/4870847*73681302247^(5/13) 2100951940243378 a001 6765/4870847*28143753123^(2/5) 2100951940243378 a001 6765/4870847*10749957122^(5/12) 2100951940243378 a001 6765/4870847*4106118243^(10/23) 2100951940243378 a001 6765/4870847*1568397607^(5/11) 2100951940243378 a001 4912086795/233802911 2100951940243378 a001 6765/4870847*599074578^(10/21) 2100951940243378 a001 6765/4870847*228826127^(1/2) 2100951940243378 a004 Fibonacci(32)/Lucas(20)/(1/2+sqrt(5)/2)^4 2100951940243378 a001 6765/4870847*87403803^(10/19) 2100951940243379 a001 6765/4870847*33385282^(5/9) 2100951940243386 a001 6765/4870847*12752043^(10/17) 2100951940243431 a001 2255/4250681*7881196^(2/3) 2100951940243433 a004 Fibonacci(20)*Lucas(33)/(1/2+sqrt(5)/2)^45 2100951940243434 a001 6765/4870847*4870847^(5/8) 2100951940243436 a001 2255/199691526*7881196^(10/11) 2100951940243439 a001 6765/141422324*7881196^(9/11) 2100951940243440 a001 6765/33385282*7881196^(8/11) 2100951940243454 a001 2255/4250681*312119004989^(2/5) 2100951940243454 a001 2255/4250681*(1/2+1/2*5^(1/2))^22 2100951940243454 a001 2255/4250681*10749957122^(11/24) 2100951940243454 a001 2255/4250681*4106118243^(11/23) 2100951940243454 a001 38580030555/1836311903 2100951940243454 a001 2255/4250681*1568397607^(1/2) 2100951940243454 a001 2255/4250681*599074578^(11/21) 2100951940243454 a001 2255/4250681*228826127^(11/20) 2100951940243454 a004 Fibonacci(34)/Lucas(20)/(1/2+sqrt(5)/2)^6 2100951940243454 a001 2255/4250681*87403803^(11/19) 2100951940243455 a001 2255/4250681*33385282^(11/18) 2100951940243462 a004 Fibonacci(20)*Lucas(35)/(1/2+sqrt(5)/2)^47 2100951940243462 a001 2255/4250681*12752043^(11/17) 2100951940243463 a001 2255/199691526*20633239^(6/7) 2100951940243463 a001 6765/228826127*20633239^(4/5) 2100951940243464 a001 6765/54018521*20633239^(5/7) 2100951940243465 a001 6765/33385282*141422324^(8/13) 2100951940243465 a001 6765/33385282*2537720636^(8/15) 2100951940243465 a001 6765/33385282*45537549124^(8/17) 2100951940243465 a001 6765/33385282*14662949395604^(8/21) 2100951940243465 a001 6765/33385282*(1/2+1/2*5^(1/2))^24 2100951940243465 a001 6765/33385282*192900153618^(4/9) 2100951940243465 a001 6765/33385282*73681302247^(6/13) 2100951940243465 a001 6765/33385282*10749957122^(1/2) 2100951940243465 a001 701415495/33385604 2100951940243465 a001 6765/33385282*4106118243^(12/23) 2100951940243465 a001 6765/33385282*1568397607^(6/11) 2100951940243465 a001 6765/33385282*599074578^(4/7) 2100951940243465 a001 6765/33385282*228826127^(3/5) 2100951940243465 a004 Fibonacci(36)/Lucas(20)/(1/2+sqrt(5)/2)^8 2100951940243465 a001 6765/33385282*87403803^(12/19) 2100951940243466 a004 Fibonacci(20)*Lucas(37)/(1/2+sqrt(5)/2)^49 2100951940243466 a001 6765/33385282*33385282^(2/3) 2100951940243466 a001 2255/29134601*141422324^(2/3) 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^26/Lucas(38) 2100951940243467 a001 2255/29134601*73681302247^(1/2) 2100951940243467 a001 4807844787/228841255 2100951940243467 a001 2255/29134601*10749957122^(13/24) 2100951940243467 a001 2255/29134601*4106118243^(13/23) 2100951940243467 a001 2255/29134601*1568397607^(13/22) 2100951940243467 a001 2255/29134601*599074578^(13/21) 2100951940243467 a001 2255/29134601*228826127^(13/20) 2100951940243467 a004 Fibonacci(38)/Lucas(20)/(1/2+sqrt(5)/2)^10 2100951940243467 a004 Fibonacci(20)*Lucas(39)/(1/2+sqrt(5)/2)^51 2100951940243467 a001 6765/10749957122*141422324^(12/13) 2100951940243467 a001 615/230701876*141422324^(11/13) 2100951940243467 a001 2255/29134601*87403803^(13/19) 2100951940243467 a001 2255/199691526*141422324^(10/13) 2100951940243467 a001 6765/228826127*17393796001^(4/7) 2100951940243467 a001 6765/228826127*14662949395604^(4/9) 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^28/Lucas(40) 2100951940243467 a001 6765/228826127*505019158607^(1/2) 2100951940243467 a001 6765/228826127*73681302247^(7/13) 2100951940243467 a001 230763519525/10983760033 2100951940243467 a001 6765/228826127*10749957122^(7/12) 2100951940243467 a001 6765/228826127*4106118243^(14/23) 2100951940243467 a001 6765/228826127*1568397607^(7/11) 2100951940243467 a001 6765/228826127*599074578^(2/3) 2100951940243467 a004 Fibonacci(20)*Lucas(41)/(1/2+sqrt(5)/2)^53 2100951940243467 a001 6765/228826127*228826127^(7/10) 2100951940243467 a001 2255/199691526*2537720636^(2/3) 2100951940243467 a001 2255/199691526*45537549124^(10/17) 2100951940243467 a001 2255/199691526*312119004989^(6/11) 2100951940243467 a001 2255/199691526*14662949395604^(10/21) 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^30/Lucas(42) 2100951940243467 a001 2255/199691526*192900153618^(5/9) 2100951940243467 a001 226555026555/10783446409 2100951940243467 a001 2255/199691526*28143753123^(3/5) 2100951940243467 a001 2255/199691526*10749957122^(5/8) 2100951940243467 a001 2255/199691526*4106118243^(15/23) 2100951940243467 a001 2255/199691526*1568397607^(15/22) 2100951940243467 a004 Fibonacci(20)*Lucas(43)/(1/2+sqrt(5)/2)^55 2100951940243467 a001 2255/199691526*599074578^(5/7) 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^32/Lucas(44) 2100951940243467 a001 6765/1568397607*23725150497407^(1/2) 2100951940243467 a001 1581676692915/75283811239 2100951940243467 a001 6765/1568397607*73681302247^(8/13) 2100951940243467 a001 6765/1568397607*10749957122^(2/3) 2100951940243467 a001 6765/1568397607*4106118243^(16/23) 2100951940243467 a004 Fibonacci(20)*Lucas(45)/(1/2+sqrt(5)/2)^57 2100951940243467 a001 2255/64300051206*2537720636^(14/15) 2100951940243467 a001 6765/73681302247*2537720636^(8/9) 2100951940243467 a001 6765/45537549124*2537720636^(13/15) 2100951940243467 a001 6765/10749957122*2537720636^(4/5) 2100951940243467 a001 6765/1568397607*1568397607^(8/11) 2100951940243467 a001 6765/6643838879*2537720636^(7/9) 2100951940243467 a001 2255/1368706081*45537549124^(2/3) 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^34/Lucas(46) 2100951940243467 a001 12422650023795/591286729879 2100951940243467 a001 2255/1368706081*10749957122^(17/24) 2100951940243467 a004 Fibonacci(20)*Lucas(47)/(1/2+sqrt(5)/2)^59 2100951940243467 a001 2255/1368706081*4106118243^(17/23) 2100951940243467 a001 6765/10749957122*45537549124^(12/17) 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^36/Lucas(48) 2100951940243467 a001 100156812/4767211 2100951940243467 a001 6765/10749957122*505019158607^(9/14) 2100951940243467 a001 6765/10749957122*192900153618^(2/3) 2100951940243467 a001 6765/10749957122*73681302247^(9/13) 2100951940243467 a004 Fibonacci(20)*Lucas(49)/(1/2+sqrt(5)/2)^61 2100951940243467 a001 2255/64300051206*17393796001^(6/7) 2100951940243467 a001 6765/10749957122*10749957122^(3/4) 2100951940243467 a001 55/228811001*817138163596^(2/3) 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^38/Lucas(50) 2100951940243467 a004 Fibonacci(20)*Lucas(51)/(1/2+sqrt(5)/2)^63 2100951940243467 a001 6765/3461452808002*45537549124^(16/17) 2100951940243467 a001 2255/64300051206*45537549124^(14/17) 2100951940243467 a001 6765/73681302247*312119004989^(8/11) 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^40/Lucas(52) 2100951940243467 a001 6765/73681302247*23725150497407^(5/8) 2100951940243467 a004 Fibonacci(20)*Lucas(53)/(1/2+sqrt(5)/2)^65 2100951940243467 a001 6765/73681302247*73681302247^(10/13) 2100951940243467 a001 2255/64300051206*14662949395604^(2/3) 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^42/Lucas(54) 2100951940243467 a001 2255/64300051206*505019158607^(3/4) 2100951940243467 a004 Fibonacci(20)*Lucas(55)/(1/2+sqrt(5)/2)^67 2100951940243467 a001 2255/3020733700601*312119004989^(10/11) 2100951940243467 a001 2255/64300051206*192900153618^(7/9) 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^44/Lucas(56) 2100951940243467 a004 Fibonacci(20)*Lucas(57)/(1/2+sqrt(5)/2)^69 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^46/Lucas(58) 2100951940243467 a004 Fibonacci(20)*Lucas(59)/(1/2+sqrt(5)/2)^71 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^48/Lucas(60) 2100951940243467 a004 Fibonacci(20)*Lucas(61)/(1/2+sqrt(5)/2)^73 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^50/Lucas(62) 2100951940243467 a004 Fibonacci(20)*Lucas(63)/(1/2+sqrt(5)/2)^75 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^52/Lucas(64) 2100951940243467 a004 Fibonacci(20)*Lucas(65)/(1/2+sqrt(5)/2)^77 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^54/Lucas(66) 2100951940243467 a004 Fibonacci(20)*Lucas(67)/(1/2+sqrt(5)/2)^79 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^56/Lucas(68) 2100951940243467 a004 Fibonacci(20)*Lucas(69)/(1/2+sqrt(5)/2)^81 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^58/Lucas(70) 2100951940243467 a004 Fibonacci(20)*Lucas(71)/(1/2+sqrt(5)/2)^83 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^60/Lucas(72) 2100951940243467 a004 Fibonacci(20)*Lucas(73)/(1/2+sqrt(5)/2)^85 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^62/Lucas(74) 2100951940243467 a004 Fibonacci(20)*Lucas(75)/(1/2+sqrt(5)/2)^87 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^64/Lucas(76) 2100951940243467 a004 Fibonacci(20)*Lucas(77)/(1/2+sqrt(5)/2)^89 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^66/Lucas(78) 2100951940243467 a004 Fibonacci(20)*Lucas(79)/(1/2+sqrt(5)/2)^91 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^68/Lucas(80) 2100951940243467 a004 Fibonacci(20)*Lucas(81)/(1/2+sqrt(5)/2)^93 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^70/Lucas(82) 2100951940243467 a004 Fibonacci(20)*Lucas(83)/(1/2+sqrt(5)/2)^95 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^72/Lucas(84) 2100951940243467 a004 Fibonacci(20)*Lucas(85)/(1/2+sqrt(5)/2)^97 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^74/Lucas(86) 2100951940243467 a004 Fibonacci(20)*Lucas(87)/(1/2+sqrt(5)/2)^99 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^76/Lucas(88) 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^78/Lucas(90) 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^80/Lucas(92) 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^82/Lucas(94) 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^84/Lucas(96) 2100951940243467 a004 Fibonacci(10)*Lucas(10)/(1/2+sqrt(5)/2)^12 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^86/Lucas(98) 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^87/Lucas(99) 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^88/Lucas(100) 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^85/Lucas(97) 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^83/Lucas(95) 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^81/Lucas(93) 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^79/Lucas(91) 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^77/Lucas(89) 2100951940243467 a004 Fibonacci(20)*Lucas(88)/(1/2+sqrt(5)/2)^100 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^75/Lucas(87) 2100951940243467 a004 Fibonacci(20)*Lucas(86)/(1/2+sqrt(5)/2)^98 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^73/Lucas(85) 2100951940243467 a004 Fibonacci(20)*Lucas(84)/(1/2+sqrt(5)/2)^96 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^71/Lucas(83) 2100951940243467 a004 Fibonacci(20)*Lucas(82)/(1/2+sqrt(5)/2)^94 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^69/Lucas(81) 2100951940243467 a004 Fibonacci(20)*Lucas(80)/(1/2+sqrt(5)/2)^92 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^67/Lucas(79) 2100951940243467 a004 Fibonacci(20)*Lucas(78)/(1/2+sqrt(5)/2)^90 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^65/Lucas(77) 2100951940243467 a004 Fibonacci(20)*Lucas(76)/(1/2+sqrt(5)/2)^88 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^63/Lucas(75) 2100951940243467 a004 Fibonacci(20)*Lucas(74)/(1/2+sqrt(5)/2)^86 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^61/Lucas(73) 2100951940243467 a004 Fibonacci(20)*Lucas(72)/(1/2+sqrt(5)/2)^84 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^59/Lucas(71) 2100951940243467 a004 Fibonacci(20)*Lucas(70)/(1/2+sqrt(5)/2)^82 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^57/Lucas(69) 2100951940243467 a004 Fibonacci(20)*Lucas(68)/(1/2+sqrt(5)/2)^80 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^55/Lucas(67) 2100951940243467 a004 Fibonacci(20)*Lucas(66)/(1/2+sqrt(5)/2)^78 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^53/Lucas(65) 2100951940243467 a001 6765/14662949395604*14662949395604^(17/21) 2100951940243467 a004 Fibonacci(20)*Lucas(64)/(1/2+sqrt(5)/2)^76 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^51/Lucas(63) 2100951940243467 a004 Fibonacci(20)*Lucas(62)/(1/2+sqrt(5)/2)^74 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^49/Lucas(61) 2100951940243467 a001 2255/3020733700601*3461452808002^(5/6) 2100951940243467 a004 Fibonacci(20)*Lucas(60)/(1/2+sqrt(5)/2)^72 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^47/Lucas(59) 2100951940243467 a004 Fibonacci(20)*Lucas(58)/(1/2+sqrt(5)/2)^70 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^45/Lucas(57) 2100951940243467 a004 Fibonacci(20)*Lucas(56)/(1/2+sqrt(5)/2)^68 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^43/Lucas(55) 2100951940243467 a001 6765/3461452808002*192900153618^(8/9) 2100951940243467 a001 6765/14662949395604*192900153618^(17/18) 2100951940243467 a004 Fibonacci(20)*Lucas(54)/(1/2+sqrt(5)/2)^66 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^41/Lucas(53) 2100951940243467 a001 6765/45537549124*45537549124^(13/17) 2100951940243467 a001 6765/505019158607*73681302247^(11/13) 2100951940243467 a001 6765/3461452808002*73681302247^(12/13) 2100951940243467 a004 Fibonacci(20)*Lucas(52)/(1/2+sqrt(5)/2)^64 2100951940243467 a001 68884649957805/3278735159921 2100951940243467 a001 6765/45537549124*14662949395604^(13/21) 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^39/Lucas(51) 2100951940243467 a001 6765/45537549124*192900153618^(13/18) 2100951940243467 a001 6765/45537549124*73681302247^(3/4) 2100951940243467 a001 6765/73681302247*28143753123^(4/5) 2100951940243467 a001 6765/817138163596*28143753123^(9/10) 2100951940243467 a004 Fibonacci(20)*Lucas(50)/(1/2+sqrt(5)/2)^62 2100951940243467 a001 52623189961485/2504730781961 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^37/Lucas(49) 2100951940243467 a001 55/228811001*10749957122^(19/24) 2100951940243467 a001 6765/73681302247*10749957122^(5/6) 2100951940243467 a001 6765/45537549124*10749957122^(13/16) 2100951940243467 a001 2255/64300051206*10749957122^(7/8) 2100951940243467 a001 6765/505019158607*10749957122^(11/12) 2100951940243467 a001 6765/817138163596*10749957122^(15/16) 2100951940243467 a001 2255/440719107401*10749957122^(23/24) 2100951940243467 a004 Fibonacci(20)*Lucas(48)/(1/2+sqrt(5)/2)^60 2100951940243467 a001 6765/6643838879*17393796001^(5/7) 2100951940243467 a001 6765/6643838879*312119004989^(7/11) 2100951940243467 a001 20100269968845/956722026041 2100951940243467 a001 6765/6643838879*14662949395604^(5/9) 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^35/Lucas(47) 2100951940243467 a001 6765/6643838879*28143753123^(7/10) 2100951940243467 a001 6765/10749957122*4106118243^(18/23) 2100951940243467 a001 615/230701876*2537720636^(11/15) 2100951940243467 a001 55/228811001*4106118243^(19/23) 2100951940243467 a001 6765/73681302247*4106118243^(20/23) 2100951940243467 a001 2255/64300051206*4106118243^(21/23) 2100951940243467 a001 6765/505019158607*4106118243^(22/23) 2100951940243467 a004 Fibonacci(20)*Lucas(46)/(1/2+sqrt(5)/2)^58 2100951940243467 a001 615/230701876*45537549124^(11/17) 2100951940243467 a001 615/230701876*312119004989^(3/5) 2100951940243467 a001 3838809972525/182717648081 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^33/Lucas(45) 2100951940243467 a001 615/230701876*192900153618^(11/18) 2100951940243467 a001 615/230701876*10749957122^(11/16) 2100951940243467 a001 2255/1368706081*1568397607^(17/22) 2100951940243467 a001 6765/10749957122*1568397607^(9/11) 2100951940243467 a001 55/228811001*1568397607^(19/22) 2100951940243467 a001 6765/73681302247*1568397607^(10/11) 2100951940243467 a001 2255/64300051206*1568397607^(21/22) 2100951940243467 a004 Fibonacci(20)*Lucas(44)/(1/2+sqrt(5)/2)^56 2100951940243467 a001 615/230701876*1568397607^(3/4) 2100951940243467 a001 586517973261/27916772489 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^31/Lucas(43) 2100951940243467 a001 6765/969323029*9062201101803^(1/2) 2100951940243467 a001 6765/1568397607*599074578^(16/21) 2100951940243467 a001 2255/1368706081*599074578^(17/21) 2100951940243467 a001 615/230701876*599074578^(11/14) 2100951940243467 a001 6765/6643838879*599074578^(5/6) 2100951940243467 a001 6765/10749957122*599074578^(6/7) 2100951940243467 a001 55/228811001*599074578^(19/21) 2100951940243467 a001 6765/45537549124*599074578^(13/14) 2100951940243467 a001 6765/73681302247*599074578^(20/21) 2100951940243467 a004 Fibonacci(20)*Lucas(42)/(1/2+sqrt(5)/2)^54 2100951940243467 a001 1120149653865/53316291173 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^29/Lucas(41) 2100951940243467 a001 6765/370248451*1322157322203^(1/2) 2100951940243467 a001 2255/199691526*228826127^(3/4) 2100951940243467 a001 6765/1568397607*228826127^(4/5) 2100951940243467 a001 6765/141422324*141422324^(9/13) 2100951940243467 a001 2255/1368706081*228826127^(17/20) 2100951940243467 a004 Fibonacci(42)/Lucas(20)/(1/2+sqrt(5)/2)^14 2100951940243467 a001 6765/6643838879*228826127^(7/8) 2100951940243467 a001 6765/10749957122*228826127^(9/10) 2100951940243467 a001 55/228811001*228826127^(19/20) 2100951940243467 a004 Fibonacci(44)/Lucas(20)/(1/2+sqrt(5)/2)^16 2100951940243467 a004 Fibonacci(46)/Lucas(20)/(1/2+sqrt(5)/2)^18 2100951940243467 a004 Fibonacci(48)/Lucas(20)/(1/2+sqrt(5)/2)^20 2100951940243467 a004 Fibonacci(50)/Lucas(20)/(1/2+sqrt(5)/2)^22 2100951940243467 a004 Fibonacci(52)/Lucas(20)/(1/2+sqrt(5)/2)^24 2100951940243467 a004 Fibonacci(54)/Lucas(20)/(1/2+sqrt(5)/2)^26 2100951940243467 a004 Fibonacci(56)/Lucas(20)/(1/2+sqrt(5)/2)^28 2100951940243467 a004 Fibonacci(58)/Lucas(20)/(1/2+sqrt(5)/2)^30 2100951940243467 a004 Fibonacci(60)/Lucas(20)/(1/2+sqrt(5)/2)^32 2100951940243467 a004 Fibonacci(62)/Lucas(20)/(1/2+sqrt(5)/2)^34 2100951940243467 a004 Fibonacci(64)/Lucas(20)/(1/2+sqrt(5)/2)^36 2100951940243467 a004 Fibonacci(66)/Lucas(20)/(1/2+sqrt(5)/2)^38 2100951940243467 a004 Fibonacci(68)/Lucas(20)/(1/2+sqrt(5)/2)^40 2100951940243467 a004 Fibonacci(70)/Lucas(20)/(1/2+sqrt(5)/2)^42 2100951940243467 a004 Fibonacci(72)/Lucas(20)/(1/2+sqrt(5)/2)^44 2100951940243467 a004 Fibonacci(74)/Lucas(20)/(1/2+sqrt(5)/2)^46 2100951940243467 a004 Fibonacci(76)/Lucas(20)/(1/2+sqrt(5)/2)^48 2100951940243467 a004 Fibonacci(78)/Lucas(20)/(1/2+sqrt(5)/2)^50 2100951940243467 a004 Fibonacci(20)*Lucas(40)/(1/2+sqrt(5)/2)^52 2100951940243467 a004 Fibonacci(82)/Lucas(20)/(1/2+sqrt(5)/2)^54 2100951940243467 a004 Fibonacci(84)/Lucas(20)/(1/2+sqrt(5)/2)^56 2100951940243467 a004 Fibonacci(86)/Lucas(20)/(1/2+sqrt(5)/2)^58 2100951940243467 a004 Fibonacci(88)/Lucas(20)/(1/2+sqrt(5)/2)^60 2100951940243467 a004 Fibonacci(90)/Lucas(20)/(1/2+sqrt(5)/2)^62 2100951940243467 a004 Fibonacci(92)/Lucas(20)/(1/2+sqrt(5)/2)^64 2100951940243467 a004 Fibonacci(94)/Lucas(20)/(1/2+sqrt(5)/2)^66 2100951940243467 a004 Fibonacci(96)/Lucas(20)/(1/2+sqrt(5)/2)^68 2100951940243467 a004 Fibonacci(100)/Lucas(20)/(1/2+sqrt(5)/2)^72 2100951940243467 a004 Fibonacci(98)/Lucas(20)/(1/2+sqrt(5)/2)^70 2100951940243467 a004 Fibonacci(99)/Lucas(20)/(1/2+sqrt(5)/2)^71 2100951940243467 a004 Fibonacci(97)/Lucas(20)/(1/2+sqrt(5)/2)^69 2100951940243467 a004 Fibonacci(95)/Lucas(20)/(1/2+sqrt(5)/2)^67 2100951940243467 a004 Fibonacci(93)/Lucas(20)/(1/2+sqrt(5)/2)^65 2100951940243467 a004 Fibonacci(91)/Lucas(20)/(1/2+sqrt(5)/2)^63 2100951940243467 a004 Fibonacci(89)/Lucas(20)/(1/2+sqrt(5)/2)^61 2100951940243467 a004 Fibonacci(87)/Lucas(20)/(1/2+sqrt(5)/2)^59 2100951940243467 a004 Fibonacci(85)/Lucas(20)/(1/2+sqrt(5)/2)^57 2100951940243467 a004 Fibonacci(83)/Lucas(20)/(1/2+sqrt(5)/2)^55 2100951940243467 a004 Fibonacci(81)/Lucas(20)/(1/2+sqrt(5)/2)^53 2100951940243467 a004 Fibonacci(79)/Lucas(20)/(1/2+sqrt(5)/2)^51 2100951940243467 a004 Fibonacci(77)/Lucas(20)/(1/2+sqrt(5)/2)^49 2100951940243467 a004 Fibonacci(75)/Lucas(20)/(1/2+sqrt(5)/2)^47 2100951940243467 a004 Fibonacci(73)/Lucas(20)/(1/2+sqrt(5)/2)^45 2100951940243467 a004 Fibonacci(71)/Lucas(20)/(1/2+sqrt(5)/2)^43 2100951940243467 a004 Fibonacci(69)/Lucas(20)/(1/2+sqrt(5)/2)^41 2100951940243467 a004 Fibonacci(67)/Lucas(20)/(1/2+sqrt(5)/2)^39 2100951940243467 a004 Fibonacci(65)/Lucas(20)/(1/2+sqrt(5)/2)^37 2100951940243467 a004 Fibonacci(63)/Lucas(20)/(1/2+sqrt(5)/2)^35 2100951940243467 a004 Fibonacci(61)/Lucas(20)/(1/2+sqrt(5)/2)^33 2100951940243467 a004 Fibonacci(59)/Lucas(20)/(1/2+sqrt(5)/2)^31 2100951940243467 a004 Fibonacci(57)/Lucas(20)/(1/2+sqrt(5)/2)^29 2100951940243467 a004 Fibonacci(55)/Lucas(20)/(1/2+sqrt(5)/2)^27 2100951940243467 a004 Fibonacci(53)/Lucas(20)/(1/2+sqrt(5)/2)^25 2100951940243467 a004 Fibonacci(51)/Lucas(20)/(1/2+sqrt(5)/2)^23 2100951940243467 a004 Fibonacci(49)/Lucas(20)/(1/2+sqrt(5)/2)^21 2100951940243467 a004 Fibonacci(47)/Lucas(20)/(1/2+sqrt(5)/2)^19 2100951940243467 a004 Fibonacci(45)/Lucas(20)/(1/2+sqrt(5)/2)^17 2100951940243467 a004 Fibonacci(43)/Lucas(20)/(1/2+sqrt(5)/2)^15 2100951940243467 a004 Fibonacci(41)/Lucas(20)/(1/2+sqrt(5)/2)^13 2100951940243467 a001 6765/141422324*2537720636^(3/5) 2100951940243467 a001 213929547645/10182505537 2100951940243467 a001 6765/141422324*45537549124^(9/17) 2100951940243467 a001 6765/141422324*14662949395604^(3/7) 2100951940243467 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^27/Lucas(39) 2100951940243467 a001 6765/141422324*192900153618^(1/2) 2100951940243467 a001 6765/141422324*10749957122^(9/16) 2100951940243467 a001 6765/141422324*599074578^(9/14) 2100951940243467 a004 Fibonacci(39)/Lucas(20)/(1/2+sqrt(5)/2)^11 2100951940243467 a001 6765/228826127*87403803^(14/19) 2100951940243467 a001 2255/199691526*87403803^(15/19) 2100951940243467 a001 6765/1568397607*87403803^(16/19) 2100951940243467 a001 2255/1368706081*87403803^(17/19) 2100951940243467 a001 6765/10749957122*87403803^(18/19) 2100951940243467 a004 Fibonacci(20)*Lucas(38)/(1/2+sqrt(5)/2)^50 2100951940243468 a001 6765/54018521*2537720636^(5/9) 2100951940243468 a001 163427632005/7778742049 2100951940243468 a001 6765/54018521*312119004989^(5/11) 2100951940243468 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^25/Lucas(37) 2100951940243468 a001 6765/54018521*3461452808002^(5/12) 2100951940243468 a001 6765/54018521*28143753123^(1/2) 2100951940243468 a001 6765/54018521*228826127^(5/8) 2100951940243468 a004 Fibonacci(37)/Lucas(20)/(1/2+sqrt(5)/2)^9 2100951940243468 a001 2255/29134601*33385282^(13/18) 2100951940243468 a001 6765/228826127*33385282^(7/9) 2100951940243468 a001 6765/141422324*33385282^(3/4) 2100951940243468 a001 2255/199691526*33385282^(5/6) 2100951940243468 a001 6765/1568397607*33385282^(8/9) 2100951940243469 a001 615/230701876*33385282^(11/12) 2100951940243469 a001 2255/1368706081*33385282^(17/18) 2100951940243469 a004 Fibonacci(20)*Lucas(36)/(1/2+sqrt(5)/2)^48 2100951940243472 a001 62423800725/2971215073 2100951940243472 a001 615/1875749*(1/2+1/2*5^(1/2))^23 2100951940243472 a004 Fibonacci(20)*(1/2+sqrt(5)/2)^23/Lucas(35) 2100951940243472 a001 615/1875749*4106118243^(1/2) 2100951940243472 a004 Fibonacci(35)/Lucas(20)/(1/2+sqrt(5)/2)^7 2100951940243474 a001 6765/33385282*12752043^(12/17) 2100951940243476 a001 2255/29134601*12752043^(13/17) 2100951940243477 a001 6765/228826127*12752043^(14/17) 2100951940243478 a001 2255/199691526*12752043^(15/17) 2100951940243479 a001 6765/1568397607*12752043^(16/17) 2100951940243479 a001 6765/7881196*7881196^(7/11) 2100951940243480 a004 Fibonacci(20)*Lucas(34)/(1/2+sqrt(5)/2)^46 2100951940243498 a001 6765/7881196*20633239^(3/5) 2100951940243501 a001 6765/7881196*141422324^(7/13) 2100951940243501 a001 2384377017/113490317 2100951940243501 a001 6765/7881196*2537720636^(7/15) 2100951940243501 a001 6765/7881196*17393796001^(3/7) 2100951940243501 a001 6765/7881196*45537549124^(7/17) 2100951940243501 a001 6765/7881196*14662949395604^(1/3) 2100951940243501 a001 6765/7881196*(1/2+1/2*5^(1/2))^21 2100951940243501 a001 6765/7881196*192900153618^(7/18) 2100951940243501 a001 6765/7881196*10749957122^(7/16) 2100951940243501 a001 6765/7881196*599074578^(1/2) 2100951940243501 a004 Fibonacci(33)/Lucas(20)/(1/2+sqrt(5)/2)^5 2100951940243502 a001 6765/7881196*33385282^(7/12) 2100951940243515 a001 2255/4250681*4870847^(11/16) 2100951940243531 a001 6765/33385282*4870847^(3/4) 2100951940243538 a001 2255/29134601*4870847^(13/16) 2100951940243544 a001 6765/228826127*4870847^(7/8) 2100951940243550 a001 2255/199691526*4870847^(15/16) 2100951940243555 a004 Fibonacci(20)*Lucas(32)/(1/2+sqrt(5)/2)^44 2100951940243699 a001 9107509785/433494437 2100951940243699 a001 6765/3010349*817138163596^(1/3) 2100951940243699 a001 6765/3010349*(1/2+1/2*5^(1/2))^19 2100951940243699 a004 Fibonacci(31)/Lucas(20)/(1/2+sqrt(5)/2)^3 2100951940243699 a001 6765/3010349*87403803^(1/2) 2100951940243783 a001 6765/4870847*1860498^(2/3) 2100951940243899 a001 2255/4250681*1860498^(11/15) 2100951940243925 a001 6765/7881196*1860498^(7/10) 2100951940243950 a001 6765/33385282*1860498^(4/5) 2100951940243973 a001 6765/54018521*1860498^(5/6) 2100951940243993 a001 2255/29134601*1860498^(13/15) 2100951940244013 a001 6765/141422324*1860498^(9/10) 2100951940244033 a001 6765/228826127*1860498^(14/15) 2100951940244074 a004 Fibonacci(20)*Lucas(30)/(1/2+sqrt(5)/2)^42 2100951940244537 a001 832040/64079*3571^(1/17) 2100951940245056 a001 3478759185/165580141 2100951940245056 a001 6765/1149851*45537549124^(1/3) 2100951940245056 a001 6765/1149851*(1/2+1/2*5^(1/2))^17 2100951940245056 a004 Fibonacci(29)/Lucas(20)/(1/2+sqrt(5)/2) 2100951940245062 a001 6765/1149851*12752043^(1/2) 2100951940245534 a001 55/15126*710647^(9/14) 2100951940246350 a001 6765/4870847*710647^(5/7) 2100951940246621 a001 6765/7881196*710647^(3/4) 2100951940246723 a001 2255/4250681*710647^(11/14) 2100951940247031 a001 6765/33385282*710647^(6/7) 2100951940247330 a001 2255/29134601*710647^(13/14) 2100951940247627 a004 Fibonacci(20)*Lucas(28)/(1/2+sqrt(5)/2)^40 2100951940248307 a001 6765/439204*439204^(5/9) 2100951940251379 a001 75025/15127*64079^(3/23) 2100951940254343 a001 6765/439204*7881196^(5/11) 2100951940254356 a001 6765/439204*20633239^(3/7) 2100951940254358 a001 664383885/31622993 2100951940254358 a001 6765/439204*141422324^(5/13) 2100951940254358 a001 6765/439204*2537720636^(1/3) 2100951940254358 a001 6765/439204*45537549124^(5/17) 2100951940254358 a001 6765/439204*312119004989^(3/11) 2100951940254358 a001 6765/439204*14662949395604^(5/21) 2100951940254358 a001 6765/439204*(1/2+1/2*5^(1/2))^15 2100951940254358 a001 6765/439204*192900153618^(5/18) 2100951940254358 a001 6765/439204*28143753123^(3/10) 2100951940254358 a001 6765/439204*10749957122^(5/16) 2100951940254358 a001 6765/439204*599074578^(5/14) 2100951940254358 a001 6765/439204*228826127^(3/8) 2100951940254358 a001 98209/15127+98209/15127*5^(1/2) 2100951940254359 a001 6765/439204*33385282^(5/12) 2100951940254662 a001 6765/439204*1860498^(1/2) 2100951940256854 a001 6765/710647*271443^(8/13) 2100951940262501 a001 196418/15127*103682^(1/24) 2100951940262600 a001 55/15126*271443^(9/13) 2100951940265312 a001 6765/4870847*271443^(10/13) 2100951940267581 a001 2255/4250681*271443^(11/13) 2100951940269786 a001 6765/33385282*271443^(12/13) 2100951940271981 a004 Fibonacci(20)*Lucas(26)/(1/2+sqrt(5)/2)^38 2100951940291584 a001 6624/2161*39603^(2/11) 2100951940299181 a001 15456/13201*9349^(6/19) 2100951940315247 a001 196418/15127*39603^(1/22) 2100951940316907 a001 75025/15127*439204^(1/9) 2100951940318115 a001 75025/15127*7881196^(1/11) 2100951940318117 a001 507544125/24157817 2100951940318118 a001 615/15251*141422324^(1/3) 2100951940318118 a001 615/15251*(1/2+1/2*5^(1/2))^13 2100951940318118 a001 615/15251*73681302247^(1/4) 2100951940318118 a001 75025/15127*141422324^(1/13) 2100951940318118 a001 75025/15127*2537720636^(1/15) 2100951940318118 a001 75025/15127*45537549124^(1/17) 2100951940318118 a001 75025/15127*14662949395604^(1/21) 2100951940318118 a001 75025/15127*(1/2+1/2*5^(1/2))^3 2100951940318118 a001 75025/15127*192900153618^(1/18) 2100951940318118 a001 75025/15127*10749957122^(1/16) 2100951940318118 a001 75025/15127*599074578^(1/14) 2100951940318118 a001 75025/15127*33385282^(1/12) 2100951940318178 a001 75025/15127*1860498^(1/10) 2100951940327257 a001 28657/64079*9349^(8/19) 2100951940328958 a001 2255/90481*103682^(7/12) 2100951940332375 a001 615/15251*271443^(1/2) 2100951940336730 a001 121393/15127*39603^(1/11) 2100951940342547 a001 75025/15127*103682^(1/8) 2100951940369599 a001 6765/710647*103682^(2/3) 2100951940376507 a001 6765/439204*103682^(5/8) 2100951940383491 a001 6765/1149851*103682^(17/24) 2100951940389438 a001 55/15126*103682^(3/4) 2100951940398421 a001 6765/3010349*103682^(19/24) 2100951940406243 a001 6765/4870847*103682^(5/6) 2100951940414509 a001 6765/7881196*103682^(7/8) 2100951940422606 a001 2255/4250681*103682^(11/12) 2100951940423980 a001 615/15251*103682^(13/24) 2100951940430767 a001 615/1875749*103682^(23/24) 2100951940438905 a004 Fibonacci(20)*Lucas(24)/(1/2+sqrt(5)/2)^36 2100951940448264 a001 75025/103682*9349^(7/19) 2100951940500784 a001 75025/15127*39603^(3/22) 2100951940510422 a001 6765/64079*64079^(11/23) 2100951940551428 a001 196418/271443*9349^(7/19) 2100951940566480 a001 514229/710647*9349^(7/19) 2100951940568676 a001 1346269/1860498*9349^(7/19) 2100951940568996 a001 3524578/4870847*9349^(7/19) 2100951940569043 a001 9227465/12752043*9349^(7/19) 2100951940569050 a001 24157817/33385282*9349^(7/19) 2100951940569051 a001 63245986/87403803*9349^(7/19) 2100951940569051 a001 165580141/228826127*9349^(7/19) 2100951940569051 a001 433494437/599074578*9349^(7/19) 2100951940569051 a001 1134903170/1568397607*9349^(7/19) 2100951940569051 a001 2971215073/4106118243*9349^(7/19) 2100951940569051 a001 7778742049/10749957122*9349^(7/19) 2100951940569051 a001 20365011074/28143753123*9349^(7/19) 2100951940569051 a001 53316291173/73681302247*9349^(7/19) 2100951940569051 a001 139583862445/192900153618*9349^(7/19) 2100951940569051 a001 10610209857723/14662949395604*9349^(7/19) 2100951940569051 a001 591286729879/817138163596*9349^(7/19) 2100951940569051 a001 225851433717/312119004989*9349^(7/19) 2100951940569051 a001 86267571272/119218851371*9349^(7/19) 2100951940569051 a001 32951280099/45537549124*9349^(7/19) 2100951940569051 a001 12586269025/17393796001*9349^(7/19) 2100951940569051 a001 4807526976/6643838879*9349^(7/19) 2100951940569051 a001 1836311903/2537720636*9349^(7/19) 2100951940569051 a001 701408733/969323029*9349^(7/19) 2100951940569051 a001 267914296/370248451*9349^(7/19) 2100951940569051 a001 102334155/141422324*9349^(7/19) 2100951940569052 a001 39088169/54018521*9349^(7/19) 2100951940569054 a001 14930352/20633239*9349^(7/19) 2100951940569072 a001 5702887/7881196*9349^(7/19) 2100951940569194 a001 2178309/3010349*9349^(7/19) 2100951940570033 a001 832040/1149851*9349^(7/19) 2100951940575782 a001 317811/439204*9349^(7/19) 2100951940615188 a001 121393/167761*9349^(7/19) 2100951940643899 a001 28657/15127*64079^(5/23) 2100951940713430 a001 196418/15127*15127^(1/20) 2100951940740200 a001 28657/15127*167761^(1/5) 2100951940755119 a001 6765/64079*7881196^(1/3) 2100951940755126 a001 38772921/1845493 2100951940755130 a001 28657/15127*20633239^(1/7) 2100951940755131 a001 6765/64079*312119004989^(1/5) 2100951940755131 a001 6765/64079*(1/2+1/2*5^(1/2))^11 2100951940755131 a001 6765/64079*1568397607^(1/4) 2100951940755131 a001 28657/15127*2537720636^(1/9) 2100951940755131 a001 28657/15127*312119004989^(1/11) 2100951940755131 a001 28657/15127*(1/2+1/2*5^(1/2))^5 2100951940755131 a001 28657/15127*28143753123^(1/10) 2100951940755131 a001 28657/15127*228826127^(1/8) 2100951940755232 a001 28657/15127*1860498^(1/6) 2100951940778694 a001 6765/103682*39603^(6/11) 2100951940792346 a001 10946/64079*9349^(10/19) 2100951940795847 a001 28657/15127*103682^(5/24) 2100951940844706 a001 6765/64079*103682^(11/24) 2100951940885277 a001 46368/64079*9349^(7/19) 2100951941059575 a001 28657/15127*39603^(5/22) 2100951941067396 a001 2255/90481*39603^(7/11) 2100951941109672 a001 615/15251*39603^(13/22) 2100951941133096 a001 121393/15127*15127^(1/10) 2100951941167690 a001 6765/439204*39603^(15/22) 2100951941213527 a001 6765/710647*39603^(8/11) 2100951941280165 a001 6765/1149851*39603^(17/22) 2100951941338858 a001 55/15126*39603^(9/11) 2100951941400585 a001 6765/3010349*39603^(19/22) 2100951941424907 a001 6765/64079*39603^(1/2) 2100951941461154 a001 6765/4870847*39603^(10/11) 2100951941522165 a001 6765/7881196*39603^(21/22) 2100951941583020 a004 Fibonacci(20)*Lucas(22)/(1/2+sqrt(5)/2)^34 2100951941610220 a001 121393/103682*9349^(6/19) 2100951941658344 a001 17711/15127*15127^(3/10) 2100951941695333 a001 75025/15127*15127^(3/20) 2100951941801498 a001 105937/90481*9349^(6/19) 2100951941829405 a001 832040/710647*9349^(6/19) 2100951941833477 a001 726103/620166*9349^(6/19) 2100951941834071 a001 5702887/4870847*9349^(6/19) 2100951941834158 a001 4976784/4250681*9349^(6/19) 2100951941834170 a001 39088169/33385282*9349^(6/19) 2100951941834172 a001 34111385/29134601*9349^(6/19) 2100951941834172 a001 267914296/228826127*9349^(6/19) 2100951941834172 a001 233802911/199691526*9349^(6/19) 2100951941834172 a001 1836311903/1568397607*9349^(6/19) 2100951941834172 a001 1602508992/1368706081*9349^(6/19) 2100951941834172 a001 12586269025/10749957122*9349^(6/19) 2100951941834172 a001 10983760033/9381251041*9349^(6/19) 2100951941834172 a001 86267571272/73681302247*9349^(6/19) 2100951941834172 a001 75283811239/64300051206*9349^(6/19) 2100951941834172 a001 2504730781961/2139295485799*9349^(6/19) 2100951941834172 a001 365435296162/312119004989*9349^(6/19) 2100951941834172 a001 139583862445/119218851371*9349^(6/19) 2100951941834172 a001 53316291173/45537549124*9349^(6/19) 2100951941834172 a001 20365011074/17393796001*9349^(6/19) 2100951941834172 a001 7778742049/6643838879*9349^(6/19) 2100951941834172 a001 2971215073/2537720636*9349^(6/19) 2100951941834172 a001 1134903170/969323029*9349^(6/19) 2100951941834172 a001 433494437/370248451*9349^(6/19) 2100951941834173 a001 165580141/141422324*9349^(6/19) 2100951941834173 a001 63245986/54018521*9349^(6/19) 2100951941834178 a001 24157817/20633239*9349^(6/19) 2100951941834211 a001 9227465/7881196*9349^(6/19) 2100951941834391 a001 75025/39603*9349^(5/19) 2100951941834438 a001 3524578/3010349*9349^(6/19) 2100951941835993 a001 1346269/1149851*9349^(6/19) 2100951941846653 a001 514229/439204*9349^(6/19) 2100951941884315 a001 6624/2161*15127^(1/5) 2100951941919715 a001 196418/167761*9349^(6/19) 2100951941996963 a001 2584/9349*5778^(1/2) 2100951942247464 a001 6765/24476*24476^(3/7) 2100951942404109 a001 2584/271443*5778^(8/9) 2100951942420487 a001 75025/64079*9349^(6/19) 2100951942581464 a001 10946/15127*24476^(1/3) 2100951942736494 a001 17711/24476*9349^(7/19) 2100951942914747 a001 98209/51841*9349^(5/19) 2100951942996348 a001 121393/39603*9349^(4/19) 2100951943050489 a001 28657/15127*15127^(1/4) 2100951943072369 a001 514229/271443*9349^(5/19) 2100951943095366 a001 1346269/710647*9349^(5/19) 2100951943098721 a001 1762289/930249*9349^(5/19) 2100951943099210 a001 9227465/4870847*9349^(5/19) 2100951943099282 a001 24157817/12752043*9349^(5/19) 2100951943099292 a001 31622993/16692641*9349^(5/19) 2100951943099294 a001 165580141/87403803*9349^(5/19) 2100951943099294 a001 433494437/228826127*9349^(5/19) 2100951943099294 a001 567451585/299537289*9349^(5/19) 2100951943099294 a001 2971215073/1568397607*9349^(5/19) 2100951943099294 a001 7778742049/4106118243*9349^(5/19) 2100951943099294 a001 10182505537/5374978561*9349^(5/19) 2100951943099294 a001 53316291173/28143753123*9349^(5/19) 2100951943099294 a001 139583862445/73681302247*9349^(5/19) 2100951943099294 a001 182717648081/96450076809*9349^(5/19) 2100951943099294 a001 956722026041/505019158607*9349^(5/19) 2100951943099294 a001 10610209857723/5600748293801*9349^(5/19) 2100951943099294 a001 591286729879/312119004989*9349^(5/19) 2100951943099294 a001 225851433717/119218851371*9349^(5/19) 2100951943099294 a001 21566892818/11384387281*9349^(5/19) 2100951943099294 a001 32951280099/17393796001*9349^(5/19) 2100951943099294 a001 12586269025/6643838879*9349^(5/19) 2100951943099294 a001 1201881744/634430159*9349^(5/19) 2100951943099294 a001 1836311903/969323029*9349^(5/19) 2100951943099294 a001 701408733/370248451*9349^(5/19) 2100951943099294 a001 66978574/35355581*9349^(5/19) 2100951943099294 a001 102334155/54018521*9349^(5/19) 2100951943099298 a001 39088169/20633239*9349^(5/19) 2100951943099326 a001 3732588/1970299*9349^(5/19) 2100951943099513 a001 5702887/3010349*9349^(5/19) 2100951943100794 a001 2178309/1149851*9349^(5/19) 2100951943109578 a001 208010/109801*9349^(5/19) 2100951943169784 a001 317811/167761*9349^(5/19) 2100951943236315 a001 10959/844*3571^(1/17) 2100951943494631 a001 2255/13201*15127^(1/2) 2100951943550246 a001 6765/24476*64079^(9/23) 2100951943582444 a001 121393/64079*9349^(5/19) 2100951943594739 a001 10946/15127*64079^(7/23) 2100951943746832 a001 6765/24476*439204^(1/3) 2100951943750429 a001 37024845/1762289 2100951943750453 a001 6765/24476*7881196^(3/11) 2100951943750462 a001 10946/15127*20633239^(1/5) 2100951943750462 a001 6765/24476*141422324^(3/13) 2100951943750462 a001 6765/24476*2537720636^(1/5) 2100951943750462 a001 6765/24476*45537549124^(3/17) 2100951943750462 a001 6765/24476*14662949395604^(1/7) 2100951943750462 a001 6765/24476*(1/2+1/2*5^(1/2))^9 2100951943750462 a001 6765/24476*192900153618^(1/6) 2100951943750462 a001 6765/24476*10749957122^(3/16) 2100951943750462 a001 6765/24476*599074578^(3/14) 2100951943750462 a001 10946/15127*17393796001^(1/7) 2100951943750462 a001 10946/15127*14662949395604^(1/9) 2100951943750462 a001 10946/15127*(1/2+1/2*5^(1/2))^7 2100951943750462 a001 10946/15127*599074578^(1/6) 2100951943750463 a001 6765/24476*33385282^(1/4) 2100951943750496 a001 196418/15127*5778^(1/18) 2100951943750645 a001 6765/24476*1860498^(3/10) 2100951943751503 a001 10946/15127*710647^(1/4) 2100951943807465 a001 10946/15127*103682^(7/24) 2100951943823752 a001 6765/24476*103682^(3/8) 2100951944164817 a001 317811/103682*9349^(4/19) 2100951944176684 a001 10946/15127*39603^(7/22) 2100951944192506 a001 46368/9349*3571^(3/17) 2100951944298461 a001 6765/24476*39603^(9/22) 2100951944300875 a001 196418/39603*9349^(3/19) 2100951944335294 a001 832040/271443*9349^(4/19) 2100951944360166 a001 311187/101521*9349^(4/19) 2100951944363795 a001 5702887/1860498*9349^(4/19) 2100951944364325 a001 14930352/4870847*9349^(4/19) 2100951944364402 a001 39088169/12752043*9349^(4/19) 2100951944364413 a001 14619165/4769326*9349^(4/19) 2100951944364415 a001 267914296/87403803*9349^(4/19) 2100951944364415 a001 701408733/228826127*9349^(4/19) 2100951944364415 a001 1836311903/599074578*9349^(4/19) 2100951944364415 a001 686789568/224056801*9349^(4/19) 2100951944364415 a001 12586269025/4106118243*9349^(4/19) 2100951944364415 a001 32951280099/10749957122*9349^(4/19) 2100951944364415 a001 86267571272/28143753123*9349^(4/19) 2100951944364415 a001 32264490531/10525900321*9349^(4/19) 2100951944364415 a001 591286729879/192900153618*9349^(4/19) 2100951944364415 a001 1515744265389/494493258286*9349^(4/19) 2100951944364415 a001 2504730781961/817138163596*9349^(4/19) 2100951944364415 a001 956722026041/312119004989*9349^(4/19) 2100951944364415 a001 365435296162/119218851371*9349^(4/19) 2100951944364415 a001 139583862445/45537549124*9349^(4/19) 2100951944364415 a001 53316291173/17393796001*9349^(4/19) 2100951944364415 a001 20365011074/6643838879*9349^(4/19) 2100951944364415 a001 7778742049/2537720636*9349^(4/19) 2100951944364415 a001 2971215073/969323029*9349^(4/19) 2100951944364415 a001 1134903170/370248451*9349^(4/19) 2100951944364415 a001 433494437/141422324*9349^(4/19) 2100951944364416 a001 165580141/54018521*9349^(4/19) 2100951944364420 a001 63245986/20633239*9349^(4/19) 2100951944364450 a001 24157817/7881196*9349^(4/19) 2100951944364652 a001 9227465/3010349*9349^(4/19) 2100951944366038 a001 3524578/1149851*9349^(4/19) 2100951944375538 a001 1346269/439204*9349^(4/19) 2100951944440655 a001 514229/167761*9349^(4/19) 2100951944578352 a004 Fibonacci(22)*Lucas(21)/(1/2+sqrt(5)/2)^35 2100951944745339 a001 17711/12752043*24476^(20/21) 2100951944886970 a001 196418/64079*9349^(4/19) 2100951944912385 a001 89/39604*24476^(19/21) 2100951945079263 a001 17711/4870847*24476^(6/7) 2100951945246583 a001 17711/3010349*24476^(17/21) 2100951945409796 a001 17711/39603*24476^(8/21) 2100951945412744 a001 17711/1860498*24476^(16/21) 2100951945435687 a001 514229/103682*9349^(3/19) 2100951945550945 a001 105937/13201*9349^(2/19) 2100951945556889 a001 6765/103682*15127^(3/5) 2100951945581940 a001 17711/1149851*24476^(5/7) 2100951945601254 a001 1346269/271443*9349^(3/19) 2100951945625410 a001 3524578/710647*9349^(3/19) 2100951945628935 a001 9227465/1860498*9349^(3/19) 2100951945629449 a001 24157817/4870847*9349^(3/19) 2100951945629524 a001 63245986/12752043*9349^(3/19) 2100951945629535 a001 165580141/33385282*9349^(3/19) 2100951945629536 a001 433494437/87403803*9349^(3/19) 2100951945629537 a001 1134903170/228826127*9349^(3/19) 2100951945629537 a001 2971215073/599074578*9349^(3/19) 2100951945629537 a001 7778742049/1568397607*9349^(3/19) 2100951945629537 a001 20365011074/4106118243*9349^(3/19) 2100951945629537 a001 53316291173/10749957122*9349^(3/19) 2100951945629537 a001 139583862445/28143753123*9349^(3/19) 2100951945629537 a001 365435296162/73681302247*9349^(3/19) 2100951945629537 a001 956722026041/192900153618*9349^(3/19) 2100951945629537 a001 10610209857723/2139295485799*9349^(3/19) 2100951945629537 a001 4052739537881/817138163596*9349^(3/19) 2100951945629537 a001 140728068720/28374454999*9349^(3/19) 2100951945629537 a001 591286729879/119218851371*9349^(3/19) 2100951945629537 a001 225851433717/45537549124*9349^(3/19) 2100951945629537 a001 86267571272/17393796001*9349^(3/19) 2100951945629537 a001 32951280099/6643838879*9349^(3/19) 2100951945629537 a001 1144206275/230701876*9349^(3/19) 2100951945629537 a001 4807526976/969323029*9349^(3/19) 2100951945629537 a001 1836311903/370248451*9349^(3/19) 2100951945629537 a001 701408733/141422324*9349^(3/19) 2100951945629537 a001 267914296/54018521*9349^(3/19) 2100951945629541 a001 9303105/1875749*9349^(3/19) 2100951945629570 a001 39088169/7881196*9349^(3/19) 2100951945629767 a001 14930352/3010349*9349^(3/19) 2100951945631113 a001 5702887/1149851*9349^(3/19) 2100951945640339 a001 2178309/439204*9349^(3/19) 2100951945703580 a001 75640/15251*9349^(3/19) 2100951945722467 a004 Fibonacci(24)*Lucas(21)/(1/2+sqrt(5)/2)^37 2100951945743190 a001 17711/710647*24476^(2/3) 2100951945804919 a001 6765/64079*15127^(11/20) 2100951945852832 a001 28657/24476*9349^(6/19) 2100951945889391 a004 Fibonacci(26)*Lucas(21)/(1/2+sqrt(5)/2)^39 2100951945889465 a001 144/103681*24476^(20/21) 2100951945913745 a004 Fibonacci(28)*Lucas(21)/(1/2+sqrt(5)/2)^41 2100951945917298 a004 Fibonacci(30)*Lucas(21)/(1/2+sqrt(5)/2)^43 2100951945917816 a004 Fibonacci(32)*Lucas(21)/(1/2+sqrt(5)/2)^45 2100951945917892 a004 Fibonacci(34)*Lucas(21)/(1/2+sqrt(5)/2)^47 2100951945917903 a004 Fibonacci(36)*Lucas(21)/(1/2+sqrt(5)/2)^49 2100951945917905 a004 Fibonacci(38)*Lucas(21)/(1/2+sqrt(5)/2)^51 2100951945917905 a004 Fibonacci(40)*Lucas(21)/(1/2+sqrt(5)/2)^53 2100951945917905 a004 Fibonacci(42)*Lucas(21)/(1/2+sqrt(5)/2)^55 2100951945917905 a004 Fibonacci(44)*Lucas(21)/(1/2+sqrt(5)/2)^57 2100951945917905 a004 Fibonacci(46)*Lucas(21)/(1/2+sqrt(5)/2)^59 2100951945917905 a004 Fibonacci(48)*Lucas(21)/(1/2+sqrt(5)/2)^61 2100951945917905 a004 Fibonacci(50)*Lucas(21)/(1/2+sqrt(5)/2)^63 2100951945917905 a004 Fibonacci(52)*Lucas(21)/(1/2+sqrt(5)/2)^65 2100951945917905 a004 Fibonacci(54)*Lucas(21)/(1/2+sqrt(5)/2)^67 2100951945917905 a004 Fibonacci(56)*Lucas(21)/(1/2+sqrt(5)/2)^69 2100951945917905 a004 Fibonacci(58)*Lucas(21)/(1/2+sqrt(5)/2)^71 2100951945917905 a004 Fibonacci(60)*Lucas(21)/(1/2+sqrt(5)/2)^73 2100951945917905 a004 Fibonacci(62)*Lucas(21)/(1/2+sqrt(5)/2)^75 2100951945917905 a004 Fibonacci(64)*Lucas(21)/(1/2+sqrt(5)/2)^77 2100951945917905 a004 Fibonacci(66)*Lucas(21)/(1/2+sqrt(5)/2)^79 2100951945917905 a004 Fibonacci(68)*Lucas(21)/(1/2+sqrt(5)/2)^81 2100951945917905 a004 Fibonacci(70)*Lucas(21)/(1/2+sqrt(5)/2)^83 2100951945917905 a004 Fibonacci(72)*Lucas(21)/(1/2+sqrt(5)/2)^85 2100951945917905 a004 Fibonacci(74)*Lucas(21)/(1/2+sqrt(5)/2)^87 2100951945917905 a004 Fibonacci(76)*Lucas(21)/(1/2+sqrt(5)/2)^89 2100951945917905 a004 Fibonacci(78)*Lucas(21)/(1/2+sqrt(5)/2)^91 2100951945917905 a004 Fibonacci(80)*Lucas(21)/(1/2+sqrt(5)/2)^93 2100951945917905 a004 Fibonacci(82)*Lucas(21)/(1/2+sqrt(5)/2)^95 2100951945917905 a004 Fibonacci(84)*Lucas(21)/(1/2+sqrt(5)/2)^97 2100951945917905 a004 Fibonacci(86)*Lucas(21)/(1/2+sqrt(5)/2)^99 2100951945917905 a004 Fibonacci(87)*Lucas(21)/(1/2+sqrt(5)/2)^100 2100951945917905 a004 Fibonacci(85)*Lucas(21)/(1/2+sqrt(5)/2)^98 2100951945917905 a004 Fibonacci(83)*Lucas(21)/(1/2+sqrt(5)/2)^96 2100951945917905 a004 Fibonacci(81)*Lucas(21)/(1/2+sqrt(5)/2)^94 2100951945917905 a004 Fibonacci(79)*Lucas(21)/(1/2+sqrt(5)/2)^92 2100951945917905 a004 Fibonacci(77)*Lucas(21)/(1/2+sqrt(5)/2)^90 2100951945917905 a004 Fibonacci(75)*Lucas(21)/(1/2+sqrt(5)/2)^88 2100951945917905 a004 Fibonacci(73)*Lucas(21)/(1/2+sqrt(5)/2)^86 2100951945917905 a004 Fibonacci(71)*Lucas(21)/(1/2+sqrt(5)/2)^84 2100951945917905 a004 Fibonacci(69)*Lucas(21)/(1/2+sqrt(5)/2)^82 2100951945917905 a004 Fibonacci(67)*Lucas(21)/(1/2+sqrt(5)/2)^80 2100951945917905 a004 Fibonacci(65)*Lucas(21)/(1/2+sqrt(5)/2)^78 2100951945917905 a004 Fibonacci(63)*Lucas(21)/(1/2+sqrt(5)/2)^76 2100951945917905 a004 Fibonacci(61)*Lucas(21)/(1/2+sqrt(5)/2)^74 2100951945917905 a004 Fibonacci(59)*Lucas(21)/(1/2+sqrt(5)/2)^72 2100951945917905 a004 Fibonacci(57)*Lucas(21)/(1/2+sqrt(5)/2)^70 2100951945917905 a004 Fibonacci(55)*Lucas(21)/(1/2+sqrt(5)/2)^68 2100951945917905 a004 Fibonacci(53)*Lucas(21)/(1/2+sqrt(5)/2)^66 2100951945917905 a004 Fibonacci(51)*Lucas(21)/(1/2+sqrt(5)/2)^64 2100951945917905 a004 Fibonacci(49)*Lucas(21)/(1/2+sqrt(5)/2)^62 2100951945917905 a004 Fibonacci(47)*Lucas(21)/(1/2+sqrt(5)/2)^60 2100951945917905 a004 Fibonacci(45)*Lucas(21)/(1/2+sqrt(5)/2)^58 2100951945917905 a004 Fibonacci(43)*Lucas(21)/(1/2+sqrt(5)/2)^56 2100951945917905 a001 1/5473*(1/2+1/2*5^(1/2))^29 2100951945917905 a004 Fibonacci(41)*Lucas(21)/(1/2+sqrt(5)/2)^54 2100951945917905 a004 Fibonacci(39)*Lucas(21)/(1/2+sqrt(5)/2)^52 2100951945917906 a004 Fibonacci(37)*Lucas(21)/(1/2+sqrt(5)/2)^50 2100951945917910 a004 Fibonacci(35)*Lucas(21)/(1/2+sqrt(5)/2)^48 2100951945917939 a004 Fibonacci(33)*Lucas(21)/(1/2+sqrt(5)/2)^46 2100951945918137 a004 Fibonacci(31)*Lucas(21)/(1/2+sqrt(5)/2)^44 2100951945919494 a004 Fibonacci(29)*Lucas(21)/(1/2+sqrt(5)/2)^42 2100951945925242 a001 17711/439204*24476^(13/21) 2100951945928796 a004 Fibonacci(27)*Lucas(21)/(1/2+sqrt(5)/2)^40 2100951945939652 a001 34/5779*5778^(17/18) 2100951945992556 a004 Fibonacci(25)*Lucas(21)/(1/2+sqrt(5)/2)^38 2100951946052836 a001 17711/271443*24476^(4/7) 2100951946056390 a001 121393/87403803*24476^(20/21) 2100951946056471 a001 46368/20633239*24476^(19/21) 2100951946080745 a001 317811/228826127*24476^(20/21) 2100951946084298 a001 416020/299537289*24476^(20/21) 2100951946084816 a001 311187/224056801*24476^(20/21) 2100951946084892 a001 5702887/4106118243*24476^(20/21) 2100951946084903 a001 7465176/5374978561*24476^(20/21) 2100951946084905 a001 39088169/28143753123*24476^(20/21) 2100951946084905 a001 14619165/10525900321*24476^(20/21) 2100951946084905 a001 133957148/96450076809*24476^(20/21) 2100951946084905 a001 701408733/505019158607*24476^(20/21) 2100951946084905 a001 1836311903/1322157322203*24476^(20/21) 2100951946084905 a001 14930208/10749853441*24476^(20/21) 2100951946084905 a001 12586269025/9062201101803*24476^(20/21) 2100951946084905 a001 32951280099/23725150497407*24476^(20/21) 2100951946084905 a001 10182505537/7331474697802*24476^(20/21) 2100951946084905 a001 7778742049/5600748293801*24476^(20/21) 2100951946084905 a001 2971215073/2139295485799*24476^(20/21) 2100951946084905 a001 567451585/408569081798*24476^(20/21) 2100951946084905 a001 433494437/312119004989*24476^(20/21) 2100951946084905 a001 165580141/119218851371*24476^(20/21) 2100951946084905 a001 31622993/22768774562*24476^(20/21) 2100951946084906 a001 24157817/17393796001*24476^(20/21) 2100951946084910 a001 9227465/6643838879*24476^(20/21) 2100951946084939 a001 1762289/1268860318*24476^(20/21) 2100951946085137 a001 1346269/969323029*24476^(20/21) 2100951946086494 a001 514229/370248451*24476^(20/21) 2100951946095796 a001 98209/70711162*24476^(20/21) 2100951946137040 a001 317811/64079*9349^(3/19) 2100951946159556 a001 75025/54018521*24476^(20/21) 2100951946219911 a001 17711/103682*24476^(10/21) 2100951946223391 a001 121393/54018521*24476^(19/21) 2100951946223453 a001 15456/4250681*24476^(6/7) 2100951946247745 a001 317811/141422324*24476^(19/21) 2100951946251298 a001 832040/370248451*24476^(19/21) 2100951946251816 a001 2178309/969323029*24476^(19/21) 2100951946251892 a001 5702887/2537720636*24476^(19/21) 2100951946251903 a001 14930352/6643838879*24476^(19/21) 2100951946251904 a001 39088169/17393796001*24476^(19/21) 2100951946251905 a001 102334155/45537549124*24476^(19/21) 2100951946251905 a001 267914296/119218851371*24476^(19/21) 2100951946251905 a001 3524667/1568437211*24476^(19/21) 2100951946251905 a001 1836311903/817138163596*24476^(19/21) 2100951946251905 a001 4807526976/2139295485799*24476^(19/21) 2100951946251905 a001 12586269025/5600748293801*24476^(19/21) 2100951946251905 a001 32951280099/14662949395604*24476^(19/21) 2100951946251905 a001 53316291173/23725150497407*24476^(19/21) 2100951946251905 a001 20365011074/9062201101803*24476^(19/21) 2100951946251905 a001 7778742049/3461452808002*24476^(19/21) 2100951946251905 a001 2971215073/1322157322203*24476^(19/21) 2100951946251905 a001 1134903170/505019158607*24476^(19/21) 2100951946251905 a001 433494437/192900153618*24476^(19/21) 2100951946251905 a001 165580141/73681302247*24476^(19/21) 2100951946251905 a001 63245986/28143753123*24476^(19/21) 2100951946251905 a001 24157817/10749957122*24476^(19/21) 2100951946251910 a001 9227465/4106118243*24476^(19/21) 2100951946251938 a001 3524578/1568397607*24476^(19/21) 2100951946252136 a001 1346269/599074578*24476^(19/21) 2100951946253494 a001 514229/228826127*24476^(19/21) 2100951946262796 a001 196418/87403803*24476^(19/21) 2100951946286050 a001 615/15251*15127^(13/20) 2100951946317921 a001 5473/12238*9349^(8/19) 2100951946323001 a001 17711/167761*24476^(11/21) 2100951946326553 a001 75025/33385282*24476^(19/21) 2100951946390388 a001 121393/33385282*24476^(6/7) 2100951946390500 a001 11592/1970299*24476^(17/21) 2100951946410851 a001 11592/6119*9349^(5/19) 2100951946414744 a001 105937/29134601*24476^(6/7) 2100951946418297 a001 832040/228826127*24476^(6/7) 2100951946418816 a001 726103/199691526*24476^(6/7) 2100951946418891 a001 5702887/1568397607*24476^(6/7) 2100951946418902 a001 4976784/1368706081*24476^(6/7) 2100951946418904 a001 39088169/10749957122*24476^(6/7) 2100951946418904 a001 831985/228811001*24476^(6/7) 2100951946418904 a001 267914296/73681302247*24476^(6/7) 2100951946418904 a001 233802911/64300051206*24476^(6/7) 2100951946418904 a001 1836311903/505019158607*24476^(6/7) 2100951946418904 a001 1602508992/440719107401*24476^(6/7) 2100951946418904 a001 12586269025/3461452808002*24476^(6/7) 2100951946418904 a001 10983760033/3020733700601*24476^(6/7) 2100951946418904 a001 86267571272/23725150497407*24476^(6/7) 2100951946418904 a001 53316291173/14662949395604*24476^(6/7) 2100951946418904 a001 20365011074/5600748293801*24476^(6/7) 2100951946418904 a001 7778742049/2139295485799*24476^(6/7) 2100951946418904 a001 2971215073/817138163596*24476^(6/7) 2100951946418904 a001 1134903170/312119004989*24476^(6/7) 2100951946418904 a001 433494437/119218851371*24476^(6/7) 2100951946418904 a001 165580141/45537549124*24476^(6/7) 2100951946418904 a001 63245986/17393796001*24476^(6/7) 2100951946418905 a001 24157817/6643838879*24476^(6/7) 2100951946418909 a001 9227465/2537720636*24476^(6/7) 2100951946418938 a001 3524578/969323029*24476^(6/7) 2100951946419136 a001 1346269/370248451*24476^(6/7) 2100951946420494 a001 514229/141422324*24476^(6/7) 2100951946429569 a004 Fibonacci(23)*Lucas(21)/(1/2+sqrt(5)/2)^36 2100951946429796 a001 196418/54018521*24476^(6/7) 2100951946493560 a001 75025/20633239*24476^(6/7) 2100951946557377 a001 46368/4870847*24476^(16/21) 2100951946557395 a001 121393/20633239*24476^(17/21) 2100951946567824 a001 17711/39603*64079^(8/23) 2100951946581745 a001 317811/54018521*24476^(17/21) 2100951946585297 a001 208010/35355581*24476^(17/21) 2100951946585816 a001 2178309/370248451*24476^(17/21) 2100951946585891 a001 5702887/969323029*24476^(17/21) 2100951946585902 a001 196452/33391061*24476^(17/21) 2100951946585904 a001 39088169/6643838879*24476^(17/21) 2100951946585904 a001 102334155/17393796001*24476^(17/21) 2100951946585904 a001 66978574/11384387281*24476^(17/21) 2100951946585904 a001 701408733/119218851371*24476^(17/21) 2100951946585904 a001 1836311903/312119004989*24476^(17/21) 2100951946585904 a001 1201881744/204284540899*24476^(17/21) 2100951946585904 a001 12586269025/2139295485799*24476^(17/21) 2100951946585904 a001 32951280099/5600748293801*24476^(17/21) 2100951946585904 a001 1135099622/192933544679*24476^(17/21) 2100951946585904 a001 139583862445/23725150497407*24476^(17/21) 2100951946585904 a001 53316291173/9062201101803*24476^(17/21) 2100951946585904 a001 10182505537/1730726404001*24476^(17/21) 2100951946585904 a001 7778742049/1322157322203*24476^(17/21) 2100951946585904 a001 2971215073/505019158607*24476^(17/21) 2100951946585904 a001 567451585/96450076809*24476^(17/21) 2100951946585904 a001 433494437/73681302247*24476^(17/21) 2100951946585904 a001 165580141/28143753123*24476^(17/21) 2100951946585904 a001 31622993/5374978561*24476^(17/21) 2100951946585905 a001 24157817/4106118243*24476^(17/21) 2100951946585909 a001 9227465/1568397607*24476^(17/21) 2100951946585938 a001 1762289/299537289*24476^(17/21) 2100951946586136 a001 1346269/228826127*24476^(17/21) 2100951946587493 a001 514229/87403803*24476^(17/21) 2100951946596573 a001 28657/20633239*24476^(20/21) 2100951946596794 a001 98209/16692641*24476^(17/21) 2100951946641956 a001 2255/90481*15127^(7/10) 2100951946660542 a001 75025/12752043*24476^(17/21) 2100951946698613 a001 416020/51841*9349^(2/19) 2100951946724377 a001 121393/12752043*24476^(16/21) 2100951946724697 a001 46368/3010349*24476^(5/7) 2100951946745794 a001 17711/39603*(1/2+1/2*5^(1/2))^8 2100951946745794 a001 17711/39603*23725150497407^(1/8) 2100951946745794 a001 17711/39603*73681302247^(2/13) 2100951946745794 a001 17711/39603*10749957122^(1/6) 2100951946745794 a001 17711/39603*4106118243^(4/23) 2100951946745794 a001 17711/39603*1568397607^(2/11) 2100951946745794 a001 17711/39603*599074578^(4/21) 2100951946745794 a001 17711/39603*228826127^(1/5) 2100951946745794 a001 17711/39603*87403803^(4/19) 2100951946745795 a001 17711/39603*33385282^(2/9) 2100951946745796 a001 313679521/14930352 2100951946745797 a001 17711/39603*12752043^(4/17) 2100951946745817 a001 17711/39603*4870847^(1/4) 2100951946745956 a001 17711/39603*1860498^(4/15) 2100951946746983 a001 17711/39603*710647^(2/7) 2100951946748742 a001 317811/33385282*24476^(16/21) 2100951946752297 a001 832040/87403803*24476^(16/21) 2100951946752815 a001 46347/4868641*24476^(16/21) 2100951946752891 a001 5702887/599074578*24476^(16/21) 2100951946752902 a001 14930352/1568397607*24476^(16/21) 2100951946752904 a001 39088169/4106118243*24476^(16/21) 2100951946752904 a001 102334155/10749957122*24476^(16/21) 2100951946752904 a001 267914296/28143753123*24476^(16/21) 2100951946752904 a001 701408733/73681302247*24476^(16/21) 2100951946752904 a001 1836311903/192900153618*24476^(16/21) 2100951946752904 a001 102287808/10745088481*24476^(16/21) 2100951946752904 a001 12586269025/1322157322203*24476^(16/21) 2100951946752904 a001 32951280099/3461452808002*24476^(16/21) 2100951946752904 a001 86267571272/9062201101803*24476^(16/21) 2100951946752904 a001 225851433717/23725150497407*24476^(16/21) 2100951946752904 a001 139583862445/14662949395604*24476^(16/21) 2100951946752904 a001 53316291173/5600748293801*24476^(16/21) 2100951946752904 a001 20365011074/2139295485799*24476^(16/21) 2100951946752904 a001 7778742049/817138163596*24476^(16/21) 2100951946752904 a001 2971215073/312119004989*24476^(16/21) 2100951946752904 a001 1134903170/119218851371*24476^(16/21) 2100951946752904 a001 433494437/45537549124*24476^(16/21) 2100951946752904 a001 165580141/17393796001*24476^(16/21) 2100951946752904 a001 63245986/6643838879*24476^(16/21) 2100951946752905 a001 24157817/2537720636*24476^(16/21) 2100951946752909 a001 9227465/969323029*24476^(16/21) 2100951946752938 a001 3524578/370248451*24476^(16/21) 2100951946753136 a001 1346269/141422324*24476^(16/21) 2100951946754494 a001 514229/54018521*24476^(16/21) 2100951946754568 a001 17711/39603*271443^(4/13) 2100951946763555 a001 28657/12752043*24476^(19/21) 2100951946763800 a001 196418/20633239*24476^(16/21) 2100951946810940 a001 17711/39603*103682^(1/3) 2100951946821815 a001 514229/39603*9349^(1/19) 2100951946827589 a001 75025/7881196*24476^(16/21) 2100951946866055 a001 726103/90481*9349^(2/19) 2100951946887911 a001 15456/13201*24476^(2/7) 2100951946890485 a001 5702887/710647*9349^(2/19) 2100951946890858 a001 2576/103361*24476^(2/3) 2100951946891424 a001 121393/7881196*24476^(5/7) 2100951946894049 a001 829464/103361*9349^(2/19) 2100951946894569 a001 39088169/4870847*9349^(2/19) 2100951946894645 a001 34111385/4250681*9349^(2/19) 2100951946894656 a001 133957148/16692641*9349^(2/19) 2100951946894658 a001 233802911/29134601*9349^(2/19) 2100951946894658 a001 1836311903/228826127*9349^(2/19) 2100951946894658 a001 267084832/33281921*9349^(2/19) 2100951946894658 a001 12586269025/1568397607*9349^(2/19) 2100951946894658 a001 10983760033/1368706081*9349^(2/19) 2100951946894658 a001 43133785636/5374978561*9349^(2/19) 2100951946894658 a001 75283811239/9381251041*9349^(2/19) 2100951946894658 a001 591286729879/73681302247*9349^(2/19) 2100951946894658 a001 86000486440/10716675201*9349^(2/19) 2100951946894658 a001 4052739537881/505019158607*9349^(2/19) 2100951946894658 a001 3278735159921/408569081798*9349^(2/19) 2100951946894658 a001 2504730781961/312119004989*9349^(2/19) 2100951946894658 a001 956722026041/119218851371*9349^(2/19) 2100951946894658 a001 182717648081/22768774562*9349^(2/19) 2100951946894658 a001 139583862445/17393796001*9349^(2/19) 2100951946894658 a001 53316291173/6643838879*9349^(2/19) 2100951946894658 a001 10182505537/1268860318*9349^(2/19) 2100951946894658 a001 7778742049/969323029*9349^(2/19) 2100951946894658 a001 2971215073/370248451*9349^(2/19) 2100951946894658 a001 567451585/70711162*9349^(2/19) 2100951946894659 a001 433494437/54018521*9349^(2/19) 2100951946894663 a001 165580141/20633239*9349^(2/19) 2100951946894692 a001 31622993/3940598*9349^(2/19) 2100951946894890 a001 24157817/3010349*9349^(2/19) 2100951946896252 a001 9227465/1149851*9349^(2/19) 2100951946905583 a001 1762289/219602*9349^(2/19) 2100951946915749 a001 10959/711491*24476^(5/7) 2100951946919298 a001 832040/54018521*24476^(5/7) 2100951946919815 a001 2178309/141422324*24476^(5/7) 2100951946919891 a001 5702887/370248451*24476^(5/7) 2100951946919902 a001 14930352/969323029*24476^(5/7) 2100951946919903 a001 39088169/2537720636*24476^(5/7) 2100951946919904 a001 102334155/6643838879*24476^(5/7) 2100951946919904 a001 9238424/599786069*24476^(5/7) 2100951946919904 a001 701408733/45537549124*24476^(5/7) 2100951946919904 a001 1836311903/119218851371*24476^(5/7) 2100951946919904 a001 4807526976/312119004989*24476^(5/7) 2100951946919904 a001 12586269025/817138163596*24476^(5/7) 2100951946919904 a001 32951280099/2139295485799*24476^(5/7) 2100951946919904 a001 86267571272/5600748293801*24476^(5/7) 2100951946919904 a001 7787980473/505618944676*24476^(5/7) 2100951946919904 a001 365435296162/23725150497407*24476^(5/7) 2100951946919904 a001 139583862445/9062201101803*24476^(5/7) 2100951946919904 a001 53316291173/3461452808002*24476^(5/7) 2100951946919904 a001 20365011074/1322157322203*24476^(5/7) 2100951946919904 a001 7778742049/505019158607*24476^(5/7) 2100951946919904 a001 2971215073/192900153618*24476^(5/7) 2100951946919904 a001 1134903170/73681302247*24476^(5/7) 2100951946919904 a001 433494437/28143753123*24476^(5/7) 2100951946919904 a001 165580141/10749957122*24476^(5/7) 2100951946919904 a001 63245986/4106118243*24476^(5/7) 2100951946919904 a001 24157817/1568397607*24476^(5/7) 2100951946919909 a001 9227465/599074578*24476^(5/7) 2100951946919938 a001 3524578/228826127*24476^(5/7) 2100951946920135 a001 1346269/87403803*24476^(5/7) 2100951946921491 a001 514229/33385282*24476^(5/7) 2100951946930602 a001 28657/7881196*24476^(6/7) 2100951946930782 a001 196418/12752043*24476^(5/7) 2100951946963964 a001 10946/15127*15127^(7/20) 2100951946969540 a001 1346269/167761*9349^(2/19) 2100951946994466 a001 75025/4870847*24476^(5/7) 2100951947058301 a001 121393/4870847*24476^(2/3) 2100951947060054 a001 46368/1149851*24476^(13/21) 2100951947082730 a001 105937/4250681*24476^(2/3) 2100951947086295 a001 416020/16692641*24476^(2/3) 2100951947086815 a001 726103/29134601*24476^(2/3) 2100951947086891 a001 5702887/228826127*24476^(2/3) 2100951947086902 a001 829464/33281921*24476^(2/3) 2100951947086903 a001 39088169/1568397607*24476^(2/3) 2100951947086904 a001 34111385/1368706081*24476^(2/3) 2100951947086904 a001 133957148/5374978561*24476^(2/3) 2100951947086904 a001 233802911/9381251041*24476^(2/3) 2100951947086904 a001 1836311903/73681302247*24476^(2/3) 2100951947086904 a001 267084832/10716675201*24476^(2/3) 2100951947086904 a001 12586269025/505019158607*24476^(2/3) 2100951947086904 a001 10983760033/440719107401*24476^(2/3) 2100951947086904 a001 43133785636/1730726404001*24476^(2/3) 2100951947086904 a001 75283811239/3020733700601*24476^(2/3) 2100951947086904 a001 182717648081/7331474697802*24476^(2/3) 2100951947086904 a001 139583862445/5600748293801*24476^(2/3) 2100951947086904 a001 53316291173/2139295485799*24476^(2/3) 2100951947086904 a001 10182505537/408569081798*24476^(2/3) 2100951947086904 a001 7778742049/312119004989*24476^(2/3) 2100951947086904 a001 2971215073/119218851371*24476^(2/3) 2100951947086904 a001 567451585/22768774562*24476^(2/3) 2100951947086904 a001 433494437/17393796001*24476^(2/3) 2100951947086904 a001 165580141/6643838879*24476^(2/3) 2100951947086904 a001 31622993/1268860318*24476^(2/3) 2100951947086904 a001 24157817/969323029*24476^(2/3) 2100951947086908 a001 9227465/370248451*24476^(2/3) 2100951947086937 a001 1762289/70711162*24476^(2/3) 2100951947087136 a001 1346269/54018521*24476^(2/3) 2100951947088498 a001 514229/20633239*24476^(2/3) 2100951947094013 a001 17711/64079*24476^(3/7) 2100951947097479 a001 28657/4870847*24476^(17/21) 2100951947097829 a001 98209/3940598*24476^(2/3) 2100951947140434 a001 6765/439204*15127^(3/4) 2100951947161786 a001 75025/3010349*24476^(2/3) 2100951947207229 a001 121393/15127*5778^(1/9) 2100951947221305 a001 6624/101521*24476^(4/7) 2100951947225621 a001 121393/3010349*24476^(13/21) 2100951947232905 a001 17711/39603*39603^(4/11) 2100951947249777 a001 317811/7881196*24476^(13/21) 2100951947253301 a001 75640/1875749*24476^(13/21) 2100951947253816 a001 2178309/54018521*24476^(13/21) 2100951947253891 a001 5702887/141422324*24476^(13/21) 2100951947253901 a001 14930352/370248451*24476^(13/21) 2100951947253903 a001 39088169/969323029*24476^(13/21) 2100951947253903 a001 9303105/230701876*24476^(13/21) 2100951947253903 a001 267914296/6643838879*24476^(13/21) 2100951947253903 a001 701408733/17393796001*24476^(13/21) 2100951947253903 a001 1836311903/45537549124*24476^(13/21) 2100951947253903 a001 4807526976/119218851371*24476^(13/21) 2100951947253903 a001 1144206275/28374454999*24476^(13/21) 2100951947253903 a001 32951280099/817138163596*24476^(13/21) 2100951947253903 a001 86267571272/2139295485799*24476^(13/21) 2100951947253903 a001 225851433717/5600748293801*24476^(13/21) 2100951947253903 a001 365435296162/9062201101803*24476^(13/21) 2100951947253903 a001 139583862445/3461452808002*24476^(13/21) 2100951947253903 a001 53316291173/1322157322203*24476^(13/21) 2100951947253903 a001 20365011074/505019158607*24476^(13/21) 2100951947253903 a001 7778742049/192900153618*24476^(13/21) 2100951947253903 a001 2971215073/73681302247*24476^(13/21) 2100951947253903 a001 1134903170/28143753123*24476^(13/21) 2100951947253903 a001 433494437/10749957122*24476^(13/21) 2100951947253903 a001 165580141/4106118243*24476^(13/21) 2100951947253903 a001 63245986/1568397607*24476^(13/21) 2100951947253904 a001 24157817/599074578*24476^(13/21) 2100951947253908 a001 9227465/228826127*24476^(13/21) 2100951947253937 a001 3524578/87403803*24476^(13/21) 2100951947254133 a001 1346269/33385282*24476^(13/21) 2100951947255479 a001 514229/12752043*24476^(13/21) 2100951947264706 a001 196418/4870847*24476^(13/21) 2100951947264800 a001 28657/3010349*24476^(16/21) 2100951947274795 a007 Real Root Of 489*x^4+641*x^3-797*x^2+149*x+248 2100951947324999 a001 75025/39603*24476^(5/21) 2100951947327947 a001 75025/1860498*24476^(13/21) 2100951947388834 a001 121393/39603*24476^(4/21) 2100951947391782 a001 121393/1860498*24476^(4/7) 2100951947403356 a001 11592/109801*24476^(11/21) 2100951947407911 a001 514229/64079*9349^(2/19) 2100951947416654 a001 317811/4870847*24476^(4/7) 2100951947420283 a001 832040/12752043*24476^(4/7) 2100951947420813 a001 311187/4769326*24476^(4/7) 2100951947420890 a001 5702887/87403803*24476^(4/7) 2100951947420901 a001 14930352/228826127*24476^(4/7) 2100951947420903 a001 39088169/599074578*24476^(4/7) 2100951947420903 a001 14619165/224056801*24476^(4/7) 2100951947420903 a001 267914296/4106118243*24476^(4/7) 2100951947420903 a001 701408733/10749957122*24476^(4/7) 2100951947420903 a001 1836311903/28143753123*24476^(4/7) 2100951947420903 a001 686789568/10525900321*24476^(4/7) 2100951947420903 a001 12586269025/192900153618*24476^(4/7) 2100951947420903 a001 32951280099/505019158607*24476^(4/7) 2100951947420903 a001 86267571272/1322157322203*24476^(4/7) 2100951947420903 a001 32264490531/494493258286*24476^(4/7) 2100951947420903 a001 1548008755920/23725150497407*24476^(4/7) 2100951947420903 a001 139583862445/2139295485799*24476^(4/7) 2100951947420903 a001 53316291173/817138163596*24476^(4/7) 2100951947420903 a001 20365011074/312119004989*24476^(4/7) 2100951947420903 a001 7778742049/119218851371*24476^(4/7) 2100951947420903 a001 2971215073/45537549124*24476^(4/7) 2100951947420903 a001 1134903170/17393796001*24476^(4/7) 2100951947420903 a001 433494437/6643838879*24476^(4/7) 2100951947420903 a001 165580141/2537720636*24476^(4/7) 2100951947420903 a001 63245986/969323029*24476^(4/7) 2100951947420904 a001 24157817/370248451*24476^(4/7) 2100951947420908 a001 9227465/141422324*24476^(4/7) 2100951947420938 a001 3524578/54018521*24476^(4/7) 2100951947421140 a001 1346269/20633239*24476^(4/7) 2100951947422526 a001 514229/7881196*24476^(4/7) 2100951947428013 a001 28657/39603*24476^(1/3) 2100951947430961 a001 28657/1860498*24476^(5/7) 2100951947432026 a001 196418/3010349*24476^(4/7) 2100951947497143 a001 75025/1149851*24476^(4/7) 2100951947530951 a001 15456/90481*24476^(10/21) 2100951947560978 a001 121393/1149851*24476^(11/21) 2100951947573684 a004 Fibonacci(22)*Lucas(23)/(1/2+sqrt(5)/2)^37 2100951947583975 a001 317811/3010349*24476^(11/21) 2100951947584454 a001 6765/710647*15127^(4/5) 2100951947587330 a001 208010/1970299*24476^(11/21) 2100951947587819 a001 2178309/20633239*24476^(11/21) 2100951947587891 a001 5702887/54018521*24476^(11/21) 2100951947587901 a001 3732588/35355581*24476^(11/21) 2100951947587903 a001 39088169/370248451*24476^(11/21) 2100951947587903 a001 102334155/969323029*24476^(11/21) 2100951947587903 a001 66978574/634430159*24476^(11/21) 2100951947587903 a001 701408733/6643838879*24476^(11/21) 2100951947587903 a001 1836311903/17393796001*24476^(11/21) 2100951947587903 a001 1201881744/11384387281*24476^(11/21) 2100951947587903 a001 12586269025/119218851371*24476^(11/21) 2100951947587903 a001 32951280099/312119004989*24476^(11/21) 2100951947587903 a001 21566892818/204284540899*24476^(11/21) 2100951947587903 a001 225851433717/2139295485799*24476^(11/21) 2100951947587903 a001 182717648081/1730726404001*24476^(11/21) 2100951947587903 a001 139583862445/1322157322203*24476^(11/21) 2100951947587903 a001 53316291173/505019158607*24476^(11/21) 2100951947587903 a001 10182505537/96450076809*24476^(11/21) 2100951947587903 a001 7778742049/73681302247*24476^(11/21) 2100951947587903 a001 2971215073/28143753123*24476^(11/21) 2100951947587903 a001 567451585/5374978561*24476^(11/21) 2100951947587903 a001 433494437/4106118243*24476^(11/21) 2100951947587903 a001 165580141/1568397607*24476^(11/21) 2100951947587903 a001 31622993/299537289*24476^(11/21) 2100951947587904 a001 24157817/228826127*24476^(11/21) 2100951947587908 a001 9227465/87403803*24476^(11/21) 2100951947587935 a001 1762289/16692641*24476^(11/21) 2100951947588122 a001 1346269/12752043*24476^(11/21) 2100951947589403 a001 514229/4870847*24476^(11/21) 2100951947595240 a001 196418/39603*24476^(1/7) 2100951947595928 a001 17711/33385282*64079^(22/23) 2100951947598187 a001 98209/930249*24476^(11/21) 2100951947600156 a001 28657/1149851*24476^(2/3) 2100951947618181 a001 17711/20633239*64079^(21/23) 2100951947640410 a001 17711/12752043*64079^(20/23) 2100951947658394 a001 75025/710647*24476^(11/21) 2100951947662703 a001 89/39604*64079^(19/23) 2100951947667447 a001 17711/103682*64079^(10/23) 2100951947684826 a001 17711/4870847*64079^(18/23) 2100951947698026 a001 23184/51841*24476^(8/21) 2100951947707393 a001 17711/3010349*64079^(17/23) 2100951947722229 a001 121393/710647*24476^(10/21) 2100951947728801 a001 17711/1860498*64079^(16/23) 2100951947747188 a001 105937/13201*24476^(2/21) 2100951947750136 a001 105937/620166*24476^(10/21) 2100951947753243 a001 17711/1149851*64079^(15/23) 2100951947754207 a001 832040/4870847*24476^(10/21) 2100951947754801 a001 726103/4250681*24476^(10/21) 2100951947754888 a001 5702887/33385282*24476^(10/21) 2100951947754901 a001 4976784/29134601*24476^(10/21) 2100951947754902 a001 39088169/228826127*24476^(10/21) 2100951947754903 a001 34111385/199691526*24476^(10/21) 2100951947754903 a001 267914296/1568397607*24476^(10/21) 2100951947754903 a001 233802911/1368706081*24476^(10/21) 2100951947754903 a001 1836311903/10749957122*24476^(10/21) 2100951947754903 a001 1602508992/9381251041*24476^(10/21) 2100951947754903 a001 12586269025/73681302247*24476^(10/21) 2100951947754903 a001 10983760033/64300051206*24476^(10/21) 2100951947754903 a001 86267571272/505019158607*24476^(10/21) 2100951947754903 a001 75283811239/440719107401*24476^(10/21) 2100951947754903 a001 2504730781961/14662949395604*24476^(10/21) 2100951947754903 a001 139583862445/817138163596*24476^(10/21) 2100951947754903 a001 53316291173/312119004989*24476^(10/21) 2100951947754903 a001 20365011074/119218851371*24476^(10/21) 2100951947754903 a001 7778742049/45537549124*24476^(10/21) 2100951947754903 a001 2971215073/17393796001*24476^(10/21) 2100951947754903 a001 1134903170/6643838879*24476^(10/21) 2100951947754903 a001 433494437/2537720636*24476^(10/21) 2100951947754903 a001 165580141/969323029*24476^(10/21) 2100951947754903 a001 63245986/370248451*24476^(10/21) 2100951947754904 a001 24157817/141422324*24476^(10/21) 2100951947754908 a001 9227465/54018521*24476^(10/21) 2100951947754941 a001 3524578/20633239*24476^(10/21) 2100951947755168 a001 1346269/7881196*24476^(10/21) 2100951947756432 a001 15456/13201*64079^(6/23) 2100951947756724 a001 514229/3010349*24476^(10/21) 2100951947761407 a001 28657/710647*24476^(13/21) 2100951947767383 a001 196418/1149851*24476^(10/21) 2100951947769740 a001 17711/710647*64079^(14/23) 2100951947789878 a001 17711/271443*64079^(12/23) 2100951947801115 a001 46368/167761*24476^(3/7) 2100951947807038 a001 17711/439204*64079^(13/23) 2100951947840445 a001 75025/439204*24476^(10/21) 2100951947860049 a001 17711/103682*167761^(2/5) 2100951947882108 a001 6765/24476*15127^(9/20) 2100951947887489 a001 15456/13201*439204^(2/9) 2100951947889903 a001 15456/13201*7881196^(2/11) 2100951947889908 a001 17711/103682*20633239^(2/7) 2100951947889909 a001 15456/13201*141422324^(2/13) 2100951947889909 a001 17711/103682*2537720636^(2/9) 2100951947889909 a001 17711/103682*312119004989^(2/11) 2100951947889909 a001 17711/103682*(1/2+1/2*5^(1/2))^10 2100951947889909 a001 17711/103682*28143753123^(1/5) 2100951947889909 a001 17711/103682*10749957122^(5/24) 2100951947889909 a001 17711/103682*4106118243^(5/23) 2100951947889909 a001 17711/103682*1568397607^(5/22) 2100951947889909 a001 15456/13201*2537720636^(2/15) 2100951947889909 a001 15456/13201*45537549124^(2/17) 2100951947889909 a001 15456/13201*14662949395604^(2/21) 2100951947889909 a001 15456/13201*(1/2+1/2*5^(1/2))^6 2100951947889909 a001 15456/13201*10749957122^(1/8) 2100951947889909 a001 15456/13201*4106118243^(3/23) 2100951947889909 a001 15456/13201*1568397607^(3/22) 2100951947889909 a001 17711/103682*599074578^(5/21) 2100951947889909 a001 15456/13201*599074578^(1/7) 2100951947889909 a001 15456/13201*228826127^(3/20) 2100951947889909 a001 17711/103682*228826127^(1/4) 2100951947889909 a001 15456/13201*87403803^(3/19) 2100951947889909 a001 17711/103682*87403803^(5/19) 2100951947889910 a001 821223648/39088169 2100951947889910 a001 15456/13201*33385282^(1/6) 2100951947889910 a001 17711/103682*33385282^(5/18) 2100951947889912 a001 15456/13201*12752043^(3/17) 2100951947889913 a001 17711/103682*12752043^(5/17) 2100951947889926 a001 15456/13201*4870847^(3/16) 2100951947889937 a001 17711/103682*4870847^(5/16) 2100951947890031 a001 15456/13201*1860498^(1/5) 2100951947890112 a001 17711/103682*1860498^(1/3) 2100951947890801 a001 15456/13201*710647^(3/14) 2100951947891395 a001 17711/103682*710647^(5/14) 2100951947896490 a001 15456/13201*271443^(3/13) 2100951947900876 a001 17711/103682*271443^(5/13) 2100951947904280 a001 121393/439204*24476^(3/7) 2100951947915289 a001 17711/167761*64079^(11/23) 2100951947919331 a001 317811/1149851*24476^(3/7) 2100951947919937 a001 514229/39603*24476^(1/21) 2100951947921527 a001 832040/3010349*24476^(3/7) 2100951947921848 a001 2178309/7881196*24476^(3/7) 2100951947921895 a001 5702887/20633239*24476^(3/7) 2100951947921901 a001 14930352/54018521*24476^(3/7) 2100951947921902 a001 39088169/141422324*24476^(3/7) 2100951947921902 a001 102334155/370248451*24476^(3/7) 2100951947921903 a001 267914296/969323029*24476^(3/7) 2100951947921903 a001 701408733/2537720636*24476^(3/7) 2100951947921903 a001 1836311903/6643838879*24476^(3/7) 2100951947921903 a001 4807526976/17393796001*24476^(3/7) 2100951947921903 a001 12586269025/45537549124*24476^(3/7) 2100951947921903 a001 32951280099/119218851371*24476^(3/7) 2100951947921903 a001 86267571272/312119004989*24476^(3/7) 2100951947921903 a001 225851433717/817138163596*24476^(3/7) 2100951947921903 a001 1548008755920/5600748293801*24476^(3/7) 2100951947921903 a001 139583862445/505019158607*24476^(3/7) 2100951947921903 a001 53316291173/192900153618*24476^(3/7) 2100951947921903 a001 20365011074/73681302247*24476^(3/7) 2100951947921903 a001 7778742049/28143753123*24476^(3/7) 2100951947921903 a001 2971215073/10749957122*24476^(3/7) 2100951947921903 a001 1134903170/4106118243*24476^(3/7) 2100951947921903 a001 433494437/1568397607*24476^(3/7) 2100951947921903 a001 165580141/599074578*24476^(3/7) 2100951947921903 a001 63245986/228826127*24476^(3/7) 2100951947921903 a001 24157817/87403803*24476^(3/7) 2100951947921906 a001 9227465/33385282*24476^(3/7) 2100951947921923 a001 3524578/12752043*24476^(3/7) 2100951947922046 a001 1346269/4870847*24476^(3/7) 2100951947922885 a001 514229/1860498*24476^(3/7) 2100951947928634 a001 196418/710647*24476^(3/7) 2100951947938769 a001 15456/13201*103682^(1/4) 2100951947943458 a001 28657/439204*24476^(4/7) 2100951947946062 a001 75025/24476*9349^(4/19) 2100951947964573 a001 1346269/103682*9349^(1/19) 2100951947967848 a001 121393/39603*64079^(4/23) 2100951947968039 a001 75025/271443*24476^(3/7) 2100951947971342 a001 17711/103682*103682^(5/12) 2100951948010697 a004 Fibonacci(22)*Lucas(25)/(1/2+sqrt(5)/2)^39 2100951948025614 a001 17711/12752043*167761^(4/5) 2100951948029500 a001 196418/39603*64079^(3/23) 2100951948031874 a001 121393/271443*24476^(8/21) 2100951948036695 a001 105937/13201*64079^(2/23) 2100951948042146 a001 17711/1149851*167761^(3/5) 2100951948048767 a001 75025/39603*64079^(5/23) 2100951948049275 a001 6765/1149851*15127^(17/20) 2100951948051993 a001 17711/271443*439204^(4/9) 2100951948056821 a001 17711/271443*7881196^(4/11) 2100951948056833 a001 17711/271443*141422324^(4/13) 2100951948056833 a001 17711/271443*2537720636^(4/15) 2100951948056833 a001 17711/271443*45537549124^(4/17) 2100951948056833 a001 17711/271443*14662949395604^(4/21) 2100951948056833 a001 17711/271443*(1/2+1/2*5^(1/2))^12 2100951948056833 a001 17711/271443*192900153618^(2/9) 2100951948056833 a001 17711/271443*73681302247^(3/13) 2100951948056833 a001 17711/271443*10749957122^(1/4) 2100951948056833 a001 17711/271443*4106118243^(6/23) 2100951948056833 a001 17711/271443*1568397607^(3/11) 2100951948056833 a001 121393/39603*(1/2+1/2*5^(1/2))^4 2100951948056833 a001 121393/39603*23725150497407^(1/16) 2100951948056833 a001 121393/39603*73681302247^(1/13) 2100951948056833 a001 121393/39603*10749957122^(1/12) 2100951948056833 a001 121393/39603*4106118243^(2/23) 2100951948056833 a001 121393/39603*1568397607^(1/11) 2100951948056833 a001 121393/39603*599074578^(2/21) 2100951948056833 a001 17711/271443*599074578^(2/7) 2100951948056833 a001 121393/39603*228826127^(1/10) 2100951948056833 a001 17711/271443*228826127^(3/10) 2100951948056833 a001 121393/39603*87403803^(2/19) 2100951948056834 a001 2149991423/102334155 2100951948056834 a001 17711/271443*87403803^(6/19) 2100951948056834 a001 121393/39603*33385282^(1/9) 2100951948056834 a001 17711/271443*33385282^(1/3) 2100951948056835 a001 121393/39603*12752043^(2/17) 2100951948056838 a001 17711/271443*12752043^(6/17) 2100951948056845 a001 121393/39603*4870847^(1/8) 2100951948056867 a001 17711/271443*4870847^(3/8) 2100951948056914 a001 121393/39603*1860498^(2/15) 2100951948057076 a001 17711/271443*1860498^(2/5) 2100951948057428 a001 121393/39603*710647^(1/7) 2100951948058616 a001 17711/271443*710647^(3/7) 2100951948061220 a001 121393/39603*271443^(2/13) 2100951948064690 a001 514229/39603*64079^(1/23) 2100951948069994 a001 17711/271443*271443^(6/13) 2100951948071053 a001 28657/271443*24476^(11/21) 2100951948074456 a004 Fibonacci(22)*Lucas(27)/(1/2+sqrt(5)/2)^41 2100951948075666 a001 17711/87403803*439204^(8/9) 2100951948076881 a001 17711/20633239*439204^(7/9) 2100951948077998 a001 17711/4870847*439204^(2/3) 2100951948080582 a001 317811/710647*24476^(8/21) 2100951948080886 a001 17711/1149851*439204^(5/9) 2100951948081185 a001 17711/710647*20633239^(2/5) 2100951948081187 a001 17711/710647*17393796001^(2/7) 2100951948081187 a001 17711/710647*14662949395604^(2/9) 2100951948081187 a001 17711/710647*(1/2+1/2*5^(1/2))^14 2100951948081187 a001 17711/710647*10749957122^(7/24) 2100951948081187 a001 17711/710647*4106118243^(7/23) 2100951948081187 a001 17711/710647*1568397607^(7/22) 2100951948081187 a001 105937/13201*(1/2+1/2*5^(1/2))^2 2100951948081187 a001 105937/13201*10749957122^(1/24) 2100951948081187 a001 105937/13201*4106118243^(1/23) 2100951948081187 a001 105937/13201*1568397607^(1/22) 2100951948081187 a001 105937/13201*599074578^(1/21) 2100951948081187 a001 17711/710647*599074578^(1/3) 2100951948081187 a001 105937/13201*228826127^(1/20) 2100951948081187 a001 14930373/710648 2100951948081187 a001 17711/710647*228826127^(7/20) 2100951948081187 a001 105937/13201*87403803^(1/19) 2100951948081187 a001 17711/710647*87403803^(7/19) 2100951948081187 a001 105937/13201*33385282^(1/18) 2100951948081188 a001 17711/710647*33385282^(7/18) 2100951948081188 a001 105937/13201*12752043^(1/17) 2100951948081193 a001 17711/710647*12752043^(7/17) 2100951948081193 a001 105937/13201*4870847^(1/16) 2100951948081226 a001 17711/710647*4870847^(7/16) 2100951948081228 a001 105937/13201*1860498^(1/15) 2100951948081471 a001 17711/710647*1860498^(7/15) 2100951948081485 a001 105937/13201*710647^(1/14) 2100951948083267 a001 17711/710647*710647^(1/2) 2100951948083381 a001 105937/13201*271443^(1/13) 2100951948083758 a004 Fibonacci(22)*Lucas(29)/(1/2+sqrt(5)/2)^43 2100951948084741 a001 17711/1860498*(1/2+1/2*5^(1/2))^16 2100951948084741 a001 17711/1860498*23725150497407^(1/4) 2100951948084741 a001 17711/1860498*73681302247^(4/13) 2100951948084741 a001 17711/1860498*10749957122^(1/3) 2100951948084741 a001 17711/1860498*4106118243^(8/23) 2100951948084741 a001 17711/1860498*1568397607^(4/11) 2100951948084741 a001 832040/39603 2100951948084741 a001 17711/1860498*599074578^(8/21) 2100951948084741 a001 17711/1860498*228826127^(2/5) 2100951948084741 a001 17711/1860498*87403803^(8/19) 2100951948084741 a001 17711/1860498*33385282^(4/9) 2100951948084747 a001 17711/1860498*12752043^(8/17) 2100951948084785 a001 17711/1860498*4870847^(1/2) 2100951948085064 a001 17711/1860498*1860498^(8/15) 2100951948085116 a004 Fibonacci(22)*Lucas(31)/(1/2+sqrt(5)/2)^45 2100951948085241 a001 17711/4870847*7881196^(6/11) 2100951948085259 a001 17711/4870847*141422324^(6/13) 2100951948085259 a001 17711/4870847*2537720636^(2/5) 2100951948085259 a001 17711/4870847*45537549124^(6/17) 2100951948085259 a001 17711/4870847*14662949395604^(2/7) 2100951948085259 a001 17711/4870847*(1/2+1/2*5^(1/2))^18 2100951948085259 a001 17711/4870847*192900153618^(1/3) 2100951948085259 a001 17711/4870847*10749957122^(3/8) 2100951948085259 a001 17711/4870847*4106118243^(9/23) 2100951948085259 a001 38580030699/1836311903 2100951948085259 a001 17711/4870847*1568397607^(9/22) 2100951948085259 a004 Fibonacci(32)/Lucas(22)/(1/2+sqrt(5)/2)^2 2100951948085259 a001 17711/4870847*599074578^(3/7) 2100951948085259 a001 17711/4870847*228826127^(9/20) 2100951948085259 a001 17711/4870847*87403803^(9/19) 2100951948085260 a001 17711/4870847*33385282^(1/2) 2100951948085266 a001 17711/4870847*12752043^(9/17) 2100951948085309 a001 17711/4870847*4870847^(9/16) 2100951948085314 a004 Fibonacci(22)*Lucas(33)/(1/2+sqrt(5)/2)^47 2100951948085317 a001 17711/1568397607*7881196^(10/11) 2100951948085320 a001 17711/370248451*7881196^(9/11) 2100951948085323 a001 17711/87403803*7881196^(8/11) 2100951948085323 a001 17711/33385282*7881196^(2/3) 2100951948085331 a001 17711/20633239*7881196^(7/11) 2100951948085332 a001 17711/12752043*20633239^(4/7) 2100951948085335 a001 17711/12752043*2537720636^(4/9) 2100951948085335 a001 17711/12752043*(1/2+1/2*5^(1/2))^20 2100951948085335 a001 17711/12752043*23725150497407^(5/16) 2100951948085335 a001 17711/12752043*505019158607^(5/14) 2100951948085335 a001 17711/12752043*73681302247^(5/13) 2100951948085335 a001 17711/12752043*28143753123^(2/5) 2100951948085335 a001 17711/12752043*10749957122^(5/12) 2100951948085335 a001 101003831657/4807526976 2100951948085335 a001 17711/12752043*4106118243^(10/23) 2100951948085335 a001 17711/12752043*1568397607^(5/11) 2100951948085335 a004 Fibonacci(34)/Lucas(22)/(1/2+sqrt(5)/2)^4 2100951948085335 a001 17711/12752043*599074578^(10/21) 2100951948085335 a001 17711/12752043*228826127^(1/2) 2100951948085335 a001 17711/12752043*87403803^(10/19) 2100951948085336 a001 17711/12752043*33385282^(5/9) 2100951948085342 a001 17711/12752043*12752043^(10/17) 2100951948085343 a004 Fibonacci(22)*Lucas(35)/(1/2+sqrt(5)/2)^49 2100951948085343 a001 17711/1568397607*20633239^(6/7) 2100951948085344 a001 17711/599074578*20633239^(4/5) 2100951948085344 a001 17711/141422324*20633239^(5/7) 2100951948085346 a001 17711/33385282*312119004989^(2/5) 2100951948085346 a001 17711/33385282*(1/2+1/2*5^(1/2))^22 2100951948085346 a001 264431464272/12586269025 2100951948085346 a001 17711/33385282*10749957122^(11/24) 2100951948085346 a001 17711/33385282*4106118243^(11/23) 2100951948085346 a001 17711/33385282*1568397607^(1/2) 2100951948085346 a004 Fibonacci(36)/Lucas(22)/(1/2+sqrt(5)/2)^6 2100951948085346 a001 17711/33385282*599074578^(11/21) 2100951948085346 a001 17711/33385282*228826127^(11/20) 2100951948085346 a001 17711/33385282*87403803^(11/19) 2100951948085347 a001 17711/33385282*33385282^(11/18) 2100951948085347 a004 Fibonacci(22)*Lucas(37)/(1/2+sqrt(5)/2)^51 2100951948085347 a001 17711/87403803*141422324^(8/13) 2100951948085347 a001 17711/87403803*2537720636^(8/15) 2100951948085347 a001 17711/87403803*45537549124^(8/17) 2100951948085347 a001 17711/87403803*14662949395604^(8/21) 2100951948085347 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^24/Lucas(38) 2100951948085347 a001 17711/87403803*192900153618^(4/9) 2100951948085347 a001 17711/87403803*73681302247^(6/13) 2100951948085347 a001 692290561159/32951280099 2100951948085347 a001 17711/87403803*10749957122^(1/2) 2100951948085347 a001 17711/87403803*4106118243^(12/23) 2100951948085347 a001 17711/87403803*1568397607^(6/11) 2100951948085347 a004 Fibonacci(38)/Lucas(22)/(1/2+sqrt(5)/2)^8 2100951948085347 a001 17711/87403803*599074578^(4/7) 2100951948085347 a001 17711/87403803*228826127^(3/5) 2100951948085347 a001 17711/228826127*141422324^(2/3) 2100951948085347 a004 Fibonacci(22)*Lucas(39)/(1/2+sqrt(5)/2)^53 2100951948085347 a001 17711/87403803*87403803^(12/19) 2100951948085347 a001 17711/28143753123*141422324^(12/13) 2100951948085347 a001 17711/6643838879*141422324^(11/13) 2100951948085347 a001 17711/1568397607*141422324^(10/13) 2100951948085347 a001 17711/370248451*141422324^(9/13) 2100951948085347 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^26/Lucas(40) 2100951948085347 a001 1812440219205/86267571272 2100951948085347 a001 17711/228826127*73681302247^(1/2) 2100951948085347 a001 17711/228826127*10749957122^(13/24) 2100951948085347 a001 17711/228826127*4106118243^(13/23) 2100951948085347 a001 17711/228826127*1568397607^(13/22) 2100951948085347 a004 Fibonacci(40)/Lucas(22)/(1/2+sqrt(5)/2)^10 2100951948085347 a001 17711/228826127*599074578^(13/21) 2100951948085347 a004 Fibonacci(22)*Lucas(41)/(1/2+sqrt(5)/2)^55 2100951948085347 a001 17711/228826127*228826127^(13/20) 2100951948085348 a001 17711/599074578*17393796001^(4/7) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^28/Lucas(42) 2100951948085348 a001 12586286728/599075421 2100951948085348 a001 17711/599074578*73681302247^(7/13) 2100951948085348 a001 17711/599074578*10749957122^(7/12) 2100951948085348 a001 17711/599074578*4106118243^(14/23) 2100951948085348 a001 17711/599074578*1568397607^(7/11) 2100951948085348 a004 Fibonacci(42)/Lucas(22)/(1/2+sqrt(5)/2)^12 2100951948085348 a004 Fibonacci(22)*Lucas(43)/(1/2+sqrt(5)/2)^57 2100951948085348 a001 17711/599074578*599074578^(2/3) 2100951948085348 a001 17711/1568397607*2537720636^(2/3) 2100951948085348 a001 17711/1568397607*45537549124^(10/17) 2100951948085348 a001 17711/1568397607*312119004989^(6/11) 2100951948085348 a001 17711/1568397607*14662949395604^(10/21) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^30/Lucas(44) 2100951948085348 a001 12422650070163/591286729879 2100951948085348 a001 17711/1568397607*192900153618^(5/9) 2100951948085348 a001 17711/1568397607*28143753123^(3/5) 2100951948085348 a001 17711/1568397607*10749957122^(5/8) 2100951948085348 a001 17711/1568397607*4106118243^(15/23) 2100951948085348 a004 Fibonacci(22)*Lucas(45)/(1/2+sqrt(5)/2)^59 2100951948085348 a001 17711/505019158607*2537720636^(14/15) 2100951948085348 a001 17711/192900153618*2537720636^(8/9) 2100951948085348 a001 17711/119218851371*2537720636^(13/15) 2100951948085348 a001 17711/1568397607*1568397607^(15/22) 2100951948085348 a001 17711/28143753123*2537720636^(4/5) 2100951948085348 a001 17711/17393796001*2537720636^(7/9) 2100951948085348 a001 17711/6643838879*2537720636^(11/15) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^32/Lucas(46) 2100951948085348 a001 17711/4106118243*23725150497407^(1/2) 2100951948085348 a001 17711/4106118243*73681302247^(8/13) 2100951948085348 a001 17711/4106118243*10749957122^(2/3) 2100951948085348 a004 Fibonacci(22)*Lucas(47)/(1/2+sqrt(5)/2)^61 2100951948085348 a001 17711/4106118243*4106118243^(16/23) 2100951948085348 a001 17711/10749957122*45537549124^(2/3) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^34/Lucas(48) 2100951948085348 a001 85146110271936/4052739537881 2100951948085348 a004 Fibonacci(22)*Lucas(49)/(1/2+sqrt(5)/2)^63 2100951948085348 a001 17711/505019158607*17393796001^(6/7) 2100951948085348 a001 17711/10749957122*10749957122^(17/24) 2100951948085348 a001 17711/28143753123*45537549124^(12/17) 2100951948085348 a001 17711/28143753123*14662949395604^(4/7) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^36/Lucas(50) 2100951948085348 a001 17711/28143753123*505019158607^(9/14) 2100951948085348 a001 17711/28143753123*192900153618^(2/3) 2100951948085348 a001 17711/28143753123*73681302247^(9/13) 2100951948085348 a004 Fibonacci(22)*Lucas(51)/(1/2+sqrt(5)/2)^65 2100951948085348 a001 17711/9062201101803*45537549124^(16/17) 2100951948085348 a001 17711/2139295485799*45537549124^(15/17) 2100951948085348 a001 17711/505019158607*45537549124^(14/17) 2100951948085348 a001 17711/119218851371*45537549124^(13/17) 2100951948085348 a001 17711/73681302247*817138163596^(2/3) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^38/Lucas(52) 2100951948085348 a004 Fibonacci(22)*Lucas(53)/(1/2+sqrt(5)/2)^67 2100951948085348 a001 17711/192900153618*312119004989^(8/11) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^40/Lucas(54) 2100951948085348 a001 17711/192900153618*23725150497407^(5/8) 2100951948085348 a004 Fibonacci(22)*Lucas(55)/(1/2+sqrt(5)/2)^69 2100951948085348 a001 17711/1322157322203*312119004989^(4/5) 2100951948085348 a001 17711/2139295485799*312119004989^(9/11) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^42/Lucas(56) 2100951948085348 a004 Fibonacci(22)*Lucas(57)/(1/2+sqrt(5)/2)^71 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^44/Lucas(58) 2100951948085348 a001 17711/1322157322203*23725150497407^(11/16) 2100951948085348 a004 Fibonacci(22)*Lucas(59)/(1/2+sqrt(5)/2)^73 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^46/Lucas(60) 2100951948085348 a004 Fibonacci(22)*Lucas(61)/(1/2+sqrt(5)/2)^75 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^48/Lucas(62) 2100951948085348 a004 Fibonacci(22)*Lucas(63)/(1/2+sqrt(5)/2)^77 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^50/Lucas(64) 2100951948085348 a004 Fibonacci(22)*Lucas(65)/(1/2+sqrt(5)/2)^79 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^52/Lucas(66) 2100951948085348 a004 Fibonacci(22)*Lucas(67)/(1/2+sqrt(5)/2)^81 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^54/Lucas(68) 2100951948085348 a004 Fibonacci(22)*Lucas(69)/(1/2+sqrt(5)/2)^83 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^56/Lucas(70) 2100951948085348 a004 Fibonacci(22)*Lucas(71)/(1/2+sqrt(5)/2)^85 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^58/Lucas(72) 2100951948085348 a004 Fibonacci(22)*Lucas(73)/(1/2+sqrt(5)/2)^87 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^60/Lucas(74) 2100951948085348 a004 Fibonacci(22)*Lucas(75)/(1/2+sqrt(5)/2)^89 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^62/Lucas(76) 2100951948085348 a004 Fibonacci(22)*Lucas(77)/(1/2+sqrt(5)/2)^91 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^64/Lucas(78) 2100951948085348 a004 Fibonacci(22)*Lucas(79)/(1/2+sqrt(5)/2)^93 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^66/Lucas(80) 2100951948085348 a004 Fibonacci(22)*Lucas(81)/(1/2+sqrt(5)/2)^95 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^68/Lucas(82) 2100951948085348 a004 Fibonacci(22)*Lucas(83)/(1/2+sqrt(5)/2)^97 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^70/Lucas(84) 2100951948085348 a004 Fibonacci(22)*Lucas(85)/(1/2+sqrt(5)/2)^99 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^72/Lucas(86) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^74/Lucas(88) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^76/Lucas(90) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^78/Lucas(92) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^80/Lucas(94) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^82/Lucas(96) 2100951948085348 a004 Fibonacci(11)*Lucas(11)/(1/2+sqrt(5)/2)^14 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^84/Lucas(98) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^85/Lucas(99) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^86/Lucas(100) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^83/Lucas(97) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^81/Lucas(95) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^79/Lucas(93) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^77/Lucas(91) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^75/Lucas(89) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^73/Lucas(87) 2100951948085348 a004 Fibonacci(22)*Lucas(86)/(1/2+sqrt(5)/2)^100 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^71/Lucas(85) 2100951948085348 a004 Fibonacci(22)*Lucas(84)/(1/2+sqrt(5)/2)^98 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^69/Lucas(83) 2100951948085348 a004 Fibonacci(22)*Lucas(82)/(1/2+sqrt(5)/2)^96 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^67/Lucas(81) 2100951948085348 a004 Fibonacci(22)*Lucas(80)/(1/2+sqrt(5)/2)^94 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^65/Lucas(79) 2100951948085348 a004 Fibonacci(22)*Lucas(78)/(1/2+sqrt(5)/2)^92 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^63/Lucas(77) 2100951948085348 a004 Fibonacci(22)*Lucas(76)/(1/2+sqrt(5)/2)^90 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^61/Lucas(75) 2100951948085348 a004 Fibonacci(22)*Lucas(74)/(1/2+sqrt(5)/2)^88 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^59/Lucas(73) 2100951948085348 a004 Fibonacci(22)*Lucas(72)/(1/2+sqrt(5)/2)^86 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^57/Lucas(71) 2100951948085348 a004 Fibonacci(22)*Lucas(70)/(1/2+sqrt(5)/2)^84 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^55/Lucas(69) 2100951948085348 a004 Fibonacci(22)*Lucas(68)/(1/2+sqrt(5)/2)^82 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^53/Lucas(67) 2100951948085348 a004 Fibonacci(22)*Lucas(66)/(1/2+sqrt(5)/2)^80 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^51/Lucas(65) 2100951948085348 a001 17711/14662949395604*14662949395604^(7/9) 2100951948085348 a004 Fibonacci(22)*Lucas(64)/(1/2+sqrt(5)/2)^78 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^49/Lucas(63) 2100951948085348 a004 Fibonacci(22)*Lucas(62)/(1/2+sqrt(5)/2)^76 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^47/Lucas(61) 2100951948085348 a004 Fibonacci(22)*Lucas(60)/(1/2+sqrt(5)/2)^74 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^45/Lucas(59) 2100951948085348 a004 Fibonacci(22)*Lucas(58)/(1/2+sqrt(5)/2)^72 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^43/Lucas(57) 2100951948085348 a001 17711/14662949395604*505019158607^(7/8) 2100951948085348 a004 Fibonacci(22)*Lucas(56)/(1/2+sqrt(5)/2)^70 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^41/Lucas(55) 2100951948085348 a001 17711/505019158607*192900153618^(7/9) 2100951948085348 a001 17711/2139295485799*192900153618^(5/6) 2100951948085348 a004 Fibonacci(22)*Lucas(54)/(1/2+sqrt(5)/2)^68 2100951948085348 a001 17711/119218851371*14662949395604^(13/21) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^39/Lucas(53) 2100951948085348 a001 17711/119218851371*192900153618^(13/18) 2100951948085348 a001 17711/192900153618*73681302247^(10/13) 2100951948085348 a001 17711/1322157322203*73681302247^(11/13) 2100951948085348 a001 17711/9062201101803*73681302247^(12/13) 2100951948085348 a004 Fibonacci(22)*Lucas(52)/(1/2+sqrt(5)/2)^66 2100951948085348 a001 17711/119218851371*73681302247^(3/4) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^37/Lucas(51) 2100951948085348 a001 17711/17393796001*17393796001^(5/7) 2100951948085348 a001 17711/192900153618*28143753123^(4/5) 2100951948085348 a001 17711/2139295485799*28143753123^(9/10) 2100951948085348 a004 Fibonacci(22)*Lucas(50)/(1/2+sqrt(5)/2)^64 2100951948085348 a001 17711/17393796001*312119004989^(7/11) 2100951948085348 a001 10597638494603/504420793834 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^35/Lucas(49) 2100951948085348 a001 17711/17393796001*505019158607^(5/8) 2100951948085348 a001 17711/17393796001*28143753123^(7/10) 2100951948085348 a001 17711/28143753123*10749957122^(3/4) 2100951948085348 a001 17711/73681302247*10749957122^(19/24) 2100951948085348 a001 17711/119218851371*10749957122^(13/16) 2100951948085348 a001 17711/192900153618*10749957122^(5/6) 2100951948085348 a001 17711/505019158607*10749957122^(7/8) 2100951948085348 a001 17711/1322157322203*10749957122^(11/12) 2100951948085348 a001 17711/2139295485799*10749957122^(15/16) 2100951948085348 a001 17711/3461452808002*10749957122^(23/24) 2100951948085348 a004 Fibonacci(22)*Lucas(48)/(1/2+sqrt(5)/2)^62 2100951948085348 a001 17711/6643838879*45537549124^(11/17) 2100951948085348 a001 17711/6643838879*312119004989^(3/5) 2100951948085348 a001 17711/6643838879*817138163596^(11/19) 2100951948085348 a001 17711/6643838879*14662949395604^(11/21) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^33/Lucas(47) 2100951948085348 a001 17711/6643838879*192900153618^(11/18) 2100951948085348 a001 17711/6643838879*10749957122^(11/16) 2100951948085348 a001 17711/10749957122*4106118243^(17/23) 2100951948085348 a001 17711/28143753123*4106118243^(18/23) 2100951948085348 a001 17711/73681302247*4106118243^(19/23) 2100951948085348 a001 17711/192900153618*4106118243^(20/23) 2100951948085348 a001 17711/505019158607*4106118243^(21/23) 2100951948085348 a001 17711/1322157322203*4106118243^(22/23) 2100951948085348 a004 Fibonacci(22)*Lucas(46)/(1/2+sqrt(5)/2)^60 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^31/Lucas(45) 2100951948085348 a001 17711/2537720636*9062201101803^(1/2) 2100951948085348 a001 17711/4106118243*1568397607^(8/11) 2100951948085348 a001 17711/10749957122*1568397607^(17/22) 2100951948085348 a001 17711/6643838879*1568397607^(3/4) 2100951948085348 a001 17711/28143753123*1568397607^(9/11) 2100951948085348 a004 Fibonacci(46)/Lucas(22)/(1/2+sqrt(5)/2)^16 2100951948085348 a001 17711/73681302247*1568397607^(19/22) 2100951948085348 a001 17711/192900153618*1568397607^(10/11) 2100951948085348 a001 17711/505019158607*1568397607^(21/22) 2100951948085348 a004 Fibonacci(48)/Lucas(22)/(1/2+sqrt(5)/2)^18 2100951948085348 a004 Fibonacci(50)/Lucas(22)/(1/2+sqrt(5)/2)^20 2100951948085348 a004 Fibonacci(52)/Lucas(22)/(1/2+sqrt(5)/2)^22 2100951948085348 a004 Fibonacci(54)/Lucas(22)/(1/2+sqrt(5)/2)^24 2100951948085348 a004 Fibonacci(56)/Lucas(22)/(1/2+sqrt(5)/2)^26 2100951948085348 a004 Fibonacci(58)/Lucas(22)/(1/2+sqrt(5)/2)^28 2100951948085348 a004 Fibonacci(60)/Lucas(22)/(1/2+sqrt(5)/2)^30 2100951948085348 a004 Fibonacci(62)/Lucas(22)/(1/2+sqrt(5)/2)^32 2100951948085348 a004 Fibonacci(64)/Lucas(22)/(1/2+sqrt(5)/2)^34 2100951948085348 a004 Fibonacci(66)/Lucas(22)/(1/2+sqrt(5)/2)^36 2100951948085348 a004 Fibonacci(68)/Lucas(22)/(1/2+sqrt(5)/2)^38 2100951948085348 a004 Fibonacci(70)/Lucas(22)/(1/2+sqrt(5)/2)^40 2100951948085348 a004 Fibonacci(72)/Lucas(22)/(1/2+sqrt(5)/2)^42 2100951948085348 a004 Fibonacci(74)/Lucas(22)/(1/2+sqrt(5)/2)^44 2100951948085348 a004 Fibonacci(76)/Lucas(22)/(1/2+sqrt(5)/2)^46 2100951948085348 a004 Fibonacci(78)/Lucas(22)/(1/2+sqrt(5)/2)^48 2100951948085348 a004 Fibonacci(80)/Lucas(22)/(1/2+sqrt(5)/2)^50 2100951948085348 a004 Fibonacci(82)/Lucas(22)/(1/2+sqrt(5)/2)^52 2100951948085348 a004 Fibonacci(84)/Lucas(22)/(1/2+sqrt(5)/2)^54 2100951948085348 a004 Fibonacci(86)/Lucas(22)/(1/2+sqrt(5)/2)^56 2100951948085348 a004 Fibonacci(22)*Lucas(44)/(1/2+sqrt(5)/2)^58 2100951948085348 a004 Fibonacci(90)/Lucas(22)/(1/2+sqrt(5)/2)^60 2100951948085348 a004 Fibonacci(92)/Lucas(22)/(1/2+sqrt(5)/2)^62 2100951948085348 a004 Fibonacci(94)/Lucas(22)/(1/2+sqrt(5)/2)^64 2100951948085348 a004 Fibonacci(96)/Lucas(22)/(1/2+sqrt(5)/2)^66 2100951948085348 a004 Fibonacci(98)/Lucas(22)/(1/2+sqrt(5)/2)^68 2100951948085348 a004 Fibonacci(100)/Lucas(22)/(1/2+sqrt(5)/2)^70 2100951948085348 a004 Fibonacci(97)/Lucas(22)/(1/2+sqrt(5)/2)^67 2100951948085348 a004 Fibonacci(99)/Lucas(22)/(1/2+sqrt(5)/2)^69 2100951948085348 a004 Fibonacci(95)/Lucas(22)/(1/2+sqrt(5)/2)^65 2100951948085348 a004 Fibonacci(93)/Lucas(22)/(1/2+sqrt(5)/2)^63 2100951948085348 a004 Fibonacci(91)/Lucas(22)/(1/2+sqrt(5)/2)^61 2100951948085348 a004 Fibonacci(89)/Lucas(22)/(1/2+sqrt(5)/2)^59 2100951948085348 a004 Fibonacci(87)/Lucas(22)/(1/2+sqrt(5)/2)^57 2100951948085348 a004 Fibonacci(85)/Lucas(22)/(1/2+sqrt(5)/2)^55 2100951948085348 a004 Fibonacci(83)/Lucas(22)/(1/2+sqrt(5)/2)^53 2100951948085348 a004 Fibonacci(81)/Lucas(22)/(1/2+sqrt(5)/2)^51 2100951948085348 a004 Fibonacci(79)/Lucas(22)/(1/2+sqrt(5)/2)^49 2100951948085348 a004 Fibonacci(77)/Lucas(22)/(1/2+sqrt(5)/2)^47 2100951948085348 a004 Fibonacci(75)/Lucas(22)/(1/2+sqrt(5)/2)^45 2100951948085348 a004 Fibonacci(73)/Lucas(22)/(1/2+sqrt(5)/2)^43 2100951948085348 a004 Fibonacci(71)/Lucas(22)/(1/2+sqrt(5)/2)^41 2100951948085348 a004 Fibonacci(69)/Lucas(22)/(1/2+sqrt(5)/2)^39 2100951948085348 a004 Fibonacci(67)/Lucas(22)/(1/2+sqrt(5)/2)^37 2100951948085348 a004 Fibonacci(65)/Lucas(22)/(1/2+sqrt(5)/2)^35 2100951948085348 a004 Fibonacci(63)/Lucas(22)/(1/2+sqrt(5)/2)^33 2100951948085348 a004 Fibonacci(61)/Lucas(22)/(1/2+sqrt(5)/2)^31 2100951948085348 a004 Fibonacci(59)/Lucas(22)/(1/2+sqrt(5)/2)^29 2100951948085348 a004 Fibonacci(57)/Lucas(22)/(1/2+sqrt(5)/2)^27 2100951948085348 a004 Fibonacci(55)/Lucas(22)/(1/2+sqrt(5)/2)^25 2100951948085348 a004 Fibonacci(53)/Lucas(22)/(1/2+sqrt(5)/2)^23 2100951948085348 a004 Fibonacci(51)/Lucas(22)/(1/2+sqrt(5)/2)^21 2100951948085348 a004 Fibonacci(49)/Lucas(22)/(1/2+sqrt(5)/2)^19 2100951948085348 a004 Fibonacci(47)/Lucas(22)/(1/2+sqrt(5)/2)^17 2100951948085348 a004 Fibonacci(45)/Lucas(22)/(1/2+sqrt(5)/2)^15 2100951948085348 a001 7677619973707/365435296162 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^29/Lucas(43) 2100951948085348 a001 17711/969323029*1322157322203^(1/2) 2100951948085348 a004 Fibonacci(43)/Lucas(22)/(1/2+sqrt(5)/2)^13 2100951948085348 a001 17711/1568397607*599074578^(5/7) 2100951948085348 a001 17711/4106118243*599074578^(16/21) 2100951948085348 a001 17711/6643838879*599074578^(11/14) 2100951948085348 a001 17711/10749957122*599074578^(17/21) 2100951948085348 a001 17711/17393796001*599074578^(5/6) 2100951948085348 a001 17711/28143753123*599074578^(6/7) 2100951948085348 a001 17711/73681302247*599074578^(19/21) 2100951948085348 a001 17711/119218851371*599074578^(13/14) 2100951948085348 a001 17711/192900153618*599074578^(20/21) 2100951948085348 a004 Fibonacci(22)*Lucas(42)/(1/2+sqrt(5)/2)^56 2100951948085348 a001 17711/370248451*2537720636^(3/5) 2100951948085348 a001 17711/370248451*45537549124^(9/17) 2100951948085348 a001 32950448059/1568358005 2100951948085348 a001 17711/370248451*817138163596^(9/19) 2100951948085348 a001 17711/370248451*14662949395604^(3/7) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^27/Lucas(41) 2100951948085348 a001 17711/370248451*192900153618^(1/2) 2100951948085348 a001 17711/370248451*10749957122^(9/16) 2100951948085348 a004 Fibonacci(41)/Lucas(22)/(1/2+sqrt(5)/2)^11 2100951948085348 a001 17711/370248451*599074578^(9/14) 2100951948085348 a001 17711/599074578*228826127^(7/10) 2100951948085348 a001 17711/1568397607*228826127^(3/4) 2100951948085348 a001 17711/4106118243*228826127^(4/5) 2100951948085348 a001 17711/10749957122*228826127^(17/20) 2100951948085348 a001 17711/17393796001*228826127^(7/8) 2100951948085348 a001 17711/28143753123*228826127^(9/10) 2100951948085348 a001 17711/73681302247*228826127^(19/20) 2100951948085348 a004 Fibonacci(22)*Lucas(40)/(1/2+sqrt(5)/2)^54 2100951948085348 a001 17711/141422324*2537720636^(5/9) 2100951948085348 a001 1120149658046/53316291173 2100951948085348 a001 17711/141422324*312119004989^(5/11) 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^25/Lucas(39) 2100951948085348 a001 17711/141422324*3461452808002^(5/12) 2100951948085348 a001 17711/141422324*28143753123^(1/2) 2100951948085348 a004 Fibonacci(39)/Lucas(22)/(1/2+sqrt(5)/2)^9 2100951948085348 a001 17711/141422324*228826127^(5/8) 2100951948085348 a001 17711/228826127*87403803^(13/19) 2100951948085348 a001 17711/599074578*87403803^(14/19) 2100951948085348 a001 17711/1568397607*87403803^(15/19) 2100951948085348 a001 17711/4106118243*87403803^(16/19) 2100951948085348 a001 17711/10749957122*87403803^(17/19) 2100951948085348 a001 17711/28143753123*87403803^(18/19) 2100951948085348 a004 Fibonacci(22)*Lucas(38)/(1/2+sqrt(5)/2)^52 2100951948085348 a001 427859096887/20365011074 2100951948085348 a004 Fibonacci(22)*(1/2+sqrt(5)/2)^23/Lucas(37) 2100951948085348 a001 17711/54018521*4106118243^(1/2) 2100951948085348 a004 Fibonacci(37)/Lucas(22)/(1/2+sqrt(5)/2)^7 2100951948085348 a001 17711/87403803*33385282^(2/3) 2100951948085349 a001 17711/228826127*33385282^(13/18) 2100951948085349 a001 17711/370248451*33385282^(3/4) 2100951948085349 a001 17711/599074578*33385282^(7/9) 2100951948085349 a001 17711/1568397607*33385282^(5/6) 2100951948085349 a001 17711/4106118243*33385282^(8/9) 2100951948085349 a001 17711/6643838879*33385282^(11/12) 2100951948085349 a001 17711/10749957122*33385282^(17/18) 2100951948085349 a004 Fibonacci(22)*Lucas(36)/(1/2+sqrt(5)/2)^50 2100951948085349 a001 17711/20633239*20633239^(3/5) 2100951948085352 a001 17711/20633239*141422324^(7/13) 2100951948085352 a001 17711/20633239*2537720636^(7/15) 2100951948085352 a001 12571356355/598364773 2100951948085352 a001 17711/20633239*17393796001^(3/7) 2100951948085352 a001 17711/20633239*45537549124^(7/17) 2100951948085352 a001 17711/20633239*14662949395604^(1/3) 2100951948085352 a001 17711/20633239*(1/2+1/2*5^(1/2))^21 2100951948085352 a001 17711/20633239*192900153618^(7/18) 2100951948085352 a001 17711/20633239*10749957122^(7/16) 2100951948085352 a004 Fibonacci(35)/Lucas(22)/(1/2+sqrt(5)/2)^5 2100951948085352 a001 17711/20633239*599074578^(1/2) 2100951948085354 a001 17711/20633239*33385282^(7/12) 2100951948085354 a001 17711/33385282*12752043^(11/17) 2100951948085356 a001 17711/87403803*12752043^(12/17) 2100951948085357 a001 17711/228826127*12752043^(13/17) 2100951948085358 a001 17711/599074578*12752043^(14/17) 2100951948085359 a001 17711/1568397607*12752043^(15/17) 2100951948085360 a001 17711/4106118243*12752043^(16/17) 2100951948085360 a004 Fibonacci(22)*Lucas(34)/(1/2+sqrt(5)/2)^48 2100951948085381 a001 62423800958/2971215073 2100951948085381 a001 89/39604*817138163596^(1/3) 2100951948085381 a001 89/39604*(1/2+1/2*5^(1/2))^19 2100951948085381 a004 Fibonacci(33)/Lucas(22)/(1/2+sqrt(5)/2)^3 2100951948085381 a001 89/39604*87403803^(1/2) 2100951948085390 a001 17711/12752043*4870847^(5/8) 2100951948085407 a001 17711/33385282*4870847^(11/16) 2100951948085414 a001 17711/87403803*4870847^(3/4) 2100951948085419 a001 17711/228826127*4870847^(13/16) 2100951948085425 a001 17711/599074578*4870847^(7/8) 2100951948085431 a001 17711/1568397607*4870847^(15/16) 2100951948085436 a004 Fibonacci(22)*Lucas(32)/(1/2+sqrt(5)/2)^46 2100951948085579 a001 23843770259/1134903170 2100951948085579 a001 17711/3010349*45537549124^(1/3) 2100951948085579 a001 17711/3010349*(1/2+1/2*5^(1/2))^17 2100951948085579 a004 Fibonacci(31)/Lucas(22)/(1/2+sqrt(5)/2) 2100951948085586 a001 17711/3010349*12752043^(1/2) 2100951948085623 a001 17711/4870847*1860498^(3/5) 2100951948085739 a001 17711/12752043*1860498^(2/3) 2100951948085777 a001 17711/20633239*1860498^(7/10) 2100951948085791 a001 17711/33385282*1860498^(11/15) 2100951948085833 a001 17711/87403803*1860498^(4/5) 2100951948085853 a001 17711/141422324*1860498^(5/6) 2100951948085873 a001 17711/228826127*1860498^(13/15) 2100951948085894 a001 17711/370248451*1860498^(9/10) 2100951948085914 a001 17711/599074578*1860498^(14/15) 2100951948085954 a004 Fibonacci(22)*Lucas(30)/(1/2+sqrt(5)/2)^44 2100951948086921 a001 17711/1149851*7881196^(5/11) 2100951948086934 a001 17711/1149851*20633239^(3/7) 2100951948086937 a001 17711/1149851*141422324^(5/13) 2100951948086937 a001 9107509819/433494437 2100951948086937 a001 17711/1149851*2537720636^(1/3) 2100951948086937 a001 17711/1149851*45537549124^(5/17) 2100951948086937 a001 17711/1149851*312119004989^(3/11) 2100951948086937 a001 17711/1149851*14662949395604^(5/21) 2100951948086937 a001 17711/1149851*(1/2+1/2*5^(1/2))^15 2100951948086937 a001 17711/1149851*192900153618^(5/18) 2100951948086937 a001 17711/1149851*28143753123^(3/10) 2100951948086937 a001 17711/1149851*10749957122^(5/16) 2100951948086937 a001 514229/79206+514229/79206*5^(1/2) 2100951948086937 a001 17711/1149851*599074578^(5/14) 2100951948086937 a001 17711/1149851*228826127^(3/8) 2100951948086937 a001 17711/1149851*33385282^(5/12) 2100951948087118 a001 17711/1860498*710647^(4/7) 2100951948087240 a001 17711/1149851*1860498^(1/2) 2100951948087688 a001 416020/930249*24476^(8/21) 2100951948087933 a001 17711/4870847*710647^(9/14) 2100951948088306 a001 17711/12752043*710647^(5/7) 2100951948088473 a001 17711/20633239*710647^(3/4) 2100951948088614 a001 17711/33385282*710647^(11/14) 2100951948088725 a001 2178309/4870847*24476^(8/21) 2100951948088876 a001 5702887/12752043*24476^(8/21) 2100951948088899 a001 7465176/16692641*24476^(8/21) 2100951948088902 a001 39088169/87403803*24476^(8/21) 2100951948088902 a001 102334155/228826127*24476^(8/21) 2100951948088902 a001 133957148/299537289*24476^(8/21) 2100951948088902 a001 701408733/1568397607*24476^(8/21) 2100951948088902 a001 1836311903/4106118243*24476^(8/21) 2100951948088902 a001 2403763488/5374978561*24476^(8/21) 2100951948088902 a001 12586269025/28143753123*24476^(8/21) 2100951948088902 a001 32951280099/73681302247*24476^(8/21) 2100951948088902 a001 43133785636/96450076809*24476^(8/21) 2100951948088902 a001 225851433717/505019158607*24476^(8/21) 2100951948088902 a001 10610209857723/23725150497407*24476^(8/21) 2100951948088902 a001 182717648081/408569081798*24476^(8/21) 2100951948088902 a001 139583862445/312119004989*24476^(8/21) 2100951948088902 a001 53316291173/119218851371*24476^(8/21) 2100951948088902 a001 10182505537/22768774562*24476^(8/21) 2100951948088902 a001 7778742049/17393796001*24476^(8/21) 2100951948088902 a001 2971215073/6643838879*24476^(8/21) 2100951948088902 a001 567451585/1268860318*24476^(8/21) 2100951948088902 a001 433494437/969323029*24476^(8/21) 2100951948088902 a001 165580141/370248451*24476^(8/21) 2100951948088903 a001 31622993/70711162*24476^(8/21) 2100951948088904 a001 24157817/54018521*24476^(8/21) 2100951948088912 a001 9227465/20633239*24476^(8/21) 2100951948088913 a001 17711/87403803*710647^(6/7) 2100951948088970 a001 1762289/3940598*24476^(8/21) 2100951948089210 a001 17711/228826127*710647^(13/14) 2100951948089366 a001 1346269/3010349*24476^(8/21) 2100951948089406 a001 121393/39603*103682^(1/6) 2100951948089508 a004 Fibonacci(22)*Lucas(28)/(1/2+sqrt(5)/2)^42 2100951948092080 a001 514229/1149851*24476^(8/21) 2100951948095029 a001 196418/39603*439204^(1/9) 2100951948095080 a001 514229/39603*103682^(1/24) 2100951948096236 a001 196418/39603*7881196^(1/11) 2100951948096239 a001 17711/439204*141422324^(1/3) 2100951948096239 a001 3478759198/165580141 2100951948096239 a001 196418/39603*141422324^(1/13) 2100951948096239 a001 17711/439204*(1/2+1/2*5^(1/2))^13 2100951948096239 a001 17711/439204*73681302247^(1/4) 2100951948096239 a001 196418/39603*2537720636^(1/15) 2100951948096239 a001 196418/39603*45537549124^(1/17) 2100951948096239 a001 196418/39603*14662949395604^(1/21) 2100951948096239 a001 196418/39603*(1/2+1/2*5^(1/2))^3 2100951948096239 a001 196418/39603*10749957122^(1/16) 2100951948096239 a001 196418/39603*599074578^(1/14) 2100951948096239 a001 196418/39603*33385282^(1/12) 2100951948096300 a001 196418/39603*1860498^(1/10) 2100951948096541 a001 17711/710647*271443^(7/13) 2100951948097474 a001 105937/13201*103682^(1/12) 2100951948102288 a001 17711/1860498*271443^(8/13) 2100951948104999 a001 17711/4870847*271443^(9/13) 2100951948107268 a001 17711/12752043*271443^(10/13) 2100951948109473 a001 17711/33385282*271443^(11/13) 2100951948110496 a001 17711/439204*271443^(1/2) 2100951948110685 a001 98209/219602*24476^(8/21) 2100951948111668 a001 17711/87403803*271443^(12/13) 2100951948113862 a004 Fibonacci(22)*Lucas(26)/(1/2+sqrt(5)/2)^40 2100951948120669 a001 196418/39603*103682^(1/8) 2100951948131299 a001 3524578/271443*9349^(1/19) 2100951948135115 a001 75025/103682*24476^(1/3) 2100951948145068 a001 75025/39603*167761^(1/5) 2100951948147825 a001 514229/39603*39603^(1/22) 2100951948154553 a001 17711/271443*103682^(1/2) 2100951948155624 a001 9227465/710647*9349^(1/19) 2100951948159173 a001 24157817/1860498*9349^(1/19) 2100951948159691 a001 63245986/4870847*9349^(1/19) 2100951948159766 a001 165580141/12752043*9349^(1/19) 2100951948159777 a001 433494437/33385282*9349^(1/19) 2100951948159779 a001 1134903170/87403803*9349^(1/19) 2100951948159779 a001 2971215073/228826127*9349^(1/19) 2100951948159779 a001 7778742049/599074578*9349^(1/19) 2100951948159779 a001 20365011074/1568397607*9349^(1/19) 2100951948159779 a001 53316291173/4106118243*9349^(1/19) 2100951948159779 a001 139583862445/10749957122*9349^(1/19) 2100951948159779 a001 365435296162/28143753123*9349^(1/19) 2100951948159779 a001 956722026041/73681302247*9349^(1/19) 2100951948159779 a001 2504730781961/192900153618*9349^(1/19) 2100951948159779 a001 10610209857723/817138163596*9349^(1/19) 2100951948159779 a001 4052739537881/312119004989*9349^(1/19) 2100951948159779 a001 1548008755920/119218851371*9349^(1/19) 2100951948159779 a001 591286729879/45537549124*9349^(1/19) 2100951948159779 a001 7787980473/599786069*9349^(1/19) 2100951948159779 a001 86267571272/6643838879*9349^(1/19) 2100951948159779 a001 32951280099/2537720636*9349^(1/19) 2100951948159779 a001 12586269025/969323029*9349^(1/19) 2100951948159779 a001 4807526976/370248451*9349^(1/19) 2100951948159779 a001 1836311903/141422324*9349^(1/19) 2100951948159780 a001 701408733/54018521*9349^(1/19) 2100951948159784 a001 9238424/711491*9349^(1/19) 2100951948159813 a001 102334155/7881196*9349^(1/19) 2100951948159987 a001 17711/167761*7881196^(1/3) 2100951948159998 a001 75025/39603*20633239^(1/7) 2100951948159998 a001 1328767775/63245986 2100951948159998 a001 17711/167761*312119004989^(1/5) 2100951948159998 a001 17711/167761*(1/2+1/2*5^(1/2))^11 2100951948159998 a001 17711/167761*1568397607^(1/4) 2100951948159998 a001 75025/39603*2537720636^(1/9) 2100951948159998 a001 75025/39603*312119004989^(1/11) 2100951948159998 a001 75025/39603*(1/2+1/2*5^(1/2))^5 2100951948159998 a001 75025/39603*28143753123^(1/10) 2100951948159998 a001 75025/39603*228826127^(1/8) 2100951948160011 a001 39088169/3010349*9349^(1/19) 2100951948160099 a001 75025/39603*1860498^(1/6) 2100951948161366 a001 14930352/1149851*9349^(1/19) 2100951948170658 a001 5702887/439204*9349^(1/19) 2100951948195193 a001 17711/710647*103682^(7/12) 2100951948198950 a001 121393/103682*24476^(2/7) 2100951948200715 a001 75025/39603*103682^(5/24) 2100951948202101 a001 17711/439204*103682^(13/24) 2100951948202965 a001 105937/13201*39603^(1/11) 2100951948209085 a001 17711/1149851*103682^(5/8) 2100951948215033 a001 17711/1860498*103682^(2/3) 2100951948224015 a001 17711/3010349*103682^(17/24) 2100951948231838 a001 17711/4870847*103682^(3/4) 2100951948234341 a001 2178309/167761*9349^(1/19) 2100951948238128 a001 28657/103682*24476^(3/7) 2100951948238204 a001 75025/167761*24476^(8/21) 2100951948238279 a001 196418/271443*24476^(1/3) 2100951948240103 a001 89/39604*103682^(19/24) 2100951948248200 a001 17711/12752043*103682^(5/6) 2100951948249574 a001 17711/167761*103682^(11/24) 2100951948253331 a001 514229/710647*24476^(1/3) 2100951948255242 a001 15456/13201*39603^(3/11) 2100951948255527 a001 1346269/1860498*24476^(1/3) 2100951948255847 a001 3524578/4870847*24476^(1/3) 2100951948255894 a001 9227465/12752043*24476^(1/3) 2100951948255901 a001 24157817/33385282*24476^(1/3) 2100951948255902 a001 63245986/87403803*24476^(1/3) 2100951948255902 a001 165580141/228826127*24476^(1/3) 2100951948255902 a001 433494437/599074578*24476^(1/3) 2100951948255902 a001 1134903170/1568397607*24476^(1/3) 2100951948255902 a001 2971215073/4106118243*24476^(1/3) 2100951948255902 a001 7778742049/10749957122*24476^(1/3) 2100951948255902 a001 20365011074/28143753123*24476^(1/3) 2100951948255902 a001 53316291173/73681302247*24476^(1/3) 2100951948255902 a001 139583862445/192900153618*24476^(1/3) 2100951948255902 a001 365435296162/505019158607*24476^(1/3) 2100951948255902 a001 10610209857723/14662949395604*24476^(1/3) 2100951948255902 a001 225851433717/312119004989*24476^(1/3) 2100951948255902 a001 86267571272/119218851371*24476^(1/3) 2100951948255902 a001 32951280099/45537549124*24476^(1/3) 2100951948255902 a001 12586269025/17393796001*24476^(1/3) 2100951948255902 a001 4807526976/6643838879*24476^(1/3) 2100951948255902 a001 1836311903/2537720636*24476^(1/3) 2100951948255902 a001 701408733/969323029*24476^(1/3) 2100951948255902 a001 267914296/370248451*24476^(1/3) 2100951948255902 a001 102334155/141422324*24476^(1/3) 2100951948255903 a001 39088169/54018521*24476^(1/3) 2100951948255905 a001 14930352/20633239*24476^(1/3) 2100951948255923 a001 5702887/7881196*24476^(1/3) 2100951948256045 a001 2178309/3010349*24476^(1/3) 2100951948256361 a001 17711/20633239*103682^(7/8) 2100951948256884 a001 832040/1149851*24476^(1/3) 2100951948262633 a001 317811/439204*24476^(1/3) 2100951948264497 a001 17711/33385282*103682^(11/12) 2100951948272643 a001 17711/54018521*103682^(23/24) 2100951948278905 a001 196418/39603*39603^(3/22) 2100951948280786 a004 Fibonacci(22)*Lucas(24)/(1/2+sqrt(5)/2)^38 2100951948300389 a001 121393/39603*39603^(2/11) 2100951948302039 a001 121393/167761*24476^(1/3) 2100951948341217 a001 28657/167761*24476^(10/21) 2100951948390228 a001 105937/90481*24476^(2/7) 2100951948396795 a001 17711/64079*64079^(9/23) 2100951948405355 a001 98209/51841*24476^(5/21) 2100951948418135 a001 832040/710647*24476^(2/7) 2100951948422206 a001 726103/620166*24476^(2/7) 2100951948422800 a001 5702887/4870847*24476^(2/7) 2100951948422887 a001 4976784/4250681*24476^(2/7) 2100951948422900 a001 39088169/33385282*24476^(2/7) 2100951948422902 a001 34111385/29134601*24476^(2/7) 2100951948422902 a001 267914296/228826127*24476^(2/7) 2100951948422902 a001 233802911/199691526*24476^(2/7) 2100951948422902 a001 1836311903/1568397607*24476^(2/7) 2100951948422902 a001 1602508992/1368706081*24476^(2/7) 2100951948422902 a001 12586269025/10749957122*24476^(2/7) 2100951948422902 a001 10983760033/9381251041*24476^(2/7) 2100951948422902 a001 86267571272/73681302247*24476^(2/7) 2100951948422902 a001 75283811239/64300051206*24476^(2/7) 2100951948422902 a001 2504730781961/2139295485799*24476^(2/7) 2100951948422902 a001 365435296162/312119004989*24476^(2/7) 2100951948422902 a001 139583862445/119218851371*24476^(2/7) 2100951948422902 a001 53316291173/45537549124*24476^(2/7) 2100951948422902 a001 20365011074/17393796001*24476^(2/7) 2100951948422902 a001 7778742049/6643838879*24476^(2/7) 2100951948422902 a001 2971215073/2537720636*24476^(2/7) 2100951948422902 a001 1134903170/969323029*24476^(2/7) 2100951948422902 a001 433494437/370248451*24476^(2/7) 2100951948422902 a001 165580141/141422324*24476^(2/7) 2100951948422903 a001 63245986/54018521*24476^(2/7) 2100951948422908 a001 24157817/20633239*24476^(2/7) 2100951948422941 a001 9227465/7881196*24476^(2/7) 2100951948423168 a001 3524578/3010349*24476^(2/7) 2100951948424723 a001 1346269/1149851*24476^(2/7) 2100951948435382 a001 514229/439204*24476^(2/7) 2100951948441288 a001 28657/39603*64079^(7/23) 2100951948464442 a001 75025/39603*39603^(5/22) 2100951948498797 a001 17711/103682*39603^(5/11) 2100951948506150 a001 55/15126*15127^(9/10) 2100951948508444 a001 196418/167761*24476^(2/7) 2100951948546008 a001 514229/39603*15127^(1/20) 2100951948557303 a001 317811/103682*24476^(4/21) 2100951948562977 a001 514229/271443*24476^(5/21) 2100951948572128 a001 46368/64079*24476^(1/3) 2100951948585973 a001 1346269/710647*24476^(5/21) 2100951948589329 a001 1762289/930249*24476^(5/21) 2100951948589818 a001 9227465/4870847*24476^(5/21) 2100951948589889 a001 24157817/12752043*24476^(5/21) 2100951948589900 a001 31622993/16692641*24476^(5/21) 2100951948589901 a001 165580141/87403803*24476^(5/21) 2100951948589902 a001 433494437/228826127*24476^(5/21) 2100951948589902 a001 567451585/299537289*24476^(5/21) 2100951948589902 a001 2971215073/1568397607*24476^(5/21) 2100951948589902 a001 7778742049/4106118243*24476^(5/21) 2100951948589902 a001 10182505537/5374978561*24476^(5/21) 2100951948589902 a001 53316291173/28143753123*24476^(5/21) 2100951948589902 a001 139583862445/73681302247*24476^(5/21) 2100951948589902 a001 182717648081/96450076809*24476^(5/21) 2100951948589902 a001 956722026041/505019158607*24476^(5/21) 2100951948589902 a001 10610209857723/5600748293801*24476^(5/21) 2100951948589902 a001 591286729879/312119004989*24476^(5/21) 2100951948589902 a001 225851433717/119218851371*24476^(5/21) 2100951948589902 a001 21566892818/11384387281*24476^(5/21) 2100951948589902 a001 32951280099/17393796001*24476^(5/21) 2100951948589902 a001 12586269025/6643838879*24476^(5/21) 2100951948589902 a001 1201881744/634430159*24476^(5/21) 2100951948589902 a001 1836311903/969323029*24476^(5/21) 2100951948589902 a001 701408733/370248451*24476^(5/21) 2100951948589902 a001 66978574/35355581*24476^(5/21) 2100951948589902 a001 102334155/54018521*24476^(5/21) 2100951948589906 a001 39088169/20633239*24476^(5/21) 2100951948589934 a001 3732588/1970299*24476^(5/21) 2100951948590121 a001 5702887/3010349*24476^(5/21) 2100951948591402 a001 2178309/1149851*24476^(5/21) 2100951948593381 a001 17711/64079*439204^(1/3) 2100951948597002 a001 17711/64079*7881196^(3/11) 2100951948597010 a001 28657/39603*20633239^(1/5) 2100951948597011 a001 507544127/24157817 2100951948597011 a001 17711/64079*141422324^(3/13) 2100951948597011 a001 17711/64079*2537720636^(1/5) 2100951948597011 a001 17711/64079*45537549124^(3/17) 2100951948597011 a001 17711/64079*14662949395604^(1/7) 2100951948597011 a001 17711/64079*(1/2+1/2*5^(1/2))^9 2100951948597011 a001 17711/64079*192900153618^(1/6) 2100951948597011 a001 17711/64079*10749957122^(3/16) 2100951948597011 a001 28657/39603*17393796001^(1/7) 2100951948597011 a001 28657/39603*14662949395604^(1/9) 2100951948597011 a001 28657/39603*(1/2+1/2*5^(1/2))^7 2100951948597011 a001 17711/64079*599074578^(3/14) 2100951948597011 a001 28657/39603*599074578^(1/6) 2100951948597012 a001 17711/64079*33385282^(1/4) 2100951948597193 a001 17711/64079*1860498^(3/10) 2100951948598051 a001 28657/39603*710647^(1/4) 2100951948600186 a001 208010/109801*24476^(5/21) 2100951948654014 a001 28657/39603*103682^(7/24) 2100951948660392 a001 317811/167761*24476^(5/21) 2100951948670301 a001 17711/64079*103682^(3/8) 2100951948670836 a001 832040/64079*9349^(1/19) 2100951948717799 a004 Fibonacci(24)*Lucas(23)/(1/2+sqrt(5)/2)^39 2100951948727780 a001 832040/271443*24476^(4/21) 2100951948730052 a001 514229/103682*24476^(1/7) 2100951948740045 a001 15456/29134601*64079^(22/23) 2100951948752653 a001 311187/101521*24476^(4/21) 2100951948756282 a001 5702887/1860498*24476^(4/21) 2100951948756811 a001 14930352/4870847*24476^(4/21) 2100951948756888 a001 39088169/12752043*24476^(4/21) 2100951948756900 a001 14619165/4769326*24476^(4/21) 2100951948756901 a001 267914296/87403803*24476^(4/21) 2100951948756901 a001 701408733/228826127*24476^(4/21) 2100951948756901 a001 1836311903/599074578*24476^(4/21) 2100951948756901 a001 686789568/224056801*24476^(4/21) 2100951948756901 a001 12586269025/4106118243*24476^(4/21) 2100951948756901 a001 32951280099/10749957122*24476^(4/21) 2100951948756901 a001 86267571272/28143753123*24476^(4/21) 2100951948756901 a001 32264490531/10525900321*24476^(4/21) 2100951948756901 a001 591286729879/192900153618*24476^(4/21) 2100951948756901 a001 1548008755920/505019158607*24476^(4/21) 2100951948756901 a001 1515744265389/494493258286*24476^(4/21) 2100951948756901 a001 956722026041/312119004989*24476^(4/21) 2100951948756901 a001 365435296162/119218851371*24476^(4/21) 2100951948756901 a001 139583862445/45537549124*24476^(4/21) 2100951948756901 a001 53316291173/17393796001*24476^(4/21) 2100951948756901 a001 20365011074/6643838879*24476^(4/21) 2100951948756901 a001 7778742049/2537720636*24476^(4/21) 2100951948756901 a001 2971215073/969323029*24476^(4/21) 2100951948756901 a001 1134903170/370248451*24476^(4/21) 2100951948756902 a001 433494437/141422324*24476^(4/21) 2100951948756902 a001 165580141/54018521*24476^(4/21) 2100951948756907 a001 63245986/20633239*24476^(4/21) 2100951948756936 a001 24157817/7881196*24476^(4/21) 2100951948757138 a001 9227465/3010349*24476^(4/21) 2100951948758524 a001 3524578/1149851*24476^(4/21) 2100951948762292 a001 46368/54018521*64079^(21/23) 2100951948768025 a001 1346269/439204*24476^(4/21) 2100951948784536 a001 144/103681*64079^(20/23) 2100951948787499 a001 17711/271443*39603^(6/11) 2100951948806789 a001 46368/20633239*64079^(19/23) 2100951948829017 a001 15456/4250681*64079^(18/23) 2100951948829775 a001 17711/167761*39603^(1/2) 2100951948833141 a001 514229/167761*24476^(4/21) 2100951948851310 a001 11592/1970299*64079^(17/23) 2100951948856054 a001 23184/51841*64079^(8/23) 2100951948873434 a001 46368/4870847*64079^(16/23) 2100951948884723 a004 Fibonacci(26)*Lucas(23)/(1/2+sqrt(5)/2)^41 2100951948887793 a001 17711/439204*39603^(13/22) 2100951948894856 a001 416020/51841*24476^(2/21) 2100951948895619 a001 1346269/271443*24476^(1/7) 2100951948896001 a001 46368/3010349*64079^(15/23) 2100951948906969 a001 121393/228826127*64079^(22/23) 2100951948909077 a004 Fibonacci(28)*Lucas(23)/(1/2+sqrt(5)/2)^43 2100951948912630 a004 Fibonacci(30)*Lucas(23)/(1/2+sqrt(5)/2)^45 2100951948913148 a004 Fibonacci(32)*Lucas(23)/(1/2+sqrt(5)/2)^47 2100951948913224 a004 Fibonacci(34)*Lucas(23)/(1/2+sqrt(5)/2)^49 2100951948913235 a004 Fibonacci(36)*Lucas(23)/(1/2+sqrt(5)/2)^51 2100951948913237 a004 Fibonacci(38)*Lucas(23)/(1/2+sqrt(5)/2)^53 2100951948913237 a004 Fibonacci(40)*Lucas(23)/(1/2+sqrt(5)/2)^55 2100951948913237 a004 Fibonacci(42)*Lucas(23)/(1/2+sqrt(5)/2)^57 2100951948913237 a004 Fibonacci(44)*Lucas(23)/(1/2+sqrt(5)/2)^59 2100951948913237 a004 Fibonacci(46)*Lucas(23)/(1/2+sqrt(5)/2)^61 2100951948913237 a004 Fibonacci(48)*Lucas(23)/(1/2+sqrt(5)/2)^63 2100951948913237 a004 Fibonacci(50)*Lucas(23)/(1/2+sqrt(5)/2)^65 2100951948913237 a004 Fibonacci(52)*Lucas(23)/(1/2+sqrt(5)/2)^67 2100951948913237 a004 Fibonacci(54)*Lucas(23)/(1/2+sqrt(5)/2)^69 2100951948913237 a004 Fibonacci(56)*Lucas(23)/(1/2+sqrt(5)/2)^71 2100951948913237 a004 Fibonacci(58)*Lucas(23)/(1/2+sqrt(5)/2)^73 2100951948913237 a004 Fibonacci(60)*Lucas(23)/(1/2+sqrt(5)/2)^75 2100951948913237 a004 Fibonacci(62)*Lucas(23)/(1/2+sqrt(5)/2)^77 2100951948913237 a004 Fibonacci(64)*Lucas(23)/(1/2+sqrt(5)/2)^79 2100951948913237 a004 Fibonacci(66)*Lucas(23)/(1/2+sqrt(5)/2)^81 2100951948913237 a004 Fibonacci(68)*Lucas(23)/(1/2+sqrt(5)/2)^83 2100951948913237 a004 Fibonacci(70)*Lucas(23)/(1/2+sqrt(5)/2)^85 2100951948913237 a004 Fibonacci(72)*Lucas(23)/(1/2+sqrt(5)/2)^87 2100951948913237 a004 Fibonacci(74)*Lucas(23)/(1/2+sqrt(5)/2)^89 2100951948913237 a004 Fibonacci(76)*Lucas(23)/(1/2+sqrt(5)/2)^91 2100951948913237 a004 Fibonacci(78)*Lucas(23)/(1/2+sqrt(5)/2)^93 2100951948913237 a004 Fibonacci(80)*Lucas(23)/(1/2+sqrt(5)/2)^95 2100951948913237 a004 Fibonacci(82)*Lucas(23)/(1/2+sqrt(5)/2)^97 2100951948913237 a004 Fibonacci(84)*Lucas(23)/(1/2+sqrt(5)/2)^99 2100951948913237 a004 Fibonacci(85)*Lucas(23)/(1/2+sqrt(5)/2)^100 2100951948913237 a004 Fibonacci(83)*Lucas(23)/(1/2+sqrt(5)/2)^98 2100951948913237 a004 Fibonacci(81)*Lucas(23)/(1/2+sqrt(5)/2)^96 2100951948913237 a004 Fibonacci(79)*Lucas(23)/(1/2+sqrt(5)/2)^94 2100951948913237 a004 Fibonacci(77)*Lucas(23)/(1/2+sqrt(5)/2)^92 2100951948913237 a004 Fibonacci(75)*Lucas(23)/(1/2+sqrt(5)/2)^90 2100951948913237 a004 Fibonacci(73)*Lucas(23)/(1/2+sqrt(5)/2)^88 2100951948913237 a004 Fibonacci(71)*Lucas(23)/(1/2+sqrt(5)/2)^86 2100951948913237 a004 Fibonacci(69)*Lucas(23)/(1/2+sqrt(5)/2)^84 2100951948913237 a004 Fibonacci(67)*Lucas(23)/(1/2+sqrt(5)/2)^82 2100951948913237 a004 Fibonacci(65)*Lucas(23)/(1/2+sqrt(5)/2)^80 2100951948913237 a004 Fibonacci(63)*Lucas(23)/(1/2+sqrt(5)/2)^78 2100951948913237 a004 Fibonacci(61)*Lucas(23)/(1/2+sqrt(5)/2)^76 2100951948913237 a004 Fibonacci(59)*Lucas(23)/(1/2+sqrt(5)/2)^74 2100951948913237 a004 Fibonacci(57)*Lucas(23)/(1/2+sqrt(5)/2)^72 2100951948913237 a004 Fibonacci(55)*Lucas(23)/(1/2+sqrt(5)/2)^70 2100951948913237 a004 Fibonacci(53)*Lucas(23)/(1/2+sqrt(5)/2)^68 2100951948913237 a004 Fibonacci(51)*Lucas(23)/(1/2+sqrt(5)/2)^66 2100951948913237 a004 Fibonacci(49)*Lucas(23)/(1/2+sqrt(5)/2)^64 2100951948913237 a004 Fibonacci(47)*Lucas(23)/(1/2+sqrt(5)/2)^62 2100951948913237 a001 2/28657*(1/2+1/2*5^(1/2))^31 2100951948913237 a004 Fibonacci(45)*Lucas(23)/(1/2+sqrt(5)/2)^60 2100951948913237 a004 Fibonacci(43)*Lucas(23)/(1/2+sqrt(5)/2)^58 2100951948913237 a004 Fibonacci(41)*Lucas(23)/(1/2+sqrt(5)/2)^56 2100951948913237 a004 Fibonacci(39)*Lucas(23)/(1/2+sqrt(5)/2)^54 2100951948913238 a004 Fibonacci(37)*Lucas(23)/(1/2+sqrt(5)/2)^52 2100951948913242 a004 Fibonacci(35)*Lucas(23)/(1/2+sqrt(5)/2)^50 2100951948913271 a004 Fibonacci(33)*Lucas(23)/(1/2+sqrt(5)/2)^48 2100951948913469 a004 Fibonacci(31)*Lucas(23)/(1/2+sqrt(5)/2)^46 2100951948914826 a004 Fibonacci(29)*Lucas(23)/(1/2+sqrt(5)/2)^44 2100951948917408 a001 2576/103361*64079^(14/23) 2100951948919775 a001 3524578/710647*24476^(1/7) 2100951948923299 a001 9227465/1860498*24476^(1/7) 2100951948923813 a001 24157817/4870847*24476^(1/7) 2100951948923888 a001 63245986/12752043*24476^(1/7) 2100951948923899 a001 165580141/33385282*24476^(1/7) 2100951948923901 a001 433494437/87403803*24476^(1/7) 2100951948923901 a001 1134903170/228826127*24476^(1/7) 2100951948923901 a001 2971215073/599074578*24476^(1/7) 2100951948923901 a001 7778742049/1568397607*24476^(1/7) 2100951948923901 a001 20365011074/4106118243*24476^(1/7) 2100951948923901 a001 53316291173/10749957122*24476^(1/7) 2100951948923901 a001 139583862445/28143753123*24476^(1/7) 2100951948923901 a001 365435296162/73681302247*24476^(1/7) 2100951948923901 a001 956722026041/192900153618*24476^(1/7) 2100951948923901 a001 2504730781961/505019158607*24476^(1/7) 2100951948923901 a001 10610209857723/2139295485799*24476^(1/7) 2100951948923901 a001 140728068720/28374454999*24476^(1/7) 2100951948923901 a001 591286729879/119218851371*24476^(1/7) 2100951948923901 a001 225851433717/45537549124*24476^(1/7) 2100951948923901 a001 86267571272/17393796001*24476^(1/7) 2100951948923901 a001 32951280099/6643838879*24476^(1/7) 2100951948923901 a001 1144206275/230701876*24476^(1/7) 2100951948923901 a001 4807526976/969323029*24476^(1/7) 2100951948923901 a001 1836311903/370248451*24476^(1/7) 2100951948923901 a001 701408733/141422324*24476^(1/7) 2100951948923902 a001 267914296/54018521*24476^(1/7) 2100951948923906 a001 9303105/1875749*24476^(1/7) 2100951948923935 a001 39088169/7881196*24476^(1/7) 2100951948924128 a004 Fibonacci(27)*Lucas(23)/(1/2+sqrt(5)/2)^42 2100951948924131 a001 14930352/3010349*24476^(1/7) 2100951948925477 a001 5702887/1149851*24476^(1/7) 2100951948929215 a001 233/271444*64079^(21/23) 2100951948931323 a001 377/710646*64079^(22/23) 2100951948933630 a001 17711/710647*39603^(7/11) 2100951948934704 a001 2178309/439204*24476^(1/7) 2100951948934876 a001 832040/1568397607*64079^(22/23) 2100951948935395 a001 726103/1368706081*64079^(22/23) 2100951948935470 a001 5702887/10749957122*64079^(22/23) 2100951948935481 a001 4976784/9381251041*64079^(22/23) 2100951948935483 a001 39088169/73681302247*64079^(22/23) 2100951948935483 a001 34111385/64300051206*64079^(22/23) 2100951948935483 a001 267914296/505019158607*64079^(22/23) 2100951948935483 a001 233802911/440719107401*64079^(22/23) 2100951948935483 a001 1836311903/3461452808002*64079^(22/23) 2100951948935483 a001 1602508992/3020733700601*64079^(22/23) 2100951948935483 a001 12586269025/23725150497407*64079^(22/23) 2100951948935483 a001 7778742049/14662949395604*64079^(22/23) 2100951948935483 a001 2971215073/5600748293801*64079^(22/23) 2100951948935483 a001 1134903170/2139295485799*64079^(22/23) 2100951948935483 a001 433494437/817138163596*64079^(22/23) 2100951948935483 a001 165580141/312119004989*64079^(22/23) 2100951948935483 a001 63245986/119218851371*64079^(22/23) 2100951948935484 a001 24157817/45537549124*64079^(22/23) 2100951948935488 a001 9227465/17393796001*64079^(22/23) 2100951948935517 a001 3524578/6643838879*64079^(22/23) 2100951948935715 a001 1346269/2537720636*64079^(22/23) 2100951948937072 a001 514229/969323029*64079^(22/23) 2100951948941850 a001 46368/1149851*64079^(13/23) 2100951948946375 a001 196418/370248451*64079^(22/23) 2100951948951461 a001 121393/87403803*64079^(20/23) 2100951948953569 a001 317811/370248451*64079^(21/23) 2100951948957122 a001 832040/969323029*64079^(21/23) 2100951948957641 a001 2178309/2537720636*64079^(21/23) 2100951948957716 a001 5702887/6643838879*64079^(21/23) 2100951948957728 a001 14930352/17393796001*64079^(21/23) 2100951948957729 a001 39088169/45537549124*64079^(21/23) 2100951948957729 a001 102334155/119218851371*64079^(21/23) 2100951948957729 a001 267914296/312119004989*64079^(21/23) 2100951948957729 a001 701408733/817138163596*64079^(21/23) 2100951948957729 a001 1836311903/2139295485799*64079^(21/23) 2100951948957729 a001 4807526976/5600748293801*64079^(21/23) 2100951948957729 a001 12586269025/14662949395604*64079^(21/23) 2100951948957729 a001 20365011074/23725150497407*64079^(21/23) 2100951948957729 a001 7778742049/9062201101803*64079^(21/23) 2100951948957729 a001 2971215073/3461452808002*64079^(21/23) 2100951948957729 a001 1134903170/1322157322203*64079^(21/23) 2100951948957729 a001 433494437/505019158607*64079^(21/23) 2100951948957729 a001 165580141/192900153618*64079^(21/23) 2100951948957729 a001 63245986/73681302247*64079^(21/23) 2100951948957730 a001 24157817/28143753123*64079^(21/23) 2100951948957734 a001 9227465/10749957122*64079^(21/23) 2100951948957763 a001 3524578/4106118243*64079^(21/23) 2100951948957961 a001 1346269/1568397607*64079^(21/23) 2100951948958347 a001 6624/101521*64079^(12/23) 2100951948959318 a001 514229/599074578*64079^(21/23) 2100951948966061 a001 6765/3010349*15127^(19/20) 2100951948968621 a001 196418/228826127*64079^(21/23) 2100951948973709 a001 121393/54018521*64079^(19/23) 2100951948975815 a001 317811/228826127*64079^(20/23) 2100951948978486 a001 15456/90481*64079^(10/23) 2100951948979369 a001 416020/299537289*64079^(20/23) 2100951948979887 a001 311187/224056801*64079^(20/23) 2100951948979963 a001 5702887/4106118243*64079^(20/23) 2100951948979974 a001 7465176/5374978561*64079^(20/23) 2100951948979975 a001 39088169/28143753123*64079^(20/23) 2100951948979976 a001 14619165/10525900321*64079^(20/23) 2100951948979976 a001 133957148/96450076809*64079^(20/23) 2100951948979976 a001 701408733/505019158607*64079^(20/23) 2100951948979976 a001 1836311903/1322157322203*64079^(20/23) 2100951948979976 a001 14930208/10749853441*64079^(20/23) 2100951948979976 a001 12586269025/9062201101803*64079^(20/23) 2100951948979976 a001 32951280099/23725150497407*64079^(20/23) 2100951948979976 a001 10182505537/7331474697802*64079^(20/23) 2100951948979976 a001 7778742049/5600748293801*64079^(20/23) 2100951948979976 a001 2971215073/2139295485799*64079^(20/23) 2100951948979976 a001 567451585/408569081798*64079^(20/23) 2100951948979976 a001 433494437/312119004989*64079^(20/23) 2100951948979976 a001 165580141/119218851371*64079^(20/23) 2100951948979976 a001 31622993/22768774562*64079^(20/23) 2100951948979976 a001 24157817/17393796001*64079^(20/23) 2100951948979981 a001 9227465/6643838879*64079^(20/23) 2100951948980009 a001 1762289/1268860318*64079^(20/23) 2100951948980207 a001 1346269/969323029*64079^(20/23) 2100951948981565 a001 514229/370248451*64079^(20/23) 2100951948987888 a004 Fibonacci(25)*Lucas(23)/(1/2+sqrt(5)/2)^40 2100951948990867 a001 98209/70711162*64079^(20/23) 2100951948995645 a001 11592/109801*64079^(11/23) 2100951948995952 a001 121393/33385282*64079^(18/23) 2100951948997945 a001 75640/15251*24476^(1/7) 2100951948998062 a001 317811/141422324*64079^(19/23) 2100951948999331 a001 105937/13201*15127^(1/10) 2100951949000268 a001 17711/1149851*39603^(15/22) 2100951949001615 a001 832040/370248451*64079^(19/23) 2100951949002133 a001 2178309/969323029*64079^(19/23) 2100951949002209 a001 5702887/2537720636*64079^(19/23) 2100951949002220 a001 14930352/6643838879*64079^(19/23) 2100951949002222 a001 39088169/17393796001*64079^(19/23) 2100951949002222 a001 102334155/45537549124*64079^(19/23) 2100951949002222 a001 267914296/119218851371*64079^(19/23) 2100951949002222 a001 3524667/1568437211*64079^(19/23) 2100951949002222 a001 1836311903/817138163596*64079^(19/23) 2100951949002222 a001 4807526976/2139295485799*64079^(19/23) 2100951949002222 a001 12586269025/5600748293801*64079^(19/23) 2100951949002222 a001 32951280099/14662949395604*64079^(19/23) 2100951949002222 a001 53316291173/23725150497407*64079^(19/23) 2100951949002222 a001 20365011074/9062201101803*64079^(19/23) 2100951949002222 a001 7778742049/3461452808002*64079^(19/23) 2100951949002222 a001 2971215073/1322157322203*64079^(19/23) 2100951949002222 a001 1134903170/505019158607*64079^(19/23) 2100951949002222 a001 433494437/192900153618*64079^(19/23) 2100951949002222 a001 165580141/73681302247*64079^(19/23) 2100951949002222 a001 63245986/28143753123*64079^(19/23) 2100951949002223 a001 24157817/10749957122*64079^(19/23) 2100951949002227 a001 9227465/4106118243*64079^(19/23) 2100951949002256 a001 3524578/1568397607*64079^(19/23) 2100951949002454 a001 1346269/599074578*64079^(19/23) 2100951949003811 a001 514229/228826127*64079^(19/23) 2100951949009216 a001 75025/64079*24476^(2/7) 2100951949010134 a001 75025/141422324*64079^(22/23) 2100951949013113 a001 196418/87403803*64079^(19/23) 2100951949018205 a001 121393/20633239*64079^(17/23) 2100951949020308 a001 105937/29134601*64079^(18/23) 2100951949023233 a001 28657/39603*39603^(7/22) 2100951949023861 a001 832040/228826127*64079^(18/23) 2100951949024380 a001 726103/199691526*64079^(18/23) 2100951949024455 a001 5702887/1568397607*64079^(18/23) 2100951949024466 a001 4976784/1368706081*64079^(18/23) 2100951949024468 a001 39088169/10749957122*64079^(18/23) 2100951949024468 a001 831985/228811001*64079^(18/23) 2100951949024468 a001 267914296/73681302247*64079^(18/23) 2100951949024468 a001 233802911/64300051206*64079^(18/23) 2100951949024468 a001 1836311903/505019158607*64079^(18/23) 2100951949024468 a001 1602508992/440719107401*64079^(18/23) 2100951949024468 a001 12586269025/3461452808002*64079^(18/23) 2100951949024468 a001 10983760033/3020733700601*64079^(18/23) 2100951949024468 a001 86267571272/23725150497407*64079^(18/23) 2100951949024468 a001 53316291173/14662949395604*64079^(18/23) 2100951949024468 a001 20365011074/5600748293801*64079^(18/23) 2100951949024468 a001 7778742049/2139295485799*64079^(18/23) 2100951949024468 a001 2971215073/817138163596*64079^(18/23) 2100951949024468 a001 1134903170/312119004989*64079^(18/23) 2100951949024468 a001 433494437/119218851371*64079^(18/23) 2100951949024468 a001 165580141/45537549124*64079^(18/23) 2100951949024468 a001 63245986/17393796001*64079^(18/23) 2100951949024469 a001 24157817/6643838879*64079^(18/23) 2100951949024473 a001 9227465/2537720636*64079^(18/23) 2100951949024502 a001 3524578/969323029*64079^(18/23) 2100951949024700 a001 1346269/370248451*64079^(18/23) 2100951949026057 a001 514229/141422324*64079^(18/23) 2100951949032380 a001 75025/87403803*64079^(21/23) 2100951949034024 a001 23184/51841*(1/2+1/2*5^(1/2))^8 2100951949034024 a001 23184/51841*23725150497407^(1/8) 2100951949034024 a001 23184/51841*73681302247^(2/13) 2100951949034024 a001 23184/51841*10749957122^(1/6) 2100951949034024 a001 23184/51841*4106118243^(4/23) 2100951949034024 a001 23184/51841*1568397607^(2/11) 2100951949034024 a001 23184/51841*599074578^(4/21) 2100951949034024 a001 23184/51841*228826127^(1/5) 2100951949034024 a001 102380544/4873055 2100951949034024 a001 23184/51841*87403803^(4/19) 2100951949034025 a001 23184/51841*33385282^(2/9) 2100951949034027 a001 23184/51841*12752043^(4/17) 2100951949034046 a001 23184/51841*4870847^(1/4) 2100951949034186 a001 23184/51841*1860498^(4/15) 2100951949035213 a001 23184/51841*710647^(2/7) 2100951949035360 a001 196418/54018521*64079^(18/23) 2100951949040434 a001 121393/12752043*64079^(16/23) 2100951949042555 a001 317811/54018521*64079^(17/23) 2100951949042798 a001 23184/51841*271443^(4/13) 2100951949046108 a001 208010/35355581*64079^(17/23) 2100951949046626 a001 2178309/370248451*64079^(17/23) 2100951949046701 a001 5702887/969323029*64079^(17/23) 2100951949046713 a001 196452/33391061*64079^(17/23) 2100951949046714 a001 39088169/6643838879*64079^(17/23) 2100951949046714 a001 102334155/17393796001*64079^(17/23) 2100951949046714 a001 66978574/11384387281*64079^(17/23) 2100951949046714 a001 701408733/119218851371*64079^(17/23) 2100951949046714 a001 1836311903/312119004989*64079^(17/23) 2100951949046714 a001 1201881744/204284540899*64079^(17/23) 2100951949046714 a001 12586269025/2139295485799*64079^(17/23) 2100951949046714 a001 32951280099/5600748293801*64079^(17/23) 2100951949046714 a001 1135099622/192933544679*64079^(17/23) 2100951949046714 a001 139583862445/23725150497407*64079^(17/23) 2100951949046714 a001 53316291173/9062201101803*64079^(17/23) 2100951949046714 a001 10182505537/1730726404001*64079^(17/23) 2100951949046714 a001 7778742049/1322157322203*64079^(17/23) 2100951949046714 a001 2971215073/505019158607*64079^(17/23) 2100951949046714 a001 567451585/96450076809*64079^(17/23) 2100951949046714 a001 433494437/73681302247*64079^(17/23) 2100951949046714 a001 165580141/28143753123*64079^(17/23) 2100951949046714 a001 31622993/5374978561*64079^(17/23) 2100951949046715 a001 24157817/4106118243*64079^(17/23) 2100951949046719 a001 9227465/1568397607*64079^(17/23) 2100951949046748 a001 1762289/299537289*64079^(17/23) 2100951949046946 a001 1346269/228826127*64079^(17/23) 2100951949048303 a001 514229/87403803*64079^(17/23) 2100951949054627 a001 75025/54018521*64079^(20/23) 2100951949057604 a001 98209/16692641*64079^(17/23) 2100951949058961 a001 17711/1860498*39603^(8/11) 2100951949062298 a001 726103/90481*24476^(2/21) 2100951949062695 a001 1346269/103682*24476^(1/21) 2100951949062727 a001 121393/7881196*64079^(15/23) 2100951949064799 a001 317811/33385282*64079^(16/23) 2100951949067471 a001 121393/103682*64079^(6/23) 2100951949068353 a001 832040/87403803*64079^(16/23) 2100951949068872 a001 46347/4868641*64079^(16/23) 2100951949068948 a001 5702887/599074578*64079^(16/23) 2100951949068959 a001 14930352/1568397607*64079^(16/23) 2100951949068960 a001 39088169/4106118243*64079^(16/23) 2100951949068961 a001 102334155/10749957122*64079^(16/23) 2100951949068961 a001 267914296/28143753123*64079^(16/23) 2100951949068961 a001 701408733/73681302247*64079^(16/23) 2100951949068961 a001 1836311903/192900153618*64079^(16/23) 2100951949068961 a001 102287808/10745088481*64079^(16/23) 2100951949068961 a001 12586269025/1322157322203*64079^(16/23) 2100951949068961 a001 32951280099/3461452808002*64079^(16/23) 2100951949068961 a001 86267571272/9062201101803*64079^(16/23) 2100951949068961 a001 225851433717/23725150497407*64079^(16/23) 2100951949068961 a001 139583862445/14662949395604*64079^(16/23) 2100951949068961 a001 53316291173/5600748293801*64079^(16/23) 2100951949068961 a001 20365011074/2139295485799*64079^(16/23) 2100951949068961 a001 7778742049/817138163596*64079^(16/23) 2100951949068961 a001 2971215073/312119004989*64079^(16/23) 2100951949068961 a001 1134903170/119218851371*64079^(16/23) 2100951949068961 a001 433494437/45537549124*64079^(16/23) 2100951949068961 a001 165580141/17393796001*64079^(16/23) 2100951949068961 a001 63245986/6643838879*64079^(16/23) 2100951949068961 a001 24157817/2537720636*64079^(16/23) 2100951949068966 a001 9227465/969323029*64079^(16/23) 2100951949068994 a001 3524578/370248451*64079^(16/23) 2100951949069193 a001 1346269/141422324*64079^(16/23) 2100951949070550 a001 514229/54018521*64079^(16/23) 2100951949073051 a001 121393/64079*24476^(5/21) 2100951949076871 a001 75025/33385282*64079^(19/23) 2100951949079857 a001 196418/20633239*64079^(16/23) 2100951949084851 a001 121393/4870847*64079^(14/23) 2100951949086728 a001 5702887/710647*24476^(2/21) 2100951949087052 a001 10959/711491*64079^(15/23) 2100951949090292 a001 829464/103361*24476^(2/21) 2100951949090601 a001 832040/54018521*64079^(15/23) 2100951949090812 a001 39088169/4870847*24476^(2/21) 2100951949090888 a001 34111385/4250681*24476^(2/21) 2100951949090899 a001 133957148/16692641*24476^(2/21) 2100951949090901 a001 233802911/29134601*24476^(2/21) 2100951949090901 a001 1836311903/228826127*24476^(2/21) 2100951949090901 a001 267084832/33281921*24476^(2/21) 2100951949090901 a001 12586269025/1568397607*24476^(2/21) 2100951949090901 a001 10983760033/1368706081*24476^(2/21) 2100951949090901 a001 43133785636/5374978561*24476^(2/21) 2100951949090901 a001 75283811239/9381251041*24476^(2/21) 2100951949090901 a001 591286729879/73681302247*24476^(2/21) 2100951949090901 a001 86000486440/10716675201*24476^(2/21) 2100951949090901 a001 4052739537881/505019158607*24476^(2/21) 2100951949090901 a001 3278735159921/408569081798*24476^(2/21) 2100951949090901 a001 2504730781961/312119004989*24476^(2/21) 2100951949090901 a001 956722026041/119218851371*24476^(2/21) 2100951949090901 a001 182717648081/22768774562*24476^(2/21) 2100951949090901 a001 139583862445/17393796001*24476^(2/21) 2100951949090901 a001 53316291173/6643838879*24476^(2/21) 2100951949090901 a001 10182505537/1268860318*24476^(2/21) 2100951949090901 a001 7778742049/969323029*24476^(2/21) 2100951949090901 a001 2971215073/370248451*24476^(2/21) 2100951949090901 a001 567451585/70711162*24476^(2/21) 2100951949090902 a001 433494437/54018521*24476^(2/21) 2100951949090906 a001 165580141/20633239*24476^(2/21) 2100951949090935 a001 31622993/3940598*24476^(2/21) 2100951949091118 a001 2178309/141422324*64079^(15/23) 2100951949091134 a001 24157817/3010349*24476^(2/21) 2100951949091194 a001 5702887/370248451*64079^(15/23) 2100951949091205 a001 14930352/969323029*64079^(15/23) 2100951949091207 a001 39088169/2537720636*64079^(15/23) 2100951949091207 a001 102334155/6643838879*64079^(15/23) 2100951949091207 a001 9238424/599786069*64079^(15/23) 2100951949091207 a001 701408733/45537549124*64079^(15/23) 2100951949091207 a001 1836311903/119218851371*64079^(15/23) 2100951949091207 a001 4807526976/312119004989*64079^(15/23) 2100951949091207 a001 12586269025/817138163596*64079^(15/23) 2100951949091207 a001 32951280099/2139295485799*64079^(15/23) 2100951949091207 a001 86267571272/5600748293801*64079^(15/23) 2100951949091207 a001 7787980473/505618944676*64079^(15/23) 2100951949091207 a001 365435296162/23725150497407*64079^(15/23) 2100951949091207 a001 139583862445/9062201101803*64079^(15/23) 2100951949091207 a001 53316291173/3461452808002*64079^(15/23) 2100951949091207 a001 20365011074/1322157322203*64079^(15/23) 2100951949091207 a001 7778742049/505019158607*64079^(15/23) 2100951949091207 a001 2971215073/192900153618*64079^(15/23) 2100951949091207 a001 1134903170/73681302247*64079^(15/23) 2100951949091207 a001 433494437/28143753123*64079^(15/23) 2100951949091207 a001 165580141/10749957122*64079^(15/23) 2100951949091207 a001 63245986/4106118243*64079^(15/23) 2100951949091208 a001 24157817/1568397607*64079^(15/23) 2100951949091212 a001 9227465/599074578*64079^(15/23) 2100951949091241 a001 3524578/228826127*64079^(15/23) 2100951949091438 a001 1346269/87403803*64079^(15/23) 2100951949092495 a001 9227465/1149851*24476^(2/21) 2100951949092794 a001 514229/33385282*64079^(15/23) 2100951949099124 a001 75025/20633239*64079^(18/23) 2100951949099170 a001 23184/51841*103682^(1/3) 2100951949101826 a001 1762289/219602*24476^(2/21) 2100951949102085 a001 196418/12752043*64079^(15/23) 2100951949103897 a001 46368/167761*64079^(9/23) 2100951949107417 a001 121393/3010349*64079^(13/23) 2100951949108018 a001 121393/24476*9349^(3/19) 2100951949109280 a001 105937/4250681*64079^(14/23) 2100951949112230 a001 28657/64079*24476^(8/21) 2100951949112844 a001 416020/16692641*64079^(14/23) 2100951949113364 a001 726103/29134601*64079^(14/23) 2100951949113440 a001 5702887/228826127*64079^(14/23) 2100951949113451 a001 829464/33281921*64079^(14/23) 2100951949113453 a001 39088169/1568397607*64079^(14/23) 2100951949113453 a001 34111385/1368706081*64079^(14/23) 2100951949113453 a001 133957148/5374978561*64079^(14/23) 2100951949113453 a001 233802911/9381251041*64079^(14/23) 2100951949113453 a001 1836311903/73681302247*64079^(14/23) 2100951949113453 a001 267084832/10716675201*64079^(14/23) 2100951949113453 a001 12586269025/505019158607*64079^(14/23) 2100951949113453 a001 10983760033/440719107401*64079^(14/23) 2100951949113453 a001 43133785636/1730726404001*64079^(14/23) 2100951949113453 a001 75283811239/3020733700601*64079^(14/23) 2100951949113453 a001 182717648081/7331474697802*64079^(14/23) 2100951949113453 a001 139583862445/5600748293801*64079^(14/23) 2100951949113453 a001 53316291173/2139295485799*64079^(14/23) 2100951949113453 a001 10182505537/408569081798*64079^(14/23) 2100951949113453 a001 7778742049/312119004989*64079^(14/23) 2100951949113453 a001 2971215073/119218851371*64079^(14/23) 2100951949113453 a001 567451585/22768774562*64079^(14/23) 2100951949113453 a001 433494437/17393796001*64079^(14/23) 2100951949113453 a001 165580141/6643838879*64079^(14/23) 2100951949113453 a001 31622993/1268860318*64079^(14/23) 2100951949113454 a001 24157817/969323029*64079^(14/23) 2100951949113458 a001 9227465/370248451*64079^(14/23) 2100951949113487 a001 1762289/70711162*64079^(14/23) 2100951949113686 a001 1346269/54018521*64079^(14/23) 2100951949115047 a001 514229/20633239*64079^(14/23) 2100951949120689 a001 17711/3010349*39603^(17/22) 2100951949121352 a001 75025/12752043*64079^(17/23) 2100951949124378 a001 98209/3940598*64079^(14/23) 2100951949128825 a001 121393/1860498*64079^(12/23) 2100951949129123 a001 98209/51841*64079^(5/23) 2100951949131573 a001 317811/7881196*64079^(13/23) 2100951949135097 a001 75640/1875749*64079^(13/23) 2100951949135612 a001 2178309/54018521*64079^(13/23) 2100951949135687 a001 5702887/141422324*64079^(13/23) 2100951949135698 a001 14930352/370248451*64079^(13/23) 2100951949135699 a001 39088169/969323029*64079^(13/23) 2100951949135699 a001 9303105/230701876*64079^(13/23) 2100951949135699 a001 267914296/6643838879*64079^(13/23) 2100951949135699 a001 701408733/17393796001*64079^(13/23) 2100951949135699 a001 1836311903/45537549124*64079^(13/23) 2100951949135699 a001 4807526976/119218851371*64079^(13/23) 2100951949135699 a001 1144206275/28374454999*64079^(13/23) 2100951949135699 a001 32951280099/817138163596*64079^(13/23) 2100951949135699 a001 86267571272/2139295485799*64079^(13/23) 2100951949135699 a001 225851433717/5600748293801*64079^(13/23) 2100951949135699 a001 365435296162/9062201101803*64079^(13/23) 2100951949135699 a001 139583862445/3461452808002*64079^(13/23) 2100951949135699 a001 53316291173/1322157322203*64079^(13/23) 2100951949135699 a001 20365011074/505019158607*64079^(13/23) 2100951949135699 a001 7778742049/192900153618*64079^(13/23) 2100951949135699 a001 2971215073/73681302247*64079^(13/23) 2100951949135699 a001 1134903170/28143753123*64079^(13/23) 2100951949135699 a001 433494437/10749957122*64079^(13/23) 2100951949135699 a001 165580141/4106118243*64079^(13/23) 2100951949135699 a001 63245986/1568397607*64079^(13/23) 2100951949135700 a001 24157817/599074578*64079^(13/23) 2100951949135704 a001 9227465/228826127*64079^(13/23) 2100951949135733 a001 3524578/87403803*64079^(13/23) 2100951949135929 a001 1346269/33385282*64079^(13/23) 2100951949136317 a001 317811/103682*64079^(4/23) 2100951949137276 a001 514229/12752043*64079^(13/23) 2100951949143645 a001 75025/7881196*64079^(16/23) 2100951949145010 a001 17711/64079*39603^(9/22) 2100951949146502 a001 196418/4870847*64079^(13/23) 2100951949148389 a001 75025/103682*64079^(7/23) 2100951949153267 a001 121393/1149851*64079^(11/23) 2100951949153697 a001 317811/4870847*64079^(12/23) 2100951949154812 a004 Fibonacci(24)*Lucas(25)/(1/2+sqrt(5)/2)^41 2100951949157326 a001 832040/12752043*64079^(12/23) 2100951949157855 a001 311187/4769326*64079^(12/23) 2100951949157932 a001 5702887/87403803*64079^(12/23) 2100951949157944 a001 14930352/228826127*64079^(12/23) 2100951949157945 a001 39088169/599074578*64079^(12/23) 2100951949157946 a001 14619165/224056801*64079^(12/23) 2100951949157946 a001 267914296/4106118243*64079^(12/23) 2100951949157946 a001 701408733/10749957122*64079^(12/23) 2100951949157946 a001 1836311903/28143753123*64079^(12/23) 2100951949157946 a001 686789568/10525900321*64079^(12/23) 2100951949157946 a001 12586269025/192900153618*64079^(12/23) 2100951949157946 a001 32951280099/505019158607*64079^(12/23) 2100951949157946 a001 86267571272/1322157322203*64079^(12/23) 2100951949157946 a001 32264490531/494493258286*64079^(12/23) 2100951949157946 a001 1548008755920/23725150497407*64079^(12/23) 2100951949157946 a001 139583862445/2139295485799*64079^(12/23) 2100951949157946 a001 53316291173/817138163596*64079^(12/23) 2100951949157946 a001 20365011074/312119004989*64079^(12/23) 2100951949157946 a001 7778742049/119218851371*64079^(12/23) 2100951949157946 a001 2971215073/45537549124*64079^(12/23) 2100951949157946 a001 1134903170/17393796001*64079^(12/23) 2100951949157946 a001 433494437/6643838879*64079^(12/23) 2100951949157946 a001 165580141/2537720636*64079^(12/23) 2100951949157946 a001 63245986/969323029*64079^(12/23) 2100951949157946 a001 24157817/370248451*64079^(12/23) 2100951949157951 a001 9227465/141422324*64079^(12/23) 2100951949157980 a001 3524578/54018521*64079^(12/23) 2100951949158182 a001 1346269/20633239*64079^(12/23) 2100951949159569 a001 514229/7881196*64079^(12/23) 2100951949164313 a001 514229/103682*64079^(3/23) 2100951949165769 a001 75025/4870847*64079^(15/23) 2100951949165784 a001 1346269/167761*24476^(2/21) 2100951949169069 a001 196418/3010349*64079^(12/23) 2100951949169740 a001 144/103681*167761^(4/5) 2100951949169764 a001 121393/710647*64079^(10/23) 2100951949171088 a001 15456/90481*167761^(2/5) 2100951949176264 a001 317811/3010349*64079^(11/23) 2100951949179619 a001 208010/1970299*64079^(11/23) 2100951949180108 a001 2178309/20633239*64079^(11/23) 2100951949180180 a001 5702887/54018521*64079^(11/23) 2100951949180190 a001 3732588/35355581*64079^(11/23) 2100951949180192 a001 39088169/370248451*64079^(11/23) 2100951949180192 a001 102334155/969323029*64079^(11/23) 2100951949180192 a001 66978574/634430159*64079^(11/23) 2100951949180192 a001 701408733/6643838879*64079^(11/23) 2100951949180192 a001 1836311903/17393796001*64079^(11/23) 2100951949180192 a001 1201881744/11384387281*64079^(11/23) 2100951949180192 a001 12586269025/119218851371*64079^(11/23) 2100951949180192 a001 32951280099/312119004989*64079^(11/23) 2100951949180192 a001 21566892818/204284540899*64079^(11/23) 2100951949180192 a001 225851433717/2139295485799*64079^(11/23) 2100951949180192 a001 182717648081/1730726404001*64079^(11/23) 2100951949180192 a001 139583862445/1322157322203*64079^(11/23) 2100951949180192 a001 53316291173/505019158607*64079^(11/23) 2100951949180192 a001 10182505537/96450076809*64079^(11/23) 2100951949180192 a001 7778742049/73681302247*64079^(11/23) 2100951949180192 a001 2971215073/28143753123*64079^(11/23) 2100951949180192 a001 567451585/5374978561*64079^(11/23) 2100951949180192 a001 433494437/4106118243*64079^(11/23) 2100951949180192 a001 165580141/1568397607*64079^(11/23) 2100951949180192 a001 31622993/299537289*64079^(11/23) 2100951949180193 a001 24157817/228826127*64079^(11/23) 2100951949180197 a001 9227465/87403803*64079^(11/23) 2100951949180224 a001 1762289/16692641*64079^(11/23) 2100951949180411 a001 1346269/12752043*64079^(11/23) 2100951949181257 a001 17711/4870847*39603^(9/11) 2100951949181692 a001 514229/4870847*64079^(11/23) 2100951949184363 a001 416020/51841*64079^(2/23) 2100951949184904 a001 46368/3010349*167761^(3/5) 2100951949188336 a001 75025/3010349*64079^(14/23) 2100951949189903 a001 121393/271443*64079^(8/23) 2100951949190476 a001 98209/930249*64079^(11/23) 2100951949197671 a001 105937/620166*64079^(10/23) 2100951949198528 a001 121393/103682*439204^(2/9) 2100951949200942 a001 121393/103682*7881196^(2/11) 2100951949200947 a001 15456/90481*20633239^(2/7) 2100951949200948 a001 121393/103682*141422324^(2/13) 2100951949200948 a001 15456/90481*2537720636^(2/9) 2100951949200948 a001 121393/103682*2537720636^(2/15) 2100951949200948 a001 15456/90481*312119004989^(2/11) 2100951949200948 a001 15456/90481*(1/2+1/2*5^(1/2))^10 2100951949200948 a001 15456/90481*28143753123^(1/5) 2100951949200948 a001 15456/90481*10749957122^(5/24) 2100951949200948 a001 121393/103682*45537549124^(2/17) 2100951949200948 a001 121393/103682*14662949395604^(2/21) 2100951949200948 a001 121393/103682*(1/2+1/2*5^(1/2))^6 2100951949200948 a001 121393/103682*10749957122^(1/8) 2100951949200948 a001 15456/90481*4106118243^(5/23) 2100951949200948 a001 121393/103682*4106118243^(3/23) 2100951949200948 a001 121393/103682*1568397607^(3/22) 2100951949200948 a001 15456/90481*1568397607^(5/22) 2100951949200948 a001 121393/103682*599074578^(1/7) 2100951949200948 a001 15456/90481*599074578^(5/21) 2100951949200948 a001 703593828/33489287 2100951949200948 a001 121393/103682*228826127^(3/20) 2100951949200948 a001 15456/90481*228826127^(1/4) 2100951949200948 a001 121393/103682*87403803^(3/19) 2100951949200949 a001 15456/90481*87403803^(5/19) 2100951949200949 a001 121393/103682*33385282^(1/6) 2100951949200949 a001 15456/90481*33385282^(5/18) 2100951949200951 a001 121393/103682*12752043^(3/17) 2100951949200952 a001 15456/90481*12752043^(5/17) 2100951949200965 a001 121393/103682*4870847^(3/16) 2100951949200976 a001 15456/90481*4870847^(5/16) 2100951949201070 a001 121393/103682*1860498^(1/5) 2100951949201151 a001 15456/90481*1860498^(1/3) 2100951949201743 a001 832040/4870847*64079^(10/23) 2100951949201840 a001 121393/103682*710647^(3/14) 2100951949202337 a001 726103/4250681*64079^(10/23) 2100951949202423 a001 5702887/33385282*64079^(10/23) 2100951949202434 a001 15456/90481*710647^(5/14) 2100951949202436 a001 4976784/29134601*64079^(10/23) 2100951949202438 a001 39088169/228826127*64079^(10/23) 2100951949202438 a001 34111385/199691526*64079^(10/23) 2100951949202438 a001 267914296/1568397607*64079^(10/23) 2100951949202438 a001 233802911/1368706081*64079^(10/23) 2100951949202438 a001 1836311903/10749957122*64079^(10/23) 2100951949202438 a001 1602508992/9381251041*64079^(10/23) 2100951949202438 a001 12586269025/73681302247*64079^(10/23) 2100951949202438 a001 10983760033/64300051206*64079^(10/23) 2100951949202438 a001 86267571272/505019158607*64079^(10/23) 2100951949202438 a001 75283811239/440719107401*64079^(10/23) 2100951949202438 a001 2504730781961/14662949395604*64079^(10/23) 2100951949202438 a001 139583862445/817138163596*64079^(10/23) 2100951949202438 a001 53316291173/312119004989*64079^(10/23) 2100951949202438 a001 20365011074/119218851371*64079^(10/23) 2100951949202438 a001 7778742049/45537549124*64079^(10/23) 2100951949202438 a001 2971215073/17393796001*64079^(10/23) 2100951949202438 a001 1134903170/6643838879*64079^(10/23) 2100951949202438 a001 433494437/2537720636*64079^(10/23) 2100951949202438 a001 165580141/969323029*64079^(10/23) 2100951949202438 a001 63245986/370248451*64079^(10/23) 2100951949202439 a001 24157817/141422324*64079^(10/23) 2100951949202444 a001 9227465/54018521*64079^(10/23) 2100951949202477 a001 3524578/20633239*64079^(10/23) 2100951949202704 a001 1346269/7881196*64079^(10/23) 2100951949204259 a001 514229/3010349*64079^(10/23) 2100951949207062 a001 121393/439204*64079^(9/23) 2100951949207448 a001 1346269/103682*64079^(1/23) 2100951949207529 a001 121393/103682*271443^(3/13) 2100951949209743 a001 75025/1860498*64079^(13/23) 2100951949211915 a001 15456/90481*271443^(5/13) 2100951949214919 a001 196418/1149851*64079^(10/23) 2100951949218571 a004 Fibonacci(24)*Lucas(27)/(1/2+sqrt(5)/2)^43 2100951949219781 a001 46368/228826127*439204^(8/9) 2100951949220462 a001 6624/101521*439204^(4/9) 2100951949220992 a001 46368/54018521*439204^(7/9) 2100951949222113 a001 317811/1149851*64079^(9/23) 2100951949222189 a001 15456/4250681*439204^(2/3) 2100951949223644 a001 46368/3010349*439204^(5/9) 2100951949224309 a001 832040/3010349*64079^(9/23) 2100951949224630 a001 2178309/7881196*64079^(9/23) 2100951949224676 a001 5702887/20633239*64079^(9/23) 2100951949224683 a001 14930352/54018521*64079^(9/23) 2100951949224684 a001 39088169/141422324*64079^(9/23) 2100951949224684 a001 102334155/370248451*64079^(9/23) 2100951949224684 a001 267914296/969323029*64079^(9/23) 2100951949224684 a001 701408733/2537720636*64079^(9/23) 2100951949224684 a001 1836311903/6643838879*64079^(9/23) 2100951949224684 a001 4807526976/17393796001*64079^(9/23) 2100951949224684 a001 12586269025/45537549124*64079^(9/23) 2100951949224684 a001 32951280099/119218851371*64079^(9/23) 2100951949224684 a001 86267571272/312119004989*64079^(9/23) 2100951949224684 a001 225851433717/817138163596*64079^(9/23) 2100951949224684 a001 1548008755920/5600748293801*64079^(9/23) 2100951949224684 a001 139583862445/505019158607*64079^(9/23) 2100951949224684 a001 53316291173/192900153618*64079^(9/23) 2100951949224684 a001 20365011074/73681302247*64079^(9/23) 2100951949224684 a001 7778742049/28143753123*64079^(9/23) 2100951949224684 a001 2971215073/10749957122*64079^(9/23) 2100951949224684 a001 1134903170/4106118243*64079^(9/23) 2100951949224684 a001 433494437/1568397607*64079^(9/23) 2100951949224684 a001 165580141/599074578*64079^(9/23) 2100951949224684 a001 63245986/228826127*64079^(9/23) 2100951949224685 a001 24157817/87403803*64079^(9/23) 2100951949224687 a001 9227465/33385282*64079^(9/23) 2100951949224705 a001 3524578/12752043*64079^(9/23) 2100951949224828 a001 1346269/4870847*64079^(9/23) 2100951949225290 a001 6624/101521*7881196^(4/11) 2100951949225302 a001 6624/101521*141422324^(4/13) 2100951949225302 a001 6624/101521*2537720636^(4/15) 2100951949225302 a001 6624/101521*45537549124^(4/17) 2100951949225302 a001 6624/101521*817138163596^(4/19) 2100951949225302 a001 6624/101521*14662949395604^(4/21) 2100951949225302 a001 6624/101521*(1/2+1/2*5^(1/2))^12 2100951949225302 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^12/Lucas(28) 2100951949225302 a001 6624/101521*192900153618^(2/9) 2100951949225302 a001 6624/101521*73681302247^(3/13) 2100951949225302 a001 6624/101521*10749957122^(1/4) 2100951949225302 a001 317811/103682*(1/2+1/2*5^(1/2))^4 2100951949225302 a001 317811/103682*23725150497407^(1/16) 2100951949225302 a001 317811/103682*73681302247^(1/13) 2100951949225302 a001 317811/103682*10749957122^(1/12) 2100951949225302 a001 317811/103682*4106118243^(2/23) 2100951949225302 a001 6624/101521*4106118243^(6/23) 2100951949225302 a001 317811/103682*1568397607^(1/11) 2100951949225302 a001 6624/101521*1568397607^(3/11) 2100951949225302 a001 317811/103682*599074578^(2/21) 2100951949225302 a001 4912086816/233802911 2100951949225302 a001 6624/101521*599074578^(2/7) 2100951949225302 a001 317811/103682*228826127^(1/10) 2100951949225302 a001 6624/101521*228826127^(3/10) 2100951949225302 a001 317811/103682*87403803^(2/19) 2100951949225302 a001 6624/101521*87403803^(6/19) 2100951949225303 a001 317811/103682*33385282^(1/9) 2100951949225303 a001 6624/101521*33385282^(1/3) 2100951949225304 a001 317811/103682*12752043^(2/17) 2100951949225307 a001 6624/101521*12752043^(6/17) 2100951949225313 a001 317811/103682*4870847^(1/8) 2100951949225336 a001 6624/101521*4870847^(3/8) 2100951949225383 a001 317811/103682*1860498^(2/15) 2100951949225424 a001 98209/51841*167761^(1/5) 2100951949225545 a001 6624/101521*1860498^(2/5) 2100951949225666 a001 514229/1860498*64079^(9/23) 2100951949225897 a001 317811/103682*710647^(1/7) 2100951949227085 a001 6624/101521*710647^(3/7) 2100951949227873 a004 Fibonacci(24)*Lucas(29)/(1/2+sqrt(5)/2)^45 2100951949228854 a001 2576/103361*20633239^(2/5) 2100951949228856 a001 2576/103361*17393796001^(2/7) 2100951949228856 a001 2576/103361*14662949395604^(2/9) 2100951949228856 a001 2576/103361*(1/2+1/2*5^(1/2))^14 2100951949228856 a001 2576/103361*10749957122^(7/24) 2100951949228856 a001 416020/51841*(1/2+1/2*5^(1/2))^2 2100951949228856 a001 416020/51841*10749957122^(1/24) 2100951949228856 a001 416020/51841*4106118243^(1/23) 2100951949228856 a001 2576/103361*4106118243^(7/23) 2100951949228856 a001 416020/51841*1568397607^(1/22) 2100951949228856 a001 38580030720/1836311903 2100951949228856 a001 2576/103361*1568397607^(7/22) 2100951949228856 a001 416020/51841*599074578^(1/21) 2100951949228856 a001 2576/103361*599074578^(1/3) 2100951949228856 a001 416020/51841*228826127^(1/20) 2100951949228856 a001 2576/103361*228826127^(7/20) 2100951949228856 a001 416020/51841*87403803^(1/19) 2100951949228856 a001 2576/103361*87403803^(7/19) 2100951949228856 a001 416020/51841*33385282^(1/18) 2100951949228856 a001 2576/103361*33385282^(7/18) 2100951949228856 a001 416020/51841*12752043^(1/17) 2100951949228861 a001 2576/103361*12752043^(7/17) 2100951949228861 a001 416020/51841*4870847^(1/16) 2100951949228894 a001 2576/103361*4870847^(7/16) 2100951949228896 a001 416020/51841*1860498^(1/15) 2100951949229139 a001 2576/103361*1860498^(7/15) 2100951949229153 a001 416020/51841*710647^(1/14) 2100951949229231 a004 Fibonacci(24)*Lucas(31)/(1/2+sqrt(5)/2)^47 2100951949229374 a001 46368/4870847*(1/2+1/2*5^(1/2))^16 2100951949229374 a001 46368/4870847*23725150497407^(1/4) 2100951949229374 a001 46368/4870847*73681302247^(4/13) 2100951949229374 a001 46368/4870847*10749957122^(1/3) 2100951949229374 a001 46347/2206 2100951949229374 a001 46368/4870847*4106118243^(8/23) 2100951949229374 a001 46368/4870847*1568397607^(4/11) 2100951949229374 a001 46368/4870847*599074578^(8/21) 2100951949229374 a001 46368/4870847*228826127^(2/5) 2100951949229374 a001 46368/4870847*87403803^(8/19) 2100951949229375 a001 46368/4870847*33385282^(4/9) 2100951949229380 a001 46368/4870847*12752043^(8/17) 2100951949229418 a001 46368/4870847*4870847^(1/2) 2100951949229421 a001 3524578/271443*24476^(1/21) 2100951949229429 a004 Fibonacci(24)*Lucas(33)/(1/2+sqrt(5)/2)^49 2100951949229431 a001 15456/4250681*7881196^(6/11) 2100951949229432 a001 15456/1368706081*7881196^(10/11) 2100951949229435 a001 46368/969323029*7881196^(9/11) 2100951949229438 a001 46368/228826127*7881196^(8/11) 2100951949229440 a001 15456/29134601*7881196^(2/3) 2100951949229442 a001 46368/54018521*7881196^(7/11) 2100951949229450 a001 15456/4250681*141422324^(6/13) 2100951949229450 a001 15456/4250681*2537720636^(2/5) 2100951949229450 a001 15456/4250681*45537549124^(6/17) 2100951949229450 a001 15456/4250681*14662949395604^(2/7) 2100951949229450 a001 15456/4250681*(1/2+1/2*5^(1/2))^18 2100951949229450 a001 15456/4250681*192900153618^(1/3) 2100951949229450 a001 264431464416/12586269025 2100951949229450 a001 15456/4250681*10749957122^(3/8) 2100951949229450 a004 Fibonacci(34)/Lucas(24)/(1/2+sqrt(5)/2)^2 2100951949229450 a001 15456/4250681*4106118243^(9/23) 2100951949229450 a001 15456/4250681*1568397607^(9/22) 2100951949229450 a001 15456/4250681*599074578^(3/7) 2100951949229450 a001 15456/4250681*228826127^(9/20) 2100951949229450 a001 15456/4250681*87403803^(9/19) 2100951949229451 a001 15456/4250681*33385282^(1/2) 2100951949229456 a001 15456/4250681*12752043^(9/17) 2100951949229458 a004 Fibonacci(24)*Lucas(35)/(1/2+sqrt(5)/2)^51 2100951949229458 a001 144/103681*20633239^(4/7) 2100951949229458 a001 15456/1368706081*20633239^(6/7) 2100951949229459 a001 6624/224056801*20633239^(4/5) 2100951949229459 a001 46368/370248451*20633239^(5/7) 2100951949229460 a001 46368/54018521*20633239^(3/5) 2100951949229461 a001 144/103681*2537720636^(4/9) 2100951949229461 a001 144/103681*(1/2+1/2*5^(1/2))^20 2100951949229461 a001 144/103681*23725150497407^(5/16) 2100951949229461 a001 144/103681*505019158607^(5/14) 2100951949229461 a001 144/103681*73681302247^(5/13) 2100951949229461 a001 230763520512/10983760033 2100951949229461 a001 144/103681*28143753123^(2/5) 2100951949229461 a001 144/103681*10749957122^(5/12) 2100951949229461 a004 Fibonacci(36)/Lucas(24)/(1/2+sqrt(5)/2)^4 2100951949229461 a001 144/103681*4106118243^(10/23) 2100951949229461 a001 144/103681*1568397607^(5/11) 2100951949229461 a001 144/103681*599074578^(10/21) 2100951949229461 a001 144/103681*228826127^(1/2) 2100951949229461 a001 144/103681*87403803^(10/19) 2100951949229462 a001 144/103681*33385282^(5/9) 2100951949229462 a004 Fibonacci(24)*Lucas(37)/(1/2+sqrt(5)/2)^53 2100951949229462 a001 15456/29134601*312119004989^(2/5) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^22/Lucas(38) 2100951949229462 a001 226555027524/10783446409 2100951949229462 a001 15456/29134601*10749957122^(11/24) 2100951949229462 a004 Fibonacci(38)/Lucas(24)/(1/2+sqrt(5)/2)^6 2100951949229462 a001 15456/29134601*4106118243^(11/23) 2100951949229462 a001 15456/29134601*1568397607^(1/2) 2100951949229462 a001 15456/29134601*599074578^(11/21) 2100951949229462 a001 15456/29134601*228826127^(11/20) 2100951949229462 a001 15456/29134601*87403803^(11/19) 2100951949229462 a004 Fibonacci(24)*Lucas(39)/(1/2+sqrt(5)/2)^55 2100951949229462 a001 46368/228826127*141422324^(8/13) 2100951949229462 a001 6624/10525900321*141422324^(12/13) 2100951949229462 a001 46368/17393796001*141422324^(11/13) 2100951949229462 a001 15456/1368706081*141422324^(10/13) 2100951949229462 a001 2576/33281921*141422324^(2/3) 2100951949229462 a001 46368/969323029*141422324^(9/13) 2100951949229462 a001 46368/228826127*2537720636^(8/15) 2100951949229462 a001 46368/228826127*45537549124^(8/17) 2100951949229462 a001 46368/228826127*14662949395604^(8/21) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^24/Lucas(40) 2100951949229462 a001 32279116320/1536404311 2100951949229462 a001 46368/228826127*192900153618^(4/9) 2100951949229462 a001 46368/228826127*73681302247^(6/13) 2100951949229462 a001 46368/228826127*10749957122^(1/2) 2100951949229462 a004 Fibonacci(40)/Lucas(24)/(1/2+sqrt(5)/2)^8 2100951949229462 a001 46368/228826127*4106118243^(12/23) 2100951949229462 a001 46368/228826127*1568397607^(6/11) 2100951949229462 a001 46368/228826127*599074578^(4/7) 2100951949229462 a001 46368/228826127*228826127^(3/5) 2100951949229462 a004 Fibonacci(24)*Lucas(41)/(1/2+sqrt(5)/2)^57 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^26/Lucas(42) 2100951949229462 a001 12422650076928/591286729879 2100951949229462 a001 2576/33281921*73681302247^(1/2) 2100951949229462 a001 2576/33281921*10749957122^(13/24) 2100951949229462 a004 Fibonacci(42)/Lucas(24)/(1/2+sqrt(5)/2)^10 2100951949229462 a001 2576/33281921*4106118243^(13/23) 2100951949229462 a001 2576/33281921*1568397607^(13/22) 2100951949229462 a004 Fibonacci(24)*Lucas(43)/(1/2+sqrt(5)/2)^59 2100951949229462 a001 2576/33281921*599074578^(13/21) 2100951949229462 a001 6624/224056801*17393796001^(4/7) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^28/Lucas(44) 2100951949229462 a001 225853612026/10750060805 2100951949229462 a001 6624/224056801*73681302247^(7/13) 2100951949229462 a001 6624/224056801*10749957122^(7/12) 2100951949229462 a004 Fibonacci(44)/Lucas(24)/(1/2+sqrt(5)/2)^12 2100951949229462 a001 6624/224056801*4106118243^(14/23) 2100951949229462 a001 15456/1368706081*2537720636^(2/3) 2100951949229462 a004 Fibonacci(24)*Lucas(45)/(1/2+sqrt(5)/2)^61 2100951949229462 a001 6624/224056801*1568397607^(7/11) 2100951949229462 a001 15456/440719107401*2537720636^(14/15) 2100951949229462 a001 46368/505019158607*2537720636^(8/9) 2100951949229462 a001 46368/312119004989*2537720636^(13/15) 2100951949229462 a001 6624/10525900321*2537720636^(4/5) 2100951949229462 a001 11592/11384387281*2537720636^(7/9) 2100951949229462 a001 46368/17393796001*2537720636^(11/15) 2100951949229462 a001 15456/1368706081*45537549124^(10/17) 2100951949229462 a001 15456/1368706081*312119004989^(6/11) 2100951949229462 a001 15456/1368706081*14662949395604^(10/21) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^30/Lucas(46) 2100951949229462 a001 15456/1368706081*192900153618^(5/9) 2100951949229462 a001 15456/1368706081*28143753123^(3/5) 2100951949229462 a001 15456/1368706081*10749957122^(5/8) 2100951949229462 a004 Fibonacci(46)/Lucas(24)/(1/2+sqrt(5)/2)^14 2100951949229462 a004 Fibonacci(24)*Lucas(47)/(1/2+sqrt(5)/2)^63 2100951949229462 a001 15456/1368706081*4106118243^(15/23) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^32/Lucas(48) 2100951949229462 a001 225851480064/10749959329 2100951949229462 a001 23184/5374978561*505019158607^(4/7) 2100951949229462 a001 23184/5374978561*73681302247^(8/13) 2100951949229462 a004 Fibonacci(24)*Lucas(49)/(1/2+sqrt(5)/2)^65 2100951949229462 a001 23184/5374978561*10749957122^(2/3) 2100951949229462 a001 15456/440719107401*17393796001^(6/7) 2100951949229462 a001 11592/11384387281*17393796001^(5/7) 2100951949229462 a001 15456/9381251041*45537549124^(2/3) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^34/Lucas(50) 2100951949229462 a001 6624/10525900321*45537549124^(12/17) 2100951949229462 a004 Fibonacci(24)*Lucas(51)/(1/2+sqrt(5)/2)^67 2100951949229462 a001 46368/23725150497407*45537549124^(16/17) 2100951949229462 a001 46368/5600748293801*45537549124^(15/17) 2100951949229462 a001 15456/440719107401*45537549124^(14/17) 2100951949229462 a001 46368/312119004989*45537549124^(13/17) 2100951949229462 a001 6624/10525900321*14662949395604^(4/7) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^36/Lucas(52) 2100951949229462 a001 6624/10525900321*192900153618^(2/3) 2100951949229462 a004 Fibonacci(24)*Lucas(53)/(1/2+sqrt(5)/2)^69 2100951949229462 a001 6624/10525900321*73681302247^(9/13) 2100951949229462 a001 2576/10716675201*817138163596^(2/3) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^38/Lucas(54) 2100951949229462 a004 Fibonacci(24)*Lucas(55)/(1/2+sqrt(5)/2)^71 2100951949229462 a001 144/10749853441*312119004989^(4/5) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^40/Lucas(56) 2100951949229462 a001 46368/505019158607*23725150497407^(5/8) 2100951949229462 a004 Fibonacci(24)*Lucas(57)/(1/2+sqrt(5)/2)^73 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^42/Lucas(58) 2100951949229462 a004 Fibonacci(24)*Lucas(59)/(1/2+sqrt(5)/2)^75 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^44/Lucas(60) 2100951949229462 a001 144/10749853441*23725150497407^(11/16) 2100951949229462 a004 Fibonacci(24)*Lucas(61)/(1/2+sqrt(5)/2)^77 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^46/Lucas(62) 2100951949229462 a004 Fibonacci(24)*Lucas(63)/(1/2+sqrt(5)/2)^79 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^48/Lucas(64) 2100951949229462 a004 Fibonacci(24)*Lucas(65)/(1/2+sqrt(5)/2)^81 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^50/Lucas(66) 2100951949229462 a004 Fibonacci(24)*Lucas(67)/(1/2+sqrt(5)/2)^83 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^52/Lucas(68) 2100951949229462 a004 Fibonacci(24)*Lucas(69)/(1/2+sqrt(5)/2)^85 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^54/Lucas(70) 2100951949229462 a004 Fibonacci(24)*Lucas(71)/(1/2+sqrt(5)/2)^87 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^56/Lucas(72) 2100951949229462 a004 Fibonacci(24)*Lucas(73)/(1/2+sqrt(5)/2)^89 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^58/Lucas(74) 2100951949229462 a004 Fibonacci(24)*Lucas(75)/(1/2+sqrt(5)/2)^91 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^60/Lucas(76) 2100951949229462 a004 Fibonacci(24)*Lucas(77)/(1/2+sqrt(5)/2)^93 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^62/Lucas(78) 2100951949229462 a004 Fibonacci(24)*Lucas(79)/(1/2+sqrt(5)/2)^95 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^64/Lucas(80) 2100951949229462 a004 Fibonacci(24)*Lucas(81)/(1/2+sqrt(5)/2)^97 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^66/Lucas(82) 2100951949229462 a004 Fibonacci(24)*Lucas(83)/(1/2+sqrt(5)/2)^99 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^68/Lucas(84) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^70/Lucas(86) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^72/Lucas(88) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^74/Lucas(90) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^76/Lucas(92) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^78/Lucas(94) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^80/Lucas(96) 2100951949229462 a004 Fibonacci(12)*Lucas(12)/(1/2+sqrt(5)/2)^16 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^82/Lucas(98) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^83/Lucas(99) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^84/Lucas(100) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^81/Lucas(97) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^79/Lucas(95) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^77/Lucas(93) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^75/Lucas(91) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^73/Lucas(89) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^71/Lucas(87) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^69/Lucas(85) 2100951949229462 a004 Fibonacci(24)*Lucas(84)/(1/2+sqrt(5)/2)^100 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^67/Lucas(83) 2100951949229462 a004 Fibonacci(24)*Lucas(82)/(1/2+sqrt(5)/2)^98 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^65/Lucas(81) 2100951949229462 a004 Fibonacci(24)*Lucas(80)/(1/2+sqrt(5)/2)^96 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^63/Lucas(79) 2100951949229462 a004 Fibonacci(24)*Lucas(78)/(1/2+sqrt(5)/2)^94 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^61/Lucas(77) 2100951949229462 a004 Fibonacci(24)*Lucas(76)/(1/2+sqrt(5)/2)^92 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^59/Lucas(75) 2100951949229462 a004 Fibonacci(24)*Lucas(74)/(1/2+sqrt(5)/2)^90 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^57/Lucas(73) 2100951949229462 a004 Fibonacci(24)*Lucas(72)/(1/2+sqrt(5)/2)^88 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^55/Lucas(71) 2100951949229462 a004 Fibonacci(24)*Lucas(70)/(1/2+sqrt(5)/2)^86 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^53/Lucas(69) 2100951949229462 a004 Fibonacci(24)*Lucas(68)/(1/2+sqrt(5)/2)^84 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^51/Lucas(67) 2100951949229462 a004 Fibonacci(24)*Lucas(66)/(1/2+sqrt(5)/2)^82 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^49/Lucas(65) 2100951949229462 a004 Fibonacci(24)*Lucas(64)/(1/2+sqrt(5)/2)^80 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^47/Lucas(63) 2100951949229462 a004 Fibonacci(24)*Lucas(62)/(1/2+sqrt(5)/2)^78 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^45/Lucas(61) 2100951949229462 a004 Fibonacci(24)*Lucas(60)/(1/2+sqrt(5)/2)^76 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^43/Lucas(59) 2100951949229462 a004 Fibonacci(24)*Lucas(58)/(1/2+sqrt(5)/2)^74 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^41/Lucas(57) 2100951949229462 a001 15456/440719107401*505019158607^(3/4) 2100951949229462 a004 Fibonacci(24)*Lucas(56)/(1/2+sqrt(5)/2)^72 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^39/Lucas(55) 2100951949229462 a001 15456/440719107401*192900153618^(7/9) 2100951949229462 a001 46368/5600748293801*192900153618^(5/6) 2100951949229462 a004 Fibonacci(24)*Lucas(54)/(1/2+sqrt(5)/2)^70 2100951949229462 a001 46368/312119004989*192900153618^(13/18) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^37/Lucas(53) 2100951949229462 a001 46368/505019158607*73681302247^(10/13) 2100951949229462 a001 46368/312119004989*73681302247^(3/4) 2100951949229462 a001 144/10749853441*73681302247^(11/13) 2100951949229462 a001 46368/23725150497407*73681302247^(12/13) 2100951949229462 a004 Fibonacci(24)*Lucas(52)/(1/2+sqrt(5)/2)^68 2100951949229462 a001 11592/11384387281*312119004989^(7/11) 2100951949229462 a001 11592/11384387281*14662949395604^(5/9) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^35/Lucas(51) 2100951949229462 a001 11592/11384387281*505019158607^(5/8) 2100951949229462 a001 46368/505019158607*28143753123^(4/5) 2100951949229462 a001 46368/5600748293801*28143753123^(9/10) 2100951949229462 a004 Fibonacci(24)*Lucas(50)/(1/2+sqrt(5)/2)^66 2100951949229462 a001 11592/11384387281*28143753123^(7/10) 2100951949229462 a001 46368/17393796001*45537549124^(11/17) 2100951949229462 a001 46368/17393796001*312119004989^(3/5) 2100951949229462 a001 46368/17393796001*817138163596^(11/19) 2100951949229462 a001 46368/17393796001*14662949395604^(11/21) 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^33/Lucas(49) 2100951949229462 a001 46368/17393796001*192900153618^(11/18) 2100951949229462 a001 15456/9381251041*10749957122^(17/24) 2100951949229462 a001 6624/10525900321*10749957122^(3/4) 2100951949229462 a001 2576/10716675201*10749957122^(19/24) 2100951949229462 a001 46368/312119004989*10749957122^(13/16) 2100951949229462 a001 46368/505019158607*10749957122^(5/6) 2100951949229462 a004 Fibonacci(50)/Lucas(24)/(1/2+sqrt(5)/2)^18 2100951949229462 a001 15456/440719107401*10749957122^(7/8) 2100951949229462 a001 144/10749853441*10749957122^(11/12) 2100951949229462 a001 46368/5600748293801*10749957122^(15/16) 2100951949229462 a001 15456/3020733700601*10749957122^(23/24) 2100951949229462 a004 Fibonacci(52)/Lucas(24)/(1/2+sqrt(5)/2)^20 2100951949229462 a004 Fibonacci(54)/Lucas(24)/(1/2+sqrt(5)/2)^22 2100951949229462 a004 Fibonacci(56)/Lucas(24)/(1/2+sqrt(5)/2)^24 2100951949229462 a004 Fibonacci(58)/Lucas(24)/(1/2+sqrt(5)/2)^26 2100951949229462 a004 Fibonacci(60)/Lucas(24)/(1/2+sqrt(5)/2)^28 2100951949229462 a004 Fibonacci(62)/Lucas(24)/(1/2+sqrt(5)/2)^30 2100951949229462 a004 Fibonacci(64)/Lucas(24)/(1/2+sqrt(5)/2)^32 2100951949229462 a004 Fibonacci(66)/Lucas(24)/(1/2+sqrt(5)/2)^34 2100951949229462 a004 Fibonacci(68)/Lucas(24)/(1/2+sqrt(5)/2)^36 2100951949229462 a004 Fibonacci(70)/Lucas(24)/(1/2+sqrt(5)/2)^38 2100951949229462 a004 Fibonacci(72)/Lucas(24)/(1/2+sqrt(5)/2)^40 2100951949229462 a004 Fibonacci(74)/Lucas(24)/(1/2+sqrt(5)/2)^42 2100951949229462 a004 Fibonacci(76)/Lucas(24)/(1/2+sqrt(5)/2)^44 2100951949229462 a004 Fibonacci(78)/Lucas(24)/(1/2+sqrt(5)/2)^46 2100951949229462 a004 Fibonacci(80)/Lucas(24)/(1/2+sqrt(5)/2)^48 2100951949229462 a004 Fibonacci(82)/Lucas(24)/(1/2+sqrt(5)/2)^50 2100951949229462 a004 Fibonacci(84)/Lucas(24)/(1/2+sqrt(5)/2)^52 2100951949229462 a004 Fibonacci(86)/Lucas(24)/(1/2+sqrt(5)/2)^54 2100951949229462 a004 Fibonacci(88)/Lucas(24)/(1/2+sqrt(5)/2)^56 2100951949229462 a004 Fibonacci(90)/Lucas(24)/(1/2+sqrt(5)/2)^58 2100951949229462 a004 Fibonacci(92)/Lucas(24)/(1/2+sqrt(5)/2)^60 2100951949229462 a004 Fibonacci(94)/Lucas(24)/(1/2+sqrt(5)/2)^62 2100951949229462 a004 Fibonacci(24)*Lucas(48)/(1/2+sqrt(5)/2)^64 2100951949229462 a004 Fibonacci(100)/Lucas(24)/(1/2+sqrt(5)/2)^68 2100951949229462 a004 Fibonacci(98)/Lucas(24)/(1/2+sqrt(5)/2)^66 2100951949229462 a004 Fibonacci(97)/Lucas(24)/(1/2+sqrt(5)/2)^65 2100951949229462 a004 Fibonacci(99)/Lucas(24)/(1/2+sqrt(5)/2)^67 2100951949229462 a004 Fibonacci(95)/Lucas(24)/(1/2+sqrt(5)/2)^63 2100951949229462 a004 Fibonacci(93)/Lucas(24)/(1/2+sqrt(5)/2)^61 2100951949229462 a004 Fibonacci(91)/Lucas(24)/(1/2+sqrt(5)/2)^59 2100951949229462 a004 Fibonacci(89)/Lucas(24)/(1/2+sqrt(5)/2)^57 2100951949229462 a004 Fibonacci(87)/Lucas(24)/(1/2+sqrt(5)/2)^55 2100951949229462 a004 Fibonacci(85)/Lucas(24)/(1/2+sqrt(5)/2)^53 2100951949229462 a004 Fibonacci(83)/Lucas(24)/(1/2+sqrt(5)/2)^51 2100951949229462 a004 Fibonacci(81)/Lucas(24)/(1/2+sqrt(5)/2)^49 2100951949229462 a004 Fibonacci(79)/Lucas(24)/(1/2+sqrt(5)/2)^47 2100951949229462 a004 Fibonacci(77)/Lucas(24)/(1/2+sqrt(5)/2)^45 2100951949229462 a004 Fibonacci(75)/Lucas(24)/(1/2+sqrt(5)/2)^43 2100951949229462 a004 Fibonacci(73)/Lucas(24)/(1/2+sqrt(5)/2)^41 2100951949229462 a004 Fibonacci(71)/Lucas(24)/(1/2+sqrt(5)/2)^39 2100951949229462 a004 Fibonacci(69)/Lucas(24)/(1/2+sqrt(5)/2)^37 2100951949229462 a004 Fibonacci(67)/Lucas(24)/(1/2+sqrt(5)/2)^35 2100951949229462 a004 Fibonacci(65)/Lucas(24)/(1/2+sqrt(5)/2)^33 2100951949229462 a004 Fibonacci(63)/Lucas(24)/(1/2+sqrt(5)/2)^31 2100951949229462 a004 Fibonacci(61)/Lucas(24)/(1/2+sqrt(5)/2)^29 2100951949229462 a004 Fibonacci(59)/Lucas(24)/(1/2+sqrt(5)/2)^27 2100951949229462 a004 Fibonacci(57)/Lucas(24)/(1/2+sqrt(5)/2)^25 2100951949229462 a004 Fibonacci(55)/Lucas(24)/(1/2+sqrt(5)/2)^23 2100951949229462 a004 Fibonacci(53)/Lucas(24)/(1/2+sqrt(5)/2)^21 2100951949229462 a004 Fibonacci(51)/Lucas(24)/(1/2+sqrt(5)/2)^19 2100951949229462 a001 46368/17393796001*10749957122^(11/16) 2100951949229462 a004 Fibonacci(49)/Lucas(24)/(1/2+sqrt(5)/2)^17 2100951949229462 a001 68884650252432/3278735159921 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^31/Lucas(47) 2100951949229462 a001 46368/6643838879*9062201101803^(1/2) 2100951949229462 a004 Fibonacci(47)/Lucas(24)/(1/2+sqrt(5)/2)^15 2100951949229462 a001 23184/5374978561*4106118243^(16/23) 2100951949229462 a001 15456/9381251041*4106118243^(17/23) 2100951949229462 a001 6624/10525900321*4106118243^(18/23) 2100951949229462 a001 2576/10716675201*4106118243^(19/23) 2100951949229462 a001 46368/505019158607*4106118243^(20/23) 2100951949229462 a001 15456/440719107401*4106118243^(21/23) 2100951949229462 a001 144/10749853441*4106118243^(22/23) 2100951949229462 a004 Fibonacci(24)*Lucas(46)/(1/2+sqrt(5)/2)^62 2100951949229462 a001 52623190186560/2504730781961 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^29/Lucas(45) 2100951949229462 a001 11592/634430159*1322157322203^(1/2) 2100951949229462 a004 Fibonacci(45)/Lucas(24)/(1/2+sqrt(5)/2)^13 2100951949229462 a001 15456/1368706081*1568397607^(15/22) 2100951949229462 a001 23184/5374978561*1568397607^(8/11) 2100951949229462 a001 46368/17393796001*1568397607^(3/4) 2100951949229462 a001 15456/9381251041*1568397607^(17/22) 2100951949229462 a001 6624/10525900321*1568397607^(9/11) 2100951949229462 a001 2576/10716675201*1568397607^(19/22) 2100951949229462 a001 46368/505019158607*1568397607^(10/11) 2100951949229462 a001 15456/440719107401*1568397607^(21/22) 2100951949229462 a004 Fibonacci(24)*Lucas(44)/(1/2+sqrt(5)/2)^60 2100951949229462 a001 46368/969323029*2537720636^(3/5) 2100951949229462 a001 46368/969323029*45537549124^(9/17) 2100951949229462 a001 20100270054816/956722026041 2100951949229462 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^27/Lucas(43) 2100951949229462 a001 46368/969323029*192900153618^(1/2) 2100951949229462 a001 46368/969323029*10749957122^(9/16) 2100951949229462 a004 Fibonacci(43)/Lucas(24)/(1/2+sqrt(5)/2)^11 2100951949229462 a001 6624/224056801*599074578^(2/3) 2100951949229462 a001 15456/1368706081*599074578^(5/7) 2100951949229462 a001 23184/5374978561*599074578^(16/21) 2100951949229462 a001 46368/17393796001*599074578^(11/14) 2100951949229462 a001 15456/9381251041*599074578^(17/21) 2100951949229462 a001 11592/11384387281*599074578^(5/6) 2100951949229462 a001 6624/10525900321*599074578^(6/7) 2100951949229462 a001 2576/10716675201*599074578^(19/21) 2100951949229462 a001 46368/312119004989*599074578^(13/14) 2100951949229462 a001 46368/505019158607*599074578^(20/21) 2100951949229462 a004 Fibonacci(24)*Lucas(42)/(1/2+sqrt(5)/2)^58 2100951949229462 a001 46368/969323029*599074578^(9/14) 2100951949229463 a001 46368/370248451*2537720636^(5/9) 2100951949229463 a001 46368/370248451*312119004989^(5/11) 2100951949229463 a001 3838809988944/182717648081 2100951949229463 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^25/Lucas(41) 2100951949229463 a001 46368/370248451*28143753123^(1/2) 2100951949229463 a004 Fibonacci(41)/Lucas(24)/(1/2+sqrt(5)/2)^9 2100951949229463 a001 2576/33281921*228826127^(13/20) 2100951949229463 a001 6624/224056801*228826127^(7/10) 2100951949229463 a001 15456/1368706081*228826127^(3/4) 2100951949229463 a001 23184/5374978561*228826127^(4/5) 2100951949229463 a001 15456/9381251041*228826127^(17/20) 2100951949229463 a001 11592/11384387281*228826127^(7/8) 2100951949229463 a001 6624/10525900321*228826127^(9/10) 2100951949229463 a001 2576/10716675201*228826127^(19/20) 2100951949229463 a004 Fibonacci(24)*Lucas(40)/(1/2+sqrt(5)/2)^56 2100951949229463 a001 46368/370248451*228826127^(5/8) 2100951949229463 a001 2932589878848/139583862445 2100951949229463 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^23/Lucas(39) 2100951949229463 a004 Fibonacci(39)/Lucas(24)/(1/2+sqrt(5)/2)^7 2100951949229463 a001 11592/35355581*4106118243^(1/2) 2100951949229463 a001 46368/228826127*87403803^(12/19) 2100951949229463 a001 2576/33281921*87403803^(13/19) 2100951949229463 a001 6624/224056801*87403803^(14/19) 2100951949229463 a001 15456/1368706081*87403803^(15/19) 2100951949229463 a001 23184/5374978561*87403803^(16/19) 2100951949229463 a001 15456/9381251041*87403803^(17/19) 2100951949229463 a001 6624/10525900321*87403803^(18/19) 2100951949229463 a004 Fibonacci(24)*Lucas(38)/(1/2+sqrt(5)/2)^54 2100951949229463 a001 46368/54018521*141422324^(7/13) 2100951949229463 a001 46368/54018521*2537720636^(7/15) 2100951949229463 a001 46368/54018521*17393796001^(3/7) 2100951949229463 a001 46368/54018521*45537549124^(7/17) 2100951949229463 a001 1120149658656/53316291173 2100951949229463 a001 46368/54018521*14662949395604^(1/3) 2100951949229463 a004 Fibonacci(24)*(1/2+sqrt(5)/2)^21/Lucas(37) 2100951949229463 a001 46368/54018521*192900153618^(7/18) 2100951949229463 a001 46368/54018521*10749957122^(7/16) 2100951949229463 a004 Fibonacci(37)/Lucas(24)/(1/2+sqrt(5)/2)^5 2100951949229463 a001 46368/54018521*599074578^(1/2) 2100951949229463 a001 15456/29134601*33385282^(11/18) 2100951949229464 a001 46368/228826127*33385282^(2/3) 2100951949229464 a001 2576/33281921*33385282^(13/18) 2100951949229464 a001 46368/969323029*33385282^(3/4) 2100951949229464 a001 6624/224056801*33385282^(7/9) 2100951949229464 a001 15456/1368706081*33385282^(5/6) 2100951949229464 a001 23184/5374978561*33385282^(8/9) 2100951949229464 a001 46368/17393796001*33385282^(11/12) 2100951949229464 a001 15456/9381251041*33385282^(17/18) 2100951949229464 a001 46368/54018521*33385282^(7/12) 2100951949229464 a004 Fibonacci(24)*Lucas(36)/(1/2+sqrt(5)/2)^52 2100951949229467 a001 213929548560/10182505537 2100951949229467 a001 46368/20633239*817138163596^(1/3) 2100951949229467 a001 46368/20633239*(1/2+1/2*5^(1/2))^19 2100951949229467 a004 Fibonacci(35)/Lucas(24)/(1/2+sqrt(5)/2)^3 2100951949229468 a001 46368/20633239*87403803^(1/2) 2100951949229468 a001 144/103681*12752043^(10/17) 2100951949229471 a001 15456/29134601*12752043^(11/17) 2100951949229472 a001 46368/228826127*12752043^(12/17) 2100951949229472 a001 2576/33281921*12752043^(13/17) 2100951949229473 a001 6624/224056801*12752043^(14/17) 2100951949229474 a001 15456/1368706081*12752043^(15/17) 2100951949229475 a001 23184/5374978561*12752043^(16/17) 2100951949229475 a004 Fibonacci(24)*Lucas(34)/(1/2+sqrt(5)/2)^50 2100951949229496 a001 163427632704/7778742049 2100951949229496 a001 11592/1970299*45537549124^(1/3) 2100951949229496 a001 11592/1970299*(1/2+1/2*5^(1/2))^17 2100951949229496 a004 Fibonacci(33)/Lucas(24)/(1/2+sqrt(5)/2) 2100951949229499 a001 15456/4250681*4870847^(9/16) 2100951949229503 a001 11592/1970299*12752043^(1/2) 2100951949229516 a001 144/103681*4870847^(5/8) 2100951949229523 a001 15456/29134601*4870847^(11/16) 2100951949229529 a001 46368/228826127*4870847^(3/4) 2100951949229534 a001 2576/33281921*4870847^(13/16) 2100951949229540 a001 6624/224056801*4870847^(7/8) 2100951949229546 a001 15456/1368706081*4870847^(15/16) 2100951949229551 a004 Fibonacci(24)*Lucas(32)/(1/2+sqrt(5)/2)^48 2100951949229679 a001 46368/3010349*7881196^(5/11) 2100951949229689 a001 317811/103682*271443^(2/13) 2100951949229692 a001 46368/3010349*20633239^(3/7) 2100951949229694 a001 46368/3010349*141422324^(5/13) 2100951949229694 a001 46368/3010349*2537720636^(1/3) 2100951949229694 a001 62423800992/2971215073 2100951949229694 a001 46368/3010349*45537549124^(5/17) 2100951949229694 a001 46368/3010349*312119004989^(3/11) 2100951949229694 a001 46368/3010349*14662949395604^(5/21) 2100951949229694 a001 46368/3010349*(1/2+1/2*5^(1/2))^15 2100951949229694 a001 46368/3010349*192900153618^(5/18) 2100951949229694 a001 46368/3010349*28143753123^(3/10) 2100951949229694 a001 46368/3010349*10749957122^(5/16) 2100951949229694 a001 1346269/207364+1346269/207364*5^(1/2) 2100951949229694 a001 46368/3010349*599074578^(5/14) 2100951949229694 a001 46368/3010349*228826127^(3/8) 2100951949229695 a001 46368/3010349*33385282^(5/12) 2100951949229698 a001 46368/4870847*1860498^(8/15) 2100951949229814 a001 15456/4250681*1860498^(3/5) 2100951949229841 a001 514229/103682*439204^(1/9) 2100951949229865 a001 144/103681*1860498^(2/3) 2100951949229888 a001 46368/54018521*1860498^(7/10) 2100951949229907 a001 15456/29134601*1860498^(11/15) 2100951949229948 a001 46368/228826127*1860498^(4/5) 2100951949229968 a001 46368/370248451*1860498^(5/6) 2100951949229989 a001 2576/33281921*1860498^(13/15) 2100951949229998 a001 46368/3010349*1860498^(1/2) 2100951949230009 a001 46368/969323029*1860498^(9/10) 2100951949230029 a001 6624/224056801*1860498^(14/15) 2100951949230069 a004 Fibonacci(24)*Lucas(30)/(1/2+sqrt(5)/2)^46 2100951949230936 a001 2576/103361*710647^(1/2) 2100951949231048 a001 514229/103682*7881196^(1/11) 2100951949231049 a001 416020/51841*271443^(1/13) 2100951949231051 a001 46368/1149851*141422324^(1/3) 2100951949231052 a001 514229/103682*141422324^(1/13) 2100951949231052 a001 11921885136/567451585 2100951949231052 a001 514229/103682*2537720636^(1/15) 2100951949231052 a001 46368/1149851*(1/2+1/2*5^(1/2))^13 2100951949231052 a001 46368/1149851*73681302247^(1/4) 2100951949231052 a001 514229/103682*45537549124^(1/17) 2100951949231052 a001 514229/103682*14662949395604^(1/21) 2100951949231052 a001 514229/103682*(1/2+1/2*5^(1/2))^3 2100951949231052 a001 514229/103682*192900153618^(1/18) 2100951949231052 a001 514229/103682*10749957122^(1/16) 2100951949231052 a001 514229/103682*599074578^(1/14) 2100951949231052 a001 514229/103682*33385282^(1/12) 2100951949231112 a001 514229/103682*1860498^(1/10) 2100951949231416 a001 196418/710647*64079^(9/23) 2100951949231751 a001 46368/4870847*710647^(4/7) 2100951949232124 a001 15456/4250681*710647^(9/14) 2100951949232432 a001 144/103681*710647^(5/7) 2100951949232583 a001 46368/54018521*710647^(3/4) 2100951949232731 a001 15456/29134601*710647^(11/14) 2100951949233028 a001 46368/228826127*710647^(6/7) 2100951949233325 a001 2576/33281921*710647^(13/14) 2100951949233623 a004 Fibonacci(24)*Lucas(28)/(1/2+sqrt(5)/2)^44 2100951949234185 a001 75025/1149851*64079^(12/23) 2100951949237838 a001 1346269/103682*103682^(1/24) 2100951949238463 a001 6624/101521*271443^(6/13) 2100951949238610 a001 317811/710647*64079^(8/23) 2100951949240343 a001 11592/109801*7881196^(1/3) 2100951949240353 a001 98209/51841*20633239^(1/7) 2100951949240354 a001 9107509824/433494437 2100951949240354 a001 98209/51841*2537720636^(1/9) 2100951949240354 a001 11592/109801*312119004989^(1/5) 2100951949240354 a001 11592/109801*(1/2+1/2*5^(1/2))^11 2100951949240354 a001 98209/51841*312119004989^(1/11) 2100951949240354 a001 98209/51841*(1/2+1/2*5^(1/2))^5 2100951949240354 a001 98209/51841*28143753123^(1/10) 2100951949240354 a001 11592/109801*1568397607^(1/4) 2100951949240354 a001 98209/51841*228826127^(1/8) 2100951949240455 a001 98209/51841*1860498^(1/6) 2100951949242268 a001 89/39604*39603^(19/22) 2100951949244209 a001 2576/103361*271443^(7/13) 2100951949245142 a001 416020/51841*103682^(1/12) 2100951949245309 a001 46368/1149851*271443^(1/2) 2100951949245717 a001 416020/930249*64079^(8/23) 2100951949246754 a001 2178309/4870847*64079^(8/23) 2100951949246905 a001 5702887/12752043*64079^(8/23) 2100951949246921 a001 46368/4870847*271443^(8/13) 2100951949246927 a001 7465176/16692641*64079^(8/23) 2100951949246930 a001 39088169/87403803*64079^(8/23) 2100951949246931 a001 102334155/228826127*64079^(8/23) 2100951949246931 a001 133957148/299537289*64079^(8/23) 2100951949246931 a001 701408733/1568397607*64079^(8/23) 2100951949246931 a001 1836311903/4106118243*64079^(8/23) 2100951949246931 a001 2403763488/5374978561*64079^(8/23) 2100951949246931 a001 12586269025/28143753123*64079^(8/23) 2100951949246931 a001 32951280099/73681302247*64079^(8/23) 2100951949246931 a001 43133785636/96450076809*64079^(8/23) 2100951949246931 a001 225851433717/505019158607*64079^(8/23) 2100951949246931 a001 591286729879/1322157322203*64079^(8/23) 2100951949246931 a001 10610209857723/23725150497407*64079^(8/23) 2100951949246931 a001 139583862445/312119004989*64079^(8/23) 2100951949246931 a001 53316291173/119218851371*64079^(8/23) 2100951949246931 a001 10182505537/22768774562*64079^(8/23) 2100951949246931 a001 7778742049/17393796001*64079^(8/23) 2100951949246931 a001 2971215073/6643838879*64079^(8/23) 2100951949246931 a001 567451585/1268860318*64079^(8/23) 2100951949246931 a001 433494437/969323029*64079^(8/23) 2100951949246931 a001 165580141/370248451*64079^(8/23) 2100951949246931 a001 31622993/70711162*64079^(8/23) 2100951949246932 a001 24157817/54018521*64079^(8/23) 2100951949246941 a001 9227465/20633239*64079^(8/23) 2100951949246998 a001 1762289/3940598*64079^(8/23) 2100951949247394 a001 1346269/3010349*64079^(8/23) 2100951949249190 a001 15456/4250681*271443^(9/13) 2100951949249808 a001 121393/103682*103682^(1/4) 2100951949250109 a001 514229/1149851*64079^(8/23) 2100951949250682 a001 75025/710647*64079^(11/23) 2100951949251394 a001 144/103681*271443^(10/13) 2100951949251554 a001 196418/271443*64079^(7/23) 2100951949253589 a001 15456/29134601*271443^(11/13) 2100951949253746 a001 9227465/710647*24476^(1/21) 2100951949255481 a001 514229/103682*103682^(1/8) 2100951949255783 a001 46368/228826127*271443^(12/13) 2100951949257295 a001 24157817/1860498*24476^(1/21) 2100951949257812 a001 63245986/4870847*24476^(1/21) 2100951949257875 a001 317811/103682*103682^(1/6) 2100951949257888 a001 165580141/12752043*24476^(1/21) 2100951949257899 a001 433494437/33385282*24476^(1/21) 2100951949257901 a001 1134903170/87403803*24476^(1/21) 2100951949257901 a001 2971215073/228826127*24476^(1/21) 2100951949257901 a001 7778742049/599074578*24476^(1/21) 2100951949257901 a001 20365011074/1568397607*24476^(1/21) 2100951949257901 a001 53316291173/4106118243*24476^(1/21) 2100951949257901 a001 139583862445/10749957122*24476^(1/21) 2100951949257901 a001 365435296162/28143753123*24476^(1/21) 2100951949257901 a001 956722026041/73681302247*24476^(1/21) 2100951949257901 a001 2504730781961/192900153618*24476^(1/21) 2100951949257901 a001 10610209857723/817138163596*24476^(1/21) 2100951949257901 a001 4052739537881/312119004989*24476^(1/21) 2100951949257901 a001 1548008755920/119218851371*24476^(1/21) 2100951949257901 a001 591286729879/45537549124*24476^(1/21) 2100951949257901 a001 7787980473/599786069*24476^(1/21) 2100951949257901 a001 86267571272/6643838879*24476^(1/21) 2100951949257901 a001 32951280099/2537720636*24476^(1/21) 2100951949257901 a001 12586269025/969323029*24476^(1/21) 2100951949257901 a001 4807526976/370248451*24476^(1/21) 2100951949257901 a001 1836311903/141422324*24476^(1/21) 2100951949257902 a001 701408733/54018521*24476^(1/21) 2100951949257906 a001 9238424/711491*24476^(1/21) 2100951949257935 a001 102334155/7881196*24476^(1/21) 2100951949257977 a004 Fibonacci(24)*Lucas(26)/(1/2+sqrt(5)/2)^42 2100951949258132 a001 39088169/3010349*24476^(1/21) 2100951949258749 a001 105937/90481*64079^(6/23) 2100951949259488 a001 14930352/1149851*24476^(1/21) 2100951949266606 a001 514229/710647*64079^(7/23) 2100951949268713 a001 98209/219602*64079^(8/23) 2100951949268779 a001 5702887/439204*24476^(1/21) 2100951949268802 a001 1346269/1860498*64079^(7/23) 2100951949269122 a001 3524578/4870847*64079^(7/23) 2100951949269169 a001 9227465/12752043*64079^(7/23) 2100951949269176 a001 24157817/33385282*64079^(7/23) 2100951949269177 a001 63245986/87403803*64079^(7/23) 2100951949269177 a001 165580141/228826127*64079^(7/23) 2100951949269177 a001 433494437/599074578*64079^(7/23) 2100951949269177 a001 1134903170/1568397607*64079^(7/23) 2100951949269177 a001 2971215073/4106118243*64079^(7/23) 2100951949269177 a001 7778742049/10749957122*64079^(7/23) 2100951949269177 a001 20365011074/28143753123*64079^(7/23) 2100951949269177 a001 53316291173/73681302247*64079^(7/23) 2100951949269177 a001 139583862445/192900153618*64079^(7/23) 2100951949269177 a001 365435296162/505019158607*64079^(7/23) 2100951949269177 a001 10610209857723/14662949395604*64079^(7/23) 2100951949269177 a001 225851433717/312119004989*64079^(7/23) 2100951949269177 a001 86267571272/119218851371*64079^(7/23) 2100951949269177 a001 32951280099/45537549124*64079^(7/23) 2100951949269177 a001 12586269025/17393796001*64079^(7/23) 2100951949269177 a001 4807526976/6643838879*64079^(7/23) 2100951949269177 a001 1836311903/2537720636*64079^(7/23) 2100951949269177 a001 701408733/969323029*64079^(7/23) 2100951949269177 a001 267914296/370248451*64079^(7/23) 2100951949269177 a001 102334155/141422324*64079^(7/23) 2100951949269177 a001 39088169/54018521*64079^(7/23) 2100951949269180 a001 14930352/20633239*64079^(7/23) 2100951949269198 a001 5702887/7881196*64079^(7/23) 2100951949269320 a001 2178309/3010349*64079^(7/23) 2100951949270159 a001 832040/1149851*64079^(7/23) 2100951949270821 a001 75025/271443*64079^(9/23) 2100951949275908 a001 317811/439204*64079^(7/23) 2100951949279457 a001 196418/64079*24476^(4/21) 2100951949281070 a001 98209/51841*103682^(5/24) 2100951949282381 a001 15456/90481*103682^(5/12) 2100951949286656 a001 832040/710647*64079^(6/23) 2100951949286744 a001 514229/271443*64079^(5/23) 2100951949287980 a001 75025/439204*64079^(10/23) 2100951949290583 a001 1346269/103682*39603^(1/22) 2100951949290728 a001 726103/620166*64079^(6/23) 2100951949291322 a001 5702887/4870847*64079^(6/23) 2100951949291408 a001 4976784/4250681*64079^(6/23) 2100951949291421 a001 39088169/33385282*64079^(6/23) 2100951949291423 a001 34111385/29134601*64079^(6/23) 2100951949291423 a001 267914296/228826127*64079^(6/23) 2100951949291423 a001 233802911/199691526*64079^(6/23) 2100951949291423 a001 1836311903/1568397607*64079^(6/23) 2100951949291423 a001 1602508992/1368706081*64079^(6/23) 2100951949291423 a001 12586269025/10749957122*64079^(6/23) 2100951949291423 a001 10983760033/9381251041*64079^(6/23) 2100951949291423 a001 86267571272/73681302247*64079^(6/23) 2100951949291423 a001 75283811239/64300051206*64079^(6/23) 2100951949291423 a001 2504730781961/2139295485799*64079^(6/23) 2100951949291423 a001 365435296162/312119004989*64079^(6/23) 2100951949291423 a001 139583862445/119218851371*64079^(6/23) 2100951949291423 a001 53316291173/45537549124*64079^(6/23) 2100951949291423 a001 20365011074/17393796001*64079^(6/23) 2100951949291423 a001 7778742049/6643838879*64079^(6/23) 2100951949291423 a001 2971215073/2537720636*64079^(6/23) 2100951949291423 a001 1134903170/969323029*64079^(6/23) 2100951949291423 a001 433494437/370248451*64079^(6/23) 2100951949291423 a001 165580141/141422324*64079^(6/23) 2100951949291424 a001 63245986/54018521*64079^(6/23) 2100951949291429 a001 24157817/20633239*64079^(6/23) 2100951949291462 a001 9227465/7881196*64079^(6/23) 2100951949291689 a001 3524578/3010349*64079^(6/23) 2100951949293244 a001 1346269/1149851*64079^(6/23) 2100951949300483 a001 46368/167761*439204^(1/3) 2100951949303110 a001 17711/12752043*39603^(10/11) 2100951949303904 a001 514229/439204*64079^(6/23) 2100951949304104 a001 46368/167761*7881196^(3/11) 2100951949304112 a001 75025/103682*20633239^(1/5) 2100951949304113 a001 46368/167761*141422324^(3/13) 2100951949304113 a001 3478759200/165580141 2100951949304113 a001 46368/167761*2537720636^(1/5) 2100951949304113 a001 46368/167761*45537549124^(3/17) 2100951949304113 a001 46368/167761*14662949395604^(1/7) 2100951949304113 a001 46368/167761*(1/2+1/2*5^(1/2))^9 2100951949304113 a001 46368/167761*192900153618^(1/6) 2100951949304113 a001 46368/167761*10749957122^(3/16) 2100951949304113 a001 75025/103682*17393796001^(1/7) 2100951949304113 a001 75025/103682*14662949395604^(1/9) 2100951949304113 a001 75025/103682*(1/2+1/2*5^(1/2))^7 2100951949304113 a001 75025/103682*599074578^(1/6) 2100951949304113 a001 46368/167761*599074578^(3/14) 2100951949304114 a001 46368/167761*33385282^(1/4) 2100951949304295 a001 46368/167761*1860498^(3/10) 2100951949305153 a001 75025/103682*710647^(1/4) 2100951949306795 a001 832040/271443*64079^(4/23) 2100951949309741 a001 1346269/710647*64079^(5/23) 2100951949313096 a001 1762289/930249*64079^(5/23) 2100951949313586 a001 9227465/4870847*64079^(5/23) 2100951949313657 a001 24157817/12752043*64079^(5/23) 2100951949313668 a001 31622993/16692641*64079^(5/23) 2100951949313669 a001 165580141/87403803*64079^(5/23) 2100951949313669 a001 433494437/228826127*64079^(5/23) 2100951949313669 a001 567451585/299537289*64079^(5/23) 2100951949313669 a001 2971215073/1568397607*64079^(5/23) 2100951949313669 a001 7778742049/4106118243*64079^(5/23) 2100951949313669 a001 10182505537/5374978561*64079^(5/23) 2100951949313669 a001 53316291173/28143753123*64079^(5/23) 2100951949313669 a001 139583862445/73681302247*64079^(5/23) 2100951949313669 a001 182717648081/96450076809*64079^(5/23) 2100951949313669 a001 956722026041/505019158607*64079^(5/23) 2100951949313669 a001 10610209857723/5600748293801*64079^(5/23) 2100951949313669 a001 591286729879/312119004989*64079^(5/23) 2100951949313669 a001 225851433717/119218851371*64079^(5/23) 2100951949313669 a001 21566892818/11384387281*64079^(5/23) 2100951949313669 a001 32951280099/17393796001*64079^(5/23) 2100951949313669 a001 12586269025/6643838879*64079^(5/23) 2100951949313669 a001 1201881744/634430159*64079^(5/23) 2100951949313669 a001 1836311903/969323029*64079^(5/23) 2100951949313669 a001 701408733/370248451*64079^(5/23) 2100951949313670 a001 66978574/35355581*64079^(5/23) 2100951949313670 a001 102334155/54018521*64079^(5/23) 2100951949313674 a001 39088169/20633239*64079^(5/23) 2100951949313701 a001 3732588/1970299*64079^(5/23) 2100951949313888 a001 5702887/3010349*64079^(5/23) 2100951949315170 a001 2178309/1149851*64079^(5/23) 2100951949315314 a001 121393/167761*64079^(7/23) 2100951949321736 a004 Fibonacci(26)*Lucas(25)/(1/2+sqrt(5)/2)^43 2100951949323021 a001 6624/101521*103682^(1/2) 2100951949323954 a001 208010/109801*64079^(5/23) 2100951949329880 a001 1346269/271443*64079^(3/23) 2100951949329930 a001 11592/109801*103682^(11/24) 2100951949331667 a001 311187/101521*64079^(4/23) 2100951949332463 a001 2178309/167761*24476^(1/21) 2100951949335296 a001 5702887/1860498*64079^(4/23) 2100951949335825 a001 14930352/4870847*64079^(4/23) 2100951949335902 a001 39088169/12752043*64079^(4/23) 2100951949335914 a001 14619165/4769326*64079^(4/23) 2100951949335915 a001 267914296/87403803*64079^(4/23) 2100951949335916 a001 701408733/228826127*64079^(4/23) 2100951949335916 a001 1836311903/599074578*64079^(4/23) 2100951949335916 a001 686789568/224056801*64079^(4/23) 2100951949335916 a001 12586269025/4106118243*64079^(4/23) 2100951949335916 a001 32951280099/10749957122*64079^(4/23) 2100951949335916 a001 86267571272/28143753123*64079^(4/23) 2100951949335916 a001 32264490531/10525900321*64079^(4/23) 2100951949335916 a001 591286729879/192900153618*64079^(4/23) 2100951949335916 a001 1548008755920/505019158607*64079^(4/23) 2100951949335916 a001 1515744265389/494493258286*64079^(4/23) 2100951949335916 a001 956722026041/312119004989*64079^(4/23) 2100951949335916 a001 365435296162/119218851371*64079^(4/23) 2100951949335916 a001 139583862445/45537549124*64079^(4/23) 2100951949335916 a001 53316291173/17393796001*64079^(4/23) 2100951949335916 a001 20365011074/6643838879*64079^(4/23) 2100951949335916 a001 7778742049/2537720636*64079^(4/23) 2100951949335916 a001 2971215073/969323029*64079^(4/23) 2100951949335916 a001 1134903170/370248451*64079^(4/23) 2100951949335916 a001 433494437/141422324*64079^(4/23) 2100951949335916 a001 165580141/54018521*64079^(4/23) 2100951949335921 a001 63245986/20633239*64079^(4/23) 2100951949335950 a001 24157817/7881196*64079^(4/23) 2100951949336152 a001 9227465/3010349*64079^(4/23) 2100951949336666 a001 121393/87403803*167761^(4/5) 2100951949336914 a001 46368/1149851*103682^(13/24) 2100951949337539 a001 3524578/1149851*64079^(4/23) 2100951949342861 a001 2576/103361*103682^(7/12) 2100951949346090 a004 Fibonacci(28)*Lucas(25)/(1/2+sqrt(5)/2)^45 2100951949347039 a001 1346269/439204*64079^(4/23) 2100951949349643 a004 Fibonacci(30)*Lucas(25)/(1/2+sqrt(5)/2)^47 2100951949350161 a004 Fibonacci(32)*Lucas(25)/(1/2+sqrt(5)/2)^49 2100951949350237 a004 Fibonacci(34)*Lucas(25)/(1/2+sqrt(5)/2)^51 2100951949350248 a004 Fibonacci(36)*Lucas(25)/(1/2+sqrt(5)/2)^53 2100951949350250 a004 Fibonacci(38)*Lucas(25)/(1/2+sqrt(5)/2)^55 2100951949350250 a004 Fibonacci(40)*Lucas(25)/(1/2+sqrt(5)/2)^57 2100951949350250 a004 Fibonacci(42)*Lucas(25)/(1/2+sqrt(5)/2)^59 2100951949350250 a004 Fibonacci(44)*Lucas(25)/(1/2+sqrt(5)/2)^61 2100951949350250 a004 Fibonacci(46)*Lucas(25)/(1/2+sqrt(5)/2)^63 2100951949350250 a004 Fibonacci(48)*Lucas(25)/(1/2+sqrt(5)/2)^65 2100951949350250 a004 Fibonacci(50)*Lucas(25)/(1/2+sqrt(5)/2)^67 2100951949350250 a004 Fibonacci(52)*Lucas(25)/(1/2+sqrt(5)/2)^69 2100951949350250 a004 Fibonacci(54)*Lucas(25)/(1/2+sqrt(5)/2)^71 2100951949350250 a004 Fibonacci(56)*Lucas(25)/(1/2+sqrt(5)/2)^73 2100951949350250 a004 Fibonacci(58)*Lucas(25)/(1/2+sqrt(5)/2)^75 2100951949350250 a004 Fibonacci(60)*Lucas(25)/(1/2+sqrt(5)/2)^77 2100951949350250 a004 Fibonacci(62)*Lucas(25)/(1/2+sqrt(5)/2)^79 2100951949350250 a004 Fibonacci(64)*Lucas(25)/(1/2+sqrt(5)/2)^81 2100951949350250 a004 Fibonacci(66)*Lucas(25)/(1/2+sqrt(5)/2)^83 2100951949350250 a004 Fibonacci(68)*Lucas(25)/(1/2+sqrt(5)/2)^85 2100951949350250 a004 Fibonacci(70)*Lucas(25)/(1/2+sqrt(5)/2)^87 2100951949350250 a004 Fibonacci(72)*Lucas(25)/(1/2+sqrt(5)/2)^89 2100951949350250 a004 Fibonacci(74)*Lucas(25)/(1/2+sqrt(5)/2)^91 2100951949350250 a004 Fibonacci(76)*Lucas(25)/(1/2+sqrt(5)/2)^93 2100951949350250 a004 Fibonacci(78)*Lucas(25)/(1/2+sqrt(5)/2)^95 2100951949350250 a004 Fibonacci(80)*Lucas(25)/(1/2+sqrt(5)/2)^97 2100951949350250 a004 Fibonacci(82)*Lucas(25)/(1/2+sqrt(5)/2)^99 2100951949350250 a004 Fibonacci(83)*Lucas(25)/(1/2+sqrt(5)/2)^100 2100951949350250 a004 Fibonacci(81)*Lucas(25)/(1/2+sqrt(5)/2)^98 2100951949350250 a004 Fibonacci(79)*Lucas(25)/(1/2+sqrt(5)/2)^96 2100951949350250 a004 Fibonacci(77)*Lucas(25)/(1/2+sqrt(5)/2)^94 2100951949350250 a004 Fibonacci(75)*Lucas(25)/(1/2+sqrt(5)/2)^92 2100951949350250 a004 Fibonacci(73)*Lucas(25)/(1/2+sqrt(5)/2)^90 2100951949350250 a004 Fibonacci(71)*Lucas(25)/(1/2+sqrt(5)/2)^88 2100951949350250 a004 Fibonacci(69)*Lucas(25)/(1/2+sqrt(5)/2)^86 2100951949350250 a004 Fibonacci(67)*Lucas(25)/(1/2+sqrt(5)/2)^84 2100951949350250 a004 Fibonacci(65)*Lucas(25)/(1/2+sqrt(5)/2)^82 2100951949350250 a004 Fibonacci(63)*Lucas(25)/(1/2+sqrt(5)/2)^80 2100951949350250 a004 Fibonacci(61)*Lucas(25)/(1/2+sqrt(5)/2)^78 2100951949350250 a004 Fibonacci(59)*Lucas(25)/(1/2+sqrt(5)/2)^76 2100951949350250 a004 Fibonacci(57)*Lucas(25)/(1/2+sqrt(5)/2)^74 2100951949350250 a004 Fibonacci(55)*Lucas(25)/(1/2+sqrt(5)/2)^72 2100951949350250 a004 Fibonacci(53)*Lucas(25)/(1/2+sqrt(5)/2)^70 2100951949350250 a004 Fibonacci(51)*Lucas(25)/(1/2+sqrt(5)/2)^68 2100951949350250 a001 2/75025*(1/2+1/2*5^(1/2))^33 2100951949350250 a004 Fibonacci(49)*Lucas(25)/(1/2+sqrt(5)/2)^66 2100951949350250 a004 Fibonacci(47)*Lucas(25)/(1/2+sqrt(5)/2)^64 2100951949350250 a004 Fibonacci(45)*Lucas(25)/(1/2+sqrt(5)/2)^62 2100951949350250 a004 Fibonacci(43)*Lucas(25)/(1/2+sqrt(5)/2)^60 2100951949350250 a004 Fibonacci(41)*Lucas(25)/(1/2+sqrt(5)/2)^58 2100951949350250 a004 Fibonacci(39)*Lucas(25)/(1/2+sqrt(5)/2)^56 2100951949350251 a004 Fibonacci(37)*Lucas(25)/(1/2+sqrt(5)/2)^54 2100951949350255 a004 Fibonacci(35)*Lucas(25)/(1/2+sqrt(5)/2)^52 2100951949350284 a004 Fibonacci(33)*Lucas(25)/(1/2+sqrt(5)/2)^50 2100951949350482 a004 Fibonacci(31)*Lucas(25)/(1/2+sqrt(5)/2)^48 2100951949350633 a001 416020/51841*39603^(1/11) 2100951949351630 a001 121393/7881196*167761^(3/5) 2100951949351806 a001 726103/90481*64079^(2/23) 2100951949351839 a004 Fibonacci(29)*Lucas(25)/(1/2+sqrt(5)/2)^46 2100951949351843 a001 46368/3010349*103682^(5/8) 2100951949354036 a001 3524578/710647*64079^(3/23) 2100951949357560 a001 9227465/1860498*64079^(3/23) 2100951949358074 a001 24157817/4870847*64079^(3/23) 2100951949358149 a001 63245986/12752043*64079^(3/23) 2100951949358160 a001 165580141/33385282*64079^(3/23) 2100951949358162 a001 433494437/87403803*64079^(3/23) 2100951949358162 a001 1134903170/228826127*64079^(3/23) 2100951949358162 a001 2971215073/599074578*64079^(3/23) 2100951949358162 a001 7778742049/1568397607*64079^(3/23) 2100951949358162 a001 20365011074/4106118243*64079^(3/23) 2100951949358162 a001 53316291173/10749957122*64079^(3/23) 2100951949358162 a001 139583862445/28143753123*64079^(3/23) 2100951949358162 a001 365435296162/73681302247*64079^(3/23) 2100951949358162 a001 956722026041/192900153618*64079^(3/23) 2100951949358162 a001 2504730781961/505019158607*64079^(3/23) 2100951949358162 a001 10610209857723/2139295485799*64079^(3/23) 2100951949358162 a001 140728068720/28374454999*64079^(3/23) 2100951949358162 a001 591286729879/119218851371*64079^(3/23) 2100951949358162 a001 225851433717/45537549124*64079^(3/23) 2100951949358162 a001 86267571272/17393796001*64079^(3/23) 2100951949358162 a001 32951280099/6643838879*64079^(3/23) 2100951949358162 a001 1144206275/230701876*64079^(3/23) 2100951949358162 a001 4807526976/969323029*64079^(3/23) 2100951949358162 a001 1836311903/370248451*64079^(3/23) 2100951949358162 a001 701408733/141422324*64079^(3/23) 2100951949358163 a001 267914296/54018521*64079^(3/23) 2100951949358167 a001 9303105/1875749*64079^(3/23) 2100951949358195 a001 39088169/7881196*64079^(3/23) 2100951949358392 a001 14930352/3010349*64079^(3/23) 2100951949359666 a001 46368/4870847*103682^(2/3) 2100951949359738 a001 5702887/1149851*64079^(3/23) 2100951949361020 a001 317811/228826127*167761^(4/5) 2100951949361116 a001 75025/103682*103682^(7/24) 2100951949361141 a004 Fibonacci(27)*Lucas(25)/(1/2+sqrt(5)/2)^44 2100951949362366 a001 121393/710647*167761^(2/5) 2100951949364017 a001 17711/20633239*39603^(21/22) 2100951949364573 a001 416020/299537289*167761^(4/5) 2100951949365092 a001 311187/224056801*167761^(4/5) 2100951949365167 a001 5702887/4106118243*167761^(4/5) 2100951949365178 a001 7465176/5374978561*167761^(4/5) 2100951949365180 a001 39088169/28143753123*167761^(4/5) 2100951949365180 a001 14619165/10525900321*167761^(4/5) 2100951949365180 a001 133957148/96450076809*167761^(4/5) 2100951949365180 a001 701408733/505019158607*167761^(4/5) 2100951949365180 a001 1836311903/1322157322203*167761^(4/5) 2100951949365180 a001 14930208/10749853441*167761^(4/5) 2100951949365180 a001 12586269025/9062201101803*167761^(4/5) 2100951949365180 a001 32951280099/23725150497407*167761^(4/5) 2100951949365180 a001 10182505537/7331474697802*167761^(4/5) 2100951949365180 a001 7778742049/5600748293801*167761^(4/5) 2100951949365180 a001 2971215073/2139295485799*167761^(4/5) 2100951949365180 a001 567451585/408569081798*167761^(4/5) 2100951949365180 a001 433494437/312119004989*167761^(4/5) 2100951949365180 a001 165580141/119218851371*167761^(4/5) 2100951949365180 a001 31622993/22768774562*167761^(4/5) 2100951949365181 a001 24157817/17393796001*167761^(4/5) 2100951949365185 a001 9227465/6643838879*167761^(4/5) 2100951949365214 a001 1762289/1268860318*167761^(4/5) 2100951949365412 a001 1346269/969323029*167761^(4/5) 2100951949366769 a001 514229/370248451*167761^(4/5) 2100951949367873 a001 121393/271443*(1/2+1/2*5^(1/2))^8 2100951949367873 a001 121393/271443*23725150497407^(1/8) 2100951949367873 a001 121393/271443*505019158607^(1/7) 2100951949367873 a001 121393/271443*73681302247^(2/13) 2100951949367873 a001 121393/271443*10749957122^(1/6) 2100951949367873 a001 121393/271443*4106118243^(4/23) 2100951949367873 a001 121393/271443*1568397607^(2/11) 2100951949367873 a001 14736260449/701408733 2100951949367873 a001 121393/271443*599074578^(4/21) 2100951949367873 a001 121393/271443*228826127^(1/5) 2100951949367873 a001 121393/271443*87403803^(4/19) 2100951949367873 a001 121393/271443*33385282^(2/9) 2100951949367876 a001 121393/271443*12752043^(4/17) 2100951949367895 a001 121393/271443*4870847^(1/4) 2100951949367932 a001 11592/1970299*103682^(17/24) 2100951949368034 a001 121393/271443*1860498^(4/15) 2100951949368965 a001 2178309/439204*64079^(3/23) 2100951949369061 a001 121393/271443*710647^(2/7) 2100951949374174 a001 3524578/271443*64079^(1/23) 2100951949375955 a001 10959/711491*167761^(3/5) 2100951949376028 a001 15456/4250681*103682^(3/4) 2100951949376072 a001 98209/70711162*167761^(4/5) 2100951949376235 a001 5702887/710647*64079^(2/23) 2100951949376646 a001 121393/271443*271443^(4/13) 2100951949376965 a001 196418/167761*64079^(6/23) 2100951949377403 a001 46368/167761*103682^(3/8) 2100951949379504 a001 832040/54018521*167761^(3/5) 2100951949379799 a001 829464/103361*64079^(2/23) 2100951949380022 a001 2178309/141422324*167761^(3/5) 2100951949380097 a001 5702887/370248451*167761^(3/5) 2100951949380108 a001 14930352/969323029*167761^(3/5) 2100951949380110 a001 39088169/2537720636*167761^(3/5) 2100951949380110 a001 102334155/6643838879*167761^(3/5) 2100951949380110 a001 9238424/599786069*167761^(3/5) 2100951949380110 a001 701408733/45537549124*167761^(3/5) 2100951949380110 a001 1836311903/119218851371*167761^(3/5) 2100951949380110 a001 4807526976/312119004989*167761^(3/5) 2100951949380110 a001 12586269025/817138163596*167761^(3/5) 2100951949380110 a001 32951280099/2139295485799*167761^(3/5) 2100951949380110 a001 86267571272/5600748293801*167761^(3/5) 2100951949380110 a001 7787980473/505618944676*167761^(3/5) 2100951949380110 a001 365435296162/23725150497407*167761^(3/5) 2100951949380110 a001 139583862445/9062201101803*167761^(3/5) 2100951949380110 a001 53316291173/3461452808002*167761^(3/5) 2100951949380110 a001 20365011074/1322157322203*167761^(3/5) 2100951949380110 a001 7778742049/505019158607*167761^(3/5) 2100951949380110 a001 2971215073/192900153618*167761^(3/5) 2100951949380110 a001 1134903170/73681302247*167761^(3/5) 2100951949380110 a001 433494437/28143753123*167761^(3/5) 2100951949380110 a001 165580141/10749957122*167761^(3/5) 2100951949380110 a001 63245986/4106118243*167761^(3/5) 2100951949380111 a001 24157817/1568397607*167761^(3/5) 2100951949380115 a001 9227465/599074578*167761^(3/5) 2100951949380144 a001 3524578/228826127*167761^(3/5) 2100951949380319 a001 39088169/4870847*64079^(2/23) 2100951949380342 a001 1346269/87403803*167761^(3/5) 2100951949380395 a001 34111385/4250681*64079^(2/23) 2100951949380406 a001 133957148/16692641*64079^(2/23) 2100951949380408 a001 233802911/29134601*64079^(2/23) 2100951949380408 a001 1836311903/228826127*64079^(2/23) 2100951949380408 a001 267084832/33281921*64079^(2/23) 2100951949380408 a001 12586269025/1568397607*64079^(2/23) 2100951949380408 a001 10983760033/1368706081*64079^(2/23) 2100951949380408 a001 43133785636/5374978561*64079^(2/23) 2100951949380408 a001 75283811239/9381251041*64079^(2/23) 2100951949380408 a001 591286729879/73681302247*64079^(2/23) 2100951949380408 a001 86000486440/10716675201*64079^(2/23) 2100951949380408 a001 4052739537881/505019158607*64079^(2/23) 2100951949380408 a001 3278735159921/408569081798*64079^(2/23) 2100951949380408 a001 2504730781961/312119004989*64079^(2/23) 2100951949380408 a001 956722026041/119218851371*64079^(2/23) 2100951949380408 a001 182717648081/22768774562*64079^(2/23) 2100951949380408 a001 139583862445/17393796001*64079^(2/23) 2100951949380408 a001 53316291173/6643838879*64079^(2/23) 2100951949380408 a001 10182505537/1268860318*64079^(2/23) 2100951949380408 a001 7778742049/969323029*64079^(2/23) 2100951949380408 a001 2971215073/370248451*64079^(2/23) 2100951949380408 a001 567451585/70711162*64079^(2/23) 2100951949380409 a001 433494437/54018521*64079^(2/23) 2100951949380413 a001 165580141/20633239*64079^(2/23) 2100951949380442 a001 31622993/3940598*64079^(2/23) 2100951949380641 a001 24157817/3010349*64079^(2/23) 2100951949381697 a001 514229/33385282*167761^(3/5) 2100951949382002 a001 9227465/1149851*64079^(2/23) 2100951949383045 a001 514229/271443*167761^(1/5) 2100951949384160 a001 317811/167761*64079^(5/23) 2100951949384189 a001 46368/20633239*103682^(19/24) 2100951949385495 a004 Fibonacci(26)*Lucas(27)/(1/2+sqrt(5)/2)^45 2100951949386705 a001 121393/599074578*439204^(8/9) 2100951949387916 a001 233/271444*439204^(7/9) 2100951949389124 a001 121393/33385282*439204^(2/3) 2100951949389806 a001 105937/90481*439204^(2/9) 2100951949390273 a001 105937/620166*167761^(2/5) 2100951949390370 a001 121393/7881196*439204^(5/9) 2100951949390939 a001 121393/1860498*439204^(4/9) 2100951949390989 a001 196418/12752043*167761^(3/5) 2100951949391333 a001 1762289/219602*64079^(2/23) 2100951949392220 a001 105937/90481*7881196^(2/11) 2100951949392225 a001 121393/710647*20633239^(2/7) 2100951949392226 a001 105937/90481*141422324^(2/13) 2100951949392226 a001 121393/710647*2537720636^(2/9) 2100951949392226 a001 105937/90481*2537720636^(2/15) 2100951949392226 a001 121393/710647*312119004989^(2/11) 2100951949392226 a001 121393/710647*(1/2+1/2*5^(1/2))^10 2100951949392226 a001 105937/90481*45537549124^(2/17) 2100951949392226 a001 105937/90481*14662949395604^(2/21) 2100951949392226 a001 105937/90481*(1/2+1/2*5^(1/2))^6 2100951949392226 a001 121393/710647*28143753123^(1/5) 2100951949392226 a001 105937/90481*10749957122^(1/8) 2100951949392226 a001 121393/710647*10749957122^(5/24) 2100951949392226 a001 105937/90481*4106118243^(3/23) 2100951949392226 a001 121393/710647*4106118243^(5/23) 2100951949392226 a001 105937/90481*1568397607^(3/22) 2100951949392226 a001 38580030723/1836311903 2100951949392226 a001 121393/710647*1568397607^(5/22) 2100951949392226 a001 105937/90481*599074578^(1/7) 2100951949392226 a001 121393/710647*599074578^(5/21) 2100951949392226 a001 105937/90481*228826127^(3/20) 2100951949392226 a001 121393/710647*228826127^(1/4) 2100951949392227 a001 105937/90481*87403803^(3/19) 2100951949392227 a001 121393/710647*87403803^(5/19) 2100951949392227 a001 105937/90481*33385282^(1/6) 2100951949392227 a001 121393/710647*33385282^(5/18) 2100951949392229 a001 105937/90481*12752043^(3/17) 2100951949392230 a001 121393/710647*12752043^(5/17) 2100951949392243 a001 105937/90481*4870847^(3/16) 2100951949392254 a001 121393/710647*4870847^(5/16) 2100951949392326 a001 144/103681*103682^(5/6) 2100951949392348 a001 105937/90481*1860498^(1/5) 2100951949392429 a001 121393/710647*1860498^(1/3) 2100951949393118 a001 105937/90481*710647^(3/14) 2100951949393712 a001 121393/710647*710647^(5/14) 2100951949394345 a001 832040/4870847*167761^(2/5) 2100951949394798 a004 Fibonacci(26)*Lucas(29)/(1/2+sqrt(5)/2)^47 2100951949394939 a001 726103/4250681*167761^(2/5) 2100951949395026 a001 5702887/33385282*167761^(2/5) 2100951949395038 a001 4976784/29134601*167761^(2/5) 2100951949395040 a001 39088169/228826127*167761^(2/5) 2100951949395040 a001 34111385/199691526*167761^(2/5) 2100951949395040 a001 267914296/1568397607*167761^(2/5) 2100951949395040 a001 233802911/1368706081*167761^(2/5) 2100951949395040 a001 1836311903/10749957122*167761^(2/5) 2100951949395040 a001 1602508992/9381251041*167761^(2/5) 2100951949395040 a001 12586269025/73681302247*167761^(2/5) 2100951949395040 a001 10983760033/64300051206*167761^(2/5) 2100951949395040 a001 86267571272/505019158607*167761^(2/5) 2100951949395040 a001 75283811239/440719107401*167761^(2/5) 2100951949395040 a001 2504730781961/14662949395604*167761^(2/5) 2100951949395040 a001 139583862445/817138163596*167761^(2/5) 2100951949395040 a001 53316291173/312119004989*167761^(2/5) 2100951949395040 a001 20365011074/119218851371*167761^(2/5) 2100951949395040 a001 7778742049/45537549124*167761^(2/5) 2100951949395040 a001 2971215073/17393796001*167761^(2/5) 2100951949395040 a001 1134903170/6643838879*167761^(2/5) 2100951949395040 a001 433494437/2537720636*167761^(2/5) 2100951949395040 a001 165580141/969323029*167761^(2/5) 2100951949395040 a001 63245986/370248451*167761^(2/5) 2100951949395041 a001 24157817/141422324*167761^(2/5) 2100951949395046 a001 9227465/54018521*167761^(2/5) 2100951949395079 a001 3524578/20633239*167761^(2/5) 2100951949395306 a001 1346269/7881196*167761^(2/5) 2100951949395408 a001 1346269/271443*439204^(1/9) 2100951949395767 a001 121393/1860498*7881196^(4/11) 2100951949395780 a001 121393/1860498*141422324^(4/13) 2100951949395780 a001 121393/1860498*2537720636^(4/15) 2100951949395780 a001 121393/1860498*45537549124^(4/17) 2100951949395780 a001 121393/1860498*817138163596^(4/19) 2100951949395780 a001 121393/1860498*14662949395604^(4/21) 2100951949395780 a001 121393/1860498*(1/2+1/2*5^(1/2))^12 2100951949395780 a001 121393/1860498*73681302247^(3/13) 2100951949395780 a001 832040/271443*(1/2+1/2*5^(1/2))^4 2100951949395780 a001 832040/271443*23725150497407^(1/16) 2100951949395780 a001 832040/271443*73681302247^(1/13) 2100951949395780 a001 832040/271443*10749957122^(1/12) 2100951949395780 a001 121393/1860498*10749957122^(1/4) 2100951949395780 a001 832040/271443*4106118243^(2/23) 2100951949395780 a001 12625478965/600940872 2100951949395780 a001 121393/1860498*4106118243^(6/23) 2100951949395780 a001 832040/271443*1568397607^(1/11) 2100951949395780 a001 121393/1860498*1568397607^(3/11) 2100951949395780 a001 832040/271443*599074578^(2/21) 2100951949395780 a001 121393/1860498*599074578^(2/7) 2100951949395780 a001 832040/271443*228826127^(1/10) 2100951949395780 a001 121393/1860498*228826127^(3/10) 2100951949395780 a001 832040/271443*87403803^(2/19) 2100951949395780 a001 121393/1860498*87403803^(6/19) 2100951949395780 a001 832040/271443*33385282^(1/9) 2100951949395780 a001 121393/1860498*33385282^(1/3) 2100951949395781 a001 832040/271443*12752043^(2/17) 2100951949395784 a001 121393/1860498*12752043^(6/17) 2100951949395791 a001 832040/271443*4870847^(1/8) 2100951949395813 a001 121393/1860498*4870847^(3/8) 2100951949395861 a001 832040/271443*1860498^(2/15) 2100951949396022 a001 121393/1860498*1860498^(2/5) 2100951949396155 a004 Fibonacci(26)*Lucas(31)/(1/2+sqrt(5)/2)^49 2100951949396232 a001 75025/167761*64079^(8/23) 2100951949396296 a001 121393/4870847*20633239^(2/5) 2100951949396298 a001 121393/4870847*17393796001^(2/7) 2100951949396298 a001 121393/4870847*14662949395604^(2/9) 2100951949396298 a001 121393/4870847*(1/2+1/2*5^(1/2))^14 2100951949396298 a001 726103/90481*(1/2+1/2*5^(1/2))^2 2100951949396298 a001 726103/90481*10749957122^(1/24) 2100951949396298 a001 264431464437/12586269025 2100951949396298 a001 121393/4870847*10749957122^(7/24) 2100951949396298 a001 726103/90481*4106118243^(1/23) 2100951949396298 a001 121393/4870847*4106118243^(7/23) 2100951949396298 a001 726103/90481*1568397607^(1/22) 2100951949396298 a001 121393/4870847*1568397607^(7/22) 2100951949396298 a001 726103/90481*599074578^(1/21) 2100951949396298 a001 121393/4870847*599074578^(1/3) 2100951949396298 a001 726103/90481*228826127^(1/20) 2100951949396298 a001 121393/4870847*228826127^(7/20) 2100951949396298 a001 726103/90481*87403803^(1/19) 2100951949396298 a001 121393/4870847*87403803^(7/19) 2100951949396298 a001 726103/90481*33385282^(1/18) 2100951949396299 a001 121393/4870847*33385282^(7/18) 2100951949396299 a001 726103/90481*12752043^(1/17) 2100951949396303 a001 121393/4870847*12752043^(7/17) 2100951949396304 a001 726103/90481*4870847^(1/16) 2100951949396337 a001 121393/4870847*4870847^(7/16) 2100951949396339 a001 726103/90481*1860498^(1/15) 2100951949396353 a004 Fibonacci(26)*Lucas(33)/(1/2+sqrt(5)/2)^51 2100951949396356 a001 121393/10749957122*7881196^(10/11) 2100951949396359 a001 121393/2537720636*7881196^(9/11) 2100951949396362 a001 121393/599074578*7881196^(8/11) 2100951949396364 a001 121393/228826127*7881196^(2/3) 2100951949396365 a001 233/271444*7881196^(7/11) 2100951949396366 a001 121393/33385282*7881196^(6/11) 2100951949396374 a001 121393/12752043*(1/2+1/2*5^(1/2))^16 2100951949396374 a001 121393/12752043*23725150497407^(1/4) 2100951949396374 a001 121393/12752043*73681302247^(4/13) 2100951949396374 a001 5702887/271443 2100951949396374 a001 121393/12752043*10749957122^(1/3) 2100951949396374 a001 121393/12752043*4106118243^(8/23) 2100951949396374 a001 121393/12752043*1568397607^(4/11) 2100951949396374 a001 121393/12752043*599074578^(8/21) 2100951949396374 a001 121393/12752043*228826127^(2/5) 2100951949396374 a001 121393/12752043*87403803^(8/19) 2100951949396374 a001 832040/271443*710647^(1/7) 2100951949396375 a001 121393/12752043*33385282^(4/9) 2100951949396380 a001 121393/12752043*12752043^(8/17) 2100951949396382 a004 Fibonacci(26)*Lucas(35)/(1/2+sqrt(5)/2)^53 2100951949396382 a001 121393/10749957122*20633239^(6/7) 2100951949396383 a001 121393/4106118243*20633239^(4/5) 2100951949396383 a001 121393/969323029*20633239^(5/7) 2100951949396384 a001 121393/87403803*20633239^(4/7) 2100951949396384 a001 233/271444*20633239^(3/5) 2100951949396385 a001 121393/33385282*141422324^(6/13) 2100951949396385 a001 121393/33385282*2537720636^(2/5) 2100951949396385 a001 121393/33385282*45537549124^(6/17) 2100951949396385 a001 121393/33385282*14662949395604^(2/7) 2100951949396385 a001 121393/33385282*(1/2+1/2*5^(1/2))^18 2100951949396385 a001 121393/33385282*192900153618^(1/3) 2100951949396385 a001 701408754/33385283 2100951949396385 a004 Fibonacci(36)/Lucas(26)/(1/2+sqrt(5)/2)^2 2100951949396385 a001 121393/33385282*10749957122^(3/8) 2100951949396385 a001 121393/33385282*4106118243^(9/23) 2100951949396385 a001 121393/33385282*1568397607^(9/22) 2100951949396385 a001 121393/33385282*599074578^(3/7) 2100951949396385 a001 121393/33385282*228826127^(9/20) 2100951949396385 a001 121393/33385282*87403803^(9/19) 2100951949396386 a001 121393/33385282*33385282^(1/2) 2100951949396386 a004 Fibonacci(26)*Lucas(37)/(1/2+sqrt(5)/2)^55 2100951949396386 a001 121393/87403803*2537720636^(4/9) 2100951949396386 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^20/Lucas(38) 2100951949396386 a001 121393/87403803*23725150497407^(5/16) 2100951949396386 a001 121393/87403803*505019158607^(5/14) 2100951949396386 a001 121393/87403803*73681302247^(5/13) 2100951949396386 a004 Fibonacci(38)/Lucas(26)/(1/2+sqrt(5)/2)^4 2100951949396386 a001 121393/87403803*28143753123^(2/5) 2100951949396386 a001 121393/87403803*10749957122^(5/12) 2100951949396386 a001 121393/87403803*4106118243^(10/23) 2100951949396386 a001 121393/87403803*1568397607^(5/11) 2100951949396386 a001 121393/87403803*599074578^(10/21) 2100951949396386 a001 121393/87403803*228826127^(1/2) 2100951949396386 a001 121393/87403803*87403803^(10/19) 2100951949396387 a004 Fibonacci(26)*Lucas(39)/(1/2+sqrt(5)/2)^57 2100951949396387 a001 121393/192900153618*141422324^(12/13) 2100951949396387 a001 121393/45537549124*141422324^(11/13) 2100951949396387 a001 121393/10749957122*141422324^(10/13) 2100951949396387 a001 121393/2537720636*141422324^(9/13) 2100951949396387 a001 121393/1568397607*141422324^(2/3) 2100951949396387 a001 121393/599074578*141422324^(8/13) 2100951949396387 a001 121393/228826127*312119004989^(2/5) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^22/Lucas(40) 2100951949396387 a004 Fibonacci(40)/Lucas(26)/(1/2+sqrt(5)/2)^6 2100951949396387 a001 121393/228826127*10749957122^(11/24) 2100951949396387 a001 121393/228826127*4106118243^(11/23) 2100951949396387 a001 121393/228826127*1568397607^(1/2) 2100951949396387 a001 121393/228826127*599074578^(11/21) 2100951949396387 a001 121393/228826127*228826127^(11/20) 2100951949396387 a004 Fibonacci(26)*Lucas(41)/(1/2+sqrt(5)/2)^59 2100951949396387 a001 121393/599074578*2537720636^(8/15) 2100951949396387 a001 121393/599074578*45537549124^(8/17) 2100951949396387 a001 121393/599074578*14662949395604^(8/21) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^24/Lucas(42) 2100951949396387 a001 121393/599074578*192900153618^(4/9) 2100951949396387 a001 121393/599074578*73681302247^(6/13) 2100951949396387 a004 Fibonacci(42)/Lucas(26)/(1/2+sqrt(5)/2)^8 2100951949396387 a001 121393/599074578*10749957122^(1/2) 2100951949396387 a001 121393/599074578*4106118243^(12/23) 2100951949396387 a001 121393/599074578*1568397607^(6/11) 2100951949396387 a001 121393/599074578*599074578^(4/7) 2100951949396387 a004 Fibonacci(26)*Lucas(43)/(1/2+sqrt(5)/2)^61 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^26/Lucas(44) 2100951949396387 a001 85146110325069/4052739537881 2100951949396387 a001 121393/1568397607*73681302247^(1/2) 2100951949396387 a004 Fibonacci(44)/Lucas(26)/(1/2+sqrt(5)/2)^10 2100951949396387 a001 121393/1568397607*10749957122^(13/24) 2100951949396387 a001 121393/1568397607*4106118243^(13/23) 2100951949396387 a001 121393/1568397607*1568397607^(13/22) 2100951949396387 a004 Fibonacci(26)*Lucas(45)/(1/2+sqrt(5)/2)^63 2100951949396387 a001 121393/3461452808002*2537720636^(14/15) 2100951949396387 a001 121393/1322157322203*2537720636^(8/9) 2100951949396387 a001 121393/817138163596*2537720636^(13/15) 2100951949396387 a001 121393/192900153618*2537720636^(4/5) 2100951949396387 a001 121393/119218851371*2537720636^(7/9) 2100951949396387 a001 121393/45537549124*2537720636^(11/15) 2100951949396387 a001 121393/10749957122*2537720636^(2/3) 2100951949396387 a001 121393/4106118243*17393796001^(4/7) 2100951949396387 a001 121393/4106118243*14662949395604^(4/9) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^28/Lucas(46) 2100951949396387 a001 121393/4106118243*505019158607^(1/2) 2100951949396387 a001 121393/4106118243*73681302247^(7/13) 2100951949396387 a004 Fibonacci(46)/Lucas(26)/(1/2+sqrt(5)/2)^12 2100951949396387 a001 121393/4106118243*10749957122^(7/12) 2100951949396387 a001 121393/4106118243*4106118243^(14/23) 2100951949396387 a004 Fibonacci(26)*Lucas(47)/(1/2+sqrt(5)/2)^65 2100951949396387 a001 121393/10749957122*45537549124^(10/17) 2100951949396387 a001 121393/10749957122*312119004989^(6/11) 2100951949396387 a001 121393/10749957122*14662949395604^(10/21) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^30/Lucas(48) 2100951949396387 a001 121393/10749957122*192900153618^(5/9) 2100951949396387 a004 Fibonacci(48)/Lucas(26)/(1/2+sqrt(5)/2)^14 2100951949396387 a001 121393/10749957122*28143753123^(3/5) 2100951949396387 a004 Fibonacci(26)*Lucas(49)/(1/2+sqrt(5)/2)^67 2100951949396387 a001 121393/10749957122*10749957122^(5/8) 2100951949396387 a001 121393/3461452808002*17393796001^(6/7) 2100951949396387 a001 121393/119218851371*17393796001^(5/7) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^32/Lucas(50) 2100951949396387 a001 121393/28143753123*23725150497407^(1/2) 2100951949396387 a001 121393/28143753123*505019158607^(4/7) 2100951949396387 a001 121393/28143753123*73681302247^(8/13) 2100951949396387 a004 Fibonacci(50)/Lucas(26)/(1/2+sqrt(5)/2)^16 2100951949396387 a001 121393/73681302247*45537549124^(2/3) 2100951949396387 a004 Fibonacci(26)*Lucas(51)/(1/2+sqrt(5)/2)^69 2100951949396387 a001 121393/14662949395604*45537549124^(15/17) 2100951949396387 a001 121393/3461452808002*45537549124^(14/17) 2100951949396387 a001 121393/192900153618*45537549124^(12/17) 2100951949396387 a001 121393/817138163596*45537549124^(13/17) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^34/Lucas(52) 2100951949396387 a004 Fibonacci(26)*Lucas(53)/(1/2+sqrt(5)/2)^71 2100951949396387 a001 121393/192900153618*14662949395604^(4/7) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^36/Lucas(54) 2100951949396387 a004 Fibonacci(26)*Lucas(55)/(1/2+sqrt(5)/2)^73 2100951949396387 a001 121393/1322157322203*312119004989^(8/11) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^38/Lucas(56) 2100951949396387 a004 Fibonacci(26)*Lucas(57)/(1/2+sqrt(5)/2)^75 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^40/Lucas(58) 2100951949396387 a001 121393/1322157322203*23725150497407^(5/8) 2100951949396387 a004 Fibonacci(26)*Lucas(59)/(1/2+sqrt(5)/2)^77 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^42/Lucas(60) 2100951949396387 a004 Fibonacci(26)*Lucas(61)/(1/2+sqrt(5)/2)^79 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^44/Lucas(62) 2100951949396387 a004 Fibonacci(26)*Lucas(63)/(1/2+sqrt(5)/2)^81 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^46/Lucas(64) 2100951949396387 a004 Fibonacci(26)*Lucas(65)/(1/2+sqrt(5)/2)^83 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^48/Lucas(66) 2100951949396387 a004 Fibonacci(26)*Lucas(67)/(1/2+sqrt(5)/2)^85 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^50/Lucas(68) 2100951949396387 a004 Fibonacci(26)*Lucas(69)/(1/2+sqrt(5)/2)^87 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^52/Lucas(70) 2100951949396387 a004 Fibonacci(26)*Lucas(71)/(1/2+sqrt(5)/2)^89 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^54/Lucas(72) 2100951949396387 a004 Fibonacci(26)*Lucas(73)/(1/2+sqrt(5)/2)^91 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^56/Lucas(74) 2100951949396387 a004 Fibonacci(26)*Lucas(75)/(1/2+sqrt(5)/2)^93 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^58/Lucas(76) 2100951949396387 a004 Fibonacci(26)*Lucas(77)/(1/2+sqrt(5)/2)^95 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^60/Lucas(78) 2100951949396387 a004 Fibonacci(26)*Lucas(79)/(1/2+sqrt(5)/2)^97 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^62/Lucas(80) 2100951949396387 a004 Fibonacci(26)*Lucas(81)/(1/2+sqrt(5)/2)^99 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^64/Lucas(82) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^66/Lucas(84) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^68/Lucas(86) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^70/Lucas(88) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^72/Lucas(90) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^74/Lucas(92) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^76/Lucas(94) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^78/Lucas(96) 2100951949396387 a004 Fibonacci(13)*Lucas(13)/(1/2+sqrt(5)/2)^18 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^80/Lucas(98) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^81/Lucas(99) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^82/Lucas(100) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^79/Lucas(97) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^77/Lucas(95) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^75/Lucas(93) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^73/Lucas(91) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^71/Lucas(89) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^69/Lucas(87) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^67/Lucas(85) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^65/Lucas(83) 2100951949396387 a004 Fibonacci(26)*Lucas(82)/(1/2+sqrt(5)/2)^100 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^63/Lucas(81) 2100951949396387 a004 Fibonacci(26)*Lucas(80)/(1/2+sqrt(5)/2)^98 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^61/Lucas(79) 2100951949396387 a004 Fibonacci(26)*Lucas(78)/(1/2+sqrt(5)/2)^96 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^59/Lucas(77) 2100951949396387 a004 Fibonacci(26)*Lucas(76)/(1/2+sqrt(5)/2)^94 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^57/Lucas(75) 2100951949396387 a004 Fibonacci(26)*Lucas(74)/(1/2+sqrt(5)/2)^92 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^55/Lucas(73) 2100951949396387 a004 Fibonacci(26)*Lucas(72)/(1/2+sqrt(5)/2)^90 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^53/Lucas(71) 2100951949396387 a004 Fibonacci(26)*Lucas(70)/(1/2+sqrt(5)/2)^88 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^51/Lucas(69) 2100951949396387 a004 Fibonacci(26)*Lucas(68)/(1/2+sqrt(5)/2)^86 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^49/Lucas(67) 2100951949396387 a004 Fibonacci(26)*Lucas(66)/(1/2+sqrt(5)/2)^84 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^47/Lucas(65) 2100951949396387 a001 121393/14662949395604*14662949395604^(5/7) 2100951949396387 a004 Fibonacci(26)*Lucas(64)/(1/2+sqrt(5)/2)^82 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^45/Lucas(63) 2100951949396387 a004 Fibonacci(26)*Lucas(62)/(1/2+sqrt(5)/2)^80 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^43/Lucas(61) 2100951949396387 a004 Fibonacci(26)*Lucas(60)/(1/2+sqrt(5)/2)^78 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^41/Lucas(59) 2100951949396387 a004 Fibonacci(26)*Lucas(58)/(1/2+sqrt(5)/2)^76 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^39/Lucas(57) 2100951949396387 a004 Fibonacci(26)*Lucas(56)/(1/2+sqrt(5)/2)^74 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^37/Lucas(55) 2100951949396387 a001 121393/817138163596*192900153618^(13/18) 2100951949396387 a001 121393/14662949395604*192900153618^(5/6) 2100951949396387 a004 Fibonacci(26)*Lucas(54)/(1/2+sqrt(5)/2)^72 2100951949396387 a001 121393/119218851371*312119004989^(7/11) 2100951949396387 a001 121393/119218851371*14662949395604^(5/9) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^35/Lucas(53) 2100951949396387 a001 121393/119218851371*505019158607^(5/8) 2100951949396387 a001 121393/192900153618*73681302247^(9/13) 2100951949396387 a001 121393/817138163596*73681302247^(3/4) 2100951949396387 a001 121393/1322157322203*73681302247^(10/13) 2100951949396387 a001 121393/9062201101803*73681302247^(11/13) 2100951949396387 a004 Fibonacci(54)/Lucas(26)/(1/2+sqrt(5)/2)^20 2100951949396387 a001 121393/45537549124*45537549124^(11/17) 2100951949396387 a004 Fibonacci(56)/Lucas(26)/(1/2+sqrt(5)/2)^22 2100951949396387 a004 Fibonacci(58)/Lucas(26)/(1/2+sqrt(5)/2)^24 2100951949396387 a004 Fibonacci(60)/Lucas(26)/(1/2+sqrt(5)/2)^26 2100951949396387 a004 Fibonacci(62)/Lucas(26)/(1/2+sqrt(5)/2)^28 2100951949396387 a004 Fibonacci(64)/Lucas(26)/(1/2+sqrt(5)/2)^30 2100951949396387 a004 Fibonacci(66)/Lucas(26)/(1/2+sqrt(5)/2)^32 2100951949396387 a004 Fibonacci(68)/Lucas(26)/(1/2+sqrt(5)/2)^34 2100951949396387 a004 Fibonacci(70)/Lucas(26)/(1/2+sqrt(5)/2)^36 2100951949396387 a004 Fibonacci(72)/Lucas(26)/(1/2+sqrt(5)/2)^38 2100951949396387 a004 Fibonacci(74)/Lucas(26)/(1/2+sqrt(5)/2)^40 2100951949396387 a004 Fibonacci(76)/Lucas(26)/(1/2+sqrt(5)/2)^42 2100951949396387 a004 Fibonacci(78)/Lucas(26)/(1/2+sqrt(5)/2)^44 2100951949396387 a004 Fibonacci(80)/Lucas(26)/(1/2+sqrt(5)/2)^46 2100951949396387 a004 Fibonacci(82)/Lucas(26)/(1/2+sqrt(5)/2)^48 2100951949396387 a004 Fibonacci(84)/Lucas(26)/(1/2+sqrt(5)/2)^50 2100951949396387 a004 Fibonacci(86)/Lucas(26)/(1/2+sqrt(5)/2)^52 2100951949396387 a004 Fibonacci(88)/Lucas(26)/(1/2+sqrt(5)/2)^54 2100951949396387 a004 Fibonacci(90)/Lucas(26)/(1/2+sqrt(5)/2)^56 2100951949396387 a004 Fibonacci(92)/Lucas(26)/(1/2+sqrt(5)/2)^58 2100951949396387 a004 Fibonacci(94)/Lucas(26)/(1/2+sqrt(5)/2)^60 2100951949396387 a004 Fibonacci(96)/Lucas(26)/(1/2+sqrt(5)/2)^62 2100951949396387 a004 Fibonacci(100)/Lucas(26)/(1/2+sqrt(5)/2)^66 2100951949396387 a004 Fibonacci(26)*Lucas(52)/(1/2+sqrt(5)/2)^70 2100951949396387 a004 Fibonacci(98)/Lucas(26)/(1/2+sqrt(5)/2)^64 2100951949396387 a004 Fibonacci(99)/Lucas(26)/(1/2+sqrt(5)/2)^65 2100951949396387 a004 Fibonacci(97)/Lucas(26)/(1/2+sqrt(5)/2)^63 2100951949396387 a004 Fibonacci(95)/Lucas(26)/(1/2+sqrt(5)/2)^61 2100951949396387 a004 Fibonacci(93)/Lucas(26)/(1/2+sqrt(5)/2)^59 2100951949396387 a004 Fibonacci(91)/Lucas(26)/(1/2+sqrt(5)/2)^57 2100951949396387 a004 Fibonacci(89)/Lucas(26)/(1/2+sqrt(5)/2)^55 2100951949396387 a004 Fibonacci(87)/Lucas(26)/(1/2+sqrt(5)/2)^53 2100951949396387 a004 Fibonacci(85)/Lucas(26)/(1/2+sqrt(5)/2)^51 2100951949396387 a004 Fibonacci(83)/Lucas(26)/(1/2+sqrt(5)/2)^49 2100951949396387 a004 Fibonacci(81)/Lucas(26)/(1/2+sqrt(5)/2)^47 2100951949396387 a004 Fibonacci(79)/Lucas(26)/(1/2+sqrt(5)/2)^45 2100951949396387 a004 Fibonacci(77)/Lucas(26)/(1/2+sqrt(5)/2)^43 2100951949396387 a004 Fibonacci(75)/Lucas(26)/(1/2+sqrt(5)/2)^41 2100951949396387 a004 Fibonacci(73)/Lucas(26)/(1/2+sqrt(5)/2)^39 2100951949396387 a004 Fibonacci(71)/Lucas(26)/(1/2+sqrt(5)/2)^37 2100951949396387 a004 Fibonacci(69)/Lucas(26)/(1/2+sqrt(5)/2)^35 2100951949396387 a004 Fibonacci(67)/Lucas(26)/(1/2+sqrt(5)/2)^33 2100951949396387 a004 Fibonacci(65)/Lucas(26)/(1/2+sqrt(5)/2)^31 2100951949396387 a004 Fibonacci(63)/Lucas(26)/(1/2+sqrt(5)/2)^29 2100951949396387 a004 Fibonacci(61)/Lucas(26)/(1/2+sqrt(5)/2)^27 2100951949396387 a004 Fibonacci(59)/Lucas(26)/(1/2+sqrt(5)/2)^25 2100951949396387 a004 Fibonacci(57)/Lucas(26)/(1/2+sqrt(5)/2)^23 2100951949396387 a004 Fibonacci(55)/Lucas(26)/(1/2+sqrt(5)/2)^21 2100951949396387 a004 Fibonacci(53)/Lucas(26)/(1/2+sqrt(5)/2)^19 2100951949396387 a001 121393/45537549124*312119004989^(3/5) 2100951949396387 a001 121393/45537549124*14662949395604^(11/21) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^33/Lucas(51) 2100951949396387 a001 121393/45537549124*192900153618^(11/18) 2100951949396387 a004 Fibonacci(51)/Lucas(26)/(1/2+sqrt(5)/2)^17 2100951949396387 a001 121393/119218851371*28143753123^(7/10) 2100951949396387 a001 121393/1322157322203*28143753123^(4/5) 2100951949396387 a001 121393/14662949395604*28143753123^(9/10) 2100951949396387 a004 Fibonacci(26)*Lucas(50)/(1/2+sqrt(5)/2)^68 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^31/Lucas(49) 2100951949396387 a001 121393/17393796001*9062201101803^(1/2) 2100951949396387 a004 Fibonacci(49)/Lucas(26)/(1/2+sqrt(5)/2)^15 2100951949396387 a001 121393/28143753123*10749957122^(2/3) 2100951949396387 a001 121393/73681302247*10749957122^(17/24) 2100951949396387 a001 121393/45537549124*10749957122^(11/16) 2100951949396387 a001 121393/192900153618*10749957122^(3/4) 2100951949396387 a001 121393/505019158607*10749957122^(19/24) 2100951949396387 a001 121393/817138163596*10749957122^(13/16) 2100951949396387 a001 121393/1322157322203*10749957122^(5/6) 2100951949396387 a001 121393/3461452808002*10749957122^(7/8) 2100951949396387 a001 121393/9062201101803*10749957122^(11/12) 2100951949396387 a001 121393/14662949395604*10749957122^(15/16) 2100951949396387 a001 121393/23725150497407*10749957122^(23/24) 2100951949396387 a004 Fibonacci(26)*Lucas(48)/(1/2+sqrt(5)/2)^66 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^29/Lucas(47) 2100951949396387 a001 121393/6643838879*1322157322203^(1/2) 2100951949396387 a004 Fibonacci(47)/Lucas(26)/(1/2+sqrt(5)/2)^13 2100951949396387 a001 121393/10749957122*4106118243^(15/23) 2100951949396387 a001 121393/28143753123*4106118243^(16/23) 2100951949396387 a001 121393/73681302247*4106118243^(17/23) 2100951949396387 a001 121393/192900153618*4106118243^(18/23) 2100951949396387 a001 121393/505019158607*4106118243^(19/23) 2100951949396387 a001 121393/1322157322203*4106118243^(20/23) 2100951949396387 a001 121393/3461452808002*4106118243^(21/23) 2100951949396387 a001 121393/9062201101803*4106118243^(22/23) 2100951949396387 a004 Fibonacci(26)*Lucas(46)/(1/2+sqrt(5)/2)^64 2100951949396387 a001 121393/2537720636*2537720636^(3/5) 2100951949396387 a001 121393/2537720636*45537549124^(9/17) 2100951949396387 a001 121393/2537720636*14662949395604^(3/7) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^27/Lucas(45) 2100951949396387 a001 121393/2537720636*192900153618^(1/2) 2100951949396387 a004 Fibonacci(45)/Lucas(26)/(1/2+sqrt(5)/2)^11 2100951949396387 a001 121393/2537720636*10749957122^(9/16) 2100951949396387 a001 121393/4106118243*1568397607^(7/11) 2100951949396387 a001 121393/10749957122*1568397607^(15/22) 2100951949396387 a001 121393/28143753123*1568397607^(8/11) 2100951949396387 a001 121393/45537549124*1568397607^(3/4) 2100951949396387 a001 121393/73681302247*1568397607^(17/22) 2100951949396387 a001 121393/192900153618*1568397607^(9/11) 2100951949396387 a001 121393/505019158607*1568397607^(19/22) 2100951949396387 a001 121393/1322157322203*1568397607^(10/11) 2100951949396387 a001 121393/3461452808002*1568397607^(21/22) 2100951949396387 a004 Fibonacci(26)*Lucas(44)/(1/2+sqrt(5)/2)^62 2100951949396387 a001 121393/969323029*2537720636^(5/9) 2100951949396387 a001 121393/969323029*312119004989^(5/11) 2100951949396387 a001 52623190190741/2504730781961 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^25/Lucas(43) 2100951949396387 a001 121393/969323029*3461452808002^(5/12) 2100951949396387 a004 Fibonacci(43)/Lucas(26)/(1/2+sqrt(5)/2)^9 2100951949396387 a001 121393/969323029*28143753123^(1/2) 2100951949396387 a001 121393/1568397607*599074578^(13/21) 2100951949396387 a001 121393/4106118243*599074578^(2/3) 2100951949396387 a001 121393/2537720636*599074578^(9/14) 2100951949396387 a001 121393/10749957122*599074578^(5/7) 2100951949396387 a001 121393/28143753123*599074578^(16/21) 2100951949396387 a001 121393/45537549124*599074578^(11/14) 2100951949396387 a001 121393/73681302247*599074578^(17/21) 2100951949396387 a001 121393/119218851371*599074578^(5/6) 2100951949396387 a001 121393/192900153618*599074578^(6/7) 2100951949396387 a001 121393/505019158607*599074578^(19/21) 2100951949396387 a001 121393/817138163596*599074578^(13/14) 2100951949396387 a001 121393/1322157322203*599074578^(20/21) 2100951949396387 a004 Fibonacci(26)*Lucas(42)/(1/2+sqrt(5)/2)^60 2100951949396387 a001 20100270056413/956722026041 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^23/Lucas(41) 2100951949396387 a004 Fibonacci(41)/Lucas(26)/(1/2+sqrt(5)/2)^7 2100951949396387 a001 121393/370248451*4106118243^(1/2) 2100951949396387 a001 121393/599074578*228826127^(3/5) 2100951949396387 a001 121393/1568397607*228826127^(13/20) 2100951949396387 a001 121393/969323029*228826127^(5/8) 2100951949396387 a001 121393/4106118243*228826127^(7/10) 2100951949396387 a001 121393/10749957122*228826127^(3/4) 2100951949396387 a001 121393/28143753123*228826127^(4/5) 2100951949396387 a001 121393/73681302247*228826127^(17/20) 2100951949396387 a001 121393/119218851371*228826127^(7/8) 2100951949396387 a001 121393/192900153618*228826127^(9/10) 2100951949396387 a001 121393/505019158607*228826127^(19/20) 2100951949396387 a004 Fibonacci(26)*Lucas(40)/(1/2+sqrt(5)/2)^58 2100951949396387 a001 233/271444*141422324^(7/13) 2100951949396387 a001 233/271444*2537720636^(7/15) 2100951949396387 a001 233/271444*17393796001^(3/7) 2100951949396387 a001 233/271444*45537549124^(7/17) 2100951949396387 a001 3838809989249/182717648081 2100951949396387 a001 233/271444*14662949395604^(1/3) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^21/Lucas(39) 2100951949396387 a001 233/271444*192900153618^(7/18) 2100951949396387 a004 Fibonacci(39)/Lucas(26)/(1/2+sqrt(5)/2)^5 2100951949396387 a001 233/271444*10749957122^(7/16) 2100951949396387 a001 233/271444*599074578^(1/2) 2100951949396387 a001 121393/228826127*87403803^(11/19) 2100951949396387 a001 121393/599074578*87403803^(12/19) 2100951949396387 a001 121393/1568397607*87403803^(13/19) 2100951949396387 a001 121393/4106118243*87403803^(14/19) 2100951949396387 a001 121393/10749957122*87403803^(15/19) 2100951949396387 a001 121393/28143753123*87403803^(16/19) 2100951949396387 a001 121393/73681302247*87403803^(17/19) 2100951949396387 a001 121393/192900153618*87403803^(18/19) 2100951949396387 a004 Fibonacci(26)*Lucas(38)/(1/2+sqrt(5)/2)^56 2100951949396387 a001 2932589879081/139583862445 2100951949396387 a001 121393/54018521*817138163596^(1/3) 2100951949396387 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^19/Lucas(37) 2100951949396387 a004 Fibonacci(37)/Lucas(26)/(1/2+sqrt(5)/2)^3 2100951949396387 a001 121393/87403803*33385282^(5/9) 2100951949396387 a001 121393/54018521*87403803^(1/2) 2100951949396388 a001 121393/228826127*33385282^(11/18) 2100951949396388 a001 233/271444*33385282^(7/12) 2100951949396388 a001 121393/599074578*33385282^(2/3) 2100951949396388 a001 121393/1568397607*33385282^(13/18) 2100951949396388 a001 121393/2537720636*33385282^(3/4) 2100951949396388 a001 121393/4106118243*33385282^(7/9) 2100951949396388 a001 121393/10749957122*33385282^(5/6) 2100951949396388 a001 121393/28143753123*33385282^(8/9) 2100951949396388 a001 121393/45537549124*33385282^(11/12) 2100951949396388 a001 121393/73681302247*33385282^(17/18) 2100951949396388 a004 Fibonacci(26)*Lucas(36)/(1/2+sqrt(5)/2)^54 2100951949396392 a001 121393/20633239*45537549124^(1/3) 2100951949396392 a001 1120149658745/53316291173 2100951949396392 a004 Fibonacci(26)*(1/2+sqrt(5)/2)^17/Lucas(35) 2100951949396392 a004 Fibonacci(35)/Lucas(26)/(1/2+sqrt(5)/2) 2100951949396392 a001 121393/33385282*12752043^(9/17) 2100951949396394 a001 121393/87403803*12752043^(10/17) 2100951949396395 a001 121393/228826127*12752043^(11/17) 2100951949396396 a001 121393/599074578*12752043^(12/17) 2100951949396396 a001 121393/1568397607*12752043^(13/17) 2100951949396397 a001 121393/4106118243*12752043^(14/17) 2100951949396398 a001 121393/20633239*12752043^(1/2) 2100951949396398 a001 121393/10749957122*12752043^(15/17) 2100951949396399 a001 121393/28143753123*12752043^(16/17) 2100951949396400 a004 Fibonacci(26)*Lucas(34)/(1/2+sqrt(5)/2)^52 2100951949396405 a001 121393/7881196*7881196^(5/11) 2100951949396418 a001 121393/12752043*4870847^(1/2) 2100951949396418 a001 121393/7881196*20633239^(3/7) 2100951949396420 a001 121393/7881196*141422324^(5/13) 2100951949396420 a001 121393/7881196*2537720636^(1/3) 2100951949396420 a001 213929548577/10182505537 2100951949396420 a001 121393/7881196*45537549124^(5/17) 2100951949396420 a001 121393/7881196*312119004989^(3/11) 2100951949396420 a001 121393/7881196*14662949395604^(5/21) 2100951949396420 a001 121393/7881196*(1/2+1/2*5^(1/2))^15 2100951949396420 a001 121393/7881196*192900153618^(5/18) 2100951949396420 a001 1762289/271443+1762289/271443*5^(1/2) 2100951949396420 a001 121393/7881196*28143753123^(3/10) 2100951949396420 a001 121393/7881196*10749957122^(5/16) 2100951949396420 a001 121393/7881196*599074578^(5/14) 2100951949396420 a001 121393/7881196*228826127^(3/8) 2100951949396421 a001 121393/7881196*33385282^(5/12) 2100951949396435 a001 121393/33385282*4870847^(9/16) 2100951949396442 a001 121393/87403803*4870847^(5/8) 2100951949396447 a001 121393/228826127*4870847^(11/16) 2100951949396453 a001 121393/599074578*4870847^(3/4) 2100951949396459 a001 121393/1568397607*4870847^(13/16) 2100951949396464 a001 121393/4106118243*4870847^(7/8) 2100951949396470 a001 121393/10749957122*4870847^(15/16) 2100951949396475 a004 Fibonacci(26)*Lucas(32)/(1/2+sqrt(5)/2)^50 2100951949396581 a001 121393/4870847*1860498^(7/15) 2100951949396595 a001 726103/90481*710647^(1/14) 2100951949396615 a001 1346269/271443*7881196^(1/11) 2100951949396618 a001 121393/3010349*141422324^(1/3) 2100951949396618 a001 1346269/271443*141422324^(1/13) 2100951949396618 a001 1346269/271443*2537720636^(1/15) 2100951949396618 a001 163427632717/7778742049 2100951949396618 a001 121393/3010349*(1/2+1/2*5^(1/2))^13 2100951949396618 a001 121393/3010349*73681302247^(1/4) 2100951949396618 a001 1346269/271443*45537549124^(1/17) 2100951949396618 a001 1346269/271443*14662949395604^(1/21) 2100951949396618 a001 1346269/271443*(1/2+1/2*5^(1/2))^3 2100951949396618 a001 1346269/271443*10749957122^(1/16) 2100951949396618 a001 1346269/271443*599074578^(1/14) 2100951949396619 a001 1346269/271443*33385282^(1/12) 2100951949396679 a001 1346269/271443*1860498^(1/10) 2100951949396697 a001 121393/12752043*1860498^(8/15) 2100951949396724 a001 121393/7881196*1860498^(1/2) 2100951949396749 a001 121393/33385282*1860498^(3/5) 2100951949396791 a001 121393/87403803*1860498^(2/3) 2100951949396812 a001 233/271444*1860498^(7/10) 2100951949396832 a001 121393/228826127*1860498^(11/15) 2100951949396861 a001 514229/3010349*167761^(2/5) 2100951949396872 a001 121393/599074578*1860498^(4/5) 2100951949396892 a001 121393/969323029*1860498^(5/6) 2100951949396913 a001 121393/1568397607*1860498^(13/15) 2100951949396933 a001 121393/2537720636*1860498^(9/10) 2100951949396953 a001 121393/4106118243*1860498^(14/15) 2100951949396994 a004 Fibonacci(26)*Lucas(30)/(1/2+sqrt(5)/2)^48 2100951949397563 a001 121393/1860498*710647^(3/7) 2100951949397964 a001 121393/1149851*7881196^(1/3) 2100951949397975 a001 514229/271443*20633239^(1/7) 2100951949397976 a001 62423800997/2971215073 2100951949397976 a001 514229/271443*2537720636^(1/9) 2100951949397976 a001 121393/1149851*312119004989^(1/5) 2100951949397976 a001 121393/1149851*(1/2+1/2*5^(1/2))^11 2100951949397976 a001 514229/271443*312119004989^(1/11) 2100951949397976 a001 514229/271443*(1/2+1/2*5^(1/2))^5 2100951949397976 a001 514229/271443*28143753123^(1/10) 2100951949397976 a001 121393/1149851*1568397607^(1/4) 2100951949397976 a001 514229/271443*228826127^(1/8) 2100951949398077 a001 514229/271443*1860498^(1/6) 2100951949398378 a001 121393/4870847*710647^(1/2) 2100951949398491 a001 726103/90481*271443^(1/13) 2100951949398499 a001 9227465/710647*64079^(1/23) 2100951949398751 a001 121393/12752043*710647^(4/7) 2100951949398807 a001 105937/90481*271443^(3/13) 2100951949399059 a001 121393/33385282*710647^(9/14) 2100951949399358 a001 121393/87403803*710647^(5/7) 2100951949399507 a001 233/271444*710647^(3/4) 2100951949399655 a001 121393/228826127*710647^(11/14) 2100951949399952 a001 121393/599074578*710647^(6/7) 2100951949400166 a001 832040/271443*271443^(2/13) 2100951949400250 a001 121393/1568397607*710647^(13/14) 2100951949400472 a001 46368/54018521*103682^(7/8) 2100951949400547 a004 Fibonacci(26)*Lucas(28)/(1/2+sqrt(5)/2)^46 2100951949402048 a001 24157817/1860498*64079^(1/23) 2100951949402566 a001 63245986/4870847*64079^(1/23) 2100951949402642 a001 165580141/12752043*64079^(1/23) 2100951949402653 a001 433494437/33385282*64079^(1/23) 2100951949402654 a001 1134903170/87403803*64079^(1/23) 2100951949402654 a001 2971215073/228826127*64079^(1/23) 2100951949402654 a001 7778742049/599074578*64079^(1/23) 2100951949402654 a001 20365011074/1568397607*64079^(1/23) 2100951949402654 a001 53316291173/4106118243*64079^(1/23) 2100951949402654 a001 139583862445/10749957122*64079^(1/23) 2100951949402654 a001 365435296162/28143753123*64079^(1/23) 2100951949402654 a001 956722026041/73681302247*64079^(1/23) 2100951949402654 a001 2504730781961/192900153618*64079^(1/23) 2100951949402654 a001 10610209857723/817138163596*64079^(1/23) 2100951949402654 a001 4052739537881/312119004989*64079^(1/23) 2100951949402654 a001 1548008755920/119218851371*64079^(1/23) 2100951949402654 a001 591286729879/45537549124*64079^(1/23) 2100951949402654 a001 7787980473/599786069*64079^(1/23) 2100951949402654 a001 86267571272/6643838879*64079^(1/23) 2100951949402654 a001 32951280099/2537720636*64079^(1/23) 2100951949402654 a001 12586269025/969323029*64079^(1/23) 2100951949402654 a001 4807526976/370248451*64079^(1/23) 2100951949402655 a001 1836311903/141422324*64079^(1/23) 2100951949402655 a001 701408733/54018521*64079^(1/23) 2100951949402659 a001 9238424/711491*64079^(1/23) 2100951949402688 a001 102334155/7881196*64079^(1/23) 2100951949402886 a001 39088169/3010349*64079^(1/23) 2100951949403193 a001 121393/710647*271443^(5/13) 2100951949403648 a001 121393/439204*439204^(1/3) 2100951949404242 a001 14930352/1149851*64079^(1/23) 2100951949404564 a001 3524578/271443*103682^(1/24) 2100951949406042 a001 1346269/710647*167761^(1/5) 2100951949407269 a001 121393/439204*7881196^(3/11) 2100951949407277 a001 196418/271443*20633239^(1/5) 2100951949407278 a001 121393/439204*141422324^(3/13) 2100951949407278 a001 701287361/33379505 2100951949407278 a001 121393/439204*2537720636^(1/5) 2100951949407278 a001 196418/271443*17393796001^(1/7) 2100951949407278 a001 121393/439204*45537549124^(3/17) 2100951949407278 a001 121393/439204*817138163596^(3/19) 2100951949407278 a001 121393/439204*14662949395604^(1/7) 2100951949407278 a001 121393/439204*(1/2+1/2*5^(1/2))^9 2100951949407278 a001 196418/271443*14662949395604^(1/9) 2100951949407278 a001 196418/271443*(1/2+1/2*5^(1/2))^7 2100951949407278 a001 121393/439204*10749957122^(3/16) 2100951949407278 a001 196418/271443*599074578^(1/6) 2100951949407278 a001 121393/439204*599074578^(3/14) 2100951949407278 a001 121393/439204*33385282^(1/4) 2100951949407460 a001 121393/439204*1860498^(3/10) 2100951949407521 a001 196418/1149851*167761^(2/5) 2100951949408318 a001 196418/271443*710647^(1/4) 2100951949408614 a001 15456/29134601*103682^(11/12) 2100951949408940 a001 121393/1860498*271443^(6/13) 2100951949409397 a001 1762289/930249*167761^(1/5) 2100951949409849 a004 Fibonacci(28)*Lucas(27)/(1/2+sqrt(5)/2)^47 2100951949409887 a001 9227465/4870847*167761^(1/5) 2100951949409958 a001 24157817/12752043*167761^(1/5) 2100951949409969 a001 31622993/16692641*167761^(1/5) 2100951949409970 a001 165580141/87403803*167761^(1/5) 2100951949409970 a001 433494437/228826127*167761^(1/5) 2100951949409971 a001 567451585/299537289*167761^(1/5) 2100951949409971 a001 2971215073/1568397607*167761^(1/5) 2100951949409971 a001 7778742049/4106118243*167761^(1/5) 2100951949409971 a001 10182505537/5374978561*167761^(1/5) 2100951949409971 a001 53316291173/28143753123*167761^(1/5) 2100951949409971 a001 139583862445/73681302247*167761^(1/5) 2100951949409971 a001 182717648081/96450076809*167761^(1/5) 2100951949409971 a001 956722026041/505019158607*167761^(1/5) 2100951949409971 a001 10610209857723/5600748293801*167761^(1/5) 2100951949409971 a001 591286729879/312119004989*167761^(1/5) 2100951949409971 a001 225851433717/119218851371*167761^(1/5) 2100951949409971 a001 21566892818/11384387281*167761^(1/5) 2100951949409971 a001 32951280099/17393796001*167761^(1/5) 2100951949409971 a001 12586269025/6643838879*167761^(1/5) 2100951949409971 a001 1201881744/634430159*167761^(1/5) 2100951949409971 a001 1836311903/969323029*167761^(1/5) 2100951949409971 a001 701408733/370248451*167761^(1/5) 2100951949409971 a001 66978574/35355581*167761^(1/5) 2100951949409971 a001 102334155/54018521*167761^(1/5) 2100951949409975 a001 39088169/20633239*167761^(1/5) 2100951949410002 a001 3732588/1970299*167761^(1/5) 2100951949410189 a001 5702887/3010349*167761^(1/5) 2100951949410875 a001 121393/3010349*271443^(1/2) 2100951949411059 a001 317811/1568397607*439204^(8/9) 2100951949411471 a001 2178309/1149851*167761^(1/5) 2100951949411652 a001 121393/4870847*271443^(7/13) 2100951949412155 a001 514229/167761*64079^(4/23) 2100951949412269 a001 317811/370248451*439204^(7/9) 2100951949412585 a001 726103/90481*103682^(1/12) 2100951949413402 a004 Fibonacci(30)*Lucas(27)/(1/2+sqrt(5)/2)^49 2100951949413479 a001 105937/29134601*439204^(2/3) 2100951949413533 a001 5702887/439204*64079^(1/23) 2100951949413718 a001 514229/103682*39603^(3/22) 2100951949413921 a004 Fibonacci(32)*Lucas(27)/(1/2+sqrt(5)/2)^51 2100951949413921 a001 121393/12752043*271443^(8/13) 2100951949413996 a004 Fibonacci(34)*Lucas(27)/(1/2+sqrt(5)/2)^53 2100951949414007 a004 Fibonacci(36)*Lucas(27)/(1/2+sqrt(5)/2)^55 2100951949414009 a004 Fibonacci(38)*Lucas(27)/(1/2+sqrt(5)/2)^57 2100951949414009 a004 Fibonacci(40)*Lucas(27)/(1/2+sqrt(5)/2)^59 2100951949414009 a004 Fibonacci(42)*Lucas(27)/(1/2+sqrt(5)/2)^61 2100951949414009 a004 Fibonacci(44)*Lucas(27)/(1/2+sqrt(5)/2)^63 2100951949414009 a004 Fibonacci(46)*Lucas(27)/(1/2+sqrt(5)/2)^65 2100951949414009 a004 Fibonacci(48)*Lucas(27)/(1/2+sqrt(5)/2)^67 2100951949414009 a004 Fibonacci(50)*Lucas(27)/(1/2+sqrt(5)/2)^69 2100951949414009 a004 Fibonacci(52)*Lucas(27)/(1/2+sqrt(5)/2)^71 2100951949414009 a004 Fibonacci(54)*Lucas(27)/(1/2+sqrt(5)/2)^73 2100951949414009 a004 Fibonacci(56)*Lucas(27)/(1/2+sqrt(5)/2)^75 2100951949414009 a004 Fibonacci(58)*Lucas(27)/(1/2+sqrt(5)/2)^77 2100951949414009 a004 Fibonacci(60)*Lucas(27)/(1/2+sqrt(5)/2)^79 2100951949414009 a004 Fibonacci(62)*Lucas(27)/(1/2+sqrt(5)/2)^81 2100951949414009 a004 Fibonacci(64)*Lucas(27)/(1/2+sqrt(5)/2)^83 2100951949414009 a004 Fibonacci(66)*Lucas(27)/(1/2+sqrt(5)/2)^85 2100951949414009 a004 Fibonacci(68)*Lucas(27)/(1/2+sqrt(5)/2)^87 2100951949414009 a004 Fibonacci(70)*Lucas(27)/(1/2+sqrt(5)/2)^89 2100951949414009 a004 Fibonacci(72)*Lucas(27)/(1/2+sqrt(5)/2)^91 2100951949414009 a004 Fibonacci(74)*Lucas(27)/(1/2+sqrt(5)/2)^93 2100951949414009 a004 Fibonacci(76)*Lucas(27)/(1/2+sqrt(5)/2)^95 2100951949414009 a004 Fibonacci(78)*Lucas(27)/(1/2+sqrt(5)/2)^97 2100951949414009 a004 Fibonacci(80)*Lucas(27)/(1/2+sqrt(5)/2)^99 2100951949414009 a004 Fibonacci(81)*Lucas(27)/(1/2+sqrt(5)/2)^100 2100951949414009 a004 Fibonacci(79)*Lucas(27)/(1/2+sqrt(5)/2)^98 2100951949414009 a004 Fibonacci(77)*Lucas(27)/(1/2+sqrt(5)/2)^96 2100951949414009 a004 Fibonacci(75)*Lucas(27)/(1/2+sqrt(5)/2)^94 2100951949414009 a004 Fibonacci(73)*Lucas(27)/(1/2+sqrt(5)/2)^92 2100951949414009 a004 Fibonacci(71)*Lucas(27)/(1/2+sqrt(5)/2)^90 2100951949414009 a004 Fibonacci(69)*Lucas(27)/(1/2+sqrt(5)/2)^88 2100951949414009 a004 Fibonacci(67)*Lucas(27)/(1/2+sqrt(5)/2)^86 2100951949414009 a004 Fibonacci(65)*Lucas(27)/(1/2+sqrt(5)/2)^84 2100951949414009 a004 Fibonacci(63)*Lucas(27)/(1/2+sqrt(5)/2)^82 2100951949414009 a004 Fibonacci(61)*Lucas(27)/(1/2+sqrt(5)/2)^80 2100951949414009 a004 Fibonacci(59)*Lucas(27)/(1/2+sqrt(5)/2)^78 2100951949414009 a004 Fibonacci(57)*Lucas(27)/(1/2+sqrt(5)/2)^76 2100951949414009 a004 Fibonacci(55)*Lucas(27)/(1/2+sqrt(5)/2)^74 2100951949414009 a001 1/98209*(1/2+1/2*5^(1/2))^35 2100951949414009 a004 Fibonacci(53)*Lucas(27)/(1/2+sqrt(5)/2)^72 2100951949414009 a004 Fibonacci(51)*Lucas(27)/(1/2+sqrt(5)/2)^70 2100951949414009 a004 Fibonacci(49)*Lucas(27)/(1/2+sqrt(5)/2)^68 2100951949414009 a004 Fibonacci(47)*Lucas(27)/(1/2+sqrt(5)/2)^66 2100951949414009 a004 Fibonacci(45)*Lucas(27)/(1/2+sqrt(5)/2)^64 2100951949414009 a004 Fibonacci(43)*Lucas(27)/(1/2+sqrt(5)/2)^62 2100951949414009 a004 Fibonacci(41)*Lucas(27)/(1/2+sqrt(5)/2)^60 2100951949414009 a004 Fibonacci(39)*Lucas(27)/(1/2+sqrt(5)/2)^58 2100951949414010 a004 Fibonacci(37)*Lucas(27)/(1/2+sqrt(5)/2)^56 2100951949414014 a004 Fibonacci(35)*Lucas(27)/(1/2+sqrt(5)/2)^54 2100951949414043 a004 Fibonacci(33)*Lucas(27)/(1/2+sqrt(5)/2)^52 2100951949414241 a004 Fibonacci(31)*Lucas(27)/(1/2+sqrt(5)/2)^50 2100951949414612 a001 832040/4106118243*439204^(8/9) 2100951949414695 a001 10959/711491*439204^(5/9) 2100951949415131 a001 987/4870846*439204^(8/9) 2100951949415206 a001 5702887/28143753123*439204^(8/9) 2100951949415218 a001 14930352/73681302247*439204^(8/9) 2100951949415219 a001 39088169/192900153618*439204^(8/9) 2100951949415219 a001 102334155/505019158607*439204^(8/9) 2100951949415219 a001 267914296/1322157322203*439204^(8/9) 2100951949415219 a001 701408733/3461452808002*439204^(8/9) 2100951949415219 a001 1836311903/9062201101803*439204^(8/9) 2100951949415219 a001 4807526976/23725150497407*439204^(8/9) 2100951949415219 a001 2971215073/14662949395604*439204^(8/9) 2100951949415219 a001 1134903170/5600748293801*439204^(8/9) 2100951949415219 a001 433494437/2139295485799*439204^(8/9) 2100951949415219 a001 165580141/817138163596*439204^(8/9) 2100951949415220 a001 63245986/312119004989*439204^(8/9) 2100951949415220 a001 24157817/119218851371*439204^(8/9) 2100951949415224 a001 9227465/45537549124*439204^(8/9) 2100951949415253 a001 3524578/17393796001*439204^(8/9) 2100951949415451 a001 1346269/6643838879*439204^(8/9) 2100951949415598 a004 Fibonacci(29)*Lucas(27)/(1/2+sqrt(5)/2)^48 2100951949415811 a001 317811/4870847*439204^(4/9) 2100951949415823 a001 832040/969323029*439204^(7/9) 2100951949416125 a001 121393/33385282*271443^(9/13) 2100951949416341 a001 2178309/2537720636*439204^(7/9) 2100951949416417 a001 5702887/6643838879*439204^(7/9) 2100951949416428 a001 14930352/17393796001*439204^(7/9) 2100951949416429 a001 39088169/45537549124*439204^(7/9) 2100951949416430 a001 102334155/119218851371*439204^(7/9) 2100951949416430 a001 267914296/312119004989*439204^(7/9) 2100951949416430 a001 701408733/817138163596*439204^(7/9) 2100951949416430 a001 1836311903/2139295485799*439204^(7/9) 2100951949416430 a001 4807526976/5600748293801*439204^(7/9) 2100951949416430 a001 12586269025/14662949395604*439204^(7/9) 2100951949416430 a001 20365011074/23725150497407*439204^(7/9) 2100951949416430 a001 7778742049/9062201101803*439204^(7/9) 2100951949416430 a001 2971215073/3461452808002*439204^(7/9) 2100951949416430 a001 1134903170/1322157322203*439204^(7/9) 2100951949416430 a001 433494437/505019158607*439204^(7/9) 2100951949416430 a001 165580141/192900153618*439204^(7/9) 2100951949416430 a001 63245986/73681302247*439204^(7/9) 2100951949416430 a001 24157817/28143753123*439204^(7/9) 2100951949416435 a001 9227465/10749957122*439204^(7/9) 2100951949416463 a001 3524578/4106118243*439204^(7/9) 2100951949416580 a001 317811/710647*(1/2+1/2*5^(1/2))^8 2100951949416580 a001 317811/710647*23725150497407^(1/8) 2100951949416580 a001 317811/710647*505019158607^(1/7) 2100951949416580 a001 317811/710647*73681302247^(2/13) 2100951949416580 a001 317811/710647*10749957122^(1/6) 2100951949416580 a001 11222647969/534169664 2100951949416580 a001 317811/710647*4106118243^(4/23) 2100951949416580 a001 317811/710647*1568397607^(2/11) 2100951949416580 a001 317811/710647*599074578^(4/21) 2100951949416580 a001 317811/710647*228826127^(1/5) 2100951949416580 a001 317811/710647*87403803^(4/19) 2100951949416581 a001 317811/710647*33385282^(2/9) 2100951949416583 a001 317811/710647*12752043^(4/17) 2100951949416603 a001 317811/710647*4870847^(1/4) 2100951949416661 a001 1346269/1568397607*439204^(7/9) 2100951949416742 a001 317811/710647*1860498^(4/15) 2100951949416758 a001 11592/35355581*103682^(23/24) 2100951949416808 a001 514229/2537720636*439204^(8/9) 2100951949417033 a001 832040/228826127*439204^(2/3) 2100951949417551 a001 726103/199691526*439204^(2/3) 2100951949417627 a001 5702887/1568397607*439204^(2/3) 2100951949417638 a001 4976784/1368706081*439204^(2/3) 2100951949417639 a001 39088169/10749957122*439204^(2/3) 2100951949417640 a001 831985/228811001*439204^(2/3) 2100951949417640 a001 267914296/73681302247*439204^(2/3) 2100951949417640 a001 233802911/64300051206*439204^(2/3) 2100951949417640 a001 1836311903/505019158607*439204^(2/3) 2100951949417640 a001 1602508992/440719107401*439204^(2/3) 2100951949417640 a001 12586269025/3461452808002*439204^(2/3) 2100951949417640 a001 10983760033/3020733700601*439204^(2/3) 2100951949417640 a001 86267571272/23725150497407*439204^(2/3) 2100951949417640 a001 53316291173/14662949395604*439204^(2/3) 2100951949417640 a001 20365011074/5600748293801*439204^(2/3) 2100951949417640 a001 7778742049/2139295485799*439204^(2/3) 2100951949417640 a001 2971215073/817138163596*439204^(2/3) 2100951949417640 a001 1134903170/312119004989*439204^(2/3) 2100951949417640 a001 433494437/119218851371*439204^(2/3) 2100951949417640 a001 165580141/45537549124*439204^(2/3) 2100951949417640 a001 63245986/17393796001*439204^(2/3) 2100951949417640 a001 24157817/6643838879*439204^(2/3) 2100951949417645 a001 9227465/2537720636*439204^(2/3) 2100951949417674 a001 3524578/969323029*439204^(2/3) 2100951949417713 a001 832040/710647*439204^(2/9) 2100951949417769 a001 317811/710647*710647^(2/7) 2100951949417872 a001 1346269/370248451*439204^(2/3) 2100951949418019 a001 514229/599074578*439204^(7/9) 2100951949418244 a001 832040/54018521*439204^(5/9) 2100951949418320 a001 121393/87403803*271443^(10/13) 2100951949418699 a001 317811/1149851*439204^(1/3) 2100951949418761 a001 2178309/141422324*439204^(5/9) 2100951949418837 a001 5702887/370248451*439204^(5/9) 2100951949418848 a001 14930352/969323029*439204^(5/9) 2100951949418850 a001 39088169/2537720636*439204^(5/9) 2100951949418850 a001 102334155/6643838879*439204^(5/9) 2100951949418850 a001 9238424/599786069*439204^(5/9) 2100951949418850 a001 701408733/45537549124*439204^(5/9) 2100951949418850 a001 1836311903/119218851371*439204^(5/9) 2100951949418850 a001 4807526976/312119004989*439204^(5/9) 2100951949418850 a001 12586269025/817138163596*439204^(5/9) 2100951949418850 a001 32951280099/2139295485799*439204^(5/9) 2100951949418850 a001 86267571272/5600748293801*439204^(5/9) 2100951949418850 a001 7787980473/505618944676*439204^(5/9) 2100951949418850 a001 365435296162/23725150497407*439204^(5/9) 2100951949418850 a001 139583862445/9062201101803*439204^(5/9) 2100951949418850 a001 53316291173/3461452808002*439204^(5/9) 2100951949418850 a001 20365011074/1322157322203*439204^(5/9) 2100951949418850 a001 7778742049/505019158607*439204^(5/9) 2100951949418850 a001 2971215073/192900153618*439204^(5/9) 2100951949418850 a001 1134903170/73681302247*439204^(5/9) 2100951949418850 a001 433494437/28143753123*439204^(5/9) 2100951949418850 a001 165580141/10749957122*439204^(5/9) 2100951949418850 a001 63245986/4106118243*439204^(5/9) 2100951949418851 a001 24157817/1568397607*439204^(5/9) 2100951949418855 a001 9227465/599074578*439204^(5/9) 2100951949418884 a001 3524578/228826127*439204^(5/9) 2100951949419081 a001 1346269/87403803*439204^(5/9) 2100951949419151 a004 Fibonacci(28)*Lucas(29)/(1/2+sqrt(5)/2)^49 2100951949419229 a001 514229/141422324*439204^(2/3) 2100951949419440 a001 832040/12752043*439204^(4/9) 2100951949419564 a001 3524578/710647*439204^(1/9) 2100951949419970 a001 311187/4769326*439204^(4/9) 2100951949420047 a001 5702887/87403803*439204^(4/9) 2100951949420058 a001 14930352/228826127*439204^(4/9) 2100951949420060 a001 39088169/599074578*439204^(4/9) 2100951949420060 a001 14619165/224056801*439204^(4/9) 2100951949420060 a001 267914296/4106118243*439204^(4/9) 2100951949420060 a001 701408733/10749957122*439204^(4/9) 2100951949420060 a001 1836311903/28143753123*439204^(4/9) 2100951949420060 a001 686789568/10525900321*439204^(4/9) 2100951949420060 a001 12586269025/192900153618*439204^(4/9) 2100951949420060 a001 32951280099/505019158607*439204^(4/9) 2100951949420060 a001 86267571272/1322157322203*439204^(4/9) 2100951949420060 a001 32264490531/494493258286*439204^(4/9) 2100951949420060 a001 1548008755920/23725150497407*439204^(4/9) 2100951949420060 a001 365435296162/5600748293801*439204^(4/9) 2100951949420060 a001 139583862445/2139295485799*439204^(4/9) 2100951949420060 a001 53316291173/817138163596*439204^(4/9) 2100951949420060 a001 20365011074/312119004989*439204^(4/9) 2100951949420060 a001 7778742049/119218851371*439204^(4/9) 2100951949420060 a001 2971215073/45537549124*439204^(4/9) 2100951949420060 a001 1134903170/17393796001*439204^(4/9) 2100951949420060 a001 433494437/6643838879*439204^(4/9) 2100951949420060 a001 165580141/2537720636*439204^(4/9) 2100951949420060 a001 63245986/969323029*439204^(4/9) 2100951949420061 a001 24157817/370248451*439204^(4/9) 2100951949420065 a001 9227465/141422324*439204^(4/9) 2100951949420095 a001 3524578/54018521*439204^(4/9) 2100951949420127 a001 832040/710647*7881196^(2/11) 2100951949420132 a001 105937/620166*20633239^(2/7) 2100951949420134 a001 832040/710647*141422324^(2/13) 2100951949420134 a001 105937/620166*2537720636^(2/9) 2100951949420134 a001 832040/710647*2537720636^(2/15) 2100951949420134 a001 832040/710647*45537549124^(2/17) 2100951949420134 a001 105937/620166*312119004989^(2/11) 2100951949420134 a001 105937/620166*(1/2+1/2*5^(1/2))^10 2100951949420134 a001 832040/710647*14662949395604^(2/21) 2100951949420134 a001 832040/710647*(1/2+1/2*5^(1/2))^6 2100951949420134 a001 105937/620166*28143753123^(1/5) 2100951949420134 a001 832040/710647*10749957122^(1/8) 2100951949420134 a001 4807844808/228841255 2100951949420134 a001 105937/620166*10749957122^(5/24) 2100951949420134 a001 832040/710647*4106118243^(3/23) 2100951949420134 a001 105937/620166*4106118243^(5/23) 2100951949420134 a001 832040/710647*1568397607^(3/22) 2100951949420134 a001 105937/620166*1568397607^(5/22) 2100951949420134 a001 832040/710647*599074578^(1/7) 2100951949420134 a001 105937/620166*599074578^(5/21) 2100951949420134 a001 832040/710647*228826127^(3/20) 2100951949420134 a001 105937/620166*228826127^(1/4) 2100951949420134 a001 832040/710647*87403803^(3/19) 2100951949420134 a001 105937/620166*87403803^(5/19) 2100951949420134 a001 832040/710647*33385282^(1/6) 2100951949420134 a001 105937/620166*33385282^(5/18) 2100951949420136 a001 832040/710647*12752043^(3/17) 2100951949420137 a001 105937/620166*12752043^(5/17) 2100951949420150 a001 832040/710647*4870847^(3/16) 2100951949420161 a001 105937/620166*4870847^(5/16) 2100951949420255 a001 208010/109801*167761^(1/5) 2100951949420255 a001 832040/710647*1860498^(1/5) 2100951949420297 a001 1346269/20633239*439204^(4/9) 2100951949420336 a001 105937/620166*1860498^(1/3) 2100951949420437 a001 514229/33385282*439204^(5/9) 2100951949420509 a004 Fibonacci(28)*Lucas(31)/(1/2+sqrt(5)/2)^51 2100951949420514 a001 121393/228826127*271443^(11/13) 2100951949420640 a001 317811/4870847*7881196^(4/11) 2100951949420652 a001 317811/4870847*141422324^(4/13) 2100951949420652 a001 317811/4870847*2537720636^(4/15) 2100951949420652 a001 317811/4870847*45537549124^(4/17) 2100951949420652 a001 317811/4870847*817138163596^(4/19) 2100951949420652 a001 317811/4870847*(1/2+1/2*5^(1/2))^12 2100951949420652 a001 311187/101521*(1/2+1/2*5^(1/2))^4 2100951949420652 a001 311187/101521*23725150497407^(1/16) 2100951949420652 a001 311187/101521*73681302247^(1/13) 2100951949420652 a001 317811/4870847*73681302247^(3/13) 2100951949420652 a001 230763520533/10983760033 2100951949420652 a001 311187/101521*10749957122^(1/12) 2100951949420652 a001 317811/4870847*10749957122^(1/4) 2100951949420652 a001 311187/101521*4106118243^(2/23) 2100951949420652 a001 317811/4870847*4106118243^(6/23) 2100951949420652 a001 311187/101521*1568397607^(1/11) 2100951949420652 a001 317811/4870847*1568397607^(3/11) 2100951949420652 a001 311187/101521*599074578^(2/21) 2100951949420652 a001 317811/4870847*599074578^(2/7) 2100951949420652 a001 311187/101521*228826127^(1/10) 2100951949420652 a001 317811/4870847*228826127^(3/10) 2100951949420652 a001 311187/101521*87403803^(2/19) 2100951949420652 a001 317811/4870847*87403803^(6/19) 2100951949420652 a001 311187/101521*33385282^(1/9) 2100951949420653 a001 317811/4870847*33385282^(1/3) 2100951949420653 a001 311187/101521*12752043^(2/17) 2100951949420657 a001 317811/4870847*12752043^(6/17) 2100951949420663 a001 311187/101521*4870847^(1/8) 2100951949420685 a001 317811/4870847*4870847^(3/8) 2100951949420707 a004 Fibonacci(28)*Lucas(33)/(1/2+sqrt(5)/2)^53 2100951949420710 a001 105937/9381251041*7881196^(10/11) 2100951949420713 a001 317811/6643838879*7881196^(9/11) 2100951949420716 a001 317811/1568397607*7881196^(8/11) 2100951949420718 a001 377/710646*7881196^(2/3) 2100951949420719 a001 317811/370248451*7881196^(7/11) 2100951949420722 a001 105937/29134601*7881196^(6/11) 2100951949420726 a001 105937/4250681*20633239^(2/5) 2100951949420728 a001 105937/4250681*17393796001^(2/7) 2100951949420728 a001 105937/4250681*14662949395604^(2/9) 2100951949420728 a001 105937/4250681*(1/2+1/2*5^(1/2))^14 2100951949420728 a001 5702887/710647*(1/2+1/2*5^(1/2))^2 2100951949420728 a001 1812440220357/86267571272 2100951949420728 a001 5702887/710647*10749957122^(1/24) 2100951949420728 a001 105937/4250681*10749957122^(7/24) 2100951949420728 a001 5702887/710647*4106118243^(1/23) 2100951949420728 a001 105937/4250681*4106118243^(7/23) 2100951949420728 a001 5702887/710647*1568397607^(1/22) 2100951949420728 a001 105937/4250681*1568397607^(7/22) 2100951949420728 a001 5702887/710647*599074578^(1/21) 2100951949420728 a001 105937/4250681*599074578^(1/3) 2100951949420728 a001 5702887/710647*228826127^(1/20) 2100951949420728 a001 105937/4250681*228826127^(7/20) 2100951949420728 a001 5702887/710647*87403803^(1/19) 2100951949420728 a001 105937/4250681*87403803^(7/19) 2100951949420728 a001 5702887/710647*33385282^(1/18) 2100951949420728 a001 105937/4250681*33385282^(7/18) 2100951949420728 a001 5702887/710647*12752043^(1/17) 2100951949420730 a001 10959/711491*7881196^(5/11) 2100951949420733 a001 311187/101521*1860498^(2/15) 2100951949420733 a001 105937/4250681*12752043^(7/17) 2100951949420733 a001 5702887/710647*4870847^(1/16) 2100951949420736 a004 Fibonacci(28)*Lucas(35)/(1/2+sqrt(5)/2)^55 2100951949420736 a001 105937/9381251041*20633239^(6/7) 2100951949420737 a001 317811/10749957122*20633239^(4/5) 2100951949420737 a001 317811/2537720636*20633239^(5/7) 2100951949420738 a001 317811/370248451*20633239^(3/5) 2100951949420738 a001 317811/228826127*20633239^(4/7) 2100951949420739 a001 317811/33385282*(1/2+1/2*5^(1/2))^16 2100951949420739 a001 317811/33385282*23725150497407^(1/4) 2100951949420739 a001 14930352/710647 2100951949420739 a001 317811/33385282*73681302247^(4/13) 2100951949420739 a001 317811/33385282*10749957122^(1/3) 2100951949420739 a001 317811/33385282*4106118243^(8/23) 2100951949420739 a001 317811/33385282*1568397607^(4/11) 2100951949420739 a001 317811/33385282*599074578^(8/21) 2100951949420739 a001 317811/33385282*228826127^(2/5) 2100951949420739 a001 317811/33385282*87403803^(8/19) 2100951949420739 a001 317811/33385282*33385282^(4/9) 2100951949420740 a004 Fibonacci(28)*Lucas(37)/(1/2+sqrt(5)/2)^57 2100951949420740 a001 105937/29134601*141422324^(6/13) 2100951949420740 a001 105937/29134601*2537720636^(2/5) 2100951949420740 a001 105937/29134601*45537549124^(6/17) 2100951949420740 a001 105937/29134601*14662949395604^(2/7) 2100951949420740 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^18/Lucas(38) 2100951949420740 a004 Fibonacci(38)/Lucas(28)/(1/2+sqrt(5)/2)^2 2100951949420740 a001 105937/29134601*192900153618^(1/3) 2100951949420740 a001 105937/29134601*10749957122^(3/8) 2100951949420740 a001 105937/29134601*4106118243^(9/23) 2100951949420740 a001 105937/29134601*1568397607^(9/22) 2100951949420740 a001 105937/29134601*599074578^(3/7) 2100951949420740 a001 105937/29134601*228826127^(9/20) 2100951949420740 a001 105937/29134601*87403803^(9/19) 2100951949420740 a004 Fibonacci(28)*Lucas(39)/(1/2+sqrt(5)/2)^59 2100951949420740 a001 317811/505019158607*141422324^(12/13) 2100951949420740 a001 317811/119218851371*141422324^(11/13) 2100951949420740 a001 105937/9381251041*141422324^(10/13) 2100951949420740 a001 317811/6643838879*141422324^(9/13) 2100951949420740 a001 105937/1368706081*141422324^(2/3) 2100951949420740 a001 317811/1568397607*141422324^(8/13) 2100951949420740 a001 317811/370248451*141422324^(7/13) 2100951949420740 a001 317811/228826127*2537720636^(4/9) 2100951949420740 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^20/Lucas(40) 2100951949420740 a001 1602508999/76275376 2100951949420740 a001 317811/228826127*505019158607^(5/14) 2100951949420740 a004 Fibonacci(40)/Lucas(28)/(1/2+sqrt(5)/2)^4 2100951949420740 a001 317811/228826127*73681302247^(5/13) 2100951949420740 a001 317811/228826127*28143753123^(2/5) 2100951949420740 a001 317811/228826127*10749957122^(5/12) 2100951949420740 a001 317811/228826127*4106118243^(10/23) 2100951949420740 a001 317811/228826127*1568397607^(5/11) 2100951949420740 a001 317811/228826127*599074578^(10/21) 2100951949420740 a001 317811/228826127*228826127^(1/2) 2100951949420740 a004 Fibonacci(28)*Lucas(41)/(1/2+sqrt(5)/2)^61 2100951949420741 a001 377/710646*312119004989^(2/5) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^22/Lucas(42) 2100951949420741 a004 Fibonacci(42)/Lucas(28)/(1/2+sqrt(5)/2)^6 2100951949420741 a001 377/710646*10749957122^(11/24) 2100951949420741 a001 377/710646*4106118243^(11/23) 2100951949420741 a001 377/710646*1568397607^(1/2) 2100951949420741 a001 377/710646*599074578^(11/21) 2100951949420741 a004 Fibonacci(28)*Lucas(43)/(1/2+sqrt(5)/2)^63 2100951949420741 a001 317811/1568397607*2537720636^(8/15) 2100951949420741 a001 317811/1568397607*45537549124^(8/17) 2100951949420741 a001 317811/1568397607*14662949395604^(8/21) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^24/Lucas(44) 2100951949420741 a004 Fibonacci(44)/Lucas(28)/(1/2+sqrt(5)/2)^8 2100951949420741 a001 317811/1568397607*192900153618^(4/9) 2100951949420741 a001 317811/1568397607*73681302247^(6/13) 2100951949420741 a001 317811/1568397607*10749957122^(1/2) 2100951949420741 a001 317811/1568397607*4106118243^(12/23) 2100951949420741 a001 317811/1568397607*1568397607^(6/11) 2100951949420741 a004 Fibonacci(28)*Lucas(45)/(1/2+sqrt(5)/2)^65 2100951949420741 a001 105937/3020733700601*2537720636^(14/15) 2100951949420741 a001 317811/3461452808002*2537720636^(8/9) 2100951949420741 a001 317811/2139295485799*2537720636^(13/15) 2100951949420741 a001 317811/505019158607*2537720636^(4/5) 2100951949420741 a001 317811/312119004989*2537720636^(7/9) 2100951949420741 a001 317811/119218851371*2537720636^(11/15) 2100951949420741 a001 105937/9381251041*2537720636^(2/3) 2100951949420741 a001 317811/6643838879*2537720636^(3/5) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^26/Lucas(46) 2100951949420741 a004 Fibonacci(46)/Lucas(28)/(1/2+sqrt(5)/2)^10 2100951949420741 a001 105937/1368706081*73681302247^(1/2) 2100951949420741 a001 105937/1368706081*10749957122^(13/24) 2100951949420741 a001 105937/1368706081*4106118243^(13/23) 2100951949420741 a004 Fibonacci(28)*Lucas(47)/(1/2+sqrt(5)/2)^67 2100951949420741 a001 317811/10749957122*17393796001^(4/7) 2100951949420741 a001 317811/10749957122*14662949395604^(4/9) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^28/Lucas(48) 2100951949420741 a004 Fibonacci(48)/Lucas(28)/(1/2+sqrt(5)/2)^12 2100951949420741 a001 317811/10749957122*73681302247^(7/13) 2100951949420741 a001 317811/10749957122*10749957122^(7/12) 2100951949420741 a004 Fibonacci(28)*Lucas(49)/(1/2+sqrt(5)/2)^69 2100951949420741 a001 105937/3020733700601*17393796001^(6/7) 2100951949420741 a001 317811/312119004989*17393796001^(5/7) 2100951949420741 a001 105937/9381251041*45537549124^(10/17) 2100951949420741 a001 105937/9381251041*312119004989^(6/11) 2100951949420741 a001 105937/9381251041*14662949395604^(10/21) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^30/Lucas(50) 2100951949420741 a004 Fibonacci(50)/Lucas(28)/(1/2+sqrt(5)/2)^14 2100951949420741 a001 105937/9381251041*192900153618^(5/9) 2100951949420741 a001 105937/9381251041*28143753123^(3/5) 2100951949420741 a004 Fibonacci(28)*Lucas(51)/(1/2+sqrt(5)/2)^71 2100951949420741 a001 105937/3020733700601*45537549124^(14/17) 2100951949420741 a001 317811/2139295485799*45537549124^(13/17) 2100951949420741 a001 105937/64300051206*45537549124^(2/3) 2100951949420741 a001 317811/505019158607*45537549124^(12/17) 2100951949420741 a001 317811/119218851371*45537549124^(11/17) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^32/Lucas(52) 2100951949420741 a001 317811/73681302247*23725150497407^(1/2) 2100951949420741 a001 317811/73681302247*505019158607^(4/7) 2100951949420741 a004 Fibonacci(52)/Lucas(28)/(1/2+sqrt(5)/2)^16 2100951949420741 a001 317811/73681302247*73681302247^(8/13) 2100951949420741 a004 Fibonacci(28)*Lucas(53)/(1/2+sqrt(5)/2)^73 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^34/Lucas(54) 2100951949420741 a004 Fibonacci(54)/Lucas(28)/(1/2+sqrt(5)/2)^18 2100951949420741 a004 Fibonacci(28)*Lucas(55)/(1/2+sqrt(5)/2)^75 2100951949420741 a001 317811/23725150497407*312119004989^(4/5) 2100951949420741 a001 317811/3461452808002*312119004989^(8/11) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^36/Lucas(56) 2100951949420741 a004 Fibonacci(28)*Lucas(57)/(1/2+sqrt(5)/2)^77 2100951949420741 a001 105937/3020733700601*817138163596^(14/19) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^38/Lucas(58) 2100951949420741 a004 Fibonacci(28)*Lucas(59)/(1/2+sqrt(5)/2)^79 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^40/Lucas(60) 2100951949420741 a004 Fibonacci(28)*Lucas(61)/(1/2+sqrt(5)/2)^81 2100951949420741 a001 105937/3020733700601*14662949395604^(2/3) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^42/Lucas(62) 2100951949420741 a004 Fibonacci(28)*Lucas(63)/(1/2+sqrt(5)/2)^83 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^44/Lucas(64) 2100951949420741 a004 Fibonacci(28)*Lucas(65)/(1/2+sqrt(5)/2)^85 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^46/Lucas(66) 2100951949420741 a004 Fibonacci(28)*Lucas(67)/(1/2+sqrt(5)/2)^87 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^48/Lucas(68) 2100951949420741 a004 Fibonacci(28)*Lucas(69)/(1/2+sqrt(5)/2)^89 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^50/Lucas(70) 2100951949420741 a004 Fibonacci(28)*Lucas(71)/(1/2+sqrt(5)/2)^91 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^52/Lucas(72) 2100951949420741 a004 Fibonacci(28)*Lucas(73)/(1/2+sqrt(5)/2)^93 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^54/Lucas(74) 2100951949420741 a004 Fibonacci(28)*Lucas(75)/(1/2+sqrt(5)/2)^95 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^56/Lucas(76) 2100951949420741 a004 Fibonacci(28)*Lucas(77)/(1/2+sqrt(5)/2)^97 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^58/Lucas(78) 2100951949420741 a004 Fibonacci(28)*Lucas(79)/(1/2+sqrt(5)/2)^99 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^60/Lucas(80) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^62/Lucas(82) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^64/Lucas(84) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^66/Lucas(86) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^68/Lucas(88) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^70/Lucas(90) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^72/Lucas(92) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^74/Lucas(94) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^76/Lucas(96) 2100951949420741 a004 Fibonacci(14)*Lucas(14)/(1/2+sqrt(5)/2)^20 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^78/Lucas(98) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^80/Lucas(100) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^77/Lucas(97) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^79/Lucas(99) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^75/Lucas(95) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^73/Lucas(93) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^71/Lucas(91) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^69/Lucas(89) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^67/Lucas(87) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^65/Lucas(85) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^63/Lucas(83) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^61/Lucas(81) 2100951949420741 a004 Fibonacci(28)*Lucas(80)/(1/2+sqrt(5)/2)^100 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^59/Lucas(79) 2100951949420741 a004 Fibonacci(28)*Lucas(78)/(1/2+sqrt(5)/2)^98 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^57/Lucas(77) 2100951949420741 a004 Fibonacci(28)*Lucas(76)/(1/2+sqrt(5)/2)^96 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^55/Lucas(75) 2100951949420741 a004 Fibonacci(28)*Lucas(74)/(1/2+sqrt(5)/2)^94 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^53/Lucas(73) 2100951949420741 a004 Fibonacci(28)*Lucas(72)/(1/2+sqrt(5)/2)^92 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^51/Lucas(71) 2100951949420741 a004 Fibonacci(28)*Lucas(70)/(1/2+sqrt(5)/2)^90 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^49/Lucas(69) 2100951949420741 a004 Fibonacci(28)*Lucas(68)/(1/2+sqrt(5)/2)^88 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^47/Lucas(67) 2100951949420741 a004 Fibonacci(28)*Lucas(66)/(1/2+sqrt(5)/2)^86 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^45/Lucas(65) 2100951949420741 a004 Fibonacci(28)*Lucas(64)/(1/2+sqrt(5)/2)^84 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^43/Lucas(63) 2100951949420741 a004 Fibonacci(28)*Lucas(62)/(1/2+sqrt(5)/2)^82 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^41/Lucas(61) 2100951949420741 a004 Fibonacci(28)*Lucas(60)/(1/2+sqrt(5)/2)^80 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^39/Lucas(59) 2100951949420741 a004 Fibonacci(28)*Lucas(58)/(1/2+sqrt(5)/2)^78 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^37/Lucas(57) 2100951949420741 a004 Fibonacci(58)/Lucas(28)/(1/2+sqrt(5)/2)^22 2100951949420741 a001 317811/312119004989*312119004989^(7/11) 2100951949420741 a004 Fibonacci(60)/Lucas(28)/(1/2+sqrt(5)/2)^24 2100951949420741 a004 Fibonacci(62)/Lucas(28)/(1/2+sqrt(5)/2)^26 2100951949420741 a004 Fibonacci(64)/Lucas(28)/(1/2+sqrt(5)/2)^28 2100951949420741 a004 Fibonacci(66)/Lucas(28)/(1/2+sqrt(5)/2)^30 2100951949420741 a004 Fibonacci(68)/Lucas(28)/(1/2+sqrt(5)/2)^32 2100951949420741 a004 Fibonacci(70)/Lucas(28)/(1/2+sqrt(5)/2)^34 2100951949420741 a004 Fibonacci(72)/Lucas(28)/(1/2+sqrt(5)/2)^36 2100951949420741 a004 Fibonacci(74)/Lucas(28)/(1/2+sqrt(5)/2)^38 2100951949420741 a004 Fibonacci(76)/Lucas(28)/(1/2+sqrt(5)/2)^40 2100951949420741 a004 Fibonacci(78)/Lucas(28)/(1/2+sqrt(5)/2)^42 2100951949420741 a004 Fibonacci(80)/Lucas(28)/(1/2+sqrt(5)/2)^44 2100951949420741 a004 Fibonacci(82)/Lucas(28)/(1/2+sqrt(5)/2)^46 2100951949420741 a004 Fibonacci(84)/Lucas(28)/(1/2+sqrt(5)/2)^48 2100951949420741 a004 Fibonacci(86)/Lucas(28)/(1/2+sqrt(5)/2)^50 2100951949420741 a004 Fibonacci(88)/Lucas(28)/(1/2+sqrt(5)/2)^52 2100951949420741 a004 Fibonacci(90)/Lucas(28)/(1/2+sqrt(5)/2)^54 2100951949420741 a004 Fibonacci(92)/Lucas(28)/(1/2+sqrt(5)/2)^56 2100951949420741 a004 Fibonacci(94)/Lucas(28)/(1/2+sqrt(5)/2)^58 2100951949420741 a004 Fibonacci(96)/Lucas(28)/(1/2+sqrt(5)/2)^60 2100951949420741 a004 Fibonacci(100)/Lucas(28)/(1/2+sqrt(5)/2)^64 2100951949420741 a004 Fibonacci(28)*Lucas(56)/(1/2+sqrt(5)/2)^76 2100951949420741 a004 Fibonacci(98)/Lucas(28)/(1/2+sqrt(5)/2)^62 2100951949420741 a004 Fibonacci(99)/Lucas(28)/(1/2+sqrt(5)/2)^63 2100951949420741 a004 Fibonacci(97)/Lucas(28)/(1/2+sqrt(5)/2)^61 2100951949420741 a004 Fibonacci(95)/Lucas(28)/(1/2+sqrt(5)/2)^59 2100951949420741 a004 Fibonacci(93)/Lucas(28)/(1/2+sqrt(5)/2)^57 2100951949420741 a004 Fibonacci(91)/Lucas(28)/(1/2+sqrt(5)/2)^55 2100951949420741 a004 Fibonacci(89)/Lucas(28)/(1/2+sqrt(5)/2)^53 2100951949420741 a004 Fibonacci(87)/Lucas(28)/(1/2+sqrt(5)/2)^51 2100951949420741 a004 Fibonacci(85)/Lucas(28)/(1/2+sqrt(5)/2)^49 2100951949420741 a004 Fibonacci(83)/Lucas(28)/(1/2+sqrt(5)/2)^47 2100951949420741 a004 Fibonacci(81)/Lucas(28)/(1/2+sqrt(5)/2)^45 2100951949420741 a004 Fibonacci(79)/Lucas(28)/(1/2+sqrt(5)/2)^43 2100951949420741 a004 Fibonacci(77)/Lucas(28)/(1/2+sqrt(5)/2)^41 2100951949420741 a004 Fibonacci(75)/Lucas(28)/(1/2+sqrt(5)/2)^39 2100951949420741 a004 Fibonacci(73)/Lucas(28)/(1/2+sqrt(5)/2)^37 2100951949420741 a004 Fibonacci(71)/Lucas(28)/(1/2+sqrt(5)/2)^35 2100951949420741 a004 Fibonacci(69)/Lucas(28)/(1/2+sqrt(5)/2)^33 2100951949420741 a004 Fibonacci(67)/Lucas(28)/(1/2+sqrt(5)/2)^31 2100951949420741 a004 Fibonacci(65)/Lucas(28)/(1/2+sqrt(5)/2)^29 2100951949420741 a004 Fibonacci(63)/Lucas(28)/(1/2+sqrt(5)/2)^27 2100951949420741 a004 Fibonacci(61)/Lucas(28)/(1/2+sqrt(5)/2)^25 2100951949420741 a004 Fibonacci(59)/Lucas(28)/(1/2+sqrt(5)/2)^23 2100951949420741 a004 Fibonacci(57)/Lucas(28)/(1/2+sqrt(5)/2)^21 2100951949420741 a001 317811/312119004989*14662949395604^(5/9) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^35/Lucas(55) 2100951949420741 a004 Fibonacci(55)/Lucas(28)/(1/2+sqrt(5)/2)^19 2100951949420741 a001 317811/2139295485799*192900153618^(13/18) 2100951949420741 a001 105937/3020733700601*192900153618^(7/9) 2100951949420741 a004 Fibonacci(28)*Lucas(54)/(1/2+sqrt(5)/2)^74 2100951949420741 a001 317811/119218851371*312119004989^(3/5) 2100951949420741 a001 317811/119218851371*14662949395604^(11/21) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^33/Lucas(53) 2100951949420741 a004 Fibonacci(53)/Lucas(28)/(1/2+sqrt(5)/2)^17 2100951949420741 a001 317811/119218851371*192900153618^(11/18) 2100951949420741 a001 317811/505019158607*73681302247^(9/13) 2100951949420741 a001 317811/2139295485799*73681302247^(3/4) 2100951949420741 a001 317811/3461452808002*73681302247^(10/13) 2100951949420741 a001 317811/23725150497407*73681302247^(11/13) 2100951949420741 a004 Fibonacci(28)*Lucas(52)/(1/2+sqrt(5)/2)^72 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^31/Lucas(51) 2100951949420741 a001 317811/45537549124*9062201101803^(1/2) 2100951949420741 a004 Fibonacci(51)/Lucas(28)/(1/2+sqrt(5)/2)^15 2100951949420741 a001 317811/312119004989*28143753123^(7/10) 2100951949420741 a001 317811/3461452808002*28143753123^(4/5) 2100951949420741 a004 Fibonacci(28)*Lucas(50)/(1/2+sqrt(5)/2)^70 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^29/Lucas(49) 2100951949420741 a001 10959/599786069*1322157322203^(1/2) 2100951949420741 a004 Fibonacci(49)/Lucas(28)/(1/2+sqrt(5)/2)^13 2100951949420741 a001 105937/9381251041*10749957122^(5/8) 2100951949420741 a001 317811/73681302247*10749957122^(2/3) 2100951949420741 a001 317811/119218851371*10749957122^(11/16) 2100951949420741 a001 105937/64300051206*10749957122^(17/24) 2100951949420741 a001 317811/505019158607*10749957122^(3/4) 2100951949420741 a001 105937/440719107401*10749957122^(19/24) 2100951949420741 a001 317811/2139295485799*10749957122^(13/16) 2100951949420741 a001 317811/3461452808002*10749957122^(5/6) 2100951949420741 a001 105937/3020733700601*10749957122^(7/8) 2100951949420741 a001 317811/23725150497407*10749957122^(11/12) 2100951949420741 a004 Fibonacci(28)*Lucas(48)/(1/2+sqrt(5)/2)^68 2100951949420741 a001 317811/6643838879*45537549124^(9/17) 2100951949420741 a001 317811/6643838879*817138163596^(9/19) 2100951949420741 a001 317811/6643838879*14662949395604^(3/7) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^27/Lucas(47) 2100951949420741 a004 Fibonacci(47)/Lucas(28)/(1/2+sqrt(5)/2)^11 2100951949420741 a001 317811/6643838879*192900153618^(1/2) 2100951949420741 a001 317811/10749957122*4106118243^(14/23) 2100951949420741 a001 317811/6643838879*10749957122^(9/16) 2100951949420741 a001 105937/9381251041*4106118243^(15/23) 2100951949420741 a001 317811/73681302247*4106118243^(16/23) 2100951949420741 a001 105937/64300051206*4106118243^(17/23) 2100951949420741 a001 317811/505019158607*4106118243^(18/23) 2100951949420741 a001 105937/440719107401*4106118243^(19/23) 2100951949420741 a001 317811/3461452808002*4106118243^(20/23) 2100951949420741 a001 105937/3020733700601*4106118243^(21/23) 2100951949420741 a001 317811/23725150497407*4106118243^(22/23) 2100951949420741 a004 Fibonacci(28)*Lucas(46)/(1/2+sqrt(5)/2)^66 2100951949420741 a001 317811/2537720636*2537720636^(5/9) 2100951949420741 a001 317811/2537720636*312119004989^(5/11) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^25/Lucas(45) 2100951949420741 a001 317811/2537720636*3461452808002^(5/12) 2100951949420741 a004 Fibonacci(45)/Lucas(28)/(1/2+sqrt(5)/2)^9 2100951949420741 a001 317811/2537720636*28143753123^(1/2) 2100951949420741 a001 105937/1368706081*1568397607^(13/22) 2100951949420741 a001 317811/10749957122*1568397607^(7/11) 2100951949420741 a001 105937/9381251041*1568397607^(15/22) 2100951949420741 a001 317811/73681302247*1568397607^(8/11) 2100951949420741 a001 317811/119218851371*1568397607^(3/4) 2100951949420741 a001 105937/64300051206*1568397607^(17/22) 2100951949420741 a001 317811/505019158607*1568397607^(9/11) 2100951949420741 a001 105937/440719107401*1568397607^(19/22) 2100951949420741 a001 317811/3461452808002*1568397607^(10/11) 2100951949420741 a001 105937/3020733700601*1568397607^(21/22) 2100951949420741 a004 Fibonacci(28)*Lucas(44)/(1/2+sqrt(5)/2)^64 2100951949420741 a001 10597638501339/504420793834 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^23/Lucas(43) 2100951949420741 a004 Fibonacci(43)/Lucas(28)/(1/2+sqrt(5)/2)^7 2100951949420741 a001 317811/969323029*4106118243^(1/2) 2100951949420741 a001 317811/1568397607*599074578^(4/7) 2100951949420741 a001 105937/1368706081*599074578^(13/21) 2100951949420741 a001 317811/6643838879*599074578^(9/14) 2100951949420741 a001 317811/10749957122*599074578^(2/3) 2100951949420741 a001 105937/9381251041*599074578^(5/7) 2100951949420741 a001 317811/73681302247*599074578^(16/21) 2100951949420741 a001 317811/119218851371*599074578^(11/14) 2100951949420741 a001 105937/64300051206*599074578^(17/21) 2100951949420741 a001 317811/312119004989*599074578^(5/6) 2100951949420741 a001 317811/505019158607*599074578^(6/7) 2100951949420741 a001 105937/440719107401*599074578^(19/21) 2100951949420741 a001 317811/2139295485799*599074578^(13/14) 2100951949420741 a001 317811/3461452808002*599074578^(20/21) 2100951949420741 a004 Fibonacci(28)*Lucas(42)/(1/2+sqrt(5)/2)^62 2100951949420741 a001 317811/370248451*2537720636^(7/15) 2100951949420741 a001 317811/370248451*17393796001^(3/7) 2100951949420741 a001 317811/370248451*45537549124^(7/17) 2100951949420741 a001 317811/370248451*14662949395604^(1/3) 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^21/Lucas(41) 2100951949420741 a004 Fibonacci(41)/Lucas(28)/(1/2+sqrt(5)/2)^5 2100951949420741 a001 317811/370248451*192900153618^(7/18) 2100951949420741 a001 317811/370248451*10749957122^(7/16) 2100951949420741 a001 377/710646*228826127^(11/20) 2100951949420741 a001 317811/370248451*599074578^(1/2) 2100951949420741 a001 317811/1568397607*228826127^(3/5) 2100951949420741 a001 317811/2537720636*228826127^(5/8) 2100951949420741 a001 105937/1368706081*228826127^(13/20) 2100951949420741 a001 317811/10749957122*228826127^(7/10) 2100951949420741 a001 105937/9381251041*228826127^(3/4) 2100951949420741 a001 317811/73681302247*228826127^(4/5) 2100951949420741 a001 105937/64300051206*228826127^(17/20) 2100951949420741 a001 317811/312119004989*228826127^(7/8) 2100951949420741 a001 317811/505019158607*228826127^(9/10) 2100951949420741 a001 105937/440719107401*228826127^(19/20) 2100951949420741 a004 Fibonacci(28)*Lucas(40)/(1/2+sqrt(5)/2)^60 2100951949420741 a001 317811/228826127*87403803^(10/19) 2100951949420741 a001 317811/141422324*817138163596^(1/3) 2100951949420741 a001 20100270056646/956722026041 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^19/Lucas(39) 2100951949420741 a004 Fibonacci(39)/Lucas(28)/(1/2+sqrt(5)/2)^3 2100951949420741 a001 377/710646*87403803^(11/19) 2100951949420741 a001 317811/1568397607*87403803^(12/19) 2100951949420741 a001 105937/1368706081*87403803^(13/19) 2100951949420741 a001 317811/10749957122*87403803^(14/19) 2100951949420741 a001 105937/9381251041*87403803^(15/19) 2100951949420741 a001 317811/73681302247*87403803^(16/19) 2100951949420741 a001 317811/141422324*87403803^(1/2) 2100951949420741 a001 105937/64300051206*87403803^(17/19) 2100951949420741 a001 317811/505019158607*87403803^(18/19) 2100951949420741 a004 Fibonacci(28)*Lucas(38)/(1/2+sqrt(5)/2)^58 2100951949420741 a001 105937/29134601*33385282^(1/2) 2100951949420741 a001 317811/54018521*45537549124^(1/3) 2100951949420741 a001 7677619978587/365435296162 2100951949420741 a004 Fibonacci(28)*(1/2+sqrt(5)/2)^17/Lucas(37) 2100951949420741 a004 Fibonacci(37)/Lucas(28)/(1/2+sqrt(5)/2) 2100951949420742 a001 317811/228826127*33385282^(5/9) 2100951949420742 a001 317811/370248451*33385282^(7/12) 2100951949420742 a001 377/710646*33385282^(11/18) 2100951949420742 a001 317811/1568397607*33385282^(2/3) 2100951949420742 a001 105937/1368706081*33385282^(13/18) 2100951949420742 a001 317811/6643838879*33385282^(3/4) 2100951949420742 a001 317811/10749957122*33385282^(7/9) 2100951949420742 a001 105937/9381251041*33385282^(5/6) 2100951949420742 a001 317811/73681302247*33385282^(8/9) 2100951949420742 a001 317811/119218851371*33385282^(11/12) 2100951949420742 a001 105937/64300051206*33385282^(17/18) 2100951949420742 a004 Fibonacci(28)*Lucas(36)/(1/2+sqrt(5)/2)^56 2100951949420743 a001 10959/711491*20633239^(3/7) 2100951949420745 a001 317811/33385282*12752043^(8/17) 2100951949420745 a001 10959/711491*141422324^(5/13) 2100951949420745 a001 10959/711491*2537720636^(1/3) 2100951949420745 a001 10959/711491*45537549124^(5/17) 2100951949420745 a001 586517975823/27916772489 2100951949420745 a001 10959/711491*312119004989^(3/11) 2100951949420745 a001 10959/711491*14662949395604^(5/21) 2100951949420745 a001 10959/711491*(1/2+1/2*5^(1/2))^15 2100951949420745 a004 Fibonacci(35)*(1/2+sqrt(5)/2)/Lucas(28) 2100951949420745 a001 10959/711491*192900153618^(5/18) 2100951949420745 a001 10959/711491*28143753123^(3/10) 2100951949420745 a001 10959/711491*10749957122^(5/16) 2100951949420745 a001 10959/711491*599074578^(5/14) 2100951949420745 a001 10959/711491*228826127^(3/8) 2100951949420746 a001 10959/711491*33385282^(5/12) 2100951949420747 a001 105937/29134601*12752043^(9/17) 2100951949420748 a001 317811/54018521*12752043^(1/2) 2100951949420748 a001 317811/228826127*12752043^(10/17) 2100951949420749 a001 377/710646*12752043^(11/17) 2100951949420750 a001 317811/1568397607*12752043^(12/17) 2100951949420750 a001 105937/1368706081*12752043^(13/17) 2100951949420751 a001 317811/10749957122*12752043^(14/17) 2100951949420752 a001 105937/9381251041*12752043^(15/17) 2100951949420753 a001 317811/73681302247*12752043^(16/17) 2100951949420753 a004 Fibonacci(28)*Lucas(34)/(1/2+sqrt(5)/2)^54 2100951949420766 a001 105937/4250681*4870847^(7/16) 2100951949420768 a001 5702887/710647*1860498^(1/15) 2100951949420771 a001 3524578/710647*7881196^(1/11) 2100951949420774 a001 317811/7881196*141422324^(1/3) 2100951949420774 a001 3524578/710647*141422324^(1/13) 2100951949420774 a001 3524578/710647*2537720636^(1/15) 2100951949420774 a001 1120149658758/53316291173 2100951949420774 a001 3524578/710647*45537549124^(1/17) 2100951949420774 a001 317811/7881196*(1/2+1/2*5^(1/2))^13 2100951949420774 a001 3524578/710647*14662949395604^(1/21) 2100951949420774 a001 3524578/710647*(1/2+1/2*5^(1/2))^3 2100951949420774 a001 317811/7881196*73681302247^(1/4) 2100951949420774 a001 3524578/710647*10749957122^(1/16) 2100951949420774 a001 3524578/710647*599074578^(1/14) 2100951949420774 a001 3524578/710647*33385282^(1/12) 2100951949420783 a001 317811/33385282*4870847^(1/2) 2100951949420790 a001 105937/29134601*4870847^(9/16) 2100951949420796 a001 317811/228826127*4870847^(5/8) 2100951949420801 a001 377/710646*4870847^(11/16) 2100951949420807 a001 317811/1568397607*4870847^(3/4) 2100951949420812 a001 105937/1368706081*4870847^(13/16) 2100951949420818 a001 317811/10749957122*4870847^(7/8) 2100951949420824 a001 105937/9381251041*4870847^(15/16) 2100951949420829 a004 Fibonacci(28)*Lucas(32)/(1/2+sqrt(5)/2)^52 2100951949420835 a001 3524578/710647*1860498^(1/10) 2100951949420895 a001 317811/4870847*1860498^(2/5) 2100951949420895 a001 832040/3010349*439204^(1/3) 2100951949420961 a001 317811/3010349*7881196^(1/3) 2100951949420972 a001 1346269/710647*20633239^(1/7) 2100951949420972 a001 1346269/710647*2537720636^(1/9) 2100951949420972 a001 427859097159/20365011074 2100951949420972 a001 317811/3010349*(1/2+1/2*5^(1/2))^11 2100951949420972 a001 1346269/710647*312119004989^(1/11) 2100951949420972 a001 1346269/710647*(1/2+1/2*5^(1/2))^5 2100951949420972 a001 1346269/710647*28143753123^(1/10) 2100951949420972 a001 317811/3010349*1568397607^(1/4) 2100951949420972 a001 1346269/710647*228826127^(1/8) 2100951949421011 a001 105937/4250681*1860498^(7/15) 2100951949421025 a001 5702887/710647*710647^(1/14) 2100951949421025 a001 832040/710647*710647^(3/14) 2100951949421048 a001 1346269/271443*103682^(1/8) 2100951949421049 a001 10959/711491*1860498^(1/2) 2100951949421062 a001 317811/33385282*1860498^(8/15) 2100951949421074 a001 1346269/710647*1860498^(1/6) 2100951949421104 a001 105937/29134601*1860498^(3/5) 2100951949421145 a001 317811/228826127*1860498^(2/3) 2100951949421165 a001 317811/370248451*1860498^(7/10) 2100951949421186 a001 377/710646*1860498^(11/15) 2100951949421215 a001 2178309/7881196*439204^(1/3) 2100951949421226 a001 317811/1568397607*1860498^(4/5) 2100951949421246 a001 311187/101521*710647^(1/7) 2100951949421246 a001 317811/2537720636*1860498^(5/6) 2100951949421262 a001 5702887/20633239*439204^(1/3) 2100951949421267 a001 105937/1368706081*1860498^(13/15) 2100951949421269 a001 14930352/54018521*439204^(1/3) 2100951949421270 a001 39088169/141422324*439204^(1/3) 2100951949421270 a001 102334155/370248451*439204^(1/3) 2100951949421270 a001 267914296/969323029*439204^(1/3) 2100951949421270 a001 701408733/2537720636*439204^(1/3) 2100951949421270 a001 1836311903/6643838879*439204^(1/3) 2100951949421270 a001 4807526976/17393796001*439204^(1/3) 2100951949421270 a001 12586269025/45537549124*439204^(1/3) 2100951949421270 a001 32951280099/119218851371*439204^(1/3) 2100951949421270 a001 86267571272/312119004989*439204^(1/3) 2100951949421270 a001 225851433717/817138163596*439204^(1/3) 2100951949421270 a001 139583862445/505019158607*439204^(1/3) 2100951949421270 a001 53316291173/192900153618*439204^(1/3) 2100951949421270 a001 20365011074/73681302247*439204^(1/3) 2100951949421270 a001 7778742049/28143753123*439204^(1/3) 2100951949421270 a001 2971215073/10749957122*439204^(1/3) 2100951949421270 a001 1134903170/4106118243*439204^(1/3) 2100951949421270 a001 433494437/1568397607*439204^(1/3) 2100951949421270 a001 165580141/599074578*439204^(1/3) 2100951949421270 a001 63245986/228826127*439204^(1/3) 2100951949421271 a001 24157817/87403803*439204^(1/3) 2100951949421273 a001 9227465/33385282*439204^(1/3) 2100951949421287 a001 317811/6643838879*1860498^(9/10) 2100951949421291 a001 3524578/12752043*439204^(1/3) 2100951949421307 a001 317811/10749957122*1860498^(14/15) 2100951949421347 a004 Fibonacci(28)*Lucas(30)/(1/2+sqrt(5)/2)^50 2100951949421413 a001 1346269/4870847*439204^(1/3) 2100951949421619 a001 105937/620166*710647^(5/14) 2100951949421683 a001 514229/7881196*439204^(4/9) 2100951949421785 a001 726103/620166*439204^(2/9) 2100951949422252 a001 514229/1860498*439204^(1/3) 2100951949422320 a001 317811/1149851*7881196^(3/11) 2100951949422329 a001 514229/710647*20633239^(1/5) 2100951949422330 a001 317811/1149851*141422324^(3/13) 2100951949422330 a001 317811/1149851*2537720636^(1/5) 2100951949422330 a001 12571356363/598364773 2100951949422330 a001 514229/710647*17393796001^(1/7) 2100951949422330 a001 317811/1149851*45537549124^(3/17) 2100951949422330 a001 317811/1149851*14662949395604^(1/7) 2100951949422330 a001 317811/1149851*(1/2+1/2*5^(1/2))^9 2100951949422330 a001 514229/710647*(1/2+1/2*5^(1/2))^7 2100951949422330 a001 317811/1149851*192900153618^(1/6) 2100951949422330 a001 317811/1149851*10749957122^(3/16) 2100951949422330 a001 514229/710647*599074578^(1/6) 2100951949422330 a001 317811/1149851*599074578^(3/14) 2100951949422330 a001 317811/1149851*33385282^(1/4) 2100951949422379 a001 5702887/4870847*439204^(2/9) 2100951949422435 a001 317811/4870847*710647^(3/7) 2100951949422466 a001 4976784/4250681*439204^(2/9) 2100951949422478 a001 39088169/33385282*439204^(2/9) 2100951949422480 a001 34111385/29134601*439204^(2/9) 2100951949422480 a001 267914296/228826127*439204^(2/9) 2100951949422480 a001 233802911/199691526*439204^(2/9) 2100951949422480 a001 1836311903/1568397607*439204^(2/9) 2100951949422480 a001 1602508992/1368706081*439204^(2/9) 2100951949422480 a001 12586269025/10749957122*439204^(2/9) 2100951949422480 a001 10983760033/9381251041*439204^(2/9) 2100951949422480 a001 86267571272/73681302247*439204^(2/9) 2100951949422480 a001 75283811239/64300051206*439204^(2/9) 2100951949422480 a001 2504730781961/2139295485799*439204^(2/9) 2100951949422480 a001 365435296162/312119004989*439204^(2/9) 2100951949422480 a001 139583862445/119218851371*439204^(2/9) 2100951949422480 a001 53316291173/45537549124*439204^(2/9) 2100951949422480 a001 20365011074/17393796001*439204^(2/9) 2100951949422480 a001 7778742049/6643838879*439204^(2/9) 2100951949422480 a001 2971215073/2537720636*439204^(2/9) 2100951949422480 a001 1134903170/969323029*439204^(2/9) 2100951949422480 a001 433494437/370248451*439204^(2/9) 2100951949422480 a001 165580141/141422324*439204^(2/9) 2100951949422481 a001 63245986/54018521*439204^(2/9) 2100951949422486 a001 24157817/20633239*439204^(2/9) 2100951949422512 a001 317811/1149851*1860498^(3/10) 2100951949422519 a001 9227465/7881196*439204^(2/9) 2100951949422705 a004 Fibonacci(30)*Lucas(29)/(1/2+sqrt(5)/2)^51 2100951949422707 a001 121393/599074578*271443^(12/13) 2100951949422746 a001 3524578/3010349*439204^(2/9) 2100951949422808 a001 105937/4250681*710647^(1/2) 2100951949422921 a001 5702887/710647*271443^(1/13) 2100951949423088 a001 9227465/1860498*439204^(1/9) 2100951949423116 a001 317811/33385282*710647^(4/7) 2100951949423223 a004 Fibonacci(32)*Lucas(29)/(1/2+sqrt(5)/2)^53 2100951949423299 a004 Fibonacci(34)*Lucas(29)/(1/2+sqrt(5)/2)^55 2100951949423310 a004 Fibonacci(36)*Lucas(29)/(1/2+sqrt(5)/2)^57 2100951949423311 a004 Fibonacci(38)*Lucas(29)/(1/2+sqrt(5)/2)^59 2100951949423312 a004 Fibonacci(40)*Lucas(29)/(1/2+sqrt(5)/2)^61 2100951949423312 a004 Fibonacci(42)*Lucas(29)/(1/2+sqrt(5)/2)^63 2100951949423312 a004 Fibonacci(44)*Lucas(29)/(1/2+sqrt(5)/2)^65 2100951949423312 a004 Fibonacci(46)*Lucas(29)/(1/2+sqrt(5)/2)^67 2100951949423312 a004 Fibonacci(48)*Lucas(29)/(1/2+sqrt(5)/2)^69 2100951949423312 a004 Fibonacci(50)*Lucas(29)/(1/2+sqrt(5)/2)^71 2100951949423312 a004 Fibonacci(52)*Lucas(29)/(1/2+sqrt(5)/2)^73 2100951949423312 a004 Fibonacci(54)*Lucas(29)/(1/2+sqrt(5)/2)^75 2100951949423312 a004 Fibonacci(56)*Lucas(29)/(1/2+sqrt(5)/2)^77 2100951949423312 a004 Fibonacci(58)*Lucas(29)/(1/2+sqrt(5)/2)^79 2100951949423312 a004 Fibonacci(60)*Lucas(29)/(1/2+sqrt(5)/2)^81 2100951949423312 a004 Fibonacci(62)*Lucas(29)/(1/2+sqrt(5)/2)^83 2100951949423312 a004 Fibonacci(64)*Lucas(29)/(1/2+sqrt(5)/2)^85 2100951949423312 a004 Fibonacci(66)*Lucas(29)/(1/2+sqrt(5)/2)^87 2100951949423312 a004 Fibonacci(68)*Lucas(29)/(1/2+sqrt(5)/2)^89 2100951949423312 a004 Fibonacci(70)*Lucas(29)/(1/2+sqrt(5)/2)^91 2100951949423312 a004 Fibonacci(72)*Lucas(29)/(1/2+sqrt(5)/2)^93 2100951949423312 a004 Fibonacci(74)*Lucas(29)/(1/2+sqrt(5)/2)^95 2100951949423312 a004 Fibonacci(76)*Lucas(29)/(1/2+sqrt(5)/2)^97 2100951949423312 a004 Fibonacci(78)*Lucas(29)/(1/2+sqrt(5)/2)^99 2100951949423312 a004 Fibonacci(79)*Lucas(29)/(1/2+sqrt(5)/2)^100 2100951949423312 a004 Fibonacci(77)*Lucas(29)/(1/2+sqrt(5)/2)^98 2100951949423312 a004 Fibonacci(75)*Lucas(29)/(1/2+sqrt(5)/2)^96 2100951949423312 a004 Fibonacci(73)*Lucas(29)/(1/2+sqrt(5)/2)^94 2100951949423312 a004 Fibonacci(71)*Lucas(29)/(1/2+sqrt(5)/2)^92 2100951949423312 a004 Fibonacci(69)*Lucas(29)/(1/2+sqrt(5)/2)^90 2100951949423312 a004 Fibonacci(67)*Lucas(29)/(1/2+sqrt(5)/2)^88 2100951949423312 a004 Fibonacci(65)*Lucas(29)/(1/2+sqrt(5)/2)^86 2100951949423312 a004 Fibonacci(63)*Lucas(29)/(1/2+sqrt(5)/2)^84 2100951949423312 a004 Fibonacci(61)*Lucas(29)/(1/2+sqrt(5)/2)^82 2100951949423312 a004 Fibonacci(59)*Lucas(29)/(1/2+sqrt(5)/2)^80 2100951949423312 a001 2/514229*(1/2+1/2*5^(1/2))^37 2100951949423312 a004 Fibonacci(57)*Lucas(29)/(1/2+sqrt(5)/2)^78 2100951949423312 a004 Fibonacci(55)*Lucas(29)/(1/2+sqrt(5)/2)^76 2100951949423312 a004 Fibonacci(53)*Lucas(29)/(1/2+sqrt(5)/2)^74 2100951949423312 a004 Fibonacci(51)*Lucas(29)/(1/2+sqrt(5)/2)^72 2100951949423312 a004 Fibonacci(49)*Lucas(29)/(1/2+sqrt(5)/2)^70 2100951949423312 a004 Fibonacci(47)*Lucas(29)/(1/2+sqrt(5)/2)^68 2100951949423312 a004 Fibonacci(45)*Lucas(29)/(1/2+sqrt(5)/2)^66 2100951949423312 a004 Fibonacci(43)*Lucas(29)/(1/2+sqrt(5)/2)^64 2100951949423312 a004 Fibonacci(41)*Lucas(29)/(1/2+sqrt(5)/2)^62 2100951949423312 a004 Fibonacci(39)*Lucas(29)/(1/2+sqrt(5)/2)^60 2100951949423312 a004 Fibonacci(37)*Lucas(29)/(1/2+sqrt(5)/2)^58 2100951949423317 a004 Fibonacci(35)*Lucas(29)/(1/2+sqrt(5)/2)^56 2100951949423345 a004 Fibonacci(33)*Lucas(29)/(1/2+sqrt(5)/2)^54 2100951949423370 a001 514229/710647*710647^(1/4) 2100951949423415 a001 105937/29134601*710647^(9/14) 2100951949423543 a004 Fibonacci(31)*Lucas(29)/(1/2+sqrt(5)/2)^52 2100951949423603 a001 24157817/4870847*439204^(1/9) 2100951949423678 a001 63245986/12752043*439204^(1/9) 2100951949423687 a001 416020/930249*(1/2+1/2*5^(1/2))^8 2100951949423687 a001 416020/930249*23725150497407^(1/8) 2100951949423687 a001 416020/930249*505019158607^(1/7) 2100951949423687 a001 416020/930249*73681302247^(2/13) 2100951949423687 a001 692290561600/32951280099 2100951949423687 a001 416020/930249*10749957122^(1/6) 2100951949423687 a001 416020/930249*4106118243^(4/23) 2100951949423687 a001 416020/930249*1568397607^(2/11) 2100951949423687 a001 416020/930249*599074578^(4/21) 2100951949423687 a001 416020/930249*228826127^(1/5) 2100951949423687 a001 416020/930249*87403803^(4/19) 2100951949423687 a001 416020/930249*33385282^(2/9) 2100951949423689 a001 165580141/33385282*439204^(1/9) 2100951949423690 a001 416020/930249*12752043^(4/17) 2100951949423690 a001 433494437/87403803*439204^(1/9) 2100951949423690 a001 1134903170/228826127*439204^(1/9) 2100951949423690 a001 2971215073/599074578*439204^(1/9) 2100951949423691 a001 7778742049/1568397607*439204^(1/9) 2100951949423691 a001 20365011074/4106118243*439204^(1/9) 2100951949423691 a001 53316291173/10749957122*439204^(1/9) 2100951949423691 a001 139583862445/28143753123*439204^(1/9) 2100951949423691 a001 365435296162/73681302247*439204^(1/9) 2100951949423691 a001 956722026041/192900153618*439204^(1/9) 2100951949423691 a001 2504730781961/505019158607*439204^(1/9) 2100951949423691 a001 10610209857723/2139295485799*439204^(1/9) 2100951949423691 a001 4052739537881/817138163596*439204^(1/9) 2100951949423691 a001 140728068720/28374454999*439204^(1/9) 2100951949423691 a001 591286729879/119218851371*439204^(1/9) 2100951949423691 a001 225851433717/45537549124*439204^(1/9) 2100951949423691 a001 86267571272/17393796001*439204^(1/9) 2100951949423691 a001 32951280099/6643838879*439204^(1/9) 2100951949423691 a001 1144206275/230701876*439204^(1/9) 2100951949423691 a001 4807526976/969323029*439204^(1/9) 2100951949423691 a001 1836311903/370248451*439204^(1/9) 2100951949423691 a001 701408733/141422324*439204^(1/9) 2100951949423691 a001 267914296/54018521*439204^(1/9) 2100951949423695 a001 9303105/1875749*439204^(1/9) 2100951949423709 a001 416020/930249*4870847^(1/4) 2100951949423712 a001 317811/228826127*710647^(5/7) 2100951949423724 a001 39088169/7881196*439204^(1/9) 2100951949423849 a001 416020/930249*1860498^(4/15) 2100951949423861 a001 317811/370248451*710647^(3/4) 2100951949423920 a001 14930352/3010349*439204^(1/9) 2100951949424009 a001 377/710646*710647^(11/14) 2100951949424062 a004 Fibonacci(30)*Lucas(31)/(1/2+sqrt(5)/2)^53 2100951949424199 a001 726103/620166*7881196^(2/11) 2100951949424204 a001 832040/4870847*20633239^(2/7) 2100951949424205 a001 726103/620166*141422324^(2/13) 2100951949424205 a001 832040/4870847*2537720636^(2/9) 2100951949424205 a001 726103/620166*2537720636^(2/15) 2100951949424205 a001 726103/620166*45537549124^(2/17) 2100951949424205 a001 832040/4870847*312119004989^(2/11) 2100951949424205 a001 832040/4870847*(1/2+1/2*5^(1/2))^10 2100951949424205 a001 726103/620166*14662949395604^(2/21) 2100951949424205 a001 726103/620166*(1/2+1/2*5^(1/2))^6 2100951949424205 a001 226555027545/10783446409 2100951949424205 a001 832040/4870847*28143753123^(1/5) 2100951949424205 a001 726103/620166*10749957122^(1/8) 2100951949424205 a001 832040/4870847*10749957122^(5/24) 2100951949424205 a001 726103/620166*4106118243^(3/23) 2100951949424205 a001 832040/4870847*4106118243^(5/23) 2100951949424205 a001 726103/620166*1568397607^(3/22) 2100951949424205 a001 832040/4870847*1568397607^(5/22) 2100951949424205 a001 726103/620166*599074578^(1/7) 2100951949424205 a001 832040/4870847*599074578^(5/21) 2100951949424205 a001 726103/620166*228826127^(3/20) 2100951949424205 a001 832040/4870847*228826127^(1/4) 2100951949424205 a001 726103/620166*87403803^(3/19) 2100951949424205 a001 832040/4870847*87403803^(5/19) 2100951949424205 a001 726103/620166*33385282^(1/6) 2100951949424206 a001 832040/4870847*33385282^(5/18) 2100951949424207 a001 726103/620166*12752043^(3/17) 2100951949424209 a001 832040/4870847*12752043^(5/17) 2100951949424222 a001 726103/620166*4870847^(3/16) 2100951949424233 a001 832040/4870847*4870847^(5/16) 2100951949424260 a004 Fibonacci(30)*Lucas(33)/(1/2+sqrt(5)/2)^55 2100951949424263 a001 832040/73681302247*7881196^(10/11) 2100951949424266 a001 832040/17393796001*7881196^(9/11) 2100951949424268 a001 832040/12752043*7881196^(4/11) 2100951949424269 a001 832040/4106118243*7881196^(8/11) 2100951949424271 a001 832040/1568397607*7881196^(2/3) 2100951949424272 a001 832040/969323029*7881196^(7/11) 2100951949424275 a001 832040/228826127*7881196^(6/11) 2100951949424279 a001 832040/54018521*7881196^(5/11) 2100951949424281 a001 832040/12752043*141422324^(4/13) 2100951949424281 a001 832040/12752043*2537720636^(4/15) 2100951949424281 a001 832040/12752043*45537549124^(4/17) 2100951949424281 a001 832040/12752043*(1/2+1/2*5^(1/2))^12 2100951949424281 a001 5702887/1860498*(1/2+1/2*5^(1/2))^4 2100951949424281 a001 5702887/1860498*23725150497407^(1/16) 2100951949424281 a001 4745030099480/225851433717 2100951949424281 a001 5702887/1860498*73681302247^(1/13) 2100951949424281 a001 832040/12752043*73681302247^(3/13) 2100951949424281 a001 5702887/1860498*10749957122^(1/12) 2100951949424281 a001 832040/12752043*10749957122^(1/4) 2100951949424281 a001 5702887/1860498*4106118243^(2/23) 2100951949424281 a001 832040/12752043*4106118243^(6/23) 2100951949424281 a001 5702887/1860498*1568397607^(1/11) 2100951949424281 a001 832040/12752043*1568397607^(3/11) 2100951949424281 a001 5702887/1860498*599074578^(2/21) 2100951949424281 a001 832040/12752043*599074578^(2/7) 2100951949424281 a001 5702887/1860498*228826127^(1/10) 2100951949424281 a001 832040/12752043*228826127^(3/10) 2100951949424281 a001 5702887/1860498*87403803^(2/19) 2100951949424281 a001 832040/12752043*87403803^(6/19) 2100951949424281 a001 5702887/1860498*33385282^(1/9) 2100951949424281 a001 832040/12752043*33385282^(1/3) 2100951949424282 a001 5702887/1860498*12752043^(2/17) 2100951949424285 a001 832040/12752043*12752043^(6/17) 2100951949424289 a004 Fibonacci(30)*Lucas(35)/(1/2+sqrt(5)/2)^57 2100951949424289 a001 832040/73681302247*20633239^(6/7) 2100951949424290 a001 832040/28143753123*20633239^(4/5) 2100951949424290 a001 416020/16692641*20633239^(2/5) 2100951949424290 a001 832040/6643838879*20633239^(5/7) 2100951949424291 a001 832040/969323029*20633239^(3/5) 2100951949424291 a001 416020/299537289*20633239^(4/7) 2100951949424292 a001 416020/16692641*17393796001^(2/7) 2100951949424292 a001 416020/16692641*(1/2+1/2*5^(1/2))^14 2100951949424292 a001 829464/103361*(1/2+1/2*5^(1/2))^2 2100951949424292 a001 12422650078080/591286729879 2100951949424292 a001 829464/103361*10749957122^(1/24) 2100951949424292 a001 416020/16692641*10749957122^(7/24) 2100951949424292 a001 829464/103361*4106118243^(1/23) 2100951949424292 a001 416020/16692641*4106118243^(7/23) 2100951949424292 a001 829464/103361*1568397607^(1/22) 2100951949424292 a001 416020/16692641*1568397607^(7/22) 2100951949424292 a001 829464/103361*599074578^(1/21) 2100951949424292 a001 416020/16692641*599074578^(1/3) 2100951949424292 a001 829464/103361*228826127^(1/20) 2100951949424292 a001 416020/16692641*228826127^(7/20) 2100951949424292 a001 829464/103361*87403803^(1/19) 2100951949424292 a001 5702887/1860498*4870847^(1/8) 2100951949424292 a001 416020/16692641*87403803^(7/19) 2100951949424292 a001 829464/103361*33385282^(1/18) 2100951949424292 a001 832040/54018521*20633239^(3/7) 2100951949424293 a001 416020/16692641*33385282^(7/18) 2100951949424293 a001 829464/103361*12752043^(1/17) 2100951949424293 a004 Fibonacci(30)*Lucas(37)/(1/2+sqrt(5)/2)^59 2100951949424293 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^16/Lucas(38) 2100951949424293 a001 832040/87403803*23725150497407^(1/4) 2100951949424293 a001 39088169/1860498 2100951949424293 a001 832040/87403803*73681302247^(4/13) 2100951949424293 a001 832040/87403803*10749957122^(1/3) 2100951949424293 a001 832040/87403803*4106118243^(8/23) 2100951949424293 a001 832040/87403803*1568397607^(4/11) 2100951949424293 a001 832040/87403803*599074578^(8/21) 2100951949424293 a001 832040/87403803*228826127^(2/5) 2100951949424294 a001 832040/87403803*87403803^(8/19) 2100951949424294 a004 Fibonacci(30)*Lucas(39)/(1/2+sqrt(5)/2)^61 2100951949424294 a001 832040/1322157322203*141422324^(12/13) 2100951949424294 a001 75640/28374454999*141422324^(11/13) 2100951949424294 a001 832040/228826127*141422324^(6/13) 2100951949424294 a001 832040/73681302247*141422324^(10/13) 2100951949424294 a001 832040/17393796001*141422324^(9/13) 2100951949424294 a001 416020/5374978561*141422324^(2/3) 2100951949424294 a001 832040/4106118243*141422324^(8/13) 2100951949424294 a001 832040/969323029*141422324^(7/13) 2100951949424294 a001 832040/228826127*2537720636^(2/5) 2100951949424294 a001 832040/228826127*45537549124^(6/17) 2100951949424294 a001 832040/228826127*14662949395604^(2/7) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^18/Lucas(40) 2100951949424294 a004 Fibonacci(40)/Lucas(30)/(1/2+sqrt(5)/2)^2 2100951949424294 a001 832040/228826127*192900153618^(1/3) 2100951949424294 a001 832040/228826127*10749957122^(3/8) 2100951949424294 a001 832040/228826127*4106118243^(9/23) 2100951949424294 a001 832040/228826127*1568397607^(9/22) 2100951949424294 a001 832040/228826127*599074578^(3/7) 2100951949424294 a001 832040/228826127*228826127^(9/20) 2100951949424294 a004 Fibonacci(30)*Lucas(41)/(1/2+sqrt(5)/2)^63 2100951949424294 a001 416020/299537289*2537720636^(4/9) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^20/Lucas(42) 2100951949424294 a001 416020/299537289*23725150497407^(5/16) 2100951949424294 a001 222915410843840/10610209857723 2100951949424294 a004 Fibonacci(42)/Lucas(30)/(1/2+sqrt(5)/2)^4 2100951949424294 a001 416020/299537289*73681302247^(5/13) 2100951949424294 a001 416020/299537289*28143753123^(2/5) 2100951949424294 a001 416020/299537289*10749957122^(5/12) 2100951949424294 a001 416020/299537289*4106118243^(10/23) 2100951949424294 a001 416020/299537289*1568397607^(5/11) 2100951949424294 a001 416020/299537289*599074578^(10/21) 2100951949424294 a004 Fibonacci(30)*Lucas(43)/(1/2+sqrt(5)/2)^65 2100951949424294 a001 832040/1568397607*312119004989^(2/5) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^22/Lucas(44) 2100951949424294 a004 Fibonacci(44)/Lucas(30)/(1/2+sqrt(5)/2)^6 2100951949424294 a001 832040/1568397607*10749957122^(11/24) 2100951949424294 a001 832040/1568397607*4106118243^(11/23) 2100951949424294 a001 832040/1568397607*1568397607^(1/2) 2100951949424294 a004 Fibonacci(30)*Lucas(45)/(1/2+sqrt(5)/2)^67 2100951949424294 a001 832040/23725150497407*2537720636^(14/15) 2100951949424294 a001 832040/4106118243*2537720636^(8/15) 2100951949424294 a001 832040/9062201101803*2537720636^(8/9) 2100951949424294 a001 832040/5600748293801*2537720636^(13/15) 2100951949424294 a001 832040/1322157322203*2537720636^(4/5) 2100951949424294 a001 208010/204284540899*2537720636^(7/9) 2100951949424294 a001 75640/28374454999*2537720636^(11/15) 2100951949424294 a001 832040/73681302247*2537720636^(2/3) 2100951949424294 a001 832040/17393796001*2537720636^(3/5) 2100951949424294 a001 832040/6643838879*2537720636^(5/9) 2100951949424294 a001 832040/4106118243*45537549124^(8/17) 2100951949424294 a001 832040/4106118243*14662949395604^(8/21) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^24/Lucas(46) 2100951949424294 a004 Fibonacci(46)/Lucas(30)/(1/2+sqrt(5)/2)^8 2100951949424294 a001 832040/4106118243*192900153618^(4/9) 2100951949424294 a001 832040/4106118243*73681302247^(6/13) 2100951949424294 a001 832040/4106118243*10749957122^(1/2) 2100951949424294 a001 832040/4106118243*4106118243^(12/23) 2100951949424294 a004 Fibonacci(30)*Lucas(47)/(1/2+sqrt(5)/2)^69 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^26/Lucas(48) 2100951949424294 a004 Fibonacci(48)/Lucas(30)/(1/2+sqrt(5)/2)^10 2100951949424294 a001 416020/5374978561*73681302247^(1/2) 2100951949424294 a001 416020/5374978561*10749957122^(13/24) 2100951949424294 a004 Fibonacci(30)*Lucas(49)/(1/2+sqrt(5)/2)^71 2100951949424294 a001 832040/28143753123*17393796001^(4/7) 2100951949424294 a001 832040/23725150497407*17393796001^(6/7) 2100951949424294 a001 208010/204284540899*17393796001^(5/7) 2100951949424294 a001 832040/28143753123*14662949395604^(4/9) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^28/Lucas(50) 2100951949424294 a004 Fibonacci(50)/Lucas(30)/(1/2+sqrt(5)/2)^12 2100951949424294 a001 832040/28143753123*73681302247^(7/13) 2100951949424294 a004 Fibonacci(30)*Lucas(51)/(1/2+sqrt(5)/2)^73 2100951949424294 a001 832040/73681302247*45537549124^(10/17) 2100951949424294 a001 832040/23725150497407*45537549124^(14/17) 2100951949424294 a001 832040/5600748293801*45537549124^(13/17) 2100951949424294 a001 832040/1322157322203*45537549124^(12/17) 2100951949424294 a001 832040/505019158607*45537549124^(2/3) 2100951949424294 a001 75640/28374454999*45537549124^(11/17) 2100951949424294 a001 832040/73681302247*312119004989^(6/11) 2100951949424294 a001 832040/73681302247*14662949395604^(10/21) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^30/Lucas(52) 2100951949424294 a004 Fibonacci(52)/Lucas(30)/(1/2+sqrt(5)/2)^14 2100951949424294 a001 832040/73681302247*192900153618^(5/9) 2100951949424294 a004 Fibonacci(30)*Lucas(53)/(1/2+sqrt(5)/2)^75 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^32/Lucas(54) 2100951949424294 a001 416020/96450076809*23725150497407^(1/2) 2100951949424294 a004 Fibonacci(54)/Lucas(30)/(1/2+sqrt(5)/2)^16 2100951949424294 a001 416020/96450076809*505019158607^(4/7) 2100951949424294 a004 Fibonacci(30)*Lucas(55)/(1/2+sqrt(5)/2)^77 2100951949424294 a001 208010/204284540899*312119004989^(7/11) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^34/Lucas(56) 2100951949424294 a004 Fibonacci(56)/Lucas(30)/(1/2+sqrt(5)/2)^18 2100951949424294 a004 Fibonacci(30)*Lucas(57)/(1/2+sqrt(5)/2)^79 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^36/Lucas(58) 2100951949424294 a004 Fibonacci(58)/Lucas(30)/(1/2+sqrt(5)/2)^20 2100951949424294 a004 Fibonacci(30)*Lucas(59)/(1/2+sqrt(5)/2)^81 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^38/Lucas(60) 2100951949424294 a004 Fibonacci(30)*Lucas(61)/(1/2+sqrt(5)/2)^83 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^40/Lucas(62) 2100951949424294 a004 Fibonacci(30)*Lucas(63)/(1/2+sqrt(5)/2)^85 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^42/Lucas(64) 2100951949424294 a004 Fibonacci(30)*Lucas(65)/(1/2+sqrt(5)/2)^87 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^44/Lucas(66) 2100951949424294 a004 Fibonacci(30)*Lucas(67)/(1/2+sqrt(5)/2)^89 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^46/Lucas(68) 2100951949424294 a004 Fibonacci(30)*Lucas(69)/(1/2+sqrt(5)/2)^91 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^48/Lucas(70) 2100951949424294 a004 Fibonacci(30)*Lucas(71)/(1/2+sqrt(5)/2)^93 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^50/Lucas(72) 2100951949424294 a004 Fibonacci(30)*Lucas(73)/(1/2+sqrt(5)/2)^95 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^52/Lucas(74) 2100951949424294 a004 Fibonacci(30)*Lucas(75)/(1/2+sqrt(5)/2)^97 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^54/Lucas(76) 2100951949424294 a004 Fibonacci(30)*Lucas(77)/(1/2+sqrt(5)/2)^99 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^56/Lucas(78) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^58/Lucas(80) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^60/Lucas(82) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^62/Lucas(84) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^64/Lucas(86) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^66/Lucas(88) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^68/Lucas(90) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^70/Lucas(92) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^72/Lucas(94) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^74/Lucas(96) 2100951949424294 a004 Fibonacci(15)*Lucas(15)/(1/2+sqrt(5)/2)^22 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^76/Lucas(98) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^77/Lucas(99) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^78/Lucas(100) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^75/Lucas(97) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^73/Lucas(95) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^71/Lucas(93) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^69/Lucas(91) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^67/Lucas(89) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^65/Lucas(87) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^63/Lucas(85) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^61/Lucas(83) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^59/Lucas(81) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^57/Lucas(79) 2100951949424294 a004 Fibonacci(30)*Lucas(78)/(1/2+sqrt(5)/2)^100 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^55/Lucas(77) 2100951949424294 a004 Fibonacci(30)*Lucas(76)/(1/2+sqrt(5)/2)^98 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^53/Lucas(75) 2100951949424294 a004 Fibonacci(30)*Lucas(74)/(1/2+sqrt(5)/2)^96 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^51/Lucas(73) 2100951949424294 a004 Fibonacci(30)*Lucas(72)/(1/2+sqrt(5)/2)^94 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^49/Lucas(71) 2100951949424294 a004 Fibonacci(30)*Lucas(70)/(1/2+sqrt(5)/2)^92 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^47/Lucas(69) 2100951949424294 a004 Fibonacci(30)*Lucas(68)/(1/2+sqrt(5)/2)^90 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^45/Lucas(67) 2100951949424294 a004 Fibonacci(30)*Lucas(66)/(1/2+sqrt(5)/2)^88 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^43/Lucas(65) 2100951949424294 a004 Fibonacci(30)*Lucas(64)/(1/2+sqrt(5)/2)^86 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^41/Lucas(63) 2100951949424294 a004 Fibonacci(30)*Lucas(62)/(1/2+sqrt(5)/2)^84 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^39/Lucas(61) 2100951949424294 a004 Fibonacci(62)/Lucas(30)/(1/2+sqrt(5)/2)^24 2100951949424294 a004 Fibonacci(64)/Lucas(30)/(1/2+sqrt(5)/2)^26 2100951949424294 a004 Fibonacci(66)/Lucas(30)/(1/2+sqrt(5)/2)^28 2100951949424294 a004 Fibonacci(68)/Lucas(30)/(1/2+sqrt(5)/2)^30 2100951949424294 a004 Fibonacci(70)/Lucas(30)/(1/2+sqrt(5)/2)^32 2100951949424294 a004 Fibonacci(72)/Lucas(30)/(1/2+sqrt(5)/2)^34 2100951949424294 a004 Fibonacci(74)/Lucas(30)/(1/2+sqrt(5)/2)^36 2100951949424294 a004 Fibonacci(76)/Lucas(30)/(1/2+sqrt(5)/2)^38 2100951949424294 a004 Fibonacci(78)/Lucas(30)/(1/2+sqrt(5)/2)^40 2100951949424294 a004 Fibonacci(80)/Lucas(30)/(1/2+sqrt(5)/2)^42 2100951949424294 a004 Fibonacci(82)/Lucas(30)/(1/2+sqrt(5)/2)^44 2100951949424294 a004 Fibonacci(84)/Lucas(30)/(1/2+sqrt(5)/2)^46 2100951949424294 a004 Fibonacci(86)/Lucas(30)/(1/2+sqrt(5)/2)^48 2100951949424294 a004 Fibonacci(88)/Lucas(30)/(1/2+sqrt(5)/2)^50 2100951949424294 a004 Fibonacci(90)/Lucas(30)/(1/2+sqrt(5)/2)^52 2100951949424294 a004 Fibonacci(92)/Lucas(30)/(1/2+sqrt(5)/2)^54 2100951949424294 a004 Fibonacci(94)/Lucas(30)/(1/2+sqrt(5)/2)^56 2100951949424294 a004 Fibonacci(96)/Lucas(30)/(1/2+sqrt(5)/2)^58 2100951949424294 a004 Fibonacci(100)/Lucas(30)/(1/2+sqrt(5)/2)^62 2100951949424294 a004 Fibonacci(30)*Lucas(60)/(1/2+sqrt(5)/2)^82 2100951949424294 a004 Fibonacci(98)/Lucas(30)/(1/2+sqrt(5)/2)^60 2100951949424294 a004 Fibonacci(99)/Lucas(30)/(1/2+sqrt(5)/2)^61 2100951949424294 a004 Fibonacci(97)/Lucas(30)/(1/2+sqrt(5)/2)^59 2100951949424294 a004 Fibonacci(95)/Lucas(30)/(1/2+sqrt(5)/2)^57 2100951949424294 a004 Fibonacci(93)/Lucas(30)/(1/2+sqrt(5)/2)^55 2100951949424294 a004 Fibonacci(91)/Lucas(30)/(1/2+sqrt(5)/2)^53 2100951949424294 a004 Fibonacci(89)/Lucas(30)/(1/2+sqrt(5)/2)^51 2100951949424294 a004 Fibonacci(87)/Lucas(30)/(1/2+sqrt(5)/2)^49 2100951949424294 a004 Fibonacci(85)/Lucas(30)/(1/2+sqrt(5)/2)^47 2100951949424294 a004 Fibonacci(83)/Lucas(30)/(1/2+sqrt(5)/2)^45 2100951949424294 a004 Fibonacci(81)/Lucas(30)/(1/2+sqrt(5)/2)^43 2100951949424294 a004 Fibonacci(79)/Lucas(30)/(1/2+sqrt(5)/2)^41 2100951949424294 a004 Fibonacci(77)/Lucas(30)/(1/2+sqrt(5)/2)^39 2100951949424294 a004 Fibonacci(75)/Lucas(30)/(1/2+sqrt(5)/2)^37 2100951949424294 a004 Fibonacci(73)/Lucas(30)/(1/2+sqrt(5)/2)^35 2100951949424294 a004 Fibonacci(71)/Lucas(30)/(1/2+sqrt(5)/2)^33 2100951949424294 a004 Fibonacci(69)/Lucas(30)/(1/2+sqrt(5)/2)^31 2100951949424294 a004 Fibonacci(67)/Lucas(30)/(1/2+sqrt(5)/2)^29 2100951949424294 a004 Fibonacci(65)/Lucas(30)/(1/2+sqrt(5)/2)^27 2100951949424294 a004 Fibonacci(63)/Lucas(30)/(1/2+sqrt(5)/2)^25 2100951949424294 a004 Fibonacci(61)/Lucas(30)/(1/2+sqrt(5)/2)^23 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^37/Lucas(59) 2100951949424294 a004 Fibonacci(59)/Lucas(30)/(1/2+sqrt(5)/2)^21 2100951949424294 a004 Fibonacci(30)*Lucas(58)/(1/2+sqrt(5)/2)^80 2100951949424294 a001 208010/204284540899*14662949395604^(5/9) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^35/Lucas(57) 2100951949424294 a004 Fibonacci(57)/Lucas(30)/(1/2+sqrt(5)/2)^19 2100951949424294 a004 Fibonacci(30)*Lucas(56)/(1/2+sqrt(5)/2)^78 2100951949424294 a001 208010/204284540899*505019158607^(5/8) 2100951949424294 a001 75640/28374454999*312119004989^(3/5) 2100951949424294 a001 75640/28374454999*14662949395604^(11/21) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^33/Lucas(55) 2100951949424294 a004 Fibonacci(55)/Lucas(30)/(1/2+sqrt(5)/2)^17 2100951949424294 a001 832040/1322157322203*192900153618^(2/3) 2100951949424294 a001 75640/28374454999*192900153618^(11/18) 2100951949424294 a004 Fibonacci(30)*Lucas(54)/(1/2+sqrt(5)/2)^76 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^31/Lucas(53) 2100951949424294 a001 832040/119218851371*9062201101803^(1/2) 2100951949424294 a004 Fibonacci(53)/Lucas(30)/(1/2+sqrt(5)/2)^15 2100951949424294 a001 416020/96450076809*73681302247^(8/13) 2100951949424294 a001 832040/1322157322203*73681302247^(9/13) 2100951949424294 a001 832040/5600748293801*73681302247^(3/4) 2100951949424294 a004 Fibonacci(30)*Lucas(52)/(1/2+sqrt(5)/2)^74 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^29/Lucas(51) 2100951949424294 a004 Fibonacci(51)/Lucas(30)/(1/2+sqrt(5)/2)^13 2100951949424294 a001 208010/11384387281*1322157322203^(1/2) 2100951949424294 a001 832040/73681302247*28143753123^(3/5) 2100951949424294 a001 208010/204284540899*28143753123^(7/10) 2100951949424294 a001 832040/9062201101803*28143753123^(4/5) 2100951949424294 a004 Fibonacci(30)*Lucas(50)/(1/2+sqrt(5)/2)^72 2100951949424294 a001 832040/17393796001*45537549124^(9/17) 2100951949424294 a001 832040/17393796001*817138163596^(9/19) 2100951949424294 a001 832040/17393796001*14662949395604^(3/7) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^27/Lucas(49) 2100951949424294 a004 Fibonacci(49)/Lucas(30)/(1/2+sqrt(5)/2)^11 2100951949424294 a001 832040/17393796001*192900153618^(1/2) 2100951949424294 a001 832040/28143753123*10749957122^(7/12) 2100951949424294 a001 832040/73681302247*10749957122^(5/8) 2100951949424294 a001 416020/96450076809*10749957122^(2/3) 2100951949424294 a001 75640/28374454999*10749957122^(11/16) 2100951949424294 a001 832040/505019158607*10749957122^(17/24) 2100951949424294 a001 832040/1322157322203*10749957122^(3/4) 2100951949424294 a001 416020/1730726404001*10749957122^(19/24) 2100951949424294 a001 832040/5600748293801*10749957122^(13/16) 2100951949424294 a001 832040/9062201101803*10749957122^(5/6) 2100951949424294 a001 832040/23725150497407*10749957122^(7/8) 2100951949424294 a001 832040/17393796001*10749957122^(9/16) 2100951949424294 a004 Fibonacci(30)*Lucas(48)/(1/2+sqrt(5)/2)^70 2100951949424294 a001 832040/6643838879*312119004989^(5/11) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^25/Lucas(47) 2100951949424294 a001 832040/6643838879*3461452808002^(5/12) 2100951949424294 a004 Fibonacci(47)/Lucas(30)/(1/2+sqrt(5)/2)^9 2100951949424294 a001 832040/6643838879*28143753123^(1/2) 2100951949424294 a001 416020/5374978561*4106118243^(13/23) 2100951949424294 a001 832040/28143753123*4106118243^(14/23) 2100951949424294 a001 832040/73681302247*4106118243^(15/23) 2100951949424294 a001 416020/96450076809*4106118243^(16/23) 2100951949424294 a001 832040/505019158607*4106118243^(17/23) 2100951949424294 a001 832040/1322157322203*4106118243^(18/23) 2100951949424294 a001 416020/1730726404001*4106118243^(19/23) 2100951949424294 a001 832040/9062201101803*4106118243^(20/23) 2100951949424294 a001 832040/23725150497407*4106118243^(21/23) 2100951949424294 a004 Fibonacci(30)*Lucas(46)/(1/2+sqrt(5)/2)^68 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^23/Lucas(45) 2100951949424294 a004 Fibonacci(45)/Lucas(30)/(1/2+sqrt(5)/2)^7 2100951949424294 a001 832040/4106118243*1568397607^(6/11) 2100951949424294 a001 610/1860499*4106118243^(1/2) 2100951949424294 a001 416020/5374978561*1568397607^(13/22) 2100951949424294 a001 832040/28143753123*1568397607^(7/11) 2100951949424294 a001 832040/73681302247*1568397607^(15/22) 2100951949424294 a001 416020/96450076809*1568397607^(8/11) 2100951949424294 a001 75640/28374454999*1568397607^(3/4) 2100951949424294 a001 832040/505019158607*1568397607^(17/22) 2100951949424294 a001 832040/1322157322203*1568397607^(9/11) 2100951949424294 a001 416020/1730726404001*1568397607^(19/22) 2100951949424294 a001 832040/9062201101803*1568397607^(10/11) 2100951949424294 a001 832040/23725150497407*1568397607^(21/22) 2100951949424294 a004 Fibonacci(30)*Lucas(44)/(1/2+sqrt(5)/2)^66 2100951949424294 a001 832040/969323029*2537720636^(7/15) 2100951949424294 a001 832040/1568397607*599074578^(11/21) 2100951949424294 a001 832040/969323029*17393796001^(3/7) 2100951949424294 a001 832040/969323029*45537549124^(7/17) 2100951949424294 a001 832040/969323029*14662949395604^(1/3) 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^21/Lucas(43) 2100951949424294 a004 Fibonacci(43)/Lucas(30)/(1/2+sqrt(5)/2)^5 2100951949424294 a001 832040/969323029*192900153618^(7/18) 2100951949424294 a001 832040/969323029*10749957122^(7/16) 2100951949424294 a001 832040/4106118243*599074578^(4/7) 2100951949424294 a001 416020/5374978561*599074578^(13/21) 2100951949424294 a001 832040/17393796001*599074578^(9/14) 2100951949424294 a001 832040/28143753123*599074578^(2/3) 2100951949424294 a001 832040/73681302247*599074578^(5/7) 2100951949424294 a001 416020/96450076809*599074578^(16/21) 2100951949424294 a001 75640/28374454999*599074578^(11/14) 2100951949424294 a001 832040/505019158607*599074578^(17/21) 2100951949424294 a001 208010/204284540899*599074578^(5/6) 2100951949424294 a001 832040/1322157322203*599074578^(6/7) 2100951949424294 a001 832040/969323029*599074578^(1/2) 2100951949424294 a001 416020/1730726404001*599074578^(19/21) 2100951949424294 a001 832040/5600748293801*599074578^(13/14) 2100951949424294 a001 832040/9062201101803*599074578^(20/21) 2100951949424294 a004 Fibonacci(30)*Lucas(42)/(1/2+sqrt(5)/2)^64 2100951949424294 a001 416020/299537289*228826127^(1/2) 2100951949424294 a001 68884650258820/3278735159921 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^19/Lucas(41) 2100951949424294 a004 Fibonacci(41)/Lucas(30)/(1/2+sqrt(5)/2)^3 2100951949424294 a001 832040/1568397607*228826127^(11/20) 2100951949424294 a001 832040/4106118243*228826127^(3/5) 2100951949424294 a001 832040/6643838879*228826127^(5/8) 2100951949424294 a001 416020/5374978561*228826127^(13/20) 2100951949424294 a001 832040/28143753123*228826127^(7/10) 2100951949424294 a001 832040/73681302247*228826127^(3/4) 2100951949424294 a001 416020/96450076809*228826127^(4/5) 2100951949424294 a001 832040/505019158607*228826127^(17/20) 2100951949424294 a001 208010/204284540899*228826127^(7/8) 2100951949424294 a001 832040/1322157322203*228826127^(9/10) 2100951949424294 a001 416020/1730726404001*228826127^(19/20) 2100951949424294 a004 Fibonacci(30)*Lucas(40)/(1/2+sqrt(5)/2)^62 2100951949424294 a001 832040/228826127*87403803^(9/19) 2100951949424294 a001 208010/35355581*45537549124^(1/3) 2100951949424294 a001 52623190191440/2504730781961 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^17/Lucas(39) 2100951949424294 a004 Fibonacci(39)/Lucas(30)/(1/2+sqrt(5)/2) 2100951949424294 a001 416020/299537289*87403803^(10/19) 2100951949424294 a001 832040/370248451*87403803^(1/2) 2100951949424294 a001 832040/1568397607*87403803^(11/19) 2100951949424294 a001 832040/4106118243*87403803^(12/19) 2100951949424294 a001 416020/5374978561*87403803^(13/19) 2100951949424294 a001 832040/28143753123*87403803^(14/19) 2100951949424294 a001 832040/73681302247*87403803^(15/19) 2100951949424294 a001 416020/96450076809*87403803^(16/19) 2100951949424294 a001 832040/505019158607*87403803^(17/19) 2100951949424294 a001 832040/1322157322203*87403803^(18/19) 2100951949424294 a004 Fibonacci(30)*Lucas(38)/(1/2+sqrt(5)/2)^60 2100951949424294 a001 832040/87403803*33385282^(4/9) 2100951949424294 a001 832040/54018521*141422324^(5/13) 2100951949424294 a001 832040/54018521*2537720636^(1/3) 2100951949424294 a001 832040/54018521*45537549124^(5/17) 2100951949424294 a001 20100270056680/956722026041 2100951949424294 a004 Fibonacci(30)*(1/2+sqrt(5)/2)^15/Lucas(37) 2100951949424294 a001 24157817/3720996+24157817/3720996*5^(1/2) 2100951949424294 a001 832040/54018521*192900153618^(5/18) 2100951949424294 a001 832040/54018521*28143753123^(3/10) 2100951949424294 a001 832040/54018521*10749957122^(5/16) 2100951949424294 a001 832040/54018521*599074578^(5/14) 2100951949424294 a001 832040/54018521*228826127^(3/8) 2100951949424295 a001 832040/228826127*33385282^(1/2) 2100951949424295 a001 416020/299537289*33385282^(5/9) 2100951949424295 a001 832040/969323029*33385282^(7/12) 2100951949424295 a001 832040/1568397607*33385282^(11/18) 2100951949424295 a001 832040/4106118243*33385282^(2/3) 2100951949424295 a001 416020/5374978561*33385282^(13/18) 2100951949424295 a001 832040/17393796001*33385282^(3/4) 2100951949424295 a001 832040/28143753123*33385282^(7/9) 2100951949424295 a001 832040/54018521*33385282^(5/12) 2100951949424295 a001 832040/73681302247*33385282^(5/6) 2100951949424295 a001 416020/96450076809*33385282^(8/9) 2100951949424295 a001 75640/28374454999*33385282^(11/12) 2100951949424295 a001 832040/505019158607*33385282^(17/18) 2100951949424296 a001 9227465/1860498*7881196^(1/11) 2100951949424296 a004 Fibonacci(30)*Lucas(36)/(1/2+sqrt(5)/2)^58 2100951949424297 a001 416020/16692641*12752043^(7/17) 2100951949424297 a001 829464/103361*4870847^(1/16) 2100951949424299 a001 75640/1875749*141422324^(1/3) 2100951949424299 a001 9227465/1860498*141422324^(1/13) 2100951949424299 a001 9227465/1860498*2537720636^(1/15) 2100951949424299 a001 9227465/1860498*45537549124^(1/17) 2100951949424299 a001 3838809989300/182717648081 2100951949424299 a001 75640/1875749*(1/2+1/2*5^(1/2))^13 2100951949424299 a001 9227465/1860498*(1/2+1/2*5^(1/2))^3 2100951949424299 a001 9227465/1860498*192900153618^(1/18) 2100951949424299 a001 75640/1875749*73681302247^(1/4) 2100951949424299 a001 9227465/1860498*10749957122^(1/16) 2100951949424299 a001 9227465/1860498*599074578^(1/14) 2100951949424299 a001 9227465/1860498*33385282^(1/12) 2100951949424300 a001 832040/87403803*12752043^(8/17) 2100951949424300 a001 208010/35355581*12752043^(1/2) 2100951949424301 a001 832040/228826127*12752043^(9/17) 2100951949424301 a001 1346269/1149851*439204^(2/9) 2100951949424301 a001 416020/299537289*12752043^(10/17) 2100951949424302 a001 832040/1568397607*12752043^(11/17) 2100951949424303 a001 832040/4106118243*12752043^(12/17) 2100951949424304 a001 416020/5374978561*12752043^(13/17) 2100951949424304 a001 832040/28143753123*12752043^(14/17) 2100951949424305 a001 832040/73681302247*12752043^(15/17) 2100951949424306 a001 416020/96450076809*12752043^(16/17) 2100951949424306 a001 317811/1568397607*710647^(6/7) 2100951949424307 a004 Fibonacci(30)*Lucas(34)/(1/2+sqrt(5)/2)^56 2100951949424314 a001 832040/12752043*4870847^(3/8) 2100951949424316 a001 208010/1970299*7881196^(1/3) 2100951949424327 a001 726103/620166*1860498^(1/5) 2100951949424327 a001 1762289/930249*20633239^(1/7) 2100951949424328 a001 1762289/930249*2537720636^(1/9) 2100951949424328 a001 6590089616/313671601 2100951949424328 a001 208010/1970299*312119004989^(1/5) 2100951949424328 a001 1762289/930249*312119004989^(1/11) 2100951949424328 a001 208010/1970299*(1/2+1/2*5^(1/2))^11 2100951949424328 a001 1762289/930249*(1/2+1/2*5^(1/2))^5 2100951949424328 a001 1762289/930249*28143753123^(1/10) 2100951949424328 a001 208010/1970299*1568397607^(1/4) 2100951949424328 a001 1762289/930249*228826127^(1/8) 2100951949424331 a001 416020/16692641*4870847^(7/16) 2100951949424332 a001 829464/103361*1860498^(1/15) 2100951949424338 a001 832040/87403803*4870847^(1/2) 2100951949424343 a001 832040/228826127*4870847^(9/16) 2100951949424349 a001 416020/299537289*4870847^(5/8) 2100951949424355 a001 832040/1568397607*4870847^(11/16) 2100951949424359 a001 9227465/1860498*1860498^(1/10) 2100951949424360 a001 832040/4106118243*4870847^(3/4) 2100951949424362 a001 5702887/1860498*1860498^(2/15) 2100951949424366 a001 416020/5374978561*4870847^(13/16) 2100951949424371 a001 832040/28143753123*4870847^(7/8) 2100951949424377 a001 832040/73681302247*4870847^(15/16) 2100951949424382 a004 Fibonacci(30)*Lucas(32)/(1/2+sqrt(5)/2)^54 2100951949424407 a001 832040/4870847*1860498^(1/3) 2100951949424429 a001 1762289/930249*1860498^(1/6) 2100951949424516 a001 832040/3010349*7881196^(3/11) 2100951949424524 a001 832040/12752043*1860498^(2/5) 2100951949424525 a001 1346269/1860498*20633239^(1/5) 2100951949424526 a001 832040/3010349*141422324^(3/13) 2100951949424526 a001 832040/3010349*2537720636^(1/5) 2100951949424526 a001 1346269/1860498*17393796001^(1/7) 2100951949424526 a001 832040/3010349*45537549124^(3/17) 2100951949424526 a001 1120149658760/53316291173 2100951949424526 a001 832040/3010349*(1/2+1/2*5^(1/2))^9 2100951949424526 a001 1346269/1860498*14662949395604^(1/9) 2100951949424526 a001 1346269/1860498*(1/2+1/2*5^(1/2))^7 2100951949424526 a001 832040/3010349*192900153618^(1/6) 2100951949424526 a001 832040/3010349*10749957122^(3/16) 2100951949424526 a001 1346269/1860498*599074578^(1/6) 2100951949424526 a001 832040/3010349*599074578^(3/14) 2100951949424526 a001 832040/3010349*33385282^(1/4) 2100951949424575 a001 416020/16692641*1860498^(7/15) 2100951949424580 a004 Fibonacci(32)*Lucas(31)/(1/2+sqrt(5)/2)^55 2100951949424589 a001 829464/103361*710647^(1/14) 2100951949424598 a001 832040/54018521*1860498^(1/2) 2100951949424604 a001 105937/1368706081*710647^(13/14) 2100951949424617 a001 832040/87403803*1860498^(8/15) 2100951949424656 a004 Fibonacci(34)*Lucas(31)/(1/2+sqrt(5)/2)^57 2100951949424658 a001 832040/228826127*1860498^(3/5) 2100951949424667 a004 Fibonacci(36)*Lucas(31)/(1/2+sqrt(5)/2)^59 2100951949424669 a004 Fibonacci(38)*Lucas(31)/(1/2+sqrt(5)/2)^61 2100951949424669 a004 Fibonacci(40)*Lucas(31)/(1/2+sqrt(5)/2)^63 2100951949424669 a004 Fibonacci(42)*Lucas(31)/(1/2+sqrt(5)/2)^65 2100951949424669 a004 Fibonacci(44)*Lucas(31)/(1/2+sqrt(5)/2)^67 2100951949424669 a004 Fibonacci(46)*Lucas(31)/(1/2+sqrt(5)/2)^69 2100951949424669 a004 Fibonacci(48)*Lucas(31)/(1/2+sqrt(5)/2)^71 2100951949424669 a004 Fibonacci(50)*Lucas(31)/(1/2+sqrt(5)/2)^73 2100951949424669 a004 Fibonacci(52)*Lucas(31)/(1/2+sqrt(5)/2)^75 2100951949424669 a004 Fibonacci(54)*Lucas(31)/(1/2+sqrt(5)/2)^77 2100951949424669 a004 Fibonacci(56)*Lucas(31)/(1/2+sqrt(5)/2)^79 2100951949424669 a004 Fibonacci(58)*Lucas(31)/(1/2+sqrt(5)/2)^81 2100951949424669 a004 Fibonacci(60)*Lucas(31)/(1/2+sqrt(5)/2)^83 2100951949424669 a004 Fibonacci(62)*Lucas(31)/(1/2+sqrt(5)/2)^85 2100951949424669 a004 Fibonacci(64)*Lucas(31)/(1/2+sqrt(5)/2)^87 2100951949424669 a004 Fibonacci(66)*Lucas(31)/(1/2+sqrt(5)/2)^89 2100951949424669 a004 Fibonacci(68)*Lucas(31)/(1/2+sqrt(5)/2)^91 2100951949424669 a004 Fibonacci(70)*Lucas(31)/(1/2+sqrt(5)/2)^93 2100951949424669 a004 Fibonacci(72)*Lucas(31)/(1/2+sqrt(5)/2)^95 2100951949424669 a004 Fibonacci(74)*Lucas(31)/(1/2+sqrt(5)/2)^97 2100951949424669 a004 Fibonacci(76)*Lucas(31)/(1/2+sqrt(5)/2)^99 2100951949424669 a004 Fibonacci(77)*Lucas(31)/(1/2+sqrt(5)/2)^100 2100951949424669 a004 Fibonacci(75)*Lucas(31)/(1/2+sqrt(5)/2)^98 2100951949424669 a004 Fibonacci(73)*Lucas(31)/(1/2+sqrt(5)/2)^96 2100951949424669 a004 Fibonacci(71)*Lucas(31)/(1/2+sqrt(5)/2)^94 2100951949424669 a004 Fibonacci(69)*Lucas(31)/(1/2+sqrt(5)/2)^92 2100951949424669 a004 Fibonacci(67)*Lucas(31)/(1/2+sqrt(5)/2)^90 2100951949424669 a004 Fibonacci(65)*Lucas(31)/(1/2+sqrt(5)/2)^88 2100951949424669 a004 Fibonacci(63)*Lucas(31)/(1/2+sqrt(5)/2)^86 2100951949424669 a001 2/1346269*(1/2+1/2*5^(1/2))^39 2100951949424669 a004 Fibonacci(61)*Lucas(31)/(1/2+sqrt(5)/2)^84 2100951949424669 a004 Fibonacci(59)*Lucas(31)/(1/2+sqrt(5)/2)^82 2100951949424669 a004 Fibonacci(57)*Lucas(31)/(1/2+sqrt(5)/2)^80 2100951949424669 a004 Fibonacci(55)*Lucas(31)/(1/2+sqrt(5)/2)^78 2100951949424669 a004 Fibonacci(53)*Lucas(31)/(1/2+sqrt(5)/2)^76 2100951949424669 a004 Fibonacci(51)*Lucas(31)/(1/2+sqrt(5)/2)^74 2100951949424669 a004 Fibonacci(49)*Lucas(31)/(1/2+sqrt(5)/2)^72 2100951949424669 a004 Fibonacci(47)*Lucas(31)/(1/2+sqrt(5)/2)^70 2100951949424669 a004 Fibonacci(45)*Lucas(31)/(1/2+sqrt(5)/2)^68 2100951949424669 a004 Fibonacci(43)*Lucas(31)/(1/2+sqrt(5)/2)^66 2100951949424669 a004 Fibonacci(41)*Lucas(31)/(1/2+sqrt(5)/2)^64 2100951949424669 a004 Fibonacci(39)*Lucas(31)/(1/2+sqrt(5)/2)^62 2100951949424670 a004 Fibonacci(37)*Lucas(31)/(1/2+sqrt(5)/2)^60 2100951949424674 a004 Fibonacci(35)*Lucas(31)/(1/2+sqrt(5)/2)^58 2100951949424698 a001 416020/299537289*1860498^(2/3) 2100951949424703 a004 Fibonacci(33)*Lucas(31)/(1/2+sqrt(5)/2)^56 2100951949424708 a001 832040/3010349*1860498^(3/10) 2100951949424719 a001 832040/969323029*1860498^(7/10) 2100951949424724 a001 2178309/4870847*(1/2+1/2*5^(1/2))^8 2100951949424724 a001 2178309/4870847*23725150497407^(1/8) 2100951949424724 a001 2178309/4870847*505019158607^(1/7) 2100951949424724 a001 2178309/4870847*73681302247^(2/13) 2100951949424724 a001 2178309/4870847*10749957122^(1/6) 2100951949424724 a001 2178309/4870847*4106118243^(4/23) 2100951949424724 a001 2178309/4870847*1568397607^(2/11) 2100951949424724 a001 2178309/4870847*599074578^(4/21) 2100951949424724 a001 2178309/4870847*228826127^(1/5) 2100951949424724 a001 2178309/4870847*87403803^(4/19) 2100951949424724 a001 2178309/4870847*33385282^(2/9) 2100951949424727 a001 2178309/4870847*12752043^(4/17) 2100951949424739 a001 832040/1568397607*1860498^(11/15) 2100951949424746 a001 2178309/4870847*4870847^(1/4) 2100951949424778 a004 Fibonacci(32)*Lucas(33)/(1/2+sqrt(5)/2)^57 2100951949424779 a001 832040/4106118243*1860498^(4/5) 2100951949424781 a001 726103/64300051206*7881196^(10/11) 2100951949424784 a001 2178309/45537549124*7881196^(9/11) 2100951949424788 a001 987/4870846*7881196^(8/11) 2100951949424790 a001 726103/1368706081*7881196^(2/3) 2100951949424791 a001 2178309/2537720636*7881196^(7/11) 2100951949424793 a001 5702887/4870847*7881196^(2/11) 2100951949424794 a001 726103/199691526*7881196^(6/11) 2100951949424797 a001 2178309/141422324*7881196^(5/11) 2100951949424798 a001 726103/4250681*20633239^(2/7) 2100951949424798 a001 311187/4769326*7881196^(4/11) 2100951949424799 a001 5702887/4870847*141422324^(2/13) 2100951949424799 a001 726103/4250681*2537720636^(2/9) 2100951949424799 a001 5702887/4870847*2537720636^(2/15) 2100951949424799 a001 5702887/4870847*45537549124^(2/17) 2100951949424799 a001 726103/4250681*312119004989^(2/11) 2100951949424799 a001 726103/4250681*(1/2+1/2*5^(1/2))^10 2100951949424799 a001 5702887/4870847*(1/2+1/2*5^(1/2))^6 2100951949424799 a001 12422650078083/591286729879 2100951949424799 a001 726103/4250681*28143753123^(1/5) 2100951949424799 a001 5702887/4870847*10749957122^(1/8) 2100951949424799 a001 726103/4250681*10749957122^(5/24) 2100951949424799 a001 5702887/4870847*4106118243^(3/23) 2100951949424799 a001 726103/4250681*4106118243^(5/23) 2100951949424799 a001 5702887/4870847*1568397607^(3/22) 2100951949424799 a001 726103/4250681*1568397607^(5/22) 2100951949424799 a001 5702887/4870847*599074578^(1/7) 2100951949424799 a001 726103/4250681*599074578^(5/21) 2100951949424799 a001 5702887/4870847*228826127^(3/20) 2100951949424799 a001 726103/4250681*228826127^(1/4) 2100951949424799 a001 5702887/4870847*87403803^(3/19) 2100951949424799 a001 726103/4250681*87403803^(5/19) 2100951949424799 a001 5702887/4870847*33385282^(1/6) 2100951949424799 a001 832040/6643838879*1860498^(5/6) 2100951949424800 a001 726103/4250681*33385282^(5/18) 2100951949424801 a001 5702887/4870847*12752043^(3/17) 2100951949424803 a001 726103/4250681*12752043^(5/17) 2100951949424806 a001 2178309/20633239*7881196^(1/3) 2100951949424807 a004 Fibonacci(32)*Lucas(35)/(1/2+sqrt(5)/2)^59 2100951949424808 a001 726103/64300051206*20633239^(6/7) 2100951949424808 a001 311187/10525900321*20633239^(4/5) 2100951949424809 a001 2178309/17393796001*20633239^(5/7) 2100951949424809 a001 2178309/2537720636*20633239^(3/5) 2100951949424809 a001 311187/224056801*20633239^(4/7) 2100951949424810 a001 24157817/4870847*7881196^(1/11) 2100951949424810 a001 726103/29134601*20633239^(2/5) 2100951949424810 a001 2178309/141422324*20633239^(3/7) 2100951949424810 a001 311187/4769326*141422324^(4/13) 2100951949424810 a001 311187/4769326*2537720636^(4/15) 2100951949424810 a001 311187/4769326*45537549124^(4/17) 2100951949424810 a001 311187/4769326*14662949395604^(4/21) 2100951949424810 a001 311187/4769326*(1/2+1/2*5^(1/2))^12 2100951949424810 a001 14930352/4870847*(1/2+1/2*5^(1/2))^4 2100951949424810 a001 14930352/4870847*23725150497407^(1/16) 2100951949424810 a001 14930352/4870847*73681302247^(1/13) 2100951949424810 a001 311187/4769326*73681302247^(3/13) 2100951949424810 a001 14930352/4870847*10749957122^(1/12) 2100951949424810 a001 311187/4769326*10749957122^(1/4) 2100951949424810 a001 14930352/4870847*4106118243^(2/23) 2100951949424810 a001 311187/4769326*4106118243^(6/23) 2100951949424810 a001 14930352/4870847*1568397607^(1/11) 2100951949424810 a001 311187/4769326*1568397607^(3/11) 2100951949424810 a001 14930352/4870847*599074578^(2/21) 2100951949424810 a001 311187/4769326*599074578^(2/7) 2100951949424810 a001 14930352/4870847*228826127^(1/10) 2100951949424810 a001 311187/4769326*228826127^(3/10) 2100951949424810 a001 14930352/4870847*87403803^(2/19) 2100951949424810 a001 311187/4769326*87403803^(6/19) 2100951949424810 a001 14930352/4870847*33385282^(1/9) 2100951949424811 a001 311187/4769326*33385282^(1/3) 2100951949424811 a004 Fibonacci(32)*Lucas(37)/(1/2+sqrt(5)/2)^61 2100951949424812 a001 14930352/4870847*12752043^(2/17) 2100951949424812 a001 726103/29134601*17393796001^(2/7) 2100951949424812 a001 726103/29134601*14662949395604^(2/9) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^14/Lucas(38) 2100951949424812 a001 39088169/4870847*(1/2+1/2*5^(1/2))^2 2100951949424812 a001 39088169/4870847*10749957122^(1/24) 2100951949424812 a001 726103/29134601*10749957122^(7/24) 2100951949424812 a001 39088169/4870847*4106118243^(1/23) 2100951949424812 a001 726103/29134601*4106118243^(7/23) 2100951949424812 a001 39088169/4870847*1568397607^(1/22) 2100951949424812 a001 726103/29134601*1568397607^(7/22) 2100951949424812 a001 39088169/4870847*599074578^(1/21) 2100951949424812 a001 726103/29134601*599074578^(1/3) 2100951949424812 a001 39088169/4870847*228826127^(1/20) 2100951949424812 a001 726103/29134601*228826127^(7/20) 2100951949424812 a001 39088169/4870847*87403803^(1/19) 2100951949424812 a001 726103/29134601*87403803^(7/19) 2100951949424812 a001 39088169/4870847*33385282^(1/18) 2100951949424812 a004 Fibonacci(32)*Lucas(39)/(1/2+sqrt(5)/2)^63 2100951949424812 a001 311187/494493258286*141422324^(12/13) 2100951949424812 a001 2178309/817138163596*141422324^(11/13) 2100951949424812 a001 726103/64300051206*141422324^(10/13) 2100951949424812 a001 2178309/45537549124*141422324^(9/13) 2100951949424812 a001 726103/9381251041*141422324^(2/3) 2100951949424812 a001 987/4870846*141422324^(8/13) 2100951949424812 a001 2178309/2537720636*141422324^(7/13) 2100951949424812 a001 726103/199691526*141422324^(6/13) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^16/Lucas(40) 2100951949424812 a001 46347/4868641*23725150497407^(1/4) 2100951949424812 a001 102334155/4870847 2100951949424812 a006 5^(1/2)*Fibonacci(40)/Lucas(32)/sqrt(5) 2100951949424812 a001 46347/4868641*73681302247^(4/13) 2100951949424812 a001 46347/4868641*10749957122^(1/3) 2100951949424812 a001 46347/4868641*4106118243^(8/23) 2100951949424812 a001 46347/4868641*1568397607^(4/11) 2100951949424812 a001 46347/4868641*599074578^(8/21) 2100951949424812 a001 46347/4868641*228826127^(2/5) 2100951949424812 a004 Fibonacci(32)*Lucas(41)/(1/2+sqrt(5)/2)^65 2100951949424812 a001 726103/199691526*2537720636^(2/5) 2100951949424812 a001 726103/199691526*45537549124^(6/17) 2100951949424812 a001 726103/199691526*14662949395604^(2/7) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^18/Lucas(42) 2100951949424812 a004 Fibonacci(42)/Lucas(32)/(1/2+sqrt(5)/2)^2 2100951949424812 a001 726103/199691526*192900153618^(1/3) 2100951949424812 a001 726103/199691526*10749957122^(3/8) 2100951949424812 a001 726103/199691526*4106118243^(9/23) 2100951949424812 a001 726103/199691526*1568397607^(9/22) 2100951949424812 a001 726103/199691526*599074578^(3/7) 2100951949424812 a004 Fibonacci(32)*Lucas(43)/(1/2+sqrt(5)/2)^67 2100951949424812 a001 311187/224056801*2537720636^(4/9) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^20/Lucas(44) 2100951949424812 a001 311187/224056801*23725150497407^(5/16) 2100951949424812 a004 Fibonacci(44)/Lucas(32)/(1/2+sqrt(5)/2)^4 2100951949424812 a001 311187/224056801*505019158607^(5/14) 2100951949424812 a001 311187/224056801*73681302247^(5/13) 2100951949424812 a001 311187/224056801*28143753123^(2/5) 2100951949424812 a001 311187/224056801*10749957122^(5/12) 2100951949424812 a001 311187/224056801*4106118243^(10/23) 2100951949424812 a001 311187/224056801*1568397607^(5/11) 2100951949424812 a004 Fibonacci(32)*Lucas(45)/(1/2+sqrt(5)/2)^69 2100951949424812 a001 2178309/23725150497407*2537720636^(8/9) 2100951949424812 a001 2178309/14662949395604*2537720636^(13/15) 2100951949424812 a001 311187/494493258286*2537720636^(4/5) 2100951949424812 a001 2178309/2139295485799*2537720636^(7/9) 2100951949424812 a001 2178309/817138163596*2537720636^(11/15) 2100951949424812 a001 726103/64300051206*2537720636^(2/3) 2100951949424812 a001 2178309/45537549124*2537720636^(3/5) 2100951949424812 a001 987/4870846*2537720636^(8/15) 2100951949424812 a001 2178309/17393796001*2537720636^(5/9) 2100951949424812 a001 726103/1368706081*312119004989^(2/5) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^22/Lucas(46) 2100951949424812 a004 Fibonacci(46)/Lucas(32)/(1/2+sqrt(5)/2)^6 2100951949424812 a001 726103/1368706081*10749957122^(11/24) 2100951949424812 a001 726103/1368706081*4106118243^(11/23) 2100951949424812 a004 Fibonacci(32)*Lucas(47)/(1/2+sqrt(5)/2)^71 2100951949424812 a001 987/4870846*45537549124^(8/17) 2100951949424812 a001 987/4870846*14662949395604^(8/21) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^24/Lucas(48) 2100951949424812 a004 Fibonacci(48)/Lucas(32)/(1/2+sqrt(5)/2)^8 2100951949424812 a001 987/4870846*192900153618^(4/9) 2100951949424812 a001 987/4870846*73681302247^(6/13) 2100951949424812 a001 987/4870846*10749957122^(1/2) 2100951949424812 a004 Fibonacci(32)*Lucas(49)/(1/2+sqrt(5)/2)^73 2100951949424812 a001 2178309/2139295485799*17393796001^(5/7) 2100951949424812 a001 311187/10525900321*17393796001^(4/7) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^26/Lucas(50) 2100951949424812 a004 Fibonacci(50)/Lucas(32)/(1/2+sqrt(5)/2)^10 2100951949424812 a001 726103/9381251041*73681302247^(1/2) 2100951949424812 a004 Fibonacci(32)*Lucas(51)/(1/2+sqrt(5)/2)^75 2100951949424812 a001 2178309/14662949395604*45537549124^(13/17) 2100951949424812 a001 311187/494493258286*45537549124^(12/17) 2100951949424812 a001 726103/440719107401*45537549124^(2/3) 2100951949424812 a001 726103/64300051206*45537549124^(10/17) 2100951949424812 a001 2178309/817138163596*45537549124^(11/17) 2100951949424812 a001 311187/10525900321*14662949395604^(4/9) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^28/Lucas(52) 2100951949424812 a004 Fibonacci(52)/Lucas(32)/(1/2+sqrt(5)/2)^12 2100951949424812 a001 311187/10525900321*505019158607^(1/2) 2100951949424812 a001 311187/10525900321*73681302247^(7/13) 2100951949424812 a004 Fibonacci(32)*Lucas(53)/(1/2+sqrt(5)/2)^77 2100951949424812 a001 726103/64300051206*312119004989^(6/11) 2100951949424812 a001 726103/64300051206*14662949395604^(10/21) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^30/Lucas(54) 2100951949424812 a004 Fibonacci(54)/Lucas(32)/(1/2+sqrt(5)/2)^14 2100951949424812 a004 Fibonacci(32)*Lucas(55)/(1/2+sqrt(5)/2)^79 2100951949424812 a001 2178309/23725150497407*312119004989^(8/11) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^32/Lucas(56) 2100951949424812 a004 Fibonacci(56)/Lucas(32)/(1/2+sqrt(5)/2)^16 2100951949424812 a004 Fibonacci(32)*Lucas(57)/(1/2+sqrt(5)/2)^81 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^34/Lucas(58) 2100951949424812 a004 Fibonacci(58)/Lucas(32)/(1/2+sqrt(5)/2)^18 2100951949424812 a004 Fibonacci(32)*Lucas(59)/(1/2+sqrt(5)/2)^83 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^36/Lucas(60) 2100951949424812 a004 Fibonacci(60)/Lucas(32)/(1/2+sqrt(5)/2)^20 2100951949424812 a004 Fibonacci(32)*Lucas(61)/(1/2+sqrt(5)/2)^85 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^38/Lucas(62) 2100951949424812 a004 Fibonacci(62)/Lucas(32)/(1/2+sqrt(5)/2)^22 2100951949424812 a004 Fibonacci(32)*Lucas(63)/(1/2+sqrt(5)/2)^87 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^40/Lucas(64) 2100951949424812 a004 Fibonacci(32)*Lucas(65)/(1/2+sqrt(5)/2)^89 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^42/Lucas(66) 2100951949424812 a004 Fibonacci(32)*Lucas(67)/(1/2+sqrt(5)/2)^91 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^44/Lucas(68) 2100951949424812 a004 Fibonacci(32)*Lucas(69)/(1/2+sqrt(5)/2)^93 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^46/Lucas(70) 2100951949424812 a004 Fibonacci(32)*Lucas(71)/(1/2+sqrt(5)/2)^95 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^48/Lucas(72) 2100951949424812 a004 Fibonacci(32)*Lucas(73)/(1/2+sqrt(5)/2)^97 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^50/Lucas(74) 2100951949424812 a004 Fibonacci(32)*Lucas(75)/(1/2+sqrt(5)/2)^99 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^52/Lucas(76) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^54/Lucas(78) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^56/Lucas(80) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^58/Lucas(82) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^60/Lucas(84) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^62/Lucas(86) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^64/Lucas(88) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^66/Lucas(90) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^68/Lucas(92) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^70/Lucas(94) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^72/Lucas(96) 2100951949424812 a004 Fibonacci(16)*Lucas(16)/(1/2+sqrt(5)/2)^24 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^74/Lucas(98) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^76/Lucas(100) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^73/Lucas(97) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^75/Lucas(99) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^71/Lucas(95) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^69/Lucas(93) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^67/Lucas(91) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^65/Lucas(89) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^63/Lucas(87) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^61/Lucas(85) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^59/Lucas(83) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^57/Lucas(81) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^55/Lucas(79) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^53/Lucas(77) 2100951949424812 a004 Fibonacci(32)*Lucas(76)/(1/2+sqrt(5)/2)^100 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^51/Lucas(75) 2100951949424812 a004 Fibonacci(32)*Lucas(74)/(1/2+sqrt(5)/2)^98 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^49/Lucas(73) 2100951949424812 a004 Fibonacci(32)*Lucas(72)/(1/2+sqrt(5)/2)^96 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^47/Lucas(71) 2100951949424812 a004 Fibonacci(32)*Lucas(70)/(1/2+sqrt(5)/2)^94 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^45/Lucas(69) 2100951949424812 a004 Fibonacci(32)*Lucas(68)/(1/2+sqrt(5)/2)^92 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^43/Lucas(67) 2100951949424812 a004 Fibonacci(32)*Lucas(66)/(1/2+sqrt(5)/2)^90 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^41/Lucas(65) 2100951949424812 a004 Fibonacci(66)/Lucas(32)/(1/2+sqrt(5)/2)^26 2100951949424812 a004 Fibonacci(68)/Lucas(32)/(1/2+sqrt(5)/2)^28 2100951949424812 a004 Fibonacci(70)/Lucas(32)/(1/2+sqrt(5)/2)^30 2100951949424812 a001 2178309/14662949395604*14662949395604^(13/21) 2100951949424812 a004 Fibonacci(72)/Lucas(32)/(1/2+sqrt(5)/2)^32 2100951949424812 a004 Fibonacci(74)/Lucas(32)/(1/2+sqrt(5)/2)^34 2100951949424812 a004 Fibonacci(76)/Lucas(32)/(1/2+sqrt(5)/2)^36 2100951949424812 a004 Fibonacci(78)/Lucas(32)/(1/2+sqrt(5)/2)^38 2100951949424812 a004 Fibonacci(80)/Lucas(32)/(1/2+sqrt(5)/2)^40 2100951949424812 a004 Fibonacci(82)/Lucas(32)/(1/2+sqrt(5)/2)^42 2100951949424812 a004 Fibonacci(84)/Lucas(32)/(1/2+sqrt(5)/2)^44 2100951949424812 a004 Fibonacci(86)/Lucas(32)/(1/2+sqrt(5)/2)^46 2100951949424812 a004 Fibonacci(88)/Lucas(32)/(1/2+sqrt(5)/2)^48 2100951949424812 a004 Fibonacci(90)/Lucas(32)/(1/2+sqrt(5)/2)^50 2100951949424812 a004 Fibonacci(92)/Lucas(32)/(1/2+sqrt(5)/2)^52 2100951949424812 a004 Fibonacci(94)/Lucas(32)/(1/2+sqrt(5)/2)^54 2100951949424812 a004 Fibonacci(96)/Lucas(32)/(1/2+sqrt(5)/2)^56 2100951949424812 a004 Fibonacci(100)/Lucas(32)/(1/2+sqrt(5)/2)^60 2100951949424812 a004 Fibonacci(32)*Lucas(64)/(1/2+sqrt(5)/2)^88 2100951949424812 a004 Fibonacci(98)/Lucas(32)/(1/2+sqrt(5)/2)^58 2100951949424812 a004 Fibonacci(99)/Lucas(32)/(1/2+sqrt(5)/2)^59 2100951949424812 a004 Fibonacci(97)/Lucas(32)/(1/2+sqrt(5)/2)^57 2100951949424812 a004 Fibonacci(95)/Lucas(32)/(1/2+sqrt(5)/2)^55 2100951949424812 a004 Fibonacci(93)/Lucas(32)/(1/2+sqrt(5)/2)^53 2100951949424812 a004 Fibonacci(91)/Lucas(32)/(1/2+sqrt(5)/2)^51 2100951949424812 a004 Fibonacci(89)/Lucas(32)/(1/2+sqrt(5)/2)^49 2100951949424812 a004 Fibonacci(87)/Lucas(32)/(1/2+sqrt(5)/2)^47 2100951949424812 a004 Fibonacci(85)/Lucas(32)/(1/2+sqrt(5)/2)^45 2100951949424812 a004 Fibonacci(83)/Lucas(32)/(1/2+sqrt(5)/2)^43 2100951949424812 a004 Fibonacci(81)/Lucas(32)/(1/2+sqrt(5)/2)^41 2100951949424812 a004 Fibonacci(79)/Lucas(32)/(1/2+sqrt(5)/2)^39 2100951949424812 a004 Fibonacci(77)/Lucas(32)/(1/2+sqrt(5)/2)^37 2100951949424812 a004 Fibonacci(75)/Lucas(32)/(1/2+sqrt(5)/2)^35 2100951949424812 a004 Fibonacci(73)/Lucas(32)/(1/2+sqrt(5)/2)^33 2100951949424812 a004 Fibonacci(71)/Lucas(32)/(1/2+sqrt(5)/2)^31 2100951949424812 a004 Fibonacci(69)/Lucas(32)/(1/2+sqrt(5)/2)^29 2100951949424812 a004 Fibonacci(67)/Lucas(32)/(1/2+sqrt(5)/2)^27 2100951949424812 a004 Fibonacci(65)/Lucas(32)/(1/2+sqrt(5)/2)^25 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^39/Lucas(63) 2100951949424812 a004 Fibonacci(63)/Lucas(32)/(1/2+sqrt(5)/2)^23 2100951949424812 a004 Fibonacci(32)*Lucas(62)/(1/2+sqrt(5)/2)^86 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^37/Lucas(61) 2100951949424812 a004 Fibonacci(61)/Lucas(32)/(1/2+sqrt(5)/2)^21 2100951949424812 a004 Fibonacci(32)*Lucas(60)/(1/2+sqrt(5)/2)^84 2100951949424812 a001 2178309/2139295485799*14662949395604^(5/9) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^35/Lucas(59) 2100951949424812 a004 Fibonacci(59)/Lucas(32)/(1/2+sqrt(5)/2)^19 2100951949424812 a004 Fibonacci(32)*Lucas(58)/(1/2+sqrt(5)/2)^82 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^33/Lucas(57) 2100951949424812 a004 Fibonacci(57)/Lucas(32)/(1/2+sqrt(5)/2)^17 2100951949424812 a001 2178309/2139295485799*505019158607^(5/8) 2100951949424812 a004 Fibonacci(32)*Lucas(56)/(1/2+sqrt(5)/2)^80 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^31/Lucas(55) 2100951949424812 a004 Fibonacci(55)/Lucas(32)/(1/2+sqrt(5)/2)^15 2100951949424812 a001 2178309/312119004989*9062201101803^(1/2) 2100951949424812 a001 2178309/14662949395604*192900153618^(13/18) 2100951949424812 a004 Fibonacci(32)*Lucas(54)/(1/2+sqrt(5)/2)^78 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^29/Lucas(53) 2100951949424812 a004 Fibonacci(53)/Lucas(32)/(1/2+sqrt(5)/2)^13 2100951949424812 a001 2178309/119218851371*1322157322203^(1/2) 2100951949424812 a001 46347/10745088481*73681302247^(8/13) 2100951949424812 a001 311187/494493258286*73681302247^(9/13) 2100951949424812 a001 2178309/14662949395604*73681302247^(3/4) 2100951949424812 a001 2178309/23725150497407*73681302247^(10/13) 2100951949424812 a004 Fibonacci(32)*Lucas(52)/(1/2+sqrt(5)/2)^76 2100951949424812 a001 2178309/45537549124*45537549124^(9/17) 2100951949424812 a001 2178309/45537549124*14662949395604^(3/7) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^27/Lucas(51) 2100951949424812 a004 Fibonacci(51)/Lucas(32)/(1/2+sqrt(5)/2)^11 2100951949424812 a001 2178309/45537549124*192900153618^(1/2) 2100951949424812 a001 726103/64300051206*28143753123^(3/5) 2100951949424812 a001 2178309/2139295485799*28143753123^(7/10) 2100951949424812 a001 2178309/23725150497407*28143753123^(4/5) 2100951949424812 a004 Fibonacci(32)*Lucas(50)/(1/2+sqrt(5)/2)^74 2100951949424812 a001 2178309/17393796001*312119004989^(5/11) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^25/Lucas(49) 2100951949424812 a004 Fibonacci(49)/Lucas(32)/(1/2+sqrt(5)/2)^9 2100951949424812 a001 2178309/17393796001*3461452808002^(5/12) 2100951949424812 a001 726103/9381251041*10749957122^(13/24) 2100951949424812 a001 2178309/17393796001*28143753123^(1/2) 2100951949424812 a001 311187/10525900321*10749957122^(7/12) 2100951949424812 a001 2178309/45537549124*10749957122^(9/16) 2100951949424812 a001 726103/64300051206*10749957122^(5/8) 2100951949424812 a001 46347/10745088481*10749957122^(2/3) 2100951949424812 a001 2178309/817138163596*10749957122^(11/16) 2100951949424812 a001 726103/440719107401*10749957122^(17/24) 2100951949424812 a001 311187/494493258286*10749957122^(3/4) 2100951949424812 a001 726103/3020733700601*10749957122^(19/24) 2100951949424812 a001 2178309/14662949395604*10749957122^(13/16) 2100951949424812 a001 2178309/23725150497407*10749957122^(5/6) 2100951949424812 a004 Fibonacci(32)*Lucas(48)/(1/2+sqrt(5)/2)^72 2100951949424812 a001 987/4870846*4106118243^(12/23) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^23/Lucas(47) 2100951949424812 a004 Fibonacci(47)/Lucas(32)/(1/2+sqrt(5)/2)^7 2100951949424812 a001 726103/9381251041*4106118243^(13/23) 2100951949424812 a001 311187/10525900321*4106118243^(14/23) 2100951949424812 a001 726103/64300051206*4106118243^(15/23) 2100951949424812 a001 46347/10745088481*4106118243^(16/23) 2100951949424812 a001 726103/440719107401*4106118243^(17/23) 2100951949424812 a001 311187/494493258286*4106118243^(18/23) 2100951949424812 a001 726103/3020733700601*4106118243^(19/23) 2100951949424812 a001 2178309/23725150497407*4106118243^(20/23) 2100951949424812 a001 2178309/6643838879*4106118243^(1/2) 2100951949424812 a004 Fibonacci(32)*Lucas(46)/(1/2+sqrt(5)/2)^70 2100951949424812 a001 2178309/2537720636*2537720636^(7/15) 2100951949424812 a001 726103/1368706081*1568397607^(1/2) 2100951949424812 a001 2178309/2537720636*17393796001^(3/7) 2100951949424812 a001 2178309/2537720636*45537549124^(7/17) 2100951949424812 a001 2178309/2537720636*14662949395604^(1/3) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^21/Lucas(45) 2100951949424812 a004 Fibonacci(45)/Lucas(32)/(1/2+sqrt(5)/2)^5 2100951949424812 a001 2178309/2537720636*192900153618^(7/18) 2100951949424812 a001 2178309/2537720636*10749957122^(7/16) 2100951949424812 a001 987/4870846*1568397607^(6/11) 2100951949424812 a001 726103/9381251041*1568397607^(13/22) 2100951949424812 a001 311187/10525900321*1568397607^(7/11) 2100951949424812 a001 726103/64300051206*1568397607^(15/22) 2100951949424812 a001 46347/10745088481*1568397607^(8/11) 2100951949424812 a001 2178309/817138163596*1568397607^(3/4) 2100951949424812 a001 726103/440719107401*1568397607^(17/22) 2100951949424812 a001 311187/494493258286*1568397607^(9/11) 2100951949424812 a001 726103/3020733700601*1568397607^(19/22) 2100951949424812 a001 2178309/23725150497407*1568397607^(10/11) 2100951949424812 a004 Fibonacci(32)*Lucas(44)/(1/2+sqrt(5)/2)^68 2100951949424812 a001 311187/224056801*599074578^(10/21) 2100951949424812 a001 2178309/969323029*817138163596^(1/3) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^19/Lucas(43) 2100951949424812 a004 Fibonacci(43)/Lucas(32)/(1/2+sqrt(5)/2)^3 2100951949424812 a001 726103/1368706081*599074578^(11/21) 2100951949424812 a001 2178309/2537720636*599074578^(1/2) 2100951949424812 a001 987/4870846*599074578^(4/7) 2100951949424812 a001 726103/9381251041*599074578^(13/21) 2100951949424812 a001 2178309/45537549124*599074578^(9/14) 2100951949424812 a001 311187/10525900321*599074578^(2/3) 2100951949424812 a001 726103/64300051206*599074578^(5/7) 2100951949424812 a001 46347/10745088481*599074578^(16/21) 2100951949424812 a001 2178309/817138163596*599074578^(11/14) 2100951949424812 a001 726103/440719107401*599074578^(17/21) 2100951949424812 a001 2178309/2139295485799*599074578^(5/6) 2100951949424812 a001 311187/494493258286*599074578^(6/7) 2100951949424812 a001 726103/3020733700601*599074578^(19/21) 2100951949424812 a001 2178309/14662949395604*599074578^(13/14) 2100951949424812 a001 2178309/23725150497407*599074578^(20/21) 2100951949424812 a004 Fibonacci(32)*Lucas(42)/(1/2+sqrt(5)/2)^66 2100951949424812 a001 726103/199691526*228826127^(9/20) 2100951949424812 a001 2178309/370248451*45537549124^(1/3) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^17/Lucas(41) 2100951949424812 a004 Fibonacci(41)/Lucas(32)/(1/2+sqrt(5)/2) 2100951949424812 a001 311187/224056801*228826127^(1/2) 2100951949424812 a001 726103/1368706081*228826127^(11/20) 2100951949424812 a001 987/4870846*228826127^(3/5) 2100951949424812 a001 2178309/17393796001*228826127^(5/8) 2100951949424812 a001 726103/9381251041*228826127^(13/20) 2100951949424812 a001 311187/10525900321*228826127^(7/10) 2100951949424812 a001 726103/64300051206*228826127^(3/4) 2100951949424812 a001 46347/10745088481*228826127^(4/5) 2100951949424812 a001 726103/440719107401*228826127^(17/20) 2100951949424812 a001 2178309/2139295485799*228826127^(7/8) 2100951949424812 a001 311187/494493258286*228826127^(9/10) 2100951949424812 a001 726103/3020733700601*228826127^(19/20) 2100951949424812 a004 Fibonacci(32)*Lucas(40)/(1/2+sqrt(5)/2)^64 2100951949424812 a001 2178309/141422324*141422324^(5/13) 2100951949424812 a001 46347/4868641*87403803^(8/19) 2100951949424812 a001 2178309/141422324*2537720636^(1/3) 2100951949424812 a001 2178309/141422324*45537549124^(5/17) 2100951949424812 a001 2178309/141422324*312119004989^(3/11) 2100951949424812 a001 2178309/141422324*14662949395604^(5/21) 2100951949424812 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^15/Lucas(39) 2100951949424812 a004 Fibonacci(39)*(1/2+sqrt(5)/2)/Lucas(32) 2100951949424812 a001 2178309/141422324*192900153618^(5/18) 2100951949424812 a001 2178309/141422324*28143753123^(3/10) 2100951949424812 a001 2178309/141422324*10749957122^(5/16) 2100951949424812 a001 2178309/141422324*599074578^(5/14) 2100951949424812 a001 2178309/141422324*228826127^(3/8) 2100951949424812 a001 726103/199691526*87403803^(9/19) 2100951949424812 a001 2178309/969323029*87403803^(1/2) 2100951949424812 a001 311187/224056801*87403803^(10/19) 2100951949424812 a001 726103/1368706081*87403803^(11/19) 2100951949424812 a001 987/4870846*87403803^(12/19) 2100951949424812 a001 726103/9381251041*87403803^(13/19) 2100951949424812 a001 311187/10525900321*87403803^(14/19) 2100951949424812 a001 726103/64300051206*87403803^(15/19) 2100951949424812 a001 46347/10745088481*87403803^(16/19) 2100951949424812 a001 726103/440719107401*87403803^(17/19) 2100951949424812 a001 311187/494493258286*87403803^(18/19) 2100951949424812 a004 Fibonacci(32)*Lucas(38)/(1/2+sqrt(5)/2)^62 2100951949424813 a001 726103/29134601*33385282^(7/18) 2100951949424813 a001 39088169/4870847*12752043^(1/17) 2100951949424813 a001 2178309/54018521*141422324^(1/3) 2100951949424813 a001 24157817/4870847*141422324^(1/13) 2100951949424813 a001 24157817/4870847*2537720636^(1/15) 2100951949424813 a001 24157817/4870847*45537549124^(1/17) 2100951949424813 a004 Fibonacci(32)*(1/2+sqrt(5)/2)^13/Lucas(37) 2100951949424813 a001 24157817/4870847*14662949395604^(1/21) 2100951949424813 a001 24157817/4870847*(1/2+1/2*5^(1/2))^3 2100951949424813 a001 2178309/54018521*73681302247^(1/4) 2100951949424813 a001 24157817/4870847*10749957122^(1/16) 2100951949424813 a001 24157817/4870847*599074578^(1/14) 2100951949424813 a001 46347/4868641*33385282^(4/9) 2100951949424813 a001 24157817/4870847*33385282^(1/12) 2100951949424813 a001 2178309/141422324*33385282^(5/12) 2100951949424813 a001 726103/199691526*33385282^(1/2) 2100951949424813 a001 311187/224056801*33385282^(5/9) 2100951949424813 a001 2178309/2537720636*33385282^(7/12) 2100951949424813 a001 726103/1368706081*33385282^(11/18) 2100951949424813 a001 987/4870846*33385282^(2/3) 2100951949424813 a001 726103/9381251041*33385282^(13/18) 2100951949424814 a001 2178309/45537549124*33385282^(3/4) 2100951949424814 a001 311187/10525900321*33385282^(7/9) 2100951949424814 a001 726103/64300051206*33385282^(5/6) 2100951949424814 a001 46347/10745088481*33385282^(8/9) 2100951949424814 a001 2178309/817138163596*33385282^(11/12) 2100951949424814 a001 726103/440719107401*33385282^(17/18) 2100951949424814 a004 Fibonacci(32)*Lucas(36)/(1/2+sqrt(5)/2)^60 2100951949424815 a001 311187/4769326*12752043^(6/17) 2100951949424816 a001 5702887/4870847*4870847^(3/16) 2100951949424816 a001 9227465/4870847*20633239^(1/7) 2100951949424817 a001 9227465/4870847*2537720636^(1/9) 2100951949424817 a001 2178309/20633239*312119004989^(1/5) 2100951949424817 a001 20100270056685/956722026041 2100951949424817 a001 2178309/20633239*(1/2+1/2*5^(1/2))^11 2100951949424817 a001 9227465/4870847*(1/2+1/2*5^(1/2))^5 2100951949424817 a001 9227465/4870847*28143753123^(1/10) 2100951949424817 a001 2178309/20633239*1568397607^(1/4) 2100951949424817 a001 9227465/4870847*228826127^(1/8) 2100951949424817 a001 726103/29134601*12752043^(7/17) 2100951949424817 a001 39088169/4870847*4870847^(1/16) 2100951949424818 a001 46347/4868641*12752043^(8/17) 2100951949424819 a001 2178309/370248451*12752043^(1/2) 2100951949424819 a001 726103/199691526*12752043^(9/17) 2100951949424820 a001 311187/224056801*12752043^(10/17) 2100951949424820 a001 416020/5374978561*1860498^(13/15) 2100951949424820 a001 726103/1368706081*12752043^(11/17) 2100951949424821 a001 987/4870846*12752043^(12/17) 2100951949424821 a001 14930352/4870847*4870847^(1/8) 2100951949424822 a001 726103/9381251041*12752043^(13/17) 2100951949424823 a001 311187/10525900321*12752043^(14/17) 2100951949424824 a001 726103/64300051206*12752043^(15/17) 2100951949424824 a001 46347/10745088481*12752043^(16/17) 2100951949424825 a004 Fibonacci(32)*Lucas(34)/(1/2+sqrt(5)/2)^58 2100951949424827 a001 726103/4250681*4870847^(5/16) 2100951949424837 a001 2178309/7881196*7881196^(3/11) 2100951949424840 a001 832040/17393796001*1860498^(9/10) 2100951949424843 a001 311187/4769326*4870847^(3/8) 2100951949424845 a001 3524578/4870847*20633239^(1/5) 2100951949424846 a001 2178309/7881196*141422324^(3/13) 2100951949424846 a001 2178309/7881196*2537720636^(1/5) 2100951949424846 a001 3524578/4870847*17393796001^(1/7) 2100951949424846 a001 2178309/7881196*45537549124^(3/17) 2100951949424846 a001 2178309/7881196*817138163596^(3/19) 2100951949424846 a001 2178309/7881196*14662949395604^(1/7) 2100951949424846 a001 2178309/7881196*(1/2+1/2*5^(1/2))^9 2100951949424846 a001 3524578/4870847*(1/2+1/2*5^(1/2))^7 2100951949424846 a001 2178309/7881196*10749957122^(3/16) 2100951949424846 a001 3524578/4870847*599074578^(1/6) 2100951949424846 a001 2178309/7881196*599074578^(3/14) 2100951949424846 a001 2178309/7881196*33385282^(1/4) 2100951949424851 a001 726103/29134601*4870847^(7/16) 2100951949424852 a001 39088169/4870847*1860498^(1/15) 2100951949424854 a004 Fibonacci(34)*Lucas(33)/(1/2+sqrt(5)/2)^59 2100951949424856 a001 46347/4868641*4870847^(1/2) 2100951949424857 a001 5702887/505019158607*7881196^(10/11) 2100951949424860 a001 5702887/119218851371*7881196^(9/11) 2100951949424860 a001 832040/28143753123*1860498^(14/15) 2100951949424862 a001 726103/199691526*4870847^(9/16) 2100951949424863 a001 5702887/28143753123*7881196^(8/11) 2100951949424865 a004 Fibonacci(36)*Lucas(33)/(1/2+sqrt(5)/2)^61 2100951949424865 a001 5702887/10749957122*7881196^(2/3) 2100951949424866 a001 5702887/6643838879*7881196^(7/11) 2100951949424867 a004 Fibonacci(38)*Lucas(33)/(1/2+sqrt(5)/2)^63 2100951949424867 a004 Fibonacci(40)*Lucas(33)/(1/2+sqrt(5)/2)^65 2100951949424867 a004 Fibonacci(42)*Lucas(33)/(1/2+sqrt(5)/2)^67 2100951949424867 a004 Fibonacci(44)*Lucas(33)/(1/2+sqrt(5)/2)^69 2100951949424867 a004 Fibonacci(46)*Lucas(33)/(1/2+sqrt(5)/2)^71 2100951949424867 a004 Fibonacci(48)*Lucas(33)/(1/2+sqrt(5)/2)^73 2100951949424867 a004 Fibonacci(50)*Lucas(33)/(1/2+sqrt(5)/2)^75 2100951949424867 a004 Fibonacci(52)*Lucas(33)/(1/2+sqrt(5)/2)^77 2100951949424867 a004 Fibonacci(54)*Lucas(33)/(1/2+sqrt(5)/2)^79 2100951949424867 a004 Fibonacci(56)*Lucas(33)/(1/2+sqrt(5)/2)^81 2100951949424867 a004 Fibonacci(58)*Lucas(33)/(1/2+sqrt(5)/2)^83 2100951949424867 a004 Fibonacci(60)*Lucas(33)/(1/2+sqrt(5)/2)^85 2100951949424867 a004 Fibonacci(62)*Lucas(33)/(1/2+sqrt(5)/2)^87 2100951949424867 a004 Fibonacci(64)*Lucas(33)/(1/2+sqrt(5)/2)^89 2100951949424867 a004 Fibonacci(66)*Lucas(33)/(1/2+sqrt(5)/2)^91 2100951949424867 a004 Fibonacci(68)*Lucas(33)/(1/2+sqrt(5)/2)^93 2100951949424867 a004 Fibonacci(70)*Lucas(33)/(1/2+sqrt(5)/2)^95 2100951949424867 a004 Fibonacci(72)*Lucas(33)/(1/2+sqrt(5)/2)^97 2100951949424867 a004 Fibonacci(74)*Lucas(33)/(1/2+sqrt(5)/2)^99 2100951949424867 a004 Fibonacci(75)*Lucas(33)/(1/2+sqrt(5)/2)^100 2100951949424867 a004 Fibonacci(73)*Lucas(33)/(1/2+sqrt(5)/2)^98 2100951949424867 a004 Fibonacci(71)*Lucas(33)/(1/2+sqrt(5)/2)^96 2100951949424867 a004 Fibonacci(69)*Lucas(33)/(1/2+sqrt(5)/2)^94 2100951949424867 a004 Fibonacci(67)*Lucas(33)/(1/2+sqrt(5)/2)^92 2100951949424867 a001 1/1762289*(1/2+1/2*5^(1/2))^41 2100951949424867 a004 Fibonacci(65)*Lucas(33)/(1/2+sqrt(5)/2)^90 2100951949424867 a004 Fibonacci(63)*Lucas(33)/(1/2+sqrt(5)/2)^88 2100951949424867 a004 Fibonacci(61)*Lucas(33)/(1/2+sqrt(5)/2)^86 2100951949424867 a004 Fibonacci(59)*Lucas(33)/(1/2+sqrt(5)/2)^84 2100951949424867 a004 Fibonacci(57)*Lucas(33)/(1/2+sqrt(5)/2)^82 2100951949424867 a004 Fibonacci(55)*Lucas(33)/(1/2+sqrt(5)/2)^80 2100951949424867 a004 Fibonacci(53)*Lucas(33)/(1/2+sqrt(5)/2)^78 2100951949424867 a004 Fibonacci(51)*Lucas(33)/(1/2+sqrt(5)/2)^76 2100951949424867 a004 Fibonacci(49)*Lucas(33)/(1/2+sqrt(5)/2)^74 2100951949424867 a004 Fibonacci(47)*Lucas(33)/(1/2+sqrt(5)/2)^72 2100951949424867 a004 Fibonacci(45)*Lucas(33)/(1/2+sqrt(5)/2)^70 2100951949424867 a004 Fibonacci(43)*Lucas(33)/(1/2+sqrt(5)/2)^68 2100951949424867 a004 Fibonacci(41)*Lucas(33)/(1/2+sqrt(5)/2)^66 2100951949424867 a004 Fibonacci(39)*Lucas(33)/(1/2+sqrt(5)/2)^64 2100951949424867 a001 311187/224056801*4870847^(5/8) 2100951949424868 a004 Fibonacci(37)*Lucas(33)/(1/2+sqrt(5)/2)^62 2100951949424868 a001 4976784/440719107401*7881196^(10/11) 2100951949424869 a001 5702887/1568397607*7881196^(6/11) 2100951949424870 a001 39088169/3461452808002*7881196^(10/11) 2100951949424870 a001 34111385/3020733700601*7881196^(10/11) 2100951949424870 a001 267914296/23725150497407*7881196^(10/11) 2100951949424870 a001 165580141/14662949395604*7881196^(10/11) 2100951949424870 a001 63245986/5600748293801*7881196^(10/11) 2100951949424871 a001 24157817/2139295485799*7881196^(10/11) 2100951949424871 a001 14930352/312119004989*7881196^(9/11) 2100951949424872 a004 Fibonacci(35)*Lucas(33)/(1/2+sqrt(5)/2)^60 2100951949424872 a001 5702887/370248451*7881196^(5/11) 2100951949424873 a001 4181/87403804*7881196^(9/11) 2100951949424873 a001 102334155/2139295485799*7881196^(9/11) 2100951949424873 a001 267914296/5600748293801*7881196^(9/11) 2100951949424873 a001 701408733/14662949395604*7881196^(9/11) 2100951949424873 a001 1134903170/23725150497407*7881196^(9/11) 2100951949424873 a001 726103/1368706081*4870847^(11/16) 2100951949424873 a001 433494437/9062201101803*7881196^(9/11) 2100951949424873 a001 165580141/3461452808002*7881196^(9/11) 2100951949424873 a001 63245986/1322157322203*7881196^(9/11) 2100951949424874 a001 24157817/4870847*1860498^(1/10) 2100951949424874 a001 24157817/505019158607*7881196^(9/11) 2100951949424874 a001 14930352/73681302247*7881196^(8/11) 2100951949424875 a001 5702887/12752043*(1/2+1/2*5^(1/2))^8 2100951949424875 a001 32522920134769/1548008755920 2100951949424875 a001 5702887/12752043*73681302247^(2/13) 2100951949424875 a001 5702887/12752043*10749957122^(1/6) 2100951949424875 a001 5702887/12752043*4106118243^(4/23) 2100951949424875 a001 5702887/12752043*1568397607^(2/11) 2100951949424875 a001 5702887/12752043*599074578^(4/21) 2100951949424875 a001 5702887/12752043*228826127^(1/5) 2100951949424875 a001 9227465/817138163596*7881196^(10/11) 2100951949424875 a001 5702887/12752043*87403803^(4/19) 2100951949424875 a001 5702887/1860498*710647^(1/7) 2100951949424875 a001 5702887/87403803*7881196^(4/11) 2100951949424875 a001 5702887/12752043*33385282^(2/9) 2100951949424875 a001 416020/930249*710647^(2/7) 2100951949424876 a001 39088169/192900153618*7881196^(8/11) 2100951949424876 a001 102334155/505019158607*7881196^(8/11) 2100951949424876 a001 267914296/1322157322203*7881196^(8/11) 2100951949424876 a001 701408733/3461452808002*7881196^(8/11) 2100951949424876 a001 1836311903/9062201101803*7881196^(8/11) 2100951949424876 a001 4807526976/23725150497407*7881196^(8/11) 2100951949424876 a001 2971215073/14662949395604*7881196^(8/11) 2100951949424876 a001 1134903170/5600748293801*7881196^(8/11) 2100951949424876 a001 433494437/2139295485799*7881196^(8/11) 2100951949424876 a001 165580141/817138163596*7881196^(8/11) 2100951949424876 a001 63245986/312119004989*7881196^(8/11) 2100951949424876 a001 4976784/9381251041*7881196^(2/3) 2100951949424877 a001 24157817/119218851371*7881196^(8/11) 2100951949424877 a001 5702887/54018521*7881196^(1/3) 2100951949424877 a001 14930352/17393796001*7881196^(7/11) 2100951949424878 a001 39088169/73681302247*7881196^(2/3) 2100951949424878 a001 5702887/12752043*12752043^(4/17) 2100951949424878 a001 9227465/192900153618*7881196^(9/11) 2100951949424878 a001 34111385/64300051206*7881196^(2/3) 2100951949424878 a001 267914296/505019158607*7881196^(2/3) 2100951949424878 a001 233802911/440719107401*7881196^(2/3) 2100951949424878 a001 1836311903/3461452808002*7881196^(2/3) 2100951949424878 a001 1602508992/3020733700601*7881196^(2/3) 2100951949424878 a001 12586269025/23725150497407*7881196^(2/3) 2100951949424878 a001 7778742049/14662949395604*7881196^(2/3) 2100951949424878 a001 2971215073/5600748293801*7881196^(2/3) 2100951949424878 a001 1134903170/2139295485799*7881196^(2/3) 2100951949424878 a001 433494437/817138163596*7881196^(2/3) 2100951949424878 a001 165580141/312119004989*7881196^(2/3) 2100951949424878 a001 63245986/119218851371*7881196^(2/3) 2100951949424879 a001 987/4870846*4870847^(3/4) 2100951949424879 a001 24157817/45537549124*7881196^(2/3) 2100951949424879 a001 39088169/45537549124*7881196^(7/11) 2100951949424879 a001 102334155/119218851371*7881196^(7/11) 2100951949424879 a001 267914296/312119004989*7881196^(7/11) 2100951949424879 a001 701408733/817138163596*7881196^(7/11) 2100951949424879 a001 1836311903/2139295485799*7881196^(7/11) 2100951949424879 a001 4807526976/5600748293801*7881196^(7/11) 2100951949424879 a001 12586269025/14662949395604*7881196^(7/11) 2100951949424879 a001 20365011074/23725150497407*7881196^(7/11) 2100951949424879 a001 7778742049/9062201101803*7881196^(7/11) 2100951949424879 a001 2971215073/3461452808002*7881196^(7/11) 2100951949424879 a001 1134903170/1322157322203*7881196^(7/11) 2100951949424879 a001 433494437/505019158607*7881196^(7/11) 2100951949424879 a001 165580141/192900153618*7881196^(7/11) 2100951949424879 a001 63245986/73681302247*7881196^(7/11) 2100951949424880 a001 4976784/4250681*7881196^(2/11) 2100951949424880 a001 24157817/28143753123*7881196^(7/11) 2100951949424880 a001 4976784/1368706081*7881196^(6/11) 2100951949424881 a001 9227465/45537549124*7881196^(8/11) 2100951949424882 a001 39088169/10749957122*7881196^(6/11) 2100951949424882 a001 831985/228811001*7881196^(6/11) 2100951949424882 a001 267914296/73681302247*7881196^(6/11) 2100951949424882 a001 233802911/64300051206*7881196^(6/11) 2100951949424882 a001 1836311903/505019158607*7881196^(6/11) 2100951949424882 a001 1602508992/440719107401*7881196^(6/11) 2100951949424882 a001 12586269025/3461452808002*7881196^(6/11) 2100951949424882 a001 10983760033/3020733700601*7881196^(6/11) 2100951949424882 a001 86267571272/23725150497407*7881196^(6/11) 2100951949424882 a001 53316291173/14662949395604*7881196^(6/11) 2100951949424882 a001 20365011074/5600748293801*7881196^(6/11) 2100951949424882 a001 7778742049/2139295485799*7881196^(6/11) 2100951949424882 a001 2971215073/817138163596*7881196^(6/11) 2100951949424882 a001 1134903170/312119004989*7881196^(6/11) 2100951949424882 a001 433494437/119218851371*7881196^(6/11) 2100951949424882 a001 165580141/45537549124*7881196^(6/11) 2100951949424882 a001 63245986/17393796001*7881196^(6/11) 2100951949424883 a004 Fibonacci(34)*Lucas(35)/(1/2+sqrt(5)/2)^61 2100951949424883 a001 24157817/6643838879*7881196^(6/11) 2100951949424883 a001 9227465/17393796001*7881196^(2/3) 2100951949424883 a001 14930352/969323029*7881196^(5/11) 2100951949424883 a001 5702887/20633239*7881196^(3/11) 2100951949424884 a001 5702887/505019158607*20633239^(6/7) 2100951949424884 a001 5702887/192900153618*20633239^(4/5) 2100951949424884 a001 726103/9381251041*4870847^(13/16) 2100951949424884 a001 9227465/10749957122*7881196^(7/11) 2100951949424884 a001 1597/12752044*20633239^(5/7) 2100951949424884 a001 5702887/33385282*20633239^(2/7) 2100951949424885 a001 63245986/12752043*7881196^(1/11) 2100951949424885 a001 5702887/6643838879*20633239^(3/5) 2100951949424885 a001 5702887/4106118243*20633239^(4/7) 2100951949424885 a001 39088169/2537720636*7881196^(5/11) 2100951949424885 a001 102334155/6643838879*7881196^(5/11) 2100951949424885 a001 9238424/599786069*7881196^(5/11) 2100951949424885 a001 701408733/45537549124*7881196^(5/11) 2100951949424885 a001 1836311903/119218851371*7881196^(5/11) 2100951949424885 a001 4807526976/312119004989*7881196^(5/11) 2100951949424885 a001 12586269025/817138163596*7881196^(5/11) 2100951949424885 a001 32951280099/2139295485799*7881196^(5/11) 2100951949424885 a001 86267571272/5600748293801*7881196^(5/11) 2100951949424885 a001 7787980473/505618944676*7881196^(5/11) 2100951949424885 a001 365435296162/23725150497407*7881196^(5/11) 2100951949424885 a001 139583862445/9062201101803*7881196^(5/11) 2100951949424885 a001 53316291173/3461452808002*7881196^(5/11) 2100951949424885 a001 20365011074/1322157322203*7881196^(5/11) 2100951949424885 a001 7778742049/505019158607*7881196^(5/11) 2100951949424885 a001 2971215073/192900153618*7881196^(5/11) 2100951949424885 a001 1134903170/73681302247*7881196^(5/11) 2100951949424885 a001 433494437/28143753123*7881196^(5/11) 2100951949424885 a001 165580141/10749957122*7881196^(5/11) 2100951949424885 a001 63245986/4106118243*7881196^(5/11) 2100951949424885 a001 2178309/4870847*1860498^(4/15) 2100951949424886 a001 5702887/370248451*20633239^(3/7) 2100951949424886 a001 5702887/228826127*20633239^(2/5) 2100951949424886 a001 4976784/4250681*141422324^(2/13) 2100951949424886 a001 5702887/33385282*2537720636^(2/9) 2100951949424886 a001 4976784/4250681*2537720636^(2/15) 2100951949424886 a001 4976784/4250681*45537549124^(2/17) 2100951949424886 a001 4976784/4250681*14662949395604^(2/21) 2100951949424886 a001 5702887/33385282*(1/2+1/2*5^(1/2))^10 2100951949424886 a001 4976784/4250681*(1/2+1/2*5^(1/2))^6 2100951949424886 a001 5702887/33385282*28143753123^(1/5) 2100951949424886 a001 4976784/4250681*10749957122^(1/8) 2100951949424886 a001 5702887/33385282*10749957122^(5/24) 2100951949424886 a001 4976784/4250681*4106118243^(3/23) 2100951949424886 a001 5702887/33385282*4106118243^(5/23) 2100951949424886 a001 4976784/4250681*1568397607^(3/22) 2100951949424886 a001 5702887/33385282*1568397607^(5/22) 2100951949424886 a001 4976784/4250681*599074578^(1/7) 2100951949424886 a001 5702887/33385282*599074578^(5/21) 2100951949424886 a001 4976784/4250681*228826127^(3/20) 2100951949424886 a001 5702887/33385282*228826127^(1/4) 2100951949424886 a001 4976784/4250681*87403803^(3/19) 2100951949424886 a001 5702887/33385282*87403803^(5/19) 2100951949424886 a001 24157817/1568397607*7881196^(5/11) 2100951949424886 a001 4976784/4250681*33385282^(1/6) 2100951949424886 a001 5702887/33385282*33385282^(5/18) 2100951949424886 a001 14930352/228826127*7881196^(4/11) 2100951949424887 a004 Fibonacci(34)*Lucas(37)/(1/2+sqrt(5)/2)^63 2100951949424887 a001 9227465/2537720636*7881196^(6/11) 2100951949424887 a001 5702887/87403803*141422324^(4/13) 2100951949424887 a001 5702887/87403803*2537720636^(4/15) 2100951949424887 a001 5702887/87403803*45537549124^(4/17) 2100951949424887 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^12/Lucas(38) 2100951949424887 a001 39088169/12752043*(1/2+1/2*5^(1/2))^4 2100951949424887 a001 222915410843903/10610209857723 2100951949424887 a001 5702887/87403803*192900153618^(2/9) 2100951949424887 a001 39088169/12752043*73681302247^(1/13) 2100951949424887 a001 5702887/87403803*73681302247^(3/13) 2100951949424887 a001 39088169/12752043*10749957122^(1/12) 2100951949424887 a001 5702887/87403803*10749957122^(1/4) 2100951949424887 a001 39088169/12752043*4106118243^(2/23) 2100951949424887 a001 5702887/87403803*4106118243^(6/23) 2100951949424887 a001 39088169/12752043*1568397607^(1/11) 2100951949424887 a001 5702887/87403803*1568397607^(3/11) 2100951949424887 a001 39088169/12752043*599074578^(2/21) 2100951949424887 a001 5702887/87403803*599074578^(2/7) 2100951949424887 a001 39088169/12752043*228826127^(1/10) 2100951949424887 a001 5702887/87403803*228826127^(3/10) 2100951949424887 a001 39088169/12752043*87403803^(2/19) 2100951949424888 a001 5702887/87403803*87403803^(6/19) 2100951949424888 a001 3732588/35355581*7881196^(1/3) 2100951949424888 a004 Fibonacci(34)*Lucas(39)/(1/2+sqrt(5)/2)^65 2100951949424888 a001 5702887/9062201101803*141422324^(12/13) 2100951949424888 a001 5702887/2139295485799*141422324^(11/13) 2100951949424888 a001 5702887/505019158607*141422324^(10/13) 2100951949424888 a001 5702887/119218851371*141422324^(9/13) 2100951949424888 a001 5702887/73681302247*141422324^(2/3) 2100951949424888 a001 39088169/12752043*33385282^(1/9) 2100951949424888 a001 5702887/28143753123*141422324^(8/13) 2100951949424888 a001 5702887/6643838879*141422324^(7/13) 2100951949424888 a001 5702887/1568397607*141422324^(6/13) 2100951949424888 a001 5702887/228826127*17393796001^(2/7) 2100951949424888 a001 5702887/228826127*14662949395604^(2/9) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^14/Lucas(40) 2100951949424888 a001 34111385/4250681*(1/2+1/2*5^(1/2))^2 2100951949424888 a001 34111385/4250681*10749957122^(1/24) 2100951949424888 a001 5702887/228826127*10749957122^(7/24) 2100951949424888 a001 34111385/4250681*4106118243^(1/23) 2100951949424888 a001 5702887/228826127*4106118243^(7/23) 2100951949424888 a001 34111385/4250681*1568397607^(1/22) 2100951949424888 a001 5702887/228826127*1568397607^(7/22) 2100951949424888 a001 34111385/4250681*599074578^(1/21) 2100951949424888 a001 5702887/228826127*599074578^(1/3) 2100951949424888 a001 34111385/4250681*228826127^(1/20) 2100951949424888 a001 5702887/228826127*228826127^(7/20) 2100951949424888 a001 34111385/4250681*87403803^(1/19) 2100951949424888 a001 5702887/370248451*141422324^(5/13) 2100951949424888 a004 Fibonacci(34)*Lucas(41)/(1/2+sqrt(5)/2)^67 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^16/Lucas(42) 2100951949424888 a006 5^(1/2)*Fibonacci(42)/Lucas(34)/sqrt(5) 2100951949424888 a001 5702887/599074578*23725150497407^(1/4) 2100951949424888 a001 5702887/599074578*73681302247^(4/13) 2100951949424888 a001 5702887/599074578*10749957122^(1/3) 2100951949424888 a001 5702887/599074578*4106118243^(8/23) 2100951949424888 a001 5702887/599074578*1568397607^(4/11) 2100951949424888 a001 5702887/599074578*599074578^(8/21) 2100951949424888 a004 Fibonacci(34)*Lucas(43)/(1/2+sqrt(5)/2)^69 2100951949424888 a001 5702887/1568397607*2537720636^(2/5) 2100951949424888 a001 5702887/1568397607*45537549124^(6/17) 2100951949424888 a001 5702887/1568397607*14662949395604^(2/7) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^18/Lucas(44) 2100951949424888 a004 Fibonacci(44)/Lucas(34)/(1/2+sqrt(5)/2)^2 2100951949424888 a001 5702887/1568397607*192900153618^(1/3) 2100951949424888 a001 5702887/1568397607*10749957122^(3/8) 2100951949424888 a001 5702887/1568397607*4106118243^(9/23) 2100951949424888 a001 5702887/1568397607*1568397607^(9/22) 2100951949424888 a004 Fibonacci(34)*Lucas(45)/(1/2+sqrt(5)/2)^71 2100951949424888 a001 5702887/4106118243*2537720636^(4/9) 2100951949424888 a001 5702887/9062201101803*2537720636^(4/5) 2100951949424888 a001 5702887/5600748293801*2537720636^(7/9) 2100951949424888 a001 5702887/2139295485799*2537720636^(11/15) 2100951949424888 a001 5702887/505019158607*2537720636^(2/3) 2100951949424888 a001 5702887/119218851371*2537720636^(3/5) 2100951949424888 a001 1597/12752044*2537720636^(5/9) 2100951949424888 a001 5702887/28143753123*2537720636^(8/15) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^20/Lucas(46) 2100951949424888 a004 Fibonacci(46)/Lucas(34)/(1/2+sqrt(5)/2)^4 2100951949424888 a001 5702887/4106118243*23725150497407^(5/16) 2100951949424888 a001 5702887/4106118243*505019158607^(5/14) 2100951949424888 a001 5702887/4106118243*73681302247^(5/13) 2100951949424888 a001 5702887/4106118243*28143753123^(2/5) 2100951949424888 a001 5702887/4106118243*10749957122^(5/12) 2100951949424888 a001 5702887/6643838879*2537720636^(7/15) 2100951949424888 a001 5702887/4106118243*4106118243^(10/23) 2100951949424888 a004 Fibonacci(34)*Lucas(47)/(1/2+sqrt(5)/2)^73 2100951949424888 a001 5702887/10749957122*312119004989^(2/5) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^22/Lucas(48) 2100951949424888 a004 Fibonacci(48)/Lucas(34)/(1/2+sqrt(5)/2)^6 2100951949424888 a001 5702887/10749957122*10749957122^(11/24) 2100951949424888 a004 Fibonacci(34)*Lucas(49)/(1/2+sqrt(5)/2)^75 2100951949424888 a001 5702887/5600748293801*17393796001^(5/7) 2100951949424888 a001 5702887/192900153618*17393796001^(4/7) 2100951949424888 a001 5702887/28143753123*45537549124^(8/17) 2100951949424888 a001 5702887/28143753123*14662949395604^(8/21) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^24/Lucas(50) 2100951949424888 a004 Fibonacci(50)/Lucas(34)/(1/2+sqrt(5)/2)^8 2100951949424888 a001 5702887/28143753123*192900153618^(4/9) 2100951949424888 a001 5702887/28143753123*73681302247^(6/13) 2100951949424888 a004 Fibonacci(34)*Lucas(51)/(1/2+sqrt(5)/2)^77 2100951949424888 a001 5702887/9062201101803*45537549124^(12/17) 2100951949424888 a001 5702887/3461452808002*45537549124^(2/3) 2100951949424888 a001 5702887/2139295485799*45537549124^(11/17) 2100951949424888 a001 5702887/505019158607*45537549124^(10/17) 2100951949424888 a001 5702887/119218851371*45537549124^(9/17) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^26/Lucas(52) 2100951949424888 a004 Fibonacci(52)/Lucas(34)/(1/2+sqrt(5)/2)^10 2100951949424888 a001 5702887/73681302247*73681302247^(1/2) 2100951949424888 a004 Fibonacci(34)*Lucas(53)/(1/2+sqrt(5)/2)^79 2100951949424888 a001 5702887/192900153618*14662949395604^(4/9) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^28/Lucas(54) 2100951949424888 a004 Fibonacci(54)/Lucas(34)/(1/2+sqrt(5)/2)^12 2100951949424888 a004 Fibonacci(34)*Lucas(55)/(1/2+sqrt(5)/2)^81 2100951949424888 a001 5702887/505019158607*312119004989^(6/11) 2100951949424888 a001 5702887/2139295485799*312119004989^(3/5) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^30/Lucas(56) 2100951949424888 a004 Fibonacci(56)/Lucas(34)/(1/2+sqrt(5)/2)^14 2100951949424888 a004 Fibonacci(34)*Lucas(57)/(1/2+sqrt(5)/2)^83 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^32/Lucas(58) 2100951949424888 a004 Fibonacci(58)/Lucas(34)/(1/2+sqrt(5)/2)^16 2100951949424888 a001 5702887/1322157322203*23725150497407^(1/2) 2100951949424888 a004 Fibonacci(34)*Lucas(59)/(1/2+sqrt(5)/2)^85 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^34/Lucas(60) 2100951949424888 a004 Fibonacci(60)/Lucas(34)/(1/2+sqrt(5)/2)^18 2100951949424888 a004 Fibonacci(34)*Lucas(61)/(1/2+sqrt(5)/2)^87 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^36/Lucas(62) 2100951949424888 a004 Fibonacci(62)/Lucas(34)/(1/2+sqrt(5)/2)^20 2100951949424888 a004 Fibonacci(34)*Lucas(63)/(1/2+sqrt(5)/2)^89 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^38/Lucas(64) 2100951949424888 a004 Fibonacci(64)/Lucas(34)/(1/2+sqrt(5)/2)^22 2100951949424888 a004 Fibonacci(34)*Lucas(65)/(1/2+sqrt(5)/2)^91 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^40/Lucas(66) 2100951949424888 a004 Fibonacci(66)/Lucas(34)/(1/2+sqrt(5)/2)^24 2100951949424888 a004 Fibonacci(34)*Lucas(67)/(1/2+sqrt(5)/2)^93 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^42/Lucas(68) 2100951949424888 a004 Fibonacci(34)*Lucas(69)/(1/2+sqrt(5)/2)^95 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^44/Lucas(70) 2100951949424888 a004 Fibonacci(34)*Lucas(71)/(1/2+sqrt(5)/2)^97 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^46/Lucas(72) 2100951949424888 a004 Fibonacci(34)*Lucas(73)/(1/2+sqrt(5)/2)^99 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^48/Lucas(74) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^50/Lucas(76) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^52/Lucas(78) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^54/Lucas(80) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^56/Lucas(82) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^58/Lucas(84) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^60/Lucas(86) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^62/Lucas(88) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^64/Lucas(90) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^66/Lucas(92) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^68/Lucas(94) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^70/Lucas(96) 2100951949424888 a004 Fibonacci(17)*Lucas(17)/(1/2+sqrt(5)/2)^26 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^72/Lucas(98) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^73/Lucas(99) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^74/Lucas(100) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^71/Lucas(97) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^69/Lucas(95) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^67/Lucas(93) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^65/Lucas(91) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^63/Lucas(89) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^61/Lucas(87) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^59/Lucas(85) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^57/Lucas(83) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^55/Lucas(81) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^53/Lucas(79) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^51/Lucas(77) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^49/Lucas(75) 2100951949424888 a004 Fibonacci(34)*Lucas(74)/(1/2+sqrt(5)/2)^100 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^47/Lucas(73) 2100951949424888 a004 Fibonacci(34)*Lucas(72)/(1/2+sqrt(5)/2)^98 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^45/Lucas(71) 2100951949424888 a004 Fibonacci(34)*Lucas(70)/(1/2+sqrt(5)/2)^96 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^43/Lucas(69) 2100951949424888 a004 Fibonacci(70)/Lucas(34)/(1/2+sqrt(5)/2)^28 2100951949424888 a004 Fibonacci(72)/Lucas(34)/(1/2+sqrt(5)/2)^30 2100951949424888 a004 Fibonacci(74)/Lucas(34)/(1/2+sqrt(5)/2)^32 2100951949424888 a004 Fibonacci(76)/Lucas(34)/(1/2+sqrt(5)/2)^34 2100951949424888 a004 Fibonacci(78)/Lucas(34)/(1/2+sqrt(5)/2)^36 2100951949424888 a004 Fibonacci(80)/Lucas(34)/(1/2+sqrt(5)/2)^38 2100951949424888 a004 Fibonacci(82)/Lucas(34)/(1/2+sqrt(5)/2)^40 2100951949424888 a004 Fibonacci(84)/Lucas(34)/(1/2+sqrt(5)/2)^42 2100951949424888 a004 Fibonacci(86)/Lucas(34)/(1/2+sqrt(5)/2)^44 2100951949424888 a004 Fibonacci(88)/Lucas(34)/(1/2+sqrt(5)/2)^46 2100951949424888 a004 Fibonacci(90)/Lucas(34)/(1/2+sqrt(5)/2)^48 2100951949424888 a004 Fibonacci(92)/Lucas(34)/(1/2+sqrt(5)/2)^50 2100951949424888 a004 Fibonacci(94)/Lucas(34)/(1/2+sqrt(5)/2)^52 2100951949424888 a004 Fibonacci(96)/Lucas(34)/(1/2+sqrt(5)/2)^54 2100951949424888 a004 Fibonacci(100)/Lucas(34)/(1/2+sqrt(5)/2)^58 2100951949424888 a004 Fibonacci(34)*Lucas(68)/(1/2+sqrt(5)/2)^94 2100951949424888 a004 Fibonacci(97)/Lucas(34)/(1/2+sqrt(5)/2)^55 2100951949424888 a004 Fibonacci(98)/Lucas(34)/(1/2+sqrt(5)/2)^56 2100951949424888 a004 Fibonacci(99)/Lucas(34)/(1/2+sqrt(5)/2)^57 2100951949424888 a004 Fibonacci(95)/Lucas(34)/(1/2+sqrt(5)/2)^53 2100951949424888 a004 Fibonacci(93)/Lucas(34)/(1/2+sqrt(5)/2)^51 2100951949424888 a004 Fibonacci(91)/Lucas(34)/(1/2+sqrt(5)/2)^49 2100951949424888 a004 Fibonacci(89)/Lucas(34)/(1/2+sqrt(5)/2)^47 2100951949424888 a004 Fibonacci(87)/Lucas(34)/(1/2+sqrt(5)/2)^45 2100951949424888 a004 Fibonacci(85)/Lucas(34)/(1/2+sqrt(5)/2)^43 2100951949424888 a004 Fibonacci(83)/Lucas(34)/(1/2+sqrt(5)/2)^41 2100951949424888 a004 Fibonacci(81)/Lucas(34)/(1/2+sqrt(5)/2)^39 2100951949424888 a004 Fibonacci(79)/Lucas(34)/(1/2+sqrt(5)/2)^37 2100951949424888 a004 Fibonacci(77)/Lucas(34)/(1/2+sqrt(5)/2)^35 2100951949424888 a004 Fibonacci(75)/Lucas(34)/(1/2+sqrt(5)/2)^33 2100951949424888 a004 Fibonacci(73)/Lucas(34)/(1/2+sqrt(5)/2)^31 2100951949424888 a004 Fibonacci(71)/Lucas(34)/(1/2+sqrt(5)/2)^29 2100951949424888 a004 Fibonacci(69)/Lucas(34)/(1/2+sqrt(5)/2)^27 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^41/Lucas(67) 2100951949424888 a004 Fibonacci(67)/Lucas(34)/(1/2+sqrt(5)/2)^25 2100951949424888 a004 Fibonacci(34)*Lucas(66)/(1/2+sqrt(5)/2)^92 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^39/Lucas(65) 2100951949424888 a004 Fibonacci(65)/Lucas(34)/(1/2+sqrt(5)/2)^23 2100951949424888 a004 Fibonacci(34)*Lucas(64)/(1/2+sqrt(5)/2)^90 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^37/Lucas(63) 2100951949424888 a004 Fibonacci(63)/Lucas(34)/(1/2+sqrt(5)/2)^21 2100951949424888 a004 Fibonacci(34)*Lucas(62)/(1/2+sqrt(5)/2)^88 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^35/Lucas(61) 2100951949424888 a004 Fibonacci(61)/Lucas(34)/(1/2+sqrt(5)/2)^19 2100951949424888 a004 Fibonacci(34)*Lucas(60)/(1/2+sqrt(5)/2)^86 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^33/Lucas(59) 2100951949424888 a004 Fibonacci(59)/Lucas(34)/(1/2+sqrt(5)/2)^17 2100951949424888 a004 Fibonacci(34)*Lucas(58)/(1/2+sqrt(5)/2)^84 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^31/Lucas(57) 2100951949424888 a004 Fibonacci(57)/Lucas(34)/(1/2+sqrt(5)/2)^15 2100951949424888 a001 5702887/1322157322203*505019158607^(4/7) 2100951949424888 a004 Fibonacci(34)*Lucas(56)/(1/2+sqrt(5)/2)^82 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^29/Lucas(55) 2100951949424888 a004 Fibonacci(55)/Lucas(34)/(1/2+sqrt(5)/2)^13 2100951949424888 a001 5702887/312119004989*1322157322203^(1/2) 2100951949424888 a001 5702887/505019158607*192900153618^(5/9) 2100951949424888 a001 5702887/2139295485799*192900153618^(11/18) 2100951949424888 a004 Fibonacci(34)*Lucas(54)/(1/2+sqrt(5)/2)^80 2100951949424888 a001 5702887/119218851371*817138163596^(9/19) 2100951949424888 a001 5702887/119218851371*14662949395604^(3/7) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^27/Lucas(53) 2100951949424888 a004 Fibonacci(53)/Lucas(34)/(1/2+sqrt(5)/2)^11 2100951949424888 a001 5702887/119218851371*192900153618^(1/2) 2100951949424888 a001 5702887/1322157322203*73681302247^(8/13) 2100951949424888 a001 5702887/9062201101803*73681302247^(9/13) 2100951949424888 a004 Fibonacci(34)*Lucas(52)/(1/2+sqrt(5)/2)^78 2100951949424888 a001 1597/12752044*312119004989^(5/11) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^25/Lucas(51) 2100951949424888 a004 Fibonacci(51)/Lucas(34)/(1/2+sqrt(5)/2)^9 2100951949424888 a001 1597/12752044*3461452808002^(5/12) 2100951949424888 a001 5702887/505019158607*28143753123^(3/5) 2100951949424888 a001 5702887/5600748293801*28143753123^(7/10) 2100951949424888 a001 1597/12752044*28143753123^(1/2) 2100951949424888 a004 Fibonacci(34)*Lucas(50)/(1/2+sqrt(5)/2)^76 2100951949424888 a001 5702887/28143753123*10749957122^(1/2) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^23/Lucas(49) 2100951949424888 a004 Fibonacci(49)/Lucas(34)/(1/2+sqrt(5)/2)^7 2100951949424888 a001 5702887/73681302247*10749957122^(13/24) 2100951949424888 a001 5702887/119218851371*10749957122^(9/16) 2100951949424888 a001 5702887/192900153618*10749957122^(7/12) 2100951949424888 a001 5702887/505019158607*10749957122^(5/8) 2100951949424888 a001 5702887/1322157322203*10749957122^(2/3) 2100951949424888 a001 5702887/2139295485799*10749957122^(11/16) 2100951949424888 a001 5702887/3461452808002*10749957122^(17/24) 2100951949424888 a001 5702887/9062201101803*10749957122^(3/4) 2100951949424888 a001 5702887/23725150497407*10749957122^(19/24) 2100951949424888 a004 Fibonacci(34)*Lucas(48)/(1/2+sqrt(5)/2)^74 2100951949424888 a001 5702887/10749957122*4106118243^(11/23) 2100951949424888 a001 5702887/6643838879*17393796001^(3/7) 2100951949424888 a001 5702887/6643838879*45537549124^(7/17) 2100951949424888 a001 5702887/6643838879*14662949395604^(1/3) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^21/Lucas(47) 2100951949424888 a004 Fibonacci(47)/Lucas(34)/(1/2+sqrt(5)/2)^5 2100951949424888 a001 5702887/6643838879*192900153618^(7/18) 2100951949424888 a001 5702887/6643838879*10749957122^(7/16) 2100951949424888 a001 5702887/28143753123*4106118243^(12/23) 2100951949424888 a001 5702887/17393796001*4106118243^(1/2) 2100951949424888 a001 5702887/73681302247*4106118243^(13/23) 2100951949424888 a001 5702887/192900153618*4106118243^(14/23) 2100951949424888 a001 5702887/505019158607*4106118243^(15/23) 2100951949424888 a001 5702887/1322157322203*4106118243^(16/23) 2100951949424888 a001 5702887/3461452808002*4106118243^(17/23) 2100951949424888 a001 5702887/9062201101803*4106118243^(18/23) 2100951949424888 a001 5702887/23725150497407*4106118243^(19/23) 2100951949424888 a004 Fibonacci(34)*Lucas(46)/(1/2+sqrt(5)/2)^72 2100951949424888 a001 5702887/4106118243*1568397607^(5/11) 2100951949424888 a001 5702887/2537720636*817138163596^(1/3) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^19/Lucas(45) 2100951949424888 a004 Fibonacci(45)/Lucas(34)/(1/2+sqrt(5)/2)^3 2100951949424888 a001 5702887/10749957122*1568397607^(1/2) 2100951949424888 a001 5702887/28143753123*1568397607^(6/11) 2100951949424888 a001 5702887/73681302247*1568397607^(13/22) 2100951949424888 a001 5702887/192900153618*1568397607^(7/11) 2100951949424888 a001 5702887/505019158607*1568397607^(15/22) 2100951949424888 a001 5702887/1322157322203*1568397607^(8/11) 2100951949424888 a001 5702887/2139295485799*1568397607^(3/4) 2100951949424888 a001 5702887/3461452808002*1568397607^(17/22) 2100951949424888 a001 5702887/9062201101803*1568397607^(9/11) 2100951949424888 a001 5702887/23725150497407*1568397607^(19/22) 2100951949424888 a004 Fibonacci(34)*Lucas(44)/(1/2+sqrt(5)/2)^70 2100951949424888 a001 5702887/1568397607*599074578^(3/7) 2100951949424888 a001 5702887/969323029*45537549124^(1/3) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^17/Lucas(43) 2100951949424888 a004 Fibonacci(43)/Lucas(34)/(1/2+sqrt(5)/2) 2100951949424888 a001 5702887/4106118243*599074578^(10/21) 2100951949424888 a001 5702887/6643838879*599074578^(1/2) 2100951949424888 a001 5702887/10749957122*599074578^(11/21) 2100951949424888 a001 5702887/28143753123*599074578^(4/7) 2100951949424888 a001 5702887/73681302247*599074578^(13/21) 2100951949424888 a001 5702887/119218851371*599074578^(9/14) 2100951949424888 a001 5702887/192900153618*599074578^(2/3) 2100951949424888 a001 5702887/505019158607*599074578^(5/7) 2100951949424888 a001 5702887/1322157322203*599074578^(16/21) 2100951949424888 a001 5702887/2139295485799*599074578^(11/14) 2100951949424888 a001 5702887/3461452808002*599074578^(17/21) 2100951949424888 a001 5702887/5600748293801*599074578^(5/6) 2100951949424888 a001 5702887/9062201101803*599074578^(6/7) 2100951949424888 a001 5702887/23725150497407*599074578^(19/21) 2100951949424888 a004 Fibonacci(34)*Lucas(42)/(1/2+sqrt(5)/2)^68 2100951949424888 a001 5702887/599074578*228826127^(2/5) 2100951949424888 a001 24157817/12752043*20633239^(1/7) 2100951949424888 a001 5702887/370248451*2537720636^(1/3) 2100951949424888 a001 5702887/370248451*45537549124^(5/17) 2100951949424888 a001 5702887/370248451*312119004989^(3/11) 2100951949424888 a001 5702887/370248451*14662949395604^(5/21) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^15/Lucas(41) 2100951949424888 a001 165580141/25504086+165580141/25504086*5^(1/2) 2100951949424888 a001 5702887/370248451*192900153618^(5/18) 2100951949424888 a001 5702887/370248451*28143753123^(3/10) 2100951949424888 a001 5702887/370248451*10749957122^(5/16) 2100951949424888 a001 5702887/1568397607*228826127^(9/20) 2100951949424888 a001 5702887/370248451*599074578^(5/14) 2100951949424888 a001 5702887/4106118243*228826127^(1/2) 2100951949424888 a001 5702887/10749957122*228826127^(11/20) 2100951949424888 a001 5702887/28143753123*228826127^(3/5) 2100951949424888 a001 1597/12752044*228826127^(5/8) 2100951949424888 a001 5702887/73681302247*228826127^(13/20) 2100951949424888 a001 5702887/192900153618*228826127^(7/10) 2100951949424888 a001 5702887/505019158607*228826127^(3/4) 2100951949424888 a001 5702887/370248451*228826127^(3/8) 2100951949424888 a001 5702887/1322157322203*228826127^(4/5) 2100951949424888 a001 5702887/3461452808002*228826127^(17/20) 2100951949424888 a001 5702887/5600748293801*228826127^(7/8) 2100951949424888 a001 5702887/9062201101803*228826127^(9/10) 2100951949424888 a001 5702887/23725150497407*228826127^(19/20) 2100951949424888 a004 Fibonacci(34)*Lucas(40)/(1/2+sqrt(5)/2)^66 2100951949424888 a001 5702887/228826127*87403803^(7/19) 2100951949424888 a001 34111385/4250681*33385282^(1/18) 2100951949424888 a001 5702887/141422324*141422324^(1/3) 2100951949424888 a001 63245986/12752043*141422324^(1/13) 2100951949424888 a001 63245986/12752043*2537720636^(1/15) 2100951949424888 a001 63245986/12752043*45537549124^(1/17) 2100951949424888 a001 63245986/12752043*14662949395604^(1/21) 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^13/Lucas(39) 2100951949424888 a001 63245986/12752043*(1/2+1/2*5^(1/2))^3 2100951949424888 a001 63245986/12752043*192900153618^(1/18) 2100951949424888 a001 5702887/141422324*73681302247^(1/4) 2100951949424888 a001 63245986/12752043*10749957122^(1/16) 2100951949424888 a001 63245986/12752043*599074578^(1/14) 2100951949424888 a001 5702887/599074578*87403803^(8/19) 2100951949424888 a001 5702887/1568397607*87403803^(9/19) 2100951949424888 a001 5702887/2537720636*87403803^(1/2) 2100951949424888 a001 5702887/4106118243*87403803^(10/19) 2100951949424888 a001 5702887/10749957122*87403803^(11/19) 2100951949424888 a001 5702887/28143753123*87403803^(12/19) 2100951949424888 a001 5702887/73681302247*87403803^(13/19) 2100951949424888 a001 5702887/192900153618*87403803^(14/19) 2100951949424888 a001 5702887/505019158607*87403803^(15/19) 2100951949424888 a001 5702887/1322157322203*87403803^(16/19) 2100951949424888 a001 5702887/3461452808002*87403803^(17/19) 2100951949424888 a001 5702887/9062201101803*87403803^(18/19) 2100951949424888 a001 63245986/12752043*33385282^(1/12) 2100951949424888 a004 Fibonacci(34)*Lucas(38)/(1/2+sqrt(5)/2)^64 2100951949424888 a001 39088169/599074578*7881196^(4/11) 2100951949424888 a001 5702887/87403803*33385282^(1/3) 2100951949424888 a001 4976784/4250681*12752043^(3/17) 2100951949424888 a001 14619165/224056801*7881196^(4/11) 2100951949424888 a001 267914296/4106118243*7881196^(4/11) 2100951949424888 a001 701408733/10749957122*7881196^(4/11) 2100951949424888 a001 1836311903/28143753123*7881196^(4/11) 2100951949424888 a001 686789568/10525900321*7881196^(4/11) 2100951949424888 a001 12586269025/192900153618*7881196^(4/11) 2100951949424888 a001 32951280099/505019158607*7881196^(4/11) 2100951949424888 a001 86267571272/1322157322203*7881196^(4/11) 2100951949424888 a001 32264490531/494493258286*7881196^(4/11) 2100951949424888 a001 1548008755920/23725150497407*7881196^(4/11) 2100951949424888 a001 139583862445/2139295485799*7881196^(4/11) 2100951949424888 a001 53316291173/817138163596*7881196^(4/11) 2100951949424888 a001 20365011074/312119004989*7881196^(4/11) 2100951949424888 a001 7778742049/119218851371*7881196^(4/11) 2100951949424888 a001 2971215073/45537549124*7881196^(4/11) 2100951949424888 a001 1134903170/17393796001*7881196^(4/11) 2100951949424888 a001 433494437/6643838879*7881196^(4/11) 2100951949424888 a001 165580141/2537720636*7881196^(4/11) 2100951949424888 a001 5702887/228826127*33385282^(7/18) 2100951949424888 a001 34111385/4250681*12752043^(1/17) 2100951949424888 a001 24157817/12752043*2537720636^(1/9) 2100951949424888 a001 24157817/12752043*312119004989^(1/11) 2100951949424888 a001 137769300517679/6557470319842 2100951949424888 a004 Fibonacci(34)*(1/2+sqrt(5)/2)^11/Lucas(37) 2100951949424888 a001 24157817/12752043*(1/2+1/2*5^(1/2))^5 2100951949424888 a001 24157817/12752043*28143753123^(1/10) 2100951949424888 a001 5702887/54018521*1568397607^(1/4) 2100951949424888 a001 24157817/12752043*228826127^(1/8) 2100951949424888 a001 63245986/969323029*7881196^(4/11) 2100951949424889 a001 5702887/370248451*33385282^(5/12) 2100951949424889 a001 5702887/599074578*33385282^(4/9) 2100951949424889 a001 5702887/1568397607*33385282^(1/2) 2100951949424889 a001 5702887/4106118243*33385282^(5/9) 2100951949424889 a001 5702887/6643838879*33385282^(7/12) 2100951949424889 a001 5702887/10749957122*33385282^(11/18) 2100951949424889 a001 39088169/12752043*12752043^(2/17) 2100951949424889 a001 5702887/28143753123*33385282^(2/3) 2100951949424889 a001 24157817/370248451*7881196^(4/11) 2100951949424889 a001 5702887/73681302247*33385282^(13/18) 2100951949424889 a001 39088169/370248451*7881196^(1/3) 2100951949424889 a001 5702887/119218851371*33385282^(3/4) 2100951949424889 a001 5702887/192900153618*33385282^(7/9) 2100951949424889 a001 5702887/505019158607*33385282^(5/6) 2100951949424889 a001 102334155/969323029*7881196^(1/3) 2100951949424889 a001 66978574/634430159*7881196^(1/3) 2100951949424889 a001 701408733/6643838879*7881196^(1/3) 2100951949424889 a001 1836311903/17393796001*7881196^(1/3) 2100951949424889 a001 1201881744/11384387281*7881196^(1/3) 2100951949424889 a001 12586269025/119218851371*7881196^(1/3) 2100951949424889 a001 32951280099/312119004989*7881196^(1/3) 2100951949424889 a001 21566892818/204284540899*7881196^(1/3) 2100951949424889 a001 225851433717/2139295485799*7881196^(1/3) 2100951949424889 a001 182717648081/1730726404001*7881196^(1/3) 2100951949424889 a001 139583862445/1322157322203*7881196^(1/3) 2100951949424889 a001 53316291173/505019158607*7881196^(1/3) 2100951949424889 a001 10182505537/96450076809*7881196^(1/3) 2100951949424889 a001 7778742049/73681302247*7881196^(1/3) 2100951949424889 a001 2971215073/28143753123*7881196^(1/3) 2100951949424889 a001 567451585/5374978561*7881196^(1/3) 2100951949424889 a001 433494437/4106118243*7881196^(1/3) 2100951949424889 a001 165580141/1568397607*7881196^(1/3) 2100951949424889 a001 5702887/1322157322203*33385282^(8/9) 2100951949424889 a001 5702887/2139295485799*33385282^(11/12) 2100951949424889 a001 31622993/299537289*7881196^(1/3) 2100951949424890 a001 5702887/3461452808002*33385282^(17/18) 2100951949424890 a001 311187/10525900321*4870847^(7/8) 2100951949424890 a004 Fibonacci(34)*Lucas(36)/(1/2+sqrt(5)/2)^62 2100951949424890 a001 5702887/33385282*12752043^(5/17) 2100951949424890 a001 24157817/228826127*7881196^(1/3) 2100951949424890 a001 9227465/599074578*7881196^(5/11) 2100951949424890 a001 14930352/54018521*7881196^(3/11) 2100951949424891 a001 14930352/4870847*1860498^(2/15) 2100951949424891 a001 39088169/141422324*7881196^(3/11) 2100951949424891 a001 102334155/370248451*7881196^(3/11) 2100951949424891 a001 267914296/969323029*7881196^(3/11) 2100951949424891 a001 701408733/2537720636*7881196^(3/11) 2100951949424891 a001 1836311903/6643838879*7881196^(3/11) 2100951949424891 a001 4807526976/17393796001*7881196^(3/11) 2100951949424891 a001 12586269025/45537549124*7881196^(3/11) 2100951949424891 a001 32951280099/119218851371*7881196^(3/11) 2100951949424891 a001 86267571272/312119004989*7881196^(3/11) 2100951949424891 a001 225851433717/817138163596*7881196^(3/11) 2100951949424891 a001 1548008755920/5600748293801*7881196^(3/11) 2100951949424891 a001 139583862445/505019158607*7881196^(3/11) 2100951949424891 a001 53316291173/192900153618*7881196^(3/11) 2100951949424891 a001 20365011074/73681302247*7881196^(3/11) 2100951949424891 a001 7778742049/28143753123*7881196^(3/11) 2100951949424891 a001 2971215073/10749957122*7881196^(3/11) 2100951949424891 a001 1134903170/4106118243*7881196^(3/11) 2100951949424891 a001 433494437/1568397607*7881196^(3/11) 2100951949424891 a001 165580141/599074578*7881196^(3/11) 2100951949424891 a001 63245986/228826127*7881196^(3/11) 2100951949424892 a001 9227465/12752043*20633239^(1/5) 2100951949424892 a001 24157817/87403803*7881196^(3/11) 2100951949424892 a001 5702887/87403803*12752043^(6/17) 2100951949424892 a001 39088169/33385282*7881196^(2/11) 2100951949424893 a001 5702887/20633239*141422324^(3/13) 2100951949424893 a001 5702887/20633239*2537720636^(1/5) 2100951949424893 a001 9227465/12752043*17393796001^(1/7) 2100951949424893 a001 5702887/20633239*45537549124^(3/17) 2100951949424893 a001 52623190191455/2504730781961 2100951949424893 a001 5702887/20633239*(1/2+1/2*5^(1/2))^9 2100951949424893 a001 9227465/12752043*(1/2+1/2*5^(1/2))^7 2100951949424893 a001 5702887/20633239*192900153618^(1/6) 2100951949424893 a001 5702887/20633239*10749957122^(3/16) 2100951949424893 a001 9227465/12752043*599074578^(1/6) 2100951949424893 a001 5702887/20633239*599074578^(3/14) 2100951949424893 a001 5702887/228826127*12752043^(7/17) 2100951949424893 a001 5702887/20633239*33385282^(1/4) 2100951949424893 a001 34111385/4250681*4870847^(1/16) 2100951949424893 a001 9227465/141422324*7881196^(4/11) 2100951949424894 a001 5702887/599074578*12752043^(8/17) 2100951949424894 a004 Fibonacci(36)*Lucas(35)/(1/2+sqrt(5)/2)^63 2100951949424894 a001 9227465/87403803*7881196^(1/3) 2100951949424894 a001 34111385/29134601*7881196^(2/11) 2100951949424894 a001 5702887/969323029*12752043^(1/2) 2100951949424894 a001 267914296/228826127*7881196^(2/11) 2100951949424894 a001 9227465/33385282*7881196^(3/11) 2100951949424895 a001 233802911/199691526*7881196^(2/11) 2100951949424895 a001 1836311903/1568397607*7881196^(2/11) 2100951949424895 a001 1602508992/1368706081*7881196^(2/11) 2100951949424895 a001 12586269025/10749957122*7881196^(2/11) 2100951949424895 a001 10983760033/9381251041*7881196^(2/11) 2100951949424895 a001 86267571272/73681302247*7881196^(2/11) 2100951949424895 a001 75283811239/64300051206*7881196^(2/11) 2100951949424895 a001 2504730781961/2139295485799*7881196^(2/11) 2100951949424895 a001 365435296162/312119004989*7881196^(2/11) 2100951949424895 a001 139583862445/119218851371*7881196^(2/11) 2100951949424895 a001 53316291173/45537549124*7881196^(2/11) 2100951949424895 a001 20365011074/17393796001*7881196^(2/11) 2100951949424895 a001 7778742049/6643838879*7881196^(2/11) 2100951949424895 a001 2971215073/2537720636*7881196^(2/11) 2100951949424895 a001 1134903170/969323029*7881196^(2/11) 2100951949424895 a001 433494437/370248451*7881196^(2/11) 2100951949424895 a001 4976784/440719107401*20633239^(6/7) 2100951949424895 a001 5702887/1568397607*12752043^(9/17) 2100951949424895 a001 165580141/141422324*7881196^(2/11) 2100951949424895 a001 14930352/505019158607*20633239^(4/5) 2100951949424895 a001 726103/64300051206*4870847^(15/16) 2100951949424895 a001 14930352/119218851371*20633239^(5/7) 2100951949424895 a001 63245986/54018521*7881196^(2/11) 2100951949424895 a001 5702887/4106118243*12752043^(10/17) 2100951949424895 a004 Fibonacci(38)*Lucas(35)/(1/2+sqrt(5)/2)^65 2100951949424896 a004 Fibonacci(40)*Lucas(35)/(1/2+sqrt(5)/2)^67 2100951949424896 a001 165580141/33385282*7881196^(1/11) 2100951949424896 a004 Fibonacci(42)*Lucas(35)/(1/2+sqrt(5)/2)^69 2100951949424896 a004 Fibonacci(44)*Lucas(35)/(1/2+sqrt(5)/2)^71 2100951949424896 a004 Fibonacci(46)*Lucas(35)/(1/2+sqrt(5)/2)^73 2100951949424896 a004 Fibonacci(48)*Lucas(35)/(1/2+sqrt(5)/2)^75 2100951949424896 a004 Fibonacci(50)*Lucas(35)/(1/2+sqrt(5)/2)^77 2100951949424896 a004 Fibonacci(52)*Lucas(35)/(1/2+sqrt(5)/2)^79 2100951949424896 a004 Fibonacci(54)*Lucas(35)/(1/2+sqrt(5)/2)^81 2100951949424896 a004 Fibonacci(56)*Lucas(35)/(1/2+sqrt(5)/2)^83 2100951949424896 a004 Fibonacci(58)*Lucas(35)/(1/2+sqrt(5)/2)^85 2100951949424896 a004 Fibonacci(60)*Lucas(35)/(1/2+sqrt(5)/2)^87 2100951949424896 a004 Fibonacci(62)*Lucas(35)/(1/2+sqrt(5)/2)^89 2100951949424896 a004 Fibonacci(64)*Lucas(35)/(1/2+sqrt(5)/2)^91 2100951949424896 a004 Fibonacci(66)*Lucas(35)/(1/2+sqrt(5)/2)^93 2100951949424896 a004 Fibonacci(68)*Lucas(35)/(1/2+sqrt(5)/2)^95 2100951949424896 a004 Fibonacci(70)*Lucas(35)/(1/2+sqrt(5)/2)^97 2100951949424896 a004 Fibonacci(72)*Lucas(35)/(1/2+sqrt(5)/2)^99 2100951949424896 a004 Fibonacci(73)*Lucas(35)/(1/2+sqrt(5)/2)^100 2100951949424896 a004 Fibonacci(71)*Lucas(35)/(1/2+sqrt(5)/2)^98 2100951949424896 a001 2/9227465*(1/2+1/2*5^(1/2))^43 2100951949424896 a004 Fibonacci(69)*Lucas(35)/(1/2+sqrt(5)/2)^96 2100951949424896 a004 Fibonacci(67)*Lucas(35)/(1/2+sqrt(5)/2)^94 2100951949424896 a004 Fibonacci(65)*Lucas(35)/(1/2+sqrt(5)/2)^92 2100951949424896 a004 Fibonacci(63)*Lucas(35)/(1/2+sqrt(5)/2)^90 2100951949424896 a004 Fibonacci(61)*Lucas(35)/(1/2+sqrt(5)/2)^88 2100951949424896 a004 Fibonacci(59)*Lucas(35)/(1/2+sqrt(5)/2)^86 2100951949424896 a004 Fibonacci(57)*Lucas(35)/(1/2+sqrt(5)/2)^84 2100951949424896 a004 Fibonacci(55)*Lucas(35)/(1/2+sqrt(5)/2)^82 2100951949424896 a004 Fibonacci(53)*Lucas(35)/(1/2+sqrt(5)/2)^80 2100951949424896 a004 Fibonacci(51)*Lucas(35)/(1/2+sqrt(5)/2)^78 2100951949424896 a004 Fibonacci(49)*Lucas(35)/(1/2+sqrt(5)/2)^76 2100951949424896 a004 Fibonacci(47)*Lucas(35)/(1/2+sqrt(5)/2)^74 2100951949424896 a004 Fibonacci(45)*Lucas(35)/(1/2+sqrt(5)/2)^72 2100951949424896 a004 Fibonacci(43)*Lucas(35)/(1/2+sqrt(5)/2)^70 2100951949424896 a004 Fibonacci(41)*Lucas(35)/(1/2+sqrt(5)/2)^68 2100951949424896 a001 14930352/17393796001*20633239^(3/5) 2100951949424896 a004 Fibonacci(39)*Lucas(35)/(1/2+sqrt(5)/2)^66 2100951949424896 a001 7465176/5374978561*20633239^(4/7) 2100951949424896 a001 5702887/10749957122*12752043^(11/17) 2100951949424896 a001 39088169/3461452808002*20633239^(6/7) 2100951949424896 a001 34111385/3020733700601*20633239^(6/7) 2100951949424896 a001 267914296/23725150497407*20633239^(6/7) 2100951949424896 a001 39088169/1322157322203*20633239^(4/5) 2100951949424896 a004 Fibonacci(37)*Lucas(35)/(1/2+sqrt(5)/2)^64 2100951949424896 a001 165580141/14662949395604*20633239^(6/7) 2100951949424897 a001 63245986/5600748293801*20633239^(6/7) 2100951949424897 a001 14930352/969323029*20633239^(3/7) 2100951949424897 a001 6765/228826126*20633239^(4/5) 2100951949424897 a001 267914296/9062201101803*20633239^(4/5) 2100951949424897 a001 701408733/23725150497407*20633239^(4/5) 2100951949424897 a001 433494437/14662949395604*20633239^(4/5) 2100951949424897 a001 165580141/5600748293801*20633239^(4/5) 2100951949424897 a001 829464/33281921*20633239^(2/5) 2100951949424897 a001 63245986/2139295485799*20633239^(4/5) 2100951949424897 a001 39088169/312119004989*20633239^(5/7) 2100951949424897 a001 5702887/28143753123*12752043^(12/17) 2100951949424897 a001 7465176/16692641*(1/2+1/2*5^(1/2))^8 2100951949424897 a001 74305136947968/3536736619241 2100951949424897 a001 7465176/16692641*505019158607^(1/7) 2100951949424897 a001 7465176/16692641*73681302247^(2/13) 2100951949424897 a001 7465176/16692641*10749957122^(1/6) 2100951949424897 a001 7465176/16692641*4106118243^(4/23) 2100951949424897 a001 7465176/16692641*1568397607^(2/11) 2100951949424897 a001 7465176/16692641*599074578^(4/21) 2100951949424897 a001 7465176/16692641*228826127^(1/5) 2100951949424897 a001 7465176/16692641*87403803^(4/19) 2100951949424897 a001 5702887/12752043*4870847^(1/4) 2100951949424897 a001 4976784/29134601*20633239^(2/7) 2100951949424897 a001 102334155/817138163596*20633239^(5/7) 2100951949424897 a001 267914296/2139295485799*20633239^(5/7) 2100951949424897 a001 701408733/5600748293801*20633239^(5/7) 2100951949424897 a001 1836311903/14662949395604*20633239^(5/7) 2100951949424897 a001 2971215073/23725150497407*20633239^(5/7) 2100951949424897 a001 1134903170/9062201101803*20633239^(5/7) 2100951949424897 a001 433494437/3461452808002*20633239^(5/7) 2100951949424897 a001 24157817/2139295485799*20633239^(6/7) 2100951949424897 a001 165580141/1322157322203*20633239^(5/7) 2100951949424897 a001 63245986/505019158607*20633239^(5/7) 2100951949424897 a001 7465176/16692641*33385282^(2/9) 2100951949424897 a001 433494437/87403803*7881196^(1/11) 2100951949424897 a001 39088169/45537549124*20633239^(3/5) 2100951949424897 a001 24157817/817138163596*20633239^(4/5) 2100951949424898 a001 1134903170/228826127*7881196^(1/11) 2100951949424898 a001 39088169/28143753123*20633239^(4/7) 2100951949424898 a001 2971215073/599074578*7881196^(1/11) 2100951949424898 a001 7778742049/1568397607*7881196^(1/11) 2100951949424898 a001 20365011074/4106118243*7881196^(1/11) 2100951949424898 a001 53316291173/10749957122*7881196^(1/11) 2100951949424898 a001 139583862445/28143753123*7881196^(1/11) 2100951949424898 a001 365435296162/73681302247*7881196^(1/11) 2100951949424898 a001 956722026041/192900153618*7881196^(1/11) 2100951949424898 a001 10610209857723/2139295485799*7881196^(1/11) 2100951949424898 a001 4052739537881/817138163596*7881196^(1/11) 2100951949424898 a001 140728068720/28374454999*7881196^(1/11) 2100951949424898 a001 591286729879/119218851371*7881196^(1/11) 2100951949424898 a001 225851433717/45537549124*7881196^(1/11) 2100951949424898 a001 86267571272/17393796001*7881196^(1/11) 2100951949424898 a001 32951280099/6643838879*7881196^(1/11) 2100951949424898 a001 1144206275/230701876*7881196^(1/11) 2100951949424898 a001 4807526976/969323029*7881196^(1/11) 2100951949424898 a001 1836311903/370248451*7881196^(1/11) 2100951949424898 a001 5702887/73681302247*12752043^(13/17) 2100951949424898 a001 102334155/119218851371*20633239^(3/5) 2100951949424898 a001 701408733/141422324*7881196^(1/11) 2100951949424898 a001 267914296/312119004989*20633239^(3/5) 2100951949424898 a001 701408733/817138163596*20633239^(3/5) 2100951949424898 a001 1836311903/2139295485799*20633239^(3/5) 2100951949424898 a001 4807526976/5600748293801*20633239^(3/5) 2100951949424898 a001 12586269025/14662949395604*20633239^(3/5) 2100951949424898 a001 20365011074/23725150497407*20633239^(3/5) 2100951949424898 a001 7778742049/9062201101803*20633239^(3/5) 2100951949424898 a001 2971215073/3461452808002*20633239^(3/5) 2100951949424898 a001 1134903170/1322157322203*20633239^(3/5) 2100951949424898 a001 433494437/505019158607*20633239^(3/5) 2100951949424898 a001 165580141/192900153618*20633239^(3/5) 2100951949424898 a001 14619165/10525900321*20633239^(4/7) 2100951949424898 a001 63245986/73681302247*20633239^(3/5) 2100951949424898 a001 133957148/96450076809*20633239^(4/7) 2100951949424898 a001 701408733/505019158607*20633239^(4/7) 2100951949424898 a001 1836311903/1322157322203*20633239^(4/7) 2100951949424898 a001 14930208/10749853441*20633239^(4/7) 2100951949424898 a001 12586269025/9062201101803*20633239^(4/7) 2100951949424898 a001 32951280099/23725150497407*20633239^(4/7) 2100951949424898 a001 10182505537/7331474697802*20633239^(4/7) 2100951949424898 a001 7778742049/5600748293801*20633239^(4/7) 2100951949424898 a001 2971215073/2139295485799*20633239^(4/7) 2100951949424898 a001 567451585/408569081798*20633239^(4/7) 2100951949424898 a001 433494437/312119004989*20633239^(4/7) 2100951949424898 a001 24157817/192900153618*20633239^(5/7) 2100951949424898 a001 165580141/119218851371*20633239^(4/7) 2100951949424898 a001 31622993/22768774562*20633239^(4/7) 2100951949424898 a004 Fibonacci(36)*Lucas(37)/(1/2+sqrt(5)/2)^65 2100951949424898 a001 31622993/16692641*20633239^(1/7) 2100951949424898 a001 39088169/2537720636*20633239^(3/7) 2100951949424898 a001 267914296/54018521*7881196^(1/11) 2100951949424898 a001 5702887/192900153618*12752043^(14/17) 2100951949424898 a001 39088169/1568397607*20633239^(2/5) 2100951949424898 a001 24157817/28143753123*20633239^(3/5) 2100951949424898 a001 39088169/33385282*141422324^(2/13) 2100951949424898 a001 4976784/29134601*2537720636^(2/9) 2100951949424898 a001 39088169/33385282*2537720636^(2/15) 2100951949424898 a001 39088169/33385282*45537549124^(2/17) 2100951949424898 a001 39088169/33385282*14662949395604^(2/21) 2100951949424898 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^10/Lucas(38) 2100951949424898 a001 39088169/33385282*(1/2+1/2*5^(1/2))^6 2100951949424898 a001 4976784/29134601*28143753123^(1/5) 2100951949424898 a001 39088169/33385282*10749957122^(1/8) 2100951949424898 a001 4976784/29134601*10749957122^(5/24) 2100951949424898 a001 39088169/33385282*4106118243^(3/23) 2100951949424898 a001 4976784/29134601*4106118243^(5/23) 2100951949424898 a001 39088169/33385282*1568397607^(3/22) 2100951949424898 a001 4976784/29134601*1568397607^(5/22) 2100951949424898 a001 39088169/33385282*599074578^(1/7) 2100951949424898 a001 4976784/29134601*599074578^(5/21) 2100951949424899 a001 102334155/6643838879*20633239^(3/7) 2100951949424899 a001 39088169/33385282*228826127^(3/20) 2100951949424899 a001 24157817/33385282*20633239^(1/5) 2100951949424899 a001 4976784/29134601*228826127^(1/4) 2100951949424899 a001 39088169/12752043*4870847^(1/8) 2100951949424899 a001 9238424/599786069*20633239^(3/7) 2100951949424899 a001 39088169/33385282*87403803^(3/19) 2100951949424899 a001 701408733/45537549124*20633239^(3/7) 2100951949424899 a001 1836311903/119218851371*20633239^(3/7) 2100951949424899 a001 4807526976/312119004989*20633239^(3/7) 2100951949424899 a001 12586269025/817138163596*20633239^(3/7) 2100951949424899 a001 32951280099/2139295485799*20633239^(3/7) 2100951949424899 a001 86267571272/5600748293801*20633239^(3/7) 2100951949424899 a001 7787980473/505618944676*20633239^(3/7) 2100951949424899 a001 365435296162/23725150497407*20633239^(3/7) 2100951949424899 a001 139583862445/9062201101803*20633239^(3/7) 2100951949424899 a001 53316291173/3461452808002*20633239^(3/7) 2100951949424899 a001 20365011074/1322157322203*20633239^(3/7) 2100951949424899 a001 7778742049/505019158607*20633239^(3/7) 2100951949424899 a001 2971215073/192900153618*20633239^(3/7) 2100951949424899 a001 1134903170/73681302247*20633239^(3/7) 2100951949424899 a001 433494437/28143753123*20633239^(3/7) 2100951949424899 a001 24157817/17393796001*20633239^(4/7) 2100951949424899 a001 165580141/10749957122*20633239^(3/7) 2100951949424899 a001 4976784/29134601*87403803^(5/19) 2100951949424899 a001 34111385/1368706081*20633239^(2/5) 2100951949424899 a001 63245986/4106118243*20633239^(3/7) 2100951949424899 a004 Fibonacci(36)*Lucas(39)/(1/2+sqrt(5)/2)^67 2100951949424899 a001 14930352/23725150497407*141422324^(12/13) 2100951949424899 a001 133957148/5374978561*20633239^(2/5) 2100951949424899 a001 233802911/9381251041*20633239^(2/5) 2100951949424899 a001 1836311903/73681302247*20633239^(2/5) 2100951949424899 a001 267084832/10716675201*20633239^(2/5) 2100951949424899 a001 12586269025/505019158607*20633239^(2/5) 2100951949424899 a001 10983760033/440719107401*20633239^(2/5) 2100951949424899 a001 43133785636/1730726404001*20633239^(2/5) 2100951949424899 a001 75283811239/3020733700601*20633239^(2/5) 2100951949424899 a001 182717648081/7331474697802*20633239^(2/5) 2100951949424899 a001 139583862445/5600748293801*20633239^(2/5) 2100951949424899 a001 53316291173/2139295485799*20633239^(2/5) 2100951949424899 a001 10182505537/408569081798*20633239^(2/5) 2100951949424899 a001 7778742049/312119004989*20633239^(2/5) 2100951949424899 a001 2971215073/119218851371*20633239^(2/5) 2100951949424899 a001 14930352/5600748293801*141422324^(11/13) 2100951949424899 a001 567451585/22768774562*20633239^(2/5) 2100951949424899 a001 433494437/17393796001*20633239^(2/5) 2100951949424899 a001 4976784/440719107401*141422324^(10/13) 2100951949424899 a001 165580141/6643838879*20633239^(2/5) 2100951949424899 a001 14930352/312119004989*141422324^(9/13) 2100951949424899 a001 14930352/228826127*141422324^(4/13) 2100951949424899 a001 2584/33385281*141422324^(2/3) 2100951949424899 a001 14930352/73681302247*141422324^(8/13) 2100951949424899 a001 14930352/17393796001*141422324^(7/13) 2100951949424899 a001 4976784/1368706081*141422324^(6/13) 2100951949424899 a001 14930352/228826127*2537720636^(4/15) 2100951949424899 a001 14930352/228826127*45537549124^(4/17) 2100951949424899 a001 14930352/228826127*817138163596^(4/19) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^12/Lucas(40) 2100951949424899 a001 14619165/4769326*(1/2+1/2*5^(1/2))^4 2100951949424899 a001 14619165/4769326*23725150497407^(1/16) 2100951949424899 a001 14930352/228826127*192900153618^(2/9) 2100951949424899 a001 14619165/4769326*73681302247^(1/13) 2100951949424899 a001 14930352/228826127*73681302247^(3/13) 2100951949424899 a001 14619165/4769326*10749957122^(1/12) 2100951949424899 a001 14930352/228826127*10749957122^(1/4) 2100951949424899 a001 14619165/4769326*4106118243^(2/23) 2100951949424899 a001 14930352/228826127*4106118243^(6/23) 2100951949424899 a001 14619165/4769326*1568397607^(1/11) 2100951949424899 a001 14930352/228826127*1568397607^(3/11) 2100951949424899 a001 14619165/4769326*599074578^(2/21) 2100951949424899 a001 14930352/228826127*599074578^(2/7) 2100951949424899 a001 14930352/969323029*141422324^(5/13) 2100951949424899 a001 14619165/4769326*228826127^(1/10) 2100951949424899 a001 14930352/228826127*228826127^(3/10) 2100951949424899 a001 14930352/370248451*141422324^(1/3) 2100951949424899 a004 Fibonacci(36)*Lucas(41)/(1/2+sqrt(5)/2)^69 2100951949424899 a001 14619165/4769326*87403803^(2/19) 2100951949424899 a001 829464/33281921*17393796001^(2/7) 2100951949424899 a001 829464/33281921*14662949395604^(2/9) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^14/Lucas(42) 2100951949424899 a001 133957148/16692641*(1/2+1/2*5^(1/2))^2 2100951949424899 a001 133957148/16692641*10749957122^(1/24) 2100951949424899 a001 829464/33281921*10749957122^(7/24) 2100951949424899 a001 133957148/16692641*4106118243^(1/23) 2100951949424899 a001 829464/33281921*4106118243^(7/23) 2100951949424899 a001 133957148/16692641*1568397607^(1/22) 2100951949424899 a001 829464/33281921*1568397607^(7/22) 2100951949424899 a001 133957148/16692641*599074578^(1/21) 2100951949424899 a001 829464/33281921*599074578^(1/3) 2100951949424899 a001 133957148/16692641*228826127^(1/20) 2100951949424899 a004 Fibonacci(36)*Lucas(43)/(1/2+sqrt(5)/2)^71 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^16/Lucas(44) 2100951949424899 a001 14930352/1568397607*23725150497407^(1/4) 2100951949424899 a001 14930352/1568397607*73681302247^(4/13) 2100951949424899 a001 14930352/1568397607*10749957122^(1/3) 2100951949424899 a001 14930352/1568397607*4106118243^(8/23) 2100951949424899 a001 14930352/1568397607*1568397607^(4/11) 2100951949424899 a004 Fibonacci(36)*Lucas(45)/(1/2+sqrt(5)/2)^73 2100951949424899 a001 14930352/23725150497407*2537720636^(4/5) 2100951949424899 a001 4976784/1368706081*2537720636^(2/5) 2100951949424899 a001 196452/192933544679*2537720636^(7/9) 2100951949424899 a001 14930352/5600748293801*2537720636^(11/15) 2100951949424899 a001 4976784/440719107401*2537720636^(2/3) 2100951949424899 a001 14930352/312119004989*2537720636^(3/5) 2100951949424899 a001 14930352/119218851371*2537720636^(5/9) 2100951949424899 a001 14930352/73681302247*2537720636^(8/15) 2100951949424899 a001 7465176/5374978561*2537720636^(4/9) 2100951949424899 a001 14930352/17393796001*2537720636^(7/15) 2100951949424899 a001 4976784/1368706081*45537549124^(6/17) 2100951949424899 a001 4976784/1368706081*14662949395604^(2/7) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^18/Lucas(46) 2100951949424899 a004 Fibonacci(46)/Lucas(36)/(1/2+sqrt(5)/2)^2 2100951949424899 a001 4976784/1368706081*192900153618^(1/3) 2100951949424899 a001 4976784/1368706081*10749957122^(3/8) 2100951949424899 a001 4976784/1368706081*4106118243^(9/23) 2100951949424899 a004 Fibonacci(36)*Lucas(47)/(1/2+sqrt(5)/2)^75 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^20/Lucas(48) 2100951949424899 a004 Fibonacci(48)/Lucas(36)/(1/2+sqrt(5)/2)^4 2100951949424899 a001 7465176/5374978561*23725150497407^(5/16) 2100951949424899 a001 7465176/5374978561*505019158607^(5/14) 2100951949424899 a001 7465176/5374978561*73681302247^(5/13) 2100951949424899 a001 7465176/5374978561*28143753123^(2/5) 2100951949424899 a001 7465176/5374978561*10749957122^(5/12) 2100951949424899 a004 Fibonacci(36)*Lucas(49)/(1/2+sqrt(5)/2)^77 2100951949424899 a001 196452/192933544679*17393796001^(5/7) 2100951949424899 a001 14930352/505019158607*17393796001^(4/7) 2100951949424899 a001 4976784/9381251041*312119004989^(2/5) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^22/Lucas(50) 2100951949424899 a004 Fibonacci(50)/Lucas(36)/(1/2+sqrt(5)/2)^6 2100951949424899 a004 Fibonacci(36)*Lucas(51)/(1/2+sqrt(5)/2)^79 2100951949424899 a001 14930352/73681302247*45537549124^(8/17) 2100951949424899 a001 14930352/23725150497407*45537549124^(12/17) 2100951949424899 a001 4976784/3020733700601*45537549124^(2/3) 2100951949424899 a001 14930352/5600748293801*45537549124^(11/17) 2100951949424899 a001 4976784/440719107401*45537549124^(10/17) 2100951949424899 a001 14930352/312119004989*45537549124^(9/17) 2100951949424899 a001 14930352/73681302247*14662949395604^(8/21) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^24/Lucas(52) 2100951949424899 a004 Fibonacci(52)/Lucas(36)/(1/2+sqrt(5)/2)^8 2100951949424899 a001 14930352/73681302247*192900153618^(4/9) 2100951949424899 a001 14930352/73681302247*73681302247^(6/13) 2100951949424899 a004 Fibonacci(36)*Lucas(53)/(1/2+sqrt(5)/2)^81 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^26/Lucas(54) 2100951949424899 a004 Fibonacci(54)/Lucas(36)/(1/2+sqrt(5)/2)^10 2100951949424899 a004 Fibonacci(36)*Lucas(55)/(1/2+sqrt(5)/2)^83 2100951949424899 a001 196452/192933544679*312119004989^(7/11) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^28/Lucas(56) 2100951949424899 a004 Fibonacci(56)/Lucas(36)/(1/2+sqrt(5)/2)^12 2100951949424899 a004 Fibonacci(36)*Lucas(57)/(1/2+sqrt(5)/2)^85 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^30/Lucas(58) 2100951949424899 a004 Fibonacci(58)/Lucas(36)/(1/2+sqrt(5)/2)^14 2100951949424899 a004 Fibonacci(36)*Lucas(59)/(1/2+sqrt(5)/2)^87 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^32/Lucas(60) 2100951949424899 a004 Fibonacci(60)/Lucas(36)/(1/2+sqrt(5)/2)^16 2100951949424899 a004 Fibonacci(36)*Lucas(61)/(1/2+sqrt(5)/2)^89 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^34/Lucas(62) 2100951949424899 a004 Fibonacci(62)/Lucas(36)/(1/2+sqrt(5)/2)^18 2100951949424899 a004 Fibonacci(36)*Lucas(63)/(1/2+sqrt(5)/2)^91 2100951949424899 a001 14930352/23725150497407*14662949395604^(4/7) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^36/Lucas(64) 2100951949424899 a004 Fibonacci(64)/Lucas(36)/(1/2+sqrt(5)/2)^20 2100951949424899 a004 Fibonacci(36)*Lucas(65)/(1/2+sqrt(5)/2)^93 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^38/Lucas(66) 2100951949424899 a004 Fibonacci(66)/Lucas(36)/(1/2+sqrt(5)/2)^22 2100951949424899 a004 Fibonacci(36)*Lucas(67)/(1/2+sqrt(5)/2)^95 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^40/Lucas(68) 2100951949424899 a004 Fibonacci(68)/Lucas(36)/(1/2+sqrt(5)/2)^24 2100951949424899 a004 Fibonacci(36)*Lucas(69)/(1/2+sqrt(5)/2)^97 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^42/Lucas(70) 2100951949424899 a004 Fibonacci(70)/Lucas(36)/(1/2+sqrt(5)/2)^26 2100951949424899 a004 Fibonacci(36)*Lucas(71)/(1/2+sqrt(5)/2)^99 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^44/Lucas(72) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^46/Lucas(74) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^48/Lucas(76) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^50/Lucas(78) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^52/Lucas(80) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^54/Lucas(82) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^56/Lucas(84) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^58/Lucas(86) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^60/Lucas(88) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^62/Lucas(90) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^64/Lucas(92) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^66/Lucas(94) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^68/Lucas(96) 2100951949424899 a004 Fibonacci(18)*Lucas(18)/(1/2+sqrt(5)/2)^28 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^69/Lucas(97) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^70/Lucas(98) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^71/Lucas(99) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^72/Lucas(100) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^67/Lucas(95) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^65/Lucas(93) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^63/Lucas(91) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^61/Lucas(89) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^59/Lucas(87) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^57/Lucas(85) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^55/Lucas(83) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^53/Lucas(81) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^51/Lucas(79) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^49/Lucas(77) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^47/Lucas(75) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^45/Lucas(73) 2100951949424899 a004 Fibonacci(74)/Lucas(36)/(1/2+sqrt(5)/2)^30 2100951949424899 a004 Fibonacci(76)/Lucas(36)/(1/2+sqrt(5)/2)^32 2100951949424899 a004 Fibonacci(78)/Lucas(36)/(1/2+sqrt(5)/2)^34 2100951949424899 a004 Fibonacci(80)/Lucas(36)/(1/2+sqrt(5)/2)^36 2100951949424899 a004 Fibonacci(82)/Lucas(36)/(1/2+sqrt(5)/2)^38 2100951949424899 a004 Fibonacci(84)/Lucas(36)/(1/2+sqrt(5)/2)^40 2100951949424899 a004 Fibonacci(86)/Lucas(36)/(1/2+sqrt(5)/2)^42 2100951949424899 a004 Fibonacci(88)/Lucas(36)/(1/2+sqrt(5)/2)^44 2100951949424899 a004 Fibonacci(90)/Lucas(36)/(1/2+sqrt(5)/2)^46 2100951949424899 a004 Fibonacci(92)/Lucas(36)/(1/2+sqrt(5)/2)^48 2100951949424899 a004 Fibonacci(94)/Lucas(36)/(1/2+sqrt(5)/2)^50 2100951949424899 a004 Fibonacci(96)/Lucas(36)/(1/2+sqrt(5)/2)^52 2100951949424899 a004 Fibonacci(100)/Lucas(36)/(1/2+sqrt(5)/2)^56 2100951949424899 a004 Fibonacci(36)*Lucas(72)/(1/2+sqrt(5)/2)^100 2100951949424899 a004 Fibonacci(97)/Lucas(36)/(1/2+sqrt(5)/2)^53 2100951949424899 a004 Fibonacci(98)/Lucas(36)/(1/2+sqrt(5)/2)^54 2100951949424899 a004 Fibonacci(99)/Lucas(36)/(1/2+sqrt(5)/2)^55 2100951949424899 a004 Fibonacci(95)/Lucas(36)/(1/2+sqrt(5)/2)^51 2100951949424899 a004 Fibonacci(93)/Lucas(36)/(1/2+sqrt(5)/2)^49 2100951949424899 a004 Fibonacci(91)/Lucas(36)/(1/2+sqrt(5)/2)^47 2100951949424899 a004 Fibonacci(89)/Lucas(36)/(1/2+sqrt(5)/2)^45 2100951949424899 a004 Fibonacci(87)/Lucas(36)/(1/2+sqrt(5)/2)^43 2100951949424899 a004 Fibonacci(85)/Lucas(36)/(1/2+sqrt(5)/2)^41 2100951949424899 a004 Fibonacci(83)/Lucas(36)/(1/2+sqrt(5)/2)^39 2100951949424899 a004 Fibonacci(81)/Lucas(36)/(1/2+sqrt(5)/2)^37 2100951949424899 a004 Fibonacci(79)/Lucas(36)/(1/2+sqrt(5)/2)^35 2100951949424899 a004 Fibonacci(77)/Lucas(36)/(1/2+sqrt(5)/2)^33 2100951949424899 a004 Fibonacci(75)/Lucas(36)/(1/2+sqrt(5)/2)^31 2100951949424899 a004 Fibonacci(73)/Lucas(36)/(1/2+sqrt(5)/2)^29 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^43/Lucas(71) 2100951949424899 a004 Fibonacci(71)/Lucas(36)/(1/2+sqrt(5)/2)^27 2100951949424899 a004 Fibonacci(36)*Lucas(70)/(1/2+sqrt(5)/2)^98 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^41/Lucas(69) 2100951949424899 a004 Fibonacci(69)/Lucas(36)/(1/2+sqrt(5)/2)^25 2100951949424899 a004 Fibonacci(36)*Lucas(68)/(1/2+sqrt(5)/2)^96 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^39/Lucas(67) 2100951949424899 a004 Fibonacci(67)/Lucas(36)/(1/2+sqrt(5)/2)^23 2100951949424899 a004 Fibonacci(36)*Lucas(66)/(1/2+sqrt(5)/2)^94 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^37/Lucas(65) 2100951949424899 a004 Fibonacci(65)/Lucas(36)/(1/2+sqrt(5)/2)^21 2100951949424899 a004 Fibonacci(36)*Lucas(64)/(1/2+sqrt(5)/2)^92 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^35/Lucas(63) 2100951949424899 a004 Fibonacci(63)/Lucas(36)/(1/2+sqrt(5)/2)^19 2100951949424899 a004 Fibonacci(36)*Lucas(62)/(1/2+sqrt(5)/2)^90 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^33/Lucas(61) 2100951949424899 a004 Fibonacci(61)/Lucas(36)/(1/2+sqrt(5)/2)^17 2100951949424899 a004 Fibonacci(36)*Lucas(60)/(1/2+sqrt(5)/2)^88 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^31/Lucas(59) 2100951949424899 a004 Fibonacci(59)/Lucas(36)/(1/2+sqrt(5)/2)^15 2100951949424899 a001 14930352/2139295485799*9062201101803^(1/2) 2100951949424899 a004 Fibonacci(36)*Lucas(58)/(1/2+sqrt(5)/2)^86 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^29/Lucas(57) 2100951949424899 a004 Fibonacci(57)/Lucas(36)/(1/2+sqrt(5)/2)^13 2100951949424899 a001 3732588/204284540899*1322157322203^(1/2) 2100951949424899 a004 Fibonacci(36)*Lucas(56)/(1/2+sqrt(5)/2)^84 2100951949424899 a001 14930352/312119004989*14662949395604^(3/7) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^27/Lucas(55) 2100951949424899 a004 Fibonacci(55)/Lucas(36)/(1/2+sqrt(5)/2)^11 2100951949424899 a001 14930352/23725150497407*192900153618^(2/3) 2100951949424899 a001 14930352/312119004989*192900153618^(1/2) 2100951949424899 a004 Fibonacci(36)*Lucas(54)/(1/2+sqrt(5)/2)^82 2100951949424899 a001 14930352/119218851371*312119004989^(5/11) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^25/Lucas(53) 2100951949424899 a004 Fibonacci(53)/Lucas(36)/(1/2+sqrt(5)/2)^9 2100951949424899 a001 14930352/119218851371*3461452808002^(5/12) 2100951949424899 a001 14930352/505019158607*73681302247^(7/13) 2100951949424899 a001 7465176/1730726404001*73681302247^(8/13) 2100951949424899 a001 14930352/23725150497407*73681302247^(9/13) 2100951949424899 a004 Fibonacci(36)*Lucas(52)/(1/2+sqrt(5)/2)^80 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^23/Lucas(51) 2100951949424899 a004 Fibonacci(51)/Lucas(36)/(1/2+sqrt(5)/2)^7 2100951949424899 a001 14930352/119218851371*28143753123^(1/2) 2100951949424899 a001 4976784/440719107401*28143753123^(3/5) 2100951949424899 a001 196452/192933544679*28143753123^(7/10) 2100951949424899 a004 Fibonacci(36)*Lucas(50)/(1/2+sqrt(5)/2)^78 2100951949424899 a001 14930352/17393796001*17393796001^(3/7) 2100951949424899 a001 4976784/9381251041*10749957122^(11/24) 2100951949424899 a001 14930352/17393796001*45537549124^(7/17) 2100951949424899 a001 14930352/17393796001*14662949395604^(1/3) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^21/Lucas(49) 2100951949424899 a004 Fibonacci(49)/Lucas(36)/(1/2+sqrt(5)/2)^5 2100951949424899 a001 14930352/17393796001*192900153618^(7/18) 2100951949424899 a001 14930352/73681302247*10749957122^(1/2) 2100951949424899 a001 2584/33385281*10749957122^(13/24) 2100951949424899 a001 14930352/312119004989*10749957122^(9/16) 2100951949424899 a001 14930352/505019158607*10749957122^(7/12) 2100951949424899 a001 4976784/440719107401*10749957122^(5/8) 2100951949424899 a001 7465176/1730726404001*10749957122^(2/3) 2100951949424899 a001 14930352/5600748293801*10749957122^(11/16) 2100951949424899 a001 4976784/3020733700601*10749957122^(17/24) 2100951949424899 a001 14930352/23725150497407*10749957122^(3/4) 2100951949424899 a001 14930352/17393796001*10749957122^(7/16) 2100951949424899 a004 Fibonacci(36)*Lucas(48)/(1/2+sqrt(5)/2)^76 2100951949424899 a001 7465176/5374978561*4106118243^(10/23) 2100951949424899 a001 14930352/6643838879*817138163596^(1/3) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^19/Lucas(47) 2100951949424899 a004 Fibonacci(47)/Lucas(36)/(1/2+sqrt(5)/2)^3 2100951949424899 a001 4976784/9381251041*4106118243^(11/23) 2100951949424899 a001 3732588/11384387281*4106118243^(1/2) 2100951949424899 a001 14930352/73681302247*4106118243^(12/23) 2100951949424899 a001 2584/33385281*4106118243^(13/23) 2100951949424899 a001 14930352/505019158607*4106118243^(14/23) 2100951949424899 a001 4976784/440719107401*4106118243^(15/23) 2100951949424899 a001 7465176/1730726404001*4106118243^(16/23) 2100951949424899 a001 4976784/3020733700601*4106118243^(17/23) 2100951949424899 a001 14930352/23725150497407*4106118243^(18/23) 2100951949424899 a004 Fibonacci(36)*Lucas(46)/(1/2+sqrt(5)/2)^74 2100951949424899 a001 4976784/1368706081*1568397607^(9/22) 2100951949424899 a001 196452/33391061*45537549124^(1/3) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^17/Lucas(45) 2100951949424899 a004 Fibonacci(45)/Lucas(36)/(1/2+sqrt(5)/2) 2100951949424899 a001 7465176/5374978561*1568397607^(5/11) 2100951949424899 a001 4976784/9381251041*1568397607^(1/2) 2100951949424899 a001 14930352/73681302247*1568397607^(6/11) 2100951949424899 a001 2584/33385281*1568397607^(13/22) 2100951949424899 a001 14930352/505019158607*1568397607^(7/11) 2100951949424899 a001 4976784/440719107401*1568397607^(15/22) 2100951949424899 a001 7465176/1730726404001*1568397607^(8/11) 2100951949424899 a001 14930352/5600748293801*1568397607^(3/4) 2100951949424899 a001 4976784/3020733700601*1568397607^(17/22) 2100951949424899 a001 14930352/23725150497407*1568397607^(9/11) 2100951949424899 a004 Fibonacci(36)*Lucas(44)/(1/2+sqrt(5)/2)^72 2100951949424899 a001 14930352/1568397607*599074578^(8/21) 2100951949424899 a001 14930352/969323029*2537720636^(1/3) 2100951949424899 a001 14930352/969323029*45537549124^(5/17) 2100951949424899 a001 14930352/969323029*312119004989^(3/11) 2100951949424899 a001 14930352/969323029*14662949395604^(5/21) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^15/Lucas(43) 2100951949424899 a001 433494437/66770564+433494437/66770564*5^(1/2) 2100951949424899 a001 14930352/969323029*192900153618^(5/18) 2100951949424899 a001 14930352/969323029*28143753123^(3/10) 2100951949424899 a001 14930352/969323029*10749957122^(5/16) 2100951949424899 a001 4976784/1368706081*599074578^(3/7) 2100951949424899 a001 7465176/5374978561*599074578^(10/21) 2100951949424899 a001 14930352/17393796001*599074578^(1/2) 2100951949424899 a001 4976784/9381251041*599074578^(11/21) 2100951949424899 a001 14930352/73681302247*599074578^(4/7) 2100951949424899 a001 2584/33385281*599074578^(13/21) 2100951949424899 a001 14930352/312119004989*599074578^(9/14) 2100951949424899 a001 14930352/505019158607*599074578^(2/3) 2100951949424899 a001 4976784/440719107401*599074578^(5/7) 2100951949424899 a001 14930352/969323029*599074578^(5/14) 2100951949424899 a001 7465176/1730726404001*599074578^(16/21) 2100951949424899 a001 14930352/5600748293801*599074578^(11/14) 2100951949424899 a001 4976784/3020733700601*599074578^(17/21) 2100951949424899 a001 196452/192933544679*599074578^(5/6) 2100951949424899 a001 14930352/23725150497407*599074578^(6/7) 2100951949424899 a004 Fibonacci(36)*Lucas(42)/(1/2+sqrt(5)/2)^70 2100951949424899 a001 165580141/33385282*141422324^(1/13) 2100951949424899 a001 829464/33281921*228826127^(7/20) 2100951949424899 a001 133957148/16692641*87403803^(1/19) 2100951949424899 a001 14930352/1568397607*228826127^(2/5) 2100951949424899 a001 165580141/33385282*2537720636^(1/15) 2100951949424899 a001 165580141/33385282*45537549124^(1/17) 2100951949424899 a001 165580141/33385282*14662949395604^(1/21) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^13/Lucas(41) 2100951949424899 a001 165580141/33385282*(1/2+1/2*5^(1/2))^3 2100951949424899 a001 165580141/33385282*192900153618^(1/18) 2100951949424899 a001 14930352/370248451*73681302247^(1/4) 2100951949424899 a001 165580141/33385282*10749957122^(1/16) 2100951949424899 a001 165580141/33385282*599074578^(1/14) 2100951949424899 a001 31622993/1268860318*20633239^(2/5) 2100951949424899 a001 14930352/969323029*228826127^(3/8) 2100951949424899 a001 4976784/1368706081*228826127^(9/20) 2100951949424899 a001 7465176/5374978561*228826127^(1/2) 2100951949424899 a001 4976784/9381251041*228826127^(11/20) 2100951949424899 a001 14930352/73681302247*228826127^(3/5) 2100951949424899 a001 14930352/119218851371*228826127^(5/8) 2100951949424899 a001 2584/33385281*228826127^(13/20) 2100951949424899 a001 14930352/505019158607*228826127^(7/10) 2100951949424899 a001 4976784/440719107401*228826127^(3/4) 2100951949424899 a001 7465176/1730726404001*228826127^(4/5) 2100951949424899 a001 4976784/3020733700601*228826127^(17/20) 2100951949424899 a001 196452/192933544679*228826127^(7/8) 2100951949424899 a001 14930352/23725150497407*228826127^(9/10) 2100951949424899 a001 39088169/33385282*33385282^(1/6) 2100951949424899 a004 Fibonacci(36)*Lucas(40)/(1/2+sqrt(5)/2)^68 2100951949424899 a001 14930352/228826127*87403803^(6/19) 2100951949424899 a001 829464/33281921*87403803^(7/19) 2100951949424899 a001 133957148/16692641*33385282^(1/18) 2100951949424899 a001 31622993/16692641*2537720636^(1/9) 2100951949424899 a001 3732588/35355581*312119004989^(1/5) 2100951949424899 a001 31622993/16692641*312119004989^(1/11) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^11/Lucas(39) 2100951949424899 a001 31622993/16692641*(1/2+1/2*5^(1/2))^5 2100951949424899 a001 31622993/16692641*28143753123^(1/10) 2100951949424899 a001 3732588/35355581*1568397607^(1/4) 2100951949424899 a001 31622993/16692641*228826127^(1/8) 2100951949424899 a001 14930352/1568397607*87403803^(8/19) 2100951949424899 a001 4976784/1368706081*87403803^(9/19) 2100951949424899 a001 14930352/6643838879*87403803^(1/2) 2100951949424899 a001 7465176/5374978561*87403803^(10/19) 2100951949424899 a001 4976784/9381251041*87403803^(11/19) 2100951949424899 a001 39088169/228826127*20633239^(2/7) 2100951949424899 a001 14619165/4769326*33385282^(1/9) 2100951949424899 a001 165580141/33385282*33385282^(1/12) 2100951949424899 a001 14930352/73681302247*87403803^(12/19) 2100951949424899 a001 2584/33385281*87403803^(13/19) 2100951949424899 a001 14930352/505019158607*87403803^(14/19) 2100951949424899 a001 4976784/440719107401*87403803^(15/19) 2100951949424899 a001 7465176/1730726404001*87403803^(16/19) 2100951949424899 a001 4976784/3020733700601*87403803^(17/19) 2100951949424899 a001 4976784/29134601*33385282^(5/18) 2100951949424899 a001 14930352/23725150497407*87403803^(18/19) 2100951949424899 a004 Fibonacci(36)*Lucas(38)/(1/2+sqrt(5)/2)^66 2100951949424899 a001 5702887/505019158607*12752043^(15/17) 2100951949424899 a001 34111385/199691526*20633239^(2/7) 2100951949424899 a001 267914296/1568397607*20633239^(2/7) 2100951949424899 a001 233802911/1368706081*20633239^(2/7) 2100951949424899 a001 1836311903/10749957122*20633239^(2/7) 2100951949424899 a001 1602508992/9381251041*20633239^(2/7) 2100951949424899 a001 12586269025/73681302247*20633239^(2/7) 2100951949424899 a001 10983760033/64300051206*20633239^(2/7) 2100951949424899 a001 86267571272/505019158607*20633239^(2/7) 2100951949424899 a001 75283811239/440719107401*20633239^(2/7) 2100951949424899 a001 2504730781961/14662949395604*20633239^(2/7) 2100951949424899 a001 139583862445/817138163596*20633239^(2/7) 2100951949424899 a001 53316291173/312119004989*20633239^(2/7) 2100951949424899 a001 20365011074/119218851371*20633239^(2/7) 2100951949424899 a001 7778742049/45537549124*20633239^(2/7) 2100951949424899 a001 2971215073/17393796001*20633239^(2/7) 2100951949424899 a001 1134903170/6643838879*20633239^(2/7) 2100951949424899 a001 433494437/2537720636*20633239^(2/7) 2100951949424899 a001 24157817/1568397607*20633239^(3/7) 2100951949424899 a001 165580141/969323029*20633239^(2/7) 2100951949424899 a001 14930352/228826127*33385282^(1/3) 2100951949424899 a001 63245986/370248451*20633239^(2/7) 2100951949424899 a001 24157817/969323029*20633239^(2/5) 2100951949424899 a001 14930352/54018521*141422324^(3/13) 2100951949424899 a001 14930352/54018521*2537720636^(1/5) 2100951949424899 a001 24157817/33385282*17393796001^(1/7) 2100951949424899 a001 14930352/54018521*45537549124^(3/17) 2100951949424899 a001 14930352/54018521*14662949395604^(1/7) 2100951949424899 a004 Fibonacci(36)*(1/2+sqrt(5)/2)^9/Lucas(37) 2100951949424899 a001 24157817/33385282*(1/2+1/2*5^(1/2))^7 2100951949424899 a001 14930352/54018521*192900153618^(1/6) 2100951949424899 a001 14930352/54018521*10749957122^(3/16) 2100951949424899 a001 24157817/33385282*599074578^(1/6) 2100951949424899 a001 14930352/54018521*599074578^(3/14) 2100951949424899 a001 829464/33281921*33385282^(7/18) 2100951949424900 a001 63245986/87403803*20633239^(1/5) 2100951949424900 a001 133957148/16692641*12752043^(1/17) 2100951949424900 a001 14930352/969323029*33385282^(5/12) 2100951949424900 a001 14930352/1568397607*33385282^(4/9) 2100951949424900 a001 165580141/228826127*20633239^(1/5) 2100951949424900 a004 Fibonacci(38)*Lucas(37)/(1/2+sqrt(5)/2)^67 2100951949424900 a001 433494437/599074578*20633239^(1/5) 2100951949424900 a001 1134903170/1568397607*20633239^(1/5) 2100951949424900 a001 2971215073/4106118243*20633239^(1/5) 2100951949424900 a001 7778742049/10749957122*20633239^(1/5) 2100951949424900 a001 20365011074/28143753123*20633239^(1/5) 2100951949424900 a001 53316291173/73681302247*20633239^(1/5) 2100951949424900 a001 139583862445/192900153618*20633239^(1/5) 2100951949424900 a001 365435296162/505019158607*20633239^(1/5) 2100951949424900 a001 10610209857723/14662949395604*20633239^(1/5) 2100951949424900 a001 225851433717/312119004989*20633239^(1/5) 2100951949424900 a001 86267571272/119218851371*20633239^(1/5) 2100951949424900 a001 32951280099/45537549124*20633239^(1/5) 2100951949424900 a001 12586269025/17393796001*20633239^(1/5) 2100951949424900 a001 4807526976/6643838879*20633239^(1/5) 2100951949424900 a001 1836311903/2537720636*20633239^(1/5) 2100951949424900 a001 701408733/969323029*20633239^(1/5) 2100951949424900 a001 267914296/370248451*20633239^(1/5) 2100951949424900 a001 165580141/87403803*20633239^(1/7) 2100951949424900 a001 4976784/1368706081*33385282^(1/2) 2100951949424900 a001 102334155/141422324*20633239^(1/5) 2100951949424900 a001 7465176/5374978561*33385282^(5/9) 2100951949424900 a001 14930352/17393796001*33385282^(7/12) 2100951949424900 a004 Fibonacci(40)*Lucas(37)/(1/2+sqrt(5)/2)^69 2100951949424900 a001 5702887/1322157322203*12752043^(16/17) 2100951949424900 a001 433494437/228826127*20633239^(1/7) 2100951949424900 a001 4976784/9381251041*33385282^(11/18) 2100951949424900 a001 7465176/16692641*12752043^(4/17) 2100951949424900 a004 Fibonacci(42)*Lucas(37)/(1/2+sqrt(5)/2)^71 2100951949424900 a004 Fibonacci(44)*Lucas(37)/(1/2+sqrt(5)/2)^73 2100951949424900 a004 Fibonacci(46)*Lucas(37)/(1/2+sqrt(5)/2)^75 2100951949424900 a004 Fibonacci(48)*Lucas(37)/(1/2+sqrt(5)/2)^77 2100951949424900 a004 Fibonacci(50)*Lucas(37)/(1/2+sqrt(5)/2)^79 2100951949424900 a004 Fibonacci(52)*Lucas(37)/(1/2+sqrt(5)/2)^81 2100951949424900 a004 Fibonacci(54)*Lucas(37)/(1/2+sqrt(5)/2)^83 2100951949424900 a004 Fibonacci(56)*Lucas(37)/(1/2+sqrt(5)/2)^85 2100951949424900 a004 Fibonacci(58)*Lucas(37)/(1/2+sqrt(5)/2)^87 2100951949424900 a004 Fibonacci(60)*Lucas(37)/(1/2+sqrt(5)/2)^89 2100951949424900 a004 Fibonacci(62)*Lucas(37)/(1/2+sqrt(5)/2)^91 2100951949424900 a004 Fibonacci(64)*Lucas(37)/(1/2+sqrt(5)/2)^93 2100951949424900 a004 Fibonacci(66)*Lucas(37)/(1/2+sqrt(5)/2)^95 2100951949424900 a004 Fibonacci(68)*Lucas(37)/(1/2+sqrt(5)/2)^97 2100951949424900 a004 Fibonacci(70)*Lucas(37)/(1/2+sqrt(5)/2)^99 2100951949424900 a001 2/24157817*(1/2+1/2*5^(1/2))^45 2100951949424900 a004 Fibonacci(71)*Lucas(37)/(1/2+sqrt(5)/2)^100 2100951949424900 a004 Fibonacci(69)*Lucas(37)/(1/2+sqrt(5)/2)^98 2100951949424900 a004 Fibonacci(67)*Lucas(37)/(1/2+sqrt(5)/2)^96 2100951949424900 a004 Fibonacci(65)*Lucas(37)/(1/2+sqrt(5)/2)^94 2100951949424900 a004 Fibonacci(63)*Lucas(37)/(1/2+sqrt(5)/2)^92 2100951949424900 a004 Fibonacci(61)*Lucas(37)/(1/2+sqrt(5)/2)^90 2100951949424900 a004 Fibonacci(59)*Lucas(37)/(1/2+sqrt(5)/2)^88 2100951949424900 a004 Fibonacci(57)*Lucas(37)/(1/2+sqrt(5)/2)^86 2100951949424900 a004 Fibonacci(55)*Lucas(37)/(1/2+sqrt(5)/2)^84 2100951949424900 a004 Fibonacci(53)*Lucas(37)/(1/2+sqrt(5)/2)^82 2100951949424900 a004 Fibonacci(51)*Lucas(37)/(1/2+sqrt(5)/2)^80 2100951949424900 a004 Fibonacci(49)*Lucas(37)/(1/2+sqrt(5)/2)^78 2100951949424900 a004 Fibonacci(47)*Lucas(37)/(1/2+sqrt(5)/2)^76 2100951949424900 a004 Fibonacci(45)*Lucas(37)/(1/2+sqrt(5)/2)^74 2100951949424900 a004 Fibonacci(43)*Lucas(37)/(1/2+sqrt(5)/2)^72 2100951949424900 a001 567451585/299537289*20633239^(1/7) 2100951949424900 a001 2971215073/1568397607*20633239^(1/7) 2100951949424900 a001 7778742049/4106118243*20633239^(1/7) 2100951949424900 a001 10182505537/5374978561*20633239^(1/7) 2100951949424900 a001 53316291173/28143753123*20633239^(1/7) 2100951949424900 a001 139583862445/73681302247*20633239^(1/7) 2100951949424900 a001 182717648081/96450076809*20633239^(1/7) 2100951949424900 a001 956722026041/505019158607*20633239^(1/7) 2100951949424900 a001 10610209857723/5600748293801*20633239^(1/7) 2100951949424900 a001 591286729879/312119004989*20633239^(1/7) 2100951949424900 a001 225851433717/119218851371*20633239^(1/7) 2100951949424900 a001 21566892818/11384387281*20633239^(1/7) 2100951949424900 a001 32951280099/17393796001*20633239^(1/7) 2100951949424900 a001 12586269025/6643838879*20633239^(1/7) 2100951949424900 a001 1201881744/634430159*20633239^(1/7) 2100951949424900 a004 Fibonacci(41)*Lucas(37)/(1/2+sqrt(5)/2)^70 2100951949424900 a001 1836311903/969323029*20633239^(1/7) 2100951949424900 a001 14930352/54018521*33385282^(1/4) 2100951949424900 a001 701408733/370248451*20633239^(1/7) 2100951949424900 a001 14930352/73681302247*33385282^(2/3) 2100951949424900 a004 Fibonacci(39)*Lucas(37)/(1/2+sqrt(5)/2)^68 2100951949424900 a001 66978574/35355581*20633239^(1/7) 2100951949424900 a001 24157817/141422324*20633239^(2/7) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^8/Lucas(38) 2100951949424900 a001 39088169/87403803*23725150497407^(1/8) 2100951949424900 a001 39088169/87403803*73681302247^(2/13) 2100951949424900 a001 39088169/87403803*10749957122^(1/6) 2100951949424900 a001 39088169/87403803*4106118243^(4/23) 2100951949424900 a001 39088169/87403803*1568397607^(2/11) 2100951949424900 a001 39088169/87403803*599074578^(4/21) 2100951949424900 a001 39088169/54018521*20633239^(1/5) 2100951949424900 a001 2584/33385281*33385282^(13/18) 2100951949424900 a001 24157817/20633239*7881196^(2/11) 2100951949424900 a001 39088169/87403803*87403803^(4/19) 2100951949424900 a001 14930352/312119004989*33385282^(3/4) 2100951949424900 a001 14930352/505019158607*33385282^(7/9) 2100951949424900 a001 14619165/4769326*12752043^(2/17) 2100951949424900 a004 Fibonacci(38)*Lucas(39)/(1/2+sqrt(5)/2)^69 2100951949424900 a001 39088169/14662949395604*141422324^(11/13) 2100951949424900 a001 39088169/3461452808002*141422324^(10/13) 2100951949424900 a001 4181/87403804*141422324^(9/13) 2100951949424900 a001 39088169/505019158607*141422324^(2/3) 2100951949424900 a001 39088169/192900153618*141422324^(8/13) 2100951949424900 a001 39088169/45537549124*141422324^(7/13) 2100951949424900 a001 34111385/29134601*141422324^(2/13) 2100951949424900 a001 39088169/10749957122*141422324^(6/13) 2100951949424900 a001 39088169/228826127*2537720636^(2/9) 2100951949424900 a001 34111385/29134601*2537720636^(2/15) 2100951949424900 a001 34111385/29134601*45537549124^(2/17) 2100951949424900 a001 39088169/228826127*312119004989^(2/11) 2100951949424900 a001 34111385/29134601*14662949395604^(2/21) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^10/Lucas(40) 2100951949424900 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^6/Lucas(38) 2100951949424900 a001 39088169/228826127*28143753123^(1/5) 2100951949424900 a001 34111385/29134601*10749957122^(1/8) 2100951949424900 a001 39088169/228826127*10749957122^(5/24) 2100951949424900 a001 34111385/29134601*4106118243^(3/23) 2100951949424900 a001 39088169/228826127*4106118243^(5/23) 2100951949424900 a001 39088169/2537720636*141422324^(5/13) 2100951949424900 a001 34111385/29134601*1568397607^(3/22) 2100951949424900 a001 39088169/228826127*1568397607^(5/22) 2100951949424900 a001 34111385/29134601*599074578^(1/7) 2100951949424900 a001 4976784/440719107401*33385282^(5/6) 2100951949424900 a001 39088169/228826127*599074578^(5/21) 2100951949424900 a001 39088169/599074578*141422324^(4/13) 2100951949424900 a001 34111385/29134601*228826127^(3/20) 2100951949424900 a001 39088169/969323029*141422324^(1/3) 2100951949424900 a001 39088169/228826127*228826127^(1/4) 2100951949424900 a004 Fibonacci(38)*Lucas(41)/(1/2+sqrt(5)/2)^71 2100951949424900 a001 39088169/599074578*2537720636^(4/15) 2100951949424900 a001 39088169/599074578*45537549124^(4/17) 2100951949424900 a001 39088169/599074578*14662949395604^(4/21) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^12/Lucas(42) 2100951949424900 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^4/Lucas(38) 2100951949424900 a001 267914296/87403803*23725150497407^(1/16) 2100951949424900 a001 267914296/87403803*73681302247^(1/13) 2100951949424900 a001 39088169/599074578*73681302247^(3/13) 2100951949424900 a001 267914296/87403803*10749957122^(1/12) 2100951949424900 a001 39088169/599074578*10749957122^(1/4) 2100951949424900 a001 433494437/87403803*141422324^(1/13) 2100951949424900 a001 267914296/87403803*4106118243^(2/23) 2100951949424900 a001 39088169/599074578*4106118243^(6/23) 2100951949424900 a001 267914296/87403803*1568397607^(1/11) 2100951949424900 a001 39088169/599074578*1568397607^(3/11) 2100951949424900 a001 267914296/87403803*599074578^(2/21) 2100951949424900 a001 39088169/599074578*599074578^(2/7) 2100951949424900 a004 Fibonacci(38)*Lucas(43)/(1/2+sqrt(5)/2)^73 2100951949424900 a001 267914296/87403803*228826127^(1/10) 2100951949424900 a001 39088169/1568397607*17393796001^(2/7) 2100951949424900 a001 39088169/1568397607*14662949395604^(2/9) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^14/Lucas(44) 2100951949424900 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^2/Lucas(38) 2100951949424900 a001 233802911/29134601*10749957122^(1/24) 2100951949424900 a001 39088169/1568397607*10749957122^(7/24) 2100951949424900 a001 233802911/29134601*4106118243^(1/23) 2100951949424900 a001 39088169/1568397607*4106118243^(7/23) 2100951949424900 a001 233802911/29134601*1568397607^(1/22) 2100951949424900 a001 39088169/1568397607*1568397607^(7/22) 2100951949424900 a001 233802911/29134601*599074578^(1/21) 2100951949424900 a004 Fibonacci(38)*Lucas(45)/(1/2+sqrt(5)/2)^75 2100951949424900 a001 39088169/14662949395604*2537720636^(11/15) 2100951949424900 a001 39088169/3461452808002*2537720636^(2/3) 2100951949424900 a001 4181/87403804*2537720636^(3/5) 2100951949424900 a001 39088169/312119004989*2537720636^(5/9) 2100951949424900 a001 39088169/192900153618*2537720636^(8/15) 2100951949424900 a001 39088169/45537549124*2537720636^(7/15) 2100951949424900 a001 39088169/10749957122*2537720636^(2/5) 2100951949424900 a001 39088169/28143753123*2537720636^(4/9) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^16/Lucas(46) 2100951949424900 a001 39088169/4106118243*23725150497407^(1/4) 2100951949424900 a001 39088169/4106118243*73681302247^(4/13) 2100951949424900 a001 39088169/4106118243*10749957122^(1/3) 2100951949424900 a001 39088169/4106118243*4106118243^(8/23) 2100951949424900 a004 Fibonacci(38)*Lucas(47)/(1/2+sqrt(5)/2)^77 2100951949424900 a001 39088169/10749957122*45537549124^(6/17) 2100951949424900 a001 39088169/10749957122*14662949395604^(2/7) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^18/Lucas(48) 2100951949424900 a004 Fibonacci(48)/Lucas(38)/(1/2+sqrt(5)/2)^2 2100951949424900 a001 39088169/10749957122*192900153618^(1/3) 2100951949424900 a001 39088169/10749957122*10749957122^(3/8) 2100951949424900 a004 Fibonacci(38)*Lucas(49)/(1/2+sqrt(5)/2)^79 2100951949424900 a001 39088169/1322157322203*17393796001^(4/7) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^20/Lucas(50) 2100951949424900 a004 Fibonacci(50)/Lucas(38)/(1/2+sqrt(5)/2)^4 2100951949424900 a001 39088169/28143753123*23725150497407^(5/16) 2100951949424900 a001 39088169/28143753123*505019158607^(5/14) 2100951949424900 a001 39088169/28143753123*73681302247^(5/13) 2100951949424900 a001 39088169/45537549124*17393796001^(3/7) 2100951949424900 a001 39088169/28143753123*28143753123^(2/5) 2100951949424900 a004 Fibonacci(38)*Lucas(51)/(1/2+sqrt(5)/2)^81 2100951949424900 a001 39088169/23725150497407*45537549124^(2/3) 2100951949424900 a001 39088169/14662949395604*45537549124^(11/17) 2100951949424900 a001 39088169/3461452808002*45537549124^(10/17) 2100951949424900 a001 39088169/192900153618*45537549124^(8/17) 2100951949424900 a001 4181/87403804*45537549124^(9/17) 2100951949424900 a001 39088169/73681302247*312119004989^(2/5) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^22/Lucas(52) 2100951949424900 a004 Fibonacci(52)/Lucas(38)/(1/2+sqrt(5)/2)^6 2100951949424900 a004 Fibonacci(38)*Lucas(53)/(1/2+sqrt(5)/2)^83 2100951949424900 a001 39088169/192900153618*14662949395604^(8/21) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^24/Lucas(54) 2100951949424900 a004 Fibonacci(54)/Lucas(38)/(1/2+sqrt(5)/2)^8 2100951949424900 a001 39088169/192900153618*192900153618^(4/9) 2100951949424900 a004 Fibonacci(38)*Lucas(55)/(1/2+sqrt(5)/2)^85 2100951949424900 a001 39088169/14662949395604*312119004989^(3/5) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^26/Lucas(56) 2100951949424900 a004 Fibonacci(56)/Lucas(38)/(1/2+sqrt(5)/2)^10 2100951949424900 a004 Fibonacci(38)*Lucas(57)/(1/2+sqrt(5)/2)^87 2100951949424900 a001 39088169/1322157322203*14662949395604^(4/9) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^28/Lucas(58) 2100951949424900 a004 Fibonacci(58)/Lucas(38)/(1/2+sqrt(5)/2)^12 2100951949424900 a004 Fibonacci(38)*Lucas(59)/(1/2+sqrt(5)/2)^89 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^30/Lucas(60) 2100951949424900 a004 Fibonacci(60)/Lucas(38)/(1/2+sqrt(5)/2)^14 2100951949424900 a004 Fibonacci(38)*Lucas(61)/(1/2+sqrt(5)/2)^91 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^32/Lucas(62) 2100951949424900 a004 Fibonacci(62)/Lucas(38)/(1/2+sqrt(5)/2)^16 2100951949424900 a004 Fibonacci(38)*Lucas(63)/(1/2+sqrt(5)/2)^93 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^34/Lucas(64) 2100951949424900 a004 Fibonacci(64)/Lucas(38)/(1/2+sqrt(5)/2)^18 2100951949424900 a004 Fibonacci(38)*Lucas(65)/(1/2+sqrt(5)/2)^95 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^36/Lucas(66) 2100951949424900 a004 Fibonacci(66)/Lucas(38)/(1/2+sqrt(5)/2)^20 2100951949424900 a004 Fibonacci(38)*Lucas(67)/(1/2+sqrt(5)/2)^97 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^38/Lucas(68) 2100951949424900 a004 Fibonacci(68)/Lucas(38)/(1/2+sqrt(5)/2)^22 2100951949424900 a004 Fibonacci(38)*Lucas(69)/(1/2+sqrt(5)/2)^99 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^40/Lucas(70) 2100951949424900 a004 Fibonacci(70)/Lucas(38)/(1/2+sqrt(5)/2)^24 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^42/Lucas(72) 2100951949424900 a004 Fibonacci(72)/Lucas(38)/(1/2+sqrt(5)/2)^26 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^44/Lucas(74) 2100951949424900 a004 Fibonacci(74)/Lucas(38)/(1/2+sqrt(5)/2)^28 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^46/Lucas(76) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^48/Lucas(78) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^50/Lucas(80) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^52/Lucas(82) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^54/Lucas(84) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^56/Lucas(86) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^58/Lucas(88) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^60/Lucas(90) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^62/Lucas(92) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^64/Lucas(94) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^66/Lucas(96) 2100951949424900 a004 Fibonacci(19)*Lucas(19)/(1/2+sqrt(5)/2)^30 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^68/Lucas(98) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^69/Lucas(99) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^70/Lucas(100) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^67/Lucas(97) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^65/Lucas(95) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^63/Lucas(93) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^61/Lucas(91) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^59/Lucas(89) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^57/Lucas(87) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^55/Lucas(85) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^53/Lucas(83) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^51/Lucas(81) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^49/Lucas(79) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^47/Lucas(77) 2100951949424900 a004 Fibonacci(78)/Lucas(38)/(1/2+sqrt(5)/2)^32 2100951949424900 a004 Fibonacci(80)/Lucas(38)/(1/2+sqrt(5)/2)^34 2100951949424900 a004 Fibonacci(82)/Lucas(38)/(1/2+sqrt(5)/2)^36 2100951949424900 a004 Fibonacci(84)/Lucas(38)/(1/2+sqrt(5)/2)^38 2100951949424900 a004 Fibonacci(86)/Lucas(38)/(1/2+sqrt(5)/2)^40 2100951949424900 a004 Fibonacci(88)/Lucas(38)/(1/2+sqrt(5)/2)^42 2100951949424900 a004 Fibonacci(90)/Lucas(38)/(1/2+sqrt(5)/2)^44 2100951949424900 a004 Fibonacci(92)/Lucas(38)/(1/2+sqrt(5)/2)^46 2100951949424900 a004 Fibonacci(94)/Lucas(38)/(1/2+sqrt(5)/2)^48 2100951949424900 a004 Fibonacci(96)/Lucas(38)/(1/2+sqrt(5)/2)^50 2100951949424900 a004 Fibonacci(100)/Lucas(38)/(1/2+sqrt(5)/2)^54 2100951949424900 a004 Fibonacci(98)/Lucas(38)/(1/2+sqrt(5)/2)^52 2100951949424900 a004 Fibonacci(97)/Lucas(38)/(1/2+sqrt(5)/2)^51 2100951949424900 a004 Fibonacci(99)/Lucas(38)/(1/2+sqrt(5)/2)^53 2100951949424900 a004 Fibonacci(95)/Lucas(38)/(1/2+sqrt(5)/2)^49 2100951949424900 a004 Fibonacci(93)/Lucas(38)/(1/2+sqrt(5)/2)^47 2100951949424900 a004 Fibonacci(91)/Lucas(38)/(1/2+sqrt(5)/2)^45 2100951949424900 a004 Fibonacci(89)/Lucas(38)/(1/2+sqrt(5)/2)^43 2100951949424900 a004 Fibonacci(87)/Lucas(38)/(1/2+sqrt(5)/2)^41 2100951949424900 a004 Fibonacci(85)/Lucas(38)/(1/2+sqrt(5)/2)^39 2100951949424900 a004 Fibonacci(83)/Lucas(38)/(1/2+sqrt(5)/2)^37 2100951949424900 a004 Fibonacci(81)/Lucas(38)/(1/2+sqrt(5)/2)^35 2100951949424900 a004 Fibonacci(79)/Lucas(38)/(1/2+sqrt(5)/2)^33 2100951949424900 a004 Fibonacci(77)/Lucas(38)/(1/2+sqrt(5)/2)^31 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^45/Lucas(75) 2100951949424900 a004 Fibonacci(75)/Lucas(38)/(1/2+sqrt(5)/2)^29 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^43/Lucas(73) 2100951949424900 a004 Fibonacci(73)/Lucas(38)/(1/2+sqrt(5)/2)^27 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^41/Lucas(71) 2100951949424900 a004 Fibonacci(71)/Lucas(38)/(1/2+sqrt(5)/2)^25 2100951949424900 a004 Fibonacci(38)*Lucas(70)/(1/2+sqrt(5)/2)^100 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^39/Lucas(69) 2100951949424900 a004 Fibonacci(69)/Lucas(38)/(1/2+sqrt(5)/2)^23 2100951949424900 a004 Fibonacci(38)*Lucas(68)/(1/2+sqrt(5)/2)^98 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^37/Lucas(67) 2100951949424900 a004 Fibonacci(67)/Lucas(38)/(1/2+sqrt(5)/2)^21 2100951949424900 a004 Fibonacci(38)*Lucas(66)/(1/2+sqrt(5)/2)^96 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^35/Lucas(65) 2100951949424900 a004 Fibonacci(65)/Lucas(38)/(1/2+sqrt(5)/2)^19 2100951949424900 a004 Fibonacci(38)*Lucas(64)/(1/2+sqrt(5)/2)^94 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^33/Lucas(63) 2100951949424900 a004 Fibonacci(63)/Lucas(38)/(1/2+sqrt(5)/2)^17 2100951949424900 a004 Fibonacci(38)*Lucas(62)/(1/2+sqrt(5)/2)^92 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^31/Lucas(61) 2100951949424900 a004 Fibonacci(61)/Lucas(38)/(1/2+sqrt(5)/2)^15 2100951949424900 a004 Fibonacci(38)*Lucas(60)/(1/2+sqrt(5)/2)^90 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^29/Lucas(59) 2100951949424900 a004 Fibonacci(59)/Lucas(38)/(1/2+sqrt(5)/2)^13 2100951949424900 a004 Fibonacci(38)*Lucas(58)/(1/2+sqrt(5)/2)^88 2100951949424900 a001 39088169/1322157322203*505019158607^(1/2) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^27/Lucas(57) 2100951949424900 a004 Fibonacci(57)/Lucas(38)/(1/2+sqrt(5)/2)^11 2100951949424900 a004 Fibonacci(38)*Lucas(56)/(1/2+sqrt(5)/2)^86 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^25/Lucas(55) 2100951949424900 a004 Fibonacci(55)/Lucas(38)/(1/2+sqrt(5)/2)^9 2100951949424900 a001 39088169/312119004989*3461452808002^(5/12) 2100951949424900 a001 39088169/3461452808002*192900153618^(5/9) 2100951949424900 a001 39088169/14662949395604*192900153618^(11/18) 2100951949424900 a004 Fibonacci(38)*Lucas(54)/(1/2+sqrt(5)/2)^84 2100951949424900 a001 39088169/192900153618*73681302247^(6/13) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^23/Lucas(53) 2100951949424900 a004 Fibonacci(53)/Lucas(38)/(1/2+sqrt(5)/2)^7 2100951949424900 a001 39088169/505019158607*73681302247^(1/2) 2100951949424900 a001 39088169/1322157322203*73681302247^(7/13) 2100951949424900 a001 39088169/9062201101803*73681302247^(8/13) 2100951949424900 a004 Fibonacci(38)*Lucas(52)/(1/2+sqrt(5)/2)^82 2100951949424900 a001 39088169/45537549124*45537549124^(7/17) 2100951949424900 a001 39088169/45537549124*14662949395604^(1/3) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^21/Lucas(51) 2100951949424900 a004 Fibonacci(51)/Lucas(38)/(1/2+sqrt(5)/2)^5 2100951949424900 a001 39088169/45537549124*192900153618^(7/18) 2100951949424900 a001 39088169/312119004989*28143753123^(1/2) 2100951949424900 a001 39088169/3461452808002*28143753123^(3/5) 2100951949424900 a004 Fibonacci(38)*Lucas(50)/(1/2+sqrt(5)/2)^80 2100951949424900 a001 39088169/28143753123*10749957122^(5/12) 2100951949424900 a001 39088169/17393796001*817138163596^(1/3) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^19/Lucas(49) 2100951949424900 a004 Fibonacci(49)/Lucas(38)/(1/2+sqrt(5)/2)^3 2100951949424900 a001 39088169/73681302247*10749957122^(11/24) 2100951949424900 a001 39088169/45537549124*10749957122^(7/16) 2100951949424900 a001 39088169/192900153618*10749957122^(1/2) 2100951949424900 a001 39088169/505019158607*10749957122^(13/24) 2100951949424900 a001 4181/87403804*10749957122^(9/16) 2100951949424900 a001 39088169/1322157322203*10749957122^(7/12) 2100951949424900 a001 39088169/3461452808002*10749957122^(5/8) 2100951949424900 a001 39088169/9062201101803*10749957122^(2/3) 2100951949424900 a001 39088169/14662949395604*10749957122^(11/16) 2100951949424900 a001 39088169/23725150497407*10749957122^(17/24) 2100951949424900 a004 Fibonacci(38)*Lucas(48)/(1/2+sqrt(5)/2)^78 2100951949424900 a001 39088169/10749957122*4106118243^(9/23) 2100951949424900 a001 39088169/6643838879*45537549124^(1/3) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^17/Lucas(47) 2100951949424900 a004 Fibonacci(47)/Lucas(38)/(1/2+sqrt(5)/2) 2100951949424900 a001 39088169/28143753123*4106118243^(10/23) 2100951949424900 a001 39088169/73681302247*4106118243^(11/23) 2100951949424900 a001 39088169/119218851371*4106118243^(1/2) 2100951949424900 a001 39088169/192900153618*4106118243^(12/23) 2100951949424900 a001 39088169/505019158607*4106118243^(13/23) 2100951949424900 a001 39088169/1322157322203*4106118243^(14/23) 2100951949424900 a001 39088169/3461452808002*4106118243^(15/23) 2100951949424900 a001 39088169/9062201101803*4106118243^(16/23) 2100951949424900 a001 39088169/23725150497407*4106118243^(17/23) 2100951949424900 a004 Fibonacci(38)*Lucas(46)/(1/2+sqrt(5)/2)^76 2100951949424900 a001 39088169/4106118243*1568397607^(4/11) 2100951949424900 a001 39088169/2537720636*2537720636^(1/3) 2100951949424900 a001 39088169/2537720636*45537549124^(5/17) 2100951949424900 a001 39088169/2537720636*312119004989^(3/11) 2100951949424900 a001 39088169/2537720636*14662949395604^(5/21) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^15/Lucas(45) 2100951949424900 a004 Fibonacci(45)*(1/2+sqrt(5)/2)/Lucas(38) 2100951949424900 a001 39088169/2537720636*192900153618^(5/18) 2100951949424900 a001 39088169/2537720636*28143753123^(3/10) 2100951949424900 a001 39088169/10749957122*1568397607^(9/22) 2100951949424900 a001 39088169/2537720636*10749957122^(5/16) 2100951949424900 a001 39088169/28143753123*1568397607^(5/11) 2100951949424900 a001 39088169/73681302247*1568397607^(1/2) 2100951949424900 a001 39088169/192900153618*1568397607^(6/11) 2100951949424900 a001 39088169/505019158607*1568397607^(13/22) 2100951949424900 a001 39088169/1322157322203*1568397607^(7/11) 2100951949424900 a001 39088169/3461452808002*1568397607^(15/22) 2100951949424900 a001 39088169/9062201101803*1568397607^(8/11) 2100951949424900 a001 39088169/14662949395604*1568397607^(3/4) 2100951949424900 a001 39088169/23725150497407*1568397607^(17/22) 2100951949424900 a004 Fibonacci(38)*Lucas(44)/(1/2+sqrt(5)/2)^74 2100951949424900 a001 39088169/1568397607*599074578^(1/3) 2100951949424900 a001 233802911/29134601*228826127^(1/20) 2100951949424900 a001 39088169/4106118243*599074578^(8/21) 2100951949424900 a001 433494437/87403803*2537720636^(1/15) 2100951949424900 a001 433494437/87403803*45537549124^(1/17) 2100951949424900 a001 433494437/87403803*14662949395604^(1/21) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^13/Lucas(43) 2100951949424900 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^3/Lucas(38) 2100951949424900 a001 433494437/87403803*192900153618^(1/18) 2100951949424900 a001 39088169/969323029*73681302247^(1/4) 2100951949424900 a001 433494437/87403803*10749957122^(1/16) 2100951949424900 a001 39088169/2537720636*599074578^(5/14) 2100951949424900 a001 39088169/10749957122*599074578^(3/7) 2100951949424900 a001 433494437/87403803*599074578^(1/14) 2100951949424900 a001 39088169/28143753123*599074578^(10/21) 2100951949424900 a001 39088169/45537549124*599074578^(1/2) 2100951949424900 a001 39088169/73681302247*599074578^(11/21) 2100951949424900 a001 34111385/29134601*87403803^(3/19) 2100951949424900 a001 39088169/192900153618*599074578^(4/7) 2100951949424900 a001 39088169/505019158607*599074578^(13/21) 2100951949424900 a001 4181/87403804*599074578^(9/14) 2100951949424900 a001 39088169/1322157322203*599074578^(2/3) 2100951949424900 a001 39088169/3461452808002*599074578^(5/7) 2100951949424900 a001 39088169/9062201101803*599074578^(16/21) 2100951949424900 a001 39088169/14662949395604*599074578^(11/14) 2100951949424900 a001 39088169/23725150497407*599074578^(17/21) 2100951949424900 a004 Fibonacci(38)*Lucas(42)/(1/2+sqrt(5)/2)^72 2100951949424900 a001 39088169/599074578*228826127^(3/10) 2100951949424900 a001 39088169/1568397607*228826127^(7/20) 2100951949424900 a001 233802911/29134601*87403803^(1/19) 2100951949424900 a001 165580141/87403803*2537720636^(1/9) 2100951949424900 a001 165580141/87403803*312119004989^(1/11) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^11/Lucas(41) 2100951949424900 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^5/Lucas(38) 2100951949424900 a001 165580141/87403803*28143753123^(1/10) 2100951949424900 a001 39088169/2537720636*228826127^(3/8) 2100951949424900 a001 39088169/370248451*1568397607^(1/4) 2100951949424900 a001 39088169/4106118243*228826127^(2/5) 2100951949424900 a001 39088169/10749957122*228826127^(9/20) 2100951949424900 a001 39088169/28143753123*228826127^(1/2) 2100951949424900 a001 165580141/87403803*228826127^(1/8) 2100951949424900 a001 39088169/73681302247*228826127^(11/20) 2100951949424900 a001 267914296/87403803*87403803^(2/19) 2100951949424900 a001 39088169/192900153618*228826127^(3/5) 2100951949424900 a001 39088169/312119004989*228826127^(5/8) 2100951949424900 a001 39088169/505019158607*228826127^(13/20) 2100951949424900 a001 39088169/1322157322203*228826127^(7/10) 2100951949424900 a001 39088169/3461452808002*228826127^(3/4) 2100951949424900 a001 39088169/9062201101803*228826127^(4/5) 2100951949424900 a001 39088169/228826127*87403803^(5/19) 2100951949424900 a001 39088169/23725150497407*228826127^(17/20) 2100951949424900 a004 Fibonacci(38)*Lucas(40)/(1/2+sqrt(5)/2)^70 2100951949424900 a001 7465176/1730726404001*33385282^(8/9) 2100951949424900 a001 39088169/141422324*141422324^(3/13) 2100951949424900 a001 39088169/599074578*87403803^(6/19) 2100951949424900 a001 39088169/1568397607*87403803^(7/19) 2100951949424900 a001 233802911/29134601*33385282^(1/18) 2100951949424900 a001 39088169/141422324*2537720636^(1/5) 2100951949424900 a001 63245986/87403803*17393796001^(1/7) 2100951949424900 a001 39088169/141422324*45537549124^(3/17) 2100951949424900 a001 39088169/141422324*817138163596^(3/19) 2100951949424900 a001 39088169/141422324*14662949395604^(1/7) 2100951949424900 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^9/Lucas(39) 2100951949424900 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^7/Lucas(38) 2100951949424900 a001 39088169/141422324*192900153618^(1/6) 2100951949424900 a001 39088169/141422324*10749957122^(3/16) 2100951949424900 a001 63245986/87403803*599074578^(1/6) 2100951949424900 a001 39088169/141422324*599074578^(3/14) 2100951949424900 a001 39088169/4106118243*87403803^(8/19) 2100951949424901 a001 14930352/5600748293801*33385282^(11/12) 2100951949424901 a004 Fibonacci(40)*Lucas(39)/(1/2+sqrt(5)/2)^71 2100951949424901 a001 39088169/10749957122*87403803^(9/19) 2100951949424901 a001 39088169/17393796001*87403803^(1/2) 2100951949424901 a001 39088169/87403803*33385282^(2/9) 2100951949424901 a001 39088169/28143753123*87403803^(10/19) 2100951949424901 a001 34111385/3020733700601*141422324^(10/13) 2100951949424901 a001 39088169/73681302247*87403803^(11/19) 2100951949424901 a001 433494437/87403803*33385282^(1/12) 2100951949424901 a001 102334155/2139295485799*141422324^(9/13) 2100951949424901 a004 Fibonacci(42)*Lucas(39)/(1/2+sqrt(5)/2)^73 2100951949424901 a001 34111385/440719107401*141422324^(2/3) 2100951949424901 a004 Fibonacci(44)*Lucas(39)/(1/2+sqrt(5)/2)^75 2100951949424901 a004 Fibonacci(46)*Lucas(39)/(1/2+sqrt(5)/2)^77 2100951949424901 a004 Fibonacci(48)*Lucas(39)/(1/2+sqrt(5)/2)^79 2100951949424901 a004 Fibonacci(50)*Lucas(39)/(1/2+sqrt(5)/2)^81 2100951949424901 a004 Fibonacci(52)*Lucas(39)/(1/2+sqrt(5)/2)^83 2100951949424901 a004 Fibonacci(54)*Lucas(39)/(1/2+sqrt(5)/2)^85 2100951949424901 a004 Fibonacci(56)*Lucas(39)/(1/2+sqrt(5)/2)^87 2100951949424901 a004 Fibonacci(58)*Lucas(39)/(1/2+sqrt(5)/2)^89 2100951949424901 a004 Fibonacci(60)*Lucas(39)/(1/2+sqrt(5)/2)^91 2100951949424901 a004 Fibonacci(62)*Lucas(39)/(1/2+sqrt(5)/2)^93 2100951949424901 a004 Fibonacci(64)*Lucas(39)/(1/2+sqrt(5)/2)^95 2100951949424901 a004 Fibonacci(66)*Lucas(39)/(1/2+sqrt(5)/2)^97 2100951949424901 a004 Fibonacci(68)*Lucas(39)/(1/2+sqrt(5)/2)^99 2100951949424901 a001 1/31622993*(1/2+1/2*5^(1/2))^47 2100951949424901 a004 Fibonacci(69)*Lucas(39)/(1/2+sqrt(5)/2)^100 2100951949424901 a004 Fibonacci(67)*Lucas(39)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(65)*Lucas(39)/(1/2+sqrt(5)/2)^96 2100951949424901 a004 Fibonacci(63)*Lucas(39)/(1/2+sqrt(5)/2)^94 2100951949424901 a004 Fibonacci(61)*Lucas(39)/(1/2+sqrt(5)/2)^92 2100951949424901 a004 Fibonacci(59)*Lucas(39)/(1/2+sqrt(5)/2)^90 2100951949424901 a004 Fibonacci(57)*Lucas(39)/(1/2+sqrt(5)/2)^88 2100951949424901 a004 Fibonacci(55)*Lucas(39)/(1/2+sqrt(5)/2)^86 2100951949424901 a004 Fibonacci(53)*Lucas(39)/(1/2+sqrt(5)/2)^84 2100951949424901 a004 Fibonacci(51)*Lucas(39)/(1/2+sqrt(5)/2)^82 2100951949424901 a004 Fibonacci(49)*Lucas(39)/(1/2+sqrt(5)/2)^80 2100951949424901 a004 Fibonacci(47)*Lucas(39)/(1/2+sqrt(5)/2)^78 2100951949424901 a001 102334155/505019158607*141422324^(8/13) 2100951949424901 a001 4976784/3020733700601*33385282^(17/18) 2100951949424901 a004 Fibonacci(45)*Lucas(39)/(1/2+sqrt(5)/2)^76 2100951949424901 a004 Fibonacci(43)*Lucas(39)/(1/2+sqrt(5)/2)^74 2100951949424901 a001 39088169/192900153618*87403803^(12/19) 2100951949424901 a001 102334155/119218851371*141422324^(7/13) 2100951949424901 a004 Fibonacci(41)*Lucas(39)/(1/2+sqrt(5)/2)^72 2100951949424901 a001 831985/228811001*141422324^(6/13) 2100951949424901 a001 39088169/505019158607*87403803^(13/19) 2100951949424901 a001 267914296/23725150497407*141422324^(10/13) 2100951949424901 a001 102334155/6643838879*141422324^(5/13) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^8/Lucas(40) 2100951949424901 a001 102334155/228826127*23725150497407^(1/8) 2100951949424901 a001 102334155/228826127*505019158607^(1/7) 2100951949424901 a001 102334155/228826127*73681302247^(2/13) 2100951949424901 a001 102334155/228826127*10749957122^(1/6) 2100951949424901 a001 102334155/228826127*4106118243^(4/23) 2100951949424901 a001 102334155/228826127*1568397607^(2/11) 2100951949424901 a001 102334155/228826127*599074578^(4/21) 2100951949424901 a001 267914296/5600748293801*141422324^(9/13) 2100951949424901 a001 133957148/1730726404001*141422324^(2/3) 2100951949424901 a001 9303105/230701876*141422324^(1/3) 2100951949424901 a001 701408733/14662949395604*141422324^(9/13) 2100951949424901 a001 14619165/224056801*141422324^(4/13) 2100951949424901 a001 1134903170/23725150497407*141422324^(9/13) 2100951949424901 a001 39088169/1322157322203*87403803^(14/19) 2100951949424901 a001 102334155/228826127*228826127^(1/5) 2100951949424901 a001 267914296/87403803*33385282^(1/9) 2100951949424901 a001 233802911/3020733700601*141422324^(2/3) 2100951949424901 a001 267914296/1322157322203*141422324^(8/13) 2100951949424901 a001 433494437/9062201101803*141422324^(9/13) 2100951949424901 a001 1836311903/23725150497407*141422324^(2/3) 2100951949424901 a001 567451585/7331474697802*141422324^(2/3) 2100951949424901 a001 433494437/5600748293801*141422324^(2/3) 2100951949424901 a001 701408733/3461452808002*141422324^(8/13) 2100951949424901 a001 165580141/14662949395604*141422324^(10/13) 2100951949424901 a001 1836311903/9062201101803*141422324^(8/13) 2100951949424901 a001 4807526976/23725150497407*141422324^(8/13) 2100951949424901 a001 2971215073/14662949395604*141422324^(8/13) 2100951949424901 a001 1134903170/5600748293801*141422324^(8/13) 2100951949424901 a001 267914296/312119004989*141422324^(7/13) 2100951949424901 a001 433494437/2139295485799*141422324^(8/13) 2100951949424901 a001 267914296/228826127*141422324^(2/13) 2100951949424901 a001 39088169/3461452808002*87403803^(15/19) 2100951949424901 a001 701408733/817138163596*141422324^(7/13) 2100951949424901 a001 165580141/3461452808002*141422324^(9/13) 2100951949424901 a001 1836311903/2139295485799*141422324^(7/13) 2100951949424901 a001 4807526976/5600748293801*141422324^(7/13) 2100951949424901 a001 12586269025/14662949395604*141422324^(7/13) 2100951949424901 a001 20365011074/23725150497407*141422324^(7/13) 2100951949424901 a001 7778742049/9062201101803*141422324^(7/13) 2100951949424901 a001 2971215073/3461452808002*141422324^(7/13) 2100951949424901 a001 1134903170/1322157322203*141422324^(7/13) 2100951949424901 a004 Fibonacci(40)*Lucas(41)/(1/2+sqrt(5)/2)^73 2100951949424901 a001 165580141/2139295485799*141422324^(2/3) 2100951949424901 a001 267914296/73681302247*141422324^(6/13) 2100951949424901 a001 433494437/505019158607*141422324^(7/13) 2100951949424901 a001 233802911/64300051206*141422324^(6/13) 2100951949424901 a001 165580141/817138163596*141422324^(8/13) 2100951949424901 a001 102334155/370248451*141422324^(3/13) 2100951949424901 a001 1836311903/505019158607*141422324^(6/13) 2100951949424901 a001 1602508992/440719107401*141422324^(6/13) 2100951949424901 a001 12586269025/3461452808002*141422324^(6/13) 2100951949424901 a001 10983760033/3020733700601*141422324^(6/13) 2100951949424901 a001 86267571272/23725150497407*141422324^(6/13) 2100951949424901 a001 53316291173/14662949395604*141422324^(6/13) 2100951949424901 a001 20365011074/5600748293801*141422324^(6/13) 2100951949424901 a001 7778742049/2139295485799*141422324^(6/13) 2100951949424901 a001 2971215073/817138163596*141422324^(6/13) 2100951949424901 a001 1134903170/312119004989*141422324^(6/13) 2100951949424901 a001 1134903170/228826127*141422324^(1/13) 2100951949424901 a001 9238424/599786069*141422324^(5/13) 2100951949424901 a001 433494437/119218851371*141422324^(6/13) 2100951949424901 a001 34111385/199691526*2537720636^(2/9) 2100951949424901 a001 267914296/228826127*2537720636^(2/15) 2100951949424901 a001 267914296/228826127*45537549124^(2/17) 2100951949424901 a001 267914296/228826127*14662949395604^(2/21) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^10/Lucas(42) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^6/Lucas(40) 2100951949424901 a001 34111385/199691526*28143753123^(1/5) 2100951949424901 a001 267914296/228826127*10749957122^(1/8) 2100951949424901 a001 34111385/199691526*10749957122^(5/24) 2100951949424901 a001 267914296/228826127*4106118243^(3/23) 2100951949424901 a001 34111385/199691526*4106118243^(5/23) 2100951949424901 a001 267914296/228826127*1568397607^(3/22) 2100951949424901 a001 34111385/199691526*1568397607^(5/22) 2100951949424901 a001 267914296/228826127*599074578^(1/7) 2100951949424901 a001 34111385/199691526*599074578^(5/21) 2100951949424901 a001 39088169/9062201101803*87403803^(16/19) 2100951949424901 a004 Fibonacci(40)*Lucas(43)/(1/2+sqrt(5)/2)^75 2100951949424901 a001 701408733/45537549124*141422324^(5/13) 2100951949424901 a001 165580141/192900153618*141422324^(7/13) 2100951949424901 a001 14619165/224056801*2537720636^(4/15) 2100951949424901 a001 14619165/224056801*45537549124^(4/17) 2100951949424901 a001 14619165/224056801*817138163596^(4/19) 2100951949424901 a001 14619165/224056801*14662949395604^(4/21) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^12/Lucas(44) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^4/Lucas(40) 2100951949424901 a001 14619165/224056801*192900153618^(2/9) 2100951949424901 a001 701408733/228826127*73681302247^(1/13) 2100951949424901 a001 14619165/224056801*73681302247^(3/13) 2100951949424901 a001 701408733/228826127*10749957122^(1/12) 2100951949424901 a001 14619165/224056801*10749957122^(1/4) 2100951949424901 a001 701408733/228826127*4106118243^(2/23) 2100951949424901 a001 14619165/224056801*4106118243^(6/23) 2100951949424901 a001 701408733/228826127*1568397607^(1/11) 2100951949424901 a001 267914296/6643838879*141422324^(1/3) 2100951949424901 a001 14619165/224056801*1568397607^(3/11) 2100951949424901 a001 1836311903/119218851371*141422324^(5/13) 2100951949424901 a004 Fibonacci(40)*Lucas(45)/(1/2+sqrt(5)/2)^77 2100951949424901 a001 701408733/228826127*599074578^(2/21) 2100951949424901 a001 4807526976/312119004989*141422324^(5/13) 2100951949424901 a001 12586269025/817138163596*141422324^(5/13) 2100951949424901 a001 32951280099/2139295485799*141422324^(5/13) 2100951949424901 a001 86267571272/5600748293801*141422324^(5/13) 2100951949424901 a001 7787980473/505618944676*141422324^(5/13) 2100951949424901 a001 365435296162/23725150497407*141422324^(5/13) 2100951949424901 a001 139583862445/9062201101803*141422324^(5/13) 2100951949424901 a001 53316291173/3461452808002*141422324^(5/13) 2100951949424901 a001 20365011074/1322157322203*141422324^(5/13) 2100951949424901 a001 7778742049/505019158607*141422324^(5/13) 2100951949424901 a001 2971215073/192900153618*141422324^(5/13) 2100951949424901 a001 34111385/3020733700601*2537720636^(2/3) 2100951949424901 a001 102334155/2139295485799*2537720636^(3/5) 2100951949424901 a001 102334155/817138163596*2537720636^(5/9) 2100951949424901 a001 102334155/505019158607*2537720636^(8/15) 2100951949424901 a001 102334155/119218851371*2537720636^(7/15) 2100951949424901 a001 14619165/10525900321*2537720636^(4/9) 2100951949424901 a001 831985/228811001*2537720636^(2/5) 2100951949424901 a001 34111385/1368706081*17393796001^(2/7) 2100951949424901 a001 34111385/1368706081*14662949395604^(2/9) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^14/Lucas(46) 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^2/Lucas(40) 2100951949424901 a001 1836311903/228826127*10749957122^(1/24) 2100951949424901 a001 34111385/1368706081*10749957122^(7/24) 2100951949424901 a001 1836311903/228826127*4106118243^(1/23) 2100951949424901 a001 34111385/1368706081*4106118243^(7/23) 2100951949424901 a001 1836311903/228826127*1568397607^(1/22) 2100951949424901 a001 102334155/6643838879*2537720636^(1/3) 2100951949424901 a004 Fibonacci(40)*Lucas(47)/(1/2+sqrt(5)/2)^79 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^16/Lucas(48) 2100951949424901 a006 5^(1/2)*Fibonacci(48)/Lucas(40)/sqrt(5) 2100951949424901 a001 102334155/10749957122*23725150497407^(1/4) 2100951949424901 a001 102334155/10749957122*73681302247^(4/13) 2100951949424901 a001 102334155/10749957122*10749957122^(1/3) 2100951949424901 a004 Fibonacci(40)*Lucas(49)/(1/2+sqrt(5)/2)^81 2100951949424901 a001 6765/228826126*17393796001^(4/7) 2100951949424901 a001 831985/228811001*45537549124^(6/17) 2100951949424901 a001 102334155/119218851371*17393796001^(3/7) 2100951949424901 a001 831985/228811001*14662949395604^(2/7) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^18/Lucas(50) 2100951949424901 a004 Fibonacci(50)/Lucas(40)/(1/2+sqrt(5)/2)^2 2100951949424901 a001 831985/228811001*192900153618^(1/3) 2100951949424901 a004 Fibonacci(40)*Lucas(51)/(1/2+sqrt(5)/2)^83 2100951949424901 a001 34111385/3020733700601*45537549124^(10/17) 2100951949424901 a001 102334155/2139295485799*45537549124^(9/17) 2100951949424901 a001 102334155/505019158607*45537549124^(8/17) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^20/Lucas(52) 2100951949424901 a004 Fibonacci(52)/Lucas(40)/(1/2+sqrt(5)/2)^4 2100951949424901 a001 14619165/10525900321*23725150497407^(5/16) 2100951949424901 a001 14619165/10525900321*505019158607^(5/14) 2100951949424901 a001 102334155/119218851371*45537549124^(7/17) 2100951949424901 a001 14619165/10525900321*73681302247^(5/13) 2100951949424901 a004 Fibonacci(40)*Lucas(53)/(1/2+sqrt(5)/2)^85 2100951949424901 a001 34111385/64300051206*312119004989^(2/5) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^22/Lucas(54) 2100951949424901 a004 Fibonacci(54)/Lucas(40)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(40)*Lucas(55)/(1/2+sqrt(5)/2)^87 2100951949424901 a001 34111385/3020733700601*312119004989^(6/11) 2100951949424901 a001 102334155/505019158607*14662949395604^(8/21) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^24/Lucas(56) 2100951949424901 a004 Fibonacci(56)/Lucas(40)/(1/2+sqrt(5)/2)^8 2100951949424901 a001 102334155/817138163596*312119004989^(5/11) 2100951949424901 a004 Fibonacci(40)*Lucas(57)/(1/2+sqrt(5)/2)^89 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^26/Lucas(58) 2100951949424901 a004 Fibonacci(58)/Lucas(40)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(40)*Lucas(59)/(1/2+sqrt(5)/2)^91 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^28/Lucas(60) 2100951949424901 a004 Fibonacci(60)/Lucas(40)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(40)*Lucas(61)/(1/2+sqrt(5)/2)^93 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^30/Lucas(62) 2100951949424901 a004 Fibonacci(62)/Lucas(40)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(40)*Lucas(63)/(1/2+sqrt(5)/2)^95 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^32/Lucas(64) 2100951949424901 a004 Fibonacci(64)/Lucas(40)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(40)*Lucas(65)/(1/2+sqrt(5)/2)^97 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^34/Lucas(66) 2100951949424901 a004 Fibonacci(66)/Lucas(40)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(40)*Lucas(67)/(1/2+sqrt(5)/2)^99 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^36/Lucas(68) 2100951949424901 a004 Fibonacci(68)/Lucas(40)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^38/Lucas(70) 2100951949424901 a004 Fibonacci(70)/Lucas(40)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^40/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(40)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^42/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(40)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^44/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(40)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^46/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(40)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^48/Lucas(80) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^50/Lucas(82) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^52/Lucas(84) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^54/Lucas(86) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^56/Lucas(88) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^58/Lucas(90) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^60/Lucas(92) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^62/Lucas(94) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^64/Lucas(96) 2100951949424901 a004 Fibonacci(20)*Lucas(20)/(1/2+sqrt(5)/2)^32 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^66/Lucas(98) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^68/Lucas(100) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^65/Lucas(97) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^67/Lucas(99) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^63/Lucas(95) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^61/Lucas(93) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^59/Lucas(91) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^57/Lucas(89) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^55/Lucas(87) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^53/Lucas(85) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^51/Lucas(83) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^49/Lucas(81) 2100951949424901 a004 Fibonacci(82)/Lucas(40)/(1/2+sqrt(5)/2)^34 2100951949424901 a004 Fibonacci(84)/Lucas(40)/(1/2+sqrt(5)/2)^36 2100951949424901 a004 Fibonacci(86)/Lucas(40)/(1/2+sqrt(5)/2)^38 2100951949424901 a004 Fibonacci(88)/Lucas(40)/(1/2+sqrt(5)/2)^40 2100951949424901 a004 Fibonacci(90)/Lucas(40)/(1/2+sqrt(5)/2)^42 2100951949424901 a004 Fibonacci(92)/Lucas(40)/(1/2+sqrt(5)/2)^44 2100951949424901 a004 Fibonacci(94)/Lucas(40)/(1/2+sqrt(5)/2)^46 2100951949424901 a004 Fibonacci(96)/Lucas(40)/(1/2+sqrt(5)/2)^48 2100951949424901 a004 Fibonacci(98)/Lucas(40)/(1/2+sqrt(5)/2)^50 2100951949424901 a004 Fibonacci(100)/Lucas(40)/(1/2+sqrt(5)/2)^52 2100951949424901 a004 Fibonacci(97)/Lucas(40)/(1/2+sqrt(5)/2)^49 2100951949424901 a004 Fibonacci(99)/Lucas(40)/(1/2+sqrt(5)/2)^51 2100951949424901 a004 Fibonacci(95)/Lucas(40)/(1/2+sqrt(5)/2)^47 2100951949424901 a004 Fibonacci(93)/Lucas(40)/(1/2+sqrt(5)/2)^45 2100951949424901 a004 Fibonacci(91)/Lucas(40)/(1/2+sqrt(5)/2)^43 2100951949424901 a004 Fibonacci(89)/Lucas(40)/(1/2+sqrt(5)/2)^41 2100951949424901 a004 Fibonacci(87)/Lucas(40)/(1/2+sqrt(5)/2)^39 2100951949424901 a004 Fibonacci(85)/Lucas(40)/(1/2+sqrt(5)/2)^37 2100951949424901 a004 Fibonacci(83)/Lucas(40)/(1/2+sqrt(5)/2)^35 2100951949424901 a004 Fibonacci(81)/Lucas(40)/(1/2+sqrt(5)/2)^33 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^47/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(40)/(1/2+sqrt(5)/2)^31 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^45/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(40)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^43/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(40)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^41/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(40)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^39/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(40)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^37/Lucas(69) 2100951949424901 a004 Fibonacci(69)/Lucas(40)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(40)*Lucas(68)/(1/2+sqrt(5)/2)^100 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^35/Lucas(67) 2100951949424901 a004 Fibonacci(67)/Lucas(40)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(40)*Lucas(66)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^33/Lucas(65) 2100951949424901 a004 Fibonacci(65)/Lucas(40)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(40)*Lucas(64)/(1/2+sqrt(5)/2)^96 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^31/Lucas(63) 2100951949424901 a004 Fibonacci(63)/Lucas(40)/(1/2+sqrt(5)/2)^15 2100951949424901 a001 102334155/14662949395604*9062201101803^(1/2) 2100951949424901 a004 Fibonacci(40)*Lucas(62)/(1/2+sqrt(5)/2)^94 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^29/Lucas(61) 2100951949424901 a004 Fibonacci(61)/Lucas(40)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(40)*Lucas(60)/(1/2+sqrt(5)/2)^92 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^27/Lucas(59) 2100951949424901 a004 Fibonacci(59)/Lucas(40)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(40)*Lucas(58)/(1/2+sqrt(5)/2)^90 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^25/Lucas(57) 2100951949424901 a004 Fibonacci(57)/Lucas(40)/(1/2+sqrt(5)/2)^9 2100951949424901 a001 102334155/817138163596*3461452808002^(5/12) 2100951949424901 a004 Fibonacci(40)*Lucas(56)/(1/2+sqrt(5)/2)^88 2100951949424901 a001 102334155/505019158607*192900153618^(4/9) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^23/Lucas(55) 2100951949424901 a004 Fibonacci(55)/Lucas(40)/(1/2+sqrt(5)/2)^7 2100951949424901 a001 102334155/2139295485799*192900153618^(1/2) 2100951949424901 a004 Fibonacci(40)*Lucas(54)/(1/2+sqrt(5)/2)^86 2100951949424901 a001 102334155/119218851371*14662949395604^(1/3) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^21/Lucas(53) 2100951949424901 a004 Fibonacci(53)/Lucas(40)/(1/2+sqrt(5)/2)^5 2100951949424901 a001 102334155/119218851371*192900153618^(7/18) 2100951949424901 a001 102334155/505019158607*73681302247^(6/13) 2100951949424901 a001 34111385/440719107401*73681302247^(1/2) 2100951949424901 a001 6765/228826126*73681302247^(7/13) 2100951949424901 a001 102334155/23725150497407*73681302247^(8/13) 2100951949424901 a004 Fibonacci(40)*Lucas(52)/(1/2+sqrt(5)/2)^84 2100951949424901 a001 14619165/10525900321*28143753123^(2/5) 2100951949424901 a001 102334155/45537549124*817138163596^(1/3) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^19/Lucas(51) 2100951949424901 a004 Fibonacci(51)/Lucas(40)/(1/2+sqrt(5)/2)^3 2100951949424901 a001 102334155/817138163596*28143753123^(1/2) 2100951949424901 a001 34111385/3020733700601*28143753123^(3/5) 2100951949424901 a004 Fibonacci(40)*Lucas(50)/(1/2+sqrt(5)/2)^82 2100951949424901 a001 831985/228811001*10749957122^(3/8) 2100951949424901 a001 102334155/17393796001*45537549124^(1/3) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^17/Lucas(49) 2100951949424901 a004 Fibonacci(49)/Lucas(40)/(1/2+sqrt(5)/2) 2100951949424901 a001 14619165/10525900321*10749957122^(5/12) 2100951949424901 a001 102334155/119218851371*10749957122^(7/16) 2100951949424901 a001 34111385/64300051206*10749957122^(11/24) 2100951949424901 a001 102334155/505019158607*10749957122^(1/2) 2100951949424901 a001 34111385/440719107401*10749957122^(13/24) 2100951949424901 a001 102334155/2139295485799*10749957122^(9/16) 2100951949424901 a001 6765/228826126*10749957122^(7/12) 2100951949424901 a001 34111385/3020733700601*10749957122^(5/8) 2100951949424901 a001 102334155/23725150497407*10749957122^(2/3) 2100951949424901 a004 Fibonacci(40)*Lucas(48)/(1/2+sqrt(5)/2)^80 2100951949424901 a001 102334155/10749957122*4106118243^(8/23) 2100951949424901 a001 831985/228811001*4106118243^(9/23) 2100951949424901 a001 102334155/6643838879*45537549124^(5/17) 2100951949424901 a001 1134903170/73681302247*141422324^(5/13) 2100951949424901 a001 102334155/6643838879*312119004989^(3/11) 2100951949424901 a001 102334155/6643838879*14662949395604^(5/21) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^15/Lucas(47) 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)/Lucas(40) 2100951949424901 a001 102334155/6643838879*192900153618^(5/18) 2100951949424901 a001 102334155/6643838879*28143753123^(3/10) 2100951949424901 a001 102334155/6643838879*10749957122^(5/16) 2100951949424901 a001 14619165/10525900321*4106118243^(10/23) 2100951949424901 a001 34111385/64300051206*4106118243^(11/23) 2100951949424901 a001 9303105/28374454999*4106118243^(1/2) 2100951949424901 a001 102334155/505019158607*4106118243^(12/23) 2100951949424901 a001 34111385/440719107401*4106118243^(13/23) 2100951949424901 a001 6765/228826126*4106118243^(14/23) 2100951949424901 a001 34111385/3020733700601*4106118243^(15/23) 2100951949424901 a001 102334155/23725150497407*4106118243^(16/23) 2100951949424901 a004 Fibonacci(40)*Lucas(46)/(1/2+sqrt(5)/2)^78 2100951949424901 a001 34111385/1368706081*1568397607^(7/22) 2100951949424901 a001 1836311903/228826127*599074578^(1/21) 2100951949424901 a001 267914296/228826127*228826127^(3/20) 2100951949424901 a001 102334155/10749957122*1568397607^(4/11) 2100951949424901 a001 1134903170/228826127*2537720636^(1/15) 2100951949424901 a001 1134903170/228826127*45537549124^(1/17) 2100951949424901 a001 1134903170/228826127*14662949395604^(1/21) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^13/Lucas(45) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^3/Lucas(40) 2100951949424901 a001 1134903170/228826127*192900153618^(1/18) 2100951949424901 a001 9303105/230701876*73681302247^(1/4) 2100951949424901 a001 1134903170/228826127*10749957122^(1/16) 2100951949424901 a001 831985/228811001*1568397607^(9/22) 2100951949424901 a001 14619165/10525900321*1568397607^(5/11) 2100951949424901 a001 34111385/64300051206*1568397607^(1/2) 2100951949424901 a001 102334155/505019158607*1568397607^(6/11) 2100951949424901 a001 34111385/440719107401*1568397607^(13/22) 2100951949424901 a001 6765/228826126*1568397607^(7/11) 2100951949424901 a001 34111385/3020733700601*1568397607^(15/22) 2100951949424901 a001 102334155/23725150497407*1568397607^(8/11) 2100951949424901 a001 1134903170/228826127*599074578^(1/14) 2100951949424901 a001 14619165/224056801*599074578^(2/7) 2100951949424901 a004 Fibonacci(40)*Lucas(44)/(1/2+sqrt(5)/2)^76 2100951949424901 a001 267914296/4106118243*141422324^(4/13) 2100951949424901 a001 34111385/1368706081*599074578^(1/3) 2100951949424901 a001 1836311903/228826127*228826127^(1/20) 2100951949424901 a001 433494437/28143753123*141422324^(5/13) 2100951949424901 a001 102334155/6643838879*599074578^(5/14) 2100951949424901 a001 433494437/228826127*2537720636^(1/9) 2100951949424901 a001 102334155/10749957122*599074578^(8/21) 2100951949424901 a001 102334155/969323029*312119004989^(1/5) 2100951949424901 a001 433494437/228826127*312119004989^(1/11) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^11/Lucas(43) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^5/Lucas(40) 2100951949424901 a001 433494437/228826127*28143753123^(1/10) 2100951949424901 a001 102334155/969323029*1568397607^(1/4) 2100951949424901 a001 831985/228811001*599074578^(3/7) 2100951949424901 a001 14619165/10525900321*599074578^(10/21) 2100951949424901 a001 102334155/119218851371*599074578^(1/2) 2100951949424901 a001 34111385/64300051206*599074578^(11/21) 2100951949424901 a001 701408733/228826127*228826127^(1/10) 2100951949424901 a001 102334155/505019158607*599074578^(4/7) 2100951949424901 a001 34111385/440719107401*599074578^(13/21) 2100951949424901 a001 102334155/2139295485799*599074578^(9/14) 2100951949424901 a001 6765/228826126*599074578^(2/3) 2100951949424901 a001 34111385/199691526*228826127^(1/4) 2100951949424901 a001 34111385/3020733700601*599074578^(5/7) 2100951949424901 a001 701408733/17393796001*141422324^(1/3) 2100951949424901 a001 102334155/23725150497407*599074578^(16/21) 2100951949424901 a001 1836311903/45537549124*141422324^(1/3) 2100951949424901 a001 4807526976/119218851371*141422324^(1/3) 2100951949424901 a001 1144206275/28374454999*141422324^(1/3) 2100951949424901 a001 32951280099/817138163596*141422324^(1/3) 2100951949424901 a001 86267571272/2139295485799*141422324^(1/3) 2100951949424901 a001 225851433717/5600748293801*141422324^(1/3) 2100951949424901 a001 365435296162/9062201101803*141422324^(1/3) 2100951949424901 a001 139583862445/3461452808002*141422324^(1/3) 2100951949424901 a001 53316291173/1322157322203*141422324^(1/3) 2100951949424901 a001 20365011074/505019158607*141422324^(1/3) 2100951949424901 a001 7778742049/192900153618*141422324^(1/3) 2100951949424901 a001 2971215073/73681302247*141422324^(1/3) 2100951949424901 a001 1134903170/28143753123*141422324^(1/3) 2100951949424901 a004 Fibonacci(40)*Lucas(42)/(1/2+sqrt(5)/2)^74 2100951949424901 a001 701408733/10749957122*141422324^(4/13) 2100951949424901 a001 165580141/45537549124*141422324^(6/13) 2100951949424901 a001 433494437/228826127*228826127^(1/8) 2100951949424901 a001 433494437/10749957122*141422324^(1/3) 2100951949424901 a001 1836311903/28143753123*141422324^(4/13) 2100951949424901 a001 686789568/10525900321*141422324^(4/13) 2100951949424901 a001 12586269025/192900153618*141422324^(4/13) 2100951949424901 a001 32951280099/505019158607*141422324^(4/13) 2100951949424901 a001 86267571272/1322157322203*141422324^(4/13) 2100951949424901 a001 32264490531/494493258286*141422324^(4/13) 2100951949424901 a001 1548008755920/23725150497407*141422324^(4/13) 2100951949424901 a001 139583862445/2139295485799*141422324^(4/13) 2100951949424901 a001 53316291173/817138163596*141422324^(4/13) 2100951949424901 a001 20365011074/312119004989*141422324^(4/13) 2100951949424901 a001 7778742049/119218851371*141422324^(4/13) 2100951949424901 a001 2971215073/45537549124*141422324^(4/13) 2100951949424901 a001 1134903170/17393796001*141422324^(4/13) 2100951949424901 a001 433494437/6643838879*141422324^(4/13) 2100951949424901 a001 39088169/23725150497407*87403803^(17/19) 2100951949424901 a001 14619165/224056801*228826127^(3/10) 2100951949424901 a001 267914296/969323029*141422324^(3/13) 2100951949424901 a001 34111385/1368706081*228826127^(7/20) 2100951949424901 a001 1836311903/228826127*87403803^(1/19) 2100951949424901 a001 102334155/54018521*20633239^(1/7) 2100951949424901 a001 165580141/10749957122*141422324^(5/13) 2100951949424901 a001 102334155/6643838879*228826127^(3/8) 2100951949424901 a001 102334155/370248451*2537720636^(1/5) 2100951949424901 a001 165580141/228826127*17393796001^(1/7) 2100951949424901 a001 102334155/370248451*45537549124^(3/17) 2100951949424901 a001 102334155/370248451*14662949395604^(1/7) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^9/Lucas(41) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^7/Lucas(40) 2100951949424901 a001 102334155/370248451*192900153618^(1/6) 2100951949424901 a001 102334155/370248451*10749957122^(3/16) 2100951949424901 a001 701408733/2537720636*141422324^(3/13) 2100951949424901 a001 1836311903/6643838879*141422324^(3/13) 2100951949424901 a001 4807526976/17393796001*141422324^(3/13) 2100951949424901 a001 12586269025/45537549124*141422324^(3/13) 2100951949424901 a001 32951280099/119218851371*141422324^(3/13) 2100951949424901 a001 86267571272/312119004989*141422324^(3/13) 2100951949424901 a001 1548008755920/5600748293801*141422324^(3/13) 2100951949424901 a001 139583862445/505019158607*141422324^(3/13) 2100951949424901 a001 53316291173/192900153618*141422324^(3/13) 2100951949424901 a001 20365011074/73681302247*141422324^(3/13) 2100951949424901 a001 7778742049/28143753123*141422324^(3/13) 2100951949424901 a001 2971215073/10749957122*141422324^(3/13) 2100951949424901 a001 102334155/10749957122*228826127^(2/5) 2100951949424901 a001 1134903170/4106118243*141422324^(3/13) 2100951949424901 a001 165580141/228826127*599074578^(1/6) 2100951949424901 a001 102334155/370248451*599074578^(3/14) 2100951949424901 a001 233802911/199691526*141422324^(2/13) 2100951949424901 a001 433494437/1568397607*141422324^(3/13) 2100951949424901 a001 102334155/228826127*87403803^(4/19) 2100951949424901 a001 831985/228811001*228826127^(9/20) 2100951949424901 a004 Fibonacci(42)*Lucas(41)/(1/2+sqrt(5)/2)^75 2100951949424901 a001 14619165/10525900321*228826127^(1/2) 2100951949424901 a001 165580141/4106118243*141422324^(1/3) 2100951949424901 a001 34111385/64300051206*228826127^(11/20) 2100951949424901 a001 1836311903/1568397607*141422324^(2/13) 2100951949424901 a001 165580141/2537720636*141422324^(4/13) 2100951949424901 a001 1602508992/1368706081*141422324^(2/13) 2100951949424901 a001 12586269025/10749957122*141422324^(2/13) 2100951949424901 a004 Fibonacci(44)*Lucas(41)/(1/2+sqrt(5)/2)^77 2100951949424901 a001 10983760033/9381251041*141422324^(2/13) 2100951949424901 a001 86267571272/73681302247*141422324^(2/13) 2100951949424901 a001 75283811239/64300051206*141422324^(2/13) 2100951949424901 a001 2504730781961/2139295485799*141422324^(2/13) 2100951949424901 a001 365435296162/312119004989*141422324^(2/13) 2100951949424901 a001 139583862445/119218851371*141422324^(2/13) 2100951949424901 a001 53316291173/45537549124*141422324^(2/13) 2100951949424901 a001 20365011074/17393796001*141422324^(2/13) 2100951949424901 a001 7778742049/6643838879*141422324^(2/13) 2100951949424901 a001 102334155/505019158607*228826127^(3/5) 2100951949424901 a001 2971215073/2537720636*141422324^(2/13) 2100951949424901 a004 Fibonacci(46)*Lucas(41)/(1/2+sqrt(5)/2)^79 2100951949424901 a004 Fibonacci(48)*Lucas(41)/(1/2+sqrt(5)/2)^81 2100951949424901 a004 Fibonacci(50)*Lucas(41)/(1/2+sqrt(5)/2)^83 2100951949424901 a004 Fibonacci(52)*Lucas(41)/(1/2+sqrt(5)/2)^85 2100951949424901 a004 Fibonacci(54)*Lucas(41)/(1/2+sqrt(5)/2)^87 2100951949424901 a004 Fibonacci(56)*Lucas(41)/(1/2+sqrt(5)/2)^89 2100951949424901 a004 Fibonacci(58)*Lucas(41)/(1/2+sqrt(5)/2)^91 2100951949424901 a004 Fibonacci(60)*Lucas(41)/(1/2+sqrt(5)/2)^93 2100951949424901 a004 Fibonacci(62)*Lucas(41)/(1/2+sqrt(5)/2)^95 2100951949424901 a004 Fibonacci(64)*Lucas(41)/(1/2+sqrt(5)/2)^97 2100951949424901 a004 Fibonacci(66)*Lucas(41)/(1/2+sqrt(5)/2)^99 2100951949424901 a001 2/165580141*(1/2+1/2*5^(1/2))^49 2100951949424901 a004 Fibonacci(67)*Lucas(41)/(1/2+sqrt(5)/2)^100 2100951949424901 a004 Fibonacci(65)*Lucas(41)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(63)*Lucas(41)/(1/2+sqrt(5)/2)^96 2100951949424901 a004 Fibonacci(61)*Lucas(41)/(1/2+sqrt(5)/2)^94 2100951949424901 a004 Fibonacci(59)*Lucas(41)/(1/2+sqrt(5)/2)^92 2100951949424901 a004 Fibonacci(57)*Lucas(41)/(1/2+sqrt(5)/2)^90 2100951949424901 a004 Fibonacci(55)*Lucas(41)/(1/2+sqrt(5)/2)^88 2100951949424901 a004 Fibonacci(53)*Lucas(41)/(1/2+sqrt(5)/2)^86 2100951949424901 a004 Fibonacci(51)*Lucas(41)/(1/2+sqrt(5)/2)^84 2100951949424901 a004 Fibonacci(49)*Lucas(41)/(1/2+sqrt(5)/2)^82 2100951949424901 a004 Fibonacci(47)*Lucas(41)/(1/2+sqrt(5)/2)^80 2100951949424901 a001 102334155/817138163596*228826127^(5/8) 2100951949424901 a004 Fibonacci(45)*Lucas(41)/(1/2+sqrt(5)/2)^78 2100951949424901 a001 165580141/599074578*141422324^(3/13) 2100951949424901 a001 34111385/440719107401*228826127^(13/20) 2100951949424901 a001 2971215073/599074578*141422324^(1/13) 2100951949424901 a001 1134903170/969323029*141422324^(2/13) 2100951949424901 a004 Fibonacci(43)*Lucas(41)/(1/2+sqrt(5)/2)^76 2100951949424901 a001 6765/228826126*228826127^(7/10) 2100951949424901 a001 701408733/228826127*87403803^(2/19) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^8/Lucas(42) 2100951949424901 a001 133957148/299537289*23725150497407^(1/8) 2100951949424901 a001 133957148/299537289*73681302247^(2/13) 2100951949424901 a001 133957148/299537289*10749957122^(1/6) 2100951949424901 a001 133957148/299537289*4106118243^(4/23) 2100951949424901 a001 133957148/299537289*1568397607^(2/11) 2100951949424901 a001 133957148/299537289*599074578^(4/21) 2100951949424901 a001 34111385/3020733700601*228826127^(3/4) 2100951949424901 a001 7778742049/1568397607*141422324^(1/13) 2100951949424901 a001 20365011074/4106118243*141422324^(1/13) 2100951949424901 a001 53316291173/10749957122*141422324^(1/13) 2100951949424901 a004 Fibonacci(42)*Lucas(43)/(1/2+sqrt(5)/2)^77 2100951949424901 a001 139583862445/28143753123*141422324^(1/13) 2100951949424901 a001 365435296162/73681302247*141422324^(1/13) 2100951949424901 a001 956722026041/192900153618*141422324^(1/13) 2100951949424901 a001 2504730781961/505019158607*141422324^(1/13) 2100951949424901 a001 10610209857723/2139295485799*141422324^(1/13) 2100951949424901 a001 140728068720/28374454999*141422324^(1/13) 2100951949424901 a001 591286729879/119218851371*141422324^(1/13) 2100951949424901 a001 225851433717/45537549124*141422324^(1/13) 2100951949424901 a001 86267571272/17393796001*141422324^(1/13) 2100951949424901 a001 32951280099/6643838879*141422324^(1/13) 2100951949424901 a001 102334155/23725150497407*228826127^(4/5) 2100951949424901 a001 1144206275/230701876*141422324^(1/13) 2100951949424901 a001 267914296/1568397607*2537720636^(2/9) 2100951949424901 a001 233802911/199691526*2537720636^(2/15) 2100951949424901 a001 233802911/199691526*45537549124^(2/17) 2100951949424901 a001 267914296/1568397607*312119004989^(2/11) 2100951949424901 a001 233802911/199691526*14662949395604^(2/21) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^10/Lucas(44) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^6/Lucas(42) 2100951949424901 a001 267914296/1568397607*28143753123^(1/5) 2100951949424901 a001 233802911/199691526*10749957122^(1/8) 2100951949424901 a001 267914296/1568397607*10749957122^(5/24) 2100951949424901 a001 233802911/199691526*4106118243^(3/23) 2100951949424901 a001 267914296/1568397607*4106118243^(5/23) 2100951949424901 a001 233802911/199691526*1568397607^(3/22) 2100951949424901 a001 267914296/1568397607*1568397607^(5/22) 2100951949424901 a004 Fibonacci(42)*Lucas(45)/(1/2+sqrt(5)/2)^79 2100951949424901 a001 267914296/23725150497407*2537720636^(2/3) 2100951949424901 a001 267914296/4106118243*2537720636^(4/15) 2100951949424901 a001 267914296/5600748293801*2537720636^(3/5) 2100951949424901 a001 267914296/2139295485799*2537720636^(5/9) 2100951949424901 a001 267914296/1322157322203*2537720636^(8/15) 2100951949424901 a001 267914296/312119004989*2537720636^(7/15) 2100951949424901 a001 133957148/96450076809*2537720636^(4/9) 2100951949424901 a001 267914296/73681302247*2537720636^(2/5) 2100951949424901 a001 267914296/4106118243*45537549124^(4/17) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^12/Lucas(46) 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^4/Lucas(42) 2100951949424901 a001 1836311903/599074578*23725150497407^(1/16) 2100951949424901 a001 267914296/4106118243*192900153618^(2/9) 2100951949424901 a001 1836311903/599074578*73681302247^(1/13) 2100951949424901 a001 267914296/4106118243*73681302247^(3/13) 2100951949424901 a001 1836311903/599074578*10749957122^(1/12) 2100951949424901 a001 267914296/4106118243*10749957122^(1/4) 2100951949424901 a001 1836311903/599074578*4106118243^(2/23) 2100951949424901 a001 9238424/599786069*2537720636^(1/3) 2100951949424901 a001 267914296/4106118243*4106118243^(6/23) 2100951949424901 a004 Fibonacci(42)*Lucas(47)/(1/2+sqrt(5)/2)^81 2100951949424901 a001 1836311903/599074578*1568397607^(1/11) 2100951949424901 a001 133957148/5374978561*17393796001^(2/7) 2100951949424901 a001 133957148/5374978561*14662949395604^(2/9) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^14/Lucas(48) 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^2/Lucas(42) 2100951949424901 a001 233802911/199691526*599074578^(1/7) 2100951949424901 a001 267084832/33281921*10749957122^(1/24) 2100951949424901 a001 133957148/5374978561*10749957122^(7/24) 2100951949424901 a001 267084832/33281921*4106118243^(1/23) 2100951949424901 a001 4807526976/969323029*141422324^(1/13) 2100951949424901 a004 Fibonacci(42)*Lucas(49)/(1/2+sqrt(5)/2)^83 2100951949424901 a001 267914296/9062201101803*17393796001^(4/7) 2100951949424901 a001 267914296/312119004989*17393796001^(3/7) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^16/Lucas(50) 2100951949424901 a006 5^(1/2)*Fibonacci(50)/Lucas(42)/sqrt(5) 2100951949424901 a001 267914296/28143753123*23725150497407^(1/4) 2100951949424901 a001 267914296/28143753123*73681302247^(4/13) 2100951949424901 a004 Fibonacci(42)*Lucas(51)/(1/2+sqrt(5)/2)^85 2100951949424901 a001 267914296/73681302247*45537549124^(6/17) 2100951949424901 a001 267914296/23725150497407*45537549124^(10/17) 2100951949424901 a001 267914296/5600748293801*45537549124^(9/17) 2100951949424901 a001 267914296/1322157322203*45537549124^(8/17) 2100951949424901 a001 267914296/312119004989*45537549124^(7/17) 2100951949424901 a001 267914296/73681302247*14662949395604^(2/7) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^18/Lucas(52) 2100951949424901 a004 Fibonacci(52)/Lucas(42)/(1/2+sqrt(5)/2)^2 2100951949424901 a001 267914296/73681302247*192900153618^(1/3) 2100951949424901 a004 Fibonacci(42)*Lucas(53)/(1/2+sqrt(5)/2)^87 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^20/Lucas(54) 2100951949424901 a004 Fibonacci(54)/Lucas(42)/(1/2+sqrt(5)/2)^4 2100951949424901 a001 133957148/96450076809*23725150497407^(5/16) 2100951949424901 a001 133957148/96450076809*505019158607^(5/14) 2100951949424901 a004 Fibonacci(42)*Lucas(55)/(1/2+sqrt(5)/2)^89 2100951949424901 a001 267914296/2139295485799*312119004989^(5/11) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^22/Lucas(56) 2100951949424901 a004 Fibonacci(56)/Lucas(42)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(42)*Lucas(57)/(1/2+sqrt(5)/2)^91 2100951949424901 a001 267914296/1322157322203*14662949395604^(8/21) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^24/Lucas(58) 2100951949424901 a004 Fibonacci(58)/Lucas(42)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(42)*Lucas(59)/(1/2+sqrt(5)/2)^93 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^26/Lucas(60) 2100951949424901 a004 Fibonacci(60)/Lucas(42)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(42)*Lucas(61)/(1/2+sqrt(5)/2)^95 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^28/Lucas(62) 2100951949424901 a004 Fibonacci(62)/Lucas(42)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(42)*Lucas(63)/(1/2+sqrt(5)/2)^97 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^30/Lucas(64) 2100951949424901 a004 Fibonacci(64)/Lucas(42)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(42)*Lucas(65)/(1/2+sqrt(5)/2)^99 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^32/Lucas(66) 2100951949424901 a004 Fibonacci(66)/Lucas(42)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^34/Lucas(68) 2100951949424901 a004 Fibonacci(68)/Lucas(42)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^36/Lucas(70) 2100951949424901 a004 Fibonacci(70)/Lucas(42)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^38/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(42)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^40/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(42)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^42/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(42)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^44/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(42)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^46/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(42)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^48/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(42)/(1/2+sqrt(5)/2)^32 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^50/Lucas(84) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^52/Lucas(86) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^54/Lucas(88) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^56/Lucas(90) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^58/Lucas(92) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^60/Lucas(94) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^62/Lucas(96) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^64/Lucas(98) 2100951949424901 a004 Fibonacci(21)*Lucas(21)/(1/2+sqrt(5)/2)^34 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^63/Lucas(97) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^65/Lucas(99) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^66/Lucas(100) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^61/Lucas(95) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^59/Lucas(93) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^57/Lucas(91) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^55/Lucas(89) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^53/Lucas(87) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^51/Lucas(85) 2100951949424901 a004 Fibonacci(86)/Lucas(42)/(1/2+sqrt(5)/2)^36 2100951949424901 a004 Fibonacci(88)/Lucas(42)/(1/2+sqrt(5)/2)^38 2100951949424901 a004 Fibonacci(90)/Lucas(42)/(1/2+sqrt(5)/2)^40 2100951949424901 a004 Fibonacci(92)/Lucas(42)/(1/2+sqrt(5)/2)^42 2100951949424901 a004 Fibonacci(94)/Lucas(42)/(1/2+sqrt(5)/2)^44 2100951949424901 a004 Fibonacci(96)/Lucas(42)/(1/2+sqrt(5)/2)^46 2100951949424901 a004 Fibonacci(100)/Lucas(42)/(1/2+sqrt(5)/2)^50 2100951949424901 a004 Fibonacci(98)/Lucas(42)/(1/2+sqrt(5)/2)^48 2100951949424901 a004 Fibonacci(99)/Lucas(42)/(1/2+sqrt(5)/2)^49 2100951949424901 a004 Fibonacci(97)/Lucas(42)/(1/2+sqrt(5)/2)^47 2100951949424901 a004 Fibonacci(95)/Lucas(42)/(1/2+sqrt(5)/2)^45 2100951949424901 a004 Fibonacci(93)/Lucas(42)/(1/2+sqrt(5)/2)^43 2100951949424901 a004 Fibonacci(91)/Lucas(42)/(1/2+sqrt(5)/2)^41 2100951949424901 a004 Fibonacci(89)/Lucas(42)/(1/2+sqrt(5)/2)^39 2100951949424901 a004 Fibonacci(87)/Lucas(42)/(1/2+sqrt(5)/2)^37 2100951949424901 a004 Fibonacci(85)/Lucas(42)/(1/2+sqrt(5)/2)^35 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^49/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(42)/(1/2+sqrt(5)/2)^33 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^47/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(42)/(1/2+sqrt(5)/2)^31 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^45/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(42)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^43/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(42)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^41/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(42)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^39/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(42)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^37/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(42)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^35/Lucas(69) 2100951949424901 a004 Fibonacci(69)/Lucas(42)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^33/Lucas(67) 2100951949424901 a004 Fibonacci(67)/Lucas(42)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(42)*Lucas(66)/(1/2+sqrt(5)/2)^100 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^31/Lucas(65) 2100951949424901 a004 Fibonacci(65)/Lucas(42)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(42)*Lucas(64)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^29/Lucas(63) 2100951949424901 a004 Fibonacci(63)/Lucas(42)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(42)*Lucas(62)/(1/2+sqrt(5)/2)^96 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^27/Lucas(61) 2100951949424901 a004 Fibonacci(61)/Lucas(42)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(42)*Lucas(60)/(1/2+sqrt(5)/2)^94 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^25/Lucas(59) 2100951949424901 a004 Fibonacci(59)/Lucas(42)/(1/2+sqrt(5)/2)^9 2100951949424901 a001 10946/599074579*1322157322203^(1/2) 2100951949424901 a004 Fibonacci(42)*Lucas(58)/(1/2+sqrt(5)/2)^92 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^23/Lucas(57) 2100951949424901 a004 Fibonacci(57)/Lucas(42)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(42)*Lucas(56)/(1/2+sqrt(5)/2)^90 2100951949424901 a001 267914296/312119004989*14662949395604^(1/3) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^21/Lucas(55) 2100951949424901 a004 Fibonacci(55)/Lucas(42)/(1/2+sqrt(5)/2)^5 2100951949424901 a001 267914296/1322157322203*192900153618^(4/9) 2100951949424901 a001 267914296/5600748293801*192900153618^(1/2) 2100951949424901 a001 267914296/312119004989*192900153618^(7/18) 2100951949424901 a004 Fibonacci(42)*Lucas(54)/(1/2+sqrt(5)/2)^88 2100951949424901 a001 133957148/96450076809*73681302247^(5/13) 2100951949424901 a001 267914296/119218851371*817138163596^(1/3) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^19/Lucas(53) 2100951949424901 a004 Fibonacci(53)/Lucas(42)/(1/2+sqrt(5)/2)^3 2100951949424901 a001 267914296/1322157322203*73681302247^(6/13) 2100951949424901 a001 133957148/1730726404001*73681302247^(1/2) 2100951949424901 a001 267914296/9062201101803*73681302247^(7/13) 2100951949424901 a004 Fibonacci(42)*Lucas(52)/(1/2+sqrt(5)/2)^86 2100951949424901 a001 66978574/11384387281*45537549124^(1/3) 2100951949424901 a001 133957148/96450076809*28143753123^(2/5) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^17/Lucas(51) 2100951949424901 a004 Fibonacci(51)/Lucas(42)/(1/2+sqrt(5)/2) 2100951949424901 a001 267914296/2139295485799*28143753123^(1/2) 2100951949424901 a001 267914296/23725150497407*28143753123^(3/5) 2100951949424901 a004 Fibonacci(42)*Lucas(50)/(1/2+sqrt(5)/2)^84 2100951949424901 a001 267914296/28143753123*10749957122^(1/3) 2100951949424901 a001 267914296/73681302247*10749957122^(3/8) 2100951949424901 a001 9238424/599786069*45537549124^(5/17) 2100951949424901 a001 9238424/599786069*312119004989^(3/11) 2100951949424901 a001 9238424/599786069*14662949395604^(5/21) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^15/Lucas(49) 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)/Lucas(42) 2100951949424901 a001 9238424/599786069*192900153618^(5/18) 2100951949424901 a001 133957148/96450076809*10749957122^(5/12) 2100951949424901 a001 9238424/599786069*28143753123^(3/10) 2100951949424901 a001 267914296/312119004989*10749957122^(7/16) 2100951949424901 a001 267914296/505019158607*10749957122^(11/24) 2100951949424901 a001 267914296/1322157322203*10749957122^(1/2) 2100951949424901 a001 133957148/1730726404001*10749957122^(13/24) 2100951949424901 a001 267914296/5600748293801*10749957122^(9/16) 2100951949424901 a001 267914296/9062201101803*10749957122^(7/12) 2100951949424901 a001 267914296/23725150497407*10749957122^(5/8) 2100951949424901 a001 9238424/599786069*10749957122^(5/16) 2100951949424901 a004 Fibonacci(42)*Lucas(48)/(1/2+sqrt(5)/2)^82 2100951949424901 a001 133957148/5374978561*4106118243^(7/23) 2100951949424901 a001 267084832/33281921*1568397607^(1/22) 2100951949424901 a001 2971215073/599074578*2537720636^(1/15) 2100951949424901 a001 267914296/28143753123*4106118243^(8/23) 2100951949424901 a001 2971215073/599074578*45537549124^(1/17) 2100951949424901 a001 2971215073/599074578*14662949395604^(1/21) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^13/Lucas(47) 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^3/Lucas(42) 2100951949424901 a001 2971215073/599074578*192900153618^(1/18) 2100951949424901 a001 267914296/6643838879*73681302247^(1/4) 2100951949424901 a001 267914296/73681302247*4106118243^(9/23) 2100951949424901 a001 2971215073/599074578*10749957122^(1/16) 2100951949424901 a001 133957148/96450076809*4106118243^(10/23) 2100951949424901 a001 267914296/505019158607*4106118243^(11/23) 2100951949424901 a001 66978574/204284540899*4106118243^(1/2) 2100951949424901 a001 267914296/1322157322203*4106118243^(12/23) 2100951949424901 a001 133957148/1730726404001*4106118243^(13/23) 2100951949424901 a001 267914296/9062201101803*4106118243^(14/23) 2100951949424901 a001 267914296/23725150497407*4106118243^(15/23) 2100951949424901 a001 267914296/4106118243*1568397607^(3/11) 2100951949424901 a004 Fibonacci(42)*Lucas(46)/(1/2+sqrt(5)/2)^80 2100951949424901 a001 133957148/5374978561*1568397607^(7/22) 2100951949424901 a001 267084832/33281921*599074578^(1/21) 2100951949424901 a001 567451585/299537289*2537720636^(1/9) 2100951949424901 a001 267914296/28143753123*1568397607^(4/11) 2100951949424901 a001 567451585/299537289*312119004989^(1/11) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^11/Lucas(45) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^5/Lucas(42) 2100951949424901 a001 567451585/299537289*28143753123^(1/10) 2100951949424901 a001 267914296/73681302247*1568397607^(9/22) 2100951949424901 a001 133957148/96450076809*1568397607^(5/11) 2100951949424901 a001 267914296/505019158607*1568397607^(1/2) 2100951949424901 a001 1836311903/599074578*599074578^(2/21) 2100951949424901 a001 2971215073/599074578*599074578^(1/14) 2100951949424901 a001 267914296/1322157322203*1568397607^(6/11) 2100951949424901 a001 133957148/1730726404001*1568397607^(13/22) 2100951949424901 a001 267914296/1568397607*599074578^(5/21) 2100951949424901 a001 66978574/634430159*1568397607^(1/4) 2100951949424901 a001 267914296/9062201101803*1568397607^(7/11) 2100951949424901 a001 267914296/23725150497407*1568397607^(15/22) 2100951949424901 a004 Fibonacci(42)*Lucas(44)/(1/2+sqrt(5)/2)^78 2100951949424901 a001 267914296/4106118243*599074578^(2/7) 2100951949424901 a001 133957148/5374978561*599074578^(1/3) 2100951949424901 a001 267084832/33281921*228826127^(1/20) 2100951949424901 a001 9238424/599786069*599074578^(5/14) 2100951949424901 a001 133957148/299537289*228826127^(1/5) 2100951949424901 a001 267914296/28143753123*599074578^(8/21) 2100951949424901 a001 433494437/599074578*17393796001^(1/7) 2100951949424901 a001 267914296/969323029*45537549124^(3/17) 2100951949424901 a001 267914296/969323029*817138163596^(3/19) 2100951949424901 a001 267914296/969323029*14662949395604^(1/7) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^9/Lucas(43) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^7/Lucas(42) 2100951949424901 a001 267914296/969323029*10749957122^(3/16) 2100951949424901 a001 267914296/73681302247*599074578^(3/7) 2100951949424901 a004 Fibonacci(44)*Lucas(43)/(1/2+sqrt(5)/2)^79 2100951949424901 a001 133957148/96450076809*599074578^(10/21) 2100951949424901 a001 267914296/312119004989*599074578^(1/2) 2100951949424901 a001 267914296/505019158607*599074578^(11/21) 2100951949424901 a001 433494437/599074578*599074578^(1/6) 2100951949424901 a001 267914296/228826127*87403803^(3/19) 2100951949424901 a001 267914296/1322157322203*599074578^(4/7) 2100951949424901 a001 267914296/969323029*599074578^(3/14) 2100951949424901 a004 Fibonacci(46)*Lucas(43)/(1/2+sqrt(5)/2)^81 2100951949424901 a004 Fibonacci(48)*Lucas(43)/(1/2+sqrt(5)/2)^83 2100951949424901 a004 Fibonacci(50)*Lucas(43)/(1/2+sqrt(5)/2)^85 2100951949424901 a004 Fibonacci(52)*Lucas(43)/(1/2+sqrt(5)/2)^87 2100951949424901 a004 Fibonacci(54)*Lucas(43)/(1/2+sqrt(5)/2)^89 2100951949424901 a004 Fibonacci(56)*Lucas(43)/(1/2+sqrt(5)/2)^91 2100951949424901 a004 Fibonacci(58)*Lucas(43)/(1/2+sqrt(5)/2)^93 2100951949424901 a004 Fibonacci(60)*Lucas(43)/(1/2+sqrt(5)/2)^95 2100951949424901 a004 Fibonacci(62)*Lucas(43)/(1/2+sqrt(5)/2)^97 2100951949424901 a004 Fibonacci(64)*Lucas(43)/(1/2+sqrt(5)/2)^99 2100951949424901 a001 2/433494437*(1/2+1/2*5^(1/2))^51 2100951949424901 a004 Fibonacci(65)*Lucas(43)/(1/2+sqrt(5)/2)^100 2100951949424901 a004 Fibonacci(63)*Lucas(43)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(61)*Lucas(43)/(1/2+sqrt(5)/2)^96 2100951949424901 a004 Fibonacci(59)*Lucas(43)/(1/2+sqrt(5)/2)^94 2100951949424901 a004 Fibonacci(57)*Lucas(43)/(1/2+sqrt(5)/2)^92 2100951949424901 a004 Fibonacci(55)*Lucas(43)/(1/2+sqrt(5)/2)^90 2100951949424901 a004 Fibonacci(53)*Lucas(43)/(1/2+sqrt(5)/2)^88 2100951949424901 a004 Fibonacci(51)*Lucas(43)/(1/2+sqrt(5)/2)^86 2100951949424901 a001 133957148/1730726404001*599074578^(13/21) 2100951949424901 a004 Fibonacci(49)*Lucas(43)/(1/2+sqrt(5)/2)^84 2100951949424901 a004 Fibonacci(47)*Lucas(43)/(1/2+sqrt(5)/2)^82 2100951949424901 a001 267914296/5600748293801*599074578^(9/14) 2100951949424901 a001 1836311903/599074578*228826127^(1/10) 2100951949424901 a001 267914296/9062201101803*599074578^(2/3) 2100951949424901 a004 Fibonacci(45)*Lucas(43)/(1/2+sqrt(5)/2)^80 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^8/Lucas(44) 2100951949424901 a001 701408733/1568397607*23725150497407^(1/8) 2100951949424901 a001 701408733/1568397607*73681302247^(2/13) 2100951949424901 a001 701408733/1568397607*10749957122^(1/6) 2100951949424901 a001 701408733/1568397607*4106118243^(4/23) 2100951949424901 a001 267914296/23725150497407*599074578^(5/7) 2100951949424901 a001 701408733/1568397607*1568397607^(2/11) 2100951949424901 a004 Fibonacci(44)*Lucas(45)/(1/2+sqrt(5)/2)^81 2100951949424901 a001 233802911/1368706081*2537720636^(2/9) 2100951949424901 a001 701408733/14662949395604*2537720636^(3/5) 2100951949424901 a001 701408733/5600748293801*2537720636^(5/9) 2100951949424901 a001 701408733/3461452808002*2537720636^(8/15) 2100951949424901 a001 1836311903/1568397607*2537720636^(2/15) 2100951949424901 a001 701408733/817138163596*2537720636^(7/15) 2100951949424901 a001 701408733/505019158607*2537720636^(4/9) 2100951949424901 a001 233802911/64300051206*2537720636^(2/5) 2100951949424901 a001 1836311903/1568397607*45537549124^(2/17) 2100951949424901 a001 1836311903/1568397607*14662949395604^(2/21) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^10/Lucas(46) 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^6/Lucas(44) 2100951949424901 a001 233802911/1368706081*28143753123^(1/5) 2100951949424901 a001 1836311903/1568397607*10749957122^(1/8) 2100951949424901 a001 34111385/29134601*33385282^(1/6) 2100951949424901 a001 233802911/1368706081*10749957122^(5/24) 2100951949424901 a001 1836311903/1568397607*4106118243^(3/23) 2100951949424901 a001 701408733/45537549124*2537720636^(1/3) 2100951949424901 a001 701408733/10749957122*2537720636^(4/15) 2100951949424901 a001 233802911/1368706081*4106118243^(5/23) 2100951949424901 a004 Fibonacci(44)*Lucas(47)/(1/2+sqrt(5)/2)^83 2100951949424901 a001 701408733/10749957122*45537549124^(4/17) 2100951949424901 a001 701408733/10749957122*14662949395604^(4/21) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^12/Lucas(48) 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^4/Lucas(44) 2100951949424901 a001 686789568/224056801*23725150497407^(1/16) 2100951949424901 a001 686789568/224056801*73681302247^(1/13) 2100951949424901 a001 701408733/10749957122*73681302247^(3/13) 2100951949424901 a001 686789568/224056801*10749957122^(1/12) 2100951949424901 a001 7778742049/1568397607*2537720636^(1/15) 2100951949424901 a001 701408733/10749957122*10749957122^(1/4) 2100951949424901 a001 1836311903/1568397607*1568397607^(3/22) 2100951949424901 a001 686789568/224056801*4106118243^(2/23) 2100951949424901 a004 Fibonacci(44)*Lucas(49)/(1/2+sqrt(5)/2)^85 2100951949424901 a001 233802911/9381251041*17393796001^(2/7) 2100951949424901 a001 701408733/23725150497407*17393796001^(4/7) 2100951949424901 a001 701408733/817138163596*17393796001^(3/7) 2100951949424901 a001 233802911/9381251041*14662949395604^(2/9) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^14/Lucas(50) 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^2/Lucas(44) 2100951949424901 a001 12586269025/1568397607*10749957122^(1/24) 2100951949424901 a004 Fibonacci(44)*Lucas(51)/(1/2+sqrt(5)/2)^87 2100951949424901 a001 701408733/14662949395604*45537549124^(9/17) 2100951949424901 a001 701408733/3461452808002*45537549124^(8/17) 2100951949424901 a001 233802911/64300051206*45537549124^(6/17) 2100951949424901 a001 701408733/817138163596*45537549124^(7/17) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^16/Lucas(52) 2100951949424901 a001 701408733/73681302247*23725150497407^(1/4) 2100951949424901 a001 701408733/73681302247*73681302247^(4/13) 2100951949424901 a001 701408733/119218851371*45537549124^(1/3) 2100951949424901 a004 Fibonacci(44)*Lucas(53)/(1/2+sqrt(5)/2)^89 2100951949424901 a001 233802911/64300051206*14662949395604^(2/7) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^18/Lucas(54) 2100951949424901 a004 Fibonacci(54)/Lucas(44)/(1/2+sqrt(5)/2)^2 2100951949424901 a001 233802911/64300051206*192900153618^(1/3) 2100951949424901 a004 Fibonacci(44)*Lucas(55)/(1/2+sqrt(5)/2)^91 2100951949424901 a001 233802911/440719107401*312119004989^(2/5) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^20/Lucas(56) 2100951949424901 a004 Fibonacci(56)/Lucas(44)/(1/2+sqrt(5)/2)^4 2100951949424901 a001 701408733/505019158607*23725150497407^(5/16) 2100951949424901 a004 Fibonacci(44)*Lucas(57)/(1/2+sqrt(5)/2)^93 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^22/Lucas(58) 2100951949424901 a004 Fibonacci(58)/Lucas(44)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(44)*Lucas(59)/(1/2+sqrt(5)/2)^95 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^24/Lucas(60) 2100951949424901 a004 Fibonacci(60)/Lucas(44)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(44)*Lucas(61)/(1/2+sqrt(5)/2)^97 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^26/Lucas(62) 2100951949424901 a004 Fibonacci(62)/Lucas(44)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(44)*Lucas(63)/(1/2+sqrt(5)/2)^99 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^28/Lucas(64) 2100951949424901 a004 Fibonacci(64)/Lucas(44)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^30/Lucas(66) 2100951949424901 a004 Fibonacci(66)/Lucas(44)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^32/Lucas(68) 2100951949424901 a004 Fibonacci(68)/Lucas(44)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^34/Lucas(70) 2100951949424901 a004 Fibonacci(70)/Lucas(44)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^36/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(44)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^38/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(44)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^40/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(44)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^42/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(44)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^44/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(44)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^46/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(44)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^48/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(44)/(1/2+sqrt(5)/2)^32 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^50/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(44)/(1/2+sqrt(5)/2)^34 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^52/Lucas(88) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^54/Lucas(90) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^56/Lucas(92) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^58/Lucas(94) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^60/Lucas(96) 2100951949424901 a004 Fibonacci(22)*Lucas(22)/(1/2+sqrt(5)/2)^36 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^62/Lucas(98) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^63/Lucas(99) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^64/Lucas(100) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^61/Lucas(97) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^59/Lucas(95) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^57/Lucas(93) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^55/Lucas(91) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^53/Lucas(89) 2100951949424901 a004 Fibonacci(90)/Lucas(44)/(1/2+sqrt(5)/2)^38 2100951949424901 a004 Fibonacci(92)/Lucas(44)/(1/2+sqrt(5)/2)^40 2100951949424901 a004 Fibonacci(94)/Lucas(44)/(1/2+sqrt(5)/2)^42 2100951949424901 a004 Fibonacci(96)/Lucas(44)/(1/2+sqrt(5)/2)^44 2100951949424901 a004 Fibonacci(100)/Lucas(44)/(1/2+sqrt(5)/2)^48 2100951949424901 a004 Fibonacci(98)/Lucas(44)/(1/2+sqrt(5)/2)^46 2100951949424901 a004 Fibonacci(99)/Lucas(44)/(1/2+sqrt(5)/2)^47 2100951949424901 a004 Fibonacci(97)/Lucas(44)/(1/2+sqrt(5)/2)^45 2100951949424901 a004 Fibonacci(95)/Lucas(44)/(1/2+sqrt(5)/2)^43 2100951949424901 a004 Fibonacci(93)/Lucas(44)/(1/2+sqrt(5)/2)^41 2100951949424901 a004 Fibonacci(91)/Lucas(44)/(1/2+sqrt(5)/2)^39 2100951949424901 a004 Fibonacci(89)/Lucas(44)/(1/2+sqrt(5)/2)^37 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^51/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(44)/(1/2+sqrt(5)/2)^35 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^49/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(44)/(1/2+sqrt(5)/2)^33 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^47/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(44)/(1/2+sqrt(5)/2)^31 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^45/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(44)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^43/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(44)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^41/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(44)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^39/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(44)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^37/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(44)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^35/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(44)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^33/Lucas(69) 2100951949424901 a004 Fibonacci(69)/Lucas(44)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^31/Lucas(67) 2100951949424901 a004 Fibonacci(67)/Lucas(44)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^29/Lucas(65) 2100951949424901 a004 Fibonacci(65)/Lucas(44)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(44)*Lucas(64)/(1/2+sqrt(5)/2)^100 2100951949424901 a001 701408733/14662949395604*14662949395604^(3/7) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^27/Lucas(63) 2100951949424901 a004 Fibonacci(63)/Lucas(44)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(44)*Lucas(62)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^25/Lucas(61) 2100951949424901 a004 Fibonacci(61)/Lucas(44)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(44)*Lucas(60)/(1/2+sqrt(5)/2)^96 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^23/Lucas(59) 2100951949424901 a004 Fibonacci(59)/Lucas(44)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(44)*Lucas(58)/(1/2+sqrt(5)/2)^94 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^21/Lucas(57) 2100951949424901 a004 Fibonacci(57)/Lucas(44)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(44)*Lucas(56)/(1/2+sqrt(5)/2)^92 2100951949424901 a001 3524667/1568437211*817138163596^(1/3) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^19/Lucas(55) 2100951949424901 a004 Fibonacci(55)/Lucas(44)/(1/2+sqrt(5)/2)^3 2100951949424901 a001 701408733/3461452808002*192900153618^(4/9) 2100951949424901 a001 701408733/14662949395604*192900153618^(1/2) 2100951949424901 a004 Fibonacci(44)*Lucas(54)/(1/2+sqrt(5)/2)^90 2100951949424901 a001 701408733/505019158607*73681302247^(5/13) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^17/Lucas(53) 2100951949424901 a004 Fibonacci(53)/Lucas(44)/(1/2+sqrt(5)/2) 2100951949424901 a001 701408733/3461452808002*73681302247^(6/13) 2100951949424901 a001 233802911/3020733700601*73681302247^(1/2) 2100951949424901 a001 701408733/23725150497407*73681302247^(7/13) 2100951949424901 a004 Fibonacci(44)*Lucas(52)/(1/2+sqrt(5)/2)^88 2100951949424901 a001 701408733/45537549124*45537549124^(5/17) 2100951949424901 a001 701408733/45537549124*312119004989^(3/11) 2100951949424901 a001 701408733/45537549124*14662949395604^(5/21) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^15/Lucas(51) 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)/Lucas(44) 2100951949424901 a001 701408733/45537549124*192900153618^(5/18) 2100951949424901 a001 701408733/505019158607*28143753123^(2/5) 2100951949424901 a001 701408733/5600748293801*28143753123^(1/2) 2100951949424901 a001 701408733/45537549124*28143753123^(3/10) 2100951949424901 a001 233802911/9381251041*10749957122^(7/24) 2100951949424901 a004 Fibonacci(44)*Lucas(50)/(1/2+sqrt(5)/2)^86 2100951949424901 a001 12586269025/1568397607*4106118243^(1/23) 2100951949424901 a001 701408733/73681302247*10749957122^(1/3) 2100951949424901 a001 701408733/45537549124*10749957122^(5/16) 2100951949424901 a001 233802911/64300051206*10749957122^(3/8) 2100951949424901 a001 7778742049/1568397607*45537549124^(1/17) 2100951949424901 a001 7778742049/1568397607*14662949395604^(1/21) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^13/Lucas(49) 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^3/Lucas(44) 2100951949424901 a001 7778742049/1568397607*192900153618^(1/18) 2100951949424901 a001 701408733/17393796001*73681302247^(1/4) 2100951949424901 a001 701408733/505019158607*10749957122^(5/12) 2100951949424901 a001 701408733/817138163596*10749957122^(7/16) 2100951949424901 a001 7778742049/1568397607*10749957122^(1/16) 2100951949424901 a001 233802911/440719107401*10749957122^(11/24) 2100951949424901 a001 701408733/3461452808002*10749957122^(1/2) 2100951949424901 a001 233802911/3020733700601*10749957122^(13/24) 2100951949424901 a001 701408733/14662949395604*10749957122^(9/16) 2100951949424901 a001 701408733/23725150497407*10749957122^(7/12) 2100951949424901 a001 2971215073/1568397607*2537720636^(1/9) 2100951949424901 a001 701408733/10749957122*4106118243^(6/23) 2100951949424901 a004 Fibonacci(44)*Lucas(48)/(1/2+sqrt(5)/2)^84 2100951949424901 a001 233802911/9381251041*4106118243^(7/23) 2100951949424901 a001 12586269025/1568397607*1568397607^(1/22) 2100951949424901 a001 701408733/73681302247*4106118243^(8/23) 2100951949424901 a001 2971215073/1568397607*312119004989^(1/11) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^11/Lucas(47) 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^5/Lucas(44) 2100951949424901 a001 2971215073/1568397607*28143753123^(1/10) 2100951949424901 a001 233802911/64300051206*4106118243^(9/23) 2100951949424901 a001 701408733/505019158607*4106118243^(10/23) 2100951949424901 a001 686789568/224056801*1568397607^(1/11) 2100951949424901 a001 233802911/440719107401*4106118243^(11/23) 2100951949424901 a001 701408733/2139295485799*4106118243^(1/2) 2100951949424901 a001 701408733/3461452808002*4106118243^(12/23) 2100951949424901 a001 233802911/1368706081*1568397607^(5/22) 2100951949424901 a001 233802911/3020733700601*4106118243^(13/23) 2100951949424901 a001 701408733/23725150497407*4106118243^(14/23) 2100951949424901 a004 Fibonacci(44)*Lucas(46)/(1/2+sqrt(5)/2)^82 2100951949424901 a001 233802911/199691526*228826127^(3/20) 2100951949424901 a001 701408733/10749957122*1568397607^(3/11) 2100951949424901 a001 701408733/1568397607*599074578^(4/21) 2100951949424901 a001 701408733/2537720636*2537720636^(1/5) 2100951949424901 a001 701408733/6643838879*1568397607^(1/4) 2100951949424901 a001 233802911/9381251041*1568397607^(7/22) 2100951949424901 a001 12586269025/1568397607*599074578^(1/21) 2100951949424901 a001 701408733/73681302247*1568397607^(4/11) 2100951949424901 a001 1134903170/1568397607*17393796001^(1/7) 2100951949424901 a001 701408733/2537720636*45537549124^(3/17) 2100951949424901 a001 701408733/2537720636*14662949395604^(1/7) 2100951949424901 a001 1134903170/1568397607*14662949395604^(1/9) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^9/Lucas(45) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^7/Lucas(44) 2100951949424901 a001 701408733/2537720636*192900153618^(1/6) 2100951949424901 a001 701408733/2537720636*10749957122^(3/16) 2100951949424901 a001 567451585/299537289*228826127^(1/8) 2100951949424901 a001 233802911/64300051206*1568397607^(9/22) 2100951949424901 a001 701408733/505019158607*1568397607^(5/11) 2100951949424901 a004 Fibonacci(46)*Lucas(45)/(1/2+sqrt(5)/2)^83 2100951949424901 a001 7778742049/1568397607*599074578^(1/14) 2100951949424901 a001 233802911/440719107401*1568397607^(1/2) 2100951949424901 a001 701408733/3461452808002*1568397607^(6/11) 2100951949424901 a001 233802911/3020733700601*1568397607^(13/22) 2100951949424901 a004 Fibonacci(48)*Lucas(45)/(1/2+sqrt(5)/2)^85 2100951949424901 a004 Fibonacci(50)*Lucas(45)/(1/2+sqrt(5)/2)^87 2100951949424901 a004 Fibonacci(52)*Lucas(45)/(1/2+sqrt(5)/2)^89 2100951949424901 a004 Fibonacci(54)*Lucas(45)/(1/2+sqrt(5)/2)^91 2100951949424901 a004 Fibonacci(56)*Lucas(45)/(1/2+sqrt(5)/2)^93 2100951949424901 a004 Fibonacci(58)*Lucas(45)/(1/2+sqrt(5)/2)^95 2100951949424901 a004 Fibonacci(60)*Lucas(45)/(1/2+sqrt(5)/2)^97 2100951949424901 a004 Fibonacci(62)*Lucas(45)/(1/2+sqrt(5)/2)^99 2100951949424901 a001 1/567451585*(1/2+1/2*5^(1/2))^53 2100951949424901 a004 Fibonacci(63)*Lucas(45)/(1/2+sqrt(5)/2)^100 2100951949424901 a004 Fibonacci(61)*Lucas(45)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(59)*Lucas(45)/(1/2+sqrt(5)/2)^96 2100951949424901 a004 Fibonacci(57)*Lucas(45)/(1/2+sqrt(5)/2)^94 2100951949424901 a004 Fibonacci(55)*Lucas(45)/(1/2+sqrt(5)/2)^92 2100951949424901 a004 Fibonacci(53)*Lucas(45)/(1/2+sqrt(5)/2)^90 2100951949424901 a004 Fibonacci(51)*Lucas(45)/(1/2+sqrt(5)/2)^88 2100951949424901 a004 Fibonacci(49)*Lucas(45)/(1/2+sqrt(5)/2)^86 2100951949424901 a001 686789568/224056801*599074578^(2/21) 2100951949424901 a001 701408733/23725150497407*1568397607^(7/11) 2100951949424901 a001 1836311903/14662949395604*2537720636^(5/9) 2100951949424901 a001 1836311903/9062201101803*2537720636^(8/15) 2100951949424901 a004 Fibonacci(47)*Lucas(45)/(1/2+sqrt(5)/2)^84 2100951949424901 a001 1836311903/2139295485799*2537720636^(7/15) 2100951949424901 a001 1836311903/1322157322203*2537720636^(4/9) 2100951949424901 a001 1836311903/505019158607*2537720636^(2/5) 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^8/Lucas(46) 2100951949424901 a001 1836311903/4106118243*23725150497407^(1/8) 2100951949424901 a001 1836311903/4106118243*73681302247^(2/13) 2100951949424901 a001 1836311903/4106118243*10749957122^(1/6) 2100951949424901 a001 1836311903/119218851371*2537720636^(1/3) 2100951949424901 a001 1836311903/4106118243*4106118243^(4/23) 2100951949424901 a001 1836311903/10749957122*2537720636^(2/9) 2100951949424901 a001 1836311903/28143753123*2537720636^(4/15) 2100951949424901 a001 4807526976/23725150497407*2537720636^(8/15) 2100951949424901 a001 1602508992/1368706081*2537720636^(2/15) 2100951949424901 a004 Fibonacci(46)*Lucas(47)/(1/2+sqrt(5)/2)^85 2100951949424901 a001 4807526976/5600748293801*2537720636^(7/15) 2100951949424901 a001 14930208/10749853441*2537720636^(4/9) 2100951949424901 a001 12586269025/14662949395604*2537720636^(7/15) 2100951949424901 a001 7778742049/4106118243*2537720636^(1/9) 2100951949424901 a001 20365011074/23725150497407*2537720636^(7/15) 2100951949424901 a001 1602508992/440719107401*2537720636^(2/5) 2100951949424901 a001 12586269025/9062201101803*2537720636^(4/9) 2100951949424901 a001 32951280099/23725150497407*2537720636^(4/9) 2100951949424901 a001 20365011074/4106118243*2537720636^(1/15) 2100951949424901 a001 7778742049/9062201101803*2537720636^(7/15) 2100951949424901 a001 10182505537/7331474697802*2537720636^(4/9) 2100951949424901 a001 1602508992/1368706081*45537549124^(2/17) 2100951949424901 a001 1836311903/10749957122*312119004989^(2/11) 2100951949424901 a001 1602508992/1368706081*14662949395604^(2/21) 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^10/Lucas(48) 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^6/Lucas(46) 2100951949424901 a001 1836311903/1568397607*599074578^(1/7) 2100951949424901 a001 1836311903/6643838879*2537720636^(1/5) 2100951949424901 a001 1836311903/10749957122*28143753123^(1/5) 2100951949424901 a001 1602508992/1368706081*10749957122^(1/8) 2100951949424901 a001 1836311903/10749957122*10749957122^(5/24) 2100951949424901 a001 7778742049/5600748293801*2537720636^(4/9) 2100951949424901 a001 2971215073/23725150497407*2537720636^(5/9) 2100951949424901 a001 12586269025/3461452808002*2537720636^(2/5) 2100951949424901 a004 Fibonacci(46)*Lucas(49)/(1/2+sqrt(5)/2)^87 2100951949424901 a001 10983760033/3020733700601*2537720636^(2/5) 2100951949424901 a001 86267571272/23725150497407*2537720636^(2/5) 2100951949424901 a001 53316291173/14662949395604*2537720636^(2/5) 2100951949424901 a001 20365011074/5600748293801*2537720636^(2/5) 2100951949424901 a001 1836311903/2139295485799*17393796001^(3/7) 2100951949424901 a001 1836311903/28143753123*45537549124^(4/17) 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^12/Lucas(50) 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^4/Lucas(46) 2100951949424901 a001 12586269025/4106118243*23725150497407^(1/16) 2100951949424901 a001 1836311903/28143753123*192900153618^(2/9) 2100951949424901 a001 12586269025/4106118243*73681302247^(1/13) 2100951949424901 a001 1836311903/28143753123*73681302247^(3/13) 2100951949424901 a001 1836311903/73681302247*17393796001^(2/7) 2100951949424901 a001 4807526976/312119004989*2537720636^(1/3) 2100951949424901 a001 1602508992/1368706081*4106118243^(3/23) 2100951949424901 a001 2971215073/14662949395604*2537720636^(8/15) 2100951949424901 a001 12586269025/4106118243*10749957122^(1/12) 2100951949424901 a004 Fibonacci(46)*Lucas(51)/(1/2+sqrt(5)/2)^89 2100951949424901 a001 1836311903/9062201101803*45537549124^(8/17) 2100951949424901 a001 1836311903/2139295485799*45537549124^(7/17) 2100951949424901 a001 1836311903/73681302247*14662949395604^(2/9) 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^14/Lucas(52) 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^2/Lucas(46) 2100951949424901 a001 1836311903/505019158607*45537549124^(6/17) 2100951949424901 a001 1836311903/312119004989*45537549124^(1/3) 2100951949424901 a001 1836311903/119218851371*45537549124^(5/17) 2100951949424901 a004 Fibonacci(46)*Lucas(53)/(1/2+sqrt(5)/2)^91 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^16/Lucas(54) 2100951949424901 a001 1836311903/192900153618*23725150497407^(1/4) 2100951949424901 a004 Fibonacci(46)*Lucas(55)/(1/2+sqrt(5)/2)^93 2100951949424901 a001 1836311903/14662949395604*312119004989^(5/11) 2100951949424901 a001 1836311903/3461452808002*312119004989^(2/5) 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^18/Lucas(56) 2100951949424901 a004 Fibonacci(56)/Lucas(46)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(46)*Lucas(57)/(1/2+sqrt(5)/2)^95 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^20/Lucas(58) 2100951949424901 a004 Fibonacci(58)/Lucas(46)/(1/2+sqrt(5)/2)^4 2100951949424901 a001 1836311903/1322157322203*23725150497407^(5/16) 2100951949424901 a004 Fibonacci(46)*Lucas(59)/(1/2+sqrt(5)/2)^97 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^22/Lucas(60) 2100951949424901 a004 Fibonacci(60)/Lucas(46)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(46)*Lucas(61)/(1/2+sqrt(5)/2)^99 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^24/Lucas(62) 2100951949424901 a004 Fibonacci(62)/Lucas(46)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^26/Lucas(64) 2100951949424901 a004 Fibonacci(64)/Lucas(46)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^28/Lucas(66) 2100951949424901 a004 Fibonacci(66)/Lucas(46)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^30/Lucas(68) 2100951949424901 a004 Fibonacci(68)/Lucas(46)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^32/Lucas(70) 2100951949424901 a004 Fibonacci(70)/Lucas(46)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^34/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(46)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^36/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(46)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^38/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(46)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^40/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(46)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^42/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(46)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^44/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(46)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^46/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(46)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^48/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(46)/(1/2+sqrt(5)/2)^32 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^50/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(46)/(1/2+sqrt(5)/2)^34 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^52/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(46)/(1/2+sqrt(5)/2)^36 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^54/Lucas(92) 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^56/Lucas(94) 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^58/Lucas(96) 2100951949424901 a004 Fibonacci(23)*Lucas(23)/(1/2+sqrt(5)/2)^38 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^59/Lucas(97) 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^60/Lucas(98) 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^61/Lucas(99) 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^62/Lucas(100) 2100951949424901 a004 Fibonacci(92)/Lucas(46)/(1/2+sqrt(5)/2)^38 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^57/Lucas(95) 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^55/Lucas(93) 2100951949424901 a004 Fibonacci(94)/Lucas(46)/(1/2+sqrt(5)/2)^40 2100951949424901 a004 Fibonacci(96)/Lucas(46)/(1/2+sqrt(5)/2)^42 2100951949424901 a004 Fibonacci(98)/Lucas(46)/(1/2+sqrt(5)/2)^44 2100951949424901 a004 Fibonacci(100)/Lucas(46)/(1/2+sqrt(5)/2)^46 2100951949424901 a004 Fibonacci(97)/Lucas(46)/(1/2+sqrt(5)/2)^43 2100951949424901 a004 Fibonacci(99)/Lucas(46)/(1/2+sqrt(5)/2)^45 2100951949424901 a004 Fibonacci(95)/Lucas(46)/(1/2+sqrt(5)/2)^41 2100951949424901 a004 Fibonacci(93)/Lucas(46)/(1/2+sqrt(5)/2)^39 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^53/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(46)/(1/2+sqrt(5)/2)^37 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^51/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(46)/(1/2+sqrt(5)/2)^35 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^49/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(46)/(1/2+sqrt(5)/2)^33 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^47/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(46)/(1/2+sqrt(5)/2)^31 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^45/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(46)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^43/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(46)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^41/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(46)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^39/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(46)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^37/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(46)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^35/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(46)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^33/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(46)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^31/Lucas(69) 2100951949424901 a004 Fibonacci(69)/Lucas(46)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^29/Lucas(67) 2100951949424901 a004 Fibonacci(67)/Lucas(46)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^27/Lucas(65) 2100951949424901 a004 Fibonacci(65)/Lucas(46)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^25/Lucas(63) 2100951949424901 a004 Fibonacci(63)/Lucas(46)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(46)*Lucas(62)/(1/2+sqrt(5)/2)^100 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^23/Lucas(61) 2100951949424901 a004 Fibonacci(61)/Lucas(46)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(46)*Lucas(60)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^21/Lucas(59) 2100951949424901 a004 Fibonacci(59)/Lucas(46)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(46)*Lucas(58)/(1/2+sqrt(5)/2)^96 2100951949424901 a001 1836311903/1322157322203*505019158607^(5/14) 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^19/Lucas(57) 2100951949424901 a004 Fibonacci(57)/Lucas(46)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(46)*Lucas(56)/(1/2+sqrt(5)/2)^94 2100951949424901 a001 1836311903/505019158607*192900153618^(1/3) 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^17/Lucas(55) 2100951949424901 a004 Fibonacci(55)/Lucas(46)/(1/2+sqrt(5)/2) 2100951949424901 a001 1836311903/2139295485799*192900153618^(7/18) 2100951949424901 a004 Fibonacci(46)*Lucas(54)/(1/2+sqrt(5)/2)^92 2100951949424901 a001 1836311903/192900153618*73681302247^(4/13) 2100951949424901 a001 1836311903/119218851371*312119004989^(3/11) 2100951949424901 a001 1836311903/1322157322203*73681302247^(5/13) 2100951949424901 a001 1836311903/119218851371*14662949395604^(5/21) 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^15/Lucas(53) 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)/Lucas(46) 2100951949424901 a001 1836311903/119218851371*192900153618^(5/18) 2100951949424901 a001 1836311903/23725150497407*73681302247^(1/2) 2100951949424901 a001 10983760033/1368706081*10749957122^(1/24) 2100951949424901 a004 Fibonacci(46)*Lucas(52)/(1/2+sqrt(5)/2)^90 2100951949424901 a001 1836311903/119218851371*28143753123^(3/10) 2100951949424901 a001 20365011074/4106118243*45537549124^(1/17) 2100951949424901 a001 20365011074/4106118243*14662949395604^(1/21) 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^13/Lucas(51) 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^3/Lucas(46) 2100951949424901 a001 20365011074/4106118243*192900153618^(1/18) 2100951949424901 a001 1836311903/1322157322203*28143753123^(2/5) 2100951949424901 a001 7778742049/2139295485799*2537720636^(2/5) 2100951949424901 a001 1836311903/45537549124*73681302247^(1/4) 2100951949424901 a001 1836311903/14662949395604*28143753123^(1/2) 2100951949424901 a001 1836311903/28143753123*10749957122^(1/4) 2100951949424901 a001 20365011074/4106118243*10749957122^(1/16) 2100951949424901 a004 Fibonacci(46)*Lucas(50)/(1/2+sqrt(5)/2)^88 2100951949424901 a001 1836311903/73681302247*10749957122^(7/24) 2100951949424901 a001 10983760033/1368706081*4106118243^(1/23) 2100951949424901 a001 1836311903/119218851371*10749957122^(5/16) 2100951949424901 a001 1836311903/192900153618*10749957122^(1/3) 2100951949424901 a001 1836311903/505019158607*10749957122^(3/8) 2100951949424901 a001 1836311903/17393796001*312119004989^(1/5) 2100951949424901 a001 7778742049/4106118243*312119004989^(1/11) 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^11/Lucas(49) 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^5/Lucas(46) 2100951949424901 a001 7778742049/4106118243*28143753123^(1/10) 2100951949424901 a001 1836311903/1322157322203*10749957122^(5/12) 2100951949424901 a001 1836311903/2139295485799*10749957122^(7/16) 2100951949424901 a001 12586269025/4106118243*4106118243^(2/23) 2100951949424901 a001 1836311903/3461452808002*10749957122^(11/24) 2100951949424901 a001 1836311903/10749957122*4106118243^(5/23) 2100951949424901 a001 1836311903/9062201101803*10749957122^(1/2) 2100951949424901 a001 1836311903/23725150497407*10749957122^(13/24) 2100951949424901 a001 12586269025/817138163596*2537720636^(1/3) 2100951949424901 a001 32951280099/2139295485799*2537720636^(1/3) 2100951949424901 a001 86267571272/5600748293801*2537720636^(1/3) 2100951949424901 a001 7787980473/505618944676*2537720636^(1/3) 2100951949424901 a001 365435296162/23725150497407*2537720636^(1/3) 2100951949424901 a001 139583862445/9062201101803*2537720636^(1/3) 2100951949424901 a001 53316291173/3461452808002*2537720636^(1/3) 2100951949424901 a001 20365011074/1322157322203*2537720636^(1/3) 2100951949424901 a004 Fibonacci(46)*Lucas(48)/(1/2+sqrt(5)/2)^86 2100951949424901 a001 686789568/10525900321*2537720636^(4/15) 2100951949424901 a001 2971215073/3461452808002*2537720636^(7/15) 2100951949424901 a001 7778742049/505019158607*2537720636^(1/3) 2100951949424901 a001 2971215073/2139295485799*2537720636^(4/9) 2100951949424901 a001 1836311903/28143753123*4106118243^(6/23) 2100951949424901 a001 1836311903/4106118243*1568397607^(2/11) 2100951949424901 a001 1602508992/9381251041*2537720636^(2/9) 2100951949424901 a001 12586269025/192900153618*2537720636^(4/15) 2100951949424901 a001 32951280099/505019158607*2537720636^(4/15) 2100951949424901 a001 1836311903/73681302247*4106118243^(7/23) 2100951949424901 a001 86267571272/1322157322203*2537720636^(4/15) 2100951949424901 a001 1548008755920/23725150497407*2537720636^(4/15) 2100951949424901 a001 365435296162/5600748293801*2537720636^(4/15) 2100951949424901 a001 139583862445/2139295485799*2537720636^(4/15) 2100951949424901 a001 53316291173/817138163596*2537720636^(4/15) 2100951949424901 a001 10983760033/1368706081*1568397607^(1/22) 2100951949424901 a001 20365011074/312119004989*2537720636^(4/15) 2100951949424901 a001 2971215073/817138163596*2537720636^(2/5) 2100951949424901 a001 1836311903/192900153618*4106118243^(8/23) 2100951949424901 a001 7778742049/119218851371*2537720636^(4/15) 2100951949424901 a001 2971215073/4106118243*17393796001^(1/7) 2100951949424901 a001 1836311903/6643838879*45537549124^(3/17) 2100951949424901 a001 1836311903/6643838879*14662949395604^(1/7) 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^9/Lucas(47) 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^7/Lucas(46) 2100951949424901 a001 1836311903/6643838879*192900153618^(1/6) 2100951949424901 a001 4807526976/17393796001*2537720636^(1/5) 2100951949424901 a001 1836311903/505019158607*4106118243^(9/23) 2100951949424901 a001 12586269025/73681302247*2537720636^(2/9) 2100951949424901 a001 1836311903/6643838879*10749957122^(3/16) 2100951949424901 a001 10983760033/64300051206*2537720636^(2/9) 2100951949424901 a001 86267571272/505019158607*2537720636^(2/9) 2100951949424901 a001 75283811239/440719107401*2537720636^(2/9) 2100951949424901 a001 2504730781961/14662949395604*2537720636^(2/9) 2100951949424901 a001 139583862445/817138163596*2537720636^(2/9) 2100951949424901 a001 53316291173/312119004989*2537720636^(2/9) 2100951949424901 a001 20365011074/119218851371*2537720636^(2/9) 2100951949424901 a001 1836311903/1322157322203*4106118243^(10/23) 2100951949424901 a001 12586269025/45537549124*2537720636^(1/5) 2100951949424901 a004 Fibonacci(48)*Lucas(47)/(1/2+sqrt(5)/2)^87 2100951949424901 a001 32951280099/119218851371*2537720636^(1/5) 2100951949424901 a001 86267571272/312119004989*2537720636^(1/5) 2100951949424901 a001 225851433717/817138163596*2537720636^(1/5) 2100951949424901 a001 1548008755920/5600748293801*2537720636^(1/5) 2100951949424901 a001 139583862445/505019158607*2537720636^(1/5) 2100951949424901 a001 53316291173/192900153618*2537720636^(1/5) 2100951949424901 a001 1836311903/3461452808002*4106118243^(11/23) 2100951949424901 a001 20365011074/73681302247*2537720636^(1/5) 2100951949424901 a001 7778742049/45537549124*2537720636^(2/9) 2100951949424901 a001 12586269025/10749957122*2537720636^(2/15) 2100951949424901 a001 1836311903/5600748293801*4106118243^(1/2) 2100951949424901 a001 2971215073/192900153618*2537720636^(1/3) 2100951949424901 a001 7778742049/28143753123*2537720636^(1/5) 2100951949424901 a001 1836311903/9062201101803*4106118243^(12/23) 2100951949424901 a001 1836311903/23725150497407*4106118243^(13/23) 2100951949424901 a001 10182505537/5374978561*2537720636^(1/9) 2100951949424901 a004 Fibonacci(50)*Lucas(47)/(1/2+sqrt(5)/2)^89 2100951949424901 a001 12586269025/4106118243*1568397607^(1/11) 2100951949424901 a004 Fibonacci(52)*Lucas(47)/(1/2+sqrt(5)/2)^91 2100951949424901 a004 Fibonacci(54)*Lucas(47)/(1/2+sqrt(5)/2)^93 2100951949424901 a004 Fibonacci(56)*Lucas(47)/(1/2+sqrt(5)/2)^95 2100951949424901 a004 Fibonacci(58)*Lucas(47)/(1/2+sqrt(5)/2)^97 2100951949424901 a004 Fibonacci(60)*Lucas(47)/(1/2+sqrt(5)/2)^99 2100951949424901 a001 2/2971215073*(1/2+1/2*5^(1/2))^55 2100951949424901 a004 Fibonacci(61)*Lucas(47)/(1/2+sqrt(5)/2)^100 2100951949424901 a004 Fibonacci(59)*Lucas(47)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(57)*Lucas(47)/(1/2+sqrt(5)/2)^96 2100951949424901 a004 Fibonacci(55)*Lucas(47)/(1/2+sqrt(5)/2)^94 2100951949424901 a004 Fibonacci(53)*Lucas(47)/(1/2+sqrt(5)/2)^92 2100951949424901 a004 Fibonacci(51)*Lucas(47)/(1/2+sqrt(5)/2)^90 2100951949424901 a001 10983760033/9381251041*2537720636^(2/15) 2100951949424901 a001 86267571272/73681302247*2537720636^(2/15) 2100951949424901 a001 75283811239/64300051206*2537720636^(2/15) 2100951949424901 a001 2504730781961/2139295485799*2537720636^(2/15) 2100951949424901 a001 365435296162/312119004989*2537720636^(2/15) 2100951949424901 a001 139583862445/119218851371*2537720636^(2/15) 2100951949424901 a001 53316291173/45537549124*2537720636^(2/15) 2100951949424901 a004 Fibonacci(49)*Lucas(47)/(1/2+sqrt(5)/2)^88 2100951949424901 a001 53316291173/10749957122*2537720636^(1/15) 2100951949424901 a001 53316291173/28143753123*2537720636^(1/9) 2100951949424901 a001 2971215073/45537549124*2537720636^(4/15) 2100951949424901 a001 139583862445/73681302247*2537720636^(1/9) 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^8/Lucas(48) 2100951949424901 a001 2403763488/5374978561*23725150497407^(1/8) 2100951949424901 a001 182717648081/96450076809*2537720636^(1/9) 2100951949424901 a001 956722026041/505019158607*2537720636^(1/9) 2100951949424901 a001 10610209857723/5600748293801*2537720636^(1/9) 2100951949424901 a001 591286729879/312119004989*2537720636^(1/9) 2100951949424901 a001 225851433717/119218851371*2537720636^(1/9) 2100951949424901 a001 2971215073/10749957122*2537720636^(1/5) 2100951949424901 a001 20365011074/17393796001*2537720636^(2/15) 2100951949424901 a001 21566892818/11384387281*2537720636^(1/9) 2100951949424901 a001 2403763488/5374978561*10749957122^(1/6) 2100951949424901 a001 32951280099/17393796001*2537720636^(1/9) 2100951949424901 a001 1602508992/1368706081*1568397607^(3/22) 2100951949424901 a004 Fibonacci(48)*Lucas(49)/(1/2+sqrt(5)/2)^89 2100951949424901 a001 139583862445/28143753123*2537720636^(1/15) 2100951949424901 a001 365435296162/73681302247*2537720636^(1/15) 2100951949424901 a001 956722026041/192900153618*2537720636^(1/15) 2100951949424901 a001 2504730781961/505019158607*2537720636^(1/15) 2100951949424901 a001 10610209857723/2139295485799*2537720636^(1/15) 2100951949424901 a001 4052739537881/817138163596*2537720636^(1/15) 2100951949424901 a001 140728068720/28374454999*2537720636^(1/15) 2100951949424901 a001 591286729879/119218851371*2537720636^(1/15) 2100951949424901 a001 4807526976/5600748293801*17393796001^(3/7) 2100951949424901 a001 12586269025/10749957122*45537549124^(2/17) 2100951949424901 a001 1602508992/9381251041*312119004989^(2/11) 2100951949424901 a001 12586269025/10749957122*14662949395604^(2/21) 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^10/Lucas(50) 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^6/Lucas(48) 2100951949424901 a001 225851433717/45537549124*2537720636^(1/15) 2100951949424901 a001 1602508992/9381251041*28143753123^(1/5) 2100951949424901 a001 267084832/10716675201*17393796001^(2/7) 2100951949424901 a004 Fibonacci(48)*Lucas(51)/(1/2+sqrt(5)/2)^91 2100951949424901 a001 686789568/10525900321*45537549124^(4/17) 2100951949424901 a001 4807526976/23725150497407*45537549124^(8/17) 2100951949424901 a001 4807526976/5600748293801*45537549124^(7/17) 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^12/Lucas(52) 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^4/Lucas(48) 2100951949424901 a001 32951280099/10749957122*23725150497407^(1/16) 2100951949424901 a001 12586269025/10749957122*10749957122^(1/8) 2100951949424901 a001 1602508992/440719107401*45537549124^(6/17) 2100951949424901 a001 1201881744/204284540899*45537549124^(1/3) 2100951949424901 a001 686789568/10525900321*73681302247^(3/13) 2100951949424901 a001 4807526976/312119004989*45537549124^(5/17) 2100951949424901 a004 Fibonacci(48)*Lucas(53)/(1/2+sqrt(5)/2)^93 2100951949424901 a001 267084832/10716675201*14662949395604^(2/9) 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^14/Lucas(54) 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^2/Lucas(48) 2100951949424901 a004 Fibonacci(48)*Lucas(55)/(1/2+sqrt(5)/2)^95 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^16/Lucas(56) 2100951949424901 a001 102287808/10745088481*23725150497407^(1/4) 2100951949424901 a004 Fibonacci(48)*Lucas(57)/(1/2+sqrt(5)/2)^97 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^18/Lucas(58) 2100951949424901 a004 Fibonacci(58)/Lucas(48)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(48)*Lucas(59)/(1/2+sqrt(5)/2)^99 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^20/Lucas(60) 2100951949424901 a004 Fibonacci(60)/Lucas(48)/(1/2+sqrt(5)/2)^4 2100951949424901 a001 14930208/10749853441*23725150497407^(5/16) 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^22/Lucas(62) 2100951949424901 a004 Fibonacci(62)/Lucas(48)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^24/Lucas(64) 2100951949424901 a004 Fibonacci(64)/Lucas(48)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^26/Lucas(66) 2100951949424901 a004 Fibonacci(66)/Lucas(48)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^28/Lucas(68) 2100951949424901 a004 Fibonacci(68)/Lucas(48)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^30/Lucas(70) 2100951949424901 a004 Fibonacci(70)/Lucas(48)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^32/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(48)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^34/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(48)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^36/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(48)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^38/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(48)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^40/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(48)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^42/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(48)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^44/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(48)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^46/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(48)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^48/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(48)/(1/2+sqrt(5)/2)^32 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^50/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(48)/(1/2+sqrt(5)/2)^34 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^52/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(48)/(1/2+sqrt(5)/2)^36 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^54/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(48)/(1/2+sqrt(5)/2)^38 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^56/Lucas(96) 2100951949424901 a004 Fibonacci(24)*Lucas(24)/(1/2+sqrt(5)/2)^40 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^58/Lucas(98) 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^59/Lucas(99) 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^60/Lucas(100) 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^57/Lucas(97) 2100951949424901 a004 Fibonacci(100)/Lucas(48)/(1/2+sqrt(5)/2)^44 2100951949424901 a004 Fibonacci(98)/Lucas(48)/(1/2+sqrt(5)/2)^42 2100951949424901 a004 Fibonacci(99)/Lucas(48)/(1/2+sqrt(5)/2)^43 2100951949424901 a004 Fibonacci(97)/Lucas(48)/(1/2+sqrt(5)/2)^41 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^55/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(48)/(1/2+sqrt(5)/2)^39 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^53/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(48)/(1/2+sqrt(5)/2)^37 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^51/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(48)/(1/2+sqrt(5)/2)^35 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^49/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(48)/(1/2+sqrt(5)/2)^33 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^47/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(48)/(1/2+sqrt(5)/2)^31 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^45/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(48)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^43/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(48)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^41/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(48)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^39/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(48)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^37/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(48)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^35/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(48)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^33/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(48)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^31/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(48)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^29/Lucas(69) 2100951949424901 a004 Fibonacci(69)/Lucas(48)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^27/Lucas(67) 2100951949424901 a004 Fibonacci(67)/Lucas(48)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^25/Lucas(65) 2100951949424901 a004 Fibonacci(65)/Lucas(48)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^23/Lucas(63) 2100951949424901 a004 Fibonacci(63)/Lucas(48)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^21/Lucas(61) 2100951949424901 a004 Fibonacci(61)/Lucas(48)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(48)*Lucas(60)/(1/2+sqrt(5)/2)^100 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^19/Lucas(59) 2100951949424901 a004 Fibonacci(59)/Lucas(48)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(48)*Lucas(58)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^17/Lucas(57) 2100951949424901 a004 Fibonacci(57)/Lucas(48)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(48)*Lucas(56)/(1/2+sqrt(5)/2)^96 2100951949424901 a001 4807526976/312119004989*312119004989^(3/11) 2100951949424901 a001 1602508992/440719107401*192900153618^(1/3) 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^15/Lucas(55) 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)/Lucas(48) 2100951949424901 a001 4807526976/5600748293801*192900153618^(7/18) 2100951949424901 a001 4807526976/23725150497407*192900153618^(4/9) 2100951949424901 a004 Fibonacci(48)*Lucas(54)/(1/2+sqrt(5)/2)^94 2100951949424901 a001 53316291173/10749957122*45537549124^(1/17) 2100951949424901 a001 102287808/10745088481*73681302247^(4/13) 2100951949424901 a001 53316291173/10749957122*14662949395604^(1/21) 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^13/Lucas(53) 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^3/Lucas(48) 2100951949424901 a001 14930208/10749853441*73681302247^(5/13) 2100951949424901 a001 4807526976/23725150497407*73681302247^(6/13) 2100951949424901 a001 2971215073/17393796001*2537720636^(2/9) 2100951949424901 a001 4807526976/119218851371*73681302247^(1/4) 2100951949424901 a004 Fibonacci(48)*Lucas(52)/(1/2+sqrt(5)/2)^92 2100951949424901 a001 43133785636/5374978561*10749957122^(1/24) 2100951949424901 a001 4807526976/312119004989*28143753123^(3/10) 2100951949424901 a001 10182505537/5374978561*312119004989^(1/11) 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^11/Lucas(51) 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^5/Lucas(48) 2100951949424901 a001 14930208/10749853441*28143753123^(2/5) 2100951949424901 a001 1602508992/9381251041*10749957122^(5/24) 2100951949424901 a001 10182505537/5374978561*28143753123^(1/10) 2100951949424901 a001 53316291173/10749957122*10749957122^(1/16) 2100951949424901 a004 Fibonacci(48)*Lucas(50)/(1/2+sqrt(5)/2)^90 2100951949424901 a001 86267571272/17393796001*2537720636^(1/15) 2100951949424901 a001 2403763488/5374978561*4106118243^(4/23) 2100951949424901 a001 686789568/10525900321*10749957122^(1/4) 2100951949424901 a001 267084832/10716675201*10749957122^(7/24) 2100951949424901 a001 43133785636/5374978561*4106118243^(1/23) 2100951949424901 a001 4807526976/312119004989*10749957122^(5/16) 2100951949424901 a001 7778742049/10749957122*17393796001^(1/7) 2100951949424901 a001 102287808/10745088481*10749957122^(1/3) 2100951949424901 a001 4807526976/17393796001*45537549124^(3/17) 2100951949424901 a001 1602508992/440719107401*10749957122^(3/8) 2100951949424901 a001 4807526976/17393796001*14662949395604^(1/7) 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^9/Lucas(49) 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^7/Lucas(48) 2100951949424901 a001 4807526976/17393796001*192900153618^(1/6) 2100951949424901 a001 14930208/10749853441*10749957122^(5/12) 2100951949424901 a001 4807526976/5600748293801*10749957122^(7/16) 2100951949424901 a001 1602508992/3020733700601*10749957122^(11/24) 2100951949424901 a004 Fibonacci(50)*Lucas(49)/(1/2+sqrt(5)/2)^91 2100951949424901 a001 4807526976/23725150497407*10749957122^(1/2) 2100951949424901 a001 4807526976/17393796001*10749957122^(3/16) 2100951949424901 a001 32951280099/10749957122*4106118243^(2/23) 2100951949424901 a004 Fibonacci(52)*Lucas(49)/(1/2+sqrt(5)/2)^93 2100951949424901 a004 Fibonacci(54)*Lucas(49)/(1/2+sqrt(5)/2)^95 2100951949424901 a004 Fibonacci(56)*Lucas(49)/(1/2+sqrt(5)/2)^97 2100951949424901 a004 Fibonacci(58)*Lucas(49)/(1/2+sqrt(5)/2)^99 2100951949424901 a001 2/7778742049*(1/2+1/2*5^(1/2))^57 2100951949424901 a004 Fibonacci(59)*Lucas(49)/(1/2+sqrt(5)/2)^100 2100951949424901 a004 Fibonacci(57)*Lucas(49)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(55)*Lucas(49)/(1/2+sqrt(5)/2)^96 2100951949424901 a004 Fibonacci(53)*Lucas(49)/(1/2+sqrt(5)/2)^94 2100951949424901 a004 Fibonacci(51)*Lucas(49)/(1/2+sqrt(5)/2)^92 2100951949424901 a001 12586269025/14662949395604*17393796001^(3/7) 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^8/Lucas(50) 2100951949424901 a001 12586269025/28143753123*23725150497407^(1/8) 2100951949424901 a001 12586269025/28143753123*73681302247^(2/13) 2100951949424901 a001 12586269025/505019158607*17393796001^(2/7) 2100951949424901 a001 12586269025/10749957122*4106118243^(3/23) 2100951949424901 a004 Fibonacci(50)*Lucas(51)/(1/2+sqrt(5)/2)^93 2100951949424901 a001 10983760033/9381251041*45537549124^(2/17) 2100951949424901 a001 12586269025/14662949395604*45537549124^(7/17) 2100951949424901 a001 12586269025/73681302247*312119004989^(2/11) 2100951949424901 a001 10983760033/9381251041*14662949395604^(2/21) 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^10/Lucas(52) 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^6/Lucas(50) 2100951949424901 a001 12586269025/3461452808002*45537549124^(6/17) 2100951949424901 a001 12586269025/2139295485799*45537549124^(1/3) 2100951949424901 a001 12586269025/192900153618*45537549124^(4/17) 2100951949424901 a001 12586269025/817138163596*45537549124^(5/17) 2100951949424901 a004 Fibonacci(50)*Lucas(53)/(1/2+sqrt(5)/2)^95 2100951949424901 a001 12586269025/192900153618*14662949395604^(4/21) 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^12/Lucas(54) 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^4/Lucas(50) 2100951949424901 a001 12586269025/192900153618*192900153618^(2/9) 2100951949424901 a001 139583862445/28143753123*45537549124^(1/17) 2100951949424901 a001 86267571272/28143753123*73681302247^(1/13) 2100951949424901 a004 Fibonacci(50)*Lucas(55)/(1/2+sqrt(5)/2)^97 2100951949424901 a001 12586269025/23725150497407*312119004989^(2/5) 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^14/Lucas(56) 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^2/Lucas(50) 2100951949424901 a004 Fibonacci(50)*Lucas(57)/(1/2+sqrt(5)/2)^99 2100951949424901 a001 12586269025/817138163596*312119004989^(3/11) 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^16/Lucas(58) 2100951949424901 a006 5^(1/2)*Fibonacci(58)/Lucas(50)/sqrt(5) 2100951949424901 a001 12586269025/1322157322203*23725150497407^(1/4) 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^18/Lucas(60) 2100951949424901 a004 Fibonacci(60)/Lucas(50)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^20/Lucas(62) 2100951949424901 a004 Fibonacci(62)/Lucas(50)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^22/Lucas(64) 2100951949424901 a004 Fibonacci(64)/Lucas(50)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^24/Lucas(66) 2100951949424901 a004 Fibonacci(66)/Lucas(50)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^26/Lucas(68) 2100951949424901 a004 Fibonacci(68)/Lucas(50)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^28/Lucas(70) 2100951949424901 a004 Fibonacci(70)/Lucas(50)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^30/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(50)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^32/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(50)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^34/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(50)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^36/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(50)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^38/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(50)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^40/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(50)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^42/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(50)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^44/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(50)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^46/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(50)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^48/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(50)/(1/2+sqrt(5)/2)^32 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^50/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(50)/(1/2+sqrt(5)/2)^34 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^52/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(50)/(1/2+sqrt(5)/2)^36 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^54/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(50)/(1/2+sqrt(5)/2)^38 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^56/Lucas(98) 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^58/Lucas(100) 2100951949424901 a004 Fibonacci(98)/Lucas(50)/(1/2+sqrt(5)/2)^40 2100951949424901 a004 Fibonacci(25)*Lucas(25)/(1/2+sqrt(5)/2)^42 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^55/Lucas(97) 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^57/Lucas(99) 2100951949424901 a004 Fibonacci(97)/Lucas(50)/(1/2+sqrt(5)/2)^39 2100951949424901 a004 Fibonacci(99)/Lucas(50)/(1/2+sqrt(5)/2)^41 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^53/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(50)/(1/2+sqrt(5)/2)^37 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^51/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(50)/(1/2+sqrt(5)/2)^35 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^49/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(50)/(1/2+sqrt(5)/2)^33 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^47/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(50)/(1/2+sqrt(5)/2)^31 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^45/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(50)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^43/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(50)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^41/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(50)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^39/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(50)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^37/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(50)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^35/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(50)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^33/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(50)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^31/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(50)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^29/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(50)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^27/Lucas(69) 2100951949424901 a004 Fibonacci(69)/Lucas(50)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^25/Lucas(67) 2100951949424901 a004 Fibonacci(67)/Lucas(50)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^23/Lucas(65) 2100951949424901 a004 Fibonacci(65)/Lucas(50)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^21/Lucas(63) 2100951949424901 a004 Fibonacci(63)/Lucas(50)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^19/Lucas(61) 2100951949424901 a004 Fibonacci(61)/Lucas(50)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^17/Lucas(59) 2100951949424901 a004 Fibonacci(59)/Lucas(50)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(50)*Lucas(58)/(1/2+sqrt(5)/2)^100 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^15/Lucas(57) 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)/Lucas(50) 2100951949424901 a004 Fibonacci(50)*Lucas(56)/(1/2+sqrt(5)/2)^98 2100951949424901 a001 12586269025/3461452808002*192900153618^(1/3) 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^13/Lucas(55) 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^3/Lucas(50) 2100951949424901 a001 12586269025/14662949395604*192900153618^(7/18) 2100951949424901 a001 12586269025/192900153618*73681302247^(3/13) 2100951949424901 a004 Fibonacci(50)*Lucas(54)/(1/2+sqrt(5)/2)^96 2100951949424901 a001 1144206275/28374454999*73681302247^(1/4) 2100951949424901 a001 12586269025/119218851371*312119004989^(1/5) 2100951949424901 a001 12586269025/73681302247*28143753123^(1/5) 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^11/Lucas(53) 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^5/Lucas(50) 2100951949424901 a001 10983760033/440719107401*17393796001^(2/7) 2100951949424901 a001 12586269025/28143753123*10749957122^(1/6) 2100951949424901 a004 Fibonacci(50)*Lucas(52)/(1/2+sqrt(5)/2)^94 2100951949424901 a001 53316291173/28143753123*28143753123^(1/10) 2100951949424901 a001 43133785636/1730726404001*17393796001^(2/7) 2100951949424901 a001 75283811239/3020733700601*17393796001^(2/7) 2100951949424901 a001 182717648081/7331474697802*17393796001^(2/7) 2100951949424901 a001 139583862445/5600748293801*17393796001^(2/7) 2100951949424901 a001 75283811239/9381251041*10749957122^(1/24) 2100951949424901 a001 12586269025/817138163596*28143753123^(3/10) 2100951949424901 a001 53316291173/2139295485799*17393796001^(2/7) 2100951949424901 a001 12586269025/45537549124*45537549124^(3/17) 2100951949424901 a001 12586269025/45537549124*14662949395604^(1/7) 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^9/Lucas(51) 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^7/Lucas(50) 2100951949424901 a001 12586269025/45537549124*192900153618^(1/6) 2100951949424901 a001 12586269025/9062201101803*28143753123^(2/5) 2100951949424901 a001 139583862445/28143753123*10749957122^(1/16) 2100951949424901 a004 Fibonacci(52)*Lucas(51)/(1/2+sqrt(5)/2)^95 2100951949424901 a001 53316291173/73681302247*17393796001^(1/7) 2100951949424901 a001 86267571272/28143753123*10749957122^(1/12) 2100951949424901 a004 Fibonacci(54)*Lucas(51)/(1/2+sqrt(5)/2)^97 2100951949424901 a001 139583862445/192900153618*17393796001^(1/7) 2100951949424901 a004 Fibonacci(56)*Lucas(51)/(1/2+sqrt(5)/2)^99 2100951949424901 a001 1/10182505537*(1/2+1/2*5^(1/2))^59 2100951949424901 a004 Fibonacci(57)*Lucas(51)/(1/2+sqrt(5)/2)^100 2100951949424901 a001 365435296162/505019158607*17393796001^(1/7) 2100951949424901 a004 Fibonacci(55)*Lucas(51)/(1/2+sqrt(5)/2)^98 2100951949424901 a001 225851433717/312119004989*17393796001^(1/7) 2100951949424901 a001 10182505537/408569081798*17393796001^(2/7) 2100951949424901 a001 86267571272/119218851371*17393796001^(1/7) 2100951949424901 a004 Fibonacci(53)*Lucas(51)/(1/2+sqrt(5)/2)^96 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^8/Lucas(52) 2100951949424901 a001 32951280099/73681302247*23725150497407^(1/8) 2100951949424901 a001 10983760033/9381251041*10749957122^(1/8) 2100951949424901 a001 10983760033/3020733700601*45537549124^(6/17) 2100951949424901 a001 32951280099/5600748293801*45537549124^(1/3) 2100951949424901 a001 32951280099/73681302247*73681302247^(2/13) 2100951949424901 a001 32951280099/2139295485799*45537549124^(5/17) 2100951949424901 a001 32951280099/505019158607*45537549124^(4/17) 2100951949424901 a001 86267571272/73681302247*45537549124^(2/17) 2100951949424901 a004 Fibonacci(52)*Lucas(53)/(1/2+sqrt(5)/2)^97 2100951949424901 a001 10983760033/64300051206*312119004989^(2/11) 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^10/Lucas(54) 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^6/Lucas(52) 2100951949424901 a001 32951280099/119218851371*45537549124^(3/17) 2100951949424901 a001 86267571272/23725150497407*45537549124^(6/17) 2100951949424901 a004 Fibonacci(52)*Lucas(55)/(1/2+sqrt(5)/2)^99 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^12/Lucas(56) 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^4/Lucas(52) 2100951949424901 a001 32264490531/10525900321*23725150497407^(1/16) 2100951949424901 a001 10983760033/440719107401*14662949395604^(2/9) 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^14/Lucas(58) 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^2/Lucas(52) 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^16/Lucas(60) 2100951949424901 a001 10983760033/3020733700601*14662949395604^(2/7) 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^18/Lucas(62) 2100951949424901 a004 Fibonacci(62)/Lucas(52)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^20/Lucas(64) 2100951949424901 a004 Fibonacci(64)/Lucas(52)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^22/Lucas(66) 2100951949424901 a004 Fibonacci(66)/Lucas(52)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^24/Lucas(68) 2100951949424901 a004 Fibonacci(68)/Lucas(52)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^26/Lucas(70) 2100951949424901 a004 Fibonacci(70)/Lucas(52)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^28/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(52)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^30/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(52)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^32/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(52)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^34/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(52)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^36/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(52)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^38/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(52)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^40/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(52)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^42/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(52)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^44/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(52)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^46/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(52)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^48/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(52)/(1/2+sqrt(5)/2)^32 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^50/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(52)/(1/2+sqrt(5)/2)^34 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^52/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(52)/(1/2+sqrt(5)/2)^36 2100951949424901 a004 Fibonacci(100)/Lucas(52)/(1/2+sqrt(5)/2)^40 2100951949424901 a004 Fibonacci(26)*Lucas(26)/(1/2+sqrt(5)/2)^44 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^54/Lucas(98) 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^55/Lucas(99) 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^56/Lucas(100) 2100951949424901 a004 Fibonacci(98)/Lucas(52)/(1/2+sqrt(5)/2)^38 2100951949424901 a004 Fibonacci(99)/Lucas(52)/(1/2+sqrt(5)/2)^39 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^53/Lucas(97) 2100951949424901 a004 Fibonacci(97)/Lucas(52)/(1/2+sqrt(5)/2)^37 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^51/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(52)/(1/2+sqrt(5)/2)^35 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^49/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(52)/(1/2+sqrt(5)/2)^33 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^47/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(52)/(1/2+sqrt(5)/2)^31 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^45/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(52)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^43/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(52)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^41/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(52)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^39/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(52)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^37/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(52)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^35/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(52)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^33/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(52)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^31/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(52)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^29/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(52)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^27/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(52)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^25/Lucas(69) 2100951949424901 a004 Fibonacci(69)/Lucas(52)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^23/Lucas(67) 2100951949424901 a004 Fibonacci(67)/Lucas(52)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^21/Lucas(65) 2100951949424901 a004 Fibonacci(65)/Lucas(52)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^19/Lucas(63) 2100951949424901 a004 Fibonacci(63)/Lucas(52)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^17/Lucas(61) 2100951949424901 a004 Fibonacci(61)/Lucas(52)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^15/Lucas(59) 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)/Lucas(52) 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^13/Lucas(57) 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^3/Lucas(52) 2100951949424901 a004 Fibonacci(52)*Lucas(56)/(1/2+sqrt(5)/2)^100 2100951949424901 a001 10983760033/3020733700601*192900153618^(1/3) 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^11/Lucas(55) 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^5/Lucas(52) 2100951949424901 a004 Fibonacci(52)*Lucas(54)/(1/2+sqrt(5)/2)^98 2100951949424901 a001 139583862445/23725150497407*45537549124^(1/3) 2100951949424901 a001 86267571272/1322157322203*45537549124^(4/17) 2100951949424901 a001 365435296162/23725150497407*45537549124^(5/17) 2100951949424901 a001 139583862445/9062201101803*45537549124^(5/17) 2100951949424901 a001 32951280099/3461452808002*73681302247^(4/13) 2100951949424901 a001 32264490531/494493258286*45537549124^(4/17) 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^9/Lucas(53) 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^7/Lucas(52) 2100951949424901 a001 32951280099/119218851371*192900153618^(1/6) 2100951949424901 a001 139583862445/2139295485799*45537549124^(4/17) 2100951949424901 a004 Fibonacci(54)*Lucas(53)/(1/2+sqrt(5)/2)^99 2100951949424901 a001 53316291173/9062201101803*45537549124^(1/3) 2100951949424901 a001 225851433717/817138163596*45537549124^(3/17) 2100951949424901 a001 139583862445/505019158607*45537549124^(3/17) 2100951949424901 a001 53316291173/3461452808002*45537549124^(5/17) 2100951949424901 a001 2/53316291173*(1/2+1/2*5^(1/2))^61 2100951949424901 a004 Fibonacci(55)*Lucas(53)/(1/2+sqrt(5)/2)^100 2100951949424901 a001 2504730781961/2139295485799*45537549124^(2/17) 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^8/Lucas(54) 2100951949424901 a001 139583862445/73681302247*28143753123^(1/10) 2100951949424901 a001 365435296162/312119004989*45537549124^(2/17) 2100951949424901 a001 2504730781961/505019158607*45537549124^(1/17) 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^10/Lucas(56) 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^6/Lucas(54) 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^12/Lucas(58) 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^4/Lucas(54) 2100951949424901 a001 21566892818/204284540899*312119004989^(1/5) 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^14/Lucas(60) 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^2/Lucas(54) 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^16/Lucas(62) 2100951949424901 a006 5^(1/2)*Fibonacci(62)/Lucas(54)/sqrt(5) 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^18/Lucas(64) 2100951949424901 a004 Fibonacci(64)/Lucas(54)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^20/Lucas(66) 2100951949424901 a004 Fibonacci(66)/Lucas(54)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^22/Lucas(68) 2100951949424901 a004 Fibonacci(68)/Lucas(54)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^24/Lucas(70) 2100951949424901 a004 Fibonacci(70)/Lucas(54)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^26/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(54)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^28/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(54)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^30/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(54)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^32/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(54)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^34/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(54)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^36/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(54)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^38/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(54)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^40/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(54)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^42/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(54)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^44/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(54)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^46/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(54)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^48/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(54)/(1/2+sqrt(5)/2)^32 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^50/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(54)/(1/2+sqrt(5)/2)^34 2100951949424901 a004 Fibonacci(100)/Lucas(54)/(1/2+sqrt(5)/2)^38 2100951949424901 a004 Fibonacci(27)*Lucas(27)/(1/2+sqrt(5)/2)^46 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^52/Lucas(98) 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^53/Lucas(99) 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^54/Lucas(100) 2100951949424901 a004 Fibonacci(98)/Lucas(54)/(1/2+sqrt(5)/2)^36 2100951949424901 a004 Fibonacci(99)/Lucas(54)/(1/2+sqrt(5)/2)^37 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^51/Lucas(97) 2100951949424901 a004 Fibonacci(97)/Lucas(54)/(1/2+sqrt(5)/2)^35 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^49/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(54)/(1/2+sqrt(5)/2)^33 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^47/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(54)/(1/2+sqrt(5)/2)^31 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^45/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(54)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^43/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(54)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^41/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(54)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^39/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(54)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^37/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(54)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^35/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(54)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^33/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(54)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^31/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(54)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^29/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(54)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^27/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(54)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^25/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(54)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^23/Lucas(69) 2100951949424901 a004 Fibonacci(69)/Lucas(54)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^21/Lucas(67) 2100951949424901 a004 Fibonacci(67)/Lucas(54)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^19/Lucas(65) 2100951949424901 a004 Fibonacci(65)/Lucas(54)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^17/Lucas(63) 2100951949424901 a004 Fibonacci(63)/Lucas(54)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^15/Lucas(61) 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)/Lucas(54) 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^13/Lucas(59) 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^3/Lucas(54) 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^11/Lucas(57) 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^5/Lucas(54) 2100951949424901 a001 86267571272/312119004989*14662949395604^(1/7) 2100951949424901 a001 139583862445/192900153618*14662949395604^(1/9) 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^9/Lucas(55) 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^7/Lucas(54) 2100951949424901 a001 2/139583862445*(1/2+1/2*5^(1/2))^63 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^8/Lucas(56) 2100951949424901 a001 225851433717/505019158607*23725150497407^(1/8) 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^10/Lucas(58) 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^6/Lucas(56) 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^12/Lucas(60) 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^4/Lucas(56) 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^14/Lucas(62) 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^2/Lucas(56) 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^16/Lucas(64) 2100951949424901 a006 5^(1/2)*Fibonacci(64)/Lucas(56)/sqrt(5) 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^18/Lucas(66) 2100951949424901 a004 Fibonacci(66)/Lucas(56)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^20/Lucas(68) 2100951949424901 a004 Fibonacci(68)/Lucas(56)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^22/Lucas(70) 2100951949424901 a004 Fibonacci(70)/Lucas(56)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^24/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(56)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^26/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(56)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^28/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(56)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^30/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(56)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^32/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(56)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^34/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(56)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^36/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(56)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^38/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(56)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^40/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(56)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^42/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(56)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^44/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(56)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^46/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(56)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^48/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(56)/(1/2+sqrt(5)/2)^32 2100951949424901 a004 Fibonacci(100)/Lucas(56)/(1/2+sqrt(5)/2)^36 2100951949424901 a004 Fibonacci(28)*Lucas(28)/(1/2+sqrt(5)/2)^48 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^50/Lucas(98) 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^51/Lucas(99) 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^52/Lucas(100) 2100951949424901 a004 Fibonacci(98)/Lucas(56)/(1/2+sqrt(5)/2)^34 2100951949424901 a004 Fibonacci(99)/Lucas(56)/(1/2+sqrt(5)/2)^35 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^49/Lucas(97) 2100951949424901 a004 Fibonacci(97)/Lucas(56)/(1/2+sqrt(5)/2)^33 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^47/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(56)/(1/2+sqrt(5)/2)^31 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^45/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(56)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^43/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(56)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^41/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(56)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^39/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(56)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^37/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(56)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^35/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(56)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^33/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(56)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^31/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(56)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^29/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(56)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^27/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(56)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^25/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(56)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^23/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(56)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^21/Lucas(69) 2100951949424901 a004 Fibonacci(69)/Lucas(56)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^19/Lucas(67) 2100951949424901 a004 Fibonacci(67)/Lucas(56)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^17/Lucas(65) 2100951949424901 a004 Fibonacci(65)/Lucas(56)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^15/Lucas(63) 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)/Lucas(56) 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^13/Lucas(61) 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^3/Lucas(56) 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^11/Lucas(59) 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^5/Lucas(56) 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^9/Lucas(57) 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^7/Lucas(56) 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^8/Lucas(58) 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^10/Lucas(60) 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^6/Lucas(58) 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^12/Lucas(62) 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^4/Lucas(58) 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^14/Lucas(64) 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^2/Lucas(58) 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^16/Lucas(66) 2100951949424901 a006 5^(1/2)*Fibonacci(66)/Lucas(58)/sqrt(5) 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^18/Lucas(68) 2100951949424901 a004 Fibonacci(68)/Lucas(58)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^20/Lucas(70) 2100951949424901 a004 Fibonacci(70)/Lucas(58)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^22/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(58)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^24/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(58)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^26/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(58)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^28/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(58)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^30/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(58)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^32/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(58)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^34/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(58)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^36/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(58)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^38/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(58)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^40/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(58)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^42/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(58)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^44/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(58)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^46/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(58)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(100)/Lucas(58)/(1/2+sqrt(5)/2)^34 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^48/Lucas(98) 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^50/Lucas(100) 2100951949424901 a004 Fibonacci(98)/Lucas(58)/(1/2+sqrt(5)/2)^32 2100951949424901 a004 Fibonacci(29)*Lucas(29)/(1/2+sqrt(5)/2)^50 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^47/Lucas(97) 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^49/Lucas(99) 2100951949424901 a004 Fibonacci(97)/Lucas(58)/(1/2+sqrt(5)/2)^31 2100951949424901 a004 Fibonacci(99)/Lucas(58)/(1/2+sqrt(5)/2)^33 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^45/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(58)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^43/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(58)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^41/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(58)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^39/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(58)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^37/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(58)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^35/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(58)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^33/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(58)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^31/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(58)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^29/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(58)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^27/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(58)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^25/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(58)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^23/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(58)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^21/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(58)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^19/Lucas(69) 2100951949424901 a004 Fibonacci(69)/Lucas(58)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^17/Lucas(67) 2100951949424901 a004 Fibonacci(67)/Lucas(58)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^15/Lucas(65) 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)/Lucas(58) 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^13/Lucas(63) 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^3/Lucas(58) 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^11/Lucas(61) 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^5/Lucas(58) 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^9/Lucas(59) 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^7/Lucas(58) 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^8/Lucas(60) 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^10/Lucas(62) 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^6/Lucas(60) 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^12/Lucas(64) 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^4/Lucas(60) 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^14/Lucas(66) 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^2/Lucas(60) 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^16/Lucas(68) 2100951949424901 a006 5^(1/2)*Fibonacci(68)/Lucas(60)/sqrt(5) 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^18/Lucas(70) 2100951949424901 a004 Fibonacci(70)/Lucas(60)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^20/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(60)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^22/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(60)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^24/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(60)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^26/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(60)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^28/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(60)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^30/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(60)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^32/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(60)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^34/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(60)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^36/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(60)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^38/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(60)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^40/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(60)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^42/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(60)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^44/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(60)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^46/Lucas(98) 2100951949424901 a004 Fibonacci(98)/Lucas(60)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(100)/Lucas(60)/(1/2+sqrt(5)/2)^32 2100951949424901 a004 Fibonacci(30)*Lucas(30)/(1/2+sqrt(5)/2)^52 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^45/Lucas(97) 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^47/Lucas(99) 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^48/Lucas(100) 2100951949424901 a004 Fibonacci(97)/Lucas(60)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(99)/Lucas(60)/(1/2+sqrt(5)/2)^31 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^43/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(60)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^41/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(60)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^39/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(60)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^37/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(60)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^35/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(60)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^33/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(60)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^31/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(60)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^29/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(60)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^27/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(60)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^25/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(60)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^23/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(60)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^21/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(60)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^19/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(60)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^17/Lucas(69) 2100951949424901 a004 Fibonacci(69)/Lucas(60)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^15/Lucas(67) 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)/Lucas(60) 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^13/Lucas(65) 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^3/Lucas(60) 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^11/Lucas(63) 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^5/Lucas(60) 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^9/Lucas(61) 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^7/Lucas(60) 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^8/Lucas(62) 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^10/Lucas(64) 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^6/Lucas(62) 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^12/Lucas(66) 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^4/Lucas(62) 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^14/Lucas(68) 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^2/Lucas(62) 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^16/Lucas(70) 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^18/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(62)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^20/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(62)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^22/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(62)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^24/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(62)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^26/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(62)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^28/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(62)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^30/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(62)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^32/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(62)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^34/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(62)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^36/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(62)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^38/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(62)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^40/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(62)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^42/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(62)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(100)/Lucas(62)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(31)*Lucas(31)/(1/2+sqrt(5)/2)^54 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^44/Lucas(98) 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^45/Lucas(99) 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^46/Lucas(100) 2100951949424901 a004 Fibonacci(98)/Lucas(62)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(99)/Lucas(62)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^43/Lucas(97) 2100951949424901 a004 Fibonacci(97)/Lucas(62)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^41/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(62)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^39/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(62)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^37/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(62)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^35/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(62)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^33/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(62)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^31/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(62)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^29/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(62)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^27/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(62)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^25/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(62)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^23/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(62)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^21/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(62)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^19/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(62)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^17/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(62)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^15/Lucas(69) 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)/Lucas(62) 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^13/Lucas(67) 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^3/Lucas(62) 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^11/Lucas(65) 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^5/Lucas(62) 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^9/Lucas(63) 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^7/Lucas(62) 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^8/Lucas(64) 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^10/Lucas(66) 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^6/Lucas(64) 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^12/Lucas(68) 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^4/Lucas(64) 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^14/Lucas(70) 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^2/Lucas(64) 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^16/Lucas(72) 2100951949424901 a006 5^(1/2)*Fibonacci(72)/Lucas(64)/sqrt(5) 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^18/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(64)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^20/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(64)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^22/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(64)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^24/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(64)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^26/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(64)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^28/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(64)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^30/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(64)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^32/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(64)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^34/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(64)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^36/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(64)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^38/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(64)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^40/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(64)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(100)/Lucas(64)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(32)*Lucas(32)/(1/2+sqrt(5)/2)^56 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^42/Lucas(98) 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^43/Lucas(99) 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^44/Lucas(100) 2100951949424901 a004 Fibonacci(98)/Lucas(64)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(99)/Lucas(64)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^41/Lucas(97) 2100951949424901 a004 Fibonacci(97)/Lucas(64)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^39/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(64)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^37/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(64)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^35/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(64)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^33/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(64)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^31/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(64)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^29/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(64)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^27/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(64)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^25/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(64)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^23/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(64)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^21/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(64)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^19/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(64)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^17/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(64)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^15/Lucas(71) 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)/Lucas(64) 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^13/Lucas(69) 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^3/Lucas(64) 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^11/Lucas(67) 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^5/Lucas(64) 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^9/Lucas(65) 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^7/Lucas(64) 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^8/Lucas(66) 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^10/Lucas(68) 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^6/Lucas(66) 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^12/Lucas(70) 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^4/Lucas(66) 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^14/Lucas(72) 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^2/Lucas(66) 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^16/Lucas(74) 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^18/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(66)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^20/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(66)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^22/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(66)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^24/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(66)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^26/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(66)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^28/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(66)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^30/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(66)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^32/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(66)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^34/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(66)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^36/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(66)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^38/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(66)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(100)/Lucas(66)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(33)*Lucas(33)/(1/2+sqrt(5)/2)^58 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^40/Lucas(98) 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^41/Lucas(99) 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^42/Lucas(100) 2100951949424901 a004 Fibonacci(98)/Lucas(66)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(99)/Lucas(66)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^39/Lucas(97) 2100951949424901 a004 Fibonacci(97)/Lucas(66)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^37/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(66)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^35/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(66)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^33/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(66)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^31/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(66)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^29/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(66)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^27/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(66)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^25/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(66)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^23/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(66)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^21/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(66)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^19/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(66)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^17/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(66)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^15/Lucas(73) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)/Lucas(66) 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^13/Lucas(71) 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^3/Lucas(66) 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^11/Lucas(69) 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^5/Lucas(66) 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^9/Lucas(67) 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^7/Lucas(66) 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^8/Lucas(68) 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^10/Lucas(70) 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^6/Lucas(68) 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^12/Lucas(72) 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^4/Lucas(68) 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^14/Lucas(74) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^2/Lucas(68) 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^16/Lucas(76) 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^18/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(68)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^20/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(68)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^22/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(68)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^24/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(68)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^26/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(68)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^28/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(68)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^30/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(68)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^32/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(68)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^34/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(68)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^36/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(68)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(100)/Lucas(68)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(34)*Lucas(34)/(1/2+sqrt(5)/2)^60 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^38/Lucas(98) 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^39/Lucas(99) 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^40/Lucas(100) 2100951949424901 a004 Fibonacci(98)/Lucas(68)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(99)/Lucas(68)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^37/Lucas(97) 2100951949424901 a004 Fibonacci(97)/Lucas(68)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^35/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(68)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^33/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(68)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^31/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(68)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^29/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(68)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^27/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(68)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^25/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(68)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^23/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(68)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^21/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(68)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^19/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(68)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^17/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(68)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^15/Lucas(75) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)/Lucas(68) 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^13/Lucas(73) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^3/Lucas(68) 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^11/Lucas(71) 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^5/Lucas(68) 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^9/Lucas(69) 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^7/Lucas(68) 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^8/Lucas(70) 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^10/Lucas(72) 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^6/Lucas(70) 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^12/Lucas(74) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^4/Lucas(70) 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^14/Lucas(76) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^2/Lucas(70) 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^16/Lucas(78) 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^18/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(70)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^20/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(70)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^22/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(70)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^24/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(70)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^26/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(70)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^28/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(70)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^30/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(70)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^32/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(70)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^34/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(70)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(100)/Lucas(70)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(35)*Lucas(35)/(1/2+sqrt(5)/2)^62 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^36/Lucas(98) 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^37/Lucas(99) 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^38/Lucas(100) 2100951949424901 a004 Fibonacci(98)/Lucas(70)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(99)/Lucas(70)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^35/Lucas(97) 2100951949424901 a004 Fibonacci(97)/Lucas(70)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^33/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(70)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^31/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(70)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^29/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(70)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^27/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(70)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^25/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(70)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^23/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(70)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^21/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(70)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^19/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(70)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^17/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(70)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^15/Lucas(77) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)/Lucas(70) 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^13/Lucas(75) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^3/Lucas(70) 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^11/Lucas(73) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^5/Lucas(70) 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^9/Lucas(71) 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^7/Lucas(70) 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^8/Lucas(72) 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^10/Lucas(74) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^6/Lucas(72) 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^12/Lucas(76) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^4/Lucas(72) 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^14/Lucas(78) 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^2/Lucas(72) 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^16/Lucas(80) 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^18/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(72)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^20/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(72)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^22/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(72)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^24/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(72)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^26/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(72)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^28/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(72)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^30/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(72)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^32/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(72)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(100)/Lucas(72)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(36)*Lucas(36)/(1/2+sqrt(5)/2)^64 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^34/Lucas(98) 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^35/Lucas(99) 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^36/Lucas(100) 2100951949424901 a004 Fibonacci(98)/Lucas(72)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(99)/Lucas(72)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^33/Lucas(97) 2100951949424901 a004 Fibonacci(97)/Lucas(72)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^31/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(72)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^29/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(72)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^27/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(72)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^25/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(72)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^23/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(72)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^21/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(72)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^19/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(72)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^17/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(72)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^15/Lucas(79) 2100951949424901 a004 Fibonacci(79)*(1/2+sqrt(5)/2)/Lucas(72) 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^13/Lucas(77) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^3/Lucas(72) 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^11/Lucas(75) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^5/Lucas(72) 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^9/Lucas(73) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^7/Lucas(72) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^8/Lucas(74) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^10/Lucas(76) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^12/Lucas(78) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^14/Lucas(80) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^16/Lucas(82) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^18/Lucas(84) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^20/Lucas(86) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^22/Lucas(88) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^24/Lucas(90) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^26/Lucas(92) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^28/Lucas(94) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^30/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(74)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(37)*Lucas(37)/(1/2+sqrt(5)/2)^66 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^32/Lucas(98) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^33/Lucas(99) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^34/Lucas(100) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^31/Lucas(97) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^29/Lucas(95) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^27/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(74)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^25/Lucas(91) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^23/Lucas(89) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^21/Lucas(87) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^19/Lucas(85) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^17/Lucas(83) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^15/Lucas(81) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^13/Lucas(79) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^11/Lucas(77) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^9/Lucas(75) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^8/Lucas(76) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^10/Lucas(78) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^12/Lucas(80) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^14/Lucas(82) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^16/Lucas(84) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^18/Lucas(86) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^20/Lucas(88) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^22/Lucas(90) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^24/Lucas(92) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^26/Lucas(94) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^28/Lucas(96) 2100951949424901 a004 Fibonacci(38)*Lucas(38)/(1/2+sqrt(5)/2)^68 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^30/Lucas(98) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^31/Lucas(99) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^32/Lucas(100) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^29/Lucas(97) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^27/Lucas(95) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^25/Lucas(93) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^23/Lucas(91) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^21/Lucas(89) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^19/Lucas(87) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^17/Lucas(85) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^15/Lucas(83) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^13/Lucas(81) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^11/Lucas(79) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^9/Lucas(77) 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^8/Lucas(78) 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^10/Lucas(80) 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^12/Lucas(82) 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^14/Lucas(84) 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^16/Lucas(86) 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^18/Lucas(88) 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^20/Lucas(90) 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^22/Lucas(92) 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^24/Lucas(94) 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^26/Lucas(96) 2100951949424901 a004 Fibonacci(39)*Lucas(39)/(1/2+sqrt(5)/2)^70 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^28/Lucas(98) 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^29/Lucas(99) 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^30/Lucas(100) 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^27/Lucas(97) 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^25/Lucas(95) 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^23/Lucas(93) 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^21/Lucas(91) 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^19/Lucas(89) 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^17/Lucas(87) 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^15/Lucas(85) 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^13/Lucas(83) 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^11/Lucas(81) 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)^9/Lucas(79) 2100951949424901 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^8/Lucas(80) 2100951949424901 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^10/Lucas(82) 2100951949424901 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^12/Lucas(84) 2100951949424901 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^14/Lucas(86) 2100951949424901 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^16/Lucas(88) 2100951949424901 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^18/Lucas(90) 2100951949424901 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^20/Lucas(92) 2100951949424901 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^22/Lucas(94) 2100951949424901 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^24/Lucas(96) 2100951949424901 a004 Fibonacci(40)*Lucas(40)/(1/2+sqrt(5)/2)^72 2100951949424901 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^26/Lucas(98) 2100951949424901 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^27/Lucas(99) 2100951949424901 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^28/Lucas(100) 2100951949424901 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^25/Lucas(97) 2100951949424901 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^23/Lucas(95) 2100951949424901 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^21/Lucas(93) 2100951949424901 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^19/Lucas(91) 2100951949424901 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^17/Lucas(89) 2100951949424901 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^15/Lucas(87) 2100951949424901 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^13/Lucas(85) 2100951949424901 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^5/Lucas(80) 2100951949424901 a004 Fibonacci(80)*(1/2+sqrt(5)/2)^9/Lucas(81) 2100951949424901 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^8/Lucas(82) 2100951949424901 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^10/Lucas(84) 2100951949424901 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^12/Lucas(86) 2100951949424901 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^14/Lucas(88) 2100951949424901 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^16/Lucas(90) 2100951949424901 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^18/Lucas(92) 2100951949424901 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^20/Lucas(94) 2100951949424901 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^22/Lucas(96) 2100951949424901 a004 Fibonacci(41)*Lucas(41)/(1/2+sqrt(5)/2)^74 2100951949424901 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^24/Lucas(98) 2100951949424901 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^25/Lucas(99) 2100951949424901 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^26/Lucas(100) 2100951949424901 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^23/Lucas(97) 2100951949424901 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^21/Lucas(95) 2100951949424901 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^19/Lucas(93) 2100951949424901 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^17/Lucas(91) 2100951949424901 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^15/Lucas(89) 2100951949424901 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^13/Lucas(87) 2100951949424901 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^11/Lucas(85) 2100951949424901 a004 Fibonacci(82)*(1/2+sqrt(5)/2)^9/Lucas(83) 2100951949424901 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^8/Lucas(84) 2100951949424901 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^10/Lucas(86) 2100951949424901 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^12/Lucas(88) 2100951949424901 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^14/Lucas(90) 2100951949424901 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^16/Lucas(92) 2100951949424901 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^18/Lucas(94) 2100951949424901 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^20/Lucas(96) 2100951949424901 a004 Fibonacci(42)*Lucas(42)/(1/2+sqrt(5)/2)^76 2100951949424901 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^22/Lucas(98) 2100951949424901 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^23/Lucas(99) 2100951949424901 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^24/Lucas(100) 2100951949424901 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^21/Lucas(97) 2100951949424901 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^19/Lucas(95) 2100951949424901 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^17/Lucas(93) 2100951949424901 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^15/Lucas(91) 2100951949424901 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^13/Lucas(89) 2100951949424901 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^11/Lucas(87) 2100951949424901 a004 Fibonacci(84)*(1/2+sqrt(5)/2)^9/Lucas(85) 2100951949424901 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^8/Lucas(86) 2100951949424901 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^10/Lucas(88) 2100951949424901 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^12/Lucas(90) 2100951949424901 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^14/Lucas(92) 2100951949424901 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^16/Lucas(94) 2100951949424901 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^18/Lucas(96) 2100951949424901 a004 Fibonacci(43)*Lucas(43)/(1/2+sqrt(5)/2)^78 2100951949424901 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^20/Lucas(98) 2100951949424901 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^21/Lucas(99) 2100951949424901 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^22/Lucas(100) 2100951949424901 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^19/Lucas(97) 2100951949424901 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^17/Lucas(95) 2100951949424901 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^15/Lucas(93) 2100951949424901 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^13/Lucas(91) 2100951949424901 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^11/Lucas(89) 2100951949424901 a004 Fibonacci(86)*(1/2+sqrt(5)/2)^9/Lucas(87) 2100951949424901 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^8/Lucas(88) 2100951949424901 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^10/Lucas(90) 2100951949424901 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^12/Lucas(92) 2100951949424901 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^14/Lucas(94) 2100951949424901 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^16/Lucas(96) 2100951949424901 a004 Fibonacci(44)*Lucas(44)/(1/2+sqrt(5)/2)^80 2100951949424901 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^18/Lucas(98) 2100951949424901 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^19/Lucas(99) 2100951949424901 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^20/Lucas(100) 2100951949424901 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^17/Lucas(97) 2100951949424901 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^15/Lucas(95) 2100951949424901 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^13/Lucas(93) 2100951949424901 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^11/Lucas(91) 2100951949424901 a004 Fibonacci(88)*(1/2+sqrt(5)/2)^9/Lucas(89) 2100951949424901 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^8/Lucas(90) 2100951949424901 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^10/Lucas(92) 2100951949424901 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^12/Lucas(94) 2100951949424901 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^14/Lucas(96) 2100951949424901 a004 Fibonacci(45)*Lucas(45)/(1/2+sqrt(5)/2)^82 2100951949424901 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^15/Lucas(97) 2100951949424901 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^16/Lucas(98) 2100951949424901 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^17/Lucas(99) 2100951949424901 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^18/Lucas(100) 2100951949424901 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^13/Lucas(95) 2100951949424901 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^11/Lucas(93) 2100951949424901 a004 Fibonacci(90)*(1/2+sqrt(5)/2)^9/Lucas(91) 2100951949424901 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^8/Lucas(92) 2100951949424901 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^6/Lucas(92) 2100951949424901 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^12/Lucas(96) 2100951949424901 a004 Fibonacci(46)*Lucas(46)/(1/2+sqrt(5)/2)^84 2100951949424901 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^14/Lucas(98) 2100951949424901 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^16/Lucas(100) 2100951949424901 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^13/Lucas(97) 2100951949424901 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^15/Lucas(99) 2100951949424901 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^11/Lucas(95) 2100951949424901 a004 Fibonacci(92)*(1/2+sqrt(5)/2)^9/Lucas(93) 2100951949424901 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^8/Lucas(94) 2100951949424901 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^10/Lucas(96) 2100951949424901 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^12/Lucas(98) 2100951949424901 a004 Fibonacci(47)*Lucas(47)/(1/2+sqrt(5)/2)^86 2100951949424901 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^11/Lucas(97) 2100951949424901 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^13/Lucas(99) 2100951949424901 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^14/Lucas(100) 2100951949424901 a004 Fibonacci(94)*(1/2+sqrt(5)/2)^9/Lucas(95) 2100951949424901 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^8/Lucas(96) 2100951949424901 a004 Fibonacci(100)*(1/2+sqrt(5)/2)^4/Lucas(96) 2100951949424901 a004 Fibonacci(48)*Lucas(48)/(1/2+sqrt(5)/2)^88 2100951949424901 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^10/Lucas(98) 2100951949424901 a004 Fibonacci(96)*(1/2+sqrt(5)/2)^11/Lucas(99) 2100951949424901 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^7/Lucas(96) 2100951949424901 a004 Fibonacci(100)*(1/2+sqrt(5)/2)^6/Lucas(98) 2100951949424901 a004 Fibonacci(100)*(1/2+sqrt(5)/2)^7/Lucas(99) 2100951949424901 a004 Fibonacci(100)*(1/2+sqrt(5)/2)^8/Lucas(100) 2100951949424901 a004 Fibonacci(49)*Lucas(49)/(1/2+sqrt(5)/2)^90 2100951949424901 a004 Fibonacci(50)*Lucas(50)/(1/2+sqrt(5)/2)^92 2100951949424901 a004 Fibonacci(51)*Lucas(51)/(1/2+sqrt(5)/2)^94 2100951949424901 a004 Fibonacci(52)*Lucas(52)/(1/2+sqrt(5)/2)^96 2100951949424901 a004 Fibonacci(53)*Lucas(53)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(54)*Lucas(54)/(1/2+sqrt(5)/2)^100 2100951949424901 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^8/Lucas(98) 2100951949424901 a004 Fibonacci(98)*(1/2+sqrt(5)/2)^9/Lucas(99) 2100951949424901 a004 Fibonacci(99)*Lucas(1)/(1/2+sqrt(5)/2)^91 2100951949424901 m005 (5/18+1/6*5^(1/2))/(2/9*5^(1/2)-1/2) 2100951949424901 a004 Fibonacci(100)*(1/2+sqrt(5)/2)^5/Lucas(97) 2100951949424901 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^10/Lucas(99) 2100951949424901 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^9/Lucas(98) 2100951949424901 a004 Fibonacci(97)*Lucas(1)/(1/2+sqrt(5)/2)^89 2100951949424901 a004 Fibonacci(99)*(1/2+sqrt(5)/2)^8/Lucas(99) 2100951949424901 a004 Fibonacci(97)*(1/2+sqrt(5)/2)^8/Lucas(97) 2100951949424901 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^9/Lucas(96) 2100951949424901 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^11/Lucas(98) 2100951949424901 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^13/Lucas(100) 2100951949424901 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^10/Lucas(97) 2100951949424901 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^12/Lucas(99) 2100951949424901 a004 Fibonacci(95)*Lucas(1)/(1/2+sqrt(5)/2)^87 2100951949424901 a004 Fibonacci(95)*(1/2+sqrt(5)/2)^8/Lucas(95) 2100951949424901 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^9/Lucas(94) 2100951949424901 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^11/Lucas(96) 2100951949424901 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^13/Lucas(98) 2100951949424901 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^12/Lucas(97) 2100951949424901 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^14/Lucas(99) 2100951949424901 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^15/Lucas(100) 2100951949424901 a004 Fibonacci(93)*Lucas(1)/(1/2+sqrt(5)/2)^85 2100951949424901 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^10/Lucas(95) 2100951949424901 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^8/Lucas(93) 2100951949424901 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^9/Lucas(92) 2100951949424901 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^11/Lucas(94) 2100951949424901 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^13/Lucas(96) 2100951949424901 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^15/Lucas(98) 2100951949424901 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^16/Lucas(99) 2100951949424901 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^17/Lucas(100) 2100951949424901 a004 Fibonacci(91)*Lucas(1)/(1/2+sqrt(5)/2)^83 2100951949424901 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^14/Lucas(97) 2100951949424901 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^12/Lucas(95) 2100951949424901 a004 Fibonacci(93)*(1/2+sqrt(5)/2)^6/Lucas(91) 2100951949424901 a004 Fibonacci(91)*(1/2+sqrt(5)/2)^8/Lucas(91) 2100951949424901 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^9/Lucas(90) 2100951949424901 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^11/Lucas(92) 2100951949424901 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^13/Lucas(94) 2100951949424901 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^15/Lucas(96) 2100951949424901 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^17/Lucas(98) 2100951949424901 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^16/Lucas(97) 2100951949424901 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^18/Lucas(99) 2100951949424901 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^19/Lucas(100) 2100951949424901 a004 Fibonacci(89)*Lucas(1)/(1/2+sqrt(5)/2)^81 2100951949424901 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^14/Lucas(95) 2100951949424901 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^12/Lucas(93) 2100951949424901 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^10/Lucas(91) 2100951949424901 a004 Fibonacci(89)*(1/2+sqrt(5)/2)^8/Lucas(89) 2100951949424901 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^9/Lucas(88) 2100951949424901 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^11/Lucas(90) 2100951949424901 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^13/Lucas(92) 2100951949424901 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^15/Lucas(94) 2100951949424901 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^17/Lucas(96) 2100951949424901 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^19/Lucas(98) 2100951949424901 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^21/Lucas(100) 2100951949424901 a004 Fibonacci(87)*Lucas(1)/(1/2+sqrt(5)/2)^79 2100951949424901 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^18/Lucas(97) 2100951949424901 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^20/Lucas(99) 2100951949424901 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^16/Lucas(95) 2100951949424901 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^14/Lucas(93) 2100951949424901 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^12/Lucas(91) 2100951949424901 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^10/Lucas(89) 2100951949424901 a004 Fibonacci(87)*(1/2+sqrt(5)/2)^8/Lucas(87) 2100951949424901 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^9/Lucas(86) 2100951949424901 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^11/Lucas(88) 2100951949424901 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^13/Lucas(90) 2100951949424901 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^15/Lucas(92) 2100951949424901 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^17/Lucas(94) 2100951949424901 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^19/Lucas(96) 2100951949424901 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^21/Lucas(98) 2100951949424901 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^20/Lucas(97) 2100951949424901 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^22/Lucas(99) 2100951949424901 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^23/Lucas(100) 2100951949424901 a004 Fibonacci(85)*Lucas(1)/(1/2+sqrt(5)/2)^77 2100951949424901 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^18/Lucas(95) 2100951949424901 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^16/Lucas(93) 2100951949424901 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^14/Lucas(91) 2100951949424901 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^12/Lucas(89) 2100951949424901 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^10/Lucas(87) 2100951949424901 a004 Fibonacci(85)*(1/2+sqrt(5)/2)^8/Lucas(85) 2100951949424901 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^9/Lucas(84) 2100951949424901 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^11/Lucas(86) 2100951949424901 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^13/Lucas(88) 2100951949424901 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^15/Lucas(90) 2100951949424901 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^17/Lucas(92) 2100951949424901 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^19/Lucas(94) 2100951949424901 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^21/Lucas(96) 2100951949424901 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^23/Lucas(98) 2100951949424901 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^22/Lucas(97) 2100951949424901 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^24/Lucas(99) 2100951949424901 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^25/Lucas(100) 2100951949424901 a004 Fibonacci(83)*Lucas(1)/(1/2+sqrt(5)/2)^75 2100951949424901 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^20/Lucas(95) 2100951949424901 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^18/Lucas(93) 2100951949424901 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^16/Lucas(91) 2100951949424901 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^14/Lucas(89) 2100951949424901 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^12/Lucas(87) 2100951949424901 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^10/Lucas(85) 2100951949424901 a004 Fibonacci(83)*(1/2+sqrt(5)/2)^8/Lucas(83) 2100951949424901 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^9/Lucas(82) 2100951949424901 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^11/Lucas(84) 2100951949424901 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^13/Lucas(86) 2100951949424901 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^15/Lucas(88) 2100951949424901 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^17/Lucas(90) 2100951949424901 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^19/Lucas(92) 2100951949424901 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^21/Lucas(94) 2100951949424901 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^23/Lucas(96) 2100951949424901 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^25/Lucas(98) 2100951949424901 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^26/Lucas(99) 2100951949424901 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^27/Lucas(100) 2100951949424901 a004 Fibonacci(81)*Lucas(1)/(1/2+sqrt(5)/2)^73 2100951949424901 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^24/Lucas(97) 2100951949424901 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^22/Lucas(95) 2100951949424901 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^20/Lucas(93) 2100951949424901 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^18/Lucas(91) 2100951949424901 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^16/Lucas(89) 2100951949424901 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^14/Lucas(87) 2100951949424901 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^12/Lucas(85) 2100951949424901 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^10/Lucas(83) 2100951949424901 a004 Fibonacci(81)*(1/2+sqrt(5)/2)^8/Lucas(81) 2100951949424901 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^9/Lucas(80) 2100951949424901 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^11/Lucas(82) 2100951949424901 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^13/Lucas(84) 2100951949424901 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^15/Lucas(86) 2100951949424901 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^17/Lucas(88) 2100951949424901 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^19/Lucas(90) 2100951949424901 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^21/Lucas(92) 2100951949424901 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^23/Lucas(94) 2100951949424901 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^25/Lucas(96) 2100951949424901 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^27/Lucas(98) 2100951949424901 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^28/Lucas(99) 2100951949424901 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^29/Lucas(100) 2100951949424901 a004 Fibonacci(79)*Lucas(1)/(1/2+sqrt(5)/2)^71 2100951949424901 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^26/Lucas(97) 2100951949424901 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^24/Lucas(95) 2100951949424901 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^22/Lucas(93) 2100951949424901 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^20/Lucas(91) 2100951949424901 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^18/Lucas(89) 2100951949424901 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^16/Lucas(87) 2100951949424901 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^14/Lucas(85) 2100951949424901 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^12/Lucas(83) 2100951949424901 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^10/Lucas(81) 2100951949424901 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^8/Lucas(79) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^9/Lucas(78) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^11/Lucas(80) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^13/Lucas(82) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^15/Lucas(84) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^17/Lucas(86) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^19/Lucas(88) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^21/Lucas(90) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^23/Lucas(92) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^25/Lucas(94) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^27/Lucas(96) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^28/Lucas(97) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^29/Lucas(98) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^30/Lucas(99) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^31/Lucas(100) 2100951949424901 a004 Fibonacci(77)*Lucas(1)/(1/2+sqrt(5)/2)^69 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^26/Lucas(95) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^24/Lucas(93) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^22/Lucas(91) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^20/Lucas(89) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^18/Lucas(87) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^16/Lucas(85) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^14/Lucas(83) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^12/Lucas(81) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^10/Lucas(79) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^8/Lucas(77) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^9/Lucas(76) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^11/Lucas(78) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^13/Lucas(80) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^15/Lucas(82) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^17/Lucas(84) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^19/Lucas(86) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^21/Lucas(88) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^23/Lucas(90) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^25/Lucas(92) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^27/Lucas(94) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^29/Lucas(96) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^31/Lucas(98) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^33/Lucas(100) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^30/Lucas(97) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^32/Lucas(99) 2100951949424901 a004 Fibonacci(75)*Lucas(1)/(1/2+sqrt(5)/2)^67 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^28/Lucas(95) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^26/Lucas(93) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^24/Lucas(91) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^22/Lucas(89) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^20/Lucas(87) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^18/Lucas(85) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^16/Lucas(83) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^14/Lucas(81) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^12/Lucas(79) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^10/Lucas(77) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^8/Lucas(75) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^9/Lucas(74) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^11/Lucas(76) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^13/Lucas(78) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^15/Lucas(80) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^17/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(73)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^19/Lucas(84) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^21/Lucas(86) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^23/Lucas(88) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^25/Lucas(90) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^27/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(73)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^29/Lucas(94) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^31/Lucas(96) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^32/Lucas(97) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^33/Lucas(98) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^34/Lucas(99) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^35/Lucas(100) 2100951949424901 a004 Fibonacci(73)*Lucas(1)/(1/2+sqrt(5)/2)^65 2100951949424901 a004 Fibonacci(99)/Lucas(73)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^30/Lucas(95) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^28/Lucas(93) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^26/Lucas(91) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^24/Lucas(89) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^22/Lucas(87) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^20/Lucas(85) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^18/Lucas(83) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^16/Lucas(81) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^14/Lucas(79) 2100951949424901 a004 Fibonacci(79)*(1/2+sqrt(5)/2)^2/Lucas(73) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^12/Lucas(77) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^10/Lucas(75) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^8/Lucas(73) 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^9/Lucas(72) 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^7/Lucas(71) 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^11/Lucas(74) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^5/Lucas(71) 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^13/Lucas(76) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)^3/Lucas(71) 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^15/Lucas(78) 2100951949424901 a004 Fibonacci(78)*(1/2+sqrt(5)/2)/Lucas(71) 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^17/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(71)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^19/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(71)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^21/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(71)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^23/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(71)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^25/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(71)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^27/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(71)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^29/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(71)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^31/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(71)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^33/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(71)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(100)/Lucas(71)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^35/Lucas(98) 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^36/Lucas(99) 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^37/Lucas(100) 2100951949424901 a004 Fibonacci(98)/Lucas(71)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(99)/Lucas(71)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^34/Lucas(97) 2100951949424901 a004 Fibonacci(97)/Lucas(71)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^32/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(71)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^30/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(71)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^28/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(71)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^26/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(71)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^24/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(71)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^22/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(71)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^20/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(71)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^18/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(71)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^16/Lucas(79) 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^14/Lucas(77) 2100951949424901 a004 Fibonacci(77)*(1/2+sqrt(5)/2)^2/Lucas(71) 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^12/Lucas(75) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^4/Lucas(71) 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^10/Lucas(73) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^6/Lucas(71) 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^8/Lucas(71) 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^9/Lucas(70) 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^7/Lucas(69) 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^11/Lucas(72) 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^5/Lucas(69) 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^13/Lucas(74) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)^3/Lucas(69) 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^15/Lucas(76) 2100951949424901 a004 Fibonacci(76)*(1/2+sqrt(5)/2)/Lucas(69) 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^17/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(69)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^19/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(69)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^21/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(69)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^23/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(69)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^25/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(69)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^27/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(69)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^29/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(69)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^31/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(69)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^33/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(69)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^35/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(69)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(100)/Lucas(69)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^37/Lucas(98) 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^38/Lucas(99) 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^39/Lucas(100) 2100951949424901 a004 Fibonacci(98)/Lucas(69)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(99)/Lucas(69)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^36/Lucas(97) 2100951949424901 a004 Fibonacci(97)/Lucas(69)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^34/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(69)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^32/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(69)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^30/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(69)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^28/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(69)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^26/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(69)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^24/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(69)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^22/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(69)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^20/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(69)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^18/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(69)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^16/Lucas(77) 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^14/Lucas(75) 2100951949424901 a004 Fibonacci(75)*(1/2+sqrt(5)/2)^2/Lucas(69) 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^12/Lucas(73) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^4/Lucas(69) 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^10/Lucas(71) 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^6/Lucas(69) 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^8/Lucas(69) 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^9/Lucas(68) 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^7/Lucas(67) 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^11/Lucas(70) 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^5/Lucas(67) 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^13/Lucas(72) 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)^3/Lucas(67) 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^15/Lucas(74) 2100951949424901 a004 Fibonacci(74)*(1/2+sqrt(5)/2)/Lucas(67) 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^17/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(67)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^19/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(67)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^21/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(67)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^23/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(67)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^25/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(67)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^27/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(67)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^29/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(67)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^31/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(67)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^33/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(67)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^35/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(67)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^37/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(67)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(100)/Lucas(67)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^39/Lucas(98) 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^40/Lucas(99) 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^41/Lucas(100) 2100951949424901 a004 Fibonacci(67)*Lucas(1)/(1/2+sqrt(5)/2)^59 2100951949424901 a004 Fibonacci(98)/Lucas(67)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(99)/Lucas(67)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^38/Lucas(97) 2100951949424901 a004 Fibonacci(97)/Lucas(67)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^36/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(67)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^34/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(67)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^32/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(67)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^30/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(67)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^28/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(67)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^26/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(67)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^24/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(67)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^22/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(67)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^20/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(67)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^18/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(67)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^16/Lucas(75) 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^14/Lucas(73) 2100951949424901 a004 Fibonacci(73)*(1/2+sqrt(5)/2)^2/Lucas(67) 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^12/Lucas(71) 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^4/Lucas(67) 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^10/Lucas(69) 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^6/Lucas(67) 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^8/Lucas(67) 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^9/Lucas(66) 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^7/Lucas(65) 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^11/Lucas(68) 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^5/Lucas(65) 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^13/Lucas(70) 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)^3/Lucas(65) 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^15/Lucas(72) 2100951949424901 a004 Fibonacci(72)*(1/2+sqrt(5)/2)/Lucas(65) 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^17/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(65)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^19/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(65)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^21/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(65)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^23/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(65)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^25/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(65)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^27/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(65)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^29/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(65)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^31/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(65)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^33/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(65)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^35/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(65)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^37/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(65)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^39/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(65)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(100)/Lucas(65)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^41/Lucas(98) 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^42/Lucas(99) 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^43/Lucas(100) 2100951949424901 a004 Fibonacci(98)/Lucas(65)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(99)/Lucas(65)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^40/Lucas(97) 2100951949424901 a004 Fibonacci(97)/Lucas(65)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^38/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(65)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^36/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(65)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^34/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(65)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^32/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(65)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^30/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(65)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^28/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(65)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^26/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(65)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^24/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(65)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^22/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(65)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^20/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(65)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^18/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(65)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^16/Lucas(73) 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^14/Lucas(71) 2100951949424901 a004 Fibonacci(71)*(1/2+sqrt(5)/2)^2/Lucas(65) 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^12/Lucas(69) 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^4/Lucas(65) 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^10/Lucas(67) 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^6/Lucas(65) 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^8/Lucas(65) 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^9/Lucas(64) 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^7/Lucas(63) 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^11/Lucas(66) 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^5/Lucas(63) 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^13/Lucas(68) 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)^3/Lucas(63) 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^15/Lucas(70) 2100951949424901 a004 Fibonacci(70)*(1/2+sqrt(5)/2)/Lucas(63) 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^17/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(63)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^19/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(63)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^21/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(63)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^23/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(63)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^25/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(63)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^27/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(63)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^29/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(63)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^31/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(63)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^33/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(63)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^35/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(63)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^37/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(63)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^39/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(63)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^41/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(63)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(100)/Lucas(63)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^43/Lucas(98) 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^44/Lucas(99) 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^45/Lucas(100) 2100951949424901 a004 Fibonacci(63)*Lucas(1)/(1/2+sqrt(5)/2)^55 2100951949424901 a004 Fibonacci(98)/Lucas(63)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(99)/Lucas(63)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^42/Lucas(97) 2100951949424901 a004 Fibonacci(97)/Lucas(63)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^40/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(63)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^38/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(63)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^36/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(63)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^34/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(63)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^32/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(63)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^30/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(63)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^28/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(63)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^26/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(63)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^24/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(63)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^22/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(63)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^20/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(63)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^18/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(63)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^16/Lucas(71) 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^14/Lucas(69) 2100951949424901 a004 Fibonacci(69)*(1/2+sqrt(5)/2)^2/Lucas(63) 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^12/Lucas(67) 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^4/Lucas(63) 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^10/Lucas(65) 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^6/Lucas(63) 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^8/Lucas(63) 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^9/Lucas(62) 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^7/Lucas(61) 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^11/Lucas(64) 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^5/Lucas(61) 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^13/Lucas(66) 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)^3/Lucas(61) 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^15/Lucas(68) 2100951949424901 a004 Fibonacci(68)*(1/2+sqrt(5)/2)/Lucas(61) 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^17/Lucas(70) 2100951949424901 a004 Fibonacci(70)/Lucas(61)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^19/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(61)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^21/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(61)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^23/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(61)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^25/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(61)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^27/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(61)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^29/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(61)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^31/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(61)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^33/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(61)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^35/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(61)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^37/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(61)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^39/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(61)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^41/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(61)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^43/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(61)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(100)/Lucas(61)/(1/2+sqrt(5)/2)^31 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^45/Lucas(98) 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^46/Lucas(99) 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^47/Lucas(100) 2100951949424901 a004 Fibonacci(98)/Lucas(61)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(99)/Lucas(61)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^44/Lucas(97) 2100951949424901 a004 Fibonacci(97)/Lucas(61)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^42/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(61)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^40/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(61)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^38/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(61)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^36/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(61)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^34/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(61)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^32/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(61)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^30/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(61)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^28/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(61)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^26/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(61)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^24/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(61)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^22/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(61)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^20/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(61)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^18/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(61)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^16/Lucas(69) 2100951949424901 a006 5^(1/2)*Fibonacci(69)/Lucas(61)/sqrt(5) 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^14/Lucas(67) 2100951949424901 a004 Fibonacci(67)*(1/2+sqrt(5)/2)^2/Lucas(61) 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^12/Lucas(65) 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^4/Lucas(61) 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^10/Lucas(63) 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^6/Lucas(61) 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^8/Lucas(61) 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^9/Lucas(60) 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^7/Lucas(59) 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^11/Lucas(62) 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^5/Lucas(59) 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^13/Lucas(64) 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)^3/Lucas(59) 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^15/Lucas(66) 2100951949424901 a004 Fibonacci(66)*(1/2+sqrt(5)/2)/Lucas(59) 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^17/Lucas(68) 2100951949424901 a004 Fibonacci(68)/Lucas(59)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^19/Lucas(70) 2100951949424901 a004 Fibonacci(70)/Lucas(59)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^21/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(59)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^23/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(59)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^25/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(59)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^27/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(59)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^29/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(59)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^31/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(59)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^33/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(59)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^35/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(59)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^37/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(59)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^39/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(59)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^41/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(59)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^43/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(59)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^45/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(59)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(100)/Lucas(59)/(1/2+sqrt(5)/2)^33 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^47/Lucas(98) 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^48/Lucas(99) 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^49/Lucas(100) 2100951949424901 a004 Fibonacci(59)*Lucas(1)/(1/2+sqrt(5)/2)^51 2100951949424901 a004 Fibonacci(98)/Lucas(59)/(1/2+sqrt(5)/2)^31 2100951949424901 a004 Fibonacci(99)/Lucas(59)/(1/2+sqrt(5)/2)^32 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^46/Lucas(97) 2100951949424901 a004 Fibonacci(97)/Lucas(59)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^44/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(59)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^42/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(59)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^40/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(59)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^38/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(59)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^36/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(59)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^34/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(59)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^32/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(59)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^30/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(59)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^28/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(59)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^26/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(59)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^24/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(59)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^22/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(59)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^20/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(59)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^18/Lucas(69) 2100951949424901 a004 Fibonacci(69)/Lucas(59)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^16/Lucas(67) 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^14/Lucas(65) 2100951949424901 a004 Fibonacci(65)*(1/2+sqrt(5)/2)^2/Lucas(59) 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^12/Lucas(63) 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^4/Lucas(59) 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^10/Lucas(61) 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^6/Lucas(59) 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^8/Lucas(59) 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^9/Lucas(58) 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^7/Lucas(57) 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^11/Lucas(60) 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^5/Lucas(57) 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^13/Lucas(62) 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)^3/Lucas(57) 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^15/Lucas(64) 2100951949424901 a004 Fibonacci(64)*(1/2+sqrt(5)/2)/Lucas(57) 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^17/Lucas(66) 2100951949424901 a004 Fibonacci(66)/Lucas(57)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^19/Lucas(68) 2100951949424901 a004 Fibonacci(68)/Lucas(57)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^21/Lucas(70) 2100951949424901 a004 Fibonacci(70)/Lucas(57)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^23/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(57)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^25/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(57)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^27/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(57)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^29/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(57)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^31/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(57)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^33/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(57)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^35/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(57)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^37/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(57)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^39/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(57)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^41/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(57)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^43/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(57)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^45/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(57)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^47/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(57)/(1/2+sqrt(5)/2)^31 2100951949424901 a004 Fibonacci(100)/Lucas(57)/(1/2+sqrt(5)/2)^35 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^49/Lucas(98) 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^50/Lucas(99) 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^51/Lucas(100) 2100951949424901 a004 Fibonacci(98)/Lucas(57)/(1/2+sqrt(5)/2)^33 2100951949424901 a004 Fibonacci(99)/Lucas(57)/(1/2+sqrt(5)/2)^34 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^48/Lucas(97) 2100951949424901 a004 Fibonacci(97)/Lucas(57)/(1/2+sqrt(5)/2)^32 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^46/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(57)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^44/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(57)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^42/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(57)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^40/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(57)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^38/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(57)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^36/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(57)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^34/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(57)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^32/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(57)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^30/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(57)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^28/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(57)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^26/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(57)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^24/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(57)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^22/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(57)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^20/Lucas(69) 2100951949424901 a004 Fibonacci(69)/Lucas(57)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^18/Lucas(67) 2100951949424901 a004 Fibonacci(67)/Lucas(57)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^16/Lucas(65) 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^14/Lucas(63) 2100951949424901 a004 Fibonacci(63)*(1/2+sqrt(5)/2)^2/Lucas(57) 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^12/Lucas(61) 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^4/Lucas(57) 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^10/Lucas(59) 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^6/Lucas(57) 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^8/Lucas(57) 2100951949424901 a001 2/225851433717*(1/2+1/2*5^(1/2))^64 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^9/Lucas(56) 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^7/Lucas(55) 2100951949424901 a001 139583862445/1322157322203*312119004989^(1/5) 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^11/Lucas(58) 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^5/Lucas(55) 2100951949424901 a001 139583862445/2139295485799*817138163596^(4/19) 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^13/Lucas(60) 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)^3/Lucas(55) 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^15/Lucas(62) 2100951949424901 a004 Fibonacci(62)*(1/2+sqrt(5)/2)/Lucas(55) 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^17/Lucas(64) 2100951949424901 a004 Fibonacci(64)/Lucas(55)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^19/Lucas(66) 2100951949424901 a004 Fibonacci(66)/Lucas(55)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^21/Lucas(68) 2100951949424901 a004 Fibonacci(68)/Lucas(55)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^23/Lucas(70) 2100951949424901 a004 Fibonacci(70)/Lucas(55)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^25/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(55)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^27/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(55)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^29/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(55)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^31/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(55)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^33/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(55)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^35/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(55)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^37/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(55)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^39/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(55)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^41/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(55)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^43/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(55)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^45/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(55)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^47/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(55)/(1/2+sqrt(5)/2)^31 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^49/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(55)/(1/2+sqrt(5)/2)^33 2100951949424901 a004 Fibonacci(100)/Lucas(55)/(1/2+sqrt(5)/2)^37 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^51/Lucas(98) 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^52/Lucas(99) 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^53/Lucas(100) 2100951949424901 a004 Fibonacci(98)/Lucas(55)/(1/2+sqrt(5)/2)^35 2100951949424901 a004 Fibonacci(99)/Lucas(55)/(1/2+sqrt(5)/2)^36 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^50/Lucas(97) 2100951949424901 a004 Fibonacci(97)/Lucas(55)/(1/2+sqrt(5)/2)^34 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^48/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(55)/(1/2+sqrt(5)/2)^32 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^46/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(55)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^44/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(55)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^42/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(55)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^40/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(55)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^38/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(55)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^36/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(55)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^34/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(55)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^32/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(55)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^30/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(55)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^28/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(55)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^26/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(55)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^24/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(55)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^22/Lucas(69) 2100951949424901 a004 Fibonacci(69)/Lucas(55)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^20/Lucas(67) 2100951949424901 a004 Fibonacci(67)/Lucas(55)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^18/Lucas(65) 2100951949424901 a004 Fibonacci(65)/Lucas(55)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^16/Lucas(63) 2100951949424901 a006 5^(1/2)*Fibonacci(63)/Lucas(55)/sqrt(5) 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^14/Lucas(61) 2100951949424901 a004 Fibonacci(61)*(1/2+sqrt(5)/2)^2/Lucas(55) 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^12/Lucas(59) 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^4/Lucas(55) 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^10/Lucas(57) 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^6/Lucas(55) 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^8/Lucas(55) 2100951949424901 a001 139583862445/312119004989*23725150497407^(1/8) 2100951949424901 a001 139583862445/312119004989*505019158607^(1/7) 2100951949424901 a001 1/43133785636*(1/2+1/2*5^(1/2))^62 2100951949424901 a001 182717648081/408569081798*73681302247^(2/13) 2100951949424901 a001 10983760033/64300051206*28143753123^(1/5) 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^9/Lucas(54) 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^7/Lucas(53) 2100951949424901 a001 365435296162/9062201101803*73681302247^(1/4) 2100951949424901 a001 139583862445/2139295485799*73681302247^(3/13) 2100951949424901 a001 139583862445/3461452808002*73681302247^(1/4) 2100951949424901 a004 Fibonacci(53)*Lucas(55)/(1/2+sqrt(5)/2)^100 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^11/Lucas(56) 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^5/Lucas(53) 2100951949424901 a001 139583862445/14662949395604*73681302247^(4/13) 2100951949424901 a001 53316291173/3461452808002*312119004989^(3/11) 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^13/Lucas(58) 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)^3/Lucas(53) 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^15/Lucas(60) 2100951949424901 a004 Fibonacci(60)*(1/2+sqrt(5)/2)/Lucas(53) 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^17/Lucas(62) 2100951949424901 a004 Fibonacci(62)/Lucas(53)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^19/Lucas(64) 2100951949424901 a004 Fibonacci(64)/Lucas(53)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^21/Lucas(66) 2100951949424901 a004 Fibonacci(66)/Lucas(53)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^23/Lucas(68) 2100951949424901 a004 Fibonacci(68)/Lucas(53)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^25/Lucas(70) 2100951949424901 a004 Fibonacci(70)/Lucas(53)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^27/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(53)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^29/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(53)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^31/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(53)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^33/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(53)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^35/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(53)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^37/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(53)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^39/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(53)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^41/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(53)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^43/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(53)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^45/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(53)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^47/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(53)/(1/2+sqrt(5)/2)^31 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^49/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(53)/(1/2+sqrt(5)/2)^33 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^51/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(53)/(1/2+sqrt(5)/2)^35 2100951949424901 a004 Fibonacci(100)/Lucas(53)/(1/2+sqrt(5)/2)^39 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^53/Lucas(98) 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^54/Lucas(99) 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^55/Lucas(100) 2100951949424901 a004 Fibonacci(98)/Lucas(53)/(1/2+sqrt(5)/2)^37 2100951949424901 a004 Fibonacci(99)/Lucas(53)/(1/2+sqrt(5)/2)^38 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^52/Lucas(97) 2100951949424901 a004 Fibonacci(97)/Lucas(53)/(1/2+sqrt(5)/2)^36 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^50/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(53)/(1/2+sqrt(5)/2)^34 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^48/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(53)/(1/2+sqrt(5)/2)^32 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^46/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(53)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^44/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(53)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^42/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(53)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^40/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(53)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^38/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(53)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^36/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(53)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^34/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(53)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^32/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(53)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^30/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(53)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^28/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(53)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^26/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(53)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^24/Lucas(69) 2100951949424901 a004 Fibonacci(69)/Lucas(53)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^22/Lucas(67) 2100951949424901 a004 Fibonacci(67)/Lucas(53)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^20/Lucas(65) 2100951949424901 a004 Fibonacci(65)/Lucas(53)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^18/Lucas(63) 2100951949424901 a004 Fibonacci(63)/Lucas(53)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^16/Lucas(61) 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^14/Lucas(59) 2100951949424901 a004 Fibonacci(59)*(1/2+sqrt(5)/2)^2/Lucas(53) 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^12/Lucas(57) 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^4/Lucas(53) 2100951949424901 a001 53316291173/3461452808002*192900153618^(5/18) 2100951949424901 a001 53316291173/14662949395604*192900153618^(1/3) 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^10/Lucas(55) 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^6/Lucas(53) 2100951949424901 a004 Fibonacci(53)*Lucas(54)/(1/2+sqrt(5)/2)^99 2100951949424901 a001 182717648081/96450076809*28143753123^(1/10) 2100951949424901 a001 53316291173/817138163596*73681302247^(3/13) 2100951949424901 a001 53316291173/1322157322203*73681302247^(1/4) 2100951949424901 a001 53316291173/5600748293801*73681302247^(4/13) 2100951949424901 a001 591286729879/312119004989*28143753123^(1/10) 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^8/Lucas(53) 2100951949424901 a001 53316291173/119218851371*23725150497407^(1/8) 2100951949424901 a004 Fibonacci(54)*Lucas(52)/(1/2+sqrt(5)/2)^98 2100951949424901 a001 53316291173/119218851371*73681302247^(2/13) 2100951949424901 a001 591286729879/73681302247*10749957122^(1/24) 2100951949424901 a004 Fibonacci(56)*Lucas(52)/(1/2+sqrt(5)/2)^100 2100951949424901 a001 2/32951280099*(1/2+1/2*5^(1/2))^60 2100951949424901 a001 225851433717/119218851371*28143753123^(1/10) 2100951949424901 a004 Fibonacci(55)*Lucas(52)/(1/2+sqrt(5)/2)^99 2100951949424901 a001 32951280099/2139295485799*28143753123^(3/10) 2100951949424901 a001 20365011074/73681302247*45537549124^(3/17) 2100951949424901 a001 86267571272/505019158607*28143753123^(1/5) 2100951949424901 a001 75283811239/440719107401*28143753123^(1/5) 2100951949424901 a001 2504730781961/14662949395604*28143753123^(1/5) 2100951949424901 a004 Fibonacci(53)*Lucas(52)/(1/2+sqrt(5)/2)^97 2100951949424901 a001 139583862445/817138163596*28143753123^(1/5) 2100951949424901 a001 20365011074/23725150497407*45537549124^(7/17) 2100951949424901 a001 20365011074/73681302247*14662949395604^(1/7) 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^9/Lucas(52) 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^7/Lucas(51) 2100951949424901 a001 20365011074/73681302247*192900153618^(1/6) 2100951949424901 a001 20365011074/5600748293801*45537549124^(6/17) 2100951949424901 a001 32951280099/23725150497407*28143753123^(2/5) 2100951949424901 a001 10182505537/1730726404001*45537549124^(1/3) 2100951949424901 a001 53316291173/312119004989*28143753123^(1/5) 2100951949424901 a001 20365011074/1322157322203*45537549124^(5/17) 2100951949424901 a001 86267571272/5600748293801*28143753123^(3/10) 2100951949424901 a001 12586269025/73681302247*10749957122^(5/24) 2100951949424901 a001 3278735159921/408569081798*10749957122^(1/24) 2100951949424901 a001 2504730781961/312119004989*10749957122^(1/24) 2100951949424901 a001 20365011074/312119004989*45537549124^(4/17) 2100951949424901 a001 139583862445/9062201101803*28143753123^(3/10) 2100951949424901 a004 Fibonacci(51)*Lucas(53)/(1/2+sqrt(5)/2)^96 2100951949424901 a001 956722026041/119218851371*10749957122^(1/24) 2100951949424901 a001 53316291173/3461452808002*28143753123^(3/10) 2100951949424901 a001 225851433717/45537549124*45537549124^(1/17) 2100951949424901 a001 10182505537/96450076809*312119004989^(1/5) 2100951949424901 a001 21566892818/11384387281*312119004989^(1/11) 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^11/Lucas(54) 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^5/Lucas(51) 2100951949424901 a004 Fibonacci(51)*Lucas(55)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^13/Lucas(56) 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)^3/Lucas(51) 2100951949424901 a001 20365011074/1322157322203*312119004989^(3/11) 2100951949424901 a004 Fibonacci(51)*Lucas(57)/(1/2+sqrt(5)/2)^100 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^15/Lucas(58) 2100951949424901 a004 Fibonacci(58)*(1/2+sqrt(5)/2)/Lucas(51) 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^17/Lucas(60) 2100951949424901 a004 Fibonacci(60)/Lucas(51)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^19/Lucas(62) 2100951949424901 a004 Fibonacci(62)/Lucas(51)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^21/Lucas(64) 2100951949424901 a004 Fibonacci(64)/Lucas(51)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^23/Lucas(66) 2100951949424901 a004 Fibonacci(66)/Lucas(51)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^25/Lucas(68) 2100951949424901 a004 Fibonacci(68)/Lucas(51)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^27/Lucas(70) 2100951949424901 a004 Fibonacci(70)/Lucas(51)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^29/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(51)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^31/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(51)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^33/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(51)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^35/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(51)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^37/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(51)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^39/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(51)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^41/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(51)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^43/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(51)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^45/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(51)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^47/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(51)/(1/2+sqrt(5)/2)^31 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^49/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(51)/(1/2+sqrt(5)/2)^33 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^51/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(51)/(1/2+sqrt(5)/2)^35 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^53/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(51)/(1/2+sqrt(5)/2)^37 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^55/Lucas(98) 2100951949424901 a004 Fibonacci(98)/Lucas(51)/(1/2+sqrt(5)/2)^39 2100951949424901 a004 Fibonacci(100)/Lucas(51)/(1/2+sqrt(5)/2)^41 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^54/Lucas(97) 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^56/Lucas(99) 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^57/Lucas(100) 2100951949424901 a004 Fibonacci(97)/Lucas(51)/(1/2+sqrt(5)/2)^38 2100951949424901 a004 Fibonacci(99)/Lucas(51)/(1/2+sqrt(5)/2)^40 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^52/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(51)/(1/2+sqrt(5)/2)^36 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^50/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(51)/(1/2+sqrt(5)/2)^34 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^48/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(51)/(1/2+sqrt(5)/2)^32 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^46/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(51)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^44/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(51)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^42/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(51)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^40/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(51)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^38/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(51)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^36/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(51)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^34/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(51)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^32/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(51)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^30/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(51)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^28/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(51)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^26/Lucas(69) 2100951949424901 a004 Fibonacci(69)/Lucas(51)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^24/Lucas(67) 2100951949424901 a004 Fibonacci(67)/Lucas(51)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^22/Lucas(65) 2100951949424901 a004 Fibonacci(65)/Lucas(51)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^20/Lucas(63) 2100951949424901 a004 Fibonacci(63)/Lucas(51)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^18/Lucas(61) 2100951949424901 a004 Fibonacci(61)/Lucas(51)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^16/Lucas(59) 2100951949424901 a006 5^(1/2)*Fibonacci(59)/Lucas(51)/sqrt(5) 2100951949424901 a001 10182505537/408569081798*14662949395604^(2/9) 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^14/Lucas(57) 2100951949424901 a004 Fibonacci(57)*(1/2+sqrt(5)/2)^2/Lucas(51) 2100951949424901 a004 Fibonacci(51)*Lucas(56)/(1/2+sqrt(5)/2)^99 2100951949424901 a001 20365011074/1322157322203*192900153618^(5/18) 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^12/Lucas(55) 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^4/Lucas(51) 2100951949424901 a001 139583862445/45537549124*23725150497407^(1/16) 2100951949424901 a001 20365011074/312119004989*192900153618^(2/9) 2100951949424901 a001 139583862445/45537549124*73681302247^(1/13) 2100951949424901 a004 Fibonacci(51)*Lucas(54)/(1/2+sqrt(5)/2)^97 2100951949424901 a001 956722026041/192900153618*10749957122^(1/16) 2100951949424901 a001 20365011074/505019158607*73681302247^(1/4) 2100951949424901 a001 20365011074/312119004989*73681302247^(3/13) 2100951949424901 a001 20365011074/2139295485799*73681302247^(4/13) 2100951949424901 a001 20365011074/119218851371*312119004989^(2/11) 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^10/Lucas(53) 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^6/Lucas(51) 2100951949424901 a001 10182505537/7331474697802*73681302247^(5/13) 2100951949424901 a001 21566892818/11384387281*28143753123^(1/10) 2100951949424901 a001 591286729879/119218851371*10749957122^(1/16) 2100951949424901 a004 Fibonacci(51)*Lucas(52)/(1/2+sqrt(5)/2)^95 2100951949424901 a001 591286729879/192900153618*10749957122^(1/12) 2100951949424901 a001 1515744265389/494493258286*10749957122^(1/12) 2100951949424901 a001 2504730781961/817138163596*10749957122^(1/12) 2100951949424901 a001 956722026041/312119004989*10749957122^(1/12) 2100951949424901 a001 365435296162/119218851371*10749957122^(1/12) 2100951949424901 a001 20365011074/119218851371*28143753123^(1/5) 2100951949424901 a001 12586269025/45537549124*10749957122^(3/16) 2100951949424901 a001 20365011074/1322157322203*28143753123^(3/10) 2100951949424901 a001 86267571272/73681302247*10749957122^(1/8) 2100951949424901 a001 12586269025/192900153618*10749957122^(1/4) 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^8/Lucas(51) 2100951949424901 a001 10182505537/22768774562*23725150497407^(1/8) 2100951949424901 a001 10182505537/7331474697802*28143753123^(2/5) 2100951949424901 a001 10182505537/22768774562*73681302247^(2/13) 2100951949424901 a001 225851433717/45537549124*10749957122^(1/16) 2100951949424901 a001 75283811239/64300051206*10749957122^(1/8) 2100951949424901 a001 32951280099/73681302247*10749957122^(1/6) 2100951949424901 a004 Fibonacci(52)*Lucas(50)/(1/2+sqrt(5)/2)^94 2100951949424901 a001 2504730781961/2139295485799*10749957122^(1/8) 2100951949424901 a001 365435296162/312119004989*10749957122^(1/8) 2100951949424901 a001 139583862445/119218851371*10749957122^(1/8) 2100951949424901 a001 139583862445/45537549124*10749957122^(1/12) 2100951949424901 a004 Fibonacci(54)*Lucas(50)/(1/2+sqrt(5)/2)^96 2100951949424901 a001 12586269025/505019158607*10749957122^(7/24) 2100951949424901 a004 Fibonacci(56)*Lucas(50)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(58)*Lucas(50)/(1/2+sqrt(5)/2)^100 2100951949424901 a001 2/12586269025*(1/2+1/2*5^(1/2))^58 2100951949424901 a004 Fibonacci(57)*Lucas(50)/(1/2+sqrt(5)/2)^99 2100951949424901 a004 Fibonacci(55)*Lucas(50)/(1/2+sqrt(5)/2)^97 2100951949424901 a001 75283811239/9381251041*4106118243^(1/23) 2100951949424901 a004 Fibonacci(53)*Lucas(50)/(1/2+sqrt(5)/2)^95 2100951949424901 a001 43133785636/96450076809*10749957122^(1/6) 2100951949424901 a001 225851433717/505019158607*10749957122^(1/6) 2100951949424901 a001 182717648081/408569081798*10749957122^(1/6) 2100951949424901 a001 139583862445/312119004989*10749957122^(1/6) 2100951949424901 a001 32951280099/119218851371*10749957122^(3/16) 2100951949424901 a001 12586269025/17393796001*17393796001^(1/7) 2100951949424901 a001 53316291173/119218851371*10749957122^(1/6) 2100951949424901 a001 10983760033/64300051206*10749957122^(5/24) 2100951949424901 a001 86267571272/312119004989*10749957122^(3/16) 2100951949424901 a001 12586269025/1322157322203*10749957122^(1/3) 2100951949424901 a001 139583862445/505019158607*10749957122^(3/16) 2100951949424901 a001 53316291173/45537549124*10749957122^(1/8) 2100951949424901 a001 53316291173/192900153618*10749957122^(3/16) 2100951949424901 a004 Fibonacci(51)*Lucas(50)/(1/2+sqrt(5)/2)^93 2100951949424901 a001 86267571272/505019158607*10749957122^(5/24) 2100951949424901 a001 75283811239/440719107401*10749957122^(5/24) 2100951949424901 a001 139583862445/817138163596*10749957122^(5/24) 2100951949424901 a001 53316291173/312119004989*10749957122^(5/24) 2100951949424901 a001 7778742049/9062201101803*17393796001^(3/7) 2100951949424901 a001 20365011074/73681302247*10749957122^(3/16) 2100951949424901 a001 7778742049/28143753123*45537549124^(3/17) 2100951949424901 a001 32951280099/505019158607*10749957122^(1/4) 2100951949424901 a001 12586269025/3461452808002*10749957122^(3/8) 2100951949424901 a001 12586269025/17393796001*14662949395604^(1/9) 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^9/Lucas(50) 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^7/Lucas(49) 2100951949424901 a001 7778742049/28143753123*192900153618^(1/6) 2100951949424901 a001 86267571272/1322157322203*10749957122^(1/4) 2100951949424901 a001 32264490531/494493258286*10749957122^(1/4) 2100951949424901 a001 1548008755920/23725150497407*10749957122^(1/4) 2100951949424901 a001 139583862445/2139295485799*10749957122^(1/4) 2100951949424901 a001 53316291173/817138163596*10749957122^(1/4) 2100951949424901 a001 10983760033/440719107401*10749957122^(7/24) 2100951949424901 a001 12586269025/9062201101803*10749957122^(5/12) 2100951949424901 a001 20365011074/119218851371*10749957122^(5/24) 2100951949424901 a001 7778742049/312119004989*17393796001^(2/7) 2100951949424901 a001 591286729879/73681302247*4106118243^(1/23) 2100951949424901 a001 10182505537/22768774562*10749957122^(1/6) 2100951949424901 a001 43133785636/1730726404001*10749957122^(7/24) 2100951949424901 a001 12586269025/14662949395604*10749957122^(7/16) 2100951949424901 a001 139583862445/5600748293801*10749957122^(7/24) 2100951949424901 a001 86000486440/10716675201*4106118243^(1/23) 2100951949424901 a001 4052739537881/505019158607*4106118243^(1/23) 2100951949424901 a001 3278735159921/408569081798*4106118243^(1/23) 2100951949424901 a001 2504730781961/312119004989*4106118243^(1/23) 2100951949424901 a001 53316291173/2139295485799*10749957122^(7/24) 2100951949424901 a001 956722026041/119218851371*4106118243^(1/23) 2100951949424901 a001 20365011074/312119004989*10749957122^(1/4) 2100951949424901 a001 86267571272/5600748293801*10749957122^(5/16) 2100951949424901 a001 32951280099/3461452808002*10749957122^(1/3) 2100951949424901 a001 12586269025/23725150497407*10749957122^(11/24) 2100951949424901 a001 365435296162/23725150497407*10749957122^(5/16) 2100951949424901 a001 139583862445/9062201101803*10749957122^(5/16) 2100951949424901 a001 53316291173/3461452808002*10749957122^(5/16) 2100951949424901 a004 Fibonacci(49)*Lucas(51)/(1/2+sqrt(5)/2)^92 2100951949424901 a001 86267571272/9062201101803*10749957122^(1/3) 2100951949424901 a001 225851433717/23725150497407*10749957122^(1/3) 2100951949424901 a001 139583862445/14662949395604*10749957122^(1/3) 2100951949424901 a001 53316291173/5600748293801*10749957122^(1/3) 2100951949424901 a001 1602508992/9381251041*4106118243^(5/23) 2100951949424901 a001 10182505537/408569081798*10749957122^(7/24) 2100951949424901 a001 10983760033/3020733700601*10749957122^(3/8) 2100951949424901 a001 182717648081/22768774562*4106118243^(1/23) 2100951949424901 a001 7778742049/9062201101803*45537549124^(7/17) 2100951949424901 a001 7778742049/73681302247*312119004989^(1/5) 2100951949424901 a001 32951280099/17393796001*312119004989^(1/11) 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^11/Lucas(52) 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^5/Lucas(49) 2100951949424901 a001 7778742049/2139295485799*45537549124^(6/17) 2100951949424901 a001 7778742049/1322157322203*45537549124^(1/3) 2100951949424901 a001 7778742049/505019158607*45537549124^(5/17) 2100951949424901 a001 20365011074/1322157322203*10749957122^(5/16) 2100951949424901 a001 86267571272/23725150497407*10749957122^(3/8) 2100951949424901 a004 Fibonacci(49)*Lucas(53)/(1/2+sqrt(5)/2)^94 2100951949424901 a001 32951280099/17393796001*28143753123^(1/10) 2100951949424901 a001 86267571272/17393796001*45537549124^(1/17) 2100951949424901 a001 7778742049/119218851371*45537549124^(4/17) 2100951949424901 a001 86267571272/17393796001*14662949395604^(1/21) 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^13/Lucas(54) 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)^3/Lucas(49) 2100951949424901 a004 Fibonacci(49)*Lucas(55)/(1/2+sqrt(5)/2)^96 2100951949424901 a001 7778742049/505019158607*312119004989^(3/11) 2100951949424901 a001 7778742049/14662949395604*312119004989^(2/5) 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^15/Lucas(56) 2100951949424901 a004 Fibonacci(56)*(1/2+sqrt(5)/2)/Lucas(49) 2100951949424901 a004 Fibonacci(49)*Lucas(57)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^17/Lucas(58) 2100951949424901 a004 Fibonacci(58)/Lucas(49)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(49)*Lucas(59)/(1/2+sqrt(5)/2)^100 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^19/Lucas(60) 2100951949424901 a004 Fibonacci(60)/Lucas(49)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^21/Lucas(62) 2100951949424901 a004 Fibonacci(62)/Lucas(49)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^23/Lucas(64) 2100951949424901 a004 Fibonacci(64)/Lucas(49)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^25/Lucas(66) 2100951949424901 a004 Fibonacci(66)/Lucas(49)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^27/Lucas(68) 2100951949424901 a004 Fibonacci(68)/Lucas(49)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^29/Lucas(70) 2100951949424901 a004 Fibonacci(70)/Lucas(49)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^31/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(49)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^33/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(49)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^35/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(49)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^37/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(49)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^39/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(49)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^41/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(49)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^43/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(49)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^45/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(49)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^47/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(49)/(1/2+sqrt(5)/2)^31 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^49/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(49)/(1/2+sqrt(5)/2)^33 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^51/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(49)/(1/2+sqrt(5)/2)^35 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^53/Lucas(94) 2100951949424901 a004 Fibonacci(94)/Lucas(49)/(1/2+sqrt(5)/2)^37 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^55/Lucas(96) 2100951949424901 a004 Fibonacci(96)/Lucas(49)/(1/2+sqrt(5)/2)^39 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^57/Lucas(98) 2100951949424901 a004 Fibonacci(100)/Lucas(49)/(1/2+sqrt(5)/2)^43 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^56/Lucas(97) 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^58/Lucas(99) 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^59/Lucas(100) 2100951949424901 a004 Fibonacci(49)*Lucas(1)/(1/2+sqrt(5)/2)^41 2100951949424901 a004 Fibonacci(99)/Lucas(49)/(1/2+sqrt(5)/2)^42 2100951949424901 a004 Fibonacci(97)/Lucas(49)/(1/2+sqrt(5)/2)^40 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^54/Lucas(95) 2100951949424901 a004 Fibonacci(95)/Lucas(49)/(1/2+sqrt(5)/2)^38 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^52/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(49)/(1/2+sqrt(5)/2)^36 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^50/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(49)/(1/2+sqrt(5)/2)^34 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^48/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(49)/(1/2+sqrt(5)/2)^32 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^46/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(49)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^44/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(49)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^42/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(49)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^40/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(49)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^38/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(49)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^36/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(49)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^34/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(49)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^32/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(49)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^30/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(49)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^28/Lucas(69) 2100951949424901 a004 Fibonacci(69)/Lucas(49)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^26/Lucas(67) 2100951949424901 a004 Fibonacci(67)/Lucas(49)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^24/Lucas(65) 2100951949424901 a004 Fibonacci(65)/Lucas(49)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^22/Lucas(63) 2100951949424901 a004 Fibonacci(63)/Lucas(49)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^20/Lucas(61) 2100951949424901 a004 Fibonacci(61)/Lucas(49)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^18/Lucas(59) 2100951949424901 a004 Fibonacci(59)/Lucas(49)/(1/2+sqrt(5)/2)^2 2100951949424901 a004 Fibonacci(49)*Lucas(58)/(1/2+sqrt(5)/2)^99 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^16/Lucas(57) 2100951949424901 a001 7778742049/505019158607*192900153618^(5/18) 2100951949424901 a004 Fibonacci(49)*Lucas(56)/(1/2+sqrt(5)/2)^97 2100951949424901 a001 7778742049/2139295485799*192900153618^(1/3) 2100951949424901 a001 53316291173/14662949395604*10749957122^(3/8) 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^14/Lucas(55) 2100951949424901 a004 Fibonacci(55)*(1/2+sqrt(5)/2)^2/Lucas(49) 2100951949424901 a001 7778742049/192900153618*73681302247^(1/4) 2100951949424901 a004 Fibonacci(49)*Lucas(54)/(1/2+sqrt(5)/2)^95 2100951949424901 a001 20365011074/2139295485799*10749957122^(1/3) 2100951949424901 a001 7778742049/119218851371*14662949395604^(4/21) 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^12/Lucas(53) 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^4/Lucas(49) 2100951949424901 a001 53316291173/17393796001*23725150497407^(1/16) 2100951949424901 a001 53316291173/17393796001*73681302247^(1/13) 2100951949424901 a001 7778742049/119218851371*73681302247^(3/13) 2100951949424901 a001 32951280099/23725150497407*10749957122^(5/12) 2100951949424901 a004 Fibonacci(49)*Lucas(52)/(1/2+sqrt(5)/2)^93 2100951949424901 a001 7778742049/28143753123*10749957122^(3/16) 2100951949424901 a001 139583862445/17393796001*10749957122^(1/24) 2100951949424901 a001 20365011074/5600748293801*10749957122^(3/8) 2100951949424901 a001 20365011074/17393796001*45537549124^(2/17) 2100951949424901 a001 7778742049/45537549124*312119004989^(2/11) 2100951949424901 a001 20365011074/17393796001*14662949395604^(2/21) 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^10/Lucas(51) 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^6/Lucas(49) 2100951949424901 a001 7778742049/5600748293801*28143753123^(2/5) 2100951949424901 a001 86267571272/17393796001*10749957122^(1/16) 2100951949424901 a001 86267571272/28143753123*4106118243^(2/23) 2100951949424901 a001 7778742049/45537549124*28143753123^(1/5) 2100951949424901 a001 10182505537/7331474697802*10749957122^(5/12) 2100951949424901 a001 53316291173/17393796001*10749957122^(1/12) 2100951949424901 a001 12586269025/6643838879*2537720636^(1/9) 2100951949424901 a001 20365011074/23725150497407*10749957122^(7/16) 2100951949424901 a004 Fibonacci(49)*Lucas(50)/(1/2+sqrt(5)/2)^91 2100951949424901 a001 20365011074/17393796001*10749957122^(1/8) 2100951949424901 a001 32264490531/10525900321*4106118243^(2/23) 2100951949424901 a001 591286729879/192900153618*4106118243^(2/23) 2100951949424901 a001 1548008755920/505019158607*4106118243^(2/23) 2100951949424901 a001 1515744265389/494493258286*4106118243^(2/23) 2100951949424901 a001 956722026041/312119004989*4106118243^(2/23) 2100951949424901 a001 365435296162/119218851371*4106118243^(2/23) 2100951949424901 a001 7778742049/6643838879*2537720636^(2/15) 2100951949424901 a001 7778742049/119218851371*10749957122^(1/4) 2100951949424901 a001 7778742049/45537549124*10749957122^(5/24) 2100951949424901 a001 139583862445/45537549124*4106118243^(2/23) 2100951949424901 a001 7778742049/312119004989*10749957122^(7/24) 2100951949424901 a001 139583862445/17393796001*4106118243^(1/23) 2100951949424901 a001 7778742049/505019158607*10749957122^(5/16) 2100951949424901 a001 7778742049/817138163596*10749957122^(1/3) 2100951949424901 a001 10983760033/9381251041*4106118243^(3/23) 2100951949424901 a001 7778742049/2139295485799*10749957122^(3/8) 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^8/Lucas(49) 2100951949424901 a001 7778742049/17393796001*23725150497407^(1/8) 2100951949424901 a001 686789568/10525900321*4106118243^(6/23) 2100951949424901 a001 7778742049/17393796001*73681302247^(2/13) 2100951949424901 a001 7778742049/5600748293801*10749957122^(5/12) 2100951949424901 a001 7778742049/9062201101803*10749957122^(7/16) 2100951949424901 a001 7778742049/14662949395604*10749957122^(11/24) 2100951949424901 a004 Fibonacci(50)*Lucas(48)/(1/2+sqrt(5)/2)^90 2100951949424901 a001 86267571272/73681302247*4106118243^(3/23) 2100951949424901 a001 75283811239/64300051206*4106118243^(3/23) 2100951949424901 a001 2504730781961/2139295485799*4106118243^(3/23) 2100951949424901 a001 365435296162/312119004989*4106118243^(3/23) 2100951949424901 a001 12586269025/28143753123*4106118243^(4/23) 2100951949424901 a001 139583862445/119218851371*4106118243^(3/23) 2100951949424901 a001 7778742049/17393796001*10749957122^(1/6) 2100951949424901 a001 53316291173/45537549124*4106118243^(3/23) 2100951949424901 a004 Fibonacci(52)*Lucas(48)/(1/2+sqrt(5)/2)^92 2100951949424901 a001 53316291173/17393796001*4106118243^(2/23) 2100951949424901 a004 Fibonacci(54)*Lucas(48)/(1/2+sqrt(5)/2)^94 2100951949424901 a004 Fibonacci(56)*Lucas(48)/(1/2+sqrt(5)/2)^96 2100951949424901 a004 Fibonacci(58)*Lucas(48)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(60)*Lucas(48)/(1/2+sqrt(5)/2)^100 2100951949424901 a001 1/2403763488*(1/2+1/2*5^(1/2))^56 2100951949424901 a004 Fibonacci(59)*Lucas(48)/(1/2+sqrt(5)/2)^99 2100951949424901 a004 Fibonacci(57)*Lucas(48)/(1/2+sqrt(5)/2)^97 2100951949424901 a004 Fibonacci(55)*Lucas(48)/(1/2+sqrt(5)/2)^95 2100951949424901 a004 Fibonacci(53)*Lucas(48)/(1/2+sqrt(5)/2)^93 2100951949424901 a004 Fibonacci(51)*Lucas(48)/(1/2+sqrt(5)/2)^91 2100951949424901 a001 267084832/10716675201*4106118243^(7/23) 2100951949424901 a001 43133785636/5374978561*1568397607^(1/22) 2100951949424901 a001 32951280099/73681302247*4106118243^(4/23) 2100951949424901 a001 43133785636/96450076809*4106118243^(4/23) 2100951949424901 a001 225851433717/505019158607*4106118243^(4/23) 2100951949424901 a001 182717648081/408569081798*4106118243^(4/23) 2100951949424901 a001 139583862445/312119004989*4106118243^(4/23) 2100951949424901 a001 53316291173/119218851371*4106118243^(4/23) 2100951949424901 a001 10182505537/22768774562*4106118243^(4/23) 2100951949424901 a001 12586269025/73681302247*4106118243^(5/23) 2100951949424901 a001 20365011074/17393796001*4106118243^(3/23) 2100951949424901 a004 Fibonacci(49)*Lucas(48)/(1/2+sqrt(5)/2)^89 2100951949424901 a001 102287808/10745088481*4106118243^(8/23) 2100951949424901 a001 32951280099/6643838879*2537720636^(1/15) 2100951949424901 a001 10983760033/64300051206*4106118243^(5/23) 2100951949424901 a001 86267571272/505019158607*4106118243^(5/23) 2100951949424901 a001 75283811239/440719107401*4106118243^(5/23) 2100951949424901 a001 2504730781961/14662949395604*4106118243^(5/23) 2100951949424901 a001 139583862445/817138163596*4106118243^(5/23) 2100951949424901 a001 53316291173/312119004989*4106118243^(5/23) 2100951949424901 a001 20365011074/119218851371*4106118243^(5/23) 2100951949424901 a001 4807526976/6643838879*17393796001^(1/7) 2100951949424901 a001 2971215073/10749957122*45537549124^(3/17) 2100951949424901 a001 2971215073/10749957122*14662949395604^(1/7) 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^9/Lucas(48) 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^7/Lucas(47) 2100951949424901 a001 2971215073/10749957122*192900153618^(1/6) 2100951949424901 a001 12586269025/192900153618*4106118243^(6/23) 2100951949424901 a001 1602508992/440719107401*4106118243^(9/23) 2100951949424901 a001 32951280099/505019158607*4106118243^(6/23) 2100951949424901 a001 86267571272/1322157322203*4106118243^(6/23) 2100951949424901 a001 32264490531/494493258286*4106118243^(6/23) 2100951949424901 a001 1548008755920/23725150497407*4106118243^(6/23) 2100951949424901 a001 365435296162/5600748293801*4106118243^(6/23) 2100951949424901 a001 139583862445/2139295485799*4106118243^(6/23) 2100951949424901 a001 53316291173/817138163596*4106118243^(6/23) 2100951949424901 a001 2971215073/10749957122*10749957122^(3/16) 2100951949424901 a001 20365011074/312119004989*4106118243^(6/23) 2100951949424901 a001 7778742049/45537549124*4106118243^(5/23) 2100951949424901 a001 12586269025/505019158607*4106118243^(7/23) 2100951949424901 a001 7778742049/17393796001*4106118243^(4/23) 2100951949424901 a001 14930208/10749853441*4106118243^(10/23) 2100951949424901 a001 75283811239/9381251041*1568397607^(1/22) 2100951949424901 a001 10983760033/440719107401*4106118243^(7/23) 2100951949424901 a001 43133785636/1730726404001*4106118243^(7/23) 2100951949424901 a001 75283811239/3020733700601*4106118243^(7/23) 2100951949424901 a001 182717648081/7331474697802*4106118243^(7/23) 2100951949424901 a001 139583862445/5600748293801*4106118243^(7/23) 2100951949424901 a001 53316291173/2139295485799*4106118243^(7/23) 2100951949424901 a001 591286729879/73681302247*1568397607^(1/22) 2100951949424901 a001 86000486440/10716675201*1568397607^(1/22) 2100951949424901 a001 4052739537881/505019158607*1568397607^(1/22) 2100951949424901 a001 3278735159921/408569081798*1568397607^(1/22) 2100951949424901 a001 2504730781961/312119004989*1568397607^(1/22) 2100951949424901 a001 10182505537/408569081798*4106118243^(7/23) 2100951949424901 a001 956722026041/119218851371*1568397607^(1/22) 2100951949424901 a001 7778742049/119218851371*4106118243^(6/23) 2100951949424901 a001 182717648081/22768774562*1568397607^(1/22) 2100951949424901 a004 Fibonacci(47)*Lucas(49)/(1/2+sqrt(5)/2)^88 2100951949424901 a001 12586269025/1322157322203*4106118243^(8/23) 2100951949424901 a001 1602508992/3020733700601*4106118243^(11/23) 2100951949424901 a001 32951280099/3461452808002*4106118243^(8/23) 2100951949424901 a001 86267571272/9062201101803*4106118243^(8/23) 2100951949424901 a001 225851433717/23725150497407*4106118243^(8/23) 2100951949424901 a001 139583862445/14662949395604*4106118243^(8/23) 2100951949424901 a001 53316291173/5600748293801*4106118243^(8/23) 2100951949424901 a001 1201881744/3665737348901*4106118243^(1/2) 2100951949424901 a001 20365011074/2139295485799*4106118243^(8/23) 2100951949424901 a001 2971215073/3461452808002*17393796001^(3/7) 2100951949424901 a001 7778742049/312119004989*4106118243^(7/23) 2100951949424901 a001 12586269025/6643838879*312119004989^(1/11) 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^11/Lucas(50) 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^5/Lucas(47) 2100951949424901 a001 12586269025/6643838879*28143753123^(1/10) 2100951949424901 a001 2971215073/119218851371*17393796001^(2/7) 2100951949424901 a001 139583862445/17393796001*1568397607^(1/22) 2100951949424901 a001 12586269025/3461452808002*4106118243^(9/23) 2100951949424901 a004 Fibonacci(47)*Lucas(51)/(1/2+sqrt(5)/2)^90 2100951949424901 a001 4807526976/23725150497407*4106118243^(12/23) 2100951949424901 a001 2971215073/14662949395604*45537549124^(8/17) 2100951949424901 a001 32951280099/6643838879*45537549124^(1/17) 2100951949424901 a001 2971215073/3461452808002*45537549124^(7/17) 2100951949424901 a001 32951280099/6643838879*14662949395604^(1/21) 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^13/Lucas(52) 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)^3/Lucas(47) 2100951949424901 a001 32951280099/6643838879*192900153618^(1/18) 2100951949424901 a001 2971215073/192900153618*45537549124^(5/17) 2100951949424901 a001 2971215073/505019158607*45537549124^(1/3) 2100951949424901 a001 2971215073/73681302247*73681302247^(1/4) 2100951949424901 a004 Fibonacci(47)*Lucas(53)/(1/2+sqrt(5)/2)^92 2100951949424901 a001 2971215073/192900153618*312119004989^(3/11) 2100951949424901 a001 2971215073/192900153618*14662949395604^(5/21) 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^15/Lucas(54) 2100951949424901 a004 Fibonacci(54)*(1/2+sqrt(5)/2)/Lucas(47) 2100951949424901 a001 2971215073/192900153618*192900153618^(5/18) 2100951949424901 a004 Fibonacci(47)*Lucas(55)/(1/2+sqrt(5)/2)^94 2100951949424901 a001 2971215073/23725150497407*312119004989^(5/11) 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^17/Lucas(56) 2100951949424901 a004 Fibonacci(56)/Lucas(47)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(47)*Lucas(57)/(1/2+sqrt(5)/2)^96 2100951949424901 a001 2971215073/1322157322203*817138163596^(1/3) 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^19/Lucas(58) 2100951949424901 a004 Fibonacci(58)/Lucas(47)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(47)*Lucas(59)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^21/Lucas(60) 2100951949424901 a004 Fibonacci(60)/Lucas(47)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(47)*Lucas(61)/(1/2+sqrt(5)/2)^100 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^23/Lucas(62) 2100951949424901 a004 Fibonacci(62)/Lucas(47)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^25/Lucas(64) 2100951949424901 a004 Fibonacci(64)/Lucas(47)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^27/Lucas(66) 2100951949424901 a004 Fibonacci(66)/Lucas(47)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^29/Lucas(68) 2100951949424901 a004 Fibonacci(68)/Lucas(47)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^31/Lucas(70) 2100951949424901 a004 Fibonacci(70)/Lucas(47)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^33/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(47)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^35/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(47)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^37/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(47)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^39/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(47)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^41/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(47)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^43/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(47)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^45/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(47)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^47/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(47)/(1/2+sqrt(5)/2)^31 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^49/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(47)/(1/2+sqrt(5)/2)^33 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^51/Lucas(90) 2100951949424901 a004 Fibonacci(90)/Lucas(47)/(1/2+sqrt(5)/2)^35 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^53/Lucas(92) 2100951949424901 a004 Fibonacci(92)/Lucas(47)/(1/2+sqrt(5)/2)^37 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^55/Lucas(94) 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^57/Lucas(96) 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^59/Lucas(98) 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^60/Lucas(99) 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^61/Lucas(100) 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^58/Lucas(97) 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^56/Lucas(95) 2100951949424901 a004 Fibonacci(96)/Lucas(47)/(1/2+sqrt(5)/2)^41 2100951949424901 a004 Fibonacci(100)/Lucas(47)/(1/2+sqrt(5)/2)^45 2100951949424901 a004 Fibonacci(98)/Lucas(47)/(1/2+sqrt(5)/2)^43 2100951949424901 a004 Fibonacci(99)/Lucas(47)/(1/2+sqrt(5)/2)^44 2100951949424901 a004 Fibonacci(97)/Lucas(47)/(1/2+sqrt(5)/2)^42 2100951949424901 a004 Fibonacci(95)/Lucas(47)/(1/2+sqrt(5)/2)^40 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^54/Lucas(93) 2100951949424901 a004 Fibonacci(93)/Lucas(47)/(1/2+sqrt(5)/2)^38 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^52/Lucas(91) 2100951949424901 a004 Fibonacci(91)/Lucas(47)/(1/2+sqrt(5)/2)^36 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^50/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(47)/(1/2+sqrt(5)/2)^34 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^48/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(47)/(1/2+sqrt(5)/2)^32 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^46/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(47)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^44/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(47)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^42/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(47)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^40/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(47)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^38/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(47)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^36/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(47)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^34/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(47)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^32/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(47)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^30/Lucas(69) 2100951949424901 a004 Fibonacci(69)/Lucas(47)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^28/Lucas(67) 2100951949424901 a004 Fibonacci(67)/Lucas(47)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^26/Lucas(65) 2100951949424901 a004 Fibonacci(65)/Lucas(47)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^24/Lucas(63) 2100951949424901 a004 Fibonacci(63)/Lucas(47)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^22/Lucas(61) 2100951949424901 a004 Fibonacci(61)/Lucas(47)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(47)*Lucas(60)/(1/2+sqrt(5)/2)^99 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^20/Lucas(59) 2100951949424901 a004 Fibonacci(59)/Lucas(47)/(1/2+sqrt(5)/2)^4 2100951949424901 a004 Fibonacci(47)*Lucas(58)/(1/2+sqrt(5)/2)^97 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^18/Lucas(57) 2100951949424901 a004 Fibonacci(57)/Lucas(47)/(1/2+sqrt(5)/2)^2 2100951949424901 a001 2971215073/2139295485799*505019158607^(5/14) 2100951949424901 a004 Fibonacci(47)*Lucas(56)/(1/2+sqrt(5)/2)^95 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^16/Lucas(55) 2100951949424901 a006 5^(1/2)*Fibonacci(55)/Lucas(47)/sqrt(5) 2100951949424901 a001 2971215073/312119004989*23725150497407^(1/4) 2100951949424901 a001 2971215073/14662949395604*192900153618^(4/9) 2100951949424901 a004 Fibonacci(47)*Lucas(54)/(1/2+sqrt(5)/2)^93 2100951949424901 a001 2971215073/312119004989*73681302247^(4/13) 2100951949424901 a001 2971215073/119218851371*14662949395604^(2/9) 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^14/Lucas(53) 2100951949424901 a004 Fibonacci(53)*(1/2+sqrt(5)/2)^2/Lucas(47) 2100951949424901 a001 2971215073/14662949395604*73681302247^(6/13) 2100951949424901 a004 Fibonacci(47)*Lucas(52)/(1/2+sqrt(5)/2)^91 2100951949424901 a001 2971215073/192900153618*28143753123^(3/10) 2100951949424901 a001 32951280099/6643838879*10749957122^(1/16) 2100951949424901 a001 2971215073/45537549124*45537549124^(4/17) 2100951949424901 a001 10983760033/3020733700601*4106118243^(9/23) 2100951949424901 a001 53316291173/6643838879*10749957122^(1/24) 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^12/Lucas(51) 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^4/Lucas(47) 2100951949424901 a001 20365011074/6643838879*23725150497407^(1/16) 2100951949424901 a001 2971215073/45537549124*192900153618^(2/9) 2100951949424901 a001 20365011074/6643838879*73681302247^(1/13) 2100951949424901 a001 2971215073/2139295485799*28143753123^(2/5) 2100951949424901 a001 2971215073/45537549124*73681302247^(3/13) 2100951949424901 a001 86267571272/23725150497407*4106118243^(9/23) 2100951949424901 a001 53316291173/14662949395604*4106118243^(9/23) 2100951949424901 a001 2971215073/23725150497407*28143753123^(1/2) 2100951949424901 a001 20365011074/5600748293801*4106118243^(9/23) 2100951949424901 a001 20365011074/6643838879*10749957122^(1/12) 2100951949424901 a004 Fibonacci(47)*Lucas(50)/(1/2+sqrt(5)/2)^89 2100951949424901 a001 7778742049/817138163596*4106118243^(8/23) 2100951949424901 a001 1836311903/10749957122*1568397607^(5/22) 2100951949424901 a001 12586269025/9062201101803*4106118243^(10/23) 2100951949424901 a001 2971215073/119218851371*10749957122^(7/24) 2100951949424901 a001 2971215073/45537549124*10749957122^(1/4) 2100951949424901 a001 53316291173/6643838879*4106118243^(1/23) 2100951949424901 a001 2971215073/192900153618*10749957122^(5/16) 2100951949424901 a001 2971215073/312119004989*10749957122^(1/3) 2100951949424901 a001 32951280099/23725150497407*4106118243^(10/23) 2100951949424901 a001 2971215073/817138163596*10749957122^(3/8) 2100951949424901 a001 7778742049/6643838879*45537549124^(2/17) 2100951949424901 a001 2971215073/17393796001*312119004989^(2/11) 2100951949424901 a001 7778742049/6643838879*14662949395604^(2/21) 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^10/Lucas(49) 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^6/Lucas(47) 2100951949424901 a001 2971215073/17393796001*28143753123^(1/5) 2100951949424901 a001 2971215073/2139295485799*10749957122^(5/12) 2100951949424901 a001 10182505537/7331474697802*4106118243^(10/23) 2100951949424901 a001 2971215073/3461452808002*10749957122^(7/16) 2100951949424901 a001 7778742049/2139295485799*4106118243^(9/23) 2100951949424901 a001 2971215073/5600748293801*10749957122^(11/24) 2100951949424901 a001 2971215073/14662949395604*10749957122^(1/2) 2100951949424901 a001 7778742049/6643838879*10749957122^(1/8) 2100951949424901 a001 12586269025/23725150497407*4106118243^(11/23) 2100951949424901 a001 2971215073/17393796001*10749957122^(5/24) 2100951949424901 a001 32951280099/10749957122*1568397607^(1/11) 2100951949424901 a001 20365011074/6643838879*4106118243^(2/23) 2100951949424901 a001 7778742049/5600748293801*4106118243^(10/23) 2100951949424901 a004 Fibonacci(47)*Lucas(48)/(1/2+sqrt(5)/2)^87 2100951949424901 a001 7778742049/14662949395604*4106118243^(11/23) 2100951949424901 a001 7778742049/23725150497407*4106118243^(1/2) 2100951949424901 a001 7778742049/6643838879*4106118243^(3/23) 2100951949424901 a001 86267571272/28143753123*1568397607^(1/11) 2100951949424901 a001 32264490531/10525900321*1568397607^(1/11) 2100951949424901 a001 591286729879/192900153618*1568397607^(1/11) 2100951949424901 a001 1548008755920/505019158607*1568397607^(1/11) 2100951949424901 a001 1515744265389/494493258286*1568397607^(1/11) 2100951949424901 a001 956722026041/312119004989*1568397607^(1/11) 2100951949424901 a001 365435296162/119218851371*1568397607^(1/11) 2100951949424901 a001 139583862445/45537549124*1568397607^(1/11) 2100951949424901 a001 2971215073/45537549124*4106118243^(6/23) 2100951949424901 a001 2971215073/17393796001*4106118243^(5/23) 2100951949424901 a001 53316291173/17393796001*1568397607^(1/11) 2100951949424901 a001 2971215073/119218851371*4106118243^(7/23) 2100951949424901 a001 53316291173/6643838879*1568397607^(1/22) 2100951949424901 a001 2971215073/312119004989*4106118243^(8/23) 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^8/Lucas(47) 2100951949424901 a001 2971215073/6643838879*23725150497407^(1/8) 2100951949424901 a001 2971215073/6643838879*505019158607^(1/7) 2100951949424901 a001 2971215073/6643838879*73681302247^(2/13) 2100951949424901 a001 12586269025/10749957122*1568397607^(3/22) 2100951949424901 a001 1836311903/17393796001*1568397607^(1/4) 2100951949424901 a001 2971215073/817138163596*4106118243^(9/23) 2100951949424901 a001 2971215073/6643838879*10749957122^(1/6) 2100951949424901 a001 2971215073/2139295485799*4106118243^(10/23) 2100951949424901 a001 1836311903/28143753123*1568397607^(3/11) 2100951949424901 a004 Fibonacci(48)*Lucas(46)/(1/2+sqrt(5)/2)^86 2100951949424901 a001 2971215073/5600748293801*4106118243^(11/23) 2100951949424901 a001 2971215073/9062201101803*4106118243^(1/2) 2100951949424901 a001 2971215073/14662949395604*4106118243^(12/23) 2100951949424901 a001 10983760033/9381251041*1568397607^(3/22) 2100951949424901 a001 86267571272/73681302247*1568397607^(3/22) 2100951949424901 a001 75283811239/64300051206*1568397607^(3/22) 2100951949424901 a001 2504730781961/2139295485799*1568397607^(3/22) 2100951949424901 a001 365435296162/312119004989*1568397607^(3/22) 2100951949424901 a001 139583862445/119218851371*1568397607^(3/22) 2100951949424901 a001 2971215073/6643838879*4106118243^(4/23) 2100951949424901 a001 53316291173/45537549124*1568397607^(3/22) 2100951949424901 a001 2403763488/5374978561*1568397607^(2/11) 2100951949424901 a004 Fibonacci(50)*Lucas(46)/(1/2+sqrt(5)/2)^88 2100951949424901 a004 Fibonacci(52)*Lucas(46)/(1/2+sqrt(5)/2)^90 2100951949424901 a001 20365011074/17393796001*1568397607^(3/22) 2100951949424901 a004 Fibonacci(54)*Lucas(46)/(1/2+sqrt(5)/2)^92 2100951949424901 a004 Fibonacci(56)*Lucas(46)/(1/2+sqrt(5)/2)^94 2100951949424901 a004 Fibonacci(58)*Lucas(46)/(1/2+sqrt(5)/2)^96 2100951949424901 a004 Fibonacci(60)*Lucas(46)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(62)*Lucas(46)/(1/2+sqrt(5)/2)^100 2100951949424901 a001 2/1836311903*(1/2+1/2*5^(1/2))^54 2100951949424901 a004 Fibonacci(61)*Lucas(46)/(1/2+sqrt(5)/2)^99 2100951949424901 a004 Fibonacci(59)*Lucas(46)/(1/2+sqrt(5)/2)^97 2100951949424901 a004 Fibonacci(57)*Lucas(46)/(1/2+sqrt(5)/2)^95 2100951949424901 a004 Fibonacci(55)*Lucas(46)/(1/2+sqrt(5)/2)^93 2100951949424901 a001 192900153618/1836311903*8^(1/3) 2100951949424901 a004 Fibonacci(53)*Lucas(46)/(1/2+sqrt(5)/2)^91 2100951949424901 a004 Fibonacci(51)*Lucas(46)/(1/2+sqrt(5)/2)^89 2100951949424901 a001 20365011074/6643838879*1568397607^(1/11) 2100951949424901 a001 1134903170/23725150497407*2537720636^(3/5) 2100951949424901 a004 Fibonacci(49)*Lucas(46)/(1/2+sqrt(5)/2)^87 2100951949424901 a001 1134903170/4106118243*2537720636^(1/5) 2100951949424901 a001 1134903170/9062201101803*2537720636^(5/9) 2100951949424901 a001 1836311903/73681302247*1568397607^(7/22) 2100951949424901 a001 12586269025/28143753123*1568397607^(2/11) 2100951949424901 a001 1134903170/5600748293801*2537720636^(8/15) 2100951949424901 a001 10983760033/1368706081*599074578^(1/21) 2100951949424901 a001 32951280099/73681302247*1568397607^(2/11) 2100951949424901 a001 43133785636/96450076809*1568397607^(2/11) 2100951949424901 a001 225851433717/505019158607*1568397607^(2/11) 2100951949424901 a001 182717648081/408569081798*1568397607^(2/11) 2100951949424901 a001 139583862445/312119004989*1568397607^(2/11) 2100951949424901 a001 53316291173/119218851371*1568397607^(2/11) 2100951949424901 a001 10182505537/22768774562*1568397607^(2/11) 2100951949424901 a001 7778742049/17393796001*1568397607^(2/11) 2100951949424901 a001 7778742049/6643838879*1568397607^(3/22) 2100951949424901 a004 Fibonacci(47)*Lucas(46)/(1/2+sqrt(5)/2)^85 2100951949424901 a001 1602508992/9381251041*1568397607^(5/22) 2100951949424901 a001 1134903170/1322157322203*2537720636^(7/15) 2100951949424901 a001 567451585/408569081798*2537720636^(4/9) 2100951949424901 a001 1836311903/192900153618*1568397607^(4/11) 2100951949424901 a001 12586269025/73681302247*1568397607^(5/22) 2100951949424901 a001 10983760033/64300051206*1568397607^(5/22) 2100951949424901 a001 86267571272/505019158607*1568397607^(5/22) 2100951949424901 a001 75283811239/440719107401*1568397607^(5/22) 2100951949424901 a001 2504730781961/14662949395604*1568397607^(5/22) 2100951949424901 a001 139583862445/817138163596*1568397607^(5/22) 2100951949424901 a001 53316291173/312119004989*1568397607^(5/22) 2100951949424901 a001 20365011074/119218851371*1568397607^(5/22) 2100951949424901 a001 1134903170/312119004989*2537720636^(2/5) 2100951949424901 a001 1201881744/11384387281*1568397607^(1/4) 2100951949424901 a001 1836311903/2537720636*17393796001^(1/7) 2100951949424901 a001 1134903170/4106118243*45537549124^(3/17) 2100951949424901 a001 1134903170/4106118243*14662949395604^(1/7) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^9/Lucas(46) 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^7/Lucas(45) 2100951949424901 a001 1134903170/4106118243*192900153618^(1/6) 2100951949424901 a001 7778742049/45537549124*1568397607^(5/22) 2100951949424901 a001 1134903170/4106118243*10749957122^(3/16) 2100951949424901 a001 12586269025/119218851371*1568397607^(1/4) 2100951949424901 a001 32951280099/312119004989*1568397607^(1/4) 2100951949424901 a001 21566892818/204284540899*1568397607^(1/4) 2100951949424901 a001 225851433717/2139295485799*1568397607^(1/4) 2100951949424901 a001 182717648081/1730726404001*1568397607^(1/4) 2100951949424901 a001 139583862445/1322157322203*1568397607^(1/4) 2100951949424901 a001 53316291173/505019158607*1568397607^(1/4) 2100951949424901 a001 686789568/10525900321*1568397607^(3/11) 2100951949424901 a001 10182505537/96450076809*1568397607^(1/4) 2100951949424901 a001 1134903170/73681302247*2537720636^(1/3) 2100951949424901 a001 7778742049/73681302247*1568397607^(1/4) 2100951949424901 a001 1836311903/505019158607*1568397607^(9/22) 2100951949424901 a001 12586269025/192900153618*1568397607^(3/11) 2100951949424901 a001 32951280099/505019158607*1568397607^(3/11) 2100951949424901 a001 86267571272/1322157322203*1568397607^(3/11) 2100951949424901 a001 32264490531/494493258286*1568397607^(3/11) 2100951949424901 a001 1548008755920/23725150497407*1568397607^(3/11) 2100951949424901 a001 365435296162/5600748293801*1568397607^(3/11) 2100951949424901 a001 139583862445/2139295485799*1568397607^(3/11) 2100951949424901 a001 53316291173/817138163596*1568397607^(3/11) 2100951949424901 a001 20365011074/312119004989*1568397607^(3/11) 2100951949424901 a001 7778742049/119218851371*1568397607^(3/11) 2100951949424901 a001 1134903170/17393796001*2537720636^(4/15) 2100951949424901 a001 2971215073/17393796001*1568397607^(5/22) 2100951949424901 a001 2971215073/6643838879*1568397607^(2/11) 2100951949424901 a001 267084832/10716675201*1568397607^(7/22) 2100951949424901 a001 2971215073/28143753123*1568397607^(1/4) 2100951949424901 a001 43133785636/5374978561*599074578^(1/21) 2100951949424901 a001 1836311903/1322157322203*1568397607^(5/11) 2100951949424901 a001 12586269025/505019158607*1568397607^(7/22) 2100951949424901 a001 10983760033/440719107401*1568397607^(7/22) 2100951949424901 a001 43133785636/1730726404001*1568397607^(7/22) 2100951949424901 a001 75283811239/3020733700601*1568397607^(7/22) 2100951949424901 a001 182717648081/7331474697802*1568397607^(7/22) 2100951949424901 a001 139583862445/5600748293801*1568397607^(7/22) 2100951949424901 a001 1201881744/634430159*2537720636^(1/9) 2100951949424901 a001 53316291173/2139295485799*1568397607^(7/22) 2100951949424901 a001 10182505537/408569081798*1568397607^(7/22) 2100951949424901 a001 75283811239/9381251041*599074578^(1/21) 2100951949424901 a001 591286729879/73681302247*599074578^(1/21) 2100951949424901 a004 Fibonacci(45)*Lucas(47)/(1/2+sqrt(5)/2)^84 2100951949424901 a001 86000486440/10716675201*599074578^(1/21) 2100951949424901 a001 7778742049/312119004989*1568397607^(7/22) 2100951949424901 a001 4052739537881/505019158607*599074578^(1/21) 2100951949424901 a001 3278735159921/408569081798*599074578^(1/21) 2100951949424901 a001 2504730781961/312119004989*599074578^(1/21) 2100951949424901 a001 956722026041/119218851371*599074578^(1/21) 2100951949424901 a001 182717648081/22768774562*599074578^(1/21) 2100951949424901 a001 2971215073/45537549124*1568397607^(3/11) 2100951949424901 a001 139583862445/17393796001*599074578^(1/21) 2100951949424901 a001 102287808/10745088481*1568397607^(4/11) 2100951949424901 a001 20365011074/4106118243*599074578^(1/14) 2100951949424901 a001 1134903170/6643838879*2537720636^(2/9) 2100951949424901 a001 1144206275/230701876*2537720636^(1/15) 2100951949424901 a001 1836311903/3461452808002*1568397607^(1/2) 2100951949424901 a001 12586269025/1322157322203*1568397607^(4/11) 2100951949424901 a001 1201881744/634430159*312119004989^(1/11) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^11/Lucas(48) 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^5/Lucas(45) 2100951949424901 a001 1201881744/634430159*28143753123^(1/10) 2100951949424901 a001 32951280099/3461452808002*1568397607^(4/11) 2100951949424901 a001 86267571272/9062201101803*1568397607^(4/11) 2100951949424901 a001 225851433717/23725150497407*1568397607^(4/11) 2100951949424901 a001 139583862445/14662949395604*1568397607^(4/11) 2100951949424901 a001 53316291173/5600748293801*1568397607^(4/11) 2100951949424901 a001 20365011074/2139295485799*1568397607^(4/11) 2100951949424901 a001 7778742049/817138163596*1568397607^(4/11) 2100951949424901 a004 Fibonacci(45)*Lucas(49)/(1/2+sqrt(5)/2)^86 2100951949424901 a001 2971215073/119218851371*1568397607^(7/22) 2100951949424901 a001 1134903170/1322157322203*17393796001^(3/7) 2100951949424901 a001 1144206275/230701876*45537549124^(1/17) 2100951949424901 a001 1144206275/230701876*14662949395604^(1/21) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^13/Lucas(50) 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)^3/Lucas(45) 2100951949424901 a001 1134903170/28143753123*73681302247^(1/4) 2100951949424901 a001 1144206275/230701876*10749957122^(1/16) 2100951949424901 a004 Fibonacci(45)*Lucas(51)/(1/2+sqrt(5)/2)^88 2100951949424901 a001 567451585/22768774562*17393796001^(2/7) 2100951949424901 a001 1134903170/73681302247*45537549124^(5/17) 2100951949424901 a001 1134903170/23725150497407*45537549124^(9/17) 2100951949424901 a001 1134903170/5600748293801*45537549124^(8/17) 2100951949424901 a001 1134903170/1322157322203*45537549124^(7/17) 2100951949424901 a001 1134903170/73681302247*312119004989^(3/11) 2100951949424901 a001 1134903170/73681302247*14662949395604^(5/21) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^15/Lucas(52) 2100951949424901 a004 Fibonacci(52)*(1/2+sqrt(5)/2)/Lucas(45) 2100951949424901 a001 1134903170/73681302247*192900153618^(5/18) 2100951949424901 a001 1134903170/312119004989*45537549124^(6/17) 2100951949424901 a004 Fibonacci(45)*Lucas(53)/(1/2+sqrt(5)/2)^90 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^17/Lucas(54) 2100951949424901 a004 Fibonacci(54)/Lucas(45)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(45)*Lucas(55)/(1/2+sqrt(5)/2)^92 2100951949424901 a001 1134903170/9062201101803*312119004989^(5/11) 2100951949424901 a001 1134903170/505019158607*817138163596^(1/3) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^19/Lucas(56) 2100951949424901 a004 Fibonacci(56)/Lucas(45)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(45)*Lucas(57)/(1/2+sqrt(5)/2)^94 2100951949424901 a001 1134903170/1322157322203*14662949395604^(1/3) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^21/Lucas(58) 2100951949424901 a004 Fibonacci(58)/Lucas(45)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(45)*Lucas(59)/(1/2+sqrt(5)/2)^96 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^23/Lucas(60) 2100951949424901 a004 Fibonacci(60)/Lucas(45)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(45)*Lucas(61)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^25/Lucas(62) 2100951949424901 a004 Fibonacci(62)/Lucas(45)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(45)*Lucas(63)/(1/2+sqrt(5)/2)^100 2100951949424901 a001 1134903170/23725150497407*14662949395604^(3/7) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^27/Lucas(64) 2100951949424901 a004 Fibonacci(64)/Lucas(45)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^29/Lucas(66) 2100951949424901 a004 Fibonacci(66)/Lucas(45)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^31/Lucas(68) 2100951949424901 a004 Fibonacci(68)/Lucas(45)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^33/Lucas(70) 2100951949424901 a004 Fibonacci(70)/Lucas(45)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^35/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(45)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^37/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(45)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^39/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(45)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^41/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(45)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^43/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(45)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^45/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(45)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^47/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(45)/(1/2+sqrt(5)/2)^31 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^49/Lucas(86) 2100951949424901 a004 Fibonacci(86)/Lucas(45)/(1/2+sqrt(5)/2)^33 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^51/Lucas(88) 2100951949424901 a004 Fibonacci(88)/Lucas(45)/(1/2+sqrt(5)/2)^35 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^53/Lucas(90) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^55/Lucas(92) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^57/Lucas(94) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^59/Lucas(96) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^61/Lucas(98) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^62/Lucas(99) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^63/Lucas(100) 2100951949424901 a004 Fibonacci(45)*Lucas(1)/(1/2+sqrt(5)/2)^37 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^60/Lucas(97) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^58/Lucas(95) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^56/Lucas(93) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^54/Lucas(91) 2100951949424901 a004 Fibonacci(92)/Lucas(45)/(1/2+sqrt(5)/2)^39 2100951949424901 a004 Fibonacci(94)/Lucas(45)/(1/2+sqrt(5)/2)^41 2100951949424901 a004 Fibonacci(96)/Lucas(45)/(1/2+sqrt(5)/2)^43 2100951949424901 a004 Fibonacci(100)/Lucas(45)/(1/2+sqrt(5)/2)^47 2100951949424901 a004 Fibonacci(98)/Lucas(45)/(1/2+sqrt(5)/2)^45 2100951949424901 a004 Fibonacci(99)/Lucas(45)/(1/2+sqrt(5)/2)^46 2100951949424901 a004 Fibonacci(97)/Lucas(45)/(1/2+sqrt(5)/2)^44 2100951949424901 a004 Fibonacci(95)/Lucas(45)/(1/2+sqrt(5)/2)^42 2100951949424901 a004 Fibonacci(93)/Lucas(45)/(1/2+sqrt(5)/2)^40 2100951949424901 a004 Fibonacci(91)/Lucas(45)/(1/2+sqrt(5)/2)^38 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^52/Lucas(89) 2100951949424901 a004 Fibonacci(89)/Lucas(45)/(1/2+sqrt(5)/2)^36 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^50/Lucas(87) 2100951949424901 a004 Fibonacci(87)/Lucas(45)/(1/2+sqrt(5)/2)^34 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^48/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(45)/(1/2+sqrt(5)/2)^32 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^46/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(45)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^44/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(45)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^42/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(45)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^40/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(45)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^38/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(45)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^36/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(45)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^34/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(45)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^32/Lucas(69) 2100951949424901 a004 Fibonacci(69)/Lucas(45)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^30/Lucas(67) 2100951949424901 a004 Fibonacci(67)/Lucas(45)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^28/Lucas(65) 2100951949424901 a004 Fibonacci(65)/Lucas(45)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^26/Lucas(63) 2100951949424901 a004 Fibonacci(63)/Lucas(45)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(45)*Lucas(62)/(1/2+sqrt(5)/2)^99 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^24/Lucas(61) 2100951949424901 a004 Fibonacci(61)/Lucas(45)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(45)*Lucas(60)/(1/2+sqrt(5)/2)^97 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^22/Lucas(59) 2100951949424901 a004 Fibonacci(59)/Lucas(45)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(45)*Lucas(58)/(1/2+sqrt(5)/2)^95 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^20/Lucas(57) 2100951949424901 a004 Fibonacci(57)/Lucas(45)/(1/2+sqrt(5)/2)^4 2100951949424901 a001 567451585/408569081798*505019158607^(5/14) 2100951949424901 a004 Fibonacci(45)*Lucas(56)/(1/2+sqrt(5)/2)^93 2100951949424901 a001 1134903170/1322157322203*192900153618^(7/18) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^18/Lucas(55) 2100951949424901 a004 Fibonacci(55)/Lucas(45)/(1/2+sqrt(5)/2)^2 2100951949424901 a001 1134903170/5600748293801*192900153618^(4/9) 2100951949424901 a001 1134903170/312119004989*192900153618^(1/3) 2100951949424901 a004 Fibonacci(45)*Lucas(54)/(1/2+sqrt(5)/2)^91 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^16/Lucas(53) 2100951949424901 a001 1134903170/119218851371*23725150497407^(1/4) 2100951949424901 a001 1134903170/5600748293801*73681302247^(6/13) 2100951949424901 a001 567451585/7331474697802*73681302247^(1/2) 2100951949424901 a001 1134903170/119218851371*73681302247^(4/13) 2100951949424901 a001 53316291173/6643838879*599074578^(1/21) 2100951949424901 a004 Fibonacci(45)*Lucas(52)/(1/2+sqrt(5)/2)^89 2100951949424901 a001 1134903170/73681302247*28143753123^(3/10) 2100951949424901 a001 567451585/22768774562*14662949395604^(2/9) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^14/Lucas(51) 2100951949424901 a004 Fibonacci(51)*(1/2+sqrt(5)/2)^2/Lucas(45) 2100951949424901 a001 567451585/22768774562*505019158607^(1/4) 2100951949424901 a001 567451585/408569081798*28143753123^(2/5) 2100951949424901 a001 1134903170/9062201101803*28143753123^(1/2) 2100951949424901 a001 10182505537/1268860318*10749957122^(1/24) 2100951949424901 a004 Fibonacci(45)*Lucas(50)/(1/2+sqrt(5)/2)^87 2100951949424901 a001 2971215073/2537720636*2537720636^(2/15) 2100951949424901 a001 1602508992/440719107401*1568397607^(9/22) 2100951949424901 a001 1134903170/73681302247*10749957122^(5/16) 2100951949424901 a001 1134903170/119218851371*10749957122^(1/3) 2100951949424901 a001 567451585/22768774562*10749957122^(7/24) 2100951949424901 a001 10182505537/1268860318*4106118243^(1/23) 2100951949424901 a001 1134903170/17393796001*45537549124^(4/17) 2100951949424901 a001 1134903170/312119004989*10749957122^(3/8) 2100951949424901 a001 1134903170/17393796001*14662949395604^(4/21) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^12/Lucas(49) 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^4/Lucas(45) 2100951949424901 a001 1134903170/17393796001*192900153618^(2/9) 2100951949424901 a001 7778742049/2537720636*73681302247^(1/13) 2100951949424901 a001 1134903170/17393796001*73681302247^(3/13) 2100951949424901 a001 567451585/408569081798*10749957122^(5/12) 2100951949424901 a001 1134903170/1322157322203*10749957122^(7/16) 2100951949424901 a001 1134903170/2139295485799*10749957122^(11/24) 2100951949424901 a001 7778742049/2537720636*10749957122^(1/12) 2100951949424901 a001 1134903170/5600748293801*10749957122^(1/2) 2100951949424901 a001 567451585/7331474697802*10749957122^(13/24) 2100951949424901 a001 1134903170/23725150497407*10749957122^(9/16) 2100951949424901 a001 1134903170/17393796001*10749957122^(1/4) 2100951949424901 a001 1836311903/9062201101803*1568397607^(6/11) 2100951949424901 a001 7778742049/2537720636*4106118243^(2/23) 2100951949424901 a004 Fibonacci(45)*Lucas(48)/(1/2+sqrt(5)/2)^85 2100951949424901 a001 12586269025/3461452808002*1568397607^(9/22) 2100951949424901 a001 10983760033/3020733700601*1568397607^(9/22) 2100951949424901 a001 86267571272/23725150497407*1568397607^(9/22) 2100951949424901 a001 53316291173/14662949395604*1568397607^(9/22) 2100951949424901 a001 20365011074/5600748293801*1568397607^(9/22) 2100951949424901 a001 7778742049/2139295485799*1568397607^(9/22) 2100951949424901 a001 2971215073/312119004989*1568397607^(4/11) 2100951949424901 a001 567451585/22768774562*4106118243^(7/23) 2100951949424901 a001 1134903170/17393796001*4106118243^(6/23) 2100951949424901 a001 10182505537/1268860318*1568397607^(1/22) 2100951949424901 a001 1134903170/119218851371*4106118243^(8/23) 2100951949424901 a001 14930208/10749853441*1568397607^(5/11) 2100951949424901 a001 2971215073/2537720636*45537549124^(2/17) 2100951949424901 a001 1134903170/6643838879*312119004989^(2/11) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^10/Lucas(47) 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^6/Lucas(45) 2100951949424901 a001 1134903170/6643838879*28143753123^(1/5) 2100951949424901 a001 1134903170/312119004989*4106118243^(9/23) 2100951949424901 a001 2971215073/2537720636*10749957122^(1/8) 2100951949424901 a001 1134903170/6643838879*10749957122^(5/24) 2100951949424901 a001 1836311903/23725150497407*1568397607^(13/22) 2100951949424901 a001 567451585/408569081798*4106118243^(10/23) 2100951949424901 a001 12586269025/9062201101803*1568397607^(5/11) 2100951949424901 a001 1134903170/2139295485799*4106118243^(11/23) 2100951949424901 a001 32951280099/23725150497407*1568397607^(5/11) 2100951949424901 a001 567451585/1730726404001*4106118243^(1/2) 2100951949424901 a001 10182505537/7331474697802*1568397607^(5/11) 2100951949424901 a001 2971215073/2537720636*4106118243^(3/23) 2100951949424901 a001 1134903170/5600748293801*4106118243^(12/23) 2100951949424901 a001 7778742049/5600748293801*1568397607^(5/11) 2100951949424901 a001 567451585/7331474697802*4106118243^(13/23) 2100951949424901 a001 2971215073/817138163596*1568397607^(9/22) 2100951949424901 a001 53316291173/10749957122*599074578^(1/14) 2100951949424901 a001 1134903170/6643838879*4106118243^(5/23) 2100951949424901 a001 1602508992/3020733700601*1568397607^(1/2) 2100951949424901 a001 7778742049/2537720636*1568397607^(1/11) 2100951949424901 a001 233802911/1368706081*599074578^(5/21) 2100951949424901 a001 139583862445/28143753123*599074578^(1/14) 2100951949424901 a001 365435296162/73681302247*599074578^(1/14) 2100951949424901 a001 956722026041/192900153618*599074578^(1/14) 2100951949424901 a001 10610209857723/2139295485799*599074578^(1/14) 2100951949424901 a001 4052739537881/817138163596*599074578^(1/14) 2100951949424901 a001 140728068720/28374454999*599074578^(1/14) 2100951949424901 a001 591286729879/119218851371*599074578^(1/14) 2100951949424901 a001 225851433717/45537549124*599074578^(1/14) 2100951949424901 a001 12586269025/23725150497407*1568397607^(1/2) 2100951949424901 a001 86267571272/17393796001*599074578^(1/14) 2100951949424901 a001 12586269025/4106118243*599074578^(2/21) 2100951949424901 a001 7778742049/14662949395604*1568397607^(1/2) 2100951949424901 a001 2971215073/2139295485799*1568397607^(5/11) 2100951949424901 a001 4807526976/23725150497407*1568397607^(6/11) 2100951949424901 a001 1134903170/1568397607*599074578^(1/6) 2100951949424901 a004 Fibonacci(45)*Lucas(46)/(1/2+sqrt(5)/2)^83 2100951949424901 a001 32951280099/6643838879*599074578^(1/14) 2100951949424901 a001 2971215073/5600748293801*1568397607^(1/2) 2100951949424901 a001 2971215073/2537720636*1568397607^(3/22) 2100951949424901 a001 2971215073/14662949395604*1568397607^(6/11) 2100951949424901 a001 567451585/5374978561*1568397607^(1/4) 2100951949424901 a001 32951280099/10749957122*599074578^(2/21) 2100951949424901 a001 86267571272/28143753123*599074578^(2/21) 2100951949424901 a001 32264490531/10525900321*599074578^(2/21) 2100951949424901 a001 591286729879/192900153618*599074578^(2/21) 2100951949424901 a001 1548008755920/505019158607*599074578^(2/21) 2100951949424901 a001 1515744265389/494493258286*599074578^(2/21) 2100951949424901 a001 956722026041/312119004989*599074578^(2/21) 2100951949424901 a001 365435296162/119218851371*599074578^(2/21) 2100951949424901 a001 139583862445/45537549124*599074578^(2/21) 2100951949424901 a001 53316291173/17393796001*599074578^(2/21) 2100951949424901 a001 1134903170/17393796001*1568397607^(3/11) 2100951949424901 a001 1134903170/6643838879*1568397607^(5/22) 2100951949424901 a001 567451585/22768774562*1568397607^(7/22) 2100951949424901 a001 10182505537/1268860318*599074578^(1/21) 2100951949424901 a001 20365011074/6643838879*599074578^(2/21) 2100951949424901 a001 1134903170/119218851371*1568397607^(4/11) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^8/Lucas(45) 2100951949424901 a001 567451585/1268860318*23725150497407^(1/8) 2100951949424901 a001 567451585/1268860318*73681302247^(2/13) 2100951949424901 a001 567451585/1268860318*10749957122^(1/6) 2100951949424901 a001 567451585/1268860318*4106118243^(4/23) 2100951949424901 a001 1134903170/312119004989*1568397607^(9/22) 2100951949424901 a001 1602508992/1368706081*599074578^(1/7) 2100951949424901 a001 567451585/408569081798*1568397607^(5/11) 2100951949424901 a001 701408733/2537720636*599074578^(3/14) 2100951949424901 a004 Fibonacci(46)*Lucas(44)/(1/2+sqrt(5)/2)^82 2100951949424901 a001 1144206275/230701876*599074578^(1/14) 2100951949424901 a001 1134903170/2139295485799*1568397607^(1/2) 2100951949424901 a001 1134903170/5600748293801*1568397607^(6/11) 2100951949424901 a001 701408733/10749957122*599074578^(2/7) 2100951949424901 a001 567451585/1268860318*1568397607^(2/11) 2100951949424901 a001 12586269025/10749957122*599074578^(1/7) 2100951949424901 a001 567451585/7331474697802*1568397607^(13/22) 2100951949424901 a001 10983760033/9381251041*599074578^(1/7) 2100951949424901 a001 86267571272/73681302247*599074578^(1/7) 2100951949424901 a004 Fibonacci(48)*Lucas(44)/(1/2+sqrt(5)/2)^84 2100951949424901 a001 75283811239/64300051206*599074578^(1/7) 2100951949424901 a001 2504730781961/2139295485799*599074578^(1/7) 2100951949424901 a001 365435296162/312119004989*599074578^(1/7) 2100951949424901 a001 139583862445/119218851371*599074578^(1/7) 2100951949424901 a001 53316291173/45537549124*599074578^(1/7) 2100951949424901 a001 20365011074/17393796001*599074578^(1/7) 2100951949424901 a004 Fibonacci(50)*Lucas(44)/(1/2+sqrt(5)/2)^86 2100951949424901 a004 Fibonacci(52)*Lucas(44)/(1/2+sqrt(5)/2)^88 2100951949424901 a004 Fibonacci(54)*Lucas(44)/(1/2+sqrt(5)/2)^90 2100951949424901 a004 Fibonacci(56)*Lucas(44)/(1/2+sqrt(5)/2)^92 2100951949424901 a004 Fibonacci(58)*Lucas(44)/(1/2+sqrt(5)/2)^94 2100951949424901 a004 Fibonacci(60)*Lucas(44)/(1/2+sqrt(5)/2)^96 2100951949424901 a004 Fibonacci(62)*Lucas(44)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(64)*Lucas(44)/(1/2+sqrt(5)/2)^100 2100951949424901 a001 2/701408733*(1/2+1/2*5^(1/2))^52 2100951949424901 a004 Fibonacci(63)*Lucas(44)/(1/2+sqrt(5)/2)^99 2100951949424901 a004 Fibonacci(61)*Lucas(44)/(1/2+sqrt(5)/2)^97 2100951949424901 a004 Fibonacci(59)*Lucas(44)/(1/2+sqrt(5)/2)^95 2100951949424901 a004 Fibonacci(57)*Lucas(44)/(1/2+sqrt(5)/2)^93 2100951949424901 a004 Fibonacci(55)*Lucas(44)/(1/2+sqrt(5)/2)^91 2100951949424901 a004 Fibonacci(53)*Lucas(44)/(1/2+sqrt(5)/2)^89 2100951949424901 a004 Fibonacci(51)*Lucas(44)/(1/2+sqrt(5)/2)^87 2100951949424901 a004 Fibonacci(49)*Lucas(44)/(1/2+sqrt(5)/2)^85 2100951949424901 a001 1836311903/4106118243*599074578^(4/21) 2100951949424901 a001 7778742049/2537720636*599074578^(2/21) 2100951949424901 a001 7778742049/6643838879*599074578^(1/7) 2100951949424901 a001 2971215073/4106118243*599074578^(1/6) 2100951949424901 a004 Fibonacci(47)*Lucas(44)/(1/2+sqrt(5)/2)^83 2100951949424901 a001 7778742049/10749957122*599074578^(1/6) 2100951949424901 a001 20365011074/28143753123*599074578^(1/6) 2100951949424901 a001 53316291173/73681302247*599074578^(1/6) 2100951949424901 a001 139583862445/192900153618*599074578^(1/6) 2100951949424901 a001 10610209857723/14662949395604*599074578^(1/6) 2100951949424901 a001 591286729879/817138163596*599074578^(1/6) 2100951949424901 a001 225851433717/312119004989*599074578^(1/6) 2100951949424901 a001 86267571272/119218851371*599074578^(1/6) 2100951949424901 a001 32951280099/45537549124*599074578^(1/6) 2100951949424901 a001 12586269025/17393796001*599074578^(1/6) 2100951949424901 a001 4807526976/6643838879*599074578^(1/6) 2100951949424901 a001 2403763488/5374978561*599074578^(4/21) 2100951949424901 a001 233802911/9381251041*599074578^(1/3) 2100951949424901 a001 12586269025/28143753123*599074578^(4/21) 2100951949424901 a001 32951280099/73681302247*599074578^(4/21) 2100951949424901 a001 43133785636/96450076809*599074578^(4/21) 2100951949424901 a001 225851433717/505019158607*599074578^(4/21) 2100951949424901 a001 10610209857723/23725150497407*599074578^(4/21) 2100951949424901 a001 182717648081/408569081798*599074578^(4/21) 2100951949424901 a001 139583862445/312119004989*599074578^(4/21) 2100951949424901 a001 53316291173/119218851371*599074578^(4/21) 2100951949424901 a001 10182505537/22768774562*599074578^(4/21) 2100951949424901 a001 7778742049/17393796001*599074578^(4/21) 2100951949424901 a001 12586269025/1568397607*228826127^(1/20) 2100951949424901 a001 1836311903/2537720636*599074578^(1/6) 2100951949424901 a001 1836311903/6643838879*599074578^(3/14) 2100951949424901 a004 Fibonacci(45)*Lucas(44)/(1/2+sqrt(5)/2)^81 2100951949424901 a001 2971215073/2537720636*599074578^(1/7) 2100951949424901 a001 2971215073/6643838879*599074578^(4/21) 2100951949424901 a001 701408733/45537549124*599074578^(5/14) 2100951949424901 a001 4807526976/17393796001*599074578^(3/14) 2100951949424901 a001 1836311903/10749957122*599074578^(5/21) 2100951949424901 a001 12586269025/45537549124*599074578^(3/14) 2100951949424901 a001 32951280099/119218851371*599074578^(3/14) 2100951949424901 a001 86267571272/312119004989*599074578^(3/14) 2100951949424901 a001 225851433717/817138163596*599074578^(3/14) 2100951949424901 a001 1548008755920/5600748293801*599074578^(3/14) 2100951949424901 a001 139583862445/505019158607*599074578^(3/14) 2100951949424901 a001 53316291173/192900153618*599074578^(3/14) 2100951949424901 a001 20365011074/73681302247*599074578^(3/14) 2100951949424901 a001 7778742049/28143753123*599074578^(3/14) 2100951949424901 a001 2971215073/10749957122*599074578^(3/14) 2100951949424901 a001 433494437/1568397607*2537720636^(1/5) 2100951949424901 a001 1602508992/9381251041*599074578^(5/21) 2100951949424901 a001 701408733/73681302247*599074578^(8/21) 2100951949424901 a001 701408733/969323029*17393796001^(1/7) 2100951949424901 a001 433494437/1568397607*45537549124^(3/17) 2100951949424901 a001 433494437/1568397607*817138163596^(3/19) 2100951949424901 a001 433494437/1568397607*14662949395604^(1/7) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^9/Lucas(44) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^7/Lucas(43) 2100951949424901 a001 433494437/1568397607*192900153618^(1/6) 2100951949424901 a001 433494437/1568397607*10749957122^(3/16) 2100951949424901 a001 12586269025/73681302247*599074578^(5/21) 2100951949424901 a001 10983760033/64300051206*599074578^(5/21) 2100951949424901 a001 86267571272/505019158607*599074578^(5/21) 2100951949424901 a001 75283811239/440719107401*599074578^(5/21) 2100951949424901 a001 2504730781961/14662949395604*599074578^(5/21) 2100951949424901 a001 139583862445/817138163596*599074578^(5/21) 2100951949424901 a001 53316291173/312119004989*599074578^(5/21) 2100951949424901 a001 20365011074/119218851371*599074578^(5/21) 2100951949424901 a001 433494437/370248451*141422324^(2/13) 2100951949424901 a001 7778742049/45537549124*599074578^(5/21) 2100951949424901 a001 2971215073/17393796001*599074578^(5/21) 2100951949424901 a001 1134903170/4106118243*599074578^(3/14) 2100951949424901 a001 1836311903/28143753123*599074578^(2/7) 2100951949424901 a001 686789568/10525900321*599074578^(2/7) 2100951949424901 a001 233802911/64300051206*599074578^(3/7) 2100951949424901 a001 12586269025/192900153618*599074578^(2/7) 2100951949424901 a001 32951280099/505019158607*599074578^(2/7) 2100951949424901 a001 86267571272/1322157322203*599074578^(2/7) 2100951949424901 a001 32264490531/494493258286*599074578^(2/7) 2100951949424901 a001 1548008755920/23725150497407*599074578^(2/7) 2100951949424901 a001 365435296162/5600748293801*599074578^(2/7) 2100951949424901 a001 139583862445/2139295485799*599074578^(2/7) 2100951949424901 a001 53316291173/817138163596*599074578^(2/7) 2100951949424901 a001 20365011074/312119004989*599074578^(2/7) 2100951949424901 a001 7778742049/119218851371*599074578^(2/7) 2100951949424901 a001 2971215073/45537549124*599074578^(2/7) 2100951949424901 a001 567451585/1268860318*599074578^(4/21) 2100951949424901 a001 1134903170/6643838879*599074578^(5/21) 2100951949424901 a001 1836311903/73681302247*599074578^(1/3) 2100951949424901 a001 10983760033/1368706081*228826127^(1/20) 2100951949424901 a004 Fibonacci(43)*Lucas(45)/(1/2+sqrt(5)/2)^80 2100951949424901 a001 267084832/10716675201*599074578^(1/3) 2100951949424901 a001 701408733/505019158607*599074578^(10/21) 2100951949424901 a001 12586269025/505019158607*599074578^(1/3) 2100951949424901 a001 10983760033/440719107401*599074578^(1/3) 2100951949424901 a001 43133785636/1730726404001*599074578^(1/3) 2100951949424901 a001 75283811239/3020733700601*599074578^(1/3) 2100951949424901 a001 182717648081/7331474697802*599074578^(1/3) 2100951949424901 a001 139583862445/5600748293801*599074578^(1/3) 2100951949424901 a001 53316291173/2139295485799*599074578^(1/3) 2100951949424901 a001 10182505537/408569081798*599074578^(1/3) 2100951949424901 a001 7778742049/312119004989*599074578^(1/3) 2100951949424901 a001 1836311903/119218851371*599074578^(5/14) 2100951949424901 a001 43133785636/5374978561*228826127^(1/20) 2100951949424901 a001 2971215073/119218851371*599074578^(1/3) 2100951949424901 a001 75283811239/9381251041*228826127^(1/20) 2100951949424901 a001 1134903170/17393796001*599074578^(2/7) 2100951949424901 a001 591286729879/73681302247*228826127^(1/20) 2100951949424901 a001 86000486440/10716675201*228826127^(1/20) 2100951949424901 a001 4052739537881/505019158607*228826127^(1/20) 2100951949424901 a001 3278735159921/408569081798*228826127^(1/20) 2100951949424901 a001 2504730781961/312119004989*228826127^(1/20) 2100951949424901 a001 956722026041/119218851371*228826127^(1/20) 2100951949424901 a001 182717648081/22768774562*228826127^(1/20) 2100951949424901 a001 139583862445/17393796001*228826127^(1/20) 2100951949424901 a001 433494437/9062201101803*2537720636^(3/5) 2100951949424901 a001 53316291173/6643838879*228826127^(1/20) 2100951949424901 a001 433494437/3461452808002*2537720636^(5/9) 2100951949424901 a001 433494437/2139295485799*2537720636^(8/15) 2100951949424901 a001 4807526976/312119004989*599074578^(5/14) 2100951949424901 a001 701408733/817138163596*599074578^(1/2) 2100951949424901 a001 1836311903/969323029*2537720636^(1/9) 2100951949424901 a001 433494437/505019158607*2537720636^(7/15) 2100951949424901 a001 12586269025/817138163596*599074578^(5/14) 2100951949424901 a001 32951280099/2139295485799*599074578^(5/14) 2100951949424901 a001 86267571272/5600748293801*599074578^(5/14) 2100951949424901 a001 7787980473/505618944676*599074578^(5/14) 2100951949424901 a001 365435296162/23725150497407*599074578^(5/14) 2100951949424901 a001 139583862445/9062201101803*599074578^(5/14) 2100951949424901 a001 53316291173/3461452808002*599074578^(5/14) 2100951949424901 a001 433494437/312119004989*2537720636^(4/9) 2100951949424901 a001 20365011074/1322157322203*599074578^(5/14) 2100951949424901 a001 7778742049/505019158607*599074578^(5/14) 2100951949424901 a001 1836311903/192900153618*599074578^(8/21) 2100951949424901 a001 433494437/119218851371*2537720636^(2/5) 2100951949424901 a001 433494437/4106118243*312119004989^(1/5) 2100951949424901 a001 1836311903/969323029*312119004989^(1/11) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^11/Lucas(46) 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^5/Lucas(43) 2100951949424901 a001 1836311903/969323029*28143753123^(1/10) 2100951949424901 a001 433494437/28143753123*2537720636^(1/3) 2100951949424901 a001 2971215073/192900153618*599074578^(5/14) 2100951949424901 a004 Fibonacci(43)*Lucas(47)/(1/2+sqrt(5)/2)^82 2100951949424901 a001 4807526976/969323029*2537720636^(1/15) 2100951949424901 a001 433494437/6643838879*2537720636^(4/15) 2100951949424901 a001 102287808/10745088481*599074578^(8/21) 2100951949424901 a001 233802911/440719107401*599074578^(11/21) 2100951949424901 a001 4807526976/969323029*45537549124^(1/17) 2100951949424901 a001 4807526976/969323029*14662949395604^(1/21) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^13/Lucas(48) 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)^3/Lucas(43) 2100951949424901 a001 433494437/10749957122*73681302247^(1/4) 2100951949424901 a001 4807526976/969323029*10749957122^(1/16) 2100951949424901 a001 12586269025/1322157322203*599074578^(8/21) 2100951949424901 a004 Fibonacci(43)*Lucas(49)/(1/2+sqrt(5)/2)^84 2100951949424901 a001 32951280099/3461452808002*599074578^(8/21) 2100951949424901 a001 86267571272/9062201101803*599074578^(8/21) 2100951949424901 a001 225851433717/23725150497407*599074578^(8/21) 2100951949424901 a001 139583862445/14662949395604*599074578^(8/21) 2100951949424901 a001 53316291173/5600748293801*599074578^(8/21) 2100951949424901 a001 20365011074/2139295485799*599074578^(8/21) 2100951949424901 a001 433494437/14662949395604*17393796001^(4/7) 2100951949424901 a001 433494437/505019158607*17393796001^(3/7) 2100951949424901 a001 433494437/28143753123*45537549124^(5/17) 2100951949424901 a001 433494437/28143753123*312119004989^(3/11) 2100951949424901 a001 433494437/28143753123*14662949395604^(5/21) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^15/Lucas(50) 2100951949424901 a004 Fibonacci(50)*(1/2+sqrt(5)/2)/Lucas(43) 2100951949424901 a001 433494437/28143753123*192900153618^(5/18) 2100951949424901 a001 433494437/28143753123*28143753123^(3/10) 2100951949424901 a004 Fibonacci(43)*Lucas(51)/(1/2+sqrt(5)/2)^86 2100951949424901 a001 433494437/73681302247*45537549124^(1/3) 2100951949424901 a001 433494437/9062201101803*45537549124^(9/17) 2100951949424901 a001 433494437/2139295485799*45537549124^(8/17) 2100951949424901 a001 433494437/505019158607*45537549124^(7/17) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^17/Lucas(52) 2100951949424901 a004 Fibonacci(52)/Lucas(43)/(1/2+sqrt(5)/2) 2100951949424901 a001 433494437/119218851371*45537549124^(6/17) 2100951949424901 a004 Fibonacci(43)*Lucas(53)/(1/2+sqrt(5)/2)^88 2100951949424901 a001 433494437/192900153618*817138163596^(1/3) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^19/Lucas(54) 2100951949424901 a004 Fibonacci(54)/Lucas(43)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(43)*Lucas(55)/(1/2+sqrt(5)/2)^90 2100951949424901 a001 433494437/3461452808002*312119004989^(5/11) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^21/Lucas(56) 2100951949424901 a004 Fibonacci(56)/Lucas(43)/(1/2+sqrt(5)/2)^5 2100951949424901 a004 Fibonacci(43)*Lucas(57)/(1/2+sqrt(5)/2)^92 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^23/Lucas(58) 2100951949424901 a004 Fibonacci(58)/Lucas(43)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(43)*Lucas(59)/(1/2+sqrt(5)/2)^94 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^25/Lucas(60) 2100951949424901 a004 Fibonacci(60)/Lucas(43)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(43)*Lucas(61)/(1/2+sqrt(5)/2)^96 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^27/Lucas(62) 2100951949424901 a004 Fibonacci(62)/Lucas(43)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(43)*Lucas(63)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^29/Lucas(64) 2100951949424901 a004 Fibonacci(64)/Lucas(43)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(43)*Lucas(65)/(1/2+sqrt(5)/2)^100 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^31/Lucas(66) 2100951949424901 a004 Fibonacci(66)/Lucas(43)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^33/Lucas(68) 2100951949424901 a004 Fibonacci(68)/Lucas(43)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^35/Lucas(70) 2100951949424901 a004 Fibonacci(70)/Lucas(43)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^37/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(43)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^39/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(43)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^41/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(43)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^43/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(43)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^45/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(43)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^47/Lucas(82) 2100951949424901 a004 Fibonacci(82)/Lucas(43)/(1/2+sqrt(5)/2)^31 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^49/Lucas(84) 2100951949424901 a004 Fibonacci(84)/Lucas(43)/(1/2+sqrt(5)/2)^33 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^51/Lucas(86) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^53/Lucas(88) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^55/Lucas(90) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^57/Lucas(92) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^59/Lucas(94) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^61/Lucas(96) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^63/Lucas(98) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^64/Lucas(99) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^65/Lucas(100) 2100951949424901 a004 Fibonacci(43)*Lucas(1)/(1/2+sqrt(5)/2)^35 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^62/Lucas(97) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^60/Lucas(95) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^58/Lucas(93) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^56/Lucas(91) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^54/Lucas(89) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^52/Lucas(87) 2100951949424901 a004 Fibonacci(88)/Lucas(43)/(1/2+sqrt(5)/2)^37 2100951949424901 a004 Fibonacci(90)/Lucas(43)/(1/2+sqrt(5)/2)^39 2100951949424901 a004 Fibonacci(92)/Lucas(43)/(1/2+sqrt(5)/2)^41 2100951949424901 a004 Fibonacci(94)/Lucas(43)/(1/2+sqrt(5)/2)^43 2100951949424901 a004 Fibonacci(96)/Lucas(43)/(1/2+sqrt(5)/2)^45 2100951949424901 a004 Fibonacci(100)/Lucas(43)/(1/2+sqrt(5)/2)^49 2100951949424901 a004 Fibonacci(98)/Lucas(43)/(1/2+sqrt(5)/2)^47 2100951949424901 a004 Fibonacci(99)/Lucas(43)/(1/2+sqrt(5)/2)^48 2100951949424901 a004 Fibonacci(97)/Lucas(43)/(1/2+sqrt(5)/2)^46 2100951949424901 a004 Fibonacci(95)/Lucas(43)/(1/2+sqrt(5)/2)^44 2100951949424901 a004 Fibonacci(93)/Lucas(43)/(1/2+sqrt(5)/2)^42 2100951949424901 a004 Fibonacci(91)/Lucas(43)/(1/2+sqrt(5)/2)^40 2100951949424901 a004 Fibonacci(89)/Lucas(43)/(1/2+sqrt(5)/2)^38 2100951949424901 a004 Fibonacci(87)/Lucas(43)/(1/2+sqrt(5)/2)^36 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^50/Lucas(85) 2100951949424901 a004 Fibonacci(85)/Lucas(43)/(1/2+sqrt(5)/2)^34 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^48/Lucas(83) 2100951949424901 a004 Fibonacci(83)/Lucas(43)/(1/2+sqrt(5)/2)^32 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^46/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(43)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^44/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(43)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^42/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(43)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^40/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(43)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^38/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(43)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^36/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(43)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^34/Lucas(69) 2100951949424901 a004 Fibonacci(69)/Lucas(43)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^32/Lucas(67) 2100951949424901 a004 Fibonacci(67)/Lucas(43)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^30/Lucas(65) 2100951949424901 a004 Fibonacci(65)/Lucas(43)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(43)*Lucas(64)/(1/2+sqrt(5)/2)^99 2100951949424901 a001 433494437/14662949395604*14662949395604^(4/9) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^28/Lucas(63) 2100951949424901 a004 Fibonacci(63)/Lucas(43)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(43)*Lucas(62)/(1/2+sqrt(5)/2)^97 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^26/Lucas(61) 2100951949424901 a004 Fibonacci(61)/Lucas(43)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(43)*Lucas(60)/(1/2+sqrt(5)/2)^95 2100951949424901 a001 433494437/2139295485799*14662949395604^(8/21) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^24/Lucas(59) 2100951949424901 a004 Fibonacci(59)/Lucas(43)/(1/2+sqrt(5)/2)^8 2100951949424901 a001 433494437/23725150497407*1322157322203^(1/2) 2100951949424901 a004 Fibonacci(43)*Lucas(58)/(1/2+sqrt(5)/2)^93 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^22/Lucas(57) 2100951949424901 a004 Fibonacci(57)/Lucas(43)/(1/2+sqrt(5)/2)^6 2100951949424901 a004 Fibonacci(43)*Lucas(56)/(1/2+sqrt(5)/2)^91 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^20/Lucas(55) 2100951949424901 a004 Fibonacci(55)/Lucas(43)/(1/2+sqrt(5)/2)^4 2100951949424901 a001 433494437/312119004989*505019158607^(5/14) 2100951949424901 a001 433494437/2139295485799*192900153618^(4/9) 2100951949424901 a004 Fibonacci(43)*Lucas(54)/(1/2+sqrt(5)/2)^89 2100951949424901 a001 433494437/119218851371*14662949395604^(2/7) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^18/Lucas(53) 2100951949424901 a004 Fibonacci(53)/Lucas(43)/(1/2+sqrt(5)/2)^2 2100951949424901 a001 433494437/119218851371*192900153618^(1/3) 2100951949424901 a001 433494437/312119004989*73681302247^(5/13) 2100951949424901 a001 433494437/2139295485799*73681302247^(6/13) 2100951949424901 a001 433494437/5600748293801*73681302247^(1/2) 2100951949424901 a001 433494437/14662949395604*73681302247^(7/13) 2100951949424901 a004 Fibonacci(43)*Lucas(52)/(1/2+sqrt(5)/2)^87 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^16/Lucas(51) 2100951949424901 a006 5^(1/2)*Fibonacci(51)/Lucas(43)/sqrt(5) 2100951949424901 a001 433494437/45537549124*23725150497407^(1/4) 2100951949424901 a001 7778742049/817138163596*599074578^(8/21) 2100951949424901 a001 433494437/312119004989*28143753123^(2/5) 2100951949424901 a001 433494437/45537549124*73681302247^(4/13) 2100951949424901 a001 433494437/3461452808002*28143753123^(1/2) 2100951949424901 a004 Fibonacci(43)*Lucas(50)/(1/2+sqrt(5)/2)^85 2100951949424901 a001 433494437/28143753123*10749957122^(5/16) 2100951949424901 a001 433494437/17393796001*17393796001^(2/7) 2100951949424901 a001 433494437/17393796001*14662949395604^(2/9) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^14/Lucas(49) 2100951949424901 a004 Fibonacci(49)*(1/2+sqrt(5)/2)^2/Lucas(43) 2100951949424901 a001 433494437/17393796001*505019158607^(1/4) 2100951949424901 a001 433494437/119218851371*10749957122^(3/8) 2100951949424901 a001 433494437/45537549124*10749957122^(1/3) 2100951949424901 a001 433494437/312119004989*10749957122^(5/12) 2100951949424901 a001 7778742049/969323029*10749957122^(1/24) 2100951949424901 a001 433494437/505019158607*10749957122^(7/16) 2100951949424901 a001 433494437/817138163596*10749957122^(11/24) 2100951949424901 a001 433494437/2139295485799*10749957122^(1/2) 2100951949424901 a001 433494437/5600748293801*10749957122^(13/24) 2100951949424901 a001 433494437/9062201101803*10749957122^(9/16) 2100951949424901 a001 433494437/14662949395604*10749957122^(7/12) 2100951949424901 a001 433494437/17393796001*10749957122^(7/24) 2100951949424901 a001 7778742049/969323029*4106118243^(1/23) 2100951949424901 a004 Fibonacci(43)*Lucas(48)/(1/2+sqrt(5)/2)^83 2100951949424901 a001 2971215073/312119004989*599074578^(8/21) 2100951949424901 a001 567451585/22768774562*599074578^(1/3) 2100951949424901 a001 433494437/45537549124*4106118243^(8/23) 2100951949424901 a001 433494437/17393796001*4106118243^(7/23) 2100951949424901 a001 7778742049/969323029*1568397607^(1/22) 2100951949424901 a001 433494437/6643838879*45537549124^(4/17) 2100951949424901 a001 433494437/6643838879*817138163596^(4/19) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^12/Lucas(47) 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^4/Lucas(43) 2100951949424901 a001 2971215073/969323029*23725150497407^(1/16) 2100951949424901 a001 433494437/6643838879*192900153618^(2/9) 2100951949424901 a001 2971215073/969323029*73681302247^(1/13) 2100951949424901 a001 433494437/6643838879*73681302247^(3/13) 2100951949424901 a001 433494437/119218851371*4106118243^(9/23) 2100951949424901 a001 2971215073/969323029*10749957122^(1/12) 2100951949424901 a001 433494437/6643838879*10749957122^(1/4) 2100951949424901 a001 433494437/312119004989*4106118243^(10/23) 2100951949424901 a001 2971215073/969323029*4106118243^(2/23) 2100951949424901 a001 433494437/817138163596*4106118243^(11/23) 2100951949424901 a001 433494437/1322157322203*4106118243^(1/2) 2100951949424901 a001 433494437/2139295485799*4106118243^(12/23) 2100951949424901 a001 433494437/5600748293801*4106118243^(13/23) 2100951949424901 a001 433494437/14662949395604*4106118243^(14/23) 2100951949424901 a001 433494437/6643838879*4106118243^(6/23) 2100951949424901 a001 433494437/4106118243*1568397607^(1/4) 2100951949424901 a001 10182505537/1268860318*228826127^(1/20) 2100951949424901 a001 701408733/969323029*599074578^(1/6) 2100951949424901 a004 Fibonacci(43)*Lucas(46)/(1/2+sqrt(5)/2)^81 2100951949424901 a001 2971215073/969323029*1568397607^(1/11) 2100951949424901 a001 1836311903/505019158607*599074578^(3/7) 2100951949424901 a001 1134903170/73681302247*599074578^(5/14) 2100951949424901 a001 433494437/2537720636*2537720636^(2/9) 2100951949424901 a001 1602508992/440719107401*599074578^(3/7) 2100951949424901 a001 701408733/3461452808002*599074578^(4/7) 2100951949424901 a001 12586269025/3461452808002*599074578^(3/7) 2100951949424901 a001 10983760033/3020733700601*599074578^(3/7) 2100951949424901 a001 86267571272/23725150497407*599074578^(3/7) 2100951949424901 a001 53316291173/14662949395604*599074578^(3/7) 2100951949424901 a001 20365011074/5600748293801*599074578^(3/7) 2100951949424901 a001 433494437/17393796001*1568397607^(7/22) 2100951949424901 a001 7778742049/2139295485799*599074578^(3/7) 2100951949424901 a001 433494437/6643838879*1568397607^(3/11) 2100951949424901 a001 1134903170/969323029*2537720636^(2/15) 2100951949424901 a001 7778742049/969323029*599074578^(1/21) 2100951949424901 a001 433494437/45537549124*1568397607^(4/11) 2100951949424901 a001 2971215073/817138163596*599074578^(3/7) 2100951949424901 a001 1134903170/119218851371*599074578^(8/21) 2100951949424901 a001 1134903170/969323029*45537549124^(2/17) 2100951949424901 a001 433494437/2537720636*312119004989^(2/11) 2100951949424901 a001 1134903170/969323029*14662949395604^(2/21) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^10/Lucas(45) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^6/Lucas(43) 2100951949424901 a001 433494437/2537720636*28143753123^(1/5) 2100951949424901 a001 1134903170/969323029*10749957122^(1/8) 2100951949424901 a001 433494437/2537720636*10749957122^(5/24) 2100951949424901 a001 1134903170/969323029*4106118243^(3/23) 2100951949424901 a001 433494437/119218851371*1568397607^(9/22) 2100951949424901 a001 433494437/2537720636*4106118243^(5/23) 2100951949424901 a001 433494437/312119004989*1568397607^(5/11) 2100951949424901 a001 4807526976/969323029*599074578^(1/14) 2100951949424901 a001 433494437/1568397607*599074578^(3/14) 2100951949424901 a001 1836311903/1322157322203*599074578^(10/21) 2100951949424901 a001 433494437/817138163596*1568397607^(1/2) 2100951949424901 a001 1134903170/969323029*1568397607^(3/22) 2100951949424901 a001 433494437/2139295485799*1568397607^(6/11) 2100951949424901 a001 433494437/5600748293801*1568397607^(13/22) 2100951949424901 a001 433494437/2537720636*1568397607^(5/22) 2100951949424901 a001 14930208/10749853441*599074578^(10/21) 2100951949424901 a001 233802911/3020733700601*599074578^(13/21) 2100951949424901 a001 433494437/14662949395604*1568397607^(7/11) 2100951949424901 a001 12586269025/9062201101803*599074578^(10/21) 2100951949424901 a001 32951280099/23725150497407*599074578^(10/21) 2100951949424901 a001 10182505537/7331474697802*599074578^(10/21) 2100951949424901 a001 7778742049/5600748293801*599074578^(10/21) 2100951949424901 a001 1836311903/2139295485799*599074578^(1/2) 2100951949424901 a001 1134903170/312119004989*599074578^(3/7) 2100951949424901 a001 2971215073/2139295485799*599074578^(10/21) 2100951949424901 a001 2971215073/969323029*599074578^(2/21) 2100951949424901 a001 4807526976/5600748293801*599074578^(1/2) 2100951949424901 a001 701408733/14662949395604*599074578^(9/14) 2100951949424901 a001 12586269025/14662949395604*599074578^(1/2) 2100951949424901 a001 20365011074/23725150497407*599074578^(1/2) 2100951949424901 a001 7778742049/9062201101803*599074578^(1/2) 2100951949424901 a001 1836311903/3461452808002*599074578^(11/21) 2100951949424901 a001 2971215073/3461452808002*599074578^(1/2) 2100951949424901 a001 1602508992/3020733700601*599074578^(11/21) 2100951949424901 a001 701408733/23725150497407*599074578^(2/3) 2100951949424901 a001 12586269025/23725150497407*599074578^(11/21) 2100951949424901 a001 7778742049/14662949395604*599074578^(11/21) 2100951949424901 a004 Fibonacci(43)*Lucas(44)/(1/2+sqrt(5)/2)^79 2100951949424901 a001 567451585/408569081798*599074578^(10/21) 2100951949424901 a001 2971215073/5600748293801*599074578^(11/21) 2100951949424901 a001 686789568/224056801*228826127^(1/10) 2100951949424901 a001 1836311903/9062201101803*599074578^(4/7) 2100951949424901 a001 1134903170/1322157322203*599074578^(1/2) 2100951949424901 a001 267914296/1568397607*228826127^(1/4) 2100951949424901 a001 4807526976/23725150497407*599074578^(4/7) 2100951949424901 a001 1134903170/2139295485799*599074578^(11/21) 2100951949424901 a001 2971215073/14662949395604*599074578^(4/7) 2100951949424901 a001 1134903170/969323029*599074578^(1/7) 2100951949424901 a001 1836311903/23725150497407*599074578^(13/21) 2100951949424901 a001 1134903170/5600748293801*599074578^(4/7) 2100951949424901 a001 12586269025/4106118243*228826127^(1/10) 2100951949424901 a001 567451585/7331474697802*599074578^(13/21) 2100951949424901 a001 433494437/2537720636*599074578^(5/21) 2100951949424901 a001 433494437/6643838879*599074578^(2/7) 2100951949424901 a001 32951280099/10749957122*228826127^(1/10) 2100951949424901 a001 86267571272/28143753123*228826127^(1/10) 2100951949424901 a001 32264490531/10525900321*228826127^(1/10) 2100951949424901 a001 591286729879/192900153618*228826127^(1/10) 2100951949424901 a001 1548008755920/505019158607*228826127^(1/10) 2100951949424901 a001 1515744265389/494493258286*228826127^(1/10) 2100951949424901 a001 956722026041/312119004989*228826127^(1/10) 2100951949424901 a001 365435296162/119218851371*228826127^(1/10) 2100951949424901 a001 139583862445/45537549124*228826127^(1/10) 2100951949424901 a001 53316291173/17393796001*228826127^(1/10) 2100951949424901 a001 20365011074/6643838879*228826127^(1/10) 2100951949424901 a001 1134903170/23725150497407*599074578^(9/14) 2100951949424901 a001 433494437/17393796001*599074578^(1/3) 2100951949424901 a001 2971215073/1568397607*228826127^(1/8) 2100951949424901 a001 7778742049/969323029*228826127^(1/20) 2100951949424901 a001 433494437/28143753123*599074578^(5/14) 2100951949424901 a001 7778742049/2537720636*228826127^(1/10) 2100951949424901 a001 433494437/45537549124*599074578^(8/21) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^8/Lucas(43) 2100951949424901 a001 433494437/969323029*23725150497407^(1/8) 2100951949424901 a001 433494437/969323029*505019158607^(1/7) 2100951949424901 a001 433494437/969323029*73681302247^(2/13) 2100951949424901 a001 433494437/969323029*10749957122^(1/6) 2100951949424901 a001 433494437/969323029*4106118243^(4/23) 2100951949424901 a001 433494437/969323029*1568397607^(2/11) 2100951949424901 a001 433494437/119218851371*599074578^(3/7) 2100951949424901 a001 7778742049/4106118243*228826127^(1/8) 2100951949424901 a001 10182505537/5374978561*228826127^(1/8) 2100951949424901 a004 Fibonacci(44)*Lucas(42)/(1/2+sqrt(5)/2)^78 2100951949424901 a001 53316291173/28143753123*228826127^(1/8) 2100951949424901 a001 139583862445/73681302247*228826127^(1/8) 2100951949424901 a001 182717648081/96450076809*228826127^(1/8) 2100951949424901 a001 956722026041/505019158607*228826127^(1/8) 2100951949424901 a001 10610209857723/5600748293801*228826127^(1/8) 2100951949424901 a001 591286729879/312119004989*228826127^(1/8) 2100951949424901 a001 225851433717/119218851371*228826127^(1/8) 2100951949424901 a001 21566892818/11384387281*228826127^(1/8) 2100951949424901 a001 32951280099/17393796001*228826127^(1/8) 2100951949424901 a001 433494437/312119004989*599074578^(10/21) 2100951949424901 a001 1836311903/1568397607*228826127^(3/20) 2100951949424901 a001 12586269025/6643838879*228826127^(1/8) 2100951949424901 a001 433494437/505019158607*599074578^(1/2) 2100951949424901 a001 433494437/817138163596*599074578^(11/21) 2100951949424901 a001 1201881744/634430159*228826127^(1/8) 2100951949424901 a001 433494437/2139295485799*599074578^(4/7) 2100951949424901 a001 433494437/969323029*599074578^(4/21) 2100951949424901 a004 Fibonacci(46)*Lucas(42)/(1/2+sqrt(5)/2)^80 2100951949424901 a004 Fibonacci(48)*Lucas(42)/(1/2+sqrt(5)/2)^82 2100951949424901 a004 Fibonacci(50)*Lucas(42)/(1/2+sqrt(5)/2)^84 2100951949424901 a004 Fibonacci(52)*Lucas(42)/(1/2+sqrt(5)/2)^86 2100951949424901 a004 Fibonacci(54)*Lucas(42)/(1/2+sqrt(5)/2)^88 2100951949424901 a004 Fibonacci(56)*Lucas(42)/(1/2+sqrt(5)/2)^90 2100951949424901 a004 Fibonacci(58)*Lucas(42)/(1/2+sqrt(5)/2)^92 2100951949424901 a004 Fibonacci(60)*Lucas(42)/(1/2+sqrt(5)/2)^94 2100951949424901 a004 Fibonacci(62)*Lucas(42)/(1/2+sqrt(5)/2)^96 2100951949424901 a004 Fibonacci(64)*Lucas(42)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(66)*Lucas(42)/(1/2+sqrt(5)/2)^100 2100951949424901 a001 1/133957148*(1/2+1/2*5^(1/2))^50 2100951949424901 a004 Fibonacci(65)*Lucas(42)/(1/2+sqrt(5)/2)^99 2100951949424901 a004 Fibonacci(63)*Lucas(42)/(1/2+sqrt(5)/2)^97 2100951949424901 a004 Fibonacci(61)*Lucas(42)/(1/2+sqrt(5)/2)^95 2100951949424901 a004 Fibonacci(59)*Lucas(42)/(1/2+sqrt(5)/2)^93 2100951949424901 a004 Fibonacci(57)*Lucas(42)/(1/2+sqrt(5)/2)^91 2100951949424901 a004 Fibonacci(55)*Lucas(42)/(1/2+sqrt(5)/2)^89 2100951949424901 a004 Fibonacci(53)*Lucas(42)/(1/2+sqrt(5)/2)^87 2100951949424901 a004 Fibonacci(51)*Lucas(42)/(1/2+sqrt(5)/2)^85 2100951949424901 a001 433494437/5600748293801*599074578^(13/21) 2100951949424901 a004 Fibonacci(49)*Lucas(42)/(1/2+sqrt(5)/2)^83 2100951949424901 a001 1602508992/1368706081*228826127^(3/20) 2100951949424901 a004 Fibonacci(47)*Lucas(42)/(1/2+sqrt(5)/2)^81 2100951949424901 a001 12586269025/10749957122*228826127^(3/20) 2100951949424901 a001 433494437/9062201101803*599074578^(9/14) 2100951949424901 a001 10983760033/9381251041*228826127^(3/20) 2100951949424901 a001 86267571272/73681302247*228826127^(3/20) 2100951949424901 a001 75283811239/64300051206*228826127^(3/20) 2100951949424901 a001 2504730781961/2139295485799*228826127^(3/20) 2100951949424901 a001 365435296162/312119004989*228826127^(3/20) 2100951949424901 a001 139583862445/119218851371*228826127^(3/20) 2100951949424901 a001 53316291173/45537549124*228826127^(3/20) 2100951949424901 a001 20365011074/17393796001*228826127^(3/20) 2100951949424901 a001 267914296/4106118243*228826127^(3/10) 2100951949424901 a001 7778742049/6643838879*228826127^(3/20) 2100951949424901 a001 433494437/14662949395604*599074578^(2/3) 2100951949424901 a004 Fibonacci(45)*Lucas(42)/(1/2+sqrt(5)/2)^79 2100951949424901 a001 2971215073/969323029*228826127^(1/10) 2100951949424901 a001 701408733/1568397607*228826127^(1/5) 2100951949424901 a001 2971215073/2537720636*228826127^(3/20) 2100951949424901 a001 1836311903/370248451*141422324^(1/13) 2100951949424901 a001 1836311903/969323029*228826127^(1/8) 2100951949424901 a001 1836311903/4106118243*228826127^(1/5) 2100951949424901 a001 2403763488/5374978561*228826127^(1/5) 2100951949424901 a001 12586269025/28143753123*228826127^(1/5) 2100951949424901 a001 32951280099/73681302247*228826127^(1/5) 2100951949424901 a001 43133785636/96450076809*228826127^(1/5) 2100951949424901 a001 225851433717/505019158607*228826127^(1/5) 2100951949424901 a001 591286729879/1322157322203*228826127^(1/5) 2100951949424901 a001 10610209857723/23725150497407*228826127^(1/5) 2100951949424901 a001 139583862445/312119004989*228826127^(1/5) 2100951949424901 a001 53316291173/119218851371*228826127^(1/5) 2100951949424901 a001 10182505537/22768774562*228826127^(1/5) 2100951949424901 a001 7778742049/17393796001*228826127^(1/5) 2100951949424901 a004 Fibonacci(43)*Lucas(42)/(1/2+sqrt(5)/2)^77 2100951949424901 a001 2971215073/6643838879*228826127^(1/5) 2100951949424901 a001 133957148/5374978561*228826127^(7/20) 2100951949424901 a001 1134903170/969323029*228826127^(3/20) 2100951949424901 a001 267084832/33281921*87403803^(1/19) 2100951949424901 a001 567451585/1268860318*228826127^(1/5) 2100951949424901 a001 233802911/1368706081*228826127^(1/4) 2100951949424901 a001 9238424/599786069*228826127^(3/8) 2100951949424901 a001 165580141/599074578*2537720636^(1/5) 2100951949424901 a001 267914296/370248451*17393796001^(1/7) 2100951949424901 a001 165580141/599074578*45537549124^(3/17) 2100951949424901 a001 165580141/599074578*14662949395604^(1/7) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^9/Lucas(42) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^7/Lucas(41) 2100951949424901 a001 165580141/599074578*192900153618^(1/6) 2100951949424901 a001 165580141/599074578*10749957122^(3/16) 2100951949424901 a001 1836311903/10749957122*228826127^(1/4) 2100951949424901 a001 1602508992/9381251041*228826127^(1/4) 2100951949424901 a001 12586269025/73681302247*228826127^(1/4) 2100951949424901 a001 10983760033/64300051206*228826127^(1/4) 2100951949424901 a001 86267571272/505019158607*228826127^(1/4) 2100951949424901 a001 75283811239/440719107401*228826127^(1/4) 2100951949424901 a001 2504730781961/14662949395604*228826127^(1/4) 2100951949424901 a001 139583862445/817138163596*228826127^(1/4) 2100951949424901 a001 53316291173/312119004989*228826127^(1/4) 2100951949424901 a001 20365011074/119218851371*228826127^(1/4) 2100951949424901 a001 7778742049/45537549124*228826127^(1/4) 2100951949424901 a001 2971215073/17393796001*228826127^(1/4) 2100951949424901 a001 267914296/28143753123*228826127^(2/5) 2100951949424901 a001 1134903170/6643838879*228826127^(1/4) 2100951949424901 a001 267914296/370248451*599074578^(1/6) 2100951949424901 a001 165580141/599074578*599074578^(3/14) 2100951949424901 a001 701408733/10749957122*228826127^(3/10) 2100951949424901 a001 1836311903/28143753123*228826127^(3/10) 2100951949424901 a001 686789568/10525900321*228826127^(3/10) 2100951949424901 a001 12586269025/192900153618*228826127^(3/10) 2100951949424901 a001 32951280099/505019158607*228826127^(3/10) 2100951949424901 a001 86267571272/1322157322203*228826127^(3/10) 2100951949424901 a001 32264490531/494493258286*228826127^(3/10) 2100951949424901 a001 1548008755920/23725150497407*228826127^(3/10) 2100951949424901 a001 139583862445/2139295485799*228826127^(3/10) 2100951949424901 a001 53316291173/817138163596*228826127^(3/10) 2100951949424901 a001 20365011074/312119004989*228826127^(3/10) 2100951949424901 a001 7778742049/119218851371*228826127^(3/10) 2100951949424901 a001 2971215073/45537549124*228826127^(3/10) 2100951949424901 a001 267914296/73681302247*228826127^(9/20) 2100951949424901 a001 1134903170/17393796001*228826127^(3/10) 2100951949424901 a001 433494437/969323029*228826127^(1/5) 2100951949424901 a001 433494437/2537720636*228826127^(1/4) 2100951949424901 a004 Fibonacci(41)*Lucas(43)/(1/2+sqrt(5)/2)^76 2100951949424901 a001 233802911/9381251041*228826127^(7/20) 2100951949424901 a001 12586269025/1568397607*87403803^(1/19) 2100951949424901 a001 1836311903/73681302247*228826127^(7/20) 2100951949424901 a001 267084832/10716675201*228826127^(7/20) 2100951949424901 a001 12586269025/505019158607*228826127^(7/20) 2100951949424901 a001 10983760033/440719107401*228826127^(7/20) 2100951949424901 a001 43133785636/1730726404001*228826127^(7/20) 2100951949424901 a001 182717648081/7331474697802*228826127^(7/20) 2100951949424901 a001 139583862445/5600748293801*228826127^(7/20) 2100951949424901 a001 53316291173/2139295485799*228826127^(7/20) 2100951949424901 a001 10182505537/408569081798*228826127^(7/20) 2100951949424901 a001 7778742049/312119004989*228826127^(7/20) 2100951949424901 a001 2971215073/119218851371*228826127^(7/20) 2100951949424901 a001 701408733/45537549124*228826127^(3/8) 2100951949424901 a001 133957148/96450076809*228826127^(1/2) 2100951949424901 a001 433494437/6643838879*228826127^(3/10) 2100951949424901 a001 10983760033/1368706081*87403803^(1/19) 2100951949424901 a001 567451585/22768774562*228826127^(7/20) 2100951949424901 a001 701408733/370248451*2537720636^(1/9) 2100951949424901 a001 43133785636/5374978561*87403803^(1/19) 2100951949424901 a001 75283811239/9381251041*87403803^(1/19) 2100951949424901 a001 165580141/1568397607*312119004989^(1/5) 2100951949424901 a001 701408733/370248451*312119004989^(1/11) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^11/Lucas(44) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^5/Lucas(41) 2100951949424901 a001 701408733/370248451*28143753123^(1/10) 2100951949424901 a001 591286729879/73681302247*87403803^(1/19) 2100951949424901 a001 86000486440/10716675201*87403803^(1/19) 2100951949424901 a001 3536736619241/440719107401*87403803^(1/19) 2100951949424901 a001 3278735159921/408569081798*87403803^(1/19) 2100951949424901 a001 2504730781961/312119004989*87403803^(1/19) 2100951949424901 a001 956722026041/119218851371*87403803^(1/19) 2100951949424901 a001 182717648081/22768774562*87403803^(1/19) 2100951949424901 a001 139583862445/17393796001*87403803^(1/19) 2100951949424901 a001 53316291173/6643838879*87403803^(1/19) 2100951949424901 a001 165580141/1568397607*1568397607^(1/4) 2100951949424901 a001 10182505537/1268860318*87403803^(1/19) 2100951949424901 a001 1836311903/119218851371*228826127^(3/8) 2100951949424901 a004 Fibonacci(41)*Lucas(45)/(1/2+sqrt(5)/2)^78 2100951949424901 a001 4807526976/312119004989*228826127^(3/8) 2100951949424901 a001 12586269025/817138163596*228826127^(3/8) 2100951949424901 a001 32951280099/2139295485799*228826127^(3/8) 2100951949424901 a001 86267571272/5600748293801*228826127^(3/8) 2100951949424901 a001 7787980473/505618944676*228826127^(3/8) 2100951949424901 a001 365435296162/23725150497407*228826127^(3/8) 2100951949424901 a001 139583862445/9062201101803*228826127^(3/8) 2100951949424901 a001 53316291173/3461452808002*228826127^(3/8) 2100951949424901 a001 20365011074/1322157322203*228826127^(3/8) 2100951949424901 a001 7778742049/505019158607*228826127^(3/8) 2100951949424901 a001 2971215073/192900153618*228826127^(3/8) 2100951949424901 a001 165580141/14662949395604*2537720636^(2/3) 2100951949424901 a001 165580141/3461452808002*2537720636^(3/5) 2100951949424901 a001 165580141/1322157322203*2537720636^(5/9) 2100951949424901 a001 165580141/817138163596*2537720636^(8/15) 2100951949424901 a001 165580141/192900153618*2537720636^(7/15) 2100951949424901 a001 1836311903/370248451*2537720636^(1/15) 2100951949424901 a001 165580141/119218851371*2537720636^(4/9) 2100951949424901 a001 701408733/73681302247*228826127^(2/5) 2100951949424901 a001 165580141/45537549124*2537720636^(2/5) 2100951949424901 a001 165580141/10749957122*2537720636^(1/3) 2100951949424901 a001 1836311903/370248451*45537549124^(1/17) 2100951949424901 a001 1836311903/370248451*14662949395604^(1/21) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^13/Lucas(46) 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)^3/Lucas(41) 2100951949424901 a001 165580141/4106118243*73681302247^(1/4) 2100951949424901 a001 1836311903/370248451*10749957122^(1/16) 2100951949424901 a004 Fibonacci(41)*Lucas(47)/(1/2+sqrt(5)/2)^80 2100951949424901 a001 165580141/10749957122*45537549124^(5/17) 2100951949424901 a001 165580141/10749957122*312119004989^(3/11) 2100951949424901 a001 165580141/10749957122*14662949395604^(5/21) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^15/Lucas(48) 2100951949424901 a004 Fibonacci(48)*(1/2+sqrt(5)/2)/Lucas(41) 2100951949424901 a001 165580141/10749957122*192900153618^(5/18) 2100951949424901 a001 165580141/10749957122*28143753123^(3/10) 2100951949424901 a001 165580141/10749957122*10749957122^(5/16) 2100951949424901 a004 Fibonacci(41)*Lucas(49)/(1/2+sqrt(5)/2)^82 2100951949424901 a001 165580141/5600748293801*17393796001^(4/7) 2100951949424901 a001 165580141/192900153618*17393796001^(3/7) 2100951949424901 a001 165580141/28143753123*45537549124^(1/3) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^17/Lucas(50) 2100951949424901 a004 Fibonacci(50)/Lucas(41)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(41)*Lucas(51)/(1/2+sqrt(5)/2)^84 2100951949424901 a001 165580141/14662949395604*45537549124^(10/17) 2100951949424901 a001 165580141/3461452808002*45537549124^(9/17) 2100951949424901 a001 165580141/192900153618*45537549124^(7/17) 2100951949424901 a001 165580141/817138163596*45537549124^(8/17) 2100951949424901 a001 165580141/73681302247*817138163596^(1/3) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^19/Lucas(52) 2100951949424901 a004 Fibonacci(52)/Lucas(41)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(41)*Lucas(53)/(1/2+sqrt(5)/2)^86 2100951949424901 a001 165580141/192900153618*14662949395604^(1/3) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^21/Lucas(54) 2100951949424901 a004 Fibonacci(54)/Lucas(41)/(1/2+sqrt(5)/2)^5 2100951949424901 a001 165580141/192900153618*192900153618^(7/18) 2100951949424901 a004 Fibonacci(41)*Lucas(55)/(1/2+sqrt(5)/2)^88 2100951949424901 a001 165580141/1322157322203*312119004989^(5/11) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^23/Lucas(56) 2100951949424901 a004 Fibonacci(56)/Lucas(41)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(41)*Lucas(57)/(1/2+sqrt(5)/2)^90 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^25/Lucas(58) 2100951949424901 a004 Fibonacci(58)/Lucas(41)/(1/2+sqrt(5)/2)^9 2100951949424901 a001 165580141/1322157322203*3461452808002^(5/12) 2100951949424901 a004 Fibonacci(41)*Lucas(59)/(1/2+sqrt(5)/2)^92 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^27/Lucas(60) 2100951949424901 a004 Fibonacci(60)/Lucas(41)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(41)*Lucas(61)/(1/2+sqrt(5)/2)^94 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^29/Lucas(62) 2100951949424901 a004 Fibonacci(62)/Lucas(41)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(41)*Lucas(63)/(1/2+sqrt(5)/2)^96 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^31/Lucas(64) 2100951949424901 a004 Fibonacci(64)/Lucas(41)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(41)*Lucas(65)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^33/Lucas(66) 2100951949424901 a004 Fibonacci(66)/Lucas(41)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(41)*Lucas(67)/(1/2+sqrt(5)/2)^100 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^35/Lucas(68) 2100951949424901 a004 Fibonacci(68)/Lucas(41)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^37/Lucas(70) 2100951949424901 a004 Fibonacci(70)/Lucas(41)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^39/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(41)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^41/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(41)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^43/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(41)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^45/Lucas(78) 2100951949424901 a004 Fibonacci(78)/Lucas(41)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^47/Lucas(80) 2100951949424901 a004 Fibonacci(80)/Lucas(41)/(1/2+sqrt(5)/2)^31 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^49/Lucas(82) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^51/Lucas(84) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^53/Lucas(86) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^55/Lucas(88) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^57/Lucas(90) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^59/Lucas(92) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^61/Lucas(94) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^63/Lucas(96) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^65/Lucas(98) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^66/Lucas(99) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^67/Lucas(100) 2100951949424901 a004 Fibonacci(41)*Lucas(1)/(1/2+sqrt(5)/2)^33 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^64/Lucas(97) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^62/Lucas(95) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^60/Lucas(93) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^58/Lucas(91) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^56/Lucas(89) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^54/Lucas(87) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^52/Lucas(85) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^50/Lucas(83) 2100951949424901 a004 Fibonacci(84)/Lucas(41)/(1/2+sqrt(5)/2)^35 2100951949424901 a004 Fibonacci(86)/Lucas(41)/(1/2+sqrt(5)/2)^37 2100951949424901 a004 Fibonacci(88)/Lucas(41)/(1/2+sqrt(5)/2)^39 2100951949424901 a004 Fibonacci(90)/Lucas(41)/(1/2+sqrt(5)/2)^41 2100951949424901 a004 Fibonacci(92)/Lucas(41)/(1/2+sqrt(5)/2)^43 2100951949424901 a004 Fibonacci(94)/Lucas(41)/(1/2+sqrt(5)/2)^45 2100951949424901 a004 Fibonacci(96)/Lucas(41)/(1/2+sqrt(5)/2)^47 2100951949424901 a004 Fibonacci(100)/Lucas(41)/(1/2+sqrt(5)/2)^51 2100951949424901 a004 Fibonacci(98)/Lucas(41)/(1/2+sqrt(5)/2)^49 2100951949424901 a004 Fibonacci(99)/Lucas(41)/(1/2+sqrt(5)/2)^50 2100951949424901 a004 Fibonacci(97)/Lucas(41)/(1/2+sqrt(5)/2)^48 2100951949424901 a004 Fibonacci(95)/Lucas(41)/(1/2+sqrt(5)/2)^46 2100951949424901 a004 Fibonacci(93)/Lucas(41)/(1/2+sqrt(5)/2)^44 2100951949424901 a004 Fibonacci(91)/Lucas(41)/(1/2+sqrt(5)/2)^42 2100951949424901 a004 Fibonacci(89)/Lucas(41)/(1/2+sqrt(5)/2)^40 2100951949424901 a004 Fibonacci(87)/Lucas(41)/(1/2+sqrt(5)/2)^38 2100951949424901 a004 Fibonacci(85)/Lucas(41)/(1/2+sqrt(5)/2)^36 2100951949424901 a004 Fibonacci(83)/Lucas(41)/(1/2+sqrt(5)/2)^34 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^48/Lucas(81) 2100951949424901 a004 Fibonacci(81)/Lucas(41)/(1/2+sqrt(5)/2)^32 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^46/Lucas(79) 2100951949424901 a004 Fibonacci(79)/Lucas(41)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^44/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(41)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^42/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(41)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^40/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(41)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^38/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(41)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^36/Lucas(69) 2100951949424901 a004 Fibonacci(69)/Lucas(41)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^34/Lucas(67) 2100951949424901 a004 Fibonacci(67)/Lucas(41)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(41)*Lucas(66)/(1/2+sqrt(5)/2)^99 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^32/Lucas(65) 2100951949424901 a004 Fibonacci(65)/Lucas(41)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(41)*Lucas(64)/(1/2+sqrt(5)/2)^97 2100951949424901 a001 165580141/23725150497407*9062201101803^(1/2) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^30/Lucas(63) 2100951949424901 a004 Fibonacci(63)/Lucas(41)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(41)*Lucas(62)/(1/2+sqrt(5)/2)^95 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^28/Lucas(61) 2100951949424901 a004 Fibonacci(61)/Lucas(41)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(41)*Lucas(60)/(1/2+sqrt(5)/2)^93 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^26/Lucas(59) 2100951949424901 a004 Fibonacci(59)/Lucas(41)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(41)*Lucas(58)/(1/2+sqrt(5)/2)^91 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^24/Lucas(57) 2100951949424901 a004 Fibonacci(57)/Lucas(41)/(1/2+sqrt(5)/2)^8 2100951949424901 a004 Fibonacci(41)*Lucas(56)/(1/2+sqrt(5)/2)^89 2100951949424901 a001 165580141/312119004989*312119004989^(2/5) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^22/Lucas(55) 2100951949424901 a004 Fibonacci(55)/Lucas(41)/(1/2+sqrt(5)/2)^6 2100951949424901 a001 165580141/3461452808002*192900153618^(1/2) 2100951949424901 a001 165580141/817138163596*192900153618^(4/9) 2100951949424901 a001 165580141/14662949395604*192900153618^(5/9) 2100951949424901 a004 Fibonacci(41)*Lucas(54)/(1/2+sqrt(5)/2)^87 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^20/Lucas(53) 2100951949424901 a004 Fibonacci(53)/Lucas(41)/(1/2+sqrt(5)/2)^4 2100951949424901 a001 165580141/119218851371*23725150497407^(5/16) 2100951949424901 a001 165580141/119218851371*505019158607^(5/14) 2100951949424901 a001 165580141/817138163596*73681302247^(6/13) 2100951949424901 a001 165580141/2139295485799*73681302247^(1/2) 2100951949424901 a001 165580141/5600748293801*73681302247^(7/13) 2100951949424901 a001 165580141/119218851371*73681302247^(5/13) 2100951949424901 a004 Fibonacci(41)*Lucas(52)/(1/2+sqrt(5)/2)^85 2100951949424901 a001 165580141/45537549124*45537549124^(6/17) 2100951949424901 a001 165580141/45537549124*14662949395604^(2/7) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^18/Lucas(51) 2100951949424901 a004 Fibonacci(51)/Lucas(41)/(1/2+sqrt(5)/2)^2 2100951949424901 a001 165580141/45537549124*192900153618^(1/3) 2100951949424901 a001 165580141/119218851371*28143753123^(2/5) 2100951949424901 a001 165580141/1322157322203*28143753123^(1/2) 2100951949424901 a001 165580141/14662949395604*28143753123^(3/5) 2100951949424901 a004 Fibonacci(41)*Lucas(50)/(1/2+sqrt(5)/2)^83 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^16/Lucas(49) 2100951949424901 a001 165580141/17393796001*23725150497407^(1/4) 2100951949424901 a001 165580141/17393796001*73681302247^(4/13) 2100951949424901 a001 165580141/119218851371*10749957122^(5/12) 2100951949424901 a001 165580141/45537549124*10749957122^(3/8) 2100951949424901 a001 165580141/192900153618*10749957122^(7/16) 2100951949424901 a001 165580141/312119004989*10749957122^(11/24) 2100951949424901 a001 165580141/817138163596*10749957122^(1/2) 2100951949424901 a001 165580141/2139295485799*10749957122^(13/24) 2100951949424901 a001 165580141/3461452808002*10749957122^(9/16) 2100951949424901 a001 165580141/5600748293801*10749957122^(7/12) 2100951949424901 a001 165580141/14662949395604*10749957122^(5/8) 2100951949424901 a001 165580141/17393796001*10749957122^(1/3) 2100951949424901 a004 Fibonacci(41)*Lucas(48)/(1/2+sqrt(5)/2)^81 2100951949424901 a001 165580141/6643838879*17393796001^(2/7) 2100951949424901 a001 1134903170/73681302247*228826127^(3/8) 2100951949424901 a001 165580141/6643838879*14662949395604^(2/9) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^14/Lucas(47) 2100951949424901 a004 Fibonacci(47)*(1/2+sqrt(5)/2)^2/Lucas(41) 2100951949424901 a001 2971215073/370248451*10749957122^(1/24) 2100951949424901 a001 165580141/45537549124*4106118243^(9/23) 2100951949424901 a001 165580141/17393796001*4106118243^(8/23) 2100951949424901 a001 165580141/6643838879*10749957122^(7/24) 2100951949424901 a001 2971215073/370248451*4106118243^(1/23) 2100951949424901 a001 165580141/119218851371*4106118243^(10/23) 2100951949424901 a001 165580141/312119004989*4106118243^(11/23) 2100951949424901 a001 165580141/505019158607*4106118243^(1/2) 2100951949424901 a001 165580141/817138163596*4106118243^(12/23) 2100951949424901 a001 165580141/2139295485799*4106118243^(13/23) 2100951949424901 a001 165580141/5600748293801*4106118243^(14/23) 2100951949424901 a001 165580141/14662949395604*4106118243^(15/23) 2100951949424901 a001 165580141/6643838879*4106118243^(7/23) 2100951949424901 a001 2971215073/370248451*1568397607^(1/22) 2100951949424901 a004 Fibonacci(41)*Lucas(46)/(1/2+sqrt(5)/2)^79 2100951949424901 a001 165580141/2537720636*2537720636^(4/15) 2100951949424901 a001 1836311903/370248451*599074578^(1/14) 2100951949424901 a001 165580141/17393796001*1568397607^(4/11) 2100951949424901 a001 165580141/6643838879*1568397607^(7/22) 2100951949424901 a001 165580141/2537720636*45537549124^(4/17) 2100951949424901 a001 165580141/2537720636*14662949395604^(4/21) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^12/Lucas(45) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^4/Lucas(41) 2100951949424901 a001 1134903170/370248451*23725150497407^(1/16) 2100951949424901 a001 1134903170/370248451*73681302247^(1/13) 2100951949424901 a001 165580141/2537720636*73681302247^(3/13) 2100951949424901 a001 2971215073/370248451*599074578^(1/21) 2100951949424901 a001 1134903170/370248451*10749957122^(1/12) 2100951949424901 a001 165580141/2537720636*10749957122^(1/4) 2100951949424901 a001 1134903170/370248451*4106118243^(2/23) 2100951949424901 a001 165580141/45537549124*1568397607^(9/22) 2100951949424901 a001 165580141/2537720636*4106118243^(6/23) 2100951949424901 a001 165580141/119218851371*1568397607^(5/11) 2100951949424901 a001 1134903170/370248451*1568397607^(1/11) 2100951949424901 a001 165580141/312119004989*1568397607^(1/2) 2100951949424901 a001 165580141/817138163596*1568397607^(6/11) 2100951949424901 a001 165580141/2139295485799*1568397607^(13/22) 2100951949424901 a001 165580141/5600748293801*1568397607^(7/11) 2100951949424901 a001 165580141/2537720636*1568397607^(3/11) 2100951949424901 a001 165580141/14662949395604*1568397607^(15/22) 2100951949424901 a001 1836311903/192900153618*228826127^(2/5) 2100951949424901 a001 102287808/10745088481*228826127^(2/5) 2100951949424901 a001 12586269025/1322157322203*228826127^(2/5) 2100951949424901 a001 32951280099/3461452808002*228826127^(2/5) 2100951949424901 a001 86267571272/9062201101803*228826127^(2/5) 2100951949424901 a001 225851433717/23725150497407*228826127^(2/5) 2100951949424901 a001 139583862445/14662949395604*228826127^(2/5) 2100951949424901 a001 53316291173/5600748293801*228826127^(2/5) 2100951949424901 a001 20365011074/2139295485799*228826127^(2/5) 2100951949424901 a001 7778742049/817138163596*228826127^(2/5) 2100951949424901 a001 2971215073/312119004989*228826127^(2/5) 2100951949424901 a001 63245986/23725150497407*141422324^(11/13) 2100951949424901 a004 Fibonacci(41)*Lucas(44)/(1/2+sqrt(5)/2)^77 2100951949424901 a001 1134903170/370248451*599074578^(2/21) 2100951949424901 a001 267914296/505019158607*228826127^(11/20) 2100951949424901 a001 433494437/17393796001*228826127^(7/20) 2100951949424901 a001 1134903170/119218851371*228826127^(2/5) 2100951949424901 a001 7778742049/969323029*87403803^(1/19) 2100951949424901 a001 233802911/64300051206*228826127^(9/20) 2100951949424901 a001 433494437/28143753123*228826127^(3/8) 2100951949424901 a001 165580141/2537720636*599074578^(2/7) 2100951949424901 a001 165580141/6643838879*599074578^(1/3) 2100951949424901 a001 2971215073/370248451*228826127^(1/20) 2100951949424901 a001 165580141/10749957122*599074578^(5/14) 2100951949424901 a001 165580141/969323029*2537720636^(2/9) 2100951949424901 a001 433494437/370248451*2537720636^(2/15) 2100951949424901 a001 433494437/370248451*45537549124^(2/17) 2100951949424901 a001 165580141/969323029*312119004989^(2/11) 2100951949424901 a001 433494437/370248451*14662949395604^(2/21) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^10/Lucas(43) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^6/Lucas(41) 2100951949424901 a001 165580141/969323029*28143753123^(1/5) 2100951949424901 a001 165580141/17393796001*599074578^(8/21) 2100951949424901 a001 433494437/370248451*10749957122^(1/8) 2100951949424901 a001 165580141/969323029*10749957122^(5/24) 2100951949424901 a001 433494437/370248451*4106118243^(3/23) 2100951949424901 a001 165580141/969323029*4106118243^(5/23) 2100951949424901 a001 433494437/370248451*1568397607^(3/22) 2100951949424901 a001 165580141/969323029*1568397607^(5/22) 2100951949424901 a001 165580141/45537549124*599074578^(3/7) 2100951949424901 a001 1836311903/505019158607*228826127^(9/20) 2100951949424901 a001 1602508992/440719107401*228826127^(9/20) 2100951949424901 a001 12586269025/3461452808002*228826127^(9/20) 2100951949424901 a001 10983760033/3020733700601*228826127^(9/20) 2100951949424901 a001 86267571272/23725150497407*228826127^(9/20) 2100951949424901 a001 53316291173/14662949395604*228826127^(9/20) 2100951949424901 a001 20365011074/5600748293801*228826127^(9/20) 2100951949424901 a001 7778742049/2139295485799*228826127^(9/20) 2100951949424901 a001 2971215073/817138163596*228826127^(9/20) 2100951949424901 a001 165580141/119218851371*599074578^(10/21) 2100951949424901 a001 267914296/1322157322203*228826127^(3/5) 2100951949424901 a001 165580141/192900153618*599074578^(1/2) 2100951949424901 a001 433494437/45537549124*228826127^(2/5) 2100951949424901 a001 1134903170/312119004989*228826127^(9/20) 2100951949424901 a001 165580141/312119004989*599074578^(11/21) 2100951949424901 a001 433494437/370248451*599074578^(1/7) 2100951949424901 a001 165580141/817138163596*599074578^(4/7) 2100951949424901 a001 165580141/2139295485799*599074578^(13/21) 2100951949424901 a001 165580141/969323029*599074578^(5/21) 2100951949424901 a001 165580141/3461452808002*599074578^(9/14) 2100951949424901 a001 701408733/505019158607*228826127^(1/2) 2100951949424901 a001 267914296/2139295485799*228826127^(5/8) 2100951949424901 a001 165580141/5600748293801*599074578^(2/3) 2100951949424901 a001 701408733/370248451*228826127^(1/8) 2100951949424901 a001 165580141/14662949395604*599074578^(5/7) 2100951949424901 a001 1134903170/370248451*228826127^(1/10) 2100951949424901 a001 1836311903/1322157322203*228826127^(1/2) 2100951949424901 a001 14930208/10749853441*228826127^(1/2) 2100951949424901 a001 12586269025/9062201101803*228826127^(1/2) 2100951949424901 a001 32951280099/23725150497407*228826127^(1/2) 2100951949424901 a001 10182505537/7331474697802*228826127^(1/2) 2100951949424901 a001 7778742049/5600748293801*228826127^(1/2) 2100951949424901 a001 2971215073/2139295485799*228826127^(1/2) 2100951949424901 a001 133957148/1730726404001*228826127^(13/20) 2100951949424901 a001 433494437/119218851371*228826127^(9/20) 2100951949424901 a001 567451585/408569081798*228826127^(1/2) 2100951949424901 a004 Fibonacci(41)*Lucas(42)/(1/2+sqrt(5)/2)^75 2100951949424901 a001 233802911/440719107401*228826127^(11/20) 2100951949424901 a001 1836311903/3461452808002*228826127^(11/20) 2100951949424901 a001 1602508992/3020733700601*228826127^(11/20) 2100951949424901 a001 12586269025/23725150497407*228826127^(11/20) 2100951949424901 a001 7778742049/14662949395604*228826127^(11/20) 2100951949424901 a001 2971215073/5600748293801*228826127^(11/20) 2100951949424901 a001 267914296/9062201101803*228826127^(7/10) 2100951949424901 a001 433494437/312119004989*228826127^(1/2) 2100951949424901 a001 1134903170/2139295485799*228826127^(11/20) 2100951949424901 a001 1836311903/599074578*87403803^(2/19) 2100951949424901 a001 701408733/3461452808002*228826127^(3/5) 2100951949424901 a001 433494437/370248451*228826127^(3/20) 2100951949424901 a001 1836311903/9062201101803*228826127^(3/5) 2100951949424901 a001 4807526976/23725150497407*228826127^(3/5) 2100951949424901 a001 2971215073/14662949395604*228826127^(3/5) 2100951949424901 a001 701408733/5600748293801*228826127^(5/8) 2100951949424901 a001 267914296/23725150497407*228826127^(3/4) 2100951949424901 a001 63245986/5600748293801*141422324^(10/13) 2100951949424901 a001 433494437/817138163596*228826127^(11/20) 2100951949424901 a001 1134903170/5600748293801*228826127^(3/5) 2100951949424901 a001 1836311903/14662949395604*228826127^(5/8) 2100951949424901 a001 2971215073/23725150497407*228826127^(5/8) 2100951949424901 a001 233802911/3020733700601*228826127^(13/20) 2100951949424901 a001 1134903170/9062201101803*228826127^(5/8) 2100951949424901 a001 1836311903/23725150497407*228826127^(13/20) 2100951949424901 a001 433494437/2139295485799*228826127^(3/5) 2100951949424901 a001 34111385/199691526*87403803^(5/19) 2100951949424901 a001 567451585/7331474697802*228826127^(13/20) 2100951949424901 a001 701408733/23725150497407*228826127^(7/10) 2100951949424901 a001 433494437/3461452808002*228826127^(5/8) 2100951949424901 a001 165580141/969323029*228826127^(1/4) 2100951949424901 a001 165580141/2537720636*228826127^(3/10) 2100951949424901 a001 686789568/224056801*87403803^(2/19) 2100951949424901 a001 433494437/5600748293801*228826127^(13/20) 2100951949424901 a001 12586269025/4106118243*87403803^(2/19) 2100951949424901 a001 32951280099/10749957122*87403803^(2/19) 2100951949424901 a001 86267571272/28143753123*87403803^(2/19) 2100951949424901 a001 32264490531/10525900321*87403803^(2/19) 2100951949424901 a001 591286729879/192900153618*87403803^(2/19) 2100951949424901 a001 1548008755920/505019158607*87403803^(2/19) 2100951949424901 a001 1515744265389/494493258286*87403803^(2/19) 2100951949424901 a001 956722026041/312119004989*87403803^(2/19) 2100951949424901 a001 365435296162/119218851371*87403803^(2/19) 2100951949424901 a001 139583862445/45537549124*87403803^(2/19) 2100951949424901 a001 53316291173/17393796001*87403803^(2/19) 2100951949424901 a001 20365011074/6643838879*87403803^(2/19) 2100951949424901 a001 7778742049/2537720636*87403803^(2/19) 2100951949424901 a001 165580141/6643838879*228826127^(7/20) 2100951949424901 a001 2971215073/370248451*87403803^(1/19) 2100951949424901 a001 433494437/14662949395604*228826127^(7/10) 2100951949424901 a001 165580141/10749957122*228826127^(3/8) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^8/Lucas(41) 2100951949424901 a001 165580141/370248451*23725150497407^(1/8) 2100951949424901 a001 165580141/370248451*73681302247^(2/13) 2100951949424901 a001 165580141/370248451*10749957122^(1/6) 2100951949424901 a001 165580141/370248451*4106118243^(4/23) 2100951949424901 a001 165580141/370248451*1568397607^(2/11) 2100951949424901 a001 2971215073/969323029*87403803^(2/19) 2100951949424901 a001 165580141/17393796001*228826127^(2/5) 2100951949424901 a001 165580141/370248451*599074578^(4/21) 2100951949424901 a001 63245986/1322157322203*141422324^(9/13) 2100951949424901 a001 165580141/45537549124*228826127^(9/20) 2100951949424901 a004 Fibonacci(42)*Lucas(40)/(1/2+sqrt(5)/2)^74 2100951949424901 a001 31622993/408569081798*141422324^(2/3) 2100951949424901 a001 165580141/119218851371*228826127^(1/2) 2100951949424901 a001 233802911/199691526*87403803^(3/19) 2100951949424901 a001 165580141/312119004989*228826127^(11/20) 2100951949424901 a001 165580141/370248451*228826127^(1/5) 2100951949424901 a004 Fibonacci(44)*Lucas(40)/(1/2+sqrt(5)/2)^76 2100951949424901 a001 165580141/817138163596*228826127^(3/5) 2100951949424901 a004 Fibonacci(46)*Lucas(40)/(1/2+sqrt(5)/2)^78 2100951949424901 a004 Fibonacci(48)*Lucas(40)/(1/2+sqrt(5)/2)^80 2100951949424901 a004 Fibonacci(50)*Lucas(40)/(1/2+sqrt(5)/2)^82 2100951949424901 a004 Fibonacci(52)*Lucas(40)/(1/2+sqrt(5)/2)^84 2100951949424901 a004 Fibonacci(54)*Lucas(40)/(1/2+sqrt(5)/2)^86 2100951949424901 a004 Fibonacci(56)*Lucas(40)/(1/2+sqrt(5)/2)^88 2100951949424901 a004 Fibonacci(58)*Lucas(40)/(1/2+sqrt(5)/2)^90 2100951949424901 a004 Fibonacci(60)*Lucas(40)/(1/2+sqrt(5)/2)^92 2100951949424901 a004 Fibonacci(62)*Lucas(40)/(1/2+sqrt(5)/2)^94 2100951949424901 a004 Fibonacci(64)*Lucas(40)/(1/2+sqrt(5)/2)^96 2100951949424901 a004 Fibonacci(66)*Lucas(40)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(68)*Lucas(40)/(1/2+sqrt(5)/2)^100 2100951949424901 a001 2/102334155*(1/2+1/2*5^(1/2))^48 2100951949424901 a004 Fibonacci(67)*Lucas(40)/(1/2+sqrt(5)/2)^99 2100951949424901 a004 Fibonacci(65)*Lucas(40)/(1/2+sqrt(5)/2)^97 2100951949424901 a004 Fibonacci(63)*Lucas(40)/(1/2+sqrt(5)/2)^95 2100951949424901 a004 Fibonacci(61)*Lucas(40)/(1/2+sqrt(5)/2)^93 2100951949424901 a004 Fibonacci(59)*Lucas(40)/(1/2+sqrt(5)/2)^91 2100951949424901 a004 Fibonacci(57)*Lucas(40)/(1/2+sqrt(5)/2)^89 2100951949424901 a004 Fibonacci(55)*Lucas(40)/(1/2+sqrt(5)/2)^87 2100951949424901 a004 Fibonacci(53)*Lucas(40)/(1/2+sqrt(5)/2)^85 2100951949424901 a004 Fibonacci(51)*Lucas(40)/(1/2+sqrt(5)/2)^83 2100951949424901 a004 Fibonacci(49)*Lucas(40)/(1/2+sqrt(5)/2)^81 2100951949424901 a004 Fibonacci(47)*Lucas(40)/(1/2+sqrt(5)/2)^79 2100951949424901 a001 63245986/312119004989*141422324^(8/13) 2100951949424901 a001 165580141/1322157322203*228826127^(5/8) 2100951949424901 a004 Fibonacci(45)*Lucas(40)/(1/2+sqrt(5)/2)^77 2100951949424901 a001 63245986/228826127*141422324^(3/13) 2100951949424901 a001 165580141/2139295485799*228826127^(13/20) 2100951949424901 a004 Fibonacci(43)*Lucas(40)/(1/2+sqrt(5)/2)^75 2100951949424901 a001 1836311903/1568397607*87403803^(3/19) 2100951949424901 a001 1602508992/1368706081*87403803^(3/19) 2100951949424901 a001 12586269025/10749957122*87403803^(3/19) 2100951949424901 a001 165580141/5600748293801*228826127^(7/10) 2100951949424901 a001 10983760033/9381251041*87403803^(3/19) 2100951949424901 a001 86267571272/73681302247*87403803^(3/19) 2100951949424901 a001 75283811239/64300051206*87403803^(3/19) 2100951949424901 a001 2504730781961/2139295485799*87403803^(3/19) 2100951949424901 a001 365435296162/312119004989*87403803^(3/19) 2100951949424901 a001 139583862445/119218851371*87403803^(3/19) 2100951949424901 a001 53316291173/45537549124*87403803^(3/19) 2100951949424901 a001 20365011074/17393796001*87403803^(3/19) 2100951949424901 a001 7778742049/6643838879*87403803^(3/19) 2100951949424901 a001 2971215073/2537720636*87403803^(3/19) 2100951949424901 a001 1134903170/370248451*87403803^(2/19) 2100951949424901 a001 165580141/14662949395604*228826127^(3/4) 2100951949424901 a001 14619165/224056801*87403803^(6/19) 2100951949424901 a001 1134903170/969323029*87403803^(3/19) 2100951949424901 a001 133957148/299537289*87403803^(4/19) 2100951949424901 a001 63245986/73681302247*141422324^(7/13) 2100951949424901 a004 Fibonacci(41)*Lucas(40)/(1/2+sqrt(5)/2)^73 2100951949424901 a001 701408733/1568397607*87403803^(4/19) 2100951949424901 a001 63245986/17393796001*141422324^(6/13) 2100951949424901 a001 1836311903/4106118243*87403803^(4/19) 2100951949424901 a001 2403763488/5374978561*87403803^(4/19) 2100951949424901 a001 12586269025/28143753123*87403803^(4/19) 2100951949424901 a001 32951280099/73681302247*87403803^(4/19) 2100951949424901 a001 43133785636/96450076809*87403803^(4/19) 2100951949424901 a001 225851433717/505019158607*87403803^(4/19) 2100951949424901 a001 591286729879/1322157322203*87403803^(4/19) 2100951949424901 a001 10610209857723/23725150497407*87403803^(4/19) 2100951949424901 a001 139583862445/312119004989*87403803^(4/19) 2100951949424901 a001 53316291173/119218851371*87403803^(4/19) 2100951949424901 a001 10182505537/22768774562*87403803^(4/19) 2100951949424901 a001 7778742049/17393796001*87403803^(4/19) 2100951949424901 a001 2971215073/6643838879*87403803^(4/19) 2100951949424901 a001 567451585/1268860318*87403803^(4/19) 2100951949424901 a001 433494437/370248451*87403803^(3/19) 2100951949424901 a001 34111385/1368706081*87403803^(7/19) 2100951949424901 a001 433494437/969323029*87403803^(4/19) 2100951949424901 a001 1836311903/228826127*33385282^(1/18) 2100951949424901 a001 63245986/4106118243*141422324^(5/13) 2100951949424901 a001 63245986/228826127*2537720636^(1/5) 2100951949424901 a001 102334155/141422324*17393796001^(1/7) 2100951949424901 a001 63245986/228826127*45537549124^(3/17) 2100951949424901 a001 63245986/228826127*817138163596^(3/19) 2100951949424901 a001 102334155/141422324*14662949395604^(1/9) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^9/Lucas(40) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^7/Lucas(39) 2100951949424901 a001 63245986/228826127*192900153618^(1/6) 2100951949424901 a001 63245986/228826127*10749957122^(3/16) 2100951949424901 a001 267914296/1568397607*87403803^(5/19) 2100951949424901 a001 102334155/141422324*599074578^(1/6) 2100951949424901 a001 63245986/228826127*599074578^(3/14) 2100951949424901 a001 63245986/1568397607*141422324^(1/3) 2100951949424901 a001 233802911/1368706081*87403803^(5/19) 2100951949424901 a001 1836311903/10749957122*87403803^(5/19) 2100951949424901 a001 1602508992/9381251041*87403803^(5/19) 2100951949424901 a001 12586269025/73681302247*87403803^(5/19) 2100951949424901 a001 10983760033/64300051206*87403803^(5/19) 2100951949424901 a001 86267571272/505019158607*87403803^(5/19) 2100951949424901 a001 75283811239/440719107401*87403803^(5/19) 2100951949424901 a001 2504730781961/14662949395604*87403803^(5/19) 2100951949424901 a001 139583862445/817138163596*87403803^(5/19) 2100951949424901 a001 53316291173/312119004989*87403803^(5/19) 2100951949424901 a001 20365011074/119218851371*87403803^(5/19) 2100951949424901 a001 7778742049/45537549124*87403803^(5/19) 2100951949424901 a001 2971215073/17393796001*87403803^(5/19) 2100951949424901 a001 1134903170/6643838879*87403803^(5/19) 2100951949424901 a001 433494437/2537720636*87403803^(5/19) 2100951949424901 a001 63245986/969323029*141422324^(4/13) 2100951949424901 a001 102334155/10749957122*87403803^(8/19) 2100951949424901 a001 267914296/4106118243*87403803^(6/19) 2100951949424901 a001 701408733/10749957122*87403803^(6/19) 2100951949424901 a001 1836311903/28143753123*87403803^(6/19) 2100951949424901 a001 686789568/10525900321*87403803^(6/19) 2100951949424901 a001 12586269025/192900153618*87403803^(6/19) 2100951949424901 a001 32951280099/505019158607*87403803^(6/19) 2100951949424901 a001 86267571272/1322157322203*87403803^(6/19) 2100951949424901 a001 32264490531/494493258286*87403803^(6/19) 2100951949424901 a001 1548008755920/23725150497407*87403803^(6/19) 2100951949424901 a001 139583862445/2139295485799*87403803^(6/19) 2100951949424901 a001 53316291173/817138163596*87403803^(6/19) 2100951949424901 a001 20365011074/312119004989*87403803^(6/19) 2100951949424901 a001 7778742049/119218851371*87403803^(6/19) 2100951949424901 a001 2971215073/45537549124*87403803^(6/19) 2100951949424901 a001 1134903170/17393796001*87403803^(6/19) 2100951949424901 a001 165580141/370248451*87403803^(4/19) 2100951949424901 a001 433494437/6643838879*87403803^(6/19) 2100951949424901 a004 Fibonacci(39)*Lucas(41)/(1/2+sqrt(5)/2)^72 2100951949424901 a001 165580141/969323029*87403803^(5/19) 2100951949424901 a001 831985/228811001*87403803^(9/19) 2100951949424901 a001 133957148/5374978561*87403803^(7/19) 2100951949424901 a001 701408733/141422324*141422324^(1/13) 2100951949424901 a001 102334155/45537549124*87403803^(1/2) 2100951949424901 a001 267084832/33281921*33385282^(1/18) 2100951949424901 a001 66978574/35355581*2537720636^(1/9) 2100951949424901 a001 31622993/299537289*312119004989^(1/5) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^11/Lucas(42) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^5/Lucas(39) 2100951949424901 a001 66978574/35355581*28143753123^(1/10) 2100951949424901 a001 31622993/299537289*1568397607^(1/4) 2100951949424901 a001 233802911/9381251041*87403803^(7/19) 2100951949424901 a001 1836311903/73681302247*87403803^(7/19) 2100951949424901 a001 267084832/10716675201*87403803^(7/19) 2100951949424901 a001 12586269025/505019158607*87403803^(7/19) 2100951949424901 a001 10983760033/440719107401*87403803^(7/19) 2100951949424901 a001 43133785636/1730726404001*87403803^(7/19) 2100951949424901 a001 75283811239/3020733700601*87403803^(7/19) 2100951949424901 a001 182717648081/7331474697802*87403803^(7/19) 2100951949424901 a001 139583862445/5600748293801*87403803^(7/19) 2100951949424901 a001 53316291173/2139295485799*87403803^(7/19) 2100951949424901 a001 10182505537/408569081798*87403803^(7/19) 2100951949424901 a001 7778742049/312119004989*87403803^(7/19) 2100951949424901 a001 2971215073/119218851371*87403803^(7/19) 2100951949424901 a001 567451585/22768774562*87403803^(7/19) 2100951949424901 a001 165580141/2537720636*87403803^(6/19) 2100951949424901 a004 Fibonacci(39)*Lucas(43)/(1/2+sqrt(5)/2)^74 2100951949424901 a001 433494437/17393796001*87403803^(7/19) 2100951949424901 a001 12586269025/1568397607*33385282^(1/18) 2100951949424901 a001 701408733/141422324*2537720636^(1/15) 2100951949424901 a001 701408733/141422324*45537549124^(1/17) 2100951949424901 a001 701408733/141422324*14662949395604^(1/21) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^13/Lucas(44) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)^3/Lucas(39) 2100951949424901 a001 63245986/1568397607*73681302247^(1/4) 2100951949424901 a001 701408733/141422324*10749957122^(1/16) 2100951949424901 a001 66978574/35355581*228826127^(1/8) 2100951949424901 a001 165580141/141422324*141422324^(2/13) 2100951949424901 a001 10983760033/1368706081*33385282^(1/18) 2100951949424901 a001 701408733/141422324*599074578^(1/14) 2100951949424901 a001 14619165/10525900321*87403803^(10/19) 2100951949424901 a001 43133785636/5374978561*33385282^(1/18) 2100951949424901 a001 75283811239/9381251041*33385282^(1/18) 2100951949424901 a004 Fibonacci(39)*Lucas(45)/(1/2+sqrt(5)/2)^76 2100951949424901 a001 591286729879/73681302247*33385282^(1/18) 2100951949424901 a001 86000486440/10716675201*33385282^(1/18) 2100951949424901 a001 4052739537881/505019158607*33385282^(1/18) 2100951949424901 a001 3278735159921/408569081798*33385282^(1/18) 2100951949424901 a001 2504730781961/312119004989*33385282^(1/18) 2100951949424901 a001 956722026041/119218851371*33385282^(1/18) 2100951949424901 a001 182717648081/22768774562*33385282^(1/18) 2100951949424901 a001 139583862445/17393796001*33385282^(1/18) 2100951949424901 a001 53316291173/6643838879*33385282^(1/18) 2100951949424901 a001 63245986/23725150497407*2537720636^(11/15) 2100951949424901 a001 63245986/4106118243*2537720636^(1/3) 2100951949424901 a001 63245986/5600748293801*2537720636^(2/3) 2100951949424901 a001 63245986/1322157322203*2537720636^(3/5) 2100951949424901 a001 63245986/505019158607*2537720636^(5/9) 2100951949424901 a001 63245986/312119004989*2537720636^(8/15) 2100951949424901 a001 63245986/73681302247*2537720636^(7/15) 2100951949424901 a001 31622993/22768774562*2537720636^(4/9) 2100951949424901 a001 63245986/4106118243*45537549124^(5/17) 2100951949424901 a001 63245986/4106118243*312119004989^(3/11) 2100951949424901 a001 63245986/4106118243*14662949395604^(5/21) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^15/Lucas(46) 2100951949424901 a004 Fibonacci(46)*(1/2+sqrt(5)/2)/Lucas(39) 2100951949424901 a001 63245986/4106118243*192900153618^(5/18) 2100951949424901 a001 63245986/4106118243*28143753123^(3/10) 2100951949424901 a001 63245986/17393796001*2537720636^(2/5) 2100951949424901 a001 63245986/4106118243*10749957122^(5/16) 2100951949424901 a004 Fibonacci(39)*Lucas(47)/(1/2+sqrt(5)/2)^78 2100951949424901 a001 31622993/5374978561*45537549124^(1/3) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^17/Lucas(48) 2100951949424901 a004 Fibonacci(48)/Lucas(39)/(1/2+sqrt(5)/2) 2100951949424901 a004 Fibonacci(39)*Lucas(49)/(1/2+sqrt(5)/2)^80 2100951949424901 a001 63245986/2139295485799*17393796001^(4/7) 2100951949424901 a001 63245986/73681302247*17393796001^(3/7) 2100951949424901 a001 63245986/28143753123*817138163596^(1/3) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^19/Lucas(50) 2100951949424901 a004 Fibonacci(50)/Lucas(39)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(39)*Lucas(51)/(1/2+sqrt(5)/2)^82 2100951949424901 a001 63245986/73681302247*45537549124^(7/17) 2100951949424901 a001 63245986/23725150497407*45537549124^(11/17) 2100951949424901 a001 63245986/5600748293801*45537549124^(10/17) 2100951949424901 a001 63245986/1322157322203*45537549124^(9/17) 2100951949424901 a001 63245986/312119004989*45537549124^(8/17) 2100951949424901 a001 63245986/73681302247*14662949395604^(1/3) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^21/Lucas(52) 2100951949424901 a004 Fibonacci(52)/Lucas(39)/(1/2+sqrt(5)/2)^5 2100951949424901 a001 63245986/73681302247*192900153618^(7/18) 2100951949424901 a004 Fibonacci(39)*Lucas(53)/(1/2+sqrt(5)/2)^84 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^23/Lucas(54) 2100951949424901 a004 Fibonacci(54)/Lucas(39)/(1/2+sqrt(5)/2)^7 2100951949424901 a004 Fibonacci(39)*Lucas(55)/(1/2+sqrt(5)/2)^86 2100951949424901 a001 63245986/505019158607*312119004989^(5/11) 2100951949424901 a001 63245986/23725150497407*312119004989^(3/5) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^25/Lucas(56) 2100951949424901 a004 Fibonacci(56)/Lucas(39)/(1/2+sqrt(5)/2)^9 2100951949424901 a004 Fibonacci(39)*Lucas(57)/(1/2+sqrt(5)/2)^88 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^27/Lucas(58) 2100951949424901 a004 Fibonacci(58)/Lucas(39)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(39)*Lucas(59)/(1/2+sqrt(5)/2)^90 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^29/Lucas(60) 2100951949424901 a004 Fibonacci(60)/Lucas(39)/(1/2+sqrt(5)/2)^13 2100951949424901 a004 Fibonacci(39)*Lucas(61)/(1/2+sqrt(5)/2)^92 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^31/Lucas(62) 2100951949424901 a004 Fibonacci(62)/Lucas(39)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(39)*Lucas(63)/(1/2+sqrt(5)/2)^94 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^33/Lucas(64) 2100951949424901 a004 Fibonacci(64)/Lucas(39)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(39)*Lucas(65)/(1/2+sqrt(5)/2)^96 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^35/Lucas(66) 2100951949424901 a004 Fibonacci(66)/Lucas(39)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(39)*Lucas(67)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^37/Lucas(68) 2100951949424901 a004 Fibonacci(68)/Lucas(39)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(39)*Lucas(69)/(1/2+sqrt(5)/2)^100 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^39/Lucas(70) 2100951949424901 a004 Fibonacci(70)/Lucas(39)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^41/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(39)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^43/Lucas(74) 2100951949424901 a004 Fibonacci(74)/Lucas(39)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^45/Lucas(76) 2100951949424901 a004 Fibonacci(76)/Lucas(39)/(1/2+sqrt(5)/2)^29 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^47/Lucas(78) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^49/Lucas(80) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^51/Lucas(82) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^53/Lucas(84) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^55/Lucas(86) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^57/Lucas(88) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^59/Lucas(90) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^61/Lucas(92) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^63/Lucas(94) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^65/Lucas(96) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^66/Lucas(97) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^67/Lucas(98) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^68/Lucas(99) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^69/Lucas(100) 2100951949424901 a004 Fibonacci(39)*Lucas(1)/(1/2+sqrt(5)/2)^31 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^64/Lucas(95) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^62/Lucas(93) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^60/Lucas(91) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^58/Lucas(89) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^56/Lucas(87) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^54/Lucas(85) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^52/Lucas(83) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^50/Lucas(81) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^48/Lucas(79) 2100951949424901 a004 Fibonacci(80)/Lucas(39)/(1/2+sqrt(5)/2)^33 2100951949424901 a004 Fibonacci(82)/Lucas(39)/(1/2+sqrt(5)/2)^35 2100951949424901 a004 Fibonacci(84)/Lucas(39)/(1/2+sqrt(5)/2)^37 2100951949424901 a004 Fibonacci(86)/Lucas(39)/(1/2+sqrt(5)/2)^39 2100951949424901 a004 Fibonacci(88)/Lucas(39)/(1/2+sqrt(5)/2)^41 2100951949424901 a004 Fibonacci(90)/Lucas(39)/(1/2+sqrt(5)/2)^43 2100951949424901 a004 Fibonacci(92)/Lucas(39)/(1/2+sqrt(5)/2)^45 2100951949424901 a004 Fibonacci(94)/Lucas(39)/(1/2+sqrt(5)/2)^47 2100951949424901 a004 Fibonacci(96)/Lucas(39)/(1/2+sqrt(5)/2)^49 2100951949424901 a004 Fibonacci(100)/Lucas(39)/(1/2+sqrt(5)/2)^53 2100951949424901 a004 Fibonacci(97)/Lucas(39)/(1/2+sqrt(5)/2)^50 2100951949424901 a004 Fibonacci(98)/Lucas(39)/(1/2+sqrt(5)/2)^51 2100951949424901 a004 Fibonacci(99)/Lucas(39)/(1/2+sqrt(5)/2)^52 2100951949424901 a004 Fibonacci(95)/Lucas(39)/(1/2+sqrt(5)/2)^48 2100951949424901 a004 Fibonacci(93)/Lucas(39)/(1/2+sqrt(5)/2)^46 2100951949424901 a004 Fibonacci(91)/Lucas(39)/(1/2+sqrt(5)/2)^44 2100951949424901 a004 Fibonacci(89)/Lucas(39)/(1/2+sqrt(5)/2)^42 2100951949424901 a004 Fibonacci(87)/Lucas(39)/(1/2+sqrt(5)/2)^40 2100951949424901 a004 Fibonacci(85)/Lucas(39)/(1/2+sqrt(5)/2)^38 2100951949424901 a004 Fibonacci(83)/Lucas(39)/(1/2+sqrt(5)/2)^36 2100951949424901 a004 Fibonacci(81)/Lucas(39)/(1/2+sqrt(5)/2)^34 2100951949424901 a004 Fibonacci(79)/Lucas(39)/(1/2+sqrt(5)/2)^32 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^46/Lucas(77) 2100951949424901 a004 Fibonacci(77)/Lucas(39)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^44/Lucas(75) 2100951949424901 a004 Fibonacci(75)/Lucas(39)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^42/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(39)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^40/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(39)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^38/Lucas(69) 2100951949424901 a004 Fibonacci(69)/Lucas(39)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(39)*Lucas(68)/(1/2+sqrt(5)/2)^99 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^36/Lucas(67) 2100951949424901 a004 Fibonacci(67)/Lucas(39)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(39)*Lucas(66)/(1/2+sqrt(5)/2)^97 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^34/Lucas(65) 2100951949424901 a004 Fibonacci(65)/Lucas(39)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(39)*Lucas(64)/(1/2+sqrt(5)/2)^95 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^32/Lucas(63) 2100951949424901 a004 Fibonacci(63)/Lucas(39)/(1/2+sqrt(5)/2)^16 2100951949424901 a001 31622993/7331474697802*23725150497407^(1/2) 2100951949424901 a004 Fibonacci(39)*Lucas(62)/(1/2+sqrt(5)/2)^93 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^30/Lucas(61) 2100951949424901 a004 Fibonacci(61)/Lucas(39)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(39)*Lucas(60)/(1/2+sqrt(5)/2)^91 2100951949424901 a001 31622993/1730726404001*1322157322203^(1/2) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^28/Lucas(59) 2100951949424901 a004 Fibonacci(59)/Lucas(39)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(39)*Lucas(58)/(1/2+sqrt(5)/2)^89 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^26/Lucas(57) 2100951949424901 a004 Fibonacci(57)/Lucas(39)/(1/2+sqrt(5)/2)^10 2100951949424901 a004 Fibonacci(39)*Lucas(56)/(1/2+sqrt(5)/2)^87 2100951949424901 a001 63245986/312119004989*14662949395604^(8/21) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^24/Lucas(55) 2100951949424901 a004 Fibonacci(55)/Lucas(39)/(1/2+sqrt(5)/2)^8 2100951949424901 a001 63245986/1322157322203*192900153618^(1/2) 2100951949424901 a001 63245986/23725150497407*192900153618^(11/18) 2100951949424901 a001 63245986/312119004989*192900153618^(4/9) 2100951949424901 a004 Fibonacci(39)*Lucas(54)/(1/2+sqrt(5)/2)^85 2100951949424901 a001 63245986/119218851371*312119004989^(2/5) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^22/Lucas(53) 2100951949424901 a004 Fibonacci(53)/Lucas(39)/(1/2+sqrt(5)/2)^6 2100951949424901 a001 31622993/408569081798*73681302247^(1/2) 2100951949424901 a001 63245986/312119004989*73681302247^(6/13) 2100951949424901 a001 63245986/2139295485799*73681302247^(7/13) 2100951949424901 a001 31622993/7331474697802*73681302247^(8/13) 2100951949424901 a004 Fibonacci(39)*Lucas(52)/(1/2+sqrt(5)/2)^83 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^20/Lucas(51) 2100951949424901 a004 Fibonacci(51)/Lucas(39)/(1/2+sqrt(5)/2)^4 2100951949424901 a001 31622993/22768774562*23725150497407^(5/16) 2100951949424901 a001 31622993/22768774562*505019158607^(5/14) 2100951949424901 a001 31622993/22768774562*73681302247^(5/13) 2100951949424901 a001 63245986/505019158607*28143753123^(1/2) 2100951949424901 a001 63245986/5600748293801*28143753123^(3/5) 2100951949424901 a001 10182505537/1268860318*33385282^(1/18) 2100951949424901 a001 31622993/22768774562*28143753123^(2/5) 2100951949424901 a004 Fibonacci(39)*Lucas(50)/(1/2+sqrt(5)/2)^81 2100951949424901 a001 63245986/17393796001*45537549124^(6/17) 2100951949424901 a001 63245986/17393796001*14662949395604^(2/7) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^18/Lucas(49) 2100951949424901 a004 Fibonacci(49)/Lucas(39)/(1/2+sqrt(5)/2)^2 2100951949424901 a001 63245986/17393796001*192900153618^(1/3) 2100951949424901 a001 63245986/73681302247*10749957122^(7/16) 2100951949424901 a001 63245986/119218851371*10749957122^(11/24) 2100951949424901 a001 31622993/22768774562*10749957122^(5/12) 2100951949424901 a001 63245986/312119004989*10749957122^(1/2) 2100951949424901 a001 31622993/408569081798*10749957122^(13/24) 2100951949424901 a001 63245986/1322157322203*10749957122^(9/16) 2100951949424901 a001 63245986/2139295485799*10749957122^(7/12) 2100951949424901 a001 63245986/5600748293801*10749957122^(5/8) 2100951949424901 a001 31622993/7331474697802*10749957122^(2/3) 2100951949424901 a001 63245986/23725150497407*10749957122^(11/16) 2100951949424901 a001 63245986/17393796001*10749957122^(3/8) 2100951949424901 a004 Fibonacci(39)*Lucas(48)/(1/2+sqrt(5)/2)^79 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^16/Lucas(47) 2100951949424901 a006 5^(1/2)*Fibonacci(47)/Lucas(39)/sqrt(5) 2100951949424901 a001 63245986/6643838879*23725150497407^(1/4) 2100951949424901 a001 63245986/6643838879*73681302247^(4/13) 2100951949424901 a001 63245986/6643838879*10749957122^(1/3) 2100951949424901 a001 31622993/22768774562*4106118243^(10/23) 2100951949424901 a001 63245986/17393796001*4106118243^(9/23) 2100951949424901 a001 63245986/119218851371*4106118243^(11/23) 2100951949424901 a001 31622993/96450076809*4106118243^(1/2) 2100951949424901 a001 63245986/312119004989*4106118243^(12/23) 2100951949424901 a001 31622993/408569081798*4106118243^(13/23) 2100951949424901 a001 63245986/2139295485799*4106118243^(14/23) 2100951949424901 a001 63245986/5600748293801*4106118243^(15/23) 2100951949424901 a001 31622993/7331474697802*4106118243^(16/23) 2100951949424901 a001 63245986/6643838879*4106118243^(8/23) 2100951949424901 a004 Fibonacci(39)*Lucas(46)/(1/2+sqrt(5)/2)^77 2100951949424901 a001 31622993/1268860318*17393796001^(2/7) 2100951949424901 a001 31622993/1268860318*14662949395604^(2/9) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^14/Lucas(45) 2100951949424901 a004 Fibonacci(45)*(1/2+sqrt(5)/2)^2/Lucas(39) 2100951949424901 a001 567451585/70711162*10749957122^(1/24) 2100951949424901 a001 31622993/1268860318*10749957122^(7/24) 2100951949424901 a001 567451585/70711162*4106118243^(1/23) 2100951949424901 a001 63245986/17393796001*1568397607^(9/22) 2100951949424901 a001 63245986/6643838879*1568397607^(4/11) 2100951949424901 a001 31622993/1268860318*4106118243^(7/23) 2100951949424901 a001 567451585/70711162*1568397607^(1/22) 2100951949424901 a001 31622993/22768774562*1568397607^(5/11) 2100951949424901 a001 63245986/119218851371*1568397607^(1/2) 2100951949424901 a001 63245986/312119004989*1568397607^(6/11) 2100951949424901 a001 31622993/408569081798*1568397607^(13/22) 2100951949424901 a001 63245986/2139295485799*1568397607^(7/11) 2100951949424901 a001 63245986/5600748293801*1568397607^(15/22) 2100951949424901 a001 31622993/1268860318*1568397607^(7/22) 2100951949424901 a001 567451585/70711162*599074578^(1/21) 2100951949424901 a001 31622993/7331474697802*1568397607^(8/11) 2100951949424901 a001 63245986/23725150497407*1568397607^(3/4) 2100951949424901 a004 Fibonacci(39)*Lucas(44)/(1/2+sqrt(5)/2)^75 2100951949424901 a001 7778742049/969323029*33385282^(1/18) 2100951949424901 a001 63245986/4106118243*599074578^(5/14) 2100951949424901 a001 63245986/969323029*2537720636^(4/15) 2100951949424901 a001 63245986/969323029*45537549124^(4/17) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^12/Lucas(43) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^4/Lucas(39) 2100951949424901 a001 433494437/141422324*23725150497407^(1/16) 2100951949424901 a001 63245986/969323029*192900153618^(2/9) 2100951949424901 a001 433494437/141422324*73681302247^(1/13) 2100951949424901 a001 63245986/969323029*73681302247^(3/13) 2100951949424901 a001 433494437/141422324*10749957122^(1/12) 2100951949424901 a001 63245986/969323029*10749957122^(1/4) 2100951949424901 a001 433494437/141422324*4106118243^(2/23) 2100951949424901 a001 63245986/969323029*4106118243^(6/23) 2100951949424901 a001 31622993/1268860318*599074578^(1/3) 2100951949424901 a001 63245986/6643838879*599074578^(8/21) 2100951949424901 a001 433494437/141422324*1568397607^(1/11) 2100951949424901 a001 567451585/70711162*228826127^(1/20) 2100951949424901 a001 63245986/969323029*1568397607^(3/11) 2100951949424901 a001 63245986/17393796001*599074578^(3/7) 2100951949424901 a001 31622993/22768774562*599074578^(10/21) 2100951949424901 a001 433494437/141422324*599074578^(2/21) 2100951949424901 a001 63245986/73681302247*599074578^(1/2) 2100951949424901 a001 63245986/119218851371*599074578^(11/21) 2100951949424901 a001 63245986/312119004989*599074578^(4/7) 2100951949424901 a001 31622993/408569081798*599074578^(13/21) 2100951949424901 a001 63245986/1322157322203*599074578^(9/14) 2100951949424901 a001 63245986/2139295485799*599074578^(2/3) 2100951949424901 a001 63245986/969323029*599074578^(2/7) 2100951949424901 a001 63245986/5600748293801*599074578^(5/7) 2100951949424901 a001 31622993/7331474697802*599074578^(16/21) 2100951949424901 a001 63245986/23725150497407*599074578^(11/14) 2100951949424901 a001 267914296/28143753123*87403803^(8/19) 2100951949424901 a004 Fibonacci(39)*Lucas(42)/(1/2+sqrt(5)/2)^73 2100951949424901 a001 433494437/141422324*228826127^(1/10) 2100951949424901 a001 701408733/73681302247*87403803^(8/19) 2100951949424901 a001 1836311903/192900153618*87403803^(8/19) 2100951949424901 a001 102287808/10745088481*87403803^(8/19) 2100951949424901 a001 12586269025/1322157322203*87403803^(8/19) 2100951949424901 a001 32951280099/3461452808002*87403803^(8/19) 2100951949424901 a001 86267571272/9062201101803*87403803^(8/19) 2100951949424901 a001 225851433717/23725150497407*87403803^(8/19) 2100951949424901 a001 139583862445/14662949395604*87403803^(8/19) 2100951949424901 a001 53316291173/5600748293801*87403803^(8/19) 2100951949424901 a001 20365011074/2139295485799*87403803^(8/19) 2100951949424901 a001 7778742049/817138163596*87403803^(8/19) 2100951949424901 a001 2971215073/312119004989*87403803^(8/19) 2100951949424901 a001 1134903170/119218851371*87403803^(8/19) 2100951949424901 a001 165580141/6643838879*87403803^(7/19) 2100951949424901 a001 1134903170/228826127*33385282^(1/12) 2100951949424901 a001 433494437/45537549124*87403803^(8/19) 2100951949424901 a001 34111385/64300051206*87403803^(11/19) 2100951949424901 a001 63245986/969323029*228826127^(3/10) 2100951949424901 a001 31622993/1268860318*228826127^(7/20) 2100951949424901 a001 567451585/70711162*87403803^(1/19) 2100951949424901 a001 63245986/4106118243*228826127^(3/8) 2100951949424901 a001 39088169/33385282*12752043^(3/17) 2100951949424901 a001 2971215073/370248451*33385282^(1/18) 2100951949424901 a001 63245986/370248451*2537720636^(2/9) 2100951949424901 a001 165580141/141422324*2537720636^(2/15) 2100951949424901 a001 165580141/141422324*45537549124^(2/17) 2100951949424901 a001 63245986/370248451*312119004989^(2/11) 2100951949424901 a001 165580141/141422324*14662949395604^(2/21) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^10/Lucas(41) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^6/Lucas(39) 2100951949424901 a001 63245986/370248451*28143753123^(1/5) 2100951949424901 a001 165580141/141422324*10749957122^(1/8) 2100951949424901 a001 63245986/370248451*10749957122^(5/24) 2100951949424901 a001 165580141/141422324*4106118243^(3/23) 2100951949424901 a001 63245986/370248451*4106118243^(5/23) 2100951949424901 a001 165580141/141422324*1568397607^(3/22) 2100951949424901 a001 63245986/370248451*1568397607^(5/22) 2100951949424901 a001 63245986/6643838879*228826127^(2/5) 2100951949424901 a001 165580141/141422324*599074578^(1/7) 2100951949424901 a001 63245986/370248451*599074578^(5/21) 2100951949424901 a001 63245986/17393796001*228826127^(9/20) 2100951949424901 a001 267914296/73681302247*87403803^(9/19) 2100951949424901 a001 31622993/22768774562*228826127^(1/2) 2100951949424901 a001 165580141/141422324*228826127^(3/20) 2100951949424901 a001 63245986/119218851371*228826127^(11/20) 2100951949424901 a001 63245986/312119004989*228826127^(3/5) 2100951949424901 a001 233802911/64300051206*87403803^(9/19) 2100951949424901 a001 63245986/505019158607*228826127^(5/8) 2100951949424901 a001 1836311903/505019158607*87403803^(9/19) 2100951949424901 a001 1602508992/440719107401*87403803^(9/19) 2100951949424901 a001 12586269025/3461452808002*87403803^(9/19) 2100951949424901 a001 10983760033/3020733700601*87403803^(9/19) 2100951949424901 a001 86267571272/23725150497407*87403803^(9/19) 2100951949424901 a001 53316291173/14662949395604*87403803^(9/19) 2100951949424901 a001 20365011074/5600748293801*87403803^(9/19) 2100951949424901 a001 7778742049/2139295485799*87403803^(9/19) 2100951949424901 a001 2971215073/817138163596*87403803^(9/19) 2100951949424901 a001 63245986/370248451*228826127^(1/4) 2100951949424901 a001 1134903170/312119004989*87403803^(9/19) 2100951949424901 a001 31622993/408569081798*228826127^(13/20) 2100951949424901 a001 165580141/17393796001*87403803^(8/19) 2100951949424901 a001 267914296/119218851371*87403803^(1/2) 2100951949424901 a001 433494437/119218851371*87403803^(9/19) 2100951949424901 a001 63245986/2139295485799*228826127^(7/10) 2100951949424901 a001 102334155/505019158607*87403803^(12/19) 2100951949424901 a001 63245986/5600748293801*228826127^(3/4) 2100951949424901 a001 433494437/141422324*87403803^(2/19) 2100951949424901 a001 3524667/1568437211*87403803^(1/2) 2100951949424901 a001 31622993/7331474697802*228826127^(4/5) 2100951949424901 a001 1836311903/817138163596*87403803^(1/2) 2100951949424901 a001 4807526976/2139295485799*87403803^(1/2) 2100951949424901 a001 12586269025/5600748293801*87403803^(1/2) 2100951949424901 a001 32951280099/14662949395604*87403803^(1/2) 2100951949424901 a001 53316291173/23725150497407*87403803^(1/2) 2100951949424901 a001 20365011074/9062201101803*87403803^(1/2) 2100951949424901 a001 7778742049/3461452808002*87403803^(1/2) 2100951949424901 a001 2971215073/1322157322203*87403803^(1/2) 2100951949424901 a001 1134903170/505019158607*87403803^(1/2) 2100951949424901 a001 133957148/96450076809*87403803^(10/19) 2100951949424901 a001 433494437/192900153618*87403803^(1/2) 2100951949424901 a001 701408733/505019158607*87403803^(10/19) 2100951949424901 a001 1836311903/1322157322203*87403803^(10/19) 2100951949424901 a001 14930208/10749853441*87403803^(10/19) 2100951949424901 a001 12586269025/9062201101803*87403803^(10/19) 2100951949424901 a001 32951280099/23725150497407*87403803^(10/19) 2100951949424901 a001 10182505537/7331474697802*87403803^(10/19) 2100951949424901 a001 7778742049/5600748293801*87403803^(10/19) 2100951949424901 a001 2971215073/2139295485799*87403803^(10/19) 2100951949424901 a001 567451585/408569081798*87403803^(10/19) 2100951949424901 a004 Fibonacci(39)*Lucas(40)/(1/2+sqrt(5)/2)^71 2100951949424901 a001 165580141/45537549124*87403803^(9/19) 2100951949424901 a001 433494437/312119004989*87403803^(10/19) 2100951949424901 a001 34111385/440719107401*87403803^(13/19) 2100951949424901 a001 2971215073/599074578*33385282^(1/12) 2100951949424901 a001 165580141/73681302247*87403803^(1/2) 2100951949424901 a001 267914296/505019158607*87403803^(11/19) 2100951949424901 a001 7778742049/1568397607*33385282^(1/12) 2100951949424901 a001 20365011074/4106118243*33385282^(1/12) 2100951949424901 a001 53316291173/10749957122*33385282^(1/12) 2100951949424901 a001 139583862445/28143753123*33385282^(1/12) 2100951949424901 a001 365435296162/73681302247*33385282^(1/12) 2100951949424901 a001 956722026041/192900153618*33385282^(1/12) 2100951949424901 a001 2504730781961/505019158607*33385282^(1/12) 2100951949424901 a001 10610209857723/2139295485799*33385282^(1/12) 2100951949424901 a001 140728068720/28374454999*33385282^(1/12) 2100951949424901 a001 591286729879/119218851371*33385282^(1/12) 2100951949424901 a001 225851433717/45537549124*33385282^(1/12) 2100951949424901 a001 86267571272/17393796001*33385282^(1/12) 2100951949424901 a001 32951280099/6643838879*33385282^(1/12) 2100951949424901 a001 1144206275/230701876*33385282^(1/12) 2100951949424901 a001 233802911/440719107401*87403803^(11/19) 2100951949424901 a001 1836311903/3461452808002*87403803^(11/19) 2100951949424901 a001 1602508992/3020733700601*87403803^(11/19) 2100951949424901 a001 12586269025/23725150497407*87403803^(11/19) 2100951949424901 a001 7778742049/14662949395604*87403803^(11/19) 2100951949424901 a001 2971215073/5600748293801*87403803^(11/19) 2100951949424901 a001 4807526976/969323029*33385282^(1/12) 2100951949424901 a001 1134903170/2139295485799*87403803^(11/19) 2100951949424901 a001 165580141/119218851371*87403803^(10/19) 2100951949424901 a001 433494437/817138163596*87403803^(11/19) 2100951949424901 a001 6765/228826126*87403803^(14/19) 2100951949424901 a001 165580141/141422324*87403803^(3/19) 2100951949424901 a001 267914296/1322157322203*87403803^(12/19) 2100951949424901 a001 701408733/228826127*33385282^(1/9) 2100951949424901 a001 1836311903/370248451*33385282^(1/12) 2100951949424901 a001 701408733/3461452808002*87403803^(12/19) 2100951949424901 a001 1836311903/9062201101803*87403803^(12/19) 2100951949424901 a001 4807526976/23725150497407*87403803^(12/19) 2100951949424901 a001 2971215073/14662949395604*87403803^(12/19) 2100951949424901 a001 1134903170/5600748293801*87403803^(12/19) 2100951949424901 a001 165580141/312119004989*87403803^(11/19) 2100951949424901 a001 433494437/2139295485799*87403803^(12/19) 2100951949424901 a001 34111385/3020733700601*87403803^(15/19) 2100951949424901 a001 133957148/1730726404001*87403803^(13/19) 2100951949424901 a001 233802911/3020733700601*87403803^(13/19) 2100951949424901 a001 1836311903/23725150497407*87403803^(13/19) 2100951949424901 a001 567451585/7331474697802*87403803^(13/19) 2100951949424901 a001 165580141/817138163596*87403803^(12/19) 2100951949424901 a001 433494437/5600748293801*87403803^(13/19) 2100951949424901 a001 102334155/23725150497407*87403803^(16/19) 2100951949424901 a001 63245986/370248451*87403803^(5/19) 2100951949424901 a001 63245986/969323029*87403803^(6/19) 2100951949424901 a001 267914296/9062201101803*87403803^(14/19) 2100951949424901 a001 701408733/23725150497407*87403803^(14/19) 2100951949424901 a001 1836311903/599074578*33385282^(1/9) 2100951949424901 a001 165580141/2139295485799*87403803^(13/19) 2100951949424901 a001 433494437/14662949395604*87403803^(14/19) 2100951949424901 a001 31622993/1268860318*87403803^(7/19) 2100951949424901 a001 39088169/228826127*33385282^(5/18) 2100951949424901 a001 686789568/224056801*33385282^(1/9) 2100951949424901 a001 12586269025/4106118243*33385282^(1/9) 2100951949424901 a001 32951280099/10749957122*33385282^(1/9) 2100951949424901 a001 86267571272/28143753123*33385282^(1/9) 2100951949424901 a001 32264490531/10525900321*33385282^(1/9) 2100951949424901 a001 591286729879/192900153618*33385282^(1/9) 2100951949424901 a001 1515744265389/494493258286*33385282^(1/9) 2100951949424901 a001 2504730781961/817138163596*33385282^(1/9) 2100951949424901 a001 956722026041/312119004989*33385282^(1/9) 2100951949424901 a001 365435296162/119218851371*33385282^(1/9) 2100951949424901 a001 139583862445/45537549124*33385282^(1/9) 2100951949424901 a001 53316291173/17393796001*33385282^(1/9) 2100951949424901 a001 20365011074/6643838879*33385282^(1/9) 2100951949424901 a001 7778742049/2537720636*33385282^(1/9) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^8/Lucas(39) 2100951949424901 a001 31622993/70711162*23725150497407^(1/8) 2100951949424901 a001 31622993/70711162*73681302247^(2/13) 2100951949424901 a001 567451585/70711162*33385282^(1/18) 2100951949424901 a001 31622993/70711162*10749957122^(1/6) 2100951949424901 a001 31622993/70711162*4106118243^(4/23) 2100951949424901 a001 31622993/70711162*1568397607^(2/11) 2100951949424901 a001 31622993/70711162*599074578^(4/21) 2100951949424901 a001 267914296/23725150497407*87403803^(15/19) 2100951949424901 a001 2971215073/969323029*33385282^(1/9) 2100951949424901 a001 165580141/5600748293801*87403803^(14/19) 2100951949424901 a001 31622993/70711162*228826127^(1/5) 2100951949424901 a001 63245986/6643838879*87403803^(8/19) 2100951949424901 a001 1134903170/370248451*33385282^(1/9) 2100951949424901 a001 165580141/14662949395604*87403803^(15/19) 2100951949424901 a004 Fibonacci(40)*Lucas(38)/(1/2+sqrt(5)/2)^70 2100951949424901 a001 63245986/17393796001*87403803^(9/19) 2100951949424901 a001 63245986/28143753123*87403803^(1/2) 2100951949424901 a001 31622993/22768774562*87403803^(10/19) 2100951949424901 a001 701408733/141422324*33385282^(1/12) 2100951949424901 a001 63245986/119218851371*87403803^(11/19) 2100951949424901 a001 31622993/70711162*87403803^(4/19) 2100951949424901 a001 267914296/228826127*33385282^(1/6) 2100951949424901 a004 Fibonacci(42)*Lucas(38)/(1/2+sqrt(5)/2)^72 2100951949424901 a004 Fibonacci(44)*Lucas(38)/(1/2+sqrt(5)/2)^74 2100951949424901 a004 Fibonacci(46)*Lucas(38)/(1/2+sqrt(5)/2)^76 2100951949424901 a004 Fibonacci(48)*Lucas(38)/(1/2+sqrt(5)/2)^78 2100951949424901 a004 Fibonacci(50)*Lucas(38)/(1/2+sqrt(5)/2)^80 2100951949424901 a004 Fibonacci(52)*Lucas(38)/(1/2+sqrt(5)/2)^82 2100951949424901 a004 Fibonacci(54)*Lucas(38)/(1/2+sqrt(5)/2)^84 2100951949424901 a004 Fibonacci(56)*Lucas(38)/(1/2+sqrt(5)/2)^86 2100951949424901 a004 Fibonacci(58)*Lucas(38)/(1/2+sqrt(5)/2)^88 2100951949424901 a004 Fibonacci(60)*Lucas(38)/(1/2+sqrt(5)/2)^90 2100951949424901 a004 Fibonacci(62)*Lucas(38)/(1/2+sqrt(5)/2)^92 2100951949424901 a004 Fibonacci(64)*Lucas(38)/(1/2+sqrt(5)/2)^94 2100951949424901 a004 Fibonacci(66)*Lucas(38)/(1/2+sqrt(5)/2)^96 2100951949424901 a004 Fibonacci(68)*Lucas(38)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(70)*Lucas(38)/(1/2+sqrt(5)/2)^100 2100951949424901 a001 2/39088169*(1/2+1/2*5^(1/2))^46 2100951949424901 a004 Fibonacci(69)*Lucas(38)/(1/2+sqrt(5)/2)^99 2100951949424901 a004 Fibonacci(67)*Lucas(38)/(1/2+sqrt(5)/2)^97 2100951949424901 a004 Fibonacci(65)*Lucas(38)/(1/2+sqrt(5)/2)^95 2100951949424901 a004 Fibonacci(63)*Lucas(38)/(1/2+sqrt(5)/2)^93 2100951949424901 a004 Fibonacci(61)*Lucas(38)/(1/2+sqrt(5)/2)^91 2100951949424901 a004 Fibonacci(59)*Lucas(38)/(1/2+sqrt(5)/2)^89 2100951949424901 a004 Fibonacci(57)*Lucas(38)/(1/2+sqrt(5)/2)^87 2100951949424901 a004 Fibonacci(55)*Lucas(38)/(1/2+sqrt(5)/2)^85 2100951949424901 a004 Fibonacci(53)*Lucas(38)/(1/2+sqrt(5)/2)^83 2100951949424901 a004 Fibonacci(51)*Lucas(38)/(1/2+sqrt(5)/2)^81 2100951949424901 a004 Fibonacci(49)*Lucas(38)/(1/2+sqrt(5)/2)^79 2100951949424901 a004 Fibonacci(47)*Lucas(38)/(1/2+sqrt(5)/2)^77 2100951949424901 a004 Fibonacci(45)*Lucas(38)/(1/2+sqrt(5)/2)^75 2100951949424901 a004 Fibonacci(43)*Lucas(38)/(1/2+sqrt(5)/2)^73 2100951949424901 a001 63245986/312119004989*87403803^(12/19) 2100951949424901 a004 Fibonacci(41)*Lucas(38)/(1/2+sqrt(5)/2)^71 2100951949424901 a001 31622993/408569081798*87403803^(13/19) 2100951949424901 a001 39088169/141422324*33385282^(1/4) 2100951949424901 a001 233802911/199691526*33385282^(1/6) 2100951949424901 a001 63245986/2139295485799*87403803^(14/19) 2100951949424901 a001 1836311903/1568397607*33385282^(1/6) 2100951949424901 a001 1602508992/1368706081*33385282^(1/6) 2100951949424901 a001 12586269025/10749957122*33385282^(1/6) 2100951949424901 a001 10983760033/9381251041*33385282^(1/6) 2100951949424901 a001 86267571272/73681302247*33385282^(1/6) 2100951949424901 a001 75283811239/64300051206*33385282^(1/6) 2100951949424901 a001 2504730781961/2139295485799*33385282^(1/6) 2100951949424901 a001 365435296162/312119004989*33385282^(1/6) 2100951949424901 a001 139583862445/119218851371*33385282^(1/6) 2100951949424901 a001 53316291173/45537549124*33385282^(1/6) 2100951949424901 a001 20365011074/17393796001*33385282^(1/6) 2100951949424901 a001 7778742049/6643838879*33385282^(1/6) 2100951949424901 a001 2971215073/2537720636*33385282^(1/6) 2100951949424901 a001 433494437/141422324*33385282^(1/9) 2100951949424901 a001 1134903170/969323029*33385282^(1/6) 2100951949424901 a001 63245986/5600748293801*87403803^(15/19) 2100951949424901 a001 433494437/370248451*33385282^(1/6) 2100951949424901 a001 31622993/7331474697802*87403803^(16/19) 2100951949424901 a001 102334155/228826127*33385282^(2/9) 2100951949424901 a001 39088169/599074578*33385282^(1/3) 2100951949424901 a004 Fibonacci(39)*Lucas(38)/(1/2+sqrt(5)/2)^69 2100951949424901 a001 133957148/299537289*33385282^(2/9) 2100951949424901 a001 701408733/1568397607*33385282^(2/9) 2100951949424901 a001 1836311903/4106118243*33385282^(2/9) 2100951949424901 a001 2403763488/5374978561*33385282^(2/9) 2100951949424901 a001 12586269025/28143753123*33385282^(2/9) 2100951949424901 a001 32951280099/73681302247*33385282^(2/9) 2100951949424901 a001 43133785636/96450076809*33385282^(2/9) 2100951949424901 a001 225851433717/505019158607*33385282^(2/9) 2100951949424901 a001 591286729879/1322157322203*33385282^(2/9) 2100951949424901 a001 10610209857723/23725150497407*33385282^(2/9) 2100951949424901 a001 139583862445/312119004989*33385282^(2/9) 2100951949424901 a001 53316291173/119218851371*33385282^(2/9) 2100951949424901 a001 10182505537/22768774562*33385282^(2/9) 2100951949424901 a001 7778742049/17393796001*33385282^(2/9) 2100951949424901 a001 2971215073/6643838879*33385282^(2/9) 2100951949424901 a001 567451585/1268860318*33385282^(2/9) 2100951949424901 a001 24157817/87403803*141422324^(3/13) 2100951949424901 a001 433494437/969323029*33385282^(2/9) 2100951949424901 a001 165580141/141422324*33385282^(1/6) 2100951949424901 a001 24157817/87403803*2537720636^(1/5) 2100951949424901 a001 39088169/54018521*17393796001^(1/7) 2100951949424901 a001 24157817/87403803*45537549124^(3/17) 2100951949424901 a001 24157817/87403803*817138163596^(3/19) 2100951949424901 a001 24157817/87403803*14662949395604^(1/7) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^9/Lucas(38) 2100951949424901 a004 Fibonacci(38)*(1/2+sqrt(5)/2)^7/Lucas(37) 2100951949424901 a001 24157817/87403803*10749957122^(3/16) 2100951949424901 a001 39088169/54018521*599074578^(1/6) 2100951949424901 a001 24157817/87403803*599074578^(3/14) 2100951949424901 a001 102334155/370248451*33385282^(1/4) 2100951949424901 a001 165580141/370248451*33385282^(2/9) 2100951949424901 a001 39088169/1568397607*33385282^(7/18) 2100951949424901 a001 267914296/969323029*33385282^(1/4) 2100951949424901 a001 701408733/2537720636*33385282^(1/4) 2100951949424901 a001 1836311903/6643838879*33385282^(1/4) 2100951949424901 a001 4807526976/17393796001*33385282^(1/4) 2100951949424901 a001 12586269025/45537549124*33385282^(1/4) 2100951949424901 a001 32951280099/119218851371*33385282^(1/4) 2100951949424901 a001 86267571272/312119004989*33385282^(1/4) 2100951949424901 a001 225851433717/817138163596*33385282^(1/4) 2100951949424901 a001 1548008755920/5600748293801*33385282^(1/4) 2100951949424901 a001 139583862445/505019158607*33385282^(1/4) 2100951949424901 a001 53316291173/192900153618*33385282^(1/4) 2100951949424901 a001 20365011074/73681302247*33385282^(1/4) 2100951949424901 a001 7778742049/28143753123*33385282^(1/4) 2100951949424901 a001 2971215073/10749957122*33385282^(1/4) 2100951949424901 a001 1134903170/4106118243*33385282^(1/4) 2100951949424901 a001 433494437/1568397607*33385282^(1/4) 2100951949424901 a001 34111385/199691526*33385282^(5/18) 2100951949424901 a001 165580141/599074578*33385282^(1/4) 2100951949424901 a001 233802911/29134601*12752043^(1/17) 2100951949424901 a001 39088169/2537720636*33385282^(5/12) 2100951949424901 a001 267914296/1568397607*33385282^(5/18) 2100951949424901 a001 233802911/1368706081*33385282^(5/18) 2100951949424901 a001 1836311903/10749957122*33385282^(5/18) 2100951949424901 a001 1602508992/9381251041*33385282^(5/18) 2100951949424901 a001 12586269025/73681302247*33385282^(5/18) 2100951949424901 a001 10983760033/64300051206*33385282^(5/18) 2100951949424901 a001 86267571272/505019158607*33385282^(5/18) 2100951949424901 a001 75283811239/440719107401*33385282^(5/18) 2100951949424901 a001 2504730781961/14662949395604*33385282^(5/18) 2100951949424901 a001 139583862445/817138163596*33385282^(5/18) 2100951949424901 a001 53316291173/312119004989*33385282^(5/18) 2100951949424901 a001 20365011074/119218851371*33385282^(5/18) 2100951949424901 a001 7778742049/45537549124*33385282^(5/18) 2100951949424901 a001 2971215073/17393796001*33385282^(5/18) 2100951949424901 a001 1134903170/6643838879*33385282^(5/18) 2100951949424901 a001 433494437/2537720636*33385282^(5/18) 2100951949424901 a001 63245986/228826127*33385282^(1/4) 2100951949424901 a001 165580141/969323029*33385282^(5/18) 2100951949424901 a001 39088169/4106118243*33385282^(4/9) 2100951949424901 a001 14619165/224056801*33385282^(1/3) 2100951949424901 a004 Fibonacci(37)*Lucas(39)/(1/2+sqrt(5)/2)^68 2100951949424901 a001 267914296/4106118243*33385282^(1/3) 2100951949424901 a001 701408733/10749957122*33385282^(1/3) 2100951949424901 a001 1836311903/28143753123*33385282^(1/3) 2100951949424901 a001 686789568/10525900321*33385282^(1/3) 2100951949424901 a001 12586269025/192900153618*33385282^(1/3) 2100951949424901 a001 32951280099/505019158607*33385282^(1/3) 2100951949424901 a001 86267571272/1322157322203*33385282^(1/3) 2100951949424901 a001 32264490531/494493258286*33385282^(1/3) 2100951949424901 a001 1548008755920/23725150497407*33385282^(1/3) 2100951949424901 a001 365435296162/5600748293801*33385282^(1/3) 2100951949424901 a001 139583862445/2139295485799*33385282^(1/3) 2100951949424901 a001 53316291173/817138163596*33385282^(1/3) 2100951949424901 a001 20365011074/312119004989*33385282^(1/3) 2100951949424901 a001 7778742049/119218851371*33385282^(1/3) 2100951949424901 a001 2971215073/45537549124*33385282^(1/3) 2100951949424901 a001 1134903170/17393796001*33385282^(1/3) 2100951949424901 a001 31622993/70711162*33385282^(2/9) 2100951949424901 a001 433494437/6643838879*33385282^(1/3) 2100951949424901 a001 24157817/9062201101803*141422324^(11/13) 2100951949424901 a001 24157817/2139295485799*141422324^(10/13) 2100951949424901 a001 63245986/370248451*33385282^(5/18) 2100951949424901 a001 165580141/2537720636*33385282^(1/3) 2100951949424901 a001 24157817/505019158607*141422324^(9/13) 2100951949424901 a001 24157817/312119004989*141422324^(2/3) 2100951949424901 a001 24157817/119218851371*141422324^(8/13) 2100951949424901 a001 24157817/28143753123*141422324^(7/13) 2100951949424901 a001 39088169/10749957122*33385282^(1/2) 2100951949424901 a001 24157817/6643838879*141422324^(6/13) 2100951949424901 a001 24157817/1568397607*141422324^(5/13) 2100951949424901 a001 24157817/599074578*141422324^(1/3) 2100951949424901 a001 102334155/54018521*2537720636^(1/9) 2100951949424901 a001 102334155/54018521*312119004989^(1/11) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^11/Lucas(40) 2100951949424901 a004 Fibonacci(40)*(1/2+sqrt(5)/2)^5/Lucas(37) 2100951949424901 a001 102334155/54018521*28143753123^(1/10) 2100951949424901 a001 24157817/228826127*1568397607^(1/4) 2100951949424901 a001 102334155/54018521*228826127^(1/8) 2100951949424901 a001 34111385/1368706081*33385282^(7/18) 2100951949424901 a001 24157817/370248451*141422324^(4/13) 2100951949424901 a004 Fibonacci(37)*Lucas(41)/(1/2+sqrt(5)/2)^70 2100951949424901 a001 9227465/817138163596*20633239^(6/7) 2100951949424901 a001 267914296/54018521*141422324^(1/13) 2100951949424901 a001 267914296/54018521*2537720636^(1/15) 2100951949424901 a001 267914296/54018521*45537549124^(1/17) 2100951949424901 a001 267914296/54018521*14662949395604^(1/21) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^13/Lucas(42) 2100951949424901 a004 Fibonacci(42)*(1/2+sqrt(5)/2)^3/Lucas(37) 2100951949424901 a001 24157817/599074578*73681302247^(1/4) 2100951949424901 a001 267914296/54018521*10749957122^(1/16) 2100951949424901 a001 267914296/54018521*599074578^(1/14) 2100951949424901 a004 Fibonacci(37)*Lucas(43)/(1/2+sqrt(5)/2)^72 2100951949424901 a001 24157817/1568397607*2537720636^(1/3) 2100951949424901 a001 24157817/1568397607*45537549124^(5/17) 2100951949424901 a001 24157817/1568397607*312119004989^(3/11) 2100951949424901 a001 24157817/1568397607*14662949395604^(5/21) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^15/Lucas(44) 2100951949424901 a004 Fibonacci(44)*(1/2+sqrt(5)/2)/Lucas(37) 2100951949424901 a001 24157817/1568397607*192900153618^(5/18) 2100951949424901 a001 24157817/1568397607*28143753123^(3/10) 2100951949424901 a001 24157817/1568397607*10749957122^(5/16) 2100951949424901 a004 Fibonacci(37)*Lucas(45)/(1/2+sqrt(5)/2)^74 2100951949424901 a001 1836311903/228826127*12752043^(1/17) 2100951949424901 a001 24157817/23725150497407*2537720636^(7/9) 2100951949424901 a001 24157817/9062201101803*2537720636^(11/15) 2100951949424901 a001 24157817/2139295485799*2537720636^(2/3) 2100951949424901 a001 24157817/505019158607*2537720636^(3/5) 2100951949424901 a001 24157817/192900153618*2537720636^(5/9) 2100951949424901 a001 24157817/119218851371*2537720636^(8/15) 2100951949424901 a001 24157817/28143753123*2537720636^(7/15) 2100951949424901 a001 24157817/17393796001*2537720636^(4/9) 2100951949424901 a001 24157817/4106118243*45537549124^(1/3) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^17/Lucas(46) 2100951949424901 a004 Fibonacci(46)/Lucas(37)/(1/2+sqrt(5)/2) 2100951949424901 a001 24157817/6643838879*2537720636^(2/5) 2100951949424901 a004 Fibonacci(37)*Lucas(47)/(1/2+sqrt(5)/2)^76 2100951949424901 a001 24157817/10749957122*817138163596^(1/3) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^19/Lucas(48) 2100951949424901 a004 Fibonacci(48)/Lucas(37)/(1/2+sqrt(5)/2)^3 2100951949424901 a004 Fibonacci(37)*Lucas(49)/(1/2+sqrt(5)/2)^78 2100951949424901 a001 24157817/28143753123*17393796001^(3/7) 2100951949424901 a001 24157817/23725150497407*17393796001^(5/7) 2100951949424901 a001 24157817/817138163596*17393796001^(4/7) 2100951949424901 a001 24157817/28143753123*45537549124^(7/17) 2100951949424901 a001 24157817/28143753123*14662949395604^(1/3) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^21/Lucas(50) 2100951949424901 a004 Fibonacci(50)/Lucas(37)/(1/2+sqrt(5)/2)^5 2100951949424901 a001 24157817/28143753123*192900153618^(7/18) 2100951949424901 a004 Fibonacci(37)*Lucas(51)/(1/2+sqrt(5)/2)^80 2100951949424901 a001 24157817/14662949395604*45537549124^(2/3) 2100951949424901 a001 24157817/9062201101803*45537549124^(11/17) 2100951949424901 a001 24157817/2139295485799*45537549124^(10/17) 2100951949424901 a001 24157817/505019158607*45537549124^(9/17) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^23/Lucas(52) 2100951949424901 a004 Fibonacci(52)/Lucas(37)/(1/2+sqrt(5)/2)^7 2100951949424901 a001 24157817/119218851371*45537549124^(8/17) 2100951949424901 a004 Fibonacci(37)*Lucas(53)/(1/2+sqrt(5)/2)^82 2100951949424901 a001 24157817/192900153618*312119004989^(5/11) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^25/Lucas(54) 2100951949424901 a004 Fibonacci(54)/Lucas(37)/(1/2+sqrt(5)/2)^9 2100951949424901 a001 24157817/192900153618*3461452808002^(5/12) 2100951949424901 a004 Fibonacci(37)*Lucas(55)/(1/2+sqrt(5)/2)^84 2100951949424901 a001 24157817/2139295485799*312119004989^(6/11) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^27/Lucas(56) 2100951949424901 a004 Fibonacci(56)/Lucas(37)/(1/2+sqrt(5)/2)^11 2100951949424901 a004 Fibonacci(37)*Lucas(57)/(1/2+sqrt(5)/2)^86 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^29/Lucas(58) 2100951949424901 a004 Fibonacci(58)/Lucas(37)/(1/2+sqrt(5)/2)^13 2100951949424901 a001 24157817/1322157322203*1322157322203^(1/2) 2100951949424901 a004 Fibonacci(37)*Lucas(59)/(1/2+sqrt(5)/2)^88 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^31/Lucas(60) 2100951949424901 a004 Fibonacci(60)/Lucas(37)/(1/2+sqrt(5)/2)^15 2100951949424901 a004 Fibonacci(37)*Lucas(61)/(1/2+sqrt(5)/2)^90 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^33/Lucas(62) 2100951949424901 a004 Fibonacci(62)/Lucas(37)/(1/2+sqrt(5)/2)^17 2100951949424901 a004 Fibonacci(37)*Lucas(63)/(1/2+sqrt(5)/2)^92 2100951949424901 a001 24157817/23725150497407*14662949395604^(5/9) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^35/Lucas(64) 2100951949424901 a004 Fibonacci(64)/Lucas(37)/(1/2+sqrt(5)/2)^19 2100951949424901 a004 Fibonacci(37)*Lucas(65)/(1/2+sqrt(5)/2)^94 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^37/Lucas(66) 2100951949424901 a004 Fibonacci(66)/Lucas(37)/(1/2+sqrt(5)/2)^21 2100951949424901 a004 Fibonacci(37)*Lucas(67)/(1/2+sqrt(5)/2)^96 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^39/Lucas(68) 2100951949424901 a004 Fibonacci(68)/Lucas(37)/(1/2+sqrt(5)/2)^23 2100951949424901 a004 Fibonacci(37)*Lucas(69)/(1/2+sqrt(5)/2)^98 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^41/Lucas(70) 2100951949424901 a004 Fibonacci(70)/Lucas(37)/(1/2+sqrt(5)/2)^25 2100951949424901 a004 Fibonacci(37)*Lucas(71)/(1/2+sqrt(5)/2)^100 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^43/Lucas(72) 2100951949424901 a004 Fibonacci(72)/Lucas(37)/(1/2+sqrt(5)/2)^27 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^45/Lucas(74) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^47/Lucas(76) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^49/Lucas(78) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^51/Lucas(80) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^53/Lucas(82) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^55/Lucas(84) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^57/Lucas(86) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^59/Lucas(88) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^61/Lucas(90) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^63/Lucas(92) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^65/Lucas(94) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^67/Lucas(96) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^69/Lucas(98) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^70/Lucas(99) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^71/Lucas(100) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^68/Lucas(97) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^66/Lucas(95) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^64/Lucas(93) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^62/Lucas(91) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^60/Lucas(89) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^58/Lucas(87) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^56/Lucas(85) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^54/Lucas(83) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^52/Lucas(81) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^50/Lucas(79) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^48/Lucas(77) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^46/Lucas(75) 2100951949424901 a004 Fibonacci(76)/Lucas(37)/(1/2+sqrt(5)/2)^31 2100951949424901 a004 Fibonacci(78)/Lucas(37)/(1/2+sqrt(5)/2)^33 2100951949424901 a004 Fibonacci(80)/Lucas(37)/(1/2+sqrt(5)/2)^35 2100951949424901 a004 Fibonacci(82)/Lucas(37)/(1/2+sqrt(5)/2)^37 2100951949424901 a004 Fibonacci(84)/Lucas(37)/(1/2+sqrt(5)/2)^39 2100951949424901 a004 Fibonacci(86)/Lucas(37)/(1/2+sqrt(5)/2)^41 2100951949424901 a004 Fibonacci(88)/Lucas(37)/(1/2+sqrt(5)/2)^43 2100951949424901 a004 Fibonacci(90)/Lucas(37)/(1/2+sqrt(5)/2)^45 2100951949424901 a004 Fibonacci(92)/Lucas(37)/(1/2+sqrt(5)/2)^47 2100951949424901 a004 Fibonacci(94)/Lucas(37)/(1/2+sqrt(5)/2)^49 2100951949424901 a004 Fibonacci(96)/Lucas(37)/(1/2+sqrt(5)/2)^51 2100951949424901 a004 Fibonacci(100)/Lucas(37)/(1/2+sqrt(5)/2)^55 2100951949424901 a004 Fibonacci(98)/Lucas(37)/(1/2+sqrt(5)/2)^53 2100951949424901 a004 Fibonacci(97)/Lucas(37)/(1/2+sqrt(5)/2)^52 2100951949424901 a004 Fibonacci(99)/Lucas(37)/(1/2+sqrt(5)/2)^54 2100951949424901 a004 Fibonacci(95)/Lucas(37)/(1/2+sqrt(5)/2)^50 2100951949424901 a004 Fibonacci(93)/Lucas(37)/(1/2+sqrt(5)/2)^48 2100951949424901 a004 Fibonacci(91)/Lucas(37)/(1/2+sqrt(5)/2)^46 2100951949424901 a004 Fibonacci(89)/Lucas(37)/(1/2+sqrt(5)/2)^44 2100951949424901 a004 Fibonacci(87)/Lucas(37)/(1/2+sqrt(5)/2)^42 2100951949424901 a004 Fibonacci(85)/Lucas(37)/(1/2+sqrt(5)/2)^40 2100951949424901 a004 Fibonacci(83)/Lucas(37)/(1/2+sqrt(5)/2)^38 2100951949424901 a004 Fibonacci(81)/Lucas(37)/(1/2+sqrt(5)/2)^36 2100951949424901 a004 Fibonacci(79)/Lucas(37)/(1/2+sqrt(5)/2)^34 2100951949424901 a004 Fibonacci(77)/Lucas(37)/(1/2+sqrt(5)/2)^32 2100951949424901 a004 Fibonacci(75)/Lucas(37)/(1/2+sqrt(5)/2)^30 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^44/Lucas(73) 2100951949424901 a004 Fibonacci(73)/Lucas(37)/(1/2+sqrt(5)/2)^28 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^42/Lucas(71) 2100951949424901 a004 Fibonacci(71)/Lucas(37)/(1/2+sqrt(5)/2)^26 2100951949424901 a004 Fibonacci(37)*Lucas(70)/(1/2+sqrt(5)/2)^99 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^40/Lucas(69) 2100951949424901 a004 Fibonacci(69)/Lucas(37)/(1/2+sqrt(5)/2)^24 2100951949424901 a004 Fibonacci(37)*Lucas(68)/(1/2+sqrt(5)/2)^97 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^38/Lucas(67) 2100951949424901 a004 Fibonacci(67)/Lucas(37)/(1/2+sqrt(5)/2)^22 2100951949424901 a004 Fibonacci(37)*Lucas(66)/(1/2+sqrt(5)/2)^95 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^36/Lucas(65) 2100951949424901 a004 Fibonacci(65)/Lucas(37)/(1/2+sqrt(5)/2)^20 2100951949424901 a004 Fibonacci(37)*Lucas(64)/(1/2+sqrt(5)/2)^93 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^34/Lucas(63) 2100951949424901 a004 Fibonacci(63)/Lucas(37)/(1/2+sqrt(5)/2)^18 2100951949424901 a004 Fibonacci(37)*Lucas(62)/(1/2+sqrt(5)/2)^91 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^32/Lucas(61) 2100951949424901 a004 Fibonacci(61)/Lucas(37)/(1/2+sqrt(5)/2)^16 2100951949424901 a004 Fibonacci(37)*Lucas(60)/(1/2+sqrt(5)/2)^89 2100951949424901 a001 24157817/2139295485799*14662949395604^(10/21) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^30/Lucas(59) 2100951949424901 a004 Fibonacci(59)/Lucas(37)/(1/2+sqrt(5)/2)^14 2100951949424901 a004 Fibonacci(37)*Lucas(58)/(1/2+sqrt(5)/2)^87 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^28/Lucas(57) 2100951949424901 a004 Fibonacci(57)/Lucas(37)/(1/2+sqrt(5)/2)^12 2100951949424901 a004 Fibonacci(37)*Lucas(56)/(1/2+sqrt(5)/2)^85 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^26/Lucas(55) 2100951949424901 a004 Fibonacci(55)/Lucas(37)/(1/2+sqrt(5)/2)^10 2100951949424901 a001 24157817/2139295485799*192900153618^(5/9) 2100951949424901 a001 24157817/9062201101803*192900153618^(11/18) 2100951949424901 a004 Fibonacci(37)*Lucas(54)/(1/2+sqrt(5)/2)^83 2100951949424901 a001 24157817/119218851371*14662949395604^(8/21) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^24/Lucas(53) 2100951949424901 a004 Fibonacci(53)/Lucas(37)/(1/2+sqrt(5)/2)^8 2100951949424901 a001 24157817/119218851371*192900153618^(4/9) 2100951949424901 a001 24157817/312119004989*73681302247^(1/2) 2100951949424901 a001 24157817/5600748293801*73681302247^(8/13) 2100951949424901 a001 24157817/119218851371*73681302247^(6/13) 2100951949424901 a004 Fibonacci(37)*Lucas(52)/(1/2+sqrt(5)/2)^81 2100951949424901 a001 24157817/45537549124*312119004989^(2/5) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^22/Lucas(51) 2100951949424901 a004 Fibonacci(51)/Lucas(37)/(1/2+sqrt(5)/2)^6 2100951949424901 a001 24157817/192900153618*28143753123^(1/2) 2100951949424901 a001 24157817/2139295485799*28143753123^(3/5) 2100951949424901 a001 24157817/23725150497407*28143753123^(7/10) 2100951949424901 a004 Fibonacci(37)*Lucas(50)/(1/2+sqrt(5)/2)^79 2100951949424901 a001 24157817/28143753123*10749957122^(7/16) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^20/Lucas(49) 2100951949424901 a004 Fibonacci(49)/Lucas(37)/(1/2+sqrt(5)/2)^4 2100951949424901 a001 24157817/17393796001*23725150497407^(5/16) 2100951949424901 a001 24157817/17393796001*505019158607^(5/14) 2100951949424901 a001 24157817/17393796001*73681302247^(5/13) 2100951949424901 a001 24157817/17393796001*28143753123^(2/5) 2100951949424901 a001 24157817/119218851371*10749957122^(1/2) 2100951949424901 a001 24157817/45537549124*10749957122^(11/24) 2100951949424901 a001 24157817/312119004989*10749957122^(13/24) 2100951949424901 a001 24157817/505019158607*10749957122^(9/16) 2100951949424901 a001 24157817/817138163596*10749957122^(7/12) 2100951949424901 a001 24157817/2139295485799*10749957122^(5/8) 2100951949424901 a001 24157817/5600748293801*10749957122^(2/3) 2100951949424901 a001 24157817/9062201101803*10749957122^(11/16) 2100951949424901 a001 24157817/14662949395604*10749957122^(17/24) 2100951949424901 a001 24157817/17393796001*10749957122^(5/12) 2100951949424901 a004 Fibonacci(37)*Lucas(48)/(1/2+sqrt(5)/2)^77 2100951949424901 a001 24157817/6643838879*45537549124^(6/17) 2100951949424901 a001 24157817/6643838879*14662949395604^(2/7) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^18/Lucas(47) 2100951949424901 a004 Fibonacci(47)/Lucas(37)/(1/2+sqrt(5)/2)^2 2100951949424901 a001 24157817/6643838879*192900153618^(1/3) 2100951949424901 a001 24157817/6643838879*10749957122^(3/8) 2100951949424901 a001 24157817/45537549124*4106118243^(11/23) 2100951949424901 a001 24157817/17393796001*4106118243^(10/23) 2100951949424901 a001 24157817/73681302247*4106118243^(1/2) 2100951949424901 a001 24157817/119218851371*4106118243^(12/23) 2100951949424901 a001 24157817/312119004989*4106118243^(13/23) 2100951949424901 a001 24157817/817138163596*4106118243^(14/23) 2100951949424901 a001 24157817/2139295485799*4106118243^(15/23) 2100951949424901 a001 24157817/5600748293801*4106118243^(16/23) 2100951949424901 a001 24157817/14662949395604*4106118243^(17/23) 2100951949424901 a001 24157817/6643838879*4106118243^(9/23) 2100951949424901 a004 Fibonacci(37)*Lucas(46)/(1/2+sqrt(5)/2)^75 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^16/Lucas(45) 2100951949424901 a001 24157817/2537720636*23725150497407^(1/4) 2100951949424901 a001 24157817/2537720636*73681302247^(4/13) 2100951949424901 a001 24157817/2537720636*10749957122^(1/3) 2100951949424901 a001 24157817/2537720636*4106118243^(8/23) 2100951949424901 a001 24157817/17393796001*1568397607^(5/11) 2100951949424901 a001 24157817/6643838879*1568397607^(9/22) 2100951949424901 a001 24157817/45537549124*1568397607^(1/2) 2100951949424901 a001 24157817/119218851371*1568397607^(6/11) 2100951949424901 a001 24157817/312119004989*1568397607^(13/22) 2100951949424901 a001 24157817/817138163596*1568397607^(7/11) 2100951949424901 a001 24157817/2139295485799*1568397607^(15/22) 2100951949424901 a001 24157817/5600748293801*1568397607^(8/11) 2100951949424901 a001 24157817/2537720636*1568397607^(4/11) 2100951949424901 a001 24157817/9062201101803*1568397607^(3/4) 2100951949424901 a001 24157817/14662949395604*1568397607^(17/22) 2100951949424901 a004 Fibonacci(37)*Lucas(44)/(1/2+sqrt(5)/2)^73 2100951949424901 a001 24157817/1568397607*599074578^(5/14) 2100951949424901 a001 24157817/969323029*17393796001^(2/7) 2100951949424901 a001 24157817/969323029*14662949395604^(2/9) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^14/Lucas(43) 2100951949424901 a004 Fibonacci(43)*(1/2+sqrt(5)/2)^2/Lucas(37) 2100951949424901 a001 433494437/54018521*10749957122^(1/24) 2100951949424901 a001 24157817/969323029*10749957122^(7/24) 2100951949424901 a001 433494437/54018521*4106118243^(1/23) 2100951949424901 a001 24157817/969323029*4106118243^(7/23) 2100951949424901 a001 433494437/54018521*1568397607^(1/22) 2100951949424901 a001 24157817/969323029*1568397607^(7/22) 2100951949424901 a001 433494437/54018521*599074578^(1/21) 2100951949424901 a001 24157817/2537720636*599074578^(8/21) 2100951949424901 a001 24157817/6643838879*599074578^(3/7) 2100951949424901 a001 24157817/17393796001*599074578^(10/21) 2100951949424901 a001 24157817/28143753123*599074578^(1/2) 2100951949424901 a001 24157817/45537549124*599074578^(11/21) 2100951949424901 a001 24157817/119218851371*599074578^(4/7) 2100951949424901 a001 24157817/312119004989*599074578^(13/21) 2100951949424901 a001 24157817/505019158607*599074578^(9/14) 2100951949424901 a001 24157817/817138163596*599074578^(2/3) 2100951949424901 a001 24157817/2139295485799*599074578^(5/7) 2100951949424901 a001 24157817/969323029*599074578^(1/3) 2100951949424901 a001 433494437/54018521*228826127^(1/20) 2100951949424901 a001 24157817/5600748293801*599074578^(16/21) 2100951949424901 a001 24157817/9062201101803*599074578^(11/14) 2100951949424901 a001 24157817/14662949395604*599074578^(17/21) 2100951949424901 a001 24157817/23725150497407*599074578^(5/6) 2100951949424901 a004 Fibonacci(37)*Lucas(42)/(1/2+sqrt(5)/2)^71 2100951949424901 a001 133957148/5374978561*33385282^(7/18) 2100951949424901 a001 233802911/9381251041*33385282^(7/18) 2100951949424901 a001 1836311903/73681302247*33385282^(7/18) 2100951949424901 a001 267084832/10716675201*33385282^(7/18) 2100951949424901 a001 12586269025/505019158607*33385282^(7/18) 2100951949424901 a001 10983760033/440719107401*33385282^(7/18) 2100951949424901 a001 43133785636/1730726404001*33385282^(7/18) 2100951949424901 a001 182717648081/7331474697802*33385282^(7/18) 2100951949424901 a001 139583862445/5600748293801*33385282^(7/18) 2100951949424901 a001 53316291173/2139295485799*33385282^(7/18) 2100951949424901 a001 10182505537/408569081798*33385282^(7/18) 2100951949424901 a001 7778742049/312119004989*33385282^(7/18) 2100951949424901 a001 2971215073/119218851371*33385282^(7/18) 2100951949424901 a001 567451585/22768774562*33385282^(7/18) 2100951949424901 a001 24157817/1568397607*228826127^(3/8) 2100951949424901 a001 24157817/370248451*2537720636^(4/15) 2100951949424901 a001 433494437/17393796001*33385282^(7/18) 2100951949424901 a001 24157817/370248451*45537549124^(4/17) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^12/Lucas(41) 2100951949424901 a004 Fibonacci(41)*(1/2+sqrt(5)/2)^4/Lucas(37) 2100951949424901 a001 165580141/54018521*23725150497407^(1/16) 2100951949424901 a001 24157817/370248451*192900153618^(2/9) 2100951949424901 a001 165580141/54018521*73681302247^(1/13) 2100951949424901 a001 24157817/370248451*73681302247^(3/13) 2100951949424901 a001 165580141/54018521*10749957122^(1/12) 2100951949424901 a001 24157817/370248451*10749957122^(1/4) 2100951949424901 a001 165580141/54018521*4106118243^(2/23) 2100951949424901 a001 24157817/370248451*4106118243^(6/23) 2100951949424901 a001 165580141/54018521*1568397607^(1/11) 2100951949424901 a001 24157817/370248451*1568397607^(3/11) 2100951949424901 a001 63245986/969323029*33385282^(1/3) 2100951949424901 a001 165580141/54018521*599074578^(2/21) 2100951949424901 a001 24157817/969323029*228826127^(7/20) 2100951949424901 a001 24157817/2537720636*228826127^(2/5) 2100951949424901 a001 433494437/54018521*87403803^(1/19) 2100951949424901 a001 24157817/370248451*599074578^(2/7) 2100951949424901 a001 24157817/6643838879*228826127^(9/20) 2100951949424901 a001 165580141/54018521*228826127^(1/10) 2100951949424901 a001 24157817/17393796001*228826127^(1/2) 2100951949424901 a001 24157817/45537549124*228826127^(11/20) 2100951949424901 a001 24157817/119218851371*228826127^(3/5) 2100951949424901 a001 24157817/192900153618*228826127^(5/8) 2100951949424901 a001 102334155/6643838879*33385282^(5/12) 2100951949424901 a001 24157817/312119004989*228826127^(13/20) 2100951949424901 a001 24157817/370248451*228826127^(3/10) 2100951949424901 a001 24157817/817138163596*228826127^(7/10) 2100951949424901 a001 165580141/6643838879*33385282^(7/18) 2100951949424901 a001 24157817/2139295485799*228826127^(3/4) 2100951949424901 a001 24157817/5600748293801*228826127^(4/5) 2100951949424901 a001 24157817/14662949395604*228826127^(17/20) 2100951949424901 a001 267084832/33281921*12752043^(1/17) 2100951949424901 a001 24157817/23725150497407*228826127^(7/8) 2100951949424901 a001 12586269025/1568397607*12752043^(1/17) 2100951949424901 a001 10983760033/1368706081*12752043^(1/17) 2100951949424901 a001 43133785636/5374978561*12752043^(1/17) 2100951949424901 a001 75283811239/9381251041*12752043^(1/17) 2100951949424901 a001 591286729879/73681302247*12752043^(1/17) 2100951949424901 a001 86000486440/10716675201*12752043^(1/17) 2100951949424901 a001 4052739537881/505019158607*12752043^(1/17) 2100951949424901 a001 3278735159921/408569081798*12752043^(1/17) 2100951949424901 a001 2504730781961/312119004989*12752043^(1/17) 2100951949424901 a001 956722026041/119218851371*12752043^(1/17) 2100951949424901 a001 182717648081/22768774562*12752043^(1/17) 2100951949424901 a001 139583862445/17393796001*12752043^(1/17) 2100951949424901 a001 53316291173/6643838879*12752043^(1/17) 2100951949424901 a004 Fibonacci(37)*Lucas(40)/(1/2+sqrt(5)/2)^69 2100951949424901 a001 10182505537/1268860318*12752043^(1/17) 2100951949424901 a001 7778742049/969323029*12752043^(1/17) 2100951949424901 a001 165580141/54018521*87403803^(2/19) 2100951949424901 a001 39088169/28143753123*33385282^(5/9) 2100951949424901 a001 2971215073/370248451*12752043^(1/17) 2100951949424901 a001 9238424/599786069*33385282^(5/12) 2100951949424901 a001 701408733/45537549124*33385282^(5/12) 2100951949424901 a001 1836311903/119218851371*33385282^(5/12) 2100951949424901 a001 4807526976/312119004989*33385282^(5/12) 2100951949424901 a001 12586269025/817138163596*33385282^(5/12) 2100951949424901 a001 32951280099/2139295485799*33385282^(5/12) 2100951949424901 a001 86267571272/5600748293801*33385282^(5/12) 2100951949424901 a001 7787980473/505618944676*33385282^(5/12) 2100951949424901 a001 365435296162/23725150497407*33385282^(5/12) 2100951949424901 a001 139583862445/9062201101803*33385282^(5/12) 2100951949424901 a001 53316291173/3461452808002*33385282^(5/12) 2100951949424901 a001 20365011074/1322157322203*33385282^(5/12) 2100951949424901 a001 7778742049/505019158607*33385282^(5/12) 2100951949424901 a001 2971215073/192900153618*33385282^(5/12) 2100951949424901 a001 1134903170/73681302247*33385282^(5/12) 2100951949424901 a001 433494437/28143753123*33385282^(5/12) 2100951949424901 a001 102334155/10749957122*33385282^(4/9) 2100951949424901 a001 165580141/10749957122*33385282^(5/12) 2100951949424901 a001 63245986/54018521*141422324^(2/13) 2100951949424901 a001 24157817/370248451*87403803^(6/19) 2100951949424901 a001 24157817/969323029*87403803^(7/19) 2100951949424901 a001 39088169/45537549124*33385282^(7/12) 2100951949424901 a001 24157817/141422324*2537720636^(2/9) 2100951949424901 a001 63245986/54018521*2537720636^(2/15) 2100951949424901 a001 63245986/54018521*45537549124^(2/17) 2100951949424901 a001 24157817/141422324*312119004989^(2/11) 2100951949424901 a001 63245986/54018521*14662949395604^(2/21) 2100951949424901 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^10/Lucas(39) 2100951949424901 a004 Fibonacci(39)*(1/2+sqrt(5)/2)^6/Lucas(37) 2100951949424901 a001 24157817/141422324*28143753123^(1/5) 2100951949424901 a001 63245986/54018521*10749957122^(1/8) 2100951949424901 a001 24157817/141422324*10749957122^(5/24) 2100951949424901 a001 63245986/54018521*4106118243^(3/23) 2100951949424901 a001 24157817/141422324*4106118243^(5/23) 2100951949424901 a001 63245986/54018521*1568397607^(3/22) 2100951949424901 a001 24157817/141422324*1568397607^(5/22) 2100951949424901 a001 63245986/54018521*599074578^(1/7) 2100951949424901 a001 24157817/141422324*599074578^(5/21) 2100951949424901 a001 433494437/54018521*33385282^(1/18) 2100951949424901 a001 63245986/54018521*228826127^(3/20) 2100951949424901 a001 267914296/28143753123*33385282^(4/9) 2100951949424901 a001 24157817/141422324*228826127^(1/4) 2100951949424901 a001 24157817/2537720636*87403803^(8/19) 2100951949424901 a001 701408733/73681302247*33385282^(4/9) 2100951949424901 a001 1836311903/192900153618*33385282^(4/9) 2100951949424901 a001 102287808/10745088481*33385282^(4/9) 2100951949424901 a001 12586269025/1322157322203*33385282^(4/9) 2100951949424901 a001 32951280099/3461452808002*33385282^(4/9) 2100951949424901 a001 86267571272/9062201101803*33385282^(4/9) 2100951949424901 a001 225851433717/23725150497407*33385282^(4/9) 2100951949424901 a001 139583862445/14662949395604*33385282^(4/9) 2100951949424901 a001 53316291173/5600748293801*33385282^(4/9) 2100951949424901 a001 20365011074/2139295485799*33385282^(4/9) 2100951949424901 a001 7778742049/817138163596*33385282^(4/9) 2100951949424901 a001 2971215073/312119004989*33385282^(4/9) 2100951949424901 a001 1134903170/119218851371*33385282^(4/9) 2100951949424901 a001 31622993/1268860318*33385282^(7/18) 2100951949424901 a001 433494437/45537549124*33385282^(4/9) 2100951949424902 a001 24157817/6643838879*87403803^(9/19) 2100951949424902 a001 165580141/17393796001*33385282^(4/9) 2100951949424902 a001 24157817/10749957122*87403803^(1/2) 2100951949424902 a001 24157817/17393796001*87403803^(10/19) 2100951949424902 a001 567451585/70711162*12752043^(1/17) 2100951949424902 a001 63245986/54018521*87403803^(3/19) 2100951949424902 a001 267914296/54018521*33385282^(1/12) 2100951949424902 a001 39088169/73681302247*33385282^(11/18) 2100951949424902 a001 24157817/45537549124*87403803^(11/19) 2100951949424902 a001 63245986/4106118243*33385282^(5/12) 2100951949424902 a001 24157817/119218851371*87403803^(12/19) 2100951949424902 a001 24157817/141422324*87403803^(5/19) 2100951949424902 a001 831985/228811001*33385282^(1/2) 2100951949424902 a001 24157817/312119004989*87403803^(13/19) 2100951949424902 a001 24157817/87403803*33385282^(1/4) 2100951949424902 a001 24157817/817138163596*87403803^(14/19) 2100951949424902 a001 267914296/73681302247*33385282^(1/2) 2100951949424902 a001 24157817/2139295485799*87403803^(15/19) 2100951949424902 a001 233802911/64300051206*33385282^(1/2) 2100951949424902 a001 1836311903/505019158607*33385282^(1/2) 2100951949424902 a001 1602508992/440719107401*33385282^(1/2) 2100951949424902 a001 12586269025/3461452808002*33385282^(1/2) 2100951949424902 a001 10983760033/3020733700601*33385282^(1/2) 2100951949424902 a001 86267571272/23725150497407*33385282^(1/2) 2100951949424902 a001 53316291173/14662949395604*33385282^(1/2) 2100951949424902 a001 20365011074/5600748293801*33385282^(1/2) 2100951949424902 a001 7778742049/2139295485799*33385282^(1/2) 2100951949424902 a001 2971215073/817138163596*33385282^(1/2) 2100951949424902 a001 1134903170/312119004989*33385282^(1/2) 2100951949424902 a001 63245986/6643838879*33385282^(4/9) 2100951949424902 a001 433494437/119218851371*33385282^(1/2) 2100951949424902 a001 165580141/54018521*33385282^(1/9) 2100951949424902 a001 24157817/5600748293801*87403803^(16/19) 2100951949424902 a001 165580141/45537549124*33385282^(1/2) 2100951949424902 a001 24157817/14662949395604*87403803^(17/19) 2100951949424902 a001 39088169/192900153618*33385282^(2/3) 2100951949424902 a001 9227465/312119004989*20633239^(4/5) 2100951949424902 a004 Fibonacci(37)*Lucas(38)/(1/2+sqrt(5)/2)^67 2100951949424902 a001 14619165/10525900321*33385282^(5/9) 2100951949424902 a001 133957148/96450076809*33385282^(5/9) 2100951949424902 a001 701408733/505019158607*33385282^(5/9) 2100951949424902 a001 1836311903/1322157322203*33385282^(5/9) 2100951949424902 a001 14930208/10749853441*33385282^(5/9) 2100951949424902 a001 12586269025/9062201101803*33385282^(5/9) 2100951949424902 a001 32951280099/23725150497407*33385282^(5/9) 2100951949424902 a001 10182505537/7331474697802*33385282^(5/9) 2100951949424902 a001 7778742049/5600748293801*33385282^(5/9) 2100951949424902 a001 2971215073/2139295485799*33385282^(5/9) 2100951949424902 a001 567451585/408569081798*33385282^(5/9) 2100951949424902 a001 63245986/17393796001*33385282^(1/2) 2100951949424902 a001 433494437/312119004989*33385282^(5/9) 2100951949424902 a001 102334155/119218851371*33385282^(7/12) 2100951949424902 a001 165580141/119218851371*33385282^(5/9) 2100951949424902 a001 39088169/505019158607*33385282^(13/18) 2100951949424902 a001 267914296/312119004989*33385282^(7/12) 2100951949424902 a001 701408733/817138163596*33385282^(7/12) 2100951949424902 a001 1836311903/2139295485799*33385282^(7/12) 2100951949424902 a001 4807526976/5600748293801*33385282^(7/12) 2100951949424902 a001 12586269025/14662949395604*33385282^(7/12) 2100951949424902 a001 20365011074/23725150497407*33385282^(7/12) 2100951949424902 a001 7778742049/9062201101803*33385282^(7/12) 2100951949424902 a001 2971215073/3461452808002*33385282^(7/12) 2100951949424902 a001 1134903170/1322157322203*33385282^(7/12) 2100951949424902 a001 433494437/505019158607*33385282^(7/12) 2100951949424902 a001 34111385/64300051206*33385282^(11/18) 2100951949424902 a001 165580141/192900153618*33385282^(7/12) 2100951949424902 a001 4181/87403804*33385282^(3/4) 2100951949424902 a001 63245986/54018521*33385282^(1/6) 2100951949424902 a001 267914296/505019158607*33385282^(11/18) 2100951949424902 a001 233802911/440719107401*33385282^(11/18) 2100951949424902 a001 1836311903/3461452808002*33385282^(11/18) 2100951949424902 a001 1602508992/3020733700601*33385282^(11/18) 2100951949424902 a001 12586269025/23725150497407*33385282^(11/18) 2100951949424902 a001 7778742049/14662949395604*33385282^(11/18) 2100951949424902 a001 2971215073/5600748293801*33385282^(11/18) 2100951949424902 a001 1134903170/2139295485799*33385282^(11/18) 2100951949424902 a001 31622993/22768774562*33385282^(5/9) 2100951949424902 a001 433494437/817138163596*33385282^(11/18) 2100951949424902 a001 165580141/312119004989*33385282^(11/18) 2100951949424902 a001 39088169/1322157322203*33385282^(7/9) 2100951949424902 a001 63245986/73681302247*33385282^(7/12) 2100951949424902 a001 102334155/505019158607*33385282^(2/3) 2100951949424902 a001 267914296/87403803*12752043^(2/17) 2100951949424902 a001 267914296/1322157322203*33385282^(2/3) 2100951949424902 a001 701408733/3461452808002*33385282^(2/3) 2100951949424902 a001 1836311903/9062201101803*33385282^(2/3) 2100951949424902 a001 4807526976/23725150497407*33385282^(2/3) 2100951949424902 a001 2971215073/14662949395604*33385282^(2/3) 2100951949424902 a001 63245986/119218851371*33385282^(11/18) 2100951949424902 a001 1134903170/5600748293801*33385282^(2/3) 2100951949424902 a001 433494437/2139295485799*33385282^(2/3) 2100951949424902 a001 165580141/817138163596*33385282^(2/3) 2100951949424902 a001 39088169/3461452808002*33385282^(5/6) 2100951949424902 a001 34111385/440719107401*33385282^(13/18) 2100951949424902 a001 24157817/141422324*33385282^(5/18) 2100951949424902 a001 133957148/1730726404001*33385282^(13/18) 2100951949424902 a001 233802911/3020733700601*33385282^(13/18) 2100951949424902 a001 1836311903/23725150497407*33385282^(13/18) 2100951949424902 a001 63245986/312119004989*33385282^(2/3) 2100951949424902 a001 567451585/7331474697802*33385282^(13/18) 2100951949424902 a001 433494437/5600748293801*33385282^(13/18) 2100951949424902 a001 24157817/370248451*33385282^(1/3) 2100951949424902 a001 102334155/2139295485799*33385282^(3/4) 2100951949424902 a001 165580141/2139295485799*33385282^(13/18) 2100951949424902 a001 39088169/9062201101803*33385282^(8/9) 2100951949424902 a001 267914296/5600748293801*33385282^(3/4) 2100951949424902 a001 9227465/73681302247*20633239^(5/7) 2100951949424902 a001 701408733/14662949395604*33385282^(3/4) 2100951949424902 a001 1134903170/23725150497407*33385282^(3/4) 2100951949424902 a001 433494437/9062201101803*33385282^(3/4) 2100951949424902 a001 6765/228826126*33385282^(7/9) 2100951949424902 a001 165580141/3461452808002*33385282^(3/4) 2100951949424902 a004 Fibonacci(37)*(1/2+sqrt(5)/2)^8/Lucas(37) 2100951949424902 a001 24157817/54018521*23725150497407^(1/8) 2100951949424902 a001 24157817/54018521*505019158607^(1/7) 2100951949424902 a001 24157817/54018521*73681302247^(2/13) 2100951949424902 a001 24157817/54018521*10749957122^(1/6) 2100951949424902 a001 24157817/54018521*4106118243^(4/23) 2100951949424902 a001 24157817/54018521*1568397607^(2/11) 2100951949424902 a001 24157817/54018521*599074578^(4/21) 2100951949424902 a001 24157817/54018521*228826127^(1/5) 2100951949424902 a001 39088169/14662949395604*33385282^(11/12) 2100951949424902 a001 24157817/969323029*33385282^(7/18) 2100951949424902 a001 267914296/9062201101803*33385282^(7/9) 2100951949424902 a001 701408733/23725150497407*33385282^(7/9) 2100951949424902 a001 31622993/408569081798*33385282^(13/18) 2100951949424902 a001 433494437/14662949395604*33385282^(7/9) 2100951949424902 a001 701408733/228826127*12752043^(2/17) 2100951949424902 a001 165580141/5600748293801*33385282^(7/9) 2100951949424902 a001 433494437/54018521*12752043^(1/17) 2100951949424902 a001 24157817/54018521*87403803^(4/19) 2100951949424902 a001 24157817/1568397607*33385282^(5/12) 2100951949424902 a001 39088169/23725150497407*33385282^(17/18) 2100951949424902 a001 1836311903/599074578*12752043^(2/17) 2100951949424902 a001 63245986/1322157322203*33385282^(3/4) 2100951949424902 a001 686789568/224056801*12752043^(2/17) 2100951949424902 a001 12586269025/4106118243*12752043^(2/17) 2100951949424902 a001 32951280099/10749957122*12752043^(2/17) 2100951949424902 a001 86267571272/28143753123*12752043^(2/17) 2100951949424902 a001 32264490531/10525900321*12752043^(2/17) 2100951949424902 a001 591286729879/192900153618*12752043^(2/17) 2100951949424902 a001 1515744265389/494493258286*12752043^(2/17) 2100951949424902 a001 2504730781961/817138163596*12752043^(2/17) 2100951949424902 a001 956722026041/312119004989*12752043^(2/17) 2100951949424902 a001 365435296162/119218851371*12752043^(2/17) 2100951949424902 a001 139583862445/45537549124*12752043^(2/17) 2100951949424902 a001 53316291173/17393796001*12752043^(2/17) 2100951949424902 a001 20365011074/6643838879*12752043^(2/17) 2100951949424902 a001 7778742049/2537720636*12752043^(2/17) 2100951949424902 a001 2971215073/969323029*12752043^(2/17) 2100951949424902 a001 34111385/3020733700601*33385282^(5/6) 2100951949424902 a001 1134903170/370248451*12752043^(2/17) 2100951949424902 a001 24157817/2537720636*33385282^(4/9) 2100951949424902 a001 267914296/23725150497407*33385282^(5/6) 2100951949424902 a001 63245986/2139295485799*33385282^(7/9) 2100951949424902 a001 165580141/14662949395604*33385282^(5/6) 2100951949424902 a004 Fibonacci(38)*Lucas(36)/(1/2+sqrt(5)/2)^66 2100951949424902 a001 433494437/141422324*12752043^(2/17) 2100951949424902 a001 102334155/23725150497407*33385282^(8/9) 2100951949424902 a001 4976784/29134601*12752043^(5/17) 2100951949424902 a001 24157817/6643838879*33385282^(1/2) 2100951949424902 a001 63245986/5600748293801*33385282^(5/6) 2100951949424902 a001 24157817/17393796001*33385282^(5/9) 2100951949424902 a001 31622993/7331474697802*33385282^(8/9) 2100951949424902 a001 4976784/4250681*4870847^(3/16) 2100951949424902 a001 24157817/28143753123*33385282^(7/12) 2100951949424902 a001 9303105/1875749*7881196^(1/11) 2100951949424902 a001 63245986/23725150497407*33385282^(11/12) 2100951949424903 a004 Fibonacci(40)*Lucas(36)/(1/2+sqrt(5)/2)^68 2100951949424903 a001 24157817/54018521*33385282^(2/9) 2100951949424903 a001 24157817/45537549124*33385282^(11/18) 2100951949424903 a004 Fibonacci(42)*Lucas(36)/(1/2+sqrt(5)/2)^70 2100951949424903 a004 Fibonacci(44)*Lucas(36)/(1/2+sqrt(5)/2)^72 2100951949424903 a004 Fibonacci(46)*Lucas(36)/(1/2+sqrt(5)/2)^74 2100951949424903 a004 Fibonacci(48)*Lucas(36)/(1/2+sqrt(5)/2)^76 2100951949424903 a004 Fibonacci(50)*Lucas(36)/(1/2+sqrt(5)/2)^78 2100951949424903 a004 Fibonacci(52)*Lucas(36)/(1/2+sqrt(5)/2)^80 2100951949424903 a004 Fibonacci(54)*Lucas(36)/(1/2+sqrt(5)/2)^82 2100951949424903 a004 Fibonacci(56)*Lucas(36)/(1/2+sqrt(5)/2)^84 2100951949424903 a004 Fibonacci(58)*Lucas(36)/(1/2+sqrt(5)/2)^86 2100951949424903 a004 Fibonacci(60)*Lucas(36)/(1/2+sqrt(5)/2)^88 2100951949424903 a004 Fibonacci(62)*Lucas(36)/(1/2+sqrt(5)/2)^90 2100951949424903 a004 Fibonacci(64)*Lucas(36)/(1/2+sqrt(5)/2)^92 2100951949424903 a004 Fibonacci(66)*Lucas(36)/(1/2+sqrt(5)/2)^94 2100951949424903 a004 Fibonacci(68)*Lucas(36)/(1/2+sqrt(5)/2)^96 2100951949424903 a004 Fibonacci(70)*Lucas(36)/(1/2+sqrt(5)/2)^98 2100951949424903 a004 Fibonacci(72)*Lucas(36)/(1/2+sqrt(5)/2)^100 2100951949424903 a001 1/7465176*(1/2+1/2*5^(1/2))^44 2100951949424903 a004 Fibonacci(71)*Lucas(36)/(1/2+sqrt(5)/2)^99 2100951949424903 a004 Fibonacci(69)*Lucas(36)/(1/2+sqrt(5)/2)^97 2100951949424903 a004 Fibonacci(67)*Lucas(36)/(1/2+sqrt(5)/2)^95 2100951949424903 a004 Fibonacci(65)*Lucas(36)/(1/2+sqrt(5)/2)^93 2100951949424903 a004 Fibonacci(63)*Lucas(36)/(1/2+sqrt(5)/2)^91 2100951949424903 a004 Fibonacci(61)*Lucas(36)/(1/2+sqrt(5)/2)^89 2100951949424903 a004 Fibonacci(59)*Lucas(36)/(1/2+sqrt(5)/2)^87 2100951949424903 a004 Fibonacci(57)*Lucas(36)/(1/2+sqrt(5)/2)^85 2100951949424903 a004 Fibonacci(55)*Lucas(36)/(1/2+sqrt(5)/2)^83 2100951949424903 a004 Fibonacci(53)*Lucas(36)/(1/2+sqrt(5)/2)^81 2100951949424903 a004 Fibonacci(51)*Lucas(36)/(1/2+sqrt(5)/2)^79 2100951949424903 a004 Fibonacci(49)*Lucas(36)/(1/2+sqrt(5)/2)^77 2100951949424903 a004 Fibonacci(47)*Lucas(36)/(1/2+sqrt(5)/2)^75 2100951949424903 a004 Fibonacci(45)*Lucas(36)/(1/2+sqrt(5)/2)^73 2100951949424903 a004 Fibonacci(43)*Lucas(36)/(1/2+sqrt(5)/2)^71 2100951949424903 a004 Fibonacci(41)*Lucas(36)/(1/2+sqrt(5)/2)^69 2100951949424903 a001 34111385/29134601*12752043^(3/17) 2100951949424903 a001 9227465/10749957122*20633239^(3/5) 2100951949424903 a001 24157817/119218851371*33385282^(2/3) 2100951949424903 a004 Fibonacci(39)*Lucas(36)/(1/2+sqrt(5)/2)^67 2100951949424903 a001 14930352/20633239*20633239^(1/5) 2100951949424903 a001 24157817/312119004989*33385282^(13/18) 2100951949424903 a001 9227465/6643838879*20633239^(4/7) 2100951949424903 a001 24157817/505019158607*33385282^(3/4) 2100951949424903 a001 24157817/817138163596*33385282^(7/9) 2100951949424903 a001 267914296/228826127*12752043^(3/17) 2100951949424903 a001 165580141/54018521*12752043^(2/17) 2100951949424903 a001 233802911/199691526*12752043^(3/17) 2100951949424903 a001 1836311903/1568397607*12752043^(3/17) 2100951949424903 a001 1602508992/1368706081*12752043^(3/17) 2100951949424903 a001 12586269025/10749957122*12752043^(3/17) 2100951949424903 a001 10983760033/9381251041*12752043^(3/17) 2100951949424903 a001 86267571272/73681302247*12752043^(3/17) 2100951949424903 a001 75283811239/64300051206*12752043^(3/17) 2100951949424903 a001 2504730781961/2139295485799*12752043^(3/17) 2100951949424903 a001 365435296162/312119004989*12752043^(3/17) 2100951949424903 a001 139583862445/119218851371*12752043^(3/17) 2100951949424903 a001 53316291173/45537549124*12752043^(3/17) 2100951949424903 a001 20365011074/17393796001*12752043^(3/17) 2100951949424903 a001 7778742049/6643838879*12752043^(3/17) 2100951949424903 a001 2971215073/2537720636*12752043^(3/17) 2100951949424903 a001 1134903170/969323029*12752043^(3/17) 2100951949424903 a001 24157817/2139295485799*33385282^(5/6) 2100951949424903 a001 433494437/370248451*12752043^(3/17) 2100951949424903 a001 24157817/5600748293801*33385282^(8/9) 2100951949424903 a001 165580141/141422324*12752043^(3/17) 2100951949424903 a001 24157817/9062201101803*33385282^(11/12) 2100951949424903 a001 39088169/87403803*12752043^(4/17) 2100951949424903 a001 24157817/14662949395604*33385282^(17/18) 2100951949424903 a004 Fibonacci(37)*Lucas(36)/(1/2+sqrt(5)/2)^65 2100951949424903 a001 14930352/228826127*12752043^(6/17) 2100951949424903 a001 9227465/599074578*20633239^(3/7) 2100951949424904 a001 102334155/228826127*12752043^(4/17) 2100951949424904 a001 9227465/370248451*20633239^(2/5) 2100951949424904 a001 9227465/33385282*141422324^(3/13) 2100951949424904 a001 133957148/299537289*12752043^(4/17) 2100951949424904 a001 701408733/1568397607*12752043^(4/17) 2100951949424904 a001 1836311903/4106118243*12752043^(4/17) 2100951949424904 a001 2403763488/5374978561*12752043^(4/17) 2100951949424904 a001 12586269025/28143753123*12752043^(4/17) 2100951949424904 a001 32951280099/73681302247*12752043^(4/17) 2100951949424904 a001 43133785636/96450076809*12752043^(4/17) 2100951949424904 a001 225851433717/505019158607*12752043^(4/17) 2100951949424904 a001 591286729879/1322157322203*12752043^(4/17) 2100951949424904 a001 10610209857723/23725150497407*12752043^(4/17) 2100951949424904 a001 139583862445/312119004989*12752043^(4/17) 2100951949424904 a001 53316291173/119218851371*12752043^(4/17) 2100951949424904 a001 10182505537/22768774562*12752043^(4/17) 2100951949424904 a001 7778742049/17393796001*12752043^(4/17) 2100951949424904 a001 2971215073/6643838879*12752043^(4/17) 2100951949424904 a001 567451585/1268860318*12752043^(4/17) 2100951949424904 a001 433494437/969323029*12752043^(4/17) 2100951949424904 a001 9227465/33385282*2537720636^(1/5) 2100951949424904 a001 14930352/20633239*17393796001^(1/7) 2100951949424904 a001 9227465/33385282*45537549124^(3/17) 2100951949424904 a001 14930352/20633239*14662949395604^(1/9) 2100951949424904 a001 9227465/33385282*(1/2+1/2*5^(1/2))^9 2100951949424904 a001 14930352/20633239*(1/2+1/2*5^(1/2))^7 2100951949424904 a001 9227465/33385282*192900153618^(1/6) 2100951949424904 a001 9227465/33385282*10749957122^(3/16) 2100951949424904 a001 14930352/20633239*599074578^(1/6) 2100951949424904 a001 9227465/33385282*599074578^(3/14) 2100951949424904 a001 165580141/370248451*12752043^(4/17) 2100951949424904 a001 3524578/312119004989*7881196^(10/11) 2100951949424904 a001 63245986/54018521*12752043^(3/17) 2100951949424904 a001 31622993/70711162*12752043^(4/17) 2100951949424904 a001 829464/33281921*12752043^(7/17) 2100951949424904 a001 39088169/228826127*12752043^(5/17) 2100951949424904 a001 9227465/33385282*33385282^(1/4) 2100951949424904 a001 133957148/16692641*4870847^(1/16) 2100951949424904 a001 34111385/199691526*12752043^(5/17) 2100951949424904 a001 267914296/1568397607*12752043^(5/17) 2100951949424904 a001 233802911/1368706081*12752043^(5/17) 2100951949424904 a001 1836311903/10749957122*12752043^(5/17) 2100951949424904 a001 1602508992/9381251041*12752043^(5/17) 2100951949424904 a001 12586269025/73681302247*12752043^(5/17) 2100951949424904 a001 10983760033/64300051206*12752043^(5/17) 2100951949424904 a001 86267571272/505019158607*12752043^(5/17) 2100951949424904 a001 75283811239/440719107401*12752043^(5/17) 2100951949424904 a001 2504730781961/14662949395604*12752043^(5/17) 2100951949424904 a001 139583862445/817138163596*12752043^(5/17) 2100951949424904 a001 53316291173/312119004989*12752043^(5/17) 2100951949424904 a001 20365011074/119218851371*12752043^(5/17) 2100951949424904 a001 7778742049/45537549124*12752043^(5/17) 2100951949424904 a001 2971215073/17393796001*12752043^(5/17) 2100951949424904 a001 1134903170/6643838879*12752043^(5/17) 2100951949424904 a001 433494437/2537720636*12752043^(5/17) 2100951949424904 a001 165580141/969323029*12752043^(5/17) 2100951949424905 a001 63245986/370248451*12752043^(5/17) 2100951949424905 a001 39088169/20633239*20633239^(1/7) 2100951949424905 a001 14930352/1568397607*12752043^(8/17) 2100951949424905 a004 Fibonacci(35)*Lucas(37)/(1/2+sqrt(5)/2)^64 2100951949424905 a001 9227465/54018521*20633239^(2/7) 2100951949424905 a001 39088169/599074578*12752043^(6/17) 2100951949424905 a001 24157817/54018521*12752043^(4/17) 2100951949424905 a001 14619165/224056801*12752043^(6/17) 2100951949424905 a001 267914296/4106118243*12752043^(6/17) 2100951949424905 a001 701408733/10749957122*12752043^(6/17) 2100951949424905 a001 1836311903/28143753123*12752043^(6/17) 2100951949424905 a001 686789568/10525900321*12752043^(6/17) 2100951949424905 a001 12586269025/192900153618*12752043^(6/17) 2100951949424905 a001 32951280099/505019158607*12752043^(6/17) 2100951949424905 a001 86267571272/1322157322203*12752043^(6/17) 2100951949424905 a001 32264490531/494493258286*12752043^(6/17) 2100951949424905 a001 1548008755920/23725150497407*12752043^(6/17) 2100951949424905 a001 365435296162/5600748293801*12752043^(6/17) 2100951949424905 a001 139583862445/2139295485799*12752043^(6/17) 2100951949424905 a001 53316291173/817138163596*12752043^(6/17) 2100951949424905 a001 20365011074/312119004989*12752043^(6/17) 2100951949424905 a001 7778742049/119218851371*12752043^(6/17) 2100951949424905 a001 2971215073/45537549124*12752043^(6/17) 2100951949424905 a001 1134903170/17393796001*12752043^(6/17) 2100951949424905 a001 433494437/6643838879*12752043^(6/17) 2100951949424905 a001 196452/33391061*12752043^(1/2) 2100951949424905 a001 165580141/2537720636*12752043^(6/17) 2100951949424905 a001 24157817/141422324*12752043^(5/17) 2100951949424905 a001 39088169/20633239*2537720636^(1/9) 2100951949424905 a001 39088169/20633239*312119004989^(1/11) 2100951949424905 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^11/Lucas(38) 2100951949424905 a001 39088169/20633239*(1/2+1/2*5^(1/2))^5 2100951949424905 a001 39088169/20633239*28143753123^(1/10) 2100951949424905 a001 9227465/87403803*1568397607^(1/4) 2100951949424905 a001 39088169/20633239*228826127^(1/8) 2100951949424905 a001 63245986/969323029*12752043^(6/17) 2100951949424905 a004 Fibonacci(35)*Lucas(39)/(1/2+sqrt(5)/2)^66 2100951949424905 a001 9227465/14662949395604*141422324^(12/13) 2100951949424906 a001 9227465/3461452808002*141422324^(11/13) 2100951949424906 a001 9227465/817138163596*141422324^(10/13) 2100951949424906 a001 9227465/228826127*141422324^(1/3) 2100951949424906 a001 9227465/192900153618*141422324^(9/13) 2100951949424906 a001 9227465/119218851371*141422324^(2/3) 2100951949424906 a001 9227465/45537549124*141422324^(8/13) 2100951949424906 a001 9227465/10749957122*141422324^(7/13) 2100951949424906 a001 9303105/1875749*141422324^(1/13) 2100951949424906 a001 9227465/2537720636*141422324^(6/13) 2100951949424906 a001 9227465/599074578*141422324^(5/13) 2100951949424906 a001 9303105/1875749*2537720636^(1/15) 2100951949424906 a001 9303105/1875749*45537549124^(1/17) 2100951949424906 a001 9303105/1875749*14662949395604^(1/21) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^13/Lucas(40) 2100951949424906 a001 9303105/1875749*(1/2+1/2*5^(1/2))^3 2100951949424906 a001 9303105/1875749*192900153618^(1/18) 2100951949424906 a001 9227465/228826127*73681302247^(1/4) 2100951949424906 a001 9303105/1875749*10749957122^(1/16) 2100951949424906 a001 9303105/1875749*599074578^(1/14) 2100951949424906 a004 Fibonacci(35)*Lucas(41)/(1/2+sqrt(5)/2)^68 2100951949424906 a001 9227465/599074578*2537720636^(1/3) 2100951949424906 a001 9227465/599074578*45537549124^(5/17) 2100951949424906 a001 9227465/599074578*312119004989^(3/11) 2100951949424906 a001 9227465/599074578*14662949395604^(5/21) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^15/Lucas(42) 2100951949424906 a001 4619212/711491+4619212/711491*5^(1/2) 2100951949424906 a001 9227465/599074578*192900153618^(5/18) 2100951949424906 a001 9227465/599074578*28143753123^(3/10) 2100951949424906 a001 9227465/599074578*10749957122^(5/16) 2100951949424906 a001 9227465/599074578*599074578^(5/14) 2100951949424906 a004 Fibonacci(35)*Lucas(43)/(1/2+sqrt(5)/2)^70 2100951949424906 a001 9227465/1568397607*45537549124^(1/3) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^17/Lucas(44) 2100951949424906 a004 Fibonacci(44)/Lucas(35)/(1/2+sqrt(5)/2) 2100951949424906 a004 Fibonacci(35)*Lucas(45)/(1/2+sqrt(5)/2)^72 2100951949424906 a001 9227465/14662949395604*2537720636^(4/5) 2100951949424906 a001 9227465/9062201101803*2537720636^(7/9) 2100951949424906 a001 9227465/3461452808002*2537720636^(11/15) 2100951949424906 a001 9227465/817138163596*2537720636^(2/3) 2100951949424906 a001 9227465/192900153618*2537720636^(3/5) 2100951949424906 a001 9227465/73681302247*2537720636^(5/9) 2100951949424906 a001 9227465/45537549124*2537720636^(8/15) 2100951949424906 a001 9227465/10749957122*2537720636^(7/15) 2100951949424906 a001 9227465/4106118243*817138163596^(1/3) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^19/Lucas(46) 2100951949424906 a004 Fibonacci(46)/Lucas(35)/(1/2+sqrt(5)/2)^3 2100951949424906 a001 9227465/6643838879*2537720636^(4/9) 2100951949424906 a004 Fibonacci(35)*Lucas(47)/(1/2+sqrt(5)/2)^74 2100951949424906 a001 9227465/10749957122*17393796001^(3/7) 2100951949424906 a001 9227465/10749957122*45537549124^(7/17) 2100951949424906 a001 9227465/10749957122*14662949395604^(1/3) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^21/Lucas(48) 2100951949424906 a004 Fibonacci(48)/Lucas(35)/(1/2+sqrt(5)/2)^5 2100951949424906 a001 9227465/10749957122*192900153618^(7/18) 2100951949424906 a001 9227465/10749957122*10749957122^(7/16) 2100951949424906 a004 Fibonacci(35)*Lucas(49)/(1/2+sqrt(5)/2)^76 2100951949424906 a001 9227465/9062201101803*17393796001^(5/7) 2100951949424906 a001 9227465/312119004989*17393796001^(4/7) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^23/Lucas(50) 2100951949424906 a004 Fibonacci(50)/Lucas(35)/(1/2+sqrt(5)/2)^7 2100951949424906 a004 Fibonacci(35)*Lucas(51)/(1/2+sqrt(5)/2)^78 2100951949424906 a001 9227465/14662949395604*45537549124^(12/17) 2100951949424906 a001 9227465/5600748293801*45537549124^(2/3) 2100951949424906 a001 9227465/3461452808002*45537549124^(11/17) 2100951949424906 a001 9227465/192900153618*45537549124^(9/17) 2100951949424906 a001 9227465/817138163596*45537549124^(10/17) 2100951949424906 a001 9227465/73681302247*312119004989^(5/11) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^25/Lucas(52) 2100951949424906 a004 Fibonacci(52)/Lucas(35)/(1/2+sqrt(5)/2)^9 2100951949424906 a001 9227465/73681302247*3461452808002^(5/12) 2100951949424906 a004 Fibonacci(35)*Lucas(53)/(1/2+sqrt(5)/2)^80 2100951949424906 a001 9227465/192900153618*14662949395604^(3/7) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^27/Lucas(54) 2100951949424906 a004 Fibonacci(54)/Lucas(35)/(1/2+sqrt(5)/2)^11 2100951949424906 a001 9227465/192900153618*192900153618^(1/2) 2100951949424906 a004 Fibonacci(35)*Lucas(55)/(1/2+sqrt(5)/2)^82 2100951949424906 a001 9227465/3461452808002*312119004989^(3/5) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^29/Lucas(56) 2100951949424906 a004 Fibonacci(56)/Lucas(35)/(1/2+sqrt(5)/2)^13 2100951949424906 a004 Fibonacci(35)*Lucas(57)/(1/2+sqrt(5)/2)^84 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^31/Lucas(58) 2100951949424906 a004 Fibonacci(58)/Lucas(35)/(1/2+sqrt(5)/2)^15 2100951949424906 a001 9227465/1322157322203*9062201101803^(1/2) 2100951949424906 a004 Fibonacci(35)*Lucas(59)/(1/2+sqrt(5)/2)^86 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^33/Lucas(60) 2100951949424906 a004 Fibonacci(60)/Lucas(35)/(1/2+sqrt(5)/2)^17 2100951949424906 a004 Fibonacci(35)*Lucas(61)/(1/2+sqrt(5)/2)^88 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^35/Lucas(62) 2100951949424906 a004 Fibonacci(62)/Lucas(35)/(1/2+sqrt(5)/2)^19 2100951949424906 a004 Fibonacci(35)*Lucas(63)/(1/2+sqrt(5)/2)^90 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^37/Lucas(64) 2100951949424906 a004 Fibonacci(64)/Lucas(35)/(1/2+sqrt(5)/2)^21 2100951949424906 a004 Fibonacci(35)*Lucas(65)/(1/2+sqrt(5)/2)^92 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^39/Lucas(66) 2100951949424906 a004 Fibonacci(66)/Lucas(35)/(1/2+sqrt(5)/2)^23 2100951949424906 a004 Fibonacci(35)*Lucas(67)/(1/2+sqrt(5)/2)^94 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^41/Lucas(68) 2100951949424906 a004 Fibonacci(68)/Lucas(35)/(1/2+sqrt(5)/2)^25 2100951949424906 a004 Fibonacci(35)*Lucas(69)/(1/2+sqrt(5)/2)^96 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^43/Lucas(70) 2100951949424906 a004 Fibonacci(35)*Lucas(71)/(1/2+sqrt(5)/2)^98 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^45/Lucas(72) 2100951949424906 a004 Fibonacci(35)*Lucas(73)/(1/2+sqrt(5)/2)^100 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^47/Lucas(74) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^49/Lucas(76) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^51/Lucas(78) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^53/Lucas(80) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^55/Lucas(82) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^57/Lucas(84) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^59/Lucas(86) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^61/Lucas(88) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^63/Lucas(90) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^65/Lucas(92) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^67/Lucas(94) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^69/Lucas(96) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^71/Lucas(98) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^72/Lucas(99) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^73/Lucas(100) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^70/Lucas(97) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^68/Lucas(95) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^66/Lucas(93) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^64/Lucas(91) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^62/Lucas(89) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^60/Lucas(87) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^58/Lucas(85) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^56/Lucas(83) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^54/Lucas(81) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^52/Lucas(79) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^50/Lucas(77) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^48/Lucas(75) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^46/Lucas(73) 2100951949424906 a004 Fibonacci(35)*Lucas(72)/(1/2+sqrt(5)/2)^99 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^44/Lucas(71) 2100951949424906 a004 Fibonacci(72)/Lucas(35)/(1/2+sqrt(5)/2)^29 2100951949424906 a004 Fibonacci(74)/Lucas(35)/(1/2+sqrt(5)/2)^31 2100951949424906 a004 Fibonacci(76)/Lucas(35)/(1/2+sqrt(5)/2)^33 2100951949424906 a004 Fibonacci(78)/Lucas(35)/(1/2+sqrt(5)/2)^35 2100951949424906 a004 Fibonacci(80)/Lucas(35)/(1/2+sqrt(5)/2)^37 2100951949424906 a004 Fibonacci(82)/Lucas(35)/(1/2+sqrt(5)/2)^39 2100951949424906 a004 Fibonacci(84)/Lucas(35)/(1/2+sqrt(5)/2)^41 2100951949424906 a004 Fibonacci(86)/Lucas(35)/(1/2+sqrt(5)/2)^43 2100951949424906 a004 Fibonacci(88)/Lucas(35)/(1/2+sqrt(5)/2)^45 2100951949424906 a004 Fibonacci(90)/Lucas(35)/(1/2+sqrt(5)/2)^47 2100951949424906 a004 Fibonacci(92)/Lucas(35)/(1/2+sqrt(5)/2)^49 2100951949424906 a004 Fibonacci(94)/Lucas(35)/(1/2+sqrt(5)/2)^51 2100951949424906 a004 Fibonacci(96)/Lucas(35)/(1/2+sqrt(5)/2)^53 2100951949424906 a004 Fibonacci(100)/Lucas(35)/(1/2+sqrt(5)/2)^57 2100951949424906 a004 Fibonacci(98)/Lucas(35)/(1/2+sqrt(5)/2)^55 2100951949424906 a004 Fibonacci(35)*Lucas(70)/(1/2+sqrt(5)/2)^97 2100951949424906 a004 Fibonacci(97)/Lucas(35)/(1/2+sqrt(5)/2)^54 2100951949424906 a004 Fibonacci(99)/Lucas(35)/(1/2+sqrt(5)/2)^56 2100951949424906 a004 Fibonacci(95)/Lucas(35)/(1/2+sqrt(5)/2)^52 2100951949424906 a004 Fibonacci(93)/Lucas(35)/(1/2+sqrt(5)/2)^50 2100951949424906 a004 Fibonacci(91)/Lucas(35)/(1/2+sqrt(5)/2)^48 2100951949424906 a004 Fibonacci(89)/Lucas(35)/(1/2+sqrt(5)/2)^46 2100951949424906 a004 Fibonacci(87)/Lucas(35)/(1/2+sqrt(5)/2)^44 2100951949424906 a004 Fibonacci(85)/Lucas(35)/(1/2+sqrt(5)/2)^42 2100951949424906 a004 Fibonacci(83)/Lucas(35)/(1/2+sqrt(5)/2)^40 2100951949424906 a004 Fibonacci(81)/Lucas(35)/(1/2+sqrt(5)/2)^38 2100951949424906 a004 Fibonacci(79)/Lucas(35)/(1/2+sqrt(5)/2)^36 2100951949424906 a004 Fibonacci(77)/Lucas(35)/(1/2+sqrt(5)/2)^34 2100951949424906 a004 Fibonacci(75)/Lucas(35)/(1/2+sqrt(5)/2)^32 2100951949424906 a004 Fibonacci(73)/Lucas(35)/(1/2+sqrt(5)/2)^30 2100951949424906 a004 Fibonacci(71)/Lucas(35)/(1/2+sqrt(5)/2)^28 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^42/Lucas(69) 2100951949424906 a004 Fibonacci(69)/Lucas(35)/(1/2+sqrt(5)/2)^26 2100951949424906 a004 Fibonacci(35)*Lucas(68)/(1/2+sqrt(5)/2)^95 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^40/Lucas(67) 2100951949424906 a004 Fibonacci(67)/Lucas(35)/(1/2+sqrt(5)/2)^24 2100951949424906 a004 Fibonacci(35)*Lucas(66)/(1/2+sqrt(5)/2)^93 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^38/Lucas(65) 2100951949424906 a004 Fibonacci(65)/Lucas(35)/(1/2+sqrt(5)/2)^22 2100951949424906 a004 Fibonacci(35)*Lucas(64)/(1/2+sqrt(5)/2)^91 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^36/Lucas(63) 2100951949424906 a004 Fibonacci(63)/Lucas(35)/(1/2+sqrt(5)/2)^20 2100951949424906 a004 Fibonacci(35)*Lucas(62)/(1/2+sqrt(5)/2)^89 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^34/Lucas(61) 2100951949424906 a004 Fibonacci(61)/Lucas(35)/(1/2+sqrt(5)/2)^18 2100951949424906 a004 Fibonacci(35)*Lucas(60)/(1/2+sqrt(5)/2)^87 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^32/Lucas(59) 2100951949424906 a004 Fibonacci(59)/Lucas(35)/(1/2+sqrt(5)/2)^16 2100951949424906 a004 Fibonacci(35)*Lucas(58)/(1/2+sqrt(5)/2)^85 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^30/Lucas(57) 2100951949424906 a004 Fibonacci(57)/Lucas(35)/(1/2+sqrt(5)/2)^14 2100951949424906 a001 9227465/14662949395604*505019158607^(9/14) 2100951949424906 a004 Fibonacci(35)*Lucas(56)/(1/2+sqrt(5)/2)^83 2100951949424906 a001 9227465/312119004989*14662949395604^(4/9) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^28/Lucas(55) 2100951949424906 a004 Fibonacci(55)/Lucas(35)/(1/2+sqrt(5)/2)^12 2100951949424906 a001 9227465/14662949395604*192900153618^(2/3) 2100951949424906 a004 Fibonacci(35)*Lucas(54)/(1/2+sqrt(5)/2)^81 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^26/Lucas(53) 2100951949424906 a004 Fibonacci(53)/Lucas(35)/(1/2+sqrt(5)/2)^10 2100951949424906 a001 9227465/312119004989*73681302247^(7/13) 2100951949424906 a001 9227465/2139295485799*73681302247^(8/13) 2100951949424906 a001 9227465/14662949395604*73681302247^(9/13) 2100951949424906 a001 9227465/119218851371*73681302247^(1/2) 2100951949424906 a004 Fibonacci(35)*Lucas(52)/(1/2+sqrt(5)/2)^79 2100951949424906 a001 9227465/45537549124*45537549124^(8/17) 2100951949424906 a001 9227465/73681302247*28143753123^(1/2) 2100951949424906 a001 9227465/45537549124*14662949395604^(8/21) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^24/Lucas(51) 2100951949424906 a004 Fibonacci(51)/Lucas(35)/(1/2+sqrt(5)/2)^8 2100951949424906 a001 9227465/45537549124*192900153618^(4/9) 2100951949424906 a001 9227465/45537549124*73681302247^(6/13) 2100951949424906 a001 9227465/817138163596*28143753123^(3/5) 2100951949424906 a001 9227465/9062201101803*28143753123^(7/10) 2100951949424906 a004 Fibonacci(35)*Lucas(50)/(1/2+sqrt(5)/2)^77 2100951949424906 a001 9227465/17393796001*312119004989^(2/5) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^22/Lucas(49) 2100951949424906 a004 Fibonacci(49)/Lucas(35)/(1/2+sqrt(5)/2)^6 2100951949424906 a001 9227465/119218851371*10749957122^(13/24) 2100951949424906 a001 9227465/45537549124*10749957122^(1/2) 2100951949424906 a001 9227465/192900153618*10749957122^(9/16) 2100951949424906 a001 9227465/312119004989*10749957122^(7/12) 2100951949424906 a001 9227465/817138163596*10749957122^(5/8) 2100951949424906 a001 9227465/2139295485799*10749957122^(2/3) 2100951949424906 a001 9227465/3461452808002*10749957122^(11/16) 2100951949424906 a001 9227465/5600748293801*10749957122^(17/24) 2100951949424906 a001 9227465/14662949395604*10749957122^(3/4) 2100951949424906 a001 9227465/17393796001*10749957122^(11/24) 2100951949424906 a004 Fibonacci(35)*Lucas(48)/(1/2+sqrt(5)/2)^75 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^20/Lucas(47) 2100951949424906 a004 Fibonacci(47)/Lucas(35)/(1/2+sqrt(5)/2)^4 2100951949424906 a001 9227465/6643838879*23725150497407^(5/16) 2100951949424906 a001 9227465/6643838879*505019158607^(5/14) 2100951949424906 a001 9227465/6643838879*73681302247^(5/13) 2100951949424906 a001 9227465/6643838879*28143753123^(2/5) 2100951949424906 a001 9227465/6643838879*10749957122^(5/12) 2100951949424906 a001 9227465/28143753123*4106118243^(1/2) 2100951949424906 a001 9227465/45537549124*4106118243^(12/23) 2100951949424906 a001 9227465/17393796001*4106118243^(11/23) 2100951949424906 a001 9227465/119218851371*4106118243^(13/23) 2100951949424906 a001 9227465/312119004989*4106118243^(14/23) 2100951949424906 a001 9227465/817138163596*4106118243^(15/23) 2100951949424906 a001 9227465/2139295485799*4106118243^(16/23) 2100951949424906 a001 9227465/5600748293801*4106118243^(17/23) 2100951949424906 a001 9227465/14662949395604*4106118243^(18/23) 2100951949424906 a001 9227465/6643838879*4106118243^(10/23) 2100951949424906 a004 Fibonacci(35)*Lucas(46)/(1/2+sqrt(5)/2)^73 2100951949424906 a001 9227465/2537720636*2537720636^(2/5) 2100951949424906 a001 9227465/2537720636*45537549124^(6/17) 2100951949424906 a001 9227465/2537720636*14662949395604^(2/7) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^18/Lucas(45) 2100951949424906 a004 Fibonacci(45)/Lucas(35)/(1/2+sqrt(5)/2)^2 2100951949424906 a001 9227465/2537720636*192900153618^(1/3) 2100951949424906 a001 9227465/2537720636*10749957122^(3/8) 2100951949424906 a001 9227465/2537720636*4106118243^(9/23) 2100951949424906 a001 9227465/17393796001*1568397607^(1/2) 2100951949424906 a001 9227465/6643838879*1568397607^(5/11) 2100951949424906 a001 9227465/45537549124*1568397607^(6/11) 2100951949424906 a001 9227465/119218851371*1568397607^(13/22) 2100951949424906 a001 9227465/312119004989*1568397607^(7/11) 2100951949424906 a001 9227465/817138163596*1568397607^(15/22) 2100951949424906 a001 9227465/2139295485799*1568397607^(8/11) 2100951949424906 a001 9227465/3461452808002*1568397607^(3/4) 2100951949424906 a001 9227465/5600748293801*1568397607^(17/22) 2100951949424906 a001 9227465/2537720636*1568397607^(9/22) 2100951949424906 a001 9227465/14662949395604*1568397607^(9/11) 2100951949424906 a004 Fibonacci(35)*Lucas(44)/(1/2+sqrt(5)/2)^71 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^16/Lucas(43) 2100951949424906 a006 5^(1/2)*Fibonacci(43)/Lucas(35)/sqrt(5) 2100951949424906 a001 9227465/969323029*23725150497407^(1/4) 2100951949424906 a001 9227465/969323029*73681302247^(4/13) 2100951949424906 a001 9227465/969323029*10749957122^(1/3) 2100951949424906 a001 9227465/969323029*4106118243^(8/23) 2100951949424906 a001 9227465/969323029*1568397607^(4/11) 2100951949424906 a001 9227465/2537720636*599074578^(3/7) 2100951949424906 a001 9227465/6643838879*599074578^(10/21) 2100951949424906 a001 9227465/10749957122*599074578^(1/2) 2100951949424906 a001 9227465/17393796001*599074578^(11/21) 2100951949424906 a001 9227465/45537549124*599074578^(4/7) 2100951949424906 a001 9227465/119218851371*599074578^(13/21) 2100951949424906 a001 9227465/192900153618*599074578^(9/14) 2100951949424906 a001 9227465/312119004989*599074578^(2/3) 2100951949424906 a001 9227465/817138163596*599074578^(5/7) 2100951949424906 a001 9227465/2139295485799*599074578^(16/21) 2100951949424906 a001 9227465/969323029*599074578^(8/21) 2100951949424906 a001 9227465/3461452808002*599074578^(11/14) 2100951949424906 a001 9227465/5600748293801*599074578^(17/21) 2100951949424906 a001 9227465/9062201101803*599074578^(5/6) 2100951949424906 a001 9227465/14662949395604*599074578^(6/7) 2100951949424906 a004 Fibonacci(35)*Lucas(42)/(1/2+sqrt(5)/2)^69 2100951949424906 a001 9227465/599074578*228826127^(3/8) 2100951949424906 a001 9227465/370248451*17393796001^(2/7) 2100951949424906 a001 9227465/370248451*14662949395604^(2/9) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^14/Lucas(41) 2100951949424906 a001 165580141/20633239*(1/2+1/2*5^(1/2))^2 2100951949424906 a001 165580141/20633239*10749957122^(1/24) 2100951949424906 a001 9227465/370248451*10749957122^(7/24) 2100951949424906 a001 165580141/20633239*4106118243^(1/23) 2100951949424906 a001 9227465/370248451*4106118243^(7/23) 2100951949424906 a001 165580141/20633239*1568397607^(1/22) 2100951949424906 a001 9227465/370248451*1568397607^(7/22) 2100951949424906 a001 165580141/20633239*599074578^(1/21) 2100951949424906 a001 9227465/370248451*599074578^(1/3) 2100951949424906 a001 165580141/20633239*228826127^(1/20) 2100951949424906 a001 9227465/969323029*228826127^(2/5) 2100951949424906 a001 9227465/2537720636*228826127^(9/20) 2100951949424906 a001 4976784/1368706081*12752043^(9/17) 2100951949424906 a001 9227465/6643838879*228826127^(1/2) 2100951949424906 a001 9227465/17393796001*228826127^(11/20) 2100951949424906 a001 9227465/45537549124*228826127^(3/5) 2100951949424906 a001 9227465/73681302247*228826127^(5/8) 2100951949424906 a001 9227465/119218851371*228826127^(13/20) 2100951949424906 a001 9227465/312119004989*228826127^(7/10) 2100951949424906 a001 9227465/370248451*228826127^(7/20) 2100951949424906 a001 165580141/20633239*87403803^(1/19) 2100951949424906 a001 9227465/817138163596*228826127^(3/4) 2100951949424906 a001 9227465/2139295485799*228826127^(4/5) 2100951949424906 a001 9227465/5600748293801*228826127^(17/20) 2100951949424906 a001 9227465/9062201101803*228826127^(7/8) 2100951949424906 a001 9227465/14662949395604*228826127^(9/10) 2100951949424906 a004 Fibonacci(35)*Lucas(40)/(1/2+sqrt(5)/2)^67 2100951949424906 a001 9227465/141422324*141422324^(4/13) 2100951949424906 a001 9227465/141422324*2537720636^(4/15) 2100951949424906 a001 9227465/141422324*45537549124^(4/17) 2100951949424906 a001 9227465/141422324*817138163596^(4/19) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^12/Lucas(39) 2100951949424906 a001 63245986/20633239*(1/2+1/2*5^(1/2))^4 2100951949424906 a001 63245986/20633239*23725150497407^(1/16) 2100951949424906 a001 63245986/20633239*73681302247^(1/13) 2100951949424906 a001 9227465/141422324*73681302247^(3/13) 2100951949424906 a001 63245986/20633239*10749957122^(1/12) 2100951949424906 a001 9227465/141422324*10749957122^(1/4) 2100951949424906 a001 63245986/20633239*4106118243^(2/23) 2100951949424906 a001 9227465/141422324*4106118243^(6/23) 2100951949424906 a001 63245986/20633239*1568397607^(1/11) 2100951949424906 a001 9227465/141422324*1568397607^(3/11) 2100951949424906 a001 63245986/20633239*599074578^(2/21) 2100951949424906 a001 9227465/141422324*599074578^(2/7) 2100951949424906 a001 63245986/20633239*228826127^(1/10) 2100951949424906 a001 39088169/1568397607*12752043^(7/17) 2100951949424906 a001 9227465/370248451*87403803^(7/19) 2100951949424906 a001 9303105/1875749*33385282^(1/12) 2100951949424906 a001 9227465/141422324*228826127^(3/10) 2100951949424906 a001 9227465/969323029*87403803^(8/19) 2100951949424906 a001 165580141/20633239*33385282^(1/18) 2100951949424906 a001 9227465/2537720636*87403803^(9/19) 2100951949424906 a001 63245986/20633239*87403803^(2/19) 2100951949424906 a001 9227465/4106118243*87403803^(1/2) 2100951949424906 a001 9227465/6643838879*87403803^(10/19) 2100951949424906 a001 9227465/17393796001*87403803^(11/19) 2100951949424906 a001 9227465/45537549124*87403803^(12/19) 2100951949424906 a001 9227465/119218851371*87403803^(13/19) 2100951949424906 a001 9227465/141422324*87403803^(6/19) 2100951949424906 a001 9227465/312119004989*87403803^(14/19) 2100951949424906 a001 9227465/817138163596*87403803^(15/19) 2100951949424906 a001 9227465/2139295485799*87403803^(16/19) 2100951949424906 a001 9227465/5600748293801*87403803^(17/19) 2100951949424906 a001 9227465/14662949395604*87403803^(18/19) 2100951949424906 a004 Fibonacci(35)*Lucas(38)/(1/2+sqrt(5)/2)^65 2100951949424906 a001 63245986/20633239*33385282^(1/9) 2100951949424906 a001 233802911/29134601*4870847^(1/16) 2100951949424906 a001 34111385/1368706081*12752043^(7/17) 2100951949424906 a001 24157817/370248451*12752043^(6/17) 2100951949424906 a001 133957148/5374978561*12752043^(7/17) 2100951949424906 a001 233802911/9381251041*12752043^(7/17) 2100951949424906 a001 1836311903/73681302247*12752043^(7/17) 2100951949424906 a001 267084832/10716675201*12752043^(7/17) 2100951949424906 a001 12586269025/505019158607*12752043^(7/17) 2100951949424906 a001 10983760033/440719107401*12752043^(7/17) 2100951949424906 a001 43133785636/1730726404001*12752043^(7/17) 2100951949424906 a001 75283811239/3020733700601*12752043^(7/17) 2100951949424906 a001 182717648081/7331474697802*12752043^(7/17) 2100951949424906 a001 139583862445/5600748293801*12752043^(7/17) 2100951949424906 a001 53316291173/2139295485799*12752043^(7/17) 2100951949424906 a001 10182505537/408569081798*12752043^(7/17) 2100951949424906 a001 7778742049/312119004989*12752043^(7/17) 2100951949424906 a001 2971215073/119218851371*12752043^(7/17) 2100951949424906 a001 567451585/22768774562*12752043^(7/17) 2100951949424906 a001 433494437/17393796001*12752043^(7/17) 2100951949424906 a001 165580141/6643838879*12752043^(7/17) 2100951949424906 a001 31622993/1268860318*12752043^(7/17) 2100951949424906 a001 1836311903/228826127*4870847^(1/16) 2100951949424906 a001 267084832/33281921*4870847^(1/16) 2100951949424906 a001 12586269025/1568397607*4870847^(1/16) 2100951949424906 a001 10983760033/1368706081*4870847^(1/16) 2100951949424906 a001 43133785636/5374978561*4870847^(1/16) 2100951949424906 a001 75283811239/9381251041*4870847^(1/16) 2100951949424906 a001 591286729879/73681302247*4870847^(1/16) 2100951949424906 a001 86000486440/10716675201*4870847^(1/16) 2100951949424906 a001 4052739537881/505019158607*4870847^(1/16) 2100951949424906 a001 3278735159921/408569081798*4870847^(1/16) 2100951949424906 a001 2504730781961/312119004989*4870847^(1/16) 2100951949424906 a001 956722026041/119218851371*4870847^(1/16) 2100951949424906 a001 182717648081/22768774562*4870847^(1/16) 2100951949424906 a001 139583862445/17393796001*4870847^(1/16) 2100951949424906 a001 53316291173/6643838879*4870847^(1/16) 2100951949424906 a001 10182505537/1268860318*4870847^(1/16) 2100951949424906 a001 7778742049/969323029*4870847^(1/16) 2100951949424906 a001 2971215073/370248451*4870847^(1/16) 2100951949424906 a001 24157817/20633239*141422324^(2/13) 2100951949424906 a001 567451585/70711162*4870847^(1/16) 2100951949424906 a001 9227465/54018521*2537720636^(2/9) 2100951949424906 a001 24157817/20633239*2537720636^(2/15) 2100951949424906 a001 24157817/20633239*45537549124^(2/17) 2100951949424906 a001 24157817/20633239*14662949395604^(2/21) 2100951949424906 a004 Fibonacci(35)*(1/2+sqrt(5)/2)^10/Lucas(37) 2100951949424906 a001 24157817/20633239*(1/2+1/2*5^(1/2))^6 2100951949424906 a001 222915410843905/10610209857723 2100951949424906 a001 9227465/54018521*28143753123^(1/5) 2100951949424906 a001 24157817/20633239*10749957122^(1/8) 2100951949424906 a001 9227465/54018521*10749957122^(5/24) 2100951949424906 a001 24157817/20633239*4106118243^(3/23) 2100951949424906 a001 9227465/54018521*4106118243^(5/23) 2100951949424906 a001 24157817/20633239*1568397607^(3/22) 2100951949424906 a001 9227465/54018521*1568397607^(5/22) 2100951949424906 a001 24157817/20633239*599074578^(1/7) 2100951949424906 a001 9227465/54018521*599074578^(5/21) 2100951949424906 a001 24157817/20633239*228826127^(3/20) 2100951949424906 a001 9227465/54018521*228826127^(1/4) 2100951949424906 a001 9227465/141422324*33385282^(1/3) 2100951949424906 a001 9227465/370248451*33385282^(7/18) 2100951949424906 a001 24157817/20633239*87403803^(3/19) 2100951949424906 a001 165580141/20633239*12752043^(1/17) 2100951949424906 a001 9227465/599074578*33385282^(5/12) 2100951949424906 a001 7465176/5374978561*12752043^(10/17) 2100951949424906 a001 9227465/54018521*87403803^(5/19) 2100951949424906 a001 9227465/969323029*33385282^(4/9) 2100951949424906 a001 39088169/4106118243*12752043^(8/17) 2100951949424907 a001 9227465/2537720636*33385282^(1/2) 2100951949424907 a001 24157817/20633239*33385282^(1/6) 2100951949424907 a001 9227465/6643838879*33385282^(5/9) 2100951949424907 a001 9227465/10749957122*33385282^(7/12) 2100951949424907 a001 102334155/10749957122*12752043^(8/17) 2100951949424907 a001 24157817/969323029*12752043^(7/17) 2100951949424907 a001 267914296/28143753123*12752043^(8/17) 2100951949424907 a001 701408733/73681302247*12752043^(8/17) 2100951949424907 a001 1836311903/192900153618*12752043^(8/17) 2100951949424907 a001 102287808/10745088481*12752043^(8/17) 2100951949424907 a001 12586269025/1322157322203*12752043^(8/17) 2100951949424907 a001 32951280099/3461452808002*12752043^(8/17) 2100951949424907 a001 86267571272/9062201101803*12752043^(8/17) 2100951949424907 a001 225851433717/23725150497407*12752043^(8/17) 2100951949424907 a001 139583862445/14662949395604*12752043^(8/17) 2100951949424907 a001 53316291173/5600748293801*12752043^(8/17) 2100951949424907 a001 20365011074/2139295485799*12752043^(8/17) 2100951949424907 a001 7778742049/817138163596*12752043^(8/17) 2100951949424907 a001 2971215073/312119004989*12752043^(8/17) 2100951949424907 a001 1134903170/119218851371*12752043^(8/17) 2100951949424907 a001 433494437/45537549124*12752043^(8/17) 2100951949424907 a001 9227465/17393796001*33385282^(11/18) 2100951949424907 a001 165580141/17393796001*12752043^(8/17) 2100951949424907 a001 3524578/73681302247*7881196^(9/11) 2100951949424907 a001 9227465/54018521*33385282^(5/18) 2100951949424907 a001 39088169/6643838879*12752043^(1/2) 2100951949424907 a001 63245986/6643838879*12752043^(8/17) 2100951949424907 a001 9227465/45537549124*33385282^(2/3) 2100951949424907 a001 433494437/54018521*4870847^(1/16) 2100951949424907 a001 9227465/119218851371*33385282^(13/18) 2100951949424907 a001 9227465/192900153618*33385282^(3/4) 2100951949424907 a001 9227465/312119004989*33385282^(7/9) 2100951949424907 a001 102334155/17393796001*12752043^(1/2) 2100951949424907 a001 66978574/11384387281*12752043^(1/2) 2100951949424907 a001 701408733/119218851371*12752043^(1/2) 2100951949424907 a001 1836311903/312119004989*12752043^(1/2) 2100951949424907 a001 1201881744/204284540899*12752043^(1/2) 2100951949424907 a001 12586269025/2139295485799*12752043^(1/2) 2100951949424907 a001 32951280099/5600748293801*12752043^(1/2) 2100951949424907 a001 1135099622/192933544679*12752043^(1/2) 2100951949424907 a001 139583862445/23725150497407*12752043^(1/2) 2100951949424907 a001 53316291173/9062201101803*12752043^(1/2) 2100951949424907 a001 10182505537/1730726404001*12752043^(1/2) 2100951949424907 a001 7778742049/1322157322203*12752043^(1/2) 2100951949424907 a001 2971215073/505019158607*12752043^(1/2) 2100951949424907 a001 567451585/96450076809*12752043^(1/2) 2100951949424907 a001 433494437/73681302247*12752043^(1/2) 2100951949424907 a001 4976784/9381251041*12752043^(11/17) 2100951949424907 a001 165580141/28143753123*12752043^(1/2) 2100951949424907 a001 9227465/817138163596*33385282^(5/6) 2100951949424907 a001 63245986/20633239*12752043^(2/17) 2100951949424907 a001 39088169/10749957122*12752043^(9/17) 2100951949424907 a001 31622993/5374978561*12752043^(1/2) 2100951949424907 a001 9227465/2139295485799*33385282^(8/9) 2100951949424907 a001 9227465/3461452808002*33385282^(11/12) 2100951949424907 a001 9227465/5600748293801*33385282^(17/18) 2100951949424907 a001 831985/228811001*12752043^(9/17) 2100951949424907 a001 24157817/2537720636*12752043^(8/17) 2100951949424907 a004 Fibonacci(35)*Lucas(36)/(1/2+sqrt(5)/2)^63 2100951949424907 a001 267914296/73681302247*12752043^(9/17) 2100951949424907 a001 233802911/64300051206*12752043^(9/17) 2100951949424907 a001 1836311903/505019158607*12752043^(9/17) 2100951949424907 a001 1602508992/440719107401*12752043^(9/17) 2100951949424907 a001 12586269025/3461452808002*12752043^(9/17) 2100951949424907 a001 10983760033/3020733700601*12752043^(9/17) 2100951949424907 a001 86267571272/23725150497407*12752043^(9/17) 2100951949424907 a001 53316291173/14662949395604*12752043^(9/17) 2100951949424907 a001 20365011074/5600748293801*12752043^(9/17) 2100951949424907 a001 7778742049/2139295485799*12752043^(9/17) 2100951949424907 a001 2971215073/817138163596*12752043^(9/17) 2100951949424907 a001 1134903170/312119004989*12752043^(9/17) 2100951949424907 a001 433494437/119218851371*12752043^(9/17) 2100951949424908 a001 165580141/45537549124*12752043^(9/17) 2100951949424908 a001 63245986/17393796001*12752043^(9/17) 2100951949424908 a001 24157817/4106118243*12752043^(1/2) 2100951949424908 a001 14930352/73681302247*12752043^(12/17) 2100951949424908 a001 39088169/28143753123*12752043^(10/17) 2100951949424908 a001 14619165/10525900321*12752043^(10/17) 2100951949424908 a001 24157817/6643838879*12752043^(9/17) 2100951949424908 a001 133957148/96450076809*12752043^(10/17) 2100951949424908 a001 701408733/505019158607*12752043^(10/17) 2100951949424908 a001 1836311903/1322157322203*12752043^(10/17) 2100951949424908 a001 14930208/10749853441*12752043^(10/17) 2100951949424908 a001 12586269025/9062201101803*12752043^(10/17) 2100951949424908 a001 32951280099/23725150497407*12752043^(10/17) 2100951949424908 a001 10182505537/7331474697802*12752043^(10/17) 2100951949424908 a001 7778742049/5600748293801*12752043^(10/17) 2100951949424908 a001 2971215073/2139295485799*12752043^(10/17) 2100951949424908 a001 567451585/408569081798*12752043^(10/17) 2100951949424908 a001 433494437/312119004989*12752043^(10/17) 2100951949424908 a001 165580141/119218851371*12752043^(10/17) 2100951949424908 a001 31622993/22768774562*12752043^(10/17) 2100951949424909 a001 24157817/20633239*12752043^(3/17) 2100951949424909 a001 2584/33385281*12752043^(13/17) 2100951949424909 a001 39088169/73681302247*12752043^(11/17) 2100951949424909 a001 34111385/64300051206*12752043^(11/17) 2100951949424909 a001 24157817/17393796001*12752043^(10/17) 2100951949424909 a001 267914296/505019158607*12752043^(11/17) 2100951949424909 a001 233802911/440719107401*12752043^(11/17) 2100951949424909 a001 1836311903/3461452808002*12752043^(11/17) 2100951949424909 a001 1602508992/3020733700601*12752043^(11/17) 2100951949424909 a001 12586269025/23725150497407*12752043^(11/17) 2100951949424909 a001 7778742049/14662949395604*12752043^(11/17) 2100951949424909 a001 2971215073/5600748293801*12752043^(11/17) 2100951949424909 a001 1134903170/2139295485799*12752043^(11/17) 2100951949424909 a001 433494437/817138163596*12752043^(11/17) 2100951949424909 a001 165580141/312119004989*12752043^(11/17) 2100951949424909 a001 63245986/119218851371*12752043^(11/17) 2100951949424909 a001 14930352/505019158607*12752043^(14/17) 2100951949424910 a001 39088169/192900153618*12752043^(12/17) 2100951949424910 a001 102334155/505019158607*12752043^(12/17) 2100951949424910 a001 24157817/45537549124*12752043^(11/17) 2100951949424910 a001 267914296/1322157322203*12752043^(12/17) 2100951949424910 a001 701408733/3461452808002*12752043^(12/17) 2100951949424910 a001 1836311903/9062201101803*12752043^(12/17) 2100951949424910 a001 4807526976/23725150497407*12752043^(12/17) 2100951949424910 a001 2971215073/14662949395604*12752043^(12/17) 2100951949424910 a001 1134903170/5600748293801*12752043^(12/17) 2100951949424910 a001 433494437/2139295485799*12752043^(12/17) 2100951949424910 a001 165580141/817138163596*12752043^(12/17) 2100951949424910 a001 14619165/4769326*4870847^(1/8) 2100951949424910 a001 3524578/17393796001*7881196^(8/11) 2100951949424910 a001 63245986/312119004989*12752043^(12/17) 2100951949424910 a001 9227465/54018521*12752043^(5/17) 2100951949424910 a001 4976784/440719107401*12752043^(15/17) 2100951949424910 a001 9227465/141422324*12752043^(6/17) 2100951949424910 a001 39088169/505019158607*12752043^(13/17) 2100951949424910 a001 34111385/440719107401*12752043^(13/17) 2100951949424910 a001 24157817/119218851371*12752043^(12/17) 2100951949424911 a001 9227465/20633239*(1/2+1/2*5^(1/2))^8 2100951949424911 a001 9227465/20633239*23725150497407^(1/8) 2100951949424911 a001 85146110326225/4052739537881 2100951949424911 a001 9227465/20633239*73681302247^(2/13) 2100951949424911 a001 9227465/20633239*10749957122^(1/6) 2100951949424911 a001 9227465/20633239*4106118243^(4/23) 2100951949424911 a001 9227465/20633239*1568397607^(2/11) 2100951949424911 a001 9227465/20633239*599074578^(4/21) 2100951949424911 a001 133957148/1730726404001*12752043^(13/17) 2100951949424911 a001 9227465/20633239*228826127^(1/5) 2100951949424911 a001 233802911/3020733700601*12752043^(13/17) 2100951949424911 a001 1836311903/23725150497407*12752043^(13/17) 2100951949424911 a001 567451585/7331474697802*12752043^(13/17) 2100951949424911 a001 433494437/5600748293801*12752043^(13/17) 2100951949424911 a001 165580141/2139295485799*12752043^(13/17) 2100951949424911 a001 9227465/20633239*87403803^(4/19) 2100951949424911 a001 31622993/408569081798*12752043^(13/17) 2100951949424911 a001 9227465/370248451*12752043^(7/17) 2100951949424911 a001 7465176/1730726404001*12752043^(16/17) 2100951949424911 a001 9227465/20633239*33385282^(2/9) 2100951949424911 a001 39088169/1322157322203*12752043^(14/17) 2100951949424911 a001 165580141/20633239*4870847^(1/16) 2100951949424911 a001 6765/228826126*12752043^(14/17) 2100951949424911 a001 24157817/312119004989*12752043^(13/17) 2100951949424911 a001 267914296/9062201101803*12752043^(14/17) 2100951949424911 a001 701408733/23725150497407*12752043^(14/17) 2100951949424911 a001 433494437/14662949395604*12752043^(14/17) 2100951949424911 a001 165580141/5600748293801*12752043^(14/17) 2100951949424911 a001 63245986/2139295485799*12752043^(14/17) 2100951949424911 a001 267914296/87403803*4870847^(1/8) 2100951949424912 a001 9227465/969323029*12752043^(8/17) 2100951949424912 a001 701408733/228826127*4870847^(1/8) 2100951949424912 a004 Fibonacci(36)*Lucas(34)/(1/2+sqrt(5)/2)^62 2100951949424912 a001 1836311903/599074578*4870847^(1/8) 2100951949424912 a001 686789568/224056801*4870847^(1/8) 2100951949424912 a001 12586269025/4106118243*4870847^(1/8) 2100951949424912 a001 32951280099/10749957122*4870847^(1/8) 2100951949424912 a001 86267571272/28143753123*4870847^(1/8) 2100951949424912 a001 32264490531/10525900321*4870847^(1/8) 2100951949424912 a001 591286729879/192900153618*4870847^(1/8) 2100951949424912 a001 1548008755920/505019158607*4870847^(1/8) 2100951949424912 a001 1515744265389/494493258286*4870847^(1/8) 2100951949424912 a001 2504730781961/817138163596*4870847^(1/8) 2100951949424912 a001 956722026041/312119004989*4870847^(1/8) 2100951949424912 a001 365435296162/119218851371*4870847^(1/8) 2100951949424912 a001 139583862445/45537549124*4870847^(1/8) 2100951949424912 a001 53316291173/17393796001*4870847^(1/8) 2100951949424912 a001 20365011074/6643838879*4870847^(1/8) 2100951949424912 a001 7778742049/2537720636*4870847^(1/8) 2100951949424912 a001 2971215073/969323029*4870847^(1/8) 2100951949424912 a001 1134903170/370248451*4870847^(1/8) 2100951949424912 a001 39088169/3461452808002*12752043^(15/17) 2100951949424912 a001 433494437/141422324*4870847^(1/8) 2100951949424912 a001 3524578/6643838879*7881196^(2/3) 2100951949424912 a001 34111385/3020733700601*12752043^(15/17) 2100951949424912 a001 24157817/817138163596*12752043^(14/17) 2100951949424912 a001 267914296/23725150497407*12752043^(15/17) 2100951949424912 a001 9227465/1568397607*12752043^(1/2) 2100951949424912 a001 165580141/14662949395604*12752043^(15/17) 2100951949424912 a001 63245986/5600748293801*12752043^(15/17) 2100951949424912 a001 3524578/12752043*7881196^(3/11) 2100951949424912 a001 9227465/2537720636*12752043^(9/17) 2100951949424912 a001 165580141/54018521*4870847^(1/8) 2100951949424913 a001 39088169/9062201101803*12752043^(16/17) 2100951949424913 a001 102334155/23725150497407*12752043^(16/17) 2100951949424913 a001 24157817/2139295485799*12752043^(15/17) 2100951949424913 a001 31622993/7331474697802*12752043^(16/17) 2100951949424913 a001 3524578/4106118243*7881196^(7/11) 2100951949424913 a001 9227465/6643838879*12752043^(10/17) 2100951949424913 a004 Fibonacci(38)*Lucas(34)/(1/2+sqrt(5)/2)^64 2100951949424914 a001 5702887/33385282*4870847^(5/16) 2100951949424914 a004 Fibonacci(40)*Lucas(34)/(1/2+sqrt(5)/2)^66 2100951949424914 a001 24157817/5600748293801*12752043^(16/17) 2100951949424914 a001 9227465/20633239*12752043^(4/17) 2100951949424914 a004 Fibonacci(42)*Lucas(34)/(1/2+sqrt(5)/2)^68 2100951949424914 a004 Fibonacci(44)*Lucas(34)/(1/2+sqrt(5)/2)^70 2100951949424914 a004 Fibonacci(46)*Lucas(34)/(1/2+sqrt(5)/2)^72 2100951949424914 a004 Fibonacci(48)*Lucas(34)/(1/2+sqrt(5)/2)^74 2100951949424914 a004 Fibonacci(50)*Lucas(34)/(1/2+sqrt(5)/2)^76 2100951949424914 a004 Fibonacci(52)*Lucas(34)/(1/2+sqrt(5)/2)^78 2100951949424914 a004 Fibonacci(54)*Lucas(34)/(1/2+sqrt(5)/2)^80 2100951949424914 a004 Fibonacci(56)*Lucas(34)/(1/2+sqrt(5)/2)^82 2100951949424914 a004 Fibonacci(58)*Lucas(34)/(1/2+sqrt(5)/2)^84 2100951949424914 a004 Fibonacci(60)*Lucas(34)/(1/2+sqrt(5)/2)^86 2100951949424914 a004 Fibonacci(62)*Lucas(34)/(1/2+sqrt(5)/2)^88 2100951949424914 a004 Fibonacci(64)*Lucas(34)/(1/2+sqrt(5)/2)^90 2100951949424914 a004 Fibonacci(66)*Lucas(34)/(1/2+sqrt(5)/2)^92 2100951949424914 a004 Fibonacci(68)*Lucas(34)/(1/2+sqrt(5)/2)^94 2100951949424914 a004 Fibonacci(70)*Lucas(34)/(1/2+sqrt(5)/2)^96 2100951949424914 a004 Fibonacci(72)*Lucas(34)/(1/2+sqrt(5)/2)^98 2100951949424914 a004 Fibonacci(74)*Lucas(34)/(1/2+sqrt(5)/2)^100 2100951949424914 a004 Fibonacci(73)*Lucas(34)/(1/2+sqrt(5)/2)^99 2100951949424914 a004 Fibonacci(71)*Lucas(34)/(1/2+sqrt(5)/2)^97 2100951949424914 a004 Fibonacci(69)*Lucas(34)/(1/2+sqrt(5)/2)^95 2100951949424914 a001 2/5702887*(1/2+1/2*5^(1/2))^42 2100951949424914 a004 Fibonacci(67)*Lucas(34)/(1/2+sqrt(5)/2)^93 2100951949424914 a004 Fibonacci(65)*Lucas(34)/(1/2+sqrt(5)/2)^91 2100951949424914 a004 Fibonacci(63)*Lucas(34)/(1/2+sqrt(5)/2)^89 2100951949424914 a004 Fibonacci(61)*Lucas(34)/(1/2+sqrt(5)/2)^87 2100951949424914 a004 Fibonacci(59)*Lucas(34)/(1/2+sqrt(5)/2)^85 2100951949424914 a004 Fibonacci(57)*Lucas(34)/(1/2+sqrt(5)/2)^83 2100951949424914 a004 Fibonacci(55)*Lucas(34)/(1/2+sqrt(5)/2)^81 2100951949424914 a004 Fibonacci(53)*Lucas(34)/(1/2+sqrt(5)/2)^79 2100951949424914 a004 Fibonacci(51)*Lucas(34)/(1/2+sqrt(5)/2)^77 2100951949424914 a004 Fibonacci(49)*Lucas(34)/(1/2+sqrt(5)/2)^75 2100951949424914 a004 Fibonacci(47)*Lucas(34)/(1/2+sqrt(5)/2)^73 2100951949424914 a004 Fibonacci(45)*Lucas(34)/(1/2+sqrt(5)/2)^71 2100951949424914 a004 Fibonacci(43)*Lucas(34)/(1/2+sqrt(5)/2)^69 2100951949424914 a004 Fibonacci(41)*Lucas(34)/(1/2+sqrt(5)/2)^67 2100951949424914 a004 Fibonacci(39)*Lucas(34)/(1/2+sqrt(5)/2)^65 2100951949424914 a001 9227465/17393796001*12752043^(11/17) 2100951949424914 a004 Fibonacci(37)*Lucas(34)/(1/2+sqrt(5)/2)^63 2100951949424915 a001 9227465/45537549124*12752043^(12/17) 2100951949424915 a001 39088169/33385282*4870847^(3/16) 2100951949424915 a001 9227465/119218851371*12752043^(13/17) 2100951949424916 a001 3524578/969323029*7881196^(6/11) 2100951949424916 a001 9227465/312119004989*12752043^(14/17) 2100951949424917 a001 63245986/20633239*4870847^(1/8) 2100951949424917 a001 34111385/29134601*4870847^(3/16) 2100951949424917 a001 9227465/817138163596*12752043^(15/17) 2100951949424917 a001 267914296/228826127*4870847^(3/16) 2100951949424917 a001 233802911/199691526*4870847^(3/16) 2100951949424917 a001 1836311903/1568397607*4870847^(3/16) 2100951949424917 a001 1602508992/1368706081*4870847^(3/16) 2100951949424917 a001 12586269025/10749957122*4870847^(3/16) 2100951949424917 a001 10983760033/9381251041*4870847^(3/16) 2100951949424917 a001 86267571272/73681302247*4870847^(3/16) 2100951949424917 a001 75283811239/64300051206*4870847^(3/16) 2100951949424917 a001 2504730781961/2139295485799*4870847^(3/16) 2100951949424917 a001 365435296162/312119004989*4870847^(3/16) 2100951949424917 a001 139583862445/119218851371*4870847^(3/16) 2100951949424917 a001 53316291173/45537549124*4870847^(3/16) 2100951949424917 a001 20365011074/17393796001*4870847^(3/16) 2100951949424917 a001 7778742049/6643838879*4870847^(3/16) 2100951949424917 a001 2971215073/2537720636*4870847^(3/16) 2100951949424917 a001 1134903170/969323029*4870847^(3/16) 2100951949424917 a001 433494437/370248451*4870847^(3/16) 2100951949424917 a001 165580141/141422324*4870847^(3/16) 2100951949424918 a001 9227465/2139295485799*12752043^(16/17) 2100951949424918 a001 63245986/54018521*4870847^(3/16) 2100951949424918 a001 9227465/4870847*1860498^(1/6) 2100951949424919 a004 Fibonacci(35)*Lucas(34)/(1/2+sqrt(5)/2)^61 2100951949424919 a001 7465176/16692641*4870847^(1/4) 2100951949424919 a001 3524578/228826127*7881196^(5/11) 2100951949424921 a001 5702887/4870847*1860498^(1/5) 2100951949424921 a001 5702887/7881196*20633239^(1/5) 2100951949424921 a001 5702887/87403803*4870847^(3/8) 2100951949424921 a001 1762289/16692641*7881196^(1/3) 2100951949424922 a001 3524578/12752043*141422324^(3/13) 2100951949424922 a001 3524578/12752043*2537720636^(1/5) 2100951949424922 a001 5702887/7881196*17393796001^(1/7) 2100951949424922 a001 3524578/12752043*45537549124^(3/17) 2100951949424922 a001 20100270056686/956722026041 2100951949424922 a001 3524578/12752043*14662949395604^(1/7) 2100951949424922 a001 3524578/12752043*(1/2+1/2*5^(1/2))^9 2100951949424922 a001 5702887/7881196*(1/2+1/2*5^(1/2))^7 2100951949424922 a001 3524578/12752043*192900153618^(1/6) 2100951949424922 a001 3524578/12752043*10749957122^(3/16) 2100951949424922 a001 5702887/7881196*599074578^(1/6) 2100951949424922 a001 3524578/12752043*599074578^(3/14) 2100951949424922 a001 3524578/12752043*33385282^(1/4) 2100951949424922 a001 39088169/87403803*4870847^(1/4) 2100951949424923 a001 102334155/228826127*4870847^(1/4) 2100951949424923 a001 133957148/299537289*4870847^(1/4) 2100951949424923 a001 701408733/1568397607*4870847^(1/4) 2100951949424923 a001 1836311903/4106118243*4870847^(1/4) 2100951949424923 a001 2403763488/5374978561*4870847^(1/4) 2100951949424923 a001 12586269025/28143753123*4870847^(1/4) 2100951949424923 a001 32951280099/73681302247*4870847^(1/4) 2100951949424923 a001 43133785636/96450076809*4870847^(1/4) 2100951949424923 a001 225851433717/505019158607*4870847^(1/4) 2100951949424923 a001 10610209857723/23725150497407*4870847^(1/4) 2100951949424923 a001 182717648081/408569081798*4870847^(1/4) 2100951949424923 a001 139583862445/312119004989*4870847^(1/4) 2100951949424923 a001 53316291173/119218851371*4870847^(1/4) 2100951949424923 a001 10182505537/22768774562*4870847^(1/4) 2100951949424923 a001 7778742049/17393796001*4870847^(1/4) 2100951949424923 a001 2971215073/6643838879*4870847^(1/4) 2100951949424923 a001 567451585/1268860318*4870847^(1/4) 2100951949424923 a001 433494437/969323029*4870847^(1/4) 2100951949424923 a001 165580141/370248451*4870847^(1/4) 2100951949424923 a001 3524578/54018521*7881196^(4/11) 2100951949424923 a001 24157817/20633239*4870847^(3/16) 2100951949424923 a001 31622993/70711162*4870847^(1/4) 2100951949424924 a001 24157817/54018521*4870847^(1/4) 2100951949424926 a001 4976784/29134601*4870847^(5/16) 2100951949424926 a001 5702887/228826127*4870847^(7/16) 2100951949424928 a001 39088169/228826127*4870847^(5/16) 2100951949424928 a001 34111385/4250681*1860498^(1/15) 2100951949424928 a001 34111385/199691526*4870847^(5/16) 2100951949424928 a001 267914296/1568397607*4870847^(5/16) 2100951949424928 a001 233802911/1368706081*4870847^(5/16) 2100951949424928 a001 1836311903/10749957122*4870847^(5/16) 2100951949424928 a001 1602508992/9381251041*4870847^(5/16) 2100951949424928 a001 12586269025/73681302247*4870847^(5/16) 2100951949424928 a001 10983760033/64300051206*4870847^(5/16) 2100951949424928 a001 86267571272/505019158607*4870847^(5/16) 2100951949424928 a001 75283811239/440719107401*4870847^(5/16) 2100951949424928 a001 2504730781961/14662949395604*4870847^(5/16) 2100951949424928 a001 139583862445/817138163596*4870847^(5/16) 2100951949424928 a001 53316291173/312119004989*4870847^(5/16) 2100951949424928 a001 20365011074/119218851371*4870847^(5/16) 2100951949424928 a001 7778742049/45537549124*4870847^(5/16) 2100951949424928 a001 2971215073/17393796001*4870847^(5/16) 2100951949424928 a001 1134903170/6643838879*4870847^(5/16) 2100951949424928 a001 433494437/2537720636*4870847^(5/16) 2100951949424928 a001 165580141/969323029*4870847^(5/16) 2100951949424928 a001 63245986/370248451*4870847^(5/16) 2100951949424929 a001 24157817/141422324*4870847^(5/16) 2100951949424930 a004 Fibonacci(33)*Lucas(35)/(1/2+sqrt(5)/2)^60 2100951949424930 a001 3524578/312119004989*20633239^(6/7) 2100951949424931 a001 3524578/119218851371*20633239^(4/5) 2100951949424931 a001 3524578/28143753123*20633239^(5/7) 2100951949424931 a001 39088169/7881196*7881196^(1/11) 2100951949424932 a001 3524578/4106118243*20633239^(3/5) 2100951949424932 a001 1762289/1268860318*20633239^(4/7) 2100951949424932 a001 3732588/1970299*20633239^(1/7) 2100951949424932 a001 14930352/228826127*4870847^(3/8) 2100951949424932 a001 5702887/599074578*4870847^(1/2) 2100951949424932 a001 3524578/228826127*20633239^(3/7) 2100951949424933 a001 3732588/1970299*2537720636^(1/9) 2100951949424933 a001 1762289/16692641*312119004989^(1/5) 2100951949424933 a001 3732588/1970299*312119004989^(1/11) 2100951949424933 a001 1762289/16692641*(1/2+1/2*5^(1/2))^11 2100951949424933 a001 3732588/1970299*(1/2+1/2*5^(1/2))^5 2100951949424933 a001 3732588/1970299*28143753123^(1/10) 2100951949424933 a001 1762289/16692641*1568397607^(1/4) 2100951949424933 a001 3732588/1970299*228826127^(1/8) 2100951949424933 a001 1762289/70711162*20633239^(2/5) 2100951949424933 a001 9227465/20633239*4870847^(1/4) 2100951949424933 a001 9227465/7881196*7881196^(2/11) 2100951949424934 a001 39088169/599074578*4870847^(3/8) 2100951949424934 a004 Fibonacci(33)*Lucas(37)/(1/2+sqrt(5)/2)^62 2100951949424934 a001 14619165/224056801*4870847^(3/8) 2100951949424934 a001 267914296/4106118243*4870847^(3/8) 2100951949424934 a001 701408733/10749957122*4870847^(3/8) 2100951949424934 a001 1836311903/28143753123*4870847^(3/8) 2100951949424934 a001 686789568/10525900321*4870847^(3/8) 2100951949424934 a001 12586269025/192900153618*4870847^(3/8) 2100951949424934 a001 32951280099/505019158607*4870847^(3/8) 2100951949424934 a001 86267571272/1322157322203*4870847^(3/8) 2100951949424934 a001 32264490531/494493258286*4870847^(3/8) 2100951949424934 a001 1548008755920/23725150497407*4870847^(3/8) 2100951949424934 a001 365435296162/5600748293801*4870847^(3/8) 2100951949424934 a001 139583862445/2139295485799*4870847^(3/8) 2100951949424934 a001 53316291173/817138163596*4870847^(3/8) 2100951949424934 a001 20365011074/312119004989*4870847^(3/8) 2100951949424934 a001 7778742049/119218851371*4870847^(3/8) 2100951949424934 a001 2971215073/45537549124*4870847^(3/8) 2100951949424934 a001 1134903170/17393796001*4870847^(3/8) 2100951949424934 a001 433494437/6643838879*4870847^(3/8) 2100951949424934 a001 165580141/2537720636*4870847^(3/8) 2100951949424934 a001 63245986/969323029*4870847^(3/8) 2100951949424934 a001 9227465/54018521*4870847^(5/16) 2100951949424934 a001 3524578/87403803*141422324^(1/3) 2100951949424934 a001 39088169/7881196*141422324^(1/13) 2100951949424934 a001 39088169/7881196*2537720636^(1/15) 2100951949424934 a001 39088169/7881196*45537549124^(1/17) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^13/Lucas(38) 2100951949424934 a001 39088169/7881196*14662949395604^(1/21) 2100951949424934 a001 39088169/7881196*(1/2+1/2*5^(1/2))^3 2100951949424934 a001 3524578/87403803*73681302247^(1/4) 2100951949424934 a001 39088169/7881196*10749957122^(1/16) 2100951949424934 a001 39088169/7881196*599074578^(1/14) 2100951949424934 a001 39088169/7881196*33385282^(1/12) 2100951949424934 a004 Fibonacci(33)*Lucas(39)/(1/2+sqrt(5)/2)^64 2100951949424934 a001 3524578/5600748293801*141422324^(12/13) 2100951949424934 a001 3524578/1322157322203*141422324^(11/13) 2100951949424934 a001 3524578/312119004989*141422324^(10/13) 2100951949424934 a001 3524578/228826127*141422324^(5/13) 2100951949424934 a001 3524578/73681302247*141422324^(9/13) 2100951949424934 a001 1762289/22768774562*141422324^(2/3) 2100951949424934 a001 3524578/17393796001*141422324^(8/13) 2100951949424934 a001 3524578/4106118243*141422324^(7/13) 2100951949424934 a001 3524578/969323029*141422324^(6/13) 2100951949424934 a001 3524578/228826127*2537720636^(1/3) 2100951949424934 a001 3524578/228826127*45537549124^(5/17) 2100951949424934 a001 3524578/228826127*14662949395604^(5/21) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^15/Lucas(40) 2100951949424934 a001 102334155/15762392+102334155/15762392*5^(1/2) 2100951949424934 a001 3524578/228826127*192900153618^(5/18) 2100951949424934 a001 3524578/228826127*28143753123^(3/10) 2100951949424934 a001 3524578/228826127*10749957122^(5/16) 2100951949424934 a001 3524578/228826127*599074578^(5/14) 2100951949424934 a001 3524578/228826127*228826127^(3/8) 2100951949424934 a004 Fibonacci(33)*Lucas(41)/(1/2+sqrt(5)/2)^66 2100951949424934 a001 1762289/299537289*45537549124^(1/3) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^17/Lucas(42) 2100951949424934 a004 Fibonacci(42)/Lucas(33)/(1/2+sqrt(5)/2) 2100951949424934 a004 Fibonacci(33)*Lucas(43)/(1/2+sqrt(5)/2)^68 2100951949424934 a001 3524578/1568397607*817138163596^(1/3) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^19/Lucas(44) 2100951949424934 a004 Fibonacci(44)/Lucas(33)/(1/2+sqrt(5)/2)^3 2100951949424934 a004 Fibonacci(33)*Lucas(45)/(1/2+sqrt(5)/2)^70 2100951949424934 a001 3524578/23725150497407*2537720636^(13/15) 2100951949424934 a001 3524578/4106118243*2537720636^(7/15) 2100951949424934 a001 3524578/5600748293801*2537720636^(4/5) 2100951949424934 a001 1762289/1730726404001*2537720636^(7/9) 2100951949424934 a001 3524578/1322157322203*2537720636^(11/15) 2100951949424934 a001 3524578/312119004989*2537720636^(2/3) 2100951949424934 a001 3524578/73681302247*2537720636^(3/5) 2100951949424934 a001 3524578/28143753123*2537720636^(5/9) 2100951949424934 a001 3524578/17393796001*2537720636^(8/15) 2100951949424934 a001 3524578/4106118243*17393796001^(3/7) 2100951949424934 a001 3524578/4106118243*45537549124^(7/17) 2100951949424934 a001 3524578/4106118243*14662949395604^(1/3) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^21/Lucas(46) 2100951949424934 a004 Fibonacci(46)/Lucas(33)/(1/2+sqrt(5)/2)^5 2100951949424934 a001 3524578/4106118243*192900153618^(7/18) 2100951949424934 a001 3524578/4106118243*10749957122^(7/16) 2100951949424934 a004 Fibonacci(33)*Lucas(47)/(1/2+sqrt(5)/2)^72 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^23/Lucas(48) 2100951949424934 a004 Fibonacci(48)/Lucas(33)/(1/2+sqrt(5)/2)^7 2100951949424934 a004 Fibonacci(33)*Lucas(49)/(1/2+sqrt(5)/2)^74 2100951949424934 a001 1762289/1730726404001*17393796001^(5/7) 2100951949424934 a001 3524578/119218851371*17393796001^(4/7) 2100951949424934 a001 3524578/28143753123*312119004989^(5/11) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^25/Lucas(50) 2100951949424934 a004 Fibonacci(50)/Lucas(33)/(1/2+sqrt(5)/2)^9 2100951949424934 a001 3524578/28143753123*3461452808002^(5/12) 2100951949424934 a001 3524578/28143753123*28143753123^(1/2) 2100951949424934 a004 Fibonacci(33)*Lucas(51)/(1/2+sqrt(5)/2)^76 2100951949424934 a001 3524578/73681302247*45537549124^(9/17) 2100951949424934 a001 3524578/23725150497407*45537549124^(13/17) 2100951949424934 a001 3524578/5600748293801*45537549124^(12/17) 2100951949424934 a001 3524578/2139295485799*45537549124^(2/3) 2100951949424934 a001 3524578/1322157322203*45537549124^(11/17) 2100951949424934 a001 3524578/312119004989*45537549124^(10/17) 2100951949424934 a001 3524578/73681302247*14662949395604^(3/7) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^27/Lucas(52) 2100951949424934 a004 Fibonacci(52)/Lucas(33)/(1/2+sqrt(5)/2)^11 2100951949424934 a001 3524578/73681302247*192900153618^(1/2) 2100951949424934 a004 Fibonacci(33)*Lucas(53)/(1/2+sqrt(5)/2)^78 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^29/Lucas(54) 2100951949424934 a004 Fibonacci(54)/Lucas(33)/(1/2+sqrt(5)/2)^13 2100951949424934 a001 1762289/96450076809*1322157322203^(1/2) 2100951949424934 a004 Fibonacci(33)*Lucas(55)/(1/2+sqrt(5)/2)^80 2100951949424934 a001 1762289/1730726404001*312119004989^(7/11) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^31/Lucas(56) 2100951949424934 a004 Fibonacci(56)/Lucas(33)/(1/2+sqrt(5)/2)^15 2100951949424934 a004 Fibonacci(33)*Lucas(57)/(1/2+sqrt(5)/2)^82 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^33/Lucas(58) 2100951949424934 a004 Fibonacci(58)/Lucas(33)/(1/2+sqrt(5)/2)^17 2100951949424934 a004 Fibonacci(33)*Lucas(59)/(1/2+sqrt(5)/2)^84 2100951949424934 a001 1762289/1730726404001*14662949395604^(5/9) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^35/Lucas(60) 2100951949424934 a004 Fibonacci(60)/Lucas(33)/(1/2+sqrt(5)/2)^19 2100951949424934 a004 Fibonacci(33)*Lucas(61)/(1/2+sqrt(5)/2)^86 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^37/Lucas(62) 2100951949424934 a004 Fibonacci(62)/Lucas(33)/(1/2+sqrt(5)/2)^21 2100951949424934 a004 Fibonacci(33)*Lucas(63)/(1/2+sqrt(5)/2)^88 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^39/Lucas(64) 2100951949424934 a004 Fibonacci(64)/Lucas(33)/(1/2+sqrt(5)/2)^23 2100951949424934 a004 Fibonacci(33)*Lucas(65)/(1/2+sqrt(5)/2)^90 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^41/Lucas(66) 2100951949424934 a004 Fibonacci(33)*Lucas(67)/(1/2+sqrt(5)/2)^92 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^43/Lucas(68) 2100951949424934 a004 Fibonacci(33)*Lucas(69)/(1/2+sqrt(5)/2)^94 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^45/Lucas(70) 2100951949424934 a004 Fibonacci(33)*Lucas(71)/(1/2+sqrt(5)/2)^96 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^47/Lucas(72) 2100951949424934 a004 Fibonacci(33)*Lucas(73)/(1/2+sqrt(5)/2)^98 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^49/Lucas(74) 2100951949424934 a004 Fibonacci(33)*Lucas(75)/(1/2+sqrt(5)/2)^100 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^51/Lucas(76) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^53/Lucas(78) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^55/Lucas(80) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^57/Lucas(82) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^59/Lucas(84) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^61/Lucas(86) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^63/Lucas(88) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^65/Lucas(90) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^67/Lucas(92) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^69/Lucas(94) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^71/Lucas(96) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^72/Lucas(97) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^73/Lucas(98) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^74/Lucas(99) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^75/Lucas(100) 2100951949424934 a004 Fibonacci(33)*Lucas(1)/(1/2+sqrt(5)/2)^25 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^70/Lucas(95) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^68/Lucas(93) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^66/Lucas(91) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^64/Lucas(89) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^62/Lucas(87) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^60/Lucas(85) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^58/Lucas(83) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^56/Lucas(81) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^54/Lucas(79) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^52/Lucas(77) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^50/Lucas(75) 2100951949424934 a004 Fibonacci(33)*Lucas(74)/(1/2+sqrt(5)/2)^99 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^48/Lucas(73) 2100951949424934 a004 Fibonacci(33)*Lucas(72)/(1/2+sqrt(5)/2)^97 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^46/Lucas(71) 2100951949424934 a004 Fibonacci(33)*Lucas(70)/(1/2+sqrt(5)/2)^95 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^44/Lucas(69) 2100951949424934 a004 Fibonacci(33)*Lucas(68)/(1/2+sqrt(5)/2)^93 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^42/Lucas(67) 2100951949424934 a004 Fibonacci(68)/Lucas(33)/(1/2+sqrt(5)/2)^27 2100951949424934 a004 Fibonacci(70)/Lucas(33)/(1/2+sqrt(5)/2)^29 2100951949424934 a004 Fibonacci(72)/Lucas(33)/(1/2+sqrt(5)/2)^31 2100951949424934 a004 Fibonacci(74)/Lucas(33)/(1/2+sqrt(5)/2)^33 2100951949424934 a004 Fibonacci(76)/Lucas(33)/(1/2+sqrt(5)/2)^35 2100951949424934 a004 Fibonacci(78)/Lucas(33)/(1/2+sqrt(5)/2)^37 2100951949424934 a004 Fibonacci(80)/Lucas(33)/(1/2+sqrt(5)/2)^39 2100951949424934 a004 Fibonacci(82)/Lucas(33)/(1/2+sqrt(5)/2)^41 2100951949424934 a004 Fibonacci(84)/Lucas(33)/(1/2+sqrt(5)/2)^43 2100951949424934 a004 Fibonacci(86)/Lucas(33)/(1/2+sqrt(5)/2)^45 2100951949424934 a004 Fibonacci(88)/Lucas(33)/(1/2+sqrt(5)/2)^47 2100951949424934 a004 Fibonacci(90)/Lucas(33)/(1/2+sqrt(5)/2)^49 2100951949424934 a004 Fibonacci(92)/Lucas(33)/(1/2+sqrt(5)/2)^51 2100951949424934 a004 Fibonacci(94)/Lucas(33)/(1/2+sqrt(5)/2)^53 2100951949424934 a004 Fibonacci(96)/Lucas(33)/(1/2+sqrt(5)/2)^55 2100951949424934 a004 Fibonacci(100)/Lucas(33)/(1/2+sqrt(5)/2)^59 2100951949424934 a004 Fibonacci(33)*Lucas(66)/(1/2+sqrt(5)/2)^91 2100951949424934 a004 Fibonacci(98)/Lucas(33)/(1/2+sqrt(5)/2)^57 2100951949424934 a004 Fibonacci(99)/Lucas(33)/(1/2+sqrt(5)/2)^58 2100951949424934 a004 Fibonacci(97)/Lucas(33)/(1/2+sqrt(5)/2)^56 2100951949424934 a004 Fibonacci(95)/Lucas(33)/(1/2+sqrt(5)/2)^54 2100951949424934 a004 Fibonacci(93)/Lucas(33)/(1/2+sqrt(5)/2)^52 2100951949424934 a004 Fibonacci(91)/Lucas(33)/(1/2+sqrt(5)/2)^50 2100951949424934 a004 Fibonacci(89)/Lucas(33)/(1/2+sqrt(5)/2)^48 2100951949424934 a004 Fibonacci(87)/Lucas(33)/(1/2+sqrt(5)/2)^46 2100951949424934 a004 Fibonacci(85)/Lucas(33)/(1/2+sqrt(5)/2)^44 2100951949424934 a004 Fibonacci(83)/Lucas(33)/(1/2+sqrt(5)/2)^42 2100951949424934 a004 Fibonacci(81)/Lucas(33)/(1/2+sqrt(5)/2)^40 2100951949424934 a004 Fibonacci(79)/Lucas(33)/(1/2+sqrt(5)/2)^38 2100951949424934 a004 Fibonacci(77)/Lucas(33)/(1/2+sqrt(5)/2)^36 2100951949424934 a004 Fibonacci(75)/Lucas(33)/(1/2+sqrt(5)/2)^34 2100951949424934 a004 Fibonacci(73)/Lucas(33)/(1/2+sqrt(5)/2)^32 2100951949424934 a004 Fibonacci(71)/Lucas(33)/(1/2+sqrt(5)/2)^30 2100951949424934 a004 Fibonacci(69)/Lucas(33)/(1/2+sqrt(5)/2)^28 2100951949424934 a004 Fibonacci(67)/Lucas(33)/(1/2+sqrt(5)/2)^26 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^40/Lucas(65) 2100951949424934 a004 Fibonacci(65)/Lucas(33)/(1/2+sqrt(5)/2)^24 2100951949424934 a004 Fibonacci(33)*Lucas(64)/(1/2+sqrt(5)/2)^89 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^38/Lucas(63) 2100951949424934 a004 Fibonacci(63)/Lucas(33)/(1/2+sqrt(5)/2)^22 2100951949424934 a004 Fibonacci(33)*Lucas(62)/(1/2+sqrt(5)/2)^87 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^36/Lucas(61) 2100951949424934 a004 Fibonacci(61)/Lucas(33)/(1/2+sqrt(5)/2)^20 2100951949424934 a004 Fibonacci(33)*Lucas(60)/(1/2+sqrt(5)/2)^85 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^34/Lucas(59) 2100951949424934 a004 Fibonacci(59)/Lucas(33)/(1/2+sqrt(5)/2)^18 2100951949424934 a004 Fibonacci(33)*Lucas(58)/(1/2+sqrt(5)/2)^83 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^32/Lucas(57) 2100951949424934 a004 Fibonacci(57)/Lucas(33)/(1/2+sqrt(5)/2)^16 2100951949424934 a001 1762289/1730726404001*505019158607^(5/8) 2100951949424934 a004 Fibonacci(33)*Lucas(56)/(1/2+sqrt(5)/2)^81 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^30/Lucas(55) 2100951949424934 a004 Fibonacci(55)/Lucas(33)/(1/2+sqrt(5)/2)^14 2100951949424934 a001 3524578/1322157322203*192900153618^(11/18) 2100951949424934 a001 3524578/23725150497407*192900153618^(13/18) 2100951949424934 a004 Fibonacci(33)*Lucas(54)/(1/2+sqrt(5)/2)^79 2100951949424934 a001 3524578/119218851371*14662949395604^(4/9) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^28/Lucas(53) 2100951949424934 a004 Fibonacci(53)/Lucas(33)/(1/2+sqrt(5)/2)^12 2100951949424934 a001 1762289/408569081798*73681302247^(8/13) 2100951949424934 a001 3524578/5600748293801*73681302247^(9/13) 2100951949424934 a001 3524578/23725150497407*73681302247^(3/4) 2100951949424934 a001 3524578/119218851371*73681302247^(7/13) 2100951949424934 a004 Fibonacci(33)*Lucas(52)/(1/2+sqrt(5)/2)^77 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^26/Lucas(51) 2100951949424934 a004 Fibonacci(51)/Lucas(33)/(1/2+sqrt(5)/2)^10 2100951949424934 a001 1762289/22768774562*73681302247^(1/2) 2100951949424934 a001 3524578/312119004989*28143753123^(3/5) 2100951949424934 a001 1762289/1730726404001*28143753123^(7/10) 2100951949424934 a004 Fibonacci(33)*Lucas(50)/(1/2+sqrt(5)/2)^75 2100951949424934 a001 3524578/17393796001*45537549124^(8/17) 2100951949424934 a001 3524578/17393796001*14662949395604^(8/21) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^24/Lucas(49) 2100951949424934 a004 Fibonacci(49)/Lucas(33)/(1/2+sqrt(5)/2)^8 2100951949424934 a001 3524578/17393796001*192900153618^(4/9) 2100951949424934 a001 3524578/17393796001*73681302247^(6/13) 2100951949424934 a001 3524578/73681302247*10749957122^(9/16) 2100951949424934 a001 3524578/119218851371*10749957122^(7/12) 2100951949424934 a001 1762289/22768774562*10749957122^(13/24) 2100951949424934 a001 3524578/312119004989*10749957122^(5/8) 2100951949424934 a001 1762289/408569081798*10749957122^(2/3) 2100951949424934 a001 3524578/1322157322203*10749957122^(11/16) 2100951949424934 a001 3524578/2139295485799*10749957122^(17/24) 2100951949424934 a001 3524578/5600748293801*10749957122^(3/4) 2100951949424934 a001 1762289/7331474697802*10749957122^(19/24) 2100951949424934 a001 3524578/23725150497407*10749957122^(13/16) 2100951949424934 a001 3524578/17393796001*10749957122^(1/2) 2100951949424934 a004 Fibonacci(33)*Lucas(48)/(1/2+sqrt(5)/2)^73 2100951949424934 a001 1762289/5374978561*4106118243^(1/2) 2100951949424934 a001 3524578/6643838879*312119004989^(2/5) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^22/Lucas(47) 2100951949424934 a004 Fibonacci(47)/Lucas(33)/(1/2+sqrt(5)/2)^6 2100951949424934 a001 3524578/6643838879*10749957122^(11/24) 2100951949424934 a001 1762289/22768774562*4106118243^(13/23) 2100951949424934 a001 3524578/17393796001*4106118243^(12/23) 2100951949424934 a001 3524578/119218851371*4106118243^(14/23) 2100951949424934 a001 3524578/312119004989*4106118243^(15/23) 2100951949424934 a001 1762289/408569081798*4106118243^(16/23) 2100951949424934 a001 3524578/2139295485799*4106118243^(17/23) 2100951949424934 a001 3524578/5600748293801*4106118243^(18/23) 2100951949424934 a001 1762289/7331474697802*4106118243^(19/23) 2100951949424934 a001 3524578/6643838879*4106118243^(11/23) 2100951949424934 a004 Fibonacci(33)*Lucas(46)/(1/2+sqrt(5)/2)^71 2100951949424934 a001 1762289/1268860318*2537720636^(4/9) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^20/Lucas(45) 2100951949424934 a004 Fibonacci(45)/Lucas(33)/(1/2+sqrt(5)/2)^4 2100951949424934 a001 1762289/1268860318*23725150497407^(5/16) 2100951949424934 a001 1762289/1268860318*505019158607^(5/14) 2100951949424934 a001 1762289/1268860318*73681302247^(5/13) 2100951949424934 a001 1762289/1268860318*28143753123^(2/5) 2100951949424934 a001 1762289/1268860318*10749957122^(5/12) 2100951949424934 a001 1762289/1268860318*4106118243^(10/23) 2100951949424934 a001 3524578/17393796001*1568397607^(6/11) 2100951949424934 a001 3524578/6643838879*1568397607^(1/2) 2100951949424934 a001 1762289/22768774562*1568397607^(13/22) 2100951949424934 a001 3524578/119218851371*1568397607^(7/11) 2100951949424934 a001 3524578/312119004989*1568397607^(15/22) 2100951949424934 a001 1762289/408569081798*1568397607^(8/11) 2100951949424934 a001 3524578/1322157322203*1568397607^(3/4) 2100951949424934 a001 3524578/2139295485799*1568397607^(17/22) 2100951949424934 a001 3524578/5600748293801*1568397607^(9/11) 2100951949424934 a001 1762289/1268860318*1568397607^(5/11) 2100951949424934 a001 1762289/7331474697802*1568397607^(19/22) 2100951949424934 a004 Fibonacci(33)*Lucas(44)/(1/2+sqrt(5)/2)^69 2100951949424934 a001 3524578/969323029*2537720636^(2/5) 2100951949424934 a001 3524578/969323029*45537549124^(6/17) 2100951949424934 a001 3524578/969323029*14662949395604^(2/7) 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^18/Lucas(43) 2100951949424934 a004 Fibonacci(43)/Lucas(33)/(1/2+sqrt(5)/2)^2 2100951949424934 a001 3524578/969323029*192900153618^(1/3) 2100951949424934 a001 3524578/969323029*10749957122^(3/8) 2100951949424934 a001 3524578/969323029*4106118243^(9/23) 2100951949424934 a001 3524578/969323029*1568397607^(9/22) 2100951949424934 a001 3524578/4106118243*599074578^(1/2) 2100951949424934 a001 1762289/1268860318*599074578^(10/21) 2100951949424934 a001 3524578/6643838879*599074578^(11/21) 2100951949424934 a001 3524578/17393796001*599074578^(4/7) 2100951949424934 a001 1762289/22768774562*599074578^(13/21) 2100951949424934 a001 3524578/73681302247*599074578^(9/14) 2100951949424934 a001 3524578/119218851371*599074578^(2/3) 2100951949424934 a001 3524578/312119004989*599074578^(5/7) 2100951949424934 a001 1762289/408569081798*599074578^(16/21) 2100951949424934 a001 3524578/1322157322203*599074578^(11/14) 2100951949424934 a001 3524578/2139295485799*599074578^(17/21) 2100951949424934 a001 3524578/969323029*599074578^(3/7) 2100951949424934 a001 1762289/1730726404001*599074578^(5/6) 2100951949424934 a001 3524578/5600748293801*599074578^(6/7) 2100951949424934 a001 1762289/7331474697802*599074578^(19/21) 2100951949424934 a001 3524578/23725150497407*599074578^(13/14) 2100951949424934 a004 Fibonacci(33)*Lucas(42)/(1/2+sqrt(5)/2)^67 2100951949424934 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^16/Lucas(41) 2100951949424934 a006 5^(1/2)*Fibonacci(41)/Lucas(33)/sqrt(5) 2100951949424934 a001 3524578/370248451*23725150497407^(1/4) 2100951949424934 a001 3524578/370248451*73681302247^(4/13) 2100951949424934 a001 3524578/370248451*10749957122^(1/3) 2100951949424934 a001 3524578/370248451*4106118243^(8/23) 2100951949424934 a001 3524578/370248451*1568397607^(4/11) 2100951949424934 a001 3524578/370248451*599074578^(8/21) 2100951949424935 a001 3524578/969323029*228826127^(9/20) 2100951949424935 a001 1762289/1268860318*228826127^(1/2) 2100951949424935 a001 3524578/6643838879*228826127^(11/20) 2100951949424935 a001 3524578/17393796001*228826127^(3/5) 2100951949424935 a001 3524578/28143753123*228826127^(5/8) 2100951949424935 a001 1762289/22768774562*228826127^(13/20) 2100951949424935 a001 3524578/119218851371*228826127^(7/10) 2100951949424935 a001 3524578/312119004989*228826127^(3/4) 2100951949424935 a001 3524578/370248451*228826127^(2/5) 2100951949424935 a001 1762289/408569081798*228826127^(4/5) 2100951949424935 a001 3524578/2139295485799*228826127^(17/20) 2100951949424935 a001 1762289/1730726404001*228826127^(7/8) 2100951949424935 a001 3524578/5600748293801*228826127^(9/10) 2100951949424935 a001 1762289/7331474697802*228826127^(19/20) 2100951949424935 a004 Fibonacci(33)*Lucas(40)/(1/2+sqrt(5)/2)^65 2100951949424935 a001 1762289/70711162*17393796001^(2/7) 2100951949424935 a001 1762289/70711162*14662949395604^(2/9) 2100951949424935 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^14/Lucas(39) 2100951949424935 a001 31622993/3940598*(1/2+1/2*5^(1/2))^2 2100951949424935 a001 31622993/3940598*10749957122^(1/24) 2100951949424935 a001 1762289/70711162*10749957122^(7/24) 2100951949424935 a001 31622993/3940598*4106118243^(1/23) 2100951949424935 a001 1762289/70711162*4106118243^(7/23) 2100951949424935 a001 31622993/3940598*1568397607^(1/22) 2100951949424935 a001 1762289/70711162*1568397607^(7/22) 2100951949424935 a001 31622993/3940598*599074578^(1/21) 2100951949424935 a001 1762289/70711162*599074578^(1/3) 2100951949424935 a001 31622993/3940598*228826127^(1/20) 2100951949424935 a001 24157817/370248451*4870847^(3/8) 2100951949424935 a001 1762289/70711162*228826127^(7/20) 2100951949424935 a001 31622993/3940598*87403803^(1/19) 2100951949424935 a001 3524578/370248451*87403803^(8/19) 2100951949424935 a001 3524578/969323029*87403803^(9/19) 2100951949424935 a001 3524578/1568397607*87403803^(1/2) 2100951949424935 a001 1762289/1268860318*87403803^(10/19) 2100951949424935 a001 3524578/6643838879*87403803^(11/19) 2100951949424935 a001 3524578/17393796001*87403803^(12/19) 2100951949424935 a001 1762289/22768774562*87403803^(13/19) 2100951949424935 a001 3524578/119218851371*87403803^(14/19) 2100951949424935 a001 1762289/70711162*87403803^(7/19) 2100951949424935 a001 31622993/3940598*33385282^(1/18) 2100951949424935 a001 3524578/312119004989*87403803^(15/19) 2100951949424935 a001 1762289/408569081798*87403803^(16/19) 2100951949424935 a001 3524578/2139295485799*87403803^(17/19) 2100951949424935 a001 3524578/5600748293801*87403803^(18/19) 2100951949424935 a004 Fibonacci(33)*Lucas(38)/(1/2+sqrt(5)/2)^63 2100951949424935 a001 3524578/54018521*141422324^(4/13) 2100951949424935 a001 3524578/54018521*2537720636^(4/15) 2100951949424935 a001 3524578/54018521*45537549124^(4/17) 2100951949424935 a001 3524578/54018521*817138163596^(4/19) 2100951949424935 a004 Fibonacci(33)*(1/2+sqrt(5)/2)^12/Lucas(37) 2100951949424935 a001 24157817/7881196*(1/2+1/2*5^(1/2))^4 2100951949424935 a001 24157817/7881196*23725150497407^(1/16) 2100951949424935 a001 3524578/54018521*192900153618^(2/9) 2100951949424935 a001 24157817/7881196*73681302247^(1/13) 2100951949424935 a001 3524578/54018521*73681302247^(3/13) 2100951949424935 a001 24157817/7881196*10749957122^(1/12) 2100951949424935 a001 3524578/54018521*10749957122^(1/4) 2100951949424935 a001 24157817/7881196*4106118243^(2/23) 2100951949424935 a001 3524578/54018521*4106118243^(6/23) 2100951949424935 a001 24157817/7881196*1568397607^(1/11) 2100951949424935 a001 3524578/54018521*1568397607^(3/11) 2100951949424935 a001 24157817/7881196*599074578^(2/21) 2100951949424935 a001 3524578/54018521*599074578^(2/7) 2100951949424935 a001 24157817/7881196*228826127^(1/10) 2100951949424935 a001 3524578/54018521*228826127^(3/10) 2100951949424935 a001 3524578/228826127*33385282^(5/12) 2100951949424935 a001 24157817/7881196*87403803^(2/19) 2100951949424935 a001 3524578/54018521*87403803^(6/19) 2100951949424935 a001 1762289/70711162*33385282^(7/18) 2100951949424935 a001 3524578/370248451*33385282^(4/9) 2100951949424935 a001 31622993/3940598*12752043^(1/17) 2100951949424935 a001 24157817/7881196*33385282^(1/9) 2100951949424935 a001 3524578/969323029*33385282^(1/2) 2100951949424936 a001 1762289/1268860318*33385282^(5/9) 2100951949424936 a001 3524578/4106118243*33385282^(7/12) 2100951949424936 a001 3524578/6643838879*33385282^(11/18) 2100951949424936 a001 3524578/17393796001*33385282^(2/3) 2100951949424936 a001 3524578/54018521*33385282^(1/3) 2100951949424936 a001 1762289/22768774562*33385282^(13/18) 2100951949424936 a001 3524578/73681302247*33385282^(3/4) 2100951949424936 a001 3524578/119218851371*33385282^(7/9) 2100951949424936 a001 3524578/312119004989*33385282^(5/6) 2100951949424936 a001 1762289/408569081798*33385282^(8/9) 2100951949424936 a001 3524578/1322157322203*33385282^(11/12) 2100951949424936 a001 3524578/2139295485799*33385282^(17/18) 2100951949424936 a004 Fibonacci(33)*Lucas(36)/(1/2+sqrt(5)/2)^61 2100951949424937 a001 24157817/7881196*12752043^(2/17) 2100951949424938 a001 829464/33281921*4870847^(7/16) 2100951949424938 a001 5702887/1568397607*4870847^(9/16) 2100951949424938 a001 3524578/20633239*20633239^(2/7) 2100951949424939 a001 9227465/141422324*4870847^(3/8) 2100951949424939 a001 39088169/1568397607*4870847^(7/16) 2100951949424939 a001 133957148/16692641*1860498^(1/15) 2100951949424939 a001 34111385/1368706081*4870847^(7/16) 2100951949424939 a001 133957148/5374978561*4870847^(7/16) 2100951949424939 a001 233802911/9381251041*4870847^(7/16) 2100951949424939 a001 1836311903/73681302247*4870847^(7/16) 2100951949424939 a001 267084832/10716675201*4870847^(7/16) 2100951949424939 a001 12586269025/505019158607*4870847^(7/16) 2100951949424939 a001 10983760033/440719107401*4870847^(7/16) 2100951949424939 a001 43133785636/1730726404001*4870847^(7/16) 2100951949424939 a001 75283811239/3020733700601*4870847^(7/16) 2100951949424939 a001 182717648081/7331474697802*4870847^(7/16) 2100951949424939 a001 139583862445/5600748293801*4870847^(7/16) 2100951949424939 a001 53316291173/2139295485799*4870847^(7/16) 2100951949424939 a001 10182505537/408569081798*4870847^(7/16) 2100951949424939 a001 7778742049/312119004989*4870847^(7/16) 2100951949424939 a001 2971215073/119218851371*4870847^(7/16) 2100951949424939 a001 567451585/22768774562*4870847^(7/16) 2100951949424939 a001 9227465/7881196*141422324^(2/13) 2100951949424939 a001 433494437/17393796001*4870847^(7/16) 2100951949424939 a001 165580141/6643838879*4870847^(7/16) 2100951949424939 a001 3524578/20633239*2537720636^(2/9) 2100951949424939 a001 9227465/7881196*2537720636^(2/15) 2100951949424939 a001 9227465/7881196*45537549124^(2/17) 2100951949424939 a001 3524578/20633239*(1/2+1/2*5^(1/2))^10 2100951949424939 a001 9227465/7881196*(1/2+1/2*5^(1/2))^6 2100951949424939 a001 3252292013477/154800875592 2100951949424939 a001 3524578/20633239*28143753123^(1/5) 2100951949424939 a001 9227465/7881196*10749957122^(1/8) 2100951949424939 a001 3524578/20633239*10749957122^(5/24) 2100951949424939 a001 9227465/7881196*4106118243^(3/23) 2100951949424939 a001 3524578/20633239*4106118243^(5/23) 2100951949424939 a001 9227465/7881196*1568397607^(3/22) 2100951949424939 a001 3524578/20633239*1568397607^(5/22) 2100951949424939 a001 9227465/7881196*599074578^(1/7) 2100951949424939 a001 3524578/20633239*599074578^(5/21) 2100951949424939 a001 9227465/7881196*228826127^(3/20) 2100951949424939 a001 3524578/20633239*228826127^(1/4) 2100951949424939 a001 9227465/7881196*87403803^(3/19) 2100951949424939 a001 3524578/20633239*87403803^(5/19) 2100951949424940 a001 31622993/1268860318*4870847^(7/16) 2100951949424940 a001 9227465/7881196*33385282^(1/6) 2100951949424940 a001 3524578/54018521*12752043^(6/17) 2100951949424940 a001 1762289/70711162*12752043^(7/17) 2100951949424940 a001 3524578/20633239*33385282^(5/18) 2100951949424940 a001 31622993/3940598*4870847^(1/16) 2100951949424940 a001 24157817/969323029*4870847^(7/16) 2100951949424941 a001 3524578/370248451*12752043^(8/17) 2100951949424941 a001 233802911/29134601*1860498^(1/15) 2100951949424941 a001 1762289/299537289*12752043^(1/2) 2100951949424941 a001 1836311903/228826127*1860498^(1/15) 2100951949424941 a001 267084832/33281921*1860498^(1/15) 2100951949424941 a001 12586269025/1568397607*1860498^(1/15) 2100951949424941 a001 10983760033/1368706081*1860498^(1/15) 2100951949424941 a001 43133785636/5374978561*1860498^(1/15) 2100951949424941 a001 75283811239/9381251041*1860498^(1/15) 2100951949424941 a001 591286729879/73681302247*1860498^(1/15) 2100951949424941 a001 86000486440/10716675201*1860498^(1/15) 2100951949424941 a001 4052739537881/505019158607*1860498^(1/15) 2100951949424941 a001 3278735159921/408569081798*1860498^(1/15) 2100951949424941 a001 2504730781961/312119004989*1860498^(1/15) 2100951949424941 a001 956722026041/119218851371*1860498^(1/15) 2100951949424941 a001 182717648081/22768774562*1860498^(1/15) 2100951949424941 a001 139583862445/17393796001*1860498^(1/15) 2100951949424941 a001 53316291173/6643838879*1860498^(1/15) 2100951949424941 a001 10182505537/1268860318*1860498^(1/15) 2100951949424941 a001 7778742049/969323029*1860498^(1/15) 2100951949424941 a001 2971215073/370248451*1860498^(1/15) 2100951949424941 a001 567451585/70711162*1860498^(1/15) 2100951949424941 a001 3524578/969323029*12752043^(9/17) 2100951949424942 a001 9227465/7881196*12752043^(3/17) 2100951949424942 a001 433494437/54018521*1860498^(1/15) 2100951949424942 a001 1762289/1268860318*12752043^(10/17) 2100951949424943 a001 3524578/6643838879*12752043^(11/17) 2100951949424943 a001 14930352/1568397607*4870847^(1/2) 2100951949424943 a001 5702887/4106118243*4870847^(5/8) 2100951949424943 a001 3524578/20633239*12752043^(5/17) 2100951949424944 a001 3524578/17393796001*12752043^(12/17) 2100951949424944 a001 9227465/370248451*4870847^(7/16) 2100951949424944 a001 1762289/22768774562*12752043^(13/17) 2100951949424945 a001 39088169/4106118243*4870847^(1/2) 2100951949424945 a001 102334155/10749957122*4870847^(1/2) 2100951949424945 a001 267914296/28143753123*4870847^(1/2) 2100951949424945 a001 701408733/73681302247*4870847^(1/2) 2100951949424945 a001 1836311903/192900153618*4870847^(1/2) 2100951949424945 a001 102287808/10745088481*4870847^(1/2) 2100951949424945 a001 12586269025/1322157322203*4870847^(1/2) 2100951949424945 a001 32951280099/3461452808002*4870847^(1/2) 2100951949424945 a001 86267571272/9062201101803*4870847^(1/2) 2100951949424945 a001 225851433717/23725150497407*4870847^(1/2) 2100951949424945 a001 139583862445/14662949395604*4870847^(1/2) 2100951949424945 a001 53316291173/5600748293801*4870847^(1/2) 2100951949424945 a001 20365011074/2139295485799*4870847^(1/2) 2100951949424945 a001 7778742049/817138163596*4870847^(1/2) 2100951949424945 a001 2971215073/312119004989*4870847^(1/2) 2100951949424945 a001 1134903170/119218851371*4870847^(1/2) 2100951949424945 a001 433494437/45537549124*4870847^(1/2) 2100951949424945 a001 165580141/17393796001*4870847^(1/2) 2100951949424945 a001 63245986/6643838879*4870847^(1/2) 2100951949424945 a001 3524578/119218851371*12752043^(14/17) 2100951949424946 a001 24157817/2537720636*4870847^(1/2) 2100951949424946 a001 3524578/312119004989*12752043^(15/17) 2100951949424946 a001 165580141/20633239*1860498^(1/15) 2100951949424946 a001 24157817/7881196*4870847^(1/8) 2100951949424947 a001 1762289/408569081798*12752043^(16/17) 2100951949424947 a004 Fibonacci(33)*Lucas(34)/(1/2+sqrt(5)/2)^59 2100951949424949 a001 63245986/12752043*1860498^(1/10) 2100951949424949 a001 4976784/1368706081*4870847^(9/16) 2100951949424949 a001 5702887/10749957122*4870847^(11/16) 2100951949424950 a001 9227465/969323029*4870847^(1/2) 2100951949424950 a001 39088169/10749957122*4870847^(9/16) 2100951949424950 a001 831985/228811001*4870847^(9/16) 2100951949424950 a001 267914296/73681302247*4870847^(9/16) 2100951949424950 a001 233802911/64300051206*4870847^(9/16) 2100951949424950 a001 1836311903/505019158607*4870847^(9/16) 2100951949424950 a001 1602508992/440719107401*4870847^(9/16) 2100951949424950 a001 12586269025/3461452808002*4870847^(9/16) 2100951949424950 a001 10983760033/3020733700601*4870847^(9/16) 2100951949424950 a001 86267571272/23725150497407*4870847^(9/16) 2100951949424950 a001 53316291173/14662949395604*4870847^(9/16) 2100951949424950 a001 20365011074/5600748293801*4870847^(9/16) 2100951949424950 a001 7778742049/2139295485799*4870847^(9/16) 2100951949424950 a001 2971215073/817138163596*4870847^(9/16) 2100951949424950 a001 1134903170/312119004989*4870847^(9/16) 2100951949424950 a001 433494437/119218851371*4870847^(9/16) 2100951949424950 a001 165580141/45537549124*4870847^(9/16) 2100951949424951 a001 63245986/17393796001*4870847^(9/16) 2100951949424951 a001 24157817/6643838879*4870847^(9/16) 2100951949424954 a001 7465176/5374978561*4870847^(5/8) 2100951949424954 a001 5702887/28143753123*4870847^(3/4) 2100951949424955 a001 9227465/2537720636*4870847^(9/16) 2100951949424956 a001 39088169/28143753123*4870847^(5/8) 2100951949424956 a001 14619165/10525900321*4870847^(5/8) 2100951949424956 a001 133957148/96450076809*4870847^(5/8) 2100951949424956 a001 701408733/505019158607*4870847^(5/8) 2100951949424956 a001 1836311903/1322157322203*4870847^(5/8) 2100951949424956 a001 14930208/10749853441*4870847^(5/8) 2100951949424956 a001 12586269025/9062201101803*4870847^(5/8) 2100951949424956 a001 32951280099/23725150497407*4870847^(5/8) 2100951949424956 a001 10182505537/7331474697802*4870847^(5/8) 2100951949424956 a001 7778742049/5600748293801*4870847^(5/8) 2100951949424956 a001 2971215073/2139295485799*4870847^(5/8) 2100951949424956 a001 567451585/408569081798*4870847^(5/8) 2100951949424956 a001 433494437/312119004989*4870847^(5/8) 2100951949424956 a001 165580141/119218851371*4870847^(5/8) 2100951949424956 a001 9227465/7881196*4870847^(3/16) 2100951949424956 a001 31622993/22768774562*4870847^(5/8) 2100951949424957 a001 24157817/17393796001*4870847^(5/8) 2100951949424959 a001 165580141/33385282*1860498^(1/10) 2100951949424960 a001 4976784/9381251041*4870847^(11/16) 2100951949424960 a001 5702887/73681302247*4870847^(13/16) 2100951949424961 a001 9227465/6643838879*4870847^(5/8) 2100951949424961 a001 433494437/87403803*1860498^(1/10) 2100951949424961 a001 39088169/73681302247*4870847^(11/16) 2100951949424961 a001 1134903170/228826127*1860498^(1/10) 2100951949424961 a001 2971215073/599074578*1860498^(1/10) 2100951949424961 a001 7778742049/1568397607*1860498^(1/10) 2100951949424961 a001 20365011074/4106118243*1860498^(1/10) 2100951949424961 a001 53316291173/10749957122*1860498^(1/10) 2100951949424961 a001 139583862445/28143753123*1860498^(1/10) 2100951949424961 a001 365435296162/73681302247*1860498^(1/10) 2100951949424961 a001 956722026041/192900153618*1860498^(1/10) 2100951949424961 a001 2504730781961/505019158607*1860498^(1/10) 2100951949424961 a001 10610209857723/2139295485799*1860498^(1/10) 2100951949424961 a001 4052739537881/817138163596*1860498^(1/10) 2100951949424961 a001 140728068720/28374454999*1860498^(1/10) 2100951949424961 a001 591286729879/119218851371*1860498^(1/10) 2100951949424961 a001 225851433717/45537549124*1860498^(1/10) 2100951949424961 a001 86267571272/17393796001*1860498^(1/10) 2100951949424961 a001 32951280099/6643838879*1860498^(1/10) 2100951949424961 a001 1144206275/230701876*1860498^(1/10) 2100951949424961 a001 4807526976/969323029*1860498^(1/10) 2100951949424961 a001 1836311903/370248451*1860498^(1/10) 2100951949424961 a001 701408733/141422324*1860498^(1/10) 2100951949424961 a001 34111385/64300051206*4870847^(11/16) 2100951949424962 a001 267914296/505019158607*4870847^(11/16) 2100951949424962 a001 233802911/440719107401*4870847^(11/16) 2100951949424962 a001 1836311903/3461452808002*4870847^(11/16) 2100951949424962 a001 1602508992/3020733700601*4870847^(11/16) 2100951949424962 a001 12586269025/23725150497407*4870847^(11/16) 2100951949424962 a001 7778742049/14662949395604*4870847^(11/16) 2100951949424962 a001 2971215073/5600748293801*4870847^(11/16) 2100951949424962 a001 1134903170/2139295485799*4870847^(11/16) 2100951949424962 a001 433494437/817138163596*4870847^(11/16) 2100951949424962 a001 165580141/312119004989*4870847^(11/16) 2100951949424962 a001 63245986/119218851371*4870847^(11/16) 2100951949424962 a001 267914296/54018521*1860498^(1/10) 2100951949424962 a001 24157817/45537549124*4870847^(11/16) 2100951949424965 a001 14930352/73681302247*4870847^(3/4) 2100951949424965 a001 5702887/192900153618*4870847^(7/8) 2100951949424966 a001 9303105/1875749*1860498^(1/10) 2100951949424966 a001 9227465/17393796001*4870847^(11/16) 2100951949424967 a001 39088169/192900153618*4870847^(3/4) 2100951949424967 a001 102334155/505019158607*4870847^(3/4) 2100951949424967 a001 267914296/1322157322203*4870847^(3/4) 2100951949424967 a001 701408733/3461452808002*4870847^(3/4) 2100951949424967 a001 1836311903/9062201101803*4870847^(3/4) 2100951949424967 a001 4807526976/23725150497407*4870847^(3/4) 2100951949424967 a001 2971215073/14662949395604*4870847^(3/4) 2100951949424967 a001 1134903170/5600748293801*4870847^(3/4) 2100951949424967 a001 433494437/2139295485799*4870847^(3/4) 2100951949424967 a001 165580141/817138163596*4870847^(3/4) 2100951949424967 a001 3524578/20633239*4870847^(5/16) 2100951949424967 a001 63245986/312119004989*4870847^(3/4) 2100951949424968 a001 24157817/119218851371*4870847^(3/4) 2100951949424968 a001 1762289/3940598*(1/2+1/2*5^(1/2))^8 2100951949424968 a001 1762289/3940598*505019158607^(1/7) 2100951949424968 a001 12422650078084/591286729879 2100951949424968 a001 1762289/3940598*73681302247^(2/13) 2100951949424968 a001 1762289/3940598*10749957122^(1/6) 2100951949424968 a001 1762289/3940598*4106118243^(4/23) 2100951949424968 a001 1762289/3940598*1568397607^(2/11) 2100951949424968 a001 1762289/3940598*599074578^(4/21) 2100951949424968 a001 1762289/3940598*228826127^(1/5) 2100951949424968 a001 1762289/3940598*87403803^(4/19) 2100951949424968 a001 39088169/12752043*1860498^(2/15) 2100951949424968 a001 3524578/54018521*4870847^(3/8) 2100951949424969 a001 1762289/3940598*33385282^(2/9) 2100951949424971 a001 2584/33385281*4870847^(13/16) 2100951949424971 a001 5702887/505019158607*4870847^(15/16) 2100951949424971 a001 1762289/3940598*12752043^(4/17) 2100951949424972 a001 9227465/45537549124*4870847^(3/4) 2100951949424972 a001 39088169/505019158607*4870847^(13/16) 2100951949424973 a001 34111385/440719107401*4870847^(13/16) 2100951949424973 a001 133957148/1730726404001*4870847^(13/16) 2100951949424973 a001 233802911/3020733700601*4870847^(13/16) 2100951949424973 a001 1836311903/23725150497407*4870847^(13/16) 2100951949424973 a001 567451585/7331474697802*4870847^(13/16) 2100951949424973 a001 433494437/5600748293801*4870847^(13/16) 2100951949424973 a001 165580141/2139295485799*4870847^(13/16) 2100951949424973 a001 31622993/408569081798*4870847^(13/16) 2100951949424973 a001 24157817/312119004989*4870847^(13/16) 2100951949424973 a001 1762289/70711162*4870847^(7/16) 2100951949424975 a001 31622993/3940598*1860498^(1/15) 2100951949424976 a001 14930352/505019158607*4870847^(7/8) 2100951949424976 a004 Fibonacci(34)*Lucas(32)/(1/2+sqrt(5)/2)^58 2100951949424978 a001 9227465/119218851371*4870847^(13/16) 2100951949424978 a001 39088169/1322157322203*4870847^(7/8) 2100951949424978 a001 6765/228826126*4870847^(7/8) 2100951949424978 a001 267914296/9062201101803*4870847^(7/8) 2100951949424978 a001 701408733/23725150497407*4870847^(7/8) 2100951949424978 a001 433494437/14662949395604*4870847^(7/8) 2100951949424978 a001 165580141/5600748293801*4870847^(7/8) 2100951949424978 a001 63245986/2139295485799*4870847^(7/8) 2100951949424979 a001 3524578/370248451*4870847^(1/2) 2100951949424979 a001 24157817/817138163596*4870847^(7/8) 2100951949424980 a001 14619165/4769326*1860498^(2/15) 2100951949424981 a001 267914296/87403803*1860498^(2/15) 2100951949424982 a001 701408733/228826127*1860498^(2/15) 2100951949424982 a001 1836311903/599074578*1860498^(2/15) 2100951949424982 a001 686789568/224056801*1860498^(2/15) 2100951949424982 a001 12586269025/4106118243*1860498^(2/15) 2100951949424982 a001 32951280099/10749957122*1860498^(2/15) 2100951949424982 a001 86267571272/28143753123*1860498^(2/15) 2100951949424982 a001 32264490531/10525900321*1860498^(2/15) 2100951949424982 a001 591286729879/192900153618*1860498^(2/15) 2100951949424982 a001 1548008755920/505019158607*1860498^(2/15) 2100951949424982 a001 1515744265389/494493258286*1860498^(2/15) 2100951949424982 a001 2504730781961/817138163596*1860498^(2/15) 2100951949424982 a001 956722026041/312119004989*1860498^(2/15) 2100951949424982 a001 365435296162/119218851371*1860498^(2/15) 2100951949424982 a001 139583862445/45537549124*1860498^(2/15) 2100951949424982 a001 53316291173/17393796001*1860498^(2/15) 2100951949424982 a001 20365011074/6643838879*1860498^(2/15) 2100951949424982 a001 7778742049/2537720636*1860498^(2/15) 2100951949424982 a001 2971215073/969323029*1860498^(2/15) 2100951949424982 a001 1134903170/370248451*1860498^(2/15) 2100951949424982 a001 433494437/141422324*1860498^(2/15) 2100951949424982 a001 4976784/440719107401*4870847^(15/16) 2100951949424982 a001 165580141/54018521*1860498^(2/15) 2100951949424983 a001 9227465/312119004989*4870847^(7/8) 2100951949424983 a001 39088169/3461452808002*4870847^(15/16) 2100951949424984 a001 34111385/3020733700601*4870847^(15/16) 2100951949424984 a001 267914296/23725150497407*4870847^(15/16) 2100951949424984 a001 165580141/14662949395604*4870847^(15/16) 2100951949424984 a001 63245986/5600748293801*4870847^(15/16) 2100951949424984 a001 3524578/969323029*4870847^(9/16) 2100951949424984 a001 24157817/2139295485799*4870847^(15/16) 2100951949424987 a001 63245986/20633239*1860498^(2/15) 2100951949424987 a004 Fibonacci(36)*Lucas(32)/(1/2+sqrt(5)/2)^60 2100951949424989 a001 9227465/817138163596*4870847^(15/16) 2100951949424989 a004 Fibonacci(38)*Lucas(32)/(1/2+sqrt(5)/2)^62 2100951949424989 a004 Fibonacci(40)*Lucas(32)/(1/2+sqrt(5)/2)^64 2100951949424989 a004 Fibonacci(42)*Lucas(32)/(1/2+sqrt(5)/2)^66 2100951949424989 a004 Fibonacci(44)*Lucas(32)/(1/2+sqrt(5)/2)^68 2100951949424989 a004 Fibonacci(46)*Lucas(32)/(1/2+sqrt(5)/2)^70 2100951949424989 a004 Fibonacci(48)*Lucas(32)/(1/2+sqrt(5)/2)^72 2100951949424989 a004 Fibonacci(50)*Lucas(32)/(1/2+sqrt(5)/2)^74 2100951949424989 a004 Fibonacci(52)*Lucas(32)/(1/2+sqrt(5)/2)^76 2100951949424989 a004 Fibonacci(54)*Lucas(32)/(1/2+sqrt(5)/2)^78 2100951949424989 a004 Fibonacci(56)*Lucas(32)/(1/2+sqrt(5)/2)^80 2100951949424989 a004 Fibonacci(58)*Lucas(32)/(1/2+sqrt(5)/2)^82 2100951949424989 a004 Fibonacci(60)*Lucas(32)/(1/2+sqrt(5)/2)^84 2100951949424989 a004 Fibonacci(62)*Lucas(32)/(1/2+sqrt(5)/2)^86 2100951949424989 a004 Fibonacci(64)*Lucas(32)/(1/2+sqrt(5)/2)^88 2100951949424989 a004 Fibonacci(66)*Lucas(32)/(1/2+sqrt(5)/2)^90 2100951949424989 a004 Fibonacci(68)*Lucas(32)/(1/2+sqrt(5)/2)^92 2100951949424989 a004 Fibonacci(70)*Lucas(32)/(1/2+sqrt(5)/2)^94 2100951949424989 a004 Fibonacci(72)*Lucas(32)/(1/2+sqrt(5)/2)^96 2100951949424989 a004 Fibonacci(74)*Lucas(32)/(1/2+sqrt(5)/2)^98 2100951949424989 a004 Fibonacci(76)*Lucas(32)/(1/2+sqrt(5)/2)^100 2100951949424989 a004 Fibonacci(75)*Lucas(32)/(1/2+sqrt(5)/2)^99 2100951949424989 a004 Fibonacci(73)*Lucas(32)/(1/2+sqrt(5)/2)^97 2100951949424989 a004 Fibonacci(71)*Lucas(32)/(1/2+sqrt(5)/2)^95 2100951949424989 a004 Fibonacci(69)*Lucas(32)/(1/2+sqrt(5)/2)^93 2100951949424989 a004 Fibonacci(67)*Lucas(32)/(1/2+sqrt(5)/2)^91 2100951949424989 a004 Fibonacci(65)*Lucas(32)/(1/2+sqrt(5)/2)^89 2100951949424989 a001 2/2178309*(1/2+1/2*5^(1/2))^40 2100951949424989 a004 Fibonacci(63)*Lucas(32)/(1/2+sqrt(5)/2)^87 2100951949424989 a004 Fibonacci(61)*Lucas(32)/(1/2+sqrt(5)/2)^85 2100951949424989 a004 Fibonacci(59)*Lucas(32)/(1/2+sqrt(5)/2)^83 2100951949424989 a004 Fibonacci(57)*Lucas(32)/(1/2+sqrt(5)/2)^81 2100951949424989 a004 Fibonacci(55)*Lucas(32)/(1/2+sqrt(5)/2)^79 2100951949424989 a004 Fibonacci(53)*Lucas(32)/(1/2+sqrt(5)/2)^77 2100951949424989 a004 Fibonacci(51)*Lucas(32)/(1/2+sqrt(5)/2)^75 2100951949424989 a004 Fibonacci(49)*Lucas(32)/(1/2+sqrt(5)/2)^73 2100951949424989 a004 Fibonacci(47)*Lucas(32)/(1/2+sqrt(5)/2)^71 2100951949424989 a004 Fibonacci(45)*Lucas(32)/(1/2+sqrt(5)/2)^69 2100951949424989 a004 Fibonacci(43)*Lucas(32)/(1/2+sqrt(5)/2)^67 2100951949424989 a004 Fibonacci(41)*Lucas(32)/(1/2+sqrt(5)/2)^65 2100951949424989 a004 Fibonacci(39)*Lucas(32)/(1/2+sqrt(5)/2)^63 2100951949424990 a001 24157817/12752043*1860498^(1/6) 2100951949424990 a001 1762289/1268860318*4870847^(5/8) 2100951949424990 a004 Fibonacci(37)*Lucas(32)/(1/2+sqrt(5)/2)^61 2100951949424990 a001 1762289/3940598*4870847^(1/4) 2100951949424994 a004 Fibonacci(35)*Lucas(32)/(1/2+sqrt(5)/2)^59 2100951949424995 a001 39088169/7881196*1860498^(1/10) 2100951949424995 a001 3524578/6643838879*4870847^(11/16) 2100951949425000 a001 31622993/16692641*1860498^(1/6) 2100951949425001 a001 3524578/17393796001*4870847^(3/4) 2100951949425002 a001 726103/4250681*1860498^(1/3) 2100951949425002 a001 165580141/87403803*1860498^(1/6) 2100951949425002 a001 433494437/228826127*1860498^(1/6) 2100951949425002 a001 567451585/299537289*1860498^(1/6) 2100951949425002 a001 2971215073/1568397607*1860498^(1/6) 2100951949425002 a001 7778742049/4106118243*1860498^(1/6) 2100951949425002 a001 10182505537/5374978561*1860498^(1/6) 2100951949425002 a001 53316291173/28143753123*1860498^(1/6) 2100951949425002 a001 139583862445/73681302247*1860498^(1/6) 2100951949425002 a001 182717648081/96450076809*1860498^(1/6) 2100951949425002 a001 956722026041/505019158607*1860498^(1/6) 2100951949425002 a001 10610209857723/5600748293801*1860498^(1/6) 2100951949425002 a001 591286729879/312119004989*1860498^(1/6) 2100951949425002 a001 225851433717/119218851371*1860498^(1/6) 2100951949425002 a001 21566892818/11384387281*1860498^(1/6) 2100951949425002 a001 32951280099/17393796001*1860498^(1/6) 2100951949425002 a001 12586269025/6643838879*1860498^(1/6) 2100951949425002 a001 1201881744/634430159*1860498^(1/6) 2100951949425002 a001 1836311903/969323029*1860498^(1/6) 2100951949425002 a001 701408733/370248451*1860498^(1/6) 2100951949425002 a001 66978574/35355581*1860498^(1/6) 2100951949425002 a001 102334155/54018521*1860498^(1/6) 2100951949425006 a001 1762289/22768774562*4870847^(13/16) 2100951949425006 a001 39088169/20633239*1860498^(1/6) 2100951949425007 a001 4976784/4250681*1860498^(1/5) 2100951949425012 a001 3524578/119218851371*4870847^(7/8) 2100951949425016 a001 24157817/7881196*1860498^(2/15) 2100951949425018 a001 3524578/312119004989*4870847^(15/16) 2100951949425020 a001 39088169/33385282*1860498^(1/5) 2100951949425022 a001 34111385/29134601*1860498^(1/5) 2100951949425022 a001 267914296/228826127*1860498^(1/5) 2100951949425022 a001 233802911/199691526*1860498^(1/5) 2100951949425022 a001 1836311903/1568397607*1860498^(1/5) 2100951949425022 a001 1602508992/1368706081*1860498^(1/5) 2100951949425022 a001 12586269025/10749957122*1860498^(1/5) 2100951949425022 a001 10983760033/9381251041*1860498^(1/5) 2100951949425022 a001 86267571272/73681302247*1860498^(1/5) 2100951949425022 a001 75283811239/64300051206*1860498^(1/5) 2100951949425022 a001 2504730781961/2139295485799*1860498^(1/5) 2100951949425022 a001 365435296162/312119004989*1860498^(1/5) 2100951949425022 a001 139583862445/119218851371*1860498^(1/5) 2100951949425022 a001 53316291173/45537549124*1860498^(1/5) 2100951949425022 a001 20365011074/17393796001*1860498^(1/5) 2100951949425022 a001 7778742049/6643838879*1860498^(1/5) 2100951949425022 a001 2971215073/2537720636*1860498^(1/5) 2100951949425022 a001 1134903170/969323029*1860498^(1/5) 2100951949425022 a001 433494437/370248451*1860498^(1/5) 2100951949425022 a001 165580141/141422324*1860498^(1/5) 2100951949425023 a001 63245986/54018521*1860498^(1/5) 2100951949425023 a004 Fibonacci(33)*Lucas(32)/(1/2+sqrt(5)/2)^57 2100951949425028 a001 24157817/20633239*1860498^(1/5) 2100951949425028 a001 2178309/7881196*1860498^(3/10) 2100951949425034 a001 3732588/1970299*1860498^(1/6) 2100951949425035 a001 1346269/4870847*7881196^(3/11) 2100951949425037 a001 5702887/12752043*1860498^(4/15) 2100951949425039 a001 311187/101521*271443^(2/13) 2100951949425043 a001 2178309/3010349*20633239^(1/5) 2100951949425044 a001 1346269/4870847*141422324^(3/13) 2100951949425044 a001 1346269/4870847*2537720636^(1/5) 2100951949425044 a001 2178309/3010349*17393796001^(1/7) 2100951949425044 a001 1346269/4870847*45537549124^(3/17) 2100951949425044 a001 2932589879121/139583862445 2100951949425044 a001 1346269/4870847*14662949395604^(1/7) 2100951949425044 a001 1346269/4870847*(1/2+1/2*5^(1/2))^9 2100951949425044 a001 2178309/3010349*14662949395604^(1/9) 2100951949425044 a001 2178309/3010349*(1/2+1/2*5^(1/2))^7 2100951949425044 a001 1346269/4870847*192900153618^(1/6) 2100951949425044 a001 1346269/4870847*10749957122^(3/16) 2100951949425044 a001 2178309/3010349*599074578^(1/6) 2100951949425044 a001 1346269/4870847*599074578^(3/14) 2100951949425044 a001 1346269/4870847*33385282^(1/4) 2100951949425053 a001 311187/4769326*1860498^(2/5) 2100951949425059 a001 7465176/16692641*1860498^(4/15) 2100951949425061 a001 9227465/7881196*1860498^(1/5) 2100951949425062 a001 39088169/87403803*1860498^(4/15) 2100951949425062 a001 102334155/228826127*1860498^(4/15) 2100951949425063 a001 133957148/299537289*1860498^(4/15) 2100951949425063 a001 701408733/1568397607*1860498^(4/15) 2100951949425063 a001 1836311903/4106118243*1860498^(4/15) 2100951949425063 a001 2403763488/5374978561*1860498^(4/15) 2100951949425063 a001 12586269025/28143753123*1860498^(4/15) 2100951949425063 a001 32951280099/73681302247*1860498^(4/15) 2100951949425063 a001 43133785636/96450076809*1860498^(4/15) 2100951949425063 a001 225851433717/505019158607*1860498^(4/15) 2100951949425063 a001 10610209857723/23725150497407*1860498^(4/15) 2100951949425063 a001 182717648081/408569081798*1860498^(4/15) 2100951949425063 a001 139583862445/312119004989*1860498^(4/15) 2100951949425063 a001 53316291173/119218851371*1860498^(4/15) 2100951949425063 a001 10182505537/22768774562*1860498^(4/15) 2100951949425063 a001 7778742049/17393796001*1860498^(4/15) 2100951949425063 a001 2971215073/6643838879*1860498^(4/15) 2100951949425063 a001 567451585/1268860318*1860498^(4/15) 2100951949425063 a001 433494437/969323029*1860498^(4/15) 2100951949425063 a001 165580141/370248451*1860498^(4/15) 2100951949425063 a001 31622993/70711162*1860498^(4/15) 2100951949425064 a001 24157817/54018521*1860498^(4/15) 2100951949425072 a001 9227465/20633239*1860498^(4/15) 2100951949425075 a001 5702887/20633239*1860498^(3/10) 2100951949425082 a001 14930352/54018521*1860498^(3/10) 2100951949425083 a001 39088169/141422324*1860498^(3/10) 2100951949425083 a001 102334155/370248451*1860498^(3/10) 2100951949425083 a001 267914296/969323029*1860498^(3/10) 2100951949425083 a001 701408733/2537720636*1860498^(3/10) 2100951949425083 a001 1836311903/6643838879*1860498^(3/10) 2100951949425083 a001 4807526976/17393796001*1860498^(3/10) 2100951949425083 a001 12586269025/45537549124*1860498^(3/10) 2100951949425083 a001 32951280099/119218851371*1860498^(3/10) 2100951949425083 a001 86267571272/312119004989*1860498^(3/10) 2100951949425083 a001 1548008755920/5600748293801*1860498^(3/10) 2100951949425083 a001 139583862445/505019158607*1860498^(3/10) 2100951949425083 a001 53316291173/192900153618*1860498^(3/10) 2100951949425083 a001 20365011074/73681302247*1860498^(3/10) 2100951949425083 a001 7778742049/28143753123*1860498^(3/10) 2100951949425083 a001 2971215073/10749957122*1860498^(3/10) 2100951949425083 a001 1134903170/4106118243*1860498^(3/10) 2100951949425083 a001 433494437/1568397607*1860498^(3/10) 2100951949425083 a001 165580141/599074578*1860498^(3/10) 2100951949425083 a001 63245986/228826127*1860498^(3/10) 2100951949425083 a001 24157817/87403803*1860498^(3/10) 2100951949425086 a001 9227465/33385282*1860498^(3/10) 2100951949425088 a001 5702887/33385282*1860498^(1/3) 2100951949425095 a001 726103/29134601*1860498^(7/15) 2100951949425097 a001 726103/620166*710647^(3/14) 2100951949425099 a004 Fibonacci(31)*Lucas(33)/(1/2+sqrt(5)/2)^56 2100951949425101 a001 4976784/29134601*1860498^(1/3) 2100951949425102 a001 1346269/119218851371*7881196^(10/11) 2100951949425103 a001 39088169/228826127*1860498^(1/3) 2100951949425103 a001 34111385/199691526*1860498^(1/3) 2100951949425103 a001 267914296/1568397607*1860498^(1/3) 2100951949425103 a001 233802911/1368706081*1860498^(1/3) 2100951949425103 a001 1836311903/10749957122*1860498^(1/3) 2100951949425103 a001 1602508992/9381251041*1860498^(1/3) 2100951949425103 a001 12586269025/73681302247*1860498^(1/3) 2100951949425103 a001 10983760033/64300051206*1860498^(1/3) 2100951949425103 a001 86267571272/505019158607*1860498^(1/3) 2100951949425103 a001 75283811239/440719107401*1860498^(1/3) 2100951949425103 a001 2504730781961/14662949395604*1860498^(1/3) 2100951949425103 a001 139583862445/817138163596*1860498^(1/3) 2100951949425103 a001 53316291173/312119004989*1860498^(1/3) 2100951949425103 a001 20365011074/119218851371*1860498^(1/3) 2100951949425103 a001 7778742049/45537549124*1860498^(1/3) 2100951949425103 a001 2971215073/17393796001*1860498^(1/3) 2100951949425103 a001 1134903170/6643838879*1860498^(1/3) 2100951949425103 a001 433494437/2537720636*1860498^(1/3) 2100951949425103 a001 165580141/969323029*1860498^(1/3) 2100951949425103 a001 63245986/370248451*1860498^(1/3) 2100951949425104 a001 3524578/12752043*1860498^(3/10) 2100951949425104 a001 24157817/141422324*1860498^(1/3) 2100951949425105 a001 1346269/28143753123*7881196^(9/11) 2100951949425108 a001 1346269/6643838879*7881196^(8/11) 2100951949425108 a001 1346269/12752043*7881196^(1/3) 2100951949425109 a001 9227465/54018521*1860498^(1/3) 2100951949425109 a001 39088169/4870847*710647^(1/14) 2100951949425110 a001 1346269/2537720636*7881196^(2/3) 2100951949425111 a001 1346269/1568397607*7881196^(7/11) 2100951949425114 a001 1346269/370248451*7881196^(6/11) 2100951949425116 a001 2178309/141422324*1860498^(1/2) 2100951949425117 a001 1346269/87403803*7881196^(5/11) 2100951949425119 a001 5702887/3010349*20633239^(1/7) 2100951949425120 a001 5702887/3010349*2537720636^(1/9) 2100951949425120 a001 1346269/12752043*312119004989^(1/5) 2100951949425120 a001 1346269/12752043*(1/2+1/2*5^(1/2))^11 2100951949425120 a001 5702887/3010349*(1/2+1/2*5^(1/2))^5 2100951949425120 a001 5702887/3010349*28143753123^(1/10) 2100951949425120 a001 1346269/12752043*1568397607^(1/4) 2100951949425120 a001 5702887/3010349*228826127^(1/8) 2100951949425125 a001 1346269/20633239*7881196^(4/11) 2100951949425128 a001 14930352/3010349*7881196^(1/11) 2100951949425128 a004 Fibonacci(31)*Lucas(35)/(1/2+sqrt(5)/2)^58 2100951949425128 a001 1346269/119218851371*20633239^(6/7) 2100951949425129 a001 1346269/45537549124*20633239^(4/5) 2100951949425129 a001 1346269/10749957122*20633239^(5/7) 2100951949425130 a001 1346269/1568397607*20633239^(3/5) 2100951949425130 a001 1346269/969323029*20633239^(4/7) 2100951949425130 a001 1346269/87403803*20633239^(3/7) 2100951949425130 a001 1762289/3940598*1860498^(4/15) 2100951949425130 a001 5702887/87403803*1860498^(2/5) 2100951949425131 a001 1346269/33385282*141422324^(1/3) 2100951949425131 a001 14930352/3010349*141422324^(1/13) 2100951949425131 a001 14930352/3010349*2537720636^(1/15) 2100951949425131 a001 14930352/3010349*45537549124^(1/17) 2100951949425131 a001 1346269/33385282*(1/2+1/2*5^(1/2))^13 2100951949425131 a001 14930352/3010349*14662949395604^(1/21) 2100951949425131 a001 14930352/3010349*(1/2+1/2*5^(1/2))^3 2100951949425131 a001 14930352/3010349*192900153618^(1/18) 2100951949425131 a001 1346269/33385282*73681302247^(1/4) 2100951949425131 a001 14930352/3010349*10749957122^(1/16) 2100951949425131 a001 14930352/3010349*599074578^(1/14) 2100951949425131 a001 14930352/3010349*33385282^(1/12) 2100951949425131 a001 1346269/54018521*20633239^(2/5) 2100951949425132 a004 Fibonacci(31)*Lucas(37)/(1/2+sqrt(5)/2)^60 2100951949425132 a001 1346269/87403803*141422324^(5/13) 2100951949425132 a001 1346269/87403803*2537720636^(1/3) 2100951949425132 a001 1346269/87403803*45537549124^(5/17) 2100951949425132 a001 1346269/87403803*312119004989^(3/11) 2100951949425132 a001 1346269/87403803*14662949395604^(5/21) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^15/Lucas(38) 2100951949425132 a004 Fibonacci(38)*(1/2+sqrt(5)/2)/Lucas(31) 2100951949425132 a001 1346269/87403803*192900153618^(5/18) 2100951949425132 a001 1346269/87403803*28143753123^(3/10) 2100951949425132 a001 1346269/87403803*10749957122^(5/16) 2100951949425132 a001 1346269/87403803*599074578^(5/14) 2100951949425132 a001 1346269/87403803*228826127^(3/8) 2100951949425132 a004 Fibonacci(31)*Lucas(39)/(1/2+sqrt(5)/2)^62 2100951949425132 a001 1346269/2139295485799*141422324^(12/13) 2100951949425132 a001 1346269/505019158607*141422324^(11/13) 2100951949425132 a001 1346269/119218851371*141422324^(10/13) 2100951949425132 a001 1346269/28143753123*141422324^(9/13) 2100951949425132 a001 1346269/17393796001*141422324^(2/3) 2100951949425132 a001 1346269/6643838879*141422324^(8/13) 2100951949425132 a001 1346269/1568397607*141422324^(7/13) 2100951949425132 a001 1346269/228826127*45537549124^(1/3) 2100951949425132 a001 137769300517695/6557470319842 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^17/Lucas(40) 2100951949425132 a004 Fibonacci(40)/Lucas(31)/(1/2+sqrt(5)/2) 2100951949425132 a001 1346269/370248451*141422324^(6/13) 2100951949425132 a004 Fibonacci(31)*Lucas(41)/(1/2+sqrt(5)/2)^64 2100951949425132 a001 1346269/599074578*817138163596^(1/3) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^19/Lucas(42) 2100951949425132 a004 Fibonacci(42)/Lucas(31)/(1/2+sqrt(5)/2)^3 2100951949425132 a004 Fibonacci(31)*Lucas(43)/(1/2+sqrt(5)/2)^66 2100951949425132 a001 1346269/1568397607*2537720636^(7/15) 2100951949425132 a001 1346269/1568397607*17393796001^(3/7) 2100951949425132 a001 1346269/1568397607*45537549124^(7/17) 2100951949425132 a001 1346269/1568397607*14662949395604^(1/3) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^21/Lucas(44) 2100951949425132 a004 Fibonacci(44)/Lucas(31)/(1/2+sqrt(5)/2)^5 2100951949425132 a001 1346269/1568397607*192900153618^(7/18) 2100951949425132 a001 1346269/1568397607*10749957122^(7/16) 2100951949425132 a004 Fibonacci(31)*Lucas(45)/(1/2+sqrt(5)/2)^68 2100951949425132 a001 1346269/14662949395604*2537720636^(8/9) 2100951949425132 a001 1346269/9062201101803*2537720636^(13/15) 2100951949425132 a001 1346269/2139295485799*2537720636^(4/5) 2100951949425132 a001 1346269/1322157322203*2537720636^(7/9) 2100951949425132 a001 1346269/505019158607*2537720636^(11/15) 2100951949425132 a001 1346269/119218851371*2537720636^(2/3) 2100951949425132 a001 1346269/10749957122*2537720636^(5/9) 2100951949425132 a001 1346269/28143753123*2537720636^(3/5) 2100951949425132 a001 1346269/6643838879*2537720636^(8/15) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^23/Lucas(46) 2100951949425132 a004 Fibonacci(46)/Lucas(31)/(1/2+sqrt(5)/2)^7 2100951949425132 a001 1346269/4106118243*4106118243^(1/2) 2100951949425132 a004 Fibonacci(31)*Lucas(47)/(1/2+sqrt(5)/2)^70 2100951949425132 a001 1346269/10749957122*312119004989^(5/11) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^25/Lucas(48) 2100951949425132 a004 Fibonacci(48)/Lucas(31)/(1/2+sqrt(5)/2)^9 2100951949425132 a001 1346269/10749957122*3461452808002^(5/12) 2100951949425132 a001 1346269/10749957122*28143753123^(1/2) 2100951949425132 a004 Fibonacci(31)*Lucas(49)/(1/2+sqrt(5)/2)^72 2100951949425132 a001 1346269/1322157322203*17393796001^(5/7) 2100951949425132 a001 1346269/28143753123*45537549124^(9/17) 2100951949425132 a001 1346269/45537549124*17393796001^(4/7) 2100951949425132 a001 1346269/28143753123*14662949395604^(3/7) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^27/Lucas(50) 2100951949425132 a004 Fibonacci(50)/Lucas(31)/(1/2+sqrt(5)/2)^11 2100951949425132 a001 1346269/28143753123*192900153618^(1/2) 2100951949425132 a004 Fibonacci(31)*Lucas(51)/(1/2+sqrt(5)/2)^74 2100951949425132 a001 1346269/9062201101803*45537549124^(13/17) 2100951949425132 a001 1346269/2139295485799*45537549124^(12/17) 2100951949425132 a001 1346269/817138163596*45537549124^(2/3) 2100951949425132 a001 1346269/505019158607*45537549124^(11/17) 2100951949425132 a001 1346269/119218851371*45537549124^(10/17) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^29/Lucas(52) 2100951949425132 a004 Fibonacci(52)/Lucas(31)/(1/2+sqrt(5)/2)^13 2100951949425132 a001 1346269/73681302247*1322157322203^(1/2) 2100951949425132 a004 Fibonacci(31)*Lucas(53)/(1/2+sqrt(5)/2)^76 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^31/Lucas(54) 2100951949425132 a001 1346269/192900153618*9062201101803^(1/2) 2100951949425132 a004 Fibonacci(54)/Lucas(31)/(1/2+sqrt(5)/2)^15 2100951949425132 a004 Fibonacci(31)*Lucas(55)/(1/2+sqrt(5)/2)^78 2100951949425132 a001 1346269/1322157322203*312119004989^(7/11) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^33/Lucas(56) 2100951949425132 a004 Fibonacci(56)/Lucas(31)/(1/2+sqrt(5)/2)^17 2100951949425132 a004 Fibonacci(31)*Lucas(57)/(1/2+sqrt(5)/2)^80 2100951949425132 a001 1346269/1322157322203*14662949395604^(5/9) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^35/Lucas(58) 2100951949425132 a004 Fibonacci(58)/Lucas(31)/(1/2+sqrt(5)/2)^19 2100951949425132 a004 Fibonacci(31)*Lucas(59)/(1/2+sqrt(5)/2)^82 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^37/Lucas(60) 2100951949425132 a004 Fibonacci(60)/Lucas(31)/(1/2+sqrt(5)/2)^21 2100951949425132 a004 Fibonacci(31)*Lucas(61)/(1/2+sqrt(5)/2)^84 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^39/Lucas(62) 2100951949425132 a004 Fibonacci(31)*Lucas(63)/(1/2+sqrt(5)/2)^86 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^41/Lucas(64) 2100951949425132 a004 Fibonacci(31)*Lucas(65)/(1/2+sqrt(5)/2)^88 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^43/Lucas(66) 2100951949425132 a004 Fibonacci(31)*Lucas(67)/(1/2+sqrt(5)/2)^90 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^45/Lucas(68) 2100951949425132 a004 Fibonacci(31)*Lucas(69)/(1/2+sqrt(5)/2)^92 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^47/Lucas(70) 2100951949425132 a004 Fibonacci(31)*Lucas(71)/(1/2+sqrt(5)/2)^94 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^49/Lucas(72) 2100951949425132 a004 Fibonacci(31)*Lucas(73)/(1/2+sqrt(5)/2)^96 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^51/Lucas(74) 2100951949425132 a004 Fibonacci(31)*Lucas(75)/(1/2+sqrt(5)/2)^98 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^53/Lucas(76) 2100951949425132 a004 Fibonacci(31)*Lucas(77)/(1/2+sqrt(5)/2)^100 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^55/Lucas(78) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^57/Lucas(80) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^59/Lucas(82) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^61/Lucas(84) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^63/Lucas(86) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^65/Lucas(88) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^67/Lucas(90) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^69/Lucas(92) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^71/Lucas(94) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^73/Lucas(96) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^74/Lucas(97) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^75/Lucas(98) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^76/Lucas(99) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^77/Lucas(100) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^72/Lucas(95) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^70/Lucas(93) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^68/Lucas(91) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^66/Lucas(89) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^64/Lucas(87) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^62/Lucas(85) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^60/Lucas(83) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^58/Lucas(81) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^56/Lucas(79) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^54/Lucas(77) 2100951949425132 a004 Fibonacci(31)*Lucas(76)/(1/2+sqrt(5)/2)^99 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^52/Lucas(75) 2100951949425132 a004 Fibonacci(31)*Lucas(74)/(1/2+sqrt(5)/2)^97 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^50/Lucas(73) 2100951949425132 a004 Fibonacci(31)*Lucas(72)/(1/2+sqrt(5)/2)^95 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^48/Lucas(71) 2100951949425132 a004 Fibonacci(31)*Lucas(70)/(1/2+sqrt(5)/2)^93 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^46/Lucas(69) 2100951949425132 a004 Fibonacci(31)*Lucas(68)/(1/2+sqrt(5)/2)^91 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^44/Lucas(67) 2100951949425132 a004 Fibonacci(31)*Lucas(66)/(1/2+sqrt(5)/2)^89 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^42/Lucas(65) 2100951949425132 a004 Fibonacci(31)*Lucas(64)/(1/2+sqrt(5)/2)^87 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^40/Lucas(63) 2100951949425132 a004 Fibonacci(64)/Lucas(31)/(1/2+sqrt(5)/2)^25 2100951949425132 a004 Fibonacci(66)/Lucas(31)/(1/2+sqrt(5)/2)^27 2100951949425132 a004 Fibonacci(68)/Lucas(31)/(1/2+sqrt(5)/2)^29 2100951949425132 a004 Fibonacci(70)/Lucas(31)/(1/2+sqrt(5)/2)^31 2100951949425132 a004 Fibonacci(72)/Lucas(31)/(1/2+sqrt(5)/2)^33 2100951949425132 a004 Fibonacci(74)/Lucas(31)/(1/2+sqrt(5)/2)^35 2100951949425132 a004 Fibonacci(76)/Lucas(31)/(1/2+sqrt(5)/2)^37 2100951949425132 a004 Fibonacci(78)/Lucas(31)/(1/2+sqrt(5)/2)^39 2100951949425132 a004 Fibonacci(80)/Lucas(31)/(1/2+sqrt(5)/2)^41 2100951949425132 a004 Fibonacci(82)/Lucas(31)/(1/2+sqrt(5)/2)^43 2100951949425132 a004 Fibonacci(84)/Lucas(31)/(1/2+sqrt(5)/2)^45 2100951949425132 a004 Fibonacci(86)/Lucas(31)/(1/2+sqrt(5)/2)^47 2100951949425132 a004 Fibonacci(88)/Lucas(31)/(1/2+sqrt(5)/2)^49 2100951949425132 a004 Fibonacci(90)/Lucas(31)/(1/2+sqrt(5)/2)^51 2100951949425132 a004 Fibonacci(92)/Lucas(31)/(1/2+sqrt(5)/2)^53 2100951949425132 a004 Fibonacci(94)/Lucas(31)/(1/2+sqrt(5)/2)^55 2100951949425132 a004 Fibonacci(96)/Lucas(31)/(1/2+sqrt(5)/2)^57 2100951949425132 a004 Fibonacci(100)/Lucas(31)/(1/2+sqrt(5)/2)^61 2100951949425132 a004 Fibonacci(31)*Lucas(62)/(1/2+sqrt(5)/2)^85 2100951949425132 a004 Fibonacci(98)/Lucas(31)/(1/2+sqrt(5)/2)^59 2100951949425132 a004 Fibonacci(99)/Lucas(31)/(1/2+sqrt(5)/2)^60 2100951949425132 a004 Fibonacci(97)/Lucas(31)/(1/2+sqrt(5)/2)^58 2100951949425132 a004 Fibonacci(95)/Lucas(31)/(1/2+sqrt(5)/2)^56 2100951949425132 a004 Fibonacci(93)/Lucas(31)/(1/2+sqrt(5)/2)^54 2100951949425132 a004 Fibonacci(91)/Lucas(31)/(1/2+sqrt(5)/2)^52 2100951949425132 a004 Fibonacci(89)/Lucas(31)/(1/2+sqrt(5)/2)^50 2100951949425132 a004 Fibonacci(87)/Lucas(31)/(1/2+sqrt(5)/2)^48 2100951949425132 a004 Fibonacci(85)/Lucas(31)/(1/2+sqrt(5)/2)^46 2100951949425132 a004 Fibonacci(83)/Lucas(31)/(1/2+sqrt(5)/2)^44 2100951949425132 a004 Fibonacci(81)/Lucas(31)/(1/2+sqrt(5)/2)^42 2100951949425132 a004 Fibonacci(79)/Lucas(31)/(1/2+sqrt(5)/2)^40 2100951949425132 a004 Fibonacci(77)/Lucas(31)/(1/2+sqrt(5)/2)^38 2100951949425132 a004 Fibonacci(75)/Lucas(31)/(1/2+sqrt(5)/2)^36 2100951949425132 a004 Fibonacci(73)/Lucas(31)/(1/2+sqrt(5)/2)^34 2100951949425132 a004 Fibonacci(71)/Lucas(31)/(1/2+sqrt(5)/2)^32 2100951949425132 a004 Fibonacci(69)/Lucas(31)/(1/2+sqrt(5)/2)^30 2100951949425132 a004 Fibonacci(67)/Lucas(31)/(1/2+sqrt(5)/2)^28 2100951949425132 a004 Fibonacci(65)/Lucas(31)/(1/2+sqrt(5)/2)^26 2100951949425132 a004 Fibonacci(63)/Lucas(31)/(1/2+sqrt(5)/2)^24 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^38/Lucas(61) 2100951949425132 a004 Fibonacci(61)/Lucas(31)/(1/2+sqrt(5)/2)^22 2100951949425132 a004 Fibonacci(31)*Lucas(60)/(1/2+sqrt(5)/2)^83 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^36/Lucas(59) 2100951949425132 a004 Fibonacci(59)/Lucas(31)/(1/2+sqrt(5)/2)^20 2100951949425132 a004 Fibonacci(31)*Lucas(58)/(1/2+sqrt(5)/2)^81 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^34/Lucas(57) 2100951949425132 a004 Fibonacci(57)/Lucas(31)/(1/2+sqrt(5)/2)^18 2100951949425132 a001 1346269/1322157322203*505019158607^(5/8) 2100951949425132 a004 Fibonacci(31)*Lucas(56)/(1/2+sqrt(5)/2)^79 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^32/Lucas(55) 2100951949425132 a001 1346269/312119004989*23725150497407^(1/2) 2100951949425132 a004 Fibonacci(55)/Lucas(31)/(1/2+sqrt(5)/2)^16 2100951949425132 a001 1346269/2139295485799*192900153618^(2/3) 2100951949425132 a001 1346269/9062201101803*192900153618^(13/18) 2100951949425132 a004 Fibonacci(31)*Lucas(54)/(1/2+sqrt(5)/2)^77 2100951949425132 a001 1346269/119218851371*312119004989^(6/11) 2100951949425132 a001 1346269/119218851371*14662949395604^(10/21) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^30/Lucas(53) 2100951949425132 a004 Fibonacci(53)/Lucas(31)/(1/2+sqrt(5)/2)^14 2100951949425132 a001 1346269/119218851371*192900153618^(5/9) 2100951949425132 a001 1346269/312119004989*73681302247^(8/13) 2100951949425132 a001 1346269/2139295485799*73681302247^(9/13) 2100951949425132 a001 1346269/14662949395604*73681302247^(10/13) 2100951949425132 a004 Fibonacci(31)*Lucas(52)/(1/2+sqrt(5)/2)^75 2100951949425132 a001 1346269/45537549124*14662949395604^(4/9) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^28/Lucas(51) 2100951949425132 a004 Fibonacci(51)/Lucas(31)/(1/2+sqrt(5)/2)^12 2100951949425132 a001 1346269/45537549124*73681302247^(7/13) 2100951949425132 a001 1346269/119218851371*28143753123^(3/5) 2100951949425132 a001 1346269/1322157322203*28143753123^(7/10) 2100951949425132 a001 1346269/14662949395604*28143753123^(4/5) 2100951949425132 a004 Fibonacci(31)*Lucas(50)/(1/2+sqrt(5)/2)^73 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^26/Lucas(49) 2100951949425132 a004 Fibonacci(49)/Lucas(31)/(1/2+sqrt(5)/2)^10 2100951949425132 a001 1346269/17393796001*73681302247^(1/2) 2100951949425132 a001 1346269/28143753123*10749957122^(9/16) 2100951949425132 a001 1346269/119218851371*10749957122^(5/8) 2100951949425132 a001 1346269/45537549124*10749957122^(7/12) 2100951949425132 a001 1346269/312119004989*10749957122^(2/3) 2100951949425132 a001 1346269/505019158607*10749957122^(11/16) 2100951949425132 a001 1346269/817138163596*10749957122^(17/24) 2100951949425132 a001 1346269/2139295485799*10749957122^(3/4) 2100951949425132 a001 1346269/5600748293801*10749957122^(19/24) 2100951949425132 a001 1346269/9062201101803*10749957122^(13/16) 2100951949425132 a001 1346269/14662949395604*10749957122^(5/6) 2100951949425132 a001 1346269/17393796001*10749957122^(13/24) 2100951949425132 a004 Fibonacci(31)*Lucas(48)/(1/2+sqrt(5)/2)^71 2100951949425132 a001 1346269/6643838879*45537549124^(8/17) 2100951949425132 a001 1346269/6643838879*14662949395604^(8/21) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^24/Lucas(47) 2100951949425132 a004 Fibonacci(47)/Lucas(31)/(1/2+sqrt(5)/2)^8 2100951949425132 a001 1346269/6643838879*192900153618^(4/9) 2100951949425132 a001 1346269/6643838879*73681302247^(6/13) 2100951949425132 a001 1346269/6643838879*10749957122^(1/2) 2100951949425132 a001 1346269/45537549124*4106118243^(14/23) 2100951949425132 a001 1346269/17393796001*4106118243^(13/23) 2100951949425132 a001 1346269/119218851371*4106118243^(15/23) 2100951949425132 a001 1346269/312119004989*4106118243^(16/23) 2100951949425132 a001 1346269/817138163596*4106118243^(17/23) 2100951949425132 a001 1346269/2139295485799*4106118243^(18/23) 2100951949425132 a001 1346269/5600748293801*4106118243^(19/23) 2100951949425132 a001 1346269/14662949395604*4106118243^(20/23) 2100951949425132 a001 1346269/6643838879*4106118243^(12/23) 2100951949425132 a004 Fibonacci(31)*Lucas(46)/(1/2+sqrt(5)/2)^69 2100951949425132 a001 1346269/2537720636*312119004989^(2/5) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^22/Lucas(45) 2100951949425132 a004 Fibonacci(45)/Lucas(31)/(1/2+sqrt(5)/2)^6 2100951949425132 a001 1346269/2537720636*10749957122^(11/24) 2100951949425132 a001 1346269/2537720636*4106118243^(11/23) 2100951949425132 a001 1346269/17393796001*1568397607^(13/22) 2100951949425132 a001 1346269/6643838879*1568397607^(6/11) 2100951949425132 a001 1346269/45537549124*1568397607^(7/11) 2100951949425132 a001 1346269/119218851371*1568397607^(15/22) 2100951949425132 a001 1346269/312119004989*1568397607^(8/11) 2100951949425132 a001 1346269/505019158607*1568397607^(3/4) 2100951949425132 a001 1346269/817138163596*1568397607^(17/22) 2100951949425132 a001 1346269/2139295485799*1568397607^(9/11) 2100951949425132 a001 1346269/5600748293801*1568397607^(19/22) 2100951949425132 a001 1346269/2537720636*1568397607^(1/2) 2100951949425132 a001 1346269/14662949395604*1568397607^(10/11) 2100951949425132 a004 Fibonacci(31)*Lucas(44)/(1/2+sqrt(5)/2)^67 2100951949425132 a001 1346269/1568397607*599074578^(1/2) 2100951949425132 a001 1346269/969323029*2537720636^(4/9) 2100951949425132 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^20/Lucas(43) 2100951949425132 a001 1346269/969323029*23725150497407^(5/16) 2100951949425132 a004 Fibonacci(43)/Lucas(31)/(1/2+sqrt(5)/2)^4 2100951949425132 a001 1346269/969323029*505019158607^(5/14) 2100951949425132 a001 1346269/969323029*73681302247^(5/13) 2100951949425132 a001 1346269/969323029*28143753123^(2/5) 2100951949425132 a001 1346269/969323029*10749957122^(5/12) 2100951949425132 a001 1346269/969323029*4106118243^(10/23) 2100951949425132 a001 1346269/969323029*1568397607^(5/11) 2100951949425132 a001 1346269/2537720636*599074578^(11/21) 2100951949425132 a001 1346269/6643838879*599074578^(4/7) 2100951949425132 a001 1346269/17393796001*599074578^(13/21) 2100951949425132 a001 1346269/28143753123*599074578^(9/14) 2100951949425132 a001 1346269/45537549124*599074578^(2/3) 2100951949425132 a001 1346269/119218851371*599074578^(5/7) 2100951949425132 a001 1346269/312119004989*599074578^(16/21) 2100951949425132 a001 1346269/505019158607*599074578^(11/14) 2100951949425132 a001 1346269/817138163596*599074578^(17/21) 2100951949425132 a001 1346269/1322157322203*599074578^(5/6) 2100951949425132 a001 1346269/2139295485799*599074578^(6/7) 2100951949425132 a001 1346269/969323029*599074578^(10/21) 2100951949425132 a001 1346269/5600748293801*599074578^(19/21) 2100951949425132 a001 1346269/9062201101803*599074578^(13/14) 2100951949425132 a001 1346269/14662949395604*599074578^(20/21) 2100951949425132 a004 Fibonacci(31)*Lucas(42)/(1/2+sqrt(5)/2)^65 2100951949425133 a001 1346269/370248451*2537720636^(2/5) 2100951949425133 a001 1346269/370248451*45537549124^(6/17) 2100951949425133 a001 1346269/370248451*14662949395604^(2/7) 2100951949425133 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^18/Lucas(41) 2100951949425133 a004 Fibonacci(41)/Lucas(31)/(1/2+sqrt(5)/2)^2 2100951949425133 a001 1346269/370248451*192900153618^(1/3) 2100951949425133 a001 1346269/370248451*10749957122^(3/8) 2100951949425133 a001 1346269/370248451*4106118243^(9/23) 2100951949425133 a001 1346269/370248451*1568397607^(9/22) 2100951949425133 a001 1346269/370248451*599074578^(3/7) 2100951949425133 a001 1346269/969323029*228826127^(1/2) 2100951949425133 a001 1346269/2537720636*228826127^(11/20) 2100951949425133 a001 1346269/6643838879*228826127^(3/5) 2100951949425133 a001 1346269/10749957122*228826127^(5/8) 2100951949425133 a001 1346269/17393796001*228826127^(13/20) 2100951949425133 a001 1346269/45537549124*228826127^(7/10) 2100951949425133 a001 1346269/119218851371*228826127^(3/4) 2100951949425133 a001 1346269/312119004989*228826127^(4/5) 2100951949425133 a001 1346269/370248451*228826127^(9/20) 2100951949425133 a001 1346269/817138163596*228826127^(17/20) 2100951949425133 a001 1346269/1322157322203*228826127^(7/8) 2100951949425133 a001 1346269/2139295485799*228826127^(9/10) 2100951949425133 a001 1346269/5600748293801*228826127^(19/20) 2100951949425133 a004 Fibonacci(31)*Lucas(40)/(1/2+sqrt(5)/2)^63 2100951949425133 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^16/Lucas(39) 2100951949425133 a001 1346269/141422324*23725150497407^(1/4) 2100951949425133 a006 5^(1/2)*Fibonacci(39)/Lucas(31)/sqrt(5) 2100951949425133 a001 1346269/141422324*73681302247^(4/13) 2100951949425133 a001 1346269/141422324*10749957122^(1/3) 2100951949425133 a001 1346269/141422324*4106118243^(8/23) 2100951949425133 a001 1346269/141422324*1568397607^(4/11) 2100951949425133 a001 1346269/141422324*599074578^(8/21) 2100951949425133 a001 1346269/141422324*228826127^(2/5) 2100951949425133 a001 1346269/599074578*87403803^(1/2) 2100951949425133 a001 1346269/370248451*87403803^(9/19) 2100951949425133 a001 1346269/969323029*87403803^(10/19) 2100951949425133 a001 1346269/2537720636*87403803^(11/19) 2100951949425133 a001 1346269/6643838879*87403803^(12/19) 2100951949425133 a001 1346269/17393796001*87403803^(13/19) 2100951949425133 a001 1346269/45537549124*87403803^(14/19) 2100951949425133 a001 1346269/119218851371*87403803^(15/19) 2100951949425133 a001 1346269/141422324*87403803^(8/19) 2100951949425133 a001 1346269/312119004989*87403803^(16/19) 2100951949425133 a001 1346269/817138163596*87403803^(17/19) 2100951949425133 a001 1346269/2139295485799*87403803^(18/19) 2100951949425133 a004 Fibonacci(31)*Lucas(38)/(1/2+sqrt(5)/2)^61 2100951949425133 a001 1346269/87403803*33385282^(5/12) 2100951949425133 a001 1346269/54018521*17393796001^(2/7) 2100951949425133 a001 1346269/54018521*14662949395604^(2/9) 2100951949425133 a004 Fibonacci(31)*(1/2+sqrt(5)/2)^14/Lucas(37) 2100951949425133 a001 24157817/3010349*(1/2+1/2*5^(1/2))^2 2100951949425133 a001 24157817/3010349*10749957122^(1/24) 2100951949425133 a001 1346269/54018521*10749957122^(7/24) 2100951949425133 a001 24157817/3010349*4106118243^(1/23) 2100951949425133 a001 1346269/54018521*4106118243^(7/23) 2100951949425133 a001 24157817/3010349*1568397607^(1/22) 2100951949425133 a001 1346269/54018521*1568397607^(7/22) 2100951949425133 a001 24157817/3010349*599074578^(1/21) 2100951949425133 a001 1346269/54018521*599074578^(1/3) 2100951949425133 a001 24157817/3010349*228826127^(1/20) 2100951949425133 a001 1346269/54018521*228826127^(7/20) 2100951949425133 a001 24157817/3010349*87403803^(1/19) 2100951949425133 a001 1346269/54018521*87403803^(7/19) 2100951949425133 a001 24157817/3010349*33385282^(1/18) 2100951949425133 a001 1346269/141422324*33385282^(4/9) 2100951949425133 a001 1346269/370248451*33385282^(1/2) 2100951949425134 a001 1346269/969323029*33385282^(5/9) 2100951949425134 a001 1346269/1568397607*33385282^(7/12) 2100951949425134 a001 1346269/2537720636*33385282^(11/18) 2100951949425134 a001 1346269/6643838879*33385282^(2/3) 2100951949425134 a001 1346269/17393796001*33385282^(13/18) 2100951949425134 a001 1346269/28143753123*33385282^(3/4) 2100951949425134 a001 1346269/54018521*33385282^(7/18) 2100951949425134 a001 1346269/45537549124*33385282^(7/9) 2100951949425134 a001 24157817/3010349*12752043^(1/17) 2100951949425134 a001 1346269/119218851371*33385282^(5/6) 2100951949425134 a001 1346269/312119004989*33385282^(8/9) 2100951949425134 a001 1346269/505019158607*33385282^(11/12) 2100951949425134 a001 1346269/817138163596*33385282^(17/18) 2100951949425134 a004 Fibonacci(31)*Lucas(36)/(1/2+sqrt(5)/2)^59 2100951949425136 a001 46347/4868641*1860498^(8/15) 2100951949425137 a001 1346269/20633239*141422324^(4/13) 2100951949425137 a001 1346269/20633239*2537720636^(4/15) 2100951949425137 a001 1346269/20633239*45537549124^(4/17) 2100951949425137 a001 1346269/20633239*14662949395604^(4/21) 2100951949425137 a001 1346269/20633239*(1/2+1/2*5^(1/2))^12 2100951949425137 a001 9227465/3010349*(1/2+1/2*5^(1/2))^4 2100951949425137 a001 12422650078085/591286729879 2100951949425137 a001 9227465/3010349*73681302247^(1/13) 2100951949425137 a001 1346269/20633239*73681302247^(3/13) 2100951949425137 a001 9227465/3010349*10749957122^(1/12) 2100951949425137 a001 1346269/20633239*10749957122^(1/4) 2100951949425137 a001 9227465/3010349*4106118243^(2/23) 2100951949425137 a001 1346269/20633239*4106118243^(6/23) 2100951949425137 a001 9227465/3010349*1568397607^(1/11) 2100951949425137 a001 1346269/20633239*1568397607^(3/11) 2100951949425137 a001 9227465/3010349*599074578^(2/21) 2100951949425137 a001 1346269/20633239*599074578^(2/7) 2100951949425137 a001 9227465/3010349*228826127^(1/10) 2100951949425137 a001 1346269/20633239*228826127^(3/10) 2100951949425137 a001 9227465/3010349*87403803^(2/19) 2100951949425138 a001 1346269/20633239*87403803^(6/19) 2100951949425138 a001 9227465/3010349*33385282^(1/9) 2100951949425138 a001 1346269/20633239*33385282^(1/3) 2100951949425139 a001 1346269/54018521*12752043^(7/17) 2100951949425139 a001 1346269/141422324*12752043^(8/17) 2100951949425139 a001 24157817/3010349*4870847^(1/16) 2100951949425139 a001 1346269/228826127*12752043^(1/2) 2100951949425139 a001 9227465/3010349*12752043^(2/17) 2100951949425139 a001 1346269/370248451*12752043^(9/17) 2100951949425140 a001 1346269/969323029*12752043^(10/17) 2100951949425141 a001 1346269/2537720636*12752043^(11/17) 2100951949425142 a001 14930352/228826127*1860498^(2/5) 2100951949425142 a001 1346269/6643838879*12752043^(12/17) 2100951949425142 a001 3524578/20633239*1860498^(1/3) 2100951949425142 a001 1346269/20633239*12752043^(6/17) 2100951949425142 a001 1346269/17393796001*12752043^(13/17) 2100951949425143 a001 1346269/45537549124*12752043^(14/17) 2100951949425143 a001 39088169/599074578*1860498^(2/5) 2100951949425143 a001 14619165/224056801*1860498^(2/5) 2100951949425143 a001 267914296/4106118243*1860498^(2/5) 2100951949425143 a001 701408733/10749957122*1860498^(2/5) 2100951949425143 a001 1836311903/28143753123*1860498^(2/5) 2100951949425143 a001 686789568/10525900321*1860498^(2/5) 2100951949425143 a001 12586269025/192900153618*1860498^(2/5) 2100951949425143 a001 32951280099/505019158607*1860498^(2/5) 2100951949425143 a001 86267571272/1322157322203*1860498^(2/5) 2100951949425143 a001 32264490531/494493258286*1860498^(2/5) 2100951949425143 a001 1548008755920/23725150497407*1860498^(2/5) 2100951949425143 a001 139583862445/2139295485799*1860498^(2/5) 2100951949425143 a001 53316291173/817138163596*1860498^(2/5) 2100951949425143 a001 20365011074/312119004989*1860498^(2/5) 2100951949425143 a001 7778742049/119218851371*1860498^(2/5) 2100951949425143 a001 2971215073/45537549124*1860498^(2/5) 2100951949425143 a001 1134903170/17393796001*1860498^(2/5) 2100951949425143 a001 433494437/6643838879*1860498^(2/5) 2100951949425143 a001 165580141/2537720636*1860498^(2/5) 2100951949425144 a001 63245986/969323029*1860498^(2/5) 2100951949425144 a001 1346269/119218851371*12752043^(15/17) 2100951949425144 a001 24157817/370248451*1860498^(2/5) 2100951949425145 a001 1346269/312119004989*12752043^(16/17) 2100951949425145 a004 Fibonacci(31)*Lucas(34)/(1/2+sqrt(5)/2)^57 2100951949425148 a001 9227465/141422324*1860498^(2/5) 2100951949425148 a001 9227465/3010349*4870847^(1/8) 2100951949425160 a001 3524578/3010349*7881196^(2/11) 2100951949425165 a001 1346269/7881196*20633239^(2/7) 2100951949425166 a001 3524578/3010349*141422324^(2/13) 2100951949425166 a001 1346269/7881196*2537720636^(2/9) 2100951949425166 a001 3524578/3010349*2537720636^(2/15) 2100951949425166 a001 3524578/3010349*45537549124^(2/17) 2100951949425166 a001 1346269/7881196*312119004989^(2/11) 2100951949425166 a001 1346269/7881196*(1/2+1/2*5^(1/2))^10 2100951949425166 a001 3524578/3010349*(1/2+1/2*5^(1/2))^6 2100951949425166 a001 4745030099482/225851433717 2100951949425166 a001 1346269/7881196*28143753123^(1/5) 2100951949425166 a001 3524578/3010349*10749957122^(1/8) 2100951949425166 a001 1346269/7881196*10749957122^(5/24) 2100951949425166 a001 3524578/3010349*4106118243^(3/23) 2100951949425166 a001 1346269/7881196*4106118243^(5/23) 2100951949425166 a001 3524578/3010349*1568397607^(3/22) 2100951949425166 a001 1346269/7881196*1568397607^(5/22) 2100951949425166 a001 3524578/3010349*599074578^(1/7) 2100951949425166 a001 1346269/7881196*599074578^(5/21) 2100951949425166 a001 3524578/3010349*228826127^(3/20) 2100951949425166 a001 1346269/7881196*228826127^(1/4) 2100951949425166 a001 3524578/3010349*87403803^(3/19) 2100951949425166 a001 1346269/7881196*87403803^(5/19) 2100951949425167 a001 3524578/3010349*33385282^(1/6) 2100951949425167 a001 1346269/7881196*33385282^(5/18) 2100951949425169 a001 3524578/3010349*12752043^(3/17) 2100951949425170 a001 1346269/7881196*12752043^(5/17) 2100951949425171 a001 1346269/20633239*4870847^(3/8) 2100951949425171 a001 5702887/228826127*1860498^(7/15) 2100951949425172 a001 1346269/54018521*4870847^(7/16) 2100951949425174 a001 24157817/3010349*1860498^(1/15) 2100951949425176 a001 726103/199691526*1860498^(3/5) 2100951949425177 a001 1346269/141422324*4870847^(1/2) 2100951949425178 a001 3524578/54018521*1860498^(2/5) 2100951949425182 a001 829464/33281921*1860498^(7/15) 2100951949425182 a001 1346269/370248451*4870847^(9/16) 2100951949425183 a001 3524578/3010349*4870847^(3/16) 2100951949425184 a001 39088169/1568397607*1860498^(7/15) 2100951949425184 a001 34111385/1368706081*1860498^(7/15) 2100951949425184 a001 133957148/5374978561*1860498^(7/15) 2100951949425184 a001 233802911/9381251041*1860498^(7/15) 2100951949425184 a001 1836311903/73681302247*1860498^(7/15) 2100951949425184 a001 267084832/10716675201*1860498^(7/15) 2100951949425184 a001 12586269025/505019158607*1860498^(7/15) 2100951949425184 a001 10983760033/440719107401*1860498^(7/15) 2100951949425184 a001 43133785636/1730726404001*1860498^(7/15) 2100951949425184 a001 75283811239/3020733700601*1860498^(7/15) 2100951949425184 a001 182717648081/7331474697802*1860498^(7/15) 2100951949425184 a001 139583862445/5600748293801*1860498^(7/15) 2100951949425184 a001 53316291173/2139295485799*1860498^(7/15) 2100951949425184 a001 10182505537/408569081798*1860498^(7/15) 2100951949425184 a001 7778742049/312119004989*1860498^(7/15) 2100951949425184 a001 2971215073/119218851371*1860498^(7/15) 2100951949425184 a001 567451585/22768774562*1860498^(7/15) 2100951949425184 a001 433494437/17393796001*1860498^(7/15) 2100951949425184 a001 165580141/6643838879*1860498^(7/15) 2100951949425184 a001 31622993/1268860318*1860498^(7/15) 2100951949425185 a001 24157817/969323029*1860498^(7/15) 2100951949425185 a001 34111385/4250681*710647^(1/14) 2100951949425188 a001 1346269/969323029*4870847^(5/8) 2100951949425189 a001 9227465/370248451*1860498^(7/15) 2100951949425191 a001 5702887/370248451*1860498^(1/2) 2100951949425191 a001 14930352/3010349*1860498^(1/10) 2100951949425193 a001 1346269/2537720636*4870847^(11/16) 2100951949425194 a001 1346269/7881196*4870847^(5/16) 2100951949425196 a001 133957148/16692641*710647^(1/14) 2100951949425198 a001 233802911/29134601*710647^(1/14) 2100951949425198 a001 1836311903/228826127*710647^(1/14) 2100951949425198 a001 267084832/33281921*710647^(1/14) 2100951949425198 a001 12586269025/1568397607*710647^(1/14) 2100951949425198 a001 10983760033/1368706081*710647^(1/14) 2100951949425198 a001 43133785636/5374978561*710647^(1/14) 2100951949425198 a001 75283811239/9381251041*710647^(1/14) 2100951949425198 a001 591286729879/73681302247*710647^(1/14) 2100951949425198 a001 86000486440/10716675201*710647^(1/14) 2100951949425198 a001 4052739537881/505019158607*710647^(1/14) 2100951949425198 a001 3278735159921/408569081798*710647^(1/14) 2100951949425198 a001 2504730781961/312119004989*710647^(1/14) 2100951949425198 a001 956722026041/119218851371*710647^(1/14) 2100951949425198 a001 182717648081/22768774562*710647^(1/14) 2100951949425198 a001 139583862445/17393796001*710647^(1/14) 2100951949425198 a001 53316291173/6643838879*710647^(1/14) 2100951949425198 a001 10182505537/1268860318*710647^(1/14) 2100951949425198 a001 7778742049/969323029*710647^(1/14) 2100951949425198 a001 2971215073/370248451*710647^(1/14) 2100951949425198 a001 567451585/70711162*710647^(1/14) 2100951949425199 a001 433494437/54018521*710647^(1/14) 2100951949425199 a001 1346269/6643838879*4870847^(3/4) 2100951949425202 a001 14930352/969323029*1860498^(1/2) 2100951949425203 a001 165580141/20633239*710647^(1/14) 2100951949425204 a001 39088169/2537720636*1860498^(1/2) 2100951949425204 a001 102334155/6643838879*1860498^(1/2) 2100951949425204 a001 9238424/599786069*1860498^(1/2) 2100951949425204 a001 701408733/45537549124*1860498^(1/2) 2100951949425204 a001 1836311903/119218851371*1860498^(1/2) 2100951949425204 a001 4807526976/312119004989*1860498^(1/2) 2100951949425204 a001 12586269025/817138163596*1860498^(1/2) 2100951949425204 a001 32951280099/2139295485799*1860498^(1/2) 2100951949425204 a001 86267571272/5600748293801*1860498^(1/2) 2100951949425204 a001 7787980473/505618944676*1860498^(1/2) 2100951949425204 a001 365435296162/23725150497407*1860498^(1/2) 2100951949425204 a001 139583862445/9062201101803*1860498^(1/2) 2100951949425204 a001 53316291173/3461452808002*1860498^(1/2) 2100951949425204 a001 20365011074/1322157322203*1860498^(1/2) 2100951949425204 a001 7778742049/505019158607*1860498^(1/2) 2100951949425204 a001 2971215073/192900153618*1860498^(1/2) 2100951949425204 a001 1134903170/73681302247*1860498^(1/2) 2100951949425204 a001 433494437/28143753123*1860498^(1/2) 2100951949425204 a001 165580141/10749957122*1860498^(1/2) 2100951949425204 a001 63245986/4106118243*1860498^(1/2) 2100951949425204 a001 1346269/17393796001*4870847^(13/16) 2100951949425205 a001 24157817/1568397607*1860498^(1/2) 2100951949425209 a001 9227465/599074578*1860498^(1/2) 2100951949425210 a001 1346269/45537549124*4870847^(7/8) 2100951949425211 a001 5702887/599074578*1860498^(8/15) 2100951949425216 a001 1346269/119218851371*4870847^(15/16) 2100951949425217 a001 311187/224056801*1860498^(2/3) 2100951949425218 a001 1762289/70711162*1860498^(7/15) 2100951949425218 a001 9227465/3010349*1860498^(2/15) 2100951949425221 a001 5702887/3010349*1860498^(1/6) 2100951949425221 a004 Fibonacci(31)*Lucas(32)/(1/2+sqrt(5)/2)^55 2100951949425222 a001 14930352/1568397607*1860498^(8/15) 2100951949425224 a001 39088169/4106118243*1860498^(8/15) 2100951949425224 a001 102334155/10749957122*1860498^(8/15) 2100951949425224 a001 267914296/28143753123*1860498^(8/15) 2100951949425224 a001 701408733/73681302247*1860498^(8/15) 2100951949425224 a001 1836311903/192900153618*1860498^(8/15) 2100951949425224 a001 102287808/10745088481*1860498^(8/15) 2100951949425224 a001 12586269025/1322157322203*1860498^(8/15) 2100951949425224 a001 32951280099/3461452808002*1860498^(8/15) 2100951949425224 a001 86267571272/9062201101803*1860498^(8/15) 2100951949425224 a001 225851433717/23725150497407*1860498^(8/15) 2100951949425224 a001 139583862445/14662949395604*1860498^(8/15) 2100951949425224 a001 53316291173/5600748293801*1860498^(8/15) 2100951949425224 a001 20365011074/2139295485799*1860498^(8/15) 2100951949425224 a001 7778742049/817138163596*1860498^(8/15) 2100951949425224 a001 2971215073/312119004989*1860498^(8/15) 2100951949425224 a001 1134903170/119218851371*1860498^(8/15) 2100951949425224 a001 433494437/45537549124*1860498^(8/15) 2100951949425224 a001 165580141/17393796001*1860498^(8/15) 2100951949425224 a001 63245986/6643838879*1860498^(8/15) 2100951949425225 a001 24157817/2537720636*1860498^(8/15) 2100951949425226 a001 1346269/4870847*1860498^(3/10) 2100951949425229 a001 9227465/969323029*1860498^(8/15) 2100951949425232 a001 31622993/3940598*710647^(1/14) 2100951949425237 a001 2178309/2537720636*1860498^(7/10) 2100951949425238 a001 3524578/228826127*1860498^(1/2) 2100951949425252 a001 5702887/1568397607*1860498^(3/5) 2100951949425257 a001 726103/1368706081*1860498^(11/15) 2100951949425258 a001 3524578/370248451*1860498^(8/15) 2100951949425263 a001 4976784/1368706081*1860498^(3/5) 2100951949425265 a001 39088169/10749957122*1860498^(3/5) 2100951949425265 a001 831985/228811001*1860498^(3/5) 2100951949425265 a001 267914296/73681302247*1860498^(3/5) 2100951949425265 a001 233802911/64300051206*1860498^(3/5) 2100951949425265 a001 1836311903/505019158607*1860498^(3/5) 2100951949425265 a001 1602508992/440719107401*1860498^(3/5) 2100951949425265 a001 12586269025/3461452808002*1860498^(3/5) 2100951949425265 a001 10983760033/3020733700601*1860498^(3/5) 2100951949425265 a001 86267571272/23725150497407*1860498^(3/5) 2100951949425265 a001 53316291173/14662949395604*1860498^(3/5) 2100951949425265 a001 20365011074/5600748293801*1860498^(3/5) 2100951949425265 a001 7778742049/2139295485799*1860498^(3/5) 2100951949425265 a001 2971215073/817138163596*1860498^(3/5) 2100951949425265 a001 1134903170/312119004989*1860498^(3/5) 2100951949425265 a001 433494437/119218851371*1860498^(3/5) 2100951949425265 a001 165580141/45537549124*1860498^(3/5) 2100951949425265 a001 63245986/17393796001*1860498^(3/5) 2100951949425266 a001 24157817/6643838879*1860498^(3/5) 2100951949425267 a001 5702887/1149851*439204^(1/9) 2100951949425270 a001 9227465/2537720636*1860498^(3/5) 2100951949425288 a001 3524578/3010349*1860498^(1/5) 2100951949425292 a001 5702887/4106118243*1860498^(2/3) 2100951949425298 a001 987/4870846*1860498^(4/5) 2100951949425299 a001 3524578/969323029*1860498^(3/5) 2100951949425303 a001 7465176/5374978561*1860498^(2/3) 2100951949425305 a001 39088169/28143753123*1860498^(2/3) 2100951949425305 a001 14619165/10525900321*1860498^(2/3) 2100951949425305 a001 133957148/96450076809*1860498^(2/3) 2100951949425305 a001 701408733/505019158607*1860498^(2/3) 2100951949425305 a001 1836311903/1322157322203*1860498^(2/3) 2100951949425305 a001 14930208/10749853441*1860498^(2/3) 2100951949425305 a001 12586269025/9062201101803*1860498^(2/3) 2100951949425305 a001 32951280099/23725150497407*1860498^(2/3) 2100951949425305 a001 10182505537/7331474697802*1860498^(2/3) 2100951949425305 a001 7778742049/5600748293801*1860498^(2/3) 2100951949425305 a001 2971215073/2139295485799*1860498^(2/3) 2100951949425305 a001 567451585/408569081798*1860498^(2/3) 2100951949425305 a001 433494437/312119004989*1860498^(2/3) 2100951949425305 a001 165580141/119218851371*1860498^(2/3) 2100951949425305 a001 31622993/22768774562*1860498^(2/3) 2100951949425306 a001 24157817/17393796001*1860498^(2/3) 2100951949425310 a001 9227465/6643838879*1860498^(2/3) 2100951949425313 a001 5702887/6643838879*1860498^(7/10) 2100951949425318 a001 2178309/17393796001*1860498^(5/6) 2100951949425324 a001 14930352/17393796001*1860498^(7/10) 2100951949425325 a001 39088169/45537549124*1860498^(7/10) 2100951949425325 a001 102334155/119218851371*1860498^(7/10) 2100951949425326 a001 267914296/312119004989*1860498^(7/10) 2100951949425326 a001 701408733/817138163596*1860498^(7/10) 2100951949425326 a001 1836311903/2139295485799*1860498^(7/10) 2100951949425326 a001 4807526976/5600748293801*1860498^(7/10) 2100951949425326 a001 12586269025/14662949395604*1860498^(7/10) 2100951949425326 a001 20365011074/23725150497407*1860498^(7/10) 2100951949425326 a001 7778742049/9062201101803*1860498^(7/10) 2100951949425326 a001 2971215073/3461452808002*1860498^(7/10) 2100951949425326 a001 1134903170/1322157322203*1860498^(7/10) 2100951949425326 a001 433494437/505019158607*1860498^(7/10) 2100951949425326 a001 165580141/192900153618*1860498^(7/10) 2100951949425326 a001 63245986/73681302247*1860498^(7/10) 2100951949425326 a001 24157817/28143753123*1860498^(7/10) 2100951949425330 a001 9227465/10749957122*1860498^(7/10) 2100951949425333 a001 5702887/10749957122*1860498^(11/15) 2100951949425338 a001 726103/9381251041*1860498^(13/15) 2100951949425339 a001 1762289/1268860318*1860498^(2/3) 2100951949425344 a001 4976784/9381251041*1860498^(11/15) 2100951949425345 a001 39088169/73681302247*1860498^(11/15) 2100951949425346 a001 34111385/64300051206*1860498^(11/15) 2100951949425346 a001 267914296/505019158607*1860498^(11/15) 2100951949425346 a001 233802911/440719107401*1860498^(11/15) 2100951949425346 a001 1836311903/3461452808002*1860498^(11/15) 2100951949425346 a001 1602508992/3020733700601*1860498^(11/15) 2100951949425346 a001 12586269025/23725150497407*1860498^(11/15) 2100951949425346 a001 7778742049/14662949395604*1860498^(11/15) 2100951949425346 a001 2971215073/5600748293801*1860498^(11/15) 2100951949425346 a001 1134903170/2139295485799*1860498^(11/15) 2100951949425346 a001 433494437/817138163596*1860498^(11/15) 2100951949425346 a001 165580141/312119004989*1860498^(11/15) 2100951949425346 a001 63245986/119218851371*1860498^(11/15) 2100951949425346 a001 24157817/45537549124*1860498^(11/15) 2100951949425351 a001 9227465/17393796001*1860498^(11/15) 2100951949425354 a001 317811/710647*271443^(4/13) 2100951949425358 a001 2178309/45537549124*1860498^(9/10) 2100951949425359 a001 3524578/4106118243*1860498^(7/10) 2100951949425364 a001 1346269/3010349*(1/2+1/2*5^(1/2))^8 2100951949425364 a001 1346269/3010349*23725150497407^(1/8) 2100951949425364 a001 1812440220361/86267571272 2100951949425364 a001 1346269/3010349*73681302247^(2/13) 2100951949425364 a001 1346269/3010349*10749957122^(1/6) 2100951949425364 a001 1346269/3010349*4106118243^(4/23) 2100951949425364 a001 1346269/3010349*1568397607^(2/11) 2100951949425364 a001 1346269/3010349*599074578^(4/21) 2100951949425364 a001 1346269/3010349*228826127^(1/5) 2100951949425364 a001 1346269/3010349*87403803^(4/19) 2100951949425365 a001 1346269/3010349*33385282^(2/9) 2100951949425367 a001 1346269/3010349*12752043^(4/17) 2100951949425369 a001 1346269/7881196*1860498^(1/3) 2100951949425373 a001 5702887/28143753123*1860498^(4/5) 2100951949425379 a001 311187/10525900321*1860498^(14/15) 2100951949425380 a001 3524578/6643838879*1860498^(11/15) 2100951949425380 a001 1346269/20633239*1860498^(2/5) 2100951949425384 a001 14930352/73681302247*1860498^(4/5) 2100951949425386 a001 39088169/192900153618*1860498^(4/5) 2100951949425386 a001 102334155/505019158607*1860498^(4/5) 2100951949425386 a001 267914296/1322157322203*1860498^(4/5) 2100951949425386 a001 701408733/3461452808002*1860498^(4/5) 2100951949425386 a001 1836311903/9062201101803*1860498^(4/5) 2100951949425386 a001 4807526976/23725150497407*1860498^(4/5) 2100951949425386 a001 2971215073/14662949395604*1860498^(4/5) 2100951949425386 a001 1134903170/5600748293801*1860498^(4/5) 2100951949425386 a001 433494437/2139295485799*1860498^(4/5) 2100951949425386 a001 165580141/817138163596*1860498^(4/5) 2100951949425386 a001 63245986/312119004989*1860498^(4/5) 2100951949425386 a001 1346269/3010349*4870847^(1/4) 2100951949425387 a001 24157817/119218851371*1860498^(4/5) 2100951949425391 a001 9227465/45537549124*1860498^(4/5) 2100951949425394 a001 1597/12752044*1860498^(5/6) 2100951949425405 a001 14930352/4870847*710647^(1/7) 2100951949425405 a001 14930352/119218851371*1860498^(5/6) 2100951949425406 a001 39088169/312119004989*1860498^(5/6) 2100951949425406 a001 102334155/817138163596*1860498^(5/6) 2100951949425406 a001 267914296/2139295485799*1860498^(5/6) 2100951949425406 a001 701408733/5600748293801*1860498^(5/6) 2100951949425406 a001 1836311903/14662949395604*1860498^(5/6) 2100951949425406 a001 2971215073/23725150497407*1860498^(5/6) 2100951949425406 a001 1134903170/9062201101803*1860498^(5/6) 2100951949425406 a001 433494437/3461452808002*1860498^(5/6) 2100951949425406 a001 165580141/1322157322203*1860498^(5/6) 2100951949425407 a001 63245986/505019158607*1860498^(5/6) 2100951949425407 a001 24157817/192900153618*1860498^(5/6) 2100951949425411 a001 9227465/73681302247*1860498^(5/6) 2100951949425414 a001 5702887/73681302247*1860498^(13/15) 2100951949425416 a001 1346269/54018521*1860498^(7/15) 2100951949425419 a004 Fibonacci(32)*Lucas(30)/(1/2+sqrt(5)/2)^54 2100951949425420 a001 3524578/17393796001*1860498^(4/5) 2100951949425425 a001 2584/33385281*1860498^(13/15) 2100951949425426 a001 39088169/505019158607*1860498^(13/15) 2100951949425427 a001 34111385/440719107401*1860498^(13/15) 2100951949425427 a001 133957148/1730726404001*1860498^(13/15) 2100951949425427 a001 233802911/3020733700601*1860498^(13/15) 2100951949425427 a001 1836311903/23725150497407*1860498^(13/15) 2100951949425427 a001 567451585/7331474697802*1860498^(13/15) 2100951949425427 a001 433494437/5600748293801*1860498^(13/15) 2100951949425427 a001 165580141/2139295485799*1860498^(13/15) 2100951949425427 a001 31622993/408569081798*1860498^(13/15) 2100951949425427 a001 24157817/312119004989*1860498^(13/15) 2100951949425430 a001 24157817/3010349*710647^(1/14) 2100951949425432 a001 9227465/119218851371*1860498^(13/15) 2100951949425434 a001 5702887/119218851371*1860498^(9/10) 2100951949425436 a001 1346269/87403803*1860498^(1/2) 2100951949425440 a001 3524578/28143753123*1860498^(5/6) 2100951949425445 a001 14930352/312119004989*1860498^(9/10) 2100951949425447 a001 4181/87403804*1860498^(9/10) 2100951949425447 a001 102334155/2139295485799*1860498^(9/10) 2100951949425447 a001 267914296/5600748293801*1860498^(9/10) 2100951949425447 a001 701408733/14662949395604*1860498^(9/10) 2100951949425447 a001 1134903170/23725150497407*1860498^(9/10) 2100951949425447 a001 433494437/9062201101803*1860498^(9/10) 2100951949425447 a001 165580141/3461452808002*1860498^(9/10) 2100951949425447 a001 63245986/1322157322203*1860498^(9/10) 2100951949425448 a001 24157817/505019158607*1860498^(9/10) 2100951949425452 a001 9227465/192900153618*1860498^(9/10) 2100951949425454 a001 5702887/192900153618*1860498^(14/15) 2100951949425456 a001 1346269/141422324*1860498^(8/15) 2100951949425461 a001 1762289/22768774562*1860498^(13/15) 2100951949425465 a001 14930352/505019158607*1860498^(14/15) 2100951949425467 a001 39088169/1322157322203*1860498^(14/15) 2100951949425467 a001 6765/228826126*1860498^(14/15) 2100951949425467 a001 267914296/9062201101803*1860498^(14/15) 2100951949425467 a001 701408733/23725150497407*1860498^(14/15) 2100951949425467 a001 433494437/14662949395604*1860498^(14/15) 2100951949425467 a001 165580141/5600748293801*1860498^(14/15) 2100951949425467 a001 63245986/2139295485799*1860498^(14/15) 2100951949425468 a001 24157817/817138163596*1860498^(14/15) 2100951949425472 a001 9227465/312119004989*1860498^(14/15) 2100951949425481 a001 3524578/73681302247*1860498^(9/10) 2100951949425482 a001 39088169/12752043*710647^(1/7) 2100951949425493 a001 14619165/4769326*710647^(1/7) 2100951949425495 a001 267914296/87403803*710647^(1/7) 2100951949425495 a004 Fibonacci(34)*Lucas(30)/(1/2+sqrt(5)/2)^56 2100951949425495 a001 701408733/228826127*710647^(1/7) 2100951949425495 a001 1836311903/599074578*710647^(1/7) 2100951949425495 a001 686789568/224056801*710647^(1/7) 2100951949425495 a001 12586269025/4106118243*710647^(1/7) 2100951949425495 a001 32951280099/10749957122*710647^(1/7) 2100951949425495 a001 86267571272/28143753123*710647^(1/7) 2100951949425495 a001 32264490531/10525900321*710647^(1/7) 2100951949425495 a001 591286729879/192900153618*710647^(1/7) 2100951949425495 a001 1515744265389/494493258286*710647^(1/7) 2100951949425495 a001 2504730781961/817138163596*710647^(1/7) 2100951949425495 a001 956722026041/312119004989*710647^(1/7) 2100951949425495 a001 365435296162/119218851371*710647^(1/7) 2100951949425495 a001 139583862445/45537549124*710647^(1/7) 2100951949425495 a001 53316291173/17393796001*710647^(1/7) 2100951949425495 a001 20365011074/6643838879*710647^(1/7) 2100951949425495 a001 7778742049/2537720636*710647^(1/7) 2100951949425495 a001 2971215073/969323029*710647^(1/7) 2100951949425495 a001 1134903170/370248451*710647^(1/7) 2100951949425495 a001 433494437/141422324*710647^(1/7) 2100951949425496 a001 165580141/54018521*710647^(1/7) 2100951949425497 a001 1346269/370248451*1860498^(3/5) 2100951949425500 a001 63245986/20633239*710647^(1/7) 2100951949425501 a001 3524578/119218851371*1860498^(14/15) 2100951949425506 a004 Fibonacci(36)*Lucas(30)/(1/2+sqrt(5)/2)^58 2100951949425507 a004 Fibonacci(38)*Lucas(30)/(1/2+sqrt(5)/2)^60 2100951949425508 a004 Fibonacci(40)*Lucas(30)/(1/2+sqrt(5)/2)^62 2100951949425508 a004 Fibonacci(42)*Lucas(30)/(1/2+sqrt(5)/2)^64 2100951949425508 a004 Fibonacci(44)*Lucas(30)/(1/2+sqrt(5)/2)^66 2100951949425508 a004 Fibonacci(46)*Lucas(30)/(1/2+sqrt(5)/2)^68 2100951949425508 a004 Fibonacci(48)*Lucas(30)/(1/2+sqrt(5)/2)^70 2100951949425508 a004 Fibonacci(50)*Lucas(30)/(1/2+sqrt(5)/2)^72 2100951949425508 a004 Fibonacci(52)*Lucas(30)/(1/2+sqrt(5)/2)^74 2100951949425508 a004 Fibonacci(54)*Lucas(30)/(1/2+sqrt(5)/2)^76 2100951949425508 a004 Fibonacci(56)*Lucas(30)/(1/2+sqrt(5)/2)^78 2100951949425508 a004 Fibonacci(58)*Lucas(30)/(1/2+sqrt(5)/2)^80 2100951949425508 a004 Fibonacci(60)*Lucas(30)/(1/2+sqrt(5)/2)^82 2100951949425508 a004 Fibonacci(62)*Lucas(30)/(1/2+sqrt(5)/2)^84 2100951949425508 a004 Fibonacci(64)*Lucas(30)/(1/2+sqrt(5)/2)^86 2100951949425508 a004 Fibonacci(66)*Lucas(30)/(1/2+sqrt(5)/2)^88 2100951949425508 a004 Fibonacci(68)*Lucas(30)/(1/2+sqrt(5)/2)^90 2100951949425508 a004 Fibonacci(70)*Lucas(30)/(1/2+sqrt(5)/2)^92 2100951949425508 a004 Fibonacci(72)*Lucas(30)/(1/2+sqrt(5)/2)^94 2100951949425508 a004 Fibonacci(74)*Lucas(30)/(1/2+sqrt(5)/2)^96 2100951949425508 a004 Fibonacci(76)*Lucas(30)/(1/2+sqrt(5)/2)^98 2100951949425508 a004 Fibonacci(78)*Lucas(30)/(1/2+sqrt(5)/2)^100 2100951949425508 a004 Fibonacci(77)*Lucas(30)/(1/2+sqrt(5)/2)^99 2100951949425508 a004 Fibonacci(75)*Lucas(30)/(1/2+sqrt(5)/2)^97 2100951949425508 a004 Fibonacci(73)*Lucas(30)/(1/2+sqrt(5)/2)^95 2100951949425508 a004 Fibonacci(71)*Lucas(30)/(1/2+sqrt(5)/2)^93 2100951949425508 a004 Fibonacci(69)*Lucas(30)/(1/2+sqrt(5)/2)^91 2100951949425508 a004 Fibonacci(67)*Lucas(30)/(1/2+sqrt(5)/2)^89 2100951949425508 a004 Fibonacci(65)*Lucas(30)/(1/2+sqrt(5)/2)^87 2100951949425508 a004 Fibonacci(63)*Lucas(30)/(1/2+sqrt(5)/2)^85 2100951949425508 a004 Fibonacci(61)*Lucas(30)/(1/2+sqrt(5)/2)^83 2100951949425508 a001 1/416020*(1/2+1/2*5^(1/2))^38 2100951949425508 a004 Fibonacci(59)*Lucas(30)/(1/2+sqrt(5)/2)^81 2100951949425508 a004 Fibonacci(57)*Lucas(30)/(1/2+sqrt(5)/2)^79 2100951949425508 a004 Fibonacci(55)*Lucas(30)/(1/2+sqrt(5)/2)^77 2100951949425508 a004 Fibonacci(53)*Lucas(30)/(1/2+sqrt(5)/2)^75 2100951949425508 a004 Fibonacci(51)*Lucas(30)/(1/2+sqrt(5)/2)^73 2100951949425508 a004 Fibonacci(49)*Lucas(30)/(1/2+sqrt(5)/2)^71 2100951949425508 a004 Fibonacci(47)*Lucas(30)/(1/2+sqrt(5)/2)^69 2100951949425508 a004 Fibonacci(45)*Lucas(30)/(1/2+sqrt(5)/2)^67 2100951949425508 a004 Fibonacci(43)*Lucas(30)/(1/2+sqrt(5)/2)^65 2100951949425508 a004 Fibonacci(41)*Lucas(30)/(1/2+sqrt(5)/2)^63 2100951949425508 a004 Fibonacci(39)*Lucas(30)/(1/2+sqrt(5)/2)^61 2100951949425508 a004 Fibonacci(37)*Lucas(30)/(1/2+sqrt(5)/2)^59 2100951949425513 a004 Fibonacci(35)*Lucas(30)/(1/2+sqrt(5)/2)^57 2100951949425526 a001 1346269/3010349*1860498^(4/15) 2100951949425530 a001 24157817/7881196*710647^(1/7) 2100951949425537 a001 1346269/969323029*1860498^(2/3) 2100951949425541 a004 Fibonacci(33)*Lucas(30)/(1/2+sqrt(5)/2)^55 2100951949425557 a001 1346269/1568397607*1860498^(7/10) 2100951949425566 a001 1346269/1860498*710647^(1/4) 2100951949425578 a001 1346269/2537720636*1860498^(11/15) 2100951949425618 a001 1346269/6643838879*1860498^(4/5) 2100951949425638 a001 1346269/10749957122*1860498^(5/6) 2100951949425659 a001 1346269/17393796001*1860498^(13/15) 2100951949425679 a001 1346269/28143753123*1860498^(9/10) 2100951949425691 a001 5702887/4870847*710647^(3/14) 2100951949425691 a001 832040/4870847*710647^(5/14) 2100951949425699 a001 1346269/45537549124*1860498^(14/15) 2100951949425732 a001 9227465/3010349*710647^(1/7) 2100951949425739 a004 Fibonacci(31)*Lucas(30)/(1/2+sqrt(5)/2)^53 2100951949425777 a001 4976784/4250681*710647^(3/14) 2100951949425790 a001 39088169/33385282*710647^(3/14) 2100951949425792 a001 34111385/29134601*710647^(3/14) 2100951949425792 a001 267914296/228826127*710647^(3/14) 2100951949425792 a001 233802911/199691526*710647^(3/14) 2100951949425792 a001 1836311903/1568397607*710647^(3/14) 2100951949425792 a001 1602508992/1368706081*710647^(3/14) 2100951949425792 a001 12586269025/10749957122*710647^(3/14) 2100951949425792 a001 10983760033/9381251041*710647^(3/14) 2100951949425792 a001 86267571272/73681302247*710647^(3/14) 2100951949425792 a001 75283811239/64300051206*710647^(3/14) 2100951949425792 a001 2504730781961/2139295485799*710647^(3/14) 2100951949425792 a001 365435296162/312119004989*710647^(3/14) 2100951949425792 a001 139583862445/119218851371*710647^(3/14) 2100951949425792 a001 53316291173/45537549124*710647^(3/14) 2100951949425792 a001 20365011074/17393796001*710647^(3/14) 2100951949425792 a001 7778742049/6643838879*710647^(3/14) 2100951949425792 a001 2971215073/2537720636*710647^(3/14) 2100951949425792 a001 1134903170/969323029*710647^(3/14) 2100951949425792 a001 433494437/370248451*710647^(3/14) 2100951949425792 a001 165580141/141422324*710647^(3/14) 2100951949425793 a001 63245986/54018521*710647^(3/14) 2100951949425798 a001 24157817/20633239*710647^(3/14) 2100951949425831 a001 9227465/7881196*710647^(3/14) 2100951949425874 a001 514229/1860498*7881196^(3/11) 2100951949425882 a001 832040/1149851*20633239^(1/5) 2100951949425883 a001 514229/1860498*141422324^(3/13) 2100951949425883 a001 514229/1860498*2537720636^(1/5) 2100951949425883 a001 213929548580/10182505537 2100951949425883 a001 832040/1149851*17393796001^(1/7) 2100951949425883 a001 514229/1860498*45537549124^(3/17) 2100951949425883 a001 514229/1860498*14662949395604^(1/7) 2100951949425883 a001 514229/1860498*(1/2+1/2*5^(1/2))^9 2100951949425883 a001 832040/1149851*14662949395604^(1/9) 2100951949425883 a001 832040/1149851*(1/2+1/2*5^(1/2))^7 2100951949425883 a001 514229/1860498*192900153618^(1/6) 2100951949425883 a001 514229/1860498*10749957122^(3/16) 2100951949425883 a001 832040/1149851*599074578^(1/6) 2100951949425883 a001 514229/1860498*599074578^(3/14) 2100951949425883 a001 514229/1860498*33385282^(1/4) 2100951949425886 a001 3524578/4870847*710647^(1/4) 2100951949425912 a001 2178309/4870847*710647^(2/7) 2100951949425933 a001 9227465/12752043*710647^(1/4) 2100951949425940 a001 24157817/33385282*710647^(1/4) 2100951949425941 a001 63245986/87403803*710647^(1/4) 2100951949425941 a001 165580141/228826127*710647^(1/4) 2100951949425941 a001 433494437/599074578*710647^(1/4) 2100951949425941 a001 1134903170/1568397607*710647^(1/4) 2100951949425941 a001 2971215073/4106118243*710647^(1/4) 2100951949425941 a001 7778742049/10749957122*710647^(1/4) 2100951949425941 a001 20365011074/28143753123*710647^(1/4) 2100951949425941 a001 53316291173/73681302247*710647^(1/4) 2100951949425941 a001 139583862445/192900153618*710647^(1/4) 2100951949425941 a001 10610209857723/14662949395604*710647^(1/4) 2100951949425941 a001 591286729879/817138163596*710647^(1/4) 2100951949425941 a001 225851433717/312119004989*710647^(1/4) 2100951949425941 a001 86267571272/119218851371*710647^(1/4) 2100951949425941 a001 32951280099/45537549124*710647^(1/4) 2100951949425941 a001 12586269025/17393796001*710647^(1/4) 2100951949425941 a001 4807526976/6643838879*710647^(1/4) 2100951949425941 a001 1836311903/2537720636*710647^(1/4) 2100951949425941 a001 701408733/969323029*710647^(1/4) 2100951949425941 a001 267914296/370248451*710647^(1/4) 2100951949425941 a001 102334155/141422324*710647^(1/4) 2100951949425941 a001 39088169/54018521*710647^(1/4) 2100951949425944 a001 14930352/20633239*710647^(1/4) 2100951949425962 a001 5702887/7881196*710647^(1/4) 2100951949426058 a001 3524578/3010349*710647^(3/14) 2100951949426063 a001 5702887/12752043*710647^(2/7) 2100951949426064 a001 832040/12752043*710647^(3/7) 2100951949426065 a001 514229/1860498*1860498^(3/10) 2100951949426084 a001 2178309/3010349*710647^(1/4) 2100951949426085 a001 7465176/16692641*710647^(2/7) 2100951949426089 a001 39088169/87403803*710647^(2/7) 2100951949426089 a001 102334155/228826127*710647^(2/7) 2100951949426089 a001 133957148/299537289*710647^(2/7) 2100951949426089 a001 701408733/1568397607*710647^(2/7) 2100951949426089 a001 1836311903/4106118243*710647^(2/7) 2100951949426089 a001 2403763488/5374978561*710647^(2/7) 2100951949426089 a001 12586269025/28143753123*710647^(2/7) 2100951949426089 a001 32951280099/73681302247*710647^(2/7) 2100951949426089 a001 43133785636/96450076809*710647^(2/7) 2100951949426089 a001 225851433717/505019158607*710647^(2/7) 2100951949426089 a001 10610209857723/23725150497407*710647^(2/7) 2100951949426089 a001 182717648081/408569081798*710647^(2/7) 2100951949426089 a001 139583862445/312119004989*710647^(2/7) 2100951949426089 a001 53316291173/119218851371*710647^(2/7) 2100951949426089 a001 10182505537/22768774562*710647^(2/7) 2100951949426089 a001 7778742049/17393796001*710647^(2/7) 2100951949426089 a001 2971215073/6643838879*710647^(2/7) 2100951949426089 a001 567451585/1268860318*710647^(2/7) 2100951949426089 a001 433494437/969323029*710647^(2/7) 2100951949426089 a001 165580141/370248451*710647^(2/7) 2100951949426089 a001 31622993/70711162*710647^(2/7) 2100951949426091 a001 24157817/54018521*710647^(2/7) 2100951949426099 a001 9227465/20633239*710647^(2/7) 2100951949426111 a001 196418/969323029*439204^(8/9) 2100951949426157 a001 1762289/3940598*710647^(2/7) 2100951949426258 a004 Fibonacci(29)*Lucas(31)/(1/2+sqrt(5)/2)^52 2100951949426285 a001 726103/4250681*710647^(5/14) 2100951949426372 a001 5702887/33385282*710647^(5/14) 2100951949426372 a001 416020/16692641*710647^(1/2) 2100951949426384 a001 4976784/29134601*710647^(5/14) 2100951949426386 a001 39088169/228826127*710647^(5/14) 2100951949426386 a001 34111385/199691526*710647^(5/14) 2100951949426386 a001 267914296/1568397607*710647^(5/14) 2100951949426386 a001 233802911/1368706081*710647^(5/14) 2100951949426386 a001 1836311903/10749957122*710647^(5/14) 2100951949426386 a001 1602508992/9381251041*710647^(5/14) 2100951949426386 a001 12586269025/73681302247*710647^(5/14) 2100951949426386 a001 10983760033/64300051206*710647^(5/14) 2100951949426386 a001 86267571272/505019158607*710647^(5/14) 2100951949426386 a001 75283811239/440719107401*710647^(5/14) 2100951949426386 a001 2504730781961/14662949395604*710647^(5/14) 2100951949426386 a001 139583862445/817138163596*710647^(5/14) 2100951949426386 a001 53316291173/312119004989*710647^(5/14) 2100951949426386 a001 20365011074/119218851371*710647^(5/14) 2100951949426386 a001 7778742049/45537549124*710647^(5/14) 2100951949426386 a001 2971215073/17393796001*710647^(5/14) 2100951949426386 a001 1134903170/6643838879*710647^(5/14) 2100951949426386 a001 433494437/2537720636*710647^(5/14) 2100951949426386 a001 165580141/969323029*710647^(5/14) 2100951949426387 a001 63245986/370248451*710647^(5/14) 2100951949426387 a001 24157817/141422324*710647^(5/14) 2100951949426390 a001 514229/4870847*7881196^(1/3) 2100951949426392 a001 9227465/54018521*710647^(5/14) 2100951949426400 a001 2178309/1149851*20633239^(1/7) 2100951949426401 a001 2178309/1149851*2537720636^(1/9) 2100951949426401 a001 1120149658761/53316291173 2100951949426401 a001 2178309/1149851*312119004989^(1/11) 2100951949426401 a001 514229/4870847*(1/2+1/2*5^(1/2))^11 2100951949426401 a001 2178309/1149851*(1/2+1/2*5^(1/2))^5 2100951949426401 a001 2178309/1149851*28143753123^(1/10) 2100951949426401 a001 514229/4870847*1568397607^(1/4) 2100951949426401 a001 2178309/1149851*228826127^(1/8) 2100951949426425 a001 3524578/20633239*710647^(5/14) 2100951949426456 a004 Fibonacci(29)*Lucas(33)/(1/2+sqrt(5)/2)^54 2100951949426459 a001 514229/45537549124*7881196^(10/11) 2100951949426462 a001 514229/10749957122*7881196^(9/11) 2100951949426465 a001 514229/2537720636*7881196^(8/11) 2100951949426467 a001 514229/969323029*7881196^(2/3) 2100951949426468 a001 514229/599074578*7881196^(7/11) 2100951949426471 a001 514229/141422324*7881196^(6/11) 2100951949426472 a001 514229/33385282*7881196^(5/11) 2100951949426474 a001 5702887/1149851*7881196^(1/11) 2100951949426477 a001 514229/12752043*141422324^(1/3) 2100951949426477 a001 5702887/1149851*141422324^(1/13) 2100951949426477 a001 5702887/1149851*2537720636^(1/15) 2100951949426477 a001 5702887/1149851*45537549124^(1/17) 2100951949426477 a001 2932589879123/139583862445 2100951949426477 a001 514229/12752043*(1/2+1/2*5^(1/2))^13 2100951949426477 a001 5702887/1149851*14662949395604^(1/21) 2100951949426477 a001 5702887/1149851*(1/2+1/2*5^(1/2))^3 2100951949426477 a001 514229/12752043*73681302247^(1/4) 2100951949426477 a001 5702887/1149851*10749957122^(1/16) 2100951949426477 a001 5702887/1149851*599074578^(1/14) 2100951949426477 a001 5702887/1149851*33385282^(1/12) 2100951949426485 a004 Fibonacci(29)*Lucas(35)/(1/2+sqrt(5)/2)^56 2100951949426485 a001 829464/103361*271443^(1/13) 2100951949426485 a001 514229/45537549124*20633239^(6/7) 2100951949426486 a001 514229/33385282*20633239^(3/7) 2100951949426486 a001 514229/17393796001*20633239^(4/5) 2100951949426486 a001 514229/4106118243*20633239^(5/7) 2100951949426487 a001 514229/599074578*20633239^(3/5) 2100951949426487 a001 514229/370248451*20633239^(4/7) 2100951949426488 a001 514229/33385282*141422324^(5/13) 2100951949426488 a001 514229/33385282*2537720636^(1/3) 2100951949426488 a001 514229/33385282*45537549124^(5/17) 2100951949426488 a001 514229/33385282*312119004989^(3/11) 2100951949426488 a001 3838809989304/182717648081 2100951949426488 a001 514229/33385282*(1/2+1/2*5^(1/2))^15 2100951949426488 a004 Fibonacci(36)*(1/2+sqrt(5)/2)/Lucas(29) 2100951949426488 a001 514229/33385282*192900153618^(5/18) 2100951949426488 a001 514229/33385282*28143753123^(3/10) 2100951949426488 a001 514229/33385282*10749957122^(5/16) 2100951949426488 a001 514229/33385282*599074578^(5/14) 2100951949426488 a001 514229/33385282*228826127^(3/8) 2100951949426489 a001 514229/33385282*33385282^(5/12) 2100951949426489 a004 Fibonacci(29)*Lucas(37)/(1/2+sqrt(5)/2)^58 2100951949426489 a001 514229/87403803*45537549124^(1/3) 2100951949426489 a001 20100270056701/956722026041 2100951949426489 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^17/Lucas(38) 2100951949426489 a004 Fibonacci(38)/Lucas(29)/(1/2+sqrt(5)/2) 2100951949426490 a004 Fibonacci(29)*Lucas(39)/(1/2+sqrt(5)/2)^60 2100951949426490 a001 514229/817138163596*141422324^(12/13) 2100951949426490 a001 514229/192900153618*141422324^(11/13) 2100951949426490 a001 514229/45537549124*141422324^(10/13) 2100951949426490 a001 514229/10749957122*141422324^(9/13) 2100951949426490 a001 514229/6643838879*141422324^(2/3) 2100951949426490 a001 514229/2537720636*141422324^(8/13) 2100951949426490 a001 514229/599074578*141422324^(7/13) 2100951949426490 a001 514229/228826127*817138163596^(1/3) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^19/Lucas(40) 2100951949426490 a004 Fibonacci(40)/Lucas(29)/(1/2+sqrt(5)/2)^3 2100951949426490 a004 Fibonacci(29)*Lucas(41)/(1/2+sqrt(5)/2)^62 2100951949426490 a001 514229/599074578*2537720636^(7/15) 2100951949426490 a001 514229/599074578*17393796001^(3/7) 2100951949426490 a001 514229/599074578*45537549124^(7/17) 2100951949426490 a001 12586269004/599074577 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^21/Lucas(42) 2100951949426490 a004 Fibonacci(42)/Lucas(29)/(1/2+sqrt(5)/2)^5 2100951949426490 a001 514229/599074578*192900153618^(7/18) 2100951949426490 a001 514229/599074578*10749957122^(7/16) 2100951949426490 a001 514229/599074578*599074578^(1/2) 2100951949426490 a004 Fibonacci(29)*Lucas(43)/(1/2+sqrt(5)/2)^64 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^23/Lucas(44) 2100951949426490 a004 Fibonacci(44)/Lucas(29)/(1/2+sqrt(5)/2)^7 2100951949426490 a001 514229/1568397607*4106118243^(1/2) 2100951949426490 a004 Fibonacci(29)*Lucas(45)/(1/2+sqrt(5)/2)^66 2100951949426490 a001 514229/4106118243*2537720636^(5/9) 2100951949426490 a001 514229/14662949395604*2537720636^(14/15) 2100951949426490 a001 514229/5600748293801*2537720636^(8/9) 2100951949426490 a001 514229/3461452808002*2537720636^(13/15) 2100951949426490 a001 514229/817138163596*2537720636^(4/5) 2100951949426490 a001 514229/505019158607*2537720636^(7/9) 2100951949426490 a001 514229/192900153618*2537720636^(11/15) 2100951949426490 a001 514229/45537549124*2537720636^(2/3) 2100951949426490 a001 514229/10749957122*2537720636^(3/5) 2100951949426490 a001 514229/4106118243*312119004989^(5/11) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^25/Lucas(46) 2100951949426490 a001 514229/4106118243*3461452808002^(5/12) 2100951949426490 a004 Fibonacci(46)/Lucas(29)/(1/2+sqrt(5)/2)^9 2100951949426490 a001 514229/4106118243*28143753123^(1/2) 2100951949426490 a004 Fibonacci(29)*Lucas(47)/(1/2+sqrt(5)/2)^68 2100951949426490 a001 514229/10749957122*45537549124^(9/17) 2100951949426490 a001 514229/10749957122*817138163596^(9/19) 2100951949426490 a001 514229/10749957122*14662949395604^(3/7) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^27/Lucas(48) 2100951949426490 a004 Fibonacci(48)/Lucas(29)/(1/2+sqrt(5)/2)^11 2100951949426490 a001 514229/10749957122*192900153618^(1/2) 2100951949426490 a001 514229/10749957122*10749957122^(9/16) 2100951949426490 a004 Fibonacci(29)*Lucas(49)/(1/2+sqrt(5)/2)^70 2100951949426490 a001 514229/14662949395604*17393796001^(6/7) 2100951949426490 a001 514229/505019158607*17393796001^(5/7) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^29/Lucas(50) 2100951949426490 a001 514229/28143753123*1322157322203^(1/2) 2100951949426490 a004 Fibonacci(50)/Lucas(29)/(1/2+sqrt(5)/2)^13 2100951949426490 a004 Fibonacci(29)*Lucas(51)/(1/2+sqrt(5)/2)^72 2100951949426490 a001 514229/14662949395604*45537549124^(14/17) 2100951949426490 a001 514229/3461452808002*45537549124^(13/17) 2100951949426490 a001 514229/192900153618*45537549124^(11/17) 2100951949426490 a001 514229/312119004989*45537549124^(2/3) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^31/Lucas(52) 2100951949426490 a001 514229/73681302247*9062201101803^(1/2) 2100951949426490 a004 Fibonacci(52)/Lucas(29)/(1/2+sqrt(5)/2)^15 2100951949426490 a004 Fibonacci(29)*Lucas(53)/(1/2+sqrt(5)/2)^74 2100951949426490 a001 514229/192900153618*312119004989^(3/5) 2100951949426490 a001 514229/192900153618*817138163596^(11/19) 2100951949426490 a001 514229/192900153618*14662949395604^(11/21) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^33/Lucas(54) 2100951949426490 a004 Fibonacci(54)/Lucas(29)/(1/2+sqrt(5)/2)^17 2100951949426490 a001 514229/192900153618*192900153618^(11/18) 2100951949426490 a004 Fibonacci(29)*Lucas(55)/(1/2+sqrt(5)/2)^76 2100951949426490 a001 514229/505019158607*14662949395604^(5/9) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^35/Lucas(56) 2100951949426490 a004 Fibonacci(56)/Lucas(29)/(1/2+sqrt(5)/2)^19 2100951949426490 a004 Fibonacci(29)*Lucas(57)/(1/2+sqrt(5)/2)^78 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^37/Lucas(58) 2100951949426490 a004 Fibonacci(29)*Lucas(59)/(1/2+sqrt(5)/2)^80 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^39/Lucas(60) 2100951949426490 a004 Fibonacci(29)*Lucas(61)/(1/2+sqrt(5)/2)^82 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^41/Lucas(62) 2100951949426490 a004 Fibonacci(29)*Lucas(63)/(1/2+sqrt(5)/2)^84 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^43/Lucas(64) 2100951949426490 a004 Fibonacci(29)*Lucas(65)/(1/2+sqrt(5)/2)^86 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^45/Lucas(66) 2100951949426490 a004 Fibonacci(29)*Lucas(67)/(1/2+sqrt(5)/2)^88 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^47/Lucas(68) 2100951949426490 a004 Fibonacci(29)*Lucas(69)/(1/2+sqrt(5)/2)^90 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^49/Lucas(70) 2100951949426490 a004 Fibonacci(29)*Lucas(71)/(1/2+sqrt(5)/2)^92 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^51/Lucas(72) 2100951949426490 a004 Fibonacci(29)*Lucas(73)/(1/2+sqrt(5)/2)^94 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^53/Lucas(74) 2100951949426490 a004 Fibonacci(29)*Lucas(75)/(1/2+sqrt(5)/2)^96 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^55/Lucas(76) 2100951949426490 a004 Fibonacci(29)*Lucas(77)/(1/2+sqrt(5)/2)^98 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^57/Lucas(78) 2100951949426490 a004 Fibonacci(29)*Lucas(79)/(1/2+sqrt(5)/2)^100 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^59/Lucas(80) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^61/Lucas(82) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^63/Lucas(84) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^65/Lucas(86) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^67/Lucas(88) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^69/Lucas(90) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^71/Lucas(92) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^73/Lucas(94) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^75/Lucas(96) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^77/Lucas(98) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^78/Lucas(99) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^79/Lucas(100) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^76/Lucas(97) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^74/Lucas(95) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^72/Lucas(93) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^70/Lucas(91) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^68/Lucas(89) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^66/Lucas(87) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^64/Lucas(85) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^62/Lucas(83) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^60/Lucas(81) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^58/Lucas(79) 2100951949426490 a004 Fibonacci(29)*Lucas(78)/(1/2+sqrt(5)/2)^99 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^56/Lucas(77) 2100951949426490 a004 Fibonacci(29)*Lucas(76)/(1/2+sqrt(5)/2)^97 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^54/Lucas(75) 2100951949426490 a004 Fibonacci(29)*Lucas(74)/(1/2+sqrt(5)/2)^95 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^52/Lucas(73) 2100951949426490 a004 Fibonacci(29)*Lucas(72)/(1/2+sqrt(5)/2)^93 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^50/Lucas(71) 2100951949426490 a004 Fibonacci(29)*Lucas(70)/(1/2+sqrt(5)/2)^91 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^48/Lucas(69) 2100951949426490 a004 Fibonacci(29)*Lucas(68)/(1/2+sqrt(5)/2)^89 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^46/Lucas(67) 2100951949426490 a004 Fibonacci(29)*Lucas(66)/(1/2+sqrt(5)/2)^87 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^44/Lucas(65) 2100951949426490 a001 514229/14662949395604*14662949395604^(2/3) 2100951949426490 a004 Fibonacci(29)*Lucas(64)/(1/2+sqrt(5)/2)^85 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^42/Lucas(63) 2100951949426490 a004 Fibonacci(29)*Lucas(62)/(1/2+sqrt(5)/2)^83 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^40/Lucas(61) 2100951949426490 a004 Fibonacci(29)*Lucas(60)/(1/2+sqrt(5)/2)^81 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^38/Lucas(59) 2100951949426490 a004 Fibonacci(60)/Lucas(29)/(1/2+sqrt(5)/2)^23 2100951949426490 a004 Fibonacci(62)/Lucas(29)/(1/2+sqrt(5)/2)^25 2100951949426490 a004 Fibonacci(64)/Lucas(29)/(1/2+sqrt(5)/2)^27 2100951949426490 a004 Fibonacci(66)/Lucas(29)/(1/2+sqrt(5)/2)^29 2100951949426490 a004 Fibonacci(68)/Lucas(29)/(1/2+sqrt(5)/2)^31 2100951949426490 a004 Fibonacci(70)/Lucas(29)/(1/2+sqrt(5)/2)^33 2100951949426490 a004 Fibonacci(72)/Lucas(29)/(1/2+sqrt(5)/2)^35 2100951949426490 a004 Fibonacci(74)/Lucas(29)/(1/2+sqrt(5)/2)^37 2100951949426490 a004 Fibonacci(76)/Lucas(29)/(1/2+sqrt(5)/2)^39 2100951949426490 a004 Fibonacci(78)/Lucas(29)/(1/2+sqrt(5)/2)^41 2100951949426490 a004 Fibonacci(80)/Lucas(29)/(1/2+sqrt(5)/2)^43 2100951949426490 a004 Fibonacci(82)/Lucas(29)/(1/2+sqrt(5)/2)^45 2100951949426490 a004 Fibonacci(84)/Lucas(29)/(1/2+sqrt(5)/2)^47 2100951949426490 a004 Fibonacci(86)/Lucas(29)/(1/2+sqrt(5)/2)^49 2100951949426490 a004 Fibonacci(88)/Lucas(29)/(1/2+sqrt(5)/2)^51 2100951949426490 a004 Fibonacci(90)/Lucas(29)/(1/2+sqrt(5)/2)^53 2100951949426490 a004 Fibonacci(92)/Lucas(29)/(1/2+sqrt(5)/2)^55 2100951949426490 a004 Fibonacci(94)/Lucas(29)/(1/2+sqrt(5)/2)^57 2100951949426490 a004 Fibonacci(96)/Lucas(29)/(1/2+sqrt(5)/2)^59 2100951949426490 a004 Fibonacci(100)/Lucas(29)/(1/2+sqrt(5)/2)^63 2100951949426490 a004 Fibonacci(29)*Lucas(58)/(1/2+sqrt(5)/2)^79 2100951949426490 a004 Fibonacci(98)/Lucas(29)/(1/2+sqrt(5)/2)^61 2100951949426490 a004 Fibonacci(99)/Lucas(29)/(1/2+sqrt(5)/2)^62 2100951949426490 a004 Fibonacci(97)/Lucas(29)/(1/2+sqrt(5)/2)^60 2100951949426490 a004 Fibonacci(95)/Lucas(29)/(1/2+sqrt(5)/2)^58 2100951949426490 a004 Fibonacci(93)/Lucas(29)/(1/2+sqrt(5)/2)^56 2100951949426490 a004 Fibonacci(91)/Lucas(29)/(1/2+sqrt(5)/2)^54 2100951949426490 a004 Fibonacci(89)/Lucas(29)/(1/2+sqrt(5)/2)^52 2100951949426490 a004 Fibonacci(87)/Lucas(29)/(1/2+sqrt(5)/2)^50 2100951949426490 a004 Fibonacci(85)/Lucas(29)/(1/2+sqrt(5)/2)^48 2100951949426490 a004 Fibonacci(83)/Lucas(29)/(1/2+sqrt(5)/2)^46 2100951949426490 a004 Fibonacci(81)/Lucas(29)/(1/2+sqrt(5)/2)^44 2100951949426490 a004 Fibonacci(79)/Lucas(29)/(1/2+sqrt(5)/2)^42 2100951949426490 a004 Fibonacci(77)/Lucas(29)/(1/2+sqrt(5)/2)^40 2100951949426490 a004 Fibonacci(75)/Lucas(29)/(1/2+sqrt(5)/2)^38 2100951949426490 a004 Fibonacci(73)/Lucas(29)/(1/2+sqrt(5)/2)^36 2100951949426490 a004 Fibonacci(71)/Lucas(29)/(1/2+sqrt(5)/2)^34 2100951949426490 a004 Fibonacci(69)/Lucas(29)/(1/2+sqrt(5)/2)^32 2100951949426490 a004 Fibonacci(67)/Lucas(29)/(1/2+sqrt(5)/2)^30 2100951949426490 a004 Fibonacci(65)/Lucas(29)/(1/2+sqrt(5)/2)^28 2100951949426490 a004 Fibonacci(63)/Lucas(29)/(1/2+sqrt(5)/2)^26 2100951949426490 a004 Fibonacci(61)/Lucas(29)/(1/2+sqrt(5)/2)^24 2100951949426490 a004 Fibonacci(59)/Lucas(29)/(1/2+sqrt(5)/2)^22 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^36/Lucas(57) 2100951949426490 a004 Fibonacci(57)/Lucas(29)/(1/2+sqrt(5)/2)^20 2100951949426490 a001 514229/14662949395604*505019158607^(3/4) 2100951949426490 a004 Fibonacci(29)*Lucas(56)/(1/2+sqrt(5)/2)^77 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^34/Lucas(55) 2100951949426490 a004 Fibonacci(55)/Lucas(29)/(1/2+sqrt(5)/2)^18 2100951949426490 a001 514229/3461452808002*192900153618^(13/18) 2100951949426490 a001 514229/14662949395604*192900153618^(7/9) 2100951949426490 a004 Fibonacci(29)*Lucas(54)/(1/2+sqrt(5)/2)^75 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^32/Lucas(53) 2100951949426490 a001 514229/119218851371*23725150497407^(1/2) 2100951949426490 a004 Fibonacci(53)/Lucas(29)/(1/2+sqrt(5)/2)^16 2100951949426490 a001 514229/817138163596*73681302247^(9/13) 2100951949426490 a001 514229/3461452808002*73681302247^(3/4) 2100951949426490 a001 514229/5600748293801*73681302247^(10/13) 2100951949426490 a001 514229/119218851371*73681302247^(8/13) 2100951949426490 a004 Fibonacci(29)*Lucas(52)/(1/2+sqrt(5)/2)^73 2100951949426490 a001 514229/45537549124*45537549124^(10/17) 2100951949426490 a001 514229/45537549124*312119004989^(6/11) 2100951949426490 a001 514229/45537549124*14662949395604^(10/21) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^30/Lucas(51) 2100951949426490 a004 Fibonacci(51)/Lucas(29)/(1/2+sqrt(5)/2)^14 2100951949426490 a001 514229/45537549124*192900153618^(5/9) 2100951949426490 a001 514229/505019158607*28143753123^(7/10) 2100951949426490 a001 514229/5600748293801*28143753123^(4/5) 2100951949426490 a001 514229/45537549124*28143753123^(3/5) 2100951949426490 a004 Fibonacci(29)*Lucas(50)/(1/2+sqrt(5)/2)^71 2100951949426490 a001 514229/17393796001*17393796001^(4/7) 2100951949426490 a001 514229/17393796001*14662949395604^(4/9) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^28/Lucas(49) 2100951949426490 a004 Fibonacci(49)/Lucas(29)/(1/2+sqrt(5)/2)^12 2100951949426490 a001 514229/17393796001*73681302247^(7/13) 2100951949426490 a001 514229/119218851371*10749957122^(2/3) 2100951949426490 a001 514229/45537549124*10749957122^(5/8) 2100951949426490 a001 514229/192900153618*10749957122^(11/16) 2100951949426490 a001 514229/312119004989*10749957122^(17/24) 2100951949426490 a001 514229/817138163596*10749957122^(3/4) 2100951949426490 a001 514229/2139295485799*10749957122^(19/24) 2100951949426490 a001 514229/3461452808002*10749957122^(13/16) 2100951949426490 a001 514229/5600748293801*10749957122^(5/6) 2100951949426490 a001 514229/14662949395604*10749957122^(7/8) 2100951949426490 a001 514229/17393796001*10749957122^(7/12) 2100951949426490 a004 Fibonacci(29)*Lucas(48)/(1/2+sqrt(5)/2)^69 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^26/Lucas(47) 2100951949426490 a004 Fibonacci(47)/Lucas(29)/(1/2+sqrt(5)/2)^10 2100951949426490 a001 514229/6643838879*73681302247^(1/2) 2100951949426490 a001 514229/6643838879*10749957122^(13/24) 2100951949426490 a001 514229/45537549124*4106118243^(15/23) 2100951949426490 a001 514229/17393796001*4106118243^(14/23) 2100951949426490 a001 514229/119218851371*4106118243^(16/23) 2100951949426490 a001 514229/312119004989*4106118243^(17/23) 2100951949426490 a001 514229/817138163596*4106118243^(18/23) 2100951949426490 a001 514229/2139295485799*4106118243^(19/23) 2100951949426490 a001 514229/5600748293801*4106118243^(20/23) 2100951949426490 a001 514229/14662949395604*4106118243^(21/23) 2100951949426490 a001 514229/6643838879*4106118243^(13/23) 2100951949426490 a004 Fibonacci(29)*Lucas(46)/(1/2+sqrt(5)/2)^67 2100951949426490 a001 514229/2537720636*2537720636^(8/15) 2100951949426490 a001 514229/2537720636*45537549124^(8/17) 2100951949426490 a001 514229/2537720636*14662949395604^(8/21) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^24/Lucas(45) 2100951949426490 a004 Fibonacci(45)/Lucas(29)/(1/2+sqrt(5)/2)^8 2100951949426490 a001 514229/2537720636*192900153618^(4/9) 2100951949426490 a001 514229/2537720636*73681302247^(6/13) 2100951949426490 a001 514229/2537720636*10749957122^(1/2) 2100951949426490 a001 514229/2537720636*4106118243^(12/23) 2100951949426490 a001 514229/17393796001*1568397607^(7/11) 2100951949426490 a001 514229/6643838879*1568397607^(13/22) 2100951949426490 a001 514229/45537549124*1568397607^(15/22) 2100951949426490 a001 514229/119218851371*1568397607^(8/11) 2100951949426490 a001 514229/192900153618*1568397607^(3/4) 2100951949426490 a001 514229/312119004989*1568397607^(17/22) 2100951949426490 a001 514229/817138163596*1568397607^(9/11) 2100951949426490 a001 514229/2139295485799*1568397607^(19/22) 2100951949426490 a001 514229/5600748293801*1568397607^(10/11) 2100951949426490 a001 514229/2537720636*1568397607^(6/11) 2100951949426490 a001 514229/14662949395604*1568397607^(21/22) 2100951949426490 a004 Fibonacci(29)*Lucas(44)/(1/2+sqrt(5)/2)^65 2100951949426490 a001 514229/969323029*312119004989^(2/5) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^22/Lucas(43) 2100951949426490 a001 222915410844073/10610209857723 2100951949426490 a004 Fibonacci(43)/Lucas(29)/(1/2+sqrt(5)/2)^6 2100951949426490 a001 514229/969323029*10749957122^(11/24) 2100951949426490 a001 514229/969323029*4106118243^(11/23) 2100951949426490 a001 514229/969323029*1568397607^(1/2) 2100951949426490 a001 514229/2537720636*599074578^(4/7) 2100951949426490 a001 514229/6643838879*599074578^(13/21) 2100951949426490 a001 514229/10749957122*599074578^(9/14) 2100951949426490 a001 514229/17393796001*599074578^(2/3) 2100951949426490 a001 514229/45537549124*599074578^(5/7) 2100951949426490 a001 514229/119218851371*599074578^(16/21) 2100951949426490 a001 514229/192900153618*599074578^(11/14) 2100951949426490 a001 514229/312119004989*599074578^(17/21) 2100951949426490 a001 514229/505019158607*599074578^(5/6) 2100951949426490 a001 514229/817138163596*599074578^(6/7) 2100951949426490 a001 514229/2139295485799*599074578^(19/21) 2100951949426490 a001 514229/969323029*599074578^(11/21) 2100951949426490 a001 514229/3461452808002*599074578^(13/14) 2100951949426490 a001 514229/5600748293801*599074578^(20/21) 2100951949426490 a004 Fibonacci(29)*Lucas(42)/(1/2+sqrt(5)/2)^63 2100951949426490 a001 514229/370248451*2537720636^(4/9) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^20/Lucas(41) 2100951949426490 a001 514229/370248451*23725150497407^(5/16) 2100951949426490 a004 Fibonacci(41)/Lucas(29)/(1/2+sqrt(5)/2)^4 2100951949426490 a001 514229/370248451*505019158607^(5/14) 2100951949426490 a001 514229/370248451*73681302247^(5/13) 2100951949426490 a001 514229/370248451*28143753123^(2/5) 2100951949426490 a001 514229/370248451*10749957122^(5/12) 2100951949426490 a001 514229/370248451*4106118243^(10/23) 2100951949426490 a001 514229/370248451*1568397607^(5/11) 2100951949426490 a001 514229/370248451*599074578^(10/21) 2100951949426490 a001 514229/969323029*228826127^(11/20) 2100951949426490 a001 514229/2537720636*228826127^(3/5) 2100951949426490 a001 514229/4106118243*228826127^(5/8) 2100951949426490 a001 514229/6643838879*228826127^(13/20) 2100951949426490 a001 514229/17393796001*228826127^(7/10) 2100951949426490 a001 514229/45537549124*228826127^(3/4) 2100951949426490 a001 514229/119218851371*228826127^(4/5) 2100951949426490 a001 514229/312119004989*228826127^(17/20) 2100951949426490 a001 514229/505019158607*228826127^(7/8) 2100951949426490 a001 514229/370248451*228826127^(1/2) 2100951949426490 a001 514229/817138163596*228826127^(9/10) 2100951949426490 a001 514229/2139295485799*228826127^(19/20) 2100951949426490 a004 Fibonacci(29)*Lucas(40)/(1/2+sqrt(5)/2)^61 2100951949426490 a001 514229/141422324*141422324^(6/13) 2100951949426490 a001 514229/228826127*87403803^(1/2) 2100951949426490 a001 514229/141422324*2537720636^(2/5) 2100951949426490 a001 514229/141422324*45537549124^(6/17) 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^18/Lucas(39) 2100951949426490 a001 16261460067397/774004377960 2100951949426490 a004 Fibonacci(39)/Lucas(29)/(1/2+sqrt(5)/2)^2 2100951949426490 a001 514229/141422324*192900153618^(1/3) 2100951949426490 a001 514229/141422324*10749957122^(3/8) 2100951949426490 a001 514229/141422324*4106118243^(9/23) 2100951949426490 a001 514229/141422324*1568397607^(9/22) 2100951949426490 a001 514229/141422324*599074578^(3/7) 2100951949426490 a001 514229/141422324*228826127^(9/20) 2100951949426490 a001 514229/370248451*87403803^(10/19) 2100951949426490 a001 514229/969323029*87403803^(11/19) 2100951949426490 a001 514229/2537720636*87403803^(12/19) 2100951949426490 a001 514229/6643838879*87403803^(13/19) 2100951949426490 a001 514229/17393796001*87403803^(14/19) 2100951949426490 a001 514229/45537549124*87403803^(15/19) 2100951949426490 a001 514229/119218851371*87403803^(16/19) 2100951949426490 a001 514229/141422324*87403803^(9/19) 2100951949426490 a001 514229/312119004989*87403803^(17/19) 2100951949426490 a001 514229/817138163596*87403803^(18/19) 2100951949426490 a004 Fibonacci(29)*Lucas(38)/(1/2+sqrt(5)/2)^59 2100951949426490 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^16/Lucas(37) 2100951949426490 a001 24157817/1149851 2100951949426490 a001 514229/54018521*73681302247^(4/13) 2100951949426490 a001 514229/54018521*10749957122^(1/3) 2100951949426490 a001 514229/54018521*4106118243^(8/23) 2100951949426490 a001 514229/54018521*1568397607^(4/11) 2100951949426490 a001 514229/54018521*599074578^(8/21) 2100951949426490 a001 514229/54018521*228826127^(2/5) 2100951949426491 a001 514229/54018521*87403803^(8/19) 2100951949426491 a001 514229/141422324*33385282^(1/2) 2100951949426491 a001 514229/370248451*33385282^(5/9) 2100951949426491 a001 514229/599074578*33385282^(7/12) 2100951949426491 a001 514229/969323029*33385282^(11/18) 2100951949426491 a001 514229/2537720636*33385282^(2/3) 2100951949426491 a001 514229/6643838879*33385282^(13/18) 2100951949426491 a001 514229/10749957122*33385282^(3/4) 2100951949426491 a001 514229/17393796001*33385282^(7/9) 2100951949426491 a001 514229/54018521*33385282^(4/9) 2100951949426491 a001 514229/45537549124*33385282^(5/6) 2100951949426491 a001 514229/119218851371*33385282^(8/9) 2100951949426491 a001 514229/192900153618*33385282^(11/12) 2100951949426491 a001 514229/312119004989*33385282^(17/18) 2100951949426492 a004 Fibonacci(29)*Lucas(36)/(1/2+sqrt(5)/2)^57 2100951949426493 a001 514229/20633239*20633239^(2/5) 2100951949426495 a001 514229/20633239*17393796001^(2/7) 2100951949426495 a001 514229/20633239*(1/2+1/2*5^(1/2))^14 2100951949426495 a001 9227465/1149851*(1/2+1/2*5^(1/2))^2 2100951949426495 a001 365002315345/17373187209 2100951949426495 a001 9227465/1149851*10749957122^(1/24) 2100951949426495 a001 514229/20633239*10749957122^(7/24) 2100951949426495 a001 9227465/1149851*4106118243^(1/23) 2100951949426495 a001 514229/20633239*4106118243^(7/23) 2100951949426495 a001 9227465/1149851*1568397607^(1/22) 2100951949426495 a001 514229/20633239*1568397607^(7/22) 2100951949426495 a001 9227465/1149851*599074578^(1/21) 2100951949426495 a001 514229/20633239*599074578^(1/3) 2100951949426495 a001 9227465/1149851*228826127^(1/20) 2100951949426495 a001 514229/20633239*228826127^(7/20) 2100951949426495 a001 9227465/1149851*87403803^(1/19) 2100951949426495 a001 514229/20633239*87403803^(7/19) 2100951949426495 a001 9227465/1149851*33385282^(1/18) 2100951949426495 a001 514229/20633239*33385282^(7/18) 2100951949426495 a001 9227465/1149851*12752043^(1/17) 2100951949426496 a001 514229/87403803*12752043^(1/2) 2100951949426496 a001 514229/54018521*12752043^(8/17) 2100951949426497 a001 514229/141422324*12752043^(9/17) 2100951949426497 a001 514229/370248451*12752043^(10/17) 2100951949426498 a001 514229/969323029*12752043^(11/17) 2100951949426499 a001 514229/2537720636*12752043^(12/17) 2100951949426500 a001 514229/6643838879*12752043^(13/17) 2100951949426500 a001 514229/20633239*12752043^(7/17) 2100951949426500 a001 9227465/1149851*4870847^(1/16) 2100951949426500 a001 514229/17393796001*12752043^(14/17) 2100951949426501 a001 514229/45537549124*12752043^(15/17) 2100951949426502 a001 514229/119218851371*12752043^(16/17) 2100951949426502 a001 2178309/1149851*1860498^(1/6) 2100951949426503 a004 Fibonacci(29)*Lucas(34)/(1/2+sqrt(5)/2)^55 2100951949426511 a001 514229/7881196*7881196^(4/11) 2100951949426523 a001 514229/7881196*141422324^(4/13) 2100951949426524 a001 514229/7881196*2537720636^(4/15) 2100951949426524 a001 514229/7881196*45537549124^(4/17) 2100951949426524 a001 514229/7881196*(1/2+1/2*5^(1/2))^12 2100951949426524 a001 3524578/1149851*(1/2+1/2*5^(1/2))^4 2100951949426524 a001 3524578/1149851*23725150497407^(1/16) 2100951949426524 a001 514229/7881196*192900153618^(2/9) 2100951949426524 a001 3524578/1149851*73681302247^(1/13) 2100951949426524 a001 906220110181/43133785636 2100951949426524 a001 514229/7881196*73681302247^(3/13) 2100951949426524 a001 3524578/1149851*10749957122^(1/12) 2100951949426524 a001 514229/7881196*10749957122^(1/4) 2100951949426524 a001 3524578/1149851*4106118243^(2/23) 2100951949426524 a001 514229/7881196*4106118243^(6/23) 2100951949426524 a001 3524578/1149851*1568397607^(1/11) 2100951949426524 a001 514229/7881196*1568397607^(3/11) 2100951949426524 a001 3524578/1149851*599074578^(2/21) 2100951949426524 a001 514229/7881196*599074578^(2/7) 2100951949426524 a001 3524578/1149851*228826127^(1/10) 2100951949426524 a001 514229/7881196*228826127^(3/10) 2100951949426524 a001 3524578/1149851*87403803^(2/19) 2100951949426524 a001 514229/7881196*87403803^(6/19) 2100951949426524 a001 3524578/1149851*33385282^(1/9) 2100951949426524 a001 514229/7881196*33385282^(1/3) 2100951949426525 a001 3524578/1149851*12752043^(2/17) 2100951949426528 a001 514229/7881196*12752043^(6/17) 2100951949426533 a001 514229/20633239*4870847^(7/16) 2100951949426535 a001 3524578/1149851*4870847^(1/8) 2100951949426535 a001 514229/54018521*4870847^(1/2) 2100951949426535 a001 9227465/1149851*1860498^(1/15) 2100951949426537 a001 5702887/1149851*1860498^(1/10) 2100951949426540 a001 514229/141422324*4870847^(9/16) 2100951949426545 a001 514229/370248451*4870847^(5/8) 2100951949426551 a001 514229/969323029*4870847^(11/16) 2100951949426553 a001 1346269/3010349*710647^(2/7) 2100951949426556 a001 514229/2537720636*4870847^(3/4) 2100951949426557 a001 514229/7881196*4870847^(3/8) 2100951949426562 a001 514229/6643838879*4870847^(13/16) 2100951949426567 a001 514229/17393796001*4870847^(7/8) 2100951949426573 a001 514229/45537549124*4870847^(15/16) 2100951949426578 a004 Fibonacci(29)*Lucas(32)/(1/2+sqrt(5)/2)^53 2100951949426593 a001 311187/4769326*710647^(3/7) 2100951949426604 a001 3524578/1149851*1860498^(2/15) 2100951949426652 a001 1346269/7881196*710647^(5/14) 2100951949426670 a001 5702887/87403803*710647^(3/7) 2100951949426671 a001 832040/87403803*710647^(4/7) 2100951949426682 a001 14930352/228826127*710647^(3/7) 2100951949426683 a001 39088169/599074578*710647^(3/7) 2100951949426684 a001 14619165/224056801*710647^(3/7) 2100951949426684 a001 267914296/4106118243*710647^(3/7) 2100951949426684 a001 701408733/10749957122*710647^(3/7) 2100951949426684 a001 1836311903/28143753123*710647^(3/7) 2100951949426684 a001 686789568/10525900321*710647^(3/7) 2100951949426684 a001 12586269025/192900153618*710647^(3/7) 2100951949426684 a001 32951280099/505019158607*710647^(3/7) 2100951949426684 a001 86267571272/1322157322203*710647^(3/7) 2100951949426684 a001 1548008755920/23725150497407*710647^(3/7) 2100951949426684 a001 365435296162/5600748293801*710647^(3/7) 2100951949426684 a001 139583862445/2139295485799*710647^(3/7) 2100951949426684 a001 53316291173/817138163596*710647^(3/7) 2100951949426684 a001 20365011074/312119004989*710647^(3/7) 2100951949426684 a001 7778742049/119218851371*710647^(3/7) 2100951949426684 a001 2971215073/45537549124*710647^(3/7) 2100951949426684 a001 1134903170/17393796001*710647^(3/7) 2100951949426684 a001 433494437/6643838879*710647^(3/7) 2100951949426684 a001 165580141/2537720636*710647^(3/7) 2100951949426684 a001 63245986/969323029*710647^(3/7) 2100951949426684 a001 24157817/370248451*710647^(3/7) 2100951949426689 a001 9227465/141422324*710647^(3/7) 2100951949426714 a001 832040/710647*271443^(3/13) 2100951949426715 a001 1346269/1149851*7881196^(2/11) 2100951949426718 a001 3524578/54018521*710647^(3/7) 2100951949426720 a001 514229/3010349*20633239^(2/7) 2100951949426722 a001 1346269/1149851*141422324^(2/13) 2100951949426722 a001 514229/3010349*2537720636^(2/9) 2100951949426722 a001 1346269/1149851*2537720636^(2/15) 2100951949426722 a001 1346269/1149851*45537549124^(2/17) 2100951949426722 a001 514229/3010349*312119004989^(2/11) 2100951949426722 a001 514229/3010349*(1/2+1/2*5^(1/2))^10 2100951949426722 a001 1346269/1149851*14662949395604^(2/21) 2100951949426722 a001 1346269/1149851*(1/2+1/2*5^(1/2))^6 2100951949426722 a001 692290561601/32951280099 2100951949426722 a001 514229/3010349*28143753123^(1/5) 2100951949426722 a001 1346269/1149851*10749957122^(1/8) 2100951949426722 a001 514229/3010349*10749957122^(5/24) 2100951949426722 a001 1346269/1149851*4106118243^(3/23) 2100951949426722 a001 514229/3010349*4106118243^(5/23) 2100951949426722 a001 1346269/1149851*1568397607^(3/22) 2100951949426722 a001 514229/3010349*1568397607^(5/22) 2100951949426722 a001 1346269/1149851*599074578^(1/7) 2100951949426722 a001 514229/3010349*599074578^(5/21) 2100951949426722 a001 1346269/1149851*228826127^(3/20) 2100951949426722 a001 514229/3010349*228826127^(1/4) 2100951949426722 a001 1346269/1149851*87403803^(3/19) 2100951949426722 a001 514229/3010349*87403803^(5/19) 2100951949426722 a001 1346269/1149851*33385282^(1/6) 2100951949426722 a001 514229/3010349*33385282^(5/18) 2100951949426724 a001 1346269/1149851*12752043^(3/17) 2100951949426725 a001 514229/3010349*12752043^(5/17) 2100951949426738 a001 1346269/1149851*4870847^(3/16) 2100951949426749 a001 514229/3010349*4870847^(5/16) 2100951949426766 a001 514229/7881196*1860498^(2/5) 2100951949426778 a001 514229/20633239*1860498^(7/15) 2100951949426791 a001 514229/33385282*1860498^(1/2) 2100951949426792 a001 9227465/1149851*710647^(1/14) 2100951949426814 a001 514229/54018521*1860498^(8/15) 2100951949426843 a001 1346269/1149851*1860498^(1/5) 2100951949426854 a001 514229/141422324*1860498^(3/5) 2100951949426892 a001 726103/29134601*710647^(1/2) 2100951949426894 a001 514229/370248451*1860498^(2/3) 2100951949426915 a001 514229/599074578*1860498^(7/10) 2100951949426920 a001 1346269/20633239*710647^(3/7) 2100951949426923 a001 832040/1149851*710647^(1/4) 2100951949426924 a001 514229/3010349*1860498^(1/3) 2100951949426935 a001 514229/969323029*1860498^(11/15) 2100951949426968 a001 5702887/228826127*710647^(1/2) 2100951949426968 a001 832040/228826127*710647^(9/14) 2100951949426975 a001 514229/2537720636*1860498^(4/5) 2100951949426979 a001 829464/33281921*710647^(1/2) 2100951949426980 a001 39088169/1568397607*710647^(1/2) 2100951949426981 a001 34111385/1368706081*710647^(1/2) 2100951949426981 a001 133957148/5374978561*710647^(1/2) 2100951949426981 a001 233802911/9381251041*710647^(1/2) 2100951949426981 a001 1836311903/73681302247*710647^(1/2) 2100951949426981 a001 267084832/10716675201*710647^(1/2) 2100951949426981 a001 12586269025/505019158607*710647^(1/2) 2100951949426981 a001 10983760033/440719107401*710647^(1/2) 2100951949426981 a001 43133785636/1730726404001*710647^(1/2) 2100951949426981 a001 182717648081/7331474697802*710647^(1/2) 2100951949426981 a001 139583862445/5600748293801*710647^(1/2) 2100951949426981 a001 53316291173/2139295485799*710647^(1/2) 2100951949426981 a001 10182505537/408569081798*710647^(1/2) 2100951949426981 a001 7778742049/312119004989*710647^(1/2) 2100951949426981 a001 2971215073/119218851371*710647^(1/2) 2100951949426981 a001 567451585/22768774562*710647^(1/2) 2100951949426981 a001 433494437/17393796001*710647^(1/2) 2100951949426981 a001 165580141/6643838879*710647^(1/2) 2100951949426981 a001 31622993/1268860318*710647^(1/2) 2100951949426981 a001 24157817/969323029*710647^(1/2) 2100951949426986 a001 9227465/370248451*710647^(1/2) 2100951949426995 a001 514229/4106118243*1860498^(5/6) 2100951949427005 a001 39088169/4870847*271443^(1/13) 2100951949427015 a001 1762289/70711162*710647^(1/2) 2100951949427016 a001 514229/6643838879*1860498^(13/15) 2100951949427036 a001 514229/10749957122*1860498^(9/10) 2100951949427056 a001 514229/17393796001*1860498^(14/15) 2100951949427081 a001 34111385/4250681*271443^(1/13) 2100951949427092 a001 133957148/16692641*271443^(1/13) 2100951949427094 a001 233802911/29134601*271443^(1/13) 2100951949427094 a001 1836311903/228826127*271443^(1/13) 2100951949427094 a001 267084832/33281921*271443^(1/13) 2100951949427094 a001 12586269025/1568397607*271443^(1/13) 2100951949427094 a001 10983760033/1368706081*271443^(1/13) 2100951949427094 a001 43133785636/5374978561*271443^(1/13) 2100951949427094 a001 75283811239/9381251041*271443^(1/13) 2100951949427094 a001 591286729879/73681302247*271443^(1/13) 2100951949427094 a001 86000486440/10716675201*271443^(1/13) 2100951949427094 a001 4052739537881/505019158607*271443^(1/13) 2100951949427094 a001 3278735159921/408569081798*271443^(1/13) 2100951949427094 a001 2504730781961/312119004989*271443^(1/13) 2100951949427094 a001 956722026041/119218851371*271443^(1/13) 2100951949427094 a001 182717648081/22768774562*271443^(1/13) 2100951949427094 a001 139583862445/17393796001*271443^(1/13) 2100951949427094 a001 53316291173/6643838879*271443^(1/13) 2100951949427094 a001 10182505537/1268860318*271443^(1/13) 2100951949427094 a001 7778742049/969323029*271443^(1/13) 2100951949427094 a001 2971215073/370248451*271443^(1/13) 2100951949427094 a001 567451585/70711162*271443^(1/13) 2100951949427095 a001 433494437/54018521*271443^(1/13) 2100951949427097 a004 Fibonacci(29)*Lucas(30)/(1/2+sqrt(5)/2)^51 2100951949427099 a001 165580141/20633239*271443^(1/13) 2100951949427118 a001 3524578/1149851*710647^(1/7) 2100951949427128 a001 31622993/3940598*271443^(1/13) 2100951949427189 a001 46347/4868641*710647^(4/7) 2100951949427213 a001 1346269/54018521*710647^(1/2) 2100951949427265 a001 5702887/599074578*710647^(4/7) 2100951949427265 a001 416020/299537289*710647^(5/7) 2100951949427276 a001 14930352/1568397607*710647^(4/7) 2100951949427278 a001 39088169/4106118243*710647^(4/7) 2100951949427278 a001 102334155/10749957122*710647^(4/7) 2100951949427278 a001 267914296/28143753123*710647^(4/7) 2100951949427278 a001 701408733/73681302247*710647^(4/7) 2100951949427278 a001 1836311903/192900153618*710647^(4/7) 2100951949427278 a001 102287808/10745088481*710647^(4/7) 2100951949427278 a001 12586269025/1322157322203*710647^(4/7) 2100951949427278 a001 32951280099/3461452808002*710647^(4/7) 2100951949427278 a001 86267571272/9062201101803*710647^(4/7) 2100951949427278 a001 225851433717/23725150497407*710647^(4/7) 2100951949427278 a001 139583862445/14662949395604*710647^(4/7) 2100951949427278 a001 53316291173/5600748293801*710647^(4/7) 2100951949427278 a001 20365011074/2139295485799*710647^(4/7) 2100951949427278 a001 7778742049/817138163596*710647^(4/7) 2100951949427278 a001 2971215073/312119004989*710647^(4/7) 2100951949427278 a001 1134903170/119218851371*710647^(4/7) 2100951949427278 a001 433494437/45537549124*710647^(4/7) 2100951949427278 a001 165580141/17393796001*710647^(4/7) 2100951949427278 a001 63245986/6643838879*710647^(4/7) 2100951949427279 a001 24157817/2537720636*710647^(4/7) 2100951949427283 a001 9227465/969323029*710647^(4/7) 2100951949427312 a001 3524578/370248451*710647^(4/7) 2100951949427321 a001 196418/228826127*439204^(7/9) 2100951949427327 a001 24157817/3010349*271443^(1/13) 2100951949427414 a001 832040/969323029*710647^(3/4) 2100951949427486 a001 726103/199691526*710647^(9/14) 2100951949427510 a001 1346269/141422324*710647^(4/7) 2100951949427562 a001 5702887/1568397607*710647^(9/14) 2100951949427562 a001 832040/1568397607*710647^(11/14) 2100951949427573 a001 4976784/1368706081*710647^(9/14) 2100951949427575 a001 39088169/10749957122*710647^(9/14) 2100951949427575 a001 831985/228811001*710647^(9/14) 2100951949427575 a001 267914296/73681302247*710647^(9/14) 2100951949427575 a001 233802911/64300051206*710647^(9/14) 2100951949427575 a001 1836311903/505019158607*710647^(9/14) 2100951949427575 a001 1602508992/440719107401*710647^(9/14) 2100951949427575 a001 12586269025/3461452808002*710647^(9/14) 2100951949427575 a001 10983760033/3020733700601*710647^(9/14) 2100951949427575 a001 86267571272/23725150497407*710647^(9/14) 2100951949427575 a001 53316291173/14662949395604*710647^(9/14) 2100951949427575 a001 20365011074/5600748293801*710647^(9/14) 2100951949427575 a001 7778742049/2139295485799*710647^(9/14) 2100951949427575 a001 2971215073/817138163596*710647^(9/14) 2100951949427575 a001 1134903170/312119004989*710647^(9/14) 2100951949427575 a001 433494437/119218851371*710647^(9/14) 2100951949427575 a001 165580141/45537549124*710647^(9/14) 2100951949427575 a001 63245986/17393796001*710647^(9/14) 2100951949427576 a001 24157817/6643838879*710647^(9/14) 2100951949427580 a001 9227465/2537720636*710647^(9/14) 2100951949427609 a001 3524578/969323029*710647^(9/14) 2100951949427613 a001 1346269/1149851*710647^(3/14) 2100951949427784 a001 311187/224056801*710647^(5/7) 2100951949427807 a001 1346269/370248451*710647^(9/14) 2100951949427859 a001 5702887/4106118243*710647^(5/7) 2100951949427860 a001 832040/4106118243*710647^(6/7) 2100951949427870 a001 7465176/5374978561*710647^(5/7) 2100951949427872 a001 39088169/28143753123*710647^(5/7) 2100951949427872 a001 14619165/10525900321*710647^(5/7) 2100951949427872 a001 133957148/96450076809*710647^(5/7) 2100951949427872 a001 701408733/505019158607*710647^(5/7) 2100951949427872 a001 1836311903/1322157322203*710647^(5/7) 2100951949427872 a001 14930208/10749853441*710647^(5/7) 2100951949427872 a001 12586269025/9062201101803*710647^(5/7) 2100951949427872 a001 32951280099/23725150497407*710647^(5/7) 2100951949427872 a001 10182505537/7331474697802*710647^(5/7) 2100951949427872 a001 7778742049/5600748293801*710647^(5/7) 2100951949427872 a001 2971215073/2139295485799*710647^(5/7) 2100951949427872 a001 567451585/408569081798*710647^(5/7) 2100951949427872 a001 433494437/312119004989*710647^(5/7) 2100951949427872 a001 165580141/119218851371*710647^(5/7) 2100951949427872 a001 31622993/22768774562*710647^(5/7) 2100951949427873 a001 24157817/17393796001*710647^(5/7) 2100951949427877 a001 9227465/6643838879*710647^(5/7) 2100951949427906 a001 1762289/1268860318*710647^(5/7) 2100951949427932 a001 2178309/2537720636*710647^(3/4) 2100951949428001 a001 196418/710647*439204^(1/3) 2100951949428008 a001 5702887/6643838879*710647^(3/4) 2100951949428019 a001 14930352/17393796001*710647^(3/4) 2100951949428020 a001 39088169/45537549124*710647^(3/4) 2100951949428021 a001 102334155/119218851371*710647^(3/4) 2100951949428021 a001 267914296/312119004989*710647^(3/4) 2100951949428021 a001 701408733/817138163596*710647^(3/4) 2100951949428021 a001 1836311903/2139295485799*710647^(3/4) 2100951949428021 a001 4807526976/5600748293801*710647^(3/4) 2100951949428021 a001 12586269025/14662949395604*710647^(3/4) 2100951949428021 a001 20365011074/23725150497407*710647^(3/4) 2100951949428021 a001 7778742049/9062201101803*710647^(3/4) 2100951949428021 a001 2971215073/3461452808002*710647^(3/4) 2100951949428021 a001 1134903170/1322157322203*710647^(3/4) 2100951949428021 a001 433494437/505019158607*710647^(3/4) 2100951949428021 a001 165580141/192900153618*710647^(3/4) 2100951949428021 a001 63245986/73681302247*710647^(3/4) 2100951949428021 a001 24157817/28143753123*710647^(3/4) 2100951949428026 a001 9227465/10749957122*710647^(3/4) 2100951949428055 a001 3524578/4106118243*710647^(3/4) 2100951949428079 a001 514229/1149851*(1/2+1/2*5^(1/2))^8 2100951949428079 a001 514229/1149851*23725150497407^(1/8) 2100951949428079 a001 514229/1149851*73681302247^(2/13) 2100951949428079 a001 264431464441/12586269025 2100951949428079 a001 514229/1149851*10749957122^(1/6) 2100951949428079 a001 514229/1149851*4106118243^(4/23) 2100951949428079 a001 514229/1149851*1568397607^(2/11) 2100951949428079 a001 514229/1149851*599074578^(4/21) 2100951949428079 a001 514229/1149851*228826127^(1/5) 2100951949428079 a001 514229/1149851*87403803^(4/19) 2100951949428079 a001 514229/1149851*33385282^(2/9) 2100951949428081 a001 726103/1368706081*710647^(11/14) 2100951949428082 a001 514229/1149851*12752043^(4/17) 2100951949428101 a001 514229/1149851*4870847^(1/4) 2100951949428104 a001 1346269/969323029*710647^(5/7) 2100951949428156 a001 5702887/10749957122*710647^(11/14) 2100951949428157 a001 416020/5374978561*710647^(13/14) 2100951949428167 a001 4976784/9381251041*710647^(11/14) 2100951949428169 a001 39088169/73681302247*710647^(11/14) 2100951949428169 a001 34111385/64300051206*710647^(11/14) 2100951949428169 a001 267914296/505019158607*710647^(11/14) 2100951949428169 a001 233802911/440719107401*710647^(11/14) 2100951949428169 a001 1836311903/3461452808002*710647^(11/14) 2100951949428169 a001 1602508992/3020733700601*710647^(11/14) 2100951949428169 a001 12586269025/23725150497407*710647^(11/14) 2100951949428169 a001 7778742049/14662949395604*710647^(11/14) 2100951949428169 a001 2971215073/5600748293801*710647^(11/14) 2100951949428169 a001 1134903170/2139295485799*710647^(11/14) 2100951949428169 a001 433494437/817138163596*710647^(11/14) 2100951949428169 a001 165580141/312119004989*710647^(11/14) 2100951949428169 a001 63245986/119218851371*710647^(11/14) 2100951949428170 a001 24157817/45537549124*710647^(11/14) 2100951949428174 a001 9227465/17393796001*710647^(11/14) 2100951949428203 a001 3524578/6643838879*710647^(11/14) 2100951949428207 a001 514229/3010349*710647^(5/14) 2100951949428241 a001 514229/1149851*1860498^(4/15) 2100951949428253 a001 1346269/1568397607*710647^(3/4) 2100951949428306 a001 514229/7881196*710647^(3/7) 2100951949428353 a001 832040/271443*103682^(1/6) 2100951949428378 a001 987/4870846*710647^(6/7) 2100951949428401 a001 1346269/2537720636*710647^(11/14) 2100951949428454 a001 5702887/28143753123*710647^(6/7) 2100951949428454 a004 Fibonacci(30)*Lucas(28)/(1/2+sqrt(5)/2)^50 2100951949428465 a001 14930352/73681302247*710647^(6/7) 2100951949428466 a001 39088169/192900153618*710647^(6/7) 2100951949428466 a001 102334155/505019158607*710647^(6/7) 2100951949428466 a001 267914296/1322157322203*710647^(6/7) 2100951949428466 a001 701408733/3461452808002*710647^(6/7) 2100951949428466 a001 1836311903/9062201101803*710647^(6/7) 2100951949428466 a001 4807526976/23725150497407*710647^(6/7) 2100951949428466 a001 2971215073/14662949395604*710647^(6/7) 2100951949428466 a001 1134903170/5600748293801*710647^(6/7) 2100951949428466 a001 433494437/2139295485799*710647^(6/7) 2100951949428467 a001 165580141/817138163596*710647^(6/7) 2100951949428467 a001 63245986/312119004989*710647^(6/7) 2100951949428467 a001 24157817/119218851371*710647^(6/7) 2100951949428471 a001 9227465/45537549124*710647^(6/7) 2100951949428500 a001 3524578/17393796001*710647^(6/7) 2100951949428532 a001 196418/54018521*439204^(2/3) 2100951949428575 a001 514229/20633239*710647^(1/2) 2100951949428668 a001 5702887/1860498*271443^(2/13) 2100951949428675 a001 726103/9381251041*710647^(13/14) 2100951949428688 a001 9227465/1149851*271443^(1/13) 2100951949428698 a001 1346269/6643838879*710647^(6/7) 2100951949428751 a001 5702887/73681302247*710647^(13/14) 2100951949428762 a001 2584/33385281*710647^(13/14) 2100951949428763 a001 39088169/505019158607*710647^(13/14) 2100951949428764 a001 34111385/440719107401*710647^(13/14) 2100951949428764 a001 133957148/1730726404001*710647^(13/14) 2100951949428764 a001 233802911/3020733700601*710647^(13/14) 2100951949428764 a001 1836311903/23725150497407*710647^(13/14) 2100951949428764 a001 567451585/7331474697802*710647^(13/14) 2100951949428764 a001 433494437/5600748293801*710647^(13/14) 2100951949428764 a001 165580141/2139295485799*710647^(13/14) 2100951949428764 a001 31622993/408569081798*710647^(13/14) 2100951949428764 a001 24157817/312119004989*710647^(13/14) 2100951949428769 a001 9227465/119218851371*710647^(13/14) 2100951949428797 a001 1762289/22768774562*710647^(13/14) 2100951949428868 a001 514229/54018521*710647^(4/7) 2100951949428889 a001 9227465/710647*103682^(1/24) 2100951949428972 a004 Fibonacci(32)*Lucas(28)/(1/2+sqrt(5)/2)^52 2100951949428995 a001 1346269/17393796001*710647^(13/14) 2100951949429048 a004 Fibonacci(34)*Lucas(28)/(1/2+sqrt(5)/2)^54 2100951949429059 a004 Fibonacci(36)*Lucas(28)/(1/2+sqrt(5)/2)^56 2100951949429061 a004 Fibonacci(38)*Lucas(28)/(1/2+sqrt(5)/2)^58 2100951949429061 a004 Fibonacci(40)*Lucas(28)/(1/2+sqrt(5)/2)^60 2100951949429061 a004 Fibonacci(42)*Lucas(28)/(1/2+sqrt(5)/2)^62 2100951949429061 a004 Fibonacci(44)*Lucas(28)/(1/2+sqrt(5)/2)^64 2100951949429061 a004 Fibonacci(46)*Lucas(28)/(1/2+sqrt(5)/2)^66 2100951949429061 a004 Fibonacci(48)*Lucas(28)/(1/2+sqrt(5)/2)^68 2100951949429061 a004 Fibonacci(50)*Lucas(28)/(1/2+sqrt(5)/2)^70 2100951949429061 a004 Fibonacci(52)*Lucas(28)/(1/2+sqrt(5)/2)^72 2100951949429061 a004 Fibonacci(54)*Lucas(28)/(1/2+sqrt(5)/2)^74 2100951949429061 a004 Fibonacci(56)*Lucas(28)/(1/2+sqrt(5)/2)^76 2100951949429061 a004 Fibonacci(58)*Lucas(28)/(1/2+sqrt(5)/2)^78 2100951949429061 a004 Fibonacci(60)*Lucas(28)/(1/2+sqrt(5)/2)^80 2100951949429061 a004 Fibonacci(62)*Lucas(28)/(1/2+sqrt(5)/2)^82 2100951949429061 a004 Fibonacci(64)*Lucas(28)/(1/2+sqrt(5)/2)^84 2100951949429061 a004 Fibonacci(66)*Lucas(28)/(1/2+sqrt(5)/2)^86 2100951949429061 a004 Fibonacci(68)*Lucas(28)/(1/2+sqrt(5)/2)^88 2100951949429061 a004 Fibonacci(70)*Lucas(28)/(1/2+sqrt(5)/2)^90 2100951949429061 a004 Fibonacci(72)*Lucas(28)/(1/2+sqrt(5)/2)^92 2100951949429061 a004 Fibonacci(74)*Lucas(28)/(1/2+sqrt(5)/2)^94 2100951949429061 a004 Fibonacci(76)*Lucas(28)/(1/2+sqrt(5)/2)^96 2100951949429061 a004 Fibonacci(78)*Lucas(28)/(1/2+sqrt(5)/2)^98 2100951949429061 a004 Fibonacci(80)*Lucas(28)/(1/2+sqrt(5)/2)^100 2100951949429061 a004 Fibonacci(79)*Lucas(28)/(1/2+sqrt(5)/2)^99 2100951949429061 a004 Fibonacci(77)*Lucas(28)/(1/2+sqrt(5)/2)^97 2100951949429061 a004 Fibonacci(75)*Lucas(28)/(1/2+sqrt(5)/2)^95 2100951949429061 a004 Fibonacci(73)*Lucas(28)/(1/2+sqrt(5)/2)^93 2100951949429061 a004 Fibonacci(71)*Lucas(28)/(1/2+sqrt(5)/2)^91 2100951949429061 a004 Fibonacci(69)*Lucas(28)/(1/2+sqrt(5)/2)^89 2100951949429061 a004 Fibonacci(67)*Lucas(28)/(1/2+sqrt(5)/2)^87 2100951949429061 a004 Fibonacci(65)*Lucas(28)/(1/2+sqrt(5)/2)^85 2100951949429061 a004 Fibonacci(63)*Lucas(28)/(1/2+sqrt(5)/2)^83 2100951949429061 a004 Fibonacci(61)*Lucas(28)/(1/2+sqrt(5)/2)^81 2100951949429061 a004 Fibonacci(59)*Lucas(28)/(1/2+sqrt(5)/2)^79 2100951949429061 a004 Fibonacci(57)*Lucas(28)/(1/2+sqrt(5)/2)^77 2100951949429061 a001 2/317811*(1/2+1/2*5^(1/2))^36 2100951949429061 a004 Fibonacci(55)*Lucas(28)/(1/2+sqrt(5)/2)^75 2100951949429061 a004 Fibonacci(53)*Lucas(28)/(1/2+sqrt(5)/2)^73 2100951949429061 a004 Fibonacci(51)*Lucas(28)/(1/2+sqrt(5)/2)^71 2100951949429061 a004 Fibonacci(49)*Lucas(28)/(1/2+sqrt(5)/2)^69 2100951949429061 a004 Fibonacci(47)*Lucas(28)/(1/2+sqrt(5)/2)^67 2100951949429061 a004 Fibonacci(45)*Lucas(28)/(1/2+sqrt(5)/2)^65 2100951949429061 a004 Fibonacci(43)*Lucas(28)/(1/2+sqrt(5)/2)^63 2100951949429061 a004 Fibonacci(41)*Lucas(28)/(1/2+sqrt(5)/2)^61 2100951949429061 a004 Fibonacci(39)*Lucas(28)/(1/2+sqrt(5)/2)^59 2100951949429062 a004 Fibonacci(37)*Lucas(28)/(1/2+sqrt(5)/2)^57 2100951949429066 a004 Fibonacci(35)*Lucas(28)/(1/2+sqrt(5)/2)^55 2100951949429095 a004 Fibonacci(33)*Lucas(28)/(1/2+sqrt(5)/2)^53 2100951949429164 a001 514229/141422324*710647^(9/14) 2100951949429197 a001 14930352/4870847*271443^(2/13) 2100951949429267 a001 514229/1149851*710647^(2/7) 2100951949429274 a001 39088169/12752043*271443^(2/13) 2100951949429286 a001 14619165/4769326*271443^(2/13) 2100951949429287 a001 267914296/87403803*271443^(2/13) 2100951949429287 a001 701408733/228826127*271443^(2/13) 2100951949429287 a001 1836311903/599074578*271443^(2/13) 2100951949429287 a001 686789568/224056801*271443^(2/13) 2100951949429287 a001 12586269025/4106118243*271443^(2/13) 2100951949429287 a001 32951280099/10749957122*271443^(2/13) 2100951949429287 a001 86267571272/28143753123*271443^(2/13) 2100951949429287 a001 32264490531/10525900321*271443^(2/13) 2100951949429287 a001 591286729879/192900153618*271443^(2/13) 2100951949429287 a001 1515744265389/494493258286*271443^(2/13) 2100951949429287 a001 2504730781961/817138163596*271443^(2/13) 2100951949429287 a001 956722026041/312119004989*271443^(2/13) 2100951949429287 a001 365435296162/119218851371*271443^(2/13) 2100951949429287 a001 139583862445/45537549124*271443^(2/13) 2100951949429287 a001 53316291173/17393796001*271443^(2/13) 2100951949429287 a001 20365011074/6643838879*271443^(2/13) 2100951949429287 a001 7778742049/2537720636*271443^(2/13) 2100951949429287 a001 2971215073/969323029*271443^(2/13) 2100951949429287 a001 1134903170/370248451*271443^(2/13) 2100951949429288 a001 433494437/141422324*271443^(2/13) 2100951949429288 a001 165580141/54018521*271443^(2/13) 2100951949429292 a001 63245986/20633239*271443^(2/13) 2100951949429293 a004 Fibonacci(31)*Lucas(28)/(1/2+sqrt(5)/2)^51 2100951949429322 a001 24157817/7881196*271443^(2/13) 2100951949429461 a001 514229/370248451*710647^(5/7) 2100951949429524 a001 9227465/3010349*271443^(2/13) 2100951949429610 a001 514229/599074578*710647^(3/4) 2100951949429728 a001 196418/12752043*439204^(5/9) 2100951949429758 a001 514229/969323029*710647^(11/14) 2100951949430056 a001 514229/2537720636*710647^(6/7) 2100951949430353 a001 514229/6643838879*710647^(13/14) 2100951949430650 a004 Fibonacci(29)*Lucas(28)/(1/2+sqrt(5)/2)^49 2100951949430785 a001 726103/620166*271443^(3/13) 2100951949430910 a001 3524578/1149851*271443^(2/13) 2100951949431100 a001 105937/620166*271443^(5/13) 2100951949431183 a001 196418/3010349*439204^(4/9) 2100951949431379 a001 5702887/4870847*271443^(3/13) 2100951949431405 a001 317811/64079*24476^(1/7) 2100951949431466 a001 4976784/4250681*271443^(3/13) 2100951949431479 a001 39088169/33385282*271443^(3/13) 2100951949431481 a001 34111385/29134601*271443^(3/13) 2100951949431481 a001 267914296/228826127*271443^(3/13) 2100951949431481 a001 233802911/199691526*271443^(3/13) 2100951949431481 a001 1836311903/1568397607*271443^(3/13) 2100951949431481 a001 1602508992/1368706081*271443^(3/13) 2100951949431481 a001 12586269025/10749957122*271443^(3/13) 2100951949431481 a001 10983760033/9381251041*271443^(3/13) 2100951949431481 a001 86267571272/73681302247*271443^(3/13) 2100951949431481 a001 75283811239/64300051206*271443^(3/13) 2100951949431481 a001 2504730781961/2139295485799*271443^(3/13) 2100951949431481 a001 365435296162/312119004989*271443^(3/13) 2100951949431481 a001 139583862445/119218851371*271443^(3/13) 2100951949431481 a001 53316291173/45537549124*271443^(3/13) 2100951949431481 a001 20365011074/17393796001*271443^(3/13) 2100951949431481 a001 7778742049/6643838879*271443^(3/13) 2100951949431481 a001 2971215073/2537720636*271443^(3/13) 2100951949431481 a001 1134903170/969323029*271443^(3/13) 2100951949431481 a001 433494437/370248451*271443^(3/13) 2100951949431481 a001 165580141/141422324*271443^(3/13) 2100951949431482 a001 63245986/54018521*271443^(3/13) 2100951949431486 a001 24157817/20633239*271443^(3/13) 2100951949431520 a001 9227465/7881196*271443^(3/13) 2100951949431623 a001 196418/710647*7881196^(3/11) 2100951949431631 a001 317811/439204*20633239^(1/5) 2100951949431632 a001 196418/710647*141422324^(3/13) 2100951949431632 a001 196418/710647*2537720636^(1/5) 2100951949431632 a001 62423800998/2971215073 2100951949431632 a001 317811/439204*17393796001^(1/7) 2100951949431632 a001 196418/710647*45537549124^(3/17) 2100951949431632 a001 196418/710647*14662949395604^(1/7) 2100951949431632 a001 196418/710647*(1/2+1/2*5^(1/2))^9 2100951949431632 a001 196418/710647*192900153618^(1/6) 2100951949431632 a001 317811/439204*14662949395604^(1/9) 2100951949431632 a001 317811/439204*(1/2+1/2*5^(1/2))^7 2100951949431632 a001 196418/710647*10749957122^(3/16) 2100951949431632 a001 317811/439204*599074578^(1/6) 2100951949431632 a001 196418/710647*599074578^(3/14) 2100951949431632 a001 196418/710647*33385282^(1/4) 2100951949431746 a001 3524578/3010349*271443^(3/13) 2100951949431814 a001 196418/710647*1860498^(3/10) 2100951949432206 a001 75640/15251*64079^(3/23) 2100951949432438 a001 24157817/1860498*103682^(1/24) 2100951949432460 a001 416020/930249*271443^(4/13) 2100951949432672 a001 317811/439204*710647^(1/4) 2100951949432955 a001 63245986/4870847*103682^(1/24) 2100951949433019 a001 121393/271443*103682^(1/3) 2100951949433031 a001 165580141/12752043*103682^(1/24) 2100951949433042 a001 433494437/33385282*103682^(1/24) 2100951949433044 a001 1134903170/87403803*103682^(1/24) 2100951949433044 a001 2971215073/228826127*103682^(1/24) 2100951949433044 a001 7778742049/599074578*103682^(1/24) 2100951949433044 a001 20365011074/1568397607*103682^(1/24) 2100951949433044 a001 53316291173/4106118243*103682^(1/24) 2100951949433044 a001 139583862445/10749957122*103682^(1/24) 2100951949433044 a001 365435296162/28143753123*103682^(1/24) 2100951949433044 a001 956722026041/73681302247*103682^(1/24) 2100951949433044 a001 2504730781961/192900153618*103682^(1/24) 2100951949433044 a001 10610209857723/817138163596*103682^(1/24) 2100951949433044 a001 4052739537881/312119004989*103682^(1/24) 2100951949433044 a001 1548008755920/119218851371*103682^(1/24) 2100951949433044 a001 591286729879/45537549124*103682^(1/24) 2100951949433044 a001 7787980473/599786069*103682^(1/24) 2100951949433044 a001 86267571272/6643838879*103682^(1/24) 2100951949433044 a001 32951280099/2537720636*103682^(1/24) 2100951949433044 a001 12586269025/969323029*103682^(1/24) 2100951949433044 a001 4807526976/370248451*103682^(1/24) 2100951949433044 a001 1836311903/141422324*103682^(1/24) 2100951949433045 a001 701408733/54018521*103682^(1/24) 2100951949433049 a001 9238424/711491*103682^(1/24) 2100951949433078 a001 102334155/7881196*103682^(1/24) 2100951949433275 a001 39088169/3010349*103682^(1/24) 2100951949433302 a001 1346269/1149851*271443^(3/13) 2100951949433497 a001 2178309/4870847*271443^(4/13) 2100951949433648 a001 5702887/12752043*271443^(4/13) 2100951949433670 a001 7465176/16692641*271443^(4/13) 2100951949433674 a001 39088169/87403803*271443^(4/13) 2100951949433674 a001 102334155/228826127*271443^(4/13) 2100951949433674 a001 133957148/299537289*271443^(4/13) 2100951949433674 a001 701408733/1568397607*271443^(4/13) 2100951949433674 a001 1836311903/4106118243*271443^(4/13) 2100951949433674 a001 2403763488/5374978561*271443^(4/13) 2100951949433674 a001 12586269025/28143753123*271443^(4/13) 2100951949433674 a001 32951280099/73681302247*271443^(4/13) 2100951949433674 a001 43133785636/96450076809*271443^(4/13) 2100951949433674 a001 225851433717/505019158607*271443^(4/13) 2100951949433674 a001 10610209857723/23725150497407*271443^(4/13) 2100951949433674 a001 139583862445/312119004989*271443^(4/13) 2100951949433674 a001 53316291173/119218851371*271443^(4/13) 2100951949433674 a001 10182505537/22768774562*271443^(4/13) 2100951949433674 a001 7778742049/17393796001*271443^(4/13) 2100951949433674 a001 2971215073/6643838879*271443^(4/13) 2100951949433674 a001 567451585/1268860318*271443^(4/13) 2100951949433674 a001 433494437/969323029*271443^(4/13) 2100951949433674 a001 165580141/370248451*271443^(4/13) 2100951949433674 a001 31622993/70711162*271443^(4/13) 2100951949433676 a001 24157817/54018521*271443^(4/13) 2100951949433684 a001 9227465/20633239*271443^(4/13) 2100951949433742 a001 1762289/3940598*271443^(4/13) 2100951949433812 a001 317811/4870847*271443^(6/13) 2100951949434138 a001 1346269/3010349*271443^(4/13) 2100951949434203 a004 Fibonacci(27)*Lucas(29)/(1/2+sqrt(5)/2)^48 2100951949434493 a001 2178309/439204*439204^(1/9) 2100951949434631 a001 14930352/1149851*103682^(1/24) 2100951949434961 a001 514229/439204*439204^(2/9) 2100951949435031 a001 317811/7881196*271443^(1/2) 2100951949435172 a001 832040/4870847*271443^(5/13) 2100951949435174 a001 98209/930249*7881196^(1/3) 2100951949435184 a001 208010/109801*20633239^(1/7) 2100951949435185 a001 208010/109801*2537720636^(1/9) 2100951949435185 a001 163427632720/7778742049 2100951949435185 a001 98209/930249*312119004989^(1/5) 2100951949435185 a001 98209/930249*(1/2+1/2*5^(1/2))^11 2100951949435185 a001 208010/109801*312119004989^(1/11) 2100951949435185 a001 208010/109801*(1/2+1/2*5^(1/2))^5 2100951949435185 a001 208010/109801*28143753123^(1/10) 2100951949435185 a001 98209/930249*1568397607^(1/4) 2100951949435185 a001 208010/109801*228826127^(1/8) 2100951949435286 a001 208010/109801*1860498^(1/6) 2100951949435560 a004 Fibonacci(27)*Lucas(31)/(1/2+sqrt(5)/2)^50 2100951949435700 a001 2178309/439204*7881196^(1/11) 2100951949435703 a001 196418/4870847*141422324^(1/3) 2100951949435703 a001 2178309/439204*141422324^(1/13) 2100951949435703 a001 2178309/439204*2537720636^(1/15) 2100951949435703 a001 213929548581/10182505537 2100951949435703 a001 2178309/439204*45537549124^(1/17) 2100951949435703 a001 196418/4870847*(1/2+1/2*5^(1/2))^13 2100951949435703 a001 2178309/439204*14662949395604^(1/21) 2100951949435703 a001 2178309/439204*(1/2+1/2*5^(1/2))^3 2100951949435703 a001 2178309/439204*192900153618^(1/18) 2100951949435703 a001 196418/4870847*73681302247^(1/4) 2100951949435703 a001 2178309/439204*10749957122^(1/16) 2100951949435703 a001 2178309/439204*599074578^(1/14) 2100951949435704 a001 2178309/439204*33385282^(1/12) 2100951949435758 a004 Fibonacci(27)*Lucas(33)/(1/2+sqrt(5)/2)^52 2100951949435761 a001 196418/17393796001*7881196^(10/11) 2100951949435764 a001 196418/12752043*7881196^(5/11) 2100951949435764 a001 2178309/439204*1860498^(1/10) 2100951949435764 a001 196418/4106118243*7881196^(9/11) 2100951949435766 a001 726103/4250681*271443^(5/13) 2100951949435767 a001 196418/969323029*7881196^(8/11) 2100951949435770 a001 196418/370248451*7881196^(2/3) 2100951949435770 a001 196418/228826127*7881196^(7/11) 2100951949435774 a001 196418/54018521*7881196^(6/11) 2100951949435777 a001 196418/12752043*20633239^(3/7) 2100951949435779 a001 196418/12752043*141422324^(5/13) 2100951949435779 a001 196418/12752043*2537720636^(1/3) 2100951949435779 a001 196418/12752043*45537549124^(5/17) 2100951949435779 a001 1120149658766/53316291173 2100951949435779 a001 196418/12752043*312119004989^(3/11) 2100951949435779 a001 196418/12752043*14662949395604^(5/21) 2100951949435779 a001 196418/12752043*(1/2+1/2*5^(1/2))^15 2100951949435779 a001 196418/12752043*192900153618^(5/18) 2100951949435779 a001 5702887/878408+5702887/878408*5^(1/2) 2100951949435779 a001 196418/12752043*28143753123^(3/10) 2100951949435779 a001 196418/12752043*10749957122^(5/16) 2100951949435779 a001 196418/12752043*599074578^(5/14) 2100951949435779 a001 196418/12752043*228826127^(3/8) 2100951949435780 a001 196418/12752043*33385282^(5/12) 2100951949435787 a004 Fibonacci(27)*Lucas(35)/(1/2+sqrt(5)/2)^54 2100951949435788 a001 196418/17393796001*20633239^(6/7) 2100951949435788 a001 196418/6643838879*20633239^(4/5) 2100951949435789 a001 196418/1568397607*20633239^(5/7) 2100951949435789 a001 196418/228826127*20633239^(3/5) 2100951949435789 a001 98209/70711162*20633239^(4/7) 2100951949435790 a001 98209/16692641*45537549124^(1/3) 2100951949435790 a001 2932589879136/139583862445 2100951949435790 a001 98209/16692641*(1/2+1/2*5^(1/2))^17 2100951949435790 a004 Fibonacci(36)/Lucas(27)/(1/2+sqrt(5)/2) 2100951949435791 a004 Fibonacci(27)*Lucas(37)/(1/2+sqrt(5)/2)^56 2100951949435792 a001 196418/87403803*817138163596^(1/3) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^19/Lucas(38) 2100951949435792 a004 Fibonacci(38)/Lucas(27)/(1/2+sqrt(5)/2)^3 2100951949435792 a001 196418/87403803*87403803^(1/2) 2100951949435792 a004 Fibonacci(27)*Lucas(39)/(1/2+sqrt(5)/2)^58 2100951949435792 a001 196418/312119004989*141422324^(12/13) 2100951949435792 a001 196418/228826127*141422324^(7/13) 2100951949435792 a001 196418/73681302247*141422324^(11/13) 2100951949435792 a001 196418/17393796001*141422324^(10/13) 2100951949435792 a001 196418/4106118243*141422324^(9/13) 2100951949435792 a001 98209/1268860318*141422324^(2/3) 2100951949435792 a001 196418/969323029*141422324^(8/13) 2100951949435792 a001 196418/228826127*2537720636^(7/15) 2100951949435792 a001 196418/228826127*17393796001^(3/7) 2100951949435792 a001 196418/228826127*45537549124^(7/17) 2100951949435792 a001 20100270056790/956722026041 2100951949435792 a001 196418/228826127*14662949395604^(1/3) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^21/Lucas(40) 2100951949435792 a001 196418/228826127*192900153618^(7/18) 2100951949435792 a004 Fibonacci(40)/Lucas(27)/(1/2+sqrt(5)/2)^5 2100951949435792 a001 196418/228826127*10749957122^(7/16) 2100951949435792 a001 196418/228826127*599074578^(1/2) 2100951949435792 a004 Fibonacci(27)*Lucas(41)/(1/2+sqrt(5)/2)^60 2100951949435792 a001 52623190191728/2504730781961 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^23/Lucas(42) 2100951949435792 a004 Fibonacci(42)/Lucas(27)/(1/2+sqrt(5)/2)^7 2100951949435792 a001 98209/299537289*4106118243^(1/2) 2100951949435792 a004 Fibonacci(27)*Lucas(43)/(1/2+sqrt(5)/2)^62 2100951949435792 a001 196418/1568397607*2537720636^(5/9) 2100951949435792 a001 196418/1568397607*312119004989^(5/11) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^25/Lucas(44) 2100951949435792 a001 196418/1568397607*3461452808002^(5/12) 2100951949435792 a004 Fibonacci(44)/Lucas(27)/(1/2+sqrt(5)/2)^9 2100951949435792 a001 196418/1568397607*28143753123^(1/2) 2100951949435792 a004 Fibonacci(27)*Lucas(45)/(1/2+sqrt(5)/2)^64 2100951949435792 a001 196418/4106118243*2537720636^(3/5) 2100951949435792 a001 196418/5600748293801*2537720636^(14/15) 2100951949435792 a001 196418/2139295485799*2537720636^(8/9) 2100951949435792 a001 196418/1322157322203*2537720636^(13/15) 2100951949435792 a001 196418/312119004989*2537720636^(4/5) 2100951949435792 a001 98209/96450076809*2537720636^(7/9) 2100951949435792 a001 196418/73681302247*2537720636^(11/15) 2100951949435792 a001 196418/17393796001*2537720636^(2/3) 2100951949435792 a001 196418/4106118243*45537549124^(9/17) 2100951949435792 a001 196418/4106118243*14662949395604^(3/7) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^27/Lucas(46) 2100951949435792 a001 196418/4106118243*192900153618^(1/2) 2100951949435792 a004 Fibonacci(46)/Lucas(27)/(1/2+sqrt(5)/2)^11 2100951949435792 a001 196418/4106118243*10749957122^(9/16) 2100951949435792 a004 Fibonacci(27)*Lucas(47)/(1/2+sqrt(5)/2)^66 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^29/Lucas(48) 2100951949435792 a001 98209/5374978561*1322157322203^(1/2) 2100951949435792 a004 Fibonacci(48)/Lucas(27)/(1/2+sqrt(5)/2)^13 2100951949435792 a004 Fibonacci(27)*Lucas(49)/(1/2+sqrt(5)/2)^68 2100951949435792 a001 196418/5600748293801*17393796001^(6/7) 2100951949435792 a001 98209/96450076809*17393796001^(5/7) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^31/Lucas(50) 2100951949435792 a001 196418/28143753123*9062201101803^(1/2) 2100951949435792 a004 Fibonacci(50)/Lucas(27)/(1/2+sqrt(5)/2)^15 2100951949435792 a001 196418/73681302247*45537549124^(11/17) 2100951949435792 a004 Fibonacci(27)*Lucas(51)/(1/2+sqrt(5)/2)^70 2100951949435792 a001 196418/23725150497407*45537549124^(15/17) 2100951949435792 a001 196418/5600748293801*45537549124^(14/17) 2100951949435792 a001 196418/1322157322203*45537549124^(13/17) 2100951949435792 a001 196418/312119004989*45537549124^(12/17) 2100951949435792 a001 196418/119218851371*45537549124^(2/3) 2100951949435792 a001 196418/73681302247*312119004989^(3/5) 2100951949435792 a001 196418/73681302247*14662949395604^(11/21) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^33/Lucas(52) 2100951949435792 a001 196418/73681302247*192900153618^(11/18) 2100951949435792 a004 Fibonacci(52)/Lucas(27)/(1/2+sqrt(5)/2)^17 2100951949435792 a004 Fibonacci(27)*Lucas(53)/(1/2+sqrt(5)/2)^72 2100951949435792 a001 98209/96450076809*312119004989^(7/11) 2100951949435792 a001 98209/96450076809*14662949395604^(5/9) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^35/Lucas(54) 2100951949435792 a001 98209/96450076809*505019158607^(5/8) 2100951949435792 a004 Fibonacci(27)*Lucas(55)/(1/2+sqrt(5)/2)^74 2100951949435792 a001 196418/23725150497407*312119004989^(9/11) 2100951949435792 a001 98209/7331474697802*312119004989^(4/5) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^37/Lucas(56) 2100951949435792 a004 Fibonacci(27)*Lucas(57)/(1/2+sqrt(5)/2)^76 2100951949435792 a001 196418/1322157322203*14662949395604^(13/21) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^39/Lucas(58) 2100951949435792 a004 Fibonacci(27)*Lucas(59)/(1/2+sqrt(5)/2)^78 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^41/Lucas(60) 2100951949435792 a004 Fibonacci(27)*Lucas(61)/(1/2+sqrt(5)/2)^80 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^43/Lucas(62) 2100951949435792 a004 Fibonacci(27)*Lucas(63)/(1/2+sqrt(5)/2)^82 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^45/Lucas(64) 2100951949435792 a004 Fibonacci(27)*Lucas(65)/(1/2+sqrt(5)/2)^84 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^47/Lucas(66) 2100951949435792 a004 Fibonacci(27)*Lucas(67)/(1/2+sqrt(5)/2)^86 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^49/Lucas(68) 2100951949435792 a004 Fibonacci(27)*Lucas(69)/(1/2+sqrt(5)/2)^88 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^51/Lucas(70) 2100951949435792 a004 Fibonacci(27)*Lucas(71)/(1/2+sqrt(5)/2)^90 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^53/Lucas(72) 2100951949435792 a004 Fibonacci(27)*Lucas(73)/(1/2+sqrt(5)/2)^92 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^55/Lucas(74) 2100951949435792 a004 Fibonacci(27)*Lucas(75)/(1/2+sqrt(5)/2)^94 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^57/Lucas(76) 2100951949435792 a004 Fibonacci(27)*Lucas(77)/(1/2+sqrt(5)/2)^96 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^59/Lucas(78) 2100951949435792 a004 Fibonacci(27)*Lucas(79)/(1/2+sqrt(5)/2)^98 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^61/Lucas(80) 2100951949435792 a004 Fibonacci(27)*Lucas(81)/(1/2+sqrt(5)/2)^100 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^63/Lucas(82) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^65/Lucas(84) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^67/Lucas(86) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^69/Lucas(88) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^71/Lucas(90) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^73/Lucas(92) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^75/Lucas(94) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^77/Lucas(96) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^79/Lucas(98) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^78/Lucas(97) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^80/Lucas(99) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^81/Lucas(100) 2100951949435792 a004 Fibonacci(27)*Lucas(1)/(1/2+sqrt(5)/2)^19 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^76/Lucas(95) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^74/Lucas(93) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^72/Lucas(91) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^70/Lucas(89) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^68/Lucas(87) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^66/Lucas(85) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^64/Lucas(83) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^62/Lucas(81) 2100951949435792 a004 Fibonacci(27)*Lucas(80)/(1/2+sqrt(5)/2)^99 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^60/Lucas(79) 2100951949435792 a004 Fibonacci(27)*Lucas(78)/(1/2+sqrt(5)/2)^97 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^58/Lucas(77) 2100951949435792 a004 Fibonacci(27)*Lucas(76)/(1/2+sqrt(5)/2)^95 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^56/Lucas(75) 2100951949435792 a004 Fibonacci(27)*Lucas(74)/(1/2+sqrt(5)/2)^93 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^54/Lucas(73) 2100951949435792 a004 Fibonacci(27)*Lucas(72)/(1/2+sqrt(5)/2)^91 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^52/Lucas(71) 2100951949435792 a004 Fibonacci(27)*Lucas(70)/(1/2+sqrt(5)/2)^89 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^50/Lucas(69) 2100951949435792 a004 Fibonacci(27)*Lucas(68)/(1/2+sqrt(5)/2)^87 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^48/Lucas(67) 2100951949435792 a004 Fibonacci(27)*Lucas(66)/(1/2+sqrt(5)/2)^85 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^46/Lucas(65) 2100951949435792 a004 Fibonacci(27)*Lucas(64)/(1/2+sqrt(5)/2)^83 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^44/Lucas(63) 2100951949435792 a004 Fibonacci(27)*Lucas(62)/(1/2+sqrt(5)/2)^81 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^42/Lucas(61) 2100951949435792 a004 Fibonacci(27)*Lucas(60)/(1/2+sqrt(5)/2)^79 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^40/Lucas(59) 2100951949435792 a001 196418/2139295485799*23725150497407^(5/8) 2100951949435792 a004 Fibonacci(27)*Lucas(58)/(1/2+sqrt(5)/2)^77 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^38/Lucas(57) 2100951949435792 a001 196418/5600748293801*505019158607^(3/4) 2100951949435792 a004 Fibonacci(27)*Lucas(56)/(1/2+sqrt(5)/2)^75 2100951949435792 a001 196418/312119004989*14662949395604^(4/7) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^36/Lucas(55) 2100951949435792 a001 196418/1322157322203*192900153618^(13/18) 2100951949435792 a001 196418/23725150497407*192900153618^(5/6) 2100951949435792 a004 Fibonacci(56)/Lucas(27)/(1/2+sqrt(5)/2)^21 2100951949435792 a004 Fibonacci(58)/Lucas(27)/(1/2+sqrt(5)/2)^23 2100951949435792 a004 Fibonacci(60)/Lucas(27)/(1/2+sqrt(5)/2)^25 2100951949435792 a004 Fibonacci(62)/Lucas(27)/(1/2+sqrt(5)/2)^27 2100951949435792 a004 Fibonacci(64)/Lucas(27)/(1/2+sqrt(5)/2)^29 2100951949435792 a004 Fibonacci(66)/Lucas(27)/(1/2+sqrt(5)/2)^31 2100951949435792 a004 Fibonacci(68)/Lucas(27)/(1/2+sqrt(5)/2)^33 2100951949435792 a004 Fibonacci(70)/Lucas(27)/(1/2+sqrt(5)/2)^35 2100951949435792 a004 Fibonacci(72)/Lucas(27)/(1/2+sqrt(5)/2)^37 2100951949435792 a004 Fibonacci(74)/Lucas(27)/(1/2+sqrt(5)/2)^39 2100951949435792 a004 Fibonacci(76)/Lucas(27)/(1/2+sqrt(5)/2)^41 2100951949435792 a004 Fibonacci(78)/Lucas(27)/(1/2+sqrt(5)/2)^43 2100951949435792 a004 Fibonacci(80)/Lucas(27)/(1/2+sqrt(5)/2)^45 2100951949435792 a004 Fibonacci(82)/Lucas(27)/(1/2+sqrt(5)/2)^47 2100951949435792 a004 Fibonacci(84)/Lucas(27)/(1/2+sqrt(5)/2)^49 2100951949435792 a004 Fibonacci(86)/Lucas(27)/(1/2+sqrt(5)/2)^51 2100951949435792 a004 Fibonacci(88)/Lucas(27)/(1/2+sqrt(5)/2)^53 2100951949435792 a004 Fibonacci(90)/Lucas(27)/(1/2+sqrt(5)/2)^55 2100951949435792 a004 Fibonacci(92)/Lucas(27)/(1/2+sqrt(5)/2)^57 2100951949435792 a004 Fibonacci(94)/Lucas(27)/(1/2+sqrt(5)/2)^59 2100951949435792 a004 Fibonacci(96)/Lucas(27)/(1/2+sqrt(5)/2)^61 2100951949435792 a004 Fibonacci(100)/Lucas(27)/(1/2+sqrt(5)/2)^65 2100951949435792 a004 Fibonacci(27)*Lucas(54)/(1/2+sqrt(5)/2)^73 2100951949435792 a004 Fibonacci(98)/Lucas(27)/(1/2+sqrt(5)/2)^63 2100951949435792 a004 Fibonacci(99)/Lucas(27)/(1/2+sqrt(5)/2)^64 2100951949435792 a004 Fibonacci(97)/Lucas(27)/(1/2+sqrt(5)/2)^62 2100951949435792 a004 Fibonacci(95)/Lucas(27)/(1/2+sqrt(5)/2)^60 2100951949435792 a004 Fibonacci(93)/Lucas(27)/(1/2+sqrt(5)/2)^58 2100951949435792 a004 Fibonacci(91)/Lucas(27)/(1/2+sqrt(5)/2)^56 2100951949435792 a004 Fibonacci(89)/Lucas(27)/(1/2+sqrt(5)/2)^54 2100951949435792 a004 Fibonacci(87)/Lucas(27)/(1/2+sqrt(5)/2)^52 2100951949435792 a004 Fibonacci(85)/Lucas(27)/(1/2+sqrt(5)/2)^50 2100951949435792 a004 Fibonacci(83)/Lucas(27)/(1/2+sqrt(5)/2)^48 2100951949435792 a004 Fibonacci(81)/Lucas(27)/(1/2+sqrt(5)/2)^46 2100951949435792 a004 Fibonacci(79)/Lucas(27)/(1/2+sqrt(5)/2)^44 2100951949435792 a004 Fibonacci(77)/Lucas(27)/(1/2+sqrt(5)/2)^42 2100951949435792 a004 Fibonacci(75)/Lucas(27)/(1/2+sqrt(5)/2)^40 2100951949435792 a004 Fibonacci(73)/Lucas(27)/(1/2+sqrt(5)/2)^38 2100951949435792 a004 Fibonacci(71)/Lucas(27)/(1/2+sqrt(5)/2)^36 2100951949435792 a004 Fibonacci(69)/Lucas(27)/(1/2+sqrt(5)/2)^34 2100951949435792 a004 Fibonacci(67)/Lucas(27)/(1/2+sqrt(5)/2)^32 2100951949435792 a004 Fibonacci(65)/Lucas(27)/(1/2+sqrt(5)/2)^30 2100951949435792 a004 Fibonacci(63)/Lucas(27)/(1/2+sqrt(5)/2)^28 2100951949435792 a004 Fibonacci(61)/Lucas(27)/(1/2+sqrt(5)/2)^26 2100951949435792 a004 Fibonacci(59)/Lucas(27)/(1/2+sqrt(5)/2)^24 2100951949435792 a001 196418/312119004989*192900153618^(2/3) 2100951949435792 a004 Fibonacci(57)/Lucas(27)/(1/2+sqrt(5)/2)^22 2100951949435792 a004 Fibonacci(55)/Lucas(27)/(1/2+sqrt(5)/2)^20 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^34/Lucas(53) 2100951949435792 a004 Fibonacci(53)/Lucas(27)/(1/2+sqrt(5)/2)^18 2100951949435792 a001 196418/1322157322203*73681302247^(3/4) 2100951949435792 a001 196418/312119004989*73681302247^(9/13) 2100951949435792 a001 196418/2139295485799*73681302247^(10/13) 2100951949435792 a001 98209/7331474697802*73681302247^(11/13) 2100951949435792 a004 Fibonacci(27)*Lucas(52)/(1/2+sqrt(5)/2)^71 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^32/Lucas(51) 2100951949435792 a001 98209/22768774562*23725150497407^(1/2) 2100951949435792 a001 98209/22768774562*505019158607^(4/7) 2100951949435792 a004 Fibonacci(51)/Lucas(27)/(1/2+sqrt(5)/2)^16 2100951949435792 a001 98209/22768774562*73681302247^(8/13) 2100951949435792 a001 98209/96450076809*28143753123^(7/10) 2100951949435792 a001 196418/2139295485799*28143753123^(4/5) 2100951949435792 a001 196418/23725150497407*28143753123^(9/10) 2100951949435792 a004 Fibonacci(27)*Lucas(50)/(1/2+sqrt(5)/2)^69 2100951949435792 a001 196418/17393796001*45537549124^(10/17) 2100951949435792 a001 196418/17393796001*312119004989^(6/11) 2100951949435792 a001 196418/17393796001*14662949395604^(10/21) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^30/Lucas(49) 2100951949435792 a001 196418/17393796001*192900153618^(5/9) 2100951949435792 a004 Fibonacci(49)/Lucas(27)/(1/2+sqrt(5)/2)^14 2100951949435792 a001 196418/17393796001*28143753123^(3/5) 2100951949435792 a001 196418/73681302247*10749957122^(11/16) 2100951949435792 a001 196418/119218851371*10749957122^(17/24) 2100951949435792 a001 98209/22768774562*10749957122^(2/3) 2100951949435792 a001 196418/312119004989*10749957122^(3/4) 2100951949435792 a001 98209/408569081798*10749957122^(19/24) 2100951949435792 a001 196418/1322157322203*10749957122^(13/16) 2100951949435792 a001 196418/2139295485799*10749957122^(5/6) 2100951949435792 a001 196418/5600748293801*10749957122^(7/8) 2100951949435792 a001 98209/7331474697802*10749957122^(11/12) 2100951949435792 a001 196418/23725150497407*10749957122^(15/16) 2100951949435792 a004 Fibonacci(27)*Lucas(48)/(1/2+sqrt(5)/2)^67 2100951949435792 a001 196418/17393796001*10749957122^(5/8) 2100951949435792 a001 196418/6643838879*17393796001^(4/7) 2100951949435792 a001 196418/6643838879*14662949395604^(4/9) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^28/Lucas(47) 2100951949435792 a001 196418/6643838879*505019158607^(1/2) 2100951949435792 a004 Fibonacci(47)/Lucas(27)/(1/2+sqrt(5)/2)^12 2100951949435792 a001 196418/6643838879*73681302247^(7/13) 2100951949435792 a001 196418/6643838879*10749957122^(7/12) 2100951949435792 a001 98209/22768774562*4106118243^(16/23) 2100951949435792 a001 196418/17393796001*4106118243^(15/23) 2100951949435792 a001 196418/119218851371*4106118243^(17/23) 2100951949435792 a001 196418/312119004989*4106118243^(18/23) 2100951949435792 a001 98209/408569081798*4106118243^(19/23) 2100951949435792 a001 196418/2139295485799*4106118243^(20/23) 2100951949435792 a001 196418/5600748293801*4106118243^(21/23) 2100951949435792 a001 98209/7331474697802*4106118243^(22/23) 2100951949435792 a001 196418/6643838879*4106118243^(14/23) 2100951949435792 a004 Fibonacci(27)*Lucas(46)/(1/2+sqrt(5)/2)^65 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^26/Lucas(45) 2100951949435792 a001 222915410845060/10610209857723 2100951949435792 a004 Fibonacci(45)/Lucas(27)/(1/2+sqrt(5)/2)^10 2100951949435792 a001 98209/1268860318*73681302247^(1/2) 2100951949435792 a001 98209/1268860318*10749957122^(13/24) 2100951949435792 a001 98209/1268860318*4106118243^(13/23) 2100951949435792 a001 196418/17393796001*1568397607^(15/22) 2100951949435792 a001 196418/6643838879*1568397607^(7/11) 2100951949435792 a001 98209/22768774562*1568397607^(8/11) 2100951949435792 a001 196418/73681302247*1568397607^(3/4) 2100951949435792 a001 196418/119218851371*1568397607^(17/22) 2100951949435792 a001 196418/312119004989*1568397607^(9/11) 2100951949435792 a001 98209/408569081798*1568397607^(19/22) 2100951949435792 a001 196418/2139295485799*1568397607^(10/11) 2100951949435792 a001 196418/5600748293801*1568397607^(21/22) 2100951949435792 a001 98209/1268860318*1568397607^(13/22) 2100951949435792 a004 Fibonacci(27)*Lucas(44)/(1/2+sqrt(5)/2)^63 2100951949435792 a001 196418/969323029*2537720636^(8/15) 2100951949435792 a001 196418/969323029*45537549124^(8/17) 2100951949435792 a001 196418/969323029*14662949395604^(8/21) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^24/Lucas(43) 2100951949435792 a001 85146110326666/4052739537881 2100951949435792 a001 196418/969323029*192900153618^(4/9) 2100951949435792 a004 Fibonacci(43)/Lucas(27)/(1/2+sqrt(5)/2)^8 2100951949435792 a001 196418/969323029*73681302247^(6/13) 2100951949435792 a001 196418/969323029*10749957122^(1/2) 2100951949435792 a001 196418/969323029*4106118243^(12/23) 2100951949435792 a001 196418/969323029*1568397607^(6/11) 2100951949435792 a001 196418/4106118243*599074578^(9/14) 2100951949435792 a001 98209/1268860318*599074578^(13/21) 2100951949435792 a001 196418/6643838879*599074578^(2/3) 2100951949435792 a001 196418/17393796001*599074578^(5/7) 2100951949435792 a001 98209/22768774562*599074578^(16/21) 2100951949435792 a001 196418/73681302247*599074578^(11/14) 2100951949435792 a001 196418/119218851371*599074578^(17/21) 2100951949435792 a001 98209/96450076809*599074578^(5/6) 2100951949435792 a001 196418/312119004989*599074578^(6/7) 2100951949435792 a001 98209/408569081798*599074578^(19/21) 2100951949435792 a001 196418/1322157322203*599074578^(13/14) 2100951949435792 a001 196418/2139295485799*599074578^(20/21) 2100951949435792 a001 196418/969323029*599074578^(4/7) 2100951949435792 a004 Fibonacci(27)*Lucas(42)/(1/2+sqrt(5)/2)^61 2100951949435792 a001 196418/370248451*312119004989^(2/5) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^22/Lucas(41) 2100951949435792 a001 16261460067469/774004377960 2100951949435792 a004 Fibonacci(41)/Lucas(27)/(1/2+sqrt(5)/2)^6 2100951949435792 a001 196418/370248451*10749957122^(11/24) 2100951949435792 a001 196418/370248451*4106118243^(11/23) 2100951949435792 a001 196418/370248451*1568397607^(1/2) 2100951949435792 a001 196418/370248451*599074578^(11/21) 2100951949435792 a001 196418/1568397607*228826127^(5/8) 2100951949435792 a001 196418/969323029*228826127^(3/5) 2100951949435792 a001 98209/1268860318*228826127^(13/20) 2100951949435792 a001 196418/6643838879*228826127^(7/10) 2100951949435792 a001 196418/17393796001*228826127^(3/4) 2100951949435792 a001 98209/22768774562*228826127^(4/5) 2100951949435792 a001 196418/119218851371*228826127^(17/20) 2100951949435792 a001 98209/96450076809*228826127^(7/8) 2100951949435792 a001 196418/312119004989*228826127^(9/10) 2100951949435792 a001 196418/370248451*228826127^(11/20) 2100951949435792 a001 98209/408569081798*228826127^(19/20) 2100951949435792 a004 Fibonacci(27)*Lucas(40)/(1/2+sqrt(5)/2)^59 2100951949435792 a001 98209/70711162*2537720636^(4/9) 2100951949435792 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^20/Lucas(39) 2100951949435792 a001 12422650078148/591286729879 2100951949435792 a001 98209/70711162*505019158607^(5/14) 2100951949435792 a004 Fibonacci(39)/Lucas(27)/(1/2+sqrt(5)/2)^4 2100951949435792 a001 98209/70711162*73681302247^(5/13) 2100951949435792 a001 98209/70711162*28143753123^(2/5) 2100951949435792 a001 98209/70711162*10749957122^(5/12) 2100951949435792 a001 98209/70711162*4106118243^(10/23) 2100951949435792 a001 98209/70711162*1568397607^(5/11) 2100951949435792 a001 98209/70711162*599074578^(10/21) 2100951949435792 a001 98209/70711162*228826127^(1/2) 2100951949435792 a001 196418/370248451*87403803^(11/19) 2100951949435792 a001 196418/969323029*87403803^(12/19) 2100951949435792 a001 98209/1268860318*87403803^(13/19) 2100951949435792 a001 196418/6643838879*87403803^(14/19) 2100951949435792 a001 196418/17393796001*87403803^(15/19) 2100951949435792 a001 98209/22768774562*87403803^(16/19) 2100951949435792 a001 196418/119218851371*87403803^(17/19) 2100951949435792 a001 98209/70711162*87403803^(10/19) 2100951949435792 a001 196418/312119004989*87403803^(18/19) 2100951949435792 a004 Fibonacci(27)*Lucas(38)/(1/2+sqrt(5)/2)^57 2100951949435793 a001 196418/54018521*141422324^(6/13) 2100951949435793 a001 196418/54018521*2537720636^(2/5) 2100951949435793 a001 196418/54018521*45537549124^(6/17) 2100951949435793 a001 196418/54018521*14662949395604^(2/7) 2100951949435793 a004 Fibonacci(27)*(1/2+sqrt(5)/2)^18/Lucas(37) 2100951949435793 a001 196418/54018521*192900153618^(1/3) 2100951949435793 a004 Fibonacci(37)/Lucas(27)/(1/2+sqrt(5)/2)^2 2100951949435793 a001 196418/54018521*10749957122^(3/8) 2100951949435793 a001 196418/54018521*4106118243^(9/23) 2100951949435793 a001 196418/54018521*1568397607^(9/22) 2100951949435793 a001 196418/54018521*599074578^(3/7) 2100951949435793 a001 196418/54018521*228826127^(9/20) 2100951949435793 a001 196418/54018521*87403803^(9/19) 2100951949435793 a001 196418/228826127*33385282^(7/12) 2100951949435793 a001 98209/70711162*33385282^(5/9) 2100951949435793 a001 196418/370248451*33385282^(11/18) 2100951949435793 a001 196418/969323029*33385282^(2/3) 2100951949435793 a001 98209/1268860318*33385282^(13/18) 2100951949435793 a001 196418/4106118243*33385282^(3/4) 2100951949435794 a001 196418/6643838879*33385282^(7/9) 2100951949435794 a001 196418/17393796001*33385282^(5/6) 2100951949435794 a001 196418/54018521*33385282^(1/2) 2100951949435794 a001 98209/22768774562*33385282^(8/9) 2100951949435794 a001 196418/73681302247*33385282^(11/12) 2100951949435794 a001 196418/119218851371*33385282^(17/18) 2100951949435794 a004 Fibonacci(27)*Lucas(36)/(1/2+sqrt(5)/2)^55 2100951949435797 a001 98209/16692641*12752043^(1/2) 2100951949435797 a001 196418/20633239*(1/2+1/2*5^(1/2))^16 2100951949435797 a001 196418/20633239*23725150497407^(1/4) 2100951949435797 a001 9227465/439204 2100951949435797 a001 196418/20633239*73681302247^(4/13) 2100951949435797 a001 196418/20633239*10749957122^(1/3) 2100951949435797 a001 196418/20633239*4106118243^(8/23) 2100951949435797 a001 196418/20633239*1568397607^(4/11) 2100951949435797 a001 196418/20633239*599074578^(8/21) 2100951949435797 a001 196418/20633239*228826127^(2/5) 2100951949435797 a001 196418/20633239*87403803^(8/19) 2100951949435798 a001 196418/20633239*33385282^(4/9) 2100951949435800 a001 196418/54018521*12752043^(9/17) 2100951949435800 a001 98209/70711162*12752043^(10/17) 2100951949435800 a001 196418/370248451*12752043^(11/17) 2100951949435801 a001 196418/969323029*12752043^(12/17) 2100951949435802 a001 98209/1268860318*12752043^(13/17) 2100951949435803 a001 196418/6643838879*12752043^(14/17) 2100951949435803 a001 196418/20633239*12752043^(8/17) 2100951949435803 a001 196418/17393796001*12752043^(15/17) 2100951949435804 a001 98209/22768774562*12752043^(16/17) 2100951949435805 a004 Fibonacci(27)*Lucas(34)/(1/2+sqrt(5)/2)^53 2100951949435824 a001 98209/3940598*20633239^(2/5) 2100951949435826 a001 98209/3940598*17393796001^(2/7) 2100951949435826 a001 98209/3940598*14662949395604^(2/9) 2100951949435826 a001 98209/3940598*(1/2+1/2*5^(1/2))^14 2100951949435826 a001 1762289/219602*(1/2+1/2*5^(1/2))^2 2100951949435826 a001 692290561604/32951280099 2100951949435826 a001 1762289/219602*10749957122^(1/24) 2100951949435826 a001 98209/3940598*10749957122^(7/24) 2100951949435826 a001 1762289/219602*4106118243^(1/23) 2100951949435826 a001 98209/3940598*4106118243^(7/23) 2100951949435826 a001 1762289/219602*1568397607^(1/22) 2100951949435826 a001 98209/3940598*1568397607^(7/22) 2100951949435826 a001 1762289/219602*599074578^(1/21) 2100951949435826 a001 98209/3940598*599074578^(1/3) 2100951949435826 a001 1762289/219602*228826127^(1/20) 2100951949435826 a001 98209/3940598*228826127^(7/20) 2100951949435826 a001 1762289/219602*87403803^(1/19) 2100951949435826 a001 98209/3940598*87403803^(7/19) 2100951949435826 a001 1762289/219602*33385282^(1/18) 2100951949435827 a001 98209/3940598*33385282^(7/18) 2100951949435827 a001 1762289/219602*12752043^(1/17) 2100951949435831 a001 98209/3940598*12752043^(7/17) 2100951949435831 a001 1762289/219602*4870847^(1/16) 2100951949435841 a001 196418/20633239*4870847^(1/2) 2100951949435843 a001 196418/54018521*4870847^(9/16) 2100951949435848 a001 98209/70711162*4870847^(5/8) 2100951949435853 a001 5702887/33385282*271443^(5/13) 2100951949435853 a001 196418/370248451*4870847^(11/16) 2100951949435858 a001 196418/969323029*4870847^(3/4) 2100951949435864 a001 98209/1268860318*4870847^(13/16) 2100951949435865 a001 98209/3940598*4870847^(7/16) 2100951949435865 a001 4976784/29134601*271443^(5/13) 2100951949435866 a001 1762289/219602*1860498^(1/15) 2100951949435867 a001 39088169/228826127*271443^(5/13) 2100951949435868 a001 34111385/199691526*271443^(5/13) 2100951949435868 a001 267914296/1568397607*271443^(5/13) 2100951949435868 a001 233802911/1368706081*271443^(5/13) 2100951949435868 a001 1836311903/10749957122*271443^(5/13) 2100951949435868 a001 1602508992/9381251041*271443^(5/13) 2100951949435868 a001 12586269025/73681302247*271443^(5/13) 2100951949435868 a001 10983760033/64300051206*271443^(5/13) 2100951949435868 a001 86267571272/505019158607*271443^(5/13) 2100951949435868 a001 75283811239/440719107401*271443^(5/13) 2100951949435868 a001 2504730781961/14662949395604*271443^(5/13) 2100951949435868 a001 139583862445/817138163596*271443^(5/13) 2100951949435868 a001 53316291173/312119004989*271443^(5/13) 2100951949435868 a001 20365011074/119218851371*271443^(5/13) 2100951949435868 a001 7778742049/45537549124*271443^(5/13) 2100951949435868 a001 2971215073/17393796001*271443^(5/13) 2100951949435868 a001 1134903170/6643838879*271443^(5/13) 2100951949435868 a001 433494437/2537720636*271443^(5/13) 2100951949435868 a001 165580141/969323029*271443^(5/13) 2100951949435868 a001 63245986/370248451*271443^(5/13) 2100951949435868 a001 24157817/141422324*271443^(5/13) 2100951949435870 a001 196418/6643838879*4870847^(7/8) 2100951949435873 a001 9227465/54018521*271443^(5/13) 2100951949435875 a001 196418/17393796001*4870847^(15/16) 2100951949435881 a004 Fibonacci(27)*Lucas(32)/(1/2+sqrt(5)/2)^51 2100951949435906 a001 3524578/20633239*271443^(5/13) 2100951949436012 a001 196418/3010349*7881196^(4/11) 2100951949436024 a001 196418/3010349*141422324^(4/13) 2100951949436024 a001 196418/3010349*2537720636^(4/15) 2100951949436024 a001 196418/3010349*45537549124^(4/17) 2100951949436024 a001 196418/3010349*14662949395604^(4/21) 2100951949436024 a001 196418/3010349*(1/2+1/2*5^(1/2))^12 2100951949436024 a001 196418/3010349*192900153618^(2/9) 2100951949436024 a001 1346269/439204*(1/2+1/2*5^(1/2))^4 2100951949436024 a001 1346269/439204*23725150497407^(1/16) 2100951949436024 a001 1346269/439204*73681302247^(1/13) 2100951949436024 a001 1346269/439204*10749957122^(1/12) 2100951949436024 a001 264431464442/12586269025 2100951949436024 a001 196418/3010349*10749957122^(1/4) 2100951949436024 a001 1346269/439204*4106118243^(2/23) 2100951949436024 a001 196418/3010349*4106118243^(6/23) 2100951949436024 a001 1346269/439204*1568397607^(1/11) 2100951949436024 a001 196418/3010349*1568397607^(3/11) 2100951949436024 a001 1346269/439204*599074578^(2/21) 2100951949436024 a001 196418/3010349*599074578^(2/7) 2100951949436024 a001 1346269/439204*228826127^(1/10) 2100951949436024 a001 196418/3010349*228826127^(3/10) 2100951949436024 a001 1346269/439204*87403803^(2/19) 2100951949436024 a001 196418/3010349*87403803^(6/19) 2100951949436024 a001 1346269/439204*33385282^(1/9) 2100951949436025 a001 196418/3010349*33385282^(1/3) 2100951949436025 a001 1346269/439204*12752043^(2/17) 2100951949436028 a001 196418/3010349*12752043^(6/17) 2100951949436035 a001 1346269/439204*4870847^(1/8) 2100951949436057 a001 196418/3010349*4870847^(3/8) 2100951949436081 a001 105937/4250681*271443^(7/13) 2100951949436083 a001 196418/12752043*1860498^(1/2) 2100951949436105 a001 1346269/439204*1860498^(2/15) 2100951949436109 a001 98209/3940598*1860498^(7/15) 2100951949436121 a001 196418/20633239*1860498^(8/15) 2100951949436123 a001 1762289/219602*710647^(1/14) 2100951949436133 a001 1346269/7881196*271443^(5/13) 2100951949436157 a001 196418/54018521*1860498^(3/5) 2100951949436197 a001 98209/70711162*1860498^(2/3) 2100951949436217 a001 196418/228826127*1860498^(7/10) 2100951949436237 a001 196418/370248451*1860498^(11/15) 2100951949436267 a001 196418/3010349*1860498^(2/5) 2100951949436278 a001 196418/969323029*1860498^(4/5) 2100951949436298 a001 196418/1568397607*1860498^(5/6) 2100951949436318 a001 98209/1268860318*1860498^(13/15) 2100951949436338 a001 196418/4106118243*1860498^(9/10) 2100951949436359 a001 196418/6643838879*1860498^(14/15) 2100951949436399 a004 Fibonacci(27)*Lucas(30)/(1/2+sqrt(5)/2)^49 2100951949436618 a001 1346269/439204*710647^(1/7) 2100951949436852 a001 514229/1149851*271443^(4/13) 2100951949437014 a001 5702887/710647*103682^(1/12) 2100951949437375 a001 514229/439204*7881196^(2/11) 2100951949437380 a001 196418/1149851*20633239^(2/7) 2100951949437381 a001 514229/439204*141422324^(2/13) 2100951949437381 a001 196418/1149851*2537720636^(2/9) 2100951949437381 a001 514229/439204*2537720636^(2/15) 2100951949437381 a001 514229/439204*45537549124^(2/17) 2100951949437381 a001 196418/1149851*312119004989^(2/11) 2100951949437381 a001 196418/1149851*(1/2+1/2*5^(1/2))^10 2100951949437381 a001 514229/439204*14662949395604^(2/21) 2100951949437381 a004 Fibonacci(29)*(1/2+sqrt(5)/2)^6/Lucas(27) 2100951949437381 a001 196418/1149851*28143753123^(1/5) 2100951949437381 a001 514229/439204*10749957122^(1/8) 2100951949437381 a001 196418/1149851*10749957122^(5/24) 2100951949437381 a001 514229/439204*4106118243^(3/23) 2100951949437381 a001 50501915861/2403763488 2100951949437381 a001 196418/1149851*4106118243^(5/23) 2100951949437381 a001 514229/439204*1568397607^(3/22) 2100951949437381 a001 196418/1149851*1568397607^(5/22) 2100951949437381 a001 514229/439204*599074578^(1/7) 2100951949437381 a001 196418/1149851*599074578^(5/21) 2100951949437381 a001 514229/439204*228826127^(3/20) 2100951949437381 a001 196418/1149851*228826127^(1/4) 2100951949437381 a001 514229/439204*87403803^(3/19) 2100951949437381 a001 196418/1149851*87403803^(5/19) 2100951949437381 a001 514229/439204*33385282^(1/6) 2100951949437382 a001 196418/1149851*33385282^(5/18) 2100951949437383 a001 514229/439204*12752043^(3/17) 2100951949437385 a001 196418/1149851*12752043^(5/17) 2100951949437398 a001 514229/439204*4870847^(3/16) 2100951949437409 a001 196418/1149851*4870847^(5/16) 2100951949437441 a001 832040/12752043*271443^(6/13) 2100951949437502 a001 514229/439204*1860498^(1/5) 2100951949437583 a001 196418/1149851*1860498^(1/3) 2100951949437688 a001 514229/3010349*271443^(5/13) 2100951949437807 a001 196418/3010349*710647^(3/7) 2100951949437906 a001 98209/3940598*710647^(1/2) 2100951949437971 a001 311187/4769326*271443^(6/13) 2100951949438019 a001 1762289/219602*271443^(1/13) 2100951949438048 a001 5702887/87403803*271443^(6/13) 2100951949438059 a001 14930352/228826127*271443^(6/13) 2100951949438061 a001 39088169/599074578*271443^(6/13) 2100951949438061 a001 14619165/224056801*271443^(6/13) 2100951949438061 a001 267914296/4106118243*271443^(6/13) 2100951949438061 a001 701408733/10749957122*271443^(6/13) 2100951949438061 a001 1836311903/28143753123*271443^(6/13) 2100951949438061 a001 686789568/10525900321*271443^(6/13) 2100951949438061 a001 12586269025/192900153618*271443^(6/13) 2100951949438061 a001 32951280099/505019158607*271443^(6/13) 2100951949438061 a001 86267571272/1322157322203*271443^(6/13) 2100951949438061 a001 32264490531/494493258286*271443^(6/13) 2100951949438061 a001 1548008755920/23725150497407*271443^(6/13) 2100951949438061 a001 139583862445/2139295485799*271443^(6/13) 2100951949438061 a001 53316291173/817138163596*271443^(6/13) 2100951949438061 a001 20365011074/312119004989*271443^(6/13) 2100951949438061 a001 7778742049/119218851371*271443^(6/13) 2100951949438061 a001 2971215073/45537549124*271443^(6/13) 2100951949438061 a001 1134903170/17393796001*271443^(6/13) 2100951949438061 a001 433494437/6643838879*271443^(6/13) 2100951949438061 a001 165580141/2537720636*271443^(6/13) 2100951949438061 a001 63245986/969323029*271443^(6/13) 2100951949438062 a001 24157817/370248451*271443^(6/13) 2100951949438066 a001 9227465/141422324*271443^(6/13) 2100951949438096 a001 3524578/54018521*271443^(6/13) 2100951949438174 a001 196418/20633239*710647^(4/7) 2100951949438273 a001 514229/439204*710647^(3/14) 2100951949438286 a001 317811/33385282*271443^(8/13) 2100951949438298 a001 1346269/20633239*271443^(6/13) 2100951949438467 a001 196418/54018521*710647^(9/14) 2100951949438556 a001 75640/1875749*271443^(1/2) 2100951949438692 a001 514229/271443*103682^(5/24) 2100951949438764 a001 98209/70711162*710647^(5/7) 2100951949438867 a001 196418/1149851*710647^(5/14) 2100951949438912 a001 196418/228826127*710647^(3/4) 2100951949439061 a001 196418/370248451*710647^(11/14) 2100951949439070 a001 2178309/54018521*271443^(1/2) 2100951949439145 a001 5702887/141422324*271443^(1/2) 2100951949439156 a001 14930352/370248451*271443^(1/2) 2100951949439157 a001 39088169/969323029*271443^(1/2) 2100951949439158 a001 9303105/230701876*271443^(1/2) 2100951949439158 a001 267914296/6643838879*271443^(1/2) 2100951949439158 a001 701408733/17393796001*271443^(1/2) 2100951949439158 a001 1836311903/45537549124*271443^(1/2) 2100951949439158 a001 4807526976/119218851371*271443^(1/2) 2100951949439158 a001 1144206275/28374454999*271443^(1/2) 2100951949439158 a001 32951280099/817138163596*271443^(1/2) 2100951949439158 a001 86267571272/2139295485799*271443^(1/2) 2100951949439158 a001 225851433717/5600748293801*271443^(1/2) 2100951949439158 a001 365435296162/9062201101803*271443^(1/2) 2100951949439158 a001 139583862445/3461452808002*271443^(1/2) 2100951949439158 a001 53316291173/1322157322203*271443^(1/2) 2100951949439158 a001 20365011074/505019158607*271443^(1/2) 2100951949439158 a001 7778742049/192900153618*271443^(1/2) 2100951949439158 a001 2971215073/73681302247*271443^(1/2) 2100951949439158 a001 1134903170/28143753123*271443^(1/2) 2100951949439158 a001 433494437/10749957122*271443^(1/2) 2100951949439158 a001 165580141/4106118243*271443^(1/2) 2100951949439158 a001 63245986/1568397607*271443^(1/2) 2100951949439158 a001 24157817/599074578*271443^(1/2) 2100951949439163 a001 9227465/228826127*271443^(1/2) 2100951949439191 a001 3524578/87403803*271443^(1/2) 2100951949439358 a001 196418/969323029*710647^(6/7) 2100951949439388 a001 1346269/33385282*271443^(1/2) 2100951949439646 a001 416020/16692641*271443^(7/13) 2100951949439655 a001 98209/1268860318*710647^(13/14) 2100951949439684 a001 514229/7881196*271443^(6/13) 2100951949439832 a001 75025/54018521*167761^(4/5) 2100951949439952 a004 Fibonacci(27)*Lucas(28)/(1/2+sqrt(5)/2)^47 2100951949440166 a001 726103/29134601*271443^(7/13) 2100951949440241 a001 5702887/228826127*271443^(7/13) 2100951949440252 a001 829464/33281921*271443^(7/13) 2100951949440254 a001 39088169/1568397607*271443^(7/13) 2100951949440254 a001 34111385/1368706081*271443^(7/13) 2100951949440254 a001 133957148/5374978561*271443^(7/13) 2100951949440254 a001 233802911/9381251041*271443^(7/13) 2100951949440254 a001 1836311903/73681302247*271443^(7/13) 2100951949440254 a001 267084832/10716675201*271443^(7/13) 2100951949440254 a001 12586269025/505019158607*271443^(7/13) 2100951949440254 a001 10983760033/440719107401*271443^(7/13) 2100951949440254 a001 43133785636/1730726404001*271443^(7/13) 2100951949440254 a001 182717648081/7331474697802*271443^(7/13) 2100951949440254 a001 139583862445/5600748293801*271443^(7/13) 2100951949440254 a001 53316291173/2139295485799*271443^(7/13) 2100951949440254 a001 10182505537/408569081798*271443^(7/13) 2100951949440254 a001 7778742049/312119004989*271443^(7/13) 2100951949440254 a001 2971215073/119218851371*271443^(7/13) 2100951949440254 a001 567451585/22768774562*271443^(7/13) 2100951949440254 a001 433494437/17393796001*271443^(7/13) 2100951949440254 a001 165580141/6643838879*271443^(7/13) 2100951949440254 a001 31622993/1268860318*271443^(7/13) 2100951949440255 a001 24157817/969323029*271443^(7/13) 2100951949440259 a001 9227465/370248451*271443^(7/13) 2100951949440288 a001 1762289/70711162*271443^(7/13) 2100951949440411 a001 1346269/439204*271443^(2/13) 2100951949440481 a001 105937/29134601*271443^(9/13) 2100951949440487 a001 1346269/54018521*271443^(7/13) 2100951949440578 a001 829464/103361*103682^(1/12) 2100951949440734 a001 514229/12752043*271443^(1/2) 2100951949441086 a001 105937/90481*103682^(1/4) 2100951949441098 a001 39088169/4870847*103682^(1/12) 2100951949441174 a001 34111385/4250681*103682^(1/12) 2100951949441185 a001 133957148/16692641*103682^(1/12) 2100951949441187 a001 233802911/29134601*103682^(1/12) 2100951949441187 a001 1836311903/228826127*103682^(1/12) 2100951949441187 a001 267084832/33281921*103682^(1/12) 2100951949441187 a001 12586269025/1568397607*103682^(1/12) 2100951949441187 a001 10983760033/1368706081*103682^(1/12) 2100951949441187 a001 43133785636/5374978561*103682^(1/12) 2100951949441187 a001 75283811239/9381251041*103682^(1/12) 2100951949441187 a001 591286729879/73681302247*103682^(1/12) 2100951949441187 a001 86000486440/10716675201*103682^(1/12) 2100951949441187 a001 4052739537881/505019158607*103682^(1/12) 2100951949441187 a001 3278735159921/408569081798*103682^(1/12) 2100951949441187 a001 2504730781961/312119004989*103682^(1/12) 2100951949441187 a001 956722026041/119218851371*103682^(1/12) 2100951949441187 a001 182717648081/22768774562*103682^(1/12) 2100951949441187 a001 139583862445/17393796001*103682^(1/12) 2100951949441187 a001 53316291173/6643838879*103682^(1/12) 2100951949441187 a001 10182505537/1268860318*103682^(1/12) 2100951949441187 a001 7778742049/969323029*103682^(1/12) 2100951949441187 a001 2971215073/370248451*103682^(1/12) 2100951949441187 a001 567451585/70711162*103682^(1/12) 2100951949441188 a001 433494437/54018521*103682^(1/12) 2100951949441192 a001 165580141/20633239*103682^(1/12) 2100951949441221 a001 31622993/3940598*103682^(1/12) 2100951949441420 a001 24157817/3010349*103682^(1/12) 2100951949441841 a001 832040/87403803*271443^(8/13) 2100951949441848 a001 514229/20633239*271443^(7/13) 2100951949442359 a001 46347/4868641*271443^(8/13) 2100951949442435 a001 5702887/599074578*271443^(8/13) 2100951949442446 a001 14930352/1568397607*271443^(8/13) 2100951949442447 a001 39088169/4106118243*271443^(8/13) 2100951949442448 a001 102334155/10749957122*271443^(8/13) 2100951949442448 a001 267914296/28143753123*271443^(8/13) 2100951949442448 a001 701408733/73681302247*271443^(8/13) 2100951949442448 a001 1836311903/192900153618*271443^(8/13) 2100951949442448 a001 102287808/10745088481*271443^(8/13) 2100951949442448 a001 12586269025/1322157322203*271443^(8/13) 2100951949442448 a001 32951280099/3461452808002*271443^(8/13) 2100951949442448 a001 86267571272/9062201101803*271443^(8/13) 2100951949442448 a001 225851433717/23725150497407*271443^(8/13) 2100951949442448 a001 139583862445/14662949395604*271443^(8/13) 2100951949442448 a001 53316291173/5600748293801*271443^(8/13) 2100951949442448 a001 20365011074/2139295485799*271443^(8/13) 2100951949442448 a001 7778742049/817138163596*271443^(8/13) 2100951949442448 a001 2971215073/312119004989*271443^(8/13) 2100951949442448 a001 1134903170/119218851371*271443^(8/13) 2100951949442448 a001 433494437/45537549124*271443^(8/13) 2100951949442448 a001 165580141/17393796001*271443^(8/13) 2100951949442448 a001 63245986/6643838879*271443^(8/13) 2100951949442448 a001 24157817/2537720636*271443^(8/13) 2100951949442453 a001 9227465/969323029*271443^(8/13) 2100951949442482 a001 3524578/370248451*271443^(8/13) 2100951949442674 a001 317811/228826127*271443^(10/13) 2100951949442680 a001 1346269/141422324*271443^(8/13) 2100951949442781 a001 9227465/1149851*103682^(1/12) 2100951949443922 a001 5702887/439204*103682^(1/24) 2100951949443961 a001 514229/439204*271443^(3/13) 2100951949444034 a001 832040/228826127*271443^(9/13) 2100951949444038 a001 514229/54018521*271443^(8/13) 2100951949444553 a001 726103/199691526*271443^(9/13) 2100951949444628 a001 5702887/1568397607*271443^(9/13) 2100951949444639 a001 4976784/1368706081*271443^(9/13) 2100951949444641 a001 39088169/10749957122*271443^(9/13) 2100951949444641 a001 831985/228811001*271443^(9/13) 2100951949444641 a001 267914296/73681302247*271443^(9/13) 2100951949444641 a001 233802911/64300051206*271443^(9/13) 2100951949444641 a001 1836311903/505019158607*271443^(9/13) 2100951949444641 a001 1602508992/440719107401*271443^(9/13) 2100951949444641 a001 12586269025/3461452808002*271443^(9/13) 2100951949444641 a001 10983760033/3020733700601*271443^(9/13) 2100951949444641 a001 86267571272/23725150497407*271443^(9/13) 2100951949444641 a001 53316291173/14662949395604*271443^(9/13) 2100951949444641 a001 20365011074/5600748293801*271443^(9/13) 2100951949444641 a001 7778742049/2139295485799*271443^(9/13) 2100951949444641 a001 2971215073/817138163596*271443^(9/13) 2100951949444641 a001 1134903170/312119004989*271443^(9/13) 2100951949444641 a001 433494437/119218851371*271443^(9/13) 2100951949444641 a001 165580141/45537549124*271443^(9/13) 2100951949444641 a001 63245986/17393796001*271443^(9/13) 2100951949444642 a001 24157817/6643838879*271443^(9/13) 2100951949444646 a001 9227465/2537720636*271443^(9/13) 2100951949444675 a001 3524578/969323029*271443^(9/13) 2100951949444868 a001 377/710646*271443^(11/13) 2100951949444873 a001 1346269/370248451*271443^(9/13) 2100951949445204 a001 3524578/710647*103682^(1/8) 2100951949446228 a001 416020/299537289*271443^(10/13) 2100951949446230 a001 514229/141422324*271443^(9/13) 2100951949446683 a001 98209/219602*(1/2+1/2*5^(1/2))^8 2100951949446683 a001 98209/219602*23725150497407^(1/8) 2100951949446683 a001 98209/219602*73681302247^(2/13) 2100951949446683 a001 98209/219602*10749957122^(1/6) 2100951949446683 a001 98209/219602*4106118243^(4/23) 2100951949446683 a001 38580030724/1836311903 2100951949446683 a001 98209/219602*1568397607^(2/11) 2100951949446683 a001 98209/219602*599074578^(4/21) 2100951949446683 a001 98209/219602*228826127^(1/5) 2100951949446684 a001 98209/219602*87403803^(4/19) 2100951949446684 a001 98209/219602*33385282^(2/9) 2100951949446686 a001 98209/219602*12752043^(4/17) 2100951949446706 a001 98209/219602*4870847^(1/4) 2100951949446746 a001 311187/224056801*271443^(10/13) 2100951949446822 a001 5702887/4106118243*271443^(10/13) 2100951949446833 a001 7465176/5374978561*271443^(10/13) 2100951949446834 a001 39088169/28143753123*271443^(10/13) 2100951949446834 a001 14619165/10525900321*271443^(10/13) 2100951949446835 a001 133957148/96450076809*271443^(10/13) 2100951949446835 a001 701408733/505019158607*271443^(10/13) 2100951949446835 a001 1836311903/1322157322203*271443^(10/13) 2100951949446835 a001 14930208/10749853441*271443^(10/13) 2100951949446835 a001 12586269025/9062201101803*271443^(10/13) 2100951949446835 a001 32951280099/23725150497407*271443^(10/13) 2100951949446835 a001 10182505537/7331474697802*271443^(10/13) 2100951949446835 a001 7778742049/5600748293801*271443^(10/13) 2100951949446835 a001 2971215073/2139295485799*271443^(10/13) 2100951949446835 a001 567451585/408569081798*271443^(10/13) 2100951949446835 a001 433494437/312119004989*271443^(10/13) 2100951949446835 a001 165580141/119218851371*271443^(10/13) 2100951949446835 a001 31622993/22768774562*271443^(10/13) 2100951949446835 a001 24157817/17393796001*271443^(10/13) 2100951949446839 a001 9227465/6643838879*271443^(10/13) 2100951949446845 a001 98209/219602*1860498^(4/15) 2100951949446868 a001 1762289/1268860318*271443^(10/13) 2100951949447061 a001 317811/1568397607*271443^(12/13) 2100951949447066 a001 1346269/969323029*271443^(10/13) 2100951949447148 a001 28657/54018521*64079^(22/23) 2100951949447872 a001 98209/219602*710647^(2/7) 2100951949448348 a001 196418/1149851*271443^(5/13) 2100951949448421 a001 832040/1568397607*271443^(11/13) 2100951949448424 a001 514229/370248451*271443^(10/13) 2100951949448728 a001 9227465/1860498*103682^(1/8) 2100951949448939 a001 726103/1368706081*271443^(11/13) 2100951949449015 a001 5702887/10749957122*271443^(11/13) 2100951949449026 a001 4976784/9381251041*271443^(11/13) 2100951949449028 a001 39088169/73681302247*271443^(11/13) 2100951949449028 a001 34111385/64300051206*271443^(11/13) 2100951949449028 a001 267914296/505019158607*271443^(11/13) 2100951949449028 a001 233802911/440719107401*271443^(11/13) 2100951949449028 a001 1836311903/3461452808002*271443^(11/13) 2100951949449028 a001 1602508992/3020733700601*271443^(11/13) 2100951949449028 a001 12586269025/23725150497407*271443^(11/13) 2100951949449028 a001 7778742049/14662949395604*271443^(11/13) 2100951949449028 a001 2971215073/5600748293801*271443^(11/13) 2100951949449028 a001 1134903170/2139295485799*271443^(11/13) 2100951949449028 a001 433494437/817138163596*271443^(11/13) 2100951949449028 a001 165580141/312119004989*271443^(11/13) 2100951949449028 a001 63245986/119218851371*271443^(11/13) 2100951949449029 a001 24157817/45537549124*271443^(11/13) 2100951949449033 a001 9227465/17393796001*271443^(11/13) 2100951949449062 a001 3524578/6643838879*271443^(11/13) 2100951949449184 a001 196418/3010349*271443^(6/13) 2100951949449243 a001 24157817/4870847*103682^(1/8) 2100951949449255 a004 Fibonacci(28)*Lucas(26)/(1/2+sqrt(5)/2)^46 2100951949449260 a001 1346269/2537720636*271443^(11/13) 2100951949449318 a001 63245986/12752043*103682^(1/8) 2100951949449329 a001 165580141/33385282*103682^(1/8) 2100951949449330 a001 433494437/87403803*103682^(1/8) 2100951949449330 a001 1134903170/228826127*103682^(1/8) 2100951949449330 a001 2971215073/599074578*103682^(1/8) 2100951949449330 a001 7778742049/1568397607*103682^(1/8) 2100951949449330 a001 20365011074/4106118243*103682^(1/8) 2100951949449330 a001 53316291173/10749957122*103682^(1/8) 2100951949449330 a001 139583862445/28143753123*103682^(1/8) 2100951949449330 a001 365435296162/73681302247*103682^(1/8) 2100951949449330 a001 956722026041/192900153618*103682^(1/8) 2100951949449330 a001 2504730781961/505019158607*103682^(1/8) 2100951949449330 a001 10610209857723/2139295485799*103682^(1/8) 2100951949449330 a001 140728068720/28374454999*103682^(1/8) 2100951949449330 a001 591286729879/119218851371*103682^(1/8) 2100951949449330 a001 225851433717/45537549124*103682^(1/8) 2100951949449330 a001 86267571272/17393796001*103682^(1/8) 2100951949449330 a001 32951280099/6643838879*103682^(1/8) 2100951949449330 a001 1144206275/230701876*103682^(1/8) 2100951949449330 a001 4807526976/969323029*103682^(1/8) 2100951949449330 a001 1836311903/370248451*103682^(1/8) 2100951949449331 a001 701408733/141422324*103682^(1/8) 2100951949449331 a001 267914296/54018521*103682^(1/8) 2100951949449335 a001 9303105/1875749*103682^(1/8) 2100951949449364 a001 39088169/7881196*103682^(1/8) 2100951949449560 a001 14930352/3010349*103682^(1/8) 2100951949449961 a001 196418/4870847*271443^(1/2) 2100951949450614 a001 832040/4106118243*271443^(12/13) 2100951949450617 a001 514229/969323029*271443^(11/13) 2100951949450907 a001 5702887/1149851*103682^(1/8) 2100951949451133 a001 987/4870846*271443^(12/13) 2100951949451180 a001 98209/3940598*271443^(7/13) 2100951949451208 a001 5702887/28143753123*271443^(12/13) 2100951949451219 a001 14930352/73681302247*271443^(12/13) 2100951949451221 a001 39088169/192900153618*271443^(12/13) 2100951949451221 a001 102334155/505019158607*271443^(12/13) 2100951949451221 a001 267914296/1322157322203*271443^(12/13) 2100951949451221 a001 701408733/3461452808002*271443^(12/13) 2100951949451221 a001 1836311903/9062201101803*271443^(12/13) 2100951949451221 a001 4807526976/23725150497407*271443^(12/13) 2100951949451221 a001 2971215073/14662949395604*271443^(12/13) 2100951949451221 a001 1134903170/5600748293801*271443^(12/13) 2100951949451221 a001 433494437/2139295485799*271443^(12/13) 2100951949451221 a001 165580141/817138163596*271443^(12/13) 2100951949451221 a001 63245986/312119004989*271443^(12/13) 2100951949451222 a001 24157817/119218851371*271443^(12/13) 2100951949451226 a001 9227465/45537549124*271443^(12/13) 2100951949451255 a001 3524578/17393796001*271443^(12/13) 2100951949451453 a001 1346269/6643838879*271443^(12/13) 2100951949452112 a001 1762289/219602*103682^(1/12) 2100951949452808 a004 Fibonacci(30)*Lucas(26)/(1/2+sqrt(5)/2)^48 2100951949452810 a001 514229/2537720636*271443^(12/13) 2100951949453225 a001 311187/101521*103682^(1/6) 2100951949453326 a004 Fibonacci(32)*Lucas(26)/(1/2+sqrt(5)/2)^50 2100951949453344 a001 196418/20633239*271443^(8/13) 2100951949453402 a004 Fibonacci(34)*Lucas(26)/(1/2+sqrt(5)/2)^52 2100951949453413 a004 Fibonacci(36)*Lucas(26)/(1/2+sqrt(5)/2)^54 2100951949453414 a004 Fibonacci(38)*Lucas(26)/(1/2+sqrt(5)/2)^56 2100951949453415 a004 Fibonacci(40)*Lucas(26)/(1/2+sqrt(5)/2)^58 2100951949453415 a004 Fibonacci(42)*Lucas(26)/(1/2+sqrt(5)/2)^60 2100951949453415 a004 Fibonacci(44)*Lucas(26)/(1/2+sqrt(5)/2)^62 2100951949453415 a004 Fibonacci(46)*Lucas(26)/(1/2+sqrt(5)/2)^64 2100951949453415 a004 Fibonacci(48)*Lucas(26)/(1/2+sqrt(5)/2)^66 2100951949453415 a004 Fibonacci(50)*Lucas(26)/(1/2+sqrt(5)/2)^68 2100951949453415 a004 Fibonacci(52)*Lucas(26)/(1/2+sqrt(5)/2)^70 2100951949453415 a004 Fibonacci(54)*Lucas(26)/(1/2+sqrt(5)/2)^72 2100951949453415 a004 Fibonacci(56)*Lucas(26)/(1/2+sqrt(5)/2)^74 2100951949453415 a004 Fibonacci(58)*Lucas(26)/(1/2+sqrt(5)/2)^76 2100951949453415 a004 Fibonacci(60)*Lucas(26)/(1/2+sqrt(5)/2)^78 2100951949453415 a004 Fibonacci(62)*Lucas(26)/(1/2+sqrt(5)/2)^80 2100951949453415 a004 Fibonacci(64)*Lucas(26)/(1/2+sqrt(5)/2)^82 2100951949453415 a004 Fibonacci(66)*Lucas(26)/(1/2+sqrt(5)/2)^84 2100951949453415 a004 Fibonacci(68)*Lucas(26)/(1/2+sqrt(5)/2)^86 2100951949453415 a004 Fibonacci(70)*Lucas(26)/(1/2+sqrt(5)/2)^88 2100951949453415 a004 Fibonacci(72)*Lucas(26)/(1/2+sqrt(5)/2)^90 2100951949453415 a004 Fibonacci(74)*Lucas(26)/(1/2+sqrt(5)/2)^92 2100951949453415 a004 Fibonacci(76)*Lucas(26)/(1/2+sqrt(5)/2)^94 2100951949453415 a004 Fibonacci(78)*Lucas(26)/(1/2+sqrt(5)/2)^96 2100951949453415 a004 Fibonacci(80)*Lucas(26)/(1/2+sqrt(5)/2)^98 2100951949453415 a004 Fibonacci(82)*Lucas(26)/(1/2+sqrt(5)/2)^100 2100951949453415 a004 Fibonacci(81)*Lucas(26)/(1/2+sqrt(5)/2)^99 2100951949453415 a004 Fibonacci(79)*Lucas(26)/(1/2+sqrt(5)/2)^97 2100951949453415 a004 Fibonacci(77)*Lucas(26)/(1/2+sqrt(5)/2)^95 2100951949453415 a004 Fibonacci(75)*Lucas(26)/(1/2+sqrt(5)/2)^93 2100951949453415 a004 Fibonacci(73)*Lucas(26)/(1/2+sqrt(5)/2)^91 2100951949453415 a004 Fibonacci(71)*Lucas(26)/(1/2+sqrt(5)/2)^89 2100951949453415 a004 Fibonacci(69)*Lucas(26)/(1/2+sqrt(5)/2)^87 2100951949453415 a004 Fibonacci(67)*Lucas(26)/(1/2+sqrt(5)/2)^85 2100951949453415 a004 Fibonacci(65)*Lucas(26)/(1/2+sqrt(5)/2)^83 2100951949453415 a004 Fibonacci(63)*Lucas(26)/(1/2+sqrt(5)/2)^81 2100951949453415 a004 Fibonacci(61)*Lucas(26)/(1/2+sqrt(5)/2)^79 2100951949453415 a004 Fibonacci(59)*Lucas(26)/(1/2+sqrt(5)/2)^77 2100951949453415 a004 Fibonacci(57)*Lucas(26)/(1/2+sqrt(5)/2)^75 2100951949453415 a004 Fibonacci(55)*Lucas(26)/(1/2+sqrt(5)/2)^73 2100951949453415 a004 Fibonacci(53)*Lucas(26)/(1/2+sqrt(5)/2)^71 2100951949453415 a001 2/121393*(1/2+1/2*5^(1/2))^34 2100951949453415 a004 Fibonacci(51)*Lucas(26)/(1/2+sqrt(5)/2)^69 2100951949453415 a004 Fibonacci(49)*Lucas(26)/(1/2+sqrt(5)/2)^67 2100951949453415 a004 Fibonacci(47)*Lucas(26)/(1/2+sqrt(5)/2)^65 2100951949453415 a004 Fibonacci(45)*Lucas(26)/(1/2+sqrt(5)/2)^63 2100951949453415 a004 Fibonacci(43)*Lucas(26)/(1/2+sqrt(5)/2)^61 2100951949453415 a004 Fibonacci(41)*Lucas(26)/(1/2+sqrt(5)/2)^59 2100951949453415 a004 Fibonacci(39)*Lucas(26)/(1/2+sqrt(5)/2)^57 2100951949453415 a004 Fibonacci(37)*Lucas(26)/(1/2+sqrt(5)/2)^55 2100951949453420 a004 Fibonacci(35)*Lucas(26)/(1/2+sqrt(5)/2)^53 2100951949453449 a004 Fibonacci(33)*Lucas(26)/(1/2+sqrt(5)/2)^51 2100951949453647 a004 Fibonacci(31)*Lucas(26)/(1/2+sqrt(5)/2)^49 2100951949454672 a001 75025/4870847*167761^(3/5) 2100951949455004 a004 Fibonacci(29)*Lucas(26)/(1/2+sqrt(5)/2)^47 2100951949455291 a001 1346269/167761*64079^(2/23) 2100951949455457 a001 98209/219602*271443^(4/13) 2100951949455533 a001 196418/54018521*271443^(9/13) 2100951949456854 a001 5702887/1860498*103682^(1/6) 2100951949457309 a001 3524578/271443*39603^(1/22) 2100951949457383 a001 14930352/4870847*103682^(1/6) 2100951949457460 a001 39088169/12752043*103682^(1/6) 2100951949457472 a001 14619165/4769326*103682^(1/6) 2100951949457473 a001 267914296/87403803*103682^(1/6) 2100951949457474 a001 701408733/228826127*103682^(1/6) 2100951949457474 a001 1836311903/599074578*103682^(1/6) 2100951949457474 a001 686789568/224056801*103682^(1/6) 2100951949457474 a001 12586269025/4106118243*103682^(1/6) 2100951949457474 a001 32951280099/10749957122*103682^(1/6) 2100951949457474 a001 86267571272/28143753123*103682^(1/6) 2100951949457474 a001 32264490531/10525900321*103682^(1/6) 2100951949457474 a001 591286729879/192900153618*103682^(1/6) 2100951949457474 a001 1548008755920/505019158607*103682^(1/6) 2100951949457474 a001 1515744265389/494493258286*103682^(1/6) 2100951949457474 a001 2504730781961/817138163596*103682^(1/6) 2100951949457474 a001 956722026041/312119004989*103682^(1/6) 2100951949457474 a001 365435296162/119218851371*103682^(1/6) 2100951949457474 a001 139583862445/45537549124*103682^(1/6) 2100951949457474 a001 53316291173/17393796001*103682^(1/6) 2100951949457474 a001 20365011074/6643838879*103682^(1/6) 2100951949457474 a001 7778742049/2537720636*103682^(1/6) 2100951949457474 a001 2971215073/969323029*103682^(1/6) 2100951949457474 a001 1134903170/370248451*103682^(1/6) 2100951949457474 a001 433494437/141422324*103682^(1/6) 2100951949457474 a001 165580141/54018521*103682^(1/6) 2100951949457479 a001 63245986/20633239*103682^(1/6) 2100951949457508 a001 24157817/7881196*103682^(1/6) 2100951949457710 a001 9227465/3010349*103682^(1/6) 2100951949457726 a001 98209/70711162*271443^(10/13) 2100951949459097 a001 3524578/1149851*103682^(1/6) 2100951949459919 a001 196418/370248451*271443^(11/13) 2100951949460133 a001 2178309/439204*103682^(1/8) 2100951949461689 a001 1346269/710647*103682^(5/24) 2100951949462113 a001 196418/969323029*271443^(12/13) 2100951949464281 a001 196418/271443*103682^(7/24) 2100951949464306 a004 Fibonacci(27)*Lucas(26)/(1/2+sqrt(5)/2)^45 2100951949465044 a001 1762289/930249*103682^(5/24) 2100951949465533 a001 9227465/4870847*103682^(5/24) 2100951949465605 a001 24157817/12752043*103682^(5/24) 2100951949465615 a001 31622993/16692641*103682^(5/24) 2100951949465617 a001 165580141/87403803*103682^(5/24) 2100951949465617 a001 433494437/228826127*103682^(5/24) 2100951949465617 a001 567451585/299537289*103682^(5/24) 2100951949465617 a001 2971215073/1568397607*103682^(5/24) 2100951949465617 a001 7778742049/4106118243*103682^(5/24) 2100951949465617 a001 10182505537/5374978561*103682^(5/24) 2100951949465617 a001 53316291173/28143753123*103682^(5/24) 2100951949465617 a001 139583862445/73681302247*103682^(5/24) 2100951949465617 a001 182717648081/96450076809*103682^(5/24) 2100951949465617 a001 956722026041/505019158607*103682^(5/24) 2100951949465617 a001 10610209857723/5600748293801*103682^(5/24) 2100951949465617 a001 591286729879/312119004989*103682^(5/24) 2100951949465617 a001 225851433717/119218851371*103682^(5/24) 2100951949465617 a001 21566892818/11384387281*103682^(5/24) 2100951949465617 a001 32951280099/17393796001*103682^(5/24) 2100951949465617 a001 12586269025/6643838879*103682^(5/24) 2100951949465617 a001 1201881744/634430159*103682^(5/24) 2100951949465617 a001 1836311903/969323029*103682^(5/24) 2100951949465617 a001 701408733/370248451*103682^(5/24) 2100951949465617 a001 66978574/35355581*103682^(5/24) 2100951949465618 a001 102334155/54018521*103682^(5/24) 2100951949465622 a001 39088169/20633239*103682^(5/24) 2100951949465649 a001 3732588/1970299*103682^(5/24) 2100951949465836 a001 5702887/3010349*103682^(5/24) 2100951949467117 a001 2178309/1149851*103682^(5/24) 2100951949467407 a001 75025/271443*439204^(1/3) 2100951949468597 a001 1346269/439204*103682^(1/6) 2100951949468857 a001 317811/103682*39603^(2/11) 2100951949468993 a001 832040/710647*103682^(1/4) 2100951949469391 a001 28657/33385282*64079^(21/23) 2100951949471028 a001 75025/271443*7881196^(3/11) 2100951949471036 a001 121393/167761*20633239^(1/5) 2100951949471037 a001 75025/271443*141422324^(3/13) 2100951949471037 a001 9107509825/433494437 2100951949471037 a001 75025/271443*2537720636^(1/5) 2100951949471037 a001 75025/271443*45537549124^(3/17) 2100951949471037 a001 75025/271443*14662949395604^(1/7) 2100951949471037 a001 75025/271443*(1/2+1/2*5^(1/2))^9 2100951949471037 a001 75025/271443*192900153618^(1/6) 2100951949471037 a001 121393/167761*17393796001^(1/7) 2100951949471037 a001 121393/167761*14662949395604^(1/9) 2100951949471037 a001 121393/167761*(1/2+1/2*5^(1/2))^7 2100951949471037 a001 75025/271443*10749957122^(3/16) 2100951949471037 a001 121393/167761*599074578^(1/6) 2100951949471037 a001 75025/271443*599074578^(3/14) 2100951949471038 a001 75025/271443*33385282^(1/4) 2100951949471219 a001 75025/271443*1860498^(3/10) 2100951949472077 a001 121393/167761*710647^(1/4) 2100951949473065 a001 726103/620166*103682^(1/4) 2100951949473454 a001 196418/39603*15127^(3/20) 2100951949473659 a001 5702887/4870847*103682^(1/4) 2100951949473659 a001 121393/710647*103682^(5/12) 2100951949473745 a001 4976784/4250681*103682^(1/4) 2100951949473758 a001 39088169/33385282*103682^(1/4) 2100951949473760 a001 34111385/29134601*103682^(1/4) 2100951949473760 a001 267914296/228826127*103682^(1/4) 2100951949473760 a001 233802911/199691526*103682^(1/4) 2100951949473760 a001 1836311903/1568397607*103682^(1/4) 2100951949473760 a001 1602508992/1368706081*103682^(1/4) 2100951949473760 a001 12586269025/10749957122*103682^(1/4) 2100951949473760 a001 10983760033/9381251041*103682^(1/4) 2100951949473760 a001 86267571272/73681302247*103682^(1/4) 2100951949473760 a001 75283811239/64300051206*103682^(1/4) 2100951949473760 a001 2504730781961/2139295485799*103682^(1/4) 2100951949473760 a001 365435296162/312119004989*103682^(1/4) 2100951949473760 a001 139583862445/119218851371*103682^(1/4) 2100951949473760 a001 53316291173/45537549124*103682^(1/4) 2100951949473760 a001 20365011074/17393796001*103682^(1/4) 2100951949473760 a001 7778742049/6643838879*103682^(1/4) 2100951949473760 a001 2971215073/2537720636*103682^(1/4) 2100951949473760 a001 1134903170/969323029*103682^(1/4) 2100951949473760 a001 433494437/370248451*103682^(1/4) 2100951949473760 a001 165580141/141422324*103682^(1/4) 2100951949473761 a001 63245986/54018521*103682^(1/4) 2100951949473766 a001 24157817/20633239*103682^(1/4) 2100951949473799 a001 9227465/7881196*103682^(1/4) 2100951949474026 a001 3524578/3010349*103682^(1/4) 2100951949475581 a001 1346269/1149851*103682^(1/4) 2100951949475901 a001 208010/109801*103682^(5/24) 2100951949477217 a001 2178309/167761*64079^(1/23) 2100951949479332 a001 514229/710647*103682^(7/24) 2100951949480461 a001 317811/167761*167761^(1/5) 2100951949480567 a001 121393/439204*103682^(3/8) 2100951949480582 a001 75025/439204*167761^(2/5) 2100951949481528 a001 1346269/1860498*103682^(7/24) 2100951949481634 a001 9227465/710647*39603^(1/22) 2100951949481726 a001 317811/710647*103682^(1/3) 2100951949481849 a001 3524578/4870847*103682^(7/24) 2100951949481895 a001 9227465/12752043*103682^(7/24) 2100951949481902 a001 24157817/33385282*103682^(7/24) 2100951949481903 a001 63245986/87403803*103682^(7/24) 2100951949481903 a001 165580141/228826127*103682^(7/24) 2100951949481903 a001 433494437/599074578*103682^(7/24) 2100951949481903 a001 1134903170/1568397607*103682^(7/24) 2100951949481903 a001 2971215073/4106118243*103682^(7/24) 2100951949481903 a001 7778742049/10749957122*103682^(7/24) 2100951949481903 a001 20365011074/28143753123*103682^(7/24) 2100951949481903 a001 53316291173/73681302247*103682^(7/24) 2100951949481903 a001 139583862445/192900153618*103682^(7/24) 2100951949481903 a001 10610209857723/14662949395604*103682^(7/24) 2100951949481903 a001 591286729879/817138163596*103682^(7/24) 2100951949481903 a001 225851433717/312119004989*103682^(7/24) 2100951949481903 a001 86267571272/119218851371*103682^(7/24) 2100951949481903 a001 32951280099/45537549124*103682^(7/24) 2100951949481903 a001 12586269025/17393796001*103682^(7/24) 2100951949481903 a001 4807526976/6643838879*103682^(7/24) 2100951949481903 a001 1836311903/2537720636*103682^(7/24) 2100951949481903 a001 701408733/969323029*103682^(7/24) 2100951949481903 a001 267914296/370248451*103682^(7/24) 2100951949481904 a001 102334155/141422324*103682^(7/24) 2100951949481904 a001 39088169/54018521*103682^(7/24) 2100951949481907 a001 14930352/20633239*103682^(7/24) 2100951949481924 a001 5702887/7881196*103682^(7/24) 2100951949482047 a001 2178309/3010349*103682^(7/24) 2100951949482886 a001 832040/1149851*103682^(7/24) 2100951949485183 a001 24157817/1860498*39603^(1/22) 2100951949485701 a001 63245986/4870847*39603^(1/22) 2100951949485777 a001 165580141/12752043*39603^(1/22) 2100951949485788 a001 433494437/33385282*39603^(1/22) 2100951949485789 a001 1134903170/87403803*39603^(1/22) 2100951949485789 a001 2971215073/228826127*39603^(1/22) 2100951949485789 a001 7778742049/599074578*39603^(1/22) 2100951949485789 a001 20365011074/1568397607*39603^(1/22) 2100951949485789 a001 53316291173/4106118243*39603^(1/22) 2100951949485789 a001 139583862445/10749957122*39603^(1/22) 2100951949485789 a001 365435296162/28143753123*39603^(1/22) 2100951949485789 a001 956722026041/73681302247*39603^(1/22) 2100951949485789 a001 2504730781961/192900153618*39603^(1/22) 2100951949485789 a001 10610209857723/817138163596*39603^(1/22) 2100951949485789 a001 4052739537881/312119004989*39603^(1/22) 2100951949485789 a001 1548008755920/119218851371*39603^(1/22) 2100951949485789 a001 591286729879/45537549124*39603^(1/22) 2100951949485789 a001 7787980473/599786069*39603^(1/22) 2100951949485789 a001 86267571272/6643838879*39603^(1/22) 2100951949485789 a001 32951280099/2537720636*39603^(1/22) 2100951949485789 a001 12586269025/969323029*39603^(1/22) 2100951949485789 a001 4807526976/370248451*39603^(1/22) 2100951949485790 a001 1836311903/141422324*39603^(1/22) 2100951949485790 a001 701408733/54018521*39603^(1/22) 2100951949485794 a001 9238424/711491*39603^(1/22) 2100951949485823 a001 102334155/7881196*39603^(1/22) 2100951949486021 a001 39088169/3010349*39603^(1/22) 2100951949486241 a001 514229/439204*103682^(1/4) 2100951949487377 a001 14930352/1149851*39603^(1/22) 2100951949487551 a001 121393/1149851*103682^(11/24) 2100951949488635 a001 317811/439204*103682^(7/24) 2100951949488660 a004 Fibonacci(25)*Lucas(27)/(1/2+sqrt(5)/2)^44 2100951949488833 a001 416020/930249*103682^(1/3) 2100951949489870 a001 2178309/4870847*103682^(1/3) 2100951949489870 a001 75025/370248451*439204^(8/9) 2100951949490021 a001 5702887/12752043*103682^(1/3) 2100951949490043 a001 7465176/16692641*103682^(1/3) 2100951949490046 a001 39088169/87403803*103682^(1/3) 2100951949490047 a001 102334155/228826127*103682^(1/3) 2100951949490047 a001 133957148/299537289*103682^(1/3) 2100951949490047 a001 701408733/1568397607*103682^(1/3) 2100951949490047 a001 1836311903/4106118243*103682^(1/3) 2100951949490047 a001 2403763488/5374978561*103682^(1/3) 2100951949490047 a001 12586269025/28143753123*103682^(1/3) 2100951949490047 a001 32951280099/73681302247*103682^(1/3) 2100951949490047 a001 43133785636/96450076809*103682^(1/3) 2100951949490047 a001 225851433717/505019158607*103682^(1/3) 2100951949490047 a001 591286729879/1322157322203*103682^(1/3) 2100951949490047 a001 10610209857723/23725150497407*103682^(1/3) 2100951949490047 a001 139583862445/312119004989*103682^(1/3) 2100951949490047 a001 53316291173/119218851371*103682^(1/3) 2100951949490047 a001 10182505537/22768774562*103682^(1/3) 2100951949490047 a001 7778742049/17393796001*103682^(1/3) 2100951949490047 a001 2971215073/6643838879*103682^(1/3) 2100951949490047 a001 567451585/1268860318*103682^(1/3) 2100951949490047 a001 433494437/969323029*103682^(1/3) 2100951949490047 a001 165580141/370248451*103682^(1/3) 2100951949490047 a001 31622993/70711162*103682^(1/3) 2100951949490048 a001 24157817/54018521*103682^(1/3) 2100951949490057 a001 9227465/20633239*103682^(1/3) 2100951949490114 a001 1762289/3940598*103682^(1/3) 2100951949490510 a001 1346269/3010349*103682^(1/3) 2100951949491080 a001 75025/87403803*439204^(7/9) 2100951949491644 a001 28657/20633239*64079^(20/23) 2100951949492295 a001 75025/20633239*439204^(2/3) 2100951949493225 a001 514229/1149851*103682^(1/3) 2100951949493412 a001 75025/4870847*439204^(5/9) 2100951949493499 a001 121393/1860498*103682^(1/2) 2100951949495380 a001 75025/710647*7881196^(1/3) 2100951949495391 a001 317811/167761*20633239^(1/7) 2100951949495391 a001 4768754055/226980634 2100951949495391 a001 317811/167761*2537720636^(1/9) 2100951949495391 a001 75025/710647*312119004989^(1/5) 2100951949495391 a001 75025/710647*(1/2+1/2*5^(1/2))^11 2100951949495391 a001 317811/167761*312119004989^(1/11) 2100951949495391 a001 317811/167761*(1/2+1/2*5^(1/2))^5 2100951949495391 a001 317811/167761*28143753123^(1/10) 2100951949495391 a001 75025/710647*1568397607^(1/4) 2100951949495391 a001 317811/167761*228826127^(1/8) 2100951949495492 a001 317811/167761*1860498^(1/6) 2100951949495619 a001 317811/1149851*103682^(3/8) 2100951949496300 a001 75025/1149851*439204^(4/9) 2100951949496668 a001 5702887/439204*39603^(1/22) 2100951949497734 a001 75640/15251*439204^(1/9) 2100951949497815 a001 832040/3010349*103682^(3/8) 2100951949497962 a004 Fibonacci(25)*Lucas(29)/(1/2+sqrt(5)/2)^46 2100951949498135 a001 2178309/7881196*103682^(3/8) 2100951949498182 a001 5702887/20633239*103682^(3/8) 2100951949498189 a001 14930352/54018521*103682^(3/8) 2100951949498190 a001 39088169/141422324*103682^(3/8) 2100951949498190 a001 102334155/370248451*103682^(3/8) 2100951949498190 a001 267914296/969323029*103682^(3/8) 2100951949498190 a001 701408733/2537720636*103682^(3/8) 2100951949498190 a001 1836311903/6643838879*103682^(3/8) 2100951949498190 a001 4807526976/17393796001*103682^(3/8) 2100951949498190 a001 12586269025/45537549124*103682^(3/8) 2100951949498190 a001 32951280099/119218851371*103682^(3/8) 2100951949498190 a001 86267571272/312119004989*103682^(3/8) 2100951949498190 a001 225851433717/817138163596*103682^(3/8) 2100951949498190 a001 139583862445/505019158607*103682^(3/8) 2100951949498190 a001 53316291173/192900153618*103682^(3/8) 2100951949498190 a001 20365011074/73681302247*103682^(3/8) 2100951949498190 a001 7778742049/28143753123*103682^(3/8) 2100951949498190 a001 2971215073/10749957122*103682^(3/8) 2100951949498190 a001 1134903170/4106118243*103682^(3/8) 2100951949498190 a001 433494437/1568397607*103682^(3/8) 2100951949498190 a001 165580141/599074578*103682^(3/8) 2100951949498190 a001 63245986/228826127*103682^(3/8) 2100951949498190 a001 24157817/87403803*103682^(3/8) 2100951949498193 a001 9227465/33385282*103682^(3/8) 2100951949498211 a001 3524578/12752043*103682^(3/8) 2100951949498333 a001 1346269/4870847*103682^(3/8) 2100951949498941 a001 75640/15251*7881196^(1/11) 2100951949498944 a001 75025/1860498*141422324^(1/3) 2100951949498944 a001 75640/15251*141422324^(1/13) 2100951949498944 a001 62423801000/2971215073 2100951949498944 a001 75640/15251*2537720636^(1/15) 2100951949498944 a001 75025/1860498*(1/2+1/2*5^(1/2))^13 2100951949498944 a001 75025/1860498*73681302247^(1/4) 2100951949498944 a001 75640/15251*45537549124^(1/17) 2100951949498944 a001 75640/15251*14662949395604^(1/21) 2100951949498944 a001 75640/15251*(1/2+1/2*5^(1/2))^3 2100951949498944 a001 75640/15251*192900153618^(1/18) 2100951949498944 a001 75640/15251*10749957122^(1/16) 2100951949498944 a001 75640/15251*599074578^(1/14) 2100951949498945 a001 75640/15251*33385282^(1/12) 2100951949499005 a001 75640/15251*1860498^(1/10) 2100951949499172 a001 514229/1860498*103682^(3/8) 2100951949499320 a004 Fibonacci(25)*Lucas(31)/(1/2+sqrt(5)/2)^48 2100951949499447 a001 75025/4870847*7881196^(5/11) 2100951949499461 a001 75025/4870847*20633239^(3/7) 2100951949499463 a001 75025/4870847*141422324^(5/13) 2100951949499463 a001 75025/4870847*2537720636^(1/3) 2100951949499463 a001 163427632725/7778742049 2100951949499463 a001 75025/4870847*45537549124^(5/17) 2100951949499463 a001 75025/4870847*312119004989^(3/11) 2100951949499463 a001 75025/4870847*14662949395604^(5/21) 2100951949499463 a001 75025/4870847*(1/2+1/2*5^(1/2))^15 2100951949499463 a001 75025/4870847*192900153618^(5/18) 2100951949499463 a001 75025/4870847*28143753123^(3/10) 2100951949499463 a001 2178309/335522+2178309/335522*5^(1/2) 2100951949499463 a001 75025/4870847*10749957122^(5/16) 2100951949499463 a001 75025/4870847*599074578^(5/14) 2100951949499463 a001 75025/4870847*228826127^(3/8) 2100951949499464 a001 75025/4870847*33385282^(5/12) 2100951949499518 a004 Fibonacci(25)*Lucas(33)/(1/2+sqrt(5)/2)^50 2100951949499521 a001 75025/6643838879*7881196^(10/11) 2100951949499524 a001 75025/1568397607*7881196^(9/11) 2100951949499527 a001 75025/370248451*7881196^(8/11) 2100951949499529 a001 75025/141422324*7881196^(2/3) 2100951949499530 a001 75025/87403803*7881196^(7/11) 2100951949499538 a001 75025/20633239*7881196^(6/11) 2100951949499538 a001 267914275/12752042 2100951949499538 a001 75025/12752043*45537549124^(1/3) 2100951949499538 a001 75025/12752043*(1/2+1/2*5^(1/2))^17 2100951949499538 a004 Fibonacci(34)/Lucas(25)/(1/2+sqrt(5)/2) 2100951949499545 a001 75025/12752043*12752043^(1/2) 2100951949499546 a004 Fibonacci(25)*Lucas(35)/(1/2+sqrt(5)/2)^52 2100951949499547 a001 75025/6643838879*20633239^(6/7) 2100951949499547 a001 75025/2537720636*20633239^(4/5) 2100951949499548 a001 75025/599074578*20633239^(5/7) 2100951949499548 a001 75025/87403803*20633239^(3/5) 2100951949499549 a001 75025/54018521*20633239^(4/7) 2100951949499550 a001 1120149658800/53316291173 2100951949499550 a001 75025/33385282*817138163596^(1/3) 2100951949499550 a001 75025/33385282*(1/2+1/2*5^(1/2))^19 2100951949499550 a004 Fibonacci(36)/Lucas(25)/(1/2+sqrt(5)/2)^3 2100951949499550 a001 75025/33385282*87403803^(1/2) 2100951949499551 a004 Fibonacci(25)*Lucas(37)/(1/2+sqrt(5)/2)^54 2100951949499551 a001 75025/87403803*141422324^(7/13) 2100951949499551 a001 75025/87403803*2537720636^(7/15) 2100951949499551 a001 75025/87403803*17393796001^(3/7) 2100951949499551 a001 75025/87403803*45537549124^(7/17) 2100951949499551 a001 586517975845/27916772489 2100951949499551 a001 75025/87403803*14662949395604^(1/3) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^21/Lucas(38) 2100951949499551 a001 75025/87403803*192900153618^(7/18) 2100951949499551 a004 Fibonacci(38)/Lucas(25)/(1/2+sqrt(5)/2)^5 2100951949499551 a001 75025/87403803*10749957122^(7/16) 2100951949499551 a001 75025/87403803*599074578^(1/2) 2100951949499551 a004 Fibonacci(25)*Lucas(39)/(1/2+sqrt(5)/2)^56 2100951949499551 a001 75025/119218851371*141422324^(12/13) 2100951949499551 a001 75025/28143753123*141422324^(11/13) 2100951949499551 a001 75025/6643838879*141422324^(10/13) 2100951949499551 a001 75025/1568397607*141422324^(9/13) 2100951949499551 a001 75025/969323029*141422324^(2/3) 2100951949499551 a001 75025/370248451*141422324^(8/13) 2100951949499551 a001 7677619978875/365435296162 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^23/Lucas(40) 2100951949499551 a004 Fibonacci(40)/Lucas(25)/(1/2+sqrt(5)/2)^7 2100951949499551 a001 75025/228826127*4106118243^(1/2) 2100951949499551 a004 Fibonacci(25)*Lucas(41)/(1/2+sqrt(5)/2)^58 2100951949499551 a001 75025/599074578*2537720636^(5/9) 2100951949499551 a001 75025/599074578*312119004989^(5/11) 2100951949499551 a001 20100270057400/956722026041 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^25/Lucas(42) 2100951949499551 a001 75025/599074578*3461452808002^(5/12) 2100951949499551 a001 75025/599074578*28143753123^(1/2) 2100951949499551 a004 Fibonacci(42)/Lucas(25)/(1/2+sqrt(5)/2)^9 2100951949499551 a004 Fibonacci(25)*Lucas(43)/(1/2+sqrt(5)/2)^60 2100951949499551 a001 75025/1568397607*2537720636^(3/5) 2100951949499551 a001 75025/1568397607*45537549124^(9/17) 2100951949499551 a001 52623190193325/2504730781961 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^27/Lucas(44) 2100951949499551 a001 75025/1568397607*192900153618^(1/2) 2100951949499551 a004 Fibonacci(44)/Lucas(25)/(1/2+sqrt(5)/2)^11 2100951949499551 a001 75025/1568397607*10749957122^(9/16) 2100951949499551 a004 Fibonacci(25)*Lucas(45)/(1/2+sqrt(5)/2)^62 2100951949499551 a001 75025/2139295485799*2537720636^(14/15) 2100951949499551 a001 75025/817138163596*2537720636^(8/9) 2100951949499551 a001 75025/505019158607*2537720636^(13/15) 2100951949499551 a001 75025/119218851371*2537720636^(4/5) 2100951949499551 a001 75025/73681302247*2537720636^(7/9) 2100951949499551 a001 75025/28143753123*2537720636^(11/15) 2100951949499551 a001 75025/6643838879*2537720636^(2/3) 2100951949499551 a001 137769300522575/6557470319842 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^29/Lucas(46) 2100951949499551 a001 75025/4106118243*1322157322203^(1/2) 2100951949499551 a004 Fibonacci(46)/Lucas(25)/(1/2+sqrt(5)/2)^13 2100951949499551 a004 Fibonacci(25)*Lucas(47)/(1/2+sqrt(5)/2)^64 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^31/Lucas(48) 2100951949499551 a001 75025/10749957122*9062201101803^(1/2) 2100951949499551 a004 Fibonacci(48)/Lucas(25)/(1/2+sqrt(5)/2)^15 2100951949499551 a004 Fibonacci(25)*Lucas(49)/(1/2+sqrt(5)/2)^66 2100951949499551 a001 75025/2139295485799*17393796001^(6/7) 2100951949499551 a001 75025/73681302247*17393796001^(5/7) 2100951949499551 a001 75025/28143753123*45537549124^(11/17) 2100951949499551 a001 75025/28143753123*312119004989^(3/5) 2100951949499551 a001 75025/28143753123*14662949395604^(11/21) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^33/Lucas(50) 2100951949499551 a001 75025/28143753123*192900153618^(11/18) 2100951949499551 a004 Fibonacci(25)*Lucas(51)/(1/2+sqrt(5)/2)^68 2100951949499551 a001 75025/9062201101803*45537549124^(15/17) 2100951949499551 a001 75025/2139295485799*45537549124^(14/17) 2100951949499551 a001 75025/505019158607*45537549124^(13/17) 2100951949499551 a001 75025/119218851371*45537549124^(12/17) 2100951949499551 a001 75025/73681302247*312119004989^(7/11) 2100951949499551 a001 75025/73681302247*14662949395604^(5/9) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^35/Lucas(52) 2100951949499551 a001 75025/73681302247*505019158607^(5/8) 2100951949499551 a004 Fibonacci(25)*Lucas(53)/(1/2+sqrt(5)/2)^70 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^37/Lucas(54) 2100951949499551 a004 Fibonacci(25)*Lucas(55)/(1/2+sqrt(5)/2)^72 2100951949499551 a001 75025/5600748293801*312119004989^(4/5) 2100951949499551 a001 75025/505019158607*14662949395604^(13/21) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^39/Lucas(56) 2100951949499551 a004 Fibonacci(25)*Lucas(57)/(1/2+sqrt(5)/2)^74 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^41/Lucas(58) 2100951949499551 a004 Fibonacci(25)*Lucas(59)/(1/2+sqrt(5)/2)^76 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^43/Lucas(60) 2100951949499551 a004 Fibonacci(25)*Lucas(61)/(1/2+sqrt(5)/2)^78 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^45/Lucas(62) 2100951949499551 a004 Fibonacci(25)*Lucas(63)/(1/2+sqrt(5)/2)^80 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^47/Lucas(64) 2100951949499551 a004 Fibonacci(25)*Lucas(65)/(1/2+sqrt(5)/2)^82 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^49/Lucas(66) 2100951949499551 a004 Fibonacci(25)*Lucas(67)/(1/2+sqrt(5)/2)^84 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^51/Lucas(68) 2100951949499551 a004 Fibonacci(25)*Lucas(69)/(1/2+sqrt(5)/2)^86 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^53/Lucas(70) 2100951949499551 a004 Fibonacci(25)*Lucas(71)/(1/2+sqrt(5)/2)^88 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^55/Lucas(72) 2100951949499551 a004 Fibonacci(25)*Lucas(73)/(1/2+sqrt(5)/2)^90 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^57/Lucas(74) 2100951949499551 a004 Fibonacci(25)*Lucas(75)/(1/2+sqrt(5)/2)^92 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^59/Lucas(76) 2100951949499551 a004 Fibonacci(25)*Lucas(77)/(1/2+sqrt(5)/2)^94 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^61/Lucas(78) 2100951949499551 a004 Fibonacci(25)*Lucas(79)/(1/2+sqrt(5)/2)^96 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^63/Lucas(80) 2100951949499551 a004 Fibonacci(25)*Lucas(81)/(1/2+sqrt(5)/2)^98 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^65/Lucas(82) 2100951949499551 a004 Fibonacci(25)*Lucas(83)/(1/2+sqrt(5)/2)^100 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^67/Lucas(84) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^69/Lucas(86) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^71/Lucas(88) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^73/Lucas(90) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^75/Lucas(92) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^77/Lucas(94) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^79/Lucas(96) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^80/Lucas(97) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^81/Lucas(98) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^82/Lucas(99) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^83/Lucas(100) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^78/Lucas(95) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^76/Lucas(93) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^74/Lucas(91) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^72/Lucas(89) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^70/Lucas(87) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^68/Lucas(85) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^66/Lucas(83) 2100951949499551 a004 Fibonacci(25)*Lucas(82)/(1/2+sqrt(5)/2)^99 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^64/Lucas(81) 2100951949499551 a004 Fibonacci(25)*Lucas(80)/(1/2+sqrt(5)/2)^97 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^62/Lucas(79) 2100951949499551 a004 Fibonacci(25)*Lucas(78)/(1/2+sqrt(5)/2)^95 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^60/Lucas(77) 2100951949499551 a004 Fibonacci(25)*Lucas(76)/(1/2+sqrt(5)/2)^93 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^58/Lucas(75) 2100951949499551 a004 Fibonacci(25)*Lucas(74)/(1/2+sqrt(5)/2)^91 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^56/Lucas(73) 2100951949499551 a004 Fibonacci(25)*Lucas(72)/(1/2+sqrt(5)/2)^89 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^54/Lucas(71) 2100951949499551 a004 Fibonacci(25)*Lucas(70)/(1/2+sqrt(5)/2)^87 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^52/Lucas(69) 2100951949499551 a004 Fibonacci(25)*Lucas(68)/(1/2+sqrt(5)/2)^85 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^50/Lucas(67) 2100951949499551 a004 Fibonacci(25)*Lucas(66)/(1/2+sqrt(5)/2)^83 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^48/Lucas(65) 2100951949499551 a004 Fibonacci(25)*Lucas(64)/(1/2+sqrt(5)/2)^81 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^46/Lucas(63) 2100951949499551 a004 Fibonacci(25)*Lucas(62)/(1/2+sqrt(5)/2)^79 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^44/Lucas(61) 2100951949499551 a004 Fibonacci(25)*Lucas(60)/(1/2+sqrt(5)/2)^77 2100951949499551 a001 75025/2139295485799*14662949395604^(2/3) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^42/Lucas(59) 2100951949499551 a004 Fibonacci(25)*Lucas(58)/(1/2+sqrt(5)/2)^75 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^40/Lucas(57) 2100951949499551 a001 75025/2139295485799*505019158607^(3/4) 2100951949499551 a004 Fibonacci(25)*Lucas(56)/(1/2+sqrt(5)/2)^73 2100951949499551 a001 75025/312119004989*817138163596^(2/3) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^38/Lucas(55) 2100951949499551 a001 75025/505019158607*192900153618^(13/18) 2100951949499551 a001 75025/2139295485799*192900153618^(7/9) 2100951949499551 a001 75025/9062201101803*192900153618^(5/6) 2100951949499551 a004 Fibonacci(25)*Lucas(54)/(1/2+sqrt(5)/2)^71 2100951949499551 a001 75025/119218851371*14662949395604^(4/7) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^36/Lucas(53) 2100951949499551 a001 75025/119218851371*505019158607^(9/14) 2100951949499551 a001 75025/119218851371*192900153618^(2/3) 2100951949499551 a001 75025/505019158607*73681302247^(3/4) 2100951949499551 a001 75025/817138163596*73681302247^(10/13) 2100951949499551 a001 75025/5600748293801*73681302247^(11/13) 2100951949499551 a001 75025/45537549124*45537549124^(2/3) 2100951949499551 a004 Fibonacci(25)*Lucas(52)/(1/2+sqrt(5)/2)^69 2100951949499551 a001 75025/119218851371*73681302247^(9/13) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^34/Lucas(51) 2100951949499551 a001 75025/73681302247*28143753123^(7/10) 2100951949499551 a001 75025/817138163596*28143753123^(4/5) 2100951949499551 a004 Fibonacci(52)/Lucas(25)/(1/2+sqrt(5)/2)^19 2100951949499551 a001 75025/9062201101803*28143753123^(9/10) 2100951949499551 a004 Fibonacci(54)/Lucas(25)/(1/2+sqrt(5)/2)^21 2100951949499551 a004 Fibonacci(56)/Lucas(25)/(1/2+sqrt(5)/2)^23 2100951949499551 a004 Fibonacci(58)/Lucas(25)/(1/2+sqrt(5)/2)^25 2100951949499551 a004 Fibonacci(60)/Lucas(25)/(1/2+sqrt(5)/2)^27 2100951949499551 a004 Fibonacci(62)/Lucas(25)/(1/2+sqrt(5)/2)^29 2100951949499551 a004 Fibonacci(64)/Lucas(25)/(1/2+sqrt(5)/2)^31 2100951949499551 a004 Fibonacci(66)/Lucas(25)/(1/2+sqrt(5)/2)^33 2100951949499551 a004 Fibonacci(68)/Lucas(25)/(1/2+sqrt(5)/2)^35 2100951949499551 a004 Fibonacci(70)/Lucas(25)/(1/2+sqrt(5)/2)^37 2100951949499551 a004 Fibonacci(72)/Lucas(25)/(1/2+sqrt(5)/2)^39 2100951949499551 a004 Fibonacci(74)/Lucas(25)/(1/2+sqrt(5)/2)^41 2100951949499551 a004 Fibonacci(76)/Lucas(25)/(1/2+sqrt(5)/2)^43 2100951949499551 a004 Fibonacci(78)/Lucas(25)/(1/2+sqrt(5)/2)^45 2100951949499551 a004 Fibonacci(80)/Lucas(25)/(1/2+sqrt(5)/2)^47 2100951949499551 a004 Fibonacci(82)/Lucas(25)/(1/2+sqrt(5)/2)^49 2100951949499551 a004 Fibonacci(84)/Lucas(25)/(1/2+sqrt(5)/2)^51 2100951949499551 a004 Fibonacci(86)/Lucas(25)/(1/2+sqrt(5)/2)^53 2100951949499551 a004 Fibonacci(88)/Lucas(25)/(1/2+sqrt(5)/2)^55 2100951949499551 a004 Fibonacci(90)/Lucas(25)/(1/2+sqrt(5)/2)^57 2100951949499551 a004 Fibonacci(92)/Lucas(25)/(1/2+sqrt(5)/2)^59 2100951949499551 a004 Fibonacci(94)/Lucas(25)/(1/2+sqrt(5)/2)^61 2100951949499551 a004 Fibonacci(96)/Lucas(25)/(1/2+sqrt(5)/2)^63 2100951949499551 a004 Fibonacci(25)*Lucas(50)/(1/2+sqrt(5)/2)^67 2100951949499551 a004 Fibonacci(97)/Lucas(25)/(1/2+sqrt(5)/2)^64 2100951949499551 a004 Fibonacci(98)/Lucas(25)/(1/2+sqrt(5)/2)^65 2100951949499551 a004 Fibonacci(99)/Lucas(25)/(1/2+sqrt(5)/2)^66 2100951949499551 a004 Fibonacci(95)/Lucas(25)/(1/2+sqrt(5)/2)^62 2100951949499551 a004 Fibonacci(93)/Lucas(25)/(1/2+sqrt(5)/2)^60 2100951949499551 a004 Fibonacci(91)/Lucas(25)/(1/2+sqrt(5)/2)^58 2100951949499551 a004 Fibonacci(89)/Lucas(25)/(1/2+sqrt(5)/2)^56 2100951949499551 a004 Fibonacci(87)/Lucas(25)/(1/2+sqrt(5)/2)^54 2100951949499551 a004 Fibonacci(85)/Lucas(25)/(1/2+sqrt(5)/2)^52 2100951949499551 a004 Fibonacci(83)/Lucas(25)/(1/2+sqrt(5)/2)^50 2100951949499551 a004 Fibonacci(81)/Lucas(25)/(1/2+sqrt(5)/2)^48 2100951949499551 a004 Fibonacci(79)/Lucas(25)/(1/2+sqrt(5)/2)^46 2100951949499551 a004 Fibonacci(77)/Lucas(25)/(1/2+sqrt(5)/2)^44 2100951949499551 a004 Fibonacci(75)/Lucas(25)/(1/2+sqrt(5)/2)^42 2100951949499551 a004 Fibonacci(73)/Lucas(25)/(1/2+sqrt(5)/2)^40 2100951949499551 a004 Fibonacci(71)/Lucas(25)/(1/2+sqrt(5)/2)^38 2100951949499551 a004 Fibonacci(69)/Lucas(25)/(1/2+sqrt(5)/2)^36 2100951949499551 a004 Fibonacci(67)/Lucas(25)/(1/2+sqrt(5)/2)^34 2100951949499551 a004 Fibonacci(65)/Lucas(25)/(1/2+sqrt(5)/2)^32 2100951949499551 a004 Fibonacci(63)/Lucas(25)/(1/2+sqrt(5)/2)^30 2100951949499551 a004 Fibonacci(61)/Lucas(25)/(1/2+sqrt(5)/2)^28 2100951949499551 a004 Fibonacci(59)/Lucas(25)/(1/2+sqrt(5)/2)^26 2100951949499551 a004 Fibonacci(57)/Lucas(25)/(1/2+sqrt(5)/2)^24 2100951949499551 a004 Fibonacci(55)/Lucas(25)/(1/2+sqrt(5)/2)^22 2100951949499551 a004 Fibonacci(53)/Lucas(25)/(1/2+sqrt(5)/2)^20 2100951949499551 a004 Fibonacci(51)/Lucas(25)/(1/2+sqrt(5)/2)^18 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^32/Lucas(49) 2100951949499551 a001 75025/17393796001*23725150497407^(1/2) 2100951949499551 a001 75025/17393796001*73681302247^(8/13) 2100951949499551 a004 Fibonacci(49)/Lucas(25)/(1/2+sqrt(5)/2)^16 2100951949499551 a001 75025/28143753123*10749957122^(11/16) 2100951949499551 a001 75025/119218851371*10749957122^(3/4) 2100951949499551 a001 75025/45537549124*10749957122^(17/24) 2100951949499551 a001 75025/312119004989*10749957122^(19/24) 2100951949499551 a001 75025/505019158607*10749957122^(13/16) 2100951949499551 a001 75025/817138163596*10749957122^(5/6) 2100951949499551 a001 75025/2139295485799*10749957122^(7/8) 2100951949499551 a001 75025/5600748293801*10749957122^(11/12) 2100951949499551 a001 75025/9062201101803*10749957122^(15/16) 2100951949499551 a001 75025/14662949395604*10749957122^(23/24) 2100951949499551 a004 Fibonacci(25)*Lucas(48)/(1/2+sqrt(5)/2)^65 2100951949499551 a001 75025/17393796001*10749957122^(2/3) 2100951949499551 a001 75025/6643838879*45537549124^(10/17) 2100951949499551 a001 75025/6643838879*312119004989^(6/11) 2100951949499551 a001 75025/6643838879*14662949395604^(10/21) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^30/Lucas(47) 2100951949499551 a001 222915410851825/10610209857723 2100951949499551 a001 75025/6643838879*192900153618^(5/9) 2100951949499551 a001 75025/6643838879*28143753123^(3/5) 2100951949499551 a004 Fibonacci(47)/Lucas(25)/(1/2+sqrt(5)/2)^14 2100951949499551 a001 75025/6643838879*10749957122^(5/8) 2100951949499551 a001 75025/45537549124*4106118243^(17/23) 2100951949499551 a001 75025/17393796001*4106118243^(16/23) 2100951949499551 a001 75025/119218851371*4106118243^(18/23) 2100951949499551 a001 75025/312119004989*4106118243^(19/23) 2100951949499551 a001 75025/817138163596*4106118243^(20/23) 2100951949499551 a001 75025/2139295485799*4106118243^(21/23) 2100951949499551 a001 75025/5600748293801*4106118243^(22/23) 2100951949499551 a004 Fibonacci(25)*Lucas(46)/(1/2+sqrt(5)/2)^63 2100951949499551 a001 75025/6643838879*4106118243^(15/23) 2100951949499551 a001 75025/2537720636*17393796001^(4/7) 2100951949499551 a001 75025/2537720636*14662949395604^(4/9) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^28/Lucas(45) 2100951949499551 a001 75025/2537720636*505019158607^(1/2) 2100951949499551 a001 75025/2537720636*73681302247^(7/13) 2100951949499551 a004 Fibonacci(45)/Lucas(25)/(1/2+sqrt(5)/2)^12 2100951949499551 a001 75025/2537720636*10749957122^(7/12) 2100951949499551 a001 75025/2537720636*4106118243^(14/23) 2100951949499551 a001 75025/17393796001*1568397607^(8/11) 2100951949499551 a001 75025/6643838879*1568397607^(15/22) 2100951949499551 a001 75025/28143753123*1568397607^(3/4) 2100951949499551 a001 75025/45537549124*1568397607^(17/22) 2100951949499551 a001 75025/119218851371*1568397607^(9/11) 2100951949499551 a001 75025/312119004989*1568397607^(19/22) 2100951949499551 a001 75025/817138163596*1568397607^(10/11) 2100951949499551 a001 75025/2139295485799*1568397607^(21/22) 2100951949499551 a004 Fibonacci(25)*Lucas(44)/(1/2+sqrt(5)/2)^61 2100951949499551 a001 75025/2537720636*1568397607^(7/11) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^26/Lucas(43) 2100951949499551 a001 6504584027185/309601751184 2100951949499551 a001 75025/969323029*73681302247^(1/2) 2100951949499551 a004 Fibonacci(43)/Lucas(25)/(1/2+sqrt(5)/2)^10 2100951949499551 a001 75025/969323029*10749957122^(13/24) 2100951949499551 a001 75025/969323029*4106118243^(13/23) 2100951949499551 a001 75025/969323029*1568397607^(13/22) 2100951949499551 a001 75025/1568397607*599074578^(9/14) 2100951949499551 a001 75025/2537720636*599074578^(2/3) 2100951949499551 a001 75025/6643838879*599074578^(5/7) 2100951949499551 a001 75025/17393796001*599074578^(16/21) 2100951949499551 a001 75025/28143753123*599074578^(11/14) 2100951949499551 a001 75025/45537549124*599074578^(17/21) 2100951949499551 a001 75025/73681302247*599074578^(5/6) 2100951949499551 a001 75025/119218851371*599074578^(6/7) 2100951949499551 a001 75025/312119004989*599074578^(19/21) 2100951949499551 a001 75025/505019158607*599074578^(13/14) 2100951949499551 a001 75025/817138163596*599074578^(20/21) 2100951949499551 a004 Fibonacci(25)*Lucas(42)/(1/2+sqrt(5)/2)^59 2100951949499551 a001 75025/969323029*599074578^(13/21) 2100951949499551 a001 75025/370248451*2537720636^(8/15) 2100951949499551 a001 75025/370248451*45537549124^(8/17) 2100951949499551 a001 75025/370248451*14662949395604^(8/21) 2100951949499551 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^24/Lucas(41) 2100951949499551 a001 12422650078525/591286729879 2100951949499551 a001 75025/370248451*192900153618^(4/9) 2100951949499551 a001 75025/370248451*73681302247^(6/13) 2100951949499551 a004 Fibonacci(41)/Lucas(25)/(1/2+sqrt(5)/2)^8 2100951949499551 a001 75025/370248451*10749957122^(1/2) 2100951949499551 a001 75025/370248451*4106118243^(12/23) 2100951949499551 a001 75025/370248451*1568397607^(6/11) 2100951949499551 a001 75025/370248451*599074578^(4/7) 2100951949499551 a001 75025/599074578*228826127^(5/8) 2100951949499551 a001 75025/969323029*228826127^(13/20) 2100951949499551 a001 75025/2537720636*228826127^(7/10) 2100951949499551 a001 75025/6643838879*228826127^(3/4) 2100951949499551 a001 75025/17393796001*228826127^(4/5) 2100951949499551 a001 75025/45537549124*228826127^(17/20) 2100951949499551 a001 75025/73681302247*228826127^(7/8) 2100951949499551 a001 75025/119218851371*228826127^(9/10) 2100951949499551 a001 75025/312119004989*228826127^(19/20) 2100951949499551 a001 75025/370248451*228826127^(3/5) 2100951949499551 a004 Fibonacci(25)*Lucas(40)/(1/2+sqrt(5)/2)^57 2100951949499552 a001 75025/141422324*312119004989^(2/5) 2100951949499552 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^22/Lucas(39) 2100951949499552 a001 4745030099650/225851433717 2100951949499552 a004 Fibonacci(39)/Lucas(25)/(1/2+sqrt(5)/2)^6 2100951949499552 a001 75025/141422324*10749957122^(11/24) 2100951949499552 a001 75025/141422324*4106118243^(11/23) 2100951949499552 a001 75025/141422324*1568397607^(1/2) 2100951949499552 a001 75025/141422324*599074578^(11/21) 2100951949499552 a001 75025/141422324*228826127^(11/20) 2100951949499552 a001 75025/370248451*87403803^(12/19) 2100951949499552 a001 75025/969323029*87403803^(13/19) 2100951949499552 a001 75025/2537720636*87403803^(14/19) 2100951949499552 a001 75025/6643838879*87403803^(15/19) 2100951949499552 a001 75025/17393796001*87403803^(16/19) 2100951949499552 a001 75025/45537549124*87403803^(17/19) 2100951949499552 a001 75025/119218851371*87403803^(18/19) 2100951949499552 a001 75025/141422324*87403803^(11/19) 2100951949499552 a004 Fibonacci(25)*Lucas(38)/(1/2+sqrt(5)/2)^55 2100951949499552 a001 75025/54018521*2537720636^(4/9) 2100951949499552 a004 Fibonacci(25)*(1/2+sqrt(5)/2)^20/Lucas(37) 2100951949499552 a001 75025/54018521*23725150497407^(5/16) 2100951949499552 a001 75025/54018521*505019158607^(5/14) 2100951949499552 a001 1812440220425/86267571272 2100951949499552 a001 75025/54018521*73681302247^(5/13) 2100951949499552 a001 75025/54018521*28143753123^(2/5) 2100951949499552 a004 Fibonacci(37)/Lucas(25)/(1/2+sqrt(5)/2)^4 2100951949499552 a001 75025/54018521*10749957122^(5/12) 2100951949499552 a001 75025/54018521*4106118243^(10/23) 2100951949499552 a001 75025/54018521*1568397607^(5/11) 2100951949499552 a001 75025/54018521*599074578^(10/21) 2100951949499552 a001 75025/54018521*228826127^(1/2) 2100951949499552 a001 75025/87403803*33385282^(7/12) 2100951949499552 a001 75025/54018521*87403803^(10/19) 2100951949499553 a001 75025/141422324*33385282^(11/18) 2100951949499553 a001 75025/370248451*33385282^(2/3) 2100951949499553 a001 75025/969323029*33385282^(13/18) 2100951949499553 a001 75025/1568397607*33385282^(3/4) 2100951949499553 a001 75025/2537720636*33385282^(7/9) 2100951949499553 a001 75025/6643838879*33385282^(5/6) 2100951949499553 a001 75025/17393796001*33385282^(8/9) 2100951949499553 a001 75025/28143753123*33385282^(11/12) 2100951949499553 a001 75025/54018521*33385282^(5/9) 2100951949499553 a001 75025/45537549124*33385282^(17/18) 2100951949499553 a004 Fibonacci(25)*Lucas(36)/(1/2+sqrt(5)/2)^53 2100951949499556 a001 75025/20633239*141422324^(6/13) 2100951949499556 a001 75025/20633239*2537720636^(2/5) 2100951949499556 a001 75025/20633239*45537549124^(6/17) 2100951949499556 a001 75025/20633239*14662949395604^(2/7) 2100951949499556 a001 75025/20633239*(1/2+1/2*5^(1/2))^18 2100951949499556 a001 75025/20633239*192900153618^(1/3) 2100951949499556 a001 692290561625/32951280099 2100951949499556 a004 Fibonacci(35)/Lucas(25)/(1/2+sqrt(5)/2)^2 2100951949499556 a001 75025/20633239*10749957122^(3/8) 2100951949499556 a001 75025/20633239*4106118243^(9/23) 2100951949499556 a001 75025/20633239*1568397607^(9/22) 2100951949499556 a001 75025/20633239*599074578^(3/7) 2100951949499556 a001 75025/20633239*228826127^(9/20) 2100951949499556 a001 75025/20633239*87403803^(9/19) 2100951949499557 a001 75025/20633239*33385282^(1/2) 2100951949499560 a001 75025/54018521*12752043^(10/17) 2100951949499560 a001 75025/141422324*12752043^(11/17) 2100951949499561 a001 75025/370248451*12752043^(12/17) 2100951949499561 a001 75025/969323029*12752043^(13/17) 2100951949499562 a001 75025/2537720636*12752043^(14/17) 2100951949499563 a001 75025/6643838879*12752043^(15/17) 2100951949499563 a001 75025/20633239*12752043^(9/17) 2100951949499564 a001 75025/17393796001*12752043^(16/17) 2100951949499564 a004 Fibonacci(25)*Lucas(34)/(1/2+sqrt(5)/2)^51 2100951949499585 a001 75025/7881196*(1/2+1/2*5^(1/2))^16 2100951949499585 a001 75025/7881196*23725150497407^(1/4) 2100951949499585 a001 75025/7881196*73681302247^(4/13) 2100951949499585 a001 3524578/167761 2100951949499585 a001 75025/7881196*10749957122^(1/3) 2100951949499585 a001 75025/7881196*4106118243^(8/23) 2100951949499585 a001 75025/7881196*1568397607^(4/11) 2100951949499585 a001 75025/7881196*599074578^(8/21) 2100951949499585 a001 75025/7881196*228826127^(2/5) 2100951949499585 a001 75025/7881196*87403803^(8/19) 2100951949499586 a001 75025/7881196*33385282^(4/9) 2100951949499591 a001 75025/7881196*12752043^(8/17) 2100951949499606 a001 75025/20633239*4870847^(9/16) 2100951949499607 a001 75025/54018521*4870847^(5/8) 2100951949499612 a001 75025/141422324*4870847^(11/16) 2100951949499618 a001 75025/370248451*4870847^(3/4) 2100951949499623 a001 75025/969323029*4870847^(13/16) 2100951949499629 a001 75025/2537720636*4870847^(7/8) 2100951949499629 a001 75025/7881196*4870847^(1/2) 2100951949499634 a001 75025/6643838879*4870847^(15/16) 2100951949499640 a004 Fibonacci(25)*Lucas(32)/(1/2+sqrt(5)/2)^49 2100951949499766 a001 75025/4870847*1860498^(1/2) 2100951949499781 a001 75025/3010349*20633239^(2/5) 2100951949499783 a001 75025/3010349*17393796001^(2/7) 2100951949499783 a001 75025/3010349*14662949395604^(2/9) 2100951949499783 a001 75025/3010349*(1/2+1/2*5^(1/2))^14 2100951949499783 a001 1346269/167761*(1/2+1/2*5^(1/2))^2 2100951949499783 a001 1346269/167761*10749957122^(1/24) 2100951949499783 a001 75025/3010349*10749957122^(7/24) 2100951949499783 a001 1346269/167761*4106118243^(1/23) 2100951949499783 a001 101003831725/4807526976 2100951949499783 a001 75025/3010349*4106118243^(7/23) 2100951949499783 a001 1346269/167761*1568397607^(1/22) 2100951949499783 a001 75025/3010349*1568397607^(7/22) 2100951949499783 a001 1346269/167761*599074578^(1/21) 2100951949499783 a001 75025/3010349*599074578^(1/3) 2100951949499783 a001 1346269/167761*228826127^(1/20) 2100951949499783 a001 75025/3010349*228826127^(7/20) 2100951949499783 a001 1346269/167761*87403803^(1/19) 2100951949499783 a001 75025/3010349*87403803^(7/19) 2100951949499783 a001 1346269/167761*33385282^(1/18) 2100951949499784 a001 75025/3010349*33385282^(7/18) 2100951949499784 a001 1346269/167761*12752043^(1/17) 2100951949499789 a001 75025/3010349*12752043^(7/17) 2100951949499789 a001 1346269/167761*4870847^(1/16) 2100951949499822 a001 75025/3010349*4870847^(7/16) 2100951949499824 a001 1346269/167761*1860498^(1/15) 2100951949499909 a001 75025/7881196*1860498^(8/15) 2100951949499921 a001 75025/20633239*1860498^(3/5) 2100951949499957 a001 75025/54018521*1860498^(2/3) 2100951949499976 a001 75025/87403803*1860498^(7/10) 2100951949499997 a001 75025/141422324*1860498^(11/15) 2100951949500037 a001 75025/370248451*1860498^(4/5) 2100951949500057 a001 75025/599074578*1860498^(5/6) 2100951949500066 a001 75025/3010349*1860498^(7/15) 2100951949500077 a001 75025/969323029*1860498^(13/15) 2100951949500080 a001 1346269/167761*710647^(1/14) 2100951949500098 a001 75025/1568397607*1860498^(9/10) 2100951949500118 a001 75025/2537720636*1860498^(14/15) 2100951949500158 a004 Fibonacci(25)*Lucas(30)/(1/2+sqrt(5)/2)^47 2100951949501128 a001 75025/1149851*7881196^(4/11) 2100951949501140 a001 75025/1149851*141422324^(4/13) 2100951949501140 a001 75025/1149851*2537720636^(4/15) 2100951949501140 a001 75025/1149851*45537549124^(4/17) 2100951949501140 a001 75025/1149851*817138163596^(4/19) 2100951949501140 a001 75025/1149851*14662949395604^(4/21) 2100951949501140 a001 75025/1149851*(1/2+1/2*5^(1/2))^12 2100951949501140 a001 75025/1149851*73681302247^(3/13) 2100951949501140 a001 514229/167761*(1/2+1/2*5^(1/2))^4 2100951949501140 a001 514229/167761*23725150497407^(1/16) 2100951949501140 a001 514229/167761*73681302247^(1/13) 2100951949501140 a001 514229/167761*10749957122^(1/12) 2100951949501140 a001 75025/1149851*10749957122^(1/4) 2100951949501140 a001 514229/167761*4106118243^(2/23) 2100951949501140 a001 75025/1149851*4106118243^(6/23) 2100951949501140 a001 514229/167761*1568397607^(1/11) 2100951949501140 a001 38580030725/1836311903 2100951949501140 a001 75025/1149851*1568397607^(3/11) 2100951949501140 a001 514229/167761*599074578^(2/21) 2100951949501140 a001 75025/1149851*599074578^(2/7) 2100951949501140 a001 514229/167761*228826127^(1/10) 2100951949501140 a001 75025/1149851*228826127^(3/10) 2100951949501140 a001 514229/167761*87403803^(2/19) 2100951949501141 a001 75025/1149851*87403803^(6/19) 2100951949501141 a001 514229/167761*33385282^(1/9) 2100951949501141 a001 75025/1149851*33385282^(1/3) 2100951949501142 a001 514229/167761*12752043^(2/17) 2100951949501145 a001 75025/1149851*12752043^(6/17) 2100951949501151 a001 514229/167761*4870847^(1/8) 2100951949501174 a001 75025/1149851*4870847^(3/8) 2100951949501221 a001 514229/167761*1860498^(2/15) 2100951949501383 a001 75025/1149851*1860498^(2/5) 2100951949501566 a001 105937/620166*103682^(5/12) 2100951949501735 a001 514229/167761*710647^(1/7) 2100951949501863 a001 75025/3010349*710647^(1/2) 2100951949501962 a001 75025/7881196*710647^(4/7) 2100951949501977 a001 1346269/167761*271443^(1/13) 2100951949502231 a001 75025/20633239*710647^(9/14) 2100951949502481 a001 121393/3010349*103682^(13/24) 2100951949502524 a001 75025/54018521*710647^(5/7) 2100951949502671 a001 75025/87403803*710647^(3/4) 2100951949502820 a001 75025/141422324*710647^(11/14) 2100951949502923 a001 75025/1149851*710647^(3/7) 2100951949503117 a001 75025/370248451*710647^(6/7) 2100951949503414 a001 75025/969323029*710647^(13/14) 2100951949503712 a004 Fibonacci(25)*Lucas(28)/(1/2+sqrt(5)/2)^45 2100951949504921 a001 196418/710647*103682^(3/8) 2100951949505527 a001 514229/167761*271443^(2/13) 2100951949505638 a001 832040/4870847*103682^(5/12) 2100951949506232 a001 726103/4250681*103682^(5/12) 2100951949506318 a001 5702887/33385282*103682^(5/12) 2100951949506331 a001 4976784/29134601*103682^(5/12) 2100951949506333 a001 39088169/228826127*103682^(5/12) 2100951949506333 a001 34111385/199691526*103682^(5/12) 2100951949506333 a001 267914296/1568397607*103682^(5/12) 2100951949506333 a001 233802911/1368706081*103682^(5/12) 2100951949506333 a001 1836311903/10749957122*103682^(5/12) 2100951949506333 a001 1602508992/9381251041*103682^(5/12) 2100951949506333 a001 12586269025/73681302247*103682^(5/12) 2100951949506333 a001 10983760033/64300051206*103682^(5/12) 2100951949506333 a001 86267571272/505019158607*103682^(5/12) 2100951949506333 a001 75283811239/440719107401*103682^(5/12) 2100951949506333 a001 2504730781961/14662949395604*103682^(5/12) 2100951949506333 a001 139583862445/817138163596*103682^(5/12) 2100951949506333 a001 53316291173/312119004989*103682^(5/12) 2100951949506333 a001 20365011074/119218851371*103682^(5/12) 2100951949506333 a001 7778742049/45537549124*103682^(5/12) 2100951949506333 a001 2971215073/17393796001*103682^(5/12) 2100951949506333 a001 1134903170/6643838879*103682^(5/12) 2100951949506333 a001 433494437/2537720636*103682^(5/12) 2100951949506333 a001 165580141/969323029*103682^(5/12) 2100951949506333 a001 63245986/370248451*103682^(5/12) 2100951949506334 a001 24157817/141422324*103682^(5/12) 2100951949506339 a001 9227465/54018521*103682^(5/12) 2100951949506372 a001 3524578/20633239*103682^(5/12) 2100951949506599 a001 1346269/7881196*103682^(5/12) 2100951949507606 a001 2178309/167761*103682^(1/24) 2100951949508022 a001 196418/167761*439204^(2/9) 2100951949508154 a001 514229/3010349*103682^(5/12) 2100951949510304 a001 121393/4870847*103682^(7/12) 2100951949510437 a001 196418/167761*7881196^(2/11) 2100951949510441 a001 75025/439204*20633239^(2/7) 2100951949510443 a001 196418/167761*141422324^(2/13) 2100951949510443 a001 75025/439204*2537720636^(2/9) 2100951949510443 a001 196418/167761*2537720636^(2/15) 2100951949510443 a001 75025/439204*312119004989^(2/11) 2100951949510443 a001 75025/439204*(1/2+1/2*5^(1/2))^10 2100951949510443 a001 75025/439204*28143753123^(1/5) 2100951949510443 a001 196418/167761*45537549124^(2/17) 2100951949510443 a001 196418/167761*14662949395604^(2/21) 2100951949510443 a001 196418/167761*(1/2+1/2*5^(1/2))^6 2100951949510443 a001 75025/439204*10749957122^(5/24) 2100951949510443 a001 196418/167761*10749957122^(1/8) 2100951949510443 a001 196418/167761*4106118243^(3/23) 2100951949510443 a001 75025/439204*4106118243^(5/23) 2100951949510443 a001 196418/167761*1568397607^(3/22) 2100951949510443 a001 75025/439204*1568397607^(5/22) 2100951949510443 a001 196418/167761*599074578^(1/7) 2100951949510443 a001 14736260450/701408733 2100951949510443 a001 75025/439204*599074578^(5/21) 2100951949510443 a001 196418/167761*228826127^(3/20) 2100951949510443 a001 75025/439204*228826127^(1/4) 2100951949510443 a001 196418/167761*87403803^(3/19) 2100951949510443 a001 75025/439204*87403803^(5/19) 2100951949510443 a001 196418/167761*33385282^(1/6) 2100951949510443 a001 75025/439204*33385282^(5/18) 2100951949510445 a001 196418/167761*12752043^(3/17) 2100951949510447 a001 75025/439204*12752043^(5/17) 2100951949510459 a001 196418/167761*4870847^(3/16) 2100951949510470 a001 75025/439204*4870847^(5/16) 2100951949510548 a001 317811/3010349*103682^(11/24) 2100951949510564 a001 196418/167761*1860498^(1/5) 2100951949510645 a001 75025/439204*1860498^(1/3) 2100951949511334 a001 196418/167761*710647^(3/14) 2100951949511830 a001 98209/219602*103682^(1/3) 2100951949511929 a001 75025/439204*710647^(5/14) 2100951949513201 a001 75025/1860498*271443^(1/2) 2100951949513873 a001 28657/12752043*64079^(19/23) 2100951949513903 a001 208010/1970299*103682^(11/24) 2100951949514301 a001 75025/1149851*271443^(6/13) 2100951949514393 a001 2178309/20633239*103682^(11/24) 2100951949514464 a001 5702887/54018521*103682^(11/24) 2100951949514475 a001 3732588/35355581*103682^(11/24) 2100951949514476 a001 39088169/370248451*103682^(11/24) 2100951949514476 a001 102334155/969323029*103682^(11/24) 2100951949514476 a001 66978574/634430159*103682^(11/24) 2100951949514476 a001 701408733/6643838879*103682^(11/24) 2100951949514476 a001 1836311903/17393796001*103682^(11/24) 2100951949514476 a001 1201881744/11384387281*103682^(11/24) 2100951949514476 a001 12586269025/119218851371*103682^(11/24) 2100951949514476 a001 32951280099/312119004989*103682^(11/24) 2100951949514476 a001 21566892818/204284540899*103682^(11/24) 2100951949514476 a001 225851433717/2139295485799*103682^(11/24) 2100951949514476 a001 182717648081/1730726404001*103682^(11/24) 2100951949514476 a001 139583862445/1322157322203*103682^(11/24) 2100951949514476 a001 53316291173/505019158607*103682^(11/24) 2100951949514476 a001 10182505537/96450076809*103682^(11/24) 2100951949514476 a001 7778742049/73681302247*103682^(11/24) 2100951949514476 a001 2971215073/28143753123*103682^(11/24) 2100951949514476 a001 567451585/5374978561*103682^(11/24) 2100951949514476 a001 433494437/4106118243*103682^(11/24) 2100951949514476 a001 165580141/1568397607*103682^(11/24) 2100951949514477 a001 31622993/299537289*103682^(11/24) 2100951949514477 a001 24157817/228826127*103682^(11/24) 2100951949514481 a001 9227465/87403803*103682^(11/24) 2100951949514508 a001 1762289/16692641*103682^(11/24) 2100951949514695 a001 1346269/12752043*103682^(11/24) 2100951949515137 a001 75025/3010349*271443^(7/13) 2100951949515977 a001 514229/4870847*103682^(11/24) 2100951949516070 a001 1346269/167761*103682^(1/12) 2100951949517023 a001 196418/167761*271443^(3/13) 2100951949517132 a001 75025/7881196*271443^(8/13) 2100951949518076 a001 726103/90481*39603^(1/11) 2100951949518371 a001 317811/4870847*103682^(1/2) 2100951949518569 a001 121393/7881196*103682^(5/8) 2100951949518814 a001 196418/1149851*103682^(5/12) 2100951949519297 a001 75025/20633239*271443^(9/13) 2100951949521135 a001 23184/51841*39603^(4/11) 2100951949521410 a001 75025/439204*271443^(5/13) 2100951949521486 a001 75025/54018521*271443^(10/13) 2100951949522000 a001 832040/12752043*103682^(1/2) 2100951949522529 a001 311187/4769326*103682^(1/2) 2100951949522607 a001 5702887/87403803*103682^(1/2) 2100951949522618 a001 14930352/228826127*103682^(1/2) 2100951949522619 a001 39088169/599074578*103682^(1/2) 2100951949522620 a001 14619165/224056801*103682^(1/2) 2100951949522620 a001 267914296/4106118243*103682^(1/2) 2100951949522620 a001 701408733/10749957122*103682^(1/2) 2100951949522620 a001 1836311903/28143753123*103682^(1/2) 2100951949522620 a001 686789568/10525900321*103682^(1/2) 2100951949522620 a001 12586269025/192900153618*103682^(1/2) 2100951949522620 a001 32951280099/505019158607*103682^(1/2) 2100951949522620 a001 86267571272/1322157322203*103682^(1/2) 2100951949522620 a001 32264490531/494493258286*103682^(1/2) 2100951949522620 a001 1548008755920/23725150497407*103682^(1/2) 2100951949522620 a001 139583862445/2139295485799*103682^(1/2) 2100951949522620 a001 53316291173/817138163596*103682^(1/2) 2100951949522620 a001 20365011074/312119004989*103682^(1/2) 2100951949522620 a001 7778742049/119218851371*103682^(1/2) 2100951949522620 a001 2971215073/45537549124*103682^(1/2) 2100951949522620 a001 1134903170/17393796001*103682^(1/2) 2100951949522620 a001 433494437/6643838879*103682^(1/2) 2100951949522620 a001 165580141/2537720636*103682^(1/2) 2100951949522620 a001 63245986/969323029*103682^(1/2) 2100951949522620 a001 24157817/370248451*103682^(1/2) 2100951949522625 a001 9227465/141422324*103682^(1/2) 2100951949522654 a001 3524578/54018521*103682^(1/2) 2100951949522857 a001 1346269/20633239*103682^(1/2) 2100951949523374 a001 75640/15251*103682^(1/8) 2100951949523679 a001 75025/141422324*271443^(11/13) 2100951949524243 a001 514229/7881196*103682^(1/2) 2100951949524761 a001 98209/930249*103682^(11/24) 2100951949525872 a001 75025/370248451*271443^(12/13) 2100951949526637 a001 317811/7881196*103682^(13/24) 2100951949526666 a001 121393/12752043*103682^(2/3) 2100951949528040 a001 121393/167761*103682^(7/24) 2100951949528065 a004 Fibonacci(25)*Lucas(26)/(1/2+sqrt(5)/2)^43 2100951949530161 a001 75640/1875749*103682^(13/24) 2100951949530675 a001 2178309/54018521*103682^(13/24) 2100951949530750 a001 5702887/141422324*103682^(13/24) 2100951949530761 a001 14930352/370248451*103682^(13/24) 2100951949530763 a001 39088169/969323029*103682^(13/24) 2100951949530763 a001 9303105/230701876*103682^(13/24) 2100951949530763 a001 267914296/6643838879*103682^(13/24) 2100951949530763 a001 701408733/17393796001*103682^(13/24) 2100951949530763 a001 1836311903/45537549124*103682^(13/24) 2100951949530763 a001 4807526976/119218851371*103682^(13/24) 2100951949530763 a001 1144206275/28374454999*103682^(13/24) 2100951949530763 a001 32951280099/817138163596*103682^(13/24) 2100951949530763 a001 86267571272/2139295485799*103682^(13/24) 2100951949530763 a001 225851433717/5600748293801*103682^(13/24) 2100951949530763 a001 365435296162/9062201101803*103682^(13/24) 2100951949530763 a001 139583862445/3461452808002*103682^(13/24) 2100951949530763 a001 53316291173/1322157322203*103682^(13/24) 2100951949530763 a001 20365011074/505019158607*103682^(13/24) 2100951949530763 a001 7778742049/192900153618*103682^(13/24) 2100951949530763 a001 2971215073/73681302247*103682^(13/24) 2100951949530763 a001 1134903170/28143753123*103682^(13/24) 2100951949530763 a001 433494437/10749957122*103682^(13/24) 2100951949530763 a001 165580141/4106118243*103682^(13/24) 2100951949530763 a001 63245986/1568397607*103682^(13/24) 2100951949530764 a001 24157817/599074578*103682^(13/24) 2100951949530768 a001 9227465/228826127*103682^(13/24) 2100951949530797 a001 3524578/87403803*103682^(13/24) 2100951949530993 a001 1346269/33385282*103682^(13/24) 2100951949532339 a001 514229/12752043*103682^(13/24) 2100951949533713 a001 514229/167761*103682^(1/6) 2100951949533743 a001 196418/3010349*103682^(1/2) 2100951949534733 a001 105937/4250681*103682^(7/12) 2100951949534827 a001 121393/20633239*103682^(17/24) 2100951949536108 a001 317811/167761*103682^(5/24) 2100951949536166 a001 28657/7881196*64079^(18/23) 2100951949538297 a001 416020/16692641*103682^(7/12) 2100951949538817 a001 726103/29134601*103682^(7/12) 2100951949538893 a001 5702887/228826127*103682^(7/12) 2100951949538904 a001 829464/33281921*103682^(7/12) 2100951949538906 a001 39088169/1568397607*103682^(7/12) 2100951949538906 a001 34111385/1368706081*103682^(7/12) 2100951949538906 a001 133957148/5374978561*103682^(7/12) 2100951949538906 a001 233802911/9381251041*103682^(7/12) 2100951949538906 a001 1836311903/73681302247*103682^(7/12) 2100951949538906 a001 267084832/10716675201*103682^(7/12) 2100951949538906 a001 12586269025/505019158607*103682^(7/12) 2100951949538906 a001 10983760033/440719107401*103682^(7/12) 2100951949538906 a001 43133785636/1730726404001*103682^(7/12) 2100951949538906 a001 182717648081/7331474697802*103682^(7/12) 2100951949538906 a001 139583862445/5600748293801*103682^(7/12) 2100951949538906 a001 53316291173/2139295485799*103682^(7/12) 2100951949538906 a001 10182505537/408569081798*103682^(7/12) 2100951949538906 a001 7778742049/312119004989*103682^(7/12) 2100951949538906 a001 2971215073/119218851371*103682^(7/12) 2100951949538906 a001 567451585/22768774562*103682^(7/12) 2100951949538906 a001 433494437/17393796001*103682^(7/12) 2100951949538906 a001 165580141/6643838879*103682^(7/12) 2100951949538906 a001 31622993/1268860318*103682^(7/12) 2100951949538907 a001 24157817/969323029*103682^(7/12) 2100951949538911 a001 9227465/370248451*103682^(7/12) 2100951949538940 a001 1762289/70711162*103682^(7/12) 2100951949539139 a001 1346269/54018521*103682^(7/12) 2100951949540500 a001 514229/20633239*103682^(7/12) 2100951949540910 a001 28657/103682*64079^(9/23) 2100951949541566 a001 196418/4870847*103682^(13/24) 2100951949542505 a001 5702887/710647*39603^(1/11) 2100951949542894 a001 10959/711491*103682^(5/8) 2100951949542963 a001 121393/33385282*103682^(3/4) 2100951949544327 a001 75025/271443*103682^(3/8) 2100951949544798 a001 98209/51841*39603^(5/22) 2100951949546069 a001 829464/103361*39603^(1/11) 2100951949546443 a001 832040/54018521*103682^(5/8) 2100951949546589 a001 39088169/4870847*39603^(1/11) 2100951949546665 a001 34111385/4250681*39603^(1/11) 2100951949546676 a001 133957148/16692641*39603^(1/11) 2100951949546678 a001 233802911/29134601*39603^(1/11) 2100951949546678 a001 1836311903/228826127*39603^(1/11) 2100951949546678 a001 267084832/33281921*39603^(1/11) 2100951949546678 a001 12586269025/1568397607*39603^(1/11) 2100951949546678 a001 10983760033/1368706081*39603^(1/11) 2100951949546678 a001 43133785636/5374978561*39603^(1/11) 2100951949546678 a001 75283811239/9381251041*39603^(1/11) 2100951949546678 a001 591286729879/73681302247*39603^(1/11) 2100951949546678 a001 86000486440/10716675201*39603^(1/11) 2100951949546678 a001 4052739537881/505019158607*39603^(1/11) 2100951949546678 a001 3278735159921/408569081798*39603^(1/11) 2100951949546678 a001 2504730781961/312119004989*39603^(1/11) 2100951949546678 a001 956722026041/119218851371*39603^(1/11) 2100951949546678 a001 182717648081/22768774562*39603^(1/11) 2100951949546678 a001 139583862445/17393796001*39603^(1/11) 2100951949546678 a001 53316291173/6643838879*39603^(1/11) 2100951949546678 a001 10182505537/1268860318*39603^(1/11) 2100951949546678 a001 7778742049/969323029*39603^(1/11) 2100951949546678 a001 2971215073/370248451*39603^(1/11) 2100951949546678 a001 567451585/70711162*39603^(1/11) 2100951949546679 a001 433494437/54018521*39603^(1/11) 2100951949546683 a001 165580141/20633239*39603^(1/11) 2100951949546712 a001 31622993/3940598*39603^(1/11) 2100951949546911 a001 24157817/3010349*39603^(1/11) 2100951949546961 a001 2178309/141422324*103682^(5/8) 2100951949547037 a001 5702887/370248451*103682^(5/8) 2100951949547048 a001 14930352/969323029*103682^(5/8) 2100951949547049 a001 39088169/2537720636*103682^(5/8) 2100951949547049 a001 102334155/6643838879*103682^(5/8) 2100951949547050 a001 9238424/599786069*103682^(5/8) 2100951949547050 a001 701408733/45537549124*103682^(5/8) 2100951949547050 a001 1836311903/119218851371*103682^(5/8) 2100951949547050 a001 4807526976/312119004989*103682^(5/8) 2100951949547050 a001 12586269025/817138163596*103682^(5/8) 2100951949547050 a001 32951280099/2139295485799*103682^(5/8) 2100951949547050 a001 86267571272/5600748293801*103682^(5/8) 2100951949547050 a001 7787980473/505618944676*103682^(5/8) 2100951949547050 a001 365435296162/23725150497407*103682^(5/8) 2100951949547050 a001 139583862445/9062201101803*103682^(5/8) 2100951949547050 a001 53316291173/3461452808002*103682^(5/8) 2100951949547050 a001 20365011074/1322157322203*103682^(5/8) 2100951949547050 a001 7778742049/505019158607*103682^(5/8) 2100951949547050 a001 2971215073/192900153618*103682^(5/8) 2100951949547050 a001 1134903170/73681302247*103682^(5/8) 2100951949547050 a001 433494437/28143753123*103682^(5/8) 2100951949547050 a001 165580141/10749957122*103682^(5/8) 2100951949547050 a001 63245986/4106118243*103682^(5/8) 2100951949547050 a001 24157817/1568397607*103682^(5/8) 2100951949547054 a001 9227465/599074578*103682^(5/8) 2100951949547083 a001 3524578/228826127*103682^(5/8) 2100951949547281 a001 1346269/87403803*103682^(5/8) 2100951949548272 a001 9227465/1149851*39603^(1/11) 2100951949548637 a001 514229/33385282*103682^(5/8) 2100951949549831 a001 98209/3940598*103682^(7/12) 2100951949551031 a001 317811/33385282*103682^(2/3) 2100951949551109 a001 121393/54018521*103682^(19/24) 2100951949554586 a001 832040/87403803*103682^(2/3) 2100951949555104 a001 46347/4868641*103682^(2/3) 2100951949555180 a001 5702887/599074578*103682^(2/3) 2100951949555191 a001 14930352/1568397607*103682^(2/3) 2100951949555192 a001 39088169/4106118243*103682^(2/3) 2100951949555193 a001 102334155/10749957122*103682^(2/3) 2100951949555193 a001 267914296/28143753123*103682^(2/3) 2100951949555193 a001 701408733/73681302247*103682^(2/3) 2100951949555193 a001 1836311903/192900153618*103682^(2/3) 2100951949555193 a001 102287808/10745088481*103682^(2/3) 2100951949555193 a001 12586269025/1322157322203*103682^(2/3) 2100951949555193 a001 32951280099/3461452808002*103682^(2/3) 2100951949555193 a001 86267571272/9062201101803*103682^(2/3) 2100951949555193 a001 225851433717/23725150497407*103682^(2/3) 2100951949555193 a001 139583862445/14662949395604*103682^(2/3) 2100951949555193 a001 53316291173/5600748293801*103682^(2/3) 2100951949555193 a001 20365011074/2139295485799*103682^(2/3) 2100951949555193 a001 7778742049/817138163596*103682^(2/3) 2100951949555193 a001 2971215073/312119004989*103682^(2/3) 2100951949555193 a001 1134903170/119218851371*103682^(2/3) 2100951949555193 a001 433494437/45537549124*103682^(2/3) 2100951949555193 a001 165580141/17393796001*103682^(2/3) 2100951949555193 a001 63245986/6643838879*103682^(2/3) 2100951949555193 a001 24157817/2537720636*103682^(2/3) 2100951949555198 a001 9227465/969323029*103682^(2/3) 2100951949555227 a001 3524578/370248451*103682^(2/3) 2100951949555425 a001 1346269/141422324*103682^(2/3) 2100951949556783 a001 514229/54018521*103682^(2/3) 2100951949557603 a001 1762289/219602*39603^(1/11) 2100951949557928 a001 196418/12752043*103682^(5/8) 2100951949558290 a001 28657/4870847*64079^(17/23) 2100951949559177 a001 317811/54018521*103682^(17/24) 2100951949559251 a001 121393/87403803*103682^(5/6) 2100951949559302 a001 196418/167761*103682^(1/4) 2100951949560352 a001 2178309/167761*39603^(1/22) 2100951949562729 a001 208010/35355581*103682^(17/24) 2100951949563247 a001 2178309/370248451*103682^(17/24) 2100951949563323 a001 5702887/969323029*103682^(17/24) 2100951949563334 a001 196452/33391061*103682^(17/24) 2100951949563336 a001 39088169/6643838879*103682^(17/24) 2100951949563336 a001 102334155/17393796001*103682^(17/24) 2100951949563336 a001 66978574/11384387281*103682^(17/24) 2100951949563336 a001 701408733/119218851371*103682^(17/24) 2100951949563336 a001 1836311903/312119004989*103682^(17/24) 2100951949563336 a001 1201881744/204284540899*103682^(17/24) 2100951949563336 a001 12586269025/2139295485799*103682^(17/24) 2100951949563336 a001 32951280099/5600748293801*103682^(17/24) 2100951949563336 a001 1135099622/192933544679*103682^(17/24) 2100951949563336 a001 139583862445/23725150497407*103682^(17/24) 2100951949563336 a001 53316291173/9062201101803*103682^(17/24) 2100951949563336 a001 10182505537/1730726404001*103682^(17/24) 2100951949563336 a001 7778742049/1322157322203*103682^(17/24) 2100951949563336 a001 2971215073/505019158607*103682^(17/24) 2100951949563336 a001 567451585/96450076809*103682^(17/24) 2100951949563336 a001 433494437/73681302247*103682^(17/24) 2100951949563336 a001 165580141/28143753123*103682^(17/24) 2100951949563336 a001 31622993/5374978561*103682^(17/24) 2100951949563337 a001 24157817/4106118243*103682^(17/24) 2100951949563341 a001 9227465/1568397607*103682^(17/24) 2100951949563370 a001 1762289/299537289*103682^(17/24) 2100951949563568 a001 1346269/228826127*103682^(17/24) 2100951949564925 a001 514229/87403803*103682^(17/24) 2100951949566089 a001 196418/20633239*103682^(2/3) 2100951949566281 a001 121393/103682*39603^(3/11) 2100951949567319 a001 105937/29134601*103682^(3/4) 2100951949567395 a001 233/271444*103682^(7/8) 2100951949570872 a001 832040/228826127*103682^(3/4) 2100951949571391 a001 726103/199691526*103682^(3/4) 2100951949571466 a001 5702887/1568397607*103682^(3/4) 2100951949571477 a001 4976784/1368706081*103682^(3/4) 2100951949571479 a001 39088169/10749957122*103682^(3/4) 2100951949571479 a001 831985/228811001*103682^(3/4) 2100951949571479 a001 267914296/73681302247*103682^(3/4) 2100951949571479 a001 233802911/64300051206*103682^(3/4) 2100951949571479 a001 1836311903/505019158607*103682^(3/4) 2100951949571479 a001 1602508992/440719107401*103682^(3/4) 2100951949571479 a001 12586269025/3461452808002*103682^(3/4) 2100951949571479 a001 10983760033/3020733700601*103682^(3/4) 2100951949571479 a001 86267571272/23725150497407*103682^(3/4) 2100951949571479 a001 53316291173/14662949395604*103682^(3/4) 2100951949571479 a001 20365011074/5600748293801*103682^(3/4) 2100951949571479 a001 7778742049/2139295485799*103682^(3/4) 2100951949571479 a001 2971215073/817138163596*103682^(3/4) 2100951949571479 a001 1134903170/312119004989*103682^(3/4) 2100951949571479 a001 433494437/119218851371*103682^(3/4) 2100951949571479 a001 165580141/45537549124*103682^(3/4) 2100951949571479 a001 63245986/17393796001*103682^(3/4) 2100951949571480 a001 24157817/6643838879*103682^(3/4) 2100951949571484 a001 9227465/2537720636*103682^(3/4) 2100951949571513 a001 3524578/969323029*103682^(3/4) 2100951949571711 a001 1346269/370248451*103682^(3/4) 2100951949573068 a001 514229/141422324*103682^(3/4) 2100951949574202 a001 75025/167761*(1/2+1/2*5^(1/2))^8 2100951949574202 a001 75025/167761*23725150497407^(1/8) 2100951949574202 a001 75025/167761*73681302247^(2/13) 2100951949574202 a001 75025/167761*10749957122^(1/6) 2100951949574202 a001 75025/167761*4106118243^(4/23) 2100951949574202 a001 75025/167761*1568397607^(2/11) 2100951949574202 a001 75025/167761*599074578^(4/21) 2100951949574202 a001 5628750625/267914296 2100951949574202 a001 75025/167761*228826127^(1/5) 2100951949574202 a001 75025/167761*87403803^(4/19) 2100951949574203 a001 75025/167761*33385282^(2/9) 2100951949574205 a001 75025/167761*12752043^(4/17) 2100951949574224 a001 75025/167761*4870847^(1/4) 2100951949574226 a001 98209/16692641*103682^(17/24) 2100951949574364 a001 75025/167761*1860498^(4/15) 2100951949575391 a001 75025/167761*710647^(2/7) 2100951949575463 a001 317811/141422324*103682^(19/24) 2100951949575538 a001 121393/228826127*103682^(11/12) 2100951949579016 a001 832040/370248451*103682^(19/24) 2100951949579285 a001 1346269/271443*39603^(3/22) 2100951949579534 a001 2178309/969323029*103682^(19/24) 2100951949579610 a001 5702887/2537720636*103682^(19/24) 2100951949579621 a001 14930352/6643838879*103682^(19/24) 2100951949579622 a001 39088169/17393796001*103682^(19/24) 2100951949579623 a001 102334155/45537549124*103682^(19/24) 2100951949579623 a001 267914296/119218851371*103682^(19/24) 2100951949579623 a001 3524667/1568437211*103682^(19/24) 2100951949579623 a001 1836311903/817138163596*103682^(19/24) 2100951949579623 a001 4807526976/2139295485799*103682^(19/24) 2100951949579623 a001 12586269025/5600748293801*103682^(19/24) 2100951949579623 a001 32951280099/14662949395604*103682^(19/24) 2100951949579623 a001 53316291173/23725150497407*103682^(19/24) 2100951949579623 a001 20365011074/9062201101803*103682^(19/24) 2100951949579623 a001 7778742049/3461452808002*103682^(19/24) 2100951949579623 a001 2971215073/1322157322203*103682^(19/24) 2100951949579623 a001 1134903170/505019158607*103682^(19/24) 2100951949579623 a001 433494437/192900153618*103682^(19/24) 2100951949579623 a001 165580141/73681302247*103682^(19/24) 2100951949579623 a001 63245986/28143753123*103682^(19/24) 2100951949579623 a001 24157817/10749957122*103682^(19/24) 2100951949579627 a001 9227465/4106118243*103682^(19/24) 2100951949579656 a001 3524578/1568397607*103682^(19/24) 2100951949579854 a001 1346269/599074578*103682^(19/24) 2100951949580856 a001 28657/3010349*64079^(16/23) 2100951949581212 a001 514229/228826127*103682^(19/24) 2100951949582371 a001 196418/54018521*103682^(3/4) 2100951949582976 a001 75025/167761*271443^(4/13) 2100951949583606 a001 317811/228826127*103682^(5/6) 2100951949583682 a001 121393/370248451*103682^(23/24) 2100951949584967 a001 75025/710647*103682^(11/24) 2100951949585403 a001 46368/64079*64079^(7/23) 2100951949587159 a001 416020/299537289*103682^(5/6) 2100951949587677 a001 311187/224056801*103682^(5/6) 2100951949587753 a001 5702887/4106118243*103682^(5/6) 2100951949587764 a001 7465176/5374978561*103682^(5/6) 2100951949587766 a001 39088169/28143753123*103682^(5/6) 2100951949587766 a001 14619165/10525900321*103682^(5/6) 2100951949587766 a001 133957148/96450076809*103682^(5/6) 2100951949587766 a001 701408733/505019158607*103682^(5/6) 2100951949587766 a001 1836311903/1322157322203*103682^(5/6) 2100951949587766 a001 14930208/10749853441*103682^(5/6) 2100951949587766 a001 12586269025/9062201101803*103682^(5/6) 2100951949587766 a001 32951280099/23725150497407*103682^(5/6) 2100951949587766 a001 10182505537/7331474697802*103682^(5/6) 2100951949587766 a001 7778742049/5600748293801*103682^(5/6) 2100951949587766 a001 2971215073/2139295485799*103682^(5/6) 2100951949587766 a001 567451585/408569081798*103682^(5/6) 2100951949587766 a001 433494437/312119004989*103682^(5/6) 2100951949587766 a001 165580141/119218851371*103682^(5/6) 2100951949587766 a001 31622993/22768774562*103682^(5/6) 2100951949587767 a001 24157817/17393796001*103682^(5/6) 2100951949587771 a001 9227465/6643838879*103682^(5/6) 2100951949587800 a001 1762289/1268860318*103682^(5/6) 2100951949587998 a001 1346269/969323029*103682^(5/6) 2100951949589355 a001 514229/370248451*103682^(5/6) 2100951949590514 a001 196418/87403803*103682^(19/24) 2100951949591749 a001 317811/370248451*103682^(7/8) 2100951949591825 a004 Fibonacci(26)*Lucas(24)/(1/2+sqrt(5)/2)^42 2100951949591875 a001 75025/439204*103682^(5/12) 2100951949591934 a001 5473/3940598*24476^(20/21) 2100951949595302 a001 832040/969323029*103682^(7/8) 2100951949595821 a001 2178309/2537720636*103682^(7/8) 2100951949595896 a001 5702887/6643838879*103682^(7/8) 2100951949595907 a001 14930352/17393796001*103682^(7/8) 2100951949595909 a001 39088169/45537549124*103682^(7/8) 2100951949595909 a001 102334155/119218851371*103682^(7/8) 2100951949595909 a001 267914296/312119004989*103682^(7/8) 2100951949595909 a001 701408733/817138163596*103682^(7/8) 2100951949595909 a001 1836311903/2139295485799*103682^(7/8) 2100951949595909 a001 4807526976/5600748293801*103682^(7/8) 2100951949595909 a001 12586269025/14662949395604*103682^(7/8) 2100951949595909 a001 20365011074/23725150497407*103682^(7/8) 2100951949595909 a001 7778742049/9062201101803*103682^(7/8) 2100951949595909 a001 2971215073/3461452808002*103682^(7/8) 2100951949595909 a001 1134903170/1322157322203*103682^(7/8) 2100951949595909 a001 433494437/505019158607*103682^(7/8) 2100951949595909 a001 165580141/192900153618*103682^(7/8) 2100951949595909 a001 63245986/73681302247*103682^(7/8) 2100951949595910 a001 24157817/28143753123*103682^(7/8) 2100951949595914 a001 9227465/10749957122*103682^(7/8) 2100951949595943 a001 3524578/4106118243*103682^(7/8) 2100951949596141 a001 1346269/1568397607*103682^(7/8) 2100951949597498 a001 514229/599074578*103682^(7/8) 2100951949598657 a001 98209/70711162*103682^(5/6) 2100951949598860 a001 75025/1149851*103682^(1/2) 2100951949599892 a001 377/710646*103682^(11/12) 2100951949602264 a001 28657/1860498*64079^(15/23) 2100951949603441 a001 3524578/710647*39603^(3/22) 2100951949603445 a001 832040/1568397607*103682^(11/12) 2100951949603964 a001 726103/1368706081*103682^(11/12) 2100951949604039 a001 5702887/10749957122*103682^(11/12) 2100951949604050 a001 4976784/9381251041*103682^(11/12) 2100951949604052 a001 39088169/73681302247*103682^(11/12) 2100951949604052 a001 34111385/64300051206*103682^(11/12) 2100951949604052 a001 267914296/505019158607*103682^(11/12) 2100951949604052 a001 233802911/440719107401*103682^(11/12) 2100951949604052 a001 1836311903/3461452808002*103682^(11/12) 2100951949604052 a001 1602508992/3020733700601*103682^(11/12) 2100951949604052 a001 12586269025/23725150497407*103682^(11/12) 2100951949604052 a001 7778742049/14662949395604*103682^(11/12) 2100951949604052 a001 2971215073/5600748293801*103682^(11/12) 2100951949604052 a001 1134903170/2139295485799*103682^(11/12) 2100951949604052 a001 433494437/817138163596*103682^(11/12) 2100951949604052 a001 165580141/312119004989*103682^(11/12) 2100951949604052 a001 63245986/119218851371*103682^(11/12) 2100951949604053 a001 24157817/45537549124*103682^(11/12) 2100951949604057 a001 9227465/17393796001*103682^(11/12) 2100951949604086 a001 3524578/6643838879*103682^(11/12) 2100951949604154 a001 514229/64079*24476^(2/21) 2100951949604284 a001 1346269/2537720636*103682^(11/12) 2100951949604807 a001 75025/1860498*103682^(13/24) 2100951949605641 a001 514229/969323029*103682^(11/12) 2100951949606800 a001 196418/228826127*103682^(7/8) 2100951949606965 a001 9227465/1860498*39603^(3/22) 2100951949607479 a001 24157817/4870847*39603^(3/22) 2100951949607554 a001 63245986/12752043*39603^(3/22) 2100951949607565 a001 165580141/33385282*39603^(3/22) 2100951949607567 a001 433494437/87403803*39603^(3/22) 2100951949607567 a001 1134903170/228826127*39603^(3/22) 2100951949607567 a001 2971215073/599074578*39603^(3/22) 2100951949607567 a001 7778742049/1568397607*39603^(3/22) 2100951949607567 a001 20365011074/4106118243*39603^(3/22) 2100951949607567 a001 53316291173/10749957122*39603^(3/22) 2100951949607567 a001 139583862445/28143753123*39603^(3/22) 2100951949607567 a001 365435296162/73681302247*39603^(3/22) 2100951949607567 a001 956722026041/192900153618*39603^(3/22) 2100951949607567 a001 2504730781961/505019158607*39603^(3/22) 2100951949607567 a001 10610209857723/2139295485799*39603^(3/22) 2100951949607567 a001 4052739537881/817138163596*39603^(3/22) 2100951949607567 a001 140728068720/28374454999*39603^(3/22) 2100951949607567 a001 591286729879/119218851371*39603^(3/22) 2100951949607567 a001 225851433717/45537549124*39603^(3/22) 2100951949607567 a001 86267571272/17393796001*39603^(3/22) 2100951949607567 a001 32951280099/6643838879*39603^(3/22) 2100951949607567 a001 1144206275/230701876*39603^(3/22) 2100951949607567 a001 4807526976/969323029*39603^(3/22) 2100951949607567 a001 1836311903/370248451*39603^(3/22) 2100951949607567 a001 701408733/141422324*39603^(3/22) 2100951949607568 a001 267914296/54018521*39603^(3/22) 2100951949607572 a001 9303105/1875749*39603^(3/22) 2100951949607601 a001 39088169/7881196*39603^(3/22) 2100951949607797 a001 14930352/3010349*39603^(3/22) 2100951949608035 a001 317811/969323029*103682^(23/24) 2100951949609143 a001 5702887/1149851*39603^(3/22) 2100951949611589 a001 610/1860499*103682^(23/24) 2100951949612107 a001 2178309/6643838879*103682^(23/24) 2100951949612183 a001 5702887/17393796001*103682^(23/24) 2100951949612194 a001 3732588/11384387281*103682^(23/24) 2100951949612195 a001 39088169/119218851371*103682^(23/24) 2100951949612196 a001 9303105/28374454999*103682^(23/24) 2100951949612196 a001 66978574/204284540899*103682^(23/24) 2100951949612196 a001 701408733/2139295485799*103682^(23/24) 2100951949612196 a001 1836311903/5600748293801*103682^(23/24) 2100951949612196 a001 1201881744/3665737348901*103682^(23/24) 2100951949612196 a001 7778742049/23725150497407*103682^(23/24) 2100951949612196 a001 2971215073/9062201101803*103682^(23/24) 2100951949612196 a001 567451585/1730726404001*103682^(23/24) 2100951949612196 a001 433494437/1322157322203*103682^(23/24) 2100951949612196 a001 165580141/505019158607*103682^(23/24) 2100951949612196 a001 31622993/96450076809*103682^(23/24) 2100951949612196 a001 24157817/73681302247*103682^(23/24) 2100951949612201 a001 9227465/28143753123*103682^(23/24) 2100951949612229 a001 1762289/5374978561*103682^(23/24) 2100951949612427 a001 1346269/4106118243*103682^(23/24) 2100951949613785 a001 514229/1568397607*103682^(23/24) 2100951949613789 a001 75025/3010349*103682^(7/12) 2100951949614944 a001 196418/370248451*103682^(11/12) 2100951949616179 a004 Fibonacci(28)*Lucas(24)/(1/2+sqrt(5)/2)^44 2100951949618370 a001 2178309/439204*39603^(3/22) 2100951949619732 a004 Fibonacci(30)*Lucas(24)/(1/2+sqrt(5)/2)^46 2100951949620250 a004 Fibonacci(32)*Lucas(24)/(1/2+sqrt(5)/2)^48 2100951949620326 a004 Fibonacci(34)*Lucas(24)/(1/2+sqrt(5)/2)^50 2100951949620337 a004 Fibonacci(36)*Lucas(24)/(1/2+sqrt(5)/2)^52 2100951949620339 a004 Fibonacci(38)*Lucas(24)/(1/2+sqrt(5)/2)^54 2100951949620339 a004 Fibonacci(40)*Lucas(24)/(1/2+sqrt(5)/2)^56 2100951949620339 a004 Fibonacci(42)*Lucas(24)/(1/2+sqrt(5)/2)^58 2100951949620339 a004 Fibonacci(44)*Lucas(24)/(1/2+sqrt(5)/2)^60 2100951949620339 a004 Fibonacci(46)*Lucas(24)/(1/2+sqrt(5)/2)^62 2100951949620339 a004 Fibonacci(48)*Lucas(24)/(1/2+sqrt(5)/2)^64 2100951949620339 a004 Fibonacci(50)*Lucas(24)/(1/2+sqrt(5)/2)^66 2100951949620339 a004 Fibonacci(52)*Lucas(24)/(1/2+sqrt(5)/2)^68 2100951949620339 a004 Fibonacci(54)*Lucas(24)/(1/2+sqrt(5)/2)^70 2100951949620339 a004 Fibonacci(56)*Lucas(24)/(1/2+sqrt(5)/2)^72 2100951949620339 a004 Fibonacci(58)*Lucas(24)/(1/2+sqrt(5)/2)^74 2100951949620339 a004 Fibonacci(60)*Lucas(24)/(1/2+sqrt(5)/2)^76 2100951949620339 a004 Fibonacci(62)*Lucas(24)/(1/2+sqrt(5)/2)^78 2100951949620339 a004 Fibonacci(64)*Lucas(24)/(1/2+sqrt(5)/2)^80 2100951949620339 a004 Fibonacci(66)*Lucas(24)/(1/2+sqrt(5)/2)^82 2100951949620339 a004 Fibonacci(68)*Lucas(24)/(1/2+sqrt(5)/2)^84 2100951949620339 a004 Fibonacci(70)*Lucas(24)/(1/2+sqrt(5)/2)^86 2100951949620339 a004 Fibonacci(72)*Lucas(24)/(1/2+sqrt(5)/2)^88 2100951949620339 a004 Fibonacci(74)*Lucas(24)/(1/2+sqrt(5)/2)^90 2100951949620339 a004 Fibonacci(76)*Lucas(24)/(1/2+sqrt(5)/2)^92 2100951949620339 a004 Fibonacci(78)*Lucas(24)/(1/2+sqrt(5)/2)^94 2100951949620339 a004 Fibonacci(80)*Lucas(24)/(1/2+sqrt(5)/2)^96 2100951949620339 a004 Fibonacci(82)*Lucas(24)/(1/2+sqrt(5)/2)^98 2100951949620339 a004 Fibonacci(84)*Lucas(24)/(1/2+sqrt(5)/2)^100 2100951949620339 a004 Fibonacci(83)*Lucas(24)/(1/2+sqrt(5)/2)^99 2100951949620339 a004 Fibonacci(81)*Lucas(24)/(1/2+sqrt(5)/2)^97 2100951949620339 a004 Fibonacci(79)*Lucas(24)/(1/2+sqrt(5)/2)^95 2100951949620339 a004 Fibonacci(77)*Lucas(24)/(1/2+sqrt(5)/2)^93 2100951949620339 a004 Fibonacci(75)*Lucas(24)/(1/2+sqrt(5)/2)^91 2100951949620339 a004 Fibonacci(73)*Lucas(24)/(1/2+sqrt(5)/2)^89 2100951949620339 a004 Fibonacci(71)*Lucas(24)/(1/2+sqrt(5)/2)^87 2100951949620339 a004 Fibonacci(69)*Lucas(24)/(1/2+sqrt(5)/2)^85 2100951949620339 a004 Fibonacci(67)*Lucas(24)/(1/2+sqrt(5)/2)^83 2100951949620339 a004 Fibonacci(65)*Lucas(24)/(1/2+sqrt(5)/2)^81 2100951949620339 a004 Fibonacci(63)*Lucas(24)/(1/2+sqrt(5)/2)^79 2100951949620339 a004 Fibonacci(61)*Lucas(24)/(1/2+sqrt(5)/2)^77 2100951949620339 a004 Fibonacci(59)*Lucas(24)/(1/2+sqrt(5)/2)^75 2100951949620339 a004 Fibonacci(57)*Lucas(24)/(1/2+sqrt(5)/2)^73 2100951949620339 a004 Fibonacci(55)*Lucas(24)/(1/2+sqrt(5)/2)^71 2100951949620339 a004 Fibonacci(53)*Lucas(24)/(1/2+sqrt(5)/2)^69 2100951949620339 a004 Fibonacci(51)*Lucas(24)/(1/2+sqrt(5)/2)^67 2100951949620339 a004 Fibonacci(49)*Lucas(24)/(1/2+sqrt(5)/2)^65 2100951949620339 a001 1/23184*(1/2+1/2*5^(1/2))^32 2100951949620339 a004 Fibonacci(47)*Lucas(24)/(1/2+sqrt(5)/2)^63 2100951949620339 a004 Fibonacci(45)*Lucas(24)/(1/2+sqrt(5)/2)^61 2100951949620339 a004 Fibonacci(43)*Lucas(24)/(1/2+sqrt(5)/2)^59 2100951949620339 a004 Fibonacci(41)*Lucas(24)/(1/2+sqrt(5)/2)^57 2100951949620339 a004 Fibonacci(39)*Lucas(24)/(1/2+sqrt(5)/2)^55 2100951949620340 a004 Fibonacci(37)*Lucas(24)/(1/2+sqrt(5)/2)^53 2100951949620344 a004 Fibonacci(35)*Lucas(24)/(1/2+sqrt(5)/2)^51 2100951949620373 a004 Fibonacci(33)*Lucas(24)/(1/2+sqrt(5)/2)^49 2100951949620571 a004 Fibonacci(31)*Lucas(24)/(1/2+sqrt(5)/2)^47 2100951949621561 a001 1346269/167761*39603^(1/11) 2100951949621612 a001 75025/4870847*103682^(5/8) 2100951949621928 a004 Fibonacci(29)*Lucas(24)/(1/2+sqrt(5)/2)^45 2100951949623087 a001 98209/299537289*103682^(23/24) 2100951949626706 a001 28657/1149851*64079^(14/23) 2100951949629877 a001 75025/7881196*103682^(2/3) 2100951949631230 a004 Fibonacci(27)*Lucas(24)/(1/2+sqrt(5)/2)^43 2100951949637974 a001 75025/12752043*103682^(17/24) 2100951949639335 a001 832040/271443*39603^(2/11) 2100951949639348 a001 75025/167761*103682^(1/3) 2100951949643203 a001 28657/710647*64079^(13/23) 2100951949646135 a001 75025/20633239*103682^(3/4) 2100951949654271 a001 75025/33385282*103682^(19/24) 2100951949662417 a001 75025/54018521*103682^(5/6) 2100951949663342 a001 28657/271443*64079^(11/23) 2100951949664207 a001 311187/101521*39603^(2/11) 2100951949667836 a001 5702887/1860498*39603^(2/11) 2100951949668365 a001 14930352/4870847*39603^(2/11) 2100951949668443 a001 39088169/12752043*39603^(2/11) 2100951949668454 a001 14619165/4769326*39603^(2/11) 2100951949668455 a001 267914296/87403803*39603^(2/11) 2100951949668456 a001 701408733/228826127*39603^(2/11) 2100951949668456 a001 1836311903/599074578*39603^(2/11) 2100951949668456 a001 686789568/224056801*39603^(2/11) 2100951949668456 a001 12586269025/4106118243*39603^(2/11) 2100951949668456 a001 32951280099/10749957122*39603^(2/11) 2100951949668456 a001 86267571272/28143753123*39603^(2/11) 2100951949668456 a001 32264490531/10525900321*39603^(2/11) 2100951949668456 a001 591286729879/192900153618*39603^(2/11) 2100951949668456 a001 1548008755920/505019158607*39603^(2/11) 2100951949668456 a001 1515744265389/494493258286*39603^(2/11) 2100951949668456 a001 956722026041/312119004989*39603^(2/11) 2100951949668456 a001 365435296162/119218851371*39603^(2/11) 2100951949668456 a001 139583862445/45537549124*39603^(2/11) 2100951949668456 a001 53316291173/17393796001*39603^(2/11) 2100951949668456 a001 20365011074/6643838879*39603^(2/11) 2100951949668456 a001 7778742049/2537720636*39603^(2/11) 2100951949668456 a001 2971215073/969323029*39603^(2/11) 2100951949668456 a001 1134903170/370248451*39603^(2/11) 2100951949668456 a001 433494437/141422324*39603^(2/11) 2100951949668457 a001 165580141/54018521*39603^(2/11) 2100951949668461 a001 63245986/20633239*39603^(2/11) 2100951949668490 a001 24157817/7881196*39603^(2/11) 2100951949668693 a001 9227465/3010349*39603^(2/11) 2100951949670079 a001 3524578/1149851*39603^(2/11) 2100951949670560 a001 75025/87403803*103682^(7/8) 2100951949678703 a001 75025/141422324*103682^(11/12) 2100951949679579 a001 1346269/439204*39603^(2/11) 2100951949680501 a001 28657/439204*64079^(12/23) 2100951949681611 a001 75640/15251*39603^(3/22) 2100951949686846 a001 75025/228826127*103682^(23/24) 2100951949688766 a001 1346269/103682*15127^(1/20) 2100951949694990 a004 Fibonacci(25)*Lucas(24)/(1/2+sqrt(5)/2)^41 2100951949702420 a001 514229/271443*39603^(5/22) 2100951949725416 a001 1346269/710647*39603^(5/22) 2100951949728771 a001 1762289/930249*39603^(5/22) 2100951949729261 a001 9227465/4870847*39603^(5/22) 2100951949729332 a001 24157817/12752043*39603^(5/22) 2100951949729343 a001 31622993/16692641*39603^(5/22) 2100951949729344 a001 165580141/87403803*39603^(5/22) 2100951949729345 a001 433494437/228826127*39603^(5/22) 2100951949729345 a001 567451585/299537289*39603^(5/22) 2100951949729345 a001 2971215073/1568397607*39603^(5/22) 2100951949729345 a001 7778742049/4106118243*39603^(5/22) 2100951949729345 a001 10182505537/5374978561*39603^(5/22) 2100951949729345 a001 53316291173/28143753123*39603^(5/22) 2100951949729345 a001 139583862445/73681302247*39603^(5/22) 2100951949729345 a001 182717648081/96450076809*39603^(5/22) 2100951949729345 a001 956722026041/505019158607*39603^(5/22) 2100951949729345 a001 10610209857723/5600748293801*39603^(5/22) 2100951949729345 a001 591286729879/312119004989*39603^(5/22) 2100951949729345 a001 225851433717/119218851371*39603^(5/22) 2100951949729345 a001 21566892818/11384387281*39603^(5/22) 2100951949729345 a001 32951280099/17393796001*39603^(5/22) 2100951949729345 a001 12586269025/6643838879*39603^(5/22) 2100951949729345 a001 1201881744/634430159*39603^(5/22) 2100951949729345 a001 1836311903/969323029*39603^(5/22) 2100951949729345 a001 701408733/370248451*39603^(5/22) 2100951949729345 a001 66978574/35355581*39603^(5/22) 2100951949729345 a001 102334155/54018521*39603^(5/22) 2100951949729349 a001 39088169/20633239*39603^(5/22) 2100951949729376 a001 3732588/1970299*39603^(5/22) 2100951949729563 a001 5702887/3010349*39603^(5/22) 2100951949730335 a001 75025/103682*39603^(7/22) 2100951949730845 a001 2178309/1149851*39603^(5/22) 2100951949737496 a001 28657/103682*439204^(1/3) 2100951949739629 a001 208010/109801*39603^(5/22) 2100951949741117 a001 28657/103682*7881196^(3/11) 2100951949741125 a001 46368/64079*20633239^(1/5) 2100951949741126 a001 664383888/31622993 2100951949741126 a001 28657/103682*141422324^(3/13) 2100951949741126 a001 28657/103682*2537720636^(1/5) 2100951949741126 a001 28657/103682*45537549124^(3/17) 2100951949741126 a001 28657/103682*14662949395604^(1/7) 2100951949741126 a001 28657/103682*(1/2+1/2*5^(1/2))^9 2100951949741126 a001 28657/103682*192900153618^(1/6) 2100951949741126 a001 28657/103682*10749957122^(3/16) 2100951949741126 a001 46368/64079*17393796001^(1/7) 2100951949741126 a001 46368/64079*14662949395604^(1/9) 2100951949741126 a001 46368/64079*(1/2+1/2*5^(1/2))^7 2100951949741126 a001 46368/64079*599074578^(1/6) 2100951949741126 a001 28657/103682*599074578^(3/14) 2100951949741127 a001 28657/103682*33385282^(1/4) 2100951949741308 a001 28657/103682*1860498^(3/10) 2100951949742166 a001 46368/64079*710647^(1/4) 2100951949744696 a001 514229/167761*39603^(2/11) 2100951949757559 a001 105937/90481*39603^(3/11) 2100951949758812 a001 10946/4870847*24476^(19/21) 2100951949768958 a001 832040/64079*24476^(1/21) 2100951949785466 a001 832040/710647*39603^(3/11) 2100951949788753 a001 28657/167761*64079^(10/23) 2100951949789538 a001 726103/620166*39603^(3/11) 2100951949790132 a001 5702887/4870847*39603^(3/11) 2100951949790219 a001 4976784/4250681*39603^(3/11) 2100951949790231 a001 39088169/33385282*39603^(3/11) 2100951949790233 a001 34111385/29134601*39603^(3/11) 2100951949790233 a001 267914296/228826127*39603^(3/11) 2100951949790233 a001 233802911/199691526*39603^(3/11) 2100951949790233 a001 1836311903/1568397607*39603^(3/11) 2100951949790233 a001 1602508992/1368706081*39603^(3/11) 2100951949790233 a001 12586269025/10749957122*39603^(3/11) 2100951949790233 a001 10983760033/9381251041*39603^(3/11) 2100951949790233 a001 86267571272/73681302247*39603^(3/11) 2100951949790233 a001 75283811239/64300051206*39603^(3/11) 2100951949790233 a001 2504730781961/2139295485799*39603^(3/11) 2100951949790233 a001 365435296162/312119004989*39603^(3/11) 2100951949790233 a001 139583862445/119218851371*39603^(3/11) 2100951949790233 a001 53316291173/45537549124*39603^(3/11) 2100951949790233 a001 20365011074/17393796001*39603^(3/11) 2100951949790233 a001 7778742049/6643838879*39603^(3/11) 2100951949790233 a001 2971215073/2537720636*39603^(3/11) 2100951949790233 a001 1134903170/969323029*39603^(3/11) 2100951949790233 a001 433494437/370248451*39603^(3/11) 2100951949790233 a001 165580141/141422324*39603^(3/11) 2100951949790234 a001 63245986/54018521*39603^(3/11) 2100951949790239 a001 24157817/20633239*39603^(3/11) 2100951949790272 a001 9227465/7881196*39603^(3/11) 2100951949790499 a001 3524578/3010349*39603^(3/11) 2100951949792054 a001 1346269/1149851*39603^(3/11) 2100951949796819 a001 121393/64079*64079^(5/23) 2100951949798129 a001 46368/64079*103682^(7/24) 2100951949799835 a001 317811/167761*39603^(5/22) 2100951949802714 a001 514229/439204*39603^(3/11) 2100951949809836 a001 15456/90481*39603^(5/11) 2100951949814416 a001 28657/103682*103682^(3/8) 2100951949833499 a001 196418/271443*39603^(7/22) 2100951949848551 a001 514229/710647*39603^(7/22) 2100951949850747 a001 1346269/1860498*39603^(7/22) 2100951949851067 a001 3524578/4870847*39603^(7/22) 2100951949851114 a001 9227465/12752043*39603^(7/22) 2100951949851121 a001 24157817/33385282*39603^(7/22) 2100951949851122 a001 63245986/87403803*39603^(7/22) 2100951949851122 a001 165580141/228826127*39603^(7/22) 2100951949851122 a001 433494437/599074578*39603^(7/22) 2100951949851122 a001 1134903170/1568397607*39603^(7/22) 2100951949851122 a001 2971215073/4106118243*39603^(7/22) 2100951949851122 a001 7778742049/10749957122*39603^(7/22) 2100951949851122 a001 20365011074/28143753123*39603^(7/22) 2100951949851122 a001 53316291173/73681302247*39603^(7/22) 2100951949851122 a001 139583862445/192900153618*39603^(7/22) 2100951949851122 a001 10610209857723/14662949395604*39603^(7/22) 2100951949851122 a001 225851433717/312119004989*39603^(7/22) 2100951949851122 a001 86267571272/119218851371*39603^(7/22) 2100951949851122 a001 32951280099/45537549124*39603^(7/22) 2100951949851122 a001 12586269025/17393796001*39603^(7/22) 2100951949851122 a001 4807526976/6643838879*39603^(7/22) 2100951949851122 a001 1836311903/2537720636*39603^(7/22) 2100951949851122 a001 701408733/969323029*39603^(7/22) 2100951949851122 a001 267914296/370248451*39603^(7/22) 2100951949851122 a001 102334155/141422324*39603^(7/22) 2100951949851123 a001 39088169/54018521*39603^(7/22) 2100951949851125 a001 14930352/20633239*39603^(7/22) 2100951949851143 a001 5702887/7881196*39603^(7/22) 2100951949851265 a001 2178309/3010349*39603^(7/22) 2100951949852104 a001 832040/1149851*39603^(7/22) 2100951949852112 a001 46368/167761*39603^(9/22) 2100951949854983 a001 121393/271443*39603^(4/11) 2100951949855492 a001 3524578/271443*15127^(1/20) 2100951949857853 a001 317811/439204*39603^(7/22) 2100951949858471 a001 196418/64079*64079^(4/23) 2100951949861914 a004 Fibonacci(23)*Lucas(25)/(1/2+sqrt(5)/2)^40 2100951949865666 a001 317811/64079*64079^(3/23) 2100951949875775 a001 196418/167761*39603^(3/11) 2100951949876849 a001 28657/20633239*167761^(4/5) 2100951949877738 a001 75025/64079*64079^(6/23) 2100951949879817 a001 9227465/710647*15127^(1/20) 2100951949883366 a001 24157817/1860498*15127^(1/20) 2100951949883884 a001 63245986/4870847*15127^(1/20) 2100951949883959 a001 165580141/12752043*15127^(1/20) 2100951949883970 a001 433494437/33385282*15127^(1/20) 2100951949883972 a001 1134903170/87403803*15127^(1/20) 2100951949883972 a001 2971215073/228826127*15127^(1/20) 2100951949883972 a001 7778742049/599074578*15127^(1/20) 2100951949883972 a001 20365011074/1568397607*15127^(1/20) 2100951949883972 a001 53316291173/4106118243*15127^(1/20) 2100951949883972 a001 139583862445/10749957122*15127^(1/20) 2100951949883972 a001 365435296162/28143753123*15127^(1/20) 2100951949883972 a001 956722026041/73681302247*15127^(1/20) 2100951949883972 a001 2504730781961/192900153618*15127^(1/20) 2100951949883972 a001 10610209857723/817138163596*15127^(1/20) 2100951949883972 a001 4052739537881/312119004989*15127^(1/20) 2100951949883972 a001 1548008755920/119218851371*15127^(1/20) 2100951949883972 a001 591286729879/45537549124*15127^(1/20) 2100951949883972 a001 7787980473/599786069*15127^(1/20) 2100951949883972 a001 86267571272/6643838879*15127^(1/20) 2100951949883972 a001 32951280099/2537720636*15127^(1/20) 2100951949883972 a001 12586269025/969323029*15127^(1/20) 2100951949883972 a001 4807526976/370248451*15127^(1/20) 2100951949883972 a001 1836311903/141422324*15127^(1/20) 2100951949883973 a001 701408733/54018521*15127^(1/20) 2100951949883977 a001 9238424/711491*15127^(1/20) 2100951949884006 a001 102334155/7881196*15127^(1/20) 2100951949884204 a001 39088169/3010349*15127^(1/20) 2100951949885559 a001 14930352/1149851*15127^(1/20) 2100951949891167 a001 28657/1860498*167761^(3/5) 2100951949893120 a001 121393/39603*15127^(1/5) 2100951949893120 a001 121393/64079*167761^(1/5) 2100951949893661 a001 514229/64079*64079^(2/23) 2100951949894851 a001 5702887/439204*15127^(1/20) 2100951949897259 a001 121393/167761*39603^(7/22) 2100951949903691 a001 317811/710647*39603^(4/11) 2100951949908039 a001 28657/271443*7881196^(1/3) 2100951949908050 a001 121393/64079*20633239^(1/7) 2100951949908050 a001 3478759201/165580141 2100951949908050 a001 28657/271443*312119004989^(1/5) 2100951949908050 a001 28657/271443*(1/2+1/2*5^(1/2))^11 2100951949908050 a001 121393/64079*2537720636^(1/9) 2100951949908050 a001 121393/64079*312119004989^(1/11) 2100951949908050 a001 121393/64079*(1/2+1/2*5^(1/2))^5 2100951949908050 a001 121393/64079*28143753123^(1/10) 2100951949908050 a001 28657/271443*1568397607^(1/4) 2100951949908050 a001 121393/64079*228826127^(1/8) 2100951949908152 a001 121393/64079*1860498^(1/6) 2100951949910130 a001 11592/109801*39603^(1/2) 2100951949910797 a001 416020/930249*39603^(4/11) 2100951949911834 a001 2178309/4870847*39603^(4/11) 2100951949911985 a001 5702887/12752043*39603^(4/11) 2100951949912007 a001 7465176/16692641*39603^(4/11) 2100951949912010 a001 39088169/87403803*39603^(4/11) 2100951949912011 a001 102334155/228826127*39603^(4/11) 2100951949912011 a001 133957148/299537289*39603^(4/11) 2100951949912011 a001 701408733/1568397607*39603^(4/11) 2100951949912011 a001 1836311903/4106118243*39603^(4/11) 2100951949912011 a001 2403763488/5374978561*39603^(4/11) 2100951949912011 a001 12586269025/28143753123*39603^(4/11) 2100951949912011 a001 32951280099/73681302247*39603^(4/11) 2100951949912011 a001 43133785636/96450076809*39603^(4/11) 2100951949912011 a001 225851433717/505019158607*39603^(4/11) 2100951949912011 a001 591286729879/1322157322203*39603^(4/11) 2100951949912011 a001 10610209857723/23725150497407*39603^(4/11) 2100951949912011 a001 139583862445/312119004989*39603^(4/11) 2100951949912011 a001 53316291173/119218851371*39603^(4/11) 2100951949912011 a001 10182505537/22768774562*39603^(4/11) 2100951949912011 a001 7778742049/17393796001*39603^(4/11) 2100951949912011 a001 2971215073/6643838879*39603^(4/11) 2100951949912011 a001 567451585/1268860318*39603^(4/11) 2100951949912011 a001 433494437/969323029*39603^(4/11) 2100951949912011 a001 165580141/370248451*39603^(4/11) 2100951949912011 a001 31622993/70711162*39603^(4/11) 2100951949912012 a001 24157817/54018521*39603^(4/11) 2100951949912021 a001 9227465/20633239*39603^(4/11) 2100951949912079 a001 1762289/3940598*39603^(4/11) 2100951949912475 a001 1346269/3010349*39603^(4/11) 2100951949913711 a001 832040/64079*64079^(1/23) 2100951949915189 a001 514229/1149851*39603^(4/11) 2100951949925673 a004 Fibonacci(23)*Lucas(27)/(1/2+sqrt(5)/2)^42 2100951949926132 a001 10946/3010349*24476^(6/7) 2100951949926883 a001 28657/141422324*439204^(8/9) 2100951949928091 a001 28657/33385282*439204^(7/9) 2100951949929337 a001 28657/7881196*439204^(2/3) 2100951949929907 a001 28657/1860498*439204^(5/9) 2100951949931194 a001 317811/64079*439204^(1/9) 2100951949932401 a001 317811/64079*7881196^(1/11) 2100951949932404 a001 28657/710647*141422324^(1/3) 2100951949932404 a001 317811/64079*141422324^(1/13) 2100951949932404 a001 9107509827/433494437 2100951949932404 a001 28657/710647*(1/2+1/2*5^(1/2))^13 2100951949932404 a001 28657/710647*73681302247^(1/4) 2100951949932404 a001 317811/64079*2537720636^(1/15) 2100951949932404 a001 317811/64079*45537549124^(1/17) 2100951949932404 a001 317811/64079*14662949395604^(1/21) 2100951949932404 a001 317811/64079*(1/2+1/2*5^(1/2))^3 2100951949932404 a001 317811/64079*10749957122^(1/16) 2100951949932404 a001 317811/64079*599074578^(1/14) 2100951949932404 a001 317811/64079*33385282^(1/12) 2100951949932465 a001 317811/64079*1860498^(1/10) 2100951949933794 a001 98209/219602*39603^(4/11) 2100951949934975 a004 Fibonacci(23)*Lucas(29)/(1/2+sqrt(5)/2)^44 2100951949935942 a001 28657/1860498*7881196^(5/11) 2100951949935955 a001 28657/1860498*20633239^(3/7) 2100951949935957 a001 28657/1860498*141422324^(5/13) 2100951949935957 a001 39088148/1860497 2100951949935957 a001 28657/1860498*2537720636^(1/3) 2100951949935957 a001 28657/1860498*45537549124^(5/17) 2100951949935957 a001 28657/1860498*312119004989^(3/11) 2100951949935957 a001 28657/1860498*14662949395604^(5/21) 2100951949935957 a001 28657/1860498*(1/2+1/2*5^(1/2))^15 2100951949935957 a001 28657/1860498*192900153618^(5/18) 2100951949935957 a001 28657/1860498*28143753123^(3/10) 2100951949935957 a001 28657/1860498*10749957122^(5/16) 2100951949935957 a001 416020/64079+416020/64079*5^(1/2) 2100951949935957 a001 28657/1860498*599074578^(5/14) 2100951949935957 a001 28657/1860498*228826127^(3/8) 2100951949935958 a001 28657/1860498*33385282^(5/12) 2100951949936261 a001 28657/1860498*1860498^(1/2) 2100951949936333 a004 Fibonacci(23)*Lucas(31)/(1/2+sqrt(5)/2)^46 2100951949936476 a001 62423801013/2971215073 2100951949936476 a001 28657/4870847*45537549124^(1/3) 2100951949936476 a001 28657/4870847*(1/2+1/2*5^(1/2))^17 2100951949936476 a004 Fibonacci(32)/Lucas(23)/(1/2+sqrt(5)/2) 2100951949936482 a001 28657/4870847*12752043^(1/2) 2100951949936531 a004 Fibonacci(23)*Lucas(33)/(1/2+sqrt(5)/2)^48 2100951949936534 a001 28657/2537720636*7881196^(10/11) 2100951949936537 a001 28657/599074578*7881196^(9/11) 2100951949936540 a001 28657/141422324*7881196^(8/11) 2100951949936541 a001 28657/33385282*7881196^(7/11) 2100951949936543 a001 28657/54018521*7881196^(2/3) 2100951949936552 a001 163427632759/7778742049 2100951949936552 a001 28657/12752043*817138163596^(1/3) 2100951949936552 a001 28657/12752043*(1/2+1/2*5^(1/2))^19 2100951949936552 a004 Fibonacci(34)/Lucas(23)/(1/2+sqrt(5)/2)^3 2100951949936552 a001 28657/12752043*87403803^(1/2) 2100951949936559 a004 Fibonacci(23)*Lucas(35)/(1/2+sqrt(5)/2)^50 2100951949936560 a001 28657/33385282*20633239^(3/5) 2100951949936560 a001 28657/2537720636*20633239^(6/7) 2100951949936560 a001 28657/969323029*20633239^(4/5) 2100951949936561 a001 28657/228826127*20633239^(5/7) 2100951949936562 a001 28657/33385282*141422324^(7/13) 2100951949936563 a001 28657/33385282*2537720636^(7/15) 2100951949936563 a001 28657/33385282*17393796001^(3/7) 2100951949936563 a001 213929548632/10182505537 2100951949936563 a001 28657/33385282*45537549124^(7/17) 2100951949936563 a001 28657/33385282*14662949395604^(1/3) 2100951949936563 a001 28657/33385282*(1/2+1/2*5^(1/2))^21 2100951949936563 a001 28657/33385282*192900153618^(7/18) 2100951949936563 a001 28657/33385282*10749957122^(7/16) 2100951949936563 a004 Fibonacci(36)/Lucas(23)/(1/2+sqrt(5)/2)^5 2100951949936563 a001 28657/33385282*599074578^(1/2) 2100951949936564 a001 28657/33385282*33385282^(7/12) 2100951949936564 a004 Fibonacci(23)*Lucas(37)/(1/2+sqrt(5)/2)^52 2100951949936564 a001 1120149659033/53316291173 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^23/Lucas(38) 2100951949936564 a001 28657/87403803*4106118243^(1/2) 2100951949936564 a004 Fibonacci(38)/Lucas(23)/(1/2+sqrt(5)/2)^7 2100951949936564 a004 Fibonacci(23)*Lucas(39)/(1/2+sqrt(5)/2)^54 2100951949936564 a001 28657/45537549124*141422324^(12/13) 2100951949936564 a001 28657/10749957122*141422324^(11/13) 2100951949936564 a001 28657/2537720636*141422324^(10/13) 2100951949936564 a001 28657/599074578*141422324^(9/13) 2100951949936564 a001 28657/370248451*141422324^(2/3) 2100951949936564 a001 28657/228826127*2537720636^(5/9) 2100951949936564 a001 586517975967/27916772489 2100951949936564 a001 28657/228826127*312119004989^(5/11) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^25/Lucas(40) 2100951949936564 a001 28657/228826127*3461452808002^(5/12) 2100951949936564 a001 28657/228826127*28143753123^(1/2) 2100951949936564 a004 Fibonacci(40)/Lucas(23)/(1/2+sqrt(5)/2)^9 2100951949936564 a004 Fibonacci(23)*Lucas(41)/(1/2+sqrt(5)/2)^56 2100951949936564 a001 28657/228826127*228826127^(5/8) 2100951949936564 a001 28657/599074578*2537720636^(3/5) 2100951949936564 a001 28657/599074578*45537549124^(9/17) 2100951949936564 a001 28657/599074578*817138163596^(9/19) 2100951949936564 a001 28657/599074578*14662949395604^(3/7) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^27/Lucas(42) 2100951949936564 a001 28657/599074578*192900153618^(1/2) 2100951949936564 a001 28657/599074578*10749957122^(9/16) 2100951949936564 a004 Fibonacci(42)/Lucas(23)/(1/2+sqrt(5)/2)^11 2100951949936564 a004 Fibonacci(23)*Lucas(43)/(1/2+sqrt(5)/2)^58 2100951949936564 a001 28657/599074578*599074578^(9/14) 2100951949936564 a001 20100270061581/956722026041 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^29/Lucas(44) 2100951949936564 a004 Fibonacci(44)/Lucas(23)/(1/2+sqrt(5)/2)^13 2100951949936564 a004 Fibonacci(23)*Lucas(45)/(1/2+sqrt(5)/2)^60 2100951949936564 a001 28657/817138163596*2537720636^(14/15) 2100951949936564 a001 28657/312119004989*2537720636^(8/9) 2100951949936564 a001 28657/192900153618*2537720636^(13/15) 2100951949936564 a001 28657/45537549124*2537720636^(4/5) 2100951949936564 a001 28657/10749957122*2537720636^(11/15) 2100951949936564 a001 28657/28143753123*2537720636^(7/9) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^31/Lucas(46) 2100951949936564 a001 28657/4106118243*9062201101803^(1/2) 2100951949936564 a004 Fibonacci(23)*Lucas(47)/(1/2+sqrt(5)/2)^62 2100951949936564 a001 28657/10749957122*45537549124^(11/17) 2100951949936564 a001 28657/10749957122*312119004989^(3/5) 2100951949936564 a001 28657/10749957122*14662949395604^(11/21) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^33/Lucas(48) 2100951949936564 a001 28657/10749957122*192900153618^(11/18) 2100951949936564 a001 28657/28143753123*17393796001^(5/7) 2100951949936564 a004 Fibonacci(23)*Lucas(49)/(1/2+sqrt(5)/2)^64 2100951949936564 a001 28657/817138163596*17393796001^(6/7) 2100951949936564 a001 28657/10749957122*10749957122^(11/16) 2100951949936564 a001 28657/28143753123*312119004989^(7/11) 2100951949936564 a001 28657/28143753123*14662949395604^(5/9) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^35/Lucas(50) 2100951949936564 a001 28657/28143753123*505019158607^(5/8) 2100951949936564 a004 Fibonacci(23)*Lucas(51)/(1/2+sqrt(5)/2)^66 2100951949936564 a001 28657/14662949395604*45537549124^(16/17) 2100951949936564 a001 28657/3461452808002*45537549124^(15/17) 2100951949936564 a001 28657/192900153618*45537549124^(13/17) 2100951949936564 a001 28657/28143753123*28143753123^(7/10) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^37/Lucas(52) 2100951949936564 a004 Fibonacci(23)*Lucas(53)/(1/2+sqrt(5)/2)^68 2100951949936564 a001 28657/192900153618*14662949395604^(13/21) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^39/Lucas(54) 2100951949936564 a004 Fibonacci(23)*Lucas(55)/(1/2+sqrt(5)/2)^70 2100951949936564 a001 28657/2139295485799*312119004989^(4/5) 2100951949936564 a001 28657/192900153618*192900153618^(13/18) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^41/Lucas(56) 2100951949936564 a004 Fibonacci(23)*Lucas(57)/(1/2+sqrt(5)/2)^72 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^43/Lucas(58) 2100951949936564 a004 Fibonacci(23)*Lucas(59)/(1/2+sqrt(5)/2)^74 2100951949936564 a001 28657/3461452808002*14662949395604^(5/7) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^45/Lucas(60) 2100951949936564 a004 Fibonacci(23)*Lucas(61)/(1/2+sqrt(5)/2)^76 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^47/Lucas(62) 2100951949936564 a004 Fibonacci(23)*Lucas(63)/(1/2+sqrt(5)/2)^78 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^49/Lucas(64) 2100951949936564 a004 Fibonacci(23)*Lucas(65)/(1/2+sqrt(5)/2)^80 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^51/Lucas(66) 2100951949936564 a004 Fibonacci(23)*Lucas(67)/(1/2+sqrt(5)/2)^82 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^53/Lucas(68) 2100951949936564 a004 Fibonacci(23)*Lucas(69)/(1/2+sqrt(5)/2)^84 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^55/Lucas(70) 2100951949936564 a004 Fibonacci(23)*Lucas(71)/(1/2+sqrt(5)/2)^86 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^57/Lucas(72) 2100951949936564 a004 Fibonacci(23)*Lucas(73)/(1/2+sqrt(5)/2)^88 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^59/Lucas(74) 2100951949936564 a004 Fibonacci(23)*Lucas(75)/(1/2+sqrt(5)/2)^90 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^61/Lucas(76) 2100951949936564 a004 Fibonacci(23)*Lucas(77)/(1/2+sqrt(5)/2)^92 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^63/Lucas(78) 2100951949936564 a004 Fibonacci(23)*Lucas(79)/(1/2+sqrt(5)/2)^94 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^65/Lucas(80) 2100951949936564 a004 Fibonacci(23)*Lucas(81)/(1/2+sqrt(5)/2)^96 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^67/Lucas(82) 2100951949936564 a004 Fibonacci(23)*Lucas(83)/(1/2+sqrt(5)/2)^98 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^69/Lucas(84) 2100951949936564 a004 Fibonacci(23)*Lucas(85)/(1/2+sqrt(5)/2)^100 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^71/Lucas(86) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^73/Lucas(88) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^75/Lucas(90) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^77/Lucas(92) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^79/Lucas(94) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^81/Lucas(96) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^83/Lucas(98) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^82/Lucas(97) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^84/Lucas(99) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^85/Lucas(100) 2100951949936564 a004 Fibonacci(23)*Lucas(1)/(1/2+sqrt(5)/2)^15 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^80/Lucas(95) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^78/Lucas(93) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^76/Lucas(91) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^74/Lucas(89) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^72/Lucas(87) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^70/Lucas(85) 2100951949936564 a004 Fibonacci(23)*Lucas(84)/(1/2+sqrt(5)/2)^99 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^68/Lucas(83) 2100951949936564 a004 Fibonacci(23)*Lucas(82)/(1/2+sqrt(5)/2)^97 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^66/Lucas(81) 2100951949936564 a004 Fibonacci(23)*Lucas(80)/(1/2+sqrt(5)/2)^95 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^64/Lucas(79) 2100951949936564 a004 Fibonacci(23)*Lucas(78)/(1/2+sqrt(5)/2)^93 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^62/Lucas(77) 2100951949936564 a004 Fibonacci(23)*Lucas(76)/(1/2+sqrt(5)/2)^91 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^60/Lucas(75) 2100951949936564 a004 Fibonacci(23)*Lucas(74)/(1/2+sqrt(5)/2)^89 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^58/Lucas(73) 2100951949936564 a004 Fibonacci(23)*Lucas(72)/(1/2+sqrt(5)/2)^87 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^56/Lucas(71) 2100951949936564 a004 Fibonacci(23)*Lucas(70)/(1/2+sqrt(5)/2)^85 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^54/Lucas(69) 2100951949936564 a004 Fibonacci(23)*Lucas(68)/(1/2+sqrt(5)/2)^83 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^52/Lucas(67) 2100951949936564 a004 Fibonacci(23)*Lucas(66)/(1/2+sqrt(5)/2)^81 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^50/Lucas(65) 2100951949936564 a001 28657/14662949395604*14662949395604^(16/21) 2100951949936564 a004 Fibonacci(23)*Lucas(64)/(1/2+sqrt(5)/2)^79 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^48/Lucas(63) 2100951949936564 a004 Fibonacci(23)*Lucas(62)/(1/2+sqrt(5)/2)^77 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^46/Lucas(61) 2100951949936564 a004 Fibonacci(23)*Lucas(60)/(1/2+sqrt(5)/2)^75 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^44/Lucas(59) 2100951949936564 a001 28657/2139295485799*23725150497407^(11/16) 2100951949936564 a004 Fibonacci(23)*Lucas(58)/(1/2+sqrt(5)/2)^73 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^42/Lucas(57) 2100951949936564 a001 28657/23725150497407*505019158607^(7/8) 2100951949936564 a004 Fibonacci(23)*Lucas(56)/(1/2+sqrt(5)/2)^71 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^40/Lucas(55) 2100951949936564 a001 28657/14662949395604*192900153618^(8/9) 2100951949936564 a004 Fibonacci(23)*Lucas(54)/(1/2+sqrt(5)/2)^69 2100951949936564 a001 28657/119218851371*817138163596^(2/3) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^38/Lucas(53) 2100951949936564 a001 28657/192900153618*73681302247^(3/4) 2100951949936564 a001 28657/45537549124*45537549124^(12/17) 2100951949936564 a001 28657/312119004989*73681302247^(10/13) 2100951949936564 a001 28657/2139295485799*73681302247^(11/13) 2100951949936564 a001 28657/14662949395604*73681302247^(12/13) 2100951949936564 a004 Fibonacci(23)*Lucas(52)/(1/2+sqrt(5)/2)^67 2100951949936564 a001 28657/45537549124*14662949395604^(4/7) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^36/Lucas(51) 2100951949936564 a001 28657/45537549124*192900153618^(2/3) 2100951949936564 a001 28657/45537549124*73681302247^(9/13) 2100951949936564 a001 28657/312119004989*28143753123^(4/5) 2100951949936564 a001 28657/3461452808002*28143753123^(9/10) 2100951949936564 a004 Fibonacci(23)*Lucas(50)/(1/2+sqrt(5)/2)^65 2100951949936564 a001 28657/17393796001*45537549124^(2/3) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^34/Lucas(49) 2100951949936564 a001 222915410898193/10610209857723 2100951949936564 a001 28657/119218851371*10749957122^(19/24) 2100951949936564 a001 28657/45537549124*10749957122^(3/4) 2100951949936564 a001 28657/192900153618*10749957122^(13/16) 2100951949936564 a001 28657/312119004989*10749957122^(5/6) 2100951949936564 a001 28657/817138163596*10749957122^(7/8) 2100951949936564 a001 28657/2139295485799*10749957122^(11/12) 2100951949936564 a001 28657/3461452808002*10749957122^(15/16) 2100951949936564 a001 28657/5600748293801*10749957122^(23/24) 2100951949936564 a004 Fibonacci(23)*Lucas(48)/(1/2+sqrt(5)/2)^63 2100951949936564 a001 28657/17393796001*10749957122^(17/24) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^32/Lucas(47) 2100951949936564 a001 28657/6643838879*23725150497407^(1/2) 2100951949936564 a001 85146110346961/4052739537881 2100951949936564 a001 28657/6643838879*73681302247^(8/13) 2100951949936564 a001 28657/6643838879*10749957122^(2/3) 2100951949936564 a001 28657/45537549124*4106118243^(18/23) 2100951949936564 a001 28657/17393796001*4106118243^(17/23) 2100951949936564 a001 28657/119218851371*4106118243^(19/23) 2100951949936564 a004 Fibonacci(48)/Lucas(23)/(1/2+sqrt(5)/2)^17 2100951949936564 a001 28657/312119004989*4106118243^(20/23) 2100951949936564 a001 28657/2537720636*2537720636^(2/3) 2100951949936564 a001 28657/817138163596*4106118243^(21/23) 2100951949936564 a001 28657/2139295485799*4106118243^(22/23) 2100951949936564 a004 Fibonacci(50)/Lucas(23)/(1/2+sqrt(5)/2)^19 2100951949936564 a004 Fibonacci(52)/Lucas(23)/(1/2+sqrt(5)/2)^21 2100951949936564 a004 Fibonacci(54)/Lucas(23)/(1/2+sqrt(5)/2)^23 2100951949936564 a004 Fibonacci(56)/Lucas(23)/(1/2+sqrt(5)/2)^25 2100951949936564 a004 Fibonacci(58)/Lucas(23)/(1/2+sqrt(5)/2)^27 2100951949936564 a004 Fibonacci(60)/Lucas(23)/(1/2+sqrt(5)/2)^29 2100951949936564 a004 Fibonacci(62)/Lucas(23)/(1/2+sqrt(5)/2)^31 2100951949936564 a004 Fibonacci(64)/Lucas(23)/(1/2+sqrt(5)/2)^33 2100951949936564 a004 Fibonacci(66)/Lucas(23)/(1/2+sqrt(5)/2)^35 2100951949936564 a004 Fibonacci(68)/Lucas(23)/(1/2+sqrt(5)/2)^37 2100951949936564 a004 Fibonacci(70)/Lucas(23)/(1/2+sqrt(5)/2)^39 2100951949936564 a004 Fibonacci(72)/Lucas(23)/(1/2+sqrt(5)/2)^41 2100951949936564 a004 Fibonacci(74)/Lucas(23)/(1/2+sqrt(5)/2)^43 2100951949936564 a004 Fibonacci(76)/Lucas(23)/(1/2+sqrt(5)/2)^45 2100951949936564 a004 Fibonacci(78)/Lucas(23)/(1/2+sqrt(5)/2)^47 2100951949936564 a004 Fibonacci(80)/Lucas(23)/(1/2+sqrt(5)/2)^49 2100951949936564 a004 Fibonacci(82)/Lucas(23)/(1/2+sqrt(5)/2)^51 2100951949936564 a004 Fibonacci(84)/Lucas(23)/(1/2+sqrt(5)/2)^53 2100951949936564 a004 Fibonacci(86)/Lucas(23)/(1/2+sqrt(5)/2)^55 2100951949936564 a004 Fibonacci(88)/Lucas(23)/(1/2+sqrt(5)/2)^57 2100951949936564 a004 Fibonacci(90)/Lucas(23)/(1/2+sqrt(5)/2)^59 2100951949936564 a004 Fibonacci(23)*Lucas(46)/(1/2+sqrt(5)/2)^61 2100951949936564 a004 Fibonacci(94)/Lucas(23)/(1/2+sqrt(5)/2)^63 2100951949936564 a004 Fibonacci(96)/Lucas(23)/(1/2+sqrt(5)/2)^65 2100951949936564 a004 Fibonacci(100)/Lucas(23)/(1/2+sqrt(5)/2)^69 2100951949936564 a004 Fibonacci(98)/Lucas(23)/(1/2+sqrt(5)/2)^67 2100951949936564 a004 Fibonacci(99)/Lucas(23)/(1/2+sqrt(5)/2)^68 2100951949936564 a004 Fibonacci(97)/Lucas(23)/(1/2+sqrt(5)/2)^66 2100951949936564 a004 Fibonacci(95)/Lucas(23)/(1/2+sqrt(5)/2)^64 2100951949936564 a004 Fibonacci(93)/Lucas(23)/(1/2+sqrt(5)/2)^62 2100951949936564 a004 Fibonacci(91)/Lucas(23)/(1/2+sqrt(5)/2)^60 2100951949936564 a004 Fibonacci(89)/Lucas(23)/(1/2+sqrt(5)/2)^58 2100951949936564 a004 Fibonacci(87)/Lucas(23)/(1/2+sqrt(5)/2)^56 2100951949936564 a004 Fibonacci(85)/Lucas(23)/(1/2+sqrt(5)/2)^54 2100951949936564 a004 Fibonacci(83)/Lucas(23)/(1/2+sqrt(5)/2)^52 2100951949936564 a004 Fibonacci(81)/Lucas(23)/(1/2+sqrt(5)/2)^50 2100951949936564 a004 Fibonacci(79)/Lucas(23)/(1/2+sqrt(5)/2)^48 2100951949936564 a004 Fibonacci(77)/Lucas(23)/(1/2+sqrt(5)/2)^46 2100951949936564 a004 Fibonacci(75)/Lucas(23)/(1/2+sqrt(5)/2)^44 2100951949936564 a004 Fibonacci(73)/Lucas(23)/(1/2+sqrt(5)/2)^42 2100951949936564 a004 Fibonacci(71)/Lucas(23)/(1/2+sqrt(5)/2)^40 2100951949936564 a004 Fibonacci(69)/Lucas(23)/(1/2+sqrt(5)/2)^38 2100951949936564 a004 Fibonacci(67)/Lucas(23)/(1/2+sqrt(5)/2)^36 2100951949936564 a004 Fibonacci(65)/Lucas(23)/(1/2+sqrt(5)/2)^34 2100951949936564 a004 Fibonacci(63)/Lucas(23)/(1/2+sqrt(5)/2)^32 2100951949936564 a004 Fibonacci(61)/Lucas(23)/(1/2+sqrt(5)/2)^30 2100951949936564 a004 Fibonacci(59)/Lucas(23)/(1/2+sqrt(5)/2)^28 2100951949936564 a004 Fibonacci(57)/Lucas(23)/(1/2+sqrt(5)/2)^26 2100951949936564 a004 Fibonacci(55)/Lucas(23)/(1/2+sqrt(5)/2)^24 2100951949936564 a004 Fibonacci(53)/Lucas(23)/(1/2+sqrt(5)/2)^22 2100951949936564 a004 Fibonacci(51)/Lucas(23)/(1/2+sqrt(5)/2)^20 2100951949936564 a004 Fibonacci(49)/Lucas(23)/(1/2+sqrt(5)/2)^18 2100951949936564 a001 28657/6643838879*4106118243^(16/23) 2100951949936564 a004 Fibonacci(47)/Lucas(23)/(1/2+sqrt(5)/2)^16 2100951949936564 a001 28657/2537720636*45537549124^(10/17) 2100951949936564 a001 28657/2537720636*312119004989^(6/11) 2100951949936564 a001 28657/2537720636*14662949395604^(10/21) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^30/Lucas(45) 2100951949936564 a001 28657/2537720636*192900153618^(5/9) 2100951949936564 a001 28657/2537720636*28143753123^(3/5) 2100951949936564 a001 28657/2537720636*10749957122^(5/8) 2100951949936564 a001 28657/2537720636*4106118243^(15/23) 2100951949936564 a004 Fibonacci(45)/Lucas(23)/(1/2+sqrt(5)/2)^14 2100951949936564 a001 28657/10749957122*1568397607^(3/4) 2100951949936564 a001 28657/17393796001*1568397607^(17/22) 2100951949936564 a001 28657/6643838879*1568397607^(8/11) 2100951949936564 a001 28657/45537549124*1568397607^(9/11) 2100951949936564 a001 28657/119218851371*1568397607^(19/22) 2100951949936564 a001 28657/312119004989*1568397607^(10/11) 2100951949936564 a001 28657/817138163596*1568397607^(21/22) 2100951949936564 a004 Fibonacci(23)*Lucas(44)/(1/2+sqrt(5)/2)^59 2100951949936564 a001 28657/2537720636*1568397607^(15/22) 2100951949936564 a001 28657/969323029*17393796001^(4/7) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^28/Lucas(43) 2100951949936564 a001 12422650081109/591286729879 2100951949936564 a001 28657/969323029*73681302247^(7/13) 2100951949936564 a001 28657/969323029*10749957122^(7/12) 2100951949936564 a001 28657/969323029*4106118243^(14/23) 2100951949936564 a004 Fibonacci(43)/Lucas(23)/(1/2+sqrt(5)/2)^12 2100951949936564 a001 28657/969323029*1568397607^(7/11) 2100951949936564 a001 28657/2537720636*599074578^(5/7) 2100951949936564 a001 28657/6643838879*599074578^(16/21) 2100951949936564 a001 28657/10749957122*599074578^(11/14) 2100951949936564 a001 28657/17393796001*599074578^(17/21) 2100951949936564 a001 28657/28143753123*599074578^(5/6) 2100951949936564 a001 28657/45537549124*599074578^(6/7) 2100951949936564 a001 28657/119218851371*599074578^(19/21) 2100951949936564 a001 28657/192900153618*599074578^(13/14) 2100951949936564 a001 28657/312119004989*599074578^(20/21) 2100951949936564 a004 Fibonacci(23)*Lucas(42)/(1/2+sqrt(5)/2)^57 2100951949936564 a001 28657/969323029*599074578^(2/3) 2100951949936564 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^26/Lucas(41) 2100951949936564 a001 4745030100637/225851433717 2100951949936564 a001 28657/370248451*73681302247^(1/2) 2100951949936564 a001 28657/370248451*10749957122^(13/24) 2100951949936564 a001 28657/370248451*4106118243^(13/23) 2100951949936564 a004 Fibonacci(41)/Lucas(23)/(1/2+sqrt(5)/2)^10 2100951949936564 a001 28657/370248451*1568397607^(13/22) 2100951949936564 a001 28657/370248451*599074578^(13/21) 2100951949936564 a001 28657/969323029*228826127^(7/10) 2100951949936564 a001 28657/2537720636*228826127^(3/4) 2100951949936564 a001 28657/6643838879*228826127^(4/5) 2100951949936564 a001 28657/17393796001*228826127^(17/20) 2100951949936564 a001 28657/28143753123*228826127^(7/8) 2100951949936564 a001 28657/45537549124*228826127^(9/10) 2100951949936564 a001 28657/119218851371*228826127^(19/20) 2100951949936564 a004 Fibonacci(23)*Lucas(40)/(1/2+sqrt(5)/2)^55 2100951949936564 a001 28657/141422324*141422324^(8/13) 2100951949936564 a001 28657/370248451*228826127^(13/20) 2100951949936565 a001 28657/141422324*2537720636^(8/15) 2100951949936565 a001 28657/141422324*45537549124^(8/17) 2100951949936565 a001 28657/141422324*14662949395604^(8/21) 2100951949936565 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^24/Lucas(39) 2100951949936565 a001 28657/141422324*192900153618^(4/9) 2100951949936565 a001 906220110401/43133785636 2100951949936565 a001 28657/141422324*73681302247^(6/13) 2100951949936565 a001 28657/141422324*10749957122^(1/2) 2100951949936565 a001 28657/141422324*4106118243^(12/23) 2100951949936565 a004 Fibonacci(39)/Lucas(23)/(1/2+sqrt(5)/2)^8 2100951949936565 a001 28657/141422324*1568397607^(6/11) 2100951949936565 a001 28657/141422324*599074578^(4/7) 2100951949936565 a001 28657/141422324*228826127^(3/5) 2100951949936565 a001 28657/370248451*87403803^(13/19) 2100951949936565 a001 28657/969323029*87403803^(14/19) 2100951949936565 a001 28657/2537720636*87403803^(15/19) 2100951949936565 a001 28657/6643838879*87403803^(16/19) 2100951949936565 a001 28657/17393796001*87403803^(17/19) 2100951949936565 a001 28657/45537549124*87403803^(18/19) 2100951949936565 a004 Fibonacci(23)*Lucas(38)/(1/2+sqrt(5)/2)^53 2100951949936565 a001 28657/141422324*87403803^(12/19) 2100951949936565 a001 28657/54018521*312119004989^(2/5) 2100951949936565 a004 Fibonacci(23)*(1/2+sqrt(5)/2)^22/Lucas(37) 2100951949936565 a001 692290561769/32951280099 2100951949936565 a001 28657/54018521*10749957122^(11/24) 2100951949936565 a001 28657/54018521*4106118243^(11/23) 2100951949936565 a004 Fibonacci(37)/Lucas(23)/(1/2+sqrt(5)/2)^6 2100951949936565 a001 28657/54018521*1568397607^(1/2) 2100951949936565 a001 28657/54018521*599074578^(11/21) 2100951949936565 a001 28657/54018521*228826127^(11/20) 2100951949936565 a001 28657/54018521*87403803^(11/19) 2100951949936566 a001 28657/141422324*33385282^(2/3) 2100951949936566 a001 28657/370248451*33385282^(13/18) 2100951949936566 a001 28657/599074578*33385282^(3/4) 2100951949936566 a001 28657/969323029*33385282^(7/9) 2100951949936566 a001 28657/2537720636*33385282^(5/6) 2100951949936566 a001 28657/6643838879*33385282^(8/9) 2100951949936566 a001 28657/10749957122*33385282^(11/12) 2100951949936566 a001 28657/17393796001*33385282^(17/18) 2100951949936566 a001 28657/54018521*33385282^(11/18) 2100951949936566 a004 Fibonacci(23)*Lucas(36)/(1/2+sqrt(5)/2)^51 2100951949936567 a001 28657/20633239*20633239^(4/7) 2100951949936569 a001 28657/20633239*2537720636^(4/9) 2100951949936569 a001 28657/20633239*(1/2+1/2*5^(1/2))^20 2100951949936569 a001 28657/20633239*23725150497407^(5/16) 2100951949936569 a001 28657/20633239*505019158607^(5/14) 2100951949936569 a001 28657/20633239*73681302247^(5/13) 2100951949936569 a001 28657/20633239*28143753123^(2/5) 2100951949936569 a001 52886292901/2517253805 2100951949936569 a001 28657/20633239*10749957122^(5/12) 2100951949936569 a001 28657/20633239*4106118243^(10/23) 2100951949936569 a004 Fibonacci(35)/Lucas(23)/(1/2+sqrt(5)/2)^4 2100951949936569 a001 28657/20633239*1568397607^(5/11) 2100951949936569 a001 28657/20633239*599074578^(10/21) 2100951949936569 a001 28657/20633239*228826127^(1/2) 2100951949936570 a001 28657/20633239*87403803^(10/19) 2100951949936570 a001 28657/20633239*33385282^(5/9) 2100951949936574 a001 28657/54018521*12752043^(11/17) 2100951949936574 a001 28657/141422324*12752043^(12/17) 2100951949936574 a001 28657/370248451*12752043^(13/17) 2100951949936575 a001 28657/969323029*12752043^(14/17) 2100951949936576 a001 28657/2537720636*12752043^(15/17) 2100951949936577 a001 28657/6643838879*12752043^(16/17) 2100951949936577 a001 28657/20633239*12752043^(10/17) 2100951949936577 a004 Fibonacci(23)*Lucas(34)/(1/2+sqrt(5)/2)^49 2100951949936580 a001 28657/7881196*7881196^(6/11) 2100951949936598 a001 28657/7881196*141422324^(6/13) 2100951949936598 a001 28657/7881196*2537720636^(2/5) 2100951949936598 a001 28657/7881196*45537549124^(6/17) 2100951949936598 a001 28657/7881196*14662949395604^(2/7) 2100951949936598 a001 28657/7881196*(1/2+1/2*5^(1/2))^18 2100951949936598 a001 28657/7881196*192900153618^(1/3) 2100951949936598 a001 28657/7881196*10749957122^(3/8) 2100951949936598 a001 50501915873/2403763488 2100951949936598 a001 28657/7881196*4106118243^(9/23) 2100951949936598 a004 Fibonacci(33)/Lucas(23)/(1/2+sqrt(5)/2)^2 2100951949936598 a001 28657/7881196*1568397607^(9/22) 2100951949936598 a001 28657/7881196*599074578^(3/7) 2100951949936598 a001 28657/7881196*228826127^(9/20) 2100951949936598 a001 28657/7881196*87403803^(9/19) 2100951949936599 a001 28657/7881196*33385282^(1/2) 2100951949936605 a001 28657/7881196*12752043^(9/17) 2100951949936625 a001 28657/20633239*4870847^(5/8) 2100951949936626 a001 28657/54018521*4870847^(11/16) 2100951949936631 a001 28657/141422324*4870847^(3/4) 2100951949936636 a001 28657/370248451*4870847^(13/16) 2100951949936642 a001 28657/969323029*4870847^(7/8) 2100951949936647 a001 28657/2537720636*4870847^(15/16) 2100951949936648 a001 28657/7881196*4870847^(9/16) 2100951949936653 a004 Fibonacci(23)*Lucas(32)/(1/2+sqrt(5)/2)^47 2100951949936796 a001 28657/3010349*(1/2+1/2*5^(1/2))^16 2100951949936796 a001 28657/3010349*23725150497407^(1/4) 2100951949936796 a001 28657/3010349*73681302247^(4/13) 2100951949936796 a001 28657/3010349*10749957122^(1/3) 2100951949936796 a001 28657/3010349*4106118243^(8/23) 2100951949936796 a001 1346269/64079 2100951949936796 a001 28657/3010349*1568397607^(4/11) 2100951949936796 a001 28657/3010349*599074578^(8/21) 2100951949936796 a001 28657/3010349*228826127^(2/5) 2100951949936796 a001 28657/3010349*87403803^(8/19) 2100951949936797 a001 28657/3010349*33385282^(4/9) 2100951949936802 a001 28657/3010349*12752043^(8/17) 2100951949936841 a001 28657/3010349*4870847^(1/2) 2100951949936962 a001 28657/7881196*1860498^(3/5) 2100951949936974 a001 28657/20633239*1860498^(2/3) 2100951949936987 a001 28657/33385282*1860498^(7/10) 2100951949937010 a001 28657/54018521*1860498^(11/15) 2100951949937050 a001 28657/141422324*1860498^(4/5) 2100951949937070 a001 28657/228826127*1860498^(5/6) 2100951949937090 a001 28657/370248451*1860498^(13/15) 2100951949937111 a001 28657/599074578*1860498^(9/10) 2100951949937120 a001 28657/3010349*1860498^(8/15) 2100951949937131 a001 28657/969323029*1860498^(14/15) 2100951949937171 a004 Fibonacci(23)*Lucas(30)/(1/2+sqrt(5)/2)^45 2100951949938151 a001 28657/1149851*20633239^(2/5) 2100951949938153 a001 28657/1149851*17393796001^(2/7) 2100951949938153 a001 28657/1149851*14662949395604^(2/9) 2100951949938153 a001 28657/1149851*(1/2+1/2*5^(1/2))^14 2100951949938153 a001 28657/1149851*505019158607^(1/4) 2100951949938153 a001 28657/1149851*10749957122^(7/24) 2100951949938153 a001 28657/1149851*4106118243^(7/23) 2100951949938153 a001 514229/64079*(1/2+1/2*5^(1/2))^2 2100951949938153 a001 514229/64079*10749957122^(1/24) 2100951949938153 a001 514229/64079*4106118243^(1/23) 2100951949938153 a001 514229/64079*1568397607^(1/22) 2100951949938153 a001 28657/1149851*1568397607^(7/22) 2100951949938153 a001 514229/64079*599074578^(1/21) 2100951949938153 a001 14736260453/701408733 2100951949938153 a001 28657/1149851*599074578^(1/3) 2100951949938153 a001 514229/64079*228826127^(1/20) 2100951949938153 a001 28657/1149851*228826127^(7/20) 2100951949938153 a001 514229/64079*87403803^(1/19) 2100951949938154 a001 28657/1149851*87403803^(7/19) 2100951949938154 a001 514229/64079*33385282^(1/18) 2100951949938154 a001 28657/1149851*33385282^(7/18) 2100951949938154 a001 514229/64079*12752043^(1/17) 2100951949938159 a001 28657/1149851*12752043^(7/17) 2100951949938159 a001 514229/64079*4870847^(1/16) 2100951949938192 a001 28657/1149851*4870847^(7/16) 2100951949938194 a001 514229/64079*1860498^(1/15) 2100951949938437 a001 28657/1149851*1860498^(7/15) 2100951949938451 a001 514229/64079*710647^(1/14) 2100951949939173 a001 28657/3010349*710647^(4/7) 2100951949939273 a001 28657/7881196*710647^(9/14) 2100951949939541 a001 28657/20633239*710647^(5/7) 2100951949939683 a001 28657/33385282*710647^(3/4) 2100951949939834 a001 28657/54018521*710647^(11/14) 2100951949940130 a001 28657/141422324*710647^(6/7) 2100951949940234 a001 28657/1149851*710647^(1/2) 2100951949940347 a001 514229/64079*271443^(1/13) 2100951949940427 a001 28657/370248451*710647^(13/14) 2100951949940725 a004 Fibonacci(23)*Lucas(28)/(1/2+sqrt(5)/2)^43 2100951949942615 a001 28657/439204*439204^(4/9) 2100951949944101 a001 832040/64079*103682^(1/24) 2100951949946661 a001 28657/710647*271443^(1/2) 2100951949947444 a001 28657/439204*7881196^(4/11) 2100951949947456 a001 28657/439204*141422324^(4/13) 2100951949947456 a001 28657/439204*2537720636^(4/15) 2100951949947456 a001 28657/439204*45537549124^(4/17) 2100951949947456 a001 28657/439204*817138163596^(4/19) 2100951949947456 a001 28657/439204*14662949395604^(4/21) 2100951949947456 a001 28657/439204*(1/2+1/2*5^(1/2))^12 2100951949947456 a001 28657/439204*73681302247^(3/13) 2100951949947456 a001 28657/439204*10749957122^(1/4) 2100951949947456 a001 28657/439204*4106118243^(6/23) 2100951949947456 a001 196418/64079*(1/2+1/2*5^(1/2))^4 2100951949947456 a001 196418/64079*23725150497407^(1/16) 2100951949947456 a001 196418/64079*73681302247^(1/13) 2100951949947456 a001 196418/64079*10749957122^(1/12) 2100951949947456 a001 196418/64079*4106118243^(2/23) 2100951949947456 a001 196418/64079*1568397607^(1/11) 2100951949947456 a001 28657/439204*1568397607^(3/11) 2100951949947456 a001 196418/64079*599074578^(2/21) 2100951949947456 a001 28657/439204*599074578^(2/7) 2100951949947456 a001 196418/64079*228826127^(1/10) 2100951949947456 a001 2814375313/133957148 2100951949947456 a001 28657/439204*228826127^(3/10) 2100951949947456 a001 196418/64079*87403803^(2/19) 2100951949947456 a001 28657/439204*87403803^(6/19) 2100951949947456 a001 196418/64079*33385282^(1/9) 2100951949947456 a001 28657/439204*33385282^(1/3) 2100951949947457 a001 196418/64079*12752043^(2/17) 2100951949947460 a001 28657/439204*12752043^(6/17) 2100951949947467 a001 196418/64079*4870847^(1/8) 2100951949947489 a001 28657/439204*4870847^(3/8) 2100951949947537 a001 196418/64079*1860498^(2/15) 2100951949947699 a001 28657/439204*1860498^(2/5) 2100951949948050 a001 196418/64079*710647^(1/7) 2100951949948767 a001 121393/64079*103682^(5/24) 2100951949949239 a001 28657/439204*710647^(3/7) 2100951949951843 a001 196418/64079*271443^(2/13) 2100951949953507 a001 28657/1149851*271443^(7/13) 2100951949954343 a001 28657/3010349*271443^(8/13) 2100951949954440 a001 514229/64079*103682^(1/12) 2100951949955277 a001 121393/439204*39603^(9/22) 2100951949955968 a001 6624/101521*39603^(6/11) 2100951949956339 a001 28657/7881196*271443^(9/13) 2100951949956834 a001 317811/64079*103682^(1/8) 2100951949958503 a001 28657/20633239*271443^(10/13) 2100951949958535 a001 2178309/167761*15127^(1/20) 2100951949960616 a001 28657/439204*271443^(6/13) 2100951949960692 a001 28657/54018521*271443^(11/13) 2100951949962885 a001 28657/141422324*271443^(12/13) 2100951949965078 a004 Fibonacci(23)*Lucas(26)/(1/2+sqrt(5)/2)^41 2100951949970329 a001 317811/1149851*39603^(9/22) 2100951949972525 a001 832040/3010349*39603^(9/22) 2100951949972845 a001 2178309/7881196*39603^(9/22) 2100951949972892 a001 5702887/20633239*39603^(9/22) 2100951949972899 a001 14930352/54018521*39603^(9/22) 2100951949972900 a001 39088169/141422324*39603^(9/22) 2100951949972900 a001 102334155/370248451*39603^(9/22) 2100951949972900 a001 267914296/969323029*39603^(9/22) 2100951949972900 a001 701408733/2537720636*39603^(9/22) 2100951949972900 a001 1836311903/6643838879*39603^(9/22) 2100951949972900 a001 4807526976/17393796001*39603^(9/22) 2100951949972900 a001 12586269025/45537549124*39603^(9/22) 2100951949972900 a001 32951280099/119218851371*39603^(9/22) 2100951949972900 a001 86267571272/312119004989*39603^(9/22) 2100951949972900 a001 225851433717/817138163596*39603^(9/22) 2100951949972900 a001 139583862445/505019158607*39603^(9/22) 2100951949972900 a001 53316291173/192900153618*39603^(9/22) 2100951949972900 a001 20365011074/73681302247*39603^(9/22) 2100951949972900 a001 7778742049/28143753123*39603^(9/22) 2100951949972900 a001 2971215073/10749957122*39603^(9/22) 2100951949972900 a001 1134903170/4106118243*39603^(9/22) 2100951949972900 a001 433494437/1568397607*39603^(9/22) 2100951949972900 a001 165580141/599074578*39603^(9/22) 2100951949972900 a001 63245986/228826127*39603^(9/22) 2100951949972900 a001 24157817/87403803*39603^(9/22) 2100951949972903 a001 9227465/33385282*39603^(9/22) 2100951949972921 a001 3524578/12752043*39603^(9/22) 2100951949973043 a001 1346269/4870847*39603^(9/22) 2100951949973882 a001 514229/1860498*39603^(9/22) 2100951949979631 a001 196418/710647*39603^(9/22) 2100951949980029 a001 196418/64079*103682^(1/6) 2100951949981355 a001 28657/167761*167761^(2/5) 2100951949996846 a001 832040/64079*39603^(1/22) 2100951949997626 a001 28657/271443*103682^(11/24) 2100951950001114 a001 121393/710647*39603^(5/11) 2100951950008795 a001 75025/64079*439204^(2/9) 2100951950011209 a001 75025/64079*7881196^(2/11) 2100951950011214 a001 28657/167761*20633239^(2/7) 2100951950011215 a001 75025/64079*141422324^(2/13) 2100951950011215 a001 28657/167761*2537720636^(2/9) 2100951950011215 a001 28657/167761*312119004989^(2/11) 2100951950011215 a001 28657/167761*(1/2+1/2*5^(1/2))^10 2100951950011215 a001 28657/167761*28143753123^(1/5) 2100951950011215 a001 28657/167761*10749957122^(5/24) 2100951950011215 a001 28657/167761*4106118243^(5/23) 2100951950011215 a001 75025/64079*2537720636^(2/15) 2100951950011215 a001 75025/64079*45537549124^(2/17) 2100951950011215 a001 75025/64079*14662949395604^(2/21) 2100951950011215 a001 75025/64079*(1/2+1/2*5^(1/2))^6 2100951950011215 a001 75025/64079*10749957122^(1/8) 2100951950011215 a001 75025/64079*4106118243^(3/23) 2100951950011215 a001 28657/167761*1568397607^(5/22) 2100951950011215 a001 75025/64079*1568397607^(3/22) 2100951950011215 a001 75025/64079*599074578^(1/7) 2100951950011215 a001 28657/167761*599074578^(5/21) 2100951950011215 a001 75025/64079*228826127^(3/20) 2100951950011215 a001 28657/167761*228826127^(1/4) 2100951950011215 a001 429998285/20466831 2100951950011215 a001 75025/64079*87403803^(3/19) 2100951950011215 a001 28657/167761*87403803^(5/19) 2100951950011215 a001 75025/64079*33385282^(1/6) 2100951950011216 a001 28657/167761*33385282^(5/18) 2100951950011217 a001 75025/64079*12752043^(3/17) 2100951950011219 a001 28657/167761*12752043^(5/17) 2100951950011232 a001 75025/64079*4870847^(3/16) 2100951950011243 a001 28657/167761*4870847^(5/16) 2100951950011337 a001 75025/64079*1860498^(1/5) 2100951950011417 a001 28657/167761*1860498^(1/3) 2100951950012107 a001 75025/64079*710647^(3/14) 2100951950012701 a001 28657/167761*710647^(5/14) 2100951950017795 a001 75025/64079*271443^(3/13) 2100951950019036 a001 75025/271443*39603^(9/22) 2100951950022182 a001 28657/167761*271443^(5/13) 2100951950022606 a001 46368/1149851*39603^(13/22) 2100951950029021 a001 105937/620166*39603^(5/11) 2100951950033093 a001 832040/4870847*39603^(5/11) 2100951950033687 a001 726103/4250681*39603^(5/11) 2100951950033774 a001 5702887/33385282*39603^(5/11) 2100951950033786 a001 4976784/29134601*39603^(5/11) 2100951950033788 a001 39088169/228826127*39603^(5/11) 2100951950033788 a001 34111385/199691526*39603^(5/11) 2100951950033788 a001 267914296/1568397607*39603^(5/11) 2100951950033788 a001 233802911/1368706081*39603^(5/11) 2100951950033788 a001 1836311903/10749957122*39603^(5/11) 2100951950033788 a001 1602508992/9381251041*39603^(5/11) 2100951950033788 a001 12586269025/73681302247*39603^(5/11) 2100951950033788 a001 10983760033/64300051206*39603^(5/11) 2100951950033788 a001 86267571272/505019158607*39603^(5/11) 2100951950033788 a001 75283811239/440719107401*39603^(5/11) 2100951950033788 a001 2504730781961/14662949395604*39603^(5/11) 2100951950033788 a001 139583862445/817138163596*39603^(5/11) 2100951950033788 a001 53316291173/312119004989*39603^(5/11) 2100951950033788 a001 20365011074/119218851371*39603^(5/11) 2100951950033788 a001 7778742049/45537549124*39603^(5/11) 2100951950033788 a001 2971215073/17393796001*39603^(5/11) 2100951950033788 a001 1134903170/6643838879*39603^(5/11) 2100951950033788 a001 433494437/2537720636*39603^(5/11) 2100951950033788 a001 165580141/969323029*39603^(5/11) 2100951950033789 a001 63245986/370248451*39603^(5/11) 2100951950033789 a001 24157817/141422324*39603^(5/11) 2100951950033794 a001 9227465/54018521*39603^(5/11) 2100951950033827 a001 3524578/20633239*39603^(5/11) 2100951950034054 a001 1346269/7881196*39603^(5/11) 2100951950035609 a001 514229/3010349*39603^(5/11) 2100951950038267 a001 28657/710647*103682^(13/24) 2100951950045175 a001 28657/439204*103682^(1/2) 2100951950046269 a001 196418/1149851*39603^(5/11) 2100951950052159 a001 28657/1149851*103682^(7/12) 2100951950058106 a001 28657/1860498*103682^(5/8) 2100951950059931 a001 514229/64079*39603^(1/11) 2100951950060075 a001 75025/64079*103682^(1/4) 2100951950061312 a001 75025/167761*39603^(4/11) 2100951950067088 a001 28657/3010349*103682^(2/3) 2100951950067752 a001 121393/1149851*39603^(1/2) 2100951950074911 a001 28657/4870847*103682^(17/24) 2100951950081298 a001 2576/103361*39603^(7/11) 2100951950083177 a001 28657/7881196*103682^(3/4) 2100951950089345 a001 10946/39603*24476^(3/7) 2100951950090749 a001 317811/3010349*39603^(1/2) 2100951950091273 a001 28657/12752043*103682^(19/24) 2100951950092293 a001 5473/930249*24476^(17/21) 2100951950092648 a001 28657/167761*103682^(5/12) 2100951950094104 a001 208010/1970299*39603^(1/2) 2100951950094594 a001 2178309/20633239*39603^(1/2) 2100951950094665 a001 5702887/54018521*39603^(1/2) 2100951950094675 a001 3732588/35355581*39603^(1/2) 2100951950094677 a001 39088169/370248451*39603^(1/2) 2100951950094677 a001 102334155/969323029*39603^(1/2) 2100951950094677 a001 66978574/634430159*39603^(1/2) 2100951950094677 a001 701408733/6643838879*39603^(1/2) 2100951950094677 a001 1836311903/17393796001*39603^(1/2) 2100951950094677 a001 1201881744/11384387281*39603^(1/2) 2100951950094677 a001 12586269025/119218851371*39603^(1/2) 2100951950094677 a001 32951280099/312119004989*39603^(1/2) 2100951950094677 a001 21566892818/204284540899*39603^(1/2) 2100951950094677 a001 225851433717/2139295485799*39603^(1/2) 2100951950094677 a001 182717648081/1730726404001*39603^(1/2) 2100951950094677 a001 139583862445/1322157322203*39603^(1/2) 2100951950094677 a001 53316291173/505019158607*39603^(1/2) 2100951950094677 a001 10182505537/96450076809*39603^(1/2) 2100951950094677 a001 7778742049/73681302247*39603^(1/2) 2100951950094677 a001 2971215073/28143753123*39603^(1/2) 2100951950094677 a001 567451585/5374978561*39603^(1/2) 2100951950094677 a001 433494437/4106118243*39603^(1/2) 2100951950094677 a001 165580141/1568397607*39603^(1/2) 2100951950094677 a001 31622993/299537289*39603^(1/2) 2100951950094678 a001 24157817/228826127*39603^(1/2) 2100951950094682 a001 9227465/87403803*39603^(1/2) 2100951950094709 a001 1762289/16692641*39603^(1/2) 2100951950094896 a001 1346269/12752043*39603^(1/2) 2100951950096178 a001 514229/4870847*39603^(1/2) 2100951950099435 a001 28657/20633239*103682^(5/6) 2100951950104962 a001 98209/930249*39603^(1/2) 2100951950107571 a001 28657/33385282*103682^(7/8) 2100951950115071 a001 317811/64079*39603^(3/22) 2100951950115717 a001 28657/54018521*103682^(11/12) 2100951950119331 a001 75025/439204*39603^(5/11) 2100951950123859 a001 28657/87403803*103682^(23/24) 2100951950126445 a001 121393/1860498*39603^(6/11) 2100951950132003 a004 Fibonacci(23)*Lucas(24)/(1/2+sqrt(5)/2)^39 2100951950143026 a001 46368/3010349*39603^(15/22) 2100951950146999 a001 416020/51841*15127^(1/10) 2100951950151317 a001 317811/4870847*39603^(6/11) 2100951950154946 a001 832040/12752043*39603^(6/11) 2100951950155476 a001 311187/4769326*39603^(6/11) 2100951950155553 a001 5702887/87403803*39603^(6/11) 2100951950155564 a001 14930352/228826127*39603^(6/11) 2100951950155566 a001 39088169/599074578*39603^(6/11) 2100951950155566 a001 14619165/224056801*39603^(6/11) 2100951950155566 a001 267914296/4106118243*39603^(6/11) 2100951950155566 a001 701408733/10749957122*39603^(6/11) 2100951950155566 a001 1836311903/28143753123*39603^(6/11) 2100951950155566 a001 686789568/10525900321*39603^(6/11) 2100951950155566 a001 12586269025/192900153618*39603^(6/11) 2100951950155566 a001 32951280099/505019158607*39603^(6/11) 2100951950155566 a001 86267571272/1322157322203*39603^(6/11) 2100951950155566 a001 32264490531/494493258286*39603^(6/11) 2100951950155566 a001 1548008755920/23725150497407*39603^(6/11) 2100951950155566 a001 139583862445/2139295485799*39603^(6/11) 2100951950155566 a001 53316291173/817138163596*39603^(6/11) 2100951950155566 a001 20365011074/312119004989*39603^(6/11) 2100951950155566 a001 7778742049/119218851371*39603^(6/11) 2100951950155566 a001 2971215073/45537549124*39603^(6/11) 2100951950155566 a001 1134903170/17393796001*39603^(6/11) 2100951950155566 a001 433494437/6643838879*39603^(6/11) 2100951950155566 a001 165580141/2537720636*39603^(6/11) 2100951950155566 a001 63245986/969323029*39603^(6/11) 2100951950155567 a001 24157817/370248451*39603^(6/11) 2100951950155571 a001 9227465/141422324*39603^(6/11) 2100951950155601 a001 3524578/54018521*39603^(6/11) 2100951950155803 a001 1346269/20633239*39603^(6/11) 2100951950157189 a001 514229/7881196*39603^(6/11) 2100951950165168 a001 75025/710647*39603^(1/2) 2100951950166689 a001 196418/3010349*39603^(6/11) 2100951950167348 a001 46368/64079*39603^(7/22) 2100951950188173 a001 121393/3010349*39603^(13/22) 2100951950191011 a001 196418/64079*39603^(2/11) 2100951950203594 a001 46368/4870847*39603^(8/11) 2100951950212328 a001 317811/7881196*39603^(13/22) 2100951950212494 a001 121393/64079*39603^(5/22) 2100951950215853 a001 75640/1875749*39603^(13/22) 2100951950216367 a001 2178309/54018521*39603^(13/22) 2100951950216442 a001 5702887/141422324*39603^(13/22) 2100951950216453 a001 14930352/370248451*39603^(13/22) 2100951950216455 a001 39088169/969323029*39603^(13/22) 2100951950216455 a001 9303105/230701876*39603^(13/22) 2100951950216455 a001 267914296/6643838879*39603^(13/22) 2100951950216455 a001 701408733/17393796001*39603^(13/22) 2100951950216455 a001 1836311903/45537549124*39603^(13/22) 2100951950216455 a001 4807526976/119218851371*39603^(13/22) 2100951950216455 a001 1144206275/28374454999*39603^(13/22) 2100951950216455 a001 32951280099/817138163596*39603^(13/22) 2100951950216455 a001 86267571272/2139295485799*39603^(13/22) 2100951950216455 a001 225851433717/5600748293801*39603^(13/22) 2100951950216455 a001 365435296162/9062201101803*39603^(13/22) 2100951950216455 a001 139583862445/3461452808002*39603^(13/22) 2100951950216455 a001 53316291173/1322157322203*39603^(13/22) 2100951950216455 a001 20365011074/505019158607*39603^(13/22) 2100951950216455 a001 7778742049/192900153618*39603^(13/22) 2100951950216455 a001 2971215073/73681302247*39603^(13/22) 2100951950216455 a001 1134903170/28143753123*39603^(13/22) 2100951950216455 a001 433494437/10749957122*39603^(13/22) 2100951950216455 a001 165580141/4106118243*39603^(13/22) 2100951950216455 a001 63245986/1568397607*39603^(13/22) 2100951950216456 a001 24157817/599074578*39603^(13/22) 2100951950216460 a001 9227465/228826127*39603^(13/22) 2100951950216488 a001 3524578/87403803*39603^(13/22) 2100951950216685 a001 1346269/33385282*39603^(13/22) 2100951950218031 a001 514229/12752043*39603^(13/22) 2100951950227258 a001 196418/4870847*39603^(13/22) 2100951950231806 a001 75025/1149851*39603^(6/11) 2100951950248741 a001 121393/4870847*39603^(7/11) 2100951950261489 a001 10946/1149851*24476^(16/21) 2100951950264606 a001 11592/1970299*39603^(17/22) 2100951950270258 a001 28657/64079*64079^(8/23) 2100951950273171 a001 105937/4250681*39603^(7/11) 2100951950276735 a001 416020/16692641*39603^(7/11) 2100951950277255 a001 726103/29134601*39603^(7/11) 2100951950277331 a001 5702887/228826127*39603^(7/11) 2100951950277342 a001 829464/33281921*39603^(7/11) 2100951950277343 a001 39088169/1568397607*39603^(7/11) 2100951950277344 a001 34111385/1368706081*39603^(7/11) 2100951950277344 a001 133957148/5374978561*39603^(7/11) 2100951950277344 a001 233802911/9381251041*39603^(7/11) 2100951950277344 a001 1836311903/73681302247*39603^(7/11) 2100951950277344 a001 267084832/10716675201*39603^(7/11) 2100951950277344 a001 12586269025/505019158607*39603^(7/11) 2100951950277344 a001 10983760033/440719107401*39603^(7/11) 2100951950277344 a001 43133785636/1730726404001*39603^(7/11) 2100951950277344 a001 75283811239/3020733700601*39603^(7/11) 2100951950277344 a001 182717648081/7331474697802*39603^(7/11) 2100951950277344 a001 139583862445/5600748293801*39603^(7/11) 2100951950277344 a001 53316291173/2139295485799*39603^(7/11) 2100951950277344 a001 10182505537/408569081798*39603^(7/11) 2100951950277344 a001 7778742049/312119004989*39603^(7/11) 2100951950277344 a001 2971215073/119218851371*39603^(7/11) 2100951950277344 a001 567451585/22768774562*39603^(7/11) 2100951950277344 a001 433494437/17393796001*39603^(7/11) 2100951950277344 a001 165580141/6643838879*39603^(7/11) 2100951950277344 a001 31622993/1268860318*39603^(7/11) 2100951950277344 a001 24157817/969323029*39603^(7/11) 2100951950277349 a001 9227465/370248451*39603^(7/11) 2100951950277377 a001 1762289/70711162*39603^(7/11) 2100951950277576 a001 1346269/54018521*39603^(7/11) 2100951950278938 a001 514229/20633239*39603^(7/11) 2100951950288269 a001 98209/3940598*39603^(7/11) 2100951950289125 a001 28657/103682*39603^(9/22) 2100951950290499 a001 75025/1860498*39603^(13/22) 2100951950309752 a001 121393/7881196*39603^(15/22) 2100951950314441 a001 726103/90481*15127^(1/10) 2100951950325448 a001 15456/4250681*39603^(9/11) 2100951950334077 a001 10959/711491*39603^(15/22) 2100951950337626 a001 832040/54018521*39603^(15/22) 2100951950338144 a001 2178309/141422324*39603^(15/22) 2100951950338219 a001 5702887/370248451*39603^(15/22) 2100951950338230 a001 14930352/969323029*39603^(15/22) 2100951950338232 a001 39088169/2537720636*39603^(15/22) 2100951950338232 a001 102334155/6643838879*39603^(15/22) 2100951950338232 a001 9238424/599786069*39603^(15/22) 2100951950338232 a001 701408733/45537549124*39603^(15/22) 2100951950338232 a001 1836311903/119218851371*39603^(15/22) 2100951950338232 a001 4807526976/312119004989*39603^(15/22) 2100951950338232 a001 12586269025/817138163596*39603^(15/22) 2100951950338232 a001 32951280099/2139295485799*39603^(15/22) 2100951950338232 a001 86267571272/5600748293801*39603^(15/22) 2100951950338232 a001 7787980473/505618944676*39603^(15/22) 2100951950338232 a001 365435296162/23725150497407*39603^(15/22) 2100951950338232 a001 139583862445/9062201101803*39603^(15/22) 2100951950338232 a001 53316291173/3461452808002*39603^(15/22) 2100951950338232 a001 20365011074/1322157322203*39603^(15/22) 2100951950338232 a001 7778742049/505019158607*39603^(15/22) 2100951950338232 a001 2971215073/192900153618*39603^(15/22) 2100951950338232 a001 1134903170/73681302247*39603^(15/22) 2100951950338232 a001 433494437/28143753123*39603^(15/22) 2100951950338232 a001 165580141/10749957122*39603^(15/22) 2100951950338232 a001 63245986/4106118243*39603^(15/22) 2100951950338233 a001 24157817/1568397607*39603^(15/22) 2100951950338237 a001 9227465/599074578*39603^(15/22) 2100951950338266 a001 3524578/228826127*39603^(15/22) 2100951950338464 a001 1346269/87403803*39603^(15/22) 2100951950338871 a001 5702887/710647*15127^(1/10) 2100951950339819 a001 514229/33385282*39603^(15/22) 2100951950342435 a001 829464/103361*15127^(1/10) 2100951950342955 a001 39088169/4870847*15127^(1/10) 2100951950343031 a001 34111385/4250681*15127^(1/10) 2100951950343042 a001 133957148/16692641*15127^(1/10) 2100951950343044 a001 233802911/29134601*15127^(1/10) 2100951950343044 a001 1836311903/228826127*15127^(1/10) 2100951950343044 a001 267084832/33281921*15127^(1/10) 2100951950343044 a001 12586269025/1568397607*15127^(1/10) 2100951950343044 a001 10983760033/1368706081*15127^(1/10) 2100951950343044 a001 43133785636/5374978561*15127^(1/10) 2100951950343044 a001 75283811239/9381251041*15127^(1/10) 2100951950343044 a001 591286729879/73681302247*15127^(1/10) 2100951950343044 a001 86000486440/10716675201*15127^(1/10) 2100951950343044 a001 3536736619241/440719107401*15127^(1/10) 2100951950343044 a001 3278735159921/408569081798*15127^(1/10) 2100951950343044 a001 2504730781961/312119004989*15127^(1/10) 2100951950343044 a001 956722026041/119218851371*15127^(1/10) 2100951950343044 a001 182717648081/22768774562*15127^(1/10) 2100951950343044 a001 139583862445/17393796001*15127^(1/10) 2100951950343044 a001 53316291173/6643838879*15127^(1/10) 2100951950343044 a001 10182505537/1268860318*15127^(1/10) 2100951950343044 a001 7778742049/969323029*15127^(1/10) 2100951950343044 a001 2971215073/370248451*15127^(1/10) 2100951950343044 a001 567451585/70711162*15127^(1/10) 2100951950343045 a001 433494437/54018521*15127^(1/10) 2100951950343049 a001 165580141/20633239*15127^(1/10) 2100951950343078 a001 31622993/3940598*15127^(1/10) 2100951950343277 a001 24157817/3010349*15127^(1/10) 2100951950344638 a001 9227465/1149851*15127^(1/10) 2100951950349111 a001 196418/12752043*39603^(15/22) 2100951950352226 a001 75025/3010349*39603^(7/11) 2100951950353969 a001 1762289/219602*15127^(1/10) 2100951950370594 a001 121393/12752043*39603^(8/11) 2100951950376548 a001 75025/64079*39603^(3/11) 2100951950386354 a001 46368/20633239*39603^(19/22) 2100951950394959 a001 317811/33385282*39603^(8/11) 2100951950395029 a001 832040/64079*15127^(1/20) 2100951950398514 a001 832040/87403803*39603^(8/11) 2100951950399033 a001 46347/4868641*39603^(8/11) 2100951950399108 a001 5702887/599074578*39603^(8/11) 2100951950399119 a001 14930352/1568397607*39603^(8/11) 2100951950399121 a001 39088169/4106118243*39603^(8/11) 2100951950399121 a001 102334155/10749957122*39603^(8/11) 2100951950399121 a001 267914296/28143753123*39603^(8/11) 2100951950399121 a001 701408733/73681302247*39603^(8/11) 2100951950399121 a001 1836311903/192900153618*39603^(8/11) 2100951950399121 a001 102287808/10745088481*39603^(8/11) 2100951950399121 a001 12586269025/1322157322203*39603^(8/11) 2100951950399121 a001 32951280099/3461452808002*39603^(8/11) 2100951950399121 a001 86267571272/9062201101803*39603^(8/11) 2100951950399121 a001 225851433717/23725150497407*39603^(8/11) 2100951950399121 a001 139583862445/14662949395604*39603^(8/11) 2100951950399121 a001 53316291173/5600748293801*39603^(8/11) 2100951950399121 a001 20365011074/2139295485799*39603^(8/11) 2100951950399121 a001 7778742049/817138163596*39603^(8/11) 2100951950399121 a001 2971215073/312119004989*39603^(8/11) 2100951950399121 a001 1134903170/119218851371*39603^(8/11) 2100951950399121 a001 433494437/45537549124*39603^(8/11) 2100951950399121 a001 165580141/17393796001*39603^(8/11) 2100951950399121 a001 63245986/6643838879*39603^(8/11) 2100951950399122 a001 24157817/2537720636*39603^(8/11) 2100951950399126 a001 9227465/969323029*39603^(8/11) 2100951950399155 a001 3524578/370248451*39603^(8/11) 2100951950399353 a001 1346269/141422324*39603^(8/11) 2100951950400711 a001 514229/54018521*39603^(8/11) 2100951950410017 a001 196418/20633239*39603^(8/11) 2100951950412545 a001 98209/12238*9349^(2/19) 2100951950412795 a001 75025/4870847*39603^(15/22) 2100951950417927 a001 1346269/167761*15127^(1/10) 2100951950418368 a001 17711/39603*15127^(2/5) 2100951950422739 a001 10946/710647*24476^(5/7) 2100951950423345 a001 17711/24476*24476^(1/3) 2100951950431501 a001 121393/20633239*39603^(17/22) 2100951950447236 a001 144/103681*39603^(10/11) 2100951950448228 a001 28657/64079*(1/2+1/2*5^(1/2))^8 2100951950448228 a001 28657/64079*23725150497407^(1/8) 2100951950448228 a001 28657/64079*505019158607^(1/7) 2100951950448228 a001 28657/64079*73681302247^(2/13) 2100951950448228 a001 28657/64079*10749957122^(1/6) 2100951950448228 a001 28657/64079*4106118243^(4/23) 2100951950448228 a001 28657/64079*1568397607^(2/11) 2100951950448228 a001 28657/64079*599074578^(4/21) 2100951950448228 a001 28657/64079*228826127^(1/5) 2100951950448228 a001 28657/64079*87403803^(4/19) 2100951950448228 a001 821223649/39088169 2100951950448229 a001 28657/64079*33385282^(2/9) 2100951950448231 a001 28657/64079*12752043^(4/17) 2100951950448250 a001 28657/64079*4870847^(1/4) 2100951950448390 a001 28657/64079*1860498^(4/15) 2100951950449417 a001 28657/64079*710647^(2/7) 2100951950455357 a001 75025/39603*15127^(1/4) 2100951950455850 a001 317811/54018521*39603^(17/22) 2100951950457002 a001 28657/64079*271443^(4/13) 2100951950459403 a001 208010/35355581*39603^(17/22) 2100951950459921 a001 2178309/370248451*39603^(17/22) 2100951950459997 a001 5702887/969323029*39603^(17/22) 2100951950460008 a001 196452/33391061*39603^(17/22) 2100951950460010 a001 39088169/6643838879*39603^(17/22) 2100951950460010 a001 102334155/17393796001*39603^(17/22) 2100951950460010 a001 66978574/11384387281*39603^(17/22) 2100951950460010 a001 701408733/119218851371*39603^(17/22) 2100951950460010 a001 1836311903/312119004989*39603^(17/22) 2100951950460010 a001 1201881744/204284540899*39603^(17/22) 2100951950460010 a001 12586269025/2139295485799*39603^(17/22) 2100951950460010 a001 32951280099/5600748293801*39603^(17/22) 2100951950460010 a001 1135099622/192933544679*39603^(17/22) 2100951950460010 a001 139583862445/23725150497407*39603^(17/22) 2100951950460010 a001 53316291173/9062201101803*39603^(17/22) 2100951950460010 a001 10182505537/1730726404001*39603^(17/22) 2100951950460010 a001 7778742049/1322157322203*39603^(17/22) 2100951950460010 a001 2971215073/505019158607*39603^(17/22) 2100951950460010 a001 567451585/96450076809*39603^(17/22) 2100951950460010 a001 433494437/73681302247*39603^(17/22) 2100951950460010 a001 165580141/28143753123*39603^(17/22) 2100951950460010 a001 31622993/5374978561*39603^(17/22) 2100951950460011 a001 24157817/4106118243*39603^(17/22) 2100951950460015 a001 9227465/1568397607*39603^(17/22) 2100951950460044 a001 1762289/299537289*39603^(17/22) 2100951950460242 a001 1346269/228826127*39603^(17/22) 2100951950461599 a001 514229/87403803*39603^(17/22) 2100951950470899 a001 98209/16692641*39603^(17/22) 2100951950473806 a001 75025/7881196*39603^(8/11) 2100951950492383 a001 121393/33385282*39603^(9/11) 2100951950508128 a001 46368/54018521*39603^(21/22) 2100951950513374 a001 28657/64079*103682^(1/3) 2100951950516738 a001 105937/29134601*39603^(9/11) 2100951950520292 a001 832040/228826127*39603^(9/11) 2100951950520810 a001 726103/199691526*39603^(9/11) 2100951950520886 a001 5702887/1568397607*39603^(9/11) 2100951950520897 a001 4976784/1368706081*39603^(9/11) 2100951950520898 a001 39088169/10749957122*39603^(9/11) 2100951950520899 a001 831985/228811001*39603^(9/11) 2100951950520899 a001 267914296/73681302247*39603^(9/11) 2100951950520899 a001 233802911/64300051206*39603^(9/11) 2100951950520899 a001 1836311903/505019158607*39603^(9/11) 2100951950520899 a001 1602508992/440719107401*39603^(9/11) 2100951950520899 a001 12586269025/3461452808002*39603^(9/11) 2100951950520899 a001 10983760033/3020733700601*39603^(9/11) 2100951950520899 a001 86267571272/23725150497407*39603^(9/11) 2100951950520899 a001 53316291173/14662949395604*39603^(9/11) 2100951950520899 a001 20365011074/5600748293801*39603^(9/11) 2100951950520899 a001 7778742049/2139295485799*39603^(9/11) 2100951950520899 a001 2971215073/817138163596*39603^(9/11) 2100951950520899 a001 1134903170/312119004989*39603^(9/11) 2100951950520899 a001 433494437/119218851371*39603^(9/11) 2100951950520899 a001 165580141/45537549124*39603^(9/11) 2100951950520899 a001 63245986/17393796001*39603^(9/11) 2100951950520899 a001 24157817/6643838879*39603^(9/11) 2100951950520904 a001 9227465/2537720636*39603^(9/11) 2100951950520933 a001 3524578/969323029*39603^(9/11) 2100951950521131 a001 1346269/370248451*39603^(9/11) 2100951950522488 a001 514229/141422324*39603^(9/11) 2100951950526223 m002 6-Log[Pi]/E^Pi-Sinh[Pi]/3 2100951950531791 a001 196418/54018521*39603^(9/11) 2100951950534648 a001 75025/12752043*39603^(17/22) 2100951950553274 a001 121393/54018521*39603^(19/22) 2100951950569016 a004 Fibonacci(24)*Lucas(22)/(1/2+sqrt(5)/2)^38 2100951950577627 a001 317811/141422324*39603^(19/22) 2100951950577827 a001 28657/271443*39603^(1/2) 2100951950581181 a001 832040/370248451*39603^(19/22) 2100951950581699 a001 2178309/969323029*39603^(19/22) 2100951950581775 a001 5702887/2537720636*39603^(19/22) 2100951950581786 a001 14930352/6643838879*39603^(19/22) 2100951950581787 a001 39088169/17393796001*39603^(19/22) 2100951950581787 a001 102334155/45537549124*39603^(19/22) 2100951950581787 a001 267914296/119218851371*39603^(19/22) 2100951950581787 a001 3524667/1568437211*39603^(19/22) 2100951950581787 a001 1836311903/817138163596*39603^(19/22) 2100951950581787 a001 4807526976/2139295485799*39603^(19/22) 2100951950581787 a001 12586269025/5600748293801*39603^(19/22) 2100951950581787 a001 32951280099/14662949395604*39603^(19/22) 2100951950581787 a001 53316291173/23725150497407*39603^(19/22) 2100951950581787 a001 20365011074/9062201101803*39603^(19/22) 2100951950581787 a001 7778742049/3461452808002*39603^(19/22) 2100951950581787 a001 2971215073/1322157322203*39603^(19/22) 2100951950581787 a001 1134903170/505019158607*39603^(19/22) 2100951950581787 a001 433494437/192900153618*39603^(19/22) 2100951950581787 a001 165580141/73681302247*39603^(19/22) 2100951950581788 a001 63245986/28143753123*39603^(19/22) 2100951950581788 a001 24157817/10749957122*39603^(19/22) 2100951950581792 a001 9227465/4106118243*39603^(19/22) 2100951950581821 a001 3524578/1568397607*39603^(19/22) 2100951950582019 a001 1346269/599074578*39603^(19/22) 2100951950583376 a001 514229/228826127*39603^(19/22) 2100951950592679 a001 196418/87403803*39603^(19/22) 2100951950595554 a001 75025/20633239*39603^(9/11) 2100951950604791 a001 5473/219602*24476^(2/3) 2100951950608267 a001 514229/103682*15127^(3/20) 2100951950614162 a001 121393/87403803*39603^(10/11) 2100951950620103 a001 28657/167761*39603^(5/11) 2100951950638516 a001 317811/228826127*39603^(10/11) 2100951950642069 a001 416020/299537289*39603^(10/11) 2100951950642588 a001 311187/224056801*39603^(10/11) 2100951950642663 a001 5702887/4106118243*39603^(10/11) 2100951950642674 a001 7465176/5374978561*39603^(10/11) 2100951950642676 a001 39088169/28143753123*39603^(10/11) 2100951950642676 a001 14619165/10525900321*39603^(10/11) 2100951950642676 a001 133957148/96450076809*39603^(10/11) 2100951950642676 a001 701408733/505019158607*39603^(10/11) 2100951950642676 a001 1836311903/1322157322203*39603^(10/11) 2100951950642676 a001 14930208/10749853441*39603^(10/11) 2100951950642676 a001 12586269025/9062201101803*39603^(10/11) 2100951950642676 a001 32951280099/23725150497407*39603^(10/11) 2100951950642676 a001 10182505537/7331474697802*39603^(10/11) 2100951950642676 a001 7778742049/5600748293801*39603^(10/11) 2100951950642676 a001 2971215073/2139295485799*39603^(10/11) 2100951950642676 a001 567451585/408569081798*39603^(10/11) 2100951950642676 a001 433494437/312119004989*39603^(10/11) 2100951950642676 a001 165580141/119218851371*39603^(10/11) 2100951950642676 a001 31622993/22768774562*39603^(10/11) 2100951950642677 a001 24157817/17393796001*39603^(10/11) 2100951950642681 a001 9227465/6643838879*39603^(10/11) 2100951950642710 a001 1762289/1268860318*39603^(10/11) 2100951950642908 a001 1346269/969323029*39603^(10/11) 2100951950644265 a001 514229/370248451*39603^(10/11) 2100951950644339 a001 15456/13201*15127^(3/10) 2100951950653568 a001 98209/70711162*39603^(10/11) 2100951950656436 a001 75025/33385282*39603^(19/22) 2100951950675051 a001 233/271444*39603^(21/22) 2100951950678121 a001 28657/439204*39603^(6/11) 2100951950691611 a001 4181/1149851*9349^(18/19) 2100951950699405 a001 317811/370248451*39603^(21/22) 2100951950702958 a001 832040/969323029*39603^(21/22) 2100951950703476 a001 2178309/2537720636*39603^(21/22) 2100951950703552 a001 5702887/6643838879*39603^(21/22) 2100951950703563 a001 14930352/17393796001*39603^(21/22) 2100951950703565 a001 39088169/45537549124*39603^(21/22) 2100951950703565 a001 102334155/119218851371*39603^(21/22) 2100951950703565 a001 267914296/312119004989*39603^(21/22) 2100951950703565 a001 701408733/817138163596*39603^(21/22) 2100951950703565 a001 1836311903/2139295485799*39603^(21/22) 2100951950703565 a001 4807526976/5600748293801*39603^(21/22) 2100951950703565 a001 12586269025/14662949395604*39603^(21/22) 2100951950703565 a001 20365011074/23725150497407*39603^(21/22) 2100951950703565 a001 7778742049/9062201101803*39603^(21/22) 2100951950703565 a001 2971215073/3461452808002*39603^(21/22) 2100951950703565 a001 1134903170/1322157322203*39603^(21/22) 2100951950703565 a001 433494437/505019158607*39603^(21/22) 2100951950703565 a001 165580141/192900153618*39603^(21/22) 2100951950703565 a001 63245986/73681302247*39603^(21/22) 2100951950703566 a001 24157817/28143753123*39603^(21/22) 2100951950703570 a001 9227465/10749957122*39603^(21/22) 2100951950703599 a001 3524578/4106118243*39603^(21/22) 2100951950703797 a001 1346269/1568397607*39603^(21/22) 2100951950705154 a001 514229/599074578*39603^(21/22) 2100951950714456 a001 196418/228826127*39603^(21/22) 2100951950717328 a001 75025/54018521*39603^(10/11) 2100951950723958 a001 28657/710647*39603^(13/22) 2100951950732385 a001 10946/271443*24476^(13/21) 2100951950735940 a004 Fibonacci(26)*Lucas(22)/(1/2+sqrt(5)/2)^40 2100951950760294 a004 Fibonacci(28)*Lucas(22)/(1/2+sqrt(5)/2)^42 2100951950763847 a004 Fibonacci(30)*Lucas(22)/(1/2+sqrt(5)/2)^44 2100951950764365 a004 Fibonacci(32)*Lucas(22)/(1/2+sqrt(5)/2)^46 2100951950764441 a004 Fibonacci(34)*Lucas(22)/(1/2+sqrt(5)/2)^48 2100951950764452 a004 Fibonacci(36)*Lucas(22)/(1/2+sqrt(5)/2)^50 2100951950764454 a004 Fibonacci(38)*Lucas(22)/(1/2+sqrt(5)/2)^52 2100951950764454 a004 Fibonacci(40)*Lucas(22)/(1/2+sqrt(5)/2)^54 2100951950764454 a004 Fibonacci(42)*Lucas(22)/(1/2+sqrt(5)/2)^56 2100951950764454 a004 Fibonacci(44)*Lucas(22)/(1/2+sqrt(5)/2)^58 2100951950764454 a004 Fibonacci(46)*Lucas(22)/(1/2+sqrt(5)/2)^60 2100951950764454 a004 Fibonacci(48)*Lucas(22)/(1/2+sqrt(5)/2)^62 2100951950764454 a004 Fibonacci(50)*Lucas(22)/(1/2+sqrt(5)/2)^64 2100951950764454 a004 Fibonacci(52)*Lucas(22)/(1/2+sqrt(5)/2)^66 2100951950764454 a004 Fibonacci(54)*Lucas(22)/(1/2+sqrt(5)/2)^68 2100951950764454 a004 Fibonacci(56)*Lucas(22)/(1/2+sqrt(5)/2)^70 2100951950764454 a004 Fibonacci(58)*Lucas(22)/(1/2+sqrt(5)/2)^72 2100951950764454 a004 Fibonacci(60)*Lucas(22)/(1/2+sqrt(5)/2)^74 2100951950764454 a004 Fibonacci(62)*Lucas(22)/(1/2+sqrt(5)/2)^76 2100951950764454 a004 Fibonacci(64)*Lucas(22)/(1/2+sqrt(5)/2)^78 2100951950764454 a004 Fibonacci(66)*Lucas(22)/(1/2+sqrt(5)/2)^80 2100951950764454 a004 Fibonacci(68)*Lucas(22)/(1/2+sqrt(5)/2)^82 2100951950764454 a004 Fibonacci(70)*Lucas(22)/(1/2+sqrt(5)/2)^84 2100951950764454 a004 Fibonacci(72)*Lucas(22)/(1/2+sqrt(5)/2)^86 2100951950764454 a004 Fibonacci(74)*Lucas(22)/(1/2+sqrt(5)/2)^88 2100951950764454 a004 Fibonacci(76)*Lucas(22)/(1/2+sqrt(5)/2)^90 2100951950764454 a004 Fibonacci(78)*Lucas(22)/(1/2+sqrt(5)/2)^92 2100951950764454 a004 Fibonacci(80)*Lucas(22)/(1/2+sqrt(5)/2)^94 2100951950764454 a004 Fibonacci(82)*Lucas(22)/(1/2+sqrt(5)/2)^96 2100951950764454 a004 Fibonacci(84)*Lucas(22)/(1/2+sqrt(5)/2)^98 2100951950764454 a004 Fibonacci(86)*Lucas(22)/(1/2+sqrt(5)/2)^100 2100951950764454 a004 Fibonacci(85)*Lucas(22)/(1/2+sqrt(5)/2)^99 2100951950764454 a004 Fibonacci(83)*Lucas(22)/(1/2+sqrt(5)/2)^97 2100951950764454 a004 Fibonacci(81)*Lucas(22)/(1/2+sqrt(5)/2)^95 2100951950764454 a004 Fibonacci(79)*Lucas(22)/(1/2+sqrt(5)/2)^93 2100951950764454 a004 Fibonacci(77)*Lucas(22)/(1/2+sqrt(5)/2)^91 2100951950764454 a004 Fibonacci(75)*Lucas(22)/(1/2+sqrt(5)/2)^89 2100951950764454 a004 Fibonacci(73)*Lucas(22)/(1/2+sqrt(5)/2)^87 2100951950764454 a004 Fibonacci(71)*Lucas(22)/(1/2+sqrt(5)/2)^85 2100951950764454 a004 Fibonacci(69)*Lucas(22)/(1/2+sqrt(5)/2)^83 2100951950764454 a004 Fibonacci(67)*Lucas(22)/(1/2+sqrt(5)/2)^81 2100951950764454 a004 Fibonacci(65)*Lucas(22)/(1/2+sqrt(5)/2)^79 2100951950764454 a004 Fibonacci(63)*Lucas(22)/(1/2+sqrt(5)/2)^77 2100951950764454 a004 Fibonacci(61)*Lucas(22)/(1/2+sqrt(5)/2)^75 2100951950764454 a004 Fibonacci(59)*Lucas(22)/(1/2+sqrt(5)/2)^73 2100951950764454 a004 Fibonacci(57)*Lucas(22)/(1/2+sqrt(5)/2)^71 2100951950764454 a004 Fibonacci(55)*Lucas(22)/(1/2+sqrt(5)/2)^69 2100951950764454 a004 Fibonacci(53)*Lucas(22)/(1/2+sqrt(5)/2)^67 2100951950764454 a004 Fibonacci(51)*Lucas(22)/(1/2+sqrt(5)/2)^65 2100951950764454 a004 Fibonacci(49)*Lucas(22)/(1/2+sqrt(5)/2)^63 2100951950764454 a004 Fibonacci(47)*Lucas(22)/(1/2+sqrt(5)/2)^61 2100951950764454 a004 Fibonacci(45)*Lucas(22)/(1/2+sqrt(5)/2)^59 2100951950764454 a001 2/17711*(1/2+1/2*5^(1/2))^30 2100951950764454 a004 Fibonacci(43)*Lucas(22)/(1/2+sqrt(5)/2)^57 2100951950764454 a004 Fibonacci(41)*Lucas(22)/(1/2+sqrt(5)/2)^55 2100951950764454 a004 Fibonacci(39)*Lucas(22)/(1/2+sqrt(5)/2)^53 2100951950764455 a004 Fibonacci(37)*Lucas(22)/(1/2+sqrt(5)/2)^51 2100951950764459 a004 Fibonacci(35)*Lucas(22)/(1/2+sqrt(5)/2)^49 2100951950764488 a004 Fibonacci(33)*Lucas(22)/(1/2+sqrt(5)/2)^47 2100951950764686 a004 Fibonacci(31)*Lucas(22)/(1/2+sqrt(5)/2)^45 2100951950766043 a004 Fibonacci(29)*Lucas(22)/(1/2+sqrt(5)/2)^43 2100951950773834 a001 1346269/271443*15127^(3/20) 2100951950775345 a004 Fibonacci(27)*Lucas(22)/(1/2+sqrt(5)/2)^41 2100951950778215 a001 75025/87403803*39603^(21/22) 2100951950790596 a001 28657/1149851*39603^(7/11) 2100951950797989 a001 3524578/710647*15127^(3/20) 2100951950801514 a001 9227465/1860498*15127^(3/20) 2100951950802028 a001 24157817/4870847*15127^(3/20) 2100951950802103 a001 63245986/12752043*15127^(3/20) 2100951950802114 a001 165580141/33385282*15127^(3/20) 2100951950802115 a001 433494437/87403803*15127^(3/20) 2100951950802116 a001 1134903170/228826127*15127^(3/20) 2100951950802116 a001 2971215073/599074578*15127^(3/20) 2100951950802116 a001 7778742049/1568397607*15127^(3/20) 2100951950802116 a001 20365011074/4106118243*15127^(3/20) 2100951950802116 a001 53316291173/10749957122*15127^(3/20) 2100951950802116 a001 139583862445/28143753123*15127^(3/20) 2100951950802116 a001 365435296162/73681302247*15127^(3/20) 2100951950802116 a001 956722026041/192900153618*15127^(3/20) 2100951950802116 a001 2504730781961/505019158607*15127^(3/20) 2100951950802116 a001 10610209857723/2139295485799*15127^(3/20) 2100951950802116 a001 140728068720/28374454999*15127^(3/20) 2100951950802116 a001 591286729879/119218851371*15127^(3/20) 2100951950802116 a001 225851433717/45537549124*15127^(3/20) 2100951950802116 a001 86267571272/17393796001*15127^(3/20) 2100951950802116 a001 32951280099/6643838879*15127^(3/20) 2100951950802116 a001 1144206275/230701876*15127^(3/20) 2100951950802116 a001 4807526976/969323029*15127^(3/20) 2100951950802116 a001 1836311903/370248451*15127^(3/20) 2100951950802116 a001 701408733/141422324*15127^(3/20) 2100951950802116 a001 267914296/54018521*15127^(3/20) 2100951950802121 a001 9303105/1875749*15127^(3/20) 2100951950802149 a001 39088169/7881196*15127^(3/20) 2100951950802346 a001 14930352/3010349*15127^(3/20) 2100951950803692 a001 5702887/1149851*15127^(3/20) 2100951950806531 a001 75025/15127*5778^(1/6) 2100951950812919 a001 2178309/439204*15127^(3/20) 2100951950839105 a004 Fibonacci(25)*Lucas(22)/(1/2+sqrt(5)/2)^39 2100951950849289 a001 28657/1860498*39603^(15/22) 2100951950856297 a001 514229/64079*15127^(1/10) 2100951950876160 a001 75640/15251*15127^(3/20) 2100951950899460 a001 5473/51841*24476^(11/21) 2100951950911017 a001 28657/3010349*39603^(8/11) 2100951950935338 a001 28657/64079*39603^(4/11) 2100951950971585 a001 28657/4870847*39603^(17/22) 2100951951002550 a001 10946/167761*24476^(4/7) 2100951951032596 a001 28657/7881196*39603^(9/11) 2100951951061589 a001 317811/103682*15127^(1/5) 2100951951093438 a001 28657/12752043*39603^(19/22) 2100951951154345 a001 28657/20633239*39603^(10/11) 2100951951215227 a001 28657/33385282*39603^(21/22) 2100951951232066 a001 832040/271443*15127^(1/5) 2100951951256939 a001 311187/101521*15127^(1/5) 2100951951260568 a001 5702887/1860498*15127^(1/5) 2100951951261097 a001 14930352/4870847*15127^(1/5) 2100951951261174 a001 39088169/12752043*15127^(1/5) 2100951951261186 a001 14619165/4769326*15127^(1/5) 2100951951261187 a001 267914296/87403803*15127^(1/5) 2100951951261187 a001 701408733/228826127*15127^(1/5) 2100951951261187 a001 1836311903/599074578*15127^(1/5) 2100951951261187 a001 686789568/224056801*15127^(1/5) 2100951951261187 a001 12586269025/4106118243*15127^(1/5) 2100951951261187 a001 32951280099/10749957122*15127^(1/5) 2100951951261187 a001 86267571272/28143753123*15127^(1/5) 2100951951261187 a001 32264490531/10525900321*15127^(1/5) 2100951951261187 a001 591286729879/192900153618*15127^(1/5) 2100951951261187 a001 1548008755920/505019158607*15127^(1/5) 2100951951261187 a001 1515744265389/494493258286*15127^(1/5) 2100951951261187 a001 2504730781961/817138163596*15127^(1/5) 2100951951261187 a001 956722026041/312119004989*15127^(1/5) 2100951951261187 a001 365435296162/119218851371*15127^(1/5) 2100951951261187 a001 139583862445/45537549124*15127^(1/5) 2100951951261187 a001 53316291173/17393796001*15127^(1/5) 2100951951261187 a001 20365011074/6643838879*15127^(1/5) 2100951951261187 a001 7778742049/2537720636*15127^(1/5) 2100951951261187 a001 2971215073/969323029*15127^(1/5) 2100951951261187 a001 1134903170/370248451*15127^(1/5) 2100951951261188 a001 433494437/141422324*15127^(1/5) 2100951951261188 a001 165580141/54018521*15127^(1/5) 2100951951261192 a001 63245986/20633239*15127^(1/5) 2100951951261222 a001 24157817/7881196*15127^(1/5) 2100951951261424 a001 9227465/3010349*15127^(1/5) 2100951951262810 a001 3524578/1149851*15127^(1/5) 2100951951272311 a001 1346269/439204*15127^(1/5) 2100951951276118 a004 Fibonacci(23)*Lucas(22)/(1/2+sqrt(5)/2)^37 2100951951309619 a001 317811/64079*15127^(3/20) 2100951951337427 a001 514229/167761*15127^(1/5) 2100951951392127 a001 10946/39603*64079^(9/23) 2100951951436619 a001 17711/24476*64079^(7/23) 2100951951535712 a001 98209/51841*15127^(1/4) 2100951951583074 a001 514229/39603*5778^(1/18) 2100951951588713 a001 10946/39603*439204^(1/3) 2100951951592334 a001 10946/39603*7881196^(3/11) 2100951951592338 a001 14912662/709805 2100951951592342 a001 17711/24476*20633239^(1/5) 2100951951592343 a001 10946/39603*141422324^(3/13) 2100951951592343 a001 10946/39603*2537720636^(1/5) 2100951951592343 a001 10946/39603*45537549124^(3/17) 2100951951592343 a001 10946/39603*14662949395604^(1/7) 2100951951592343 a001 10946/39603*(1/2+1/2*5^(1/2))^9 2100951951592343 a001 10946/39603*192900153618^(1/6) 2100951951592343 a001 10946/39603*10749957122^(3/16) 2100951951592343 a001 10946/39603*599074578^(3/14) 2100951951592343 a001 17711/24476*17393796001^(1/7) 2100951951592343 a001 17711/24476*14662949395604^(1/9) 2100951951592343 a001 17711/24476*(1/2+1/2*5^(1/2))^7 2100951951592343 a001 17711/24476*599074578^(1/6) 2100951951592344 a001 10946/39603*33385282^(1/4) 2100951951592525 a001 10946/39603*1860498^(3/10) 2100951951593383 a001 17711/24476*710647^(1/4) 2100951951649346 a001 17711/24476*103682^(7/24) 2100951951662615 a001 10959/844*9349^(1/19) 2100951951665632 a001 10946/39603*103682^(3/8) 2100951951693334 a001 514229/271443*15127^(1/4) 2100951951716331 a001 1346269/710647*15127^(1/4) 2100951951719686 a001 1762289/930249*15127^(1/4) 2100951951720175 a001 9227465/4870847*15127^(1/4) 2100951951720247 a001 24157817/12752043*15127^(1/4) 2100951951720257 a001 31622993/16692641*15127^(1/4) 2100951951720259 a001 165580141/87403803*15127^(1/4) 2100951951720259 a001 433494437/228826127*15127^(1/4) 2100951951720259 a001 567451585/299537289*15127^(1/4) 2100951951720259 a001 2971215073/1568397607*15127^(1/4) 2100951951720259 a001 7778742049/4106118243*15127^(1/4) 2100951951720259 a001 10182505537/5374978561*15127^(1/4) 2100951951720259 a001 53316291173/28143753123*15127^(1/4) 2100951951720259 a001 139583862445/73681302247*15127^(1/4) 2100951951720259 a001 182717648081/96450076809*15127^(1/4) 2100951951720259 a001 956722026041/505019158607*15127^(1/4) 2100951951720259 a001 10610209857723/5600748293801*15127^(1/4) 2100951951720259 a001 591286729879/312119004989*15127^(1/4) 2100951951720259 a001 225851433717/119218851371*15127^(1/4) 2100951951720259 a001 21566892818/11384387281*15127^(1/4) 2100951951720259 a001 32951280099/17393796001*15127^(1/4) 2100951951720259 a001 12586269025/6643838879*15127^(1/4) 2100951951720259 a001 1201881744/634430159*15127^(1/4) 2100951951720259 a001 1836311903/969323029*15127^(1/4) 2100951951720259 a001 701408733/370248451*15127^(1/4) 2100951951720259 a001 66978574/35355581*15127^(1/4) 2100951951720260 a001 102334155/54018521*15127^(1/4) 2100951951720264 a001 39088169/20633239*15127^(1/4) 2100951951720291 a001 3732588/1970299*15127^(1/4) 2100951951720478 a001 5702887/3010349*15127^(1/4) 2100951951721760 a001 2178309/1149851*15127^(1/4) 2100951951730544 a001 208010/109801*15127^(1/4) 2100951951773562 a001 10946/64079*24476^(10/21) 2100951951783743 a001 196418/64079*15127^(1/5) 2100951951790750 a001 317811/167761*15127^(1/4) 2100951951810513 a001 28657/39603*15127^(7/20) 2100951951901459 a001 11592/6119*24476^(5/21) 2100951951950983 a001 4181/710647*9349^(17/19) 2100951951955379 a001 121393/103682*15127^(3/10) 2100951952018565 a001 17711/24476*39603^(7/22) 2100951952140342 a001 10946/39603*39603^(9/22) 2100951952146657 a001 105937/90481*15127^(3/10) 2100951952174564 a001 832040/710647*15127^(3/10) 2100951952178635 a001 726103/620166*15127^(3/10) 2100951952179229 a001 5702887/4870847*15127^(3/10) 2100951952179316 a001 4976784/4250681*15127^(3/10) 2100951952179329 a001 39088169/33385282*15127^(3/10) 2100951952179330 a001 34111385/29134601*15127^(3/10) 2100951952179331 a001 267914296/228826127*15127^(3/10) 2100951952179331 a001 233802911/199691526*15127^(3/10) 2100951952179331 a001 1836311903/1568397607*15127^(3/10) 2100951952179331 a001 1602508992/1368706081*15127^(3/10) 2100951952179331 a001 12586269025/10749957122*15127^(3/10) 2100951952179331 a001 10983760033/9381251041*15127^(3/10) 2100951952179331 a001 86267571272/73681302247*15127^(3/10) 2100951952179331 a001 75283811239/64300051206*15127^(3/10) 2100951952179331 a001 2504730781961/2139295485799*15127^(3/10) 2100951952179331 a001 365435296162/312119004989*15127^(3/10) 2100951952179331 a001 139583862445/119218851371*15127^(3/10) 2100951952179331 a001 53316291173/45537549124*15127^(3/10) 2100951952179331 a001 20365011074/17393796001*15127^(3/10) 2100951952179331 a001 7778742049/6643838879*15127^(3/10) 2100951952179331 a001 2971215073/2537720636*15127^(3/10) 2100951952179331 a001 1134903170/969323029*15127^(3/10) 2100951952179331 a001 433494437/370248451*15127^(3/10) 2100951952179331 a001 165580141/141422324*15127^(3/10) 2100951952179332 a001 63245986/54018521*15127^(3/10) 2100951952179336 a001 24157817/20633239*15127^(3/10) 2100951952179370 a001 9227465/7881196*15127^(3/10) 2100951952179596 a001 3524578/3010349*15127^(3/10) 2100951952181152 a001 1346269/1149851*15127^(3/10) 2100951952191811 a001 514229/439204*15127^(3/10) 2100951952203409 a001 121393/64079*15127^(1/4) 2100951952264873 a001 196418/167761*15127^(3/10) 2100951952338548 a001 75025/24476*24476^(4/21) 2100951952402383 a001 121393/24476*24476^(1/7) 2100951952420233 a004 Fibonacci(21)*Lucas(23)/(1/2+sqrt(5)/2)^36 2100951952441561 a001 28657/24476*24476^(2/7) 2100951952442484 a001 10946/20633239*64079^(22/23) 2100951952464712 a001 10946/12752043*64079^(21/23) 2100951952480626 a001 17711/103682*15127^(1/2) 2100951952487005 a001 5473/3940598*64079^(20/23) 2100951952491749 a001 5473/51841*64079^(11/23) 2100951952509129 a001 10946/4870847*64079^(19/23) 2100951952517615 a001 75025/103682*15127^(7/20) 2100951952531696 a001 10946/3010349*64079^(18/23) 2100951952553103 a001 5473/930249*64079^(17/23) 2100951952577545 a001 10946/1149851*64079^(16/23) 2100951952594042 a001 10946/710647*64079^(15/23) 2100951952608788 a001 98209/12238*24476^(2/21) 2100951952614181 a001 10946/271443*64079^(13/23) 2100951952620780 a001 196418/271443*15127^(7/20) 2100951952625227 a001 11592/6119*64079^(5/23) 2100951952631340 a001 5473/219602*64079^(14/23) 2100951952635831 a001 514229/710647*15127^(7/20) 2100951952638027 a001 1346269/1860498*15127^(7/20) 2100951952638348 a001 3524578/4870847*15127^(7/20) 2100951952638395 a001 9227465/12752043*15127^(7/20) 2100951952638401 a001 24157817/33385282*15127^(7/20) 2100951952638402 a001 63245986/87403803*15127^(7/20) 2100951952638402 a001 165580141/228826127*15127^(7/20) 2100951952638402 a001 433494437/599074578*15127^(7/20) 2100951952638403 a001 1134903170/1568397607*15127^(7/20) 2100951952638403 a001 2971215073/4106118243*15127^(7/20) 2100951952638403 a001 7778742049/10749957122*15127^(7/20) 2100951952638403 a001 20365011074/28143753123*15127^(7/20) 2100951952638403 a001 53316291173/73681302247*15127^(7/20) 2100951952638403 a001 139583862445/192900153618*15127^(7/20) 2100951952638403 a001 10610209857723/14662949395604*15127^(7/20) 2100951952638403 a001 225851433717/312119004989*15127^(7/20) 2100951952638403 a001 86267571272/119218851371*15127^(7/20) 2100951952638403 a001 32951280099/45537549124*15127^(7/20) 2100951952638403 a001 12586269025/17393796001*15127^(7/20) 2100951952638403 a001 4807526976/6643838879*15127^(7/20) 2100951952638403 a001 1836311903/2537720636*15127^(7/20) 2100951952638403 a001 701408733/969323029*15127^(7/20) 2100951952638403 a001 267914296/370248451*15127^(7/20) 2100951952638403 a001 102334155/141422324*15127^(7/20) 2100951952638403 a001 39088169/54018521*15127^(7/20) 2100951952638406 a001 14930352/20633239*15127^(7/20) 2100951952638423 a001 5702887/7881196*15127^(7/20) 2100951952638546 a001 2178309/3010349*15127^(7/20) 2100951952639385 a001 832040/1149851*15127^(7/20) 2100951952645134 a001 317811/439204*15127^(7/20) 2100951952684539 a001 121393/167761*15127^(7/20) 2100951952706598 a001 23184/51841*15127^(2/5) 2100951952721528 a001 11592/6119*167761^(1/5) 2100951952725832 a001 1346269/103682*5778^(1/18) 2100951952728657 a001 17711/64079*15127^(9/20) 2100951952736447 a001 5473/51841*7881196^(1/3) 2100951952736457 a001 507544128/24157817 2100951952736457 a001 11592/6119*20633239^(1/7) 2100951952736458 a001 5473/51841*312119004989^(1/5) 2100951952736458 a001 5473/51841*(1/2+1/2*5^(1/2))^11 2100951952736458 a001 5473/51841*1568397607^(1/4) 2100951952736458 a001 11592/6119*2537720636^(1/9) 2100951952736458 a001 11592/6119*312119004989^(1/11) 2100951952736458 a001 11592/6119*(1/2+1/2*5^(1/2))^5 2100951952736458 a001 11592/6119*28143753123^(1/10) 2100951952736458 a001 11592/6119*228826127^(1/8) 2100951952736559 a001 11592/6119*1860498^(1/6) 2100951952739592 a001 10946/167761*64079^(12/23) 2100951952760736 a001 10959/844*24476^(1/21) 2100951952765645 a001 75025/64079*15127^(3/10) 2100951952777174 a001 11592/6119*103682^(5/24) 2100951952826034 a001 5473/51841*103682^(11/24) 2100951952836644 a001 121393/24476*64079^(3/23) 2100951952857246 a004 Fibonacci(21)*Lucas(25)/(1/2+sqrt(5)/2)^38 2100951952872210 a001 5473/3940598*167761^(4/5) 2100951952882946 a001 10946/710647*167761^(3/5) 2100951952892558 a001 3524578/271443*5778^(1/18) 2100951952894680 a001 4181/15127*9349^(9/19) 2100951952898295 a001 98209/12238*64079^(2/23) 2100951952902172 a001 121393/24476*439204^(1/9) 2100951952903379 a001 121393/24476*7881196^(1/11) 2100951952903382 a001 2851433/135721 2100951952903382 a001 10946/271443*141422324^(1/3) 2100951952903382 a001 121393/24476*141422324^(1/13) 2100951952903382 a001 10946/271443*(1/2+1/2*5^(1/2))^13 2100951952903382 a001 10946/271443*73681302247^(1/4) 2100951952903382 a001 121393/24476*2537720636^(1/15) 2100951952903382 a001 121393/24476*45537549124^(1/17) 2100951952903382 a001 121393/24476*14662949395604^(1/21) 2100951952903382 a001 121393/24476*(1/2+1/2*5^(1/2))^3 2100951952903382 a001 121393/24476*10749957122^(1/16) 2100951952903382 a001 121393/24476*599074578^(1/14) 2100951952903382 a001 121393/24476*33385282^(1/12) 2100951952903443 a001 121393/24476*1860498^(1/10) 2100951952905490 a001 10959/844*64079^(1/23) 2100951952916883 a001 9227465/710647*5778^(1/18) 2100951952917562 a001 75025/24476*64079^(4/23) 2100951952917639 a001 10946/271443*271443^(1/2) 2100951952920432 a001 24157817/1860498*5778^(1/18) 2100951952920950 a001 63245986/4870847*5778^(1/18) 2100951952921005 a004 Fibonacci(21)*Lucas(27)/(1/2+sqrt(5)/2)^40 2100951952921026 a001 165580141/12752043*5778^(1/18) 2100951952921037 a001 433494437/33385282*5778^(1/18) 2100951952921038 a001 1134903170/87403803*5778^(1/18) 2100951952921039 a001 2971215073/228826127*5778^(1/18) 2100951952921039 a001 7778742049/599074578*5778^(1/18) 2100951952921039 a001 20365011074/1568397607*5778^(1/18) 2100951952921039 a001 53316291173/4106118243*5778^(1/18) 2100951952921039 a001 139583862445/10749957122*5778^(1/18) 2100951952921039 a001 365435296162/28143753123*5778^(1/18) 2100951952921039 a001 956722026041/73681302247*5778^(1/18) 2100951952921039 a001 2504730781961/192900153618*5778^(1/18) 2100951952921039 a001 10610209857723/817138163596*5778^(1/18) 2100951952921039 a001 4052739537881/312119004989*5778^(1/18) 2100951952921039 a001 1548008755920/119218851371*5778^(1/18) 2100951952921039 a001 591286729879/45537549124*5778^(1/18) 2100951952921039 a001 7787980473/599786069*5778^(1/18) 2100951952921039 a001 86267571272/6643838879*5778^(1/18) 2100951952921039 a001 32951280099/2537720636*5778^(1/18) 2100951952921039 a001 12586269025/969323029*5778^(1/18) 2100951952921039 a001 4807526976/370248451*5778^(1/18) 2100951952921039 a001 1836311903/141422324*5778^(1/18) 2100951952921039 a001 701408733/54018521*5778^(1/18) 2100951952921044 a001 9238424/711491*5778^(1/18) 2100951952921072 a001 102334155/7881196*5778^(1/18) 2100951952921270 a001 39088169/3010349*5778^(1/18) 2100951952921685 a001 10946/710647*439204^(5/9) 2100951952922216 a001 10946/54018521*439204^(8/9) 2100951952922626 a001 14930352/1149851*5778^(1/18) 2100951952923412 a001 10946/12752043*439204^(7/9) 2100951952924867 a001 10946/3010349*439204^(2/3) 2100951952927721 a001 10946/710647*7881196^(5/11) 2100951952927734 a001 10946/710647*20633239^(3/7) 2100951952927736 a001 10946/710647*141422324^(5/13) 2100951952927736 a001 3478759206/165580141 2100951952927736 a001 10946/710647*2537720636^(1/3) 2100951952927736 a001 10946/710647*45537549124^(5/17) 2100951952927736 a001 10946/710647*312119004989^(3/11) 2100951952927736 a001 10946/710647*14662949395604^(5/21) 2100951952927736 a001 10946/710647*(1/2+1/2*5^(1/2))^15 2100951952927736 a001 10946/710647*192900153618^(5/18) 2100951952927736 a001 10946/710647*28143753123^(3/10) 2100951952927736 a001 10946/710647*10749957122^(5/16) 2100951952927736 a001 10946/710647*599074578^(5/14) 2100951952927736 a001 10959/1688+10959/1688*5^(1/2) 2100951952927736 a001 10946/710647*228826127^(3/8) 2100951952927737 a001 10946/710647*33385282^(5/12) 2100951952927812 a001 121393/24476*103682^(1/8) 2100951952928040 a001 10946/710647*1860498^(1/2) 2100951952930307 a004 Fibonacci(21)*Lucas(29)/(1/2+sqrt(5)/2)^42 2100951952931289 a001 9107509840/433494437 2100951952931289 a001 5473/930249*45537549124^(1/3) 2100951952931289 a001 5473/930249*(1/2+1/2*5^(1/2))^17 2100951952931289 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^17/Lucas(30) 2100951952931289 a004 Fibonacci(30)/Lucas(21)/(1/2+sqrt(5)/2) 2100951952931296 a001 5473/930249*12752043^(1/2) 2100951952931664 a004 Fibonacci(21)*Lucas(31)/(1/2+sqrt(5)/2)^44 2100951952931808 a001 11921885157/567451585 2100951952931808 a001 10946/4870847*817138163596^(1/3) 2100951952931808 a001 10946/4870847*(1/2+1/2*5^(1/2))^19 2100951952931808 a004 Fibonacci(32)/Lucas(21)/(1/2+sqrt(5)/2)^3 2100951952931808 a001 10946/4870847*87403803^(1/2) 2100951952931862 a001 10946/12752043*7881196^(7/11) 2100951952931863 a004 Fibonacci(21)*Lucas(33)/(1/2+sqrt(5)/2)^46 2100951952931866 a001 10946/969323029*7881196^(10/11) 2100951952931869 a001 10946/228826127*7881196^(9/11) 2100951952931872 a001 10946/54018521*7881196^(8/11) 2100951952931879 a001 10946/20633239*7881196^(2/3) 2100951952931880 a001 10946/12752043*20633239^(3/5) 2100951952931883 a001 10946/12752043*141422324^(7/13) 2100951952931883 a001 10946/12752043*2537720636^(7/15) 2100951952931883 a001 62423801102/2971215073 2100951952931883 a001 10946/12752043*17393796001^(3/7) 2100951952931883 a001 10946/12752043*45537549124^(7/17) 2100951952931883 a001 10946/12752043*14662949395604^(1/3) 2100951952931883 a001 10946/12752043*(1/2+1/2*5^(1/2))^21 2100951952931883 a001 10946/12752043*192900153618^(7/18) 2100951952931883 a001 10946/12752043*10749957122^(7/16) 2100951952931883 a001 10946/12752043*599074578^(1/2) 2100951952931883 a004 Fibonacci(34)/Lucas(21)/(1/2+sqrt(5)/2)^5 2100951952931885 a001 10946/12752043*33385282^(7/12) 2100951952931891 a004 Fibonacci(21)*Lucas(35)/(1/2+sqrt(5)/2)^48 2100951952931892 a001 10946/969323029*20633239^(6/7) 2100951952931892 a001 10946/370248451*20633239^(4/5) 2100951952931893 a001 10946/87403803*20633239^(5/7) 2100951952931894 a001 12571356384/598364773 2100951952931894 a001 5473/16692641*(1/2+1/2*5^(1/2))^23 2100951952931894 a001 5473/16692641*4106118243^(1/2) 2100951952931894 a004 Fibonacci(36)/Lucas(21)/(1/2+sqrt(5)/2)^7 2100951952931896 a004 Fibonacci(21)*Lucas(37)/(1/2+sqrt(5)/2)^50 2100951952931896 a001 10946/87403803*2537720636^(5/9) 2100951952931896 a001 213929548937/10182505537 2100951952931896 a001 10946/87403803*312119004989^(5/11) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^25/Lucas(38) 2100951952931896 a001 10946/87403803*3461452808002^(5/12) 2100951952931896 a001 10946/87403803*28143753123^(1/2) 2100951952931896 a004 Fibonacci(38)/Lucas(21)/(1/2+sqrt(5)/2)^9 2100951952931896 a001 10946/87403803*228826127^(5/8) 2100951952931896 a001 10946/228826127*141422324^(9/13) 2100951952931896 a004 Fibonacci(21)*Lucas(39)/(1/2+sqrt(5)/2)^52 2100951952931896 a001 10946/17393796001*141422324^(12/13) 2100951952931896 a001 10946/4106118243*141422324^(11/13) 2100951952931896 a001 10946/969323029*141422324^(10/13) 2100951952931896 a001 10946/228826127*2537720636^(3/5) 2100951952931896 a001 10946/228826127*45537549124^(9/17) 2100951952931896 a001 1120149660630/53316291173 2100951952931896 a001 10946/228826127*14662949395604^(3/7) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^27/Lucas(40) 2100951952931896 a001 10946/228826127*192900153618^(1/2) 2100951952931896 a001 10946/228826127*10749957122^(9/16) 2100951952931896 a001 10946/228826127*599074578^(9/14) 2100951952931896 a004 Fibonacci(40)/Lucas(21)/(1/2+sqrt(5)/2)^11 2100951952931896 a004 Fibonacci(21)*Lucas(41)/(1/2+sqrt(5)/2)^54 2100951952931896 a001 2932589884016/139583862445 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^29/Lucas(42) 2100951952931896 a001 5473/299537289*1322157322203^(1/2) 2100951952931896 a004 Fibonacci(21)*Lucas(43)/(1/2+sqrt(5)/2)^56 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^31/Lucas(44) 2100951952931896 a001 10946/1568397607*9062201101803^(1/2) 2100951952931896 a001 10946/4106118243*2537720636^(11/15) 2100951952931896 a004 Fibonacci(21)*Lucas(45)/(1/2+sqrt(5)/2)^58 2100951952931896 a001 10946/312119004989*2537720636^(14/15) 2100951952931896 a001 10946/119218851371*2537720636^(8/9) 2100951952931896 a001 10946/73681302247*2537720636^(13/15) 2100951952931896 a001 5473/5374978561*2537720636^(7/9) 2100951952931896 a001 10946/17393796001*2537720636^(4/5) 2100951952931896 a001 10946/4106118243*45537549124^(11/17) 2100951952931896 a001 10946/4106118243*312119004989^(3/5) 2100951952931896 a001 10946/4106118243*817138163596^(11/19) 2100951952931896 a001 10946/4106118243*14662949395604^(11/21) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^33/Lucas(46) 2100951952931896 a001 10946/4106118243*192900153618^(11/18) 2100951952931896 a001 10946/4106118243*10749957122^(11/16) 2100951952931896 a004 Fibonacci(21)*Lucas(47)/(1/2+sqrt(5)/2)^60 2100951952931896 a001 5473/5374978561*17393796001^(5/7) 2100951952931896 a001 5473/5374978561*312119004989^(7/11) 2100951952931896 a001 52623190279296/2504730781961 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^35/Lucas(48) 2100951952931896 a001 5473/5374978561*505019158607^(5/8) 2100951952931896 a001 5473/5374978561*28143753123^(7/10) 2100951952931896 a004 Fibonacci(21)*Lucas(49)/(1/2+sqrt(5)/2)^62 2100951952931896 a001 10946/312119004989*17393796001^(6/7) 2100951952931896 a001 12586269025/599074577 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^37/Lucas(50) 2100951952931896 a001 10946/73681302247*45537549124^(13/17) 2100951952931896 a004 Fibonacci(21)*Lucas(51)/(1/2+sqrt(5)/2)^64 2100951952931896 a001 10946/5600748293801*45537549124^(16/17) 2100951952931896 a001 10946/1322157322203*45537549124^(15/17) 2100951952931896 a001 10946/312119004989*45537549124^(14/17) 2100951952931896 a001 10946/73681302247*14662949395604^(13/21) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^39/Lucas(52) 2100951952931896 a001 10946/73681302247*192900153618^(13/18) 2100951952931896 a004 Fibonacci(21)*Lucas(53)/(1/2+sqrt(5)/2)^66 2100951952931896 a001 10946/73681302247*73681302247^(3/4) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^41/Lucas(54) 2100951952931896 a004 Fibonacci(21)*Lucas(55)/(1/2+sqrt(5)/2)^68 2100951952931896 a001 10946/1322157322203*312119004989^(9/11) 2100951952931896 a001 5473/408569081798*312119004989^(4/5) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^43/Lucas(56) 2100951952931896 a004 Fibonacci(21)*Lucas(57)/(1/2+sqrt(5)/2)^70 2100951952931896 a001 10946/1322157322203*14662949395604^(5/7) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^45/Lucas(58) 2100951952931896 a004 Fibonacci(21)*Lucas(59)/(1/2+sqrt(5)/2)^72 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^47/Lucas(60) 2100951952931896 a004 Fibonacci(21)*Lucas(61)/(1/2+sqrt(5)/2)^74 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^49/Lucas(62) 2100951952931896 a001 10946/23725150497407*14662949395604^(17/21) 2100951952931896 a004 Fibonacci(21)*Lucas(63)/(1/2+sqrt(5)/2)^76 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^51/Lucas(64) 2100951952931896 a004 Fibonacci(21)*Lucas(65)/(1/2+sqrt(5)/2)^78 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^53/Lucas(66) 2100951952931896 a004 Fibonacci(21)*Lucas(67)/(1/2+sqrt(5)/2)^80 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^55/Lucas(68) 2100951952931896 a004 Fibonacci(21)*Lucas(69)/(1/2+sqrt(5)/2)^82 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^57/Lucas(70) 2100951952931896 a004 Fibonacci(21)*Lucas(71)/(1/2+sqrt(5)/2)^84 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^59/Lucas(72) 2100951952931896 a004 Fibonacci(21)*Lucas(73)/(1/2+sqrt(5)/2)^86 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^61/Lucas(74) 2100951952931896 a004 Fibonacci(21)*Lucas(75)/(1/2+sqrt(5)/2)^88 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^63/Lucas(76) 2100951952931896 a004 Fibonacci(21)*Lucas(77)/(1/2+sqrt(5)/2)^90 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^65/Lucas(78) 2100951952931896 a004 Fibonacci(21)*Lucas(79)/(1/2+sqrt(5)/2)^92 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^67/Lucas(80) 2100951952931896 a004 Fibonacci(21)*Lucas(81)/(1/2+sqrt(5)/2)^94 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^69/Lucas(82) 2100951952931896 a004 Fibonacci(21)*Lucas(83)/(1/2+sqrt(5)/2)^96 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^71/Lucas(84) 2100951952931896 a004 Fibonacci(21)*Lucas(85)/(1/2+sqrt(5)/2)^98 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^73/Lucas(86) 2100951952931896 a004 Fibonacci(21)*Lucas(87)/(1/2+sqrt(5)/2)^100 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^75/Lucas(88) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^77/Lucas(90) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^79/Lucas(92) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^81/Lucas(94) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^83/Lucas(96) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^85/Lucas(98) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^86/Lucas(99) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^87/Lucas(100) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^84/Lucas(97) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^82/Lucas(95) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^80/Lucas(93) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^78/Lucas(91) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^76/Lucas(89) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^74/Lucas(87) 2100951952931896 a004 Fibonacci(21)*Lucas(86)/(1/2+sqrt(5)/2)^99 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^72/Lucas(85) 2100951952931896 a004 Fibonacci(21)*Lucas(84)/(1/2+sqrt(5)/2)^97 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^70/Lucas(83) 2100951952931896 a004 Fibonacci(21)*Lucas(82)/(1/2+sqrt(5)/2)^95 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^68/Lucas(81) 2100951952931896 a004 Fibonacci(21)*Lucas(80)/(1/2+sqrt(5)/2)^93 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^66/Lucas(79) 2100951952931896 a004 Fibonacci(21)*Lucas(78)/(1/2+sqrt(5)/2)^91 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^64/Lucas(77) 2100951952931896 a004 Fibonacci(21)*Lucas(76)/(1/2+sqrt(5)/2)^89 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^62/Lucas(75) 2100951952931896 a004 Fibonacci(21)*Lucas(74)/(1/2+sqrt(5)/2)^87 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^60/Lucas(73) 2100951952931896 a004 Fibonacci(21)*Lucas(72)/(1/2+sqrt(5)/2)^85 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^58/Lucas(71) 2100951952931896 a004 Fibonacci(21)*Lucas(70)/(1/2+sqrt(5)/2)^83 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^56/Lucas(69) 2100951952931896 a004 Fibonacci(21)*Lucas(68)/(1/2+sqrt(5)/2)^81 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^54/Lucas(67) 2100951952931896 a004 Fibonacci(21)*Lucas(66)/(1/2+sqrt(5)/2)^79 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^52/Lucas(65) 2100951952931896 a004 Fibonacci(21)*Lucas(64)/(1/2+sqrt(5)/2)^77 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^50/Lucas(63) 2100951952931896 a004 Fibonacci(21)*Lucas(62)/(1/2+sqrt(5)/2)^75 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^48/Lucas(61) 2100951952931896 a004 Fibonacci(21)*Lucas(60)/(1/2+sqrt(5)/2)^73 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^46/Lucas(59) 2100951952931896 a004 Fibonacci(21)*Lucas(58)/(1/2+sqrt(5)/2)^71 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^44/Lucas(57) 2100951952931896 a004 Fibonacci(21)*Lucas(56)/(1/2+sqrt(5)/2)^69 2100951952931896 a001 10946/312119004989*817138163596^(14/19) 2100951952931896 a001 10946/312119004989*14662949395604^(2/3) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^42/Lucas(55) 2100951952931896 a001 10946/1322157322203*192900153618^(5/6) 2100951952931896 a001 10946/23725150497407*192900153618^(17/18) 2100951952931896 a004 Fibonacci(21)*Lucas(54)/(1/2+sqrt(5)/2)^67 2100951952931896 a001 10946/312119004989*192900153618^(7/9) 2100951952931896 a001 10946/119218851371*312119004989^(8/11) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^40/Lucas(53) 2100951952931896 a001 10946/119218851371*23725150497407^(5/8) 2100951952931896 a001 5473/408569081798*73681302247^(11/13) 2100951952931896 a001 10946/5600748293801*73681302247^(12/13) 2100951952931896 a004 Fibonacci(21)*Lucas(52)/(1/2+sqrt(5)/2)^65 2100951952931896 a001 10946/119218851371*73681302247^(10/13) 2100951952931896 a001 5473/22768774562*817138163596^(2/3) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^38/Lucas(51) 2100951952931896 a001 222915411216004/10610209857723 2100951952931896 a001 10946/119218851371*28143753123^(4/5) 2100951952931896 a001 10946/1322157322203*28143753123^(9/10) 2100951952931896 a004 Fibonacci(21)*Lucas(50)/(1/2+sqrt(5)/2)^63 2100951952931896 a001 10946/17393796001*45537549124^(12/17) 2100951952931896 a001 10946/17393796001*14662949395604^(4/7) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^36/Lucas(49) 2100951952931896 a001 10946/17393796001*192900153618^(2/3) 2100951952931896 a001 10946/17393796001*73681302247^(9/13) 2100951952931896 a001 10946/73681302247*10749957122^(13/16) 2100951952931896 a001 10946/119218851371*10749957122^(5/6) 2100951952931896 a001 5473/22768774562*10749957122^(19/24) 2100951952931896 a001 10946/312119004989*10749957122^(7/8) 2100951952931896 a001 5473/408569081798*10749957122^(11/12) 2100951952931896 a001 10946/1322157322203*10749957122^(15/16) 2100951952931896 a001 10946/2139295485799*10749957122^(23/24) 2100951952931896 a004 Fibonacci(21)*Lucas(48)/(1/2+sqrt(5)/2)^61 2100951952931896 a001 10946/17393796001*10749957122^(3/4) 2100951952931896 a001 10946/6643838879*45537549124^(2/3) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^34/Lucas(47) 2100951952931896 a001 16261460094529/774004377960 2100951952931896 a001 10946/6643838879*10749957122^(17/24) 2100951952931896 a001 5473/22768774562*4106118243^(19/23) 2100951952931896 a001 10946/17393796001*4106118243^(18/23) 2100951952931896 a001 10946/119218851371*4106118243^(20/23) 2100951952931896 a001 10946/312119004989*4106118243^(21/23) 2100951952931896 a001 5473/408569081798*4106118243^(22/23) 2100951952931896 a004 Fibonacci(21)*Lucas(46)/(1/2+sqrt(5)/2)^59 2100951952931896 a001 10946/6643838879*4106118243^(17/23) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^32/Lucas(45) 2100951952931896 a001 12422650098820/591286729879 2100951952931896 a001 5473/1268860318*505019158607^(4/7) 2100951952931896 a001 5473/1268860318*73681302247^(8/13) 2100951952931896 a001 5473/1268860318*10749957122^(2/3) 2100951952931896 a001 5473/1268860318*4106118243^(16/23) 2100951952931896 a001 10946/4106118243*1568397607^(3/4) 2100951952931896 a001 10946/17393796001*1568397607^(9/11) 2100951952931896 a001 10946/6643838879*1568397607^(17/22) 2100951952931896 a001 5473/22768774562*1568397607^(19/22) 2100951952931896 a001 10946/119218851371*1568397607^(10/11) 2100951952931896 a001 10946/312119004989*1568397607^(21/22) 2100951952931896 a004 Fibonacci(21)*Lucas(44)/(1/2+sqrt(5)/2)^57 2100951952931896 a001 5473/1268860318*1568397607^(8/11) 2100951952931896 a001 10946/969323029*2537720636^(2/3) 2100951952931896 a001 10946/969323029*45537549124^(10/17) 2100951952931896 a001 10946/969323029*312119004989^(6/11) 2100951952931896 a001 10946/969323029*14662949395604^(10/21) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^30/Lucas(43) 2100951952931896 a001 365002315954/17373187209 2100951952931896 a001 10946/969323029*192900153618^(5/9) 2100951952931896 a001 10946/969323029*28143753123^(3/5) 2100951952931896 a001 10946/969323029*10749957122^(5/8) 2100951952931896 a001 10946/969323029*4106118243^(15/23) 2100951952931896 a001 10946/969323029*1568397607^(15/22) 2100951952931896 a001 10946/4106118243*599074578^(11/14) 2100951952931896 a001 5473/1268860318*599074578^(16/21) 2100951952931896 a001 10946/6643838879*599074578^(17/21) 2100951952931896 a001 5473/5374978561*599074578^(5/6) 2100951952931896 a004 Fibonacci(44)/Lucas(21)/(1/2+sqrt(5)/2)^15 2100951952931896 a001 10946/17393796001*599074578^(6/7) 2100951952931896 a001 5473/22768774562*599074578^(19/21) 2100951952931896 a001 10946/73681302247*599074578^(13/14) 2100951952931896 a001 10946/119218851371*599074578^(20/21) 2100951952931896 a004 Fibonacci(46)/Lucas(21)/(1/2+sqrt(5)/2)^17 2100951952931896 a004 Fibonacci(48)/Lucas(21)/(1/2+sqrt(5)/2)^19 2100951952931896 a004 Fibonacci(50)/Lucas(21)/(1/2+sqrt(5)/2)^21 2100951952931896 a004 Fibonacci(52)/Lucas(21)/(1/2+sqrt(5)/2)^23 2100951952931896 a004 Fibonacci(54)/Lucas(21)/(1/2+sqrt(5)/2)^25 2100951952931896 a004 Fibonacci(56)/Lucas(21)/(1/2+sqrt(5)/2)^27 2100951952931896 a004 Fibonacci(58)/Lucas(21)/(1/2+sqrt(5)/2)^29 2100951952931896 a004 Fibonacci(60)/Lucas(21)/(1/2+sqrt(5)/2)^31 2100951952931896 a004 Fibonacci(62)/Lucas(21)/(1/2+sqrt(5)/2)^33 2100951952931896 a004 Fibonacci(64)/Lucas(21)/(1/2+sqrt(5)/2)^35 2100951952931896 a004 Fibonacci(66)/Lucas(21)/(1/2+sqrt(5)/2)^37 2100951952931896 a004 Fibonacci(68)/Lucas(21)/(1/2+sqrt(5)/2)^39 2100951952931896 a004 Fibonacci(70)/Lucas(21)/(1/2+sqrt(5)/2)^41 2100951952931896 a004 Fibonacci(72)/Lucas(21)/(1/2+sqrt(5)/2)^43 2100951952931896 a004 Fibonacci(74)/Lucas(21)/(1/2+sqrt(5)/2)^45 2100951952931896 a004 Fibonacci(76)/Lucas(21)/(1/2+sqrt(5)/2)^47 2100951952931896 a004 Fibonacci(78)/Lucas(21)/(1/2+sqrt(5)/2)^49 2100951952931896 a004 Fibonacci(80)/Lucas(21)/(1/2+sqrt(5)/2)^51 2100951952931896 a004 Fibonacci(82)/Lucas(21)/(1/2+sqrt(5)/2)^53 2100951952931896 a004 Fibonacci(21)*Lucas(42)/(1/2+sqrt(5)/2)^55 2100951952931896 a004 Fibonacci(86)/Lucas(21)/(1/2+sqrt(5)/2)^57 2100951952931896 a004 Fibonacci(88)/Lucas(21)/(1/2+sqrt(5)/2)^59 2100951952931896 a004 Fibonacci(90)/Lucas(21)/(1/2+sqrt(5)/2)^61 2100951952931896 a004 Fibonacci(92)/Lucas(21)/(1/2+sqrt(5)/2)^63 2100951952931896 a004 Fibonacci(94)/Lucas(21)/(1/2+sqrt(5)/2)^65 2100951952931896 a004 Fibonacci(96)/Lucas(21)/(1/2+sqrt(5)/2)^67 2100951952931896 a004 Fibonacci(100)/Lucas(21)/(1/2+sqrt(5)/2)^71 2100951952931896 a004 Fibonacci(98)/Lucas(21)/(1/2+sqrt(5)/2)^69 2100951952931896 a004 Fibonacci(99)/Lucas(21)/(1/2+sqrt(5)/2)^70 2100951952931896 a004 Fibonacci(97)/Lucas(21)/(1/2+sqrt(5)/2)^68 2100951952931896 a004 Fibonacci(95)/Lucas(21)/(1/2+sqrt(5)/2)^66 2100951952931896 a004 Fibonacci(93)/Lucas(21)/(1/2+sqrt(5)/2)^64 2100951952931896 a004 Fibonacci(91)/Lucas(21)/(1/2+sqrt(5)/2)^62 2100951952931896 a004 Fibonacci(89)/Lucas(21)/(1/2+sqrt(5)/2)^60 2100951952931896 a004 Fibonacci(87)/Lucas(21)/(1/2+sqrt(5)/2)^58 2100951952931896 a004 Fibonacci(85)/Lucas(21)/(1/2+sqrt(5)/2)^56 2100951952931896 a004 Fibonacci(83)/Lucas(21)/(1/2+sqrt(5)/2)^54 2100951952931896 a004 Fibonacci(81)/Lucas(21)/(1/2+sqrt(5)/2)^52 2100951952931896 a004 Fibonacci(79)/Lucas(21)/(1/2+sqrt(5)/2)^50 2100951952931896 a004 Fibonacci(77)/Lucas(21)/(1/2+sqrt(5)/2)^48 2100951952931896 a004 Fibonacci(75)/Lucas(21)/(1/2+sqrt(5)/2)^46 2100951952931896 a004 Fibonacci(73)/Lucas(21)/(1/2+sqrt(5)/2)^44 2100951952931896 a004 Fibonacci(71)/Lucas(21)/(1/2+sqrt(5)/2)^42 2100951952931896 a004 Fibonacci(69)/Lucas(21)/(1/2+sqrt(5)/2)^40 2100951952931896 a004 Fibonacci(67)/Lucas(21)/(1/2+sqrt(5)/2)^38 2100951952931896 a004 Fibonacci(65)/Lucas(21)/(1/2+sqrt(5)/2)^36 2100951952931896 a004 Fibonacci(63)/Lucas(21)/(1/2+sqrt(5)/2)^34 2100951952931896 a004 Fibonacci(61)/Lucas(21)/(1/2+sqrt(5)/2)^32 2100951952931896 a004 Fibonacci(59)/Lucas(21)/(1/2+sqrt(5)/2)^30 2100951952931896 a004 Fibonacci(57)/Lucas(21)/(1/2+sqrt(5)/2)^28 2100951952931896 a004 Fibonacci(55)/Lucas(21)/(1/2+sqrt(5)/2)^26 2100951952931896 a004 Fibonacci(53)/Lucas(21)/(1/2+sqrt(5)/2)^24 2100951952931896 a004 Fibonacci(51)/Lucas(21)/(1/2+sqrt(5)/2)^22 2100951952931896 a004 Fibonacci(49)/Lucas(21)/(1/2+sqrt(5)/2)^20 2100951952931896 a004 Fibonacci(47)/Lucas(21)/(1/2+sqrt(5)/2)^18 2100951952931896 a004 Fibonacci(45)/Lucas(21)/(1/2+sqrt(5)/2)^16 2100951952931896 a001 10946/969323029*599074578^(5/7) 2100951952931896 a004 Fibonacci(43)/Lucas(21)/(1/2+sqrt(5)/2)^14 2100951952931896 a001 10946/370248451*17393796001^(4/7) 2100951952931896 a001 10946/370248451*14662949395604^(4/9) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^28/Lucas(41) 2100951952931896 a001 10946/370248451*505019158607^(1/2) 2100951952931896 a001 906220111693/43133785636 2100951952931896 a001 10946/370248451*73681302247^(7/13) 2100951952931896 a001 10946/370248451*10749957122^(7/12) 2100951952931896 a001 10946/370248451*4106118243^(14/23) 2100951952931896 a001 10946/370248451*1568397607^(7/11) 2100951952931896 a001 10946/370248451*599074578^(2/3) 2100951952931896 a004 Fibonacci(41)/Lucas(21)/(1/2+sqrt(5)/2)^12 2100951952931896 a001 10946/969323029*228826127^(3/4) 2100951952931896 a001 5473/1268860318*228826127^(4/5) 2100951952931896 a001 10946/6643838879*228826127^(17/20) 2100951952931896 a001 5473/70711162*141422324^(2/3) 2100951952931896 a001 5473/5374978561*228826127^(7/8) 2100951952931896 a001 10946/17393796001*228826127^(9/10) 2100951952931896 a001 5473/22768774562*228826127^(19/20) 2100951952931896 a004 Fibonacci(21)*Lucas(40)/(1/2+sqrt(5)/2)^53 2100951952931896 a001 10946/370248451*228826127^(7/10) 2100951952931896 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^26/Lucas(39) 2100951952931896 a001 5473/70711162*73681302247^(1/2) 2100951952931896 a001 2971204132/141421803 2100951952931896 a001 5473/70711162*10749957122^(13/24) 2100951952931896 a001 5473/70711162*4106118243^(13/23) 2100951952931896 a001 5473/70711162*1568397607^(13/22) 2100951952931896 a001 5473/70711162*599074578^(13/21) 2100951952931896 a004 Fibonacci(39)/Lucas(21)/(1/2+sqrt(5)/2)^10 2100951952931896 a001 5473/70711162*228826127^(13/20) 2100951952931897 a001 10946/370248451*87403803^(14/19) 2100951952931897 a001 10946/969323029*87403803^(15/19) 2100951952931897 a001 5473/1268860318*87403803^(16/19) 2100951952931897 a001 10946/6643838879*87403803^(17/19) 2100951952931897 a001 10946/17393796001*87403803^(18/19) 2100951952931897 a004 Fibonacci(21)*Lucas(38)/(1/2+sqrt(5)/2)^51 2100951952931897 a001 5473/70711162*87403803^(13/19) 2100951952931897 a001 10946/54018521*141422324^(8/13) 2100951952931897 a001 10946/54018521*2537720636^(8/15) 2100951952931897 a001 10946/54018521*45537549124^(8/17) 2100951952931897 a001 10946/54018521*14662949395604^(8/21) 2100951952931897 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^24/Lucas(37) 2100951952931897 a001 10946/54018521*192900153618^(4/9) 2100951952931897 a001 10946/54018521*73681302247^(6/13) 2100951952931897 a001 264431464882/12586269025 2100951952931897 a001 10946/54018521*10749957122^(1/2) 2100951952931897 a001 10946/54018521*4106118243^(12/23) 2100951952931897 a001 10946/54018521*1568397607^(6/11) 2100951952931897 a001 10946/54018521*599074578^(4/7) 2100951952931897 a004 Fibonacci(37)/Lucas(21)/(1/2+sqrt(5)/2)^8 2100951952931897 a001 10946/54018521*228826127^(3/5) 2100951952931897 a001 10946/54018521*87403803^(12/19) 2100951952931898 a001 10946/228826127*33385282^(3/4) 2100951952931898 a001 5473/70711162*33385282^(13/18) 2100951952931898 a001 10946/370248451*33385282^(7/9) 2100951952931898 a001 10946/969323029*33385282^(5/6) 2100951952931898 a001 5473/1268860318*33385282^(8/9) 2100951952931898 a001 10946/4106118243*33385282^(11/12) 2100951952931898 a001 10946/6643838879*33385282^(17/18) 2100951952931898 a004 Fibonacci(21)*Lucas(36)/(1/2+sqrt(5)/2)^49 2100951952931898 a001 10946/54018521*33385282^(2/3) 2100951952931901 a001 10946/20633239*312119004989^(2/5) 2100951952931901 a001 10946/20633239*(1/2+1/2*5^(1/2))^22 2100951952931901 a004 Fibonacci(21)*(1/2+sqrt(5)/2)^22/Lucas(35) 2100951952931901 a001 10946/20633239*10749957122^(11/24) 2100951952931901 a001 50501915945/2403763488 2100951952931901 a001 10946/20633239*4106118243^(11/23) 2100951952931901 a001 10946/20633239*1568397607^(1/2) 2100951952931901 a001 10946/20633239*599074578^(11/21) 2100951952931901 a004 Fibonacci(35)/Lucas(21)/(1/2+sqrt(5)/2)^6 2100951952931901 a001 10946/20633239*228826127^(11/20) 2100951952931901 a001 10946/20633239*87403803^(11/19) 2100951952931902 a001 10946/20633239*33385282^(11/18) 2100951952931906 a001 10946/54018521*12752043^(12/17) 2100951952931906 a001 5473/70711162*12752043^(13/17) 2100951952931907 a001 10946/370248451*12752043^(14/17) 2100951952931908 a001 10946/969323029*12752043^(15/17) 2100951952931908 a001 5473/1268860318*12752043^(16/17) 2100951952931909 a004 Fibonacci(21)*Lucas(34)/(1/2+sqrt(5)/2)^47 2100951952931910 a001 10946/20633239*12752043^(11/17) 2100951952931917 a001 5702887/439204*5778^(1/18) 2100951952931927 a001 5473/3940598*20633239^(4/7) 2100951952931930 a001 5473/3940598*2537720636^(4/9) 2100951952931930 a001 5473/3940598*(1/2+1/2*5^(1/2))^20 2100951952931930 a001 5473/3940598*23725150497407^(5/16) 2100951952931930 a001 5473/3940598*505019158607^(5/14) 2100951952931930 a001 5473/3940598*73681302247^(5/13) 2100951952931930 a001 5473/3940598*28143753123^(2/5) 2100951952931930 a001 5473/3940598*10749957122^(5/12) 2100951952931930 a001 5473/3940598*4106118243^(10/23) 2100951952931930 a001 38580030788/1836311903 2100951952931930 a001 5473/3940598*1568397607^(5/11) 2100951952931930 a001 5473/3940598*599074578^(10/21) 2100951952931930 a004 Fibonacci(33)/Lucas(21)/(1/2+sqrt(5)/2)^4 2100951952931930 a001 5473/3940598*228826127^(1/2) 2100951952931930 a001 5473/3940598*87403803^(10/19) 2100951952931931 a001 5473/3940598*33385282^(5/9) 2100951952931938 a001 5473/3940598*12752043^(10/17) 2100951952931962 a001 10946/20633239*4870847^(11/16) 2100951952931963 a001 10946/54018521*4870847^(3/4) 2100951952931968 a001 5473/70711162*4870847^(13/16) 2100951952931974 a001 10946/370248451*4870847^(7/8) 2100951952931979 a001 10946/969323029*4870847^(15/16) 2100951952931985 a004 Fibonacci(21)*Lucas(32)/(1/2+sqrt(5)/2)^45 2100951952931985 a001 5473/3940598*4870847^(5/8) 2100951952932110 a001 10946/3010349*7881196^(6/11) 2100951952932128 a001 10946/3010349*141422324^(6/13) 2100951952932128 a001 10946/3010349*2537720636^(2/5) 2100951952932128 a001 10946/3010349*45537549124^(6/17) 2100951952932128 a001 10946/3010349*14662949395604^(2/7) 2100951952932128 a001 10946/3010349*(1/2+1/2*5^(1/2))^18 2100951952932128 a001 10946/3010349*192900153618^(1/3) 2100951952932128 a001 10946/3010349*10749957122^(3/8) 2100951952932128 a001 10946/3010349*4106118243^(9/23) 2100951952932128 a001 10946/3010349*1568397607^(9/22) 2100951952932128 a001 14736260474/701408733 2100951952932128 a001 10946/3010349*599074578^(3/7) 2100951952932128 a004 Fibonacci(31)/Lucas(21)/(1/2+sqrt(5)/2)^2 2100951952932128 a001 10946/3010349*228826127^(9/20) 2100951952932128 a001 10946/3010349*87403803^(9/19) 2100951952932129 a001 10946/3010349*33385282^(1/2) 2100951952932135 a001 10946/3010349*12752043^(9/17) 2100951952932178 a001 10946/3010349*4870847^(9/16) 2100951952932308 a001 10946/12752043*1860498^(7/10) 2100951952932335 a001 5473/3940598*1860498^(2/3) 2100951952932346 a001 10946/20633239*1860498^(11/15) 2100951952932383 a001 10946/54018521*1860498^(4/5) 2100951952932402 a001 10946/87403803*1860498^(5/6) 2100951952932422 a001 5473/70711162*1860498^(13/15) 2100951952932443 a001 10946/228826127*1860498^(9/10) 2100951952932463 a001 10946/370248451*1860498^(14/15) 2100951952932492 a001 10946/3010349*1860498^(3/5) 2100951952932503 a004 Fibonacci(21)*Lucas(30)/(1/2+sqrt(5)/2)^43 2100951952933485 a001 10946/1149851*(1/2+1/2*5^(1/2))^16 2100951952933485 a001 10946/1149851*23725150497407^(1/4) 2100951952933485 a001 10946/1149851*73681302247^(4/13) 2100951952933485 a001 10946/1149851*10749957122^(1/3) 2100951952933485 a001 10946/1149851*4106118243^(8/23) 2100951952933485 a001 10946/1149851*1568397607^(4/11) 2100951952933485 a001 10946/1149851*599074578^(8/21) 2100951952933485 a001 514229/24476 2100951952933485 a001 10946/1149851*228826127^(2/5) 2100951952933485 a001 10946/1149851*87403803^(8/19) 2100951952933486 a001 10946/1149851*33385282^(4/9) 2100951952933491 a001 10946/1149851*12752043^(8/17) 2100951952933530 a001 10946/1149851*4870847^(1/2) 2100951952933809 a001 10946/1149851*1860498^(8/15) 2100951952934803 a001 10946/3010349*710647^(9/14) 2100951952934902 a001 5473/3940598*710647^(5/7) 2100951952935004 a001 10946/12752043*710647^(3/4) 2100951952935170 a001 10946/20633239*710647^(11/14) 2100951952935463 a001 10946/54018521*710647^(6/7) 2100951952935759 a001 5473/70711162*710647^(13/14) 2100951952935863 a001 10946/1149851*710647^(4/7) 2100951952935879 a001 10959/844*103682^(1/24) 2100951952936056 a004 Fibonacci(21)*Lucas(28)/(1/2+sqrt(5)/2)^41 2100951952942786 a001 5473/219602*20633239^(2/5) 2100951952942788 a001 5473/219602*17393796001^(2/7) 2100951952942788 a001 5473/219602*14662949395604^(2/9) 2100951952942788 a001 5473/219602*(1/2+1/2*5^(1/2))^14 2100951952942788 a001 5473/219602*10749957122^(7/24) 2100951952942788 a001 5473/219602*4106118243^(7/23) 2100951952942788 a001 5473/219602*1568397607^(7/22) 2100951952942788 a001 5473/219602*599074578^(1/3) 2100951952942788 a001 98209/12238*(1/2+1/2*5^(1/2))^2 2100951952942788 a001 98209/12238*10749957122^(1/24) 2100951952942788 a001 98209/12238*4106118243^(1/23) 2100951952942788 a001 98209/12238*1568397607^(1/22) 2100951952942788 a001 98209/12238*599074578^(1/21) 2100951952942788 a001 98209/12238*228826127^(1/20) 2100951952942788 a001 5473/219602*228826127^(7/20) 2100951952942788 a001 98209/12238*87403803^(1/19) 2100951952942788 a001 2149991428/102334155 2100951952942788 a001 5473/219602*87403803^(7/19) 2100951952942788 a001 98209/12238*33385282^(1/18) 2100951952942788 a001 5473/219602*33385282^(7/18) 2100951952942788 a001 98209/12238*12752043^(1/17) 2100951952942793 a001 5473/219602*12752043^(7/17) 2100951952942793 a001 98209/12238*4870847^(1/16) 2100951952942826 a001 5473/219602*4870847^(7/16) 2100951952942828 a001 98209/12238*1860498^(1/15) 2100951952943071 a001 5473/219602*1860498^(7/15) 2100951952943085 a001 98209/12238*710647^(1/14) 2100951952944868 a001 5473/219602*710647^(1/2) 2100951952944981 a001 98209/12238*271443^(1/13) 2100951952951032 a001 10946/1149851*271443^(8/13) 2100951952951869 a001 10946/3010349*271443^(9/13) 2100951952953864 a001 5473/3940598*271443^(10/13) 2100951952954628 a001 46368/64079*15127^(7/20) 2100951952956029 a001 10946/20633239*271443^(11/13) 2100951952958141 a001 5473/219602*271443^(7/13) 2100951952958218 a001 10946/54018521*271443^(12/13) 2100951952959074 a001 98209/12238*103682^(1/12) 2100951952960410 a004 Fibonacci(21)*Lucas(26)/(1/2+sqrt(5)/2)^39 2100951952988625 a001 10959/844*39603^(1/22) 2100951952995601 a001 2178309/167761*5778^(1/18) 2100951953001706 a001 10946/167761*439204^(4/9) 2100951953006535 a001 10946/167761*7881196^(4/11) 2100951953006547 a001 10946/167761*141422324^(4/13) 2100951953006547 a001 10946/167761*2537720636^(4/15) 2100951953006547 a001 10946/167761*45537549124^(4/17) 2100951953006547 a001 10946/167761*817138163596^(4/19) 2100951953006547 a001 10946/167761*14662949395604^(4/21) 2100951953006547 a001 10946/167761*(1/2+1/2*5^(1/2))^12 2100951953006547 a001 10946/167761*192900153618^(2/9) 2100951953006547 a001 10946/167761*73681302247^(3/13) 2100951953006547 a001 10946/167761*10749957122^(1/4) 2100951953006547 a001 10946/167761*4106118243^(6/23) 2100951953006547 a001 10946/167761*1568397607^(3/11) 2100951953006547 a001 10946/167761*599074578^(2/7) 2100951953006547 a001 75025/24476*(1/2+1/2*5^(1/2))^4 2100951953006547 a001 75025/24476*23725150497407^(1/16) 2100951953006547 a001 75025/24476*73681302247^(1/13) 2100951953006547 a001 75025/24476*10749957122^(1/12) 2100951953006547 a001 75025/24476*4106118243^(2/23) 2100951953006547 a001 75025/24476*1568397607^(1/11) 2100951953006547 a001 75025/24476*599074578^(2/21) 2100951953006547 a001 75025/24476*228826127^(1/10) 2100951953006547 a001 10946/167761*228826127^(3/10) 2100951953006547 a001 75025/24476*87403803^(2/19) 2100951953006547 a001 10946/167761*87403803^(6/19) 2100951953006547 a001 75025/24476*33385282^(1/9) 2100951953006547 a001 821223650/39088169 2100951953006548 a001 10946/167761*33385282^(1/3) 2100951953006549 a001 75025/24476*12752043^(2/17) 2100951953006552 a001 10946/167761*12752043^(6/17) 2100951953006558 a001 75025/24476*4870847^(1/8) 2100951953006580 a001 10946/167761*4870847^(3/8) 2100951953006628 a001 75025/24476*1860498^(2/15) 2100951953006790 a001 10946/167761*1860498^(2/5) 2100951953007141 a001 75025/24476*710647^(1/7) 2100951953008330 a001 10946/167761*710647^(3/7) 2100951953009245 a001 10946/271443*103682^(13/24) 2100951953010934 a001 75025/24476*271443^(2/13) 2100951953019707 a001 10946/167761*271443^(6/13) 2100951953039120 a001 75025/24476*103682^(1/6) 2100951953040446 a001 121393/271443*15127^(2/5) 2100951953040902 a001 11592/6119*39603^(5/22) 2100951953049885 a001 10946/710647*103682^(5/8) 2100951953056793 a001 5473/219602*103682^(7/12) 2100951953063777 a001 10946/1149851*103682^(2/3) 2100951953064565 a001 98209/12238*39603^(1/11) 2100951953069725 a001 5473/930249*103682^(17/24) 2100951953078707 a001 10946/3010349*103682^(3/4) 2100951953086049 a001 121393/24476*39603^(3/22) 2100951953086530 a001 10946/4870847*103682^(19/24) 2100951953089154 a001 317811/710647*15127^(2/5) 2100951953094795 a001 5473/3940598*103682^(5/6) 2100951953096260 a001 416020/930249*15127^(2/5) 2100951953097297 a001 2178309/4870847*15127^(2/5) 2100951953097448 a001 5702887/12752043*15127^(2/5) 2100951953097470 a001 7465176/16692641*15127^(2/5) 2100951953097474 a001 39088169/87403803*15127^(2/5) 2100951953097474 a001 102334155/228826127*15127^(2/5) 2100951953097474 a001 133957148/299537289*15127^(2/5) 2100951953097474 a001 701408733/1568397607*15127^(2/5) 2100951953097474 a001 1836311903/4106118243*15127^(2/5) 2100951953097474 a001 2403763488/5374978561*15127^(2/5) 2100951953097474 a001 12586269025/28143753123*15127^(2/5) 2100951953097474 a001 32951280099/73681302247*15127^(2/5) 2100951953097474 a001 43133785636/96450076809*15127^(2/5) 2100951953097474 a001 225851433717/505019158607*15127^(2/5) 2100951953097474 a001 10610209857723/23725150497407*15127^(2/5) 2100951953097474 a001 182717648081/408569081798*15127^(2/5) 2100951953097474 a001 139583862445/312119004989*15127^(2/5) 2100951953097474 a001 53316291173/119218851371*15127^(2/5) 2100951953097474 a001 10182505537/22768774562*15127^(2/5) 2100951953097474 a001 7778742049/17393796001*15127^(2/5) 2100951953097474 a001 2971215073/6643838879*15127^(2/5) 2100951953097474 a001 567451585/1268860318*15127^(2/5) 2100951953097474 a001 433494437/969323029*15127^(2/5) 2100951953097474 a001 165580141/370248451*15127^(2/5) 2100951953097474 a001 31622993/70711162*15127^(2/5) 2100951953097476 a001 24157817/54018521*15127^(2/5) 2100951953097484 a001 9227465/20633239*15127^(2/5) 2100951953097542 a001 1762289/3940598*15127^(2/5) 2100951953097938 a001 1346269/3010349*15127^(2/5) 2100951953100652 a001 514229/1149851*15127^(2/5) 2100951953102892 a001 10946/12752043*103682^(7/8) 2100951953104266 a001 10946/167761*103682^(1/2) 2100951953111053 a001 10946/20633239*103682^(11/12) 2100951953119189 a001 5473/16692641*103682^(23/24) 2100951953119257 a001 98209/219602*15127^(2/5) 2100951953127334 a004 Fibonacci(21)*Lucas(24)/(1/2+sqrt(5)/2)^37 2100951953209787 a001 17711/167761*15127^(11/20) 2100951953221098 a001 10946/64079*64079^(10/23) 2100951953231156 a001 4181/439204*9349^(16/19) 2100951953246776 a001 75025/167761*15127^(2/5) 2100951953250102 a001 75025/24476*39603^(2/11) 2100951953310083 a001 28657/24476*64079^(6/23) 2100951953386808 a001 10959/844*15127^(1/20) 2100951953406235 a001 5473/51841*39603^(1/2) 2100951953413700 a001 10946/64079*167761^(2/5) 2100951953432095 a001 832040/64079*5778^(1/18) 2100951953435758 a001 46368/167761*15127^(9/20) 2100951953441140 a001 28657/24476*439204^(2/9) 2100951953443554 a001 28657/24476*7881196^(2/11) 2100951953443559 a001 10946/64079*20633239^(2/7) 2100951953443560 a001 28657/24476*141422324^(2/13) 2100951953443560 a001 10946/64079*2537720636^(2/9) 2100951953443560 a001 10946/64079*312119004989^(2/11) 2100951953443560 a001 10946/64079*(1/2+1/2*5^(1/2))^10 2100951953443560 a001 10946/64079*28143753123^(1/5) 2100951953443560 a001 10946/64079*10749957122^(5/24) 2100951953443560 a001 10946/64079*4106118243^(5/23) 2100951953443560 a001 10946/64079*1568397607^(5/22) 2100951953443560 a001 10946/64079*599074578^(5/21) 2100951953443560 a001 28657/24476*2537720636^(2/15) 2100951953443560 a001 28657/24476*45537549124^(2/17) 2100951953443560 a001 28657/24476*14662949395604^(2/21) 2100951953443560 a001 28657/24476*(1/2+1/2*5^(1/2))^6 2100951953443560 a001 28657/24476*10749957122^(1/8) 2100951953443560 a001 28657/24476*4106118243^(3/23) 2100951953443560 a001 28657/24476*1568397607^(3/22) 2100951953443560 a001 28657/24476*599074578^(1/7) 2100951953443560 a001 10946/64079*228826127^(1/4) 2100951953443560 a001 28657/24476*228826127^(3/20) 2100951953443560 a001 28657/24476*87403803^(3/19) 2100951953443560 a001 10946/64079*87403803^(5/19) 2100951953443560 a001 28657/24476*33385282^(1/6) 2100951953443561 a001 10946/64079*33385282^(5/18) 2100951953443562 a001 156839761/7465176 2100951953443562 a001 28657/24476*12752043^(3/17) 2100951953443564 a001 10946/64079*12752043^(5/17) 2100951953443577 a001 28657/24476*4870847^(3/16) 2100951953443588 a001 10946/64079*4870847^(5/16) 2100951953443681 a001 28657/24476*1860498^(1/5) 2100951953443762 a001 10946/64079*1860498^(1/3) 2100951953444452 a001 28657/24476*710647^(3/14) 2100951953445046 a001 10946/64079*710647^(5/14) 2100951953450140 a001 28657/24476*271443^(3/13) 2100951953454527 a001 10946/64079*271443^(5/13) 2100951953492420 a001 28657/24476*103682^(1/4) 2100951953524993 a001 10946/64079*103682^(5/12) 2100951953538923 a001 121393/439204*15127^(9/20) 2100951953553975 a001 317811/1149851*15127^(9/20) 2100951953556171 a001 832040/3010349*15127^(9/20) 2100951953556491 a001 2178309/7881196*15127^(9/20) 2100951953556538 a001 5702887/20633239*15127^(9/20) 2100951953556545 a001 14930352/54018521*15127^(9/20) 2100951953556546 a001 39088169/141422324*15127^(9/20) 2100951953556546 a001 102334155/370248451*15127^(9/20) 2100951953556546 a001 267914296/969323029*15127^(9/20) 2100951953556546 a001 701408733/2537720636*15127^(9/20) 2100951953556546 a001 1836311903/6643838879*15127^(9/20) 2100951953556546 a001 4807526976/17393796001*15127^(9/20) 2100951953556546 a001 12586269025/45537549124*15127^(9/20) 2100951953556546 a001 32951280099/119218851371*15127^(9/20) 2100951953556546 a001 86267571272/312119004989*15127^(9/20) 2100951953556546 a001 225851433717/817138163596*15127^(9/20) 2100951953556546 a001 139583862445/505019158607*15127^(9/20) 2100951953556546 a001 53316291173/192900153618*15127^(9/20) 2100951953556546 a001 20365011074/73681302247*15127^(9/20) 2100951953556546 a001 7778742049/28143753123*15127^(9/20) 2100951953556546 a001 2971215073/10749957122*15127^(9/20) 2100951953556546 a001 1134903170/4106118243*15127^(9/20) 2100951953556546 a001 433494437/1568397607*15127^(9/20) 2100951953556546 a001 165580141/599074578*15127^(9/20) 2100951953556546 a001 63245986/228826127*15127^(9/20) 2100951953556546 a001 24157817/87403803*15127^(9/20) 2100951953556549 a001 9227465/33385282*15127^(9/20) 2100951953556567 a001 3524578/12752043*15127^(9/20) 2100951953556689 a001 1346269/4870847*15127^(9/20) 2100951953557528 a001 514229/1860498*15127^(9/20) 2100951953563277 a001 196418/710647*15127^(9/20) 2100951953565694 a001 17711/271443*15127^(3/5) 2100951953602683 a001 75025/271443*15127^(9/20) 2100951953694936 a001 10946/271443*39603^(13/22) 2100951953737212 a001 10946/167761*39603^(6/11) 2100951953791665 a001 15456/90481*15127^(1/2) 2100951953795231 a001 5473/219602*39603^(7/11) 2100951953808893 a001 28657/24476*39603^(3/11) 2100951953841068 a001 10946/710647*39603^(15/22) 2100951953860931 a001 98209/12238*15127^(1/10) 2100951953872771 a001 28657/103682*15127^(9/20) 2100951953907706 a001 10946/1149851*39603^(8/11) 2100951953966399 a001 5473/930249*39603^(17/22) 2100951953982943 a001 121393/710647*15127^(1/2) 2100951954010850 a001 105937/620166*15127^(1/2) 2100951954014922 a001 832040/4870847*15127^(1/2) 2100951954015516 a001 726103/4250681*15127^(1/2) 2100951954015603 a001 5702887/33385282*15127^(1/2) 2100951954015615 a001 4976784/29134601*15127^(1/2) 2100951954015617 a001 39088169/228826127*15127^(1/2) 2100951954015618 a001 34111385/199691526*15127^(1/2) 2100951954015618 a001 267914296/1568397607*15127^(1/2) 2100951954015618 a001 233802911/1368706081*15127^(1/2) 2100951954015618 a001 1836311903/10749957122*15127^(1/2) 2100951954015618 a001 1602508992/9381251041*15127^(1/2) 2100951954015618 a001 12586269025/73681302247*15127^(1/2) 2100951954015618 a001 10983760033/64300051206*15127^(1/2) 2100951954015618 a001 86267571272/505019158607*15127^(1/2) 2100951954015618 a001 75283811239/440719107401*15127^(1/2) 2100951954015618 a001 2504730781961/14662949395604*15127^(1/2) 2100951954015618 a001 139583862445/817138163596*15127^(1/2) 2100951954015618 a001 53316291173/312119004989*15127^(1/2) 2100951954015618 a001 20365011074/119218851371*15127^(1/2) 2100951954015618 a001 7778742049/45537549124*15127^(1/2) 2100951954015618 a001 2971215073/17393796001*15127^(1/2) 2100951954015618 a001 1134903170/6643838879*15127^(1/2) 2100951954015618 a001 433494437/2537720636*15127^(1/2) 2100951954015618 a001 165580141/969323029*15127^(1/2) 2100951954015618 a001 63245986/370248451*15127^(1/2) 2100951954015618 a001 24157817/141422324*15127^(1/2) 2100951954015623 a001 9227465/54018521*15127^(1/2) 2100951954015656 a001 3524578/20633239*15127^(1/2) 2100951954015883 a001 1346269/7881196*15127^(1/2) 2100951954017438 a001 514229/3010349*15127^(1/2) 2100951954028098 a001 196418/1149851*15127^(1/2) 2100951954028126 a001 10946/3010349*39603^(9/11) 2100951954032580 a001 6624/2161*5778^(2/9) 2100951954052448 a001 10946/64079*39603^(5/11) 2100951954064171 a001 17711/439204*15127^(13/20) 2100951954088695 a001 10946/4870847*39603^(19/22) 2100951954101160 a001 75025/439204*15127^(1/2) 2100951954120802 a001 28657/64079*15127^(2/5) 2100951954149706 a001 5473/3940598*39603^(10/11) 2100951954154016 a001 75025/9349*3571^(2/17) 2100951954210548 a001 10946/12752043*39603^(21/22) 2100951954271449 a004 Fibonacci(21)*Lucas(22)/(1/2+sqrt(5)/2)^35 2100951954280597 a001 121393/24476*15127^(3/20) 2100951954290142 a001 11592/109801*15127^(11/20) 2100951954447764 a001 121393/1149851*15127^(11/20) 2100951954456872 a001 4181/271443*9349^(15/19) 2100951954470761 a001 317811/3010349*15127^(11/20) 2100951954474116 a001 208010/1970299*15127^(11/20) 2100951954474606 a001 2178309/20633239*15127^(11/20) 2100951954474677 a001 5702887/54018521*15127^(11/20) 2100951954474687 a001 3732588/35355581*15127^(11/20) 2100951954474689 a001 39088169/370248451*15127^(11/20) 2100951954474689 a001 102334155/969323029*15127^(11/20) 2100951954474689 a001 66978574/634430159*15127^(11/20) 2100951954474689 a001 701408733/6643838879*15127^(11/20) 2100951954474689 a001 1836311903/17393796001*15127^(11/20) 2100951954474689 a001 1201881744/11384387281*15127^(11/20) 2100951954474689 a001 12586269025/119218851371*15127^(11/20) 2100951954474689 a001 32951280099/312119004989*15127^(11/20) 2100951954474689 a001 21566892818/204284540899*15127^(11/20) 2100951954474689 a001 225851433717/2139295485799*15127^(11/20) 2100951954474689 a001 182717648081/1730726404001*15127^(11/20) 2100951954474689 a001 139583862445/1322157322203*15127^(11/20) 2100951954474689 a001 53316291173/505019158607*15127^(11/20) 2100951954474689 a001 10182505537/96450076809*15127^(11/20) 2100951954474689 a001 7778742049/73681302247*15127^(11/20) 2100951954474689 a001 2971215073/28143753123*15127^(11/20) 2100951954474689 a001 567451585/5374978561*15127^(11/20) 2100951954474689 a001 433494437/4106118243*15127^(11/20) 2100951954474689 a001 165580141/1568397607*15127^(11/20) 2100951954474689 a001 31622993/299537289*15127^(11/20) 2100951954474690 a001 24157817/228826127*15127^(11/20) 2100951954474694 a001 9227465/87403803*15127^(11/20) 2100951954474721 a001 1762289/16692641*15127^(11/20) 2100951954474908 a001 1346269/12752043*15127^(11/20) 2100951954476190 a001 514229/4870847*15127^(11/20) 2100951954484974 a001 98209/930249*15127^(11/20) 2100951954508191 a001 17711/710647*15127^(7/10) 2100951954545180 a001 75025/710647*15127^(11/20) 2100951954601932 a001 28657/167761*15127^(1/2) 2100951954734163 a001 6624/101521*15127^(3/5) 2100951954805845 a001 17711/24476*15127^(7/20) 2100951954842834 a001 75025/24476*15127^(1/5) 2100951954904640 a001 121393/1860498*15127^(3/5) 2100951954929512 a001 317811/4870847*15127^(3/5) 2100951954933141 a001 832040/12752043*15127^(3/5) 2100951954933671 a001 311187/4769326*15127^(3/5) 2100951954933748 a001 5702887/87403803*15127^(3/5) 2100951954933759 a001 14930352/228826127*15127^(3/5) 2100951954933761 a001 39088169/599074578*15127^(3/5) 2100951954933761 a001 14619165/224056801*15127^(3/5) 2100951954933761 a001 267914296/4106118243*15127^(3/5) 2100951954933761 a001 701408733/10749957122*15127^(3/5) 2100951954933761 a001 1836311903/28143753123*15127^(3/5) 2100951954933761 a001 686789568/10525900321*15127^(3/5) 2100951954933761 a001 12586269025/192900153618*15127^(3/5) 2100951954933761 a001 32951280099/505019158607*15127^(3/5) 2100951954933761 a001 86267571272/1322157322203*15127^(3/5) 2100951954933761 a001 32264490531/494493258286*15127^(3/5) 2100951954933761 a001 1548008755920/23725150497407*15127^(3/5) 2100951954933761 a001 139583862445/2139295485799*15127^(3/5) 2100951954933761 a001 53316291173/817138163596*15127^(3/5) 2100951954933761 a001 20365011074/312119004989*15127^(3/5) 2100951954933761 a001 7778742049/119218851371*15127^(3/5) 2100951954933761 a001 2971215073/45537549124*15127^(3/5) 2100951954933761 a001 1134903170/17393796001*15127^(3/5) 2100951954933761 a001 433494437/6643838879*15127^(3/5) 2100951954933761 a001 165580141/2537720636*15127^(3/5) 2100951954933761 a001 63245986/969323029*15127^(3/5) 2100951954933762 a001 24157817/370248451*15127^(3/5) 2100951954933766 a001 9227465/141422324*15127^(3/5) 2100951954933796 a001 3524578/54018521*15127^(3/5) 2100951954933998 a001 1346269/20633239*15127^(3/5) 2100951954935384 a001 514229/7881196*15127^(3/5) 2100951954944884 a001 196418/3010349*15127^(3/5) 2100951954957839 a001 28657/271443*15127^(11/20) 2100951954973012 a001 17711/1149851*15127^(3/4) 2100951955010001 a001 75025/1149851*15127^(3/5) 2100951955031817 a001 11592/6119*15127^(1/4) 2100951955073463 a001 105937/13201*5778^(1/9) 2100951955102894 a001 5473/12238*24476^(8/21) 2100951955198984 a001 46368/1149851*15127^(13/20) 2100951955364550 a001 121393/3010349*15127^(13/20) 2100951955388706 a001 317811/7881196*15127^(13/20) 2100951955392231 a001 75640/1875749*15127^(13/20) 2100951955392745 a001 2178309/54018521*15127^(13/20) 2100951955392820 a001 5702887/141422324*15127^(13/20) 2100951955392831 a001 14930352/370248451*15127^(13/20) 2100951955392832 a001 39088169/969323029*15127^(13/20) 2100951955392833 a001 9303105/230701876*15127^(13/20) 2100951955392833 a001 267914296/6643838879*15127^(13/20) 2100951955392833 a001 701408733/17393796001*15127^(13/20) 2100951955392833 a001 1836311903/45537549124*15127^(13/20) 2100951955392833 a001 4807526976/119218851371*15127^(13/20) 2100951955392833 a001 1144206275/28374454999*15127^(13/20) 2100951955392833 a001 32951280099/817138163596*15127^(13/20) 2100951955392833 a001 86267571272/2139295485799*15127^(13/20) 2100951955392833 a001 225851433717/5600748293801*15127^(13/20) 2100951955392833 a001 365435296162/9062201101803*15127^(13/20) 2100951955392833 a001 139583862445/3461452808002*15127^(13/20) 2100951955392833 a001 53316291173/1322157322203*15127^(13/20) 2100951955392833 a001 20365011074/505019158607*15127^(13/20) 2100951955392833 a001 7778742049/192900153618*15127^(13/20) 2100951955392833 a001 2971215073/73681302247*15127^(13/20) 2100951955392833 a001 1134903170/28143753123*15127^(13/20) 2100951955392833 a001 433494437/10749957122*15127^(13/20) 2100951955392833 a001 165580141/4106118243*15127^(13/20) 2100951955392833 a001 63245986/1568397607*15127^(13/20) 2100951955392833 a001 24157817/599074578*15127^(13/20) 2100951955392838 a001 9227465/228826127*15127^(13/20) 2100951955392866 a001 3524578/87403803*15127^(13/20) 2100951955393063 a001 1346269/33385282*15127^(13/20) 2100951955394409 a001 514229/12752043*15127^(13/20) 2100951955403636 a001 196418/4870847*15127^(13/20) 2100951955424923 a001 6765/9349*9349^(7/19) 2100951955429888 a001 17711/1860498*15127^(4/5) 2100951955456316 a001 28657/439204*15127^(3/5) 2100951955466876 a001 75025/1860498*15127^(13/20) 2100951955655859 a001 2576/103361*15127^(7/10) 2100951955723988 a001 10946/39603*15127^(9/20) 2100951955823302 a001 121393/4870847*15127^(7/10) 2100951955825158 a001 4181/167761*9349^(14/19) 2100951955847731 a001 105937/4250681*15127^(7/10) 2100951955851296 a001 416020/16692641*15127^(7/10) 2100951955851816 a001 726103/29134601*15127^(7/10) 2100951955851891 a001 5702887/228826127*15127^(7/10) 2100951955851902 a001 829464/33281921*15127^(7/10) 2100951955851904 a001 39088169/1568397607*15127^(7/10) 2100951955851904 a001 34111385/1368706081*15127^(7/10) 2100951955851904 a001 133957148/5374978561*15127^(7/10) 2100951955851904 a001 233802911/9381251041*15127^(7/10) 2100951955851904 a001 1836311903/73681302247*15127^(7/10) 2100951955851904 a001 267084832/10716675201*15127^(7/10) 2100951955851904 a001 12586269025/505019158607*15127^(7/10) 2100951955851904 a001 10983760033/440719107401*15127^(7/10) 2100951955851904 a001 43133785636/1730726404001*15127^(7/10) 2100951955851904 a001 75283811239/3020733700601*15127^(7/10) 2100951955851904 a001 182717648081/7331474697802*15127^(7/10) 2100951955851904 a001 139583862445/5600748293801*15127^(7/10) 2100951955851904 a001 53316291173/2139295485799*15127^(7/10) 2100951955851904 a001 10182505537/408569081798*15127^(7/10) 2100951955851904 a001 7778742049/312119004989*15127^(7/10) 2100951955851904 a001 2971215073/119218851371*15127^(7/10) 2100951955851904 a001 567451585/22768774562*15127^(7/10) 2100951955851904 a001 433494437/17393796001*15127^(7/10) 2100951955851904 a001 165580141/6643838879*15127^(7/10) 2100951955851904 a001 31622993/1268860318*15127^(7/10) 2100951955851905 a001 24157817/969323029*15127^(7/10) 2100951955851909 a001 9227465/370248451*15127^(7/10) 2100951955851938 a001 1762289/70711162*15127^(7/10) 2100951955852137 a001 1346269/54018521*15127^(7/10) 2100951955853498 a001 514229/20633239*15127^(7/10) 2100951955862830 a001 98209/3940598*15127^(7/10) 2100951955889798 a001 17711/3010349*15127^(17/20) 2100951955900336 a001 28657/710647*15127^(13/20) 2100951955926787 a001 75025/3010349*15127^(7/10) 2100951956115770 a001 46368/3010349*15127^(3/4) 2100951956197990 a001 28657/24476*15127^(3/10) 2100951956221131 a001 416020/51841*5778^(1/9) 2100951956260922 a001 5473/12238*64079^(8/23) 2100951956282496 a001 121393/7881196*15127^(3/4) 2100951956306821 a001 10959/711491*15127^(3/4) 2100951956310370 a001 832040/54018521*15127^(3/4) 2100951956310888 a001 2178309/141422324*15127^(3/4) 2100951956310963 a001 5702887/370248451*15127^(3/4) 2100951956310974 a001 14930352/969323029*15127^(3/4) 2100951956310976 a001 39088169/2537720636*15127^(3/4) 2100951956310976 a001 102334155/6643838879*15127^(3/4) 2100951956310976 a001 9238424/599786069*15127^(3/4) 2100951956310976 a001 701408733/45537549124*15127^(3/4) 2100951956310976 a001 1836311903/119218851371*15127^(3/4) 2100951956310976 a001 4807526976/312119004989*15127^(3/4) 2100951956310976 a001 12586269025/817138163596*15127^(3/4) 2100951956310976 a001 32951280099/2139295485799*15127^(3/4) 2100951956310976 a001 86267571272/5600748293801*15127^(3/4) 2100951956310976 a001 7787980473/505618944676*15127^(3/4) 2100951956310976 a001 365435296162/23725150497407*15127^(3/4) 2100951956310976 a001 139583862445/9062201101803*15127^(3/4) 2100951956310976 a001 53316291173/3461452808002*15127^(3/4) 2100951956310976 a001 20365011074/1322157322203*15127^(3/4) 2100951956310976 a001 7778742049/505019158607*15127^(3/4) 2100951956310976 a001 2971215073/192900153618*15127^(3/4) 2100951956310976 a001 1134903170/73681302247*15127^(3/4) 2100951956310976 a001 433494437/28143753123*15127^(3/4) 2100951956310976 a001 165580141/10749957122*15127^(3/4) 2100951956310976 a001 63245986/4106118243*15127^(3/4) 2100951956310977 a001 24157817/1568397607*15127^(3/4) 2100951956310981 a001 9227465/599074578*15127^(3/4) 2100951956311010 a001 3524578/228826127*15127^(3/4) 2100951956311208 a001 1346269/87403803*15127^(3/4) 2100951956312563 a001 514229/33385282*15127^(3/4) 2100951956321855 a001 196418/12752043*15127^(3/4) 2100951956348549 a001 17711/4870847*15127^(9/10) 2100951956365157 a001 28657/1149851*15127^(7/10) 2100951956385538 a001 75025/4870847*15127^(3/4) 2100951956388574 a001 726103/90481*5778^(1/9) 2100951956413003 a001 5702887/710647*5778^(1/9) 2100951956416568 a001 829464/103361*5778^(1/9) 2100951956417088 a001 39088169/4870847*5778^(1/9) 2100951956417164 a001 34111385/4250681*5778^(1/9) 2100951956417175 a001 133957148/16692641*5778^(1/9) 2100951956417176 a001 233802911/29134601*5778^(1/9) 2100951956417177 a001 1836311903/228826127*5778^(1/9) 2100951956417177 a001 267084832/33281921*5778^(1/9) 2100951956417177 a001 12586269025/1568397607*5778^(1/9) 2100951956417177 a001 10983760033/1368706081*5778^(1/9) 2100951956417177 a001 43133785636/5374978561*5778^(1/9) 2100951956417177 a001 75283811239/9381251041*5778^(1/9) 2100951956417177 a001 591286729879/73681302247*5778^(1/9) 2100951956417177 a001 86000486440/10716675201*5778^(1/9) 2100951956417177 a001 4052739537881/505019158607*5778^(1/9) 2100951956417177 a001 3278735159921/408569081798*5778^(1/9) 2100951956417177 a001 2504730781961/312119004989*5778^(1/9) 2100951956417177 a001 956722026041/119218851371*5778^(1/9) 2100951956417177 a001 182717648081/22768774562*5778^(1/9) 2100951956417177 a001 139583862445/17393796001*5778^(1/9) 2100951956417177 a001 53316291173/6643838879*5778^(1/9) 2100951956417177 a001 10182505537/1268860318*5778^(1/9) 2100951956417177 a001 7778742049/969323029*5778^(1/9) 2100951956417177 a001 2971215073/370248451*5778^(1/9) 2100951956417177 a001 567451585/70711162*5778^(1/9) 2100951956417177 a001 433494437/54018521*5778^(1/9) 2100951956417181 a001 165580141/20633239*5778^(1/9) 2100951956417210 a001 31622993/3940598*5778^(1/9) 2100951956417409 a001 24157817/3010349*5778^(1/9) 2100951956418771 a001 9227465/1149851*5778^(1/9) 2100951956423874 a001 10959/844*5778^(1/18) 2100951956428102 a001 1762289/219602*5778^(1/9) 2100951956438892 a001 5473/12238*(1/2+1/2*5^(1/2))^8 2100951956438892 a001 5473/12238*23725150497407^(1/8) 2100951956438892 a001 5473/12238*73681302247^(2/13) 2100951956438892 a001 5473/12238*10749957122^(1/6) 2100951956438892 a001 5473/12238*4106118243^(4/23) 2100951956438892 a001 5473/12238*1568397607^(2/11) 2100951956438892 a001 5473/12238*599074578^(4/21) 2100951956438892 a001 5473/12238*228826127^(1/5) 2100951956438892 a001 5473/12238*87403803^(4/19) 2100951956438892 a001 5473/12238*33385282^(2/9) 2100951956438895 a001 5473/12238*12752043^(4/17) 2100951956438905 a001 119814916/5702887 2100951956438914 a001 5473/12238*4870847^(1/4) 2100951956439054 a001 5473/12238*1860498^(4/15) 2100951956440081 a001 5473/12238*710647^(2/7) 2100951956447666 a001 5473/12238*271443^(4/13) 2100951956492059 a001 1346269/167761*5778^(1/9) 2100951956504038 a001 5473/12238*103682^(1/3) 2100951956574521 a001 46368/4870847*15127^(4/5) 2100951956741521 a001 121393/12752043*15127^(4/5) 2100951956765886 a001 317811/33385282*15127^(4/5) 2100951956769441 a001 832040/87403803*15127^(4/5) 2100951956769959 a001 46347/4868641*15127^(4/5) 2100951956770035 a001 5702887/599074578*15127^(4/5) 2100951956770046 a001 14930352/1568397607*15127^(4/5) 2100951956770047 a001 39088169/4106118243*15127^(4/5) 2100951956770048 a001 102334155/10749957122*15127^(4/5) 2100951956770048 a001 267914296/28143753123*15127^(4/5) 2100951956770048 a001 701408733/73681302247*15127^(4/5) 2100951956770048 a001 1836311903/192900153618*15127^(4/5) 2100951956770048 a001 102287808/10745088481*15127^(4/5) 2100951956770048 a001 12586269025/1322157322203*15127^(4/5) 2100951956770048 a001 32951280099/3461452808002*15127^(4/5) 2100951956770048 a001 86267571272/9062201101803*15127^(4/5) 2100951956770048 a001 225851433717/23725150497407*15127^(4/5) 2100951956770048 a001 139583862445/14662949395604*15127^(4/5) 2100951956770048 a001 53316291173/5600748293801*15127^(4/5) 2100951956770048 a001 20365011074/2139295485799*15127^(4/5) 2100951956770048 a001 7778742049/817138163596*15127^(4/5) 2100951956770048 a001 2971215073/312119004989*15127^(4/5) 2100951956770048 a001 1134903170/119218851371*15127^(4/5) 2100951956770048 a001 433494437/45537549124*15127^(4/5) 2100951956770048 a001 165580141/17393796001*15127^(4/5) 2100951956770048 a001 63245986/6643838879*15127^(4/5) 2100951956770048 a001 24157817/2537720636*15127^(4/5) 2100951956770053 a001 9227465/969323029*15127^(4/5) 2100951956770082 a001 3524578/370248451*15127^(4/5) 2100951956770280 a001 1346269/141422324*15127^(4/5) 2100951956771637 a001 514229/54018521*15127^(4/5) 2100951956780944 a001 196418/20633239*15127^(4/5) 2100951956807743 a001 89/39604*15127^(19/20) 2100951956820190 a001 4181/103682*9349^(13/19) 2100951956822033 a001 28657/1860498*15127^(3/4) 2100951956844732 a001 75025/7881196*15127^(4/5) 2100951956926002 a001 5473/12238*39603^(4/11) 2100951956930429 a001 514229/64079*5778^(1/9) 2100951957033715 a001 11592/1970299*15127^(17/20) 2100951957200610 a001 121393/20633239*15127^(17/20) 2100951957224960 a001 317811/54018521*15127^(17/20) 2100951957228513 a001 208010/35355581*15127^(17/20) 2100951957229031 a001 2178309/370248451*15127^(17/20) 2100951957229107 a001 5702887/969323029*15127^(17/20) 2100951957229118 a001 196452/33391061*15127^(17/20) 2100951957229119 a001 39088169/6643838879*15127^(17/20) 2100951957229119 a001 102334155/17393796001*15127^(17/20) 2100951957229119 a001 66978574/11384387281*15127^(17/20) 2100951957229119 a001 701408733/119218851371*15127^(17/20) 2100951957229119 a001 1836311903/312119004989*15127^(17/20) 2100951957229119 a001 1201881744/204284540899*15127^(17/20) 2100951957229119 a001 12586269025/2139295485799*15127^(17/20) 2100951957229119 a001 32951280099/5600748293801*15127^(17/20) 2100951957229119 a001 1135099622/192933544679*15127^(17/20) 2100951957229119 a001 139583862445/23725150497407*15127^(17/20) 2100951957229119 a001 53316291173/9062201101803*15127^(17/20) 2100951957229119 a001 10182505537/1730726404001*15127^(17/20) 2100951957229119 a001 7778742049/1322157322203*15127^(17/20) 2100951957229119 a001 2971215073/505019158607*15127^(17/20) 2100951957229119 a001 567451585/96450076809*15127^(17/20) 2100951957229119 a001 433494437/73681302247*15127^(17/20) 2100951957229119 a001 165580141/28143753123*15127^(17/20) 2100951957229120 a001 31622993/5374978561*15127^(17/20) 2100951957229120 a001 24157817/4106118243*15127^(17/20) 2100951957229124 a001 9227465/1568397607*15127^(17/20) 2100951957229153 a001 1762289/299537289*15127^(17/20) 2100951957229351 a001 1346269/228826127*15127^(17/20) 2100951957230708 a001 514229/87403803*15127^(17/20) 2100951957240009 a001 98209/16692641*15127^(17/20) 2100951957266781 a004 Fibonacci(22)*Lucas(20)/(1/2+sqrt(5)/2)^34 2100951957281943 a001 28657/3010349*15127^(4/5) 2100951957303757 a001 75025/12752043*15127^(17/20) 2100951957492740 a001 15456/4250681*15127^(9/10) 2100951957643853 b008 (4+Sqrt[EulerGamma])^(-1) 2100951957659675 a001 121393/33385282*15127^(9/10) 2100951957674129 a007 Real Root Of 358*x^4-12*x^3-989*x^2+831*x-975 2100951957684031 a001 105937/29134601*15127^(9/10) 2100951957687584 a001 832040/228826127*15127^(9/10) 2100951957688103 a001 726103/199691526*15127^(9/10) 2100951957688178 a001 5702887/1568397607*15127^(9/10) 2100951957688189 a001 4976784/1368706081*15127^(9/10) 2100951957688191 a001 39088169/10749957122*15127^(9/10) 2100951957688191 a001 831985/228811001*15127^(9/10) 2100951957688191 a001 267914296/73681302247*15127^(9/10) 2100951957688191 a001 233802911/64300051206*15127^(9/10) 2100951957688191 a001 1836311903/505019158607*15127^(9/10) 2100951957688191 a001 1602508992/440719107401*15127^(9/10) 2100951957688191 a001 12586269025/3461452808002*15127^(9/10) 2100951957688191 a001 10983760033/3020733700601*15127^(9/10) 2100951957688191 a001 86267571272/23725150497407*15127^(9/10) 2100951957688191 a001 53316291173/14662949395604*15127^(9/10) 2100951957688191 a001 20365011074/5600748293801*15127^(9/10) 2100951957688191 a001 7778742049/2139295485799*15127^(9/10) 2100951957688191 a001 2971215073/817138163596*15127^(9/10) 2100951957688191 a001 1134903170/312119004989*15127^(9/10) 2100951957688191 a001 433494437/119218851371*15127^(9/10) 2100951957688191 a001 165580141/45537549124*15127^(9/10) 2100951957688191 a001 63245986/17393796001*15127^(9/10) 2100951957688192 a001 24157817/6643838879*15127^(9/10) 2100951957688196 a001 9227465/2537720636*15127^(9/10) 2100951957688225 a001 3524578/969323029*15127^(9/10) 2100951957688423 a001 1346269/370248451*15127^(9/10) 2100951957689780 a001 514229/141422324*15127^(9/10) 2100951957699083 a001 196418/54018521*15127^(9/10) 2100951957740695 a001 28657/4870847*15127^(17/20) 2100951957762847 a001 75025/20633239*15127^(9/10) 2100951957786247 a001 5473/51841*15127^(11/20) 2100951957951830 a001 46368/20633239*15127^(19/20) 2100951958034277 a001 10946/64079*15127^(1/2) 2100951958118749 a001 121393/54018521*15127^(19/20) 2100951958143103 a001 317811/141422324*15127^(19/20) 2100951958146656 a001 832040/370248451*15127^(19/20) 2100951958147174 a001 2178309/969323029*15127^(19/20) 2100951958147250 a001 5702887/2537720636*15127^(19/20) 2100951958147261 a001 14930352/6643838879*15127^(19/20) 2100951958147263 a001 39088169/17393796001*15127^(19/20) 2100951958147263 a001 102334155/45537549124*15127^(19/20) 2100951958147263 a001 267914296/119218851371*15127^(19/20) 2100951958147263 a001 3524667/1568437211*15127^(19/20) 2100951958147263 a001 1836311903/817138163596*15127^(19/20) 2100951958147263 a001 4807526976/2139295485799*15127^(19/20) 2100951958147263 a001 12586269025/5600748293801*15127^(19/20) 2100951958147263 a001 32951280099/14662949395604*15127^(19/20) 2100951958147263 a001 53316291173/23725150497407*15127^(19/20) 2100951958147263 a001 20365011074/9062201101803*15127^(19/20) 2100951958147263 a001 7778742049/3461452808002*15127^(19/20) 2100951958147263 a001 2971215073/1322157322203*15127^(19/20) 2100951958147263 a001 1134903170/505019158607*15127^(19/20) 2100951958147263 a001 433494437/192900153618*15127^(19/20) 2100951958147263 a001 165580141/73681302247*15127^(19/20) 2100951958147263 a001 63245986/28143753123*15127^(19/20) 2100951958147264 a001 24157817/10749957122*15127^(19/20) 2100951958147268 a001 9227465/4106118243*15127^(19/20) 2100951958147297 a001 3524578/1568397607*15127^(19/20) 2100951958147495 a001 1346269/599074578*15127^(19/20) 2100951958148852 a001 514229/228826127*15127^(19/20) 2100951958158154 a001 196418/87403803*15127^(19/20) 2100951958199889 a001 28657/7881196*15127^(9/10) 2100951958206318 a001 4181/39603*9349^(11/19) 2100951958221912 a001 75025/33385282*15127^(19/20) 2100951958235820 a001 28657/15127*5778^(5/18) 2100951958410896 a004 Fibonacci(24)*Lucas(20)/(1/2+sqrt(5)/2)^36 2100951958515407 a001 10946/167761*15127^(3/5) 2100951958577820 a004 Fibonacci(26)*Lucas(20)/(1/2+sqrt(5)/2)^38 2100951958584653 a001 196418/39603*5778^(1/6) 2100951958602174 a004 Fibonacci(28)*Lucas(20)/(1/2+sqrt(5)/2)^40 2100951958605728 a004 Fibonacci(30)*Lucas(20)/(1/2+sqrt(5)/2)^42 2100951958606246 a004 Fibonacci(32)*Lucas(20)/(1/2+sqrt(5)/2)^44 2100951958606322 a004 Fibonacci(34)*Lucas(20)/(1/2+sqrt(5)/2)^46 2100951958606333 a004 Fibonacci(36)*Lucas(20)/(1/2+sqrt(5)/2)^48 2100951958606334 a004 Fibonacci(38)*Lucas(20)/(1/2+sqrt(5)/2)^50 2100951958606334 a004 Fibonacci(40)*Lucas(20)/(1/2+sqrt(5)/2)^52 2100951958606335 a004 Fibonacci(42)*Lucas(20)/(1/2+sqrt(5)/2)^54 2100951958606335 a004 Fibonacci(44)*Lucas(20)/(1/2+sqrt(5)/2)^56 2100951958606335 a004 Fibonacci(46)*Lucas(20)/(1/2+sqrt(5)/2)^58 2100951958606335 a004 Fibonacci(48)*Lucas(20)/(1/2+sqrt(5)/2)^60 2100951958606335 a004 Fibonacci(50)*Lucas(20)/(1/2+sqrt(5)/2)^62 2100951958606335 a004 Fibonacci(52)*Lucas(20)/(1/2+sqrt(5)/2)^64 2100951958606335 a004 Fibonacci(54)*Lucas(20)/(1/2+sqrt(5)/2)^66 2100951958606335 a004 Fibonacci(56)*Lucas(20)/(1/2+sqrt(5)/2)^68 2100951958606335 a004 Fibonacci(58)*Lucas(20)/(1/2+sqrt(5)/2)^70 2100951958606335 a004 Fibonacci(60)*Lucas(20)/(1/2+sqrt(5)/2)^72 2100951958606335 a004 Fibonacci(62)*Lucas(20)/(1/2+sqrt(5)/2)^74 2100951958606335 a004 Fibonacci(64)*Lucas(20)/(1/2+sqrt(5)/2)^76 2100951958606335 a004 Fibonacci(66)*Lucas(20)/(1/2+sqrt(5)/2)^78 2100951958606335 a004 Fibonacci(68)*Lucas(20)/(1/2+sqrt(5)/2)^80 2100951958606335 a004 Fibonacci(70)*Lucas(20)/(1/2+sqrt(5)/2)^82 2100951958606335 a004 Fibonacci(72)*Lucas(20)/(1/2+sqrt(5)/2)^84 2100951958606335 a004 Fibonacci(74)*Lucas(20)/(1/2+sqrt(5)/2)^86 2100951958606335 a004 Fibonacci(76)*Lucas(20)/(1/2+sqrt(5)/2)^88 2100951958606335 a004 Fibonacci(78)*Lucas(20)/(1/2+sqrt(5)/2)^90 2100951958606335 a004 Fibonacci(80)*Lucas(20)/(1/2+sqrt(5)/2)^92 2100951958606335 a004 Fibonacci(82)*Lucas(20)/(1/2+sqrt(5)/2)^94 2100951958606335 a004 Fibonacci(84)*Lucas(20)/(1/2+sqrt(5)/2)^96 2100951958606335 a004 Fibonacci(86)*Lucas(20)/(1/2+sqrt(5)/2)^98 2100951958606335 a004 Fibonacci(88)*Lucas(20)/(1/2+sqrt(5)/2)^100 2100951958606335 a004 Fibonacci(87)*Lucas(20)/(1/2+sqrt(5)/2)^99 2100951958606335 a004 Fibonacci(85)*Lucas(20)/(1/2+sqrt(5)/2)^97 2100951958606335 a004 Fibonacci(83)*Lucas(20)/(1/2+sqrt(5)/2)^95 2100951958606335 a004 Fibonacci(81)*Lucas(20)/(1/2+sqrt(5)/2)^93 2100951958606335 a004 Fibonacci(79)*Lucas(20)/(1/2+sqrt(5)/2)^91 2100951958606335 a004 Fibonacci(77)*Lucas(20)/(1/2+sqrt(5)/2)^89 2100951958606335 a004 Fibonacci(75)*Lucas(20)/(1/2+sqrt(5)/2)^87 2100951958606335 a004 Fibonacci(73)*Lucas(20)/(1/2+sqrt(5)/2)^85 2100951958606335 a004 Fibonacci(71)*Lucas(20)/(1/2+sqrt(5)/2)^83 2100951958606335 a004 Fibonacci(69)*Lucas(20)/(1/2+sqrt(5)/2)^81 2100951958606335 a004 Fibonacci(67)*Lucas(20)/(1/2+sqrt(5)/2)^79 2100951958606335 a004 Fibonacci(65)*Lucas(20)/(1/2+sqrt(5)/2)^77 2100951958606335 a004 Fibonacci(63)*Lucas(20)/(1/2+sqrt(5)/2)^75 2100951958606335 a004 Fibonacci(61)*Lucas(20)/(1/2+sqrt(5)/2)^73 2100951958606335 a004 Fibonacci(59)*Lucas(20)/(1/2+sqrt(5)/2)^71 2100951958606335 a004 Fibonacci(57)*Lucas(20)/(1/2+sqrt(5)/2)^69 2100951958606335 a004 Fibonacci(55)*Lucas(20)/(1/2+sqrt(5)/2)^67 2100951958606335 a004 Fibonacci(53)*Lucas(20)/(1/2+sqrt(5)/2)^65 2100951958606335 a004 Fibonacci(51)*Lucas(20)/(1/2+sqrt(5)/2)^63 2100951958606335 a004 Fibonacci(49)*Lucas(20)/(1/2+sqrt(5)/2)^61 2100951958606335 a004 Fibonacci(47)*Lucas(20)/(1/2+sqrt(5)/2)^59 2100951958606335 a004 Fibonacci(45)*Lucas(20)/(1/2+sqrt(5)/2)^57 2100951958606335 a004 Fibonacci(43)*Lucas(20)/(1/2+sqrt(5)/2)^55 2100951958606335 a004 Fibonacci(41)*Lucas(20)/(1/2+sqrt(5)/2)^53 2100951958606335 a001 2/6765*(1/2+1/2*5^(1/2))^28 2100951958606335 a004 Fibonacci(39)*Lucas(20)/(1/2+sqrt(5)/2)^51 2100951958606335 a004 Fibonacci(37)*Lucas(20)/(1/2+sqrt(5)/2)^49 2100951958606339 a004 Fibonacci(35)*Lucas(20)/(1/2+sqrt(5)/2)^47 2100951958606368 a004 Fibonacci(33)*Lucas(20)/(1/2+sqrt(5)/2)^45 2100951958606566 a004 Fibonacci(31)*Lucas(20)/(1/2+sqrt(5)/2)^43 2100951958607924 a004 Fibonacci(29)*Lucas(20)/(1/2+sqrt(5)/2)^41 2100951958617226 a004 Fibonacci(27)*Lucas(20)/(1/2+sqrt(5)/2)^39 2100951958658914 a001 28657/12752043*15127^(19/20) 2100951958680985 a004 Fibonacci(25)*Lucas(20)/(1/2+sqrt(5)/2)^37 2100951958792414 a001 4181/64079*9349^(12/19) 2100951958871314 a001 10946/271443*15127^(13/20) 2100951959031136 a001 6765/15127*5778^(4/9) 2100951959117998 a004 Fibonacci(23)*Lucas(20)/(1/2+sqrt(5)/2)^35 2100951959190959 a001 1597/167761*3571^(16/17) 2100951959369791 a001 5473/219602*15127^(7/10) 2100951959719465 a001 514229/103682*5778^(1/6) 2100951959813812 a001 10946/710647*15127^(3/4) 2100951959880741 a001 17711/15127*5778^(1/3) 2100951959885032 a001 1346269/271443*5778^(1/6) 2100951959909188 a001 3524578/710647*5778^(1/6) 2100951959912712 a001 9227465/1860498*5778^(1/6) 2100951959913227 a001 24157817/4870847*5778^(1/6) 2100951959913302 a001 63245986/12752043*5778^(1/6) 2100951959913313 a001 165580141/33385282*5778^(1/6) 2100951959913314 a001 433494437/87403803*5778^(1/6) 2100951959913314 a001 1134903170/228826127*5778^(1/6) 2100951959913314 a001 2971215073/599074578*5778^(1/6) 2100951959913314 a001 7778742049/1568397607*5778^(1/6) 2100951959913314 a001 20365011074/4106118243*5778^(1/6) 2100951959913314 a001 53316291173/10749957122*5778^(1/6) 2100951959913314 a001 139583862445/28143753123*5778^(1/6) 2100951959913314 a001 365435296162/73681302247*5778^(1/6) 2100951959913314 a001 956722026041/192900153618*5778^(1/6) 2100951959913314 a001 2504730781961/505019158607*5778^(1/6) 2100951959913314 a001 10610209857723/2139295485799*5778^(1/6) 2100951959913314 a001 4052739537881/817138163596*5778^(1/6) 2100951959913314 a001 140728068720/28374454999*5778^(1/6) 2100951959913314 a001 591286729879/119218851371*5778^(1/6) 2100951959913314 a001 225851433717/45537549124*5778^(1/6) 2100951959913314 a001 86267571272/17393796001*5778^(1/6) 2100951959913314 a001 32951280099/6643838879*5778^(1/6) 2100951959913315 a001 1144206275/230701876*5778^(1/6) 2100951959913315 a001 4807526976/969323029*5778^(1/6) 2100951959913315 a001 1836311903/370248451*5778^(1/6) 2100951959913315 a001 701408733/141422324*5778^(1/6) 2100951959913315 a001 267914296/54018521*5778^(1/6) 2100951959913319 a001 9303105/1875749*5778^(1/6) 2100951959913348 a001 39088169/7881196*5778^(1/6) 2100951959913544 a001 14930352/3010349*5778^(1/6) 2100951959914891 a001 5702887/1149851*5778^(1/6) 2100951959924117 a001 2178309/439204*5778^(1/6) 2100951959935064 a001 98209/12238*5778^(1/9) 2100951959987358 a001 75640/15251*5778^(1/6) 2100951960111466 a001 5473/12238*15127^(2/5) 2100951960278632 a001 10946/1149851*15127^(4/5) 2100951960420818 a001 317811/64079*5778^(1/6) 2100951960735508 a001 5473/930249*15127^(17/20) 2100951961195419 a001 10946/3010349*15127^(9/10) 2100951961654170 a001 10946/4870847*15127^(19/20) 2100951962041385 a001 121393/39603*5778^(2/9) 2100951962113330 a004 Fibonacci(21)*Lucas(20)/(1/2+sqrt(5)/2)^33 2100951962777774 a001 4181/15127*24476^(3/7) 2100951963111774 a001 6765/9349*24476^(1/3) 2100951963209854 a001 317811/103682*5778^(2/9) 2100951963380331 a001 832040/271443*5778^(2/9) 2100951963391796 a001 121393/24476*5778^(1/6) 2100951963405204 a001 311187/101521*5778^(2/9) 2100951963408833 a001 5702887/1860498*5778^(2/9) 2100951963409362 a001 14930352/4870847*5778^(2/9) 2100951963409439 a001 39088169/12752043*5778^(2/9) 2100951963409451 a001 14619165/4769326*5778^(2/9) 2100951963409452 a001 267914296/87403803*5778^(2/9) 2100951963409452 a001 701408733/228826127*5778^(2/9) 2100951963409452 a001 1836311903/599074578*5778^(2/9) 2100951963409452 a001 686789568/224056801*5778^(2/9) 2100951963409452 a001 12586269025/4106118243*5778^(2/9) 2100951963409452 a001 32951280099/10749957122*5778^(2/9) 2100951963409452 a001 86267571272/28143753123*5778^(2/9) 2100951963409452 a001 32264490531/10525900321*5778^(2/9) 2100951963409452 a001 591286729879/192900153618*5778^(2/9) 2100951963409452 a001 1515744265389/494493258286*5778^(2/9) 2100951963409452 a001 2504730781961/817138163596*5778^(2/9) 2100951963409452 a001 956722026041/312119004989*5778^(2/9) 2100951963409452 a001 365435296162/119218851371*5778^(2/9) 2100951963409452 a001 139583862445/45537549124*5778^(2/9) 2100951963409452 a001 53316291173/17393796001*5778^(2/9) 2100951963409452 a001 20365011074/6643838879*5778^(2/9) 2100951963409452 a001 7778742049/2537720636*5778^(2/9) 2100951963409452 a001 2971215073/969323029*5778^(2/9) 2100951963409452 a001 1134903170/370248451*5778^(2/9) 2100951963409453 a001 433494437/141422324*5778^(2/9) 2100951963409453 a001 165580141/54018521*5778^(2/9) 2100951963409457 a001 63245986/20633239*5778^(2/9) 2100951963409487 a001 24157817/7881196*5778^(2/9) 2100951963409689 a001 9227465/3010349*5778^(2/9) 2100951963411075 a001 3524578/1149851*5778^(2/9) 2100951963420576 a001 1346269/439204*5778^(2/9) 2100951963485692 a001 514229/167761*5778^(2/9) 2100951963742272 a001 121393/9349*3571^(1/17) 2100951963932008 a001 196418/64079*5778^(2/9) 2100951964025771 a001 1597/5778*3571^(9/17) 2100951964080556 a001 4181/15127*64079^(9/23) 2100951964125049 a001 6765/9349*64079^(7/23) 2100951964125114 a001 28657/3571*1364^(2/15) 2100951964277142 a001 4181/15127*439204^(1/3) 2100951964280541 a001 28284465/1346269 2100951964280763 a001 4181/15127*7881196^(3/11) 2100951964280772 a001 6765/9349*20633239^(1/5) 2100951964280773 a001 4181/15127*141422324^(3/13) 2100951964280773 a001 4181/15127*2537720636^(1/5) 2100951964280773 a001 4181/15127*45537549124^(3/17) 2100951964280773 a001 4181/15127*14662949395604^(1/7) 2100951964280773 a001 4181/15127*(1/2+1/2*5^(1/2))^9 2100951964280773 a001 4181/15127*192900153618^(1/6) 2100951964280773 a001 4181/15127*10749957122^(3/16) 2100951964280773 a001 4181/15127*599074578^(3/14) 2100951964280773 a001 6765/9349*17393796001^(1/7) 2100951964280773 a001 6765/9349*14662949395604^(1/9) 2100951964280773 a001 6765/9349*(1/2+1/2*5^(1/2))^7 2100951964280773 a001 6765/9349*599074578^(1/6) 2100951964280773 a001 4181/15127*33385282^(1/4) 2100951964280955 a001 4181/15127*1860498^(3/10) 2100951964281813 a001 6765/9349*710647^(1/4) 2100951964317988 a001 4181/24476*9349^(10/19) 2100951964337776 a001 6765/9349*103682^(7/24) 2100951964354062 a001 4181/15127*103682^(3/8) 2100951964706994 a001 6765/9349*39603^(7/22) 2100951964828772 a001 4181/15127*39603^(9/22) 2100951965640688 a001 75025/39603*5778^(5/18) 2100951965797047 a001 17711/9349*9349^(5/19) 2100951966721044 a001 98209/51841*5778^(5/18) 2100951966878665 a001 514229/271443*5778^(5/18) 2100951966901662 a001 1346269/710647*5778^(5/18) 2100951966905017 a001 1762289/930249*5778^(5/18) 2100951966905507 a001 9227465/4870847*5778^(5/18) 2100951966905578 a001 24157817/12752043*5778^(5/18) 2100951966905589 a001 31622993/16692641*5778^(5/18) 2100951966905590 a001 165580141/87403803*5778^(5/18) 2100951966905590 a001 433494437/228826127*5778^(5/18) 2100951966905590 a001 567451585/299537289*5778^(5/18) 2100951966905590 a001 2971215073/1568397607*5778^(5/18) 2100951966905590 a001 7778742049/4106118243*5778^(5/18) 2100951966905590 a001 10182505537/5374978561*5778^(5/18) 2100951966905590 a001 53316291173/28143753123*5778^(5/18) 2100951966905590 a001 139583862445/73681302247*5778^(5/18) 2100951966905590 a001 182717648081/96450076809*5778^(5/18) 2100951966905590 a001 956722026041/505019158607*5778^(5/18) 2100951966905590 a001 10610209857723/5600748293801*5778^(5/18) 2100951966905590 a001 591286729879/312119004989*5778^(5/18) 2100951966905590 a001 225851433717/119218851371*5778^(5/18) 2100951966905590 a001 21566892818/11384387281*5778^(5/18) 2100951966905590 a001 32951280099/17393796001*5778^(5/18) 2100951966905590 a001 12586269025/6643838879*5778^(5/18) 2100951966905590 a001 1201881744/634430159*5778^(5/18) 2100951966905590 a001 1836311903/969323029*5778^(5/18) 2100951966905590 a001 701408733/370248451*5778^(5/18) 2100951966905591 a001 66978574/35355581*5778^(5/18) 2100951966905591 a001 102334155/54018521*5778^(5/18) 2100951966905595 a001 39088169/20633239*5778^(5/18) 2100951966905622 a001 3732588/1970299*5778^(5/18) 2100951966905809 a001 5702887/3010349*5778^(5/18) 2100951966907091 a001 2178309/1149851*5778^(5/18) 2100951966915875 a001 208010/109801*5778^(5/18) 2100951966976081 a001 317811/167761*5778^(5/18) 2100951966991099 a001 75025/24476*5778^(2/9) 2100951967212603 a001 196418/15127*2207^(1/16) 2100951967388740 a001 121393/64079*5778^(5/18) 2100951967494275 a001 6765/9349*15127^(7/20) 2100951967880815 a001 28657/5778*2207^(3/16) 2100951968223428 a001 10946/15127*5778^(7/18) 2100951968412418 a001 4181/15127*15127^(9/20) 2100951968612291 a001 1597/103682*3571^(15/17) 2100951968866737 a001 15456/13201*5778^(1/3) 2100951968913385 a001 28657/9349*9349^(4/19) 2100951969326923 m005 (1/3*5^(1/2)-1/9)/(1/6*Catalan-5/11) 2100951969378474 a001 10946/9349*9349^(6/19) 2100951969471405 a001 46368/9349*9349^(3/19) 2100951969789192 a001 610/2207*1364^(3/5) 2100951969955211 a004 Fibonacci(19)*Lucas(21)/(1/2+sqrt(5)/2)^32 2100951970122442 a001 4181/3010349*24476^(20/21) 2100951970177776 a001 121393/103682*5778^(1/3) 2100951970217148 a001 11592/6119*5778^(5/18) 2100951970285656 a001 4181/39603*24476^(11/21) 2100951970288603 a001 4181/1860498*24476^(19/21) 2100951970369054 a001 105937/90481*5778^(1/3) 2100951970396961 a001 832040/710647*5778^(1/3) 2100951970401033 a001 726103/620166*5778^(1/3) 2100951970401627 a001 5702887/4870847*5778^(1/3) 2100951970401714 a001 4976784/4250681*5778^(1/3) 2100951970401726 a001 39088169/33385282*5778^(1/3) 2100951970401728 a001 34111385/29134601*5778^(1/3) 2100951970401728 a001 267914296/228826127*5778^(1/3) 2100951970401728 a001 233802911/199691526*5778^(1/3) 2100951970401728 a001 1836311903/1568397607*5778^(1/3) 2100951970401728 a001 1602508992/1368706081*5778^(1/3) 2100951970401728 a001 12586269025/10749957122*5778^(1/3) 2100951970401728 a001 10983760033/9381251041*5778^(1/3) 2100951970401728 a001 86267571272/73681302247*5778^(1/3) 2100951970401728 a001 75283811239/64300051206*5778^(1/3) 2100951970401728 a001 2504730781961/2139295485799*5778^(1/3) 2100951970401728 a001 365435296162/312119004989*5778^(1/3) 2100951970401728 a001 139583862445/119218851371*5778^(1/3) 2100951970401728 a001 53316291173/45537549124*5778^(1/3) 2100951970401728 a001 20365011074/17393796001*5778^(1/3) 2100951970401728 a001 7778742049/6643838879*5778^(1/3) 2100951970401728 a001 2971215073/2537720636*5778^(1/3) 2100951970401728 a001 1134903170/969323029*5778^(1/3) 2100951970401728 a001 433494437/370248451*5778^(1/3) 2100951970401729 a001 165580141/141422324*5778^(1/3) 2100951970401729 a001 63245986/54018521*5778^(1/3) 2100951970401734 a001 24157817/20633239*5778^(1/3) 2100951970401767 a001 9227465/7881196*5778^(1/3) 2100951970401994 a001 3524578/3010349*5778^(1/3) 2100951970403549 a001 1346269/1149851*5778^(1/3) 2100951970414209 a001 514229/439204*5778^(1/3) 2100951970457799 a001 4181/1149851*24476^(6/7) 2100951970487271 a001 196418/167761*5778^(1/3) 2100951970619050 a001 4181/710647*24476^(17/21) 2100951970801101 a001 4181/439204*24476^(16/21) 2100951970928696 a001 4181/271443*24476^(5/7) 2100951970988043 a001 75025/64079*5778^(1/3) 2100951971006615 a001 75025/9349*9349^(2/19) 2100951971095771 a001 4181/103682*24476^(13/21) 2100951971198860 a001 4181/167761*24476^(2/3) 2100951971287655 a001 17711/9349*24476^(5/21) 2100951971877945 a001 4181/39603*64079^(11/23) 2100951971969873 a001 4181/64079*24476^(4/7) 2100951972011422 a001 17711/9349*64079^(5/23) 2100951972107724 a001 17711/9349*167761^(1/5) 2100951972122620 a001 832019/39602 2100951972122642 a001 4181/39603*7881196^(1/3) 2100951972122653 a001 17711/9349*20633239^(1/7) 2100951972122653 a001 4181/39603*312119004989^(1/5) 2100951972122653 a001 4181/39603*(1/2+1/2*5^(1/2))^11 2100951972122653 a001 4181/39603*1568397607^(1/4) 2100951972122654 a001 17711/9349*2537720636^(1/9) 2100951972122654 a001 17711/9349*312119004989^(1/11) 2100951972122654 a001 17711/9349*(1/2+1/2*5^(1/2))^5 2100951972122654 a001 17711/9349*28143753123^(1/10) 2100951972122654 a001 17711/9349*228826127^(1/8) 2100951972122755 a001 17711/9349*1860498^(1/6) 2100951972163370 a001 17711/9349*103682^(5/24) 2100951972168571 a001 121393/9349*9349^(1/19) 2100951972212229 a001 4181/39603*103682^(11/24) 2100951972427098 a001 17711/9349*39603^(5/22) 2100951972765769 a001 46368/9349*24476^(1/7) 2100951972792430 a001 4181/39603*39603^(1/2) 2100951972854417 r005 Im(z^2+c),c=-35/62+14/37*I,n=6 2100951972950543 a004 Fibonacci(19)*Lucas(23)/(1/2+sqrt(5)/2)^34 2100951972972823 a001 4181/7881196*64079^(22/23) 2100951972977567 a001 4181/103682*64079^(13/23) 2100951972994947 a001 4181/4870847*64079^(21/23) 2100951973017513 a001 4181/3010349*64079^(20/23) 2100951973038921 a001 4181/1860498*64079^(19/23) 2100951973063363 a001 4181/1149851*64079^(18/23) 2100951973069977 a001 28657/39603*5778^(7/18) 2100951973079860 a001 4181/710647*64079^(17/23) 2100951973099999 a001 4181/271443*64079^(15/23) 2100951973117158 a001 4181/439204*64079^(16/23) 2100951973200030 a001 46368/9349*64079^(3/23) 2100951973202858 a001 75025/9349*24476^(2/21) 2100951973225410 a001 4181/167761*64079^(14/23) 2100951973265559 a001 46368/9349*439204^(1/9) 2100951973266693 a001 121393/9349*24476^(1/21) 2100951973266763 a001 193864608/9227465 2100951973266766 a001 46368/9349*7881196^(1/11) 2100951973266768 a001 4181/103682*141422324^(1/3) 2100951973266768 a001 4181/103682*(1/2+1/2*5^(1/2))^13 2100951973266768 a001 4181/103682*73681302247^(1/4) 2100951973266769 a001 46368/9349*141422324^(1/13) 2100951973266769 a001 46368/9349*2537720636^(1/15) 2100951973266769 a001 46368/9349*45537549124^(1/17) 2100951973266769 a001 46368/9349*14662949395604^(1/21) 2100951973266769 a001 46368/9349*(1/2+1/2*5^(1/2))^3 2100951973266769 a001 46368/9349*192900153618^(1/18) 2100951973266769 a001 46368/9349*10749957122^(1/16) 2100951973266769 a001 46368/9349*599074578^(1/14) 2100951973266769 a001 46368/9349*33385282^(1/12) 2100951973266829 a001 46368/9349*1860498^(1/10) 2100951973281025 a001 4181/103682*271443^(1/2) 2100951973291198 a001 46368/9349*103682^(1/8) 2100951973305871 a001 28657/9349*24476^(4/21) 2100951973372631 a001 4181/103682*103682^(13/24) 2100951973387556 a004 Fibonacci(19)*Lucas(25)/(1/2+sqrt(5)/2)^36 2100951973388902 a001 4181/271443*167761^(3/5) 2100951973402718 a001 4181/3010349*167761^(4/5) 2100951973411447 a001 121393/9349*64079^(1/23) 2100951973427642 a001 4181/271443*439204^(5/9) 2100951973433677 a001 4181/271443*7881196^(5/11) 2100951973433690 a001 4181/271443*20633239^(3/7) 2100951973433692 a001 507544133/24157817 2100951973433692 a001 4181/271443*141422324^(5/13) 2100951973433693 a001 4181/271443*2537720636^(1/3) 2100951973433693 a001 4181/271443*45537549124^(5/17) 2100951973433693 a001 4181/271443*312119004989^(3/11) 2100951973433693 a001 4181/271443*14662949395604^(5/21) 2100951973433693 a001 4181/271443*(1/2+1/2*5^(1/2))^15 2100951973433693 a001 4181/271443*192900153618^(5/18) 2100951973433693 a001 4181/271443*28143753123^(3/10) 2100951973433693 a001 4181/271443*10749957122^(5/16) 2100951973433693 a001 4181/271443*599074578^(5/14) 2100951973433693 a001 4181/271443*228826127^(3/8) 2100951973433693 a001 121393/18698+121393/18698*5^(1/2) 2100951973433693 a001 4181/271443*33385282^(5/12) 2100951973433996 a001 4181/271443*1860498^(1/2) 2100951973441836 a001 121393/9349*103682^(1/24) 2100951973449435 a001 46368/9349*39603^(3/22) 2100951973451315 a004 Fibonacci(19)*Lucas(27)/(1/2+sqrt(5)/2)^38 2100951973452530 a001 4181/20633239*439204^(8/9) 2100951973453647 a001 4181/4870847*439204^(7/9) 2100951973456535 a001 4181/1149851*439204^(2/3) 2100951973458046 a001 1328767791/63245986 2100951973458046 a001 4181/710647*45537549124^(1/3) 2100951973458046 a001 4181/710647*(1/2+1/2*5^(1/2))^17 2100951973458047 a004 Fibonacci(28)/Lucas(19)/(1/2+sqrt(5)/2) 2100951973458053 a001 4181/710647*12752043^(1/2) 2100951973460618 a004 Fibonacci(19)*Lucas(29)/(1/2+sqrt(5)/2)^40 2100951973461600 a001 3478759240/165580141 2100951973461600 a001 4181/1860498*817138163596^(1/3) 2100951973461600 a001 4181/1860498*(1/2+1/2*5^(1/2))^19 2100951973461600 a001 4181/1860498*87403803^(1/2) 2100951973461600 a004 Fibonacci(30)/Lucas(19)/(1/2+sqrt(5)/2)^3 2100951973461975 a004 Fibonacci(19)*Lucas(31)/(1/2+sqrt(5)/2)^42 2100951973462096 a001 4181/4870847*7881196^(7/11) 2100951973462115 a001 4181/4870847*20633239^(3/5) 2100951973462118 a001 4181/4870847*141422324^(7/13) 2100951973462118 a001 9107509929/433494437 2100951973462118 a001 4181/4870847*2537720636^(7/15) 2100951973462118 a001 4181/4870847*17393796001^(3/7) 2100951973462118 a001 4181/4870847*45537549124^(7/17) 2100951973462118 a001 4181/4870847*14662949395604^(1/3) 2100951973462118 a001 4181/4870847*(1/2+1/2*5^(1/2))^21 2100951973462118 a001 4181/4870847*192900153618^(7/18) 2100951973462118 a001 4181/4870847*10749957122^(7/16) 2100951973462118 a001 4181/4870847*599074578^(1/2) 2100951973462118 a004 Fibonacci(32)/Lucas(19)/(1/2+sqrt(5)/2)^5 2100951973462119 a001 4181/4870847*33385282^(7/12) 2100951973462173 a004 Fibonacci(19)*Lucas(33)/(1/2+sqrt(5)/2)^44 2100951973462176 a001 4181/370248451*7881196^(10/11) 2100951973462179 a001 4181/87403803*7881196^(9/11) 2100951973462187 a001 4181/20633239*7881196^(8/11) 2100951973462194 a001 23843770547/1134903170 2100951973462194 a001 4181/12752043*(1/2+1/2*5^(1/2))^23 2100951973462194 a001 4181/12752043*4106118243^(1/2) 2100951973462194 a004 Fibonacci(34)/Lucas(19)/(1/2+sqrt(5)/2)^7 2100951973462201 a001 4181/33385282*20633239^(5/7) 2100951973462202 a004 Fibonacci(19)*Lucas(35)/(1/2+sqrt(5)/2)^46 2100951973462202 a001 4181/370248451*20633239^(6/7) 2100951973462203 a001 4181/141422324*20633239^(4/5) 2100951973462205 a001 4181/33385282*2537720636^(5/9) 2100951973462205 a001 62423801712/2971215073 2100951973462205 a001 4181/33385282*312119004989^(5/11) 2100951973462205 a001 4181/33385282*(1/2+1/2*5^(1/2))^25 2100951973462205 a001 4181/33385282*3461452808002^(5/12) 2100951973462205 a001 4181/33385282*28143753123^(1/2) 2100951973462205 a001 4181/33385282*228826127^(5/8) 2100951973462205 a004 Fibonacci(36)/Lucas(19)/(1/2+sqrt(5)/2)^9 2100951973462206 a004 Fibonacci(19)*Lucas(37)/(1/2+sqrt(5)/2)^48 2100951973462206 a001 4181/87403803*141422324^(9/13) 2100951973462206 a001 4181/87403803*2537720636^(3/5) 2100951973462206 a001 163427634589/7778742049 2100951973462206 a001 4181/87403803*45537549124^(9/17) 2100951973462206 a001 4181/87403803*817138163596^(9/19) 2100951973462206 a001 4181/87403803*14662949395604^(3/7) 2100951973462206 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^27/Lucas(38) 2100951973462206 a001 4181/87403803*192900153618^(1/2) 2100951973462206 a001 4181/87403803*10749957122^(9/16) 2100951973462206 a001 4181/87403803*599074578^(9/14) 2100951973462206 a004 Fibonacci(19)*Lucas(39)/(1/2+sqrt(5)/2)^50 2100951973462206 a001 4181/6643838879*141422324^(12/13) 2100951973462206 a001 4181/1568397607*141422324^(11/13) 2100951973462206 a001 4181/370248451*141422324^(10/13) 2100951973462207 a001 427859102055/20365011074 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^29/Lucas(40) 2100951973462207 a001 4181/228826127*1322157322203^(1/2) 2100951973462207 a004 Fibonacci(19)*Lucas(41)/(1/2+sqrt(5)/2)^52 2100951973462207 a001 1120149671576/53316291173 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^31/Lucas(42) 2100951973462207 a001 4181/599074578*9062201101803^(1/2) 2100951973462207 a004 Fibonacci(19)*Lucas(43)/(1/2+sqrt(5)/2)^54 2100951973462207 a001 4181/1568397607*2537720636^(11/15) 2100951973462207 a001 4181/1568397607*45537549124^(11/17) 2100951973462207 a001 32950448457/1568358005 2100951973462207 a001 4181/1568397607*312119004989^(3/5) 2100951973462207 a001 4181/1568397607*14662949395604^(11/21) 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^33/Lucas(44) 2100951973462207 a001 4181/1568397607*192900153618^(11/18) 2100951973462207 a001 4181/1568397607*10749957122^(11/16) 2100951973462207 a001 4181/4106118243*2537720636^(7/9) 2100951973462207 a004 Fibonacci(19)*Lucas(45)/(1/2+sqrt(5)/2)^56 2100951973462207 a001 4181/119218851371*2537720636^(14/15) 2100951973462207 a001 4181/45537549124*2537720636^(8/9) 2100951973462207 a001 4181/28143753123*2537720636^(13/15) 2100951973462207 a001 4181/1568397607*1568397607^(3/4) 2100951973462207 a001 4181/6643838879*2537720636^(4/5) 2100951973462207 a001 4181/4106118243*17393796001^(5/7) 2100951973462207 a001 4181/4106118243*312119004989^(7/11) 2100951973462207 a001 1836311903/87403802 2100951973462207 a001 4181/4106118243*14662949395604^(5/9) 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^35/Lucas(46) 2100951973462207 a001 4181/4106118243*28143753123^(7/10) 2100951973462207 a004 Fibonacci(19)*Lucas(47)/(1/2+sqrt(5)/2)^58 2100951973462207 a001 20100270286656/956722026041 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^37/Lucas(48) 2100951973462207 a004 Fibonacci(19)*Lucas(49)/(1/2+sqrt(5)/2)^60 2100951973462207 a001 4181/119218851371*17393796001^(6/7) 2100951973462207 a001 4181/28143753123*45537549124^(13/17) 2100951973462207 a001 52623190793525/2504730781961 2100951973462207 a001 4181/28143753123*14662949395604^(13/21) 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^39/Lucas(50) 2100951973462207 a001 4181/28143753123*192900153618^(13/18) 2100951973462207 a001 4181/28143753123*73681302247^(3/4) 2100951973462207 a004 Fibonacci(19)*Lucas(51)/(1/2+sqrt(5)/2)^62 2100951973462207 a001 4181/2139295485799*45537549124^(16/17) 2100951973462207 a001 4181/505019158607*45537549124^(15/17) 2100951973462207 a001 4181/119218851371*45537549124^(14/17) 2100951973462207 a001 137769302093919/6557470319842 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^41/Lucas(52) 2100951973462207 a004 Fibonacci(19)*Lucas(53)/(1/2+sqrt(5)/2)^64 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^43/Lucas(54) 2100951973462207 a001 4181/505019158607*312119004989^(9/11) 2100951973462207 a004 Fibonacci(19)*Lucas(55)/(1/2+sqrt(5)/2)^66 2100951973462207 a001 4181/505019158607*14662949395604^(5/7) 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^45/Lucas(56) 2100951973462207 a004 Fibonacci(19)*Lucas(57)/(1/2+sqrt(5)/2)^68 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^47/Lucas(58) 2100951973462207 a004 Fibonacci(19)*Lucas(59)/(1/2+sqrt(5)/2)^70 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^49/Lucas(60) 2100951973462207 a004 Fibonacci(19)*Lucas(61)/(1/2+sqrt(5)/2)^72 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^51/Lucas(62) 2100951973462207 a004 Fibonacci(19)*Lucas(63)/(1/2+sqrt(5)/2)^74 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^53/Lucas(64) 2100951973462207 a004 Fibonacci(19)*Lucas(65)/(1/2+sqrt(5)/2)^76 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^55/Lucas(66) 2100951973462207 a004 Fibonacci(19)*Lucas(67)/(1/2+sqrt(5)/2)^78 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^57/Lucas(68) 2100951973462207 a004 Fibonacci(19)*Lucas(69)/(1/2+sqrt(5)/2)^80 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^59/Lucas(70) 2100951973462207 a004 Fibonacci(19)*Lucas(71)/(1/2+sqrt(5)/2)^82 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^61/Lucas(72) 2100951973462207 a004 Fibonacci(19)*Lucas(73)/(1/2+sqrt(5)/2)^84 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^63/Lucas(74) 2100951973462207 a004 Fibonacci(19)*Lucas(75)/(1/2+sqrt(5)/2)^86 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^65/Lucas(76) 2100951973462207 a004 Fibonacci(19)*Lucas(77)/(1/2+sqrt(5)/2)^88 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^67/Lucas(78) 2100951973462207 a004 Fibonacci(19)*Lucas(79)/(1/2+sqrt(5)/2)^90 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^69/Lucas(80) 2100951973462207 a004 Fibonacci(19)*Lucas(81)/(1/2+sqrt(5)/2)^92 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^71/Lucas(82) 2100951973462207 a004 Fibonacci(19)*Lucas(83)/(1/2+sqrt(5)/2)^94 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^73/Lucas(84) 2100951973462207 a004 Fibonacci(19)*Lucas(85)/(1/2+sqrt(5)/2)^96 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^75/Lucas(86) 2100951973462207 a004 Fibonacci(19)*Lucas(87)/(1/2+sqrt(5)/2)^98 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^77/Lucas(88) 2100951973462207 a004 Fibonacci(19)*Lucas(89)/(1/2+sqrt(5)/2)^100 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^79/Lucas(90) 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^81/Lucas(92) 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^83/Lucas(94) 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^85/Lucas(96) 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^87/Lucas(98) 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^88/Lucas(99) 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^89/Lucas(100) 2100951973462207 a004 Fibonacci(19)*Lucas(1)/(1/2+sqrt(5)/2)^11 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^86/Lucas(97) 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^84/Lucas(95) 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^82/Lucas(93) 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^80/Lucas(91) 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^78/Lucas(89) 2100951973462207 a004 Fibonacci(19)*Lucas(88)/(1/2+sqrt(5)/2)^99 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^76/Lucas(87) 2100951973462207 a004 Fibonacci(19)*Lucas(86)/(1/2+sqrt(5)/2)^97 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^74/Lucas(85) 2100951973462207 a004 Fibonacci(19)*Lucas(84)/(1/2+sqrt(5)/2)^95 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^72/Lucas(83) 2100951973462207 a004 Fibonacci(19)*Lucas(82)/(1/2+sqrt(5)/2)^93 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^70/Lucas(81) 2100951973462207 a004 Fibonacci(19)*Lucas(80)/(1/2+sqrt(5)/2)^91 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^68/Lucas(79) 2100951973462207 a004 Fibonacci(19)*Lucas(78)/(1/2+sqrt(5)/2)^89 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^66/Lucas(77) 2100951973462207 a004 Fibonacci(19)*Lucas(76)/(1/2+sqrt(5)/2)^87 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^64/Lucas(75) 2100951973462207 a004 Fibonacci(19)*Lucas(74)/(1/2+sqrt(5)/2)^85 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^62/Lucas(73) 2100951973462207 a004 Fibonacci(19)*Lucas(72)/(1/2+sqrt(5)/2)^83 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^60/Lucas(71) 2100951973462207 a004 Fibonacci(19)*Lucas(70)/(1/2+sqrt(5)/2)^81 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^58/Lucas(69) 2100951973462207 a004 Fibonacci(19)*Lucas(68)/(1/2+sqrt(5)/2)^79 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^56/Lucas(67) 2100951973462207 a004 Fibonacci(19)*Lucas(66)/(1/2+sqrt(5)/2)^77 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^54/Lucas(65) 2100951973462207 a004 Fibonacci(19)*Lucas(64)/(1/2+sqrt(5)/2)^75 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^52/Lucas(63) 2100951973462207 a001 4181/14662949395604*23725150497407^(13/16) 2100951973462207 a004 Fibonacci(19)*Lucas(62)/(1/2+sqrt(5)/2)^73 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^50/Lucas(61) 2100951973462207 a004 Fibonacci(19)*Lucas(60)/(1/2+sqrt(5)/2)^71 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^48/Lucas(59) 2100951973462207 a004 Fibonacci(19)*Lucas(58)/(1/2+sqrt(5)/2)^69 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^46/Lucas(57) 2100951973462207 a001 4181/14662949395604*505019158607^(13/14) 2100951973462207 a004 Fibonacci(19)*Lucas(56)/(1/2+sqrt(5)/2)^67 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^44/Lucas(55) 2100951973462207 a001 4181/312119004989*23725150497407^(11/16) 2100951973462207 a001 4181/505019158607*192900153618^(5/6) 2100951973462207 a001 4181/2139295485799*192900153618^(8/9) 2100951973462207 a001 4181/9062201101803*192900153618^(17/18) 2100951973462207 a004 Fibonacci(19)*Lucas(54)/(1/2+sqrt(5)/2)^65 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^42/Lucas(53) 2100951973462207 a001 222915413394313/10610209857723 2100951973462207 a001 4181/119218851371*505019158607^(3/4) 2100951973462207 a001 4181/119218851371*192900153618^(7/9) 2100951973462207 a001 4181/2139295485799*73681302247^(12/13) 2100951973462207 a004 Fibonacci(19)*Lucas(52)/(1/2+sqrt(5)/2)^63 2100951973462207 a001 4181/45537549124*312119004989^(8/11) 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^40/Lucas(51) 2100951973462207 a001 4181/45537549124*23725150497407^(5/8) 2100951973462207 a001 4181/45537549124*73681302247^(10/13) 2100951973462207 a001 4181/505019158607*28143753123^(9/10) 2100951973462207 a004 Fibonacci(19)*Lucas(50)/(1/2+sqrt(5)/2)^61 2100951973462207 a001 4181/45537549124*28143753123^(4/5) 2100951973462207 a001 4181/17393796001*817138163596^(2/3) 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^38/Lucas(49) 2100951973462207 a001 32522920506869/1548008755920 2100951973462207 a001 4181/28143753123*10749957122^(13/16) 2100951973462207 a001 4181/119218851371*10749957122^(7/8) 2100951973462207 a001 4181/45537549124*10749957122^(5/6) 2100951973462207 a001 4181/312119004989*10749957122^(11/12) 2100951973462207 a001 4181/505019158607*10749957122^(15/16) 2100951973462207 a001 4181/817138163596*10749957122^(23/24) 2100951973462207 a004 Fibonacci(19)*Lucas(48)/(1/2+sqrt(5)/2)^59 2100951973462207 a001 4181/17393796001*10749957122^(19/24) 2100951973462207 a001 4181/6643838879*45537549124^(12/17) 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^36/Lucas(47) 2100951973462207 a001 12422650220213/591286729879 2100951973462207 a001 4181/6643838879*192900153618^(2/3) 2100951973462207 a001 4181/6643838879*73681302247^(9/13) 2100951973462207 a001 4181/6643838879*10749957122^(3/4) 2100951973462207 a001 4181/45537549124*4106118243^(20/23) 2100951973462207 a001 4181/17393796001*4106118243^(19/23) 2100951973462207 a001 4181/119218851371*4106118243^(21/23) 2100951973462207 a001 4181/312119004989*4106118243^(22/23) 2100951973462207 a004 Fibonacci(19)*Lucas(46)/(1/2+sqrt(5)/2)^57 2100951973462207 a001 4181/6643838879*4106118243^(18/23) 2100951973462207 a001 4181/2537720636*45537549124^(2/3) 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^34/Lucas(45) 2100951973462207 a001 4745030153770/225851433717 2100951973462207 a001 4181/2537720636*10749957122^(17/24) 2100951973462207 a001 4181/2537720636*4106118243^(17/23) 2100951973462207 a001 4181/17393796001*1568397607^(19/22) 2100951973462207 a001 4181/6643838879*1568397607^(9/11) 2100951973462207 a001 4181/45537549124*1568397607^(10/11) 2100951973462207 a001 4181/119218851371*1568397607^(21/22) 2100951973462207 a004 Fibonacci(19)*Lucas(44)/(1/2+sqrt(5)/2)^55 2100951973462207 a001 4181/2537720636*1568397607^(17/22) 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^32/Lucas(43) 2100951973462207 a001 4181/969323029*23725150497407^(1/2) 2100951973462207 a001 4181/969323029*505019158607^(4/7) 2100951973462207 a001 1812440241097/86267571272 2100951973462207 a001 4181/969323029*73681302247^(8/13) 2100951973462207 a001 4181/969323029*10749957122^(2/3) 2100951973462207 a001 4181/969323029*4106118243^(16/23) 2100951973462207 a001 4181/969323029*1568397607^(8/11) 2100951973462207 a001 4181/1568397607*599074578^(11/14) 2100951973462207 a001 4181/4106118243*599074578^(5/6) 2100951973462207 a001 4181/2537720636*599074578^(17/21) 2100951973462207 a001 4181/6643838879*599074578^(6/7) 2100951973462207 a001 4181/17393796001*599074578^(19/21) 2100951973462207 a001 4181/28143753123*599074578^(13/14) 2100951973462207 a001 4181/45537549124*599074578^(20/21) 2100951973462207 a004 Fibonacci(19)*Lucas(42)/(1/2+sqrt(5)/2)^53 2100951973462207 a001 4181/969323029*599074578^(16/21) 2100951973462207 a001 4181/370248451*2537720636^(2/3) 2100951973462207 a001 4181/370248451*45537549124^(10/17) 2100951973462207 a001 4181/370248451*312119004989^(6/11) 2100951973462207 a001 4181/370248451*14662949395604^(10/21) 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^30/Lucas(41) 2100951973462207 a001 4181/370248451*192900153618^(5/9) 2100951973462207 a001 692290569521/32951280099 2100951973462207 a001 4181/370248451*28143753123^(3/5) 2100951973462207 a001 4181/370248451*10749957122^(5/8) 2100951973462207 a001 4181/370248451*4106118243^(15/23) 2100951973462207 a001 4181/370248451*1568397607^(15/22) 2100951973462207 a001 4181/370248451*599074578^(5/7) 2100951973462207 a001 4181/969323029*228826127^(4/5) 2100951973462207 a001 4181/2537720636*228826127^(17/20) 2100951973462207 a001 4181/4106118243*228826127^(7/8) 2100951973462207 a001 4181/6643838879*228826127^(9/10) 2100951973462207 a001 4181/17393796001*228826127^(19/20) 2100951973462207 a004 Fibonacci(19)*Lucas(40)/(1/2+sqrt(5)/2)^51 2100951973462207 a001 4181/370248451*228826127^(3/4) 2100951973462207 a001 4181/141422324*17393796001^(4/7) 2100951973462207 a001 4181/141422324*14662949395604^(4/9) 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^28/Lucas(39) 2100951973462207 a001 4181/141422324*73681302247^(7/13) 2100951973462207 a001 264431467466/12586269025 2100951973462207 a001 4181/141422324*10749957122^(7/12) 2100951973462207 a001 4181/141422324*4106118243^(14/23) 2100951973462207 a001 4181/141422324*1568397607^(7/11) 2100951973462207 a001 4181/141422324*599074578^(2/3) 2100951973462207 a001 4181/141422324*228826127^(7/10) 2100951973462207 a001 4181/370248451*87403803^(15/19) 2100951973462207 a001 4181/969323029*87403803^(16/19) 2100951973462207 a004 Fibonacci(40)/Lucas(19)/(1/2+sqrt(5)/2)^13 2100951973462207 a001 4181/2537720636*87403803^(17/19) 2100951973462207 a001 4181/6643838879*87403803^(18/19) 2100951973462207 a004 Fibonacci(42)/Lucas(19)/(1/2+sqrt(5)/2)^15 2100951973462207 a004 Fibonacci(44)/Lucas(19)/(1/2+sqrt(5)/2)^17 2100951973462207 a004 Fibonacci(46)/Lucas(19)/(1/2+sqrt(5)/2)^19 2100951973462207 a004 Fibonacci(48)/Lucas(19)/(1/2+sqrt(5)/2)^21 2100951973462207 a004 Fibonacci(50)/Lucas(19)/(1/2+sqrt(5)/2)^23 2100951973462207 a004 Fibonacci(52)/Lucas(19)/(1/2+sqrt(5)/2)^25 2100951973462207 a004 Fibonacci(54)/Lucas(19)/(1/2+sqrt(5)/2)^27 2100951973462207 a004 Fibonacci(56)/Lucas(19)/(1/2+sqrt(5)/2)^29 2100951973462207 a004 Fibonacci(58)/Lucas(19)/(1/2+sqrt(5)/2)^31 2100951973462207 a004 Fibonacci(60)/Lucas(19)/(1/2+sqrt(5)/2)^33 2100951973462207 a004 Fibonacci(62)/Lucas(19)/(1/2+sqrt(5)/2)^35 2100951973462207 a004 Fibonacci(64)/Lucas(19)/(1/2+sqrt(5)/2)^37 2100951973462207 a004 Fibonacci(66)/Lucas(19)/(1/2+sqrt(5)/2)^39 2100951973462207 a004 Fibonacci(68)/Lucas(19)/(1/2+sqrt(5)/2)^41 2100951973462207 a004 Fibonacci(70)/Lucas(19)/(1/2+sqrt(5)/2)^43 2100951973462207 a004 Fibonacci(72)/Lucas(19)/(1/2+sqrt(5)/2)^45 2100951973462207 a004 Fibonacci(74)/Lucas(19)/(1/2+sqrt(5)/2)^47 2100951973462207 a004 Fibonacci(19)*Lucas(38)/(1/2+sqrt(5)/2)^49 2100951973462207 a004 Fibonacci(78)/Lucas(19)/(1/2+sqrt(5)/2)^51 2100951973462207 a004 Fibonacci(80)/Lucas(19)/(1/2+sqrt(5)/2)^53 2100951973462207 a004 Fibonacci(82)/Lucas(19)/(1/2+sqrt(5)/2)^55 2100951973462207 a004 Fibonacci(84)/Lucas(19)/(1/2+sqrt(5)/2)^57 2100951973462207 a004 Fibonacci(86)/Lucas(19)/(1/2+sqrt(5)/2)^59 2100951973462207 a004 Fibonacci(88)/Lucas(19)/(1/2+sqrt(5)/2)^61 2100951973462207 a004 Fibonacci(90)/Lucas(19)/(1/2+sqrt(5)/2)^63 2100951973462207 a004 Fibonacci(92)/Lucas(19)/(1/2+sqrt(5)/2)^65 2100951973462207 a004 Fibonacci(94)/Lucas(19)/(1/2+sqrt(5)/2)^67 2100951973462207 a004 Fibonacci(96)/Lucas(19)/(1/2+sqrt(5)/2)^69 2100951973462207 a004 Fibonacci(100)/Lucas(19)/(1/2+sqrt(5)/2)^73 2100951973462207 a004 Fibonacci(98)/Lucas(19)/(1/2+sqrt(5)/2)^71 2100951973462207 a004 Fibonacci(99)/Lucas(19)/(1/2+sqrt(5)/2)^72 2100951973462207 a004 Fibonacci(97)/Lucas(19)/(1/2+sqrt(5)/2)^70 2100951973462207 a004 Fibonacci(95)/Lucas(19)/(1/2+sqrt(5)/2)^68 2100951973462207 a004 Fibonacci(93)/Lucas(19)/(1/2+sqrt(5)/2)^66 2100951973462207 a004 Fibonacci(91)/Lucas(19)/(1/2+sqrt(5)/2)^64 2100951973462207 a004 Fibonacci(89)/Lucas(19)/(1/2+sqrt(5)/2)^62 2100951973462207 a004 Fibonacci(87)/Lucas(19)/(1/2+sqrt(5)/2)^60 2100951973462207 a004 Fibonacci(85)/Lucas(19)/(1/2+sqrt(5)/2)^58 2100951973462207 a004 Fibonacci(83)/Lucas(19)/(1/2+sqrt(5)/2)^56 2100951973462207 a004 Fibonacci(81)/Lucas(19)/(1/2+sqrt(5)/2)^54 2100951973462207 a004 Fibonacci(79)/Lucas(19)/(1/2+sqrt(5)/2)^52 2100951973462207 a004 Fibonacci(77)/Lucas(19)/(1/2+sqrt(5)/2)^50 2100951973462207 a004 Fibonacci(75)/Lucas(19)/(1/2+sqrt(5)/2)^48 2100951973462207 a004 Fibonacci(73)/Lucas(19)/(1/2+sqrt(5)/2)^46 2100951973462207 a004 Fibonacci(71)/Lucas(19)/(1/2+sqrt(5)/2)^44 2100951973462207 a004 Fibonacci(69)/Lucas(19)/(1/2+sqrt(5)/2)^42 2100951973462207 a004 Fibonacci(67)/Lucas(19)/(1/2+sqrt(5)/2)^40 2100951973462207 a004 Fibonacci(65)/Lucas(19)/(1/2+sqrt(5)/2)^38 2100951973462207 a004 Fibonacci(63)/Lucas(19)/(1/2+sqrt(5)/2)^36 2100951973462207 a004 Fibonacci(61)/Lucas(19)/(1/2+sqrt(5)/2)^34 2100951973462207 a004 Fibonacci(59)/Lucas(19)/(1/2+sqrt(5)/2)^32 2100951973462207 a004 Fibonacci(57)/Lucas(19)/(1/2+sqrt(5)/2)^30 2100951973462207 a004 Fibonacci(55)/Lucas(19)/(1/2+sqrt(5)/2)^28 2100951973462207 a004 Fibonacci(53)/Lucas(19)/(1/2+sqrt(5)/2)^26 2100951973462207 a004 Fibonacci(51)/Lucas(19)/(1/2+sqrt(5)/2)^24 2100951973462207 a004 Fibonacci(49)/Lucas(19)/(1/2+sqrt(5)/2)^22 2100951973462207 a004 Fibonacci(47)/Lucas(19)/(1/2+sqrt(5)/2)^20 2100951973462207 a004 Fibonacci(45)/Lucas(19)/(1/2+sqrt(5)/2)^18 2100951973462207 a004 Fibonacci(43)/Lucas(19)/(1/2+sqrt(5)/2)^16 2100951973462207 a004 Fibonacci(41)/Lucas(19)/(1/2+sqrt(5)/2)^14 2100951973462207 a001 4181/141422324*87403803^(14/19) 2100951973462207 a004 Fibonacci(39)/Lucas(19)/(1/2+sqrt(5)/2)^12 2100951973462207 a001 4181/54018521*141422324^(2/3) 2100951973462207 a004 Fibonacci(19)*(1/2+sqrt(5)/2)^26/Lucas(37) 2100951973462207 a001 4181/54018521*73681302247^(1/2) 2100951973462207 a001 4181/54018521*10749957122^(13/24) 2100951973462207 a001 101003832877/4807526976 2100951973462207 a001 4181/54018521*4106118243^(13/23) 2100951973462207 a001 4181/54018521*1568397607^(13/22) 2100951973462207 a001 4181/54018521*599074578^(13/21) 2100951973462207 a001 4181/54018521*228826127^(13/20) 2100951973462207 a001 4181/54018521*87403803^(13/19) 2100951973462208 a004 Fibonacci(37)/Lucas(19)/(1/2+sqrt(5)/2)^10 2100951973462208 a001 4181/87403803*33385282^(3/4) 2100951973462208 a001 4181/141422324*33385282^(7/9) 2100951973462208 a001 4181/370248451*33385282^(5/6) 2100951973462208 a001 4181/969323029*33385282^(8/9) 2100951973462208 a001 4181/1568397607*33385282^(11/12) 2100951973462208 a001 4181/2537720636*33385282^(17/18) 2100951973462208 a004 Fibonacci(19)*Lucas(36)/(1/2+sqrt(5)/2)^47 2100951973462209 a001 4181/54018521*33385282^(13/18) 2100951973462211 a001 4181/20633239*141422324^(8/13) 2100951973462211 a001 4181/20633239*2537720636^(8/15) 2100951973462211 a001 4181/20633239*45537549124^(8/17) 2100951973462211 a001 4181/20633239*14662949395604^(8/21) 2100951973462211 a001 4181/20633239*(1/2+1/2*5^(1/2))^24 2100951973462211 a001 4181/20633239*192900153618^(4/9) 2100951973462211 a001 4181/20633239*73681302247^(6/13) 2100951973462211 a001 4181/20633239*10749957122^(1/2) 2100951973462211 a001 4181/20633239*4106118243^(12/23) 2100951973462211 a001 38580031165/1836311903 2100951973462211 a001 4181/20633239*1568397607^(6/11) 2100951973462211 a001 4181/20633239*599074578^(4/7) 2100951973462212 a001 4181/20633239*228826127^(3/5) 2100951973462212 a001 4181/20633239*87403803^(12/19) 2100951973462212 a004 Fibonacci(35)/Lucas(19)/(1/2+sqrt(5)/2)^8 2100951973462213 a001 4181/20633239*33385282^(2/3) 2100951973462217 a001 4181/54018521*12752043^(13/17) 2100951973462217 a001 4181/141422324*12752043^(14/17) 2100951973462218 a001 4181/7881196*7881196^(2/3) 2100951973462218 a001 4181/370248451*12752043^(15/17) 2100951973462219 a001 4181/969323029*12752043^(16/17) 2100951973462219 a004 Fibonacci(19)*Lucas(34)/(1/2+sqrt(5)/2)^45 2100951973462221 a001 4181/20633239*12752043^(12/17) 2100951973462240 a001 4181/7881196*312119004989^(2/5) 2100951973462240 a001 4181/7881196*(1/2+1/2*5^(1/2))^22 2100951973462240 a001 4181/7881196*10749957122^(11/24) 2100951973462240 a001 4181/7881196*4106118243^(11/23) 2100951973462240 a001 4181/7881196*1568397607^(1/2) 2100951973462240 a001 165575962/7880997 2100951973462240 a001 4181/7881196*599074578^(11/21) 2100951973462240 a001 4181/7881196*228826127^(11/20) 2100951973462241 a001 4181/7881196*87403803^(11/19) 2100951973462241 a004 Fibonacci(33)/Lucas(19)/(1/2+sqrt(5)/2)^6 2100951973462242 a001 4181/7881196*33385282^(11/18) 2100951973462249 a001 4181/7881196*12752043^(11/17) 2100951973462278 a001 4181/20633239*4870847^(3/4) 2100951973462279 a001 4181/54018521*4870847^(13/16) 2100951973462284 a001 4181/141422324*4870847^(7/8) 2100951973462290 a001 4181/370248451*4870847^(15/16) 2100951973462295 a004 Fibonacci(19)*Lucas(32)/(1/2+sqrt(5)/2)^43 2100951973462301 a001 4181/7881196*4870847^(11/16) 2100951973462436 a001 4181/3010349*20633239^(4/7) 2100951973462438 a001 4181/3010349*2537720636^(4/9) 2100951973462438 a001 4181/3010349*(1/2+1/2*5^(1/2))^20 2100951973462438 a001 4181/3010349*23725150497407^(5/16) 2100951973462438 a001 4181/3010349*505019158607^(5/14) 2100951973462438 a001 4181/3010349*73681302247^(5/13) 2100951973462438 a001 4181/3010349*28143753123^(2/5) 2100951973462438 a001 4181/3010349*10749957122^(5/12) 2100951973462438 a001 4181/3010349*4106118243^(10/23) 2100951973462438 a001 4181/3010349*1568397607^(5/11) 2100951973462438 a001 4181/3010349*599074578^(10/21) 2100951973462438 a001 5628750689/267914296 2100951973462438 a001 4181/3010349*228826127^(1/2) 2100951973462439 a001 4181/3010349*87403803^(10/19) 2100951973462439 a004 Fibonacci(31)/Lucas(19)/(1/2+sqrt(5)/2)^4 2100951973462439 a001 4181/3010349*33385282^(5/9) 2100951973462446 a001 4181/3010349*12752043^(10/17) 2100951973462494 a001 4181/3010349*4870847^(5/8) 2100951973462543 a001 4181/4870847*1860498^(7/10) 2100951973462685 a001 4181/7881196*1860498^(11/15) 2100951973462697 a001 4181/20633239*1860498^(4/5) 2100951973462710 a001 4181/33385282*1860498^(5/6) 2100951973462733 a001 4181/54018521*1860498^(13/15) 2100951973462753 a001 4181/87403803*1860498^(9/10) 2100951973462773 a001 4181/141422324*1860498^(14/15) 2100951973462814 a004 Fibonacci(19)*Lucas(30)/(1/2+sqrt(5)/2)^41 2100951973462843 a001 4181/3010349*1860498^(2/3) 2100951973463777 a001 4181/1149851*7881196^(6/11) 2100951973463796 a001 4181/1149851*141422324^(6/13) 2100951973463796 a001 4181/1149851*2537720636^(2/5) 2100951973463796 a001 4181/1149851*45537549124^(6/17) 2100951973463796 a001 4181/1149851*14662949395604^(2/7) 2100951973463796 a001 4181/1149851*(1/2+1/2*5^(1/2))^18 2100951973463796 a001 4181/1149851*192900153618^(1/3) 2100951973463796 a001 4181/1149851*10749957122^(3/8) 2100951973463796 a001 4181/1149851*4106118243^(9/23) 2100951973463796 a001 4181/1149851*1568397607^(9/22) 2100951973463796 a001 4181/1149851*599074578^(3/7) 2100951973463796 a001 4181/1149851*228826127^(9/20) 2100951973463796 a001 2149991449/102334155 2100951973463796 a001 4181/1149851*87403803^(9/19) 2100951973463796 a004 Fibonacci(29)/Lucas(19)/(1/2+sqrt(5)/2)^2 2100951973463797 a001 4181/1149851*33385282^(1/2) 2100951973463802 a001 4181/1149851*12752043^(9/17) 2100951973463845 a001 4181/1149851*4870847^(9/16) 2100951973464160 a001 4181/1149851*1860498^(3/5) 2100951973465238 a001 4181/4870847*710647^(3/4) 2100951973465410 a001 4181/3010349*710647^(5/7) 2100951973465509 a001 4181/7881196*710647^(11/14) 2100951973465777 a001 4181/20633239*710647^(6/7) 2100951973466070 a001 4181/54018521*710647^(13/14) 2100951973466367 a004 Fibonacci(19)*Lucas(28)/(1/2+sqrt(5)/2)^39 2100951973466470 a001 4181/1149851*710647^(9/14) 2100951973473098 a001 4181/439204*(1/2+1/2*5^(1/2))^16 2100951973473098 a001 4181/439204*23725150497407^(1/4) 2100951973473098 a001 4181/439204*73681302247^(4/13) 2100951973473098 a001 4181/439204*10749957122^(1/3) 2100951973473098 a001 4181/439204*4106118243^(8/23) 2100951973473098 a001 4181/439204*1568397607^(4/11) 2100951973473098 a001 4181/439204*599074578^(8/21) 2100951973473098 a001 4181/439204*228826127^(2/5) 2100951973473098 a001 4181/439204*87403803^(8/19) 2100951973473098 a001 196418/9349 2100951973473099 a001 4181/439204*33385282^(4/9) 2100951973473104 a001 4181/439204*12752043^(8/17) 2100951973473142 a001 4181/439204*4870847^(1/2) 2100951973473422 a001 4181/439204*1860498^(8/15) 2100951973475475 a001 4181/439204*710647^(4/7) 2100951973483536 a001 4181/1149851*271443^(9/13) 2100951973484372 a001 4181/3010349*271443^(10/13) 2100951973486368 a001 4181/7881196*271443^(11/13) 2100951973488532 a001 4181/20633239*271443^(12/13) 2100951973490645 a001 4181/439204*271443^(8/13) 2100951973490721 a004 Fibonacci(19)*Lucas(26)/(1/2+sqrt(5)/2)^37 2100951973492365 a001 75025/9349*64079^(2/23) 2100951973494582 a001 121393/9349*39603^(1/22) 2100951973536855 a001 4181/167761*20633239^(2/5) 2100951973536857 a001 4181/167761*17393796001^(2/7) 2100951973536857 a001 4181/167761*14662949395604^(2/9) 2100951973536857 a001 4181/167761*(1/2+1/2*5^(1/2))^14 2100951973536857 a001 4181/167761*505019158607^(1/4) 2100951973536857 a001 4181/167761*10749957122^(7/24) 2100951973536857 a001 4181/167761*4106118243^(7/23) 2100951973536857 a001 4181/167761*1568397607^(7/22) 2100951973536857 a001 4181/167761*599074578^(1/3) 2100951973536857 a001 4181/167761*228826127^(7/20) 2100951973536857 a001 4181/167761*87403803^(7/19) 2100951973536858 a001 75025/9349*(1/2+1/2*5^(1/2))^2 2100951973536858 a001 75025/9349*10749957122^(1/24) 2100951973536858 a001 75025/9349*4106118243^(1/23) 2100951973536858 a001 75025/9349*1568397607^(1/22) 2100951973536858 a001 75025/9349*599074578^(1/21) 2100951973536858 a001 75025/9349*228826127^(1/20) 2100951973536858 a001 75025/9349*87403803^(1/19) 2100951973536858 a001 75025/9349*33385282^(1/18) 2100951973536858 a001 4181/167761*33385282^(7/18) 2100951973536858 a001 75025/9349*12752043^(1/17) 2100951973536859 a001 313679525/14930352 2100951973536863 a001 4181/167761*12752043^(7/17) 2100951973536863 a001 75025/9349*4870847^(1/16) 2100951973536896 a001 4181/167761*4870847^(7/16) 2100951973536898 a001 75025/9349*1860498^(1/15) 2100951973537141 a001 4181/167761*1860498^(7/15) 2100951973537155 a001 75025/9349*710647^(1/14) 2100951973538937 a001 4181/167761*710647^(1/2) 2100951973539051 a001 75025/9349*271443^(1/13) 2100951973552211 a001 4181/167761*271443^(7/13) 2100951973553144 a001 75025/9349*103682^(1/12) 2100951973555841 a001 4181/271443*103682^(5/8) 2100951973596482 a001 4181/710647*103682^(17/24) 2100951973603390 a001 4181/439204*103682^(2/3) 2100951973610374 a001 4181/1149851*103682^(3/4) 2100951973616321 a001 4181/1860498*103682^(19/24) 2100951973625304 a001 4181/3010349*103682^(5/6) 2100951973633126 a001 4181/4870847*103682^(7/8) 2100951973641392 a001 4181/7881196*103682^(11/12) 2100951973649489 a001 4181/12752043*103682^(23/24) 2100951973650863 a001 4181/167761*103682^(7/12) 2100951973657645 a004 Fibonacci(19)*Lucas(24)/(1/2+sqrt(5)/2)^35 2100951973658635 a001 75025/9349*39603^(1/11) 2100951973706915 a001 4181/64079*64079^(12/23) 2100951973777079 a001 75025/103682*5778^(7/18) 2100951973865293 a001 2255/13201*5778^(5/9) 2100951973880244 a001 196418/271443*5778^(7/18) 2100951973884886 a001 28657/9349*64079^(4/23) 2100951973892764 a001 121393/9349*15127^(1/20) 2100951973895295 a001 514229/710647*5778^(7/18) 2100951973897491 a001 1346269/1860498*5778^(7/18) 2100951973897812 a001 3524578/4870847*5778^(7/18) 2100951973897858 a001 9227465/12752043*5778^(7/18) 2100951973897865 a001 24157817/33385282*5778^(7/18) 2100951973897866 a001 63245986/87403803*5778^(7/18) 2100951973897866 a001 165580141/228826127*5778^(7/18) 2100951973897866 a001 433494437/599074578*5778^(7/18) 2100951973897866 a001 1134903170/1568397607*5778^(7/18) 2100951973897866 a001 2971215073/4106118243*5778^(7/18) 2100951973897866 a001 7778742049/10749957122*5778^(7/18) 2100951973897866 a001 20365011074/28143753123*5778^(7/18) 2100951973897866 a001 53316291173/73681302247*5778^(7/18) 2100951973897866 a001 139583862445/192900153618*5778^(7/18) 2100951973897866 a001 10610209857723/14662949395604*5778^(7/18) 2100951973897866 a001 225851433717/312119004989*5778^(7/18) 2100951973897866 a001 86267571272/119218851371*5778^(7/18) 2100951973897866 a001 32951280099/45537549124*5778^(7/18) 2100951973897866 a001 12586269025/17393796001*5778^(7/18) 2100951973897866 a001 4807526976/6643838879*5778^(7/18) 2100951973897866 a001 1836311903/2537720636*5778^(7/18) 2100951973897866 a001 701408733/969323029*5778^(7/18) 2100951973897866 a001 267914296/370248451*5778^(7/18) 2100951973897866 a001 102334155/141422324*5778^(7/18) 2100951973897867 a001 39088169/54018521*5778^(7/18) 2100951973897869 a001 14930352/20633239*5778^(7/18) 2100951973897887 a001 5702887/7881196*5778^(7/18) 2100951973898010 a001 2178309/3010349*5778^(7/18) 2100951973898848 a001 832040/1149851*5778^(7/18) 2100951973904598 a001 317811/439204*5778^(7/18) 2100951973944003 a001 121393/167761*5778^(7/18) 2100951973969030 a001 4181/64079*439204^(4/9) 2100951973973858 a001 4181/64079*7881196^(4/11) 2100951973973870 a001 4181/64079*141422324^(4/13) 2100951973973870 a001 4181/64079*2537720636^(4/15) 2100951973973870 a001 4181/64079*45537549124^(4/17) 2100951973973870 a001 4181/64079*817138163596^(4/19) 2100951973973870 a001 4181/64079*14662949395604^(4/21) 2100951973973870 a001 4181/64079*(1/2+1/2*5^(1/2))^12 2100951973973870 a001 4181/64079*73681302247^(3/13) 2100951973973870 a001 4181/64079*10749957122^(1/4) 2100951973973870 a001 4181/64079*4106118243^(6/23) 2100951973973870 a001 4181/64079*1568397607^(3/11) 2100951973973870 a001 4181/64079*599074578^(2/7) 2100951973973870 a001 4181/64079*228826127^(3/10) 2100951973973870 a001 4181/64079*87403803^(6/19) 2100951973973871 a001 28657/9349*(1/2+1/2*5^(1/2))^4 2100951973973871 a001 28657/9349*23725150497407^(1/16) 2100951973973871 a001 28657/9349*73681302247^(1/13) 2100951973973871 a001 28657/9349*10749957122^(1/12) 2100951973973871 a001 28657/9349*4106118243^(2/23) 2100951973973871 a001 28657/9349*1568397607^(1/11) 2100951973973871 a001 28657/9349*599074578^(2/21) 2100951973973871 a001 28657/9349*228826127^(1/10) 2100951973973871 a001 28657/9349*87403803^(2/19) 2100951973973871 a001 28657/9349*33385282^(1/9) 2100951973973871 a001 4181/64079*33385282^(1/3) 2100951973973872 a001 28657/9349*12752043^(2/17) 2100951973973875 a001 4181/64079*12752043^(6/17) 2100951973973882 a001 28657/9349*4870847^(1/8) 2100951973973883 a001 119814917/5702887 2100951973973904 a001 4181/64079*4870847^(3/8) 2100951973973952 a001 28657/9349*1860498^(2/15) 2100951973974113 a001 4181/64079*1860498^(2/5) 2100951973974465 a001 28657/9349*710647^(1/7) 2100951973975653 a001 4181/64079*710647^(3/7) 2100951973978257 a001 28657/9349*271443^(2/13) 2100951973987031 a001 4181/64079*271443^(6/13) 2100951974006444 a001 28657/9349*103682^(1/6) 2100951974058323 a001 4181/103682*39603^(13/22) 2100951974071589 a001 4181/64079*103682^(1/2) 2100951974214092 a001 46368/64079*5778^(7/18) 2100951974217426 a001 28657/9349*39603^(2/11) 2100951974347024 a001 4181/271443*39603^(15/22) 2100951974389300 a001 4181/167761*39603^(7/11) 2100951974418012 a001 17711/9349*15127^(1/4) 2100951974420388 a001 28657/24476*5778^(1/3) 2100951974447318 a001 4181/439204*39603^(8/11) 2100951974455001 a001 75025/9349*15127^(1/10) 2100951974455203 a001 24476/89*4181^(13/25) 2100951974493156 a001 4181/710647*39603^(17/22) 2100951974559794 a001 4181/1149851*39603^(9/11) 2100951974618486 a001 4181/1860498*39603^(19/22) 2100951974643984 a001 46368/9349*15127^(3/20) 2100951974680214 a001 4181/3010349*39603^(10/11) 2100951974704536 a001 4181/64079*39603^(6/11) 2100951974714898 a001 17711/39603*5778^(4/9) 2100951974740782 a001 4181/4870847*39603^(21/22) 2100951974801760 a004 Fibonacci(19)*Lucas(22)/(1/2+sqrt(5)/2)^33 2100951975045181 a001 514229/39603*2207^(1/16) 2100951975215704 a001 6765/24476*5778^(1/2) 2100951975299204 a001 4181/24476*24476^(10/21) 2100951975810157 a001 28657/9349*15127^(1/5) 2100951975967204 a001 10946/9349*24476^(2/7) 2100951976065309 a001 17711/24476*5778^(7/18) 2100951976187939 a001 1346269/103682*2207^(1/16) 2100951976354665 a001 3524578/271443*2207^(1/16) 2100951976378990 a001 9227465/710647*2207^(1/16) 2100951976382539 a001 24157817/1860498*2207^(1/16) 2100951976383057 a001 63245986/4870847*2207^(1/16) 2100951976383132 a001 165580141/12752043*2207^(1/16) 2100951976383143 a001 433494437/33385282*2207^(1/16) 2100951976383145 a001 1134903170/87403803*2207^(1/16) 2100951976383145 a001 2971215073/228826127*2207^(1/16) 2100951976383145 a001 7778742049/599074578*2207^(1/16) 2100951976383145 a001 20365011074/1568397607*2207^(1/16) 2100951976383145 a001 53316291173/4106118243*2207^(1/16) 2100951976383145 a001 139583862445/10749957122*2207^(1/16) 2100951976383145 a001 365435296162/28143753123*2207^(1/16) 2100951976383145 a001 956722026041/73681302247*2207^(1/16) 2100951976383145 a001 2504730781961/192900153618*2207^(1/16) 2100951976383145 a001 10610209857723/817138163596*2207^(1/16) 2100951976383145 a001 4052739537881/312119004989*2207^(1/16) 2100951976383145 a001 1548008755920/119218851371*2207^(1/16) 2100951976383145 a001 591286729879/45537549124*2207^(1/16) 2100951976383145 a001 7787980473/599786069*2207^(1/16) 2100951976383145 a001 86267571272/6643838879*2207^(1/16) 2100951976383145 a001 32951280099/2537720636*2207^(1/16) 2100951976383145 a001 12586269025/969323029*2207^(1/16) 2100951976383145 a001 4807526976/370248451*2207^(1/16) 2100951976383145 a001 1836311903/141422324*2207^(1/16) 2100951976383146 a001 701408733/54018521*2207^(1/16) 2100951976383150 a001 9238424/711491*2207^(1/16) 2100951976383179 a001 102334155/7881196*2207^(1/16) 2100951976383377 a001 39088169/3010349*2207^(1/16) 2100951976384732 a001 14930352/1149851*2207^(1/16) 2100951976394024 a001 5702887/439204*2207^(1/16) 2100951976457707 a001 2178309/167761*2207^(1/16) 2100951976603535 m001 (Chi(1)+Zeta(5))/(QuadraticClass+Trott) 2100951976746740 a001 4181/24476*64079^(10/23) 2100951976835725 a001 10946/9349*64079^(6/23) 2100951976894202 a001 832040/64079*2207^(1/16) 2100951976929831 a001 121393/9349*5778^(1/18) 2100951976939342 a001 4181/24476*167761^(2/5) 2100951976966782 a001 10946/9349*439204^(2/9) 2100951976969196 a001 10946/9349*7881196^(2/11) 2100951976969201 a001 4181/24476*20633239^(2/7) 2100951976969202 a001 4181/24476*2537720636^(2/9) 2100951976969202 a001 4181/24476*312119004989^(2/11) 2100951976969202 a001 4181/24476*(1/2+1/2*5^(1/2))^10 2100951976969202 a001 4181/24476*28143753123^(1/5) 2100951976969202 a001 4181/24476*10749957122^(5/24) 2100951976969202 a001 4181/24476*4106118243^(5/23) 2100951976969202 a001 4181/24476*1568397607^(5/22) 2100951976969202 a001 4181/24476*599074578^(5/21) 2100951976969202 a001 4181/24476*228826127^(1/4) 2100951976969202 a001 4181/24476*87403803^(5/19) 2100951976969203 a001 10946/9349*141422324^(2/13) 2100951976969203 a001 10946/9349*2537720636^(2/15) 2100951976969203 a001 10946/9349*45537549124^(2/17) 2100951976969203 a001 10946/9349*14662949395604^(2/21) 2100951976969203 a001 10946/9349*(1/2+1/2*5^(1/2))^6 2100951976969203 a001 10946/9349*10749957122^(1/8) 2100951976969203 a001 10946/9349*4106118243^(3/23) 2100951976969203 a001 10946/9349*1568397607^(3/22) 2100951976969203 a001 10946/9349*599074578^(1/7) 2100951976969203 a001 10946/9349*228826127^(3/20) 2100951976969203 a001 10946/9349*87403803^(3/19) 2100951976969203 a001 4181/24476*33385282^(5/18) 2100951976969203 a001 10946/9349*33385282^(1/6) 2100951976969205 a001 10946/9349*12752043^(3/17) 2100951976969206 a001 4181/24476*12752043^(5/17) 2100951976969219 a001 10946/9349*4870847^(3/16) 2100951976969230 a001 4181/24476*4870847^(5/16) 2100951976969291 a001 45765226/2178309 2100951976969324 a001 10946/9349*1860498^(1/5) 2100951976969405 a001 4181/24476*1860498^(1/3) 2100951976970094 a001 10946/9349*710647^(3/14) 2100951976970688 a001 4181/24476*710647^(5/14) 2100951976975783 a001 10946/9349*271443^(3/13) 2100951976980169 a001 4181/24476*271443^(5/13) 2100951977003128 a001 23184/51841*5778^(4/9) 2100951977018062 a001 10946/9349*103682^(1/4) 2100951977050635 a001 4181/24476*103682^(5/12) 2100951977172442 a001 4181/39603*15127^(11/20) 2100951977334535 a001 10946/9349*39603^(3/11) 2100951977336976 a001 121393/271443*5778^(4/9) 2100951977385684 a001 317811/710647*5778^(4/9) 2100951977392790 a001 416020/930249*5778^(4/9) 2100951977393827 a001 2178309/4870847*5778^(4/9) 2100951977393979 a001 5702887/12752043*5778^(4/9) 2100951977394001 a001 7465176/16692641*5778^(4/9) 2100951977394004 a001 39088169/87403803*5778^(4/9) 2100951977394004 a001 102334155/228826127*5778^(4/9) 2100951977394004 a001 133957148/299537289*5778^(4/9) 2100951977394004 a001 701408733/1568397607*5778^(4/9) 2100951977394004 a001 1836311903/4106118243*5778^(4/9) 2100951977394004 a001 2403763488/5374978561*5778^(4/9) 2100951977394004 a001 12586269025/28143753123*5778^(4/9) 2100951977394004 a001 32951280099/73681302247*5778^(4/9) 2100951977394004 a001 43133785636/96450076809*5778^(4/9) 2100951977394004 a001 225851433717/505019158607*5778^(4/9) 2100951977394004 a001 10610209857723/23725150497407*5778^(4/9) 2100951977394004 a001 182717648081/408569081798*5778^(4/9) 2100951977394004 a001 139583862445/312119004989*5778^(4/9) 2100951977394004 a001 53316291173/119218851371*5778^(4/9) 2100951977394004 a001 10182505537/22768774562*5778^(4/9) 2100951977394004 a001 7778742049/17393796001*5778^(4/9) 2100951977394004 a001 2971215073/6643838879*5778^(4/9) 2100951977394004 a001 567451585/1268860318*5778^(4/9) 2100951977394004 a001 433494437/969323029*5778^(4/9) 2100951977394004 a001 165580141/370248451*5778^(4/9) 2100951977394005 a001 31622993/70711162*5778^(4/9) 2100951977394006 a001 24157817/54018521*5778^(4/9) 2100951977394014 a001 9227465/20633239*5778^(4/9) 2100951977394072 a001 1762289/3940598*5778^(4/9) 2100951977394468 a001 1346269/3010349*5778^(4/9) 2100951977397182 a001 514229/1149851*5778^(4/9) 2100951977415787 a001 98209/219602*5778^(4/9) 2100951977543306 a001 75025/167761*5778^(4/9) 2100951977578090 a001 4181/24476*39603^(5/11) 2100951978417332 a001 28657/64079*5778^(4/9) 2100951979010814 a001 1597/64079*3571^(14/17) 2100951979212648 a001 6765/64079*5778^(11/18) 2100951979234700 a001 4181/103682*15127^(13/20) 2100951979482731 a001 4181/64079*15127^(3/5) 2100951979723633 a001 10946/9349*15127^(3/10) 2100951979885981 a001 10959/844*2207^(1/16) 2100951979963861 a001 4181/167761*15127^(7/10) 2100951980062253 a001 17711/64079*5778^(1/2) 2100951980319768 a001 4181/271443*15127^(3/4) 2100951980529134 a001 75025/9349*5778^(1/9) 2100951980615328 r005 Im(z^2+c),c=-3/5+59/126*I,n=7 2100951980769355 a001 46368/167761*5778^(1/2) 2100951980818245 a001 4181/439204*15127^(4/5) 2100951980872520 a001 121393/439204*5778^(1/2) 2100951980887571 a001 317811/1149851*5778^(1/2) 2100951980889767 a001 832040/3010349*5778^(1/2) 2100951980890088 a001 2178309/7881196*5778^(1/2) 2100951980890134 a001 5702887/20633239*5778^(1/2) 2100951980890141 a001 14930352/54018521*5778^(1/2) 2100951980890142 a001 39088169/141422324*5778^(1/2) 2100951980890142 a001 102334155/370248451*5778^(1/2) 2100951980890142 a001 267914296/969323029*5778^(1/2) 2100951980890142 a001 701408733/2537720636*5778^(1/2) 2100951980890142 a001 1836311903/6643838879*5778^(1/2) 2100951980890142 a001 4807526976/17393796001*5778^(1/2) 2100951980890142 a001 12586269025/45537549124*5778^(1/2) 2100951980890142 a001 32951280099/119218851371*5778^(1/2) 2100951980890142 a001 86267571272/312119004989*5778^(1/2) 2100951980890142 a001 225851433717/817138163596*5778^(1/2) 2100951980890142 a001 1548008755920/5600748293801*5778^(1/2) 2100951980890142 a001 139583862445/505019158607*5778^(1/2) 2100951980890142 a001 53316291173/192900153618*5778^(1/2) 2100951980890142 a001 20365011074/73681302247*5778^(1/2) 2100951980890142 a001 7778742049/28143753123*5778^(1/2) 2100951980890142 a001 2971215073/10749957122*5778^(1/2) 2100951980890142 a001 1134903170/4106118243*5778^(1/2) 2100951980890142 a001 433494437/1568397607*5778^(1/2) 2100951980890142 a001 165580141/599074578*5778^(1/2) 2100951980890142 a001 63245986/228826127*5778^(1/2) 2100951980890143 a001 24157817/87403803*5778^(1/2) 2100951980890145 a001 9227465/33385282*5778^(1/2) 2100951980890163 a001 3524578/12752043*5778^(1/2) 2100951980890286 a001 1346269/4870847*5778^(1/2) 2100951980891124 a001 514229/1860498*5778^(1/2) 2100951980896874 a001 196418/710647*5778^(1/2) 2100951980936279 a001 75025/271443*5778^(1/2) 2100951981206368 a001 28657/103682*5778^(1/2) 2100951981262265 a001 4181/710647*15127^(17/20) 2100951981559919 a001 4181/24476*15127^(1/2) 2100951981727086 a001 4181/1149851*15127^(9/10) 2100951982001684 a001 6765/103682*5778^(2/3) 2100951982183962 a001 4181/1860498*15127^(19/20) 2100951982643641 a004 Fibonacci(19)*Lucas(20)/(1/2+sqrt(5)/2)^31 2100951982739363 a007 Real Root Of 330*x^4+481*x^3-681*x^2-753*x-545 2100951982851289 a001 17711/103682*5778^(5/9) 2100951983057585 a001 10946/39603*5778^(1/2) 2100951983408623 a001 2584/3571*3571^(7/17) 2100951983755183 a001 46368/9349*5778^(1/6) 2100951984162328 a001 15456/90481*5778^(5/9) 2100951984353606 a001 121393/710647*5778^(5/9) 2100951984381513 a001 105937/620166*5778^(5/9) 2100951984385585 a001 832040/4870847*5778^(5/9) 2100951984386179 a001 726103/4250681*5778^(5/9) 2100951984386266 a001 5702887/33385282*5778^(5/9) 2100951984386278 a001 4976784/29134601*5778^(5/9) 2100951984386280 a001 39088169/228826127*5778^(5/9) 2100951984386280 a001 34111385/199691526*5778^(5/9) 2100951984386280 a001 267914296/1568397607*5778^(5/9) 2100951984386280 a001 233802911/1368706081*5778^(5/9) 2100951984386280 a001 1836311903/10749957122*5778^(5/9) 2100951984386280 a001 1602508992/9381251041*5778^(5/9) 2100951984386280 a001 12586269025/73681302247*5778^(5/9) 2100951984386280 a001 10983760033/64300051206*5778^(5/9) 2100951984386280 a001 86267571272/505019158607*5778^(5/9) 2100951984386280 a001 75283811239/440719107401*5778^(5/9) 2100951984386280 a001 2504730781961/14662949395604*5778^(5/9) 2100951984386280 a001 139583862445/817138163596*5778^(5/9) 2100951984386280 a001 53316291173/312119004989*5778^(5/9) 2100951984386280 a001 20365011074/119218851371*5778^(5/9) 2100951984386280 a001 7778742049/45537549124*5778^(5/9) 2100951984386280 a001 2971215073/17393796001*5778^(5/9) 2100951984386280 a001 1134903170/6643838879*5778^(5/9) 2100951984386280 a001 433494437/2537720636*5778^(5/9) 2100951984386280 a001 165580141/969323029*5778^(5/9) 2100951984386280 a001 63245986/370248451*5778^(5/9) 2100951984386281 a001 24157817/141422324*5778^(5/9) 2100951984386286 a001 9227465/54018521*5778^(5/9) 2100951984386319 a001 3524578/20633239*5778^(5/9) 2100951984386546 a001 1346269/7881196*5778^(5/9) 2100951984388101 a001 514229/3010349*5778^(5/9) 2100951984398761 a001 196418/1149851*5778^(5/9) 2100951984407996 a001 5473/12238*5778^(4/9) 2100951984471822 a001 75025/439204*5778^(5/9) 2100951984972595 a001 28657/167761*5778^(5/9) 2100951985767911 a001 615/15251*5778^(13/18) 2100951986617516 a001 17711/167761*5778^(11/18) 2100951986851018 a001 1597/39603*3571^(13/17) 2100951987378542 a001 4181/9349*9349^(8/19) 2100951987623021 r009 Re(z^3+c),c=-25/56+32/61*I,n=3 2100951987697872 a001 11592/109801*5778^(11/18) 2100951987855493 a001 121393/1149851*5778^(11/18) 2100951987878490 a001 317811/3010349*5778^(11/18) 2100951987881845 a001 208010/1970299*5778^(11/18) 2100951987882335 a001 2178309/20633239*5778^(11/18) 2100951987882406 a001 5702887/54018521*5778^(11/18) 2100951987882417 a001 3732588/35355581*5778^(11/18) 2100951987882418 a001 39088169/370248451*5778^(11/18) 2100951987882418 a001 102334155/969323029*5778^(11/18) 2100951987882418 a001 66978574/634430159*5778^(11/18) 2100951987882418 a001 701408733/6643838879*5778^(11/18) 2100951987882418 a001 1836311903/17393796001*5778^(11/18) 2100951987882418 a001 1201881744/11384387281*5778^(11/18) 2100951987882418 a001 12586269025/119218851371*5778^(11/18) 2100951987882418 a001 32951280099/312119004989*5778^(11/18) 2100951987882418 a001 21566892818/204284540899*5778^(11/18) 2100951987882418 a001 225851433717/2139295485799*5778^(11/18) 2100951987882418 a001 182717648081/1730726404001*5778^(11/18) 2100951987882418 a001 139583862445/1322157322203*5778^(11/18) 2100951987882418 a001 53316291173/505019158607*5778^(11/18) 2100951987882418 a001 10182505537/96450076809*5778^(11/18) 2100951987882418 a001 7778742049/73681302247*5778^(11/18) 2100951987882418 a001 2971215073/28143753123*5778^(11/18) 2100951987882418 a001 567451585/5374978561*5778^(11/18) 2100951987882418 a001 433494437/4106118243*5778^(11/18) 2100951987882418 a001 165580141/1568397607*5778^(11/18) 2100951987882418 a001 31622993/299537289*5778^(11/18) 2100951987882419 a001 24157817/228826127*5778^(11/18) 2100951987882423 a001 9227465/87403803*5778^(11/18) 2100951987882450 a001 1762289/16692641*5778^(11/18) 2100951987882637 a001 1346269/12752043*5778^(11/18) 2100951987883919 a001 514229/4870847*5778^(11/18) 2100951987892703 a001 98209/930249*5778^(11/18) 2100951987952909 a001 75025/710647*5778^(11/18) 2100951987958423 a001 28657/9349*5778^(2/9) 2100951988365568 a001 28657/271443*5778^(11/18) 2100951988404940 a001 10946/64079*5778^(5/9) 2100951988753739 a001 6765/9349*5778^(7/18) 2100951989160884 a001 2255/90481*5778^(7/9) 2100951989603344 a001 17711/9349*5778^(5/18) 2100951990010489 a001 17711/271443*5778^(2/3) 2100951990931552 a005 (1/sin(71/171*Pi))^726 2100951991178958 a001 6624/101521*5778^(2/3) 2100951991193976 a001 5473/51841*5778^(11/18) 2100951991349435 a001 121393/1860498*5778^(2/3) 2100951991374308 a001 317811/4870847*5778^(2/3) 2100951991377936 a001 832040/12752043*5778^(2/3) 2100951991378466 a001 311187/4769326*5778^(2/3) 2100951991378543 a001 5702887/87403803*5778^(2/3) 2100951991378554 a001 14930352/228826127*5778^(2/3) 2100951991378556 a001 39088169/599074578*5778^(2/3) 2100951991378556 a001 14619165/224056801*5778^(2/3) 2100951991378556 a001 267914296/4106118243*5778^(2/3) 2100951991378556 a001 701408733/10749957122*5778^(2/3) 2100951991378556 a001 1836311903/28143753123*5778^(2/3) 2100951991378556 a001 686789568/10525900321*5778^(2/3) 2100951991378556 a001 12586269025/192900153618*5778^(2/3) 2100951991378556 a001 32951280099/505019158607*5778^(2/3) 2100951991378556 a001 86267571272/1322157322203*5778^(2/3) 2100951991378556 a001 32264490531/494493258286*5778^(2/3) 2100951991378556 a001 1548008755920/23725150497407*5778^(2/3) 2100951991378556 a001 139583862445/2139295485799*5778^(2/3) 2100951991378556 a001 53316291173/817138163596*5778^(2/3) 2100951991378556 a001 20365011074/312119004989*5778^(2/3) 2100951991378556 a001 7778742049/119218851371*5778^(2/3) 2100951991378556 a001 2971215073/45537549124*5778^(2/3) 2100951991378556 a001 1134903170/17393796001*5778^(2/3) 2100951991378556 a001 433494437/6643838879*5778^(2/3) 2100951991378556 a001 165580141/2537720636*5778^(2/3) 2100951991378556 a001 63245986/969323029*5778^(2/3) 2100951991378557 a001 24157817/370248451*5778^(2/3) 2100951991378561 a001 9227465/141422324*5778^(2/3) 2100951991378591 a001 3524578/54018521*5778^(2/3) 2100951991378793 a001 1346269/20633239*5778^(2/3) 2100951991380179 a001 514229/7881196*5778^(2/3) 2100951991389680 a001 196418/3010349*5778^(2/3) 2100951991454796 a001 75025/1149851*5778^(2/3) 2100951991886622 m001 MasserGramain^HardHexagonsEntropy/sin(1/12*Pi) 2100951991901112 a001 28657/439204*5778^(2/3) 2100951992696428 a001 6765/439204*5778^(5/6) 2100951992987842 a001 17711/5778*2207^(1/4) 2100951993546033 a001 17711/439204*5778^(13/18) 2100951994131442 a001 121393/15127*2207^(1/8) 2100951994680845 a001 46368/1149851*5778^(13/18) 2100951994846412 a001 121393/3010349*5778^(13/18) 2100951994870568 a001 317811/7881196*5778^(13/18) 2100951994874092 a001 75640/1875749*5778^(13/18) 2100951994874607 a001 2178309/54018521*5778^(13/18) 2100951994874682 a001 5702887/141422324*5778^(13/18) 2100951994874692 a001 14930352/370248451*5778^(13/18) 2100951994874694 a001 39088169/969323029*5778^(13/18) 2100951994874694 a001 9303105/230701876*5778^(13/18) 2100951994874694 a001 267914296/6643838879*5778^(13/18) 2100951994874694 a001 701408733/17393796001*5778^(13/18) 2100951994874694 a001 1836311903/45537549124*5778^(13/18) 2100951994874694 a001 4807526976/119218851371*5778^(13/18) 2100951994874694 a001 1144206275/28374454999*5778^(13/18) 2100951994874694 a001 32951280099/817138163596*5778^(13/18) 2100951994874694 a001 86267571272/2139295485799*5778^(13/18) 2100951994874694 a001 225851433717/5600748293801*5778^(13/18) 2100951994874694 a001 365435296162/9062201101803*5778^(13/18) 2100951994874694 a001 139583862445/3461452808002*5778^(13/18) 2100951994874694 a001 53316291173/1322157322203*5778^(13/18) 2100951994874694 a001 20365011074/505019158607*5778^(13/18) 2100951994874694 a001 7778742049/192900153618*5778^(13/18) 2100951994874694 a001 2971215073/73681302247*5778^(13/18) 2100951994874694 a001 1134903170/28143753123*5778^(13/18) 2100951994874694 a001 433494437/10749957122*5778^(13/18) 2100951994874694 a001 165580141/4106118243*5778^(13/18) 2100951994874694 a001 63245986/1568397607*5778^(13/18) 2100951994874695 a001 24157817/599074578*5778^(13/18) 2100951994874699 a001 9227465/228826127*5778^(13/18) 2100951994874728 a001 3524578/87403803*5778^(13/18) 2100951994874924 a001 1346269/33385282*5778^(13/18) 2100951994876270 a001 514229/12752043*5778^(13/18) 2100951994885497 a001 196418/4870847*5778^(13/18) 2100951994948738 a001 75025/1860498*5778^(13/18) 2100951994960203 a001 10946/167761*5778^(2/3) 2100951995382198 a001 28657/710647*5778^(13/18) 2100951995746015 a001 4181/15127*5778^(1/2) 2100951996163515 a001 4181/9349*24476^(8/21) 2100951996177514 a001 6765/710647*5778^(8/9) 2100951997027119 a001 17711/710647*5778^(7/9) 2100951997321543 a001 4181/9349*64079^(8/23) 2100951997499513 a001 4181/9349*(1/2+1/2*5^(1/2))^8 2100951997499513 a001 4181/9349*23725150497407^(1/8) 2100951997499513 a001 4181/9349*73681302247^(2/13) 2100951997499513 a001 4181/9349*10749957122^(1/6) 2100951997499513 a001 4181/9349*4106118243^(4/23) 2100951997499513 a001 4181/9349*1568397607^(2/11) 2100951997499513 a001 4181/9349*599074578^(4/21) 2100951997499513 a001 4181/9349*228826127^(1/5) 2100951997499513 a001 4181/9349*87403803^(4/19) 2100951997499513 a001 4181/9349*33385282^(2/9) 2100951997499516 a001 4181/9349*12752043^(4/17) 2100951997499535 a001 4181/9349*4870847^(1/4) 2100951997499675 a001 4181/9349*1860498^(4/15) 2100951997500120 a001 17480761/832040 2100951997500702 a001 4181/9349*710647^(2/7) 2100951997508287 a001 4181/9349*271443^(4/13) 2100951997564659 a001 4181/9349*103682^(1/3) 2100951997946031 a001 10946/9349*5778^(1/3) 2100951997986623 a001 4181/9349*39603^(4/11) 2100951998174787 a001 2576/103361*5778^(7/9) 2100951998342230 a001 121393/4870847*5778^(7/9) 2100951998353176 a001 10946/271443*5778^(13/18) 2100951998366659 a001 105937/4250681*5778^(7/9) 2100951998370224 a001 416020/16692641*5778^(7/9) 2100951998370744 a001 726103/29134601*5778^(7/9) 2100951998370819 a001 5702887/228826127*5778^(7/9) 2100951998370830 a001 829464/33281921*5778^(7/9) 2100951998370832 a001 39088169/1568397607*5778^(7/9) 2100951998370832 a001 34111385/1368706081*5778^(7/9) 2100951998370832 a001 133957148/5374978561*5778^(7/9) 2100951998370832 a001 233802911/9381251041*5778^(7/9) 2100951998370832 a001 1836311903/73681302247*5778^(7/9) 2100951998370832 a001 267084832/10716675201*5778^(7/9) 2100951998370832 a001 12586269025/505019158607*5778^(7/9) 2100951998370832 a001 10983760033/440719107401*5778^(7/9) 2100951998370832 a001 43133785636/1730726404001*5778^(7/9) 2100951998370832 a001 75283811239/3020733700601*5778^(7/9) 2100951998370832 a001 182717648081/7331474697802*5778^(7/9) 2100951998370832 a001 139583862445/5600748293801*5778^(7/9) 2100951998370832 a001 53316291173/2139295485799*5778^(7/9) 2100951998370832 a001 10182505537/408569081798*5778^(7/9) 2100951998370832 a001 7778742049/312119004989*5778^(7/9) 2100951998370832 a001 2971215073/119218851371*5778^(7/9) 2100951998370832 a001 567451585/22768774562*5778^(7/9) 2100951998370832 a001 433494437/17393796001*5778^(7/9) 2100951998370832 a001 165580141/6643838879*5778^(7/9) 2100951998370832 a001 31622993/1268860318*5778^(7/9) 2100951998370833 a001 24157817/969323029*5778^(7/9) 2100951998370837 a001 9227465/370248451*5778^(7/9) 2100951998370866 a001 1762289/70711162*5778^(7/9) 2100951998371065 a001 1346269/54018521*5778^(7/9) 2100951998372426 a001 514229/20633239*5778^(7/9) 2100951998381758 a001 98209/3940598*5778^(7/9) 2100951998391979 a001 1597/15127*3571^(11/17) 2100951998445715 a001 75025/3010349*5778^(7/9) 2100951998884085 a001 28657/1149851*5778^(7/9) 2100951999073664 r004 Re(z^2+c),c=5/16+2/9*I,z(0)=exp(5/8*I*Pi),n=53 2100951999679401 a001 6765/1149851*5778^(17/18) 2100952000233499 m001 1/exp(GAMMA(1/3))/Kolakoski^2*GAMMA(11/24) 2100952000391938 a001 121393/9349*2207^(1/16) 2100952000529006 a001 17711/1149851*5778^(5/6) 2100952001172087 a001 4181/9349*15127^(2/5) 2100952001388988 a001 1597/24476*3571^(12/17) 2100952001671764 a001 46368/3010349*5778^(5/6) 2100952001838490 a001 121393/7881196*5778^(5/6) 2100952001862815 a001 10959/711491*5778^(5/6) 2100952001866364 a001 832040/54018521*5778^(5/6) 2100952001866882 a001 2178309/141422324*5778^(5/6) 2100952001866957 a001 5702887/370248451*5778^(5/6) 2100952001866969 a001 14930352/969323029*5778^(5/6) 2100952001866970 a001 39088169/2537720636*5778^(5/6) 2100952001866970 a001 102334155/6643838879*5778^(5/6) 2100952001866970 a001 9238424/599786069*5778^(5/6) 2100952001866970 a001 701408733/45537549124*5778^(5/6) 2100952001866970 a001 1836311903/119218851371*5778^(5/6) 2100952001866970 a001 4807526976/312119004989*5778^(5/6) 2100952001866970 a001 12586269025/817138163596*5778^(5/6) 2100952001866970 a001 32951280099/2139295485799*5778^(5/6) 2100952001866970 a001 86267571272/5600748293801*5778^(5/6) 2100952001866970 a001 7787980473/505618944676*5778^(5/6) 2100952001866970 a001 365435296162/23725150497407*5778^(5/6) 2100952001866970 a001 139583862445/9062201101803*5778^(5/6) 2100952001866970 a001 53316291173/3461452808002*5778^(5/6) 2100952001866970 a001 20365011074/1322157322203*5778^(5/6) 2100952001866970 a001 7778742049/505019158607*5778^(5/6) 2100952001866970 a001 2971215073/192900153618*5778^(5/6) 2100952001866970 a001 1134903170/73681302247*5778^(5/6) 2100952001866970 a001 433494437/28143753123*5778^(5/6) 2100952001866970 a001 165580141/10749957122*5778^(5/6) 2100952001866970 a001 63245986/4106118243*5778^(5/6) 2100952001866971 a001 24157817/1568397607*5778^(5/6) 2100952001866975 a001 9227465/599074578*5778^(5/6) 2100952001867004 a001 3524578/228826127*5778^(5/6) 2100952001867202 a001 1346269/87403803*5778^(5/6) 2100952001868558 a001 514229/33385282*5778^(5/6) 2100952001877849 a001 196418/12752043*5778^(5/6) 2100952001888720 a001 5473/219602*5778^(7/9) 2100952001941533 a001 75025/4870847*5778^(5/6) 2100952001997677 a001 105937/13201*2207^(1/8) 2100952002378027 a001 28657/1860498*5778^(5/6) 2100952003145345 a001 416020/51841*2207^(1/8) 2100952003173950 a004 Fibonacci(20)*Lucas(18)/(1/2+sqrt(5)/2)^30 2100952003312787 a001 726103/90481*2207^(1/8) 2100952003337217 a001 5702887/710647*2207^(1/8) 2100952003340781 a001 829464/103361*2207^(1/8) 2100952003341301 a001 39088169/4870847*2207^(1/8) 2100952003341377 a001 34111385/4250681*2207^(1/8) 2100952003341388 a001 133957148/16692641*2207^(1/8) 2100952003341390 a001 233802911/29134601*2207^(1/8) 2100952003341390 a001 1836311903/228826127*2207^(1/8) 2100952003341390 a001 267084832/33281921*2207^(1/8) 2100952003341390 a001 12586269025/1568397607*2207^(1/8) 2100952003341390 a001 10983760033/1368706081*2207^(1/8) 2100952003341390 a001 43133785636/5374978561*2207^(1/8) 2100952003341390 a001 75283811239/9381251041*2207^(1/8) 2100952003341390 a001 591286729879/73681302247*2207^(1/8) 2100952003341390 a001 86000486440/10716675201*2207^(1/8) 2100952003341390 a001 4052739537881/505019158607*2207^(1/8) 2100952003341390 a001 3278735159921/408569081798*2207^(1/8) 2100952003341390 a001 2504730781961/312119004989*2207^(1/8) 2100952003341390 a001 956722026041/119218851371*2207^(1/8) 2100952003341390 a001 182717648081/22768774562*2207^(1/8) 2100952003341390 a001 139583862445/17393796001*2207^(1/8) 2100952003341390 a001 53316291173/6643838879*2207^(1/8) 2100952003341390 a001 10182505537/1268860318*2207^(1/8) 2100952003341390 a001 7778742049/969323029*2207^(1/8) 2100952003341390 a001 2971215073/370248451*2207^(1/8) 2100952003341390 a001 567451585/70711162*2207^(1/8) 2100952003341391 a001 433494437/54018521*2207^(1/8) 2100952003341395 a001 165580141/20633239*2207^(1/8) 2100952003341424 a001 31622993/3940598*2207^(1/8) 2100952003341623 a001 24157817/3010349*2207^(1/8) 2100952003342984 a001 9227465/1149851*2207^(1/8) 2100952003352315 a001 1762289/219602*2207^(1/8) 2100952003416273 a001 1346269/167761*2207^(1/8) 2100952003854643 a001 514229/64079*2207^(1/8) 2100952004022948 a001 17711/1860498*5778^(8/9) 2100952005167582 a001 46368/4870847*5778^(8/9) 2100952005334581 a001 121393/12752043*5778^(8/9) 2100952005358946 a001 317811/33385282*5778^(8/9) 2100952005362501 a001 832040/87403803*5778^(8/9) 2100952005363020 a001 46347/4868641*5778^(8/9) 2100952005363095 a001 5702887/599074578*5778^(8/9) 2100952005363107 a001 14930352/1568397607*5778^(8/9) 2100952005363108 a001 39088169/4106118243*5778^(8/9) 2100952005363108 a001 102334155/10749957122*5778^(8/9) 2100952005363108 a001 267914296/28143753123*5778^(8/9) 2100952005363108 a001 701408733/73681302247*5778^(8/9) 2100952005363108 a001 1836311903/192900153618*5778^(8/9) 2100952005363108 a001 102287808/10745088481*5778^(8/9) 2100952005363108 a001 12586269025/1322157322203*5778^(8/9) 2100952005363108 a001 32951280099/3461452808002*5778^(8/9) 2100952005363108 a001 86267571272/9062201101803*5778^(8/9) 2100952005363108 a001 225851433717/23725150497407*5778^(8/9) 2100952005363108 a001 139583862445/14662949395604*5778^(8/9) 2100952005363108 a001 53316291173/5600748293801*5778^(8/9) 2100952005363108 a001 20365011074/2139295485799*5778^(8/9) 2100952005363108 a001 7778742049/817138163596*5778^(8/9) 2100952005363108 a001 2971215073/312119004989*5778^(8/9) 2100952005363108 a001 1134903170/119218851371*5778^(8/9) 2100952005363108 a001 433494437/45537549124*5778^(8/9) 2100952005363108 a001 165580141/17393796001*5778^(8/9) 2100952005363109 a001 63245986/6643838879*5778^(8/9) 2100952005363109 a001 24157817/2537720636*5778^(8/9) 2100952005363113 a001 9227465/969323029*5778^(8/9) 2100952005363142 a001 3524578/370248451*5778^(8/9) 2100952005363340 a001 1346269/141422324*5778^(8/9) 2100952005364698 a001 514229/54018521*5778^(8/9) 2100952005369806 a001 10946/710647*5778^(5/6) 2100952005374005 a001 196418/20633239*5778^(8/9) 2100952005437793 a001 75025/7881196*5778^(8/9) 2100952005875004 a001 28657/3010349*5778^(8/9) 2100952006859277 a001 98209/12238*2207^(1/8) 2100952007519925 a001 17711/3010349*5778^(17/18) 2100952008663842 a001 11592/1970299*5778^(17/18) 2100952008830737 a001 121393/20633239*5778^(17/18) 2100952008855087 a001 317811/54018521*5778^(17/18) 2100952008858640 a001 208010/35355581*5778^(17/18) 2100952008859158 a001 2178309/370248451*5778^(17/18) 2100952008859234 a001 5702887/969323029*5778^(17/18) 2100952008859245 a001 196452/33391061*5778^(17/18) 2100952008859246 a001 39088169/6643838879*5778^(17/18) 2100952008859246 a001 102334155/17393796001*5778^(17/18) 2100952008859246 a001 66978574/11384387281*5778^(17/18) 2100952008859246 a001 701408733/119218851371*5778^(17/18) 2100952008859246 a001 1836311903/312119004989*5778^(17/18) 2100952008859246 a001 1201881744/204284540899*5778^(17/18) 2100952008859246 a001 12586269025/2139295485799*5778^(17/18) 2100952008859246 a001 32951280099/5600748293801*5778^(17/18) 2100952008859246 a001 1135099622/192933544679*5778^(17/18) 2100952008859246 a001 139583862445/23725150497407*5778^(17/18) 2100952008859246 a001 53316291173/9062201101803*5778^(17/18) 2100952008859246 a001 10182505537/1730726404001*5778^(17/18) 2100952008859246 a001 7778742049/1322157322203*5778^(17/18) 2100952008859246 a001 2971215073/505019158607*5778^(17/18) 2100952008859246 a001 567451585/96450076809*5778^(17/18) 2100952008859246 a001 433494437/73681302247*5778^(17/18) 2100952008859246 a001 165580141/28143753123*5778^(17/18) 2100952008859247 a001 31622993/5374978561*5778^(17/18) 2100952008859247 a001 24157817/4106118243*5778^(17/18) 2100952008859251 a001 9227465/1568397607*5778^(17/18) 2100952008859280 a001 1762289/299537289*5778^(17/18) 2100952008859478 a001 1346269/228826127*5778^(17/18) 2100952008860835 a001 514229/87403803*5778^(17/18) 2100952008870136 a001 98209/16692641*5778^(17/18) 2100952008871693 a001 10946/1149851*5778^(8/9) 2100952008933884 a001 75025/12752043*5778^(17/18) 2100952009370822 a001 28657/4870847*5778^(17/18) 2100952010580171 a001 4181/39603*5778^(11/18) 2100952011015831 a004 Fibonacci(22)*Lucas(18)/(1/2+sqrt(5)/2)^32 2100952011194568 a001 5600748293801/1597*144^(14/17) 2100952011511128 a007 Real Root Of 733*x^4+946*x^3+148*x^2-984*x+190 2100952011930582 a001 4181/24476*5778^(5/9) 2100952012159946 a004 Fibonacci(24)*Lucas(18)/(1/2+sqrt(5)/2)^34 2100952012326870 a004 Fibonacci(26)*Lucas(18)/(1/2+sqrt(5)/2)^36 2100952012351224 a004 Fibonacci(28)*Lucas(18)/(1/2+sqrt(5)/2)^38 2100952012354778 a004 Fibonacci(30)*Lucas(18)/(1/2+sqrt(5)/2)^40 2100952012355296 a004 Fibonacci(32)*Lucas(18)/(1/2+sqrt(5)/2)^42 2100952012355372 a004 Fibonacci(34)*Lucas(18)/(1/2+sqrt(5)/2)^44 2100952012355383 a004 Fibonacci(36)*Lucas(18)/(1/2+sqrt(5)/2)^46 2100952012355384 a004 Fibonacci(38)*Lucas(18)/(1/2+sqrt(5)/2)^48 2100952012355384 a004 Fibonacci(40)*Lucas(18)/(1/2+sqrt(5)/2)^50 2100952012355384 a004 Fibonacci(42)*Lucas(18)/(1/2+sqrt(5)/2)^52 2100952012355384 a004 Fibonacci(44)*Lucas(18)/(1/2+sqrt(5)/2)^54 2100952012355384 a004 Fibonacci(46)*Lucas(18)/(1/2+sqrt(5)/2)^56 2100952012355384 a004 Fibonacci(48)*Lucas(18)/(1/2+sqrt(5)/2)^58 2100952012355384 a004 Fibonacci(50)*Lucas(18)/(1/2+sqrt(5)/2)^60 2100952012355384 a004 Fibonacci(52)*Lucas(18)/(1/2+sqrt(5)/2)^62 2100952012355384 a004 Fibonacci(54)*Lucas(18)/(1/2+sqrt(5)/2)^64 2100952012355384 a004 Fibonacci(56)*Lucas(18)/(1/2+sqrt(5)/2)^66 2100952012355384 a004 Fibonacci(58)*Lucas(18)/(1/2+sqrt(5)/2)^68 2100952012355384 a004 Fibonacci(60)*Lucas(18)/(1/2+sqrt(5)/2)^70 2100952012355384 a004 Fibonacci(62)*Lucas(18)/(1/2+sqrt(5)/2)^72 2100952012355384 a004 Fibonacci(64)*Lucas(18)/(1/2+sqrt(5)/2)^74 2100952012355384 a004 Fibonacci(66)*Lucas(18)/(1/2+sqrt(5)/2)^76 2100952012355384 a004 Fibonacci(68)*Lucas(18)/(1/2+sqrt(5)/2)^78 2100952012355384 a004 Fibonacci(70)*Lucas(18)/(1/2+sqrt(5)/2)^80 2100952012355384 a004 Fibonacci(72)*Lucas(18)/(1/2+sqrt(5)/2)^82 2100952012355384 a004 Fibonacci(74)*Lucas(18)/(1/2+sqrt(5)/2)^84 2100952012355384 a004 Fibonacci(76)*Lucas(18)/(1/2+sqrt(5)/2)^86 2100952012355384 a004 Fibonacci(78)*Lucas(18)/(1/2+sqrt(5)/2)^88 2100952012355384 a004 Fibonacci(80)*Lucas(18)/(1/2+sqrt(5)/2)^90 2100952012355384 a004 Fibonacci(82)*Lucas(18)/(1/2+sqrt(5)/2)^92 2100952012355384 a004 Fibonacci(84)*Lucas(18)/(1/2+sqrt(5)/2)^94 2100952012355384 a004 Fibonacci(86)*Lucas(18)/(1/2+sqrt(5)/2)^96 2100952012355384 a004 Fibonacci(88)*Lucas(18)/(1/2+sqrt(5)/2)^98 2100952012355384 a004 Fibonacci(90)*Lucas(18)/(1/2+sqrt(5)/2)^100 2100952012355384 a004 Fibonacci(89)*Lucas(18)/(1/2+sqrt(5)/2)^99 2100952012355384 a004 Fibonacci(87)*Lucas(18)/(1/2+sqrt(5)/2)^97 2100952012355384 a004 Fibonacci(85)*Lucas(18)/(1/2+sqrt(5)/2)^95 2100952012355384 a004 Fibonacci(83)*Lucas(18)/(1/2+sqrt(5)/2)^93 2100952012355384 a004 Fibonacci(81)*Lucas(18)/(1/2+sqrt(5)/2)^91 2100952012355384 a004 Fibonacci(79)*Lucas(18)/(1/2+sqrt(5)/2)^89 2100952012355384 a004 Fibonacci(77)*Lucas(18)/(1/2+sqrt(5)/2)^87 2100952012355384 a004 Fibonacci(75)*Lucas(18)/(1/2+sqrt(5)/2)^85 2100952012355384 a004 Fibonacci(73)*Lucas(18)/(1/2+sqrt(5)/2)^83 2100952012355384 a004 Fibonacci(71)*Lucas(18)/(1/2+sqrt(5)/2)^81 2100952012355384 a004 Fibonacci(69)*Lucas(18)/(1/2+sqrt(5)/2)^79 2100952012355384 a004 Fibonacci(67)*Lucas(18)/(1/2+sqrt(5)/2)^77 2100952012355384 a004 Fibonacci(65)*Lucas(18)/(1/2+sqrt(5)/2)^75 2100952012355384 a004 Fibonacci(63)*Lucas(18)/(1/2+sqrt(5)/2)^73 2100952012355384 a004 Fibonacci(61)*Lucas(18)/(1/2+sqrt(5)/2)^71 2100952012355384 a004 Fibonacci(59)*Lucas(18)/(1/2+sqrt(5)/2)^69 2100952012355384 a004 Fibonacci(57)*Lucas(18)/(1/2+sqrt(5)/2)^67 2100952012355384 a004 Fibonacci(55)*Lucas(18)/(1/2+sqrt(5)/2)^65 2100952012355384 a004 Fibonacci(53)*Lucas(18)/(1/2+sqrt(5)/2)^63 2100952012355384 a004 Fibonacci(51)*Lucas(18)/(1/2+sqrt(5)/2)^61 2100952012355384 a004 Fibonacci(49)*Lucas(18)/(1/2+sqrt(5)/2)^59 2100952012355384 a004 Fibonacci(47)*Lucas(18)/(1/2+sqrt(5)/2)^57 2100952012355384 a004 Fibonacci(45)*Lucas(18)/(1/2+sqrt(5)/2)^55 2100952012355385 a004 Fibonacci(43)*Lucas(18)/(1/2+sqrt(5)/2)^53 2100952012355385 a004 Fibonacci(41)*Lucas(18)/(1/2+sqrt(5)/2)^51 2100952012355385 a004 Fibonacci(39)*Lucas(18)/(1/2+sqrt(5)/2)^49 2100952012355385 a004 Fibonacci(37)*Lucas(18)/(1/2+sqrt(5)/2)^47 2100952012355386 a001 1/1292*(1/2+1/2*5^(1/2))^26 2100952012355389 a004 Fibonacci(35)*Lucas(18)/(1/2+sqrt(5)/2)^45 2100952012355418 a004 Fibonacci(33)*Lucas(18)/(1/2+sqrt(5)/2)^43 2100952012355616 a004 Fibonacci(31)*Lucas(18)/(1/2+sqrt(5)/2)^41 2100952012356974 a004 Fibonacci(29)*Lucas(18)/(1/2+sqrt(5)/2)^39 2100952012365635 a001 5473/930249*5778^(17/18) 2100952012366276 a004 Fibonacci(27)*Lucas(18)/(1/2+sqrt(5)/2)^37 2100952012430035 a004 Fibonacci(25)*Lucas(18)/(1/2+sqrt(5)/2)^35 2100952012867048 a004 Fibonacci(23)*Lucas(18)/(1/2+sqrt(5)/2)^33 2100952015862380 a004 Fibonacci(21)*Lucas(18)/(1/2+sqrt(5)/2)^31 2100952015927527 a001 4181/64079*5778^(2/3) 2100952018716563 a001 4181/103682*5778^(13/18) 2100952021192852 a001 75025/15127*2207^(3/16) 2100952022482790 a001 4181/167761*5778^(7/9) 2100952022808792 a001 377/1364*843^(9/14) 2100952024792636 a001 5473/2889*2207^(5/16) 2100952025468617 a001 4181/9349*5778^(4/9) 2100952025875763 a001 4181/271443*5778^(5/6) 2100952027453347 a001 75025/9349*2207^(1/8) 2100952028214092 a001 305/12238*1364^(14/15) 2100952028970973 a001 196418/39603*2207^(3/16) 2100952029411306 a001 4181/439204*5778^(8/9) 2100952030105786 a001 514229/103682*2207^(3/16) 2100952030271353 a001 1346269/271443*2207^(3/16) 2100952030295509 a001 3524578/710647*2207^(3/16) 2100952030299033 a001 9227465/1860498*2207^(3/16) 2100952030299547 a001 24157817/4870847*2207^(3/16) 2100952030299622 a001 63245986/12752043*2207^(3/16) 2100952030299633 a001 165580141/33385282*2207^(3/16) 2100952030299635 a001 433494437/87403803*2207^(3/16) 2100952030299635 a001 1134903170/228826127*2207^(3/16) 2100952030299635 a001 2971215073/599074578*2207^(3/16) 2100952030299635 a001 7778742049/1568397607*2207^(3/16) 2100952030299635 a001 20365011074/4106118243*2207^(3/16) 2100952030299635 a001 53316291173/10749957122*2207^(3/16) 2100952030299635 a001 139583862445/28143753123*2207^(3/16) 2100952030299635 a001 365435296162/73681302247*2207^(3/16) 2100952030299635 a001 956722026041/192900153618*2207^(3/16) 2100952030299635 a001 2504730781961/505019158607*2207^(3/16) 2100952030299635 a001 10610209857723/2139295485799*2207^(3/16) 2100952030299635 a001 140728068720/28374454999*2207^(3/16) 2100952030299635 a001 591286729879/119218851371*2207^(3/16) 2100952030299635 a001 225851433717/45537549124*2207^(3/16) 2100952030299635 a001 86267571272/17393796001*2207^(3/16) 2100952030299635 a001 32951280099/6643838879*2207^(3/16) 2100952030299635 a001 1144206275/230701876*2207^(3/16) 2100952030299635 a001 4807526976/969323029*2207^(3/16) 2100952030299635 a001 1836311903/370248451*2207^(3/16) 2100952030299635 a001 701408733/141422324*2207^(3/16) 2100952030299636 a001 267914296/54018521*2207^(3/16) 2100952030299640 a001 9303105/1875749*2207^(3/16) 2100952030299669 a001 39088169/7881196*2207^(3/16) 2100952030299865 a001 14930352/3010349*2207^(3/16) 2100952030301211 a001 5702887/1149851*2207^(3/16) 2100952030310438 a001 2178309/439204*2207^(3/16) 2100952030373679 a001 75640/15251*2207^(3/16) 2100952030807139 a001 317811/64079*2207^(3/16) 2100952032892393 a001 4181/710647*5778^(17/18) 2100952033778117 a001 121393/24476*2207^(3/16) 2100952036392691 a004 Fibonacci(19)*Lucas(18)/(1/2+sqrt(5)/2)^29 2100952038700815 a001 46368/3571*1364^(1/15) 2100952039062452 a001 2255/1926*2207^(3/8) 2100952039229889 a001 1292/2889*2207^(1/2) 2100952039862467 a001 1597/5778*9349^(9/19) 2100952041302141 a001 1597/9349*3571^(10/17) 2100952042392720 a001 2584/3571*9349^(7/19) 2100952046031089 m005 (1/2*3^(1/2)+11/12)/(6/7*Zeta(3)-2/11) 2100952047881008 a001 6624/2161*2207^(1/4) 2100952049745561 a001 1597/5778*24476^(3/7) 2100952050079572 a001 2584/3571*24476^(1/3) 2100952051048343 a001 1597/5778*64079^(9/23) 2100952051092847 a001 2584/3571*64079^(7/23) 2100952051237666 a001 121372/5777 2100952051244929 a001 1597/5778*439204^(1/3) 2100952051248550 a001 1597/5778*7881196^(3/11) 2100952051248559 a001 1597/5778*141422324^(3/13) 2100952051248559 a001 1597/5778*2537720636^(1/5) 2100952051248559 a001 1597/5778*45537549124^(3/17) 2100952051248559 a001 1597/5778*817138163596^(3/19) 2100952051248559 a001 1597/5778*14662949395604^(1/7) 2100952051248559 a001 1597/5778*(1/2+1/2*5^(1/2))^9 2100952051248559 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^9/Lucas(18) 2100952051248559 a001 1597/5778*10749957122^(3/16) 2100952051248559 a001 1597/5778*599074578^(3/14) 2100952051248560 a001 1597/5778*33385282^(1/4) 2100952051248569 a001 2584/3571*20633239^(1/5) 2100952051248570 a001 2584/3571*17393796001^(1/7) 2100952051248570 a001 2584/3571*14662949395604^(1/9) 2100952051248570 a001 2584/3571*(1/2+1/2*5^(1/2))^7 2100952051248570 a001 2584/3571*599074578^(1/6) 2100952051248741 a001 1597/5778*1860498^(3/10) 2100952051249610 a001 2584/3571*710647^(1/4) 2100952051305573 a001 2584/3571*103682^(7/24) 2100952051321849 a001 1597/5778*103682^(3/8) 2100952051674792 a001 2584/3571*39603^(7/22) 2100952051796558 a001 1597/5778*39603^(9/22) 2100952053786087 r002 43th iterates of z^2 + 2100952054141504 a001 46368/9349*2207^(3/16) 2100952054462072 a001 2584/3571*15127^(7/20) 2100952054669500 r009 Im(z^3+c),c=-5/46+7/33*I,n=2 2100952055380205 a001 1597/5778*15127^(9/20) 2100952055889813 a001 121393/39603*2207^(1/4) 2100952056540518 a001 6765/3571*3571^(5/17) 2100952057058282 a001 317811/103682*2207^(1/4) 2100952057228760 a001 832040/271443*2207^(1/4) 2100952057253632 a001 311187/101521*2207^(1/4) 2100952057257261 a001 5702887/1860498*2207^(1/4) 2100952057257790 a001 14930352/4870847*2207^(1/4) 2100952057257867 a001 39088169/12752043*2207^(1/4) 2100952057257879 a001 14619165/4769326*2207^(1/4) 2100952057257880 a001 267914296/87403803*2207^(1/4) 2100952057257881 a001 701408733/228826127*2207^(1/4) 2100952057257881 a001 1836311903/599074578*2207^(1/4) 2100952057257881 a001 686789568/224056801*2207^(1/4) 2100952057257881 a001 12586269025/4106118243*2207^(1/4) 2100952057257881 a001 32951280099/10749957122*2207^(1/4) 2100952057257881 a001 86267571272/28143753123*2207^(1/4) 2100952057257881 a001 32264490531/10525900321*2207^(1/4) 2100952057257881 a001 591286729879/192900153618*2207^(1/4) 2100952057257881 a001 1515744265389/494493258286*2207^(1/4) 2100952057257881 a001 2504730781961/817138163596*2207^(1/4) 2100952057257881 a001 956722026041/312119004989*2207^(1/4) 2100952057257881 a001 365435296162/119218851371*2207^(1/4) 2100952057257881 a001 139583862445/45537549124*2207^(1/4) 2100952057257881 a001 53316291173/17393796001*2207^(1/4) 2100952057257881 a001 20365011074/6643838879*2207^(1/4) 2100952057257881 a001 7778742049/2537720636*2207^(1/4) 2100952057257881 a001 2971215073/969323029*2207^(1/4) 2100952057257881 a001 1134903170/370248451*2207^(1/4) 2100952057257881 a001 433494437/141422324*2207^(1/4) 2100952057257881 a001 165580141/54018521*2207^(1/4) 2100952057257886 a001 63245986/20633239*2207^(1/4) 2100952057257915 a001 24157817/7881196*2207^(1/4) 2100952057258117 a001 9227465/3010349*2207^(1/4) 2100952057259503 a001 3524578/1149851*2207^(1/4) 2100952057269004 a001 1346269/439204*2207^(1/4) 2100952057334120 a001 514229/167761*2207^(1/4) 2100952057605882 m001 exp(1)/exp(-1/2*Pi)*ErdosBorwein 2100952057780436 a001 196418/64079*2207^(1/4) 2100952059927288 r005 Im(z^2+c),c=-6/7+9/55*I,n=41 2100952060839527 a001 75025/24476*2207^(1/4) 2100952062715321 a001 271443*144^(7/17) 2100952075546356 a001 28657/15127*2207^(5/16) 2100952075721537 a001 2584/3571*5778^(7/18) 2100952075809613 m001 (Gompertz-Kac)/(exp(-1/2*Pi)-ErdosBorwein) 2100952075814389 m001 (exp(1)-sin(1/5*Pi))/(-ErdosBorwein+Lehmer) 2100952078920370 a001 10946/3571*3571^(4/17) 2100952080067838 a001 4181/3571*3571^(6/17) 2100952081806852 a001 28657/9349*2207^(1/4) 2100952082713803 a001 1597/5778*5778^(1/2) 2100952082951224 a001 75025/39603*2207^(5/16) 2100952083765242 a001 17711/3571*3571^(3/17) 2100952084031580 a001 98209/51841*2207^(5/16) 2100952084189201 a001 514229/271443*2207^(5/16) 2100952084212198 a001 1346269/710647*2207^(5/16) 2100952084215553 a001 1762289/930249*2207^(5/16) 2100952084216043 a001 9227465/4870847*2207^(5/16) 2100952084216114 a001 24157817/12752043*2207^(5/16) 2100952084216125 a001 31622993/16692641*2207^(5/16) 2100952084216126 a001 165580141/87403803*2207^(5/16) 2100952084216126 a001 433494437/228826127*2207^(5/16) 2100952084216126 a001 567451585/299537289*2207^(5/16) 2100952084216126 a001 2971215073/1568397607*2207^(5/16) 2100952084216126 a001 7778742049/4106118243*2207^(5/16) 2100952084216126 a001 10182505537/5374978561*2207^(5/16) 2100952084216126 a001 53316291173/28143753123*2207^(5/16) 2100952084216126 a001 139583862445/73681302247*2207^(5/16) 2100952084216126 a001 182717648081/96450076809*2207^(5/16) 2100952084216126 a001 956722026041/505019158607*2207^(5/16) 2100952084216126 a001 10610209857723/5600748293801*2207^(5/16) 2100952084216126 a001 591286729879/312119004989*2207^(5/16) 2100952084216126 a001 225851433717/119218851371*2207^(5/16) 2100952084216126 a001 21566892818/11384387281*2207^(5/16) 2100952084216126 a001 32951280099/17393796001*2207^(5/16) 2100952084216126 a001 12586269025/6643838879*2207^(5/16) 2100952084216126 a001 1201881744/634430159*2207^(5/16) 2100952084216126 a001 1836311903/969323029*2207^(5/16) 2100952084216126 a001 701408733/370248451*2207^(5/16) 2100952084216127 a001 66978574/35355581*2207^(5/16) 2100952084216127 a001 102334155/54018521*2207^(5/16) 2100952084216131 a001 39088169/20633239*2207^(5/16) 2100952084216158 a001 3732588/1970299*2207^(5/16) 2100952084216345 a001 5702887/3010349*2207^(5/16) 2100952084217627 a001 2178309/1149851*2207^(5/16) 2100952084226411 a001 208010/109801*2207^(5/16) 2100952084286617 a001 317811/167761*2207^(5/16) 2100952084699276 a001 121393/64079*2207^(5/16) 2100952087527684 a001 11592/6119*2207^(5/16) 2100952090141738 a004 Fibonacci(17)*Lucas(19)/(1/2+sqrt(5)/2)^28 2100952090808467 a001 610/15127*1364^(13/15) 2100952091081276 a001 1597/15127*9349^(11/19) 2100952091417751 a001 1597/439204*9349^(18/19) 2100952092330207 m001 exp(MadelungNaCl)/Kolakoski*Niven^2 2100952092643467 a001 1597/271443*9349^(17/19) 2100952093050948 m003 1+(5*Sqrt[5])/64+4*Log[1/2+Sqrt[5]/2]^2 2100952094011754 a001 1597/167761*9349^(16/19) 2100952094158131 r005 Re(z^2+c),c=11/74+33/58*I,n=42 2100952095006786 a001 1597/103682*9349^(15/19) 2100952095307880 a001 28657/3571*3571^(2/17) 2100952096392914 a001 1597/39603*9349^(13/19) 2100952096979010 a001 1597/64079*9349^(14/19) 2100952097739867 a001 75025/5778*843^(1/14) 2100952098672017 a001 6765/3571*9349^(5/19) 2100952099239439 a001 4181/5778*2207^(7/16) 2100952100653385 a001 17711/15127*2207^(3/8) 2100952102504585 a001 1597/24476*9349^(12/19) 2100952103160614 a001 1597/15127*24476^(11/21) 2100952104162626 a001 6765/3571*24476^(5/21) 2100952104292200 a001 46368/3571*3571^(1/17) 2100952104752903 a001 1597/15127*64079^(11/23) 2100952104886393 a001 6765/3571*64079^(5/23) 2100952104982694 a001 6765/3571*167761^(1/5) 2100952104996023 a001 10803705/514229 2100952104997600 a001 1597/15127*7881196^(1/3) 2100952104997612 a001 1597/15127*312119004989^(1/5) 2100952104997612 a001 1597/15127*(1/2+1/2*5^(1/2))^11 2100952104997612 a001 1597/15127*1568397607^(1/4) 2100952104997624 a001 6765/3571*20633239^(1/7) 2100952104997625 a001 6765/3571*2537720636^(1/9) 2100952104997625 a001 6765/3571*312119004989^(1/11) 2100952104997625 a001 6765/3571*(1/2+1/2*5^(1/2))^5 2100952104997625 a001 6765/3571*28143753123^(1/10) 2100952104997625 a001 6765/3571*228826127^(1/8) 2100952104997726 a001 6765/3571*1860498^(1/6) 2100952105038341 a001 6765/3571*103682^(5/24) 2100952105087188 a001 1597/15127*103682^(11/24) 2100952105302069 a001 6765/3571*39603^(5/22) 2100952105667388 a001 1597/15127*39603^(1/2) 2100952106913881 a001 17711/9349*2207^(5/16) 2100952107292983 a001 6765/3571*15127^(1/4) 2100952109044142 a001 17711/3571*9349^(3/19) 2100952109639381 a001 15456/13201*2207^(3/8) 2100952110047401 a001 1597/15127*15127^(11/20) 2100952110668496 a001 1597/39603*24476^(13/21) 2100952110672050 a004 Fibonacci(17)*Lucas(21)/(1/2+sqrt(5)/2)^30 2100952110840639 a001 1597/1149851*24476^(20/21) 2100952110950420 a001 121393/103682*2207^(3/8) 2100952111001890 a001 1597/710647*24476^(19/21) 2100952111141698 a001 105937/90481*2207^(3/8) 2100952111169606 a001 832040/710647*2207^(3/8) 2100952111173677 a001 726103/620166*2207^(3/8) 2100952111174271 a001 5702887/4870847*2207^(3/8) 2100952111174358 a001 4976784/4250681*2207^(3/8) 2100952111174371 a001 39088169/33385282*2207^(3/8) 2100952111174372 a001 34111385/29134601*2207^(3/8) 2100952111174373 a001 267914296/228826127*2207^(3/8) 2100952111174373 a001 233802911/199691526*2207^(3/8) 2100952111174373 a001 1836311903/1568397607*2207^(3/8) 2100952111174373 a001 1602508992/1368706081*2207^(3/8) 2100952111174373 a001 12586269025/10749957122*2207^(3/8) 2100952111174373 a001 10983760033/9381251041*2207^(3/8) 2100952111174373 a001 86267571272/73681302247*2207^(3/8) 2100952111174373 a001 75283811239/64300051206*2207^(3/8) 2100952111174373 a001 2504730781961/2139295485799*2207^(3/8) 2100952111174373 a001 365435296162/312119004989*2207^(3/8) 2100952111174373 a001 139583862445/119218851371*2207^(3/8) 2100952111174373 a001 53316291173/45537549124*2207^(3/8) 2100952111174373 a001 20365011074/17393796001*2207^(3/8) 2100952111174373 a001 7778742049/6643838879*2207^(3/8) 2100952111174373 a001 2971215073/2537720636*2207^(3/8) 2100952111174373 a001 1134903170/969323029*2207^(3/8) 2100952111174373 a001 433494437/370248451*2207^(3/8) 2100952111174373 a001 165580141/141422324*2207^(3/8) 2100952111174373 a001 63245986/54018521*2207^(3/8) 2100952111174378 a001 24157817/20633239*2207^(3/8) 2100952111174411 a001 9227465/7881196*2207^(3/8) 2100952111174638 a001 3524578/3010349*2207^(3/8) 2100952111176194 a001 1346269/1149851*2207^(3/8) 2100952111183941 a001 1597/439204*24476^(6/7) 2100952111186853 a001 514229/439204*2207^(3/8) 2100952111259915 a001 196418/167761*2207^(3/8) 2100952111311536 a001 1597/271443*24476^(17/21) 2100952111478611 a001 1597/103682*24476^(5/7) 2100952111581700 a001 1597/167761*24476^(16/21) 2100952111760687 a001 75025/64079*2207^(3/8) 2100952112160480 a001 28657/3571*9349^(2/19) 2100952112338507 a001 17711/3571*24476^(1/7) 2100952112352713 a001 1597/64079*24476^(2/3) 2100952112550292 a001 1597/39603*64079^(13/23) 2100952112625569 a001 10946/3571*9349^(4/19) 2100952112718500 a001 46368/3571*9349^(1/19) 2100952112772767 a001 17711/3571*64079^(3/23) 2100952112838296 a001 17711/3571*439204^(1/9) 2100952112839261 a001 28284467/1346269 2100952112839493 a001 1597/39603*141422324^(1/3) 2100952112839493 a001 1597/39603*(1/2+1/2*5^(1/2))^13 2100952112839493 a001 1597/39603*73681302247^(1/4) 2100952112839503 a001 17711/3571*7881196^(1/11) 2100952112839506 a001 17711/3571*141422324^(1/13) 2100952112839506 a001 17711/3571*2537720636^(1/15) 2100952112839506 a001 17711/3571*45537549124^(1/17) 2100952112839506 a001 17711/3571*14662949395604^(1/21) 2100952112839506 a001 17711/3571*(1/2+1/2*5^(1/2))^3 2100952112839506 a001 17711/3571*192900153618^(1/18) 2100952112839506 a001 17711/3571*10749957122^(1/16) 2100952112839506 a001 17711/3571*599074578^(1/14) 2100952112839506 a001 17711/3571*33385282^(1/12) 2100952112839567 a001 17711/3571*1860498^(1/10) 2100952112853750 a001 1597/39603*271443^(1/2) 2100952112863936 a001 17711/3571*103682^(1/8) 2100952112945355 a001 1597/39603*103682^(13/24) 2100952113022172 a001 17711/3571*39603^(3/22) 2100952113631047 a001 1597/39603*39603^(13/22) 2100952113649914 a001 1597/103682*64079^(15/23) 2100952113667382 a004 Fibonacci(17)*Lucas(23)/(1/2+sqrt(5)/2)^32 2100952113689861 a001 1597/3010349*64079^(22/23) 2100952113711268 a001 1597/1860498*64079^(21/23) 2100952113735710 a001 1597/1149851*64079^(20/23) 2100952113752207 a001 1597/710647*64079^(19/23) 2100952113772346 a001 1597/271443*64079^(17/23) 2100952113789505 a001 1597/439204*64079^(18/23) 2100952113816621 a001 46368/3571*24476^(1/21) 2100952113897757 a001 1597/167761*64079^(16/23) 2100952113938818 a001 1597/103682*167761^(3/5) 2100952113961375 a001 46368/3571*64079^(1/23) 2100952113977557 a001 1597/103682*439204^(5/9) 2100952113983574 a001 37024848/1762289 2100952113983593 a001 1597/103682*7881196^(5/11) 2100952113983606 a001 1597/103682*20633239^(3/7) 2100952113983608 a001 1597/103682*141422324^(5/13) 2100952113983608 a001 1597/103682*2537720636^(1/3) 2100952113983608 a001 1597/103682*45537549124^(5/17) 2100952113983608 a001 1597/103682*312119004989^(3/11) 2100952113983608 a001 1597/103682*14662949395604^(5/21) 2100952113983608 a001 1597/103682*(1/2+1/2*5^(1/2))^15 2100952113983608 a001 1597/103682*192900153618^(5/18) 2100952113983608 a001 1597/103682*28143753123^(3/10) 2100952113983608 a001 1597/103682*10749957122^(5/16) 2100952113983608 a001 1597/103682*599074578^(5/14) 2100952113983608 a001 1597/103682*228826127^(3/8) 2100952113983609 a001 1597/103682*33385282^(5/12) 2100952113983621 a001 23184/3571+23184/3571*5^(1/2) 2100952113983912 a001 1597/103682*1860498^(1/2) 2100952113991764 a001 46368/3571*103682^(1/24) 2100952114044510 a001 46368/3571*39603^(1/22) 2100952114104396 a004 Fibonacci(17)*Lucas(25)/(1/2+sqrt(5)/2)^34 2100952114105757 a001 1597/103682*103682^(5/8) 2100952114120915 a001 1597/1149851*167761^(4/5) 2100952114150527 a001 193864621/9227465 2100952114150532 a001 1597/271443*45537549124^(1/3) 2100952114150532 a001 1597/271443*(1/2+1/2*5^(1/2))^17 2100952114150539 a001 1597/271443*12752043^(1/2) 2100952114150545 a004 Fibonacci(26)/Lucas(17)/(1/2+sqrt(5)/2) 2100952114168155 a004 Fibonacci(17)*Lucas(27)/(1/2+sqrt(5)/2)^36 2100952114169399 a001 1597/7881196*439204^(8/9) 2100952114169968 a001 1597/1860498*439204^(7/9) 2100952114174885 a001 507544167/24157817 2100952114174886 a001 1597/710647*817138163596^(1/3) 2100952114174886 a001 1597/710647*(1/2+1/2*5^(1/2))^19 2100952114174886 a001 1597/710647*87403803^(1/2) 2100952114174899 a004 Fibonacci(28)/Lucas(17)/(1/2+sqrt(5)/2)^3 2100952114177457 a004 Fibonacci(17)*Lucas(29)/(1/2+sqrt(5)/2)^38 2100952114178418 a001 1597/1860498*7881196^(7/11) 2100952114178436 a001 1597/1860498*20633239^(3/5) 2100952114178439 a001 664383940/31622993 2100952114178439 a001 1597/1860498*141422324^(7/13) 2100952114178439 a001 1597/1860498*2537720636^(7/15) 2100952114178439 a001 1597/1860498*17393796001^(3/7) 2100952114178439 a001 1597/1860498*45537549124^(7/17) 2100952114178439 a001 1597/1860498*14662949395604^(1/3) 2100952114178439 a001 1597/1860498*(1/2+1/2*5^(1/2))^21 2100952114178439 a001 1597/1860498*192900153618^(7/18) 2100952114178439 a001 1597/1860498*10749957122^(7/16) 2100952114178439 a001 1597/1860498*599074578^(1/2) 2100952114178440 a001 1597/1860498*33385282^(7/12) 2100952114178452 a004 Fibonacci(30)/Lucas(17)/(1/2+sqrt(5)/2)^5 2100952114178814 a004 Fibonacci(17)*Lucas(31)/(1/2+sqrt(5)/2)^40 2100952114178864 a001 1597/1860498*1860498^(7/10) 2100952114178958 a001 3478759473/165580141 2100952114178958 a001 1597/4870847*(1/2+1/2*5^(1/2))^23 2100952114178958 a001 1597/4870847*4106118243^(1/2) 2100952114178971 a004 Fibonacci(32)/Lucas(17)/(1/2+sqrt(5)/2)^7 2100952114179012 a004 Fibonacci(17)*Lucas(33)/(1/2+sqrt(5)/2)^42 2100952114179016 a001 1597/141422324*7881196^(10/11) 2100952114179017 a001 1597/33385282*7881196^(9/11) 2100952114179030 a001 1597/12752043*20633239^(5/7) 2100952114179033 a001 9107510539/433494437 2100952114179033 a001 1597/12752043*2537720636^(5/9) 2100952114179033 a001 1597/12752043*312119004989^(5/11) 2100952114179033 a001 1597/12752043*(1/2+1/2*5^(1/2))^25 2100952114179033 a001 1597/12752043*3461452808002^(5/12) 2100952114179033 a001 1597/12752043*28143753123^(1/2) 2100952114179033 a001 1597/12752043*228826127^(5/8) 2100952114179041 a004 Fibonacci(17)*Lucas(35)/(1/2+sqrt(5)/2)^44 2100952114179042 a001 1597/141422324*20633239^(6/7) 2100952114179043 a001 1597/54018521*20633239^(4/5) 2100952114179044 a001 1597/33385282*141422324^(9/13) 2100952114179044 a001 701287416/33379505 2100952114179044 a001 1597/33385282*2537720636^(3/5) 2100952114179044 a001 1597/33385282*45537549124^(9/17) 2100952114179044 a001 1597/33385282*14662949395604^(3/7) 2100952114179044 a001 1597/33385282*(1/2+1/2*5^(1/2))^27 2100952114179044 a001 1597/33385282*192900153618^(1/2) 2100952114179044 a001 1597/33385282*10749957122^(9/16) 2100952114179044 a001 1597/33385282*599074578^(9/14) 2100952114179046 a004 Fibonacci(17)*Lucas(37)/(1/2+sqrt(5)/2)^46 2100952114179046 a001 1597/33385282*33385282^(3/4) 2100952114179046 a001 62423805893/2971215073 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^29/Lucas(38) 2100952114179046 a001 1597/87403803*1322157322203^(1/2) 2100952114179046 a004 Fibonacci(17)*Lucas(39)/(1/2+sqrt(5)/2)^48 2100952114179046 a001 1597/2537720636*141422324^(12/13) 2100952114179046 a001 1597/599074578*141422324^(11/13) 2100952114179046 a001 163427645535/7778742049 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^31/Lucas(40) 2100952114179046 a001 1597/228826127*9062201101803^(1/2) 2100952114179046 a004 Fibonacci(17)*Lucas(41)/(1/2+sqrt(5)/2)^50 2100952114179046 a001 1597/599074578*2537720636^(11/15) 2100952114179046 a001 133957148/6376021 2100952114179046 a001 1597/599074578*45537549124^(11/17) 2100952114179046 a001 1597/599074578*312119004989^(3/5) 2100952114179046 a001 1597/599074578*14662949395604^(11/21) 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^33/Lucas(42) 2100952114179046 a001 1597/599074578*192900153618^(11/18) 2100952114179046 a001 1597/599074578*10749957122^(11/16) 2100952114179046 a001 1597/599074578*1568397607^(3/4) 2100952114179046 a004 Fibonacci(17)*Lucas(43)/(1/2+sqrt(5)/2)^52 2100952114179046 a001 1597/599074578*599074578^(11/14) 2100952114179046 a001 1597/1568397607*2537720636^(7/9) 2100952114179046 a001 1597/1568397607*17393796001^(5/7) 2100952114179046 a001 1120149746601/53316291173 2100952114179046 a001 1597/1568397607*312119004989^(7/11) 2100952114179046 a001 1597/1568397607*14662949395604^(5/9) 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^35/Lucas(44) 2100952114179046 a001 1597/1568397607*505019158607^(5/8) 2100952114179046 a001 1597/1568397607*28143753123^(7/10) 2100952114179046 a004 Fibonacci(17)*Lucas(45)/(1/2+sqrt(5)/2)^54 2100952114179046 a001 1597/45537549124*2537720636^(14/15) 2100952114179046 a001 1597/10749957122*2537720636^(13/15) 2100952114179046 a001 1597/17393796001*2537720636^(8/9) 2100952114179046 a001 2932590109091/139583862445 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^37/Lucas(46) 2100952114179046 a004 Fibonacci(17)*Lucas(47)/(1/2+sqrt(5)/2)^56 2100952114179046 a001 1597/10749957122*45537549124^(13/17) 2100952114179046 a001 3838810290336/182717648081 2100952114179046 a001 1597/10749957122*14662949395604^(13/21) 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^39/Lucas(48) 2100952114179046 a001 1597/10749957122*192900153618^(13/18) 2100952114179046 a001 1597/10749957122*73681302247^(3/4) 2100952114179046 a004 Fibonacci(17)*Lucas(49)/(1/2+sqrt(5)/2)^58 2100952114179046 a001 1597/45537549124*17393796001^(6/7) 2100952114179046 a001 1597/10749957122*10749957122^(13/16) 2100952114179046 a001 20100271632925/956722026041 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^41/Lucas(50) 2100952114179046 a004 Fibonacci(17)*Lucas(51)/(1/2+sqrt(5)/2)^60 2100952114179046 a001 1597/192900153618*45537549124^(15/17) 2100952114179046 a001 52623194318103/2504730781961 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^43/Lucas(52) 2100952114179046 a004 Fibonacci(17)*Lucas(53)/(1/2+sqrt(5)/2)^62 2100952114179046 a001 1597/192900153618*312119004989^(9/11) 2100952114179046 a001 4052038568276/192866774113 2100952114179046 a001 1597/192900153618*14662949395604^(5/7) 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^45/Lucas(54) 2100952114179046 a004 Fibonacci(17)*Lucas(55)/(1/2+sqrt(5)/2)^64 2100952114179046 a001 1597/2139295485799*312119004989^(10/11) 2100952114179046 a001 1597/192900153618*192900153618^(5/6) 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^47/Lucas(56) 2100952114179046 a004 Fibonacci(17)*Lucas(57)/(1/2+sqrt(5)/2)^66 2100952114179046 a001 1597/1322157322203*14662949395604^(7/9) 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^49/Lucas(58) 2100952114179046 a004 Fibonacci(17)*Lucas(59)/(1/2+sqrt(5)/2)^68 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^51/Lucas(60) 2100952114179046 a004 Fibonacci(17)*Lucas(61)/(1/2+sqrt(5)/2)^70 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^53/Lucas(62) 2100952114179046 a004 Fibonacci(17)*Lucas(63)/(1/2+sqrt(5)/2)^72 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^55/Lucas(64) 2100952114179046 a004 Fibonacci(17)*Lucas(65)/(1/2+sqrt(5)/2)^74 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^57/Lucas(66) 2100952114179046 a004 Fibonacci(17)*Lucas(67)/(1/2+sqrt(5)/2)^76 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^59/Lucas(68) 2100952114179046 a004 Fibonacci(17)*Lucas(69)/(1/2+sqrt(5)/2)^78 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^61/Lucas(70) 2100952114179046 a004 Fibonacci(17)*Lucas(71)/(1/2+sqrt(5)/2)^80 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^63/Lucas(72) 2100952114179046 a004 Fibonacci(17)*Lucas(73)/(1/2+sqrt(5)/2)^82 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^65/Lucas(74) 2100952114179046 a004 Fibonacci(17)*Lucas(75)/(1/2+sqrt(5)/2)^84 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^67/Lucas(76) 2100952114179046 a004 Fibonacci(17)*Lucas(77)/(1/2+sqrt(5)/2)^86 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^69/Lucas(78) 2100952114179046 a004 Fibonacci(17)*Lucas(79)/(1/2+sqrt(5)/2)^88 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^71/Lucas(80) 2100952114179046 a004 Fibonacci(17)*Lucas(81)/(1/2+sqrt(5)/2)^90 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^73/Lucas(82) 2100952114179046 a004 Fibonacci(17)*Lucas(83)/(1/2+sqrt(5)/2)^92 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^75/Lucas(84) 2100952114179046 a004 Fibonacci(17)*Lucas(85)/(1/2+sqrt(5)/2)^94 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^77/Lucas(86) 2100952114179046 a004 Fibonacci(17)*Lucas(87)/(1/2+sqrt(5)/2)^96 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^79/Lucas(88) 2100952114179046 a004 Fibonacci(17)*Lucas(89)/(1/2+sqrt(5)/2)^98 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^81/Lucas(90) 2100952114179046 a004 Fibonacci(17)*Lucas(91)/(1/2+sqrt(5)/2)^100 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^83/Lucas(92) 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^85/Lucas(94) 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^87/Lucas(96) 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^89/Lucas(98) 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^90/Lucas(99) 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^91/Lucas(100) 2100952114179046 a004 Fibonacci(17)*Lucas(1)/(1/2+sqrt(5)/2)^9 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^88/Lucas(97) 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^86/Lucas(95) 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^84/Lucas(93) 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^82/Lucas(91) 2100952114179046 a004 Fibonacci(17)*Lucas(90)/(1/2+sqrt(5)/2)^99 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^80/Lucas(89) 2100952114179046 a004 Fibonacci(17)*Lucas(88)/(1/2+sqrt(5)/2)^97 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^78/Lucas(87) 2100952114179046 a004 Fibonacci(17)*Lucas(86)/(1/2+sqrt(5)/2)^95 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^76/Lucas(85) 2100952114179046 a004 Fibonacci(17)*Lucas(84)/(1/2+sqrt(5)/2)^93 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^74/Lucas(83) 2100952114179046 a004 Fibonacci(17)*Lucas(82)/(1/2+sqrt(5)/2)^91 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^72/Lucas(81) 2100952114179046 a004 Fibonacci(17)*Lucas(80)/(1/2+sqrt(5)/2)^89 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^70/Lucas(79) 2100952114179046 a004 Fibonacci(17)*Lucas(78)/(1/2+sqrt(5)/2)^87 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^68/Lucas(77) 2100952114179046 a004 Fibonacci(17)*Lucas(76)/(1/2+sqrt(5)/2)^85 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^66/Lucas(75) 2100952114179046 a004 Fibonacci(17)*Lucas(74)/(1/2+sqrt(5)/2)^83 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^64/Lucas(73) 2100952114179046 a004 Fibonacci(17)*Lucas(72)/(1/2+sqrt(5)/2)^81 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^62/Lucas(71) 2100952114179046 a004 Fibonacci(17)*Lucas(70)/(1/2+sqrt(5)/2)^79 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^60/Lucas(69) 2100952114179046 a004 Fibonacci(17)*Lucas(68)/(1/2+sqrt(5)/2)^77 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^58/Lucas(67) 2100952114179046 a004 Fibonacci(17)*Lucas(66)/(1/2+sqrt(5)/2)^75 2100952114179046 a001 1597/14662949395604*14662949395604^(6/7) 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^56/Lucas(65) 2100952114179046 a004 Fibonacci(17)*Lucas(64)/(1/2+sqrt(5)/2)^73 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^54/Lucas(63) 2100952114179046 a004 Fibonacci(17)*Lucas(62)/(1/2+sqrt(5)/2)^71 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^52/Lucas(61) 2100952114179046 a004 Fibonacci(17)*Lucas(60)/(1/2+sqrt(5)/2)^69 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^50/Lucas(59) 2100952114179046 a004 Fibonacci(17)*Lucas(58)/(1/2+sqrt(5)/2)^67 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^48/Lucas(57) 2100952114179046 a001 1597/1322157322203*505019158607^(7/8) 2100952114179046 a004 Fibonacci(17)*Lucas(56)/(1/2+sqrt(5)/2)^65 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^46/Lucas(55) 2100952114179046 a001 1597/3461452808002*192900153618^(17/18) 2100952114179046 a001 1597/817138163596*192900153618^(8/9) 2100952114179046 a004 Fibonacci(17)*Lucas(54)/(1/2+sqrt(5)/2)^63 2100952114179046 a001 1597/119218851371*312119004989^(4/5) 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^44/Lucas(53) 2100952114179046 a001 1597/119218851371*23725150497407^(11/16) 2100952114179046 a001 1597/45537549124*45537549124^(14/17) 2100952114179046 a001 1597/817138163596*73681302247^(12/13) 2100952114179046 a004 Fibonacci(17)*Lucas(52)/(1/2+sqrt(5)/2)^61 2100952114179046 a001 1597/119218851371*73681302247^(11/13) 2100952114179046 a001 1597/45537549124*817138163596^(14/19) 2100952114179046 a001 1597/45537549124*14662949395604^(2/3) 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^42/Lucas(51) 2100952114179046 a001 1597/45537549124*192900153618^(7/9) 2100952114179046 a001 1597/192900153618*28143753123^(9/10) 2100952114179046 a004 Fibonacci(17)*Lucas(50)/(1/2+sqrt(5)/2)^59 2100952114179046 a001 1597/17393796001*312119004989^(8/11) 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^40/Lucas(49) 2100952114179046 a001 12422651052253/591286729879 2100952114179046 a001 1597/17393796001*73681302247^(10/13) 2100952114179046 a001 1597/17393796001*28143753123^(4/5) 2100952114179046 a001 1597/119218851371*10749957122^(11/12) 2100952114179046 a001 1597/45537549124*10749957122^(7/8) 2100952114179046 a001 1597/192900153618*10749957122^(15/16) 2100952114179046 a001 1597/312119004989*10749957122^(23/24) 2100952114179046 a004 Fibonacci(17)*Lucas(48)/(1/2+sqrt(5)/2)^57 2100952114179046 a001 1597/17393796001*10749957122^(5/6) 2100952114179046 a001 1597/6643838879*817138163596^(2/3) 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^38/Lucas(47) 2100952114179046 a001 4745030471581/225851433717 2100952114179046 a001 1597/6643838879*10749957122^(19/24) 2100952114179046 a001 1597/2537720636*2537720636^(4/5) 2100952114179046 a001 1597/45537549124*4106118243^(21/23) 2100952114179046 a001 1597/17393796001*4106118243^(20/23) 2100952114179046 a001 1597/119218851371*4106118243^(22/23) 2100952114179046 a004 Fibonacci(17)*Lucas(46)/(1/2+sqrt(5)/2)^55 2100952114179046 a001 1597/6643838879*4106118243^(19/23) 2100952114179046 a001 1597/2537720636*45537549124^(12/17) 2100952114179046 a001 1597/2537720636*14662949395604^(4/7) 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^36/Lucas(45) 2100952114179046 a001 1597/2537720636*505019158607^(9/14) 2100952114179046 a001 1597/2537720636*192900153618^(2/3) 2100952114179046 a001 53307069485/2537281508 2100952114179046 a001 1597/2537720636*73681302247^(9/13) 2100952114179046 a001 1597/2537720636*10749957122^(3/4) 2100952114179046 a001 1597/2537720636*4106118243^(18/23) 2100952114179046 a001 1597/17393796001*1568397607^(10/11) 2100952114179046 a001 1597/6643838879*1568397607^(19/22) 2100952114179046 a001 1597/45537549124*1568397607^(21/22) 2100952114179046 a004 Fibonacci(17)*Lucas(44)/(1/2+sqrt(5)/2)^53 2100952114179046 a001 1597/2537720636*1568397607^(9/11) 2100952114179046 a001 1597/969323029*45537549124^(2/3) 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^34/Lucas(43) 2100952114179046 a001 692290615889/32951280099 2100952114179046 a001 1597/969323029*10749957122^(17/24) 2100952114179046 a001 1597/969323029*4106118243^(17/23) 2100952114179046 a001 1597/969323029*1568397607^(17/22) 2100952114179046 a001 1597/1568397607*599074578^(5/6) 2100952114179046 a001 1597/2537720636*599074578^(6/7) 2100952114179046 a001 1597/6643838879*599074578^(19/21) 2100952114179046 a001 1597/10749957122*599074578^(13/14) 2100952114179046 a001 1597/17393796001*599074578^(20/21) 2100952114179046 a004 Fibonacci(17)*Lucas(42)/(1/2+sqrt(5)/2)^51 2100952114179046 a001 1597/969323029*599074578^(17/21) 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^32/Lucas(41) 2100952114179046 a001 1597/370248451*23725150497407^(1/2) 2100952114179046 a001 1597/370248451*73681302247^(8/13) 2100952114179046 a001 264431485177/12586269025 2100952114179046 a001 1597/370248451*10749957122^(2/3) 2100952114179046 a001 1597/370248451*4106118243^(16/23) 2100952114179046 a001 1597/370248451*1568397607^(8/11) 2100952114179046 a001 1597/370248451*599074578^(16/21) 2100952114179046 a001 1597/141422324*141422324^(10/13) 2100952114179046 a001 1597/1568397607*228826127^(7/8) 2100952114179046 a001 1597/969323029*228826127^(17/20) 2100952114179046 a001 1597/2537720636*228826127^(9/10) 2100952114179046 a001 1597/6643838879*228826127^(19/20) 2100952114179046 a004 Fibonacci(17)*Lucas(40)/(1/2+sqrt(5)/2)^49 2100952114179046 a001 1597/370248451*228826127^(4/5) 2100952114179046 a001 1597/141422324*2537720636^(2/3) 2100952114179046 a001 1597/141422324*45537549124^(10/17) 2100952114179046 a001 1597/141422324*312119004989^(6/11) 2100952114179046 a001 1597/141422324*14662949395604^(10/21) 2100952114179046 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^30/Lucas(39) 2100952114179046 a001 1597/141422324*192900153618^(5/9) 2100952114179046 a001 1597/141422324*28143753123^(3/5) 2100952114179046 a001 1597/141422324*10749957122^(5/8) 2100952114179046 a001 50501919821/2403763488 2100952114179046 a001 1597/141422324*4106118243^(15/23) 2100952114179046 a001 1597/141422324*1568397607^(15/22) 2100952114179046 a001 1597/141422324*599074578^(5/7) 2100952114179046 a001 1597/141422324*228826127^(3/4) 2100952114179047 a001 1597/370248451*87403803^(16/19) 2100952114179047 a001 1597/969323029*87403803^(17/19) 2100952114179047 a001 1597/2537720636*87403803^(18/19) 2100952114179047 a004 Fibonacci(17)*Lucas(38)/(1/2+sqrt(5)/2)^47 2100952114179047 a001 1597/141422324*87403803^(15/19) 2100952114179047 a001 1597/54018521*17393796001^(4/7) 2100952114179047 a001 1597/54018521*14662949395604^(4/9) 2100952114179047 a004 Fibonacci(17)*(1/2+sqrt(5)/2)^28/Lucas(37) 2100952114179047 a001 1597/54018521*73681302247^(7/13) 2100952114179047 a001 1597/54018521*10749957122^(7/12) 2100952114179047 a001 1597/54018521*4106118243^(14/23) 2100952114179047 a001 38580033749/1836311903 2100952114179047 a001 1597/54018521*1568397607^(7/11) 2100952114179047 a001 1597/54018521*599074578^(2/3) 2100952114179047 a001 1597/54018521*228826127^(7/10) 2100952114179047 a001 1597/54018521*87403803^(14/19) 2100952114179048 a001 1597/141422324*33385282^(5/6) 2100952114179048 a001 1597/370248451*33385282^(8/9) 2100952114179048 a001 1597/599074578*33385282^(11/12) 2100952114179048 a001 1597/969323029*33385282^(17/18) 2100952114179048 a004 Fibonacci(17)*Lucas(36)/(1/2+sqrt(5)/2)^45 2100952114179048 a001 1597/54018521*33385282^(7/9) 2100952114179051 a001 1597/20633239*141422324^(2/3) 2100952114179051 a001 1597/20633239*(1/2+1/2*5^(1/2))^26 2100952114179051 a001 1597/20633239*73681302247^(1/2) 2100952114179051 a001 1597/20633239*10749957122^(13/24) 2100952114179051 a001 1597/20633239*4106118243^(13/23) 2100952114179051 a001 1597/20633239*1568397607^(13/22) 2100952114179051 a001 14736261605/701408733 2100952114179051 a001 1597/20633239*599074578^(13/21) 2100952114179051 a001 1597/20633239*228826127^(13/20) 2100952114179051 a001 1597/20633239*87403803^(13/19) 2100952114179053 a001 1597/20633239*33385282^(13/18) 2100952114179056 a001 1597/7881196*7881196^(8/11) 2100952114179057 a004 Fibonacci(36)/Lucas(17)/(1/2+sqrt(5)/2)^11 2100952114179058 a001 1597/54018521*12752043^(14/17) 2100952114179058 a001 1597/141422324*12752043^(15/17) 2100952114179058 a001 1597/370248451*12752043^(16/17) 2100952114179059 a004 Fibonacci(38)/Lucas(17)/(1/2+sqrt(5)/2)^13 2100952114179059 a004 Fibonacci(40)/Lucas(17)/(1/2+sqrt(5)/2)^15 2100952114179059 a004 Fibonacci(42)/Lucas(17)/(1/2+sqrt(5)/2)^17 2100952114179059 a004 Fibonacci(44)/Lucas(17)/(1/2+sqrt(5)/2)^19 2100952114179059 a004 Fibonacci(46)/Lucas(17)/(1/2+sqrt(5)/2)^21 2100952114179059 a004 Fibonacci(48)/Lucas(17)/(1/2+sqrt(5)/2)^23 2100952114179059 a004 Fibonacci(50)/Lucas(17)/(1/2+sqrt(5)/2)^25 2100952114179059 a004 Fibonacci(52)/Lucas(17)/(1/2+sqrt(5)/2)^27 2100952114179059 a004 Fibonacci(54)/Lucas(17)/(1/2+sqrt(5)/2)^29 2100952114179059 a004 Fibonacci(56)/Lucas(17)/(1/2+sqrt(5)/2)^31 2100952114179059 a004 Fibonacci(58)/Lucas(17)/(1/2+sqrt(5)/2)^33 2100952114179059 a004 Fibonacci(60)/Lucas(17)/(1/2+sqrt(5)/2)^35 2100952114179059 a004 Fibonacci(62)/Lucas(17)/(1/2+sqrt(5)/2)^37 2100952114179059 a004 Fibonacci(64)/Lucas(17)/(1/2+sqrt(5)/2)^39 2100952114179059 a004 Fibonacci(66)/Lucas(17)/(1/2+sqrt(5)/2)^41 2100952114179059 a004 Fibonacci(17)*Lucas(34)/(1/2+sqrt(5)/2)^43 2100952114179059 a004 Fibonacci(70)/Lucas(17)/(1/2+sqrt(5)/2)^45 2100952114179059 a004 Fibonacci(72)/Lucas(17)/(1/2+sqrt(5)/2)^47 2100952114179059 a004 Fibonacci(74)/Lucas(17)/(1/2+sqrt(5)/2)^49 2100952114179059 a004 Fibonacci(76)/Lucas(17)/(1/2+sqrt(5)/2)^51 2100952114179059 a004 Fibonacci(78)/Lucas(17)/(1/2+sqrt(5)/2)^53 2100952114179059 a004 Fibonacci(80)/Lucas(17)/(1/2+sqrt(5)/2)^55 2100952114179059 a004 Fibonacci(82)/Lucas(17)/(1/2+sqrt(5)/2)^57 2100952114179059 a004 Fibonacci(84)/Lucas(17)/(1/2+sqrt(5)/2)^59 2100952114179059 a004 Fibonacci(86)/Lucas(17)/(1/2+sqrt(5)/2)^61 2100952114179059 a004 Fibonacci(88)/Lucas(17)/(1/2+sqrt(5)/2)^63 2100952114179059 a004 Fibonacci(90)/Lucas(17)/(1/2+sqrt(5)/2)^65 2100952114179059 a004 Fibonacci(92)/Lucas(17)/(1/2+sqrt(5)/2)^67 2100952114179059 a004 Fibonacci(94)/Lucas(17)/(1/2+sqrt(5)/2)^69 2100952114179059 a004 Fibonacci(96)/Lucas(17)/(1/2+sqrt(5)/2)^71 2100952114179059 a004 Fibonacci(100)/Lucas(17)/(1/2+sqrt(5)/2)^75 2100952114179059 a004 Fibonacci(98)/Lucas(17)/(1/2+sqrt(5)/2)^73 2100952114179059 a004 Fibonacci(99)/Lucas(17)/(1/2+sqrt(5)/2)^74 2100952114179059 a004 Fibonacci(97)/Lucas(17)/(1/2+sqrt(5)/2)^72 2100952114179059 a004 Fibonacci(95)/Lucas(17)/(1/2+sqrt(5)/2)^70 2100952114179059 a004 Fibonacci(93)/Lucas(17)/(1/2+sqrt(5)/2)^68 2100952114179059 a004 Fibonacci(91)/Lucas(17)/(1/2+sqrt(5)/2)^66 2100952114179059 a004 Fibonacci(89)/Lucas(17)/(1/2+sqrt(5)/2)^64 2100952114179059 a004 Fibonacci(87)/Lucas(17)/(1/2+sqrt(5)/2)^62 2100952114179059 a004 Fibonacci(85)/Lucas(17)/(1/2+sqrt(5)/2)^60 2100952114179059 a004 Fibonacci(83)/Lucas(17)/(1/2+sqrt(5)/2)^58 2100952114179059 a004 Fibonacci(81)/Lucas(17)/(1/2+sqrt(5)/2)^56 2100952114179059 a004 Fibonacci(79)/Lucas(17)/(1/2+sqrt(5)/2)^54 2100952114179059 a004 Fibonacci(77)/Lucas(17)/(1/2+sqrt(5)/2)^52 2100952114179059 a004 Fibonacci(75)/Lucas(17)/(1/2+sqrt(5)/2)^50 2100952114179059 a004 Fibonacci(73)/Lucas(17)/(1/2+sqrt(5)/2)^48 2100952114179059 a004 Fibonacci(71)/Lucas(17)/(1/2+sqrt(5)/2)^46 2100952114179059 a004 Fibonacci(69)/Lucas(17)/(1/2+sqrt(5)/2)^44 2100952114179059 a004 Fibonacci(67)/Lucas(17)/(1/2+sqrt(5)/2)^42 2100952114179059 a004 Fibonacci(65)/Lucas(17)/(1/2+sqrt(5)/2)^40 2100952114179059 a004 Fibonacci(63)/Lucas(17)/(1/2+sqrt(5)/2)^38 2100952114179059 a004 Fibonacci(61)/Lucas(17)/(1/2+sqrt(5)/2)^36 2100952114179059 a004 Fibonacci(59)/Lucas(17)/(1/2+sqrt(5)/2)^34 2100952114179059 a004 Fibonacci(57)/Lucas(17)/(1/2+sqrt(5)/2)^32 2100952114179059 a004 Fibonacci(55)/Lucas(17)/(1/2+sqrt(5)/2)^30 2100952114179059 a004 Fibonacci(53)/Lucas(17)/(1/2+sqrt(5)/2)^28 2100952114179059 a004 Fibonacci(51)/Lucas(17)/(1/2+sqrt(5)/2)^26 2100952114179059 a004 Fibonacci(49)/Lucas(17)/(1/2+sqrt(5)/2)^24 2100952114179059 a004 Fibonacci(47)/Lucas(17)/(1/2+sqrt(5)/2)^22 2100952114179059 a004 Fibonacci(45)/Lucas(17)/(1/2+sqrt(5)/2)^20 2100952114179059 a004 Fibonacci(43)/Lucas(17)/(1/2+sqrt(5)/2)^18 2100952114179059 a004 Fibonacci(41)/Lucas(17)/(1/2+sqrt(5)/2)^16 2100952114179059 a004 Fibonacci(39)/Lucas(17)/(1/2+sqrt(5)/2)^14 2100952114179060 a004 Fibonacci(37)/Lucas(17)/(1/2+sqrt(5)/2)^12 2100952114179061 a001 1597/20633239*12752043^(13/17) 2100952114179064 a004 Fibonacci(35)/Lucas(17)/(1/2+sqrt(5)/2)^10 2100952114179080 a001 1597/7881196*141422324^(8/13) 2100952114179080 a001 1597/7881196*2537720636^(8/15) 2100952114179080 a001 1597/7881196*45537549124^(8/17) 2100952114179080 a001 1597/7881196*14662949395604^(8/21) 2100952114179080 a001 1597/7881196*(1/2+1/2*5^(1/2))^24 2100952114179080 a001 1597/7881196*192900153618^(4/9) 2100952114179080 a001 1597/7881196*73681302247^(6/13) 2100952114179080 a001 1597/7881196*10749957122^(1/2) 2100952114179080 a001 1597/7881196*4106118243^(12/23) 2100952114179080 a001 1597/7881196*1568397607^(6/11) 2100952114179080 a001 1597/7881196*599074578^(4/7) 2100952114179080 a001 2814375533/133957148 2100952114179080 a001 1597/7881196*228826127^(3/5) 2100952114179080 a001 1597/7881196*87403803^(12/19) 2100952114179081 a001 1597/7881196*33385282^(2/3) 2100952114179089 a001 1597/7881196*12752043^(12/17) 2100952114179093 a004 Fibonacci(33)/Lucas(17)/(1/2+sqrt(5)/2)^8 2100952114179123 a001 1597/20633239*4870847^(13/16) 2100952114179124 a001 1597/54018521*4870847^(7/8) 2100952114179129 a001 1597/141422324*4870847^(15/16) 2100952114179135 a004 Fibonacci(17)*Lucas(32)/(1/2+sqrt(5)/2)^41 2100952114179147 a001 1597/7881196*4870847^(3/4) 2100952114179256 a001 1597/3010349*7881196^(2/3) 2100952114179278 a001 1597/3010349*312119004989^(2/5) 2100952114179278 a001 1597/3010349*(1/2+1/2*5^(1/2))^22 2100952114179278 a001 1597/3010349*10749957122^(11/24) 2100952114179278 a001 1597/3010349*4106118243^(11/23) 2100952114179278 a001 1597/3010349*1568397607^(1/2) 2100952114179278 a001 1597/3010349*599074578^(11/21) 2100952114179278 a001 1597/3010349*228826127^(11/20) 2100952114179278 a001 2149991593/102334155 2100952114179278 a001 1597/3010349*87403803^(11/19) 2100952114179279 a001 1597/3010349*33385282^(11/18) 2100952114179286 a001 1597/3010349*12752043^(11/17) 2100952114179291 a004 Fibonacci(31)/Lucas(17)/(1/2+sqrt(5)/2)^6 2100952114179339 a001 1597/3010349*4870847^(11/16) 2100952114179539 a001 1597/12752043*1860498^(5/6) 2100952114179566 a001 1597/7881196*1860498^(4/5) 2100952114179577 a001 1597/20633239*1860498^(13/15) 2100952114179591 a001 1597/33385282*1860498^(9/10) 2100952114179613 a001 1597/54018521*1860498^(14/15) 2100952114179653 a004 Fibonacci(17)*Lucas(30)/(1/2+sqrt(5)/2)^39 2100952114179723 a001 1597/3010349*1860498^(11/15) 2100952114180632 a001 1597/1149851*20633239^(4/7) 2100952114180635 a001 1597/1149851*2537720636^(4/9) 2100952114180635 a001 1597/1149851*(1/2+1/2*5^(1/2))^20 2100952114180635 a001 1597/1149851*23725150497407^(5/16) 2100952114180635 a001 1597/1149851*505019158607^(5/14) 2100952114180635 a001 1597/1149851*73681302247^(5/13) 2100952114180635 a001 1597/1149851*28143753123^(2/5) 2100952114180635 a001 1597/1149851*10749957122^(5/12) 2100952114180635 a001 1597/1149851*4106118243^(10/23) 2100952114180635 a001 1597/1149851*1568397607^(5/11) 2100952114180635 a001 1597/1149851*599074578^(10/21) 2100952114180635 a001 1597/1149851*228826127^(1/2) 2100952114180635 a001 1597/1149851*87403803^(10/19) 2100952114180636 a001 821223713/39088169 2100952114180636 a001 1597/1149851*33385282^(5/9) 2100952114180643 a001 1597/1149851*12752043^(10/17) 2100952114180648 a004 Fibonacci(29)/Lucas(17)/(1/2+sqrt(5)/2)^4 2100952114180691 a001 1597/1149851*4870847^(5/8) 2100952114181040 a001 1597/1149851*1860498^(2/3) 2100952114181559 a001 1597/1860498*710647^(3/4) 2100952114182547 a001 1597/3010349*710647^(11/14) 2100952114182646 a001 1597/7881196*710647^(6/7) 2100952114182677 a001 1597/439204*439204^(2/3) 2100952114182914 a001 1597/20633239*710647^(13/14) 2100952114183206 a004 Fibonacci(17)*Lucas(28)/(1/2+sqrt(5)/2)^37 2100952114183607 a001 1597/1149851*710647^(5/7) 2100952114189919 a001 1597/439204*7881196^(6/11) 2100952114189938 a001 1597/439204*141422324^(6/13) 2100952114189938 a001 1597/439204*2537720636^(2/5) 2100952114189938 a001 1597/439204*45537549124^(6/17) 2100952114189938 a001 1597/439204*14662949395604^(2/7) 2100952114189938 a001 1597/439204*(1/2+1/2*5^(1/2))^18 2100952114189938 a001 1597/439204*192900153618^(1/3) 2100952114189938 a001 1597/439204*10749957122^(3/8) 2100952114189938 a001 1597/439204*4106118243^(9/23) 2100952114189938 a001 1597/439204*1568397607^(9/22) 2100952114189938 a001 1597/439204*599074578^(3/7) 2100952114189938 a001 1597/439204*228826127^(9/20) 2100952114189938 a001 1597/439204*87403803^(9/19) 2100952114189939 a001 1597/439204*33385282^(1/2) 2100952114189940 a001 9225869/439128 2100952114189945 a001 1597/439204*12752043^(9/17) 2100952114189951 a004 Fibonacci(27)/Lucas(17)/(1/2+sqrt(5)/2)^2 2100952114189987 a001 1597/439204*4870847^(9/16) 2100952114190302 a001 1597/439204*1860498^(3/5) 2100952114192612 a001 1597/439204*710647^(9/14) 2100952114202569 a001 1597/1149851*271443^(10/13) 2100952114203405 a001 1597/3010349*271443^(11/13) 2100952114205401 a001 1597/7881196*271443^(12/13) 2100952114207560 a004 Fibonacci(17)*Lucas(26)/(1/2+sqrt(5)/2)^35 2100952114209678 a001 1597/439204*271443^(9/13) 2100952114216721 a001 17711/3571*15127^(3/20) 2100952114253697 a001 1597/167761*(1/2+1/2*5^(1/2))^16 2100952114253697 a001 1597/167761*23725150497407^(1/4) 2100952114253697 a001 1597/167761*73681302247^(4/13) 2100952114253697 a001 1597/167761*10749957122^(1/3) 2100952114253697 a001 1597/167761*4106118243^(8/23) 2100952114253697 a001 1597/167761*1568397607^(4/11) 2100952114253697 a001 1597/167761*599074578^(8/21) 2100952114253697 a001 1597/167761*228826127^(2/5) 2100952114253697 a001 1597/167761*87403803^(8/19) 2100952114253698 a001 1597/167761*33385282^(4/9) 2100952114253703 a001 1597/167761*12752043^(8/17) 2100952114253710 a001 75025/3571 2100952114253741 a001 1597/167761*4870847^(1/2) 2100952114254021 a001 1597/167761*1860498^(8/15) 2100952114256074 a001 1597/167761*710647^(4/7) 2100952114271244 a001 1597/167761*271443^(8/13) 2100952114288968 a001 1597/271443*103682^(17/24) 2100952114329608 a001 1597/710647*103682^(19/24) 2100952114336516 a001 1597/439204*103682^(3/4) 2100952114343500 a001 1597/1149851*103682^(5/6) 2100952114349448 a001 1597/1860498*103682^(7/8) 2100952114356723 a001 28657/3571*24476^(2/21) 2100952114358430 a001 1597/3010349*103682^(11/12) 2100952114366253 a001 1597/4870847*103682^(23/24) 2100952114374484 a004 Fibonacci(17)*Lucas(24)/(1/2+sqrt(5)/2)^33 2100952114379263 a001 1597/64079*64079^(14/23) 2100952114383989 a001 1597/167761*103682^(2/3) 2100952114442693 a001 46368/3571*15127^(1/20) 2100952114646231 a001 28657/3571*64079^(2/23) 2100952114690708 a001 1597/64079*20633239^(2/5) 2100952114690710 a001 1597/64079*17393796001^(2/7) 2100952114690710 a001 1597/64079*14662949395604^(2/9) 2100952114690710 a001 1597/64079*(1/2+1/2*5^(1/2))^14 2100952114690710 a001 1597/64079*10749957122^(7/24) 2100952114690710 a001 1597/64079*4106118243^(7/23) 2100952114690710 a001 1597/64079*1568397607^(7/22) 2100952114690710 a001 1597/64079*599074578^(1/3) 2100952114690710 a001 1597/64079*228826127^(7/20) 2100952114690710 a001 1597/64079*87403803^(7/19) 2100952114690711 a001 1597/64079*33385282^(7/18) 2100952114690715 a001 1597/64079*12752043^(7/17) 2100952114690723 a001 28657/3571*(1/2+1/2*5^(1/2))^2 2100952114690723 a001 28657/3571*10749957122^(1/24) 2100952114690723 a001 28657/3571*4106118243^(1/23) 2100952114690723 a001 28657/3571*1568397607^(1/22) 2100952114690723 a001 28657/3571*599074578^(1/21) 2100952114690723 a001 28657/3571*228826127^(1/20) 2100952114690723 a001 28657/3571*87403803^(1/19) 2100952114690723 a001 28657/3571*33385282^(1/18) 2100952114690724 a001 28657/3571*12752043^(1/17) 2100952114690729 a001 28657/3571*4870847^(1/16) 2100952114690749 a001 1597/64079*4870847^(7/16) 2100952114690763 a001 28657/3571*1860498^(1/15) 2100952114690799 a001 45765229/2178309 2100952114690993 a001 1597/64079*1860498^(7/15) 2100952114691020 a001 28657/3571*710647^(1/14) 2100952114692790 a001 1597/64079*710647^(1/2) 2100952114692916 a001 28657/3571*271443^(1/13) 2100952114706064 a001 1597/64079*271443^(7/13) 2100952114707010 a001 28657/3571*103682^(1/12) 2100952114804716 a001 1597/64079*103682^(7/12) 2100952114812501 a001 28657/3571*39603^(1/11) 2100952114896940 a001 1597/103682*39603^(15/22) 2100952115185642 a001 1597/271443*39603^(17/22) 2100952115193032 a001 28657/24476*2207^(3/8) 2100952115227918 a001 1597/167761*39603^(8/11) 2100952115285936 a001 1597/439204*39603^(9/11) 2100952115331773 a001 1597/710647*39603^(19/22) 2100952115398411 a001 1597/1149851*39603^(10/11) 2100952115457104 a001 1597/1860498*39603^(21/22) 2100952115518600 a004 Fibonacci(17)*Lucas(22)/(1/2+sqrt(5)/2)^31 2100952115543153 a001 1597/64079*39603^(7/11) 2100952115608866 a001 28657/3571*15127^(1/10) 2100952115682045 a001 1597/24476*24476^(4/7) 2100952117018056 a001 10946/3571*24476^(4/21) 2100952117290420 r005 Im(z^2+c),c=-5/8+45/158*I,n=25 2100952117419087 a001 1597/24476*64079^(12/23) 2100952117479759 a001 46368/3571*5778^(1/18) 2100952117597070 a001 10946/3571*64079^(4/23) 2100952117681202 a001 1597/24476*439204^(4/9) 2100952117686030 a001 1597/24476*7881196^(4/11) 2100952117686042 a001 1597/24476*141422324^(4/13) 2100952117686042 a001 1597/24476*2537720636^(4/15) 2100952117686042 a001 1597/24476*45537549124^(4/17) 2100952117686042 a001 1597/24476*817138163596^(4/19) 2100952117686042 a001 1597/24476*14662949395604^(4/21) 2100952117686042 a001 1597/24476*(1/2+1/2*5^(1/2))^12 2100952117686042 a001 1597/24476*73681302247^(3/13) 2100952117686042 a001 1597/24476*10749957122^(1/4) 2100952117686042 a001 1597/24476*4106118243^(6/23) 2100952117686042 a001 1597/24476*1568397607^(3/11) 2100952117686042 a001 1597/24476*599074578^(2/7) 2100952117686042 a001 1597/24476*228826127^(3/10) 2100952117686042 a001 1597/24476*87403803^(6/19) 2100952117686043 a001 1597/24476*33385282^(1/3) 2100952117686047 a001 1597/24476*12752043^(6/17) 2100952117686055 a001 10946/3571*(1/2+1/2*5^(1/2))^4 2100952117686055 a001 10946/3571*23725150497407^(1/16) 2100952117686055 a001 10946/3571*73681302247^(1/13) 2100952117686055 a001 10946/3571*10749957122^(1/12) 2100952117686055 a001 10946/3571*4106118243^(2/23) 2100952117686055 a001 10946/3571*1568397607^(1/11) 2100952117686055 a001 10946/3571*599074578^(2/21) 2100952117686055 a001 10946/3571*228826127^(1/10) 2100952117686055 a001 10946/3571*87403803^(2/19) 2100952117686055 a001 10946/3571*33385282^(1/9) 2100952117686057 a001 10946/3571*12752043^(2/17) 2100952117686066 a001 10946/3571*4870847^(1/8) 2100952117686075 a001 1597/24476*4870847^(3/8) 2100952117686136 a001 10946/3571*1860498^(2/15) 2100952117686285 a001 1597/24476*1860498^(2/5) 2100952117686649 a001 8740381/416020 2100952117686649 a001 10946/3571*710647^(1/7) 2100952117687825 a001 1597/24476*710647^(3/7) 2100952117690442 a001 10946/3571*271443^(2/13) 2100952117699203 a001 1597/24476*271443^(6/13) 2100952117718628 a001 10946/3571*103682^(1/6) 2100952117783761 a001 1597/24476*103682^(1/2) 2100952117929610 a001 10946/3571*39603^(2/11) 2100952118416708 a001 1597/24476*39603^(6/11) 2100952118807425 a001 1597/39603*15127^(13/20) 2100952119522342 a001 10946/3571*15127^(1/5) 2100952120355319 a001 987/1364*1364^(7/15) 2100952120761933 m001 1/Zeta(3)*LambertW(1)/exp(cos(Pi/5)) 2100952120869684 a001 1597/103682*15127^(3/4) 2100952121117714 a001 1597/64079*15127^(7/10) 2100952121598845 a001 1597/167761*15127^(4/5) 2100952121682999 a001 28657/3571*5778^(1/9) 2100952121954752 a001 1597/271443*15127^(17/20) 2100952122453229 a001 1597/439204*15127^(9/10) 2100952122478316 a001 6765/3571*5778^(5/18) 2100952122897249 a001 1597/710647*15127^(19/20) 2100952123194903 a001 1597/24476*15127^(3/5) 2100952123327921 a001 17711/3571*5778^(1/6) 2100952123360481 a004 Fibonacci(17)*Lucas(20)/(1/2+sqrt(5)/2)^29 2100952125565140 a001 1597/9349*9349^(10/19) 2100952130625638 a001 4181/3571*9349^(6/19) 2100952131670608 a001 10946/3571*5778^(2/9) 2100952132009846 l006 ln(1213/9915) 2100952132458181 a001 10946/15127*2207^(7/16) 2100952134057012 r005 Re(z^2+c),c=11/58+25/62*I,n=4 2100952136546356 a001 1597/9349*24476^(10/21) 2100952137214368 a001 4181/3571*24476^(2/7) 2100952137304730 a001 28657/39603*2207^(7/16) 2100952137993892 a001 1597/9349*64079^(10/23) 2100952138011832 a001 75025/103682*2207^(7/16) 2100952138082889 a001 4181/3571*64079^(6/23) 2100952138114997 a001 196418/271443*2207^(7/16) 2100952138130048 a001 514229/710647*2207^(7/16) 2100952138132244 a001 1346269/1860498*2207^(7/16) 2100952138132564 a001 3524578/4870847*2207^(7/16) 2100952138132611 a001 9227465/12752043*2207^(7/16) 2100952138132618 a001 24157817/33385282*2207^(7/16) 2100952138132619 a001 63245986/87403803*2207^(7/16) 2100952138132619 a001 165580141/228826127*2207^(7/16) 2100952138132619 a001 433494437/599074578*2207^(7/16) 2100952138132619 a001 1134903170/1568397607*2207^(7/16) 2100952138132619 a001 2971215073/4106118243*2207^(7/16) 2100952138132619 a001 7778742049/10749957122*2207^(7/16) 2100952138132619 a001 20365011074/28143753123*2207^(7/16) 2100952138132619 a001 53316291173/73681302247*2207^(7/16) 2100952138132619 a001 139583862445/192900153618*2207^(7/16) 2100952138132619 a001 365435296162/505019158607*2207^(7/16) 2100952138132619 a001 10610209857723/14662949395604*2207^(7/16) 2100952138132619 a001 225851433717/312119004989*2207^(7/16) 2100952138132619 a001 86267571272/119218851371*2207^(7/16) 2100952138132619 a001 32951280099/45537549124*2207^(7/16) 2100952138132619 a001 12586269025/17393796001*2207^(7/16) 2100952138132619 a001 4807526976/6643838879*2207^(7/16) 2100952138132619 a001 1836311903/2537720636*2207^(7/16) 2100952138132619 a001 701408733/969323029*2207^(7/16) 2100952138132619 a001 267914296/370248451*2207^(7/16) 2100952138132619 a001 102334155/141422324*2207^(7/16) 2100952138132620 a001 39088169/54018521*2207^(7/16) 2100952138132622 a001 14930352/20633239*2207^(7/16) 2100952138132640 a001 5702887/7881196*2207^(7/16) 2100952138132762 a001 2178309/3010349*2207^(7/16) 2100952138133601 a001 832040/1149851*2207^(7/16) 2100952138139350 a001 317811/439204*2207^(7/16) 2100952138178756 a001 121393/167761*2207^(7/16) 2100952138186494 a001 1597/9349*167761^(2/5) 2100952138213947 a001 4181/3571*439204^(2/9) 2100952138216353 a001 1597/9349*20633239^(2/7) 2100952138216354 a001 1597/9349*2537720636^(2/9) 2100952138216354 a001 1597/9349*312119004989^(2/11) 2100952138216354 a001 1597/9349*(1/2+1/2*5^(1/2))^10 2100952138216354 a001 1597/9349*28143753123^(1/5) 2100952138216354 a001 1597/9349*10749957122^(5/24) 2100952138216354 a001 1597/9349*4106118243^(5/23) 2100952138216354 a001 1597/9349*1568397607^(5/22) 2100952138216354 a001 1597/9349*599074578^(5/21) 2100952138216354 a001 1597/9349*228826127^(1/4) 2100952138216354 a001 1597/9349*87403803^(5/19) 2100952138216355 a001 1597/9349*33385282^(5/18) 2100952138216358 a001 1597/9349*12752043^(5/17) 2100952138216361 a001 4181/3571*7881196^(2/11) 2100952138216367 a001 4181/3571*141422324^(2/13) 2100952138216367 a001 4181/3571*2537720636^(2/15) 2100952138216367 a001 4181/3571*45537549124^(2/17) 2100952138216367 a001 4181/3571*14662949395604^(2/21) 2100952138216367 a001 4181/3571*(1/2+1/2*5^(1/2))^6 2100952138216367 a001 4181/3571*10749957122^(1/8) 2100952138216367 a001 4181/3571*4106118243^(3/23) 2100952138216367 a001 4181/3571*1568397607^(3/22) 2100952138216367 a001 4181/3571*599074578^(1/7) 2100952138216367 a001 4181/3571*228826127^(3/20) 2100952138216367 a001 4181/3571*87403803^(3/19) 2100952138216367 a001 4181/3571*33385282^(1/6) 2100952138216369 a001 4181/3571*12752043^(3/17) 2100952138216382 a001 1597/9349*4870847^(5/16) 2100952138216384 a001 4181/3571*4870847^(3/16) 2100952138216488 a001 4181/3571*1860498^(1/5) 2100952138216557 a001 1597/9349*1860498^(1/3) 2100952138217258 a001 4181/3571*710647^(3/14) 2100952138217840 a001 1597/9349*710647^(5/14) 2100952138220514 a001 6677057/317811 2100952138222947 a001 4181/3571*271443^(3/13) 2100952138227321 a001 1597/9349*271443^(5/13) 2100952138265227 a001 4181/3571*103682^(1/4) 2100952138297787 a001 1597/9349*103682^(5/12) 2100952138448845 a001 46368/64079*2207^(7/16) 2100952138581700 a001 4181/3571*39603^(3/11) 2100952138718677 a001 10946/9349*2207^(3/8) 2100952138825242 a001 1597/9349*39603^(5/11) 2100952140300062 a001 17711/24476*2207^(7/16) 2100952140941868 a001 46368/3571*2207^(1/16) 2100952140970797 a001 4181/3571*15127^(3/10) 2100952142807072 a001 1597/9349*15127^(1/2) 2100952143455132 a001 1597/15127*5778^(11/18) 2100952146167940 s002 sum(A055331[n]/(n*pi^n-1),n=1..infinity) 2100952146727997 a001 6765/15127*2207^(1/2) 2100952146895434 a001 2584/15127*2207^(5/8) 2100952151425161 a001 196418/15127*843^(1/14) 2100952151911411 a001 14662949395604/4181*144^(14/17) 2100952152988493 a001 6765/9349*2207^(7/16) 2100952153155930 a001 2584/9349*2207^(9/16) 2100952154753474 a007 Real Root Of 907*x^4-805*x^3-102*x^2-839*x-181 2100952155112378 a001 10946/2207*843^(3/14) 2100952158289290 a001 1597/39603*5778^(13/18) 2100952159193197 a001 4181/3571*5778^(1/3) 2100952159257740 a001 514229/39603*843^(1/14) 2100952159639701 a001 1597/24476*5778^(2/3) 2100952160400498 a001 1346269/103682*843^(1/14) 2100952160567224 a001 3524578/271443*843^(1/14) 2100952160591549 a001 9227465/710647*843^(1/14) 2100952160595098 a001 24157817/1860498*843^(1/14) 2100952160595616 a001 63245986/4870847*843^(1/14) 2100952160595692 a001 165580141/12752043*843^(1/14) 2100952160595703 a001 433494437/33385282*843^(1/14) 2100952160595704 a001 1134903170/87403803*843^(1/14) 2100952160595705 a001 2971215073/228826127*843^(1/14) 2100952160595705 a001 7778742049/599074578*843^(1/14) 2100952160595705 a001 20365011074/1568397607*843^(1/14) 2100952160595705 a001 53316291173/4106118243*843^(1/14) 2100952160595705 a001 139583862445/10749957122*843^(1/14) 2100952160595705 a001 365435296162/28143753123*843^(1/14) 2100952160595705 a001 956722026041/73681302247*843^(1/14) 2100952160595705 a001 2504730781961/192900153618*843^(1/14) 2100952160595705 a001 10610209857723/817138163596*843^(1/14) 2100952160595705 a001 4052739537881/312119004989*843^(1/14) 2100952160595705 a001 1548008755920/119218851371*843^(1/14) 2100952160595705 a001 591286729879/45537549124*843^(1/14) 2100952160595705 a001 7787980473/599786069*843^(1/14) 2100952160595705 a001 86267571272/6643838879*843^(1/14) 2100952160595705 a001 32951280099/2537720636*843^(1/14) 2100952160595705 a001 12586269025/969323029*843^(1/14) 2100952160595705 a001 4807526976/370248451*843^(1/14) 2100952160595705 a001 1836311903/141422324*843^(1/14) 2100952160595705 a001 701408733/54018521*843^(1/14) 2100952160595710 a001 9238424/711491*843^(1/14) 2100952160595738 a001 102334155/7881196*843^(1/14) 2100952160595936 a001 39088169/3010349*843^(1/14) 2100952160597292 a001 14930352/1149851*843^(1/14) 2100952160606583 a001 5702887/439204*843^(1/14) 2100952160670267 a001 2178309/167761*843^(1/14) 2100952161106762 a001 832040/64079*843^(1/14) 2100952162411760 a001 17711/39603*2207^(1/2) 2100952163636646 a001 1597/64079*5778^(7/9) 2100952164098541 a001 10959/844*843^(1/14) 2100952164699990 a001 23184/51841*2207^(1/2) 2100952165033838 a001 121393/271443*2207^(1/2) 2100952165082546 a001 317811/710647*2207^(1/2) 2100952165089652 a001 416020/930249*2207^(1/2) 2100952165090689 a001 2178309/4870847*2207^(1/2) 2100952165090840 a001 5702887/12752043*2207^(1/2) 2100952165090862 a001 7465176/16692641*2207^(1/2) 2100952165090866 a001 39088169/87403803*2207^(1/2) 2100952165090866 a001 102334155/228826127*2207^(1/2) 2100952165090866 a001 133957148/299537289*2207^(1/2) 2100952165090866 a001 701408733/1568397607*2207^(1/2) 2100952165090866 a001 1836311903/4106118243*2207^(1/2) 2100952165090866 a001 2403763488/5374978561*2207^(1/2) 2100952165090866 a001 12586269025/28143753123*2207^(1/2) 2100952165090866 a001 32951280099/73681302247*2207^(1/2) 2100952165090866 a001 43133785636/96450076809*2207^(1/2) 2100952165090866 a001 225851433717/505019158607*2207^(1/2) 2100952165090866 a001 10610209857723/23725150497407*2207^(1/2) 2100952165090866 a001 182717648081/408569081798*2207^(1/2) 2100952165090866 a001 139583862445/312119004989*2207^(1/2) 2100952165090866 a001 53316291173/119218851371*2207^(1/2) 2100952165090866 a001 10182505537/22768774562*2207^(1/2) 2100952165090866 a001 7778742049/17393796001*2207^(1/2) 2100952165090866 a001 2971215073/6643838879*2207^(1/2) 2100952165090866 a001 567451585/1268860318*2207^(1/2) 2100952165090866 a001 433494437/969323029*2207^(1/2) 2100952165090866 a001 165580141/370248451*2207^(1/2) 2100952165090866 a001 31622993/70711162*2207^(1/2) 2100952165090868 a001 24157817/54018521*2207^(1/2) 2100952165090876 a001 9227465/20633239*2207^(1/2) 2100952165090934 a001 1762289/3940598*2207^(1/2) 2100952165091330 a001 1346269/3010349*2207^(1/2) 2100952165094044 a001 514229/1149851*2207^(1/2) 2100952165112649 a001 98209/219602*2207^(1/2) 2100952165240168 a001 75025/167761*2207^(1/2) 2100952166114194 a001 28657/64079*2207^(1/2) 2100952166114229 a005 (1/cos(4/127*Pi))^621 2100952166425682 a001 1597/103682*5778^(5/6) 2100952168063576 a007 Real Root Of 473*x^4+481*x^3-871*x^2+787*x+743 2100952168607217 a001 28657/3571*2207^(1/8) 2100952170191909 a001 1597/167761*5778^(8/9) 2100952172104858 a001 5473/12238*2207^(1/2) 2100952173177737 a001 1597/9349*5778^(5/9) 2100952173584883 a001 1597/271443*5778^(17/18) 2100952177109535 a004 Fibonacci(17)*Lucas(18)/(1/2+sqrt(5)/2)^27 2100952178301527 h005 exp(sin(Pi*19/59)*sin(Pi*18/53)) 2100952183216972 m001 (ZetaQ(2)+ZetaQ(4))/(1+GAMMA(13/24)) 2100952184604499 a001 121393/9349*843^(1/14) 2100952185130154 a001 23725150497407/6765*144^(14/17) 2100952186374674 a001 6765/24476*2207^(9/16) 2100952186542112 a001 646/6119*2207^(11/16) 2100952187625029 a001 305/2889*1364^(11/15) 2100952187661283 r009 Re(z^3+c),c=-55/102+19/50*I,n=45 2100952189118409 b008 21+Erfc[11/6] 2100952190758533 r009 Re(z^3+c),c=-6/19+13/37*I,n=3 2100952191221224 a001 17711/64079*2207^(9/16) 2100952191928326 a001 46368/167761*2207^(9/16) 2100952192031491 a001 121393/439204*2207^(9/16) 2100952192046542 a001 317811/1149851*2207^(9/16) 2100952192048738 a001 832040/3010349*2207^(9/16) 2100952192049059 a001 2178309/7881196*2207^(9/16) 2100952192049105 a001 5702887/20633239*2207^(9/16) 2100952192049112 a001 14930352/54018521*2207^(9/16) 2100952192049113 a001 39088169/141422324*2207^(9/16) 2100952192049113 a001 102334155/370248451*2207^(9/16) 2100952192049113 a001 267914296/969323029*2207^(9/16) 2100952192049113 a001 701408733/2537720636*2207^(9/16) 2100952192049113 a001 1836311903/6643838879*2207^(9/16) 2100952192049113 a001 4807526976/17393796001*2207^(9/16) 2100952192049113 a001 12586269025/45537549124*2207^(9/16) 2100952192049113 a001 32951280099/119218851371*2207^(9/16) 2100952192049113 a001 86267571272/312119004989*2207^(9/16) 2100952192049113 a001 225851433717/817138163596*2207^(9/16) 2100952192049113 a001 1548008755920/5600748293801*2207^(9/16) 2100952192049113 a001 139583862445/505019158607*2207^(9/16) 2100952192049113 a001 53316291173/192900153618*2207^(9/16) 2100952192049113 a001 20365011074/73681302247*2207^(9/16) 2100952192049113 a001 7778742049/28143753123*2207^(9/16) 2100952192049113 a001 2971215073/10749957122*2207^(9/16) 2100952192049113 a001 1134903170/4106118243*2207^(9/16) 2100952192049113 a001 433494437/1568397607*2207^(9/16) 2100952192049113 a001 165580141/599074578*2207^(9/16) 2100952192049113 a001 63245986/228826127*2207^(9/16) 2100952192049114 a001 24157817/87403803*2207^(9/16) 2100952192049116 a001 9227465/33385282*2207^(9/16) 2100952192049134 a001 3524578/12752043*2207^(9/16) 2100952192049257 a001 1346269/4870847*2207^(9/16) 2100952192050095 a001 514229/1860498*2207^(9/16) 2100952192055845 a001 196418/710647*2207^(9/16) 2100952192095250 a001 75025/271443*2207^(9/16) 2100952192365339 a001 28657/103682*2207^(9/16) 2100952193714247 a001 17711/3571*2207^(3/16) 2100952194216556 a001 10946/39603*2207^(9/16) 2100952194276519 r005 Im(z^2+c),c=-67/78+7/48*I,n=7 2100952195734595 a001 843/165580141*89^(6/19) 2100952199310018 a001 610/9349*1364^(4/5) 2100952199650022 m005 (1/2*Zeta(3)-7/9)/(59/110+3/22*5^(1/2)) 2100952201401841 a001 1597/3571*3571^(8/17) 2100952206904987 a001 4181/15127*2207^(9/16) 2100952208486373 a001 2255/13201*2207^(5/8) 2100952208653810 a001 2584/39603*2207^(3/4) 2100952213165483 a001 4181/9349*2207^(1/2) 2100952216763865 l006 ln(1190/9727) 2100952217472369 a001 17711/103682*2207^(5/8) 2100952218783409 a001 15456/90481*2207^(5/8) 2100952218974687 a001 121393/710647*2207^(5/8) 2100952219002594 a001 105937/620166*2207^(5/8) 2100952219006665 a001 832040/4870847*2207^(5/8) 2100952219007259 a001 726103/4250681*2207^(5/8) 2100952219007346 a001 5702887/33385282*2207^(5/8) 2100952219007359 a001 4976784/29134601*2207^(5/8) 2100952219007361 a001 39088169/228826127*2207^(5/8) 2100952219007361 a001 34111385/199691526*2207^(5/8) 2100952219007361 a001 267914296/1568397607*2207^(5/8) 2100952219007361 a001 233802911/1368706081*2207^(5/8) 2100952219007361 a001 1836311903/10749957122*2207^(5/8) 2100952219007361 a001 1602508992/9381251041*2207^(5/8) 2100952219007361 a001 12586269025/73681302247*2207^(5/8) 2100952219007361 a001 10983760033/64300051206*2207^(5/8) 2100952219007361 a001 86267571272/505019158607*2207^(5/8) 2100952219007361 a001 75283811239/440719107401*2207^(5/8) 2100952219007361 a001 2504730781961/14662949395604*2207^(5/8) 2100952219007361 a001 139583862445/817138163596*2207^(5/8) 2100952219007361 a001 53316291173/312119004989*2207^(5/8) 2100952219007361 a001 20365011074/119218851371*2207^(5/8) 2100952219007361 a001 7778742049/45537549124*2207^(5/8) 2100952219007361 a001 2971215073/17393796001*2207^(5/8) 2100952219007361 a001 1134903170/6643838879*2207^(5/8) 2100952219007361 a001 433494437/2537720636*2207^(5/8) 2100952219007361 a001 165580141/969323029*2207^(5/8) 2100952219007361 a001 63245986/370248451*2207^(5/8) 2100952219007362 a001 24157817/141422324*2207^(5/8) 2100952219007367 a001 9227465/54018521*2207^(5/8) 2100952219007400 a001 3524578/20633239*2207^(5/8) 2100952219007627 a001 1346269/7881196*2207^(5/8) 2100952219009182 a001 514229/3010349*2207^(5/8) 2100952219019841 a001 196418/1149851*2207^(5/8) 2100952219092903 a001 75025/439204*2207^(5/8) 2100952219593676 a001 28657/167761*2207^(5/8) 2100952221263221 r002 7th iterates of z^2 + 2100952223026021 a001 10946/64079*2207^(5/8) 2100952223752920 g001 Psi(1/10,7/96) 2100952225519044 a001 10946/3571*2207^(1/4) 2100952232912650 a005 (1/cos(5/76*Pi))^1640 2100952237295838 a001 6765/64079*2207^(11/16) 2100952237463275 a001 2584/64079*2207^(13/16) 2100952238879211 a001 9062201101803/2584*144^(14/17) 2100952239529429 a007 Real Root Of 485*x^4+770*x^3-694*x^2-570*x-443 2100952239788860 a001 6765/3571*2207^(5/16) 2100952239956298 a001 2584/3571*2207^(7/16) 2100952244700706 a001 17711/167761*2207^(11/16) 2100952245781062 a001 11592/109801*2207^(11/16) 2100952245938684 a001 121393/1149851*2207^(11/16) 2100952245961681 a001 317811/3010349*2207^(11/16) 2100952245965036 a001 208010/1970299*2207^(11/16) 2100952245965525 a001 2178309/20633239*2207^(11/16) 2100952245965597 a001 5702887/54018521*2207^(11/16) 2100952245965607 a001 3732588/35355581*2207^(11/16) 2100952245965609 a001 39088169/370248451*2207^(11/16) 2100952245965609 a001 102334155/969323029*2207^(11/16) 2100952245965609 a001 66978574/634430159*2207^(11/16) 2100952245965609 a001 701408733/6643838879*2207^(11/16) 2100952245965609 a001 1836311903/17393796001*2207^(11/16) 2100952245965609 a001 1201881744/11384387281*2207^(11/16) 2100952245965609 a001 12586269025/119218851371*2207^(11/16) 2100952245965609 a001 32951280099/312119004989*2207^(11/16) 2100952245965609 a001 21566892818/204284540899*2207^(11/16) 2100952245965609 a001 225851433717/2139295485799*2207^(11/16) 2100952245965609 a001 182717648081/1730726404001*2207^(11/16) 2100952245965609 a001 139583862445/1322157322203*2207^(11/16) 2100952245965609 a001 53316291173/505019158607*2207^(11/16) 2100952245965609 a001 10182505537/96450076809*2207^(11/16) 2100952245965609 a001 7778742049/73681302247*2207^(11/16) 2100952245965609 a001 2971215073/28143753123*2207^(11/16) 2100952245965609 a001 567451585/5374978561*2207^(11/16) 2100952245965609 a001 433494437/4106118243*2207^(11/16) 2100952245965609 a001 165580141/1568397607*2207^(11/16) 2100952245965609 a001 31622993/299537289*2207^(11/16) 2100952245965610 a001 24157817/228826127*2207^(11/16) 2100952245965614 a001 9227465/87403803*2207^(11/16) 2100952245965641 a001 1762289/16692641*2207^(11/16) 2100952245965828 a001 1346269/12752043*2207^(11/16) 2100952245967109 a001 514229/4870847*2207^(11/16) 2100952245975893 a001 98209/930249*2207^(11/16) 2100952246036099 a001 75025/710647*2207^(11/16) 2100952246448759 a001 28657/271443*2207^(11/16) 2100952246551666 a001 4181/24476*2207^(5/8) 2100952249277167 a001 5473/51841*2207^(11/16) 2100952263546984 a001 6765/103682*2207^(3/4) 2100952263714421 a001 1292/51841*2207^(7/8) 2100952268663365 a001 4181/39603*2207^(11/16) 2100952268812245 a001 1597/3571*9349^(8/19) 2100952271555790 a001 17711/271443*2207^(3/4) 2100952272724259 a001 6624/101521*2207^(3/4) 2100952272894736 a001 121393/1860498*2207^(3/4) 2100952272919608 a001 317811/4870847*2207^(3/4) 2100952272923237 a001 832040/12752043*2207^(3/4) 2100952272923767 a001 311187/4769326*2207^(3/4) 2100952272923844 a001 5702887/87403803*2207^(3/4) 2100952272923855 a001 14930352/228826127*2207^(3/4) 2100952272923857 a001 39088169/599074578*2207^(3/4) 2100952272923857 a001 14619165/224056801*2207^(3/4) 2100952272923857 a001 267914296/4106118243*2207^(3/4) 2100952272923857 a001 701408733/10749957122*2207^(3/4) 2100952272923857 a001 1836311903/28143753123*2207^(3/4) 2100952272923857 a001 686789568/10525900321*2207^(3/4) 2100952272923857 a001 12586269025/192900153618*2207^(3/4) 2100952272923857 a001 32951280099/505019158607*2207^(3/4) 2100952272923857 a001 86267571272/1322157322203*2207^(3/4) 2100952272923857 a001 32264490531/494493258286*2207^(3/4) 2100952272923857 a001 1548008755920/23725150497407*2207^(3/4) 2100952272923857 a001 139583862445/2139295485799*2207^(3/4) 2100952272923857 a001 53316291173/817138163596*2207^(3/4) 2100952272923857 a001 20365011074/312119004989*2207^(3/4) 2100952272923857 a001 7778742049/119218851371*2207^(3/4) 2100952272923857 a001 2971215073/45537549124*2207^(3/4) 2100952272923857 a001 1134903170/17393796001*2207^(3/4) 2100952272923857 a001 433494437/6643838879*2207^(3/4) 2100952272923857 a001 165580141/2537720636*2207^(3/4) 2100952272923857 a001 63245986/969323029*2207^(3/4) 2100952272923858 a001 24157817/370248451*2207^(3/4) 2100952272923862 a001 9227465/141422324*2207^(3/4) 2100952272923892 a001 3524578/54018521*2207^(3/4) 2100952272924094 a001 1346269/20633239*2207^(3/4) 2100952272925480 a001 514229/7881196*2207^(3/4) 2100952272934980 a001 196418/3010349*2207^(3/4) 2100952272975054 r005 Re(z^2+c),c=-45/44+10/41*I,n=38 2100952273000097 a001 75025/1149851*2207^(3/4) 2100952273446412 a001 28657/439204*2207^(3/4) 2100952276505504 a001 10946/167761*2207^(3/4) 2100952277597219 a001 1597/3571*24476^(8/21) 2100952278755248 a001 1597/3571*64079^(8/23) 2100952278933218 a001 1597/3571*(1/2+1/2*5^(1/2))^8 2100952278933218 a001 1597/3571*23725150497407^(1/8) 2100952278933218 a001 1597/3571*73681302247^(2/13) 2100952278933218 a001 1597/3571*10749957122^(1/6) 2100952278933218 a001 1597/3571*4106118243^(4/23) 2100952278933218 a001 1597/3571*1568397607^(2/11) 2100952278933218 a001 1597/3571*599074578^(4/21) 2100952278933218 a001 1597/3571*228826127^(1/5) 2100952278933218 a001 1597/3571*87403803^(4/19) 2100952278933218 a001 1597/3571*33385282^(2/9) 2100952278933221 a001 1597/3571*12752043^(4/17) 2100952278933240 a001 1597/3571*4870847^(1/4) 2100952278933380 a001 1597/3571*1860498^(4/15) 2100952278934406 a001 1597/3571*710647^(2/7) 2100952278941991 a001 1597/3571*271443^(4/13) 2100952278961719 a001 2550409/121393 2100952278998364 a001 1597/3571*103682^(1/3) 2100952279420328 a001 1597/3571*39603^(4/11) 2100952282605792 a001 1597/3571*15127^(2/5) 2100952283824750 m001 Magata-ln(2+3^(1/2))+Trott 2100952284023829 m005 (3*exp(1)+4)/(1/4*Pi+5) 2100952290775321 a001 615/15251*2207^(13/16) 2100952290942759 a001 2584/167761*2207^(15/16) 2100952293629817 a001 165580141/3*123^(5/18) 2100952293872784 a001 1597/5778*2207^(9/16) 2100952297472831 a001 4181/64079*2207^(3/4) 2100952298553444 a001 17711/439204*2207^(13/16) 2100952299688257 a001 46368/1149851*2207^(13/16) 2100952299853824 a001 121393/3010349*2207^(13/16) 2100952299877979 a001 317811/7881196*2207^(13/16) 2100952299881504 a001 75640/1875749*2207^(13/16) 2100952299882018 a001 2178309/54018521*2207^(13/16) 2100952299882093 a001 5702887/141422324*2207^(13/16) 2100952299882104 a001 14930352/370248451*2207^(13/16) 2100952299882105 a001 39088169/969323029*2207^(13/16) 2100952299882106 a001 9303105/230701876*2207^(13/16) 2100952299882106 a001 267914296/6643838879*2207^(13/16) 2100952299882106 a001 701408733/17393796001*2207^(13/16) 2100952299882106 a001 1836311903/45537549124*2207^(13/16) 2100952299882106 a001 4807526976/119218851371*2207^(13/16) 2100952299882106 a001 1144206275/28374454999*2207^(13/16) 2100952299882106 a001 32951280099/817138163596*2207^(13/16) 2100952299882106 a001 86267571272/2139295485799*2207^(13/16) 2100952299882106 a001 225851433717/5600748293801*2207^(13/16) 2100952299882106 a001 365435296162/9062201101803*2207^(13/16) 2100952299882106 a001 139583862445/3461452808002*2207^(13/16) 2100952299882106 a001 53316291173/1322157322203*2207^(13/16) 2100952299882106 a001 20365011074/505019158607*2207^(13/16) 2100952299882106 a001 7778742049/192900153618*2207^(13/16) 2100952299882106 a001 2971215073/73681302247*2207^(13/16) 2100952299882106 a001 1134903170/28143753123*2207^(13/16) 2100952299882106 a001 433494437/10749957122*2207^(13/16) 2100952299882106 a001 165580141/4106118243*2207^(13/16) 2100952299882106 a001 63245986/1568397607*2207^(13/16) 2100952299882106 a001 24157817/599074578*2207^(13/16) 2100952299882111 a001 9227465/228826127*2207^(13/16) 2100952299882139 a001 3524578/87403803*2207^(13/16) 2100952299882336 a001 1346269/33385282*2207^(13/16) 2100952299883682 a001 514229/12752043*2207^(13/16) 2100952299892909 a001 196418/4870847*2207^(13/16) 2100952299956150 a001 75025/1860498*2207^(13/16) 2100952299965854 a001 4181/3571*2207^(3/8) 2100952300389609 a001 28657/710647*2207^(13/16) 2100952303360588 a001 10946/271443*2207^(13/16) 2100952304858652 l006 ln(1167/9539) 2100952306902326 a001 1597/3571*5778^(4/9) 2100952307246023 a007 Real Root Of 344*x^4+404*x^3-747*x^2-530*x-772 2100952308640597 a001 2576/321*843^(1/7) 2100952308971471 s004 Continued Fraction of A201468 2100952308997492 l006 ln(3101/3826) 2100952312079410 a007 Real Root Of -625*x^4-449*x^3+603*x^2+789*x-187 2100952317630405 a001 2255/90481*2207^(7/8) 2100952317826357 a004 Fibonacci(18)*Lucas(16)/(1/2+sqrt(5)/2)^26 2100952321079042 m005 (5/12+1/4*5^(1/2))/(1/11*Pi-3/4) 2100952323723977 a001 4181/103682*2207^(13/16) 2100952325154442 a001 46368/3571*843^(1/14) 2100952325174583 a007 Real Root Of 268*x^4+528*x^3-352*x^2-987*x-845 2100952325496641 a001 17711/710647*2207^(7/8) 2100952325985695 s004 Continued Fraction of A306259 2100952326644310 a001 2576/103361*2207^(7/8) 2100952326811752 a001 121393/4870847*2207^(7/8) 2100952326836182 a001 105937/4250681*2207^(7/8) 2100952326839746 a001 416020/16692641*2207^(7/8) 2100952326840266 a001 726103/29134601*2207^(7/8) 2100952326840342 a001 5702887/228826127*2207^(7/8) 2100952326840353 a001 829464/33281921*2207^(7/8) 2100952326840354 a001 39088169/1568397607*2207^(7/8) 2100952326840355 a001 34111385/1368706081*2207^(7/8) 2100952326840355 a001 133957148/5374978561*2207^(7/8) 2100952326840355 a001 233802911/9381251041*2207^(7/8) 2100952326840355 a001 1836311903/73681302247*2207^(7/8) 2100952326840355 a001 267084832/10716675201*2207^(7/8) 2100952326840355 a001 12586269025/505019158607*2207^(7/8) 2100952326840355 a001 10983760033/440719107401*2207^(7/8) 2100952326840355 a001 43133785636/1730726404001*2207^(7/8) 2100952326840355 a001 75283811239/3020733700601*2207^(7/8) 2100952326840355 a001 182717648081/7331474697802*2207^(7/8) 2100952326840355 a001 139583862445/5600748293801*2207^(7/8) 2100952326840355 a001 53316291173/2139295485799*2207^(7/8) 2100952326840355 a001 10182505537/408569081798*2207^(7/8) 2100952326840355 a001 7778742049/312119004989*2207^(7/8) 2100952326840355 a001 2971215073/119218851371*2207^(7/8) 2100952326840355 a001 567451585/22768774562*2207^(7/8) 2100952326840355 a001 433494437/17393796001*2207^(7/8) 2100952326840355 a001 165580141/6643838879*2207^(7/8) 2100952326840355 a001 31622993/1268860318*2207^(7/8) 2100952326840355 a001 24157817/969323029*2207^(7/8) 2100952326840360 a001 9227465/370248451*2207^(7/8) 2100952326840389 a001 1762289/70711162*2207^(7/8) 2100952326840587 a001 1346269/54018521*2207^(7/8) 2100952326841949 a001 514229/20633239*2207^(7/8) 2100952326851280 a001 98209/3940598*2207^(7/8) 2100952326915237 a001 75025/3010349*2207^(7/8) 2100952327353608 a001 28657/1149851*2207^(7/8) 2100952329074525 r005 Re(z^2+c),c=-13/62+35/48*I,n=19 2100952329370288 a003 sin(Pi*1/91)+sin(Pi*5/89) 2100952330358242 a001 5473/219602*2207^(7/8) 2100952337762786 s004 Continued Fraction of A068142 2100952337762786 s004 Continued fraction of A068142 2100952337763350 s004 Continued fraction of A069499 2100952339156455 s004 Continued Fraction of A126229 2100952339156455 s004 Continued fraction of A126229 2100952344628060 a001 6765/439204*2207^(15/16) 2100952350952316 a001 4181/167761*2207^(7/8) 2100952352460640 a001 17711/1149851*2207^(15/16) 2100952353144686 s002 sum(A061724[n]/(exp(2*pi*n)+1),n=1..infinity) 2100952353530909 m001 ln(MertensB1/FellerTornier) 2100952353594770 a001 6765/2207*843^(2/7) 2100952353603398 a001 46368/3010349*2207^(15/16) 2100952353770124 a001 121393/7881196*2207^(15/16) 2100952353794449 a001 10959/711491*2207^(15/16) 2100952353797998 a001 832040/54018521*2207^(15/16) 2100952353798516 a001 2178309/141422324*2207^(15/16) 2100952353798591 a001 5702887/370248451*2207^(15/16) 2100952353798602 a001 14930352/969323029*2207^(15/16) 2100952353798604 a001 39088169/2537720636*2207^(15/16) 2100952353798604 a001 102334155/6643838879*2207^(15/16) 2100952353798604 a001 9238424/599786069*2207^(15/16) 2100952353798604 a001 701408733/45537549124*2207^(15/16) 2100952353798604 a001 1836311903/119218851371*2207^(15/16) 2100952353798604 a001 4807526976/312119004989*2207^(15/16) 2100952353798604 a001 12586269025/817138163596*2207^(15/16) 2100952353798604 a001 32951280099/2139295485799*2207^(15/16) 2100952353798604 a001 86267571272/5600748293801*2207^(15/16) 2100952353798604 a001 7787980473/505618944676*2207^(15/16) 2100952353798604 a001 365435296162/23725150497407*2207^(15/16) 2100952353798604 a001 139583862445/9062201101803*2207^(15/16) 2100952353798604 a001 53316291173/3461452808002*2207^(15/16) 2100952353798604 a001 20365011074/1322157322203*2207^(15/16) 2100952353798604 a001 7778742049/505019158607*2207^(15/16) 2100952353798604 a001 2971215073/192900153618*2207^(15/16) 2100952353798604 a001 1134903170/73681302247*2207^(15/16) 2100952353798604 a001 433494437/28143753123*2207^(15/16) 2100952353798604 a001 165580141/10749957122*2207^(15/16) 2100952353798604 a001 63245986/4106118243*2207^(15/16) 2100952353798605 a001 24157817/1568397607*2207^(15/16) 2100952353798609 a001 9227465/599074578*2207^(15/16) 2100952353798638 a001 3524578/228826127*2207^(15/16) 2100952353798836 a001 1346269/87403803*2207^(15/16) 2100952353800191 a001 514229/33385282*2207^(15/16) 2100952353809483 a001 196418/12752043*2207^(15/16) 2100952353873166 a001 75025/4870847*2207^(15/16) 2100952354309661 a001 28657/1860498*2207^(15/16) 2100952354959500 a007 Real Root Of 278*x^4+15*x^3-919*x^2+226*x-746 2100952355047642 m001 exp(Pi)*AlladiGrinstead+BesselI(0,2) 2100952357301440 a001 10946/710647*2207^(15/16) 2100952360930100 s004 Continued Fraction of A235876 2100952360930100 s004 Continued fraction of A235876 2100952361072840 a001 2255/281*322^(1/6) 2100952362556580 a001 121393/15127*843^(1/7) 2100952363909107 r005 Im(z^2+c),c=31/110+1/36*I,n=24 2100952366137109 a007 Real Root Of 45*x^4+917*x^3-563*x^2+740*x+420 2100952367535078 a007 Real Root Of -659*x^4-898*x^3+674*x^2-345*x+812 2100952370422816 a001 105937/13201*843^(1/7) 2100952371570485 a001 416020/51841*843^(1/7) 2100952371575418 a004 Fibonacci(20)*Lucas(16)/(1/2+sqrt(5)/2)^28 2100952371737927 a001 726103/90481*843^(1/7) 2100952371762357 a001 5702887/710647*843^(1/7) 2100952371765921 a001 829464/103361*843^(1/7) 2100952371766441 a001 39088169/4870847*843^(1/7) 2100952371766517 a001 34111385/4250681*843^(1/7) 2100952371766528 a001 133957148/16692641*843^(1/7) 2100952371766530 a001 233802911/29134601*843^(1/7) 2100952371766530 a001 1836311903/228826127*843^(1/7) 2100952371766530 a001 267084832/33281921*843^(1/7) 2100952371766530 a001 12586269025/1568397607*843^(1/7) 2100952371766530 a001 10983760033/1368706081*843^(1/7) 2100952371766530 a001 43133785636/5374978561*843^(1/7) 2100952371766530 a001 75283811239/9381251041*843^(1/7) 2100952371766530 a001 591286729879/73681302247*843^(1/7) 2100952371766530 a001 86000486440/10716675201*843^(1/7) 2100952371766530 a001 4052739537881/505019158607*843^(1/7) 2100952371766530 a001 3278735159921/408569081798*843^(1/7) 2100952371766530 a001 2504730781961/312119004989*843^(1/7) 2100952371766530 a001 956722026041/119218851371*843^(1/7) 2100952371766530 a001 182717648081/22768774562*843^(1/7) 2100952371766530 a001 139583862445/17393796001*843^(1/7) 2100952371766530 a001 53316291173/6643838879*843^(1/7) 2100952371766530 a001 10182505537/1268860318*843^(1/7) 2100952371766530 a001 7778742049/969323029*843^(1/7) 2100952371766530 a001 2971215073/370248451*843^(1/7) 2100952371766530 a001 567451585/70711162*843^(1/7) 2100952371766531 a001 433494437/54018521*843^(1/7) 2100952371766535 a001 165580141/20633239*843^(1/7) 2100952371766564 a001 31622993/3940598*843^(1/7) 2100952371766762 a001 24157817/3010349*843^(1/7) 2100952371768124 a001 9227465/1149851*843^(1/7) 2100952371777455 a001 1762289/219602*843^(1/7) 2100952371841412 a001 1346269/167761*843^(1/7) 2100952372279783 a001 514229/64079*843^(1/7) 2100952375284418 a001 98209/12238*843^(1/7) 2100952376702027 s004 Continued Fraction of A219631 2100952376702027 s004 Continued fraction of A219631 2100952376850049 s004 Continued Fraction of A226742 2100952376850049 s004 Continued fraction of A226742 2100952377807401 a001 4181/271443*2207^(15/16) 2100952379417300 a004 Fibonacci(22)*Lucas(16)/(1/2+sqrt(5)/2)^30 2100952380561415 a004 Fibonacci(24)*Lucas(16)/(1/2+sqrt(5)/2)^32 2100952380728340 a004 Fibonacci(26)*Lucas(16)/(1/2+sqrt(5)/2)^34 2100952380752694 a004 Fibonacci(28)*Lucas(16)/(1/2+sqrt(5)/2)^36 2100952380756247 a004 Fibonacci(30)*Lucas(16)/(1/2+sqrt(5)/2)^38 2100952380756765 a004 Fibonacci(32)*Lucas(16)/(1/2+sqrt(5)/2)^40 2100952380756841 a004 Fibonacci(34)*Lucas(16)/(1/2+sqrt(5)/2)^42 2100952380756852 a004 Fibonacci(36)*Lucas(16)/(1/2+sqrt(5)/2)^44 2100952380756853 a004 Fibonacci(38)*Lucas(16)/(1/2+sqrt(5)/2)^46 2100952380756854 a004 Fibonacci(40)*Lucas(16)/(1/2+sqrt(5)/2)^48 2100952380756854 a004 Fibonacci(42)*Lucas(16)/(1/2+sqrt(5)/2)^50 2100952380756854 a004 Fibonacci(44)*Lucas(16)/(1/2+sqrt(5)/2)^52 2100952380756854 a004 Fibonacci(46)*Lucas(16)/(1/2+sqrt(5)/2)^54 2100952380756854 a004 Fibonacci(48)*Lucas(16)/(1/2+sqrt(5)/2)^56 2100952380756854 a004 Fibonacci(50)*Lucas(16)/(1/2+sqrt(5)/2)^58 2100952380756854 a004 Fibonacci(52)*Lucas(16)/(1/2+sqrt(5)/2)^60 2100952380756854 a004 Fibonacci(54)*Lucas(16)/(1/2+sqrt(5)/2)^62 2100952380756854 a004 Fibonacci(56)*Lucas(16)/(1/2+sqrt(5)/2)^64 2100952380756854 a004 Fibonacci(58)*Lucas(16)/(1/2+sqrt(5)/2)^66 2100952380756854 a004 Fibonacci(60)*Lucas(16)/(1/2+sqrt(5)/2)^68 2100952380756854 a004 Fibonacci(62)*Lucas(16)/(1/2+sqrt(5)/2)^70 2100952380756854 a004 Fibonacci(64)*Lucas(16)/(1/2+sqrt(5)/2)^72 2100952380756854 a004 Fibonacci(66)*Lucas(16)/(1/2+sqrt(5)/2)^74 2100952380756854 a004 Fibonacci(68)*Lucas(16)/(1/2+sqrt(5)/2)^76 2100952380756854 a004 Fibonacci(70)*Lucas(16)/(1/2+sqrt(5)/2)^78 2100952380756854 a004 Fibonacci(72)*Lucas(16)/(1/2+sqrt(5)/2)^80 2100952380756854 a004 Fibonacci(74)*Lucas(16)/(1/2+sqrt(5)/2)^82 2100952380756854 a004 Fibonacci(76)*Lucas(16)/(1/2+sqrt(5)/2)^84 2100952380756854 a004 Fibonacci(78)*Lucas(16)/(1/2+sqrt(5)/2)^86 2100952380756854 a004 Fibonacci(80)*Lucas(16)/(1/2+sqrt(5)/2)^88 2100952380756854 a004 Fibonacci(82)*Lucas(16)/(1/2+sqrt(5)/2)^90 2100952380756854 a004 Fibonacci(84)*Lucas(16)/(1/2+sqrt(5)/2)^92 2100952380756854 a004 Fibonacci(86)*Lucas(16)/(1/2+sqrt(5)/2)^94 2100952380756854 a004 Fibonacci(88)*Lucas(16)/(1/2+sqrt(5)/2)^96 2100952380756854 a004 Fibonacci(90)*Lucas(16)/(1/2+sqrt(5)/2)^98 2100952380756854 a004 Fibonacci(92)*Lucas(16)/(1/2+sqrt(5)/2)^100 2100952380756854 a004 Fibonacci(91)*Lucas(16)/(1/2+sqrt(5)/2)^99 2100952380756854 a004 Fibonacci(89)*Lucas(16)/(1/2+sqrt(5)/2)^97 2100952380756854 a004 Fibonacci(87)*Lucas(16)/(1/2+sqrt(5)/2)^95 2100952380756854 a004 Fibonacci(85)*Lucas(16)/(1/2+sqrt(5)/2)^93 2100952380756854 a004 Fibonacci(83)*Lucas(16)/(1/2+sqrt(5)/2)^91 2100952380756854 a004 Fibonacci(81)*Lucas(16)/(1/2+sqrt(5)/2)^89 2100952380756854 a004 Fibonacci(79)*Lucas(16)/(1/2+sqrt(5)/2)^87 2100952380756854 a004 Fibonacci(77)*Lucas(16)/(1/2+sqrt(5)/2)^85 2100952380756854 a004 Fibonacci(75)*Lucas(16)/(1/2+sqrt(5)/2)^83 2100952380756854 a004 Fibonacci(73)*Lucas(16)/(1/2+sqrt(5)/2)^81 2100952380756854 a004 Fibonacci(71)*Lucas(16)/(1/2+sqrt(5)/2)^79 2100952380756854 a004 Fibonacci(69)*Lucas(16)/(1/2+sqrt(5)/2)^77 2100952380756854 a004 Fibonacci(67)*Lucas(16)/(1/2+sqrt(5)/2)^75 2100952380756854 a004 Fibonacci(65)*Lucas(16)/(1/2+sqrt(5)/2)^73 2100952380756854 a004 Fibonacci(63)*Lucas(16)/(1/2+sqrt(5)/2)^71 2100952380756854 a004 Fibonacci(61)*Lucas(16)/(1/2+sqrt(5)/2)^69 2100952380756854 a004 Fibonacci(59)*Lucas(16)/(1/2+sqrt(5)/2)^67 2100952380756854 a004 Fibonacci(57)*Lucas(16)/(1/2+sqrt(5)/2)^65 2100952380756854 a004 Fibonacci(55)*Lucas(16)/(1/2+sqrt(5)/2)^63 2100952380756854 a004 Fibonacci(53)*Lucas(16)/(1/2+sqrt(5)/2)^61 2100952380756854 a004 Fibonacci(51)*Lucas(16)/(1/2+sqrt(5)/2)^59 2100952380756854 a004 Fibonacci(49)*Lucas(16)/(1/2+sqrt(5)/2)^57 2100952380756854 a004 Fibonacci(47)*Lucas(16)/(1/2+sqrt(5)/2)^55 2100952380756854 a004 Fibonacci(45)*Lucas(16)/(1/2+sqrt(5)/2)^53 2100952380756854 a004 Fibonacci(43)*Lucas(16)/(1/2+sqrt(5)/2)^51 2100952380756854 a004 Fibonacci(41)*Lucas(16)/(1/2+sqrt(5)/2)^49 2100952380756854 a004 Fibonacci(39)*Lucas(16)/(1/2+sqrt(5)/2)^47 2100952380756854 a004 Fibonacci(37)*Lucas(16)/(1/2+sqrt(5)/2)^45 2100952380756859 a004 Fibonacci(35)*Lucas(16)/(1/2+sqrt(5)/2)^43 2100952380756888 a004 Fibonacci(33)*Lucas(16)/(1/2+sqrt(5)/2)^41 2100952380756942 a001 2/987*(1/2+1/2*5^(1/2))^24 2100952380757086 a004 Fibonacci(31)*Lucas(16)/(1/2+sqrt(5)/2)^39 2100952380758443 a004 Fibonacci(29)*Lucas(16)/(1/2+sqrt(5)/2)^37 2100952380767745 a004 Fibonacci(27)*Lucas(16)/(1/2+sqrt(5)/2)^35 2100952380831504 a004 Fibonacci(25)*Lucas(16)/(1/2+sqrt(5)/2)^33 2100952380952380 q001 1103/525 2100952381268518 a004 Fibonacci(23)*Lucas(16)/(1/2+sqrt(5)/2)^31 2100952381909334 l003 hypergeom([1,1,3/2],[4/3,5/3],47/69) 2100952383013903 m001 arctan(1/3)+KhinchinLevy+Lehmer 2100952383545487 m001 Riemann1stZero^2/FransenRobinson/ln(Zeta(3))^2 2100952384263850 a004 Fibonacci(21)*Lucas(16)/(1/2+sqrt(5)/2)^29 2100952393440572 m001 (2^(1/2)+Si(Pi))/(ln(Pi)+HardyLittlewoodC5) 2100952395878492 a001 75025/9349*843^(1/7) 2100952396495703 l006 ln(1144/9351) 2100952400535222 m001 (GAMMA(3/4)-ln(3))/(BesselK(1,1)+ZetaQ(4)) 2100952401538342 a001 1597/15127*2207^(11/16) 2100952404198218 r005 Im(z^2+c),c=-35/86+19/54*I,n=39 2100952404794165 a004 Fibonacci(19)*Lucas(16)/(1/2+sqrt(5)/2)^27 2100952404962951 a007 Real Root Of -86*x^4+90*x^3+501*x^2-87*x+116 2100952406961990 m006 (2*Pi-3)/(2/3*exp(Pi)+1/5) 2100952407798839 a001 1597/9349*2207^(5/8) 2100952411641522 m001 ln(5)/BesselI(1,1)/FeigenbaumKappa 2100952412955975 m001 (-LaplaceLimit+MertensB1)/(1-cos(1/5*Pi)) 2100952421966760 h001 (9/10*exp(1)+2/5)/(5/12*exp(1)+2/9) 2100952423372267 a003 sin(Pi*43/99)-sin(Pi*40/81) 2100952438533788 a007 Real Root Of -145*x^4-44*x^3+17*x^2-753*x+760 2100952438665404 p001 sum((-1)^n/(41*n+33)/n/(64^n),n=0..infinity) 2100952439397507 m005 (4*Pi-1/5)/(5*gamma+3) 2100952441185025 a001 1597/24476*2207^(3/4) 2100952442520323 m001 GAMMA(3/4)^AlladiGrinstead*Grothendieck 2100952444917840 r005 Re(z^2+c),c=-7/50+12/25*I,n=44 2100952448206253 m001 1/LambertW(1)^2*Champernowne/ln(sin(Pi/12))^2 2100952452788005 m001 Mills^(FeigenbaumD/cos(1/12*Pi)) 2100952457212623 m001 (ln(2)-DuboisRaymond)/(Kac+MadelungNaCl) 2100952458933645 r005 Re(z^2+c),c=27/110+13/28*I,n=48 2100952463296725 a001 1597/39603*2207^(13/16) 2100952463753081 s002 sum(A013593[n]/(n*10^n-1),n=1..infinity) 2100952467380920 b008 JacobiNS[1/21,1/5] 2100952468299366 m001 (KhinchinHarmonic+Salem)/(ln(2)+ArtinRank2) 2100952472178207 m001 (-LandauRamanujan+Magata)/(exp(1)+Zeta(1/2)) 2100952476094970 r005 Re(z^2+c),c=-139/106+19/29*I,n=2 2100952481946501 a001 17711/1364*521^(1/13) 2100952482820568 r005 Im(z^2+c),c=-10/19+18/47*I,n=61 2100952490592521 a001 610/3571*1364^(2/3) 2100952491893053 l006 ln(1121/9163) 2100952492106194 a001 1597/64079*2207^(7/8) 2100952494375003 r005 Im(z^2+c),c=-35/78+16/33*I,n=15 2100952494599217 a001 1597/3571*2207^(1/2) 2100952513417747 r005 Im(z^2+c),c=11/106+11/60*I,n=20 2100952516237592 a007 Real Root Of 334*x^4+190*x^3-785*x^2+926*x+665 2100952518357343 a001 1597/103682*2207^(15/16) 2100952519528613 a007 Real Root Of 15*x^4-290*x^3-820*x^2-613*x-650 2100952520518539 a001 28657/5778*843^(3/14) 2100952533258321 a001 233/2*7^(10/33) 2100952537032385 a001 28657/3571*843^(1/7) 2100952537669350 m006 (Pi^2-4/5)/(1/Pi-3/4) 2100952541198525 m001 Zeta(5)^2/BesselK(0,1)^2*exp(sqrt(Pi))^2 2100952543283672 r005 Im(z^2+c),c=11/106+11/60*I,n=19 2100952545511033 a004 Fibonacci(17)*Lucas(16)/(1/2+sqrt(5)/2)^25 2100952546163498 r005 Re(z^2+c),c=-17/114+15/52*I,n=2 2100952560111704 a001 610/2207*3571^(9/17) 2100952560641704 m001 Bloch/(FeigenbaumC+PrimesInBinary) 2100952565315311 a001 377/521*521^(7/13) 2100952573274396 r005 Re(z^2+c),c=-7/118+25/42*I,n=52 2100952573830590 a001 75025/15127*843^(3/14) 2100952579495070 a001 987/1364*3571^(7/17) 2100952581470583 m001 (GAMMA(7/12)-Trott)/(arctan(1/2)+sin(1/12*Pi)) 2100952581608714 a001 196418/39603*843^(3/14) 2100952581623025 a007 Real Root Of 303*x^4-178*x^3-247*x^2-541*x-105 2100952582032367 r005 Im(z^2+c),c=-109/90+8/59*I,n=50 2100952582215947 r005 Im(z^2+c),c=11/106+11/60*I,n=21 2100952582743527 a001 514229/103682*843^(3/14) 2100952582909094 a001 1346269/271443*843^(3/14) 2100952582933250 a001 3524578/710647*843^(3/14) 2100952582936774 a001 9227465/1860498*843^(3/14) 2100952582937288 a001 24157817/4870847*843^(3/14) 2100952582937363 a001 63245986/12752043*843^(3/14) 2100952582937374 a001 165580141/33385282*843^(3/14) 2100952582937376 a001 433494437/87403803*843^(3/14) 2100952582937376 a001 1134903170/228826127*843^(3/14) 2100952582937376 a001 2971215073/599074578*843^(3/14) 2100952582937376 a001 7778742049/1568397607*843^(3/14) 2100952582937376 a001 20365011074/4106118243*843^(3/14) 2100952582937376 a001 53316291173/10749957122*843^(3/14) 2100952582937376 a001 139583862445/28143753123*843^(3/14) 2100952582937376 a001 365435296162/73681302247*843^(3/14) 2100952582937376 a001 956722026041/192900153618*843^(3/14) 2100952582937376 a001 2504730781961/505019158607*843^(3/14) 2100952582937376 a001 10610209857723/2139295485799*843^(3/14) 2100952582937376 a001 4052739537881/817138163596*843^(3/14) 2100952582937376 a001 140728068720/28374454999*843^(3/14) 2100952582937376 a001 591286729879/119218851371*843^(3/14) 2100952582937376 a001 225851433717/45537549124*843^(3/14) 2100952582937376 a001 86267571272/17393796001*843^(3/14) 2100952582937376 a001 32951280099/6643838879*843^(3/14) 2100952582937376 a001 1144206275/230701876*843^(3/14) 2100952582937376 a001 4807526976/969323029*843^(3/14) 2100952582937376 a001 1836311903/370248451*843^(3/14) 2100952582937376 a001 701408733/141422324*843^(3/14) 2100952582937377 a001 267914296/54018521*843^(3/14) 2100952582937381 a001 9303105/1875749*843^(3/14) 2100952582937410 a001 39088169/7881196*843^(3/14) 2100952582937606 a001 14930352/3010349*843^(3/14) 2100952582938952 a001 5702887/1149851*843^(3/14) 2100952582948179 a001 2178309/439204*843^(3/14) 2100952583011420 a001 75640/15251*843^(3/14) 2100952583444880 a001 317811/64079*843^(3/14) 2100952586415859 a001 121393/24476*843^(3/14) 2100952591287003 l006 ln(1098/8975) 2100952591606657 r005 Im(z^2+c),c=11/106+11/60*I,n=25 2100952591812718 r005 Im(z^2+c),c=11/106+11/60*I,n=24 2100952592779640 r005 Im(z^2+c),c=11/106+11/60*I,n=26 2100952592877405 r005 Im(z^2+c),c=11/106+11/60*I,n=29 2100952592878666 r005 Im(z^2+c),c=11/106+11/60*I,n=30 2100952592898440 r005 Im(z^2+c),c=11/106+11/60*I,n=31 2100952592899060 r005 Im(z^2+c),c=11/106+11/60*I,n=34 2100952592899155 r005 Im(z^2+c),c=11/106+11/60*I,n=35 2100952592899479 r005 Im(z^2+c),c=11/106+11/60*I,n=39 2100952592899482 r005 Im(z^2+c),c=11/106+11/60*I,n=40 2100952592899485 r005 Im(z^2+c),c=11/106+11/60*I,n=36 2100952592899487 r005 Im(z^2+c),c=11/106+11/60*I,n=44 2100952592899487 r005 Im(z^2+c),c=11/106+11/60*I,n=45 2100952592899487 r005 Im(z^2+c),c=11/106+11/60*I,n=49 2100952592899487 r005 Im(z^2+c),c=11/106+11/60*I,n=50 2100952592899487 r005 Im(z^2+c),c=11/106+11/60*I,n=54 2100952592899487 r005 Im(z^2+c),c=11/106+11/60*I,n=55 2100952592899487 r005 Im(z^2+c),c=11/106+11/60*I,n=59 2100952592899487 r005 Im(z^2+c),c=11/106+11/60*I,n=60 2100952592899487 r005 Im(z^2+c),c=11/106+11/60*I,n=64 2100952592899487 r005 Im(z^2+c),c=11/106+11/60*I,n=63 2100952592899487 r005 Im(z^2+c),c=11/106+11/60*I,n=62 2100952592899487 r005 Im(z^2+c),c=11/106+11/60*I,n=61 2100952592899487 r005 Im(z^2+c),c=11/106+11/60*I,n=58 2100952592899487 r005 Im(z^2+c),c=11/106+11/60*I,n=56 2100952592899487 r005 Im(z^2+c),c=11/106+11/60*I,n=57 2100952592899487 r005 Im(z^2+c),c=11/106+11/60*I,n=53 2100952592899487 r005 Im(z^2+c),c=11/106+11/60*I,n=51 2100952592899487 r005 Im(z^2+c),c=11/106+11/60*I,n=52 2100952592899487 r005 Im(z^2+c),c=11/106+11/60*I,n=48 2100952592899487 r005 Im(z^2+c),c=11/106+11/60*I,n=46 2100952592899487 r005 Im(z^2+c),c=11/106+11/60*I,n=47 2100952592899488 r005 Im(z^2+c),c=11/106+11/60*I,n=41 2100952592899488 r005 Im(z^2+c),c=11/106+11/60*I,n=43 2100952592899488 r005 Im(z^2+c),c=11/106+11/60*I,n=42 2100952592899504 r005 Im(z^2+c),c=11/106+11/60*I,n=38 2100952592899551 r005 Im(z^2+c),c=11/106+11/60*I,n=37 2100952592900644 r005 Im(z^2+c),c=11/106+11/60*I,n=33 2100952592903235 r005 Im(z^2+c),c=11/106+11/60*I,n=32 2100952592978310 r005 Im(z^2+c),c=11/106+11/60*I,n=28 2100952593118194 r005 Im(z^2+c),c=11/106+11/60*I,n=27 2100952593963518 m001 (Shi(1)+Ei(1))/(-GAMMA(7/12)+Champernowne) 2100952597984365 a001 4181/2207*843^(5/14) 2100952598169404 r005 Im(z^2+c),c=11/106+11/60*I,n=23 2100952599180561 m005 (1/2*Pi-1/7)/(3/5*gamma+1/3) 2100952601146288 m001 (Champernowne-ReciprocalLucas)/ZetaQ(3) 2100952605500694 r005 Im(z^2+c),c=11/106+11/60*I,n=22 2100952606779251 a001 46368/9349*843^(3/14) 2100952607280807 a001 494493258286/141*144^(14/17) 2100952609962920 r002 4th iterates of z^2 + 2100952615396183 m009 (2/5*Pi^2-4)/(1/6*Psi(1,1/3)+4/5) 2100952615897661 a007 Real Root Of 27*x^4+574*x^3+173*x^2+651*x-155 2100952616133620 a007 Real Root Of -876*x^4-714*x^3-768*x^2+815*x-129 2100952625350168 p004 log(26737/3271) 2100952627359436 a007 Real Root Of -248*x^4-188*x^3+667*x^2-429*x-757 2100952635948422 a001 610/2207*9349^(9/19) 2100952638479184 a001 987/1364*9349^(7/19) 2100952639322540 a001 646/341*1364^(1/3) 2100952642553363 m001 (Ei(1)-GAMMA(19/24))/(CopelandErdos+OneNinth) 2100952645831519 a001 610/2207*24476^(3/7) 2100952646166037 a001 987/1364*24476^(1/3) 2100952646822765 a001 602070/28657 2100952647134301 a001 610/2207*64079^(9/23) 2100952647179312 a001 987/1364*64079^(7/23) 2100952647330887 a001 610/2207*439204^(1/3) 2100952647334509 a001 610/2207*7881196^(3/11) 2100952647334518 a001 610/2207*141422324^(3/13) 2100952647334518 a001 610/2207*2537720636^(1/5) 2100952647334518 a001 610/2207*45537549124^(3/17) 2100952647334518 a001 610/2207*817138163596^(3/19) 2100952647334518 a001 610/2207*14662949395604^(1/7) 2100952647334518 a001 610/2207*(1/2+1/2*5^(1/2))^9 2100952647334518 a001 610/2207*192900153618^(1/6) 2100952647334518 a001 610/2207*10749957122^(3/16) 2100952647334518 a001 610/2207*599074578^(3/14) 2100952647334518 a001 610/2207*33385282^(1/4) 2100952647334700 a001 610/2207*1860498^(3/10) 2100952647335035 a001 987/1364*20633239^(1/5) 2100952647335036 a001 987/1364*17393796001^(1/7) 2100952647335036 a001 987/1364*14662949395604^(1/9) 2100952647335036 a001 987/1364*(1/2+1/2*5^(1/2))^7 2100952647335036 a001 987/1364*599074578^(1/6) 2100952647336076 a001 987/1364*710647^(1/4) 2100952647392039 a001 987/1364*103682^(7/24) 2100952647407807 a001 610/2207*103682^(3/8) 2100952647761258 a001 987/1364*39603^(7/22) 2100952647882517 a001 610/2207*39603^(9/22) 2100952650548539 a001 987/1364*15127^(7/20) 2100952651466164 a001 610/2207*15127^(9/20) 2100952667345232 r005 Im(z^2+c),c=-11/36+14/43*I,n=20 2100952671808010 a001 987/1364*5778^(7/18) 2100952678799770 a001 610/2207*5778^(1/2) 2100952688342515 a003 sin(Pi*5/71)*sin(Pi*24/59) 2100952691817287 h001 (3/7*exp(1)+1/9)/(8/11*exp(2)+7/10) 2100952692316889 m001 HardHexagonsEntropy^2/Cahen/ln(MinimumGamma)^2 2100952694934079 l006 ln(1075/8787) 2100952702982375 l006 ln(6634/8185) 2100952704014065 r005 Re(z^2+c),c=13/44+5/24*I,n=36 2100952708826478 a001 233/2207*521^(11/13) 2100952709531607 a001 233/3571*521^(12/13) 2100952711322235 r005 Im(z^2+c),c=-133/110+13/58*I,n=5 2100952711862023 a007 Real Root Of 643*x^4+878*x^3-551*x^2+936*x+13 2100952714196646 a007 Real Root Of -399*x^4-586*x^3+115*x^2-564*x+647 2100952720294536 m001 FellerTornier^Mills/(FellerTornier^gamma(1)) 2100952722187410 a001 2584/2207*843^(3/7) 2100952723132996 s002 sum(A185047[n]/((2^n+1)/n),n=1..infinity) 2100952727263137 m005 (1/3*Catalan+2/9)/(6/7*Pi-2/11) 2100952728048518 r005 Im(z^2+c),c=-29/40+19/53*I,n=27 2100952729838183 a001 17711/5778*843^(2/7) 2100952733314798 r005 Re(z^2+c),c=-23/28+3/46*I,n=54 2100952733381826 m001 Pi^(1/2)+LambertW(1)^ReciprocalLucas 2100952742113393 m005 (1/2*3^(1/2)+2/9)/(91/18+1/18*5^(1/2)) 2100952743427179 m008 (4*Pi^3+1/6)/(3/5*Pi^4+2/3) 2100952746352031 a001 17711/3571*843^(3/14) 2100952746618215 r005 Im(z^2+c),c=-5/16+18/55*I,n=28 2100952749286826 m001 (FeigenbaumD+MasserGramainDelta)/(1+ln(Pi)) 2100952750143928 a001 161/567451585*832040^(6/19) 2100952750144120 a001 161/10182505537*7778742049^(6/19) 2100952751681846 r005 Im(z^2+c),c=-6/31+8/27*I,n=8 2100952762536690 b008 21+BesselK[0,1+Pi] 2100952767925049 m001 Catalan*exp(Riemann2ndZero)/sin(Pi/5) 2100952776127504 a001 987/2207*843^(4/7) 2100952778953557 m009 (5*Psi(1,3/4)-1/3)/(3/5*Psi(1,1/3)-1/6) 2100952779208770 r002 52th iterates of z^2 + 2100952784731368 a001 6624/2161*843^(2/7) 2100952786243638 m001 Riemann3rdZero*ln(Riemann2ndZero)/GAMMA(1/4) 2100952789094430 a008 Real Root of x^3-x^2+13*x+41 2100952791724419 a001 1597/1364*1364^(2/5) 2100952792740176 a001 121393/39603*843^(2/7) 2100952793908646 a001 317811/103682*843^(2/7) 2100952794079123 a001 832040/271443*843^(2/7) 2100952794103995 a001 311187/101521*843^(2/7) 2100952794107624 a001 5702887/1860498*843^(2/7) 2100952794108154 a001 14930352/4870847*843^(2/7) 2100952794108231 a001 39088169/12752043*843^(2/7) 2100952794108242 a001 14619165/4769326*843^(2/7) 2100952794108244 a001 267914296/87403803*843^(2/7) 2100952794108244 a001 701408733/228826127*843^(2/7) 2100952794108244 a001 1836311903/599074578*843^(2/7) 2100952794108244 a001 686789568/224056801*843^(2/7) 2100952794108244 a001 12586269025/4106118243*843^(2/7) 2100952794108244 a001 32951280099/10749957122*843^(2/7) 2100952794108244 a001 86267571272/28143753123*843^(2/7) 2100952794108244 a001 32264490531/10525900321*843^(2/7) 2100952794108244 a001 591286729879/192900153618*843^(2/7) 2100952794108244 a001 1515744265389/494493258286*843^(2/7) 2100952794108244 a001 2504730781961/817138163596*843^(2/7) 2100952794108244 a001 956722026041/312119004989*843^(2/7) 2100952794108244 a001 365435296162/119218851371*843^(2/7) 2100952794108244 a001 139583862445/45537549124*843^(2/7) 2100952794108244 a001 53316291173/17393796001*843^(2/7) 2100952794108244 a001 20365011074/6643838879*843^(2/7) 2100952794108244 a001 7778742049/2537720636*843^(2/7) 2100952794108244 a001 2971215073/969323029*843^(2/7) 2100952794108244 a001 1134903170/370248451*843^(2/7) 2100952794108244 a001 433494437/141422324*843^(2/7) 2100952794108245 a001 165580141/54018521*843^(2/7) 2100952794108249 a001 63245986/20633239*843^(2/7) 2100952794108279 a001 24157817/7881196*843^(2/7) 2100952794108481 a001 9227465/3010349*843^(2/7) 2100952794109867 a001 3524578/1149851*843^(2/7) 2100952794119367 a001 1346269/439204*843^(2/7) 2100952794184484 a001 514229/167761*843^(2/7) 2100952794630799 a001 196418/64079*843^(2/7) 2100952797689892 a001 75025/24476*843^(2/7) 2100952801573192 a001 4181/1364*1364^(4/15) 2100952803113241 l006 ln(1052/8599) 2100952804927196 m009 (3/10*Pi^2+2)/(2/3*Psi(1,3/4)+2/3) 2100952809058222 a007 Real Root Of -666*x^4-982*x^3+516*x^2-363*x+829 2100952818657224 a001 28657/9349*843^(2/7) 2100952822529950 r005 Re(z^2+c),c=9/29+13/59*I,n=42 2100952832076524 m001 (Niven+ZetaP(2))/(DuboisRaymond+FeigenbaumB) 2100952832566795 p001 sum((-1)^n/(289*n+173)/n/(10^n),n=1..infinity) 2100952835799527 r009 Re(z^3+c),c=-27/74+7/12*I,n=40 2100952836042817 a001 987/1364*2207^(7/16) 2100952843637271 a001 615/124*1364^(1/5) 2100952849288833 m001 (GaussAGM-ZetaQ(4))/(CareFree-FeigenbaumDelta) 2100952874137109 a007 Real Root Of 291*x^4+593*x^3+534*x^2+946*x-540 2100952879614778 a007 Real Root Of -614*x^4+826*x^3+103*x^2+841*x+181 2100952879830243 m001 (FeigenbaumB+Otter)/(ln(3)+CareFree) 2100952881132137 r009 Re(z^3+c),c=-5/16+25/48*I,n=9 2100952881235559 s002 sum(A027978[n]/((exp(n)-1)/n),n=1..infinity) 2100952881836561 r005 Im(z^2+c),c=-85/122+11/63*I,n=26 2100952889662553 m005 (4/5*2^(1/2)+3/4)/(3*exp(1)+4/5) 2100952889958811 a001 610/2207*2207^(9/16) 2100952897999832 m005 (1/2*3^(1/2)-3/4)/(4*Zeta(3)+5/7) 2100952909130419 a001 305/2889*3571^(11/17) 2100952910379111 r005 Re(z^2+c),c=-9/62+15/32*I,n=31 2100952913689725 a003 sin(Pi*2/31)/cos(Pi*11/119) 2100952913912380 a004 Fibonacci(15)*Lucas(17)/(1/2+sqrt(5)/2)^24 2100952916077228 m001 (Backhouse+Niven)/(LambertW(1)-Zeta(1,2)) 2100952916128387 l006 ln(1029/8411) 2100952919440226 r009 Re(z^3+c),c=-7/23+23/55*I,n=31 2100952924115469 a001 610/64079*3571^(16/17) 2100952925566084 h001 (5/8*exp(1)+10/11)/(3/11*exp(1)+1/2) 2100952927432576 g005 GAMMA(9/10)*GAMMA(6/7)*GAMMA(4/5)/GAMMA(1/7) 2100952928882703 a007 Real Root Of 9*x^4-354*x^3+8*x^2-173*x-40 2100952929785275 a007 Real Root Of 37*x^4+734*x^3-879*x^2+651*x-367 2100952931608541 a001 5473/682*1364^(2/15) 2100952931955677 a001 610/39603*3571^(15/17) 2100952935286099 r005 Re(z^2+c),c=7/58+11/28*I,n=57 2100952936051527 m001 (Gompertz-Stephens)/(3^(1/3)-Bloch) 2100952938327992 a001 4/987*233^(16/53) 2100952939614057 r005 Im(z^2+c),c=11/106+11/60*I,n=18 2100952940965817 m001 (5^(1/2)+sin(1))/(Backhouse+ZetaQ(3)) 2100952943496643 a001 610/15127*3571^(13/17) 2100952945855617 a001 5473/2889*843^(5/14) 2100952946493653 a001 305/12238*3571^(14/17) 2100952954350164 m001 (StronglyCareFree-Trott2nd)/(Pi+BesselK(0,1)) 2100952955324327 m001 Champernowne*(LandauRamanujan-Zeta(1,2)) 2100952962369466 a001 10946/3571*843^(2/7) 2100952964110886 a007 Real Root Of 496*x^4-949*x^3+899*x^2-431*x-140 2100952965409999 r009 Re(z^3+c),c=-23/110+27/38*I,n=19 2100952967279576 a001 646/341*3571^(5/17) 2100952968952118 m001 (Salem+Trott2nd)/(BesselI(0,1)-ln(2)) 2100952977688571 m005 (1/3*gamma-2/7)/(1/4*3^(1/2)-3/7) 2100952980023429 r009 Im(z^3+c),c=-3/98+55/63*I,n=2 2100952980658149 a007 Real Root Of -428*x^4-653*x^3-856*x^2+83*x+50 2100952982814524 m001 (Artin+MertensB2)/(Robbin+ZetaQ(3)) 2100952983928231 a007 Real Root Of -372*x^4-534*x^3-22*x^2-979*x+336 2100952986406824 a001 610/9349*3571^(12/17) 2100952987827416 m001 ln(Catalan)^2/TwinPrimes^2/sin(1) 2100952996609358 a001 28657/15127*843^(5/14) 2100953000830602 h001 (8/9*exp(1)+3/7)/(2/9*exp(1)+3/4) 2100953001819756 a001 305/2889*9349^(11/19) 2100953002044827 a001 17711/1364*1364^(1/15) 2100953004014230 a001 75025/39603*843^(5/14) 2100953005094586 a001 98209/51841*843^(5/14) 2100953005132007 m001 ReciprocalFibonacci^ln(2^(1/2)+1)-cos(1/5*Pi) 2100953005252208 a001 514229/271443*843^(5/14) 2100953005275205 a001 1346269/710647*843^(5/14) 2100953005278560 a001 1762289/930249*843^(5/14) 2100953005279049 a001 9227465/4870847*843^(5/14) 2100953005279121 a001 24157817/12752043*843^(5/14) 2100953005279131 a001 31622993/16692641*843^(5/14) 2100953005279133 a001 165580141/87403803*843^(5/14) 2100953005279133 a001 433494437/228826127*843^(5/14) 2100953005279133 a001 567451585/299537289*843^(5/14) 2100953005279133 a001 2971215073/1568397607*843^(5/14) 2100953005279133 a001 7778742049/4106118243*843^(5/14) 2100953005279133 a001 10182505537/5374978561*843^(5/14) 2100953005279133 a001 53316291173/28143753123*843^(5/14) 2100953005279133 a001 139583862445/73681302247*843^(5/14) 2100953005279133 a001 182717648081/96450076809*843^(5/14) 2100953005279133 a001 956722026041/505019158607*843^(5/14) 2100953005279133 a001 10610209857723/5600748293801*843^(5/14) 2100953005279133 a001 591286729879/312119004989*843^(5/14) 2100953005279133 a001 225851433717/119218851371*843^(5/14) 2100953005279133 a001 21566892818/11384387281*843^(5/14) 2100953005279133 a001 32951280099/17393796001*843^(5/14) 2100953005279133 a001 12586269025/6643838879*843^(5/14) 2100953005279133 a001 1201881744/634430159*843^(5/14) 2100953005279133 a001 1836311903/969323029*843^(5/14) 2100953005279133 a001 701408733/370248451*843^(5/14) 2100953005279133 a001 66978574/35355581*843^(5/14) 2100953005279134 a001 102334155/54018521*843^(5/14) 2100953005279138 a001 39088169/20633239*843^(5/14) 2100953005279165 a001 3732588/1970299*843^(5/14) 2100953005279352 a001 5702887/3010349*843^(5/14) 2100953005280633 a001 2178309/1149851*843^(5/14) 2100953005289417 a001 208010/109801*843^(5/14) 2100953005349623 a001 317811/167761*843^(5/14) 2100953005762283 a001 121393/64079*843^(5/14) 2100953008084575 m001 Porter/exp(CopelandErdos)^2/TwinPrimes^2 2100953008590692 a001 11592/6119*843^(5/14) 2100953009411093 a001 646/341*9349^(5/19) 2100953013899100 a001 305/2889*24476^(11/21) 2100953014765982 m005 (1/2*3^(1/2)+3/11)/(1/2*Catalan-1) 2100953014901704 a001 646/341*24476^(5/21) 2100953015491389 a001 305/2889*64079^(11/23) 2100953015625472 a001 646/341*64079^(5/23) 2100953015661446 a001 315248/15005 2100953015721773 a001 646/341*167761^(1/5) 2100953015736087 a001 305/2889*7881196^(1/3) 2100953015736098 a001 305/2889*312119004989^(1/5) 2100953015736098 a001 305/2889*(1/2+1/2*5^(1/2))^11 2100953015736098 a001 305/2889*1568397607^(1/4) 2100953015736703 a001 646/341*20633239^(1/7) 2100953015736703 a001 646/341*2537720636^(1/9) 2100953015736703 a001 646/341*312119004989^(1/11) 2100953015736703 a001 646/341*(1/2+1/2*5^(1/2))^5 2100953015736703 a001 646/341*28143753123^(1/10) 2100953015736703 a001 646/341*228826127^(1/8) 2100953015736805 a001 646/341*1860498^(1/6) 2100953015777420 a001 646/341*103682^(5/24) 2100953015825674 a001 305/2889*103682^(11/24) 2100953016041147 a001 646/341*39603^(5/22) 2100953016405875 a001 305/2889*39603^(1/2) 2100953018032063 a001 646/341*15127^(1/4) 2100953020785890 a001 305/2889*15127^(11/20) 2100953024955838 r005 Re(z^2+c),c=-5/6+1/75*I,n=24 2100953025204426 m006 (1/2*exp(Pi)+2/3)/(4/5*ln(Pi)-1/3) 2100953025683560 a007 Real Root Of -456*x^4-915*x^3+416*x^2+566*x-248 2100953027976897 a001 17711/9349*843^(5/14) 2100953033217402 a001 646/341*5778^(5/18) 2100953034311210 l006 ln(1006/8223) 2100953040411505 a001 615/124*3571^(3/17) 2100953041497015 r009 Re(z^3+c),c=-39/110+37/59*I,n=63 2100953048792473 l006 ln(3533/4359) 2100953052367601 m001 1/ln(OneNinth)^2*Champernowne^2/Zeta(1/2) 2100953053038589 a001 610/15127*9349^(13/19) 2100953054193636 a001 305/2889*5778^(11/18) 2100953054629295 a004 Fibonacci(15)*Lucas(19)/(1/2+sqrt(5)/2)^26 2100953055969068 a001 610/167761*9349^(18/19) 2100953056054786 m005 (1/2*Catalan-3/7)/(5/12*Pi+1/11) 2100953056964101 a001 305/51841*9349^(17/19) 2100953058052717 a007 Real Root Of -224*x^4-286*x^3+634*x^2+361*x-328 2100953058350230 a001 610/39603*9349^(15/19) 2100953058936325 a001 610/64079*9349^(16/19) 2100953062791367 a001 5473/682*3571^(2/17) 2100953063821260 h001 (3/5*exp(2)+1/11)/(5/8*exp(1)+5/11) 2100953063938836 a001 4181/1364*3571^(4/17) 2100953064461903 a001 305/12238*9349^(14/19) 2100953065690416 a001 615/124*9349^(3/19) 2100953066006866 b008 ArcCosh[112/27] 2100953067314177 a001 610/15127*24476^(13/21) 2100953067636241 a001 17711/1364*3571^(1/17) 2100953068984783 a001 615/124*24476^(1/7) 2100953069195974 a001 610/15127*64079^(13/23) 2100953069419044 a001 615/124*64079^(3/23) 2100953069474284 a001 2063325/98209 2100953069484572 a001 615/124*439204^(1/9) 2100953069485175 a001 610/15127*141422324^(1/3) 2100953069485175 a001 610/15127*(1/2+1/2*5^(1/2))^13 2100953069485175 a001 610/15127*73681302247^(1/4) 2100953069485779 a001 615/124*7881196^(1/11) 2100953069485782 a001 615/124*141422324^(1/13) 2100953069485782 a001 615/124*2537720636^(1/15) 2100953069485782 a001 615/124*45537549124^(1/17) 2100953069485782 a001 615/124*14662949395604^(1/21) 2100953069485782 a001 615/124*(1/2+1/2*5^(1/2))^3 2100953069485782 a001 615/124*10749957122^(1/16) 2100953069485782 a001 615/124*599074578^(1/14) 2100953069485782 a001 615/124*33385282^(1/12) 2100953069485843 a001 615/124*1860498^(1/10) 2100953069499432 a001 610/15127*271443^(1/2) 2100953069510212 a001 615/124*103682^(1/8) 2100953069551967 r005 Im(z^2+c),c=-11/24+19/52*I,n=23 2100953069591038 a001 610/15127*103682^(13/24) 2100953069668449 a001 615/124*39603^(3/22) 2100953070276730 a001 610/15127*39603^(13/22) 2100953070862998 a001 615/124*15127^(3/20) 2100953073941092 a008 Real Root of (3+12*x-14*x^2-15*x^3) 2100953074822062 a001 610/39603*24476^(5/7) 2100953075159617 a004 Fibonacci(15)*Lucas(21)/(1/2+sqrt(5)/2)^28 2100953075337508 a001 305/219602*24476^(20/21) 2100953075453111 a001 610/15127*15127^(13/20) 2100953075465102 a001 610/271443*24476^(19/21) 2100953075632178 a001 305/51841*24476^(17/21) 2100953075735267 a001 610/167761*24476^(6/7) 2100953076062545 a001 17711/1364*9349^(1/19) 2100953076506280 a001 610/64079*24476^(16/21) 2100953076993366 a001 610/39603*64079^(15/23) 2100953077160667 a001 17711/1364*24476^(1/21) 2100953077282270 a001 610/39603*167761^(3/5) 2100953077305421 a001 17711/1364*64079^(1/23) 2100953077321009 a001 610/39603*439204^(5/9) 2100953077325471 a001 10803710/514229 2100953077327045 a001 610/39603*7881196^(5/11) 2100953077327058 a001 610/39603*20633239^(3/7) 2100953077327060 a001 610/39603*141422324^(5/13) 2100953077327060 a001 610/39603*2537720636^(1/3) 2100953077327060 a001 610/39603*45537549124^(5/17) 2100953077327060 a001 610/39603*312119004989^(3/11) 2100953077327060 a001 610/39603*14662949395604^(5/21) 2100953077327060 a001 610/39603*(1/2+1/2*5^(1/2))^15 2100953077327060 a001 610/39603*192900153618^(5/18) 2100953077327060 a001 610/39603*28143753123^(3/10) 2100953077327060 a001 610/39603*10749957122^(5/16) 2100953077327060 a001 610/39603*599074578^(5/14) 2100953077327060 a001 610/39603*228826127^(3/8) 2100953077327061 a001 610/39603*33385282^(5/12) 2100953077327364 a001 610/39603*1860498^(1/2) 2100953077327667 a001 17711/2728+17711/2728*5^(1/2) 2100953077335810 a001 17711/1364*103682^(1/24) 2100953077388556 a001 17711/1364*39603^(1/22) 2100953077449209 a001 610/39603*103682^(5/8) 2100953077786739 a001 17711/1364*15127^(1/20) 2100953078092989 a001 305/51841*64079^(17/23) 2100953078154950 a004 Fibonacci(15)*Lucas(23)/(1/2+sqrt(5)/2)^30 2100953078178785 a001 610/1149851*64079^(22/23) 2100953078195282 a001 610/710647*64079^(21/23) 2100953078215421 a001 610/271443*64079^(19/23) 2100953078232580 a001 305/219602*64079^(20/23) 2100953078240392 a001 610/39603*39603^(15/22) 2100953078340832 a001 610/167761*64079^(18/23) 2100953078470944 a001 28284480/1346269 2100953078471176 a001 305/51841*45537549124^(1/3) 2100953078471176 a001 305/51841*(1/2+1/2*5^(1/2))^17 2100953078471182 a001 305/51841*12752043^(1/2) 2100953078471783 a004 Fibonacci(24)/Lucas(15)/(1/2+sqrt(5)/2) 2100953078591963 a004 Fibonacci(15)*Lucas(25)/(1/2+sqrt(5)/2)^32 2100953078609611 a001 305/51841*103682^(17/24) 2100953078617785 a001 305/219602*167761^(4/5) 2100953078638066 a001 37024865/1762289 2100953078638100 a001 610/271443*817138163596^(1/3) 2100953078638100 a001 610/271443*(1/2+1/2*5^(1/2))^19 2100953078638100 a001 610/271443*87403803^(1/2) 2100953078638707 a004 Fibonacci(26)/Lucas(15)/(1/2+sqrt(5)/2)^3 2100953078653983 a001 610/710647*439204^(7/9) 2100953078655723 a004 Fibonacci(15)*Lucas(27)/(1/2+sqrt(5)/2)^34 2100953078657165 a001 610/3010349*439204^(8/9) 2100953078662432 a001 610/710647*7881196^(7/11) 2100953078662449 a001 2982534/141961 2100953078662451 a001 610/710647*20633239^(3/5) 2100953078662454 a001 610/710647*141422324^(7/13) 2100953078662454 a001 610/710647*2537720636^(7/15) 2100953078662454 a001 610/710647*17393796001^(3/7) 2100953078662454 a001 610/710647*45537549124^(7/17) 2100953078662454 a001 610/710647*14662949395604^(1/3) 2100953078662454 a001 610/710647*(1/2+1/2*5^(1/2))^21 2100953078662454 a001 610/710647*192900153618^(7/18) 2100953078662454 a001 610/710647*10749957122^(7/16) 2100953078662454 a001 610/710647*599074578^(1/2) 2100953078662455 a001 610/710647*33385282^(7/12) 2100953078662879 a001 610/710647*1860498^(7/10) 2100953078663061 a004 Fibonacci(28)/Lucas(15)/(1/2+sqrt(5)/2)^5 2100953078665025 a004 Fibonacci(15)*Lucas(29)/(1/2+sqrt(5)/2)^36 2100953078665574 a001 610/710647*710647^(3/4) 2100953078666006 a001 507544400/24157817 2100953078666007 a001 305/930249*(1/2+1/2*5^(1/2))^23 2100953078666007 a001 305/930249*4106118243^(1/2) 2100953078666382 a004 Fibonacci(15)*Lucas(31)/(1/2+sqrt(5)/2)^38 2100953078666522 a001 610/4870847*20633239^(5/7) 2100953078666525 a001 664384245/31622993 2100953078666526 a001 610/4870847*2537720636^(5/9) 2100953078666526 a001 610/4870847*312119004989^(5/11) 2100953078666526 a001 610/4870847*(1/2+1/2*5^(1/2))^25 2100953078666526 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^25/Lucas(32) 2100953078666526 a001 610/4870847*3461452808002^(5/12) 2100953078666526 a001 610/4870847*28143753123^(1/2) 2100953078666526 a001 610/4870847*228826127^(5/8) 2100953078666574 a001 610/12752043*7881196^(9/11) 2100953078666580 a004 Fibonacci(15)*Lucas(33)/(1/2+sqrt(5)/2)^40 2100953078666584 a001 610/54018521*7881196^(10/11) 2100953078666601 a001 610/12752043*141422324^(9/13) 2100953078666601 a001 3478761070/165580141 2100953078666601 a001 610/12752043*2537720636^(3/5) 2100953078666601 a001 610/12752043*45537549124^(9/17) 2100953078666601 a001 610/12752043*817138163596^(9/19) 2100953078666601 a001 610/12752043*14662949395604^(3/7) 2100953078666601 a001 610/12752043*(1/2+1/2*5^(1/2))^27 2100953078666601 a001 610/12752043*192900153618^(1/2) 2100953078666601 a001 610/12752043*10749957122^(9/16) 2100953078666601 a001 610/12752043*599074578^(9/14) 2100953078666603 a001 610/12752043*33385282^(3/4) 2100953078666609 a004 Fibonacci(15)*Lucas(35)/(1/2+sqrt(5)/2)^42 2100953078666611 a001 610/54018521*20633239^(6/7) 2100953078666612 a001 9107514720/433494437 2100953078666612 a001 305/16692641*(1/2+1/2*5^(1/2))^29 2100953078666612 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^29/Lucas(36) 2100953078666612 a001 305/16692641*1322157322203^(1/2) 2100953078666613 a004 Fibonacci(15)*Lucas(37)/(1/2+sqrt(5)/2)^44 2100953078666614 a001 39088169/1860497 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^31/Lucas(38) 2100953078666614 a001 610/87403803*9062201101803^(1/2) 2100953078666614 a001 610/228826127*141422324^(11/13) 2100953078666614 a004 Fibonacci(15)*Lucas(39)/(1/2+sqrt(5)/2)^46 2100953078666614 a001 610/969323029*141422324^(12/13) 2100953078666614 a001 610/228826127*2537720636^(11/15) 2100953078666614 a001 62423834550/2971215073 2100953078666614 a001 610/228826127*45537549124^(11/17) 2100953078666614 a001 610/228826127*312119004989^(3/5) 2100953078666614 a001 610/228826127*14662949395604^(11/21) 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^33/Lucas(40) 2100953078666614 a001 610/228826127*192900153618^(11/18) 2100953078666614 a001 610/228826127*10749957122^(11/16) 2100953078666614 a001 610/228826127*1568397607^(3/4) 2100953078666614 a001 610/228826127*599074578^(11/14) 2100953078666614 a004 Fibonacci(15)*Lucas(41)/(1/2+sqrt(5)/2)^48 2100953078666614 a001 305/299537289*2537720636^(7/9) 2100953078666614 a001 12571363120/598364773 2100953078666614 a001 305/299537289*17393796001^(5/7) 2100953078666614 a001 305/299537289*312119004989^(7/11) 2100953078666614 a001 305/299537289*14662949395604^(5/9) 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^35/Lucas(42) 2100953078666614 a001 305/299537289*505019158607^(5/8) 2100953078666614 a001 305/299537289*28143753123^(7/10) 2100953078666614 a004 Fibonacci(15)*Lucas(43)/(1/2+sqrt(5)/2)^50 2100953078666614 a001 305/299537289*599074578^(5/6) 2100953078666614 a001 213929663565/10182505537 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^37/Lucas(44) 2100953078666614 a001 610/4106118243*2537720636^(13/15) 2100953078666614 a004 Fibonacci(15)*Lucas(45)/(1/2+sqrt(5)/2)^52 2100953078666614 a001 610/17393796001*2537720636^(14/15) 2100953078666614 a001 610/6643838879*2537720636^(8/9) 2100953078666614 a001 610/4106118243*45537549124^(13/17) 2100953078666614 a001 1120150260830/53316291173 2100953078666614 a001 610/4106118243*14662949395604^(13/21) 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^39/Lucas(46) 2100953078666614 a001 610/4106118243*192900153618^(13/18) 2100953078666614 a001 610/4106118243*73681302247^(3/4) 2100953078666614 a001 610/4106118243*10749957122^(13/16) 2100953078666614 a004 Fibonacci(15)*Lucas(47)/(1/2+sqrt(5)/2)^54 2100953078666614 a001 586518291072/27916772489 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^41/Lucas(48) 2100953078666614 a004 Fibonacci(15)*Lucas(49)/(1/2+sqrt(5)/2)^56 2100953078666614 a001 3838812052625/182717648081 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^43/Lucas(50) 2100953078666614 a001 610/73681302247*45537549124^(15/17) 2100953078666614 a004 Fibonacci(15)*Lucas(51)/(1/2+sqrt(5)/2)^58 2100953078666614 a001 610/312119004989*45537549124^(16/17) 2100953078666614 a001 610/73681302247*312119004989^(9/11) 2100953078666614 a001 20100280860390/956722026041 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^45/Lucas(52) 2100953078666614 a001 610/73681302247*192900153618^(5/6) 2100953078666614 a004 Fibonacci(15)*Lucas(53)/(1/2+sqrt(5)/2)^60 2100953078666614 a001 52623218475920/2504730781961 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^47/Lucas(54) 2100953078666614 a004 Fibonacci(15)*Lucas(55)/(1/2+sqrt(5)/2)^62 2100953078666614 a001 305/408569081798*312119004989^(10/11) 2100953078666614 a001 5298822098745/252210396917 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^49/Lucas(56) 2100953078666614 a004 Fibonacci(15)*Lucas(57)/(1/2+sqrt(5)/2)^64 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^51/Lucas(58) 2100953078666614 a004 Fibonacci(15)*Lucas(59)/(1/2+sqrt(5)/2)^66 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^53/Lucas(60) 2100953078666614 a004 Fibonacci(15)*Lucas(61)/(1/2+sqrt(5)/2)^68 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^55/Lucas(62) 2100953078666614 a004 Fibonacci(15)*Lucas(63)/(1/2+sqrt(5)/2)^70 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^57/Lucas(64) 2100953078666614 a004 Fibonacci(15)*Lucas(65)/(1/2+sqrt(5)/2)^72 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^59/Lucas(66) 2100953078666614 a004 Fibonacci(15)*Lucas(67)/(1/2+sqrt(5)/2)^74 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^61/Lucas(68) 2100953078666614 a004 Fibonacci(15)*Lucas(69)/(1/2+sqrt(5)/2)^76 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^63/Lucas(70) 2100953078666614 a004 Fibonacci(15)*Lucas(71)/(1/2+sqrt(5)/2)^78 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^65/Lucas(72) 2100953078666614 a004 Fibonacci(15)*Lucas(73)/(1/2+sqrt(5)/2)^80 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^67/Lucas(74) 2100953078666614 a004 Fibonacci(15)*Lucas(75)/(1/2+sqrt(5)/2)^82 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^69/Lucas(76) 2100953078666614 a004 Fibonacci(15)*Lucas(77)/(1/2+sqrt(5)/2)^84 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^71/Lucas(78) 2100953078666614 a004 Fibonacci(15)*Lucas(79)/(1/2+sqrt(5)/2)^86 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^73/Lucas(80) 2100953078666614 a004 Fibonacci(15)*Lucas(81)/(1/2+sqrt(5)/2)^88 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^75/Lucas(82) 2100953078666614 a004 Fibonacci(15)*Lucas(83)/(1/2+sqrt(5)/2)^90 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^77/Lucas(84) 2100953078666614 a004 Fibonacci(15)*Lucas(85)/(1/2+sqrt(5)/2)^92 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^79/Lucas(86) 2100953078666614 a004 Fibonacci(15)*Lucas(87)/(1/2+sqrt(5)/2)^94 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^81/Lucas(88) 2100953078666614 a004 Fibonacci(15)*Lucas(89)/(1/2+sqrt(5)/2)^96 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^83/Lucas(90) 2100953078666614 a004 Fibonacci(15)*Lucas(91)/(1/2+sqrt(5)/2)^98 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^85/Lucas(92) 2100953078666614 a004 Fibonacci(15)*Lucas(93)/(1/2+sqrt(5)/2)^100 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^87/Lucas(94) 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^89/Lucas(96) 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^91/Lucas(98) 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^92/Lucas(99) 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^93/Lucas(100) 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^90/Lucas(97) 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^88/Lucas(95) 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^86/Lucas(93) 2100953078666614 a004 Fibonacci(15)*Lucas(92)/(1/2+sqrt(5)/2)^99 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^84/Lucas(91) 2100953078666614 a004 Fibonacci(15)*Lucas(90)/(1/2+sqrt(5)/2)^97 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^82/Lucas(89) 2100953078666614 a004 Fibonacci(15)*Lucas(88)/(1/2+sqrt(5)/2)^95 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^80/Lucas(87) 2100953078666614 a004 Fibonacci(15)*Lucas(86)/(1/2+sqrt(5)/2)^93 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^78/Lucas(85) 2100953078666614 a004 Fibonacci(15)*Lucas(84)/(1/2+sqrt(5)/2)^91 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^76/Lucas(83) 2100953078666614 a004 Fibonacci(15)*Lucas(82)/(1/2+sqrt(5)/2)^89 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^74/Lucas(81) 2100953078666614 a004 Fibonacci(15)*Lucas(80)/(1/2+sqrt(5)/2)^87 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^72/Lucas(79) 2100953078666614 a004 Fibonacci(15)*Lucas(78)/(1/2+sqrt(5)/2)^85 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^70/Lucas(77) 2100953078666614 a004 Fibonacci(15)*Lucas(76)/(1/2+sqrt(5)/2)^83 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^68/Lucas(75) 2100953078666614 a004 Fibonacci(15)*Lucas(74)/(1/2+sqrt(5)/2)^81 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^66/Lucas(73) 2100953078666614 a004 Fibonacci(15)*Lucas(72)/(1/2+sqrt(5)/2)^79 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^64/Lucas(71) 2100953078666614 a004 Fibonacci(15)*Lucas(70)/(1/2+sqrt(5)/2)^77 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^62/Lucas(69) 2100953078666614 a004 Fibonacci(15)*Lucas(68)/(1/2+sqrt(5)/2)^75 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^60/Lucas(67) 2100953078666614 a004 Fibonacci(15)*Lucas(66)/(1/2+sqrt(5)/2)^73 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^58/Lucas(65) 2100953078666614 a004 Fibonacci(15)*Lucas(64)/(1/2+sqrt(5)/2)^71 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^56/Lucas(63) 2100953078666614 a004 Fibonacci(15)*Lucas(62)/(1/2+sqrt(5)/2)^69 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^54/Lucas(61) 2100953078666614 a004 Fibonacci(15)*Lucas(60)/(1/2+sqrt(5)/2)^67 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^52/Lucas(59) 2100953078666614 a004 Fibonacci(15)*Lucas(58)/(1/2+sqrt(5)/2)^65 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^50/Lucas(57) 2100953078666614 a001 222915530658820/10610209857723 2100953078666614 a001 305/408569081798*3461452808002^(5/6) 2100953078666614 a004 Fibonacci(15)*Lucas(56)/(1/2+sqrt(5)/2)^63 2100953078666614 a001 610/312119004989*14662949395604^(16/21) 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^48/Lucas(55) 2100953078666614 a001 85146156091450/4052739537881 2100953078666614 a001 610/1322157322203*192900153618^(17/18) 2100953078666614 a004 Fibonacci(15)*Lucas(54)/(1/2+sqrt(5)/2)^61 2100953078666614 a001 610/312119004989*192900153618^(8/9) 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^46/Lucas(53) 2100953078666614 a001 53316291173/2537719272 2100953078666614 a001 610/312119004989*73681302247^(12/13) 2100953078666614 a004 Fibonacci(15)*Lucas(52)/(1/2+sqrt(5)/2)^59 2100953078666614 a001 610/17393796001*17393796001^(6/7) 2100953078666614 a001 305/22768774562*312119004989^(4/5) 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^44/Lucas(51) 2100953078666614 a001 12422656755140/591286729879 2100953078666614 a001 305/22768774562*73681302247^(11/13) 2100953078666614 a001 610/73681302247*28143753123^(9/10) 2100953078666614 a004 Fibonacci(15)*Lucas(50)/(1/2+sqrt(5)/2)^57 2100953078666614 a001 610/17393796001*45537549124^(14/17) 2100953078666614 a001 610/17393796001*817138163596^(14/19) 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^42/Lucas(49) 2100953078666614 a001 365002511530/17373187209 2100953078666614 a001 610/17393796001*192900153618^(7/9) 2100953078666614 a001 610/73681302247*10749957122^(15/16) 2100953078666614 a001 610/119218851371*10749957122^(23/24) 2100953078666614 a001 305/22768774562*10749957122^(11/12) 2100953078666614 a004 Fibonacci(15)*Lucas(48)/(1/2+sqrt(5)/2)^55 2100953078666614 a001 610/17393796001*10749957122^(7/8) 2100953078666614 a001 610/6643838879*312119004989^(8/11) 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^40/Lucas(47) 2100953078666614 a001 610/6643838879*23725150497407^(5/8) 2100953078666614 a001 906220597265/43133785636 2100953078666614 a001 610/6643838879*73681302247^(10/13) 2100953078666614 a001 610/6643838879*28143753123^(4/5) 2100953078666614 a001 610/6643838879*10749957122^(5/6) 2100953078666614 a001 305/22768774562*4106118243^(22/23) 2100953078666614 a001 610/17393796001*4106118243^(21/23) 2100953078666614 a004 Fibonacci(15)*Lucas(46)/(1/2+sqrt(5)/2)^53 2100953078666614 a001 610/6643838879*4106118243^(20/23) 2100953078666614 a001 305/1268860318*817138163596^(2/3) 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^38/Lucas(45) 2100953078666614 a001 692290933700/32951280099 2100953078666614 a001 305/1268860318*10749957122^(19/24) 2100953078666614 a001 305/1268860318*4106118243^(19/23) 2100953078666614 a001 610/17393796001*1568397607^(21/22) 2100953078666614 a001 610/6643838879*1568397607^(10/11) 2100953078666614 a004 Fibonacci(15)*Lucas(44)/(1/2+sqrt(5)/2)^51 2100953078666614 a001 305/1268860318*1568397607^(19/22) 2100953078666614 a001 610/969323029*2537720636^(4/5) 2100953078666614 a001 610/969323029*45537549124^(12/17) 2100953078666614 a001 610/969323029*14662949395604^(4/7) 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^36/Lucas(43) 2100953078666614 a001 610/969323029*192900153618^(2/3) 2100953078666614 a001 610/969323029*73681302247^(9/13) 2100953078666614 a001 52886321314/2517253805 2100953078666614 a001 610/969323029*10749957122^(3/4) 2100953078666614 a001 610/969323029*4106118243^(18/23) 2100953078666614 a001 610/969323029*1568397607^(9/11) 2100953078666614 a001 610/4106118243*599074578^(13/14) 2100953078666614 a001 305/1268860318*599074578^(19/21) 2100953078666614 a001 610/6643838879*599074578^(20/21) 2100953078666614 a004 Fibonacci(15)*Lucas(42)/(1/2+sqrt(5)/2)^49 2100953078666614 a001 610/969323029*599074578^(6/7) 2100953078666614 a001 610/370248451*45537549124^(2/3) 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^34/Lucas(41) 2100953078666614 a001 610/370248451*10749957122^(17/24) 2100953078666614 a001 50501943005/2403763488 2100953078666614 a001 610/370248451*4106118243^(17/23) 2100953078666614 a001 610/370248451*1568397607^(17/22) 2100953078666614 a001 610/370248451*599074578^(17/21) 2100953078666614 a001 305/299537289*228826127^(7/8) 2100953078666614 a001 610/969323029*228826127^(9/10) 2100953078666614 a001 305/1268860318*228826127^(19/20) 2100953078666614 a004 Fibonacci(15)*Lucas(40)/(1/2+sqrt(5)/2)^47 2100953078666614 a001 610/370248451*228826127^(17/20) 2100953078666614 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^32/Lucas(39) 2100953078666614 a001 305/70711162*23725150497407^(1/2) 2100953078666614 a001 305/70711162*73681302247^(8/13) 2100953078666614 a001 305/70711162*10749957122^(2/3) 2100953078666614 a001 305/70711162*4106118243^(16/23) 2100953078666614 a001 38580051460/1836311903 2100953078666614 a001 305/70711162*1568397607^(8/11) 2100953078666614 a001 305/70711162*599074578^(16/21) 2100953078666614 a001 305/70711162*228826127^(4/5) 2100953078666614 a001 610/370248451*87403803^(17/19) 2100953078666614 a001 610/969323029*87403803^(18/19) 2100953078666614 a004 Fibonacci(15)*Lucas(38)/(1/2+sqrt(5)/2)^45 2100953078666614 a001 305/70711162*87403803^(16/19) 2100953078666615 a001 610/54018521*141422324^(10/13) 2100953078666615 a001 610/54018521*2537720636^(2/3) 2100953078666615 a001 610/54018521*45537549124^(10/17) 2100953078666615 a001 610/54018521*312119004989^(6/11) 2100953078666615 a001 610/54018521*14662949395604^(10/21) 2100953078666615 a004 Fibonacci(15)*(1/2+sqrt(5)/2)^30/Lucas(37) 2100953078666615 a001 610/54018521*192900153618^(5/9) 2100953078666615 a001 610/54018521*28143753123^(3/5) 2100953078666615 a001 610/54018521*10749957122^(5/8) 2100953078666615 a001 610/54018521*4106118243^(15/23) 2100953078666615 a001 610/54018521*1568397607^(15/22) 2100953078666615 a001 14736268370/701408733 2100953078666615 a001 610/54018521*599074578^(5/7) 2100953078666615 a001 610/54018521*228826127^(3/4) 2100953078666615 a001 610/54018521*87403803^(15/19) 2100953078666615 a001 610/20633239*20633239^(4/5) 2100953078666616 a001 610/228826127*33385282^(11/12) 2100953078666616 a001 305/70711162*33385282^(8/9) 2100953078666616 a001 610/370248451*33385282^(17/18) 2100953078666616 a004 Fibonacci(15)*Lucas(36)/(1/2+sqrt(5)/2)^43 2100953078666616 a001 610/54018521*33385282^(5/6) 2100953078666619 a001 610/20633239*17393796001^(4/7) 2100953078666619 a001 610/20633239*14662949395604^(4/9) 2100953078666619 a001 610/20633239*(1/2+1/2*5^(1/2))^28 2100953078666619 a001 610/20633239*73681302247^(7/13) 2100953078666619 a001 610/20633239*10749957122^(7/12) 2100953078666619 a001 610/20633239*4106118243^(14/23) 2100953078666619 a001 610/20633239*1568397607^(7/11) 2100953078666619 a001 610/20633239*599074578^(2/3) 2100953078666619 a001 216490525/10304396 2100953078666619 a001 610/20633239*228826127^(7/10) 2100953078666619 a001 610/20633239*87403803^(14/19) 2100953078666621 a001 610/20633239*33385282^(7/9) 2100953078666626 a001 610/54018521*12752043^(15/17) 2100953078666626 a001 305/70711162*12752043^(16/17) 2100953078666627 a004 Fibonacci(15)*Lucas(34)/(1/2+sqrt(5)/2)^41 2100953078666630 a001 610/20633239*12752043^(14/17) 2100953078666648 a001 305/3940598*141422324^(2/3) 2100953078666648 a001 305/3940598*(1/2+1/2*5^(1/2))^26 2100953078666648 a001 305/3940598*73681302247^(1/2) 2100953078666648 a001 305/3940598*10749957122^(13/24) 2100953078666648 a001 305/3940598*4106118243^(13/23) 2100953078666648 a001 305/3940598*1568397607^(13/22) 2100953078666648 a001 305/3940598*599074578^(13/21) 2100953078666648 a001 305/3940598*228826127^(13/20) 2100953078666648 a001 429998516/20466831 2100953078666648 a001 305/3940598*87403803^(13/19) 2100953078666649 a001 305/3940598*33385282^(13/18) 2100953078666658 a001 305/3940598*12752043^(13/17) 2100953078666697 a001 610/20633239*4870847^(7/8) 2100953078666698 a001 610/54018521*4870847^(15/16) 2100953078666703 a004 Fibonacci(15)*Lucas(32)/(1/2+sqrt(5)/2)^39 2100953078666720 a001 305/3940598*4870847^(13/16) 2100953078666821 a001 610/3010349*7881196^(8/11) 2100953078666846 a001 610/3010349*141422324^(8/13) 2100953078666846 a001 610/3010349*2537720636^(8/15) 2100953078666846 a001 610/3010349*45537549124^(8/17) 2100953078666846 a001 610/3010349*14662949395604^(8/21) 2100953078666846 a001 610/3010349*(1/2+1/2*5^(1/2))^24 2100953078666846 a001 610/3010349*192900153618^(4/9) 2100953078666846 a001 610/3010349*73681302247^(6/13) 2100953078666846 a001 610/3010349*10749957122^(1/2) 2100953078666846 a001 610/3010349*4106118243^(12/23) 2100953078666846 a001 610/3010349*1568397607^(6/11) 2100953078666846 a001 610/3010349*599074578^(4/7) 2100953078666846 a001 610/3010349*228826127^(3/5) 2100953078666846 a001 610/3010349*87403803^(12/19) 2100953078666846 a001 821224090/39088169 2100953078666847 a001 610/3010349*33385282^(2/3) 2100953078666855 a001 610/3010349*12752043^(12/17) 2100953078666912 a001 610/3010349*4870847^(3/4) 2100953078667031 a001 610/4870847*1860498^(5/6) 2100953078667133 a004 Fibonacci(32)/Lucas(15)/(1/2+sqrt(5)/2)^9 2100953078667147 a001 610/12752043*1860498^(9/10) 2100953078667174 a001 305/3940598*1860498^(13/15) 2100953078667186 a001 610/20633239*1860498^(14/15) 2100953078667208 a004 Fibonacci(34)/Lucas(15)/(1/2+sqrt(5)/2)^11 2100953078667219 a004 Fibonacci(36)/Lucas(15)/(1/2+sqrt(5)/2)^13 2100953078667221 a004 Fibonacci(38)/Lucas(15)/(1/2+sqrt(5)/2)^15 2100953078667221 a004 Fibonacci(40)/Lucas(15)/(1/2+sqrt(5)/2)^17 2100953078667221 a004 Fibonacci(42)/Lucas(15)/(1/2+sqrt(5)/2)^19 2100953078667221 a004 Fibonacci(44)/Lucas(15)/(1/2+sqrt(5)/2)^21 2100953078667221 a004 Fibonacci(46)/Lucas(15)/(1/2+sqrt(5)/2)^23 2100953078667221 a004 Fibonacci(48)/Lucas(15)/(1/2+sqrt(5)/2)^25 2100953078667221 a004 Fibonacci(50)/Lucas(15)/(1/2+sqrt(5)/2)^27 2100953078667221 a004 Fibonacci(52)/Lucas(15)/(1/2+sqrt(5)/2)^29 2100953078667221 a004 Fibonacci(54)/Lucas(15)/(1/2+sqrt(5)/2)^31 2100953078667221 a004 Fibonacci(56)/Lucas(15)/(1/2+sqrt(5)/2)^33 2100953078667221 a004 Fibonacci(58)/Lucas(15)/(1/2+sqrt(5)/2)^35 2100953078667221 a004 Fibonacci(15)*Lucas(30)/(1/2+sqrt(5)/2)^37 2100953078667221 a004 Fibonacci(62)/Lucas(15)/(1/2+sqrt(5)/2)^39 2100953078667221 a004 Fibonacci(64)/Lucas(15)/(1/2+sqrt(5)/2)^41 2100953078667221 a004 Fibonacci(66)/Lucas(15)/(1/2+sqrt(5)/2)^43 2100953078667221 a004 Fibonacci(68)/Lucas(15)/(1/2+sqrt(5)/2)^45 2100953078667221 a004 Fibonacci(70)/Lucas(15)/(1/2+sqrt(5)/2)^47 2100953078667221 a004 Fibonacci(72)/Lucas(15)/(1/2+sqrt(5)/2)^49 2100953078667221 a004 Fibonacci(74)/Lucas(15)/(1/2+sqrt(5)/2)^51 2100953078667221 a004 Fibonacci(76)/Lucas(15)/(1/2+sqrt(5)/2)^53 2100953078667221 a004 Fibonacci(78)/Lucas(15)/(1/2+sqrt(5)/2)^55 2100953078667221 a004 Fibonacci(80)/Lucas(15)/(1/2+sqrt(5)/2)^57 2100953078667221 a004 Fibonacci(82)/Lucas(15)/(1/2+sqrt(5)/2)^59 2100953078667221 a004 Fibonacci(84)/Lucas(15)/(1/2+sqrt(5)/2)^61 2100953078667221 a004 Fibonacci(86)/Lucas(15)/(1/2+sqrt(5)/2)^63 2100953078667221 a004 Fibonacci(88)/Lucas(15)/(1/2+sqrt(5)/2)^65 2100953078667221 a004 Fibonacci(90)/Lucas(15)/(1/2+sqrt(5)/2)^67 2100953078667221 a004 Fibonacci(92)/Lucas(15)/(1/2+sqrt(5)/2)^69 2100953078667221 a004 Fibonacci(94)/Lucas(15)/(1/2+sqrt(5)/2)^71 2100953078667221 a004 Fibonacci(96)/Lucas(15)/(1/2+sqrt(5)/2)^73 2100953078667221 a004 Fibonacci(100)/Lucas(15)/(1/2+sqrt(5)/2)^77 2100953078667221 a004 Fibonacci(98)/Lucas(15)/(1/2+sqrt(5)/2)^75 2100953078667221 a004 Fibonacci(99)/Lucas(15)/(1/2+sqrt(5)/2)^76 2100953078667221 a004 Fibonacci(97)/Lucas(15)/(1/2+sqrt(5)/2)^74 2100953078667221 a004 Fibonacci(95)/Lucas(15)/(1/2+sqrt(5)/2)^72 2100953078667221 a004 Fibonacci(93)/Lucas(15)/(1/2+sqrt(5)/2)^70 2100953078667221 a004 Fibonacci(91)/Lucas(15)/(1/2+sqrt(5)/2)^68 2100953078667221 a004 Fibonacci(89)/Lucas(15)/(1/2+sqrt(5)/2)^66 2100953078667221 a004 Fibonacci(87)/Lucas(15)/(1/2+sqrt(5)/2)^64 2100953078667221 a004 Fibonacci(85)/Lucas(15)/(1/2+sqrt(5)/2)^62 2100953078667221 a004 Fibonacci(83)/Lucas(15)/(1/2+sqrt(5)/2)^60 2100953078667221 a004 Fibonacci(81)/Lucas(15)/(1/2+sqrt(5)/2)^58 2100953078667221 a004 Fibonacci(79)/Lucas(15)/(1/2+sqrt(5)/2)^56 2100953078667221 a004 Fibonacci(77)/Lucas(15)/(1/2+sqrt(5)/2)^54 2100953078667221 a004 Fibonacci(75)/Lucas(15)/(1/2+sqrt(5)/2)^52 2100953078667221 a004 Fibonacci(73)/Lucas(15)/(1/2+sqrt(5)/2)^50 2100953078667221 a004 Fibonacci(71)/Lucas(15)/(1/2+sqrt(5)/2)^48 2100953078667221 a004 Fibonacci(69)/Lucas(15)/(1/2+sqrt(5)/2)^46 2100953078667221 a004 Fibonacci(67)/Lucas(15)/(1/2+sqrt(5)/2)^44 2100953078667221 a004 Fibonacci(65)/Lucas(15)/(1/2+sqrt(5)/2)^42 2100953078667221 a004 Fibonacci(63)/Lucas(15)/(1/2+sqrt(5)/2)^40 2100953078667221 a004 Fibonacci(61)/Lucas(15)/(1/2+sqrt(5)/2)^38 2100953078667221 a004 Fibonacci(59)/Lucas(15)/(1/2+sqrt(5)/2)^36 2100953078667221 a004 Fibonacci(57)/Lucas(15)/(1/2+sqrt(5)/2)^34 2100953078667221 a004 Fibonacci(55)/Lucas(15)/(1/2+sqrt(5)/2)^32 2100953078667221 a004 Fibonacci(53)/Lucas(15)/(1/2+sqrt(5)/2)^30 2100953078667221 a004 Fibonacci(51)/Lucas(15)/(1/2+sqrt(5)/2)^28 2100953078667221 a004 Fibonacci(49)/Lucas(15)/(1/2+sqrt(5)/2)^26 2100953078667221 a004 Fibonacci(47)/Lucas(15)/(1/2+sqrt(5)/2)^24 2100953078667221 a004 Fibonacci(45)/Lucas(15)/(1/2+sqrt(5)/2)^22 2100953078667221 a004 Fibonacci(43)/Lucas(15)/(1/2+sqrt(5)/2)^20 2100953078667221 a004 Fibonacci(41)/Lucas(15)/(1/2+sqrt(5)/2)^18 2100953078667221 a004 Fibonacci(39)/Lucas(15)/(1/2+sqrt(5)/2)^16 2100953078667222 a004 Fibonacci(37)/Lucas(15)/(1/2+sqrt(5)/2)^14 2100953078667226 a004 Fibonacci(35)/Lucas(15)/(1/2+sqrt(5)/2)^12 2100953078667255 a004 Fibonacci(33)/Lucas(15)/(1/2+sqrt(5)/2)^10 2100953078667332 a001 610/3010349*1860498^(4/5) 2100953078667453 a004 Fibonacci(31)/Lucas(15)/(1/2+sqrt(5)/2)^8 2100953078668181 a001 610/1149851*7881196^(2/3) 2100953078668203 a001 610/1149851*312119004989^(2/5) 2100953078668203 a001 610/1149851*(1/2+1/2*5^(1/2))^22 2100953078668203 a001 610/1149851*10749957122^(11/24) 2100953078668203 a001 610/1149851*4106118243^(11/23) 2100953078668203 a001 610/1149851*1568397607^(1/2) 2100953078668203 a001 610/1149851*599074578^(11/21) 2100953078668203 a001 610/1149851*228826127^(11/20) 2100953078668203 a001 610/1149851*87403803^(11/19) 2100953078668204 a001 610/1149851*33385282^(11/18) 2100953078668205 a001 156839845/7465176 2100953078668212 a001 610/1149851*12752043^(11/17) 2100953078668264 a001 610/1149851*4870847^(11/16) 2100953078668648 a001 610/1149851*1860498^(11/15) 2100953078668810 a004 Fibonacci(29)/Lucas(15)/(1/2+sqrt(5)/2)^6 2100953078670412 a001 610/3010349*710647^(6/7) 2100953078670511 a001 305/3940598*710647^(13/14) 2100953078670774 a004 Fibonacci(15)*Lucas(28)/(1/2+sqrt(5)/2)^35 2100953078671472 a001 610/1149851*710647^(11/14) 2100953078677503 a001 305/219602*20633239^(4/7) 2100953078677506 a001 305/219602*2537720636^(4/9) 2100953078677506 a001 305/219602*(1/2+1/2*5^(1/2))^20 2100953078677506 a001 305/219602*23725150497407^(5/16) 2100953078677506 a001 305/219602*505019158607^(5/14) 2100953078677506 a001 305/219602*73681302247^(5/13) 2100953078677506 a001 305/219602*28143753123^(2/5) 2100953078677506 a001 305/219602*10749957122^(5/12) 2100953078677506 a001 305/219602*4106118243^(10/23) 2100953078677506 a001 305/219602*1568397607^(5/11) 2100953078677506 a001 305/219602*599074578^(10/21) 2100953078677506 a001 305/219602*228826127^(1/2) 2100953078677506 a001 305/219602*87403803^(10/19) 2100953078677507 a001 305/219602*33385282^(5/9) 2100953078677513 a001 305/219602*12752043^(10/17) 2100953078677518 a001 119814980/5702887 2100953078677561 a001 305/219602*4870847^(5/8) 2100953078677910 a001 305/219602*1860498^(2/3) 2100953078678112 a004 Fibonacci(27)/Lucas(15)/(1/2+sqrt(5)/2)^4 2100953078680477 a001 305/219602*710647^(5/7) 2100953078692330 a001 610/1149851*271443^(11/13) 2100953078693167 a001 610/3010349*271443^(12/13) 2100953078695128 a004 Fibonacci(15)*Lucas(26)/(1/2+sqrt(5)/2)^33 2100953078699439 a001 305/219602*271443^(10/13) 2100953078734004 a001 610/167761*439204^(2/3) 2100953078741246 a001 610/167761*7881196^(6/11) 2100953078741265 a001 610/167761*141422324^(6/13) 2100953078741265 a001 610/167761*2537720636^(2/5) 2100953078741265 a001 610/167761*45537549124^(6/17) 2100953078741265 a001 610/167761*14662949395604^(2/7) 2100953078741265 a001 610/167761*(1/2+1/2*5^(1/2))^18 2100953078741265 a001 610/167761*192900153618^(1/3) 2100953078741265 a001 610/167761*10749957122^(3/8) 2100953078741265 a001 610/167761*4106118243^(9/23) 2100953078741265 a001 610/167761*1568397607^(9/22) 2100953078741265 a001 610/167761*599074578^(3/7) 2100953078741265 a001 610/167761*228826127^(9/20) 2100953078741265 a001 610/167761*87403803^(9/19) 2100953078741266 a001 610/167761*33385282^(1/2) 2100953078741272 a001 610/167761*12752043^(9/17) 2100953078741315 a001 610/167761*4870847^(9/16) 2100953078741353 a001 45765250/2178309 2100953078741629 a001 610/167761*1860498^(3/5) 2100953078741872 a004 Fibonacci(25)/Lucas(15)/(1/2+sqrt(5)/2)^2 2100953078743939 a001 610/167761*710647^(9/14) 2100953078761005 a001 610/167761*271443^(9/13) 2100953078792822 a001 610/271443*103682^(19/24) 2100953078822338 a001 610/64079*64079^(16/23) 2100953078833462 a001 610/710647*103682^(7/8) 2100953078840371 a001 305/219602*103682^(5/6) 2100953078847355 a001 610/1149851*103682^(11/12) 2100953078853302 a001 305/930249*103682^(23/24) 2100953078862052 a004 Fibonacci(15)*Lucas(24)/(1/2+sqrt(5)/2)^31 2100953078887844 a001 610/167761*103682^(3/4) 2100953079178278 a001 610/64079*(1/2+1/2*5^(1/2))^16 2100953079178278 a001 610/64079*23725150497407^(1/4) 2100953079178278 a001 610/64079*73681302247^(4/13) 2100953079178278 a001 610/64079*10749957122^(1/3) 2100953079178278 a001 610/64079*4106118243^(8/23) 2100953079178278 a001 610/64079*1568397607^(4/11) 2100953079178278 a001 610/64079*599074578^(8/21) 2100953079178278 a001 610/64079*228826127^(2/5) 2100953079178278 a001 610/64079*87403803^(8/19) 2100953079178279 a001 610/64079*33385282^(4/9) 2100953079178284 a001 610/64079*12752043^(8/17) 2100953079178322 a001 610/64079*4870847^(1/2) 2100953079178602 a001 610/64079*1860498^(8/15) 2100953079178885 a001 28657/1364 2100953079180655 a001 610/64079*710647^(4/7) 2100953079195825 a001 610/64079*271443^(8/13) 2100953079308570 a001 610/64079*103682^(2/3) 2100953079506286 a001 305/51841*39603^(17/22) 2100953079643975 a001 5473/682*9349^(2/19) 2100953079794987 a001 610/271443*39603^(19/22) 2100953079835613 a001 305/12238*24476^(2/3) 2100953079837264 a001 610/167761*39603^(9/11) 2100953079895282 a001 305/219602*39603^(10/11) 2100953079941119 a001 610/710647*39603^(21/22) 2100953079974202 a001 615/124*5778^(1/6) 2100953080006168 a004 Fibonacci(15)*Lucas(22)/(1/2+sqrt(5)/2)^29 2100953080152499 a001 610/64079*39603^(8/11) 2100953080823807 a001 17711/1364*5778^(1/18) 2100953081840219 a001 5473/682*24476^(2/21) 2100953081862164 a001 305/12238*64079^(14/23) 2100953082129726 a001 5473/682*64079^(2/23) 2100953082173610 a001 305/12238*20633239^(2/5) 2100953082173612 a001 305/12238*17393796001^(2/7) 2100953082173612 a001 305/12238*14662949395604^(2/9) 2100953082173612 a001 305/12238*(1/2+1/2*5^(1/2))^14 2100953082173612 a001 305/12238*10749957122^(7/24) 2100953082173612 a001 305/12238*4106118243^(7/23) 2100953082173612 a001 305/12238*1568397607^(7/22) 2100953082173612 a001 305/12238*599074578^(1/3) 2100953082173612 a001 305/12238*228826127^(7/20) 2100953082173612 a001 305/12238*87403803^(7/19) 2100953082173612 a001 305/12238*33385282^(7/18) 2100953082173617 a001 305/12238*12752043^(7/17) 2100953082173650 a001 305/12238*4870847^(7/16) 2100953082173895 a001 305/12238*1860498^(7/15) 2100953082174219 a001 5473/682*(1/2+1/2*5^(1/2))^2 2100953082174219 a001 5473/682*10749957122^(1/24) 2100953082174219 a001 5473/682*4106118243^(1/23) 2100953082174219 a001 5473/682*1568397607^(1/22) 2100953082174219 a001 5473/682*599074578^(1/21) 2100953082174219 a001 5473/682*228826127^(1/20) 2100953082174219 a001 5473/682*87403803^(1/19) 2100953082174219 a001 5473/682*33385282^(1/18) 2100953082174219 a001 5473/682*12752043^(1/17) 2100953082174224 a001 5473/682*4870847^(1/16) 2100953082174259 a001 5473/682*1860498^(1/15) 2100953082174516 a001 5473/682*710647^(1/14) 2100953082175692 a001 305/12238*710647^(1/2) 2100953082176412 a001 5473/682*271443^(1/13) 2100953082177772 a001 513620/24447 2100953082188965 a001 305/12238*271443^(7/13) 2100953082190505 a001 5473/682*103682^(1/12) 2100953082287617 a001 305/12238*103682^(7/12) 2100953082295996 a001 5473/682*39603^(1/11) 2100953083026055 a001 305/12238*39603^(7/11) 2100953083092363 a001 5473/682*15127^(1/10) 2100953084213139 a001 610/39603*15127^(3/4) 2100953086275399 a001 305/51841*15127^(17/20) 2100953086523429 a001 610/64079*15127^(4/5) 2100953087004560 a001 610/167761*15127^(9/10) 2100953087360467 a001 610/271443*15127^(19/20) 2100953087522468 a001 610/9349*9349^(12/19) 2100953087848053 a004 Fibonacci(15)*Lucas(20)/(1/2+sqrt(5)/2)^27 2100953088600619 a001 305/12238*15127^(7/10) 2100953089166498 a001 5473/682*5778^(1/9) 2100953091119570 r005 Im(z^2+c),c=-31/38+3/17*I,n=46 2100953097290377 a007 Real Root Of -108*x^4+710*x^3-572*x^2-468*x-972 2100953097644052 a001 4181/1364*9349^(4/19) 2100953100699935 a001 610/9349*24476^(4/7) 2100953102036540 a001 4181/1364*24476^(4/21) 2100953102436978 a001 610/9349*64079^(12/23) 2100953102615555 a001 4181/1364*64079^(4/23) 2100953102699093 a001 610/9349*439204^(4/9) 2100953102703921 a001 610/9349*7881196^(4/11) 2100953102703933 a001 610/9349*141422324^(4/13) 2100953102703933 a001 610/9349*2537720636^(4/15) 2100953102703933 a001 610/9349*45537549124^(4/17) 2100953102703933 a001 610/9349*817138163596^(4/19) 2100953102703933 a001 610/9349*14662949395604^(4/21) 2100953102703933 a001 610/9349*(1/2+1/2*5^(1/2))^12 2100953102703933 a001 610/9349*73681302247^(3/13) 2100953102703933 a001 610/9349*10749957122^(1/4) 2100953102703933 a001 610/9349*4106118243^(6/23) 2100953102703933 a001 610/9349*1568397607^(3/11) 2100953102703933 a001 610/9349*599074578^(2/7) 2100953102703933 a001 610/9349*228826127^(3/10) 2100953102703933 a001 610/9349*87403803^(6/19) 2100953102703934 a001 610/9349*33385282^(1/3) 2100953102703938 a001 610/9349*12752043^(6/17) 2100953102703966 a001 610/9349*4870847^(3/8) 2100953102704176 a001 610/9349*1860498^(2/5) 2100953102704540 a001 4181/1364*(1/2+1/2*5^(1/2))^4 2100953102704540 a001 4181/1364*23725150497407^(1/16) 2100953102704540 a001 4181/1364*73681302247^(1/13) 2100953102704540 a001 4181/1364*10749957122^(1/12) 2100953102704540 a001 4181/1364*4106118243^(2/23) 2100953102704540 a001 4181/1364*1568397607^(1/11) 2100953102704540 a001 4181/1364*599074578^(2/21) 2100953102704540 a001 4181/1364*228826127^(1/10) 2100953102704540 a001 4181/1364*87403803^(2/19) 2100953102704540 a001 4181/1364*33385282^(1/9) 2100953102704541 a001 4181/1364*12752043^(2/17) 2100953102704551 a001 4181/1364*4870847^(1/8) 2100953102704621 a001 4181/1364*1860498^(2/15) 2100953102705134 a001 4181/1364*710647^(1/7) 2100953102705716 a001 610/9349*710647^(3/7) 2100953102708927 a001 4181/1364*271443^(2/13) 2100953102713930 r005 Im(z^2+c),c=-19/34+38/101*I,n=59 2100953102717094 a001 610/9349*271443^(6/13) 2100953102732447 a001 2550410/121393 2100953102737113 a001 4181/1364*103682^(1/6) 2100953102801652 a001 610/9349*103682^(1/2) 2100953102948095 a001 4181/1364*39603^(2/11) 2100953103434599 a001 610/9349*39603^(6/11) 2100953104285926 a001 17711/1364*2207^(1/16) 2100953104540828 a001 4181/1364*15127^(1/5) 2100953108212797 a001 610/9349*15127^(3/5) 2100953113485683 m001 (MasserGramain+Mills)/(GaussKuzminWirsing+Kac) 2100953113909020 m001 1/(HardyLittlewoodC5^FeigenbaumB) 2100953114934993 a001 610/15127*5778^(13/18) 2100953116689099 a001 4181/1364*5778^(2/9) 2100953121317189 m001 Champernowne*(GolombDickman-Kolakoski) 2100953122721064 r005 Im(z^2+c),c=-34/29+19/64*I,n=25 2100953129769158 a001 610/39603*5778^(5/6) 2100953131119570 a001 305/12238*5778^(7/9) 2100953133968810 m001 1/Khintchine/Bloch/exp(Robbin)^2 2100953135116516 a001 610/64079*5778^(8/9) 2100953136090737 a001 5473/682*2207^(1/8) 2100953136810548 r005 Re(z^2+c),c=-1/66+23/32*I,n=53 2100953137905554 a001 305/51841*5778^(17/18) 2100953141597132 a004 Fibonacci(15)*Lucas(18)/(1/2+sqrt(5)/2)^25 2100953143137665 a007 Real Root Of -495*x^4-784*x^3+391*x^2-9*x+629 2100953144338084 a001 2255/1926*843^(3/7) 2100953144657612 a001 610/9349*5778^(2/3) 2100953144674060 m001 (-KhinchinHarmonic+PlouffeB)/(3^(1/3)-Chi(1)) 2100953144849709 a007 Real Root Of 11*x^4+6*x^3+396*x^2+967*x+125 2100953146506597 a001 610/3571*3571^(10/17) 2100953150360560 a001 615/124*2207^(3/16) 2100953150527998 a001 646/341*2207^(5/16) 2100953153583511 r005 Re(z^2+c),c=-143/118+3/49*I,n=16 2100953155107268 m001 (-sin(1/12*Pi)+MertensB2)/(1-Zeta(5)) 2100953158024446 l006 ln(983/8035) 2100953160851935 a001 6765/3571*843^(5/14) 2100953161043034 a001 1597/2207*843^(1/2) 2100953162350039 a007 Real Root Of -41*x^4-821*x^3+825*x^2-461*x+728 2100953167827773 a007 Real Root Of 219*x^4+440*x^3-141*x^2-623*x-873 2100953171367291 a007 Real Root Of 252*x^4+711*x^3+246*x^2-494*x-440 2100953179012281 m001 (ln(3)*TwinPrimes+Robbin)/TwinPrimes 2100953185272896 a001 1597/1364*3571^(6/17) 2100953187699646 a007 Real Root Of 37*x^4+816*x^3+815*x^2+97*x+697 2100953195991116 a001 29/832040*55^(13/29) 2100953196983098 a005 (1/sin(60/133*Pi))^1814 2100953199027843 r005 Im(z^2+c),c=-21/58+1/3*I,n=13 2100953200478787 r002 6th iterates of z^2 + 2100953201254810 a007 Real Root Of 569*x^4+773*x^3-648*x^2+518*x+31 2100953205929050 a001 17711/15127*843^(3/7) 2100953207215252 a001 28657/2207*322^(1/12) 2100953210537579 a001 4181/1364*2207^(1/4) 2100953213817441 m001 HeathBrownMoroz*ZetaQ(4)^gamma(1) 2100953214915051 a001 15456/13201*843^(3/7) 2100953216226091 a001 121393/103682*843^(3/7) 2100953216417369 a001 105937/90481*843^(3/7) 2100953216427096 a007 Real Root Of 588*x^4+984*x^3-255*x^2+262*x-655 2100953216445276 a001 832040/710647*843^(3/7) 2100953216449347 a001 726103/620166*843^(3/7) 2100953216449942 a001 5702887/4870847*843^(3/7) 2100953216450028 a001 4976784/4250681*843^(3/7) 2100953216450041 a001 39088169/33385282*843^(3/7) 2100953216450043 a001 34111385/29134601*843^(3/7) 2100953216450043 a001 267914296/228826127*843^(3/7) 2100953216450043 a001 233802911/199691526*843^(3/7) 2100953216450043 a001 1836311903/1568397607*843^(3/7) 2100953216450043 a001 1602508992/1368706081*843^(3/7) 2100953216450043 a001 12586269025/10749957122*843^(3/7) 2100953216450043 a001 10983760033/9381251041*843^(3/7) 2100953216450043 a001 86267571272/73681302247*843^(3/7) 2100953216450043 a001 75283811239/64300051206*843^(3/7) 2100953216450043 a001 2504730781961/2139295485799*843^(3/7) 2100953216450043 a001 365435296162/312119004989*843^(3/7) 2100953216450043 a001 139583862445/119218851371*843^(3/7) 2100953216450043 a001 53316291173/45537549124*843^(3/7) 2100953216450043 a001 20365011074/17393796001*843^(3/7) 2100953216450043 a001 7778742049/6643838879*843^(3/7) 2100953216450043 a001 2971215073/2537720636*843^(3/7) 2100953216450043 a001 1134903170/969323029*843^(3/7) 2100953216450043 a001 433494437/370248451*843^(3/7) 2100953216450043 a001 165580141/141422324*843^(3/7) 2100953216450044 a001 63245986/54018521*843^(3/7) 2100953216450049 a001 24157817/20633239*843^(3/7) 2100953216450082 a001 9227465/7881196*843^(3/7) 2100953216450309 a001 3524578/3010349*843^(3/7) 2100953216451864 a001 1346269/1149851*843^(3/7) 2100953216462523 a001 514229/439204*843^(3/7) 2100953216535585 a001 196418/167761*843^(3/7) 2100953217036358 a001 75025/64079*843^(3/7) 2100953217798073 r005 Re(z^2+c),c=-5/48+32/53*I,n=49 2100953220468705 a001 28657/24476*843^(3/7) 2100953222355109 r009 Re(z^3+c),c=-15/58+40/53*I,n=22 2100953224651770 a007 Real Root Of -409*x^4-715*x^3+937*x^2+979*x-741 2100953224945195 r005 Im(z^2+c),c=-7/10+75/229*I,n=15 2100953226196908 m002 -10+Pi^3+Tanh[Pi]/Pi^5 2100953230769640 a001 610/3571*9349^(10/19) 2100953235830722 a001 1597/1364*9349^(6/19) 2100953237226932 r002 42th iterates of z^2 + 2100953241750862 a001 610/3571*24476^(10/21) 2100953242419456 a001 1597/1364*24476^(2/7) 2100953243198399 a001 610/3571*64079^(10/23) 2100953243287978 a001 1597/1364*64079^(6/23) 2100953243391001 a001 610/3571*167761^(2/5) 2100953243419035 a001 1597/1364*439204^(2/9) 2100953243420860 a001 610/3571*20633239^(2/7) 2100953243420861 a001 610/3571*2537720636^(2/9) 2100953243420861 a001 610/3571*312119004989^(2/11) 2100953243420861 a001 610/3571*(1/2+1/2*5^(1/2))^10 2100953243420861 a001 610/3571*28143753123^(1/5) 2100953243420861 a001 610/3571*10749957122^(5/24) 2100953243420861 a001 610/3571*4106118243^(5/23) 2100953243420861 a001 610/3571*1568397607^(5/22) 2100953243420861 a001 610/3571*599074578^(5/21) 2100953243420861 a001 610/3571*228826127^(1/4) 2100953243420861 a001 610/3571*87403803^(5/19) 2100953243420862 a001 610/3571*33385282^(5/18) 2100953243420865 a001 610/3571*12752043^(5/17) 2100953243420889 a001 610/3571*4870847^(5/16) 2100953243421064 a001 610/3571*1860498^(1/3) 2100953243421449 a001 1597/1364*7881196^(2/11) 2100953243421455 a001 1597/1364*141422324^(2/13) 2100953243421455 a001 1597/1364*2537720636^(2/15) 2100953243421455 a001 1597/1364*45537549124^(2/17) 2100953243421455 a001 1597/1364*14662949395604^(2/21) 2100953243421455 a001 1597/1364*(1/2+1/2*5^(1/2))^6 2100953243421455 a001 1597/1364*10749957122^(1/8) 2100953243421455 a001 1597/1364*4106118243^(3/23) 2100953243421455 a001 1597/1364*1568397607^(3/22) 2100953243421455 a001 1597/1364*599074578^(1/7) 2100953243421455 a001 1597/1364*228826127^(3/20) 2100953243421455 a001 1597/1364*87403803^(3/19) 2100953243421456 a001 1597/1364*33385282^(1/6) 2100953243421458 a001 1597/1364*12752043^(3/17) 2100953243421472 a001 1597/1364*4870847^(3/16) 2100953243421577 a001 1597/1364*1860498^(1/5) 2100953243422347 a001 1597/1364*710647^(3/14) 2100953243422347 a001 610/3571*710647^(5/14) 2100953243428035 a001 1597/1364*271443^(3/13) 2100953243431828 a001 610/3571*271443^(5/13) 2100953243470315 a001 1597/1364*103682^(1/4) 2100953243502294 a001 610/3571*103682^(5/12) 2100953243616287 a001 487085/23184 2100953243786788 a001 1597/1364*39603^(3/11) 2100953243994361 a001 10946/9349*843^(3/7) 2100953244029749 a001 610/3571*39603^(5/11) 2100953246175887 a001 1597/1364*15127^(3/10) 2100953248011581 a001 610/3571*15127^(1/2) 2100953257641027 m001 (Niven+Tribonacci)/(BesselI(0,1)+BesselK(0,1)) 2100953261370717 r005 Re(z^2+c),c=-3/34+31/54*I,n=54 2100953264398296 a001 1597/1364*5778^(1/3) 2100953278382262 a001 610/3571*5778^(5/9) 2100953278629982 m001 (FransenRobinson+Paris)/(2^(1/3)+Champernowne) 2100953284047885 a003 sin(Pi*1/95)*sin(Pi*16/73) 2100953287665591 l006 ln(960/7847) 2100953288498585 a001 17711/1364*843^(1/14) 2100953296371592 m001 (Trott2nd-ZetaP(4))/(Zeta(3)+ln(Pi)) 2100953304932791 a007 Real Root Of 2*x^4-425*x^3+639*x^2+285*x+483 2100953308433577 r005 Im(z^2+c),c=11/106+11/60*I,n=17 2100953312276957 a001 305/2889*2207^(11/16) 2100953314281967 a007 Real Root Of 44*x^4+968*x^3+950*x^2+751*x+597 2100953326308874 m001 BesselK(1,1)^2/OneNinth/ln(GAMMA(19/24)) 2100953334077969 r009 Re(z^3+c),c=-37/106+23/43*I,n=52 2100953337434929 m001 Landau^Psi(1,1/3)*Landau^ZetaQ(3) 2100953339695118 r009 Re(z^3+c),c=-3/82+17/24*I,n=37 2100953341066928 m001 (KhinchinHarmonic+MertensB2)/(ArtinRank2+Kac) 2100953354754612 l006 ln(7498/9251) 2100953355565799 a007 Real Root Of -416*x^4-986*x^3-484*x^2-631*x-228 2100953357590439 p003 LerchPhi(1/10,3,33/91) 2100953358796777 r004 Im(z^2+c),c=-5/46+4/15*I,z(0)=I,n=18 2100953363817455 a007 Real Root Of 3*x^4-431*x^3-565*x^2+490*x-532 2100953365223427 r005 Im(z^2+c),c=5/54+10/53*I,n=9 2100953366494474 r005 Im(z^2+c),c=-37/110+15/46*I,n=11 2100953378420764 m001 (Pi+Ei(1))/(FeigenbaumB-Lehmer) 2100953387356115 m001 (1-BesselI(0,2))/(-LaplaceLimit+Sarnak) 2100953388727770 a001 4181/5778*843^(1/2) 2100953389061169 a007 Real Root Of -440*x^4-269*x^3+649*x-133 2100953396470270 m001 1/Zeta(9)/exp(Zeta(1/2))^2/log(1+sqrt(2)) 2100953404906720 h001 (1/11*exp(1)+7/10)/(4/7*exp(2)+2/7) 2100953405171027 a001 1597/1364*2207^(3/8) 2100953405241623 a001 4181/3571*843^(3/7) 2100953415887458 a001 2/11*3^(5/38) 2100953419942567 a001 610/15127*2207^(13/16) 2100953421299940 r005 Re(z^2+c),c=-2/23+22/37*I,n=62 2100953421946532 a001 10946/15127*843^(1/2) 2100953423671171 l006 ln(937/7659) 2100953426203067 a001 610/9349*2207^(3/4) 2100953426793084 a001 28657/39603*843^(1/2) 2100953427500187 a001 75025/103682*843^(1/2) 2100953427603352 a001 196418/271443*843^(1/2) 2100953427618403 a001 514229/710647*843^(1/2) 2100953427620599 a001 1346269/1860498*843^(1/2) 2100953427620920 a001 3524578/4870847*843^(1/2) 2100953427620966 a001 9227465/12752043*843^(1/2) 2100953427620973 a001 24157817/33385282*843^(1/2) 2100953427620974 a001 63245986/87403803*843^(1/2) 2100953427620974 a001 165580141/228826127*843^(1/2) 2100953427620974 a001 433494437/599074578*843^(1/2) 2100953427620974 a001 1134903170/1568397607*843^(1/2) 2100953427620974 a001 2971215073/4106118243*843^(1/2) 2100953427620974 a001 7778742049/10749957122*843^(1/2) 2100953427620974 a001 20365011074/28143753123*843^(1/2) 2100953427620974 a001 53316291173/73681302247*843^(1/2) 2100953427620974 a001 139583862445/192900153618*843^(1/2) 2100953427620974 a001 365435296162/505019158607*843^(1/2) 2100953427620974 a001 10610209857723/14662949395604*843^(1/2) 2100953427620974 a001 225851433717/312119004989*843^(1/2) 2100953427620974 a001 86267571272/119218851371*843^(1/2) 2100953427620974 a001 32951280099/45537549124*843^(1/2) 2100953427620974 a001 12586269025/17393796001*843^(1/2) 2100953427620974 a001 4807526976/6643838879*843^(1/2) 2100953427620974 a001 1836311903/2537720636*843^(1/2) 2100953427620974 a001 701408733/969323029*843^(1/2) 2100953427620974 a001 267914296/370248451*843^(1/2) 2100953427620974 a001 102334155/141422324*843^(1/2) 2100953427620975 a001 39088169/54018521*843^(1/2) 2100953427620977 a001 14930352/20633239*843^(1/2) 2100953427620995 a001 5702887/7881196*843^(1/2) 2100953427621118 a001 2178309/3010349*843^(1/2) 2100953427621956 a001 832040/1149851*843^(1/2) 2100953427627706 a001 317811/439204*843^(1/2) 2100953427667111 a001 121393/167761*843^(1/2) 2100953427937200 a001 46368/64079*843^(1/2) 2100953428874417 a008 Real Root of (2+3*x+3*x^2-4*x^3+5*x^4-2*x^5) 2100953429788418 a001 17711/24476*843^(1/2) 2100953438096359 m001 (HeathBrownMoroz+ZetaQ(2))/(Pi-polylog(4,1/2)) 2100953439265524 r005 Im(z^2+c),c=-31/23+5/48*I,n=6 2100953442476857 a001 6765/9349*843^(1/2) 2100953444508643 r009 Re(z^3+c),c=-17/106+47/59*I,n=3 2100953459589269 a001 305/12238*2207^(7/8) 2100953464882947 b008 2+FresnelC[3]/6 2100953480893311 m001 (PrimesInBinary+ZetaQ(2))/(exp(Pi)-sin(1)) 2100953481700981 a001 610/39603*2207^(15/16) 2100953482341040 r002 3th iterates of z^2 + 2100953484244062 a007 Real Root Of -69*x^4+335*x^3+713*x^2-246*x+787 2100953486571404 m001 (ln(3)+Robbin)/Chi(1) 2100953490490450 a007 Real Root Of 26*x^4+583*x^3+774*x^2+8*x-651 2100953491420443 r009 Re(z^3+c),c=-7/23+23/55*I,n=34 2100953491526835 a007 Real Root Of -110*x^4+28*x^3-343*x^2+692*x+161 2100953504516076 a001 5473/682*843^(1/7) 2100953504815083 m008 (3/5*Pi^4-1/6)/(1/5*Pi^2+4/5) 2100953509731900 m001 1/exp(GAMMA(2/3))^2/FeigenbaumC*gamma 2100953509998799 a004 Fibonacci(15)*Lucas(16)/(1/2+sqrt(5)/2)^23 2100953512930862 a001 1292/2889*843^(4/7) 2100953513003488 a001 610/3571*2207^(5/8) 2100953517118308 m005 (1/2*2^(1/2)-4)/(6*exp(1)-7/11) 2100953517909460 m001 Lehmer/Zeta(1,-1)/Niven 2100953529444716 a001 2584/3571*843^(1/2) 2100953536099223 s002 sum(A152442[n]/(exp(pi*n)-1),n=1..infinity) 2100953540313678 m001 GAMMA(23/24)/Pi*Cahen 2100953545567531 m001 exp(Pi)/(ln(Pi)^TravellingSalesman) 2100953548247509 m001 (Totient+ZetaQ(3))/(Conway-Robbin) 2100953566521651 l006 ln(914/7471) 2100953566870977 a001 329/1926*843^(5/7) 2100953566936763 m006 (5/6*ln(Pi)-2/5)/(2/Pi+2) 2100953567554698 m001 GAMMA(13/24)/exp(1/exp(1))/cos(1) 2100953575179918 a001 75025/5778*322^(1/12) 2100953578547216 a005 (1/cos(3/223*Pi))^831 2100953583384831 a001 987/3571*843^(9/14) 2100953583580410 m005 (1/2*gamma+3/10)/(3/5*Pi+11/12) 2100953589824167 a003 3^(1/2)+cos(1/8*Pi)+cos(10/27*Pi)-cos(1/10*Pi) 2100953605646571 a001 305/682*1364^(8/15) 2100953606898560 r009 Im(z^3+c),c=-11/46+57/61*I,n=14 2100953611408319 m001 exp(log(2+sqrt(3)))^2/Zeta(1,2)*sqrt(2) 2100953615745843 a007 Real Root Of 266*x^4+273*x^3-629*x^2-431*x-780 2100953616467072 a007 Real Root Of -339*x^4-498*x^3+844*x^2+939*x+234 2100953620429044 a001 6765/15127*843^(4/7) 2100953627381146 l006 ln(3965/4892) 2100953628865249 a001 196418/15127*322^(1/12) 2100953632540402 s002 sum(A220118[n]/(exp(n)-1),n=1..infinity) 2100953636112818 a001 17711/39603*843^(4/7) 2100953636697834 a001 514229/39603*322^(1/12) 2100953636995583 h001 (2/7*exp(2)+3/4)/(1/5*exp(1)+9/11) 2100953637840593 a001 1346269/103682*322^(1/12) 2100953638007319 a001 3524578/271443*322^(1/12) 2100953638031644 a001 9227465/710647*322^(1/12) 2100953638035193 a001 24157817/1860498*322^(1/12) 2100953638035711 a001 63245986/4870847*322^(1/12) 2100953638035786 a001 165580141/12752043*322^(1/12) 2100953638035797 a001 433494437/33385282*322^(1/12) 2100953638035799 a001 1134903170/87403803*322^(1/12) 2100953638035799 a001 2971215073/228826127*322^(1/12) 2100953638035799 a001 7778742049/599074578*322^(1/12) 2100953638035799 a001 20365011074/1568397607*322^(1/12) 2100953638035799 a001 53316291173/4106118243*322^(1/12) 2100953638035799 a001 139583862445/10749957122*322^(1/12) 2100953638035799 a001 365435296162/28143753123*322^(1/12) 2100953638035799 a001 956722026041/73681302247*322^(1/12) 2100953638035799 a001 2504730781961/192900153618*322^(1/12) 2100953638035799 a001 10610209857723/817138163596*322^(1/12) 2100953638035799 a001 4052739537881/312119004989*322^(1/12) 2100953638035799 a001 1548008755920/119218851371*322^(1/12) 2100953638035799 a001 591286729879/45537549124*322^(1/12) 2100953638035799 a001 7787980473/599786069*322^(1/12) 2100953638035799 a001 86267571272/6643838879*322^(1/12) 2100953638035799 a001 32951280099/2537720636*322^(1/12) 2100953638035799 a001 12586269025/969323029*322^(1/12) 2100953638035799 a001 4807526976/370248451*322^(1/12) 2100953638035799 a001 1836311903/141422324*322^(1/12) 2100953638035800 a001 701408733/54018521*322^(1/12) 2100953638035804 a001 9238424/711491*322^(1/12) 2100953638035833 a001 102334155/7881196*322^(1/12) 2100953638036031 a001 39088169/3010349*322^(1/12) 2100953638037386 a001 14930352/1149851*322^(1/12) 2100953638046678 a001 5702887/439204*322^(1/12) 2100953638110362 a001 2178309/167761*322^(1/12) 2100953638401050 a001 23184/51841*843^(4/7) 2100953638546856 a001 832040/64079*322^(1/12) 2100953638734899 a001 121393/271443*843^(4/7) 2100953638783607 a001 317811/710647*843^(4/7) 2100953638790713 a001 416020/930249*843^(4/7) 2100953638791750 a001 2178309/4870847*843^(4/7) 2100953638791901 a001 5702887/12752043*843^(4/7) 2100953638791923 a001 7465176/16692641*843^(4/7) 2100953638791926 a001 39088169/87403803*843^(4/7) 2100953638791927 a001 102334155/228826127*843^(4/7) 2100953638791927 a001 133957148/299537289*843^(4/7) 2100953638791927 a001 701408733/1568397607*843^(4/7) 2100953638791927 a001 1836311903/4106118243*843^(4/7) 2100953638791927 a001 2403763488/5374978561*843^(4/7) 2100953638791927 a001 12586269025/28143753123*843^(4/7) 2100953638791927 a001 32951280099/73681302247*843^(4/7) 2100953638791927 a001 43133785636/96450076809*843^(4/7) 2100953638791927 a001 225851433717/505019158607*843^(4/7) 2100953638791927 a001 591286729879/1322157322203*843^(4/7) 2100953638791927 a001 10610209857723/23725150497407*843^(4/7) 2100953638791927 a001 139583862445/312119004989*843^(4/7) 2100953638791927 a001 53316291173/119218851371*843^(4/7) 2100953638791927 a001 10182505537/22768774562*843^(4/7) 2100953638791927 a001 7778742049/17393796001*843^(4/7) 2100953638791927 a001 2971215073/6643838879*843^(4/7) 2100953638791927 a001 567451585/1268860318*843^(4/7) 2100953638791927 a001 433494437/969323029*843^(4/7) 2100953638791927 a001 165580141/370248451*843^(4/7) 2100953638791927 a001 31622993/70711162*843^(4/7) 2100953638791928 a001 24157817/54018521*843^(4/7) 2100953638791937 a001 9227465/20633239*843^(4/7) 2100953638791995 a001 1762289/3940598*843^(4/7) 2100953638792391 a001 1346269/3010349*843^(4/7) 2100953638795105 a001 514229/1149851*843^(4/7) 2100953638813710 a001 98209/219602*843^(4/7) 2100953638941228 a001 75025/167761*843^(4/7) 2100953639815255 a001 28657/64079*843^(4/7) 2100953641538638 a001 10959/844*322^(1/12) 2100953641920428 a007 Real Root Of 548*x^4+899*x^3-120*x^2+696*x-348 2100953643975420 r009 Re(z^3+c),c=-7/23+23/55*I,n=37 2100953645805924 a001 5473/12238*843^(4/7) 2100953655288809 r009 Re(z^3+c),c=-7/23+23/55*I,n=29 2100953655322799 r005 Im(z^2+c),c=-31/34+21/107*I,n=23 2100953655336502 m005 (1/3*Catalan+3/7)/(1/3*Zeta(3)-3/4) 2100953658584025 r005 Im(z^2+c),c=-6/7+11/72*I,n=26 2100953660333158 r005 Im(z^2+c),c=-19/22+3/14*I,n=28 2100953662044611 a001 121393/9349*322^(1/12) 2100953667789430 a007 Real Root Of -113*x^4+16*x^3+538*x^2-181*x-405 2100953669762398 m001 exp(Tribonacci)^2/Niven^2*cosh(1) 2100953681635633 r009 Re(z^3+c),c=-7/23+23/55*I,n=40 2100953686866578 a001 4181/9349*843^(4/7) 2100953690254642 r009 Re(z^3+c),c=-7/23+23/55*I,n=43 2100953691915190 r009 Re(z^3+c),c=-7/23+23/55*I,n=42 2100953692018169 r009 Re(z^3+c),c=-7/23+23/55*I,n=45 2100953692063250 r009 Re(z^3+c),c=-7/23+23/55*I,n=46 2100953692279626 r009 Re(z^3+c),c=-7/23+23/55*I,n=48 2100953692396552 r009 Re(z^3+c),c=-7/23+23/55*I,n=51 2100953692399992 r009 Re(z^3+c),c=-7/23+23/55*I,n=49 2100953692435981 r009 Re(z^3+c),c=-7/23+23/55*I,n=54 2100953692447560 r009 Re(z^3+c),c=-7/23+23/55*I,n=57 2100953692450519 r009 Re(z^3+c),c=-7/23+23/55*I,n=52 2100953692450656 r009 Re(z^3+c),c=-7/23+23/55*I,n=60 2100953692451422 r009 Re(z^3+c),c=-7/23+23/55*I,n=63 2100953692451708 r009 Re(z^3+c),c=-7/23+23/55*I,n=62 2100953692451777 r009 Re(z^3+c),c=-7/23+23/55*I,n=64 2100953692452088 r009 Re(z^3+c),c=-7/23+23/55*I,n=61 2100953692452324 r009 Re(z^3+c),c=-7/23+23/55*I,n=59 2100953692452913 r009 Re(z^3+c),c=-7/23+23/55*I,n=58 2100953692454198 r009 Re(z^3+c),c=-7/23+23/55*I,n=55 2100953692455923 r009 Re(z^3+c),c=-7/23+23/55*I,n=56 2100953692473985 r009 Re(z^3+c),c=-7/23+23/55*I,n=53 2100953692556098 r009 Re(z^3+c),c=-7/23+23/55*I,n=50 2100953692900970 r009 Re(z^3+c),c=-7/23+23/55*I,n=47 2100953694244637 r009 Re(z^3+c),c=-7/23+23/55*I,n=44 2100953695482360 r009 Re(z^3+c),c=-7/23+23/55*I,n=39 2100953696221789 a007 Real Root Of -127*x^4+203*x^3+535*x^2-787*x+342 2100953696292076 a001 47/521*(1/2*5^(1/2)+1/2)^27*521^(4/15) 2100953699061921 r009 Re(z^3+c),c=-7/23+23/55*I,n=41 2100953702998596 a001 615/124*843^(3/14) 2100953704175122 a007 Real Root Of 4*x^4+844*x^3+761*x^2+163*x+432 2100953706866119 m001 TravellingSalesman+GAMMA(13/24)^TwinPrimes 2100953707731940 m001 PisotVijayaraghavan+ZetaP(4)^Paris 2100953713784225 m001 1/FeigenbaumKappa*exp(Niven)/GAMMA(11/24) 2100953714536613 r009 Re(z^3+c),c=-7/23+23/55*I,n=38 2100953716747105 l006 ln(891/7283) 2100953717066185 m001 FeigenbaumD/exp(Champernowne)/GAMMA(5/6) 2100953718877339 m001 FransenRobinson^(Champernowne/ZetaQ(3)) 2100953718895471 a007 Real Root Of -634*x^4-808*x^3+997*x^2-165*x+112 2100953720185119 r002 2th iterates of z^2 + 2100953723526774 m005 (1/2*2^(1/2)-11/12)/(6/11*5^(1/2)-2/9) 2100953723741169 a007 Real Root Of 219*x^4+255*x^3-424*x^2-143*x-331 2100953725330521 r009 Re(z^3+c),c=-7/23+23/55*I,n=36 2100953731181060 r002 20th iterates of z^2 + 2100953731304117 m001 (ln(2+3^(1/2))+GAMMA(11/12))/(Niven-Stephens) 2100953734860916 m001 1/Lehmer^2*GlaisherKinkelin^2/ln(OneNinth) 2100953755855568 r009 Re(z^3+c),c=-7/23+23/55*I,n=35 2100953760782717 a003 sin(Pi*1/65)+sin(Pi*3/58) 2100953763584249 a007 Real Root Of 690*x^4+878*x^3-642*x^2+996*x-375 2100953763594540 m005 (1/2*3^(1/2)+6/11)/(exp(1)+4) 2100953765002378 a003 cos(Pi*19/55)*cos(Pi*13/37) 2100953765101107 s002 sum(A208231[n]/((2^n+1)/n),n=1..infinity) 2100953771084482 m001 ArtinRank2+ErdosBorwein^TravellingSalesman 2100953774673980 a007 Real Root Of -448*x^4-794*x^3+620*x^2+895*x+509 2100953776459082 m001 (MasserGramainDelta-exp(1))/(Mills+Otter) 2100953779121612 m001 (-ZetaP(2)+ZetaQ(4))/(1+ln(Pi)) 2100953788874949 m001 (Si(Pi)+LandauRamanujan2nd)^GaussAGM 2100953792341382 r008 a(0)=3,K{-n^6,-9+8*n^3+7*n^2-4*n} 2100953798348731 m001 (2^(1/3))^exp(Pi)+DuboisRaymond 2100953799108304 m005 (1/2*Pi+5/6)/(1/4*gamma+1) 2100953802594652 a001 46368/3571*322^(1/12) 2100953807427853 r005 Im(z^2+c),c=-19/22+1/6*I,n=53 2100953811069687 a001 2584/9349*843^(9/14) 2100953822432709 r009 Re(z^3+c),c=-7/23+23/55*I,n=32 2100953844288457 a001 6765/24476*843^(9/14) 2100953846016680 m001 (OneNinth+Robbin)/(BesselK(1,1)-CopelandErdos) 2100953846855873 r005 Re(z^2+c),c=-1/62+18/35*I,n=6 2100953849135011 a001 17711/64079*843^(9/14) 2100953849842113 a001 46368/167761*843^(9/14) 2100953849945278 a001 121393/439204*843^(9/14) 2100953849960330 a001 317811/1149851*843^(9/14) 2100953849962526 a001 832040/3010349*843^(9/14) 2100953849962846 a001 2178309/7881196*843^(9/14) 2100953849962893 a001 5702887/20633239*843^(9/14) 2100953849962900 a001 14930352/54018521*843^(9/14) 2100953849962901 a001 39088169/141422324*843^(9/14) 2100953849962901 a001 102334155/370248451*843^(9/14) 2100953849962901 a001 267914296/969323029*843^(9/14) 2100953849962901 a001 701408733/2537720636*843^(9/14) 2100953849962901 a001 1836311903/6643838879*843^(9/14) 2100953849962901 a001 4807526976/17393796001*843^(9/14) 2100953849962901 a001 12586269025/45537549124*843^(9/14) 2100953849962901 a001 32951280099/119218851371*843^(9/14) 2100953849962901 a001 86267571272/312119004989*843^(9/14) 2100953849962901 a001 225851433717/817138163596*843^(9/14) 2100953849962901 a001 139583862445/505019158607*843^(9/14) 2100953849962901 a001 53316291173/192900153618*843^(9/14) 2100953849962901 a001 20365011074/73681302247*843^(9/14) 2100953849962901 a001 7778742049/28143753123*843^(9/14) 2100953849962901 a001 2971215073/10749957122*843^(9/14) 2100953849962901 a001 1134903170/4106118243*843^(9/14) 2100953849962901 a001 433494437/1568397607*843^(9/14) 2100953849962901 a001 165580141/599074578*843^(9/14) 2100953849962901 a001 63245986/228826127*843^(9/14) 2100953849962901 a001 24157817/87403803*843^(9/14) 2100953849962904 a001 9227465/33385282*843^(9/14) 2100953849962922 a001 3524578/12752043*843^(9/14) 2100953849963044 a001 1346269/4870847*843^(9/14) 2100953849963883 a001 514229/1860498*843^(9/14) 2100953849969632 a001 196418/710647*843^(9/14) 2100953850009037 a001 75025/271443*843^(9/14) 2100953850279127 a001 28657/103682*843^(9/14) 2100953852130345 a001 10946/39603*843^(9/14) 2100953853845998 h001 (11/12*exp(1)+7/11)/(1/10*exp(2)+3/4) 2100953858046585 a007 Real Root Of 184*x^4-118*x^3-993*x^2-68*x-439 2100953858668071 r005 Im(z^2+c),c=2/25+7/36*I,n=18 2100953858692181 m001 (1+Backhouse)/(-Landau+TwinPrimes) 2100953864818786 a001 4181/15127*843^(9/14) 2100953865009810 a001 987/9349*843^(11/14) 2100953869792800 m005 (1/2*5^(1/2)+8/11)/(1/5*Pi+1/4) 2100953874933792 l006 ln(868/7095) 2100953876750633 r005 Re(z^2+c),c=-11/94+10/19*I,n=39 2100953884552497 r009 Re(z^3+c),c=-33/98+29/59*I,n=16 2100953900166927 m001 arctan(1/3)+Conway+PlouffeB 2100953900906947 r009 Re(z^3+c),c=-7/23+23/55*I,n=33 2100953914837613 r005 Re(z^2+c),c=-89/126+3/58*I,n=2 2100953919480060 h001 (-exp(3/2)+8)/(-8*exp(1)+5) 2100953919560764 r009 Im(z^3+c),c=-49/122+4/37*I,n=22 2100953919991119 a007 Real Root Of 624*x^4+920*x^3-525*x^2+828*x+431 2100953928280770 r002 46th iterates of z^2 + 2100953935718521 r005 Im(z^2+c),c=-3/22+8/29*I,n=11 2100953937804918 m005 (1/2*3^(1/2)-6)/(7/11*Pi+4/9) 2100953938731287 b008 ArcCot[1+ArcSinh[20]] 2100953940753657 r005 Im(z^2+c),c=-8/15+15/34*I,n=57 2100953943169942 a007 Real Root Of -11*x^4-222*x^3+174*x^2-317*x+972 2100953947388347 a001 4181/1364*843^(2/7) 2100953950608701 r009 Im(z^3+c),c=-49/82+31/53*I,n=15 2100953951786652 a001 1597/5778*843^(9/14) 2100953952701396 a007 Real Root Of -224*x^4+809*x^3-854*x^2+373*x+124 2100953954026894 m005 (1/2*exp(1)+7/11)/(3/11*Catalan+7/10) 2100953968300509 a001 1597/3571*843^(4/7) 2100953975439313 s002 sum(A118979[n]/(pi^n),n=1..infinity) 2100953983654704 r005 Im(z^2+c),c=-22/25+11/63*I,n=44 2100953989021906 a001 2584/15127*843^(5/7) 2100953991716825 r009 Re(z^3+c),c=-7/19+46/61*I,n=2 2100953992375529 a007 Real Root Of -8*x^4+22*x^3-14*x^2+122*x+678 2100953993428252 r005 Im(z^2+c),c=-39/62+11/32*I,n=33 2100953996689016 s002 sum(A044880[n]/(n^3*exp(n)+1),n=1..infinity) 2100953998604131 m001 Pi*csc(7/24*Pi)/GAMMA(17/24)-Shi(1)+ZetaP(4) 2100953999716851 r005 Im(z^2+c),c=-19/29+11/36*I,n=18 2100954006921442 m007 (-1/5*gamma-2/5*ln(2)-1/6)/(-3/4*gamma+1/6) 2100954007502452 m001 exp(GAMMA(11/24))^2*Robbin/GAMMA(3/4)^2 2100954012518445 m005 (1/3*Zeta(3)-1/8)/(4*Pi+5/9) 2100954015574462 m001 (-Stephens+ThueMorse)/(FeigenbaumKappa-gamma) 2100954018585970 r009 Re(z^3+c),c=-3/28+29/35*I,n=40 2100954027847583 a001 521/832040*6765^(7/51) 2100954033742421 a003 cos(Pi*28/115)*cos(Pi*41/101) 2100954035769696 r005 Re(z^2+c),c=7/29+12/25*I,n=5 2100954041731799 l006 ln(845/6907) 2100954042758375 a007 Real Root Of 540*x^4+944*x^3-613*x^2-545*x-206 2100954042962033 a001 141/2161*843^(6/7) 2100954043048620 r005 Im(z^2+c),c=2/25+7/36*I,n=19 2100954044357992 a007 Real Root Of 418*x^4+953*x^3+131*x^2+164*x+460 2100954050612898 a001 2255/13201*843^(5/7) 2100954059598903 a001 17711/103682*843^(5/7) 2100954060909943 a001 15456/90481*843^(5/7) 2100954061101221 a001 121393/710647*843^(5/7) 2100954061129129 a001 105937/620166*843^(5/7) 2100954061133200 a001 832040/4870847*843^(5/7) 2100954061133794 a001 726103/4250681*843^(5/7) 2100954061133881 a001 5702887/33385282*843^(5/7) 2100954061133894 a001 4976784/29134601*843^(5/7) 2100954061133895 a001 39088169/228826127*843^(5/7) 2100954061133896 a001 34111385/199691526*843^(5/7) 2100954061133896 a001 267914296/1568397607*843^(5/7) 2100954061133896 a001 233802911/1368706081*843^(5/7) 2100954061133896 a001 1836311903/10749957122*843^(5/7) 2100954061133896 a001 1602508992/9381251041*843^(5/7) 2100954061133896 a001 12586269025/73681302247*843^(5/7) 2100954061133896 a001 10983760033/64300051206*843^(5/7) 2100954061133896 a001 86267571272/505019158607*843^(5/7) 2100954061133896 a001 75283811239/440719107401*843^(5/7) 2100954061133896 a001 2504730781961/14662949395604*843^(5/7) 2100954061133896 a001 139583862445/817138163596*843^(5/7) 2100954061133896 a001 53316291173/312119004989*843^(5/7) 2100954061133896 a001 20365011074/119218851371*843^(5/7) 2100954061133896 a001 7778742049/45537549124*843^(5/7) 2100954061133896 a001 2971215073/17393796001*843^(5/7) 2100954061133896 a001 1134903170/6643838879*843^(5/7) 2100954061133896 a001 433494437/2537720636*843^(5/7) 2100954061133896 a001 165580141/969323029*843^(5/7) 2100954061133896 a001 63245986/370248451*843^(5/7) 2100954061133897 a001 24157817/141422324*843^(5/7) 2100954061133901 a001 9227465/54018521*843^(5/7) 2100954061133934 a001 3524578/20633239*843^(5/7) 2100954061134161 a001 1346269/7881196*843^(5/7) 2100954061135717 a001 514229/3010349*843^(5/7) 2100954061146376 a001 196418/1149851*843^(5/7) 2100954061219438 a001 75025/439204*843^(5/7) 2100954061720211 a001 28657/167761*843^(5/7) 2100954062432669 r002 6th iterates of z^2 + 2100954065152559 a001 10946/64079*843^(5/7) 2100954067544159 a003 sin(Pi*8/75)*sin(Pi*15/68) 2100954070214911 a001 12752043/55*55^(11/20) 2100954071591472 a001 646/341*843^(5/14) 2100954073645363 a001 7/5*6765^(25/44) 2100954077181964 m001 (Pi+gamma(1))/(Bloch+Riemann1stZero) 2100954082902842 a001 4181/843*322^(1/4) 2100954085975071 r005 Im(z^2+c),c=2/25+7/36*I,n=22 2100954087089398 m001 (Kac+MertensB2)/(BesselI(1,1)-FeigenbaumKappa) 2100954087145272 r005 Im(z^2+c),c=2/25+7/36*I,n=23 2100954087410652 a007 Real Root Of 55*x^4-810*x^3+925*x^2+724*x+836 2100954088678225 a001 4181/24476*843^(5/7) 2100954089048394 l006 ln(5699/5820) 2100954090204025 r005 Im(z^2+c),c=2/25+7/36*I,n=27 2100954090289919 r005 Im(z^2+c),c=2/25+7/36*I,n=28 2100954090310454 r005 Im(z^2+c),c=2/25+7/36*I,n=31 2100954090310972 r005 Im(z^2+c),c=2/25+7/36*I,n=32 2100954090312413 r005 Im(z^2+c),c=2/25+7/36*I,n=36 2100954090312453 r005 Im(z^2+c),c=2/25+7/36*I,n=37 2100954090312462 r005 Im(z^2+c),c=2/25+7/36*I,n=40 2100954090312463 r005 Im(z^2+c),c=2/25+7/36*I,n=41 2100954090312463 r005 Im(z^2+c),c=2/25+7/36*I,n=45 2100954090312463 r005 Im(z^2+c),c=2/25+7/36*I,n=46 2100954090312463 r005 Im(z^2+c),c=2/25+7/36*I,n=49 2100954090312463 r005 Im(z^2+c),c=2/25+7/36*I,n=50 2100954090312463 r005 Im(z^2+c),c=2/25+7/36*I,n=54 2100954090312463 r005 Im(z^2+c),c=2/25+7/36*I,n=55 2100954090312463 r005 Im(z^2+c),c=2/25+7/36*I,n=58 2100954090312463 r005 Im(z^2+c),c=2/25+7/36*I,n=59 2100954090312463 r005 Im(z^2+c),c=2/25+7/36*I,n=63 2100954090312463 r005 Im(z^2+c),c=2/25+7/36*I,n=64 2100954090312463 r005 Im(z^2+c),c=2/25+7/36*I,n=62 2100954090312463 r005 Im(z^2+c),c=2/25+7/36*I,n=60 2100954090312463 r005 Im(z^2+c),c=2/25+7/36*I,n=61 2100954090312463 r005 Im(z^2+c),c=2/25+7/36*I,n=57 2100954090312463 r005 Im(z^2+c),c=2/25+7/36*I,n=56 2100954090312463 r005 Im(z^2+c),c=2/25+7/36*I,n=53 2100954090312463 r005 Im(z^2+c),c=2/25+7/36*I,n=51 2100954090312463 r005 Im(z^2+c),c=2/25+7/36*I,n=52 2100954090312463 r005 Im(z^2+c),c=2/25+7/36*I,n=48 2100954090312463 r005 Im(z^2+c),c=2/25+7/36*I,n=47 2100954090312463 r005 Im(z^2+c),c=2/25+7/36*I,n=44 2100954090312463 r005 Im(z^2+c),c=2/25+7/36*I,n=42 2100954090312463 r005 Im(z^2+c),c=2/25+7/36*I,n=43 2100954090312466 r005 Im(z^2+c),c=2/25+7/36*I,n=39 2100954090312471 r005 Im(z^2+c),c=2/25+7/36*I,n=38 2100954090312481 r005 Im(z^2+c),c=2/25+7/36*I,n=35 2100954090312607 r005 Im(z^2+c),c=2/25+7/36*I,n=33 2100954090312756 r005 Im(z^2+c),c=2/25+7/36*I,n=34 2100954090319011 r005 Im(z^2+c),c=2/25+7/36*I,n=30 2100954090328852 r005 Im(z^2+c),c=2/25+7/36*I,n=29 2100954090347544 r005 Im(z^2+c),c=2/25+7/36*I,n=26 2100954090630468 r005 Im(z^2+c),c=2/25+7/36*I,n=24 2100954090936619 r005 Im(z^2+c),c=2/25+7/36*I,n=25 2100954092278501 l006 ln(4397/5425) 2100954094492264 a007 Real Root Of 70*x^4+17*x^3-314*x^2-642*x-121 2100954095277034 r002 24th iterates of z^2 + 2100954098691020 m001 BesselI(0,2)-exp(Pi)-ZetaR(2) 2100954099736170 m005 (1/3*5^(1/2)-2/5)/(3/4*Pi-4) 2100954104155581 r005 Im(z^2+c),c=2/25+7/36*I,n=21 2100954107974393 m001 1/exp(cos(Pi/12))*Zeta(1/2)^2*sin(Pi/12) 2100954109155306 m001 1/exp(GAMMA(7/24))/DuboisRaymond^2/gamma 2100954119404485 a007 Real Root Of 388*x^4+412*x^3-950*x^2+45*x+549 2100954125455367 r005 Im(z^2+c),c=2/25+7/36*I,n=20 2100954125531601 a001 987/1364*843^(1/2) 2100954130049594 g007 Psi(2,5/8)+Psi(2,3/7)-Psi(2,8/11)-Psi(2,7/11) 2100954130378094 a001 305/682*3571^(8/17) 2100954137731481 r005 Im(z^2+c),c=-19/16+19/60*I,n=3 2100954138790899 r005 Im(z^2+c),c=-19/50+1/30*I,n=17 2100954148353852 r009 Re(z^3+c),c=-29/86+11/24*I,n=3 2100954159738537 r005 Im(z^2+c),c=-13/12+27/119*I,n=35 2100954160332689 r005 Im(z^2+c),c=2/25+7/36*I,n=17 2100954164333386 m001 (GAMMA(3/4)-gamma)/(-gamma(1)+CopelandErdos) 2100954166126240 r005 Re(z^2+c),c=-31/122+1/60*I,n=14 2100954166487033 m001 cos(1)*Ei(1,1)*Pi^(1/2) 2100954175207451 r005 Re(z^2+c),c=5/22+26/49*I,n=9 2100954189386243 a007 Real Root Of 259*x^4+766*x^3+880*x^2+782*x-184 2100954191465710 m001 (3^(1/3))*exp(GaussKuzminWirsing)*Zeta(5)^2 2100954191911576 r005 Im(z^2+c),c=-79/98+7/55*I,n=20 2100954196191041 a001 144/167761*7^(23/50) 2100954197372408 m001 (Trott+Trott2nd)/(OneNinth-Tetranacci) 2100954197788560 a001 305/682*9349^(8/19) 2100954206573542 a001 305/682*24476^(8/21) 2100954206831358 r005 Im(z^2+c),c=-11/70+43/64*I,n=60 2100954207731571 a001 305/682*64079^(8/23) 2100954207909542 a001 305/682*(1/2+1/2*5^(1/2))^8 2100954207909542 a001 305/682*23725150497407^(1/8) 2100954207909542 a001 305/682*505019158607^(1/7) 2100954207909542 a001 305/682*73681302247^(2/13) 2100954207909542 a001 305/682*10749957122^(1/6) 2100954207909542 a001 305/682*4106118243^(4/23) 2100954207909542 a001 305/682*1568397607^(2/11) 2100954207909542 a001 305/682*599074578^(4/21) 2100954207909542 a001 305/682*228826127^(1/5) 2100954207909542 a001 305/682*87403803^(4/19) 2100954207909542 a001 305/682*33385282^(2/9) 2100954207909545 a001 305/682*12752043^(4/17) 2100954207909564 a001 305/682*4870847^(1/4) 2100954207909703 a001 305/682*1860498^(4/15) 2100954207910730 a001 305/682*710647^(2/7) 2100954207918315 a001 305/682*271443^(4/13) 2100954207974688 a001 305/682*103682^(1/3) 2100954208396652 a001 305/682*39603^(4/11) 2100954209248489 a001 372100/17711 2100954211582119 a001 305/682*15127^(2/5) 2100954212881358 a001 646/6119*843^(11/14) 2100954213058281 a001 47/514229*610^(39/46) 2100954217863970 l006 ln(822/6719) 2100954225197448 m004 -2+30*Sqrt[5]*Pi+2*Sin[Sqrt[5]*Pi] 2100954225391421 m001 1/GAMMA(1/3)^2*OneNinth^2/ln(arctan(1/2)) 2100954229171185 m006 (5/Pi-2/3)/(3/4*Pi^2-3) 2100954229175652 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)-LambertW(1)-Trott 2100954235878675 a001 305/682*5778^(4/9) 2100954237089492 a003 cos(Pi*2/37)*sin(Pi*8/117) 2100954249161835 a007 Real Root Of 918*x^4-509*x^3-708*x^2-913*x+226 2100954249887455 r002 3th iterates of z^2 + 2100954249925539 a001 1597/9349*843^(5/7) 2100954263635132 a001 6765/64079*843^(11/14) 2100954265748604 a001 3/2*196418^(47/60) 2100954266821491 a001 987/24476*843^(13/14) 2100954271040008 a001 17711/167761*843^(11/14) 2100954271434227 m001 (Chi(1)+Catalan)/(sin(1/12*Pi)+Stephens) 2100954272120365 a001 11592/109801*843^(11/14) 2100954272277987 a001 121393/1149851*843^(11/14) 2100954272300984 a001 317811/3010349*843^(11/14) 2100954272304339 a001 208010/1970299*843^(11/14) 2100954272304828 a001 2178309/20633239*843^(11/14) 2100954272304900 a001 5702887/54018521*843^(11/14) 2100954272304910 a001 3732588/35355581*843^(11/14) 2100954272304912 a001 39088169/370248451*843^(11/14) 2100954272304912 a001 102334155/969323029*843^(11/14) 2100954272304912 a001 66978574/634430159*843^(11/14) 2100954272304912 a001 701408733/6643838879*843^(11/14) 2100954272304912 a001 1836311903/17393796001*843^(11/14) 2100954272304912 a001 1201881744/11384387281*843^(11/14) 2100954272304912 a001 12586269025/119218851371*843^(11/14) 2100954272304912 a001 32951280099/312119004989*843^(11/14) 2100954272304912 a001 21566892818/204284540899*843^(11/14) 2100954272304912 a001 225851433717/2139295485799*843^(11/14) 2100954272304912 a001 182717648081/1730726404001*843^(11/14) 2100954272304912 a001 139583862445/1322157322203*843^(11/14) 2100954272304912 a001 53316291173/505019158607*843^(11/14) 2100954272304912 a001 10182505537/96450076809*843^(11/14) 2100954272304912 a001 7778742049/73681302247*843^(11/14) 2100954272304912 a001 2971215073/28143753123*843^(11/14) 2100954272304912 a001 567451585/5374978561*843^(11/14) 2100954272304912 a001 433494437/4106118243*843^(11/14) 2100954272304912 a001 165580141/1568397607*843^(11/14) 2100954272304912 a001 31622993/299537289*843^(11/14) 2100954272304913 a001 24157817/228826127*843^(11/14) 2100954272304917 a001 9227465/87403803*843^(11/14) 2100954272304944 a001 1762289/16692641*843^(11/14) 2100954272305131 a001 1346269/12752043*843^(11/14) 2100954272306412 a001 514229/4870847*843^(11/14) 2100954272315196 a001 98209/930249*843^(11/14) 2100954272375403 a001 75025/710647*843^(11/14) 2100954272788062 a001 28657/271443*843^(11/14) 2100954272905513 m001 (ln(Pi)+LandauRamanujan2nd)/(2^(1/2)-5^(1/2)) 2100954275616473 a001 5473/51841*843^(11/14) 2100954294559146 m001 (Salem+ZetaQ(2))/(ln(2)-OneNinth) 2100954295002690 a001 4181/39603*843^(11/14) 2100954298704847 m001 2^(1/3)*Zeta(5)+Kolakoski 2100954309242416 m001 1/ln(BesselK(1,1))/OneNinth^2/cos(Pi/5) 2100954311389674 m006 (exp(Pi)+1)/(5*exp(Pi)-4/5) 2100954314984079 r009 Re(z^3+c),c=-23/62+21/37*I,n=34 2100954319451784 m001 1/Zeta(1/2)/exp(GAMMA(2/3))/sin(1) 2100954319720105 r009 Re(z^3+c),c=-13/40+26/55*I,n=26 2100954321162496 m001 1/GAMMA(17/24)/ErdosBorwein*ln(cosh(1)) 2100954330629212 r005 Re(z^2+c),c=-41/102+5/11*I,n=3 2100954333119457 a001 18/28657*8^(18/31) 2100954338105550 m001 (3^(1/2))^(FeigenbaumAlpha/Si(Pi)) 2100954338105550 m001 sqrt(3)^(FeigenbaumAlpha/Si(Pi)) 2100954340576704 a001 34^(4/19) 2100954350060158 p001 sum((-1)^n/(520*n+443)/(6^n),n=0..infinity) 2100954350978969 m001 GlaisherKinkelin/(Landau^cos(1/5*Pi)) 2100954356998116 r005 Re(z^2+c),c=-21/94+1/4*I,n=11 2100954364357996 m001 (ln(2^(1/2)+1)-FeigenbaumB)/(Pi-cos(1/5*Pi)) 2100954372050775 m001 (Chi(1)+GAMMA(5/6))/(-GAMMA(7/12)+Lehmer) 2100954390624460 s002 sum(A015915[n]/(16^n),n=1..infinity) 2100954403402115 r005 Im(z^2+c),c=-1/9+19/29*I,n=45 2100954404136382 l006 ln(799/6531) 2100954413086695 a008 Real Root of (16+9*x+11*x^2-9*x^3) 2100954417957816 r005 Im(z^2+c),c=-5/27+16/55*I,n=20 2100954419205835 a001 2584/39603*843^(6/7) 2100954423575739 a001 305/682*2207^(1/2) 2100954427782868 m001 GaussAGM-Si(Pi)^MadelungNaCl 2100954427877795 a001 1597/15127*843^(11/14) 2100954428760242 r005 Re(z^2+c),c=5/29+21/46*I,n=42 2100954436527664 a008 Real Root of x^2-x-43930 2100954438253053 a001 1/7*(1/2*5^(1/2)+1/2)^24*3^(7/22) 2100954438538140 a007 Real Root Of -556*x^4-748*x^3+576*x^2-700*x-117 2100954440674448 r005 Im(z^2+c),c=-9/34+9/29*I,n=9 2100954444394287 m002 -10+Pi^(-5)+Pi^3 2100954456320608 s002 sum(A103688[n]/(n*exp(n)-1),n=1..infinity) 2100954463801340 m001 Zeta(5)^2*ln((2^(1/3)))^2/sqrt(1+sqrt(3))^2 2100954466487773 m001 1/GAMMA(1/6)^2*exp(GAMMA(1/24))^2*exp(1) 2100954466765320 r005 Re(z^2+c),c=-35/36+4/51*I,n=8 2100954470449888 m001 Artin-ZetaP(3)^Zeta(5) 2100954473968392 r005 Im(z^2+c),c=-61/94+2/53*I,n=47 2100954473996856 l006 ln(4829/5958) 2100954474099066 a001 6765/103682*843^(6/7) 2100954474485528 a004 Fibonacci(16)*Lucas(14)/(1/2+sqrt(5)/2)^22 2100954478958626 m001 (KomornikLoreti-ZetaQ(2))/(gamma(1)+gamma(2)) 2100954482107881 a001 17711/271443*843^(6/7) 2100954483276351 a001 6624/101521*843^(6/7) 2100954483446828 a001 121393/1860498*843^(6/7) 2100954483471701 a001 317811/4870847*843^(6/7) 2100954483475330 a001 832040/12752043*843^(6/7) 2100954483475859 a001 311187/4769326*843^(6/7) 2100954483475936 a001 5702887/87403803*843^(6/7) 2100954483475947 a001 14930352/228826127*843^(6/7) 2100954483475949 a001 39088169/599074578*843^(6/7) 2100954483475949 a001 14619165/224056801*843^(6/7) 2100954483475949 a001 267914296/4106118243*843^(6/7) 2100954483475949 a001 701408733/10749957122*843^(6/7) 2100954483475949 a001 1836311903/28143753123*843^(6/7) 2100954483475949 a001 686789568/10525900321*843^(6/7) 2100954483475949 a001 12586269025/192900153618*843^(6/7) 2100954483475949 a001 32951280099/505019158607*843^(6/7) 2100954483475949 a001 86267571272/1322157322203*843^(6/7) 2100954483475949 a001 32264490531/494493258286*843^(6/7) 2100954483475949 a001 1548008755920/23725150497407*843^(6/7) 2100954483475949 a001 139583862445/2139295485799*843^(6/7) 2100954483475949 a001 53316291173/817138163596*843^(6/7) 2100954483475949 a001 20365011074/312119004989*843^(6/7) 2100954483475949 a001 7778742049/119218851371*843^(6/7) 2100954483475949 a001 2971215073/45537549124*843^(6/7) 2100954483475949 a001 1134903170/17393796001*843^(6/7) 2100954483475949 a001 433494437/6643838879*843^(6/7) 2100954483475949 a001 165580141/2537720636*843^(6/7) 2100954483475950 a001 63245986/969323029*843^(6/7) 2100954483475950 a001 24157817/370248451*843^(6/7) 2100954483475954 a001 9227465/141422324*843^(6/7) 2100954483475984 a001 3524578/54018521*843^(6/7) 2100954483476186 a001 1346269/20633239*843^(6/7) 2100954483477572 a001 514229/7881196*843^(6/7) 2100954483487073 a001 196418/3010349*843^(6/7) 2100954483552189 a001 75025/1149851*843^(6/7) 2100954483998505 a001 28657/439204*843^(6/7) 2100954485284167 m009 (6*Psi(1,1/3)-1/6)/(Psi(1,3/4)+1/3) 2100954485428874 a007 Real Root Of 649*x^4-583*x^3+279*x^2-196*x+4 2100954487057600 a001 10946/167761*843^(6/7) 2100954487836607 r002 56th iterates of z^2 + 2100954491234702 a003 cos(Pi*5/38)/cos(Pi*36/101) 2100954499681731 r005 Re(z^2+c),c=5/62+23/35*I,n=4 2100954508024949 a001 4181/64079*843^(6/7) 2100954510447378 a001 1597/1364*843^(3/7) 2100954519791617 r009 Re(z^3+c),c=-1/9+9/11*I,n=34 2100954529778083 m001 (Thue+ZetaP(3))/(BesselI(1,1)-Shi(1)) 2100954544295049 b008 5-63*(2+Sqrt[2]) 2100954547873149 a001 610/2207*843^(9/14) 2100954560369164 r004 Im(z^2+c),c=-19/18-4/17*I,z(0)=-1,n=45 2100954562191678 r002 14th iterates of z^2 + 2100954564229938 m001 HardyLittlewoodC3/(Weierstrass^ErdosBorwein) 2100954582980461 m005 (43/44+1/4*5^(1/2))/(6*Zeta(3)+1/10) 2100954583849574 a003 cos(Pi*48/119)*cos(Pi*32/67) 2100954588216022 r005 Re(z^2+c),c=7/23+11/51*I,n=64 2100954589212395 m001 1/ln(KhintchineHarmonic)^2*Conway*sqrt(5)^2 2100954589402539 m005 (15/44+1/4*5^(1/2))/(2/11*Pi-1/7) 2100954601450678 l006 ln(776/6343) 2100954606496378 m005 (5/6*Pi+1/5)/(4/5*exp(1)-5/6) 2100954620331525 m001 FeigenbaumC^ArtinRank2+Stephens 2100954623352610 a001 144/521*322^(3/4) 2100954631596985 a007 Real Root Of 382*x^4+982*x^3+628*x^2+713*x+390 2100954632228106 a001 2584/64079*843^(13/14) 2100954637566204 r009 Im(z^3+c),c=-2/5+7/64*I,n=10 2100954642500135 m001 (Grothendieck+MertensB2)/(Niven-Tribonacci) 2100954642510464 m004 -6+(5*Pi)/4-5*Pi*Sech[Sqrt[5]*Pi] 2100954651737294 a001 1597/24476*843^(6/7) 2100954668411448 a007 Real Root Of -111*x^4+213*x^3+768*x^2-515*x-334 2100954668879360 r005 Im(z^2+c),c=-87/94+13/64*I,n=29 2100954676029413 a007 Real Root Of 57*x^4-333*x^3+203*x^2-4*x-13 2100954685540213 a001 615/15251*843^(13/14) 2100954686735179 m004 -6+(5*Pi)/4-5*Pi*Csch[Sqrt[5]*Pi] 2100954692910287 a007 Real Root Of -509*x^4-790*x^3+481*x^2+121*x+722 2100954693318345 a001 17711/439204*843^(13/14) 2100954694453159 a001 46368/1149851*843^(13/14) 2100954694618726 a001 121393/3010349*843^(13/14) 2100954694642882 a001 317811/7881196*843^(13/14) 2100954694646406 a001 75640/1875749*843^(13/14) 2100954694646920 a001 2178309/54018521*843^(13/14) 2100954694646995 a001 5702887/141422324*843^(13/14) 2100954694647006 a001 14930352/370248451*843^(13/14) 2100954694647008 a001 39088169/969323029*843^(13/14) 2100954694647008 a001 9303105/230701876*843^(13/14) 2100954694647008 a001 267914296/6643838879*843^(13/14) 2100954694647008 a001 701408733/17393796001*843^(13/14) 2100954694647008 a001 1836311903/45537549124*843^(13/14) 2100954694647008 a001 4807526976/119218851371*843^(13/14) 2100954694647008 a001 1144206275/28374454999*843^(13/14) 2100954694647008 a001 32951280099/817138163596*843^(13/14) 2100954694647008 a001 86267571272/2139295485799*843^(13/14) 2100954694647008 a001 225851433717/5600748293801*843^(13/14) 2100954694647008 a001 365435296162/9062201101803*843^(13/14) 2100954694647008 a001 139583862445/3461452808002*843^(13/14) 2100954694647008 a001 53316291173/1322157322203*843^(13/14) 2100954694647008 a001 20365011074/505019158607*843^(13/14) 2100954694647008 a001 7778742049/192900153618*843^(13/14) 2100954694647008 a001 2971215073/73681302247*843^(13/14) 2100954694647008 a001 1134903170/28143753123*843^(13/14) 2100954694647008 a001 433494437/10749957122*843^(13/14) 2100954694647008 a001 165580141/4106118243*843^(13/14) 2100954694647008 a001 63245986/1568397607*843^(13/14) 2100954694647009 a001 24157817/599074578*843^(13/14) 2100954694647013 a001 9227465/228826127*843^(13/14) 2100954694647042 a001 3524578/87403803*843^(13/14) 2100954694647238 a001 1346269/33385282*843^(13/14) 2100954694648584 a001 514229/12752043*843^(13/14) 2100954694657811 a001 196418/4870847*843^(13/14) 2100954694721052 a001 75025/1860498*843^(13/14) 2100954695154512 a001 28657/710647*843^(13/14) 2100954698125494 a001 10946/271443*843^(13/14) 2100954701743194 r005 Re(z^2+c),c=-5/48+35/57*I,n=58 2100954706358594 m001 ln(Paris)^2*GlaisherKinkelin^2*cosh(1)^2 2100954712178624 a007 Real Root Of 488*x^4+872*x^3-399*x^2-375*x-448 2100954716524860 a007 Real Root Of -342*x^4-958*x^3-828*x^2-535*x+310 2100954717371418 a007 Real Root Of -408*x^4+208*x^3-582*x^2+593*x+153 2100954718488907 a001 4181/103682*843^(13/14) 2100954718770400 m001 (-Pi^(1/2)+ReciprocalLucas)/(Catalan+gamma(2)) 2100954720612098 a007 Real Root Of -32*x^4+638*x^3-893*x^2-311*x-698 2100954737042008 m005 (1/2*Catalan-7/11)/(113/220+3/20*5^(1/2)) 2100954737376699 m005 (-13/28+1/4*5^(1/2))/(1/8*exp(1)+1/9) 2100954737472509 r008 a(0)=2,K{-n^6,7-4*n^3-5*n^2-9*n} 2100954750856858 a007 Real Root Of -36*x^4+371*x^3+695*x^2+233*x-83 2100954760974991 a001 1346269/123*9349^(23/40) 2100954765939472 a001 17711/1364*322^(1/12) 2100954768305923 r005 Re(z^2+c),c=-53/110+8/13*I,n=50 2100954769680633 r008 a(0)=2,K{-n^6,-26+57*n-57*n^2+15*n^3} 2100954774368812 m001 (ln(3)+ln(2+3^(1/2)))/(ArtinRank2+ZetaP(2)) 2100954785228165 r009 Re(z^3+c),c=-7/23+23/55*I,n=30 2100954790622646 r002 3th iterates of z^2 + 2100954791143982 a007 Real Root Of 547*x^4+147*x^3+330*x^2-13*x-17 2100954793026613 l006 ln(5261/6491) 2100954793026613 p004 log(6491/5261) 2100954793348533 r005 Im(z^2+c),c=2/25+7/36*I,n=15 2100954796839314 m001 1/sin(Pi/5)^2*ln((2^(1/3)))*sqrt(Pi)^2 2100954802401363 r009 Re(z^3+c),c=-5/78+49/64*I,n=48 2100954802445716 a001 1/5*4181^(11/39) 2100954810818660 l006 ln(753/6155) 2100954823367929 m001 (gamma(1)-MadelungNaCl)/(Mills-TreeGrowth2nd) 2100954825356739 m009 (16/5*Catalan+2/5*Pi^2-5/6)/(3*Pi^2-5/6) 2100954826902665 a007 Real Root Of -296*x^4+101*x^3+898*x^2-911*x+826 2100954834923891 m002 Pi^6+Pi^4*Cosh[Pi]-Log[Pi]+Sinh[Pi] 2100954841681493 a007 Real Root Of 206*x^4+127*x^3-163*x^2+905*x-215 2100954842887516 a004 Fibonacci(18)*Lucas(14)/(1/2+sqrt(5)/2)^24 2100954845983313 a007 Real Root Of -635*x^4-825*x^3+420*x^2-925*x+924 2100954852559141 m001 exp((2^(1/3)))^2/GolombDickman*GAMMA(11/12) 2100954857380038 a001 6765/521*199^(1/11) 2100954858061814 a001 1597/39603*843^(13/14) 2100954859462501 m001 Ei(1)^2/BesselK(1,1)^2*ln(cos(Pi/5)) 2100954862647764 a005 (1/sin(94/207*Pi))^1175 2100954864122506 a007 Real Root Of -509*x^4-908*x^3+168*x^2-714*x-745 2100954864783220 a001 233/1364*521^(10/13) 2100954865269097 a005 (1/sin(91/193*Pi))^185 2100954870861226 a007 Real Root Of 476*x^4+871*x^3-115*x^2+517*x+397 2100954875563987 r009 Re(z^3+c),c=-13/42+19/44*I,n=19 2100954876649792 a007 Real Root Of -234*x^4+588*x^3+353*x^2+121*x-46 2100954879030065 m001 FeigenbaumD*ZetaP(3)-sin(1/12*Pi) 2100954883496937 m001 exp(-1/2*Pi)^GlaisherKinkelin+ZetaP(4) 2100954885175060 r005 Im(z^2+c),c=-23/58+22/63*I,n=45 2100954893975942 a001 17711/2207*322^(1/6) 2100954894837878 a007 Real Root Of 430*x^4+435*x^3-730*x^2+987*x+952 2100954896636641 a004 Fibonacci(20)*Lucas(14)/(1/2+sqrt(5)/2)^26 2100954897118058 m001 ln(3)+Mills^ZetaQ(3) 2100954900734116 a003 sin(Pi*8/119)/sin(Pi*34/71) 2100954903949521 m001 Riemann2ndZero-Trott-ZetaQ(4) 2100954904478533 a004 Fibonacci(22)*Lucas(14)/(1/2+sqrt(5)/2)^28 2100954905622650 a004 Fibonacci(24)*Lucas(14)/(1/2+sqrt(5)/2)^30 2100954905789574 a004 Fibonacci(26)*Lucas(14)/(1/2+sqrt(5)/2)^32 2100954905813928 a004 Fibonacci(28)*Lucas(14)/(1/2+sqrt(5)/2)^34 2100954905817481 a004 Fibonacci(30)*Lucas(14)/(1/2+sqrt(5)/2)^36 2100954905817999 a004 Fibonacci(32)*Lucas(14)/(1/2+sqrt(5)/2)^38 2100954905818075 a004 Fibonacci(34)*Lucas(14)/(1/2+sqrt(5)/2)^40 2100954905818086 a004 Fibonacci(36)*Lucas(14)/(1/2+sqrt(5)/2)^42 2100954905818088 a004 Fibonacci(38)*Lucas(14)/(1/2+sqrt(5)/2)^44 2100954905818088 a004 Fibonacci(40)*Lucas(14)/(1/2+sqrt(5)/2)^46 2100954905818088 a004 Fibonacci(42)*Lucas(14)/(1/2+sqrt(5)/2)^48 2100954905818088 a004 Fibonacci(44)*Lucas(14)/(1/2+sqrt(5)/2)^50 2100954905818088 a004 Fibonacci(46)*Lucas(14)/(1/2+sqrt(5)/2)^52 2100954905818088 a004 Fibonacci(48)*Lucas(14)/(1/2+sqrt(5)/2)^54 2100954905818088 a004 Fibonacci(50)*Lucas(14)/(1/2+sqrt(5)/2)^56 2100954905818088 a004 Fibonacci(52)*Lucas(14)/(1/2+sqrt(5)/2)^58 2100954905818088 a004 Fibonacci(54)*Lucas(14)/(1/2+sqrt(5)/2)^60 2100954905818088 a004 Fibonacci(56)*Lucas(14)/(1/2+sqrt(5)/2)^62 2100954905818088 a004 Fibonacci(58)*Lucas(14)/(1/2+sqrt(5)/2)^64 2100954905818088 a004 Fibonacci(60)*Lucas(14)/(1/2+sqrt(5)/2)^66 2100954905818088 a004 Fibonacci(62)*Lucas(14)/(1/2+sqrt(5)/2)^68 2100954905818088 a004 Fibonacci(64)*Lucas(14)/(1/2+sqrt(5)/2)^70 2100954905818088 a004 Fibonacci(66)*Lucas(14)/(1/2+sqrt(5)/2)^72 2100954905818088 a004 Fibonacci(68)*Lucas(14)/(1/2+sqrt(5)/2)^74 2100954905818088 a004 Fibonacci(70)*Lucas(14)/(1/2+sqrt(5)/2)^76 2100954905818088 a004 Fibonacci(72)*Lucas(14)/(1/2+sqrt(5)/2)^78 2100954905818088 a004 Fibonacci(74)*Lucas(14)/(1/2+sqrt(5)/2)^80 2100954905818088 a004 Fibonacci(76)*Lucas(14)/(1/2+sqrt(5)/2)^82 2100954905818088 a004 Fibonacci(78)*Lucas(14)/(1/2+sqrt(5)/2)^84 2100954905818088 a004 Fibonacci(80)*Lucas(14)/(1/2+sqrt(5)/2)^86 2100954905818088 a004 Fibonacci(82)*Lucas(14)/(1/2+sqrt(5)/2)^88 2100954905818088 a004 Fibonacci(84)*Lucas(14)/(1/2+sqrt(5)/2)^90 2100954905818088 a004 Fibonacci(86)*Lucas(14)/(1/2+sqrt(5)/2)^92 2100954905818088 a004 Fibonacci(88)*Lucas(14)/(1/2+sqrt(5)/2)^94 2100954905818088 a004 Fibonacci(90)*Lucas(14)/(1/2+sqrt(5)/2)^96 2100954905818088 a004 Fibonacci(92)*Lucas(14)/(1/2+sqrt(5)/2)^98 2100954905818088 a004 Fibonacci(94)*Lucas(14)/(1/2+sqrt(5)/2)^100 2100954905818088 a004 Fibonacci(93)*Lucas(14)/(1/2+sqrt(5)/2)^99 2100954905818088 a004 Fibonacci(91)*Lucas(14)/(1/2+sqrt(5)/2)^97 2100954905818088 a004 Fibonacci(89)*Lucas(14)/(1/2+sqrt(5)/2)^95 2100954905818088 a004 Fibonacci(87)*Lucas(14)/(1/2+sqrt(5)/2)^93 2100954905818088 a004 Fibonacci(85)*Lucas(14)/(1/2+sqrt(5)/2)^91 2100954905818088 a004 Fibonacci(83)*Lucas(14)/(1/2+sqrt(5)/2)^89 2100954905818088 a004 Fibonacci(81)*Lucas(14)/(1/2+sqrt(5)/2)^87 2100954905818088 a004 Fibonacci(79)*Lucas(14)/(1/2+sqrt(5)/2)^85 2100954905818088 a004 Fibonacci(77)*Lucas(14)/(1/2+sqrt(5)/2)^83 2100954905818088 a004 Fibonacci(75)*Lucas(14)/(1/2+sqrt(5)/2)^81 2100954905818088 a004 Fibonacci(73)*Lucas(14)/(1/2+sqrt(5)/2)^79 2100954905818088 a004 Fibonacci(71)*Lucas(14)/(1/2+sqrt(5)/2)^77 2100954905818088 a004 Fibonacci(69)*Lucas(14)/(1/2+sqrt(5)/2)^75 2100954905818088 a004 Fibonacci(67)*Lucas(14)/(1/2+sqrt(5)/2)^73 2100954905818088 a004 Fibonacci(65)*Lucas(14)/(1/2+sqrt(5)/2)^71 2100954905818088 a004 Fibonacci(63)*Lucas(14)/(1/2+sqrt(5)/2)^69 2100954905818088 a004 Fibonacci(61)*Lucas(14)/(1/2+sqrt(5)/2)^67 2100954905818088 a004 Fibonacci(59)*Lucas(14)/(1/2+sqrt(5)/2)^65 2100954905818088 a004 Fibonacci(57)*Lucas(14)/(1/2+sqrt(5)/2)^63 2100954905818088 a004 Fibonacci(55)*Lucas(14)/(1/2+sqrt(5)/2)^61 2100954905818088 a004 Fibonacci(53)*Lucas(14)/(1/2+sqrt(5)/2)^59 2100954905818088 a004 Fibonacci(51)*Lucas(14)/(1/2+sqrt(5)/2)^57 2100954905818088 a004 Fibonacci(49)*Lucas(14)/(1/2+sqrt(5)/2)^55 2100954905818088 a004 Fibonacci(47)*Lucas(14)/(1/2+sqrt(5)/2)^53 2100954905818088 a004 Fibonacci(45)*Lucas(14)/(1/2+sqrt(5)/2)^51 2100954905818088 a004 Fibonacci(43)*Lucas(14)/(1/2+sqrt(5)/2)^49 2100954905818088 a004 Fibonacci(41)*Lucas(14)/(1/2+sqrt(5)/2)^47 2100954905818088 a004 Fibonacci(39)*Lucas(14)/(1/2+sqrt(5)/2)^45 2100954905818089 a004 Fibonacci(37)*Lucas(14)/(1/2+sqrt(5)/2)^43 2100954905818093 a004 Fibonacci(35)*Lucas(14)/(1/2+sqrt(5)/2)^41 2100954905818122 a004 Fibonacci(33)*Lucas(14)/(1/2+sqrt(5)/2)^39 2100954905818320 a004 Fibonacci(31)*Lucas(14)/(1/2+sqrt(5)/2)^37 2100954905819677 a004 Fibonacci(29)*Lucas(14)/(1/2+sqrt(5)/2)^35 2100954905822248 a001 2/377*(1/2+1/2*5^(1/2))^22 2100954905828979 a004 Fibonacci(27)*Lucas(14)/(1/2+sqrt(5)/2)^33 2100954905892739 a004 Fibonacci(25)*Lucas(14)/(1/2+sqrt(5)/2)^31 2100954906329753 a004 Fibonacci(23)*Lucas(14)/(1/2+sqrt(5)/2)^29 2100954907161803 a001 39603/377*8^(1/3) 2100954909325089 a004 Fibonacci(21)*Lucas(14)/(1/2+sqrt(5)/2)^27 2100954917415021 a003 cos(Pi*22/83)/cos(Pi*21/53) 2100954921462243 b008 EllipticF[Pi/15,3/7] 2100954922410369 m001 (ln(2+3^(1/2))-ErdosBorwein)/(Khinchin-Mills) 2100954926471020 m005 (1/2*3^(1/2)+8/9)/(3/5*Catalan+2/7) 2100954929855428 a004 Fibonacci(19)*Lucas(14)/(1/2+sqrt(5)/2)^25 2100954932182585 m001 KhinchinHarmonic^Landau+RenyiParking 2100954935246586 a007 Real Root Of 359*x^4+593*x^3-420*x^2+24*x+409 2100954935552326 a007 Real Root Of 487*x^4+804*x^3-475*x^2+107*x+289 2100954937040191 m001 (1+GAMMA(2/3))/(-3^(1/3)+arctan(1/3)) 2100954938040895 r005 Re(z^2+c),c=-15/122+33/64*I,n=34 2100954946960568 m001 GAMMA(1/12)^2/Riemann1stZero*exp(cos(Pi/5)) 2100954955696690 a007 Real Root Of -457*x^4-771*x^3+356*x^2-204*x-246 2100954957650585 p004 log(18089/2213) 2100954958679954 m001 (BesselK(0,1)-gamma)/(-Porter+Sarnak) 2100954965654342 m001 Shi(1)-exp(1)-TreeGrowth2nd 2100954974439868 m001 (1+Khinchin)/(Magata+Riemann1stZero) 2100954975903392 m001 1/Pi*GAMMA(1/4)/ln(sqrt(3)) 2100954976303760 m001 1/2*Lehmer^ln(3)/Pi*3^(1/2)*GAMMA(2/3) 2100954976303760 m001 Lehmer^ln(3)/GAMMA(1/3) 2100954979536152 q001 154/733 2100954980594172 m001 Magata/Artin/exp(Porter) 2100954988186094 m005 (2/5*Catalan+3/4)/(4/5*2^(1/2)-3/5) 2100954991716042 a005 (1/sin(39/92*Pi))^824 2100954992432504 m001 sin(Pi/12)/Porter^2/ln(sqrt(Pi)) 2100955003265215 m001 (Stephens-Trott)/(Zeta(5)+(1+3^(1/2))^(1/2)) 2100955007704360 r005 Im(z^2+c),c=-57/122+11/30*I,n=59 2100955011768552 h001 (1/10*exp(2)+6/11)/(3/4*exp(2)+4/7) 2100955018223724 r005 Re(z^2+c),c=19/60+9/40*I,n=64 2100955020726163 r005 Re(z^2+c),c=-71/86+2/37*I,n=28 2100955026322963 r005 Re(z^2+c),c=-139/94+9/47*I,n=4 2100955032572124 r009 Re(z^3+c),c=-3/86+25/44*I,n=18 2100955033379645 l006 ln(730/5967) 2100955035812732 a007 Real Root Of 754*x^4+946*x^3-957*x^2+510*x-622 2100955042278788 a007 Real Root Of -157*x^4-86*x^3+251*x^2-272*x+582 2100955047639582 s002 sum(A084178[n]/((10^n+1)/n),n=1..infinity) 2100955054000044 m001 (BesselI(1,1)+AlladiGrinstead)/(Cahen+Trott) 2100955058599162 m001 (BesselI(1,1)+Otter)/(GAMMA(2/3)+arctan(1/3)) 2100955061760905 m005 (1/2*Pi-2)/(8/11*5^(1/2)+5/12) 2100955063449163 m001 MinimumGamma^2*Khintchine*ln((3^(1/3))) 2100955063638707 l006 ln(5693/7024) 2100955066464792 a007 Real Root Of -514*x^4-833*x^3+330*x^2-475*x-165 2100955070572465 a004 Fibonacci(17)*Lucas(14)/(1/2+sqrt(5)/2)^23 2100955070779082 m001 Riemann2ndZero*ArtinRank2^ZetaQ(4) 2100955080790803 m001 (cos(1/5*Pi)+Gompertz)/(TwinPrimes+ZetaQ(3)) 2100955088593262 a007 Real Root Of 249*x^4+209*x^3-288*x^2+802*x+43 2100955090796509 a007 Real Root Of -29*x^4+475*x^3+966*x^2-278*x+122 2100955094656428 a007 Real Root Of -376*x^4-154*x^3+916*x^2-965*x-173 2100955100313009 a007 Real Root Of 407*x^4+406*x^3-905*x^2-307*x-815 2100955105855044 r005 Re(z^2+c),c=17/122+10/17*I,n=58 2100955116653753 m001 (Pi*2^(1/2)/GAMMA(3/4)+Zeta(3))/(Lehmer+Niven) 2100955119337612 h005 exp(cos(Pi*12/41)+cos(Pi*21/46)) 2100955125406106 a007 Real Root Of -860*x^4-410*x^3-920*x^2+790*x+17 2100955127851347 m001 (exp(1/exp(1))+GAMMA(23/24))/(Sarnak+ZetaP(2)) 2100955131640297 g006 Psi(1,7/9)+Psi(1,2/7)+Psi(1,2/5)-Psi(1,6/7) 2100955132346385 a001 1322157322203/377*144^(14/17) 2100955133568632 m001 1/2*(5^(1/2))^DuboisRaymond/Pi*GAMMA(5/6) 2100955134148274 r005 Re(z^2+c),c=-69/58+7/62*I,n=12 2100955140175632 r009 Re(z^3+c),c=-7/38+41/54*I,n=6 2100955142332360 a007 Real Root Of 544*x^4+882*x^3-269*x^2+320*x-560 2100955146279195 m009 (4*Psi(1,1/3)+5/6)/(2/5*Psi(1,1/3)-6) 2100955150974916 a007 Real Root Of -299*x^4-898*x^3-624*x^2-190*x-147 2100955151300483 a008 Real Root of x^4-x^3-6*x^2-27*x+73 2100955155767193 r005 Im(z^2+c),c=-61/106+21/59*I,n=35 2100955171391157 m001 exp(Niven)^2/FeigenbaumB^2/(3^(1/3))^2 2100955172368345 r005 Re(z^2+c),c=11/42+15/31*I,n=11 2100955172836292 m001 (Kolakoski+Porter)/(ErdosBorwein-FeigenbaumD) 2100955176710913 r005 Re(z^2+c),c=-17/70+5/33*I,n=14 2100955180137609 m005 (1/3*3^(1/2)+1/5)/(5/8*Zeta(3)-5/7) 2100955194911471 m001 (Paris+ZetaP(4))/(1+Zeta(1,-1)) 2100955196903305 b008 2+41*ArcCot[2] 2100955202866635 s001 sum(exp(-2*Pi/3)^n*A099475[n],n=1..infinity) 2100955205621175 m001 Zeta(1/2)^Conway*GlaisherKinkelin 2100955206095271 a007 Real Root Of 174*x^4+339*x^3+117*x^2+424*x+128 2100955240554138 r005 Im(z^2+c),c=-19/48+19/55*I,n=10 2100955246383473 a007 Real Root Of -99*x^4+658*x^3-879*x^2+585*x+168 2100955254294214 r002 12th iterates of z^2 + 2100955255052239 a007 Real Root Of -351*x^4-341*x^3+621*x^2-835*x-819 2100955259157912 m005 (1/2*5^(1/2)+5/11)/(6*Zeta(3)+3/11) 2100955261446652 m001 (KomornikLoreti+ZetaQ(4))/(GAMMA(3/4)-Artin) 2100955263522033 a001 2576/321*322^(1/6) 2100955264441837 a001 17711/3*3571^(9/58) 2100955267259593 m002 12/ProductLog[Pi]+Pi^2*Tanh[Pi] 2100955269649417 p001 sum((-1)^n/(565*n+439)/(5^n),n=0..infinity) 2100955270421205 l006 ln(707/5779) 2100955274318812 r005 Im(z^2+c),c=-63/122+19/42*I,n=38 2100955275506365 m001 exp(Pi)/(GAMMA(11/12)^KomornikLoreti) 2100955288330166 r005 Im(z^2+c),c=-53/48+13/61*I,n=16 2100955288910892 m002 3/E^Pi+Pi^3-Cosh[Pi]/Log[Pi] 2100955289786212 a001 28657/3*9349^(5/58) 2100955296077921 l006 ln(6125/7557) 2100955297684758 r005 Re(z^2+c),c=-4/27+27/49*I,n=18 2100955299368392 r002 23th iterates of z^2 + 2100955317438092 a001 121393/15127*322^(1/6) 2100955325304340 a001 105937/13201*322^(1/6) 2100955326452010 a001 416020/51841*322^(1/6) 2100955326619452 a001 726103/90481*322^(1/6) 2100955326643882 a001 5702887/710647*322^(1/6) 2100955326647446 a001 829464/103361*322^(1/6) 2100955326647966 a001 39088169/4870847*322^(1/6) 2100955326648042 a001 34111385/4250681*322^(1/6) 2100955326648053 a001 133957148/16692641*322^(1/6) 2100955326648055 a001 233802911/29134601*322^(1/6) 2100955326648055 a001 1836311903/228826127*322^(1/6) 2100955326648055 a001 267084832/33281921*322^(1/6) 2100955326648055 a001 12586269025/1568397607*322^(1/6) 2100955326648055 a001 10983760033/1368706081*322^(1/6) 2100955326648055 a001 43133785636/5374978561*322^(1/6) 2100955326648055 a001 75283811239/9381251041*322^(1/6) 2100955326648055 a001 591286729879/73681302247*322^(1/6) 2100955326648055 a001 86000486440/10716675201*322^(1/6) 2100955326648055 a001 4052739537881/505019158607*322^(1/6) 2100955326648055 a001 3278735159921/408569081798*322^(1/6) 2100955326648055 a001 2504730781961/312119004989*322^(1/6) 2100955326648055 a001 956722026041/119218851371*322^(1/6) 2100955326648055 a001 182717648081/22768774562*322^(1/6) 2100955326648055 a001 139583862445/17393796001*322^(1/6) 2100955326648055 a001 53316291173/6643838879*322^(1/6) 2100955326648055 a001 10182505537/1268860318*322^(1/6) 2100955326648055 a001 7778742049/969323029*322^(1/6) 2100955326648055 a001 2971215073/370248451*322^(1/6) 2100955326648055 a001 567451585/70711162*322^(1/6) 2100955326648056 a001 433494437/54018521*322^(1/6) 2100955326648060 a001 165580141/20633239*322^(1/6) 2100955326648089 a001 31622993/3940598*322^(1/6) 2100955326648288 a001 24157817/3010349*322^(1/6) 2100955326649649 a001 9227465/1149851*322^(1/6) 2100955326658980 a001 1762289/219602*322^(1/6) 2100955326722938 a001 1346269/167761*322^(1/6) 2100955327161309 a001 514229/64079*322^(1/6) 2100955330165948 a001 98209/12238*322^(1/6) 2100955333867573 r005 Re(z^2+c),c=-53/64+4/63*I,n=12 2100955338617289 a001 305/2889*843^(11/14) 2100955341761127 a007 Real Root Of 679*x^4+817*x^3-771*x^2+768*x-636 2100955348056796 m003 (2*Coth[1/2+Sqrt[5]/2])/15+Tan[1/2+Sqrt[5]/2] 2100955349075143 m001 (OneNinth+ZetaP(2))/(ln(5)+GAMMA(11/12)) 2100955350760051 a001 75025/9349*322^(1/6) 2100955354466669 a007 Real Root Of 494*x^4+980*x^3+214*x^2+924*x+460 2100955355131157 a001 610/3571*843^(5/7) 2100955355536603 p003 LerchPhi(1/6,6,553/197) 2100955355857268 r009 Re(z^3+c),c=-8/25+17/37*I,n=28 2100955362183325 a007 Real Root Of 562*x^4+702*x^3-874*x^2-12*x-607 2100955365169561 m001 TwinPrimes^Porter/sin(1/12*Pi) 2100955378153097 r009 Im(z^3+c),c=-35/94+3/23*I,n=9 2100955382878845 m001 (Shi(1)+LambertW(1))/(-GAMMA(3/4)+ZetaP(2)) 2100955384129291 m001 1/Zeta(5)^2/exp(DuboisRaymond)^2/sqrt(3)^2 2100955394507011 m001 cos(Pi/5)^2*FeigenbaumKappa^2/ln(sqrt(Pi)) 2100955394566063 m001 Pi*2^(1/2)/GAMMA(3/4)/Porter/Salem 2100955396756299 a007 Real Root Of 213*x^4+442*x^3+457*x^2+567*x-877 2100955407450598 a007 Real Root Of -856*x^4-443*x^3-539*x^2+393*x-53 2100955412098871 a007 Real Root Of -241*x^4+82*x^3-923*x^2+300*x+105 2100955414322374 a007 Real Root Of 464*x^4+816*x^3+65*x^2+594*x-512 2100955417508945 a007 Real Root Of -296*x^4+203*x^3-562*x^2+251*x+80 2100955419301207 m001 1/Catalan^2/Niven/exp(Zeta(3)) 2100955419601787 r005 Im(z^2+c),c=2/25+7/36*I,n=16 2100955423255084 a007 Real Root Of 174*x^4-44*x^3-738*x^2-73*x-694 2100955435788731 a007 Real Root Of -418*x^4-431*x^3+906*x^2+29*x+209 2100955455432763 a007 Real Root Of 276*x^4+150*x^3-451*x^2+611*x-712 2100955465356147 m001 ZetaQ(2)*(Catalan-Mills) 2100955473217502 m001 (Landau-Mills)/(TreeGrowth2nd-ZetaP(4)) 2100955476066442 a007 Real Root Of 232*x^4+299*x^3-519*x^2-332*x-154 2100955477876717 m001 (Rabbit-Shi(1)*Chi(1))/Chi(1) 2100955481540123 m001 1/KhintchineLevy*ln(Bloch)^2*Riemann2ndZero^2 2100955491914143 a001 28657/3571*322^(1/6) 2100955492838838 m001 (GAMMA(23/24)+ArtinRank2)/(DuboisRaymond+Kac) 2100955497889179 l006 ln(6557/8090) 2100955502807064 s002 sum(A122140[n]/(exp(pi*n)+1),n=1..infinity) 2100955511774512 a003 cos(Pi*1/94)*sin(Pi*6/89) 2100955515425494 r005 Im(z^2+c),c=-99/118+7/46*I,n=61 2100955520065335 r005 Re(z^2+c),c=-23/110+47/58*I,n=46 2100955521681782 h001 (5/9*exp(2)+11/12)/(3/11*exp(2)+3/8) 2100955523404094 l006 ln(684/5591) 2100955527288308 m001 1/Trott*ln(FibonacciFactorial)^2/GAMMA(2/3)^2 2100955529800601 m001 BesselI(1,1)*ln(gamma)^((1+3^(1/2))^(1/2)) 2100955529800601 m001 BesselI(1,1)*log(gamma)^sqrt(1+sqrt(3)) 2100955530077299 a007 Real Root Of -367*x^4+932*x^3+148*x^2+572*x+123 2100955530275029 m001 (ln(2)-gamma(3))/(CareFree+Sierpinski) 2100955531999488 a007 Real Root Of 594*x^4+870*x^3-593*x^2+343*x-167 2100955532787234 r009 Re(z^3+c),c=-11/86+33/34*I,n=6 2100955535587140 q001 1/4759739 2100955540996090 m001 FeigenbaumC+Gompertz*ZetaP(2) 2100955542391072 r002 8th iterates of z^2 + 2100955544578857 h001 (-4*exp(3/2)-4)/(-2*exp(1)-5) 2100955547221535 a007 Real Root Of -398*x^4+841*x^3+477*x^2+840*x+164 2100955559934211 m001 (GAMMA(5/6)+CareFree)/(sin(1/5*Pi)+Zeta(1/2)) 2100955563501340 m001 (ArtinRank2-GlaisherKinkelin)/(Khinchin+Paris) 2100955563898509 a007 Real Root Of 97*x^4-20*x^3+27*x^2+788*x-539 2100955572600445 m001 (Ei(1)-Artin)/(Salem-ZetaP(2)) 2100955576031654 s002 sum(A185047[n]/((2^n-1)/n),n=1..infinity) 2100955601975280 a001 1364/28657*34^(8/19) 2100955608351573 m001 GAMMA(5/24)^ln(Pi)/(GAMMA(5/24)^Cahen) 2100955616125079 m001 KomornikLoreti+PrimesInBinary^ln(2+3^(1/2)) 2100955626939165 a007 Real Root Of 607*x^4+820*x^3-464*x^2+842*x-405 2100955631470818 a001 18/55*34^(29/55) 2100955634009336 m001 Artin^GAMMA(19/24)*Artin^ThueMorse 2100955636756373 a001 610/9349*843^(6/7) 2100955641113993 r009 Re(z^3+c),c=-9/31+11/29*I,n=9 2100955650919055 r002 8th iterates of z^2 + 2100955655219526 r008 a(0)=2,K{-n^6,-5+4*n^3-8*n^2-5*n} 2100955664831714 a001 5/3010349*24476^(1/43) 2100955665986374 a001 1346269/76*521^(17/43) 2100955674124121 s002 sum(A260107[n]/((10^n-1)/n),n=1..infinity) 2100955674751954 l006 ln(6989/8623) 2100955677232082 a001 199/89*21^(39/53) 2100955681795775 a007 Real Root Of -32*x^4+146*x^3-5*x^2-728*x+470 2100955684547509 a001 2584/843*322^(1/3) 2100955687743949 m005 (1/2*5^(1/2)+7/11)/(5/6*Zeta(3)-1/6) 2100955701785486 r005 Im(z^2+c),c=-15/14+49/246*I,n=4 2100955705036922 a001 5/4870847*2207^(4/43) 2100955712443050 r005 Re(z^2+c),c=-2/17+21/43*I,n=14 2100955715770057 m001 LaplaceLimit+Tribonacci^Gompertz 2100955723241037 a001 521/28657*1597^(1/51) 2100955739967690 r004 Re(z^2+c),c=-1/6-5/23*I,z(0)=I,n=12 2100955745777292 r009 Re(z^3+c),c=-57/110+25/43*I,n=42 2100955747064694 m001 gamma^2*exp(1)*exp(sin(1)) 2100955749406619 a001 7/86267571272*514229^(17/22) 2100955751441185 m001 ln(CareFree)/CopelandErdos^2*gamma^2 2100955754778109 m001 (-PlouffeB+Sarnak)/(5^(1/2)-GAMMA(11/12)) 2100955758720831 r005 Re(z^2+c),c=-1/24+37/61*I,n=49 2100955763714443 m001 GlaisherKinkelin*(GAMMA(13/24)-ZetaQ(4)) 2100955769662792 a007 Real Root Of -19*x^4+281*x^3+575*x^2+738*x-183 2100955775582008 m001 1/Ei(1)*exp(FeigenbaumB)*sqrt(3) 2100955788701015 r002 41th iterates of z^2 + 2100955793992379 l006 ln(661/5403) 2100955808579338 h001 (2/3*exp(2)+3/10)/(5/6*exp(1)+2/9) 2100955813584179 a007 Real Root Of 23*x^4+457*x^3-511*x^2+883*x+954 2100955814708746 a001 610/15127*843^(13/14) 2100955815511790 r009 Im(z^3+c),c=-13/29+2/35*I,n=42 2100955821735235 a003 sin(Pi*11/101)*sin(Pi*14/65) 2100955831023237 l006 ln(7421/9156) 2100955834714537 a007 Real Root Of 40*x^4+867*x^3+537*x^2-453*x+293 2100955846157837 s002 sum(A208231[n]/((2^n-1)/n),n=1..infinity) 2100955852019813 m001 KhinchinLevy/(FeigenbaumKappa-Psi(2,1/3)) 2100955858327743 m001 (2^(1/3)-ln(2^(1/2)+1))/(-Lehmer+ThueMorse) 2100955859749558 a001 11/1597*377^(27/28) 2100955862858647 r005 Re(z^2+c),c=-97/122+4/63*I,n=4 2100955864042121 m001 1/Ei(1)^2/GolombDickman/exp(GAMMA(1/3))^2 2100955866063284 a001 28657/18*521^(32/41) 2100955870899842 h001 (5/9*exp(2)+8/11)/(3/10*exp(2)+1/12) 2100955872252866 m001 (ln(2^(1/2)+1)-Artin)/(Riemann3rdZero-Thue) 2100955876083451 m001 (Ei(1)-cos(1))/(-gamma(2)+HardyLittlewoodC3) 2100955876091978 a003 sin(Pi*8/77)-sin(Pi*13/73) 2100955876381911 m003 1/3+4*Cot[1/2+Sqrt[5]/2]+Tan[1/2+Sqrt[5]/2] 2100955879038703 m001 (BesselI(0,2)+MertensB1)/(ZetaP(3)-ZetaQ(2)) 2100955887004425 m001 (CareFree+Stephens)/(1-ln(5)) 2100955894304282 a007 Real Root Of -176*x^4-32*x^3+413*x^2-687*x-134 2100955897278384 a001 305/682*843^(4/7) 2100955902319059 a007 Real Root Of 524*x^4+810*x^3-285*x^2+334*x-738 2100955917215095 m001 (GAMMA(19/24)-GolombDickman)/MertensB1 2100955923292048 a007 Real Root Of -792*x^4-239*x^3-427*x^2+894*x+206 2100955924598674 r005 Im(z^2+c),c=5/126+31/50*I,n=53 2100955924844274 r005 Re(z^2+c),c=29/114+5/29*I,n=31 2100955925502262 m003 7+(33*Sqrt[5])/512-E^(1/2+Sqrt[5]/2) 2100955935777202 m008 (3/5*Pi^3-3/5)/(1/6*Pi+1/3) 2100955937926950 m001 PrimesInBinary*CopelandErdos*exp(BesselJ(0,1)) 2100955938621582 m001 GAMMA(17/24)^2/exp(BesselJ(0,1))^2*sin(Pi/5) 2100955939729749 r005 Im(z^2+c),c=-47/90+15/41*I,n=31 2100955955525263 m005 (1/3*Zeta(3)-1/4)/(1/7*Zeta(3)-1/10) 2100955956318387 r005 Im(z^2+c),c=-11/48+40/57*I,n=25 2100955956461131 r005 Re(z^2+c),c=9/118+20/37*I,n=2 2100955959136711 m002 Pi/E^Pi+Pi^6/(4*Log[Pi]) 2100955960053949 b008 Pi^2*JacobiNC[2,Glaisher] 2100955967396643 m001 cos(1)^2/Riemann3rdZero*exp(sin(Pi/5)) 2100955969551452 m001 (Psi(1,1/3)-Zeta(5))/(-TreeGrowth2nd+ZetaQ(3)) 2100955970101294 l006 ln(7853/9689) 2100955970101294 p004 log(9689/7853) 2100955970125332 h001 (1/10*exp(2)+5/7)/(6/7*exp(2)+7/12) 2100955970329436 r009 Re(z^3+c),c=-63/106+19/39*I,n=33 2100955981518530 p001 sum((-1)^n/(444*n+413)/(3^n),n=0..infinity) 2100955992673940 a007 Real Root Of -493*x^4-725*x^3+578*x^2-611*x-953 2100955996409757 a007 Real Root Of -273*x^4+260*x^3-695*x^2+713*x-121 2100956002842658 m001 Catalan^KomornikLoreti-Otter 2100956004835747 s001 sum(exp(-2*Pi/3)^n*A120569[n],n=1..infinity) 2100956019909807 r005 Re(z^2+c),c=25/122+9/16*I,n=56 2100956035061391 a004 Fibonacci(15)*Lucas(14)/(1/2+sqrt(5)/2)^21 2100956037843669 r005 Re(z^2+c),c=-101/122+1/22*I,n=42 2100956044664676 a007 Real Root Of 964*x^4-815*x^3+491*x^2-742*x-187 2100956053068198 a007 Real Root Of -115*x^4+183*x^3+822*x^2-172*x-52 2100956055416187 a001 233/843*1364^(3/5) 2100956059290797 r005 Im(z^2+c),c=-7/10+5/214*I,n=57 2100956068717093 b008 5+35*(E+Pi) 2100956070301298 r005 Im(z^2+c),c=-1+38/169*I,n=33 2100956078338198 a001 76/4181*89^(1/31) 2100956079585354 m005 (1/2*2^(1/2)+3)/(11/12*exp(1)-8/11) 2100956084090082 l006 ln(638/5215) 2100956085532040 a007 Real Root Of -235*x^4-483*x^3-259*x^2-928*x-707 2100956093109697 a007 Real Root Of -575*x^4-603*x^3+966*x^2-714*x-153 2100956094515839 m001 (Otter-PrimesInBinary)/(ZetaP(3)-ZetaQ(2)) 2100956098216900 h001 (-4*exp(7)+4)/(-7*exp(8)+7) 2100956112946024 m005 (1/2*Zeta(3)+6)/(8/9*Catalan-1/2) 2100956118833655 m001 KhinchinHarmonic*(Zeta(3)+ZetaQ(4)) 2100956131024405 a001 5/11*123^(47/59) 2100956133622479 r005 Re(z^2+c),c=-25/114+11/52*I,n=4 2100956138047064 a001 4870847*144^(5/17) 2100956148297770 r002 15th iterates of z^2 + 2100956150684426 m001 (sin(Pi/5)+GAMMA(1/24))/ln(Pi) 2100956165792269 a007 Real Root Of -438*x^4-841*x^3-136*x^2-475*x+337 2100956172214930 a007 Real Root Of 553*x^4+995*x^3-17*x^2+496*x-430 2100956179624968 a007 Real Root Of 780*x^4-305*x^3+704*x^2-493*x-139 2100956180592093 r009 Re(z^3+c),c=-21/62+31/61*I,n=39 2100956187116112 m001 Pi^2/FeigenbaumKappa/ln(sqrt(2)) 2100956206006443 a001 377/521*1364^(7/15) 2100956214090179 r005 Re(z^2+c),c=-5/6+3/194*I,n=64 2100956214883362 m001 (Pi-ln(gamma))/(ln(2+3^(1/2))+TreeGrowth2nd) 2100956219538027 r005 Re(z^2+c),c=7/38+17/30*I,n=53 2100956236699663 b008 -22+ProductLog[8/3] 2100956239643947 a007 Real Root Of 47*x^4+955*x^3-664*x^2+331*x-880 2100956240750407 m001 (3^(1/3)-HardyLittlewoodC3)/(Thue-Weierstrass) 2100956255448935 m001 (GAMMA(2/3)-ln(Pi))/(FeigenbaumC-GaussAGM) 2100956263758033 r005 Re(z^2+c),c=17/122+35/57*I,n=18 2100956266900382 r009 Re(z^3+c),c=-2/13+40/47*I,n=15 2100956281144819 a001 987/521*521^(5/13) 2100956311840374 m001 MertensB2^Conway+GAMMA(11/12) 2100956316446349 h001 (6/11*exp(1)+1/9)/(1/12*exp(2)+1/7) 2100956319906809 r005 Im(z^2+c),c=5/122+1/52*I,n=5 2100956320410212 m005 (1/2*Pi+7/11)/(5/8*2^(1/2)+1/6) 2100956327427411 a007 Real Root Of -404*x^4-285*x^3+907*x^2-573*x+21 2100956333669631 s002 sum(A026428[n]/(exp(n)-1),n=1..infinity) 2100956335856642 r005 Re(z^2+c),c=-73/118+26/57*I,n=42 2100956338312592 a007 Real Root Of 466*x^4+928*x^3+143*x^2+402*x-260 2100956354947938 p003 LerchPhi(1/512,6,356/187) 2100956361856964 g007 Psi(2,1/10)+Psi(2,5/9)+Psi(2,1/4)-Psi(2,4/11) 2100956365741982 m005 (1/2*Zeta(3)+5/7)/(-67/168+11/24*5^(1/2)) 2100956370764364 h005 exp(cos(Pi*11/26)-sin(Pi*18/41)) 2100956389529150 r005 Im(z^2+c),c=-25/66+1/30*I,n=22 2100956395886057 l006 ln(615/5027) 2100956401109337 r009 Im(z^3+c),c=-8/19+4/45*I,n=39 2100956403610388 m001 1/ln(Niven)*CopelandErdos/Riemann2ndZero 2100956413082195 m001 GAMMA(7/24)^2/HardHexagonsEntropy/exp(sinh(1)) 2100956414221890 a005 (1/cos(7/139*Pi))^1708 2100956424054462 a001 7/10946*2584^(4/9) 2100956429330499 q001 1977/941 2100956434397597 a007 Real Root Of 365*x^4+335*x^3-704*x^2+578*x+317 2100956438363352 m001 exp(MinimumGamma)^2*Kolakoski^2/RenyiParking^2 2100956441766883 m001 (2^(1/3)-sin(1/5*Pi))/(-exp(-1/2*Pi)+Magata) 2100956455460819 a001 7/75025*196418^(4/9) 2100956455529039 a001 7/514229*14930352^(4/9) 2100956455530595 a001 7/3524578*1134903170^(4/9) 2100956455530628 a001 7/24157817*86267571272^(4/9) 2100956455530629 a001 7/165580141*6557470319842^(4/9) 2100956459399194 a001 5473/682*322^(1/6) 2100956459983256 a007 Real Root Of 70*x^4-632*x^3+493*x^2-539*x-141 2100956463703437 a007 Real Root Of 19*x^4+365*x^3-688*x^2+656*x+477 2100956475666777 m006 (4*Pi^2-1/2)/(ln(Pi)-3) 2100956482249532 a007 Real Root Of -378*x^4-980*x^3-20*x^2+546*x-488 2100956490693774 r005 Im(z^2+c),c=-97/98+11/49*I,n=64 2100956493788518 m001 arctan(1/2)^Conway/MadelungNaCl 2100956507582787 a007 Real Root Of -184*x^4-352*x^3-325*x^2-943*x-226 2100956510871460 r005 Im(z^2+c),c=-31/29+12/55*I,n=24 2100956514381547 m001 Pi*csc(1/24*Pi)/GAMMA(23/24)-Si(Pi)^Backhouse 2100956514381547 m001 Si(Pi)^Backhouse-GAMMA(1/24) 2100956534750720 m001 Paris^GAMMA(19/24)*FeigenbaumD^GAMMA(19/24) 2100956540709216 r005 Im(z^2+c),c=-19/34+13/34*I,n=47 2100956543179084 r009 Im(z^3+c),c=-53/98+13/36*I,n=21 2100956549859825 a007 Real Root Of 215*x^4-99*x^3-800*x^2+672*x-164 2100956557914065 m008 (2/5*Pi^3+1/2)/(2*Pi^3-3/5) 2100956560696152 l006 ln(1207/9866) 2100956566902057 a001 3571/75025*34^(8/19) 2100956567230666 a001 1926*13^(2/59) 2100956575345919 m005 (1/2*Catalan+1)/(6*Zeta(3)-3/11) 2100956577481494 s002 sum(A160848[n]/(n^2*2^n+1),n=1..infinity) 2100956578994242 m001 (ln(3)+GAMMA(17/24))/(Gompertz-Rabbit) 2100956583282509 m001 1/Ei(1)^2/ln(ArtinRank2)*exp(1) 2100956584541867 a005 (1/cos(68/149*Pi))^5 2100956587435767 a001 10946/2207*322^(1/4) 2100956601604540 a007 Real Root Of -347*x^4-445*x^3+477*x^2+74*x+684 2100956604636404 m001 Pi-exp(Pi)-Si(Pi)+sin(1) 2100956604641314 m001 BesselK(1,1)^2*ln(MinimumGamma)/cos(Pi/5)^2 2100956615342098 m001 (LaplaceLimit+Paris)/(ln(2)-GAMMA(11/12)) 2100956616771792 m009 (1/6*Psi(1,1/3)+1/4)/(4*Catalan+1/2*Pi^2+3/5) 2100956620390974 m001 2^(1/2)+ln(gamma)*Otter 2100956623966863 s002 sum(A161769[n]/(exp(pi*n)-1),n=1..infinity) 2100956628049464 r005 Im(z^2+c),c=-13/14+33/157*I,n=11 2100956637757796 r009 Re(z^3+c),c=-31/94+16/33*I,n=25 2100956637946854 m001 FeigenbaumB+StronglyCareFree^Zeta(1,2) 2100956638299659 a007 Real Root Of -553*x^4-864*x^3+733*x^2-94*x-671 2100956639214580 r009 Im(z^3+c),c=-9/19+1/42*I,n=5 2100956639720971 m001 FeigenbaumD^2/MertensB1/ln(Pi)^2 2100956639772415 a007 Real Root Of 220*x^4+308*x^3-245*x^2+482*x+664 2100956645739848 a001 233/843*3571^(9/17) 2100956647888025 m005 (-1/5+2/5*5^(1/2))/(2/5*Catalan-1/3) 2100956650053632 r005 Re(z^2+c),c=-151/114+1/42*I,n=4 2100956652438398 m008 (4*Pi^5+1/3)/(3/5*Pi^4-1/6) 2100956659030724 r005 Im(z^2+c),c=-39/74+2/55*I,n=23 2100956664114252 a007 Real Root Of -993*x^4+12*x^3+644*x^2+911*x-218 2100956665147086 a001 377/521*3571^(7/17) 2100956666071866 r005 Im(z^2+c),c=-21/106+11/38*I,n=6 2100956673434178 r009 Im(z^3+c),c=-37/122+1/6*I,n=12 2100956677285583 a007 Real Root Of 52*x^4+71*x^3+240*x^2+397*x-580 2100956678760569 s002 sum(A168319[n]/(n!^3),n=1..infinity) 2100956681815906 m001 1/Conway*ln(Artin)/Ei(1)^2 2100956683398038 r002 38th iterates of z^2 + 2100956683398734 a007 Real Root Of 521*x^4+607*x^3-814*x^2+117*x-683 2100956687313156 r005 Im(z^2+c),c=-39/62+1/55*I,n=9 2100956689084648 r005 Re(z^2+c),c=-21/26+6/65*I,n=52 2100956693460918 a007 Real Root Of -241*x^4-388*x^3+246*x^2-114*x-228 2100956694555350 m001 1/2*Mills/Pi/csc(5/24*Pi)*GAMMA(19/24)*2^(1/2) 2100956695147599 m001 (BesselI(0,1)+ln(3))/(-KomornikLoreti+Robbin) 2100956706222122 a001 199/121393*514229^(1/53) 2100956707682977 a001 9349/196418*34^(8/19) 2100956708921310 a001 87841/4181 2100956712770939 m005 (1/3*Zeta(3)+1/2)/(2/11*2^(1/2)-3/10) 2100956720284037 m001 1/Robbin^2*exp(FeigenbaumDelta)/OneNinth^2 2100956721576712 a001 233/843*9349^(9/19) 2100956724131315 a001 377/521*9349^(7/19) 2100956728222636 a001 24476/514229*34^(8/19) 2100956729072972 m001 MadelungNaCl^FeigenbaumKappa-exp(Pi) 2100956731219332 a001 64079/1346269*34^(8/19) 2100956731459829 a001 233/843*24476^(3/7) 2100956731656544 a001 167761/3524578*34^(8/19) 2100956731720333 a001 439204/9227465*34^(8/19) 2100956731729639 a001 1149851/24157817*34^(8/19) 2100956731730997 a001 3010349/63245986*34^(8/19) 2100956731731195 a001 7881196/165580141*34^(8/19) 2100956731731224 a001 20633239/433494437*34^(8/19) 2100956731731228 a001 54018521/1134903170*34^(8/19) 2100956731731229 a001 141422324/2971215073*34^(8/19) 2100956731731229 a001 370248451/7778742049*34^(8/19) 2100956731731229 a001 969323029/20365011074*34^(8/19) 2100956731731229 a001 2537720636/53316291173*34^(8/19) 2100956731731229 a001 6643838879/139583862445*34^(8/19) 2100956731731229 a001 17393796001/365435296162*34^(8/19) 2100956731731229 a001 45537549124/956722026041*34^(8/19) 2100956731731229 a001 119218851371/2504730781961*34^(8/19) 2100956731731229 a001 312119004989/6557470319842*34^(8/19) 2100956731731229 a001 10745088481/225749145909*34^(8/19) 2100956731731229 a001 192900153618/4052739537881*34^(8/19) 2100956731731229 a001 73681302247/1548008755920*34^(8/19) 2100956731731229 a001 28143753123/591286729879*34^(8/19) 2100956731731229 a001 10749957122/225851433717*34^(8/19) 2100956731731229 a001 4106118243/86267571272*34^(8/19) 2100956731731229 a001 1568397607/32951280099*34^(8/19) 2100956731731229 a001 599074578/12586269025*34^(8/19) 2100956731731229 a001 4868641/102287808*34^(8/19) 2100956731731229 a001 87403803/1836311903*34^(8/19) 2100956731731231 a001 33385282/701408733*34^(8/19) 2100956731731242 a001 12752043/267914296*34^(8/19) 2100956731731317 a001 4870847/102334155*34^(8/19) 2100956731731836 a001 1860498/39088169*34^(8/19) 2100956731735391 a001 710647/14930352*34^(8/19) 2100956731759756 a001 271443/5702887*34^(8/19) 2100956731818183 a001 377/521*24476^(1/3) 2100956731909312 l006 ln(592/4839) 2100956731926756 a001 2206/46347*34^(8/19) 2100956732762614 a001 233/843*64079^(9/23) 2100956732831461 a001 377/521*64079^(7/23) 2100956732959200 a001 233/843*439204^(1/3) 2100956732962821 a001 233/843*7881196^(3/11) 2100956732962831 a001 233/843*141422324^(3/13) 2100956732962831 a001 233/843*2537720636^(1/5) 2100956732962831 a001 233/843*45537549124^(3/17) 2100956732962831 a001 233/843*14662949395604^(1/7) 2100956732962831 a001 233/843*(1/2+1/2*5^(1/2))^9 2100956732962831 a001 233/843*192900153618^(1/6) 2100956732962831 a001 233/843*10749957122^(3/16) 2100956732962831 a001 233/843*599074578^(3/14) 2100956732962831 a001 233/843*33385282^(1/4) 2100956732963013 a001 233/843*1860498^(3/10) 2100956732987184 a001 377/521*20633239^(1/5) 2100956732987185 a001 377/521*17393796001^(1/7) 2100956732987185 a001 377/521*14662949395604^(1/9) 2100956732987185 a001 377/521*(1/2+1/2*5^(1/2))^7 2100956732987185 a001 377/521*599074578^(1/6) 2100956732988225 a001 377/521*710647^(1/4) 2100956733036120 a001 233/843*103682^(3/8) 2100956733044188 a001 377/521*103682^(7/24) 2100956733071392 a001 39603/832040*34^(8/19) 2100956733413407 a001 377/521*39603^(7/22) 2100956733510831 a001 233/843*39603^(9/22) 2100956736200694 a001 377/521*15127^(7/20) 2100956737094485 a001 233/843*15127^(9/20) 2100956739475933 a007 Real Root Of 504*x^4+401*x^3-941*x^2+717*x-441 2100956740879606 m001 (cos(1/5*Pi)-ln(gamma))/(ln(2)-Totient) 2100956740916844 a001 15127/317811*34^(8/19) 2100956741482446 r009 Re(z^3+c),c=-13/70+26/29*I,n=22 2100956741702937 a001 18/1836311903*5^(9/19) 2100956742595780 r005 Im(z^2+c),c=-49/74+11/57*I,n=11 2100956749140065 r005 Im(z^2+c),c=5/74+1/5*I,n=11 2100956752614565 r009 Im(z^3+c),c=-57/94+29/63*I,n=6 2100956757364300 m001 (CopelandErdos+ZetaP(3))/(cos(1/5*Pi)+ln(Pi)) 2100956757460206 a001 377/521*5778^(7/18) 2100956758163529 r009 Im(z^3+c),c=-3/62+12/55*I,n=3 2100956762797106 a007 Real Root Of 81*x^4+161*x^3-126*x^2-60*x+345 2100956764428144 a001 233/843*5778^(1/2) 2100956781760613 m001 (-BesselI(1,2)+Niven)/(Psi(2,1/3)+sin(1/5*Pi)) 2100956787150258 m001 1/ln(Riemann1stZero)/Artin^2/GAMMA(17/24) 2100956792606250 m001 (FeigenbaumAlpha+Stephens)^TwinPrimes 2100956794177493 m001 (3^(1/3))/exp(ArtinRank2)^2*sin(Pi/5) 2100956794690370 a001 5778/121393*34^(8/19) 2100956795601674 a007 Real Root Of 582*x^4+928*x^3-187*x^2+684*x-471 2100956802637275 r009 Re(z^3+c),c=-11/94+41/47*I,n=16 2100956812407584 a007 Real Root Of 213*x^4+84*x^3-252*x^2+710*x-767 2100956813717533 a007 Real Root Of -361*x^4-546*x^3+217*x^2-528*x-97 2100956814019569 a007 Real Root Of -616*x^4-870*x^3+517*x^2-671*x+242 2100956819101612 r009 Re(z^3+c),c=-9/28+31/64*I,n=7 2100956821089196 b008 33*Sinh[3/5] 2100956821415969 r009 Re(z^3+c),c=-4/17+11/51*I,n=11 2100956822110151 m001 (BesselI(1,2)+Tribonacci)/(Ei(1,1)-Si(Pi)) 2100956836594439 m001 GAMMA(5/6)-Zeta(5)*Zeta(1,2) 2100956849867753 m001 FeigenbaumC^Robbin/(Gompertz^Robbin) 2100956852602567 a001 199/7*(1/2*5^(1/2)+1/2)^31*7^(6/13) 2100956858250779 r008 a(0)=0,K{-n^6,-60-5*n^3+18*n^2+95*n} 2100956862303826 r002 55th iterates of z^2 + 2100956867658216 a007 Real Root Of -385*x^4-578*x^3+17*x^2-792*x+402 2100956871022046 r002 30th iterates of z^2 + 2100956875621892 m001 (gamma(3)+GAMMA(5/6))/(Champernowne-Robbin) 2100956877260692 a007 Real Root Of 272*x^4+635*x^3+393*x^2+589*x+92 2100956884213202 s001 sum(exp(-2*Pi/3)^n*A240857[n],n=1..infinity) 2100956896442636 r005 Im(z^2+c),c=-55/64+11/58*I,n=11 2100956909841746 m005 (1/2*Zeta(3)-7/11)/(3/5*2^(1/2)+5/6) 2100956909906082 l006 ln(1161/9490) 2100956915000447 m001 Rabbit/(MertensB1^cos(1/5*Pi)) 2100956921695333 a001 377/521*2207^(7/16) 2100956928050872 m005 (1/2*Catalan-4)/(1/3*2^(1/2)-5/11) 2100956933365022 r005 Im(z^2+c),c=-11/29+10/29*I,n=46 2100956939037926 m008 (1/5*Pi^4+2)/(3*Pi+4/5) 2100956942833001 a007 Real Root Of -535*x^4-998*x^3+633*x^2+817*x+91 2100956950370181 a007 Real Root Of 727*x^4+931*x^3-775*x^2+950*x-114 2100956952842699 a001 28657/5778*322^(1/4) 2100956957927398 a007 Real Root Of -513*x^4-733*x^3+830*x^2+586*x+765 2100956958294379 m001 (MertensB2+Tetranacci)/(Zeta(3)+exp(-1/2*Pi)) 2100956961937788 h001 (-2*exp(6)+6)/(-7*exp(4)+1) 2100956963335240 r005 Re(z^2+c),c=-9/10+46/145*I,n=4 2100956965112850 m002 Log[Pi]+ProductLog[Pi]+18*Sinh[Pi] 2100956967386283 b008 18+Tan[5/4] 2100956972751844 r005 Re(z^2+c),c=4/9+12/13*I,n=2 2100956975587596 a001 233/843*2207^(9/16) 2100956981640910 a007 Real Root Of -170*x^4-406*x^3-341*x^2-815*x-660 2100956982119385 r005 Im(z^2+c),c=-117/122+1/52*I,n=12 2100956983124503 m005 (23/30+1/6*5^(1/2))/(6/11*gamma-6/7) 2100956989612005 m001 (3^(1/2)+sin(1))/(-MertensB3+OneNinth) 2100956991009837 r009 Re(z^3+c),c=-4/17+11/51*I,n=10 2100956996800210 r009 Re(z^3+c),c=-3/29+43/57*I,n=28 2100957006154863 a001 75025/15127*322^(1/4) 2100957013933003 a001 196418/39603*322^(1/4) 2100957015067818 a001 514229/103682*322^(1/4) 2100957015233386 a001 1346269/271443*322^(1/4) 2100957015257542 a001 3524578/710647*322^(1/4) 2100957015261066 a001 9227465/1860498*322^(1/4) 2100957015261580 a001 24157817/4870847*322^(1/4) 2100957015261655 a001 63245986/12752043*322^(1/4) 2100957015261666 a001 165580141/33385282*322^(1/4) 2100957015261668 a001 433494437/87403803*322^(1/4) 2100957015261668 a001 1134903170/228826127*322^(1/4) 2100957015261668 a001 2971215073/599074578*322^(1/4) 2100957015261668 a001 7778742049/1568397607*322^(1/4) 2100957015261668 a001 20365011074/4106118243*322^(1/4) 2100957015261668 a001 53316291173/10749957122*322^(1/4) 2100957015261668 a001 139583862445/28143753123*322^(1/4) 2100957015261668 a001 365435296162/73681302247*322^(1/4) 2100957015261668 a001 956722026041/192900153618*322^(1/4) 2100957015261668 a001 2504730781961/505019158607*322^(1/4) 2100957015261668 a001 10610209857723/2139295485799*322^(1/4) 2100957015261668 a001 140728068720/28374454999*322^(1/4) 2100957015261668 a001 591286729879/119218851371*322^(1/4) 2100957015261668 a001 225851433717/45537549124*322^(1/4) 2100957015261668 a001 86267571272/17393796001*322^(1/4) 2100957015261668 a001 32951280099/6643838879*322^(1/4) 2100957015261668 a001 1144206275/230701876*322^(1/4) 2100957015261668 a001 4807526976/969323029*322^(1/4) 2100957015261668 a001 1836311903/370248451*322^(1/4) 2100957015261668 a001 701408733/141422324*322^(1/4) 2100957015261669 a001 267914296/54018521*322^(1/4) 2100957015261673 a001 9303105/1875749*322^(1/4) 2100957015261702 a001 39088169/7881196*322^(1/4) 2100957015261898 a001 14930352/3010349*322^(1/4) 2100957015263244 a001 5702887/1149851*322^(1/4) 2100957015272471 a001 2178309/439204*322^(1/4) 2100957015335712 a001 75640/15251*322^(1/4) 2100957015769173 a001 317811/64079*322^(1/4) 2100957018740158 a001 121393/24476*322^(1/4) 2100957018928929 r002 6th iterates of z^2 + 2100957022154277 a007 Real Root Of 282*x^4+426*x^3-467*x^2-273*x-56 2100957032704302 m001 (2^(1/2))^PrimesInBinary/ln(gamma) 2100957033995884 r005 Re(z^2+c),c=-57/40+2/19*I,n=4 2100957037653506 a007 Real Root Of 501*x^4+995*x^3-21*x^2+82*x-269 2100957039103594 a001 46368/9349*322^(1/4) 2100957045001642 a001 41/329*377^(10/21) 2100957046947579 a007 Real Root Of -615*x^4-774*x^3-992*x^2+653*x+175 2100957047907197 a007 Real Root Of 184*x^4-79*x^3-778*x^2+94*x-686 2100957048015859 r005 Im(z^2+c),c=-97/122+3/28*I,n=44 2100957051516310 m001 (2^(1/2))^FibonacciFactorial/gamma(1) 2100957053556389 m006 (4*Pi^2+1/3)/(1/6*Pi^2+1/4) 2100957053556389 m008 (4*Pi^2+1/3)/(1/6*Pi^2+1/4) 2100957062801220 r002 61th iterates of z^2 + 2100957075479772 m005 (1/3*5^(1/2)-2/5)/(1/2*3^(1/2)+7/9) 2100957095097766 l006 ln(569/4651) 2100957095097766 p004 log(4651/569) 2100957099053770 r009 Re(z^3+c),c=-19/86+9/56*I,n=6 2100957108690897 a005 (1/sin(56/167*Pi))^465 2100957111542219 r005 Re(z^2+c),c=-5/6+3/194*I,n=62 2100957117159489 r009 Re(z^3+c),c=-5/9+15/52*I,n=23 2100957117208519 m001 (2^(1/3)+BesselK(1,1))/(FeigenbaumB+ZetaQ(2)) 2100957119139394 r005 Re(z^2+c),c=-5/6+2/129*I,n=42 2100957131150117 a007 Real Root Of -100*x^4-282*x^3+13*x^2+796*x-165 2100957140039750 m001 (FeigenbaumC-Gompertz)/sin(1/5*Pi) 2100957142601025 r005 Re(z^2+c),c=-7/8+53/167*I,n=2 2100957145562614 m004 -101*Sqrt[5]*Pi+5*Sinh[Sqrt[5]*Pi] 2100957148744181 m001 FibonacciFactorial^Tribonacci/ln(2) 2100957157568953 m005 (1/3*3^(1/2)+1/7)/(5/11*Pi+2) 2100957160140777 m005 (1/2*3^(1/2)-1/8)/(5/6*Pi+10/11) 2100957163259602 a001 2207/46368*34^(8/19) 2100957178676667 a001 17711/3571*322^(1/4) 2100957187327209 r005 Re(z^2+c),c=-99/122+5/61*I,n=24 2100957188339227 m005 (1/2*3^(1/2)-1/6)/(2/9*Zeta(3)-3/5) 2100957194145025 m003 -5/2+Sqrt[5]/128+Sech[1/2+Sqrt[5]/2] 2100957195631105 m005 (1/2*Catalan-5/8)/(2/5*Catalan+3/7) 2100957196146883 a007 Real Root Of 79*x^4-296*x^3-796*x^2+155*x-445 2100957208120744 m001 BesselK(1,1)*FeigenbaumDelta^2/exp(Catalan)^2 2100957211529219 a007 Real Root Of 313*x^4+299*x^3-435*x^2+559*x-231 2100957214245474 m005 (1/2*2^(1/2)+6)/(1/3*gamma+3) 2100957214860153 a007 Real Root Of 18*x^4-285*x^3-567*x^2+366*x+278 2100957217099781 m005 (1/3*gamma-2/9)/(1/2*Zeta(3)+9/11) 2100957217932843 a007 Real Root Of -230*x^4-309*x^3+153*x^2-538*x-190 2100957221623962 m001 (Ei(1)+MasserGramain)/(Catalan-Zeta(5)) 2100957224863929 a007 Real Root Of -698*x^4-990*x^3+936*x^2-506*x-776 2100957241532245 r005 Im(z^2+c),c=-73/126+14/39*I,n=22 2100957244826260 h001 (-exp(1)+12)/(-8*exp(4)-5) 2100957246339506 a001 610/521*521^(6/13) 2100957259138215 m001 ln(GAMMA(2/3))/Bloch^2*cosh(1) 2100957260890885 l006 ln(9034/9053) 2100957265895482 r009 Re(z^3+c),c=-23/90+9/32*I,n=13 2100957267096546 a007 Real Root Of 138*x^4+136*x^3-614*x^2-829*x-459 2100957269378701 r009 Re(z^3+c),c=-9/26+29/55*I,n=51 2100957270235461 a007 Real Root Of -44*x^4+x^3+285*x^2+569*x+804 2100957281239412 a007 Real Root Of 393*x^4+972*x^3+199*x^2+242*x+987 2100957287929608 l006 ln(1115/9114) 2100957316111544 p001 sum(1/(443*n+175)/n/(8^n),n=1..infinity) 2100957322045378 m001 (-Ei(1,1)+KhinchinLevy)/(1+Zeta(1/2)) 2100957328394812 m001 (Champernowne-Chi(1))/(FransenRobinson+Lehmer) 2100957340482870 r008 a(0)=0,K{-n^6,17+60*n^3-43*n^2-29*n} 2100957340740660 a003 cos(Pi*19/83)-sin(Pi*33/80) 2100957342574326 m001 exp(Pi)^2/FeigenbaumB^2*exp(1) 2100957354376739 a008 Real Root of x^4-22*x^2-26*x+23 2100957359406264 m001 arctan(1/2)/(ReciprocalLucas^GAMMA(19/24)) 2100957370722484 m001 GAMMA(3/4)/FransenRobinson^2*ln(sin(Pi/12)) 2100957375607365 l006 ln(5228/5339) 2100957384874697 a001 9/416020*225851433717^(2/23) 2100957384878253 a001 6/105937*3524578^(2/23) 2100957396802812 m001 (Robbin-Stephens)^HardyLittlewoodC3 2100957406827961 a001 55/3010349*76^(1/31) 2100957409415218 m001 1/2*Psi(2,1/3)/Pi*2^(1/2)*GAMMA(3/4)/Sarnak 2100957415410566 m002 Coth[Pi]+Tanh[Pi]+Tanh[Pi]/Pi^2 2100957416380614 a007 Real Root Of -48*x^4-985*x^3+465*x^2-548*x+791 2100957426346587 a007 Real Root Of -321*x^4+963*x^3+188*x^2+965*x+204 2100957433270235 r005 Im(z^2+c),c=-35/44+3/19*I,n=25 2100957435663207 a007 Real Root Of -306*x^4-412*x^3+698*x^2+691*x+512 2100957437426177 b008 19*Gamma[6/7] 2100957437872720 r005 Im(z^2+c),c=-31/54+11/30*I,n=54 2100957448231810 m001 1/exp(PrimesInBinary)^2/MadelungNaCl*sin(1) 2100957454481635 r005 Re(z^2+c),c=11/94+19/49*I,n=47 2100957456466083 r005 Re(z^2+c),c=9/56+23/64*I,n=22 2100957465138745 m005 (43/44+1/4*5^(1/2))/(25/77+2/11*5^(1/2)) 2100957472614681 a001 1597/521*521^(4/13) 2100957474392876 a007 Real Root Of -608*x^4+130*x^3-834*x^2+594*x+164 2100957488884364 l006 ln(546/4463) 2100957490398435 a007 Real Root Of 437*x^4+654*x^3-386*x^2+768*x+868 2100957491830949 a001 2139295485799/13*13^(2/21) 2100957494241570 r005 Im(z^2+c),c=-16/19+11/64*I,n=3 2100957496362976 m001 FeigenbaumC^2*exp(Conway)/sin(Pi/5) 2100957504614981 a001 408569081798/17*39088169^(18/23) 2100957504614981 a001 70711162/17*2504730781961^(18/23) 2100957505644336 a007 Real Root Of 585*x^4+956*x^3-968*x^2-421*x+856 2100957506661041 r005 Im(z^2+c),c=-65/98+1/62*I,n=9 2100957508299743 m001 (1+3^(1/2))^(1/2)*GAMMA(7/12)^BesselI(1,1) 2100957508299743 m001 sqrt(1+sqrt(3))*GAMMA(7/12)^BesselI(1,1) 2100957508359915 r005 Re(z^2+c),c=7/58+11/28*I,n=50 2100957513400279 a007 Real Root Of -410*x^4-506*x^3+686*x^2+339*x+980 2100957523051605 p003 LerchPhi(1/16,4,401/152) 2100957526005823 r005 Im(z^2+c),c=-107/118+13/59*I,n=20 2100957530942252 a007 Real Root Of 316*x^4+49*x^3-967*x^2+466*x-455 2100957532043378 p003 LerchPhi(1/5,2,163/232) 2100957535360906 m001 (GaussAGM-Porter)/ln(2)*ln(10) 2100957539840011 m001 (Porter+ZetaP(2))/(ln(2)-ErdosBorwein) 2100957569777295 a007 Real Root Of 348*x^4+830*x^3-76*x^2-756*x-336 2100957577721919 m001 sin(1)/(HardyLittlewoodC4^StronglyCareFree) 2100957590457093 s002 sum(A061513[n]/(n^2*10^n+1),n=1..infinity) 2100957593791531 s002 sum(A170754[n]/(16^n),n=1..infinity) 2100957596981263 s001 sum(exp(-2*Pi/3)^n*A059339[n],n=1..infinity) 2100957600846634 a001 1597/843*322^(5/12) 2100957601397426 r002 28th iterates of z^2 + 2100957601653600 r002 51th iterates of z^2 + 2100957618619165 r005 Im(z^2+c),c=-22/23+7/33*I,n=54 2100957621583932 r002 10th iterates of z^2 + 2100957625363171 h001 (6/7*exp(1)+1/6)/(1/7*exp(1)+4/5) 2100957625772446 r005 Re(z^2+c),c=7/58+11/28*I,n=53 2100957628058537 m005 (1/2*Zeta(3)+1/10)/(7/12*gamma+3) 2100957631954584 m001 BesselJ(0,1)^(FransenRobinson/DuboisRaymond) 2100957633003985 r005 Re(z^2+c),c=-31/122+1/60*I,n=16 2100957633839321 a007 Real Root Of -23*x^4+450*x^3+717*x^2-232*x+969 2100957636383100 r005 Re(z^2+c),c=-1/10+24/43*I,n=61 2100957637806539 a001 1/726103*34^(17/22) 2100957641193112 r005 Re(z^2+c),c=-11/74+6/13*I,n=36 2100957641391377 r002 14th iterates of z^2 + 2100957645000936 a001 4/28657*55^(5/49) 2100957650248188 m001 exp(-1/2*Pi)^Thue/Champernowne 2100957652844523 a007 Real Root Of 106*x^4-392*x^3-807*x^2+549*x-985 2100957653613416 r005 Re(z^2+c),c=6/25+5/32*I,n=13 2100957658335921 r005 Re(z^2+c),c=3/19+15/34*I,n=49 2100957660295700 m001 (Salem+Tetranacci)/(sin(1/5*Pi)-BesselJ(1,1)) 2100957665458623 a007 Real Root Of 230*x^4-779*x^3+551*x^2-630*x+13 2100957673196014 a007 Real Root Of -26*x^4-566*x^3-421*x^2-100*x+565 2100957675319649 r005 Im(z^2+c),c=-9/14+63/199*I,n=61 2100957675322064 a007 Real Root Of 142*x^4-172*x^3-779*x^2+438*x-3 2100957680242152 r002 55th iterates of z^2 + 2100957680585478 r008 a(0)=2,K{-n^6,97-65*n^3-84*n^2+42*n} 2100957693378880 h001 (6/7*exp(2)+2/5)/(6/7*exp(1)+7/8) 2100957698177514 m001 MertensB2+ln(Pi)^Weierstrass 2100957698486335 l006 ln(1069/8738) 2100957700524938 s001 sum(1/10^(n-1)*A161926[n],n=1..infinity) 2100957700524938 s001 sum(1/10^n*A161926[n],n=1..infinity) 2100957721164445 l004 sinh(1064/115*Pi) 2100957721164445 l004 cosh(1064/115*Pi) 2100957724153095 m001 RenyiParking/exp(GlaisherKinkelin)/Pi^2 2100957730814382 r005 Im(z^2+c),c=27/98+3/52*I,n=24 2100957743607839 r002 10i'th iterates of 2*x/(1-x^2) of 2100957759115154 m005 (3/5*Catalan-5)/(exp(1)-3/5) 2100957772597004 m001 (GolombDickman+OneNinth)/(Bloch-Champernowne) 2100957774565804 r005 Im(z^2+c),c=17/74+29/62*I,n=4 2100957775219449 m001 (Landau-PolyaRandomWalk3D)/(BesselI(1,2)-Kac) 2100957777463510 h001 (8/11*exp(2)+2/7)/(5/6*exp(1)+3/7) 2100957782083121 a007 Real Root Of -251*x^4-95*x^3+594*x^2-371*x+608 2100957783151809 r005 Im(z^2+c),c=-7/6+41/235*I,n=10 2100957786206069 r009 Re(z^3+c),c=-19/44+23/45*I,n=20 2100957796940421 r002 20th iterates of z^2 + 2100957803758444 m005 (1/2*Catalan-3/10)/(1/9*2^(1/2)-10/11) 2100957824269415 m005 (1/2*exp(1)+2/3)/(6*3^(1/2)-3/4) 2100957826546567 a001 24476/89*2971215073^(7/23) 2100957829998251 a001 710647/89*46368^(7/23) 2100957835747897 a001 322/433494437*8^(1/2) 2100957840311987 a001 2584/521*521^(3/13) 2100957840831866 m001 (5^(1/2)*ln(3)-ZetaR(2))/ln(3) 2100957841451023 s002 sum(A061513[n]/(n^2*10^n-1),n=1..infinity) 2100957841482154 a007 Real Root Of -160*x^4+65*x^3+959*x^2+504*x+546 2100957841834357 r005 Im(z^2+c),c=3/98+11/51*I,n=10 2100957842509286 m001 (3^(1/2)+BesselJ(1,1))/(Thue+ZetaP(3)) 2100957843548678 a007 Real Root Of -559*x^4-976*x^3+105*x^2-265*x+820 2100957848055465 m001 (BesselK(1,1)+Thue)/(Pi-Psi(1,1/3)) 2100957850529750 a007 Real Root Of -302*x^4-820*x^3-272*x^2+681*x+911 2100957858450894 a007 Real Root Of 641*x^4-28*x^3-589*x^2-940*x-173 2100957860557621 m006 (3*ln(Pi)+2/5)/(1/3*exp(2*Pi)+4) 2100957865264533 p001 sum(1/(326*n+165)/n/(10^n),n=1..infinity) 2100957866228160 a007 Real Root Of -114*x^4+669*x^3+313*x^2+753*x-178 2100957868171066 a007 Real Root Of -803*x^4+942*x^3-825*x^2+777*x-134 2100957870908467 r005 Im(z^2+c),c=-97/114+1/5*I,n=15 2100957871201532 m005 (1/2*Zeta(3)-2/11)/(5/9*Pi+1/4) 2100957871305814 r005 Im(z^2+c),c=-35/86+9/16*I,n=44 2100957876787621 r005 Im(z^2+c),c=-11/42+16/51*I,n=15 2100957877180132 m001 (BesselK(0,1)-Psi(1,1/3))/(-Porter+Tetranacci) 2100957878889829 r009 Re(z^3+c),c=-11/52+43/44*I,n=39 2100957901921857 m001 Ei(1)*BesselJ(0,1)/exp(cos(Pi/12))^2 2100957908082247 m001 Si(Pi)+Zeta(1,2)+KhinchinLevy 2100957917305937 l006 ln(523/4275) 2100957927880390 m001 BesselK(0,1)^GAMMA(2/3)/(MertensB3^GAMMA(2/3)) 2100957932489894 m001 (Pi+GAMMA(19/24))/(Mills+RenyiParking) 2100957934194085 r005 Re(z^2+c),c=2/5+43/49*I,n=2 2100957935432310 r009 Re(z^3+c),c=-31/86+30/53*I,n=57 2100957938762604 m001 (-CareFree+Sierpinski)/(Psi(1,1/3)-ln(Pi)) 2100957944646819 m005 (2/3*gamma+3/5)/(4/3+3/2*5^(1/2)) 2100957950799093 r005 Re(z^2+c),c=37/114+14/51*I,n=17 2100957952136007 r009 Re(z^3+c),c=-5/48+4/5*I,n=45 2100957959330681 r005 Re(z^2+c),c=-1/54+37/51*I,n=3 2100957970454434 m006 (1/3/Pi-4)/(5/6*exp(Pi)-3/4) 2100957971590955 m005 (1/3*5^(1/2)+1/4)/(5/11*gamma-5) 2100957982294114 m001 ln(Magata)^2*LaplaceLimit^2/Pi 2100957985395722 p003 LerchPhi(1/256,2,12/55) 2100957992811713 r005 Re(z^2+c),c=-13/90+8/17*I,n=45 2100958001034899 a007 Real Root Of 940*x^4-267*x^3-83*x^2-227*x+52 2100958008856213 r002 46th iterates of z^2 + 2100958009413882 m001 (Salem+ZetaQ(3))/(GlaisherKinkelin-Psi(2,1/3)) 2100958012521910 m001 ln(Riemann3rdZero)/Backhouse^2*Salem^2 2100958017867720 r005 Im(z^2+c),c=31/110+1/51*I,n=10 2100958020500945 r005 Im(z^2+c),c=23/106+25/52*I,n=4 2100958021479512 a001 41/4976784*225851433717^(10/21) 2100958021508027 a001 123/121393*9227465^(10/21) 2100958024970884 r005 Im(z^2+c),c=17/82+5/43*I,n=5 2100958034512029 a007 Real Root Of -636*x^4-943*x^3+818*x^2-444*x-897 2100958036360703 m005 (1/3*gamma+1/11)/(3/7*Zeta(3)+5/6) 2100958037974955 r009 Im(z^3+c),c=-37/122+1/6*I,n=15 2100958042619559 s002 sum(A008045[n]/((10^n+1)/n),n=1..infinity) 2100958045138463 r002 8th iterates of z^2 + 2100958054733633 a007 Real Root Of 416*x^4-727*x^3+727*x^2-392*x-122 2100958065111445 m005 (-4/15+1/3*5^(1/2))/(gamma-3/5) 2100958065181050 m001 (sin(1/5*Pi)-cos(1/12*Pi))/(Pi^(1/2)+Trott2nd) 2100958069174208 a007 Real Root Of 541*x^4+640*x^3-736*x^2+582*x-134 2100958072004190 r005 Im(z^2+c),c=-65/114+16/29*I,n=17 2100958072254402 s002 sum(A170754[n]/(16^n-1),n=1..infinity) 2100958072846187 a003 cos(Pi*28/79)*cos(Pi*16/33) 2100958073638815 a007 Real Root Of -245*x^4-61*x^3+674*x^2-562*x+52 2100958082874228 m001 1/ln(Robbin)/Cahen^2*Ei(1)^2 2100958093321828 p003 LerchPhi(1/12,6,266/205) 2100958093957855 a007 Real Root Of 245*x^4+372*x^3+82*x^2+967*x+346 2100958100561800 r009 Im(z^3+c),c=-37/122+1/6*I,n=16 2100958112585519 r005 Im(z^2+c),c=-2/21+15/59*I,n=4 2100958114497109 m001 (gamma(2)+Bloch)/(MadelungNaCl+ZetaP(2)) 2100958117597457 m001 exp(Backhouse)^2*Artin*MadelungNaCl^2 2100958124290502 s002 sum(A101662[n]/((10^n-1)/n),n=1..infinity) 2100958129330981 r005 Re(z^2+c),c=-5/28+25/64*I,n=25 2100958135325250 a001 615/124*322^(1/4) 2100958143760040 a007 Real Root Of 560*x^4-978*x^3-923*x^2-939*x+246 2100958144260376 a007 Real Root Of 555*x^4+587*x^3-980*x^2+743*x+517 2100958145610935 m001 Champernowne^AlladiGrinstead/ZetaQ(3) 2100958145964883 l006 ln(1023/8362) 2100958156295097 m006 (1/6*Pi^2+4)/(3/5*ln(Pi)+2) 2100958164587600 a007 Real Root Of -428*x^4-976*x^3-524*x^2-860*x-206 2100958169977757 r005 Re(z^2+c),c=-23/110+14/45*I,n=8 2100958170754394 r005 Re(z^2+c),c=-31/122+1/60*I,n=18 2100958183150140 m001 (Pi+Psi(2,1/3))/(ln(2^(1/2)+1)-GAMMA(5/6)) 2100958185625270 m001 GaussAGM^Artin-ln(Pi) 2100958185763841 r002 35th iterates of z^2 + 2100958188160814 a007 Real Root Of -369*x^4-942*x^3-538*x^2-618*x-470 2100958193086574 m005 (1/2*3^(1/2)-8/9)/(7/10*Catalan-3/4) 2100958199134521 m001 CareFree*(BesselK(1,1)-GaussKuzminWirsing) 2100958209195062 r002 18th iterates of z^2 + 2100958209442009 r005 Im(z^2+c),c=-49/122+22/63*I,n=23 2100958211186624 a001 377/521*843^(1/2) 2100958226001641 m001 exp(Salem)^2*GaussAGM(1,1/sqrt(2))^2/Ei(1)^2 2100958226183322 a007 Real Root Of -403*x^4-655*x^3-196*x^2-820*x+920 2100958236615094 p001 sum(1/(319*n+48)/(16^n),n=0..infinity) 2100958246033004 m001 (Si(Pi)-polylog(4,1/2))/HardyLittlewoodC3 2100958251302243 r005 Re(z^2+c),c=-31/122+1/60*I,n=20 2100958251869887 m005 (1/2*Pi+1/2)/(2/3*Catalan+3/8) 2100958252405555 r009 Re(z^3+c),c=-7/23+19/45*I,n=10 2100958258084483 m001 BesselI(1,2)*Totient-exp(Pi) 2100958260995826 m001 Pi^FeigenbaumDelta+Landau 2100958262788225 r005 Re(z^2+c),c=-31/122+1/60*I,n=22 2100958263361926 a001 6765/2207*322^(1/3) 2100958264304848 r005 Re(z^2+c),c=-31/122+1/60*I,n=24 2100958264478431 r005 Re(z^2+c),c=-31/122+1/60*I,n=26 2100958264488862 r005 Re(z^2+c),c=-31/122+1/60*I,n=29 2100958264489797 r005 Re(z^2+c),c=-31/122+1/60*I,n=31 2100958264490190 r005 Re(z^2+c),c=-31/122+1/60*I,n=33 2100958264490299 r005 Re(z^2+c),c=-31/122+1/60*I,n=35 2100958264490325 r005 Re(z^2+c),c=-31/122+1/60*I,n=37 2100958264490330 r005 Re(z^2+c),c=-31/122+1/60*I,n=39 2100958264490332 r005 Re(z^2+c),c=-31/122+1/60*I,n=41 2100958264490332 r005 Re(z^2+c),c=-31/122+1/60*I,n=43 2100958264490332 r005 Re(z^2+c),c=-31/122+1/60*I,n=45 2100958264490332 r005 Re(z^2+c),c=-31/122+1/60*I,n=47 2100958264490332 r005 Re(z^2+c),c=-31/122+1/60*I,n=49 2100958264490332 r005 Re(z^2+c),c=-31/122+1/60*I,n=51 2100958264490332 r005 Re(z^2+c),c=-31/122+1/60*I,n=53 2100958264490332 r005 Re(z^2+c),c=-31/122+1/60*I,n=55 2100958264490332 r005 Re(z^2+c),c=-31/122+1/60*I,n=57 2100958264490332 r005 Re(z^2+c),c=-31/122+1/60*I,n=59 2100958264490332 r005 Re(z^2+c),c=-31/122+1/60*I,n=61 2100958264490332 r005 Re(z^2+c),c=-31/122+1/60*I,n=63 2100958264490332 r005 Re(z^2+c),c=-31/122+1/60*I,n=64 2100958264490332 r005 Re(z^2+c),c=-31/122+1/60*I,n=62 2100958264490332 r005 Re(z^2+c),c=-31/122+1/60*I,n=60 2100958264490332 r005 Re(z^2+c),c=-31/122+1/60*I,n=58 2100958264490332 r005 Re(z^2+c),c=-31/122+1/60*I,n=56 2100958264490332 r005 Re(z^2+c),c=-31/122+1/60*I,n=54 2100958264490332 r005 Re(z^2+c),c=-31/122+1/60*I,n=52 2100958264490332 r005 Re(z^2+c),c=-31/122+1/60*I,n=50 2100958264490332 r005 Re(z^2+c),c=-31/122+1/60*I,n=48 2100958264490332 r005 Re(z^2+c),c=-31/122+1/60*I,n=46 2100958264490332 r005 Re(z^2+c),c=-31/122+1/60*I,n=44 2100958264490332 r005 Re(z^2+c),c=-31/122+1/60*I,n=42 2100958264490333 r005 Re(z^2+c),c=-31/122+1/60*I,n=40 2100958264490335 r005 Re(z^2+c),c=-31/122+1/60*I,n=38 2100958264490348 r005 Re(z^2+c),c=-31/122+1/60*I,n=36 2100958264490402 r005 Re(z^2+c),c=-31/122+1/60*I,n=34 2100958264490614 r005 Re(z^2+c),c=-31/122+1/60*I,n=32 2100958264490902 r005 Re(z^2+c),c=-31/122+1/60*I,n=27 2100958264491279 r005 Re(z^2+c),c=-31/122+1/60*I,n=30 2100958264491961 r005 Re(z^2+c),c=-31/122+1/60*I,n=28 2100958264543585 r005 Re(z^2+c),c=-31/122+1/60*I,n=25 2100958265069766 r005 Re(z^2+c),c=-31/122+1/60*I,n=23 2100958269295132 r005 Re(z^2+c),c=-31/122+1/60*I,n=21 2100958269564188 r005 Im(z^2+c),c=-11/32+29/49*I,n=10 2100958270377045 m001 cos(1)/(ZetaQ(4)-sin(1/12*Pi)) 2100958284652668 h001 (1/6*exp(2)+2/7)/(9/10*exp(2)+4/7) 2100958294307377 h001 (1/2*exp(2)+1/10)/(1/3*exp(1)+9/10) 2100958298361498 h001 (3/11*exp(1)+7/11)/(5/6*exp(2)+2/5) 2100958298470946 a001 1/47*(1/2*5^(1/2)+1/2)^23*7^(2/9) 2100958299938253 r005 Re(z^2+c),c=-31/122+1/60*I,n=19 2100958307978655 m005 (1/3*Catalan-2/9)/(1/3*3^(1/2)-2/11) 2100958316133617 r005 Re(z^2+c),c=37/118+13/59*I,n=34 2100958332472351 r002 19th iterates of z^2 + 2100958340756348 a007 Real Root Of 381*x^4+885*x^3+337*x^2-24*x-754 2100958343553137 r009 Im(z^3+c),c=-37/122+1/6*I,n=17 2100958344923943 a007 Real Root Of 459*x^4+974*x^3+239*x^2+905*x+936 2100958348037122 r002 60th iterates of z^2 + 2100958353347913 r005 Im(z^2+c),c=-51/56+4/21*I,n=53 2100958354785229 r005 Re(z^2+c),c=-7/58+27/52*I,n=42 2100958354828992 r009 Im(z^3+c),c=-37/122+1/6*I,n=20 2100958355347131 r009 Im(z^3+c),c=-37/122+1/6*I,n=21 2100958357356857 r009 Im(z^3+c),c=-37/122+1/6*I,n=22 2100958357450033 r009 Im(z^3+c),c=-37/122+1/6*I,n=25 2100958357454323 r009 Im(z^3+c),c=-37/122+1/6*I,n=26 2100958357470945 r009 Im(z^3+c),c=-37/122+1/6*I,n=27 2100958357471715 r009 Im(z^3+c),c=-37/122+1/6*I,n=30 2100958357471750 r009 Im(z^3+c),c=-37/122+1/6*I,n=31 2100958357471888 r009 Im(z^3+c),c=-37/122+1/6*I,n=32 2100958357471894 r009 Im(z^3+c),c=-37/122+1/6*I,n=35 2100958357471895 r009 Im(z^3+c),c=-37/122+1/6*I,n=36 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=37 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=40 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=41 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=42 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=45 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=46 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=47 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=50 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=51 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=52 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=55 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=56 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=57 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=60 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=61 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=62 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=64 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=63 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=59 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=58 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=54 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=53 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=49 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=48 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=44 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=43 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=39 2100958357471896 r009 Im(z^3+c),c=-37/122+1/6*I,n=38 2100958357471902 r009 Im(z^3+c),c=-37/122+1/6*I,n=34 2100958357471915 r009 Im(z^3+c),c=-37/122+1/6*I,n=33 2100958357472593 r009 Im(z^3+c),c=-37/122+1/6*I,n=29 2100958357474252 r009 Im(z^3+c),c=-37/122+1/6*I,n=28 2100958357556270 r009 Im(z^3+c),c=-37/122+1/6*I,n=24 2100958357756770 r009 Im(z^3+c),c=-37/122+1/6*I,n=23 2100958358755278 h001 (3/5*exp(2)+5/9)/(4/5*exp(1)+1/5) 2100958359217342 l006 ln(432/533) 2100958361032241 m006 (1/5*exp(2*Pi)-3)/(5*Pi^2+1/5) 2100958367674668 r009 Im(z^3+c),c=-37/122+1/6*I,n=19 2100958380171374 r009 Re(z^3+c),c=-4/17+11/51*I,n=14 2100958380701643 a007 Real Root Of 360*x^4+358*x^3-678*x^2+539*x+431 2100958385142085 l006 ln(500/4087) 2100958386238081 a001 144/1149851*199^(30/31) 2100958391914564 r009 Im(z^3+c),c=-37/122+1/6*I,n=18 2100958392517772 r005 Re(z^2+c),c=-5/6+3/194*I,n=60 2100958392965513 a007 Real Root Of -436*x^4-596*x^3+124*x^2-945*x+435 2100958398625758 r009 Re(z^3+c),c=-4/17+11/51*I,n=15 2100958401040174 a007 Real Root Of 615*x^4+584*x^3+145*x^2-180*x-40 2100958401372645 a007 Real Root Of 30*x^4+655*x^3+480*x^2-783*x+852 2100958401974631 a008 Real Root of x^4-x^3+4*x^2+14*x-17 2100958402727758 a007 Real Root Of 594*x^4+804*x^3-481*x^2+506*x-931 2100958404946754 m001 1/Sierpinski/exp(Kolakoski)*Zeta(3) 2100958407574822 r009 Re(z^3+c),c=-4/17+11/51*I,n=18 2100958407844478 r009 Re(z^3+c),c=-4/17+11/51*I,n=19 2100958407877230 r009 Re(z^3+c),c=-4/17+11/51*I,n=22 2100958407879846 r009 Re(z^3+c),c=-4/17+11/51*I,n=25 2100958407879846 r009 Re(z^3+c),c=-4/17+11/51*I,n=26 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=29 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=30 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=33 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=34 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=37 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=40 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=41 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=44 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=45 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=48 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=49 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=52 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=55 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=56 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=59 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=60 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=63 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=64 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=62 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=61 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=58 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=57 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=53 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=54 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=51 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=50 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=47 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=46 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=43 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=42 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=38 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=39 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=36 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=35 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=32 2100958407879865 r009 Re(z^3+c),c=-4/17+11/51*I,n=31 2100958407879867 r009 Re(z^3+c),c=-4/17+11/51*I,n=28 2100958407879868 r009 Re(z^3+c),c=-4/17+11/51*I,n=27 2100958407879920 r009 Re(z^3+c),c=-4/17+11/51*I,n=23 2100958407880093 r009 Re(z^3+c),c=-4/17+11/51*I,n=24 2100958407881136 r009 Re(z^3+c),c=-4/17+11/51*I,n=21 2100958407908922 r009 Re(z^3+c),c=-4/17+11/51*I,n=20 2100958408502085 r009 Re(z^3+c),c=-4/17+11/51*I,n=17 2100958410901656 r009 Re(z^3+c),c=-4/17+11/51*I,n=16 2100958428863423 a007 Real Root Of -213*x^4-70*x^3+310*x^2-946*x+145 2100958429915766 a001 233/2207*1364^(11/15) 2100958430538572 m001 (ln(5)+TreeGrowth2nd)^MertensB2 2100958432258030 a003 cos(Pi*16/107)/cos(Pi*18/37) 2100958433522747 m005 (1/2*5^(1/2)+6/7)/(3/11*Pi+1/12) 2100958433889136 r005 Im(z^2+c),c=-63/122+22/61*I,n=29 2100958449554237 m001 Chi(1)*Riemann3rdZero+ZetaQ(2) 2100958450169626 m001 (-GAMMA(11/24)+2)/(GAMMA(3/4)+2) 2100958451266684 m001 (gamma+Cahen)/(-CareFree+Champernowne) 2100958470185763 r005 Im(z^2+c),c=-27/56+20/53*I,n=23 2100958476579064 a007 Real Root Of 425*x^4+224*x^3-867*x^2+914*x-456 2100958478253777 m001 (-Grothendieck+Robbin)/(exp(1/Pi)-sin(1)) 2100958484302571 r005 Re(z^2+c),c=-67/62+15/52*I,n=10 2100958504213433 m001 gamma(3)^Porter/(gamma(3)^Paris) 2100958508186597 a007 Real Root Of -257*x^4+511*x^3+477*x^2+803*x-194 2100958509116462 r005 Re(z^2+c),c=-31/122+1/60*I,n=17 2100958512422127 m001 1/ln(Niven)*Magata^2*cos(Pi/12) 2100958522572419 a007 Real Root Of 174*x^4-645*x^3+193*x^2+698*x+273 2100958522662733 a001 4181/521*521^(2/13) 2100958533101965 r009 Re(z^3+c),c=-4/17+11/51*I,n=13 2100958545852540 m002 6/Pi^6+ProductLog[Pi]/(E^Pi*Pi) 2100958547736943 m009 (1/12*Pi^2-3/5)/(2/5*Psi(1,2/3)-1/6) 2100958549814209 b008 3/2+Csch[Glaisher] 2100958549814209 b008 5*(3+2*Csch[Glaisher]) 2100958559528692 a001 1/329*(1/2*5^(1/2)+1/2)^32*47^(1/11) 2100958559954076 r005 Re(z^2+c),c=-9/74+16/31*I,n=38 2100958560116876 a004 Fibonacci(13)*Lucas(15)/(1/2+sqrt(5)/2)^20 2100958560225281 m001 (GAMMA(11/12)+HardyLittlewoodC5)/ArtinRank2 2100958563238689 m001 ln(3)^(FeigenbaumMu/ZetaP(2)) 2100958567383229 r005 Im(z^2+c),c=-7/6+5/184*I,n=31 2100958579386586 r002 3th iterates of z^2 + 2100958586519683 a001 3461452808002/233*2^(1/2) 2100958612552126 m005 (1/2*gamma+6/11)/(3*2^(1/2)-3/11) 2100958615158537 g006 Psi(1,6/11)+Psi(1,5/7)-Psi(1,3/11)-Psi(1,2/7) 2100958615676402 r009 Im(z^3+c),c=-5/38+7/8*I,n=48 2100958620122713 a007 Real Root Of 253*x^4-810*x^3+872*x^2-783*x-211 2100958632883264 r009 Re(z^3+c),c=-4/17+11/51*I,n=12 2100958633505158 a001 233/843*843^(9/14) 2100958635580383 l006 ln(977/7986) 2100958639606397 a001 17711/5778*322^(1/3) 2100958647752273 a001 233/5778*1364^(13/15) 2100958653356664 r005 Im(z^2+c),c=-19/62+15/46*I,n=17 2100958659437298 a001 233/9349*1364^(14/15) 2100958661878378 m001 (GAMMA(3/4)+KhinchinHarmonic)/(Mills+OneNinth) 2100958668472833 r005 Re(z^2+c),c=-1+29/190*I,n=24 2100958671371535 a001 34*15127^(39/43) 2100958674233742 r005 Im(z^2+c),c=-37/44+9/58*I,n=37 2100958676165526 a001 1346269/76*3571^(13/43) 2100958689273174 m001 1/Porter^2/MertensB1^2/exp(GAMMA(19/24)) 2100958693373940 a001 329/281*322^(1/2) 2100958693516496 m005 (4/5*exp(1)+1/5)/(3/4*Catalan-4/5) 2100958694499736 a001 6624/2161*322^(1/3) 2100958695253784 a007 Real Root Of 907*x^4+812*x^3+963*x^2-478*x+1 2100958702508567 a001 121393/39603*322^(1/3) 2100958703077053 m001 gamma(2)*GAMMA(17/24)+Riemann2ndZero 2100958703677039 a001 317811/103682*322^(1/3) 2100958703847517 a001 832040/271443*322^(1/3) 2100958703872390 a001 311187/101521*322^(1/3) 2100958703876018 a001 5702887/1860498*322^(1/3) 2100958703876548 a001 14930352/4870847*322^(1/3) 2100958703876625 a001 39088169/12752043*322^(1/3) 2100958703876636 a001 14619165/4769326*322^(1/3) 2100958703876638 a001 267914296/87403803*322^(1/3) 2100958703876638 a001 701408733/228826127*322^(1/3) 2100958703876638 a001 1836311903/599074578*322^(1/3) 2100958703876638 a001 686789568/224056801*322^(1/3) 2100958703876638 a001 12586269025/4106118243*322^(1/3) 2100958703876638 a001 32951280099/10749957122*322^(1/3) 2100958703876638 a001 86267571272/28143753123*322^(1/3) 2100958703876638 a001 32264490531/10525900321*322^(1/3) 2100958703876638 a001 591286729879/192900153618*322^(1/3) 2100958703876638 a001 1548008755920/505019158607*322^(1/3) 2100958703876638 a001 1515744265389/494493258286*322^(1/3) 2100958703876638 a001 2504730781961/817138163596*322^(1/3) 2100958703876638 a001 956722026041/312119004989*322^(1/3) 2100958703876638 a001 365435296162/119218851371*322^(1/3) 2100958703876638 a001 139583862445/45537549124*322^(1/3) 2100958703876638 a001 53316291173/17393796001*322^(1/3) 2100958703876638 a001 20365011074/6643838879*322^(1/3) 2100958703876638 a001 7778742049/2537720636*322^(1/3) 2100958703876638 a001 2971215073/969323029*322^(1/3) 2100958703876638 a001 1134903170/370248451*322^(1/3) 2100958703876638 a001 433494437/141422324*322^(1/3) 2100958703876639 a001 165580141/54018521*322^(1/3) 2100958703876643 a001 63245986/20633239*322^(1/3) 2100958703876673 a001 24157817/7881196*322^(1/3) 2100958703876875 a001 9227465/3010349*322^(1/3) 2100958703878261 a001 3524578/1149851*322^(1/3) 2100958703887762 a001 1346269/439204*322^(1/3) 2100958703952878 a001 514229/167761*322^(1/3) 2100958704399195 a001 196418/64079*322^(1/3) 2100958706747006 a001 17711/76*9349^(32/43) 2100958707331355 m001 (Landau-TwinPrimes)/(gamma(3)-2*Pi/GAMMA(5/6)) 2100958707458296 a001 75025/24476*322^(1/3) 2100958711451093 a001 322/514229*102334155^(4/21) 2100958711452648 a001 161/1762289*2504730781961^(4/21) 2100958715956580 a001 322/75025*4181^(4/21) 2100958717516125 r005 Im(z^2+c),c=-8/19+21/59*I,n=29 2100958726348072 a001 208010/19*39603^(12/43) 2100958726953548 a001 5473/38*24476^(31/43) 2100958728425687 a001 28657/9349*322^(1/3) 2100958730428718 m001 (ln(2)+ZetaP(4))/(Catalan+ln(gamma)) 2100958743480042 m005 (1/2*3^(1/2)+1/4)/(-67/198+7/18*5^(1/2)) 2100958748167982 m005 (1/2*5^(1/2)-1/10)/(2*gamma-6) 2100958749656578 a003 cos(Pi*3/41)-sin(Pi*49/114) 2100958751789157 a007 Real Root Of -604*x^4-924*x^3+314*x^2-547*x+664 2100958752524540 h001 (-3*exp(3/2)-8)/(-6*exp(-1)-8) 2100958764478045 r005 Im(z^2+c),c=-73/90+6/35*I,n=42 2100958768221036 a001 11592/19*5778^(29/43) 2100958772539805 a007 Real Root Of -186*x^4-263*x^3+542*x^2+549*x-54 2100958777011596 g001 Psi(2/9,42/95) 2100958778808938 a007 Real Root Of -446*x^4-698*x^3+989*x^2+840*x-384 2100958781290970 r005 Re(z^2+c),c=-63/118+37/63*I,n=53 2100958781360024 m001 AlladiGrinstead/(ZetaP(2)^Zeta(3)) 2100958783701410 r009 Re(z^3+c),c=-61/106+35/62*I,n=11 2100958791272981 m006 (3/5*ln(Pi)+1/4)/(5/6*exp(2*Pi)-1/3) 2100958796088099 m001 (Si(Pi)+exp(1/exp(1)))/(GAMMA(23/24)+Landau) 2100958800255686 m002 4/5+Pi^3-Cosh[Pi]/ProductLog[Pi] 2100958805614493 m001 GAMMA(5/24)/GAMMA(1/4)/gamma 2100958809706373 r002 8th iterates of z^2 + 2100958816512870 r009 Re(z^3+c),c=-7/23+23/55*I,n=27 2100958818501983 r005 Re(z^2+c),c=-9/46+11/32*I,n=23 2100958823338520 m006 (2/3*ln(Pi)+3/4)/(3/4*Pi^2-1/5) 2100958826789345 m005 (1/2*3^(1/2)-5/9)/(4/7*5^(1/2)+1/5) 2100958826847151 q001 745/3546 2100958836360477 a007 Real Root Of 529*x^4+807*x^3-447*x^2+217*x-394 2100958846838763 m001 (-PrimesInBinary+ZetaQ(4))/(1+cos(1/12*Pi)) 2100958853395343 m001 (ln(2+3^(1/2))+OneNinth)/(Robbin-Totient) 2100958853460783 r005 Re(z^2+c),c=-59/66+9/38*I,n=50 2100958853739857 r005 Im(z^2+c),c=39/106+6/23*I,n=22 2100958861900877 m006 (2/3*ln(Pi)-1/5)/(5*exp(2*Pi)+3) 2100958870765409 a007 Real Root Of 314*x^4+419*x^3-608*x^2-669*x-954 2100958872138334 a001 10946/3571*322^(1/3) 2100958881642440 a001 987/521*1364^(1/3) 2100958885057791 a007 Real Root Of -30*x^4-621*x^3+149*x^2-931*x+802 2100958893797301 m001 (Champernowne-Lehmer)/(GAMMA(7/12)+CareFree) 2100958898094256 l006 ln(477/3899) 2100958899223564 b008 8-3*E^Pi*Pi 2100958899223564 m002 -8+3*E^Pi*Pi 2100958899349467 b008 17*Sqrt[ArcTan[23]] 2100958899882224 g007 Psi(2,7/12)+Psi(2,3/10)+Psi(2,1/4)-Psi(2,3/4) 2100958903517905 r002 11th iterates of z^2 + 2100958904383748 h001 (-3*exp(1)-2)/(-6*exp(2)-4) 2100958905698508 m005 (1/2*gamma+3/10)/(exp(1)+1/12) 2100958908377113 m005 (1/2*Zeta(3)+7/8)/(1/12*5^(1/2)-8/9) 2100958909179853 a007 Real Root Of 106*x^4-337*x^3-591*x^2+949*x-588 2100958916852843 a001 987/76*29^(1/7) 2100958921872249 m001 gamma(2)+BesselI(1,2)^ln(5) 2100958923195525 r005 Re(z^2+c),c=-5/66+23/39*I,n=61 2100958929251404 r005 Re(z^2+c),c=-55/102+17/30*I,n=43 2100958929435450 m005 (1/3*2^(1/2)-1/2)/(5^(1/2)-7/8) 2100958937838045 r005 Im(z^2+c),c=-21/38+17/47*I,n=38 2100958940394889 a007 Real Root Of 469*x^4+974*x^3-698*x^2-978*x+921 2100958948444110 a007 Real Root Of 942*x^4-552*x^3-628*x^2-789*x-145 2100958950614902 r002 3th iterates of z^2 + 2100958950720697 a001 233/3571*1364^(4/5) 2100958974764110 m001 exp(Lehmer)*HardHexagonsEntropy*FeigenbaumB 2100958980031514 m001 1/exp(Magata)^2*DuboisRaymond/Zeta(7)^2 2100958980617351 m001 1/Niven^2*DuboisRaymond^2*ln(sinh(1)) 2100958988065442 m001 (arctan(1/2)+CareFree)/(Conway-RenyiParking) 2100958993995547 m006 (4*exp(Pi)+2/5)/(3*Pi-5) 2100959005185591 a007 Real Root Of -429*x^4-857*x^3+163*x^2+580*x+910 2100959017005682 r005 Im(z^2+c),c=-149/122+7/54*I,n=58 2100959020112224 a003 sin(Pi*13/89)*sin(Pi*14/89) 2100959035462845 r002 29th iterates of z^2 + 2100959047147478 r005 Im(z^2+c),c=-25/62+20/57*I,n=42 2100959049201189 m001 (1+ln(3))/(-HardyLittlewoodC4+Mills) 2100959050578802 m008 (2/3*Pi^5-3/4)/(3*Pi+1/4) 2100959056081020 a007 Real Root Of 397*x^4+690*x^3+18*x^2+848*x+366 2100959063590937 m002 3+2*Pi^4*Coth[Pi]+Sinh[Pi] 2100959064242576 m001 (Zeta(1,2)-ZetaQ(2))/Bloch 2100959065961356 r005 Im(z^2+c),c=-13/102+14/51*I,n=6 2100959066007927 s002 sum(A249147[n]/((10^n-1)/n),n=1..infinity) 2100959067240029 r005 Re(z^2+c),c=-1/10+27/53*I,n=14 2100959067724148 p003 LerchPhi(1/25,2,31/142) 2100959072964215 m001 1/RenyiParking/ln(FeigenbaumC)/GAMMA(23/24)^2 2100959084826758 a001 6765/521*521^(1/13) 2100959086763707 h001 (1/6*exp(2)+9/10)/(1/8*exp(2)+1/11) 2100959087152833 s002 sum(A113917[n]/(exp(n)-1),n=1..infinity) 2100959093366342 a007 Real Root Of -824*x^4+498*x^3-588*x^2+747*x-134 2100959093793498 a007 Real Root Of -836*x^4+90*x^3+685*x^2+293*x-91 2100959094121184 s002 sum(A228417[n]/(n^2*exp(n)-1),n=1..infinity) 2100959099860294 a007 Real Root Of -88*x^4+889*x^3-907*x^2-864*x-711 2100959103662159 r005 Im(z^2+c),c=-4/7+33/104*I,n=8 2100959105813591 a001 17711/76*2207^(38/43) 2100959107752520 a001 9349/2*233^(37/53) 2100959111614239 m001 (1+Shi(1))/(-GAMMA(19/24)+DuboisRaymond) 2100959114429750 m008 (1/2*Pi^3-1/3)/(3/4*Pi^6+1) 2100959128194032 h001 (-8*exp(8)-1)/(-6*exp(3)+7) 2100959128234539 a007 Real Root Of 125*x^4-822*x^3-929*x^2-774*x+211 2100959128337236 r005 Im(z^2+c),c=-51/52+14/61*I,n=49 2100959146538370 m001 (ln(2)-sin(1/12*Pi))/(Magata-Totient) 2100959149403194 a007 Real Root Of -355*x^4-852*x^3-700*x^2-865*x+288 2100959151423300 a001 233/2207*3571^(11/17) 2100959152470189 r005 Im(z^2+c),c=-10/9+25/111*I,n=33 2100959154857453 m005 (1/2*Zeta(3)-1/8)/(1/7*Pi-2/9) 2100959156164938 r009 Re(z^3+c),c=-13/62+58/61*I,n=63 2100959166138563 p004 log(28687/23251) 2100959173578664 l006 ln(931/7610) 2100959177659962 r005 Im(z^2+c),c=-59/64+6/31*I,n=35 2100959185990619 r005 Im(z^2+c),c=-29/78+12/35*I,n=26 2100959202912499 m001 (ln(2+3^(1/2))+RenyiParking)/(Zeta(3)-Ei(1,1)) 2100959205741871 r005 Im(z^2+c),c=-111/110+2/9*I,n=27 2100959207712508 a001 23725150497407/377*144^(12/17) 2100959209600450 a001 987/521*3571^(5/17) 2100959216891191 m001 Zeta(1/2)*FeigenbaumAlpha^2*exp(exp(1))^2 2100959235675289 r002 4th iterates of z^2 + 2100959238995816 a007 Real Root Of 62*x^4-41*x^3-107*x^2+633*x+214 2100959244112912 a001 233/2207*9349^(11/19) 2100959250681348 r002 34th iterates of z^2 + 2100959251732093 a001 987/521*9349^(5/19) 2100959253234249 a007 Real Root Of 825*x^4+553*x^3+961*x^2-986*x+158 2100959254522199 a001 229971/10946 2100959256192292 a001 233/2207*24476^(11/21) 2100959257222720 a001 987/521*24476^(5/21) 2100959257784586 a001 233/2207*64079^(11/23) 2100959257946490 a001 987/521*64079^(5/23) 2100959258029285 a001 233/2207*7881196^(1/3) 2100959258029296 a001 233/2207*312119004989^(1/5) 2100959258029296 a001 233/2207*(1/2+1/2*5^(1/2))^11 2100959258029296 a001 233/2207*1568397607^(1/4) 2100959258042791 a001 987/521*167761^(1/5) 2100959258057721 a001 987/521*20633239^(1/7) 2100959258057721 a001 987/521*2537720636^(1/9) 2100959258057721 a001 987/521*312119004989^(1/11) 2100959258057721 a001 987/521*(1/2+1/2*5^(1/2))^5 2100959258057721 a001 987/521*28143753123^(1/10) 2100959258057721 a001 987/521*228826127^(1/8) 2100959258057823 a001 987/521*1860498^(1/6) 2100959258098438 a001 987/521*103682^(5/24) 2100959258118872 a001 233/2207*103682^(11/24) 2100959258362166 a001 987/521*39603^(5/22) 2100959258699075 a001 233/2207*39603^(1/2) 2100959260353088 a001 987/521*15127^(1/4) 2100959263079102 a001 233/2207*15127^(11/20) 2100959267837928 h001 (-8*exp(1/2)+7)/(-3*exp(1/2)+2) 2100959268014284 m001 (-sin(1)+GAMMA(2/3))/(exp(Pi)+2^(1/3)) 2100959275538472 a001 987/521*5778^(5/18) 2100959276317910 a007 Real Root Of 204*x^4+572*x^3+302*x^2+51*x+104 2100959281691090 m005 (1/3*exp(1)-3/8)/(1/5*5^(1/2)-7/10) 2100959284751729 r009 Im(z^3+c),c=-1/42+55/62*I,n=10 2100959296486947 a001 233/2207*5778^(11/18) 2100959297925835 a008 Real Root of (-3-4*x+6*x^2+3*x^3+2*x^4-2*x^5) 2100959304667303 m001 (ThueMorse-ZetaP(3))/(Zeta(1,-1)-cos(1/12*Pi)) 2100959305180308 m001 1/ln(GAMMA(5/6))/FeigenbaumDelta/sin(1) 2100959307108695 a003 cos(Pi*6/71)/sin(Pi*12/79) 2100959313931659 a007 Real Root Of 40*x^4+806*x^3-763*x^2-857*x-79 2100959318894388 r005 Im(z^2+c),c=-37/30+11/108*I,n=31 2100959319108570 r009 Im(z^3+c),c=-73/126+2/19*I,n=2 2100959325652807 m001 FeigenbaumC^2*MadelungNaCl/exp(GAMMA(23/24)) 2100959325979482 m001 (Khinchin-Rabbit)/(StolarskyHarborth+Thue) 2100959337545738 m001 (ln(5)+Bloch)/(PrimesInBinary+Stephens) 2100959338628464 m001 (Shi(1)+Catalan)/(-Zeta(1,2)+ZetaQ(4)) 2100959345501080 p004 log(18743/2293) 2100959348833320 m001 Pi-2^(1/3)/gamma(1)+BesselI(1,1) 2100959353827340 m001 (3^(1/2)+BesselJ(0,1))/(gamma(3)+KhinchinLevy) 2100959354391105 a003 cos(Pi*11/51)-sin(Pi*29/64) 2100959364417640 a007 Real Root Of 131*x^4-114*x^3-474*x^2+637*x-179 2100959364840864 m001 (Khinchin-Pi*Otter)/Pi 2100959369667957 m001 (Bloch-FeigenbaumB)/(LandauRamanujan-Lehmer) 2100959370496677 a001 5/3010349*47^(29/44) 2100959374272501 a007 Real Root Of -331*x^4-763*x^3-417*x^2-950*x-782 2100959391491535 m005 (1/2*exp(1)+2/7)/(-16/33+2/11*5^(1/2)) 2100959392849416 a001 987/521*2207^(5/16) 2100959393004798 r005 Re(z^2+c),c=4/17+9/19*I,n=47 2100959399776747 a001 1292/161*123^(1/5) 2100959400611331 a001 2584/521*1364^(1/5) 2100959408191479 a001 9349/233*1836311903^(16/17) 2100959408680533 r005 Im(z^2+c),c=-12/17+3/38*I,n=47 2100959412067480 m001 (BesselJ(1,1)-ZetaR(2))^BesselI(0,1) 2100959416002050 p003 LerchPhi(1/8,9,77/108) 2100959421325951 m008 (5/6*Pi^5+2)/(4*Pi^5-3/4) 2100959421568972 m001 1/exp(Robbin)/MertensB1^2/Ei(1)^2 2100959422980560 a003 cos(Pi*7/90)/cos(Pi*33/68) 2100959424279877 m005 (1/2*gamma+5/7)/(1/3*3^(1/2)-1/10) 2100959430287099 a007 Real Root Of 844*x^4-774*x^3+798*x^2-352*x-118 2100959431299618 a007 Real Root Of 325*x^4+543*x^3-264*x^2+280*x+457 2100959431688691 a001 521/28657*6557470319842^(16/17) 2100959431842860 r008 a(0)=0,K{-n^6,158*n^3+237*n^2+79*n+2} 2100959432230361 a001 20633239/233*514229^(16/17) 2100959436216131 m001 (cos(1/12*Pi)-Artin)/(Landau-MertensB1) 2100959446808952 r005 Re(z^2+c),c=-21/86+1/62*I,n=3 2100959452697862 r005 Im(z^2+c),c=-61/98+25/64*I,n=44 2100959453824830 r005 Im(z^2+c),c=-11/29+10/29*I,n=37 2100959455397148 m001 (Pi*2^(1/2)/GAMMA(3/4)-Ei(1))/(Cahen-Porter) 2100959457748629 b008 Pi*(-9+ArcSinh[5]) 2100959462237032 p003 LerchPhi(1/100,1,1/21) 2100959463019249 l006 ln(454/3711) 2100959468050944 m009 (1/5*Psi(1,3/4)-1/4)/(6*Catalan+3/4*Pi^2-3/5) 2100959471828127 a007 Real Root Of 576*x^4+669*x^3-748*x^2+513*x-639 2100959484723978 a007 Real Root Of 78*x^4+347*x^3+889*x^2+652*x-856 2100959500443110 a001 233/5778*3571^(13/17) 2100959504296841 p001 sum(1/(484*n+355)/n/(6^n),n=1..infinity) 2100959507885444 a007 Real Root Of -40*x^4-825*x^3+369*x^2+934*x-590 2100959508207398 q001 1/475973 2100959521038596 m001 (3^(1/2)-3^(1/3))/(-Backhouse+ZetaP(4)) 2100959523170630 s001 sum(1/10^(n-1)*A259685[n]/n^n,n=1..infinity) 2100959524607997 a004 Fibonacci(13)*Lucas(17)/(1/2+sqrt(5)/2)^22 2100959524685757 m001 (Zeta(1,2)+BesselJ(1,1))/(LaplaceLimit+Niven) 2100959527506132 r005 Re(z^2+c),c=-9/94+30/53*I,n=58 2100959533823357 m005 (1/3*3^(1/2)+1/3)/(2/11*Catalan-3/5) 2100959534809441 a001 233/15127*3571^(15/17) 2100959537806461 a001 233/24476*3571^(16/17) 2100959545534018 a001 377/843*322^(2/3) 2100959548034375 r002 6th iterates of z^2 + 2100959553013700 a001 1597/521*1364^(4/15) 2100959553680518 r005 Im(z^2+c),c=-17/40+16/45*I,n=27 2100959554571036 a001 233/2207*2207^(11/16) 2100959562862505 a001 4181/521*1364^(2/15) 2100959563631133 m001 Porter^BesselI(1,1)+Thue 2100959566069354 m001 (2^(1/3)-3^(1/3))/(-LaplaceLimit+Stephens) 2100959575792110 a007 Real Root Of 377*x^4+695*x^3+123*x^2+258*x-901 2100959576008622 r005 Im(z^2+c),c=-77/94+5/36*I,n=53 2100959576891069 a007 Real Root Of -696*x^4-898*x^3+603*x^2-824*x+840 2100959577241448 m001 Paris^2*KhintchineLevy/ln(gamma) 2100959577719757 a001 233/9349*3571^(14/17) 2100959588981771 m001 1/GAMMA(11/12)*exp(Champernowne)^2/gamma 2100959589771606 r005 Im(z^2+c),c=-33/56+39/58*I,n=8 2100959590616318 r005 Re(z^2+c),c=11/46+8/51*I,n=24 2100959591213690 r009 Im(z^3+c),c=-37/122+1/6*I,n=14 2100959597386180 a001 2584/521*3571^(3/17) 2100959598889304 a007 Real Root Of -618*x^4-874*x^3+538*x^2-881*x-290 2100959599552736 a005 (1/cos(11/208*Pi))^1216 2100959601971428 a007 Real Root Of -590*x^4-693*x^3+617*x^2-765*x+738 2100959604926719 a001 6765/521*1364^(1/15) 2100959607659886 r005 Re(z^2+c),c=8/27+14/61*I,n=9 2100959609985398 a001 233/5778*9349^(13/19) 2100959610701126 h001 (-2*exp(2)-4)/(-3*exp(8)+5) 2100959616332038 m001 (Sierpinski+Tetranacci)/(sin(1)+Mills) 2100959622665170 a001 2584/521*9349^(3/19) 2100959624261030 a001 233/5778*24476^(13/21) 2100959625612977 m001 (Zeta(5)*exp(gamma)+Ei(1))/exp(gamma) 2100959625920368 a001 602072/28657 2100959625959547 a001 2584/521*24476^(1/7) 2100959626142833 a001 233/5778*64079^(13/23) 2100959626393809 a001 2584/521*64079^(3/23) 2100959626432035 a001 233/5778*141422324^(1/3) 2100959626432036 a001 233/5778*(1/2+1/2*5^(1/2))^13 2100959626432036 a001 233/5778*73681302247^(1/4) 2100959626446293 a001 233/5778*271443^(1/2) 2100959626459338 a001 2584/521*439204^(1/9) 2100959626460545 a001 2584/521*7881196^(1/11) 2100959626460548 a001 2584/521*141422324^(1/13) 2100959626460548 a001 2584/521*2537720636^(1/15) 2100959626460548 a001 2584/521*45537549124^(1/17) 2100959626460548 a001 2584/521*14662949395604^(1/21) 2100959626460548 a001 2584/521*(1/2+1/2*5^(1/2))^3 2100959626460548 a001 2584/521*192900153618^(1/18) 2100959626460548 a001 2584/521*10749957122^(1/16) 2100959626460548 a001 2584/521*599074578^(1/14) 2100959626460548 a001 2584/521*33385282^(1/12) 2100959626460608 a001 2584/521*1860498^(1/10) 2100959626484978 a001 2584/521*103682^(1/8) 2100959626537898 a001 233/5778*103682^(13/24) 2100959626643215 a001 2584/521*39603^(3/22) 2100959627223593 a001 233/5778*39603^(13/22) 2100959627837768 a001 2584/521*15127^(3/20) 2100959630793761 a001 11/1346269*3^(49/57) 2100959631007284 r005 Im(z^2+c),c=-43/106+13/20*I,n=5 2100959632399989 a001 233/5778*15127^(13/20) 2100959636337119 m001 CareFree/ln(ErdosBorwein)*sqrt(2) 2100959636949000 a001 2584/521*5778^(1/6) 2100959647648107 a007 Real Root Of -73*x^4-92*x^3-146*x^2-392*x+390 2100959648934631 r005 Re(z^2+c),c=-9/56+17/38*I,n=15 2100959653882401 r005 Im(z^2+c),c=-13/29+17/47*I,n=23 2100959661112878 m001 (Paris-Sierpinski)/(3^(1/3)-sin(1/12*Pi)) 2100959661204391 a001 233/15127*9349^(15/19) 2100959665325355 a004 Fibonacci(13)*Lucas(19)/(1/2+sqrt(5)/2)^24 2100959666516049 a001 233/39603*9349^(17/19) 2100959667102147 a001 233/64079*9349^(18/19) 2100959667539284 m001 (exp(Pi)+3^(1/3))/(-Conway+KhinchinLevy) 2100959670518339 a001 6765/521*3571^(1/17) 2100959671881995 a001 233/5778*5778^(13/18) 2100959672627741 a001 233/24476*9349^(16/19) 2100959677676276 a001 233/15127*24476^(5/7) 2100959678944670 a001 6765/521*9349^(1/19) 2100959679847587 a001 233/15127*64079^(15/23) 2100959680042795 a001 6765/521*24476^(1/21) 2100959680106631 a001 315249/15005 2100959680136491 a001 233/15127*167761^(3/5) 2100959680175231 a001 233/15127*439204^(5/9) 2100959680181266 a001 233/15127*7881196^(5/11) 2100959680181280 a001 233/15127*20633239^(3/7) 2100959680181282 a001 233/15127*141422324^(5/13) 2100959680181282 a001 233/15127*2537720636^(1/3) 2100959680181282 a001 233/15127*45537549124^(5/17) 2100959680181282 a001 233/15127*312119004989^(3/11) 2100959680181282 a001 233/15127*14662949395604^(5/21) 2100959680181282 a001 233/15127*(1/2+1/2*5^(1/2))^15 2100959680181282 a001 233/15127*192900153618^(5/18) 2100959680181282 a001 233/15127*28143753123^(3/10) 2100959680181282 a001 233/15127*10749957122^(5/16) 2100959680181282 a001 233/15127*599074578^(5/14) 2100959680181282 a001 233/15127*228826127^(3/8) 2100959680181282 a001 233/15127*33385282^(5/12) 2100959680181585 a001 233/15127*1860498^(1/2) 2100959680187549 a001 6765/521*64079^(1/23) 2100959680209796 a001 6765/1042+6765/1042*5^(1/2) 2100959680217939 a001 6765/521*103682^(1/24) 2100959680270685 a001 6765/521*39603^(1/22) 2100959680303431 a001 233/15127*103682^(5/8) 2100959680668869 a001 6765/521*15127^(1/20) 2100959681094617 a001 233/15127*39603^(15/22) 2100959683705947 a001 6765/521*5778^(1/18) 2100959685184184 a001 233/39603*24476^(17/21) 2100959685855741 a004 Fibonacci(13)*Lucas(21)/(1/2+sqrt(5)/2)^26 2100959685994303 a001 233/103682*24476^(19/21) 2100959686097392 a001 233/167761*24476^(20/21) 2100959686868408 a001 233/64079*24476^(6/7) 2100959687067382 a001 233/15127*15127^(3/4) 2100959687645004 a001 233/39603*64079^(17/23) 2100959688012300 a001 4126663/196418 2100959688023191 a001 233/39603*45537549124^(1/3) 2100959688023191 a001 233/39603*(1/2+1/2*5^(1/2))^17 2100959688023198 a001 233/39603*12752043^(1/2) 2100959688051705 a004 Fibonacci(22)/Lucas(13)/(1/2+sqrt(5)/2) 2100959688161627 a001 233/39603*103682^(17/24) 2100959688744630 a001 233/103682*64079^(19/23) 2100959688851084 a004 Fibonacci(13)*Lucas(23)/(1/2+sqrt(5)/2)^28 2100959688867062 a001 233/271443*64079^(21/23) 2100959688884221 a001 233/439204*64079^(22/23) 2100959688992474 a001 233/167761*64079^(20/23) 2100959689058304 a001 233/39603*39603^(17/22) 2100959689165721 a001 10803744/514229 2100959689167310 a001 233/103682*817138163596^(1/3) 2100959689167310 a001 233/103682*(1/2+1/2*5^(1/2))^19 2100959689167311 a001 233/103682*87403803^(1/2) 2100959689195825 a004 Fibonacci(24)/Lucas(13)/(1/2+sqrt(5)/2)^3 2100959689288098 a004 Fibonacci(13)*Lucas(25)/(1/2+sqrt(5)/2)^30 2100959689322033 a001 233/103682*103682^(19/24) 2100959689325764 a001 233/271443*439204^(7/9) 2100959689334003 a001 28284569/1346269 2100959689334214 a001 233/271443*7881196^(7/11) 2100959689334232 a001 233/271443*20633239^(3/5) 2100959689334235 a001 233/271443*141422324^(7/13) 2100959689334235 a001 233/271443*2537720636^(7/15) 2100959689334235 a001 233/271443*17393796001^(3/7) 2100959689334235 a001 233/271443*45537549124^(7/17) 2100959689334235 a001 233/271443*14662949395604^(1/3) 2100959689334235 a001 233/271443*(1/2+1/2*5^(1/2))^21 2100959689334235 a001 233/271443*192900153618^(7/18) 2100959689334235 a001 233/271443*10749957122^(7/16) 2100959689334235 a001 233/271443*599074578^(1/2) 2100959689334236 a001 233/271443*33385282^(7/12) 2100959689334660 a001 233/271443*1860498^(7/10) 2100959689337355 a001 233/271443*710647^(3/4) 2100959689351858 a004 Fibonacci(13)*Lucas(27)/(1/2+sqrt(5)/2)^32 2100959689354657 a001 233/1149851*439204^(8/9) 2100959689358555 a001 74049963/3524578 2100959689358589 a001 233/710647*(1/2+1/2*5^(1/2))^23 2100959689358589 a001 233/710647*4106118243^(1/2) 2100959689361160 a004 Fibonacci(13)*Lucas(29)/(1/2+sqrt(5)/2)^34 2100959689362137 a001 38773064/1845493 2100959689362139 a001 233/1860498*20633239^(5/7) 2100959689362142 a001 233/1860498*2537720636^(5/9) 2100959689362142 a001 233/1860498*312119004989^(5/11) 2100959689362142 a001 233/1860498*(1/2+1/2*5^(1/2))^25 2100959689362142 a001 233/1860498*3461452808002^(5/12) 2100959689362142 a001 233/1860498*28143753123^(1/2) 2100959689362142 a001 233/1860498*228826127^(5/8) 2100959689362517 a004 Fibonacci(13)*Lucas(31)/(1/2+sqrt(5)/2)^36 2100959689362633 a001 233/4870847*7881196^(9/11) 2100959689362648 a001 233/1860498*1860498^(5/6) 2100959689362660 a001 507545997/24157817 2100959689362661 a001 233/4870847*141422324^(9/13) 2100959689362661 a001 233/4870847*2537720636^(3/5) 2100959689362661 a001 233/4870847*45537549124^(9/17) 2100959689362661 a001 233/4870847*14662949395604^(3/7) 2100959689362661 a001 233/4870847*(1/2+1/2*5^(1/2))^27 2100959689362661 a001 233/4870847*192900153618^(1/2) 2100959689362661 a001 233/4870847*10749957122^(9/16) 2100959689362661 a001 233/4870847*599074578^(9/14) 2100959689362662 a001 233/4870847*33385282^(3/4) 2100959689362715 a004 Fibonacci(13)*Lucas(33)/(1/2+sqrt(5)/2)^38 2100959689362724 a001 233/20633239*7881196^(10/11) 2100959689362736 a001 5702887/271442 2100959689362736 a001 233/12752043*(1/2+1/2*5^(1/2))^29 2100959689362736 a001 233/12752043*1322157322203^(1/2) 2100959689362744 a004 Fibonacci(13)*Lucas(35)/(1/2+sqrt(5)/2)^40 2100959689362747 a001 3478772016/165580141 2100959689362747 a001 233/33385282*(1/2+1/2*5^(1/2))^31 2100959689362747 a001 233/33385282*9062201101803^(1/2) 2100959689362749 a004 Fibonacci(13)*Lucas(37)/(1/2+sqrt(5)/2)^42 2100959689362749 a001 233/87403803*141422324^(11/13) 2100959689362749 a001 9107543377/433494437 2100959689362749 a001 233/87403803*2537720636^(11/15) 2100959689362749 a001 233/87403803*45537549124^(11/17) 2100959689362749 a001 233/87403803*312119004989^(3/5) 2100959689362749 a001 233/87403803*14662949395604^(11/21) 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^33/Lucas(38) 2100959689362749 a001 233/87403803*192900153618^(11/18) 2100959689362749 a001 233/87403803*10749957122^(11/16) 2100959689362749 a001 233/87403803*1568397607^(3/4) 2100959689362749 a001 233/87403803*599074578^(11/14) 2100959689362749 a004 Fibonacci(13)*Lucas(39)/(1/2+sqrt(5)/2)^44 2100959689362749 a001 233/370248451*141422324^(12/13) 2100959689362749 a001 4768771623/226980634 2100959689362749 a001 233/228826127*2537720636^(7/9) 2100959689362749 a001 233/228826127*17393796001^(5/7) 2100959689362749 a001 233/228826127*312119004989^(7/11) 2100959689362749 a001 233/228826127*14662949395604^(5/9) 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^35/Lucas(40) 2100959689362749 a001 233/228826127*505019158607^(5/8) 2100959689362749 a001 233/228826127*28143753123^(7/10) 2100959689362749 a001 233/228826127*599074578^(5/6) 2100959689362749 a004 Fibonacci(13)*Lucas(41)/(1/2+sqrt(5)/2)^46 2100959689362749 a001 62424030968/2971215073 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^37/Lucas(42) 2100959689362749 a001 233/228826127*228826127^(7/8) 2100959689362749 a004 Fibonacci(13)*Lucas(43)/(1/2+sqrt(5)/2)^48 2100959689362749 a001 233/1568397607*2537720636^(13/15) 2100959689362749 a001 163428234789/7778742049 2100959689362749 a001 233/1568397607*45537549124^(13/17) 2100959689362749 a001 233/1568397607*14662949395604^(13/21) 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^39/Lucas(44) 2100959689362749 a001 233/1568397607*192900153618^(13/18) 2100959689362749 a001 233/1568397607*73681302247^(3/4) 2100959689362749 a001 233/1568397607*10749957122^(13/16) 2100959689362749 a004 Fibonacci(13)*Lucas(45)/(1/2+sqrt(5)/2)^50 2100959689362749 a001 233/6643838879*2537720636^(14/15) 2100959689362749 a001 427860673399/20365011074 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^41/Lucas(46) 2100959689362749 a004 Fibonacci(13)*Lucas(47)/(1/2+sqrt(5)/2)^52 2100959689362749 a001 1120153785408/53316291173 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^43/Lucas(48) 2100959689362749 a004 Fibonacci(13)*Lucas(49)/(1/2+sqrt(5)/2)^54 2100959689362749 a001 233/28143753123*45537549124^(15/17) 2100959689362749 a001 233/28143753123*312119004989^(9/11) 2100959689362749 a001 233/28143753123*14662949395604^(5/7) 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^45/Lucas(50) 2100959689362749 a001 233/28143753123*192900153618^(5/6) 2100959689362749 a004 Fibonacci(13)*Lucas(51)/(1/2+sqrt(5)/2)^56 2100959689362749 a001 233/119218851371*45537549124^(16/17) 2100959689362749 a001 7677648263067/365435296162 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^47/Lucas(52) 2100959689362749 a001 233/28143753123*28143753123^(9/10) 2100959689362749 a004 Fibonacci(13)*Lucas(53)/(1/2+sqrt(5)/2)^58 2100959689362749 a001 20100344106376/956722026041 2100959689362749 a001 233/192900153618*14662949395604^(7/9) 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^49/Lucas(54) 2100959689362749 a001 233/192900153618*505019158607^(7/8) 2100959689362749 a004 Fibonacci(13)*Lucas(55)/(1/2+sqrt(5)/2)^60 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^51/Lucas(56) 2100959689362749 a004 Fibonacci(13)*Lucas(57)/(1/2+sqrt(5)/2)^62 2100959689362749 a001 137769808061807/6557470319842 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^53/Lucas(58) 2100959689362749 a004 Fibonacci(13)*Lucas(59)/(1/2+sqrt(5)/2)^64 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^55/Lucas(60) 2100959689362749 a004 Fibonacci(13)*Lucas(61)/(1/2+sqrt(5)/2)^66 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^57/Lucas(62) 2100959689362749 a004 Fibonacci(13)*Lucas(63)/(1/2+sqrt(5)/2)^68 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^59/Lucas(64) 2100959689362749 a004 Fibonacci(13)*Lucas(65)/(1/2+sqrt(5)/2)^70 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^61/Lucas(66) 2100959689362749 a004 Fibonacci(13)*Lucas(67)/(1/2+sqrt(5)/2)^72 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^63/Lucas(68) 2100959689362749 a004 Fibonacci(13)*Lucas(69)/(1/2+sqrt(5)/2)^74 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^65/Lucas(70) 2100959689362749 a004 Fibonacci(13)*Lucas(71)/(1/2+sqrt(5)/2)^76 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^67/Lucas(72) 2100959689362749 a004 Fibonacci(13)*Lucas(73)/(1/2+sqrt(5)/2)^78 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^69/Lucas(74) 2100959689362749 a004 Fibonacci(13)*Lucas(75)/(1/2+sqrt(5)/2)^80 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^71/Lucas(76) 2100959689362749 a004 Fibonacci(13)*Lucas(77)/(1/2+sqrt(5)/2)^82 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^73/Lucas(78) 2100959689362749 a004 Fibonacci(13)*Lucas(79)/(1/2+sqrt(5)/2)^84 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^75/Lucas(80) 2100959689362749 a004 Fibonacci(13)*Lucas(81)/(1/2+sqrt(5)/2)^86 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^77/Lucas(82) 2100959689362749 a004 Fibonacci(13)*Lucas(83)/(1/2+sqrt(5)/2)^88 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^79/Lucas(84) 2100959689362749 a004 Fibonacci(13)*Lucas(85)/(1/2+sqrt(5)/2)^90 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^81/Lucas(86) 2100959689362749 a004 Fibonacci(13)*Lucas(87)/(1/2+sqrt(5)/2)^92 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^83/Lucas(88) 2100959689362749 a004 Fibonacci(13)*Lucas(89)/(1/2+sqrt(5)/2)^94 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^85/Lucas(90) 2100959689362749 a004 Fibonacci(13)*Lucas(91)/(1/2+sqrt(5)/2)^96 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^87/Lucas(92) 2100959689362749 a004 Fibonacci(13)*Lucas(93)/(1/2+sqrt(5)/2)^98 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^89/Lucas(94) 2100959689362749 a004 Fibonacci(13)*Lucas(95)/(1/2+sqrt(5)/2)^100 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^91/Lucas(96) 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^93/Lucas(98) 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^92/Lucas(97) 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^94/Lucas(99) 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^95/Lucas(100) 2100959689362749 a004 Fibonacci(13)*Lucas(1)/(1/2+sqrt(5)/2)^5 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^90/Lucas(95) 2100959689362749 a004 Fibonacci(13)*Lucas(94)/(1/2+sqrt(5)/2)^99 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^88/Lucas(93) 2100959689362749 a004 Fibonacci(13)*Lucas(92)/(1/2+sqrt(5)/2)^97 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^86/Lucas(91) 2100959689362749 a004 Fibonacci(13)*Lucas(90)/(1/2+sqrt(5)/2)^95 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^84/Lucas(89) 2100959689362749 a004 Fibonacci(13)*Lucas(88)/(1/2+sqrt(5)/2)^93 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^82/Lucas(87) 2100959689362749 a004 Fibonacci(13)*Lucas(86)/(1/2+sqrt(5)/2)^91 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^80/Lucas(85) 2100959689362749 a004 Fibonacci(13)*Lucas(84)/(1/2+sqrt(5)/2)^89 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^78/Lucas(83) 2100959689362749 a004 Fibonacci(13)*Lucas(82)/(1/2+sqrt(5)/2)^87 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^76/Lucas(81) 2100959689362749 a004 Fibonacci(13)*Lucas(80)/(1/2+sqrt(5)/2)^85 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^74/Lucas(79) 2100959689362749 a004 Fibonacci(13)*Lucas(78)/(1/2+sqrt(5)/2)^83 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^72/Lucas(77) 2100959689362749 a004 Fibonacci(13)*Lucas(76)/(1/2+sqrt(5)/2)^81 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^70/Lucas(75) 2100959689362749 a004 Fibonacci(13)*Lucas(74)/(1/2+sqrt(5)/2)^79 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^68/Lucas(73) 2100959689362749 a004 Fibonacci(13)*Lucas(72)/(1/2+sqrt(5)/2)^77 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^66/Lucas(71) 2100959689362749 a004 Fibonacci(13)*Lucas(70)/(1/2+sqrt(5)/2)^75 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^64/Lucas(69) 2100959689362749 a004 Fibonacci(13)*Lucas(68)/(1/2+sqrt(5)/2)^73 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^62/Lucas(67) 2100959689362749 a004 Fibonacci(13)*Lucas(66)/(1/2+sqrt(5)/2)^71 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^60/Lucas(65) 2100959689362749 a004 Fibonacci(13)*Lucas(64)/(1/2+sqrt(5)/2)^69 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^58/Lucas(63) 2100959689362749 a004 Fibonacci(13)*Lucas(62)/(1/2+sqrt(5)/2)^67 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^56/Lucas(61) 2100959689362749 a004 Fibonacci(13)*Lucas(60)/(1/2+sqrt(5)/2)^65 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^54/Lucas(59) 2100959689362749 a001 222916232067553/10610209857723 2100959689362749 a004 Fibonacci(13)*Lucas(58)/(1/2+sqrt(5)/2)^63 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^52/Lucas(57) 2100959689362749 a004 Fibonacci(13)*Lucas(56)/(1/2+sqrt(5)/2)^61 2100959689362749 a001 233/817138163596*505019158607^(13/14) 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^50/Lucas(55) 2100959689362749 a001 233/312119004989*3461452808002^(5/6) 2100959689362749 a001 233/505019158607*192900153618^(17/18) 2100959689362749 a004 Fibonacci(13)*Lucas(54)/(1/2+sqrt(5)/2)^59 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^48/Lucas(53) 2100959689362749 a001 12422695843309/591286729879 2100959689362749 a001 233/119218851371*192900153618^(8/9) 2100959689362749 a004 Fibonacci(13)*Lucas(52)/(1/2+sqrt(5)/2)^57 2100959689362749 a001 233/119218851371*73681302247^(12/13) 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^46/Lucas(51) 2100959689362749 a001 4745047580242/225851433717 2100959689362749 a004 Fibonacci(13)*Lucas(50)/(1/2+sqrt(5)/2)^55 2100959689362749 a001 233/17393796001*312119004989^(4/5) 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^44/Lucas(49) 2100959689362749 a001 233/17393796001*23725150497407^(11/16) 2100959689362749 a001 1812446897417/86267571272 2100959689362749 a001 233/17393796001*73681302247^(11/13) 2100959689362749 a001 233/28143753123*10749957122^(15/16) 2100959689362749 a004 Fibonacci(13)*Lucas(48)/(1/2+sqrt(5)/2)^53 2100959689362749 a001 233/45537549124*10749957122^(23/24) 2100959689362749 a001 233/17393796001*10749957122^(11/12) 2100959689362749 a001 233/2537720636*2537720636^(8/9) 2100959689362749 a001 233/6643838879*17393796001^(6/7) 2100959689362749 a001 233/6643838879*45537549124^(14/17) 2100959689362749 a001 233/6643838879*14662949395604^(2/3) 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^42/Lucas(47) 2100959689362749 a001 233/6643838879*505019158607^(3/4) 2100959689362749 a001 233/6643838879*192900153618^(7/9) 2100959689362749 a001 2971215073/141421803 2100959689362749 a001 233/6643838879*10749957122^(7/8) 2100959689362749 a004 Fibonacci(13)*Lucas(46)/(1/2+sqrt(5)/2)^51 2100959689362749 a001 233/17393796001*4106118243^(22/23) 2100959689362749 a001 233/6643838879*4106118243^(21/23) 2100959689362749 a001 233/2537720636*312119004989^(8/11) 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^40/Lucas(45) 2100959689362749 a001 233/2537720636*23725150497407^(5/8) 2100959689362749 a001 233/2537720636*73681302247^(10/13) 2100959689362749 a001 233/2537720636*28143753123^(4/5) 2100959689362749 a001 52886487722/2517253805 2100959689362749 a001 233/2537720636*10749957122^(5/6) 2100959689362749 a001 233/2537720636*4106118243^(20/23) 2100959689362749 a004 Fibonacci(13)*Lucas(44)/(1/2+sqrt(5)/2)^49 2100959689362749 a001 233/6643838879*1568397607^(21/22) 2100959689362749 a001 233/2537720636*1568397607^(10/11) 2100959689362749 a001 233/969323029*817138163596^(2/3) 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^38/Lucas(43) 2100959689362749 a001 233/969323029*10749957122^(19/24) 2100959689362749 a001 101004203821/4807526976 2100959689362749 a001 233/969323029*4106118243^(19/23) 2100959689362749 a001 233/969323029*1568397607^(19/22) 2100959689362749 a001 233/1568397607*599074578^(13/14) 2100959689362749 a004 Fibonacci(13)*Lucas(42)/(1/2+sqrt(5)/2)^47 2100959689362749 a001 233/2537720636*599074578^(20/21) 2100959689362749 a001 233/969323029*599074578^(19/21) 2100959689362749 a001 233/370248451*2537720636^(4/5) 2100959689362749 a001 233/370248451*45537549124^(12/17) 2100959689362749 a001 233/370248451*14662949395604^(4/7) 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^36/Lucas(41) 2100959689362749 a001 233/370248451*192900153618^(2/3) 2100959689362749 a001 233/370248451*73681302247^(9/13) 2100959689362749 a001 233/370248451*10749957122^(3/4) 2100959689362749 a001 233/370248451*4106118243^(18/23) 2100959689362749 a001 38580172853/1836311903 2100959689362749 a001 233/370248451*1568397607^(9/11) 2100959689362749 a001 233/370248451*599074578^(6/7) 2100959689362749 a004 Fibonacci(13)*Lucas(40)/(1/2+sqrt(5)/2)^45 2100959689362749 a001 233/969323029*228826127^(19/20) 2100959689362749 a001 233/370248451*228826127^(9/10) 2100959689362749 a001 233/141422324*45537549124^(2/3) 2100959689362749 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^34/Lucas(39) 2100959689362749 a001 233/141422324*10749957122^(17/24) 2100959689362749 a001 233/141422324*4106118243^(17/23) 2100959689362749 a001 233/141422324*1568397607^(17/22) 2100959689362749 a001 14736314738/701408733 2100959689362749 a001 233/141422324*599074578^(17/21) 2100959689362749 a001 233/141422324*228826127^(17/20) 2100959689362750 a004 Fibonacci(13)*Lucas(38)/(1/2+sqrt(5)/2)^43 2100959689362750 a001 233/370248451*87403803^(18/19) 2100959689362750 a001 233/141422324*87403803^(17/19) 2100959689362750 a001 233/20633239*20633239^(6/7) 2100959689362750 a004 Fibonacci(13)*(1/2+sqrt(5)/2)^32/Lucas(37) 2100959689362750 a001 233/54018521*23725150497407^(1/2) 2100959689362750 a001 233/54018521*73681302247^(8/13) 2100959689362750 a001 233/54018521*10749957122^(2/3) 2100959689362750 a001 233/54018521*4106118243^(16/23) 2100959689362750 a001 233/54018521*1568397607^(8/11) 2100959689362750 a001 233/54018521*599074578^(16/21) 2100959689362750 a001 5628771361/267914296 2100959689362750 a001 233/54018521*228826127^(4/5) 2100959689362750 a001 233/54018521*87403803^(16/19) 2100959689362751 a001 233/87403803*33385282^(11/12) 2100959689362751 a004 Fibonacci(13)*Lucas(36)/(1/2+sqrt(5)/2)^41 2100959689362751 a001 233/141422324*33385282^(17/18) 2100959689362752 a001 233/54018521*33385282^(8/9) 2100959689362754 a001 233/20633239*141422324^(10/13) 2100959689362754 a001 233/20633239*2537720636^(2/3) 2100959689362754 a001 233/20633239*45537549124^(10/17) 2100959689362754 a001 233/20633239*312119004989^(6/11) 2100959689362754 a001 233/20633239*14662949395604^(10/21) 2100959689362754 a001 233/20633239*(1/2+1/2*5^(1/2))^30 2100959689362754 a001 233/20633239*192900153618^(5/9) 2100959689362754 a001 233/20633239*28143753123^(3/5) 2100959689362754 a001 233/20633239*10749957122^(5/8) 2100959689362754 a001 233/20633239*4106118243^(15/23) 2100959689362754 a001 233/20633239*1568397607^(15/22) 2100959689362754 a001 233/20633239*599074578^(5/7) 2100959689362754 a001 233/20633239*228826127^(3/4) 2100959689362754 a001 429999869/20466831 2100959689362754 a001 233/20633239*87403803^(15/19) 2100959689362756 a001 233/20633239*33385282^(5/6) 2100959689362762 a001 233/54018521*12752043^(16/17) 2100959689362762 a004 Fibonacci(13)*Lucas(34)/(1/2+sqrt(5)/2)^39 2100959689362766 a001 233/20633239*12752043^(15/17) 2100959689362779 a001 233/7881196*20633239^(4/5) 2100959689362783 a001 233/7881196*17393796001^(4/7) 2100959689362783 a001 233/7881196*14662949395604^(4/9) 2100959689362783 a001 233/7881196*(1/2+1/2*5^(1/2))^28 2100959689362783 a001 233/7881196*505019158607^(1/2) 2100959689362783 a001 233/7881196*73681302247^(7/13) 2100959689362783 a001 233/7881196*10749957122^(7/12) 2100959689362783 a001 233/7881196*4106118243^(14/23) 2100959689362783 a001 233/7881196*1568397607^(7/11) 2100959689362783 a001 233/7881196*599074578^(2/3) 2100959689362783 a001 233/7881196*228826127^(7/10) 2100959689362783 a001 233/7881196*87403803^(14/19) 2100959689362783 a001 821226674/39088169 2100959689362785 a001 233/7881196*33385282^(7/9) 2100959689362794 a001 233/7881196*12752043^(14/17) 2100959689362837 a001 233/20633239*4870847^(15/16) 2100959689362838 a004 Fibonacci(13)*Lucas(32)/(1/2+sqrt(5)/2)^37 2100959689362861 a001 233/7881196*4870847^(7/8) 2100959689362981 a001 233/3010349*141422324^(2/3) 2100959689362981 a001 233/3010349*(1/2+1/2*5^(1/2))^26 2100959689362981 a001 233/3010349*73681302247^(1/2) 2100959689362981 a001 233/3010349*10749957122^(13/24) 2100959689362981 a001 233/3010349*4106118243^(13/23) 2100959689362981 a001 233/3010349*1568397607^(13/22) 2100959689362981 a001 233/3010349*599074578^(13/21) 2100959689362981 a001 233/3010349*228826127^(13/20) 2100959689362981 a001 233/3010349*87403803^(13/19) 2100959689362983 a001 233/3010349*33385282^(13/18) 2100959689362983 a001 313680677/14930352 2100959689362991 a001 233/3010349*12752043^(13/17) 2100959689363053 a001 233/3010349*4870847^(13/16) 2100959689363207 a001 233/4870847*1860498^(9/10) 2100959689363350 a001 233/7881196*1860498^(14/15) 2100959689363356 a004 Fibonacci(13)*Lucas(30)/(1/2+sqrt(5)/2)^35 2100959689363507 a001 233/3010349*1860498^(13/15) 2100959689364314 a001 233/1149851*7881196^(8/11) 2100959689364338 a001 233/1149851*141422324^(8/13) 2100959689364338 a001 233/1149851*2537720636^(8/15) 2100959689364338 a001 233/1149851*45537549124^(8/17) 2100959689364338 a001 233/1149851*14662949395604^(8/21) 2100959689364338 a001 233/1149851*(1/2+1/2*5^(1/2))^24 2100959689364338 a001 233/1149851*192900153618^(4/9) 2100959689364338 a001 233/1149851*73681302247^(6/13) 2100959689364338 a001 233/1149851*10749957122^(1/2) 2100959689364338 a001 233/1149851*4106118243^(12/23) 2100959689364338 a001 233/1149851*1568397607^(6/11) 2100959689364338 a001 233/1149851*599074578^(4/7) 2100959689364338 a001 233/1149851*228826127^(3/5) 2100959689364339 a001 233/1149851*87403803^(12/19) 2100959689364340 a001 233/1149851*33385282^(2/3) 2100959689364347 a001 233/1149851*12752043^(12/17) 2100959689364351 a001 119815357/5702887 2100959689364405 a001 233/1149851*4870847^(3/4) 2100959689364824 a001 233/1149851*1860498^(4/5) 2100959689366844 a001 233/3010349*710647^(13/14) 2100959689366909 a004 Fibonacci(13)*Lucas(28)/(1/2+sqrt(5)/2)^33 2100959689367904 a001 233/1149851*710647^(6/7) 2100959689373618 a001 233/439204*7881196^(2/3) 2100959689373641 a001 233/439204*312119004989^(2/5) 2100959689373641 a001 233/439204*(1/2+1/2*5^(1/2))^22 2100959689373641 a001 233/439204*10749957122^(11/24) 2100959689373641 a001 233/439204*4106118243^(11/23) 2100959689373641 a001 233/439204*1568397607^(1/2) 2100959689373641 a001 233/439204*599074578^(11/21) 2100959689373641 a001 233/439204*228826127^(11/20) 2100959689373641 a001 233/439204*87403803^(11/19) 2100959689373642 a001 233/439204*33385282^(11/18) 2100959689373649 a001 233/439204*12752043^(11/17) 2100959689373702 a001 233/439204*4870847^(11/16) 2100959689373729 a001 45765394/2178309 2100959689374086 a001 233/439204*1860498^(11/15) 2100959689376909 a001 233/439204*710647^(11/14) 2100959689377680 a001 233/167761*167761^(4/5) 2100959689387103 a004 Fibonacci(28)/Lucas(13)/(1/2+sqrt(5)/2)^7 2100959689390657 a004 Fibonacci(30)/Lucas(13)/(1/2+sqrt(5)/2)^9 2100959689390659 a001 233/1149851*271443^(12/13) 2100959689391175 a004 Fibonacci(32)/Lucas(13)/(1/2+sqrt(5)/2)^11 2100959689391251 a004 Fibonacci(34)/Lucas(13)/(1/2+sqrt(5)/2)^13 2100959689391262 a004 Fibonacci(36)/Lucas(13)/(1/2+sqrt(5)/2)^15 2100959689391263 a004 Fibonacci(38)/Lucas(13)/(1/2+sqrt(5)/2)^17 2100959689391263 a004 Fibonacci(40)/Lucas(13)/(1/2+sqrt(5)/2)^19 2100959689391263 a004 Fibonacci(42)/Lucas(13)/(1/2+sqrt(5)/2)^21 2100959689391263 a004 Fibonacci(44)/Lucas(13)/(1/2+sqrt(5)/2)^23 2100959689391263 a004 Fibonacci(46)/Lucas(13)/(1/2+sqrt(5)/2)^25 2100959689391263 a004 Fibonacci(48)/Lucas(13)/(1/2+sqrt(5)/2)^27 2100959689391263 a004 Fibonacci(50)/Lucas(13)/(1/2+sqrt(5)/2)^29 2100959689391263 a004 Fibonacci(13)*Lucas(26)/(1/2+sqrt(5)/2)^31 2100959689391263 a004 Fibonacci(54)/Lucas(13)/(1/2+sqrt(5)/2)^33 2100959689391263 a004 Fibonacci(56)/Lucas(13)/(1/2+sqrt(5)/2)^35 2100959689391263 a004 Fibonacci(58)/Lucas(13)/(1/2+sqrt(5)/2)^37 2100959689391263 a004 Fibonacci(60)/Lucas(13)/(1/2+sqrt(5)/2)^39 2100959689391263 a004 Fibonacci(62)/Lucas(13)/(1/2+sqrt(5)/2)^41 2100959689391263 a004 Fibonacci(64)/Lucas(13)/(1/2+sqrt(5)/2)^43 2100959689391263 a004 Fibonacci(66)/Lucas(13)/(1/2+sqrt(5)/2)^45 2100959689391263 a004 Fibonacci(68)/Lucas(13)/(1/2+sqrt(5)/2)^47 2100959689391263 a004 Fibonacci(70)/Lucas(13)/(1/2+sqrt(5)/2)^49 2100959689391263 a004 Fibonacci(72)/Lucas(13)/(1/2+sqrt(5)/2)^51 2100959689391263 a004 Fibonacci(74)/Lucas(13)/(1/2+sqrt(5)/2)^53 2100959689391263 a004 Fibonacci(76)/Lucas(13)/(1/2+sqrt(5)/2)^55 2100959689391263 a004 Fibonacci(78)/Lucas(13)/(1/2+sqrt(5)/2)^57 2100959689391263 a004 Fibonacci(80)/Lucas(13)/(1/2+sqrt(5)/2)^59 2100959689391263 a004 Fibonacci(82)/Lucas(13)/(1/2+sqrt(5)/2)^61 2100959689391263 a004 Fibonacci(84)/Lucas(13)/(1/2+sqrt(5)/2)^63 2100959689391263 a004 Fibonacci(86)/Lucas(13)/(1/2+sqrt(5)/2)^65 2100959689391263 a004 Fibonacci(88)/Lucas(13)/(1/2+sqrt(5)/2)^67 2100959689391263 a004 Fibonacci(90)/Lucas(13)/(1/2+sqrt(5)/2)^69 2100959689391263 a004 Fibonacci(92)/Lucas(13)/(1/2+sqrt(5)/2)^71 2100959689391263 a004 Fibonacci(94)/Lucas(13)/(1/2+sqrt(5)/2)^73 2100959689391263 a004 Fibonacci(96)/Lucas(13)/(1/2+sqrt(5)/2)^75 2100959689391263 a004 Fibonacci(100)/Lucas(13)/(1/2+sqrt(5)/2)^79 2100959689391263 a004 Fibonacci(98)/Lucas(13)/(1/2+sqrt(5)/2)^77 2100959689391263 a004 Fibonacci(99)/Lucas(13)/(1/2+sqrt(5)/2)^78 2100959689391263 a004 Fibonacci(97)/Lucas(13)/(1/2+sqrt(5)/2)^76 2100959689391263 a004 Fibonacci(95)/Lucas(13)/(1/2+sqrt(5)/2)^74 2100959689391263 a004 Fibonacci(93)/Lucas(13)/(1/2+sqrt(5)/2)^72 2100959689391263 a004 Fibonacci(91)/Lucas(13)/(1/2+sqrt(5)/2)^70 2100959689391263 a004 Fibonacci(89)/Lucas(13)/(1/2+sqrt(5)/2)^68 2100959689391263 a004 Fibonacci(87)/Lucas(13)/(1/2+sqrt(5)/2)^66 2100959689391263 a004 Fibonacci(85)/Lucas(13)/(1/2+sqrt(5)/2)^64 2100959689391263 a004 Fibonacci(83)/Lucas(13)/(1/2+sqrt(5)/2)^62 2100959689391263 a004 Fibonacci(81)/Lucas(13)/(1/2+sqrt(5)/2)^60 2100959689391263 a004 Fibonacci(79)/Lucas(13)/(1/2+sqrt(5)/2)^58 2100959689391263 a004 Fibonacci(77)/Lucas(13)/(1/2+sqrt(5)/2)^56 2100959689391263 a004 Fibonacci(75)/Lucas(13)/(1/2+sqrt(5)/2)^54 2100959689391263 a004 Fibonacci(73)/Lucas(13)/(1/2+sqrt(5)/2)^52 2100959689391263 a004 Fibonacci(71)/Lucas(13)/(1/2+sqrt(5)/2)^50 2100959689391263 a004 Fibonacci(69)/Lucas(13)/(1/2+sqrt(5)/2)^48 2100959689391263 a004 Fibonacci(67)/Lucas(13)/(1/2+sqrt(5)/2)^46 2100959689391263 a004 Fibonacci(65)/Lucas(13)/(1/2+sqrt(5)/2)^44 2100959689391263 a004 Fibonacci(63)/Lucas(13)/(1/2+sqrt(5)/2)^42 2100959689391263 a004 Fibonacci(61)/Lucas(13)/(1/2+sqrt(5)/2)^40 2100959689391263 a004 Fibonacci(59)/Lucas(13)/(1/2+sqrt(5)/2)^38 2100959689391263 a004 Fibonacci(57)/Lucas(13)/(1/2+sqrt(5)/2)^36 2100959689391263 a004 Fibonacci(55)/Lucas(13)/(1/2+sqrt(5)/2)^34 2100959689391263 a004 Fibonacci(53)/Lucas(13)/(1/2+sqrt(5)/2)^32 2100959689391263 a004 Fibonacci(51)/Lucas(13)/(1/2+sqrt(5)/2)^30 2100959689391263 a004 Fibonacci(49)/Lucas(13)/(1/2+sqrt(5)/2)^28 2100959689391263 a004 Fibonacci(47)/Lucas(13)/(1/2+sqrt(5)/2)^26 2100959689391263 a004 Fibonacci(45)/Lucas(13)/(1/2+sqrt(5)/2)^24 2100959689391263 a004 Fibonacci(43)/Lucas(13)/(1/2+sqrt(5)/2)^22 2100959689391263 a004 Fibonacci(41)/Lucas(13)/(1/2+sqrt(5)/2)^20 2100959689391264 a004 Fibonacci(39)/Lucas(13)/(1/2+sqrt(5)/2)^18 2100959689391264 a004 Fibonacci(37)/Lucas(13)/(1/2+sqrt(5)/2)^16 2100959689391268 a004 Fibonacci(35)/Lucas(13)/(1/2+sqrt(5)/2)^14 2100959689391297 a004 Fibonacci(33)/Lucas(13)/(1/2+sqrt(5)/2)^12 2100959689391495 a004 Fibonacci(31)/Lucas(13)/(1/2+sqrt(5)/2)^10 2100959689392853 a004 Fibonacci(29)/Lucas(13)/(1/2+sqrt(5)/2)^8 2100959689397768 a001 233/439204*271443^(11/13) 2100959689402155 a004 Fibonacci(27)/Lucas(13)/(1/2+sqrt(5)/2)^6 2100959689437398 a001 233/167761*20633239^(4/7) 2100959689437400 a001 233/167761*2537720636^(4/9) 2100959689437400 a001 233/167761*(1/2+1/2*5^(1/2))^20 2100959689437400 a001 233/167761*23725150497407^(5/16) 2100959689437400 a001 233/167761*505019158607^(5/14) 2100959689437400 a001 233/167761*73681302247^(5/13) 2100959689437400 a001 233/167761*28143753123^(2/5) 2100959689437400 a001 233/167761*10749957122^(5/12) 2100959689437400 a001 233/167761*4106118243^(10/23) 2100959689437400 a001 233/167761*1568397607^(5/11) 2100959689437400 a001 233/167761*599074578^(10/21) 2100959689437400 a001 233/167761*228826127^(1/2) 2100959689437400 a001 233/167761*87403803^(10/19) 2100959689437401 a001 233/167761*33385282^(5/9) 2100959689437408 a001 233/167761*12752043^(10/17) 2100959689437456 a001 233/167761*4870847^(5/8) 2100959689437805 a001 233/167761*1860498^(2/3) 2100959689438007 a001 3496165/166408 2100959689440372 a001 233/167761*710647^(5/7) 2100959689459334 a001 233/167761*271443^(10/13) 2100959689465914 a004 Fibonacci(25)/Lucas(13)/(1/2+sqrt(5)/2)^4 2100959689470704 a001 843/17711*34^(8/19) 2100959689473981 a001 233/64079*64079^(18/23) 2100959689505244 a001 233/271443*103682^(7/8) 2100959689545885 a001 233/710647*103682^(23/24) 2100959689552793 a001 233/439204*103682^(11/12) 2100959689558188 a004 Fibonacci(13)*Lucas(24)/(1/2+sqrt(5)/2)^29 2100959689600266 a001 233/167761*103682^(5/6) 2100959689867154 a001 233/64079*439204^(2/3) 2100959689874397 a001 233/64079*7881196^(6/11) 2100959689874415 a001 233/64079*141422324^(6/13) 2100959689874415 a001 233/64079*2537720636^(2/5) 2100959689874415 a001 233/64079*45537549124^(6/17) 2100959689874415 a001 233/64079*14662949395604^(2/7) 2100959689874415 a001 233/64079*(1/2+1/2*5^(1/2))^18 2100959689874415 a001 233/64079*192900153618^(1/3) 2100959689874415 a001 233/64079*10749957122^(3/8) 2100959689874415 a001 233/64079*4106118243^(9/23) 2100959689874415 a001 233/64079*1568397607^(9/22) 2100959689874415 a001 233/64079*599074578^(3/7) 2100959689874415 a001 233/64079*228826127^(9/20) 2100959689874415 a001 233/64079*87403803^(9/19) 2100959689874416 a001 233/64079*33385282^(1/2) 2100959689874422 a001 233/64079*12752043^(9/17) 2100959689874465 a001 233/64079*4870847^(9/16) 2100959689874779 a001 233/64079*1860498^(3/5) 2100959689877089 a001 233/64079*710647^(9/14) 2100959689878575 a001 6677081/317811 2100959689894156 a001 233/64079*271443^(9/13) 2100959689902929 a004 Fibonacci(23)/Lucas(13)/(1/2+sqrt(5)/2)^2 2100959690020994 a001 233/64079*103682^(3/4) 2100959690197751 a001 233/24476*24476^(16/21) 2100959690324201 a001 233/103682*39603^(19/22) 2100959690612904 a001 233/271443*39603^(21/22) 2100959690655180 a001 233/167761*39603^(10/11) 2100959690702307 a004 Fibonacci(13)*Lucas(22)/(1/2+sqrt(5)/2)^27 2100959690970417 a001 233/64079*39603^(9/11) 2100959692513817 a001 233/24476*64079^(16/23) 2100959692869758 a001 233/24476*(1/2+1/2*5^(1/2))^16 2100959692869758 a001 233/24476*23725150497407^(1/4) 2100959692869758 a001 233/24476*73681302247^(4/13) 2100959692869758 a001 233/24476*10749957122^(1/3) 2100959692869758 a001 233/24476*4106118243^(8/23) 2100959692869758 a001 233/24476*1568397607^(4/11) 2100959692869758 a001 233/24476*599074578^(8/21) 2100959692869758 a001 233/24476*228826127^(2/5) 2100959692869758 a001 233/24476*87403803^(8/19) 2100959692869759 a001 233/24476*33385282^(4/9) 2100959692869764 a001 233/24476*12752043^(8/17) 2100959692869802 a001 233/24476*4870847^(1/2) 2100959692870082 a001 233/24476*1860498^(8/15) 2100959692872135 a001 233/24476*710647^(4/7) 2100959692887305 a001 233/24476*271443^(8/13) 2100959692898272 a001 10946/521 2100959693000051 a001 233/24476*103682^(2/3) 2100959693843982 a001 233/24476*39603^(8/11) 2100959694045745 a001 4181/521*3571^(2/17) 2100959694625892 m001 (FeigenbaumMu-MertensB1)/(OneNinth+Porter) 2100959695688379 a001 233/9349*9349^(14/19) 2100959695827439 a001 233/39603*15127^(17/20) 2100959697889705 a001 233/103682*15127^(19/20) 2100959698137736 a001 233/64079*15127^(9/10) 2100959698544217 a004 Fibonacci(13)*Lucas(20)/(1/2+sqrt(5)/2)^25 2100959700214932 a001 233/24476*15127^(4/5) 2100959707168139 a001 6765/521*2207^(1/16) 2100959707335578 a001 2584/521*2207^(3/16) 2100959710898406 a001 4181/521*9349^(2/19) 2100959711062138 a001 233/9349*24476^(2/3) 2100959711789714 r002 29th iterates of z^2 + 2100959713088695 a001 233/9349*64079^(14/23) 2100959713094657 a001 4181/521*24476^(2/21) 2100959713384165 a001 4181/521*64079^(2/23) 2100959713400142 a001 233/9349*20633239^(2/5) 2100959713400144 a001 233/9349*17393796001^(2/7) 2100959713400144 a001 233/9349*14662949395604^(2/9) 2100959713400144 a001 233/9349*(1/2+1/2*5^(1/2))^14 2100959713400144 a001 233/9349*505019158607^(1/4) 2100959713400144 a001 233/9349*10749957122^(7/24) 2100959713400144 a001 233/9349*4106118243^(7/23) 2100959713400144 a001 233/9349*1568397607^(7/22) 2100959713400144 a001 233/9349*599074578^(1/3) 2100959713400144 a001 233/9349*228826127^(7/20) 2100959713400144 a001 233/9349*87403803^(7/19) 2100959713400145 a001 233/9349*33385282^(7/18) 2100959713400149 a001 233/9349*12752043^(7/17) 2100959713400183 a001 233/9349*4870847^(7/16) 2100959713400427 a001 233/9349*1860498^(7/15) 2100959713402224 a001 233/9349*710647^(1/2) 2100959713415498 a001 233/9349*271443^(7/13) 2100959713428658 a001 4181/521*(1/2+1/2*5^(1/2))^2 2100959713428658 a001 4181/521*10749957122^(1/24) 2100959713428658 a001 4181/521*4106118243^(1/23) 2100959713428658 a001 4181/521*1568397607^(1/22) 2100959713428658 a001 4181/521*599074578^(1/21) 2100959713428658 a001 4181/521*228826127^(1/20) 2100959713428658 a001 4181/521*87403803^(1/19) 2100959713428658 a001 4181/521*33385282^(1/18) 2100959713428659 a001 4181/521*12752043^(1/17) 2100959713428663 a001 4181/521*4870847^(1/16) 2100959713428698 a001 4181/521*1860498^(1/15) 2100959713428955 a001 4181/521*710647^(1/14) 2100959713430851 a001 4181/521*271443^(1/13) 2100959713444944 a001 4181/521*103682^(1/12) 2100959713514150 a001 233/9349*103682^(7/12) 2100959713550436 a001 4181/521*39603^(1/11) 2100959713595583 a001 974173/46368 2100959714252590 a001 233/9349*39603^(7/11) 2100959714346805 a001 4181/521*15127^(1/10) 2100959718143456 r005 Im(z^2+c),c=-89/74+8/53*I,n=12 2100959718555049 r002 9th iterates of z^2 + 2100959719827171 a001 233/9349*15127^(7/10) 2100959720420960 a001 4181/521*5778^(1/9) 2100959727518060 m005 (1/3*Pi-2/9)/(3/11*Catalan+1/7) 2100959729974948 a007 Real Root Of 34*x^4+678*x^3-795*x^2-639*x+611 2100959732623544 a001 233/15127*5778^(5/6) 2100959737820032 a001 233/3571*3571^(12/17) 2100959739331971 m001 1/Lehmer^2/exp(GolombDickman)*GAMMA(19/24)^2 2100959739376677 m001 Riemann2ndZero-StolarskyHarborth^MadelungNaCl 2100959747457756 a001 233/39603*5778^(17/18) 2100959748808172 a001 233/24476*5778^(8/9) 2100959752293465 a004 Fibonacci(13)*Lucas(18)/(1/2+sqrt(5)/2)^23 2100959755023399 m005 (1/2*exp(1)-1/8)/(7/9*Catalan-1/8) 2100959756883856 m001 ln(2)/ln(10)+GAMMA(11/12)*Niven 2100959757613109 p001 sum((-1)^n/(538*n+467)/(24^n),n=0..infinity) 2100959762346257 a001 233/9349*5778^(7/9) 2100959764612015 r005 Re(z^2+c),c=1/78+33/56*I,n=32 2100959767345346 a001 4181/521*2207^(1/8) 2100959767504113 l006 ln(885/7234) 2100959770151911 h001 (-9*exp(-3)+2)/(-5*exp(2/3)+9) 2100959770382885 m001 (cos(1)-sin(1/12*Pi))/Totient 2100959775154609 m005 (1/2*5^(1/2)-1/5)/(9/11*gamma-3/7) 2100959777151420 m001 (1+FeigenbaumDelta)/(Tribonacci+Thue) 2100959796237803 a007 Real Root Of 648*x^4+637*x^3-976*x^2+812*x-704 2100959800241693 b008 -4+10^(Pi/4) 2100959813476411 m001 (sin(1)+LambertW(1))/(Robbin+ZetaQ(3)) 2100959815380188 a001 1597/521*3571^(4/17) 2100959818948785 m001 exp(Pi)^Niven/Psi(1,1/3) 2100959820525883 a007 Real Root Of -549*x^4-714*x^3+608*x^2-400*x+551 2100959829158944 m001 Conway^Kolakoski*OneNinth^Kolakoski 2100959829363668 q001 591/2813 2100959838936001 a001 233/3571*9349^(12/19) 2100959840075998 m001 ln(Sierpinski)*Lehmer/GAMMA(1/3) 2100959849085512 a001 1597/521*9349^(4/19) 2100959852113510 a001 233/3571*24476^(4/7) 2100959853478014 a001 1597/521*24476^(4/21) 2100959853850559 a001 233/3571*64079^(12/23) 2100959854057031 a001 1597/521*64079^(4/23) 2100959854112674 a001 233/3571*439204^(4/9) 2100959854117503 a001 233/3571*7881196^(4/11) 2100959854117515 a001 233/3571*141422324^(4/13) 2100959854117515 a001 233/3571*2537720636^(4/15) 2100959854117515 a001 233/3571*45537549124^(4/17) 2100959854117515 a001 233/3571*14662949395604^(4/21) 2100959854117515 a001 233/3571*(1/2+1/2*5^(1/2))^12 2100959854117515 a001 233/3571*192900153618^(2/9) 2100959854117515 a001 233/3571*73681302247^(3/13) 2100959854117515 a001 233/3571*10749957122^(1/4) 2100959854117515 a001 233/3571*4106118243^(6/23) 2100959854117515 a001 233/3571*1568397607^(3/11) 2100959854117515 a001 233/3571*599074578^(2/7) 2100959854117515 a001 233/3571*228826127^(3/10) 2100959854117515 a001 233/3571*87403803^(6/19) 2100959854117515 a001 233/3571*33385282^(1/3) 2100959854117519 a001 233/3571*12752043^(6/17) 2100959854117548 a001 233/3571*4870847^(3/8) 2100959854117758 a001 233/3571*1860498^(2/5) 2100959854119298 a001 233/3571*710647^(3/7) 2100959854130675 a001 233/3571*271443^(6/13) 2100959854146016 a001 1597/521*(1/2+1/2*5^(1/2))^4 2100959854146016 a001 1597/521*23725150497407^(1/16) 2100959854146016 a001 1597/521*73681302247^(1/13) 2100959854146016 a001 1597/521*10749957122^(1/12) 2100959854146016 a001 1597/521*4106118243^(2/23) 2100959854146016 a001 1597/521*1568397607^(1/11) 2100959854146016 a001 1597/521*599074578^(2/21) 2100959854146016 a001 1597/521*228826127^(1/10) 2100959854146016 a001 1597/521*87403803^(2/19) 2100959854146016 a001 1597/521*33385282^(1/9) 2100959854146018 a001 1597/521*12752043^(2/17) 2100959854146027 a001 1597/521*4870847^(1/8) 2100959854146097 a001 1597/521*1860498^(2/15) 2100959854146610 a001 1597/521*710647^(1/7) 2100959854150403 a001 1597/521*271443^(2/13) 2100959854178589 a001 1597/521*103682^(1/6) 2100959854215234 a001 233/3571*103682^(1/2) 2100959854389572 a001 1597/521*39603^(2/11) 2100959854848183 a001 233/3571*39603^(6/11) 2100959855457060 a001 372101/17711 2100959855982310 a001 1597/521*15127^(1/5) 2100959857159985 a001 4181/1364*322^(1/3) 2100959858955885 a001 144/521*18^(40/57) 2100959859626396 a001 233/3571*15127^(3/5) 2100959859979985 h001 (-6*exp(-2)+1)/(-exp(2/3)-7) 2100959866680930 a001 1346269/7*76^(1/49) 2100959868130620 a001 1597/521*5778^(2/9) 2100959876971451 m009 (Pi^2+3/5)/(2/5*Psi(1,3/4)-6) 2100959879652920 r005 Re(z^2+c),c=-31/122+1/60*I,n=15 2100959882587849 m001 (cos(1/5*Pi)-MertensB2)/(Paris+ZetaQ(3)) 2100959891342694 m005 (1/2*Catalan+11/12)/(5/11*gamma-11/12) 2100959891381377 a001 6765/521*843^(1/14) 2100959893788201 m001 (Stephens-ZetaP(3))/(ln(2+3^(1/2))+Lehmer) 2100959896071328 a001 233/3571*5778^(2/3) 2100959897706650 m001 BesselK(1,1)*(3^(1/3))^2*exp(sin(Pi/12))^2 2100959912184793 r009 Re(z^3+c),c=-11/82+44/53*I,n=36 2100959914051890 m005 (1/2*5^(1/2)+3/8)/(2/3*Catalan+1/10) 2100959916012796 m001 exp(1/exp(1))^(2^(1/3)/GolombDickman) 2100959920157854 m001 (-FellerTornier+MasserGramain)/(1+cos(1)) 2100959927793259 m001 GAMMA(2/3)^cos(1/5*Pi)*GAMMA(2/3)^GAMMA(13/24) 2100959927793259 m001 GAMMA(2/3)^cos(Pi/5)*GAMMA(2/3)^GAMMA(13/24) 2100959929336246 h001 (9/10*exp(2)+1/12)/(6/7*exp(1)+7/8) 2100959929691460 a007 Real Root Of -391*x^4-554*x^3+869*x^2+528*x-246 2100959955602009 m001 (FeigenbaumC*FeigenbaumD+Sarnak)/FeigenbaumD 2100959956674074 m005 (1/2*gamma-1/12)/(3/4*5^(1/2)-7/10) 2100959956793498 a007 Real Root Of -447*x^4-757*x^3+524*x^2+564*x+561 2100959961979402 a001 1597/521*2207^(1/4) 2100959970486645 m001 (Artin-CareFree)/(polylog(4,1/2)+GAMMA(11/12)) 2100959970782975 m001 (3^(1/2)-exp(Pi))^KhinchinHarmonic 2100959976890521 a001 233/5778*2207^(13/16) 2100959977671444 a007 Real Root Of -4*x^4-836*x^3+923*x^2+410*x+462 2100959978684274 r009 Re(z^3+c),c=-21/58+27/46*I,n=48 2100959979285974 g001 Psi(3/8,45/49) 2100959985196765 a001 4181/2207*322^(5/12) 2100959987210748 m001 (Zeta(1,2)+GolombDickman)/(ln(5)+Zeta(1/2)) 2100959992291360 m005 (1/2*5^(1/2)-9/10)/(4/11*Zeta(3)-1/3) 2100959994401624 a001 1364/233*6557470319842^(14/17) 2100960002117916 m001 (-ln(1+sqrt(2))+5)/(-Zeta(1/2)+1/2) 2100960008919918 a007 Real Root Of 119*x^4-757*x^3+688*x^2+711*x+171 2100960014735933 r005 Re(z^2+c),c=-3/34+7/13*I,n=17 2100960019040752 s002 sum(A062193[n]/(exp(n)+1),n=1..infinity) 2100960047163616 h001 (5/11*exp(1)+7/12)/(1/12*exp(2)+1/4) 2100960049337921 r009 Re(z^3+c),c=-29/110+18/59*I,n=9 2100960065778175 a001 233/1364*1364^(2/3) 2100960068700098 m001 (2^(1/3)-Artin)/(-FeigenbaumDelta+ZetaP(2)) 2100960070888284 a005 (1/cos(1/69*Pi))^716 2100960080897018 a007 Real Root Of 385*x^4+547*x^3-459*x^2+272*x+169 2100960084556473 a001 233/15127*2207^(15/16) 2100960087173312 r002 50th iterates of z^2 + 2100960088237489 l006 ln(431/3523) 2100960088524954 a007 Real Root Of -262*x^4-277*x^3+146*x^2-480*x+883 2100960090816993 a001 233/9349*2207^(7/8) 2100960091880758 m005 (1/4*Catalan+2)/(1/3*exp(1)-4/5) 2100960097235855 m001 (exp(Pi)+sin(1/12*Pi))/(gamma(1)+KhinchinLevy) 2100960112232112 m001 (2^(1/3)+Catalan)/(Artin+Robbin) 2100960114184496 a007 Real Root Of -946*x^4+572*x^3-968*x^2+567*x+169 2100960118797445 a005 (1/cos(88/183*Pi))^15 2100960120696291 a004 Fibonacci(13)*Lucas(16)/(1/2+sqrt(5)/2)^21 2100960132123718 m001 ln(Sierpinski)^2/PrimesInBinary*cos(Pi/12) 2100960132274230 a007 Real Root Of 632*x^4+976*x^3-214*x^2+990*x-238 2100960135771848 a001 4181/521*843^(1/7) 2100960142369967 m001 ((1+3^(1/2))^(1/2)-Thue)/(arctan(1/2)-sin(1)) 2100960149090478 r002 27th iterates of z^2 + 2100960152426121 r002 43th iterates of z^2 + 2100960160689438 a007 Real Root Of -542*x^4-863*x^3+829*x^2+399*x-264 2100960167676671 r005 Re(z^2+c),c=-9/10+41/204*I,n=22 2100960174600263 b008 ArcCosh[3+Sqrt[1+Pi^(-1)]] 2100960177617688 a001 233/3571*2207^(3/4) 2100960188010567 a007 Real Root Of -152*x^4-463*x^3-761*x^2-910*x+115 2100960189800121 s002 sum(A252248[n]/(exp(n)-1),n=1..infinity) 2100960200270015 r005 Im(z^2+c),c=-23/44+19/51*I,n=41 2100960200611930 r005 Re(z^2+c),c=-5/6+3/194*I,n=58 2100960213129705 a007 Real Root Of 174*x^4+110*x^3-775*x^2-543*x-90 2100960213415049 a001 87403803*144^(3/17) 2100960220853764 a007 Real Root Of -230*x^4-329*x^3+272*x^2+331*x+925 2100960223323466 r005 Im(z^2+c),c=-39/29+4/63*I,n=7 2100960233258050 r005 Im(z^2+c),c=-53/114+23/53*I,n=4 2100960241197766 a007 Real Root Of 108*x^4-106*x^3-500*x^2+141*x-584 2100960248031393 m002 Pi+6*Pi*Cosh[Pi]-Sinh[Pi] 2100960249797660 a005 (1/cos(5/182*Pi))^1434 2100960252362364 a007 Real Root Of -316*x^4-350*x^3+508*x^2-750*x-907 2100960252846930 r005 Im(z^2+c),c=-9/14+45/148*I,n=19 2100960259975338 a001 2584/521*843^(3/14) 2100960261357486 a007 Real Root Of -647*x^4+603*x^3-980*x^2+623*x+181 2100960266569567 r005 Im(z^2+c),c=-27/118+51/64*I,n=21 2100960272775097 m001 (exp(Pi)+Si(Pi))/(-Grothendieck+Lehmer) 2100960273439882 m001 BesselI(1,2)*(GAMMA(7/12)-exp(-1/2*Pi)) 2100960284845558 r005 Im(z^2+c),c=-67/106+23/37*I,n=5 2100960285318927 g005 GAMMA(7/9)*GAMMA(4/9)*GAMMA(2/3)/GAMMA(7/12) 2100960288732186 r005 Im(z^2+c),c=-5/6+34/227*I,n=57 2100960293238615 m001 (GAMMA(2/3)+Ei(1))/(GAMMA(17/24)+MertensB1) 2100960298928206 r005 Im(z^2+c),c=-5/48+28/43*I,n=45 2100960299169873 a001 47/1597*987^(13/21) 2100960300785901 r008 a(0)=2,K{-n^6,-6-9*n^3+4*n^2} 2100960307099796 m001 (Landau+ZetaQ(3))/(Kolakoski-Shi(1)) 2100960308274405 m001 ln(Trott)*TreeGrowth2nd*GAMMA(11/12) 2100960310247052 r002 46th iterates of z^2 + 2100960313915627 a001 987/521*843^(5/14) 2100960318154901 m001 (Mills-Paris)/(gamma(2)-BesselI(1,1)) 2100960319257786 m001 (Ei(1)+Weierstrass)/(cos(1)+sin(1/5*Pi)) 2100960320131571 m001 (-arctan(1/3)+Cahen)/(Chi(1)+ln(2)) 2100960320878347 a001 34/3010349*47^(41/54) 2100960324427469 s002 sum(A062193[n]/(exp(n)),n=1..infinity) 2100960325870804 a005 (1/sin(62/179*Pi))^139 2100960328171883 m001 (Conway-FeigenbaumC)/(GAMMA(11/12)+Backhouse) 2100960333069240 a001 5473/2889*322^(5/12) 2100960340973235 p003 LerchPhi(1/8,4,538/203) 2100960341677492 m001 ln(log(1+sqrt(2)))/Zeta(3)*sqrt(2)^2 2100960342075204 a007 Real Root Of -529*x^4-800*x^3+728*x^2+530*x+788 2100960344029114 m001 exp(Zeta(7))^2/GAMMA(11/24)*cos(1) 2100960353729477 a007 Real Root Of -565*x^4-667*x^3+998*x^2-540*x-717 2100960353860184 a007 Real Root Of -374*x^4-618*x^3+402*x^2+512*x+857 2100960357720589 r002 6th iterates of z^2 + 2100960361240770 m001 (Gompertz+MadelungNaCl)/(Sarnak-Tribonacci) 2100960361502869 a007 Real Root Of 626*x^4+751*x^3-679*x^2+843*x-464 2100960366938472 a001 610/521*1364^(2/5) 2100960380661265 r002 5th iterates of z^2 + 2100960382468638 a001 9349*514229^(7/17) 2100960383823161 a001 28657/15127*322^(5/12) 2100960386583687 a007 Real Root Of 549*x^4+882*x^3-192*x^2+670*x-262 2100960386616824 r009 Re(z^3+c),c=-25/52+3/59*I,n=56 2100960391228058 a001 75025/39603*322^(5/12) 2100960392308418 a001 98209/51841*322^(5/12) 2100960392466041 a001 514229/271443*322^(5/12) 2100960392489037 a001 1346269/710647*322^(5/12) 2100960392492393 a001 1762289/930249*322^(5/12) 2100960392492882 a001 9227465/4870847*322^(5/12) 2100960392492953 a001 24157817/12752043*322^(5/12) 2100960392492964 a001 31622993/16692641*322^(5/12) 2100960392492965 a001 165580141/87403803*322^(5/12) 2100960392492966 a001 433494437/228826127*322^(5/12) 2100960392492966 a001 567451585/299537289*322^(5/12) 2100960392492966 a001 2971215073/1568397607*322^(5/12) 2100960392492966 a001 7778742049/4106118243*322^(5/12) 2100960392492966 a001 10182505537/5374978561*322^(5/12) 2100960392492966 a001 53316291173/28143753123*322^(5/12) 2100960392492966 a001 139583862445/73681302247*322^(5/12) 2100960392492966 a001 182717648081/96450076809*322^(5/12) 2100960392492966 a001 956722026041/505019158607*322^(5/12) 2100960392492966 a001 10610209857723/5600748293801*322^(5/12) 2100960392492966 a001 591286729879/312119004989*322^(5/12) 2100960392492966 a001 225851433717/119218851371*322^(5/12) 2100960392492966 a001 21566892818/11384387281*322^(5/12) 2100960392492966 a001 32951280099/17393796001*322^(5/12) 2100960392492966 a001 12586269025/6643838879*322^(5/12) 2100960392492966 a001 1201881744/634430159*322^(5/12) 2100960392492966 a001 1836311903/969323029*322^(5/12) 2100960392492966 a001 701408733/370248451*322^(5/12) 2100960392492966 a001 66978574/35355581*322^(5/12) 2100960392492966 a001 102334155/54018521*322^(5/12) 2100960392492970 a001 39088169/20633239*322^(5/12) 2100960392492998 a001 3732588/1970299*322^(5/12) 2100960392493185 a001 5702887/3010349*322^(5/12) 2100960392494466 a001 2178309/1149851*322^(5/12) 2100960392503250 a001 208010/109801*322^(5/12) 2100960392563457 a001 317811/167761*322^(5/12) 2100960392976117 a001 121393/64079*322^(5/12) 2100960395804537 a001 11592/6119*322^(5/12) 2100960415190810 a001 17711/9349*322^(5/12) 2100960426555659 l006 ln(839/6858) 2100960438891046 s002 sum(A051423[n]/(n*10^n-1),n=1..infinity) 2100960443634149 a007 Real Root Of -535*x^4-739*x^3+801*x^2+348*x+766 2100960444808975 a001 317811/76*843^(25/43) 2100960446327169 m005 (1/12+1/6*5^(1/2))/(9/11*5^(1/2)-4) 2100960446328112 m001 (GAMMA(17/24)+Mills)/(cos(1)+ln(2)) 2100960471040322 m001 (ln(Pi)+HardyLittlewoodC5)/(Lehmer-MertensB3) 2100960472877918 r009 Re(z^3+c),c=-45/122+25/41*I,n=59 2100960477337896 m001 (ln(3)+3^(1/3))/(Zeta(1,-1)+exp(1/Pi)) 2100960480498542 a001 46/3*21^(3/29) 2100960486229186 r005 Re(z^2+c),c=-19/23+3/58*I,n=54 2100960488059082 m001 (Psi(1,1/3)+BesselI(0,1))/(ln(gamma)+ZetaQ(3)) 2100960498754489 a007 Real Root Of -709*x^4-894*x^3+936*x^2-948*x-600 2100960504534910 m001 exp(-1/2*Pi)-gamma(2)^arctan(1/3) 2100960507273145 m001 1/exp(FeigenbaumDelta)*Artin^2/GolombDickman 2100960508618426 r005 Re(z^2+c),c=-15/86+35/59*I,n=24 2100960521866567 m005 (1/2*Zeta(3)-7/9)/(1/8*5^(1/2)-4/11) 2100960527726274 a007 Real Root Of -273*x^4-200*x^3+990*x^2+818*x+813 2100960531425730 a007 Real Root Of -505*x^4-431*x^3+996*x^2-960*x-571 2100960538851822 r009 Re(z^3+c),c=-43/122+21/38*I,n=19 2100960548066315 a001 6765/3571*322^(5/12) 2100960548514843 a007 Real Root Of 431*x^4+829*x^3-321*x^2-142*x+409 2100960550005008 a007 Real Root Of -508*x^4-905*x^3+22*x^2-524*x+307 2100960552932233 a007 Real Root Of -286*x^4-220*x^3+759*x^2+239*x+684 2100960556820988 m001 (CopelandErdos+Niven)/(Ei(1,1)+CareFree) 2100960557836443 a007 Real Root Of -40*x^4-826*x^3+313*x^2+222*x-100 2100960564375737 r009 Re(z^3+c),c=-13/34+32/57*I,n=11 2100960566815456 a001 7/144*21^(25/52) 2100960569927573 m001 (CareFree-StronglyCareFree)/(Pi+sin(1/12*Pi)) 2100960591272318 m001 (Khinchin+KomornikLoreti)/(Si(Pi)-exp(Pi)) 2100960592996246 b008 -2+CosIntegral[(4*Pi)/23] 2100960595098763 r002 4th iterates of z^2 + 2100960606196340 m002 2*Pi^4*ProductLog[Pi]+Tanh[Pi]/ProductLog[Pi] 2100960607147722 m001 Weierstrass^Trott-Zeta(3) 2100960612393256 r005 Re(z^2+c),c=25/64+7/48*I,n=37 2100960613164909 m001 ErdosBorwein^BesselJ(0,1)*MinimumGamma 2100960614436740 m005 (1/2*5^(1/2)+7/12)/(5/8*3^(1/2)-3/11) 2100960620164280 b008 2+19*Coth[1+Pi] 2100960621046936 m008 (2*Pi^2+3/5)/(Pi^4-3/5) 2100960629815076 s002 sum(A062193[n]/(exp(n)-1),n=1..infinity) 2100960638574094 a001 1364/2178309*6765^(7/51) 2100960647384991 r002 22th iterates of z^2 + 2100960647384991 r002 22th iterates of z^2 + 2100960649369073 r008 a(0)=0,K{-n^6,156*n^3+234*n^2+78*n+8} 2100960657424168 r009 Re(z^3+c),c=-39/64+32/49*I,n=9 2100960665059026 m001 1/GolombDickman*Si(Pi)^2/exp(GAMMA(1/6)) 2100960666648643 l006 ln(8131/10032) 2100960674543754 m005 (-9/44+1/4*5^(1/2))/(2/3*exp(1)-1/8) 2100960682626541 h001 (1/11*exp(2)+1/2)/(7/11*exp(2)+7/8) 2100960684928583 m008 (5/6*Pi^5+1/6)/(1/4*Pi-2) 2100960685210110 a007 Real Root Of -435*x^4-441*x^3+937*x^2-265*x-307 2100960686512105 h001 (4/7*exp(1)+3/7)/(2/7*exp(1)+1/6) 2100960690964761 r005 Im(z^2+c),c=-9/106+40/61*I,n=44 2100960694097610 m001 (CopelandErdos+MertensB1)/(Chi(1)+GAMMA(7/12)) 2100960694180588 r005 Im(z^2+c),c=-37/58+11/60*I,n=3 2100960698832537 a001 1597/521*843^(2/7) 2100960705074971 m001 (Pi+Zeta(1,-1))/(FeigenbaumC-PrimesInBinary) 2100960712293224 r005 Im(z^2+c),c=-4/9+13/36*I,n=61 2100960714176623 m001 1/MadelungNaCl^2*Lehmer^2*ln(sin(Pi/12))^2 2100960719786789 r005 Im(z^2+c),c=-29/74+8/23*I,n=30 2100960721694616 a001 233/1364*3571^(10/17) 2100960725718991 r005 Re(z^2+c),c=-7/30+11/56*I,n=6 2100960727986762 a003 -1/2+cos(2/9*Pi)-2*cos(7/27*Pi)-cos(1/30*Pi) 2100960730940819 a001 47/433494437*591286729879^(13/21) 2100960730941426 a001 47/832040*24157817^(13/21) 2100960744135634 r005 Im(z^2+c),c=-117/122+1/52*I,n=11 2100960760488368 a001 610/521*3571^(6/17) 2100960761115556 r005 Im(z^2+c),c=-43/78+23/61*I,n=57 2100960783945562 l006 ln(408/3335) 2100960794487106 r009 Re(z^3+c),c=-4/17+11/51*I,n=8 2100960796053046 r005 Im(z^2+c),c=-69/110+22/59*I,n=38 2100960796121328 l006 ln(7699/9499) 2100960803741667 m001 (1-FeigenbaumMu)/(PlouffeB+RenyiParking) 2100960804592744 m001 (ZetaP(2)-ZetaQ(2))/(Ei(1)+HeathBrownMoroz) 2100960805957963 a001 233/1364*9349^(10/19) 2100960808937386 r005 Im(z^2+c),c=-19/42+20/47*I,n=14 2100960809040846 r009 Re(z^3+c),c=-95/118+17/25*I,n=2 2100960811046377 a001 610/521*9349^(6/19) 2100960816939225 a001 233/1364*24476^(10/21) 2100960817635134 a001 610/521*24476^(2/7) 2100960818386766 a001 233/1364*64079^(10/23) 2100960818503659 a001 610/521*64079^(6/23) 2100960818579369 a001 233/1364*167761^(2/5) 2100960818609228 a001 233/1364*20633239^(2/7) 2100960818609230 a001 233/1364*2537720636^(2/9) 2100960818609230 a001 233/1364*312119004989^(2/11) 2100960818609230 a001 233/1364*(1/2+1/2*5^(1/2))^10 2100960818609230 a001 233/1364*28143753123^(1/5) 2100960818609230 a001 233/1364*10749957122^(5/24) 2100960818609230 a001 233/1364*4106118243^(5/23) 2100960818609230 a001 233/1364*1568397607^(5/22) 2100960818609230 a001 233/1364*599074578^(5/21) 2100960818609230 a001 233/1364*228826127^(1/4) 2100960818609230 a001 233/1364*87403803^(5/19) 2100960818609230 a001 233/1364*33385282^(5/18) 2100960818609234 a001 233/1364*12752043^(5/17) 2100960818609258 a001 233/1364*4870847^(5/16) 2100960818609432 a001 233/1364*1860498^(1/3) 2100960818610716 a001 233/1364*710647^(5/14) 2100960818620197 a001 233/1364*271443^(5/13) 2100960818634717 a001 610/521*439204^(2/9) 2100960818637131 a001 610/521*7881196^(2/11) 2100960818637137 a001 610/521*141422324^(2/13) 2100960818637137 a001 610/521*2537720636^(2/15) 2100960818637137 a001 610/521*45537549124^(2/17) 2100960818637137 a001 610/521*14662949395604^(2/21) 2100960818637137 a001 610/521*(1/2+1/2*5^(1/2))^6 2100960818637137 a001 610/521*10749957122^(1/8) 2100960818637137 a001 610/521*4106118243^(3/23) 2100960818637137 a001 610/521*1568397607^(3/22) 2100960818637137 a001 610/521*599074578^(1/7) 2100960818637137 a001 610/521*228826127^(3/20) 2100960818637137 a001 610/521*87403803^(3/19) 2100960818637137 a001 610/521*33385282^(1/6) 2100960818637139 a001 610/521*12752043^(3/17) 2100960818637154 a001 610/521*4870847^(3/16) 2100960818637258 a001 610/521*1860498^(1/5) 2100960818638029 a001 610/521*710647^(3/14) 2100960818643717 a001 610/521*271443^(3/13) 2100960818685997 a001 610/521*103682^(1/4) 2100960818690663 a001 233/1364*103682^(5/12) 2100960819002471 a001 610/521*39603^(3/11) 2100960819218120 a001 233/1364*39603^(5/11) 2100960820372679 m005 (1/2*5^(1/2)+4/9)/(1/2*Catalan+2/7) 2100960821391579 a001 610/521*15127^(3/10) 2100960823199966 a001 233/1364*15127^(1/2) 2100960825214660 r005 Im(z^2+c),c=-33/64+20/53*I,n=62 2100960826401079 r005 Im(z^2+c),c=-55/114+21/40*I,n=55 2100960827790096 a001 28426/1353 2100960828195936 m001 GAMMA(5/24)^2/ArtinRank2*ln(log(2+sqrt(3)))^2 2100960839614053 a001 610/521*5778^(1/3) 2100960843558184 a007 Real Root Of 178*x^4+216*x^3+120*x^2+482*x-982 2100960850513316 m005 (4*gamma+2/5)/(11/12+1/6*5^(1/2)) 2100960852096208 m005 (1/2*exp(1)-1/3)/(47/11+3/11*5^(1/2)) 2100960853570757 a001 233/1364*5778^(5/9) 2100960858842407 m001 (BesselK(1,1)+ArtinRank2)/(Chi(1)-Ei(1,1)) 2100960864958281 a007 Real Root Of 515*x^4+779*x^3-668*x^2+221*x+603 2100960866442238 a007 Real Root Of 24*x^4-145*x^3+7*x^2+725*x-320 2100960872916100 a007 Real Root Of -413*x^4+890*x^3+398*x^2+848*x-18 2100960878272278 m001 LandauRamanujan+Otter*ZetaP(2) 2100960885245703 a005 (1/cos(31/207*Pi))^567 2100960886713139 m001 1/Zeta(3)^2/Khintchine^2*exp(cosh(1))^2 2100960894073840 m005 (1/3*2^(1/2)-3/5)/(6*Catalan+5/8) 2100960898728798 m001 exp(Robbin)*Porter*exp(1)^2 2100960902094915 s002 sum(A130439[n]/(n^3*pi^n-1),n=1..infinity) 2100960903750003 m001 1/Pi^2/exp(FibonacciFactorial)/sqrt(2) 2100960910627592 m001 (3^(1/2)-Zeta(5))/(-arctan(1/2)+Kolakoski) 2100960913465519 m001 1/exp(Catalan)/BesselJ(1,1)^2*Zeta(7)^2 2100960914553082 r005 Re(z^2+c),c=-4/27+19/41*I,n=27 2100960928433054 m001 (exp(1/Pi)+FeigenbaumDelta)/(3^(1/2)+ln(Pi)) 2100960930155374 m001 1/exp(GAMMA(1/6))/BesselJ(0,1)^2*LambertW(1)^2 2100960932606966 p004 log(16487/2017) 2100960938561063 m001 exp(Magata)/CareFree^2*sin(Pi/5)^2 2100960939595727 a007 Real Root Of -542*x^4-827*x^3+683*x^2+287*x+479 2100960940987489 l006 ln(7267/8966) 2100960942765458 a007 Real Root Of 282*x^4+642*x^3+275*x^2-955*x+182 2100960948241918 a008 Real Root of (2+5*x+4*x^2+6*x^3+4*x^4-4*x^5) 2100960950577431 b008 -22+Tanh[8/3] 2100960950802184 r009 Re(z^3+c),c=-31/126+32/49*I,n=10 2100960955435547 r005 Im(z^2+c),c=-121/126+11/53*I,n=31 2100960967183308 r002 33th iterates of z^2 + 2100960967750589 m001 Zeta(1/2)*ln(GAMMA(1/24))^2*Zeta(3)^2 2100960980387292 a001 610/521*2207^(3/8) 2100960983718140 m001 StolarskyHarborth^Bloch/Backhouse 2100960987584596 a007 Real Root Of 584*x^4+907*x^3-576*x^2-161*x-763 2100960989308013 m005 (1/3*Pi+1/12)/(1/11*2^(1/2)-2/3) 2100960991707502 r005 Re(z^2+c),c=-11/56+14/41*I,n=28 2100960996817808 r002 39th iterates of z^2 + 2100960997024882 r009 Re(z^3+c),c=-19/70+20/61*I,n=18 2100961003955186 r002 54th iterates of z^2 + 2100961004763190 h001 (1/7*exp(1)+6/11)/(4/7*exp(2)+2/9) 2100961006371234 r005 Re(z^2+c),c=-19/106+7/18*I,n=25 2100961008196715 p001 sum(1/(551*n+48)/(10^n),n=0..infinity) 2100961009068588 a007 Real Root Of -11*x^4+268*x^3+87*x^2-892*x-781 2100961020067945 a007 Real Root Of 524*x^4-846*x^3-756*x^2-575*x+161 2100961031472630 m001 1/FeigenbaumD/Rabbit/exp(Catalan) 2100961033612537 l006 ln(1201/9817) 2100961033612537 p004 log(9817/1201) 2100961033696865 m005 (1/2*exp(1)+7/8)/(5/6*5^(1/2)-4/5) 2100961046897516 s001 sum(exp(-3*Pi)^(n-1)*A183318[n],n=1..infinity) 2100961057134885 r009 Re(z^3+c),c=-23/90+9/32*I,n=12 2100961059563052 m001 ReciprocalFibonacci^GolombDickman-exp(Pi) 2100961063592016 r005 Im(z^2+c),c=-1+52/229*I,n=50 2100961070811708 l002 polylog(5,24/115) 2100961074696218 s002 sum(A069362[n]/(exp(n)+1),n=1..infinity) 2100961078465218 r009 Re(z^3+c),c=-29/82+29/53*I,n=47 2100961084893648 h001 (3/7*exp(2)+5/11)/(1/8*exp(2)+4/5) 2100961088192828 a001 233/1364*2207^(5/8) 2100961102291748 m001 Pi^Zeta(5)-Salem 2100961104165916 l006 ln(6835/8433) 2100961112645943 r005 Im(z^2+c),c=-107/126+3/19*I,n=53 2100961115578528 r009 Im(z^3+c),c=-41/126+8/51*I,n=12 2100961123646680 a001 1149851/233*1836311903^(14/17) 2100961123649577 a001 969323029/233*514229^(14/17) 2100961124830807 m001 (CareFree*Riemann2ndZero-ZetaQ(3))/CareFree 2100961127035001 m001 BesselJ(1,1)^(Pi/(1+3^(1/2))^(1/2)) 2100961127035001 m001 BesselJ(1,1)^(Pi/sqrt(1+sqrt(3))) 2100961127111867 m001 ((1+3^(1/2))^(1/2)-Shi(1))/(GAMMA(7/12)+Mills) 2100961131241503 h001 (5/7*exp(2)+8/11)/(5/7*exp(1)+11/12) 2100961134245390 m001 (Khinchin-Trott)/(arctan(1/2)+AlladiGrinstead) 2100961135170876 a001 322/28657*75025^(6/23) 2100961135661479 a001 322/514229*4807526976^(6/23) 2100961141473415 a007 Real Root Of 473*x^4+906*x^3+301*x^2+559*x-968 2100961144557187 m005 (1/2*Pi+1/5)/(1/11*2^(1/2)+5/7) 2100961146153407 g007 Psi(2,10/11)+Psi(2,3/7)-Psi(2,7/9)-Psi(2,6/7) 2100961148824535 m001 (Shi(1)-ln(2))/(-DuboisRaymond+Tetranacci) 2100961149058399 b008 3+E^(6+Sqrt[E]) 2100961151340673 a007 Real Root Of 65*x^4-30*x^3-501*x^2+22*x+713 2100961162066644 l006 ln(793/6482) 2100961165176021 a007 Real Root Of 243*x^4+342*x^3-543*x^2-821*x-891 2100961167580015 m005 (1/2*exp(1)+1/2)/(2/9*3^(1/2)+1/2) 2100961168781237 r005 Re(z^2+c),c=-7/10+1/102*I,n=2 2100961170959910 p003 LerchPhi(1/32,2,222/101) 2100961182591263 a007 Real Root Of 336*x^4-379*x^3-142*x^2-505*x-104 2100961183848595 a007 Real Root Of -619*x^4-339*x^3+826*x^2+623*x-163 2100961189034262 r005 Im(z^2+c),c=-115/114+13/59*I,n=36 2100961196929198 a001 11/1597*2971215073^(11/19) 2100961215058201 r009 Re(z^3+c),c=-41/122+37/59*I,n=36 2100961217748998 a001 2576*1364^(25/41) 2100961220984530 a007 Real Root Of 363*x^4+344*x^3-853*x^2+62*x+13 2100961222738284 a007 Real Root Of -429*x^4-236*x^3+975*x^2-765*x+259 2100961229440129 m001 Backhouse+StolarskyHarborth^ZetaP(3) 2100961243315782 r009 Re(z^3+c),c=-45/122+29/47*I,n=64 2100961245412217 m001 gamma(2)*GlaisherKinkelin+Riemann2ndZero 2100961248458897 r009 Im(z^3+c),c=-11/114+51/58*I,n=8 2100961259816096 m001 GAMMA(1/4)*sin(Pi/5)-exp(Pi) 2100961259816096 m001 Pi*2^(1/2)/GAMMA(3/4)*sin(1/5*Pi)-exp(Pi) 2100961263482789 a007 Real Root Of 366*x^4+682*x^3-678*x^2-677*x+764 2100961265436666 a007 Real Root Of -676*x^4-875*x^3+627*x^2-930*x+335 2100961277219283 r005 Im(z^2+c),c=5/56+39/49*I,n=3 2100961277418356 p001 sum(1/(131*n+19)/n/(32^n),n=0..infinity) 2100961289363106 l006 ln(6403/7900) 2100961292940994 r005 Im(z^2+c),c=-17/18+37/180*I,n=56 2100961293028751 l006 ln(1178/9629) 2100961294416997 m001 1/Trott*exp(Robbin)*sinh(1) 2100961297841977 a007 Real Root Of 599*x^4+951*x^3-673*x^2+414*x+989 2100961310830857 m001 Zeta(1,-1)/Artin*Weierstrass 2100961312983632 l006 ln(4757/4858) 2100961314222855 a007 Real Root Of 400*x^4+914*x^3-196*x^2-979*x-509 2100961317806514 a007 Real Root Of 182*x^4-799*x^3+573*x^2-866*x-215 2100961326085975 m001 ln(KhintchineLevy)^2*GolombDickman*GAMMA(1/12) 2100961337395230 r008 a(0)=2,K{-n^6,42-5*n^3+15*n^2-63*n} 2100961340888475 m001 Riemann3rdZero/PlouffeB/FeigenbaumAlpha 2100961346896748 a007 Real Root Of 189*x^4-10*x^3-883*x^2-450*x-823 2100961351918358 m008 (1/2*Pi^6+2/3)/(3/4*Pi^5-2/5) 2100961352034545 a007 Real Root Of 306*x^4+35*x^3-918*x^2+578*x-371 2100961353007091 m001 exp(1)/(ln(1+sqrt(2))+ThueMorse) 2100961353007091 m001 exp(1)/(ln(2^(1/2)+1)+ThueMorse) 2100961359577166 m001 Cahen^FibonacciFactorial-FeigenbaumD 2100961368500484 m001 (exp(1)-sin(1)*Sierpinski)/Sierpinski 2100961368826908 a001 6765/521*322^(1/12) 2100961372919447 h001 (7/8*exp(2)+7/11)/(10/11*exp(1)+10/11) 2100961377205637 r005 Im(z^2+c),c=-8/17+18/49*I,n=49 2100961377903681 r005 Re(z^2+c),c=-11/78+26/43*I,n=13 2100961392461695 m001 BesselJ(1,1)*ln(ArtinRank2)^2/exp(1) 2100961395957651 a007 Real Root Of 547*x^4+832*x^3-700*x^2-168*x-205 2100961398590837 a001 9349/8*6765^(19/58) 2100961402753926 a005 (1/cos(34/219*Pi))^396 2100961409426629 m001 (MinimumGamma+Robbin)/(5^(1/2)-GAMMA(3/4)) 2100961420527592 r009 Re(z^3+c),c=-9/29+23/53*I,n=19 2100961432846625 s002 sum(A069362[n]/(exp(n)),n=1..infinity) 2100961440817728 m005 (1/2*exp(1)-2/5)/(7/10*5^(1/2)+3) 2100961444223707 m001 (FeigenbaumB+FransenRobinson)/(Niven+Trott2nd) 2100961453483495 a001 329/6*9349^(37/41) 2100961458809054 a001 646/341*322^(5/12) 2100961460743539 r001 14i'th iterates of 2*x^2-1 of 2100961460772373 r009 Re(z^3+c),c=-2/13+41/48*I,n=12 2100961469173294 p002 log(14^(5/7)+2^(2/3)) 2100961470499645 a007 Real Root Of -717*x^4-978*x^3+972*x^2+112*x+845 2100961472381311 r005 Im(z^2+c),c=-61/64+9/43*I,n=53 2100961482781398 r005 Im(z^2+c),c=-51/106+10/27*I,n=42 2100961482831772 a007 Real Root Of -564*x^4-888*x^3+361*x^2-409*x+301 2100961486176102 a007 Real Root Of -195*x^4-16*x^3+829*x^2+300*x+622 2100961488685295 m001 (GAMMA(11/12)+FeigenbaumAlpha)/(GaussAGM+Thue) 2100961495693405 a007 Real Root Of 362*x^4+959*x^3+224*x^2-670*x-556 2100961501358211 l006 ln(5971/7367) 2100961502075352 h001 (-exp(1)+11)/(-7*exp(4)-12) 2100961511560718 r004 Im(z^2+c),c=-1/11+6/23*I,z(0)=I,n=13 2100961513191593 m001 FeigenbaumKappa*exp(FeigenbaumD)^2/sinh(1)^2 2100961525701854 r005 Im(z^2+c),c=-4/9+29/51*I,n=27 2100961538461538 q001 437/208 2100961548419983 m001 3^(1/2)+FellerTornier^QuadraticClass 2100961552659994 s001 sum(exp(-Pi/4)^(n-1)*A234982[n],n=1..infinity) 2100961552756746 r005 Re(z^2+c),c=-17/94+5/13*I,n=22 2100961556992660 r005 Im(z^2+c),c=-105/106+15/52*I,n=14 2100961557685589 p001 sum((-1)^n/(411*n+329)/n/(64^n),n=1..infinity) 2100961559315257 a007 Real Root Of 614*x^4+223*x^3+983*x^2-226*x-90 2100961562776622 l006 ln(385/3147) 2100961578040271 m001 (KomornikLoreti+Mills)/(MinimumGamma+Trott) 2100961580917388 a001 233/2207*843^(11/14) 2100961584994577 m001 (Salem-Thue)/(CopelandErdos-KhinchinHarmonic) 2100961586845931 a001 2584/2207*322^(1/2) 2100961587922324 m005 (1/3*Zeta(3)-1/8)/(2/3*exp(1)-1/2) 2100961593224149 m004 -101*Sqrt[5]*Pi+5*Cosh[Sqrt[5]*Pi] 2100961598628719 m005 (1/3*Zeta(3)-1/4)/(7/10*2^(1/2)-3/11) 2100961600627912 a007 Real Root Of -288*x^4-824*x^3-644*x^2-321*x+138 2100961600898007 a005 (1/cos(3/152*Pi))^1583 2100961603780292 r002 32i'th iterates of 2*x/(1-x^2) of 2100961610570873 m001 MadelungNaCl*QuadraticClass^Zeta(1/2) 2100961615568695 m005 (1/2*Catalan+5/8)/(2/3*3^(1/2)+4) 2100961621641068 r005 Re(z^2+c),c=-9/94+31/55*I,n=57 2100961632168304 r005 Im(z^2+c),c=-39/94+26/51*I,n=20 2100961636258832 m001 (FeigenbaumD+Gompertz)/(ln(2)/ln(10)+2^(1/3)) 2100961644141710 a003 cos(Pi*19/105)*cos(Pi*31/63) 2100961647015723 m005 (1/2*Catalan-10/11)/(7/9*3^(1/2)+4/5) 2100961653097905 m005 (1/3*Pi+1/3)/(2/3*2^(1/2)-2/7) 2100961655922634 h005 exp(cos(Pi*3/25)-cos(Pi*11/25)) 2100961662680558 a007 Real Root Of -28*x^4-565*x^3+445*x^2-944*x-465 2100961663849188 r005 Re(z^2+c),c=-7/46+15/31*I,n=7 2100961666239114 r005 Im(z^2+c),c=-29/74+9/16*I,n=44 2100961667695910 m001 (GAMMA(19/24)+Trott)/(2^(1/3)-Psi(2,1/3)) 2100961672554452 r009 Re(z^3+c),c=-11/34+15/32*I,n=29 2100961674654820 m005 (1/2*2^(1/2)-7/11)/(1/8*Catalan+2/9) 2100961675502943 m001 (sin(1/5*Pi)+Zeta(1,-1))/(Landau+Porter) 2100961675603789 r009 Re(z^3+c),c=-3/106+14/37*I,n=8 2100961676064644 m001 Rabbit/exp(Porter)^2*GAMMA(1/6) 2100961677572276 a007 Real Root Of -16*x^4-301*x^3+774*x^2+754*x+202 2100961682447960 m001 ln(FeigenbaumB)^2*CareFree/GAMMA(5/6) 2100961689461671 m001 (1+3^(1/2))^(1/2)*DuboisRaymond^(2^(1/3)) 2100961695534916 m001 (Zeta(3)+ln(Pi))/(Zeta(1,-1)+GlaisherKinkelin) 2100961701145103 m008 (1/2*Pi^2-2/3)/(1/5*Pi^4+5/6) 2100961703582195 a001 76/28657*987^(26/41) 2100961706143883 a005 (1/cos(12/209*Pi))^890 2100961713318747 a005 (1/cos(4/45*Pi))^893 2100961716520260 r002 10th iterates of z^2 + 2100961723188849 a001 28657/11*123^(52/57) 2100961742790797 a007 Real Root Of -374*x^4-990*x^3-395*x^2+695*x+155 2100961746421332 l006 ln(5539/6834) 2100961747018818 r005 Re(z^2+c),c=-11/56+14/41*I,n=23 2100961757470845 r009 Im(z^3+c),c=-3/32+3/14*I,n=2 2100961774816627 m001 exp(-Pi)+Ei(1)^GAMMA(5/6) 2100961780469244 m001 TravellingSalesman^Gompertz+GlaisherKinkelin 2100961790999572 s002 sum(A069362[n]/(exp(n)-1),n=1..infinity) 2100961794633790 r005 Im(z^2+c),c=-55/106+23/61*I,n=53 2100961814053238 a007 Real Root Of -459*x^4-558*x^3+246*x^2-985*x+613 2100961815380394 r005 Im(z^2+c),c=-5/38+17/62*I,n=9 2100961832361204 r005 Re(z^2+c),c=-25/94+5/41*I,n=2 2100961835129393 r002 42th iterates of z^2 + 2100961839553377 h005 exp(sin(Pi*4/49)-sin(Pi*25/53)) 2100961843194417 m001 CopelandErdos^Salem+Trott2nd 2100961843485902 l006 ln(1132/9253) 2100961848422193 m001 GAMMA(2/3)*ln(Rabbit)*GAMMA(5/12)^2 2100961849532496 r002 48th iterates of z^2 + 2100961852464818 m001 (PolyaRandomWalk3D-Sierpinski)/(3^(1/3)-Artin) 2100961866156656 a005 (1/cos(19/223*Pi))^592 2100961866327253 a001 514229/18*3571^(10/41) 2100961866456669 a007 Real Root Of 240*x^4-99*x^3-894*x^2+882*x+205 2100961875213778 a007 Real Root Of -467*x^4-611*x^3+790*x^2+341*x+662 2100961885251042 m001 HeathBrownMoroz^Robbin-Riemann2ndZero 2100961886534470 r005 Im(z^2+c),c=-61/62+13/56*I,n=17 2100961901002162 p004 log(15359/1879) 2100961905494242 a001 98209/9*24476^(12/41) 2100961906081006 a007 Real Root Of 476*x^4+407*x^3-894*x^2+839*x+209 2100961906273365 m001 (Pi*2^(1/2)/GAMMA(3/4)-Bloch)/(Kac-PlouffeB) 2100961906519764 s002 sum(A050940[n]/((exp(n)-1)/n),n=1..infinity) 2100961906640714 a001 1346269/18*39603^(4/41) 2100961907662948 m005 (1/3*3^(1/2)-2/11)/(11/10+7/20*5^(1/2)) 2100961926782344 a007 Real Root Of 248*x^4+360*x^3-358*x^2-414*x-783 2100961928009244 a001 98209/9*5778^(14/41) 2100961933170628 a001 3571*6557470319842^(5/17) 2100961937041429 a001 4181/18*15127^(29/41) 2100961938036916 a007 Real Root Of -40*x^4-795*x^3+990*x^2+812*x+956 2100961942268939 m008 (3/5*Pi^4-5)/(5/6*Pi^3-2/5) 2100961942570509 a001 610/843*322^(7/12) 2100961943797788 a007 Real Root Of -423*x^4-723*x^3+540*x^2+375*x-59 2100961950362042 m001 ln(2+3^(1/2))^(KhinchinLevy/BesselJ(1,1)) 2100961980376029 r002 39i'th iterates of 2*x/(1-x^2) of 2100961983477685 m001 1/CareFree^2/exp(Bloch)^2*GAMMA(1/3) 2100961988162005 l006 ln(747/6106) 2100961990141005 a007 Real Root Of 994*x^4-94*x^3+200*x^2-868*x-194 2100961990898527 a003 cos(Pi*3/11)*cos(Pi*40/101) 2100961993547251 m001 1/GAMMA(1/12)*exp(BesselJ(1,1))^2*Zeta(9) 2100961994560520 a007 Real Root Of -29*x^4-631*x^3-447*x^2+240*x+915 2100962002287551 a007 Real Root Of -322*x^4-15*x^3+798*x^2-894*x+734 2100962005897529 r002 30th iterates of z^2 + 2100962007250315 m001 1/cos(1)^3/exp(Magata) 2100962008998387 a001 2255/1926*322^(1/2) 2100962009563936 h001 (11/12*exp(2)+3/4)/(5/11*exp(2)+2/9) 2100962011995810 a001 76/55*987^(15/38) 2100962014462370 a007 Real Root Of -382*x^4+420*x^3-355*x^2+841*x+197 2100962016416826 r002 46th iterates of z^2 + 2100962018801124 a005 (1/cos(7/36*Pi))^350 2100962031590392 a007 Real Root Of -441*x^4-781*x^3-116*x^2-501*x+809 2100962032944115 l006 ln(5107/6301) 2100962032944115 p004 log(6301/5107) 2100962048168255 r002 8th iterates of z^2 + 2100962052077979 a007 Real Root Of 189*x^4+638*x^3+928*x^2+644*x-509 2100962054607332 r005 Im(z^2+c),c=-17/31+11/37*I,n=4 2100962057872277 a001 1134903170/29*7^(19/22) 2100962060328504 a001 199/75025*75025^(22/37) 2100962060771654 m001 CareFree^2/exp(FeigenbaumAlpha)/GAMMA(5/24)^2 2100962064221571 m005 1/4*5^(1/2)/(9/10*Pi-1/6) 2100962068213442 a007 Real Root Of 329*x^4+443*x^3-198*x^2+534*x-306 2100962070589613 a001 17711/15127*322^(1/2) 2100962079575652 a001 15456/13201*322^(1/2) 2100962080322041 m001 (OneNinth+Otter)/(FeigenbaumB+Kac) 2100962080886697 a001 121393/103682*322^(1/2) 2100962081077976 a001 105937/90481*322^(1/2) 2100962081105883 a001 832040/710647*322^(1/2) 2100962081109955 a001 726103/620166*322^(1/2) 2100962081110549 a001 5702887/4870847*322^(1/2) 2100962081110635 a001 4976784/4250681*322^(1/2) 2100962081110648 a001 39088169/33385282*322^(1/2) 2100962081110650 a001 34111385/29134601*322^(1/2) 2100962081110650 a001 267914296/228826127*322^(1/2) 2100962081110650 a001 233802911/199691526*322^(1/2) 2100962081110650 a001 1836311903/1568397607*322^(1/2) 2100962081110650 a001 1602508992/1368706081*322^(1/2) 2100962081110650 a001 12586269025/10749957122*322^(1/2) 2100962081110650 a001 10983760033/9381251041*322^(1/2) 2100962081110650 a001 86267571272/73681302247*322^(1/2) 2100962081110650 a001 75283811239/64300051206*322^(1/2) 2100962081110650 a001 2504730781961/2139295485799*322^(1/2) 2100962081110650 a001 365435296162/312119004989*322^(1/2) 2100962081110650 a001 139583862445/119218851371*322^(1/2) 2100962081110650 a001 53316291173/45537549124*322^(1/2) 2100962081110650 a001 20365011074/17393796001*322^(1/2) 2100962081110650 a001 7778742049/6643838879*322^(1/2) 2100962081110650 a001 2971215073/2537720636*322^(1/2) 2100962081110650 a001 1134903170/969323029*322^(1/2) 2100962081110650 a001 433494437/370248451*322^(1/2) 2100962081110650 a001 165580141/141422324*322^(1/2) 2100962081110651 a001 63245986/54018521*322^(1/2) 2100962081110656 a001 24157817/20633239*322^(1/2) 2100962081110689 a001 9227465/7881196*322^(1/2) 2100962081110916 a001 3524578/3010349*322^(1/2) 2100962081112471 a001 1346269/1149851*322^(1/2) 2100962081123131 a001 514229/439204*322^(1/2) 2100962081196193 a001 196418/167761*322^(1/2) 2100962081696968 a001 75025/64079*322^(1/2) 2100962081935795 m001 (Shi(1)-exp(1/Pi))/(exp(-1/2*Pi)+Conway) 2100962085129329 a001 28657/24476*322^(1/2) 2100962085667628 a001 610/521*843^(3/7) 2100962097915145 a001 439204*514229^(5/17) 2100962099265129 a001 39603*1836311903^(5/17) 2100962108655085 a001 10946/9349*322^(1/2) 2100962110074026 m001 1/GAMMA(1/12)/Sierpinski^2*ln(sinh(1)) 2100962111342632 r005 Re(z^2+c),c=-31/122+1/62*I,n=11 2100962111345647 r009 Re(z^3+c),c=-11/90+41/45*I,n=12 2100962125374265 m001 (-KhinchinLevy+ZetaP(2))/(2^(1/3)-ln(5)) 2100962127496382 a007 Real Root Of -363*x^4-626*x^3-36*x^2-992*x-658 2100962128738457 m007 (-4/5*gamma-8/5*ln(2)-4/5)/(-4/5*gamma-2/3) 2100962129515883 p001 sum((-1)^n/(251*n+136)/n/(12^n),n=1..infinity) 2100962135838584 l006 ln(1109/9065) 2100962137550395 m001 (BesselK(1,1)-Si(Pi))/(-MertensB3+Tetranacci) 2100962138672690 v002 sum(1/(3^n*(9/2*n^2+47/2*n-10)),n=1..infinity) 2100962147691357 r005 Re(z^2+c),c=37/114+13/49*I,n=19 2100962149780597 m001 (Pi+Zeta(1,-1))/(GaussAGM+LandauRamanujan2nd) 2100962151695570 a001 1/96450076809*3^(9/14) 2100962154768307 b008 5+(13*E^2)/6 2100962155156406 a001 233/3*1364^(45/58) 2100962155616313 m008 (2/5*Pi^5-2/3)/(3/5*Pi^4-1/2) 2100962158413433 a007 Real Root Of 623*x^4+985*x^3-360*x^2+730*x+119 2100962163228123 m001 LaplaceLimit*FeigenbaumAlpha*ln(GAMMA(7/24))^2 2100962164245632 r009 Im(z^3+c),c=-17/30+32/53*I,n=30 2100962172187668 r005 Im(z^2+c),c=-3/4+20/149*I,n=7 2100962180550326 a001 28657/18*2207^(26/41) 2100962186416629 a003 sin(Pi*4/79)/sin(Pi*28/103) 2100962190301380 p004 log(33113/4051) 2100962208618209 m001 (3^(1/2)-Zeta(3))/(GAMMA(11/12)+Porter) 2100962222470681 m001 1/Trott^2/Champernowne^2/exp(GAMMA(13/24))^2 2100962225716057 m001 Niven^2/exp(MadelungNaCl)^2*cosh(1)^2 2100962226868931 a001 2/55*75025^(5/32) 2100962228858256 r005 Re(z^2+c),c=-11/102+32/59*I,n=44 2100962230330131 a007 Real Root Of -376*x^4-679*x^3+384*x^2+376*x+124 2100962232116715 a007 Real Root Of 246*x^4+329*x^3-192*x^2+54*x-781 2100962235206867 r005 Im(z^2+c),c=-47/50+10/47*I,n=29 2100962236773462 m001 (MinimumGamma+Trott)/(3^(1/3)+2*Pi/GAMMA(5/6)) 2100962241525808 a007 Real Root Of 372*x^4+898*x^3+119*x^2-85*x+376 2100962248267148 m001 sin(1/12*Pi)+Niven^ln(Pi) 2100962254000900 m001 Chi(1)/(OneNinth^ThueMorse) 2100962257586625 m001 (Riemann2ndZero-ThueMorse)/(ErdosBorwein-Kac) 2100962260427671 r009 Re(z^3+c),c=-33/94+27/50*I,n=60 2100962269903027 a001 4181/3571*322^(1/2) 2100962273347344 r009 Re(z^3+c),c=-15/44+33/64*I,n=28 2100962281268132 a007 Real Root Of -171*x^4+25*x^3+555*x^2-909*x-796 2100962282732401 r009 Im(z^3+c),c=-17/58+30/41*I,n=11 2100962288869974 r005 Im(z^2+c),c=-95/106+13/62*I,n=33 2100962292497906 r005 Re(z^2+c),c=-5/28+25/64*I,n=27 2100962300419687 r009 Re(z^3+c),c=-37/118+23/52*I,n=19 2100962303026928 r009 Im(z^3+c),c=-55/126+3/31*I,n=3 2100962324041214 r009 Re(z^3+c),c=-1/30+28/53*I,n=24 2100962330184776 r009 Re(z^3+c),c=-11/52+44/45*I,n=23 2100962334410416 a001 1364/75025*1597^(1/51) 2100962336815487 m001 (ln(3)+HardHexagonsEntropy)/(Salem+Trott) 2100962338365639 r005 Im(z^2+c),c=-4/7+4/105*I,n=54 2100962356533836 r009 Im(z^3+c),c=-11/25+3/47*I,n=58 2100962357492975 m001 1/exp(Zeta(7))*GAMMA(1/3)*arctan(1/2)^2 2100962362092986 m001 (GAMMA(23/24)-Otter)/(Zeta(5)-GAMMA(5/6)) 2100962362825788 r005 Re(z^2+c),c=8/27+37/48*I,n=2 2100962370118618 r005 Im(z^2+c),c=-41/64+5/39*I,n=14 2100962371664174 a001 233/5778*843^(13/14) 2100962372419976 l006 ln(4675/5768) 2100962379958358 a007 Real Root Of 586*x^4+945*x^3-939*x^2-911*x-423 2100962382837239 r009 Re(z^3+c),c=-15/74+2/51*I,n=2 2100962388178098 a001 233/3571*843^(6/7) 2100962391820522 r009 Re(z^3+c),c=-1/114+14/17*I,n=38 2100962392718972 m001 (ln(3)-Bloch)/(Otter+Trott2nd) 2100962399254988 r005 Im(z^2+c),c=-41/46+1/63*I,n=16 2100962404184088 a001 18/13*2178309^(1/35) 2100962408707536 m001 (AlladiGrinstead+Artin)/(Psi(2,1/3)-Zeta(3)) 2100962412088986 m005 (1/2*Pi-4/9)/(2/7*5^(1/2)-6) 2100962413260923 a003 cos(Pi*6/109)/sin(Pi*16/103) 2100962420346250 a001 1926/7*46368^(23/57) 2100962423733478 r005 Im(z^2+c),c=-29/22+6/79*I,n=32 2100962427142191 r005 Im(z^2+c),c=-49/106+2/35*I,n=6 2100962430096701 r009 Re(z^3+c),c=-19/70+20/61*I,n=21 2100962430768073 m005 (1/2*gamma-5/8)/(6/7*Catalan-5/8) 2100962432400408 r009 Re(z^3+c),c=-15/56+15/47*I,n=7 2100962437074979 m008 (1/5*Pi^5+5/6)/(1/3*Pi-4) 2100962440574438 l006 ln(362/2959) 2100962447985647 p004 log(28307/22943) 2100962448252350 m001 (Grothendieck+Magata)/(Pi^(1/2)+ArtinRank2) 2100962459137205 m001 (exp(Pi)+gamma)/(-Backhouse+Sierpinski) 2100962460752629 r002 29th iterates of z^2 + 2100962462376989 m005 (1/2*3^(1/2)-2/11)/(2/5*Pi+2) 2100962462517854 r009 Re(z^3+c),c=-9/22+5/14*I,n=3 2100962462973665 a007 Real Root Of -467*x^4-495*x^3+827*x^2-10*x+837 2100962463458185 a007 Real Root Of -580*x^4+406*x^3-309*x^2+264*x+74 2100962464475211 a001 34/28143753123*11^(3/13) 2100962465383463 m005 (1/2*3^(1/2)-7/9)/(1/6*Zeta(3)+4) 2100962467691395 r005 Im(z^2+c),c=-53/114+4/11*I,n=32 2100962468814747 r002 52th iterates of z^2 + 2100962469693227 m006 (2/Pi-1/6)/(2/3*ln(Pi)-3) 2100962470621554 a007 Real Root Of 342*x^4+964*x^3+843*x^2+214*x-995 2100962477051119 m001 cos(Pi/5)*exp(cos(1))^2*log(1+sqrt(2)) 2100962495992978 m001 (GAMMA(13/24)-Salem)/(gamma(1)+BesselI(0,2)) 2100962503480986 m001 (MertensB2+Rabbit)/(gamma(3)-FeigenbaumB) 2100962510979196 s001 sum(exp(-2*Pi/3)^n*A152548[n],n=1..infinity) 2100962521743360 r009 Im(z^3+c),c=-37/122+1/6*I,n=13 2100962528408240 r005 Im(z^2+c),c=-7/8+17/93*I,n=27 2100962537988560 m005 (1/3*exp(1)+1/12)/(-6/11+5/11*5^(1/2)) 2100962541514210 r002 11th iterates of z^2 + 2100962541806719 m001 Catalan-LandauRamanujan2nd^Cahen 2100962546264043 m001 (Riemann1stZero-ZetaQ(3))/(Zeta(1/2)+Porter) 2100962547261101 b008 1/160+ArcSinh[4] 2100962556711673 m001 (Landau+MertensB2)/(Sarnak+Trott2nd) 2100962558376898 r009 Re(z^3+c),c=-19/70+20/61*I,n=22 2100962560913615 r009 Re(z^3+c),c=-19/70+20/61*I,n=24 2100962563559231 a007 Real Root Of -574*x^4-716*x^3+942*x^2+142*x+684 2100962564507063 r009 Re(z^3+c),c=-7/27+12/41*I,n=7 2100962569605462 r009 Re(z^3+c),c=-19/70+20/61*I,n=25 2100962572005716 r009 Re(z^3+c),c=-19/70+20/61*I,n=27 2100962572393146 r009 Re(z^3+c),c=-19/70+20/61*I,n=28 2100962572833673 r009 Re(z^3+c),c=-19/70+20/61*I,n=31 2100962572847845 r009 Re(z^3+c),c=-19/70+20/61*I,n=30 2100962572892574 r009 Re(z^3+c),c=-19/70+20/61*I,n=34 2100962572899514 r009 Re(z^3+c),c=-19/70+20/61*I,n=33 2100962572899733 r009 Re(z^3+c),c=-19/70+20/61*I,n=37 2100962572900547 r009 Re(z^3+c),c=-19/70+20/61*I,n=40 2100962572900634 r009 Re(z^3+c),c=-19/70+20/61*I,n=43 2100962572900643 r009 Re(z^3+c),c=-19/70+20/61*I,n=46 2100962572900644 r009 Re(z^3+c),c=-19/70+20/61*I,n=49 2100962572900644 r009 Re(z^3+c),c=-19/70+20/61*I,n=50 2100962572900644 r009 Re(z^3+c),c=-19/70+20/61*I,n=52 2100962572900644 r009 Re(z^3+c),c=-19/70+20/61*I,n=53 2100962572900644 r009 Re(z^3+c),c=-19/70+20/61*I,n=55 2100962572900644 r009 Re(z^3+c),c=-19/70+20/61*I,n=56 2100962572900644 r009 Re(z^3+c),c=-19/70+20/61*I,n=59 2100962572900644 r009 Re(z^3+c),c=-19/70+20/61*I,n=58 2100962572900644 r009 Re(z^3+c),c=-19/70+20/61*I,n=62 2100962572900644 r009 Re(z^3+c),c=-19/70+20/61*I,n=61 2100962572900644 r009 Re(z^3+c),c=-19/70+20/61*I,n=64 2100962572900644 r009 Re(z^3+c),c=-19/70+20/61*I,n=63 2100962572900644 r009 Re(z^3+c),c=-19/70+20/61*I,n=60 2100962572900644 r009 Re(z^3+c),c=-19/70+20/61*I,n=57 2100962572900644 r009 Re(z^3+c),c=-19/70+20/61*I,n=54 2100962572900644 r009 Re(z^3+c),c=-19/70+20/61*I,n=51 2100962572900644 r009 Re(z^3+c),c=-19/70+20/61*I,n=47 2100962572900644 r009 Re(z^3+c),c=-19/70+20/61*I,n=48 2100962572900646 r009 Re(z^3+c),c=-19/70+20/61*I,n=44 2100962572900646 r009 Re(z^3+c),c=-19/70+20/61*I,n=45 2100962572900656 r009 Re(z^3+c),c=-19/70+20/61*I,n=42 2100962572900667 r009 Re(z^3+c),c=-19/70+20/61*I,n=41 2100962572900723 r009 Re(z^3+c),c=-19/70+20/61*I,n=39 2100962572900942 r009 Re(z^3+c),c=-19/70+20/61*I,n=38 2100962572900976 r009 Re(z^3+c),c=-19/70+20/61*I,n=36 2100962572904179 r009 Re(z^3+c),c=-19/70+20/61*I,n=35 2100962572939509 r009 Re(z^3+c),c=-19/70+20/61*I,n=32 2100962573303761 r009 Re(z^3+c),c=-19/70+20/61*I,n=29 2100962576873641 r009 Re(z^3+c),c=-19/70+20/61*I,n=26 2100962579051904 r005 Re(z^2+c),c=-7/50+12/25*I,n=49 2100962591052301 m001 (ln(2)+Porter)/(Stephens+ZetaP(2)) 2100962591565076 l005 ln(tanh(524/53*Pi)) 2100962598033541 q001 1/4759723 2100962599233590 r002 39th iterates of z^2 + 2100962602650924 m001 (BesselK(1,1)+BesselI(0,2))/(Rabbit+Robbin) 2100962607988141 p004 log(27241/22079) 2100962608988754 r009 Re(z^3+c),c=-19/70+20/61*I,n=19 2100962609708429 a007 Real Root Of -513*x^4-830*x^3+48*x^2-625*x+773 2100962610158554 r009 Re(z^3+c),c=-19/70+20/61*I,n=23 2100962617657038 a007 Real Root Of -504*x^4-961*x^3-22*x^2-385*x+196 2100962619364702 a007 Real Root Of -455*x^4-493*x^3+840*x^2-73*x+432 2100962622299796 m001 (OneNinth+PolyaRandomWalk3D)/(ln(3)+MertensB2) 2100962622552198 a007 Real Root Of 4*x^4-175*x^3+195*x^2+240*x+180 2100962624873698 a007 Real Root Of 392*x^4+321*x^3-788*x^2+837*x+576 2100962631669988 m001 exp(1/exp(1))*DuboisRaymond*RenyiParking 2100962645766828 a004 Fibonacci(13)*Lucas(14)/(1/2+sqrt(5)/2)^19 2100962660819884 r005 Re(z^2+c),c=-3/31+14/25*I,n=48 2100962666280481 a001 233/521*521^(8/13) 2100962698338336 r005 Re(z^2+c),c=1/36+13/22*I,n=26 2100962701392795 r002 43th iterates of z^2 + 2100962704597650 a007 Real Root Of -15*x^4+305*x^3+28*x^2-992*x+913 2100962717062545 m001 (Bloch-Landau)/(Magata-ZetaQ(3)) 2100962721002890 r005 Re(z^2+c),c=-5/6+3/194*I,n=56 2100962721333174 m001 GAMMA(1/4)^2*exp(MertensB1)^2/GAMMA(11/12) 2100962731109032 r005 Im(z^2+c),c=-1/118+15/62*I,n=3 2100962746156242 r005 Re(z^2+c),c=-9/46+11/32*I,n=28 2100962755863281 m008 (Pi^5+4/5)/(3/5*Pi^3-4) 2100962758497258 l006 ln(1063/8689) 2100962758497258 p004 log(8689/1063) 2100962778145628 r005 Im(z^2+c),c=-11/29+10/29*I,n=49 2100962781023123 l006 ln(4243/5235) 2100962802248836 m001 (FeigenbaumD+Porter)/(Si(Pi)+Champernowne) 2100962807781046 r005 Im(z^2+c),c=-27/62+9/25*I,n=31 2100962811287600 m001 1/FeigenbaumD^2/DuboisRaymond^2*ln(sqrt(Pi)) 2100962815058137 a001 439204/233*6557470319842^(12/17) 2100962815069028 a001 141422324/233*1836311903^(12/17) 2100962815070150 a001 45537549124/233*514229^(12/17) 2100962815219713 a003 sin(Pi*2/27)*sin(Pi*31/85) 2100962816409387 r002 32th iterates of z^2 + 2100962817775094 a007 Real Root Of 307*x^4+577*x^3-325*x^2-406*x-49 2100962823404131 r005 Re(z^2+c),c=-25/118+23/31*I,n=16 2100962829856598 a001 199/144*28657^(2/49) 2100962834977470 a007 Real Root Of -678*x^4-979*x^3+900*x^2+26*x+213 2100962840929148 a007 Real Root Of 541*x^4+365*x^3-617*x^2-888*x-157 2100962841952479 a007 Real Root Of 925*x^4+55*x^3+114*x^2-668*x+133 2100962853015481 m001 FeigenbaumD-OrthogonalArrays*PrimesInBinary 2100962856274194 a007 Real Root Of -424*x^4-381*x^3+624*x^2-797*x+299 2100962858168705 h001 (-7*exp(6)+3)/(-9*exp(5)-7) 2100962869586443 m001 Landau-PrimesInBinary^arctan(1/3) 2100962875569535 a007 Real Root Of 236*x^4+741*x^3+877*x^2+569*x-402 2100962881999173 r002 31th iterates of z^2 + 2100962884865129 a001 10946/843*123^(1/10) 2100962887342813 r002 27th iterates of z^2 + 2100962899557617 a005 (1/sin(71/231*Pi))^98 2100962904075099 r009 Re(z^3+c),c=-19/70+20/61*I,n=20 2100962907128741 m001 (-Gompertz+PrimesInBinary)/(2^(1/2)+ln(gamma)) 2100962922674195 l006 ln(701/5730) 2100962930327140 a001 233/1364*843^(5/7) 2100962933284810 a007 Real Root Of -35*x^4+953*x^3-835*x^2+796*x+213 2100962933629541 m001 Catalan*ReciprocalFibonacci^Sierpinski 2100962937058049 m008 (1/2*Pi^2+1/6)/(4/5*Pi^5-2) 2100962937720210 r002 34th iterates of z^2 + 2100962938218456 r005 Im(z^2+c),c=-47/98+1/27*I,n=16 2100962940948135 r005 Im(z^2+c),c=-29/30+5/22*I,n=33 2100962940995085 m001 (GAMMA(3/4)-HeathBrownMoroz)/(Pi-Psi(2,1/3)) 2100962941348117 q001 72/3427 2100962942571104 m001 (Landau-MertensB1)/(Riemann1stZero-Sarnak) 2100962944309606 r002 33th iterates of z^2 + 2100962950770287 r005 Im(z^2+c),c=-117/122+1/52*I,n=28 2100962950781986 r005 Im(z^2+c),c=-117/122+1/52*I,n=27 2100962950785734 r005 Im(z^2+c),c=-117/122+1/52*I,n=30 2100962950790914 r005 Im(z^2+c),c=-117/122+1/52*I,n=29 2100962950794086 r005 Im(z^2+c),c=-117/122+1/52*I,n=32 2100962950795401 r005 Im(z^2+c),c=-117/122+1/52*I,n=31 2100962950796318 r005 Im(z^2+c),c=-117/122+1/52*I,n=34 2100962950796579 r005 Im(z^2+c),c=-117/122+1/52*I,n=33 2100962950796776 r005 Im(z^2+c),c=-117/122+1/52*I,n=36 2100962950796819 r005 Im(z^2+c),c=-117/122+1/52*I,n=35 2100962950796847 r005 Im(z^2+c),c=5/122+1/52*I,n=13 2100962950796853 r005 Im(z^2+c),c=-117/122+1/52*I,n=38 2100962950796858 r005 Im(z^2+c),c=5/122+1/52*I,n=14 2100962950796858 r005 Im(z^2+c),c=-117/122+1/52*I,n=37 2100962950796861 r002 52th iterates of z^2 + 2100962950796862 r002 51th iterates of z^2 + 2100962950796863 r002 54th iterates of z^2 + 2100962950796863 r005 Im(z^2+c),c=5/122+1/52*I,n=15 2100962950796863 r005 Im(z^2+c),c=-117/122+1/52*I,n=40 2100962950796863 r002 53th iterates of z^2 + 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=39 2100962950796864 r002 56th iterates of z^2 + 2100962950796864 r002 55th iterates of z^2 + 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=16 2100962950796864 r002 58th iterates of z^2 + 2100962950796864 r002 57th iterates of z^2 + 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=17 2100962950796864 r002 60th iterates of z^2 + 2100962950796864 r002 59th iterates of z^2 + 2100962950796864 r002 62th iterates of z^2 + 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=18 2100962950796864 r002 61th iterates of z^2 + 2100962950796864 r002 64th iterates of z^2 + 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=19 2100962950796864 r002 63th iterates of z^2 + 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=56 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=58 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=55 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=57 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=60 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=59 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=62 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=61 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=64 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=63 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=27 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=28 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=29 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=30 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=31 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=32 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=33 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=40 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=41 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=42 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=43 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=44 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=45 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=46 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=47 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=48 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=49 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=50 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=51 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=52 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=53 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=54 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=55 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=56 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=57 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=58 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=59 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=39 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=38 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=37 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=36 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=35 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=34 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=26 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=25 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=24 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=23 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=22 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=21 2100962950796864 r005 Im(z^2+c),c=5/122+1/52*I,n=20 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=53 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=54 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=51 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=52 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=49 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=50 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=47 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=48 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=45 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=46 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=43 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=44 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=41 2100962950796864 r005 Im(z^2+c),c=-117/122+1/52*I,n=42 2100962950796864 r002 49th iterates of z^2 + 2100962950796866 r002 50th iterates of z^2 + 2100962950796912 r002 47th iterates of z^2 + 2100962950796960 r002 48th iterates of z^2 + 2100962950797219 r005 Im(z^2+c),c=5/122+1/52*I,n=12 2100962950797330 r002 45th iterates of z^2 + 2100962950797772 r002 46th iterates of z^2 + 2100962950800053 r002 43th iterates of z^2 + 2100962950803002 r002 44th iterates of z^2 + 2100962950805498 r005 Im(z^2+c),c=5/122+1/52*I,n=11 2100962950814529 r002 41th iterates of z^2 + 2100962950829563 r005 Im(z^2+c),c=-117/122+1/52*I,n=25 2100962950830539 r002 42th iterates of z^2 + 2100962950870549 r005 Im(z^2+c),c=-117/122+1/52*I,n=26 2100962950876249 r002 39th iterates of z^2 + 2100962950916224 r002 36th iterates of z^2 + 2100962950920742 r005 Im(z^2+c),c=5/122+1/52*I,n=10 2100962950925884 r002 35th iterates of z^2 + 2100962950946373 r002 40th iterates of z^2 + 2100962951051894 r002 37th iterates of z^2 + 2100962951264804 r002 38th iterates of z^2 + 2100962951577502 r005 Im(z^2+c),c=-117/122+1/52*I,n=23 2100962952178384 r005 Im(z^2+c),c=5/122+1/52*I,n=9 2100962952344089 r005 Im(z^2+c),c=-117/122+1/52*I,n=24 2100962957604931 r005 Im(z^2+c),c=-117/122+1/52*I,n=21 2100962960476810 m001 Riemann2ndZero-ln(Pi)*Trott 2100962963116087 r005 Im(z^2+c),c=5/122+1/52*I,n=8 2100962964019800 r005 Im(z^2+c),c=-117/122+1/52*I,n=22 2100962966668885 r005 Im(z^2+c),c=-11/23+17/46*I,n=52 2100962985678453 m001 OneNinth^(Catalan*LandauRamanujan) 2100962989753724 r009 Re(z^3+c),c=-9/74+57/59*I,n=8 2100962993133663 m001 Si(Pi)^Lehmer+TwinPrimes 2100962993133663 m001 TwinPrimes+Si(Pi)^Lehmer 2100962994498127 s002 sum(A065381[n]/(pi^n+1),n=1..infinity) 2100962995061619 r005 Im(z^2+c),c=-117/122+1/52*I,n=19 2100962997461685 m001 1/GAMMA(1/4)*Salem*ln(sqrt(5))^2 2100963004488551 m001 1/ln(FeigenbaumB)*CareFree^2*log(1+sqrt(2))^2 2100963008490178 r005 Im(z^2+c),c=-13/98+14/51*I,n=20 2100963009585373 m001 GAMMA(2/3)^ln(5)/(FeigenbaumMu^ln(5)) 2100963017877304 r009 Re(z^3+c),c=-23/90+9/32*I,n=16 2100963018199638 l006 ln(8054/9937) 2100963021798199 m005 (1/2*gamma-4)/(2/7*exp(1)-3/5) 2100963025468077 a007 Real Root Of -404*x^4-748*x^3+271*x^2-193*x-667 2100963029658975 r005 Im(z^2+c),c=5/122+1/52*I,n=7 2100963035323397 a001 11/86267571272*3^(5/11) 2100963035823496 r005 Im(z^2+c),c=-117/122+1/52*I,n=20 2100963037472544 r005 Re(z^2+c),c=31/90+19/60*I,n=57 2100963038740104 r005 Im(z^2+c),c=-97/110+10/57*I,n=58 2100963039308968 m001 1/exp(Rabbit)^2*FibonacciFactorial^2/sqrt(3) 2100963048632054 m001 (ArtinRank2-Niven)/(Trott2nd+ZetaP(2)) 2100963049544933 m001 (Bloch+Trott2nd)/(Catalan-Zeta(1/2)) 2100963066652076 r005 Im(z^2+c),c=5/122+1/52*I,n=6 2100963069600552 a001 312119004989/3*4807526976^(5/21) 2100963069603146 a001 3461452808002/3*196418^(5/21) 2100963075578563 m001 (gamma(3)-ln(Pi))^(2*Pi/GAMMA(5/6)) 2100963082211885 m001 (HardyLittlewoodC3+Niven)/(Robbin+ZetaP(2)) 2100963084331745 m001 1/Sierpinski/ln(LandauRamanujan)*Zeta(1/2) 2100963084443125 m001 (LambertW(1)+ArtinRank2)/(-CareFree+Mills) 2100963090481940 l006 ln(1040/8501) 2100963090664293 a001 4181/521*322^(1/6) 2100963101399334 r002 21th iterates of z^2 + 2100963106135918 m005 (7/44+1/4*5^(1/2))/(5/6*Pi+4/5) 2100963108315279 s002 sum(A229262[n]/((exp(n)+1)*n),n=1..infinity) 2100963114744229 m001 Cahen^ZetaQ(4)/PlouffeB 2100963123230922 m005 (1/2+1/4*5^(1/2))/(2/9*exp(1)-1/10) 2100963124093700 a007 Real Root Of -534*x^4-771*x^3+274*x^2-563*x+862 2100963130404183 m005 (7/24+1/6*5^(1/2))/(2/9*Zeta(3)-7/12) 2100963148464772 m001 (Paris-Porter)/(cos(1/5*Pi)+Zeta(1/2)) 2100963152787794 a007 Real Root Of 82*x^4-397*x^3-991*x^2+862*x+906 2100963160673369 r009 Re(z^3+c),c=-21/58+4/7*I,n=57 2100963174276409 a007 Real Root Of 268*x^4+133*x^3-907*x^2-300*x-615 2100963175222620 r009 Re(z^3+c),c=-57/98+22/39*I,n=11 2100963178828351 r002 41th iterates of z^2 + 2100963178922362 r002 3th iterates of z^2 + 2100963182245224 p001 sum(1/(523*n+491)/(16^n),n=0..infinity) 2100963185764172 r005 Im(z^2+c),c=-117/122+1/52*I,n=17 2100963185880132 s001 sum(exp(-Pi/2)^n*A017755[n],n=1..infinity) 2100963196775291 a007 Real Root Of -393*x^4+64*x^3-48*x^2+425*x-87 2100963200546217 a001 1/13201*4^(39/53) 2100963203841385 m005 (1/2*Catalan-1/4)/(4/7*2^(1/2)+2/11) 2100963204455040 a001 98209/9*843^(18/41) 2100963210087529 a007 Real Root Of 514*x^4+811*x^3-688*x^2-725*x-980 2100963211893536 m001 GAMMA(5/24)^2*exp(GAMMA(1/4))/sin(Pi/5)^2 2100963214401747 r005 Im(z^2+c),c=-45/122+13/38*I,n=33 2100963219504334 m001 1/exp(GAMMA(17/24))*Khintchine^2/GAMMA(7/24)^2 2100963226047959 a007 Real Root Of 166*x^4+237*x^3-165*x^2+120*x-56 2100963228492229 a001 1/370248451*76^(9/19) 2100963228831759 a007 Real Root Of -42*x^4-886*x^3-58*x^2+392*x+494 2100963234631298 m001 (Pi+Psi(1,1/3))/(Zeta(1,2)+HardyLittlewoodC4) 2100963235549425 m001 1/exp(log(1+sqrt(2)))*Ei(1)^2/sin(1)^2 2100963237141061 a007 Real Root Of -428*x^4-555*x^3+721*x^2-115*x-232 2100963237500154 m005 (1/2*2^(1/2)+7/12)/(2^(1/2)-4/5) 2100963243708418 r002 52th iterates of z^2 + 2100963247656801 m001 (Stephens+ZetaP(4))/(BesselK(0,1)+Khinchin) 2100963263380271 m001 (exp(1/exp(1))+gamma(1))/(GAMMA(13/24)-Niven) 2100963265111429 m001 (FeigenbaumB*Otter-Tribonacci)/Otter 2100963265186290 r005 Im(z^2+c),c=-71/106+17/47*I,n=20 2100963266397778 r005 Re(z^2+c),c=3/16+4/47*I,n=16 2100963267543486 m009 (5/6*Psi(1,3/4)+3/4)/(1/3*Psi(1,1/3)-2) 2100963276678925 m005 (5/6*2^(1/2)+2/5)/(4/5*Pi+5) 2100963282261546 l006 ln(3811/4702) 2100963286827498 a007 Real Root Of -255*x^4+59*x^3+957*x^2-498*x+245 2100963298967029 a001 3571/196418*1597^(1/51) 2100963301603746 r005 Re(z^2+c),c=21/118+4/61*I,n=6 2100963307203192 m001 (ln(2)-ln(3))/(FeigenbaumC+Paris) 2100963320459238 r005 Im(z^2+c),c=-11/29+10/29*I,n=51 2100963321095640 m001 (MinimumGamma+QuadraticClass)/(Bloch+Cahen) 2100963322388223 a003 cos(Pi*24/109)-sin(Pi*31/71) 2100963330812193 m001 (-ln(2+3^(1/2))+Pi^(1/2))/(exp(Pi)+Zeta(1/2)) 2100963330851086 m001 Porter-GaussKuzminWirsing-Zeta(1,2) 2100963332490471 m001 Porter-Si(Pi)+ZetaP(3) 2100963334221566 a001 89/123*123^(7/10) 2100963338783004 s002 sum(A268317[n]/(pi^n-1),n=1..infinity) 2100963346121843 r005 Re(z^2+c),c=-25/122+15/47*I,n=11 2100963346717697 m001 (Tribonacci-Trott)/(GaussAGM-RenyiParking) 2100963351375188 a007 Real Root Of -389*x^4-505*x^3+205*x^2-912*x+75 2100963358061267 a001 29/5*233^(27/41) 2100963360454755 m001 1/cos(1)^2/ln(GAMMA(7/24))^2*log(1+sqrt(2))^2 2100963363646766 m009 (2/3*Psi(1,2/3)-5)/(4/5*Psi(1,1/3)+6) 2100963373316356 r005 Im(z^2+c),c=-49/74+6/31*I,n=11 2100963373440540 m001 Paris^Ei(1)-Riemann2ndZero 2100963375113445 a001 1597/1364*322^(1/2) 2100963378404650 m001 (Ei(1)-exp(Pi))/(-polylog(4,1/2)+GAMMA(7/12)) 2100963378619576 m001 arctan(1/3)^(ln(2)/ln(10))*Otter 2100963383900493 m001 GAMMA(7/12)*exp(GAMMA(1/4))/sqrt(1+sqrt(3))^2 2100963397698583 r005 Im(z^2+c),c=-117/122+1/52*I,n=18 2100963398309301 g005 GAMMA(10/11)^2*GAMMA(4/9)/GAMMA(9/10) 2100963399284273 m001 (Cahen+FeigenbaumDelta)^Psi(1,1/3) 2100963415001093 r009 Re(z^3+c),c=-23/90+9/32*I,n=19 2100963419892162 r005 Im(z^2+c),c=-9/29+15/46*I,n=14 2100963420065221 r005 Re(z^2+c),c=-53/54+6/29*I,n=58 2100963420423340 r005 Re(z^2+c),c=-11/58+21/64*I,n=5 2100963420740640 m001 Champernowne^Zeta(1,2)*Otter 2100963431331603 r009 Re(z^3+c),c=-23/90+9/32*I,n=20 2100963434270508 r009 Re(z^3+c),c=-23/90+9/32*I,n=23 2100963434276973 r009 Re(z^3+c),c=-23/90+9/32*I,n=22 2100963434717774 r009 Re(z^3+c),c=-23/90+9/32*I,n=26 2100963434752510 r009 Re(z^3+c),c=-23/90+9/32*I,n=29 2100963434754317 r009 Re(z^3+c),c=-23/90+9/32*I,n=30 2100963434754402 r009 Re(z^3+c),c=-23/90+9/32*I,n=32 2100963434754430 r009 Re(z^3+c),c=-23/90+9/32*I,n=33 2100963434754463 r009 Re(z^3+c),c=-23/90+9/32*I,n=36 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=39 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=42 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=43 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=46 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=45 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=49 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=52 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=53 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=56 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=55 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=59 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=62 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=63 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=64 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=61 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=60 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=58 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=57 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=54 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=50 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=51 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=48 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=47 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=40 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=44 2100963434754466 r009 Re(z^3+c),c=-23/90+9/32*I,n=41 2100963434754467 r009 Re(z^3+c),c=-23/90+9/32*I,n=38 2100963434754467 r009 Re(z^3+c),c=-23/90+9/32*I,n=35 2100963434754467 r009 Re(z^3+c),c=-23/90+9/32*I,n=37 2100963434754485 r009 Re(z^3+c),c=-23/90+9/32*I,n=34 2100963434754806 r009 Re(z^3+c),c=-23/90+9/32*I,n=31 2100963434758676 r009 Re(z^3+c),c=-23/90+9/32*I,n=28 2100963434760150 r009 Re(z^3+c),c=-23/90+9/32*I,n=27 2100963434778539 r009 Re(z^3+c),c=-23/90+9/32*I,n=25 2100963434952173 r009 Re(z^3+c),c=-23/90+9/32*I,n=24 2100963436043850 r005 Im(z^2+c),c=-7/8+41/236*I,n=3 2100963437482528 l006 ln(339/2771) 2100963438681231 r009 Re(z^3+c),c=-23/90+9/32*I,n=21 2100963439693943 a001 9349/514229*1597^(1/51) 2100963440668128 a007 Real Root Of 438*x^4+473*x^3-974*x^2-266*x-407 2100963447623190 r005 Re(z^2+c),c=-21/86+4/33*I,n=4 2100963448901450 m006 (1/6*exp(2*Pi)-2/5)/(1/5*ln(Pi)+4) 2100963457401743 a001 5/1875749*18^(5/7) 2100963460225723 a001 24476/1346269*1597^(1/51) 2100963461221114 a007 Real Root Of -606*x^4-839*x^3+785*x^2-401*x-281 2100963463920692 m001 Ei(1)^2/Lehmer*ln(cos(Pi/12)) 2100963465072618 a001 13201/726103*1597^(1/51) 2100963468945114 r005 Im(z^2+c),c=2/15+10/59*I,n=5 2100963471525434 r009 Re(z^3+c),c=-23/90+9/32*I,n=17 2100963472915060 a001 15127/832040*1597^(1/51) 2100963478528653 r002 7th iterates of z^2 + 2100963480842679 q001 1/4759721 2100963487513665 a007 Real Root Of 26*x^4-333*x^3-934*x^2-396*x-304 2100963489699298 r009 Re(z^3+c),c=-23/90+9/32*I,n=18 2100963492466353 r009 Re(z^3+c),c=-29/110+15/49*I,n=7 2100963492480004 h001 (9/10*exp(2)+5/6)/(4/11*exp(2)+7/8) 2100963497019629 m001 1/sin(1)*exp(Champernowne)^2*sinh(1)^2 2100963500376212 a007 Real Root Of -380*x^4-963*x^3-46*x^2+859*x+481 2100963503150440 a001 1597/2207*322^(7/12) 2100963504271821 r005 Re(z^2+c),c=-34/31+10/47*I,n=4 2100963507804466 a007 Real Root Of 243*x^4+289*x^3-708*x^2-304*x+432 2100963514901367 m005 (1/4*gamma+3/4)/(2/5*Pi+3) 2100963517719237 a007 Real Root Of -408*x^4-982*x^3-278*x^2+439*x+992 2100963519616380 m001 FeigenbaumDelta/(Zeta(3)+Riemann2ndZero) 2100963523385645 m009 (3*Pi^2-1/5)/(20/3*Catalan+5/6*Pi^2-1/3) 2100963526051250 r002 29th iterates of z^2 + 2100963526667958 a001 1926/105937*1597^(1/51) 2100963527910958 m001 (gamma+Catalan)/(-Champernowne+DuboisRaymond) 2100963528869377 r009 Re(z^3+c),c=-29/90+19/39*I,n=12 2100963532708973 s002 sum(A138115[n]/(n^3*2^n-1),n=1..infinity) 2100963542415008 m001 Rabbit*Backhouse*ln(GAMMA(3/4)) 2100963546890982 m001 (Kolakoski+TwinPrimes)/(BesselJ(0,1)+gamma(1)) 2100963560310068 b008 Sqrt[17]-8*Pi 2100963561134954 r009 Im(z^3+c),c=-49/118+2/21*I,n=23 2100963568388978 m001 (Zeta(1,-1)+FeigenbaumAlpha)/(Lehmer-Niven) 2100963569418528 m001 1/GAMMA(1/4)^2/GAMMA(1/3)/ln(sin(Pi/12)) 2100963578054945 l006 ln(7190/8871) 2100963586867156 a007 Real Root Of -428*x^4-763*x^3-95*x^2-659*x+298 2100963589063410 m001 cos(Pi/5)^2*exp(OneNinth)^2*sin(Pi/12) 2100963589286019 l006 ln(9043/9235) 2100963589495250 a007 Real Root Of -454*x^4-540*x^3+613*x^2-535*x+8 2100963592070063 m001 1+Pi*2^(1/2)/GAMMA(3/4)*GaussKuzminWirsing 2100963594273147 m001 (-GAMMA(13/24)+KhinchinLevy)/(Shi(1)-sin(1)) 2100963595038066 m008 (3/4*Pi^2+2/3)/(2/5*Pi^6-1/2) 2100963598726961 m009 (2*Psi(1,3/4)-1/4)/(1/4*Pi^2-1/6) 2100963618922251 a007 Real Root Of 379*x^4+909*x^3+689*x^2+731*x-460 2100963619161706 m001 Zeta(3)^cos(1/12*Pi)*Zeta(1,-1)^cos(1/12*Pi) 2100963620963723 m005 (1/5*Catalan+1/6)/(5/6*exp(1)-3/5) 2100963624364796 g005 GAMMA(5/11)^2/GAMMA(5/9)/GAMMA(5/6) 2100963628132381 m005 (1/2*3^(1/2)-5/8)/(1/5*5^(1/2)+7/10) 2100963638001233 a007 Real Root Of 391*x^4+657*x^3+158*x^2+661*x-834 2100963641626680 a007 Real Root Of 385*x^4+709*x^3+64*x^2+185*x-820 2100963648295614 m001 BesselK(1,1)^ErdosBorwein*Weierstrass 2100963662221293 m001 Salem/Riemann2ndZero*exp(GAMMA(1/4)) 2100963674660791 a007 Real Root Of -560*x^4-965*x^3+687*x^2+710*x+421 2100963678709568 r005 Im(z^2+c),c=-7/10+46/183*I,n=61 2100963693600561 s001 sum(exp(-4*Pi)^(n-1)*A184367[n],n=1..infinity) 2100963707266779 r002 24th iterates of z^2 + 2100963711893262 m001 (Zeta(5)-ln(2))/(exp(1/Pi)+MertensB1) 2100963716067420 a007 Real Root Of -722*x^4-918*x^3+979*x^2-581*x+12 2100963717195959 b008 ProductLog[LogIntegral[45]] 2100963725142523 m001 (OneNinth-Sarnak)/(ln(Pi)+KomornikLoreti) 2100963730836297 a001 4181/5778*322^(7/12) 2100963731405724 m001 1/Catalan*ln(Conway)/GAMMA(19/24)^2 2100963743657829 m001 (Riemann1stZero+Tribonacci)/(Conway-Landau) 2100963755416621 r005 Re(z^2+c),c=-2/3+32/117*I,n=9 2100963764055222 a001 10946/15127*322^(7/12) 2100963765462034 r005 Im(z^2+c),c=-39/94+16/33*I,n=15 2100963768901798 a001 28657/39603*322^(7/12) 2100963769608904 a001 75025/103682*322^(7/12) 2100963769712069 a001 196418/271443*322^(7/12) 2100963769727121 a001 514229/710647*322^(7/12) 2100963769729317 a001 1346269/1860498*322^(7/12) 2100963769729637 a001 3524578/4870847*322^(7/12) 2100963769729684 a001 9227465/12752043*322^(7/12) 2100963769729691 a001 24157817/33385282*322^(7/12) 2100963769729692 a001 63245986/87403803*322^(7/12) 2100963769729692 a001 165580141/228826127*322^(7/12) 2100963769729692 a001 433494437/599074578*322^(7/12) 2100963769729692 a001 1134903170/1568397607*322^(7/12) 2100963769729692 a001 2971215073/4106118243*322^(7/12) 2100963769729692 a001 7778742049/10749957122*322^(7/12) 2100963769729692 a001 20365011074/28143753123*322^(7/12) 2100963769729692 a001 53316291173/73681302247*322^(7/12) 2100963769729692 a001 139583862445/192900153618*322^(7/12) 2100963769729692 a001 10610209857723/14662949395604*322^(7/12) 2100963769729692 a001 591286729879/817138163596*322^(7/12) 2100963769729692 a001 225851433717/312119004989*322^(7/12) 2100963769729692 a001 86267571272/119218851371*322^(7/12) 2100963769729692 a001 32951280099/45537549124*322^(7/12) 2100963769729692 a001 12586269025/17393796001*322^(7/12) 2100963769729692 a001 4807526976/6643838879*322^(7/12) 2100963769729692 a001 1836311903/2537720636*322^(7/12) 2100963769729692 a001 701408733/969323029*322^(7/12) 2100963769729692 a001 267914296/370248451*322^(7/12) 2100963769729692 a001 102334155/141422324*322^(7/12) 2100963769729693 a001 39088169/54018521*322^(7/12) 2100963769729695 a001 14930352/20633239*322^(7/12) 2100963769729713 a001 5702887/7881196*322^(7/12) 2100963769729835 a001 2178309/3010349*322^(7/12) 2100963769730674 a001 832040/1149851*322^(7/12) 2100963769736423 a001 317811/439204*322^(7/12) 2100963769775829 a001 121393/167761*322^(7/12) 2100963770045919 a001 46368/64079*322^(7/12) 2100963771897147 a001 17711/24476*322^(7/12) 2100963780031913 a007 Real Root Of -292*x^4-548*x^3+254*x^2+425*x+379 2100963784585648 a001 6765/9349*322^(7/12) 2100963784609955 r005 Re(z^2+c),c=13/58+13/30*I,n=54 2100963789345524 a001 1149851*6557470319842^(3/17) 2100963789347202 a001 4870847*1836311903^(3/17) 2100963789347389 a001 20633239*514229^(3/17) 2100963792764007 a007 Real Root Of 362*x^4+212*x^3-930*x^2+149*x-669 2100963793200561 r009 Im(z^3+c),c=-23/42+21/62*I,n=63 2100963793585179 a007 Real Root Of -537*x^4-736*x^3+445*x^2-704*x+194 2100963800541364 l006 ln(994/8125) 2100963800576775 m005 (1/3*2^(1/2)-1/10)/(2/7*Zeta(3)-1/6) 2100963801707307 a007 Real Root Of 449*x^4+934*x^3-69*x^2-228*x-261 2100963804051715 r005 Re(z^2+c),c=-3/31+31/55*I,n=41 2100963804198702 r005 Im(z^2+c),c=-8/13+15/47*I,n=37 2100963812105752 m001 (ln(2)-Artin)/(Thue+TwinPrimes) 2100963812362275 r005 Im(z^2+c),c=-9/14+19/56*I,n=60 2100963818589305 r005 Im(z^2+c),c=-19/40+7/19*I,n=58 2100963820721815 a007 Real Root Of -313*x^4-433*x^3+471*x^2+120*x+256 2100963824523433 r009 Im(z^3+c),c=-49/114+3/38*I,n=23 2100963836891174 a007 Real Root Of -585*x^4-966*x^3+358*x^2-63*x+727 2100963837931106 r009 Im(z^3+c),c=-8/19+4/45*I,n=29 2100963848457108 m001 Paris^Psi(2,1/3)/Totient 2100963861967508 m001 AlladiGrinstead-ArtinRank2*MinimumGamma 2100963871553935 a001 2584/3571*322^(7/12) 2100963876391054 a007 Real Root Of -259*x^4-305*x^3+332*x^2-261*x+204 2100963882209528 a007 Real Root Of 214*x^4-8*x^3-676*x^2+345*x-535 2100963886636873 r009 Re(z^3+c),c=-23/66+8/15*I,n=63 2100963888299817 r009 Re(z^3+c),c=-23/90+9/32*I,n=15 2100963888909836 m001 1/Zeta(1,2)*GAMMA(13/24)*ln(sqrt(2))^2 2100963895095800 a001 2207/121393*1597^(1/51) 2100963908242274 r005 Im(z^2+c),c=-3/23+45/53*I,n=33 2100963911665069 l006 ln(3379/4169) 2100963912796620 r005 Re(z^2+c),c=-15/122+12/23*I,n=24 2100963913402550 m001 (gamma(1)*GAMMA(11/12)+ErdosBorwein)/gamma(1) 2100963913831331 r005 Im(z^2+c),c=-53/82+8/45*I,n=9 2100963915989456 m001 1/GAMMA(1/6)*FibonacciFactorial/exp(sinh(1))^2 2100963945641488 a007 Real Root Of -44*x^4+198*x^3+519*x^2-105*x+182 2100963945809494 m001 FeigenbaumMu^cos(1/5*Pi)/MertensB3 2100963950249197 r005 Im(z^2+c),c=-117/122+1/52*I,n=15 2100963979766566 r002 64th iterates of z^2 + 2100963981013775 m005 (1/2*Pi-4/5)/(3/8*gamma-7/12) 2100963986687007 r009 Re(z^3+c),c=-31/86+19/41*I,n=3 2100963987375704 a007 Real Root Of 153*x^4-918*x^3+725*x^2+932*x+374 2100963988445045 l006 ln(655/5354) 2100963991372278 m005 (1/2*3^(1/2)-6/7)/(1/10*gamma-1/10) 2100963992860762 h005 exp(sin(Pi*1/17)+sin(Pi*10/53)) 2100964006749244 r005 Im(z^2+c),c=21/64+4/57*I,n=31 2100964008986274 a007 Real Root Of 477*x^4+739*x^3-936*x^2-902*x-204 2100964010297558 a007 Real Root Of -378*x^4-909*x^3-204*x^2+510*x+907 2100964014967229 m001 BesselI(0,1)^sin(1)+ln(1+sqrt(2)) 2100964014967229 m001 BesselI(0,1)^sin(1)+ln(2^(1/2)+1) 2100964018440840 m007 (-4/5*gamma-8/5*ln(2)-5/6)/(-1/4*gamma-1) 2100964020142946 m001 (Zeta(1,2)+BesselK(1,1))/(Niven-OneNinth) 2100964027527949 m001 (GaussAGM+Khinchin)/(Ei(1,1)+Backhouse) 2100964028644204 r002 15th iterates of z^2 + 2100964031995844 r005 Re(z^2+c),c=-9/94+22/39*I,n=60 2100964037781966 p003 LerchPhi(1/10,5,99/182) 2100964044194493 p003 LerchPhi(1/1024,6,89/217) 2100964069094586 a001 2207/55*377^(12/43) 2100964082863623 m001 (BesselI(0,1)+gamma(2))/(-BesselK(1,1)+Robbin) 2100964086188279 r005 Im(z^2+c),c=-18/23+1/38*I,n=4 2100964087210634 a007 Real Root Of 918*x^4+570*x^3-43*x^2-691*x+140 2100964087773337 s002 sum(A217198[n]/((exp(n)+1)*n),n=1..infinity) 2100964095548179 r005 Im(z^2+c),c=-1+25/114*I,n=6 2100964095610311 m001 (Ei(1,1)-FeigenbaumC)/(ln(2)+Zeta(1/2)) 2100964111548200 a001 1/416020*4181^(13/50) 2100964124553961 a007 Real Root Of 432*x^4+318*x^3+502*x^2-953*x+2 2100964128196081 m001 Riemann3rdZero*ln(GAMMA(3/4))^3 2100964133571497 h001 (3/11*exp(1)+4/7)/(5/6*exp(2)+1/11) 2100964138480314 r005 Re(z^2+c),c=27/94+12/55*I,n=14 2100964145427193 r005 Im(z^2+c),c=-29/46+1/22*I,n=32 2100964154420604 a007 Real Root Of 122*x^4+88*x^3-106*x^2+50*x-988 2100964162222140 a003 cos(Pi*15/83)-cos(Pi*31/110) 2100964164601869 s002 sum(A047931[n]/(pi^n-1),n=1..infinity) 2100964175479962 h001 (7/12*exp(1)+7/10)/(1/3*exp(1)+2/11) 2100964175657111 m009 (5*Psi(1,2/3)-1/6)/(16/5*Catalan+2/5*Pi^2+1/3) 2100964178479613 a001 47/4181*2504730781961^(10/11) 2100964180799550 l006 ln(971/7937) 2100964180799550 p004 log(7937/971) 2100964181158981 r005 Re(z^2+c),c=-133/118+3/10*I,n=8 2100964181400267 a007 Real Root Of 501*x^4+623*x^3+56*x^2-825*x-171 2100964184536945 m001 (arctan(1/3)+ZetaP(2))/(sin(1/5*Pi)-Ei(1,1)) 2100964191914972 s002 sum(A162264[n]/(n^3*pi^n+1),n=1..infinity) 2100964202487861 m001 (BesselI(1,2)+Bloch)/(FeigenbaumD-Sierpinski) 2100964208840684 a007 Real Root Of -31*x^4-683*x^3-681*x^2-355*x-850 2100964235511368 h001 (10/11*exp(2)+1/4)/(8/9*exp(1)+9/10) 2100964247081384 a007 Real Root Of 72*x^4-366*x^3-634*x^2+649*x-635 2100964249933087 a008 Real Root of x^4-x^3-22*x^2-x+89 2100964250309466 r005 Im(z^2+c),c=-13/110+14/47*I,n=3 2100964251059483 m001 Zeta(1,-1)-exp(1/exp(1))*Totient 2100964257313904 a007 Real Root Of 190*x^4+455*x^3+641*x^2-55*x-36 2100964261802441 r002 5th iterates of z^2 + 2100964262611240 h005 exp(cos(Pi*9/44)-cos(Pi*13/27)) 2100964270526491 a007 Real Root Of -175*x^4-69*x^3+77*x^2-831*x+684 2100964276570777 r005 Re(z^2+c),c=-13/70+31/45*I,n=34 2100964276576817 r009 Re(z^3+c),c=-5/46+29/35*I,n=20 2100964288791028 a001 1568397607*144^(1/17) 2100964290839382 l006 ln(6326/7805) 2100964309548031 a007 Real Root Of 471*x^4+486*x^3-879*x^2+821*x+935 2100964314781323 r005 Re(z^2+c),c=-25/102+3/37*I,n=3 2100964314872495 r005 Im(z^2+c),c=-31/70+19/53*I,n=27 2100964337736350 m001 (-MertensB3+Paris)/(3^(1/2)-ln(Pi)) 2100964339728582 m006 (2/3*ln(Pi)-1)/(2/5/Pi+1) 2100964346051195 p003 LerchPhi(1/1024,5,275/127) 2100964364299408 a001 505019158607/5*3^(2/3) 2100964374637356 m003 20-Cos[1/2+Sqrt[5]/2]+2*Log[1/2+Sqrt[5]/2] 2100964378390154 m005 (3/28+1/4*5^(1/2))/(7/9*Pi+8/11) 2100964378460947 m005 (1/3*gamma-1/4)/(3/11*exp(1)+2) 2100964378789858 a007 Real Root Of -498*x^4-768*x^3+403*x^2-563*x-381 2100964381308763 m005 (1/2*Pi-6/11)/(2/3*3^(1/2)-2/3) 2100964386221993 m001 1/GolombDickman*ArtinRank2*exp(Porter)^2 2100964405112402 m001 Psi(2,1/3)^(ln(5)*Bloch) 2100964407289592 m001 GAMMA(2/3)^KomornikLoreti*GAMMA(2/3)^Robbin 2100964408599510 m005 (1/2*gamma+3/5)/(7/11*5^(1/2)-1) 2100964418979047 a001 322/75025*75025^(16/29) 2100964419280667 r009 Re(z^3+c),c=-10/31+25/54*I,n=14 2100964431389309 m005 (1/2*5^(1/2)-6/7)/(7/9*Catalan-7/10) 2100964438157182 r005 Im(z^2+c),c=-31/66+1/28*I,n=24 2100964442753831 m001 (Zeta(3)+CopelandErdos)/(Thue-ZetaP(3)) 2100964461531880 a007 Real Root Of 694*x^4+327*x^3+913*x^2-830*x-213 2100964467643754 a001 987/1364*322^(7/12) 2100964469096476 a001 3571/21*63245986^(10/11) 2100964500095289 a007 Real Root Of 326*x^4+530*x^3-284*x^2+466*x+796 2100964504373177 r005 Im(z^2+c),c=-83/56+3/25*I,n=3 2100964504947138 m001 Pi*2^(1/2)/GAMMA(3/4)-Pi*MasserGramainDelta 2100964506478764 h005 exp(cos(Pi*7/30)*sin(Pi*17/35)) 2100964506491150 a001 141422324/233*6557470319842^(10/17) 2100964506491150 a001 17393796001/233*1836311903^(10/17) 2100964506492085 a001 2139295485799/233*514229^(10/17) 2100964510892552 a001 89/521*199^(10/11) 2100964512969585 m001 ln(2)/(Robbin^Khinchin) 2100964513325258 m001 (Chi(1)+Zeta(3)*OrthogonalArrays)/Zeta(3) 2100964529471050 m001 1/GAMMA(1/6)^2*ln(Backhouse)/gamma 2100964532659156 a001 2584/199*76^(1/9) 2100964533577074 a007 Real Root Of 317*x^4+307*x^3-396*x^2+281*x-991 2100964539206484 m005 (1/2*Catalan-5/11)/(1/2*gamma-1/8) 2100964544282412 m001 (Zeta(3)+MadelungNaCl)/OrthogonalArrays 2100964548848485 r005 Im(z^2+c),c=23/114+30/59*I,n=4 2100964566294395 m001 (Porter+ReciprocalLucas)/(Ei(1,1)-Si(Pi)) 2100964570914432 m001 (Zeta(5)-ln(2))/(Ei(1)-sin(1/12*Pi)) 2100964571283290 r005 Im(z^2+c),c=-11/15+10/61*I,n=33 2100964571635980 m009 (2*Pi^2-5/6)/(40*Catalan+5*Pi^2+4) 2100964579308574 r009 Im(z^3+c),c=-39/74+1/2*I,n=24 2100964579508928 l006 ln(316/2583) 2100964587457370 r005 Im(z^2+c),c=-2/3+29/103*I,n=43 2100964587505806 m001 1/Catalan/FeigenbaumB*ln(GAMMA(19/24)) 2100964592303791 r005 Re(z^2+c),c=-5/94+14/17*I,n=39 2100964595680815 a001 987/2207*322^(2/3) 2100964603009504 r005 Im(z^2+c),c=-5/42+29/53*I,n=3 2100964604574645 m005 (1/2*3^(1/2)+3/5)/(9/11*Zeta(3)-2/7) 2100964606236122 r009 Im(z^3+c),c=-25/82+36/47*I,n=5 2100964623349860 s002 sum(A160992[n]/((exp(n)+1)/n),n=1..infinity) 2100964631382143 r009 Re(z^3+c),c=-19/70+20/61*I,n=16 2100964633836943 a001 439204/21*317811^(10/11) 2100964634562312 r009 Re(z^3+c),c=-9/31+13/34*I,n=10 2100964637250444 m001 (Bloch-PlouffeB)/(ln(2)+ln(3)) 2100964638086542 a007 Real Root Of 416*x^4+871*x^3-150*x^2-181*x+254 2100964642328044 a007 Real Root Of -530*x^4-953*x^3+416*x^2-102*x-562 2100964651813748 r005 Im(z^2+c),c=-5/8+2/113*I,n=10 2100964657196879 m005 (1/6*2^(1/2)-1/2)/(1/2*Catalan+4/5) 2100964669644777 a007 Real Root Of -31*x^4-606*x^3+940*x^2-201*x+949 2100964671399504 m001 (Zeta(3)+exp(1/exp(1)))/(gamma(1)+MertensB3) 2100964672028391 m001 Riemann2ndZero/(MertensB3^gamma(3)) 2100964673672304 m001 (-ln(Pi)+KhinchinLevy)/(2^(1/2)+gamma) 2100964675331664 r005 Im(z^2+c),c=-41/66+1/51*I,n=11 2100964681186629 a007 Real Root Of -357*x^4-394*x^3+641*x^2+243*x+983 2100964687628973 m001 PrimesInBinary^(Pi^(1/2)) 2100964687650564 r005 Re(z^2+c),c=-11/78+20/37*I,n=10 2100964692315826 a001 2584/521*322^(1/4) 2100964698534825 a007 Real Root Of -937*x^4-664*x^3-532*x^2+997*x-178 2100964700705853 s002 sum(A178195[n]/(64^n-1),n=1..infinity) 2100964701211660 s002 sum(A011098[n]/((pi^n+1)/n),n=1..infinity) 2100964707244197 m001 (MertensB2+Sierpinski)/(sin(1)+ln(2^(1/2)+1)) 2100964710026753 r005 Re(z^2+c),c=-17/14+20/237*I,n=34 2100964724227768 a001 843/1346269*6765^(7/51) 2100964725596747 l006 ln(2947/3636) 2100964726116878 m001 1/GAMMA(5/24)*GAMMA(1/24)^2*exp(sin(Pi/12))^2 2100964728366869 r005 Re(z^2+c),c=4/19+5/42*I,n=6 2100964742434863 a001 (2+2^(1/2))^(1086/47) 2100964751635077 m001 PrimesInBinary^LandauRamanujan+BesselI(1,2) 2100964752223053 m001 (2^(1/3))^GAMMA(1/4)/((2^(1/3))^ThueMorse) 2100964770477819 r005 Re(z^2+c),c=2/5+11/52*I,n=47 2100964783301112 s002 sum(A032919[n]/(n*2^n+1),n=1..infinity) 2100964783629015 a001 54018521/21*1597^(10/11) 2100964786941125 m001 (1+HeathBrownMoroz)/(Weierstrass+ZetaQ(4)) 2100964793460889 r005 Re(z^2+c),c=-19/90+11/46*I,n=4 2100964796750771 m001 BesselI(0,2)^(Pi*Salem) 2100964807463119 a001 1/75640*4181^(31/51) 2100964808097982 r005 Im(z^2+c),c=1/122+22/29*I,n=10 2100964813121403 r005 Re(z^2+c),c=-21/118+20/51*I,n=24 2100964821036604 m005 (1/3*Catalan+1/12)/(89/88+3/8*5^(1/2)) 2100964821706004 r005 Re(z^2+c),c=-11/102+29/51*I,n=15 2100964824333278 m005 (1/2*Pi+1/2)/(4/5*3^(1/2)-2/5) 2100964826228330 r005 Im(z^2+c),c=-117/122+1/52*I,n=16 2100964827145028 a007 Real Root Of -674*x^4-993*x^3+267*x^2-849*x+961 2100964837935035 a007 Real Root Of 496*x^4+812*x^3-124*x^2+677*x-164 2100964843824835 m005 (1/2*Pi+1/8)/(3*exp(1)-1/12) 2100964858943532 a005 (1/cos(22/79*Pi))^69 2100964863766467 m001 Bloch+ReciprocalLucas^Sarnak 2100964869580897 m001 HardyLittlewoodC5-MertensB2+PrimesInBinary 2100964875251295 r009 Im(z^3+c),c=-11/30+5/37*I,n=6 2100964881027832 r005 Re(z^2+c),c=-7/29+9/56*I,n=11 2100964881553146 m001 1/cos(Pi/5)^2*ln(GAMMA(1/24))^2*sinh(1)^2 2100964885171078 r005 Im(z^2+c),c=-13/16+8/61*I,n=53 2100964890311855 r005 Re(z^2+c),c=-7/50+23/48*I,n=22 2100964892590574 m001 (3^(1/3))*Robbin^2*exp(Zeta(3)) 2100964905778596 a007 Real Root Of -949*x^4-92*x^3+26*x^2+669*x-139 2100964906086183 a007 Real Root Of 45*x^4+943*x^3-26*x^2+492*x-761 2100964917303570 r005 Re(z^2+c),c=-17/14+2/53*I,n=10 2100964918776805 a007 Real Root Of -453*x^4-725*x^3+504*x^2-337*x-830 2100964922064626 a007 Real Root Of 183*x^4+253*x^3+354*x^2+890*x-912 2100964927089651 r009 Re(z^3+c),c=-59/114+16/37*I,n=12 2100964946775877 m005 (1/2*Zeta(3)-1/4)/(1/2*Pi+1/10) 2100964953396151 a007 Real Root Of -405*x^4-460*x^3+309*x^2-922*x+324 2100964958061221 r005 Im(z^2+c),c=-45/64+4/49*I,n=26 2100964964826776 h001 (4/11*exp(2)+1/8)/(1/11*exp(2)+2/3) 2100964969592683 a007 Real Root Of 282*x^4+785*x^3+790*x^2+977*x+351 2100964973429017 m001 (Kolakoski-Salem)/(GAMMA(19/24)+Cahen) 2100964975996383 r004 Re(z^2+c),c=-31/22+3/17*I,z(0)=-1,n=3 2100964977710206 a007 Real Root Of -887*x^4-77*x^3+87*x^2+436*x-93 2100964998045844 l006 ln(925/7561) 2100965000566503 r005 Im(z^2+c),c=-45/106+7/20*I,n=18 2100965001261426 r005 Im(z^2+c),c=-19/34+79/120*I,n=6 2100965003927846 a007 Real Root Of 486*x^4+528*x^3-644*x^2+683*x-295 2100965020825744 a007 Real Root Of 357*x^4+790*x^3+71*x^2-249*x-466 2100965024797484 r002 56th iterates of z^2 + 2100965031166298 s002 sum(A239574[n]/(n*10^n-1),n=1..infinity) 2100965034662688 a007 Real Root Of -868*x^4-262*x^3+136*x^2+846*x+171 2100965035203245 r008 a(0)=0,K{-n^6,100+36*n^3-26*n^2-62*n} 2100965041826519 r005 Im(z^2+c),c=-5/8+4/99*I,n=42 2100965046521568 b008 -1+Coth[2*(-2+Pi)] 2100965049913160 a007 Real Root Of -206*x^4-29*x^3+383*x^2-576*x+844 2100965050825605 a007 Real Root Of -3*x^4-633*x^3-573*x^2-742*x+217 2100965053149745 r002 17th iterates of z^2 + 2100965053499158 m001 (-GAMMA(2/3)+Tribonacci)/(3^(1/2)+gamma) 2100965054810140 r002 34th iterates of z^2 + 2100965055023858 a007 Real Root Of -211*x^4+597*x^3-664*x^2+965*x+238 2100965058319572 m001 Riemann2ndZero-Trott2nd*ZetaP(2) 2100965068190693 a007 Real Root Of 250*x^4+12*x^3-775*x^2+820*x+384 2100965085784446 r009 Re(z^3+c),c=-55/94+23/50*I,n=3 2100965091448663 m005 (-1/12+1/6*5^(1/2))/(1/4*5^(1/2)+9/11) 2100965098870401 r005 Im(z^2+c),c=-13/29+21/58*I,n=52 2100965104660349 m005 (1/2*5^(1/2)-7/9)/(3/7*exp(1)+5/11) 2100965107646622 q001 283/1347 2100965156903394 a007 Real Root Of 63*x^4+103*x^3+259*x^2+441*x-489 2100965164340496 r005 Im(z^2+c),c=-3/11+27/59*I,n=5 2100965167967198 r009 Re(z^3+c),c=-23/66+8/15*I,n=60 2100965177670518 r005 Im(z^2+c),c=-13/98+14/51*I,n=22 2100965178802559 a007 Real Root Of -518*x^4+465*x^3+649*x^2+619*x-162 2100965179012677 r005 Im(z^2+c),c=-13/98+14/51*I,n=23 2100965197233148 a001 9062201101803/610*2^(1/2) 2100965198854852 a005 (1/sin(74/179*Pi))^450 2100965199742508 m008 (2/3*Pi^6+3/4)/(Pi^5-3/5) 2100965208909954 a007 Real Root Of -616*x^4-819*x^3+910*x^2-60*x+264 2100965209244789 r005 Re(z^2+c),c=-7/40+19/28*I,n=46 2100965215217640 l006 ln(609/4978) 2100965224254379 r005 Re(z^2+c),c=-4/29+31/64*I,n=45 2100965228756204 a007 Real Root Of 657*x^4-192*x^3-765*x^2-746*x+191 2100965229125666 l006 ln(5462/6739) 2100965229698857 r005 Im(z^2+c),c=-25/52+3/7*I,n=24 2100965250969407 h001 (6/11*exp(2)+1/10)/(5/12*exp(1)+5/6) 2100965259138946 a007 Real Root Of 29*x^4+602*x^3-132*x^2+401*x-822 2100965260824135 b008 -1+E+Sin[Pi/8] 2100965262089408 m001 ln(Ei(1))^2/FeigenbaumB/GAMMA(7/12)^2 2100965270157492 r005 Im(z^2+c),c=-11/29+10/29*I,n=56 2100965276110634 a007 Real Root Of 703*x^4+40*x^3+395*x^2-888*x-205 2100965281933412 a007 Real Root Of -289*x^4-738*x^3-149*x^2+322*x+121 2100965286280980 r005 Re(z^2+c),c=-67/94+13/42*I,n=42 2100965286364220 p003 LerchPhi(1/512,6,89/217) 2100965288828443 p004 log(22307/2729) 2100965301279341 r005 Re(z^2+c),c=37/106+17/56*I,n=63 2100965301659808 r005 Im(z^2+c),c=-47/106+2/57*I,n=20 2100965317602970 r002 25th iterates of z^2 + 2100965319806174 a001 377/1364*322^(3/4) 2100965326778707 m001 (gamma+ln(5))/(BesselI(1,1)+PlouffeB) 2100965332488318 a001 1292/2889*322^(2/3) 2100965332822261 r009 Re(z^3+c),c=-19/70+20/61*I,n=17 2100965336929458 a007 Real Root Of 563*x^4+881*x^3-562*x^2+342*x+400 2100965348945596 m001 ln(Pi)+cos(1/12*Pi)+gamma(2) 2100965357123081 r002 40th iterates of z^2 + 2100965358016128 r005 Im(z^2+c),c=-13/98+14/51*I,n=25 2100965358183557 p001 sum(1/(223*n+80)/n/(16^n),n=1..infinity) 2100965363459588 m001 (GaussAGM+ZetaP(2))/(ln(2+3^(1/2))-CareFree) 2100965376785608 m008 (2/5*Pi^5-1/6)/(3/5*Pi^6+5) 2100965382228475 r009 Re(z^3+c),c=-23/90+9/32*I,n=14 2100965383333716 m001 1/exp(Zeta(1/2))^2/GAMMA(7/24)^2*Zeta(5)^2 2100965384839259 m001 (-GaussAGM+Salem)/(arctan(1/2)-ln(2)/ln(10)) 2100965392508064 a001 317811/7*521^(12/49) 2100965401435698 r005 Im(z^2+c),c=7/58+7/40*I,n=16 2100965403642139 a001 7/377*46368^(7/31) 2100965406943637 a001 28657/2207*123^(1/10) 2100965407124976 r005 Im(z^2+c),c=-13/98+14/51*I,n=26 2100965411985028 r005 Im(z^2+c),c=-13/98+14/51*I,n=28 2100965413659075 m001 1/(3^(1/3))*ln(DuboisRaymond)/cos(1) 2100965415147940 l006 ln(7977/9842) 2100965415827892 r005 Im(z^2+c),c=-11/29+10/29*I,n=54 2100965422831274 r005 Im(z^2+c),c=-13/98+14/51*I,n=31 2100965424029207 r005 Im(z^2+c),c=4/19+34/57*I,n=7 2100965424660026 r005 Im(z^2+c),c=-13/98+14/51*I,n=34 2100965424933772 r005 Im(z^2+c),c=-13/98+14/51*I,n=37 2100965424970685 r005 Im(z^2+c),c=-13/98+14/51*I,n=40 2100965424975028 r005 Im(z^2+c),c=-13/98+14/51*I,n=42 2100965424975125 r005 Im(z^2+c),c=-13/98+14/51*I,n=43 2100965424975221 r005 Im(z^2+c),c=-13/98+14/51*I,n=39 2100965424975464 r005 Im(z^2+c),c=-13/98+14/51*I,n=45 2100965424975580 r005 Im(z^2+c),c=-13/98+14/51*I,n=46 2100965424975585 r005 Im(z^2+c),c=-13/98+14/51*I,n=48 2100965424975608 r005 Im(z^2+c),c=-13/98+14/51*I,n=51 2100965424975612 r005 Im(z^2+c),c=-13/98+14/51*I,n=54 2100965424975613 r005 Im(z^2+c),c=-13/98+14/51*I,n=57 2100965424975613 r005 Im(z^2+c),c=-13/98+14/51*I,n=60 2100965424975613 r005 Im(z^2+c),c=-13/98+14/51*I,n=59 2100965424975613 r005 Im(z^2+c),c=-13/98+14/51*I,n=62 2100965424975613 r005 Im(z^2+c),c=-13/98+14/51*I,n=63 2100965424975613 r005 Im(z^2+c),c=-13/98+14/51*I,n=64 2100965424975613 r005 Im(z^2+c),c=-13/98+14/51*I,n=61 2100965424975613 r005 Im(z^2+c),c=-13/98+14/51*I,n=58 2100965424975613 r005 Im(z^2+c),c=-13/98+14/51*I,n=56 2100965424975613 r005 Im(z^2+c),c=-13/98+14/51*I,n=55 2100965424975613 r005 Im(z^2+c),c=-13/98+14/51*I,n=53 2100965424975614 r005 Im(z^2+c),c=-13/98+14/51*I,n=52 2100965424975614 r005 Im(z^2+c),c=-13/98+14/51*I,n=49 2100965424975620 r005 Im(z^2+c),c=-13/98+14/51*I,n=50 2100965424975673 r005 Im(z^2+c),c=-13/98+14/51*I,n=47 2100965424976070 r005 Im(z^2+c),c=-13/98+14/51*I,n=44 2100965424978740 r005 Im(z^2+c),c=-13/98+14/51*I,n=41 2100965424994713 r005 Im(z^2+c),c=-13/98+14/51*I,n=38 2100965424999841 r005 Im(z^2+c),c=-13/98+14/51*I,n=36 2100965425075350 r005 Im(z^2+c),c=-13/98+14/51*I,n=35 2100965425078137 r005 Im(z^2+c),c=-13/98+14/51*I,n=29 2100965425322204 r005 Im(z^2+c),c=-13/98+14/51*I,n=33 2100965425356543 r005 Im(z^2+c),c=-13/98+14/51*I,n=32 2100965428427466 r005 Im(z^2+c),c=-13/98+14/51*I,n=30 2100965431608322 a007 Real Root Of -94*x^4+749*x^3-705*x^2-482*x-990 2100965432532462 m005 (1/2*5^(1/2)-4/11)/(1/3*gamma+1/6) 2100965433701589 s002 sum(A153704[n]/(n!^3),n=1..infinity) 2100965433729604 r005 Re(z^2+c),c=-3/31+35/62*I,n=12 2100965437927026 l006 ln(902/7373) 2100965438095858 r009 Re(z^3+c),c=-15/74+23/38*I,n=3 2100965439987105 a001 6765/15127*322^(2/3) 2100965440323818 r005 Im(z^2+c),c=-13/48+23/57*I,n=5 2100965442041117 m001 exp(1/exp(1))*GAMMA(1/12)+GAMMA(5/24) 2100965447843287 a001 377/2207*322^(5/6) 2100965453751991 r009 Re(z^3+c),c=-31/114+37/51*I,n=46 2100965454037715 r005 Im(z^2+c),c=-13/98+14/51*I,n=27 2100965455670968 a001 17711/39603*322^(2/3) 2100965457959212 a001 23184/51841*322^(2/3) 2100965458293063 a001 121393/271443*322^(2/3) 2100965458341771 a001 317811/710647*322^(2/3) 2100965458348877 a001 416020/930249*322^(2/3) 2100965458349914 a001 2178309/4870847*322^(2/3) 2100965458350065 a001 5702887/12752043*322^(2/3) 2100965458350087 a001 7465176/16692641*322^(2/3) 2100965458350091 a001 39088169/87403803*322^(2/3) 2100965458350091 a001 102334155/228826127*322^(2/3) 2100965458350091 a001 133957148/299537289*322^(2/3) 2100965458350091 a001 701408733/1568397607*322^(2/3) 2100965458350091 a001 1836311903/4106118243*322^(2/3) 2100965458350091 a001 2403763488/5374978561*322^(2/3) 2100965458350091 a001 12586269025/28143753123*322^(2/3) 2100965458350091 a001 32951280099/73681302247*322^(2/3) 2100965458350091 a001 43133785636/96450076809*322^(2/3) 2100965458350091 a001 225851433717/505019158607*322^(2/3) 2100965458350091 a001 10610209857723/23725150497407*322^(2/3) 2100965458350091 a001 182717648081/408569081798*322^(2/3) 2100965458350091 a001 139583862445/312119004989*322^(2/3) 2100965458350091 a001 53316291173/119218851371*322^(2/3) 2100965458350091 a001 10182505537/22768774562*322^(2/3) 2100965458350091 a001 7778742049/17393796001*322^(2/3) 2100965458350091 a001 2971215073/6643838879*322^(2/3) 2100965458350091 a001 567451585/1268860318*322^(2/3) 2100965458350091 a001 433494437/969323029*322^(2/3) 2100965458350091 a001 165580141/370248451*322^(2/3) 2100965458350091 a001 31622993/70711162*322^(2/3) 2100965458350093 a001 24157817/54018521*322^(2/3) 2100965458350101 a001 9227465/20633239*322^(2/3) 2100965458350159 a001 1762289/3940598*322^(2/3) 2100965458350555 a001 1346269/3010349*322^(2/3) 2100965458353269 a001 514229/1149851*322^(2/3) 2100965458371874 a001 98209/219602*322^(2/3) 2100965458499394 a001 75025/167761*322^(2/3) 2100965458899219 p003 LerchPhi(1/6,2,337/148) 2100965459373425 a001 28657/64079*322^(2/3) 2100965465364128 a001 5473/12238*322^(2/3) 2100965469946036 r005 Im(z^2+c),c=-13/98+14/51*I,n=19 2100965477593710 r009 Im(z^3+c),c=-3/94+7/32*I,n=3 2100965480770019 a001 370248451*6557470319842^(1/17) 2100965480770019 a001 599074578*1836311903^(1/17) 2100965480770112 a001 969323029*514229^(1/17) 2100965490081439 m001 exp(Zeta(9))/TreeGrowth2nd^2/sin(Pi/12)^2 2100965498623484 a007 Real Root Of 459*x^4+761*x^3-497*x^2-545*x-837 2100965499930184 m001 -Cahen/(Zeta(1,2)+4) 2100965502105267 r002 36i'th iterates of 2*x/(1-x^2) of 2100965503037359 m001 (exp(1)*sin(Pi/5)+exp(sqrt(2)))/exp(1) 2100965504339483 r004 Re(z^2+c),c=-23/38-7/24*I,z(0)=-1,n=10 2100965506425013 a001 4181/9349*322^(2/3) 2100965511991938 m001 1/BesselK(0,1)*Sierpinski/ln(GAMMA(11/12))^2 2100965518222342 r009 Re(z^3+c),c=-19/70+19/58*I,n=5 2100965522909714 m001 GolombDickman/exp(Backhouse)/FeigenbaumB^2 2100965525221927 m002 Pi^2/ProductLog[Pi]+ProductLog[Pi]/4+Sinh[Pi] 2100965531666125 r005 Re(z^2+c),c=11/40+16/35*I,n=12 2100965531814976 m001 (Rabbit-Sierpinski)/(BesselJ(1,1)-MertensB3) 2100965534662518 m002 -Log[Pi]/4+Tanh[Pi]^2/2 2100965551275817 r002 52th iterates of z^2 + 2100965551424929 l006 ln(1195/9768) 2100965554742278 a007 Real Root Of -257*x^4-311*x^3+270*x^2-331*x+236 2100965554819644 m001 GAMMA(7/24)/BesselI(0,2)/Cahen 2100965561954249 m001 ZetaQ(2)-MinimumGamma-ln(2) 2100965564129144 r005 Re(z^2+c),c=-17/14+18/211*I,n=34 2100965567492255 b008 21+Sech[16/3] 2100965572251642 a007 Real Root Of 240*x^4-72*x^3-748*x^2+655*x-666 2100965579507437 r005 Im(z^2+c),c=-21/74+17/53*I,n=12 2100965599613789 r005 Im(z^2+c),c=29/122+1/10*I,n=13 2100965612506325 b008 21+Csch[16/3] 2100965620038483 m001 1/cosh(1)^2/Si(Pi)^2/exp(log(1+sqrt(2)))^2 2100965631551370 r004 Im(z^2+c),c=-9/22+6/17*I,z(0)=-1,n=36 2100965637753374 a007 Real Root Of 421*x^4+585*x^3+408*x^2-580*x+12 2100965642705236 r005 Im(z^2+c),c=-13/98+14/51*I,n=24 2100965650305508 p003 LerchPhi(1/512,3,392/233) 2100965651843930 v002 sum(1/(3^n*(15*n^2-35*n+40)),n=1..infinity) 2100965651843930 v002 sum(1/(3^n*(3/2*n^2-7/2*n+4)),n=1..infinity) 2100965652017405 m001 GAMMA(1/4)*exp(Niven)/GAMMA(7/24)^2 2100965659254961 r005 Im(z^2+c),c=-65/54+2/17*I,n=4 2100965667939075 m001 1/ln(GAMMA(1/12))/Si(Pi)/GAMMA(23/24)^2 2100965671449258 m005 (1/3*exp(1)-3/7)/(2*2^(1/2)-5/9) 2100965672845065 a007 Real Root Of -258*x^4-49*x^3+989*x^2-29*x+146 2100965678769420 m001 1/GAMMA(1/6)*Paris^2*ln(cos(Pi/12))^2 2100965681867808 a007 Real Root Of -475*x^4-571*x^3+469*x^2-548*x+738 2100965686444712 m005 (1/2*2^(1/2)-7/9)/(7/11*Zeta(3)-3/7) 2100965706096498 m001 (ln(3)+Ei(1))/(FellerTornier-MadelungNaCl) 2100965710087206 r005 Im(z^2+c),c=-19/40+7/19*I,n=49 2100965725409637 a007 Real Root Of -640*x^4-922*x^3+372*x^2-765*x+670 2100965725802737 m008 (3/5*Pi-1/5)/(5/6*Pi^6+5/6) 2100965726633802 m001 sqrt(3)/Bloch*ln(sqrt(Pi)) 2100965732249937 m001 GAMMA(11/12)/GolombDickman/ln(sqrt(5)) 2100965744502159 r005 Im(z^2+c),c=1/27+13/61*I,n=7 2100965752716229 s002 sum(A097634[n]/(n^3*exp(n)+1),n=1..infinity) 2100965753406080 a007 Real Root Of 407*x^4+466*x^3-907*x^2-606*x-878 2100965763767204 r005 Im(z^2+c),c=-23/52+22/61*I,n=41 2100965774910439 a001 75025/5778*123^(1/10) 2100965778207854 m001 (Si(Pi)+sin(1/12*Pi))/(-GaussAGM+Tribonacci) 2100965778404860 r005 Im(z^2+c),c=-117/122+1/52*I,n=13 2100965783745833 m001 (BesselK(0,1)*Totient-PlouffeB)/BesselK(0,1) 2100965784810127 r009 Re(z^3+c),c=-29/102+23/63*I,n=10 2100965785046690 m001 (Catalan+FeigenbaumAlpha)/(Lehmer+MertensB2) 2100965787860527 a001 1597/3571*322^(2/3) 2100965791300797 m001 (Pi+ln(3))/(Zeta(1,2)+Otter) 2100965797841113 m005 (1/2*exp(1)-1/2)/(5/9*5^(1/2)-5/6) 2100965803860226 a007 Real Root Of -161*x^4+27*x^3+450*x^2-802*x-284 2100965806394574 r005 Re(z^2+c),c=-31/122+1/59*I,n=12 2100965807164806 r002 4th iterates of z^2 + 2100965808203088 m001 2^(1/2)*ZetaQ(3)-Riemann2ndZero 2100965810101222 h001 (6/11*exp(2)+3/10)/(1/5*exp(2)+7/12) 2100965818432212 a005 (1/cos(38/215*Pi))^146 2100965819145406 l006 ln(2515/3103) 2100965819228245 h001 (3/8*exp(2)+1/11)/(1/6*exp(1)+10/11) 2100965824075832 a001 11/34*832040^(54/55) 2100965824975216 r005 Im(z^2+c),c=-11/29+10/29*I,n=61 2100965826778642 a007 Real Root Of 640*x^4+831*x^3-430*x^2+972*x-823 2100965828596083 a001 196418/15127*123^(1/10) 2100965833700540 a007 Real Root Of 31*x^4-557*x^3-878*x^2+990*x+186 2100965836428713 a001 514229/39603*123^(1/10) 2100965837571478 a001 1346269/103682*123^(1/10) 2100965837738205 a001 3524578/271443*123^(1/10) 2100965837762530 a001 9227465/710647*123^(1/10) 2100965837766079 a001 24157817/1860498*123^(1/10) 2100965837766597 a001 63245986/4870847*123^(1/10) 2100965837766673 a001 165580141/12752043*123^(1/10) 2100965837766684 a001 433494437/33385282*123^(1/10) 2100965837766685 a001 1134903170/87403803*123^(1/10) 2100965837766686 a001 2971215073/228826127*123^(1/10) 2100965837766686 a001 7778742049/599074578*123^(1/10) 2100965837766686 a001 20365011074/1568397607*123^(1/10) 2100965837766686 a001 53316291173/4106118243*123^(1/10) 2100965837766686 a001 139583862445/10749957122*123^(1/10) 2100965837766686 a001 365435296162/28143753123*123^(1/10) 2100965837766686 a001 956722026041/73681302247*123^(1/10) 2100965837766686 a001 2504730781961/192900153618*123^(1/10) 2100965837766686 a001 10610209857723/817138163596*123^(1/10) 2100965837766686 a001 4052739537881/312119004989*123^(1/10) 2100965837766686 a001 1548008755920/119218851371*123^(1/10) 2100965837766686 a001 591286729879/45537549124*123^(1/10) 2100965837766686 a001 7787980473/599786069*123^(1/10) 2100965837766686 a001 86267571272/6643838879*123^(1/10) 2100965837766686 a001 32951280099/2537720636*123^(1/10) 2100965837766686 a001 12586269025/969323029*123^(1/10) 2100965837766686 a001 4807526976/370248451*123^(1/10) 2100965837766686 a001 1836311903/141422324*123^(1/10) 2100965837766686 a001 701408733/54018521*123^(1/10) 2100965837766691 a001 9238424/711491*123^(1/10) 2100965837766719 a001 102334155/7881196*123^(1/10) 2100965837766917 a001 39088169/3010349*123^(1/10) 2100965837768273 a001 14930352/1149851*123^(1/10) 2100965837777564 a001 5702887/439204*123^(1/10) 2100965837841248 a001 2178309/167761*123^(1/10) 2100965838153051 m005 (1/2*exp(1)-5/11)/(1/7*5^(1/2)-3/4) 2100965838277746 a001 832040/64079*123^(1/10) 2100965841269544 a001 10959/844*123^(1/10) 2100965843775639 m001 Landau^exp(-Pi)/(Landau^(2^(1/3))) 2100965850410805 m001 Psi(2,1/3)^(Pi^(1/2))*Psi(2,1/3)^Rabbit 2100965861775637 a001 121393/9349*123^(1/10) 2100965870042218 r005 Re(z^2+c),c=-11/56+14/41*I,n=31 2100965875095244 r005 Im(z^2+c),c=-11/29+10/29*I,n=53 2100965878848104 r005 Im(z^2+c),c=-11/29+10/29*I,n=58 2100965880153876 r005 Re(z^2+c),c=33/106+11/51*I,n=22 2100965885336634 m001 (Catalan-gamma(1))/(-Cahen+Gompertz) 2100965887403685 g007 Psi(2,5/6)-Psi(2,3/11)-Psi(2,9/10)-Psi(2,1/10) 2100965900827948 l006 ln(293/2395) 2100965907709098 m001 1/FibonacciFactorial/ErdosBorwein^2*exp(Ei(1)) 2100965910774310 a007 Real Root Of 530*x^4+860*x^3-584*x^2-305*x-414 2100965911487928 r005 Im(z^2+c),c=-26/27+5/22*I,n=46 2100965920330393 m005 (1/2*3^(1/2)-9/11)/(3/11*Zeta(3)-5/9) 2100965920631356 h001 (8/11*exp(2)+7/11)/(8/9*exp(1)+4/9) 2100965929414871 a008 Real Root of x^4+3*x^2-27*x+24 2100965931253045 m002 -Pi+Pi^2/Log[Pi]-E^Pi*Log[Pi] 2100965932976415 m005 (1/2*exp(1)-7/8)/(7/12*5^(1/2)+1) 2100965937969521 r005 Im(z^2+c),c=-11/29+10/29*I,n=59 2100965938265894 r005 Re(z^2+c),c=-5/22+7/30*I,n=11 2100965941620557 m001 (ln(5)*ln(2^(1/2)+1)+ReciprocalLucas)/ln(5) 2100965942111904 a007 Real Root Of -17*x^4-368*x^3-181*x^2+967*x-278 2100965943282818 m001 Trott2nd^MertensB3/(Trott2nd^sin(1/12*Pi)) 2100965949204508 m001 (2^(1/3)-5^(1/2))/(-Shi(1)+Lehmer) 2100965958849501 r005 Im(z^2+c),c=-11/29+10/29*I,n=63 2100965960824116 r009 Re(z^3+c),c=-21/58+27/47*I,n=54 2100965961438939 m001 (-Mills+Tetranacci)/(Landau-cos(1)) 2100965962203334 r005 Re(z^2+c),c=21/86+6/37*I,n=25 2100965966046234 r009 Re(z^3+c),c=-39/98+17/47*I,n=3 2100965969007757 r009 Re(z^3+c),c=-4/11+15/26*I,n=57 2100965971913592 m001 (GAMMA(19/24)+Conway)/(Tribonacci-TwinPrimes) 2100965972664651 a003 cos(Pi*22/113)*cos(Pi*48/115) 2100965978541844 g002 -Psi(1/8)-Psi(1/10)-Psi(7/9)-Psi(5/7) 2100965981474349 a007 Real Root Of 424*x^4+991*x^3+359*x^2+520*x+437 2100965985347454 r005 Im(z^2+c),c=-61/98+1/33*I,n=25 2100965986569195 a007 Real Root Of 205*x^4-867*x^3+119*x^2-536*x+115 2100965988831858 a007 Real Root Of -194*x^4-39*x^3+821*x^2+146*x+101 2100965992160085 m008 (1/3*Pi^5+1/4)/(5*Pi^4-1/3) 2100965995602060 a007 Real Root Of 44*x^4-172*x^3-74*x^2+562*x-945 2100966002326494 a001 46368/3571*123^(1/10) 2100966007329494 r005 Im(z^2+c),c=-23/48+15/41*I,n=18 2100966008784794 r002 7th iterates of z^2 + 2100966021491735 r005 Im(z^2+c),c=-11/29+10/29*I,n=64 2100966023786159 r005 Im(z^2+c),c=-91/102+1/63*I,n=19 2100966039437978 a001 12238/305*1836311903^(16/17) 2100966042869739 a001 1364/75025*6557470319842^(16/17) 2100966042946493 a001 54018521/610*514229^(16/17) 2100966043269619 p001 sum((-1)^n/(544*n+451)/(8^n),n=0..infinity) 2100966055245252 h001 (7/11*exp(2)+4/11)/(2/7*exp(2)+3/10) 2100966060669953 a007 Real Root Of -562*x^4+773*x^3+791*x^2+219*x-87 2100966066543633 r009 Re(z^3+c),c=-37/102+29/56*I,n=16 2100966067645240 a007 Real Root Of 117*x^4+334*x^3+773*x^2+973*x-550 2100966076073694 r005 Re(z^2+c),c=-2/19+15/19*I,n=3 2100966084910189 m005 (1/2*2^(1/2)+7/9)/(23/80+3/16*5^(1/2)) 2100966104873393 a007 Real Root Of 403*x^4+461*x^3-583*x^2+212*x-558 2100966113956230 m001 (Bloch+Trott)/(exp(Pi)+Zeta(1,-1)) 2100966114991425 m001 Pi*(ln(2)/ln(10)+Ei(1,1))*GAMMA(17/24) 2100966115737301 l006 ln(4286/4377) 2100966124307582 s002 sum(A101663[n]/((10^n-1)/n),n=1..infinity) 2100966140278715 m001 ln(3)+Pi^gamma(3) 2100966151022862 m001 (3^(1/3)-Catalan)/(gamma(3)+FeigenbaumAlpha) 2100966160810063 p001 sum(1/(452*n+51)/(2^n),n=0..infinity) 2100966161726722 a001 23725150497407/1597*2^(1/2) 2100966162278547 r005 Im(z^2+c),c=-11/29+10/29*I,n=62 2100966170005931 r009 Im(z^3+c),c=-21/64+7/45*I,n=12 2100966176493014 m001 Champernowne*CopelandErdos^GAMMA(3/4) 2100966183319401 m001 1/FeigenbaumC^2/MinimumGamma/ln(GAMMA(1/3))^2 2100966184154320 r005 Re(z^2+c),c=-5/6+3/194*I,n=54 2100966185583097 r009 Re(z^3+c),c=-5/16+25/52*I,n=9 2100966186157729 r005 Re(z^2+c),c=-7/114+22/35*I,n=48 2100966186895371 a007 Real Root Of 261*x^4+412*x^3-437*x^2-44*x+572 2100966195377081 g001 abs(Psi(17/12+I*115/24)) 2100966197914633 a001 2139295485799/233*1836311903^(8/17) 2100966197914633 a001 45537549124/233*6557470319842^(8/17) 2100966201853478 a007 Real Root Of 414*x^4+684*x^3-656*x^2-986*x-899 2100966203045917 m005 (1/2*Pi+7/10)/(5/7*Zeta(3)+2/9) 2100966212377226 r005 Im(z^2+c),c=-51/94+23/55*I,n=54 2100966214873107 r005 Im(z^2+c),c=-11/29+10/29*I,n=60 2100966215770826 m001 (5^(1/2))^exp(1/Pi)/((5^(1/2))^ZetaP(2)) 2100966217236243 a007 Real Root Of -327*x^4-971*x^3-644*x^2-565*x-978 2100966220130132 a001 47/832040*6765^(7/47) 2100966222568005 m001 1/GAMMA(11/24)/TwinPrimes^2/exp(sqrt(3)) 2100966223125491 p004 log(21179/2591) 2100966223766791 m005 (1/2*Zeta(3)+1/4)/(5/12*gamma-1/5) 2100966224279269 a007 Real Root Of 369*x^4+479*x^3-94*x^2+827*x-595 2100966230343159 m001 1+polylog(4,1/2)*Pi*csc(5/12*Pi)/GAMMA(7/12) 2100966237194605 a007 Real Root Of -293*x^4+277*x^3-180*x^2+490*x-97 2100966243919220 r005 Re(z^2+c),c=-11/56+14/41*I,n=30 2100966258616181 m008 (1/6*Pi^4-5/6)/(3/4*Pi^4+1/4) 2100966264219122 l006 ln(1149/9392) 2100966264877281 m001 (-Mills+ZetaP(4))/(Magata-Psi(2,1/3)) 2100966272215510 l006 ln(7113/8776) 2100966272561232 r005 Im(z^2+c),c=-4/9+22/61*I,n=37 2100966291772856 m001 Shi(1)+(2^(1/2))^Champernowne 2100966296902179 m001 Cahen^(Pi*csc(5/24*Pi)/GAMMA(19/24))*Zeta(1/2) 2100966296902179 m001 Cahen^GAMMA(5/24)*Zeta(1/2) 2100966307153699 r009 Im(z^3+c),c=-25/114+38/39*I,n=8 2100966312604408 h001 (3/8*exp(2)+5/8)/(3/11*exp(1)+7/8) 2100966318452267 r009 Re(z^3+c),c=-3/118+20/27*I,n=53 2100966320443287 r005 Im(z^2+c),c=-9/10+33/155*I,n=33 2100966321651522 r009 Re(z^3+c),c=-17/106+43/56*I,n=19 2100966322686009 m001 Pi^(1/2)*RenyiParking+StronglyCareFree 2100966326481982 a001 2971215073/2*2^(1/2) 2100966338633359 r005 Im(z^2+c),c=-27/56+1/28*I,n=21 2100966338676413 r005 Re(z^2+c),c=-11/56+14/41*I,n=33 2100966348934259 m001 (-Backhouse+FeigenbaumB)/(GAMMA(2/3)-Shi(1)) 2100966366021183 m005 (1/3*exp(1)-2/5)/(4*gamma+1/10) 2100966369360095 m005 (1/2*Zeta(3)-4/7)/(5/9*Catalan+9/10) 2100966383378781 m001 (LaplaceLimit+Tribonacci)/(BesselI(1,1)+Kac) 2100966383695168 b008 62/3+Sqrt[2/17] 2100966384669145 m001 OneNinth^cos(1)*polylog(4,1/2)^cos(1) 2100966388576637 m001 (-GAMMA(7/12)+FeigenbaumC)/(1+BesselJ(1,1)) 2100966388604154 l006 ln(856/6997) 2100966410863068 p003 LerchPhi(1/32,2,92/133) 2100966412568233 m001 GolombDickman^2*Bloch/exp(sqrt(5))^2 2100966417527263 r005 Im(z^2+c),c=-51/40+1/64*I,n=21 2100966418286218 r005 Re(z^2+c),c=-19/86+7/27*I,n=16 2100966420337799 a001 281/15456*1597^(1/51) 2100966427091658 m001 (Sierpinski-ZetaP(2))/(Bloch+Landau) 2100966428819007 a007 Real Root Of 59*x^4-674*x^3+194*x^2-597*x+123 2100966430455704 r009 Re(z^3+c),c=-21/38+9/31*I,n=63 2100966430748828 a007 Real Root Of 235*x^4-467*x^3-656*x^2-215*x+78 2100966432095518 r005 Re(z^2+c),c=11/34+11/45*I,n=30 2100966439896296 p001 sum((-1)^n/(349*n+114)/n/(10^n),n=1..infinity) 2100966441786136 s002 sum(A001379[n]/(n*exp(n)-1),n=1..infinity) 2100966443602233 m001 (Zeta(5)-cos(1/12*Pi))/(Kolakoski+Sierpinski) 2100966444564499 q001 7/33318 2100966445595183 r005 Im(z^2+c),c=19/126+7/44*I,n=14 2100966450778904 m001 exp(1/exp(1))+CareFree^Zeta(3) 2100966458058553 a007 Real Root Of -130*x^4-345*x^3-443*x^2-187*x+896 2100966462875163 m006 (2/3*exp(Pi)+4/5)/(5*ln(Pi)+2) 2100966478930143 r005 Im(z^2+c),c=-11/29+10/29*I,n=57 2100966489864760 a007 Real Root Of 566*x^4+542*x^3-952*x^2+954*x+205 2100966509190774 a007 Real Root Of 309*x^4+151*x^3+525*x^2-874*x-206 2100966520034403 l006 ln(4598/5673) 2100966521044311 m001 Magata/LaplaceLimit*ln(Ei(1))^2 2100966523247625 b008 5/3+LogGamma[EulerGamma] 2100966525125926 m009 (5*Psi(1,1/3)-4/5)/(1/4*Psi(1,3/4)-3) 2100966528040761 m001 (ln(3)+Zeta(1,-1))/(Magata+MertensB2) 2100966529424860 r005 Re(z^2+c),c=-5/26+5/14*I,n=11 2100966537004341 m001 (arctan(1/2)+Sarnak)/(Stephens-Trott) 2100966538484166 s001 sum(exp(-3*Pi)^n*A218896[n],n=1..infinity) 2100966538881657 a007 Real Root Of 127*x^4-120*x^3-613*x^2-5*x-892 2100966550327071 m001 (arctan(1/3)-PlouffeB)/(Sarnak+ZetaQ(3)) 2100966550623839 m002 4-Cosh[Pi]+6*Pi*Sinh[Pi] 2100966550963233 m003 1/6+Sqrt[5]/2048+Sec[1/2+Sqrt[5]/2] 2100966553442689 a007 Real Root Of 513*x^4+822*x^3-922*x^2-689*x+250 2100966586836227 m008 (5*Pi^3-3/5)/(1/4*Pi^5-3) 2100966595306523 a001 17711/7*1364^(30/49) 2100966596230202 r005 Im(z^2+c),c=-21/38+2/53*I,n=36 2100966597366816 a007 Real Root Of 141*x^4-437*x^3-943*x^2+955*x-631 2100966606743642 m001 cosh(1)^2*GAMMA(11/12)^2/ln(log(1+sqrt(2))) 2100966608623167 a001 1597/521*322^(1/3) 2100966614057156 m001 (GAMMA(11/12)-MertensB1)/(Rabbit-RenyiParking) 2100966621114669 m001 ln(GAMMA(2/3))^2*Robbin*sin(Pi/5)^2 2100966630200217 r005 Im(z^2+c),c=-27/46+12/25*I,n=7 2100966633211749 m008 (1/2*Pi^2-5/6)/(2*Pi^4+2/5) 2100966635735531 m001 Sierpinski^MertensB3*Lehmer 2100966642455620 l006 ln(563/4602) 2100966643039758 m001 (2^(1/3)-Zeta(3))/(ln(5)+ln(Pi)) 2100966645906891 r009 Im(z^3+c),c=-7/32+7/36*I,n=4 2100966649215803 r005 Re(z^2+c),c=-11/56+14/41*I,n=36 2100966650578407 h001 (1/7*exp(1)+6/11)/(1/2*exp(2)+3/4) 2100966652816454 r005 Re(z^2+c),c=-11/70+27/61*I,n=29 2100966676033863 m001 Ei(1,1)^Grothendieck*Ei(1,1)^LandauRamanujan 2100966676405090 a007 Real Root Of 500*x^4+805*x^3-557*x^2-486*x-839 2100966679583602 m001 (exp(1)+BesselI(0,1))/(Ei(1)+HeathBrownMoroz) 2100966681038767 m001 GAMMA(23/24)+GAMMA(19/24)^ZetaP(2) 2100966685473387 m001 (Kolakoski-Tribonacci)/(Pi+FeigenbaumC) 2100966686625110 a007 Real Root Of -401*x^4+449*x^3-152*x^2+587*x-120 2100966687099590 m001 (Mills+Stephens)^GAMMA(19/24) 2100966693528265 r005 Re(z^2+c),c=-61/50+1/34*I,n=14 2100966694057810 p004 log(34421/4211) 2100966697380594 m005 (17/36+1/4*5^(1/2))/(1/10*Catalan-5) 2100966697824420 r005 Im(z^2+c),c=-117/98+1/28*I,n=15 2100966697951966 m005 (1/3*2^(1/2)-1/3)/(-17/66+9/22*5^(1/2)) 2100966702470461 q001 1956/931 2100966705805472 s002 sum(A255259[n]/((2*n+1)!),n=1..infinity) 2100966708375203 r009 Re(z^3+c),c=-3/110+9/26*I,n=8 2100966708599739 a005 (1/sin(62/161*Pi))^495 2100966709162627 m001 (Grothendieck-Shi(1))/(KhinchinHarmonic+Niven) 2100966710112869 r008 a(0)=4,K{-n^6,51-39*n^3-53*n^2+41*n} 2100966723902177 h001 (8/11*exp(2)+4/7)/(4/11*exp(2)+1/7) 2100966725541827 b008 19*EllipticF[Pi/3,1/3] 2100966725541827 b008 19*InverseJacobiDS[1,1/3] 2100966725541827 b008 19*InverseJacobiNC[2,1/3] 2100966725805886 r009 Re(z^3+c),c=-8/25+17/37*I,n=27 2100966728020219 a007 Real Root Of 174*x^4+550*x^3+738*x^2+408*x-690 2100966736024650 m001 gamma(3)^Rabbit-Riemann2ndZero 2100966736798468 a003 sin(Pi*7/118)/cos(Pi*5/32) 2100966750717039 m005 (1/2*3^(1/2)+2/11)/(1/7*5^(1/2)-9/11) 2100966752860356 m001 (ln(Pi)+Kolakoski*TwinPrimes)/Kolakoski 2100966753880276 r005 Re(z^2+c),c=-139/122+16/61*I,n=54 2100966755537770 a007 Real Root Of 4*x^4-330*x^3+485*x^2+204*x+413 2100966757816976 a001 14662949395604/987*2^(1/2) 2100966757864396 m001 ln(GAMMA(13/24))^2*FeigenbaumC/Zeta(1/2)^2 2100966758212897 m001 Zeta(1/2)^2/ln(MertensB1)^2*sqrt(Pi) 2100966764735818 a001 89/3*2139295485799^(5/9) 2100966765989074 a007 Real Root Of 336*x^4+596*x^3-280*x^2-431*x-689 2100966774631140 r005 Re(z^2+c),c=-23/94+5/36*I,n=10 2100966777749976 r005 Re(z^2+c),c=-11/56+14/41*I,n=39 2100966781141282 m001 (Salem-Weierstrass)/(sin(1/12*Pi)-Lehmer) 2100966783877502 l006 ln(6681/8243) 2100966786169961 m001 BesselI(0,2)^ln(2+3^(1/2))*Rabbit 2100966796939078 m001 GAMMA(3/4)/sin(1)/ln(2) 2100966798945139 m001 (2^(1/3)-Psi(2,1/3))/(Paris+Sierpinski) 2100966799570588 a007 Real Root Of 7*x^4-11*x^3-77*x^2-500*x-949 2100966801732469 r005 Re(z^2+c),c=-11/56+14/41*I,n=34 2100966802014730 a007 Real Root Of 466*x^4+694*x^3-674*x^2+24*x+382 2100966805410077 a007 Real Root Of -332*x^4-892*x^3-872*x^2-520*x+953 2100966805887961 a001 29/2584*28657^(26/51) 2100966811526474 m005 (1/2*Zeta(3)+5)/(7/12*Pi+5/6) 2100966811721500 r005 Im(z^2+c),c=-9/82+17/64*I,n=7 2100966812551272 r005 Re(z^2+c),c=-11/56+14/41*I,n=42 2100966813990556 r005 Re(z^2+c),c=-11/56+14/41*I,n=41 2100966815338411 r005 Re(z^2+c),c=-11/56+14/41*I,n=44 2100966817712794 r005 Re(z^2+c),c=-11/56+14/41*I,n=47 2100966818653293 r005 Re(z^2+c),c=-11/56+14/41*I,n=50 2100966818901012 r005 Re(z^2+c),c=-11/56+14/41*I,n=53 2100966818902329 r005 Re(z^2+c),c=-11/56+14/41*I,n=52 2100966818916808 r005 Re(z^2+c),c=-11/56+14/41*I,n=55 2100966818934866 r005 Re(z^2+c),c=-11/56+14/41*I,n=58 2100966818941732 r005 Re(z^2+c),c=-11/56+14/41*I,n=61 2100966818943435 r005 Re(z^2+c),c=-11/56+14/41*I,n=63 2100966818943491 r005 Re(z^2+c),c=-11/56+14/41*I,n=64 2100966818944563 r005 Re(z^2+c),c=-11/56+14/41*I,n=60 2100966818944889 r005 Re(z^2+c),c=-11/56+14/41*I,n=56 2100966818945170 r005 Re(z^2+c),c=-11/56+14/41*I,n=62 2100966818947159 r005 Re(z^2+c),c=-11/56+14/41*I,n=59 2100966818953835 r005 Re(z^2+c),c=-11/56+14/41*I,n=57 2100966818959202 r005 Re(z^2+c),c=-11/56+14/41*I,n=45 2100966818996613 r005 Re(z^2+c),c=-11/56+14/41*I,n=54 2100966819075811 r005 Re(z^2+c),c=-11/56+14/41*I,n=49 2100966819134048 r005 Re(z^2+c),c=-11/56+14/41*I,n=51 2100966819383994 r005 Re(z^2+c),c=-11/56+14/41*I,n=48 2100966820401067 r005 Re(z^2+c),c=-11/56+14/41*I,n=46 2100966825824777 r005 Re(z^2+c),c=-9/40+9/37*I,n=11 2100966826335859 r005 Re(z^2+c),c=-11/56+14/41*I,n=43 2100966827090866 a001 233/521*1364^(8/15) 2100966828669235 r005 Im(z^2+c),c=-17/54+20/61*I,n=26 2100966835405955 m001 (-MertensB1+MertensB2)/(2^(1/2)-Grothendieck) 2100966837016144 m001 (2^(1/3)+Backhouse)/(-Conway+Trott) 2100966837177523 r002 27th iterates of z^2 + 2100966840037342 m001 exp(TwinPrimes)^2*Trott/GAMMA(11/24) 2100966840364879 r005 Re(z^2+c),c=-11/56+14/41*I,n=38 2100966844390845 r002 41th iterates of z^2 + 2100966844827026 r005 Re(z^2+c),c=-11/56+14/41*I,n=40 2100966847172335 m001 (Rabbit-Salem)/(Backhouse+LandauRamanujan) 2100966859666226 s002 sum(A246114[n]/((2*n+1)!),n=1..infinity) 2100966871566527 m005 (-13/44+1/4*5^(1/2))/(5/8*exp(1)-4/9) 2100966875814633 r005 Re(z^2+c),c=-11/56+14/41*I,n=37 2100966880023363 a007 Real Root Of -423*x^4-440*x^3+938*x^2-48*x-80 2100966880392091 a001 987/3571*322^(3/4) 2100966881074176 r005 Im(z^2+c),c=-3/4+18/209*I,n=19 2100966883656092 a008 Real Root of x^4-x^3-5*x^2-13*x-34 2100966886758189 r005 Im(z^2+c),c=-11/29+10/29*I,n=55 2100966894544056 r005 Im(z^2+c),c=-13/98+14/51*I,n=21 2100966903316123 l006 ln(833/6809) 2100966918028761 a001 72/161*29^(17/37) 2100966926751950 a007 Real Root Of 844*x^4-700*x^3+202*x^2-819*x+168 2100966944888773 r005 Re(z^2+c),c=-3/17+23/58*I,n=20 2100966948678124 r009 Re(z^3+c),c=-17/54+7/16*I,n=11 2100966951394737 m009 (1/6*Psi(1,2/3)-6)/(1/5*Psi(1,2/3)+2) 2100966955935098 r005 Re(z^2+c),c=-1/29+29/40*I,n=21 2100966965676908 a001 17711/1364*123^(1/10) 2100966966920263 m001 ln(2)+Pi*csc(5/12*Pi)/GAMMA(7/12)*Robbin 2100966978351451 m001 (Catalan-Zeta(3))/(Zeta(1/2)+Paris) 2100966985752550 a007 Real Root Of 31*x^4+621*x^3-668*x^2-664*x-85 2100966987663279 r005 Im(z^2+c),c=-11/29+10/29*I,n=48 2100966991159992 s001 sum(exp(-Pi/4)^(n-1)*A091371[n],n=1..infinity) 2100966996295177 m001 1/GAMMA(5/6)*RenyiParking*exp(gamma)^2 2100967002879969 r005 Im(z^2+c),c=-31/54+19/50*I,n=64 2100967004071365 m001 (Thue-Weierstrass)/(Tribonacci-Trott) 2100967004136240 a007 Real Root Of -460*x^4-902*x^3-310*x^2-525*x+863 2100967006896748 a001 1364/233*317811^(13/46) 2100967006927292 a001 64079/1597*1836311903^(16/17) 2100967007428055 a001 3571/196418*6557470319842^(16/17) 2100967007440455 a001 141422324/1597*514229^(16/17) 2100967011510382 r004 Im(z^2+c),c=-19/30+5/18*I,z(0)=-1,n=5 2100967016227490 m001 (Magata-ZetaQ(4))/(arctan(1/2)-Kac) 2100967017087180 m001 1/sin(1)^2*Conway^2*exp(sqrt(5))^2 2100967018713937 a001 3/101521*199^(29/36) 2100967029259689 r005 Re(z^2+c),c=-11/56+14/41*I,n=35 2100967032363125 m005 (1/2*exp(1)-5)/(7/12*5^(1/2)+3/7) 2100967033085188 m005 (1/3*exp(1)+1/12)/(2/7*2^(1/2)-7/8) 2100967033666678 m001 (Cahen+Sierpinski)/(ln(5)+gamma(1)) 2100967036466109 l006 ln(1103/9016) 2100967041647470 m001 (-Stephens+Trott)/(Si(Pi)+Chi(1)) 2100967042981667 m004 5+25*Sqrt[5]*Pi+5*Sqrt[5]*Pi*Tan[Sqrt[5]*Pi]^2 2100967048183932 r005 Im(z^2+c),c=-25/62+20/57*I,n=27 2100967048434261 m001 (-Totient+Thue)/(MertensB1-exp(Pi)) 2100967051502342 m004 -2+Cos[Sqrt[5]*Pi]+4/Log[Sqrt[5]*Pi]^2 2100967058623246 m001 (Ei(1,1)-sin(1))/(GAMMA(19/24)+KomornikLoreti) 2100967062431888 m004 (150*Sqrt[5])/Pi+(125*Pi)/Log[Sqrt[5]*Pi]^2 2100967071834225 a003 sin(Pi*4/49)*sin(Pi*32/103) 2100967075821216 m001 exp(GAMMA(13/24))*Si(Pi)^2/sin(1) 2100967097323288 a001 2584/7*3571^(38/49) 2100967107104180 p004 log(18523/15013) 2100967108078388 a001 2584/9349*322^(3/4) 2100967108778036 r005 Re(z^2+c),c=37/118+13/58*I,n=38 2100967109053956 a001 7/41*18^(33/38) 2100967116970084 r009 Re(z^3+c),c=-31/110+25/37*I,n=18 2100967122977018 a007 Real Root Of 22*x^4+426*x^3-754*x^2+171*x+583 2100967135272278 a007 Real Root Of 196*x^4+92*x^3-869*x^2-368*x+97 2100967140347467 r005 Im(z^2+c),c=-127/126+11/51*I,n=28 2100967141297368 a001 6765/24476*322^(3/4) 2100967143342909 p001 sum(1/(568*n+529)/(5^n),n=0..infinity) 2100967146143952 a001 17711/64079*322^(3/4) 2100967146851059 a001 46368/167761*322^(3/4) 2100967146954225 a001 121393/439204*322^(3/4) 2100967146969276 a001 317811/1149851*322^(3/4) 2100967146971472 a001 832040/3010349*322^(3/4) 2100967146971793 a001 2178309/7881196*322^(3/4) 2100967146971839 a001 5702887/20633239*322^(3/4) 2100967146971846 a001 14930352/54018521*322^(3/4) 2100967146971847 a001 39088169/141422324*322^(3/4) 2100967146971847 a001 102334155/370248451*322^(3/4) 2100967146971847 a001 267914296/969323029*322^(3/4) 2100967146971847 a001 701408733/2537720636*322^(3/4) 2100967146971847 a001 1836311903/6643838879*322^(3/4) 2100967146971847 a001 4807526976/17393796001*322^(3/4) 2100967146971847 a001 12586269025/45537549124*322^(3/4) 2100967146971847 a001 32951280099/119218851371*322^(3/4) 2100967146971847 a001 86267571272/312119004989*322^(3/4) 2100967146971847 a001 225851433717/817138163596*322^(3/4) 2100967146971847 a001 1548008755920/5600748293801*322^(3/4) 2100967146971847 a001 139583862445/505019158607*322^(3/4) 2100967146971847 a001 53316291173/192900153618*322^(3/4) 2100967146971847 a001 20365011074/73681302247*322^(3/4) 2100967146971847 a001 7778742049/28143753123*322^(3/4) 2100967146971847 a001 2971215073/10749957122*322^(3/4) 2100967146971847 a001 1134903170/4106118243*322^(3/4) 2100967146971847 a001 433494437/1568397607*322^(3/4) 2100967146971847 a001 165580141/599074578*322^(3/4) 2100967146971847 a001 63245986/228826127*322^(3/4) 2100967146971848 a001 24157817/87403803*322^(3/4) 2100967146971850 a001 9227465/33385282*322^(3/4) 2100967146971868 a001 3524578/12752043*322^(3/4) 2100967146971991 a001 1346269/4870847*322^(3/4) 2100967146972829 a001 514229/1860498*322^(3/4) 2100967146978579 a001 196418/710647*322^(3/4) 2100967147017984 a001 75025/271443*322^(3/4) 2100967147288075 a001 28657/103682*322^(3/4) 2100967148082155 a001 167761/4181*1836311903^(16/17) 2100967148155217 a001 9349/514229*6557470319842^(16/17) 2100967148158302 a001 370248451/4181*514229^(16/17) 2100967149139306 a001 10946/39603*322^(3/4) 2100967161827827 a001 4181/15127*322^(3/4) 2100967162106545 r005 Im(z^2+c),c=-19/18+23/94*I,n=63 2100967168238891 r009 Im(z^3+c),c=-45/74+21/62*I,n=4 2100967168676374 a001 219602/5473*1836311903^(16/17) 2100967168687033 a001 24476/1346269*6557470319842^(16/17) 2100967168688761 a001 969323029/10946*514229^(16/17) 2100967169912400 r005 Re(z^2+c),c=-36/31+10/63*I,n=14 2100967171681030 a001 1149851/28657*1836311903^(16/17) 2100967171682585 a001 64079/3524578*6557470319842^(16/17) 2100967171684114 a001 2537720636/28657*514229^(16/17) 2100967172119403 a001 3010349/75025*1836311903^(16/17) 2100967172119630 a001 167761/9227465*6557470319842^(16/17) 2100967172121131 a001 6643838879/75025*514229^(16/17) 2100967172183361 a001 3940598/98209*1836311903^(16/17) 2100967172183394 a001 439204/24157817*6557470319842^(16/17) 2100967172184890 a001 17393796001/196418*514229^(16/17) 2100967172192692 a001 20633239/514229*1836311903^(16/17) 2100967172192697 a001 1149851/63245986*6557470319842^(16/17) 2100967172194054 a001 54018521/1346269*1836311903^(16/17) 2100967172194054 a001 3010349/165580141*6557470319842^(16/17) 2100967172194193 a001 45537549124/514229*514229^(16/17) 2100967172194252 a001 70711162/1762289*1836311903^(16/17) 2100967172194252 a001 7881196/433494437*6557470319842^(16/17) 2100967172194281 a001 370248451/9227465*1836311903^(16/17) 2100967172194281 a001 20633239/1134903170*6557470319842^(16/17) 2100967172194286 a001 969323029/24157817*1836311903^(16/17) 2100967172194286 a001 54018521/2971215073*6557470319842^(16/17) 2100967172194286 a001 1268860318/31622993*1836311903^(16/17) 2100967172194286 a001 141422324/7778742049*6557470319842^(16/17) 2100967172194286 a001 6643838879/165580141*1836311903^(16/17) 2100967172194286 a001 370248451/20365011074*6557470319842^(16/17) 2100967172194286 a001 17393796001/433494437*1836311903^(16/17) 2100967172194286 a001 969323029/53316291173*6557470319842^(16/17) 2100967172194286 a001 22768774562/567451585*1836311903^(16/17) 2100967172194286 a001 2537720636/139583862445*6557470319842^(16/17) 2100967172194286 a001 119218851371/2971215073*1836311903^(16/17) 2100967172194286 a001 312119004989/7778742049*1836311903^(16/17) 2100967172194286 a001 408569081798/10182505537*1836311903^(16/17) 2100967172194286 a001 2139295485799/53316291173*1836311903^(16/17) 2100967172194286 a001 5600748293801/139583862445*1836311903^(16/17) 2100967172194286 a001 23725150497407/591286729879*1836311903^(16/17) 2100967172194286 a001 3020733700601/75283811239*1836311903^(16/17) 2100967172194286 a001 1730726404001/43133785636*1836311903^(16/17) 2100967172194286 a001 440719107401/10983760033*1836311903^(16/17) 2100967172194286 a001 505019158607/12586269025*1836311903^(16/17) 2100967172194286 a001 10716675201/267084832*1836311903^(16/17) 2100967172194286 a001 6643838879/365435296162*6557470319842^(16/17) 2100967172194286 a001 17393796001/956722026041*6557470319842^(16/17) 2100967172194286 a001 228811001/12585437040*6557470319842^(16/17) 2100967172194286 a001 73681302247/1836311903*1836311903^(16/17) 2100967172194286 a001 10749957122/591286729879*6557470319842^(16/17) 2100967172194286 a001 1368706081/75283811239*6557470319842^(16/17) 2100967172194286 a001 9381251041/233802911*1836311903^(16/17) 2100967172194286 a001 1568397607/86267571272*6557470319842^(16/17) 2100967172194286 a001 5374978561/133957148*1836311903^(16/17) 2100967172194286 a001 199691526/10983760033*6557470319842^(16/17) 2100967172194286 a001 228826127/12586269025*6557470319842^(16/17) 2100967172194286 a001 1368706081/34111385*1836311903^(16/17) 2100967172194287 a001 29134601/1602508992*6557470319842^(16/17) 2100967172194287 a001 1568397607/39088169*1836311903^(16/17) 2100967172194288 a001 33385282/1836311903*6557470319842^(16/17) 2100967172194288 a001 33281921/829464*1836311903^(16/17) 2100967172194299 a001 4250681/233802911*6557470319842^(16/17) 2100967172194299 a001 228826127/5702887*1836311903^(16/17) 2100967172194375 a001 4870847/267914296*6557470319842^(16/17) 2100967172194375 a001 29134601/726103*1836311903^(16/17) 2100967172194893 a001 15126/831985*6557470319842^(16/17) 2100967172194895 a001 16692641/416020*1836311903^(16/17) 2100967172195550 a001 119218851371/1346269*514229^(16/17) 2100967172195748 a001 312119004989/3524578*514229^(16/17) 2100967172195777 a001 817138163596/9227465*514229^(16/17) 2100967172195781 a001 2139295485799/24157817*514229^(16/17) 2100967172195782 a001 5600748293801/63245986*514229^(16/17) 2100967172195782 a001 14662949395604/165580141*514229^(16/17) 2100967172195782 a001 23725150497407/267914296*514229^(16/17) 2100967172195782 a001 3020733700601/34111385*514229^(16/17) 2100967172195782 a001 3461452808002/39088169*514229^(16/17) 2100967172195784 a001 440719107401/4976784*514229^(16/17) 2100967172195795 a001 505019158607/5702887*514229^(16/17) 2100967172195870 a001 64300051206/726103*514229^(16/17) 2100967172196389 a001 73681302247/832040*514229^(16/17) 2100967172198447 a001 710647/39088169*6557470319842^(16/17) 2100967172198459 a001 4250681/105937*1836311903^(16/17) 2100967172199942 a001 9381251041/105937*514229^(16/17) 2100967172222802 a001 90481/4976784*6557470319842^(16/17) 2100967172222889 a001 4870847/121393*1836311903^(16/17) 2100967172224296 a001 10749957122/121393*514229^(16/17) 2100967172389739 a001 103682/5702887*6557470319842^(16/17) 2100967172390333 a001 103361/2576*1836311903^(16/17) 2100967172391221 a001 1368706081/15456*514229^(16/17) 2100967173533938 a001 13201/726103*6557470319842^(16/17) 2100967173535345 a001 1568397607/17711*514229^(16/17) 2100967173538009 a001 710647/17711*1836311903^(16/17) 2100967176044755 r005 Im(z^2+c),c=-23/86+19/64*I,n=6 2100967181376394 a001 15127/832040*6557470319842^(16/17) 2100967181377282 a001 199691526/2255*514229^(16/17) 2100967181404301 a001 90481/2255*1836311903^(16/17) 2100967187907628 h001 (-3*exp(1/3)+1)/(-8*exp(3)+9) 2100967192659927 m001 exp(1)/(ErdosBorwein^Landau) 2100967195184870 m001 (Khinchin+Lehmer)/(MinimumGamma+Paris) 2100967200024795 r005 Im(z^2+c),c=-63/62+13/58*I,n=50 2100967206187660 r005 Im(z^2+c),c=-37/66+21/55*I,n=48 2100967208413671 a001 2584/7*9349^(34/49) 2100967209882367 r002 27th iterates of z^2 + 2100967221230977 r005 Im(z^2+c),c=-13/48+29/45*I,n=22 2100967225488305 m001 Conway+CareFree^MasserGramain 2100967228649418 a007 Real Root Of 275*x^4+540*x^3-197*x^2+66*x+658 2100967232578121 a007 Real Root Of -625*x^4-807*x^3+559*x^2-674*x+810 2100967235126724 a001 228826127/2584*514229^(16/17) 2100967235129386 a001 1926/105937*6557470319842^(16/17) 2100967235320668 a001 51841/1292*1836311903^(16/17) 2100967248796243 a001 1597/5778*322^(3/4) 2100967266602688 r002 13th iterates of z^2 + 2100967270231698 a007 Real Root Of 954*x^4-218*x^3-5*x^2-893*x+188 2100967274528558 m001 (gamma(1)+Zeta(1,2))/(2^(1/2)-Ei(1)) 2100967285419967 m001 gamma(3)^(ZetaP(3)/ln(2)) 2100967287241292 a007 Real Root Of 567*x^4+728*x^3-857*x^2+230*x-30 2100967288265651 a001 6624*39603^(16/49) 2100967292724126 h005 exp(cos(Pi*10/43)*sin(Pi*28/59)) 2100967295363816 r005 Im(z^2+c),c=-93/106+1/6*I,n=21 2100967299277468 m009 (5/6*Psi(1,2/3)+1/3)/(2*Pi^2-6) 2100967305930536 r002 53th iterates of z^2 + 2100967313853899 a007 Real Root Of -977*x^4-708*x^3+691*x^2+809*x-192 2100967317454737 a007 Real Root Of -251*x^4-253*x^3+658*x^2+468*x+623 2100967318791744 a001 17711/7*5778^(25/49) 2100967319009341 p004 log(28879/3533) 2100967319022301 r005 Im(z^2+c),c=-115/126+7/32*I,n=54 2100967320705409 a005 (1/cos(32/237*Pi))^8 2100967327322804 m005 (1/2*gamma-7/12)/(5/7*5^(1/2)-3) 2100967327955718 m001 sin(1)+GolombDickman+HardyLittlewoodC3 2100967338068718 r002 26th iterates of z^2 + 2100967348590733 a007 Real Root Of -260*x^4-382*x^3-230*x^2-797*x+864 2100967350328655 a001 199/2*317811^(13/54) 2100967351825691 a001 233/521*3571^(8/17) 2100967351874244 q001 695/3308 2100967352064283 r008 a(0)=2,K{-n^6,-4-9*n^3+5*n^2-3*n} 2100967355922281 m001 DuboisRaymond^FeigenbaumD-Riemann2ndZero 2100967363414789 m008 (1/3*Pi^4-1/3)/(5*Pi^5-1/2) 2100967366027723 m005 (1/2*gamma-7/9)/(10/11*exp(1)-1/7) 2100967366282934 l006 ln(2083/2570) 2100967371362411 r005 Re(z^2+c),c=29/114+5/29*I,n=33 2100967373109039 m001 (KhinchinHarmonic-Mills)/(Ei(1)+DuboisRaymond) 2100967375411704 r005 Im(z^2+c),c=-11/29+10/29*I,n=52 2100967381721464 r005 Re(z^2+c),c=-6/5+17/123*I,n=4 2100967383603468 m001 GAMMA(2/3)+MinimumGamma-TravellingSalesman 2100967390700219 b008 5/3+CosIntegral[5/4] 2100967400511152 r005 Re(z^2+c),c=7/90+51/62*I,n=4 2100967410208894 m001 (ln(gamma)+LaplaceLimit)/(Lehmer-ZetaQ(2)) 2100967411977830 m001 GAMMA(17/24)/BesselI(0,2)/FeigenbaumD 2100967414105631 r005 Re(z^2+c),c=-123/110+5/27*I,n=4 2100967419235598 a007 Real Root Of 239*x^4+762*x^3+874*x^2+227*x-971 2100967419236581 a001 233/521*9349^(8/19) 2100967420646577 r009 Re(z^3+c),c=-65/122+16/43*I,n=21 2100967422989246 p003 LerchPhi(1/2,6,186/143) 2100967428021618 a001 233/521*24476^(8/21) 2100967429179655 a001 233/521*64079^(8/23) 2100967429357626 a001 233/521*(1/2+1/2*5^(1/2))^8 2100967429357626 a001 233/521*23725150497407^(1/8) 2100967429357626 a001 233/521*73681302247^(2/13) 2100967429357626 a001 233/521*10749957122^(1/6) 2100967429357626 a001 233/521*4106118243^(4/23) 2100967429357626 a001 233/521*1568397607^(2/11) 2100967429357626 a001 233/521*599074578^(4/21) 2100967429357626 a001 233/521*228826127^(1/5) 2100967429357626 a001 233/521*87403803^(4/19) 2100967429357627 a001 233/521*33385282^(2/9) 2100967429357629 a001 233/521*12752043^(4/17) 2100967429357648 a001 233/521*4870847^(1/4) 2100967429357788 a001 233/521*1860498^(4/15) 2100967429358815 a001 233/521*710647^(2/7) 2100967429366400 a001 233/521*271443^(4/13) 2100967429422773 a001 233/521*103682^(1/3) 2100967429844740 a001 233/521*39603^(4/11) 2100967430844852 r005 Im(z^2+c),c=-19/18+51/211*I,n=7 2100967433030227 a001 233/521*15127^(2/5) 2100967436162787 m001 (FransenRobinson+Otter)/(LambertW(1)-sin(1)) 2100967444130126 m008 (3/4*Pi^5-3/5)/(4/5*Pi^2+3) 2100967445076914 a007 Real Root Of -245*x^4-347*x^3+124*x^2-844*x-765 2100967447258361 l006 ln(270/2207) 2100967448761138 m005 (1/2*5^(1/2)-1/7)/(4*Zeta(3)-1/6) 2100967448896323 m001 (GAMMA(23/24)+Trott)/(ln(2^(1/2)+1)-exp(1/Pi)) 2100967450252533 m005 (-13/20+1/4*5^(1/2))/(4*Catalan+2/3) 2100967455651373 m001 FeigenbaumAlpha/(GAMMA(7/12)^ThueMorse) 2100967457326936 a001 233/521*5778^(4/9) 2100967466883571 m001 1/GAMMA(13/24)/ln(GAMMA(1/12))*sin(1) 2100967477183102 m006 (4/Pi+5)/(3*Pi^2+1/4) 2100967478712638 s002 sum(A223676[n]/(exp(2*pi*n)-1),n=1..infinity) 2100967481488890 a001 6624*2207^(22/49) 2100967483418517 h002 exp(11*7^(3/4)-154) 2100967486018503 p004 log(17027/16673) 2100967491823147 b008 (19/2)^ArcCoth[Pi] 2100967492260061 a001 54289/2584 2100967492580437 a007 Real Root Of 20*x^4-747*x^3+824*x^2+997*x+806 2100967493211529 m001 gamma(2)+GAMMA(7/12)+LandauRamanujan2nd 2100967498008547 m005 (23/30+1/6*5^(1/2))/(7/11*5^(1/2)+4) 2100967524455145 r005 Re(z^2+c),c=-89/106+11/58*I,n=4 2100967539364672 p004 log(27737/22481) 2100967541513088 a007 Real Root Of -327*x^4-923*x^3-391*x^2-34*x-534 2100967544464301 r005 Re(z^2+c),c=-5/58+31/57*I,n=15 2100967545781231 a007 Real Root Of 470*x^4-743*x^3-850*x^2-783*x+208 2100967545997577 m001 FeigenbaumAlpha^GAMMA(17/24)*MasserGramain 2100967554002656 r005 Re(z^2+c),c=-16/13+1/21*I,n=54 2100967557894151 m001 (Grothendieck+Totient)/(ln(5)-Champernowne) 2100967559774809 p004 log(32917/4027) 2100967564085106 m001 Zeta(3)^2/Ei(1)^2*exp(sqrt(1+sqrt(3))) 2100967564402451 b008 -3+Sqrt[-7/3+Pi] 2100967568574079 a007 Real Root Of 182*x^4+430*x^3+326*x^2+548*x+154 2100967569614334 a001 3571/610*6557470319842^(14/17) 2100967598504040 r005 Re(z^2+c),c=-15/19+1/37*I,n=4 2100967598800876 m001 (Pi^(1/2)+ErdosBorwein)/(ln(Pi)+arctan(1/2)) 2100967603530949 a001 29134601/329*514229^(16/17) 2100967603557879 a001 2207/121393*6557470319842^(16/17) 2100967604869016 a001 13201/329*1836311903^(16/17) 2100967609666987 a007 Real Root Of -663*x^4-896*x^3+928*x^2+116*x+756 2100967610218368 r005 Im(z^2+c),c=-19/36+2/55*I,n=23 2100967612310976 m005 (1/2*2^(1/2)-10/11)/(7/9*5^(1/2)-7/9) 2100967612566654 a007 Real Root Of -465*x^4-883*x^3+411*x^2+524*x+158 2100967621544769 a007 Real Root Of -478*x^4-138*x^3+597*x^2+818*x-196 2100967625764608 m001 (BesselK(0,1)+ln(2))/(-GAMMA(19/24)+Cahen) 2100967634116623 a003 sin(Pi*16/109)*sin(Pi*18/115) 2100967641396394 m001 (-KomornikLoreti+Tribonacci)/(Si(Pi)+Kac) 2100967642255928 m002 -1-Pi*Csch[Pi]+Pi*ProductLog[Pi] 2100967643670947 r005 Im(z^2+c),c=-55/42+7/54*I,n=4 2100967645025181 a001 233/521*2207^(1/2) 2100967647557347 r005 Im(z^2+c),c=-7/8+10/59*I,n=33 2100967664204065 m001 (Riemann2ndZero+Robbin)/(BesselJ(1,1)-Landau) 2100967671204096 b008 85*E*Sin[2] 2100967677529482 r005 Im(z^2+c),c=-6/13+5/14*I,n=22 2100967679319165 r005 Re(z^2+c),c=-5/6+1/93*I,n=22 2100967682512168 r009 Im(z^3+c),c=-7/60+53/59*I,n=2 2100967684412964 m001 (KhinchinLevy+PlouffeB)/(Zeta(1,-1)-Kac) 2100967688629176 m005 (1/2*3^(1/2)+5/6)/(9/10*3^(1/2)-3/4) 2100967695440091 m001 (-BesselI(1,1)+Kac)/(Chi(1)+ln(gamma)) 2100967701155158 a001 987/521*322^(5/12) 2100967702948901 m009 (1/4*Psi(1,2/3)+2/3)/(32*Catalan+4*Pi^2-3/5) 2100967708874796 r002 54th iterates of z^2 + 2100967711310174 r005 Re(z^2+c),c=21/118+4/59*I,n=5 2100967716849254 a001 305/682*322^(2/3) 2100967719502775 m006 (3/5*Pi^2-5)/(3/4/Pi+1/5) 2100967729369830 m001 (Catalan+GAMMA(5/6))/(-HeathBrownMoroz+Paris) 2100967731030201 a007 Real Root Of 116*x^4+23*x^3-173*x^2+527*x-176 2100967732426025 m001 (exp(1)+2^(1/2))/(Ei(1,1)+MadelungNaCl) 2100967732555489 a001 377/3571*322^(11/12) 2100967734369486 a001 3010349/610*1836311903^(14/17) 2100967734371026 a001 1268860318/305*514229^(14/17) 2100967739499746 r005 Im(z^2+c),c=39/122+13/38*I,n=5 2100967756635248 b008 ArcTan[1/Sqrt[7*Pi]] 2100967756771286 l003 KelvinHer(2,83/108) 2100967769642377 a007 Real Root Of 952*x^4-747*x^3-981*x^2-954*x-2 2100967770995866 p003 LerchPhi(1/256,6,89/217) 2100967772977717 m001 1/OneNinth^2/FransenRobinson*exp(GAMMA(1/6))^2 2100967776673322 m001 (Riemann3rdZero+Trott2nd)/(3^(1/2)-cos(1)) 2100967787818280 r005 Im(z^2+c),c=-49/52+9/44*I,n=59 2100967788708010 p004 log(10847/1327) 2100967795517812 s001 sum(exp(-4*Pi/5)^n*A092841[n],n=1..infinity) 2100967799963871 r005 Im(z^2+c),c=7/58+7/40*I,n=17 2100967800655967 a008 Real Root of (1+4*x-4*x^2-3*x^3-6*x^4-2*x^5) 2100967814390057 a007 Real Root Of 338*x^4+92*x^3-657*x^2+984*x-765 2100967821848626 m001 (Pi-arctan(1/3))/(BesselJ(1,1)-Grothendieck) 2100967844886513 a001 610/2207*322^(3/4) 2100967850596943 m004 4+(125*Pi)/2+5*Log[Sqrt[5]*Pi] 2100967850881738 r005 Re(z^2+c),c=-11/56+14/41*I,n=32 2100967850928496 r005 Im(z^2+c),c=-23/44+1/27*I,n=30 2100967852615926 m001 (GaussAGM+Totient)/(LambertW(1)-arctan(1/2)) 2100967858820971 l006 ln(7900/9747) 2100967861493501 r009 Im(z^3+c),c=-9/82+36/41*I,n=20 2100967863084030 r005 Re(z^2+c),c=11/94+19/49*I,n=48 2100967863938634 m001 (2^(1/2)-exp(Pi))/(Artin+TwinPrimes) 2100967866705819 m001 (Conway+FellerTornier)/(MasserGramain-Sarnak) 2100967875927863 l006 ln(1057/8640) 2100967877110639 m001 MasserGramain/MertensB1/Salem 2100967883292729 a007 Real Root Of 957*x^4+966*x^3+71*x^2-590*x+110 2100967889339478 a001 14662949395604/233*6557470319842^(6/17) 2100967899415807 m005 (-9/28+1/4*5^(1/2))/(1/7*Catalan+1) 2100967900357328 m001 exp(GAMMA(17/24))*BesselJ(1,1)^2/gamma^2 2100967903800444 r005 Im(z^2+c),c=-25/56+17/47*I,n=45 2100967916814515 m001 (3^(1/3)+FibonacciFactorial)/(gamma+ln(2)) 2100967921363098 m003 (33*Sqrt[5])/512+Tan[1/2+Sqrt[5]/2] 2100967931350958 r009 Re(z^3+c),c=-11/46+49/61*I,n=2 2100967943117849 p001 sum(1/(520*n+501)/(10^n),n=0..infinity) 2100967955727665 r009 Re(z^3+c),c=-11/36+3/7*I,n=6 2100967961147638 p003 LerchPhi(1/16,2,19/87) 2100967961691200 a007 Real Root Of -43*x^4+309*x^3+414*x^2-822*x+149 2100967965911477 m001 Niven*Backhouse*ln(RenyiParking)^2 2100967966890536 r005 Im(z^2+c),c=-35/86+19/54*I,n=43 2100967968906889 m001 FibonacciFactorial^2/Backhouse*ln(GAMMA(3/4)) 2100967969678953 r005 Re(z^2+c),c=-19/16+13/116*I,n=2 2100967971647533 a007 Real Root Of 533*x^4+690*x^3-871*x^2+83*x+33 2100967972513959 m005 (1/2*3^(1/2)+5/12)/(3*3^(1/2)+10/11) 2100967980976333 m008 (5*Pi^5+3/5)/(3/4*Pi^4-1/5) 2100967990875308 m001 HardHexagonsEntropy*CareFree/exp(cosh(1)) 2100967991601060 r005 Im(z^2+c),c=7/58+7/40*I,n=15 2100967994481634 a007 Real Root Of 500*x^4+770*x^3-772*x^2-520*x-286 2100967995540214 a007 Real Root Of 93*x^4-79*x^3-829*x^2-640*x-230 2100967998289099 a001 2139295485799/8*1836311903^(7/11) 2100967998289099 a001 73681302247/8*365435296162^(7/11) 2100968004206114 m001 (Psi(2,1/3)+ArtinRank2*MertensB1)/MertensB1 2100968020313835 a007 Real Root Of -40*x^4-846*x^3-128*x^2-214*x-48 2100968020844986 a003 cos(Pi*1/6)-sin(Pi*23/101) 2100968022993597 l006 ln(787/6433) 2100968026597387 a007 Real Root Of 42*x^4+888*x^3+162*x^2+978*x+912 2100968035193103 l006 ln(5817/7177) 2100968038146890 a007 Real Root Of 633*x^4-900*x^3+187*x^2-529*x+110 2100968046694578 g002 -3*Psi(3/11)-Psi(1/9) 2100968058271298 m001 (-GAMMA(1/3)+4)/(-GAMMA(5/6)+1/2) 2100968070873203 r009 Re(z^3+c),c=-9/74+33/37*I,n=30 2100968070934739 m005 (1/5*Pi-5/6)/(3*Pi+1/3) 2100968070934739 m006 (5/6/Pi-1/5)/(1/3/Pi+3) 2100968070934739 m008 (1/5*Pi-5/6)/(3*Pi+1/3) 2100968073207265 r005 Re(z^2+c),c=-33/34+49/115*I,n=2 2100968073861935 r005 Im(z^2+c),c=-117/122+1/52*I,n=14 2100968074896832 m009 (4/5*Psi(1,1/3)+5)/(3/5*Psi(1,1/3)+1/6) 2100968086449451 a007 Real Root Of 443*x^4+753*x^3-133*x^2+675*x+357 2100968088597656 m001 (Ei(1)-BesselI(1,1))/(Landau-Salem) 2100968089672111 m001 Magata^2*ln(GaussKuzminWirsing)^2*GAMMA(5/6)^2 2100968093468269 m001 ln(3)*LandauRamanujan2nd+MinimumGamma 2100968093647171 r005 Re(z^2+c),c=-7/34+39/49*I,n=3 2100968102200024 a003 cos(Pi*13/107)/sin(Pi*15/103) 2100968104876356 a001 11/8*2971215073^(1/8) 2100968106390991 r009 Re(z^3+c),c=-9/23+23/41*I,n=32 2100968107127201 r002 50th iterates of z^2 + 2100968108491117 a008 Real Root of x^4+11*x^2-40*x+16 2100968116811777 r005 Re(z^2+c),c=-5/4+5/229*I,n=52 2100968118934207 a007 Real Root Of -698*x^4-969*x^3+990*x^2+133*x+523 2100968123307013 a007 Real Root Of 781*x^4-452*x^3-536*x^2-522*x+136 2100968127017265 a003 cos(Pi*5/88)/cos(Pi*10/29) 2100968133385081 m001 (3^(1/2)+ZetaP(2))/(Psi(1,1/3)+ln(2)/ln(10)) 2100968153084607 r005 Re(z^2+c),c=-16/19+7/38*I,n=42 2100968156280891 a007 Real Root Of -53*x^4+791*x^3+167*x^2+647*x+136 2100968167943906 a003 cos(Pi*33/103)-cos(Pi*15/38) 2100968174850849 h001 (4/9*exp(2)+5/8)/(5/11*exp(1)+5/8) 2100968175033589 a007 Real Root Of -411*x^4-433*x^3+523*x^2-414*x+814 2100968175792618 m005 (1/2*Pi-4)/(3/20+9/20*5^(1/2)) 2100968177114360 m001 GAMMA(1/12)^2/ln(CareFree)*GAMMA(1/6) 2100968186128341 a007 Real Root Of 984*x^4-786*x^3+915*x^2-773*x-212 2100968187230136 r005 Im(z^2+c),c=-63/118+23/41*I,n=45 2100968188105117 q001 1519/723 2100968192914223 r005 Im(z^2+c),c=-27/62+32/63*I,n=17 2100968195885880 m001 (sin(1)+cos(1))/(-AlladiGrinstead+Porter) 2100968196183356 m001 ln(2+3^(1/2))*BesselJ(1,1)^(5^(1/2)) 2100968196183356 m001 ln(2+sqrt(3))*BesselJ(1,1)^sqrt(5) 2100968208094365 a007 Real Root Of -147*x^4-84*x^3+509*x^2-192*x-565 2100968208657469 m001 1/TwinPrimes^2*exp(Artin)/(2^(1/3))^2 2100968218711890 a007 Real Root Of 34*x^4+672*x^3-875*x^2+334*x+695 2100968219588005 m001 (3^(1/3))*ln(Lehmer)/Ei(1)^2 2100968221311275 m001 (BesselI(0,1)+GAMMA(19/24))^FeigenbaumB 2100968225204270 m001 (OneNinth-Thue)/(FeigenbaumC+KhinchinHarmonic) 2100968229155085 m001 (-Backhouse+MadelungNaCl)/(Chi(1)-ln(gamma)) 2100968237303196 r005 Re(z^2+c),c=-9/46+11/32*I,n=31 2100968241636438 m001 1/Kolakoski^2/ln(ErdosBorwein)^2/FeigenbaumC^2 2100968251484572 s002 sum(A252569[n]/(pi^n+1),n=1..infinity) 2100968254587829 a001 161/305*4181^(28/39) 2100968258258937 r004 Im(z^2+c),c=1/3+1/15*I,z(0)=exp(3/8*I*Pi),n=63 2100968276229091 m005 (1/2*Pi-9/11)/(7/8*Pi+5/6) 2100968284439631 r005 Re(z^2+c),c=-21/86+1/63*I,n=3 2100968284493927 a007 Real Root Of 548*x^4+417*x^3-995*x^2+981*x-357 2100968287182827 r005 Im(z^2+c),c=-39/44+5/32*I,n=6 2100968288942260 m001 (Conway+LandauRamanujan)/(Backhouse-Bloch) 2100968296466918 a007 Real Root Of 475*x^4+945*x^3-331*x^2-326*x+285 2100968307206600 h001 (7/11*exp(2)+8/9)/(3/10*exp(2)+4/9) 2100968310048397 r009 Re(z^3+c),c=-17/106+50/63*I,n=3 2100968318617426 a001 123/1346269*377^(11/12) 2100968319703705 a005 (1/cos(13/184*Pi))^308 2100968322893224 m001 (1+2*Pi/GAMMA(5/6))/(Khinchin+TreeGrowth2nd) 2100968323667572 l006 ln(517/4226) 2100968323763184 m005 (1/3*gamma+1/12)/(7/10*3^(1/2)+1/10) 2100968339021662 a007 Real Root Of 274*x^4+56*x^3+514*x^2-370*x-8 2100968341328566 a001 329/1926*322^(5/6) 2100968347760093 m001 TreeGrowth2nd/Paris/exp(GAMMA(1/3))^2 2100968355659276 m001 (-Mills+PolyaRandomWalk3D)/(Zeta(5)-gamma) 2100968357939102 r005 Re(z^2+c),c=27/86+9/25*I,n=15 2100968361767779 a007 Real Root Of 627*x^4+778*x^3-542*x^2+941*x-632 2100968362343151 s002 sum(A276428[n]/((2^n+1)/n),n=1..infinity) 2100968364174913 a001 9381251041/48*144^(16/17) 2100968388336533 m001 Kolakoski^DuboisRaymond+ln(Pi) 2100968408342490 l006 ln(3734/4607) 2100968409219691 a007 Real Root Of 568*x^4+921*x^3-916*x^2-580*x+299 2100968428438021 r005 Re(z^2+c),c=17/58+6/29*I,n=39 2100968439115808 a007 Real Root Of -132*x^4+396*x^3+986*x^2-773*x+268 2100968444836058 a007 Real Root Of -401*x^4-842*x^3+273*x^2+322*x-524 2100968453901589 a007 Real Root Of 643*x^4+980*x^3-700*x^2-287*x-953 2100968454760631 r002 6th iterates of z^2 + 2100968458589634 r005 Re(z^2+c),c=-103/94+14/57*I,n=20 2100968463321364 m009 (1/4*Pi^2+2/5)/(6*Catalan+3/4*Pi^2+3/4) 2100968477040283 r005 Re(z^2+c),c=-13/18+17/56*I,n=11 2100968481051436 r005 Im(z^2+c),c=-7/6+49/181*I,n=51 2100968482310912 m001 ln(Rabbit)*GlaisherKinkelin^2/FeigenbaumD 2100968482357472 m001 ln(3)^ln(5)-Zeta(1,2) 2100968490370736 m001 1/Bloch*Cahen^2*exp(GAMMA(1/24))^2 2100968496666154 a007 Real Root Of -291*x^4-258*x^3+317*x^2-970*x-160 2100968501936978 s001 sum(exp(-Pi/2)^(n-1)*A117627[n],n=1..infinity) 2100968505121447 r002 6th iterates of z^2 + 2100968511790941 a007 Real Root Of 77*x^4-613*x^3+889*x^2-684*x+110 2100968532797139 a007 Real Root Of -452*x^4-325*x^3+878*x^2-646*x+560 2100968538210688 a007 Real Root Of 642*x^4+447*x^3-145*x^2-622*x-13 2100968553318889 a001 377/521*322^(7/12) 2100968558082824 r005 Im(z^2+c),c=-7/62+17/63*I,n=5 2100968563767507 m001 OneNinth*Sierpinski*ln(GAMMA(5/12)) 2100968568273193 a007 Real Root Of -644*x^4-900*x^3+795*x^2+128*x+961 2100968582284471 a007 Real Root Of 355*x^4+921*x^3+915*x^2-636*x+84 2100968591486323 r005 Re(z^2+c),c=-31/122+1/60*I,n=13 2100968599154592 a001 1346269/11*47^(8/57) 2100968609497179 m001 1/Rabbit/exp(Si(Pi))/GAMMA(23/24)^2 2100968610095838 r002 45th iterates of z^2 + 2100968617166345 r005 Im(z^2+c),c=-39/94+11/31*I,n=26 2100968617226417 r009 Re(z^3+c),c=-8/21+27/47*I,n=48 2100968630828809 r005 Re(z^2+c),c=33/118+13/54*I,n=8 2100968633393157 l006 ln(764/6245) 2100968645733643 a007 Real Root Of -519*x^4-792*x^3+56*x^2-873*x+686 2100968657366171 s001 sum(exp(-3*Pi)^(n-1)*A204214[n],n=1..infinity) 2100968661106315 m001 (Porter-ZetaQ(4))/ArtinRank2 2100968666742388 m001 HeathBrownMoroz-KomornikLoreti*Salem 2100968671539745 r009 Im(z^3+c),c=-3/98+47/53*I,n=12 2100968672574527 r008 a(0)=3,K{-n^6,n^3-n^2+5*n} 2100968672603765 r002 7th iterates of z^2 + 2100968674826959 a001 9349/1597*6557470319842^(14/17) 2100968675357314 m001 Riemann2ndZero*exp(PrimesInBinary)*TwinPrimes 2100968682860188 a001 53316291173/29*76^(9/16) 2100968686233725 r005 Re(z^2+c),c=-33/34+10/111*I,n=24 2100968690741193 m001 (exp(1)+exp(1/2)*ZetaP(2))/exp(1/2) 2100968690741193 m001 exp(1/2)+ZetaP(2) 2100968698864423 a001 7881196/1597*1836311903^(14/17) 2100968698865765 a001 6643838879/1597*514229^(14/17) 2100968702404242 r002 52th iterates of z^2 + 2100968703242777 r005 Re(z^2+c),c=5/122+23/43*I,n=9 2100968711074166 r005 Im(z^2+c),c=7/58+7/40*I,n=21 2100968722786780 m001 (GAMMA(17/24)-Kac)/(ln(5)+GAMMA(7/12)) 2100968725451548 r002 12th iterates of z^2 + 2100968727588746 a007 Real Root Of -19*x^4+542*x^3-775*x^2-528*x-126 2100968740885174 r005 Im(z^2+c),c=7/58+7/40*I,n=22 2100968742439746 m001 2/3*exp(gamma)/BesselI(1,1) 2100968746464975 m001 (Zeta(1/2)*Kolakoski+Porter)/Zeta(1/2) 2100968754815830 r005 Re(z^2+c),c=-2/13+9/20*I,n=38 2100968755854995 m005 (1/3*Pi-1/12)/(11/12*3^(1/2)+3) 2100968763482464 a001 2584/15127*322^(5/6) 2100968764802290 a007 Real Root Of 184*x^4+108*x^3-803*x^2-426*x+66 2100968764930158 r005 Im(z^2+c),c=7/58+7/40*I,n=26 2100968765142450 r005 Im(z^2+c),c=7/58+7/40*I,n=27 2100968765659902 r005 Im(z^2+c),c=7/58+7/40*I,n=28 2100968765676424 r005 Im(z^2+c),c=7/58+7/40*I,n=32 2100968765679462 r005 Im(z^2+c),c=7/58+7/40*I,n=31 2100968765685095 r005 Im(z^2+c),c=7/58+7/40*I,n=33 2100968765686911 r005 Im(z^2+c),c=7/58+7/40*I,n=37 2100968765687038 r005 Im(z^2+c),c=7/58+7/40*I,n=38 2100968765687096 r005 Im(z^2+c),c=7/58+7/40*I,n=36 2100968765687097 r005 Im(z^2+c),c=7/58+7/40*I,n=42 2100968765687098 r005 Im(z^2+c),c=7/58+7/40*I,n=43 2100968765687100 r005 Im(z^2+c),c=7/58+7/40*I,n=47 2100968765687100 r005 Im(z^2+c),c=7/58+7/40*I,n=48 2100968765687100 r005 Im(z^2+c),c=7/58+7/40*I,n=49 2100968765687100 r005 Im(z^2+c),c=7/58+7/40*I,n=53 2100968765687100 r005 Im(z^2+c),c=7/58+7/40*I,n=52 2100968765687100 r005 Im(z^2+c),c=7/58+7/40*I,n=54 2100968765687100 r005 Im(z^2+c),c=7/58+7/40*I,n=58 2100968765687100 r005 Im(z^2+c),c=7/58+7/40*I,n=59 2100968765687100 r005 Im(z^2+c),c=7/58+7/40*I,n=63 2100968765687100 r005 Im(z^2+c),c=7/58+7/40*I,n=64 2100968765687100 r005 Im(z^2+c),c=7/58+7/40*I,n=62 2100968765687100 r005 Im(z^2+c),c=7/58+7/40*I,n=60 2100968765687100 r005 Im(z^2+c),c=7/58+7/40*I,n=61 2100968765687100 r005 Im(z^2+c),c=7/58+7/40*I,n=57 2100968765687100 r005 Im(z^2+c),c=7/58+7/40*I,n=56 2100968765687100 r005 Im(z^2+c),c=7/58+7/40*I,n=55 2100968765687100 r005 Im(z^2+c),c=7/58+7/40*I,n=51 2100968765687100 r005 Im(z^2+c),c=7/58+7/40*I,n=50 2100968765687100 r005 Im(z^2+c),c=7/58+7/40*I,n=46 2100968765687100 r005 Im(z^2+c),c=7/58+7/40*I,n=44 2100968765687100 r005 Im(z^2+c),c=7/58+7/40*I,n=45 2100968765687102 r005 Im(z^2+c),c=7/58+7/40*I,n=41 2100968765687118 r005 Im(z^2+c),c=7/58+7/40*I,n=39 2100968765687118 r005 Im(z^2+c),c=7/58+7/40*I,n=40 2100968765688015 r005 Im(z^2+c),c=7/58+7/40*I,n=35 2100968765688613 r005 Im(z^2+c),c=7/58+7/40*I,n=34 2100968765726832 r005 Im(z^2+c),c=7/58+7/40*I,n=30 2100968765789377 r005 Im(z^2+c),c=7/58+7/40*I,n=29 2100968767113986 r005 Im(z^2+c),c=7/58+7/40*I,n=25 2100968767339848 m001 1/GAMMA(13/24)*Cahen*exp(Pi)^2 2100968768181624 a003 cos(Pi*24/77)*cos(Pi*23/61) 2100968768567372 r005 Im(z^2+c),c=7/58+7/40*I,n=23 2100968771720624 r005 Im(z^2+c),c=7/58+7/40*I,n=24 2100968773895349 m001 Magata^CareFree/GAMMA(5/6) 2100968774143329 a007 Real Root Of -669*x^4-920*x^3+914*x^2+75*x+626 2100968774398199 m001 (Lehmer+Niven)/(Psi(1,1/3)+sin(1)) 2100968778571174 r005 Re(z^2+c),c=21/62+10/41*I,n=29 2100968783627775 r002 17th iterates of z^2 + 2100968791779003 l006 ln(1011/8264) 2100968794083807 s002 sum(A110581[n]/((exp(n)+1)*n),n=1..infinity) 2100968797748936 r005 Im(z^2+c),c=7/58+7/40*I,n=20 2100968798704945 m008 (3/4*Pi^3+4/5)/(1/6*Pi^2-1/2) 2100968806318873 m004 -1/4+ProductLog[Sqrt[5]*Pi]-5*Sin[Sqrt[5]*Pi] 2100968810637652 r005 Re(z^2+c),c=39/110+11/50*I,n=36 2100968810775032 r009 Re(z^3+c),c=-5/62+34/43*I,n=42 2100968811426965 l006 ln(5385/6644) 2100968825073889 a001 2255/13201*322^(5/6) 2100968830185410 a001 1/72*1836311903^(4/17) 2100968834059957 a001 17711/103682*322^(5/6) 2100968835371007 a001 15456/90481*322^(5/6) 2100968835562286 a001 121393/710647*322^(5/6) 2100968835590194 a001 105937/620166*322^(5/6) 2100968835594265 a001 832040/4870847*322^(5/6) 2100968835594859 a001 726103/4250681*322^(5/6) 2100968835594946 a001 5702887/33385282*322^(5/6) 2100968835594959 a001 4976784/29134601*322^(5/6) 2100968835594960 a001 39088169/228826127*322^(5/6) 2100968835594961 a001 34111385/199691526*322^(5/6) 2100968835594961 a001 267914296/1568397607*322^(5/6) 2100968835594961 a001 233802911/1368706081*322^(5/6) 2100968835594961 a001 1836311903/10749957122*322^(5/6) 2100968835594961 a001 1602508992/9381251041*322^(5/6) 2100968835594961 a001 12586269025/73681302247*322^(5/6) 2100968835594961 a001 10983760033/64300051206*322^(5/6) 2100968835594961 a001 86267571272/505019158607*322^(5/6) 2100968835594961 a001 75283811239/440719107401*322^(5/6) 2100968835594961 a001 2504730781961/14662949395604*322^(5/6) 2100968835594961 a001 139583862445/817138163596*322^(5/6) 2100968835594961 a001 53316291173/312119004989*322^(5/6) 2100968835594961 a001 20365011074/119218851371*322^(5/6) 2100968835594961 a001 7778742049/45537549124*322^(5/6) 2100968835594961 a001 2971215073/17393796001*322^(5/6) 2100968835594961 a001 1134903170/6643838879*322^(5/6) 2100968835594961 a001 433494437/2537720636*322^(5/6) 2100968835594961 a001 165580141/969323029*322^(5/6) 2100968835594961 a001 63245986/370248451*322^(5/6) 2100968835594962 a001 24157817/141422324*322^(5/6) 2100968835594966 a001 9227465/54018521*322^(5/6) 2100968835595000 a001 3524578/20633239*322^(5/6) 2100968835595226 a001 1346269/7881196*322^(5/6) 2100968835596782 a001 514229/3010349*322^(5/6) 2100968835607441 a001 196418/1149851*322^(5/6) 2100968835680504 a001 75025/439204*322^(5/6) 2100968836075392 a001 24476/4181*6557470319842^(14/17) 2100968836181280 a001 28657/167761*322^(5/6) 2100968836618581 a007 Real Root Of 549*x^4+612*x^3-791*x^2+531*x-414 2100968836830882 m001 1/BesselK(1,1)/FeigenbaumD/ln(GAMMA(1/6))^2 2100968839104453 a007 Real Root Of -454*x^4-751*x^3+96*x^2-568*x+264 2100968839582411 a001 20633239/4181*1836311903^(14/17) 2100968839583725 a001 17393796001/4181*514229^(14/17) 2100968839613653 a001 10946/64079*322^(5/6) 2100968839892491 b008 (53*ArcSec[Khinchin])/3 2100968845767376 r009 Re(z^3+c),c=-27/52+3/19*I,n=5 2100968847610311 r009 Im(z^3+c),c=-5/48+51/58*I,n=24 2100968859601224 a001 64079/10946*6557470319842^(14/17) 2100968860112891 a001 54018521/10946*1836311903^(14/17) 2100968860114200 a001 22768774562/5473*514229^(14/17) 2100968863033596 a001 167761/28657*6557470319842^(14/17) 2100968863108247 a001 141422324/28657*1836311903^(14/17) 2100968863109556 a001 119218851371/28657*514229^(14/17) 2100968863139484 a001 4181/24476*322^(5/6) 2100968863534373 a001 439204/75025*6557470319842^(14/17) 2100968863545264 a001 370248451/75025*1836311903^(14/17) 2100968863546573 a001 312119004989/75025*514229^(14/17) 2100968863607435 a001 1149851/196418*6557470319842^(14/17) 2100968863609024 a001 969323029/196418*1836311903^(14/17) 2100968863610333 a001 408569081798/98209*514229^(14/17) 2100968863618095 a001 3010349/514229*6557470319842^(14/17) 2100968863618326 a001 2537720636/514229*1836311903^(14/17) 2100968863619635 a001 2139295485799/514229*514229^(14/17) 2100968863619650 a001 7881196/1346269*6557470319842^(14/17) 2100968863619684 a001 6643838879/1346269*1836311903^(14/17) 2100968863619877 a001 20633239/3524578*6557470319842^(14/17) 2100968863619882 a001 17393796001/3524578*1836311903^(14/17) 2100968863619910 a001 54018521/9227465*6557470319842^(14/17) 2100968863619911 a001 45537549124/9227465*1836311903^(14/17) 2100968863619915 a001 141422324/24157817*6557470319842^(14/17) 2100968863619915 a001 119218851371/24157817*1836311903^(14/17) 2100968863619915 a001 370248451/63245986*6557470319842^(14/17) 2100968863619915 a001 312119004989/63245986*1836311903^(14/17) 2100968863619915 a001 969323029/165580141*6557470319842^(14/17) 2100968863619915 a001 817138163596/165580141*1836311903^(14/17) 2100968863619915 a001 2537720636/433494437*6557470319842^(14/17) 2100968863619915 a001 2139295485799/433494437*1836311903^(14/17) 2100968863619915 a001 5600748293801/1134903170*1836311903^(14/17) 2100968863619915 a001 6643838879/1134903170*6557470319842^(14/17) 2100968863619915 a001 14662949395604/2971215073*1836311903^(14/17) 2100968863619915 a001 23725150497407/4807526976*1836311903^(14/17) 2100968863619915 a001 17393796001/2971215073*6557470319842^(14/17) 2100968863619915 a001 45537549124/7778742049*6557470319842^(14/17) 2100968863619915 a001 119218851371/20365011074*6557470319842^(14/17) 2100968863619915 a001 312119004989/53316291173*6557470319842^(14/17) 2100968863619915 a001 440719107401/75283811239*6557470319842^(14/17) 2100968863619915 a001 505019158607/86267571272*6557470319842^(14/17) 2100968863619915 a001 64300051206/10983760033*6557470319842^(14/17) 2100968863619915 a001 73681302247/12586269025*6557470319842^(14/17) 2100968863619915 a001 9381251041/1602508992*6557470319842^(14/17) 2100968863619915 a001 9062201101803/1836311903*1836311903^(14/17) 2100968863619915 a001 10749957122/1836311903*6557470319842^(14/17) 2100968863619915 a001 3461452808002/701408733*1836311903^(14/17) 2100968863619915 a001 1368706081/233802911*6557470319842^(14/17) 2100968863619915 a001 1322157322203/267914296*1836311903^(14/17) 2100968863619915 a001 1568397607/267914296*6557470319842^(14/17) 2100968863619916 a001 505019158607/102334155*1836311903^(14/17) 2100968863619916 a001 199691526/34111385*6557470319842^(14/17) 2100968863619916 a001 192900153618/39088169*1836311903^(14/17) 2100968863619916 a001 228826127/39088169*6557470319842^(14/17) 2100968863619917 a001 73681302247/14930352*1836311903^(14/17) 2100968863619918 a001 29134601/4976784*6557470319842^(14/17) 2100968863619928 a001 28143753123/5702887*1836311903^(14/17) 2100968863619930 a001 33385282/5702887*6557470319842^(14/17) 2100968863620004 a001 4870846/987*1836311903^(14/17) 2100968863620017 a001 4250681/726103*6557470319842^(14/17) 2100968863620522 a001 4106118243/832040*1836311903^(14/17) 2100968863620611 a001 4870847/832040*6557470319842^(14/17) 2100968863620992 a001 5600748293801/1346269*514229^(14/17) 2100968863621190 a001 7331474697802/1762289*514229^(14/17) 2100968863621237 a001 23725150497407/5702887*514229^(14/17) 2100968863621313 a001 3020733700601/726103*514229^(14/17) 2100968863621831 a001 1730726404001/416020*514229^(14/17) 2100968863624076 a001 1568397607/317811*1836311903^(14/17) 2100968863624683 a001 620166/105937*6557470319842^(14/17) 2100968863625384 a001 440719107401/105937*514229^(14/17) 2100968863648430 a001 599074578/121393*1836311903^(14/17) 2100968863649738 a001 505019158607/121393*514229^(14/17) 2100968863652590 a001 710647/121393*6557470319842^(14/17) 2100968863815355 a001 228826127/46368*1836311903^(14/17) 2100968863816664 a001 10716675201/2576*514229^(14/17) 2100968863843869 a001 90481/15456*6557470319842^(14/17) 2100968864959480 a001 87403803/17711*1836311903^(14/17) 2100968864960788 a001 73681302247/17711*514229^(14/17) 2100968865154919 a001 103682/17711*6557470319842^(14/17) 2100968869191293 a007 Real Root Of -205*x^4+158*x^3+617*x^2-832*x+988 2100968872801425 a001 33385282/6765*1836311903^(14/17) 2100968872802732 a001 228811001/55*514229^(14/17) 2100968874140987 a001 13201/2255*6557470319842^(14/17) 2100968877598140 a007 Real Root Of -386*x^4-511*x^3+641*x^2-193*x-453 2100968893421723 q001 412/1961 2100968893421723 r002 2th iterates of z^2 + 2100968893421723 r002 2th iterates of z^2 + 2100968895785397 r005 Im(z^2+c),c=-13/54+1/34*I,n=9 2100968899959324 m008 (5/6*Pi^4+1/4)/(2/5*Pi^6+3) 2100968916870199 m005 (1/6*exp(1)+5)/(-23/8+1/8*5^(1/2)) 2100968926550921 a001 12752043/2584*1836311903^(14/17) 2100968926552216 a001 5374978561/1292*514229^(14/17) 2100968927679414 m001 ln(2+3^(1/2))^GAMMA(13/24)/RenyiParking 2100968927679414 m001 ln(2+sqrt(3))^GAMMA(13/24)/RenyiParking 2100968929951796 a007 Real Root Of 136*x^4-820*x^3-336*x^2-947*x-192 2100968934033133 r002 48th iterates of z^2 + 2100968935732416 a001 15127/2584*6557470319842^(14/17) 2100968935969164 l006 ln(8101/8273) 2100968935969164 p004 log(8273/8101) 2100968953612336 m001 (Backhouse+FeigenbaumMu)/(Si(Pi)+cos(1)) 2100968954305636 m001 ReciprocalFibonacci*(FeigenbaumD+FeigenbaumMu) 2100968964747019 m001 (Gompertz-Trott2nd)/(ln(3)+ln(5)) 2100968970314326 m009 (3*Psi(1,3/4)+1/3)/(2/5*Psi(1,1/3)-1/4) 2100968974645009 r002 22th iterates of z^2 + 2100968975515076 a007 Real Root Of 637*x^4+906*x^3-924*x^2-172*x-292 2100968975628430 r009 Re(z^3+c),c=-25/86+19/40*I,n=4 2100968975866945 r005 Re(z^2+c),c=-9/46+11/32*I,n=33 2100968983552302 m001 1/exp(cos(Pi/5))^2*GolombDickman^2*exp(1) 2100968983579250 r005 Im(z^2+c),c=-11/26+1/29*I,n=27 2100969005484325 m001 (gamma(2)-GAMMA(13/24))/(Champernowne+Robbin) 2100969006621006 r005 Re(z^2+c),c=-15/98+29/44*I,n=55 2100969009308601 m005 (1/3*3^(1/2)-2/11)/(5/12*exp(1)+3/4) 2100969018055564 m005 (1/2*exp(1)-1/10)/(1/3*Zeta(3)-1) 2100969024387932 a001 1597/9349*322^(5/6) 2100969025343591 l006 ln(7036/8681) 2100969026192467 m001 (KomornikLoreti+MasserGramainDelta)/(1-exp(1)) 2100969026916377 r009 Im(z^3+c),c=-9/46+59/64*I,n=14 2100969038941932 m005 (1/2*5^(1/2)+8/11)/(4/5*Zeta(3)-1/12) 2100969039425502 a007 Real Root Of 193*x^4-395*x^3-866*x^2-791*x-132 2100969051026411 m006 (2*exp(2*Pi)-2/3)/(2/3*Pi+3) 2100969063539901 m005 (1/3*5^(1/2)+1/8)/(3*2^(1/2)-1/10) 2100969067575223 r005 Re(z^2+c),c=-5/6+2/129*I,n=40 2100969085172751 r005 Im(z^2+c),c=7/58+7/40*I,n=19 2100969085611836 a003 cos(Pi*4/15)/cos(Pi*25/63) 2100969093314611 a001 208010/19*322^(22/43) 2100969094953086 r002 47th iterates of z^2 + 2100969103088913 r005 Re(z^2+c),c=-9/46+11/32*I,n=30 2100969107999429 r005 Im(z^2+c),c=-43/82+22/57*I,n=49 2100969114397084 m005 (1/2*exp(1)+5/9)/(1/9*Zeta(3)+7/9) 2100969118737100 a001 233/521*843^(4/7) 2100969130801470 a007 Real Root Of -907*x^4-293*x^3+434*x^2+486*x+82 2100969130920852 r005 Im(z^2+c),c=7/58+7/40*I,n=18 2100969137720934 b008 21+ExpIntegralEi[3/8] 2100969137928170 a001 55/4870847*15127^(2/31) 2100969140016433 a007 Real Root Of 613*x^4+860*x^3-884*x^2-127*x-333 2100969140242902 m001 1/RenyiParking*ln(Bloch)^2/Ei(1)^2 2100969152139096 r009 Re(z^3+c),c=-3/25+13/17*I,n=10 2100969153908079 r005 Im(z^2+c),c=-29/60+24/61*I,n=26 2100969165962864 m001 GAMMA(1/3)/(exp(gamma)^BesselK(0,1)) 2100969172498833 m008 (1/6*Pi^5+1/3)/(1/4*Pi^6+4) 2100969177630881 l004 Chi(587/116) 2100969188685424 r005 Re(z^2+c),c=11/94+19/49*I,n=51 2100969191599070 m005 (1/2*2^(1/2)+1/10)/(Pi+7/10) 2100969192149313 r005 Re(z^2+c),c=-5/6+2/129*I,n=36 2100969193524228 m001 (1-ln(2)/ln(10))/(-ln(2)+GAMMA(23/24)) 2100969199023993 r002 5th iterates of z^2 + 2100969199873093 r005 Re(z^2+c),c=-13/118+31/51*I,n=49 2100969202225363 r005 Im(z^2+c),c=-19/14+11/75*I,n=5 2100969204627945 m005 (1/2*gamma-4/9)/(1/10*Catalan-5/6) 2100969211687778 s002 sum(A257118[n]/(n*pi^n-1),n=1..infinity) 2100969216849338 m001 (exp(1)+GAMMA(7/12))/(-FeigenbaumD+Robbin) 2100969217270587 m005 (1/3*2^(1/2)+1/8)/(3/4*exp(1)+4/5) 2100969218206107 r009 Im(z^3+c),c=-6/19+5/31*I,n=12 2100969234027157 m001 (Zeta(3)-ln(2))/(Ei(1)-(1+3^(1/2))^(1/2)) 2100969237926884 m008 (3/5*Pi^6-5/6)/(Pi-2/5) 2100969242858548 a007 Real Root Of -595*x^4-706*x^3+979*x^2-617*x-572 2100969246726957 a001 18/2504730781961*987^(14/17) 2100969248321480 a007 Real Root Of -152*x^4+125*x^3+665*x^2-767*x-426 2100969251227771 h001 (3/8*exp(2)+1/3)/(1/3*exp(1)+4/7) 2100969255382279 m001 1/Lehmer/FibonacciFactorial^2/ln(Niven) 2100969256423558 a004 Fibonacci(14)*Lucas(12)/(1/2+sqrt(5)/2)^18 2100969257637036 r005 Im(z^2+c),c=-10/19+2/55*I,n=23 2100969258227740 h001 (-8*exp(3)-4)/(-9*exp(1/2)+7) 2100969258347367 r008 a(0)=2,K{-n^6,85-89*n^3-14*n^2+8*n} 2100969268376256 m001 ln(GAMMA(1/24))/FibonacciFactorial^2*Zeta(9) 2100969270975392 r005 Re(z^2+c),c=-9/46+11/32*I,n=36 2100969276900133 a001 2207/21*28657^(55/57) 2100969278653551 a008 Real Root of x^3+27*x-66 2100969278903752 m001 (Psi(2,1/3)-gamma)/(-exp(1/Pi)+GAMMA(13/24)) 2100969281684860 l006 ln(247/2019) 2100969282559339 m008 (2/5*Pi^2+3)/(1/3*Pi^4+3/5) 2100969282655302 m001 ln((2^(1/3)))/Magata^2*GAMMA(11/12) 2100969282899561 a001 5600748293801/377*2^(1/2) 2100969294955518 a001 4870847/987*1836311903^(14/17) 2100969294956738 a001 1368706081/329*514229^(14/17) 2100969294992543 r005 Re(z^2+c),c=-2/19+29/53*I,n=44 2100969296257133 r002 3th iterates of z^2 + 2100969311409685 m008 (2/3*Pi^5-1/5)/(Pi^4-2/5) 2100969322651534 m005 (1/2*Catalan-2/5)/(5/7*exp(1)+9/11) 2100969324813627 m005 (1/3*Zeta(3)-1/8)/(6/7*2^(1/2)+1/10) 2100969325647364 a001 1/3*(1/2*5^(1/2)+1/2)^15*29^(5/11) 2100969332722158 m001 (Zeta(1,2)+BesselK(1,1))/(Shi(1)+cos(1)) 2100969341906336 m001 (gamma(3)+GAMMA(19/24))/(Psi(2,1/3)-sin(1)) 2100969350324391 r005 Re(z^2+c),c=-2/29+36/61*I,n=43 2100969357886433 a001 1926/329*6557470319842^(14/17) 2100969371033825 a007 Real Root Of -208*x^4-342*x^3-285*x^2-763*x+536 2100969371815708 m001 (LandauRamanujan-Thue)/(ln(2)-ln(Pi)) 2100969385243706 r005 Re(z^2+c),c=-9/46+11/32*I,n=34 2100969386034338 r005 Im(z^2+c),c=-29/30+1/51*I,n=5 2100969397544896 m001 Kolakoski+BesselI(1,2)^Stephens 2100969400130242 m005 (1/3*gamma-2/11)/(2/9*2^(1/2)-9/11) 2100969401789235 a007 Real Root Of -456*x^4-559*x^3+994*x^2+247*x-168 2100969402594593 l004 Ssi(251/100) 2100969410367572 r005 Re(z^2+c),c=-9/46+11/32*I,n=39 2100969412594658 a007 Real Root Of 238*x^4-103*x^3+274*x^2-583*x-136 2100969418232055 r005 Re(z^2+c),c=-27/118+12/53*I,n=11 2100969422655021 r005 Im(z^2+c),c=-1+41/189*I,n=36 2100969425794210 a001 1149851/610*6557470319842^(12/17) 2100969425795799 a001 370248451/610*1836311903^(12/17) 2100969425796921 a001 119218851371/610*514229^(12/17) 2100969430205453 r005 Im(z^2+c),c=-3/29+1/40*I,n=6 2100969434205125 a007 Real Root Of -624*x^4-755*x^3+956*x^2-44*x+844 2100969435194371 r005 Im(z^2+c),c=-11/29+10/29*I,n=47 2100969440451399 a007 Real Root Of 98*x^4+21*x^3-782*x^2-536*x+611 2100969444909809 r005 Im(z^2+c),c=-15/118+3/11*I,n=17 2100969449447909 m001 Grothendieck^Ei(1,1)/cos(1) 2100969451219234 h001 (7/9*exp(2)+3/11)/(5/6*exp(1)+3/5) 2100969451565156 r005 Re(z^2+c),c=-9/46+11/32*I,n=42 2100969452950578 a008 Real Root of x^4-x^3+35*x^2+52*x-74 2100969456972952 r005 Re(z^2+c),c=-9/46+11/32*I,n=44 2100969457767808 r005 Re(z^2+c),c=-9/46+11/32*I,n=41 2100969459225571 r005 Re(z^2+c),c=-9/46+11/32*I,n=47 2100969460121533 r005 Re(z^2+c),c=-9/46+11/32*I,n=45 2100969460277350 r005 Re(z^2+c),c=-9/46+11/32*I,n=50 2100969460586409 r005 Re(z^2+c),c=-9/46+11/32*I,n=53 2100969460625976 r005 Re(z^2+c),c=-9/46+11/32*I,n=55 2100969460630739 r005 Re(z^2+c),c=-9/46+11/32*I,n=52 2100969460643164 r005 Re(z^2+c),c=-9/46+11/32*I,n=58 2100969460650176 r005 Re(z^2+c),c=-9/46+11/32*I,n=56 2100969460651100 r005 Re(z^2+c),c=-9/46+11/32*I,n=61 2100969460653418 r005 Re(z^2+c),c=-9/46+11/32*I,n=64 2100969460653734 r005 Re(z^2+c),c=-9/46+11/32*I,n=63 2100969460655519 r005 Re(z^2+c),c=-9/46+11/32*I,n=62 2100969460655794 r005 Re(z^2+c),c=-9/46+11/32*I,n=60 2100969460656947 r005 Re(z^2+c),c=-9/46+11/32*I,n=59 2100969460668547 r005 Re(z^2+c),c=-9/46+11/32*I,n=57 2100969460720179 r005 Re(z^2+c),c=-9/46+11/32*I,n=54 2100969460865625 r005 Re(z^2+c),c=-9/46+11/32*I,n=51 2100969460908866 r005 Re(z^2+c),c=-9/46+11/32*I,n=49 2100969461048937 r005 Re(z^2+c),c=-9/46+11/32*I,n=48 2100969462613858 r005 Re(z^2+c),c=-9/46+11/32*I,n=46 2100969463440107 m001 GAMMA(3/4)^((1+3^(1/2))^(1/2))-ln(5) 2100969463440107 m001 GAMMA(3/4)^sqrt(1+sqrt(3))-ln(5) 2100969463789595 a001 161/4*433494437^(7/9) 2100969469477923 r005 Re(z^2+c),c=-9/46+11/32*I,n=43 2100969469516425 a007 Real Root Of -405*x^4-395*x^3+920*x^2+387*x+980 2100969473181538 s002 sum(A083122[n]/(64^n-1),n=1..infinity) 2100969477798223 b008 E-SinIntegral[Pi]/3 2100969477798223 m001 1/3*Si(Pi)-exp(1) 2100969479339589 m001 Pi*Magata*ReciprocalLucas 2100969482858198 m001 1/ln((2^(1/3)))^2*Tribonacci/GAMMA(13/24) 2100969487176415 m001 (3^(1/3))^FeigenbaumAlpha/((3^(1/3))^PlouffeB) 2100969487872112 a007 Real Root Of -431*x^4-630*x^3+427*x^2+106*x+893 2100969488675529 r005 Re(z^2+c),c=-9/46+11/32*I,n=40 2100969495305302 r005 Re(z^2+c),c=-9/46+11/32*I,n=38 2100969502739441 a001 161/31622993*89^(6/19) 2100969503567409 m002 -3/5-Pi^3+Pi^2*ProductLog[Pi] 2100969512164012 r005 Re(z^2+c),c=-9/46+11/32*I,n=37 2100969516948558 m001 1/exp(Zeta(7))^2*FeigenbaumDelta^2/sinh(1)^2 2100969518501874 h001 (7/11*exp(1)+3/4)/(1/6*exp(1)+8/11) 2100969521910208 a007 Real Root Of -473*x^4-655*x^3+445*x^2-132*x+900 2100969522841358 b008 1/11-3*ArcCoth[10] 2100969527584096 m005 (1/2*Zeta(3)-2/9)/(6/11*5^(1/2)+7/12) 2100969539182803 s002 sum(A246444[n]/(exp(n)-1),n=1..infinity) 2100969547893612 m001 1/ln(cos(Pi/5))^3*sqrt(2)^2 2100969551964461 a007 Real Root Of -139*x^4-172*x^3+125*x^2-24*x+511 2100969552476573 r005 Im(z^2+c),c=9/38+25/48*I,n=20 2100969559317620 r002 17th iterates of z^2 + 2100969585349569 m001 1/Tribonacci*ln(FransenRobinson)^2*GAMMA(1/4) 2100969595282050 m005 (1/2*3^(1/2)-1/11)/(10/11*Pi+5/6) 2100969602541181 s002 sum(A098260[n]/((2*n)!),n=1..infinity) 2100969607816258 m001 (ln(2^(1/2)+1)-BesselK(1,1))/(CareFree+Kac) 2100969610848362 m001 exp(1)+BesselI(1,2)*GAMMA(1/12) 2100969611740467 m001 1/HardHexagonsEntropy^2*exp(CareFree)^2 2100969614399566 m001 (GAMMA(19/24)+Conway)/(gamma+BesselK(1,1)) 2100969615776613 r005 Im(z^2+c),c=-11/29+10/29*I,n=50 2100969619985496 m001 ln(GAMMA(3/4))*MinimumGamma/sqrt(2) 2100969620295485 r005 Re(z^2+c),c=-7/40+2/5*I,n=23 2100969630500957 m005 (4/5*gamma-2)/(3*exp(1)-5/6) 2100969631657612 m005 (1/2*5^(1/2)+3/10)/(9/11*Catalan+6) 2100969636968029 r002 5th iterates of z^2 + 2100969646596147 a007 Real Root Of -421*x^4-738*x^3-92*x^2-503*x+708 2100969651970256 m001 1/ln(FeigenbaumC)^2*MadelungNaCl*BesselJ(1,1) 2100969683326158 m008 (1/2*Pi^4-1/2)/(2/3*Pi+1/5) 2100969686264735 r009 Im(z^3+c),c=-23/50+3/61*I,n=12 2100969689964178 a007 Real Root Of -432*x^4-514*x^3+858*x^2+19*x-97 2100969690343770 l006 ln(1212/9907) 2100969692870354 a007 Real Root Of -430*x^4-627*x^3+911*x^2+800*x+223 2100969696532806 a007 Real Root Of 889*x^4+809*x^3+619*x^2-797*x-189 2100969717586810 m001 (ln(Pi)+FeigenbaumC)/(Totient+ZetaP(4)) 2100969723066778 l006 ln(1651/2037) 2100969723229085 r005 Re(z^2+c),c=-9/46+11/32*I,n=35 2100969723956455 m005 (1/2*Zeta(3)-7/11)/(9/10*Zeta(3)+3/5) 2100969725649533 r005 Re(z^2+c),c=1/106+10/17*I,n=16 2100969725665277 m001 arctan(1/2)*Khinchin/Lehmer 2100969729429437 r005 Im(z^2+c),c=-9/8+55/239*I,n=42 2100969730072762 m005 (1/3*exp(1)+1/4)/(7/10*Catalan-1/11) 2100969733770247 m001 (OneNinth-Sarnak)/(FibonacciFactorial+Niven) 2100969734297525 a007 Real Root Of 638*x^4+981*x^3-585*x^2+574*x+455 2100969738140269 a007 Real Root Of -380*x^4+42*x^3-325*x^2+584*x-108 2100969738169422 r005 Re(z^2+c),c=-1/7+27/55*I,n=18 2100969757679064 v002 sum(1/(2^n*(30*n^2-78*n+83)),n=1..infinity) 2100969759248724 m001 (Sierpinski-Stephens)/(cos(1/12*Pi)+gamma(2)) 2100969759691353 m001 BesselK(0,1)+FeigenbaumDelta^ReciprocalLucas 2100969761093531 b008 17+Pi*Erfc[-1/4] 2100969769991747 m007 (-1/2*gamma+5)/(-1/3*gamma-ln(2)-1/6*Pi-5/6) 2100969778977176 r005 Re(z^2+c),c=-1+38/249*I,n=28 2100969785309446 p003 LerchPhi(1/125,3,82/105) 2100969789170501 a007 Real Root Of -21*x^4-410*x^3+694*x^2+840*x+689 2100969793106095 r005 Re(z^2+c),c=-4/19+19/64*I,n=18 2100969794943485 l006 ln(965/7888) 2100969797851861 a007 Real Root Of -198*x^4-295*x^3-529*x^2+614*x+150 2100969800962991 a007 Real Root Of 248*x^4+45*x^3-669*x^2+522*x-365 2100969802367606 s002 sum(A271447[n]/(n*2^n+1),n=1..infinity) 2100969812019211 r005 Re(z^2+c),c=7/20+17/64*I,n=36 2100969812413874 r005 Re(z^2+c),c=-9/74+15/29*I,n=52 2100969815539894 p001 sum((-1)^n/(555*n+22)/n/(8^n),n=1..infinity) 2100969820055698 m009 (2/5*Psi(1,2/3)-5/6)/(4/5*Psi(1,3/4)-1/6) 2100969820379686 a007 Real Root Of 189*x^4+432*x^3+93*x^2-3*x-93 2100969830982388 a007 Real Root Of -890*x^4-449*x^3-209*x^2+448*x-79 2100969832070824 m001 (ln(3)+arctan(1/3))/(Zeta(1,2)+MertensB1) 2100969836852696 m005 (1/2+1/4*5^(1/2))/(2/7*2^(1/2)+1/10) 2100969837632902 m005 (1/2*Pi-9/10)/(6/7*Pi+1/2) 2100969841130958 r002 12th iterates of z^2 + 2100969844676439 m005 (9/8+1/4*5^(1/2))/(3/4*Zeta(3)-1/10) 2100969845752555 m001 (-MadelungNaCl+QuadraticClass)/(1-sin(1/5*Pi)) 2100969859260984 m001 (Gompertz+KhinchinLevy)/(Psi(1,1/3)-ln(5)) 2100969861649010 p001 sum(1/(128*n+49)/n/(3^n),n=0..infinity) 2100969868378648 m001 ln(PrimesInBinary)^2*MertensB1*Zeta(5) 2100969873247803 r009 Re(z^3+c),c=-7/90+37/47*I,n=36 2100969875033841 a003 cos(Pi*19/79)/cos(Pi*43/111) 2100969880599887 a007 Real Root Of -250*x^4-300*x^3+555*x^2+257*x+179 2100969891075379 a007 Real Root Of -490*x^4-862*x^3+797*x^2+494*x-927 2100969908272215 a007 Real Root Of 18*x^4-409*x^3-967*x^2-907*x+237 2100969917668992 m009 (24/5*Catalan+3/5*Pi^2+1)/(1/5*Psi(1,2/3)-6) 2100969922882491 a007 Real Root Of 294*x^4+720*x^3+664*x^2+922*x-45 2100969928744668 r002 3th iterates of z^2 + 2100969934713366 m001 exp(-1/2*Pi)*ReciprocalFibonacci^ZetaQ(3) 2100969936144702 m001 LandauRamanujan2nd+MertensB3^Backhouse 2100969940797857 m001 GAMMA(13/24)+MertensB1^gamma 2100969964520253 r005 Im(z^2+c),c=7/32+3/26*I,n=19 2100969971510110 l006 ln(718/5869) 2100969973665014 r005 Im(z^2+c),c=-123/98+2/31*I,n=14 2100969973745236 a007 Real Root Of -366*x^4-406*x^3+130*x^2-883*x+937 2100969981052066 r009 Im(z^3+c),c=-7/86+39/44*I,n=6 2100969983167793 r005 Re(z^2+c),c=-19/78+6/41*I,n=11 2100970000011344 r009 Im(z^3+c),c=-8/19+4/45*I,n=45 2100970000223786 r005 Im(z^2+c),c=-43/114+7/15*I,n=7 2100970004323717 a007 Real Root Of 206*x^4-351*x^3-242*x^2-676*x-135 2100970011911997 p001 sum(1/(489*n+128)/n/(8^n),n=1..infinity) 2100970015539659 r005 Re(z^2+c),c=-13/14+44/173*I,n=38 2100970016979577 m001 Mills^Zeta(3)/(CareFree^Zeta(3)) 2100970022343806 m001 (CareFree-Kolakoski)/(RenyiParking-Salem) 2100970034918801 m001 (Shi(1)+Riemann2ndZero)/(Stephens+Weierstrass) 2100970035224943 r002 62th iterates of z^2 + 2100970037440970 m001 1/2*GAMMA(1/12)^sin(Pi/5) 2100970043597491 r005 Re(z^2+c),c=9/29+13/59*I,n=60 2100970044201389 a007 Real Root Of 567*x^4+949*x^3-630*x^2-82*x+362 2100970044765695 a007 Real Root Of 576*x^4+745*x^3-953*x^2+200*x+313 2100970058463304 a001 47/233*2178309^(19/24) 2100970059135540 r005 Re(z^2+c),c=7/66+16/43*I,n=39 2100970067210036 a003 sin(Pi*13/85)-sin(Pi*23/98) 2100970068921715 m004 5*Pi+Sqrt[5]*Pi+Sinh[Sqrt[5]*Pi]/3 2100970073218926 r005 Re(z^2+c),c=1/40+14/61*I,n=5 2100970073670738 a005 (1/sin(87/179*Pi))^771 2100970075680315 a007 Real Root Of -531*x^4-965*x^3+441*x^2+543*x+591 2100970080295011 a001 5600748293801/55*5^(9/20) 2100970080519560 a007 Real Root Of 415*x^4+365*x^3-571*x^2+718*x-672 2100970082869389 m001 (sin(1/12*Pi)+DuboisRaymond)/(Shi(1)-sin(1)) 2100970094533663 r005 Im(z^2+c),c=-29/54+19/48*I,n=54 2100970096257483 m005 (1/2*exp(1)+1/10)/(1/11*Catalan-7/9) 2100970101001529 m001 gamma^HeathBrownMoroz/PlouffeB 2100970105853985 a001 199/3*10946^(13/15) 2100970108248689 m008 (5*Pi^6-2/3)/(3/4*Pi^5-3/4) 2100970112558623 m001 Catalan*GaussKuzminWirsing+MasserGramainDelta 2100970114812688 l006 ln(1189/9719) 2100970116921179 a001 987/9349*322^(11/12) 2100970128470960 r005 Im(z^2+c),c=-36/31+14/55*I,n=36 2100970128614552 a001 33385282/377*514229^(16/17) 2100970128804335 a001 281/15456*6557470319842^(16/17) 2100970128903172 a007 Real Root Of -585*x^4+752*x^3+393*x^2+913*x-215 2100970129601322 a001 610/3571*322^(5/6) 2100970131317083 r005 Im(z^2+c),c=-13/14+48/163*I,n=24 2100970133904685 a007 Real Root Of 320*x^4+710*x^3+278*x^2+501*x+175 2100970137794568 a001 15127/377*1836311903^(16/17) 2100970139269200 r005 Re(z^2+c),c=-45/98+28/53*I,n=23 2100970140903098 r005 Im(z^2+c),c=-9/10+27/145*I,n=47 2100970144645196 a007 Real Root Of -493*x^4-824*x^3+703*x^2+100*x-929 2100970156216241 r005 Im(z^2+c),c=-9/10+34/183*I,n=37 2100970160273588 m005 (7/8+1/4*5^(1/2))/(1/9*3^(1/2)-7/8) 2100970160867597 r005 Im(z^2+c),c=11/70+35/53*I,n=21 2100970169073770 m005 (1/2*Pi-5/11)/(3/4*Catalan-6) 2100970172647768 r002 19th iterates of z^2 + 2100970173303924 m001 2/3-Pi+Artin 2100970182549463 a001 21/4*123^(23/30) 2100970188294542 r002 7th iterates of z^2 + 2100970194814614 a005 (1/sin(102/233*Pi))^1116 2100970198697208 m001 (StolarskyHarborth-PisotVijayaraghavan)^Magata 2100970199565238 m009 (4/5*Psi(1,3/4)+5/6)/(1/4*Psi(1,3/4)-2) 2100970208527532 m001 1/Ei(1)/FeigenbaumB/ln(sqrt(3))^2 2100970211378844 p004 log(17419/2131) 2100970215811613 r005 Re(z^2+c),c=-11/56+14/41*I,n=27 2100970217018126 a007 Real Root Of -500*x^4-825*x^3+271*x^2-514*x-185 2100970219510428 a007 Real Root Of 555*x^4+770*x^3-459*x^2+760*x-50 2100970220816116 m005 (1/3*Catalan+1/11)/(7/12*2^(1/2)-7/11) 2100970223484475 m001 (Pi+ln(3))/(exp(1/Pi)+Cahen) 2100970224187359 r005 Re(z^2+c),c=-17/22+9/94*I,n=58 2100970225153895 a007 Real Root Of 29*x^4+583*x^3-595*x^2-854*x+966 2100970237744700 m001 Zeta(3)^2*MadelungNaCl/ln(cos(Pi/12))^2 2100970239645247 m001 (Cahen+Kolakoski)/(Bloch-cos(1)) 2100970246114590 a007 Real Root Of 592*x^4+196*x^3+606*x^2-566*x-145 2100970247154320 a007 Real Root Of 697*x^4+879*x^3-643*x^2+965*x-563 2100970249593210 r009 Re(z^3+c),c=-21/58+23/40*I,n=36 2100970254463225 a007 Real Root Of 160*x^4-307*x^3-475*x^2-802*x+192 2100970255211811 h001 (3/5*exp(2)+1/5)/(3/4*exp(1)+1/6) 2100970257519669 m001 5^(1/2)*sin(1)+Ei(1,1) 2100970268375213 m001 Khintchine/ErdosBorwein/exp(Zeta(5))^2 2100970274435219 b008 20+Coth[8/3] 2100970277014462 m001 1/BesselK(1,1)*ln(MinimumGamma)*gamma^2 2100970277217811 m001 (cos(1)+Ei(1,1))/(Zeta(1,2)+Stephens) 2100970310707037 p001 sum(1/(593*n+490)/(16^n),n=0..infinity) 2100970313235574 m001 1/GAMMA(2/3)^2*Ei(1)*ln(GAMMA(3/4)) 2100970330845149 r005 Re(z^2+c),c=-11/56+14/41*I,n=29 2100970333265412 l006 ln(471/3850) 2100970334838284 a001 1/15456*121393^(11/37) 2100970336420010 m001 exp(GAMMA(23/24))/GAMMA(1/12)^2/Zeta(9)^2 2100970350598417 l006 ln(7823/9652) 2100970351155462 m001 (5^(1/2)+exp(1/exp(1))*Magata)/Magata 2100970371093564 r005 Re(z^2+c),c=-2/21+25/44*I,n=44 2100970380878842 a007 Real Root Of -22*x^4+289*x^3+862*x^2+457*x+264 2100970383389947 a003 sin(Pi*8/73)-sin(Pi*19/103) 2100970385551850 p004 log(36571/29641) 2100970386376849 r005 Re(z^2+c),c=39/110+3/23*I,n=28 2100970389594434 a007 Real Root Of 183*x^4+48*x^3-205*x^2+778*x-581 2100970389800168 a007 Real Root Of -471*x^4-82*x^3-906*x^2+837*x+216 2100970390291083 a001 3010349/1597*6557470319842^(12/17) 2100970390291315 a001 969323029/1597*1836311903^(12/17) 2100970390292436 a001 312119004989/1597*514229^(12/17) 2100970391842007 m001 HeathBrownMoroz^LaplaceLimit-Riemann2ndZero 2100970404703283 r009 Re(z^3+c),c=-17/106+43/54*I,n=3 2100970409846811 s001 sum(exp(-Pi/3)^(n-1)*A248017[n],n=1..infinity) 2100970412591076 a007 Real Root Of 580*x^4+805*x^3-888*x^2+224*x+555 2100970412733482 m001 exp(GAMMA(1/6))^2*MertensB1*sinh(1) 2100970419786122 r009 Re(z^3+c),c=-3/8+29/49*I,n=32 2100970432295086 m001 (-CareFree+MertensB3)/(gamma(3)-ln(2)/ln(10)) 2100970442769532 r005 Re(z^2+c),c=-137/98+1/52*I,n=4 2100970461020852 r005 Im(z^2+c),c=19/66+2/49*I,n=41 2100970464795418 a001 646/6119*322^(11/12) 2100970468604571 p004 log(32497/26339) 2100970470421874 a005 (1/cos(7/121*Pi))^322 2100970480003443 r005 Im(z^2+c),c=27/110+3/35*I,n=8 2100970484070730 m001 (Zeta(1,-1)*OneNinth+BesselI(0,2))/OneNinth 2100970484243890 m009 (2*Catalan+1/4*Pi^2+3/5)/(1/2*Psi(1,2/3)+4/5) 2100970486882824 m006 (1/3*exp(2*Pi)-5/6)/(2/5*exp(Pi)-4/5) 2100970490895703 r005 Re(z^2+c),c=7/58+11/28*I,n=49 2100970491933853 p004 log(13381/1637) 2100970497290512 r005 Im(z^2+c),c=-17/56+19/59*I,n=9 2100970499066417 h001 (-8*exp(3/2)-5)/(-3*exp(3/2)-6) 2100970512163019 m001 (Rabbit*Riemann2ndZero-ZetaQ(3))/Rabbit 2100970515549585 a001 6765/64079*322^(11/12) 2100970516050200 r002 33i'th iterates of 2*x/(1-x^2) of 2100970518462107 l006 ln(6172/7615) 2100970522954518 a001 17711/167761*322^(11/12) 2100970524034883 a001 11592/109801*322^(11/12) 2100970524192506 a001 121393/1149851*322^(11/12) 2100970524215503 a001 317811/3010349*322^(11/12) 2100970524218858 a001 208010/1970299*322^(11/12) 2100970524219348 a001 2178309/20633239*322^(11/12) 2100970524219419 a001 5702887/54018521*322^(11/12) 2100970524219430 a001 3732588/35355581*322^(11/12) 2100970524219431 a001 39088169/370248451*322^(11/12) 2100970524219431 a001 102334155/969323029*322^(11/12) 2100970524219431 a001 66978574/634430159*322^(11/12) 2100970524219431 a001 701408733/6643838879*322^(11/12) 2100970524219431 a001 1836311903/17393796001*322^(11/12) 2100970524219431 a001 1201881744/11384387281*322^(11/12) 2100970524219431 a001 12586269025/119218851371*322^(11/12) 2100970524219431 a001 32951280099/312119004989*322^(11/12) 2100970524219431 a001 21566892818/204284540899*322^(11/12) 2100970524219431 a001 225851433717/2139295485799*322^(11/12) 2100970524219431 a001 182717648081/1730726404001*322^(11/12) 2100970524219431 a001 139583862445/1322157322203*322^(11/12) 2100970524219431 a001 53316291173/505019158607*322^(11/12) 2100970524219431 a001 10182505537/96450076809*322^(11/12) 2100970524219431 a001 7778742049/73681302247*322^(11/12) 2100970524219431 a001 2971215073/28143753123*322^(11/12) 2100970524219431 a001 567451585/5374978561*322^(11/12) 2100970524219431 a001 433494437/4106118243*322^(11/12) 2100970524219431 a001 165580141/1568397607*322^(11/12) 2100970524219432 a001 31622993/299537289*322^(11/12) 2100970524219432 a001 24157817/228826127*322^(11/12) 2100970524219436 a001 9227465/87403803*322^(11/12) 2100970524219463 a001 1762289/16692641*322^(11/12) 2100970524219650 a001 1346269/12752043*322^(11/12) 2100970524220932 a001 514229/4870847*322^(11/12) 2100970524229716 a001 98209/930249*322^(11/12) 2100970524289923 a001 75025/710647*322^(11/12) 2100970524702585 a001 28657/271443*322^(11/12) 2100970527531018 a001 5473/51841*322^(11/12) 2100970531009354 a001 7881196/4181*6557470319842^(12/17) 2100970531009388 a001 2537720636/4181*1836311903^(12/17) 2100970531010510 a001 817138163596/4181*514229^(12/17) 2100970544555232 r005 Im(z^2+c),c=-13/14+45/226*I,n=51 2100970546917385 a001 4181/39603*322^(11/12) 2100970547403096 a007 Real Root Of -59*x^4+312*x^3+742*x^2-57*x+648 2100970551539875 a001 20633239/10946*6557470319842^(12/17) 2100970551539880 a001 6643838879/10946*1836311903^(12/17) 2100970551541001 a001 2139295485799/10946*514229^(12/17) 2100970553723837 m005 (25/4+1/4*5^(1/2))/(3/11*gamma+1/6) 2100970554535237 a001 54018521/28657*6557470319842^(12/17) 2100970554535238 a001 17393796001/28657*1836311903^(12/17) 2100970554536360 a001 5600748293801/28657*514229^(12/17) 2100970554972255 a001 141422324/75025*6557470319842^(12/17) 2100970554972255 a001 45537549124/75025*1836311903^(12/17) 2100970554973377 a001 14662949395604/75025*514229^(12/17) 2100970555036015 a001 370248451/196418*6557470319842^(12/17) 2100970555036015 a001 119218851371/196418*1836311903^(12/17) 2100970555045317 a001 969323029/514229*6557470319842^(12/17) 2100970555045317 a001 312119004989/514229*1836311903^(12/17) 2100970555046675 a001 2537720636/1346269*6557470319842^(12/17) 2100970555046675 a001 817138163596/1346269*1836311903^(12/17) 2100970555046873 a001 2139295485799/3524578*1836311903^(12/17) 2100970555046873 a001 6643838879/3524578*6557470319842^(12/17) 2100970555046901 a001 5600748293801/9227465*1836311903^(12/17) 2100970555046901 a001 17393796001/9227465*6557470319842^(12/17) 2100970555046906 a001 14662949395604/24157817*1836311903^(12/17) 2100970555046906 a001 45537549124/24157817*6557470319842^(12/17) 2100970555046906 a001 119218851371/63245986*6557470319842^(12/17) 2100970555046906 a001 312119004989/165580141*6557470319842^(12/17) 2100970555046906 a001 817138163596/433494437*6557470319842^(12/17) 2100970555046906 a001 2139295485799/1134903170*6557470319842^(12/17) 2100970555046906 a001 5600748293801/2971215073*6557470319842^(12/17) 2100970555046906 a001 3020733700601/1602508992*6557470319842^(12/17) 2100970555046906 a001 3461452808002/1836311903*6557470319842^(12/17) 2100970555046906 a001 440719107401/233802911*6557470319842^(12/17) 2100970555046906 a001 505019158607/267914296*6557470319842^(12/17) 2100970555046906 a001 64300051206/34111385*6557470319842^(12/17) 2100970555046907 a001 23725150497407/39088169*1836311903^(12/17) 2100970555046907 a001 73681302247/39088169*6557470319842^(12/17) 2100970555046908 a001 3020733700601/4976784*1836311903^(12/17) 2100970555046908 a001 9381251041/4976784*6557470319842^(12/17) 2100970555046919 a001 3461452808002/5702887*1836311903^(12/17) 2100970555046919 a001 10749957122/5702887*6557470319842^(12/17) 2100970555046995 a001 440719107401/726103*1836311903^(12/17) 2100970555046995 a001 1368706081/726103*6557470319842^(12/17) 2100970555047513 a001 505019158607/832040*1836311903^(12/17) 2100970555047513 a001 1568397607/832040*6557470319842^(12/17) 2100970555051067 a001 64300051206/105937*1836311903^(12/17) 2100970555051067 a001 710646/377*6557470319842^(12/17) 2100970555075421 a001 73681302247/121393*1836311903^(12/17) 2100970555075421 a001 228826127/121393*6557470319842^(12/17) 2100970555076542 a001 23725150497407/121393*514229^(12/17) 2100970555242346 a001 9381251041/15456*1836311903^(12/17) 2100970555242347 a001 29134601/15456*6557470319842^(12/17) 2100970555243468 a001 3020733700601/15456*514229^(12/17) 2100970555436105 a001 377/1364*18^(40/57) 2100970556027188 l006 ln(1166/9531) 2100970556386471 a001 10749957122/17711*1836311903^(12/17) 2100970556386473 a001 33385282/17711*6557470319842^(12/17) 2100970556387593 a001 3461452808002/17711*514229^(12/17) 2100970564228422 a001 1368706081/2255*1836311903^(12/17) 2100970564228434 a001 4250681/2255*6557470319842^(12/17) 2100970564229543 a001 440719107401/2255*514229^(12/17) 2100970565114396 m001 GAMMA(1/4)^2*BesselJ(1,1)/ln(log(2+sqrt(3))) 2100970570770549 a007 Real Root Of -40*x^4-866*x^3-506*x^2+652*x-469 2100970571324274 m001 (Magata+Riemann3rdZero)/(ln(Pi)+exp(-1/2*Pi)) 2100970577666515 a001 21/103682*3^(1/30) 2100970594100216 m001 gamma(3)/(Kolakoski^Paris) 2100970596512045 h001 (1/2*exp(2)+2/7)/(1/5*exp(2)+5/12) 2100970599637513 a007 Real Root Of 136*x^4+273*x^3+642*x^2+940*x-977 2100970600213019 a007 Real Root Of 864*x^4-455*x^3-790*x^2-336*x+108 2100970617977949 a001 1568397607/2584*1836311903^(12/17) 2100970617978038 a001 4870847/2584*6557470319842^(12/17) 2100970617979071 a001 505019158607/2584*514229^(12/17) 2100970619403453 m002 3/2+(E^Pi*Pi^4)/ProductLog[Pi] 2100970623441792 a007 Real Root Of 621*x^4+874*x^3-696*x^2+694*x+536 2100970623638727 m001 (Ei(1)*ZetaQ(3)+MasserGramainDelta)/ZetaQ(3) 2100970627441413 m001 CopelandErdos*Niven-FeigenbaumAlpha 2100970635668409 r005 Re(z^2+c),c=-9/46+11/32*I,n=32 2100970637234608 r005 Re(z^2+c),c=-29/26+27/124*I,n=22 2100970637328574 a007 Real Root Of 359*x^4+499*x^3+17*x^2+695*x-982 2100970644337265 a003 sin(Pi*17/113)-sin(Pi*19/82) 2100970652489564 r005 Im(z^2+c),c=-11/14+17/134*I,n=55 2100970657903780 m002 -Cosh[Pi]/4+(4*Tanh[Pi])/5 2100970661748647 r005 Re(z^2+c),c=-7/10+2/203*I,n=2 2100970662586041 a007 Real Root Of -205*x^4-297*x^3+329*x^2+736*x-166 2100970668828052 h001 (2/3*exp(1)+2/11)/(1/12*exp(2)+1/3) 2100970679793518 a001 1597/15127*322^(11/12) 2100970689225279 a008 Real Root of (2+4*x+3*x^2-2*x^3+5*x^4+3*x^5) 2100970703473109 m001 (Tribonacci+Trott)/(5^(1/2)-FeigenbaumKappa) 2100970706992334 l006 ln(695/5681) 2100970708479082 s004 Continued Fraction of A303681 2100970718314814 m001 (Chi(1)-Psi(2,1/3))/(Catalan+MadelungNaCl) 2100970730177809 a005 (1/cos(19/188*Pi))^733 2100970737625458 h001 (7/12*exp(2)+5/8)/(9/11*exp(1)+1/8) 2100970738505456 r009 Im(z^3+c),c=-31/106+20/29*I,n=17 2100970739348783 b008 Zeta[19/3,E] 2100970740474200 m001 (Niven-TwinPrimes)/(Artin+Champernowne) 2100970740539921 m001 Riemann3rdZero^ln(2^(1/2)+1)/StolarskyHarborth 2100970748962029 m008 (1/2*Pi^6+2/5)/(1/3*Pi^2-1) 2100970750372466 m001 (KhinchinLevy+Mills)/KhinchinLevy 2100970764940048 a007 Real Root Of -471*x^4-452*x^3+970*x^2-689*x-744 2100970767893182 s004 Continued Fraction of A304132 2100970772448323 s004 Continued Fraction of A304220 2100970777795651 a007 Real Root Of 35*x^4+736*x^3-16*x^2-657*x-618 2100970786330261 r009 Re(z^3+c),c=-41/122+25/62*I,n=2 2100970792253960 r002 39th iterates of z^2 + 2100970796549142 m002 -Pi^4+Pi^5+Log[Pi]+ProductLog[Pi]/Pi 2100970796591005 m005 (1/2*exp(1)-1/11)/(3/4*Catalan-1/12) 2100970797104920 m001 1/GAMMA(1/12)^2*BesselK(0,1)/exp(exp(1)) 2100970798386230 s004 Continued Fraction of A305481 2100970802131807 m003 Csch[1/2+Sqrt[5]/2]/4+2*Sin[1/2+Sqrt[5]/2] 2100970805868479 r005 Re(z^2+c),c=-27/122+8/31*I,n=13 2100970808928291 l006 ln(4521/5578) 2100970809323293 m001 (cos(1/12*Pi)+sin(1/12*Pi))/(gamma(2)+Lehmer) 2100970818226224 r005 Im(z^2+c),c=-43/94+22/61*I,n=17 2100970824799174 a007 Real Root Of -332*x^4-519*x^3-166*x^2-954*x+384 2100970832607848 a007 Real Root Of 572*x^4+888*x^3-466*x^2+473*x+141 2100970835141620 r005 Im(z^2+c),c=-23/48+13/35*I,n=35 2100970841524554 a007 Real Root Of -183*x^4-148*x^3+807*x^2+209*x-930 2100970846615179 m001 GAMMA(19/24)*Magata^Weierstrass 2100970848581604 r005 Im(z^2+c),c=-47/102+23/63*I,n=54 2100970852252957 m005 (1/2*gamma+4)/(8/9*exp(1)-3/8) 2100970854820604 a007 Real Root Of -419*x^4+116*x^3-907*x^2+889*x-147 2100970860173040 r009 Im(z^3+c),c=-5/74+47/53*I,n=6 2100970862466704 r005 Re(z^2+c),c=-5/6+3/194*I,n=52 2100970866370289 s004 Continued Fraction of A219385 2100970866370289 s004 Continued fraction of A219385 2100970869516429 r002 62th iterates of z^2 + 2100970869794065 s004 Continued Fraction of A219297 2100970869794065 s004 Continued fraction of A219297 2100970872410002 m001 (gamma+FeigenbaumMu)/(-Robbin+Thue) 2100970873786407 q001 1082/515 2100970877885574 r005 Re(z^2+c),c=-97/118+11/60*I,n=42 2100970881663531 r002 39th iterates of z^2 + 2100970886084663 a005 (1/cos(29/167*Pi))^269 2100970890980425 r005 Re(z^2+c),c=-3/34+47/61*I,n=12 2100970897228518 p003 LerchPhi(1/8,2,113/162) 2100970898508870 r005 Im(z^2+c),c=13/82+4/27*I,n=4 2100970898532411 l006 ln(919/7512) 2100970907773249 m001 (-BesselJ(0,1)+1/3)/(GAMMA(11/12)+1) 2100970909378917 r005 Re(z^2+c),c=-1/36+31/48*I,n=52 2100970910158165 r002 10th iterates of z^2 + 2100970910758352 p001 sum((-1)^n/(419*n+45)/n/(10^n),n=1..infinity) 2100970913995132 a007 Real Root Of 319*x^4-837*x^3-198*x^2-887*x-186 2100970922076998 r009 Re(z^3+c),c=-8/29+18/53*I,n=9 2100970926685767 l006 ln(8083/8100) 2100970931202360 r005 Im(z^2+c),c=-35/78+17/47*I,n=34 2100970945877969 m005 (1/2*gamma+5/7)/(1/12*exp(1)-5) 2100970947158922 m001 (KomornikLoreti+Magata)/(gamma+Ei(1)) 2100970950365658 a001 610/521*322^(1/2) 2100970982781622 a003 cos(Pi*31/107)/cos(Pi*43/106) 2100970986382768 a001 199691526/329*1836311903^(12/17) 2100970986383375 a001 620166/329*6557470319842^(12/17) 2100970986383889 a001 64300051206/329*514229^(12/17) 2100970997469073 r005 Im(z^2+c),c=-33/86+14/45*I,n=6 2100971002797347 r005 Im(z^2+c),c=33/122+2/31*I,n=33 2100971005041802 m001 1/Cahen*exp(ErdosBorwein)^2/Tribonacci 2100971007744692 a007 Real Root Of 73*x^4-529*x^3+133*x^2+985*x+827 2100971009812340 a001 3/34*832040^(10/43) 2100971012560531 m009 (5/6*Psi(1,3/4)+2/5)/(1/2*Psi(1,2/3)-1/3) 2100971014998144 l006 ln(1143/9343) 2100971019943917 a007 Real Root Of 888*x^4+172*x^3+130*x^2-686*x-150 2100971022617321 a007 Real Root Of 438*x^4+994*x^3+293*x^2+566*x+580 2100971025234568 s001 sum(exp(-Pi/4)^(n-1)*A173617[n],n=1..infinity) 2100971028643378 a001 123/267914296*121393^(11/12) 2100971028669516 a001 123/53316291173*39088169^(11/12) 2100971028669516 a001 41/3536736619241*12586269025^(11/12) 2100971032156274 a007 Real Root Of -169*x^4-347*x^3-708*x^2+491*x-10 2100971036752773 m001 (GAMMA(13/24)-ZetaQ(2))^ln(5) 2100971051487787 l006 ln(7391/9119) 2100971065179247 r005 Im(z^2+c),c=-113/82+7/45*I,n=5 2100971071183733 h005 exp(cos(Pi*11/47)/sin(Pi*17/35)) 2100971075859427 m005 (1/2*exp(1)+5/7)/(4/7*Zeta(3)+3/10) 2100971077060866 a007 Real Root Of 537*x^4+802*x^3-865*x^2-771*x-827 2100971079308613 m001 (Salem+Trott)/(FibonacciFactorial-Robbin) 2100971084670469 m001 Salem^2*Niven^2*exp(sqrt(1+sqrt(3))) 2100971085864314 a003 cos(Pi*19/98)-cos(Pi*23/79) 2100971096915489 h001 (8/11*exp(1)+2/9)/(1/11*exp(2)+3/8) 2100971104981911 m001 Paris^2*exp(Backhouse)^2*GAMMA(19/24) 2100971107760978 m001 Ei(1)*HardyLittlewoodC3*KhinchinHarmonic 2100971117223243 a001 370248451/610*6557470319842^(10/17) 2100971117223243 a001 22768774562/305*1836311903^(10/17) 2100971117224178 a001 5600748293801/610*514229^(10/17) 2100971119351695 r009 Re(z^3+c),c=-55/98+22/57*I,n=41 2100971121628889 m005 (1/2*Zeta(3)+1/12)/(3/10*2^(1/2)-3/4) 2100971124484433 a001 47/10946*55^(21/53) 2100971142068511 a007 Real Root Of 343*x^4+266*x^3-440*x^2+624*x-963 2100971150142264 a007 Real Root Of -520*x^4-776*x^3+908*x^2+374*x-287 2100971150382018 a007 Real Root Of -31*x^4-665*x^3-239*x^2+978*x-998 2100971154827060 a003 cos(Pi*21/107)-cos(Pi*11/53) 2100971156919322 a007 Real Root Of 267*x^4+232*x^3-889*x^2-717*x-633 2100971159600419 b008 -1+SphericalBesselY[2,Cos[1]] 2100971170237578 g007 Psi(2,6/7)+Psi(2,1/5)-Psi(2,3/8)-Psi(2,5/7) 2100971186191137 a007 Real Root Of -102*x^4+158*x^3+738*x^2-367*x-576 2100971187353740 m001 Riemann1stZero^2*Khintchine*exp(Zeta(1,2)) 2100971188733625 a003 cos(Pi*10/73)*cos(Pi*43/101) 2100971198606246 m001 (-KhinchinLevy+Totient)/(Artin-ln(2)/ln(10)) 2100971200660353 r005 Re(z^2+c),c=-6/29+5/16*I,n=11 2100971202247750 m006 (3/4*Pi^2+1/5)/(1/3*ln(Pi)-4) 2100971207069261 h001 (7/8*exp(1)+1/5)/(1/11*exp(2)+5/9) 2100971207183888 r005 Re(z^2+c),c=9/46+1/10*I,n=12 2100971209722792 r005 Im(z^2+c),c=-27/56+16/43*I,n=40 2100971224334105 a007 Real Root Of 716*x^4-534*x^3+380*x^2-477*x+87 2100971235849117 r002 30th iterates of z^2 + 2100971243848514 m009 (1/2*Psi(1,2/3)-1)/(1/3*Psi(1,1/3)-5/6) 2100971246899416 m004 (25*Log[Sqrt[5]*Pi])/Pi+6*Tan[Sqrt[5]*Pi] 2100971248267234 r009 Re(z^3+c),c=-1/26+43/64*I,n=54 2100971259815579 a007 Real Root Of -130*x^4-183*x^3-298*x^2-735*x+607 2100971266511895 m009 (1/2*Psi(1,1/3)+1/2)/(1/5*Pi^2+2/3) 2100971272356389 m001 Paris^2*exp(Khintchine)^2*Zeta(9)^2 2100971274287501 m001 (LaplaceLimit-ZetaQ(2))/(3^(1/3)+Backhouse) 2100971274986857 r005 Re(z^2+c),c=-13/102+22/37*I,n=22 2100971283372386 r005 Re(z^2+c),c=-151/114+2/27*I,n=22 2100971287102914 r005 Im(z^2+c),c=-17/18+49/239*I,n=63 2100971292020999 m001 (FellerTornier+Lehmer)/(ln(2)-GAMMA(5/6)) 2100971293369146 a001 9/3278735159921*317811^(12/17) 2100971298505859 m008 (1/5*Pi^5-3/5)/(3*Pi^6+2/5) 2100971298877141 m001 1/GAMMA(1/3)/Porter*exp(GAMMA(11/12))^2 2100971306161162 m001 (Chi(1)+Riemann2ndZero)/(ZetaQ(3)+ZetaQ(4)) 2100971317216828 m001 (Zeta(5)-3^(1/3))/(Tetranacci+ZetaQ(4)) 2100971318815812 b008 (26*E^6)/5+Pi 2100971336161011 r005 Im(z^2+c),c=-21/52+7/20*I,n=25 2100971337203970 m002 3+Log[Pi]+5*Pi*ProductLog[Pi] 2100971342055737 r005 Im(z^2+c),c=-27/23+3/13*I,n=43 2100971352164327 a007 Real Root Of 127*x^4-201*x^3-932*x^2-202*x-649 2100971352332750 m001 3^(1/2)*Backhouse-BesselK(0,1) 2100971352332750 m001 BesselK(0,1)-sqrt(3)*Backhouse 2100971367498123 m001 (cos(1)+gamma(2))/(-Magata+QuadraticClass) 2100971388080679 a001 9349/5*832040^(13/19) 2100971396242450 m002 -E^Pi/5+Pi+Pi^4-Pi^5 2100971399884314 m001 GAMMA(17/24)^2/MertensB1*exp(Zeta(3)) 2100971417270604 s002 sum(A230326[n]/(n^2*10^n-1),n=1..infinity) 2100971420881644 m001 ZetaP(3)/(ZetaR(2)^Conway) 2100971421859698 r005 Re(z^2+c),c=27/98+4/21*I,n=19 2100971433582369 l006 ln(2870/3541) 2100971441421002 m001 Paris^(5^(1/2))*Cahen^(5^(1/2)) 2100971443107778 m001 (RenyiParking-Riemann1stZero)^GAMMA(19/24) 2100971446400318 p001 sum((-1)^n/(327*n+61)/n/(12^n),n=1..infinity) 2100971447689322 m001 1/GAMMA(1/6)^2/exp(BesselK(1,1))/sin(1) 2100971451630060 r005 Re(z^2+c),c=-9/44+19/60*I,n=16 2100971454569827 m001 (exp(Pi)+Psi(1,1/3))/(1+LandauRamanujan2nd) 2100971461391706 a007 Real Root Of -415*x^4-629*x^3+534*x^2-134*x-386 2100971463048035 r005 Im(z^2+c),c=-51/122+17/48*I,n=27 2100971463432017 r005 Im(z^2+c),c=-7/94+13/51*I,n=8 2100971468785939 r002 12th iterates of z^2 + 2100971474341680 m001 BesselI(0,1)+Zeta(1,2)+Pi^(1/2) 2100971474341680 m001 BesselI(0,1)+Zeta(1,2)+sqrt(Pi) 2100971492819470 l006 ln(224/1831) 2100971503339886 a001 377/439204*7^(23/50) 2100971506140223 m002 -E^Pi-5/Pi^5+2*ProductLog[Pi] 2100971506179168 r002 61th iterates of z^2 + 2100971506395432 r005 Im(z^2+c),c=-33/74+11/21*I,n=22 2100971509907428 r005 Im(z^2+c),c=-13/24+11/19*I,n=62 2100971511361180 m001 (-GAMMA(2/3)+BesselI(1,1))/(exp(1)+Zeta(5)) 2100971511861589 m006 (2/3*exp(Pi)-2/3)/(3*exp(Pi)+5/6) 2100971513352370 r005 Im(z^2+c),c=-5/16+18/55*I,n=31 2100971519646323 m002 -5+Pi^(-6)+Cosh[Pi]/4 2100971523243168 m001 exp(GAMMA(1/24))^2/OneNinth^2*Zeta(7)^2 2100971525669347 r005 Im(z^2+c),c=-13/30+14/39*I,n=29 2100971531029427 m001 (Otter-Pi*Zeta(1,-1))/Zeta(1,-1) 2100971543478896 m001 (5^(1/2)+Porter)/(-Tribonacci+ZetaP(4)) 2100971550607733 m001 (ln(Pi)-gamma(1))/(Bloch+OneNinth) 2100971551475560 m004 E^(Sqrt[5]*Pi)/6+5*Pi+Sqrt[5]*Pi 2100971552774133 r002 2th iterates of z^2 + 2100971557921305 a007 Real Root Of 144*x^4+280*x^3-316*x^2-533*x+66 2100971558644731 a007 Real Root Of -465*x^4+593*x^3+231*x^2+732*x+150 2100971560284061 m001 1/KhintchineHarmonic/exp(sqrt(1+sqrt(3)))^2 2100971569733660 a007 Real Root Of -423*x^4-585*x^3+962*x^2+899*x+459 2100971587317920 r005 Re(z^2+c),c=-3/46+29/45*I,n=6 2100971590055760 a007 Real Root Of -527*x^4+571*x^3-423*x^2+476*x+125 2100971590540057 a001 305/2889*322^(11/12) 2100971591137663 r005 Re(z^2+c),c=-19/22+25/108*I,n=34 2100971592340639 r005 Re(z^2+c),c=11/90+33/56*I,n=2 2100971623130151 m001 Riemann2ndZero+TreeGrowth2nd-ZetaP(2) 2100971629501288 a001 11/987*121393^(37/44) 2100971630760428 m005 (1/2*gamma+3/4)/(5*Catalan+4/11) 2100971643778417 r005 Re(z^2+c),c=-5/23+17/44*I,n=6 2100971647949037 m001 1/Robbin^2*ln(Si(Pi))/sin(Pi/12)^2 2100971655461120 p001 sum((-1)^n/(363*n+17)/n/(125^n),n=1..infinity) 2100971656595481 h001 (5/12*exp(1)+3/11)/(4/5*exp(2)+7/9) 2100971661799842 m005 (1/2*3^(1/2)-3/7)/(7/12*5^(1/2)+7/9) 2100971664194198 a003 sin(Pi*4/23)/cos(Pi*37/88) 2100971666968648 r005 Im(z^2+c),c=-29/34+2/13*I,n=25 2100971674283354 r009 Im(z^3+c),c=-8/19+4/45*I,n=46 2100971675010829 m001 Zeta(9)^2*GAMMA(1/12)/ln(gamma) 2100971686031722 m005 (1/2*gamma+1/12)/(6/7*3^(1/2)+2/7) 2100971694129833 a007 Real Root Of 214*x^4+191*x^3-442*x^2+72*x-296 2100971703988277 a007 Real Root Of -340*x^4-40*x^3+835*x^2-811*x+864 2100971705263720 r009 Re(z^3+c),c=-17/48+31/55*I,n=27 2100971712428380 r005 Im(z^2+c),c=-95/118+13/59*I,n=4 2100971715303992 m001 (gamma+cos(1/12*Pi))/(Sarnak+Trott) 2100971721754342 a001 123/39088169*8^(21/23) 2100971727435711 r001 39i'th iterates of 2*x^2-1 of 2100971727990125 r005 Re(z^2+c),c=-17/74+2/9*I,n=14 2100971729992422 m001 (GAMMA(5/6)+PlouffeB)/(gamma(2)+gamma(3)) 2100971730056425 m001 (BesselJ(0,1)-CareFree)/(KhinchinLevy+Niven) 2100971730370223 a001 7/28657*514229^(9/55) 2100971738226749 m001 (ln(Pi)+Zeta(1,2))/(1-ln(3)) 2100971739870398 h001 (4/9*exp(1)+1/7)/(5/6*exp(2)+3/11) 2100971742978371 m005 (1/3*Pi+3/5)/(9/4+5/2*5^(1/2)) 2100971760020886 a007 Real Root Of 222*x^4+272*x^3+100*x^2+816*x-530 2100971760407971 r005 Im(z^2+c),c=-11/29+10/29*I,n=42 2100971781509146 a004 Fibonacci(16)*Lucas(12)/(1/2+sqrt(5)/2)^20 2100971791206067 r002 43th iterates of z^2 + 2100971797420534 m001 1/ArtinRank2^2*ln(DuboisRaymond)*GolombDickman 2100971800629602 m001 1/5*5^(1/2)*2^(1/2)/ln(2)*ln(10) 2100971814431835 m001 (-FeigenbaumAlpha+Paris)/(gamma+LambertW(1)) 2100971820041671 a001 1860498/377*1836311903^(14/17) 2100971820042373 a001 1568397607/377*514229^(14/17) 2100971820606858 r005 Re(z^2+c),c=-2/13+9/20*I,n=36 2100971828050013 m001 (arctan(1/3)+Artin)/(Lehmer-MertensB1) 2100971833130596 r005 Im(z^2+c),c=-9/106+15/58*I,n=10 2100971833501210 a007 Real Root Of -424*x^4-376*x^3+643*x^2-763*x+333 2100971834101453 m001 BesselK(1,1)/ln(ErdosBorwein)^2/GAMMA(5/6)^2 2100971834258344 a001 76/377*55^(31/53) 2100971836696187 r005 Im(z^2+c),c=19/126+7/44*I,n=18 2100971839396558 l006 ln(6959/8586) 2100971839553443 m001 Pi*(2^(1/3)-Zeta(1,2)-GAMMA(7/12)) 2100971841134470 r005 Im(z^2+c),c=-16/17+3/16*I,n=16 2100971846299212 m001 (LaplaceLimit+Trott)/(exp(1/Pi)+FeigenbaumC) 2100971846669179 a007 Real Root Of 87*x^4-553*x^3+179*x^2+933*x+683 2100971847672990 r002 32th iterates of z^2 + 2100971848682675 r005 Im(z^2+c),c=5/26+43/62*I,n=3 2100971849261087 m001 (BesselK(1,1)-Gompertz)/(KomornikLoreti+Thue) 2100971849824800 a001 10749957122/89*21^(2/11) 2100971851537998 m001 Totient^polylog(4,1/2)-Zeta(1,2) 2100971859355829 r005 Im(z^2+c),c=-43/114+9/26*I,n=19 2100971865924478 m001 GAMMA(19/24)*HardyLittlewoodC3+FeigenbaumKappa 2100971890058902 m001 (2^(1/2)+Ei(1))/(-BesselI(0,2)+CareFree) 2100971890805366 m003 (3*Sqrt[5])/4+10*Sec[1/2+Sqrt[5]/2] 2100971893577461 a007 Real Root Of -412*x^4-706*x^3-140*x^2-704*x+619 2100971895781088 m001 1/exp(CareFree)^2/ErdosBorwein*sinh(1)^2 2100971897331788 m001 (1-ln(5))/(exp(1/exp(1))+Backhouse) 2100971908943691 m001 exp(TreeGrowth2nd)/FeigenbaumB^2*Zeta(1,2) 2100971917530489 m001 1/ln(GAMMA(3/4))^2*BesselJ(0,1)/log(1+sqrt(2)) 2100971923634294 r005 Re(z^2+c),c=-17/52+17/27*I,n=8 2100971930544380 a001 233/843*322^(3/4) 2100971936364801 a003 sin(Pi*3/46)/sin(Pi*34/81) 2100971936880521 r005 Im(z^2+c),c=-9/8+31/135*I,n=46 2100971944203720 m001 (GAMMA(11/12)+Otter)/(cos(1/5*Pi)-exp(1)) 2100971954353553 a005 (1/sin(109/226*Pi))^480 2100971968384389 r009 Im(z^3+c),c=-47/86+13/50*I,n=33 2100971969494662 a007 Real Root Of -420*x^4-689*x^3+258*x^2-523*x-444 2100971973246012 m001 (exp(1)+Backhouse)/(CareFree+GlaisherKinkelin) 2100971976135414 r002 57th iterates of z^2 + 2100971990676817 l006 ln(1097/8967) 2100971992922885 r009 Im(z^3+c),c=-8/19+4/45*I,n=44 2100971995744266 r005 Im(z^2+c),c=-73/54+1/60*I,n=26 2100971996078690 a007 Real Root Of -527*x^4-639*x^3+983*x^2-199*x-415 2100972005847595 m001 DuboisRaymond^Khinchin-Riemann2ndZero 2100972015456949 m001 5^(1/2)/(GAMMA(11/12)+ZetaQ(3)) 2100972016954828 m005 (1/2*5^(1/2)+9/11)/(5*3^(1/2)+5/9) 2100972023208273 r009 Re(z^3+c),c=-17/50+23/37*I,n=31 2100972025925464 h001 (-9*exp(1)+9)/(-5*exp(5)+6) 2100972033427011 m006 (3*ln(Pi)+3/4)/(5/Pi+2/5) 2100972038242282 a007 Real Root Of 174*x^4-70*x^3-521*x^2+383*x-935 2100972040963690 a003 cos(Pi*1/48)/cos(Pi*25/73) 2100972045493603 a007 Real Root Of -432*x^4-635*x^3+836*x^2+960*x+855 2100972053464188 m001 1/2*MinimumGamma^ThueMorse/Pi*GAMMA(5/6) 2100972054216065 r005 Im(z^2+c),c=-5/26+17/58*I,n=16 2100972054798611 r002 3th iterates of z^2 + 2100972067951633 a007 Real Root Of 405*x^4+957*x^3+221*x^2-312*x-647 2100972072203408 r009 Re(z^3+c),c=-6/19+13/29*I,n=22 2100972073151255 m005 (1/2*2^(1/2)-1/9)/(1/6*Zeta(3)+1/12) 2100972075147318 m001 ln(Sierpinski)*Kolakoski/Ei(1)^2 2100972077362573 a007 Real Root Of 139*x^4+192*x^3+104*x^2+285*x-788 2100972081719535 a001 969323029/1597*6557470319842^(10/17) 2100972081719535 a001 119218851371/1597*1836311903^(10/17) 2100972081720469 a001 14662949395604/1597*514229^(10/17) 2100972088843871 m005 (1/2*exp(1)-4/9)/(4*Zeta(3)-5/11) 2100972091564753 q001 67/3189 2100972099973464 b008 2+E^Cos[1]/17 2100972102965089 r005 Im(z^2+c),c=-19/31+2/11*I,n=5 2100972104386833 l006 ln(3815/3896) 2100972114832144 a001 199/365435296162*610^(13/14) 2100972114979278 a007 Real Root Of 567*x^4+908*x^3-579*x^2-227*x-548 2100972116025910 a001 987/3571*18^(40/57) 2100972118420243 l006 ln(873/7136) 2100972123203023 m001 GAMMA(2/3)^(Sierpinski/GAMMA(11/12)) 2100972124230670 l006 ln(4089/5045) 2100972127895485 p003 LerchPhi(1/32,4,113/136) 2100972129426402 m005 (1/2*5^(1/2)+7/11)/(1/3*2^(1/2)+4/11) 2100972133622653 r005 Re(z^2+c),c=7/114+35/58*I,n=20 2100972134949073 m008 (1/6*Pi+3)/(1/6*Pi^3-5) 2100972138939971 r002 59th iterates of z^2 + 2100972141824942 m001 Zeta(1/2)*exp(1/exp(1))+ZetaQ(3) 2100972144746108 r009 Re(z^3+c),c=-19/106+17/23*I,n=52 2100972147839660 h001 (3/8*exp(2)+1/10)/(1/9*exp(2)+6/11) 2100972147926500 g007 Psi(2,3/5)-Psi(2,9/11)-Psi(2,2/9)-Psi(2,2/5) 2100972149914168 a004 Fibonacci(18)*Lucas(12)/(1/2+sqrt(5)/2)^22 2100972160896943 m005 (1/2*Pi+7/9)/(1/12*2^(1/2)+1) 2100972162596775 m001 Ei(1,1)*CareFree^Champernowne 2100972165193071 a007 Real Root Of 822*x^4+195*x^3-956*x^2-734*x+193 2100972173520481 r009 Im(z^3+c),c=-3/19+37/43*I,n=54 2100972175118772 r005 Re(z^2+c),c=-13/16+8/99*I,n=24 2100972177434041 m001 (-ln(2)+ZetaP(4))/(3^(1/2)+Zeta(3)) 2100972192311011 r008 a(0)=2,K{-n^6,43-93*n^3-22*n^2+62*n} 2100972194173910 r002 25i'th iterates of 2*x/(1-x^2) of 2100972203215176 a003 cos(Pi*22/107)*cos(Pi*49/118) 2100972203663737 a004 Fibonacci(20)*Lucas(12)/(1/2+sqrt(5)/2)^24 2100972211505693 a004 Fibonacci(22)*Lucas(12)/(1/2+sqrt(5)/2)^26 2100972212649819 a004 Fibonacci(24)*Lucas(12)/(1/2+sqrt(5)/2)^28 2100972212816745 a004 Fibonacci(26)*Lucas(12)/(1/2+sqrt(5)/2)^30 2100972212841099 a004 Fibonacci(28)*Lucas(12)/(1/2+sqrt(5)/2)^32 2100972212844652 a004 Fibonacci(30)*Lucas(12)/(1/2+sqrt(5)/2)^34 2100972212845171 a004 Fibonacci(32)*Lucas(12)/(1/2+sqrt(5)/2)^36 2100972212845246 a004 Fibonacci(34)*Lucas(12)/(1/2+sqrt(5)/2)^38 2100972212845257 a004 Fibonacci(36)*Lucas(12)/(1/2+sqrt(5)/2)^40 2100972212845259 a004 Fibonacci(38)*Lucas(12)/(1/2+sqrt(5)/2)^42 2100972212845259 a004 Fibonacci(40)*Lucas(12)/(1/2+sqrt(5)/2)^44 2100972212845259 a004 Fibonacci(42)*Lucas(12)/(1/2+sqrt(5)/2)^46 2100972212845259 a004 Fibonacci(44)*Lucas(12)/(1/2+sqrt(5)/2)^48 2100972212845259 a004 Fibonacci(46)*Lucas(12)/(1/2+sqrt(5)/2)^50 2100972212845259 a004 Fibonacci(48)*Lucas(12)/(1/2+sqrt(5)/2)^52 2100972212845259 a004 Fibonacci(50)*Lucas(12)/(1/2+sqrt(5)/2)^54 2100972212845259 a004 Fibonacci(52)*Lucas(12)/(1/2+sqrt(5)/2)^56 2100972212845259 a004 Fibonacci(54)*Lucas(12)/(1/2+sqrt(5)/2)^58 2100972212845259 a004 Fibonacci(56)*Lucas(12)/(1/2+sqrt(5)/2)^60 2100972212845259 a004 Fibonacci(58)*Lucas(12)/(1/2+sqrt(5)/2)^62 2100972212845259 a004 Fibonacci(60)*Lucas(12)/(1/2+sqrt(5)/2)^64 2100972212845259 a004 Fibonacci(62)*Lucas(12)/(1/2+sqrt(5)/2)^66 2100972212845259 a004 Fibonacci(64)*Lucas(12)/(1/2+sqrt(5)/2)^68 2100972212845259 a004 Fibonacci(66)*Lucas(12)/(1/2+sqrt(5)/2)^70 2100972212845259 a004 Fibonacci(68)*Lucas(12)/(1/2+sqrt(5)/2)^72 2100972212845259 a004 Fibonacci(70)*Lucas(12)/(1/2+sqrt(5)/2)^74 2100972212845259 a004 Fibonacci(72)*Lucas(12)/(1/2+sqrt(5)/2)^76 2100972212845259 a004 Fibonacci(74)*Lucas(12)/(1/2+sqrt(5)/2)^78 2100972212845259 a004 Fibonacci(76)*Lucas(12)/(1/2+sqrt(5)/2)^80 2100972212845259 a004 Fibonacci(78)*Lucas(12)/(1/2+sqrt(5)/2)^82 2100972212845259 a004 Fibonacci(80)*Lucas(12)/(1/2+sqrt(5)/2)^84 2100972212845259 a004 Fibonacci(82)*Lucas(12)/(1/2+sqrt(5)/2)^86 2100972212845259 a004 Fibonacci(84)*Lucas(12)/(1/2+sqrt(5)/2)^88 2100972212845259 a004 Fibonacci(86)*Lucas(12)/(1/2+sqrt(5)/2)^90 2100972212845259 a004 Fibonacci(88)*Lucas(12)/(1/2+sqrt(5)/2)^92 2100972212845259 a004 Fibonacci(90)*Lucas(12)/(1/2+sqrt(5)/2)^94 2100972212845259 a004 Fibonacci(92)*Lucas(12)/(1/2+sqrt(5)/2)^96 2100972212845259 a004 Fibonacci(94)*Lucas(12)/(1/2+sqrt(5)/2)^98 2100972212845259 a004 Fibonacci(96)*Lucas(12)/(1/2+sqrt(5)/2)^100 2100972212845259 a004 Fibonacci(95)*Lucas(12)/(1/2+sqrt(5)/2)^99 2100972212845259 a004 Fibonacci(93)*Lucas(12)/(1/2+sqrt(5)/2)^97 2100972212845259 a004 Fibonacci(91)*Lucas(12)/(1/2+sqrt(5)/2)^95 2100972212845259 a004 Fibonacci(89)*Lucas(12)/(1/2+sqrt(5)/2)^93 2100972212845259 a004 Fibonacci(87)*Lucas(12)/(1/2+sqrt(5)/2)^91 2100972212845259 a004 Fibonacci(85)*Lucas(12)/(1/2+sqrt(5)/2)^89 2100972212845259 a004 Fibonacci(83)*Lucas(12)/(1/2+sqrt(5)/2)^87 2100972212845259 a004 Fibonacci(81)*Lucas(12)/(1/2+sqrt(5)/2)^85 2100972212845259 a004 Fibonacci(79)*Lucas(12)/(1/2+sqrt(5)/2)^83 2100972212845259 a004 Fibonacci(77)*Lucas(12)/(1/2+sqrt(5)/2)^81 2100972212845259 a004 Fibonacci(75)*Lucas(12)/(1/2+sqrt(5)/2)^79 2100972212845259 a004 Fibonacci(73)*Lucas(12)/(1/2+sqrt(5)/2)^77 2100972212845259 a004 Fibonacci(71)*Lucas(12)/(1/2+sqrt(5)/2)^75 2100972212845259 a004 Fibonacci(69)*Lucas(12)/(1/2+sqrt(5)/2)^73 2100972212845259 a004 Fibonacci(67)*Lucas(12)/(1/2+sqrt(5)/2)^71 2100972212845259 a004 Fibonacci(65)*Lucas(12)/(1/2+sqrt(5)/2)^69 2100972212845259 a004 Fibonacci(63)*Lucas(12)/(1/2+sqrt(5)/2)^67 2100972212845259 a004 Fibonacci(61)*Lucas(12)/(1/2+sqrt(5)/2)^65 2100972212845259 a004 Fibonacci(59)*Lucas(12)/(1/2+sqrt(5)/2)^63 2100972212845259 a004 Fibonacci(57)*Lucas(12)/(1/2+sqrt(5)/2)^61 2100972212845259 a004 Fibonacci(55)*Lucas(12)/(1/2+sqrt(5)/2)^59 2100972212845259 a004 Fibonacci(53)*Lucas(12)/(1/2+sqrt(5)/2)^57 2100972212845259 a004 Fibonacci(51)*Lucas(12)/(1/2+sqrt(5)/2)^55 2100972212845259 a004 Fibonacci(49)*Lucas(12)/(1/2+sqrt(5)/2)^53 2100972212845259 a004 Fibonacci(47)*Lucas(12)/(1/2+sqrt(5)/2)^51 2100972212845259 a004 Fibonacci(45)*Lucas(12)/(1/2+sqrt(5)/2)^49 2100972212845259 a004 Fibonacci(43)*Lucas(12)/(1/2+sqrt(5)/2)^47 2100972212845259 a004 Fibonacci(41)*Lucas(12)/(1/2+sqrt(5)/2)^45 2100972212845259 a004 Fibonacci(39)*Lucas(12)/(1/2+sqrt(5)/2)^43 2100972212845260 a004 Fibonacci(37)*Lucas(12)/(1/2+sqrt(5)/2)^41 2100972212845264 a004 Fibonacci(35)*Lucas(12)/(1/2+sqrt(5)/2)^39 2100972212845293 a004 Fibonacci(33)*Lucas(12)/(1/2+sqrt(5)/2)^37 2100972212845491 a004 Fibonacci(31)*Lucas(12)/(1/2+sqrt(5)/2)^35 2100972212846848 a004 Fibonacci(29)*Lucas(12)/(1/2+sqrt(5)/2)^33 2100972212856151 a004 Fibonacci(27)*Lucas(12)/(1/2+sqrt(5)/2)^31 2100972212919911 a004 Fibonacci(25)*Lucas(12)/(1/2+sqrt(5)/2)^29 2100972213040699 a001 1/72*(1/2+1/2*5^(1/2))^20 2100972213356928 a004 Fibonacci(23)*Lucas(12)/(1/2+sqrt(5)/2)^27 2100972215602578 m001 (1-ln(2+3^(1/2)))/(-FeigenbaumC+FellerTornier) 2100972216352289 a004 Fibonacci(21)*Lucas(12)/(1/2+sqrt(5)/2)^25 2100972222437721 a001 2537720636/4181*6557470319842^(10/17) 2100972222437721 a001 312119004989/4181*1836311903^(10/17) 2100972231187765 a007 Real Root Of -271*x^4+27*x^3+800*x^2-647*x+640 2100972232041899 r009 Re(z^3+c),c=-5/17+13/32*I,n=7 2100972232912250 s002 sum(A246158[n]/(n^2*2^n+1),n=1..infinity) 2100972236882797 a004 Fibonacci(19)*Lucas(12)/(1/2+sqrt(5)/2)^23 2100972237009750 a007 Real Root Of -507*x^4-919*x^3+301*x^2-447*x-912 2100972242968229 a001 408569081798/5473*1836311903^(10/17) 2100972242968229 a001 6643838879/10946*6557470319842^(10/17) 2100972245743729 m001 FeigenbaumD/(exp(1/exp(1))-ln(2+3^(1/2))) 2100972245963590 a001 2139295485799/28657*1836311903^(10/17) 2100972245963590 a001 17393796001/28657*6557470319842^(10/17) 2100972246400608 a001 5600748293801/75025*1836311903^(10/17) 2100972246400608 a001 45537549124/75025*6557470319842^(10/17) 2100972246464367 a001 7331474697802/98209*1836311903^(10/17) 2100972246464367 a001 119218851371/196418*6557470319842^(10/17) 2100972246466127 m001 (Pi^(1/2))^CareFree*(Pi^(1/2))^Lehmer 2100972246473670 a001 312119004989/514229*6557470319842^(10/17) 2100972246475027 a001 817138163596/1346269*6557470319842^(10/17) 2100972246475225 a001 2139295485799/3524578*6557470319842^(10/17) 2100972246475254 a001 5600748293801/9227465*6557470319842^(10/17) 2100972246475258 a001 14662949395604/24157817*6557470319842^(10/17) 2100972246475259 a001 23725150497407/39088169*6557470319842^(10/17) 2100972246475261 a001 3020733700601/4976784*6557470319842^(10/17) 2100972246475272 a001 3461452808002/5702887*6557470319842^(10/17) 2100972246475348 a001 440719107401/726103*6557470319842^(10/17) 2100972246475866 a001 505019158607/832040*6557470319842^(10/17) 2100972246479419 a001 23725150497407/317811*1836311903^(10/17) 2100972246479419 a001 64300051206/105937*6557470319842^(10/17) 2100972246503773 a001 9062201101803/121393*1836311903^(10/17) 2100972246503773 a001 73681302247/121393*6557470319842^(10/17) 2100972246670699 a001 10749853441/144*1836311903^(10/17) 2100972246670699 a001 9381251041/15456*6557470319842^(10/17) 2100972247814825 a001 1322157322203/17711*1836311903^(10/17) 2100972247814825 a001 10749957122/17711*6557470319842^(10/17) 2100972250833810 a007 Real Root Of 942*x^4+754*x^3+358*x^2-768*x-172 2100972251377097 a001 2207/377*6557470319842^(14/17) 2100972253450868 r005 Im(z^2+c),c=-7/8+33/190*I,n=37 2100972255656782 a001 505019158607/6765*1836311903^(10/17) 2100972255656782 a001 1368706081/2255*6557470319842^(10/17) 2100972260326169 r005 Re(z^2+c),c=-1/90+7/9*I,n=3 2100972271960279 m001 (FeigenbaumMu-ln(3))/Salem 2100972285370520 a001 98209/9*322^(21/41) 2100972292866313 m001 (Chi(1)-Weierstrass)/(Pi-2^(1/2)) 2100972296014025 m005 (-1/8+1/4*5^(1/2))/(2/11*Pi-7/9) 2100972297140081 a007 Real Root Of 684*x^4+960*x^3-546*x^2+873*x-180 2100972307705078 a007 Real Root Of 764*x^4-87*x^3+848*x^2-958*x-241 2100972308258887 m001 ln(3)*(arctan(1/3)+BesselI(1,2)) 2100972308312929 m001 (FransenRobinson*Porter-Zeta(5))/Porter 2100972309406353 a001 96450076809/1292*1836311903^(10/17) 2100972309406353 a001 1568397607/2584*6557470319842^(10/17) 2100972309407287 a001 23725150497407/2584*514229^(10/17) 2100972321271499 m005 (1/2*Zeta(3)+11/12)/(3/11*3^(1/2)+1/4) 2100972321421169 a001 1/5778*3^(3/17) 2100972324730408 a005 (1/cos(29/236*Pi))^823 2100972325607450 m001 Riemann2ndZero/(GAMMA(11/12)^Trott) 2100972330154301 r009 Re(z^3+c),c=-41/114+24/43*I,n=45 2100972333987887 a007 Real Root Of -84*x^4+369*x^3+882*x^2-312*x+510 2100972334343993 l006 ln(649/5305) 2100972338400904 r005 Im(z^2+c),c=-27/28+9/43*I,n=31 2100972343712775 a001 2584/9349*18^(40/57) 2100972351625940 r005 Im(z^2+c),c=-77/82+12/59*I,n=42 2100972365404070 r005 Im(z^2+c),c=23/86+4/63*I,n=6 2100972374113963 r005 Im(z^2+c),c=-7/12+29/79*I,n=61 2100972375170740 a001 1/15127*(1/2*5^(1/2)+1/2)^2*3^(3/17) 2100972376931838 a001 6765/24476*18^(40/57) 2100972377600994 a004 Fibonacci(17)*Lucas(12)/(1/2+sqrt(5)/2)^21 2100972381778434 a001 17711/64079*18^(40/57) 2100972382485543 a001 46368/167761*18^(40/57) 2100972382588708 a001 121393/439204*18^(40/57) 2100972382603760 a001 317811/1149851*18^(40/57) 2100972382605956 a001 832040/3010349*18^(40/57) 2100972382606475 a001 1346269/4870847*18^(40/57) 2100972382607313 a001 514229/1860498*18^(40/57) 2100972382613063 a001 196418/710647*18^(40/57) 2100972382652468 a001 75025/271443*18^(40/57) 2100972382922560 a001 28657/103682*18^(40/57) 2100972383012697 a001 1/39603*(1/2*5^(1/2)+1/2)^4*3^(3/17) 2100972383697961 a001 281/7*2178309^(16/59) 2100972384773795 a001 10946/39603*18^(40/57) 2100972384863932 a001 1/64079*(1/2*5^(1/2)+1/2)^5*3^(3/17) 2100972387859293 a001 1/24476*(1/2*5^(1/2)+1/2)^3*3^(3/17) 2100972388970275 m005 (1/2*Pi-5/11)/(1/9*exp(1)-5/6) 2100972396906274 m005 (1/2*Zeta(3)-6/7)/(3/11*2^(1/2)+5/6) 2100972397462348 a001 4181/15127*18^(40/57) 2100972403592465 a007 Real Root Of 79*x^4-84*x^3-858*x^2-753*x-113 2100972408389803 a001 1/9349*(1/2*5^(1/2)+1/2)*3^(3/17) 2100972409109907 a007 Real Root Of 560*x^4+891*x^3-627*x^2+74*x+275 2100972409636106 a007 Real Root Of -416*x^4-468*x^3+567*x^2-460*x+296 2100972411069750 r005 Re(z^2+c),c=-5/29+28/45*I,n=47 2100972430652523 m005 (1/6*exp(1)-5)/(2^(1/2)+3/4) 2100972439566702 a001 505019158607/144*144^(14/17) 2100972443226596 m005 (1/2*5^(1/2)-3/5)/(7/12*Catalan-3) 2100972469707395 p001 sum(1/(596*n+495)/(12^n),n=0..infinity) 2100972471659469 a001 4/3*21^(48/53) 2100972483109555 a007 Real Root Of -519*x^4+787*x^3+409*x^2+965*x+193 2100972484430980 a001 1597/5778*18^(40/57) 2100972492710260 r005 Re(z^2+c),c=-1/48+18/29*I,n=3 2100972494147952 m001 HardyLittlewoodC5^Magata/BesselI(0,2) 2100972497659554 l006 ln(5308/6549) 2100972499426412 r005 Re(z^2+c),c=-87/82+4/17*I,n=36 2100972506823159 a007 Real Root Of -526*x^4-671*x^3+695*x^2-417*x+82 2100972508544611 s002 sum(A101159[n]/(n*2^n-1),n=1..infinity) 2100972509561075 m001 (ln(2)-KhinchinLevy)/(Rabbit-Weierstrass) 2100972509857398 l006 ln(1074/8779) 2100972523999624 m001 (GAMMA(5/6)-LambertW(1))/(-FeigenbaumB+Thue) 2100972536599336 m005 (1/3*Catalan+3/5)/(1/2*Catalan-8/9) 2100972544123864 r005 Re(z^2+c),c=37/126+6/29*I,n=22 2100972547967572 m005 (1/3*2^(1/2)-1/9)/(8/9*5^(1/2)-3/11) 2100972549264494 m005 (1/2*Catalan-11/12)/(139/120+11/24*5^(1/2)) 2100972551558715 m001 (5^(1/2)+Ei(1))/(Conway+LaplaceLimit) 2100972551742250 r005 Re(z^2+c),c=9/98+20/57*I,n=20 2100972554445673 a001 4/55*63245986^(7/10) 2100972558006733 r009 Re(z^3+c),c=-15/122+29/32*I,n=42 2100972566574554 r005 Im(z^2+c),c=15/64+4/39*I,n=16 2100972577707441 m005 (1/2*gamma-10/11)/(5/12*5^(1/2)-7/11) 2100972582803618 m001 Robbin/ln(Khintchine)^2*GAMMA(1/6)^2 2100972582900653 a007 Real Root Of 261*x^4+690*x^3+81*x^2-892*x-918 2100972585846848 p004 log(12253/1499) 2100972586024434 m001 OneNinth-ln(2)/ln(10)*GAMMA(11/12) 2100972593254156 r005 Im(z^2+c),c=-43/98+13/38*I,n=15 2100972615651386 m001 Mills^Ei(1)*BesselI(0,1) 2100972624881805 a007 Real Root Of 671*x^4+969*x^3-656*x^2+662*x+199 2100972634466210 r005 Im(z^2+c),c=-21/22+29/122*I,n=63 2100972649517380 m003 19/50+Sqrt[5]/16-Cosh[1/2+Sqrt[5]/2] 2100972651888445 s002 sum(A070146[n]/(2^n+1),n=1..infinity) 2100972664049207 a001 317811/7*322^(13/49) 2100972673791262 a001 11*89^(23/35) 2100972677811468 a001 10525900321/141*1836311903^(10/17) 2100972677811468 a001 199691526/329*6557470319842^(10/17) 2100972677812402 a001 3020733700601/329*514229^(10/17) 2100972686953050 r009 Re(z^3+c),c=-19/56+28/55*I,n=30 2100972689355241 m001 ln(3)*(Zeta(1,2)+GAMMA(5/6)) 2100972693867343 a007 Real Root Of 252*x^4+658*x^3+66*x^2-177*x+529 2100972698348767 a003 sin(Pi*25/101)-sin(Pi*42/115) 2100972699844677 m001 1/MadelungNaCl*exp(Champernowne)/GAMMA(7/24) 2100972707728595 r005 Re(z^2+c),c=-5/6+43/218*I,n=62 2100972712117364 r005 Im(z^2+c),c=19/126+7/44*I,n=19 2100972729815167 r004 Im(z^2+c),c=9/38+5/24*I,z(0)=exp(5/8*I*Pi),n=5 2100972730046362 a007 Real Root Of 583*x^4+927*x^3-107*x^2+694*x-832 2100972731603274 l006 ln(6527/8053) 2100972739034524 a005 (1/sin(74/199*Pi))^230 2100972743916358 r005 Im(z^2+c),c=29/106+3/53*I,n=20 2100972746605531 a007 Real Root Of 521*x^4+699*x^3-292*x^2+920*x-447 2100972747713376 m006 (5/6*exp(2*Pi)-1/4)/(2*ln(Pi)-1/6) 2100972750383427 q001 1/47597 2100972759918768 r005 Im(z^2+c),c=-19/18+43/203*I,n=16 2100972761508268 m001 1/exp(cos(1))/GAMMA(1/3)^2*sin(Pi/12) 2100972777876633 l006 ln(425/3474) 2100972777899499 r005 Re(z^2+c),c=-97/66+5/28*I,n=4 2100972783313573 m001 (Riemann2ndZero+Trott)/(2^(1/3)-sin(1/12*Pi)) 2100972785378557 r005 Re(z^2+c),c=-11/102+31/57*I,n=55 2100972787025566 r009 Re(z^3+c),c=-21/86+14/57*I,n=9 2100972788223332 r005 Im(z^2+c),c=-117/122+10/47*I,n=53 2100972790608987 a007 Real Root Of 189*x^4+216*x^3-217*x^2+609*x+558 2100972796505079 b008 9*Sqrt[3+Sqrt[6]] 2100972798323403 r005 Re(z^2+c),c=-51/94+26/55*I,n=41 2100972803745269 a003 sin(Pi*11/100)*sin(Pi*23/108) 2100972805866687 m005 (1/2*Catalan+1/10)/(7/9*5^(1/2)+11/12) 2100972808093847 r005 Im(z^2+c),c=-23/18+91/216*I,n=5 2100972808652048 a001 5600748293801/610*1836311903^(8/17) 2100972808652048 a001 119218851371/610*6557470319842^(8/17) 2100972821428275 a007 Real Root Of -92*x^4+463*x^3+923*x^2-972*x-30 2100972829524184 r005 Im(z^2+c),c=-55/102+8/27*I,n=12 2100972831499769 r005 Im(z^2+c),c=-69/122+19/34*I,n=50 2100972832206744 a001 (2+3^(1/2))^(713/49) 2100972840601054 r009 Re(z^3+c),c=-11/31+28/51*I,n=42 2100972842548080 p004 log(36383/4451) 2100972852261587 a007 Real Root Of -181*x^4-362*x^3+339*x^2+910*x+585 2100972857359339 m001 Tribonacci^2/Kolakoski^2/ln(GAMMA(23/24)) 2100972861160838 r005 Re(z^2+c),c=-109/110+5/28*I,n=24 2100972871105191 m001 FeigenbaumB-Porter^FransenRobinson 2100972876936705 a003 -2*cos(13/27*Pi)-cos(1/27*Pi)-cos(1/24*Pi) 2100972887013098 r009 Re(z^3+c),c=-45/86+11/56*I,n=4 2100972888445837 a007 Real Root Of 371*x^4+370*x^3-353*x^2+635*x-905 2100972891914821 l006 ln(7746/9557) 2100972898561514 m005 (1/2*2^(1/2)+8/11)/(1/10*gamma+5/8) 2100972899765924 m001 (-Conway+MasserGramainDelta)/(2^(1/2)+Shi(1)) 2100972900623920 m005 (1/2*gamma-1/11)/(1/3*3^(1/2)+4/11) 2100972901472472 r005 Im(z^2+c),c=-23/52+29/63*I,n=10 2100972913630397 r005 Re(z^2+c),c=17/86+32/55*I,n=12 2100972916118853 q001 799/3803 2100972950850128 m001 exp(Porter)*Kolakoski/GAMMA(13/24) 2100972958112522 r005 Re(z^2+c),c=-8/7+12/59*I,n=28 2100972961320403 r002 51th iterates of z^2 + 2100972973084989 m001 (GAMMA(2/3)+BesselK(1,1))/(FeigenbaumB+Paris) 2100972980048974 p003 LerchPhi(1/125,6,89/217) 2100972981356151 a007 Real Root Of 204*x^4+343*x^3-69*x^2-146*x-796 2100972984801029 a001 18/2504730781961*39088169^(10/17) 2100972986863989 a001 9/10182505537*10946^(10/17) 2100972992466872 a007 Real Root Of 302*x^4+60*x^3+779*x^2-888*x-19 2100972994382569 a007 Real Root Of -35*x^4-759*x^3-497*x^2-27*x-602 2100972995937880 r005 Im(z^2+c),c=-35/34+12/55*I,n=17 2100973015348967 a005 (1/sin(65/139*Pi))^1921 2100973019874040 m008 (1/5*Pi^6+1/3)/(1/6*Pi^3+4) 2100973029749050 m001 (exp(1)+GAMMA(19/24))/(FibonacciFactorial+Kac) 2100973032273578 a007 Real Root Of -694*x^4-114*x^3+688*x^2+519*x-137 2100973034029405 m004 5*Pi+Sqrt[5]*Pi+Cosh[Sqrt[5]*Pi]/3 2100973039318750 a007 Real Root Of x^4-374*x^3-829*x^2-271*x-398 2100973039948005 r005 Re(z^2+c),c=-1/8+24/47*I,n=48 2100973046686026 m001 (5^(1/2)-Cahen)/(-Champernowne+QuadraticClass) 2100973051761105 l006 ln(1051/8591) 2100973052627678 m001 HardHexagonsEntropy*Weierstrass^ln(gamma) 2100973061939870 a007 Real Root Of 277*x^4+703*x^3+239*x^2-262*x-483 2100973068096352 a005 (1/cos(21/187*Pi))^881 2100973068779477 m001 (Pi*csc(7/24*Pi)/GAMMA(17/24)+MertensB3)^(1/2) 2100973070272549 p004 log(36191/29333) 2100973080522736 a001 610/2207*18^(40/57) 2100973099833835 a007 Real Root Of -630*x^4-959*x^3+367*x^2-727*x+234 2100973101973147 m005 (1/2*Pi+2)/(10/11*3^(1/2)+1/8) 2100973112355563 m005 (1/3*gamma-1/8)/(1/12*gamma+3/11) 2100973112852753 g007 2*Psi(2,3/10)+Psi(2,4/5)+Psi(2,1/3) 2100973115763821 r005 Re(z^2+c),c=-1/19+23/38*I,n=59 2100973120442907 m001 (MertensB2+MertensB3)/(gamma(3)-GAMMA(5/6)) 2100973122019410 r005 Re(z^2+c),c=-13/106+17/33*I,n=56 2100973126459294 m006 (2*Pi^2-1/4)/(4*exp(Pi)+1/5) 2100973126970622 m001 (BesselI(0,1)+gamma(2))/(Gompertz+ZetaQ(4)) 2100973130421621 r009 Re(z^3+c),c=-41/122+7/13*I,n=17 2100973142496537 s001 sum(exp(-3*Pi/5)^n*A149491[n],n=1..infinity) 2100973151300118 m001 (-ln(5)+Rabbit)/(BesselI(0,1)-Chi(1)) 2100973163209143 a008 Real Root of x^4-21*x^2-12*x+48 2100973168219685 a007 Real Root Of 366*x^4+511*x^3-83*x^2+910*x-114 2100973169160584 r005 Re(z^2+c),c=-9/46+11/32*I,n=29 2100973178744400 m001 (ArtinRank2-Kac)/(Magata+ZetaQ(3)) 2100973178753729 m001 1/cos(1)^2*Kolakoski/exp(sin(Pi/12)) 2100973179855410 h001 (1/2*exp(2)+8/9)/(3/4*exp(1)+1/7) 2100973180679958 a005 (1/cos(11/236*Pi))^69 2100973202239905 a007 Real Root Of -48*x^4-970*x^3+834*x^2+545*x+55 2100973233889644 m001 BesselK(0,1)*Stephens^(2^(1/3)) 2100973234904289 m005 (1/3*Pi+1/5)/(3/8*Zeta(3)+1/7) 2100973236009732 q001 1727/822 2100973237704993 l006 ln(626/5117) 2100973240380040 a007 Real Root Of 338*x^4+567*x^3+164*x^2-986*x+194 2100973241064104 a007 Real Root Of -178*x^4-252*x^3+273*x^2-328*x-763 2100973252989524 a007 Real Root Of -547*x^4-914*x^3+741*x^2+845*x+686 2100973269905370 p004 log(17077/13841) 2100973275779629 r002 57th iterates of z^2 + 2100973276907084 a007 Real Root Of -307*x^4+957*x^3+40*x^2+590*x-134 2100973278430702 a007 Real Root Of -134*x^4+76*x^3+371*x^2-892*x-196 2100973282327051 m001 (GAMMA(7/12)+Tribonacci)/(Chi(1)+BesselJ(0,1)) 2100973289210840 m001 1/sin(Pi/5)^2/ln(FeigenbaumD)^2/sqrt(2) 2100973323886691 a005 (1/cos(5/178*Pi))^781 2100973324015456 m005 (1/3*exp(1)+2/5)/(4/5*Catalan-1/9) 2100973324128649 m001 (Ei(1,1)-GaussAGM)/(Otter-Trott2nd) 2100973328531571 a001 17/38*123^(9/28) 2100973328931161 m001 (cos(1/5*Pi)-gamma)/(-BesselI(0,2)+Salem) 2100973330318570 h001 (6/7*exp(1)+7/9)/(1/8*exp(2)+5/9) 2100973330727201 r005 Im(z^2+c),c=-59/70+7/37*I,n=56 2100973338319937 r005 Re(z^2+c),c=11/94+19/49*I,n=55 2100973342097864 a004 Fibonacci(15)*Lucas(12)/(1/2+sqrt(5)/2)^19 2100973355837013 a007 Real Root Of -558*x^4-959*x^3+262*x^2-337*x+114 2100973358750384 r009 Re(z^3+c),c=-17/106+30/49*I,n=4 2100973361067379 r005 Re(z^2+c),c=-4/21+39/44*I,n=6 2100973363045605 r005 Re(z^2+c),c=-13/16+8/91*I,n=42 2100973371056141 m001 (KhinchinLevy*Sarnak+Robbin)/Sarnak 2100973376232761 m001 (Zeta(3)-GAMMA(5/6))/(Grothendieck+Niven) 2100973376795799 r005 Im(z^2+c),c=-77/74+5/22*I,n=38 2100973379671960 a001 2/55*233^(32/43) 2100973382689972 m001 MadelungNaCl*ln(MertensB1)^2*Sierpinski^2 2100973396662155 m001 (3^(1/3))*TreeGrowth2nd/ln(gamma)^2 2100973397391338 r005 Re(z^2+c),c=7/66+16/43*I,n=40 2100973397893602 a007 Real Root Of 2*x^4-432*x^3-769*x^2+464*x+324 2100973401208654 r005 Re(z^2+c),c=-5/8+41/95*I,n=14 2100973401262246 m005 (1/3*Pi-1/12)/(5/7*gamma-5) 2100973406042356 m001 FeigenbaumD^2*ln(Paris)*(2^(1/3)) 2100973408523821 h001 (1/10*exp(2)+5/9)/(4/5*exp(2)+1/4) 2100973413431263 m001 Bloch+QuadraticClass+RenyiParking 2100973419967996 a007 Real Root Of -245*x^4-806*x^3-811*x^2-720*x-634 2100973423838905 a008 Real Root of x^5-x^4-5*x^3+4*x^2+6*x+9 2100973429383917 m005 (1/2*2^(1/2)+5/11)/(11/12*gamma+5) 2100973430412743 r002 40th iterates of z^2 + 2100973434763109 r009 Re(z^3+c),c=-4/9+1/33*I,n=18 2100973439780780 b008 Sech[Sqrt[2]+Pi] 2100973440466115 m001 (FeigenbaumMu+ZetaQ(4))/(2^(1/3)+BesselJ(1,1)) 2100973441002114 r009 Re(z^3+c),c=-27/106+17/61*I,n=7 2100973442502053 a007 Real Root Of 374*x^4+299*x^3-732*x^2+288*x-678 2100973454356908 r004 Im(z^2+c),c=-33/46-1/21*I,z(0)=-1,n=61 2100973464194387 m001 (ArtinRank2+Rabbit)/(Sarnak-ZetaQ(2)) 2100973474013318 l006 ln(827/6760) 2100973475844491 r009 Re(z^3+c),c=-25/82+13/31*I,n=17 2100973479365204 a005 (1/cos(15/188*Pi))^386 2100973485628871 m005 (13/12+1/4*5^(1/2))/(4*3^(1/2)+8/9) 2100973487705177 m001 (CopelandErdos+ZetaQ(4))/(Psi(1,1/3)+Zeta(3)) 2100973492449403 a007 Real Root Of 666*x^4+918*x^3-601*x^2+487*x-787 2100973494109003 m001 ln(GAMMA(5/12))^2/Niven^2/cos(Pi/12)^2 2100973511470435 a001 228826127/377*1836311903^(12/17) 2100973511471557 a001 73681302247/377*514229^(12/17) 2100973511474595 a001 710647/377*6557470319842^(12/17) 2100973515854732 a001 1597/322*123^(3/10) 2100973516021903 r005 Im(z^2+c),c=-29/60+23/63*I,n=29 2100973523452373 a001 843/233*21^(26/45) 2100973524977751 m001 (Psi(1,1/3)+Chi(1))/(-ln(Pi)+GolombDickman) 2100973528204344 m001 (3^(1/3)+Tribonacci)/(BesselK(0,1)-gamma) 2100973530200958 h001 (-6*exp(-2)-7)/(-exp(1)-1) 2100973542343770 m002 Pi^4/(2*E^Pi)-Log[Pi]/Pi^5 2100973543958902 h001 (-9*exp(2/3)-8)/(-6*exp(3)-1) 2100973554872972 a007 Real Root Of -245*x^4-487*x^3+439*x^2+659*x-296 2100973565270742 r002 22th iterates of z^2 + 2100973567710111 m001 PrimesInBinary+ReciprocalLucas*Thue 2100973568602685 a001 6765/521*123^(1/10) 2100973574821870 a007 Real Root Of 487*x^4+182*x^3-391*x^2-592*x+139 2100973581343091 m001 (Zeta(3)+exp(-1/2*Pi))/(OneNinth-ZetaP(3)) 2100973590334215 r005 Re(z^2+c),c=-5/29+13/32*I,n=35 2100973590650026 m001 (Pi+ln(3))/(3^(1/3)+Stephens) 2100973593555177 m001 (BesselJ(0,1)+3)/(-exp(-1/2*Pi)+2) 2100973595379365 m001 CareFree^2/DuboisRaymond^2/exp(FeigenbaumC) 2100973596235967 a007 Real Root Of 41*x^4+833*x^3-619*x^2-457*x+260 2100973596546299 a007 Real Root Of 33*x^4-216*x^3-582*x^2-167*x-428 2100973613142084 a008 Real Root of x^4-x^3+3*x^2-54*x+90 2100973614834797 m001 GaussAGM(1,1/sqrt(2))^(3^(1/3))-gamma 2100973615948565 r005 Re(z^2+c),c=-5/36+29/60*I,n=30 2100973617913107 l006 ln(1028/8403) 2100973621218192 m003 3/4+Sqrt[5]/16+Sinh[1/2+Sqrt[5]/2]/2 2100973627859445 r002 6th iterates of z^2 + 2100973637991609 r005 Im(z^2+c),c=-65/94+8/35*I,n=57 2100973646558759 a008 Real Root of x^2-x-44351 2100973648925634 r009 Re(z^3+c),c=-27/70+19/32*I,n=63 2100973661104838 a007 Real Root Of -378*x^4-731*x^3-72*x^2-234*x+412 2100973664054324 a001 13/1860498*4^(27/34) 2100973666372130 m001 PisotVijayaraghavan^MinimumGamma+Lehmer 2100973668349881 m001 MadelungNaCl*ln(CopelandErdos)/Zeta(3) 2100973668572994 r008 a(0)=2,K{-n^6,36-95*n^3-19*n^2+68*n} 2100973671718666 r008 a(0)=2,K{-n^6,42-93*n^3-22*n^2+63*n} 2100973672968186 m005 (1/2*Catalan-3/4)/(2/5*Zeta(3)+10/11) 2100973676368389 r002 5th iterates of z^2 + 2100973688576877 a007 Real Root Of -731*x^4+508*x^3-312*x^2+643*x+155 2100973691596618 a007 Real Root Of -481*x^4-814*x^3+81*x^2-628*x+146 2100973692314338 m005 (1/2*5^(1/2)-7/10)/(1/2*Zeta(3)-4/5) 2100973694248430 g001 Psi(6/7,58/79) 2100973695443022 m001 1/Trott*PisotVijayaraghavan^2/ln(Catalan)^2 2100973695704377 a007 Real Root Of -278*x^4-580*x^3-481*x^2-851*x+373 2100973704691230 a007 Real Root Of -988*x^4+615*x^3+505*x^2+541*x+99 2100973714743955 l006 ln(1229/10046) 2100973728778576 a007 Real Root Of -517*x^4-756*x^3+438*x^2-306*x+486 2100973750285136 l006 ln(1219/1504) 2100973755440662 m001 ArtinRank2-Rabbit+Riemann2ndZero 2100973758250336 m005 (1/2*gamma-3/7)/(1/12*gamma-5/7) 2100973758988128 m001 Lehmer*(arctan(1/2)+GAMMA(7/24)) 2100973759477714 a007 Real Root Of -453*x^4-438*x^3+914*x^2+x+732 2100973762999295 a007 Real Root Of -451*x^4-277*x^3+892*x^2-962*x+260 2100973773149116 a001 14662949395604/1597*1836311903^(8/17) 2100973773149116 a001 312119004989/1597*6557470319842^(8/17) 2100973776904970 m001 (GaussKuzminWirsing+Mills)/(Ei(1)-GAMMA(5/6)) 2100973777427077 a005 (1/sin(100/209*Pi))^1330 2100973789153332 m001 Conway/Mills/Weierstrass 2100973801676672 g005 Pi^(1/2)*GAMMA(3/7)/GAMMA(5/9)/GAMMA(7/8) 2100973817103744 h001 (-6*exp(1)-5)/(-5*exp(3)-1) 2100973817552849 r005 Im(z^2+c),c=-51/74+11/54*I,n=18 2100973817571344 a007 Real Root Of -458*x^4-782*x^3+824*x^2+749*x-392 2100973821231543 a001 199/233*610^(8/57) 2100973824720098 a003 sin(Pi*9/94)-sin(Pi*12/71) 2100973827526173 r009 Im(z^3+c),c=-13/28+3/47*I,n=37 2100973829076892 r005 Im(z^2+c),c=-1+51/229*I,n=18 2100973833469718 r005 Im(z^2+c),c=19/126+7/44*I,n=20 2100973858466304 p004 log(28307/3463) 2100973864652956 m001 (ZetaP(4)-ZetaQ(3))/(Mills+Tetranacci) 2100973886655655 a007 Real Root Of 306*x^4+396*x^3-874*x^2-319*x+898 2100973889100974 r005 Im(z^2+c),c=-3/8+11/32*I,n=32 2100973898089790 r005 Re(z^2+c),c=-7/52+28/57*I,n=48 2100973899249171 b008 2+E^(-3+1/Sqrt[2]) 2100973905112963 r005 Im(z^2+c),c=19/126+7/44*I,n=24 2100973908459453 r009 Re(z^3+c),c=-5/9+28/45*I,n=23 2100973908803390 r009 Re(z^3+c),c=-1/40+32/47*I,n=17 2100973909034422 m001 1/cos(1)*FeigenbaumDelta/exp(sqrt(2)) 2100973909034422 m001 FeigenbaumDelta/cos(1)/exp(sqrt(2)) 2100973909117068 a007 Real Root Of -565*x^4-841*x^3-947*x^2+941*x-147 2100973911352076 m005 (1/2*Zeta(3)+3)/(11/12*exp(1)-7/9) 2100973912013930 r005 Im(z^2+c),c=-39/40+9/41*I,n=50 2100973913867416 a001 817138163596/4181*6557470319842^(8/17) 2100973916091314 m001 (ln(2)+BesselI(1,1))/(CopelandErdos-GaussAGM) 2100973916494026 r005 Im(z^2+c),c=19/126+7/44*I,n=25 2100973922790848 a007 Real Root Of -603*x^4-747*x^3+964*x^2-507*x-499 2100973923579077 a007 Real Root Of 386*x^4+990*x^3+677*x^2+298*x-702 2100973923787729 r002 61th iterates of z^2 + 2100973924865723 m001 (MadelungNaCl+ZetaQ(4))/(gamma(3)-GaussAGM) 2100973929400471 m001 cos(1)^2*exp(Si(Pi))^2*sqrt(Pi) 2100973931136656 r005 Im(z^2+c),c=19/126+7/44*I,n=26 2100973932088382 r005 Im(z^2+c),c=19/126+7/44*I,n=30 2100973932236340 r005 Im(z^2+c),c=19/126+7/44*I,n=31 2100973932427543 r005 Im(z^2+c),c=19/126+7/44*I,n=32 2100973932440183 r005 Im(z^2+c),c=19/126+7/44*I,n=36 2100973932442106 r005 Im(z^2+c),c=19/126+7/44*I,n=37 2100973932444603 r005 Im(z^2+c),c=19/126+7/44*I,n=38 2100973932444771 r005 Im(z^2+c),c=19/126+7/44*I,n=42 2100973932444796 r005 Im(z^2+c),c=19/126+7/44*I,n=43 2100973932444828 r005 Im(z^2+c),c=19/126+7/44*I,n=44 2100973932444830 r005 Im(z^2+c),c=19/126+7/44*I,n=48 2100973932444831 r005 Im(z^2+c),c=19/126+7/44*I,n=49 2100973932444831 r005 Im(z^2+c),c=19/126+7/44*I,n=50 2100973932444831 r005 Im(z^2+c),c=19/126+7/44*I,n=54 2100973932444831 r005 Im(z^2+c),c=19/126+7/44*I,n=55 2100973932444831 r005 Im(z^2+c),c=19/126+7/44*I,n=56 2100973932444831 r005 Im(z^2+c),c=19/126+7/44*I,n=60 2100973932444831 r005 Im(z^2+c),c=19/126+7/44*I,n=61 2100973932444831 r005 Im(z^2+c),c=19/126+7/44*I,n=62 2100973932444831 r005 Im(z^2+c),c=19/126+7/44*I,n=64 2100973932444831 r005 Im(z^2+c),c=19/126+7/44*I,n=63 2100973932444831 r005 Im(z^2+c),c=19/126+7/44*I,n=59 2100973932444831 r005 Im(z^2+c),c=19/126+7/44*I,n=58 2100973932444831 r005 Im(z^2+c),c=19/126+7/44*I,n=57 2100973932444831 r005 Im(z^2+c),c=19/126+7/44*I,n=53 2100973932444831 r005 Im(z^2+c),c=19/126+7/44*I,n=52 2100973932444831 r005 Im(z^2+c),c=19/126+7/44*I,n=51 2100973932444832 r005 Im(z^2+c),c=19/126+7/44*I,n=47 2100973932444835 r005 Im(z^2+c),c=19/126+7/44*I,n=46 2100973932444838 r005 Im(z^2+c),c=19/126+7/44*I,n=45 2100973932444857 r005 Im(z^2+c),c=19/126+7/44*I,n=41 2100973932445143 r005 Im(z^2+c),c=19/126+7/44*I,n=40 2100973932445362 r005 Im(z^2+c),c=19/126+7/44*I,n=39 2100973932446818 r005 Im(z^2+c),c=19/126+7/44*I,n=35 2100973932468667 r005 Im(z^2+c),c=19/126+7/44*I,n=34 2100973932485537 r005 Im(z^2+c),c=19/126+7/44*I,n=33 2100973932595219 r005 Im(z^2+c),c=19/126+7/44*I,n=29 2100973934268454 r005 Im(z^2+c),c=19/126+7/44*I,n=28 2100973934397941 a001 2139295485799/10946*6557470319842^(8/17) 2100973934639033 m005 (1/3*Pi+2/11)/(1/8*Zeta(3)-6) 2100973935566117 r005 Im(z^2+c),c=19/126+7/44*I,n=27 2100973937393304 a001 5600748293801/28657*6557470319842^(8/17) 2100973937619542 a007 Real Root Of 27*x^4-324*x^3-423*x^2+363*x-901 2100973937830322 a001 14662949395604/75025*6557470319842^(8/17) 2100973937933488 a001 23725150497407/121393*6557470319842^(8/17) 2100973938100414 a001 3020733700601/15456*6557470319842^(8/17) 2100973939244540 a001 3461452808002/17711*6557470319842^(8/17) 2100973943823826 r005 Im(z^2+c),c=19/126+7/44*I,n=23 2100973947086503 a001 440719107401/2255*6557470319842^(8/17) 2100973963463246 h003 exp(Pi*(1/2*(7*2^(1/2)+11^(2/3))*2^(1/2))) 2100973971729657 a007 Real Root Of -172*x^4+137*x^3+939*x^2+129*x+748 2100973974622708 r002 32th iterates of z^2 + 2100973974784323 r005 Im(z^2+c),c=-5/16+18/55*I,n=29 2100973978477979 r005 Re(z^2+c),c=-19/106+13/21*I,n=38 2100973978837666 r005 Im(z^2+c),c=-131/110+19/63*I,n=29 2100973986197811 m008 (2*Pi+5)/(1/2*Pi^4+5) 2100973987425629 m005 (1/3*Zeta(3)+1/11)/(6/11*exp(1)+6/7) 2100973998920067 a007 Real Root Of 115*x^4-234*x^3-639*x^2+893*x+286 2100974000836118 a001 23725150497407/2584*1836311903^(8/17) 2100974000836118 a001 505019158607/2584*6557470319842^(8/17) 2100974007614920 m001 (Zeta(1,2)*Conway-RenyiParking)/Zeta(1,2) 2100974008651543 a007 Real Root Of 150*x^4+432*x^3+503*x^2+511*x-63 2100974028418873 a001 987/1149851*7^(23/50) 2100974034580676 r005 Re(z^2+c),c=11/94+19/49*I,n=52 2100974040283790 m001 (2*Pi/GAMMA(5/6)+Landau)/(Porter-Salem) 2100974048049196 a001 1/6624*21^(32/37) 2100974049741416 a007 Real Root Of -289*x^4-35*x^3+926*x^2-514*x+139 2100974071962671 r005 Im(z^2+c),c=19/126+7/44*I,n=22 2100974072075993 r005 Im(z^2+c),c=-7/6+12/67*I,n=40 2100974074610211 q001 1/4759697 2100974081085737 r002 9th iterates of z^2 + 2100974090889656 m001 (Khinchin-PlouffeB)/(Zeta(1,2)+FeigenbaumB) 2100974091370465 m001 (CareFree+MertensB2)/(GAMMA(5/6)-ln(2)/ln(10)) 2100974105314077 m005 (1/2*3^(1/2)+7/10)/(41/22+5/2*5^(1/2)) 2100974108242361 r005 Re(z^2+c),c=-11/56+14/41*I,n=26 2100974112201363 m005 (1/2*3^(1/2)-3/5)/(4/11*3^(1/2)+7/11) 2100974120498279 m001 Robbin^FeigenbaumDelta*exp(1/exp(1)) 2100974123921111 m001 FeigenbaumD-Zeta(1,-1)-RenyiParking 2100974127161174 m001 (Tribonacci+ZetaP(3))/(Artin-MertensB3) 2100974131474670 r002 56th iterates of z^2 + 2100974134946469 a007 Real Root Of -35*x^4-746*x^3-214*x^2+241*x+674 2100974135955122 a003 cos(Pi*26/97)-sin(Pi*35/103) 2100974136094612 r005 Re(z^2+c),c=-9/86+28/51*I,n=50 2100974136486204 s002 sum(A275785[n]/(16^n),n=1..infinity) 2100974146106494 r005 Re(z^2+c),c=-5/114+36/59*I,n=52 2100974150250595 r005 Im(z^2+c),c=23/86+4/59*I,n=21 2100974152023743 m001 ZetaQ(2)^(1/5*5^(1/2)*Otter) 2100974153470054 a007 Real Root Of -300*x^4-994*x^3-743*x^2+380*x+104 2100974154220263 r009 Im(z^3+c),c=-8/19+4/45*I,n=52 2100974163150843 m005 (1/2*Catalan+10/11)/(1/3*Zeta(3)+1/4) 2100974168016930 r005 Re(z^2+c),c=-9/46+11/32*I,n=27 2100974170772392 m001 KhintchineLevy^2*Kolakoski^2/exp((3^(1/3))) 2100974171778813 r005 Im(z^2+c),c=19/126+7/44*I,n=21 2100974172218494 a005 (1/sin(60/127*Pi))^1425 2100974181339627 r002 20th iterates of z^2 + 2100974183499212 a001 4/6765*987^(29/56) 2100974186248301 a007 Real Root Of -12*x^4-298*x^3-950*x^2+330*x+757 2100974189627892 m005 (1/2*exp(1)+3)/(2/5*Pi+9/11) 2100974194784649 a007 Real Root Of 431*x^4+640*x^3-702*x^2-92*x+443 2100974198657063 a007 Real Root Of 444*x^4+785*x^3+13*x^2+479*x-422 2100974203820160 r005 Im(z^2+c),c=-85/114+1/15*I,n=38 2100974205657200 a007 Real Root Of 403*x^4+682*x^3-145*x^2+409*x-28 2100974206066316 r009 Re(z^3+c),c=-13/62+53/57*I,n=31 2100974209978192 l006 ln(201/1643) 2100974210322871 m001 (ln(2)+Pi^(1/2))/(Grothendieck-Otter) 2100974224166042 m001 (2^(1/3)-Psi(1,1/3))/(-Artin+Kolakoski) 2100974232300644 m001 (Psi(2,1/3)-arctan(1/3))/(MertensB3+Mills) 2100974236814182 r002 3th iterates of z^2 + 2100974238085020 r002 64th iterates of z^2 + 2100974247723122 m001 (Conway-Totient)/(GAMMA(23/24)+ArtinRank2) 2100974254520796 r005 Im(z^2+c),c=-13/98+14/51*I,n=18 2100974257619456 m001 (-FeigenbaumC+KhinchinLevy)/(1-ln(2)) 2100974261349186 r009 Im(z^3+c),c=-4/21+54/59*I,n=22 2100974266373728 m001 1/arctan(1/2)^2*KhintchineLevy/exp(cos(Pi/12)) 2100974268715240 m001 (StolarskyHarborth-ZetaQ(2))/(Gompertz+Rabbit) 2100974269704526 r005 Re(z^2+c),c=-13/90+8/17*I,n=44 2100974273708959 r009 Im(z^3+c),c=-8/19+4/45*I,n=53 2100974273875204 r005 Re(z^2+c),c=-13/90+8/17*I,n=48 2100974285925596 m005 (1/2*2^(1/2)+2/11)/(1/12*gamma+3/8) 2100974288218646 a007 Real Root Of -635*x^4-929*x^3+916*x^2-225*x-759 2100974296136842 r005 Im(z^2+c),c=-37/30+1/42*I,n=53 2100974297731011 r005 Im(z^2+c),c=-29/34+17/108*I,n=38 2100974310879129 h001 (-5*exp(3/2)+1)/(-8*exp(1/2)+3) 2100974313711811 m005 (1/2*Catalan-6)/(10/11*exp(1)+1/6) 2100974318753941 r002 21th iterates of z^2 + 2100974319379367 r005 Im(z^2+c),c=-87/118+3/13*I,n=6 2100974319974760 m001 1/cos(Pi/5)*ln(cos(Pi/12))^2*sqrt(2) 2100974322490301 r005 Im(z^2+c),c=-25/34+13/90*I,n=64 2100974323868419 m001 Totient^GAMMA(17/24)/ln(2) 2100974326447238 a007 Real Root Of 380*x^4+476*x^3-202*x^2+802*x-413 2100974328302467 r005 Re(z^2+c),c=-21/82+3/53*I,n=4 2100974331694423 r009 Re(z^3+c),c=-15/122+29/32*I,n=36 2100974333954427 m005 (1/2*Zeta(3)+1/4)/(7/8*gamma-1/10) 2100974338960089 m005 (1/2*Pi-8/11)/(6/11*5^(1/2)-9/11) 2100974339232152 m001 (Zeta(3)+GAMMA(2/3))/(GAMMA(3/4)-ZetaQ(3)) 2100974340449140 m001 (Pi^(1/2)+Magata)/(cos(1/5*Pi)-GAMMA(11/12)) 2100974344941711 m001 (ln(5)-LaplaceLimit)/(ZetaP(2)-ZetaQ(4)) 2100974361879990 m001 (HardHexagonsEntropy+Rabbit)/(1+gamma(3)) 2100974362415916 r009 Re(z^3+c),c=-1/26+33/50*I,n=30 2100974363545198 m001 arctan(1/3)/(KhinchinHarmonic^BesselJ(0,1)) 2100974363924575 m005 (1/2*5^(1/2)-1/11)/(2*5^(1/2)+5/12) 2100974366254156 m002 -Pi^4+Pi^5*Coth[Pi]+ProductLog[Pi]/Pi 2100974369241529 a001 3020733700601/329*1836311903^(8/17) 2100974369241529 a001 64300051206/329*6557470319842^(8/17) 2100974379440866 m004 -1-Sinh[Sqrt[5]*Pi]/2+25*Pi*Tan[Sqrt[5]*Pi] 2100974396822932 a001 2584/3010349*7^(23/50) 2100974402914928 r005 Im(z^2+c),c=-13/14+53/236*I,n=60 2100974405931387 r005 Im(z^2+c),c=-25/28+5/33*I,n=8 2100974410779314 r005 Im(z^2+c),c=-7/8+5/29*I,n=61 2100974412994400 m001 (GAMMA(19/24)+Kac)/(Catalan-Pi^(1/2)) 2100974413340130 m005 (1/2*Catalan+4/5)/(8/9*5^(1/2)+4) 2100974422294175 m001 (cos(1/5*Pi)-gamma)/(-BesselK(1,1)+Niven) 2100974427683473 r005 Re(z^2+c),c=5/29+23/56*I,n=39 2100974441932465 r009 Im(z^3+c),c=-8/19+4/45*I,n=47 2100974442697501 b008 -2/(3*E^(1/13))+E 2100974442983157 m009 (6*Catalan+3/4*Pi^2-1/3)/(2/3*Psi(1,1/3)-3/4) 2100974452049090 m001 (exp(1)+GAMMA(5/6))/(FeigenbaumKappa+PlouffeB) 2100974461242090 r005 Im(z^2+c),c=-47/102+23/63*I,n=61 2100974471418790 a007 Real Root Of -519*x^4-463*x^3+934*x^2-958*x-317 2100974472390649 r005 Im(z^2+c),c=-89/90+9/40*I,n=55 2100974482920366 m005 (15/28+1/4*5^(1/2))/(3/11*gamma+4/11) 2100974483791333 a001 4181/4870847*7^(23/50) 2100974504385375 r005 Im(z^2+c),c=-125/94+1/62*I,n=8 2100974504779062 m001 GAMMA(23/24)*Rabbit/ln(sqrt(2)) 2100974513462081 m001 1/2*Psi(1,1/3)^BesselK(0,1)*2^(2/3) 2100974520714890 r005 Im(z^2+c),c=-17/38+21/58*I,n=29 2100974523000571 m001 BesselJ(0,1)^Conway+HardHexagonsEntropy 2100974526877724 m005 (1/2*3^(1/2)+3/10)/(1/7*exp(1)+1/6) 2100974528305644 r009 Re(z^3+c),c=-23/64+32/57*I,n=63 2100974530188866 a007 Real Root Of -230*x^4-142*x^3+476*x^2-687*x-380 2100974542208048 h001 (-3*exp(3)+6)/(-4*exp(1/3)+3) 2100974565180051 r009 Im(z^3+c),c=-8/19+4/45*I,n=51 2100974568265034 r005 Re(z^2+c),c=-7/52+29/54*I,n=18 2100974569645024 r005 Im(z^2+c),c=-32/31+7/31*I,n=31 2100974570492337 r008 a(0)=2,K{-n^6,-2-9*n^3+6*n^2-6*n} 2100974571040091 l006 ln(8101/9995) 2100974581665048 r005 Im(z^2+c),c=-7/11+2/51*I,n=53 2100974582134743 a001 3571/610*317811^(13/46) 2100974589993596 g004 Im(GAMMA(-23/15+I*121/30)) 2100974590976249 a007 Real Root Of -278*x^4-223*x^3+489*x^2-763*x-413 2100974595597651 p003 LerchPhi(1/16,5,130/239) 2100974596519433 a007 Real Root Of -143*x^4+344*x^3+968*x^2-947*x-286 2100974598469745 a007 Real Root Of -90*x^4-393*x^3-832*x^2-579*x+565 2100974610426453 a007 Real Root Of -103*x^4+104*x^3+319*x^2-785*x-86 2100974623796241 r009 Im(z^3+c),c=-8/19+4/45*I,n=54 2100974624509162 a001 1597/1860498*7^(23/50) 2100974636093769 r002 5th iterates of z^2 + 2100974639277983 r004 Re(z^2+c),c=-1/5-2/15*I,z(0)=exp(1/8*I*Pi),n=6 2100974641813904 r005 Re(z^2+c),c=31/102+13/48*I,n=12 2100974649127394 m001 ThueMorse^MasserGramain/Khinchin 2100974661413794 m001 (Bloch+Kac)/(OrthogonalArrays-QuadraticClass) 2100974668365169 a007 Real Root Of 256*x^4+416*x^3-27*x^2+246*x-494 2100974673112682 a007 Real Root Of -442*x^4-635*x^3+119*x^2-642*x+849 2100974676231337 a001 9/10182505537*14930352^(8/17) 2100974676231338 a001 18/956722026041*53316291173^(8/17) 2100974681514081 r009 Im(z^3+c),c=-8/19+4/45*I,n=59 2100974681790177 r009 Im(z^3+c),c=-8/19+4/45*I,n=60 2100974684412334 m001 Riemann3rdZero^2*CareFree*exp(GAMMA(11/24))^2 2100974687543134 a001 18/433494437*4181^(8/17) 2100974691905622 m001 ZetaQ(2)/(exp(1/Pi)+KhinchinLevy) 2100974694454757 r005 Re(z^2+c),c=-13/90+8/17*I,n=41 2100974710588559 b008 81/4+Sqrt[EulerGamma] 2100974716419377 l006 ln(6882/8491) 2100974717209749 r005 Re(z^2+c),c=11/94+19/49*I,n=59 2100974723239656 r009 Im(z^3+c),c=-8/19+4/45*I,n=61 2100974724468953 l006 ln(1183/9670) 2100974728628338 r005 Im(z^2+c),c=-63/122+8/27*I,n=10 2100974737012699 a007 Real Root Of -225*x^4+920*x^3-588*x^2-461*x-584 2100974737283753 m001 (Cahen+DuboisRaymond)/(Mills-Niven) 2100974737752286 a007 Real Root Of 293*x^4+432*x^3+33*x^2+636*x-512 2100974742314515 a003 cos(Pi*13/109)/sin(Pi*13/89) 2100974750877415 m001 (Niven-Porter)/(Backhouse-FellerTornier) 2100974754047742 r009 Im(z^3+c),c=-8/19+4/45*I,n=58 2100974758360939 m006 (5/6*ln(Pi)-2)/(4*ln(Pi)+2/5) 2100974763590162 r009 Im(z^3+c),c=-8/19+4/45*I,n=62 2100974770565706 m001 (2^(1/2)-Si(Pi))/(Zeta(3)+ln(2^(1/2)+1)) 2100974770759651 a007 Real Root Of 408*x^4+660*x^3-45*x^2+675*x-212 2100974772122597 r009 Im(z^3+c),c=-8/19+4/45*I,n=64 2100974779491242 r009 Im(z^3+c),c=-8/19+4/45*I,n=63 2100974789867960 a007 Real Root Of -419*x^4-518*x^3+295*x^2-672*x+646 2100974793311199 r005 Im(z^2+c),c=19/126+7/44*I,n=17 2100974794127596 a007 Real Root Of 914*x^4-360*x^3-259*x^2-100*x+34 2100974795152977 h001 (1/9*exp(1)+1/8)/(5/7*exp(1)+1/11) 2100974799605266 p004 log(33751/4129) 2100974805569158 m001 OrthogonalArrays*ZetaQ(3)-Riemann2ndZero 2100974817429155 a007 Real Root Of 260*x^4+390*x^3-607*x^2-181*x+850 2100974829777110 l006 ln(982/8027) 2100974834236102 s002 sum(A096640[n]/(n^3*10^n+1),n=1..infinity) 2100974837503939 r005 Im(z^2+c),c=-9/14+73/250*I,n=43 2100974847960758 r005 Re(z^2+c),c=-19/102+3/8*I,n=12 2100974849285907 a007 Real Root Of -643*x^4+841*x^3-702*x^2+214*x+85 2100974860364249 a001 11/233*317811^(49/58) 2100974870151022 r009 Re(z^3+c),c=-8/25+17/37*I,n=30 2100974873354244 m001 (PlouffeB-Riemann2ndZero)/(Pi^(1/2)-Kolakoski) 2100974878701806 m001 1/Zeta(5)^2/Porter/ln(sqrt(3))^2 2100974879390271 r009 Im(z^3+c),c=-8/19+4/45*I,n=57 2100974884056041 a007 Real Root Of -524*x^4-957*x^3+241*x^2+289*x+878 2100974884216786 a007 Real Root Of -471*x^4-814*x^3+614*x^2+447*x-143 2100974898087947 r009 Im(z^3+c),c=-8/19+4/45*I,n=55 2100974901547749 a007 Real Root Of 54*x^4+466*x^3+965*x^2-517*x-147 2100974906989598 m001 Kolakoski^(FellerTornier*Riemann2ndZero) 2100974913577576 m005 (1/2*5^(1/2)+2)/(4/7*Catalan-3/8) 2100974921987406 a007 Real Root Of -692*x^4-864*x^3+964*x^2-567*x+24 2100974924386456 l006 ln(5663/6987) 2100974929535618 m005 (1/2*3^(1/2)+4/9)/(7/8*2^(1/2)+5) 2100974931693378 a007 Real Root Of -174*x^4-64*x^3+328*x^2-415*x+477 2100974932339162 a007 Real Root Of -547*x^4-931*x^3+304*x^2-297*x+58 2100974941728535 p003 LerchPhi(1/25,6,607/217) 2100974944020726 m002 2+(Pi^3*Sech[Pi])/(E^Pi*Log[Pi]) 2100974956569258 r005 Im(z^2+c),c=-8/19+16/45*I,n=36 2100974958018332 r005 Im(z^2+c),c=25/106+3/29*I,n=10 2100974959274915 a001 8/4870847*521^(38/49) 2100974964549820 a007 Real Root Of 557*x^4+814*x^3-836*x^2-123*x+128 2100974967388850 r009 Im(z^3+c),c=-8/19+4/45*I,n=56 2100974968605550 b005 Number DB table 2100974969941081 a007 Real Root Of 45*x^4+930*x^3-321*x^2+92*x+448 2100974985060216 m001 1/ln(sqrt(5))^2/PrimesInBinary/sqrt(Pi) 2100974987791605 m001 GaussAGM*(GolombDickman-Pi) 2100974989191801 m001 (2^(1/3)-Gompertz)/(-Landau+Thue) 2100974989289958 l006 ln(781/6384) 2100975002597818 m002 -Pi-(Csch[Pi]*Log[Pi])/3+ProductLog[Pi] 2100975009553654 m005 (exp(1)+3/4)/(5*Pi+4/5) 2100975018835375 a001 2161/3*3^(38/39) 2100975019062113 r005 Im(z^2+c),c=-13/14+27/136*I,n=60 2100975034044278 r005 Re(z^2+c),c=-19/23+3/58*I,n=64 2100975043280483 m001 ln(FibonacciFactorial)^2*Backhouse*sin(Pi/5)^2 2100975054836647 a007 Real Root Of -12*x^4+79*x^3+194*x^2+395*x+940 2100975055531169 a007 Real Root Of -707*x^4+817*x^3+633*x^2+276*x+39 2100975059431099 r005 Re(z^2+c),c=-21/82+23/49*I,n=6 2100975063029987 a001 11*(1/2*5^(1/2)+1/2)^4*29^(7/23) 2100975072139950 s002 sum(A274938[n]/(n^3*pi^n+1),n=1..infinity) 2100975079421324 a007 Real Root Of -358*x^4-98*x^3+904*x^2-794*x+408 2100975088001427 r005 Im(z^2+c),c=11/106+11/60*I,n=13 2100975089108897 a007 Real Root Of -580*x^4-996*x^3+99*x^2-981*x-434 2100975089892940 m001 (2^(1/2)+1)/(LambertW(1)+LandauRamanujan2nd) 2100975090324566 m001 DuboisRaymond-gamma(2)*ErdosBorwein 2100975091467942 a001 2/17*55^(41/57) 2100975092445756 m001 (KhinchinLevy-Robbin)/(gamma(1)+FellerTornier) 2100975105627340 r009 Re(z^3+c),c=-45/118+19/33*I,n=35 2100975113200995 m005 (3/5*Catalan-2)/(1/6*2^(1/2)-1/6) 2100975115631946 m001 (2^(1/3))^2*ln(Bloch)^2*GAMMA(1/24) 2100975120509219 m001 (ln(Pi)+MertensB3)/(Tribonacci-TwinPrimes) 2100975125422408 m001 Pi-exp(Pi)-5^(1/2)+GAMMA(3/4) 2100975125805776 m005 (1/3*exp(1)-2/3)/(8/9*3^(1/2)-2/5) 2100975129667594 m005 (13/42+1/6*5^(1/2))/(8/9*Pi+5/11) 2100975131805467 r005 Im(z^2+c),c=-20/21+12/59*I,n=15 2100975142933614 m001 (ln(Pi)+GolombDickman)/(Stephens-TwinPrimes) 2100975148753491 a007 Real Root Of -79*x^4+253*x^3+452*x^2-905*x-11 2100975151528204 r005 Re(z^2+c),c=11/94+19/49*I,n=63 2100975152475899 r008 a(0)=2,K{-n^6,35-95*n^3-19*n^2+69*n} 2100975161170161 a001 20633239*13^(19/21) 2100975161733734 a007 Real Root Of 167*x^4-210*x^3-792*x^2+539*x-573 2100975168704671 a001 3/2*144^(4/59) 2100975168833879 r005 Im(z^2+c),c=-115/126+7/37*I,n=20 2100975169477837 p001 sum((-1)^n/(466*n+393)/(2^n),n=0..infinity) 2100975169917263 a007 Real Root Of -384*x^4-888*x^3-472*x^2-180*x+952 2100975174093700 r009 Im(z^3+c),c=-51/118+4/55*I,n=22 2100975177398725 m001 (exp(1/exp(1))+Trott)/(2^(1/3)-LambertW(1)) 2100975179512414 a007 Real Root Of -555*x^4+331*x^3+51*x^2+313*x-70 2100975197621003 r005 Im(z^2+c),c=-11/29+10/29*I,n=43 2100975202901168 a001 28143753123/377*1836311903^(10/17) 2100975202901168 a001 228826127/377*6557470319842^(10/17) 2100975202902103 a001 3461452808002/377*514229^(10/17) 2100975204605937 a007 Real Root Of 891*x^4-265*x^3+586*x^2+105*x-8 2100975216044968 m001 GAMMA(1/6)^2*ln(Bloch)^2*Zeta(3) 2100975216324811 a007 Real Root Of -588*x^4-754*x^3+693*x^2-250*x+880 2100975227043137 a007 Real Root Of -300*x^4-732*x^3-267*x^2-142*x-63 2100975240209629 m001 (exp(Pi)-ln(3)*ZetaQ(2))/ln(3) 2100975246445278 l006 ln(4444/5483) 2100975247881436 m001 Robbin/Lehmer*ln(cosh(1))^2 2100975249871810 m001 (Pi-LambertW(1))/(Cahen+LandauRamanujan2nd) 2100975257074924 r005 Re(z^2+c),c=11/94+19/49*I,n=62 2100975259361653 l006 ln(580/4741) 2100975260096188 a007 Real Root Of 691*x^4+992*x^3-936*x^2-96*x-334 2100975262627596 r005 Re(z^2+c),c=11/94+19/49*I,n=56 2100975275408399 r005 Re(z^2+c),c=11/94+19/49*I,n=58 2100975278508404 a001 13/4870847*11^(37/43) 2100975282288860 m001 (Kolakoski-ZetaQ(3))/(Zeta(1/2)-BesselI(0,2)) 2100975285724104 m001 (2^(1/2)+GAMMA(2/3))/HeathBrownMoroz 2100975292555729 h001 (-9*exp(4)+12)/(-exp(1)+5) 2100975296300839 m005 (1/3*exp(1)-3/7)/(3/4*Pi-1/12) 2100975301481324 m005 (1/2*5^(1/2)-5/12)/(6*gamma-1/8) 2100975309872092 r002 22th iterates of z^2 + 2100975338854998 r005 Re(z^2+c),c=-27/122+10/37*I,n=6 2100975347227380 m001 cos(1)-exp(Pi)+BesselI(1,2) 2100975360675739 a001 2/17711*377^(37/42) 2100975371555963 a001 1/36*10946^(20/43) 2100975381591135 m001 GAMMA(7/24)-cos(Pi/12)^LambertW(1) 2100975383080903 p003 LerchPhi(1/25,2,163/74) 2100975385921497 m001 1/Riemann2ndZero/exp(Lehmer)^2*Zeta(3)^2 2100975387106489 r005 Re(z^2+c),c=11/94+19/49*I,n=64 2100975397289014 m002 -5+Cosh[Pi]/4+Tanh[Pi]/Pi^6 2100975399537624 m001 LandauRamanujan/ln(Conway)^2*GAMMA(11/24) 2100975400487356 r005 Im(z^2+c),c=-23/54+1/27*I,n=10 2100975407817151 m001 1/BesselK(1,1)^2*exp(Salem)^2/sinh(1)^2 2100975413419085 r005 Re(z^2+c),c=11/94+19/49*I,n=60 2100975437152549 m001 (-Mills+Robbin)/(5^(1/2)+FeigenbaumB) 2100975449030298 a007 Real Root Of 237*x^4+481*x^3-189*x^2-765*x-930 2100975450532039 m005 (29/30+1/6*5^(1/2))/(-1/30+3/10*5^(1/2)) 2100975451767232 m001 (KhinchinLevy-Robbin)/(Pi-Cahen) 2100975458385638 a007 Real Root Of 472*x^4+996*x^3+242*x^2+376*x-238 2100975466410904 a007 Real Root Of 610*x^4+954*x^3-777*x^2-581*x-829 2100975471473934 a005 (1/sin(80/183*Pi))^1916 2100975475087037 m001 (Pi+BesselJ(0,1))/(ln(Pi)+TravellingSalesman) 2100975479177396 r005 Im(z^2+c),c=-31/74+11/31*I,n=48 2100975479305283 l006 ln(959/7839) 2100975483055115 r009 Im(z^3+c),c=-8/19+4/45*I,n=50 2100975484262341 l006 ln(7669/9462) 2100975493980290 p003 LerchPhi(1/3,5,197/90) 2100975494644741 m001 (-Zeta(1/2)+cos(1/12*Pi))/(3^(1/2)-gamma) 2100975513681213 m001 (gamma(2)-sin(1/12*Pi))^KhinchinLevy 2100975516959691 m001 (1+Kolakoski)/(-Mills+ZetaP(2)) 2100975517576350 a007 Real Root Of -500*x^4-742*x^3+646*x^2-83*x-165 2100975519164876 a007 Real Root Of -178*x^4-228*x^3+539*x^2+361*x-267 2100975520488050 r005 Re(z^2+c),c=-1/110+23/38*I,n=54 2100975523620665 m004 -6+(10*Sqrt[5])/(3*Pi)+ProductLog[Sqrt[5]*Pi] 2100975525553402 p003 LerchPhi(1/100,6,89/217) 2100975526568892 h001 (2/9*exp(1)+3/11)/(6/11*exp(2)+1/7) 2100975534381172 g006 Psi(1,8/11)+Psi(1,3/4)+1/2*Pi^2-Psi(1,3/10) 2100975535818983 a007 Real Root Of -619*x^4-751*x^3-856*x^2-62*x+19 2100975535915729 r005 Im(z^2+c),c=-57/122+11/30*I,n=62 2100975539827855 a007 Real Root Of -331*x^4-223*x^3+519*x^2-914*x+170 2100975541271750 r005 Re(z^2+c),c=-13/66+38/55*I,n=55 2100975552775750 m001 1/ln(GAMMA(11/24))/Khintchine^2/Zeta(9) 2100975564878810 r005 Im(z^2+c),c=-5/8+83/229*I,n=31 2100975576967868 a007 Real Root Of -210*x^4-198*x^3+217*x^2-719*x-213 2100975581024357 h001 (9/11*exp(2)+1/2)/(4/11*exp(2)+3/7) 2100975581935475 g005 4*GAMMA(1/9)*Pi^2/GAMMA(5/6)^2/GAMMA(8/11) 2100975584063568 l005 257/46/(exp(257/46)-1) 2100975586851565 h001 (3/7*exp(2)+2/11)/(6/11*exp(1)+1/9) 2100975588419663 m001 (Zeta(1,-1)+Magata)/(2^(1/2)-2^(1/3)) 2100975589003510 a001 610/710647*7^(23/50) 2100975591545324 m001 (GAMMA(7/12)+Cahen)/(Thue+ZetaP(3)) 2100975614359118 m001 1/GAMMA(1/12)^2*Backhouse^2*ln(Pi)^2 2100975614703480 r005 Im(z^2+c),c=-14/29+23/62*I,n=47 2100975615977781 m005 (1/2*2^(1/2)+3/10)/(2/11*2^(1/2)+2/9) 2100975617766279 m001 sin(1)^2/Paris^2/exp(sqrt(Pi))^2 2100975620401930 p003 LerchPhi(1/3,6,217/167) 2100975634652736 a007 Real Root Of 565*x^4+966*x^3-321*x^2+189*x-236 2100975646397983 a007 Real Root Of 344*x^4+392*x^3-359*x^2+976*x+568 2100975654260064 m001 5^(1/2)/gamma(1)/MinimumGamma 2100975658237979 s002 sum(A150960[n]/((10^n-1)/n),n=1..infinity) 2100975662621389 r005 Re(z^2+c),c=19/98+27/52*I,n=51 2100975663092893 m001 ln(2)^PlouffeB*Riemann3rdZero 2100975665076439 r005 Re(z^2+c),c=11/94+19/49*I,n=61 2100975666508217 m008 (1/5*Pi^4+3)/(1/3*Pi^5+5) 2100975672932858 r005 Re(z^2+c),c=-5/28+25/39*I,n=4 2100975674589475 r005 Im(z^2+c),c=-11/16+17/81*I,n=35 2100975687351056 a001 9349/1597*317811^(13/46) 2100975689713090 l006 ln(7159/7311) 2100975690956445 s002 sum(A014727[n]/((exp(n)-1)/n),n=1..infinity) 2100975693473930 r005 Im(z^2+c),c=-17/18-50/247*I,n=44 2100975693483846 a001 377/3010349*199^(30/31) 2100975699891827 a001 1/4870004*(1/2*5^(1/2)+1/2)^12*64079^(5/16) 2100975701512762 a001 1/1860176*(1/2*5^(1/2)+1/2)^8*24476^(7/16) 2100975702410854 a007 Real Root Of -315*x^4-835*x^3-314*x^2-157*x-550 2100975706120900 a001 969323029/13*987^(9/11) 2100975706358970 m005 (3*gamma-1/5)/(17/10+5/2*5^(1/2)) 2100975710954062 r009 Im(z^3+c),c=-9/28+10/63*I,n=11 2100975713495045 r002 50th iterates of z^2 + 2100975717492510 r002 26th iterates of z^2 + 2100975722075284 a001 1/710524*(1/2*5^(1/2)+1/2)^14*9349^(1/16) 2100975729730108 a007 Real Root Of 362*x^4+190*x^3-847*x^2+738*x-2 2100975746132264 a007 Real Root Of -599*x^4-968*x^3+258*x^2-298*x+929 2100975746508880 m001 GAMMA(1/24)-ln(3)-GAMMA(2/3) 2100975746508880 m001 GAMMA(2/3)+ln(3)-Pi*csc(1/24*Pi)/GAMMA(23/24) 2100975747304671 a007 Real Root Of 115*x^4-865*x^3+970*x^2+481*x+489 2100975755331772 r005 Re(z^2+c),c=11/94+19/49*I,n=54 2100975773113055 a005 (1/sin(66/179*Pi))^508 2100975778531320 a007 Real Root Of 203*x^4+307*x^3+153*x^2+689*x-336 2100975787800151 r009 Re(z^3+c),c=-7/23+23/55*I,n=24 2100975789915709 m001 1/GAMMA(17/24)^2/ArtinRank2/ln(GAMMA(3/4))^2 2100975794523208 r009 Re(z^3+c),c=-1/46+7/64*I,n=4 2100975798028511 r005 Im(z^2+c),c=-13/74+19/63*I,n=5 2100975802419312 r005 Re(z^2+c),c=-5/6+2/129*I,n=38 2100975811970557 l006 ln(3225/3979) 2100975815894387 l006 ln(379/3098) 2100975818536883 m001 ln(LandauRamanujan)/GlaisherKinkelin*Zeta(9) 2100975822512448 m001 (RenyiParking-Stephens)/(Zeta(1/2)+Cahen) 2100975826304921 b008 3+55*ArcCsch[3] 2100975827904572 r005 Im(z^2+c),c=-73/114+13/55*I,n=16 2100975830020788 r009 Re(z^3+c),c=-7/60+43/50*I,n=34 2100975833404321 a001 1/271396*(1/2*5^(1/2)+1/2)^10*3571^(3/16) 2100975838749320 r005 Re(z^2+c),c=-3/19+39/58*I,n=48 2100975843820462 m001 (-Niven+Paris)/(ln(2)/ln(10)+arctan(1/2)) 2100975845291293 a007 Real Root Of -413*x^4-777*x^3-216*x^2-838*x+34 2100975845396747 m009 (2/5*Psi(1,1/3)-1)/(1/5*Psi(1,2/3)+5/6) 2100975848600028 a001 24476/4181*317811^(13/46) 2100975854647958 h001 (5/12*exp(2)+1/12)/(1/11*exp(2)+5/6) 2100975858161194 r005 Im(z^2+c),c=-25/27+12/61*I,n=57 2100975858395869 r005 Re(z^2+c),c=-7/48+22/47*I,n=30 2100975863165329 m001 (BesselI(1,2)+Gompertz)/(Trott2nd+ZetaP(4)) 2100975881030149 b008 2+Tanh[Pi^(-2)] 2100975886665750 a001 13201/2255*317811^(13/46) 2100975887592105 m001 (Pi+1)/Zeta(3)/GAMMA(13/24) 2100975890892824 b008 1/5-E^(5/6) 2100975892389731 m001 (2^(1/2)-Chi(1))/(arctan(1/2)+BesselI(0,2)) 2100975892818382 m001 (gamma(2)+DuboisRaymond)/(Niven-Sierpinski) 2100975917318669 m001 (Pi+3^(1/2))/(GAMMA(17/24)+MertensB2) 2100975921296604 h001 (-9*exp(-2)+3)/(-exp(3/2)-4) 2100975922984693 m001 (LaplaceLimit+Trott)/(Si(Pi)+GAMMA(2/3)) 2100975933531902 p003 LerchPhi(1/100,5,496/229) 2100975933838869 m001 Zeta(5)/GAMMA(5/12)/exp(sin(1)) 2100975936124415 a001 3571/5*3^(55/56) 2100975941252562 m002 Pi^3+6*Pi^7*Cosh[Pi] 2100975945574295 a007 Real Root Of 243*x^4+323*x^3-61*x^2+455*x-514 2100975946292121 m001 PrimesInBinary/Cahen^2/exp(GAMMA(11/24))^2 2100975948257384 a001 15127/2584*317811^(13/46) 2100975950621754 m003 20+(E^(1/2+Sqrt[5]/2)*Csc[1/2+Sqrt[5]/2])/5 2100975952155737 a007 Real Root Of 200*x^4+127*x^3-582*x^2-39*x-232 2100975963928256 m001 (Pi-3^(1/2))/(RenyiParking-ZetaP(4)) 2100975966234313 m001 (Bloch+DuboisRaymond)/(Salem-Thue) 2100975969266706 m001 1/cos(1)*GlaisherKinkelin^2*exp(cos(Pi/12))^2 2100975971162548 a001 5/123*9349^(41/60) 2100975985775938 r002 14th iterates of z^2 + 2100975993928415 r002 18th iterates of z^2 + 2100975998215728 m001 1/GAMMA(7/12)^2/exp(RenyiParking)*Zeta(5) 2100976000898614 m001 (Kac+MasserGramainDelta)/(Salem-Trott) 2100976010461332 m001 LaplaceLimit/FransenRobinson^2*exp(Catalan) 2100976021359438 h001 (-3*exp(7)-2)/(-8*exp(3)+4) 2100976022706799 a007 Real Root Of -293*x^4-344*x^3+177*x^2-687*x+294 2100976026442869 r002 4th iterates of z^2 + 2100976028592096 m001 exp(1/Pi)/BesselK(0,1)*Cahen 2100976043438992 r005 Im(z^2+c),c=-113/110+11/49*I,n=48 2100976053434003 m001 (3^(1/3)+FeigenbaumD)/(LaplaceLimit-Thue) 2100976058958267 a001 167761/13*39088169^(9/11) 2100976059041843 a001 12752043/13*196418^(9/11) 2100976060356401 m005 (1/2*exp(1)-4/11)/(2/7*Catalan-5) 2100976066129307 a007 Real Root Of -298*x^4-808*x^3-197*x^2+341*x-101 2100976067448101 m008 (5/6*Pi^5+3)/(4*Pi^5+4) 2100976076913136 r005 Im(z^2+c),c=-17/46+29/49*I,n=31 2100976079517773 r009 Re(z^3+c),c=-3/98+19/43*I,n=8 2100976081308683 m001 (Pi+Psi(2,1/3))/(BesselI(0,2)+DuboisRaymond) 2100976090723728 m005 (1/2*exp(1)-1/9)/(6*Catalan+4/9) 2100976091075295 a007 Real Root Of -647*x^4-863*x^3+687*x^2-975*x-478 2100976091196145 m001 exp((2^(1/3)))^2/CareFree^2*Catalan^2 2100976092732869 a003 cos(Pi*1/116)-cos(Pi*6/91) 2100976093025553 h001 (11/12*exp(1)+1/4)/(1/7*exp(1)+11/12) 2100976119632427 r005 Im(z^2+c),c=-29/66+4/11*I,n=24 2100976122114828 r005 Re(z^2+c),c=-9/40+14/23*I,n=17 2100976139040477 m001 (-LambertW(1)+Paris)/(exp(Pi)-sin(1)) 2100976159125780 r009 Re(z^3+c),c=-31/90+15/29*I,n=24 2100976160754259 l006 ln(936/7651) 2100976163640186 m005 (1/2*exp(1)-6/7)/(2/3*Catalan-3) 2100976164764257 a001 1/1292*832040^(29/50) 2100976166813985 r005 Im(z^2+c),c=-39/74+19/51*I,n=43 2100976167032122 r005 Im(z^2+c),c=-15/14+32/147*I,n=9 2100976173792952 m004 5*Pi-Cos[Sqrt[5]*Pi]/6+4*Sec[Sqrt[5]*Pi] 2100976173868602 r005 Re(z^2+c),c=-9/46+11/32*I,n=26 2100976175336171 m001 BesselJ(0,1)^2/CareFree*exp(arctan(1/2))^2 2100976186929145 r005 Re(z^2+c),c=-11/98+23/43*I,n=33 2100976187624047 r005 Im(z^2+c),c=13/42+18/41*I,n=17 2100976188899277 r005 Re(z^2+c),c=-21/86+9/50*I,n=5 2100976194381249 s002 sum(A140342[n]/(n*2^n+1),n=1..infinity) 2100976196136018 r009 Im(z^3+c),c=-8/19+4/45*I,n=48 2100976198987672 m001 (GaussKuzminWirsing-PrimesInBinary)^Rabbit 2100976201916583 a001 76/987*196418^(37/57) 2100976204441052 a001 18/165580141*14930352^(14/19) 2100976204441053 a001 18/139583862445*139583862445^(14/19) 2100976207132036 r005 Im(z^2+c),c=-119/94+3/40*I,n=10 2100976207449156 m001 (Zeta(1/2)+MertensB2)/(Paris+Tetranacci) 2100976207478925 m005 (1/2*Zeta(3)-4/11)/(-79/132+7/22*5^(1/2)) 2100976213598683 m001 Pi^(1/2)*ErdosBorwein/FeigenbaumKappa 2100976221663937 a007 Real Root Of 633*x^4-569*x^3-783*x^2-554*x+155 2100976224146198 p001 sum(1/(587*n+528)/(5^n),n=0..infinity) 2100976238453286 m008 (1/2*Pi^4-2/5)/(3/4*Pi^5+2/5) 2100976238898314 r005 Re(z^2+c),c=-15/98+28/59*I,n=7 2100976245046362 h001 (7/11*exp(2)+1/10)/(7/12*exp(1)+7/10) 2100976258076890 a007 Real Root Of -439*x^4-933*x^3-676*x^2-990*x+805 2100976273752284 a007 Real Root Of -309*x^4-301*x^3+952*x^2+30*x-910 2100976277552285 r005 Im(z^2+c),c=-99/118+3/19*I,n=48 2100976284478070 m001 (CareFree-ThueMorse)/(ln(2+3^(1/2))-gamma(1)) 2100976292412960 l006 ln(5231/6454) 2100976295156643 m005 (1/2*Pi-1)/(1/5*Pi-9/10) 2100976295156643 m006 (1/6*Pi-1/3)/(2/3*Pi-3) 2100976295156643 m008 (1/6*Pi-1/3)/(2/3*Pi-3) 2100976301047732 m005 (1/2*Zeta(3)-2/3)/(7/9*Catalan-2/5) 2100976307968316 r005 Im(z^2+c),c=-55/58+1/53*I,n=5 2100976308624803 r002 5th iterates of z^2 + 2100976313854622 r005 Re(z^2+c),c=-9/13+4/15*I,n=35 2100976316616112 a007 Real Root Of 816*x^4-473*x^3-863*x^2-586*x-91 2100976325133991 a007 Real Root Of 229*x^4+298*x^3-215*x^2-694*x-134 2100976325829353 a001 9/98209*1597^(14/19) 2100976327956878 a007 Real Root Of -434*x^4-487*x^3+313*x^2+583*x+105 2100976329165202 a007 Real Root Of 995*x^4+504*x^3-880*x^2-908*x+223 2100976330692965 r005 Re(z^2+c),c=-89/74+2/45*I,n=6 2100976334523876 r009 Re(z^3+c),c=-35/102+13/21*I,n=32 2100976339180823 r009 Im(z^3+c),c=-8/19+4/45*I,n=49 2100976342645449 a003 cos(Pi*1/50)-cos(Pi*8/117) 2100976344502454 a003 sin(Pi*30/113)/cos(Pi*42/109) 2100976345680680 r002 9th iterates of z^2 + 2100976351321052 r008 a(0)=2,K{-n^6,-27-8*n+43*n^2-15*n^3} 2100976352941781 r008 a(0)=0,K{-n^6,41-56*n^3+60*n^2-50*n} 2100976356488459 r005 Im(z^2+c),c=-25/94+19/49*I,n=5 2100976356842589 m001 1/RenyiParking^2/exp(CareFree)/BesselK(0,1) 2100976367663009 a001 9/567451585*701408733^(6/17) 2100976367663009 a001 9/10182505537*2504730781961^(6/17) 2100976367666853 a001 9/31622993*196418^(6/17) 2100976370412810 a001 1926/329*317811^(13/46) 2100976370628412 a007 Real Root Of -893*x^4-847*x^3+42*x^2+809*x+162 2100976375765814 m001 (Zeta(3)-exp(1/exp(1)))/(GAMMA(7/12)-Artin) 2100976376106232 r009 Re(z^3+c),c=-13/44+8/13*I,n=11 2100976376957611 m001 (-DuboisRaymond+TwinPrimes)/(sin(1)+exp(1/Pi)) 2100976382926950 r005 Im(z^2+c),c=-57/118+1/2*I,n=29 2100976385453976 r002 29th iterates of z^2 + 2100976388727337 m001 Lehmer^(2^(1/3))/(Lehmer^GAMMA(1/3)) 2100976390164922 a007 Real Root Of 556*x^4-334*x^3-676*x^2-886*x+218 2100976390951394 m001 HardHexagonsEntropy^CareFree/BesselK(1,1) 2100976391382978 s001 sum(1/10^(n-1)*A183167[n]/n!,n=1..infinity) 2100976395407498 l006 ln(557/4553) 2100976404327169 m001 Tribonacci^exp(-1/2*Pi)+cos(1/12*Pi) 2100976405271887 r009 Re(z^3+c),c=-35/122+23/62*I,n=14 2100976409914244 m001 1/Tribonacci/FeigenbaumB*ln(LambertW(1))^2 2100976416399302 r005 Im(z^2+c),c=-55/62+10/59*I,n=22 2100976427183688 m001 exp(Riemann2ndZero)*Si(Pi)*sin(1) 2100976434413398 r005 Im(z^2+c),c=-151/114+3/46*I,n=12 2100976434628776 b008 4*EulerGamma+Zeta[-1/2] 2100976435385606 a001 199/18*(1/2*5^(1/2)+1/2)^7*18^(13/20) 2100976441161682 a007 Real Root Of -660*x^4-979*x^3+391*x^2-768*x+441 2100976443936386 r005 Re(z^2+c),c=11/94+19/49*I,n=57 2100976477576654 a007 Real Root Of -564*x^4-59*x^3-32*x^2+600*x-123 2100976479019584 p003 LerchPhi(1/10,1,11/230) 2100976490369821 a001 2207/13*7778742049^(9/11) 2100976492096837 m001 (BesselJ(0,1)+Mills)/(-MinimumGamma+PlouffeB) 2100976506510887 l006 ln(7237/8929) 2100976506510887 p004 log(8929/7237) 2100976510782543 a007 Real Root Of -21*x^4-465*x^3-500*x^2+32*x+705 2100976511146084 m001 Pi/cosh(1)/gamma(2) 2100976511233788 p003 LerchPhi(1/2,10,59/80) 2100976514966397 a001 3020733700601/48*144^(12/17) 2100976518176947 b008 2+(3*Sin[1])/25 2100976523375668 r005 Im(z^2+c),c=-73/102+1/13*I,n=32 2100976529527314 m001 exp(Pi)*(HardyLittlewoodC3-cosh(1)) 2100976532674675 a007 Real Root Of -522*x^4-824*x^3+853*x^2+962*x+785 2100976539842190 r002 32th iterates of z^2 + 2100976543025035 m001 1/Zeta(3)^2*exp(Rabbit)/sin(Pi/12)^2 2100976545162886 r005 Im(z^2+c),c=-19/82+4/13*I,n=8 2100976552187159 r005 Im(z^2+c),c=-31/114+9/22*I,n=5 2100976554363405 a005 (1/cos(15/107*Pi))^237 2100976556980610 m001 (Pi-ln(2)/ln(10))/Si(Pi)+LambertW(1) 2100976565768919 m005 (1/2*Pi-1/9)/(5/9*2^(1/2)-1/11) 2100976566734921 r005 Re(z^2+c),c=-5/4+5/56*I,n=8 2100976580279190 r005 Im(z^2+c),c=-5/8+47/155*I,n=19 2100976583270654 b008 2+ArcCot[Pi^2] 2100976585897924 m001 1/Tribonacci^2/ln(ArtinRank2)^2/Trott 2100976592659220 m001 exp(GAMMA(11/24))/Paris/gamma^2 2100976598233317 a003 sin(Pi*25/86)/cos(Pi*23/61) 2100976600934871 s001 sum(exp(-3*Pi)^(n-1)*A044353[n],n=1..infinity) 2100976600986855 s001 sum(exp(-3*Pi)^(n-1)*A217532[n],n=1..infinity) 2100976602827791 r005 Re(z^2+c),c=-19/16+10/73*I,n=28 2100976603271634 m004 -1-E^(Sqrt[5]*Pi)/4+25*Pi*Tan[Sqrt[5]*Pi] 2100976606796042 s001 sum(exp(-3*Pi)^(n-1)*A044734[n],n=1..infinity) 2100976612953078 a001 832040/3*11^(38/45) 2100976614180724 a007 Real Root Of 292*x^4+709*x^3+45*x^2+38*x+767 2100976623278954 m001 (BesselJ(0,1)+ln(Pi))/(FeigenbaumB+ZetaP(4)) 2100976631415568 m001 exp(GAMMA(5/12))^2*GAMMA(11/24)*cosh(1) 2100976637942659 a007 Real Root Of -306*x^4-334*x^3+506*x^2-71*x+482 2100976644440046 r008 a(0)=2,K{-n^6,42-93*n^3-21*n^2+62*n} 2100976647326946 m001 (Chi(1)+MasserGramain*Stephens)/Stephens 2100976647617147 m005 (1/2*Pi+1/3)/(4/7*Pi-8/9) 2100976653378294 a007 Real Root Of 157*x^4+164*x^3-450*x^2+67*x+589 2100976657573096 m005 (1/2*Pi+2/11)/(5/12*Zeta(3)+1/3) 2100976667646710 r009 Re(z^3+c),c=-15/122+29/32*I,n=44 2100976668862697 r008 a(0)=2,K{-n^6,88-79*n^3-40*n^2+21*n} 2100976671509495 a007 Real Root Of -261*x^4-193*x^3+659*x^2+162*x+727 2100976679565356 a007 Real Root Of -540*x^4-926*x^3+659*x^2+436*x-59 2100976681191124 a007 Real Root Of -416*x^4-565*x^3+575*x^2-95*x+128 2100976682232205 m001 ln(GAMMA(13/24))^2*Sierpinski^2*GAMMA(17/24) 2100976694231133 l006 ln(735/6008) 2100976709801124 r005 Re(z^2+c),c=-21/86+1/64*I,n=3 2100976723398624 r005 Im(z^2+c),c=-7/78+27/38*I,n=6 2100976739045317 s001 sum(exp(-3*Pi)^(n-1)*A200888[n],n=1..infinity) 2100976750996411 m001 (ReciprocalLucas+Salem)/(MinimumGamma-Otter) 2100976753300348 m008 (1/3*Pi^6+1/6)/(5*Pi^5-4) 2100976760590624 a001 2255/281*123^(1/5) 2100976761293953 r005 Re(z^2+c),c=-1/52+23/44*I,n=9 2100976762017508 m005 (1/2*2^(1/2)+3/10)/(1/4*Pi-5/6) 2100976765252264 m001 Tribonacci*exp(FeigenbaumAlpha)^2*BesselJ(0,1) 2100976783027249 m001 (exp(1/exp(1))+MertensB1)/(Trott2nd+ZetaQ(2)) 2100976818127894 a005 (1/sin(94/229*Pi))^1225 2100976827465779 m001 (1+Kolakoski)/(Lehmer+MertensB1) 2100976847480564 m001 GAMMA(5/6)^2/GAMMA(11/24)^2*ln(cos(1)) 2100976857164629 s002 sum(A218595[n]/(pi^n+1),n=1..infinity) 2100976865017657 m001 exp(TwinPrimes)^2/LaplaceLimit/GAMMA(13/24)^2 2100976876536418 l006 ln(913/7463) 2100976876541876 a007 Real Root Of -349*x^4-985*x^3-703*x^2-736*x-778 2100976883452550 a007 Real Root Of 146*x^4-979*x^3+250*x^2-338*x+7 2100976885891368 g006 -Psi(1,4/9)-2*Psi(1,5/8)-Psi(1,3/8) 2100976888607115 a007 Real Root Of 136*x^4+138*x^3-52*x^2+441*x-214 2100976889371232 m009 (5/6*Psi(1,2/3)+1/6)/(2/3*Psi(1,3/4)-2/5) 2100976894333262 a001 3461452808002/377*1836311903^(8/17) 2100976894333262 a001 73681302247/377*6557470319842^(8/17) 2100976906308044 s002 sum(A218595[n]/(pi^n),n=1..infinity) 2100976929108981 r005 Im(z^2+c),c=-5/8+14/235*I,n=22 2100976930092600 r005 Re(z^2+c),c=2/13+17/48*I,n=14 2100976932248529 m001 Riemann1stZero*MasserGramainDelta^TwinPrimes 2100976934441786 m001 cos(Pi/12)/exp(FeigenbaumB)*sqrt(5)^2 2100976937905483 m001 (GAMMA(7/12)*Mills+RenyiParking)/Mills 2100976946643424 r005 Re(z^2+c),c=-15/82+31/46*I,n=61 2100976953725482 r009 Im(z^3+c),c=-47/106+3/53*I,n=45 2100976953888770 r009 Im(z^3+c),c=-53/98+11/47*I,n=56 2100976955461103 s002 sum(A218595[n]/(pi^n-1),n=1..infinity) 2100976957009536 a007 Real Root Of 353*x^4+786*x^3-320*x^2-573*x+620 2100976958713850 m001 1/Trott/exp(Salem)/GAMMA(2/3) 2100976967848225 m005 (1/2*Zeta(3)-1/11)/(7/9*2^(1/2)-6/7) 2100976979509188 m005 (1/2*Zeta(3)-4/7)/(4*gamma-9/10) 2100976979917766 m005 (1/2*2^(1/2)-1)/(3/8*5^(1/2)+5/9) 2100976985232500 m001 Psi(2,1/3)/QuadraticClass*ReciprocalFibonacci 2100976985559357 m001 (-LandauRamanujan+2/3)/(Cahen+4) 2100976987989236 m001 (-Paris+TreeGrowth2nd)/(3^(1/2)-OneNinth) 2100976990163351 l005 17161/1849/(exp(131/43)^2-1) 2100976995695998 m001 (GAMMA(2/3)-Zeta(1/2)*GAMMA(19/24))/Zeta(1/2) 2100976999354351 l006 ln(1091/8918) 2100977001392774 m001 (-exp(-1/2*Pi)+GAMMA(19/24))/(Zeta(5)-gamma) 2100977002554909 r005 Re(z^2+c),c=-11/90+40/63*I,n=45 2100977004379256 a001 322/6765*34^(8/19) 2100977009846814 r005 Im(z^2+c),c=-10/23+5/14*I,n=22 2100977030303852 a007 Real Root Of -146*x^4+75*x^3+480*x^2-599*x+163 2100977030557723 m001 (3^(1/2)+Catalan*MinimumGamma)/MinimumGamma 2100977031325997 s001 sum(exp(-Pi/3)^n*A282232[n],n=1..infinity) 2100977046284068 m001 (Riemann2ndZero-ZetaP(2))/(Artin-Bloch) 2100977047839191 a007 Real Root Of 713*x^4+52*x^3+352*x^2-669*x-157 2100977048580132 r005 Im(z^2+c),c=-31/22+15/64*I,n=3 2100977052062810 r005 Re(z^2+c),c=-5/6+3/194*I,n=50 2100977054747474 m001 gamma/BesselJ(1,1)/GolombDickman 2100977054747474 m001 gamma/GolombDickman/BesselJ(1,1) 2100977055403585 r009 Re(z^3+c),c=-15/122+29/32*I,n=50 2100977060257171 r009 Re(z^3+c),c=-11/38+19/37*I,n=6 2100977060310031 a007 Real Root Of 410*x^4+392*x^3-332*x^2+928*x-938 2100977061544694 a001 3/9227465*53316291173^(13/24) 2100977062885129 a001 3/17711*514229^(13/24) 2100977062928856 a001 4181/76*11^(19/34) 2100977064809098 l006 ln(2006/2475) 2100977067921042 m001 (Catalan+QuadraticClass)^BesselI(0,1) 2100977074925626 m001 Lehmer^2*ln(Khintchine)/GAMMA(17/24)^2 2100977076286901 m005 (1/2*Catalan-11/12)/(1/5*Catalan+2) 2100977076414944 m001 (-BesselK(1,1)+Porter)/(gamma+Zeta(1,-1)) 2100977085525890 m001 MasserGramainDelta^cos(1/5*Pi)+PlouffeB 2100977089082352 a005 (1/cos(37/212*Pi))^455 2100977094178089 a007 Real Root Of -313*x^4-955*x^3-977*x^2-273*x+981 2100977096761278 r005 Im(z^2+c),c=-29/74+24/43*I,n=26 2100977100059003 m001 BesselI(0,1)*gamma(2)+Riemann2ndZero 2100977102373290 r009 Im(z^3+c),c=-8/19+4/45*I,n=40 2100977104009485 a003 sin(Pi*23/73)/cos(Pi*44/119) 2100977108584258 m001 (-GaussAGM+ZetaQ(4))/(ArtinRank2-ln(2)/ln(10)) 2100977116229900 m001 Zeta(7)^2*exp(FeigenbaumD)/sin(1)^2 2100977116717275 m001 (Pi^(1/2)+Mills)/(Porter-ZetaQ(4)) 2100977121052515 a001 2/1346269*46368^(1/31) 2100977122116029 m001 1/exp(1)*exp(Porter)*log(2+sqrt(3)) 2100977122819703 s002 sum(A144698[n]/((exp(n)+1)/n),n=1..infinity) 2100977123770768 b008 E^3+2*Tanh[1/2] 2100977125172392 r005 Im(z^2+c),c=-25/26+13/62*I,n=29 2100977141404816 r009 Re(z^3+c),c=-15/62+31/44*I,n=47 2100977146727880 r005 Re(z^2+c),c=-19/106+7/18*I,n=27 2100977151898767 a001 305/9*11^(35/46) 2100977153503432 m001 1/exp(LandauRamanujan)*Backhouse*GAMMA(1/6)^2 2100977156393129 r005 Im(z^2+c),c=-111/122+12/61*I,n=32 2100977165915564 m001 1/FeigenbaumC/ln(Lehmer)^2/GAMMA(7/24)^2 2100977166190784 a001 233/843*18^(40/57) 2100977169784105 a001 521/13*17711^(17/42) 2100977172723260 r005 Im(z^2+c),c=-9/10+3/184*I,n=17 2100977177504014 r009 Im(z^3+c),c=-61/114+11/52*I,n=23 2100977198697068 q001 129/614 2100977205931343 m001 (3^(1/3))^2*ln(FeigenbaumB)*GAMMA(1/24)^2 2100977209972601 a007 Real Root Of -541*x^4-918*x^3+278*x^2-539*x-332 2100977213395699 m001 cos(1/5*Pi)+ln(Pi)^Ei(1) 2100977213395699 m001 cos(Pi/5)+ln(Pi)^Ei(1) 2100977220236638 r005 Re(z^2+c),c=-17/70+5/33*I,n=17 2100977225481355 a001 5473*11^(23/41) 2100977227341943 p004 log(30671/24859) 2100977231492213 m005 (5/6*gamma+3)/(4*2^(1/2)-4) 2100977236666147 a007 Real Root Of -461*x^4-742*x^3+702*x^2+601*x+265 2100977241689705 a007 Real Root Of -688*x^4+562*x^3-790*x^2+614*x-98 2100977246027299 a007 Real Root Of 195*x^4+232*x^3-387*x^2+442*x+989 2100977247954631 a007 Real Root Of -665*x^4+423*x^3-147*x^2+937*x-193 2100977255833734 m001 MadelungNaCl^2*ln(GaussKuzminWirsing)*gamma 2100977260925628 s002 sum(A278777[n]/(n^3*pi^n+1),n=1..infinity) 2100977262698732 s002 sum(A278777[n]/(n^3*pi^n-1),n=1..infinity) 2100977263342799 s001 sum(exp(-3*Pi)^(n-1)*A117388[n],n=1..infinity) 2100977270022705 r005 Im(z^2+c),c=-109/94+9/44*I,n=13 2100977287407744 m005 (1/2*2^(1/2)-5/6)/(2*exp(1)+4/7) 2100977293554002 a007 Real Root Of -270*x^4-657*x^3-664*x^2-572*x+897 2100977317602155 m001 (1/2+GAMMA(1/12))^GAMMA(3/4) 2100977326800709 s002 sum(A138436[n]/(n^2*2^n+1),n=1..infinity) 2100977326895399 m001 (Cahen-Trott2nd)/(Zeta(5)+Ei(1)) 2100977335144917 r005 Re(z^2+c),c=29/98+9/22*I,n=52 2100977342528253 r005 Re(z^2+c),c=1/50+10/17*I,n=25 2100977343391739 m001 sin(1/12*Pi)^Psi(1,1/3)*Pi^(1/2) 2100977347254718 m005 (1/2*Zeta(3)-5/11)/(1/5*5^(1/2)+1/4) 2100977348755773 a007 Real Root Of 399*x^4+397*x^3-352*x^2+849*x-755 2100977367761219 m001 (-GAMMA(5/6)+MertensB3)/(5^(1/2)-BesselI(0,1)) 2100977373256674 r005 Re(z^2+c),c=-17/122+14/29*I,n=16 2100977374101732 p004 log(22013/2693) 2100977380572991 r009 Re(z^3+c),c=-15/122+29/32*I,n=52 2100977383731092 r005 Re(z^2+c),c=-13/90+8/17*I,n=47 2100977387085055 a007 Real Root Of 463*x^4+965*x^3+98*x^2+183*x-120 2100977389285756 r002 62th iterates of z^2 + 2100977393859509 a007 Real Root Of 524*x^4-396*x^3+655*x^2-554*x-150 2100977400808527 m001 (Catalan-cos(1))/(-ln(Pi)+cos(1/12*Pi)) 2100977403900158 p004 log(24923/3049) 2100977406482769 a007 Real Root Of 914*x^4+868*x^3-77*x^2-898*x-179 2100977411723272 r009 Re(z^3+c),c=-21/64+13/27*I,n=23 2100977412372630 a007 Real Root Of -445*x^4-972*x^3+93*x^2+52*x-645 2100977413500320 m002 -5-Pi^6*Log[Pi]+Pi^6/ProductLog[Pi] 2100977414182305 p001 sum((-1)^n/(189*n+103)/n/(16^n),n=1..infinity) 2100977423922378 m001 (HeathBrownMoroz+Weierstrass)/(Bloch-exp(Pi)) 2100977436553685 r005 Re(z^2+c),c=37/114+19/47*I,n=39 2100977438098527 r005 Im(z^2+c),c=-123/122+11/50*I,n=36 2100977441582198 m001 Salem/KhintchineLevy*ln(cos(Pi/5)) 2100977447827317 r009 Re(z^3+c),c=-31/54+17/38*I,n=22 2100977449553652 m005 (1/3*Zeta(3)-1/4)/(5/8*2^(1/2)-1/6) 2100977450892159 a007 Real Root Of 761*x^4+988*x^3-955*x^2+876*x+391 2100977451602098 h001 (-exp(8)+6)/(-7*exp(3)-1) 2100977460510741 m005 (-19/36+1/4*5^(1/2))/(4/7*Zeta(3)+4/5) 2100977473496108 r009 Re(z^3+c),c=-15/122+29/32*I,n=58 2100977474416633 r009 Re(z^3+c),c=-4/17+11/51*I,n=9 2100977475125608 m001 (MadelungNaCl-Sarnak)/(Conway+FeigenbaumMu) 2100977477325389 m001 (gamma(1)-BesselI(0,2))/(Kac-KhinchinHarmonic) 2100977478304097 p003 LerchPhi(1/3,2,331/138) 2100977486627927 m001 Tribonacci^FibonacciFactorial-Trott 2100977496431749 r009 Re(z^3+c),c=-15/122+29/32*I,n=60 2100977500227523 a007 Real Root Of -45*x^4-938*x^3+173*x^2+317*x-707 2100977502894357 m001 GAMMA(23/24)*KhintchineLevy*ln(sin(1)) 2100977507065449 a007 Real Root Of 282*x^4+335*x^3-947*x^2-558*x+620 2100977507534359 a007 Real Root Of 684*x^4+909*x^3-785*x^2+923*x+507 2100977510720751 m001 log(2+sqrt(3))^2/GAMMA(23/24)/ln(sqrt(5)) 2100977513345252 a003 cos(Pi*21/115)-sin(Pi*18/83) 2100977514461356 m001 (Zeta(1,-1)+GAMMA(17/24))/(Mills-Tribonacci) 2100977514684391 m001 (2^(1/2)+HardyLittlewoodC3)^MertensB2 2100977514823541 m001 GAMMA(3/4)^2*TwinPrimes*ln(cos(Pi/5)) 2100977520313518 r009 Re(z^3+c),c=-15/122+29/32*I,n=64 2100977520531391 r005 Im(z^2+c),c=-101/90+1/39*I,n=21 2100977524521208 r009 Re(z^3+c),c=-1/18+25/38*I,n=14 2100977525967686 r009 Re(z^3+c),c=-15/122+29/32*I,n=62 2100977546357480 r005 Im(z^2+c),c=-7/8+39/223*I,n=29 2100977550602598 a007 Real Root Of -490*x^4-668*x^3+900*x^2+677*x+802 2100977563446129 r009 Re(z^3+c),c=-15/122+29/32*I,n=56 2100977563815756 r005 Im(z^2+c),c=-1/44+13/55*I,n=8 2100977576037977 m001 (Pi-Zeta(1,2))/(HardyLittlewoodC3+Mills) 2100977580669107 a007 Real Root Of 336*x^4-494*x^3-965*x^2-483*x+148 2100977580978785 m001 1/ln(FeigenbaumC)/Backhouse/cos(1) 2100977581890935 r002 5th iterates of z^2 + 2100977589295955 a007 Real Root Of -31*x^4-643*x^3+132*x^2-900*x-173 2100977591130794 a007 Real Root Of 467*x^4+794*x^3-101*x^2+464*x-315 2100977592582679 m001 GaussAGM*TreeGrowth2nd/ZetaP(3) 2100977599817942 m005 (1/2*3^(1/2)-7/9)/(4/11*Zeta(3)-6/7) 2100977602682838 m001 Rabbit/(exp(1)+TwinPrimes) 2100977603209503 a001 18/28657*987^(28/55) 2100977608078932 m001 GAMMA(1/4)/ln(Paris)^2/LambertW(1)^2 2100977609121282 a001 2207/610*21^(26/45) 2100977625668424 m009 (48*Catalan+6*Pi^2-5/6)/(2/5*Psi(1,1/3)+5/6) 2100977628255731 r009 Re(z^3+c),c=-17/58+19/49*I,n=14 2100977629313507 l006 ln(178/1455) 2100977631085023 b008 1+13*(1/8+Sqrt[2]) 2100977643541039 h001 (4/11*exp(2)+1/10)/(5/11*exp(1)+1/11) 2100977651451529 r009 Re(z^3+c),c=-15/122+29/32*I,n=54 2100977652499463 a001 3/11*521^(25/36) 2100977653328676 a001 123/5*2584^(30/53) 2100977658549571 l006 ln(6805/8396) 2100977661738223 a007 Real Root Of -338*x^4-644*x^3-92*x^2-192*x+616 2100977677649685 r005 Im(z^2+c),c=-47/86+24/59*I,n=61 2100977691667025 m001 (Psi(1,1/3)+Si(Pi))/(BesselI(0,2)+Magata) 2100977700197770 m001 GAMMA(13/24)/(GaussKuzminWirsing^exp(-1/2*Pi)) 2100977704850575 a001 233/1364*322^(5/6) 2100977728282537 h001 (3/5*exp(1)+7/9)/(1/7*exp(2)+1/11) 2100977733093950 p001 sum((-1)^n/(558*n+463)/(16^n),n=0..infinity) 2100977737526662 m001 (GAMMA(7/24)-Pi*sin(Pi/5))/sin(Pi/5) 2100977737526662 m001 Pi-1/sin(1/5*Pi)*Pi*csc(7/24*Pi)/GAMMA(17/24) 2100977746795464 r009 Im(z^3+c),c=-19/126+48/55*I,n=48 2100977748656248 r005 Re(z^2+c),c=-19/90+27/35*I,n=48 2100977751476573 a007 Real Root Of -45*x^4-910*x^3+787*x^2+908*x+355 2100977764584735 a007 Real Root Of 565*x^4+734*x^3+785*x^2-907*x+148 2100977766192288 m001 Champernowne*(GAMMA(11/12)+MasserGramain) 2100977774632565 m008 (1/2*Pi^3+3/4)/(1/6*Pi+1/4) 2100977775709481 a008 Real Root of x^4+10*x^2-26*x-9 2100977793027770 m001 GAMMA(13/24)-GAMMA(5/6)-ln(2)/ln(10) 2100977794660755 m001 (Lehmer+Otter)/(FeigenbaumKappa-KhinchinLevy) 2100977798468025 a001 1/46347*225851433717^(19/24) 2100977806138420 m001 (Psi(1,1/3)+gamma(3))/(Bloch+ZetaQ(3)) 2100977815407660 a007 Real Root Of 648*x^4+583*x^3+375*x^2-217*x-58 2100977825714261 a007 Real Root Of -212*x^4+622*x^3+546*x^2+845*x-18 2100977825767552 r009 Re(z^3+c),c=-4/19+5/7*I,n=30 2100977826366266 m005 (1/2*Catalan-5/11)/(5^(1/2)-3/5) 2100977832444687 s002 sum(A172650[n]/(n^2*10^n+1),n=1..infinity) 2100977832496563 s002 sum(A172650[n]/(n^2*10^n-1),n=1..infinity) 2100977832888443 a001 233/2207*322^(11/12) 2100977833923556 p004 log(27457/3359) 2100977841455103 m001 HardHexagonsEntropy+StronglyCareFree^exp(1/Pi) 2100977851724415 a007 Real Root Of -122*x^4+844*x^3-917*x^2+897*x+237 2100977860749431 m001 exp(FeigenbaumD)/Riemann3rdZero*Ei(1)^2 2100977860954529 r005 Im(z^2+c),c=-29/40+1/57*I,n=40 2100977861003036 r009 Re(z^3+c),c=-15/122+29/32*I,n=48 2100977864397448 m008 (1/5*Pi-4)/(1/6*Pi^6+1/4) 2100977864676783 r005 Im(z^2+c),c=-61/114+19/45*I,n=52 2100977866314651 m001 GAMMA(11/24)^2*Robbin^2/exp(GAMMA(23/24))^2 2100977877517097 h001 (1/3*exp(1)+4/7)/(5/6*exp(2)+7/8) 2100977880081013 m001 1/Zeta(5)*Artin/exp(cos(1)) 2100977885209864 a008 Real Root of x^4-x^3-35*x^2-17*x+180 2100977886042517 m001 1/cos(Pi/5)^2*Cahen/exp(cosh(1)) 2100977889707880 m001 (Shi(1)+AlladiGrinstead)/(-MadelungNaCl+Thue) 2100977895356616 s002 sum(A021968[n]/(n^3*exp(n)-1),n=1..infinity) 2100977897778637 r009 Re(z^3+c),c=-8/29+16/47*I,n=18 2100977906199666 m005 (-1/2+1/6*5^(1/2))/(5/6*gamma+1/8) 2100977906735305 l006 ln(4799/5921) 2100977918227582 a003 sin(Pi*5/77)/cos(Pi*7/82) 2100977920017594 r005 Re(z^2+c),c=-3/20+28/45*I,n=51 2100977923738175 r005 Im(z^2+c),c=-17/22+6/49*I,n=12 2100977930095553 a001 377/199*199^(5/11) 2100977930667644 a001 2/5473*46368^(7/43) 2100977932384319 m001 (Si(Pi)+ln(2^(1/2)+1))/(-Mills+Salem) 2100977933445426 r005 Re(z^2+c),c=25/78+14/53*I,n=6 2100977937054612 a007 Real Root Of 484*x^4+464*x^3+256*x^2-328*x-7 2100977945704571 r002 28th iterates of z^2 + 2100977948936355 s002 sum(A176320[n]/((pi^n+1)/n),n=1..infinity) 2100977955249398 m001 (1+FeigenbaumAlpha)/(-Lehmer+Stephens) 2100977959858511 m001 (2^(1/3)+ReciprocalFibonacci)/(Totient+Thue) 2100977962114359 r005 Im(z^2+c),c=-31/66+16/43*I,n=28 2100977970203101 m001 (BesselJ(1,1)+Pi^(1/2))/(GAMMA(7/12)-PlouffeB) 2100977972865194 a001 9349/89*46368^(2/31) 2100977976520892 a007 Real Root Of 143*x^4-220*x^3+557*x^2-762*x-187 2100977978533866 r005 Im(z^2+c),c=-5/44+32/49*I,n=21 2100977981062206 r009 Re(z^3+c),c=-9/29+31/49*I,n=23 2100977984165040 m001 1/GAMMA(1/12)*exp(Lehmer)^2/GAMMA(2/3) 2100977991356729 p001 sum((-1)^n/(309*n+47)/(10^n),n=0..infinity) 2100977998786150 m001 (Magata+PlouffeB)/(Tribonacci+ZetaQ(3)) 2100978000187136 g002 Psi(5/11)+Psi(4/11)-Psi(7/11)-Psi(3/5) 2100978001617658 a007 Real Root Of 518*x^4+925*x^3+315*x^2-483*x+10 2100978007342790 m001 Catalan*ln(FeigenbaumDelta)^2*cos(Pi/12) 2100978007892934 a007 Real Root Of 370*x^4+802*x^3-136*x^2-523*x-270 2100978013465049 m002 -5+Pi^4/E^Pi-Log[Pi]^2 2100978014657303 a001 2/11*521^(41/54) 2100978015399572 r005 Im(z^2+c),c=-7/15+28/61*I,n=22 2100978019233519 a007 Real Root Of 294*x^4+259*x^3-583*x^2+535*x+371 2100978020923730 p004 log(36497/29581) 2100978021353495 r005 Im(z^2+c),c=-11/38+15/28*I,n=8 2100978021794318 p003 LerchPhi(1/8,5,363/167) 2100978021965737 m005 (1/2*Zeta(3)+5/11)/(16/63+1/9*5^(1/2)) 2100978026622163 r002 58i'th iterates of 2*x/(1-x^2) of 2100978034831915 a007 Real Root Of -248*x^4-354*x^3+518*x^2-36*x-813 2100978045904698 m001 FeigenbaumKappa/ErdosBorwein^2/exp(Catalan) 2100978059089100 a001 18/1346269*121393^(4/17) 2100978059096036 a001 18/9227465*433494437^(4/17) 2100978059096041 a001 9/31622993*1548008755920^(4/17) 2100978064463651 m001 exp(Kolakoski)/GolombDickman*Lehmer 2100978064579545 p004 log(12907/1579) 2100978069906766 m001 (Trott+TwinPrimes)/(Bloch-TreeGrowth2nd) 2100978073006008 s002 sum(A275856[n]/(n*exp(n)+1),n=1..infinity) 2100978073939129 a007 Real Root Of 309*x^4+342*x^3-241*x^2+794*x-117 2100978079601721 m005 (1/2*Zeta(3)-3/5)/(1/3*exp(1)-6/7) 2100978081696262 a007 Real Root Of -282*x^4-425*x^3-65*x^2-694*x+382 2100978082762662 m001 (Pi+ln(3))/(FeigenbaumKappa+LaplaceLimit) 2100978087876917 r005 Re(z^2+c),c=5/106+5/32*I,n=10 2100978092647076 m005 (1/2*3^(1/2)+1/7)/(4/7*Catalan-4/7) 2100978099952099 r005 Im(z^2+c),c=-39/74+20/39*I,n=17 2100978106449191 m001 (StronglyCareFree+Thue)/(Kac-OrthogonalArrays) 2100978109691670 r002 39th iterates of z^2 + 2100978129193667 l006 ln(7592/9367) 2100978134246118 r008 a(0)=2,K{-n^6,35-95*n^3-18*n^2+68*n} 2100978149092474 a001 18/1597*21^(9/44) 2100978154284741 m001 exp(1/exp(1))*Sarnak+GAMMA(11/12) 2100978158923506 m001 (1+Si(Pi))/(-Backhouse+Paris) 2100978165672398 m001 1/GAMMA(11/24)^2*exp(GAMMA(1/6))*sqrt(3)^2 2100978168145312 r005 Im(z^2+c),c=-2/13+9/32*I,n=16 2100978168181340 a007 Real Root Of -450*x^4-532*x^3+793*x^2+170*x+691 2100978168513331 a007 Real Root Of 37*x^4+820*x^3+916*x^2+422*x-43 2100978177895706 a001 1292/9*47^(23/33) 2100978191280008 l006 ln(1223/9997) 2100978193628560 a005 (1/sin(100/227*Pi))^1485 2100978196350850 a007 Real Root Of 364*x^4+221*x^3-934*x^2+89*x-733 2100978199568467 m001 (exp(1/exp(1))+BesselI(0,2))/(Gompertz+Salem) 2100978205214492 a001 5778/1597*21^(26/45) 2100978211403981 m005 (1/2*3^(1/2)-7/12)/(4*Pi+8/9) 2100978217521890 m001 (ln(2^(1/2)+1)-Sarnak)/(Stephens+ZetaP(3)) 2100978217732170 m001 GAMMA(1/3)^2*RenyiParking*exp(Zeta(1,2)) 2100978218604354 r002 18th iterates of z^2 + 2100978220814366 m001 (Kac-ZetaP(4))/(DuboisRaymond-FransenRobinson) 2100978220943421 a007 Real Root Of 378*x^4+498*x^3-834*x^2-720*x-578 2100978231864445 a007 Real Root Of -560*x^4-644*x^3+667*x^2-521*x+900 2100978233381042 m002 2/Pi^3+1/(6*Log[Pi]) 2100978246489900 r005 Im(z^2+c),c=-9/14+76/169*I,n=42 2100978248948715 a001 29/2584*17711^(23/43) 2100978253867666 m001 (ln(3)+Rabbit)/(Thue+ZetaQ(4)) 2100978274945299 a007 Real Root Of 40*x^4+807*x^3-709*x^2-111*x+959 2100978277628167 m005 (1/2*exp(1)+5/7)/(1/35+3/7*5^(1/2)) 2100978287002500 l006 ln(1045/8542) 2100978292183365 a001 15127/4181*21^(26/45) 2100978293628401 m006 (3/4/Pi-4/5)/(1/2*exp(2*Pi)-3/5) 2100978294008053 m001 (GAMMA(13/24)+Magata)/(exp(Pi)+ln(2^(1/2)+1)) 2100978296950316 r009 Re(z^3+c),c=-7/26+13/41*I,n=6 2100978298733218 r005 Im(z^2+c),c=-25/62+29/49*I,n=33 2100978303619527 s001 sum(exp(-2*Pi)^(n-1)*A209790[n],n=1..infinity) 2100978304871954 a001 39603/10946*21^(26/45) 2100978305521039 m001 Mills^HardyLittlewoodC3+Catalan 2100978307867323 a001 64079/17711*21^(26/45) 2100978309999869 m001 GolombDickman/Conway/BesselI(0,2) 2100978312713933 a001 24476/6765*21^(26/45) 2100978312995037 a007 Real Root Of -335*x^4-843*x^3+103*x^2+746*x-178 2100978318420976 r005 Im(z^2+c),c=-28/29+13/59*I,n=54 2100978319647248 m001 (MertensB3+MinimumGamma)/(Ei(1)-BesselI(1,1)) 2100978324423793 h001 (6/11*exp(1)+3/8)/(3/11*exp(1)+1/7) 2100978333525241 r005 Im(z^2+c),c=-13/29+21/58*I,n=57 2100978341008405 m001 GAMMA(11/12)+Landau^gamma(1) 2100978345933090 a001 9349/2584*21^(26/45) 2100978351344008 m001 MasserGramain^ZetaQ(4)/PlouffeB 2100978360969936 m006 (2/3*exp(2*Pi)+1)/(5/6*ln(Pi)+3/4) 2100978361103967 a003 sin(Pi*4/85)/sin(Pi*23/93) 2100978363783124 h001 (-5*exp(-1)-7)/(-6*exp(-1)-2) 2100978372515133 r009 Im(z^3+c),c=-8/19+4/45*I,n=43 2100978373141026 m001 (HeathBrownMoroz-exp(Pi))/(Kac+PlouffeB) 2100978374099088 a007 Real Root Of 287*x^4+56*x^3-784*x^2+317*x-946 2100978376811066 p004 log(26597/21557) 2100978385028704 r009 Re(z^3+c),c=-23/62+34/57*I,n=49 2100978409289482 m001 exp(arctan(1/2))^2/Lehmer^2*cos(1)^2 2100978417608302 m001 (ln(gamma)+gamma(1))/(MertensB2+Tetranacci) 2100978422029714 l006 ln(867/7087) 2100978429866715 r009 Re(z^3+c),c=-29/64+24/43*I,n=8 2100978431771559 a005 (1/cos(22/225*Pi))^832 2100978432973400 m001 sin(Pi/5)^2/ln(Niven)^2*sqrt(3) 2100978438761265 a001 2/199*4^(25/47) 2100978448403587 m001 Si(Pi)*Cahen*exp(LambertW(1)) 2100978448403587 m001 Si(Pi)/LambertW(1)*Cahen 2100978450550064 m004 3/4+2*Sin[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi] 2100978455571189 h001 (-2*exp(-1)+9)/(-9*exp(3/2)+1) 2100978460522883 a007 Real Root Of 277*x^4+142*x^3-391*x^2+667*x-953 2100978460840343 h001 (-8*exp(1/3)-4)/(-9*exp(-2)-6) 2100978477974092 r005 Im(z^2+c),c=-37/38+13/64*I,n=5 2100978480964172 r002 13th iterates of z^2 + 2100978483801966 r005 Re(z^2+c),c=-17/70+5/33*I,n=19 2100978487261154 a007 Real Root Of -386*x^4+883*x^3-557*x^2+740*x+189 2100978497506283 m001 (GAMMA(23/24)+Otter)/(Shi(1)+Chi(1)) 2100978497506283 m001 (GAMMA(23/24)+Otter)/Ei(1) 2100978498426326 p001 sum((-1)^n/(438*n+137)/n/(8^n),n=1..infinity) 2100978499054174 m001 (Thue+ZetaQ(3))/(Magata+Sarnak) 2100978504944078 m005 (1/2*exp(1)-8/9)/(56/45+4/9*5^(1/2)) 2100978505932348 r005 Re(z^2+c),c=13/74+2/35*I,n=11 2100978510741846 m001 2/3-GAMMA(1/3)+exp(sqrt(2)) 2100978511426981 l006 ln(2793/3446) 2100978514151384 m002 -10+Pi^3+ProductLog[Pi]/Pi^5 2100978518343779 r005 Im(z^2+c),c=-13/98+14/51*I,n=16 2100978519507851 a007 Real Root Of -409*x^4+665*x^3+259*x^2+891*x-204 2100978539976956 a007 Real Root Of 299*x^4+593*x^3-159*x^2-173*x+12 2100978542183092 r005 Im(z^2+c),c=-14/29+26/61*I,n=17 2100978552008341 m001 exp(Niven)^2/Si(Pi)*GAMMA(17/24) 2100978560657716 m005 (-1/66+1/6*5^(1/2))/(5/6*Zeta(3)+7/10) 2100978571900377 a007 Real Root Of -36*x^4+641*x^3-827*x^2+721*x+194 2100978573620630 a001 3571/987*21^(26/45) 2100978582820566 a001 3461452808002*55^(9/20) 2100978585766719 a001 23725150497407/377*6557470319842^(6/17) 2100978593022574 r005 Re(z^2+c),c=11/94+19/49*I,n=50 2100978603387103 m001 (ln(3)+BesselK(1,1))/AlladiGrinstead 2100978603510807 m001 ln(KhintchineLevy)/FeigenbaumB^2/sinh(1) 2100978605563851 r005 Im(z^2+c),c=-61/90+1/55*I,n=3 2100978626824219 l006 ln(689/5632) 2100978630666882 m001 1+exp(1/exp(1))^MertensB1 2100978631470553 m005 (2*2^(1/2)+1/4)/(5/6*exp(1)-4/5) 2100978632340241 m001 sin(1)*ln(GAMMA(5/6))^2/sin(Pi/5) 2100978637677415 a007 Real Root Of -768*x^4-762*x^3+348*x^2+634*x-140 2100978645713634 r002 45th iterates of z^2 + 2100978651850186 m001 ReciprocalLucas/(DuboisRaymond-GAMMA(5/6)) 2100978656593485 m001 (-GaussKuzminWirsing+1/3)/(-sin(Pi/5)+2) 2100978657025944 r009 Re(z^3+c),c=-11/24+28/59*I,n=12 2100978659117927 a007 Real Root Of 421*x^4+982*x^3+390*x^2+311*x-164 2100978662214782 m001 (5^(1/2))^Bloch/(arctan(1/2)^Bloch) 2100978674210398 m004 15*Pi+(150*Sqrt[5]*ProductLog[Sqrt[5]*Pi])/Pi 2100978674491438 r002 57th iterates of z^2 + 2100978677714953 a001 18/1346269*165580141^(7/18) 2100978677715186 a001 18/39088169*956722026041^(7/18) 2100978678109609 a001 1/2576*28657^(7/18) 2100978680198900 m001 KhinchinLevy^GAMMA(5/6)*3^(1/2) 2100978680573864 m005 (4*Catalan+3/4)/(1/4*Catalan-1/4) 2100978687704307 m001 (Rabbit-ZetaQ(4))/(gamma(1)+HardyLittlewoodC5) 2100978693327136 r005 Im(z^2+c),c=-33/46+1/47*I,n=30 2100978694571965 p003 LerchPhi(1/10,4,57/217) 2100978695282236 r005 Im(z^2+c),c=-9/106+6/23*I,n=6 2100978698729554 m005 (1/4*Pi+2/3)/(4*gamma-3) 2100978707961752 m001 ln(Rabbit)/Si(Pi)^2*Riemann2ndZero 2100978708526572 r005 Im(z^2+c),c=-75/86+11/64*I,n=58 2100978717868081 m001 (-MertensB2+Otter)/(Si(Pi)+Zeta(1,2)) 2100978718632325 m001 (-Ei(1,1)+Niven)/(Si(Pi)-ln(Pi)) 2100978727320666 a007 Real Root Of -679*x^4-956*x^3+725*x^2-780*x-475 2100978734463623 a001 4052739537881/322*76^(13/20) 2100978740974039 m001 1/BesselJ(0,1)/RenyiParking*ln(cos(Pi/12))^2 2100978746537553 a007 Real Root Of 41*x^4-715*x^3-854*x^2-332*x+114 2100978749685571 a007 Real Root Of -216*x^4+165*x^3+863*x^2-767*x+318 2100978751018768 p004 log(35059/4289) 2100978751343849 g006 -Psi(1,7/11)-Psi(1,7/8)-Psi(1,2/7)-Psi(1,4/5) 2100978762115905 r009 Re(z^3+c),c=-43/126+27/46*I,n=24 2100978768015905 m001 (gamma(1)+FeigenbaumMu)/(Tribonacci-ZetaP(3)) 2100978771559717 r005 Im(z^2+c),c=-53/90+15/41*I,n=61 2100978772536920 a007 Real Root Of 239*x^4-209*x^3-899*x^2+958*x-614 2100978774788223 l006 ln(1200/9809) 2100978779020825 r004 Re(z^2+c),c=-37/34-9/16*I,z(0)=-1,n=5 2100978784333020 m005 (1/24+1/6*5^(1/2))/(7/9*3^(1/2)+5/8) 2100978785711211 r005 Re(z^2+c),c=3/94+36/61*I,n=32 2100978789245120 m008 (2/3*Pi^3-4)/(1/2*Pi^2+3) 2100978789576776 a007 Real Root Of 474*x^4+974*x^3-267*x^2-820*x-747 2100978801120706 a007 Real Root Of -185*x^4+189*x^3+975*x^2-541*x-83 2100978803563159 r005 Im(z^2+c),c=-23/28+6/41*I,n=59 2100978817493723 a005 (1/cos(9/218*Pi))^907 2100978819916882 m001 (Sierpinski-ZetaQ(4))/(Niven-PlouffeB) 2100978827102401 m004 -1-Cosh[Sqrt[5]*Pi]/2+25*Pi*Tan[Sqrt[5]*Pi] 2100978833431586 a007 Real Root Of 206*x^4+311*x^3-347*x^2-713*x-132 2100978848189726 m001 1/5*(5^(1/2)*Riemann2ndZero-Trott2nd)*5^(1/2) 2100978850681280 r005 Im(z^2+c),c=3/14+7/59*I,n=12 2100978852907033 r005 Re(z^2+c),c=11/94+19/49*I,n=53 2100978858919358 r005 Im(z^2+c),c=-39/64+17/56*I,n=19 2100978866265925 a007 Real Root Of -427*x^4-504*x^3+974*x^2-14*x-683 2100978877753924 r008 a(0)=0,K{-n^6,9-49*n^3+23*n^2+12*n} 2100978886898223 a007 Real Root Of 557*x^4-399*x^3-909*x^2-620*x+173 2100978893017914 a001 103682/89*21^(19/20) 2100978897285702 m005 (1/2*3^(1/2)+11/12)/(2/7*2^(1/2)+4/9) 2100978897412777 a003 sin(Pi*2/29)*sin(Pi*35/81) 2100978900860556 r005 Re(z^2+c),c=7/86+40/61*I,n=4 2100978906372971 m001 1/Magata*Bloch/exp(GAMMA(5/24))^2 2100978912573528 m001 FransenRobinson-Trott^ZetaP(4) 2100978916517183 p004 log(34631/33911) 2100978928571254 a001 9349/233*610^(41/42) 2100978929080559 m001 (1+3^(1/2))^(1/2)/(StronglyCareFree+Trott) 2100978930352792 m001 TwinPrimes/ln(GaussAGM(1,1/sqrt(2)))/Ei(1) 2100978930985576 m001 (gamma+Catalan)/(-GAMMA(2/3)+Cahen) 2100978934308772 r005 Im(z^2+c),c=-49/118+7/22*I,n=6 2100978942175745 r009 Re(z^3+c),c=-15/122+29/32*I,n=32 2100978965608059 r009 Re(z^3+c),c=-19/46+29/52*I,n=38 2100978966772219 l006 ln(6373/7863) 2100978972778446 r009 Re(z^3+c),c=-21/62+31/61*I,n=36 2100978974293470 l006 ln(511/4177) 2100978978051787 m001 (KhinchinHarmonic-cos(1))/(Paris+Weierstrass) 2100978982752303 r005 Re(z^2+c),c=-19/94+33/47*I,n=46 2100978987613486 r009 Re(z^3+c),c=-5/118+13/22*I,n=10 2100978995144313 r005 Im(z^2+c),c=-22/31+2/51*I,n=36 2100979005988848 m004 -1/4+2*Sin[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 2100979015654858 m001 (cos(1/12*Pi)+(1+3^(1/2))^(1/2))/(Pi-Ei(1)) 2100979019087424 m001 FeigenbaumMu^(Pi/RenyiParking) 2100979019581320 r005 Im(z^2+c),c=-13/28+13/30*I,n=4 2100979023052137 r005 Re(z^2+c),c=-9/38+31/44*I,n=13 2100979029563417 r009 Re(z^3+c),c=-15/122+29/32*I,n=46 2100979034692006 r005 Im(z^2+c),c=-49/66+5/37*I,n=7 2100979035650617 a007 Real Root Of 42*x^4+872*x^3-181*x^2+771*x-459 2100979049923152 m001 (MertensB1+Salem)/(Thue-ZetaP(3)) 2100979054049360 m008 (2/5*Pi^4+4)/(1/6*Pi^2+2/5) 2100979061821779 m005 (1/2*Zeta(3)-2/7)/(5*Pi-7/10) 2100979075441408 m001 ReciprocalLucas^Zeta(3)-ZetaR(2) 2100979079556688 h001 (-2*exp(1/2)+5)/(-3*exp(-1)-7) 2100979085759163 m001 (2^(1/3))^2*ln(Cahen)/gamma^2 2100979088956859 a005 (1/cos(74/195*Pi))^10 2100979093834978 r005 Im(z^2+c),c=-69/110+11/29*I,n=22 2100979122775476 a007 Real Root Of -107*x^4+478*x^3-921*x^2+950*x+2 2100979126620674 m001 (ZetaQ(2)-ZetaQ(4))/(3^(1/3)-Porter) 2100979138989885 m001 1/exp(Riemann1stZero)*Conway^2/sin(Pi/5) 2100979139219537 m001 Catalan+FeigenbaumC-MasserGramain 2100979142060302 r005 Re(z^2+c),c=-3/32+50/57*I,n=22 2100979157820679 m001 exp(1)*FeigenbaumB^OrthogonalArrays 2100979159896522 m001 (Landau+Lehmer)/(Psi(2,1/3)+Shi(1)) 2100979164292134 r002 5th iterates of z^2 + 2100979164292134 r002 5th iterates of z^2 + 2100979165343090 r005 Re(z^2+c),c=-17/70+5/33*I,n=21 2100979169494415 r005 Re(z^2+c),c=-24/29+2/43*I,n=46 2100979170943393 m001 (Kac-Magata)/(MertensB3-ZetaQ(3)) 2100979183346981 r005 Im(z^2+c),c=-28/27+9/40*I,n=23 2100979195227784 r005 Im(z^2+c),c=-57/106+21/46*I,n=41 2100979197596363 r005 Im(z^2+c),c=-1/30+13/54*I,n=7 2100979198452748 r002 57i'th iterates of 2*x/(1-x^2) of 2100979209822635 r005 Im(z^2+c),c=-8/25+19/58*I,n=13 2100979212085592 m005 (1/2*5^(1/2)+2)/(4/9*3^(1/2)+5/7) 2100979221425479 a001 11/4807526976*433494437^(5/22) 2100979222222534 a001 11/433494437*10946^(5/22) 2100979222887082 m001 ReciprocalLucas^(GolombDickman/LambertW(1)) 2100979225784920 m001 (ln(gamma)-sin(1/12*Pi))/(exp(-1/2*Pi)-Lehmer) 2100979226918211 a007 Real Root Of 964*x^4+45*x^3-569*x^2-810*x+193 2100979227446135 r005 Im(z^2+c),c=-83/86+11/51*I,n=52 2100979228869829 a007 Real Root Of 547*x^4+457*x^3-954*x^2+819*x-488 2100979230433413 a007 Real Root Of 8*x^4+203*x^3+715*x^2-409*x-340 2100979231834255 a007 Real Root Of 418*x^4+656*x^3-447*x^2+155*x+238 2100979241818636 r005 Re(z^2+c),c=-3/17+25/61*I,n=12 2100979246028343 g001 Psi(3/4,58/115) 2100979249032743 m001 (-gamma(1)+Paris)/(3^(1/2)-Catalan) 2100979257696491 r005 Re(z^2+c),c=-17/70+5/33*I,n=24 2100979257950151 l006 ln(844/6899) 2100979258997115 m001 Niven*FibonacciFactorial/ln(GAMMA(1/24))^2 2100979259581852 m001 Zeta(1/2)^FeigenbaumMu/(Zeta(1/2)^ln(5)) 2100979263913132 a001 2207/377*317811^(13/46) 2100979266331275 r005 Re(z^2+c),c=-17/70+5/33*I,n=26 2100979269925730 r005 Re(z^2+c),c=-17/70+5/33*I,n=28 2100979270281441 r005 Re(z^2+c),c=-17/70+5/33*I,n=31 2100979270335953 r005 Re(z^2+c),c=-17/70+5/33*I,n=33 2100979270354499 r005 Re(z^2+c),c=-17/70+5/33*I,n=35 2100979270355670 r005 Re(z^2+c),c=-17/70+5/33*I,n=38 2100979270355833 r005 Re(z^2+c),c=-17/70+5/33*I,n=36 2100979270355997 r005 Re(z^2+c),c=-17/70+5/33*I,n=40 2100979270356091 r005 Re(z^2+c),c=-17/70+5/33*I,n=42 2100979270356092 r005 Re(z^2+c),c=-17/70+5/33*I,n=43 2100979270356093 r005 Re(z^2+c),c=-17/70+5/33*I,n=45 2100979270356095 r005 Re(z^2+c),c=-17/70+5/33*I,n=47 2100979270356095 r005 Re(z^2+c),c=-17/70+5/33*I,n=50 2100979270356095 r005 Re(z^2+c),c=-17/70+5/33*I,n=52 2100979270356095 r005 Re(z^2+c),c=-17/70+5/33*I,n=49 2100979270356095 r005 Re(z^2+c),c=-17/70+5/33*I,n=54 2100979270356095 r005 Re(z^2+c),c=-17/70+5/33*I,n=57 2100979270356095 r005 Re(z^2+c),c=-17/70+5/33*I,n=59 2100979270356095 r005 Re(z^2+c),c=-17/70+5/33*I,n=61 2100979270356095 r005 Re(z^2+c),c=-17/70+5/33*I,n=64 2100979270356095 r005 Re(z^2+c),c=-17/70+5/33*I,n=63 2100979270356095 r005 Re(z^2+c),c=-17/70+5/33*I,n=62 2100979270356095 r005 Re(z^2+c),c=-17/70+5/33*I,n=60 2100979270356095 r005 Re(z^2+c),c=-17/70+5/33*I,n=56 2100979270356095 r005 Re(z^2+c),c=-17/70+5/33*I,n=58 2100979270356095 r005 Re(z^2+c),c=-17/70+5/33*I,n=55 2100979270356095 r005 Re(z^2+c),c=-17/70+5/33*I,n=53 2100979270356095 r005 Re(z^2+c),c=-17/70+5/33*I,n=51 2100979270356096 r005 Re(z^2+c),c=-17/70+5/33*I,n=48 2100979270356097 r005 Re(z^2+c),c=-17/70+5/33*I,n=46 2100979270356099 r005 Re(z^2+c),c=-17/70+5/33*I,n=44 2100979270356127 r005 Re(z^2+c),c=-17/70+5/33*I,n=41 2100979270356325 r005 Re(z^2+c),c=-17/70+5/33*I,n=39 2100979270356671 r005 Re(z^2+c),c=-17/70+5/33*I,n=37 2100979270363318 r005 Re(z^2+c),c=-17/70+5/33*I,n=34 2100979270367809 r005 Re(z^2+c),c=-17/70+5/33*I,n=29 2100979270399793 r005 Re(z^2+c),c=-17/70+5/33*I,n=32 2100979270441832 r005 Re(z^2+c),c=-17/70+5/33*I,n=30 2100979271931845 r005 Re(z^2+c),c=-17/70+5/33*I,n=27 2100979278490898 r005 Re(z^2+c),c=-17/70+5/33*I,n=25 2100979281631699 r005 Re(z^2+c),c=-17/70+5/33*I,n=23 2100979284691043 r005 Re(z^2+c),c=-17/70+5/33*I,n=22 2100979293523142 a001 17711/2207*123^(1/5) 2100979293875806 m006 (3/5*ln(Pi)+5/6)/(3/4*Pi^2-1/6) 2100979293887969 m002 2-E^Pi+Pi/24 2100979295322118 m001 1/Cahen*exp(Artin)/Zeta(5)^2 2100979302891631 a007 Real Root Of 528*x^4+920*x^3-798*x^2-453*x+815 2100979305125387 r005 Im(z^2+c),c=-3/40+12/47*I,n=12 2100979310735525 a008 Real Root of x^3-x^2+41*x-91 2100979315971569 a007 Real Root Of -210*x^4-156*x^3+699*x^2+183*x-56 2100979320182427 m001 (Psi(2,1/3)+GAMMA(13/24))^BesselJ(0,1) 2100979320676848 b008 Erfc[1]^(10/3) 2100979322017804 l006 ln(3580/4417) 2100979323802880 m005 (1/2*2^(1/2)+4/7)/(4*2^(1/2)+3/7) 2100979334029119 m001 (ln(2)-Ei(1))/(FeigenbaumKappa-Tetranacci) 2100979354032698 m001 1/exp(GAMMA(5/24))^2/GAMMA(11/12)^2*cosh(1) 2100979367732145 r009 Re(z^3+c),c=-15/122+29/32*I,n=40 2100979374443330 r002 36th iterates of z^2 + 2100979375601097 r005 Re(z^2+c),c=-35/94+37/64*I,n=45 2100979376147376 a007 Real Root Of -309*x^4-379*x^3+683*x^2+297*x+115 2100979377506378 a001 89/322*521^(9/13) 2100979378118078 a007 Real Root Of 449*x^4+964*x^3-348*x^2-423*x+839 2100979381100987 l006 ln(1177/9621) 2100979388395617 r009 Im(z^3+c),c=-17/58+7/41*I,n=7 2100979397429309 r005 Re(z^2+c),c=-19/94+29/48*I,n=29 2100979401622398 m004 -2*Sin[Sqrt[5]*Pi]-(3*Tanh[Sqrt[5]*Pi])/4 2100979402352562 a001 228826127/13*701408733^(8/23) 2100979403025371 r009 Re(z^3+c),c=-19/62+25/59*I,n=19 2100979403572403 a001 10749957122/13*10946^(8/23) 2100979407052263 a007 Real Root Of 340*x^4+966*x^3+403*x^2-268*x-8 2100979412403317 a007 Real Root Of 697*x^4+864*x^3-961*x^2+881*x+525 2100979414718525 m001 1/FeigenbaumB^2*Kolakoski^2/exp(Porter) 2100979419260140 r005 Re(z^2+c),c=-38/31+3/34*I,n=56 2100979424199453 m001 QuadraticClass*(FeigenbaumMu-KhinchinLevy) 2100979426627018 r005 Im(z^2+c),c=-15/74+19/64*I,n=10 2100979432693850 b008 4+ArcCsch[17]^(-1) 2100979433168675 a007 Real Root Of -45*x^4-936*x^3+170*x^2-631*x-744 2100979436101837 m001 (Grothendieck+RenyiParking)/(Zeta(3)+gamma(3)) 2100979436645135 r009 Im(z^3+c),c=-9/19+8/15*I,n=39 2100979463359067 a005 (1/cos(15/224*Pi))^653 2100979469348452 r005 Re(z^2+c),c=1/10+35/62*I,n=17 2100979473973436 r004 Im(z^2+c),c=-29/42+4/17*I,z(0)=-1,n=48 2100979475819971 m003 1/30+Sqrt[5]/32+2*Sin[1/2+Sqrt[5]/2] 2100979478156282 a007 Real Root Of -422*x^4-672*x^3+496*x^2-118*x-447 2100979480366401 a001 5473/38*18^(51/55) 2100979486258162 a005 (1/sin(67/159*Pi))^1668 2100979492239471 r005 Re(z^2+c),c=-17/70+5/33*I,n=9 2100979493638004 m001 GAMMA(7/12)/BesselJ(0,1)^2*ln(sqrt(5)) 2100979498912609 a007 Real Root Of 231*x^4+60*x^3-806*x^2+86*x-206 2100979503305707 m001 (HardyLittlewoodC3+Kac)/(Zeta(3)-BesselK(1,1)) 2100979512239156 m001 1/GAMMA(2/3)/exp(MadelungNaCl)^2*Zeta(1,2) 2100979517555868 m001 (arctan(1/2)+Artin)/(Conway+FeigenbaumD) 2100979525332927 m001 (Mills+Stephens)/(BesselK(0,1)-ln(2+3^(1/2))) 2100979526425644 r005 Im(z^2+c),c=-9/10+19/102*I,n=45 2100979526915050 a007 Real Root Of -635*x^4-795*x^3+882*x^2-867*x-715 2100979529023523 a007 Real Root Of 522*x^4+710*x^3-473*x^2+787*x+155 2100979536699373 b008 7/EulerGamma^2 2100979538721991 r005 Re(z^2+c),c=-15/106+23/45*I,n=10 2100979539872746 a007 Real Root Of 282*x^4+688*x^3+592*x^2+686*x-286 2100979540377411 r005 Im(z^2+c),c=-22/31+11/56*I,n=18 2100979546128217 a007 Real Root Of 218*x^4+317*x^3+193*x^2+591*x-918 2100979552959152 m001 Gompertz*Lehmer+MadelungNaCl 2100979556985615 r002 64th iterates of z^2 + 2100979564218882 h001 (3/7*exp(2)+7/11)/(5/9*exp(1)+3/10) 2100979569941836 a007 Real Root Of -132*x^4-29*x^3-446*x^2+951*x+2 2100979587945512 m001 ln(Niven)^2/FransenRobinson^2/PrimesInBinary^2 2100979598675390 a005 (1/cos(3/95*Pi))^1552 2100979599569579 a003 sin(Pi*1/64)*sin(Pi*10/71) 2100979603177736 r005 Re(z^2+c),c=-17/70+5/33*I,n=20 2100979606902672 l006 ln(7947/9805) 2100979611971488 m005 (1/2*3^(1/2)+5/7)/(37/70+1/10*5^(1/2)) 2100979618083309 r005 Re(z^2+c),c=11/40+6/17*I,n=6 2100979626936924 h001 (8/11*exp(2)+9/10)/(2/7*exp(2)+7/8) 2100979632689248 m001 CareFree^gamma(3)/PlouffeB 2100979635056962 r005 Re(z^2+c),c=-111/94+1/17*I,n=2 2100979635858595 h001 (3/4*exp(2)+7/10)/(3/8*exp(2)+1/5) 2100979636787906 m001 (FeigenbaumKappa+Sierpinski)/(Pi-BesselI(0,1)) 2100979641837350 a007 Real Root Of -228*x^4+25*x^3+692*x^2-641*x+273 2100979653463844 a001 15127/3*21^(15/32) 2100979663073525 a001 2576/321*123^(1/5) 2100979668775077 r009 Re(z^3+c),c=-15/86+37/44*I,n=13 2100979686487965 m001 RenyiParking*FibonacciFactorial^2/exp(Pi)^2 2100979693230967 l006 ln(333/2722) 2100979693998192 s001 sum(exp(-3*Pi/4)^n*A163196[n],n=1..infinity) 2100979709279980 a007 Real Root Of 541*x^4+933*x^3-335*x^2-72*x-561 2100979712410862 m001 GAMMA(23/24)^2*exp(GAMMA(17/24))^2/cos(Pi/5)^2 2100979715366577 r005 Re(z^2+c),c=-3/28+48/61*I,n=15 2100979716425210 r005 Im(z^2+c),c=-61/114+1/27*I,n=29 2100979716657090 m001 (-ln(5)+Porter)/(BesselK(0,1)-ln(3)) 2100979716687224 m001 Trott2nd/(KhinchinLevy-ln(2+3^(1/2))) 2100979716990210 a001 121393/15127*123^(1/5) 2100979721360800 h001 (-9*exp(6)+1)/(-9*exp(3)+8) 2100979724856549 a001 105937/13201*123^(1/5) 2100979726004232 a001 416020/51841*123^(1/5) 2100979726171677 a001 726103/90481*123^(1/5) 2100979726196107 a001 5702887/710647*123^(1/5) 2100979726199671 a001 829464/103361*123^(1/5) 2100979726200191 a001 39088169/4870847*123^(1/5) 2100979726200267 a001 34111385/4250681*123^(1/5) 2100979726200278 a001 133957148/16692641*123^(1/5) 2100979726200279 a001 233802911/29134601*123^(1/5) 2100979726200280 a001 1836311903/228826127*123^(1/5) 2100979726200280 a001 267084832/33281921*123^(1/5) 2100979726200280 a001 12586269025/1568397607*123^(1/5) 2100979726200280 a001 10983760033/1368706081*123^(1/5) 2100979726200280 a001 43133785636/5374978561*123^(1/5) 2100979726200280 a001 75283811239/9381251041*123^(1/5) 2100979726200280 a001 591286729879/73681302247*123^(1/5) 2100979726200280 a001 86000486440/10716675201*123^(1/5) 2100979726200280 a001 4052739537881/505019158607*123^(1/5) 2100979726200280 a001 3278735159921/408569081798*123^(1/5) 2100979726200280 a001 2504730781961/312119004989*123^(1/5) 2100979726200280 a001 956722026041/119218851371*123^(1/5) 2100979726200280 a001 182717648081/22768774562*123^(1/5) 2100979726200280 a001 139583862445/17393796001*123^(1/5) 2100979726200280 a001 53316291173/6643838879*123^(1/5) 2100979726200280 a001 10182505537/1268860318*123^(1/5) 2100979726200280 a001 7778742049/969323029*123^(1/5) 2100979726200280 a001 2971215073/370248451*123^(1/5) 2100979726200280 a001 567451585/70711162*123^(1/5) 2100979726200280 a001 433494437/54018521*123^(1/5) 2100979726200285 a001 165580141/20633239*123^(1/5) 2100979726200314 a001 31622993/3940598*123^(1/5) 2100979726200512 a001 24157817/3010349*123^(1/5) 2100979726201874 a001 9227465/1149851*123^(1/5) 2100979726211205 a001 1762289/219602*123^(1/5) 2100979726275163 a001 1346269/167761*123^(1/5) 2100979726713539 a001 514229/64079*123^(1/5) 2100979727653720 m001 GAMMA(7/12)/(Conway-Stephens) 2100979729718213 a001 98209/12238*123^(1/5) 2100979733999587 m001 OrthogonalArrays/(OneNinth-StronglyCareFree) 2100979745805693 r002 39th iterates of z^2 + 2100979748524484 p001 sum((-1)^n/(413*n+327)/n/(64^n),n=1..infinity) 2100979750078961 a001 18/28657*28657^(2/17) 2100979750312555 a001 75025/9349*123^(1/5) 2100979750455783 a001 18/75025*102334155^(2/17) 2100979750519543 a001 9/98209*365435296162^(2/17) 2100979758817705 r005 Re(z^2+c),c=-5/29+13/32*I,n=37 2100979759727323 m001 sin(1/12*Pi)+Grothendieck^Shi(1) 2100979763112561 r002 3th iterates of z^2 + 2100979771080337 m001 HardyLittlewoodC4-FeigenbaumC-gamma 2100979775941469 r005 Re(z^2+c),c=-3/11+9/16*I,n=14 2100979776966083 h001 (3/8*exp(2)+3/10)/(1/3*exp(1)+5/9) 2100979779170350 a001 610/4870847*199^(30/31) 2100979780029819 l006 ln(3344/3415) 2100979782481261 r005 Im(z^2+c),c=-83/90+9/46*I,n=61 2100979782569577 m001 (-Magata+ThueMorse)/(2^(1/3)-Zeta(1,-1)) 2100979784300777 m001 ErdosBorwein*(MadelungNaCl-TreeGrowth2nd) 2100979787023518 m001 (Thue+ZetaQ(2))/(Zeta(1/2)+GAMMA(23/24)) 2100979794267817 m001 ln(PrimesInBinary)^2*Conway*(3^(1/3))^2 2100979804995525 m001 (Pi^(1/2)-DuboisRaymond)/(Sarnak+Trott2nd) 2100979812652547 r005 Im(z^2+c),c=-87/98+7/39*I,n=48 2100979816199445 a007 Real Root Of x^4+210*x^3-19*x^2+331*x-454 2100979817603462 m001 (1-cos(1/5*Pi))/(-ln(Pi)+CopelandErdos) 2100979822873099 a007 Real Root Of 194*x^4+425*x^3-105*x^2+60*x+751 2100979822994641 r005 Im(z^2+c),c=-37/70+13/31*I,n=11 2100979824481975 r005 Re(z^2+c),c=-17/74+2/9*I,n=11 2100979826274574 m001 (-sin(1/12*Pi)+GAMMA(7/12))/(cos(1)-ln(Pi)) 2100979833699863 r009 Im(z^3+c),c=-1/28+7/32*I,n=4 2100979840446936 l006 ln(4367/5388) 2100979847657370 m005 (1/2*5^(1/2)+4/9)/(9/10*Catalan-3/4) 2100979854729460 m002 (Pi^6*ProductLog[Pi]^2)/5-Sinh[Pi] 2100979859668978 m001 BesselJ(0,1)*ln(Rabbit)^2*GAMMA(7/12)^2 2100979863865847 p004 log(17599/2153) 2100979865378808 a007 Real Root Of 301*x^4+178*x^3+734*x^2-660*x-170 2100979872128356 a001 38/5473*10946^(5/42) 2100979877184547 a007 Real Root Of -356*x^4-468*x^3+416*x^2-168*x+407 2100979886912728 m001 exp(-1/2*Pi)^Zeta(1/2)/Bloch 2100979891468287 a001 28657/3571*123^(1/5) 2100979913798843 a008 Real Root of x^4-2*x^3-30*x^2-93*x-101 2100979915922179 a007 Real Root Of -782*x^4+280*x^3-234*x^2+312*x+80 2100979919322525 b008 -1/2+Sinh[Cosh[2]] 2100979926212940 r005 Re(z^2+c),c=-63/106+17/44*I,n=14 2100979927304560 r005 Re(z^2+c),c=-7/78+23/44*I,n=14 2100979927549117 a007 Real Root Of 264*x^4+87*x^3-888*x^2+528*x+692 2100979939968144 m001 exp(Catalan)*Backhouse/sqrt(3) 2100979945301163 h005 exp(cos(Pi*5/36)*cos(Pi*7/36)) 2100979952349768 r005 Re(z^2+c),c=-17/106+23/53*I,n=17 2100979952857759 a004 Fibonacci(13)*Lucas(12)/(1/2+sqrt(5)/2)^17 2100979953800005 a007 Real Root Of 443*x^4+824*x^3-591*x^2-504*x+560 2100979957461719 r005 Re(z^2+c),c=-13/25+21/46*I,n=10 2100979965337812 m001 (-BesselJ(0,1)+ZetaQ(4))/(exp(1)+Catalan) 2100979965917329 m005 (1/2*exp(1)+2/5)/(29/56+1/7*5^(1/2)) 2100979973337490 a007 Real Root Of -671*x^4+448*x^3+661*x^2+665*x+116 2100979986266303 m001 1/cos(Pi/5)*ln(Kolakoski)*exp(1)^2 2100979996525830 b008 -38+Csch[1/17] 2100980001336898 m001 (MertensB1-Thue)/(sin(1/12*Pi)-Landau) 2100980002941222 m001 exp(FibonacciFactorial)*Conway^2*GAMMA(1/4) 2100980004350393 m001 RenyiParking^exp(-Pi)*GAMMA(5/12) 2100980011162687 a007 Real Root Of 107*x^4+10*x^3+44*x^2+934*x-224 2100980011581808 l006 ln(1154/9433) 2100980025549594 r005 Re(z^2+c),c=-19/98+15/43*I,n=21 2100980029720155 a007 Real Root Of 670*x^4+874*x^3-904*x^2+770*x+659 2100980031319856 a007 Real Root Of -34*x^4-754*x^3-799*x^2+687*x-747 2100980039413574 r002 15th iterates of z^2 + 2100980045964089 r009 Re(z^3+c),c=-21/50+22/43*I,n=17 2100980047940189 r005 Im(z^2+c),c=-11/29+10/29*I,n=45 2100980058047221 m001 1/ln(Paris)/Khintchine/BesselJ(0,1) 2100980068522349 a007 Real Root Of 300*x^4+789*x^3+769*x^2+838*x-162 2100980075044658 m001 (arctan(1/3)-Conway)/(TreeGrowth2nd+Trott2nd) 2100980082718816 a007 Real Root Of 314*x^4+552*x^3-431*x^2-6*x+891 2100980093257496 a003 cos(Pi*1/95)*sin(Pi*6/89) 2100980095138980 m001 exp(-1/2*Pi)+Tribonacci+ZetaQ(2) 2100980098258614 m001 (GAMMA(13/24)-Gompertz)/(ln(3)-BesselK(1,1)) 2100980108422733 m001 1/2*Pi*2^(1/2)*Chi(1)*GAMMA(5/6) 2100980111228974 a007 Real Root Of -356*x^4-508*x^3+249*x^2-576*x-84 2100980116876240 h005 exp(cos(Pi*15/59)/sin(Pi*7/18)) 2100980122642341 a001 3/377*3^(38/43) 2100980124971672 a007 Real Root Of -121*x^4+284*x^3+654*x^2-808*x+407 2100980127826592 m001 (3^(1/2)+cos(1/12*Pi))/(-Cahen+Tetranacci) 2100980134216391 a001 1364/377*21^(26/45) 2100980140705811 l006 ln(821/6711) 2100980151376585 m001 (-Stephens+ZetaQ(3))/(5^(1/2)+arctan(1/2)) 2100980154980637 p001 sum((-1)^n/(512*n+469)/(32^n),n=0..infinity) 2100980167676634 a007 Real Root Of 263*x^4-888*x^3-61*x^2-866*x-188 2100980173297927 s001 sum(exp(-3*Pi/5)^n*A127572[n],n=1..infinity) 2100980178711199 m001 Artin+FeigenbaumAlpha-StronglyCareFree 2100980194740443 m001 (cos(1/12*Pi)+Grothendieck)/(Mills+ZetaQ(4)) 2100980198640583 m001 (3^(1/3)+CareFree)/(KhinchinHarmonic-Sarnak) 2100980200550974 l006 ln(5154/6359) 2100980216851124 r005 Im(z^2+c),c=7/27+4/51*I,n=28 2100980224831047 r005 Re(z^2+c),c=-19/110+38/61*I,n=36 2100980239200568 m001 1/Lehmer/exp(ArtinRank2)*Riemann3rdZero 2100980244151045 m001 GAMMA(5/6)*Trott-Riemann2ndZero 2100980252700320 m001 cos(1)+(3^(1/3))-sqrt(Pi) 2100980252700320 m001 cos(1)+3^(1/3)-Pi^(1/2) 2100980256021319 a007 Real Root Of -304*x^4+17*x^3+930*x^2-711*x+482 2100980259465747 m007 (-3*gamma+4/5)/(-2/5*gamma-6/5*ln(2)+1/5*Pi-4) 2100980275960204 m001 1/arctan(1/2)*ln(GAMMA(11/12))^2/sqrt(3)^2 2100980277094336 m001 GAMMA(1/4)*ln(BesselK(0,1))*sin(Pi/12)^2 2100980277754989 r005 Im(z^2+c),c=-10/11+7/36*I,n=33 2100980280976627 m003 2+Sqrt[5]/2048+Sin[1/2+Sqrt[5]/2]/10 2100980282851818 m001 (BesselJ(0,1)-cos(1/5*Pi))/(3^(1/3)+Cahen) 2100980283295303 m001 1/Trott*Backhouse/ln(Ei(1)) 2100980283806520 a005 (1/sin(92/227*Pi))^119 2100980290335837 a007 Real Root Of 32*x^4+648*x^3-528*x^2-393*x-676 2100980296049406 r005 Re(z^2+c),c=-7/10+1/101*I,n=2 2100980302031510 m001 (-RenyiParking+4)/(ln(1+sqrt(2))+2/3) 2100980310026027 r005 Re(z^2+c),c=-5/29+13/32*I,n=34 2100980311119834 r005 Re(z^2+c),c=-5/48+19/41*I,n=8 2100980313800615 m005 (1/2*Pi+8/11)/(4/9*5^(1/2)+1/10) 2100980314382989 r005 Re(z^2+c),c=-23/106+17/62*I,n=14 2100980321927165 m001 (exp(1)+Ei(1,1)*exp(1/exp(1)))/exp(1/exp(1)) 2100980325199266 p001 sum((-1)^n/(499*n+467)/(25^n),n=0..infinity) 2100980329092916 b008 3*(7+Pi^(-5)) 2100980329092916 m002 21+3/Pi^5 2100980332483976 m001 Bloch/BesselJ(0,1)*Magata 2100980333774184 m001 Gompertz/(ZetaR(2)^TwinPrimes) 2100980338176272 a007 Real Root Of 28*x^4+595*x^3+110*x^2-701*x-911 2100980339638248 s004 Continued Fraction of A044653 2100980339638248 s004 Continued fraction of A044653 2100980339638310 s004 Continued Fraction of A044272 2100980339638310 s004 Continued fraction of A044272 2100980346925747 m009 (3/5*Psi(1,3/4)+2/5)/(5/6*Psi(1,1/3)+3/4) 2100980363110884 m001 exp(1)/(3^(1/3)-ZetaR(2)) 2100980363515887 a007 Real Root Of 561*x^4+689*x^3-924*x^2+568*x+731 2100980366330620 m005 (1/2*3^(1/2)-9/10)/(7/10*exp(1)-2/7) 2100980371263701 h001 (-9*exp(1/3)-6)/(-4*exp(3)-8) 2100980372325771 m001 (Ei(1)-OrthogonalArrays)/(PlouffeB-ZetaP(2)) 2100980374306416 r005 Re(z^2+c),c=-17/70+5/33*I,n=16 2100980375499694 r005 Im(z^2+c),c=-17/14+7/240*I,n=61 2100980379369404 a007 Real Root Of 798*x^4-947*x^3-781*x^2-287*x+102 2100980382461350 r005 Im(z^2+c),c=-83/118+11/37*I,n=15 2100980385400290 m008 (1/5*Pi^3-1/6)/(3*Pi^4-5) 2100980387498202 a007 Real Root Of 543*x^4+912*x^3-393*x^2+242*x+121 2100980391403499 a001 28657/76*9349^(50/53) 2100980392156862 q001 2143/1020 2100980396490017 r005 Re(z^2+c),c=-5/46+13/24*I,n=60 2100980400345296 r002 11th iterates of z^2 + 2100980405444854 a007 Real Root Of 519*x^4+882*x^3-624*x^2-848*x-960 2100980407164417 m001 (Rabbit-ZetaP(4))/(ln(5)+OrthogonalArrays) 2100980410642911 m001 (gamma(1)+Kac)/(Mills+Riemann3rdZero) 2100980415718100 r005 Re(z^2+c),c=-101/122+4/39*I,n=8 2100980418289079 a001 5473/38*39603^(48/53) 2100980430558582 v002 sum(1/(5^n*(2*n^3-9*n^2+18*n)),n=1..infinity) 2100980439068348 s002 sum(A035858[n]/((2*n)!),n=1..infinity) 2100980441973728 r005 Re(z^2+c),c=-5/29+13/32*I,n=38 2100980446052259 l006 ln(488/3989) 2100980453009011 m001 Mills+BesselJ(0,1)^Thue 2100980462262463 a001 98209/38*5778^(41/53) 2100980462658392 a007 Real Root Of -228*x^4+962*x^3-466*x^2-952*x-422 2100980465249557 l006 ln(5941/7330) 2100980468832243 r005 Re(z^2+c),c=-13/90+8/17*I,n=50 2100980475561774 a003 cos(Pi*9/23)-cos(Pi*52/113) 2100980477329724 m007 (-1/2*gamma-3/4)/(-4*gamma-12*ln(2)+2*Pi-3/5) 2100980479523113 a007 Real Root Of -43*x^4-945*x^3-829*x^2+983*x+986 2100980486407215 b008 -36/5+Sqrt[26] 2100980500517705 r005 Im(z^2+c),c=-5/9+11/35*I,n=8 2100980501715807 m001 (HardyLittlewoodC5-Landau)/(Sarnak-TwinPrimes) 2100980502755729 r005 Re(z^2+c),c=41/126+17/60*I,n=23 2100980509320126 m001 (-Paris+TreeGrowth2nd)/(Shi(1)+LambertW(1)) 2100980510475319 m001 (exp(1/Pi)+ThueMorse)/(3^(1/2)-ln(2^(1/2)+1)) 2100980510847286 m001 (Zeta(1/2)+Niven)/(Salem-Trott) 2100980521830151 r005 Im(z^2+c),c=-35/86+35/59*I,n=33 2100980527288353 m001 CareFree/exp(DuboisRaymond)*BesselK(1,1)^2 2100980533009602 r005 Im(z^2+c),c=-9/14+121/178*I,n=5 2100980540651637 m001 BesselJ(0,1)/ln(Porter)*GAMMA(23/24)^2 2100980542972868 a007 Real Root Of -497*x^4-738*x^3+324*x^2-816*x-305 2100980544364492 r005 Re(z^2+c),c=-33/26+16/103*I,n=6 2100980550685487 m001 (-Cahen+MasserGramain)/(cos(1)+cos(1/5*Pi)) 2100980551796747 m005 (1/2*Zeta(3)-1/5)/(4/7*Catalan-5/7) 2100980554977492 m001 (-Otter+Thue)/(1-gamma(3)) 2100980569428254 a001 144/199*521^(7/13) 2100980575885084 s002 sum(A158546[n]/(n*10^n+1),n=1..infinity) 2100980584093940 h001 (5/9*exp(2)+1/8)/(5/11*exp(1)+7/9) 2100980584119727 r002 4th iterates of z^2 + 2100980586712670 m005 (1/3*Pi-1/7)/(7/12*5^(1/2)+3) 2100980588523047 m004 -3/4-2*Sin[Sqrt[5]*Pi] 2100980598893364 m001 TravellingSalesman^Mills+Backhouse 2100980604066881 m001 (2^(1/3)-exp(1))/(-OrthogonalArrays+Rabbit) 2100980620668326 r005 Im(z^2+c),c=-61/86+11/41*I,n=15 2100980622656323 a001 199/2*6765^(5/59) 2100980626902417 r005 Re(z^2+c),c=-11/62+19/49*I,n=13 2100980631324967 p001 sum((-1)^n/(393*n+47)/(8^n),n=0..infinity) 2100980632015349 m001 (arctan(1/2)+FibonacciFactorial)^(2^(1/2)) 2100980638233242 m005 (31/10+1/10*5^(1/2))/(2*Catalan-1/4) 2100980641670770 m001 (ln(2)-ln(Pi))/(Bloch+Riemann2ndZero) 2100980645769540 r005 Im(z^2+c),c=-149/102+5/36*I,n=3 2100980653536073 m001 (Porter+Salem)/(arctan(1/2)+Kolakoski) 2100980654846596 m008 (Pi^2+1/6)/(1/2*Pi^6-3) 2100980667705104 l006 ln(1131/9245) 2100980668022516 l006 ln(6728/8301) 2100980670007313 a001 322*1836311903^(7/17) 2100980693964946 a003 cos(Pi*33/107)-cos(Pi*25/79) 2100980696144497 r009 Re(z^3+c),c=-31/90+31/59*I,n=22 2100980703148024 a001 10610209857723/2*64079^(22/23) 2100980703608933 a001 121393/2*14662949395604^(20/21) 2100980703627766 a001 4052739537881/2*439204^(8/9) 2100980703636841 a001 416020*14662949395604^(8/9) 2100980703637359 a001 2178309/2*14662949395604^(6/7) 2100980703637417 a001 225851433717/2*7881196^(10/11) 2100980703637420 a001 956722026041/2*7881196^(9/11) 2100980703637423 a001 4052739537881/2*7881196^(8/11) 2100980703637425 a001 10610209857723/2*7881196^(2/3) 2100980703637435 a001 5702887/2*23725150497407^(13/16) 2100980703637435 a001 5702887/2*505019158607^(13/14) 2100980703637444 a001 225851433717/2*20633239^(6/7) 2100980703637444 a001 591286729879/2*20633239^(4/5) 2100980703637444 a001 2504730781961/2*20633239^(5/7) 2100980703637446 a001 7465176*312119004989^(10/11) 2100980703637446 a001 7465176*3461452808002^(5/6) 2100980703637448 a001 39088169/2*45537549124^(16/17) 2100980703637448 a001 39088169/2*14662949395604^(16/21) 2100980703637448 a001 39088169/2*192900153618^(8/9) 2100980703637448 a001 39088169/2*73681302247^(12/13) 2100980703637448 a001 12586269025/2*141422324^(12/13) 2100980703637448 a001 53316291173/2*141422324^(11/13) 2100980703637448 a001 225851433717/2*141422324^(10/13) 2100980703637448 a001 956722026041/2*141422324^(9/13) 2100980703637448 a001 774004377960*141422324^(2/3) 2100980703637448 a001 4052739537881/2*141422324^(8/13) 2100980703637448 a001 102334155/2*10749957122^(23/24) 2100980703637448 a001 133957148*312119004989^(4/5) 2100980703637448 a001 133957148*23725150497407^(11/16) 2100980703637448 a001 133957148*73681302247^(11/13) 2100980703637448 a001 133957148*10749957122^(11/12) 2100980703637448 a001 133957148*4106118243^(22/23) 2100980703637448 a001 701408733/2*2537720636^(14/15) 2100980703637448 a001 701408733/2*17393796001^(6/7) 2100980703637448 a001 701408733/2*45537549124^(14/17) 2100980703637448 a001 701408733/2*14662949395604^(2/3) 2100980703637448 a001 701408733/2*505019158607^(3/4) 2100980703637448 a001 701408733/2*192900153618^(7/9) 2100980703637448 a001 701408733/2*10749957122^(7/8) 2100980703637448 a001 701408733/2*4106118243^(21/23) 2100980703637448 a001 1836311903/2*2537720636^(8/9) 2100980703637448 a001 12586269025/2*2537720636^(4/5) 2100980703637448 a001 10182505537*2537720636^(7/9) 2100980703637448 a001 53316291173/2*2537720636^(11/15) 2100980703637448 a001 2971215073/2*2537720636^(13/15) 2100980703637448 a001 225851433717/2*2537720636^(2/3) 2100980703637448 a001 956722026041/2*2537720636^(3/5) 2100980703637448 a001 2504730781961/2*2537720636^(5/9) 2100980703637448 a001 4052739537881/2*2537720636^(8/15) 2100980703637448 a001 1836311903/2*312119004989^(8/11) 2100980703637448 a001 1836311903/2*23725150497407^(5/8) 2100980703637448 a001 1836311903/2*73681302247^(10/13) 2100980703637448 a001 1836311903/2*28143753123^(4/5) 2100980703637448 a001 1836311903/2*10749957122^(5/6) 2100980703637448 a001 701408733/2*1568397607^(21/22) 2100980703637448 a001 2403763488*817138163596^(2/3) 2100980703637448 a001 1836311903/2*4106118243^(20/23) 2100980703637448 a001 591286729879/2*17393796001^(4/7) 2100980703637448 a001 10182505537*17393796001^(5/7) 2100980703637448 a001 2403763488*10749957122^(19/24) 2100980703637448 a001 12586269025/2*45537549124^(12/17) 2100980703637448 a001 12586269025/2*14662949395604^(4/7) 2100980703637448 a001 12586269025/2*505019158607^(9/14) 2100980703637448 a001 12586269025/2*192900153618^(2/3) 2100980703637448 a001 12586269025/2*73681302247^(9/13) 2100980703637448 a001 32951280099/2*45537549124^(2/3) 2100980703637448 a001 225851433717/2*45537549124^(10/17) 2100980703637448 a001 956722026041/2*45537549124^(9/17) 2100980703637448 a001 53316291173/2*45537549124^(11/17) 2100980703637448 a001 4052739537881/2*45537549124^(8/17) 2100980703637448 a001 43133785636*23725150497407^(1/2) 2100980703637448 a001 225851433717/2*312119004989^(6/11) 2100980703637448 a001 10610209857723/2*312119004989^(2/5) 2100980703637448 a001 2504730781961/2*3461452808002^(5/12) 2100980703637448 a001 182717648081*1322157322203^(1/2) 2100980703637448 a001 139583862445/2*9062201101803^(1/2) 2100980703637448 a001 4052739537881/2*192900153618^(4/9) 2100980703637448 a001 53316291173/2*312119004989^(3/5) 2100980703637448 a001 53316291173/2*14662949395604^(11/21) 2100980703637448 a001 4052739537881/2*73681302247^(6/13) 2100980703637448 a001 774004377960*73681302247^(1/2) 2100980703637448 a001 591286729879/2*73681302247^(7/13) 2100980703637448 a001 10182505537*312119004989^(7/11) 2100980703637448 a001 10182505537*14662949395604^(5/9) 2100980703637448 a001 10182505537*505019158607^(5/8) 2100980703637448 a001 2504730781961/2*28143753123^(1/2) 2100980703637448 a001 225851433717/2*28143753123^(3/5) 2100980703637448 a001 10182505537*28143753123^(7/10) 2100980703637448 a001 10610209857723/2*10749957122^(11/24) 2100980703637448 a001 4052739537881/2*10749957122^(1/2) 2100980703637448 a001 774004377960*10749957122^(13/24) 2100980703637448 a001 956722026041/2*10749957122^(9/16) 2100980703637448 a001 591286729879/2*10749957122^(7/12) 2100980703637448 a001 12586269025/2*10749957122^(3/4) 2100980703637448 a001 225851433717/2*10749957122^(5/8) 2100980703637448 a001 43133785636*10749957122^(2/3) 2100980703637448 a001 32951280099/2*10749957122^(17/24) 2100980703637448 a001 53316291173/2*10749957122^(11/16) 2100980703637448 a001 2971215073/2*45537549124^(13/17) 2100980703637448 a001 2971215073/2*14662949395604^(13/21) 2100980703637448 a001 2971215073/2*192900153618^(13/18) 2100980703637448 a001 2971215073/2*73681302247^(3/4) 2100980703637448 a001 10610209857723/2*4106118243^(11/23) 2100980703637448 a001 3278735159921*4106118243^(1/2) 2100980703637448 a001 2971215073/2*10749957122^(13/16) 2100980703637448 a001 4052739537881/2*4106118243^(12/23) 2100980703637448 a001 774004377960*4106118243^(13/23) 2100980703637448 a001 591286729879/2*4106118243^(14/23) 2100980703637448 a001 225851433717/2*4106118243^(15/23) 2100980703637448 a001 2403763488*4106118243^(19/23) 2100980703637448 a001 43133785636*4106118243^(16/23) 2100980703637448 a001 32951280099/2*4106118243^(17/23) 2100980703637448 a001 12586269025/2*4106118243^(18/23) 2100980703637448 a001 10610209857723/2*1568397607^(1/2) 2100980703637448 a001 4052739537881/2*1568397607^(6/11) 2100980703637448 a001 774004377960*1568397607^(13/22) 2100980703637448 a001 591286729879/2*1568397607^(7/11) 2100980703637448 a001 225851433717/2*1568397607^(15/22) 2100980703637448 a001 43133785636*1568397607^(8/11) 2100980703637448 a001 53316291173/2*1568397607^(3/4) 2100980703637448 a001 1836311903/2*1568397607^(10/11) 2100980703637448 a001 32951280099/2*1568397607^(17/22) 2100980703637448 a001 12586269025/2*1568397607^(9/11) 2100980703637448 a001 2403763488*1568397607^(19/22) 2100980703637448 a001 10610209857723/2*599074578^(11/21) 2100980703637448 a001 4052739537881/2*599074578^(4/7) 2100980703637448 a001 774004377960*599074578^(13/21) 2100980703637448 a001 956722026041/2*599074578^(9/14) 2100980703637448 a001 591286729879/2*599074578^(2/3) 2100980703637448 a001 225851433717/2*599074578^(5/7) 2100980703637448 a001 43133785636*599074578^(16/21) 2100980703637448 a001 53316291173/2*599074578^(11/14) 2100980703637448 a001 32951280099/2*599074578^(17/21) 2100980703637448 a001 10182505537*599074578^(5/6) 2100980703637448 a001 12586269025/2*599074578^(6/7) 2100980703637448 a001 2403763488*599074578^(19/21) 2100980703637448 a001 1836311903/2*599074578^(20/21) 2100980703637448 a001 2971215073/2*599074578^(13/14) 2100980703637448 a001 165580141/2*45537549124^(15/17) 2100980703637448 a001 165580141/2*312119004989^(9/11) 2100980703637448 a001 165580141/2*14662949395604^(5/7) 2100980703637448 a001 165580141/2*192900153618^(5/6) 2100980703637448 a001 165580141/2*28143753123^(9/10) 2100980703637448 a001 165580141/2*10749957122^(15/16) 2100980703637448 a001 10610209857723/2*228826127^(11/20) 2100980703637448 a001 4052739537881/2*228826127^(3/5) 2100980703637448 a001 2504730781961/2*228826127^(5/8) 2100980703637448 a001 774004377960*228826127^(13/20) 2100980703637448 a001 591286729879/2*228826127^(7/10) 2100980703637448 a001 225851433717/2*228826127^(3/4) 2100980703637448 a001 43133785636*228826127^(4/5) 2100980703637448 a001 32951280099/2*228826127^(17/20) 2100980703637448 a001 10182505537*228826127^(7/8) 2100980703637448 a001 12586269025/2*228826127^(9/10) 2100980703637448 a001 2403763488*228826127^(19/20) 2100980703637448 a001 10610209857723/2*87403803^(11/19) 2100980703637448 a001 4052739537881/2*87403803^(12/19) 2100980703637448 a001 774004377960*87403803^(13/19) 2100980703637448 a001 591286729879/2*87403803^(14/19) 2100980703637448 a001 225851433717/2*87403803^(15/19) 2100980703637448 a001 43133785636*87403803^(16/19) 2100980703637448 a001 32951280099/2*87403803^(17/19) 2100980703637448 a001 12586269025/2*87403803^(18/19) 2100980703637449 a001 24157817/2*14662949395604^(7/9) 2100980703637449 a001 24157817/2*505019158607^(7/8) 2100980703637449 a001 10610209857723/2*33385282^(11/18) 2100980703637449 a001 4052739537881/2*33385282^(2/3) 2100980703637449 a001 774004377960*33385282^(13/18) 2100980703637449 a001 956722026041/2*33385282^(3/4) 2100980703637449 a001 591286729879/2*33385282^(7/9) 2100980703637449 a001 225851433717/2*33385282^(5/6) 2100980703637450 a001 43133785636*33385282^(8/9) 2100980703637450 a001 53316291173/2*33385282^(11/12) 2100980703637450 a001 32951280099/2*33385282^(17/18) 2100980703637453 a001 9227465/2*817138163596^(17/19) 2100980703637453 a001 9227465/2*14662949395604^(17/21) 2100980703637453 a001 9227465/2*192900153618^(17/18) 2100980703637456 a001 10610209857723/2*12752043^(11/17) 2100980703637457 a001 4052739537881/2*12752043^(12/17) 2100980703637458 a001 774004377960*12752043^(13/17) 2100980703637459 a001 591286729879/2*12752043^(14/17) 2100980703637459 a001 225851433717/2*12752043^(15/17) 2100980703637460 a001 43133785636*12752043^(16/17) 2100980703637509 a001 10610209857723/2*4870847^(11/16) 2100980703637514 a001 4052739537881/2*4870847^(3/4) 2100980703637520 a001 774004377960*4870847^(13/16) 2100980703637525 a001 591286729879/2*4870847^(7/8) 2100980703637531 a001 225851433717/2*4870847^(15/16) 2100980703637680 a001 1346269/2*3461452808002^(11/12) 2100980703637893 a001 10610209857723/2*1860498^(11/15) 2100980703637933 a001 4052739537881/2*1860498^(4/5) 2100980703637954 a001 2504730781961/2*1860498^(5/6) 2100980703637974 a001 774004377960*1860498^(13/15) 2100980703637994 a001 956722026041/2*1860498^(9/10) 2100980703638014 a001 591286729879/2*1860498^(14/15) 2100980703639037 a001 514229/2*14662949395604^(19/21) 2100980703640717 a001 10610209857723/2*710647^(11/14) 2100980703641014 a001 4052739537881/2*710647^(6/7) 2100980703641311 a001 774004377960*710647^(13/14) 2100980703661575 a001 10610209857723/2*271443^(11/13) 2100980703663769 a001 4052739537881/2*271443^(12/13) 2100980703816602 a001 10610209857723/2*103682^(11/12) 2100980703824745 a001 3278735159921*103682^(23/24) 2100980713374609 m001 (1+Si(Pi))/(ln(3)+sin(1/12*Pi)) 2100980714545536 a001 1/18*(1/2*5^(1/2)+1/2)^5*47^(11/12) 2100980718087244 a007 Real Root Of -182*x^4-41*x^3+916*x^2+608*x+400 2100980721587633 m001 (Psi(2,1/3)-sin(1))/(Zeta(3)+MinimumGamma) 2100980735164712 a007 Real Root Of 265*x^4+312*x^3-924*x^2-661*x+420 2100980738353076 m001 (ln(Pi)-Kac)/(PrimesInBinary-Robbin) 2100980739796380 m001 (2^(1/2)+GAMMA(2/3))/(-Kolakoski+LaplaceLimit) 2100980744834670 r005 Im(z^2+c),c=-13/14+47/240*I,n=24 2100980746464788 r005 Re(z^2+c),c=-5/6+3/200*I,n=28 2100980748083714 r005 Re(z^2+c),c=-17/70+5/33*I,n=18 2100980750004066 m001 (HardyLittlewoodC5+KomornikLoreti*Mills)/Mills 2100980751702026 m001 Riemann3rdZero/ArtinRank2^2*ln(Ei(1))^2 2100980752602599 p004 log(17573/14243) 2100980755463575 m001 (Grothendieck-HardyLittlewoodC5*Rabbit)/Rabbit 2100980763884270 a007 Real Root Of -354*x^4-656*x^3+169*x^2-285*x-531 2100980782971402 m001 (HardHexagonsEntropy+Niven)/(Porter+ZetaQ(3)) 2100980784354747 a007 Real Root Of -34*x^4+209*x^3+301*x^2-595*x+22 2100980788076693 b008 4+Csc[1/17] 2100980790150478 a007 Real Root Of -332*x^4-700*x^3-138*x^2-715*x-916 2100980796386385 m001 (Zeta(1,2)+BesselI(1,1))/Pi^(1/2) 2100980796386385 m001 (Zeta(1,2)+BesselI(1,1))/sqrt(Pi) 2100980806373649 r009 Im(z^3+c),c=-19/86+6/31*I,n=8 2100980823242638 m001 (Catalan+MasserGramainDelta)/Conway 2100980828325127 l006 ln(7515/9272) 2100980835926827 l006 ln(643/5256) 2100980840516954 m004 -1/5+(Sqrt[5]*Pi)/(2*ProductLog[Sqrt[5]*Pi]) 2100980858964574 a001 5473/682*123^(1/5) 2100980860334498 a005 (1/sin(23/163*Pi))^58 2100980864305123 a007 Real Root Of -535*x^4-825*x^3+599*x^2-298*x-497 2100980883337429 p004 log(32803/4013) 2100980884021218 m005 (1/2*Zeta(3)+1)/(1/4*Pi-7/9) 2100980887789947 m005 (1/2*3^(1/2)+4/5)/(1/21+1/3*5^(1/2)) 2100980888089899 m005 (1/3*5^(1/2)+2/7)/(2/5*Catalan-6/7) 2100980895976184 r009 Im(z^3+c),c=-5/58+11/51*I,n=5 2100980904350172 a001 3/2139295485799*123^(9/16) 2100980905004080 r005 Re(z^2+c),c=11/94+19/63*I,n=9 2100980910464375 m001 (-MadelungNaCl+2/3)/(ln(Pi)+4) 2100980912134632 r005 Re(z^2+c),c=-5/29+13/32*I,n=40 2100980917791826 m006 (5/6/Pi+5/6)/(1/5*ln(Pi)+5) 2100980918685578 r009 Re(z^3+c),c=-19/74+15/53*I,n=6 2100980925140334 m001 ErdosBorwein*(Backhouse-ZetaR(2)) 2100980928367006 r008 a(0)=0,K{-n^6,-11+48*n^3-21*n^2-11*n} 2100980938382351 a001 233/521*322^(2/3) 2100980941391457 a001 4/51841*3571^(6/49) 2100980945201000 a007 Real Root Of 390*x^4+705*x^3+324*x^2+772*x-869 2100980949006400 a001 8/4870847*9349^(26/49) 2100980954696741 r002 10th iterates of z^2 + 2100980956369651 r009 Re(z^3+c),c=-25/118+44/47*I,n=7 2100980962252634 a001 4/930249*39603^(18/49) 2100980963606427 a001 8/271443*15127^(10/49) 2100980967003479 m001 Lehmer*HardHexagonsEntropy^2/ln(sqrt(3)) 2100980984156596 m004 -1-2*Sin[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi]/4 2100980987149842 m007 (-gamma+2/3)/(-3*gamma-9*ln(2)+3/2*Pi-1) 2100980989265753 m001 Sierpinski/exp(MadelungNaCl)^2/GAMMA(11/24)^2 2100980990015440 a001 4/930249*5778^(22/49) 2100980990418781 a007 Real Root Of -491*x^4-537*x^3+853*x^2-609*x-458 2100980995751847 a007 Real Root Of 475*x^4+739*x^3-173*x^2+921*x+297 2100981002150246 l005 101/39/(exp(101/39)-1) 2100981003172414 a003 cos(Pi*13/61)-sin(Pi*34/73) 2100981013172151 a007 Real Root Of -379*x^4-869*x^3+165*x^2+622*x-96 2100981020255566 a007 Real Root Of 977*x^4-361*x^3-24*x^2-80*x-21 2100981023432971 m006 (5/Pi-4/5)/(3*ln(Pi)+1/3) 2100981028044921 a003 cos(Pi*21/100)-cos(Pi*10/33) 2100981028744122 a007 Real Root Of x^4+208*x^3-442*x^2-248*x+537 2100981031310008 m001 1/FeigenbaumB^2*Si(Pi)^2*ln(GAMMA(7/12)) 2100981040692148 a001 199/1836311903*17711^(7/13) 2100981041413456 a001 199/1548008755920*4807526976^(7/13) 2100981041413458 a001 199/53316291173*9227465^(7/13) 2100981045686449 m001 BesselJ(1,1)*LambertW(1)^Conway 2100981052275179 r005 Im(z^2+c),c=-17/14+37/213*I,n=27 2100981052884302 m001 (GlaisherKinkelin+Robbin)/(ln(Pi)-Ei(1,1)) 2100981070425149 m001 Magata^2/FibonacciFactorial^2*exp(Zeta(9)) 2100981074309439 m001 (exp(1/Pi)+1/2)/(-OneNinth+1) 2100981074346287 l006 ln(798/6523) 2100981086994427 r005 Im(z^2+c),c=-10/9+29/121*I,n=27 2100981092715319 a007 Real Root Of 811*x^4+382*x^3+514*x^2-932*x+168 2100981096488460 m007 (-5*gamma-2/3)/(-2/3*gamma-4/3*ln(2)+3) 2100981099758299 l005 sech(213/95) 2100981110925026 m001 1/ln(GAMMA(11/12))^2*TwinPrimes/Zeta(5)^2 2100981111322121 k006 concat of cont frac of 2100981112397490 b008 21+Sech[3*Sqrt[Pi]] 2100981114250582 a005 (1/cos(7/191*Pi))^805 2100981116135435 r009 Re(z^3+c),c=-19/70+20/21*I,n=7 2100981123123571 r009 Re(z^3+c),c=-39/86+17/42*I,n=6 2100981124812665 m005 (1/2*exp(1)+1/2)/(6*2^(1/2)+4/11) 2100981127795566 r005 Im(z^2+c),c=-121/94+1/56*I,n=61 2100981133707734 m001 (Zeta(3)+ln(gamma))/(GAMMA(7/12)-Tribonacci) 2100981147047102 m001 1/Riemann2ndZero^2/exp(CopelandErdos)*Trott^2 2100981149541585 r002 59th iterates of z^2 + 2100981158789139 r005 Re(z^2+c),c=-7/6+35/229*I,n=14 2100981159620933 b008 21+Csch[3*Sqrt[Pi]] 2100981164585590 r005 Re(z^2+c),c=-27/110+3/32*I,n=3 2100981166700599 r002 17th iterates of z^2 + 2100981167520135 a007 Real Root Of -312*x^4-662*x^3-14*x^2-75*x-156 2100981180589695 h001 (-5*exp(1/2)+8)/(-4*exp(1/2)-5) 2100981183574147 m001 (BesselK(0,1)+FeigenbaumB)/(-Mills+Rabbit) 2100981184591039 a003 cos(Pi*13/47)*cos(Pi*43/109) 2100981185238660 r005 Re(z^2+c),c=-7/25+13/42*I,n=3 2100981200568375 a007 Real Root Of 712*x^4-518*x^3-19*x^2-965*x+207 2100981207047496 m001 (Catalan+BesselI(0,1))/(Zeta(5)+ZetaQ(4)) 2100981207367957 a007 Real Root Of -329*x^4-623*x^3-21*x^2+6*x+738 2100981208157290 r008 a(0)=2,K{-n^6,5-3*n^3-9*n^2-4*n} 2100981215284483 s002 sum(A178340[n]/(2^n-1),n=1..infinity) 2100981218763645 r005 Im(z^2+c),c=-23/18+39/230*I,n=8 2100981219970620 m005 (1/2*Zeta(3)+3/10)/(1/2*gamma+4) 2100981223066387 m001 (3^(1/2)-ln(5))/(LandauRamanujan2nd+ZetaQ(4)) 2100981235210591 l006 ln(953/7790) 2100981237102462 m001 FeigenbaumB^CopelandErdos*Ei(1,1) 2100981241993301 r009 Re(z^3+c),c=-5/42+62/63*I,n=8 2100981245835882 m001 Sierpinski/exp(Khintchine)/Catalan^2 2100981247056180 r002 47th iterates of z^2 + 2100981253886371 h001 (-7*exp(5)-4)/(-9*exp(4)-5) 2100981254405902 m001 GAMMA(5/24)*KhintchineLevy^2/exp(cos(1))^2 2100981259718347 m001 Riemann1stZero/ln(Si(Pi))*Catalan 2100981259909805 a003 cos(Pi*7/57)*cos(Pi*44/103) 2100981263432524 a007 Real Root Of -630*x^4-735*x^3+947*x^2-779*x-358 2100981271221555 a007 Real Root Of -407*x^4-816*x^3+207*x^2+526*x+554 2100981286851005 r005 Re(z^2+c),c=-13/90+8/17*I,n=51 2100981290905432 a007 Real Root Of -651*x^4-465*x^3-572*x^2+970*x+226 2100981294419809 r005 Im(z^2+c),c=-53/70+4/55*I,n=41 2100981314107098 m005 (1/2*Zeta(3)-2/9)/(5/11*Pi+3/8) 2100981316275522 r009 Re(z^3+c),c=-8/29+16/47*I,n=21 2100981326065822 a001 7/20365011074*139583862445^(1/4) 2100981326065822 a001 7/53316291173*6557470319842^(1/4) 2100981326065822 a001 7/32951280099*956722026041^(1/4) 2100981326065822 a001 7/12586269025*20365011074^(1/4) 2100981326065822 a001 7/7778742049*2971215073^(1/4) 2100981326065822 a001 1/686789568*433494437^(1/4) 2100981326065822 a001 7/2971215073*63245986^(1/4) 2100981326065823 a001 7/1836311903*9227465^(1/4) 2100981326065880 a001 7/1134903170*1346269^(1/4) 2100981326068545 a001 7/701408733*196418^(1/4) 2100981326193740 a001 7/433494437*28657^(1/4) 2100981328265639 a007 Real Root Of -422*x^4-854*x^3-199*x^2-890*x-689 2100981332075233 a001 7/267914296*4181^(1/4) 2100981337168996 r009 Re(z^3+c),c=-1/90+29/38*I,n=22 2100981343023061 a007 Real Root Of 562*x^4+711*x^3-845*x^2+649*x+737 2100981351067719 l006 ln(1108/9057) 2100981353020799 a007 Real Root Of 454*x^4+859*x^3-409*x^2-285*x+327 2100981358066781 m001 1/exp(BesselJ(1,1))*Lehmer*GAMMA(1/24)^2 2100981360999295 a007 Real Root Of -631*x^4-333*x^3+720*x^2+469*x-126 2100981375043911 m005 (1/3*3^(1/2)-1/5)/(6*Pi-8/9) 2100981382311629 r005 Im(z^2+c),c=-29/30+25/102*I,n=35 2100981382517153 m001 GAMMA(11/24)/Backhouse^2/ln(cosh(1)) 2100981397635342 p004 log(19381/2371) 2100981398003115 a007 Real Root Of 230*x^4-55*x^3-837*x^2+692*x+157 2100981403078259 a007 Real Root Of -278*x^4-330*x^3+389*x^2-586*x-592 2100981404039244 m001 ln(GAMMA(1/6))^2/BesselK(0,1)/gamma^2 2100981410858464 m005 (1/2*exp(1)+5/6)/(41/11+3*5^(1/2)) 2100981417457038 r005 Im(z^2+c),c=-77/90+7/43*I,n=28 2100981417877349 r002 46th iterates of z^2 + 2100981421774509 a007 Real Root Of -325*x^4-703*x^3-549*x^2-606*x+963 2100981428585851 a007 Real Root Of 136*x^4-758*x^3+442*x^2+869*x+603 2100981428933106 m001 (5^(1/2)-Artin)/(-KhinchinHarmonic+Thue) 2100981445143220 p001 sum((-1)^n/(252*n+47)/(12^n),n=0..infinity) 2100981460122175 r005 Re(z^2+c),c=-3/4+23/153*I,n=2 2100981462760915 r005 Im(z^2+c),c=-37/78+7/19*I,n=59 2100981470049734 m001 (-Paris+StronglyCareFree)/(cos(1)+FeigenbaumD) 2100981471792978 r002 62th iterates of z^2 + 2100981473711123 p004 log(35051/28409) 2100981474732189 a001 7/89*144^(39/59) 2100981480865217 m001 (Pi+GAMMA(3/4))/(Bloch+ErdosBorwein) 2100981481587477 m001 (Zeta(1,-1)+Magata)/(5^(1/2)-ln(2)) 2100981481713705 r005 Re(z^2+c),c=-1/34+11/18*I,n=63 2100981482344663 r005 Im(z^2+c),c=-99/106+15/59*I,n=7 2100981484331610 m001 (FeigenbaumD+MertensB1)/(ln(5)-exp(-1/2*Pi)) 2100981487443543 r005 Im(z^2+c),c=-13/24+31/63*I,n=51 2100981502202108 r005 Re(z^2+c),c=-11/9+11/127*I,n=62 2100981513186417 m001 (Pi+FeigenbaumC)/(Niven+Robbin) 2100981513801763 m005 (1/12+1/4*5^(1/2))/(9/11*exp(1)+5/6) 2100981514707181 r009 Re(z^3+c),c=-7/23+21/62*I,n=3 2100981520854543 m001 (TreeGrowth2nd-ZetaQ(4))/(Pi-GAMMA(11/12)) 2100981525059218 h001 (-7*exp(2/3)-3)/(-8*exp(-2)+9) 2100981537305724 m005 (1/2*2^(1/2)-1/7)/(7/9*exp(1)+4/7) 2100981553589390 r005 Im(z^2+c),c=-21/34+28/85*I,n=32 2100981557414673 p003 LerchPhi(1/125,2,400/183) 2100981558583174 a007 Real Root Of 117*x^4-178*x^3+840*x^2-638*x-173 2100981563474944 m008 (5/6*Pi^4-4/5)/(2/5*Pi^6-2) 2100981567391369 a008 Real Root of (1+5*x+x^2-2*x^3-5*x^4+6*x^5) 2100981572510661 h001 (-6*exp(3/2)+6)/(-8*exp(-1)-7) 2100981598467148 r005 Re(z^2+c),c=-13/118+7/13*I,n=47 2100981604301044 m001 (-Chi(1)+gamma(3))/(2^(1/3)+exp(1)) 2100981608380141 a001 7/165580141*610^(1/4) 2100981611916023 a001 1/20633239*47^(8/21) 2100981621663722 r009 Im(z^3+c),c=-19/44+3/40*I,n=28 2100981625899974 r005 Re(z^2+c),c=-4/25+17/39*I,n=31 2100981631351519 r005 Re(z^2+c),c=-9/44+20/63*I,n=14 2100981633975439 r005 Im(z^2+c),c=-121/94+1/56*I,n=53 2100981658803922 r009 Re(z^3+c),c=-9/40+11/62*I,n=8 2100981673697704 a007 Real Root Of -387*x^4-654*x^3+548*x^2+442*x-15 2100981675089442 g007 Psi(2,11/12)+Psi(2,4/5)-Psi(2,7/9)-Psi(2,4/9) 2100981680639656 m001 (cos(1/5*Pi)+ln(2))/(gamma(1)+HeathBrownMoroz) 2100981681183187 a007 Real Root Of -83*x^4+689*x^3-816*x^2-452*x-221 2100981689594181 r009 Re(z^3+c),c=-43/114+9/19*I,n=8 2100981701139634 r005 Re(z^2+c),c=23/98+29/61*I,n=51 2100981705028084 a001 1/105937*317811^(12/49) 2100981707426014 m001 (Thue+Weierstrass)/(ln(3)-arctan(1/2)) 2100981709456102 a007 Real Root Of -37*x^4+600*x^3+821*x^2-944*x+678 2100981712112313 m001 FeigenbaumDelta^TreeGrowth2nd/Zeta(1,2) 2100981720169896 r009 Re(z^3+c),c=-8/29+16/47*I,n=24 2100981724531843 m005 (1/2*Pi+1/12)/(4*exp(1)-3) 2100981746002693 a007 Real Root Of 263*x^4-146*x^3-994*x^2+800*x-410 2100981759064424 a007 Real Root Of 972*x^4-925*x^3+268*x^2-767*x+156 2100981763216911 r005 Re(z^2+c),c=-5/29+13/32*I,n=43 2100981766959186 r009 Re(z^3+c),c=-8/29+16/47*I,n=27 2100981767180925 q001 1498/713 2100981772271031 r009 Re(z^3+c),c=-8/29+16/47*I,n=30 2100981772861175 r009 Re(z^3+c),c=-8/29+16/47*I,n=33 2100981772925175 r009 Re(z^3+c),c=-8/29+16/47*I,n=36 2100981772927458 r009 Re(z^3+c),c=-8/29+16/47*I,n=34 2100981772931385 r009 Re(z^3+c),c=-8/29+16/47*I,n=37 2100981772931922 r009 Re(z^3+c),c=-8/29+16/47*I,n=39 2100981772932453 r009 Re(z^3+c),c=-8/29+16/47*I,n=40 2100981772932609 r009 Re(z^3+c),c=-8/29+16/47*I,n=42 2100981772932647 r009 Re(z^3+c),c=-8/29+16/47*I,n=43 2100981772932676 r009 Re(z^3+c),c=-8/29+16/47*I,n=45 2100981772932677 r009 Re(z^3+c),c=-8/29+16/47*I,n=46 2100981772932682 r009 Re(z^3+c),c=-8/29+16/47*I,n=49 2100981772932682 r009 Re(z^3+c),c=-8/29+16/47*I,n=48 2100981772932682 r009 Re(z^3+c),c=-8/29+16/47*I,n=52 2100981772932682 r009 Re(z^3+c),c=-8/29+16/47*I,n=51 2100981772932682 r009 Re(z^3+c),c=-8/29+16/47*I,n=55 2100981772932682 r009 Re(z^3+c),c=-8/29+16/47*I,n=58 2100981772932682 r009 Re(z^3+c),c=-8/29+16/47*I,n=61 2100981772932682 r009 Re(z^3+c),c=-8/29+16/47*I,n=64 2100981772932682 r009 Re(z^3+c),c=-8/29+16/47*I,n=63 2100981772932682 r009 Re(z^3+c),c=-8/29+16/47*I,n=62 2100981772932682 r009 Re(z^3+c),c=-8/29+16/47*I,n=60 2100981772932682 r009 Re(z^3+c),c=-8/29+16/47*I,n=54 2100981772932682 r009 Re(z^3+c),c=-8/29+16/47*I,n=57 2100981772932682 r009 Re(z^3+c),c=-8/29+16/47*I,n=59 2100981772932682 r009 Re(z^3+c),c=-8/29+16/47*I,n=56 2100981772932682 r009 Re(z^3+c),c=-8/29+16/47*I,n=53 2100981772932683 r009 Re(z^3+c),c=-8/29+16/47*I,n=50 2100981772932686 r009 Re(z^3+c),c=-8/29+16/47*I,n=47 2100981772932716 r009 Re(z^3+c),c=-8/29+16/47*I,n=44 2100981772932967 r009 Re(z^3+c),c=-8/29+16/47*I,n=41 2100981772935064 r009 Re(z^3+c),c=-8/29+16/47*I,n=38 2100981772938700 r009 Re(z^3+c),c=-8/29+16/47*I,n=31 2100981772952170 r009 Re(z^3+c),c=-8/29+16/47*I,n=35 2100981773088568 r009 Re(z^3+c),c=-8/29+16/47*I,n=32 2100981773413599 r009 Re(z^3+c),c=-8/29+16/47*I,n=28 2100981774148306 r009 Re(z^3+c),c=-8/29+16/47*I,n=29 2100981775336319 m001 (Kolakoski+Thue)/(CareFree-Kac) 2100981775425574 m004 (3*Coth[Sqrt[5]*Pi])/4+2*Sin[Sqrt[5]*Pi] 2100981780611891 r009 Re(z^3+c),c=-8/29+16/47*I,n=25 2100981781557545 m009 (4/5*Psi(1,1/3)-3)/(1/5*Psi(1,3/4)-3/4) 2100981782127784 r009 Re(z^3+c),c=-8/29+16/47*I,n=26 2100981796481381 r009 Re(z^3+c),c=-43/126+15/29*I,n=25 2100981801928988 m001 MadelungNaCl^ThueMorse-ReciprocalFibonacci 2100981806902713 r005 Im(z^2+c),c=-5/6+35/227*I,n=53 2100981808598669 a007 Real Root Of 520*x^4+982*x^3-570*x^2-893*x-385 2100981812687402 a007 Real Root Of -242*x^4-686*x^3-603*x^2-208*x+578 2100981817426668 r005 Im(z^2+c),c=-15/56+17/54*I,n=16 2100981826083415 m005 (1/2*Catalan+2)/(3/11*exp(1)+3/7) 2100981833855453 m005 (1/3*exp(1)+3/4)/(5*3^(1/2)-7/9) 2100981839118920 m001 1/GAMMA(5/12)^2*Khintchine/ln(sin(Pi/5))^2 2100981839835417 r009 Re(z^3+c),c=-8/29+16/47*I,n=23 2100981840660302 r002 40th iterates of z^2 + 2100981842173647 a007 Real Root Of 347*x^4+494*x^3-297*x^2+582*x+354 2100981842381508 m001 ThueMorse^GlaisherKinkelin/GAMMA(7/12) 2100981846087627 a007 Real Root Of -197*x^4+723*x^3-54*x^2-805*x-937 2100981849666520 a001 2207/2*4181^(48/53) 2100981849675660 r005 Re(z^2+c),c=-91/74+1/18*I,n=36 2100981852974403 m001 (MadelungNaCl+Niven)/(1+Cahen) 2100981853574725 m001 ZetaQ(4)^ln(2)/(ZetaQ(4)^cos(1/5*Pi)) 2100981864014499 r005 Im(z^2+c),c=-7/10+61/176*I,n=31 2100981865868375 a007 Real Root Of 280*x^4+703*x^3+356*x^2+579*x+709 2100981866407457 m001 1/sqrt(1+sqrt(3))/Zeta(1,2)^2/ln(sqrt(Pi))^2 2100981867606943 r009 Re(z^3+c),c=-8/29+16/47*I,n=22 2100981868623880 a005 (1/cos(1/38*Pi))^1563 2100981882428286 p003 LerchPhi(1/64,4,518/197) 2100981887145916 r005 Re(z^2+c),c=7/58+11/28*I,n=46 2100981887817830 r005 Im(z^2+c),c=-19/18+33/149*I,n=38 2100981887854581 a007 Real Root Of -311*x^4-509*x^3+425*x^2-12*x-562 2100981892153017 r004 Im(z^2+c),c=1/22*I,z(0)=exp(7/8*I*Pi),n=6 2100981899779043 a007 Real Root Of 524*x^4+511*x^3-715*x^2+780*x-676 2100981902264085 h001 (7/9*exp(2)+7/9)/(3/10*exp(2)+8/9) 2100981910054114 a001 610/47*2^(41/59) 2100981911252391 m001 gamma/(BesselI(1,1)-Lehmer) 2100981916195478 r005 Im(z^2+c),c=-29/32+9/35*I,n=18 2100981931121430 m001 (3^(1/2)-MadelungNaCl)/(Robbin+ZetaP(4)) 2100981934226780 m005 (1/3*Zeta(3)-2/7)/(9/11*gamma+5) 2100981945516120 m001 (-Sierpinski+ZetaQ(3))/(Kac-Si(Pi)) 2100981945818697 m001 (GolombDickman+2/3)/(ln(Pi)+5) 2100981948090923 m006 (1/2/Pi-1/4)/(4/5*exp(2*Pi)+4) 2100981951213123 a003 cos(Pi*5/103)*sin(Pi*3/44) 2100981960922082 m005 (1/2*Catalan-1)/(5*Catalan-2) 2100981962452772 r008 a(0)=2,K{-n^6,-9*n^3+7*n^2-9*n} 2100981963524024 h001 (5/11*exp(2)+4/9)/(5/9*exp(1)+3/10) 2100981966696400 m008 (1/2*Pi^4+5)/(5/6*Pi^5+3/5) 2100981972717720 r005 Re(z^2+c),c=-61/74+2/35*I,n=48 2100981978507910 m001 1/Zeta(1/2)^2/exp(Kolakoski)/Zeta(7) 2100981983853029 r002 6th iterates of z^2 + 2100981987750286 r009 Im(z^3+c),c=-3/7+2/25*I,n=33 2100981996103085 m001 arctan(1/2)^LandauRamanujan2nd+MinimumGamma 2100982006107359 m001 1/exp(GAMMA(1/3))^2/Riemann2ndZero*Zeta(1,2) 2100982006283854 r005 Re(z^2+c),c=-1/24+38/63*I,n=53 2100982018615515 a007 Real Root Of 43*x^4+919*x^3+315*x^2-296*x-796 2100982020005970 q001 1/4759679 2100982031334463 a001 322/514229*6765^(7/51) 2100982034745902 a007 Real Root Of -650*x^4+111*x^3-250*x^2+839*x-165 2100982043969059 m001 1/GAMMA(1/6)^2/Robbin/exp(Zeta(1/2)) 2100982052387948 m001 (cos(1)+FeigenbaumC)/GAMMA(5/6) 2100982055215875 r005 Im(z^2+c),c=-33/38+9/52*I,n=12 2100982060913378 r002 50th iterates of z^2 + 2100982063278391 m001 Catalan/(OrthogonalArrays+Otter) 2100982063401892 l006 ln(155/1267) 2100982072569003 m001 GAMMA(17/24)-Pi^(1/2)+ArtinRank2 2100982075312748 s002 sum(A270915[n]/(pi^n),n=1..infinity) 2100982083929907 a001 3/55*55^(41/45) 2100982084236957 m005 (1/2*gamma+3/8)/(7/10*Zeta(3)-4) 2100982091001123 a007 Real Root Of 436*x^4+364*x^3-562*x^2+988*x-563 2100982097616276 m001 MadelungNaCl*GAMMA(11/12)^Magata 2100982099949981 m005 (1/2*Pi+7/10)/(1/4*2^(1/2)+8/11) 2100982103818463 s002 sum(A197178[n]/(exp(pi*n)-1),n=1..infinity) 2100982108752299 m001 OneNinth*LandauRamanujan/exp(Zeta(1,2)) 2100982112282404 b008 1+E^(EulerGamma/6) 2100982117500964 r009 Re(z^3+c),c=-13/122+51/61*I,n=24 2100982121448443 r005 Re(z^2+c),c=19/64+13/62*I,n=34 2100982125840256 a001 2/2504730781961*46368^(7/23) 2100982127587858 a007 Real Root Of -609*x^4-996*x^3+222*x^2+755*x-158 2100982129122256 m001 GAMMA(5/6)/(Psi(2,1/3)+HardHexagonsEntropy) 2100982131521350 r002 46th iterates of z^2 + 2100982134032804 m001 (Ei(1)+Kac)/(RenyiParking+ZetaP(2)) 2100982134063590 a007 Real Root Of 675*x^4-983*x^3+138*x^2-920*x+195 2100982139844850 a007 Real Root Of -609*x^4-989*x^3+540*x^2+253*x+842 2100982148431756 m002 -2-2/Pi^2+2*Tanh[Pi] 2100982156762666 a007 Real Root Of 557*x^4+805*x^3-425*x^2+914*x+409 2100982163933529 a001 21/24476*521^(51/58) 2100982168676498 h001 (1/8*exp(1)+1/12)/(7/10*exp(1)+1/9) 2100982170571256 v002 sum(1/(2^n+(5+n^2+4*n)),n=1..infinity) 2100982173392521 r005 Im(z^2+c),c=-119/122+3/14*I,n=48 2100982179382455 a007 Real Root Of -159*x^4-571*x^3-705*x^2-857*x-886 2100982181328604 m005 (1/3*exp(1)-2/5)/(5/6*5^(1/2)+6/11) 2100982191697446 r005 Re(z^2+c),c=-5/29+13/32*I,n=46 2100982198739216 l006 ln(787/971) 2100982198739216 p004 log(971/787) 2100982199746121 a001 233/271443*7^(23/50) 2100982203100276 r005 Im(z^2+c),c=-19/46+19/54*I,n=25 2100982204362979 m001 HardHexagonsEntropy*ZetaQ(3)-Riemann2ndZero 2100982208773303 m001 (Backhouse+Salem)/(3^(1/3)-ln(2+3^(1/2))) 2100982212627916 a007 Real Root Of 258*x^4+191*x^3-468*x^2+365*x-423 2100982214998572 a007 Real Root Of 997*x^4+863*x^3+643*x^2-998*x-232 2100982223717455 m001 GAMMA(7/24)^2*ln(Niven)^2*log(1+sqrt(2))^2 2100982225827709 m001 1/GAMMA(1/24)^2/Tribonacci*exp(GAMMA(7/12))^2 2100982228365552 r009 Im(z^3+c),c=-41/90+4/61*I,n=18 2100982228954687 m001 FellerTornier*Paris*TwinPrimes 2100982234104326 r005 Re(z^2+c),c=-5/29+13/32*I,n=41 2100982234269585 r009 Re(z^3+c),c=-8/29+16/47*I,n=20 2100982236385600 a007 Real Root Of -624*x^4-654*x^3+814*x^2-753*x+918 2100982240532216 m005 (-19/36+1/4*5^(1/2))/(37/70+3/7*5^(1/2)) 2100982244192483 m001 (1-Pi^(1/2))/(GAMMA(19/24)+FeigenbaumAlpha) 2100982249978985 a007 Real Root Of 326*x^4+630*x^3-101*x^2-302*x-698 2100982251311532 m001 1/exp(GAMMA(1/3))*Si(Pi)*sqrt(1+sqrt(3)) 2100982260012428 m001 (Catalan-exp(1))/(Gompertz+MertensB1) 2100982260311836 m001 exp(GAMMA(11/24))*GaussKuzminWirsing*Zeta(9) 2100982260363212 a007 Real Root Of -213*x^4-701*x^3-875*x^2-292*x+898 2100982267683132 a007 Real Root Of -700*x^4-842*x^3+699*x^2-891*x+873 2100982272222700 r002 64th iterates of z^2 + 2100982281742484 m001 (Pi+BesselJ(1,1))/(GAMMA(5/6)+Stephens) 2100982282099738 r002 20th iterates of z^2 + 2100982285951021 a007 Real Root Of 253*x^4+474*x^3-139*x^2-365*x-687 2100982286549489 r009 Re(z^3+c),c=-1/46+7/64*I,n=6 2100982290969230 r005 Im(z^2+c),c=-7/12+4/113*I,n=25 2100982291814844 r009 Re(z^3+c),c=-1/46+7/64*I,n=9 2100982291815049 r009 Re(z^3+c),c=-1/46+7/64*I,n=11 2100982291815049 r009 Re(z^3+c),c=-1/46+7/64*I,n=13 2100982291815049 r009 Re(z^3+c),c=-1/46+7/64*I,n=15 2100982291815049 r009 Re(z^3+c),c=-1/46+7/64*I,n=16 2100982291815049 r009 Re(z^3+c),c=-1/46+7/64*I,n=18 2100982291815049 r009 Re(z^3+c),c=-1/46+7/64*I,n=20 2100982291815049 r009 Re(z^3+c),c=-1/46+7/64*I,n=22 2100982291815049 r009 Re(z^3+c),c=-1/46+7/64*I,n=24 2100982291815049 r009 Re(z^3+c),c=-1/46+7/64*I,n=25 2100982291815049 r009 Re(z^3+c),c=-1/46+7/64*I,n=27 2100982291815049 r009 Re(z^3+c),c=-1/46+7/64*I,n=29 2100982291815049 r009 Re(z^3+c),c=-1/46+7/64*I,n=30 2100982291815049 r009 Re(z^3+c),c=-1/46+7/64*I,n=31 2100982291815049 r009 Re(z^3+c),c=-1/46+7/64*I,n=28 2100982291815049 r009 Re(z^3+c),c=-1/46+7/64*I,n=26 2100982291815049 r009 Re(z^3+c),c=-1/46+7/64*I,n=23 2100982291815049 r009 Re(z^3+c),c=-1/46+7/64*I,n=21 2100982291815049 r009 Re(z^3+c),c=-1/46+7/64*I,n=19 2100982291815049 r009 Re(z^3+c),c=-1/46+7/64*I,n=17 2100982291815049 r009 Re(z^3+c),c=-1/46+7/64*I,n=14 2100982291815049 r009 Re(z^3+c),c=-1/46+7/64*I,n=12 2100982291815061 r009 Re(z^3+c),c=-1/46+7/64*I,n=10 2100982291816463 r009 Re(z^3+c),c=-1/46+7/64*I,n=8 2100982291897721 r009 Re(z^3+c),c=-1/46+7/64*I,n=7 2100982292268067 a007 Real Root Of 296*x^4+415*x^3-525*x^2-215*x-53 2100982292469790 a007 Real Root Of -490*x^4-761*x^3+941*x^2+404*x-815 2100982295928725 r005 Im(z^2+c),c=-7/12+29/81*I,n=14 2100982309245313 m001 Zeta(1,-1)/(Rabbit^ArtinRank2) 2100982309687320 a003 sin(Pi*5/73)-sin(Pi*11/79) 2100982315068885 s001 sum(exp(-Pi/4)^n*A056925[n],n=1..infinity) 2100982317547610 a007 Real Root Of -640*x^4-737*x^3+883*x^2-688*x+292 2100982322370079 m001 (cos(1/5*Pi)+ln(2^(1/2)+1))^(2^(1/2)) 2100982322370079 m001 (cos(Pi/5)+ln(1+sqrt(2)))^sqrt(2) 2100982323079912 r005 Re(z^2+c),c=-11/114+31/56*I,n=33 2100982324611587 r005 Im(z^2+c),c=-19/21+9/40*I,n=19 2100982330995719 m001 (-Stephens+ZetaP(4))/(Catalan-Zeta(1/2)) 2100982337487930 m001 (exp(1)+Khinchin)^BesselJ(1,1) 2100982344020216 a007 Real Root Of -373*x^4-630*x^3+435*x^2+654*x+879 2100982349572193 a001 24476/5*591286729879^(11/15) 2100982353076188 a001 969323029/5*317811^(11/15) 2100982353079328 a001 4870847/5*433494437^(11/15) 2100982365143562 a007 Real Root Of -97*x^4+460*x^3-852*x^2+726*x-119 2100982367135938 r008 a(0)=2,K{-n^6,-6-8*n^3+n^2+2*n} 2100982367307116 r005 Im(z^2+c),c=-19/14+8/235*I,n=57 2100982368917903 m001 (Chi(1)+Bloch)/(-CopelandErdos+Thue) 2100982371652550 a007 Real Root Of -451*x^4-852*x^3-47*x^2-540*x-41 2100982372182648 a007 Real Root Of 91*x^4-835*x^3+245*x^2-858*x-199 2100982372821869 r005 Re(z^2+c),c=-5/29+13/32*I,n=49 2100982379316452 m001 1/TreeGrowth2nd^2/ln(Salem)*TwinPrimes 2100982380080277 m001 1/ln(GAMMA(2/3))^2/TwinPrimes^2*sin(1) 2100982383194310 r009 Re(z^3+c),c=-31/58+23/57*I,n=10 2100982386318373 m001 5^(1/2)*PrimesInBinary+GAMMA(19/24) 2100982386372417 r005 Im(z^2+c),c=-35/74+21/61*I,n=13 2100982395073966 a001 20633239/2*6557470319842^(15/17) 2100982395073971 a001 28143753123/2*1836311903^(15/17) 2100982405289785 a007 Real Root Of -321*x^4-304*x^3+378*x^2-502*x+712 2100982405652089 m005 (1/2*gamma-4)/(3/5*3^(1/2)+8/11) 2100982418258861 m008 (1/3*Pi^4-4)/(1/6*Pi^2-3) 2100982418549139 a001 76/89*4807526976^(13/15) 2100982423205242 r005 Im(z^2+c),c=-53/98+17/42*I,n=49 2100982423453486 a007 Real Root Of -557*x^4-721*x^3+502*x^2-945*x-35 2100982434138664 m005 (1/2*exp(1)-8/9)/(6/7*Pi-5/11) 2100982439484147 m001 Zeta(5)+ln(3)^TwinPrimes 2100982439775256 m001 cos(1/12*Pi)^Si(Pi)/(ZetaQ(2)^Si(Pi)) 2100982440595084 r005 Re(z^2+c),c=-5/29+13/32*I,n=52 2100982450726444 g005 Pi*2^(1/2)/GAMMA(3/4)/GAMMA(7/11)/GAMMA(6/7)^2 2100982452148839 a007 Real Root Of 354*x^4+219*x^3-963*x^2+314*x+44 2100982452928696 m001 (Rabbit+ZetaP(4))/(Pi+BesselK(1,1)) 2100982453914833 m005 (1/2*2^(1/2)+4/9)/(5/6*gamma+5) 2100982463294274 r005 Re(z^2+c),c=-5/29+13/32*I,n=55 2100982467562323 r005 Re(z^2+c),c=-5/29+13/32*I,n=54 2100982468244505 r005 Re(z^2+c),c=-5/29+13/32*I,n=57 2100982469854119 b008 1/10+Zeta[11,-2] 2100982469888014 r005 Re(z^2+c),c=-5/29+13/32*I,n=60 2100982469987416 r005 Re(z^2+c),c=-5/29+13/32*I,n=58 2100982470913082 r005 Re(z^2+c),c=-5/29+13/32*I,n=63 2100982471613608 r005 Re(z^2+c),c=-5/29+13/32*I,n=61 2100982471858014 r005 Re(z^2+c),c=-5/29+13/32*I,n=64 2100982472166477 a007 Real Root Of -631*x^4-807*x^3+900*x^2-98*x+632 2100982472672117 r005 Re(z^2+c),c=-5/29+13/32*I,n=62 2100982474866869 r005 Re(z^2+c),c=-5/29+13/32*I,n=59 2100982476800693 r005 Re(z^2+c),c=-5/29+13/32*I,n=51 2100982480835468 r005 Re(z^2+c),c=-5/29+13/32*I,n=56 2100982482108367 m001 (Shi(1)-ln(2+3^(1/2)))/(Stephens+TwinPrimes) 2100982483942536 a007 Real Root Of 44*x^4+950*x^3+522*x^2-364*x-950 2100982490667364 r005 Re(z^2+c),c=-25/118+46/59*I,n=52 2100982492274365 m001 (Gompertz+Salem)/(Ei(1,1)+GolombDickman) 2100982495256789 r005 Re(z^2+c),c=-5/29+13/32*I,n=53 2100982495361054 m001 Chi(1)*cos(1/5*Pi)/FellerTornier 2100982495741181 a007 Real Root Of -395*x^4-373*x^3+368*x^2-899*x+724 2100982497421969 r009 Re(z^3+c),c=-1/46+7/64*I,n=5 2100982501245244 m001 (sin(1/12*Pi)-Cahen)/(Tribonacci-ZetaQ(3)) 2100982509966532 a007 Real Root Of -816*x^4-694*x^3+114*x^2+899*x+179 2100982510922396 h001 (-7*exp(-1)-8)/(-6*exp(2)-6) 2100982514298463 m001 1/exp(Trott)^2/Khintchine/log(2+sqrt(3))^2 2100982514386263 r002 51th iterates of z^2 + 2100982516989975 a007 Real Root Of -62*x^4-244*x^3-316*x^2+257*x+880 2100982517056799 a007 Real Root Of -271*x^4-174*x^3-461*x^2+475*x+1 2100982518323861 m001 1/sqrt(1+sqrt(3))*Zeta(9)*ln(sqrt(2)) 2100982518743438 m001 Salem^HardyLittlewoodC3*Ei(1) 2100982520789835 m005 (1/2*exp(1)-2)/(2/9*exp(1)-10/11) 2100982522957018 p004 log(32707/32027) 2100982524898142 r005 Re(z^2+c),c=-5/29+13/32*I,n=50 2100982529718624 m001 (FeigenbaumKappa+ThueMorse)/sin(1) 2100982531010888 r005 Re(z^2+c),c=-5/29+13/32*I,n=48 2100982535138227 m001 (Otter+ZetaQ(4))/(Cahen+LandauRamanujan) 2100982537131061 a007 Real Root Of -676*x^4-965*x^3+461*x^2-824*x+456 2100982545848979 h001 (4/5*exp(2)+1/10)/(2/7*exp(2)+3/4) 2100982551629853 r005 Im(z^2+c),c=-3/4+2/93*I,n=8 2100982553946455 m001 1/GAMMA(1/3)*ln(Cahen)^2/sin(Pi/5)^2 2100982568987759 r005 Re(z^2+c),c=-5/29+13/32*I,n=47 2100982570541253 r005 Re(z^2+c),c=-5/29+13/32*I,n=44 2100982573509293 r005 Re(z^2+c),c=3/19+4/7*I,n=37 2100982578219147 m001 1/Rabbit^2/LaplaceLimit*ln(Riemann1stZero)^2 2100982589248652 a007 Real Root Of 13*x^4+237*x^3-766*x^2-138*x+174 2100982603222179 m001 TwinPrimes^Zeta(5)/(FellerTornier^Zeta(5)) 2100982617757306 a007 Real Root Of -663*x^4-876*x^3+615*x^2-837*x+321 2100982622002699 m005 (1/2*3^(1/2)+4/5)/(5/8*2^(1/2)-1/11) 2100982625916185 m001 (ln(3)+exp(1/Pi))/((1+3^(1/2))^(1/2)-PlouffeB) 2100982630536928 m001 (GAMMA(7/12)+Lehmer)/(1-gamma(2)) 2100982642488322 a008 Real Root of x^4-20*x^2-2*x+73 2100982644817348 m001 (Zeta(5)+MertensB2)/(MinimumGamma-PlouffeB) 2100982645783603 r008 a(0)=2,K{-n^6,42-92*n^3-22*n^2+62*n} 2100982650168482 a007 Real Root Of -45*x^4-964*x^3-402*x^2-277*x-477 2100982661950172 r005 Re(z^2+c),c=-11/58+13/36*I,n=20 2100982674567155 m001 cosh(1)-exp(Pi)+sin(1/5*Pi) 2100982675270893 r009 Re(z^3+c),c=-41/74+19/41*I,n=54 2100982676388654 a008 Real Root of x^3-x^2-348*x+2404 2100982681449900 r005 Re(z^2+c),c=-11/21+27/49*I,n=58 2100982686982142 p003 LerchPhi(1/64,6,89/217) 2100982691607187 m001 exp(gamma)/(3^(1/3))/sin(Pi/5) 2100982691890044 r005 Im(z^2+c),c=-7/15+17/60*I,n=5 2100982694102305 a007 Real Root Of 482*x^4+936*x^3-29*x^2+674*x+833 2100982700059452 r005 Re(z^2+c),c=-13/90+8/17*I,n=53 2100982702598399 m005 (1/2*Pi-3/11)/(1/6*Zeta(3)-9/11) 2100982711193281 a007 Real Root Of 27*x^4+543*x^3-539*x^2-575*x+804 2100982711935768 l006 ln(1217/9948) 2100982712787587 a007 Real Root Of -505*x^4-619*x^3+908*x^2-456*x-867 2100982717722805 q001 62/2951 2100982726497035 m001 (-Weierstrass+ZetaP(2))/(Psi(1,1/3)+Rabbit) 2100982726499413 m004 3/4+2*Coth[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi] 2100982728193461 m001 KhinchinHarmonic+PlouffeB*RenyiParking 2100982729495950 a007 Real Root Of -442*x^4-252*x^3+981*x^2-969*x-91 2100982743390325 m006 (1/6*exp(Pi)-4/5)/(3/Pi+1/2) 2100982745602961 r005 Re(z^2+c),c=-5/29+13/32*I,n=45 2100982750492270 m005 (1/3*5^(1/2)-1/5)/(3/8*3^(1/2)-10/11) 2100982757251861 b008 20+Sec[(2*Pi)/45] 2100982759505800 a007 Real Root Of 172*x^4+279*x^3-81*x^2+251*x+121 2100982764148359 r005 Im(z^2+c),c=-17/18+17/80*I,n=12 2100982769394842 m001 cos(1/5*Pi)-exp(1/Pi)+StronglyCareFree 2100982775392218 r005 Re(z^2+c),c=-17/14+13/154*I,n=34 2100982802293883 a007 Real Root Of 986*x^4+552*x^3+412*x^2-833*x-190 2100982806589923 l006 ln(1062/8681) 2100982809754611 a007 Real Root Of 381*x^4+319*x^3-926*x^2-290*x-987 2100982813042293 r009 Re(z^3+c),c=-8/29+16/47*I,n=19 2100982819259459 r002 24th iterates of z^2 + 2100982819332020 r005 Im(z^2+c),c=1/40+12/55*I,n=7 2100982822527946 r005 Im(z^2+c),c=-67/74+9/40*I,n=43 2100982825991751 r005 Re(z^2+c),c=-17/122+25/52*I,n=25 2100982828298606 m001 (-sin(1/12*Pi)+MertensB1)/(Si(Pi)-gamma) 2100982828366027 b008 4+Sqrt[2]*Coth[1/12] 2100982834734096 p004 log(33457/4093) 2100982835594660 m001 1/GAMMA(5/6)^2/ln(ArtinRank2)/Zeta(5) 2100982839699092 m001 (Backhouse-MertensB3)/sin(1/5*Pi) 2100982842740458 l006 ln(9561/9764) 2100982847322894 m001 Cahen^HeathBrownMoroz*Riemann2ndZero 2100982849235742 m001 Kolakoski+MadelungNaCl*RenyiParking 2100982855773479 g007 Psi(2,3/8)+Psi(2,4/5)-Psi(2,5/9)-Psi(2,3/5) 2100982856007652 r005 Im(z^2+c),c=-75/62+9/64*I,n=42 2100982866397086 a003 sin(Pi*20/79)/cos(Pi*30/77) 2100982872846661 a007 Real Root Of 464*x^4+871*x^3-86*x^2-54*x-697 2100982887175835 m001 DuboisRaymond+ErdosBorwein*KhinchinLevy 2100982887738974 r002 55th iterates of z^2 + 2100982899408492 r005 Im(z^2+c),c=-5/31+15/53*I,n=9 2100982900127723 m005 (1/2*Catalan+7/8)/(3*5^(1/2)-4/11) 2100982905461127 m001 1/Zeta(5)/Zeta(1,2)^2/exp(sqrt(1+sqrt(3))) 2100982908851923 r002 8th iterates of z^2 + 2100982912251164 r005 Re(z^2+c),c=-13/27+31/53*I,n=30 2100982912768830 m001 (BesselI(0,2)-Shi(1))/(-Lehmer+Trott) 2100982926141631 r005 Re(z^2+c),c=-93/118+5/48*I,n=50 2100982933595540 l006 ln(907/7414) 2100982937151014 m001 arctan(1/2)/FeigenbaumKappa^2/ln(sqrt(2))^2 2100982939630196 m001 1/FeigenbaumB^2*exp(ErdosBorwein)*cos(1)^2 2100982941790903 m001 Kolakoski+Porter^ArtinRank2 2100982946275244 m001 (ln(2)-Bloch*FeigenbaumMu)/Bloch 2100982946492549 m001 ln(GAMMA(23/24))^2*FeigenbaumC/LambertW(1) 2100982948739387 a001 36/341*18^(5/21) 2100982950086427 h001 (10/11*exp(2)+3/7)/(4/11*exp(2)+5/7) 2100982951764635 a008 Real Root of x^3-x^2-366*x-1143 2100982958530361 m001 1/BesselJ(0,1)/ln(Conway)/GAMMA(1/24) 2100982960768315 m001 1/exp(Tribonacci)^2/KhintchineLevy*Pi^2 2100982965863377 r005 Re(z^2+c),c=-13/12+30/121*I,n=58 2100982975608155 r005 Re(z^2+c),c=-5/46+15/26*I,n=15 2100982979892291 m001 (cos(1)-exp(-1/2*Pi))/(GaussAGM+RenyiParking) 2100982996338091 m001 (gamma(3)+Bloch)/(2^(1/2)+sin(1)) 2100982997323157 m001 GAMMA(5/6)*ZetaR(2)^ln(2^(1/2)+1) 2100982997924981 r005 Im(z^2+c),c=-11/18+33/80*I,n=62 2100983008332703 r009 Re(z^3+c),c=-19/98+58/63*I,n=23 2100983016490328 r002 57th iterates of z^2 + 2100983016989168 m001 1/Cahen*Artin*exp(GAMMA(17/24)) 2100983023922807 a001 228826127/34*956722026041^(7/24) 2100983023922808 a001 6643838879/34*9227465^(7/24) 2100983027405330 r009 Re(z^3+c),c=-27/106+17/61*I,n=13 2100983038861436 r009 Re(z^3+c),c=-11/40+62/63*I,n=15 2100983044637064 r009 Im(z^3+c),c=-10/29+5/34*I,n=8 2100983046342313 m001 OneNinth/ln(FransenRobinson)^2*(3^(1/3))^2 2100983054620372 m001 2^(1/3)*gamma(2)+Riemann2ndZero 2100983075239069 r005 Re(z^2+c),c=-2/23+23/41*I,n=23 2100983081272892 a007 Real Root Of 53*x^4-699*x^3+949*x^2+147*x+952 2100983096600302 a007 Real Root Of -621*x^4-290*x^3-30*x^2+867*x+182 2100983105152281 a007 Real Root Of 462*x^4+818*x^3-443*x^2-552*x-620 2100983106682532 a007 Real Root Of -380*x^4-898*x^3-241*x^2-375*x-648 2100983112957169 l006 ln(752/6147) 2100983127486053 m001 (Pi-FeigenbaumD)/(FransenRobinson-Kac) 2100983148742270 a007 Real Root Of 489*x^4+635*x^3-660*x^2-83*x-900 2100983153254765 m001 exp(Niven)/Si(Pi)/sqrt(2) 2100983155499947 s002 sum(A044292[n]/(n^3*pi^n-1),n=1..infinity) 2100983156715123 b008 6+(43*Pi)/9 2100983161121115 k008 concat of cont frac of 2100983165966383 a001 521*(1/2*5^(1/2)+1/2)^11*3^(9/14) 2100983180665746 a007 Real Root Of -649*x^4-952*x^3+700*x^2-324*x+46 2100983195798504 a007 Real Root Of 86*x^4-59*x^3-86*x^2+735*x-299 2100983207468475 m001 Mills*(FeigenbaumB+StronglyCareFree) 2100983209283206 r005 Im(z^2+c),c=-17/20+7/43*I,n=50 2100983210158354 m001 (cos(1/5*Pi)-ln(3))/(cos(1/12*Pi)+ThueMorse) 2100983217344066 m001 LambertW(1)*ln(Lehmer)*sin(1)^2 2100983224980908 b008 -3+Sin[E^(1/9)] 2100983226275070 a007 Real Root Of 520*x^4-831*x^3-20*x^2-714*x-15 2100983228260959 r005 Im(z^2+c),c=-59/110+2/53*I,n=26 2100983233995337 a007 Real Root Of 459*x^4+975*x^3+309*x^2+824*x+466 2100983242673238 r005 Re(z^2+c),c=-11/122+23/42*I,n=21 2100983266450802 r005 Im(z^2+c),c=-119/122+12/55*I,n=57 2100983269296163 m007 (-2*gamma+2/5)/(-1/3*gamma-ln(2)-1/6*Pi+5) 2100983277517128 a007 Real Root Of -380*x^4-989*x^3-690*x^2-385*x+469 2100983279364673 a007 Real Root Of 106*x^4-108*x^3-693*x^2-139*x-300 2100983280114903 a007 Real Root Of -436*x^4-589*x^3+365*x^2-215*x+970 2100983293604303 h001 (3/8*exp(1)+7/8)/(2/7*exp(1)+1/8) 2100983302725996 a007 Real Root Of 421*x^4+633*x^3-517*x^2-164*x-395 2100983308090564 a003 -1-2*cos(5/18*Pi)-cos(7/24*Pi)+cos(5/24*Pi) 2100983309386676 r009 Re(z^3+c),c=-21/58+17/30*I,n=61 2100983310996580 m005 (1/2*5^(1/2)+4/11)/(4/7*Catalan+2/11) 2100983318523940 r005 Im(z^2+c),c=-123/122+13/56*I,n=63 2100983319078309 m001 BesselI(0,1)-exp(1/exp(1))+BesselI(0,2) 2100983320622046 m009 (1/4*Psi(1,1/3)+2)/(5/6*Psi(1,2/3)-2/5) 2100983320741518 r005 Im(z^2+c),c=-2/3+43/253*I,n=11 2100983324802239 m001 (exp(-1/2*Pi)+BesselI(1,1))/(Otter+Sarnak) 2100983327087214 a007 Real Root Of 59*x^4-345*x^3-590*x^2+800*x-64 2100983331789331 a007 Real Root Of -564*x^4-847*x^3+534*x^2-763*x-826 2100983344199037 a007 Real Root Of 440*x^4+657*x^3-394*x^2+109*x-512 2100983344543615 m001 1/GAMMA(11/12)^2/exp(Backhouse)*Zeta(9)^2 2100983355339777 r005 Im(z^2+c),c=2/25+7/36*I,n=12 2100983360339532 r005 Im(z^2+c),c=-7/10+33/166*I,n=35 2100983360664616 r002 2th iterates of z^2 + 2100983362554949 a003 sin(Pi*8/95)*sin(Pi*30/101) 2100983364034157 r005 Im(z^2+c),c=-1/7+5/18*I,n=17 2100983371056071 m001 (-BesselK(1,1)+Trott)/(5^(1/2)+gamma) 2100983379298694 s002 sum(A061557[n]/(n^2*2^n-1),n=1..infinity) 2100983385454590 l006 ln(597/4880) 2100983388837048 m001 (Riemann3rdZero+Sierpinski)/(1-Riemann1stZero) 2100983392450665 m001 1/ln(GAMMA(11/12))*DuboisRaymond^2/gamma^2 2100983393657559 a007 Real Root Of -487*x^4-703*x^3+519*x^2-519*x-412 2100983418560705 a007 Real Root Of -718*x^4-956*x^3+580*x^2-869*x+738 2100983423285496 a005 (1/sin(104/229*Pi))^956 2100983428590411 r005 Im(z^2+c),c=-27/58+18/49*I,n=38 2100983453313216 r009 Re(z^3+c),c=-9/74+45/46*I,n=10 2100983457175295 r005 Re(z^2+c),c=-5/29+13/32*I,n=42 2100983471074380 r005 Im(z^2+c),c=-7/110+11/40*I,n=3 2100983477731135 m005 (1/2*Zeta(3)-2)/(5/8*3^(1/2)-5/12) 2100983478643491 m001 1/exp(cos(1))^2*PrimesInBinary/sin(Pi/12)^2 2100983480274015 g006 Psi(1,6/7)+1/2*Pi^2-Psi(1,3/11)-Psi(1,2/7) 2100983480316536 m005 (1/2*3^(1/2)+5/12)/(-1/24+7/24*5^(1/2)) 2100983484433282 r002 16th iterates of z^2 + 2100983502732675 a007 Real Root Of -245*x^4-539*x^3-110*x^2-382*x-542 2100983504502042 a001 3/2161*18^(47/50) 2100983529574063 s002 sum(A222988[n]/(exp(n)+1),n=1..infinity) 2100983534714060 r008 a(0)=0,K{-n^6,-21+4*n-26*n^2+48*n^3} 2100983539516650 r002 56th iterates of z^2 + 2100983545347489 m001 FibonacciFactorial*Paris/Stephens 2100983560556483 m001 (Pi-DuboisRaymond)/(OneNinth-Riemann1stZero) 2100983563920756 a007 Real Root Of -335*x^4-534*x^3+700*x^2+702*x-40 2100983565916626 r005 Im(z^2+c),c=-43/110+8/23*I,n=21 2100983568476799 a001 55/1860498*76^(24/53) 2100983569192299 a001 75025/322*123^(29/31) 2100983572807710 m001 ZetaR(2)/(gamma(3)+CareFree) 2100983582680781 l006 ln(1039/8493) 2100983583339977 l006 ln(7438/9177) 2100983594903785 r005 Im(z^2+c),c=-125/122+13/53*I,n=24 2100983606557377 a001 6408/305 2100983614136391 m006 (exp(2*Pi)+3/5)/(3/5*Pi+2/3) 2100983617637820 r009 Re(z^3+c),c=-19/70+20/61*I,n=14 2100983630295778 a007 Real Root Of 497*x^4-889*x^3-597*x^2-116*x+58 2100983639973319 r009 Re(z^3+c),c=-1/32+25/57*I,n=6 2100983649187414 a001 47/377*21^(6/35) 2100983649893712 a007 Real Root Of -549*x^4-902*x^3+176*x^2-277*x+973 2100983652453937 s001 sum(exp(-4*Pi)^(n-1)*A202793[n],n=1..infinity) 2100983665877721 s002 sum(A222988[n]/(exp(n)),n=1..infinity) 2100983667473871 m001 (1-Psi(1,1/3))/(-Shi(1)+GolombDickman) 2100983668056533 m001 ln(FeigenbaumC)/Paris/cos(1)^2 2100983668236275 a007 Real Root Of -391*x^4-696*x^3+723*x^2+987*x+46 2100983669427124 m005 1/6*5^(1/2)/(3/5*exp(1)+1/7) 2100983676684206 a007 Real Root Of 361*x^4+567*x^3+93*x^2+684*x-749 2100983677730632 m005 (1/2*Pi+2/9)/(3/7*3^(1/2)+1/9) 2100983695611335 m005 (1/2*3^(1/2)-4/5)/(4/11*2^(1/2)-1/5) 2100983699255691 m001 (FeigenbaumC-Gompertz)/(Tetranacci-Totient) 2100983699740135 r005 Im(z^2+c),c=-31/70+13/36*I,n=38 2100983703188675 a007 Real Root Of -406*x^4-611*x^3+124*x^2-564*x+512 2100983703902783 m002 -2*Csch[Pi]-Log[Pi]/Pi^3 2100983706999604 m001 (CopelandErdos+Khinchin)/(Porter-ZetaP(4)) 2100983707544801 m001 (Catalan-Ei(1))/(-FeigenbaumDelta+ZetaQ(3)) 2100983714471104 b008 9*(1+E^6)*EulerGamma 2100983725271224 a001 4/233*832040^(29/42) 2100983728603955 a001 322/17711*1597^(1/51) 2100983728841542 r005 Im(z^2+c),c=-21/34+24/77*I,n=28 2100983732276849 r005 Im(z^2+c),c=-91/94+8/37*I,n=61 2100983737455818 h001 (-6*exp(2)-3)/(-9*exp(2/3)-5) 2100983747177102 l006 ln(6651/8206) 2100983764979481 a007 Real Root Of -408*x^4-757*x^3+194*x^2-435*x-841 2100983765279169 r005 Re(z^2+c),c=-17/82+4/13*I,n=19 2100983767196491 r005 Re(z^2+c),c=3/11+19/41*I,n=30 2100983772756254 h001 (2/5*exp(2)+1/11)/(1/2*exp(1)+1/11) 2100983775114765 m001 1/Magata*ln(FransenRobinson)/(3^(1/3)) 2100983779270431 a007 Real Root Of -474*x^4-982*x^3+269*x^2+107*x-834 2100983782274939 a007 Real Root Of 392*x^4-547*x^3-526*x^2-830*x-157 2100983789757214 s002 sum(A106901[n]/(16^n),n=1..infinity) 2100983792572291 m001 1/ln(Si(Pi))^2*ArtinRank2^2*GAMMA(13/24) 2100983796195660 m001 FeigenbaumAlpha*(gamma(3)-sin(1)) 2100983797772170 r005 Re(z^2+c),c=-43/122+49/52*I,n=4 2100983803677708 a001 233/199*199^(6/11) 2100983807127397 h001 (2/11*exp(1)+11/12)/(7/8*exp(2)+1/4) 2100983809860873 m001 (ln(3)+2*Pi/GAMMA(5/6))/(Niven+Porter) 2100983811245343 m001 GAMMA(3/4)^2*exp(Riemann1stZero)*Zeta(7)^2 2100983811718014 r002 57th iterates of z^2 + 2100983812011712 r002 4th iterates of z^2 + 2100983813939762 m001 (LaplaceLimit-Riemann2ndZero)/gamma(2) 2100983814137984 a007 Real Root Of 214*x^4+631*x^3+572*x^2+482*x+170 2100983814376436 h001 (11/12*exp(2)+7/12)/(5/11*exp(2)+1/7) 2100983815689987 r005 Im(z^2+c),c=-45/44+14/59*I,n=62 2100983817093140 a007 Real Root Of 545*x^4+771*x^3-501*x^2+548*x-106 2100983828778294 r008 a(0)=0,K{-n^6,58-13*n-26*n^2+29*n^3} 2100983846421546 r009 Im(z^3+c),c=-39/94+1/36*I,n=10 2100983849069942 l006 ln(442/3613) 2100983851539820 m005 (-13/8+3/8*5^(1/2))/(2/5*Pi-5) 2100983862370666 m001 exp(GAMMA(13/24))/FibonacciFactorial*sqrt(5)^2 2100983868380492 s002 sum(A222988[n]/(exp(n)-1),n=1..infinity) 2100983874249338 m001 (gamma+FeigenbaumD)/(-OrthogonalArrays+Otter) 2100983882398928 p003 LerchPhi(1/8,4,173/208) 2100983884865377 m005 (1/2*5^(1/2)-1)/(9/20+1/20*5^(1/2)) 2100983888166771 m005 (-9/10+1/10*5^(1/2))/(5*gamma+1/3) 2100983888967971 r005 Re(z^2+c),c=-5/23+3/11*I,n=16 2100983900393822 r002 5th iterates of z^2 + 2100983907139441 h001 (-4*exp(-3)-5)/(-8*exp(1)-3) 2100983913839558 m001 (Niven+PlouffeB)/(BesselK(1,1)-GAMMA(13/24)) 2100983931310617 a007 Real Root Of 592*x^4+830*x^3-962*x^2-69*x+264 2100983951824121 a007 Real Root Of 162*x^4+261*x^3+400*x^2+848*x-720 2100983954439302 r005 Im(z^2+c),c=7/58+7/40*I,n=14 2100983954990968 l006 ln(5864/7235) 2100983961753797 r005 Im(z^2+c),c=-13/14+27/127*I,n=29 2100983962336026 r009 Re(z^3+c),c=-37/64+7/47*I,n=19 2100983983881538 s002 sum(A189399[n]/(n*exp(n)+1),n=1..infinity) 2100983989941313 s002 sum(A266204[n]/((10^n-1)/n),n=1..infinity) 2100983991321442 a007 Real Root Of -316*x^4-470*x^3+148*x^2+321*x-69 2100983995454886 m001 ((3^(1/3))+GAMMA(11/24))^GAMMA(5/24) 2100983997758177 a007 Real Root Of 528*x^4+908*x^3-650*x^2-655*x-374 2100983998305487 m001 Ei(1)*OneNinth/ln(GAMMA(1/3))^2 2100983999444162 b008 ExpIntegralEi[-1/24*Sqrt[Pi]] 2100984008989309 s002 sum(A219187[n]/(n*pi^n-1),n=1..infinity) 2100984013221819 a007 Real Root Of 457*x^4+529*x^3-739*x^2+252*x-207 2100984026913695 b008 Log[(2+E)/EulerGamma] 2100984039354333 r009 Re(z^3+c),c=-21/86+45/64*I,n=40 2100984042415921 p001 sum((-1)^n/(487*n+269)/n/(6^n),n=1..infinity) 2100984048139700 m001 (cos(1)+Rabbit*Totient)/Rabbit 2100984052768268 p003 LerchPhi(1/100,5,317/232) 2100984053076208 r005 Re(z^2+c),c=-19/23+3/58*I,n=62 2100984058455872 a001 89/322*1364^(3/5) 2100984069103131 r002 8th iterates of z^2 + 2100984085430546 l006 ln(1171/9572) 2100984086511855 a001 1730726404001*1836311903^(13/17) 2100984086511855 a001 6643838879/2*6557470319842^(13/17) 2100984097941055 m001 1/ln(Paris)*FeigenbaumAlpha^2*log(1+sqrt(2))^2 2100984097995400 r005 Im(z^2+c),c=-4/13+37/59*I,n=13 2100984110186783 r002 41th iterates of z^2 + 2100984118928013 m001 FeigenbaumAlpha*HardyLittlewoodC4^ZetaR(2) 2100984119283972 r005 Re(z^2+c),c=-13/90+8/17*I,n=56 2100984130563234 r005 Im(z^2+c),c=-69/56+10/61*I,n=22 2100984133725031 m001 (BesselI(0,1)*BesselI(1,1)+Bloch)/BesselI(1,1) 2100984145003490 r002 16th iterates of z^2 + 2100984146568576 m001 (-ln(2+3^(1/2))+BesselI(1,1))/(Ei(1,1)-gamma) 2100984153927158 r008 a(0)=2,K{-n^6,35-94*n^3-19*n^2+68*n} 2100984159494730 m005 (3*gamma+2)/(2/3*2^(1/2)+5/6) 2100984164293027 m001 ZetaQ(4)^gamma(2)+Zeta(5) 2100984167736414 q001 491/2337 2100984173373119 m001 ln(Riemann3rdZero)/Backhouse/GAMMA(23/24)^2 2100984179048914 r005 Re(z^2+c),c=-11/82+31/63*I,n=41 2100984180145161 m001 (GAMMA(23/24)+Cahen)/Kolakoski 2100984190191675 a001 11/139583862445*987^(10/21) 2100984195241458 r005 Im(z^2+c),c=-59/58+1/46*I,n=7 2100984198736976 m005 (1/2*Pi+3/11)/(1/4*3^(1/2)+4/9) 2100984201258473 h001 (-4*exp(7)+1)/(-7*exp(8)-7) 2100984207706735 m001 ZetaP(2)^(BesselI(1,2)/cos(1/5*Pi)) 2100984210167914 a001 144/199*1364^(7/15) 2100984210460247 r005 Re(z^2+c),c=-13/90+8/17*I,n=54 2100984216023493 m005 (1/3*2^(1/2)-1/12)/(7/10*2^(1/2)+6/7) 2100984218652714 r009 Re(z^3+c),c=-10/31+25/54*I,n=13 2100984226214075 r005 Re(z^2+c),c=-63/110+19/34*I,n=26 2100984226265975 a007 Real Root Of 515*x^4+513*x^3-117*x^2-574*x+120 2100984227232446 l006 ln(5077/6264) 2100984228738320 l006 ln(729/5959) 2100984244715244 a007 Real Root Of 443*x^4+586*x^3-972*x^2-658*x-289 2100984246447443 m001 (KhinchinLevy+Niven)/(gamma(1)-Conway) 2100984247182964 a001 76/89*514229^(19/32) 2100984262666199 m005 (1/2*gamma-7/12)/(7/10*exp(1)-1/2) 2100984270371706 a003 sin(Pi*28/79)/cos(Pi*32/89) 2100984272330035 r008 a(0)=2,K{-n^6,8+2*n^3-8*n^2-n} 2100984272740981 r005 Re(z^2+c),c=-9/50+12/31*I,n=18 2100984275760983 r005 Im(z^2+c),c=-5/27+16/55*I,n=14 2100984280447542 m001 BesselJ(1,1)+Riemann2ndZero-ZetaP(2) 2100984287256622 r005 Im(z^2+c),c=-5/6+17/97*I,n=13 2100984287499891 m001 (-cos(1/5*Pi)+Ei(1))/(Shi(1)-cos(1)) 2100984291509843 r009 Im(z^3+c),c=-11/86+49/60*I,n=52 2100984294215138 m001 (gamma(2)+Kolakoski*Riemann2ndZero)/Kolakoski 2100984295870341 r005 Im(z^2+c),c=21/82+12/25*I,n=8 2100984297984852 r005 Im(z^2+c),c=1/13+26/43*I,n=3 2100984303266652 m001 Catalan/ln(Riemann2ndZero)^2*GAMMA(5/12) 2100984304010659 a007 Real Root Of 565*x^4+644*x^3-931*x^2+364*x-162 2100984306417702 r005 Re(z^2+c),c=31/78+7/20*I,n=33 2100984308289581 p004 log(34487/4219) 2100984310462332 m005 (23/20+1/4*5^(1/2))/(1/5*exp(1)-5/8) 2100984315764907 m001 (PrimesInBinary+Tribonacci)/(1-gamma(1)) 2100984319710484 b008 2+LogGamma[1/6]/17 2100984324019398 r005 Re(z^2+c),c=-17/70+5/33*I,n=15 2100984325557244 a007 Real Root Of 135*x^4+350*x^3+309*x^2+688*x+697 2100984333643742 r002 54th iterates of z^2 + 2100984339558953 m001 ln(Rabbit)/FibonacciFactorial^2/Trott 2100984344202724 m001 Riemann1stZero*exp(Pi)^Thue 2100984347766218 m001 1/exp(sin(Pi/5))/Artin*sqrt(2) 2100984355703046 a007 Real Root Of 340*x^4+284*x^3-928*x-193 2100984359261459 m001 GAMMA(3/4)^2*exp(Riemann1stZero)^2*exp(1)^2 2100984361326257 r002 20th iterates of z^2 + 2100984380833643 m001 (gamma+GAMMA(3/4))^(2^(1/3)) 2100984381813701 s002 sum(A100638[n]/((exp(n)+1)/n),n=1..infinity) 2100984384732771 r005 Im(z^2+c),c=-31/74+11/31*I,n=46 2100984393908968 l006 ln(1016/8305) 2100984397914548 p003 LerchPhi(1/256,6,205/232) 2100984397962981 m001 (-Zeta(1,2)+Niven)/(2^(1/3)-gamma(3)) 2100984400873812 p003 LerchPhi(1/100,4,481/183) 2100984402636066 r002 51th iterates of z^2 + 2100984405070586 r005 Im(z^2+c),c=-17/54+21/64*I,n=20 2100984406967528 b008 3/28+Zeta[Sqrt[3]] 2100984408081858 r005 Re(z^2+c),c=-99/98+13/60*I,n=18 2100984412302402 a007 Real Root Of -320*x^4+119*x^3-459*x^2+833*x+197 2100984413294855 a005 (1/cos(16/79*Pi))^88 2100984415645914 m001 TwinPrimes/Robbin/exp(GAMMA(7/24))^2 2100984417111858 r005 Im(z^2+c),c=-23/58+22/63*I,n=42 2100984431727654 a008 Real Root of x^4+9*x^2-12*x-34 2100984439675324 m001 (BesselI(0,2)-Bloch)/(HeathBrownMoroz+Thue) 2100984443526049 a007 Real Root Of 515*x^4+650*x^3-620*x^2+591*x-28 2100984445231106 r005 Re(z^2+c),c=11/94+19/49*I,n=29 2100984449598176 m001 (gamma+LambertW(1))/(-gamma(1)+Bloch) 2100984450295050 m005 (1/3*5^(1/2)+2/7)/(3/11*gamma+1/3) 2100984454168484 r009 Re(z^3+c),c=-7/58+15/17*I,n=22 2100984463983199 m001 (FellerTornier-Kolakoski)/(Otter-Rabbit) 2100984474389281 r005 Im(z^2+c),c=-29/66+20/59*I,n=13 2100984475683580 a007 Real Root Of -190*x^4-341*x^3+195*x^2+130*x-48 2100984482325325 a007 Real Root Of -596*x^4-921*x^3+611*x^2+204*x+803 2100984482372836 s002 sum(A154550[n]/(16^n),n=1..infinity) 2100984483301771 r005 Re(z^2+c),c=9/46+29/59*I,n=7 2100984486076666 m008 (3*Pi^5+1/6)/(1/2*Pi^4-5) 2100984486318320 p004 log(10651/1303) 2100984490111237 l006 ln(6217/6349) 2100984496343509 m001 exp(Paris)*Magata^2*GAMMA(13/24) 2100984498547461 r009 Im(z^3+c),c=-6/17+7/51*I,n=3 2100984507225513 r002 52th iterates of z^2 + 2100984511061923 m005 (17/20+1/4*5^(1/2))/(2/5*exp(1)-5/12) 2100984522596989 m003 -9/20+(17*Sqrt[5])/64+Tan[1/2+Sqrt[5]/2] 2100984526940939 a007 Real Root Of 677*x^4-734*x^3+732*x^2-531*x-152 2100984536841742 m001 cos(1/5*Pi)*Sierpinski-gamma(2) 2100984549510343 m001 (-ln(gamma)+MadelungNaCl)/(Psi(1,1/3)+Chi(1)) 2100984551181813 m001 ln(Pi)*Riemann1stZero^ln(3) 2100984552267590 m005 (1/2*2^(1/2)+6)/(4/9*exp(1)-8/9) 2100984553425897 a007 Real Root Of -44*x^4-943*x^3-418*x^2-592*x-116 2100984572355832 a001 521/46368*55^(19/26) 2100984598695555 m001 MadelungNaCl-Mills^ln(5) 2100984599359248 l006 ln(4290/5293) 2100984602097776 m005 (1/2*Zeta(3)-4/9)/(5/12*Catalan+4/11) 2100984606339072 r005 Im(z^2+c),c=19/126+7/44*I,n=16 2100984632034346 a007 Real Root Of -298*x^4-127*x^3+548*x^2-977*x+157 2100984633915837 a007 Real Root Of -199*x^4-688*x^3-556*x^2+916*x+211 2100984641225498 r005 Im(z^2+c),c=-49/106+10/19*I,n=42 2100984648787401 a001 89/322*3571^(9/17) 2100984650530890 a007 Real Root Of -40*x^4+813*x^3+528*x^2+320*x-98 2100984658782234 m001 exp(BesselJ(1,1))/RenyiParking^2/GAMMA(1/12)^2 2100984659713420 l004 sinh(447/80*Pi) 2100984659713422 l004 cosh(447/80*Pi) 2100984659800353 m001 GAMMA(13/24)^2*exp(MinimumGamma)^2/cosh(1)^2 2100984662798605 m005 (1/2*Pi+7/11)/(3/7*2^(1/2)+4/9) 2100984668257291 b008 -19*E^(2/9)+E 2100984669314677 a001 144/199*3571^(7/17) 2100984678585384 a007 Real Root Of -413*x^4-314*x^3+713*x^2-929*x+36 2100984687579402 p003 LerchPhi(1/512,5,288/133) 2100984692729716 a007 Real Root Of -280*x^4-735*x^3-685*x^2-871*x-167 2100984695122035 a001 1/13201*123^(29/42) 2100984699737902 a005 (1/sin(67/175*Pi))^941 2100984700217639 r009 Re(z^3+c),c=-8/29+16/47*I,n=17 2100984701731039 p003 LerchPhi(1/100,6,668/239) 2100984701920480 a007 Real Root Of -498*x^4-901*x^3+635*x^2+659*x-71 2100984717976322 m002 -E^Pi/5+Pi^3-5*ProductLog[Pi] 2100984719093392 h001 (7/10*exp(2)+9/10)/(5/6*exp(1)+5/8) 2100984719196262 m001 exp(1)*ln(Zeta(5))^2*sin(Pi/5) 2100984724625277 a001 89/322*9349^(9/19) 2100984728299692 a001 144/199*9349^(7/19) 2100984732228903 m001 GAMMA(7/12)*exp(Si(Pi))/arctan(1/2) 2100984734508525 a001 89/322*24476^(3/7) 2100984735811327 a001 89/322*64079^(9/23) 2100984735986663 a001 144/199*24476^(1/3) 2100984736007916 a001 89/322*439204^(1/3) 2100984736011537 a001 89/322*7881196^(3/11) 2100984736011547 a001 89/322*141422324^(3/13) 2100984736011547 a001 89/322*2537720636^(1/5) 2100984736011547 a001 89/322*45537549124^(3/17) 2100984736011547 a001 89/322*14662949395604^(1/7) 2100984736011547 a001 89/322*(1/2+1/2*5^(1/2))^9 2100984736011547 a001 89/322*192900153618^(1/6) 2100984736011547 a001 89/322*10749957122^(3/16) 2100984736011547 a001 89/322*599074578^(3/14) 2100984736011547 a001 89/322*33385282^(1/4) 2100984736011729 a001 89/322*1860498^(3/10) 2100984736084837 a001 89/322*103682^(3/8) 2100984736559554 a001 89/322*39603^(9/22) 2100984736999953 a001 144/199*64079^(7/23) 2100984737155678 a001 144/199*20633239^(1/5) 2100984737155679 a001 144/199*17393796001^(1/7) 2100984737155679 a001 144/199*14662949395604^(1/9) 2100984737155679 a001 144/199*(1/2+1/2*5^(1/2))^7 2100984737155679 a001 144/199*599074578^(1/6) 2100984737156720 a001 144/199*710647^(1/4) 2100984737212683 a001 144/199*103682^(7/24) 2100984737581908 a001 144/199*39603^(7/22) 2100984740143256 a001 89/322*15127^(9/20) 2100984740369231 a001 144/199*15127^(7/20) 2100984749283478 s002 sum(A099719[n]/(n^3*2^n+1),n=1..infinity) 2100984752414624 r002 8th iterates of z^2 + 2100984761629027 a001 144/199*5778^(7/18) 2100984765547302 h001 (-7*exp(6)+1)/(-2*exp(1)-8) 2100984767477279 a001 89/322*5778^(1/2) 2100984780235171 a007 Real Root Of -221*x^4-76*x^3+539*x^2-763*x-381 2100984783339899 m001 (3^(1/3)-ln(2+3^(1/2)))/Gompertz 2100984783507625 r005 Re(z^2+c),c=-2/19+23/42*I,n=18 2100984785730012 m005 (1/3*gamma+3)/(3/5*2^(1/2)-5/6) 2100984794691180 a007 Real Root Of 52*x^4-177*x^3+169*x^2-492*x+916 2100984796114923 m001 (Pi-3^(1/3))/(Zeta(1,-1)-Cahen) 2100984796877034 a007 Real Root Of -640*x^4-948*x^3+898*x^2-272*x-857 2100984807710224 r005 Im(z^2+c),c=-15/38+15/43*I,n=34 2100984813453799 l006 ln(287/2346) 2100984818908620 a005 (1/sin(62/157*Pi))^511 2100984820189525 r005 Im(z^2+c),c=-53/46+13/48*I,n=10 2100984827037966 m001 (-FeigenbaumC+ZetaQ(3))/(exp(1/exp(1))-gamma) 2100984827669210 m001 1/Zeta(5)^2/exp(Kolakoski)*sqrt(5)^2 2100984840793840 a007 Real Root Of 420*x^4+273*x^3-658*x^2+834*x-995 2100984841793191 l006 ln(7793/9615) 2100984846189235 r005 Im(z^2+c),c=-47/98+13/35*I,n=38 2100984846229468 r002 10th iterates of z^2 + 2100984849961656 m005 (1/2*3^(1/2)-5/7)/(1/8*2^(1/2)+6/11) 2100984850680472 a007 Real Root Of 46*x^4+958*x^3-190*x^2-294*x-702 2100984855408727 m001 MadelungNaCl-ln(5)+ReciprocalLucas 2100984864911687 r005 Im(z^2+c),c=-29/62+29/64*I,n=9 2100984869149332 r009 Re(z^3+c),c=-5/16+8/19*I,n=8 2100984873423020 s002 sum(A186531[n]/((exp(n)+1)*n),n=1..infinity) 2100984882830084 m009 (32/5*Catalan+4/5*Pi^2-4/5)/(4*Psi(1,3/4)-4) 2100984885182957 m005 (1/2*Catalan-1/11)/(7/9*3^(1/2)+2/5) 2100984889597114 s002 sum(A241965[n]/(n^2*10^n+1),n=1..infinity) 2100984891864025 r005 Im(z^2+c),c=-15/118+3/11*I,n=20 2100984898570684 r005 Im(z^2+c),c=-13/25+22/53*I,n=38 2100984909521010 a007 Real Root Of 487*x^4+732*x^3-656*x^2+37*x+273 2100984916527682 r005 Im(z^2+c),c=-61/106+17/47*I,n=35 2100984918436441 r005 Re(z^2+c),c=-151/114+4/5*I,n=2 2100984922426589 r005 Im(z^2+c),c=-47/102+23/63*I,n=63 2100984925866343 a001 144/199*2207^(7/16) 2100984934130049 a007 Real Root Of 15*x^4-566*x^3+243*x^2-814*x+17 2100984935683318 a007 Real Root Of 321*x^4-607*x^3+134*x^2-823*x+172 2100984939139742 m001 (ln(2)/ln(10)+Artin)/(FeigenbaumAlpha+Rabbit) 2100984939723864 r009 Re(z^3+c),c=-8/21+32/57*I,n=29 2100984946862139 m001 MinimumGamma-BesselK(0,1)-Pi 2100984958641129 m001 (Magata+ZetaP(2))/(exp(1)-ln(2^(1/2)+1)) 2100984959243848 r005 Re(z^2+c),c=-13/90+8/17*I,n=59 2100984963900356 a007 Real Root Of -127*x^4+376*x^3+901*x^2-757*x+394 2100984972421050 r005 Re(z^2+c),c=23/60+17/47*I,n=35 2100984973729224 r005 Im(z^2+c),c=-13/14+13/62*I,n=29 2100984975796382 a007 Real Root Of -541*x^4-593*x^3+698*x^2-511*x+887 2100984978639546 a001 89/322*2207^(9/16) 2100984979338386 m001 FellerTornier*PlouffeB^gamma 2100984994188404 r005 Im(z^2+c),c=-67/122+14/41*I,n=24 2100984997035880 r002 48th iterates of z^2 + 2100985009354218 r009 Im(z^3+c),c=-23/44+4/35*I,n=19 2100985009748161 m001 Zeta(9)/ln(GAMMA(11/24))*sinh(1)^2 2100985026091795 r005 Re(z^2+c),c=-5/6+3/194*I,n=48 2100985027194747 m001 Zeta(5)^GAMMA(3/4)+GAMMA(11/12) 2100985036368025 m001 1/6*ln(3)/Pi*2^(1/2)*GAMMA(3/4)*3^(2/3) 2100985036368025 m001 ln(3)/GAMMA(1/4)/(3^(1/3)) 2100985037415227 r005 Im(z^2+c),c=-13/28+15/41*I,n=42 2100985037981093 r005 Re(z^2+c),c=-24/29+4/33*I,n=6 2100985040570094 r002 4th iterates of z^2 + 2100985046809495 m001 1/TreeGrowth2nd*ln(KhintchineLevy)*cos(1) 2100985058758726 a003 cos(Pi*3/113)/sin(Pi*14/89) 2100985062811046 r005 Re(z^2+c),c=-51/56+13/55*I,n=46 2100985067667113 a007 Real Root Of -16*x^4+289*x^3+864*x^2+573*x+382 2100985067767554 a007 Real Root Of 89*x^4-151*x^3-773*x^2-323*x-401 2100985070404078 m001 Tribonacci/exp(GolombDickman)*Zeta(1/2)^2 2100985079389971 a001 521/365435296162*3^(6/17) 2100985085475115 p004 log(12809/1567) 2100985086786721 m001 (ln(5)-KomornikLoreti)/(Paris+RenyiParking) 2100985088542356 r005 Re(z^2+c),c=-5/58+35/62*I,n=36 2100985095549024 m001 (Zeta(3)-GAMMA(3/4))/(DuboisRaymond-Mills) 2100985097632685 h001 (3/11*exp(1)+4/11)/(2/3*exp(2)+1/3) 2100985101159086 m005 (1/2*2^(1/2)+5)/(11/12*5^(1/2)+2/3) 2100985106460233 r005 Re(z^2+c),c=1/9+8/17*I,n=3 2100985113031988 m001 BesselJ(0,1)*(exp(1)+Trott2nd) 2100985116387724 r005 Re(z^2+c),c=-17/14+22/127*I,n=14 2100985116800578 r005 Im(z^2+c),c=-105/106+10/57*I,n=4 2100985125369397 m001 (Rabbit+ZetaP(3))/BesselK(0,1) 2100985135804353 a007 Real Root Of -301*x^4-692*x^3-111*x^2-309*x-712 2100985137605424 a001 29/514229*46368^(27/49) 2100985138693444 l006 ln(3503/4322) 2100985139953856 m001 GAMMA(11/24)/BesselJ(0,1)/ln(cos(Pi/12))^2 2100985144327695 a003 cos(Pi*4/107)/cos(Pi*23/67) 2100985151857696 a007 Real Root Of -31*x^4-672*x^3-401*x^2+671*x-818 2100985153872377 a007 Real Root Of -284*x^4+361*x^3+776*x^2+728*x-190 2100985156752225 a007 Real Root Of -390*x^4-861*x^3+226*x^2+956*x+625 2100985164666863 a007 Real Root Of 573*x^4+995*x^3+191*x^2+932*x-822 2100985184186734 m005 (1/2*Zeta(3)+5/9)/(1/8*2^(1/2)-8/11) 2100985184198908 m001 PisotVijayaraghavan/GAMMA(7/12)/ThueMorse 2100985184629137 r005 Im(z^2+c),c=-9/23+8/23*I,n=35 2100985195426460 r005 Im(z^2+c),c=-49/58+4/25*I,n=30 2100985207679487 m001 (Khinchin+Thue)/(BesselI(0,1)+BesselK(0,1)) 2100985212459690 m001 (2^(1/2)+Si(Pi))/(-Ei(1)+PolyaRandomWalk3D) 2100985221674876 q001 853/406 2100985224448259 m001 (ln(3)-gamma(2))/(FeigenbaumMu+Niven) 2100985229201416 m001 exp(-1/2*Pi)+sin(Pi/5)^GAMMA(1/12) 2100985237350014 a001 29*89^(15/34) 2100985237357506 r005 Im(z^2+c),c=2/17+11/62*I,n=6 2100985242716003 l006 ln(993/8117) 2100985244167406 m005 (1/2*2^(1/2)+5/7)/(5/9*3^(1/2)-2/7) 2100985246574875 r002 29th iterates of z^2 + 2100985260153534 r005 Im(z^2+c),c=-125/126+14/61*I,n=64 2100985260689789 a007 Real Root Of -336*x^4-281*x^3-713*x^2+746*x-122 2100985265669347 m001 Cahen^2/ln(GaussAGM(1,1/sqrt(2)))*sin(1) 2100985269770612 r009 Re(z^3+c),c=-11/28+19/31*I,n=18 2100985271497096 a007 Real Root Of -421*x^4-676*x^3+410*x^2+327*x+811 2100985271757284 p003 LerchPhi(1/6,3,51/65) 2100985280537763 m005 (1/2*Pi-2/9)/(3/10*Catalan-11/12) 2100985280914819 a007 Real Root Of -551*x^4-930*x^3+725*x^2+387*x-276 2100985284995885 m001 (Catalan+4)/(-TwinPrimes+3) 2100985287618099 r002 3th iterates of z^2 + 2100985288765034 r005 Re(z^2+c),c=-79/98+5/49*I,n=42 2100985295036982 m001 Riemann2ndZero*Paris/ln(FeigenbaumD) 2100985312830536 h003 exp(Pi*(23*(16+11^(3/4))^(1/2))) 2100985319247195 a007 Real Root Of 146*x^4-155*x^3-513*x^2+790*x-358 2100985331697125 r005 Re(z^2+c),c=-7/54+17/37*I,n=11 2100985358641275 a007 Real Root Of 169*x^4-270*x^3-433*x^2-427*x+111 2100985359265973 r002 64th iterates of z^2 + 2100985359641849 a007 Real Root Of 549*x^4+655*x^3-899*x^2+52*x-545 2100985360636875 a007 Real Root Of 198*x^4+533*x^3+811*x^2+770*x-877 2100985368944241 a007 Real Root Of 659*x^4+891*x^3-478*x^2+953*x-465 2100985371879701 a007 Real Root Of -392*x^4-454*x^3+276*x^2-666*x+810 2100985376596024 r005 Re(z^2+c),c=-13/90+8/17*I,n=57 2100985382192214 s002 sum(A099719[n]/(n^3*2^n-1),n=1..infinity) 2100985382680567 m001 GAMMA(1/24)/ln(PisotVijayaraghavan)^2*sin(1)^2 2100985396741400 m001 MasserGramain^Psi(1,1/3)-Riemann2ndZero 2100985401428730 r005 Re(z^2+c),c=-23/110+30/37*I,n=55 2100985408318860 m001 LandauRamanujan2nd*ReciprocalLucas*Tribonacci 2100985412897790 r005 Im(z^2+c),c=-35/86+19/54*I,n=46 2100985413865272 r009 Im(z^3+c),c=-4/19+11/56*I,n=4 2100985417217724 l006 ln(706/5771) 2100985430824189 r005 Re(z^2+c),c=-7/50+12/25*I,n=46 2100985433330295 r005 Re(z^2+c),c=-13/90+8/17*I,n=62 2100985437745096 m005 (1/2*3^(1/2)-1/11)/(1/6*gamma+3/11) 2100985444362084 m005 (1/2*5^(1/2)-10/11)/(3/11*Zeta(3)+2/3) 2100985468507509 m001 Pi^ln(Pi)-ErdosBorwein 2100985473369459 r005 Im(z^2+c),c=-29/34+17/109*I,n=40 2100985476467835 m001 (exp(1/Pi)-sin(1))/(Artin+Riemann3rdZero) 2100985481015733 a007 Real Root Of -612*x^4-555*x^3+987*x^2-958*x+408 2100985482882854 s002 sum(A048909[n]/((2*n)!),n=1..infinity) 2100985482887914 a001 1/7*317811^(13/33) 2100985487601201 a007 Real Root Of -340*x^4-903*x^3-27*x^2+817*x+86 2100985488162342 r002 22th iterates of z^2 + 2100985488402803 a001 521/5*28657^(12/41) 2100985491692757 m001 ZetaP(3)/ZetaP(2)/Tribonacci 2100985503588433 m009 (2*Pi^2-3/4)/(2/5*Psi(1,1/3)+5) 2100985507032304 r009 Re(z^3+c),c=-23/82+35/54*I,n=10 2100985508328134 r005 Im(z^2+c),c=-121/94+1/56*I,n=57 2100985510737759 l006 ln(6219/7673) 2100985524152461 a003 1/2-cos(7/18*Pi)+cos(4/21*Pi)-2*cos(8/27*Pi) 2100985527107484 m001 LaplaceLimit^2/exp(GaussKuzminWirsing)/cosh(1) 2100985528437352 r009 Re(z^3+c),c=-35/106+19/39*I,n=23 2100985531023963 a007 Real Root Of 516*x^4+583*x^3-645*x^2+794*x-132 2100985533860917 r009 Re(z^3+c),c=-9/40+11/62*I,n=7 2100985541871327 s002 sum(A110121[n]/(exp(n)),n=1..infinity) 2100985544389181 r005 Re(z^2+c),c=-5/29+13/32*I,n=39 2100985545596545 a007 Real Root Of 41*x^4+867*x^3+100*x^2-352*x+360 2100985548323434 a007 Real Root Of 336*x^4+80*x^3-843*x^2+602*x-819 2100985556628716 m001 (exp(Pi)+cos(1))/(-GAMMA(5/6)+ZetaQ(4)) 2100985559879365 a001 12238/305*610^(41/42) 2100985563887248 m001 KomornikLoreti/(Rabbit^Bloch) 2100985571244551 l006 ln(1125/9196) 2100985598740584 m001 ReciprocalLucas*ZetaR(2)-StolarskyHarborth 2100985598975285 r005 Im(z^2+c),c=-35/78+1/29*I,n=15 2100985602087382 m001 (Tetranacci-ZetaQ(4))/(cos(1/5*Pi)+OneNinth) 2100985605719360 r005 Im(z^2+c),c=-73/82+6/35*I,n=18 2100985614338694 a007 Real Root Of -350*x^4-517*x^3+398*x^2+88*x+453 2100985621598906 m001 1/GAMMA(23/24)^2/GAMMA(11/24)^2/ln(GAMMA(5/6)) 2100985624153628 a007 Real Root Of 209*x^4+141*x^3-704*x^2+298*x+969 2100985624806053 r005 Im(z^2+c),c=-39/98+13/36*I,n=14 2100985627245938 a007 Real Root Of 521*x^4+994*x^3+105*x^2+689*x+51 2100985628774387 m001 (1+Catalan)/(-ln(5)+ArtinRank2) 2100985629207234 m008 (1/3*Pi^6+5/6)/(5*Pi^5-5/6) 2100985629832902 a007 Real Root Of -490*x^4-563*x^3+906*x^2-277*x-255 2100985629833170 m001 (Shi(1)-ln(5))/(Pi+exp(Pi)) 2100985633739026 r009 Im(z^3+c),c=-17/74+11/58*I,n=3 2100985653735661 r009 Re(z^3+c),c=-3/106+11/29*I,n=12 2100985675150406 m001 (Pi+AlladiGrinstead)/(CareFree-Sierpinski) 2100985680299904 r002 10th iterates of z^2 + 2100985680878317 a001 3/7*18^(11/20) 2100985686031916 a008 Real Root of x^4-x^3+21*x^2-45*x-216 2100985693290374 r009 Re(z^3+c),c=-27/82+18/37*I,n=17 2100985700296738 m005 (1/2*Zeta(3)+1/4)/(3*Zeta(3)+4/9) 2100985704464717 m002 -Log[Pi]^(-1)+6*Pi^5*Log[Pi] 2100985713989527 m001 log(1+sqrt(2))*ln(FeigenbaumB)^2*sin(1)^2 2100985715958250 a007 Real Root Of -286*x^4-491*x^3+243*x^2-14*x-83 2100985717905451 a007 Real Root Of 180*x^4+260*x^3-299*x^2-553*x-938 2100985727240354 r009 Re(z^3+c),c=-23/64+23/41*I,n=43 2100985728987207 a007 Real Root Of 488*x^4+528*x^3-650*x^2+828*x-3 2100985731961437 m001 HeathBrownMoroz*Landau/Magata 2100985744618063 m001 (-Conway+FeigenbaumD)/(1+2*Pi/GAMMA(5/6)) 2100985748143813 r005 Re(z^2+c),c=-19/23+3/58*I,n=56 2100985750500209 m001 (Pi+Shi(1))/(Zeta(5)-Riemann2ndZero) 2100985757606851 m001 (BesselI(0,1)-sin(1/5*Pi))/(Cahen+Sierpinski) 2100985762564157 r005 Im(z^2+c),c=-47/98+17/46*I,n=63 2100985772429285 m001 ln(Catalan)/CopelandErdos/sqrt(Pi) 2100985777951102 a001 2139295485799/2*6557470319842^(11/17) 2100985778492650 a007 Real Root Of -933*x^4+355*x^3-525*x^2+665*x+168 2100985780178270 a005 (1/cos(9/155*Pi))^182 2100985780862509 m001 (ln(Pi)+GAMMA(5/6))/(Artin-Backhouse) 2100985782207979 a007 Real Root Of 179*x^4+162*x^3-732*x^2-909*x-664 2100985784008496 s002 sum(A249213[n]/(n*exp(n)-1),n=1..infinity) 2100985786383093 a001 123/8*17711^(31/42) 2100985786706625 r005 Re(z^2+c),c=-21/106+16/47*I,n=8 2100985790577104 m001 (GAMMA(17/24)+PrimesInBinary)/cos(1/5*Pi) 2100985792100162 g007 Psi(2,7/9)+Psi(2,4/9)-Psi(2,9/11)-Psi(2,8/9) 2100985797724059 r005 Im(z^2+c),c=-161/122+6/43*I,n=5 2100985802263477 a005 (1/cos(7/199*Pi))^874 2100985810524609 m005 (1/3*2^(1/2)-1/5)/(3/10*5^(1/2)-4/5) 2100985812232836 r005 Re(z^2+c),c=-13/90+8/17*I,n=60 2100985816331105 a007 Real Root Of -222*x^4-125*x^3+423*x^2-764*x-306 2100985826349803 m001 (MertensB3-Sarnak)/(3^(1/3)+Backhouse) 2100985830774187 l006 ln(419/3425) 2100985843725451 r009 Im(z^3+c),c=-8/19+4/45*I,n=42 2100985860521103 r009 Im(z^3+c),c=-5/11+3/61*I,n=32 2100985862371499 m004 3/2+(5*Sqrt[5]*Sin[Sqrt[5]*Pi])/(4*Pi) 2100985866863421 m001 (Zeta(1,-1)-Artin)/(Riemann3rdZero+Robbin) 2100985872084050 m005 (1/3*Pi-1/8)/(2/3*Catalan-5) 2100985873093649 m001 (Niven+QuadraticClass)/(sin(1/5*Pi)+Cahen) 2100985874252034 m001 Robbin^(MinimumGamma*Sierpinski) 2100985891725513 r005 Re(z^2+c),c=11/94+19/49*I,n=49 2100985893875078 s002 sum(A288133[n]/(n*2^n-1),n=1..infinity) 2100985902344697 r009 Re(z^3+c),c=-23/58+14/27*I,n=14 2100985909096534 r005 Im(z^2+c),c=-29/56+5/13*I,n=47 2100985913147844 r002 59th iterates of z^2 + 2100985920008776 m001 (Pi-ln(Pi)*Cahen)/ln(Pi) 2100985922046255 a007 Real Root Of 57*x^4+127*x^3+176*x^2+314*x-50 2100985925706982 r002 11th iterates of z^2 + 2100985930002105 m001 (ln(2)/ln(10)-ln(Pi))/(FeigenbaumD+MertensB3) 2100985938441360 m001 (1+Zeta(1,2))/(GAMMA(13/24)+MertensB3) 2100985944163097 r005 Re(z^2+c),c=-10/9+27/121*I,n=48 2100985957709781 r005 Re(z^2+c),c=-13/90+8/17*I,n=63 2100985964925129 m001 QuadraticClass*(exp(Pi)+ln(2)) 2100985967137400 r009 Re(z^3+c),c=-17/106+39/49*I,n=3 2100985972416065 b008 11/6+PolyLog[2,1/4] 2100985977703427 m005 (1/2*3^(1/2)-11/12)/(9/10*Catalan-7/12) 2100985981298419 a001 199/317811*144^(41/58) 2100985983150399 a005 (1/cos(29/226*Pi))^64 2100985984485943 a001 521/1346269*8^(48/59) 2100985988266162 m005 (1/3*exp(1)-2/7)/(1/3*Pi-4) 2100985990587236 l006 ln(2716/3351) 2100985991104685 a007 Real Root Of 467*x^4+567*x^3-922*x^2+209*x+668 2100985997416844 r002 21th iterates of z^2 + 2100986004463808 r009 Im(z^3+c),c=-13/82+6/29*I,n=3 2100986013822361 r005 Im(z^2+c),c=-37/56+14/53*I,n=20 2100986027994586 r005 Re(z^2+c),c=-5/38+31/52*I,n=27 2100986032663781 r002 19th iterates of z^2 + 2100986051831691 r009 Re(z^3+c),c=-11/24+25/54*I,n=12 2100986067163356 r002 7th iterates of z^2 + 2100986072192310 r005 Im(z^2+c),c=-59/122+13/33*I,n=26 2100986072838614 m005 (1/3*Catalan+2/9)/(3/4*gamma-2/11) 2100986077891096 a007 Real Root Of 733*x^4+998*x^3-792*x^2+453*x-579 2100986078614527 a001 2207/8*17711^(11/53) 2100986080419191 r005 Re(z^2+c),c=-34/27+1/23*I,n=35 2100986081872303 a007 Real Root Of 480*x^4+623*x^3-480*x^2+417*x-580 2100986085109013 m001 (Pi^(1/2)+Paris)/(3^(1/2)-sin(1)) 2100986105987166 m005 (1/2*gamma-6/11)/(3/4*5^(1/2)-5/11) 2100986111253266 m009 (2/3*Psi(1,2/3)-3/5)/(4/3*Catalan+1/6*Pi^2+4) 2100986112365897 m005 (1/2*Catalan+3/5)/(1/11*2^(1/2)+3/8) 2100986116068217 a007 Real Root Of 431*x^4+393*x^3-976*x^2+386*x+366 2100986117212255 m001 (ArtinRank2-Bloch)/(Paris+ZetaQ(3)) 2100986120164139 h001 (-9*exp(4)+6)/(-12*exp(3)+10) 2100986123057754 m006 (4/Pi+3)/(2*Pi^2+3/5) 2100986123644548 r005 Re(z^2+c),c=-7/6+31/185*I,n=30 2100986131774970 l006 ln(970/7929) 2100986132486028 r002 12th iterates of z^2 + 2100986141164460 m005 (1/2*2^(1/2)-11/12)/(1/7*3^(1/2)+3/4) 2100986156759132 m001 (FeigenbaumKappa-Robbin)/(3^(1/3)-Pi^(1/2)) 2100986161857682 m001 Champernowne*Paris-Riemann2ndZero 2100986167980834 a007 Real Root Of -257*x^4-386*x^3+534*x^2+588*x+306 2100986173888505 r005 Im(z^2+c),c=-9/14+70/169*I,n=13 2100986179932303 a007 Real Root Of -17*x^4-319*x^3+807*x^2+153*x+962 2100986189387073 a007 Real Root Of 261*x^4-660*x^3+333*x^2-522*x-131 2100986197556974 h005 exp(cos(Pi*5/43)*cos(Pi*11/53)) 2100986203217743 a007 Real Root Of 639*x^4+916*x^3-911*x^2+182*x+448 2100986215374822 a001 144/199*843^(1/2) 2100986215526146 m001 (exp(1/exp(1))+Magata)/(3^(1/2)+gamma) 2100986222840803 l006 ln(9090/9283) 2100986232178358 m001 (Trott+ZetaQ(2))/(Si(Pi)+GAMMA(3/4)) 2100986233265370 m001 1/exp(GAMMA(11/12))^2/LandauRamanujan^2/Pi^2 2100986238598427 m001 exp(Pi)^(2^(1/3))*exp(Pi)^sinh(1) 2100986240152188 m001 (MinimumGamma-Salem)/(ln(Pi)-FeigenbaumAlpha) 2100986241750656 b008 (2*Pi)/3+AiryAi[3] 2100986241994580 m001 FeigenbaumB/(BesselK(1,1)+ReciprocalFibonacci) 2100986246043911 m001 FeigenbaumC^2/CareFree^2*exp(LambertW(1))^2 2100986248009985 a003 sin(Pi*43/109)-sin(Pi*43/103) 2100986250890585 m001 (Trott2nd+ZetaQ(2))/(Pi+Sarnak) 2100986251810390 m002 Pi^3+5/(3*ProductLog[Pi])-Sinh[Pi] 2100986254731801 r005 Re(z^2+c),c=-19/90+18/61*I,n=16 2100986260307774 a007 Real Root Of 451*x^4+680*x^3-827*x^2-478*x+165 2100986273300816 a007 Real Root Of -246*x^4-193*x^3+178*x^2-828*x+478 2100986283160795 r005 Im(z^2+c),c=-77/114+15/44*I,n=62 2100986290134443 r008 a(0)=0,K{-n^6,2-5*n^3+5*n^2-9*n} 2100986294827174 a003 cos(Pi*36/83)/sin(Pi*50/113) 2100986296754564 m005 (4/5*2^(1/2)-4/5)/(gamma+1) 2100986298184598 b008 3/35+Cot[5] 2100986299730692 r009 Re(z^3+c),c=-15/118+28/31*I,n=8 2100986299889842 r009 Im(z^3+c),c=-67/122+11/23*I,n=24 2100986304185254 m008 (2/5*Pi^4-1/6)/(4/5*Pi-2/3) 2100986308217395 r005 Im(z^2+c),c=-7/6+67/250*I,n=19 2100986314839745 r005 Re(z^2+c),c=-13/90+8/17*I,n=64 2100986318652799 r005 Im(z^2+c),c=-4/7+26/87*I,n=14 2100986319752794 r002 61th iterates of z^2 + 2100986320801593 g002 Psi(3/8)-Psi(6/7)-Psi(4/7)-Psi(3/7) 2100986325266615 m002 -1+Pi^4/(2*E^Pi)+Tanh[Pi] 2100986331309570 a007 Real Root Of 67*x^4-878*x^3+689*x^2-744*x-195 2100986338294233 a007 Real Root Of -865*x^4-509*x^3-800*x^2+903*x-148 2100986340563806 r005 Re(z^2+c),c=5/106+11/48*I,n=5 2100986351895132 m001 FeigenbaumB*FeigenbaumDelta*ln(GAMMA(11/12)) 2100986360666611 l006 ln(551/4504) 2100986362304990 p001 sum((-1)^n/(529*n+47)/(6^n),n=0..infinity) 2100986368470409 m001 Ei(1)-exp(Pi)+CopelandErdos 2100986370228730 m001 gamma(1)^(GAMMA(11/12)/Pi^(1/2)) 2100986373683978 m005 (1/2*Zeta(3)+4/11)/(7/11*2^(1/2)-9/10) 2100986387791883 a007 Real Root Of -585*x^4-828*x^3+703*x^2+134*x+898 2100986389949980 a001 233/1860498*199^(30/31) 2100986395991905 l006 ln(7361/9082) 2100986408983653 m001 (GAMMA(17/24)-Kac)/(Paris-ThueMorse) 2100986411079907 a007 Real Root Of 933*x^4+459*x^3+273*x^2-692*x-155 2100986414605120 a007 Real Root Of 98*x^4-180*x^3-971*x^2-716*x-797 2100986415347399 m004 -25*Pi-5*Sqrt[5]*Pi+(750*Sec[Sqrt[5]*Pi])/Pi 2100986418054430 r005 Im(z^2+c),c=3/17+13/24*I,n=11 2100986418807744 m001 Riemann2ndZero-Trott2nd^GAMMA(3/4) 2100986423167391 r005 Re(z^2+c),c=11/56+10/19*I,n=14 2100986432914838 r002 10th iterates of z^2 + 2100986434492593 r009 Re(z^3+c),c=-1/9+47/58*I,n=9 2100986435647692 a001 76/1597*13^(11/19) 2100986437571654 p004 log(23599/2887) 2100986441379262 r005 Re(z^2+c),c=21/58+11/39*I,n=30 2100986442993003 r005 Re(z^2+c),c=19/106+1/28*I,n=2 2100986445139207 r005 Re(z^2+c),c=1/3+21/58*I,n=4 2100986447891479 a007 Real Root Of -568*x^4-523*x^3+885*x^2-955*x+304 2100986451703565 m001 Ei(1,1)+ReciprocalLucas-StolarskyHarborth 2100986455300976 a007 Real Root Of 309*x^4+66*x^3-918*x^2+193*x-951 2100986464146063 m005 (1/2*exp(1)+7/8)/(1/11*Pi+7/9) 2100986475719761 r005 Re(z^2+c),c=1/3+15/56*I,n=17 2100986476059995 m001 BesselI(0,1)^ArtinRank2*Grothendieck 2100986479625134 m004 1+ProductLog[Sqrt[5]*Pi]/2+Sin[Sqrt[5]*Pi]/2 2100986484983998 r004 Re(z^2+c),c=-9/38-4/17*I,z(0)=-1,n=12 2100986486004073 m001 AlladiGrinstead*(MinimumGamma-Zeta(3)) 2100986486282534 a007 Real Root Of -714*x^4-904*x^3+947*x^2-417*x+472 2100986496803233 r009 Re(z^3+c),c=-9/46+21/23*I,n=63 2100986499251676 m005 (1/2*3^(1/2)-6/11)/(3/10*Pi+7/12) 2100986503693718 p003 LerchPhi(1/16,2,443/200) 2100986507773197 m001 (exp(Pi)-ln(Pi))/(-Zeta(1,-1)+QuadraticClass) 2100986524881992 a007 Real Root Of 313*x^4+385*x^3-723*x^2-240*x+159 2100986524888318 h001 (-5*exp(2)+12)/(-4*exp(1)-1) 2100986527377668 a001 64079/1597*610^(41/42) 2100986531407944 m009 (1/2*Psi(1,1/3)+2/3)/(5/6*Psi(1,2/3)+1/6) 2100986538954539 r002 51i'th iterates of 2*x/(1-x^2) of 2100986540589502 l006 ln(1234/10087) 2100986542585831 m001 (FeigenbaumDelta+Weierstrass)/(Pi-ln(2)) 2100986545464583 r009 Im(z^3+c),c=-6/19+5/31*I,n=16 2100986547567211 m001 (ZetaP(4)-ZetaQ(3))/(GAMMA(7/12)+Niven) 2100986565293410 a007 Real Root Of -422*x^4-784*x^3+753*x^2+893*x-496 2100986572722525 r005 Im(z^2+c),c=-29/78+22/63*I,n=10 2100986579090394 r005 Re(z^2+c),c=-9/74+15/29*I,n=51 2100986585605845 m009 (8*Catalan+Pi^2+5/6)/(40*Catalan+5*Pi^2-1/6) 2100986590236447 a001 2139295485799/144*2^(1/2) 2100986606432429 p004 log(36923/4517) 2100986613068468 p001 sum((-1)^n/(529*n+418)/(3^n),n=0..infinity) 2100986619190260 m001 ln(2+3^(1/2))*(Pi-ln(2)/ln(10))-GAMMA(13/24) 2100986622781429 a003 sin(Pi*4/57)*sin(Pi*39/95) 2100986627243047 m001 (ln(3)+GlaisherKinkelin)/(MertensB2+Paris) 2100986631607440 a007 Real Root Of -326*x^4-137*x^3+675*x^2-821*x+377 2100986633037985 l006 ln(4645/5731) 2100986636579206 a001 89/322*843^(9/14) 2100986639771770 a007 Real Root Of -599*x^4-906*x^3+540*x^2+16*x+919 2100986647427777 a007 Real Root Of 326*x^4+778*x^3+154*x^2+65*x+320 2100986651189785 q001 362/1723 2100986651683863 m001 (-gamma+Zeta(5))/(2^(1/3)-exp(Pi)) 2100986657000538 m001 (3^(1/2)+ln(3))/(-Riemann1stZero+Robbin) 2100986680072567 m002 -13/4+Coth[Pi]*Log[Pi] 2100986685739570 l006 ln(683/5583) 2100986687414322 r005 Im(z^2+c),c=-25/18+2/207*I,n=7 2100986690479283 m001 (MinimumGamma+Otter)/(Catalan+KhinchinLevy) 2100986691829143 r002 22th iterates of z^2 + 2100986700673964 a001 17711/18*29^(10/11) 2100986704031973 a007 Real Root Of 293*x^4+464*x^3-305*x^2+134*x+222 2100986705207204 r009 Re(z^3+c),c=-15/122+5/6*I,n=26 2100986722685698 m008 (1/3*Pi^3-1/4)/(1/6*Pi^5-3) 2100986729015508 r005 Re(z^2+c),c=-13/90+8/17*I,n=61 2100986729875256 a007 Real Root Of 367*x^4+718*x^3+296*x^2+799*x-120 2100986731340298 r005 Im(z^2+c),c=-13/14+37/186*I,n=49 2100986735603342 a002 17^(7/5)+18^(7/4) 2100986736221584 m001 gamma^2/ln(CopelandErdos)^2*log(2+sqrt(3)) 2100986741653656 r008 a(0)=2,K{-n^6,5+2*n^3-6*n^2+2*n} 2100986746659590 m001 1/3-ln(Pi)*OneNinth 2100986749131277 a007 Real Root Of 509*x^4+439*x^3-765*x^2+778*x-835 2100986756205891 m001 1/FransenRobinson^2/Artin^2*ln(Paris) 2100986760820335 m005 (1/3*exp(1)-3/5)/(9/10*5^(1/2)-5/9) 2100986771321400 a007 Real Root Of 391*x^4+164*x^3-947*x^2+677*x-495 2100986775531373 r005 Im(z^2+c),c=-21/110+12/41*I,n=16 2100986793069014 a007 Real Root Of 343*x^4+618*x^3-172*x^2-261*x-741 2100986794749170 r005 Im(z^2+c),c=-63/86+11/54*I,n=8 2100986808242971 a001 141/46*123^(2/5) 2100986808496148 r009 Im(z^3+c),c=-33/106+8/49*I,n=11 2100986816478836 a003 cos(Pi*1/59)/cos(Pi*38/111) 2100986820779729 r009 Re(z^3+c),c=-1/3+12/23*I,n=14 2100986821456136 h001 (-8*exp(3/2)-1)/(-7*exp(1/2)-6) 2100986823497080 r009 Re(z^3+c),c=-3/22+46/53*I,n=10 2100986828863045 b008 EulerGamma*(2+Csch[EulerGamma]) 2100986834803352 m005 (1/4*Catalan+1/3)/(2/5*2^(1/2)-5/6) 2100986837674271 r005 Im(z^2+c),c=-14/23+17/49*I,n=58 2100986838678828 a001 610/199*199^(4/11) 2100986849408957 r005 Re(z^2+c),c=-7/50+12/25*I,n=41 2100986853471817 a007 Real Root Of -483*x^4-810*x^3+204*x^2-26*x+944 2100986865446839 m005 (1/3*Zeta(3)-1/4)/(27/10+2*5^(1/2)) 2100986870040113 m001 1/exp(GAMMA(5/24))^2*Lehmer*GAMMA(7/12)^2 2100986872833550 r005 Re(z^2+c),c=-2/17+22/49*I,n=8 2100986876469967 r004 Im(z^2+c),c=-5/46+1/4*I,z(0)=I,n=8 2100986878536765 m001 OrthogonalArrays^Mills+Landau 2100986882080367 a007 Real Root Of 227*x^4+88*x^3-983*x^2-101*x+520 2100986896371116 m001 (Zeta(1,-1)-exp(1))/(LaplaceLimit+Rabbit) 2100986898461800 l006 ln(6574/8111) 2100986901558078 m001 1/GAMMA(23/24)^2/exp(CareFree)/sqrt(5) 2100986905378052 r005 Re(z^2+c),c=-7/74+29/51*I,n=55 2100986905512762 l006 ln(815/6662) 2100986908660620 m001 (FeigenbaumC+Robbin)/KhinchinLevy 2100986909388734 m001 (exp(Pi)+3^(1/3))/(-Lehmer+PlouffeB) 2100986909865200 m003 2/5+(5*Sqrt[5])/64+4*Sech[1/2+Sqrt[5]/2] 2100986911325113 r005 Im(z^2+c),c=-15/118+3/11*I,n=23 2100986912840833 m008 (5/6*Pi-1)/(4/5*Pi^6+1) 2100986919566864 r009 Im(z^3+c),c=-6/19+5/31*I,n=17 2100986924346443 r002 32th iterates of z^2 + 2100986930391229 r005 Re(z^2+c),c=17/52+13/56*I,n=58 2100986933333114 m001 ln((2^(1/3)))^2*Riemann1stZero/Ei(1)^2 2100986939453749 r009 Re(z^3+c),c=-23/66+8/15*I,n=58 2100986948295291 a007 Real Root Of 4*x^4-87*x^3-263*x^2-140*x-18 2100986958304517 m002 Log[Pi]+Tanh[Pi]/Log[Pi]+Sech[Pi]*Tanh[Pi] 2100986970996923 m001 Catalan^2/CareFree^2/ln(sqrt(5)) 2100986979025850 m001 (-GAMMA(17/24)+Cahen)/(Si(Pi)+Zeta(3)) 2100986982661218 r005 Re(z^2+c),c=-101/106+5/32*I,n=52 2100986983304753 a007 Real Root Of -22*x^4-495*x^3-707*x^2-382*x+24 2100986984056814 m008 (1/3*Pi+2/3)/(5/6*Pi^4+2/5) 2100986993520088 m005 (1/2*Catalan+5/11)/(1/7*2^(1/2)-7/11) 2100986999267794 a007 Real Root Of 137*x^4+480*x^3+990*x^2+969*x-552 2100986999645469 p001 sum((-1)^n/(469*n+454)/(10^n),n=0..infinity) 2100987007970569 s002 sum(A044673[n]/(n^3*pi^n-1),n=1..infinity) 2100987032637981 m001 Niven+TreeGrowth2nd^GAMMA(5/6) 2100987035035912 m001 1/FeigenbaumKappa/ln(Paris)^2/cos(Pi/5)^2 2100987037914248 m001 (3^(1/3)+RenyiParking)/(LambertW(1)-ln(5)) 2100987039746283 a001 47/3*32951280099^(17/22) 2100987047567944 a003 cos(Pi*13/75)-cos(Pi*21/113) 2100987054848125 r009 Im(z^3+c),c=-13/102+22/25*I,n=6 2100987055780144 a007 Real Root Of -578*x^4-707*x^3+742*x^2-902*x-465 2100987057940631 a001 55/4870847*123^(4/31) 2100987061632146 m001 RenyiParking*exp(Porter)/cosh(1) 2100987064018635 l006 ln(947/7741) 2100987064018635 p004 log(7741/947) 2100987065067446 m001 (-RenyiParking+Sarnak)/(Psi(1,1/3)+Conway) 2100987067829427 a002 12^(7/12)-2^(10/9) 2100987083258132 r005 Im(z^2+c),c=-25/46+13/34*I,n=59 2100987088678662 r008 a(0)=2,K{-n^6,-8+5*n^3-6*n^2-4*n} 2100987094710438 a008 Real Root of x^5-35*x^4+299*x^3-101*x^2-117*x+29 2100987106323040 a007 Real Root Of -347*x^4+332*x^3-770*x^2+263*x+93 2100987115659276 a007 Real Root Of 494*x^4+330*x^3-853*x^2-611*x+162 2100987125324948 a001 13201/329*610^(41/42) 2100987129379689 a007 Real Root Of 517*x^4+862*x^3-514*x^2-233*x-300 2100987132449361 r005 Im(z^2+c),c=-19/40+7/19*I,n=48 2100987153237000 r005 Im(z^2+c),c=-15/118+3/11*I,n=26 2100987153783778 m001 HardyLittlewoodC5^(GAMMA(23/24)*Niven) 2100987156606033 r005 Im(z^2+c),c=-15/118+3/11*I,n=25 2100987156643452 a007 Real Root Of 606*x^4+999*x^3-315*x^2+381*x-352 2100987158713958 m007 (-2/5*gamma-4/5*ln(2)-2/3)/(-4*gamma+3) 2100987166046937 r009 Im(z^3+c),c=-6/19+5/31*I,n=21 2100987168647135 r009 Im(z^3+c),c=-6/19+5/31*I,n=22 2100987171870530 r009 Im(z^3+c),c=-6/19+5/31*I,n=26 2100987171879551 r009 Im(z^3+c),c=-6/19+5/31*I,n=27 2100987171916118 r009 Im(z^3+c),c=-6/19+5/31*I,n=28 2100987171918971 r009 Im(z^3+c),c=-6/19+5/31*I,n=32 2100987171919109 r009 Im(z^3+c),c=-6/19+5/31*I,n=31 2100987171919352 r009 Im(z^3+c),c=-6/19+5/31*I,n=33 2100987171919426 r009 Im(z^3+c),c=-6/19+5/31*I,n=37 2100987171919430 r009 Im(z^3+c),c=-6/19+5/31*I,n=38 2100987171919430 r009 Im(z^3+c),c=-6/19+5/31*I,n=36 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=42 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=43 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=47 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=48 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=52 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=53 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=54 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=58 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=57 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=59 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=63 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=62 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=64 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=61 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=60 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=56 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=55 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=49 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=51 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=50 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=46 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=44 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=45 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=41 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=40 2100987171919431 r009 Im(z^3+c),c=-6/19+5/31*I,n=39 2100987171919460 r009 Im(z^3+c),c=-6/19+5/31*I,n=35 2100987171919485 r009 Im(z^3+c),c=-6/19+5/31*I,n=34 2100987171921630 r009 Im(z^3+c),c=-6/19+5/31*I,n=30 2100987171925144 r009 Im(z^3+c),c=-6/19+5/31*I,n=29 2100987171958590 r009 Im(z^3+c),c=-6/19+5/31*I,n=23 2100987172073720 r009 Im(z^3+c),c=-6/19+5/31*I,n=25 2100987172477776 r009 Im(z^3+c),c=-6/19+5/31*I,n=24 2100987172857653 b008 ArcSec[(-3*(1+Pi^(-1)))/2] 2100987174947529 r005 Im(z^2+c),c=-15/118+3/11*I,n=28 2100987175055667 a003 cos(Pi*27/80)/cos(Pi*37/87) 2100987178299230 r005 Im(z^2+c),c=-15/118+3/11*I,n=22 2100987179054261 r005 Im(z^2+c),c=-15/118+3/11*I,n=29 2100987180173695 r005 Im(z^2+c),c=-15/118+3/11*I,n=31 2100987181204269 r005 Im(z^2+c),c=-15/118+3/11*I,n=34 2100987181316027 r005 Im(z^2+c),c=-15/118+3/11*I,n=32 2100987181374337 r009 Im(z^3+c),c=-6/19+5/31*I,n=20 2100987181377400 r005 Im(z^2+c),c=-15/118+3/11*I,n=37 2100987181403631 r005 Im(z^2+c),c=-15/118+3/11*I,n=40 2100987181407288 r005 Im(z^2+c),c=-15/118+3/11*I,n=43 2100987181407759 r005 Im(z^2+c),c=-15/118+3/11*I,n=46 2100987181407811 r005 Im(z^2+c),c=-15/118+3/11*I,n=45 2100987181407813 r005 Im(z^2+c),c=-15/118+3/11*I,n=48 2100987181407814 r005 Im(z^2+c),c=-15/118+3/11*I,n=49 2100987181407819 r005 Im(z^2+c),c=-15/118+3/11*I,n=51 2100987181407820 r005 Im(z^2+c),c=-15/118+3/11*I,n=52 2100987181407820 r005 Im(z^2+c),c=-15/118+3/11*I,n=54 2100987181407820 r005 Im(z^2+c),c=-15/118+3/11*I,n=57 2100987181407820 r005 Im(z^2+c),c=-15/118+3/11*I,n=55 2100987181407820 r005 Im(z^2+c),c=-15/118+3/11*I,n=60 2100987181407820 r005 Im(z^2+c),c=-15/118+3/11*I,n=63 2100987181407820 r005 Im(z^2+c),c=-15/118+3/11*I,n=64 2100987181407820 r005 Im(z^2+c),c=-15/118+3/11*I,n=62 2100987181407820 r005 Im(z^2+c),c=-15/118+3/11*I,n=61 2100987181407820 r005 Im(z^2+c),c=-15/118+3/11*I,n=58 2100987181407820 r005 Im(z^2+c),c=-15/118+3/11*I,n=59 2100987181407820 r005 Im(z^2+c),c=-15/118+3/11*I,n=56 2100987181407821 r005 Im(z^2+c),c=-15/118+3/11*I,n=53 2100987181407826 r005 Im(z^2+c),c=-15/118+3/11*I,n=50 2100987181407859 r005 Im(z^2+c),c=-15/118+3/11*I,n=47 2100987181408066 r005 Im(z^2+c),c=-15/118+3/11*I,n=42 2100987181408072 r005 Im(z^2+c),c=-15/118+3/11*I,n=44 2100987181409273 r005 Im(z^2+c),c=-15/118+3/11*I,n=41 2100987181411756 r005 Im(z^2+c),c=-15/118+3/11*I,n=39 2100987181414763 r005 Im(z^2+c),c=-15/118+3/11*I,n=38 2100987181427705 r005 Im(z^2+c),c=-15/118+3/11*I,n=35 2100987181449993 r005 Im(z^2+c),c=-15/118+3/11*I,n=36 2100987181790113 r005 Im(z^2+c),c=-15/118+3/11*I,n=33 2100987183742702 l006 ln(1079/8820) 2100987184245820 m001 exp(Niven)/Bloch^2/Salem 2100987184525688 r005 Im(z^2+c),c=-15/118+3/11*I,n=30 2100987187097751 a007 Real Root Of 438*x^4+996*x^3+x^2-567*x-493 2100987201493625 m001 (exp(1)+Kolakoski)/(Riemann1stZero+Sierpinski) 2100987203958614 r009 Im(z^3+c),c=-6/19+5/31*I,n=18 2100987204785755 r005 Im(z^2+c),c=-15/118+3/11*I,n=27 2100987204984410 s002 sum(A128449[n]/(n^3*10^n+1),n=1..infinity) 2100987210467286 r005 Im(z^2+c),c=-89/94+8/39*I,n=54 2100987216344257 a007 Real Root Of -470*x^4-427*x^3+898*x^2-989*x-844 2100987220908526 a007 Real Root Of 366*x^4+495*x^3+77*x^2+937*x-912 2100987221443624 v002 sum(1/(2^n*(19*n^2-27*n+40)),n=1..infinity) 2100987223337092 r009 Im(z^3+c),c=-6/19+5/31*I,n=19 2100987226495346 r005 Im(z^2+c),c=-1/90+10/43*I,n=7 2100987244482286 a007 Real Root Of -540*x^4-952*x^3+108*x^2-199*x+798 2100987253480885 m001 (BesselK(1,1)+GolombDickman)/(Lehmer-Salem) 2100987255156511 r002 27th iterates of z^2 + 2100987267665413 r009 Re(z^3+c),c=-11/94+30/37*I,n=62 2100987273511769 a007 Real Root Of 505*x^4+661*x^3-799*x^2+314*x+477 2100987277366715 l006 ln(1211/9899) 2100987283573362 r009 Re(z^3+c),c=-7/34+4/51*I,n=6 2100987289556331 r005 Im(z^2+c),c=-41/38+13/64*I,n=4 2100987296522055 m007 (-4/5*gamma-2)/(-2*gamma-6*ln(2)+Pi+1) 2100987308307669 a007 Real Root Of -329*x^4-439*x^3-68*x^2-924*x+698 2100987311064783 r005 Im(z^2+c),c=-37/44+10/63*I,n=47 2100987314360777 m001 RenyiParking^(GAMMA(19/24)/Trott) 2100987343251416 r005 Im(z^2+c),c=-15/118+3/11*I,n=24 2100987349184831 h001 (-9*exp(-1)-8)/(-3*exp(1/2)+5) 2100987357369305 a001 3571*13^(38/55) 2100987360472572 m001 RenyiParking/ln(KhintchineLevy)/(3^(1/3))^2 2100987362356988 m005 (1/3*Zeta(3)-2/9)/(9/11*Catalan+1/10) 2100987364299614 a005 (1/sin(82/181*Pi))^1122 2100987368642662 r005 Re(z^2+c),c=-31/122+1/59*I,n=14 2100987368889730 r002 15th iterates of z^2 + 2100987369593747 m001 (exp(Pi)+Artin)/(Landau+Stephens) 2100987374514391 m001 Salem^2*ln(Champernowne)/GAMMA(19/24)^2 2100987383982042 r005 Im(z^2+c),c=-5/8+80/253*I,n=41 2100987385080779 a007 Real Root Of -348*x^4-559*x^3-148*x^2-978*x+195 2100987391012859 r004 Re(z^2+c),c=1/18+3/19*I,z(0)=exp(7/8*I*Pi),n=6 2100987391636331 m001 1/Ei(1)*exp(GolombDickman)*Zeta(1/2)^2 2100987394632869 a007 Real Root Of -639*x^4-936*x^3+474*x^2-395*x+848 2100987396437171 m001 FibonacciFactorial/(FellerTornier^PlouffeB) 2100987400925213 m005 (1/2*3^(1/2)+4/5)/(6*2^(1/2)-5/9) 2100987407151690 m001 (Champernowne*Sarnak-FeigenbaumD)/Champernowne 2100987420962455 m001 (3^(1/3)-Zeta(1,-1))/BesselJ(0,1) 2100987433010262 a007 Real Root Of -x^4+62*x^3-901*x^2+857*x-436 2100987434434336 b008 ArcCsc[(-4+Sqrt[5])*E] 2100987435048234 r005 Re(z^2+c),c=-9/32+25/41*I,n=42 2100987435958417 a001 4250681/48*514229^(16/17) 2100987437101042 a001 322/17711*6557470319842^(16/17) 2100987438410257 r009 Re(z^3+c),c=-7/66+33/40*I,n=52 2100987447159462 r005 Re(z^2+c),c=11/102+38/61*I,n=53 2100987450975932 a007 Real Root Of 531*x^4+672*x^3-959*x^2+238*x+619 2100987452247743 r005 Re(z^2+c),c=7/66+16/43*I,n=43 2100987456907367 r009 Im(z^3+c),c=-8/19+4/45*I,n=36 2100987457732204 r009 Re(z^3+c),c=-17/106+27/34*I,n=3 2100987463291964 r005 Im(z^2+c),c=-17/14+5/182*I,n=41 2100987464108130 q001 3/14279 2100987467279587 r009 Im(z^3+c),c=-8/19+4/45*I,n=41 2100987481021231 m005 (Pi-1/6)/(Catalan+1/2) 2100987482820138 m001 Zeta(1,2)*Kolakoski*exp(Zeta(5)) 2100987482935751 m001 (PolyaRandomWalk3D+ThueMorse)/(3^(1/2)+Si(Pi)) 2100987490306685 a001 4181/521*123^(1/5) 2100987498888455 a001 321/8*1836311903^(16/17) 2100987504272011 r009 Re(z^3+c),c=-1/30+28/53*I,n=26 2100987507109456 a007 Real Root Of -107*x^4+225*x^3+542*x^2-872*x-53 2100987507232758 m005 (1/2*gamma+7/9)/(-9/88+3/11*5^(1/2)) 2100987511500527 r005 Re(z^2+c),c=-5/52+18/35*I,n=14 2100987512006913 b008 5+(-3/2+EulerGamma)*Pi 2100987521108750 r005 Re(z^2+c),c=-5/74+35/58*I,n=48 2100987527868420 r005 Im(z^2+c),c=-39/98+7/18*I,n=12 2100987530307768 s002 sum(A049575[n]/(pi^n+1),n=1..infinity) 2100987531150373 s002 sum(A049575[n]/(pi^n),n=1..infinity) 2100987531994489 s002 sum(A049575[n]/(pi^n-1),n=1..infinity) 2100987533225393 m004 12-Cos[Sqrt[5]*Pi]+5*Log[Sqrt[5]*Pi] 2100987537597913 l006 ln(1929/2380) 2100987541377777 b008 E^3+Tanh[GoldenRatio] 2100987549113568 m005 (1/2*exp(1)+6/7)/(1/12*Catalan-2/11) 2100987556210493 r002 46th iterates of z^2 + 2100987556617309 r005 Im(z^2+c),c=-35/66+23/61*I,n=19 2100987559669310 r005 Im(z^2+c),c=-11/23+3/8*I,n=23 2100987574012844 r005 Im(z^2+c),c=-113/126+11/56*I,n=21 2100987575586188 r005 Im(z^2+c),c=-11/29+23/50*I,n=10 2100987578083117 r009 Im(z^3+c),c=-19/25+16/31*I,n=3 2100987579823033 m001 (GAMMA(17/24)-MertensB3)/(Zeta(5)+GAMMA(3/4)) 2100987580369315 r002 33th iterates of z^2 + 2100987584994805 m001 (gamma(3)-gamma)/(-FeigenbaumB+FeigenbaumMu) 2100987599248705 m001 (MertensB1-StronglyCareFree)/(ln(Pi)+Conway) 2100987600354711 m005 (1/3*5^(1/2)+1/5)/(7/12*2^(1/2)-3/8) 2100987601978643 r009 Im(z^3+c),c=-6/19+5/31*I,n=15 2100987605752048 a007 Real Root Of 25*x^4+549*x^3+479*x^2-427*x-121 2100987609951880 m001 (LandauRamanujan2nd-Trott)/exp(1) 2100987612325788 r005 Re(z^2+c),c=-13/90+8/17*I,n=58 2100987623783501 m005 (1/3*3^(1/2)-1/5)/(8/9*Zeta(3)-8/9) 2100987625644637 m006 (1/2*Pi^2+2)/(1/4*Pi^2+5/6) 2100987625644637 m008 (1/2*Pi^2+2)/(1/4*Pi^2+5/6) 2100987625644637 m009 (1/2*Pi^2+2)/(1/4*Pi^2+5/6) 2100987633610334 a007 Real Root Of -765*x^4-997*x^3+818*x^2-790*x+389 2100987642187384 s001 sum(exp(-4*Pi/5)^n*A056633[n],n=1..infinity) 2100987643737793 m001 (Lehmer+PrimesInBinary)/(Pi+(1+3^(1/2))^(1/2)) 2100987654365573 a007 Real Root Of -428*x^4-801*x^3+611*x^2+932*x+172 2100987661154326 g002 Psi(5/12)-Psi(9/11)-Psi(7/11)-Psi(5/11) 2100987678392691 a007 Real Root Of -801*x^4+233*x^3-39*x^2+824*x-172 2100987687046938 a007 Real Root Of 239*x^4+844*x^3+634*x^2-701*x-15 2100987687229300 r002 25th iterates of z^2 + 2100987690647832 p001 sum((-1)^n/(301*n+271)/n/(8^n),n=1..infinity) 2100987693668341 m005 (2*Catalan+2/5)/(1/4*Catalan+5/6) 2100987694953602 m001 1/FransenRobinson/Cahen*ln(MinimumGamma) 2100987696167953 r009 Im(z^3+c),c=-23/60+7/57*I,n=15 2100987698379945 a001 2/13*377^(26/59) 2100987706755327 m001 ln(BesselK(1,1))^2/LaplaceLimit*cos(1) 2100987709264160 m005 (1/2*gamma+9/11)/(1/10*3^(1/2)-7/10) 2100987720336221 r005 Re(z^2+c),c=-7/34+44/61*I,n=7 2100987733163822 m001 (Zeta(1/2)+Backhouse)/(1+Zeta(5)) 2100987735290080 r005 Re(z^2+c),c=35/106+13/40*I,n=26 2100987744553676 r005 Im(z^2+c),c=19/102+4/29*I,n=12 2100987745175181 m001 FeigenbaumDelta^KomornikLoreti/RenyiParking 2100987745552186 r009 Re(z^3+c),c=-37/110+27/55*I,n=16 2100987746386337 r009 Re(z^3+c),c=-7/62+51/61*I,n=30 2100987754511265 m001 1/2/Si(Pi)/GAMMA(17/24) 2100987754512930 m001 (2^(1/3)+Si(Pi))/(Mills+ZetaP(3)) 2100987760181162 s002 sum(A237935[n]/((2^n-1)/n),n=1..infinity) 2100987764709243 m001 (Zeta(5)-Zeta(1/2))/(gamma(3)+KhinchinLevy) 2100987771379392 a007 Real Root Of 436*x^4+572*x^3-691*x^2-214*x-590 2100987774644062 r009 Re(z^3+c),c=-17/52+23/50*I,n=3 2100987776092720 m001 FibonacciFactorial/Zeta(1/2)*Riemann3rdZero 2100987781169818 a007 Real Root Of 234*x^4+686*x^3+636*x^2+8*x-988 2100987782028195 m001 gamma^Bloch/(gamma^MasserGramainDelta) 2100987789217677 m001 (-Cahen+Tribonacci)/(LambertW(1)+gamma(3)) 2100987803632920 r005 Im(z^2+c),c=-31/30+15/61*I,n=59 2100987821893992 a007 Real Root Of 924*x^4+700*x^3+41*x^2-523*x-107 2100987833126502 a007 Real Root Of 372*x^4+885*x^3-132*x^2-920*x-391 2100987836957538 a007 Real Root Of -48*x^4+260*x^3+359*x^2-553*x+600 2100987851801653 a007 Real Root Of -492*x^4-904*x^3+616*x^2+707*x-31 2100987860115524 m005 (1/2*Catalan+5/11)/(2/7*Zeta(3)-7/9) 2100987865062195 r005 Re(z^2+c),c=-61/86+1/16*I,n=2 2100987869564527 m001 ln(LaplaceLimit)^2/Kolakoski*Paris 2100987885409531 a007 Real Root Of 385*x^4-844*x^3+319*x^2-925*x-217 2100987892869582 a003 cos(Pi*9/104)-cos(Pi*5/46) 2100987894367093 m005 (1/2*gamma+3)/(1/7*3^(1/2)-1/11) 2100987919837355 r005 Re(z^2+c),c=21/62+4/21*I,n=13 2100987925356750 q001 1914/911 2100987932845540 m001 2^(1/3)+ln(Pi)-GaussKuzminWirsing 2100987932845540 m001 GaussKuzminWirsing-(2^(1/3))-ln(Pi) 2100987941314703 a007 Real Root Of 259*x^4+275*x^3+238*x^2-412*x+73 2100987942960194 m005 (1/2*Pi+3/5)/(1/12*3^(1/2)+8/9) 2100987946033824 a001 11*(1/2*5^(1/2)+1/2)^25*7^(1/15) 2100987959955613 r009 Re(z^3+c),c=-27/106+17/61*I,n=12 2100987971518448 a007 Real Root Of 329*x^4+581*x^3-81*x^2-112*x-900 2100987977232695 m001 LambertW(1)^(3^(1/2))/Grothendieck 2100987986723287 m003 1/240+Sqrt[5]/16+Tan[1/2+Sqrt[5]/2] 2100988005154335 a001 199/6557470319842*46368^(14/23) 2100988008138150 m001 (1-3^(1/3))/(-LaplaceLimit+ZetaP(2)) 2100988008807202 m001 GAMMA(11/24)/(2^(1/3))^2*ln(sin(1)) 2100988023428862 s002 sum(A023202[n]/(16^n),n=1..infinity) 2100988025459071 s002 sum(A049436[n]/(16^n),n=1..infinity) 2100988029045989 m001 (HardyLittlewoodC5+OneNinth)/(Conway-Shi(1)) 2100988029113012 a001 192900153618/5*233^(11/15) 2100988035165498 a007 Real Root Of 46*x^4+928*x^3-812*x^2-106*x-428 2100988042671763 l006 ln(132/1079) 2100988047524127 r005 Re(z^2+c),c=17/54+13/58*I,n=42 2100988047798960 a007 Real Root Of -345*x^4-798*x^3-269*x^2+179*x+885 2100988051225024 r005 Im(z^2+c),c=-109/106+7/30*I,n=19 2100988055024045 m001 MertensB1^2*ln(Conway)*OneNinth^2 2100988073966753 r009 Im(z^3+c),c=-6/19+5/31*I,n=10 2100988074517826 m001 Lehmer/GaussKuzminWirsing*OneNinth 2100988074517826 m001 OneNinth/GaussKuzminWirsing*Lehmer 2100988093096727 m005 (1/2*Zeta(3)+1)/(2/11*2^(1/2)-1/3) 2100988098249439 m001 HeathBrownMoroz-Riemann2ndZero+Trott 2100988105755424 m001 (OrthogonalArrays+Paris)/(Zeta(5)-arctan(1/3)) 2100988106431698 h001 (-7*exp(-2)+4)/(-9*exp(2/3)+3) 2100988110556708 r005 Re(z^2+c),c=13/50+11/57*I,n=9 2100988111103970 m001 Mills^(2/3*Pi*3^(1/2)/GAMMA(2/3)*Zeta(5)) 2100988116004804 m001 (ErdosBorwein-Tribonacci)/(arctan(1/2)+Cahen) 2100988143361340 a007 Real Root Of -37*x^4-827*x^3-997*x^2+948*x-305 2100988143894869 r005 Im(z^2+c),c=-25/34+9/53*I,n=22 2100988143988524 l006 ln(6929/8549) 2100988148757048 m001 (ln(Pi)-Ei(1))/(FeigenbaumMu+ZetaQ(4)) 2100988155936537 m001 sin(Pi/12)^2*Zeta(9)/exp(sqrt(3))^2 2100988167348007 m001 (Paris-Sierpinski)/(gamma(2)-GAMMA(19/24)) 2100988169832459 m001 (Pi-Zeta(1,2))/(ErdosBorwein-Riemann2ndZero) 2100988173947399 m001 (Pi^(1/2)-AlladiGrinstead)/(Pi+3^(1/3)) 2100988181748844 m005 (1/2*exp(1)+5/11)/(6/11*Catalan+4/11) 2100988182796688 r009 Re(z^3+c),c=-13/64+1/19*I,n=9 2100988190183361 r009 Re(z^3+c),c=-13/64+1/19*I,n=10 2100988190673771 r009 Re(z^3+c),c=-13/64+1/19*I,n=8 2100988192139888 r009 Re(z^3+c),c=-13/64+1/19*I,n=11 2100988192463392 r009 Re(z^3+c),c=-13/64+1/19*I,n=12 2100988192501770 r009 Re(z^3+c),c=-13/64+1/19*I,n=13 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=20 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=21 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=22 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=23 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=24 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=31 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=32 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=33 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=34 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=35 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=36 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=42 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=43 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=44 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=45 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=46 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=47 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=48 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=49 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=50 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=52 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=54 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=41 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=40 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=39 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=38 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=37 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=30 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=29 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=28 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=27 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=26 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=25 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=19 2100988192504194 r009 Re(z^3+c),c=-13/64+1/19*I,n=18 2100988192504197 r009 Re(z^3+c),c=-13/64+1/19*I,n=17 2100988192504216 r009 Re(z^3+c),c=-13/64+1/19*I,n=16 2100988192504305 r009 Re(z^3+c),c=-13/64+1/19*I,n=15 2100988192504444 r009 Re(z^3+c),c=-13/64+1/19*I,n=14 2100988199728362 a007 Real Root Of 679*x^4+954*x^3-933*x^2-245*x-779 2100988203025087 r005 Im(z^2+c),c=-61/102+20/63*I,n=28 2100988205941513 r005 Im(z^2+c),c=-15/118+3/11*I,n=21 2100988206948318 m005 (1/3*exp(1)+2/11)/(3/8*Pi+4) 2100988211087922 m001 Landau^AlladiGrinstead*Landau^MadelungNaCl 2100988212744991 a007 Real Root Of 376*x^4+80*x^3+623*x^2-902*x-217 2100988222792033 m001 (Kolakoski+ZetaP(3))/(exp(1)+Ei(1)) 2100988223240852 r005 Im(z^2+c),c=-79/74+9/41*I,n=22 2100988231130213 r005 Im(z^2+c),c=-5/16+20/61*I,n=17 2100988233521459 a007 Real Root Of 154*x^4-847*x^3+955*x^2-119*x+889 2100988236947833 l006 ln(7132/7147) 2100988238186421 r008 a(0)=2,K{-n^6,82+61*n^3-97*n^2-55*n} 2100988246350160 r009 Re(z^3+c),c=-3/20+27/37*I,n=21 2100988252060136 a007 Real Root Of -406*x^4-951*x^3+66*x^2+893*x+676 2100988264180561 h001 (1/12*exp(1)+1/5)/(7/12*exp(1)+4/9) 2100988264960300 a007 Real Root Of -364*x^4-713*x^3-241*x^2-642*x+195 2100988278744505 a007 Real Root Of -339*x^4-490*x^3+302*x^2-356*x-20 2100988280004327 m001 (exp(1)+Zeta(3))/(Backhouse+HardyLittlewoodC5) 2100988287551296 m001 (Khinchin+Magata)/(2^(1/3)+GAMMA(13/24)) 2100988289847862 m004 -30+Sqrt[5]*Pi+3/ProductLog[Sqrt[5]*Pi] 2100988290531374 r009 Re(z^3+c),c=-27/106+17/61*I,n=16 2100988300927098 r005 Im(z^2+c),c=-73/64+7/33*I,n=25 2100988305309517 r005 Im(z^2+c),c=-141/118+11/64*I,n=8 2100988314438801 r002 40th iterates of z^2 + 2100988319101510 a007 Real Root Of -501*x^4-283*x^3-947*x^2+975*x+245 2100988322009416 m008 (2*Pi^6-1/4)/(3*Pi^5-3) 2100988322155955 a007 Real Root Of -874*x^4+109*x^3-624*x^2+727*x+183 2100988322314887 a007 Real Root Of -145*x^4+102*x^3-92*x^2+178*x-34 2100988327521958 a007 Real Root Of -424*x^4-537*x^3+156*x^2-849*x+809 2100988328828439 m005 (1/3*2^(1/2)+1/8)/(7/12*Catalan-9/11) 2100988331844706 r009 Re(z^3+c),c=-27/98+21/31*I,n=25 2100988333067978 a007 Real Root Of 661*x^4+959*x^3-638*x^2+241*x-663 2100988349001958 a007 Real Root Of -193*x^4+148*x^3+570*x^2-862*x+806 2100988361184727 r008 a(0)=0,K{-n^6,-3-41*n^3-7*n^2+46*n} 2100988361803821 r005 Im(z^2+c),c=-23/62+22/63*I,n=10 2100988367542168 a007 Real Root Of -495*x^4+765*x^3+45*x^2+642*x-143 2100988370839416 r009 Re(z^3+c),c=-17/46+17/30*I,n=40 2100988377208238 b008 1+20*Zeta[11] 2100988377934012 l006 ln(5000/6169) 2100988379021692 m001 (Tetranacci-Tribonacci)/(GAMMA(17/24)-Niven) 2100988384499315 a007 Real Root Of 400*x^4+472*x^3-953*x^2-160*x+454 2100988389838467 r005 Im(z^2+c),c=-7/10+31/176*I,n=3 2100988391063884 m005 (1/2*2^(1/2)+5/6)/(-7/24+11/24*5^(1/2)) 2100988394793627 r005 Re(z^2+c),c=5/24+7/60*I,n=6 2100988405364858 m001 (Catalan-Ei(1))/(-GAMMA(5/6)+LaplaceLimit) 2100988407989990 r005 Im(z^2+c),c=-7/31+10/33*I,n=16 2100988416639755 m002 -5+Tanh[Pi]+(6*Tanh[Pi])/Pi 2100988417463277 m001 (OneNinth-Sierpinski)/(Tribonacci-TwinPrimes) 2100988419646582 a007 Real Root Of 228*x^4+106*x^3-122*x^2-547*x-109 2100988430970570 a001 41/105937*610^(54/55) 2100988433105068 m001 GAMMA(3/4)/exp(1/Pi)*CopelandErdos 2100988434095150 h001 (-5*exp(6)+2)/(-5*exp(1)+4) 2100988448552357 m005 (2*gamma-4/5)/(3/4*Catalan+1) 2100988452265344 a007 Real Root Of 626*x^4+958*x^3-599*x^2+404*x+180 2100988453627611 m008 (Pi^6-2)/(2/5*Pi-4/5) 2100988464077573 r005 Im(z^2+c),c=-15/118+3/11*I,n=19 2100988480598523 g004 Re(GAMMA(-157/60+I*13/20)) 2100988491259931 r002 14th iterates of z^2 + 2100988494121791 a007 Real Root Of -367*x^4-694*x^3+203*x^2-115*x-423 2100988506915042 a001 3*(1/2*5^(1/2)+1/2)^10*76^(14/15) 2100988513696701 m005 (1/3*Catalan-3/4)/(1/5*Pi-5/12) 2100988515856569 a008 Real Root of x^4-x^3-42*x^2-36*x+81 2100988530157440 h001 (3/4*exp(1)+5/7)/(1/10*exp(2)+4/7) 2100988552301325 a003 -1/2+2*cos(2/27*Pi)+cos(10/27*Pi)+cos(5/12*Pi) 2100988553012954 a001 219602/17*591286729879^(20/21) 2100988553023846 a001 6643838879/34*24157817^(20/21) 2100988562948500 m001 (ln(3)+5)/(5^(1/2)+2/3) 2100988570183479 m001 (FellerTornier+Landau)/(GAMMA(11/12)-Cahen) 2100988575273262 m001 GAMMA(7/12)^MadelungNaCl*GAMMA(7/12)^ZetaQ(4) 2100988578777557 l006 ln(8071/9958) 2100988581545387 a007 Real Root Of -461*x^4-404*x^3+944*x^2-483*x+54 2100988584493032 m002 3+E^Pi+Pi^3-E^Pi*Sinh[Pi] 2100988584551137 m001 1/OneNinth^2*ln(MertensB1)^2/exp(1)^2 2100988602726075 m005 (2*exp(1)-5/6)/(-11/4+1/4*5^(1/2)) 2100988602801407 s001 sum(exp(-Pi/4)^(n-1)*A004930[n],n=1..infinity) 2100988602801407 s001 sum(exp(-Pi/4)^(n-1)*A004950[n],n=1..infinity) 2100988606905105 r002 42th iterates of z^2 + 2100988620883639 r009 Re(z^3+c),c=-27/106+17/61*I,n=19 2100988624758038 m005 (1/2*Pi+7/10)/(4*Zeta(3)+6) 2100988631122308 r009 Re(z^3+c),c=-27/106+17/61*I,n=20 2100988631373154 m001 (TwinPrimes+ZetaP(3))/(Pi+FeigenbaumB) 2100988634579654 r009 Re(z^3+c),c=-27/106+17/61*I,n=23 2100988634821266 r009 Re(z^3+c),c=-27/106+17/61*I,n=22 2100988634975470 r009 Re(z^3+c),c=-27/106+17/61*I,n=26 2100988635002030 r009 Re(z^3+c),c=-27/106+17/61*I,n=29 2100988635003023 r009 Re(z^3+c),c=-27/106+17/61*I,n=30 2100988635003238 r009 Re(z^3+c),c=-27/106+17/61*I,n=33 2100988635003245 r009 Re(z^3+c),c=-27/106+17/61*I,n=32 2100988635003267 r009 Re(z^3+c),c=-27/106+17/61*I,n=36 2100988635003269 r009 Re(z^3+c),c=-27/106+17/61*I,n=39 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=40 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=42 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=43 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=46 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=49 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=50 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=52 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=53 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=56 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=59 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=62 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=60 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=63 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=64 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=61 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=58 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=57 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=55 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=54 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=51 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=48 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=47 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=45 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=44 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=41 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=37 2100988635003270 r009 Re(z^3+c),c=-27/106+17/61*I,n=38 2100988635003271 r009 Re(z^3+c),c=-27/106+17/61*I,n=35 2100988635003281 r009 Re(z^3+c),c=-27/106+17/61*I,n=34 2100988635003518 r009 Re(z^3+c),c=-27/106+17/61*I,n=31 2100988635005455 r009 Re(z^3+c),c=-27/106+17/61*I,n=27 2100988635006932 r009 Re(z^3+c),c=-27/106+17/61*I,n=28 2100988635034428 r009 Re(z^3+c),c=-27/106+17/61*I,n=25 2100988635135929 r009 Re(z^3+c),c=-27/106+17/61*I,n=24 2100988638102266 r009 Re(z^3+c),c=-27/106+17/61*I,n=21 2100988643121146 r009 Re(z^3+c),c=-13/64+1/19*I,n=7 2100988647480985 m001 (ln(3)-Kolakoski)/(OneNinth+Totient) 2100988648251017 r009 Re(z^3+c),c=-27/106+17/61*I,n=17 2100988649827127 a007 Real Root Of 50*x^4-967*x^3+750*x^2-894*x-230 2100988652061059 m009 (2*Psi(1,1/3)+1/4)/(1/3*Psi(1,3/4)-3/4) 2100988668711320 m005 (3/4*Pi-1/4)/(3*Pi+3/5) 2100988668711320 m006 (3/4*Pi-1/4)/(3*Pi+3/5) 2100988668711320 m008 (3/4*Pi-1/4)/(3*Pi+3/5) 2100988677490472 r002 36th iterates of z^2 + 2100988678172344 r005 Re(z^2+c),c=-19/106+18/49*I,n=4 2100988679981134 r009 Re(z^3+c),c=-19/50+21/37*I,n=35 2100988683823575 r009 Re(z^3+c),c=-27/106+17/61*I,n=18 2100988685603651 a007 Real Root Of -479*x^4-939*x^3-367*x^2-731*x+709 2100988689785463 m001 (gamma-ln(2+3^(1/2)))/(BesselI(1,1)+Otter) 2100988691225828 p004 log(11681/1429) 2100988694345550 m001 BesselI(0,1)*BesselJZeros(0,1)^gamma 2100988700564971 q001 595/2832 2100988700564971 r002 2th iterates of z^2 + 2100988700564971 r002 2th iterates of z^2 + 2100988700564971 r002 2th iterates of z^2 + 2100988708007916 m001 (Si(Pi)+FeigenbaumDelta)/(Salem+Tetranacci) 2100988710407586 m001 1/Trott*GolombDickman/exp(Zeta(7)) 2100988718193099 m005 (1/2*exp(1)-5/8)/(9/11*Catalan-2/5) 2100988721176595 a007 Real Root Of -26*x^4-588*x^3-838*x^2+861*x+868 2100988724255006 m005 (1/2*Zeta(3)-1/11)/(5/11*Pi+1) 2100988734880741 m002 3+Cosh[Pi]+6*ProductLog[Pi]*Tanh[Pi] 2100988737130241 a007 Real Root Of 643*x^4+907*x^3-693*x^2+496*x-16 2100988742263565 r009 Im(z^3+c),c=-65/126+35/48*I,n=3 2100988747068890 a007 Real Root Of 340*x^4+248*x^3-561*x^2+609*x-569 2100988747853573 m001 (BesselK(1,1)+FellerTornier)/BesselJ(1,1) 2100988748366863 a007 Real Root Of -681*x^4-702*x^3+860*x^2-946*x+975 2100988753668357 a007 Real Root Of 532*x^4+710*x^3-704*x^2+225*x-201 2100988758470527 m001 ln(FeigenbaumD)*Backhouse^2*Zeta(9)^2 2100988765866155 a001 5473/2*47^(9/17) 2100988771789326 m005 (1/3*Zeta(3)-1/4)/(4/7*2^(1/2)-1/11) 2100988772633649 s002 sum(A128029[n]/(n^2*exp(n)+1),n=1..infinity) 2100988779379374 m002 E^Pi+ProductLog[Pi]/6-Sinh[Pi]/5 2100988786022847 r005 Im(z^2+c),c=-9/28+21/62*I,n=10 2100988791401866 a007 Real Root Of 696*x^4+795*x^3-932*x^2+807*x-379 2100988792921355 a007 Real Root Of -290*x^4+929*x^3+81*x^2+554*x+122 2100988796172885 r005 Im(z^2+c),c=-5/9+2/53*I,n=44 2100988797069412 a001 28657/11*18^(13/18) 2100988801511539 a001 47/86267571272*4807526976^(9/19) 2100988801512292 a001 47/1134903170*514229^(9/19) 2100988802587355 r005 Re(z^2+c),c=-85/62+3/41*I,n=10 2100988806277465 r002 33th iterates of z^2 + 2100988812653352 m001 (Cahen+1/2)/(3^(1/3)+4) 2100988814875114 r002 48th iterates of z^2 + 2100988819143491 a007 Real Root Of -164*x^4+130*x^3+982*x^2+372*x+848 2100988820273904 r002 36th iterates of z^2 + 2100988824653076 a007 Real Root Of -67*x^4+398*x^3+665*x^2-863*x+248 2100988832725185 s002 sum(A218348[n]/(n*exp(n)-1),n=1..infinity) 2100988837333048 m006 (3/4*Pi-1/3)/(1/5*exp(Pi)+5) 2100988838194245 l006 ln(1165/9523) 2100988839458808 m001 (1+ln(2+3^(1/2)))/(BesselJ(1,1)+LaplaceLimit) 2100988843477062 r005 Im(z^2+c),c=-33/74+13/41*I,n=5 2100988843754925 r005 Re(z^2+c),c=-31/122+1/55*I,n=10 2100988843929307 a007 Real Root Of -408*x^4-624*x^3+489*x^2+275*x+582 2100988848736571 a007 Real Root Of 43*x^4-84*x^3-18*x^2+519*x-447 2100988848970308 r005 Im(z^2+c),c=-33/118+7/22*I,n=19 2100988859077471 a001 21/24476*3571^(39/58) 2100988859129611 m006 (3*Pi^2+2/5)/(1/5*Pi+4/5) 2100988859129611 m008 (3*Pi^2+2/5)/(1/5*Pi+4/5) 2100988894484037 a007 Real Root Of 2*x^4+424*x^3+802*x^2+667*x+756 2100988896321140 m001 1/Paris^2*ln(FeigenbaumB)*GAMMA(11/12)^2 2100988905068358 r002 39th iterates of z^2 + 2100988905777784 l006 ln(3071/3789) 2100988912334938 r005 Re(z^2+c),c=-31/118+5/9*I,n=9 2100988927481109 r005 Im(z^2+c),c=15/98+7/44*I,n=6 2100988927650840 s002 sum(A182039[n]/((pi^n+1)/n),n=1..infinity) 2100988931385704 a007 Real Root Of -332*x^4-491*x^3+350*x^2+194*x+778 2100988935280811 r004 Im(z^2+c),c=-3/7+5/14*I,z(0)=-1,n=53 2100988939660612 r002 36th iterates of z^2 + 2100988939848572 l006 ln(1033/8444) 2100988945305143 b008 5*BesselY[2,1+Sqrt[2]] 2100988949874812 a001 21/64079*9349^(41/58) 2100988950825245 r005 Im(z^2+c),c=-27/22+18/101*I,n=5 2100988951618636 m001 Psi(2,1/3)/(GAMMA(3/4)+Riemann3rdZero) 2100988952187522 a005 (1/cos(13/95*Pi))^225 2100988952264247 a001 521/233*610^(17/24) 2100988955014931 a007 Real Root Of 593*x^4+947*x^3-228*x^2+579*x-549 2100988961061601 m002 -6*Pi^5*Log[Pi]+Tanh[Pi]/Log[Pi] 2100988965924641 a001 21/1149851*64079^(49/58) 2100988974901367 m001 exp(-1/2*Pi)^FransenRobinson-Riemann2ndZero 2100988976966438 r005 Re(z^2+c),c=-19/102+24/35*I,n=58 2100988983434948 r002 64th iterates of z^2 + 2100988984206062 p003 LerchPhi(1/8,2,493/219) 2100988998462267 a007 Real Root Of 307*x^4+101*x^3-940*x^2+236*x-400 2100988999543117 r002 16th iterates of z^2 + 2100989000988114 h001 (6/11*exp(1)+7/11)/(1/6*exp(1)+5/9) 2100989012712046 r005 Re(z^2+c),c=-9/122+13/19*I,n=12 2100989022368702 m001 Tribonacci^2*exp(FeigenbaumB)^2*Trott^2 2100989025167526 m001 (2^(1/3)+Psi(2,1/3))/(Kac+Riemann3rdZero) 2100989026010730 a007 Real Root Of 405*x^4+411*x^3-705*x^2+403*x-121 2100989036602257 m001 (2^(1/2)-Psi(1,1/3))/(Otter+Salem) 2100989049265756 p003 LerchPhi(1/256,2,107/49) 2100989068470074 m001 TreeGrowth2nd/sin(1/12*Pi)/cos(1/5*Pi) 2100989071288392 l006 ln(901/7365) 2100989081141360 a003 cos(Pi*27/95)/cos(Pi*23/57) 2100989082630429 q001 1/4759663 2100989091261694 r005 Im(z^2+c),c=-23/48+17/46*I,n=64 2100989112557786 r009 Re(z^3+c),c=-27/106+17/61*I,n=15 2100989115737526 a007 Real Root Of -362*x^4-720*x^3+129*x^2+290*x+416 2100989117298984 m001 Zeta(1,2)^2/ln(Champernowne)*sqrt(5)^2 2100989125465139 r002 40th iterates of z^2 + 2100989127400160 a001 33281921/8*514229^(14/17) 2100989127403011 a001 710647/144*1836311903^(14/17) 2100989128013390 a007 Real Root Of 156*x^4+86*x^3-345*x^2+170*x-362 2100989135319197 p004 log(34667/4241) 2100989137368981 g006 1/2*Pi^2-Psi(1,2/9)-Psi(1,5/6)-Psi(1,4/5) 2100989145900932 r002 5th iterates of z^2 + 2100989149128975 r005 Re(z^2+c),c=-43/44+13/63*I,n=10 2100989151793127 a007 Real Root Of 218*x^4+258*x^3-449*x^2-990*x+225 2100989159286938 r009 Im(z^3+c),c=-23/52+26/41*I,n=3 2100989159369502 m001 (Lehmer+Porter)/(cos(1)+BesselJ(1,1)) 2100989160996297 r009 Im(z^3+c),c=-10/23+1/14*I,n=23 2100989166219658 m001 (BesselJ(0,1)+Backhouse)/Shi(1) 2100989171178675 r002 2th iterates of z^2 + 2100989173422322 m001 Zeta(1,2)/ln(GAMMA(1/24))/sqrt(2) 2100989183494321 h001 (-5*exp(2/3)-1)/(-8*exp(2)+8) 2100989185269693 a007 Real Root Of -57*x^4+332*x^3+637*x^2-216*x+924 2100989197999462 m003 1/36+Sqrt[5]/16+Sec[1/2+Sqrt[5]/2] 2100989212212326 a007 Real Root Of 583*x^4+884*x^3-800*x^2+99*x+578 2100989215074715 m001 Cahen^(2/3*Pi*3^(1/2)/GAMMA(2/3))*Cahen^Thue 2100989223489540 r005 Re(z^2+c),c=-31/38+7/45*I,n=28 2100989227110225 s002 sum(A066130[n]/(n^3*2^n-1),n=1..infinity) 2100989227325867 r005 Im(z^2+c),c=-1+49/251*I,n=3 2100989234375970 r002 35th iterates of z^2 + 2100989234375970 r002 35th iterates of z^2 + 2100989241401646 m005 (7/6+1/4*5^(1/2))/(2/3*3^(1/2)-1/3) 2100989242487449 a001 1149851/5*591286729879^(11/13) 2100989242488963 a001 45537549124/5*2178309^(11/13) 2100989242489038 a001 228826127/5*1134903170^(11/13) 2100989247851868 l006 ln(769/6286) 2100989250705875 h001 (3/10*exp(1)+1/9)/(7/12*exp(2)+1/10) 2100989252138424 r009 Re(z^3+c),c=-25/106+47/50*I,n=60 2100989255469725 a001 199/1134903170*2^(6/23) 2100989258704872 a007 Real Root Of 217*x^4-606*x^3+948*x^2-110*x-71 2100989262828658 a001 9062201101803/5*4181^(11/13) 2100989263287286 p003 LerchPhi(1/3,3,71/90) 2100989268108748 l006 ln(7284/8987) 2100989271837635 m001 (1+3^(1/2))^(1/2)/cos(1)/Backhouse 2100989271837635 m001 sqrt(1+sqrt(3))/Backhouse/cos(1) 2100989276362869 r009 Im(z^3+c),c=-7/16+3/43*I,n=19 2100989277821732 r002 29th iterates of z^2 + 2100989299725937 r005 Re(z^2+c),c=-23/98+11/63*I,n=2 2100989308189511 m005 (3/4*exp(1)-2/3)/(1/6*exp(1)+1/5) 2100989309648093 a007 Real Root Of -361*x^4-340*x^3+630*x^2-296*x+478 2100989318926606 m002 -2+5/Pi+Pi^2+Sinh[Pi] 2100989327451040 r009 Re(z^3+c),c=-5/24+5/52*I,n=4 2100989328004764 m001 (2*Pi/GAMMA(5/6)-Chi(1))/(Backhouse+Kolakoski) 2100989337553618 a005 (1/cos(14/193*Pi))^1259 2100989352218824 m005 (1/2*2^(1/2)-4/11)/(7/8*Catalan+5/6) 2100989376016535 m001 (BesselK(1,1)+Rabbit)/GolombDickman 2100989381696106 a007 Real Root Of 353*x^4+315*x^3-792*x^2+176*x-91 2100989383636631 r005 Re(z^2+c),c=-3/23+13/25*I,n=16 2100989384054503 b008 -6+ArcSinh[74/3] 2100989387832602 m001 Riemann2ndZero*CareFree^ZetaQ(4) 2100989388851128 s002 sum(A026081[n]/(n*exp(n)-1),n=1..infinity) 2100989393475762 a005 (1/sin(72/167*Pi))^1984 2100989393888203 r005 Im(z^2+c),c=-7/46+16/57*I,n=15 2100989401596476 a007 Real Root Of -238*x^4-459*x^3+30*x^2-447*x-691 2100989402729174 m001 gamma(3)/(GAMMA(17/24)-HardyLittlewoodC4) 2100989404937824 m001 (sin(1)+FellerTornier)/(Otter+Sierpinski) 2100989411464333 h001 (3/10*exp(2)+2/5)/(1/7*exp(1)+6/7) 2100989412286922 r005 Im(z^2+c),c=-5/19+16/51*I,n=20 2100989415673804 a007 Real Root Of 661*x^4-275*x^3-531*x^2-287*x+85 2100989417730080 r009 Re(z^3+c),c=-65/118+33/53*I,n=23 2100989426348219 m001 (cos(1/12*Pi)-BesselK(1,1))/(Niven+Trott2nd) 2100989426496072 b008 10+(2+ArcSec[4])^2 2100989431208788 m001 (ln(2)+exp(-1/2*Pi))/(Magata+QuadraticClass) 2100989433728660 b008 1/2+EllipticK[CosIntegral[Pi]] 2100989434305912 m001 (ln(2^(1/2)+1)+Landau)/(Robbin-Totient) 2100989438248027 r004 Re(z^2+c),c=-3/14-3/8*I,z(0)=exp(1/8*I*Pi),n=8 2100989448620591 a007 Real Root Of 809*x^4+84*x^3-802*x^2-847*x+211 2100989452117190 m001 1/BesselK(1,1)*ln(FeigenbaumC)^2*sin(Pi/5)^2 2100989454681781 m001 1/BesselK(1,1)^2*ln(Trott)^2/GAMMA(13/24)^2 2100989461437209 m001 MertensB1/HardyLittlewoodC5/GaussKuzminWirsing 2100989461707249 a007 Real Root Of 327*x^4+709*x^3+721*x^2-895*x+149 2100989462758019 m001 (Zeta(3)+FransenRobinson)/(MertensB3+Stephens) 2100989466224300 r005 Re(z^2+c),c=-13/90+8/17*I,n=55 2100989470897957 m001 (1+BesselI(1,2))/(Artin+Thue) 2100989477390675 r002 29th iterates of z^2 + 2100989479009330 a005 (1/sin(94/237*Pi))^1086 2100989479869688 m001 1/3*PlouffeB^ErdosBorwein*3^(2/3) 2100989480371763 r005 Re(z^2+c),c=-15/82+49/60*I,n=27 2100989487099462 m001 exp(Tribonacci)/Magata/Zeta(1,2)^2 2100989487358847 a007 Real Root Of -947*x^4+45*x^3-727*x^2-35*x+27 2100989497590735 l006 ln(637/5207) 2100989529444053 m005 (1/2*2^(1/2)+9/10)/(1/11*2^(1/2)+7/11) 2100989529593582 r005 Im(z^2+c),c=-11/19+5/14*I,n=42 2100989530460957 r008 a(0)=2,K{-n^6,-1+15*n^3-19*n^2-3*n} 2100989531915584 a008 Real Root of (1+5*x+x^2+2*x^4-6*x^5) 2100989532224190 l006 ln(4213/5198) 2100989536632153 a007 Real Root Of -414*x^4-795*x^3+67*x^2+158*x+730 2100989538868003 a007 Real Root Of -508*x^4-751*x^3+598*x^2-562*x-887 2100989542657314 a007 Real Root Of -157*x^4-79*x^3+888*x^2+924*x+348 2100989549643536 a007 Real Root Of 613*x^4+751*x^3-830*x^2+580*x-97 2100989563242135 r009 Re(z^3+c),c=-5/32+38/45*I,n=17 2100989575368955 a007 Real Root Of -564*x^4-768*x^3+742*x^2-6*x+579 2100989578344935 m001 (gamma+exp(1/exp(1)))/(-exp(1/Pi)+ThueMorse) 2100989581096657 m001 RenyiParking/(ZetaR(2)^Otter) 2100989588243186 m001 (Catalan+Zeta(3))/(Zeta(1/2)+ZetaP(2)) 2100989596549099 q001 828/3941 2100989601111040 a007 Real Root Of 37*x^4+783*x^3+105*x^2-324*x-907 2100989635886699 m009 (3/10*Pi^2-4/5)/(48*Catalan+6*Pi^2-1/3) 2100989639294942 a003 sin(Pi*5/93)-sin(Pi*10/81) 2100989656426417 m005 (-1/3+1/6*5^(1/2))/(7/11*exp(1)+1/7) 2100989656510181 a007 Real Root Of 69*x^4+55*x^3-42*x^2-20*x-691 2100989658126965 m001 (Shi(1)+LambertW(1))/(-MertensB1+MertensB2) 2100989658274033 a001 15127/377*610^(41/42) 2100989665759867 l006 ln(1142/9335) 2100989666200819 a003 cos(Pi*7/69)-sin(Pi*31/117) 2100989684410922 r009 Re(z^3+c),c=-41/102+21/37*I,n=49 2100989686746671 a001 21/1364*1364^(21/58) 2100989690191511 r005 Re(z^2+c),c=-17/14+11/129*I,n=34 2100989690724229 a007 Real Root Of 35*x^4-339*x^3-737*x^2+660*x+814 2100989690883492 m001 (1+gamma(3))/(HeathBrownMoroz+PlouffeB) 2100989692278094 m001 (PlouffeB-Riemann2ndZero)/(FeigenbaumD-Niven) 2100989697079708 m006 (2*ln(Pi)-4)/(Pi+5) 2100989708300827 r002 37th iterates of z^2 + 2100989709291548 a007 Real Root Of 562*x^4+751*x^3-376*x^2+989*x-248 2100989719751009 m001 1/FeigenbaumAlpha/exp(Conway)*BesselJ(1,1)^2 2100989724768376 r008 a(0)=0,K{-n^6,-30-30*n^3+43*n^2-31*n} 2100989725274432 p001 sum((-1)^n/(501*n+458)/(12^n),n=0..infinity) 2100989726450972 m001 PlouffeB^Cahen*PlouffeB^Backhouse 2100989726600855 g006 -Psi(1,3/10)-Psi(1,5/8)-Psi(1,4/5)-Psi(1,2/3) 2100989735910692 m005 (1/2*Zeta(3)-11/12)/(7/12*exp(1)-1/12) 2100989743477203 m001 (Ei(1,1)+BesselJ(1,1))/(BesselI(0,2)+Thue) 2100989744333177 a001 11/21*5702887^(8/15) 2100989765336296 r005 Re(z^2+c),c=-5/122+26/49*I,n=6 2100989765593925 a007 Real Root Of 199*x^4+87*x^3-577*x^2-43*x-614 2100989768603169 r009 Re(z^3+c),c=-7/118+37/55*I,n=2 2100989776785096 a001 1364*(1/2*5^(1/2)+1/2)^9*3^(9/14) 2100989778240626 a008 Real Root of x^4-2*x^3-138*x+289 2100989778271582 r005 Re(z^2+c),c=-13/90+8/17*I,n=38 2100989780345302 a007 Real Root Of 579*x^4+770*x^3-364*x^2+791*x-872 2100989782338533 m001 (Zeta(3)-ln(2)/ln(10))/(Magata+QuadraticClass) 2100989788422726 r005 Re(z^2+c),c=27/98+9/47*I,n=25 2100989788719695 a001 7/5*21^(2/15) 2100989791229718 r005 Im(z^2+c),c=-11/10+27/125*I,n=4 2100989794601395 m001 MinimumGamma+PlouffeB^BesselK(1,1) 2100989813866880 a007 Real Root Of -242*x^4-804*x^3-748*x^2-235*x+67 2100989821752086 m001 Cahen^Paris/(Cahen^Grothendieck) 2100989823646401 r002 52th iterates of z^2 + 2100989826548965 r005 Im(z^2+c),c=-35/44+7/46*I,n=25 2100989830447118 m005 (1/2*5^(1/2)+2/5)/(6/11*3^(1/2)-2/9) 2100989831484402 a007 Real Root Of -81*x^4+68*x^3+8*x^2-600*x+913 2100989835514163 m001 (2^(1/2)+Chi(1))/(ln(Pi)+gamma(1)) 2100989840560288 a007 Real Root Of 159*x^4-110*x^3-726*x^2+55*x-798 2100989858883843 r009 Re(z^3+c),c=-8/25+17/37*I,n=33 2100989861209688 m002 -Pi/5+4/ProductLog[Pi]-Tanh[Pi] 2100989864096820 a007 Real Root Of -506*x^4-684*x^3+881*x^2+357*x+377 2100989877886038 l006 ln(505/4128) 2100989877960247 m001 GAMMA(7/12)^(BesselJZeros(0,1)/exp(1/Pi)) 2100989879469789 a007 Real Root Of -560*x^4-793*x^3+784*x^2+382*x+899 2100989883663037 r005 Re(z^2+c),c=23/110+7/58*I,n=12 2100989889894307 m006 (4/5*Pi+2/5)/(2/Pi+3/4) 2100989891480365 l006 ln(5355/6607) 2100989898634271 m001 1/Tribonacci^2*MinimumGamma^2*exp(Zeta(3)) 2100989898918595 a001 1/6643838879*76^(14/23) 2100989908237770 r002 63th iterates of z^2 + 2100989908624373 m001 (Si(Pi)+QuadraticClass)/(1+ln(2)/ln(10)) 2100989908925793 m001 1/Zeta(7)/exp(GAMMA(5/12))^2/sin(Pi/12)^2 2100989909500487 m005 (1/3*Catalan+2/3)/(1/5*Zeta(3)+2/9) 2100989913037706 a007 Real Root Of 115*x^4+194*x^3-18*x^2+21*x-318 2100989914509128 r005 Im(z^2+c),c=-25/56+13/36*I,n=37 2100989916035348 a007 Real Root Of -262*x^4+76*x^3+996*x^2-350*x+678 2100989920359492 m001 (FeigenbaumC+Salem)/(BesselI(0,1)-Zeta(1,-1)) 2100989923433708 a007 Real Root Of 25*x^4+523*x^3-66*x^2-412*x-366 2100989926853093 a007 Real Root Of 353*x^4-8*x^3-364*x^2-763*x-145 2100989927918181 m001 cos(Pi/5)^2/Niven/ln(sin(Pi/12))^2 2100989936032086 m001 GolombDickman+LandauRamanujan*GAMMA(11/24) 2100989940781991 h001 (3/7*exp(2)+3/4)/(2/9*exp(2)+2/9) 2100989944012498 r005 Im(z^2+c),c=-91/74+3/17*I,n=8 2100989944907357 m001 MasserGramainDelta*(GAMMA(3/4)+gamma(1)) 2100989953290770 m001 1/ln(GAMMA(1/6))/TwinPrimes*cosh(1)^2 2100989960430758 r008 a(0)=2,K{-n^6,-4-8*n^3+2*n^2-n} 2100989961119768 s002 sum(A136065[n]/(n^3*2^n+1),n=1..infinity) 2100989965461825 q001 1/4759661 2100989968054049 r005 Re(z^2+c),c=-17/74+22/27*I,n=24 2100989972363747 l006 ln(2873/2934) 2100989979887978 s002 sum(A283589[n]/(10^n-1),n=1..infinity) 2100989986345015 r005 Im(z^2+c),c=-1/52+11/20*I,n=3 2100989996282521 r005 Im(z^2+c),c=-53/102+13/33*I,n=30 2100990000126583 r005 Re(z^2+c),c=-3/40+26/45*I,n=39 2100990003069519 a001 7/6*1322157322203^(13/14) 2100990029251695 a007 Real Root Of -316*x^4-88*x^3-482*x^2+547*x+136 2100990033102143 r005 Im(z^2+c),c=-5/24+14/47*I,n=18 2100990042021329 r005 Im(z^2+c),c=-107/110+9/38*I,n=59 2100990044266019 r005 Im(z^2+c),c=-17/40+1/3*I,n=10 2100990061817875 m001 (exp(gamma)-ln(1+sqrt(2))*Zeta(1/2))/Zeta(1/2) 2100990065220038 a005 (1/cos(8/135*Pi))^571 2100990066050163 s001 sum(1/10^(n-1)*A130172[n]/n^n,n=1..infinity) 2100990072686237 s002 sum(A143766[n]/((3*n)!),n=1..infinity) 2100990074503106 r005 Re(z^2+c),c=-7/10+2/201*I,n=2 2100990077914982 a007 Real Root Of 457*x^4+671*x^3+254*x^2-963*x+184 2100990083234600 m001 1/exp(GAMMA(5/12))^2/Paris*Zeta(1/2) 2100990089788668 a007 Real Root Of 502*x^4+705*x^3-858*x^2-527*x-563 2100990090631284 a007 Real Root Of 20*x^4+376*x^3-890*x^2+796*x-313 2100990094710546 a001 21/1364*24476^(15/58) 2100990094881769 a007 Real Root Of -353*x^4-572*x^3+109*x^2-408*x+235 2100990099009900 q001 1061/505 2100990100979674 a001 987/199*199^(3/11) 2100990106788914 h001 (7/10*exp(2)+1/8)/(7/8*exp(1)+1/7) 2100990124295994 r009 Re(z^3+c),c=-25/122+37/42*I,n=57 2100990124441150 l006 ln(6497/8016) 2100990125315382 m009 (8/3*Catalan+1/3*Pi^2-3)/(4*Psi(1,2/3)+3/4) 2100990128751700 r009 Re(z^3+c),c=-27/106+17/61*I,n=14 2100990135977848 r005 Re(z^2+c),c=-13/122+6/11*I,n=57 2100990136393100 m001 PlouffeB^Ei(1)*Thue 2100990140170652 m001 (-Thue+ZetaP(2))/(Chi(1)+ln(3)) 2100990145164677 a007 Real Root Of -111*x^4+343*x^3+677*x^2-955*x+349 2100990153794955 l006 ln(878/7177) 2100990175843754 r009 Re(z^3+c),c=-63/110+19/62*I,n=15 2100990177358731 m008 (2*Pi^5+2/3)/(3*Pi^4-3/5) 2100990192547383 m001 (Thue+ZetaQ(4))/(3^(1/3)-Si(Pi)) 2100990193422124 r005 Im(z^2+c),c=-13/18+9/38*I,n=8 2100990196824251 m001 (GAMMA(19/24)-Bloch)/(Mills-Totient) 2100990200301955 a007 Real Root Of -248*x^4-534*x^3-47*x^2+76*x+247 2100990213066715 m001 Riemann2ndZero/(PisotVijayaraghavan^gamma(3)) 2100990213127330 r005 Im(z^2+c),c=-12/17+3/64*I,n=46 2100990214615976 m001 Trott*FransenRobinson*exp(cos(Pi/12))^2 2100990230513613 a007 Real Root Of 19*x^4+433*x^3+691*x^2-436*x-604 2100990243180631 a007 Real Root Of -550*x^4-601*x^3+986*x^2-45*x+696 2100990244205637 s002 sum(A282125[n]/(n^2*2^n+1),n=1..infinity) 2100990246085883 m001 (-QuadraticClass+Rabbit)/(MertensB2-Si(Pi)) 2100990246827436 m001 (LambertW(1)*Conway+ZetaP(2))/LambertW(1) 2100990252634916 m001 exp(Sierpinski)/DuboisRaymond*GAMMA(7/24) 2100990267882937 s002 sum(A282125[n]/(n^2*2^n-1),n=1..infinity) 2100990287748518 l006 ln(7639/9425) 2100990291210358 m005 (1/2*gamma+1/2)/(1/2*Catalan-5/6) 2100990293718623 a002 6^(2/3)-3^(1/6) 2100990295950291 a001 2/6765*121393^(25/33) 2100990298355866 m001 arctan(1/3)/((3^(1/2))^StronglyCareFree) 2100990298851533 a007 Real Root Of 301*x^4+640*x^3+544*x^2+810*x-629 2100990299821812 m001 (ln(Pi)+DuboisRaymond)/(FeigenbaumDelta+Niven) 2100990303317217 r005 Im(z^2+c),c=-53/54+9/38*I,n=57 2100990304543979 a007 Real Root Of -632*x^4-896*x^3+316*x^2+831*x-179 2100990320798037 r009 Re(z^3+c),c=-1/9+31/37*I,n=52 2100990332898321 m001 BesselI(0,1)+TwinPrimes+ZetaP(3) 2100990333745491 a001 76/17711*21^(12/23) 2100990334507788 s001 sum(exp(-Pi/4)^n*A187839[n],n=1..infinity) 2100990334602775 m001 GlaisherKinkelin-exp(1/Pi)^Ei(1,1) 2100990343764010 m001 (-GAMMA(5/6)+ThueMorse)/(5^(1/2)-Ei(1)) 2100990348339867 a007 Real Root Of -365*x^4-602*x^3+439*x^2-229*x-890 2100990351608497 m001 (cos(Pi/5)*exp(gamma)+sin(Pi/12))/cos(Pi/5) 2100990363202874 a007 Real Root Of -379*x^4-579*x^3+183*x^2-953*x-795 2100990373456402 m001 1/BesselJ(0,1)^2/exp((2^(1/3)))^2*GAMMA(7/12) 2100990394299374 m009 (1/8*Pi^2-1)/(5/12*Pi^2-3) 2100990425725760 m001 Zeta(1,2)+LandauRamanujan2nd^sin(1/5*Pi) 2100990432094353 m001 FransenRobinson^2/ln(Cahen)*sinh(1) 2100990443470961 g002 Psi(11/12)+Psi(7/9)+Psi(3/5)-Psi(5/7) 2100990443570118 m006 (5*Pi-4/5)/(4/5*Pi^2-4/5) 2100990443570118 m008 (5*Pi-4/5)/(4/5*Pi^2-4/5) 2100990445091661 m001 (3^(1/3)+Zeta(1,2))/(exp(Pi)+ln(2^(1/2)+1)) 2100990446792892 m005 (1/2*5^(1/2)+9/11)/(1/5*2^(1/2)-3/8) 2100990450673594 m008 (2/3*Pi^4-3/4)/(Pi^5-1/2) 2100990463692581 m001 1/exp(Zeta(7))^2*MinimumGamma^2*exp(1)^2 2100990469052800 r005 Im(z^2+c),c=-21/22+24/115*I,n=51 2100990487571550 m001 (FeigenbaumD+ZetaQ(3))/(AlladiGrinstead+Bloch) 2100990489251728 a007 Real Root Of 527*x^4+835*x^3-803*x^2-257*x+480 2100990490347009 r002 9th iterates of z^2 + 2100990491668537 m001 (Ei(1,1)-gamma)/(-gamma(3)+Niven) 2100990527344439 l006 ln(373/3049) 2100990527344439 p004 log(3049/373) 2100990532529029 r005 Im(z^2+c),c=-71/94+2/41*I,n=48 2100990538686157 a007 Real Root Of -292*x^4-361*x^3+76*x^2-744*x+443 2100990539618420 m001 (Kac+Khinchin)/(Zeta(3)+Artin) 2100990539781433 m001 ln(2)*CareFree^Magata 2100990541889136 r005 Im(z^2+c),c=7/78+9/47*I,n=4 2100990541996861 r005 Im(z^2+c),c=-107/114+13/63*I,n=11 2100990554134450 m005 (1/3*Pi+3/8)/(1/4*Catalan-2/9) 2100990557088809 r009 Im(z^3+c),c=-7/118+12/55*I,n=2 2100990565709379 r002 22th iterates of z^2 + 2100990573806754 r005 Re(z^2+c),c=7/25+19/43*I,n=9 2100990577228921 m001 GAMMA(11/24)^2/ln(Porter)/arctan(1/2) 2100990580140371 a007 Real Root Of 458*x^4+565*x^3-987*x^2-709*x-817 2100990580244241 m001 1/(2^(1/3))*exp(Bloch)*GAMMA(17/24)^2 2100990587954516 m005 (1/2*Pi-11/12)/(3/11*Pi-6/11) 2100990591701912 a001 682*1597^(9/59) 2100990593159808 r002 4th iterates of z^2 + 2100990603147092 r009 Re(z^3+c),c=-41/118+26/49*I,n=45 2100990606592514 a005 (1/cos(3/43*Pi))^1457 2100990608878538 r005 Re(z^2+c),c=-5/23+13/46*I,n=8 2100990609565679 b008 ArcCosh[(1+Sqrt[2])*(-1+E)] 2100990611807146 m001 (ln(Pi)-FeigenbaumAlpha)/(Lehmer+ZetaQ(2)) 2100990622148451 a007 Real Root Of -641*x^4-963*x^3+901*x^2-244*x-931 2100990622426402 a001 89/599074578*2^(1/2) 2100990639299211 r005 Im(z^2+c),c=-11/26+31/52*I,n=26 2100990647882583 r009 Re(z^3+c),c=-7/34+4/51*I,n=7 2100990651900177 m001 (-Lehmer+MinimumGamma)/(Shi(1)-ln(3)) 2100990666075151 m001 (gamma(1)-GAMMA(5/6))/(Kac-ZetaQ(2)) 2100990666185393 m005 (1/2*Pi+4/5)/(1/8*5^(1/2)-1/6) 2100990666469676 a007 Real Root Of -438*x^4-92*x^3+187*x^2+144*x+22 2100990670362087 m001 MinimumGamma/(CareFree-ZetaQ(3)) 2100990670643754 m005 (1/2*Catalan-1/12)/(3/11*3^(1/2)-5/11) 2100990672176775 r009 Im(z^3+c),c=-43/94+3/23*I,n=2 2100990674580576 m009 (6*Catalan+3/4*Pi^2+4/5)/(1/2*Pi^2-5) 2100990680530576 a007 Real Root Of 42*x^4+923*x^3+829*x^2-483*x+298 2100990682315775 a001 4181/843*123^(3/10) 2100990691128540 r005 Re(z^2+c),c=-2/13+9/20*I,n=41 2100990702540019 r009 Re(z^3+c),c=-13/42+27/62*I,n=12 2100990708081808 m001 1/PrimesInBinary*ln(CareFree)^2*Rabbit 2100990710421415 m001 (Champernowne+MertensB2)/Psi(2,1/3) 2100990712026805 a007 Real Root Of -240*x^4-223*x^3+750*x^2+697*x+762 2100990713905097 a007 Real Root Of 244*x^4-478*x^3-318*x^2-357*x+93 2100990726106541 m001 (Pi-arctan(1/3))/(HardyLittlewoodC4+MertensB2) 2100990728828022 h001 (-3*exp(5)+7)/(-7*exp(8)+8) 2100990729879345 a007 Real Root Of 597*x^4+798*x^3-716*x^2+665*x+326 2100990731068443 m001 (ln(gamma)-exp(-1/2*Pi))/(Bloch-FeigenbaumB) 2100990734242651 b008 35*Sqrt[3]*ArcCoth[3] 2100990741290548 a001 3571*(1/2*5^(1/2)+1/2)^7*3^(9/14) 2100990757635475 r002 41th iterates of z^2 + 2100990763576448 a007 Real Root Of -548*x^4-852*x^3+189*x^2-771*x+322 2100990764467342 m005 (1/2*Zeta(3)+1)/(29/264+7/24*5^(1/2)) 2100990769356838 m008 (3/4*Pi-2/3)/(5/6*Pi^6+3) 2100990771294433 a007 Real Root Of -526*x^4-748*x^3+758*x^2+356*x+714 2100990776482285 r002 44th iterates of z^2 + 2100990777930405 m001 Pi*csc(1/12*Pi)/GAMMA(11/12)/(Chi(1)^Magata) 2100990788307425 r005 Re(z^2+c),c=-31/122+1/59*I,n=16 2100990788368977 r005 Im(z^2+c),c=-29/122+19/62*I,n=16 2100990790550098 a007 Real Root Of 118*x^4-410*x^3+107*x^2-954*x+20 2100990796522846 r009 Re(z^3+c),c=-19/58+12/25*I,n=23 2100990801806136 m001 exp(Tribonacci)/FransenRobinson*Zeta(1,2) 2100990803524683 m001 ln(Riemann1stZero)*Niven/arctan(1/2)^2 2100990811040768 r005 Im(z^2+c),c=-101/102+9/40*I,n=63 2100990814647647 a007 Real Root Of 44*x^4+937*x^3+261*x^2-73*x-223 2100990815610754 a007 Real Root Of 878*x^4+986*x^3-82*x^2-738*x-144 2100990817986312 m005 (1/2*gamma+1/12)/(1/9*exp(1)-1/8) 2100990818842156 a001 29134601/48*1836311903^(12/17) 2100990818843277 a001 9381251041/48*514229^(12/17) 2100990818870670 a001 90481/48*6557470319842^(12/17) 2100990830799837 a001 521/144*21^(26/45) 2100990832635798 a007 Real Root Of 207*x^4+75*x^3-570*x^2-72*x-973 2100990834106359 a001 521/377*28657^(2/49) 2100990836324398 r005 Im(z^2+c),c=-51/58+5/29*I,n=24 2100990837195415 m001 (FeigenbaumKappa+FeigenbaumMu)/(Artin-exp(1)) 2100990841860051 m008 (1/5*Pi^4+5)/(2/5*Pi^3-3/4) 2100990843321394 r005 Im(z^2+c),c=-35/36+13/59*I,n=41 2100990857018322 r002 14th iterates of z^2 + 2100990859640620 l006 ln(987/8068) 2100990861664031 m004 100/(3*Pi)+Sqrt[5]*Pi*Csc[Sqrt[5]*Pi] 2100990873493790 m001 ln(GAMMA(17/24))^2*Ei(1)^2/Zeta(5)^2 2100990878161935 a007 Real Root Of -208*x^4+224*x^3-942*x^2+766*x+205 2100990880554850 a007 Real Root Of 648*x^4-717*x^3+332*x^2-911*x+19 2100990882009996 a001 9349*(1/2*5^(1/2)+1/2)^5*3^(9/14) 2100990882446018 r005 Re(z^2+c),c=7/26+27/56*I,n=26 2100990893486594 m001 ln(cos(Pi/12))^2*GAMMA(1/6)^2/sqrt(Pi) 2100990896153283 r005 Im(z^2+c),c=-43/114+21/61*I,n=35 2100990902465308 m001 (cos(1/12*Pi)-gamma)/(Tribonacci+Trott) 2100990902540687 a001 24476*(1/2*5^(1/2)+1/2)^3*3^(9/14) 2100990905536075 a001 64079*(1/2*5^(1/2)+1/2)*3^(9/14) 2100990906047748 a001 (1/2*5^(1/2)+1/2)^24*3^(9/14) 2100990906243190 a001 103682*3^(9/14) 2100990907387326 a001 39603*(1/2*5^(1/2)+1/2)^2*3^(9/14) 2100990907388267 m001 (cos(1/12*Pi)-ZetaQ(3))/(Pi+2^(1/2)) 2100990910518055 m001 (Kolakoski*PrimesInBinary+Totient)/Kolakoski 2100990915229352 a001 15127*(1/2*5^(1/2)+1/2)^4*3^(9/14) 2100990916788223 r009 Im(z^3+c),c=-23/94+11/60*I,n=2 2100990919184267 m005 (-3/10+1/2*5^(1/2))/(2/3*Catalan-1) 2100990919509386 b008 1/(E^(3/7)*Pi^3) 2100990922058500 m001 3^(1/2)*Totient^TwinPrimes 2100990927384302 m001 (FeigenbaumC+Kac)/(KhinchinHarmonic-Stephens) 2100990931411663 h001 (-exp(3/2)+4)/(-4*exp(3/2)-5) 2100990939119533 r005 Re(z^2+c),c=-7/44+37/60*I,n=7 2100990939245827 a001 843*377^(40/43) 2100990959579879 m001 OneNinth^2/ln(Conway)^2*GAMMA(5/6)^2 2100990961188646 m001 Salem+ZetaP(2)^Paris 2100990968979399 a001 5778*(1/2*5^(1/2)+1/2)^6*3^(9/14) 2100990970414229 m002 -Pi^4/(4*E^Pi)+Pi*Coth[Pi] 2100990971535657 m001 (Khinchin-Thue)/(Ei(1)-GAMMA(23/24)) 2100990974239826 a001 2207/2*233^(20/37) 2100990976031220 r005 Re(z^2+c),c=19/126+16/37*I,n=50 2100990977560058 r002 10th iterates of z^2 + 2100990980033357 r009 Re(z^3+c),c=-61/106+35/62*I,n=17 2100990985973309 g007 2*Psi(2,7/11)+Psi(2,7/9)-Psi(2,4/11) 2100990988586456 m001 (BesselI(0,1)*Rabbit+Lehmer)/Rabbit 2100990992380822 m005 (1/2*3^(1/2)+11/12)/(3/7*Zeta(3)+1/3) 2100990993976935 g005 1/GAMMA(9/11)/GAMMA(8/9)/GAMMA(2/7)/GAMMA(3/4) 2100991002343777 a007 Real Root Of 636*x^4+668*x^3-989*x^2+947*x+158 2100991010575531 r005 Im(z^2+c),c=-5/6+37/249*I,n=59 2100991010965556 a007 Real Root Of 258*x^4-533*x^3-99*x^2-547*x-116 2100991015415063 a007 Real Root Of 82*x^4-237*x^3-580*x^2+916*x+689 2100991016729601 r005 Re(z^2+c),c=-1/16+27/44*I,n=62 2100991020984038 a007 Real Root Of -962*x^4+943*x^3-441*x^2+818*x-17 2100991023786332 m005 (1/3*2^(1/2)+1/7)/(-113/180+3/20*5^(1/2)) 2100991024729487 r005 Re(z^2+c),c=-5/29+13/32*I,n=36 2100991034987190 m006 (5*ln(Pi)-1/6)/(1/6*Pi^2+1) 2100991045217421 s002 sum(A031556[n]/(n^2*exp(n)-1),n=1..infinity) 2100991055895451 a007 Real Root Of -359*x^4-419*x^3+667*x^2-257*x-375 2100991058650558 m005 (1/2*3^(1/2)+1/3)/(5/11*Pi-6/7) 2100991061507791 l006 ln(614/5019) 2100991061725598 m005 (-11/4+1/4*5^(1/2))/(1/3*2^(1/2)+4/7) 2100991062441324 a007 Real Root Of 331*x^4+980*x^3+905*x^2+670*x+52 2100991062462158 m001 (GAMMA(5/6)+Rabbit)/(3^(1/3)-LambertW(1)) 2100991067737363 r009 Re(z^3+c),c=-4/11+23/40*I,n=59 2100991068431807 r004 Im(z^2+c),c=-1/7+5/18*I,z(0)=I,n=24 2100991073366100 m005 (1/2*5^(1/2)-8/11)/(5/12*exp(1)+8/11) 2100991080588817 r009 Re(z^3+c),c=-13/38+16/31*I,n=32 2100991090787808 r005 Re(z^2+c),c=9/23+21/62*I,n=38 2100991099956008 a007 Real Root Of 178*x^4+23*x^3-637*x^2+378*x+351 2100991103305437 a001 55/199*123^(9/10) 2100991106587731 r005 Re(z^2+c),c=-5/4+13/207*I,n=36 2100991106866636 m001 (Shi(1)+Kolakoski)/ln(2^(1/2)+1) 2100991111544531 m001 log(1+sqrt(2))/BesselJ(1,1)*exp(sinh(1))^2 2100991114560190 r005 Re(z^2+c),c=7/25+9/46*I,n=31 2100991134034076 a007 Real Root Of 292*x^4+195*x^3-684*x^2+840*x+903 2100991139276891 a001 4/2889*11^(4/23) 2100991140809820 m006 (4*ln(Pi)-1/5)/(4/5*ln(Pi)-3) 2100991143315693 a001 8/47*24476^(1/48) 2100991148575128 b008 7*(297+Pi) 2100991150226987 r005 Im(z^2+c),c=-93/106+4/23*I,n=3 2100991156165481 r002 59th iterates of z^2 + 2100991157159671 p004 log(17027/2083) 2100991161205539 a007 Real Root Of -408*x^4-908*x^3+75*x^2+249*x-279 2100991172092147 m001 (Conway-ZetaP(2))/(BesselI(0,2)+Pi^(1/2)) 2100991183012043 a001 1364/121393*55^(19/26) 2100991201237333 m006 (3/5*exp(Pi)-1/3)/(2*Pi+1/6) 2100991211357679 a007 Real Root Of 637*x^4+679*x^3-885*x^2+992*x-124 2100991213445334 m001 exp(Ei(1))/MadelungNaCl^2/Zeta(5) 2100991215547668 r005 Re(z^2+c),c=13/74+2/35*I,n=12 2100991216827246 l006 ln(1142/1409) 2100991217972009 a008 Real Root of x^4+x^2-x-26 2100991224405008 m009 (4/5*Psi(1,1/3)+3/4)/(3/8*Pi^2+1/2) 2100991228424165 m001 Champernowne^(ln(5)*FeigenbaumC) 2100991232011024 r005 Im(z^2+c),c=-1+49/209*I,n=13 2100991235777705 a001 8/47*843^(1/32) 2100991239578967 r005 Im(z^2+c),c=47/126+11/45*I,n=35 2100991247096094 m005 (1/2*Pi-4/9)/(5/11*Zeta(3)-3/5) 2100991247193037 r005 Re(z^2+c),c=4/19+11/52*I,n=2 2100991256828773 a007 Real Root Of -516*x^4-607*x^3+688*x^2-751*x-190 2100991259611351 r005 Im(z^2+c),c=-59/70+7/45*I,n=53 2100991262729624 m001 (1+GAMMA(13/24))/(Gompertz+TwinPrimes) 2100991264598753 r005 Re(z^2+c),c=-1/8+30/59*I,n=32 2100991275085553 m001 ln(log(1+sqrt(2)))^2/GAMMA(1/4)^2*sqrt(3) 2100991282077861 m001 Pi-1/3*Psi(2,1/3)*3^(1/2)/exp(gamma) 2100991286044114 r009 Re(z^3+c),c=-8/31+5/19*I,n=3 2100991294540368 l006 ln(855/6989) 2100991302283097 r002 29th iterates of z^2 + 2100991310125135 a007 Real Root Of 345*x^4+275*x^3-798*x^2-115*x-891 2100991315444663 r005 Re(z^2+c),c=-31/122+1/59*I,n=18 2100991316431639 a001 28657/123*18^(35/46) 2100991319769925 m005 (1/3*Catalan-2/3)/(6/11*gamma-1/7) 2100991322362885 a007 Real Root Of 219*x^4+65*x^3-861*x^2-32*x+69 2100991323203429 r005 Re(z^2+c),c=-95/118+6/35*I,n=20 2100991325425597 a007 Real Root Of 460*x^4+897*x^3-415*x^2-136*x+902 2100991326186551 m001 (Zeta(3)+ln(5))/(Champernowne-MinimumGamma) 2100991326503261 r005 Im(z^2+c),c=-10/17+22/63*I,n=40 2100991337387699 a001 2207*(1/2*5^(1/2)+1/2)^8*3^(9/14) 2100991337871019 a008 Real Root of (1+6*x-2*x^2+6*x^3-x^4-x^5) 2100991340183931 r009 Re(z^3+c),c=-27/50+5/17*I,n=50 2100991341105163 r009 Re(z^3+c),c=-19/94+1/46*I,n=2 2100991348882259 a007 Real Root Of -121*x^4-4*x^3+484*x^2+187*x+577 2100991365224658 a007 Real Root Of 325*x^4+763*x^3+193*x^2+459*x+856 2100991369170384 m001 LaplaceLimit/ArtinRank2/ZetaP(2) 2100991371694705 m001 (PrimesInBinary+ZetaQ(4))/(Gompertz-Kolakoski) 2100991377472550 m001 (arctan(1/2)-KomornikLoreti)/(Rabbit-Totient) 2100991385438028 m005 (1/2*3^(1/2)-6/11)/(1/2*exp(1)+1/6) 2100991388815719 m001 (Pi+gamma)/(arctan(1/2)+Mills) 2100991393693933 r005 Re(z^2+c),c=-31/122+1/59*I,n=20 2100991396833730 m001 (1+2^(1/2)*Backhouse)/Backhouse 2100991397575837 r005 Re(z^2+c),c=-19/23+3/58*I,n=60 2100991404503605 r008 a(0)=0,K{-n^6,-34*n^3+70*n^2-84*n} 2100991404697058 r005 Re(z^2+c),c=-31/122+1/59*I,n=22 2100991406114841 r005 Re(z^2+c),c=-31/122+1/59*I,n=24 2100991406268643 r005 Re(z^2+c),c=-31/122+1/59*I,n=26 2100991406273876 r005 Re(z^2+c),c=-31/122+1/59*I,n=29 2100991406274210 r005 Re(z^2+c),c=-31/122+1/59*I,n=27 2100991406275136 r005 Re(z^2+c),c=-31/122+1/59*I,n=31 2100991406275590 r005 Re(z^2+c),c=-31/122+1/59*I,n=33 2100991406275710 r005 Re(z^2+c),c=-31/122+1/59*I,n=35 2100991406275738 r005 Re(z^2+c),c=-31/122+1/59*I,n=37 2100991406275744 r005 Re(z^2+c),c=-31/122+1/59*I,n=39 2100991406275746 r005 Re(z^2+c),c=-31/122+1/59*I,n=41 2100991406275746 r005 Re(z^2+c),c=-31/122+1/59*I,n=43 2100991406275746 r005 Re(z^2+c),c=-31/122+1/59*I,n=45 2100991406275746 r005 Re(z^2+c),c=-31/122+1/59*I,n=47 2100991406275746 r005 Re(z^2+c),c=-31/122+1/59*I,n=49 2100991406275746 r005 Re(z^2+c),c=-31/122+1/59*I,n=51 2100991406275746 r005 Re(z^2+c),c=-31/122+1/59*I,n=53 2100991406275746 r005 Re(z^2+c),c=-31/122+1/59*I,n=55 2100991406275746 r005 Re(z^2+c),c=-31/122+1/59*I,n=57 2100991406275746 r005 Re(z^2+c),c=-31/122+1/59*I,n=59 2100991406275746 r005 Re(z^2+c),c=-31/122+1/59*I,n=61 2100991406275746 r005 Re(z^2+c),c=-31/122+1/59*I,n=63 2100991406275746 r005 Re(z^2+c),c=-31/122+1/59*I,n=64 2100991406275746 r005 Re(z^2+c),c=-31/122+1/59*I,n=62 2100991406275746 r005 Re(z^2+c),c=-31/122+1/59*I,n=60 2100991406275746 r005 Re(z^2+c),c=-31/122+1/59*I,n=58 2100991406275746 r005 Re(z^2+c),c=-31/122+1/59*I,n=56 2100991406275746 r005 Re(z^2+c),c=-31/122+1/59*I,n=54 2100991406275746 r005 Re(z^2+c),c=-31/122+1/59*I,n=52 2100991406275746 r005 Re(z^2+c),c=-31/122+1/59*I,n=50 2100991406275746 r005 Re(z^2+c),c=-31/122+1/59*I,n=48 2100991406275746 r005 Re(z^2+c),c=-31/122+1/59*I,n=46 2100991406275746 r005 Re(z^2+c),c=-31/122+1/59*I,n=44 2100991406275746 r005 Re(z^2+c),c=-31/122+1/59*I,n=42 2100991406275747 r005 Re(z^2+c),c=-31/122+1/59*I,n=40 2100991406275749 r005 Re(z^2+c),c=-31/122+1/59*I,n=38 2100991406275763 r005 Re(z^2+c),c=-31/122+1/59*I,n=36 2100991406275821 r005 Re(z^2+c),c=-31/122+1/59*I,n=34 2100991406276060 r005 Re(z^2+c),c=-31/122+1/59*I,n=32 2100991406276866 r005 Re(z^2+c),c=-31/122+1/59*I,n=30 2100991406278295 r005 Re(z^2+c),c=-31/122+1/59*I,n=28 2100991406318113 r005 Re(z^2+c),c=-31/122+1/59*I,n=25 2100991406799961 r005 Re(z^2+c),c=-31/122+1/59*I,n=23 2100991409501938 a001 1/17*701408733^(1/16) 2100991410806207 r005 Re(z^2+c),c=-31/122+1/59*I,n=21 2100991412819261 m001 (MertensB2-Otter)/(arctan(1/3)+Lehmer) 2100991413239088 r005 Im(z^2+c),c=-39/82+2/57*I,n=17 2100991421372198 m005 (1/2*Zeta(3)+7/10)/(1/9*3^(1/2)+6) 2100991425089617 l006 ln(1096/8959) 2100991431541026 m001 (ZetaP(2)+ZetaP(4))/(Shi(1)-Zeta(1/2)) 2100991437607262 m001 (Porter-ZetaQ(3))/(exp(1/Pi)+2*Pi/GAMMA(5/6)) 2100991440392137 r005 Re(z^2+c),c=-31/122+1/59*I,n=19 2100991444784410 b008 1+(2*Coth[1/6])/11 2100991449546318 r005 Re(z^2+c),c=-13/106+31/50*I,n=43 2100991450849584 m003 -11/24+(9*Sqrt[5])/64-Tan[1/2+Sqrt[5]/2] 2100991456443828 m001 Salem*(FeigenbaumKappa-Pi) 2100991456780723 m001 (Otter-Riemann1stZero)/(Zeta(1,-1)+ArtinRank2) 2100991460726669 a007 Real Root Of -212*x^4-260*x^3+299*x^2-284*x-197 2100991463605866 h001 (-12*exp(3)-1)/(-2*exp(4)-6) 2100991465665891 m005 (-17/28+1/4*5^(1/2))/(2/9*exp(1)-3/8) 2100991474443679 r005 Re(z^2+c),c=11/94+19/49*I,n=46 2100991485834975 r005 Im(z^2+c),c=-9/14+30/229*I,n=14 2100991507697225 m001 KomornikLoreti/(FeigenbaumB^QuadraticClass) 2100991521977710 a001 123/832040*55^(5/57) 2100991525342633 r005 Re(z^2+c),c=1/102+7/38*I,n=10 2100991529763633 m001 cos(1/12*Pi)/(Riemann1stZero^Stephens) 2100991530283382 a007 Real Root Of 255*x^4-22*x^3-835*x^2+949*x+507 2100991538963543 a007 Real Root Of -667*x^4-544*x^3-943*x^2+705*x+186 2100991540666377 a007 Real Root Of -166*x^4-227*x^3-211*x^2-957*x+50 2100991543765209 a007 Real Root Of 347*x^4+434*x^3-986*x^2-496*x+574 2100991547967058 a007 Real Root Of 336*x^4+382*x^3-546*x^2+466*x+385 2100991548673134 r009 Re(z^3+c),c=-29/106+21/31*I,n=32 2100991556833296 p003 LerchPhi(1/5,4,154/185) 2100991559783200 r005 Re(z^2+c),c=7/66+16/43*I,n=44 2100991566541453 a007 Real Root Of -198*x^4+635*x^3+2*x^2+892*x-193 2100991571309622 r005 Re(z^2+c),c=-11/50+5/19*I,n=13 2100991573034755 a007 Real Root Of -75*x^4+339*x^3+864*x^2-54*x+678 2100991574076547 s002 sum(A237076[n]/(exp(n)+1),n=1..infinity) 2100991575056326 m001 GAMMA(2/3)+exp(1/Pi)*Landau 2100991579451283 m001 (Pi*2^(1/2)/GAMMA(3/4))^(5^(1/2)*Shi(1)) 2100991586668877 m005 (1/2*2^(1/2)+8/9)/(6*2^(1/2)-8/9) 2100991588205970 m005 (1/3*2^(1/2)-2/9)/(3/8*exp(1)+1/6) 2100991591145141 h001 (1/12*exp(2)+10/11)/(1/6*exp(1)+3/11) 2100991594098337 r005 Re(z^2+c),c=25/82+8/37*I,n=50 2100991605241243 m001 (Bloch+FeigenbaumD)/(Pi-GAMMA(13/24)) 2100991606737791 m001 1/OneNinth/exp(Bloch)*GAMMA(1/4) 2100991616041842 m001 2^(1/3)*3^(1/2)-StolarskyHarborth 2100991618201390 r005 Re(z^2+c),c=27/82+18/37*I,n=10 2100991619336347 h001 (-7*exp(7)-4)/(-4*exp(2)-7) 2100991623913617 m001 (Backhouse+TwinPrimes)/(BesselJ(0,1)-Pi^(1/2)) 2100991629244971 a007 Real Root Of -102*x^4-214*x^3-176*x^2-591*x-462 2100991630005564 r005 Im(z^2+c),c=-51/56+7/37*I,n=52 2100991631399778 a007 Real Root Of 534*x^4+741*x^3-559*x^2+171*x-706 2100991643497345 r005 Re(z^2+c),c=-31/122+1/61*I,n=11 2100991644610534 r005 Re(z^2+c),c=-31/122+1/59*I,n=17 2100991647201675 m001 exp(-Pi)^BesselK(1,1)/(gamma^BesselK(1,1)) 2100991647741260 p003 LerchPhi(1/16,6,529/189) 2100991653920520 r005 Im(z^2+c),c=-19/60+18/55*I,n=16 2100991656917537 m001 ln(5)^BesselJ(0,1)+Robbin 2100991660090044 r009 Im(z^3+c),c=-6/19+5/31*I,n=14 2100991665485744 a007 Real Root Of -468*x^4-500*x^3+884*x^2-433*x-330 2100991671396893 m005 (-11/60+5/12*5^(1/2))/(3/4*Pi-2) 2100991672695910 m004 -625/(6*Pi)+(25*ProductLog[Sqrt[5]*Pi])/Pi 2100991674832947 r005 Re(z^2+c),c=25/126+35/64*I,n=23 2100991676157922 m003 15+6*Coth[1/2+Sqrt[5]/2]-Log[1/2+Sqrt[5]/2] 2100991676360347 m005 (1/2*5^(1/2)-1/2)/(5/7*exp(1)+1) 2100991685099092 r009 Im(z^3+c),c=-39/74+8/51*I,n=35 2100991685844805 m001 ln(Trott)^2/FeigenbaumD^2*exp(1)^2 2100991688625958 m001 GolombDickman/(Tribonacci^KomornikLoreti) 2100991690214705 a001 1364/956722026041*3^(6/17) 2100991692660225 h001 (1/4*exp(1)+1/8)/(4/9*exp(2)+6/11) 2100991700230505 r009 Im(z^3+c),c=-13/30+3/43*I,n=22 2100991703085148 r002 32th iterates of z^2 + 2100991714514244 a007 Real Root Of -336*x^4-605*x^3+537*x^2+746*x+133 2100991718265348 r005 Im(z^2+c),c=-67/82+7/40*I,n=19 2100991720629824 m001 1/MadelungNaCl/ln(FeigenbaumB)^2/cos(Pi/5) 2100991722359173 r005 Im(z^2+c),c=11/34+1/23*I,n=5 2100991724752864 m001 (ArtinRank2+Mills)/(BesselK(0,1)-exp(1/Pi)) 2100991727776086 r005 Im(z^2+c),c=1/12+11/57*I,n=9 2100991734067596 a007 Real Root Of 455*x^4-326*x^3+774*x^2-795*x+135 2100991734105977 m006 (2/5*ln(Pi)-5/6)/(1/3*exp(2*Pi)+1/5) 2100991739045815 a007 Real Root Of 292*x^4+732*x^3+423*x^2+516*x+316 2100991740951970 a001 7/13*377^(21/34) 2100991742463275 r005 Re(z^2+c),c=-101/102+7/38*I,n=54 2100991747115438 m005 (1/3*Pi-1/8)/(7/12*3^(1/2)-4/7) 2100991747236704 m001 (BesselI(1,2)+Salem)/ln(2+3^(1/2)) 2100991747886620 r005 Im(z^2+c),c=-15/62+9/31*I,n=3 2100991752983673 a007 Real Root Of -586*x^4-970*x^3+918*x^2+683*x-195 2100991755541479 a007 Real Root Of -12*x^4-149*x^3-883*x^2+830*x-134 2100991756483852 r005 Im(z^2+c),c=-27/118+38/61*I,n=31 2100991757489326 a005 (1/cos(17/78*Pi))^57 2100991766276181 p004 log(15937/12917) 2100991780922810 a001 14662949395604*4807526976^(17/23) 2100991782016969 s002 sum(A088203[n]/(n^2*2^n-1),n=1..infinity) 2100991784878469 m007 (-1/5*gamma-2/5*ln(2)+1)/(-3*gamma-6*ln(2)+3) 2100991799575360 a007 Real Root Of 206*x^4+353*x^3+116*x^2+160*x-916 2100991800449523 b008 ArcCoth[68]/7 2100991802818175 r005 Re(z^2+c),c=-59/110+32/59*I,n=18 2100991805666426 r009 Re(z^3+c),c=-17/52+29/61*I,n=19 2100991806658673 m005 (1/2*gamma-4/11)/(5/11*2^(1/2)-2/7) 2100991808471429 a007 Real Root Of 19*x^4-227*x^3-722*x^2-392*x-112 2100991817699484 r008 a(0)=2,K{-n^6,62-69*n^3-78*n^2+75*n} 2100991819524279 a007 Real Root Of 326*x^4+902*x^3+419*x^2+241*x+670 2100991820510560 m001 BesselK(0,1)-ln(2+3^(1/2))^ReciprocalFibonacci 2100991827981156 m001 1/DuboisRaymond^2/Conway*ln(Riemann3rdZero)^2 2100991831340409 m002 1+Pi/30+Tanh[Pi] 2100991835655227 r005 Re(z^2+c),c=-53/114+32/55*I,n=33 2100991838216443 m002 -E^Pi+Log[Pi]+Tanh[Pi]-Tanh[Pi]/Pi^4 2100991839241726 r005 Re(z^2+c),c=-13/110+11/21*I,n=59 2100991842071655 m001 (-GAMMA(11/12)+Stephens)/(Shi(1)+GAMMA(3/4)) 2100991873895494 p001 sum(1/(457*n+383)/n/(6^n),n=1..infinity) 2100991884580703 q001 233/1109 2100991885429426 r005 Re(z^2+c),c=-3/82+29/51*I,n=21 2100991888241379 l006 ln(241/1970) 2100991893033834 m001 (ln(2)+FeigenbaumD)/(Mills-Porter) 2100991895010834 m001 (2^(1/2)+Zeta(1/2))/((1+3^(1/2))^(1/2)+Landau) 2100991903842511 b008 3/2+PolyLog[4,EulerGamma] 2100991903847580 a005 (1/cos(19/230*Pi))^157 2100991905009768 m001 cos(1/12*Pi)*(HardyLittlewoodC5-Sierpinski) 2100991908091894 m001 (Pi^(1/2)+FeigenbaumC)/(ln(2)/ln(10)+2^(1/2)) 2100991917233283 r005 Re(z^2+c),c=-1/15+23/39*I,n=43 2100991918299878 a007 Real Root Of 326*x^4+853*x^3+343*x^2-106*x-178 2100991921869645 r005 Re(z^2+c),c=-9/82+34/63*I,n=57 2100991924844345 a007 Real Root Of 18*x^4+340*x^3-813*x^2-202*x+555 2100991933927101 r009 Re(z^3+c),c=-23/110+55/58*I,n=49 2100991948955966 r005 Im(z^2+c),c=-8/17+19/51*I,n=28 2100991951633599 m001 (GAMMA(23/24)-FeigenbaumKappa)/(Rabbit+Thue) 2100991976246095 r005 Im(z^2+c),c=-43/110+8/23*I,n=36 2100992012118004 r005 Re(z^2+c),c=-13/106+23/45*I,n=29 2100992013140615 a007 Real Root Of -348*x^4+126*x^3-787*x^2+140*x+66 2100992020245235 m001 1/ln(Pi)^2*(2^(1/3))^2*log(2+sqrt(3))^2 2100992020274031 a007 Real Root Of -830*x^4+492*x^3-400*x^2+234*x+73 2100992040474604 r009 Re(z^3+c),c=-7/34+4/51*I,n=8 2100992043715750 r005 Im(z^2+c),c=3/13+23/40*I,n=13 2100992048240340 r005 Re(z^2+c),c=-36/29+1/23*I,n=20 2100992056733310 a007 Real Root Of -670*x^4-869*x^3+860*x^2-668*x-204 2100992059988165 m001 (-OneNinth+Sierpinski)/(gamma+BesselK(1,1)) 2100992062463550 a007 Real Root Of 59*x^4-405*x^3-954*x^2+15*x-663 2100992067777891 r005 Im(z^2+c),c=-41/98+11/31*I,n=22 2100992077539393 a005 (1/cos(45/118*Pi))^60 2100992083528148 g006 -Psi(1,1/11)-Psi(1,7/10)-Psi(1,7/9)-Psi(1,1/9) 2100992083844354 a001 281/48*6557470319842^(14/17) 2100992087101335 m005 (1/2*3^(1/2)+3/8)/(4*2^(1/2)+1/4) 2100992091137721 a007 Real Root Of -675*x^4-845*x^3+787*x^2-908*x-66 2100992095909895 a007 Real Root Of -252*x^4-486*x^3+545*x^2+968*x+31 2100992131117793 a001 2537720636/3*8^(7/16) 2100992133905082 h001 (-7*exp(3)+8)/(-8*exp(2)-4) 2100992137411048 r005 Re(z^2+c),c=-5/32+4/9*I,n=31 2100992146927015 a007 Real Root Of 335*x^4+633*x^3-163*x^2-303*x-574 2100992147493786 a001 3571/317811*55^(19/26) 2100992150613390 m005 (1/2*3^(1/2)+7/12)/(6/11*gamma+3/8) 2100992155640305 m001 (MinimumGamma+Paris)/(Zeta(1,-1)-gamma) 2100992156564646 m001 MertensB1^(FeigenbaumC*HardyLittlewoodC3) 2100992174270840 a007 Real Root Of 459*x^4-499*x^3-830*x^2-962*x-171 2100992177815142 r002 60th iterates of z^2 + 2100992181617864 m008 (1/2*Pi^6-1/6)/(3/4*Pi^5-4/5) 2100992186925796 m001 Khintchine/Cahen^2*exp(sinh(1)) 2100992195802817 m001 MadelungNaCl/(sin(1)+gamma(2)) 2100992196103253 h001 (-5*exp(2)-9)/(-3*exp(1/3)+2) 2100992201596461 l006 ln(7207/8892) 2100992202216001 r005 Im(z^2+c),c=-17/36+13/35*I,n=33 2100992206033747 a005 (1/sin(95/231*Pi))^779 2100992207207432 m005 (6/5+1/5*5^(1/2))/(9/4+5/2*5^(1/2)) 2100992209863245 m001 Riemann2ndZero-Trott2nd^FibonacciFactorial 2100992229487826 r009 Re(z^3+c),c=-7/19+21/31*I,n=19 2100992242087929 r005 Re(z^2+c),c=-5/29+13/32*I,n=31 2100992259864676 r009 Re(z^3+c),c=-7/34+4/51*I,n=9 2100992262175298 r005 Im(z^2+c),c=-9/10+37/204*I,n=29 2100992263806523 r005 Im(z^2+c),c=-14/15+10/51*I,n=36 2100992266663839 m005 (1/2*Catalan-6/7)/(7/8+11/24*5^(1/2)) 2100992269846117 r009 Re(z^3+c),c=-7/34+4/51*I,n=14 2100992269847849 r009 Re(z^3+c),c=-7/34+4/51*I,n=15 2100992269848379 r009 Re(z^3+c),c=-7/34+4/51*I,n=16 2100992269848451 r009 Re(z^3+c),c=-7/34+4/51*I,n=17 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=22 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=23 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=21 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=24 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=29 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=30 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=31 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=32 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=37 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=38 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=39 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=40 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=45 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=46 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=47 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=48 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=52 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=53 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=54 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=50 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=51 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=49 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=44 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=43 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=42 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=41 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=36 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=35 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=34 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=33 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=28 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=27 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=25 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=26 2100992269848452 r009 Re(z^3+c),c=-7/34+4/51*I,n=20 2100992269848453 r009 Re(z^3+c),c=-7/34+4/51*I,n=19 2100992269848454 r009 Re(z^3+c),c=-7/34+4/51*I,n=18 2100992269852435 r009 Re(z^3+c),c=-7/34+4/51*I,n=13 2100992269979057 r009 Re(z^3+c),c=-7/34+4/51*I,n=12 2100992270841479 r009 Re(z^3+c),c=-7/34+4/51*I,n=11 2100992273302468 r009 Re(z^3+c),c=-7/34+4/51*I,n=10 2100992275190569 a007 Real Root Of 536*x^4+963*x^3-122*x^2+885*x+885 2100992283866089 r005 Im(z^2+c),c=19/126+7/44*I,n=15 2100992288209776 a001 9349/832040*55^(19/26) 2100992299709178 p004 log(30253/3701) 2100992300456300 a007 Real Root Of 464*x^4+922*x^3+454*x^2+874*x-658 2100992306630978 a007 Real Root Of 119*x^4-426*x^3-849*x^2+860*x-715 2100992308739962 a001 24476/2178309*55^(19/26) 2100992310998757 m005 (1/3*3^(1/2)-2/5)/(25/72+2/9*5^(1/2)) 2100992311966433 h001 (-7*exp(1)+8)/(-5*exp(-3)-5) 2100992313302594 r008 a(0)=0,K{-n^6,45+18*n^3-61*n^2-50*n} 2100992321428315 a001 15127/1346269*55^(19/26) 2100992332727793 r009 Im(z^3+c),c=-6/19+5/31*I,n=13 2100992349835576 m005 (1/3*5^(1/2)+1/8)/(4/11*2^(1/2)-1/10) 2100992353227750 a007 Real Root Of -306*x^4-584*x^3+298*x^2+546*x+378 2100992354537342 a007 Real Root Of 603*x^4-940*x^3+702*x^2+404*x+44 2100992361320683 l006 ln(1073/8771) 2100992370727221 m004 -5/4-ProductLog[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi] 2100992375177041 a001 5778/514229*55^(19/26) 2100992381512979 a007 Real Root Of 58*x^4-436*x^3-892*x^2+814*x+474 2100992387022080 l006 ln(6065/7483) 2100992394041908 a007 Real Root Of -761*x^4-785*x^3+731*x^2+957*x+163 2100992406690674 a007 Real Root Of 63*x^4-373*x^3-777*x^2+495*x-217 2100992408033671 r005 Re(z^2+c),c=-2/25+38/43*I,n=12 2100992408668646 m005 (-1/66+1/6*5^(1/2))/(9/10*3^(1/2)+1/7) 2100992408767224 r002 4th iterates of z^2 + 2100992408833646 m006 (1/2*Pi+1/2)/(2/5*exp(Pi)+3/5) 2100992413529384 m001 BesselJ(0,1)/(Bloch-OneNinth) 2100992419002317 m001 (Zeta(1/2)-Kac)/(Otter-ReciprocalLucas) 2100992435046342 r005 Im(z^2+c),c=-9/14+7/178*I,n=55 2100992436920900 r009 Re(z^3+c),c=-25/52+3/59*I,n=42 2100992451156365 r009 Re(z^3+c),c=-8/29+16/47*I,n=16 2100992452969532 a003 sin(Pi*11/81)/cos(Pi*45/103) 2100992461745651 h001 (5/9*exp(2)+7/9)/(9/11*exp(1)+1/10) 2100992473013279 m001 Grothendieck*Shi(1)^Otter 2100992477994768 r009 Re(z^3+c),c=-16/29+7/59*I,n=37 2100992485554971 r008 a(0)=0,K{-n^6,-63-46*n+58*n^2+4*n^3} 2100992487853348 a007 Real Root Of 613*x^4+683*x^3-994*x^2+825*x+511 2100992493292563 a007 Real Root Of -231*x^4-293*x^3+132*x^2-723*x-318 2100992498354430 l006 ln(832/6801) 2100992502100898 m001 ln(GAMMA(19/24))^2*Sierpinski^2*GAMMA(3/4) 2100992502126696 m001 (Magata+ZetaQ(2))/(Chi(1)+AlladiGrinstead) 2100992502598589 r005 Re(z^2+c),c=-43/78+31/56*I,n=28 2100992510286822 a001 5374978561/72*1836311903^(10/17) 2100992510286822 a001 29134601/48*6557470319842^(10/17) 2100992510287757 a001 440719107401/48*514229^(10/17) 2100992514152251 a007 Real Root Of -499*x^4+855*x^3+265*x^2+54*x-30 2100992525603277 m001 GAMMA(1/4)^2*Cahen/ln(Zeta(9))^2 2100992533126091 m001 (Riemann1stZero+ZetaP(3))/(ln(Pi)-arctan(1/2)) 2100992537705196 r005 Im(z^2+c),c=11/106+11/60*I,n=12 2100992544003420 a007 Real Root Of -430*x^4-883*x^3-156*x^2+49*x+981 2100992545550569 r009 Re(z^3+c),c=-21/74+37/49*I,n=4 2100992554386367 a007 Real Root Of 588*x^4+757*x^3-762*x^2+99*x-865 2100992570321684 a007 Real Root Of 43*x^4+936*x^3+666*x^2-362*x+499 2100992577576190 r005 Im(z^2+c),c=-21/16+1/81*I,n=28 2100992584291310 r009 Re(z^3+c),c=-7/54+46/53*I,n=12 2100992584913483 h001 (7/8*exp(1)+4/7)/(2/9*exp(1)+4/5) 2100992594472944 r005 Im(z^2+c),c=-9/8+37/142*I,n=57 2100992595842836 m001 (ln(5)+ln(Pi))/(GAMMA(23/24)-Riemann1stZero) 2100992596918729 r002 56th iterates of z^2 + 2100992602699848 m001 (5^(1/2)+LambertW(1))/(MertensB3+ZetaQ(4)) 2100992615466855 m001 (FellerTornier+Rabbit)/(Pi+Pi^(1/2)) 2100992625913827 a001 1/682*11^(3/20) 2100992635227899 a007 Real Root Of -191*x^4+660*x^3-916*x^2+938*x+244 2100992637353502 m001 (GolombDickman+Magata)/(Tetranacci-ZetaQ(3)) 2100992643647258 h001 (1/5*exp(1)+5/8)/(2/3*exp(2)+7/11) 2100992647074815 a007 Real Root Of 228*x^4+149*x^3-549*x^2+736*x+909 2100992647774341 a003 cos(Pi*2/51)*cos(Pi*35/81) 2100992648024372 m001 StolarskyHarborth^Ei(1)*PlouffeB^Ei(1) 2100992650723711 m001 (2^(1/2)-3^(1/2))/(BesselJ(0,1)+RenyiParking) 2100992651213563 a007 Real Root Of -447*x^4-448*x^3+901*x^2-572*x-624 2100992651863862 b008 ArcSinh[3+E^(1/39)] 2100992654721035 a001 3571/2504730781961*3^(6/17) 2100992658474934 l006 ln(4923/6074) 2100992660135571 m001 GAMMA(3/4)^2/ln(GAMMA(13/24))/Zeta(3)^2 2100992661322989 a007 Real Root Of 303*x^4+164*x^3-425*x^2+950*x-511 2100992666368218 a007 Real Root Of 516*x^4+986*x^3+291*x^2+836*x-438 2100992667329151 a008 Real Root of x^4-x^3-9*x^2-69*x-134 2100992667371524 m005 (1/2*exp(1)+11/12)/(2/11*Catalan+11/12) 2100992672175533 r005 Im(z^2+c),c=-73/74+7/32*I,n=35 2100992682619017 m001 (ln(gamma)-Ei(1))/(Sarnak+TreeGrowth2nd) 2100992683703956 m001 Trott^exp(-1/2*Pi)*ZetaQ(2) 2100992701895708 m001 Artin-PlouffeB^Sarnak 2100992707219112 a007 Real Root Of 61*x^4-325*x^3-639*x^2+624*x-71 2100992707992168 m001 LandauRamanujan2nd^HeathBrownMoroz/PlouffeB 2100992710772366 r005 Im(z^2+c),c=-79/64+5/54*I,n=28 2100992711692025 m001 1/exp(LaplaceLimit)/Si(Pi)/PisotVijayaraghavan 2100992713116156 r002 33th iterates of z^2 + 2100992714333759 m001 (Pi+BesselJ(0,1))/(Cahen-FeigenbaumAlpha) 2100992716156695 r005 Re(z^2+c),c=-107/106+5/49*I,n=4 2100992728613457 p004 log(28961/23473) 2100992733368934 r005 Im(z^2+c),c=-7/106+16/63*I,n=6 2100992743576285 a001 2207/196418*55^(19/26) 2100992744489468 a007 Real Root Of 400*x^4+671*x^3-499*x^2-462*x-339 2100992747148308 l006 ln(591/4831) 2100992750664892 r005 Im(z^2+c),c=7/74+10/53*I,n=4 2100992754611503 h001 (4/7*exp(2)+1/9)/(5/8*exp(1)+4/11) 2100992766932624 a007 Real Root Of 650*x^4+984*x^3-485*x^2+362*x-638 2100992783141694 m001 1/TreeGrowth2nd^2*FeigenbaumD*exp(exp(1)) 2100992785316059 m009 (1/6*Psi(1,2/3)-1/3)/(8/5*Catalan+1/5*Pi^2+5) 2100992786626421 m001 (Mills+MinimumGamma)/(ln(2)+GolombDickman) 2100992787250691 m001 (DuboisRaymond+FeigenbaumMu)/(ln(2)+ln(3)) 2100992791318196 m001 Conway^(Pi*csc(1/12*Pi)/GAMMA(11/12))-ZetaP(4) 2100992793463581 a007 Real Root Of -118*x^4+225*x^3+503*x^2-778*x+531 2100992793732470 r002 6th iterates of z^2 + 2100992795440612 a001 9349/6557470319842*3^(6/17) 2100992796190996 m005 (1/2*Pi-2/3)/(6/7*Zeta(3)-3/5) 2100992800097537 a008 Real Root of x^5-x^4-10*x^3+5*x^2+11*x+2 2100992808387360 g002 -ln(2)-1/2*Pi+Psi(7/9)-Psi(5/7) 2100992822537629 m001 Bloch*ln(GaussAGM(1,1/sqrt(2)))*Khintchine 2100992824489497 a007 Real Root Of -647*x^4-633*x^3+899*x^2-969*x+732 2100992828659998 a001 2161/1515744265389*3^(6/17) 2100992841760447 m001 ReciprocalLucas*Salem-exp(-1/2*Pi) 2100992849022353 a007 Real Root Of -213*x^4-20*x^3+931*x^2+394*x+683 2100992856545452 a007 Real Root Of 374*x^4+511*x^3-177*x^2+564*x-582 2100992856910082 m001 (cos(1/12*Pi)+Bloch)/(Thue-ZetaP(3)) 2100992859954037 r009 Re(z^3+c),c=-17/70+13/57*I,n=3 2100992863553399 m001 1/OneNinth^2/Backhouse/exp(Zeta(5)) 2100992868015619 r005 Re(z^2+c),c=-97/118+4/63*I,n=44 2100992882065459 m001 1/Zeta(5)^2/exp(Ei(1))^2 2100992882410094 a001 5778/4052739537881*3^(6/17) 2100992885212130 a007 Real Root Of -138*x^4+159*x^3+756*x^2-93*x+631 2100992892465404 r005 Im(z^2+c),c=-55/106+13/29*I,n=48 2100992894723760 m001 Riemann1stZero/(Sarnak^GAMMA(3/4)) 2100992895752470 m001 BesselJ(0,1)^2*FeigenbaumD^2/ln(Zeta(9)) 2100992897322617 m009 (5/2*Pi^2+1/6)/(5/6*Psi(1,3/4)-2) 2100992911781450 a007 Real Root Of 394*x^4+622*x^3-198*x^2+837*x+724 2100992913177030 a003 cos(Pi*1/8)/sin(Pi*10/69) 2100992914882539 a007 Real Root Of -455*x^4-894*x^3-244*x^2-511*x+578 2100992915432358 m001 BesselJZeros(0,1)-sqrt(5)+GAMMA(11/24) 2100992919407571 a007 Real Root Of 65*x^4-697*x^3+580*x^2+845*x+862 2100992926328984 r005 Im(z^2+c),c=-15/118+3/11*I,n=18 2100992938047782 r009 Re(z^3+c),c=-13/23+8/27*I,n=23 2100992941987543 a007 Real Root Of 278*x^4+624*x^3-73*x^2+5*x+703 2100992952147110 m001 (ln(2+3^(1/2))+GAMMA(5/6))/(OneNinth+ZetaQ(3)) 2100992959512080 v003 sum((3/2*n^3+1/2*n^2+9*n-1)/n^n,n=1..infinity) 2100992960904004 r005 Im(z^2+c),c=-31/86+31/50*I,n=29 2100992967123290 l006 ln(941/7692) 2100992970313215 r005 Re(z^2+c),c=-7/58+29/56*I,n=38 2100992974030371 r005 Im(z^2+c),c=-65/126+14/37*I,n=25 2100992990866769 a007 Real Root Of 645*x^4+944*x^3-805*x^2+471*x+730 2100992992645914 r005 Re(z^2+c),c=-31/122+1/59*I,n=15 2100992993437225 m005 (1/2*2^(1/2)+7/9)/(5/9*gamma-1/4) 2100993011474216 m005 (1/2*3^(1/2)-5/8)/(1/3*Pi+1/10) 2100993013313497 r009 Im(z^3+c),c=-23/70+1/63*I,n=2 2100993017230682 m001 (Niven+ZetaQ(2))/(ln(Pi)-HardyLittlewoodC4) 2100993019232672 a007 Real Root Of 232*x^4+199*x^3-874*x^2-545*x+38 2100993023946951 s001 sum(exp(-Pi/4)^(n-1)*A007436[n],n=1..infinity) 2100993025905836 b008 ArcSinh[17/13+E] 2100993034253193 m001 (Robbin+StronglyCareFree)/(exp(1/Pi)-Mills) 2100993039275939 m001 Niven*Cahen/exp(sqrt(1+sqrt(3))) 2100993041423523 a007 Real Root Of 556*x^4+711*x^3-481*x^2+985*x-47 2100993053632743 r005 Im(z^2+c),c=-32/29+1/40*I,n=19 2100993056155641 a007 Real Root Of -625*x^4-961*x^3-912*x^2+578*x+154 2100993060969859 m001 GAMMA(11/12)^AlladiGrinstead-GaussAGM 2100993065647292 h001 (5/6*exp(2)+1/11)/(9/11*exp(1)+3/4) 2100993068294873 r005 Im(z^2+c),c=-17/26+17/61*I,n=38 2100993069014969 m001 (Riemann1stZero+Sarnak)/(Si(Pi)-ln(Pi)) 2100993075113146 r009 Re(z^3+c),c=-19/90+7/62*I,n=6 2100993084662816 b008 10/9+Sech[1/7] 2100993085103922 m001 (2^(1/2)-sin(1/5*Pi)*Pi^(1/2))/Pi^(1/2) 2100993085103922 m001 (sin(Pi/5)*sqrt(Pi)-sqrt(2))/sqrt(Pi) 2100993093905113 l006 ln(3781/4665) 2100993104795557 r002 36th iterates of z^2 + 2100993121381719 r005 Re(z^2+c),c=-15/94+20/33*I,n=33 2100993141009741 m001 (2^(1/2))^TreeGrowth2nd-exp(1/Pi) 2100993159077743 r005 Im(z^2+c),c=-11/23+21/53*I,n=16 2100993160029153 a007 Real Root Of -570*x^4+7*x^3+218*x^2+678*x+134 2100993160866763 r009 Im(z^3+c),c=-4/29+41/47*I,n=28 2100993162929460 r005 Im(z^2+c),c=-31/94+1/3*I,n=15 2100993164610059 r005 Im(z^2+c),c=-29/66+27/49*I,n=17 2100993173068506 m005 (1/2*3^(1/2)-5/8)/(3/4*gamma+5/7) 2100993186892329 a001 10946/2207*123^(3/10) 2100993188953397 m003 1/36+Sqrt[5]/64-2*Coth[1/2+Sqrt[5]/2] 2100993192452418 m001 (Si(Pi)-exp(-1/2*Pi))/(-BesselI(1,1)+Cahen) 2100993193157202 r005 Im(z^2+c),c=-117/122+9/41*I,n=38 2100993194844179 r009 Im(z^3+c),c=-25/118+53/54*I,n=6 2100993195997529 r008 a(0)=0,K{-n^6,30-56*n+2*n^2+20*n^3} 2100993200449281 h001 (5/12*exp(2)+9/11)/(7/11*exp(1)+1/8) 2100993200456437 a001 1/66978574*2584^(1/23) 2100993203192599 a001 4/433494437*165580141^(1/23) 2100993203192599 a001 4/701408733*10610209857723^(1/23) 2100993207269063 m001 (ln(gamma)+BesselK(1,1))/(Robbin-ThueMorse) 2100993208205684 a007 Real Root Of -207*x^4+494*x^3-815*x^2+400*x+125 2100993208541775 a007 Real Root Of 336*x^4+430*x^3-113*x^2+854*x-266 2100993214608833 r005 Re(z^2+c),c=-9/106+25/46*I,n=15 2100993219729444 r002 49th iterates of z^2 + 2100993224486363 a007 Real Root Of 238*x^4-763*x^3+724*x^2-921*x-233 2100993231878923 r002 4th iterates of z^2 + 2100993232107380 m001 1/(3^(1/3))*KhintchineLevy/exp(Zeta(1,2)) 2100993232317615 m001 exp(1)^Niven*exp(1)^Totient 2100993232317615 m001 exp(Niven+Totient) 2100993233129225 m001 Trott^2/FibonacciFactorial*ln(GAMMA(5/24))^2 2100993233344301 s002 sum(A102876[n]/((exp(n)+1)/n),n=1..infinity) 2100993234580994 r005 Im(z^2+c),c=7/24+31/64*I,n=20 2100993240824112 r005 Im(z^2+c),c=3/28+9/49*I,n=5 2100993244262703 m001 exp(GAMMA(1/12))^2/TreeGrowth2nd*GAMMA(7/24)^2 2100993245695282 a007 Real Root Of 695*x^4+700*x^3-995*x^2+921*x-723 2100993248858555 a007 Real Root Of -349*x^4-980*x^3+63*x^2+926*x-621 2100993249215073 r002 17th iterates of z^2 + 2100993250818730 a001 2207/1548008755920*3^(6/17) 2100993256541180 b008 27/7+(1+Pi)^2 2100993265087729 r005 Re(z^2+c),c=-43/82+23/48*I,n=15 2100993274826136 r009 Re(z^3+c),c=-39/122+18/31*I,n=9 2100993279547351 m002 Tanh[Pi]/Log[Pi]+(E^Pi*Tanh[Pi])/Log[Pi] 2100993279622244 r009 Re(z^3+c),c=-27/98+1/3*I,n=6 2100993291531006 m001 (Magata+Weierstrass)/(2^(1/3)+sin(1/5*Pi)) 2100993294081422 a007 Real Root Of 151*x^4-276*x^3-744*x^2+849*x-434 2100993296644299 h001 (2/9*exp(1)+5/7)/(4/5*exp(2)+4/11) 2100993297082932 r005 Re(z^2+c),c=-13/90+8/17*I,n=52 2100993303379293 r005 Im(z^2+c),c=-4/5+5/43*I,n=37 2100993312679631 m001 GAMMA(5/6)/ln(BesselJ(1,1))/cos(Pi/5)^2 2100993330277834 m001 (ln(2)/ln(10)+Catalan)/(ln(gamma)+GAMMA(5/6)) 2100993334553653 a008 Real Root of (-6+6*x+4*x^2+6*x^3-2*x^4-x^5) 2100993338566650 l006 ln(350/2861) 2100993338786370 h001 (7/12*exp(2)+8/9)/(4/5*exp(1)+3/10) 2100993345717324 b008 1/36+Log[6/5] 2100993348559528 r005 Im(z^2+c),c=-1+49/214*I,n=61 2100993357554030 r008 a(0)=2,K{-n^6,61-69*n^3-78*n^2+76*n} 2100993363864868 m005 (1/2*Zeta(3)+7/8)/(9/11*2^(1/2)-5/11) 2100993365943453 h001 (-9*exp(3)-8)/(-6*exp(5)-8) 2100993369942858 a003 -1-2*cos(2/7*Pi)+cos(7/30*Pi)-cos(8/27*Pi) 2100993372596729 a007 Real Root Of 22*x^4+468*x^3+149*x^2+612*x+705 2100993377483443 q001 1269/604 2100993377992937 m001 (BesselJ(0,1)+gamma(1))/(exp(1)+gamma) 2100993386899553 m001 (-GaussKuzminWirsing+Riemann2ndZero)/(1-ln(3)) 2100993389462896 m001 1/Robbin/ln(MinimumGamma)/Ei(1) 2100993418134609 r002 41th iterates of z^2 + 2100993427802728 l006 ln(6420/7921) 2100993432604237 r005 Im(z^2+c),c=-15/86+35/59*I,n=3 2100993434771934 m005 (1/2*Catalan+3/4)/(7/12*2^(1/2)-1/4) 2100993441779974 m005 (1/2*3^(1/2)-1/9)/(3/8*gamma+1/7) 2100993442669125 p003 LerchPhi(1/64,4,133/90) 2100993446665463 r005 Re(z^2+c),c=29/94+11/50*I,n=37 2100993447643788 m001 (Chi(1)-Zeta(3))/(-KomornikLoreti+ZetaQ(2)) 2100993450366096 m005 (1/3*5^(1/2)-1/12)/(2/9*3^(1/2)-7/10) 2100993457490593 m003 -6+5/Log[1/2+Sqrt[5]/2]-6*Sech[1/2+Sqrt[5]/2] 2100993457622820 m001 Backhouse^BesselK(1,1)+GaussAGM(1,1/sqrt(2)) 2100993473278840 a007 Real Root Of -501*x^4+928*x^3+870*x^2+913*x+163 2100993476720684 r009 Re(z^3+c),c=-17/90+46/63*I,n=21 2100993488026157 m005 (1/2*5^(1/2)-3/4)/(5/6*Zeta(3)+3/4) 2100993491520294 m001 exp(1/Pi)/CareFree*OneNinth 2100993494598379 r005 Im(z^2+c),c=-89/118+11/41*I,n=4 2100993497201618 r005 Re(z^2+c),c=7/66+16/43*I,n=47 2100993504653686 a007 Real Root Of 273*x^4+441*x^3-337*x^2+9*x+277 2100993526203401 m001 (exp(1)+Zeta(1/2))/(-Pi^(1/2)+GAMMA(19/24)) 2100993527890395 r005 Im(z^2+c),c=-57/122+11/30*I,n=64 2100993529475540 m001 (Zeta(1/2)+GaussKuzminWirsing)/(Kac-Salem) 2100993531989933 r009 Re(z^3+c),c=-3/7+19/36*I,n=20 2100993534839724 m001 (Robbin-Sierpinski)/(GAMMA(3/4)-ln(2+3^(1/2))) 2100993537804193 r005 Re(z^2+c),c=-89/94+4/25*I,n=10 2100993547301236 m001 MertensB1/ln(ArtinRank2)/sin(Pi/5)^2 2100993551435367 a007 Real Root Of 175*x^4-35*x^3-700*x^2+540*x+490 2100993552305627 a001 28657/5778*123^(3/10) 2100993559949832 p003 LerchPhi(1/125,4,431/164) 2100993559962603 a007 Real Root Of 454*x^4-331*x^3-308*x^2-596*x+141 2100993567163237 p004 log(11177/9059) 2100993568328857 r009 Re(z^3+c),c=-15/122+29/32*I,n=38 2100993568834857 m001 ln(GAMMA(7/24))/Backhouse*exp(1) 2100993590343739 m001 Tribonacci^2/ln(DuboisRaymond)*Zeta(7)^2 2100993593220485 a007 Real Root Of -640*x^4+992*x^3+489*x^2+521*x-139 2100993595325050 m001 (FeigenbaumDelta-ZetaQ(3))/(ln(5)-FeigenbaumC) 2100993598696637 r005 Im(z^2+c),c=-21/32+11/41*I,n=23 2100993601675714 a007 Real Root Of -449*x^4-980*x^3+318*x^2+947*x+246 2100993605618719 a001 75025/15127*123^(3/10) 2100993607440953 r009 Re(z^3+c),c=-13/64+1/19*I,n=6 2100993610664912 g005 GAMMA(7/11)*GAMMA(4/9)*GAMMA(4/5)/GAMMA(4/7) 2100993613396995 a001 196418/39603*123^(3/10) 2100993614531830 a001 514229/103682*123^(3/10) 2100993614697400 a001 1346269/271443*123^(3/10) 2100993614721557 a001 3524578/710647*123^(3/10) 2100993614725081 a001 9227465/1860498*123^(3/10) 2100993614725595 a001 24157817/4870847*123^(3/10) 2100993614725670 a001 63245986/12752043*123^(3/10) 2100993614725681 a001 165580141/33385282*123^(3/10) 2100993614725683 a001 433494437/87403803*123^(3/10) 2100993614725683 a001 1134903170/228826127*123^(3/10) 2100993614725683 a001 2971215073/599074578*123^(3/10) 2100993614725683 a001 7778742049/1568397607*123^(3/10) 2100993614725683 a001 20365011074/4106118243*123^(3/10) 2100993614725683 a001 53316291173/10749957122*123^(3/10) 2100993614725683 a001 139583862445/28143753123*123^(3/10) 2100993614725683 a001 365435296162/73681302247*123^(3/10) 2100993614725683 a001 956722026041/192900153618*123^(3/10) 2100993614725683 a001 2504730781961/505019158607*123^(3/10) 2100993614725683 a001 10610209857723/2139295485799*123^(3/10) 2100993614725683 a001 140728068720/28374454999*123^(3/10) 2100993614725683 a001 591286729879/119218851371*123^(3/10) 2100993614725683 a001 225851433717/45537549124*123^(3/10) 2100993614725683 a001 86267571272/17393796001*123^(3/10) 2100993614725683 a001 32951280099/6643838879*123^(3/10) 2100993614725683 a001 1144206275/230701876*123^(3/10) 2100993614725683 a001 4807526976/969323029*123^(3/10) 2100993614725683 a001 1836311903/370248451*123^(3/10) 2100993614725683 a001 701408733/141422324*123^(3/10) 2100993614725684 a001 267914296/54018521*123^(3/10) 2100993614725688 a001 9303105/1875749*123^(3/10) 2100993614725717 a001 39088169/7881196*123^(3/10) 2100993614725913 a001 14930352/3010349*123^(3/10) 2100993614727259 a001 5702887/1149851*123^(3/10) 2100993614736486 a001 2178309/439204*123^(3/10) 2100993614799728 a001 75640/15251*123^(3/10) 2100993615233197 a001 317811/64079*123^(3/10) 2100993615940370 a007 Real Root Of 591*x^4+532*x^3-987*x^2+762*x-624 2100993618204234 a001 121393/24476*123^(3/10) 2100993618615788 a007 Real Root Of 433*x^4+685*x^3-168*x^2+303*x-706 2100993632455098 m001 (3^(1/2)+Catalan)/(Paris+Trott2nd) 2100993638568024 a001 46368/9349*123^(3/10) 2100993638913521 r005 Im(z^2+c),c=3/28+14/23*I,n=17 2100993640143945 l006 ln(1159/9474) 2100993642907537 a007 Real Root Of 635*x^4+969*x^3-397*x^2+959*x+381 2100993650972130 g005 GAMMA(5/6)/GAMMA(8/11)/GAMMA(3/7)^2 2100993651210552 m001 (polylog(4,1/2)-sin(1))/(CopelandErdos+Mills) 2100993656826318 m005 (1/3*gamma+5)/(1/3*2^(1/2)+2) 2100993673152675 r005 Re(z^2+c),c=-23/94+5/36*I,n=14 2100993675122967 r005 Re(z^2+c),c=-19/23+3/58*I,n=58 2100993698885664 a001 2/1597*55^(19/27) 2100993716234715 a007 Real Root Of -449*x^4-664*x^3+125*x^2-732*x+501 2100993725394280 r005 Re(z^2+c),c=-31/118+9/35*I,n=3 2100993729990423 m001 (Grothendieck+Robbin)/(sin(1)+arctan(1/3)) 2100993733634511 m001 (Pi^(1/2)-Shi(1))/(FransenRobinson+Gompertz) 2100993739150668 m001 (ln(3)+ln(2+3^(1/2)))/(Rabbit+TreeGrowth2nd) 2100993743139001 r005 Re(z^2+c),c=-9/31+38/51*I,n=7 2100993743272892 m005 (1/2*Catalan-5/9)/(-29/48+1/16*5^(1/2)) 2100993749850268 r009 Re(z^3+c),c=-17/52+19/40*I,n=10 2100993763338891 a007 Real Root Of 553*x^4+919*x^3-391*x^2+686*x+915 2100993769691780 m001 ln(Magata)*FeigenbaumAlpha/Zeta(1/2) 2100993770616170 l006 ln(809/6613) 2100993770711337 r005 Re(z^2+c),c=-11/74+23/50*I,n=22 2100993771771372 r005 Im(z^2+c),c=-37/38+11/52*I,n=29 2100993778143529 a001 17711/3571*123^(3/10) 2100993781175791 r009 Re(z^3+c),c=-15/29+25/64*I,n=23 2100993787509660 a001 1/646*2^(26/59) 2100993806596579 a007 Real Root Of 265*x^4-992*x^3-967*x^2-617*x+181 2100993817763300 a005 (1/sin(99/227*Pi))^1854 2100993822358615 m001 1/GAMMA(13/24)^2/exp(Cahen)*Zeta(5)^2 2100993831585000 b008 (E^4*EulerGamma)/15 2100993833759479 a007 Real Root Of 161*x^4+369*x^3+513*x^2+588*x-744 2100993841189009 m005 (1/2*2^(1/2)-4/11)/(5/11*Catalan-2/5) 2100993860669816 r005 Re(z^2+c),c=-5/6+2/131*I,n=30 2100993862495754 a001 843*(1/2*5^(1/2)+1/2)^10*3^(9/14) 2100993864357339 a007 Real Root Of 290*x^4+36*x^3-637*x^2+940*x-530 2100993864362014 v003 sum((n^3+3*n^2+n)/(n!+2),n=1..infinity) 2100993866495766 h001 (5/12*exp(2)+2/3)/(6/11*exp(1)+3/10) 2100993869917952 a007 Real Root Of -912*x^4+350*x^3+797*x^2+986*x+177 2100993876135576 r005 Im(z^2+c),c=-123/106+11/32*I,n=7 2100993893722066 a007 Real Root Of -229*x^4-112*x^3+831*x^2+335*x+459 2100993906191068 l006 ln(2639/3256) 2100993908776355 r005 Im(z^2+c),c=-55/78+25/59*I,n=6 2100993911416322 m001 GAMMA(13/24)/(3^(1/3)-Robbin) 2100993914958833 r005 Re(z^2+c),c=33/106+22/63*I,n=16 2100993922986012 r009 Im(z^3+c),c=-19/86+6/31*I,n=9 2100993926836107 a007 Real Root Of -448*x^4-941*x^3+316*x^2+709*x+97 2100993928159218 r002 43i'th iterates of 2*x/(1-x^2) of 2100993931124633 m001 (BesselI(0,2)-Trott*ZetaP(3))/Trott 2100993943560230 a001 15127/55*121393^(10/27) 2100993947900930 s002 sum(A091761[n]/(n*pi^n+1),n=1..infinity) 2100993951837851 s002 sum(A091761[n]/(n*pi^n-1),n=1..infinity) 2100993952336890 a007 Real Root Of 250*x^4+703*x^3+693*x^2+431*x-505 2100993952647199 p001 sum((-1)^n/(587*n+445)/(6^n),n=0..infinity) 2100993952816095 m005 (1/2*Catalan+7/12)/(5/7*gamma+1/12) 2100993960173331 a007 Real Root Of 201*x^4+255*x^3-53*x^2+818*x+401 2100993970265696 r002 17th iterates of z^2 + 2100993992138607 a007 Real Root Of -464*x^4-930*x^3-180*x^2-907*x-695 2100993998274533 a001 47/199*(1/2*5^(1/2)+1/2)^27*199^(2/15) 2100994001178052 m001 Lehmer^(Pi*csc(5/12*Pi)/GAMMA(7/12))+Pi^(1/2) 2100994001178052 m001 sqrt(Pi)+Lehmer^GAMMA(5/12) 2100994002320102 p001 sum(1/(609*n+485)/(24^n),n=0..infinity) 2100994002686471 a007 Real Root Of 93*x^4-184*x^3-915*x^2-529*x-591 2100994007239821 m001 (2*Pi/GAMMA(5/6)+Trott2nd)/(Zeta(3)-Zeta(1/2)) 2100994023494786 a007 Real Root Of 498*x^4-33*x^3+270*x^2-456*x-109 2100994025041292 m001 (exp(1/exp(1))*Sarnak+Weierstrass)/Sarnak 2100994027723455 a007 Real Root Of -670*x^4-264*x^3+943*x^2+686*x-182 2100994036748068 a007 Real Root Of -693*x^4-967*x^3+991*x^2+391*x+982 2100994037575274 r004 Im(z^2+c),c=-1/7+5/18*I,z(0)=I,n=25 2100994038479493 a007 Real Root Of -57*x^4+325*x^3-62*x^2-483*x-615 2100994040586764 p004 log(36629/4481) 2100994042401945 r009 Re(z^3+c),c=-6/19+24/59*I,n=5 2100994046996259 a007 Real Root Of -518*x^4-891*x^3+855*x^2+695*x-484 2100994052324594 m001 BesselI(0,1)+Rabbit*Salem 2100994057647888 r005 Im(z^2+c),c=-7/10+27/110*I,n=47 2100994074955074 a007 Real Root Of -326*x^4-575*x^3-71*x^2-563*x+150 2100994077442536 a007 Real Root Of 577*x^4+882*x^3+523*x^2-195*x-57 2100994078249771 a007 Real Root Of -236*x^4-107*x^3-206*x^2+697*x+155 2100994081422950 m005 (1/2*2^(1/2)+5/11)/(-36/55+1/22*5^(1/2)) 2100994083819821 m001 (Porter+ZetaP(3))/(Landau-PisotVijayaraghavan) 2100994084907927 m001 (exp(1)+DuboisRaymond)/(MertensB3+ZetaQ(2)) 2100994086435863 m001 (polylog(4,1/2)+Trott)/(ZetaP(3)+ZetaP(4)) 2100994088964915 r002 25th iterates of z^2 + 2100994094548462 m005 (1/2*exp(1)+1/6)/(8/11*5^(1/2)-9/10) 2100994094769798 m001 1/Magata/ln(Si(Pi))^2*exp(1) 2100994100065570 l006 ln(459/3752) 2100994100336008 a007 Real Root Of -274*x^4-583*x^3-193*x^2-79*x+618 2100994101667916 a007 Real Root Of -243*x^4-522*x^3-458*x^2+510*x+123 2100994101768408 m001 log(1+sqrt(2))^2*GAMMA(7/12)/exp(sqrt(3)) 2100994108382249 r005 Im(z^2+c),c=-6/11+17/33*I,n=5 2100994110762691 m001 (Riemann2ndZero*Sarnak-ZetaQ(3))/Sarnak 2100994118117239 a003 cos(Pi*23/81)-cos(Pi*41/113) 2100994119114742 a007 Real Root Of -351*x^4-251*x^3+931*x^2-107*x+177 2100994123689188 a007 Real Root Of -573*x^4-789*x^3+418*x^2-846*x+225 2100994124016597 r005 Re(z^2+c),c=-11/82+31/63*I,n=34 2100994126752046 a003 sin(Pi*3/53)/sin(Pi*36/113) 2100994143089041 m001 (-polylog(4,1/2)+LandauRamanujan2nd)/(1-ln(2)) 2100994150488561 a007 Real Root Of -629*x^4-217*x^3+217*x^2+798*x-174 2100994155040689 m006 (1/3*ln(Pi)-4/5)/(5/Pi+2/5) 2100994155373345 l006 ln(8148/8321) 2100994159005110 r005 Re(z^2+c),c=-5/6+3/194*I,n=34 2100994159012229 r005 Im(z^2+c),c=5/23+5/43*I,n=14 2100994163159768 r005 Re(z^2+c),c=-5/8+92/245*I,n=37 2100994163689811 a005 (1/cos(4/35*Pi))^186 2100994181549265 m005 (1/2*Pi+10/11)/(1/2*5^(1/2)-1) 2100994182190315 m001 Landau*ReciprocalLucas+MertensB2 2100994185586365 m001 (GaussAGM+ZetaQ(3))/(BesselJ(1,1)-sin(1)) 2100994187140727 r005 Re(z^2+c),c=3/58+8/47*I,n=5 2100994193013227 a007 Real Root Of 105*x^4-39*x^3+226*x^2-794*x+157 2100994196608877 m001 1/Salem^2/ln(Porter)*GAMMA(11/12)^2 2100994201732850 a001 440719107401/48*1836311903^(8/17) 2100994201732850 a001 9381251041/48*6557470319842^(8/17) 2100994202205282 a007 Real Root Of 477*x^4+995*x^3-200*x^2-805*x-875 2100994205171354 a001 192900153618*2504730781961^(17/21) 2100994206321058 m001 (1-2^(1/2))/(Catalan+GAMMA(11/12)) 2100994206697947 m001 OneNinth^2*FeigenbaumC^2*ln(GAMMA(11/12)) 2100994210232616 h001 (-7*exp(1/2)-2)/(-3*exp(3/2)+7) 2100994215351935 m001 (HardHexagonsEntropy+Robbin)/(Catalan-Ei(1)) 2100994221154991 m001 (FeigenbaumKappa+LaplaceLimit)^Shi(1) 2100994228448549 m001 (TravellingSalesman+ZetaP(2))/(1-GAMMA(11/12)) 2100994229493085 m001 (Trott-ZetaP(4))/(3^(1/3)-GAMMA(5/6)) 2100994243851386 q001 803/3822 2100994243851386 r002 2th iterates of z^2 + 2100994252544222 r009 Re(z^3+c),c=-35/106+17/35*I,n=27 2100994260058666 m005 (1/2*Zeta(3)-5/12)/(7/11*5^(1/2)-6/11) 2100994261513985 a003 sin(Pi*13/37)-sin(Pi*40/109) 2100994262534786 r005 Im(z^2+c),c=-11/14+4/17*I,n=4 2100994265006129 b008 1+(17*E^Sqrt[Pi])/5 2100994275549040 a007 Real Root Of -526*x^4-934*x^3+740*x^2+371*x-900 2100994278997876 m001 1/LaplaceLimit^2/Bloch/exp(exp(1))^2 2100994287022260 m001 Chi(1)+BesselK(0,1)-ReciprocalFibonacci 2100994288889361 m001 Pi^2/GAMMA(11/24)*exp(sqrt(2)) 2100994292138286 r005 Re(z^2+c),c=-3/16+11/25*I,n=9 2100994303662239 r005 Im(z^2+c),c=-31/28+15/61*I,n=41 2100994304901886 m001 (exp(Pi)+BesselK(0,1))/(-FeigenbaumC+Rabbit) 2100994305941276 r008 a(0)=2,K{-n^6,-54-37*n^3+65*n^2+15*n} 2100994306759170 a007 Real Root Of -594*x^4+195*x^3+484*x^2+792*x+148 2100994330902575 a007 Real Root Of -669*x^4-825*x^3+968*x^2-736*x-435 2100994331554325 a001 7/365435296162*2^(2/15) 2100994339154082 a007 Real Root Of 204*x^4+362*x^3+260*x^2+776*x-135 2100994349270955 r005 Re(z^2+c),c=7/22+11/48*I,n=30 2100994351296680 m009 (1/10*Pi^2-4/5)/(40*Catalan+5*Pi^2+3) 2100994355935056 b008 19+ProductLog[15] 2100994359512544 l006 ln(6775/8359) 2100994359583082 l006 ln(1027/8395) 2100994367757351 m005 (3*gamma-4/5)/(2/5*2^(1/2)-5) 2100994376893760 a007 Real Root Of 95*x^4-157*x^3-918*x^2-704*x-734 2100994407699309 r009 Re(z^3+c),c=-9/56+43/53*I,n=3 2100994416060529 m005 (1/2*5^(1/2)+1/8)/(3/5*5^(1/2)-3/4) 2100994416077519 p004 log(34471/4217) 2100994426629763 r005 Im(z^2+c),c=-15/29+11/25*I,n=33 2100994437157236 p003 LerchPhi(1/8,1,94/189) 2100994439186876 m001 (ln(Pi)-Landau)^Zeta(1/2) 2100994453426401 r008 a(0)=2,K{-n^6,7-3*n^3-8*n^2-7*n} 2100994454701152 r002 59th iterates of z^2 + 2100994467270648 r005 Im(z^2+c),c=-37/82+12/23*I,n=45 2100994470375324 l005 sech(727/106) 2100994476196644 r005 Im(z^2+c),c=-37/70+22/57*I,n=44 2100994477111840 a007 Real Root Of 397*x^4+934*x^3+396*x^2+480*x+187 2100994490014759 m001 MertensB2^MasserGramainDelta+Zeta(5) 2100994500719643 a007 Real Root Of 89*x^4-291*x^3-824*x^2+363*x-33 2100994509269950 r009 Im(z^3+c),c=-9/23+7/60*I,n=17 2100994510638944 r009 Re(z^3+c),c=-7/16+29/54*I,n=51 2100994511569391 a003 3^(1/2)+cos(11/24*Pi)-2*cos(4/21*Pi) 2100994521509665 m001 (Zeta(5)+GAMMA(2/3))/(DuboisRaymond-MertensB3) 2100994525266655 a007 Real Root Of -430*x^4+725*x^3+384*x^2+692*x+136 2100994535355322 m005 (9/4+5/2*5^(1/2))/(3*gamma+2) 2100994543065846 a007 Real Root Of 493*x^4+655*x^3-795*x^2+141*x+274 2100994546599469 m005 (1/3*exp(1)+1/7)/(3*2^(1/2)+3/4) 2100994548029634 r009 Im(z^3+c),c=-1/38+13/59*I,n=2 2100994554353653 a007 Real Root Of 8*x^4-71*x^3+207*x^2+684*x-291 2100994557144752 a007 Real Root Of 309*x^4+513*x^3+743*x^2-887*x-215 2100994569298770 l006 ln(568/4643) 2100994581202093 m001 1/Rabbit^2/MadelungNaCl/ln(GAMMA(11/12)) 2100994582537187 r005 Re(z^2+c),c=-17/82+4/13*I,n=17 2100994584986812 m001 (Kac+Trott)/(1+Figure8HypebolicComplement) 2100994586206803 m001 (Trott2nd-ZetaP(3))/(MertensB1+TreeGrowth2nd) 2100994587309518 a007 Real Root Of -165*x^4-20*x^3+494*x^2-435*x-65 2100994588706491 a001 1/14619165*89^(1/4) 2100994590638066 s001 sum(exp(-4*Pi/5)^n*A196906[n],n=1..infinity) 2100994592947318 r009 Re(z^3+c),c=-1/56+25/37*I,n=7 2100994607095328 m001 ln(PisotVijayaraghavan)*Conway^2*GAMMA(5/24) 2100994607239484 h001 (5/11*exp(2)+3/4)/(1/7*exp(2)+9/10) 2100994607398337 p001 sum((-1)^n/(367*n+13)/n/(125^n),n=1..infinity) 2100994608720811 a001 4/930249*322^(33/49) 2100994619810953 a007 Real Root Of 471*x^4+987*x^3+268*x^2+523*x-108 2100994620877216 m001 (Lehmer-OneNinth)/(Riemann3rdZero-Tetranacci) 2100994629132758 a007 Real Root Of -32*x^4-690*x^3-418*x^2-953*x+507 2100994641357282 r005 Re(z^2+c),c=-5/22+32/39*I,n=36 2100994648757063 l006 ln(4136/5103) 2100994654524132 r005 Im(z^2+c),c=-41/48+10/53*I,n=58 2100994659755712 p004 log(19463/2381) 2100994663738868 m001 (-Kac+Khinchin)/(cos(1)+BesselJ(1,1)) 2100994676665067 m001 BesselI(0,1)*GAMMA(5/12)-Lehmer 2100994676747231 r009 Re(z^3+c),c=-39/118+16/33*I,n=14 2100994680225943 r005 Im(z^2+c),c=23/60+10/47*I,n=37 2100994680247311 a007 Real Root Of -231*x^4-413*x^3-759*x^2+166*x+65 2100994691836002 r002 41th iterates of z^2 + 2100994709905950 m001 (ln(2^(1/2)+1)+Zeta(1,-1))^FeigenbaumDelta 2100994710635466 a001 4/1346269*233^(25/32) 2100994715439945 r005 Im(z^2+c),c=-47/86+13/35*I,n=45 2100994721450457 m005 (1/3*Catalan-1/6)/(1/8*Catalan+6/11) 2100994731466437 a001 5778/5*5^(13/35) 2100994732787772 a007 Real Root Of -522*x^4-518*x^3+911*x^2-424*x+455 2100994734808777 a001 615/124*123^(3/10) 2100994736516994 a007 Real Root Of -552*x^4-933*x^3+488*x^2+111*x+182 2100994743634793 r009 Re(z^3+c),c=-35/122+38/61*I,n=13 2100994757378070 p004 log(22259/18041) 2100994761180398 a003 cos(Pi*29/115)-cos(Pi*39/116) 2100994761892333 r005 Re(z^2+c),c=-7/48+30/43*I,n=24 2100994763910552 a007 Real Root Of 168*x^4-160*x^3-994*x^2-152*x-689 2100994777822762 r009 Im(z^3+c),c=-27/110+1/60*I,n=5 2100994780659825 a001 76/28657*196418^(9/53) 2100994787862343 a007 Real Root Of -284*x^4-764*x^3-426*x^2+191*x+730 2100994795825263 r002 6th iterates of z^2 + 2100994809003710 r009 Re(z^3+c),c=-1/30+28/53*I,n=28 2100994812770254 p003 LerchPhi(1/125,4,229/155) 2100994819116728 a007 Real Root Of -492*x^4-580*x^3+902*x^2-505*x-835 2100994819190070 a007 Real Root Of -427*x^4-304*x^3+916*x^2-855*x-339 2100994821047766 q001 2/95193 2100994823341519 m001 (Champernowne+Kac)/(1-Cahen) 2100994830160726 m001 ln(Ei(1))^2/Kolakoski^2/GAMMA(7/24) 2100994833543588 r005 Re(z^2+c),c=-11/78+11/23*I,n=33 2100994838911045 m001 (gamma+BesselK(1,1))/(1-Psi(2,1/3)) 2100994851970961 m001 (cos(1)-ln(Pi))/(Artin+FeigenbaumAlpha) 2100994856804435 a007 Real Root Of -164*x^4+274*x^3-826*x^2+384*x+120 2100994869808645 p003 LerchPhi(1/5,4,284/191) 2100994870329943 a007 Real Root Of 3*x^4+628*x^3-482*x^2+194*x+789 2100994873925748 r005 Re(z^2+c),c=3/16+4/47*I,n=15 2100994874912996 b008 Sinh[5/238] 2100994878492840 h001 (1/10*exp(2)+5/12)/(5/7*exp(2)+2/9) 2100994886908229 r009 Re(z^3+c),c=-33/58+4/13*I,n=31 2100994887434596 l006 ln(677/5534) 2100994888556077 b008 InverseGudermannian[5/238] 2100994902202886 b008 ArcCsc[238/5] 2100994902528821 r005 Im(z^2+c),c=-17/18+31/147*I,n=40 2100994906852855 m004 2-Cos[Sqrt[5]*Pi]+150*Pi*Sech[Sqrt[5]*Pi] 2100994907381623 m001 (cos(1)+Ei(1))/(-KhinchinLevy+Trott2nd) 2100994910489017 m001 Catalan^Paris/Bloch 2100994919832768 a001 1364/987*28657^(2/49) 2100994928058438 r002 49th iterates of z^2 + 2100994930336933 m001 1/FeigenbaumB/Lehmer*ln(Riemann3rdZero)^2 2100994936494690 r005 Re(z^2+c),c=-5/6+3/194*I,n=46 2100994942001442 m006 (3/5*ln(Pi)+2/3)/(3*exp(Pi)-5) 2100994959186376 a001 4/3*433494437^(5/6) 2100994973821974 m005 (1/3*exp(1)-1/5)/(5/8*gamma+3) 2100994977813526 m001 (MertensB2-MinimumGamma)/(exp(1/Pi)-Magata) 2100994985024064 m001 1/exp(TreeGrowth2nd)^2/Lehmer/gamma^2 2100994985230638 r005 Re(z^2+c),c=29/114+5/29*I,n=38 2100994996567293 r009 Re(z^3+c),c=-19/66+19/51*I,n=9 2100994996641238 l006 ln(5633/6950) 2100994999884886 r009 Re(z^3+c),c=-9/28+19/41*I,n=23 2100995000586592 a007 Real Root Of 271*x^4+853*x^3+663*x^2-236*x-792 2100995002564835 m006 (1/6*exp(Pi)+2/5)/(1/5*Pi^2-4) 2100995003261068 a007 Real Root Of -529*x^4-910*x^3+130*x^2-220*x+832 2100995006190725 m001 BesselK(0,1)*BesselJ(0,1)/exp(Zeta(1,2))^2 2100995017993175 m001 MasserGramain^HeathBrownMoroz*Riemann2ndZero 2100995032769194 r009 Im(z^3+c),c=-55/94+26/45*I,n=33 2100995036165886 r005 Im(z^2+c),c=-9/16+43/116*I,n=43 2100995039062953 m002 -3*E^Pi+Pi^5-Pi^5*Csch[Pi] 2100995053013880 a007 Real Root Of 158*x^4+295*x^3+433*x^2+892*x-380 2100995074735726 m001 BesselK(1,1)^BesselI(0,1)/FeigenbaumAlpha 2100995076746794 m001 (Zeta(1,-1)-Pi^(1/2))/(RenyiParking+ZetaP(3)) 2100995087655096 r002 10th iterates of z^2 + 2100995095768920 r009 Re(z^3+c),c=-3/10+27/53*I,n=4 2100995099162911 r002 62th iterates of z^2 + 2100995099873989 b008 22+PolyLog[2,-5/4] 2100995107187558 m001 LambertW(1)^2/GAMMA(5/24)^2*ln(log(1+sqrt(2))) 2100995107782038 r002 4th iterates of z^2 + 2100995115872902 m001 (Zeta(1,-1)+MasserGramain)/(ZetaP(4)-ZetaQ(2)) 2100995116707594 m001 (Zeta(3)+Ei(1))/(Lehmer+QuadraticClass) 2100995117334214 l006 ln(786/6425) 2100995132018323 m001 (GAMMA(11/12)-Kac)/(Niven+PolyaRandomWalk3D) 2100995149084374 r009 Im(z^3+c),c=-19/44+5/61*I,n=16 2100995150391270 a007 Real Root Of 426*x^4+946*x^3+436*x^2+424*x-561 2100995165179900 p004 log(26591/3253) 2100995167277332 m001 GAMMA(13/24)-Zeta(1,2)^OrthogonalArrays 2100995174357027 m005 (1/2*Zeta(3)-2/3)/(2/11*exp(1)-2/11) 2100995177388531 r009 Re(z^3+c),c=-29/62+28/59*I,n=18 2100995179512895 r009 Im(z^3+c),c=-17/106+13/63*I,n=4 2100995181465992 r002 42th iterates of z^2 + 2100995192640539 r002 47th iterates of z^2 + 2100995195976537 m005 (1/3*gamma+1/3)/(7/12*exp(1)+11/12) 2100995197613622 r005 Re(z^2+c),c=-12/31+45/62*I,n=6 2100995198443329 l006 ln(7130/8797) 2100995199573188 m005 (1/2*exp(1)-9/10)/(2/9*Pi-11/12) 2100995203849452 a007 Real Root Of -825*x^4-77*x^3-365*x^2+752*x+175 2100995208256542 q001 57/2713 2100995210458785 m001 exp(Zeta(3))^2*GAMMA(1/24)*cos(Pi/5) 2100995213847357 m001 1/ln(Riemann1stZero)*Paris/BesselK(0,1)^2 2100995214072958 r009 Re(z^3+c),c=-9/40+11/62*I,n=12 2100995219149203 m005 (1/3*2^(1/2)-1/10)/(2/11*5^(1/2)-7/12) 2100995222532589 h001 (-8*exp(1)-9)/(-7*exp(2/3)-1) 2100995226606999 m001 (2^(1/2)-exp(1/Pi))/(Landau+MertensB3) 2100995238969821 g005 GAMMA(9/10)/GAMMA(9/11)/GAMMA(7/11)/GAMMA(2/7) 2100995252213170 a007 Real Root Of -252*x^4+531*x^3+639*x^2+613*x+106 2100995261558789 r009 Re(z^3+c),c=-9/40+11/62*I,n=13 2100995264459349 r009 Re(z^3+c),c=-9/40+11/62*I,n=16 2100995264608450 r009 Re(z^3+c),c=-9/40+11/62*I,n=17 2100995264631812 r009 Re(z^3+c),c=-9/40+11/62*I,n=20 2100995264632219 r009 Re(z^3+c),c=-9/40+11/62*I,n=21 2100995264632347 r009 Re(z^3+c),c=-9/40+11/62*I,n=24 2100995264632347 r009 Re(z^3+c),c=-9/40+11/62*I,n=25 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=28 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=29 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=33 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=34 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=37 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=38 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=41 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=42 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=45 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=46 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=49 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=50 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=54 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=53 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=55 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=58 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=59 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=62 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=63 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=64 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=61 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=60 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=57 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=56 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=51 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=52 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=48 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=47 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=44 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=43 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=40 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=39 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=36 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=32 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=35 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=30 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=31 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=27 2100995264632348 r009 Re(z^3+c),c=-9/40+11/62*I,n=26 2100995264632357 r009 Re(z^3+c),c=-9/40+11/62*I,n=23 2100995264632376 r009 Re(z^3+c),c=-9/40+11/62*I,n=22 2100995264634151 r009 Re(z^3+c),c=-9/40+11/62*I,n=19 2100995264642114 r009 Re(z^3+c),c=-9/40+11/62*I,n=18 2100995264924435 r009 Re(z^3+c),c=-9/40+11/62*I,n=15 2100995265736189 a007 Real Root Of -986*x^4+362*x^3-366*x^2+903*x-175 2100995267622403 r009 Re(z^3+c),c=-9/40+11/62*I,n=14 2100995268268007 r009 Re(z^3+c),c=-3/94+25/52*I,n=10 2100995268622269 a001 843/75025*55^(19/26) 2100995277308314 r005 Im(z^2+c),c=5/28+1/7*I,n=15 2100995286148523 r009 Re(z^3+c),c=-9/40+11/62*I,n=11 2100995291235900 l006 ln(895/7316) 2100995291533348 a007 Real Root Of -177*x^4-471*x^3-431*x^2-121*x+729 2100995298741151 m001 (Zeta(1,-1)+exp(1/exp(1)))/(ArtinRank2-Mills) 2100995307412681 r005 Im(z^2+c),c=-47/74+11/34*I,n=64 2100995315252583 r005 Im(z^2+c),c=-13/22+51/122*I,n=35 2100995318000949 a007 Real Root Of -181*x^4+128*x^3+966*x^2+121*x+704 2100995323877994 a007 Real Root Of -527*x^4-970*x^3+65*x^2-324*x+305 2100995323989110 r009 Re(z^3+c),c=-5/16+1/2*I,n=9 2100995324275384 m001 KhinchinHarmonic/(Mills-PlouffeB) 2100995327221688 h001 (2/5*exp(1)+4/9)/(2/9*exp(1)+1/8) 2100995327896387 m002 ProductLog[Pi]^(-1)+2*Pi^4*ProductLog[Pi] 2100995328476121 h001 (3/5*exp(2)+1/12)/(3/4*exp(1)+1/9) 2100995332189526 a007 Real Root Of 157*x^4+255*x^3-422*x^2-758*x-424 2100995333766860 r005 Re(z^2+c),c=1/22+28/47*I,n=46 2100995336072132 m001 exp(1)^2*ln(FeigenbaumC)^2*log(1+sqrt(2))^2 2100995338932393 m001 (BesselI(1,2)-Conway)/(FeigenbaumKappa+Trott) 2100995341183219 r005 Re(z^2+c),c=-2/19+35/53*I,n=30 2100995345399664 a001 18/377*832040^(5/46) 2100995352170033 m001 exp(GAMMA(1/3))*FeigenbaumB/gamma 2100995358372876 m001 (FeigenbaumC-FransenRobinson)/(PlouffeB-Trott) 2100995360910957 r005 Re(z^2+c),c=7/66+16/43*I,n=48 2100995361527176 m006 (3/4*exp(2*Pi)-2/3)/(5/6*exp(Pi)-1/5) 2100995362839826 a001 521/701408733*514229^(21/22) 2100995369737196 m005 (1/2*Catalan+2/3)/(6*Catalan-1/7) 2100995381240708 a007 Real Root Of 426*x^4-26*x^3-815*x^2-536*x+148 2100995383582790 r005 Re(z^2+c),c=7/66+16/43*I,n=51 2100995388250681 r009 Re(z^3+c),c=-9/40+11/62*I,n=9 2100995389026396 a007 Real Root Of -305*x^4-731*x^3-304*x^2-14*x+476 2100995397684021 a007 Real Root Of 445*x^4+700*x^3-343*x^2+38*x-585 2100995397809974 a007 Real Root Of 11*x^4+247*x^3+374*x^2+809*x-722 2100995398763802 m001 (FeigenbaumMu-Pi^(1/2))^BesselI(0,1) 2100995411036065 m001 1/BesselJ(1,1)^2*CopelandErdos*ln(sin(1)) 2100995415686666 a007 Real Root Of -566*x^4-713*x^3+809*x^2-653*x-527 2100995418657865 a001 199/514229*13^(31/47) 2100995425617806 m001 exp(GAMMA(7/12))^2*GAMMA(19/24)*sin(1) 2100995427378037 l006 ln(1004/8207) 2100995431157170 h001 (6/7*exp(1)+3/4)/(5/12*exp(1)+1/3) 2100995452627987 r002 17th iterates of z^2 + 2100995458420462 r005 Im(z^2+c),c=-2/7+17/53*I,n=15 2100995471170015 m001 1/BesselJ(1,1)/exp(GlaisherKinkelin)/sqrt(3)^2 2100995493762532 m001 (2*Pi/GAMMA(5/6)+Lehmer)/(Magata-PlouffeB) 2100995493948260 a001 89/843*521^(11/13) 2100995495630912 s002 sum(A036398[n]/((3*n)!),n=1..infinity) 2100995495855685 m006 (1/2/Pi+1/6)/(5*Pi-1/5) 2100995499612299 r009 Re(z^3+c),c=-31/94+16/33*I,n=21 2100995505416947 a007 Real Root Of -270*x^4-489*x^3-413*x^2-940*x+574 2100995510562038 a005 (1/cos(2/25*Pi))^961 2100995515931397 a001 3571/2584*28657^(2/49) 2100995519988749 a001 1597/199*199^(2/11) 2100995523123848 m004 -1/9+3*Cos[Sqrt[5]*Pi] 2100995524111769 m001 (FellerTornier+ZetaQ(2))/(ln(2)+ln(3)) 2100995527592140 a007 Real Root Of -434*x^4-766*x^3-18*x^2+846*x-169 2100995530436290 r005 Im(z^2+c),c=-15/29+21/55*I,n=49 2100995534586607 a007 Real Root Of 133*x^4-118*x^3-533*x^2+803*x+354 2100995535038789 m005 (1/3*2^(1/2)+1/7)/(1/12*Catalan-3) 2100995536854404 l006 ln(1113/9098) 2100995537381132 r008 a(0)=2,K{-n^6,-47+29*n-3*n^2} 2100995540754880 r005 Im(z^2+c),c=-11/60+26/33*I,n=60 2100995550823302 r002 38th iterates of z^2 + 2100995558771220 r005 Re(z^2+c),c=-5/22+6/25*I,n=8 2100995561437557 a003 sin(Pi*25/63)-sin(Pi*37/88) 2100995567345369 p004 log(34217/27733) 2100995572866113 m005 (1/3*2^(1/2)-1/4)/(2/7*gamma+8/9) 2100995573976469 m004 -25+6*Sqrt[5]*Pi*Cot[Sqrt[5]*Pi] 2100995576191665 m001 MertensB2*Totient+TravellingSalesman 2100995576899640 a007 Real Root Of -39*x^4-836*x^3-393*x^2-932*x-164 2100995577655423 m001 (-BesselI(1,1)+1)/(-cos(1)+1/3) 2100995577717333 a007 Real Root Of -671*x^4-959*x^3+573*x^2-378*x+857 2100995578953106 a005 (1/sin(85/183*Pi))^119 2100995580856596 r005 Im(z^2+c),c=-5/6+3/19*I,n=32 2100995593544385 r005 Im(z^2+c),c=-10/9+22/103*I,n=26 2100995594261800 r005 Im(z^2+c),c=1/50+11/50*I,n=10 2100995597837929 h001 (3/7*exp(2)+3/8)/(2/7*exp(1)+10/11) 2100995602900997 a001 9349/6765*28657^(2/49) 2100995615589690 a001 24476/17711*28657^(2/49) 2100995618013313 a007 Real Root Of -566*x^4-627*x^3+770*x^2-888*x-51 2100995618585085 a001 39603/28657*28657^(2/49) 2100995623431734 a001 15127/10946*28657^(2/49) 2100995624854924 m001 GAMMA(19/24)+Mills*Rabbit 2100995626800609 l006 ln(1222/9989) 2100995627611063 r005 Re(z^2+c),c=7/23+11/51*I,n=60 2100995630367643 m001 (1/2)^ln(Pi)+exp(1/2) 2100995645063339 h001 (5/12*exp(2)+7/9)/(5/11*exp(1)+3/5) 2100995650242608 r005 Re(z^2+c),c=-7/34+41/54*I,n=6 2100995655864857 m001 1/GAMMA(3/4)^2/ln(GAMMA(1/3))/LambertW(1)^2 2100995656651164 a001 5778/4181*28657^(2/49) 2100995665296380 m002 -E^Pi-Pi^(-4)+Log[Pi]+Tanh[Pi] 2100995665632465 r005 Re(z^2+c),c=17/50+11/42*I,n=46 2100995668888616 a007 Real Root Of 912*x^4-167*x^3-620*x^2-204*x+70 2100995669410118 h002 exp(11^(2/7)+2^(7/4)) 2100995669410118 h007 exp(11^(2/7)+2^(7/4)) 2100995687327638 a007 Real Root Of 740*x^4+455*x^3+591*x^2-603*x-150 2100995687906234 m001 Bloch+GaussAGM+Kolakoski 2100995692456468 m001 Zeta(1/2)^ln(5)/ZetaQ(3) 2100995695855973 m001 ((1+3^(1/2))^(1/2)+Stephens)/(sin(1)+Ei(1,1)) 2100995698960981 m004 -3*Cos[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi]/9 2100995699270408 m001 (BesselJ(1,1)-Kac)/(Landau+PolyaRandomWalk3D) 2100995699424048 a007 Real Root Of -546*x^4-636*x^3+644*x^2-908*x-10 2100995702063579 s002 sum(A173798[n]/((2^n+1)/n),n=1..infinity) 2100995706461646 m001 (Backhouse+ThueMorse)/(Psi(1,1/3)-Zeta(3)) 2100995707050259 a003 cos(Pi*35/113)-cos(Pi*34/107) 2100995715690597 r005 Re(z^2+c),c=-19/14+120/229*I,n=2 2100995723437662 m001 (Khinchin-Sierpinski)/(Ei(1,1)+sin(1/12*Pi)) 2100995723512260 r005 Re(z^2+c),c=-3/118+29/48*I,n=41 2100995728355267 s002 sum(A036119[n]/(n*2^n-1),n=1..infinity) 2100995732574679 q001 1477/703 2100995733704445 r005 Re(z^2+c),c=-13/106+29/57*I,n=26 2100995735309709 m001 (Conway-Lehmer*Paris)/Lehmer 2100995738396882 r009 Re(z^3+c),c=-31/86+11/19*I,n=41 2100995740418467 a005 (1/cos(1/75*Pi))^846 2100995740582220 a007 Real Root Of -314*x^4-297*x^3+986*x^2+926*x+957 2100995747614183 a001 521/17711*8^(52/55) 2100995747628055 m001 BesselJZeros(0,1)-sin(Pi/12)^ln(1+sqrt(2)) 2100995765987929 r005 Im(z^2+c),c=-10/9+23/107*I,n=34 2100995775929084 a001 843/591286729879*3^(6/17) 2100995778151482 a007 Real Root Of 11*x^4-474*x^3-729*x^2+459*x-428 2100995782654483 m001 (sin(1)+gamma(2))/(Backhouse+FeigenbaumAlpha) 2100995782717555 a007 Real Root Of -2*x^4-421*x^3-170*x^2-370*x-792 2100995783268740 r005 Im(z^2+c),c=-7/10+34/195*I,n=24 2100995785250359 m005 (1/2*gamma-4/11)/(4/11*3^(1/2)-3/11) 2100995804241662 m001 1/exp(MinimumGamma)/KhintchineLevy*Zeta(5)^2 2100995805543033 a007 Real Root Of 183*x^4-326*x^3-165*x^2-500*x+115 2100995806985514 m001 (gamma+Pi^(1/2))/(Cahen+Weierstrass) 2100995808930619 m001 (ln(gamma)+2*Pi/GAMMA(5/6))/(GAMMA(7/12)+Thue) 2100995814603135 a001 76^(6/35) 2100995819323368 m001 (Pi-2/3*Pi*3^(1/2)/GAMMA(2/3))/(ln(5)+Lehmer) 2100995825924285 r009 Im(z^3+c),c=-55/126+2/33*I,n=23 2100995828664075 m001 Pi-exp(Pi)+Zeta(1/2)/exp(1/exp(1)) 2100995833500905 r005 Im(z^2+c),c=-85/86+13/59*I,n=62 2100995835653083 r005 Re(z^2+c),c=-9/14+67/183*I,n=30 2100995836474892 m005 (1/2*Catalan+1/4)/(1/10*Catalan-3/7) 2100995847274084 m001 (ln(2)+2*Pi/GAMMA(5/6))/(MertensB2-MertensB3) 2100995855717192 a007 Real Root Of 519*x^4+505*x^3-913*x^2+615*x-107 2100995858222919 m001 (5^(1/2)-BesselK(0,1))/(-gamma(2)+ZetaP(4)) 2100995858235741 m001 (Otter+Salem)/(MertensB1+Niven) 2100995860677175 r005 Re(z^2+c),c=-6/25+10/59*I,n=15 2100995863515434 m001 exp(Pi)*CareFree/StronglyCareFree 2100995867593066 a007 Real Root Of -68*x^4-170*x^3-390*x^2-504*x+411 2100995876273836 m001 Magata*CareFree^2*exp((2^(1/3)))^2 2100995880051979 a007 Real Root Of 477*x^4+797*x^3-654*x^2-347*x+255 2100995884340505 a001 2207/1597*28657^(2/49) 2100995884616565 r005 Re(z^2+c),c=29/114+5/29*I,n=39 2100995890067879 b008 9+(Pi+ArcCsc[Pi])^2 2100995892442201 a001 521/2971215073*6557470319842^(17/24) 2100995892442808 a001 521/832040*63245986^(17/24) 2100995893180240 a001 3020733700601/48*6557470319842^(6/17) 2100995909094436 m001 (1+GAMMA(19/24))/(-Grothendieck+RenyiParking) 2100995909594831 p003 LerchPhi(1/10,6,61/32) 2100995910436105 a007 Real Root Of -408*x^4-358*x^3+633*x^2-956*x-173 2100995916035018 a007 Real Root Of 273*x^4-944*x^3-57*x^2-696*x-153 2100995924882640 h001 (3/5*exp(2)+9/11)/(8/9*exp(1)+1/12) 2100995928149013 a007 Real Root Of 471*x^4+728*x^3-707*x^2-89*x+508 2100995929110079 m001 1/Zeta(5)*ln(Backhouse)^2*cosh(1) 2100995929887064 r005 Re(z^2+c),c=7/66+16/43*I,n=55 2100995930715339 r009 Re(z^3+c),c=-4/11+32/55*I,n=49 2100995941421786 m001 1/FibonacciFactorial^2*ln(Backhouse)*sin(1) 2100995949421990 r009 Im(z^3+c),c=-3/8+8/61*I,n=7 2100995954501597 a007 Real Root Of -485*x^4+104*x^3-788*x^2+268*x+93 2100995957630922 r005 Re(z^2+c),c=-49/110+21/40*I,n=18 2100995957796116 l006 ln(1497/1847) 2100995961831788 r005 Im(z^2+c),c=-19/22+7/39*I,n=11 2100995972786338 a007 Real Root Of 562*x^4+872*x^3-873*x^2-892*x-884 2100995994942688 p004 log(33343/4079) 2100995998696924 r005 Im(z^2+c),c=-11/26+21/59*I,n=34 2100996000522885 m001 BesselI(0,2)-exp(-1/2*Pi)*Thue 2100996002999447 a005 (1/sin(56/143*Pi))^363 2100996007459484 m001 Shi(1)+MadelungNaCl^ZetaP(4) 2100996012156005 r008 a(0)=2,K{-n^6,-3-8*n-19*n^2+21*n^3} 2100996013806463 r002 45th iterates of z^2 + 2100996028031111 a001 199/1346269*21^(34/39) 2100996038569884 m001 exp(-1/2*Pi)/cos(1)/FeigenbaumC 2100996041687088 a001 3536736619241/281*76^(13/20) 2100996047854058 m001 CopelandErdos^2*ln(Backhouse)^2/GAMMA(11/24)^2 2100996051280479 r005 Re(z^2+c),c=7/66+16/43*I,n=52 2100996070312742 m001 1/GAMMA(23/24)^2*GolombDickman/ln(sin(Pi/5))^2 2100996072542209 g007 Psi(2,7/11)+Psi(2,3/5)+14*Zeta(3)-Psi(2,6/7) 2100996076639369 a007 Real Root Of 267*x^4-803*x^3+572*x^2-725*x+134 2100996078785040 r005 Re(z^2+c),c=7/66+16/43*I,n=59 2100996084132416 m001 Kolakoski/(MasserGramainDelta-exp(1/exp(1))) 2100996092286420 r005 Re(z^2+c),c=27/118+4/27*I,n=10 2100996093393631 r005 Im(z^2+c),c=-15/32+19/42*I,n=19 2100996102283931 r009 Re(z^3+c),c=-9/40+11/62*I,n=10 2100996104364143 r009 Im(z^3+c),c=-19/86+6/31*I,n=12 2100996104522345 r009 Im(z^3+c),c=-6/11+25/54*I,n=39 2100996111096974 m001 Pi^(1/2)*GAMMA(17/24)/Trott 2100996113993108 r005 Re(z^2+c),c=7/66+16/43*I,n=58 2100996117161019 r005 Re(z^2+c),c=7/66+16/43*I,n=63 2100996118928986 m001 ln(FeigenbaumB)^2*HardHexagonsEntropy/sqrt(5) 2100996120929861 r005 Re(z^2+c),c=7/66+16/43*I,n=62 2100996121692871 m001 (sin(1)+Cahen)/(-QuadraticClass+ZetaP(3)) 2100996127592434 s002 sum(A156511[n]/(n^3*10^n+1),n=1..infinity) 2100996134360460 r005 Re(z^2+c),c=7/66+16/43*I,n=64 2100996136178083 m008 (4*Pi^4+1/3)/(3/5*Pi^5+2) 2100996136381913 r005 Re(z^2+c),c=7/66+16/43*I,n=54 2100996137181289 a007 Real Root Of -410*x^4-438*x^3+692*x^2+48*x+973 2100996138419931 a007 Real Root Of -372*x^4+368*x^3+690*x^2+342*x-105 2100996141135896 r005 Re(z^2+c),c=7/66+16/43*I,n=60 2100996142190363 r005 Re(z^2+c),c=7/66+16/43*I,n=56 2100996145833093 a001 2/165580141*21^(2/11) 2100996148916533 m006 (2*exp(2*Pi)+5/6)/(1/2*Pi^2+1/6) 2100996153915909 r005 Re(z^2+c),c=7/66+16/43*I,n=61 2100996167966484 r009 Im(z^3+c),c=-19/86+6/31*I,n=13 2100996172296659 r009 Im(z^3+c),c=-7/86+15/17*I,n=18 2100996174588297 r009 Im(z^3+c),c=-19/86+6/31*I,n=16 2100996174886032 r009 Im(z^3+c),c=-19/86+6/31*I,n=17 2100996174902287 r009 Im(z^3+c),c=-19/86+6/31*I,n=20 2100996174903641 r009 Im(z^3+c),c=-19/86+6/31*I,n=21 2100996174903658 r009 Im(z^3+c),c=-19/86+6/31*I,n=24 2100996174903663 r009 Im(z^3+c),c=-19/86+6/31*I,n=23 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=28 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=27 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=31 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=32 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=35 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=36 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=39 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=40 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=43 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=44 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=47 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=48 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=51 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=52 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=55 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=56 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=59 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=60 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=63 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=64 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=62 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=61 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=58 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=57 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=54 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=53 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=50 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=49 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=46 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=45 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=42 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=41 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=38 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=37 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=34 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=33 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=29 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=30 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=25 2100996174903664 r009 Im(z^3+c),c=-19/86+6/31*I,n=26 2100996174903754 r009 Im(z^3+c),c=-19/86+6/31*I,n=22 2100996174904416 r009 Im(z^3+c),c=-19/86+6/31*I,n=19 2100996174924561 r009 Im(z^3+c),c=-19/86+6/31*I,n=18 2100996175266031 r009 Im(z^3+c),c=-19/86+6/31*I,n=15 2100996179634816 r009 Im(z^3+c),c=-19/86+6/31*I,n=14 2100996180327902 a007 Real Root Of -149*x^4-372*x^3-271*x^2+84*x+826 2100996186843350 m005 (1/2*Zeta(3)+6/11)/(4*2^(1/2)-1/5) 2100996186868144 a007 Real Root Of -410*x^4+662*x^3-835*x^2+634*x+177 2100996204897020 m001 (Conway+Grothendieck)/(Porter+ZetaQ(4)) 2100996208052574 r005 Re(z^2+c),c=2/9+7/51*I,n=13 2100996209367627 m008 (4/5*Pi^3-3/4)/(1/6*Pi^2-1/2) 2100996214552728 r005 Im(z^2+c),c=-73/86+10/59*I,n=48 2100996220580523 m001 Pi^2*ln(FeigenbaumD)/arctan(1/2) 2100996224589247 a007 Real Root Of 315*x^4-806*x^3+600*x^2-463*x-10 2100996230035303 r005 Re(z^2+c),c=7/66+16/43*I,n=57 2100996233594315 m004 2-Cos[Sqrt[5]*Pi]+150*Pi*Csch[Sqrt[5]*Pi] 2100996237602150 a001 1/10983760033*144^(12/19) 2100996241295033 m005 (1/2*Zeta(3)+1/2)/(5/12*gamma+5) 2100996248502196 a001 7/139583862445*46368^(2/15) 2100996248528255 a001 7/956722026041*86267571272^(2/15) 2100996248528255 a001 7/365435296162*63245986^(2/15) 2100996257558122 r005 Re(z^2+c),c=-17/114+23/50*I,n=28 2100996260197325 r005 Im(z^2+c),c=-41/54+7/54*I,n=12 2100996261825543 a001 7/6*199^(52/53) 2100996279750381 a007 Real Root Of -609*x^4-786*x^3+697*x^2-388*x+685 2100996282899720 m001 (Zeta(1,2)+ThueMorse)/(exp(Pi)+Si(Pi)) 2100996285620605 m005 (1/3*gamma-3/4)/(1/5*5^(1/2)-2/11) 2100996286106073 m005 (1/2*Zeta(3)-3/10)/(10/11*5^(1/2)-3/5) 2100996287604224 r009 Re(z^3+c),c=-33/94+27/50*I,n=42 2100996301867968 r009 Im(z^3+c),c=-19/86+6/31*I,n=11 2100996329228563 p004 log(35969/29153) 2100996343454778 m004 -2/3-2*Csc[Sqrt[5]*Pi]+ProductLog[Sqrt[5]*Pi] 2100996347472353 h001 (-4*exp(-2)-9)/(-4*exp(-2)-4) 2100996351671522 r009 Re(z^3+c),c=-8/25+7/17*I,n=5 2100996354632961 m001 OrthogonalArrays^Stephens*Sierpinski^Stephens 2100996358733044 m001 cos(1)/exp(RenyiParking)^2*log(2+sqrt(3))^2 2100996367120338 m001 (Shi(1)-Zeta(1,-1))/LandauRamanujan2nd 2100996373692751 m005 (5/4+1/4*5^(1/2))/(6*2^(1/2)+1/8) 2100996378869047 r005 Re(z^2+c),c=37/122+3/14*I,n=34 2100996381041621 r005 Im(z^2+c),c=17/118+7/43*I,n=11 2100996395429639 a007 Real Root Of -269*x^4+413*x^3+105*x^2+188*x-4 2100996396150558 r002 20th iterates of z^2 + 2100996403708155 r005 Re(z^2+c),c=7/66+16/43*I,n=50 2100996419516224 r005 Re(z^2+c),c=-13/106+33/64*I,n=39 2100996423112974 m009 (5/6*Psi(1,1/3)+3/5)/(1/3*Pi^2+1) 2100996429465768 r005 Im(z^2+c),c=-13/12+1/40*I,n=8 2100996430835213 s001 sum(exp(-2*Pi)^n*A164796[n],n=1..infinity) 2100996433626650 l006 ln(5275/5387) 2100996444741713 m001 (-LaplaceLimit+Thue)/(Chi(1)-Pi^(1/2)) 2100996446342460 m001 1/Tribonacci*Champernowne/exp(sqrt(3))^2 2100996448918403 m001 (GAMMA(23/24)+Cahen)/(3^(1/2)+Zeta(1,2)) 2100996448937151 a003 sin(Pi*10/63)/cos(Pi*34/69) 2100996449102034 r005 Re(z^2+c),c=11/38+26/45*I,n=22 2100996452093471 r008 a(0)=2,K{-n^6,61-69*n^3-77*n^2+75*n} 2100996464789364 m001 1/FeigenbaumKappa*ln(Magata)^2*Ei(1) 2100996465649542 a007 Real Root Of 608*x^4+870*x^3-376*x^2+828*x-379 2100996477098907 r005 Im(z^2+c),c=-23/66+12/47*I,n=3 2100996482212440 a007 Real Root Of 336*x^4+567*x^3-184*x^2+399*x+362 2100996486754465 m006 (3/5*ln(Pi)-3)/(1/5*exp(2*Pi)+3) 2100996489060591 a007 Real Root Of 67*x^4-503*x^3-794*x^2-873*x+223 2100996489797701 m001 (ZetaP(4)+ZetaQ(3))/(5^(1/2)+FeigenbaumC) 2100996501979542 r002 55th iterates of z^2 + 2100996502864639 m001 (Rabbit+ZetaQ(2))/(FeigenbaumDelta-MertensB2) 2100996509023941 m001 (Khinchin+ThueMorse)/(Zeta(1,-1)+GAMMA(13/24)) 2100996512382470 m001 (FibonacciFactorial-Lehmer)/(Pi-Champernowne) 2100996515220910 g002 -gamma-2*ln(2)-Psi(5/11)-Psi(7/9)-Psi(6/7) 2100996517281323 r005 Re(z^2+c),c=7/66+16/43*I,n=53 2100996527527914 r005 Im(z^2+c),c=-85/122+1/31*I,n=18 2100996530700750 r005 Im(z^2+c),c=-21/23+10/53*I,n=38 2100996535145682 a007 Real Root Of 624*x^4+987*x^3-911*x^2-686*x-425 2100996543006747 m001 Zeta(1/2)*GAMMA(7/12)^2*ln(cos(1)) 2100996543271318 m002 -(E^Pi*ProductLog[Pi])+(Sinh[Pi]*Tanh[Pi])/3 2100996544153235 r009 Re(z^3+c),c=-7/20+22/45*I,n=11 2100996545241665 l006 ln(109/891) 2100996552437735 r002 4th iterates of z^2 + 2100996557644940 a001 144/199*322^(7/12) 2100996564402785 a007 Real Root Of 16*x^4-754*x^3+906*x^2+829*x+940 2100996567984937 r009 Re(z^3+c),c=-23/64+35/64*I,n=29 2100996577220920 r005 Im(z^2+c),c=-27/25+11/54*I,n=4 2100996578062823 g004 Im(Psi(-1+I*31/12)) 2100996585864388 r002 6th iterates of z^2 + 2100996601688719 r005 Re(z^2+c),c=43/122+14/45*I,n=62 2100996601746373 m001 (1-ln(Pi))/(-GAMMA(5/6)+TreeGrowth2nd) 2100996606766208 a007 Real Root Of 326*x^4+632*x^3-611*x^2-735*x+662 2100996607450467 m005 (1/3*Pi+1/3)/(9/11*2^(1/2)-1/2) 2100996612061171 m001 1/arctan(1/2)*BesselK(0,1)^2*ln(gamma) 2100996617161572 a007 Real Root Of -414*x^4+607*x^3-79*x^2+67*x+24 2100996621470933 m001 ln(2+3^(1/2))+Grothendieck*TreeGrowth2nd 2100996621712507 a008 Real Root of x^3-x^2+112*x+249 2100996625562195 m005 (1/5*2^(1/2)+3/4)/(Catalan+4) 2100996626149114 m001 FeigenbaumB^BesselI(1,2)+GAMMA(2/3) 2100996630986479 r005 Re(z^2+c),c=13/40+5/16*I,n=22 2100996636129208 a007 Real Root Of 371*x^4+338*x^3-658*x^2+542*x-51 2100996636306540 m008 (1/3*Pi^6+4/5)/(5*Pi^5-1) 2100996638684282 m001 (Gompertz+Magata)/(BesselK(1,1)+Conway) 2100996642376812 m001 1/exp(Magata)^3/sqrt(3) 2100996648380934 l006 ln(7840/9673) 2100996650226780 r005 Re(z^2+c),c=1/40+17/33*I,n=3 2100996655159981 m005 (1/3*3^(1/2)-3/5)/(1/6*exp(1)+5/8) 2100996668035050 a007 Real Root Of -411*x^4-767*x^3+545*x^2+284*x-914 2100996671666233 a007 Real Root Of 425*x^4+941*x^3+416*x^2+935*x+574 2100996673274786 a007 Real Root Of 9*x^4+192*x^3+86*x^2+535*x+269 2100996674587848 r002 25th iterates of z^2 + 2100996681029984 a001 281/726103*8^(48/59) 2100996683058297 r009 Im(z^3+c),c=-29/114+55/64*I,n=6 2100996685368301 r005 Re(z^2+c),c=-1/8+29/54*I,n=19 2100996710723604 a007 Real Root Of -441*x^4-972*x^3-428*x^2-264*x+913 2100996714376102 r009 Re(z^3+c),c=-11/34+17/28*I,n=21 2100996718766706 m001 Magata/ln(FeigenbaumDelta)/GAMMA(23/24)^2 2100996733927256 h001 (7/12*exp(2)+6/11)/(2/7*exp(2)+1/5) 2100996740970202 m001 exp(GAMMA(3/4))/ArtinRank2^2/gamma^2 2100996742774376 a003 cos(Pi*2/57)*cos(Pi*51/118) 2100996746821176 a007 Real Root Of 362*x^4+601*x^3-224*x^2+20*x-449 2100996750398994 a007 Real Root Of -636*x^4-924*x^3+609*x^2-900*x-756 2100996758230764 r009 Re(z^3+c),c=-1/30+28/53*I,n=30 2100996760418869 r005 Im(z^2+c),c=-7/10+29/201*I,n=7 2100996762927692 a007 Real Root Of 396*x^4+940*x^3+511*x^2-197*x-56 2100996763243060 m005 (1/2*2^(1/2)+1/9)/(2/5*5^(1/2)+3) 2100996765234230 a007 Real Root Of 43*x^4-392*x^3+283*x^2-989*x-224 2100996768373273 r002 38th iterates of z^2 + 2100996768544704 r002 31th iterates of z^2 + 2100996783978023 r009 Im(z^3+c),c=-3/25+7/33*I,n=4 2100996786738914 r009 Im(z^3+c),c=-29/78+8/53*I,n=2 2100996794192773 a007 Real Root Of -62*x^4+620*x^3-548*x^2-554*x-959 2100996811364606 l006 ln(6343/7826) 2100996815316986 m001 exp(1)/(GAMMA(17/24)+ZetaQ(3)) 2100996826650841 m001 Psi(1,1/3)^HardyLittlewoodC4/gamma(2) 2100996830070375 s001 sum(exp(-Pi/2)^(n-1)*A068461[n],n=1..infinity) 2100996837194225 r009 Im(z^3+c),c=-45/62+4/49*I,n=2 2100996839880143 h001 (4/11*exp(2)+3/8)/(1/9*exp(2)+7/11) 2100996843082378 a007 Real Root Of 517*x^4+833*x^3-490*x^2-184*x-572 2100996849568983 h001 (-5*exp(-2)+1)/(-exp(2)-8) 2100996854757828 m001 (-GaussAGM+ThueMorse)/(LambertW(1)+3^(1/3)) 2100996859406644 m001 (FeigenbaumB+Lehmer)/(1-arctan(1/3)) 2100996859542373 m001 exp(1/exp(1))^(FeigenbaumB/ThueMorse) 2100996860186461 m001 ZetaP(2)^MadelungNaCl/(ZetaP(2)^FeigenbaumD) 2100996876060793 r009 Im(z^3+c),c=-45/106+3/38*I,n=4 2100996888032248 m001 Pi-Shi(1)^TravellingSalesman 2100996888283255 m005 (1/2*Pi-4/7)/(5/12*Pi-5/6) 2100996897038402 a003 cos(Pi*12/101)/cos(Pi*23/65) 2100996910189308 m001 (ZetaQ(3)-ZetaQ(4))/(MertensB1+ZetaP(4)) 2100996912694455 m001 BesselI(0,2)^(KhinchinLevy/ln(2+3^(1/2))) 2100996924823259 a007 Real Root Of -426*x^4-799*x^3+233*x^2-347*x-867 2100996924825965 a007 Real Root Of -533*x^4-674*x^3+417*x^2-713*x+796 2100996930653583 m001 (Otter+ZetaP(2))/(2^(1/2)+exp(-1/2*Pi)) 2100996931090965 m001 exp(GAMMA(23/24))*Backhouse/GAMMA(5/24)^2 2100996931719865 m001 (Artin+Bloch)/(Cahen-FeigenbaumDelta) 2100996943895543 m001 Riemann2ndZero-ZetaP(2)^(2*Pi/GAMMA(5/6)) 2100996948251493 m005 (1/3*gamma+1/12)/(7/9*Catalan+3/5) 2100996955081353 r002 64th iterates of z^2 + 2100996967134903 a007 Real Root Of -693*x^4-971*x^3+958*x^2-209*x-170 2100996975769205 m001 (-AlladiGrinstead+Kac)/(GAMMA(2/3)-Psi(1,1/3)) 2100996988642130 m001 (GAMMA(2/3)+3^(1/3))/(Conway+Trott2nd) 2100996995182737 m001 arctan(1/2)^exp(1/Pi)/((3^(1/3))^exp(1/Pi)) 2100997003825688 r002 48th iterates of z^2 + 2100997010069935 r005 Im(z^2+c),c=-23/82+17/54*I,n=9 2100997017998441 a007 Real Root Of -233*x^4+795*x^3-152*x^2-713*x-664 2100997022943300 a001 3010349/21*144^(1/13) 2100997032569788 a007 Real Root Of 154*x^4+82*x^3-727*x^2-702*x-506 2100997036324960 a007 Real Root Of -324*x^4-175*x^3+985*x^2-200*x-78 2100997037026159 m001 (Cahen-CopelandErdos)/(LandauRamanujan+Salem) 2100997046171006 r009 Re(z^3+c),c=-31/54+5/8*I,n=17 2100997046349552 m001 (MasserGramain+Rabbit)/(5^(1/2)-BesselI(1,2)) 2100997048683560 r004 Re(z^2+c),c=-1/30-8/13*I,z(0)=I,n=52 2100997051942267 r002 5th iterates of z^2 + 2100997052508047 a007 Real Root Of 488*x^4+933*x^3+6*x^2+370*x-105 2100997060333130 m001 FellerTornier/(GaussKuzminWirsing-Tribonacci) 2100997063777178 a007 Real Root Of 500*x^4+968*x^3+142*x^2+524*x-291 2100997066516452 s002 sum(A056874[n]/(16^n),n=1..infinity) 2100997066970129 r005 Re(z^2+c),c=-11/56+14/41*I,n=24 2100997075044333 l006 ln(4846/5979) 2100997075909728 r005 Im(z^2+c),c=-3/25+23/42*I,n=3 2100997077680781 m001 1/Riemann1stZero^2/Porter^2/exp(Zeta(3))^2 2100997078214049 a007 Real Root Of -590*x^4-997*x^3+462*x^2+144*x+513 2100997085370347 m001 1/Zeta(1,2)/ln(LaplaceLimit)^2/sqrt(3)^2 2100997102543398 p003 LerchPhi(1/25,4,295/112) 2100997110473769 m001 Zeta(5)^2*ln(GAMMA(5/12))*sin(Pi/12) 2100997110804590 m004 1+(6*Csc[Sqrt[5]*Pi])/5-Sin[Sqrt[5]*Pi] 2100997117024337 m006 (1/Pi+2/3)/(2*exp(Pi)+3/5) 2100997120723353 m001 1/LandauRamanujan*Cahen^2*exp(FeigenbaumKappa) 2100997126887845 r005 Im(z^2+c),c=-5/38+11/42*I,n=4 2100997131716015 m001 (-StronglyCareFree+Totient)/(3^(1/2)-Niven) 2100997135510869 r002 24th iterates of z^2 + 2100997136128378 m001 1/2+Zeta(1/2)*exp(gamma) 2100997140802356 p004 log(30809/3769) 2100997142778109 a007 Real Root Of 181*x^4+249*x^3-124*x^2+764*x+935 2100997153776700 g004 Im(GAMMA(17/20+I*97/30)) 2100997160414975 m001 (GAMMA(13/24)+OneNinth)/(sin(1)+gamma(2)) 2100997162358519 a007 Real Root Of 415*x^4+79*x^3-990*x^2+996*x-891 2100997170763126 a005 (1/sin(37/94*Pi))^903 2100997193868161 m001 (Bloch-FeigenbaumMu)/(MertensB2+TreeGrowth2nd) 2100997195974640 a007 Real Root Of -74*x^4+295*x^3+482*x^2-546*x+903 2100997196868619 m002 11+Pi+6*Log[Pi] 2100997201070789 m001 LambertW(1)^2/ln(MertensB1)^2*sinh(1) 2100997201357231 m009 (8/5*Catalan+1/5*Pi^2+5/6)/(1/8*Pi^2+4/5) 2100997201636715 m001 (gamma(2)+ZetaP(4))^gamma 2100997208228529 r009 Re(z^3+c),c=-1/30+28/53*I,n=32 2100997211053887 m001 1/exp(sqrt(5))^2*Tribonacci 2100997219349493 r009 Re(z^3+c),c=-1/30+28/53*I,n=35 2100997219756249 r009 Im(z^3+c),c=-19/86+6/31*I,n=10 2100997222560973 a007 Real Root Of -31*x^4-635*x^3+375*x^2+691*x+240 2100997228702583 a001 377/7*29^(19/47) 2100997229981445 a005 (1/cos(7/115*Pi))^1292 2100997230863453 r009 Re(z^3+c),c=-1/30+28/53*I,n=37 2100997235889563 m001 exp(Pi)^2/TreeGrowth2nd^2/log(2+sqrt(3)) 2100997236735958 r009 Re(z^3+c),c=-1/30+28/53*I,n=33 2100997240773318 r009 Re(z^3+c),c=-1/30+28/53*I,n=39 2100997246130630 r009 Re(z^3+c),c=-1/30+28/53*I,n=41 2100997248585327 r009 Re(z^3+c),c=-1/30+28/53*I,n=43 2100997248880060 r002 55th iterates of z^2 + 2100997249612227 r009 Re(z^3+c),c=-1/30+28/53*I,n=45 2100997250016244 r009 Re(z^3+c),c=-1/30+28/53*I,n=47 2100997250167874 r009 Re(z^3+c),c=-1/30+28/53*I,n=49 2100997250222551 r009 Re(z^3+c),c=-1/30+28/53*I,n=51 2100997250241556 r009 Re(z^3+c),c=-1/30+28/53*I,n=53 2100997250247925 r009 Re(z^3+c),c=-1/30+28/53*I,n=55 2100997250249978 r009 Re(z^3+c),c=-1/30+28/53*I,n=57 2100997250250611 r009 Re(z^3+c),c=-1/30+28/53*I,n=59 2100997250250795 r009 Re(z^3+c),c=-1/30+28/53*I,n=61 2100997250250844 r009 Re(z^3+c),c=-1/30+28/53*I,n=63 2100997250250862 r009 Re(z^3+c),c=-1/30+28/53*I,n=64 2100997250250886 r009 Re(z^3+c),c=-1/30+28/53*I,n=62 2100997250250983 r009 Re(z^3+c),c=-1/30+28/53*I,n=60 2100997250251327 r009 Re(z^3+c),c=-1/30+28/53*I,n=58 2100997250252473 r009 Re(z^3+c),c=-1/30+28/53*I,n=56 2100997250256108 r009 Re(z^3+c),c=-1/30+28/53*I,n=54 2100997250267161 r009 Re(z^3+c),c=-1/30+28/53*I,n=52 2100997250299542 r009 Re(z^3+c),c=-1/30+28/53*I,n=50 2100997250391027 r009 Re(z^3+c),c=-1/30+28/53*I,n=48 2100997250639859 r009 Re(z^3+c),c=-1/30+28/53*I,n=46 2100997251288217 r009 Re(z^3+c),c=-1/30+28/53*I,n=44 2100997252890244 r009 Re(z^3+c),c=-1/30+28/53*I,n=42 2100997256568909 r009 Re(z^3+c),c=-1/30+28/53*I,n=40 2100997259614841 a004 Fibonacci(11)*Lucas(13)/(1/2+sqrt(5)/2)^16 2100997261489016 m001 Pi/ln(2)*ln(10)/BesselJ(1,1)/GAMMA(5/6) 2100997264070844 r009 Re(z^3+c),c=-1/30+28/53*I,n=38 2100997275933420 r009 Re(z^3+c),c=-1/30+28/53*I,n=36 2100997279411027 m001 (Kac+MertensB3)/(GAMMA(11/12)-Champernowne) 2100997279893605 r002 28th iterates of z^2 + 2100997280625754 r009 Re(z^3+c),c=-1/30+28/53*I,n=34 2100997281284549 r002 46th iterates of z^2 + 2100997289358819 r004 Im(z^2+c),c=-5/11-2/9*I,z(0)=exp(1/8*I*Pi),n=6 2100997300847871 a007 Real Root Of -410*x^4-903*x^3-177*x^2+113*x+633 2100997301150766 m001 Gompertz+Mills^GAMMA(7/12) 2100997302224739 m001 1/exp(Salem)*KhintchineHarmonic^2*sqrt(5) 2100997307117588 r002 14th iterates of z^2 + 2100997308895401 m001 (BesselJ(0,1)+Landau)/(-MertensB3+Rabbit) 2100997324019037 h001 (5/12*exp(2)+8/9)/(4/11*exp(1)+9/10) 2100997324628703 r002 3th iterates of z^2 + 2100997325145584 r005 Im(z^2+c),c=-121/122+2/9*I,n=5 2100997332499857 r002 19th iterates of z^2 + 2100997352151860 r005 Im(z^2+c),c=-9/14+69/217*I,n=46 2100997355825504 h001 (5/11*exp(2)+2/9)/(3/10*exp(1)+8/9) 2100997369659429 r005 Im(z^2+c),c=7/58+7/40*I,n=13 2100997388412435 a008 Real Root of x^2-x-44352 2100997409664274 m001 cos(1)*(Conway+Sierpinski) 2100997413566921 r005 Im(z^2+c),c=-33/64+11/29*I,n=44 2100997431512215 r009 Re(z^3+c),c=-1/30+28/53*I,n=31 2100997438979858 r009 Re(z^3+c),c=-49/114+32/55*I,n=21 2100997444945647 a001 843/610*28657^(2/49) 2100997445444939 a007 Real Root Of -358*x^4-293*x^3+655*x^2-723*x-152 2100997451499149 r005 Re(z^2+c),c=-7/27+1/50*I,n=4 2100997476787471 m001 (LambertW(1)+ln(2))/(-gamma(3)+BesselK(1,1)) 2100997478374041 r005 Re(z^2+c),c=37/110+7/38*I,n=18 2100997491518846 m001 BesselI(0,1)^(FeigenbaumMu*QuadraticClass) 2100997496536574 m009 (1/6*Psi(1,3/4)-1/6)/(6*Catalan+3/4*Pi^2-2/3) 2100997499230030 a007 Real Root Of 38*x^4+755*x^3-942*x^2-664*x-440 2100997499607243 l006 ln(1176/9613) 2100997502776042 b008 -22+BesselJ[0,1/5] 2100997504177081 a007 Real Root Of -7*x^4+446*x^3-149*x^2+45*x-7 2100997504273857 r005 Im(z^2+c),c=7/25+1/41*I,n=30 2100997506234413 q001 1685/802 2100997513076931 a001 1346269/29*11^(17/27) 2100997522804166 r005 Im(z^2+c),c=-39/110+15/49*I,n=6 2100997531260570 m001 Riemann3rdZero*RenyiParking^2/exp(Ei(1)) 2100997533363695 m001 Chi(1)+Riemann2ndZero^ZetaP(4) 2100997536369716 a001 47*(1/2*5^(1/2)+1/2)^6*18^(6/19) 2100997540477361 m001 GAMMA(19/24)*Ei(1)^2/ln(Zeta(9)) 2100997540775424 r005 Re(z^2+c),c=7/66+16/43*I,n=49 2100997544568874 m001 ArtinRank2*GaussAGM-FeigenbaumD 2100997558939068 a007 Real Root Of 391*x^4+129*x^3-993*x^2+604*x-770 2100997568677076 a008 Real Root of (-6+6*x+5*x^2+5*x^3-2*x^4-2*x^5) 2100997569899385 m003 -1/2+(21*Sqrt[5])/64+Cos[1/2+Sqrt[5]/2]/2 2100997573953600 r005 Im(z^2+c),c=-13/23+18/47*I,n=61 2100997574453245 l006 ln(3349/4132) 2100997576664127 a003 sin(Pi*26/81)/cos(Pi*19/39) 2100997577677594 m001 1/Salem^2/ln(FransenRobinson)^2*GAMMA(1/6)^2 2100997586000191 m001 BesselI(0,1)*GAMMA(3/4)-ln(gamma) 2100997586000191 m001 BesselI(0,1)*GAMMA(3/4)-log(gamma) 2100997591608427 m001 (GAMMA(13/24)+Kolakoski)/(cos(1/5*Pi)-ln(2)) 2100997597100958 l006 ln(1067/8722) 2100997623075738 m001 (exp(1/Pi)+CopelandErdos)/(arctan(1/2)-cos(1)) 2100997623432466 a007 Real Root Of 549*x^4+518*x^3-801*x^2+807*x-662 2100997624668306 p004 log(33997/4159) 2100997630982724 a001 34/505019158607*199^(13/20) 2100997631014540 r002 17th iterates of z^2 + 2100997636090177 m001 BesselK(0,1)^FeigenbaumAlpha*FeigenbaumC 2100997636374611 b008 E*(-1+E^(13/6)) 2100997642438831 r005 Im(z^2+c),c=-29/56+19/41*I,n=58 2100997644297991 m004 18+(25*Cos[Sqrt[5]*Pi])/(Pi*Log[Sqrt[5]*Pi]) 2100997644721089 h001 (8/9*exp(1)+1/11)/(2/7*exp(1)+5/12) 2100997667691435 r005 Im(z^2+c),c=-29/62+11/30*I,n=49 2100997673331806 r009 Re(z^3+c),c=-8/29+16/47*I,n=14 2100997678012575 a007 Real Root Of 176*x^4-64*x^3-833*x^2-298*x-972 2100997686715663 m001 1/2*gamma(3)*2^(2/3)/StronglyCareFree 2100997702329979 r005 Re(z^2+c),c=-22/27+10/59*I,n=28 2100997715020527 m001 ((1+3^(1/2))^(1/2)-cos(1)*ZetaP(4))/ZetaP(4) 2100997716780077 l006 ln(958/7831) 2100997721524372 m001 (-Trott2nd+Thue)/(Backhouse-Si(Pi)) 2100997736027065 m001 Sierpinski/Riemann3rdZero*ln(GAMMA(3/4)) 2100997738338435 a007 Real Root Of 476*x^4+899*x^3-273*x^2-185*x-121 2100997742524379 r008 a(0)=2,K{-n^6,-2-8*n^3+3*n^2-4*n} 2100997747810092 a007 Real Root Of -77*x^4-160*x^3+60*x^2+73*x-95 2100997747952722 m001 (-cos(1/12*Pi)+TreeGrowth2nd)/(exp(Pi)+Ei(1)) 2100997758808963 r002 13th iterates of z^2 + 2100997763224161 m005 (1/2*Catalan-1/12)/(91/120+11/24*5^(1/2)) 2100997763443943 r009 Re(z^3+c),c=-33/98+23/42*I,n=12 2100997768308094 a001 610/7*47^(8/35) 2100997770033697 a007 Real Root Of 623*x^4+418*x^3+698*x^2-718*x-179 2100997775389839 m001 (CareFree+TreeGrowth2nd)/(gamma(1)-Bloch) 2100997776398990 m001 (MertensB2+ZetaQ(3))/(Zeta(5)-cos(1)) 2100997784281643 r009 Re(z^3+c),c=-33/74+17/32*I,n=60 2100997799221216 r005 Im(z^2+c),c=-5/18+20/63*I,n=16 2100997809863694 m001 (DuboisRaymond-Landau)/(AlladiGrinstead-Cahen) 2100997819948098 m001 (ln(5)+GAMMA(13/24))/(CareFree-Thue) 2100997821000518 r005 Re(z^2+c),c=-3/31+35/62*I,n=59 2100997822100588 r009 Re(z^3+c),c=-17/106+35/44*I,n=3 2100997826533384 m005 (1/2*Zeta(3)+1/9)/(1/9*2^(1/2)+2/11) 2100997828524465 m001 Artin/(ln(Pi)+HardyLittlewoodC3) 2100997833200223 r005 Im(z^2+c),c=-5/11+4/11*I,n=48 2100997836209062 r002 14th iterates of z^2 + 2100997837508159 a007 Real Root Of 520*x^4+924*x^3-445*x^2+164*x+746 2100997839316500 b008 Zeta[2*Sqrt[5],-2] 2100997847475024 m001 (Magata+MertensB1)/(Pi-HardHexagonsEntropy) 2100997848389743 m001 sin(1)*MasserGramainDelta+LambertW(1) 2100997856465745 m001 Riemann2ndZero-StolarskyHarborth*ZetaR(2) 2100997862967980 h001 (1/4*exp(2)+5/9)/(1/5*exp(1)+3/5) 2100997864886185 r009 Re(z^3+c),c=-25/56+16/39*I,n=6 2100997867189502 l006 ln(849/6940) 2100997870432858 m001 exp(GAMMA(1/3))^2/MertensB1*sin(Pi/12) 2100997875092589 r005 Im(z^2+c),c=-119/114+7/30*I,n=51 2100997877559001 a001 9/1292*1346269^(7/29) 2100997877841761 b008 -50/81+E 2100997879002813 m007 (-1/4*gamma-3/4*ln(2)-1/8*Pi-3/5)/(-5*gamma-5) 2100997882814906 h001 (9/10*exp(1)+3/11)/(2/11*exp(1)+4/5) 2100997884072117 r005 Re(z^2+c),c=-97/94+26/51*I,n=4 2100997886687996 m001 (Zeta(3)+GAMMA(2/3)*ln(5))/ln(5) 2100997889638285 r005 Im(z^2+c),c=-29/26+18/65*I,n=27 2100997891959592 a007 Real Root Of -415*x^4-689*x^3-206*x^2-809*x+906 2100997892434941 a007 Real Root Of -414*x^4-756*x^3+35*x^2-30*x+838 2100997904585318 r005 Re(z^2+c),c=-47/122+31/54*I,n=50 2100997907431019 m008 (1/3*Pi^4-1/4)/(1/3*Pi^3+5) 2100997909049567 s001 sum(exp(-Pi/4)^n*A107024[n],n=1..infinity) 2100997920291605 m001 (LandauRamanujan+Tribonacci)^StronglyCareFree 2100997928101323 a001 9/98209*28657^(45/46) 2100997940510992 m001 (cos(1/5*Pi)-ln(gamma))/(Bloch+ZetaP(3)) 2100997946929722 s002 sum(A073824[n]/(pi^n+1),n=1..infinity) 2100997947731036 r009 Im(z^3+c),c=-13/27+5/52*I,n=20 2100997968989175 m001 sin(1)/(HeathBrownMoroz^FeigenbaumB) 2100997971221733 m006 (1/6*Pi^2+4/5)/(5*exp(Pi)+2/3) 2100997973106015 a007 Real Root Of 879*x^4-621*x^3-24*x^2-742*x+161 2100997974329604 a007 Real Root Of 292*x^4-365*x^3-800*x^2-304*x+102 2100997997595727 a007 Real Root Of -442*x^4-953*x^3+170*x^2+924*x+965 2100997998458723 r005 Im(z^2+c),c=-1/46+28/51*I,n=3 2100998005762837 m005 (1/2*5^(1/2)+11/12)/(2/7*Zeta(3)+5/8) 2100998013988688 m004 6-E^(Sqrt[5]*Pi)+3150*Sqrt[5]*Pi 2100998020872497 r005 Re(z^2+c),c=11/64+23/50*I,n=3 2100998021856846 a007 Real Root Of -573*x^4+314*x^3+57*x^2+484*x-106 2100998022426769 h001 (1/6*exp(2)+4/11)/(10/11*exp(2)+7/8) 2100998030021924 m001 (-OrthogonalArrays+Salem)/(cos(1)+Landau) 2100998038528285 a007 Real Root Of -398*x^4-643*x^3+680*x^2+801*x+473 2100998039774428 l006 ln(5201/6417) 2100998044615449 g005 1/GAMMA(8/11)/GAMMA(4/9)/GAMMA(5/7)/GAMMA(3/5) 2100998048842155 m002 Pi^6+Cosh[Pi]+Pi^4*Cosh[Pi]-Log[Pi] 2100998049469456 m001 ZetaP(4)*(Khinchin+ZetaQ(2)) 2100998054009097 r005 Re(z^2+c),c=1/50+49/58*I,n=11 2100998061908698 l006 ln(740/6049) 2100998062020577 m006 (1/5/Pi-2)/(4*exp(Pi)-2/5) 2100998062321220 r005 Re(z^2+c),c=7/66+16/43*I,n=46 2100998067480366 r005 Im(z^2+c),c=-2/13+9/32*I,n=17 2100998070652206 a001 4/89*75025^(23/42) 2100998073226652 m001 (GaussKuzminWirsing+5)/(-MadelungNaCl+2) 2100998074675429 m005 (1/2*Pi-1/11)/(3/10*exp(1)-1/9) 2100998082456601 m001 (Paris+PlouffeB)/(Si(Pi)+ln(2^(1/2)+1)) 2100998087516582 a007 Real Root Of -24*x^4-503*x^3+50*x^2+521*x+371 2100998093080290 m001 1/BesselK(0,1)*ln(DuboisRaymond)*cos(1) 2100998093400462 r002 18th iterates of z^2 + 2100998098102329 a007 Real Root Of -497*x^4-940*x^3+69*x^2-57*x+542 2100998107529262 r002 30th iterates of z^2 + 2100998113972554 s002 sum(A268288[n]/(10^n-1),n=1..infinity) 2100998126618282 s002 sum(A058673[n]/(2^n+1),n=1..infinity) 2100998128872876 h001 (3/8*exp(2)+1/9)/(1/11*exp(2)+7/10) 2100998132695936 m001 (2^(1/2)-ln(Pi))/(gamma(1)+FeigenbaumKappa) 2100998135366814 r005 Im(z^2+c),c=-29/106+18/55*I,n=7 2100998146093562 m001 (ZetaP(2)-ZetaP(4))/(Pi-GAMMA(2/3)) 2100998146481570 m005 (Catalan+1/4)/(3/5*Catalan+5) 2100998148418316 m009 (2/5*Psi(1,1/3)-1/4)/(8*Catalan+Pi^2+5/6) 2100998149109691 s002 sum(A010748[n]/(n*exp(n)-1),n=1..infinity) 2100998149767061 m001 1/Zeta(3)/GlaisherKinkelin*exp(sinh(1)) 2100998151953049 m001 (ln(3)-gamma(2))/(HardyLittlewoodC3-OneNinth) 2100998152575559 s002 sum(A205649[n]/(n^2*2^n-1),n=1..infinity) 2100998155225586 m001 (-FibonacciFactorial+Paris)/(Chi(1)-exp(1/Pi)) 2100998161706838 r005 Im(z^2+c),c=-13/10+1/187*I,n=51 2100998161885765 r005 Im(z^2+c),c=-13/10+1/187*I,n=55 2100998162223565 r005 Im(z^2+c),c=-13/10+1/187*I,n=59 2100998162338406 r005 Im(z^2+c),c=-13/10+1/187*I,n=63 2100998166874045 a007 Real Root Of -489*x^4-636*x^3+900*x^2+158*x-11 2100998168050574 m001 (Zeta(5)-Khinchin)/(StronglyCareFree+ZetaQ(3)) 2100998168411702 r005 Im(z^2+c),c=-13/10+1/187*I,n=47 2100998169186122 r002 17i'th iterates of 2*x/(1-x^2) of 2100998173305031 a007 Real Root Of 18*x^4+332*x^3-955*x^2+361*x+860 2100998183850054 r004 Re(z^2+c),c=1/8-5/9*I,z(0)=exp(5/24*I*Pi),n=28 2100998184470710 m001 GAMMA(17/24)^2*exp(OneNinth)^2*GAMMA(23/24) 2100998188161868 r009 Re(z^3+c),c=-8/25+17/37*I,n=36 2100998196545154 a007 Real Root Of 109*x^4+69*x^2+757*x-838 2100998198356595 r005 Im(z^2+c),c=-61/98+19/50*I,n=39 2100998204118332 p001 sum(1/(604*n+499)/(10^n),n=0..infinity) 2100998205817217 a007 Real Root Of 248*x^4+71*x^3-923*x^2-64*x-234 2100998219394749 r009 Re(z^3+c),c=-19/70+20/61*I,n=13 2100998221881738 a007 Real Root Of -13*x^4+582*x^3+879*x^2-523*x+672 2100998222830100 a005 (1/cos(10/177*Pi))^1501 2100998232315674 r005 Im(z^2+c),c=-13/10+1/187*I,n=43 2100998232328804 m005 (1/2*Zeta(3)+1/6)/(2*5^(1/2)-9/11) 2100998232649235 m001 (-HardyLittlewoodC4+OneNinth)/(gamma+Artin) 2100998235146481 a007 Real Root Of 57*x^4-418*x^3+694*x^2-381*x+503 2100998235217532 r002 3th iterates of z^2 + 2100998243836781 r005 Im(z^2+c),c=-8/23+19/33*I,n=16 2100998248752396 a007 Real Root Of -989*x^4-588*x^3+469*x^2+879*x-198 2100998248942816 m001 (PlouffeB+Riemann1stZero)/(Pi-Psi(1,1/3)) 2100998250267869 p004 log(21523/2633) 2100998252127384 m001 sin(Pi/5)/((2/3)^Pi) 2100998252257191 r009 Re(z^3+c),c=-27/64+9/17*I,n=25 2100998257212604 m001 1/exp(Paris)^2*KhintchineLevy/arctan(1/2) 2100998259148415 r005 Re(z^2+c),c=-23/106+8/29*I,n=11 2100998260724462 l006 ln(7053/8702) 2100998261532016 a007 Real Root Of 647*x^4-232*x^3+980*x^2-587*x-170 2100998285430976 m001 1/log(1+sqrt(2))*Tribonacci^2/ln(sin(Pi/12))^2 2100998291277313 a007 Real Root Of 239*x^4+482*x^3+294*x^2+243*x-974 2100998297678652 r005 Im(z^2+c),c=1/25+11/52*I,n=3 2100998304878127 r009 Im(z^3+c),c=-57/110+32/55*I,n=12 2100998307786250 m001 BesselI(1,1)-gamma+Riemann2ndZero 2100998309962206 m001 1/BesselJ(0,1)*ArtinRank2/ln(GAMMA(11/24))^2 2100998309993646 m001 ln(Catalan)*BesselJ(1,1)^2/cos(Pi/5) 2100998322719517 r002 37th iterates of z^2 + 2100998323900076 l006 ln(631/5158) 2100998329492810 r005 Re(z^2+c),c=-29/32+16/59*I,n=34 2100998330539798 m001 ZetaP(2)*(2^(1/3)-Mills) 2100998336261145 m001 (-ln(2^(1/2)+1)+Niven)/(ln(2)-ln(2)/ln(10)) 2100998342554618 m001 1/ln(ArtinRank2)^2/Cahen^2*GAMMA(5/6) 2100998360762494 a008 Real Root of (1+6*x-x^2+5*x^3-x^4-2*x^5) 2100998361084465 m005 (1/2*5^(1/2)+3/5)/(7/11*2^(1/2)-9/11) 2100998361194184 a007 Real Root Of 47*x^4-518*x^3+399*x^2+881*x+276 2100998361586897 m005 (-13/28+1/4*5^(1/2))/(5/9*Catalan+4) 2100998368435671 m006 (1/Pi-5/6)/(5/6*Pi-1/6) 2100998373765867 m001 (-Pi+1/2)/(-BesselI(1,2)+1/3) 2100998383141551 a007 Real Root Of 938*x^4-827*x^3+861*x^2-564*x-166 2100998385645524 b008 ArcCosh[1+E^(-5)+Pi] 2100998388926294 m005 (1/2*gamma-2/5)/(2/9*Pi-6) 2100998391660573 r009 Re(z^3+c),c=-1/30+28/53*I,n=29 2100998393791260 r009 Re(z^3+c),c=-31/94+16/33*I,n=30 2100998397212536 m001 (MertensB3+OrthogonalArrays)/(Ei(1)-Lehmer) 2100998397325023 m001 (Zeta(1/2)-BesselK(1,1))/(Niven-Sarnak) 2100998398723612 m001 Pi^(1/2)*(Zeta(5)+ZetaR(2)) 2100998403384687 m002 -4+E^Pi+(5*Cosh[Pi])/Pi^3 2100998403646159 m001 ArtinRank2+(2^(1/3))^Porter 2100998405509555 m001 FransenRobinson*ln(Artin)/GAMMA(1/4)^2 2100998407512635 m001 1/Paris*LaplaceLimit^2/ln(cos(Pi/5)) 2100998414691717 m001 1/(3^(1/3))^2*ln(Trott)*cos(Pi/12) 2100998426077699 r005 Im(z^2+c),c=-19/62+14/43*I,n=18 2100998436022932 m001 MadelungNaCl^2*ln(Bloch)*Catalan 2100998436614950 a007 Real Root Of -569*x^4-853*x^3+202*x^2-757*x+694 2100998443594325 s002 sum(A013918[n]/(2^n-1),n=1..infinity) 2100998454948322 m001 (FeigenbaumDelta+Porter)/(FeigenbaumB-cos(1)) 2100998458539497 m001 GAMMA(5/12)/Si(Pi)^2*ln(Zeta(3))^2 2100998458616435 m001 arctan(1/3)^Zeta(1,2)-Kolakoski 2100998459909706 s002 sum(A173848[n]/(n^3*pi^n+1),n=1..infinity) 2100998468602494 a007 Real Root Of -305*x^4-183*x^3+930*x^2+123*x+399 2100998470839190 m001 BesselJ(1,1)*Trott2nd-Riemann2ndZero 2100998477547215 r009 Re(z^3+c),c=-85/106+51/64*I,n=2 2100998481447066 m001 (-Tribonacci+TwinPrimes)/(1-Psi(2,1/3)) 2100998482766051 a007 Real Root Of -180*x^4-359*x^3+216*x^2+590*x+464 2100998492047152 l006 ln(1153/9425) 2100998497024230 a001 96450076809/17*89^(7/24) 2100998509263420 r005 Im(z^2+c),c=-17/18-59/252*I,n=19 2100998512963057 m001 Riemann1stZero^2/ln(Paris)^2/sqrt(Pi) 2100998516285692 r005 Im(z^2+c),c=-11/17+1/54*I,n=3 2100998521081936 a007 Real Root Of -816*x^4-115*x^3-406*x^2+550*x+134 2100998524485035 r005 Im(z^2+c),c=-16/17+13/64*I,n=53 2100998527737106 m001 Zeta(3)+LandauRamanujan*Salem 2100998537765790 r005 Re(z^2+c),c=-5/6+49/251*I,n=8 2100998537780352 a007 Real Root Of -93*x^4+535*x^3-774*x^2+297*x-357 2100998558024131 m001 5^(1/2)-StolarskyHarborth-ZetaQ(2) 2100998558064694 r009 Re(z^3+c),c=-8/25+17/37*I,n=31 2100998573742640 m001 1/arctan(1/2)*Zeta(1/2)^2/exp(cosh(1))^2 2100998575666221 r002 56th iterates of z^2 + 2100998580797465 r009 Re(z^3+c),c=-1/25+30/49*I,n=14 2100998581698820 a001 439204/21*10610209857723^(1/13) 2100998581708122 a001 1149851/21*39088169^(1/13) 2100998581713871 a001 101521/3*20365011074^(1/13) 2100998581716061 a001 620166/7*75025^(1/13) 2100998585253842 r005 Re(z^2+c),c=13/86+13/24*I,n=7 2100998589778353 a007 Real Root Of -463*x^4-237*x^3-415*x^2+992*x-187 2100998589844375 m005 (1/2*3^(1/2)-7/8)/(2*gamma-8/11) 2100998597635972 m001 ArtinRank2^Shi(1)*HardyLittlewoodC4 2100998605208472 m001 (2^(1/3)-Zeta(3))/(GAMMA(3/4)+GAMMA(7/12)) 2100998607911081 m001 (MertensB1-cos(1)*Sierpinski)/cos(1) 2100998621418941 a003 sin(Pi*33/119)/cos(Pi*45/118) 2100998624590814 m001 TreeGrowth2nd/(ln(Pi)-GAMMA(2/3)) 2100998624958544 m001 Paris^2/ln(KhintchineHarmonic)^2*sin(Pi/12)^2 2100998631425381 a007 Real Root Of -583*x^4-676*x^3+929*x^2-66*x+851 2100998634913262 r005 Im(z^2+c),c=-13/10+1/187*I,n=39 2100998652643791 a001 5778/13*144^(45/58) 2100998655331394 m001 (Ei(1)+GAMMA(19/24))/(Bloch+Riemann1stZero) 2100998657305600 r002 45th iterates of z^2 + 2100998657820303 m001 (exp(1)+GolombDickman)/(PrimesInBinary+Salem) 2100998658817471 m001 (Conway+ThueMorse)^exp(1/Pi) 2100998660830957 r005 Im(z^2+c),c=-9/22+19/53*I,n=17 2100998678253136 r008 a(0)=3,K{-n^6,20-88*n^3-12*n^2+81*n} 2100998690625263 a007 Real Root Of 46*x^4+992*x^3+535*x^2-68*x-719 2100998693722412 m001 (FeigenbaumDelta+1/2)/(-Zeta(1/2)+1) 2100998695305361 l006 ln(522/4267) 2100998695815857 m001 ln(GAMMA(13/24))*GAMMA(11/24)^2/Zeta(1,2)^2 2100998706231320 a001 47/75025*610^(10/53) 2100998708481005 a007 Real Root Of 24*x^4+496*x^3-126*x^2+984*x-124 2100998712979295 m001 (1-sin(1/5*Pi))/(KomornikLoreti+ZetaP(3)) 2100998719274217 a007 Real Root Of -153*x^4+260*x^3-647*x^2+508*x+138 2100998726774587 r005 Re(z^2+c),c=21/118+4/63*I,n=10 2100998728939875 m005 (1/6*Pi+1/3)/(10/3+1/3*5^(1/2)) 2100998734441168 m005 (1/3*Pi-3/4)/(4/7*2^(1/2)-2/3) 2100998738149097 a007 Real Root Of -199*x^4-732*x^3-554*x^2+225*x+7 2100998738690431 a007 Real Root Of 205*x^4-85*x^3-688*x^2+493*x-710 2100998764969180 p003 LerchPhi(1/8,3,70/193) 2100998772760908 r005 Re(z^2+c),c=29/70+12/55*I,n=29 2100998774464278 m001 (2^(1/2)+LambertW(1))/(-HardyLittlewoodC3+Kac) 2100998776934993 r009 Im(z^3+c),c=-49/90+16/33*I,n=18 2100998776993087 r009 Im(z^3+c),c=-25/66+6/47*I,n=8 2100998777502437 m001 Lehmer/ln(Backhouse)^2/Riemann1stZero^2 2100998785811203 r005 Im(z^2+c),c=-11/40+13/41*I,n=20 2100998788758573 m001 MertensB1^Zeta(1,2)/(MertensB1^MertensB3) 2100998788769547 a001 1/5796*(1/2*5^(1/2)+1/2)^16*18^(13/22) 2100998803732076 g006 Psi(1,5/12)+Psi(1,2/9)-Psi(1,7/11)-Psi(1,4/7) 2100998810174618 r005 Im(z^2+c),c=-8/7+31/123*I,n=52 2100998817579053 m001 Riemann2ndZero-TreeGrowth2nd*Trott2nd 2100998818507809 s002 sum(A201028[n]/(n^3*pi^n-1),n=1..infinity) 2100998820106262 r005 Im(z^2+c),c=-4/7+25/86*I,n=7 2100998821009681 a007 Real Root Of -210*x^4-87*x^3+826*x^2+407*x+494 2100998825310166 m001 (1-Bloch)/(FeigenbaumAlpha+Trott) 2100998833571780 r005 Im(z^2+c),c=-35/94+17/47*I,n=12 2100998845746722 a007 Real Root Of 541*x^4+856*x^3-417*x^2+802*x+923 2100998849421706 m001 Tribonacci*Riemann2ndZero/ln(Zeta(3)) 2100998851655503 l006 ln(7677/7840) 2100998852353051 a001 64079/144*21^(26/51) 2100998854247733 r009 Im(z^3+c),c=-23/48+32/61*I,n=30 2100998854760574 r005 Im(z^2+c),c=-5/8+45/139*I,n=41 2100998860726493 r005 Re(z^2+c),c=5/62+30/53*I,n=16 2100998864332394 r005 Im(z^2+c),c=-53/78+17/40*I,n=39 2100998869997523 a007 Real Root Of -216*x^4+181*x^3+222*x^2+628*x-143 2100998875874248 m005 (1/2*2^(1/2)-5/9)/(3/5*gamma+3/8) 2100998876566209 a007 Real Root Of 393*x^4+832*x^3-71*x^2-405*x-479 2100998876887882 m001 (ArtinRank2-FeigenbaumC)/(Ei(1,1)+Zeta(1,-1)) 2100998881221803 l006 ln(1852/2285) 2100998882677761 m001 (cos(1/5*Pi)-Zeta(1,2))/(OneNinth+Sarnak) 2100998884444611 r005 Re(z^2+c),c=-7/48+36/59*I,n=39 2100998885247869 m005 (1/2*5^(1/2)-1)/(1/12*Pi+3/10) 2100998890122086 q001 1893/901 2100998896855270 a007 Real Root Of 651*x^4+882*x^3-488*x^2+929*x-399 2100998907663832 h005 exp(cos(Pi*3/28)*sin(Pi*17/59)) 2100998909279391 m004 -E^(2*Sqrt[5]*Pi)/6+125*Pi*Sec[Sqrt[5]*Pi] 2100998909740077 a001 1/15124*(1/2*5^(1/2)+1/2)*199^(9/16) 2100998945954197 l006 ln(935/7643) 2100998950406897 m001 (LaplaceLimit+Otter)/(ln(Pi)-ln(2+3^(1/2))) 2100998964307474 r008 a(0)=2,K{-n^6,-41+63*n-59*n^2+28*n^3} 2100998964936393 m001 Si(Pi)/Artin/CopelandErdos 2100998970491933 m001 (3^(1/3)+Stephens)^Shi(1) 2100998975043680 a007 Real Root Of -36*x^4+99*x^3+571*x^2+494*x+137 2100998984275691 a001 89/1364*521^(12/13) 2100998997362564 a001 3020733700601*34^(11/20) 2100999020989342 s004 Continued fraction of A095178 2100999020989342 s004 Continued Fraction of A095178 2100999026592853 m005 (1/2*5^(1/2)-4/9)/(11/12*exp(1)+5/7) 2100999031161200 m001 FeigenbaumDelta-Riemann1stZero^GAMMA(3/4) 2100999040407889 m006 (3/5/Pi-2/3)/(exp(Pi)-1/2) 2100999045439485 r005 Im(z^2+c),c=-47/114+6/17*I,n=27 2100999050405166 s002 sum(A000737[n]/((10^n-1)/n),n=1..infinity) 2100999057798350 m001 ln(3)+exp(-1/2*Pi)+Kolakoski 2100999057921485 a007 Real Root Of 100*x^4-89*x^3-477*x^2+548*x+483 2100999063377278 p004 log(36433/4457) 2100999067646346 a001 377/199*521^(5/13) 2100999077065282 m005 (1/2*3^(1/2)+2/7)/(3*3^(1/2)+2/7) 2100999085195178 a007 Real Root Of -470*x^4-661*x^3+352*x^2-455*x+518 2100999087976678 r005 Re(z^2+c),c=-97/82+32/49*I,n=2 2100999091935769 m005 (1/2*5^(1/2)-1/4)/(3*2^(1/2)-1/9) 2100999096446585 a001 281/48*317811^(13/46) 2100999102327304 a007 Real Root Of 349*x^4+420*x^3-270*x^2+706*x-230 2100999131403577 a008 Real Root of (17+6*x+8*x^2-7*x^3) 2100999131829423 r009 Re(z^3+c),c=-37/102+34/55*I,n=30 2100999150147514 m001 KhintchineLevy^2*Conway*ln(Pi) 2100999154174878 m001 (Zeta(3)-GAMMA(19/24))/(Totient+ZetaQ(3)) 2100999156311741 a007 Real Root Of 612*x^4+910*x^3-634*x^2-141*x-983 2100999158378778 m001 (Otter+TreeGrowth2nd)/(CopelandErdos-Si(Pi)) 2100999169590759 m001 (GaussAGM+Thue)/(GAMMA(5/6)-FellerTornier) 2100999170195414 h001 (-8*exp(-1)+7)/(-6*exp(1)-3) 2100999189846070 q001 778/3703 2100999201765276 r002 44th iterates of z^2 + 2100999202905385 s001 sum(exp(-Pi/3)^(n-1)*A154382[n],n=1..infinity) 2100999229310980 m009 (2/5*Psi(1,2/3)+1/2)/(5/6*Psi(1,1/3)-1/5) 2100999236972224 m001 (Zeta(3)-Zeta(1/2))/(GAMMA(7/12)-MertensB1) 2100999237952188 m001 Rabbit*CareFree^2*ln(GAMMA(1/12))^2 2100999241945567 m001 exp(Magata)/Backhouse/Paris 2100999244482439 r005 Im(z^2+c),c=-57/64+11/49*I,n=23 2100999247878984 r005 Im(z^2+c),c=-13/14+27/136*I,n=64 2100999250265852 m008 (5*Pi^6-3/5)/(3/4*Pi^5-3/4) 2100999262754814 l006 ln(413/3376) 2100999267075360 a007 Real Root Of 475*x^4+856*x^3-710*x^2-776*x+187 2100999271436182 a007 Real Root Of -4*x^4+118*x^3-317*x^2+583*x-842 2100999279047295 m001 ((1+3^(1/2))^(1/2)-MertensB3)/(Paris+ZetaQ(2)) 2100999291679030 a001 377/3571*18^(5/21) 2100999301059029 a007 Real Root Of -936*x^4+421*x^3-659*x^2+918*x-19 2100999310173981 m005 (1/3*Pi-3/5)/(2^(1/2)+5/7) 2100999311412458 r005 Im(z^2+c),c=-29/22+40/81*I,n=3 2100999313115889 m001 (QuadraticClass+ZetaP(4))/(1-Backhouse) 2100999325038904 r005 Im(z^2+c),c=-75/82+11/56*I,n=44 2100999325297914 s002 sum(A043202[n]/(pi^n),n=1..infinity) 2100999325436515 r005 Im(z^2+c),c=-25/34+19/90*I,n=14 2100999326411575 a007 Real Root Of -472*x^4-579*x^3+832*x^2+202*x+579 2100999330682377 m005 (1/2*2^(1/2)+6)/(3*Catalan+4/9) 2100999336420201 p004 log(32869/4021) 2100999348951680 r005 Im(z^2+c),c=-109/118+8/41*I,n=46 2100999357115925 m001 (BesselI(1,2)+Tetranacci)/(BesselI(0,1)-ln(3)) 2100999367551316 m001 (exp(gamma)+5)/(-Pi^(1/2)+5) 2100999404681689 a007 Real Root Of 122*x^4+463*x^3+422*x^2-188*x-341 2100999404889352 r005 Im(z^2+c),c=-4/7+25/69*I,n=47 2100999418577487 m005 (1/2*Pi-1/11)/(7/12*5^(1/2)-3/5) 2100999421047919 a007 Real Root Of -634*x^4-840*x^3+715*x^2-981*x-654 2100999422948221 m001 gamma(2)^StronglyCareFree*ZetaP(4) 2100999425749878 r009 Im(z^3+c),c=-7/94+13/60*I,n=2 2100999427083499 r009 Re(z^3+c),c=-9/17+8/47*I,n=48 2100999435833212 m001 Riemann2ndZero-Zeta(1,-1)*gamma(1) 2100999436029437 a007 Real Root Of 467*x^4+676*x^3-79*x^2+965*x-454 2100999444968743 l006 ln(7763/9578) 2100999454724032 p004 log(12613/1543) 2100999464121783 m001 (exp(Pi)+1)/(-Zeta(3)+ln(2+3^(1/2))) 2100999465622585 r009 Re(z^3+c),c=-1/86+52/63*I,n=35 2100999470718790 m001 (exp(1/exp(1))+gamma(1))/(Robbin-ZetaQ(3)) 2100999473031162 a007 Real Root Of 8*x^4-577*x^3-689*x^2+829*x-724 2100999478534418 h001 (2/5*exp(2)+7/9)/(1/6*exp(2)+6/11) 2100999485026240 a003 cos(Pi*8/55)*cos(Pi*48/113) 2100999488583598 h005 exp(sin(Pi*7/39)/sin(Pi*11/43)) 2100999507383603 s002 sum(A288229[n]/(n*2^n+1),n=1..infinity) 2100999509126874 a007 Real Root Of 932*x^4-31*x^3+755*x^2-393*x-118 2100999510310582 a007 Real Root Of -732*x^4-956*x^3+986*x^2-768*x-569 2100999512789212 m001 MasserGramain^(Tribonacci/exp(-1/2*Pi)) 2100999522948167 r009 Re(z^3+c),c=-11/94+44/51*I,n=38 2100999524886223 l006 ln(1130/9237) 2100999529680631 r005 Re(z^2+c),c=29/90+9/38*I,n=26 2100999530771822 a007 Real Root Of 942*x^4-30*x^3-781*x^2-424*x+122 2100999532278046 m001 Salem^Lehmer+1 2100999549569410 r009 Re(z^3+c),c=-10/31+7/15*I,n=20 2100999561547301 p001 sum((-1)^n/(539*n+467)/(24^n),n=0..infinity) 2100999581208647 h001 (1/6*exp(2)+3/5)/(1/11*exp(2)+1/5) 2100999581242949 a007 Real Root Of 297*x^4+708*x^3+62*x^2+16*x+539 2100999588420680 m001 1/BesselJ(0,1)/ln(Lehmer)^2*BesselJ(1,1) 2100999621598635 l006 ln(5911/7293) 2100999629182818 a007 Real Root Of -393*x^4-898*x^3+98*x^2+685*x+336 2100999629903724 b008 -3+78*(1+Sqrt[3]) 2100999633230234 r009 Re(z^3+c),c=-49/102+21/43*I,n=60 2100999638244007 m001 exp(GAMMA(11/12))/TreeGrowth2nd*LambertW(1)^2 2100999641826782 r002 46th iterates of z^2 + 2100999643443166 m001 (-sin(1)+Totient)/(exp(Pi)+gamma) 2100999646151642 m009 (1/4*Psi(1,2/3)-2/5)/(Psi(1,3/4)-4/5) 2100999646185185 m001 sin(1)/CopelandErdos*exp(sqrt(Pi)) 2100999654663796 a007 Real Root Of 551*x^4+745*x^3-423*x^2+513*x-882 2100999675673066 m001 (Trott2nd+Weierstrass)/(Cahen+MadelungNaCl) 2100999675876808 l006 ln(717/5861) 2100999676656149 q001 1/4759639 2100999686713054 m002 2*Pi^4+Cosh[Pi]+Cosh[Pi]/Pi 2100999687174226 m001 (5^(1/2)-ln(5))/(FransenRobinson+ZetaP(3)) 2100999688919420 r005 Im(z^2+c),c=-5/6+31/199*I,n=37 2100999688958826 h005 exp(sin(Pi*10/39)/sin(Pi*25/59)) 2100999692536331 s002 sum(A258457[n]/(n^2*2^n-1),n=1..infinity) 2100999699092587 m001 1/GAMMA(1/24)^2/ErdosBorwein/exp(sin(1))^2 2100999701990500 r005 Im(z^2+c),c=-61/118+19/50*I,n=45 2100999703699992 s002 sum(A146619[n]/((10^n+1)/n),n=1..infinity) 2100999732005431 g005 1/GAMMA(3/11)/GAMMA(8/9)/GAMMA(7/8)/GAMMA(3/4) 2100999740202735 m001 (Shi(1)+ln(5))/(-3^(1/3)+Riemann1stZero) 2100999753928902 a001 13/11*199^(5/46) 2100999755741070 r009 Re(z^3+c),c=-9/31+44/63*I,n=40 2100999762018073 a008 Real Root of x^2-44142 2100999762814219 r005 Im(z^2+c),c=-45/122+38/59*I,n=48 2100999764742812 a007 Real Root Of 145*x^4-17*x^3-318*x^2+795*x+91 2100999773644668 m001 (sin(1)+AlladiGrinstead)/(-Kolakoski+ZetaQ(3)) 2100999775863966 h001 (-2*exp(-2)+9)/(-3*exp(1)+4) 2100999778604926 a005 (1/sin(103/235*Pi))^770 2100999782723841 a008 Real Root of x^4-x^3-37*x^2+34*x+206 2100999783181882 a007 Real Root Of 528*x^4+820*x^3-257*x^2+345*x-824 2100999783672724 m001 (MertensB1+ThueMorse)/(Cahen-FellerTornier) 2100999813883203 a007 Real Root Of 615*x^4+858*x^3-525*x^2+828*x+31 2100999820183819 a007 Real Root Of 665*x^4+577*x^3+597*x^2-327*x-91 2100999823458298 m001 (GAMMA(3/4)-exp(1))/(-ZetaQ(3)+ZetaQ(4)) 2100999837132626 m001 ln(Sierpinski)*Riemann2ndZero*GAMMA(23/24)^2 2100999837169750 r005 Re(z^2+c),c=7/34+27/58*I,n=41 2100999842986832 l006 ln(1021/8346) 2100999846919765 r005 Im(z^2+c),c=-19/40+21/46*I,n=24 2100999849678734 m001 Chi(1)-FeigenbaumKappa+HardyLittlewoodC4 2100999870368997 a007 Real Root Of 109*x^4-508*x^3+31*x^2+788*x+795 2100999874934213 a007 Real Root Of -402*x^4+69*x^3+667*x^2+695*x+118 2100999895589796 r005 Re(z^2+c),c=-7/78+35/61*I,n=60 2100999899185338 s002 sum(A017007[n]/(n^3*pi^n-1),n=1..infinity) 2100999902077198 a007 Real Root Of -110*x^4-45*x^3+49*x^2-532*x+392 2100999905899537 m008 (1/3*Pi^6-1/4)/(1/2*Pi^5-3/5) 2100999911097189 r009 Im(z^3+c),c=-49/114+1/32*I,n=28 2100999913733474 a007 Real Root Of 410*x^4+671*x^3-59*x^2+569*x-310 2100999920069454 a001 11/2584*55^(36/37) 2100999921965369 m001 (cos(1/5*Pi)+Landau)/(LaplaceLimit-Mills) 2100999922130128 a007 Real Root Of -372*x^4-67*x^3+955*x^2-847*x+632 2100999924731664 r005 Im(z^2+c),c=-57/106+7/18*I,n=61 2100999927882290 r009 Re(z^3+c),c=-19/70+18/55*I,n=9 2100999928999333 r005 Im(z^2+c),c=-17/58+9/28*I,n=16 2100999933684289 a007 Real Root Of 366*x^4+412*x^3-685*x^2-41*x-373 2100999933795660 a001 89/322*322^(3/4) 2100999937332547 a007 Real Root Of 46*x^4+932*x^3-766*x^2-889*x-140 2100999942021738 m001 (Zeta(5)-Ei(1,1))/(exp(1/exp(1))-GAMMA(11/12)) 2100999943365046 m001 FellerTornier*FibonacciFactorial+Niven 2100999944806037 a007 Real Root Of 429*x^4-846*x^3+790*x^2-559*x-161 2100999946287399 a001 3571/3*514229^(29/39) 2100999948768501 r009 Re(z^3+c),c=-43/118+29/51*I,n=48 2100999959410367 l006 ln(4059/5008) 2100999960887461 r005 Re(z^2+c),c=7/22+13/57*I,n=36 2100999962613523 m001 MertensB2^(Ei(1)*Pi*csc(1/12*Pi)/GAMMA(11/12)) 2100999968000619 r005 Im(z^2+c),c=-5/114+11/45*I,n=7 2100999972436249 m001 (-GolombDickman+Robbin)/(Zeta(1,2)-sin(1)) 2100999973706741 p004 log(37463/4583) 2100999975224086 m002 Sinh[Pi]/(3*Pi^3)+Sech[Pi]*Tanh[Pi] 2100999983334083 b008 21+ArcCsch[100] 2100999985401585 a007 Real Root Of 209*x^4-40*x^3-811*x^2+153*x-542 2100999989363194 r005 Im(z^2+c),c=-63/74+3/19*I,n=41 2100999991943759 p001 sum(1/(553*n+507)/(8^n),n=0..infinity) 2100999993173609 a005 (1/cos(47/213*Pi))^152 2100999996731491 m001 Porter*KhintchineHarmonic^2/exp(GAMMA(7/12))^2 2100999997222222 b008 21+KelvinBei[0,1/5]