2178300003419875 m005 (1/2*Pi-5/6)/(3*2^(1/2)-6/7) 2178300004845919 a001 47/144*55^(9/19) 2178300010540477 m005 (1/2*Zeta(3)-1)/(9/10*3^(1/2)+3/11) 2178300012502442 a001 4/75025*75025^(20/27) 2178300015948449 m001 (Pi-BesselK(0,1))/(cos(1/5*Pi)+TreeGrowth2nd) 2178300025658143 s002 sum(A111091[n]/(2^n-1),n=1..infinity) 2178300030430316 r005 Re(z^2+c),c=-8/31+5/41*I,n=18 2178300031224539 a001 11/17711*8^(35/58) 2178300032782632 a007 Real Root Of -318*x^4-710*x^3-194*x^2-677*x-733 2178300038224644 k001 Champernowne real with 822*n+1356 2178300038559388 l006 ln(5510/6851) 2178300044069583 m001 ln(gamma)/Ei(1,1)/Pi/csc(1/12*Pi)*GAMMA(11/12) 2178300048134220 m001 (Niven+ThueMorse)/(Artin-Psi(1,1/3)) 2178300048411125 a007 Real Root Of 579*x^4+836*x^3-946*x^2+70*x+246 2178300048731162 r005 Re(z^2+c),c=21/62+20/53*I,n=5 2178300052267745 r005 Im(z^2+c),c=-127/110+1/38*I,n=18 2178300053720896 l006 ln(812/7171) 2178300055216419 b008 Log[35/8]^2 2178300055728090 a001 2178309-4*5^(1/2) 2178300060081455 m001 (Psi(2,1/3)-ln(2^(1/2)+1))/(Cahen+Tetranacci) 2178300063893926 m004 -20/Pi+(Sqrt[5]*Pi)/2+Sin[Sqrt[5]*Pi] 2178300066502792 r005 Im(z^2+c),c=-65/114+8/63*I,n=8 2178300071872977 a005 (1/sin(58/125*Pi))^840 2178300073705104 m009 (3*Pi^2+4/5)/(1/3*Psi(1,3/4)-5/6) 2178300075148091 m006 (2/3*Pi-3/4)/(3/5*Pi^2+1/4) 2178300075148091 m008 (2/3*Pi-3/4)/(3/5*Pi^2+1/4) 2178300076666725 m001 CopelandErdos+GlaisherKinkelin+TwinPrimes 2178300084089869 r005 Re(z^2+c),c=7/94+27/41*I,n=11 2178300086380577 r005 Im(z^2+c),c=-33/98+17/49*I,n=34 2178300088361334 r005 Re(z^2+c),c=-7/52+25/48*I,n=36 2178300095073491 r002 13th iterates of z^2 + 2178300102402768 a007 Real Root Of -218*x^4-362*x^3+45*x^2-438*x-1 2178300105836921 m005 (1/3*5^(1/2)+1/10)/(8/9*gamma-1/8) 2178300112929205 r005 Re(z^2+c),c=-17/14+56/243*I,n=8 2178300121004504 r009 Im(z^3+c),c=-33/94+5/33*I,n=20 2178300129127298 m001 ZetaQ(4)^ZetaP(3)+Si(Pi) 2178300138244647 k001 Champernowne real with 823*n+1355 2178300139166200 m001 (Pi^(1/2)-exp(Pi))/(-ErdosBorwein+Kac) 2178300143428347 r009 Re(z^3+c),c=-31/110+19/58*I,n=15 2178300150360325 m001 (-FeigenbaumC+ZetaP(4))/(1-DuboisRaymond) 2178300152908386 r005 Im(z^2+c),c=-22/19+9/44*I,n=19 2178300152914431 r009 Im(z^3+c),c=-5/56+13/58*I,n=5 2178300165294820 r005 Im(z^2+c),c=-23/50+20/51*I,n=5 2178300170051319 a001 567451585/682*199^(2/11) 2178300175003842 a001 123/11*(1/2*5^(1/2)+1/2)^13*11^(11/20) 2178300181755798 m001 (Zeta(5)+Champernowne)/(Psi(2,1/3)+Si(Pi)) 2178300181937099 a005 (1/cos(38/155*Pi))^169 2178300187539019 m001 (Khinchin+Kolakoski)/(Niven-OneNinth) 2178300196697420 a001 322/591286729879*8^(2/3) 2178300202053511 m001 1/GAMMA(3/4)*exp(PrimesInBinary)/LambertW(1) 2178300204719884 r004 Re(z^2+c),c=-1/38+3/22*I,z(0)=I,n=7 2178300209370154 r005 Re(z^2+c),c=-35/82+13/24*I,n=5 2178300209783685 s002 sum(A075102[n]/(n*exp(n)+1),n=1..infinity) 2178300217890832 h001 (-5*exp(2)-2)/(-6*exp(8)+7) 2178300223124002 r005 Re(z^2+c),c=-11/102+26/45*I,n=52 2178300224411323 m001 (-ArtinRank2+Landau)/(Catalan-exp(-1/2*Pi)) 2178300224427323 r009 Re(z^3+c),c=-1/48+55/58*I,n=3 2178300228841991 m001 ln(Porter)^2*Niven/GAMMA(1/12) 2178300228994630 m005 (1/3*2^(1/2)+1/9)/(10/11*Pi-2/11) 2178300231569512 a001 2/317811*6557470319842^(10/17) 2178300238264650 k001 Champernowne real with 824*n+1354 2178300246093441 a001 24157817/322*322^(7/12) 2178300257654638 m005 (3/4*Pi+4)/(-7/10+3/10*5^(1/2)) 2178300262122095 l006 ln(6529/8118) 2178300264204246 m001 GAMMA(11/12)*CopelandErdos*ZetaQ(3) 2178300270535262 s001 sum(exp(-2*Pi/5)^n*A027218[n],n=1..infinity) 2178300270535262 s002 sum(A027218[n]/(exp(2/5*pi*n)),n=1..infinity) 2178300283071352 a007 Real Root Of 526*x^4+753*x^3-472*x^2+820*x-34 2178300296812522 a001 1/1292*1836311903^(10/17) 2178300298800945 l006 ln(569/5025) 2178300306326310 m001 (ErdosBorwein+Sierpinski)^Landau 2178300316673543 a005 (1/sin(103/232*Pi))^937 2178300318117411 m001 (CareFree-Landau)/(Lehmer-MertensB3) 2178300318453003 m001 Bloch^CareFree*Bloch^PisotVijayaraghavan 2178300320704213 r005 Im(z^2+c),c=-43/50+10/57*I,n=60 2178300324342539 m001 FeigenbaumD*exp(MadelungNaCl)*sqrt(2) 2178300328730389 r005 Re(z^2+c),c=49/114+7/34*I,n=7 2178300330604724 m001 (Stephens+Thue)/(Zeta(3)-Landau) 2178300333286195 a007 Real Root Of 533*x^4+692*x^3-816*x^2+17*x-939 2178300338284653 k001 Champernowne real with 825*n+1353 2178300340058236 r002 8th iterates of z^2 + 2178300348436340 m001 (Otter+Riemann2ndZero)/(ln(2^(1/2)+1)+Ei(1,1)) 2178300349003702 r005 Re(z^2+c),c=-7/66+16/37*I,n=5 2178300363559539 m001 MadelungNaCl/exp(DuboisRaymond)^2*Tribonacci 2178300367566290 m001 Tribonacci*ln(Riemann3rdZero)/exp(1) 2178300376009180 m001 1/exp((2^(1/3)))/GaussKuzminWirsing^2*sin(1)^2 2178300377312937 a007 Real Root Of -281*x^4-140*x^3+689*x^2-518*x+482 2178300379046010 a001 24157817/843*521^(9/13) 2178300397534712 m003 31/32+(Sqrt[5]*Coth[1/2+Sqrt[5]/2])/2 2178300413063863 m001 PisotVijayaraghavan^gamma*Si(Pi) 2178300419413040 r009 Re(z^3+c),c=-17/118+37/45*I,n=64 2178300420401137 a007 Real Root Of 313*x^4+541*x^3-170*x^2+279*x-41 2178300421763836 a005 (1/cos(21/188*Pi))^49 2178300423482890 a005 (1/sin(83/200*Pi))^213 2178300423941121 m005 (1/3*gamma-1/8)/(2/3*Pi+1) 2178300425321683 l006 ln(7548/9385) 2178300427103310 a007 Real Root Of 240*x^4+217*x^3-660*x^2+213*x+435 2178300430094652 r005 Re(z^2+c),c=-5/34+29/59*I,n=25 2178300431178575 r005 Re(z^2+c),c=-11/46+13/56*I,n=17 2178300438304656 k001 Champernowne real with 826*n+1352 2178300446620065 r005 Im(z^2+c),c=-11/23+19/55*I,n=15 2178300454071025 a003 sin(Pi*5/57)*sin(Pi*13/44) 2178300457975277 r005 Re(z^2+c),c=-9/74+31/57*I,n=59 2178300460173424 s002 sum(A020425[n]/((exp(n)+1)/n),n=1..infinity) 2178300462230353 r005 Im(z^2+c),c=-53/114+33/62*I,n=52 2178300466650139 m005 (1/2*5^(1/2)+1/3)/(6/11*Catalan+1/6) 2178300477005562 r002 16th iterates of z^2 + 2178300481538470 m001 exp(BesselK(0,1))^2*Niven^2/GAMMA(1/6)^2 2178300482010526 a007 Real Root Of 108*x^4-995*x^3-582*x^2-609*x-13 2178300490559886 m001 (MasserGramain-arctan(1/3))^GAMMA(2/3) 2178300491948622 a001 3/86267571272*8^(15/17) 2178300507942898 m008 (2*Pi^6-1/2)/(5/6*Pi^2+3/5) 2178300513802375 v004 sum(1/(2+11*n^2-9*n)/sinh(Pi*n),n=1..infinity) 2178300521152848 l006 ln(895/7904) 2178300527896995 a001 507544023/233 2178300528427831 r009 Re(z^3+c),c=-43/122+22/43*I,n=26 2178300538324659 k001 Champernowne real with 827*n+1351 2178300550543564 a007 Real Root Of 347*x^4+596*x^3+x^2+831*x+153 2178300552288467 r005 Re(z^2+c),c=-1/52+30/49*I,n=53 2178300562511684 m001 1/ln(FeigenbaumD)^2/MadelungNaCl^2/cosh(1) 2178300563171518 p004 log(26591/3011) 2178300571063725 m001 BesselJ(1,1)/MadelungNaCl*ln(BesselK(0,1)) 2178300572983007 a007 Real Root Of 250*x^4-382*x^3+484*x^2-728*x+139 2178300574164453 r005 Re(z^2+c),c=-5/31+25/54*I,n=57 2178300576666451 a001 844/13*4807526976^(6/23) 2178300578216621 r005 Im(z^2+c),c=-69/52+1/20*I,n=19 2178300579536278 r002 46th iterates of z^2 + 2178300580311459 a001 439204/377*75025^(6/23) 2178300587035571 m001 (TreeGrowth2nd+Thue)/Gompertz 2178300591099007 r009 Re(z^3+c),c=-4/19+3/50*I,n=3 2178300604776860 h001 (-5*exp(7)+1)/(-3*exp(2)-3) 2178300605184191 m001 (Niven+Paris)/(Zeta(3)-Artin) 2178300609683182 m001 1/Porter^2*ln(KhintchineHarmonic)^2/Robbin 2178300612585467 m001 (Zeta(1,2)+OrthogonalArrays)/(exp(1)-gamma) 2178300615145391 a001 1/311187*17711^(25/58) 2178300616953095 m001 2*Pi/GAMMA(5/6)/CopelandErdos/Trott 2178300619616208 m001 LambertW(1)^gamma(3)/(LambertW(1)^exp(1/Pi)) 2178300625662169 r005 Re(z^2+c),c=-5/46+30/53*I,n=50 2178300626520918 a001 161/31622993*233^(4/15) 2178300636741192 r005 Im(z^2+c),c=-43/78+9/25*I,n=26 2178300637149704 m001 (Magata-Otter)/(ln(Pi)+Zeta(1,2)) 2178300638344662 k001 Champernowne real with 828*n+1350 2178300644311501 m001 ln(GAMMA(23/24))*GAMMA(11/12)*cos(Pi/5) 2178300647151350 m001 (ln(2)*arctan(1/2)-FeigenbaumC)/ln(2) 2178300650288045 m001 arctan(1/3)/(FeigenbaumAlpha-GAMMA(23/24)) 2178300651863418 a007 Real Root Of -728*x^4-308*x^3-764*x^2+667*x+180 2178300655314097 r005 Im(z^2+c),c=-1/70+9/37*I,n=16 2178300666627031 a001 87403803*144^(11/17) 2178300668245615 a007 Real Root Of 289*x^4+405*x^3-460*x^2-11*x-162 2178300671323839 m001 OneNinth^2/FeigenbaumD*exp(cos(Pi/5))^2 2178300674286444 a007 Real Root Of 471*x^4+583*x^3-850*x^2-37*x-626 2178300687123919 k002 Champernowne real with 165/2*n^2-381/2*n+129 2178300687917075 m005 (1/2*exp(1)+9/10)/(4/11*Zeta(3)+3/5) 2178300692806132 r005 Im(z^2+c),c=-103/118+9/53*I,n=24 2178300699318814 a007 Real Root Of 33*x^4-335*x^3-771*x^2+158*x-203 2178300712724079 m001 1/BesselJ(0,1)*exp(Tribonacci)^2*BesselK(0,1) 2178300715184122 m001 Kolakoski^Salem/(HardyLittlewoodC5^Salem) 2178300715394384 r005 Re(z^2+c),c=-9/40+17/59*I,n=26 2178300718640874 m001 Thue^Paris/ZetaP(2) 2178300718929119 r005 Re(z^2+c),c=-7/38+9/23*I,n=10 2178300738364665 k001 Champernowne real with 829*n+1349 2178300743451712 m001 (BesselI(1,1)+Artin)/(FeigenbaumKappa+Otter) 2178300750165762 m001 (2^(1/3)+Catalan)/(-FeigenbaumB+FeigenbaumC) 2178300750811524 r005 Re(z^2+c),c=13/70+11/28*I,n=22 2178300753025823 m001 5^(1/2)+Zeta(1,-1)+OneNinth 2178300756997192 r005 Re(z^2+c),c=-17/90+23/58*I,n=21 2178300759160685 r005 Re(z^2+c),c=-9/40+17/59*I,n=27 2178300761219997 s001 sum(1/10^(n-1)*A071395[n]/n^n,n=1..infinity) 2178300766076880 m001 (2^(1/3)-Artin)/(Magata+TwinPrimes) 2178300769640302 r005 Re(z^2+c),c=-13/82+20/41*I,n=18 2178300769721355 b008 Pi+9*BesselY[1,2] 2178300788710805 m001 Niven^2*ln(ErdosBorwein)^2*gamma^2 2178300813033949 b008 Sqrt[5]*(6+Sqrt[14]) 2178300813301359 m001 GAMMA(1/3)*Zeta(1,2)+1/3 2178300837505090 a001 199*2^(3/23) 2178300838384668 k001 Champernowne real with 830*n+1348 2178300853105858 a003 cos(Pi*1/24)-sin(Pi*29/103) 2178300857874240 m005 (1/2*Catalan+1/5)/(3*Catalan+3/11) 2178300858899106 m005 (5*2^(1/2)-1/4)/(4/5*2^(1/2)+2) 2178300858899106 r004 Im(z^2+c),c=3/8+3/4*I,z(0)=exp(3/8*I*Pi),n=2 2178300866106981 r008 a(0)=0,K{-n^6,-73+98*n^3-31*n^2+52*n} 2178300878749925 r005 Im(z^2+c),c=2/19+17/28*I,n=59 2178300888679113 m001 1/exp(sin(Pi/5))*Salem/sqrt(3)^2 2178300889750615 m001 (-Paris+Salem)/(Chi(1)-MertensB3) 2178300893781536 m001 (1-Zeta(1/2))/(-Rabbit+Tribonacci) 2178300895215817 r005 Re(z^2+c),c=-9/40+17/59*I,n=29 2178300895880142 m001 exp(1)/ln(GAMMA(5/12))/sqrt(1+sqrt(3)) 2178300900234784 r005 Im(z^2+c),c=-19/50+23/64*I,n=15 2178300902547135 r005 Re(z^2+c),c=-3/62+26/43*I,n=49 2178300906690834 m009 (1/5*Pi^2-4/5)/(1/5*Psi(1,2/3)-2/3) 2178300906854389 r005 Im(z^2+c),c=-13/14+37/176*I,n=62 2178300909245468 l006 ln(326/2879) 2178300909830056 a001 4356613/2-5/2*5^(1/2) 2178300909871244 a001 507544112/233 2178300920265086 r005 Re(z^2+c),c=-25/18+1/171*I,n=48 2178300920705623 m001 sin(1)*(GAMMA(1/4)-Zeta(5)) 2178300920705623 m001 sin(1)*(Pi*2^(1/2)/GAMMA(3/4)-Zeta(5)) 2178300925734435 r002 13th iterates of z^2 + 2178300926492968 a007 Real Root Of 100*x^4+171*x^3+56*x^2+767*x+921 2178300931470457 r009 Re(z^3+c),c=-37/106+1/2*I,n=61 2178300934375908 a001 1134903170/843*199^(1/11) 2178300936750004 r008 a(0)=0,K{-n^6,-89+86*n^3-3*n^2+52*n} 2178300938404671 k001 Champernowne real with 831*n+1347 2178300943089095 m001 MertensB1/(cos(1)+TwinPrimes) 2178300950743719 r009 Re(z^3+c),c=-37/106+1/2*I,n=63 2178300956505667 m001 (3^(1/2)-Psi(2,1/3))/(5^(1/2)+Artin) 2178300962546432 a003 cos(Pi*22/109)-cos(Pi*3/10) 2178300965665236 a001 507544125/233 2178300969124689 a007 Real Root Of 666*x^4-100*x^3+431*x^2-730*x-182 2178300970639007 r008 a(0)=0,K{-n^6,57-74*n^3-49*n^2+20*n} 2178300974248927 a001 507544127/233 2178300975107296 a001 2/233*(1/2+1/2*5^(1/2))^45 2178300975819326 r008 a(0)=0,K{-n^6,87-78*n^3-22*n^2-33*n} 2178300978540772 a001 507544128/233 2178300992306967 r005 Re(z^2+c),c=-8/31+5/41*I,n=21 2178300996346511 a001 39088169/843*521^(8/13) 2178301000000332 a001 1346253/2+1346269/2*5^(1/2) 2178301004224132 r009 Re(z^3+c),c=-37/106+1/2*I,n=60 2178301009290477 r008 a(0)=0,K{-n^6,59-67*n^3-69*n^2+31*n} 2178301012276513 r005 Re(z^2+c),c=-8/31+5/41*I,n=23 2178301013533094 a007 Real Root Of -600*x^4-988*x^3+428*x^2-427*x+336 2178301018253862 a007 Real Root Of -175*x^4+98*x^3+986*x^2+216*x+745 2178301026905946 a005 (1/cos(34/233*Pi))^641 2178301029001940 r005 Re(z^2+c),c=-8/31+5/41*I,n=20 2178301033766544 r005 Re(z^2+c),c=-8/31+5/41*I,n=25 2178301034633835 a008 Real Root of x^4-2*x^3-253*x^2-1544*x-2206 2178301038424674 k001 Champernowne real with 832*n+1346 2178301039645185 s002 sum(A135280[n]/((exp(n)+1)*n),n=1..infinity) 2178301039728848 r005 Re(z^2+c),c=-8/31+5/41*I,n=27 2178301040483727 r005 Re(z^2+c),c=-8/31+5/41*I,n=30 2178301040531467 r005 Re(z^2+c),c=-8/31+5/41*I,n=32 2178301040557637 r005 Re(z^2+c),c=-8/31+5/41*I,n=34 2178301040563778 r005 Re(z^2+c),c=-8/31+5/41*I,n=36 2178301040564259 r005 Re(z^2+c),c=-8/31+5/41*I,n=39 2178301040564336 r005 Re(z^2+c),c=-8/31+5/41*I,n=41 2178301040564366 r005 Re(z^2+c),c=-8/31+5/41*I,n=43 2178301040564372 r005 Re(z^2+c),c=-8/31+5/41*I,n=37 2178301040564372 r005 Re(z^2+c),c=-8/31+5/41*I,n=45 2178301040564372 r005 Re(z^2+c),c=-8/31+5/41*I,n=46 2178301040564372 r005 Re(z^2+c),c=-8/31+5/41*I,n=48 2178301040564372 r005 Re(z^2+c),c=-8/31+5/41*I,n=50 2178301040564372 r005 Re(z^2+c),c=-8/31+5/41*I,n=52 2178301040564372 r005 Re(z^2+c),c=-8/31+5/41*I,n=55 2178301040564372 r005 Re(z^2+c),c=-8/31+5/41*I,n=57 2178301040564372 r005 Re(z^2+c),c=-8/31+5/41*I,n=59 2178301040564372 r005 Re(z^2+c),c=-8/31+5/41*I,n=61 2178301040564372 r005 Re(z^2+c),c=-8/31+5/41*I,n=64 2178301040564372 r005 Re(z^2+c),c=-8/31+5/41*I,n=63 2178301040564372 r005 Re(z^2+c),c=-8/31+5/41*I,n=62 2178301040564372 r005 Re(z^2+c),c=-8/31+5/41*I,n=60 2178301040564372 r005 Re(z^2+c),c=-8/31+5/41*I,n=54 2178301040564372 r005 Re(z^2+c),c=-8/31+5/41*I,n=58 2178301040564372 r005 Re(z^2+c),c=-8/31+5/41*I,n=56 2178301040564372 r005 Re(z^2+c),c=-8/31+5/41*I,n=53 2178301040564372 r005 Re(z^2+c),c=-8/31+5/41*I,n=51 2178301040564372 r005 Re(z^2+c),c=-8/31+5/41*I,n=49 2178301040564373 r005 Re(z^2+c),c=-8/31+5/41*I,n=47 2178301040564374 r005 Re(z^2+c),c=-8/31+5/41*I,n=44 2178301040564389 r005 Re(z^2+c),c=-8/31+5/41*I,n=42 2178301040564443 r005 Re(z^2+c),c=-8/31+5/41*I,n=40 2178301040564503 r005 Re(z^2+c),c=-8/31+5/41*I,n=38 2178301040566745 r005 Re(z^2+c),c=-8/31+5/41*I,n=35 2178301040580360 r005 Re(z^2+c),c=-8/31+5/41*I,n=33 2178301040620463 r005 Re(z^2+c),c=-8/31+5/41*I,n=29 2178301040622375 r005 Re(z^2+c),c=-8/31+5/41*I,n=31 2178301040709677 r005 Re(z^2+c),c=-8/31+5/41*I,n=28 2178301043229236 r005 Re(z^2+c),c=-8/31+5/41*I,n=26 2178301051302298 a007 Real Root Of 847*x^4-953*x^3+346*x^2-394*x-114 2178301054797792 b008 Log[Cos[7/11]] 2178301054797792 l005 ln(sec(7/11)) 2178301055465100 r005 Re(z^2+c),c=-8/31+5/41*I,n=24 2178301064485687 m001 Niven^(FeigenbaumD/Tribonacci) 2178301067910963 h001 (3/8*exp(2)+3/4)/(3/11*exp(1)+7/8) 2178301072504362 a003 cos(Pi*10/97)-cos(Pi*17/71) 2178301073451446 r002 54th iterates of z^2 + 2178301075050729 v003 sum((n^3-6*n^2+20*n-6)/n^(n-1),n=1..infinity) 2178301076622913 r005 Re(z^2+c),c=11/60+3/46*I,n=7 2178301085140305 r005 Re(z^2+c),c=-8/31+5/41*I,n=22 2178301088797883 m001 1/cosh(1)*exp(Ei(1))^2/log(2+sqrt(3)) 2178301090026570 a005 (1/cos(11/189*Pi))^1964 2178301093355761 q001 259/1189 2178301093355761 r002 2th iterates of z^2 + 2178301093355761 r002 2th iterates of z^2 + 2178301093355761 r005 Im(z^2+c),c=-33/29+7/41*I,n=2 2178301095949636 a003 cos(Pi*19/79)/cos(Pi*23/47) 2178301107214274 a007 Real Root Of -416*x^4-812*x^3+365*x^2+491*x+311 2178301107305624 m001 Paris*exp(CareFree)/Catalan 2178301113065838 r002 46th iterates of z^2 + 2178301138444677 k001 Champernowne real with 833*n+1345 2178301141300157 m004 -2+(25*E^(Sqrt[5]*Pi)*Pi*Csc[Sqrt[5]*Pi])/6 2178301145166417 a001 14930352/2207*521^(12/13) 2178301145922746 a001 507544167/233 2178301156224356 m001 (GlaisherKinkelin-gamma(3))/sin(1/5*Pi) 2178301162799623 r005 Im(z^2+c),c=-19/74+12/37*I,n=27 2178301175826600 a007 Real Root Of -567*x^4-857*x^3+664*x^2-187*x+350 2178301178269569 a007 Real Root Of 312*x^4+915*x^3-112*x^2-994*x+799 2178301181637470 r005 Im(z^2+c),c=-39/56+3/20*I,n=25 2178301185674740 r005 Re(z^2+c),c=-9/56+15/34*I,n=11 2178301195775747 r005 Re(z^2+c),c=-5/32+29/61*I,n=27 2178301198464615 m005 (1/2*exp(1)-3/11)/(1/7*5^(1/2)-9/11) 2178301207352886 r005 Re(z^2+c),c=-9/40+17/59*I,n=32 2178301211404170 g005 GAMMA(7/8)*Pi*csc(1/8*Pi)/GAMMA(2/9) 2178301211514171 k006 concat of cont frac of 2178301213515089 p001 sum(1/(297*n+95)/n/(12^n),n=1..infinity) 2178301214591387 a007 Real Root Of 376*x^4+875*x^3+129*x^2+4*x-25 2178301218376285 a007 Real Root Of 94*x^4+62*x^3-457*x^2-678*x-784 2178301229541903 a001 439204/13*514229^(16/19) 2178301230203601 a001 1/14619165*55^(19/22) 2178301231620946 m001 (Rabbit-ZetaP(4))/(FransenRobinson+Paris) 2178301236618484 l006 ln(1061/9370) 2178301238464680 k001 Champernowne real with 834*n+1344 2178301248533040 m005 (1/2*gamma-6/7)/(6/11*Zeta(3)-11/12) 2178301263504169 a007 Real Root Of 442*x^4+953*x^3-175*x^2-314*x+45 2178301264271997 r005 Re(z^2+c),c=-9/40+17/59*I,n=34 2178301264311178 a003 cos(Pi*29/112)-sin(Pi*9/25) 2178301272562522 m008 (1/5*Pi^2-2/3)/(1/5*Pi^3-1/5) 2178301275454924 r005 Re(z^2+c),c=-9/40+17/59*I,n=37 2178301278422666 g002 Psi(5/8)-Psi(7/9)-Psi(4/7)-Psi(4/5) 2178301279422338 r005 Re(z^2+c),c=-9/40+17/59*I,n=35 2178301280594514 s002 sum(A082987[n]/(n*10^n-1),n=1..infinity) 2178301280893462 r005 Re(z^2+c),c=-9/40+17/59*I,n=40 2178301281376257 r005 Re(z^2+c),c=-9/40+17/59*I,n=42 2178301281656073 r005 Re(z^2+c),c=-9/40+17/59*I,n=45 2178301281673338 r005 Re(z^2+c),c=-9/40+17/59*I,n=39 2178301281736072 r005 Re(z^2+c),c=-9/40+17/59*I,n=47 2178301281740484 r005 Re(z^2+c),c=-9/40+17/59*I,n=48 2178301281741260 r005 Re(z^2+c),c=-9/40+17/59*I,n=50 2178301281746724 r005 Re(z^2+c),c=-9/40+17/59*I,n=53 2178301281747592 r005 Re(z^2+c),c=-9/40+17/59*I,n=55 2178301281747809 r005 Re(z^2+c),c=-9/40+17/59*I,n=58 2178301281747898 r005 Re(z^2+c),c=-9/40+17/59*I,n=56 2178301281747902 r005 Re(z^2+c),c=-9/40+17/59*I,n=61 2178301281747908 r005 Re(z^2+c),c=-9/40+17/59*I,n=63 2178301281747911 r005 Re(z^2+c),c=-9/40+17/59*I,n=60 2178301281747916 r005 Re(z^2+c),c=-9/40+17/59*I,n=64 2178301281747928 r005 Re(z^2+c),c=-9/40+17/59*I,n=62 2178301281747962 r005 Re(z^2+c),c=-9/40+17/59*I,n=59 2178301281748043 r005 Re(z^2+c),c=-9/40+17/59*I,n=57 2178301281748448 r005 Re(z^2+c),c=-9/40+17/59*I,n=52 2178301281748765 r005 Re(z^2+c),c=-9/40+17/59*I,n=54 2178301281749983 r005 Re(z^2+c),c=-9/40+17/59*I,n=51 2178301281758545 r005 Re(z^2+c),c=-9/40+17/59*I,n=49 2178301281798495 r005 Re(z^2+c),c=-9/40+17/59*I,n=46 2178301281801303 r005 Re(z^2+c),c=-9/40+17/59*I,n=43 2178301281831818 r005 Re(z^2+c),c=-9/40+17/59*I,n=44 2178301282518588 r005 Re(z^2+c),c=-9/40+17/59*I,n=41 2178301284367977 r005 Re(z^2+c),c=-9/40+17/59*I,n=38 2178301284534374 m001 (cos(1)-ln(2))/(-BesselK(1,1)+Conway) 2178301286159629 r005 Re(z^2+c),c=-5/31+25/54*I,n=49 2178301286565628 a007 Real Root Of 373*x^4+484*x^3-227*x^2+731*x-726 2178301289276370 m003 24-Cosh[1/2+Sqrt[5]/2]+Sinh[1/2+Sqrt[5]/2]/6 2178301289906891 r005 Re(z^2+c),c=-9/40+17/59*I,n=36 2178301292903044 a001 29/1597*55^(31/50) 2178301306185836 r005 Re(z^2+c),c=-19/21+9/31*I,n=6 2178301307332307 r005 Re(z^2+c),c=-8/31+5/41*I,n=19 2178301309135054 m001 (KhinchinLevy-Psi(2,1/3))/Sierpinski 2178301311740736 m001 (Zeta(3)-gamma(3))/(Paris+ZetaP(2)) 2178301312461123 k006 concat of cont frac of 2178301323930861 r005 Re(z^2+c),c=-9/40+17/59*I,n=31 2178301326032153 m001 Zeta(9)/ln(GAMMA(11/12))*sinh(1) 2178301330468335 r005 Im(z^2+c),c=-95/106+11/57*I,n=37 2178301331766981 r005 Re(z^2+c),c=-9/40+17/59*I,n=33 2178301338484683 k001 Champernowne real with 835*n+1343 2178301342864368 r002 16th iterates of z^2 + 2178301360103151 m005 (-3/4+1/4*5^(1/2))/(7/110+4/11*5^(1/2)) 2178301364403812 r009 Re(z^3+c),c=-7/52+23/28*I,n=21 2178301381820631 l006 ln(735/6491) 2178301389009225 r005 Re(z^2+c),c=-9/40+17/59*I,n=30 2178301392898262 r009 Im(z^3+c),c=-47/110+1/11*I,n=41 2178301397279040 m006 (5/6/Pi+4/5)/(5*ln(Pi)-5/6) 2178301402319452 h001 (1/12*exp(1)+5/12)/(3/8*exp(2)+2/11) 2178301407173115 a007 Real Root Of 43*x^4+893*x^3-951*x^2-29*x-753 2178301413756980 m002 -4+Tanh[Pi]-6*Pi*Tanh[Pi] 2178301415801747 m001 1/GAMMA(5/24)*Lehmer^2*exp(sqrt(1+sqrt(3)))^2 2178301417332198 m001 FransenRobinson/(FeigenbaumKappa^GaussAGM) 2178301423273815 r009 Re(z^3+c),c=-7/34+47/48*I,n=61 2178301429751577 m001 FeigenbaumC*Lehmer^2*ln(Zeta(3))^2 2178301431324236 m001 (2^(1/3)-Ei(1))/(GAMMA(5/6)+KomornikLoreti) 2178301438504686 k001 Champernowne real with 836*n+1342 2178301442648829 r002 41th iterates of z^2 + 2178301446777177 m001 1/2*sin(1/5*Pi)*2^(2/3)*FeigenbaumDelta 2178301446777177 m001 sin(Pi/5)/(2^(1/3))*FeigenbaumDelta 2178301449079525 r005 Im(z^2+c),c=-23/82+2/63*I,n=16 2178301449809970 r009 Im(z^3+c),c=-9/32+11/60*I,n=10 2178301450002863 m005 (1/2*5^(1/2)+1/7)/(3/10*Pi-4/11) 2178301460298311 m004 5+(5*Sin[Sqrt[5]*Pi])/Pi+5*Pi*Tanh[Sqrt[5]*Pi] 2178301461385303 m005 (1/2*3^(1/2)-1/12)/(3/8*gamma+1/7) 2178301466969916 r005 Re(z^2+c),c=11/32+11/45*I,n=59 2178301470984142 l006 ln(1019/1267) 2178301474588407 a001 29/34*317811^(7/16) 2178301476846679 a007 Real Root Of 92*x^4-186*x^3-921*x^2-624*x-983 2178301483213188 a007 Real Root Of -662*x^4-891*x^3+992*x^2-715*x-569 2178301483263333 b008 2+E^(-2+Csch[2]) 2178301484987227 r005 Re(z^2+c),c=19/62+5/24*I,n=25 2178301486355931 m002 -12-Pi^2+Csch[Pi] 2178301505195143 m005 (1/2*3^(1/2)-4)/(5/7*2^(1/2)+3/7) 2178301508365489 a003 sin(Pi*4/57)*sin(Pi*42/89) 2178301527131041 a001 39088169/5778*521^(12/13) 2178301532399175 a007 Real Root Of -44*x^4-936*x^3+478*x^2-250*x-185 2178301533079773 r005 Re(z^2+c),c=-2/9+14/47*I,n=20 2178301538524689 k001 Champernowne real with 837*n+1341 2178301542642198 r009 Re(z^3+c),c=-23/66+23/44*I,n=7 2178301547127476 m001 StolarskyHarborth/MasserGramain/gamma 2178301554694059 m001 (Pi+ln(2^(1/2)+1))/(Conway+Landau) 2178301564136118 a007 Real Root Of -194*x^4+563*x^3-499*x^2+845*x+214 2178301572509745 b008 EulerGamma*(-5+InverseGudermannian[1]) 2178301573593588 m009 (1/10*Pi^2+3/4)/(1/5*Pi^2+6) 2178301582176273 m001 (ln(Pi)+3)/(-5^(1/2)+1/3) 2178301582858940 a001 6765*521^(12/13) 2178301583862359 m001 1/arctan(1/2)*ln(FeigenbaumB)^2*sqrt(3)^2 2178301584839968 m001 (sin(1/12*Pi)+Pi^(1/2))^ln(3) 2178301584839968 m001 (sin(Pi/12)+sqrt(Pi))^ln(3) 2178301589760876 m001 (MertensB1+RenyiParking)/(GAMMA(3/4)+Magata) 2178301590989531 a001 267914296/39603*521^(12/13) 2178301592175769 a001 701408733/103682*521^(12/13) 2178301592348838 a001 1836311903/271443*521^(12/13) 2178301592374089 a001 686789568/101521*521^(12/13) 2178301592377773 a001 12586269025/1860498*521^(12/13) 2178301592378310 a001 32951280099/4870847*521^(12/13) 2178301592378389 a001 86267571272/12752043*521^(12/13) 2178301592378400 a001 32264490531/4769326*521^(12/13) 2178301592378402 a001 591286729879/87403803*521^(12/13) 2178301592378402 a001 1548008755920/228826127*521^(12/13) 2178301592378402 a001 4052739537881/599074578*521^(12/13) 2178301592378402 a001 1515744265389/224056801*521^(12/13) 2178301592378402 a001 6557470319842/969323029*521^(12/13) 2178301592378402 a001 2504730781961/370248451*521^(12/13) 2178301592378402 a001 956722026041/141422324*521^(12/13) 2178301592378403 a001 365435296162/54018521*521^(12/13) 2178301592378407 a001 139583862445/20633239*521^(12/13) 2178301592378437 a001 53316291173/7881196*521^(12/13) 2178301592378643 a001 20365011074/3010349*521^(12/13) 2178301592380050 a001 7778742049/1149851*521^(12/13) 2178301592389695 a001 2971215073/439204*521^(12/13) 2178301592455801 a001 1134903170/167761*521^(12/13) 2178301592908904 a001 433494437/64079*521^(12/13) 2178301596014513 a001 165580141/24476*521^(12/13) 2178301601488158 m005 (1/2*Zeta(3)+7/10)/(9/11*gamma+1/8) 2178301602618251 r005 Re(z^2+c),c=19/56+5/22*I,n=45 2178301603016956 a007 Real Root Of 344*x^4+161*x^3-772*x^2+953*x-342 2178301604278310 a007 Real Root Of -431*x^4-764*x^3+522*x^2+357*x+108 2178301606091189 a007 Real Root Of -23*x^4-512*x^3-199*x^2+889*x+191 2178301606245996 r005 Im(z^2+c),c=-29/30+20/93*I,n=40 2178301607412910 r005 Re(z^2+c),c=-73/90+5/64*I,n=46 2178301610442774 r009 Re(z^3+c),c=-37/106+1/2*I,n=64 2178301610757627 r002 36th iterates of z^2 + 2178301613647188 a001 63245986/843*521^(7/13) 2178301617300677 a001 63245986/9349*521^(12/13) 2178301623730940 r009 Re(z^3+c),c=-3/32+43/54*I,n=54 2178301626517710 m001 (ln(gamma)-ln(3))/(MertensB3-Stephens) 2178301630899056 r002 48th iterates of z^2 + 2178301636031842 r005 Im(z^2+c),c=-83/90+11/53*I,n=39 2178301638544692 k001 Champernowne real with 838*n+1340 2178301640037321 m005 (1/2*gamma-3/4)/(8/11*Pi-1/6) 2178301641726910 p004 log(20939/2371) 2178301644572143 m001 (LaplaceLimit-Lehmer)/(Zeta(1/2)+Grothendieck) 2178301653351376 a001 233/3*47^(15/56) 2178301656708682 a007 Real Root Of -324*x^4-976*x^3-650*x^2+117*x+546 2178301657580789 a007 Real Root Of 482*x^4+994*x^3-437*x^2-417*x+587 2178301661038401 m001 (FeigenbaumB-Gompertz)^GAMMA(11/12) 2178301661356395 r005 Im(z^2+c),c=-1/26+11/40*I,n=3 2178301666834543 m001 (FellerTornier-Sarnak)/(gamma(2)-FeigenbaumC) 2178301672027073 g006 Psi(1,1/12)+Psi(1,1/7)+Psi(1,1/5)-Psi(1,6/11) 2178301688281254 m001 (exp(1)+Shi(1))/(Zeta(1,2)+LandauRamanujan) 2178301688328808 m001 (-CareFree+Weierstrass)/(Bloch-gamma) 2178301690124519 k002 Champernowne real with 83*n^2-192*n+130 2178301694725410 a001 55/9349*7^(37/55) 2178301698613205 a001 2207/2*233^(29/53) 2178301699523696 r005 Im(z^2+c),c=-29/74+13/36*I,n=25 2178301702458209 a007 Real Root Of -75*x^4-295*x^3-531*x^2-466*x+144 2178301709936579 m008 (2/5*Pi^4+2)/(1/3*Pi+5/6) 2178301713590514 m002 -2+E^Pi+ProductLog[Pi]-5*Sech[Pi] 2178301727003052 m001 1/exp(Robbin)^2/Conway/Zeta(1,2) 2178301730253123 b008 139+29*E 2178301736378121 r005 Re(z^2+c),c=-7/34+7/20*I,n=19 2178301736800325 m005 (1/3*5^(1/2)-1/7)/(4/7*Catalan-4/5) 2178301738564695 k001 Champernowne real with 839*n+1339 2178301748886781 m001 (Pi+2^(1/3))*Catalan*cos(1) 2178301758494074 l006 ln(409/3612) 2178301762467139 a001 24157817/2207*521^(11/13) 2178301763198229 a001 24157817/3571*521^(12/13) 2178301766315955 m001 (cos(1)+Riemann2ndZero)^FeigenbaumAlpha 2178301769772663 a007 Real Root Of -439*x^4-602*x^3+612*x^2-403*x-120 2178301774508913 m004 6+5*Pi+Sin[Sqrt[5]*Pi]/9 2178301790554710 r005 Re(z^2+c),c=-5/26+9/23*I,n=11 2178301801979208 m001 Ei(1,1)*AlladiGrinstead*FibonacciFactorial 2178301810553933 a003 sin(Pi*30/101)/cos(Pi*30/79) 2178301812512094 r005 Im(z^2+c),c=-9/10+6/31*I,n=44 2178301827194497 h001 (-3*exp(3)-12)/(-2*exp(3)+7) 2178301827607729 h005 exp(cos(Pi*1/22)*sin(Pi*17/59)) 2178301837660145 m001 (2^(1/3)+Conway)/(-Lehmer+Weierstrass) 2178301838584698 k001 Champernowne real with 840*n+1338 2178301843705491 a007 Real Root Of 40*x^4+879*x^3+141*x^2-596*x-514 2178301845549057 r009 Re(z^3+c),c=-45/106+26/49*I,n=31 2178301845624446 a003 cos(Pi*11/109)/cos(Pi*35/72) 2178301849684258 m001 (-Mills+Porter)/(Psi(1,1/3)-exp(1)) 2178301850506826 p001 sum(1/(599*n+477)/(12^n),n=0..infinity) 2178301851608996 a007 Real Root Of -518*x^4-840*x^3+377*x^2-542*x+11 2178301860222902 r005 Im(z^2+c),c=-103/114+6/31*I,n=41 2178301873197850 r005 Re(z^2+c),c=-5/29+31/53*I,n=24 2178301874489312 r005 Re(z^2+c),c=-83/86+7/36*I,n=48 2178301901487151 r005 Im(z^2+c),c=-55/114+5/13*I,n=61 2178301905470764 m005 (1/2*5^(1/2)+10/11)/(-19/60+1/10*5^(1/2)) 2178301916262433 b008 E^(-5)+Tan[2] 2178301916450743 r005 Re(z^2+c),c=-5/31+25/54*I,n=54 2178301917996034 m001 exp(1/2)^(3^(1/3))*exp(1/2)^exp(Pi) 2178301934616801 r009 Re(z^3+c),c=-19/36+1/2*I,n=42 2178301935833944 r005 Re(z^2+c),c=-9/40+17/59*I,n=28 2178301938604701 k001 Champernowne real with 841*n+1337 2178301943391784 a007 Real Root Of -36*x^4+321*x^3+710*x^2-412*x-138 2178301947248485 r005 Re(z^2+c),c=-31/118+4/55*I,n=14 2178301953611936 a005 (1/sin(59/149*Pi))^99 2178301955396118 r009 Im(z^3+c),c=-13/34+5/38*I,n=22 2178301964084434 m005 (1/2*5^(1/2)+5/6)/(9/4+3*5^(1/2)) 2178301986401319 m001 (PlouffeB-Sarnak)/(Zeta(1/2)+arctan(1/3)) 2178301991831397 a007 Real Root Of -503*x^4-539*x^3+867*x^2-875*x-266 2178301993000077 a001 322/317811*377^(4/31) 2178301996871954 a001 7465176/161*322^(2/3) 2178302009914953 m002 -3+Pi+6*Pi*Sinh[Pi] 2178302023767339 a001 267914296/521*199^(3/11) 2178302034496970 a007 Real Root Of -499*x^4-976*x^3+520*x^2+176*x-937 2178302038624704 k001 Champernowne real with 842*n+1336 2178302042527264 m006 (2*exp(2*Pi)+5/6)/(1/4/Pi-5) 2178302045606949 a001 7/196418*433494437^(11/14) 2178302045618242 a001 7/39088169*365435296162^(11/14) 2178302056816798 m001 1/exp(GAMMA(1/4))/(3^(1/3))^2/sin(Pi/5) 2178302065532859 m005 (1/2*2^(1/2)-1/11)/(5/7*2^(1/2)-8/11) 2178302065769196 l006 ln(901/7957) 2178302073920982 a001 11/10946*121393^(17/37) 2178302076786963 m001 (CareFree-Psi(1,1/3))/(FeigenbaumKappa+Otter) 2178302094262204 m001 1/Riemann1stZero^2*Kolakoski/exp(BesselK(1,1)) 2178302103812250 a008 Real Root of x^4-x^3-73*x^2+126*x+588 2178302109029755 a001 233/15127*2^(1/2) 2178302116091182 m008 (1/3*Pi^4+3)/(1/5*Pi+1) 2178302122578906 m001 (Landau-ln(2)*Gompertz)/Gompertz 2178302126611825 a007 Real Root Of 219*x^4+90*x^3-312*x^2+797*x-784 2178302132071010 a007 Real Root Of -43*x^4-892*x^3+953*x^2-453*x-356 2178302132966540 a007 Real Root Of 197*x^4+174*x^3-371*x^2+581*x+389 2178302133545956 p001 sum(1/(313*n+46)/(64^n),n=0..infinity) 2178302138644707 k001 Champernowne real with 843*n+1335 2178302143030646 a007 Real Root Of -311*x^4-395*x^3+627*x^2-400*x-927 2178302144255207 m001 ln(Robbin)*GolombDickman^2/exp(1)^2 2178302144431869 a001 31622993/2889*521^(11/13) 2178302145922746 a001 507544400/233 2178302152753108 m005 (1/2*Zeta(3)-2/3)/(4/5*Pi+1/2) 2178302154086147 a007 Real Root Of -244*x^4-205*x^3+310*x^2-773*x+220 2178302159595302 r009 Re(z^3+c),c=-37/106+1/2*I,n=57 2178302161815273 a001 17/9*1364^(42/43) 2178302161994606 a007 Real Root Of -115*x^4+192*x^3+369*x^2-846*x+980 2178302175474110 a007 Real Root Of -905*x^4+315*x^3+721*x^2+705*x-189 2178302175971402 a007 Real Root Of 422*x^4+913*x^3+544*x^2+958*x-559 2178302183031157 a007 Real Root Of -133*x^4+195*x^3+771*x^2-570*x+110 2178302186119351 m001 1/ln(FeigenbaumKappa)/MertensB1/gamma 2178302196221557 p001 sum((-1)^n/(590*n+451)/(24^n),n=0..infinity) 2178302200159783 a001 165580141/15127*521^(11/13) 2178302208290376 a001 433494437/39603*521^(11/13) 2178302209476614 a001 567451585/51841*521^(11/13) 2178302209649684 a001 2971215073/271443*521^(11/13) 2178302209674934 a001 7778742049/710647*521^(11/13) 2178302209678618 a001 10182505537/930249*521^(11/13) 2178302209679156 a001 53316291173/4870847*521^(11/13) 2178302209679234 a001 139583862445/12752043*521^(11/13) 2178302209679246 a001 182717648081/16692641*521^(11/13) 2178302209679247 a001 956722026041/87403803*521^(11/13) 2178302209679247 a001 2504730781961/228826127*521^(11/13) 2178302209679247 a001 3278735159921/299537289*521^(11/13) 2178302209679247 a001 10610209857723/969323029*521^(11/13) 2178302209679247 a001 4052739537881/370248451*521^(11/13) 2178302209679248 a001 387002188980/35355581*521^(11/13) 2178302209679248 a001 591286729879/54018521*521^(11/13) 2178302209679253 a001 7787980473/711491*521^(11/13) 2178302209679283 a001 21566892818/1970299*521^(11/13) 2178302209679488 a001 32951280099/3010349*521^(11/13) 2178302209680895 a001 12586269025/1149851*521^(11/13) 2178302209690540 a001 1201881744/109801*521^(11/13) 2178302209756647 a001 1836311903/167761*521^(11/13) 2178302210209749 a001 701408733/64079*521^(11/13) 2178302211171272 m001 (ln(3)-Cahen)/(Grothendieck+HardyLittlewoodC4) 2178302213315359 a001 10946*521^(11/13) 2178302214865180 m001 1/GAMMA(1/12)*ln(GolombDickman)^2*GAMMA(5/6) 2178302219876046 a003 cos(Pi*3/32)*cos(Pi*34/69) 2178302230948039 a001 34111385/281*521^(6/13) 2178302234601530 a001 102334155/9349*521^(11/13) 2178302238664710 k001 Champernowne real with 844*n+1334 2178302242343741 m001 (exp(1)-ln(2+3^(1/2)))/(-KhinchinLevy+Landau) 2178302262080818 m005 (1/2*Pi+5)/(3/7*Catalan-1/11) 2178302267915354 a007 Real Root Of -303*x^4+876*x^3-23*x^2+747*x-170 2178302271699020 r005 Re(z^2+c),c=-1/5+20/47*I,n=9 2178302284745807 s002 sum(A176177[n]/(n^2*exp(n)+1),n=1..infinity) 2178302291796067 a001 2178309-3*5^(1/2) 2178302293235665 m001 arctan(1/2)*exp(1/exp(1))/HardyLittlewoodC4 2178302293370268 m006 (2/3*Pi-5/6)/(4*ln(Pi)-4) 2178302300990694 a007 Real Root Of -279*x^4-546*x^3+48*x^2-440*x-548 2178302318935057 r005 Re(z^2+c),c=-25/38+20/59*I,n=63 2178302319839747 g005 GAMMA(7/8)*GAMMA(5/8)*GAMMA(3/5)/GAMMA(9/10) 2178302321207184 l006 ln(492/4345) 2178302328744951 b008 -1/2*E^(1/13)+E 2178302334001960 r005 Re(z^2+c),c=-51/62+5/63*I,n=12 2178302338049524 r005 Im(z^2+c),c=-21/44+17/45*I,n=32 2178302338684713 k001 Champernowne real with 845*n+1333 2178302351185435 r005 Re(z^2+c),c=-2/9+14/47*I,n=18 2178302359947026 a007 Real Root Of 88*x^4-214*x^3-358*x^2+962*x-399 2178302362824297 m001 gamma(1)-ln(Pi)*Tribonacci 2178302379768031 a001 39088169/2207*521^(10/13) 2178302380499121 a001 39088169/3571*521^(11/13) 2178302390254875 a001 433494437/322*123^(1/10) 2178302390321114 m001 GAMMA(11/12)+KhinchinHarmonic^exp(-1/2*Pi) 2178302406747769 h001 (3/8*exp(1)+3/7)/(7/9*exp(2)+9/10) 2178302410588269 a007 Real Root Of 186*x^4+659*x^3+393*x^2-605*x-559 2178302412566798 m001 1/Ei(1)*exp(Riemann1stZero)*sqrt(3)^2 2178302425832205 m001 (-Kac+Niven)/(Psi(2,1/3)+2*Pi/GAMMA(5/6)) 2178302427874309 r005 Im(z^2+c),c=-5/6+31/189*I,n=54 2178302428076175 p004 log(20507/16493) 2178302432461601 a001 2/987*6557470319842^(8/17) 2178302433001028 m001 Tribonacci/(Porter^(2*Pi/GAMMA(5/6))) 2178302434113869 m001 (5^(1/2)+FellerTornier)/(-Salem+ZetaQ(4)) 2178302438704716 k001 Champernowne real with 846*n+1332 2178302439891574 m001 (1+Catalan)/(-ln(3)+KhinchinLevy) 2178302440346925 r005 Re(z^2+c),c=1/60+47/56*I,n=11 2178302447337623 r005 Im(z^2+c),c=-7/34+17/55*I,n=19 2178302448240395 r005 Re(z^2+c),c=-17/122+27/53*I,n=52 2178302448868825 m001 (exp(-1/2*Pi)-CareFree)/BesselI(0,2) 2178302450038430 m001 polylog(4,1/2)^Magata/(AlladiGrinstead^Magata) 2178302455431574 a007 Real Root Of 374*x^4+268*x^3-673*x^2+932*x-427 2178302466260278 r009 Re(z^3+c),c=-25/94+41/58*I,n=13 2178302469681682 m005 (1/2*gamma+1/11)/(5/9*5^(1/2)+1/2) 2178302471387151 r005 Im(z^2+c),c=-5/6+40/249*I,n=37 2178302489570419 m002 -Pi+Pi^4+4*Pi^3*Tanh[Pi] 2178302491102977 l006 ln(7737/9620) 2178302492831795 a001 1/141*514229^(11/14) 2178302497960884 r009 Im(z^3+c),c=-29/60+4/49*I,n=60 2178302498687178 g005 4/3*GAMMA(3/11)*Pi^2/GAMMA(2/3)^2/GAMMA(7/8) 2178302505815566 a007 Real Root Of 469*x^4+565*x^3-839*x^2+312*x-59 2178302506165871 a005 (1/cos(2/145*Pi))^829 2178302508676717 m001 (-Kac+Niven)/(ln(2)/ln(10)+DuboisRaymond) 2178302510592529 a007 Real Root Of 172*x^4-888*x^3+980*x^2+234*x+146 2178302515423268 a001 11/2584*34^(25/54) 2178302518015285 r009 Re(z^3+c),c=-33/118+16/25*I,n=6 2178302519243891 r005 Im(z^2+c),c=-37/78+18/47*I,n=52 2178302520643679 r005 Im(z^2+c),c=-15/82+19/63*I,n=12 2178302523835314 s002 sum(A191929[n]/((2^n-1)/n),n=1..infinity) 2178302527864045 a001 2178307-2*5^(1/2) 2178302532928516 m001 FeigenbaumC+Gompertz*LandauRamanujan2nd 2178302536205536 r009 Re(z^3+c),c=-4/13+19/50*I,n=5 2178302536905002 l006 ln(1067/9423) 2178302538724719 k001 Champernowne real with 847*n+1331 2178302542090362 a001 47/5*55^(40/51) 2178302545866954 r009 Im(z^3+c),c=-13/74+9/10*I,n=4 2178302558274999 m001 (GAMMA(7/12)-Lehmer)/(Trott-ZetaQ(2)) 2178302558759567 m001 FeigenbaumC+HardyLittlewoodC5^KhinchinLevy 2178302561698533 r002 32th iterates of z^2 + 2178302598848577 a007 Real Root Of 37*x^4-400*x^3+413*x^2+402*x+466 2178302612292763 r005 Re(z^2+c),c=23/98+1/7*I,n=15 2178302620891342 m005 (1/2*Zeta(3)-4/11)/(4/9*Zeta(3)+5/9) 2178302632545117 m001 (BesselJ(1,1)-Chi(1))/(Pi^(1/2)+ZetaQ(2)) 2178302638744722 k001 Champernowne real with 848*n+1330 2178302641444736 m005 (7/8+1/4*5^(1/2))/(2*Pi+3/10) 2178302645836682 l006 ln(6718/8353) 2178302647467181 a007 Real Root Of 352*x^4+789*x^3-316*x^2-596*x+431 2178302663747169 m009 (5*Psi(1,2/3)-1/4)/(3/5*Psi(1,3/4)-5/6) 2178302666944412 a007 Real Root Of 141*x^4+599*x^3+965*x^2+781*x+139 2178302670897430 m001 (Zeta(1,-1)+ArtinRank2)/(arctan(1/2)-Ei(1,1)) 2178302684528508 a001 1/76*(1/2*5^(1/2)+1/2)^14*199^(9/16) 2178302684722218 r009 Re(z^3+c),c=-37/106+1/2*I,n=62 2178302687330579 a007 Real Root Of -198*x^4-276*x^3+898*x^2+941*x-606 2178302687691906 m001 (3^(1/2)+BesselK(1,1))/(Artin+ArtinRank2) 2178302690598070 m001 CareFree*(exp(1)+Artin) 2178302693125119 k002 Champernowne real with 167/2*n^2-387/2*n+131 2178302701215944 a007 Real Root Of -207*x^4-156*x^3+345*x^2-315*x+725 2178302704385386 m001 1/log(1+sqrt(2))/Zeta(1,2)*exp(sin(Pi/5)) 2178302721467273 l006 ln(575/5078) 2178302721741640 m001 (Catalan-GAMMA(17/24))/(-Niven+Trott) 2178302722654981 p003 LerchPhi(1/25,4,154/59) 2178302726118168 m001 (Otter+Tetranacci)/(Chi(1)+OrthogonalArrays) 2178302738764725 k001 Champernowne real with 849*n+1329 2178302738915214 a003 cos(Pi*21/73)/cos(Pi*49/120) 2178302739473797 m001 (exp(1/Pi)-Niven)/(PolyaRandomWalk3D+Salem) 2178302739679000 m005 (1/3*2^(1/2)-1/3)/(1/4*Zeta(3)+1/3) 2178302740666656 m001 GAMMA(1/24)/exp(CopelandErdos)*sinh(1) 2178302758791284 m001 (exp(1/exp(1))-PlouffeB*Thue)/PlouffeB 2178302761732870 a001 34111385/1926*521^(10/13) 2178302762789818 r009 Re(z^3+c),c=-17/40+33/56*I,n=11 2178302763195448 a001 9227465/1364*521^(12/13) 2178302764801917 b008 -3+Pi^(2*(-2+E)) 2178302768541511 r005 Re(z^2+c),c=23/122+32/63*I,n=54 2178302781098075 m008 (3*Pi^6-1)/(2/5*Pi^3+5/6) 2178302783174452 a007 Real Root Of 514*x^4+770*x^3-773*x^2-465*x-959 2178302785437242 r002 19th iterates of z^2 + 2178302792683049 a007 Real Root Of -518*x^4-832*x^3+839*x^2+403*x-40 2178302792954418 a007 Real Root Of -394*x^4-41*x^3-847*x^2-3*x+40 2178302794326101 m001 (Ei(1)+FeigenbaumMu)/(MertensB3+Salem) 2178302814311995 m001 exp((2^(1/3)))^2*LandauRamanujan^2/gamma^2 2178302817460800 a001 267914296/15127*521^(10/13) 2178302825591396 a001 17711*521^(10/13) 2178302826777634 a001 1836311903/103682*521^(10/13) 2178302826950704 a001 1602508992/90481*521^(10/13) 2178302826975954 a001 12586269025/710647*521^(10/13) 2178302826979638 a001 10983760033/620166*521^(10/13) 2178302826980176 a001 86267571272/4870847*521^(10/13) 2178302826980254 a001 75283811239/4250681*521^(10/13) 2178302826980266 a001 591286729879/33385282*521^(10/13) 2178302826980267 a001 516002918640/29134601*521^(10/13) 2178302826980268 a001 4052739537881/228826127*521^(10/13) 2178302826980268 a001 3536736619241/199691526*521^(10/13) 2178302826980268 a001 6557470319842/370248451*521^(10/13) 2178302826980268 a001 2504730781961/141422324*521^(10/13) 2178302826980268 a001 956722026041/54018521*521^(10/13) 2178302826980273 a001 365435296162/20633239*521^(10/13) 2178302826980303 a001 139583862445/7881196*521^(10/13) 2178302826980508 a001 53316291173/3010349*521^(10/13) 2178302826981915 a001 20365011074/1149851*521^(10/13) 2178302826991560 a001 7778742049/439204*521^(10/13) 2178302827057667 a001 2971215073/167761*521^(10/13) 2178302827510769 a001 1134903170/64079*521^(10/13) 2178302830616381 a001 433494437/24476*521^(10/13) 2178302832441977 a007 Real Root Of 746*x^4+220*x^3+455*x^2-82*x-2 2178302838784728 k001 Champernowne real with 850*n+1328 2178302845124814 a007 Real Root Of 656*x^4+774*x^3-829*x^2+988*x-684 2178302845723140 a007 Real Root Of 291*x^4+486*x^3-484*x^2+84*x+951 2178302846134688 m001 (Riemann2ndZero+Sarnak)/(Artin+GolombDickman) 2178302846146707 h001 (3/7*exp(1)+1/6)/(3/4*exp(2)+4/7) 2178302846504325 a007 Real Root Of 82*x^4-431*x^3-774*x^2+883*x-705 2178302846660162 a007 Real Root Of 177*x^4-128*x^3-775*x^2+470*x-607 2178302848249065 a001 165580141/843*521^(5/13) 2178302851902557 a001 165580141/9349*521^(10/13) 2178302855904177 l006 ln(5699/7086) 2178302865077800 m004 -2+(25*Pi*Cosh[Sqrt[5]*Pi]*Csc[Sqrt[5]*Pi])/3 2178302869513549 a001 377/843*(1/2+1/2*5^(1/2))^32 2178302869513549 a001 377/843*23725150497407^(1/2) 2178302869513549 a001 377/843*505019158607^(4/7) 2178302869513549 a001 377/843*73681302247^(8/13) 2178302869513549 a001 377/843*10749957122^(2/3) 2178302869513549 a001 377/843*4106118243^(16/23) 2178302869513549 a001 377/843*1568397607^(8/11) 2178302869513549 a001 377/843*599074578^(16/21) 2178302869513549 a001 377/843*228826127^(4/5) 2178302869513550 a001 377/843*87403803^(16/19) 2178302869513551 a001 377/843*33385282^(8/9) 2178302869513562 a001 377/843*12752043^(16/17) 2178302877066144 p001 sum(1/(380*n+341)/n/(64^n),n=1..infinity) 2178302884166019 m001 (PlouffeB+Robbin)/(exp(1)+FeigenbaumAlpha) 2178302888517934 r005 Re(z^2+c),c=-15/94+7/15*I,n=23 2178302888795835 a007 Real Root Of 585*x^4+853*x^3-876*x^2+17*x-161 2178302890344378 r005 Re(z^2+c),c=-6/29+10/29*I,n=13 2178302890976756 a003 cos(Pi*4/85)-sin(Pi*30/107) 2178302892728183 a001 2/305*317811^(16/25) 2178302898346346 m001 GAMMA(1/24)-ln(3)*GAMMA(7/12) 2178302898346346 m001 Pi*csc(1/24*Pi)/GAMMA(23/24)-ln(3)*GAMMA(7/12) 2178302900107411 q001 2028/931 2178302902923827 a007 Real Root Of -74*x^4+272*x^3+517*x^2-675*x+554 2178302912822518 m005 (4*Pi-1/2)/(31/6+1/6*5^(1/2)) 2178302924977388 m001 (GAMMA(17/24)+Niven)/(exp(1/Pi)-gamma(3)) 2178302927156574 m001 (Lehmer+Rabbit)/(FeigenbaumDelta-Psi(2,1/3)) 2178302935954322 m001 Thue^TreeGrowth2nd/(Thue^(2*Pi/GAMMA(5/6))) 2178302938804731 k001 Champernowne real with 851*n+1327 2178302945843603 m001 ArtinRank2-exp(Pi)+TwinPrimes 2178302946165046 r005 Im(z^2+c),c=-17/32+9/22*I,n=59 2178302953080944 m005 (1/5*gamma+5)/(17/12+5/12*5^(1/2)) 2178302953238047 p004 log(22511/2549) 2178302955691039 m001 (Shi(1)-exp(1/exp(1)))/(Conway+Weierstrass) 2178302962342107 m009 (32*Catalan+4*Pi^2-5/6)/(1/4*Psi(1,3/4)-2/3) 2178302965314245 b008 1/4+(4/Pi)^E 2178302966070561 m001 (2*Pi/GAMMA(5/6)+MinimumGamma)/FellerTornier 2178302974932217 a007 Real Root Of -140*x^4+875*x^3-811*x^2-694*x-532 2178302985218740 a007 Real Root Of -546*x^4-894*x^3+346*x^2-331*x+690 2178302991390006 b008 3*(1+CosIntegral[Pi/7]) 2178302997069100 a001 63245986/2207*521^(9/13) 2178302997800190 a001 63245986/3571*521^(10/13) 2178302999122427 m001 exp(Magata)/KhintchineHarmonic*(2^(1/3)) 2178302999635328 a005 (1/sin(36/127*Pi))^250 2178303004199959 a007 Real Root Of 567*x^4+878*x^3-655*x^2+645*x+822 2178303010664811 m001 (GAMMA(13/24)+Sierpinski)/(Pi-Zeta(3)) 2178303018653383 a007 Real Root Of 571*x^4+817*x^3-819*x^2+563*x+701 2178303020749788 l006 ln(658/5811) 2178303022466448 r009 Re(z^3+c),c=-69/122+29/52*I,n=8 2178303025641078 a005 (1/sin(82/191*Pi))^1606 2178303035396379 r009 Re(z^3+c),c=-17/46+31/51*I,n=58 2178303036422589 m001 (Zeta(1,2)+FransenRobinson)/(ln(2)-Zeta(1,-1)) 2178303038787061 m002 -2+5/E^Pi-E^Pi+Pi 2178303038824734 k001 Champernowne real with 852*n+1326 2178303048737071 m001 (Psi(2,1/3)+Zeta(5))/(GAMMA(2/3)+GAMMA(5/6)) 2178303049213388 r005 Im(z^2+c),c=-17/82+13/42*I,n=27 2178303054266898 a007 Real Root Of -120*x^4-446*x^3-654*x^2-472*x+167 2178303061908361 r009 Re(z^3+c),c=-13/38+14/29*I,n=24 2178303074024969 m001 (FeigenbaumB-Totient)/(GAMMA(23/24)+Conway) 2178303092210639 m001 1/ln(DuboisRaymond)*Cahen^2/Magata^2 2178303093443004 r005 Im(z^2+c),c=-57/52+10/43*I,n=30 2178303094613427 m001 1/CareFree/ln(Backhouse)/log(2+sqrt(3))^2 2178303096424996 r005 Im(z^2+c),c=-15/29+12/31*I,n=46 2178303098351163 r005 Re(z^2+c),c=-5/36+24/47*I,n=45 2178303113897857 r005 Re(z^2+c),c=-15/82+19/46*I,n=20 2178303119779737 m001 Otter-Sarnak-ZetaQ(2) 2178303123535523 b008 2*(-3+Pi)+ExpIntegralEi[1] 2178303124698681 r005 Im(z^2+c),c=-17/82+13/42*I,n=26 2178303125374267 m001 FeigenbaumB*ln(Kolakoski)/Zeta(1,2)^2 2178303136134505 m006 (2/5*exp(Pi)-5)/(5/6*ln(Pi)+1) 2178303138844737 k001 Champernowne real with 853*n+1325 2178303139159857 a001 11/2178309*2584^(8/43) 2178303142489333 m005 (1/2*Zeta(3)+4/9)/(2/11*gamma+3/8) 2178303143980729 b008 5/14+11^(1/4) 2178303145302493 a007 Real Root Of -913*x^4-655*x^3+810*x^2+594*x-159 2178303147400334 m005 (1/2*gamma-11/12)/(2/11*2^(1/2)-6/11) 2178303154870117 m004 5*Pi+(5*Sin[Sqrt[5]*Pi])/Pi+5*Tanh[Sqrt[5]*Pi] 2178303157449775 l006 ln(4680/5819) 2178303159688620 m004 -3100*Sqrt[5]*Pi-4*ProductLog[Sqrt[5]*Pi] 2178303162849225 m001 2^(1/3)-BesselI(0,1)^ZetaP(3) 2178303168200103 r002 3th iterates of z^2 + 2178303186578411 b008 1/4+Cosh[Cosh[2]] 2178303187117458 a007 Real Root Of 209*x^4+429*x^3-82*x^2+277*x+721 2178303197041248 a007 Real Root Of 501*x^4+969*x^3-584*x^2-817*x-273 2178303200666726 a007 Real Root Of 335*x^4+349*x^3-610*x^2+571*x+203 2178303204731929 a008 Real Root of x^4-2*x^3+2*x^2+43*x-105 2178303205072467 a007 Real Root Of -49*x^4+38*x^3+292*x^2-255*x-445 2178303215470626 m001 ln(FeigenbaumB)*FeigenbaumAlpha^2*Ei(1) 2178303219482048 r005 Re(z^2+c),c=-15/38+9/14*I,n=58 2178303220954757 p004 log(33647/27061) 2178303238864740 k001 Champernowne real with 854*n+1324 2178303245219875 m001 (FeigenbaumC+Paris)/(2^(1/3)-Artin) 2178303252986496 l006 ln(741/6544) 2178303258668003 r005 Im(z^2+c),c=-29/46+3/55*I,n=26 2178303262218517 a007 Real Root Of 7*x^4-424*x^3-574*x^2+541*x-638 2178303263899505 m005 (1/3*5^(1/2)+2/9)/(5/11*gamma+2/11) 2178303264621023 r009 Re(z^3+c),c=-1/8+45/52*I,n=22 2178303269827011 m005 (1/2*5^(1/2)-9/10)/(5/11*Zeta(3)+5/11) 2178303273176276 a007 Real Root Of -559*x^4+404*x^3+999*x^2+918*x+158 2178303283945349 r005 Re(z^2+c),c=-9/40+17/59*I,n=22 2178303286542026 r009 Im(z^3+c),c=-65/122+31/63*I,n=48 2178303291514929 r002 64th iterates of z^2 + 2178303294349116 m004 -21-ProductLog[Sqrt[5]*Pi]/Log[Sqrt[5]*Pi] 2178303298934707 r009 Re(z^3+c),c=-14/31+12/23*I,n=37 2178303300199373 m001 cos(1)/(Paris^BesselK(1,1)) 2178303302867479 a001 17/9*24476^(30/43) 2178303306292174 m001 Bloch/(sin(1)+PisotVijayaraghavan) 2178303306752083 a007 Real Root Of -533*x^4-924*x^3+752*x^2+478*x-77 2178303308319894 m001 1/Kolakoski/ln(CopelandErdos)*Riemann3rdZero 2178303317325705 g006 Psi(1,1/11)+Psi(1,1/10)-Psi(1,9/10)-Psi(1,5/9) 2178303326094381 m001 (HardyLittlewoodC3-exp(1)*Salem)/Salem 2178303329002735 r005 Im(z^2+c),c=-11/56+4/5*I,n=9 2178303333470006 r005 Im(z^2+c),c=-1/10+9/29*I,n=3 2178303338884743 k001 Champernowne real with 855*n+1323 2178303349274276 m001 (5^(1/2))^GAMMA(3/4)*StolarskyHarborth 2178303358512662 a001 17/9*5778^(35/43) 2178303360022888 m005 (1/2*Pi+3/8)/(3*exp(1)+7/9) 2178303369050241 s002 sum(A115033[n]/((2^n+1)/n),n=1..infinity) 2178303369267837 m003 -Sec[1/2+Sqrt[5]/2]+Sinh[1/2+Sqrt[5]/2]/4 2178303370365769 m001 BesselJ(1,1)*Sierpinski/exp(sqrt(1+sqrt(3))) 2178303379034047 a001 165580141/5778*521^(9/13) 2178303380496618 a001 3732588/341*521^(11/13) 2178303381183706 m001 BesselK(0,1)*cos(1/12*Pi)-Sierpinski 2178303381914259 m001 (1-gamma(1)*Weierstrass)/Weierstrass 2178303398393014 r009 Re(z^3+c),c=-37/106+1/2*I,n=53 2178303414360299 m005 (1/3*exp(1)-1/6)/(gamma-11/12) 2178303416258849 p003 LerchPhi(1/6,5,314/231) 2178303424846127 r005 Im(z^2+c),c=-67/74+10/51*I,n=54 2178303425169298 m001 (ln(3)-BesselI(1,1))/(KomornikLoreti+Robbin) 2178303426595127 r009 Im(z^3+c),c=-11/74+45/53*I,n=40 2178303434761993 a001 433494437/15127*521^(9/13) 2178303436290760 a007 Real Root Of -342*x^4-34*x^3+727*x^2+969*x+177 2178303438437614 l006 ln(824/7277) 2178303438904746 k001 Champernowne real with 856*n+1322 2178303439904179 m004 -3101*Sqrt[5]*Pi+Tan[Sqrt[5]*Pi] 2178303442892591 a001 1134903170/39603*521^(9/13) 2178303443448630 a001 11/233*13^(31/52) 2178303444078829 a001 2971215073/103682*521^(9/13) 2178303444251899 a001 7778742049/271443*521^(9/13) 2178303444277150 a001 20365011074/710647*521^(9/13) 2178303444280834 a001 53316291173/1860498*521^(9/13) 2178303444281371 a001 139583862445/4870847*521^(9/13) 2178303444281449 a001 365435296162/12752043*521^(9/13) 2178303444281461 a001 956722026041/33385282*521^(9/13) 2178303444281463 a001 2504730781961/87403803*521^(9/13) 2178303444281463 a001 6557470319842/228826127*521^(9/13) 2178303444281463 a001 10610209857723/370248451*521^(9/13) 2178303444281463 a001 4052739537881/141422324*521^(9/13) 2178303444281464 a001 1548008755920/54018521*521^(9/13) 2178303444281468 a001 591286729879/20633239*521^(9/13) 2178303444281498 a001 225851433717/7881196*521^(9/13) 2178303444281703 a001 86267571272/3010349*521^(9/13) 2178303444283110 a001 32951280099/1149851*521^(9/13) 2178303444292755 a001 12586269025/439204*521^(9/13) 2178303444358862 a001 4807526976/167761*521^(9/13) 2178303444811965 a001 28657*521^(9/13) 2178303447917577 a001 701408733/24476*521^(9/13) 2178303457154123 r005 Im(z^2+c),c=-17/82+13/42*I,n=29 2178303465550266 a001 267914296/843*521^(4/13) 2178303469203759 a001 267914296/9349*521^(9/13) 2178303471364597 s001 sum(exp(-2*Pi/3)^n*A234044[n],n=1..infinity) 2178303482686788 m009 (3/4*Psi(1,1/3)+6)/(2/3*Psi(1,1/3)-1/2) 2178303493723186 m001 (FeigenbaumD+Niven)/(Catalan+ln(3)) 2178303515981739 m005 (1/2*exp(1)+1/11)/(6*Zeta(3)-5/9) 2178303519907674 q001 755/3466 2178303520033514 m001 Artin*HeathBrownMoroz^StronglyCareFree 2178303526384233 m001 (1+ln(gamma))/(ln(2^(1/2)+1)+KhinchinLevy) 2178303527454133 m001 BesselJZeros(0,1)-sin(Pi/12)^ln(3) 2178303532538612 r005 Im(z^2+c),c=-65/114+19/48*I,n=40 2178303538924749 k001 Champernowne real with 857*n+1321 2178303546609029 r005 Re(z^2+c),c=-13/60+31/40*I,n=55 2178303552399665 a001 2971215073/2207*199^(1/11) 2178303556405095 a003 sin(Pi*3/70)/cos(Pi*28/97) 2178303563656589 r009 Im(z^3+c),c=-59/126+4/61*I,n=7 2178303564143617 a007 Real Root Of -44*x^4+24*x^3+270*x^2+423*x+879 2178303584453452 r005 Im(z^2+c),c=-43/106+13/23*I,n=26 2178303589947268 l006 ln(907/8010) 2178303593272980 a007 Real Root Of -71*x^4-346*x^3-672*x^2-768*x-462 2178303596970422 h001 (-3*exp(-2)-2)/(-2*exp(2/3)+5) 2178303603745017 g004 Im(GAMMA(-101/60+I*2/5)) 2178303605184747 m001 1/exp(MertensB1)/FeigenbaumAlpha^2*sqrt(Pi) 2178303610296803 m001 (1-Gompertz)/(KhinchinHarmonic+OneNinth) 2178303614370343 a001 102334155/2207*521^(8/13) 2178303615101434 a001 102334155/3571*521^(9/13) 2178303626859306 l006 ln(3661/4552) 2178303636089397 a007 Real Root Of 272*x^4+474*x^3-51*x^2-308*x+64 2178303638944752 k001 Champernowne real with 858*n+1320 2178303652165183 r005 Im(z^2+c),c=5/29+9/16*I,n=7 2178303660100476 a001 726103/41*7^(5/47) 2178303666711457 s002 sum(A081531[n]/(n!^3),n=1..infinity) 2178303667576808 r009 Im(z^3+c),c=-29/54+9/32*I,n=8 2178303669865421 m001 cos(1/12*Pi)-ln(5)*Riemann1stZero 2178303670227616 m001 (-Mills+Paris)/(Psi(2,1/3)-arctan(1/3)) 2178303680047618 r009 Re(z^3+c),c=-37/106+1/2*I,n=59 2178303686619643 a005 (1/cos(9/232*Pi))^1651 2178303690995808 a007 Real Root Of -369*x^4-947*x^3-686*x^2-549*x+579 2178303696125719 k002 Champernowne real with 84*n^2-195*n+132 2178303702909845 m001 Backhouse^GAMMA(13/24)*Salem 2178303704873805 r005 Im(z^2+c),c=-51/118+21/59*I,n=15 2178303706669657 a007 Real Root Of 39*x^4-353*x^3-655*x^2+436*x-469 2178303708311687 m006 (3*Pi^2+1/5)/(3/5*exp(Pi)-1/5) 2178303716052255 l006 ln(990/8743) 2178303722171541 s001 sum(exp(-3*Pi/5)^n*A089473[n],n=1..infinity) 2178303728821600 m001 (1-Grothendieck)/(HardyLittlewoodC3+Otter) 2178303738964755 k001 Champernowne real with 859*n+1319 2178303739263844 m001 exp(LaplaceLimit)^2*Si(Pi)^2/Lehmer 2178303741746256 m001 1/exp(GAMMA(2/3))^2*Artin^2*GAMMA(7/12)^2 2178303747651884 a001 9227465/322*322^(3/4) 2178303754693534 a007 Real Root Of 278*x^4+366*x^3-719*x^2-799*x-805 2178303776002732 m004 5+5*Pi+(5*Sin[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi])/Pi 2178303787858612 a007 Real Root Of -185*x^4+939*x^3-818*x^2-661*x-219 2178303787883797 m004 4+5*Pi+(5*Sin[Sqrt[5]*Pi])/Pi+Tanh[Sqrt[5]*Pi] 2178303814435625 m001 (ln(Pi)-Zeta(1/2))/(Conway-OneNinth) 2178303815037888 m005 (1/2*gamma+1/4)/(5/9*Pi+8/11) 2178303819180429 m001 (MertensB1+Trott)/(2^(1/3)+gamma(2)) 2178303822647977 l006 ln(1073/9476) 2178303829847992 a001 199/8*102334155^(2/17) 2178303830698999 g007 Psi(2,1/6)+Psi(2,1/3)-Psi(2,10/11)-Psi(2,1/11) 2178303835487472 r002 4th iterates of z^2 + 2178303838984758 k001 Champernowne real with 860*n+1318 2178303840134596 m001 MadelungNaCl^MertensB3/cos(1/12*Pi) 2178303844195460 m005 (1/4*2^(1/2)+4)/(2*Catalan+1/6) 2178303845725490 r005 Re(z^2+c),c=-8/31+5/41*I,n=17 2178303845906029 p001 sum((-1)^n/(65*n+22)/n/(5^n),n=0..infinity) 2178303848908631 b008 7*(-32+ArcCsch[1]) 2178303850684148 r004 Im(z^2+c),c=-1/16+6/23*I,z(0)=I,n=13 2178303857472016 a007 Real Root Of 709*x^4+490*x^3-463*x^2-981*x+229 2178303866349945 b008 Sqrt[ArcSinh[115/2]] 2178303877248462 a007 Real Root Of 377*x^4+711*x^3+140*x^2+620*x-453 2178303877602969 m005 (1/2*Pi+5/7)/(5/6*Catalan+2/7) 2178303879866637 m001 GAMMA(5/6)/RenyiParking/ln(2) 2178303879866637 m001 GAMMA(5/6)/ln(2)/RenyiParking 2178303885380551 a001 233/11*521^(19/51) 2178303885382734 m007 (-3/4*gamma-9/4*ln(2)-3/8*Pi+4)/(-1/3*gamma+4) 2178303895637597 a007 Real Root Of -660*x^4-982*x^3+749*x^2-510*x+45 2178303897252494 r005 Re(z^2+c),c=13/62+22/53*I,n=62 2178303899371019 m002 -Pi^3-ProductLog[Pi]+(Pi^3*Tanh[Pi])/3 2178303900598298 h001 (5/7*exp(2)+5/12)/(7/9*exp(1)+1/2) 2178303903264662 a007 Real Root Of -472*x^4-921*x^3+218*x^2-203*x-369 2178303923843184 m001 Champernowne*Riemann1stZero-ReciprocalLucas 2178303927948913 r005 Im(z^2+c),c=5/66+8/39*I,n=14 2178303934364710 a001 7778742049/5778*199^(1/11) 2178303939004761 k001 Champernowne real with 861*n+1317 2178303946137217 m004 -5-5*Pi-(5*Sin[Sqrt[5]*Pi])/Pi 2178303947073176 a007 Real Root Of 256*x^4-443*x^3-466*x^2-532*x+142 2178303951611203 l006 ln(999/1021) 2178303952856091 m001 (Zeta(5)+GAMMA(7/12))/(KhinchinLevy-ZetaQ(3)) 2178303968759904 a001 4/317811*233^(52/55) 2178303972209257 r005 Im(z^2+c),c=-17/82+13/42*I,n=32 2178303975397544 l006 ln(6303/7837) 2178303985531691 r005 Re(z^2+c),c=21/62+7/37*I,n=25 2178303990092670 a001 20365011074/15127*199^(1/11) 2178303992207150 r009 Im(z^3+c),c=-21/118+11/52*I,n=5 2178303996335399 a001 133957148/2889*521^(8/13) 2178303997797973 a001 24157817/1364*521^(10/13) 2178303998037181 r002 62th iterates of z^2 + 2178303998223270 a001 53316291173/39603*199^(1/11) 2178303999409508 a001 139583862445/103682*199^(1/11) 2178303999582578 a001 365435296162/271443*199^(1/11) 2178303999607829 a001 956722026041/710647*199^(1/11) 2178303999611513 a001 2504730781961/1860498*199^(1/11) 2178303999612050 a001 6557470319842/4870847*199^(1/11) 2178303999612177 a001 10610209857723/7881196*199^(1/11) 2178303999612383 a001 1346269*199^(1/11) 2178303999613790 a001 1548008755920/1149851*199^(1/11) 2178303999623435 a001 591286729879/439204*199^(1/11) 2178303999689541 a001 225851433717/167761*199^(1/11) 2178304000000332 a001 1346259/2+1346269/2*5^(1/2) 2178304000142644 a001 86267571272/64079*199^(1/11) 2178304003248257 a001 32951280099/24476*199^(1/11) 2178304008772750 a007 Real Root Of -41*x^4+472*x^3+989*x^2-123*x+841 2178304010509214 h001 (8/11*exp(2)+7/9)/(9/11*exp(1)+3/5) 2178304013460943 m001 (Grothendieck-Trott)/(GAMMA(17/24)-Bloch) 2178304024534445 a001 12586269025/9349*199^(1/11) 2178304034486071 a005 (1/cos(10/207*Pi))^864 2178304034630554 r005 Im(z^2+c),c=-45/122+16/45*I,n=33 2178304036052430 r005 Im(z^2+c),c=-35/86+9/25*I,n=15 2178304039024764 k001 Champernowne real with 862*n+1316 2178304040271517 a007 Real Root Of -371*x^4-924*x^3-725*x^2-834*x+426 2178304052063360 a001 701408733/15127*521^(8/13) 2178304060193961 a001 1836311903/39603*521^(8/13) 2178304061380199 a001 46368*521^(8/13) 2178304061553269 a001 12586269025/271443*521^(8/13) 2178304061578520 a001 32951280099/710647*521^(8/13) 2178304061582204 a001 43133785636/930249*521^(8/13) 2178304061582741 a001 225851433717/4870847*521^(8/13) 2178304061582820 a001 591286729879/12752043*521^(8/13) 2178304061582831 a001 774004377960/16692641*521^(8/13) 2178304061582833 a001 4052739537881/87403803*521^(8/13) 2178304061582833 a001 225749145909/4868641*521^(8/13) 2178304061582833 a001 3278735159921/70711162*521^(8/13) 2178304061582834 a001 2504730781961/54018521*521^(8/13) 2178304061582838 a001 956722026041/20633239*521^(8/13) 2178304061582868 a001 182717648081/3940598*521^(8/13) 2178304061583073 a001 139583862445/3010349*521^(8/13) 2178304061584480 a001 53316291173/1149851*521^(8/13) 2178304061594125 a001 10182505537/219602*521^(8/13) 2178304061660232 a001 7778742049/167761*521^(8/13) 2178304061687056 a001 144/47*199^(29/36) 2178304062113335 a001 2971215073/64079*521^(8/13) 2178304064523043 m005 (1/2*gamma+3/4)/(4*2^(1/2)-8/9) 2178304065218948 a001 567451585/12238*521^(8/13) 2178304071397380 a007 Real Root Of -622*x^4-158*x^3+102*x^2+639*x-141 2178304074829079 m005 (3/5*gamma-5/6)/(1/6*2^(1/2)+2) 2178304082490057 a007 Real Root Of 445*x^4+782*x^3-144*x^2+169*x-885 2178304082851642 a001 433494437/843*521^(3/13) 2178304085907598 a007 Real Root Of -570*x^4-511*x^3+224*x^2+647*x-145 2178304086505136 a001 433494437/9349*521^(8/13) 2178304086561082 m001 exp(gamma)^2/GAMMA(3/4)*sin(1) 2178304087028493 r005 Re(z^2+c),c=8/25+15/49*I,n=17 2178304091297720 a007 Real Root Of 450*x^4+804*x^3-858*x^2-884*x+324 2178304093065970 a003 -1-cos(1/5*Pi)-2*cos(3/8*Pi)+cos(10/27*Pi) 2178304097004969 a003 sin(Pi*23/113)-sin(Pi*10/33) 2178304098499208 r005 Im(z^2+c),c=-27/50+17/41*I,n=31 2178304116271970 m004 5+5*Pi+(5*Coth[Sqrt[5]*Pi]*Sin[Sqrt[5]*Pi])/Pi 2178304125572143 m001 sinh(1)/MinimumGamma^2/ln(sqrt(1+sqrt(3)))^2 2178304125845152 r005 Im(z^2+c),c=-17/82+13/42*I,n=35 2178304126564247 r005 Im(z^2+c),c=-93/106+9/44*I,n=49 2178304130572959 r002 35th iterates of z^2 + 2178304139032295 r005 Im(z^2+c),c=-17/82+13/42*I,n=37 2178304139044767 k001 Champernowne real with 863*n+1315 2178304140741212 r005 Im(z^2+c),c=-17/82+13/42*I,n=34 2178304145560080 s002 sum(A265629[n]/(n^3*exp(n)+1),n=1..infinity) 2178304145898033 a001 4356615/2-3/2*5^(1/2) 2178304147141531 r005 Im(z^2+c),c=-17/82+13/42*I,n=40 2178304149903621 r005 Im(z^2+c),c=-17/82+13/42*I,n=43 2178304150243291 r005 Im(z^2+c),c=-17/82+13/42*I,n=45 2178304150365236 r005 Im(z^2+c),c=-17/82+13/42*I,n=48 2178304150413944 r005 Im(z^2+c),c=-17/82+13/42*I,n=51 2178304150414091 r005 Im(z^2+c),c=-17/82+13/42*I,n=42 2178304150414832 r005 Im(z^2+c),c=-17/82+13/42*I,n=46 2178304150421812 r005 Im(z^2+c),c=-17/82+13/42*I,n=53 2178304150423526 r005 Im(z^2+c),c=-17/82+13/42*I,n=56 2178304150424000 r005 Im(z^2+c),c=-17/82+13/42*I,n=54 2178304150424367 r005 Im(z^2+c),c=-17/82+13/42*I,n=59 2178304150424538 r005 Im(z^2+c),c=-17/82+13/42*I,n=61 2178304150424560 r005 Im(z^2+c),c=-17/82+13/42*I,n=64 2178304150424560 r005 Im(z^2+c),c=-17/82+13/42*I,n=62 2178304150424607 r005 Im(z^2+c),c=-17/82+13/42*I,n=63 2178304150424682 r005 Im(z^2+c),c=-17/82+13/42*I,n=58 2178304150424717 r005 Im(z^2+c),c=-17/82+13/42*I,n=60 2178304150424913 r005 Im(z^2+c),c=-17/82+13/42*I,n=57 2178304150426080 r005 Im(z^2+c),c=-17/82+13/42*I,n=55 2178304150427387 r005 Im(z^2+c),c=-17/82+13/42*I,n=50 2178304150432499 r005 Im(z^2+c),c=-17/82+13/42*I,n=52 2178304150447109 r005 Im(z^2+c),c=-17/82+13/42*I,n=49 2178304150499314 r005 Im(z^2+c),c=-17/82+13/42*I,n=47 2178304150867009 r005 Im(z^2+c),c=-17/82+13/42*I,n=44 2178304151117233 r005 Im(z^2+c),c=-17/82+13/42*I,n=38 2178304151188455 a007 Real Root Of -322*x^4-907*x^3-758*x^2-481*x+424 2178304151868174 r005 Im(z^2+c),c=-17/82+13/42*I,n=41 2178304152190776 a007 Real Root Of -421*x^4-924*x^3+70*x^2-130*x-687 2178304154022304 r005 Im(z^2+c),c=-17/82+13/42*I,n=39 2178304157335744 r005 Im(z^2+c),c=-8/17+28/59*I,n=10 2178304160419835 a005 (1/sin(102/239*Pi))^978 2178304165919426 a001 (1+2^(1/2))^(53/60) 2178304170432157 a001 4807526976/3571*199^(1/11) 2178304174671175 r005 Im(z^2+c),c=-17/82+13/42*I,n=36 2178304177170544 r005 Re(z^2+c),c=-9/40+17/59*I,n=25 2178304184033570 r002 11th iterates of z^2 + 2178304185265863 s002 sum(A278397[n]/(n*exp(pi*n)+1),n=1..infinity) 2178304186038107 m001 GAMMA(1/24)-exp(1/2)^Zeta(5) 2178304186894583 r005 Im(z^2+c),c=-103/114+6/31*I,n=50 2178304193897902 m005 (1/2*Zeta(3)-8/9)/(1/12*2^(1/2)-1/4) 2178304195644106 p004 log(14407/11587) 2178304195659625 m005 (1/2*2^(1/2)-1/6)/(5/6*gamma+2) 2178304212347894 r005 Re(z^2+c),c=-21/118+23/39*I,n=4 2178304212470973 h001 (-2*exp(-2)+3)/(-9*exp(2/3)+5) 2178304212729178 a005 (1/cos(1/76*Pi))^911 2178304222490606 m005 (1/2*Catalan-1/4)/(5/12*gamma+5/7) 2178304227748046 a005 (1/cos(20/223*Pi))^1393 2178304231671761 a001 165580141/2207*521^(7/13) 2178304232402852 a001 165580141/3571*521^(8/13) 2178304237918714 r005 Im(z^2+c),c=-83/122+2/25*I,n=18 2178304238134977 m001 (GAMMA(7/12)+ZetaP(2))/(Ei(1,1)-GAMMA(5/6)) 2178304238159252 r008 a(0)=0,K{-n^6,54+22*n-49*n^2+20*n^3} 2178304239064770 k001 Champernowne real with 864*n+1314 2178304239401496 q001 1747/802 2178304239613981 r005 Im(z^2+c),c=-17/82+13/42*I,n=33 2178304246473659 a007 Real Root Of 359*x^4+752*x^3+197*x^2+398*x-378 2178304246881950 m001 ln(GAMMA(2/3))^2*GAMMA(13/24)^2*log(1+sqrt(2)) 2178304251259623 m003 1/16+Sqrt[5]/2+Sin[1/2+Sqrt[5]/2]^2 2178304254322989 r005 Im(z^2+c),c=-19/30+46/121*I,n=7 2178304255695676 r005 Im(z^2+c),c=-17/82+13/42*I,n=30 2178304257178950 b008 E^(-1)+80*E 2178304259280348 r009 Re(z^3+c),c=-1/110+14/17*I,n=42 2178304270556380 s002 sum(A154705[n]/(n^3*pi^n+1),n=1..infinity) 2178304271354073 h001 (7/10*exp(2)+1/8)/(3/11*exp(2)+5/12) 2178304282825450 r005 Re(z^2+c),c=-19/98+17/45*I,n=8 2178304285471689 r005 Im(z^2+c),c=-13/114+31/42*I,n=3 2178304287467181 a003 sin(Pi*5/114)/cos(Pi*28/99) 2178304289456005 p004 log(29947/3391) 2178304296913063 p001 sum(1/(183*n+46)/(100^n),n=0..infinity) 2178304297769545 m001 1/FeigenbaumC*exp(Backhouse)/Zeta(5)^2 2178304302564458 m001 1/ln(GAMMA(17/24))*GAMMA(1/6)^2/LambertW(1) 2178304315688031 s001 sum(exp(-Pi/4)^(n-1)*A247210[n],n=1..infinity) 2178304316222636 r005 Im(z^2+c),c=-17/82+13/42*I,n=31 2178304321864056 r005 Im(z^2+c),c=-9/10+2/113*I,n=8 2178304327562976 r005 Re(z^2+c),c=-5/31+25/54*I,n=51 2178304331875781 m005 (1/3*3^(1/2)-2/11)/(67/80+7/16*5^(1/2)) 2178304333581181 a007 Real Root Of 100*x^4+36*x^3-340*x^2+124*x+4 2178304339084773 k001 Champernowne real with 865*n+1313 2178304341514971 r005 Im(z^2+c),c=-13/98+2/7*I,n=18 2178304346380511 r009 Re(z^3+c),c=-3/74+29/42*I,n=39 2178304352539726 m006 (2/Pi+1)/(4/5*Pi+5) 2178304353977218 m001 GAMMA(7/12)*(FellerTornier-MadelungNaCl) 2178304354894208 r009 Im(z^3+c),c=-47/106+21/37*I,n=56 2178304363869862 a007 Real Root Of -294*x^4-525*x^3+372*x^2+685*x+920 2178304366102874 a007 Real Root Of -920*x^4+965*x^3-319*x^2+674*x+174 2178304372025228 a005 (1/sin(93/197*Pi))^800 2178304378029199 a007 Real Root Of -447*x^4+639*x^3+14*x^2+418*x+98 2178304401577239 m001 HardHexagonsEntropy^2/Artin^2/ln(Ei(1)) 2178304401848960 m001 (Ei(1)-gamma(2))/(Lehmer-Porter) 2178304421787986 m001 sin(Pi/12)^2*Zeta(9)^2*exp(sinh(1)) 2178304427086655 a007 Real Root Of -x^4+166*x^3-288*x^2+254*x-880 2178304428306731 m001 (Psi(1,1/3)+arctan(1/2)*ZetaQ(3))/arctan(1/2) 2178304439104776 k001 Champernowne real with 866*n+1312 2178304458364402 l006 ln(2642/3285) 2178304458429564 m001 1/gamma^2/exp(Cahen)*sinh(1)^2 2178304458994309 m001 (GaussAGM+Sarnak)/(GAMMA(5/6)-Shi(1)) 2178304461532212 a007 Real Root Of 382*x^4+298*x^3-654*x^2+950*x-348 2178304462239229 m005 (1/2*Zeta(3)-10/11)/(3/5*3^(1/2)+3/8) 2178304462559011 m001 GAMMA(13/24)-exp(1)^Totient 2178304463542611 r005 Re(z^2+c),c=-9/86+17/30*I,n=21 2178304474162004 a007 Real Root Of 469*x^4+512*x^3-881*x^2+444*x-120 2178304475783038 r009 Im(z^3+c),c=-13/29+2/33*I,n=35 2178304482959851 m001 exp(Porter)*Conway^2/Tribonacci^2 2178304488692492 m001 Otter^MertensB2*Rabbit 2178304490384880 r005 Im(z^2+c),c=-29/34+19/128*I,n=7 2178304504783551 m002 -Pi+Pi^4/4+Log[Pi]/2 2178304507118991 a007 Real Root Of -472*x^4-421*x^3-309*x^2+338*x+85 2178304510796572 m001 FeigenbaumD-TreeGrowth2nd^FeigenbaumB 2178304512063049 r009 Re(z^3+c),c=-37/106+1/2*I,n=56 2178304527292680 a007 Real Root Of -402*x^4-672*x^3+984*x^2+947*x-501 2178304527864045 a001 2178309-2*5^(1/2) 2178304529489015 m001 exp(1/exp(1))^(GAMMA(7/24)/Backhouse) 2178304530119134 r009 Im(z^3+c),c=-65/122+31/63*I,n=42 2178304532891477 r005 Re(z^2+c),c=29/98+1/5*I,n=46 2178304534025636 m001 GAMMA(7/12)/(LandauRamanujan^ln(2+3^(1/2))) 2178304534025636 m001 GAMMA(7/12)/(LandauRamanujan^ln(2+sqrt(3))) 2178304536817687 m001 (polylog(4,1/2)+Artin*Kolakoski)/Artin 2178304539124779 k001 Champernowne real with 867*n+1311 2178304540928331 g006 Psi(1,7/9)+Psi(1,2/9)+Psi(1,4/7)-Psi(1,4/9) 2178304545706003 a007 Real Root Of -300*x^4-60*x^3+977*x^2-945*x-560 2178304555226504 r005 Im(z^2+c),c=-7/10+5/172*I,n=63 2178304562085926 a007 Real Root Of 614*x^4+980*x^3-332*x^2+609*x-793 2178304568267634 a003 cos(Pi*1/48)-cos(Pi*3/43) 2178304568599576 a007 Real Root Of 348*x^4+375*x^3-823*x^2-207*x-505 2178304576910525 m001 (exp(1)-gamma(1))/(-MasserGramain+Tetranacci) 2178304581324453 r005 Re(z^2+c),c=-17/90+25/41*I,n=38 2178304582817118 r005 Im(z^2+c),c=9/52+9/62*I,n=4 2178304583494327 a007 Real Root Of 546*x^4+991*x^3-192*x^2+859*x+732 2178304584397261 r005 Re(z^2+c),c=5/29+1/45*I,n=5 2178304591728880 m001 ln(GAMMA(1/24))*FeigenbaumAlpha/GAMMA(1/4) 2178304592449792 p002 log(15^(9/10)-10^(5/12)) 2178304599179936 m009 (4/5*Psi(1,2/3)-1/5)/(4*Psi(1,3/4)+1/6) 2178304609686170 p004 log(25013/20117) 2178304609971599 r005 Im(z^2+c),c=-103/114+6/25*I,n=37 2178304611771256 a001 4/6765*55^(9/10) 2178304613636925 a001 433494437/5778*521^(7/13) 2178304614986513 a007 Real Root Of 674*x^4+677*x^3+592*x^2-392*x-108 2178304615099499 a001 39088169/1364*521^(9/13) 2178304615164642 r005 Re(z^2+c),c=-9/34+1/64*I,n=7 2178304620457179 a007 Real Root Of -318*x^4-699*x^3+149*x^2+640*x+622 2178304639144782 k001 Champernowne real with 868*n+1310 2178304639636537 r005 Im(z^2+c),c=-15/56+19/58*I,n=23 2178304644413682 m001 (5^(1/2))^MertensB2/GAMMA(11/12) 2178304646887081 h001 (5/11*exp(2)+7/9)/(5/8*exp(1)+1/5) 2178304654019404 a001 3/13*2584^(2/7) 2178304669364903 a001 1134903170/15127*521^(7/13) 2178304671771259 m001 (Chi(1)*Zeta(3)-Pi*2^(1/2)/GAMMA(3/4))/Zeta(3) 2178304674818268 r005 Re(z^2+c),c=-35/78+17/40*I,n=5 2178304677316739 r002 9th iterates of z^2 + 2178304677495505 a001 2971215073/39603*521^(7/13) 2178304678681744 a001 7778742049/103682*521^(7/13) 2178304678722981 m001 (FransenRobinson-Gompertz)/(Zeta(3)-Conway) 2178304678854814 a001 20365011074/271443*521^(7/13) 2178304678880065 a001 53316291173/710647*521^(7/13) 2178304678883749 a001 139583862445/1860498*521^(7/13) 2178304678884286 a001 365435296162/4870847*521^(7/13) 2178304678884365 a001 956722026041/12752043*521^(7/13) 2178304678884376 a001 2504730781961/33385282*521^(7/13) 2178304678884378 a001 6557470319842/87403803*521^(7/13) 2178304678884378 a001 10610209857723/141422324*521^(7/13) 2178304678884379 a001 4052739537881/54018521*521^(7/13) 2178304678884383 a001 140728068720/1875749*521^(7/13) 2178304678884413 a001 591286729879/7881196*521^(7/13) 2178304678884618 a001 225851433717/3010349*521^(7/13) 2178304678886025 a001 86267571272/1149851*521^(7/13) 2178304678895670 a001 32951280099/439204*521^(7/13) 2178304678961777 a001 75025*521^(7/13) 2178304679386038 s002 sum(A227493[n]/((2*n+1)!),n=1..infinity) 2178304679414880 a001 4807526976/64079*521^(7/13) 2178304682520494 a001 1836311903/24476*521^(7/13) 2178304694980233 a003 cos(Pi*9/79)*cos(Pi*37/87) 2178304696021324 a007 Real Root Of 27*x^4+605*x^3+324*x^2-961*x-429 2178304697792154 m005 (1/2*5^(1/2)+1/11)/(1/7*exp(1)+1/6) 2178304699126319 k002 Champernowne real with 169/2*n^2-393/2*n+133 2178304700153193 a001 233802911/281*521^(2/13) 2178304702906637 a007 Real Root Of 861*x^4+507*x^3+422*x^2-561*x+95 2178304703806688 a001 701408733/9349*521^(7/13) 2178304705290277 b008 Pi*JacobiCD[1,3/7] 2178304713545740 m005 (1/2*2^(1/2)-1/12)/(1/9*gamma+2/9) 2178304716248950 m001 (Psi(2,1/3)+Zeta(5))/(sin(1/5*Pi)+Ei(1)) 2178304727818571 m001 exp(GAMMA(1/6))^2*(3^(1/3))/GAMMA(5/12)^2 2178304731570806 m001 exp(GAMMA(11/24))^2*TwinPrimes/Zeta(3)^2 2178304737405568 m004 5*Pi+5*Coth[Sqrt[5]*Pi]+(5*Sin[Sqrt[5]*Pi])/Pi 2178304737747440 b008 3*JacobiSC[1,12] 2178304738635097 m001 (Psi(2,1/3)+sin(1/5*Pi))/(Stephens+Tetranacci) 2178304739164785 k001 Champernowne real with 869*n+1309 2178304740906800 p001 sum(1/(137*n+46)/(125^n),n=0..infinity) 2178304747530631 m001 1/Riemann2ndZero^2*Lehmer/ln(cos(1)) 2178304753022082 m001 (Si(Pi)+Ei(1))/(-MadelungNaCl+Trott2nd) 2178304758720511 m001 1/(2^(1/3))^2/ln(Riemann2ndZero)/GAMMA(7/24)^2 2178304763934426 a001 664382953/305 2178304764323216 h001 (7/10*exp(1)+2/3)/(1/4*exp(1)+1/2) 2178304766222175 m001 FellerTornier/(Catalan+BesselI(1,1)) 2178304770456762 a001 2207/144*3^(8/25) 2178304772296080 m005 (1/2*exp(1)-1)/(3^(1/2)-1/12) 2178304782712585 a007 Real Root Of 225*x^4+400*x^3-199*x^2-139*x-290 2178304784257258 r005 Im(z^2+c),c=1/24+13/59*I,n=11 2178304787000439 q001 496/2277 2178304787000439 r005 Im(z^2+c),c=-17/18-62/253*I,n=2 2178304790595030 h001 (1/2*exp(1)+2/7)/(11/12*exp(2)+7/9) 2178304800817792 r005 Re(z^2+c),c=-31/122+7/51*I,n=6 2178304800968013 a001 47*(1/2*5^(1/2)+1/2)^29*3571^(11/15) 2178304814259991 r005 Re(z^2+c),c=-7/23+27/46*I,n=25 2178304814391991 r005 Re(z^2+c),c=-17/14+88/227*I,n=7 2178304829798659 a003 sin(Pi*7/45)-sin(Pi*17/104) 2178304837177375 a007 Real Root Of -216*x^4-424*x^3+303*x^2+723*x-167 2178304839184788 k001 Champernowne real with 870*n+1308 2178304841992546 a001 726103/281*1364^(14/15) 2178304846759385 r002 32th iterates of z^2 + 2178304848973355 a001 267914296/2207*521^(6/13) 2178304849704446 a001 267914296/3571*521^(7/13) 2178304851017529 m001 Bloch/CopelandErdos/ln(GAMMA(2/3))^2 2178304858625812 m001 1/exp(GAMMA(5/24))/(3^(1/3))^2/exp(1) 2178304861307099 m005 (1/2*gamma+2)/(7/8*gamma-2/5) 2178304881766049 b008 1/3+Zeta[1/24,3] 2178304884992689 r005 Im(z^2+c),c=-6/17+13/37*I,n=35 2178304892025567 a001 1568397607*144^(9/17) 2178304898220452 r005 Im(z^2+c),c=-25/66+19/53*I,n=29 2178304899096987 l006 ln(6907/8588) 2178304904636731 a001 47*(1/2*5^(1/2)+1/2)^25*9349^(13/15) 2178304904664015 r005 Im(z^2+c),c=-49/110+19/50*I,n=16 2178304907622775 m001 1-exp(1/Pi)+Lehmer 2178304919174721 s002 sum(A175904[n]/((pi^n+1)/n),n=1..infinity) 2178304920047239 a001 3524578/843*1364^(13/15) 2178304921610422 a007 Real Root Of -263*x^4-292*x^3+146*x^2-794*x+481 2178304925740933 a001 47*(1/2*5^(1/2)+1/2)^20*64079^(14/15) 2178304927111398 h005 exp(sin(Pi*5/58)+sin(Pi*7/41)) 2178304936974426 r005 Im(z^2+c),c=-39/118+1/39*I,n=3 2178304939204791 k001 Champernowne real with 871*n+1307 2178304951674146 m001 (-FeigenbaumD+Porter)/(CareFree-Psi(2,1/3)) 2178304961244079 m001 exp(Sierpinski)/Salem^2/BesselJ(1,1) 2178304962839260 a001 726103*199^(11/53) 2178304966125198 r005 Im(z^2+c),c=-53/94+13/29*I,n=19 2178304972206755 m001 (Mills+Niven)/(3^(1/3)-Backhouse) 2178304973305570 m005 (1/2*Catalan-9/10)/(-27/10+3/10*5^(1/2)) 2178304980304849 m005 (1/2*Catalan-4/9)/(7/9*Catalan-1/11) 2178304998101760 a001 5702887/843*1364^(4/5) 2178305010936882 m001 Salem+Magata^ZetaQ(4) 2178305032802223 r002 27th iterates of z^2 + 2178305034017782 s001 sum(exp(-2*Pi/5)^n*A206700[n],n=1..infinity) 2178305034017782 s002 sum(A206700[n]/(exp(2/5*pi*n)),n=1..infinity) 2178305039224794 k001 Champernowne real with 872*n+1306 2178305041935566 r005 Re(z^2+c),c=7/32+1/8*I,n=11 2178305050835496 r005 Im(z^2+c),c=-25/114+35/54*I,n=3 2178305053942650 r005 Im(z^2+c),c=47/114+13/59*I,n=7 2178305055931873 r009 Re(z^3+c),c=-7/15+17/33*I,n=59 2178305066714308 m005 (1/2*5^(1/2)-2/7)/(5/9*Zeta(3)-2/7) 2178305071576657 m003 9/4+Sqrt[5]/2-6*E^(-1/2-Sqrt[5]/2) 2178305076156350 a001 9227465/843*1364^(11/15) 2178305078728432 m001 GaussKuzminWirsing^2/exp(Backhouse)/Pi^2 2178305084563862 a001 341/646*89^(6/19) 2178305094090053 l006 ln(83/733) 2178305094090053 p004 log(733/83) 2178305098722202 r009 Im(z^3+c),c=-37/78+7/48*I,n=6 2178305100333503 a001 47/2584*17711^(24/25) 2178305101005249 m001 (FeigenbaumD+Sierpinski)/(cos(1/5*Pi)+ln(5)) 2178305103440602 m001 (2^(1/2)-ln(Pi))/(-Stephens+ZetaP(2)) 2178305107236756 s002 sum(A043380[n]/(n^2*exp(n)+1),n=1..infinity) 2178305107938761 m001 ErdosBorwein*(GAMMA(2/3)+ZetaQ(4)) 2178305112831121 k008 concat of cont frac of 2178305121003240 h001 (1/4*exp(2)+9/10)/(4/11*exp(1)+3/11) 2178305121658139 s002 sum(A041620[n]/(n^2*2^n+1),n=1..infinity) 2178305129712610 a007 Real Root Of -270*x^4-129*x^3+874*x^2-452*x-386 2178305130698333 m006 (4/5*exp(2*Pi)+1/6)/(1/4*Pi^2-1/2) 2178305131425118 r009 Re(z^3+c),c=-29/54+19/53*I,n=38 2178305132446058 a007 Real Root Of 544*x^4+875*x^3-133*x^2+909*x-593 2178305135879833 r005 Im(z^2+c),c=-17/14+35/242*I,n=32 2178305139244797 k001 Champernowne real with 873*n+1305 2178305139483139 r002 22th iterates of z^2 + 2178305141812201 r005 Im(z^2+c),c=-1/122+37/60*I,n=6 2178305143007539 a007 Real Root Of 267*x^4-47*x^3-810*x^2-857*x+225 2178305146682271 r009 Im(z^3+c),c=-33/94+5/33*I,n=16 2178305154210918 a001 4976784/281*1364^(2/3) 2178305154523565 r005 Im(z^2+c),c=-11/102+35/54*I,n=21 2178305170430477 a001 1836311903/1364*199^(1/11) 2178305170806645 r005 Re(z^2+c),c=33/94+18/61*I,n=32 2178305172113504 l006 ln(4265/5303) 2178305175662533 h001 (7/9*exp(2)+3/5)/(3/8*exp(2)+1/7) 2178305180022664 m001 Niven*ln(Champernowne)^2*cos(1)^2 2178305188924928 m001 FeigenbaumC+(ln(2)/ln(10))^QuadraticClass 2178305197388909 r005 Re(z^2+c),c=-5/42+27/47*I,n=34 2178305200867324 r009 Re(z^3+c),c=-3/8+5/9*I,n=38 2178305201313154 r005 Im(z^2+c),c=-27/50+11/37*I,n=10 2178305203784728 r005 Re(z^2+c),c=11/29+20/59*I,n=10 2178305204154235 r009 Re(z^3+c),c=-29/54+11/54*I,n=63 2178305209365142 m006 (3/4*exp(Pi)-2)/(3/Pi-1/4) 2178305217236744 r005 Im(z^2+c),c=-11/31+19/54*I,n=38 2178305223455729 r005 Re(z^2+c),c=-3/4+49/61*I,n=3 2178305225176288 m005 (-3/4+1/4*5^(1/2))/(1/3*Catalan+4/7) 2178305227296768 r009 Im(z^3+c),c=-13/34+5/38*I,n=15 2178305230938627 a001 233802911/1926*521^(6/13) 2178305232265498 a001 24157817/843*1364^(3/5) 2178305232401201 a001 31622993/682*521^(8/13) 2178305233011422 r005 Im(z^2+c),c=-35/34+26/123*I,n=3 2178305239264800 k001 Champernowne real with 874*n+1304 2178305240983957 r005 Im(z^2+c),c=5/22+3/26*I,n=12 2178305246627024 b008 Sqrt[2]*Sinh[Pi]^3 2178305254581012 m001 (FeigenbaumD+Kac)/(gamma(2)+GAMMA(7/12)) 2178305262017305 a007 Real Root Of -598*x^4-986*x^3+431*x^2-508*x+121 2178305262984331 m001 ln(2+sqrt(3))^(GAMMA(1/3)*GAMMA(11/12)) 2178305276941710 r009 Re(z^3+c),c=-25/114+5/37*I,n=2 2178305282944971 m001 (-GAMMA(2/3)+5)/(GAMMA(19/24)+1/2) 2178305285611663 a007 Real Root Of -155*x^4-209*x^3+525*x^2+575*x+91 2178305286666620 a001 1836311903/15127*521^(6/13) 2178305293543200 m001 (Figure8HypebolicComplement+Salem)/(1+Bloch) 2178305294797225 a001 1602508992/13201*521^(6/13) 2178305295983464 a001 12586269025/103682*521^(6/13) 2178305296156534 a001 121393*521^(6/13) 2178305296181785 a001 86267571272/710647*521^(6/13) 2178305296185469 a001 75283811239/620166*521^(6/13) 2178305296186006 a001 591286729879/4870847*521^(6/13) 2178305296186085 a001 516002918640/4250681*521^(6/13) 2178305296186096 a001 4052739537881/33385282*521^(6/13) 2178305296186098 a001 3536736619241/29134601*521^(6/13) 2178305296186099 a001 6557470319842/54018521*521^(6/13) 2178305296186103 a001 2504730781961/20633239*521^(6/13) 2178305296186133 a001 956722026041/7881196*521^(6/13) 2178305296186338 a001 365435296162/3010349*521^(6/13) 2178305296187745 a001 139583862445/1149851*521^(6/13) 2178305296197390 a001 53316291173/439204*521^(6/13) 2178305296263497 a001 20365011074/167761*521^(6/13) 2178305296716600 a001 7778742049/64079*521^(6/13) 2178305299822215 a001 2971215073/24476*521^(6/13) 2178305304375541 a007 Real Root Of 446*x^4+763*x^3+21*x^2+785*x-545 2178305308454585 m005 (1/3*3^(1/2)-1/3)/(2/9*Catalan+11/12) 2178305310320077 a001 39088169/843*1364^(8/15) 2178305312322141 a001 2/17*75025^(20/43) 2178305317454919 a001 1134903170/843*521^(1/13) 2178305317472074 r008 a(0)=2,K{-n^6,-72-29*n^3+72*n^2+25*n} 2178305321108415 a001 1134903170/9349*521^(6/13) 2178305323763998 h001 (5/11*exp(2)+5/11)/(1/5*exp(2)+3/11) 2178305328915515 m001 GolombDickman^2*GaussKuzminWirsing*ln(Zeta(3)) 2178305335004631 m001 (Zeta(3)-BesselI(1,2))/(Grothendieck+ZetaQ(4)) 2178305339284803 k001 Champernowne real with 875*n+1303 2178305340137720 m005 (1/3*Zeta(3)+1/2)/(5/11*Catalan-3/8) 2178305346252333 m001 1/GAMMA(19/24)^2*exp(Niven)/GAMMA(2/3)^2 2178305348572418 m001 (ln(2)+gamma(3))/(CopelandErdos+Otter) 2178305355631615 a003 cos(Pi*29/119)-sin(Pi*26/67) 2178305361203064 r005 Re(z^2+c),c=-55/54+3/47*I,n=14 2178305363836847 m006 (4/5*Pi-1/5)/(Pi^2+3/4) 2178305363836847 m008 (4/5*Pi-1/5)/(Pi^2+3/4) 2178305368121805 m005 (1/2*Catalan-3/11)/(2/9*Zeta(3)+7/12) 2178305370480668 a007 Real Root Of -267*x^4-252*x^3+728*x^2-199*x-481 2178305378468938 a007 Real Root Of -233*x^4-19*x^3+964*x^2-311*x-202 2178305387830295 a005 (1/sin(107/225*Pi))^1824 2178305388374661 a001 63245986/843*1364^(7/15) 2178305388975282 a003 sin(Pi*8/73)*sin(Pi*23/103) 2178305401553039 r005 Im(z^2+c),c=-35/29+7/47*I,n=6 2178305404331043 a007 Real Root Of 74*x^4-32*x^3-861*x^2-637*x+701 2178305405080022 h001 (-exp(1/3)-9)/(-7*exp(2)+4) 2178305410126945 h001 (-5*exp(1/2)-2)/(-2*exp(1/2)+8) 2178305411725958 m001 1/exp(Riemann1stZero)*Cahen^2/sinh(1)^2 2178305414022785 r005 Im(z^2+c),c=-9/10+31/166*I,n=19 2178305422211513 k007 concat of cont frac of 2178305429884502 r005 Im(z^2+c),c=-7/23+21/58*I,n=7 2178305432220098 r009 Im(z^3+c),c=-29/106+8/43*I,n=4 2178305433648984 r009 Im(z^3+c),c=-17/56+7/40*I,n=6 2178305439304806 k001 Champernowne real with 876*n+1302 2178305443926916 m001 OrthogonalArrays+ArtinRank2^Rabbit 2178305445884225 m001 (Porter+ZetaP(2))/(Ei(1,1)-HardyLittlewoodC4) 2178305453625131 a007 Real Root Of 556*x^4+294*x^3+541*x^2-859*x-211 2178305453942662 r005 Im(z^2+c),c=-17/82+13/42*I,n=28 2178305457809273 m005 (1/2*exp(1)+4/7)/(3/16+5/16*5^(1/2)) 2178305458726468 a007 Real Root Of 703*x^4-251*x^3-947*x^2-418*x+137 2178305460205419 b008 29*Erf[1/15] 2178305461378995 a005 (1/cos(18/169*Pi))^54 2178305466275123 a001 433494437/2207*521^(5/13) 2178305466429247 a001 34111385/281*1364^(2/5) 2178305467006214 a001 433494437/3571*521^(6/13) 2178305476281437 r009 Re(z^3+c),c=-17/48+28/55*I,n=24 2178305477891604 a007 Real Root Of 9*x^4-675*x^3-954*x^2+924*x-640 2178305484269953 a007 Real Root Of -796*x^4-551*x^3-885*x^2+982*x+252 2178305487539633 a001 377/2207*45537549124^(2/3) 2178305487539633 a001 377/2207*(1/2+1/2*5^(1/2))^34 2178305487539633 a001 377/2207*10749957122^(17/24) 2178305487539633 a001 377/2207*4106118243^(17/23) 2178305487539633 a001 377/2207*1568397607^(17/22) 2178305487539633 a001 377/2207*599074578^(17/21) 2178305487539633 a001 377/2207*228826127^(17/20) 2178305487539633 a001 377/2207*87403803^(17/19) 2178305487539635 a001 377/2207*33385282^(17/18) 2178305487543822 a001 329/281*7881196^(10/11) 2178305487543850 a001 329/281*20633239^(6/7) 2178305487543854 a001 329/281*141422324^(10/13) 2178305487543854 a001 329/281*2537720636^(2/3) 2178305487543854 a001 329/281*45537549124^(10/17) 2178305487543854 a001 329/281*312119004989^(6/11) 2178305487543854 a001 329/281*14662949395604^(10/21) 2178305487543854 a001 329/281*(1/2+1/2*5^(1/2))^30 2178305487543854 a001 329/281*192900153618^(5/9) 2178305487543854 a001 329/281*28143753123^(3/5) 2178305487543854 a001 329/281*10749957122^(5/8) 2178305487543854 a001 329/281*4106118243^(15/23) 2178305487543854 a001 329/281*1568397607^(15/22) 2178305487543854 a001 329/281*599074578^(5/7) 2178305487543854 a001 329/281*228826127^(3/4) 2178305487543854 a001 329/281*87403803^(15/19) 2178305487543856 a001 329/281*33385282^(5/6) 2178305487543866 a001 329/281*12752043^(15/17) 2178305487543940 a001 329/281*4870847^(15/16) 2178305492379305 l006 ln(5888/7321) 2178305498433196 a001 5702887/322*322^(5/6) 2178305501272222 a001 1/47*(1/2*5^(1/2)+1/2)^27*11^(6/17) 2178305502058126 a007 Real Root Of 231*x^4+585*x^3+738*x^2+820*x-870 2178305506903170 r005 Im(z^2+c),c=-12/13+1/55*I,n=12 2178305509307814 m001 (-5^(1/2)+1/2)/(arctan(1/2)+1/3) 2178305516208867 r009 Re(z^3+c),c=-49/118+10/29*I,n=3 2178305523130797 a007 Real Root Of 81*x^4-150*x^3-180*x^2+791*x-797 2178305530694547 m002 -3*ProductLog[Pi]+ProductLog[Pi]/E^Pi+Tanh[Pi] 2178305539324809 k001 Champernowne real with 877*n+1301 2178305541791385 r005 Im(z^2+c),c=1/74+13/56*I,n=12 2178305544483835 a001 165580141/843*1364^(1/3) 2178305561430509 m001 1/(3^(1/3))*MinimumGamma*exp(BesselJ(0,1)) 2178305562564605 m001 Bloch*Conway/ln(sin(Pi/5))^2 2178305568529683 m001 (Ei(1)-sin(1))/(-GolombDickman+Stephens) 2178305570601999 a007 Real Root Of 481*x^4+597*x^3-959*x^2-271*x-699 2178305578443212 m002 2*ProductLog[Pi]+(Csch[Pi]*ProductLog[Pi])/3 2178305579273311 m001 exp(GAMMA(1/6))^2*BesselJ(1,1)/sinh(1)^2 2178305584499408 m001 cos(1)/(ln(2)+KomornikLoreti) 2178305589207365 p002 log(2^(1/4)-1/20*5^(3/4)) 2178305613688163 m001 (gamma(2)+HardyLittlewoodC5)/(2^(1/3)+gamma) 2178305614093281 m001 (sin(1)*Niven+BesselI(0,2))/Niven 2178305622538427 a001 267914296/843*1364^(4/15) 2178305627387065 r005 Re(z^2+c),c=-77/78+9/41*I,n=34 2178305639344812 k001 Champernowne real with 878*n+1300 2178305642998163 m001 Riemann2ndZero^2*exp(Rabbit)^2/Catalan^2 2178305643096521 a001 7/4181*4181^(43/50) 2178305647110625 a001 7/233*86267571272^(4/9) 2178305651214166 m001 LandauRamanujan^arctan(1/3)/BesselK(0,1) 2178305656690143 r005 Re(z^2+c),c=-69/98+13/45*I,n=44 2178305660888626 m001 1/CopelandErdos^2*ln(GAMMA(13/24))^3 2178305662753026 m001 (ln(2)+GAMMA(11/12))/(FeigenbaumC-Tribonacci) 2178305674237060 l006 ln(7511/9339) 2178305674559864 a007 Real Root Of -517*x^4-881*x^3+771*x^2+601*x+185 2178305675784815 a007 Real Root Of 446*x^4+950*x^3-112*x^2-269*x-277 2178305695239106 a001 5/5778*521^(38/43) 2178305695673467 m001 (Khinchin+Kolakoski)/(Shi(1)+cos(1)) 2178305696945779 a007 Real Root Of -335*x^4-566*x^3+705*x^2+577*x-396 2178305697046155 a007 Real Root Of 588*x^4+972*x^3-984*x^2-403*x+599 2178305700593021 a001 433494437/843*1364^(1/5) 2178305702126920 k002 Champernowne real with 85*n^2-198*n+134 2178305712888177 s002 sum(A129580[n]/((10^n-1)/n),n=1..infinity) 2178305717474960 a007 Real Root Of 446*x^4+333*x^3-928*x^2+771*x-517 2178305719245908 m001 Salem+(2^(1/3))^ZetaQ(3) 2178305729205892 a007 Real Root Of -574*x^4-979*x^3+375*x^2-512*x-90 2178305739364815 k001 Champernowne real with 879*n+1299 2178305740003429 r005 Im(z^2+c),c=-11/28+17/47*I,n=30 2178305761825767 r005 Re(z^2+c),c=-19/86+15/53*I,n=7 2178305763306363 r005 Im(z^2+c),c=-39/98+25/44*I,n=52 2178305763391380 r005 Re(z^2+c),c=-27/106+9/61*I,n=15 2178305763932022 a001 2178308-5^(1/2) 2178305763932373 a001 3478754305/1597 2178305766472251 m001 1/GAMMA(3/4)^2*Ei(1)*ln(sin(1)) 2178305773984282 a001 832040/843*3571^(16/17) 2178305777707310 m001 1/Robbin^2/ln(Paris)/GAMMA(5/12)^2 2178305778647618 a001 233802911/281*1364^(2/15) 2178305784033396 a001 1346269/843*3571^(15/17) 2178305784915679 r005 Re(z^2+c),c=-11/52+14/43*I,n=10 2178305785115212 r009 Re(z^3+c),c=-11/86+55/57*I,n=22 2178305791316284 r005 Re(z^2+c),c=-5/29+7/16*I,n=42 2178305792011458 m001 (Artin+ZetaP(3))/(Zeta(3)+ln(2+3^(1/2))) 2178305793441598 m001 (1+3^(1/2))^(1/2)*MasserGramainDelta-GaussAGM 2178305794081308 a001 726103/281*3571^(14/17) 2178305801919338 a001 204284540899/2*987^(7/9) 2178305804129679 a001 3524578/843*3571^(13/17) 2178305809357164 m005 (1/3*exp(1)-1/8)/(2^(1/2)-5) 2178305809421284 r005 Im(z^2+c),c=-17/54+15/44*I,n=27 2178305810787159 m001 (1+Chi(1))/(Ei(1,1)+GolombDickman) 2178305814177874 a001 5702887/843*3571^(12/17) 2178305819880271 r009 Re(z^3+c),c=-17/28+18/35*I,n=36 2178305821212242 a001 48/41*15127^(2/31) 2178305824226137 a001 9227465/843*3571^(11/17) 2178305825260578 m001 (-Cahen+DuboisRaymond)/(Catalan+ln(Pi)) 2178305825963009 a007 Real Root Of 675*x^4+840*x^3-844*x^2+985*x-365 2178305834274374 a001 4976784/281*3571^(10/17) 2178305839384818 k001 Champernowne real with 880*n+1298 2178305840813612 m001 KhinchinLevy^exp(-1/2*Pi)*Riemann2ndZero 2178305842720428 r002 31th iterates of z^2 + 2178305844322621 a001 24157817/843*3571^(9/17) 2178305848240503 a001 567451585/2889*521^(5/13) 2178305849703078 a001 9303105/124*521^(7/13) 2178305854370864 a001 39088169/843*3571^(8/17) 2178305856702218 a001 1134903170/843*1364^(1/15) 2178305864419109 a001 63245986/843*3571^(7/17) 2178305869505016 a001 377/5778*141422324^(12/13) 2178305869505017 a001 377/5778*2537720636^(4/5) 2178305869505017 a001 377/5778*45537549124^(12/17) 2178305869505017 a001 377/5778*14662949395604^(4/7) 2178305869505017 a001 377/5778*(1/2+1/2*5^(1/2))^36 2178305869505017 a001 377/5778*505019158607^(9/14) 2178305869505017 a001 377/5778*192900153618^(2/3) 2178305869505017 a001 377/5778*73681302247^(9/13) 2178305869505017 a001 377/5778*10749957122^(3/4) 2178305869505017 a001 377/5778*4106118243^(18/23) 2178305869505017 a001 377/5778*1568397607^(9/11) 2178305869505017 a001 377/5778*599074578^(6/7) 2178305869505017 a001 377/5778*228826127^(9/10) 2178305869505017 a001 377/5778*87403803^(18/19) 2178305869509324 a001 2584/843*20633239^(4/5) 2178305869509328 a001 2584/843*17393796001^(4/7) 2178305869509328 a001 2584/843*14662949395604^(4/9) 2178305869509328 a001 2584/843*(1/2+1/2*5^(1/2))^28 2178305869509328 a001 2584/843*505019158607^(1/2) 2178305869509328 a001 2584/843*73681302247^(7/13) 2178305869509328 a001 2584/843*10749957122^(7/12) 2178305869509328 a001 2584/843*4106118243^(14/23) 2178305869509328 a001 2584/843*1568397607^(7/11) 2178305869509328 a001 2584/843*599074578^(2/3) 2178305869509328 a001 2584/843*228826127^(7/10) 2178305869509328 a001 2584/843*87403803^(14/19) 2178305869509329 a001 2584/843*33385282^(7/9) 2178305869509339 a001 2584/843*12752043^(14/17) 2178305869509408 a001 2584/843*4870847^(7/8) 2178305869509915 a001 2584/843*1860498^(14/15) 2178305872739565 m001 Catalan*sin(1/5*Pi)+GAMMA(13/24) 2178305872739565 m001 Catalan*sin(Pi/5)+GAMMA(13/24) 2178305874467353 a001 34111385/281*3571^(6/17) 2178305875320955 r002 11th iterates of z^2 + 2178305875506141 r005 Re(z^2+c),c=-47/98+25/41*I,n=38 2178305878708655 m005 (1/3*gamma+1/4)/(2/9*5^(1/2)-7/10) 2178305884515598 a001 165580141/843*3571^(5/17) 2178305884793141 h001 (7/12*exp(1)+3/4)/(1/10*exp(2)+1/3) 2178305889089274 a001 105937*4^(13/25) 2178305894563842 a001 267914296/843*3571^(4/17) 2178305895820881 m005 (1/2*5^(1/2)-1/9)/(5/9*3^(1/2)-1/2) 2178305896148472 m001 (Psi(2,1/3)+gamma)/(Zeta(5)+Porter) 2178305898760998 a001 5600748293801/34*701408733^(11/19) 2178305898760998 a001 28143753123/34*6557470319842^(11/19) 2178305903968512 a001 2971215073/15127*521^(5/13) 2178305904612087 a001 433494437/843*3571^(3/17) 2178305909830184 a001 9107497009/4181 2178305911141884 a001 377*9349^(18/19) 2178305912099119 a001 7778742049/39603*521^(5/13) 2178305912459546 a001 514229/843*9349^(17/19) 2178305913285359 a001 10182505537/51841*521^(5/13) 2178305913458429 a001 53316291173/271443*521^(5/13) 2178305913483679 a001 139583862445/710647*521^(5/13) 2178305913487364 a001 182717648081/930249*521^(5/13) 2178305913487901 a001 956722026041/4870847*521^(5/13) 2178305913487979 a001 2504730781961/12752043*521^(5/13) 2178305913487991 a001 3278735159921/16692641*521^(5/13) 2178305913487994 a001 10610209857723/54018521*521^(5/13) 2178305913487998 a001 4052739537881/20633239*521^(5/13) 2178305913488028 a001 387002188980/1970299*521^(5/13) 2178305913488233 a001 591286729879/3010349*521^(5/13) 2178305913489640 a001 225851433717/1149851*521^(5/13) 2178305913499285 a001 196418*521^(5/13) 2178305913565392 a001 32951280099/167761*521^(5/13) 2178305913768970 a001 832040/843*9349^(16/19) 2178305914018495 a001 12586269025/64079*521^(5/13) 2178305914660331 a001 233802911/281*3571^(2/17) 2178305915081541 a001 1346269/843*9349^(15/19) 2178305916392911 a001 726103/281*9349^(14/19) 2178305917124111 a001 1201881744/6119*521^(5/13) 2178305917704739 a001 3524578/843*9349^(13/19) 2178305919016392 a001 5702887/843*9349^(12/19) 2178305920328111 a001 9227465/843*9349^(11/19) 2178305921639806 a001 4976784/281*9349^(10/19) 2178305922951510 a001 24157817/843*9349^(9/19) 2178305924263210 a001 39088169/843*9349^(8/19) 2178305924507565 r005 Im(z^2+c),c=-1/70+9/37*I,n=15 2178305924708576 a001 1134903170/843*3571^(1/17) 2178305925233026 a001 377/15127*817138163596^(2/3) 2178305925233026 a001 377/15127*(1/2+1/2*5^(1/2))^38 2178305925233026 a001 377/15127*10749957122^(19/24) 2178305925233026 a001 377/15127*4106118243^(19/23) 2178305925233026 a001 377/15127*1568397607^(19/22) 2178305925233026 a001 377/15127*599074578^(19/21) 2178305925233026 a001 377/15127*228826127^(19/20) 2178305925237339 a001 2255/281*141422324^(2/3) 2178305925237340 a001 2255/281*(1/2+1/2*5^(1/2))^26 2178305925237340 a001 2255/281*73681302247^(1/2) 2178305925237340 a001 2255/281*10749957122^(13/24) 2178305925237340 a001 2255/281*4106118243^(13/23) 2178305925237340 a001 2255/281*1568397607^(13/22) 2178305925237340 a001 2255/281*599074578^(13/21) 2178305925237340 a001 2255/281*228826127^(13/20) 2178305925237340 a001 2255/281*87403803^(13/19) 2178305925237341 a001 2255/281*33385282^(13/18) 2178305925237350 a001 2255/281*12752043^(13/17) 2178305925237414 a001 2255/281*4870847^(13/16) 2178305925237885 a001 2255/281*1860498^(13/15) 2178305925241345 a001 2255/281*710647^(13/14) 2178305925574911 a001 63245986/843*9349^(7/19) 2178305926886613 a001 34111385/281*9349^(6/19) 2178305928198314 a001 165580141/843*9349^(5/19) 2178305928615654 r005 Im(z^2+c),c=-4/13+21/62*I,n=21 2178305929510015 a001 267914296/843*9349^(4/19) 2178305930821717 a001 433494437/843*9349^(3/19) 2178305931116389 a001 917066797/421 2178305931264287 a001 121393/843*24476^(20/21) 2178305931478292 a001 196418/843*24476^(19/21) 2178305931635834 a001 377*24476^(6/7) 2178305931814944 a001 514229/843*24476^(17/21) 2178305931985815 a001 832040/843*24476^(16/21) 2178305932133418 a001 233802911/281*9349^(2/19) 2178305932159834 a001 1346269/843*24476^(5/7) 2178305932205686 r005 Re(z^2+c),c=-7/40+22/51*I,n=37 2178305932332650 a001 726103/281*24476^(2/3) 2178305932505925 a001 3524578/843*24476^(13/21) 2178305932679025 a001 5702887/843*24476^(4/7) 2178305932852192 a001 9227465/843*24476^(11/21) 2178305933025334 a001 4976784/281*24476^(10/21) 2178305933198485 a001 24157817/843*24476^(3/7) 2178305933357909 a001 17711/843*439204^(8/9) 2178305933363634 a001 377/39603*2537720636^(8/9) 2178305933363634 a001 377/39603*312119004989^(8/11) 2178305933363634 a001 377/39603*(1/2+1/2*5^(1/2))^40 2178305933363634 a001 377/39603*23725150497407^(5/8) 2178305933363634 a001 377/39603*73681302247^(10/13) 2178305933363634 a001 377/39603*28143753123^(4/5) 2178305933363634 a001 377/39603*10749957122^(5/6) 2178305933363634 a001 377/39603*4106118243^(20/23) 2178305933363634 a001 377/39603*1568397607^(10/11) 2178305933363634 a001 377/39603*599074578^(20/21) 2178305933367921 a001 17711/843*7881196^(8/11) 2178305933367947 a001 17711/843*141422324^(8/13) 2178305933367947 a001 17711/843*2537720636^(8/15) 2178305933367947 a001 17711/843*45537549124^(8/17) 2178305933367947 a001 17711/843*14662949395604^(8/21) 2178305933367947 a001 17711/843*(1/2+1/2*5^(1/2))^24 2178305933367947 a001 17711/843*192900153618^(4/9) 2178305933367947 a001 17711/843*73681302247^(6/13) 2178305933367947 a001 17711/843*10749957122^(1/2) 2178305933367947 a001 17711/843*4106118243^(12/23) 2178305933367947 a001 17711/843*1568397607^(6/11) 2178305933367947 a001 17711/843*599074578^(4/7) 2178305933367947 a001 17711/843*228826127^(3/5) 2178305933367947 a001 17711/843*87403803^(12/19) 2178305933367948 a001 17711/843*33385282^(2/3) 2178305933367956 a001 17711/843*12752043^(12/17) 2178305933368016 a001 17711/843*4870847^(3/4) 2178305933368450 a001 17711/843*1860498^(4/5) 2178305933371632 a001 39088169/843*24476^(8/21) 2178305933371644 a001 17711/843*710647^(6/7) 2178305933395237 a001 17711/843*271443^(12/13) 2178305933445119 a001 1134903170/843*9349^(1/19) 2178305933478228 a001 1149851/233*34^(8/19) 2178305933544781 a001 63245986/843*24476^(1/3) 2178305933717929 a001 34111385/281*24476^(2/7) 2178305933870857 h005 exp(sin(Pi*17/55)*sin(Pi*20/51)) 2178305933891078 a001 165580141/843*24476^(5/21) 2178305933894585 m001 FellerTornier*gamma^TravellingSalesman 2178305934046749 a001 15456/281*64079^(22/23) 2178305934064226 a001 267914296/843*24476^(4/21) 2178305934222005 a001 62423713157/28657 2178305934237375 a001 433494437/843*24476^(1/7) 2178305934265950 a001 121393/843*64079^(20/23) 2178305934329872 a001 196418/843*64079^(19/23) 2178305934337331 a001 377*64079^(18/23) 2178305934349848 a001 75025/843*64079^(21/23) 2178305934366357 a001 514229/843*64079^(17/23) 2178305934387146 a001 832040/843*64079^(16/23) 2178305934410523 a001 233802911/281*24476^(2/21) 2178305934411081 a001 1346269/843*64079^(15/23) 2178305934433814 a001 726103/281*64079^(14/23) 2178305934457006 a001 3524578/843*64079^(13/23) 2178305934480023 a001 5702887/843*64079^(12/23) 2178305934503107 a001 9227465/843*64079^(11/23) 2178305934526165 a001 4976784/281*64079^(10/23) 2178305934549233 a001 24157817/843*64079^(9/23) 2178305934549873 a001 377/103682*2537720636^(14/15) 2178305934549873 a001 377/103682*17393796001^(6/7) 2178305934549873 a001 377/103682*45537549124^(14/17) 2178305934549873 a001 377/103682*817138163596^(14/19) 2178305934549873 a001 377/103682*14662949395604^(2/3) 2178305934549873 a001 377/103682*(1/2+1/2*5^(1/2))^42 2178305934549873 a001 377/103682*192900153618^(7/9) 2178305934549873 a001 377/103682*10749957122^(7/8) 2178305934549873 a001 377/103682*4106118243^(21/23) 2178305934549873 a001 377/103682*1568397607^(21/22) 2178305934554163 a001 15456/281*7881196^(2/3) 2178305934554186 a001 15456/281*312119004989^(2/5) 2178305934554186 a001 15456/281*(1/2+1/2*5^(1/2))^22 2178305934554186 a001 15456/281*10749957122^(11/24) 2178305934554186 a001 15456/281*4106118243^(11/23) 2178305934554186 a001 15456/281*1568397607^(1/2) 2178305934554186 a001 15456/281*599074578^(11/21) 2178305934554186 a001 15456/281*228826127^(11/20) 2178305934554187 a001 15456/281*87403803^(11/19) 2178305934554188 a001 15456/281*33385282^(11/18) 2178305934554195 a001 15456/281*12752043^(11/17) 2178305934554250 a001 15456/281*4870847^(11/16) 2178305934554648 a001 15456/281*1860498^(11/15) 2178305934557575 a001 15456/281*710647^(11/14) 2178305934572297 a001 39088169/843*64079^(8/23) 2178305934579202 a001 15456/281*271443^(11/13) 2178305934583672 a001 1134903170/843*24476^(1/21) 2178305934595363 a001 63245986/843*64079^(7/23) 2178305934618428 a001 34111385/281*64079^(6/23) 2178305934641494 a001 165580141/843*64079^(5/23) 2178305934664559 a001 267914296/843*64079^(4/23) 2178305934665337 a001 121393/843*167761^(4/5) 2178305934675108 a001 163427402749/75025 2178305934687624 a001 433494437/843*64079^(3/23) 2178305934710621 a001 1346269/843*167761^(3/5) 2178305934710690 a001 233802911/281*64079^(2/23) 2178305934722943 a001 377/271443*312119004989^(4/5) 2178305934722943 a001 377/271443*(1/2+1/2*5^(1/2))^44 2178305934722943 a001 377/271443*23725150497407^(11/16) 2178305934722943 a001 377/271443*73681302247^(11/13) 2178305934722943 a001 377/271443*10749957122^(11/12) 2178305934722943 a001 377/271443*4106118243^(22/23) 2178305934725859 a001 4976784/281*167761^(2/5) 2178305934727254 a001 121393/843*20633239^(4/7) 2178305934727256 a001 121393/843*2537720636^(4/9) 2178305934727256 a001 121393/843*(1/2+1/2*5^(1/2))^20 2178305934727256 a001 121393/843*23725150497407^(5/16) 2178305934727256 a001 121393/843*505019158607^(5/14) 2178305934727256 a001 121393/843*73681302247^(5/13) 2178305934727256 a001 121393/843*28143753123^(2/5) 2178305934727256 a001 121393/843*10749957122^(5/12) 2178305934727256 a001 121393/843*4106118243^(10/23) 2178305934727256 a001 121393/843*1568397607^(5/11) 2178305934727256 a001 121393/843*599074578^(10/21) 2178305934727257 a001 121393/843*228826127^(1/2) 2178305934727257 a001 121393/843*87403803^(10/19) 2178305934727258 a001 121393/843*33385282^(5/9) 2178305934727264 a001 121393/843*12752043^(10/17) 2178305934727314 a001 121393/843*4870847^(5/8) 2178305934727676 a001 121393/843*1860498^(2/3) 2178305934730337 a001 121393/843*710647^(5/7) 2178305934733755 a001 1134903170/843*64079^(1/23) 2178305934739934 a001 15456/281*103682^(11/12) 2178305934741215 a001 12584073385/5777 2178305934741341 a001 165580141/843*167761^(1/5) 2178305934744979 a001 377*439204^(2/3) 2178305934748194 a001 377/710647*(1/2+1/2*5^(1/2))^46 2178305934748194 a001 377/710647*10749957122^(23/24) 2178305934749998 a001 121393/843*271443^(10/13) 2178305934750787 a001 1346269/843*439204^(5/9) 2178305934750860 a001 1120148082521/514229 2178305934751788 a001 5702887/843*439204^(4/9) 2178305934751878 a001 377/1860498*45537549124^(16/17) 2178305934751878 a001 377/1860498*14662949395604^(16/21) 2178305934751878 a001 377/1860498*(1/2+1/2*5^(1/2))^48 2178305934751878 a001 377/1860498*192900153618^(8/9) 2178305934751878 a001 377/1860498*73681302247^(12/13) 2178305934752267 a001 2932585752473/1346269 2178305934752415 a001 377/4870847*312119004989^(10/11) 2178305934752415 a001 377/4870847*(1/2+1/2*5^(1/2))^50 2178305934752415 a001 377/4870847*3461452808002^(5/6) 2178305934752472 a001 3838804587449/1762289 2178305934752488 a001 377*7881196^(6/11) 2178305934752494 a001 377/12752043*(1/2+1/2*5^(1/2))^52 2178305934752494 a001 377/12752043*23725150497407^(13/16) 2178305934752494 a001 377/12752043*505019158607^(13/14) 2178305934752502 a001 1546172444017/709805 2178305934752505 a001 377/33385282*14662949395604^(6/7) 2178305934752505 a001 377/33385282*(1/2+1/2*5^(1/2))^54 2178305934752506 a001 52623116141765/24157817 2178305934752507 a001 377/87403803*14662949395604^(8/9) 2178305934752507 a001 68884553326537/31622993 2178305934752507 a001 377*141422324^(6/13) 2178305934752507 a001 360684203817457/165580141 2178305934752507 a001 377/599074578*14662949395604^(20/21) 2178305934752507 a001 944283504799297/433494437 2178305934752507 a001 72710773840601/33379505 2178305934752507 a001 377*2537720636^(2/5) 2178305934752507 a001 377*45537549124^(6/17) 2178305934752507 a001 377*14662949395604^(2/7) 2178305934752507 a001 377*192900153618^(1/3) 2178305934752507 a001 377*10749957122^(3/8) 2178305934752507 a001 377*4106118243^(9/23) 2178305934752507 a001 4000049116361571/1836311903 2178305934752507 a001 377*1568397607^(9/22) 2178305934752507 a001 1527882805781137/701408733 2178305934752507 a001 377*599074578^(3/7) 2178305934752507 a001 193501094490/88831 2178305934752507 a001 377*228826127^(9/20) 2178305934752507 a001 222915097164383/102334155 2178305934752507 a001 377/141422324*14662949395604^(19/21) 2178305934752507 a001 377*87403803^(9/19) 2178305934752507 a001 85145990511309/39088169 2178305934752508 a001 377/54018521*3461452808002^(11/12) 2178305934752508 a001 377*33385282^(1/2) 2178305934752509 a001 12586251691/5778 2178305934752512 a001 13/711491*(1/2+1/2*5^(1/2))^53 2178305934752514 a001 377*12752043^(9/17) 2178305934752520 a001 12422632597323/5702887 2178305934752542 a001 377/7881196*14662949395604^(17/21) 2178305934752542 a001 377/7881196*(1/2+1/2*5^(1/2))^51 2178305934752542 a001 377/7881196*192900153618^(17/18) 2178305934752559 a001 377*4870847^(9/16) 2178305934752599 a001 4745023422425/2178309 2178305934752747 a001 377/3010349*14662949395604^(7/9) 2178305934752747 a001 377/3010349*(1/2+1/2*5^(1/2))^49 2178305934752747 a001 377/3010349*505019158607^(7/8) 2178305934752885 a001 377*1860498^(3/5) 2178305934753057 a001 24157817/843*439204^(1/3) 2178305934753136 a001 226554708744/104005 2178305934754155 a001 377/1149851*(1/2+1/2*5^(1/2))^47 2178305934754311 a001 34111385/281*439204^(2/9) 2178305934755280 a001 377*710647^(9/14) 2178305934755566 a001 433494437/843*439204^(1/9) 2178305934756191 a001 832040/843*(1/2+1/2*5^(1/2))^16 2178305934756191 a001 832040/843*23725150497407^(1/4) 2178305934756191 a001 832040/843*73681302247^(4/13) 2178305934756191 a001 832040/843*10749957122^(1/3) 2178305934756191 a001 832040/843*4106118243^(8/23) 2178305934756191 a001 832040/843*1568397607^(4/11) 2178305934756191 a001 832040/843*599074578^(8/21) 2178305934756191 a001 832040/843*228826127^(2/5) 2178305934756191 a001 832040/843*87403803^(8/19) 2178305934756192 a001 832040/843*33385282^(4/9) 2178305934756197 a001 832040/843*12752043^(8/17) 2178305934756237 a001 832040/843*4870847^(1/2) 2178305934756527 a001 832040/843*1860498^(8/15) 2178305934756727 a001 726103/281*20633239^(2/5) 2178305934756729 a001 726103/281*17393796001^(2/7) 2178305934756729 a001 726103/281*14662949395604^(2/9) 2178305934756729 a001 726103/281*(1/2+1/2*5^(1/2))^14 2178305934756729 a001 726103/281*505019158607^(1/4) 2178305934756729 a001 726103/281*10749957122^(7/24) 2178305934756729 a001 726103/281*4106118243^(7/23) 2178305934756729 a001 726103/281*1568397607^(7/22) 2178305934756729 a001 726103/281*599074578^(1/3) 2178305934756729 a001 726103/281*228826127^(7/20) 2178305934756729 a001 726103/281*87403803^(7/19) 2178305934756729 a001 726103/281*33385282^(7/18) 2178305934756734 a001 726103/281*12752043^(7/17) 2178305934756769 a001 726103/281*4870847^(7/16) 2178305934756794 a001 5702887/843*7881196^(4/11) 2178305934756807 a001 5702887/843*141422324^(4/13) 2178305934756807 a001 5702887/843*2537720636^(4/15) 2178305934756807 a001 5702887/843*45537549124^(4/17) 2178305934756807 a001 5702887/843*14662949395604^(4/21) 2178305934756807 a001 5702887/843*(1/2+1/2*5^(1/2))^12 2178305934756807 a001 5702887/843*192900153618^(2/9) 2178305934756807 a001 5702887/843*73681302247^(3/13) 2178305934756807 a001 5702887/843*10749957122^(1/4) 2178305934756807 a001 5702887/843*4106118243^(6/23) 2178305934756807 a001 5702887/843*1568397607^(3/11) 2178305934756807 a001 5702887/843*599074578^(2/7) 2178305934756807 a001 5702887/843*228826127^(3/10) 2178305934756807 a001 5702887/843*87403803^(6/19) 2178305934756808 a001 5702887/843*33385282^(1/3) 2178305934756812 a001 24157817/843*7881196^(3/11) 2178305934756812 a001 5702887/843*12752043^(6/17) 2178305934756814 a001 9227465/843*7881196^(1/3) 2178305934756814 a001 34111385/281*7881196^(2/11) 2178305934756817 a001 4976784/281*20633239^(2/7) 2178305934756817 a001 433494437/843*7881196^(1/11) 2178305934756818 a001 4976784/281*2537720636^(2/9) 2178305934756818 a001 4976784/281*312119004989^(2/11) 2178305934756818 a001 4976784/281*(1/2+1/2*5^(1/2))^10 2178305934756818 a001 4976784/281*28143753123^(1/5) 2178305934756818 a001 4976784/281*10749957122^(5/24) 2178305934756818 a001 4976784/281*4106118243^(5/23) 2178305934756818 a001 4976784/281*1568397607^(5/22) 2178305934756818 a001 4976784/281*599074578^(5/21) 2178305934756818 a001 4976784/281*228826127^(1/4) 2178305934756818 a001 4976784/281*87403803^(5/19) 2178305934756819 a001 4976784/281*33385282^(5/18) 2178305934756819 a001 63245986/843*20633239^(1/5) 2178305934756820 a001 165580141/843*20633239^(1/7) 2178305934756820 a001 39088169/843*(1/2+1/2*5^(1/2))^8 2178305934756820 a001 39088169/843*23725150497407^(1/8) 2178305934756820 a001 39088169/843*73681302247^(2/13) 2178305934756820 a001 39088169/843*10749957122^(1/6) 2178305934756820 a001 39088169/843*4106118243^(4/23) 2178305934756820 a001 39088169/843*1568397607^(2/11) 2178305934756820 a001 39088169/843*599074578^(4/21) 2178305934756820 a001 39088169/843*228826127^(1/5) 2178305934756820 a001 39088169/843*87403803^(4/19) 2178305934756820 a001 34111385/281*141422324^(2/13) 2178305934756820 a001 34111385/281*2537720636^(2/15) 2178305934756820 a001 34111385/281*45537549124^(2/17) 2178305934756820 a001 34111385/281*14662949395604^(2/21) 2178305934756820 a001 34111385/281*(1/2+1/2*5^(1/2))^6 2178305934756820 a001 34111385/281*10749957122^(1/8) 2178305934756820 a001 34111385/281*4106118243^(3/23) 2178305934756820 a001 34111385/281*1568397607^(3/22) 2178305934756820 a001 34111385/281*599074578^(1/7) 2178305934756820 a001 34111385/281*228826127^(3/20) 2178305934756820 a001 267914296/843*(1/2+1/2*5^(1/2))^4 2178305934756820 a001 267914296/843*23725150497407^(1/16) 2178305934756820 a001 267914296/843*73681302247^(1/13) 2178305934756820 a001 267914296/843*10749957122^(1/12) 2178305934756820 a001 433494437/843*141422324^(1/13) 2178305934756820 a001 267914296/843*4106118243^(2/23) 2178305934756820 a001 267914296/843*1568397607^(1/11) 2178305934756820 a001 267914296/843*599074578^(2/21) 2178305934756820 a001 267914296/843*228826127^(1/10) 2178305934756820 a001 233802911/281*(1/2+1/2*5^(1/2))^2 2178305934756820 a001 233802911/281*10749957122^(1/24) 2178305934756820 a001 233802911/281*4106118243^(1/23) 2178305934756820 a001 233802911/281*1568397607^(1/22) 2178305934756820 a001 233802911/281*599074578^(1/21) 2178305934756820 a001 1836311903/843 2178305934756820 a001 567451585/843+567451585/843*5^(1/2) 2178305934756820 a001 233802911/281*228826127^(1/20) 2178305934756820 a001 433494437/843*2537720636^(1/15) 2178305934756820 a001 433494437/843*45537549124^(1/17) 2178305934756820 a001 433494437/843*14662949395604^(1/21) 2178305934756820 a001 433494437/843*(1/2+1/2*5^(1/2))^3 2178305934756820 a001 433494437/843*192900153618^(1/18) 2178305934756820 a001 433494437/843*10749957122^(1/16) 2178305934756820 a001 433494437/843*599074578^(1/14) 2178305934756820 a001 34111385/281*87403803^(3/19) 2178305934756820 a001 233802911/281*87403803^(1/19) 2178305934756820 a001 165580141/843*2537720636^(1/9) 2178305934756820 a001 165580141/843*312119004989^(1/11) 2178305934756820 a001 165580141/843*(1/2+1/2*5^(1/2))^5 2178305934756820 a001 165580141/843*28143753123^(1/10) 2178305934756820 a001 165580141/843*228826127^(1/8) 2178305934756820 a001 267914296/843*87403803^(2/19) 2178305934756820 a001 233802911/281*33385282^(1/18) 2178305934756820 a001 63245986/843*17393796001^(1/7) 2178305934756820 a001 63245986/843*14662949395604^(1/9) 2178305934756820 a001 63245986/843*(1/2+1/2*5^(1/2))^7 2178305934756820 a001 63245986/843*599074578^(1/6) 2178305934756821 a001 39088169/843*33385282^(2/9) 2178305934756821 a001 433494437/843*33385282^(1/12) 2178305934756821 a001 267914296/843*33385282^(1/9) 2178305934756821 a001 34111385/281*33385282^(1/6) 2178305934756821 a001 24157817/843*141422324^(3/13) 2178305934756821 a001 24157817/843*2537720636^(1/5) 2178305934756821 a001 24157817/843*45537549124^(3/17) 2178305934756821 a001 24157817/843*14662949395604^(1/7) 2178305934756821 a001 24157817/843*(1/2+1/2*5^(1/2))^9 2178305934756821 a001 24157817/843*192900153618^(1/6) 2178305934756821 a001 24157817/843*10749957122^(3/16) 2178305934756821 a001 24157817/843*599074578^(3/14) 2178305934756821 a001 233802911/281*12752043^(1/17) 2178305934756822 a001 24157817/843*33385282^(1/4) 2178305934756822 a001 267914296/843*12752043^(2/17) 2178305934756822 a001 4976784/281*12752043^(5/17) 2178305934756823 a001 34111385/281*12752043^(3/17) 2178305934756823 a001 39088169/843*12752043^(4/17) 2178305934756825 a001 9227465/843*312119004989^(1/5) 2178305934756825 a001 9227465/843*(1/2+1/2*5^(1/2))^11 2178305934756825 a001 9227465/843*1568397607^(1/4) 2178305934756826 a001 233802911/281*4870847^(1/16) 2178305934756832 a001 267914296/843*4870847^(1/8) 2178305934756838 a001 34111385/281*4870847^(3/16) 2178305934756841 a001 5702887/843*4870847^(3/8) 2178305934756843 a001 39088169/843*4870847^(1/4) 2178305934756847 a001 4976784/281*4870847^(5/16) 2178305934756855 a001 3524578/843*141422324^(1/3) 2178305934756855 a001 3524578/843*(1/2+1/2*5^(1/2))^13 2178305934756855 a001 3524578/843*73681302247^(1/4) 2178305934756862 a001 233802911/281*1860498^(1/15) 2178305934756883 a001 433494437/843*1860498^(1/10) 2178305934756904 a001 267914296/843*1860498^(2/15) 2178305934756925 a001 165580141/843*1860498^(1/6) 2178305934756946 a001 34111385/281*1860498^(1/5) 2178305934756988 a001 39088169/843*1860498^(4/15) 2178305934757010 a001 24157817/843*1860498^(3/10) 2178305934757022 a001 726103/281*1860498^(7/15) 2178305934757028 a001 4976784/281*1860498^(1/3) 2178305934757045 a001 1346269/843*7881196^(5/11) 2178305934757059 a001 1346269/843*20633239^(3/7) 2178305934757059 a001 5702887/843*1860498^(2/5) 2178305934757061 a001 1346269/843*141422324^(5/13) 2178305934757061 a001 1346269/843*2537720636^(1/3) 2178305934757061 a001 1346269/843*45537549124^(5/17) 2178305934757061 a001 1346269/843*312119004989^(3/11) 2178305934757061 a001 1346269/843*14662949395604^(5/21) 2178305934757061 a001 1346269/843*(1/2+1/2*5^(1/2))^15 2178305934757061 a001 1346269/843*192900153618^(5/18) 2178305934757061 a001 1346269/843*28143753123^(3/10) 2178305934757061 a001 1346269/843*10749957122^(5/16) 2178305934757061 a001 1346269/843*599074578^(5/14) 2178305934757061 a001 1346269/843*228826127^(3/8) 2178305934757062 a001 1346269/843*33385282^(5/12) 2178305934757128 a001 233802911/281*710647^(1/14) 2178305934757375 a001 1346269/843*1860498^(1/2) 2178305934757437 a001 267914296/843*710647^(1/7) 2178305934757745 a001 34111385/281*710647^(3/14) 2178305934757899 a001 63245986/843*710647^(1/4) 2178305934758052 a001 39088169/843*710647^(2/7) 2178305934758359 a001 4976784/281*710647^(5/14) 2178305934758468 a001 514229/843*45537549124^(1/3) 2178305934758468 a001 514229/843*(1/2+1/2*5^(1/2))^17 2178305934758475 a001 514229/843*12752043^(1/2) 2178305934758656 a001 5702887/843*710647^(3/7) 2178305934758656 a001 832040/843*710647^(4/7) 2178305934758885 a001 726103/281*710647^(1/2) 2178305934759095 a001 233802911/281*271443^(1/13) 2178305934761369 a001 267914296/843*271443^(2/13) 2178305934763643 a001 34111385/281*271443^(3/13) 2178305934763799 a001 377/439204*45537549124^(15/17) 2178305934763799 a001 377/439204*312119004989^(9/11) 2178305934763799 a001 377/439204*14662949395604^(5/7) 2178305934763799 a001 377/439204*(1/2+1/2*5^(1/2))^45 2178305934763799 a001 377/439204*192900153618^(5/6) 2178305934763799 a001 377/439204*28143753123^(9/10) 2178305934763799 a001 377/439204*10749957122^(15/16) 2178305934765263 a001 1134903170/843*103682^(1/24) 2178305934765917 a001 39088169/843*271443^(4/13) 2178305934768113 a001 196418/843*817138163596^(1/3) 2178305934768113 a001 196418/843*(1/2+1/2*5^(1/2))^19 2178305934768113 a001 196418/843*87403803^(1/2) 2178305934768189 a001 4976784/281*271443^(5/13) 2178305934770452 a001 5702887/843*271443^(6/13) 2178305934771637 a001 3524578/843*271443^(1/2) 2178305934772648 a001 726103/281*271443^(7/13) 2178305934772974 a001 377*271443^(9/13) 2178305934773707 a001 233802911/281*103682^(1/12) 2178305934774384 a001 832040/843*271443^(8/13) 2178305934782071 a001 264431092341/121393 2178305934782150 a001 433494437/843*103682^(1/8) 2178305934790593 a001 267914296/843*103682^(1/6) 2178305934799036 a001 165580141/843*103682^(5/24) 2178305934807479 a001 34111385/281*103682^(1/4) 2178305934815922 a001 63245986/843*103682^(7/24) 2178305934819951 a001 1134903170/843*39603^(1/22) 2178305934824365 a001 39088169/843*103682^(1/3) 2178305934825437 a001 75025/843*439204^(7/9) 2178305934829906 a001 377/167761*(1/2+1/2*5^(1/2))^43 2178305934832809 a001 24157817/843*103682^(3/8) 2178305934834197 a001 75025/843*7881196^(7/11) 2178305934834217 a001 75025/843*20633239^(3/5) 2178305934834220 a001 75025/843*141422324^(7/13) 2178305934834220 a001 75025/843*2537720636^(7/15) 2178305934834220 a001 75025/843*17393796001^(3/7) 2178305934834220 a001 75025/843*45537549124^(7/17) 2178305934834220 a001 75025/843*14662949395604^(1/3) 2178305934834220 a001 75025/843*(1/2+1/2*5^(1/2))^21 2178305934834220 a001 75025/843*192900153618^(7/18) 2178305934834220 a001 75025/843*10749957122^(7/16) 2178305934834220 a001 75025/843*599074578^(1/2) 2178305934834221 a001 75025/843*33385282^(7/12) 2178305934834660 a001 75025/843*1860498^(7/10) 2178305934837455 a001 75025/843*710647^(3/4) 2178305934841249 a001 4976784/281*103682^(5/12) 2178305934849699 a001 9227465/843*103682^(11/24) 2178305934858124 a001 5702887/843*103682^(1/2) 2178305934866615 a001 3524578/843*103682^(13/24) 2178305934874932 a001 726103/281*103682^(7/12) 2178305934883082 a001 233802911/281*39603^(1/11) 2178305934883707 a001 1346269/843*103682^(5/8) 2178305934891280 a001 832040/843*103682^(2/3) 2178305934896118 a001 121393/843*103682^(5/6) 2178305934902000 a001 514229/843*103682^(17/24) 2178305934904483 a001 377*103682^(3/4) 2178305934928531 a001 196418/843*103682^(19/24) 2178305934946212 a001 433494437/843*39603^(3/22) 2178305934955141 a001 12625461199/5796 2178305935009343 a001 267914296/843*39603^(2/11) 2178305935011524 a001 75025/843*103682^(7/8) 2178305935072473 a001 165580141/843*39603^(5/22) 2178305935135604 a001 34111385/281*39603^(3/11) 2178305935198735 a001 63245986/843*39603^(7/22) 2178305935232794 a001 1134903170/843*15127^(1/20) 2178305935261865 a001 39088169/843*39603^(4/11) 2178305935283010 a001 377/64079*(1/2+1/2*5^(1/2))^41 2178305935287323 a001 28657/843*(1/2+1/2*5^(1/2))^23 2178305935287323 a001 28657/843*4106118243^(1/2) 2178305935324997 a001 24157817/843*39603^(9/22) 2178305935388125 a001 4976784/281*39603^(5/11) 2178305935451262 a001 9227465/843*39603^(1/2) 2178305935481514 a001 28657/843*103682^(23/24) 2178305935514374 a001 5702887/843*39603^(6/11) 2178305935577553 a001 3524578/843*39603^(13/22) 2178305935640557 a001 726103/281*39603^(7/11) 2178305935704020 a001 1346269/843*39603^(15/22) 2178305935708768 a001 233802911/281*15127^(1/10) 2178305935766281 a001 832040/843*39603^(8/11) 2178305935831688 a001 514229/843*39603^(17/22) 2178305935888858 a001 377*39603^(9/11) 2178305935967594 a001 196418/843*39603^(19/22) 2178305935989869 a001 121393/843*39603^(10/11) 2178305936141381 a001 38579976435/17711 2178305936159963 a001 75025/843*39603^(21/22) 2178305936184743 a001 433494437/843*15127^(3/20) 2178305936660717 a001 267914296/843*15127^(1/5) 2178305937136691 a001 165580141/843*15127^(1/4) 2178305937612665 a001 34111385/281*15127^(3/10) 2178305938088639 a001 63245986/843*15127^(7/20) 2178305938381681 a001 1134903170/843*5778^(1/18) 2178305938388625 a001 13/844*2537720636^(13/15) 2178305938388625 a001 13/844*45537549124^(13/17) 2178305938388625 a001 13/844*14662949395604^(13/21) 2178305938388625 a001 13/844*(1/2+1/2*5^(1/2))^39 2178305938388625 a001 13/844*192900153618^(13/18) 2178305938388625 a001 13/844*73681302247^(3/4) 2178305938388625 a001 13/844*10749957122^(13/16) 2178305938388625 a001 13/844*599074578^(13/14) 2178305938392935 a001 10946/843*20633239^(5/7) 2178305938392939 a001 10946/843*2537720636^(5/9) 2178305938392939 a001 10946/843*312119004989^(5/11) 2178305938392939 a001 10946/843*(1/2+1/2*5^(1/2))^25 2178305938392939 a001 10946/843*3461452808002^(5/12) 2178305938392939 a001 10946/843*28143753123^(1/2) 2178305938392939 a001 10946/843*228826127^(5/8) 2178305938393463 a001 10946/843*1860498^(5/6) 2178305938410317 a001 1836311903/9349*521^(5/13) 2178305938564612 a001 39088169/843*15127^(2/5) 2178305939040588 a001 24157817/843*15127^(9/20) 2178305939404821 k001 Champernowne real with 881*n+1297 2178305939516559 a001 4976784/281*15127^(1/2) 2178305939992540 a001 9227465/843*15127^(11/20) 2178305940468495 a001 5702887/843*15127^(3/5) 2178305940944518 a001 3524578/843*15127^(13/20) 2178305941420365 a001 726103/281*15127^(7/10) 2178305941896671 a001 1346269/843*15127^(3/4) 2178305942006542 a001 233802911/281*5778^(1/9) 2178305942371776 a001 832040/843*15127^(4/5) 2178305942850027 a001 514229/843*15127^(17/20) 2178305943320040 a001 377*15127^(9/10) 2178305943321847 m001 (FellerTornier+ZetaP(4))/(GAMMA(5/6)+CareFree) 2178305943811620 a001 196418/843*15127^(19/20) 2178305944271988 a001 14736239713/6765 2178305945631402 a001 433494437/843*5778^(1/6) 2178305946083515 a007 Real Root Of 458*x^4+668*x^3-456*x^2+677*x+231 2178305949256263 a001 267914296/843*5778^(2/9) 2178305952881124 a001 165580141/843*5778^(5/18) 2178305956505984 a001 34111385/281*5778^(1/3) 2178305959674832 a001 377/9349*(1/2+1/2*5^(1/2))^37 2178305959679116 a001 4181/843*7881196^(9/11) 2178305959679145 a001 4181/843*141422324^(9/13) 2178305959679145 a001 4181/843*2537720636^(3/5) 2178305959679145 a001 4181/843*45537549124^(9/17) 2178305959679145 a001 4181/843*14662949395604^(3/7) 2178305959679145 a001 4181/843*(1/2+1/2*5^(1/2))^27 2178305959679145 a001 4181/843*192900153618^(1/2) 2178305959679145 a001 4181/843*10749957122^(9/16) 2178305959679145 a001 4181/843*599074578^(9/14) 2178305959679146 a001 4181/843*33385282^(3/4) 2178305959679711 a001 4181/843*1860498^(9/10) 2178305960130845 a001 63245986/843*5778^(7/18) 2178305962707628 a001 1134903170/843*2207^(1/16) 2178305963755705 a001 39088169/843*5778^(4/9) 2178305963984896 r009 Re(z^3+c),c=-8/31+5/19*I,n=5 2178305967380567 a001 24157817/843*5778^(1/2) 2178305971005425 a001 4976784/281*5778^(5/9) 2178305971393421 r005 Im(z^2+c),c=-1+7/31*I,n=10 2178305972987732 r005 Im(z^2+c),c=-49/94+11/27*I,n=47 2178305974312789 m001 PlouffeB-TwinPrimes^QuadraticClass 2178305974630293 a001 9227465/843*5778^(11/18) 2178305978255135 a001 5702887/843*5778^(2/3) 2178305979472414 a008 Real Root of x^2-x-47668 2178305981880044 a001 3524578/843*5778^(13/18) 2178305985504778 a001 726103/281*5778^(7/9) 2178305987433689 r009 Re(z^3+c),c=-37/106+1/2*I,n=54 2178305989129971 a001 1346269/843*5778^(5/6) 2178305990658436 a001 233802911/281*2207^(1/8) 2178305992753962 a001 832040/843*5778^(8/9) 2178305996381100 a001 514229/843*5778^(17/18) 2178306000000332 a001 1346263/2+1346269/2*5^(1/2) 2178306000256469 r009 Re(z^3+c),c=-5/36+41/54*I,n=57 2178306003549827 r005 Im(z^2+c),c=-23/18+1/233*I,n=15 2178306011394206 a001 3571/3*3524578^(22/23) 2178306013702077 p001 sum((-1)^n/(533*n+423)/(5^n),n=0..infinity) 2178306016785094 h001 (-4*exp(-3)-3)/(-6*exp(2/3)-3) 2178306018609245 a001 433494437/843*2207^(3/16) 2178306028834586 a001 3571/6765*89^(6/19) 2178306037387713 a007 Real Root Of -559*x^4-673*x^3+767*x^2-905*x+19 2178306039424824 k001 Champernowne real with 882*n+1296 2178306040071374 m001 (PisotVijayaraghavan+Trott)/(cos(1)-gamma(1)) 2178306043502600 m005 (1/2*exp(1)-3/5)/(3/7*Zeta(3)-1/6) 2178306046560053 a001 267914296/843*2207^(1/4) 2178306049664695 a007 Real Root Of -517*x^4-876*x^3+858*x^2+770*x+192 2178306050083377 a007 Real Root Of 337*x^4+552*x^3+895*x^2-853*x-19 2178306055679230 m005 (1/3*3^(1/2)+1/11)/(6/7*Pi+3/8) 2178306058043378 m001 1/KhintchineHarmonic^2/Conway*ln(BesselK(0,1)) 2178306058585529 m005 (1/2*2^(1/2)+1/3)/(1/4*gamma+1/3) 2178306059728824 r005 Im(z^2+c),c=-13/66+9/29*I,n=8 2178306062078784 a001 46/311187*28657^(18/37) 2178306066510145 a007 Real Root Of 813*x^4-513*x^3+458*x^2-703*x-182 2178306072043400 r005 Im(z^2+c),c=-53/56+13/59*I,n=40 2178306072232954 r005 Re(z^2+c),c=-4/5+17/111*I,n=40 2178306074510862 a001 165580141/843*2207^(5/16) 2178306083577066 a001 701408733/2207*521^(4/13) 2178306084308157 a001 701408733/3571*521^(5/13) 2178306092124814 q001 1466/673 2178306097007390 r005 Im(z^2+c),c=-17/27+2/11*I,n=5 2178306102461672 a001 34111385/281*2207^(3/8) 2178306105572673 a001 377/3571*2537720636^(7/9) 2178306105572673 a001 377/3571*17393796001^(5/7) 2178306105572673 a001 377/3571*312119004989^(7/11) 2178306105572673 a001 377/3571*14662949395604^(5/9) 2178306105572673 a001 377/3571*(1/2+1/2*5^(1/2))^35 2178306105572673 a001 377/3571*505019158607^(5/8) 2178306105572673 a001 377/3571*28143753123^(7/10) 2178306105572673 a001 377/3571*599074578^(5/6) 2178306105572673 a001 377/3571*228826127^(7/8) 2178306105576973 a001 1597/843*(1/2+1/2*5^(1/2))^29 2178306105576973 a001 1597/843*1322157322203^(1/2) 2178306107646978 r005 Im(z^2+c),c=31/98+22/39*I,n=60 2178306113160288 r009 Re(z^3+c),c=-1/7+44/53*I,n=41 2178306119375173 s001 sum(exp(-3*Pi/4)^n*A125317[n],n=1..infinity) 2178306123146813 r005 Re(z^2+c),c=-34/31+9/41*I,n=4 2178306130412482 a001 63245986/843*2207^(7/16) 2178306139444827 k001 Champernowne real with 883*n+1295 2178306144192587 m001 1/exp(Porter)*LandauRamanujan/cos(Pi/5) 2178306149750040 a001 1149851/8*32951280099^(7/9) 2178306149751677 a001 969323029/8*5702887^(7/9) 2178306149751690 a001 16692641/4*433494437^(7/9) 2178306149811887 a001 28143753123/8*75025^(7/9) 2178306151140561 a001 39603/8*2504730781961^(7/9) 2178306151671015 m005 (-1/12+1/6*5^(1/2))/(1/2*Zeta(3)+8/11) 2178306153702625 a001 1134903170/843*843^(1/14) 2178306155742575 m001 (Lehmer+TwinPrimes)/(Ei(1,1)-Kolakoski) 2178306158363292 a001 39088169/843*2207^(1/2) 2178306161141307 a001 123/10946*13^(8/31) 2178306165927551 m005 (1/3*gamma+1/10)/(4*Pi+6/7) 2178306166601824 a001 9349/17711*89^(6/19) 2178306186314103 a001 24157817/843*2207^(9/16) 2178306186701793 a001 6119/11592*89^(6/19) 2178306189634339 a001 64079/121393*89^(6/19) 2178306189771861 a001 17/682*18^(3/4) 2178306190062192 a001 167761/317811*89^(6/19) 2178306190124615 a001 109801/208010*89^(6/19) 2178306190133722 a001 1149851/2178309*89^(6/19) 2178306190135051 a001 3010349/5702887*89^(6/19) 2178306190135245 a001 1970299/3732588*89^(6/19) 2178306190135273 a001 20633239/39088169*89^(6/19) 2178306190135277 a001 54018521/102334155*89^(6/19) 2178306190135278 a001 35355581/66978574*89^(6/19) 2178306190135278 a001 370248451/701408733*89^(6/19) 2178306190135278 a001 969323029/1836311903*89^(6/19) 2178306190135278 a001 634430159/1201881744*89^(6/19) 2178306190135278 a001 6643838879/12586269025*89^(6/19) 2178306190135278 a001 17393796001/32951280099*89^(6/19) 2178306190135278 a001 11384387281/21566892818*89^(6/19) 2178306190135278 a001 119218851371/225851433717*89^(6/19) 2178306190135278 a001 312119004989/591286729879*89^(6/19) 2178306190135278 a001 1322157322203/2504730781961*89^(6/19) 2178306190135278 a001 505019158607/956722026041*89^(6/19) 2178306190135278 a001 96450076809/182717648081*89^(6/19) 2178306190135278 a001 73681302247/139583862445*89^(6/19) 2178306190135278 a001 28143753123/53316291173*89^(6/19) 2178306190135278 a001 5374978561/10182505537*89^(6/19) 2178306190135278 a001 4106118243/7778742049*89^(6/19) 2178306190135278 a001 1568397607/2971215073*89^(6/19) 2178306190135278 a001 299537289/567451585*89^(6/19) 2178306190135278 a001 228826127/433494437*89^(6/19) 2178306190135278 a001 87403803/165580141*89^(6/19) 2178306190135280 a001 16692641/31622993*89^(6/19) 2178306190135290 a001 12752043/24157817*89^(6/19) 2178306190135365 a001 4870847/9227465*89^(6/19) 2178306190135872 a001 930249/1762289*89^(6/19) 2178306190139351 a001 710647/1346269*89^(6/19) 2178306190163194 a001 271443/514229*89^(6/19) 2178306190326619 a001 51841/98209*89^(6/19) 2178306191446752 a001 39603/75025*89^(6/19) 2178306192052542 r005 Im(z^2+c),c=-51/46+12/47*I,n=31 2178306199124257 a001 15127/28657*89^(6/19) 2178306202524234 h001 (1/10*exp(1)+3/7)/(3/8*exp(2)+4/9) 2178306206294156 s002 sum(A235861[n]/((2^n-1)/n),n=1..infinity) 2178306208753851 m001 (-FeigenbaumDelta+5)/(-Si(Pi)+1/3) 2178306214264912 a001 4976784/281*2207^(5/8) 2178306225183688 a007 Real Root Of -365*x^4+266*x^3+925*x^2+313*x-114 2178306225801099 r005 Im(z^2+c),c=15/56+1/18*I,n=10 2178306232481094 r005 Re(z^2+c),c=-7/40+22/51*I,n=40 2178306233801376 r005 Im(z^2+c),c=-107/114+12/59*I,n=23 2178306234123826 h001 (1/12*exp(2)+10/11)/(6/7*exp(2)+2/3) 2178306239464830 k001 Champernowne real with 884*n+1294 2178306242215730 a001 9227465/843*2207^(11/16) 2178306243693281 a007 Real Root Of 680*x^4+853*x^3-754*x^2+936*x-877 2178306243756665 r005 Re(z^2+c),c=-1/19+35/44*I,n=24 2178306244671249 m001 exp(Pi)*(GAMMA(5/6)-MertensB2) 2178306248245489 m001 (OneNinth+Stephens)/(ln(gamma)+CopelandErdos) 2178306251746659 a001 2889/5473*89^(6/19) 2178306254439286 r005 Re(z^2+c),c=-17/46+12/29*I,n=3 2178306257526828 r009 Re(z^3+c),c=-21/110+47/52*I,n=31 2178306267119314 a007 Real Root Of 118*x^4-671*x^3+779*x^2-155*x+920 2178306270166523 a001 5702887/843*2207^(3/4) 2178306271665547 s001 sum(exp(-Pi/3)^(n-1)*A213221[n],n=1..infinity) 2178306273537406 m006 (1/6*ln(Pi)+2/3)/(1/5/Pi-4) 2178306279344996 p001 sum(1/(363*n+5)/n/(125^n),n=1..infinity) 2178306289306405 a007 Real Root Of -548*x^4-991*x^3+694*x^2+784*x+510 2178306298117383 a001 3524578/843*2207^(13/16) 2178306326068069 a001 726103/281*2207^(7/8) 2178306333989630 l006 ln(1623/2018) 2178306337766144 r009 Im(z^3+c),c=-13/114+48/55*I,n=62 2178306339484833 k001 Champernowne real with 885*n+1293 2178306340349767 a007 Real Root Of 268*x^4+778*x^3+844*x^2+720*x-429 2178306341770391 a007 Real Root Of -463*x^4-850*x^3-114*x^2-554*x+973 2178306351468507 l006 ln(1085/9582) 2178306354019214 a001 1346269/843*2207^(15/16) 2178306356755923 r005 Im(z^2+c),c=-7/30+1/33*I,n=16 2178306358483385 m001 (Bloch-CopelandErdos)/Trott 2178306364073870 m001 (-OneNinth+2)/(-Zeta(3)+1/3) 2178306372648452 a001 233802911/281*843^(1/7) 2178306378559060 a007 Real Root Of -702*x^4+822*x^3-311*x^2+873*x+215 2178306381965552 a001 2149988399/987 2178306398193771 r009 Im(z^3+c),c=-25/102+38/53*I,n=35 2178306404074286 r005 Im(z^2+c),c=-17/30+19/90*I,n=5 2178306406485059 a007 Real Root Of -485*x^4-735*x^3+382*x^2-579*x+249 2178306407231531 r005 Im(z^2+c),c=-35/64+13/29*I,n=59 2178306412827565 a007 Real Root Of 500*x^4+854*x^3-338*x^2-7*x-842 2178306415908187 a003 -1/2-2*cos(1/9*Pi)+cos(8/27*Pi)-cos(10/27*Pi) 2178306419192875 m001 (Landau+Robbin)/(DuboisRaymond-Psi(2,1/3)) 2178306421112194 a007 Real Root Of 40*x^4+873*x^3+38*x^2+14*x-388 2178306421850202 m001 BesselI(1,2)^Magata-FeigenbaumD 2178306431980056 m004 5+5*Pi*Coth[Sqrt[5]*Pi]+(5*Sin[Sqrt[5]*Pi])/Pi 2178306433180994 r002 3th iterates of z^2 + 2178306436350963 m002 Pi^3+Pi^4+(E^Pi*Cosh[Pi])/3 2178306438958193 a001 13/119218851371*47^(7/9) 2178306439504836 k001 Champernowne real with 886*n+1292 2178306440759523 m001 Paris*ln(Si(Pi))^2/PrimesInBinary^2 2178306443986571 r005 Im(z^2+c),c=-31/44+5/31*I,n=5 2178306446166025 m001 (Pi+2^(1/2))/(cos(1/5*Pi)+GlaisherKinkelin) 2178306448685356 m005 (1/2*2^(1/2)+7/12)/(1/3*gamma+2/5) 2178306449849016 m001 FeigenbaumAlpha*Totient^exp(Pi) 2178306455622540 l006 ln(1002/8849) 2178306465542554 a001 1836311903/5778*521^(4/13) 2178306467005130 a001 165580141/1364*521^(6/13) 2178306479115179 a003 2*cos(1/10*Pi)-2*cos(4/9*Pi)+cos(2/7*Pi) 2178306498033429 m001 (BesselJ(0,1)+GAMMA(2/3))/(ln(gamma)+ZetaP(2)) 2178306499511188 m001 (Catalan-FeigenbaumMu)/(Kac+Lehmer) 2178306504816509 m005 (1/2*Catalan-3/5)/(3/10*3^(1/2)+6) 2178306506833818 r005 Re(z^2+c),c=15/86+18/49*I,n=16 2178306508675846 m005 (1/2*Pi+11/12)/(1/11*gamma-1/6) 2178306508792985 m005 (1/2*Zeta(3)+3/11)/(1/12*3^(1/2)-6/11) 2178306509519542 m001 (-ln(gamma)+Porter)/(Chi(1)-Psi(1,1/3)) 2178306512269565 r005 Re(z^2+c),c=-5/42+26/43*I,n=27 2178306521270579 a001 686789568/2161*521^(4/13) 2178306522971259 m001 (GaussAGM+Tetranacci)/(GAMMA(3/4)-ln(3)) 2178306525115327 r009 Im(z^3+c),c=-11/24+5/37*I,n=2 2178306529401189 a001 12586269025/39603*521^(4/13) 2178306530587429 a001 32951280099/103682*521^(4/13) 2178306530760499 a001 86267571272/271443*521^(4/13) 2178306530785749 a001 317811*521^(4/13) 2178306530789433 a001 591286729879/1860498*521^(4/13) 2178306530789971 a001 1548008755920/4870847*521^(4/13) 2178306530790049 a001 4052739537881/12752043*521^(4/13) 2178306530790061 a001 1515744265389/4769326*521^(4/13) 2178306530790068 a001 6557470319842/20633239*521^(4/13) 2178306530790098 a001 2504730781961/7881196*521^(4/13) 2178306530790303 a001 956722026041/3010349*521^(4/13) 2178306530791710 a001 365435296162/1149851*521^(4/13) 2178306530801355 a001 139583862445/439204*521^(4/13) 2178306530867462 a001 53316291173/167761*521^(4/13) 2178306530950029 m001 1/ArtinRank2/Cahen^2/exp(arctan(1/2)) 2178306531320565 a001 20365011074/64079*521^(4/13) 2178306533997376 r005 Im(z^2+c),c=-49/94+21/53*I,n=57 2178306534426182 a001 7778742049/24476*521^(4/13) 2178306539524839 k001 Champernowne real with 887*n+1291 2178306546573236 r005 Re(z^2+c),c=-9/40+17/59*I,n=18 2178306555712394 a001 2971215073/9349*521^(4/13) 2178306557376759 m001 1/Paris*FransenRobinson/exp(GAMMA(17/24))^2 2178306569079913 m001 (BesselK(1,1)-OrthogonalArrays)/(Pi+cos(1)) 2178306574654130 a007 Real Root Of 85*x^4-196*x^3-567*x^2+293*x-611 2178306578335013 a007 Real Root Of 515*x^4+833*x^3-222*x^2+684*x-442 2178306578590018 l006 ln(919/8116) 2178306585123984 a007 Real Root Of -971*x^4-942*x^3+548*x^2+962*x+176 2178306585165663 m001 GaussKuzminWirsing*(ZetaP(4)-ZetaR(2)) 2178306591594301 a001 433494437/843*843^(3/14) 2178306595181084 m001 (1-Shi(1))/(Pi+exp(Pi)) 2178306598523513 a007 Real Root Of 42*x^4+876*x^3-810*x^2+807*x-33 2178306603254193 a007 Real Root Of -396*x^4-470*x^3+936*x^2-133*x-673 2178306603503566 r005 Im(z^2+c),c=-12/31+9/25*I,n=28 2178306605283941 a007 Real Root Of 700*x^4-606*x^3-724*x^2-895*x+234 2178306612425964 a001 2207/4181*89^(6/19) 2178306639544842 k001 Champernowne real with 888*n+1290 2178306650064206 r005 Re(z^2+c),c=-19/58+17/30*I,n=19 2178306651785227 m001 Niven^2/FibonacciFactorial*ln(GAMMA(2/3))^2 2178306662031481 r005 Im(z^2+c),c=-31/36+5/29*I,n=54 2178306671674143 m001 (1-exp(1)*Si(Pi))/Si(Pi) 2178306676713319 m005 (-13/20+1/4*5^(1/2))/(1/8*2^(1/2)+4) 2178306683686221 a007 Real Root Of -821*x^4+736*x^3-552*x^2+888*x-173 2178306692498630 r005 Re(z^2+c),c=-2/23+25/43*I,n=42 2178306694462877 m001 (Shi(1)+gamma)/(-ln(5)+Thue) 2178306700879184 a001 1134903170/2207*521^(3/13) 2178306701610276 a001 1134903170/3571*521^(4/13) 2178306705127520 k002 Champernowne real with 171/2*n^2-399/2*n+135 2178306724201208 m001 Bloch^2/ln(DuboisRaymond)/GolombDickman 2178306725974463 l006 ln(836/7383) 2178306726186319 h001 (1/4*exp(2)+9/11)/(1/8*exp(2)+3/10) 2178306727103917 a001 5/439204*2^(44/47) 2178306728043287 a007 Real Root Of -23*x^4+417*x^3-924*x^2+224*x+97 2178306736287939 a008 Real Root of x^4-x^3+6*x^2+159*x-387 2178306739564845 k001 Champernowne real with 889*n+1289 2178306758552515 m001 (2/3*Pi*3^(1/2)/GAMMA(2/3))^gamma(3)+Salem 2178306763932022 a001 2178309-5^(1/2) 2178306770742285 m001 (Cahen-HeathBrownMoroz)/(QuadraticClass-Salem) 2178306775375724 a003 sin(Pi*12/91)/cos(Pi*42/85) 2178306788068124 a003 sin(Pi*18/61)-sin(Pi*31/101) 2178306791031399 a007 Real Root Of -164*x^4+119*x^3+902*x^2-328*x-72 2178306796347775 v004 sum(1/(10*n^2-6*n)/sinh(Pi*n),n=1..infinity) 2178306806377452 a007 Real Root Of 355*x^4+967*x^3+67*x^2-461*x+680 2178306806945727 b008 3/5+SinIntegral[11] 2178306810430613 r002 20th iterates of z^2 + 2178306810540172 a001 267914296/843*843^(2/7) 2178306811317885 m001 (5^(1/2)+Zeta(5))/(ln(2)+AlladiGrinstead) 2178306828362895 a007 Real Root Of 934*x^4-472*x^3-168*x^2-575*x+136 2178306833607500 m001 (Si(Pi)+gamma)/(-cos(1/5*Pi)+ArtinRank2) 2178306839584848 k001 Champernowne real with 890*n+1288 2178306842674068 r002 3th iterates of z^2 + 2178306851232587 m001 (BesselK(0,1)+GlaisherKinkelin)^MinimumGamma 2178306851873779 m005 (1/3*2^(1/2)-2/11)/(9/11*gamma+6/7) 2178306853122882 r002 35th iterates of z^2 + 2178306853122882 r002 35th iterates of z^2 + 2178306859633075 r005 Im(z^2+c),c=5/98+13/60*I,n=5 2178306868705295 a001 233/11*9349^(13/51) 2178306868971499 r005 Im(z^2+c),c=-29/30+13/61*I,n=24 2178306871742834 r005 Re(z^2+c),c=-6/23+2/21*I,n=12 2178306874075214 r005 Re(z^2+c),c=-9/40+17/59*I,n=23 2178306875168954 r005 Re(z^2+c),c=4/21+2/25*I,n=20 2178306877973712 a007 Real Root Of -242*x^4-433*x^3-145*x^2-416*x+755 2178306878186126 a007 Real Root Of 271*x^4+715*x^3+809*x^2+976*x-424 2178306882149997 a007 Real Root Of -245*x^4+438*x^3+276*x^2+826*x-197 2178306884018407 r009 Im(z^3+c),c=-13/114+48/55*I,n=54 2178306891662824 a007 Real Root Of 502*x^4-191*x^3-731*x^2-829*x-149 2178306898136919 m001 (2^(1/2)-gamma)/(FransenRobinson+MertensB2) 2178306903104240 a007 Real Root Of -500*x^4-981*x^3+568*x^2+540*x-401 2178306903147082 m001 2^(1/2)*(Catalan+GolombDickman) 2178306903147082 m001 sqrt(2)*(Catalan+GolombDickman) 2178306905850006 l006 ln(753/6650) 2178306912005954 m005 (1/2*5^(1/2)-11/12)/(3/11*gamma-1/6) 2178306914395385 r005 Re(z^2+c),c=10/29+17/42*I,n=32 2178306916139911 r009 Im(z^3+c),c=-13/114+48/55*I,n=60 2178306937313910 r005 Im(z^2+c),c=5/48+2/11*I,n=3 2178306939604851 k001 Champernowne real with 891*n+1287 2178306941748876 a003 cos(Pi*49/111)+cos(Pi*22/45) 2178306945197136 a007 Real Root Of 398*x^4+378*x^3-405*x^2+983*x-991 2178306951728476 p001 sum((-1)^n/(617*n+437)/(8^n),n=0..infinity) 2178306955446480 r005 Im(z^2+c),c=1/30+41/57*I,n=3 2178306956834195 r005 Re(z^2+c),c=-1/46+1/44*I,n=2 2178306961998705 m005 (1/2*exp(1)+10/11)/(81/110+3/22*5^(1/2)) 2178306964969466 r005 Im(z^2+c),c=13/60+9/19*I,n=4 2178306964977155 m001 (Zeta(3)-ln(Pi))/(Mills+Riemann3rdZero) 2178306976285324 m005 (1/2*Pi+5/9)/(1/8*exp(1)+7/11) 2178306999063075 a007 Real Root Of -360*x^4-485*x^3+62*x^2-983*x+657 2178307000000332 a001 1346265/2+1346269/2*5^(1/2) 2178307009782251 a007 Real Root Of 16*x^4-227*x^3-599*x^2+181*x+530 2178307012392085 r005 Re(z^2+c),c=13/102+14/25*I,n=18 2178307019360095 a007 Real Root Of 798*x^4+66*x^3-210*x^2-945*x-197 2178307024150752 a001 433494437/521*199^(2/11) 2178307029140353 r002 25th iterates of z^2 + 2178307029486065 a001 165580141/843*843^(5/14) 2178307032037785 a001 199/63245986*20365011074^(21/22) 2178307032326892 l006 ln(7096/8823) 2178307036176151 a007 Real Root Of -102*x^4+865*x^3-14*x^2+772*x+178 2178307039624854 k001 Champernowne real with 892*n+1286 2178307044246762 m001 (sin(1)*GolombDickman+GaussAGM)/GolombDickman 2178307044902542 r005 Re(z^2+c),c=1/90+5/28*I,n=3 2178307045054913 m006 (1/4*ln(Pi)-1/2)/(1/3*ln(Pi)+3/5) 2178307050540123 r005 Re(z^2+c),c=-25/18+109/192*I,n=2 2178307061781987 r005 Re(z^2+c),c=-137/118+10/61*I,n=14 2178307062525840 m001 KhinchinLevy^KomornikLoreti-exp(Pi) 2178307066905550 a007 Real Root Of 210*x^4+586*x^3+164*x^2+36*x+629 2178307069023434 a007 Real Root Of -629*x^4-809*x^3+815*x^2-785*x+223 2178307082844781 a001 2971215073/5778*521^(3/13) 2178307083065297 r005 Im(z^2+c),c=-7/6+9/244*I,n=7 2178307084307356 a001 66978574/341*521^(5/13) 2178307086861523 a007 Real Root Of 15*x^4+347*x^3+457*x^2+385*x+886 2178307097286885 a001 199/2584*514229^(21/22) 2178307100684348 a007 Real Root Of 559*x^4+805*x^3-468*x^2+997*x+127 2178307105533618 m003 -12/5+(Sqrt[5]*E^(-1/2-Sqrt[5]/2))/2 2178307105571882 a001 377/1364*141422324^(11/13) 2178307105571882 a001 377/1364*2537720636^(11/15) 2178307105571882 a001 377/1364*45537549124^(11/17) 2178307105571882 a001 377/1364*312119004989^(3/5) 2178307105571882 a001 377/1364*14662949395604^(11/21) 2178307105571882 a001 377/1364*(1/2+1/2*5^(1/2))^33 2178307105571882 a001 377/1364*192900153618^(11/18) 2178307105571882 a001 377/1364*10749957122^(11/16) 2178307105571882 a001 377/1364*1568397607^(3/4) 2178307105571882 a001 377/1364*599074578^(11/14) 2178307105571884 a001 377/1364*33385282^(11/12) 2178307105575566 a001 610/843*(1/2+1/2*5^(1/2))^31 2178307105575566 a001 610/843*9062201101803^(1/2) 2178307110430420 m001 (BesselI(1,2)+Lehmer)/(Psi(1,1/3)+gamma(1)) 2178307112311213 k007 concat of cont frac of 2178307113060349 s002 sum(A247728[n]/((2*n+1)!),n=1..infinity) 2178307116286615 r005 Im(z^2+c),c=-16/29+9/23*I,n=64 2178307124183182 m001 Pi/Psi(1,1/3)-sin(1)/BesselI(1,2) 2178307127794603 m005 (4*Pi-1/4)/(23/10+3/2*5^(1/2)) 2178307129685812 m001 1/ln(Zeta(5))^2*CareFree^2*gamma 2178307130291682 l006 ln(670/5917) 2178307130757640 r005 Im(z^2+c),c=-43/48+7/36*I,n=58 2178307134102675 a007 Real Root Of -475*x^4+606*x^3+554*x^2+309*x-7 2178307138572821 a001 7778742049/15127*521^(3/13) 2178307139644857 k001 Champernowne real with 893*n+1285 2178307140477440 m005 (1/2*Catalan+4/9)/(1/11*2^(1/2)+2/7) 2178307143530535 r002 22th iterates of z^2 + 2178307146703433 a001 20365011074/39603*521^(3/13) 2178307147889673 a001 53316291173/103682*521^(3/13) 2178307148062743 a001 139583862445/271443*521^(3/13) 2178307148087994 a001 365435296162/710647*521^(3/13) 2178307148091678 a001 956722026041/1860498*521^(3/13) 2178307148092216 a001 2504730781961/4870847*521^(3/13) 2178307148092294 a001 6557470319842/12752043*521^(3/13) 2178307148092313 a001 10610209857723/20633239*521^(3/13) 2178307148092342 a001 4052739537881/7881196*521^(3/13) 2178307148092548 a001 1548008755920/3010349*521^(3/13) 2178307148093955 a001 514229*521^(3/13) 2178307148103600 a001 225851433717/439204*521^(3/13) 2178307148169707 a001 86267571272/167761*521^(3/13) 2178307148622810 a001 32951280099/64079*521^(3/13) 2178307151728428 a001 12586269025/24476*521^(3/13) 2178307153028679 m005 (1/2*2^(1/2)-7/12)/(3/4*Zeta(3)-1/3) 2178307157076242 m002 6+(18*Coth[Pi])/Log[Pi] 2178307165891813 r005 Re(z^2+c),c=4/21+2/25*I,n=19 2178307171441244 m001 exp(Lehmer)^2/FibonacciFactorial^2*Zeta(9) 2178307173014646 a001 4807526976/9349*521^(3/13) 2178307173819521 r005 Im(z^2+c),c=-30/29+1/43*I,n=12 2178307197707885 r005 Re(z^2+c),c=-107/122+17/61*I,n=4 2178307199873168 r008 a(0)=0,K{-n^6,4-96*n^3-9*n^2+55*n} 2178307201369655 a007 Real Root Of 899*x^4+237*x^3+997*x^2+128*x-19 2178307203050513 r009 Re(z^3+c),c=-5/36+41/54*I,n=44 2178307209804829 r009 Re(z^3+c),c=-43/118+7/13*I,n=45 2178307214567676 r002 39th iterates of z^2 + 2178307225852168 a007 Real Root Of -492*x^4-716*x^3+874*x^2+170*x-100 2178307232810002 m005 (-11/36+1/4*5^(1/2))/(2/3+2/9*5^(1/2)) 2178307234696530 a007 Real Root Of -212*x^4+938*x^3-425*x^2+872*x-179 2178307239416482 l006 ln(5473/6805) 2178307239664860 k001 Champernowne real with 894*n+1284 2178307240844064 m001 (-BesselI(0,2)+1/2)/(-ln(2+sqrt(3))+1/2) 2178307243988529 r008 a(0)=0,K{-n^6,14-88*n^3-28*n^2+56*n} 2178307248431980 a001 34111385/281*843^(3/7) 2178307249215982 a001 1762289/161*322^(11/12) 2178307255432668 r009 Re(z^3+c),c=-39/86+22/47*I,n=12 2178307286721794 p001 sum((-1)^n/(549*n+457)/(100^n),n=0..infinity) 2178307288652189 b008 Csch[PolyGamma[2,2+Pi]] 2178307289306982 m005 (1/2*3^(1/2)-5)/(9/10*2^(1/2)+5/8) 2178307290780029 m008 (1/6*Pi^3+5)/(1/6*Pi^3-1/2) 2178307291960713 r005 Re(z^2+c),c=-2/15+29/55*I,n=22 2178307292023501 r009 Im(z^3+c),c=-13/114+48/55*I,n=64 2178307294247914 a007 Real Root Of -244*x^4-188*x^3+907*x^2+433*x+190 2178307297574749 a007 Real Root Of 288*x^4+865*x^3+859*x^2+755*x+25 2178307299905908 r005 Im(z^2+c),c=-7/26+32/49*I,n=25 2178307301361426 h001 (1/7*exp(2)+1/5)/(3/4*exp(2)+2/9) 2178307306508079 a005 (1/cos(9/160*Pi))^343 2178307318181477 a001 1836311903/2207*521^(2/13) 2178307318912569 a001 1836311903/3571*521^(3/13) 2178307339684863 k001 Champernowne real with 895*n+1283 2178307345521005 r005 Re(z^2+c),c=-81/110+9/47*I,n=40 2178307349039455 m001 (GAMMA(3/4)-sin(1))/(-Tribonacci+ZetaP(4)) 2178307351937623 m001 LambertW(1)^2/exp(Trott)^2/Zeta(3)^2 2178307365239787 r005 Re(z^2+c),c=-3/20+19/39*I,n=37 2178307369804915 a007 Real Root Of -594*x^4-666*x^3+903*x^2-754*x+563 2178307376758744 r005 Im(z^2+c),c=-75/118+2/49*I,n=55 2178307381966011 a001 4356617/2-1/2*5^(1/2) 2178307381967213 a001 1328767503/610 2178307386270844 r008 a(0)=0,K{-n^6,58-67*n^3-69*n^2+32*n} 2178307388438215 m003 -13/4+Cosh[1/2+Sqrt[5]/2]+Tan[1/2+Sqrt[5]/2] 2178307389102752 m001 (Ei(1)*Riemann2ndZero+3^(1/3))/Ei(1) 2178307391458371 r005 Im(z^2+c),c=-57/118+1/24*I,n=12 2178307407542239 m005 (1/2*3^(1/2)+1/10)/(7/10*5^(1/2)-6) 2178307408660099 a007 Real Root Of 734*x^4-287*x^3-883*x^2-605*x+175 2178307415566974 a007 Real Root Of 773*x^4-729*x^3-958*x^2-614*x+185 2178307417681310 r005 Re(z^2+c),c=-1/19+32/59*I,n=12 2178307418204014 l006 ln(587/5184) 2178307420314666 a007 Real Root Of 621*x^4-703*x^3-744*x^2-798*x+215 2178307426371060 m001 Zeta(1,2)^CareFree-Porter 2178307430192245 r005 Re(z^2+c),c=-17/30+37/97*I,n=7 2178307430546375 a007 Real Root Of -259*x^4+207*x^3+387*x^2+765*x+151 2178307439704866 k001 Champernowne real with 896*n+1282 2178307446127608 a007 Real Root Of -396*x^4-202*x^3-208*x^2+844*x-171 2178307456327242 m001 1/ln(Pi)/LambertW(1)*sqrt(2) 2178307456327242 m001 2^(1/2)/LambertW(1)/ln(Pi) 2178307456327242 m001 sqrt(2)/LambertW(1)/ln(Pi) 2178307458668769 r005 Im(z^2+c),c=-14/31+2/57*I,n=13 2178307460021079 a001 5702887/2207*1364^(14/15) 2178307466753384 m001 (LaplaceLimit+Trott)/(exp(1)+Artin) 2178307467377917 a001 63245986/843*843^(1/2) 2178307467686843 m001 GlaisherKinkelin^2*ln(DuboisRaymond)*cos(Pi/5) 2178307470847727 m005 (1/6*Pi-3/4)/(2/3+1/6*5^(1/2)) 2178307477375477 r002 15th iterates of z^2 + 2178307490196386 a007 Real Root Of 448*x^4+726*x^3-613*x^2-5*x+315 2178307504807004 m009 (1/5*Pi^2+1/4)/(1/2*Psi(1,3/4)-1/4) 2178307515685498 b008 -7*Pi+SphericalBesselY[0,2] 2178307519269336 r005 Im(z^2+c),c=-2/3+38/207*I,n=11 2178307526922927 g006 Psi(1,3/7)+Psi(1,1/4)+1/2*Pi^2-Psi(1,1/7) 2178307533564364 a007 Real Root Of 180*x^4+599*x^3+820*x^2+787*x-38 2178307538075757 a001 9227465/2207*1364^(13/15) 2178307539089821 a003 cos(Pi*7/103)/cos(Pi*17/35) 2178307539724869 k001 Champernowne real with 897*n+1281 2178307547049488 m003 -34/5+5*Tanh[1/2+Sqrt[5]/2] 2178307547996126 p004 log(35527/28573) 2178307549708640 r005 Re(z^2+c),c=-5/34+17/33*I,n=21 2178307554466387 r009 Re(z^3+c),c=-25/106+23/41*I,n=3 2178307563664665 h001 (-5*exp(3/2)-5)/(-4*exp(1/3)-7) 2178307569023318 m001 (Si(Pi)-gamma(1))/(-Bloch+FeigenbaumKappa) 2178307570102354 r005 Re(z^2+c),c=4/21+2/25*I,n=21 2178307575463960 r005 Im(z^2+c),c=-17/42+23/63*I,n=49 2178307577493729 a001 199/10946*6557470319842^(17/24) 2178307583804408 r005 Im(z^2+c),c=-43/64+10/49*I,n=23 2178307588392585 a007 Real Root Of 85*x^4+45*x^3-351*x^2-229*x-282 2178307588802415 m005 (1/2*gamma+3/11)/(8/11*exp(1)+3/5) 2178307595015395 l006 ln(1091/9635) 2178307599080901 a007 Real Root Of -16*x^4-354*x^3-117*x^2+88*x+887 2178307600248641 r005 Im(z^2+c),c=-33/38+10/57*I,n=49 2178307602035354 r005 Im(z^2+c),c=-19/34+2/51*I,n=42 2178307610476537 m001 (-FeigenbaumAlpha+Rabbit)/(Ei(1)-exp(1)) 2178307616130413 a001 14930352/2207*1364^(4/5) 2178307621106791 l006 ln(3850/4787) 2178307623894414 s001 sum(exp(-Pi/3)^(n-1)*A251106[n],n=1..infinity) 2178307631022697 a007 Real Root Of 606*x^4+857*x^3-741*x^2+612*x+63 2178307634005151 a007 Real Root Of 372*x^4+348*x^3-904*x^2+46*x-389 2178307635895414 a007 Real Root Of 498*x^4+970*x^3-696*x^2-757*x+467 2178307639235703 a003 sin(Pi*11/90)*sin(Pi*16/81) 2178307639744872 k001 Champernowne real with 898*n+1280 2178307643618832 m001 (Totient+ZetaP(4))^(5^(1/2)) 2178307645436119 a001 521/10946*28657^(19/51) 2178307646391483 m001 ((2^(1/3))-LambertW(1)*exp(-Pi))/LambertW(1) 2178307646391483 m001 (2^(1/3)-LambertW(1)*exp(-Pi))/LambertW(1) 2178307647766266 a001 5778/89*63245986^(17/24) 2178307654409547 a007 Real Root Of 382*x^4+765*x^3-118*x^2+425*x+792 2178307656956068 m001 1/cos(1)/exp(Kolakoski)^2/log(2+sqrt(3))^2 2178307657079587 a003 cos(Pi*4/71)/sin(Pi*10/67) 2178307658587957 a007 Real Root Of 196*x^4-19*x^3+288*x^2-398*x-101 2178307659032894 m005 (1/2*Catalan+3)/(5*Pi+1/6) 2178307663173841 r005 Re(z^2+c),c=-3/4+31/178*I,n=2 2178307666539649 a007 Real Root Of 320*x^4+561*x^3+96*x^2+745*x-239 2178307666869679 b008 LogGamma[(2/5)^(1/3)] 2178307671926112 m001 (AlladiGrinstead+KhinchinLevy)/(ln(2)-ln(5)) 2178307673708405 s001 sum(exp(-Pi/2)^(n-1)*A095670[n],n=1..infinity) 2178307684202376 a007 Real Root Of 36*x^4+17*x^3-280*x^2-324*x-12 2178307685539908 a001 1134903170/843*322^(1/12) 2178307686323875 a001 39088169/843*843^(4/7) 2178307686749969 m005 (1/2*Catalan-3/5)/(2/11*2^(1/2)-10/11) 2178307686827442 m001 (Zeta(1,-1)+Lehmer)/(ReciprocalLucas-ZetaQ(4)) 2178307689326792 r005 Im(z^2+c),c=-47/106+3/8*I,n=60 2178307691003458 r005 Im(z^2+c),c=-115/118+13/56*I,n=62 2178307694185081 a001 24157817/2207*1364^(11/15) 2178307699790612 r005 Re(z^2+c),c=-19/106+8/19*I,n=30 2178307700147182 a001 267084832/321*521^(2/13) 2178307701609758 a001 433494437/1364*521^(4/13) 2178307702589692 r005 Re(z^2+c),c=-1/4+17/22*I,n=9 2178307703155747 m001 (Zeta(1,-1)-exp(1))/(-MertensB3+ZetaQ(3)) 2178307704212219 m009 (5/6*Psi(1,3/4)-4)/(40*Catalan+5*Pi^2+2/5) 2178307708128120 k002 Champernowne real with 86*n^2-201*n+136 2178307708353201 m001 Magata/exp(FeigenbaumDelta)/Porter 2178307729315804 m004 5+5*Pi+Cos[Sqrt[5]*Pi]+Sin[Sqrt[5]*Pi]/2 2178307735429087 a001 1364*34^(11/14) 2178307739764875 k001 Champernowne real with 899*n+1279 2178307742355889 a007 Real Root Of -38*x^4-802*x^3+564*x^2+21*x-935 2178307742878366 r005 Re(z^2+c),c=37/102+5/31*I,n=39 2178307743945398 r004 Re(z^2+c),c=-11/42+1/12*I,z(0)=-1,n=14 2178307754579244 r009 Re(z^3+c),c=-3/8+31/54*I,n=39 2178307755875238 a001 12586269025/15127*521^(2/13) 2178307756942825 r005 Im(z^2+c),c=-33/106+19/56*I,n=13 2178307759168711 m002 2*Csch[Pi]+6*Sech[Pi]^2 2178307760947146 r005 Im(z^2+c),c=5/24+3/23*I,n=7 2178307763934426 a001 664383868/305 2178307764005852 a001 10983760033/13201*521^(2/13) 2178307765192093 a001 43133785636/51841*521^(2/13) 2178307765365163 a001 75283811239/90481*521^(2/13) 2178307765390414 a001 591286729879/710647*521^(2/13) 2178307765394098 a001 832040*521^(2/13) 2178307765394635 a001 4052739537881/4870847*521^(2/13) 2178307765394714 a001 3536736619241/4250681*521^(2/13) 2178307765394762 a001 3278735159921/3940598*521^(2/13) 2178307765394967 a001 2504730781961/3010349*521^(2/13) 2178307765396375 a001 956722026041/1149851*521^(2/13) 2178307765406020 a001 182717648081/219602*521^(2/13) 2178307765472126 a001 139583862445/167761*521^(2/13) 2178307765925230 a001 53316291173/64079*521^(2/13) 2178307766638434 r009 Im(z^3+c),c=-47/114+6/41*I,n=2 2178307767316451 m001 polylog(4,1/2)/cos(1)/GAMMA(5/24) 2178307767819425 r005 Im(z^2+c),c=-83/122+3/19*I,n=23 2178307768875459 a007 Real Root Of -379*x^4-110*x^3-875*x^2+256*x+97 2178307769030848 a001 10182505537/12238*521^(2/13) 2178307770758544 r005 Im(z^2+c),c=-3/19+5/17*I,n=6 2178307772239749 a001 39088169/2207*1364^(2/3) 2178307774454480 r009 Im(z^3+c),c=-19/78+9/46*I,n=6 2178307780556820 r005 Re(z^2+c),c=17/56+7/34*I,n=47 2178307781303371 r005 Re(z^2+c),c=-101/102+17/64*I,n=36 2178307781922460 r002 18th iterates of z^2 + 2178307785379050 s002 sum(A062442[n]/((2^n+1)/n),n=1..infinity) 2178307790317073 a001 7778742049/9349*521^(2/13) 2178307800944485 l006 ln(504/4451) 2178307801022854 m001 1/GAMMA(1/6)^2*Cahen*exp(sinh(1))^2 2178307806687837 m006 (4/Pi+3)/(5/6*exp(Pi)+1/3) 2178307807003966 m005 (1/2*Catalan+9/11)/(1/10*2^(1/2)-8/11) 2178307808374171 m002 -4-Pi^4+Pi^5+Log[Pi]*Sinh[Pi] 2178307812058408 m005 (1/2*exp(1)-4/9)/(7/10*Pi+2) 2178307818519613 h001 (-8*exp(3)+1)/(-5*exp(5)+9) 2178307819672131 a001 132876777/61 2178307819914955 r005 Re(z^2+c),c=-1/12+27/46*I,n=45 2178307827868852 a001 265753555/122 2178307829180327 a001 1/305*(1/2+1/2*5^(1/2))^47 2178307829361880 m005 (1/2*2^(1/2)+2/5)/(11/12*exp(1)-3) 2178307829508196 a001 664383888/305 2178307832786885 a001 664383889/305 2178307839784878 k001 Champernowne real with 900*n+1278 2178307841986820 a001 2584*1364^(14/15) 2178307845005968 r002 51th iterates of z^2 + 2178307845794872 m001 gamma+cos(1/12*Pi)+HardyLittlewoodC3 2178307850294420 a001 63245986/2207*1364^(3/5) 2178307854098360 a001 1328767791/610 2178307854386612 r005 Im(z^2+c),c=-53/90+19/44*I,n=63 2178307864677477 p003 LerchPhi(1/16,5,319/235) 2178307865483149 a007 Real Root Of -21*x^4-413*x^3+923*x^2-988*x-102 2178307872515054 a007 Real Root Of 19*x^4+403*x^3-219*x^2+399*x+166 2178307874264292 h001 (7/9*exp(2)+7/10)/(4/11*exp(2)+3/11) 2178307877787901 m001 1/ln(BesselK(0,1))*Niven^2/cosh(1) 2178307877906281 p003 LerchPhi(1/10,2,101/46) 2178307881291740 a001 843/13*832040^(4/45) 2178307888207760 a007 Real Root Of -83*x^4+257*x^3+537*x^2-808*x+217 2178307888283140 r002 26th iterates of z^2 + 2178307897380843 r005 Re(z^2+c),c=-5/31+25/54*I,n=46 2178307897714882 a001 39088169/15127*1364^(14/15) 2178307898119112 m001 (Psi(1,1/3)+Grothendieck)/(-Kolakoski+Totient) 2178307902129850 s002 sum(A261893[n]/(2^n+1),n=1..infinity) 2178307905072409 r005 Im(z^2+c),c=-33/64+25/61*I,n=45 2178307905269857 a001 24157817/843*843^(9/14) 2178307905845497 a001 34111385/13201*1364^(14/15) 2178307907031737 a001 133957148/51841*1364^(14/15) 2178307907204807 a001 233802911/90481*1364^(14/15) 2178307907230058 a001 1836311903/710647*1364^(14/15) 2178307907233742 a001 267084832/103361*1364^(14/15) 2178307907234280 a001 12586269025/4870847*1364^(14/15) 2178307907234358 a001 10983760033/4250681*1364^(14/15) 2178307907234369 a001 43133785636/16692641*1364^(14/15) 2178307907234371 a001 75283811239/29134601*1364^(14/15) 2178307907234371 a001 591286729879/228826127*1364^(14/15) 2178307907234371 a001 86000486440/33281921*1364^(14/15) 2178307907234371 a001 4052739537881/1568397607*1364^(14/15) 2178307907234371 a001 3536736619241/1368706081*1364^(14/15) 2178307907234371 a001 3278735159921/1268860318*1364^(14/15) 2178307907234371 a001 2504730781961/969323029*1364^(14/15) 2178307907234371 a001 956722026041/370248451*1364^(14/15) 2178307907234371 a001 182717648081/70711162*1364^(14/15) 2178307907234372 a001 139583862445/54018521*1364^(14/15) 2178307907234376 a001 53316291173/20633239*1364^(14/15) 2178307907234406 a001 10182505537/3940598*1364^(14/15) 2178307907234612 a001 7778742049/3010349*1364^(14/15) 2178307907236019 a001 2971215073/1149851*1364^(14/15) 2178307907245664 a001 567451585/219602*1364^(14/15) 2178307907311771 a001 433494437/167761*1364^(14/15) 2178307907764874 a001 165580141/64079*1364^(14/15) 2178307908981351 r009 Re(z^3+c),c=-29/82+20/39*I,n=31 2178307910870493 a001 31622993/12238*1364^(14/15) 2178307916162157 a007 Real Root Of -266*x^4-767*x^3-341*x^2+346*x+433 2178307920041496 a001 24157817/5778*1364^(13/15) 2178307926505426 m005 (1/3*3^(1/2)+3/5)/(6*Catalan-1/11) 2178307928349094 a001 102334155/2207*1364^(8/15) 2178307932156719 a001 24157817/9349*1364^(14/15) 2178307935483945 a001 2971215073/2207*521^(1/13) 2178307936215037 a001 2971215073/3571*521^(2/13) 2178307939804881 k001 Champernowne real with 901*n+1277 2178307941748605 r005 Re(z^2+c),c=5/19+6/35*I,n=20 2178307945875347 r002 39th iterates of z^2 + 2178307954869717 h001 (7/8*exp(1)+9/10)/(1/11*exp(2)+5/6) 2178307957078070 m001 Pi*csc(1/24*Pi)/GAMMA(23/24)-ln(Pi)*Porter 2178307958559054 s002 sum(A252732[n]/(n^3*exp(n)+1),n=1..infinity) 2178307964571492 m001 BesselI(1,2)*GAMMA(19/24)^ReciprocalLucas 2178307964860449 l006 ln(6077/7556) 2178307967449897 m005 (2*2^(1/2)-1/5)/(4*Pi-1/2) 2178307975769558 a001 63245986/15127*1364^(13/15) 2178307977038612 m004 5+Sqrt[5]*Pi+(100*Pi)/ProductLog[Sqrt[5]*Pi] 2178307977548003 a007 Real Root Of -33*x^4-737*x^3-396*x^2+13*x+499 2178307980562594 a007 Real Root Of 227*x^4+234*x^3-544*x^2+202*x+329 2178307983900173 a001 165580141/39603*1364^(13/15) 2178307985086413 a001 433494437/103682*1364^(13/15) 2178307985259484 a001 1134903170/271443*1364^(13/15) 2178307985284734 a001 2971215073/710647*1364^(13/15) 2178307985288418 a001 7778742049/1860498*1364^(13/15) 2178307985288956 a001 20365011074/4870847*1364^(13/15) 2178307985289034 a001 53316291173/12752043*1364^(13/15) 2178307985289046 a001 139583862445/33385282*1364^(13/15) 2178307985289047 a001 365435296162/87403803*1364^(13/15) 2178307985289047 a001 956722026041/228826127*1364^(13/15) 2178307985289047 a001 2504730781961/599074578*1364^(13/15) 2178307985289047 a001 6557470319842/1568397607*1364^(13/15) 2178307985289047 a001 10610209857723/2537720636*1364^(13/15) 2178307985289047 a001 4052739537881/969323029*1364^(13/15) 2178307985289047 a001 1548008755920/370248451*1364^(13/15) 2178307985289048 a001 591286729879/141422324*1364^(13/15) 2178307985289048 a001 225851433717/54018521*1364^(13/15) 2178307985289053 a001 86267571272/20633239*1364^(13/15) 2178307985289083 a001 32951280099/7881196*1364^(13/15) 2178307985289288 a001 12586269025/3010349*1364^(13/15) 2178307985290695 a001 4807526976/1149851*1364^(13/15) 2178307985300340 a001 1836311903/439204*1364^(13/15) 2178307985366447 a001 701408733/167761*1364^(13/15) 2178307985819550 a001 267914296/64079*1364^(13/15) 2178307988925169 a001 102334155/24476*1364^(13/15) 2178307992337750 r005 Im(z^2+c),c=9/32+2/35*I,n=28 2178307992507672 r005 Re(z^2+c),c=-11/70+17/36*I,n=35 2178307992762407 r009 Im(z^3+c),c=-47/110+1/11*I,n=40 2178307995420705 r005 Re(z^2+c),c=33/94+17/49*I,n=4 2178307998096172 a001 39088169/5778*1364^(4/5) 2178308000000332 a001 1346267/2+1346269/2*5^(1/2) 2178308002211132 a007 Real Root Of -354*x^4-821*x^3-686*x^2-962*x+644 2178308006403771 a001 165580141/2207*1364^(7/15) 2178308007925050 a003 sin(Pi*16/51)/cos(Pi*3/8) 2178308010211395 a001 4181*1364^(13/15) 2178308027015347 a007 Real Root Of -571*x^4-606*x^3+879*x^2-929*x+398 2178308036491832 m001 1/GAMMA(1/24)^2/exp(Trott)^2*GAMMA(3/4) 2178308039824884 k001 Champernowne real with 902*n+1276 2178308042742198 m001 FeigenbaumAlpha/(ZetaR(2)^gamma(1)) 2178308043829444 l006 ln(925/8169) 2178308047462839 m001 ErdosBorwein-Cahen-Pi 2178308050402076 r009 Re(z^3+c),c=-15/44+25/52*I,n=23 2178308053824236 a001 6765*1364^(4/5) 2178308058485215 r005 Im(z^2+c),c=6/17+29/49*I,n=12 2178308061954851 a001 267914296/39603*1364^(4/5) 2178308062574204 r009 Re(z^3+c),c=-29/86+8/17*I,n=32 2178308063141092 a001 701408733/103682*1364^(4/5) 2178308063314162 a001 1836311903/271443*1364^(4/5) 2178308063339413 a001 686789568/101521*1364^(4/5) 2178308063343097 a001 12586269025/1860498*1364^(4/5) 2178308063343635 a001 32951280099/4870847*1364^(4/5) 2178308063343713 a001 86267571272/12752043*1364^(4/5) 2178308063343724 a001 32264490531/4769326*1364^(4/5) 2178308063343726 a001 591286729879/87403803*1364^(4/5) 2178308063343726 a001 1548008755920/228826127*1364^(4/5) 2178308063343726 a001 4052739537881/599074578*1364^(4/5) 2178308063343726 a001 1515744265389/224056801*1364^(4/5) 2178308063343726 a001 6557470319842/969323029*1364^(4/5) 2178308063343726 a001 2504730781961/370248451*1364^(4/5) 2178308063343726 a001 956722026041/141422324*1364^(4/5) 2178308063343727 a001 365435296162/54018521*1364^(4/5) 2178308063343731 a001 139583862445/20633239*1364^(4/5) 2178308063343761 a001 53316291173/7881196*1364^(4/5) 2178308063343967 a001 20365011074/3010349*1364^(4/5) 2178308063345374 a001 7778742049/1149851*1364^(4/5) 2178308063355019 a001 2971215073/439204*1364^(4/5) 2178308063421126 a001 1134903170/167761*1364^(4/5) 2178308063874229 a001 433494437/64079*1364^(4/5) 2178308066979848 a001 165580141/24476*1364^(4/5) 2178308076067113 a007 Real Root Of -2*x^4-44*x^3-30*x^2-457*x-204 2178308076150852 a001 31622993/2889*1364^(11/15) 2178308076736383 m001 (Backhouse-ZetaP(4))/(cos(1/5*Pi)-3^(1/3)) 2178308078054697 a001 9227465/3571*1364^(14/15) 2178308082383004 m005 (1/2*gamma-2/7)/(7/8*2^(1/2)+1/11) 2178308084458451 a001 267914296/2207*1364^(2/5) 2178308087014157 m001 Ei(1)*Pi*csc(1/12*Pi)/GAMMA(11/12)+gamma(2) 2178308088266076 a001 63245986/9349*1364^(4/5) 2178308093272083 a007 Real Root Of -459*x^4-450*x^3+770*x^2-637*x+642 2178308102980295 m001 1/Salem^2*KhintchineLevy^2*exp(FeigenbaumD)^2 2178308105573084 a001 987/2207*(1/2+1/2*5^(1/2))^32 2178308105573084 a001 987/2207*23725150497407^(1/2) 2178308105573084 a001 987/2207*505019158607^(4/7) 2178308105573084 a001 987/2207*73681302247^(8/13) 2178308105573084 a001 987/2207*10749957122^(2/3) 2178308105573084 a001 987/2207*4106118243^(16/23) 2178308105573084 a001 987/2207*1568397607^(8/11) 2178308105573084 a001 987/2207*599074578^(16/21) 2178308105573084 a001 987/2207*228826127^(4/5) 2178308105573084 a001 987/2207*87403803^(16/19) 2178308105573086 a001 987/2207*33385282^(8/9) 2178308105573097 a001 987/2207*12752043^(16/17) 2178308113759911 a007 Real Root Of -810*x^4+327*x^3+770*x^2+679*x-186 2178308116434127 m005 (1/3*3^(1/2)-1/3)/(1/9*exp(1)+9/11) 2178308119912817 a007 Real Root Of 329*x^4-758*x^3-275*x^2-879*x-187 2178308124215858 a001 4976784/281*843^(5/7) 2178308125963328 r009 Im(z^3+c),c=-17/122+12/55*I,n=6 2178308130014197 m005 (7/24+1/6*5^(1/2))/(9/11*Catalan-4/9) 2178308131878918 a001 165580141/15127*1364^(11/15) 2178308134308152 r005 Re(z^2+c),c=-29/102+3/5*I,n=36 2178308139844887 k001 Champernowne real with 903*n+1275 2178308140009533 a001 433494437/39603*1364^(11/15) 2178308141195774 a001 567451585/51841*1364^(11/15) 2178308141368844 a001 2971215073/271443*1364^(11/15) 2178308141394095 a001 7778742049/710647*1364^(11/15) 2178308141397779 a001 10182505537/930249*1364^(11/15) 2178308141398316 a001 53316291173/4870847*1364^(11/15) 2178308141398395 a001 139583862445/12752043*1364^(11/15) 2178308141398406 a001 182717648081/16692641*1364^(11/15) 2178308141398408 a001 956722026041/87403803*1364^(11/15) 2178308141398408 a001 2504730781961/228826127*1364^(11/15) 2178308141398408 a001 3278735159921/299537289*1364^(11/15) 2178308141398408 a001 10610209857723/969323029*1364^(11/15) 2178308141398408 a001 4052739537881/370248451*1364^(11/15) 2178308141398408 a001 387002188980/35355581*1364^(11/15) 2178308141398409 a001 591286729879/54018521*1364^(11/15) 2178308141398413 a001 7787980473/711491*1364^(11/15) 2178308141398443 a001 21566892818/1970299*1364^(11/15) 2178308141398648 a001 32951280099/3010349*1364^(11/15) 2178308141400056 a001 12586269025/1149851*1364^(11/15) 2178308141409700 a001 1201881744/109801*1364^(11/15) 2178308141475807 a001 1836311903/167761*1364^(11/15) 2178308141928911 a001 701408733/64079*1364^(11/15) 2178308145034530 a001 10946*1364^(11/15) 2178308146184518 a007 Real Root Of 225*x^4+330*x^3-566*x^2-301*x+375 2178308150215522 m003 -239/10+Sqrt[5]/2+Sin[1/2+Sqrt[5]/2] 2178308154205534 a001 34111385/1926*1364^(2/3) 2178308155441674 r002 13th iterates of z^2 + 2178308156109373 a001 14930352/3571*1364^(13/15) 2178308162513133 a001 433494437/2207*1364^(1/3) 2178308162935380 m001 1/cos(1)/FeigenbaumDelta*ln(gamma) 2178308162935380 m001 ln(gamma)/cos(1)/FeigenbaumDelta 2178308162935380 m001 log(gamma)/cos(1)/FeigenbaumDelta 2178308166320758 a001 102334155/9349*1364^(11/15) 2178308172211910 r005 Re(z^2+c),c=-29/114+3/47*I,n=3 2178308173521304 r005 Im(z^2+c),c=-69/110+2/57*I,n=31 2178308174683278 r005 Im(z^2+c),c=-97/110+8/35*I,n=10 2178308177281685 m001 ZetaP(2)^Weierstrass/(ZetaP(2)^Backhouse) 2178308182844077 a007 Real Root Of -140*x^4-265*x^3+169*x^2+588*x+892 2178308184348205 m008 (2*Pi^4+5)/(3*Pi^5-3/4) 2178308193429534 a007 Real Root Of 450*x^4+519*x^3-521*x^2+624*x-936 2178308194402797 r005 Im(z^2+c),c=-9/58+17/58*I,n=19 2178308200939597 r005 Re(z^2+c),c=1/98+22/37*I,n=16 2178308209933602 a001 267914296/15127*1364^(2/3) 2178308214563763 a001 199/3*63245986^(11/19) 2178308216447648 a007 Real Root Of -436*x^4-486*x^3+399*x^2-948*x+835 2178308218064218 a001 17711*1364^(2/3) 2178308219250458 a001 1836311903/103682*1364^(2/3) 2178308219423529 a001 1602508992/90481*1364^(2/3) 2178308219448779 a001 12586269025/710647*1364^(2/3) 2178308219452463 a001 10983760033/620166*1364^(2/3) 2178308219453001 a001 86267571272/4870847*1364^(2/3) 2178308219453079 a001 75283811239/4250681*1364^(2/3) 2178308219453091 a001 591286729879/33385282*1364^(2/3) 2178308219453092 a001 516002918640/29134601*1364^(2/3) 2178308219453093 a001 4052739537881/228826127*1364^(2/3) 2178308219453093 a001 3536736619241/199691526*1364^(2/3) 2178308219453093 a001 6557470319842/370248451*1364^(2/3) 2178308219453093 a001 2504730781961/141422324*1364^(2/3) 2178308219453093 a001 956722026041/54018521*1364^(2/3) 2178308219453098 a001 365435296162/20633239*1364^(2/3) 2178308219453128 a001 139583862445/7881196*1364^(2/3) 2178308219453333 a001 53316291173/3010349*1364^(2/3) 2178308219454740 a001 20365011074/1149851*1364^(2/3) 2178308219464385 a001 7778742049/439204*1364^(2/3) 2178308219530492 a001 2971215073/167761*1364^(2/3) 2178308219712740 m001 FeigenbaumKappa^2*ln(Conway)/sqrt(5) 2178308219983596 a001 1134903170/64079*1364^(2/3) 2178308223089215 a001 433494437/24476*1364^(2/3) 2178308227714189 r005 Re(z^2+c),c=-11/98+13/24*I,n=26 2178308231184204 a007 Real Root Of 560*x^4+924*x^3-704*x^2-31*x+215 2178308231509003 p004 log(23041/2609) 2178308232260219 a001 165580141/5778*1364^(3/5) 2178308234164060 a001 24157817/3571*1364^(4/5) 2178308239864890 k001 Champernowne real with 904*n+1274 2178308240567819 a001 701408733/2207*1364^(4/15) 2178308244375443 a001 165580141/9349*1364^(2/3) 2178308254161679 r005 Re(z^2+c),c=4/21+2/25*I,n=22 2178308264562880 m001 (ArtinRank2+Cahen)/(GolombDickman-ZetaQ(3)) 2178308268507316 m005 (1/2*3^(1/2)+4/9)/(7/9*Zeta(3)-1/3) 2178308271308572 r005 Re(z^2+c),c=-41/30+6/31*I,n=4 2178308275614268 m001 (Chi(1)-Shi(1))/(FeigenbaumB+ZetaP(3)) 2178308275614268 m001 Ei(1,1)/(FeigenbaumB+ZetaP(3)) 2178308287558443 m001 (Psi(2,1/3)+sin(1/5*Pi))/(-Otter+ZetaP(2)) 2178308287988289 a001 433494437/15127*1364^(3/5) 2178308289126778 r005 Re(z^2+c),c=-5/31+25/54*I,n=48 2178308296118905 a001 1134903170/39603*1364^(3/5) 2178308296641876 r009 Re(z^3+c),c=-39/106+29/53*I,n=58 2178308297305146 a001 2971215073/103682*1364^(3/5) 2178308297478216 a001 7778742049/271443*1364^(3/5) 2178308297503467 a001 20365011074/710647*1364^(3/5) 2178308297507151 a001 53316291173/1860498*1364^(3/5) 2178308297507688 a001 139583862445/4870847*1364^(3/5) 2178308297507766 a001 365435296162/12752043*1364^(3/5) 2178308297507778 a001 956722026041/33385282*1364^(3/5) 2178308297507780 a001 2504730781961/87403803*1364^(3/5) 2178308297507780 a001 6557470319842/228826127*1364^(3/5) 2178308297507780 a001 10610209857723/370248451*1364^(3/5) 2178308297507780 a001 4052739537881/141422324*1364^(3/5) 2178308297507781 a001 1548008755920/54018521*1364^(3/5) 2178308297507785 a001 591286729879/20633239*1364^(3/5) 2178308297507815 a001 225851433717/7881196*1364^(3/5) 2178308297508020 a001 86267571272/3010349*1364^(3/5) 2178308297509427 a001 32951280099/1149851*1364^(3/5) 2178308297519072 a001 12586269025/439204*1364^(3/5) 2178308297585179 a001 4807526976/167761*1364^(3/5) 2178308298038283 a001 28657*1364^(3/5) 2178308301143902 a001 701408733/24476*1364^(3/5) 2178308301170751 m005 (1/2*gamma-3/11)/(31/11+2*5^(1/2)) 2178308310314906 a001 133957148/2889*1364^(8/15) 2178308312218747 a001 39088169/3571*1364^(11/15) 2178308316001731 a007 Real Root Of -628*x^4-91*x^3+757*x^2+989*x-249 2178308317449758 a001 7778742049/5778*521^(1/13) 2178308318622507 a001 1134903170/2207*1364^(1/5) 2178308318912335 a001 701408733/1364*521^(3/13) 2178308320730600 a007 Real Root Of 136*x^4+287*x^3+257*x^2+780*x+384 2178308322370770 a007 Real Root Of 238*x^4+101*x^3-683*x^2+358*x-294 2178308322430132 a001 267914296/9349*1364^(3/5) 2178308330904043 m001 (PlouffeB+Trott2nd)/(Pi-FeigenbaumB) 2178308334599007 l006 ln(421/3718) 2178308338332495 a001 1/89*233^(31/57) 2178308339884893 k001 Champernowne real with 905*n+1273 2178308343161890 a001 9227465/843*843^(11/14) 2178308358968255 s002 sum(A055680[n]/(16^n-1),n=1..infinity) 2178308361764563 a007 Real Root Of 561*x^4+928*x^3-448*x^2+490*x+154 2178308366042978 a001 701408733/15127*1364^(8/15) 2178308373177830 a001 20365011074/15127*521^(1/13) 2178308373349698 s002 sum(A115566[n]/(n*2^n-1),n=1..infinity) 2178308374173595 a001 1836311903/39603*1364^(8/15) 2178308375359836 a001 46368*1364^(8/15) 2178308375532906 a001 12586269025/271443*1364^(8/15) 2178308375558157 a001 32951280099/710647*1364^(8/15) 2178308375561841 a001 43133785636/930249*1364^(8/15) 2178308375562378 a001 225851433717/4870847*1364^(8/15) 2178308375562457 a001 591286729879/12752043*1364^(8/15) 2178308375562468 a001 774004377960/16692641*1364^(8/15) 2178308375562470 a001 4052739537881/87403803*1364^(8/15) 2178308375562470 a001 225749145909/4868641*1364^(8/15) 2178308375562470 a001 3278735159921/70711162*1364^(8/15) 2178308375562471 a001 2504730781961/54018521*1364^(8/15) 2178308375562475 a001 956722026041/20633239*1364^(8/15) 2178308375562505 a001 182717648081/3940598*1364^(8/15) 2178308375562710 a001 139583862445/3010349*1364^(8/15) 2178308375564117 a001 53316291173/1149851*1364^(8/15) 2178308375573762 a001 10182505537/219602*1364^(8/15) 2178308375639869 a001 7778742049/167761*1364^(8/15) 2178308375648447 a007 Real Root Of 360*x^4+263*x^3-683*x^2+966*x-42 2178308376092973 a001 2971215073/64079*1364^(8/15) 2178308379198592 a001 567451585/12238*1364^(8/15) 2178308381308447 a001 53316291173/39603*521^(1/13) 2178308381966186 a001 3478758486/1597 2178308382494688 a001 139583862445/103682*521^(1/13) 2178308382667758 a001 365435296162/271443*521^(1/13) 2178308382693008 a001 956722026041/710647*521^(1/13) 2178308382696692 a001 2504730781961/1860498*521^(1/13) 2178308382697230 a001 6557470319842/4870847*521^(1/13) 2178308382697357 a001 10610209857723/7881196*521^(1/13) 2178308382697562 a001 1346269*521^(1/13) 2178308382698969 a001 1548008755920/1149851*521^(1/13) 2178308382708614 a001 591286729879/439204*521^(1/13) 2178308382774721 a001 225851433717/167761*521^(1/13) 2178308383227825 a001 86267571272/64079*521^(1/13) 2178308385870324 a007 Real Root Of -324*x^4-427*x^3+270*x^2-753*x-40 2178308386333444 a001 32951280099/24476*521^(1/13) 2178308388369597 a001 433494437/5778*1364^(7/15) 2178308390273438 a001 63245986/3571*1364^(2/3) 2178308392014394 a001 987*3571^(16/17) 2178308392264225 r002 35th iterates of z^2 + 2178308396237335 m005 (1/3*exp(1)+2/9)/(91/18+1/18*5^(1/2)) 2178308396677198 a001 1836311903/2207*1364^(2/15) 2178308400484823 a001 433494437/9349*1364^(8/15) 2178308402062777 a001 3524578/2207*3571^(15/17) 2178308407619674 a001 12586269025/9349*521^(1/13) 2178308408331100 m005 (1/3*exp(1)+1/11)/(10/11*Catalan-3/8) 2178308411849227 a001 20633239/89*610^(17/24) 2178308412110984 a001 5702887/2207*3571^(14/17) 2178308412378151 m009 (3/5*Psi(1,2/3)-3/5)/(1/2*Pi^2+3/4) 2178308417874743 r005 Re(z^2+c),c=-7/30+9/32*I,n=5 2178308422159259 a001 9227465/2207*3571^(13/17) 2178308423142027 r005 Im(z^2+c),c=-61/60+11/50*I,n=11 2178308424303459 b008 1/2+E+Erfi[2] 2178308425975532 m001 (Sierpinski+Tetranacci)/(Zeta(5)+MertensB2) 2178308430983733 r004 Re(z^2+c),c=9/22+1/6*I,z(0)=exp(7/12*I*Pi),n=6 2178308432207508 a001 14930352/2207*3571^(12/17) 2178308433121371 m005 (13/36+1/4*5^(1/2))/(9/11*exp(1)+2) 2178308439904896 k001 Champernowne real with 906*n+1272 2178308442255767 a001 24157817/2207*3571^(11/17) 2178308444097671 a001 1134903170/15127*1364^(7/15) 2178308452228288 a001 2971215073/39603*1364^(7/15) 2178308452304022 a001 39088169/2207*3571^(10/17) 2178308453414529 a001 7778742049/103682*1364^(7/15) 2178308453587599 a001 20365011074/271443*1364^(7/15) 2178308453612849 a001 53316291173/710647*1364^(7/15) 2178308453616534 a001 139583862445/1860498*1364^(7/15) 2178308453617071 a001 365435296162/4870847*1364^(7/15) 2178308453617149 a001 956722026041/12752043*1364^(7/15) 2178308453617161 a001 2504730781961/33385282*1364^(7/15) 2178308453617163 a001 6557470319842/87403803*1364^(7/15) 2178308453617163 a001 10610209857723/141422324*1364^(7/15) 2178308453617164 a001 4052739537881/54018521*1364^(7/15) 2178308453617168 a001 140728068720/1875749*1364^(7/15) 2178308453617198 a001 591286729879/7881196*1364^(7/15) 2178308453617403 a001 225851433717/3010349*1364^(7/15) 2178308453618810 a001 86267571272/1149851*1364^(7/15) 2178308453628455 a001 32951280099/439204*1364^(7/15) 2178308453694562 a001 75025*1364^(7/15) 2178308454147666 a001 4807526976/64079*1364^(7/15) 2178308457253285 a001 1836311903/24476*1364^(7/15) 2178308459959135 m001 (5^(1/2)-Zeta(3))/(Magata+Totient) 2178308461118707 r002 31th iterates of z^2 + 2178308462352279 a001 63245986/2207*3571^(9/17) 2178308466424290 a001 233802911/1926*1364^(2/5) 2178308468328131 a001 102334155/3571*1364^(3/5) 2178308472400535 a001 102334155/2207*3571^(8/17) 2178308472547507 m004 2/5+E^(Sqrt[5]*Pi)+150*Sqrt[5]*Pi 2178308473246102 r005 Re(z^2+c),c=-4/23+23/53*I,n=40 2178308474731891 a001 2971215073/2207*1364^(1/15) 2178308477013831 r009 Re(z^3+c),c=-41/114+10/19*I,n=47 2178308478079279 a007 Real Root Of -477*x^4-791*x^3+222*x^2-760*x-145 2178308478539516 a001 701408733/9349*1364^(7/15) 2178308480636472 r009 Re(z^3+c),c=-1/42+2/11*I,n=5 2178308482448791 a001 165580141/2207*3571^(7/17) 2178308483431594 a007 Real Root Of 522*x^4+91*x^3+589*x^2-573*x-153 2178308484363207 a001 3/2*13^(8/55) 2178308487538927 a001 329/1926*45537549124^(2/3) 2178308487538927 a001 329/1926*(1/2+1/2*5^(1/2))^34 2178308487538927 a001 329/1926*10749957122^(17/24) 2178308487538927 a001 329/1926*4106118243^(17/23) 2178308487538927 a001 329/1926*1568397607^(17/22) 2178308487538927 a001 329/1926*599074578^(17/21) 2178308487538927 a001 329/1926*228826127^(17/20) 2178308487538927 a001 329/1926*87403803^(17/19) 2178308487538929 a001 329/1926*33385282^(17/18) 2178308487538985 a001 2584/2207*7881196^(10/11) 2178308487539012 a001 2584/2207*20633239^(6/7) 2178308487539017 a001 2584/2207*141422324^(10/13) 2178308487539017 a001 2584/2207*2537720636^(2/3) 2178308487539017 a001 2584/2207*45537549124^(10/17) 2178308487539017 a001 2584/2207*312119004989^(6/11) 2178308487539017 a001 2584/2207*14662949395604^(10/21) 2178308487539017 a001 2584/2207*(1/2+1/2*5^(1/2))^30 2178308487539017 a001 2584/2207*192900153618^(5/9) 2178308487539017 a001 2584/2207*28143753123^(3/5) 2178308487539017 a001 2584/2207*10749957122^(5/8) 2178308487539017 a001 2584/2207*4106118243^(15/23) 2178308487539017 a001 2584/2207*1568397607^(15/22) 2178308487539017 a001 2584/2207*599074578^(5/7) 2178308487539017 a001 2584/2207*228826127^(3/4) 2178308487539017 a001 2584/2207*87403803^(15/19) 2178308487539018 a001 2584/2207*33385282^(5/6) 2178308487539029 a001 2584/2207*12752043^(15/17) 2178308487539103 a001 2584/2207*4870847^(15/16) 2178308492174096 m001 Rabbit^Champernowne/BesselJ(1,1) 2178308492497048 a001 267914296/2207*3571^(6/17) 2178308494318418 b008 Pi*JacobiCD[1/2,-2] 2178308497252412 p001 sum(1/(543*n+473)/(16^n),n=0..infinity) 2178308498274559 a001 281/7*6765^(39/40) 2178308502545304 a001 433494437/2207*3571^(5/17) 2178308504874640 m005 (19/20+1/5*5^(1/2))/(2^(1/2)+5) 2178308505364726 a007 Real Root Of -337*x^4-489*x^3+305*x^2-763*x-576 2178308506741615 p001 sum((-1)^n/(225*n+148)/n/(12^n),n=1..infinity) 2178308509122409 r005 Re(z^2+c),c=-29/122+31/51*I,n=34 2178308512593561 a001 701408733/2207*3571^(4/17) 2178308522152366 a001 1836311903/15127*1364^(2/5) 2178308522641818 a001 1134903170/2207*3571^(3/17) 2178308527864147 a001 9107507955/4181 2178308529175307 a001 832040/2207*9349^(18/19) 2178308530282983 a001 1602508992/13201*1364^(2/5) 2178308530487879 a001 1346269/2207*9349^(17/19) 2178308530731283 r005 Re(z^2+c),c=-13/60+17/54*I,n=12 2178308531469224 a001 12586269025/103682*1364^(2/5) 2178308531642295 a001 121393*1364^(2/5) 2178308531667545 a001 86267571272/710647*1364^(2/5) 2178308531671229 a001 75283811239/620166*1364^(2/5) 2178308531671767 a001 591286729879/4870847*1364^(2/5) 2178308531671845 a001 516002918640/4250681*1364^(2/5) 2178308531671857 a001 4052739537881/33385282*1364^(2/5) 2178308531671858 a001 3536736619241/29134601*1364^(2/5) 2178308531671859 a001 6557470319842/54018521*1364^(2/5) 2178308531671864 a001 2504730781961/20633239*1364^(2/5) 2178308531671894 a001 956722026041/7881196*1364^(2/5) 2178308531672099 a001 365435296162/3010349*1364^(2/5) 2178308531673506 a001 139583862445/1149851*1364^(2/5) 2178308531683151 a001 53316291173/439204*1364^(2/5) 2178308531749258 a001 20365011074/167761*1364^(2/5) 2178308531799250 a001 987*9349^(16/19) 2178308532202362 a001 7778742049/64079*1364^(2/5) 2178308532690074 a001 1836311903/2207*3571^(2/17) 2178308533111080 a001 3524578/2207*9349^(15/19) 2178308534422734 a001 5702887/2207*9349^(14/19) 2178308535307981 a001 2971215073/24476*1364^(2/5) 2178308535373722 m005 (1/2*Catalan-3/4)/(8/11*exp(1)-7/11) 2178308535734456 a001 9227465/2207*9349^(13/19) 2178308537046151 a001 14930352/2207*9349^(12/19) 2178308538357857 a001 24157817/2207*9349^(11/19) 2178308539669559 a001 39088169/2207*9349^(10/19) 2178308539924899 k001 Champernowne real with 907*n+1271 2178308540981262 a001 63245986/2207*9349^(9/19) 2178308542292965 a001 102334155/2207*9349^(8/19) 2178308542738331 a001 2971215073/2207*3571^(1/17) 2178308543267003 a001 141/2161*141422324^(12/13) 2178308543267004 a001 141/2161*2537720636^(4/5) 2178308543267004 a001 141/2161*45537549124^(12/17) 2178308543267004 a001 141/2161*14662949395604^(4/7) 2178308543267004 a001 141/2161*(1/2+1/2*5^(1/2))^36 2178308543267004 a001 141/2161*505019158607^(9/14) 2178308543267004 a001 141/2161*192900153618^(2/3) 2178308543267004 a001 141/2161*73681302247^(9/13) 2178308543267004 a001 141/2161*10749957122^(3/4) 2178308543267004 a001 141/2161*4106118243^(18/23) 2178308543267004 a001 141/2161*1568397607^(9/11) 2178308543267004 a001 141/2161*599074578^(6/7) 2178308543267004 a001 141/2161*228826127^(9/10) 2178308543267004 a001 141/2161*87403803^(18/19) 2178308543267091 a001 6765/2207*20633239^(4/5) 2178308543267095 a001 6765/2207*17393796001^(4/7) 2178308543267095 a001 6765/2207*14662949395604^(4/9) 2178308543267095 a001 6765/2207*(1/2+1/2*5^(1/2))^28 2178308543267095 a001 6765/2207*505019158607^(1/2) 2178308543267095 a001 6765/2207*73681302247^(7/13) 2178308543267095 a001 6765/2207*10749957122^(7/12) 2178308543267095 a001 6765/2207*4106118243^(14/23) 2178308543267095 a001 6765/2207*1568397607^(7/11) 2178308543267095 a001 6765/2207*599074578^(2/3) 2178308543267095 a001 6765/2207*228826127^(7/10) 2178308543267096 a001 6765/2207*87403803^(14/19) 2178308543267097 a001 6765/2207*33385282^(7/9) 2178308543267106 a001 6765/2207*12752043^(14/17) 2178308543267176 a001 6765/2207*4870847^(7/8) 2178308543267683 a001 6765/2207*1860498^(14/15) 2178308543498866 r009 Re(z^3+c),c=-21/62+26/43*I,n=4 2178308543604668 a001 165580141/2207*9349^(7/19) 2178308544478986 a001 567451585/2889*1364^(1/3) 2178308544916370 a001 267914296/2207*9349^(6/19) 2178308546228073 a001 433494437/2207*9349^(5/19) 2178308546382828 a001 165580141/3571*1364^(8/15) 2178308547539776 a001 701408733/2207*9349^(4/19) 2178308548851479 a001 1134903170/2207*9349^(3/19) 2178308549150374 a001 23843765379/10946 2178308549319300 a001 317811/2207*24476^(20/21) 2178308549498410 a001 514229/2207*24476^(19/21) 2178308549669282 a001 832040/2207*24476^(6/7) 2178308549843300 a001 1346269/2207*24476^(17/21) 2178308550016117 a001 987*24476^(16/21) 2178308550163182 a001 1836311903/2207*9349^(2/19) 2178308550189392 a001 3524578/2207*24476^(5/7) 2178308550362493 a001 5702887/2207*24476^(2/3) 2178308550535660 a001 9227465/2207*24476^(13/21) 2178308550708801 a001 14930352/2207*24476^(4/7) 2178308550881953 a001 24157817/2207*24476^(11/21) 2178308551055100 a001 39088169/2207*24476^(10/21) 2178308551228250 a001 63245986/2207*24476^(3/7) 2178308551397621 a001 329/13201*817138163596^(2/3) 2178308551397621 a001 329/13201*(1/2+1/2*5^(1/2))^38 2178308551397621 a001 329/13201*10749957122^(19/24) 2178308551397621 a001 329/13201*4106118243^(19/23) 2178308551397621 a001 329/13201*1568397607^(19/22) 2178308551397621 a001 329/13201*599074578^(19/21) 2178308551397621 a001 329/13201*228826127^(19/20) 2178308551397712 a001 17711/2207*141422324^(2/3) 2178308551397712 a001 17711/2207*(1/2+1/2*5^(1/2))^26 2178308551397712 a001 17711/2207*73681302247^(1/2) 2178308551397712 a001 17711/2207*10749957122^(13/24) 2178308551397712 a001 17711/2207*4106118243^(13/23) 2178308551397712 a001 17711/2207*1568397607^(13/22) 2178308551397712 a001 17711/2207*599074578^(13/21) 2178308551397712 a001 17711/2207*228826127^(13/20) 2178308551397713 a001 17711/2207*87403803^(13/19) 2178308551397714 a001 17711/2207*33385282^(13/18) 2178308551397723 a001 17711/2207*12752043^(13/17) 2178308551397787 a001 17711/2207*4870847^(13/16) 2178308551398258 a001 17711/2207*1860498^(13/15) 2178308551401398 a001 102334155/2207*24476^(8/21) 2178308551401718 a001 17711/2207*710647^(13/14) 2178308551474885 a001 2971215073/2207*9349^(1/19) 2178308551574547 a001 165580141/2207*24476^(1/3) 2178308551747695 a001 267914296/2207*24476^(2/7) 2178308551920844 a001 433494437/2207*24476^(5/21) 2178308552093993 a001 701408733/2207*24476^(4/21) 2178308552249586 a001 121393/2207*64079^(22/23) 2178308552255993 a001 62423788182/28657 2178308552267142 a001 1134903170/2207*24476^(1/7) 2178308552313508 a001 196418/2207*64079^(21/23) 2178308552320967 a001 317811/2207*64079^(20/23) 2178308552349993 a001 514229/2207*64079^(19/23) 2178308552370782 a001 832040/2207*64079^(18/23) 2178308552394717 a001 1346269/2207*64079^(17/23) 2178308552417450 a001 987*64079^(16/23) 2178308552440290 a001 1836311903/2207*24476^(2/21) 2178308552440642 a001 3524578/2207*64079^(15/23) 2178308552463659 a001 5702887/2207*64079^(14/23) 2178308552486743 a001 9227465/2207*64079^(13/23) 2178308552509801 a001 14930352/2207*64079^(12/23) 2178308552532869 a001 24157817/2207*64079^(11/23) 2178308552555934 a001 39088169/2207*64079^(10/23) 2178308552573916 a001 46368/2207*439204^(8/9) 2178308552579000 a001 63245986/2207*64079^(9/23) 2178308552583862 a001 21/2206*2537720636^(8/9) 2178308552583862 a001 21/2206*312119004989^(8/11) 2178308552583862 a001 21/2206*(1/2+1/2*5^(1/2))^40 2178308552583862 a001 21/2206*23725150497407^(5/8) 2178308552583862 a001 21/2206*73681302247^(10/13) 2178308552583862 a001 21/2206*28143753123^(4/5) 2178308552583862 a001 21/2206*10749957122^(5/6) 2178308552583862 a001 21/2206*4106118243^(20/23) 2178308552583862 a001 21/2206*1568397607^(10/11) 2178308552583862 a001 21/2206*599074578^(20/21) 2178308552583928 a001 46368/2207*7881196^(8/11) 2178308552583953 a001 46368/2207*141422324^(8/13) 2178308552583953 a001 46368/2207*2537720636^(8/15) 2178308552583953 a001 46368/2207*45537549124^(8/17) 2178308552583953 a001 46368/2207*14662949395604^(8/21) 2178308552583953 a001 46368/2207*(1/2+1/2*5^(1/2))^24 2178308552583953 a001 46368/2207*192900153618^(4/9) 2178308552583953 a001 46368/2207*73681302247^(6/13) 2178308552583953 a001 46368/2207*10749957122^(1/2) 2178308552583953 a001 46368/2207*4106118243^(12/23) 2178308552583953 a001 46368/2207*1568397607^(6/11) 2178308552583953 a001 46368/2207*599074578^(4/7) 2178308552583953 a001 46368/2207*228826127^(3/5) 2178308552583954 a001 46368/2207*87403803^(12/19) 2178308552583955 a001 46368/2207*33385282^(2/3) 2178308552583963 a001 46368/2207*12752043^(12/17) 2178308552584022 a001 46368/2207*4870847^(3/4) 2178308552584457 a001 46368/2207*1860498^(4/5) 2178308552587651 a001 46368/2207*710647^(6/7) 2178308552602065 a001 102334155/2207*64079^(8/23) 2178308552611243 a001 46368/2207*271443^(12/13) 2178308552613439 a001 2971215073/2207*24476^(1/21) 2178308552625130 a001 165580141/2207*64079^(7/23) 2178308552648196 a001 267914296/2207*64079^(6/23) 2178308552671261 a001 433494437/2207*64079^(5/23) 2178308552694326 a001 701408733/2207*64079^(4/23) 2178308552709096 a001 163427599167/75025 2178308552717392 a001 1134903170/2207*64079^(3/23) 2178308552720355 a001 317811/2207*167761^(4/5) 2178308552740183 a001 3524578/2207*167761^(3/5) 2178308552740457 a001 1836311903/2207*64079^(2/23) 2178308552755628 a001 39088169/2207*167761^(2/5) 2178308552756932 a001 329/90481*2537720636^(14/15) 2178308552756932 a001 329/90481*17393796001^(6/7) 2178308552756932 a001 329/90481*45537549124^(14/17) 2178308552756932 a001 329/90481*14662949395604^(2/3) 2178308552756932 a001 329/90481*(1/2+1/2*5^(1/2))^42 2178308552756932 a001 329/90481*505019158607^(3/4) 2178308552756932 a001 329/90481*192900153618^(7/9) 2178308552756932 a001 329/90481*10749957122^(7/8) 2178308552756932 a001 329/90481*4106118243^(21/23) 2178308552756932 a001 329/90481*1568397607^(21/22) 2178308552757000 a001 121393/2207*7881196^(2/3) 2178308552757024 a001 121393/2207*312119004989^(2/5) 2178308552757024 a001 121393/2207*(1/2+1/2*5^(1/2))^22 2178308552757024 a001 121393/2207*10749957122^(11/24) 2178308552757024 a001 121393/2207*4106118243^(11/23) 2178308552757024 a001 121393/2207*1568397607^(1/2) 2178308552757024 a001 121393/2207*599074578^(11/21) 2178308552757024 a001 121393/2207*228826127^(11/20) 2178308552757024 a001 121393/2207*87403803^(11/19) 2178308552757025 a001 121393/2207*33385282^(11/18) 2178308552757032 a001 121393/2207*12752043^(11/17) 2178308552757087 a001 121393/2207*4870847^(11/16) 2178308552757485 a001 121393/2207*1860498^(11/15) 2178308552760413 a001 121393/2207*710647^(11/14) 2178308552763522 a001 2971215073/2207*64079^(1/23) 2178308552771108 a001 433494437/2207*167761^(1/5) 2178308552775203 a001 427859009319/196418 2178308552778430 a001 832040/2207*439204^(2/3) 2178308552780349 a001 3524578/2207*439204^(5/9) 2178308552781567 a001 14930352/2207*439204^(4/9) 2178308552782039 a001 121393/2207*271443^(11/13) 2178308552782182 a001 141/101521*312119004989^(4/5) 2178308552782182 a001 141/101521*(1/2+1/2*5^(1/2))^44 2178308552782182 a001 141/101521*23725150497407^(11/16) 2178308552782182 a001 141/101521*73681302247^(11/13) 2178308552782182 a001 141/101521*10749957122^(11/12) 2178308552782182 a001 141/101521*4106118243^(22/23) 2178308552782271 a001 317811/2207*20633239^(4/7) 2178308552782274 a001 317811/2207*2537720636^(4/9) 2178308552782274 a001 317811/2207*(1/2+1/2*5^(1/2))^20 2178308552782274 a001 317811/2207*23725150497407^(5/16) 2178308552782274 a001 317811/2207*505019158607^(5/14) 2178308552782274 a001 317811/2207*73681302247^(5/13) 2178308552782274 a001 317811/2207*28143753123^(2/5) 2178308552782274 a001 317811/2207*10749957122^(5/12) 2178308552782274 a001 317811/2207*4106118243^(10/23) 2178308552782274 a001 317811/2207*1568397607^(5/11) 2178308552782274 a001 317811/2207*599074578^(10/21) 2178308552782274 a001 317811/2207*228826127^(1/2) 2178308552782274 a001 317811/2207*87403803^(10/19) 2178308552782275 a001 317811/2207*33385282^(5/9) 2178308552782282 a001 317811/2207*12752043^(10/17) 2178308552782332 a001 317811/2207*4870847^(5/8) 2178308552782694 a001 317811/2207*1860498^(2/3) 2178308552782824 a001 63245986/2207*439204^(1/3) 2178308552784078 a001 267914296/2207*439204^(2/9) 2178308552784848 a001 1120149428790/514229 2178308552785333 a001 1134903170/2207*439204^(1/9) 2178308552785355 a001 317811/2207*710647^(5/7) 2178308552785867 a001 329/620166*(1/2+1/2*5^(1/2))^46 2178308552785867 a001 329/620166*10749957122^(23/24) 2178308552785939 a001 832040/2207*7881196^(6/11) 2178308552785958 a001 832040/2207*141422324^(6/13) 2178308552785958 a001 832040/2207*2537720636^(2/5) 2178308552785958 a001 832040/2207*45537549124^(6/17) 2178308552785958 a001 832040/2207*14662949395604^(2/7) 2178308552785958 a001 832040/2207*(1/2+1/2*5^(1/2))^18 2178308552785958 a001 832040/2207*192900153618^(1/3) 2178308552785958 a001 832040/2207*10749957122^(3/8) 2178308552785958 a001 832040/2207*4106118243^(9/23) 2178308552785958 a001 832040/2207*1568397607^(9/22) 2178308552785958 a001 832040/2207*599074578^(3/7) 2178308552785958 a001 832040/2207*228826127^(9/20) 2178308552785958 a001 832040/2207*87403803^(9/19) 2178308552785959 a001 832040/2207*33385282^(1/2) 2178308552785965 a001 832040/2207*12752043^(9/17) 2178308552786010 a001 832040/2207*4870847^(9/16) 2178308552786255 a001 2932589277051/1346269 2178308552786336 a001 832040/2207*1860498^(3/5) 2178308552786404 a001 987/4870847*45537549124^(16/17) 2178308552786404 a001 987/4870847*14662949395604^(16/21) 2178308552786404 a001 987/4870847*(1/2+1/2*5^(1/2))^48 2178308552786404 a001 987/4870847*192900153618^(8/9) 2178308552786404 a001 987/4870847*73681302247^(12/13) 2178308552786461 a001 7677618402363/3524578 2178308552786482 a001 329/4250681*312119004989^(10/11) 2178308552786482 a001 329/4250681*(1/2+1/2*5^(1/2))^50 2178308552786482 a001 329/4250681*3461452808002^(5/6) 2178308552786491 a001 20100265930038/9227465 2178308552786494 a001 141/4769326*(1/2+1/2*5^(1/2))^52 2178308552786494 a001 141/4769326*23725150497407^(13/16) 2178308552786494 a001 141/4769326*505019158607^(13/14) 2178308552786495 a001 52623179387751/24157817 2178308552786496 a001 329/29134601*14662949395604^(6/7) 2178308552786496 a001 137769272233215/63245986 2178308552786496 a001 21/4868641*14662949395604^(8/9) 2178308552786496 a001 360684637311894/165580141 2178308552786496 a001 944284639702467/433494437 2178308552786496 a001 141/224056801*14662949395604^(20/21) 2178308552786496 a001 2472169281795507/1134903170 2178308552786496 a001 6472223205684054/2971215073 2178308552786496 a001 987*23725150497407^(1/4) 2178308552786496 a001 987*73681302247^(4/13) 2178308552786496 a001 987*10749957122^(1/3) 2178308552786496 a001 3536736619241/1623616 2178308552786496 a001 987*4106118243^(8/23) 2178308552786496 a001 4000053923888547/1836311903 2178308552786496 a001 987*1568397607^(4/11) 2178308552786496 a001 509294880697680/233802911 2178308552786496 a001 987*599074578^(8/21) 2178308552786496 a001 583600002390573/267914296 2178308552786496 a001 987/370248451*14662949395604^(19/21) 2178308552786496 a001 987*228826127^(2/5) 2178308552786496 a001 10615017384699/4873055 2178308552786496 a001 987/141422324*3461452808002^(11/12) 2178308552786496 a001 987*87403803^(8/19) 2178308552786496 a001 85146092845464/39088169 2178308552786497 a001 987*33385282^(4/9) 2178308552786498 a001 3613657050857/1658928 2178308552786501 a001 987/20633239*817138163596^(17/19) 2178308552786501 a001 987/20633239*14662949395604^(17/21) 2178308552786501 a001 987/20633239*(1/2+1/2*5^(1/2))^51 2178308552786501 a001 987/20633239*192900153618^(17/18) 2178308552786502 a001 987*12752043^(8/17) 2178308552786509 a001 12422647527675/5702887 2178308552786531 a001 987/7881196*14662949395604^(7/9) 2178308552786531 a001 987/7881196*(1/2+1/2*5^(1/2))^49 2178308552786531 a001 987/7881196*505019158607^(7/8) 2178308552786542 a001 987*4870847^(1/2) 2178308552786572 a001 5702887/2207*20633239^(2/5) 2178308552786573 a001 14930352/2207*7881196^(4/11) 2178308552786574 a001 5702887/2207*17393796001^(2/7) 2178308552786574 a001 5702887/2207*14662949395604^(2/9) 2178308552786574 a001 5702887/2207*(1/2+1/2*5^(1/2))^14 2178308552786574 a001 5702887/2207*10749957122^(7/24) 2178308552786574 a001 5702887/2207*4106118243^(7/23) 2178308552786574 a001 5702887/2207*1568397607^(7/22) 2178308552786574 a001 5702887/2207*599074578^(1/3) 2178308552786574 a001 5702887/2207*228826127^(7/20) 2178308552786574 a001 5702887/2207*87403803^(7/19) 2178308552786575 a001 5702887/2207*33385282^(7/18) 2178308552786577 a001 24157817/2207*7881196^(1/3) 2178308552786578 a001 63245986/2207*7881196^(3/11) 2178308552786580 a001 5702887/2207*12752043^(7/17) 2178308552786581 a001 267914296/2207*7881196^(2/11) 2178308552786584 a001 1134903170/2207*7881196^(1/11) 2178308552786586 a001 14930352/2207*141422324^(4/13) 2178308552786586 a001 14930352/2207*2537720636^(4/15) 2178308552786586 a001 14930352/2207*45537549124^(4/17) 2178308552786586 a001 14930352/2207*14662949395604^(4/21) 2178308552786586 a001 14930352/2207*(1/2+1/2*5^(1/2))^12 2178308552786586 a001 14930352/2207*192900153618^(2/9) 2178308552786586 a001 14930352/2207*73681302247^(3/13) 2178308552786586 a001 14930352/2207*10749957122^(1/4) 2178308552786586 a001 14930352/2207*4106118243^(6/23) 2178308552786586 a001 14930352/2207*1568397607^(3/11) 2178308552786586 a001 14930352/2207*599074578^(2/7) 2178308552786586 a001 14930352/2207*228826127^(3/10) 2178308552786586 a001 14930352/2207*87403803^(6/19) 2178308552786586 a001 39088169/2207*20633239^(2/7) 2178308552786586 a001 14930352/2207*33385282^(1/3) 2178308552786587 a001 165580141/2207*20633239^(1/5) 2178308552786587 a001 433494437/2207*20633239^(1/7) 2178308552786587 a001 39088169/2207*2537720636^(2/9) 2178308552786587 a001 39088169/2207*312119004989^(2/11) 2178308552786587 a001 39088169/2207*(1/2+1/2*5^(1/2))^10 2178308552786587 a001 39088169/2207*28143753123^(1/5) 2178308552786587 a001 39088169/2207*10749957122^(5/24) 2178308552786587 a001 39088169/2207*4106118243^(5/23) 2178308552786587 a001 39088169/2207*1568397607^(5/22) 2178308552786587 a001 39088169/2207*599074578^(5/21) 2178308552786587 a001 39088169/2207*228826127^(1/4) 2178308552786587 a001 39088169/2207*87403803^(5/19) 2178308552786588 a001 102334155/2207*(1/2+1/2*5^(1/2))^8 2178308552786588 a001 102334155/2207*23725150497407^(1/8) 2178308552786588 a001 102334155/2207*505019158607^(1/7) 2178308552786588 a001 102334155/2207*73681302247^(2/13) 2178308552786588 a001 102334155/2207*10749957122^(1/6) 2178308552786588 a001 102334155/2207*4106118243^(4/23) 2178308552786588 a001 102334155/2207*1568397607^(2/11) 2178308552786588 a001 102334155/2207*599074578^(4/21) 2178308552786588 a001 102334155/2207*228826127^(1/5) 2178308552786588 a001 267914296/2207*141422324^(2/13) 2178308552786588 a001 1134903170/2207*141422324^(1/13) 2178308552786588 a001 267914296/2207*2537720636^(2/15) 2178308552786588 a001 267914296/2207*45537549124^(2/17) 2178308552786588 a001 267914296/2207*14662949395604^(2/21) 2178308552786588 a001 267914296/2207*(1/2+1/2*5^(1/2))^6 2178308552786588 a001 267914296/2207*10749957122^(1/8) 2178308552786588 a001 267914296/2207*4106118243^(3/23) 2178308552786588 a001 267914296/2207*1568397607^(3/22) 2178308552786588 a001 267914296/2207*599074578^(1/7) 2178308552786588 a001 701408733/2207*(1/2+1/2*5^(1/2))^4 2178308552786588 a001 701408733/2207*23725150497407^(1/16) 2178308552786588 a001 701408733/2207*73681302247^(1/13) 2178308552786588 a001 701408733/2207*10749957122^(1/12) 2178308552786588 a001 701408733/2207*4106118243^(2/23) 2178308552786588 a001 701408733/2207*1568397607^(1/11) 2178308552786588 a001 701408733/2207*599074578^(2/21) 2178308552786588 a001 1836311903/2207*(1/2+1/2*5^(1/2))^2 2178308552786588 a001 1836311903/2207*10749957122^(1/24) 2178308552786588 a001 1836311903/2207*4106118243^(1/23) 2178308552786588 a001 1836311903/2207*1568397607^(1/22) 2178308552786588 a001 4807526976/2207 2178308552786588 a001 2971215073/4414+2971215073/4414*5^(1/2) 2178308552786588 a001 1836311903/2207*599074578^(1/21) 2178308552786588 a001 267914296/2207*228826127^(3/20) 2178308552786588 a001 1134903170/2207*2537720636^(1/15) 2178308552786588 a001 1134903170/2207*45537549124^(1/17) 2178308552786588 a001 1134903170/2207*14662949395604^(1/21) 2178308552786588 a001 1134903170/2207*(1/2+1/2*5^(1/2))^3 2178308552786588 a001 1134903170/2207*192900153618^(1/18) 2178308552786588 a001 1134903170/2207*10749957122^(1/16) 2178308552786588 a001 1134903170/2207*599074578^(1/14) 2178308552786588 a001 1836311903/2207*228826127^(1/20) 2178308552786588 a001 433494437/2207*2537720636^(1/9) 2178308552786588 a001 433494437/2207*312119004989^(1/11) 2178308552786588 a001 433494437/2207*(1/2+1/2*5^(1/2))^5 2178308552786588 a001 433494437/2207*28143753123^(1/10) 2178308552786588 a001 701408733/2207*228826127^(1/10) 2178308552786588 a001 433494437/2207*228826127^(1/8) 2178308552786588 a001 1836311903/2207*87403803^(1/19) 2178308552786588 a001 165580141/2207*17393796001^(1/7) 2178308552786588 a001 165580141/2207*14662949395604^(1/9) 2178308552786588 a001 165580141/2207*(1/2+1/2*5^(1/2))^7 2178308552786588 a001 165580141/2207*599074578^(1/6) 2178308552786588 a001 102334155/2207*87403803^(4/19) 2178308552786588 a001 701408733/2207*87403803^(2/19) 2178308552786588 a001 267914296/2207*87403803^(3/19) 2178308552786588 a001 63245986/2207*141422324^(3/13) 2178308552786588 a001 1836311903/2207*33385282^(1/18) 2178308552786588 a001 63245986/2207*2537720636^(1/5) 2178308552786588 a001 63245986/2207*45537549124^(3/17) 2178308552786588 a001 63245986/2207*14662949395604^(1/7) 2178308552786588 a001 63245986/2207*(1/2+1/2*5^(1/2))^9 2178308552786588 a001 63245986/2207*192900153618^(1/6) 2178308552786588 a001 63245986/2207*10749957122^(3/16) 2178308552786588 a001 63245986/2207*599074578^(3/14) 2178308552786588 a001 1134903170/2207*33385282^(1/12) 2178308552786588 a001 701408733/2207*33385282^(1/9) 2178308552786588 a001 39088169/2207*33385282^(5/18) 2178308552786588 a001 267914296/2207*33385282^(1/6) 2178308552786588 a001 102334155/2207*33385282^(2/9) 2178308552786588 a001 63245986/2207*33385282^(1/4) 2178308552786588 a001 24157817/2207*312119004989^(1/5) 2178308552786588 a001 24157817/2207*(1/2+1/2*5^(1/2))^11 2178308552786588 a001 24157817/2207*1568397607^(1/4) 2178308552786588 a001 1836311903/2207*12752043^(1/17) 2178308552786589 a001 701408733/2207*12752043^(2/17) 2178308552786590 a001 267914296/2207*12752043^(3/17) 2178308552786590 a001 14930352/2207*12752043^(6/17) 2178308552786591 a001 102334155/2207*12752043^(4/17) 2178308552786591 a001 39088169/2207*12752043^(5/17) 2178308552786593 a001 9227465/2207*141422324^(1/3) 2178308552786593 a001 9227465/2207*(1/2+1/2*5^(1/2))^13 2178308552786593 a001 9227465/2207*73681302247^(1/4) 2178308552786593 a001 1836311903/2207*4870847^(1/16) 2178308552786599 a001 701408733/2207*4870847^(1/8) 2178308552786605 a001 267914296/2207*4870847^(3/16) 2178308552786607 a001 3524578/2207*7881196^(5/11) 2178308552786611 a001 102334155/2207*4870847^(1/4) 2178308552786614 a001 5702887/2207*4870847^(7/16) 2178308552786616 a001 39088169/2207*4870847^(5/16) 2178308552786620 a001 14930352/2207*4870847^(3/8) 2178308552786621 a001 3524578/2207*20633239^(3/7) 2178308552786623 a001 3524578/2207*141422324^(5/13) 2178308552786623 a001 3524578/2207*2537720636^(1/3) 2178308552786623 a001 3524578/2207*45537549124^(5/17) 2178308552786623 a001 3524578/2207*312119004989^(3/11) 2178308552786623 a001 3524578/2207*14662949395604^(5/21) 2178308552786623 a001 3524578/2207*(1/2+1/2*5^(1/2))^15 2178308552786623 a001 3524578/2207*192900153618^(5/18) 2178308552786623 a001 3524578/2207*28143753123^(3/10) 2178308552786623 a001 3524578/2207*10749957122^(5/16) 2178308552786623 a001 3524578/2207*599074578^(5/14) 2178308552786623 a001 3524578/2207*228826127^(3/8) 2178308552786624 a001 3524578/2207*33385282^(5/12) 2178308552786630 a001 1836311903/2207*1860498^(1/15) 2178308552786651 a001 1134903170/2207*1860498^(1/10) 2178308552786672 a001 701408733/2207*1860498^(2/15) 2178308552786693 a001 433494437/2207*1860498^(1/6) 2178308552786713 a001 267914296/2207*1860498^(1/5) 2178308552786736 a001 987/3010349*(1/2+1/2*5^(1/2))^47 2178308552786755 a001 102334155/2207*1860498^(4/15) 2178308552786777 a001 63245986/2207*1860498^(3/10) 2178308552786797 a001 39088169/2207*1860498^(1/3) 2178308552786828 a001 1346269/2207*45537549124^(1/3) 2178308552786828 a001 1346269/2207*(1/2+1/2*5^(1/2))^17 2178308552786831 a001 987*1860498^(8/15) 2178308552786835 a001 1346269/2207*12752043^(1/2) 2178308552786837 a001 14930352/2207*1860498^(2/5) 2178308552786868 a001 5702887/2207*1860498^(7/15) 2178308552786896 a001 1836311903/2207*710647^(1/14) 2178308552786937 a001 3524578/2207*1860498^(1/2) 2178308552787125 a001 1812439848261/832040 2178308552787204 a001 701408733/2207*710647^(1/7) 2178308552787512 a001 267914296/2207*710647^(3/14) 2178308552787666 a001 165580141/2207*710647^(1/4) 2178308552787820 a001 102334155/2207*710647^(2/7) 2178308552788128 a001 39088169/2207*710647^(5/14) 2178308552788143 a001 987/1149851*45537549124^(15/17) 2178308552788143 a001 987/1149851*312119004989^(9/11) 2178308552788143 a001 987/1149851*14662949395604^(5/7) 2178308552788143 a001 987/1149851*(1/2+1/2*5^(1/2))^45 2178308552788143 a001 987/1149851*192900153618^(5/6) 2178308552788143 a001 987/1149851*28143753123^(9/10) 2178308552788143 a001 987/1149851*10749957122^(15/16) 2178308552788235 a001 514229/2207*817138163596^(1/3) 2178308552788235 a001 514229/2207*(1/2+1/2*5^(1/2))^19 2178308552788235 a001 514229/2207*87403803^(1/2) 2178308552788434 a001 14930352/2207*710647^(3/7) 2178308552788731 a001 5702887/2207*710647^(1/2) 2178308552788731 a001 832040/2207*710647^(9/14) 2178308552788862 a001 1836311903/2207*271443^(1/13) 2178308552788961 a001 987*710647^(4/7) 2178308552789097 a001 196418/2207*439204^(7/9) 2178308552790809 a001 230763473157/105937 2178308552791136 a001 701408733/2207*271443^(2/13) 2178308552793410 a001 267914296/2207*271443^(3/13) 2178308552795031 a001 2971215073/2207*103682^(1/24) 2178308552795684 a001 102334155/2207*271443^(4/13) 2178308552797788 a001 987/439204*(1/2+1/2*5^(1/2))^43 2178308552797858 a001 196418/2207*7881196^(7/11) 2178308552797877 a001 196418/2207*20633239^(3/5) 2178308552797880 a001 196418/2207*141422324^(7/13) 2178308552797880 a001 196418/2207*2537720636^(7/15) 2178308552797880 a001 196418/2207*17393796001^(3/7) 2178308552797880 a001 196418/2207*45537549124^(7/17) 2178308552797880 a001 196418/2207*14662949395604^(1/3) 2178308552797880 a001 196418/2207*(1/2+1/2*5^(1/2))^21 2178308552797880 a001 196418/2207*192900153618^(7/18) 2178308552797880 a001 196418/2207*10749957122^(7/16) 2178308552797880 a001 196418/2207*599074578^(1/2) 2178308552797881 a001 196418/2207*33385282^(7/12) 2178308552797958 a001 39088169/2207*271443^(5/13) 2178308552798321 a001 196418/2207*1860498^(7/10) 2178308552800231 a001 14930352/2207*271443^(6/13) 2178308552801115 a001 196418/2207*710647^(3/4) 2178308552801375 a001 9227465/2207*271443^(1/2) 2178308552802493 a001 5702887/2207*271443^(7/13) 2178308552803474 a001 1836311903/2207*103682^(1/12) 2178308552804689 a001 987*271443^(8/13) 2178308552805016 a001 317811/2207*271443^(10/13) 2178308552806426 a001 832040/2207*271443^(9/13) 2178308552811917 a001 1134903170/2207*103682^(1/8) 2178308552816060 a001 264431410152/121393 2178308552820360 a001 701408733/2207*103682^(1/6) 2178308552828803 a001 433494437/2207*103682^(5/24) 2178308552837246 a001 267914296/2207*103682^(1/4) 2178308552845689 a001 165580141/2207*103682^(7/24) 2178308552849718 a001 2971215073/2207*39603^(1/22) 2178308552854132 a001 102334155/2207*103682^(1/3) 2178308552862576 a001 63245986/2207*103682^(3/8) 2178308552863895 a001 987/167761*(1/2+1/2*5^(1/2))^41 2178308552863987 a001 75025/2207*(1/2+1/2*5^(1/2))^23 2178308552863987 a001 75025/2207*4106118243^(1/2) 2178308552871018 a001 39088169/2207*103682^(5/12) 2178308552879462 a001 24157817/2207*103682^(11/24) 2178308552887903 a001 14930352/2207*103682^(1/2) 2178308552896353 a001 9227465/2207*103682^(13/24) 2178308552904777 a001 5702887/2207*103682^(7/12) 2178308552912849 a001 1836311903/2207*39603^(1/11) 2178308552913269 a001 3524578/2207*103682^(5/8) 2178308552921585 a001 987*103682^(2/3) 2178308552930361 a001 1346269/2207*103682^(17/24) 2178308552937934 a001 832040/2207*103682^(3/4) 2178308552942772 a001 121393/2207*103682^(11/12) 2178308552948654 a001 514229/2207*103682^(19/24) 2178308552951136 a001 317811/2207*103682^(5/6) 2178308552975185 a001 196418/2207*103682^(7/8) 2178308552975980 a001 1134903170/2207*39603^(3/22) 2178308553039110 a001 701408733/2207*39603^(2/11) 2178308553058178 a001 75025/2207*103682^(23/24) 2178308553102241 a001 433494437/2207*39603^(5/22) 2178308553165372 a001 267914296/2207*39603^(3/11) 2178308553228502 a001 165580141/2207*39603^(7/22) 2178308553262562 a001 2971215073/2207*15127^(1/20) 2178308553291633 a001 102334155/2207*39603^(4/11) 2178308553316999 a001 987/64079*2537720636^(13/15) 2178308553316999 a001 987/64079*45537549124^(13/17) 2178308553316999 a001 987/64079*14662949395604^(13/21) 2178308553316999 a001 987/64079*(1/2+1/2*5^(1/2))^39 2178308553316999 a001 987/64079*192900153618^(13/18) 2178308553316999 a001 987/64079*73681302247^(3/4) 2178308553316999 a001 987/64079*10749957122^(13/16) 2178308553316999 a001 987/64079*599074578^(13/14) 2178308553317087 a001 28657/2207*20633239^(5/7) 2178308553317091 a001 28657/2207*2537720636^(5/9) 2178308553317091 a001 28657/2207*312119004989^(5/11) 2178308553317091 a001 28657/2207*(1/2+1/2*5^(1/2))^25 2178308553317091 a001 28657/2207*3461452808002^(5/12) 2178308553317091 a001 28657/2207*28143753123^(1/2) 2178308553317091 a001 28657/2207*228826127^(5/8) 2178308553317615 a001 28657/2207*1860498^(5/6) 2178308553354764 a001 63245986/2207*39603^(9/22) 2178308553417894 a001 39088169/2207*39603^(5/11) 2178308553481026 a001 24157817/2207*39603^(1/2) 2178308553517680 a001 4807526976/3571*521^(1/13) 2178308553544154 a001 14930352/2207*39603^(6/11) 2178308553607292 a001 9227465/2207*39603^(13/22) 2178308553670404 a001 5702887/2207*39603^(7/11) 2178308553733583 a001 3524578/2207*39603^(15/22) 2178308553738537 a001 1836311903/2207*15127^(1/10) 2178308553796587 a001 987*39603^(8/11) 2178308553860050 a001 1346269/2207*39603^(17/22) 2178308553922311 a001 832040/2207*39603^(9/11) 2178308553987718 a001 514229/2207*39603^(19/22) 2178308554044888 a001 317811/2207*39603^(10/11) 2178308554123625 a001 196418/2207*39603^(21/22) 2178308554175371 a001 38580022803/17711 2178308554214511 a001 1134903170/2207*15127^(3/20) 2178308554690486 a001 701408733/2207*15127^(1/5) 2178308555166461 a001 433494437/2207*15127^(1/4) 2178308555642435 a001 267914296/2207*15127^(3/10) 2178308555676009 v002 sum(1/(2^n*(8*n^2-23*n+55)),n=1..infinity) 2178308555768472 r009 Im(z^3+c),c=-33/70+7/53*I,n=2 2178308556118410 a001 165580141/2207*15127^(7/20) 2178308556411453 a001 2971215073/2207*5778^(1/18) 2178308556422618 a001 987/24476*(1/2+1/2*5^(1/2))^37 2178308556422681 a001 10946/2207*7881196^(9/11) 2178308556422710 a001 10946/2207*141422324^(9/13) 2178308556422710 a001 10946/2207*2537720636^(3/5) 2178308556422710 a001 10946/2207*45537549124^(9/17) 2178308556422710 a001 10946/2207*14662949395604^(3/7) 2178308556422710 a001 10946/2207*(1/2+1/2*5^(1/2))^27 2178308556422710 a001 10946/2207*192900153618^(1/2) 2178308556422710 a001 10946/2207*10749957122^(9/16) 2178308556422710 a001 10946/2207*599074578^(9/14) 2178308556422712 a001 10946/2207*33385282^(3/4) 2178308556423277 a001 10946/2207*1860498^(9/10) 2178308556594213 a001 1134903170/9349*1364^(2/5) 2178308556594384 a001 102334155/2207*15127^(2/5) 2178308557070359 a001 63245986/2207*15127^(9/20) 2178308557546333 a001 39088169/2207*15127^(1/2) 2178308558022309 a001 24157817/2207*15127^(11/20) 2178308558498281 a001 14930352/2207*15127^(3/5) 2178308558974263 a001 9227465/2207*15127^(13/20) 2178308559135942 l006 ln(2227/2769) 2178308559450219 a001 5702887/2207*15127^(7/10) 2178308559926242 a001 3524578/2207*15127^(3/4) 2178308560036318 a001 1836311903/2207*5778^(1/9) 2178308560402090 a001 987*15127^(4/5) 2178308560878396 a001 1346269/2207*15127^(17/20) 2178308561353501 a001 832040/2207*15127^(9/10) 2178308561831753 a001 514229/2207*15127^(19/20) 2178308562107918 a001 5702887/843*843^(6/7) 2178308562305986 a001 4912085808/2255 2178308562602143 r009 Im(z^3+c),c=-25/94+10/53*I,n=10 2178308563661183 a001 1134903170/2207*5778^(1/6) 2178308567286048 a001 701408733/2207*5778^(2/9) 2178308570910913 a001 433494437/2207*5778^(5/18) 2178308573574533 m001 (Si(Pi)+ln(3))/(-Sarnak+Thue) 2178308574535778 a001 267914296/2207*5778^(1/3) 2178308574782083 m001 MertensB3^ErdosBorwein/gamma(1) 2178308576454671 m005 (1/3*3^(1/2)-3/5)/(1/8*exp(1)+7/10) 2178308577708850 a001 987/9349*2537720636^(7/9) 2178308577708850 a001 987/9349*17393796001^(5/7) 2178308577708850 a001 987/9349*312119004989^(7/11) 2178308577708850 a001 987/9349*14662949395604^(5/9) 2178308577708850 a001 987/9349*(1/2+1/2*5^(1/2))^35 2178308577708850 a001 987/9349*505019158607^(5/8) 2178308577708850 a001 987/9349*28143753123^(7/10) 2178308577708850 a001 987/9349*599074578^(5/6) 2178308577708851 a001 987/9349*228826127^(7/8) 2178308577708942 a001 4181/2207*(1/2+1/2*5^(1/2))^29 2178308577708942 a001 4181/2207*1322157322203^(1/2) 2178308578155186 m001 ArtinRank2-Zeta(1,2)+Landau 2178308578160643 a001 165580141/2207*5778^(7/18) 2178308579509603 m001 BesselK(0,1)-exp(sqrt(2))*OneNinth 2178308580737429 a001 2971215073/2207*2207^(1/16) 2178308581785508 a001 102334155/2207*5778^(4/9) 2178308585410373 a001 63245986/2207*5778^(1/2) 2178308589035238 a001 39088169/2207*5778^(5/9) 2178308592660104 a001 24157817/2207*5778^(11/18) 2178308593750000 r005 Re(z^2+c),c=-23/40+3/5*I,n=3 2178308596284966 a001 14930352/2207*5778^(2/3) 2178308599909838 a001 9227465/2207*5778^(13/18) 2178308600207064 a001 2971215073/15127*1364^(1/3) 2178308602884580 m001 (FeigenbaumB*ZetaP(2)-Weierstrass)/ZetaP(2) 2178308603534685 a001 5702887/2207*5778^(7/9) 2178308607159598 a001 3524578/2207*5778^(5/6) 2178308607826240 m001 (cos(1/5*Pi)-exp(-1/2*Pi))/(Backhouse+Conway) 2178308608337682 a001 7778742049/39603*1364^(1/3) 2178308608688271 a001 1836311903/2207*2207^(1/8) 2178308609523923 a001 10182505537/51841*1364^(1/3) 2178308609696993 a001 53316291173/271443*1364^(1/3) 2178308609722244 a001 139583862445/710647*1364^(1/3) 2178308609725928 a001 182717648081/930249*1364^(1/3) 2178308609726465 a001 956722026041/4870847*1364^(1/3) 2178308609726544 a001 2504730781961/12752043*1364^(1/3) 2178308609726555 a001 3278735159921/16692641*1364^(1/3) 2178308609726558 a001 10610209857723/54018521*1364^(1/3) 2178308609726562 a001 4052739537881/20633239*1364^(1/3) 2178308609726592 a001 387002188980/1970299*1364^(1/3) 2178308609726797 a001 591286729879/3010349*1364^(1/3) 2178308609728205 a001 225851433717/1149851*1364^(1/3) 2178308609737849 a001 196418*1364^(1/3) 2178308609803956 a001 32951280099/167761*1364^(1/3) 2178308610257060 a001 12586269025/64079*1364^(1/3) 2178308610710271 r009 Re(z^3+c),c=-37/102+23/44*I,n=22 2178308610784336 a001 987*5778^(8/9) 2178308613362680 a001 1201881744/6119*1364^(1/3) 2178308614409534 a001 1346269/2207*5778^(17/18) 2178308617813304 r005 Re(z^2+c),c=-11/42+2/25*I,n=6 2178308618034055 a001 5628749469/2584 2178308620969257 m001 (exp(1/Pi)-Riemann2ndZero)^MertensB2 2178308622533685 a001 1836311903/5778*1364^(4/15) 2178308624437527 a001 267914296/3571*1364^(7/15) 2178308631471244 a007 Real Root Of -37*x^4-821*x^3-302*x^2+572*x+451 2178308633810101 r005 Im(z^2+c),c=-39/82+17/44*I,n=38 2178308634648912 a001 1836311903/9349*1364^(1/3) 2178308635060572 m001 (Conway+ReciprocalFibonacci)/(3^(1/2)-exp(Pi)) 2178308636639113 a001 1134903170/2207*2207^(3/16) 2178308639944902 k001 Champernowne real with 908*n+1270 2178308640407657 a007 Real Root Of -160*x^4+831*x^3-935*x^2+905*x-161 2178308641562495 m009 (1/4*Psi(1,3/4)-1/5)/(2*Psi(1,1/3)-1/5) 2178308642326847 a007 Real Root Of 413*x^4+648*x^3-360*x^2+526*x+253 2178308656503130 m001 1/Ei(1)/Conway*exp(sin(1))^2 2178308659168183 r005 Im(z^2+c),c=-33/94+20/57*I,n=32 2178308660108769 m005 (1/2*Catalan-5/12)/(8/9*5^(1/2)-1/11) 2178308662201938 p001 sum(1/(596*n+481)/(10^n),n=0..infinity) 2178308662438794 r005 Re(z^2+c),c=4/21+2/25*I,n=23 2178308664449691 a007 Real Root Of -269*x^4-282*x^3+421*x^2-859*x-727 2178308664565514 a007 Real Root Of -274*x^4-555*x^3+242*x^2+744*x+905 2178308664589955 a001 701408733/2207*2207^(1/4) 2178308666036255 b008 3-ProductLog[29]/3 2178308666512297 m005 (1/2*2^(1/2)-7/8)/(6*2^(1/2)-7/9) 2178308669077028 m008 (1/5*Pi^5-5)/(5/6*Pi^5+3) 2178308672942643 r008 a(0)=2,K{-n^6,49-11*n-40*n^2-4*n^3} 2178308674873168 m001 ln((3^(1/3)))*Si(Pi)^2*log(2+sqrt(3))^2 2178308678261765 a001 686789568/2161*1364^(4/15) 2178308686392383 a001 12586269025/39603*1364^(4/15) 2178308687578624 a001 32951280099/103682*1364^(4/15) 2178308687751694 a001 86267571272/271443*1364^(4/15) 2178308687776945 a001 317811*1364^(4/15) 2178308687780629 a001 591286729879/1860498*1364^(4/15) 2178308687781166 a001 1548008755920/4870847*1364^(4/15) 2178308687781245 a001 4052739537881/12752043*1364^(4/15) 2178308687781256 a001 1515744265389/4769326*1364^(4/15) 2178308687781263 a001 6557470319842/20633239*1364^(4/15) 2178308687781293 a001 2504730781961/7881196*1364^(4/15) 2178308687781499 a001 956722026041/3010349*1364^(4/15) 2178308687782906 a001 365435296162/1149851*1364^(4/15) 2178308687792551 a001 139583862445/439204*1364^(4/15) 2178308687858658 a001 53316291173/167761*1364^(4/15) 2178308688311761 a001 20365011074/64079*1364^(4/15) 2178308688962327 l006 ln(759/6703) 2178308691417381 a001 7778742049/24476*1364^(4/15) 2178308692540798 a001 433494437/2207*2207^(5/16) 2178308698905744 m001 (FeigenbaumDelta-Mills)/(Porter+ZetaP(4)) 2178308700588387 a001 2971215073/5778*1364^(1/5) 2178308702492228 a001 433494437/3571*1364^(2/5) 2178308711128720 k002 Champernowne real with 173/2*n^2-405/2*n+137 2178308712643370 r005 Re(z^2+c),c=-65/114+23/56*I,n=12 2178308712703614 a001 2971215073/9349*1364^(4/15) 2178308720491641 a001 267914296/2207*2207^(3/8) 2178308723606867 a001 987/3571*141422324^(11/13) 2178308723606867 a001 987/3571*2537720636^(11/15) 2178308723606867 a001 987/3571*45537549124^(11/17) 2178308723606867 a001 987/3571*312119004989^(3/5) 2178308723606867 a001 987/3571*817138163596^(11/19) 2178308723606867 a001 987/3571*14662949395604^(11/21) 2178308723606867 a001 987/3571*(1/2+1/2*5^(1/2))^33 2178308723606867 a001 987/3571*192900153618^(11/18) 2178308723606867 a001 987/3571*10749957122^(11/16) 2178308723606867 a001 987/3571*1568397607^(3/4) 2178308723606867 a001 987/3571*599074578^(11/14) 2178308723606869 a001 987/3571*33385282^(11/12) 2178308723606946 a001 1597/2207*(1/2+1/2*5^(1/2))^31 2178308723606946 a001 1597/2207*9062201101803^(1/2) 2178308730937168 a003 sin(Pi*1/11)/cos(Pi*50/109) 2178308734658468 a007 Real Root Of -123*x^4+311*x^3+977*x^2-847*x-497 2178308735127630 m002 -E^Pi/10+Pi/E^Pi 2178308738716058 r005 Im(z^2+c),c=-21/52+17/47*I,n=16 2178308739964905 k001 Champernowne real with 909*n+1269 2178308748442484 a001 165580141/2207*2207^(7/16) 2178308748824292 m001 (5^(1/2)+Zeta(1,-1))/(PlouffeB+Weierstrass) 2178308755155859 g002 2*Psi(2/5)-Psi(10/11)-Psi(5/11) 2178308756316469 a001 7778742049/15127*1364^(1/5) 2178308756587939 r002 9th iterates of z^2 + 2178308763932373 a001 3478759096/1597 2178308764447087 a001 20365011074/39603*1364^(1/5) 2178308765633328 a001 53316291173/103682*1364^(1/5) 2178308765790870 r005 Re(z^2+c),c=-21/82+8/55*I,n=7 2178308765806398 a001 139583862445/271443*1364^(1/5) 2178308765831649 a001 365435296162/710647*1364^(1/5) 2178308765835333 a001 956722026041/1860498*1364^(1/5) 2178308765835871 a001 2504730781961/4870847*1364^(1/5) 2178308765835949 a001 6557470319842/12752043*1364^(1/5) 2178308765835967 a001 10610209857723/20633239*1364^(1/5) 2178308765835997 a001 4052739537881/7881196*1364^(1/5) 2178308765836203 a001 1548008755920/3010349*1364^(1/5) 2178308765837610 a001 514229*1364^(1/5) 2178308765847255 a001 225851433717/439204*1364^(1/5) 2178308765913362 a001 86267571272/167761*1364^(1/5) 2178308766366465 a001 32951280099/64079*1364^(1/5) 2178308766720582 m001 1/Porter*Cahen^2/exp(sin(Pi/12)) 2178308767090765 a007 Real Root Of -383*x^4-353*x^3+506*x^2-935*x+537 2178308769472085 a001 12586269025/24476*1364^(1/5) 2178308771732656 a001 2971215073/2207*843^(1/14) 2178308773207265 a007 Real Root Of -44*x^4-976*x^3-402*x^2-431*x+23 2178308773980365 a001 5702887/5778*3571^(16/17) 2178308775612287 r005 Re(z^2+c),c=-4/23+23/53*I,n=41 2178308776393328 a001 102334155/2207*2207^(1/2) 2178308777133301 r005 Im(z^2+c),c=-8/25+23/61*I,n=7 2178308778643092 a001 267084832/321*1364^(2/15) 2178308780546933 a001 701408733/3571*1364^(1/3) 2178308780960557 a007 Real Root Of 338*x^4+382*x^3-545*x^2+363*x-285 2178308781054035 a001 3524578/843*843^(13/14) 2178308782781705 m001 (OneNinth-Thue)/(Khinchin+LandauRamanujan) 2178308783360071 r002 5th iterates of z^2 + 2178308784028642 a001 9227465/5778*3571^(15/17) 2178308790758319 a001 4807526976/9349*1364^(1/5) 2178308794076892 a001 2584*3571^(14/17) 2178308796450535 r005 Im(z^2+c),c=-3/94+36/55*I,n=15 2178308798308186 a007 Real Root Of 143*x^4-105*x^3-962*x^2+80*x+434 2178308799260925 m001 FeigenbaumD^(Psi(1,1/3)*cos(1)) 2178308804125153 a001 24157817/5778*3571^(13/17) 2178308804344172 a001 63245986/2207*2207^(9/16) 2178308808480495 m001 Totient^Landau/ZetaQ(2) 2178308811990997 m002 -3*Pi^4+6*ProductLog[Pi]*Sinh[Pi] 2178308812882448 r005 Re(z^2+c),c=4/21+2/25*I,n=31 2178308812963188 r005 Re(z^2+c),c=4/21+2/25*I,n=30 2178308813464798 r005 Re(z^2+c),c=4/21+2/25*I,n=32 2178308813994028 r005 Re(z^2+c),c=4/21+2/25*I,n=33 2178308814173410 a001 39088169/5778*3571^(12/17) 2178308814297817 r005 Re(z^2+c),c=4/21+2/25*I,n=34 2178308814319195 r005 Re(z^2+c),c=39/122+13/62*I,n=4 2178308814395957 r005 Re(z^2+c),c=4/21+2/25*I,n=41 2178308814395999 r005 Re(z^2+c),c=4/21+2/25*I,n=42 2178308814396480 r005 Re(z^2+c),c=4/21+2/25*I,n=43 2178308814396888 r005 Re(z^2+c),c=4/21+2/25*I,n=44 2178308814397113 r005 Re(z^2+c),c=4/21+2/25*I,n=45 2178308814397175 r005 Re(z^2+c),c=4/21+2/25*I,n=52 2178308814397175 r005 Re(z^2+c),c=4/21+2/25*I,n=53 2178308814397176 r005 Re(z^2+c),c=4/21+2/25*I,n=54 2178308814397176 r005 Re(z^2+c),c=4/21+2/25*I,n=55 2178308814397176 r005 Re(z^2+c),c=4/21+2/25*I,n=56 2178308814397176 r005 Re(z^2+c),c=4/21+2/25*I,n=63 2178308814397176 r005 Re(z^2+c),c=4/21+2/25*I,n=64 2178308814397176 r005 Re(z^2+c),c=4/21+2/25*I,n=62 2178308814397176 r005 Re(z^2+c),c=4/21+2/25*I,n=61 2178308814397176 r005 Re(z^2+c),c=4/21+2/25*I,n=60 2178308814397176 r005 Re(z^2+c),c=4/21+2/25*I,n=59 2178308814397176 r005 Re(z^2+c),c=4/21+2/25*I,n=57 2178308814397176 r005 Re(z^2+c),c=4/21+2/25*I,n=58 2178308814397176 r005 Re(z^2+c),c=4/21+2/25*I,n=51 2178308814397180 r005 Re(z^2+c),c=4/21+2/25*I,n=50 2178308814397189 r005 Re(z^2+c),c=4/21+2/25*I,n=49 2178308814397199 r005 Re(z^2+c),c=4/21+2/25*I,n=46 2178308814397202 r005 Re(z^2+c),c=4/21+2/25*I,n=48 2178308814397213 r005 Re(z^2+c),c=4/21+2/25*I,n=47 2178308814397600 r005 Re(z^2+c),c=4/21+2/25*I,n=40 2178308814403055 r005 Re(z^2+c),c=4/21+2/25*I,n=39 2178308814414566 r005 Re(z^2+c),c=4/21+2/25*I,n=38 2178308814419526 r005 Re(z^2+c),c=4/21+2/25*I,n=35 2178308814431497 r005 Re(z^2+c),c=4/21+2/25*I,n=37 2178308814443495 r005 Re(z^2+c),c=4/21+2/25*I,n=36 2178308815095976 r005 Im(z^2+c),c=-11/29+24/43*I,n=31 2178308815378955 r005 Re(z^2+c),c=4/21+2/25*I,n=29 2178308816748204 r009 Re(z^3+c),c=-19/58+25/56*I,n=31 2178308817658604 m005 (1/2*5^(1/2)+7/10)/(2/11*Catalan-1/4) 2178308819661865 a001 3478759185/1597 2178308822870803 r005 Re(z^2+c),c=4/21+2/25*I,n=28 2178308823529411 q001 1185/544 2178308823529411 r005 Im(z^2+c),c=-23/34+79/128*I,n=2 2178308824221668 a001 31622993/2889*3571^(11/17) 2178308824852783 m001 (GAMMA(19/24)+Rabbit)/(2^(1/2)+ln(gamma)) 2178308824957697 l006 ln(1097/9688) 2178308827802128 a001 3478759198/1597 2178308829054477 a001 3478759200/1597 2178308829179711 a001 2/1597*(1/2+1/2*5^(1/2))^49 2178308829680651 a001 3478759201/1597 2178308829681929 a007 Real Root Of -742*x^4+63*x^3-944*x^2+431*x+141 2178308829708461 a001 14930352/15127*3571^(16/17) 2178308831558173 m001 cosh(1)*Trott^2*ln(sqrt(2))^2 2178308832295016 a001 39088169/2207*2207^(5/8) 2178308832811521 a001 3478759206/1597 2178308833358669 r005 Re(z^2+c),c=4/21+2/25*I,n=24 2178308834269926 a001 34111385/1926*3571^(10/17) 2178308834371176 a001 12586269025/15127*1364^(2/15) 2178308835305278 m005 (1/3*Zeta(3)+1/8)/(4/5*Pi-1/10) 2178308836233636 r005 Re(z^2+c),c=-5/38+31/58*I,n=22 2178308837839080 a001 39088169/39603*3571^(16/17) 2178308838090294 r005 Re(z^2+c),c=4/21+2/25*I,n=27 2178308839025322 a001 102334155/103682*3571^(16/17) 2178308839198392 a001 267914296/271443*3571^(16/17) 2178308839223643 a001 701408733/710647*3571^(16/17) 2178308839227327 a001 1836311903/1860498*3571^(16/17) 2178308839227864 a001 4807526976/4870847*3571^(16/17) 2178308839227943 a001 12586269025/12752043*3571^(16/17) 2178308839227954 a001 32951280099/33385282*3571^(16/17) 2178308839227956 a001 86267571272/87403803*3571^(16/17) 2178308839227956 a001 225851433717/228826127*3571^(16/17) 2178308839227956 a001 591286729879/599074578*3571^(16/17) 2178308839227956 a001 1548008755920/1568397607*3571^(16/17) 2178308839227956 a001 4052739537881/4106118243*3571^(16/17) 2178308839227956 a001 4807525989/4870846*3571^(16/17) 2178308839227956 a001 6557470319842/6643838879*3571^(16/17) 2178308839227956 a001 2504730781961/2537720636*3571^(16/17) 2178308839227956 a001 956722026041/969323029*3571^(16/17) 2178308839227956 a001 365435296162/370248451*3571^(16/17) 2178308839227956 a001 139583862445/141422324*3571^(16/17) 2178308839227957 a001 53316291173/54018521*3571^(16/17) 2178308839227961 a001 20365011074/20633239*3571^(16/17) 2178308839227991 a001 7778742049/7881196*3571^(16/17) 2178308839228196 a001 2971215073/3010349*3571^(16/17) 2178308839229604 a001 1134903170/1149851*3571^(16/17) 2178308839239249 a001 433494437/439204*3571^(16/17) 2178308839305356 a001 165580141/167761*3571^(16/17) 2178308839651913 m001 ln(Si(Pi))/Cahen/GAMMA(5/24) 2178308839756721 a001 24157817/15127*3571^(15/17) 2178308839758459 a001 63245986/64079*3571^(16/17) 2178308839984908 k001 Champernowne real with 910*n+1268 2178308842501794 a001 10983760033/13201*1364^(2/15) 2178308842864080 a001 24157817/24476*3571^(16/17) 2178308843688035 a001 43133785636/51841*1364^(2/15) 2178308843861105 a001 75283811239/90481*1364^(2/15) 2178308843886356 a001 591286729879/710647*1364^(2/15) 2178308843890040 a001 832040*1364^(2/15) 2178308843890577 a001 4052739537881/4870847*1364^(2/15) 2178308843890656 a001 3536736619241/4250681*1364^(2/15) 2178308843890704 a001 3278735159921/3940598*1364^(2/15) 2178308843890910 a001 2504730781961/3010349*1364^(2/15) 2178308843892317 a001 956722026041/1149851*1364^(2/15) 2178308843901962 a001 182717648081/219602*1364^(2/15) 2178308843968069 a001 139583862445/167761*1364^(2/15) 2178308844318184 a001 165580141/5778*3571^(9/17) 2178308844421172 a001 53316291173/64079*1364^(2/15) 2178308847526792 a001 10182505537/12238*1364^(2/15) 2178308847676850 r002 57th iterates of z^2 + 2178308847887339 a001 63245986/39603*3571^(15/17) 2178308849073580 a001 165580141/103682*3571^(15/17) 2178308849246650 a001 433494437/271443*3571^(15/17) 2178308849271901 a001 1134903170/710647*3571^(15/17) 2178308849275585 a001 2971215073/1860498*3571^(15/17) 2178308849276122 a001 7778742049/4870847*3571^(15/17) 2178308849276201 a001 20365011074/12752043*3571^(15/17) 2178308849276212 a001 53316291173/33385282*3571^(15/17) 2178308849276214 a001 139583862445/87403803*3571^(15/17) 2178308849276214 a001 365435296162/228826127*3571^(15/17) 2178308849276214 a001 956722026041/599074578*3571^(15/17) 2178308849276214 a001 2504730781961/1568397607*3571^(15/17) 2178308849276214 a001 6557470319842/4106118243*3571^(15/17) 2178308849276214 a001 10610209857723/6643838879*3571^(15/17) 2178308849276214 a001 4052739537881/2537720636*3571^(15/17) 2178308849276214 a001 1548008755920/969323029*3571^(15/17) 2178308849276214 a001 591286729879/370248451*3571^(15/17) 2178308849276214 a001 225851433717/141422324*3571^(15/17) 2178308849276215 a001 86267571272/54018521*3571^(15/17) 2178308849276219 a001 32951280099/20633239*3571^(15/17) 2178308849276249 a001 12586269025/7881196*3571^(15/17) 2178308849276455 a001 4807526976/3010349*3571^(15/17) 2178308849277862 a001 1836311903/1149851*3571^(15/17) 2178308849287507 a001 701408733/439204*3571^(15/17) 2178308849353614 a001 267914296/167761*3571^(15/17) 2178308849804978 a001 39088169/15127*3571^(14/17) 2178308849806717 a001 102334155/64079*3571^(15/17) 2178308852912337 a001 39088169/24476*3571^(15/17) 2178308854101440 a001 3478759240/1597 2178308854366442 a001 133957148/2889*3571^(8/17) 2178308854951209 a007 Real Root Of 398*x^4+911*x^3-4*x^2-253*x-77 2178308856697799 a001 7778742049/5778*1364^(1/15) 2178308857935597 a001 34111385/13201*3571^(14/17) 2178308858601640 a001 1134903170/3571*1364^(4/15) 2178308859121838 a001 133957148/51841*3571^(14/17) 2178308859294908 a001 233802911/90481*3571^(14/17) 2178308859320159 a001 1836311903/710647*3571^(14/17) 2178308859323843 a001 267084832/103361*3571^(14/17) 2178308859324381 a001 12586269025/4870847*3571^(14/17) 2178308859324459 a001 10983760033/4250681*3571^(14/17) 2178308859324470 a001 43133785636/16692641*3571^(14/17) 2178308859324472 a001 75283811239/29134601*3571^(14/17) 2178308859324472 a001 591286729879/228826127*3571^(14/17) 2178308859324472 a001 86000486440/33281921*3571^(14/17) 2178308859324472 a001 4052739537881/1568397607*3571^(14/17) 2178308859324472 a001 3536736619241/1368706081*3571^(14/17) 2178308859324472 a001 3278735159921/1268860318*3571^(14/17) 2178308859324472 a001 2504730781961/969323029*3571^(14/17) 2178308859324472 a001 956722026041/370248451*3571^(14/17) 2178308859324472 a001 182717648081/70711162*3571^(14/17) 2178308859324473 a001 139583862445/54018521*3571^(14/17) 2178308859324477 a001 53316291173/20633239*3571^(14/17) 2178308859324507 a001 10182505537/3940598*3571^(14/17) 2178308859324713 a001 7778742049/3010349*3571^(14/17) 2178308859326120 a001 2971215073/1149851*3571^(14/17) 2178308859335765 a001 567451585/219602*3571^(14/17) 2178308859401872 a001 433494437/167761*3571^(14/17) 2178308859443379 r005 Re(z^2+c),c=4/21+2/25*I,n=26 2178308859853237 a001 63245986/15127*3571^(13/17) 2178308859854976 a001 165580141/64079*3571^(14/17) 2178308860245862 a001 24157817/2207*2207^(11/16) 2178308862960595 a001 31622993/12238*3571^(14/17) 2178308864150319 a001 9227465/9349*3571^(16/17) 2178308864414701 a001 433494437/5778*3571^(7/17) 2178308864435410 r005 Re(z^2+c),c=-47/38+1/37*I,n=64 2178308867868532 a007 Real Root Of -445*x^4-918*x^3+201*x^2+73*x-264 2178308867983855 a001 165580141/39603*3571^(13/17) 2178308868813027 a001 7778742049/9349*1364^(2/15) 2178308869170096 a001 433494437/103682*3571^(13/17) 2178308869343167 a001 1134903170/271443*3571^(13/17) 2178308869368417 a001 2971215073/710647*3571^(13/17) 2178308869372101 a001 7778742049/1860498*3571^(13/17) 2178308869372639 a001 20365011074/4870847*3571^(13/17) 2178308869372717 a001 53316291173/12752043*3571^(13/17) 2178308869372729 a001 139583862445/33385282*3571^(13/17) 2178308869372730 a001 365435296162/87403803*3571^(13/17) 2178308869372731 a001 956722026041/228826127*3571^(13/17) 2178308869372731 a001 2504730781961/599074578*3571^(13/17) 2178308869372731 a001 6557470319842/1568397607*3571^(13/17) 2178308869372731 a001 10610209857723/2537720636*3571^(13/17) 2178308869372731 a001 4052739537881/969323029*3571^(13/17) 2178308869372731 a001 1548008755920/370248451*3571^(13/17) 2178308869372731 a001 591286729879/141422324*3571^(13/17) 2178308869372731 a001 225851433717/54018521*3571^(13/17) 2178308869372736 a001 86267571272/20633239*3571^(13/17) 2178308869372766 a001 32951280099/7881196*3571^(13/17) 2178308869372971 a001 12586269025/3010349*3571^(13/17) 2178308869374378 a001 4807526976/1149851*3571^(13/17) 2178308869384023 a001 1836311903/439204*3571^(13/17) 2178308869450130 a001 701408733/167761*3571^(13/17) 2178308869504927 a001 1292/2889*(1/2+1/2*5^(1/2))^32 2178308869504927 a001 1292/2889*23725150497407^(1/2) 2178308869504927 a001 1292/2889*73681302247^(8/13) 2178308869504927 a001 1292/2889*10749957122^(2/3) 2178308869504927 a001 1292/2889*4106118243^(16/23) 2178308869504927 a001 1292/2889*1568397607^(8/11) 2178308869504927 a001 1292/2889*599074578^(16/21) 2178308869504927 a001 1292/2889*228826127^(4/5) 2178308869504927 a001 1292/2889*87403803^(16/19) 2178308869504928 a001 1292/2889*33385282^(8/9) 2178308869504939 a001 1292/2889*12752043^(16/17) 2178308869901495 a001 6765*3571^(12/17) 2178308869903234 a001 267914296/64079*3571^(13/17) 2178308871975428 r005 Re(z^2+c),c=4/21+2/25*I,n=25 2178308873008854 a001 102334155/24476*3571^(13/17) 2178308874198570 a001 14930352/9349*3571^(15/17) 2178308874462959 a001 233802911/1926*3571^(6/17) 2178308875321861 a007 Real Root Of 911*x^4-639*x^3-311*x^2-230*x-44 2178308878032113 a001 267914296/39603*3571^(12/17) 2178308879218355 a001 701408733/103682*3571^(12/17) 2178308879391425 a001 1836311903/271443*3571^(12/17) 2178308879416675 a001 686789568/101521*3571^(12/17) 2178308879420360 a001 12586269025/1860498*3571^(12/17) 2178308879420897 a001 32951280099/4870847*3571^(12/17) 2178308879420975 a001 86267571272/12752043*3571^(12/17) 2178308879420987 a001 32264490531/4769326*3571^(12/17) 2178308879420989 a001 591286729879/87403803*3571^(12/17) 2178308879420989 a001 1548008755920/228826127*3571^(12/17) 2178308879420989 a001 4052739537881/599074578*3571^(12/17) 2178308879420989 a001 1515744265389/224056801*3571^(12/17) 2178308879420989 a001 6557470319842/969323029*3571^(12/17) 2178308879420989 a001 2504730781961/370248451*3571^(12/17) 2178308879420989 a001 956722026041/141422324*3571^(12/17) 2178308879420990 a001 365435296162/54018521*3571^(12/17) 2178308879420994 a001 139583862445/20633239*3571^(12/17) 2178308879421024 a001 53316291173/7881196*3571^(12/17) 2178308879421229 a001 20365011074/3010349*3571^(12/17) 2178308879422636 a001 7778742049/1149851*3571^(12/17) 2178308879432281 a001 2971215073/439204*3571^(12/17) 2178308879498388 a001 1134903170/167761*3571^(12/17) 2178308879949753 a001 165580141/15127*3571^(11/17) 2178308879951492 a001 433494437/64079*3571^(12/17) 2178308883057112 a001 165580141/24476*3571^(12/17) 2178308884246831 a001 24157817/9349*3571^(14/17) 2178308884511217 a001 567451585/2889*3571^(5/17) 2178308888080372 a001 433494437/39603*3571^(11/17) 2178308888196705 a001 14930352/2207*2207^(3/4) 2178308889266613 a001 567451585/51841*3571^(11/17) 2178308889439683 a001 2971215073/271443*3571^(11/17) 2178308889464934 a001 7778742049/710647*3571^(11/17) 2178308889468618 a001 10182505537/930249*3571^(11/17) 2178308889469155 a001 53316291173/4870847*3571^(11/17) 2178308889469234 a001 139583862445/12752043*3571^(11/17) 2178308889469245 a001 182717648081/16692641*3571^(11/17) 2178308889469247 a001 956722026041/87403803*3571^(11/17) 2178308889469247 a001 2504730781961/228826127*3571^(11/17) 2178308889469247 a001 3278735159921/299537289*3571^(11/17) 2178308889469247 a001 10610209857723/969323029*3571^(11/17) 2178308889469247 a001 4052739537881/370248451*3571^(11/17) 2178308889469247 a001 387002188980/35355581*3571^(11/17) 2178308889469248 a001 591286729879/54018521*3571^(11/17) 2178308889469252 a001 7787980473/711491*3571^(11/17) 2178308889469282 a001 21566892818/1970299*3571^(11/17) 2178308889469487 a001 32951280099/3010349*3571^(11/17) 2178308889470895 a001 12586269025/1149851*3571^(11/17) 2178308889480540 a001 1201881744/109801*3571^(11/17) 2178308889546646 a001 1836311903/167761*3571^(11/17) 2178308889998012 a001 267914296/15127*3571^(10/17) 2178308889999750 a001 701408733/64079*3571^(11/17) 2178308893105370 a001 10946*3571^(11/17) 2178308894295089 a001 4181*3571^(13/17) 2178308894559475 a001 1836311903/5778*3571^(4/17) 2178308898128630 a001 17711*3571^(10/17) 2178308899314871 a001 1836311903/103682*3571^(10/17) 2178308899487941 a001 1602508992/90481*3571^(10/17) 2178308899513192 a001 12586269025/710647*3571^(10/17) 2178308899516876 a001 10983760033/620166*3571^(10/17) 2178308899517414 a001 86267571272/4870847*3571^(10/17) 2178308899517492 a001 75283811239/4250681*3571^(10/17) 2178308899517503 a001 591286729879/33385282*3571^(10/17) 2178308899517505 a001 516002918640/29134601*3571^(10/17) 2178308899517505 a001 4052739537881/228826127*3571^(10/17) 2178308899517505 a001 3536736619241/199691526*3571^(10/17) 2178308899517505 a001 6557470319842/370248451*3571^(10/17) 2178308899517506 a001 2504730781961/141422324*3571^(10/17) 2178308899517506 a001 956722026041/54018521*3571^(10/17) 2178308899517511 a001 365435296162/20633239*3571^(10/17) 2178308899517540 a001 139583862445/7881196*3571^(10/17) 2178308899517746 a001 53316291173/3010349*3571^(10/17) 2178308899519153 a001 20365011074/1149851*3571^(10/17) 2178308899528798 a001 7778742049/439204*3571^(10/17) 2178308899572939 r005 Re(z^2+c),c=-17/70+13/60*I,n=10 2178308899594905 a001 2971215073/167761*3571^(10/17) 2178308900046270 a001 433494437/15127*3571^(9/17) 2178308900048009 a001 1134903170/64079*3571^(10/17) 2178308900643854 a007 Real Root Of 330*x^4+402*x^3-476*x^2+125*x-744 2178308903153629 a001 433494437/24476*3571^(10/17) 2178308904343347 a001 63245986/9349*3571^(12/17) 2178308904607734 a001 2971215073/5778*3571^(3/17) 2178308908176888 a001 1134903170/39603*3571^(9/17) 2178308909363130 a001 2971215073/103682*3571^(9/17) 2178308909536200 a001 7778742049/271443*3571^(9/17) 2178308909561450 a001 20365011074/710647*3571^(9/17) 2178308909565135 a001 53316291173/1860498*3571^(9/17) 2178308909565672 a001 139583862445/4870847*3571^(9/17) 2178308909565750 a001 365435296162/12752043*3571^(9/17) 2178308909565762 a001 956722026041/33385282*3571^(9/17) 2178308909565764 a001 2504730781961/87403803*3571^(9/17) 2178308909565764 a001 6557470319842/228826127*3571^(9/17) 2178308909565764 a001 10610209857723/370248451*3571^(9/17) 2178308909565764 a001 4052739537881/141422324*3571^(9/17) 2178308909565765 a001 1548008755920/54018521*3571^(9/17) 2178308909565769 a001 591286729879/20633239*3571^(9/17) 2178308909565799 a001 225851433717/7881196*3571^(9/17) 2178308909566004 a001 86267571272/3010349*3571^(9/17) 2178308909567411 a001 32951280099/1149851*3571^(9/17) 2178308909577056 a001 12586269025/439204*3571^(9/17) 2178308909643163 a001 4807526976/167761*3571^(9/17) 2178308909830184 a001 9107509552/4181 2178308910094528 a001 701408733/15127*3571^(8/17) 2178308910096267 a001 28657*3571^(9/17) 2178308911141762 a001 726103/1926*9349^(18/19) 2178308912425885 a001 20365011074/15127*1364^(1/15) 2178308912453592 a001 1762289/2889*9349^(17/19) 2178308913201887 a001 701408733/24476*3571^(9/17) 2178308913765246 a001 5702887/5778*9349^(16/19) 2178308914391606 a001 102334155/9349*3571^(11/17) 2178308914655992 a001 267084832/321*3571^(2/17) 2178308915076968 a001 9227465/5778*9349^(15/19) 2178308916147557 a001 9227465/2207*2207^(13/16) 2178308916388664 a001 2584*9349^(14/19) 2178308917700370 a001 24157817/5778*9349^(13/19) 2178308918225147 a001 1836311903/39603*3571^(8/17) 2178308919012072 a001 39088169/5778*9349^(12/19) 2178308919411388 a001 46368*3571^(8/17) 2178308919584458 a001 12586269025/271443*3571^(8/17) 2178308919609709 a001 32951280099/710647*3571^(8/17) 2178308919613393 a001 43133785636/930249*3571^(8/17) 2178308919613930 a001 225851433717/4870847*3571^(8/17) 2178308919614009 a001 591286729879/12752043*3571^(8/17) 2178308919614020 a001 774004377960/16692641*3571^(8/17) 2178308919614022 a001 4052739537881/87403803*3571^(8/17) 2178308919614022 a001 225749145909/4868641*3571^(8/17) 2178308919614022 a001 3278735159921/70711162*3571^(8/17) 2178308919614023 a001 2504730781961/54018521*3571^(8/17) 2178308919614027 a001 956722026041/20633239*3571^(8/17) 2178308919614057 a001 182717648081/3940598*3571^(8/17) 2178308919614263 a001 139583862445/3010349*3571^(8/17) 2178308919615670 a001 53316291173/1149851*3571^(8/17) 2178308919625315 a001 10182505537/219602*3571^(8/17) 2178308919691422 a001 7778742049/167761*3571^(8/17) 2178308920142787 a001 1134903170/15127*3571^(7/17) 2178308920144525 a001 2971215073/64079*3571^(8/17) 2178308920323775 a001 31622993/2889*9349^(11/19) 2178308920556503 a001 53316291173/39603*1364^(1/15) 2178308920689779 r009 Re(z^3+c),c=-5/122+12/23*I,n=6 2178308921635478 a001 34111385/1926*9349^(10/19) 2178308921742745 a001 139583862445/103682*1364^(1/15) 2178308921915815 a001 365435296162/271443*1364^(1/15) 2178308921941066 a001 956722026041/710647*1364^(1/15) 2178308921944750 a001 2504730781961/1860498*1364^(1/15) 2178308921945287 a001 6557470319842/4870847*1364^(1/15) 2178308921945414 a001 10610209857723/7881196*1364^(1/15) 2178308921945619 a001 1346269*1364^(1/15) 2178308921947026 a001 1548008755920/1149851*1364^(1/15) 2178308921956671 a001 591286729879/439204*1364^(1/15) 2178308922022778 a001 225851433717/167761*1364^(1/15) 2178308922475882 a001 86267571272/64079*1364^(1/15) 2178308922947181 a001 165580141/5778*9349^(9/19) 2178308923250145 a001 567451585/12238*3571^(8/17) 2178308924258884 a001 133957148/2889*9349^(8/19) 2178308924439864 a001 165580141/9349*3571^(10/17) 2178308924704251 a001 7778742049/5778*3571^(1/17) 2178308925232983 a001 2255/1926*7881196^(10/11) 2178308925233011 a001 2255/1926*20633239^(6/7) 2178308925233013 a001 2584/15127*45537549124^(2/3) 2178308925233013 a001 2584/15127*(1/2+1/2*5^(1/2))^34 2178308925233013 a001 2584/15127*10749957122^(17/24) 2178308925233013 a001 2584/15127*4106118243^(17/23) 2178308925233013 a001 2584/15127*1568397607^(17/22) 2178308925233013 a001 2584/15127*599074578^(17/21) 2178308925233013 a001 2584/15127*228826127^(17/20) 2178308925233013 a001 2584/15127*87403803^(17/19) 2178308925233015 a001 2255/1926*141422324^(10/13) 2178308925233015 a001 2584/15127*33385282^(17/18) 2178308925233015 a001 2255/1926*2537720636^(2/3) 2178308925233015 a001 2255/1926*45537549124^(10/17) 2178308925233015 a001 2255/1926*312119004989^(6/11) 2178308925233015 a001 2255/1926*14662949395604^(10/21) 2178308925233015 a001 2255/1926*(1/2+1/2*5^(1/2))^30 2178308925233015 a001 2255/1926*192900153618^(5/9) 2178308925233015 a001 2255/1926*28143753123^(3/5) 2178308925233015 a001 2255/1926*10749957122^(5/8) 2178308925233015 a001 2255/1926*4106118243^(15/23) 2178308925233015 a001 2255/1926*1568397607^(15/22) 2178308925233015 a001 2255/1926*599074578^(5/7) 2178308925233015 a001 2255/1926*228826127^(3/4) 2178308925233015 a001 2255/1926*87403803^(15/19) 2178308925233017 a001 2255/1926*33385282^(5/6) 2178308925233027 a001 2255/1926*12752043^(15/17) 2178308925233101 a001 2255/1926*4870847^(15/16) 2178308925570587 a001 433494437/5778*9349^(7/19) 2178308925581502 a001 32951280099/24476*1364^(1/15) 2178308926882290 a001 233802911/1926*9349^(6/19) 2178308928193994 a001 567451585/2889*9349^(5/19) 2178308928273405 a001 2971215073/39603*3571^(7/17) 2178308929459647 a001 7778742049/103682*3571^(7/17) 2178308929505697 a001 1836311903/5778*9349^(4/19) 2178308929632717 a001 20365011074/271443*3571^(7/17) 2178308929657967 a001 53316291173/710647*3571^(7/17) 2178308929661651 a001 139583862445/1860498*3571^(7/17) 2178308929662189 a001 365435296162/4870847*3571^(7/17) 2178308929662267 a001 956722026041/12752043*3571^(7/17) 2178308929662279 a001 2504730781961/33385282*3571^(7/17) 2178308929662280 a001 6557470319842/87403803*3571^(7/17) 2178308929662281 a001 10610209857723/141422324*3571^(7/17) 2178308929662281 a001 4052739537881/54018521*3571^(7/17) 2178308929662286 a001 140728068720/1875749*3571^(7/17) 2178308929662316 a001 591286729879/7881196*3571^(7/17) 2178308929662521 a001 225851433717/3010349*3571^(7/17) 2178308929663928 a001 86267571272/1149851*3571^(7/17) 2178308929673573 a001 32951280099/439204*3571^(7/17) 2178308929739680 a001 75025*3571^(7/17) 2178308930191045 a001 1836311903/15127*3571^(6/17) 2178308930192784 a001 4807526976/64079*3571^(7/17) 2178308930817400 a001 2971215073/5778*9349^(3/19) 2178308931116389 a001 917068060/421 2178308931288905 a001 416020/2889*24476^(20/21) 2178308931462924 a001 1346269/5778*24476^(19/21) 2178308931635740 a001 726103/1926*24476^(6/7) 2178308931809016 a001 1762289/2889*24476^(17/21) 2178308931982116 a001 5702887/5778*24476^(16/21) 2178308932129103 a001 267084832/321*9349^(2/19) 2178308932155283 a001 9227465/5778*24476^(5/7) 2178308932328425 a001 2584*24476^(2/3) 2178308932501576 a001 24157817/5778*24476^(13/21) 2178308932674724 a001 39088169/5778*24476^(4/7) 2178308932847873 a001 31622993/2889*24476^(11/21) 2178308933021022 a001 34111385/1926*24476^(10/21) 2178308933194171 a001 165580141/5778*24476^(3/7) 2178308933298404 a001 1836311903/24476*3571^(7/17) 2178308933363629 a001 17711/5778*20633239^(4/5) 2178308933363632 a001 2584/39603*141422324^(12/13) 2178308933363632 a001 2584/39603*2537720636^(4/5) 2178308933363632 a001 2584/39603*45537549124^(12/17) 2178308933363632 a001 2584/39603*14662949395604^(4/7) 2178308933363632 a001 2584/39603*(1/2+1/2*5^(1/2))^36 2178308933363632 a001 2584/39603*192900153618^(2/3) 2178308933363632 a001 2584/39603*73681302247^(9/13) 2178308933363632 a001 2584/39603*10749957122^(3/4) 2178308933363632 a001 2584/39603*4106118243^(18/23) 2178308933363632 a001 2584/39603*1568397607^(9/11) 2178308933363632 a001 2584/39603*599074578^(6/7) 2178308933363632 a001 2584/39603*228826127^(9/10) 2178308933363632 a001 2584/39603*87403803^(18/19) 2178308933363634 a001 17711/5778*17393796001^(4/7) 2178308933363634 a001 17711/5778*14662949395604^(4/9) 2178308933363634 a001 17711/5778*(1/2+1/2*5^(1/2))^28 2178308933363634 a001 17711/5778*73681302247^(7/13) 2178308933363634 a001 17711/5778*10749957122^(7/12) 2178308933363634 a001 17711/5778*4106118243^(14/23) 2178308933363634 a001 17711/5778*1568397607^(7/11) 2178308933363634 a001 17711/5778*599074578^(2/3) 2178308933363634 a001 17711/5778*228826127^(7/10) 2178308933363634 a001 17711/5778*87403803^(14/19) 2178308933363635 a001 17711/5778*33385282^(7/9) 2178308933363645 a001 17711/5778*12752043^(14/17) 2178308933363714 a001 17711/5778*4870847^(7/8) 2178308933364221 a001 17711/5778*1860498^(14/15) 2178308933367319 a001 133957148/2889*24476^(8/21) 2178308933440806 a001 7778742049/5778*9349^(1/19) 2178308933540468 a001 433494437/5778*24476^(1/3) 2178308933713617 a001 233802911/1926*24476^(2/7) 2178308933886765 a001 567451585/2889*24476^(5/21) 2178308934059914 a001 1836311903/5778*24476^(4/21) 2178308934222005 a001 62423799128/28657 2178308934233063 a001 2971215073/5778*24476^(1/7) 2178308934240758 a001 105937/1926*64079^(22/23) 2178308934269784 a001 514229/5778*64079^(21/23) 2178308934290573 a001 416020/2889*64079^(20/23) 2178308934314508 a001 1346269/5778*64079^(19/23) 2178308934337241 a001 726103/1926*64079^(18/23) 2178308934360433 a001 1762289/2889*64079^(17/23) 2178308934383450 a001 5702887/5778*64079^(16/23) 2178308934406212 a001 267084832/321*24476^(2/21) 2178308934406534 a001 9227465/5778*64079^(15/23) 2178308934429592 a001 2584*64079^(14/23) 2178308934452660 a001 24157817/5778*64079^(13/23) 2178308934475724 a001 39088169/5778*64079^(12/23) 2178308934488123 a001 267914296/9349*3571^(9/17) 2178308934498790 a001 31622993/2889*64079^(11/23) 2178308934521855 a001 34111385/1926*64079^(10/23) 2178308934544921 a001 165580141/5778*64079^(9/23) 2178308934549873 a001 1292/51841*817138163596^(2/3) 2178308934549873 a001 1292/51841*(1/2+1/2*5^(1/2))^38 2178308934549873 a001 1292/51841*10749957122^(19/24) 2178308934549873 a001 1292/51841*4106118243^(19/23) 2178308934549873 a001 1292/51841*1568397607^(19/22) 2178308934549873 a001 1292/51841*599074578^(19/21) 2178308934549873 a001 1292/51841*228826127^(19/20) 2178308934549875 a001 2576/321*141422324^(2/3) 2178308934549875 a001 2576/321*(1/2+1/2*5^(1/2))^26 2178308934549875 a001 2576/321*73681302247^(1/2) 2178308934549875 a001 2576/321*10749957122^(13/24) 2178308934549875 a001 2576/321*4106118243^(13/23) 2178308934549875 a001 2576/321*1568397607^(13/22) 2178308934549875 a001 2576/321*599074578^(13/21) 2178308934549875 a001 2576/321*228826127^(13/20) 2178308934549875 a001 2576/321*87403803^(13/19) 2178308934549876 a001 2576/321*33385282^(13/18) 2178308934549885 a001 2576/321*12752043^(13/17) 2178308934549949 a001 2576/321*4870847^(13/16) 2178308934550420 a001 2576/321*1860498^(13/15) 2178308934553880 a001 2576/321*710647^(13/14) 2178308934567986 a001 133957148/2889*64079^(8/23) 2178308934579360 a001 7778742049/5778*24476^(1/21) 2178308934591052 a001 433494437/5778*64079^(7/23) 2178308934614117 a001 233802911/1926*64079^(6/23) 2178308934637182 a001 567451585/2889*64079^(5/23) 2178308934660248 a001 1836311903/5778*64079^(4/23) 2178308934675108 a001 163427627824/75025 2178308934683313 a001 2971215073/5778*64079^(3/23) 2178308934689960 a001 416020/2889*167761^(4/5) 2178308934706075 a001 9227465/5778*167761^(3/5) 2178308934706378 a001 267084832/321*64079^(2/23) 2178308934712907 a001 121393/5778*439204^(8/9) 2178308934721549 a001 34111385/1926*167761^(2/5) 2178308934722920 a001 121393/5778*7881196^(8/11) 2178308934722943 a001 2584/271443*2537720636^(8/9) 2178308934722943 a001 2584/271443*312119004989^(8/11) 2178308934722943 a001 2584/271443*(1/2+1/2*5^(1/2))^40 2178308934722943 a001 2584/271443*23725150497407^(5/8) 2178308934722943 a001 2584/271443*73681302247^(10/13) 2178308934722943 a001 2584/271443*28143753123^(4/5) 2178308934722943 a001 2584/271443*10749957122^(5/6) 2178308934722943 a001 2584/271443*4106118243^(20/23) 2178308934722943 a001 2584/271443*1568397607^(10/11) 2178308934722943 a001 2584/271443*599074578^(20/21) 2178308934722945 a001 121393/5778*141422324^(8/13) 2178308934722945 a001 121393/5778*2537720636^(8/15) 2178308934722945 a001 121393/5778*45537549124^(8/17) 2178308934722945 a001 121393/5778*14662949395604^(8/21) 2178308934722945 a001 121393/5778*(1/2+1/2*5^(1/2))^24 2178308934722945 a001 121393/5778*192900153618^(4/9) 2178308934722945 a001 121393/5778*73681302247^(6/13) 2178308934722945 a001 121393/5778*10749957122^(1/2) 2178308934722945 a001 121393/5778*4106118243^(12/23) 2178308934722945 a001 121393/5778*1568397607^(6/11) 2178308934722945 a001 121393/5778*599074578^(4/7) 2178308934722945 a001 121393/5778*228826127^(3/5) 2178308934722945 a001 121393/5778*87403803^(12/19) 2178308934722946 a001 121393/5778*33385282^(2/3) 2178308934722955 a001 121393/5778*12752043^(12/17) 2178308934723014 a001 121393/5778*4870847^(3/4) 2178308934723449 a001 121393/5778*1860498^(4/5) 2178308934726642 a001 121393/5778*710647^(6/7) 2178308934729444 a001 7778742049/5778*64079^(1/23) 2178308934737029 a001 567451585/2889*167761^(1/5) 2178308934741215 a001 12584090716/5777 2178308934744889 a001 726103/1926*439204^(2/3) 2178308934745374 a001 514229/5778*439204^(7/9) 2178308934746241 a001 9227465/5778*439204^(5/9) 2178308934747490 a001 39088169/5778*439204^(4/9) 2178308934748172 a001 105937/1926*7881196^(2/3) 2178308934748194 a001 2584/710647*2537720636^(14/15) 2178308934748194 a001 2584/710647*17393796001^(6/7) 2178308934748194 a001 2584/710647*45537549124^(14/17) 2178308934748194 a001 2584/710647*14662949395604^(2/3) 2178308934748194 a001 2584/710647*(1/2+1/2*5^(1/2))^42 2178308934748194 a001 2584/710647*505019158607^(3/4) 2178308934748194 a001 2584/710647*192900153618^(7/9) 2178308934748194 a001 2584/710647*10749957122^(7/8) 2178308934748194 a001 2584/710647*4106118243^(21/23) 2178308934748194 a001 2584/710647*1568397607^(21/22) 2178308934748196 a001 105937/1926*312119004989^(2/5) 2178308934748196 a001 105937/1926*(1/2+1/2*5^(1/2))^22 2178308934748196 a001 105937/1926*10749957122^(11/24) 2178308934748196 a001 105937/1926*4106118243^(11/23) 2178308934748196 a001 105937/1926*1568397607^(1/2) 2178308934748196 a001 105937/1926*599074578^(11/21) 2178308934748196 a001 105937/1926*228826127^(11/20) 2178308934748196 a001 105937/1926*87403803^(11/19) 2178308934748197 a001 105937/1926*33385282^(11/18) 2178308934748204 a001 105937/1926*12752043^(11/17) 2178308934748259 a001 105937/1926*4870847^(11/16) 2178308934748657 a001 105937/1926*1860498^(11/15) 2178308934748745 a001 165580141/5778*439204^(1/3) 2178308934750000 a001 233802911/1926*439204^(2/9) 2178308934750235 a001 121393/5778*271443^(12/13) 2178308934750860 a001 1120149625208/514229 2178308934751254 a001 2971215073/5778*439204^(1/9) 2178308934751585 a001 105937/1926*710647^(11/14) 2178308934751877 a001 416020/2889*20633239^(4/7) 2178308934751878 a001 1292/930249*312119004989^(4/5) 2178308934751878 a001 1292/930249*(1/2+1/2*5^(1/2))^44 2178308934751878 a001 1292/930249*23725150497407^(11/16) 2178308934751878 a001 1292/930249*73681302247^(11/13) 2178308934751878 a001 1292/930249*10749957122^(11/12) 2178308934751878 a001 1292/930249*4106118243^(22/23) 2178308934751880 a001 416020/2889*2537720636^(4/9) 2178308934751880 a001 416020/2889*(1/2+1/2*5^(1/2))^20 2178308934751880 a001 416020/2889*23725150497407^(5/16) 2178308934751880 a001 416020/2889*505019158607^(5/14) 2178308934751880 a001 416020/2889*73681302247^(5/13) 2178308934751880 a001 416020/2889*28143753123^(2/5) 2178308934751880 a001 416020/2889*10749957122^(5/12) 2178308934751880 a001 416020/2889*4106118243^(10/23) 2178308934751880 a001 416020/2889*1568397607^(5/11) 2178308934751880 a001 416020/2889*599074578^(10/21) 2178308934751880 a001 416020/2889*228826127^(1/2) 2178308934751880 a001 416020/2889*87403803^(10/19) 2178308934751881 a001 416020/2889*33385282^(5/9) 2178308934751888 a001 416020/2889*12752043^(10/17) 2178308934751937 a001 416020/2889*4870847^(5/8) 2178308934752267 a001 2932589791280/1346269 2178308934752299 a001 416020/2889*1860498^(2/3) 2178308934752398 a001 726103/1926*7881196^(6/11) 2178308934752415 a001 2584/4870847*(1/2+1/2*5^(1/2))^46 2178308934752415 a001 2584/4870847*10749957122^(23/24) 2178308934752417 a001 726103/1926*141422324^(6/13) 2178308934752417 a001 726103/1926*2537720636^(2/5) 2178308934752417 a001 726103/1926*45537549124^(6/17) 2178308934752417 a001 726103/1926*14662949395604^(2/7) 2178308934752417 a001 726103/1926*(1/2+1/2*5^(1/2))^18 2178308934752417 a001 726103/1926*192900153618^(1/3) 2178308934752417 a001 726103/1926*10749957122^(3/8) 2178308934752417 a001 726103/1926*4106118243^(9/23) 2178308934752417 a001 726103/1926*1568397607^(9/22) 2178308934752417 a001 726103/1926*599074578^(3/7) 2178308934752417 a001 726103/1926*228826127^(9/20) 2178308934752417 a001 726103/1926*87403803^(9/19) 2178308934752418 a001 726103/1926*33385282^(1/2) 2178308934752424 a001 726103/1926*12752043^(9/17) 2178308934752469 a001 726103/1926*4870847^(9/16) 2178308934752472 a001 3838809874316/1762289 2178308934752494 a001 2584/12752043*45537549124^(16/17) 2178308934752494 a001 2584/12752043*14662949395604^(16/21) 2178308934752494 a001 2584/12752043*(1/2+1/2*5^(1/2))^48 2178308934752494 a001 2584/12752043*192900153618^(8/9) 2178308934752494 a001 2584/12752043*73681302247^(12/13) 2178308934752496 a001 5702887/5778*(1/2+1/2*5^(1/2))^16 2178308934752496 a001 5702887/5778*23725150497407^(1/4) 2178308934752496 a001 5702887/5778*73681302247^(4/13) 2178308934752496 a001 5702887/5778*10749957122^(1/3) 2178308934752496 a001 5702887/5778*4106118243^(8/23) 2178308934752496 a001 5702887/5778*1568397607^(4/11) 2178308934752496 a001 5702887/5778*599074578^(8/21) 2178308934752496 a001 5702887/5778*228826127^(2/5) 2178308934752496 a001 5702887/5778*87403803^(8/19) 2178308934752496 a001 39088169/5778*7881196^(4/11) 2178308934752496 a001 5702887/5778*33385282^(4/9) 2178308934752497 a001 31622993/2889*7881196^(1/3) 2178308934752498 a001 9227465/5778*7881196^(5/11) 2178308934752499 a001 165580141/5778*7881196^(3/11) 2178308934752502 a001 5702887/5778*12752043^(8/17) 2178308934752502 a001 1546174573432/709805 2178308934752503 a001 233802911/1926*7881196^(2/11) 2178308934752505 a001 2584*20633239^(2/5) 2178308934752505 a001 1292/16692641*312119004989^(10/11) 2178308934752505 a001 1292/16692641*(1/2+1/2*5^(1/2))^50 2178308934752505 a001 1292/16692641*3461452808002^(5/6) 2178308934752506 a001 2971215073/5778*7881196^(1/11) 2178308934752506 a001 52623188615216/24157817 2178308934752507 a001 2584/87403803*23725150497407^(13/16) 2178308934752507 a001 68884648195516/31622993 2178308934752507 a001 2584/228826127*14662949395604^(6/7) 2178308934752507 a001 360684700557880/165580141 2178308934752507 a001 1292/299537289*14662949395604^(8/9) 2178308934752507 a001 944284805282608/433494437 2178308934752507 a001 72710873979116/33379505 2178308934752507 a001 2584/4106118243*14662949395604^(20/21) 2178308934752507 a001 6472224340587224/2971215073 2178308934752507 a001 1303423331267056/598364773 2178308934752507 a001 2584*17393796001^(2/7) 2178308934752507 a001 2584*14662949395604^(2/9) 2178308934752507 a001 27416782272356232/12586269025 2178308934752507 a001 2584*10749957122^(7/24) 2178308934752507 a001 1309034870735563/600940872 2178308934752507 a001 2584*4106118243^(7/23) 2178308934752507 a001 4000054625297280/1836311903 2178308934752507 a001 2584*1568397607^(7/22) 2178308934752507 a001 1527884910007336/701408733 2178308934752507 a001 2584*599074578^(1/3) 2178308934752507 a001 2584/969323029*14662949395604^(19/21) 2178308934752507 a001 193501360983/88831 2178308934752507 a001 2584*228826127^(7/20) 2178308934752507 a001 2584/370248451*3461452808002^(11/12) 2178308934752507 a001 222915404166848/102334155 2178308934752507 a001 2584*87403803^(7/19) 2178308934752507 a001 85146107775816/39088169 2178308934752508 a001 34111385/1926*20633239^(2/7) 2178308934752508 a001 2584/54018521*817138163596^(17/19) 2178308934752508 a001 2584/54018521*14662949395604^(17/21) 2178308934752508 a001 2584/54018521*192900153618^(17/18) 2178308934752508 a001 2584*33385282^(7/18) 2178308934752508 a001 433494437/5778*20633239^(1/5) 2178308934752508 a001 567451585/2889*20633239^(1/7) 2178308934752509 a001 39088169/5778*141422324^(4/13) 2178308934752509 a001 39088169/5778*2537720636^(4/15) 2178308934752509 a001 39088169/5778*45537549124^(4/17) 2178308934752509 a001 39088169/5778*14662949395604^(4/21) 2178308934752509 a001 39088169/5778*(1/2+1/2*5^(1/2))^12 2178308934752509 a001 39088169/5778*192900153618^(2/9) 2178308934752509 a001 39088169/5778*73681302247^(3/13) 2178308934752509 a001 39088169/5778*10749957122^(1/4) 2178308934752509 a001 39088169/5778*4106118243^(6/23) 2178308934752509 a001 39088169/5778*1568397607^(3/11) 2178308934752509 a001 39088169/5778*599074578^(2/7) 2178308934752509 a001 39088169/5778*228826127^(3/10) 2178308934752509 a001 39088169/5778*87403803^(6/19) 2178308934752509 a001 34111385/1926*2537720636^(2/9) 2178308934752509 a001 34111385/1926*312119004989^(2/11) 2178308934752509 a001 34111385/1926*(1/2+1/2*5^(1/2))^10 2178308934752509 a001 34111385/1926*28143753123^(1/5) 2178308934752509 a001 34111385/1926*10749957122^(5/24) 2178308934752509 a001 34111385/1926*4106118243^(5/23) 2178308934752509 a001 34111385/1926*1568397607^(5/22) 2178308934752509 a001 34111385/1926*599074578^(5/21) 2178308934752509 a001 34111385/1926*228826127^(1/4) 2178308934752509 a001 233802911/1926*141422324^(2/13) 2178308934752509 a001 165580141/5778*141422324^(3/13) 2178308934752509 a001 2971215073/5778*141422324^(1/13) 2178308934752509 a001 133957148/2889*(1/2+1/2*5^(1/2))^8 2178308934752509 a001 133957148/2889*23725150497407^(1/8) 2178308934752509 a001 133957148/2889*505019158607^(1/7) 2178308934752509 a001 133957148/2889*73681302247^(2/13) 2178308934752509 a001 133957148/2889*10749957122^(1/6) 2178308934752509 a001 133957148/2889*4106118243^(4/23) 2178308934752509 a001 133957148/2889*1568397607^(2/11) 2178308934752509 a001 133957148/2889*599074578^(4/21) 2178308934752509 a001 233802911/1926*2537720636^(2/15) 2178308934752509 a001 233802911/1926*45537549124^(2/17) 2178308934752509 a001 233802911/1926*14662949395604^(2/21) 2178308934752509 a001 233802911/1926*(1/2+1/2*5^(1/2))^6 2178308934752509 a001 233802911/1926*10749957122^(1/8) 2178308934752509 a001 233802911/1926*4106118243^(3/23) 2178308934752509 a001 233802911/1926*1568397607^(3/22) 2178308934752509 a001 1836311903/5778*(1/2+1/2*5^(1/2))^4 2178308934752509 a001 1836311903/5778*23725150497407^(1/16) 2178308934752509 a001 1836311903/5778*73681302247^(1/13) 2178308934752509 a001 1836311903/5778*10749957122^(1/12) 2178308934752509 a001 1836311903/5778*4106118243^(2/23) 2178308934752509 a001 1836311903/5778*1568397607^(1/11) 2178308934752509 a001 267084832/321*(1/2+1/2*5^(1/2))^2 2178308934752509 a001 233802911/1926*599074578^(1/7) 2178308934752509 a001 267084832/321*10749957122^(1/24) 2178308934752509 a001 267084832/321*4106118243^(1/23) 2178308934752509 a001 12586269025/5778 2178308934752509 a001 7778742049/11556+7778742049/11556*5^(1/2) 2178308934752509 a001 267084832/321*1568397607^(1/22) 2178308934752509 a001 2971215073/5778*2537720636^(1/15) 2178308934752509 a001 2971215073/5778*45537549124^(1/17) 2178308934752509 a001 2971215073/5778*14662949395604^(1/21) 2178308934752509 a001 2971215073/5778*(1/2+1/2*5^(1/2))^3 2178308934752509 a001 2971215073/5778*10749957122^(1/16) 2178308934752509 a001 267084832/321*599074578^(1/21) 2178308934752509 a001 567451585/2889*2537720636^(1/9) 2178308934752509 a001 567451585/2889*312119004989^(1/11) 2178308934752509 a001 567451585/2889*(1/2+1/2*5^(1/2))^5 2178308934752509 a001 567451585/2889*28143753123^(1/10) 2178308934752509 a001 1836311903/5778*599074578^(2/21) 2178308934752509 a001 2971215073/5778*599074578^(1/14) 2178308934752509 a001 267084832/321*228826127^(1/20) 2178308934752509 a001 133957148/2889*228826127^(1/5) 2178308934752509 a001 433494437/5778*17393796001^(1/7) 2178308934752509 a001 433494437/5778*14662949395604^(1/9) 2178308934752509 a001 433494437/5778*(1/2+1/2*5^(1/2))^7 2178308934752509 a001 433494437/5778*599074578^(1/6) 2178308934752509 a001 1836311903/5778*228826127^(1/10) 2178308934752509 a001 233802911/1926*228826127^(3/20) 2178308934752509 a001 567451585/2889*228826127^(1/8) 2178308934752509 a001 267084832/321*87403803^(1/19) 2178308934752509 a001 165580141/5778*2537720636^(1/5) 2178308934752509 a001 165580141/5778*45537549124^(3/17) 2178308934752509 a001 165580141/5778*14662949395604^(1/7) 2178308934752509 a001 165580141/5778*(1/2+1/2*5^(1/2))^9 2178308934752509 a001 165580141/5778*192900153618^(1/6) 2178308934752509 a001 165580141/5778*10749957122^(3/16) 2178308934752509 a001 165580141/5778*599074578^(3/14) 2178308934752509 a001 1836311903/5778*87403803^(2/19) 2178308934752509 a001 34111385/1926*87403803^(5/19) 2178308934752509 a001 233802911/1926*87403803^(3/19) 2178308934752509 a001 133957148/2889*87403803^(4/19) 2178308934752509 a001 267084832/321*33385282^(1/18) 2178308934752509 a001 31622993/2889*312119004989^(1/5) 2178308934752509 a001 31622993/2889*(1/2+1/2*5^(1/2))^11 2178308934752509 a001 31622993/2889*1568397607^(1/4) 2178308934752509 a001 2971215073/5778*33385282^(1/12) 2178308934752509 a001 1836311903/5778*33385282^(1/9) 2178308934752509 a001 233802911/1926*33385282^(1/6) 2178308934752509 a001 39088169/5778*33385282^(1/3) 2178308934752509 a001 133957148/2889*33385282^(2/9) 2178308934752510 a001 34111385/1926*33385282^(5/18) 2178308934752510 a001 165580141/5778*33385282^(1/4) 2178308934752510 a001 24157817/5778*141422324^(1/3) 2178308934752510 a001 24157817/5778*(1/2+1/2*5^(1/2))^13 2178308934752510 a001 24157817/5778*73681302247^(1/4) 2178308934752510 a001 267084832/321*12752043^(1/17) 2178308934752511 a001 1836311903/5778*12752043^(2/17) 2178308934752511 a001 233802911/1926*12752043^(3/17) 2178308934752512 a001 9227465/5778*20633239^(3/7) 2178308934752512 a001 133957148/2889*12752043^(4/17) 2178308934752512 a001 2584/20633239*14662949395604^(7/9) 2178308934752512 a001 2584/20633239*(1/2+1/2*5^(1/2))^49 2178308934752512 a001 2584/20633239*505019158607^(7/8) 2178308934752513 a001 2584*12752043^(7/17) 2178308934752513 a001 34111385/1926*12752043^(5/17) 2178308934752513 a001 39088169/5778*12752043^(6/17) 2178308934752514 a001 9227465/5778*141422324^(5/13) 2178308934752514 a001 9227465/5778*2537720636^(1/3) 2178308934752514 a001 9227465/5778*45537549124^(5/17) 2178308934752514 a001 9227465/5778*312119004989^(3/11) 2178308934752514 a001 9227465/5778*14662949395604^(5/21) 2178308934752514 a001 9227465/5778*(1/2+1/2*5^(1/2))^15 2178308934752514 a001 9227465/5778*192900153618^(5/18) 2178308934752514 a001 9227465/5778*28143753123^(3/10) 2178308934752514 a001 9227465/5778*10749957122^(5/16) 2178308934752514 a001 9227465/5778*599074578^(5/14) 2178308934752514 a001 9227465/5778*228826127^(3/8) 2178308934752515 a001 267084832/321*4870847^(1/16) 2178308934752515 a001 9227465/5778*33385282^(5/12) 2178308934752520 a001 12422649705984/5702887 2178308934752520 a001 1836311903/5778*4870847^(1/8) 2178308934752526 a001 233802911/1926*4870847^(3/16) 2178308934752532 a001 133957148/2889*4870847^(1/4) 2178308934752538 a001 34111385/1926*4870847^(5/16) 2178308934752542 a001 5702887/5778*4870847^(1/2) 2178308934752542 a001 646/1970299*(1/2+1/2*5^(1/2))^47 2178308934752543 a001 39088169/5778*4870847^(3/8) 2178308934752544 a001 1762289/2889*45537549124^(1/3) 2178308934752544 a001 1762289/2889*(1/2+1/2*5^(1/2))^17 2178308934752547 a001 2584*4870847^(7/16) 2178308934752551 a001 1762289/2889*12752043^(1/2) 2178308934752551 a001 267084832/321*1860498^(1/15) 2178308934752572 a001 2971215073/5778*1860498^(1/10) 2178308934752593 a001 1836311903/5778*1860498^(2/15) 2178308934752599 a001 4745029957352/2178309 2178308934752614 a001 567451585/2889*1860498^(1/6) 2178308934752635 a001 233802911/1926*1860498^(1/5) 2178308934752677 a001 133957148/2889*1860498^(4/15) 2178308934752698 a001 165580141/5778*1860498^(3/10) 2178308934752719 a001 34111385/1926*1860498^(1/3) 2178308934752747 a001 2584/3010349*45537549124^(15/17) 2178308934752747 a001 2584/3010349*312119004989^(9/11) 2178308934752747 a001 2584/3010349*14662949395604^(5/7) 2178308934752747 a001 2584/3010349*(1/2+1/2*5^(1/2))^45 2178308934752747 a001 2584/3010349*192900153618^(5/6) 2178308934752747 a001 2584/3010349*28143753123^(9/10) 2178308934752747 a001 2584/3010349*10749957122^(15/16) 2178308934752749 a001 1346269/5778*817138163596^(1/3) 2178308934752749 a001 1346269/5778*(1/2+1/2*5^(1/2))^19 2178308934752750 a001 1346269/5778*87403803^(1/2) 2178308934752760 a001 39088169/5778*1860498^(2/5) 2178308934752795 a001 726103/1926*1860498^(3/5) 2178308934752801 a001 2584*1860498^(7/15) 2178308934752817 a001 267084832/321*710647^(1/14) 2178308934752829 a001 9227465/5778*1860498^(1/2) 2178308934752831 a001 5702887/5778*1860498^(8/15) 2178308934753125 a001 1836311903/5778*710647^(1/7) 2178308934753136 a001 226555020759/104005 2178308934753433 a001 233802911/1926*710647^(3/14) 2178308934753587 a001 433494437/5778*710647^(1/4) 2178308934753741 a001 133957148/2889*710647^(2/7) 2178308934754049 a001 34111385/1926*710647^(5/14) 2178308934754134 a001 514229/5778*7881196^(7/11) 2178308934754153 a001 514229/5778*20633239^(3/5) 2178308934754155 a001 2584/1149851*(1/2+1/2*5^(1/2))^43 2178308934754157 a001 514229/5778*141422324^(7/13) 2178308934754157 a001 514229/5778*2537720636^(7/15) 2178308934754157 a001 514229/5778*17393796001^(3/7) 2178308934754157 a001 514229/5778*45537549124^(7/17) 2178308934754157 a001 514229/5778*14662949395604^(1/3) 2178308934754157 a001 514229/5778*(1/2+1/2*5^(1/2))^21 2178308934754157 a001 514229/5778*192900153618^(7/18) 2178308934754157 a001 514229/5778*10749957122^(7/16) 2178308934754157 a001 514229/5778*599074578^(1/2) 2178308934754158 a001 514229/5778*33385282^(7/12) 2178308934754357 a001 39088169/5778*710647^(3/7) 2178308934754597 a001 514229/5778*1860498^(7/10) 2178308934754664 a001 2584*710647^(1/2) 2178308934754783 a001 267084832/321*271443^(1/13) 2178308934754960 a001 5702887/5778*710647^(4/7) 2178308934754961 a001 416020/2889*710647^(5/7) 2178308934755190 a001 726103/1926*710647^(9/14) 2178308934756820 a001 1836314432/843 2178308934757057 a001 1836311903/5778*271443^(2/13) 2178308934757392 a001 514229/5778*710647^(3/4) 2178308934759331 a001 233802911/1926*271443^(3/13) 2178308934760952 a001 7778742049/5778*103682^(1/24) 2178308934761606 a001 133957148/2889*271443^(4/13) 2178308934763799 a001 34/5779*(1/2+1/2*5^(1/2))^41 2178308934763801 a001 98209/2889*(1/2+1/2*5^(1/2))^23 2178308934763801 a001 98209/2889*4106118243^(1/2) 2178308934763880 a001 34111385/1926*271443^(5/13) 2178308934766154 a001 39088169/5778*271443^(6/13) 2178308934767292 a001 24157817/5778*271443^(1/2) 2178308934768426 a001 2584*271443^(7/13) 2178308934769395 a001 267084832/321*103682^(1/12) 2178308934770689 a001 5702887/5778*271443^(8/13) 2178308934772885 a001 726103/1926*271443^(9/13) 2178308934773211 a001 105937/1926*271443^(11/13) 2178308934774621 a001 416020/2889*271443^(10/13) 2178308934777838 a001 2971215073/5778*103682^(1/8) 2178308934782071 a001 264431456520/121393 2178308934786281 a001 1836311903/5778*103682^(1/6) 2178308934794724 a001 567451585/2889*103682^(5/24) 2178308934803168 a001 233802911/1926*103682^(1/4) 2178308934811611 a001 433494437/5778*103682^(7/24) 2178308934815640 a001 7778742049/5778*39603^(1/22) 2178308934820054 a001 133957148/2889*103682^(1/3) 2178308934828497 a001 165580141/5778*103682^(3/8) 2178308934829905 a001 75025/5778*20633239^(5/7) 2178308934829906 a001 2584/167761*2537720636^(13/15) 2178308934829906 a001 2584/167761*45537549124^(13/17) 2178308934829906 a001 2584/167761*14662949395604^(13/21) 2178308934829906 a001 2584/167761*(1/2+1/2*5^(1/2))^39 2178308934829906 a001 2584/167761*192900153618^(13/18) 2178308934829906 a001 2584/167761*73681302247^(3/4) 2178308934829906 a001 2584/167761*10749957122^(13/16) 2178308934829906 a001 2584/167761*599074578^(13/14) 2178308934829908 a001 75025/5778*2537720636^(5/9) 2178308934829908 a001 75025/5778*312119004989^(5/11) 2178308934829908 a001 75025/5778*(1/2+1/2*5^(1/2))^25 2178308934829908 a001 75025/5778*3461452808002^(5/12) 2178308934829908 a001 75025/5778*28143753123^(1/2) 2178308934829908 a001 75025/5778*228826127^(5/8) 2178308934830433 a001 75025/5778*1860498^(5/6) 2178308934836940 a001 34111385/1926*103682^(5/12) 2178308934845383 a001 31622993/2889*103682^(11/24) 2178308934853826 a001 39088169/5778*103682^(1/2) 2178308934862270 a001 24157817/5778*103682^(13/24) 2178308934870710 a001 2584*103682^(7/12) 2178308934878770 a001 267084832/321*39603^(1/11) 2178308934879161 a001 9227465/5778*103682^(5/8) 2178308934887585 a001 5702887/5778*103682^(2/3) 2178308934896077 a001 1762289/2889*103682^(17/24) 2178308934904393 a001 726103/1926*103682^(3/4) 2178308934913168 a001 1346269/5778*103682^(19/24) 2178308934920742 a001 416020/2889*103682^(5/6) 2178308934931461 a001 514229/5778*103682^(7/8) 2178308934933944 a001 105937/1926*103682^(11/12) 2178308934941901 a001 2971215073/5778*39603^(3/22) 2178308934955141 a001 12625478587/5796 2178308934957993 a001 98209/2889*103682^(23/24) 2178308935005032 a001 1836311903/5778*39603^(2/11) 2178308935068163 a001 567451585/2889*39603^(5/22) 2178308935090440 s002 sum(A120028[n]/((10^n+1)/n),n=1..infinity) 2178308935131293 a001 233802911/1926*39603^(3/11) 2178308935134006 s002 sum(A120028[n]/((10^n-1)/n),n=1..infinity) 2178308935194424 a001 433494437/5778*39603^(7/22) 2178308935228484 a001 7778742049/5778*15127^(1/20) 2178308935257555 a001 133957148/2889*39603^(4/11) 2178308935282984 a001 28657/5778*7881196^(9/11) 2178308935283010 a001 2584/64079*(1/2+1/2*5^(1/2))^37 2178308935283012 a001 28657/5778*141422324^(9/13) 2178308935283012 a001 28657/5778*2537720636^(3/5) 2178308935283012 a001 28657/5778*45537549124^(9/17) 2178308935283012 a001 28657/5778*14662949395604^(3/7) 2178308935283012 a001 28657/5778*(1/2+1/2*5^(1/2))^27 2178308935283012 a001 28657/5778*192900153618^(1/2) 2178308935283012 a001 28657/5778*10749957122^(9/16) 2178308935283012 a001 28657/5778*599074578^(9/14) 2178308935283014 a001 28657/5778*33385282^(3/4) 2178308935283579 a001 28657/5778*1860498^(9/10) 2178308935320685 a001 165580141/5778*39603^(9/22) 2178308935383816 a001 34111385/1926*39603^(5/11) 2178308935446947 a001 31622993/2889*39603^(1/2) 2178308935510077 a001 39088169/5778*39603^(6/11) 2178308935573209 a001 24157817/5778*39603^(13/22) 2178308935636337 a001 2584*39603^(7/11) 2178308935699475 a001 9227465/5778*39603^(15/22) 2178308935704458 a001 267084832/321*15127^(1/10) 2178308935762587 a001 5702887/5778*39603^(8/11) 2178308935825766 a001 1762289/2889*39603^(17/22) 2178308935888770 a001 726103/1926*39603^(9/11) 2178308935952233 a001 1346269/5778*39603^(19/22) 2178308936014494 a001 416020/2889*39603^(10/11) 2178308936079901 a001 514229/5778*39603^(21/22) 2178308936141381 a001 38580029568/17711 2178308936180433 a001 2971215073/5778*15127^(3/20) 2178308936194563 a007 Real Root Of -335*x^4-101*x^3-852*x^2+716*x+16 2178308936215086 a001 567451585/682*521^(2/13) 2178308936656351 a001 1836311903/3571*1364^(1/5) 2178308936656408 a001 1836311903/5778*15127^(1/5) 2178308937132383 a001 567451585/2889*15127^(1/4) 2178308937583932 a007 Real Root Of 464*x^4+479*x^3-897*x^2+627*x+126 2178308937608357 a001 233802911/1926*15127^(3/10) 2178308938084332 a001 433494437/5778*15127^(7/20) 2178308938321664 a001 1602508992/13201*3571^(6/17) 2178308938377375 a001 7778742049/5778*5778^(1/18) 2178308938388630 a001 646/6119*2537720636^(7/9) 2178308938388630 a001 646/6119*17393796001^(5/7) 2178308938388630 a001 646/6119*312119004989^(7/11) 2178308938388630 a001 646/6119*14662949395604^(5/9) 2178308938388630 a001 646/6119*(1/2+1/2*5^(1/2))^35 2178308938388630 a001 646/6119*505019158607^(5/8) 2178308938388630 a001 646/6119*28143753123^(7/10) 2178308938388630 a001 646/6119*599074578^(5/6) 2178308938388630 a001 646/6119*228826127^(7/8) 2178308938388632 a001 5473/2889*(1/2+1/2*5^(1/2))^29 2178308938388632 a001 5473/2889*1322157322203^(1/2) 2178308938560307 a001 133957148/2889*15127^(2/5) 2178308939036281 a001 165580141/5778*15127^(9/20) 2178308939507905 a001 12586269025/103682*3571^(6/17) 2178308939512256 a001 34111385/1926*15127^(1/2) 2178308939680975 a001 121393*3571^(6/17) 2178308939706226 a001 86267571272/710647*3571^(6/17) 2178308939709910 a001 75283811239/620166*3571^(6/17) 2178308939710447 a001 591286729879/4870847*3571^(6/17) 2178308939710526 a001 516002918640/4250681*3571^(6/17) 2178308939710537 a001 4052739537881/33385282*3571^(6/17) 2178308939710539 a001 3536736619241/29134601*3571^(6/17) 2178308939710540 a001 6557470319842/54018521*3571^(6/17) 2178308939710544 a001 2504730781961/20633239*3571^(6/17) 2178308939710574 a001 956722026041/7881196*3571^(6/17) 2178308939710780 a001 365435296162/3010349*3571^(6/17) 2178308939712187 a001 139583862445/1149851*3571^(6/17) 2178308939721832 a001 53316291173/439204*3571^(6/17) 2178308939787939 a001 20365011074/167761*3571^(6/17) 2178308939988231 a001 31622993/2889*15127^(11/20) 2178308940004911 k001 Champernowne real with 911*n+1267 2178308940239304 a001 2971215073/15127*3571^(5/17) 2178308940241042 a001 7778742049/64079*3571^(6/17) 2178308940464205 a001 39088169/5778*15127^(3/5) 2178308940940181 a001 24157817/5778*15127^(13/20) 2178308941416153 a001 2584*15127^(7/10) 2178308941892135 a001 9227465/5778*15127^(3/4) 2178308942002240 a001 267084832/321*5778^(1/9) 2178308942368091 a001 5702887/5778*15127^(4/5) 2178308942844114 a001 1762289/2889*15127^(17/20) 2178308943319962 a001 726103/1926*15127^(9/10) 2178308943346662 a001 2971215073/24476*3571^(6/17) 2178308943796269 a001 1346269/5778*15127^(19/20) 2178308944098385 a001 5702887/2207*2207^(7/8) 2178308944271988 a001 14736260008/6765 2178308944536381 a001 433494437/9349*3571^(8/17) 2178308945627106 a001 2971215073/5778*5778^(1/6) 2178308946867738 a001 12586269025/9349*1364^(1/15) 2178308947640990 m001 ln(FibonacciFactorial)^2*Cahen^2*(2^(1/3)) 2178308948369922 a001 7778742049/39603*3571^(5/17) 2178308949251972 a001 1836311903/5778*5778^(2/9) 2178308949556164 a001 10182505537/51841*3571^(5/17) 2178308949729234 a001 53316291173/271443*3571^(5/17) 2178308949754484 a001 139583862445/710647*3571^(5/17) 2178308949758168 a001 182717648081/930249*3571^(5/17) 2178308949758706 a001 956722026041/4870847*3571^(5/17) 2178308949758784 a001 2504730781961/12752043*3571^(5/17) 2178308949758796 a001 3278735159921/16692641*3571^(5/17) 2178308949758799 a001 10610209857723/54018521*3571^(5/17) 2178308949758803 a001 4052739537881/20633239*3571^(5/17) 2178308949758833 a001 387002188980/1970299*3571^(5/17) 2178308949759038 a001 591286729879/3010349*3571^(5/17) 2178308949760445 a001 225851433717/1149851*3571^(5/17) 2178308949770090 a001 196418*3571^(5/17) 2178308949836197 a001 32951280099/167761*3571^(5/17) 2178308950287562 a001 686789568/2161*3571^(4/17) 2178308950289301 a001 12586269025/64079*3571^(5/17) 2178308952876837 a001 567451585/2889*5778^(5/18) 2178308953394921 a001 1201881744/6119*3571^(5/17) 2178308954584640 a001 701408733/9349*3571^(7/17) 2178308956071159 a007 Real Root Of 340*x^4+815*x^3+358*x^2+656*x+499 2178308956501703 a001 233802911/1926*5778^(1/3) 2178308957322762 m001 (Backhouse+ZetaQ(2))/ln(2) 2178308958418181 a001 12586269025/39603*3571^(4/17) 2178308959604422 a001 32951280099/103682*3571^(4/17) 2178308959674866 a001 2584/9349*141422324^(11/13) 2178308959674866 a001 2584/9349*2537720636^(11/15) 2178308959674866 a001 2584/9349*45537549124^(11/17) 2178308959674866 a001 2584/9349*312119004989^(3/5) 2178308959674866 a001 2584/9349*14662949395604^(11/21) 2178308959674866 a001 2584/9349*(1/2+1/2*5^(1/2))^33 2178308959674866 a001 2584/9349*192900153618^(11/18) 2178308959674866 a001 2584/9349*10749957122^(11/16) 2178308959674866 a001 2584/9349*1568397607^(3/4) 2178308959674866 a001 2584/9349*599074578^(11/14) 2178308959674868 a001 4181/5778*(1/2+1/2*5^(1/2))^31 2178308959674868 a001 4181/5778*9062201101803^(1/2) 2178308959674868 a001 2584/9349*33385282^(11/12) 2178308959777492 a001 86267571272/271443*3571^(4/17) 2178308959802743 a001 317811*3571^(4/17) 2178308959806427 a001 591286729879/1860498*3571^(4/17) 2178308959806965 a001 1548008755920/4870847*3571^(4/17) 2178308959807043 a001 4052739537881/12752043*3571^(4/17) 2178308959807054 a001 1515744265389/4769326*3571^(4/17) 2178308959807062 a001 6557470319842/20633239*3571^(4/17) 2178308959807091 a001 2504730781961/7881196*3571^(4/17) 2178308959807297 a001 956722026041/3010349*3571^(4/17) 2178308959808704 a001 365435296162/1149851*3571^(4/17) 2178308959818349 a001 139583862445/439204*3571^(4/17) 2178308959856963 m005 (1/2*2^(1/2)-1/4)/(6/7*5^(1/2)+2/11) 2178308959884456 a001 53316291173/167761*3571^(4/17) 2178308960126569 a001 433494437/5778*5778^(7/18) 2178308960335821 a001 7778742049/15127*3571^(3/17) 2178308960337560 a001 20365011074/64079*3571^(4/17) 2178308960522887 a007 Real Root Of 420*x^4+523*x^3-714*x^2+688*x+836 2178308962703355 a001 7778742049/5778*2207^(1/16) 2178308963443180 a001 7778742049/24476*3571^(4/17) 2178308963751434 a001 133957148/2889*5778^(4/9) 2178308964517612 r002 35th iterates of z^2 + 2178308964632898 a001 1134903170/9349*3571^(6/17) 2178308965558478 a001 9107509785/4181 2178308966200864 m001 GAMMA(5/6)*CareFree*Trott2nd 2178308966869927 a001 5702887/15127*9349^(18/19) 2178308967376300 a001 165580141/5778*5778^(1/2) 2178308968181649 a001 9227465/15127*9349^(17/19) 2178308968466440 a001 20365011074/39603*3571^(3/17) 2178308969493345 a001 14930352/15127*9349^(16/19) 2178308969652681 a001 53316291173/103682*3571^(3/17) 2178308969825751 a001 139583862445/271443*3571^(3/17) 2178308969851002 a001 365435296162/710647*3571^(3/17) 2178308969854686 a001 956722026041/1860498*3571^(3/17) 2178308969855223 a001 2504730781961/4870847*3571^(3/17) 2178308969855302 a001 6557470319842/12752043*3571^(3/17) 2178308969855320 a001 10610209857723/20633239*3571^(3/17) 2178308969855350 a001 4052739537881/7881196*3571^(3/17) 2178308969855555 a001 1548008755920/3010349*3571^(3/17) 2178308969856963 a001 514229*3571^(3/17) 2178308969866607 a001 225851433717/439204*3571^(3/17) 2178308969932714 a001 86267571272/167761*3571^(3/17) 2178308970384080 a001 12586269025/15127*3571^(2/17) 2178308970385818 a001 32951280099/64079*3571^(3/17) 2178308970805051 a001 24157817/15127*9349^(15/19) 2178308971001166 a001 34111385/1926*5778^(5/9) 2178308972049280 a001 3524578/2207*2207^(15/16) 2178308972116753 a001 39088169/15127*9349^(14/19) 2178308973428457 a001 63245986/15127*9349^(13/19) 2178308973446432 m001 FeigenbaumC*exp(GaussKuzminWirsing)^2/cosh(1) 2178308973491438 a001 12586269025/24476*3571^(3/17) 2178308973690504 a001 9107509819/4181 2178308974626031 a001 31622993/2889*5778^(11/18) 2178308974681157 a001 1836311903/9349*3571^(5/17) 2178308974740160 a001 6765*9349^(12/19) 2178308974796679 a001 199/2178309*987^(23/50) 2178308974886390 a001 9107509824/4181 2178308975000558 a001 4976784/13201*9349^(18/19) 2178308975077732 a001 2/4181*(1/2+1/2*5^(1/2))^51 2178308975125568 a001 9107509825/4181 2178308975603922 a001 9107509827/4181 2178308976051863 a001 165580141/15127*9349^(11/19) 2178308976186800 a001 39088169/103682*9349^(18/19) 2178308976312263 a001 24157817/39603*9349^(17/19) 2178308976359871 a001 34111385/90481*9349^(18/19) 2178308976385122 a001 267914296/710647*9349^(18/19) 2178308976388806 a001 233802911/620166*9349^(18/19) 2178308976389343 a001 1836311903/4870847*9349^(18/19) 2178308976389422 a001 1602508992/4250681*9349^(18/19) 2178308976389433 a001 12586269025/33385282*9349^(18/19) 2178308976389435 a001 10983760033/29134601*9349^(18/19) 2178308976389435 a001 86267571272/228826127*9349^(18/19) 2178308976389435 a001 267913919/710646*9349^(18/19) 2178308976389435 a001 591286729879/1568397607*9349^(18/19) 2178308976389435 a001 516002918640/1368706081*9349^(18/19) 2178308976389435 a001 4052739537881/10749957122*9349^(18/19) 2178308976389435 a001 3536736619241/9381251041*9349^(18/19) 2178308976389435 a001 6557470319842/17393796001*9349^(18/19) 2178308976389435 a001 2504730781961/6643838879*9349^(18/19) 2178308976389435 a001 956722026041/2537720636*9349^(18/19) 2178308976389435 a001 365435296162/969323029*9349^(18/19) 2178308976389435 a001 139583862445/370248451*9349^(18/19) 2178308976389435 a001 53316291173/141422324*9349^(18/19) 2178308976389436 a001 20365011074/54018521*9349^(18/19) 2178308976389440 a001 7778742049/20633239*9349^(18/19) 2178308976389470 a001 2971215073/7881196*9349^(18/19) 2178308976389675 a001 1134903170/3010349*9349^(18/19) 2178308976391082 a001 433494437/1149851*9349^(18/19) 2178308976400727 a001 165580141/439204*9349^(18/19) 2178308976466834 a001 63245986/167761*9349^(18/19) 2178308976919939 a001 24157817/64079*9349^(18/19) 2178308977363566 a001 267914296/15127*9349^(10/19) 2178308977498504 a001 31622993/51841*9349^(17/19) 2178308977623965 a001 39088169/39603*9349^(16/19) 2178308977671574 a001 165580141/271443*9349^(17/19) 2178308977696825 a001 433494437/710647*9349^(17/19) 2178308977700509 a001 567451585/930249*9349^(17/19) 2178308977701046 a001 2971215073/4870847*9349^(17/19) 2178308977701125 a001 7778742049/12752043*9349^(17/19) 2178308977701136 a001 10182505537/16692641*9349^(17/19) 2178308977701138 a001 53316291173/87403803*9349^(17/19) 2178308977701138 a001 139583862445/228826127*9349^(17/19) 2178308977701138 a001 182717648081/299537289*9349^(17/19) 2178308977701138 a001 956722026041/1568397607*9349^(17/19) 2178308977701138 a001 2504730781961/4106118243*9349^(17/19) 2178308977701138 a001 3278735159921/5374978561*9349^(17/19) 2178308977701138 a001 10610209857723/17393796001*9349^(17/19) 2178308977701138 a001 4052739537881/6643838879*9349^(17/19) 2178308977701138 a001 1134903780/1860499*9349^(17/19) 2178308977701138 a001 591286729879/969323029*9349^(17/19) 2178308977701138 a001 225851433717/370248451*9349^(17/19) 2178308977701138 a001 21566892818/35355581*9349^(17/19) 2178308977701139 a001 32951280099/54018521*9349^(17/19) 2178308977701143 a001 1144206275/1875749*9349^(17/19) 2178308977701173 a001 1201881744/1970299*9349^(17/19) 2178308977701378 a001 1836311903/3010349*9349^(17/19) 2178308977702786 a001 701408733/1149851*9349^(17/19) 2178308977712430 a001 66978574/109801*9349^(17/19) 2178308977778537 a001 9303105/15251*9349^(17/19) 2178308978231641 a001 39088169/64079*9349^(17/19) 2178308978250897 a001 39088169/5778*5778^(2/3) 2178308978514698 a001 10983760033/13201*3571^(2/17) 2178308978675269 a001 433494437/15127*9349^(9/19) 2178308978713226 a001 9107509840/4181 2178308978810207 a001 102334155/103682*9349^(16/19) 2178308978935669 a001 63245986/39603*9349^(15/19) 2178308978983277 a001 267914296/271443*9349^(16/19) 2178308979008528 a001 701408733/710647*9349^(16/19) 2178308979012212 a001 1836311903/1860498*9349^(16/19) 2178308979012749 a001 4807526976/4870847*9349^(16/19) 2178308979012828 a001 12586269025/12752043*9349^(16/19) 2178308979012839 a001 32951280099/33385282*9349^(16/19) 2178308979012841 a001 86267571272/87403803*9349^(16/19) 2178308979012841 a001 225851433717/228826127*9349^(16/19) 2178308979012841 a001 591286729879/599074578*9349^(16/19) 2178308979012841 a001 1548008755920/1568397607*9349^(16/19) 2178308979012841 a001 4052739537881/4106118243*9349^(16/19) 2178308979012841 a001 4807525989/4870846*9349^(16/19) 2178308979012841 a001 6557470319842/6643838879*9349^(16/19) 2178308979012841 a001 2504730781961/2537720636*9349^(16/19) 2178308979012841 a001 956722026041/969323029*9349^(16/19) 2178308979012841 a001 365435296162/370248451*9349^(16/19) 2178308979012841 a001 139583862445/141422324*9349^(16/19) 2178308979012842 a001 53316291173/54018521*9349^(16/19) 2178308979012846 a001 20365011074/20633239*9349^(16/19) 2178308979012876 a001 7778742049/7881196*9349^(16/19) 2178308979013082 a001 2971215073/3010349*9349^(16/19) 2178308979014489 a001 1134903170/1149851*9349^(16/19) 2178308979024134 a001 433494437/439204*9349^(16/19) 2178308979090241 a001 165580141/167761*9349^(16/19) 2178308979543345 a001 63245986/64079*9349^(16/19) 2178308979700940 a001 43133785636/51841*3571^(2/17) 2178308979874010 a001 75283811239/90481*3571^(2/17) 2178308979899260 a001 591286729879/710647*3571^(2/17) 2178308979902944 a001 832040*3571^(2/17) 2178308979903482 a001 4052739537881/4870847*3571^(2/17) 2178308979903560 a001 3536736619241/4250681*3571^(2/17) 2178308979903609 a001 3278735159921/3940598*3571^(2/17) 2178308979903814 a001 2504730781961/3010349*3571^(2/17) 2178308979905221 a001 956722026041/1149851*3571^(2/17) 2178308979914866 a001 182717648081/219602*3571^(2/17) 2178308979980973 a001 139583862445/167761*3571^(2/17) 2178308979986972 a001 701408733/15127*9349^(8/19) 2178308980025563 a001 9227465/24476*9349^(18/19) 2178308980121910 a001 165580141/103682*9349^(15/19) 2178308980247372 a001 34111385/13201*9349^(14/19) 2178308980294980 a001 433494437/271443*9349^(15/19) 2178308980320231 a001 1134903170/710647*9349^(15/19) 2178308980323915 a001 2971215073/1860498*9349^(15/19) 2178308980324453 a001 7778742049/4870847*9349^(15/19) 2178308980324531 a001 20365011074/12752043*9349^(15/19) 2178308980324542 a001 53316291173/33385282*9349^(15/19) 2178308980324544 a001 139583862445/87403803*9349^(15/19) 2178308980324544 a001 365435296162/228826127*9349^(15/19) 2178308980324544 a001 956722026041/599074578*9349^(15/19) 2178308980324544 a001 2504730781961/1568397607*9349^(15/19) 2178308980324544 a001 6557470319842/4106118243*9349^(15/19) 2178308980324544 a001 10610209857723/6643838879*9349^(15/19) 2178308980324544 a001 4052739537881/2537720636*9349^(15/19) 2178308980324544 a001 1548008755920/969323029*9349^(15/19) 2178308980324544 a001 591286729879/370248451*9349^(15/19) 2178308980324544 a001 225851433717/141422324*9349^(15/19) 2178308980324545 a001 86267571272/54018521*9349^(15/19) 2178308980324549 a001 32951280099/20633239*9349^(15/19) 2178308980324579 a001 12586269025/7881196*9349^(15/19) 2178308980324785 a001 4807526976/3010349*9349^(15/19) 2178308980326192 a001 1836311903/1149851*9349^(15/19) 2178308980335837 a001 701408733/439204*9349^(15/19) 2178308980401944 a001 267914296/167761*9349^(15/19) 2178308980432338 a001 20365011074/15127*3571^(1/17) 2178308980434077 a001 53316291173/64079*3571^(2/17) 2178308980855048 a001 102334155/64079*9349^(15/19) 2178308980961103 a001 6765/15127*(1/2+1/2*5^(1/2))^32 2178308980961103 a001 6765/15127*23725150497407^(1/2) 2178308980961103 a001 6765/15127*73681302247^(8/13) 2178308980961103 a001 6765/15127*10749957122^(2/3) 2178308980961103 a001 6765/15127*4106118243^(16/23) 2178308980961103 a001 6765/15127*1568397607^(8/11) 2178308980961103 a001 6765/15127*599074578^(16/21) 2178308980961103 a001 6765/15127*228826127^(4/5) 2178308980961103 a001 6765/15127*87403803^(16/19) 2178308980961105 a001 6765/15127*33385282^(8/9) 2178308980961116 a001 6765/15127*12752043^(16/17) 2178308981298675 a001 1134903170/15127*9349^(7/19) 2178308981337259 a001 3732588/6119*9349^(17/19) 2178308981433613 a001 133957148/51841*9349^(14/19) 2178308981559075 a001 165580141/39603*9349^(13/19) 2178308981606684 a001 233802911/90481*9349^(14/19) 2178308981631934 a001 1836311903/710647*9349^(14/19) 2178308981635618 a001 267084832/103361*9349^(14/19) 2178308981636156 a001 12586269025/4870847*9349^(14/19) 2178308981636234 a001 10983760033/4250681*9349^(14/19) 2178308981636245 a001 43133785636/16692641*9349^(14/19) 2178308981636247 a001 75283811239/29134601*9349^(14/19) 2178308981636247 a001 591286729879/228826127*9349^(14/19) 2178308981636247 a001 86000486440/33281921*9349^(14/19) 2178308981636247 a001 4052739537881/1568397607*9349^(14/19) 2178308981636247 a001 3536736619241/1368706081*9349^(14/19) 2178308981636247 a001 3278735159921/1268860318*9349^(14/19) 2178308981636247 a001 2504730781961/969323029*9349^(14/19) 2178308981636247 a001 956722026041/370248451*9349^(14/19) 2178308981636248 a001 182717648081/70711162*9349^(14/19) 2178308981636248 a001 139583862445/54018521*9349^(14/19) 2178308981636253 a001 53316291173/20633239*9349^(14/19) 2178308981636283 a001 10182505537/3940598*9349^(14/19) 2178308981636488 a001 7778742049/3010349*9349^(14/19) 2178308981637895 a001 2971215073/1149851*9349^(14/19) 2178308981647540 a001 567451585/219602*9349^(14/19) 2178308981713647 a001 433494437/167761*9349^(14/19) 2178308981875763 a001 24157817/5778*5778^(13/18) 2178308982166751 a001 165580141/64079*9349^(14/19) 2178308982351662 r005 Re(z^2+c),c=-7/40+22/51*I,n=43 2178308982610378 a001 1836311903/15127*9349^(6/19) 2178308982648965 a001 24157817/24476*9349^(16/19) 2178308982745316 a001 433494437/103682*9349^(13/19) 2178308982870778 a001 267914296/39603*9349^(12/19) 2178308982918387 a001 1134903170/271443*9349^(13/19) 2178308982943637 a001 2971215073/710647*9349^(13/19) 2178308982947321 a001 7778742049/1860498*9349^(13/19) 2178308982947859 a001 20365011074/4870847*9349^(13/19) 2178308982947937 a001 53316291173/12752043*9349^(13/19) 2178308982947949 a001 139583862445/33385282*9349^(13/19) 2178308982947950 a001 365435296162/87403803*9349^(13/19) 2178308982947951 a001 956722026041/228826127*9349^(13/19) 2178308982947951 a001 2504730781961/599074578*9349^(13/19) 2178308982947951 a001 6557470319842/1568397607*9349^(13/19) 2178308982947951 a001 10610209857723/2537720636*9349^(13/19) 2178308982947951 a001 4052739537881/969323029*9349^(13/19) 2178308982947951 a001 1548008755920/370248451*9349^(13/19) 2178308982947951 a001 591286729879/141422324*9349^(13/19) 2178308982947951 a001 225851433717/54018521*9349^(13/19) 2178308982947956 a001 86267571272/20633239*9349^(13/19) 2178308982947986 a001 32951280099/7881196*9349^(13/19) 2178308982948191 a001 12586269025/3010349*9349^(13/19) 2178308982949598 a001 4807526976/1149851*9349^(13/19) 2178308982959243 a001 1836311903/439204*9349^(13/19) 2178308983025350 a001 701408733/167761*9349^(13/19) 2178308983478454 a001 267914296/64079*9349^(13/19) 2178308983539697 a001 10182505537/12238*3571^(2/17) 2178308983922081 a001 2971215073/15127*9349^(5/19) 2178308983960667 a001 39088169/24476*9349^(15/19) 2178308984057019 a001 701408733/103682*9349^(12/19) 2178308984182481 a001 433494437/39603*9349^(11/19) 2178308984230090 a001 1836311903/271443*9349^(12/19) 2178308984255340 a001 686789568/101521*9349^(12/19) 2178308984259024 a001 12586269025/1860498*9349^(12/19) 2178308984259562 a001 32951280099/4870847*9349^(12/19) 2178308984259640 a001 86267571272/12752043*9349^(12/19) 2178308984259652 a001 32264490531/4769326*9349^(12/19) 2178308984259653 a001 591286729879/87403803*9349^(12/19) 2178308984259654 a001 1548008755920/228826127*9349^(12/19) 2178308984259654 a001 4052739537881/599074578*9349^(12/19) 2178308984259654 a001 1515744265389/224056801*9349^(12/19) 2178308984259654 a001 6557470319842/969323029*9349^(12/19) 2178308984259654 a001 2504730781961/370248451*9349^(12/19) 2178308984259654 a001 956722026041/141422324*9349^(12/19) 2178308984259654 a001 365435296162/54018521*9349^(12/19) 2178308984259659 a001 139583862445/20633239*9349^(12/19) 2178308984259689 a001 53316291173/7881196*9349^(12/19) 2178308984259894 a001 20365011074/3010349*9349^(12/19) 2178308984261301 a001 7778742049/1149851*9349^(12/19) 2178308984270946 a001 2971215073/439204*9349^(12/19) 2178308984337053 a001 1134903170/167761*9349^(12/19) 2178308984729416 a001 2971215073/9349*3571^(4/17) 2178308984790157 a001 433494437/64079*9349^(12/19) 2178308985233785 a001 686789568/2161*9349^(4/19) 2178308985272371 a001 31622993/12238*9349^(14/19) 2178308985368723 a001 567451585/51841*9349^(11/19) 2178308985494184 a001 17711*9349^(10/19) 2178308985500626 a001 2584*5778^(7/9) 2178308985541793 a001 2971215073/271443*9349^(11/19) 2178308985567044 a001 7778742049/710647*9349^(11/19) 2178308985570728 a001 10182505537/930249*9349^(11/19) 2178308985571265 a001 53316291173/4870847*9349^(11/19) 2178308985571343 a001 139583862445/12752043*9349^(11/19) 2178308985571355 a001 182717648081/16692641*9349^(11/19) 2178308985571357 a001 956722026041/87403803*9349^(11/19) 2178308985571357 a001 2504730781961/228826127*9349^(11/19) 2178308985571357 a001 3278735159921/299537289*9349^(11/19) 2178308985571357 a001 10610209857723/969323029*9349^(11/19) 2178308985571357 a001 4052739537881/370248451*9349^(11/19) 2178308985571357 a001 387002188980/35355581*9349^(11/19) 2178308985571358 a001 591286729879/54018521*9349^(11/19) 2178308985571362 a001 7787980473/711491*9349^(11/19) 2178308985571392 a001 21566892818/1970299*9349^(11/19) 2178308985571597 a001 32951280099/3010349*9349^(11/19) 2178308985573004 a001 12586269025/1149851*9349^(11/19) 2178308985582649 a001 1201881744/109801*9349^(11/19) 2178308985648756 a001 1836311903/167761*9349^(11/19) 2178308986101860 a001 701408733/64079*9349^(11/19) 2178308986545488 a001 7778742049/15127*9349^(3/19) 2178308986584074 a001 102334155/24476*9349^(13/19) 2178308986680426 a001 1836311903/103682*9349^(10/19) 2178308986805888 a001 1134903170/39603*9349^(9/19) 2178308986844509 a001 11921885085/5473 2178308986853496 a001 1602508992/90481*9349^(10/19) 2178308986878747 a001 12586269025/710647*9349^(10/19) 2178308986882431 a001 10983760033/620166*9349^(10/19) 2178308986882968 a001 86267571272/4870847*9349^(10/19) 2178308986883047 a001 75283811239/4250681*9349^(10/19) 2178308986883058 a001 591286729879/33385282*9349^(10/19) 2178308986883060 a001 516002918640/29134601*9349^(10/19) 2178308986883060 a001 4052739537881/228826127*9349^(10/19) 2178308986883060 a001 3536736619241/199691526*9349^(10/19) 2178308986883060 a001 6557470319842/370248451*9349^(10/19) 2178308986883060 a001 2504730781961/141422324*9349^(10/19) 2178308986883061 a001 956722026041/54018521*9349^(10/19) 2178308986883065 a001 365435296162/20633239*9349^(10/19) 2178308986883095 a001 139583862445/7881196*9349^(10/19) 2178308986883300 a001 53316291173/3010349*9349^(10/19) 2178308986884708 a001 20365011074/1149851*9349^(10/19) 2178308986894352 a001 7778742049/439204*9349^(10/19) 2178308986960459 a001 2971215073/167761*9349^(10/19) 2178308986981359 m001 1/cosh(1)*exp(Rabbit)*sqrt(1+sqrt(3)) 2178308987017531 a001 311187/2161*24476^(20/21) 2178308987190806 a001 3524578/15127*24476^(19/21) 2178308987363907 a001 5702887/15127*24476^(6/7) 2178308987413563 a001 1134903170/64079*9349^(10/19) 2178308987537074 a001 9227465/15127*24476^(17/21) 2178308987710216 a001 14930352/15127*24476^(16/21) 2178308987857191 a001 12586269025/15127*9349^(2/19) 2178308987883367 a001 24157817/15127*24476^(5/7) 2178308987895777 a001 165580141/24476*9349^(12/19) 2178308987992129 a001 2971215073/103682*9349^(9/19) 2178308988056515 a001 39088169/15127*24476^(2/3) 2178308988117591 a001 1836311903/39603*9349^(8/19) 2178308988165199 a001 7778742049/271443*9349^(9/19) 2178308988190450 a001 20365011074/710647*9349^(9/19) 2178308988194134 a001 53316291173/1860498*9349^(9/19) 2178308988194671 a001 139583862445/4870847*9349^(9/19) 2178308988194750 a001 365435296162/12752043*9349^(9/19) 2178308988194761 a001 956722026041/33385282*9349^(9/19) 2178308988194763 a001 2504730781961/87403803*9349^(9/19) 2178308988194763 a001 6557470319842/228826127*9349^(9/19) 2178308988194763 a001 10610209857723/370248451*9349^(9/19) 2178308988194763 a001 4052739537881/141422324*9349^(9/19) 2178308988194764 a001 1548008755920/54018521*9349^(9/19) 2178308988194768 a001 591286729879/20633239*9349^(9/19) 2178308988194798 a001 225851433717/7881196*9349^(9/19) 2178308988195003 a001 86267571272/3010349*9349^(9/19) 2178308988196411 a001 32951280099/1149851*9349^(9/19) 2178308988206056 a001 12586269025/439204*9349^(9/19) 2178308988229664 a001 63245986/15127*24476^(13/21) 2178308988272162 a001 4807526976/167761*9349^(9/19) 2178308988402812 a001 6765*24476^(4/7) 2178308988562957 a001 53316291173/39603*3571^(1/17) 2178308988575961 a001 165580141/15127*24476^(11/21) 2178308988725266 a001 28657*9349^(9/19) 2178308988749110 a001 267914296/15127*24476^(10/21) 2178308988922259 a001 433494437/15127*24476^(3/7) 2178308989091690 a001 17711/15127*7881196^(10/11) 2178308989091717 a001 17711/15127*20633239^(6/7) 2178308989091722 a001 17711/15127*141422324^(10/13) 2178308989091722 a001 2255/13201*45537549124^(2/3) 2178308989091722 a001 2255/13201*(1/2+1/2*5^(1/2))^34 2178308989091722 a001 2255/13201*10749957122^(17/24) 2178308989091722 a001 2255/13201*4106118243^(17/23) 2178308989091722 a001 2255/13201*1568397607^(17/22) 2178308989091722 a001 2255/13201*599074578^(17/21) 2178308989091722 a001 2255/13201*228826127^(17/20) 2178308989091722 a001 17711/15127*2537720636^(2/3) 2178308989091722 a001 17711/15127*45537549124^(10/17) 2178308989091722 a001 17711/15127*312119004989^(6/11) 2178308989091722 a001 17711/15127*14662949395604^(10/21) 2178308989091722 a001 17711/15127*(1/2+1/2*5^(1/2))^30 2178308989091722 a001 17711/15127*192900153618^(5/9) 2178308989091722 a001 17711/15127*28143753123^(3/5) 2178308989091722 a001 17711/15127*10749957122^(5/8) 2178308989091722 a001 17711/15127*4106118243^(15/23) 2178308989091722 a001 17711/15127*1568397607^(15/22) 2178308989091722 a001 17711/15127*599074578^(5/7) 2178308989091722 a001 17711/15127*228826127^(3/4) 2178308989091722 a001 2255/13201*87403803^(17/19) 2178308989091722 a001 17711/15127*87403803^(15/19) 2178308989091723 a001 17711/15127*33385282^(5/6) 2178308989091723 a001 2255/13201*33385282^(17/18) 2178308989091733 a001 17711/15127*12752043^(15/17) 2178308989091808 a001 17711/15127*4870847^(15/16) 2178308989095407 a001 701408733/15127*24476^(8/21) 2178308989125499 a001 9227465/5778*5778^(5/6) 2178308989168894 a001 20365011074/15127*9349^(1/19) 2178308989207480 a001 10946*9349^(11/19) 2178308989268556 a001 1134903170/15127*24476^(1/3) 2178308989303832 a001 46368*9349^(8/19) 2178308989429294 a001 2971215073/39603*9349^(7/19) 2178308989441705 a001 1836311903/15127*24476^(2/7) 2178308989476902 a001 12586269025/271443*9349^(8/19) 2178308989502153 a001 32951280099/710647*9349^(8/19) 2178308989505837 a001 43133785636/930249*9349^(8/19) 2178308989506374 a001 225851433717/4870847*9349^(8/19) 2178308989506453 a001 591286729879/12752043*9349^(8/19) 2178308989506464 a001 774004377960/16692641*9349^(8/19) 2178308989506466 a001 4052739537881/87403803*9349^(8/19) 2178308989506466 a001 225749145909/4868641*9349^(8/19) 2178308989506466 a001 3278735159921/70711162*9349^(8/19) 2178308989506467 a001 2504730781961/54018521*9349^(8/19) 2178308989506471 a001 956722026041/20633239*9349^(8/19) 2178308989506501 a001 182717648081/3940598*9349^(8/19) 2178308989506707 a001 139583862445/3010349*9349^(8/19) 2178308989508114 a001 53316291173/1149851*9349^(8/19) 2178308989517759 a001 10182505537/219602*9349^(8/19) 2178308989583866 a001 7778742049/167761*9349^(8/19) 2178308989614853 a001 2971215073/15127*24476^(5/21) 2178308989749198 a001 139583862445/103682*3571^(1/17) 2178308989788002 a001 686789568/2161*24476^(4/21) 2178308989922269 a001 365435296162/271443*3571^(1/17) 2178308989947519 a001 956722026041/710647*3571^(1/17) 2178308989950099 a001 62423800725/28657 2178308989951203 a001 2504730781961/1860498*3571^(1/17) 2178308989951741 a001 6557470319842/4870847*3571^(1/17) 2178308989951868 a001 10610209857723/7881196*3571^(1/17) 2178308989952073 a001 1346269*3571^(1/17) 2178308989953480 a001 1548008755920/1149851*3571^(1/17) 2178308989961151 a001 7778742049/15127*24476^(1/7) 2178308989963125 a001 591286729879/439204*3571^(1/17) 2178308989972530 a001 832040/15127*64079^(22/23) 2178308989996465 a001 1346269/15127*64079^(21/23) 2178308990019198 a001 311187/2161*64079^(20/23) 2178308990029232 a001 225851433717/167761*3571^(1/17) 2178308990036969 a001 2971215073/64079*9349^(8/19) 2178308990042390 a001 3524578/15127*64079^(19/23) 2178308990065407 a001 5702887/15127*64079^(18/23) 2178308990088491 a001 9227465/15127*64079^(17/23) 2178308990111549 a001 14930352/15127*64079^(16/23) 2178308990134300 a001 12586269025/15127*24476^(2/21) 2178308990134617 a001 24157817/15127*64079^(15/23) 2178308990157682 a001 39088169/15127*64079^(14/23) 2178308990180748 a001 63245986/15127*64079^(13/23) 2178308990203813 a001 6765*64079^(12/23) 2178308990226878 a001 165580141/15127*64079^(11/23) 2178308990249944 a001 267914296/15127*64079^(10/23) 2178308990273009 a001 433494437/15127*64079^(9/23) 2178308990277959 a001 6624/2161*20633239^(4/5) 2178308990277963 a001 6765/103682*141422324^(12/13) 2178308990277963 a001 6765/103682*2537720636^(4/5) 2178308990277963 a001 6765/103682*45537549124^(12/17) 2178308990277963 a001 6765/103682*14662949395604^(4/7) 2178308990277963 a001 6765/103682*(1/2+1/2*5^(1/2))^36 2178308990277963 a001 6765/103682*192900153618^(2/3) 2178308990277963 a001 6765/103682*73681302247^(9/13) 2178308990277963 a001 6765/103682*10749957122^(3/4) 2178308990277963 a001 6765/103682*4106118243^(18/23) 2178308990277963 a001 6765/103682*1568397607^(9/11) 2178308990277963 a001 6765/103682*599074578^(6/7) 2178308990277963 a001 6765/103682*228826127^(9/10) 2178308990277963 a001 6624/2161*17393796001^(4/7) 2178308990277963 a001 6624/2161*14662949395604^(4/9) 2178308990277963 a001 6624/2161*(1/2+1/2*5^(1/2))^28 2178308990277963 a001 6624/2161*73681302247^(7/13) 2178308990277963 a001 6624/2161*10749957122^(7/12) 2178308990277963 a001 6624/2161*4106118243^(14/23) 2178308990277963 a001 6624/2161*1568397607^(7/11) 2178308990277963 a001 6624/2161*599074578^(2/3) 2178308990277963 a001 6624/2161*228826127^(7/10) 2178308990277963 a001 6624/2161*87403803^(14/19) 2178308990277963 a001 6765/103682*87403803^(18/19) 2178308990277964 a001 6624/2161*33385282^(7/9) 2178308990277974 a001 6624/2161*12752043^(14/17) 2178308990278043 a001 6624/2161*4870847^(7/8) 2178308990278550 a001 6624/2161*1860498^(14/15) 2178308990296074 a001 701408733/15127*64079^(8/23) 2178308990307448 a001 20365011074/15127*24476^(1/21) 2178308990319140 a001 1134903170/15127*64079^(7/23) 2178308990342205 a001 1836311903/15127*64079^(6/23) 2178308990365270 a001 2971215073/15127*64079^(5/23) 2178308990388336 a001 686789568/2161*64079^(4/23) 2178308990403198 a001 32685526401/15005 2178308990411401 a001 7778742049/15127*64079^(3/23) 2178308990418586 a001 311187/2161*167761^(4/5) 2178308990434158 a001 24157817/15127*167761^(3/5) 2178308990434466 a001 12586269025/15127*64079^(2/23) 2178308990449637 a001 267914296/15127*167761^(2/5) 2178308990451033 a001 121393/15127*141422324^(2/3) 2178308990451033 a001 2255/90481*817138163596^(2/3) 2178308990451033 a001 2255/90481*(1/2+1/2*5^(1/2))^38 2178308990451033 a001 2255/90481*10749957122^(19/24) 2178308990451033 a001 2255/90481*4106118243^(19/23) 2178308990451033 a001 2255/90481*1568397607^(19/22) 2178308990451033 a001 2255/90481*599074578^(19/21) 2178308990451033 a001 2255/90481*228826127^(19/20) 2178308990451033 a001 121393/15127*(1/2+1/2*5^(1/2))^26 2178308990451033 a001 121393/15127*73681302247^(1/2) 2178308990451033 a001 121393/15127*10749957122^(13/24) 2178308990451033 a001 121393/15127*4106118243^(13/23) 2178308990451033 a001 121393/15127*1568397607^(13/22) 2178308990451033 a001 121393/15127*599074578^(13/21) 2178308990451033 a001 121393/15127*228826127^(13/20) 2178308990451033 a001 121393/15127*87403803^(13/19) 2178308990451035 a001 121393/15127*33385282^(13/18) 2178308990451043 a001 121393/15127*12752043^(13/17) 2178308990451108 a001 121393/15127*4870847^(13/16) 2178308990451579 a001 121393/15127*1860498^(13/15) 2178308990455038 a001 121393/15127*710647^(13/14) 2178308990457532 a001 20365011074/15127*64079^(1/23) 2178308990465117 a001 2971215073/15127*167761^(1/5) 2178308990466246 a001 317811/15127*439204^(8/9) 2178308990469305 a001 213929547645/98209 2178308990472054 a001 1346269/15127*439204^(7/9) 2178308990473055 a001 5702887/15127*439204^(2/3) 2178308990474324 a001 24157817/15127*439204^(5/9) 2178308990475578 a001 6765*439204^(4/9) 2178308990476258 a001 317811/15127*7881196^(8/11) 2178308990476284 a001 317811/15127*141422324^(8/13) 2178308990476284 a001 6765/710647*2537720636^(8/9) 2178308990476284 a001 6765/710647*312119004989^(8/11) 2178308990476284 a001 6765/710647*(1/2+1/2*5^(1/2))^40 2178308990476284 a001 6765/710647*23725150497407^(5/8) 2178308990476284 a001 6765/710647*73681302247^(10/13) 2178308990476284 a001 6765/710647*28143753123^(4/5) 2178308990476284 a001 6765/710647*10749957122^(5/6) 2178308990476284 a001 6765/710647*4106118243^(20/23) 2178308990476284 a001 6765/710647*1568397607^(10/11) 2178308990476284 a001 6765/710647*599074578^(20/21) 2178308990476284 a001 317811/15127*2537720636^(8/15) 2178308990476284 a001 317811/15127*45537549124^(8/17) 2178308990476284 a001 317811/15127*14662949395604^(8/21) 2178308990476284 a001 317811/15127*(1/2+1/2*5^(1/2))^24 2178308990476284 a001 317811/15127*192900153618^(4/9) 2178308990476284 a001 317811/15127*73681302247^(6/13) 2178308990476284 a001 317811/15127*10749957122^(1/2) 2178308990476284 a001 317811/15127*4106118243^(12/23) 2178308990476284 a001 317811/15127*1568397607^(6/11) 2178308990476284 a001 317811/15127*599074578^(4/7) 2178308990476284 a001 317811/15127*228826127^(3/5) 2178308990476284 a001 317811/15127*87403803^(12/19) 2178308990476285 a001 317811/15127*33385282^(2/3) 2178308990476293 a001 317811/15127*12752043^(12/17) 2178308990476353 a001 317811/15127*4870847^(3/4) 2178308990476787 a001 317811/15127*1860498^(4/5) 2178308990476833 a001 433494437/15127*439204^(1/3) 2178308990478088 a001 1836311903/15127*439204^(2/9) 2178308990478950 a001 1120149653865/514229 2178308990479342 a001 7778742049/15127*439204^(1/9) 2178308990479944 a001 832040/15127*7881196^(2/3) 2178308990479968 a001 55/15126*2537720636^(14/15) 2178308990479968 a001 55/15126*17393796001^(6/7) 2178308990479968 a001 55/15126*45537549124^(14/17) 2178308990479968 a001 55/15126*14662949395604^(2/3) 2178308990479968 a001 55/15126*(1/2+1/2*5^(1/2))^42 2178308990479968 a001 55/15126*505019158607^(3/4) 2178308990479968 a001 55/15126*192900153618^(7/9) 2178308990479968 a001 55/15126*10749957122^(7/8) 2178308990479968 a001 55/15126*4106118243^(21/23) 2178308990479968 a001 55/15126*1568397607^(21/22) 2178308990479968 a001 832040/15127*312119004989^(2/5) 2178308990479968 a001 832040/15127*(1/2+1/2*5^(1/2))^22 2178308990479968 a001 832040/15127*10749957122^(11/24) 2178308990479968 a001 832040/15127*4106118243^(11/23) 2178308990479968 a001 832040/15127*1568397607^(1/2) 2178308990479968 a001 832040/15127*599074578^(11/21) 2178308990479968 a001 832040/15127*228826127^(11/20) 2178308990479968 a001 832040/15127*87403803^(11/19) 2178308990479969 a001 832040/15127*33385282^(11/18) 2178308990479976 a001 832040/15127*12752043^(11/17) 2178308990479981 a001 317811/15127*710647^(6/7) 2178308990480031 a001 832040/15127*4870847^(11/16) 2178308990480357 a001 2932589866305/1346269 2178308990480429 a001 832040/15127*1860498^(11/15) 2178308990480502 a001 311187/2161*20633239^(4/7) 2178308990480505 a001 6765/4870847*312119004989^(4/5) 2178308990480505 a001 6765/4870847*(1/2+1/2*5^(1/2))^44 2178308990480505 a001 6765/4870847*23725150497407^(11/16) 2178308990480505 a001 6765/4870847*73681302247^(11/13) 2178308990480505 a001 6765/4870847*10749957122^(11/12) 2178308990480505 a001 6765/4870847*4106118243^(22/23) 2178308990480505 a001 311187/2161*2537720636^(4/9) 2178308990480505 a001 311187/2161*(1/2+1/2*5^(1/2))^20 2178308990480505 a001 311187/2161*23725150497407^(5/16) 2178308990480505 a001 311187/2161*505019158607^(5/14) 2178308990480505 a001 311187/2161*73681302247^(5/13) 2178308990480505 a001 311187/2161*28143753123^(2/5) 2178308990480505 a001 311187/2161*10749957122^(5/12) 2178308990480505 a001 311187/2161*4106118243^(10/23) 2178308990480505 a001 311187/2161*1568397607^(5/11) 2178308990480505 a001 311187/2161*599074578^(10/21) 2178308990480505 a001 311187/2161*228826127^(1/2) 2178308990480505 a001 311187/2161*87403803^(10/19) 2178308990480506 a001 311187/2161*33385282^(5/9) 2178308990480513 a001 311187/2161*12752043^(10/17) 2178308990480562 a001 3838809972525/1762289 2178308990480563 a001 311187/2161*4870847^(5/8) 2178308990480565 a001 5702887/15127*7881196^(6/11) 2178308990480582 a001 24157817/15127*7881196^(5/11) 2178308990480584 a001 5702887/15127*141422324^(6/13) 2178308990480584 a001 2255/4250681*(1/2+1/2*5^(1/2))^46 2178308990480584 a001 2255/4250681*10749957122^(23/24) 2178308990480584 a001 5702887/15127*2537720636^(2/5) 2178308990480584 a001 5702887/15127*45537549124^(6/17) 2178308990480584 a001 5702887/15127*14662949395604^(2/7) 2178308990480584 a001 5702887/15127*(1/2+1/2*5^(1/2))^18 2178308990480584 a001 5702887/15127*192900153618^(1/3) 2178308990480584 a001 5702887/15127*10749957122^(3/8) 2178308990480584 a001 5702887/15127*4106118243^(9/23) 2178308990480584 a001 5702887/15127*1568397607^(9/22) 2178308990480584 a001 5702887/15127*599074578^(3/7) 2178308990480584 a001 5702887/15127*228826127^(9/20) 2178308990480584 a001 5702887/15127*87403803^(9/19) 2178308990480584 a001 6765*7881196^(4/11) 2178308990480585 a001 5702887/15127*33385282^(1/2) 2178308990480585 a001 165580141/15127*7881196^(1/3) 2178308990480588 a001 433494437/15127*7881196^(3/11) 2178308990480591 a001 1836311903/15127*7881196^(2/11) 2178308990480591 a001 5702887/15127*12752043^(9/17) 2178308990480592 a001 4020053993769/1845493 2178308990480594 a001 7778742049/15127*7881196^(1/11) 2178308990480595 a001 39088169/15127*20633239^(2/5) 2178308990480595 a001 6765/33385282*45537549124^(16/17) 2178308990480595 a001 6765/33385282*14662949395604^(16/21) 2178308990480595 a001 6765/33385282*(1/2+1/2*5^(1/2))^48 2178308990480595 a001 6765/33385282*192900153618^(8/9) 2178308990480595 a001 6765/33385282*73681302247^(12/13) 2178308990480595 a001 14930352/15127*(1/2+1/2*5^(1/2))^16 2178308990480595 a001 14930352/15127*23725150497407^(1/4) 2178308990480595 a001 14930352/15127*73681302247^(4/13) 2178308990480595 a001 14930352/15127*10749957122^(1/3) 2178308990480595 a001 14930352/15127*4106118243^(8/23) 2178308990480595 a001 14930352/15127*1568397607^(4/11) 2178308990480595 a001 14930352/15127*599074578^(8/21) 2178308990480595 a001 14930352/15127*228826127^(2/5) 2178308990480595 a001 14930352/15127*87403803^(8/19) 2178308990480596 a001 267914296/15127*20633239^(2/7) 2178308990480596 a001 24157817/15127*20633239^(3/7) 2178308990480596 a001 14930352/15127*33385282^(4/9) 2178308990480596 a001 1134903170/15127*20633239^(1/5) 2178308990480596 a001 52623189961485/24157817 2178308990480596 a001 2971215073/15127*20633239^(1/7) 2178308990480597 a001 2255/29134601*312119004989^(10/11) 2178308990480597 a001 2255/29134601*3461452808002^(5/6) 2178308990480597 a001 39088169/15127*17393796001^(2/7) 2178308990480597 a001 39088169/15127*14662949395604^(2/9) 2178308990480597 a001 39088169/15127*(1/2+1/2*5^(1/2))^14 2178308990480597 a001 39088169/15127*10749957122^(7/24) 2178308990480597 a001 39088169/15127*4106118243^(7/23) 2178308990480597 a001 39088169/15127*1568397607^(7/22) 2178308990480597 a001 39088169/15127*599074578^(1/3) 2178308990480597 a001 39088169/15127*228826127^(7/20) 2178308990480597 a001 39088169/15127*87403803^(7/19) 2178308990480597 a001 68884649957805/31622993 2178308990480597 a001 6765/228826127*23725150497407^(13/16) 2178308990480597 a001 6765/228826127*505019158607^(13/14) 2178308990480597 a001 6765*141422324^(4/13) 2178308990480597 a001 360684709785345/165580141 2178308990480597 a001 2255/199691526*14662949395604^(6/7) 2178308990480597 a001 944284829440425/433494437 2178308990480597 a001 6765/1568397607*14662949395604^(8/9) 2178308990480597 a001 247216977853593/113490317 2178308990480597 a001 6765*2537720636^(4/15) 2178308990480597 a001 6472224506167365/2971215073 2178308990480597 a001 6765/10749957122*14662949395604^(20/21) 2178308990480597 a001 16944503739966165/7778742049 2178308990480597 a001 22180643356865565/10182505537 2178308990480597 a001 6765*45537549124^(4/17) 2178308990480597 a001 6765*14662949395604^(4/21) 2178308990480597 a001 6765*192900153618^(2/9) 2178308990480597 a001 6765*73681302247^(3/13) 2178308990480597 a001 23926023229165365/10983760033 2178308990480597 a001 498486963159363/228841255 2178308990480597 a001 6765*10749957122^(1/4) 2178308990480597 a001 72724161345825/33385604 2178308990480597 a001 6765*4106118243^(6/23) 2178308990480597 a001 4000054727631435/1836311903 2178308990480597 a001 6765*1568397607^(3/11) 2178308990480597 a001 615/230701876*14662949395604^(19/21) 2178308990480597 a001 509294983031835/233802911 2178308990480597 a001 6765*599074578^(2/7) 2178308990480597 a001 6765/969323029*3461452808002^(11/12) 2178308990480597 a001 72950014956885/33489287 2178308990480597 a001 6765*228826127^(3/10) 2178308990480597 a001 433494437/15127*141422324^(3/13) 2178308990480597 a001 1836311903/15127*141422324^(2/13) 2178308990480597 a001 7778742049/15127*141422324^(1/13) 2178308990480597 a001 267914296/15127*2537720636^(2/9) 2178308990480597 a001 267914296/15127*312119004989^(2/11) 2178308990480597 a001 267914296/15127*(1/2+1/2*5^(1/2))^10 2178308990480597 a001 267914296/15127*28143753123^(1/5) 2178308990480597 a001 267914296/15127*10749957122^(5/24) 2178308990480597 a001 267914296/15127*4106118243^(5/23) 2178308990480597 a001 267914296/15127*1568397607^(5/22) 2178308990480597 a001 267914296/15127*599074578^(5/21) 2178308990480597 a001 701408733/15127*(1/2+1/2*5^(1/2))^8 2178308990480597 a001 701408733/15127*23725150497407^(1/8) 2178308990480597 a001 701408733/15127*505019158607^(1/7) 2178308990480597 a001 701408733/15127*73681302247^(2/13) 2178308990480597 a001 701408733/15127*10749957122^(1/6) 2178308990480597 a001 701408733/15127*4106118243^(4/23) 2178308990480597 a001 701408733/15127*1568397607^(2/11) 2178308990480597 a001 1836311903/15127*2537720636^(2/15) 2178308990480597 a001 1836311903/15127*45537549124^(2/17) 2178308990480597 a001 1836311903/15127*14662949395604^(2/21) 2178308990480597 a001 1836311903/15127*(1/2+1/2*5^(1/2))^6 2178308990480597 a001 1836311903/15127*10749957122^(1/8) 2178308990480597 a001 1836311903/15127*4106118243^(3/23) 2178308990480597 a001 686789568/2161*(1/2+1/2*5^(1/2))^4 2178308990480597 a001 686789568/2161*23725150497407^(1/16) 2178308990480597 a001 686789568/2161*73681302247^(1/13) 2178308990480597 a001 686789568/2161*10749957122^(1/12) 2178308990480597 a001 7778742049/15127*2537720636^(1/15) 2178308990480597 a001 1836311903/15127*1568397607^(3/22) 2178308990480597 a001 686789568/2161*4106118243^(2/23) 2178308990480597 a001 12586269025/15127*(1/2+1/2*5^(1/2))^2 2178308990480597 a001 12586269025/15127*10749957122^(1/24) 2178308990480597 a001 32951280099/15127 2178308990480597 a001 10182505537/15127+10182505537/15127*5^(1/2) 2178308990480597 a001 12586269025/15127*4106118243^(1/23) 2178308990480597 a001 7778742049/15127*45537549124^(1/17) 2178308990480597 a001 7778742049/15127*14662949395604^(1/21) 2178308990480597 a001 7778742049/15127*(1/2+1/2*5^(1/2))^3 2178308990480597 a001 7778742049/15127*10749957122^(1/16) 2178308990480597 a001 2971215073/15127*2537720636^(1/9) 2178308990480597 a001 12586269025/15127*1568397607^(1/22) 2178308990480597 a001 2971215073/15127*312119004989^(1/11) 2178308990480597 a001 2971215073/15127*(1/2+1/2*5^(1/2))^5 2178308990480597 a001 2971215073/15127*28143753123^(1/10) 2178308990480597 a001 686789568/2161*1568397607^(1/11) 2178308990480597 a001 701408733/15127*599074578^(4/21) 2178308990480597 a001 12586269025/15127*599074578^(1/21) 2178308990480597 a001 1134903170/15127*17393796001^(1/7) 2178308990480597 a001 1134903170/15127*14662949395604^(1/9) 2178308990480597 a001 1134903170/15127*(1/2+1/2*5^(1/2))^7 2178308990480597 a001 7778742049/15127*599074578^(1/14) 2178308990480597 a001 686789568/2161*599074578^(2/21) 2178308990480597 a001 1836311903/15127*599074578^(1/7) 2178308990480597 a001 1134903170/15127*599074578^(1/6) 2178308990480597 a001 12586269025/15127*228826127^(1/20) 2178308990480597 a001 433494437/15127*2537720636^(1/5) 2178308990480597 a001 433494437/15127*45537549124^(3/17) 2178308990480597 a001 433494437/15127*14662949395604^(1/7) 2178308990480597 a001 433494437/15127*(1/2+1/2*5^(1/2))^9 2178308990480597 a001 433494437/15127*192900153618^(1/6) 2178308990480597 a001 433494437/15127*10749957122^(3/16) 2178308990480597 a001 433494437/15127*599074578^(3/14) 2178308990480597 a001 686789568/2161*228826127^(1/10) 2178308990480597 a001 267914296/15127*228826127^(1/4) 2178308990480597 a001 2971215073/15127*228826127^(1/8) 2178308990480597 a001 1836311903/15127*228826127^(3/20) 2178308990480597 a001 701408733/15127*228826127^(1/5) 2178308990480597 a001 12586269025/15127*87403803^(1/19) 2178308990480597 a001 165580141/15127*312119004989^(1/5) 2178308990480597 a001 165580141/15127*(1/2+1/2*5^(1/2))^11 2178308990480597 a001 165580141/15127*1568397607^(1/4) 2178308990480597 a001 686789568/2161*87403803^(2/19) 2178308990480597 a001 1836311903/15127*87403803^(3/19) 2178308990480597 a001 6765*87403803^(6/19) 2178308990480597 a001 701408733/15127*87403803^(4/19) 2178308990480597 a001 6765/141422324*817138163596^(17/19) 2178308990480597 a001 6765/141422324*14662949395604^(17/21) 2178308990480597 a001 6765/141422324*192900153618^(17/18) 2178308990480597 a001 267914296/15127*87403803^(5/19) 2178308990480597 a001 63245986/15127*141422324^(1/3) 2178308990480597 a001 12586269025/15127*33385282^(1/18) 2178308990480597 a001 63245986/15127*(1/2+1/2*5^(1/2))^13 2178308990480597 a001 63245986/15127*73681302247^(1/4) 2178308990480597 a001 7778742049/15127*33385282^(1/12) 2178308990480597 a001 686789568/2161*33385282^(1/9) 2178308990480597 a001 85146109954125/39088169 2178308990480597 a001 1836311903/15127*33385282^(1/6) 2178308990480598 a001 701408733/15127*33385282^(2/9) 2178308990480598 a001 39088169/15127*33385282^(7/18) 2178308990480598 a001 433494437/15127*33385282^(1/4) 2178308990480598 a001 267914296/15127*33385282^(5/18) 2178308990480598 a001 6765*33385282^(1/3) 2178308990480598 a001 24157817/15127*141422324^(5/13) 2178308990480598 a001 6765/54018521*14662949395604^(7/9) 2178308990480598 a001 6765/54018521*505019158607^(7/8) 2178308990480598 a001 24157817/15127*2537720636^(1/3) 2178308990480598 a001 24157817/15127*45537549124^(5/17) 2178308990480598 a001 24157817/15127*312119004989^(3/11) 2178308990480598 a001 24157817/15127*14662949395604^(5/21) 2178308990480598 a001 24157817/15127*(1/2+1/2*5^(1/2))^15 2178308990480598 a001 24157817/15127*192900153618^(5/18) 2178308990480598 a001 24157817/15127*28143753123^(3/10) 2178308990480598 a001 24157817/15127*10749957122^(5/16) 2178308990480598 a001 24157817/15127*599074578^(5/14) 2178308990480598 a001 24157817/15127*228826127^(3/8) 2178308990480598 a001 12586269025/15127*12752043^(1/17) 2178308990480599 a001 24157817/15127*33385282^(5/12) 2178308990480599 a001 686789568/2161*12752043^(2/17) 2178308990480599 a001 75284537020/34561 2178308990480599 a001 1836311903/15127*12752043^(3/17) 2178308990480600 a001 701408733/15127*12752043^(4/17) 2178308990480601 a001 267914296/15127*12752043^(5/17) 2178308990480601 a001 14930352/15127*12752043^(8/17) 2178308990480602 a001 6765*12752043^(6/17) 2178308990480602 a001 615/1875749*(1/2+1/2*5^(1/2))^47 2178308990480602 a001 9227465/15127*45537549124^(1/3) 2178308990480602 a001 9227465/15127*(1/2+1/2*5^(1/2))^17 2178308990480602 a001 39088169/15127*12752043^(7/17) 2178308990480603 a001 12586269025/15127*4870847^(1/16) 2178308990480609 a001 686789568/2161*4870847^(1/8) 2178308990480609 a001 9227465/15127*12752043^(1/2) 2178308990480610 a001 12422650023795/5702887 2178308990480614 a001 1836311903/15127*4870847^(3/16) 2178308990480620 a001 701408733/15127*4870847^(1/4) 2178308990480626 a001 267914296/15127*4870847^(5/16) 2178308990480631 a001 6765*4870847^(3/8) 2178308990480632 a001 6765/7881196*45537549124^(15/17) 2178308990480632 a001 6765/7881196*312119004989^(9/11) 2178308990480632 a001 6765/7881196*14662949395604^(5/7) 2178308990480632 a001 6765/7881196*(1/2+1/2*5^(1/2))^45 2178308990480632 a001 6765/7881196*192900153618^(5/6) 2178308990480632 a001 6765/7881196*28143753123^(9/10) 2178308990480632 a001 6765/7881196*10749957122^(15/16) 2178308990480632 a001 3524578/15127*817138163596^(1/3) 2178308990480632 a001 3524578/15127*(1/2+1/2*5^(1/2))^19 2178308990480632 a001 3524578/15127*87403803^(1/2) 2178308990480635 a001 5702887/15127*4870847^(9/16) 2178308990480637 a001 39088169/15127*4870847^(7/16) 2178308990480639 a001 12586269025/15127*1860498^(1/15) 2178308990480641 a001 14930352/15127*4870847^(1/2) 2178308990480660 a001 7778742049/15127*1860498^(1/10) 2178308990480681 a001 686789568/2161*1860498^(2/15) 2178308990480689 a001 1581676692915/726103 2178308990480702 a001 2971215073/15127*1860498^(1/6) 2178308990480723 a001 1836311903/15127*1860498^(1/5) 2178308990480765 a001 701408733/15127*1860498^(4/15) 2178308990480786 a001 433494437/15127*1860498^(3/10) 2178308990480807 a001 267914296/15127*1860498^(1/3) 2178308990480815 a001 1346269/15127*7881196^(7/11) 2178308990480834 a001 1346269/15127*20633239^(3/5) 2178308990480837 a001 1346269/15127*141422324^(7/13) 2178308990480837 a001 6765/3010349*(1/2+1/2*5^(1/2))^43 2178308990480837 a001 1346269/15127*2537720636^(7/15) 2178308990480837 a001 1346269/15127*17393796001^(3/7) 2178308990480837 a001 1346269/15127*45537549124^(7/17) 2178308990480837 a001 1346269/15127*14662949395604^(1/3) 2178308990480837 a001 1346269/15127*(1/2+1/2*5^(1/2))^21 2178308990480837 a001 1346269/15127*192900153618^(7/18) 2178308990480837 a001 1346269/15127*10749957122^(7/16) 2178308990480837 a001 1346269/15127*599074578^(1/2) 2178308990480839 a001 1346269/15127*33385282^(7/12) 2178308990480849 a001 6765*1860498^(2/5) 2178308990480890 a001 39088169/15127*1860498^(7/15) 2178308990480905 a001 12586269025/15127*710647^(1/14) 2178308990480913 a001 24157817/15127*1860498^(1/2) 2178308990480925 a001 311187/2161*1860498^(2/3) 2178308990480931 a001 14930352/15127*1860498^(8/15) 2178308990480961 a001 5702887/15127*1860498^(3/5) 2178308990481213 a001 686789568/2161*710647^(1/7) 2178308990481226 a001 4119182301/1891 2178308990481278 a001 1346269/15127*1860498^(7/10) 2178308990481521 a001 1836311903/15127*710647^(3/14) 2178308990481675 a001 1134903170/15127*710647^(1/4) 2178308990481829 a001 701408733/15127*710647^(2/7) 2178308990482138 a001 267914296/15127*710647^(5/14) 2178308990482245 a001 6765/1149851*(1/2+1/2*5^(1/2))^41 2178308990482245 a001 514229/15127*(1/2+1/2*5^(1/2))^23 2178308990482245 a001 514229/15127*4106118243^(1/2) 2178308990482336 a001 86267571272/64079*3571^(1/17) 2178308990482446 a001 6765*710647^(3/7) 2178308990482753 a001 39088169/15127*710647^(1/2) 2178308990482871 a001 12586269025/15127*271443^(1/13) 2178308990483060 a001 14930352/15127*710647^(4/7) 2178308990483357 a001 5702887/15127*710647^(9/14) 2178308990483357 a001 832040/15127*710647^(11/14) 2178308990483586 a001 311187/2161*710647^(5/7) 2178308990484072 a001 1346269/15127*710647^(3/4) 2178308990484910 a001 230763519525/105937 2178308990485145 a001 686789568/2161*271443^(2/13) 2178308990487420 a001 1836311903/15127*271443^(3/13) 2178308990489040 a001 20365011074/15127*103682^(1/24) 2178308990489694 a001 701408733/15127*271443^(4/13) 2178308990491886 a001 196418/15127*20633239^(5/7) 2178308990491889 a001 6765/439204*2537720636^(13/15) 2178308990491889 a001 6765/439204*45537549124^(13/17) 2178308990491889 a001 6765/439204*14662949395604^(13/21) 2178308990491889 a001 6765/439204*(1/2+1/2*5^(1/2))^39 2178308990491889 a001 6765/439204*192900153618^(13/18) 2178308990491889 a001 6765/439204*73681302247^(3/4) 2178308990491889 a001 6765/439204*10749957122^(13/16) 2178308990491889 a001 6765/439204*599074578^(13/14) 2178308990491890 a001 196418/15127*2537720636^(5/9) 2178308990491890 a001 196418/15127*312119004989^(5/11) 2178308990491890 a001 196418/15127*(1/2+1/2*5^(1/2))^25 2178308990491890 a001 196418/15127*3461452808002^(5/12) 2178308990491890 a001 196418/15127*28143753123^(1/2) 2178308990491890 a001 196418/15127*228826127^(5/8) 2178308990491968 a001 267914296/15127*271443^(5/13) 2178308990492414 a001 196418/15127*1860498^(5/6) 2178308990494242 a001 6765*271443^(6/13) 2178308990495379 a001 63245986/15127*271443^(1/2) 2178308990496516 a001 39088169/15127*271443^(7/13) 2178308990497483 a001 12586269025/15127*103682^(1/12) 2178308990498788 a001 14930352/15127*271443^(8/13) 2178308990501051 a001 5702887/15127*271443^(9/13) 2178308990503247 a001 311187/2161*271443^(10/13) 2178308990503574 a001 317811/15127*271443^(12/13) 2178308990504983 a001 832040/15127*271443^(11/13) 2178308990505926 a001 7778742049/15127*103682^(1/8) 2178308990510161 a001 264431463285/121393 2178308990514369 a001 686789568/2161*103682^(1/6) 2178308990519183 a001 433494437/24476*9349^(10/19) 2178308990522813 a001 2971215073/15127*103682^(5/24) 2178308990531256 a001 1836311903/15127*103682^(1/4) 2178308990539699 a001 1134903170/15127*103682^(7/24) 2178308990543728 a001 20365011074/15127*39603^(1/22) 2178308990548142 a001 701408733/15127*103682^(1/3) 2178308990556585 a001 433494437/15127*103682^(3/8) 2178308990557968 a001 75025/15127*7881196^(9/11) 2178308990557996 a001 75025/15127*141422324^(9/13) 2178308990557996 a001 615/15251*(1/2+1/2*5^(1/2))^37 2178308990557996 a001 75025/15127*2537720636^(3/5) 2178308990557996 a001 75025/15127*45537549124^(9/17) 2178308990557996 a001 75025/15127*14662949395604^(3/7) 2178308990557996 a001 75025/15127*(1/2+1/2*5^(1/2))^27 2178308990557996 a001 75025/15127*192900153618^(1/2) 2178308990557996 a001 75025/15127*10749957122^(9/16) 2178308990557996 a001 75025/15127*599074578^(9/14) 2178308990557998 a001 75025/15127*33385282^(3/4) 2178308990558563 a001 75025/15127*1860498^(9/10) 2178308990565028 a001 267914296/15127*103682^(5/12) 2178308990573471 a001 165580141/15127*103682^(11/24) 2178308990581914 a001 6765*103682^(1/2) 2178308990590357 a001 63245986/15127*103682^(13/24) 2178308990598800 a001 39088169/15127*103682^(7/12) 2178308990606859 a001 12586269025/15127*39603^(1/11) 2178308990607244 a001 24157817/15127*103682^(5/8) 2178308990615535 a001 7778742049/103682*9349^(7/19) 2178308990615685 a001 14930352/15127*103682^(2/3) 2178308990624135 a001 9227465/15127*103682^(17/24) 2178308990632559 a001 5702887/15127*103682^(3/4) 2178308990641051 a001 3524578/15127*103682^(19/24) 2178308990649367 a001 311187/2161*103682^(5/6) 2178308990654202 a001 267084832/321*2207^(1/8) 2178308990658142 a001 1346269/15127*103682^(7/8) 2178308990665716 a001 832040/15127*103682^(11/12) 2178308990669989 a001 7778742049/15127*39603^(3/22) 2178308990676436 a001 514229/15127*103682^(23/24) 2178308990678746 a001 1836311903/2207*843^(1/7) 2178308990683229 a001 701415495/322 2178308990733120 a001 686789568/2161*39603^(2/11) 2178308990740997 a001 1602508992/13201*9349^(6/19) 2178308990788605 a001 20365011074/271443*9349^(7/19) 2178308990796251 a001 2971215073/15127*39603^(5/22) 2178308990813856 a001 53316291173/710647*9349^(7/19) 2178308990817540 a001 139583862445/1860498*9349^(7/19) 2178308990818078 a001 365435296162/4870847*9349^(7/19) 2178308990818156 a001 956722026041/12752043*9349^(7/19) 2178308990818167 a001 2504730781961/33385282*9349^(7/19) 2178308990818169 a001 6557470319842/87403803*9349^(7/19) 2178308990818169 a001 10610209857723/141422324*9349^(7/19) 2178308990818170 a001 4052739537881/54018521*9349^(7/19) 2178308990818174 a001 140728068720/1875749*9349^(7/19) 2178308990818204 a001 591286729879/7881196*9349^(7/19) 2178308990818410 a001 225851433717/3010349*9349^(7/19) 2178308990819817 a001 86267571272/1149851*9349^(7/19) 2178308990829462 a001 32951280099/439204*9349^(7/19) 2178308990859381 a001 1836311903/15127*39603^(3/11) 2178308990895569 a001 75025*9349^(7/19) 2178308990922512 a001 1134903170/15127*39603^(7/22) 2178308990956572 a001 20365011074/15127*15127^(1/20) 2178308990985643 a001 701408733/15127*39603^(4/11) 2178308991011100 a001 6765/64079*2537720636^(7/9) 2178308991011100 a001 6765/64079*17393796001^(5/7) 2178308991011100 a001 6765/64079*312119004989^(7/11) 2178308991011100 a001 6765/64079*14662949395604^(5/9) 2178308991011100 a001 6765/64079*(1/2+1/2*5^(1/2))^35 2178308991011100 a001 6765/64079*505019158607^(5/8) 2178308991011100 a001 6765/64079*28143753123^(7/10) 2178308991011100 a001 6765/64079*599074578^(5/6) 2178308991011100 a001 6765/64079*228826127^(7/8) 2178308991011100 a001 28657/15127*(1/2+1/2*5^(1/2))^29 2178308991011100 a001 28657/15127*1322157322203^(1/2) 2178308991048773 a001 433494437/15127*39603^(9/22) 2178308991111904 a001 267914296/15127*39603^(5/11) 2178308991175035 a001 165580141/15127*39603^(1/2) 2178308991238166 a001 6765*39603^(6/11) 2178308991301296 a001 63245986/15127*39603^(13/22) 2178308991348673 a001 4807526976/64079*9349^(7/19) 2178308991364427 a001 39088169/15127*39603^(7/11) 2178308991427558 a001 24157817/15127*39603^(15/22) 2178308991432547 a001 12586269025/15127*15127^(1/10) 2178308991490686 a001 14930352/15127*39603^(8/11) 2178308991553824 a001 9227465/15127*39603^(17/22) 2178308991616936 a001 5702887/15127*39603^(9/11) 2178308991680116 a001 3524578/15127*39603^(19/22) 2178308991743119 a001 311187/2161*39603^(10/11) 2178308991806582 a001 1346269/15127*39603^(21/22) 2178308991830886 a001 701408733/24476*9349^(9/19) 2178308991869459 a001 38580030555/17711 2178308991908521 a001 7778742049/15127*15127^(3/20) 2178308991927238 a001 12586269025/103682*9349^(6/19) 2178308992052700 a001 7778742049/39603*9349^(5/19) 2178308992100309 a001 121393*9349^(6/19) 2178308992125559 a001 86267571272/710647*9349^(6/19) 2178308992129243 a001 75283811239/620166*9349^(6/19) 2178308992129781 a001 591286729879/4870847*9349^(6/19) 2178308992129859 a001 516002918640/4250681*9349^(6/19) 2178308992129871 a001 4052739537881/33385282*9349^(6/19) 2178308992129872 a001 3536736619241/29134601*9349^(6/19) 2178308992129873 a001 6557470319842/54018521*9349^(6/19) 2178308992129878 a001 2504730781961/20633239*9349^(6/19) 2178308992129908 a001 956722026041/7881196*9349^(6/19) 2178308992130113 a001 365435296162/3010349*9349^(6/19) 2178308992131520 a001 139583862445/1149851*9349^(6/19) 2178308992141165 a001 53316291173/439204*9349^(6/19) 2178308992207272 a001 20365011074/167761*9349^(6/19) 2178308992384496 a001 686789568/2161*15127^(1/5) 2178308992660376 a001 7778742049/64079*9349^(6/19) 2178308992750346 a001 5702887/5778*5778^(8/9) 2178308992860471 a001 2971215073/15127*15127^(1/4) 2178308993142589 a001 567451585/12238*9349^(8/19) 2178308993238941 a001 10182505537/51841*9349^(5/19) 2178308993336445 a001 1836311903/15127*15127^(3/10) 2178308993364403 a001 12586269025/39603*9349^(4/19) 2178308993412012 a001 53316291173/271443*9349^(5/19) 2178308993437262 a001 139583862445/710647*9349^(5/19) 2178308993440946 a001 182717648081/930249*9349^(5/19) 2178308993441484 a001 956722026041/4870847*9349^(5/19) 2178308993441562 a001 2504730781961/12752043*9349^(5/19) 2178308993441574 a001 3278735159921/16692641*9349^(5/19) 2178308993441576 a001 10610209857723/54018521*9349^(5/19) 2178308993441581 a001 4052739537881/20633239*9349^(5/19) 2178308993441611 a001 387002188980/1970299*9349^(5/19) 2178308993441816 a001 591286729879/3010349*9349^(5/19) 2178308993443223 a001 225851433717/1149851*9349^(5/19) 2178308993452868 a001 196418*9349^(5/19) 2178308993518975 a001 32951280099/167761*9349^(5/19) 2178308993587956 a001 32951280099/24476*3571^(1/17) 2178308993812420 a001 1134903170/15127*15127^(7/20) 2178308993972079 a001 12586269025/64079*9349^(5/19) 2178308994105463 a001 20365011074/15127*5778^(1/18) 2178308994116720 a001 6765/24476*141422324^(11/13) 2178308994116720 a001 6765/24476*2537720636^(11/15) 2178308994116720 a001 6765/24476*45537549124^(11/17) 2178308994116720 a001 6765/24476*312119004989^(3/5) 2178308994116720 a001 6765/24476*14662949395604^(11/21) 2178308994116720 a001 6765/24476*(1/2+1/2*5^(1/2))^33 2178308994116720 a001 6765/24476*192900153618^(11/18) 2178308994116720 a001 6765/24476*10749957122^(11/16) 2178308994116720 a001 6765/24476*1568397607^(3/4) 2178308994116720 a001 6765/24476*599074578^(11/14) 2178308994116720 a001 10946/15127*(1/2+1/2*5^(1/2))^31 2178308994116720 a001 10946/15127*9062201101803^(1/2) 2178308994116722 a001 6765/24476*33385282^(11/12) 2178308994288395 a001 701408733/15127*15127^(2/5) 2178308994454293 a001 1836311903/24476*9349^(7/19) 2178308994550645 a001 32951280099/103682*9349^(4/19) 2178308994676106 a001 20365011074/39603*9349^(3/19) 2178308994723715 a001 86267571272/271443*9349^(4/19) 2178308994748965 a001 317811*9349^(4/19) 2178308994752649 a001 591286729879/1860498*9349^(4/19) 2178308994753187 a001 1548008755920/4870847*9349^(4/19) 2178308994753265 a001 4052739537881/12752043*9349^(4/19) 2178308994753277 a001 1515744265389/4769326*9349^(4/19) 2178308994753284 a001 6557470319842/20633239*9349^(4/19) 2178308994753314 a001 2504730781961/7881196*9349^(4/19) 2178308994753519 a001 956722026041/3010349*9349^(4/19) 2178308994754926 a001 365435296162/1149851*9349^(4/19) 2178308994764369 a001 433494437/15127*15127^(9/20) 2178308994764571 a001 139583862445/439204*9349^(4/19) 2178308994777675 a001 4807526976/9349*3571^(3/17) 2178308994830678 a001 53316291173/167761*9349^(4/19) 2178308994975333 a001 23843770259/10946 2178308995148228 a001 5702887/39603*24476^(20/21) 2178308995240344 a001 267914296/15127*15127^(1/2) 2178308995283782 a001 20365011074/64079*9349^(4/19) 2178308995321395 a001 9227465/39603*24476^(19/21) 2178308995494537 a001 4976784/13201*24476^(6/7) 2178308995667688 a001 24157817/39603*24476^(17/21) 2178308995716319 a001 165580141/15127*15127^(11/20) 2178308995765996 a001 2971215073/24476*9349^(6/19) 2178308995840836 a001 39088169/39603*24476^(16/21) 2178308995862348 a001 53316291173/103682*9349^(3/19) 2178308995987810 a001 10983760033/13201*9349^(2/19) 2178308996013985 a001 63245986/39603*24476^(5/7) 2178308996035418 a001 139583862445/271443*9349^(3/19) 2178308996060669 a001 365435296162/710647*9349^(3/19) 2178308996064353 a001 956722026041/1860498*9349^(3/19) 2178308996064890 a001 2504730781961/4870847*9349^(3/19) 2178308996064969 a001 6557470319842/12752043*9349^(3/19) 2178308996064987 a001 10610209857723/20633239*9349^(3/19) 2178308996065017 a001 4052739537881/7881196*9349^(3/19) 2178308996065222 a001 1548008755920/3010349*9349^(3/19) 2178308996066629 a001 514229*9349^(3/19) 2178308996076274 a001 225851433717/439204*9349^(3/19) 2178308996142381 a001 86267571272/167761*9349^(3/19) 2178308996162981 a001 11921885136/5473 2178308996187134 a001 34111385/13201*24476^(2/3) 2178308996192294 a001 6765*15127^(3/5) 2178308996334481 a001 7465176/51841*24476^(20/21) 2178308996345697 a001 11921885137/5473 2178308996360282 a001 165580141/39603*24476^(13/21) 2178308996363968 a001 1/5473*(1/2+1/2*5^(1/2))^53 2178308996375261 a001 1762289/2889*5778^(17/18) 2178308996437054 a001 1834136175/842 2178308996507553 a001 39088169/271443*24476^(20/21) 2178308996507632 a001 24157817/103682*24476^(19/21) 2178308996532803 a001 14619165/101521*24476^(20/21) 2178308996533431 a001 267914296/39603*24476^(4/7) 2178308996536487 a001 133957148/930249*24476^(20/21) 2178308996537025 a001 701408733/4870847*24476^(20/21) 2178308996537103 a001 1836311903/12752043*24476^(20/21) 2178308996537115 a001 14930208/103681*24476^(20/21) 2178308996537117 a001 12586269025/87403803*24476^(20/21) 2178308996537117 a001 32951280099/228826127*24476^(20/21) 2178308996537117 a001 43133785636/299537289*24476^(20/21) 2178308996537117 a001 32264490531/224056801*24476^(20/21) 2178308996537117 a001 591286729879/4106118243*24476^(20/21) 2178308996537117 a001 774004377960/5374978561*24476^(20/21) 2178308996537117 a001 4052739537881/28143753123*24476^(20/21) 2178308996537117 a001 1515744265389/10525900321*24476^(20/21) 2178308996537117 a001 3278735159921/22768774562*24476^(20/21) 2178308996537117 a001 2504730781961/17393796001*24476^(20/21) 2178308996537117 a001 956722026041/6643838879*24476^(20/21) 2178308996537117 a001 182717648081/1268860318*24476^(20/21) 2178308996537117 a001 139583862445/969323029*24476^(20/21) 2178308996537117 a001 53316291173/370248451*24476^(20/21) 2178308996537117 a001 10182505537/70711162*24476^(20/21) 2178308996537118 a001 7778742049/54018521*24476^(20/21) 2178308996537122 a001 2971215073/20633239*24476^(20/21) 2178308996537152 a001 567451585/3940598*24476^(20/21) 2178308996537357 a001 433494437/3010349*24476^(20/21) 2178308996538764 a001 165580141/1149851*24476^(20/21) 2178308996548409 a001 31622993/219602*24476^(20/21) 2178308996595485 a001 32951280099/64079*9349^(3/19) 2178308996614517 a001 24157817/167761*24476^(20/21) 2178308996668268 a001 63245986/15127*15127^(13/20) 2178308996680702 a001 63245986/271443*24476^(19/21) 2178308996680780 a001 39088169/103682*24476^(6/7) 2178308996705952 a001 165580141/710647*24476^(19/21) 2178308996706580 a001 433494437/39603*24476^(11/21) 2178308996709636 a001 433494437/1860498*24476^(19/21) 2178308996710174 a001 1134903170/4870847*24476^(19/21) 2178308996710252 a001 2971215073/12752043*24476^(19/21) 2178308996710264 a001 7778742049/33385282*24476^(19/21) 2178308996710265 a001 20365011074/87403803*24476^(19/21) 2178308996710265 a001 53316291173/228826127*24476^(19/21) 2178308996710266 a001 139583862445/599074578*24476^(19/21) 2178308996710266 a001 365435296162/1568397607*24476^(19/21) 2178308996710266 a001 956722026041/4106118243*24476^(19/21) 2178308996710266 a001 2504730781961/10749957122*24476^(19/21) 2178308996710266 a001 6557470319842/28143753123*24476^(19/21) 2178308996710266 a001 10610209857723/45537549124*24476^(19/21) 2178308996710266 a001 4052739537881/17393796001*24476^(19/21) 2178308996710266 a001 1548008755920/6643838879*24476^(19/21) 2178308996710266 a001 591286729879/2537720636*24476^(19/21) 2178308996710266 a001 225851433717/969323029*24476^(19/21) 2178308996710266 a001 86267571272/370248451*24476^(19/21) 2178308996710266 a001 63246219/271444*24476^(19/21) 2178308996710266 a001 12586269025/54018521*24476^(19/21) 2178308996710271 a001 4807526976/20633239*24476^(19/21) 2178308996710301 a001 1836311903/7881196*24476^(19/21) 2178308996710506 a001 701408733/3010349*24476^(19/21) 2178308996711913 a001 267914296/1149851*24476^(19/21) 2178308996721558 a001 102334155/439204*24476^(19/21) 2178308996787665 a001 39088169/167761*24476^(19/21) 2178308996853850 a001 34111385/90481*24476^(6/7) 2178308996853929 a001 31622993/51841*24476^(17/21) 2178308996879101 a001 267914296/710647*24476^(6/7) 2178308996879729 a001 17711*24476^(10/21) 2178308996882785 a001 233802911/620166*24476^(6/7) 2178308996883322 a001 1836311903/4870847*24476^(6/7) 2178308996883401 a001 1602508992/4250681*24476^(6/7) 2178308996883412 a001 12586269025/33385282*24476^(6/7) 2178308996883414 a001 10983760033/29134601*24476^(6/7) 2178308996883414 a001 86267571272/228826127*24476^(6/7) 2178308996883414 a001 267913919/710646*24476^(6/7) 2178308996883414 a001 591286729879/1568397607*24476^(6/7) 2178308996883414 a001 516002918640/1368706081*24476^(6/7) 2178308996883414 a001 4052739537881/10749957122*24476^(6/7) 2178308996883414 a001 3536736619241/9381251041*24476^(6/7) 2178308996883414 a001 6557470319842/17393796001*24476^(6/7) 2178308996883414 a001 2504730781961/6643838879*24476^(6/7) 2178308996883414 a001 956722026041/2537720636*24476^(6/7) 2178308996883414 a001 365435296162/969323029*24476^(6/7) 2178308996883414 a001 139583862445/370248451*24476^(6/7) 2178308996883414 a001 53316291173/141422324*24476^(6/7) 2178308996883415 a001 20365011074/54018521*24476^(6/7) 2178308996883419 a001 7778742049/20633239*24476^(6/7) 2178308996883449 a001 2971215073/7881196*24476^(6/7) 2178308996883655 a001 1134903170/3010349*24476^(6/7) 2178308996885062 a001 433494437/1149851*24476^(6/7) 2178308996893842 a001 11921885140/5473 2178308996894707 a001 165580141/439204*24476^(6/7) 2178308996960814 a001 63245986/167761*24476^(6/7) 2178308997026999 a001 165580141/271443*24476^(17/21) 2178308997027077 a001 102334155/103682*24476^(16/21) 2178308997052250 a001 433494437/710647*24476^(17/21) 2178308997052877 a001 1134903170/39603*24476^(3/7) 2178308997055934 a001 567451585/930249*24476^(17/21) 2178308997056471 a001 2971215073/4870847*24476^(17/21) 2178308997056550 a001 7778742049/12752043*24476^(17/21) 2178308997056561 a001 10182505537/16692641*24476^(17/21) 2178308997056563 a001 53316291173/87403803*24476^(17/21) 2178308997056563 a001 139583862445/228826127*24476^(17/21) 2178308997056563 a001 182717648081/299537289*24476^(17/21) 2178308997056563 a001 956722026041/1568397607*24476^(17/21) 2178308997056563 a001 2504730781961/4106118243*24476^(17/21) 2178308997056563 a001 3278735159921/5374978561*24476^(17/21) 2178308997056563 a001 10610209857723/17393796001*24476^(17/21) 2178308997056563 a001 4052739537881/6643838879*24476^(17/21) 2178308997056563 a001 1134903780/1860499*24476^(17/21) 2178308997056563 a001 591286729879/969323029*24476^(17/21) 2178308997056563 a001 225851433717/370248451*24476^(17/21) 2178308997056563 a001 21566892818/35355581*24476^(17/21) 2178308997056564 a001 32951280099/54018521*24476^(17/21) 2178308997056568 a001 1144206275/1875749*24476^(17/21) 2178308997056598 a001 1201881744/1970299*24476^(17/21) 2178308997056803 a001 1836311903/3010349*24476^(17/21) 2178308997058211 a001 701408733/1149851*24476^(17/21) 2178308997067625 a001 9227465/64079*24476^(20/21) 2178308997067855 a001 66978574/109801*24476^(17/21) 2178308997077699 a001 1201881744/6119*9349^(5/19) 2178308997133962 a001 9303105/15251*24476^(17/21) 2178308997144243 a001 39088169/15127*15127^(7/10) 2178308997174051 a001 43133785636/51841*9349^(2/19) 2178308997200148 a001 267914296/271443*24476^(16/21) 2178308997200226 a001 165580141/103682*24476^(5/7) 2178308997222340 a001 17711/39603*(1/2+1/2*5^(1/2))^32 2178308997222340 a001 17711/39603*23725150497407^(1/2) 2178308997222340 a001 17711/39603*505019158607^(4/7) 2178308997222340 a001 17711/39603*73681302247^(8/13) 2178308997222340 a001 17711/39603*10749957122^(2/3) 2178308997222340 a001 17711/39603*4106118243^(16/23) 2178308997222340 a001 17711/39603*1568397607^(8/11) 2178308997222340 a001 17711/39603*599074578^(16/21) 2178308997222340 a001 17711/39603*228826127^(4/5) 2178308997222341 a001 17711/39603*87403803^(16/19) 2178308997222342 a001 17711/39603*33385282^(8/9) 2178308997222353 a001 17711/39603*12752043^(16/17) 2178308997225398 a001 701408733/710647*24476^(16/21) 2178308997226026 a001 1836311903/39603*24476^(8/21) 2178308997229082 a001 1836311903/1860498*24476^(16/21) 2178308997229620 a001 4807526976/4870847*24476^(16/21) 2178308997229698 a001 12586269025/12752043*24476^(16/21) 2178308997229710 a001 32951280099/33385282*24476^(16/21) 2178308997229711 a001 86267571272/87403803*24476^(16/21) 2178308997229712 a001 225851433717/228826127*24476^(16/21) 2178308997229712 a001 591286729879/599074578*24476^(16/21) 2178308997229712 a001 1548008755920/1568397607*24476^(16/21) 2178308997229712 a001 4052739537881/4106118243*24476^(16/21) 2178308997229712 a001 4807525989/4870846*24476^(16/21) 2178308997229712 a001 6557470319842/6643838879*24476^(16/21) 2178308997229712 a001 2504730781961/2537720636*24476^(16/21) 2178308997229712 a001 956722026041/969323029*24476^(16/21) 2178308997229712 a001 365435296162/370248451*24476^(16/21) 2178308997229712 a001 139583862445/141422324*24476^(16/21) 2178308997229712 a001 53316291173/54018521*24476^(16/21) 2178308997229717 a001 20365011074/20633239*24476^(16/21) 2178308997229747 a001 7778742049/7881196*24476^(16/21) 2178308997229952 a001 2971215073/3010349*24476^(16/21) 2178308997231359 a001 1134903170/1149851*24476^(16/21) 2178308997240767 a001 14930352/64079*24476^(19/21) 2178308997241004 a001 433494437/439204*24476^(16/21) 2178308997299513 a001 53316291173/39603*9349^(1/19) 2178308997307111 a001 165580141/167761*24476^(16/21) 2178308997347121 a001 75283811239/90481*9349^(2/19) 2178308997372372 a001 591286729879/710647*9349^(2/19) 2178308997373296 a001 433494437/271443*24476^(5/7) 2178308997373375 a001 133957148/51841*24476^(2/3) 2178308997376056 a001 832040*9349^(2/19) 2178308997376593 a001 4052739537881/4870847*9349^(2/19) 2178308997376672 a001 3536736619241/4250681*9349^(2/19) 2178308997376720 a001 3278735159921/3940598*9349^(2/19) 2178308997376925 a001 2504730781961/3010349*9349^(2/19) 2178308997378333 a001 956722026041/1149851*9349^(2/19) 2178308997387977 a001 182717648081/219602*9349^(2/19) 2178308997398547 a001 1134903170/710647*24476^(5/7) 2178308997399175 a001 2971215073/39603*24476^(1/3) 2178308997402231 a001 2971215073/1860498*24476^(5/7) 2178308997402769 a001 7778742049/4870847*24476^(5/7) 2178308997402847 a001 20365011074/12752043*24476^(5/7) 2178308997402858 a001 53316291173/33385282*24476^(5/7) 2178308997402860 a001 139583862445/87403803*24476^(5/7) 2178308997402860 a001 365435296162/228826127*24476^(5/7) 2178308997402860 a001 956722026041/599074578*24476^(5/7) 2178308997402860 a001 2504730781961/1568397607*24476^(5/7) 2178308997402860 a001 6557470319842/4106118243*24476^(5/7) 2178308997402860 a001 10610209857723/6643838879*24476^(5/7) 2178308997402860 a001 4052739537881/2537720636*24476^(5/7) 2178308997402860 a001 1548008755920/969323029*24476^(5/7) 2178308997402860 a001 591286729879/370248451*24476^(5/7) 2178308997402861 a001 225851433717/141422324*24476^(5/7) 2178308997402861 a001 86267571272/54018521*24476^(5/7) 2178308997402866 a001 32951280099/20633239*24476^(5/7) 2178308997402895 a001 12586269025/7881196*24476^(5/7) 2178308997403101 a001 4807526976/3010349*24476^(5/7) 2178308997404508 a001 1836311903/1149851*24476^(5/7) 2178308997413918 a001 24157817/64079*24476^(6/7) 2178308997414153 a001 701408733/439204*24476^(5/7) 2178308997454084 a001 139583862445/167761*9349^(2/19) 2178308997480260 a001 267914296/167761*24476^(5/7) 2178308997546445 a001 233802911/90481*24476^(2/3) 2178308997546524 a001 433494437/103682*24476^(13/21) 2178308997571696 a001 1836311903/710647*24476^(2/3) 2178308997572323 a001 1602508992/13201*24476^(2/7) 2178308997575380 a001 267084832/103361*24476^(2/3) 2178308997575917 a001 12586269025/4870847*24476^(2/3) 2178308997575996 a001 10983760033/4250681*24476^(2/3) 2178308997576007 a001 43133785636/16692641*24476^(2/3) 2178308997576009 a001 75283811239/29134601*24476^(2/3) 2178308997576009 a001 591286729879/228826127*24476^(2/3) 2178308997576009 a001 86000486440/33281921*24476^(2/3) 2178308997576009 a001 4052739537881/1568397607*24476^(2/3) 2178308997576009 a001 3536736619241/1368706081*24476^(2/3) 2178308997576009 a001 3278735159921/1268860318*24476^(2/3) 2178308997576009 a001 2504730781961/969323029*24476^(2/3) 2178308997576009 a001 956722026041/370248451*24476^(2/3) 2178308997576009 a001 182717648081/70711162*24476^(2/3) 2178308997576010 a001 139583862445/54018521*24476^(2/3) 2178308997576014 a001 53316291173/20633239*24476^(2/3) 2178308997576044 a001 10182505537/3940598*24476^(2/3) 2178308997576250 a001 7778742049/3010349*24476^(2/3) 2178308997577657 a001 2971215073/1149851*24476^(2/3) 2178308997587066 a001 39088169/64079*24476^(17/21) 2178308997587302 a001 567451585/219602*24476^(2/3) 2178308997620219 a001 24157817/15127*15127^(3/4) 2178308997653409 a001 433494437/167761*24476^(2/3) 2178308997719594 a001 1134903170/271443*24476^(13/21) 2178308997719672 a001 701408733/103682*24476^(4/7) 2178308997730329 a001 12586269025/15127*5778^(1/9) 2178308997744845 a001 2971215073/710647*24476^(13/21) 2178308997745472 a001 7778742049/39603*24476^(5/21) 2178308997748529 a001 7778742049/1860498*24476^(13/21) 2178308997749066 a001 20365011074/4870847*24476^(13/21) 2178308997749144 a001 53316291173/12752043*24476^(13/21) 2178308997749156 a001 139583862445/33385282*24476^(13/21) 2178308997749158 a001 365435296162/87403803*24476^(13/21) 2178308997749158 a001 956722026041/228826127*24476^(13/21) 2178308997749158 a001 2504730781961/599074578*24476^(13/21) 2178308997749158 a001 6557470319842/1568397607*24476^(13/21) 2178308997749158 a001 10610209857723/2537720636*24476^(13/21) 2178308997749158 a001 4052739537881/969323029*24476^(13/21) 2178308997749158 a001 1548008755920/370248451*24476^(13/21) 2178308997749158 a001 591286729879/141422324*24476^(13/21) 2178308997749159 a001 225851433717/54018521*24476^(13/21) 2178308997749163 a001 86267571272/20633239*24476^(13/21) 2178308997749193 a001 32951280099/7881196*24476^(13/21) 2178308997749398 a001 12586269025/3010349*24476^(13/21) 2178308997750805 a001 4807526976/1149851*24476^(13/21) 2178308997760215 a001 63245986/64079*24476^(16/21) 2178308997760450 a001 1836311903/439204*24476^(13/21) 2178308997826557 a001 701408733/167761*24476^(13/21) 2178308997892743 a001 1836311903/271443*24476^(4/7) 2178308997892821 a001 567451585/51841*24476^(11/21) 2178308997907188 a001 53316291173/64079*9349^(2/19) 2178308997917993 a001 686789568/101521*24476^(4/7) 2178308997918621 a001 12586269025/39603*24476^(4/21) 2178308997921677 a001 12586269025/1860498*24476^(4/7) 2178308997922215 a001 32951280099/4870847*24476^(4/7) 2178308997922293 a001 86267571272/12752043*24476^(4/7) 2178308997922305 a001 32264490531/4769326*24476^(4/7) 2178308997922306 a001 591286729879/87403803*24476^(4/7) 2178308997922307 a001 1548008755920/228826127*24476^(4/7) 2178308997922307 a001 4052739537881/599074578*24476^(4/7) 2178308997922307 a001 1515744265389/224056801*24476^(4/7) 2178308997922307 a001 6557470319842/969323029*24476^(4/7) 2178308997922307 a001 2504730781961/370248451*24476^(4/7) 2178308997922307 a001 956722026041/141422324*24476^(4/7) 2178308997922307 a001 365435296162/54018521*24476^(4/7) 2178308997922312 a001 139583862445/20633239*24476^(4/7) 2178308997922342 a001 53316291173/7881196*24476^(4/7) 2178308997922547 a001 20365011074/3010349*24476^(4/7) 2178308997923954 a001 7778742049/1149851*24476^(4/7) 2178308997933364 a001 102334155/64079*24476^(5/7) 2178308997933599 a001 2971215073/439204*24476^(4/7) 2178308997999706 a001 1134903170/167761*24476^(4/7) 2178308998065891 a001 2971215073/271443*24476^(11/21) 2178308998065970 a001 1836311903/103682*24476^(10/21) 2178308998080748 a001 62423800958/28657 2178308998091142 a001 7778742049/710647*24476^(11/21) 2178308998091770 a001 20365011074/39603*24476^(1/7) 2178308998094826 a001 10182505537/930249*24476^(11/21) 2178308998095364 a001 53316291173/4870847*24476^(11/21) 2178308998095442 a001 139583862445/12752043*24476^(11/21) 2178308998095453 a001 182717648081/16692641*24476^(11/21) 2178308998095455 a001 956722026041/87403803*24476^(11/21) 2178308998095455 a001 2504730781961/228826127*24476^(11/21) 2178308998095455 a001 3278735159921/299537289*24476^(11/21) 2178308998095455 a001 10610209857723/969323029*24476^(11/21) 2178308998095455 a001 4052739537881/370248451*24476^(11/21) 2178308998095455 a001 387002188980/35355581*24476^(11/21) 2178308998095456 a001 591286729879/54018521*24476^(11/21) 2178308998095460 a001 7787980473/711491*24476^(11/21) 2178308998095490 a001 21566892818/1970299*24476^(11/21) 2178308998095696 a001 32951280099/3010349*24476^(11/21) 2178308998096191 a001 14930352/15127*15127^(4/5) 2178308998097103 a001 12586269025/1149851*24476^(11/21) 2178308998103686 a001 726103/13201*64079^(22/23) 2178308998106512 a001 165580141/64079*24476^(2/3) 2178308998106748 a001 1201881744/109801*24476^(11/21) 2178308998126878 a001 3524578/39603*64079^(21/23) 2178308998149895 a001 5702887/39603*64079^(20/23) 2178308998172855 a001 1836311903/167761*24476^(11/21) 2178308998172979 a001 9227465/39603*64079^(19/23) 2178308998196037 a001 4976784/13201*64079^(18/23) 2178308998219105 a001 24157817/39603*64079^(17/23) 2178308998239040 a001 1602508992/90481*24476^(10/21) 2178308998239119 a001 2971215073/103682*24476^(3/7) 2178308998242170 a001 39088169/39603*64079^(16/23) 2178308998264291 a001 12586269025/710647*24476^(10/21) 2178308998264918 a001 10983760033/13201*24476^(2/21) 2178308998265236 a001 63245986/39603*64079^(15/23) 2178308998267975 a001 10983760033/620166*24476^(10/21) 2178308998268512 a001 86267571272/4870847*24476^(10/21) 2178308998268591 a001 75283811239/4250681*24476^(10/21) 2178308998268602 a001 591286729879/33385282*24476^(10/21) 2178308998268604 a001 516002918640/29134601*24476^(10/21) 2178308998268604 a001 4052739537881/228826127*24476^(10/21) 2178308998268604 a001 3536736619241/199691526*24476^(10/21) 2178308998268604 a001 6557470319842/370248451*24476^(10/21) 2178308998268604 a001 2504730781961/141422324*24476^(10/21) 2178308998268605 a001 956722026041/54018521*24476^(10/21) 2178308998268609 a001 365435296162/20633239*24476^(10/21) 2178308998268639 a001 139583862445/7881196*24476^(10/21) 2178308998268844 a001 53316291173/3010349*24476^(10/21) 2178308998270252 a001 20365011074/1149851*24476^(10/21) 2178308998279661 a001 267914296/64079*24476^(13/21) 2178308998279896 a001 7778742049/439204*24476^(10/21) 2178308998288301 a001 34111385/13201*64079^(14/23) 2178308998311366 a001 165580141/39603*64079^(13/23) 2178308998334432 a001 267914296/39603*64079^(12/23) 2178308998346003 a001 2971215073/167761*24476^(10/21) 2178308998357497 a001 433494437/39603*64079^(11/23) 2178308998380562 a001 17711*64079^(10/23) 2178308998389402 a001 7778742049/24476*9349^(4/19) 2178308998403628 a001 1134903170/39603*64079^(9/23) 2178308998408550 a001 15456/13201*7881196^(10/11) 2178308998408577 a001 15456/13201*20633239^(6/7) 2178308998408582 a001 15456/13201*141422324^(10/13) 2178308998408582 a001 17711/103682*45537549124^(2/3) 2178308998408582 a001 17711/103682*(1/2+1/2*5^(1/2))^34 2178308998408582 a001 17711/103682*10749957122^(17/24) 2178308998408582 a001 17711/103682*4106118243^(17/23) 2178308998408582 a001 15456/13201*2537720636^(2/3) 2178308998408582 a001 17711/103682*1568397607^(17/22) 2178308998408582 a001 15456/13201*45537549124^(10/17) 2178308998408582 a001 15456/13201*312119004989^(6/11) 2178308998408582 a001 15456/13201*14662949395604^(10/21) 2178308998408582 a001 15456/13201*(1/2+1/2*5^(1/2))^30 2178308998408582 a001 15456/13201*192900153618^(5/9) 2178308998408582 a001 15456/13201*28143753123^(3/5) 2178308998408582 a001 15456/13201*10749957122^(5/8) 2178308998408582 a001 15456/13201*4106118243^(15/23) 2178308998408582 a001 15456/13201*1568397607^(15/22) 2178308998408582 a001 17711/103682*599074578^(17/21) 2178308998408582 a001 15456/13201*599074578^(5/7) 2178308998408582 a001 15456/13201*228826127^(3/4) 2178308998408582 a001 17711/103682*228826127^(17/20) 2178308998408582 a001 15456/13201*87403803^(15/19) 2178308998408582 a001 17711/103682*87403803^(17/19) 2178308998408583 a001 15456/13201*33385282^(5/6) 2178308998408583 a001 17711/103682*33385282^(17/18) 2178308998408593 a001 15456/13201*12752043^(15/17) 2178308998408668 a001 15456/13201*4870847^(15/16) 2178308998412189 a001 7778742049/271443*24476^(3/7) 2178308998412267 a001 46368*24476^(8/21) 2178308998426693 a001 1836311903/39603*64079^(8/23) 2178308998437439 a001 20365011074/710647*24476^(3/7) 2178308998438067 a001 53316291173/39603*24476^(1/21) 2178308998441123 a001 53316291173/1860498*24476^(3/7) 2178308998441661 a001 139583862445/4870847*24476^(3/7) 2178308998441739 a001 365435296162/12752043*24476^(3/7) 2178308998441751 a001 956722026041/33385282*24476^(3/7) 2178308998441752 a001 2504730781961/87403803*24476^(3/7) 2178308998441753 a001 6557470319842/228826127*24476^(3/7) 2178308998441753 a001 10610209857723/370248451*24476^(3/7) 2178308998441753 a001 4052739537881/141422324*24476^(3/7) 2178308998441754 a001 1548008755920/54018521*24476^(3/7) 2178308998441758 a001 591286729879/20633239*24476^(3/7) 2178308998441788 a001 225851433717/7881196*24476^(3/7) 2178308998441993 a001 86267571272/3010349*24476^(3/7) 2178308998443400 a001 32951280099/1149851*24476^(3/7) 2178308998449758 a001 2971215073/39603*64079^(7/23) 2178308998452810 a001 433494437/64079*24476^(4/7) 2178308998453045 a001 12586269025/439204*24476^(3/7) 2178308998472824 a001 1602508992/13201*64079^(6/23) 2178308998485754 a001 139583862445/103682*9349^(1/19) 2178308998495889 a001 7778742049/39603*64079^(5/23) 2178308998499019 r005 Re(z^2+c),c=17/66+1/6*I,n=29 2178308998518954 a001 12586269025/39603*64079^(4/23) 2178308998519152 a001 4807526976/167761*24476^(3/7) 2178308998533822 a001 32685526523/15005 2178308998542020 a001 20365011074/39603*64079^(3/23) 2178308998549283 a001 5702887/39603*167761^(4/5) 2178308998564776 a001 63245986/39603*167761^(3/5) 2178308998565085 a001 10983760033/13201*64079^(2/23) 2178308998572172 a001 9227465/15127*15127^(17/20) 2178308998580256 a001 17711*167761^(2/5) 2178308998581648 a001 121393/39603*20633239^(4/5) 2178308998581652 a001 17711/271443*141422324^(12/13) 2178308998581652 a001 17711/271443*2537720636^(4/5) 2178308998581652 a001 17711/271443*45537549124^(12/17) 2178308998581652 a001 17711/271443*14662949395604^(4/7) 2178308998581652 a001 17711/271443*(1/2+1/2*5^(1/2))^36 2178308998581652 a001 17711/271443*505019158607^(9/14) 2178308998581652 a001 17711/271443*192900153618^(2/3) 2178308998581652 a001 17711/271443*73681302247^(9/13) 2178308998581652 a001 17711/271443*10749957122^(3/4) 2178308998581652 a001 17711/271443*4106118243^(18/23) 2178308998581652 a001 17711/271443*1568397607^(9/11) 2178308998581652 a001 121393/39603*17393796001^(4/7) 2178308998581652 a001 121393/39603*14662949395604^(4/9) 2178308998581652 a001 121393/39603*(1/2+1/2*5^(1/2))^28 2178308998581652 a001 121393/39603*73681302247^(7/13) 2178308998581652 a001 121393/39603*10749957122^(7/12) 2178308998581652 a001 121393/39603*4106118243^(14/23) 2178308998581652 a001 121393/39603*1568397607^(7/11) 2178308998581652 a001 121393/39603*599074578^(2/3) 2178308998581652 a001 17711/271443*599074578^(6/7) 2178308998581652 a001 121393/39603*228826127^(7/10) 2178308998581652 a001 17711/271443*228826127^(9/10) 2178308998581652 a001 121393/39603*87403803^(14/19) 2178308998581652 a001 17711/271443*87403803^(18/19) 2178308998581653 a001 121393/39603*33385282^(7/9) 2178308998581663 a001 121393/39603*12752043^(14/17) 2178308998581732 a001 121393/39603*4870847^(7/8) 2178308998582239 a001 121393/39603*1860498^(14/15) 2178308998585338 a001 12586269025/271443*24476^(8/21) 2178308998585416 a001 7778742049/103682*24476^(1/3) 2178308998588150 a001 53316291173/39603*64079^(1/23) 2178308998595736 a001 7778742049/39603*167761^(1/5) 2178308998599924 a001 427859096887/196418 2178308998600549 a001 832040/39603*439204^(8/9) 2178308998602468 a001 3524578/39603*439204^(7/9) 2178308998603686 a001 4976784/13201*439204^(2/3) 2178308998604942 a001 63245986/39603*439204^(5/9) 2178308998606197 a001 267914296/39603*439204^(4/9) 2178308998606902 a001 105937/13201*141422324^(2/3) 2178308998606903 a001 17711/710647*817138163596^(2/3) 2178308998606903 a001 17711/710647*(1/2+1/2*5^(1/2))^38 2178308998606903 a001 17711/710647*10749957122^(19/24) 2178308998606903 a001 17711/710647*4106118243^(19/23) 2178308998606903 a001 17711/710647*1568397607^(19/22) 2178308998606903 a001 105937/13201*(1/2+1/2*5^(1/2))^26 2178308998606903 a001 105937/13201*73681302247^(1/2) 2178308998606903 a001 105937/13201*10749957122^(13/24) 2178308998606903 a001 105937/13201*4106118243^(13/23) 2178308998606903 a001 105937/13201*1568397607^(13/22) 2178308998606903 a001 105937/13201*599074578^(13/21) 2178308998606903 a001 17711/710647*599074578^(19/21) 2178308998606903 a001 105937/13201*228826127^(13/20) 2178308998606903 a001 17711/710647*228826127^(19/20) 2178308998606903 a001 105937/13201*87403803^(13/19) 2178308998606904 a001 105937/13201*33385282^(13/18) 2178308998606913 a001 105937/13201*12752043^(13/17) 2178308998606977 a001 105937/13201*4870847^(13/16) 2178308998607448 a001 105937/13201*1860498^(13/15) 2178308998607452 a001 1134903170/39603*439204^(1/3) 2178308998608706 a001 1602508992/13201*439204^(2/9) 2178308998609568 a001 1120149658046/514229 2178308998609961 a001 20365011074/39603*439204^(1/9) 2178308998610561 a001 832040/39603*7881196^(8/11) 2178308998610586 a001 832040/39603*141422324^(8/13) 2178308998610587 a001 17711/1860498*2537720636^(8/9) 2178308998610587 a001 17711/1860498*312119004989^(8/11) 2178308998610587 a001 17711/1860498*(1/2+1/2*5^(1/2))^40 2178308998610587 a001 17711/1860498*23725150497407^(5/8) 2178308998610587 a001 17711/1860498*73681302247^(10/13) 2178308998610587 a001 17711/1860498*28143753123^(4/5) 2178308998610587 a001 17711/1860498*10749957122^(5/6) 2178308998610587 a001 17711/1860498*4106118243^(20/23) 2178308998610587 a001 832040/39603*2537720636^(8/15) 2178308998610587 a001 17711/1860498*1568397607^(10/11) 2178308998610587 a001 832040/39603*45537549124^(8/17) 2178308998610587 a001 832040/39603*14662949395604^(8/21) 2178308998610587 a001 832040/39603*(1/2+1/2*5^(1/2))^24 2178308998610587 a001 832040/39603*192900153618^(4/9) 2178308998610587 a001 832040/39603*73681302247^(6/13) 2178308998610587 a001 832040/39603*10749957122^(1/2) 2178308998610587 a001 832040/39603*4106118243^(12/23) 2178308998610587 a001 832040/39603*1568397607^(6/11) 2178308998610587 a001 832040/39603*599074578^(4/7) 2178308998610587 a001 17711/1860498*599074578^(20/21) 2178308998610587 a001 832040/39603*228826127^(3/5) 2178308998610587 a001 832040/39603*87403803^(12/19) 2178308998610588 a001 832040/39603*33385282^(2/3) 2178308998610588 a001 32951280099/710647*24476^(8/21) 2178308998610596 a001 832040/39603*12752043^(12/17) 2178308998610655 a001 832040/39603*4870847^(3/4) 2178308998610908 a001 105937/13201*710647^(13/14) 2178308998610975 a001 2932589877251/1346269 2178308998611090 a001 832040/39603*1860498^(4/5) 2178308998611101 a001 726103/13201*7881196^(2/3) 2178308998611124 a001 17711/4870847*2537720636^(14/15) 2178308998611124 a001 17711/4870847*17393796001^(6/7) 2178308998611124 a001 17711/4870847*45537549124^(14/17) 2178308998611124 a001 17711/4870847*817138163596^(14/19) 2178308998611124 a001 17711/4870847*14662949395604^(2/3) 2178308998611124 a001 17711/4870847*(1/2+1/2*5^(1/2))^42 2178308998611124 a001 17711/4870847*192900153618^(7/9) 2178308998611124 a001 17711/4870847*10749957122^(7/8) 2178308998611124 a001 17711/4870847*4106118243^(21/23) 2178308998611124 a001 17711/4870847*1568397607^(21/22) 2178308998611124 a001 726103/13201*312119004989^(2/5) 2178308998611124 a001 726103/13201*(1/2+1/2*5^(1/2))^22 2178308998611124 a001 726103/13201*10749957122^(11/24) 2178308998611124 a001 726103/13201*4106118243^(11/23) 2178308998611124 a001 726103/13201*1568397607^(1/2) 2178308998611124 a001 726103/13201*599074578^(11/21) 2178308998611124 a001 726103/13201*228826127^(11/20) 2178308998611124 a001 726103/13201*87403803^(11/19) 2178308998611125 a001 726103/13201*33385282^(11/18) 2178308998611133 a001 726103/13201*12752043^(11/17) 2178308998611181 a001 86265392963/39602 2178308998611187 a001 726103/13201*4870847^(11/16) 2178308998611195 a001 4976784/13201*7881196^(6/11) 2178308998611200 a001 5702887/39603*20633239^(4/7) 2178308998611200 a001 63245986/39603*7881196^(5/11) 2178308998611202 a001 17711/12752043*312119004989^(4/5) 2178308998611202 a001 17711/12752043*(1/2+1/2*5^(1/2))^44 2178308998611202 a001 17711/12752043*23725150497407^(11/16) 2178308998611202 a001 17711/12752043*73681302247^(11/13) 2178308998611202 a001 17711/12752043*10749957122^(11/12) 2178308998611202 a001 17711/12752043*4106118243^(22/23) 2178308998611202 a001 5702887/39603*2537720636^(4/9) 2178308998611202 a001 5702887/39603*(1/2+1/2*5^(1/2))^20 2178308998611202 a001 5702887/39603*23725150497407^(5/16) 2178308998611202 a001 5702887/39603*505019158607^(5/14) 2178308998611202 a001 5702887/39603*73681302247^(5/13) 2178308998611202 a001 5702887/39603*28143753123^(2/5) 2178308998611202 a001 5702887/39603*10749957122^(5/12) 2178308998611202 a001 5702887/39603*4106118243^(10/23) 2178308998611202 a001 5702887/39603*1568397607^(5/11) 2178308998611202 a001 5702887/39603*599074578^(10/21) 2178308998611202 a001 5702887/39603*228826127^(1/2) 2178308998611203 a001 5702887/39603*87403803^(10/19) 2178308998611203 a001 267914296/39603*7881196^(4/11) 2178308998611204 a001 5702887/39603*33385282^(5/9) 2178308998611204 a001 433494437/39603*7881196^(1/3) 2178308998611206 a001 1134903170/39603*7881196^(3/11) 2178308998611209 a001 1602508992/13201*7881196^(2/11) 2178308998611210 a001 5702887/39603*12752043^(10/17) 2178308998611211 a001 4020054008774/1845493 2178308998611213 a001 20365011074/39603*7881196^(1/11) 2178308998611214 a001 34111385/13201*20633239^(2/5) 2178308998611214 a001 63245986/39603*20633239^(3/7) 2178308998611214 a001 4976784/13201*141422324^(6/13) 2178308998611214 a001 17711/33385282*(1/2+1/2*5^(1/2))^46 2178308998611214 a001 17711/33385282*10749957122^(23/24) 2178308998611214 a001 4976784/13201*2537720636^(2/5) 2178308998611214 a001 4976784/13201*45537549124^(6/17) 2178308998611214 a001 4976784/13201*14662949395604^(2/7) 2178308998611214 a001 4976784/13201*(1/2+1/2*5^(1/2))^18 2178308998611214 a001 4976784/13201*192900153618^(1/3) 2178308998611214 a001 4976784/13201*10749957122^(3/8) 2178308998611214 a001 4976784/13201*4106118243^(9/23) 2178308998611214 a001 4976784/13201*1568397607^(9/22) 2178308998611214 a001 4976784/13201*599074578^(3/7) 2178308998611214 a001 4976784/13201*228826127^(9/20) 2178308998611214 a001 4976784/13201*87403803^(9/19) 2178308998611214 a001 17711*20633239^(2/7) 2178308998611215 a001 2971215073/39603*20633239^(1/5) 2178308998611215 a001 4976784/13201*33385282^(1/2) 2178308998611215 a001 52623190157903/24157817 2178308998611215 a001 7778742049/39603*20633239^(1/7) 2178308998611216 a001 17711/87403803*45537549124^(16/17) 2178308998611216 a001 17711/87403803*14662949395604^(16/21) 2178308998611216 a001 17711/87403803*192900153618^(8/9) 2178308998611216 a001 17711/87403803*73681302247^(12/13) 2178308998611216 a001 39088169/39603*(1/2+1/2*5^(1/2))^16 2178308998611216 a001 39088169/39603*23725150497407^(1/4) 2178308998611216 a001 39088169/39603*73681302247^(4/13) 2178308998611216 a001 39088169/39603*10749957122^(1/3) 2178308998611216 a001 39088169/39603*4106118243^(8/23) 2178308998611216 a001 39088169/39603*1568397607^(4/11) 2178308998611216 a001 39088169/39603*599074578^(8/21) 2178308998611216 a001 39088169/39603*228826127^(2/5) 2178308998611216 a001 39088169/39603*87403803^(8/19) 2178308998611216 a001 137769300429839/63245986 2178308998611216 a001 17711/228826127*312119004989^(10/11) 2178308998611216 a001 17711/228826127*3461452808002^(5/6) 2178308998611216 a001 34111385/13201*17393796001^(2/7) 2178308998611216 a001 34111385/13201*14662949395604^(2/9) 2178308998611216 a001 34111385/13201*(1/2+1/2*5^(1/2))^14 2178308998611216 a001 34111385/13201*10749957122^(7/24) 2178308998611216 a001 34111385/13201*4106118243^(7/23) 2178308998611216 a001 34111385/13201*1568397607^(7/22) 2178308998611216 a001 267914296/39603*141422324^(4/13) 2178308998611216 a001 34111385/13201*599074578^(1/3) 2178308998611216 a001 34111385/13201*228826127^(7/20) 2178308998611216 a001 1134903170/39603*141422324^(3/13) 2178308998611216 a001 165580141/39603*141422324^(1/3) 2178308998611216 a001 1602508992/13201*141422324^(2/13) 2178308998611216 a001 360684711131614/165580141 2178308998611216 a001 20365011074/39603*141422324^(1/13) 2178308998611216 a001 17711/599074578*23725150497407^(13/16) 2178308998611216 a001 17711/599074578*505019158607^(13/14) 2178308998611216 a001 267914296/39603*2537720636^(4/15) 2178308998611216 a001 267914296/39603*45537549124^(4/17) 2178308998611216 a001 267914296/39603*14662949395604^(4/21) 2178308998611216 a001 267914296/39603*(1/2+1/2*5^(1/2))^12 2178308998611216 a001 267914296/39603*192900153618^(2/9) 2178308998611216 a001 267914296/39603*73681302247^(3/13) 2178308998611216 a001 267914296/39603*10749957122^(1/4) 2178308998611216 a001 267914296/39603*4106118243^(6/23) 2178308998611216 a001 267914296/39603*1568397607^(3/11) 2178308998611216 a001 267914296/39603*599074578^(2/7) 2178308998611216 a001 944284832965003/433494437 2178308998611216 a001 17711/1568397607*14662949395604^(6/7) 2178308998611216 a001 494433957552679/226980634 2178308998611216 a001 17711/4106118243*14662949395604^(8/9) 2178308998611216 a001 17711*2537720636^(2/9) 2178308998611216 a001 6472224530325182/2971215073 2178308998611216 a001 16944503803212151/7778742049 2178308998611216 a001 17711/28143753123*14662949395604^(20/21) 2178308998611216 a001 44361286879311271/20365011074 2178308998611216 a001 116139356834721662/53316291173 2178308998611216 a001 17711*312119004989^(2/11) 2178308998611216 a001 187917426790132053/86267571272 2178308998611216 a001 71778069955410391/32951280099 2178308998611216 a001 17711*28143753123^(1/5) 2178308998611216 a001 498486965019984/228841255 2178308998611216 a001 17711*10749957122^(5/24) 2178308998611216 a001 10472279272886969/4807526976 2178308998611216 a001 17711*4106118243^(5/23) 2178308998611216 a001 17711/6643838879*14662949395604^(19/21) 2178308998611216 a001 4000054742561787/1836311903 2178308998611216 a001 17711*1568397607^(5/22) 2178308998611216 a001 17711/2537720636*3461452808002^(11/12) 2178308998611216 a001 1836311903/39603*(1/2+1/2*5^(1/2))^8 2178308998611216 a001 1836311903/39603*23725150497407^(1/8) 2178308998611216 a001 1836311903/39603*73681302247^(2/13) 2178308998611216 a001 1836311903/39603*10749957122^(1/6) 2178308998611216 a001 1836311903/39603*4106118243^(4/23) 2178308998611216 a001 1602508992/13201*2537720636^(2/15) 2178308998611216 a001 7778742049/39603*2537720636^(1/9) 2178308998611216 a001 20365011074/39603*2537720636^(1/15) 2178308998611216 a001 1602508992/13201*45537549124^(2/17) 2178308998611216 a001 1602508992/13201*14662949395604^(2/21) 2178308998611216 a001 1602508992/13201*(1/2+1/2*5^(1/2))^6 2178308998611216 a001 1602508992/13201*10749957122^(1/8) 2178308998611216 a001 12586269025/39603*(1/2+1/2*5^(1/2))^4 2178308998611216 a001 12586269025/39603*23725150497407^(1/16) 2178308998611216 a001 12586269025/39603*73681302247^(1/13) 2178308998611216 a001 1602508992/13201*4106118243^(3/23) 2178308998611216 a001 12586269025/39603*10749957122^(1/12) 2178308998611216 a001 10983760033/13201*(1/2+1/2*5^(1/2))^2 2178308998611216 a001 86267571272/39603 2178308998611216 a001 53316291173/79206+53316291173/79206*5^(1/2) 2178308998611216 a001 10983760033/13201*10749957122^(1/24) 2178308998611216 a001 20365011074/39603*45537549124^(1/17) 2178308998611216 a001 20365011074/39603*14662949395604^(1/21) 2178308998611216 a001 20365011074/39603*(1/2+1/2*5^(1/2))^3 2178308998611216 a001 20365011074/39603*10749957122^(1/16) 2178308998611216 a001 10983760033/13201*4106118243^(1/23) 2178308998611216 a001 7778742049/39603*312119004989^(1/11) 2178308998611216 a001 7778742049/39603*(1/2+1/2*5^(1/2))^5 2178308998611216 a001 7778742049/39603*28143753123^(1/10) 2178308998611216 a001 12586269025/39603*4106118243^(2/23) 2178308998611216 a001 1836311903/39603*1568397607^(2/11) 2178308998611216 a001 10983760033/13201*1568397607^(1/22) 2178308998611216 a001 2971215073/39603*17393796001^(1/7) 2178308998611216 a001 2971215073/39603*14662949395604^(1/9) 2178308998611216 a001 2971215073/39603*(1/2+1/2*5^(1/2))^7 2178308998611216 a001 12586269025/39603*1568397607^(1/11) 2178308998611216 a001 1602508992/13201*1568397607^(3/22) 2178308998611216 a001 1134903170/39603*2537720636^(1/5) 2178308998611216 a001 10983760033/13201*599074578^(1/21) 2178308998611216 a001 1134903170/39603*45537549124^(3/17) 2178308998611216 a001 1134903170/39603*817138163596^(3/19) 2178308998611216 a001 1134903170/39603*14662949395604^(1/7) 2178308998611216 a001 1134903170/39603*(1/2+1/2*5^(1/2))^9 2178308998611216 a001 1134903170/39603*192900153618^(1/6) 2178308998611216 a001 1134903170/39603*10749957122^(3/16) 2178308998611216 a001 20365011074/39603*599074578^(1/14) 2178308998611216 a001 17711*599074578^(5/21) 2178308998611216 a001 12586269025/39603*599074578^(2/21) 2178308998611216 a001 1602508992/13201*599074578^(1/7) 2178308998611216 a001 1836311903/39603*599074578^(4/21) 2178308998611216 a001 2971215073/39603*599074578^(1/6) 2178308998611216 a001 1134903170/39603*599074578^(3/14) 2178308998611216 a001 10983760033/13201*228826127^(1/20) 2178308998611216 a001 433494437/39603*312119004989^(1/5) 2178308998611216 a001 433494437/39603*(1/2+1/2*5^(1/2))^11 2178308998611216 a001 433494437/39603*1568397607^(1/4) 2178308998611216 a001 12586269025/39603*228826127^(1/10) 2178308998611216 a001 583600121833389/267914296 2178308998611216 a001 7778742049/39603*228826127^(1/8) 2178308998611216 a001 1602508992/13201*228826127^(3/20) 2178308998611216 a001 267914296/39603*228826127^(3/10) 2178308998611216 a001 1836311903/39603*228826127^(1/5) 2178308998611216 a001 17711*228826127^(1/4) 2178308998611216 a001 17711/370248451*14662949395604^(17/21) 2178308998611216 a001 17711/370248451*192900153618^(17/18) 2178308998611216 a001 10983760033/13201*87403803^(1/19) 2178308998611216 a001 165580141/39603*(1/2+1/2*5^(1/2))^13 2178308998611216 a001 165580141/39603*73681302247^(1/4) 2178308998611216 a001 12586269025/39603*87403803^(2/19) 2178308998611216 a001 4053007467305/1860621 2178308998611216 a001 1602508992/13201*87403803^(3/19) 2178308998611216 a001 1836311903/39603*87403803^(4/19) 2178308998611216 a001 34111385/13201*87403803^(7/19) 2178308998611216 a001 63245986/39603*141422324^(5/13) 2178308998611216 a001 17711*87403803^(5/19) 2178308998611216 a001 267914296/39603*87403803^(6/19) 2178308998611216 a001 17711/141422324*14662949395604^(7/9) 2178308998611216 a001 17711/141422324*505019158607^(7/8) 2178308998611216 a001 10983760033/13201*33385282^(1/18) 2178308998611216 a001 63245986/39603*2537720636^(1/3) 2178308998611216 a001 63245986/39603*45537549124^(5/17) 2178308998611216 a001 63245986/39603*312119004989^(3/11) 2178308998611216 a001 63245986/39603*14662949395604^(5/21) 2178308998611216 a001 63245986/39603*(1/2+1/2*5^(1/2))^15 2178308998611216 a001 63245986/39603*192900153618^(5/18) 2178308998611216 a001 63245986/39603*28143753123^(3/10) 2178308998611216 a001 63245986/39603*10749957122^(5/16) 2178308998611216 a001 63245986/39603*599074578^(5/14) 2178308998611216 a001 63245986/39603*228826127^(3/8) 2178308998611216 a001 20365011074/39603*33385282^(1/12) 2178308998611216 a001 12586269025/39603*33385282^(1/9) 2178308998611216 a001 85146110271936/39088169 2178308998611216 a001 1602508992/13201*33385282^(1/6) 2178308998611216 a001 1836311903/39603*33385282^(2/9) 2178308998611216 a001 1134903170/39603*33385282^(1/4) 2178308998611216 a001 17711*33385282^(5/18) 2178308998611216 a001 39088169/39603*33385282^(4/9) 2178308998611216 a001 267914296/39603*33385282^(1/3) 2178308998611217 a001 34111385/13201*33385282^(7/18) 2178308998611217 a001 24157817/39603*45537549124^(1/3) 2178308998611217 a001 24157817/39603*(1/2+1/2*5^(1/2))^17 2178308998611217 a001 10983760033/13201*12752043^(1/17) 2178308998611217 a001 63245986/39603*33385282^(5/12) 2178308998611217 a001 12586269025/39603*12752043^(2/17) 2178308998611218 a001 32522920114033/14930352 2178308998611218 a001 1602508992/13201*12752043^(3/17) 2178308998611219 a001 1836311903/39603*12752043^(4/17) 2178308998611220 a001 17711*12752043^(5/17) 2178308998611221 a001 267914296/39603*12752043^(6/17) 2178308998611221 a001 17711/20633239*45537549124^(15/17) 2178308998611221 a001 17711/20633239*312119004989^(9/11) 2178308998611221 a001 17711/20633239*14662949395604^(5/7) 2178308998611221 a001 17711/20633239*(1/2+1/2*5^(1/2))^45 2178308998611221 a001 17711/20633239*192900153618^(5/6) 2178308998611221 a001 17711/20633239*28143753123^(9/10) 2178308998611221 a001 17711/20633239*10749957122^(15/16) 2178308998611221 a001 9227465/39603*817138163596^(1/3) 2178308998611221 a001 9227465/39603*(1/2+1/2*5^(1/2))^19 2178308998611221 a001 4976784/13201*12752043^(9/17) 2178308998611221 a001 9227465/39603*87403803^(1/2) 2178308998611221 a001 34111385/13201*12752043^(7/17) 2178308998611222 a001 10983760033/13201*4870847^(1/16) 2178308998611222 a001 39088169/39603*12752043^(8/17) 2178308998611223 a001 24157817/39603*12752043^(1/2) 2178308998611227 a001 12586269025/39603*4870847^(1/8) 2178308998611229 a001 3524578/39603*7881196^(7/11) 2178308998611229 a001 12422650070163/5702887 2178308998611233 a001 1602508992/13201*4870847^(3/16) 2178308998611239 a001 1836311903/39603*4870847^(1/4) 2178308998611245 a001 17711*4870847^(5/16) 2178308998611248 a001 3524578/39603*20633239^(3/5) 2178308998611250 a001 267914296/39603*4870847^(3/8) 2178308998611251 a001 3524578/39603*141422324^(7/13) 2178308998611251 a001 89/39604*(1/2+1/2*5^(1/2))^43 2178308998611251 a001 3524578/39603*2537720636^(7/15) 2178308998611251 a001 3524578/39603*17393796001^(3/7) 2178308998611251 a001 3524578/39603*45537549124^(7/17) 2178308998611251 a001 3524578/39603*14662949395604^(1/3) 2178308998611251 a001 3524578/39603*(1/2+1/2*5^(1/2))^21 2178308998611251 a001 3524578/39603*192900153618^(7/18) 2178308998611251 a001 3524578/39603*10749957122^(7/16) 2178308998611251 a001 3524578/39603*599074578^(1/2) 2178308998611252 a001 3524578/39603*33385282^(7/12) 2178308998611256 a001 34111385/13201*4870847^(7/16) 2178308998611258 a001 10983760033/13201*1860498^(1/15) 2178308998611260 a001 5702887/39603*4870847^(5/8) 2178308998611261 a001 39088169/39603*4870847^(1/2) 2178308998611266 a001 4976784/13201*4870847^(9/16) 2178308998611279 a001 20365011074/39603*1860498^(1/10) 2178308998611300 a001 12586269025/39603*1860498^(2/15) 2178308998611308 a001 4745030096456/2178309 2178308998611321 a001 7778742049/39603*1860498^(1/6) 2178308998611342 a001 1602508992/13201*1860498^(1/5) 2178308998611384 a001 1836311903/39603*1860498^(4/15) 2178308998611405 a001 1134903170/39603*1860498^(3/10) 2178308998611426 a001 17711*1860498^(1/3) 2178308998611456 a001 17711/3010349*(1/2+1/2*5^(1/2))^41 2178308998611456 a001 1346269/39603*(1/2+1/2*5^(1/2))^23 2178308998611456 a001 1346269/39603*4106118243^(1/2) 2178308998611468 a001 267914296/39603*1860498^(2/5) 2178308998611509 a001 34111385/13201*1860498^(7/15) 2178308998611524 a001 10983760033/13201*710647^(1/14) 2178308998611531 a001 63245986/39603*1860498^(1/2) 2178308998611551 a001 39088169/39603*1860498^(8/15) 2178308998611585 a001 726103/13201*1860498^(11/15) 2178308998611591 a001 4976784/13201*1860498^(3/5) 2178308998611622 a001 5702887/39603*1860498^(2/3) 2178308998611691 a001 3524578/39603*1860498^(7/10) 2178308998611832 a001 12586269025/39603*710647^(1/7) 2178308998611845 a001 32953458531/15128 2178308998612140 a001 1602508992/13201*710647^(3/14) 2178308998612294 a001 2971215073/39603*710647^(1/4) 2178308998612448 a001 1836311903/39603*710647^(2/7) 2178308998612756 a001 17711*710647^(5/14) 2178308998612860 a001 514229/39603*20633239^(5/7) 2178308998612863 a001 17711/1149851*2537720636^(13/15) 2178308998612863 a001 17711/1149851*45537549124^(13/17) 2178308998612863 a001 17711/1149851*14662949395604^(13/21) 2178308998612863 a001 17711/1149851*(1/2+1/2*5^(1/2))^39 2178308998612863 a001 17711/1149851*192900153618^(13/18) 2178308998612863 a001 17711/1149851*73681302247^(3/4) 2178308998612863 a001 17711/1149851*10749957122^(13/16) 2178308998612863 a001 514229/39603*2537720636^(5/9) 2178308998612863 a001 514229/39603*312119004989^(5/11) 2178308998612863 a001 514229/39603*(1/2+1/2*5^(1/2))^25 2178308998612863 a001 514229/39603*3461452808002^(5/12) 2178308998612863 a001 514229/39603*28143753123^(1/2) 2178308998612863 a001 17711/1149851*599074578^(13/14) 2178308998612863 a001 514229/39603*228826127^(5/8) 2178308998613064 a001 267914296/39603*710647^(3/7) 2178308998613372 a001 34111385/13201*710647^(1/2) 2178308998613388 a001 514229/39603*1860498^(5/6) 2178308998613490 a001 10983760033/13201*271443^(1/13) 2178308998613680 a001 39088169/39603*710647^(4/7) 2178308998613987 a001 4976784/13201*710647^(9/14) 2178308998614272 a001 43133785636/930249*24476^(8/21) 2178308998614283 a001 5702887/39603*710647^(5/7) 2178308998614284 a001 832040/39603*710647^(6/7) 2178308998614486 a001 3524578/39603*710647^(3/4) 2178308998614513 a001 726103/13201*710647^(11/14) 2178308998614810 a001 225851433717/4870847*24476^(8/21) 2178308998614888 a001 591286729879/12752043*24476^(8/21) 2178308998614900 a001 774004377960/16692641*24476^(8/21) 2178308998614901 a001 4052739537881/87403803*24476^(8/21) 2178308998614901 a001 225749145909/4868641*24476^(8/21) 2178308998614902 a001 3278735159921/70711162*24476^(8/21) 2178308998614902 a001 2504730781961/54018521*24476^(8/21) 2178308998614907 a001 956722026041/20633239*24476^(8/21) 2178308998614937 a001 182717648081/3940598*24476^(8/21) 2178308998615142 a001 139583862445/3010349*24476^(8/21) 2178308998615529 a001 692290561159/317811 2178308998615764 a001 12586269025/39603*271443^(2/13) 2178308998616549 a001 53316291173/1149851*24476^(8/21) 2178308998618038 a001 1602508992/13201*271443^(3/13) 2178308998619659 a001 53316291173/39603*103682^(1/24) 2178308998620312 a001 1836311903/39603*271443^(4/13) 2178308998622480 a001 196418/39603*7881196^(9/11) 2178308998622508 a001 196418/39603*141422324^(9/13) 2178308998622508 a001 17711/439204*(1/2+1/2*5^(1/2))^37 2178308998622508 a001 196418/39603*2537720636^(3/5) 2178308998622508 a001 196418/39603*45537549124^(9/17) 2178308998622508 a001 196418/39603*817138163596^(9/19) 2178308998622508 a001 196418/39603*14662949395604^(3/7) 2178308998622508 a001 196418/39603*(1/2+1/2*5^(1/2))^27 2178308998622508 a001 196418/39603*192900153618^(1/2) 2178308998622508 a001 196418/39603*10749957122^(9/16) 2178308998622508 a001 196418/39603*599074578^(9/14) 2178308998622510 a001 196418/39603*33385282^(3/4) 2178308998622587 a001 17711*271443^(5/13) 2178308998623075 a001 196418/39603*1860498^(9/10) 2178308998624861 a001 267914296/39603*271443^(6/13) 2178308998625959 a001 701408733/64079*24476^(11/21) 2178308998625998 a001 165580141/39603*271443^(1/2) 2178308998626194 a001 10182505537/219602*24476^(8/21) 2178308998627135 a001 34111385/13201*271443^(7/13) 2178308998628102 a001 10983760033/13201*103682^(1/12) 2178308998629409 a001 39088169/39603*271443^(8/13) 2178308998631681 a001 4976784/13201*271443^(9/13) 2178308998633944 a001 5702887/39603*271443^(10/13) 2178308998636140 a001 726103/13201*271443^(11/13) 2178308998636545 a001 20365011074/39603*103682^(1/8) 2178308998637876 a001 832040/39603*271443^(12/13) 2178308998640778 a001 264431464272/121393 2178308998644988 a001 12586269025/39603*103682^(1/6) 2178308998653431 a001 7778742049/39603*103682^(5/24) 2178308998658824 a001 365435296162/271443*9349^(1/19) 2178308998661874 a001 1602508992/13201*103682^(1/4) 2178308998670317 a001 2971215073/39603*103682^(7/24) 2178308998674347 a001 53316291173/39603*39603^(1/22) 2178308998678761 a001 1836311903/39603*103682^(1/3) 2178308998684075 a001 956722026041/710647*9349^(1/19) 2178308998687204 a001 1134903170/39603*103682^(3/8) 2178308998687759 a001 2504730781961/1860498*9349^(1/19) 2178308998688296 a001 6557470319842/4870847*9349^(1/19) 2178308998688423 a001 10610209857723/7881196*9349^(1/19) 2178308998688615 a001 17711/167761*2537720636^(7/9) 2178308998688615 a001 17711/167761*17393796001^(5/7) 2178308998688615 a001 17711/167761*312119004989^(7/11) 2178308998688615 a001 17711/167761*14662949395604^(5/9) 2178308998688615 a001 17711/167761*(1/2+1/2*5^(1/2))^35 2178308998688615 a001 17711/167761*505019158607^(5/8) 2178308998688615 a001 17711/167761*28143753123^(7/10) 2178308998688615 a001 75025/39603*(1/2+1/2*5^(1/2))^29 2178308998688615 a001 75025/39603*1322157322203^(1/2) 2178308998688615 a001 17711/167761*599074578^(5/6) 2178308998688615 a001 17711/167761*228826127^(7/8) 2178308998688629 a001 1346269*9349^(1/19) 2178308998690036 a001 1548008755920/1149851*9349^(1/19) 2178308998692301 a001 7778742049/167761*24476^(8/21) 2178308998695647 a001 17711*103682^(5/12) 2178308998699681 a001 591286729879/439204*9349^(1/19) 2178308998704090 a001 433494437/39603*103682^(11/24) 2178308998712533 a001 267914296/39603*103682^(1/2) 2178308998720976 a001 165580141/39603*103682^(13/24) 2178308998729419 a001 34111385/13201*103682^(7/12) 2178308998737477 a001 10983760033/13201*39603^(1/11) 2178308998737862 a001 63245986/39603*103682^(5/8) 2178308998746305 a001 39088169/39603*103682^(2/3) 2178308998754749 a001 24157817/39603*103682^(17/24) 2178308998758486 a001 20365011074/271443*24476^(1/3) 2178308998758565 a001 12586269025/103682*24476^(2/7) 2178308998763190 a001 4976784/13201*103682^(3/4) 2178308998765788 a001 225851433717/167761*9349^(1/19) 2178308998771640 a001 9227465/39603*103682^(19/24) 2178308998780064 a001 5702887/39603*103682^(5/6) 2178308998783737 a001 53316291173/710647*24476^(1/3) 2178308998787421 a001 139583862445/1860498*24476^(1/3) 2178308998787958 a001 365435296162/4870847*24476^(1/3) 2178308998788037 a001 956722026041/12752043*24476^(1/3) 2178308998788048 a001 2504730781961/33385282*24476^(1/3) 2178308998788050 a001 6557470319842/87403803*24476^(1/3) 2178308998788050 a001 10610209857723/141422324*24476^(1/3) 2178308998788051 a001 4052739537881/54018521*24476^(1/3) 2178308998788055 a001 140728068720/1875749*24476^(1/3) 2178308998788085 a001 591286729879/7881196*24476^(1/3) 2178308998788291 a001 225851433717/3010349*24476^(1/3) 2178308998788556 a001 3524578/39603*103682^(7/8) 2178308998789698 a001 86267571272/1149851*24476^(1/3) 2178308998796872 a001 726103/13201*103682^(11/12) 2178308998799107 a001 1134903170/64079*24476^(10/21) 2178308998799343 a001 32951280099/439204*24476^(1/3) 2178308998800608 a001 20365011074/39603*39603^(3/22) 2178308998805647 a001 1346269/39603*103682^(23/24) 2178308998813837 a001 101003831657/46368 2178308998863739 a001 12586269025/39603*39603^(2/11) 2178308998865450 a001 75025*24476^(1/3) 2178308998926869 a001 7778742049/39603*39603^(5/22) 2178308998931635 a001 121393*24476^(2/7) 2178308998931713 a001 10182505537/51841*24476^(5/21) 2178308998956886 a001 86267571272/710647*24476^(2/7) 2178308998960570 a001 75283811239/620166*24476^(2/7) 2178308998961107 a001 591286729879/4870847*24476^(2/7) 2178308998961186 a001 516002918640/4250681*24476^(2/7) 2178308998961197 a001 4052739537881/33385282*24476^(2/7) 2178308998961199 a001 3536736619241/29134601*24476^(2/7) 2178308998961200 a001 6557470319842/54018521*24476^(2/7) 2178308998961204 a001 2504730781961/20633239*24476^(2/7) 2178308998961234 a001 956722026041/7881196*24476^(2/7) 2178308998961439 a001 365435296162/3010349*24476^(2/7) 2178308998962846 a001 139583862445/1149851*24476^(2/7) 2178308998972256 a001 28657*24476^(3/7) 2178308998972491 a001 53316291173/439204*24476^(2/7) 2178308998990000 a001 1602508992/13201*39603^(3/11) 2178308999038598 a001 20365011074/167761*24476^(2/7) 2178308999048128 a001 5702887/15127*15127^(9/10) 2178308999053131 a001 2971215073/39603*39603^(7/22) 2178308999087191 a001 53316291173/39603*15127^(1/20) 2178308999104784 a001 53316291173/271443*24476^(5/21) 2178308999104862 a001 32951280099/103682*24476^(4/21) 2178308999116261 a001 1836311903/39603*39603^(4/11) 2178308999130034 a001 139583862445/710647*24476^(5/21) 2178308999133718 a001 182717648081/930249*24476^(5/21) 2178308999134256 a001 956722026041/4870847*24476^(5/21) 2178308999134334 a001 2504730781961/12752043*24476^(5/21) 2178308999134346 a001 3278735159921/16692641*24476^(5/21) 2178308999134348 a001 10610209857723/54018521*24476^(5/21) 2178308999134353 a001 4052739537881/20633239*24476^(5/21) 2178308999134383 a001 387002188980/1970299*24476^(5/21) 2178308999134588 a001 591286729879/3010349*24476^(5/21) 2178308999135995 a001 225851433717/1149851*24476^(5/21) 2178308999141719 a001 17711/64079*141422324^(11/13) 2178308999141719 a001 17711/64079*2537720636^(11/15) 2178308999141719 a001 17711/64079*45537549124^(11/17) 2178308999141719 a001 17711/64079*312119004989^(3/5) 2178308999141719 a001 17711/64079*14662949395604^(11/21) 2178308999141719 a001 17711/64079*(1/2+1/2*5^(1/2))^33 2178308999141719 a001 17711/64079*192900153618^(11/18) 2178308999141719 a001 17711/64079*10749957122^(11/16) 2178308999141719 a001 17711/64079*1568397607^(3/4) 2178308999141719 a001 28657/39603*(1/2+1/2*5^(1/2))^31 2178308999141719 a001 28657/39603*9062201101803^(1/2) 2178308999141719 a001 17711/64079*599074578^(11/14) 2178308999141721 a001 17711/64079*33385282^(11/12) 2178308999145405 a001 2971215073/64079*24476^(8/21) 2178308999145640 a001 196418*24476^(5/21) 2178308999179392 a001 1134903170/39603*39603^(9/22) 2178308999211747 a001 32951280099/167761*24476^(5/21) 2178308999218891 a001 86267571272/64079*9349^(1/19) 2178308999242523 a001 17711*39603^(5/11) 2178308999267194 a001 62423800992/28657 2178308999277932 a001 86267571272/271443*24476^(4/21) 2178308999278011 a001 53316291173/103682*24476^(1/7) 2178308999290006 a001 5702887/103682*64079^(22/23) 2178308999303183 a001 317811*24476^(4/21) 2178308999305654 a001 433494437/39603*39603^(1/2) 2178308999306867 a001 591286729879/1860498*24476^(4/21) 2178308999307405 a001 1548008755920/4870847*24476^(4/21) 2178308999307483 a001 4052739537881/12752043*24476^(4/21) 2178308999307494 a001 1515744265389/4769326*24476^(4/21) 2178308999307502 a001 6557470319842/20633239*24476^(4/21) 2178308999307531 a001 2504730781961/7881196*24476^(4/21) 2178308999307737 a001 956722026041/3010349*24476^(4/21) 2178308999309144 a001 365435296162/1149851*24476^(4/21) 2178308999313090 a001 9227465/103682*64079^(21/23) 2178308999318553 a001 4807526976/64079*24476^(1/3) 2178308999318789 a001 139583862445/439204*24476^(4/21) 2178308999336148 a001 7465176/51841*64079^(20/23) 2178308999359216 a001 24157817/103682*64079^(19/23) 2178308999368784 a001 267914296/39603*39603^(6/11) 2178308999382280 a001 39088169/103682*64079^(18/23) 2178308999384896 a001 53316291173/167761*24476^(4/21) 2178308999405346 a001 31622993/51841*64079^(17/23) 2178308999428411 a001 102334155/103682*64079^(16/23) 2178308999431915 a001 165580141/39603*39603^(13/22) 2178308999441672 a001 62423800997/28657 2178308999451081 a001 139583862445/271443*24476^(1/7) 2178308999451160 a001 43133785636/51841*24476^(2/21) 2178308999451477 a001 165580141/103682*64079^(15/23) 2178308999463088 a001 4976784/90481*64079^(22/23) 2178308999469588 a001 2/28657*(1/2+1/2*5^(1/2))^55 2178308999474542 a001 133957148/51841*64079^(14/23) 2178308999476332 a001 365435296162/710647*24476^(1/7) 2178308999476567 a001 62423800998/28657 2178308999480016 a001 956722026041/1860498*24476^(1/7) 2178308999480553 a001 2504730781961/4870847*24476^(1/7) 2178308999480632 a001 6557470319842/12752043*24476^(1/7) 2178308999480650 a001 10610209857723/20633239*24476^(1/7) 2178308999480680 a001 4052739537881/7881196*24476^(1/7) 2178308999480886 a001 1548008755920/3010349*24476^(1/7) 2178308999482293 a001 514229*24476^(1/7) 2178308999486156 a001 24157817/271443*64079^(21/23) 2178308999488340 a001 39088169/710647*64079^(22/23) 2178308999491702 a001 7778742049/64079*24476^(2/7) 2178308999491938 a001 225851433717/439204*24476^(1/7) 2178308999492024 a001 831985/15126*64079^(22/23) 2178308999492562 a001 267914296/4870847*64079^(22/23) 2178308999492640 a001 233802911/4250681*64079^(22/23) 2178308999492651 a001 1836311903/33385282*64079^(22/23) 2178308999492653 a001 1602508992/29134601*64079^(22/23) 2178308999492653 a001 12586269025/228826127*64079^(22/23) 2178308999492653 a001 10983760033/199691526*64079^(22/23) 2178308999492653 a001 86267571272/1568397607*64079^(22/23) 2178308999492653 a001 75283811239/1368706081*64079^(22/23) 2178308999492653 a001 591286729879/10749957122*64079^(22/23) 2178308999492653 a001 12585437040/228811001*64079^(22/23) 2178308999492653 a001 4052739537881/73681302247*64079^(22/23) 2178308999492653 a001 3536736619241/64300051206*64079^(22/23) 2178308999492653 a001 6557470319842/119218851371*64079^(22/23) 2178308999492653 a001 2504730781961/45537549124*64079^(22/23) 2178308999492653 a001 956722026041/17393796001*64079^(22/23) 2178308999492653 a001 365435296162/6643838879*64079^(22/23) 2178308999492653 a001 139583862445/2537720636*64079^(22/23) 2178308999492653 a001 53316291173/969323029*64079^(22/23) 2178308999492653 a001 20365011074/370248451*64079^(22/23) 2178308999492654 a001 7778742049/141422324*64079^(22/23) 2178308999492654 a001 2971215073/54018521*64079^(22/23) 2178308999492659 a001 1134903170/20633239*64079^(22/23) 2178308999492689 a001 433494437/7881196*64079^(22/23) 2178308999492894 a001 165580141/3010349*64079^(22/23) 2178308999494301 a001 63245986/1149851*64079^(22/23) 2178308999495046 a001 34111385/13201*39603^(7/11) 2178308999497607 a001 433494437/103682*64079^(13/23) 2178308999503947 a001 24157817/439204*64079^(22/23) 2178308999509220 a001 39088169/271443*64079^(20/23) 2178308999511406 a001 63245986/710647*64079^(21/23) 2178308999515090 a001 165580141/1860498*64079^(21/23) 2178308999515627 a001 433494437/4870847*64079^(21/23) 2178308999515705 a001 1134903170/12752043*64079^(21/23) 2178308999515717 a001 2971215073/33385282*64079^(21/23) 2178308999515719 a001 7778742049/87403803*64079^(21/23) 2178308999515719 a001 20365011074/228826127*64079^(21/23) 2178308999515719 a001 53316291173/599074578*64079^(21/23) 2178308999515719 a001 139583862445/1568397607*64079^(21/23) 2178308999515719 a001 365435296162/4106118243*64079^(21/23) 2178308999515719 a001 956722026041/10749957122*64079^(21/23) 2178308999515719 a001 2504730781961/28143753123*64079^(21/23) 2178308999515719 a001 6557470319842/73681302247*64079^(21/23) 2178308999515719 a001 10610209857723/119218851371*64079^(21/23) 2178308999515719 a001 4052739537881/45537549124*64079^(21/23) 2178308999515719 a001 1548008755920/17393796001*64079^(21/23) 2178308999515719 a001 591286729879/6643838879*64079^(21/23) 2178308999515719 a001 225851433717/2537720636*64079^(21/23) 2178308999515719 a001 86267571272/969323029*64079^(21/23) 2178308999515719 a001 32951280099/370248451*64079^(21/23) 2178308999515719 a001 12586269025/141422324*64079^(21/23) 2178308999515720 a001 4807526976/54018521*64079^(21/23) 2178308999515724 a001 1836311903/20633239*64079^(21/23) 2178308999515754 a001 3524667/39604*64079^(21/23) 2178308999515959 a001 267914296/3010349*64079^(21/23) 2178308999517366 a001 102334155/1149851*64079^(21/23) 2178308999520673 a001 701408733/103682*64079^(12/23) 2178308999524152 a001 3524578/15127*15127^(19/20) 2178308999527011 a001 39088169/439204*64079^(21/23) 2178308999532286 a001 63245986/271443*64079^(19/23) 2178308999534471 a001 14619165/101521*64079^(20/23) 2178308999538155 a001 133957148/930249*64079^(20/23) 2178308999538692 a001 701408733/4870847*64079^(20/23) 2178308999538771 a001 1836311903/12752043*64079^(20/23) 2178308999538782 a001 14930208/103681*64079^(20/23) 2178308999538784 a001 12586269025/87403803*64079^(20/23) 2178308999538784 a001 32951280099/228826127*64079^(20/23) 2178308999538784 a001 43133785636/299537289*64079^(20/23) 2178308999538784 a001 32264490531/224056801*64079^(20/23) 2178308999538784 a001 591286729879/4106118243*64079^(20/23) 2178308999538784 a001 774004377960/5374978561*64079^(20/23) 2178308999538784 a001 4052739537881/28143753123*64079^(20/23) 2178308999538784 a001 1515744265389/10525900321*64079^(20/23) 2178308999538784 a001 3278735159921/22768774562*64079^(20/23) 2178308999538784 a001 2504730781961/17393796001*64079^(20/23) 2178308999538784 a001 956722026041/6643838879*64079^(20/23) 2178308999538784 a001 182717648081/1268860318*64079^(20/23) 2178308999538784 a001 139583862445/969323029*64079^(20/23) 2178308999538784 a001 53316291173/370248451*64079^(20/23) 2178308999538784 a001 10182505537/70711162*64079^(20/23) 2178308999538785 a001 7778742049/54018521*64079^(20/23) 2178308999538789 a001 2971215073/20633239*64079^(20/23) 2178308999538819 a001 567451585/3940598*64079^(20/23) 2178308999539025 a001 433494437/3010349*64079^(20/23) 2178308999540432 a001 165580141/1149851*64079^(20/23) 2178308999543738 a001 567451585/51841*64079^(11/23) 2178308999546358 a001 62423801000/28657 2178308999550077 a001 31622993/219602*64079^(20/23) 2178308999555351 a001 34111385/90481*64079^(18/23) 2178308999557536 a001 165580141/710647*64079^(19/23) 2178308999558045 a001 86267571272/167761*24476^(1/7) 2178308999558176 a001 63245986/39603*39603^(15/22) 2178308999561220 a001 433494437/1860498*64079^(19/23) 2178308999561758 a001 1134903170/4870847*64079^(19/23) 2178308999561836 a001 2971215073/12752043*64079^(19/23) 2178308999561848 a001 7778742049/33385282*64079^(19/23) 2178308999561849 a001 20365011074/87403803*64079^(19/23) 2178308999561849 a001 53316291173/228826127*64079^(19/23) 2178308999561850 a001 139583862445/599074578*64079^(19/23) 2178308999561850 a001 365435296162/1568397607*64079^(19/23) 2178308999561850 a001 956722026041/4106118243*64079^(19/23) 2178308999561850 a001 2504730781961/10749957122*64079^(19/23) 2178308999561850 a001 6557470319842/28143753123*64079^(19/23) 2178308999561850 a001 10610209857723/45537549124*64079^(19/23) 2178308999561850 a001 4052739537881/17393796001*64079^(19/23) 2178308999561850 a001 1548008755920/6643838879*64079^(19/23) 2178308999561850 a001 591286729879/2537720636*64079^(19/23) 2178308999561850 a001 225851433717/969323029*64079^(19/23) 2178308999561850 a001 86267571272/370248451*64079^(19/23) 2178308999561850 a001 63246219/271444*64079^(19/23) 2178308999561850 a001 12586269025/54018521*64079^(19/23) 2178308999561855 a001 4807526976/20633239*64079^(19/23) 2178308999561885 a001 1836311903/7881196*64079^(19/23) 2178308999562090 a001 701408733/3010349*64079^(19/23) 2178308999563165 a001 10983760033/13201*15127^(1/10) 2178308999563497 a001 267914296/1149851*64079^(19/23) 2178308999566804 a001 1836311903/103682*64079^(10/23) 2178308999570058 a001 9227465/167761*64079^(22/23) 2178308999573142 a001 102334155/439204*64079^(19/23) 2178308999578416 a001 165580141/271443*64079^(17/23) 2178308999580602 a001 267914296/710647*64079^(18/23) 2178308999584286 a001 233802911/620166*64079^(18/23) 2178308999584823 a001 1836311903/4870847*64079^(18/23) 2178308999584901 a001 1602508992/4250681*64079^(18/23) 2178308999584913 a001 12586269025/33385282*64079^(18/23) 2178308999584915 a001 10983760033/29134601*64079^(18/23) 2178308999584915 a001 86267571272/228826127*64079^(18/23) 2178308999584915 a001 267913919/710646*64079^(18/23) 2178308999584915 a001 591286729879/1568397607*64079^(18/23) 2178308999584915 a001 516002918640/1368706081*64079^(18/23) 2178308999584915 a001 4052739537881/10749957122*64079^(18/23) 2178308999584915 a001 3536736619241/9381251041*64079^(18/23) 2178308999584915 a001 6557470319842/17393796001*64079^(18/23) 2178308999584915 a001 2504730781961/6643838879*64079^(18/23) 2178308999584915 a001 956722026041/2537720636*64079^(18/23) 2178308999584915 a001 365435296162/969323029*64079^(18/23) 2178308999584915 a001 139583862445/370248451*64079^(18/23) 2178308999584915 a001 53316291173/141422324*64079^(18/23) 2178308999584916 a001 20365011074/54018521*64079^(18/23) 2178308999584920 a001 7778742049/20633239*64079^(18/23) 2178308999584950 a001 2971215073/7881196*64079^(18/23) 2178308999585155 a001 1134903170/3010349*64079^(18/23) 2178308999586562 a001 433494437/1149851*64079^(18/23) 2178308999589869 a001 2971215073/103682*64079^(9/23) 2178308999593116 a001 14930352/167761*64079^(21/23) 2178308999594823 a001 23184/51841*(1/2+1/2*5^(1/2))^32 2178308999594823 a001 23184/51841*23725150497407^(1/2) 2178308999594823 a001 23184/51841*73681302247^(8/13) 2178308999594823 a001 23184/51841*10749957122^(2/3) 2178308999594823 a001 23184/51841*4106118243^(16/23) 2178308999594823 a001 23184/51841*1568397607^(8/11) 2178308999594823 a001 23184/51841*599074578^(16/21) 2178308999594823 a001 23184/51841*228826127^(4/5) 2178308999594823 a001 23184/51841*87403803^(16/19) 2178308999594825 a001 23184/51841*33385282^(8/9) 2178308999594836 a001 23184/51841*12752043^(16/17) 2178308999596207 a001 165580141/439204*64079^(18/23) 2178308999601482 a001 267914296/271443*64079^(16/23) 2178308999603667 a001 433494437/710647*64079^(17/23) 2178308999607351 a001 567451585/930249*64079^(17/23) 2178308999607888 a001 2971215073/4870847*64079^(17/23) 2178308999607967 a001 7778742049/12752043*64079^(17/23) 2178308999607978 a001 10182505537/16692641*64079^(17/23) 2178308999607980 a001 53316291173/87403803*64079^(17/23) 2178308999607980 a001 139583862445/228826127*64079^(17/23) 2178308999607980 a001 182717648081/299537289*64079^(17/23) 2178308999607980 a001 956722026041/1568397607*64079^(17/23) 2178308999607980 a001 2504730781961/4106118243*64079^(17/23) 2178308999607980 a001 3278735159921/5374978561*64079^(17/23) 2178308999607980 a001 10610209857723/17393796001*64079^(17/23) 2178308999607980 a001 4052739537881/6643838879*64079^(17/23) 2178308999607980 a001 1134903780/1860499*64079^(17/23) 2178308999607980 a001 591286729879/969323029*64079^(17/23) 2178308999607980 a001 225851433717/370248451*64079^(17/23) 2178308999607980 a001 21566892818/35355581*64079^(17/23) 2178308999607981 a001 32951280099/54018521*64079^(17/23) 2178308999607985 a001 1144206275/1875749*64079^(17/23) 2178308999608015 a001 1201881744/1970299*64079^(17/23) 2178308999608221 a001 1836311903/3010349*64079^(17/23) 2178308999609628 a001 701408733/1149851*64079^(17/23) 2178308999612934 a001 46368*64079^(8/23) 2178308999616184 a001 24157817/167761*64079^(20/23) 2178308999619273 a001 66978574/109801*64079^(17/23) 2178308999621307 a001 39088169/39603*39603^(8/11) 2178308999624230 a001 75283811239/90481*24476^(2/21) 2178308999624308 a001 139583862445/103682*24476^(1/21) 2178308999624547 a001 433494437/271443*64079^(15/23) 2178308999626732 a001 701408733/710647*64079^(16/23) 2178308999630416 a001 1836311903/1860498*64079^(16/23) 2178308999630954 a001 4807526976/4870847*64079^(16/23) 2178308999631032 a001 12586269025/12752043*64079^(16/23) 2178308999631044 a001 32951280099/33385282*64079^(16/23) 2178308999631045 a001 86267571272/87403803*64079^(16/23) 2178308999631046 a001 225851433717/228826127*64079^(16/23) 2178308999631046 a001 591286729879/599074578*64079^(16/23) 2178308999631046 a001 1548008755920/1568397607*64079^(16/23) 2178308999631046 a001 4052739537881/4106118243*64079^(16/23) 2178308999631046 a001 4807525989/4870846*64079^(16/23) 2178308999631046 a001 6557470319842/6643838879*64079^(16/23) 2178308999631046 a001 2504730781961/2537720636*64079^(16/23) 2178308999631046 a001 956722026041/969323029*64079^(16/23) 2178308999631046 a001 365435296162/370248451*64079^(16/23) 2178308999631046 a001 139583862445/141422324*64079^(16/23) 2178308999631046 a001 53316291173/54018521*64079^(16/23) 2178308999631051 a001 20365011074/20633239*64079^(16/23) 2178308999631081 a001 7778742049/7881196*64079^(16/23) 2178308999631286 a001 2971215073/3010349*64079^(16/23) 2178308999632693 a001 1134903170/1149851*64079^(16/23) 2178308999636000 a001 7778742049/103682*64079^(7/23) 2178308999639249 a001 39088169/167761*64079^(19/23) 2178308999642338 a001 433494437/439204*64079^(16/23) 2178308999647612 a001 233802911/90481*64079^(14/23) 2178308999649481 a001 591286729879/710647*24476^(2/21) 2178308999649798 a001 1134903170/710647*64079^(15/23) 2178308999653165 a001 832040*24476^(2/21) 2178308999653482 a001 2971215073/1860498*64079^(15/23) 2178308999653702 a001 4052739537881/4870847*24476^(2/21) 2178308999653780 a001 3536736619241/4250681*24476^(2/21) 2178308999653829 a001 3278735159921/3940598*24476^(2/21) 2178308999654019 a001 7778742049/4870847*64079^(15/23) 2178308999654034 a001 2504730781961/3010349*24476^(2/21) 2178308999654098 a001 20365011074/12752043*64079^(15/23) 2178308999654109 a001 53316291173/33385282*64079^(15/23) 2178308999654111 a001 139583862445/87403803*64079^(15/23) 2178308999654111 a001 365435296162/228826127*64079^(15/23) 2178308999654111 a001 956722026041/599074578*64079^(15/23) 2178308999654111 a001 2504730781961/1568397607*64079^(15/23) 2178308999654111 a001 6557470319842/4106118243*64079^(15/23) 2178308999654111 a001 10610209857723/6643838879*64079^(15/23) 2178308999654111 a001 4052739537881/2537720636*64079^(15/23) 2178308999654111 a001 1548008755920/969323029*64079^(15/23) 2178308999654111 a001 591286729879/370248451*64079^(15/23) 2178308999654111 a001 225851433717/141422324*64079^(15/23) 2178308999654112 a001 86267571272/54018521*64079^(15/23) 2178308999654116 a001 32951280099/20633239*64079^(15/23) 2178308999654146 a001 12586269025/7881196*64079^(15/23) 2178308999654351 a001 4807526976/3010349*64079^(15/23) 2178308999655441 a001 956722026041/1149851*24476^(2/21) 2178308999655758 a001 1836311903/1149851*64079^(15/23) 2178308999659065 a001 12586269025/103682*64079^(6/23) 2178308999662314 a001 63245986/167761*64079^(18/23) 2178308999664851 a001 12586269025/64079*24476^(5/21) 2178308999665086 a001 182717648081/219602*24476^(2/21) 2178308999665403 a001 701408733/439204*64079^(15/23) 2178308999670678 a001 1134903170/271443*64079^(13/23) 2178308999672863 a001 1836311903/710647*64079^(14/23) 2178308999676547 a001 267084832/103361*64079^(14/23) 2178308999677084 a001 12586269025/4870847*64079^(14/23) 2178308999677163 a001 10983760033/4250681*64079^(14/23) 2178308999677174 a001 43133785636/16692641*64079^(14/23) 2178308999677176 a001 75283811239/29134601*64079^(14/23) 2178308999677176 a001 591286729879/228826127*64079^(14/23) 2178308999677176 a001 86000486440/33281921*64079^(14/23) 2178308999677176 a001 4052739537881/1568397607*64079^(14/23) 2178308999677176 a001 3536736619241/1368706081*64079^(14/23) 2178308999677176 a001 3278735159921/1268860318*64079^(14/23) 2178308999677176 a001 2504730781961/969323029*64079^(14/23) 2178308999677176 a001 956722026041/370248451*64079^(14/23) 2178308999677176 a001 182717648081/70711162*64079^(14/23) 2178308999677177 a001 139583862445/54018521*64079^(14/23) 2178308999677181 a001 53316291173/20633239*64079^(14/23) 2178308999677211 a001 10182505537/3940598*64079^(14/23) 2178308999677417 a001 7778742049/3010349*64079^(14/23) 2178308999678824 a001 2971215073/1149851*64079^(14/23) 2178308999682130 a001 10182505537/51841*64079^(5/23) 2178308999684439 a001 24157817/39603*39603^(17/22) 2178308999685380 a001 9303105/15251*64079^(17/23) 2178308999688469 a001 567451585/219602*64079^(14/23) 2178308999693743 a001 1836311903/271443*64079^(12/23) 2178308999695928 a001 2971215073/710647*64079^(13/23) 2178308999699612 a001 7778742049/1860498*64079^(13/23) 2178308999700150 a001 20365011074/4870847*64079^(13/23) 2178308999700228 a001 53316291173/12752043*64079^(13/23) 2178308999700240 a001 139583862445/33385282*64079^(13/23) 2178308999700241 a001 365435296162/87403803*64079^(13/23) 2178308999700242 a001 956722026041/228826127*64079^(13/23) 2178308999700242 a001 2504730781961/599074578*64079^(13/23) 2178308999700242 a001 6557470319842/1568397607*64079^(13/23) 2178308999700242 a001 10610209857723/2537720636*64079^(13/23) 2178308999700242 a001 4052739537881/969323029*64079^(13/23) 2178308999700242 a001 1548008755920/370248451*64079^(13/23) 2178308999700242 a001 591286729879/141422324*64079^(13/23) 2178308999700242 a001 225851433717/54018521*64079^(13/23) 2178308999700247 a001 86267571272/20633239*64079^(13/23) 2178308999700277 a001 32951280099/7881196*64079^(13/23) 2178308999700482 a001 12586269025/3010349*64079^(13/23) 2178308999701105 a001 12586269025/24476*9349^(3/19) 2178308999701889 a001 4807526976/1149851*64079^(13/23) 2178308999705196 a001 32951280099/103682*64079^(4/23) 2178308999708445 a001 165580141/167761*64079^(16/23) 2178308999711534 a001 1836311903/439204*64079^(13/23) 2178308999716808 a001 2971215073/271443*64079^(11/23) 2178308999718994 a001 686789568/101521*64079^(12/23) 2178308999720093 a001 163427632704/75025 2178308999722678 a001 12586269025/1860498*64079^(12/23) 2178308999723215 a001 32951280099/4870847*64079^(12/23) 2178308999723294 a001 86267571272/12752043*64079^(12/23) 2178308999723305 a001 32264490531/4769326*64079^(12/23) 2178308999723307 a001 591286729879/87403803*64079^(12/23) 2178308999723307 a001 1548008755920/228826127*64079^(12/23) 2178308999723307 a001 4052739537881/599074578*64079^(12/23) 2178308999723307 a001 1515744265389/224056801*64079^(12/23) 2178308999723307 a001 6557470319842/969323029*64079^(12/23) 2178308999723307 a001 2504730781961/370248451*64079^(12/23) 2178308999723307 a001 956722026041/141422324*64079^(12/23) 2178308999723308 a001 365435296162/54018521*64079^(12/23) 2178308999723312 a001 139583862445/20633239*64079^(12/23) 2178308999723342 a001 53316291173/7881196*64079^(12/23) 2178308999723547 a001 20365011074/3010349*64079^(12/23) 2178308999724955 a001 7778742049/1149851*64079^(12/23) 2178308999728261 a001 53316291173/103682*64079^(3/23) 2178308999731193 a001 139583862445/167761*24476^(2/21) 2178308999731510 a001 267914296/167761*64079^(15/23) 2178308999734599 a001 2971215073/439204*64079^(12/23) 2178308999735536 a001 7465176/51841*167761^(4/5) 2178308999739874 a001 1602508992/90481*64079^(10/23) 2178308999742059 a001 7778742049/710647*64079^(11/23) 2178308999745743 a001 10182505537/930249*64079^(11/23) 2178308999746281 a001 53316291173/4870847*64079^(11/23) 2178308999746359 a001 139583862445/12752043*64079^(11/23) 2178308999746370 a001 182717648081/16692641*64079^(11/23) 2178308999746372 a001 956722026041/87403803*64079^(11/23) 2178308999746372 a001 2504730781961/228826127*64079^(11/23) 2178308999746372 a001 3278735159921/299537289*64079^(11/23) 2178308999746372 a001 10610209857723/969323029*64079^(11/23) 2178308999746372 a001 4052739537881/370248451*64079^(11/23) 2178308999746372 a001 387002188980/35355581*64079^(11/23) 2178308999746373 a001 591286729879/54018521*64079^(11/23) 2178308999746377 a001 7787980473/711491*64079^(11/23) 2178308999746407 a001 21566892818/1970299*64079^(11/23) 2178308999746613 a001 32951280099/3010349*64079^(11/23) 2178308999747567 a001 4976784/13201*39603^(9/11) 2178308999748020 a001 12586269025/1149851*64079^(11/23) 2178308999751017 a001 165580141/103682*167761^(3/5) 2178308999751326 a001 43133785636/51841*64079^(2/23) 2178308999754576 a001 433494437/167761*64079^(14/23) 2178308999757665 a001 1201881744/109801*64079^(11/23) 2178308999762939 a001 7778742049/271443*64079^(9/23) 2178308999765124 a001 12586269025/710647*64079^(10/23) 2178308999766497 a001 1836311903/103682*167761^(2/5) 2178308999767861 a001 121393/103682*7881196^(10/11) 2178308999767889 a001 121393/103682*20633239^(6/7) 2178308999767893 a001 121393/103682*141422324^(10/13) 2178308999767893 a001 121393/103682*2537720636^(2/3) 2178308999767893 a001 15456/90481*45537549124^(2/3) 2178308999767893 a001 15456/90481*(1/2+1/2*5^(1/2))^34 2178308999767893 a001 15456/90481*10749957122^(17/24) 2178308999767893 a001 121393/103682*45537549124^(10/17) 2178308999767893 a001 121393/103682*312119004989^(6/11) 2178308999767893 a001 121393/103682*14662949395604^(10/21) 2178308999767893 a001 121393/103682*(1/2+1/2*5^(1/2))^30 2178308999767893 a001 121393/103682*192900153618^(5/9) 2178308999767893 a001 121393/103682*28143753123^(3/5) 2178308999767893 a001 121393/103682*10749957122^(5/8) 2178308999767893 a001 15456/90481*4106118243^(17/23) 2178308999767893 a001 121393/103682*4106118243^(15/23) 2178308999767893 a001 121393/103682*1568397607^(15/22) 2178308999767893 a001 15456/90481*1568397607^(17/22) 2178308999767893 a001 121393/103682*599074578^(5/7) 2178308999767893 a001 15456/90481*599074578^(17/21) 2178308999767893 a001 121393/103682*228826127^(3/4) 2178308999767893 a001 15456/90481*228826127^(17/20) 2178308999767893 a001 121393/103682*87403803^(15/19) 2178308999767893 a001 15456/90481*87403803^(17/19) 2178308999767895 a001 121393/103682*33385282^(5/6) 2178308999767895 a001 15456/90481*33385282^(17/18) 2178308999767905 a001 121393/103682*12752043^(15/17) 2178308999767979 a001 121393/103682*4870847^(15/16) 2178308999768808 a001 10983760033/620166*64079^(10/23) 2178308999769346 a001 86267571272/4870847*64079^(10/23) 2178308999769424 a001 75283811239/4250681*64079^(10/23) 2178308999769436 a001 591286729879/33385282*64079^(10/23) 2178308999769437 a001 516002918640/29134601*64079^(10/23) 2178308999769438 a001 4052739537881/228826127*64079^(10/23) 2178308999769438 a001 3536736619241/199691526*64079^(10/23) 2178308999769438 a001 6557470319842/370248451*64079^(10/23) 2178308999769438 a001 2504730781961/141422324*64079^(10/23) 2178308999769438 a001 956722026041/54018521*64079^(10/23) 2178308999769443 a001 365435296162/20633239*64079^(10/23) 2178308999769473 a001 139583862445/7881196*64079^(10/23) 2178308999769678 a001 53316291173/3010349*64079^(10/23) 2178308999771085 a001 20365011074/1149851*64079^(10/23) 2178308999774392 a001 139583862445/103682*64079^(1/23) 2178308999777641 a001 701408733/167761*64079^(13/23) 2178308999780730 a001 7778742049/439204*64079^(10/23) 2178308999781977 a001 10182505537/51841*167761^(1/5) 2178308999786005 a001 12586269025/271443*64079^(8/23) 2178308999786170 a001 213929548560/98209 2178308999787328 a001 46347/2206*439204^(8/9) 2178308999788190 a001 20365011074/710647*64079^(9/23) 2178308999788679 a001 9227465/103682*439204^(7/9) 2178308999789929 a001 39088169/103682*439204^(2/3) 2178308999791184 a001 165580141/103682*439204^(5/9) 2178308999791874 a001 53316291173/1860498*64079^(9/23) 2178308999792411 a001 139583862445/4870847*64079^(9/23) 2178308999792438 a001 701408733/103682*439204^(4/9) 2178308999792490 a001 365435296162/12752043*64079^(9/23) 2178308999792501 a001 956722026041/33385282*64079^(9/23) 2178308999792503 a001 2504730781961/87403803*64079^(9/23) 2178308999792503 a001 6557470319842/228826127*64079^(9/23) 2178308999792503 a001 10610209857723/370248451*64079^(9/23) 2178308999792503 a001 4052739537881/141422324*64079^(9/23) 2178308999792504 a001 1548008755920/54018521*64079^(9/23) 2178308999792508 a001 591286729879/20633239*64079^(9/23) 2178308999792538 a001 225851433717/7881196*64079^(9/23) 2178308999792743 a001 86267571272/3010349*64079^(9/23) 2178308999793140 a001 317811/103682*20633239^(4/5) 2178308999793144 a001 6624/101521*141422324^(12/13) 2178308999793144 a001 6624/101521*2537720636^(4/5) 2178308999793144 a001 6624/101521*45537549124^(12/17) 2178308999793144 a001 6624/101521*14662949395604^(4/7) 2178308999793144 a001 6624/101521*(1/2+1/2*5^(1/2))^36 2178308999793144 a001 6624/101521*505019158607^(9/14) 2178308999793144 a001 6624/101521*192900153618^(2/3) 2178308999793144 a001 6624/101521*73681302247^(9/13) 2178308999793144 a001 6624/101521*10749957122^(3/4) 2178308999793144 a001 317811/103682*17393796001^(4/7) 2178308999793144 a001 317811/103682*14662949395604^(4/9) 2178308999793144 a001 317811/103682*(1/2+1/2*5^(1/2))^28 2178308999793144 a001 317811/103682*505019158607^(1/2) 2178308999793144 a001 317811/103682*73681302247^(7/13) 2178308999793144 a001 317811/103682*10749957122^(7/12) 2178308999793144 a001 317811/103682*4106118243^(14/23) 2178308999793144 a001 6624/101521*4106118243^(18/23) 2178308999793144 a001 317811/103682*1568397607^(7/11) 2178308999793144 a001 6624/101521*1568397607^(9/11) 2178308999793144 a001 317811/103682*599074578^(2/3) 2178308999793144 a001 6624/101521*599074578^(6/7) 2178308999793144 a001 317811/103682*228826127^(7/10) 2178308999793144 a001 6624/101521*228826127^(9/10) 2178308999793144 a001 317811/103682*87403803^(14/19) 2178308999793144 a001 6624/101521*87403803^(18/19) 2178308999793145 a001 317811/103682*33385282^(7/9) 2178308999793155 a001 317811/103682*12752043^(14/17) 2178308999793224 a001 317811/103682*4870847^(7/8) 2178308999793693 a001 2971215073/103682*439204^(1/3) 2178308999793731 a001 317811/103682*1860498^(14/15) 2178308999794151 a001 32951280099/1149851*64079^(9/23) 2178308999794948 a001 12586269025/103682*439204^(2/9) 2178308999795810 a001 1120149658656/514229 2178308999796202 a001 53316291173/103682*439204^(1/9) 2178308999796828 a001 416020/51841*141422324^(2/3) 2178308999796828 a001 2576/103361*817138163596^(2/3) 2178308999796828 a001 2576/103361*(1/2+1/2*5^(1/2))^38 2178308999796828 a001 2576/103361*10749957122^(19/24) 2178308999796828 a001 416020/51841*(1/2+1/2*5^(1/2))^26 2178308999796828 a001 416020/51841*73681302247^(1/2) 2178308999796828 a001 416020/51841*10749957122^(13/24) 2178308999796828 a001 416020/51841*4106118243^(13/23) 2178308999796828 a001 2576/103361*4106118243^(19/23) 2178308999796828 a001 416020/51841*1568397607^(13/22) 2178308999796828 a001 2576/103361*1568397607^(19/22) 2178308999796828 a001 416020/51841*599074578^(13/21) 2178308999796828 a001 2576/103361*599074578^(19/21) 2178308999796828 a001 416020/51841*228826127^(13/20) 2178308999796828 a001 2576/103361*228826127^(19/20) 2178308999796828 a001 416020/51841*87403803^(13/19) 2178308999796829 a001 416020/51841*33385282^(13/18) 2178308999796838 a001 416020/51841*12752043^(13/17) 2178308999796902 a001 416020/51841*4870847^(13/16) 2178308999797217 a001 2932589878848/1346269 2178308999797340 a001 46347/2206*7881196^(8/11) 2178308999797365 a001 46347/2206*141422324^(8/13) 2178308999797365 a001 46368/4870847*2537720636^(8/9) 2178308999797365 a001 46347/2206*2537720636^(8/15) 2178308999797365 a001 46368/4870847*312119004989^(8/11) 2178308999797365 a001 46368/4870847*(1/2+1/2*5^(1/2))^40 2178308999797365 a001 46368/4870847*23725150497407^(5/8) 2178308999797365 a001 46368/4870847*73681302247^(10/13) 2178308999797365 a001 46368/4870847*28143753123^(4/5) 2178308999797365 a001 46368/4870847*10749957122^(5/6) 2178308999797365 a001 46347/2206*45537549124^(8/17) 2178308999797365 a001 46347/2206*14662949395604^(8/21) 2178308999797365 a001 46347/2206*(1/2+1/2*5^(1/2))^24 2178308999797365 a001 46347/2206*192900153618^(4/9) 2178308999797365 a001 46347/2206*73681302247^(6/13) 2178308999797365 a001 46347/2206*10749957122^(1/2) 2178308999797365 a001 46347/2206*4106118243^(12/23) 2178308999797365 a001 46368/4870847*4106118243^(20/23) 2178308999797365 a001 46347/2206*1568397607^(6/11) 2178308999797365 a001 46368/4870847*1568397607^(10/11) 2178308999797365 a001 46347/2206*599074578^(4/7) 2178308999797365 a001 46368/4870847*599074578^(20/21) 2178308999797365 a001 46347/2206*228826127^(3/5) 2178308999797365 a001 46347/2206*87403803^(12/19) 2178308999797367 a001 46347/2206*33385282^(2/3) 2178308999797373 a001 416020/51841*1860498^(13/15) 2178308999797375 a001 46347/2206*12752043^(12/17) 2178308999797379 a001 365435296162/271443*24476^(1/21) 2178308999797420 a001 5702887/103682*7881196^(2/3) 2178308999797422 a001 3838809988944/1762289 2178308999797434 a001 46347/2206*4870847^(3/4) 2178308999797438 a001 39088169/103682*7881196^(6/11) 2178308999797440 a001 9227465/103682*7881196^(7/11) 2178308999797441 a001 165580141/103682*7881196^(5/11) 2178308999797444 a001 15456/4250681*2537720636^(14/15) 2178308999797444 a001 15456/4250681*17393796001^(6/7) 2178308999797444 a001 15456/4250681*45537549124^(14/17) 2178308999797444 a001 15456/4250681*14662949395604^(2/3) 2178308999797444 a001 15456/4250681*(1/2+1/2*5^(1/2))^42 2178308999797444 a001 15456/4250681*505019158607^(3/4) 2178308999797444 a001 15456/4250681*192900153618^(7/9) 2178308999797444 a001 15456/4250681*10749957122^(7/8) 2178308999797444 a001 5702887/103682*312119004989^(2/5) 2178308999797444 a001 5702887/103682*(1/2+1/2*5^(1/2))^22 2178308999797444 a001 5702887/103682*10749957122^(11/24) 2178308999797444 a001 5702887/103682*4106118243^(11/23) 2178308999797444 a001 15456/4250681*4106118243^(21/23) 2178308999797444 a001 5702887/103682*1568397607^(1/2) 2178308999797444 a001 15456/4250681*1568397607^(21/22) 2178308999797444 a001 5702887/103682*599074578^(11/21) 2178308999797444 a001 5702887/103682*228826127^(11/20) 2178308999797444 a001 5702887/103682*87403803^(11/19) 2178308999797444 a001 701408733/103682*7881196^(4/11) 2178308999797445 a001 5702887/103682*33385282^(11/18) 2178308999797445 a001 567451585/51841*7881196^(1/3) 2178308999797448 a001 2971215073/103682*7881196^(3/11) 2178308999797451 a001 12586269025/103682*7881196^(2/11) 2178308999797452 a001 20100270054816/9227465 2178308999797452 a001 7465176/51841*20633239^(4/7) 2178308999797452 a001 5702887/103682*12752043^(11/17) 2178308999797454 a001 53316291173/103682*7881196^(1/11) 2178308999797455 a001 165580141/103682*20633239^(3/7) 2178308999797455 a001 133957148/51841*20633239^(2/5) 2178308999797455 a001 7465176/51841*2537720636^(4/9) 2178308999797455 a001 144/103681*312119004989^(4/5) 2178308999797455 a001 144/103681*(1/2+1/2*5^(1/2))^44 2178308999797455 a001 144/103681*23725150497407^(11/16) 2178308999797455 a001 144/103681*73681302247^(11/13) 2178308999797455 a001 144/103681*10749957122^(11/12) 2178308999797455 a001 7465176/51841*(1/2+1/2*5^(1/2))^20 2178308999797455 a001 7465176/51841*23725150497407^(5/16) 2178308999797455 a001 7465176/51841*505019158607^(5/14) 2178308999797455 a001 7465176/51841*73681302247^(5/13) 2178308999797455 a001 7465176/51841*28143753123^(2/5) 2178308999797455 a001 7465176/51841*10749957122^(5/12) 2178308999797455 a001 7465176/51841*4106118243^(10/23) 2178308999797455 a001 144/103681*4106118243^(22/23) 2178308999797455 a001 7465176/51841*1568397607^(5/11) 2178308999797455 a001 7465176/51841*599074578^(10/21) 2178308999797455 a001 7465176/51841*228826127^(1/2) 2178308999797455 a001 7465176/51841*87403803^(10/19) 2178308999797456 a001 1836311903/103682*20633239^(2/7) 2178308999797456 a001 7778742049/103682*20633239^(1/5) 2178308999797456 a001 7465176/51841*33385282^(5/9) 2178308999797456 a001 52623190186560/24157817 2178308999797456 a001 10182505537/51841*20633239^(1/7) 2178308999797457 a001 39088169/103682*141422324^(6/13) 2178308999797457 a001 39088169/103682*2537720636^(2/5) 2178308999797457 a001 15456/29134601*10749957122^(23/24) 2178308999797457 a001 39088169/103682*45537549124^(6/17) 2178308999797457 a001 39088169/103682*14662949395604^(2/7) 2178308999797457 a001 39088169/103682*(1/2+1/2*5^(1/2))^18 2178308999797457 a001 39088169/103682*192900153618^(1/3) 2178308999797457 a001 39088169/103682*10749957122^(3/8) 2178308999797457 a001 39088169/103682*4106118243^(9/23) 2178308999797457 a001 39088169/103682*1568397607^(9/22) 2178308999797457 a001 39088169/103682*599074578^(3/7) 2178308999797457 a001 39088169/103682*228826127^(9/20) 2178308999797457 a001 39088169/103682*87403803^(9/19) 2178308999797457 a001 68884650252432/31622993 2178308999797457 a001 46368/228826127*45537549124^(16/17) 2178308999797457 a001 46368/228826127*14662949395604^(16/21) 2178308999797457 a001 46368/228826127*192900153618^(8/9) 2178308999797457 a001 46368/228826127*73681302247^(12/13) 2178308999797457 a001 102334155/103682*(1/2+1/2*5^(1/2))^16 2178308999797457 a001 102334155/103682*23725150497407^(1/4) 2178308999797457 a001 102334155/103682*73681302247^(4/13) 2178308999797457 a001 102334155/103682*10749957122^(1/3) 2178308999797457 a001 102334155/103682*4106118243^(8/23) 2178308999797457 a001 102334155/103682*1568397607^(4/11) 2178308999797457 a001 102334155/103682*599074578^(8/21) 2178308999797457 a001 701408733/103682*141422324^(4/13) 2178308999797457 a001 433494437/103682*141422324^(1/3) 2178308999797457 a001 165580141/103682*141422324^(5/13) 2178308999797457 a001 2971215073/103682*141422324^(3/13) 2178308999797457 a001 102334155/103682*228826127^(2/5) 2178308999797457 a001 12586269025/103682*141422324^(2/13) 2178308999797457 a001 360684711328032/165580141 2178308999797457 a001 53316291173/103682*141422324^(1/13) 2178308999797457 a001 2576/33281921*312119004989^(10/11) 2178308999797457 a001 2576/33281921*3461452808002^(5/6) 2178308999797457 a001 133957148/51841*17393796001^(2/7) 2178308999797457 a001 133957148/51841*14662949395604^(2/9) 2178308999797457 a001 133957148/51841*(1/2+1/2*5^(1/2))^14 2178308999797457 a001 133957148/51841*10749957122^(7/24) 2178308999797457 a001 133957148/51841*4106118243^(7/23) 2178308999797457 a001 133957148/51841*1568397607^(7/22) 2178308999797457 a001 133957148/51841*599074578^(1/3) 2178308999797457 a001 944284833479232/433494437 2178308999797457 a001 701408733/103682*2537720636^(4/15) 2178308999797457 a001 6624/224056801*23725150497407^(13/16) 2178308999797457 a001 6624/224056801*505019158607^(13/14) 2178308999797457 a001 701408733/103682*45537549124^(4/17) 2178308999797457 a001 701408733/103682*817138163596^(4/19) 2178308999797457 a001 701408733/103682*14662949395604^(4/21) 2178308999797457 a001 701408733/103682*(1/2+1/2*5^(1/2))^12 2178308999797457 a001 701408733/103682*192900153618^(2/9) 2178308999797457 a001 701408733/103682*73681302247^(3/13) 2178308999797457 a001 701408733/103682*10749957122^(1/4) 2178308999797457 a001 701408733/103682*4106118243^(6/23) 2178308999797457 a001 701408733/103682*1568397607^(3/11) 2178308999797457 a001 1236084894554832/567451585 2178308999797457 a001 1836311903/103682*2537720636^(2/9) 2178308999797457 a001 15456/1368706081*14662949395604^(6/7) 2178308999797457 a001 1836311903/103682*312119004989^(2/11) 2178308999797457 a001 1836311903/103682*(1/2+1/2*5^(1/2))^10 2178308999797457 a001 1836311903/103682*28143753123^(1/5) 2178308999797457 a001 1836311903/103682*10749957122^(5/24) 2178308999797457 a001 1836311903/103682*4106118243^(5/23) 2178308999797457 a001 6472224533849760/2971215073 2178308999797457 a001 12586269025/103682*2537720636^(2/15) 2178308999797457 a001 23184/5374978561*14662949395604^(8/9) 2178308999797457 a001 10182505537/51841*2537720636^(1/9) 2178308999797457 a001 16944503812439616/7778742049 2178308999797457 a001 53316291173/103682*2537720636^(1/15) 2178308999797457 a001 22180643451734544/10182505537 2178308999797457 a001 6624/10525900321*14662949395604^(20/21) 2178308999797457 a001 116139356897967648/53316291173 2178308999797457 a001 304056783790433856/139583862445 2178308999797457 a001 46368*23725150497407^(1/8) 2178308999797457 a001 3346763337978912/1536404311 2178308999797457 a001 23489678361558276/10783446409 2178308999797457 a001 46368*73681302247^(2/13) 2178308999797457 a001 23926023331499520/10983760033 2178308999797457 a001 2971215073/103682*2537720636^(1/5) 2178308999797457 a001 27416783091029472/12586269025 2178308999797457 a001 46368*10749957122^(1/6) 2178308999797457 a001 46368/17393796001*14662949395604^(19/21) 2178308999797457 a001 12586269025/103682*45537549124^(2/17) 2178308999797457 a001 12586269025/103682*14662949395604^(2/21) 2178308999797457 a001 12586269025/103682*(1/2+1/2*5^(1/2))^6 2178308999797457 a001 32951280099/103682*(1/2+1/2*5^(1/2))^4 2178308999797457 a001 12586269025/103682*10749957122^(1/8) 2178308999797457 a001 32951280099/103682*73681302247^(1/13) 2178308999797457 a001 43133785636/51841*(1/2+1/2*5^(1/2))^2 2178308999797457 a001 225851433717/103682 2178308999797457 a001 53316291173/103682*45537549124^(1/17) 2178308999797457 a001 53316291173/103682*14662949395604^(1/21) 2178308999797457 a001 53316291173/103682*(1/2+1/2*5^(1/2))^3 2178308999797457 a001 43133785636/51841*10749957122^(1/24) 2178308999797457 a001 10182505537/51841*312119004989^(1/11) 2178308999797457 a001 10182505537/51841*(1/2+1/2*5^(1/2))^5 2178308999797457 a001 32951280099/103682*10749957122^(1/12) 2178308999797457 a001 10182505537/51841*28143753123^(1/10) 2178308999797457 a001 53316291173/103682*10749957122^(1/16) 2178308999797457 a001 46368*4106118243^(4/23) 2178308999797457 a001 43133785636/51841*4106118243^(1/23) 2178308999797457 a001 7778742049/103682*17393796001^(1/7) 2178308999797457 a001 7778742049/103682*14662949395604^(1/9) 2178308999797457 a001 7778742049/103682*(1/2+1/2*5^(1/2))^7 2178308999797457 a001 32951280099/103682*4106118243^(2/23) 2178308999797457 a001 12586269025/103682*4106118243^(3/23) 2178308999797457 a001 46368/6643838879*3461452808002^(11/12) 2178308999797457 a001 43133785636/51841*1568397607^(1/22) 2178308999797457 a001 2971215073/103682*45537549124^(3/17) 2178308999797457 a001 2971215073/103682*817138163596^(3/19) 2178308999797457 a001 2971215073/103682*14662949395604^(1/7) 2178308999797457 a001 2971215073/103682*(1/2+1/2*5^(1/2))^9 2178308999797457 a001 2971215073/103682*192900153618^(1/6) 2178308999797457 a001 2971215073/103682*10749957122^(3/16) 2178308999797457 a001 1836311903/103682*1568397607^(5/22) 2178308999797457 a001 32951280099/103682*1568397607^(1/11) 2178308999797457 a001 4000054744740096/1836311903 2178308999797457 a001 12586269025/103682*1568397607^(3/22) 2178308999797457 a001 46368*1568397607^(2/11) 2178308999797457 a001 43133785636/51841*599074578^(1/21) 2178308999797457 a001 567451585/51841*312119004989^(1/5) 2178308999797457 a001 567451585/51841*(1/2+1/2*5^(1/2))^11 2178308999797457 a001 53316291173/103682*599074578^(1/14) 2178308999797457 a001 567451585/51841*1568397607^(1/4) 2178308999797457 a001 32951280099/103682*599074578^(2/21) 2178308999797457 a001 701408733/103682*599074578^(2/7) 2178308999797457 a001 12586269025/103682*599074578^(1/7) 2178308999797457 a001 509294985210144/233802911 2178308999797457 a001 7778742049/103682*599074578^(1/6) 2178308999797457 a001 46368*599074578^(4/21) 2178308999797457 a001 1836311903/103682*599074578^(5/21) 2178308999797457 a001 2971215073/103682*599074578^(3/14) 2178308999797457 a001 43133785636/51841*228826127^(1/20) 2178308999797457 a001 46368/969323029*817138163596^(17/19) 2178308999797457 a001 46368/969323029*14662949395604^(17/21) 2178308999797457 a001 46368/969323029*192900153618^(17/18) 2178308999797457 a001 433494437/103682*(1/2+1/2*5^(1/2))^13 2178308999797457 a001 433494437/103682*73681302247^(1/4) 2178308999797457 a001 32951280099/103682*228826127^(1/10) 2178308999797457 a001 10182505537/51841*228826127^(1/8) 2178308999797457 a001 72950015268900/33489287 2178308999797457 a001 12586269025/103682*228826127^(3/20) 2178308999797457 a001 46368*228826127^(1/5) 2178308999797457 a001 133957148/51841*228826127^(7/20) 2178308999797457 a001 1836311903/103682*228826127^(1/4) 2178308999797457 a001 701408733/103682*228826127^(3/10) 2178308999797457 a001 43133785636/51841*87403803^(1/19) 2178308999797457 a001 165580141/103682*2537720636^(1/3) 2178308999797457 a001 46368/370248451*14662949395604^(7/9) 2178308999797457 a001 46368/370248451*505019158607^(7/8) 2178308999797457 a001 165580141/103682*45537549124^(5/17) 2178308999797457 a001 165580141/103682*312119004989^(3/11) 2178308999797457 a001 165580141/103682*14662949395604^(5/21) 2178308999797457 a001 165580141/103682*(1/2+1/2*5^(1/2))^15 2178308999797457 a001 165580141/103682*192900153618^(5/18) 2178308999797457 a001 165580141/103682*28143753123^(3/10) 2178308999797457 a001 165580141/103682*10749957122^(5/16) 2178308999797457 a001 165580141/103682*599074578^(5/14) 2178308999797457 a001 32951280099/103682*87403803^(2/19) 2178308999797457 a001 165580141/103682*228826127^(3/8) 2178308999797457 a001 10615019563008/4873055 2178308999797457 a001 12586269025/103682*87403803^(3/19) 2178308999797457 a001 46368*87403803^(4/19) 2178308999797457 a001 1836311903/103682*87403803^(5/19) 2178308999797457 a001 102334155/103682*87403803^(8/19) 2178308999797457 a001 701408733/103682*87403803^(6/19) 2178308999797457 a001 133957148/51841*87403803^(7/19) 2178308999797457 a001 43133785636/51841*33385282^(1/18) 2178308999797457 a001 31622993/51841*45537549124^(1/3) 2178308999797457 a001 31622993/51841*(1/2+1/2*5^(1/2))^17 2178308999797457 a001 53316291173/103682*33385282^(1/12) 2178308999797457 a001 32951280099/103682*33385282^(1/9) 2178308999797457 a001 85146110318304/39088169 2178308999797457 a001 12586269025/103682*33385282^(1/6) 2178308999797458 a001 46368*33385282^(2/9) 2178308999797458 a001 2971215073/103682*33385282^(1/4) 2178308999797458 a001 1836311903/103682*33385282^(5/18) 2178308999797458 a001 701408733/103682*33385282^(1/3) 2178308999797458 a001 39088169/103682*33385282^(1/2) 2178308999797458 a001 46368/54018521*45537549124^(15/17) 2178308999797458 a001 46368/54018521*312119004989^(9/11) 2178308999797458 a001 46368/54018521*14662949395604^(5/7) 2178308999797458 a001 46368/54018521*192900153618^(5/6) 2178308999797458 a001 46368/54018521*28143753123^(9/10) 2178308999797458 a001 46368/54018521*10749957122^(15/16) 2178308999797458 a001 24157817/103682*817138163596^(1/3) 2178308999797458 a001 24157817/103682*(1/2+1/2*5^(1/2))^19 2178308999797458 a001 133957148/51841*33385282^(7/18) 2178308999797458 a001 43133785636/51841*12752043^(1/17) 2178308999797458 a001 102334155/103682*33385282^(4/9) 2178308999797458 a001 165580141/103682*33385282^(5/12) 2178308999797458 a001 24157817/103682*87403803^(1/2) 2178308999797459 a001 32951280099/103682*12752043^(2/17) 2178308999797459 a001 75284537342/34561 2178308999797459 a001 9227465/103682*20633239^(3/5) 2178308999797459 a001 12586269025/103682*12752043^(3/17) 2178308999797460 a001 46368*12752043^(4/17) 2178308999797461 a001 1836311903/103682*12752043^(5/17) 2178308999797462 a001 701408733/103682*12752043^(6/17) 2178308999797462 a001 9227465/103682*141422324^(7/13) 2178308999797462 a001 9227465/103682*2537720636^(7/15) 2178308999797462 a001 46368/20633239*(1/2+1/2*5^(1/2))^43 2178308999797462 a001 9227465/103682*17393796001^(3/7) 2178308999797462 a001 9227465/103682*45537549124^(7/17) 2178308999797462 a001 9227465/103682*14662949395604^(1/3) 2178308999797462 a001 9227465/103682*(1/2+1/2*5^(1/2))^21 2178308999797462 a001 9227465/103682*192900153618^(7/18) 2178308999797462 a001 9227465/103682*10749957122^(7/16) 2178308999797462 a001 9227465/103682*599074578^(1/2) 2178308999797463 a001 133957148/51841*12752043^(7/17) 2178308999797463 a001 43133785636/51841*4870847^(1/16) 2178308999797463 a001 7465176/51841*12752043^(10/17) 2178308999797463 a001 9227465/103682*33385282^(7/12) 2178308999797463 a001 102334155/103682*12752043^(8/17) 2178308999797464 a001 39088169/103682*12752043^(9/17) 2178308999797464 a001 31622993/51841*12752043^(1/2) 2178308999797469 a001 32951280099/103682*4870847^(1/8) 2178308999797471 a001 12422650076928/5702887 2178308999797474 a001 12586269025/103682*4870847^(3/16) 2178308999797480 a001 46368*4870847^(1/4) 2178308999797486 a001 1836311903/103682*4870847^(5/16) 2178308999797492 a001 701408733/103682*4870847^(3/8) 2178308999797492 a001 11592/1970299*(1/2+1/2*5^(1/2))^41 2178308999797492 a001 1762289/51841*(1/2+1/2*5^(1/2))^23 2178308999797492 a001 1762289/51841*4106118243^(1/2) 2178308999797497 a001 133957148/51841*4870847^(7/16) 2178308999797499 a001 43133785636/51841*1860498^(1/15) 2178308999797503 a001 102334155/103682*4870847^(1/2) 2178308999797507 a001 5702887/103682*4870847^(11/16) 2178308999797508 a001 39088169/103682*4870847^(9/16) 2178308999797513 a001 7465176/51841*4870847^(5/8) 2178308999797520 a001 53316291173/103682*1860498^(1/10) 2178308999797541 a001 32951280099/103682*1860498^(2/15) 2178308999797549 a001 225953814240/103729 2178308999797562 a001 10182505537/51841*1860498^(1/6) 2178308999797583 a001 12586269025/103682*1860498^(1/5) 2178308999797625 a001 46368*1860498^(4/15) 2178308999797646 a001 2971215073/103682*1860498^(3/10) 2178308999797667 a001 1836311903/103682*1860498^(1/3) 2178308999797694 a001 1346269/103682*20633239^(5/7) 2178308999797697 a001 46368/3010349*2537720636^(13/15) 2178308999797697 a001 1346269/103682*2537720636^(5/9) 2178308999797697 a001 46368/3010349*45537549124^(13/17) 2178308999797697 a001 46368/3010349*14662949395604^(13/21) 2178308999797697 a001 46368/3010349*(1/2+1/2*5^(1/2))^39 2178308999797697 a001 46368/3010349*192900153618^(13/18) 2178308999797697 a001 46368/3010349*73681302247^(3/4) 2178308999797697 a001 46368/3010349*10749957122^(13/16) 2178308999797697 a001 1346269/103682*312119004989^(5/11) 2178308999797697 a001 1346269/103682*(1/2+1/2*5^(1/2))^25 2178308999797697 a001 1346269/103682*3461452808002^(5/12) 2178308999797697 a001 1346269/103682*28143753123^(1/2) 2178308999797697 a001 46368/3010349*599074578^(13/14) 2178308999797698 a001 1346269/103682*228826127^(5/8) 2178308999797709 a001 701408733/103682*1860498^(2/5) 2178308999797751 a001 133957148/51841*1860498^(7/15) 2178308999797765 a001 43133785636/51841*710647^(1/14) 2178308999797772 a001 165580141/103682*1860498^(1/2) 2178308999797793 a001 102334155/103682*1860498^(8/15) 2178308999797834 a001 39088169/103682*1860498^(3/5) 2178308999797869 a001 46347/2206*1860498^(4/5) 2178308999797875 a001 7465176/51841*1860498^(2/3) 2178308999797903 a001 9227465/103682*1860498^(7/10) 2178308999797905 a001 5702887/103682*1860498^(11/15) 2178308999798073 a001 32951280099/103682*710647^(1/7) 2178308999798086 a001 226555027524/104005 2178308999798222 a001 1346269/103682*1860498^(5/6) 2178308999798381 a001 12586269025/103682*710647^(3/14) 2178308999798535 a001 7778742049/103682*710647^(1/4) 2178308999798689 a001 46368*710647^(2/7) 2178308999798998 a001 1836311903/103682*710647^(5/14) 2178308999799076 a001 514229/103682*7881196^(9/11) 2178308999799105 a001 514229/103682*141422324^(9/13) 2178308999799105 a001 514229/103682*2537720636^(3/5) 2178308999799105 a001 46368/1149851*(1/2+1/2*5^(1/2))^37 2178308999799105 a001 514229/103682*45537549124^(9/17) 2178308999799105 a001 514229/103682*14662949395604^(3/7) 2178308999799105 a001 514229/103682*(1/2+1/2*5^(1/2))^27 2178308999799105 a001 514229/103682*192900153618^(1/2) 2178308999799105 a001 514229/103682*10749957122^(9/16) 2178308999799105 a001 514229/103682*599074578^(9/14) 2178308999799106 a001 514229/103682*33385282^(3/4) 2178308999799306 a001 701408733/103682*710647^(3/7) 2178308999799614 a001 133957148/51841*710647^(1/2) 2178308999799671 a001 514229/103682*1860498^(9/10) 2178308999799731 a001 43133785636/51841*271443^(1/13) 2178308999799922 a001 102334155/103682*710647^(4/7) 2178308999800230 a001 39088169/103682*710647^(9/14) 2178308999800536 a001 7465176/51841*710647^(5/7) 2178308999800697 a001 9227465/103682*710647^(3/4) 2178308999800706 a001 1134903170/167761*64079^(12/23) 2178308999800833 a001 5702887/103682*710647^(11/14) 2178308999800833 a001 416020/51841*710647^(13/14) 2178308999801062 a001 46347/2206*710647^(6/7) 2178308999801768 a001 230763520512/105937 2178308999802005 a001 32951280099/103682*271443^(2/13) 2178308999803796 a001 12586269025/439204*64079^(9/23) 2178308999804280 a001 12586269025/103682*271443^(3/13) 2178308999805900 a001 139583862445/103682*103682^(1/24) 2178308999806554 a001 46368*271443^(4/13) 2178308999808750 a001 11592/109801*2537720636^(7/9) 2178308999808750 a001 11592/109801*17393796001^(5/7) 2178308999808750 a001 11592/109801*312119004989^(7/11) 2178308999808750 a001 11592/109801*14662949395604^(5/9) 2178308999808750 a001 11592/109801*(1/2+1/2*5^(1/2))^35 2178308999808750 a001 11592/109801*505019158607^(5/8) 2178308999808750 a001 11592/109801*28143753123^(7/10) 2178308999808750 a001 98209/51841*(1/2+1/2*5^(1/2))^29 2178308999808750 a001 98209/51841*1322157322203^(1/2) 2178308999808750 a001 11592/109801*599074578^(5/6) 2178308999808750 a001 11592/109801*228826127^(7/8) 2178308999808828 a001 1836311903/103682*271443^(5/13) 2178308999809070 a001 20365011074/271443*64079^(7/23) 2178308999810704 a001 9227465/39603*39603^(19/22) 2178308999811102 a001 701408733/103682*271443^(6/13) 2178308999811255 a001 32951280099/710647*64079^(8/23) 2178308999812239 a001 433494437/103682*271443^(1/2) 2178308999813376 a001 133957148/51841*271443^(7/13) 2178308999814343 a001 43133785636/51841*103682^(1/12) 2178308999814939 a001 43133785636/930249*64079^(8/23) 2178308999815477 a001 225851433717/4870847*64079^(8/23) 2178308999815555 a001 591286729879/12752043*64079^(8/23) 2178308999815566 a001 774004377960/16692641*64079^(8/23) 2178308999815568 a001 4052739537881/87403803*64079^(8/23) 2178308999815568 a001 225749145909/4868641*64079^(8/23) 2178308999815569 a001 3278735159921/70711162*64079^(8/23) 2178308999815569 a001 2504730781961/54018521*64079^(8/23) 2178308999815574 a001 956722026041/20633239*64079^(8/23) 2178308999815604 a001 182717648081/3940598*64079^(8/23) 2178308999815650 a001 102334155/103682*271443^(8/13) 2178308999815809 a001 139583862445/3010349*64079^(8/23) 2178308999817216 a001 53316291173/1149851*64079^(8/23) 2178308999817924 a001 39088169/103682*271443^(9/13) 2178308999820197 a001 7465176/51841*271443^(10/13) 2178308999822459 a001 5702887/103682*271443^(11/13) 2178308999822629 a001 956722026041/710647*24476^(1/21) 2178308999822786 a001 53316291173/103682*103682^(1/8) 2178308999823772 a001 1836311903/167761*64079^(11/23) 2178308999824655 a001 46347/2206*271443^(12/13) 2178308999826313 a001 2504730781961/1860498*24476^(1/21) 2178308999826851 a001 6557470319842/4870847*24476^(1/21) 2178308999826861 a001 10182505537/219602*64079^(8/23) 2178308999826978 a001 10610209857723/7881196*24476^(1/21) 2178308999827008 a001 264431464416/121393 2178308999827183 a001 1346269*24476^(1/21) 2178308999828590 a001 1548008755920/1149851*24476^(1/21) 2178308999831229 a001 32951280099/103682*103682^(1/6) 2178308999832135 a001 121393*64079^(6/23) 2178308999834320 a001 53316291173/710647*64079^(7/23) 2178308999838000 a001 20365011074/64079*24476^(4/21) 2178308999838005 a001 139583862445/1860498*64079^(7/23) 2178308999838235 a001 591286729879/439204*24476^(1/21) 2178308999838542 a001 365435296162/4870847*64079^(7/23) 2178308999838620 a001 956722026041/12752043*64079^(7/23) 2178308999838632 a001 2504730781961/33385282*64079^(7/23) 2178308999838634 a001 6557470319842/87403803*64079^(7/23) 2178308999838634 a001 10610209857723/141422324*64079^(7/23) 2178308999838635 a001 4052739537881/54018521*64079^(7/23) 2178308999838639 a001 140728068720/1875749*64079^(7/23) 2178308999838669 a001 591286729879/7881196*64079^(7/23) 2178308999838874 a001 225851433717/3010349*64079^(7/23) 2178308999839673 a001 10182505537/51841*103682^(5/24) 2178308999840281 a001 86267571272/1149851*64079^(7/23) 2178308999846837 a001 2971215073/167761*64079^(10/23) 2178308999848116 a001 12586269025/103682*103682^(1/4) 2178308999849926 a001 32951280099/439204*64079^(7/23) 2178308999855201 a001 53316291173/271443*64079^(5/23) 2178308999856559 a001 7778742049/103682*103682^(7/24) 2178308999857386 a001 86267571272/710647*64079^(6/23) 2178308999860588 a001 139583862445/103682*39603^(1/22) 2178308999861070 a001 75283811239/620166*64079^(6/23) 2178308999861607 a001 591286729879/4870847*64079^(6/23) 2178308999861686 a001 516002918640/4250681*64079^(6/23) 2178308999861697 a001 4052739537881/33385282*64079^(6/23) 2178308999861699 a001 3536736619241/29134601*64079^(6/23) 2178308999861700 a001 6557470319842/54018521*64079^(6/23) 2178308999861704 a001 2504730781961/20633239*64079^(6/23) 2178308999861734 a001 956722026041/7881196*64079^(6/23) 2178308999861940 a001 365435296162/3010349*64079^(6/23) 2178308999863347 a001 139583862445/1149851*64079^(6/23) 2178308999865002 a001 46368*103682^(1/3) 2178308999869902 a001 4807526976/167761*64079^(9/23) 2178308999872992 a001 53316291173/439204*64079^(6/23) 2178308999873445 a001 2971215073/103682*103682^(3/8) 2178308999873817 a001 5702887/39603*39603^(10/11) 2178308999874856 a001 46368/167761*141422324^(11/13) 2178308999874856 a001 46368/167761*2537720636^(11/15) 2178308999874856 a001 46368/167761*45537549124^(11/17) 2178308999874856 a001 46368/167761*312119004989^(3/5) 2178308999874856 a001 46368/167761*14662949395604^(11/21) 2178308999874856 a001 46368/167761*(1/2+1/2*5^(1/2))^33 2178308999874856 a001 46368/167761*192900153618^(11/18) 2178308999874856 a001 46368/167761*10749957122^(11/16) 2178308999874856 a001 75025/103682*(1/2+1/2*5^(1/2))^31 2178308999874856 a001 75025/103682*9062201101803^(1/2) 2178308999874856 a001 46368/167761*1568397607^(3/4) 2178308999874856 a001 46368/167761*599074578^(11/14) 2178308999874858 a001 46368/167761*33385282^(11/12) 2178308999878266 a001 86267571272/271443*64079^(4/23) 2178308999880451 a001 139583862445/710647*64079^(5/23) 2178308999881888 a001 1836311903/103682*103682^(5/12) 2178308999884135 a001 182717648081/930249*64079^(5/23) 2178308999884673 a001 956722026041/4870847*64079^(5/23) 2178308999884751 a001 2504730781961/12752043*64079^(5/23) 2178308999884763 a001 3278735159921/16692641*64079^(5/23) 2178308999884765 a001 10610209857723/54018521*64079^(5/23) 2178308999884770 a001 4052739537881/20633239*64079^(5/23) 2178308999884800 a001 387002188980/1970299*64079^(5/23) 2178308999885005 a001 591286729879/3010349*64079^(5/23) 2178308999886412 a001 225851433717/1149851*64079^(5/23) 2178308999890331 a001 567451585/51841*103682^(11/24) 2178308999892968 a001 7778742049/167761*64079^(8/23) 2178308999893368 a001 163427632717/75025 2178308999896057 a001 196418*64079^(5/23) 2178308999898774 a001 701408733/103682*103682^(1/2) 2178308999901331 a001 139583862445/271443*64079^(3/23) 2178308999903517 a001 317811*64079^(4/23) 2178308999904342 a001 225851433717/167761*24476^(1/21) 2178308999907201 a001 591286729879/1860498*64079^(4/23) 2178308999907217 a001 433494437/103682*103682^(13/24) 2178308999907738 a001 1548008755920/4870847*64079^(4/23) 2178308999907816 a001 4052739537881/12752043*64079^(4/23) 2178308999907828 a001 1515744265389/4769326*64079^(4/23) 2178308999907835 a001 6557470319842/20633239*64079^(4/23) 2178308999907865 a001 2504730781961/7881196*64079^(4/23) 2178308999908070 a001 956722026041/3010349*64079^(4/23) 2178308999908608 a001 39088169/271443*167761^(4/5) 2178308999909477 a001 365435296162/1149851*64079^(4/23) 2178308999915660 a001 133957148/51841*103682^(7/12) 2178308999916033 a001 75025*64079^(7/23) 2178308999919122 a001 139583862445/439204*64079^(4/23) 2178308999920026 a001 163427632719/75025 2178308999922692 a001 2/75025*(1/2+1/2*5^(1/2))^57 2178308999923719 a001 43133785636/51841*39603^(1/11) 2178308999924088 a001 433494437/271443*167761^(3/5) 2178308999924104 a001 165580141/103682*103682^(5/8) 2178308999924397 a001 75283811239/90481*64079^(2/23) 2178308999926582 a001 365435296162/710647*64079^(3/23) 2178308999930266 a001 956722026041/1860498*64079^(3/23) 2178308999930803 a001 2504730781961/4870847*64079^(3/23) 2178308999930882 a001 6557470319842/12752043*64079^(3/23) 2178308999930900 a001 10610209857723/20633239*64079^(3/23) 2178308999930930 a001 4052739537881/7881196*64079^(3/23) 2178308999931136 a001 1548008755920/3010349*64079^(3/23) 2178308999932543 a001 514229*64079^(3/23) 2178308999932547 a001 102334155/103682*103682^(2/3) 2178308999933355 a001 32685526544/15005 2178308999933858 a001 14619165/101521*167761^(4/5) 2178308999936996 a001 3524578/39603*39603^(21/22) 2178308999937543 a001 133957148/930249*167761^(4/5) 2178308999938080 a001 701408733/4870847*167761^(4/5) 2178308999938158 a001 1836311903/12752043*167761^(4/5) 2178308999938170 a001 14930208/103681*167761^(4/5) 2178308999938172 a001 12586269025/87403803*167761^(4/5) 2178308999938172 a001 32951280099/228826127*167761^(4/5) 2178308999938172 a001 43133785636/299537289*167761^(4/5) 2178308999938172 a001 32264490531/224056801*167761^(4/5) 2178308999938172 a001 591286729879/4106118243*167761^(4/5) 2178308999938172 a001 774004377960/5374978561*167761^(4/5) 2178308999938172 a001 4052739537881/28143753123*167761^(4/5) 2178308999938172 a001 1515744265389/10525900321*167761^(4/5) 2178308999938172 a001 3278735159921/22768774562*167761^(4/5) 2178308999938172 a001 2504730781961/17393796001*167761^(4/5) 2178308999938172 a001 956722026041/6643838879*167761^(4/5) 2178308999938172 a001 182717648081/1268860318*167761^(4/5) 2178308999938172 a001 139583862445/969323029*167761^(4/5) 2178308999938172 a001 53316291173/370248451*167761^(4/5) 2178308999938172 a001 10182505537/70711162*167761^(4/5) 2178308999938173 a001 7778742049/54018521*167761^(4/5) 2178308999938177 a001 2971215073/20633239*167761^(4/5) 2178308999938207 a001 567451585/3940598*167761^(4/5) 2178308999938412 a001 433494437/3010349*167761^(4/5) 2178308999939099 a001 20365011074/167761*64079^(6/23) 2178308999939568 a001 1602508992/90481*167761^(2/5) 2178308999939819 a001 165580141/1149851*167761^(4/5) 2178308999940963 a001 121393/271443*(1/2+1/2*5^(1/2))^32 2178308999940963 a001 121393/271443*23725150497407^(1/2) 2178308999940963 a001 121393/271443*505019158607^(4/7) 2178308999940963 a001 121393/271443*73681302247^(8/13) 2178308999940963 a001 121393/271443*10749957122^(2/3) 2178308999940963 a001 121393/271443*4106118243^(16/23) 2178308999940963 a001 121393/271443*1568397607^(8/11) 2178308999940963 a001 121393/271443*599074578^(16/21) 2178308999940963 a001 121393/271443*228826127^(4/5) 2178308999940964 a001 121393/271443*87403803^(16/19) 2178308999940965 a001 121393/271443*33385282^(8/9) 2178308999940976 a001 121393/271443*12752043^(16/17) 2178308999940990 a001 31622993/51841*103682^(17/24) 2178308999942188 a001 225851433717/439204*64079^(3/23) 2178308999947462 a001 365435296162/271443*64079^(1/23) 2178308999949338 a001 1134903170/710647*167761^(3/5) 2178308999949432 a001 39088169/103682*103682^(3/4) 2178308999949464 a001 31622993/219602*167761^(4/5) 2178308999949647 a001 591286729879/710647*64079^(2/23) 2178308999953022 a001 2971215073/1860498*167761^(3/5) 2178308999953331 a001 832040*64079^(2/23) 2178308999953560 a001 7778742049/4870847*167761^(3/5) 2178308999953638 a001 20365011074/12752043*167761^(3/5) 2178308999953650 a001 53316291173/33385282*167761^(3/5) 2178308999953651 a001 139583862445/87403803*167761^(3/5) 2178308999953652 a001 365435296162/228826127*167761^(3/5) 2178308999953652 a001 956722026041/599074578*167761^(3/5) 2178308999953652 a001 2504730781961/1568397607*167761^(3/5) 2178308999953652 a001 6557470319842/4106118243*167761^(3/5) 2178308999953652 a001 10610209857723/6643838879*167761^(3/5) 2178308999953652 a001 4052739537881/2537720636*167761^(3/5) 2178308999953652 a001 1548008755920/969323029*167761^(3/5) 2178308999953652 a001 591286729879/370248451*167761^(3/5) 2178308999953652 a001 225851433717/141422324*167761^(3/5) 2178308999953652 a001 86267571272/54018521*167761^(3/5) 2178308999953657 a001 32951280099/20633239*167761^(3/5) 2178308999953687 a001 12586269025/7881196*167761^(3/5) 2178308999953869 a001 4052739537881/4870847*64079^(2/23) 2178308999953892 a001 4807526976/3010349*167761^(3/5) 2178308999953947 a001 3536736619241/4250681*64079^(2/23) 2178308999953996 a001 3278735159921/3940598*64079^(2/23) 2178308999954201 a001 2504730781961/3010349*64079^(2/23) 2178308999955048 a001 53316291173/271443*167761^(1/5) 2178308999955299 a001 1836311903/1149851*167761^(3/5) 2178308999955608 a001 956722026041/1149851*64079^(2/23) 2178308999957877 a001 24157817/103682*103682^(19/24) 2178308999959270 a001 213929548577/98209 2178308999960476 a001 5702887/271443*439204^(8/9) 2178308999961745 a001 24157817/271443*439204^(7/9) 2178308999962164 a001 32951280099/167761*64079^(5/23) 2178308999962999 a001 34111385/90481*439204^(2/3) 2178308999964254 a001 433494437/271443*439204^(5/9) 2178308999964818 a001 12586269025/710647*167761^(2/5) 2178308999964944 a001 701408733/439204*167761^(3/5) 2178308999965253 a001 182717648081/219602*64079^(2/23) 2178308999965509 a001 1836311903/271443*439204^(4/9) 2178308999966182 a001 105937/90481*7881196^(10/11) 2178308999966210 a001 105937/90481*20633239^(6/7) 2178308999966214 a001 105937/90481*141422324^(10/13) 2178308999966214 a001 105937/90481*2537720636^(2/3) 2178308999966214 a001 121393/710647*45537549124^(2/3) 2178308999966214 a001 105937/90481*45537549124^(10/17) 2178308999966214 a001 121393/710647*(1/2+1/2*5^(1/2))^34 2178308999966214 a001 105937/90481*312119004989^(6/11) 2178308999966214 a001 105937/90481*14662949395604^(10/21) 2178308999966214 a001 105937/90481*(1/2+1/2*5^(1/2))^30 2178308999966214 a001 105937/90481*192900153618^(5/9) 2178308999966214 a001 105937/90481*28143753123^(3/5) 2178308999966214 a001 105937/90481*10749957122^(5/8) 2178308999966214 a001 121393/710647*10749957122^(17/24) 2178308999966214 a001 105937/90481*4106118243^(15/23) 2178308999966214 a001 121393/710647*4106118243^(17/23) 2178308999966214 a001 105937/90481*1568397607^(15/22) 2178308999966214 a001 121393/710647*1568397607^(17/22) 2178308999966214 a001 105937/90481*599074578^(5/7) 2178308999966214 a001 121393/710647*599074578^(17/21) 2178308999966214 a001 105937/90481*228826127^(3/4) 2178308999966214 a001 121393/710647*228826127^(17/20) 2178308999966214 a001 105937/90481*87403803^(15/19) 2178308999966214 a001 121393/710647*87403803^(17/19) 2178308999966216 a001 105937/90481*33385282^(5/6) 2178308999966216 a001 121393/710647*33385282^(17/18) 2178308999966226 a001 105937/90481*12752043^(15/17) 2178308999966300 a001 105937/90481*4870847^(15/16) 2178308999966317 a001 7465176/51841*103682^(5/6) 2178308999966763 a001 7778742049/271443*439204^(1/3) 2178308999968018 a001 121393*439204^(2/9) 2178308999968502 a001 10983760033/620166*167761^(2/5) 2178308999968885 a001 1120149658745/514229 2178308999969040 a001 86267571272/4870847*167761^(2/5) 2178308999969118 a001 75283811239/4250681*167761^(2/5) 2178308999969130 a001 591286729879/33385282*167761^(2/5) 2178308999969131 a001 516002918640/29134601*167761^(2/5) 2178308999969132 a001 4052739537881/228826127*167761^(2/5) 2178308999969132 a001 3536736619241/199691526*167761^(2/5) 2178308999969132 a001 6557470319842/370248451*167761^(2/5) 2178308999969132 a001 2504730781961/141422324*167761^(2/5) 2178308999969132 a001 956722026041/54018521*167761^(2/5) 2178308999969137 a001 365435296162/20633239*167761^(2/5) 2178308999969167 a001 139583862445/7881196*167761^(2/5) 2178308999969273 a001 139583862445/271443*439204^(1/9) 2178308999969372 a001 53316291173/3010349*167761^(2/5) 2178308999969894 a001 832040/271443*20633239^(4/5) 2178308999969898 a001 121393/1860498*141422324^(12/13) 2178308999969898 a001 121393/1860498*2537720636^(4/5) 2178308999969898 a001 832040/271443*17393796001^(4/7) 2178308999969898 a001 121393/1860498*45537549124^(12/17) 2178308999969898 a001 121393/1860498*14662949395604^(4/7) 2178308999969898 a001 121393/1860498*(1/2+1/2*5^(1/2))^36 2178308999969898 a001 121393/1860498*505019158607^(9/14) 2178308999969898 a001 121393/1860498*192900153618^(2/3) 2178308999969898 a001 121393/1860498*73681302247^(9/13) 2178308999969898 a001 832040/271443*14662949395604^(4/9) 2178308999969898 a001 832040/271443*(1/2+1/2*5^(1/2))^28 2178308999969898 a001 832040/271443*73681302247^(7/13) 2178308999969898 a001 832040/271443*10749957122^(7/12) 2178308999969898 a001 121393/1860498*10749957122^(3/4) 2178308999969898 a001 832040/271443*4106118243^(14/23) 2178308999969898 a001 121393/1860498*4106118243^(18/23) 2178308999969898 a001 832040/271443*1568397607^(7/11) 2178308999969898 a001 121393/1860498*1568397607^(9/11) 2178308999969898 a001 832040/271443*599074578^(2/3) 2178308999969898 a001 121393/1860498*599074578^(6/7) 2178308999969898 a001 832040/271443*228826127^(7/10) 2178308999969898 a001 121393/1860498*228826127^(9/10) 2178308999969898 a001 832040/271443*87403803^(14/19) 2178308999969898 a001 121393/1860498*87403803^(18/19) 2178308999969900 a001 832040/271443*33385282^(7/9) 2178308999969909 a001 832040/271443*12752043^(14/17) 2178308999969978 a001 832040/271443*4870847^(7/8) 2178308999970288 a001 2932589879081/1346269 2178308999970435 a001 726103/90481*141422324^(2/3) 2178308999970436 a001 121393/4870847*817138163596^(2/3) 2178308999970436 a001 121393/4870847*(1/2+1/2*5^(1/2))^38 2178308999970436 a001 726103/90481*(1/2+1/2*5^(1/2))^26 2178308999970436 a001 726103/90481*73681302247^(1/2) 2178308999970436 a001 726103/90481*10749957122^(13/24) 2178308999970436 a001 121393/4870847*10749957122^(19/24) 2178308999970436 a001 726103/90481*4106118243^(13/23) 2178308999970436 a001 121393/4870847*4106118243^(19/23) 2178308999970436 a001 726103/90481*1568397607^(13/22) 2178308999970436 a001 121393/4870847*1568397607^(19/22) 2178308999970436 a001 726103/90481*599074578^(13/21) 2178308999970436 a001 121393/4870847*599074578^(19/21) 2178308999970436 a001 726103/90481*228826127^(13/20) 2178308999970436 a001 121393/4870847*228826127^(19/20) 2178308999970436 a001 726103/90481*87403803^(13/19) 2178308999970437 a001 726103/90481*33385282^(13/18) 2178308999970446 a001 726103/90481*12752043^(13/17) 2178308999970485 a001 832040/271443*1860498^(14/15) 2178308999970488 a001 5702887/271443*7881196^(8/11) 2178308999970492 a001 3838809989249/1762289 2178308999970502 a001 4976784/90481*7881196^(2/3) 2178308999970506 a001 24157817/271443*7881196^(7/11) 2178308999970508 a001 34111385/90481*7881196^(6/11) 2178308999970510 a001 726103/90481*4870847^(13/16) 2178308999970511 a001 433494437/271443*7881196^(5/11) 2178308999970514 a001 5702887/271443*141422324^(8/13) 2178308999970514 a001 121393/12752043*2537720636^(8/9) 2178308999970514 a001 5702887/271443*2537720636^(8/15) 2178308999970514 a001 5702887/271443*45537549124^(8/17) 2178308999970514 a001 121393/12752043*312119004989^(8/11) 2178308999970514 a001 121393/12752043*(1/2+1/2*5^(1/2))^40 2178308999970514 a001 121393/12752043*23725150497407^(5/8) 2178308999970514 a001 121393/12752043*73681302247^(10/13) 2178308999970514 a001 5702887/271443*14662949395604^(8/21) 2178308999970514 a001 5702887/271443*(1/2+1/2*5^(1/2))^24 2178308999970514 a001 5702887/271443*192900153618^(4/9) 2178308999970514 a001 5702887/271443*73681302247^(6/13) 2178308999970514 a001 121393/12752043*28143753123^(4/5) 2178308999970514 a001 5702887/271443*10749957122^(1/2) 2178308999970514 a001 121393/12752043*10749957122^(5/6) 2178308999970514 a001 5702887/271443*4106118243^(12/23) 2178308999970514 a001 121393/12752043*4106118243^(20/23) 2178308999970514 a001 5702887/271443*1568397607^(6/11) 2178308999970514 a001 121393/12752043*1568397607^(10/11) 2178308999970514 a001 5702887/271443*599074578^(4/7) 2178308999970514 a001 121393/12752043*599074578^(20/21) 2178308999970514 a001 5702887/271443*228826127^(3/5) 2178308999970514 a001 5702887/271443*87403803^(12/19) 2178308999970515 a001 1836311903/271443*7881196^(4/11) 2178308999970515 a001 5702887/271443*33385282^(2/3) 2178308999970516 a001 2971215073/271443*7881196^(1/3) 2178308999970518 a001 7778742049/271443*7881196^(3/11) 2178308999970521 a001 121393*7881196^(2/11) 2178308999970522 a001 20100270056413/9227465 2178308999970523 a001 5702887/271443*12752043^(12/17) 2178308999970524 a001 39088169/271443*20633239^(4/7) 2178308999970524 a001 139583862445/271443*7881196^(1/11) 2178308999970525 a001 24157817/271443*20633239^(3/5) 2178308999970525 a001 433494437/271443*20633239^(3/7) 2178308999970525 a001 233802911/90481*20633239^(2/5) 2178308999970525 a001 121393/33385282*2537720636^(14/15) 2178308999970525 a001 121393/33385282*17393796001^(6/7) 2178308999970525 a001 121393/33385282*45537549124^(14/17) 2178308999970525 a001 121393/33385282*817138163596^(14/19) 2178308999970525 a001 121393/33385282*14662949395604^(2/3) 2178308999970525 a001 121393/33385282*(1/2+1/2*5^(1/2))^42 2178308999970525 a001 121393/33385282*192900153618^(7/9) 2178308999970525 a001 4976784/90481*312119004989^(2/5) 2178308999970525 a001 4976784/90481*(1/2+1/2*5^(1/2))^22 2178308999970525 a001 4976784/90481*10749957122^(11/24) 2178308999970525 a001 121393/33385282*10749957122^(7/8) 2178308999970525 a001 4976784/90481*4106118243^(11/23) 2178308999970525 a001 121393/33385282*4106118243^(21/23) 2178308999970525 a001 4976784/90481*1568397607^(1/2) 2178308999970525 a001 121393/33385282*1568397607^(21/22) 2178308999970525 a001 4976784/90481*599074578^(11/21) 2178308999970525 a001 4976784/90481*228826127^(11/20) 2178308999970526 a001 4976784/90481*87403803^(11/19) 2178308999970526 a001 1602508992/90481*20633239^(2/7) 2178308999970526 a001 20365011074/271443*20633239^(1/5) 2178308999970527 a001 4976784/90481*33385282^(11/18) 2178308999970527 a001 52623190190741/24157817 2178308999970527 a001 53316291173/271443*20633239^(1/7) 2178308999970527 a001 39088169/271443*2537720636^(4/9) 2178308999970527 a001 121393/87403803*312119004989^(4/5) 2178308999970527 a001 121393/87403803*23725150497407^(11/16) 2178308999970527 a001 121393/87403803*73681302247^(11/13) 2178308999970527 a001 39088169/271443*(1/2+1/2*5^(1/2))^20 2178308999970527 a001 39088169/271443*23725150497407^(5/16) 2178308999970527 a001 39088169/271443*505019158607^(5/14) 2178308999970527 a001 39088169/271443*73681302247^(5/13) 2178308999970527 a001 39088169/271443*28143753123^(2/5) 2178308999970527 a001 39088169/271443*10749957122^(5/12) 2178308999970527 a001 121393/87403803*10749957122^(11/12) 2178308999970527 a001 39088169/271443*4106118243^(10/23) 2178308999970527 a001 121393/87403803*4106118243^(22/23) 2178308999970527 a001 39088169/271443*1568397607^(5/11) 2178308999970527 a001 39088169/271443*599074578^(10/21) 2178308999970527 a001 39088169/271443*228826127^(1/2) 2178308999970527 a001 39088169/271443*87403803^(10/19) 2178308999970527 a001 295642275785/135721 2178308999970527 a001 34111385/90481*141422324^(6/13) 2178308999970527 a001 34111385/90481*2537720636^(2/5) 2178308999970527 a001 34111385/90481*45537549124^(6/17) 2178308999970527 a001 34111385/90481*14662949395604^(2/7) 2178308999970527 a001 34111385/90481*(1/2+1/2*5^(1/2))^18 2178308999970527 a001 34111385/90481*192900153618^(1/3) 2178308999970527 a001 34111385/90481*10749957122^(3/8) 2178308999970527 a001 121393/228826127*10749957122^(23/24) 2178308999970527 a001 34111385/90481*4106118243^(9/23) 2178308999970527 a001 34111385/90481*1568397607^(9/22) 2178308999970527 a001 433494437/271443*141422324^(5/13) 2178308999970527 a001 34111385/90481*599074578^(3/7) 2178308999970527 a001 1134903170/271443*141422324^(1/3) 2178308999970527 a001 1836311903/271443*141422324^(4/13) 2178308999970527 a001 7778742049/271443*141422324^(3/13) 2178308999970527 a001 34111385/90481*228826127^(9/20) 2178308999970527 a001 121393*141422324^(2/13) 2178308999970527 a001 360684711356689/165580141 2178308999970527 a001 139583862445/271443*141422324^(1/13) 2178308999970527 a001 121393/599074578*45537549124^(16/17) 2178308999970527 a001 121393/599074578*14662949395604^(16/21) 2178308999970527 a001 121393/599074578*192900153618^(8/9) 2178308999970527 a001 121393/599074578*73681302247^(12/13) 2178308999970527 a001 267914296/271443*(1/2+1/2*5^(1/2))^16 2178308999970527 a001 267914296/271443*23725150497407^(1/4) 2178308999970527 a001 267914296/271443*73681302247^(4/13) 2178308999970527 a001 267914296/271443*10749957122^(1/3) 2178308999970527 a001 267914296/271443*4106118243^(8/23) 2178308999970527 a001 267914296/271443*1568397607^(4/11) 2178308999970527 a001 267914296/271443*599074578^(8/21) 2178308999970527 a001 944284833554257/433494437 2178308999970527 a001 233802911/90481*17393796001^(2/7) 2178308999970527 a001 121393/1568397607*312119004989^(10/11) 2178308999970527 a001 121393/1568397607*3461452808002^(5/6) 2178308999970527 a001 233802911/90481*14662949395604^(2/9) 2178308999970527 a001 233802911/90481*(1/2+1/2*5^(1/2))^14 2178308999970527 a001 233802911/90481*10749957122^(7/24) 2178308999970527 a001 233802911/90481*4106118243^(7/23) 2178308999970527 a001 233802911/90481*1568397607^(7/22) 2178308999970527 a001 1236084894653041/567451585 2178308999970527 a001 1836311903/271443*2537720636^(4/15) 2178308999970527 a001 121393/4106118243*23725150497407^(13/16) 2178308999970527 a001 121393/4106118243*505019158607^(13/14) 2178308999970527 a001 1836311903/271443*45537549124^(4/17) 2178308999970527 a001 1836311903/271443*14662949395604^(4/21) 2178308999970527 a001 1836311903/271443*(1/2+1/2*5^(1/2))^12 2178308999970527 a001 1836311903/271443*192900153618^(2/9) 2178308999970527 a001 1836311903/271443*73681302247^(3/13) 2178308999970527 a001 1836311903/271443*10749957122^(1/4) 2178308999970527 a001 1836311903/271443*4106118243^(6/23) 2178308999970527 a001 1602508992/90481*2537720636^(2/9) 2178308999970527 a001 7778742049/271443*2537720636^(1/5) 2178308999970527 a001 6472224534363989/2971215073 2178308999970527 a001 121393*2537720636^(2/15) 2178308999970527 a001 53316291173/271443*2537720636^(1/9) 2178308999970527 a001 139583862445/271443*2537720636^(1/15) 2178308999970527 a001 121393/10749957122*14662949395604^(6/7) 2178308999970527 a001 1602508992/90481*312119004989^(2/11) 2178308999970527 a001 1602508992/90481*(1/2+1/2*5^(1/2))^10 2178308999970527 a001 1602508992/90481*28143753123^(1/5) 2178308999970527 a001 1602508992/90481*10749957122^(5/24) 2178308999970527 a001 16944503813785885/7778742049 2178308999970527 a001 121393/28143753123*14662949395604^(8/9) 2178308999970527 a001 12586269025/271443*(1/2+1/2*5^(1/2))^8 2178308999970527 a001 12586269025/271443*23725150497407^(1/8) 2178308999970527 a001 12586269025/271443*73681302247^(2/13) 2178308999970527 a001 22180643453496833/10182505537 2178308999970527 a001 116139356907195113/53316291173 2178308999970527 a001 121393*45537549124^(2/17) 2178308999970527 a001 304056783814591673/139583862445 2178308999970527 a001 398015497268289953/182717648081 2178308999970527 a001 121393*14662949395604^(2/21) 2178308999970527 a001 23489678363424570/10783446409 2178308999970527 a001 86267571272/271443*(1/2+1/2*5^(1/2))^4 2178308999970527 a001 86267571272/271443*23725150497407^(1/16) 2178308999970527 a001 139583862445/271443*45537549124^(1/17) 2178308999970527 a001 75283811239/90481*(1/2+1/2*5^(1/2))^2 2178308999970527 a001 591286729879/271443 2178308999970527 a001 139583862445/271443*14662949395604^(1/21) 2178308999970527 a001 139583862445/271443*(1/2+1/2*5^(1/2))^3 2178308999970527 a001 53316291173/271443*312119004989^(1/11) 2178308999970527 a001 53316291173/271443*(1/2+1/2*5^(1/2))^5 2178308999970527 a001 12586269025/271443*10749957122^(1/6) 2178308999970527 a001 53316291173/271443*28143753123^(1/10) 2178308999970527 a001 121393/45537549124*14662949395604^(19/21) 2178308999970527 a001 75283811239/90481*10749957122^(1/24) 2178308999970527 a001 20365011074/271443*14662949395604^(1/9) 2178308999970527 a001 20365011074/271443*(1/2+1/2*5^(1/2))^7 2178308999970527 a001 139583862445/271443*10749957122^(1/16) 2178308999970527 a001 86267571272/271443*10749957122^(1/12) 2178308999970527 a001 121393*10749957122^(1/8) 2178308999970527 a001 27416783093207781/12586269025 2178308999970527 a001 75283811239/90481*4106118243^(1/23) 2178308999970527 a001 121393/17393796001*3461452808002^(11/12) 2178308999970527 a001 7778742049/271443*45537549124^(3/17) 2178308999970527 a001 7778742049/271443*817138163596^(3/19) 2178308999970527 a001 7778742049/271443*14662949395604^(1/7) 2178308999970527 a001 7778742049/271443*(1/2+1/2*5^(1/2))^9 2178308999970527 a001 7778742049/271443*192900153618^(1/6) 2178308999970527 a001 1602508992/90481*4106118243^(5/23) 2178308999970527 a001 7778742049/271443*10749957122^(3/16) 2178308999970527 a001 86267571272/271443*4106118243^(2/23) 2178308999970527 a001 121393*4106118243^(3/23) 2178308999970527 a001 1309034909927737/600940872 2178308999970527 a001 12586269025/271443*4106118243^(4/23) 2178308999970527 a001 75283811239/90481*1568397607^(1/22) 2178308999970527 a001 2971215073/271443*312119004989^(1/5) 2178308999970527 a001 2971215073/271443*(1/2+1/2*5^(1/2))^11 2178308999970527 a001 86267571272/271443*1568397607^(1/11) 2178308999970527 a001 1836311903/271443*1568397607^(3/11) 2178308999970527 a001 121393*1568397607^(3/22) 2178308999970527 a001 4000054745057907/1836311903 2178308999970527 a001 12586269025/271443*1568397607^(2/11) 2178308999970527 a001 1602508992/90481*1568397607^(5/22) 2178308999970527 a001 2971215073/271443*1568397607^(1/4) 2178308999970527 a001 75283811239/90481*599074578^(1/21) 2178308999970527 a001 121393/2537720636*14662949395604^(17/21) 2178308999970527 a001 121393/2537720636*192900153618^(17/18) 2178308999970527 a001 1134903170/271443*(1/2+1/2*5^(1/2))^13 2178308999970527 a001 1134903170/271443*73681302247^(1/4) 2178308999970527 a001 139583862445/271443*599074578^(1/14) 2178308999970527 a001 86267571272/271443*599074578^(2/21) 2178308999970527 a001 121393*599074578^(1/7) 2178308999970527 a001 1527884955751825/701408733 2178308999970527 a001 20365011074/271443*599074578^(1/6) 2178308999970527 a001 233802911/90481*599074578^(1/3) 2178308999970527 a001 12586269025/271443*599074578^(4/21) 2178308999970527 a001 7778742049/271443*599074578^(3/14) 2178308999970527 a001 1602508992/90481*599074578^(5/21) 2178308999970527 a001 1836311903/271443*599074578^(2/7) 2178308999970527 a001 75283811239/90481*228826127^(1/20) 2178308999970527 a001 433494437/271443*2537720636^(1/3) 2178308999970527 a001 121393/969323029*14662949395604^(7/9) 2178308999970527 a001 121393/969323029*505019158607^(7/8) 2178308999970527 a001 433494437/271443*45537549124^(5/17) 2178308999970527 a001 433494437/271443*312119004989^(3/11) 2178308999970527 a001 433494437/271443*14662949395604^(5/21) 2178308999970527 a001 433494437/271443*(1/2+1/2*5^(1/2))^15 2178308999970527 a001 433494437/271443*192900153618^(5/18) 2178308999970527 a001 433494437/271443*28143753123^(3/10) 2178308999970527 a001 433494437/271443*10749957122^(5/16) 2178308999970527 a001 86267571272/271443*228826127^(1/10) 2178308999970527 a001 433494437/271443*599074578^(5/14) 2178308999970527 a001 53316291173/271443*228826127^(1/8) 2178308999970527 a001 72950015274696/33489287 2178308999970527 a001 121393*228826127^(3/20) 2178308999970527 a001 12586269025/271443*228826127^(1/5) 2178308999970527 a001 1602508992/90481*228826127^(1/4) 2178308999970527 a001 267914296/271443*228826127^(2/5) 2178308999970527 a001 1836311903/271443*228826127^(3/10) 2178308999970527 a001 233802911/90481*228826127^(7/20) 2178308999970527 a001 75283811239/90481*87403803^(1/19) 2178308999970527 a001 165580141/271443*45537549124^(1/3) 2178308999970527 a001 165580141/271443*(1/2+1/2*5^(1/2))^17 2178308999970527 a001 433494437/271443*228826127^(3/8) 2178308999970527 a001 86267571272/271443*87403803^(2/19) 2178308999970527 a001 222915410840879/102334155 2178308999970527 a001 121393*87403803^(3/19) 2178308999970527 a001 12586269025/271443*87403803^(4/19) 2178308999970527 a001 1602508992/90481*87403803^(5/19) 2178308999970527 a001 1836311903/271443*87403803^(6/19) 2178308999970527 a001 34111385/90481*87403803^(9/19) 2178308999970527 a001 233802911/90481*87403803^(7/19) 2178308999970527 a001 75283811239/90481*33385282^(1/18) 2178308999970527 a001 233/271444*45537549124^(15/17) 2178308999970527 a001 233/271444*312119004989^(9/11) 2178308999970527 a001 233/271444*14662949395604^(5/7) 2178308999970527 a001 233/271444*192900153618^(5/6) 2178308999970527 a001 63245986/271443*817138163596^(1/3) 2178308999970527 a001 63245986/271443*(1/2+1/2*5^(1/2))^19 2178308999970527 a001 233/271444*28143753123^(9/10) 2178308999970527 a001 233/271444*10749957122^(15/16) 2178308999970527 a001 267914296/271443*87403803^(8/19) 2178308999970528 a001 139583862445/271443*33385282^(1/12) 2178308999970528 a001 86267571272/271443*33385282^(1/9) 2178308999970528 a001 63245986/271443*87403803^(1/2) 2178308999970528 a001 85146110325069/39088169 2178308999970528 a001 121393*33385282^(1/6) 2178308999970528 a001 12586269025/271443*33385282^(2/9) 2178308999970528 a001 7778742049/271443*33385282^(1/4) 2178308999970528 a001 1602508992/90481*33385282^(5/18) 2178308999970528 a001 1836311903/271443*33385282^(1/3) 2178308999970528 a001 24157817/271443*141422324^(7/13) 2178308999970528 a001 24157817/271443*2537720636^(7/15) 2178308999970528 a001 24157817/271443*17393796001^(3/7) 2178308999970528 a001 24157817/271443*45537549124^(7/17) 2178308999970528 a001 24157817/271443*14662949395604^(1/3) 2178308999970528 a001 24157817/271443*(1/2+1/2*5^(1/2))^21 2178308999970528 a001 24157817/271443*192900153618^(7/18) 2178308999970528 a001 24157817/271443*10749957122^(7/16) 2178308999970528 a001 24157817/271443*599074578^(1/2) 2178308999970528 a001 233802911/90481*33385282^(7/18) 2178308999970528 a001 75283811239/90481*12752043^(1/17) 2178308999970528 a001 39088169/271443*33385282^(5/9) 2178308999970528 a001 433494437/271443*33385282^(5/12) 2178308999970528 a001 267914296/271443*33385282^(4/9) 2178308999970528 a001 34111385/90481*33385282^(1/2) 2178308999970529 a001 86267571272/271443*12752043^(2/17) 2178308999970529 a001 24157817/271443*33385282^(7/12) 2178308999970529 a001 4065365016791/1866294 2178308999970530 a001 121393*12752043^(3/17) 2178308999970531 a001 12586269025/271443*12752043^(4/17) 2178308999970531 a001 1602508992/90481*12752043^(5/17) 2178308999970532 a001 1836311903/271443*12752043^(6/17) 2178308999970532 a001 121393/20633239*(1/2+1/2*5^(1/2))^41 2178308999970532 a001 9227465/271443*(1/2+1/2*5^(1/2))^23 2178308999970532 a001 9227465/271443*4106118243^(1/2) 2178308999970533 a001 233802911/90481*12752043^(7/17) 2178308999970533 a001 75283811239/90481*4870847^(1/16) 2178308999970534 a001 267914296/271443*12752043^(8/17) 2178308999970534 a001 4976784/90481*12752043^(11/17) 2178308999970534 a001 165580141/271443*12752043^(1/2) 2178308999970534 a001 34111385/90481*12752043^(9/17) 2178308999970535 a001 39088169/271443*12752043^(10/17) 2178308999970539 a001 86267571272/271443*4870847^(1/8) 2178308999970541 a001 12422650077915/5702887 2178308999970545 a001 121393*4870847^(3/16) 2178308999970550 a001 12586269025/271443*4870847^(1/4) 2178308999970556 a001 1602508992/90481*4870847^(5/16) 2178308999970559 a001 3524578/271443*20633239^(5/7) 2178308999970562 a001 1836311903/271443*4870847^(3/8) 2178308999970562 a001 121393/7881196*2537720636^(13/15) 2178308999970562 a001 3524578/271443*2537720636^(5/9) 2178308999970562 a001 121393/7881196*45537549124^(13/17) 2178308999970562 a001 121393/7881196*14662949395604^(13/21) 2178308999970562 a001 121393/7881196*(1/2+1/2*5^(1/2))^39 2178308999970562 a001 121393/7881196*192900153618^(13/18) 2178308999970562 a001 121393/7881196*73681302247^(3/4) 2178308999970562 a001 3524578/271443*312119004989^(5/11) 2178308999970562 a001 3524578/271443*(1/2+1/2*5^(1/2))^25 2178308999970562 a001 3524578/271443*3461452808002^(5/12) 2178308999970562 a001 3524578/271443*28143753123^(1/2) 2178308999970562 a001 121393/7881196*10749957122^(13/16) 2178308999970562 a001 121393/7881196*599074578^(13/14) 2178308999970562 a001 3524578/271443*228826127^(5/8) 2178308999970568 a001 233802911/90481*4870847^(7/16) 2178308999970569 a001 75283811239/90481*1860498^(1/15) 2178308999970573 a001 267914296/271443*4870847^(1/2) 2178308999970579 a001 34111385/90481*4870847^(9/16) 2178308999970583 a001 5702887/271443*4870847^(3/4) 2178308999970584 a001 39088169/271443*4870847^(5/8) 2178308999970589 a001 4976784/90481*4870847^(11/16) 2178308999970590 a001 139583862445/271443*1860498^(1/10) 2178308999970611 a001 86267571272/271443*1860498^(2/15) 2178308999970619 a001 4745030099417/2178309 2178308999970632 a001 53316291173/271443*1860498^(1/6) 2178308999970653 a001 121393*1860498^(1/5) 2178308999970695 a001 12586269025/271443*1860498^(4/15) 2178308999970716 a001 7778742049/271443*1860498^(3/10) 2178308999970737 a001 1602508992/90481*1860498^(1/3) 2178308999970739 a001 1346269/271443*7881196^(9/11) 2178308999970768 a001 1346269/271443*141422324^(9/13) 2178308999970768 a001 1346269/271443*2537720636^(3/5) 2178308999970768 a001 1346269/271443*45537549124^(9/17) 2178308999970768 a001 121393/3010349*(1/2+1/2*5^(1/2))^37 2178308999970768 a001 1346269/271443*14662949395604^(3/7) 2178308999970768 a001 1346269/271443*(1/2+1/2*5^(1/2))^27 2178308999970768 a001 1346269/271443*192900153618^(1/2) 2178308999970768 a001 1346269/271443*10749957122^(9/16) 2178308999970768 a001 1346269/271443*599074578^(9/14) 2178308999970769 a001 1346269/271443*33385282^(3/4) 2178308999970779 a001 1836311903/271443*1860498^(2/5) 2178308999970779 a001 20365011074/1149851*167761^(2/5) 2178308999970821 a001 233802911/90481*1860498^(7/15) 2178308999970835 a001 75283811239/90481*710647^(1/14) 2178308999970842 a001 433494437/271443*1860498^(1/2) 2178308999970863 a001 267914296/271443*1860498^(8/15) 2178308999970905 a001 34111385/90481*1860498^(3/5) 2178308999970947 a001 39088169/271443*1860498^(2/3) 2178308999970969 a001 24157817/271443*1860498^(7/10) 2178308999970981 a001 726103/90481*1860498^(13/15) 2178308999970987 a001 4976784/90481*1860498^(11/15) 2178308999971017 a001 5702887/271443*1860498^(4/5) 2178308999971087 a001 3524578/271443*1860498^(5/6) 2178308999971144 a001 86267571272/271443*710647^(1/7) 2178308999971155 a001 226555027542/104005 2178308999971334 a001 1346269/271443*1860498^(9/10) 2178308999971452 a001 121393*710647^(3/14) 2178308999971606 a001 20365011074/271443*710647^(1/4) 2178308999971760 a001 12586269025/271443*710647^(2/7) 2178308999972068 a001 1602508992/90481*710647^(5/14) 2178308999972175 a001 121393/1149851*2537720636^(7/9) 2178308999972175 a001 121393/1149851*17393796001^(5/7) 2178308999972175 a001 121393/1149851*312119004989^(7/11) 2178308999972175 a001 121393/1149851*14662949395604^(5/9) 2178308999972175 a001 121393/1149851*(1/2+1/2*5^(1/2))^35 2178308999972175 a001 121393/1149851*505019158607^(5/8) 2178308999972175 a001 514229/271443*(1/2+1/2*5^(1/2))^29 2178308999972175 a001 514229/271443*1322157322203^(1/2) 2178308999972175 a001 121393/1149851*28143753123^(7/10) 2178308999972175 a001 121393/1149851*599074578^(5/6) 2178308999972175 a001 121393/1149851*228826127^(7/8) 2178308999972376 a001 1836311903/271443*710647^(3/7) 2178308999972684 a001 233802911/90481*710647^(1/2) 2178308999972713 a001 956722026041/710647*64079^(1/23) 2178308999972802 a001 75283811239/90481*271443^(1/13) 2178308999972992 a001 267914296/271443*710647^(4/7) 2178308999973300 a001 34111385/90481*710647^(9/14) 2178308999973608 a001 39088169/271443*710647^(5/7) 2178308999973763 a001 24157817/271443*710647^(3/4) 2178308999973914 a001 4976784/90481*710647^(11/14) 2178308999974211 a001 5702887/271443*710647^(6/7) 2178308999974441 a001 726103/90481*710647^(13/14) 2178308999974767 a001 9227465/103682*103682^(7/8) 2178308999974827 a001 692290561591/317811 2178308999975076 a001 86267571272/271443*271443^(2/13) 2178308999976397 a001 2504730781961/1860498*64079^(1/23) 2178308999976934 a001 6557470319842/4870847*64079^(1/23) 2178308999977061 a001 10610209857723/7881196*64079^(1/23) 2178308999977266 a001 1346269*64079^(1/23) 2178308999977350 a001 121393*271443^(3/13) 2178308999978673 a001 1548008755920/1149851*64079^(1/23) 2178308999978970 a001 365435296162/271443*103682^(1/24) 2178308999979624 a001 12586269025/271443*271443^(4/13) 2178308999980298 a001 139583862445/710647*167761^(1/5) 2178308999980424 a001 7778742049/439204*167761^(2/5) 2178308999981820 a001 121393/439204*141422324^(11/13) 2178308999981820 a001 121393/439204*2537720636^(11/15) 2178308999981820 a001 121393/439204*45537549124^(11/17) 2178308999981820 a001 121393/439204*312119004989^(3/5) 2178308999981820 a001 121393/439204*14662949395604^(11/21) 2178308999981820 a001 121393/439204*(1/2+1/2*5^(1/2))^33 2178308999981820 a001 121393/439204*192900153618^(11/18) 2178308999981820 a001 196418/271443*(1/2+1/2*5^(1/2))^31 2178308999981820 a001 196418/271443*9062201101803^(1/2) 2178308999981820 a001 121393/439204*10749957122^(11/16) 2178308999981820 a001 121393/439204*1568397607^(3/4) 2178308999981820 a001 121393/439204*599074578^(11/14) 2178308999981822 a001 121393/439204*33385282^(11/12) 2178308999981898 a001 1602508992/90481*271443^(5/13) 2178308999983192 a001 5702887/103682*103682^(11/12) 2178308999983982 a001 182717648081/930249*167761^(1/5) 2178308999984172 a001 1836311903/271443*271443^(6/13) 2178308999984520 a001 956722026041/4870847*167761^(1/5) 2178308999984598 a001 2504730781961/12752043*167761^(1/5) 2178308999984609 a001 3278735159921/16692641*167761^(1/5) 2178308999984612 a001 10610209857723/54018521*167761^(1/5) 2178308999984617 a001 4052739537881/20633239*167761^(1/5) 2178308999984647 a001 387002188980/1970299*167761^(1/5) 2178308999984726 a001 427859097159/196418 2178308999984852 a001 591286729879/3010349*167761^(1/5) 2178308999985229 a001 53316291173/167761*64079^(4/23) 2178308999985309 a001 1134903170/271443*271443^(1/2) 2178308999985738 a001 14930352/710647*439204^(8/9) 2178308999986259 a001 225851433717/1149851*167761^(1/5) 2178308999986446 a001 233802911/90481*271443^(7/13) 2178308999986849 a001 53316291173/103682*39603^(3/22) 2178308999986995 a001 63245986/710647*439204^(7/9) 2178308999987414 a001 75283811239/90481*103682^(1/12) 2178308999988250 a001 267914296/710647*439204^(2/3) 2178308999988318 a001 591286729879/439204*64079^(1/23) 2178308999988721 a001 267914296/271443*271443^(8/13) 2178308999988799 a001 1/98209*(1/2+1/2*5^(1/2))^59 2178308999989424 a001 39088169/1860498*439204^(8/9) 2178308999989504 a001 1134903170/710647*439204^(5/9) 2178308999989817 a001 213929548580/98209 2178308999989962 a001 102334155/4870847*439204^(8/9) 2178308999990040 a001 267914296/12752043*439204^(8/9) 2178308999990052 a001 701408733/33385282*439204^(8/9) 2178308999990053 a001 1836311903/87403803*439204^(8/9) 2178308999990054 a001 102287808/4868641*439204^(8/9) 2178308999990054 a001 12586269025/599074578*439204^(8/9) 2178308999990054 a001 32951280099/1568397607*439204^(8/9) 2178308999990054 a001 86267571272/4106118243*439204^(8/9) 2178308999990054 a001 225851433717/10749957122*439204^(8/9) 2178308999990054 a001 591286729879/28143753123*439204^(8/9) 2178308999990054 a001 1548008755920/73681302247*439204^(8/9) 2178308999990054 a001 4052739537881/192900153618*439204^(8/9) 2178308999990054 a001 225749145909/10745088481*439204^(8/9) 2178308999990054 a001 6557470319842/312119004989*439204^(8/9) 2178308999990054 a001 2504730781961/119218851371*439204^(8/9) 2178308999990054 a001 956722026041/45537549124*439204^(8/9) 2178308999990054 a001 365435296162/17393796001*439204^(8/9) 2178308999990054 a001 139583862445/6643838879*439204^(8/9) 2178308999990054 a001 53316291173/2537720636*439204^(8/9) 2178308999990054 a001 20365011074/969323029*439204^(8/9) 2178308999990054 a001 7778742049/370248451*439204^(8/9) 2178308999990054 a001 2971215073/141422324*439204^(8/9) 2178308999990054 a001 1134903170/54018521*439204^(8/9) 2178308999990059 a001 433494437/20633239*439204^(8/9) 2178308999990089 a001 165580141/7881196*439204^(8/9) 2178308999990294 a001 63245986/3010349*439204^(8/9) 2178308999990679 a001 165580141/1860498*439204^(7/9) 2178308999990759 a001 686789568/101521*439204^(4/9) 2178308999990995 a001 34111385/90481*271443^(9/13) 2178308999991217 a001 433494437/4870847*439204^(7/9) 2178308999991295 a001 1134903170/12752043*439204^(7/9) 2178308999991306 a001 2971215073/33385282*439204^(7/9) 2178308999991308 a001 7778742049/87403803*439204^(7/9) 2178308999991308 a001 20365011074/228826127*439204^(7/9) 2178308999991308 a001 53316291173/599074578*439204^(7/9) 2178308999991308 a001 139583862445/1568397607*439204^(7/9) 2178308999991308 a001 365435296162/4106118243*439204^(7/9) 2178308999991308 a001 956722026041/10749957122*439204^(7/9) 2178308999991308 a001 2504730781961/28143753123*439204^(7/9) 2178308999991308 a001 6557470319842/73681302247*439204^(7/9) 2178308999991308 a001 10610209857723/119218851371*439204^(7/9) 2178308999991308 a001 4052739537881/45537549124*439204^(7/9) 2178308999991308 a001 1548008755920/17393796001*439204^(7/9) 2178308999991308 a001 591286729879/6643838879*439204^(7/9) 2178308999991308 a001 225851433717/2537720636*439204^(7/9) 2178308999991308 a001 86267571272/969323029*439204^(7/9) 2178308999991308 a001 32951280099/370248451*439204^(7/9) 2178308999991308 a001 12586269025/141422324*439204^(7/9) 2178308999991309 a001 4807526976/54018521*439204^(7/9) 2178308999991313 a001 1836311903/20633239*439204^(7/9) 2178308999991343 a001 3524667/39604*439204^(7/9) 2178308999991465 a001 317811/710647*(1/2+1/2*5^(1/2))^32 2178308999991465 a001 317811/710647*23725150497407^(1/2) 2178308999991465 a001 317811/710647*505019158607^(4/7) 2178308999991465 a001 317811/710647*73681302247^(8/13) 2178308999991465 a001 317811/710647*10749957122^(2/3) 2178308999991465 a001 317811/710647*4106118243^(16/23) 2178308999991465 a001 317811/710647*1568397607^(8/11) 2178308999991465 a001 317811/710647*599074578^(16/21) 2178308999991465 a001 317811/710647*228826127^(4/5) 2178308999991465 a001 317811/710647*87403803^(16/19) 2178308999991466 a001 317811/710647*33385282^(8/9) 2178308999991477 a001 317811/710647*12752043^(16/17) 2178308999991549 a001 267914296/3010349*439204^(7/9) 2178308999991683 a001 1762289/51841*103682^(23/24) 2178308999991702 a001 24157817/1149851*439204^(8/9) 2178308999991934 a001 233802911/620166*439204^(2/3) 2178308999992014 a001 20365011074/710647*439204^(1/3) 2178308999992471 a001 1836311903/4870847*439204^(2/3) 2178308999992550 a001 1602508992/4250681*439204^(2/3) 2178308999992561 a001 12586269025/33385282*439204^(2/3) 2178308999992563 a001 10983760033/29134601*439204^(2/3) 2178308999992563 a001 86267571272/228826127*439204^(2/3) 2178308999992563 a001 267913919/710646*439204^(2/3) 2178308999992563 a001 591286729879/1568397607*439204^(2/3) 2178308999992563 a001 516002918640/1368706081*439204^(2/3) 2178308999992563 a001 4052739537881/10749957122*439204^(2/3) 2178308999992563 a001 3536736619241/9381251041*439204^(2/3) 2178308999992563 a001 6557470319842/17393796001*439204^(2/3) 2178308999992563 a001 2504730781961/6643838879*439204^(2/3) 2178308999992563 a001 956722026041/2537720636*439204^(2/3) 2178308999992563 a001 365435296162/969323029*439204^(2/3) 2178308999992563 a001 139583862445/370248451*439204^(2/3) 2178308999992563 a001 53316291173/141422324*439204^(2/3) 2178308999992564 a001 20365011074/54018521*439204^(2/3) 2178308999992568 a001 7778742049/20633239*439204^(2/3) 2178308999992598 a001 2971215073/7881196*439204^(2/3) 2178308999992803 a001 1134903170/3010349*439204^(2/3) 2178308999992956 a001 102334155/1149851*439204^(7/9) 2178308999993188 a001 2971215073/1860498*439204^(5/9) 2178308999993269 a001 86267571272/710647*439204^(2/9) 2178308999993269 a001 39088169/271443*271443^(10/13) 2178308999993726 a001 7778742049/4870847*439204^(5/9) 2178308999993804 a001 20365011074/12752043*439204^(5/9) 2178308999993816 a001 53316291173/33385282*439204^(5/9) 2178308999993817 a001 139583862445/87403803*439204^(5/9) 2178308999993818 a001 365435296162/228826127*439204^(5/9) 2178308999993818 a001 956722026041/599074578*439204^(5/9) 2178308999993818 a001 2504730781961/1568397607*439204^(5/9) 2178308999993818 a001 6557470319842/4106118243*439204^(5/9) 2178308999993818 a001 10610209857723/6643838879*439204^(5/9) 2178308999993818 a001 4052739537881/2537720636*439204^(5/9) 2178308999993818 a001 1548008755920/969323029*439204^(5/9) 2178308999993818 a001 591286729879/370248451*439204^(5/9) 2178308999993818 a001 225851433717/141422324*439204^(5/9) 2178308999993818 a001 86267571272/54018521*439204^(5/9) 2178308999993823 a001 32951280099/20633239*439204^(5/9) 2178308999993853 a001 12586269025/7881196*439204^(5/9) 2178308999994058 a001 4807526976/3010349*439204^(5/9) 2178308999994166 a001 1120149658758/514229 2178308999994211 a001 433494437/1149851*439204^(2/3) 2178308999994443 a001 12586269025/1860498*439204^(4/9) 2178308999994523 a001 365435296162/710647*439204^(1/9) 2178308999994981 a001 32951280099/4870847*439204^(4/9) 2178308999995059 a001 86267571272/12752043*439204^(4/9) 2178308999995071 a001 32264490531/4769326*439204^(4/9) 2178308999995072 a001 591286729879/87403803*439204^(4/9) 2178308999995072 a001 1548008755920/228826127*439204^(4/9) 2178308999995072 a001 4052739537881/599074578*439204^(4/9) 2178308999995072 a001 1515744265389/224056801*439204^(4/9) 2178308999995072 a001 6557470319842/969323029*439204^(4/9) 2178308999995072 a001 2504730781961/370248451*439204^(4/9) 2178308999995073 a001 956722026041/141422324*439204^(4/9) 2178308999995073 a001 365435296162/54018521*439204^(4/9) 2178308999995078 a001 139583862445/20633239*439204^(4/9) 2178308999995108 a001 53316291173/7881196*439204^(4/9) 2178308999995117 a001 832040/710647*7881196^(10/11) 2178308999995144 a001 832040/710647*20633239^(6/7) 2178308999995149 a001 832040/710647*141422324^(10/13) 2178308999995149 a001 832040/710647*2537720636^(2/3) 2178308999995149 a001 105937/620166*45537549124^(2/3) 2178308999995149 a001 832040/710647*45537549124^(10/17) 2178308999995149 a001 832040/710647*312119004989^(6/11) 2178308999995149 a001 105937/620166*(1/2+1/2*5^(1/2))^34 2178308999995149 a001 832040/710647*14662949395604^(10/21) 2178308999995149 a001 832040/710647*(1/2+1/2*5^(1/2))^30 2178308999995149 a001 832040/710647*192900153618^(5/9) 2178308999995149 a001 832040/710647*28143753123^(3/5) 2178308999995149 a001 832040/710647*10749957122^(5/8) 2178308999995149 a001 105937/620166*10749957122^(17/24) 2178308999995149 a001 832040/710647*4106118243^(15/23) 2178308999995149 a001 105937/620166*4106118243^(17/23) 2178308999995149 a001 832040/710647*1568397607^(15/22) 2178308999995149 a001 105937/620166*1568397607^(17/22) 2178308999995149 a001 832040/710647*599074578^(5/7) 2178308999995149 a001 105937/620166*599074578^(17/21) 2178308999995149 a001 832040/710647*228826127^(3/4) 2178308999995149 a001 105937/620166*228826127^(17/20) 2178308999995149 a001 832040/710647*87403803^(15/19) 2178308999995149 a001 105937/620166*87403803^(17/19) 2178308999995150 a001 832040/710647*33385282^(5/6) 2178308999995151 a001 105937/620166*33385282^(17/18) 2178308999995161 a001 832040/710647*12752043^(15/17) 2178308999995235 a001 832040/710647*4870847^(15/16) 2178308999995313 a001 20365011074/3010349*439204^(4/9) 2178308999995465 a001 1836311903/1149851*439204^(5/9) 2178308999995541 a001 4976784/90481*271443^(11/13) 2178308999995543 a001 2932589879115/1346269 2178308999995682 a001 311187/101521*20633239^(4/5) 2178308999995686 a001 317811/4870847*141422324^(12/13) 2178308999995686 a001 317811/4870847*2537720636^(4/5) 2178308999995686 a001 311187/101521*17393796001^(4/7) 2178308999995686 a001 317811/4870847*45537549124^(12/17) 2178308999995686 a001 317811/4870847*14662949395604^(4/7) 2178308999995686 a001 317811/4870847*(1/2+1/2*5^(1/2))^36 2178308999995686 a001 311187/101521*14662949395604^(4/9) 2178308999995686 a001 311187/101521*(1/2+1/2*5^(1/2))^28 2178308999995686 a001 311187/101521*505019158607^(1/2) 2178308999995686 a001 317811/4870847*192900153618^(2/3) 2178308999995686 a001 311187/101521*73681302247^(7/13) 2178308999995686 a001 317811/4870847*73681302247^(9/13) 2178308999995686 a001 311187/101521*10749957122^(7/12) 2178308999995686 a001 317811/4870847*10749957122^(3/4) 2178308999995686 a001 311187/101521*4106118243^(14/23) 2178308999995686 a001 317811/4870847*4106118243^(18/23) 2178308999995686 a001 311187/101521*1568397607^(7/11) 2178308999995686 a001 317811/4870847*1568397607^(9/11) 2178308999995686 a001 311187/101521*599074578^(2/3) 2178308999995686 a001 317811/4870847*599074578^(6/7) 2178308999995686 a001 311187/101521*228826127^(7/10) 2178308999995686 a001 317811/4870847*228826127^(9/10) 2178308999995686 a001 311187/101521*87403803^(14/19) 2178308999995686 a001 317811/4870847*87403803^(18/19) 2178308999995688 a001 311187/101521*33385282^(7/9) 2178308999995697 a001 311187/101521*12752043^(14/17) 2178308999995698 a001 53316291173/1860498*439204^(1/3) 2178308999995744 a001 7677619978587/3524578 2178308999995751 a001 14930352/710647*7881196^(8/11) 2178308999995754 a001 39088169/710647*7881196^(2/3) 2178308999995756 a001 63245986/710647*7881196^(7/11) 2178308999995759 a001 267914296/710647*7881196^(6/11) 2178308999995762 a001 1134903170/710647*7881196^(5/11) 2178308999995765 a001 5702887/710647*141422324^(2/3) 2178308999995765 a001 105937/4250681*817138163596^(2/3) 2178308999995765 a001 105937/4250681*(1/2+1/2*5^(1/2))^38 2178308999995765 a001 5702887/710647*(1/2+1/2*5^(1/2))^26 2178308999995765 a001 5702887/710647*73681302247^(1/2) 2178308999995765 a001 5702887/710647*10749957122^(13/24) 2178308999995765 a001 105937/4250681*10749957122^(19/24) 2178308999995765 a001 5702887/710647*4106118243^(13/23) 2178308999995765 a001 105937/4250681*4106118243^(19/23) 2178308999995765 a001 5702887/710647*1568397607^(13/22) 2178308999995765 a001 105937/4250681*1568397607^(19/22) 2178308999995765 a001 5702887/710647*599074578^(13/21) 2178308999995765 a001 105937/4250681*599074578^(19/21) 2178308999995765 a001 5702887/710647*228826127^(13/20) 2178308999995765 a001 105937/4250681*228826127^(19/20) 2178308999995765 a001 5702887/710647*87403803^(13/19) 2178308999995765 a001 686789568/101521*7881196^(4/11) 2178308999995766 a001 5702887/710647*33385282^(13/18) 2178308999995766 a001 7778742049/710647*7881196^(1/3) 2178308999995767 a001 311187/101521*4870847^(7/8) 2178308999995768 a001 20365011074/710647*7881196^(3/11) 2178308999995772 a001 86267571272/710647*7881196^(2/11) 2178308999995773 a001 1546174619742/709805 2178308999995775 a001 365435296162/710647*7881196^(1/11) 2178308999995775 a001 5702887/710647*12752043^(13/17) 2178308999995775 a001 14619165/101521*20633239^(4/7) 2178308999995775 a001 63245986/710647*20633239^(3/5) 2178308999995776 a001 1134903170/710647*20633239^(3/7) 2178308999995776 a001 1836311903/710647*20633239^(2/5) 2178308999995776 a001 14930352/710647*141422324^(8/13) 2178308999995776 a001 317811/33385282*2537720636^(8/9) 2178308999995776 a001 14930352/710647*2537720636^(8/15) 2178308999995776 a001 14930352/710647*45537549124^(8/17) 2178308999995776 a001 317811/33385282*312119004989^(8/11) 2178308999995776 a001 317811/33385282*(1/2+1/2*5^(1/2))^40 2178308999995776 a001 14930352/710647*14662949395604^(8/21) 2178308999995776 a001 14930352/710647*(1/2+1/2*5^(1/2))^24 2178308999995776 a001 14930352/710647*192900153618^(4/9) 2178308999995776 a001 14930352/710647*73681302247^(6/13) 2178308999995776 a001 317811/33385282*73681302247^(10/13) 2178308999995776 a001 317811/33385282*28143753123^(4/5) 2178308999995776 a001 14930352/710647*10749957122^(1/2) 2178308999995776 a001 317811/33385282*10749957122^(5/6) 2178308999995776 a001 14930352/710647*4106118243^(12/23) 2178308999995776 a001 317811/33385282*4106118243^(20/23) 2178308999995776 a001 14930352/710647*1568397607^(6/11) 2178308999995776 a001 317811/33385282*1568397607^(10/11) 2178308999995776 a001 14930352/710647*599074578^(4/7) 2178308999995776 a001 317811/33385282*599074578^(20/21) 2178308999995776 a001 14930352/710647*228826127^(3/5) 2178308999995776 a001 14930352/710647*87403803^(12/19) 2178308999995777 a001 12586269025/710647*20633239^(2/7) 2178308999995777 a001 53316291173/710647*20633239^(1/5) 2178308999995777 a001 139583862445/710647*20633239^(1/7) 2178308999995777 a001 52623190191351/24157817 2178308999995777 a001 14930352/710647*33385282^(2/3) 2178308999995778 a001 105937/29134601*2537720636^(14/15) 2178308999995778 a001 105937/29134601*17393796001^(6/7) 2178308999995778 a001 105937/29134601*45537549124^(14/17) 2178308999995778 a001 105937/29134601*14662949395604^(2/3) 2178308999995778 a001 105937/29134601*505019158607^(3/4) 2178308999995778 a001 39088169/710647*(1/2+1/2*5^(1/2))^22 2178308999995778 a001 105937/29134601*192900153618^(7/9) 2178308999995778 a001 39088169/710647*10749957122^(11/24) 2178308999995778 a001 105937/29134601*10749957122^(7/8) 2178308999995778 a001 39088169/710647*4106118243^(11/23) 2178308999995778 a001 105937/29134601*4106118243^(21/23) 2178308999995778 a001 39088169/710647*1568397607^(1/2) 2178308999995778 a001 105937/29134601*1568397607^(21/22) 2178308999995778 a001 39088169/710647*599074578^(11/21) 2178308999995778 a001 39088169/710647*228826127^(11/20) 2178308999995778 a001 39088169/710647*87403803^(11/19) 2178308999995778 a001 137769300517407/63245986 2178308999995778 a001 267914296/710647*141422324^(6/13) 2178308999995778 a001 14619165/101521*2537720636^(4/9) 2178308999995778 a001 317811/228826127*312119004989^(4/5) 2178308999995778 a001 317811/228826127*23725150497407^(11/16) 2178308999995778 a001 14619165/101521*(1/2+1/2*5^(1/2))^20 2178308999995778 a001 14619165/101521*23725150497407^(5/16) 2178308999995778 a001 14619165/101521*505019158607^(5/14) 2178308999995778 a001 14619165/101521*73681302247^(5/13) 2178308999995778 a001 317811/228826127*73681302247^(11/13) 2178308999995778 a001 14619165/101521*28143753123^(2/5) 2178308999995778 a001 14619165/101521*10749957122^(5/12) 2178308999995778 a001 317811/228826127*10749957122^(11/12) 2178308999995778 a001 1134903170/710647*141422324^(5/13) 2178308999995778 a001 14619165/101521*4106118243^(10/23) 2178308999995778 a001 317811/228826127*4106118243^(22/23) 2178308999995778 a001 14619165/101521*1568397607^(5/11) 2178308999995778 a001 14619165/101521*599074578^(10/21) 2178308999995778 a001 2971215073/710647*141422324^(1/3) 2178308999995778 a001 686789568/101521*141422324^(4/13) 2178308999995778 a001 20365011074/710647*141422324^(3/13) 2178308999995778 a001 14619165/101521*228826127^(1/2) 2178308999995778 a001 86267571272/710647*141422324^(2/13) 2178308999995778 a001 360684711360870/165580141 2178308999995778 a001 365435296162/710647*141422324^(1/13) 2178308999995778 a001 267914296/710647*2537720636^(2/5) 2178308999995778 a001 267914296/710647*45537549124^(6/17) 2178308999995778 a001 267914296/710647*14662949395604^(2/7) 2178308999995778 a001 267914296/710647*(1/2+1/2*5^(1/2))^18 2178308999995778 a001 267914296/710647*192900153618^(1/3) 2178308999995778 a001 267914296/710647*10749957122^(3/8) 2178308999995778 a001 377/710646*10749957122^(23/24) 2178308999995778 a001 267914296/710647*4106118243^(9/23) 2178308999995778 a001 267914296/710647*1568397607^(9/22) 2178308999995778 a001 267914296/710647*599074578^(3/7) 2178308999995778 a001 944284833565203/433494437 2178308999995778 a001 317811/1568397607*45537549124^(16/17) 2178308999995778 a001 317811/1568397607*14662949395604^(16/21) 2178308999995778 a001 701408733/710647*(1/2+1/2*5^(1/2))^16 2178308999995778 a001 701408733/710647*23725150497407^(1/4) 2178308999995778 a001 317811/1568397607*192900153618^(8/9) 2178308999995778 a001 701408733/710647*73681302247^(4/13) 2178308999995778 a001 317811/1568397607*73681302247^(12/13) 2178308999995778 a001 701408733/710647*10749957122^(1/3) 2178308999995778 a001 701408733/710647*4106118243^(8/23) 2178308999995778 a001 701408733/710647*1568397607^(4/11) 2178308999995778 a001 2472169789334739/1134903170 2178308999995778 a001 1836311903/710647*17393796001^(2/7) 2178308999995778 a001 105937/1368706081*312119004989^(10/11) 2178308999995778 a001 105937/1368706081*3461452808002^(5/6) 2178308999995778 a001 1836311903/710647*14662949395604^(2/9) 2178308999995778 a001 1836311903/710647*(1/2+1/2*5^(1/2))^14 2178308999995778 a001 1836311903/710647*10749957122^(7/24) 2178308999995778 a001 686789568/101521*2537720636^(4/15) 2178308999995778 a001 1836311903/710647*4106118243^(7/23) 2178308999995778 a001 12586269025/710647*2537720636^(2/9) 2178308999995778 a001 20365011074/710647*2537720636^(1/5) 2178308999995778 a001 6472224534439014/2971215073 2178308999995778 a001 86267571272/710647*2537720636^(2/15) 2178308999995778 a001 139583862445/710647*2537720636^(1/9) 2178308999995778 a001 365435296162/710647*2537720636^(1/15) 2178308999995778 a001 686789568/101521*45537549124^(4/17) 2178308999995778 a001 317811/10749957122*23725150497407^(13/16) 2178308999995778 a001 317811/10749957122*505019158607^(13/14) 2178308999995778 a001 686789568/101521*14662949395604^(4/21) 2178308999995778 a001 686789568/101521*(1/2+1/2*5^(1/2))^12 2178308999995778 a001 686789568/101521*73681302247^(3/13) 2178308999995778 a001 686789568/101521*10749957122^(1/4) 2178308999995778 a001 1303423370306331/598364773 2178308999995778 a001 105937/9381251041*14662949395604^(6/7) 2178308999995778 a001 12586269025/710647*(1/2+1/2*5^(1/2))^10 2178308999995778 a001 12586269025/710647*28143753123^(1/5) 2178308999995778 a001 44361286907507895/20365011074 2178308999995778 a001 53316291173/710647*17393796001^(1/7) 2178308999995778 a001 317811/73681302247*14662949395604^(8/9) 2178308999995778 a001 32951280099/710647*(1/2+1/2*5^(1/2))^8 2178308999995778 a001 32951280099/710647*23725150497407^(1/8) 2178308999995778 a001 32951280099/710647*73681302247^(2/13) 2178308999995778 a001 86267571272/710647*45537549124^(2/17) 2178308999995778 a001 116139356908541382/53316291173 2178308999995778 a001 86267571272/710647*(1/2+1/2*5^(1/2))^6 2178308999995778 a001 365435296162/710647*45537549124^(1/17) 2178308999995778 a001 317811/505019158607*14662949395604^(20/21) 2178308999995778 a001 1288005205273498491/591286729879 2178308999995778 a001 1548008755920/710647 2178308999995778 a001 365435296162/710647*192900153618^(1/18) 2178308999995778 a001 139583862445/710647*312119004989^(1/11) 2178308999995778 a001 317811*73681302247^(1/13) 2178308999995778 a001 139583862445/710647*(1/2+1/2*5^(1/2))^5 2178308999995778 a001 187917426909574869/86267571272 2178308999995778 a001 317811/119218851371*14662949395604^(19/21) 2178308999995778 a001 53316291173/710647*14662949395604^(1/9) 2178308999995778 a001 53316291173/710647*(1/2+1/2*5^(1/2))^7 2178308999995778 a001 139583862445/710647*28143753123^(1/10) 2178308999995778 a001 23926023333677829/10983760033 2178308999995778 a001 591286729879/710647*10749957122^(1/24) 2178308999995778 a001 20365011074/710647*45537549124^(3/17) 2178308999995778 a001 317811/45537549124*3461452808002^(11/12) 2178308999995778 a001 20365011074/710647*817138163596^(3/19) 2178308999995778 a001 20365011074/710647*14662949395604^(1/7) 2178308999995778 a001 20365011074/710647*(1/2+1/2*5^(1/2))^9 2178308999995778 a001 20365011074/710647*192900153618^(1/6) 2178308999995778 a001 12586269025/710647*10749957122^(5/24) 2178308999995778 a001 365435296162/710647*10749957122^(1/16) 2178308999995778 a001 317811*10749957122^(1/12) 2178308999995778 a001 86267571272/710647*10749957122^(1/8) 2178308999995778 a001 27416783093525592/12586269025 2178308999995778 a001 32951280099/710647*10749957122^(1/6) 2178308999995778 a001 20365011074/710647*10749957122^(3/16) 2178308999995778 a001 591286729879/710647*4106118243^(1/23) 2178308999995778 a001 7778742049/710647*312119004989^(1/5) 2178308999995778 a001 7778742049/710647*(1/2+1/2*5^(1/2))^11 2178308999995778 a001 317811*4106118243^(2/23) 2178308999995778 a001 686789568/101521*4106118243^(6/23) 2178308999995778 a001 86267571272/710647*4106118243^(3/23) 2178308999995778 a001 1163586586615921/534169664 2178308999995778 a001 32951280099/710647*4106118243^(4/23) 2178308999995778 a001 12586269025/710647*4106118243^(5/23) 2178308999995778 a001 591286729879/710647*1568397607^(1/22) 2178308999995778 a001 317811/6643838879*817138163596^(17/19) 2178308999995778 a001 317811/6643838879*14662949395604^(17/21) 2178308999995778 a001 2971215073/710647*(1/2+1/2*5^(1/2))^13 2178308999995778 a001 317811/6643838879*192900153618^(17/18) 2178308999995778 a001 2971215073/710647*73681302247^(1/4) 2178308999995778 a001 317811*1568397607^(1/11) 2178308999995778 a001 86267571272/710647*1568397607^(3/22) 2178308999995778 a001 4000054745104275/1836311903 2178308999995778 a001 1836311903/710647*1568397607^(7/22) 2178308999995778 a001 32951280099/710647*1568397607^(2/11) 2178308999995778 a001 12586269025/710647*1568397607^(5/22) 2178308999995778 a001 686789568/101521*1568397607^(3/11) 2178308999995778 a001 1134903170/710647*2537720636^(1/3) 2178308999995778 a001 7778742049/710647*1568397607^(1/4) 2178308999995778 a001 591286729879/710647*599074578^(1/21) 2178308999995778 a001 1134903170/710647*45537549124^(5/17) 2178308999995778 a001 1134903170/710647*312119004989^(3/11) 2178308999995778 a001 317811/2537720636*505019158607^(7/8) 2178308999995778 a001 1134903170/710647*14662949395604^(5/21) 2178308999995778 a001 1134903170/710647*(1/2+1/2*5^(1/2))^15 2178308999995778 a001 1134903170/710647*192900153618^(5/18) 2178308999995778 a001 1134903170/710647*28143753123^(3/10) 2178308999995778 a001 1134903170/710647*10749957122^(5/16) 2178308999995778 a001 365435296162/710647*599074578^(1/14) 2178308999995778 a001 317811*599074578^(2/21) 2178308999995778 a001 509294985256512/233802911 2178308999995778 a001 86267571272/710647*599074578^(1/7) 2178308999995778 a001 53316291173/710647*599074578^(1/6) 2178308999995778 a001 32951280099/710647*599074578^(4/21) 2178308999995778 a001 20365011074/710647*599074578^(3/14) 2178308999995778 a001 701408733/710647*599074578^(8/21) 2178308999995778 a001 12586269025/710647*599074578^(5/21) 2178308999995778 a001 686789568/101521*599074578^(2/7) 2178308999995778 a001 1836311903/710647*599074578^(1/3) 2178308999995778 a001 591286729879/710647*228826127^(1/20) 2178308999995778 a001 433494437/710647*45537549124^(1/3) 2178308999995778 a001 433494437/710647*(1/2+1/2*5^(1/2))^17 2178308999995778 a001 1134903170/710647*599074578^(5/14) 2178308999995778 a001 317811*228826127^(1/10) 2178308999995778 a001 139583862445/710647*228826127^(1/8) 2178308999995778 a001 1548010934229/710648 2178308999995778 a001 86267571272/710647*228826127^(3/20) 2178308999995778 a001 32951280099/710647*228826127^(1/5) 2178308999995778 a001 12586269025/710647*228826127^(1/4) 2178308999995778 a001 686789568/101521*228826127^(3/10) 2178308999995778 a001 267914296/710647*228826127^(9/20) 2178308999995778 a001 1836311903/710647*228826127^(7/20) 2178308999995778 a001 591286729879/710647*87403803^(1/19) 2178308999995778 a001 701408733/710647*228826127^(2/5) 2178308999995778 a001 317811/370248451*45537549124^(15/17) 2178308999995778 a001 317811/370248451*312119004989^(9/11) 2178308999995778 a001 317811/370248451*14662949395604^(5/7) 2178308999995778 a001 165580141/710647*817138163596^(1/3) 2178308999995778 a001 165580141/710647*(1/2+1/2*5^(1/2))^19 2178308999995778 a001 317811/370248451*192900153618^(5/6) 2178308999995778 a001 317811/370248451*28143753123^(9/10) 2178308999995778 a001 317811/370248451*10749957122^(15/16) 2178308999995778 a001 1134903170/710647*228826127^(3/8) 2178308999995778 a001 317811*87403803^(2/19) 2178308999995778 a001 74305136947821/34111385 2178308999995778 a001 86267571272/710647*87403803^(3/19) 2178308999995778 a001 63245986/710647*141422324^(7/13) 2178308999995778 a001 32951280099/710647*87403803^(4/19) 2178308999995778 a001 12586269025/710647*87403803^(5/19) 2178308999995778 a001 686789568/101521*87403803^(6/19) 2178308999995778 a001 1836311903/710647*87403803^(7/19) 2178308999995778 a001 14619165/101521*87403803^(10/19) 2178308999995778 a001 591286729879/710647*33385282^(1/18) 2178308999995778 a001 63245986/710647*2537720636^(7/15) 2178308999995778 a001 63245986/710647*17393796001^(3/7) 2178308999995778 a001 63245986/710647*45537549124^(7/17) 2178308999995778 a001 63245986/710647*14662949395604^(1/3) 2178308999995778 a001 63245986/710647*(1/2+1/2*5^(1/2))^21 2178308999995778 a001 63245986/710647*192900153618^(7/18) 2178308999995778 a001 63245986/710647*10749957122^(7/16) 2178308999995778 a001 63245986/710647*599074578^(1/2) 2178308999995778 a001 701408733/710647*87403803^(8/19) 2178308999995778 a001 267914296/710647*87403803^(9/19) 2178308999995778 a001 165580141/710647*87403803^(1/2) 2178308999995778 a001 365435296162/710647*33385282^(1/12) 2178308999995778 a001 317811*33385282^(1/9) 2178308999995778 a001 85146110326056/39088169 2178308999995778 a001 86267571272/710647*33385282^(1/6) 2178308999995778 a001 32951280099/710647*33385282^(2/9) 2178308999995778 a001 20365011074/710647*33385282^(1/4) 2178308999995779 a001 12586269025/710647*33385282^(5/18) 2178308999995779 a001 686789568/101521*33385282^(1/3) 2178308999995779 a001 24157817/710647*(1/2+1/2*5^(1/2))^23 2178308999995779 a001 24157817/710647*4106118243^(1/2) 2178308999995779 a001 1836311903/710647*33385282^(7/18) 2178308999995779 a001 591286729879/710647*12752043^(1/17) 2178308999995779 a001 1134903170/710647*33385282^(5/12) 2178308999995779 a001 701408733/710647*33385282^(4/9) 2178308999995779 a001 39088169/710647*33385282^(11/18) 2178308999995779 a001 267914296/710647*33385282^(1/2) 2178308999995779 a001 14619165/101521*33385282^(5/9) 2178308999995779 a001 63245986/710647*33385282^(7/12) 2178308999995779 a001 9227465/710647*20633239^(5/7) 2178308999995780 a001 317811*12752043^(2/17) 2178308999995780 a001 3613657792745/1658928 2178308999995780 a001 86267571272/710647*12752043^(3/17) 2178308999995781 a001 32951280099/710647*12752043^(4/17) 2178308999995782 a001 12586269025/710647*12752043^(5/17) 2178308999995783 a001 686789568/101521*12752043^(6/17) 2178308999995783 a001 10959/711491*2537720636^(13/15) 2178308999995783 a001 9227465/710647*2537720636^(5/9) 2178308999995783 a001 10959/711491*45537549124^(13/17) 2178308999995783 a001 10959/711491*14662949395604^(13/21) 2178308999995783 a001 10959/711491*(1/2+1/2*5^(1/2))^39 2178308999995783 a001 9227465/710647*(1/2+1/2*5^(1/2))^25 2178308999995783 a001 9227465/710647*3461452808002^(5/12) 2178308999995783 a001 10959/711491*192900153618^(13/18) 2178308999995783 a001 10959/711491*73681302247^(3/4) 2178308999995783 a001 9227465/710647*28143753123^(1/2) 2178308999995783 a001 10959/711491*10749957122^(13/16) 2178308999995783 a001 10959/711491*599074578^(13/14) 2178308999995783 a001 9227465/710647*228826127^(5/8) 2178308999995784 a001 1836311903/710647*12752043^(7/17) 2178308999995784 a001 591286729879/710647*4870847^(1/16) 2178308999995784 a001 701408733/710647*12752043^(8/17) 2178308999995784 a001 3524578/710647*7881196^(9/11) 2178308999995785 a001 433494437/710647*12752043^(1/2) 2178308999995785 a001 267914296/710647*12752043^(9/17) 2178308999995785 a001 14930352/710647*12752043^(12/17) 2178308999995786 a001 14619165/101521*12752043^(10/17) 2178308999995786 a001 39088169/710647*12752043^(11/17) 2178308999995789 a001 317811*4870847^(1/8) 2178308999995791 a001 12422650078059/5702887 2178308999995795 a001 86267571272/710647*4870847^(3/16) 2178308999995801 a001 32951280099/710647*4870847^(1/4) 2178308999995807 a001 12586269025/710647*4870847^(5/16) 2178308999995812 a001 686789568/101521*4870847^(3/8) 2178308999995813 a001 3524578/710647*141422324^(9/13) 2178308999995813 a001 3524578/710647*2537720636^(3/5) 2178308999995813 a001 3524578/710647*45537549124^(9/17) 2178308999995813 a001 317811/7881196*(1/2+1/2*5^(1/2))^37 2178308999995813 a001 3524578/710647*817138163596^(9/19) 2178308999995813 a001 3524578/710647*14662949395604^(3/7) 2178308999995813 a001 3524578/710647*(1/2+1/2*5^(1/2))^27 2178308999995813 a001 3524578/710647*192900153618^(1/2) 2178308999995813 a001 3524578/710647*10749957122^(9/16) 2178308999995813 a001 3524578/710647*599074578^(9/14) 2178308999995815 a001 3524578/710647*33385282^(3/4) 2178308999995818 a001 1836311903/710647*4870847^(7/16) 2178308999995820 a001 591286729879/710647*1860498^(1/15) 2178308999995824 a001 701408733/710647*4870847^(1/2) 2178308999995830 a001 267914296/710647*4870847^(9/16) 2178308999995835 a001 14619165/101521*4870847^(5/8) 2178308999995839 a001 5702887/710647*4870847^(13/16) 2178308999995841 a001 39088169/710647*4870847^(11/16) 2178308999995841 a001 365435296162/710647*1860498^(1/10) 2178308999995845 a001 14930352/710647*4870847^(3/4) 2178308999995857 a001 139583862445/271443*103682^(1/8) 2178308999995862 a001 317811*1860498^(2/15) 2178308999995868 a001 1581676699824/726103 2178308999995883 a001 139583862445/710647*1860498^(1/6) 2178308999995904 a001 196418*167761^(1/5) 2178308999995904 a001 86267571272/710647*1860498^(1/5) 2178308999995946 a001 32951280099/710647*1860498^(4/15) 2178308999995967 a001 20365011074/710647*1860498^(3/10) 2178308999995988 a001 12586269025/710647*1860498^(1/3) 2178308999996018 a001 317811/3010349*2537720636^(7/9) 2178308999996018 a001 317811/3010349*17393796001^(5/7) 2178308999996018 a001 317811/3010349*312119004989^(7/11) 2178308999996018 a001 317811/3010349*14662949395604^(5/9) 2178308999996018 a001 317811/3010349*(1/2+1/2*5^(1/2))^35 2178308999996018 a001 1346269/710647*(1/2+1/2*5^(1/2))^29 2178308999996018 a001 1346269/710647*1322157322203^(1/2) 2178308999996018 a001 317811/3010349*28143753123^(7/10) 2178308999996018 a001 317811/3010349*599074578^(5/6) 2178308999996018 a001 317811/3010349*228826127^(7/8) 2178308999996030 a001 686789568/101521*1860498^(2/5) 2178308999996072 a001 1836311903/710647*1860498^(7/15) 2178308999996086 a001 591286729879/710647*710647^(1/14) 2178308999996093 a001 1134903170/710647*1860498^(1/2) 2178308999996114 a001 701408733/710647*1860498^(8/15) 2178308999996156 a001 267914296/710647*1860498^(3/5) 2178308999996197 a001 14619165/101521*1860498^(2/3) 2178308999996219 a001 63245986/710647*1860498^(7/10) 2178308999996235 a001 139583862445/4870847*439204^(1/3) 2178308999996239 a001 39088169/710647*1860498^(11/15) 2178308999996274 a001 311187/101521*1860498^(14/15) 2178308999996279 a001 14930352/710647*1860498^(4/5) 2178308999996308 a001 9227465/710647*1860498^(5/6) 2178308999996310 a001 5702887/710647*1860498^(13/15) 2178308999996314 a001 365435296162/12752043*439204^(1/3) 2178308999996325 a001 956722026041/33385282*439204^(1/3) 2178308999996327 a001 2504730781961/87403803*439204^(1/3) 2178308999996327 a001 6557470319842/228826127*439204^(1/3) 2178308999996327 a001 10610209857723/370248451*439204^(1/3) 2178308999996327 a001 4052739537881/141422324*439204^(1/3) 2178308999996328 a001 1548008755920/54018521*439204^(1/3) 2178308999996332 a001 591286729879/20633239*439204^(1/3) 2178308999996362 a001 225851433717/7881196*439204^(1/3) 2178308999996379 a001 3524578/710647*1860498^(9/10) 2178308999996394 a001 1812440220357/832040 2178308999996394 a001 317811*710647^(1/7) 2178308999996568 a001 86267571272/3010349*439204^(1/3) 2178308999996702 a001 86267571272/710647*710647^(3/14) 2178308999996720 a001 7778742049/1149851*439204^(4/9) 2178308999996856 a001 53316291173/710647*710647^(1/4) 2178308999996953 a001 75283811239/620166*439204^(2/9) 2178308999997010 a001 32951280099/710647*710647^(2/7) 2178308999997318 a001 12586269025/710647*710647^(5/14) 2178308999997425 a001 317811/1149851*141422324^(11/13) 2178308999997426 a001 317811/1149851*2537720636^(11/15) 2178308999997426 a001 317811/1149851*45537549124^(11/17) 2178308999997426 a001 317811/1149851*312119004989^(3/5) 2178308999997426 a001 317811/1149851*14662949395604^(11/21) 2178308999997426 a001 317811/1149851*(1/2+1/2*5^(1/2))^33 2178308999997426 a001 514229/710647*(1/2+1/2*5^(1/2))^31 2178308999997426 a001 514229/710647*9062201101803^(1/2) 2178308999997426 a001 317811/1149851*192900153618^(11/18) 2178308999997426 a001 317811/1149851*10749957122^(11/16) 2178308999997426 a001 317811/1149851*1568397607^(3/4) 2178308999997426 a001 317811/1149851*599074578^(11/14) 2178308999997427 a001 317811/1149851*33385282^(11/12) 2178308999997490 a001 591286729879/4870847*439204^(2/9) 2178308999997568 a001 516002918640/4250681*439204^(2/9) 2178308999997580 a001 4052739537881/33385282*439204^(2/9) 2178308999997582 a001 3536736619241/29134601*439204^(2/9) 2178308999997583 a001 6557470319842/54018521*439204^(2/9) 2178308999997587 a001 2504730781961/20633239*439204^(2/9) 2178308999997617 a001 956722026041/7881196*439204^(2/9) 2178308999997627 a001 686789568/101521*710647^(3/7) 2178308999997804 a001 5702887/271443*271443^(12/13) 2178308999997822 a001 365435296162/3010349*439204^(2/9) 2178308999997935 a001 1836311903/710647*710647^(1/2) 2178308999997975 a001 32951280099/1149851*439204^(1/3) 2178308999998052 a001 591286729879/710647*271443^(1/13) 2178308999998055 a001 1785473/2+1149851/2*5^(1/2) 2178308999998055 a001 1120149658760/514229 2178308999998207 a001 956722026041/1860498*439204^(1/9) 2178308999998243 a001 701408733/710647*710647^(4/7) 2178308999998444 a001 2/514229*(1/2+1/2*5^(1/2))^61 2178308999998551 a001 267914296/710647*710647^(9/14) 2178308999998745 a001 2504730781961/4870847*439204^(1/9) 2178308999998823 a001 6557470319842/12752043*439204^(1/9) 2178308999998833 a001 416020/930249*(1/2+1/2*5^(1/2))^32 2178308999998833 a001 416020/930249*23725150497407^(1/2) 2178308999998833 a001 416020/930249*73681302247^(8/13) 2178308999998833 a001 416020/930249*10749957122^(2/3) 2178308999998833 a001 416020/930249*4106118243^(16/23) 2178308999998833 a001 416020/930249*1568397607^(8/11) 2178308999998833 a001 416020/930249*599074578^(16/21) 2178308999998833 a001 416020/930249*228826127^(4/5) 2178308999998833 a001 416020/930249*87403803^(16/19) 2178308999998834 a001 416020/930249*33385282^(8/9) 2178308999998842 a001 10610209857723/20633239*439204^(1/9) 2178308999998845 a001 416020/930249*12752043^(16/17) 2178308999998859 a001 14619165/101521*710647^(5/7) 2178308999998872 a001 4052739537881/7881196*439204^(1/9) 2178308999998925 a001 317811+832040*5^(1/2) 2178308999999013 a001 63245986/710647*710647^(3/4) 2178308999999077 a001 1548008755920/3010349*439204^(1/9) 2178308999999167 a001 39088169/710647*710647^(11/14) 2178308999999229 a001 139583862445/1149851*439204^(2/9) 2178308999999257 a001 2932589879120/1346269 2178308999999338 a001 726103/620166*7881196^(10/11) 2178308999999366 a001 726103/620166*20633239^(6/7) 2178308999999370 a001 726103/620166*141422324^(10/13) 2178308999999370 a001 726103/620166*2537720636^(2/3) 2178308999999370 a001 832040/4870847*45537549124^(2/3) 2178308999999370 a001 726103/620166*45537549124^(10/17) 2178308999999370 a001 726103/620166*312119004989^(6/11) 2178308999999370 a001 832040/4870847*(1/2+1/2*5^(1/2))^34 2178308999999370 a001 726103/620166*14662949395604^(10/21) 2178308999999370 a001 726103/620166*(1/2+1/2*5^(1/2))^30 2178308999999370 a001 726103/620166*192900153618^(5/9) 2178308999999370 a001 726103/620166*28143753123^(3/5) 2178308999999370 a001 726103/620166*10749957122^(5/8) 2178308999999370 a001 832040/4870847*10749957122^(17/24) 2178308999999370 a001 726103/620166*4106118243^(15/23) 2178308999999370 a001 832040/4870847*4106118243^(17/23) 2178308999999370 a001 726103/620166*1568397607^(15/22) 2178308999999370 a001 832040/4870847*1568397607^(17/22) 2178308999999370 a001 726103/620166*599074578^(5/7) 2178308999999370 a001 832040/4870847*599074578^(17/21) 2178308999999370 a001 726103/620166*228826127^(3/4) 2178308999999370 a001 832040/4870847*228826127^(17/20) 2178308999999370 a001 726103/620166*87403803^(15/19) 2178308999999370 a001 832040/4870847*87403803^(17/19) 2178308999999372 a001 726103/620166*33385282^(5/6) 2178308999999372 a001 832040/4870847*33385282^(17/18) 2178308999999382 a001 726103/620166*12752043^(15/17) 2178308999999432 a001 3838809989300/1762289 2178308999999436 a001 39088169/1860498*7881196^(8/11) 2178308999999438 a001 9227465/1860498*7881196^(9/11) 2178308999999439 a001 831985/15126*7881196^(2/3) 2178308999999440 a001 165580141/1860498*7881196^(7/11) 2178308999999443 a001 233802911/620166*7881196^(6/11) 2178308999999445 a001 5702887/1860498*20633239^(4/5) 2178308999999446 a001 2971215073/1860498*7881196^(5/11) 2178308999999449 a001 832040/12752043*141422324^(12/13) 2178308999999449 a001 832040/12752043*2537720636^(4/5) 2178308999999449 a001 5702887/1860498*17393796001^(4/7) 2178308999999449 a001 832040/12752043*45537549124^(12/17) 2178308999999449 a001 832040/12752043*(1/2+1/2*5^(1/2))^36 2178308999999449 a001 5702887/1860498*14662949395604^(4/9) 2178308999999449 a001 5702887/1860498*(1/2+1/2*5^(1/2))^28 2178308999999449 a001 832040/12752043*192900153618^(2/3) 2178308999999449 a001 5702887/1860498*73681302247^(7/13) 2178308999999449 a001 832040/12752043*73681302247^(9/13) 2178308999999449 a001 5702887/1860498*10749957122^(7/12) 2178308999999449 a001 832040/12752043*10749957122^(3/4) 2178308999999449 a001 5702887/1860498*4106118243^(14/23) 2178308999999449 a001 832040/12752043*4106118243^(18/23) 2178308999999449 a001 5702887/1860498*1568397607^(7/11) 2178308999999449 a001 832040/12752043*1568397607^(9/11) 2178308999999449 a001 5702887/1860498*599074578^(2/3) 2178308999999449 a001 832040/12752043*599074578^(6/7) 2178308999999449 a001 5702887/1860498*228826127^(7/10) 2178308999999449 a001 832040/12752043*228826127^(9/10) 2178308999999449 a001 5702887/1860498*87403803^(14/19) 2178308999999449 a001 832040/12752043*87403803^(18/19) 2178308999999449 a001 12586269025/1860498*7881196^(4/11) 2178308999999450 a001 5702887/1860498*33385282^(7/9) 2178308999999450 a001 10182505537/930249*7881196^(1/3) 2178308999999452 a001 53316291173/1860498*7881196^(3/11) 2178308999999456 a001 75283811239/620166*7881196^(2/11) 2178308999999456 a001 726103/620166*4870847^(15/16) 2178308999999458 a001 4020054011336/1845493 2178308999999459 a001 956722026041/1860498*7881196^(1/11) 2178308999999459 a001 165580141/1860498*20633239^(3/5) 2178308999999459 a001 133957148/930249*20633239^(4/7) 2178308999999459 a001 24157817/1860498*20633239^(5/7) 2178308999999460 a001 5702887/1860498*12752043^(14/17) 2178308999999460 a001 2971215073/1860498*20633239^(3/7) 2178308999999460 a001 267084832/103361*20633239^(2/5) 2178308999999460 a001 829464/103361*141422324^(2/3) 2178308999999460 a001 416020/16692641*817138163596^(2/3) 2178308999999460 a001 416020/16692641*(1/2+1/2*5^(1/2))^38 2178308999999460 a001 829464/103361*(1/2+1/2*5^(1/2))^26 2178308999999460 a001 829464/103361*73681302247^(1/2) 2178308999999460 a001 829464/103361*10749957122^(13/24) 2178308999999460 a001 416020/16692641*10749957122^(19/24) 2178308999999460 a001 829464/103361*4106118243^(13/23) 2178308999999460 a001 416020/16692641*4106118243^(19/23) 2178308999999460 a001 829464/103361*1568397607^(13/22) 2178308999999460 a001 416020/16692641*1568397607^(19/22) 2178308999999460 a001 829464/103361*599074578^(13/21) 2178308999999460 a001 416020/16692641*599074578^(19/21) 2178308999999460 a001 829464/103361*228826127^(13/20) 2178308999999460 a001 416020/16692641*228826127^(19/20) 2178308999999460 a001 829464/103361*87403803^(13/19) 2178308999999461 a001 10983760033/620166*20633239^(2/7) 2178308999999461 a001 139583862445/1860498*20633239^(1/5) 2178308999999461 a001 182717648081/930249*20633239^(1/7) 2178308999999461 a001 52623190191440/24157817 2178308999999461 a001 829464/103361*33385282^(13/18) 2178308999999462 a001 39088169/1860498*141422324^(8/13) 2178308999999462 a001 832040/87403803*2537720636^(8/9) 2178308999999462 a001 39088169/1860498*2537720636^(8/15) 2178308999999462 a001 39088169/1860498*45537549124^(8/17) 2178308999999462 a001 832040/87403803*312119004989^(8/11) 2178308999999462 a001 832040/87403803*23725150497407^(5/8) 2178308999999462 a001 39088169/1860498*14662949395604^(8/21) 2178308999999462 a001 39088169/1860498*(1/2+1/2*5^(1/2))^24 2178308999999462 a001 39088169/1860498*192900153618^(4/9) 2178308999999462 a001 39088169/1860498*73681302247^(6/13) 2178308999999462 a001 832040/87403803*73681302247^(10/13) 2178308999999462 a001 832040/87403803*28143753123^(4/5) 2178308999999462 a001 39088169/1860498*10749957122^(1/2) 2178308999999462 a001 832040/87403803*10749957122^(5/6) 2178308999999462 a001 39088169/1860498*4106118243^(12/23) 2178308999999462 a001 832040/87403803*4106118243^(20/23) 2178308999999462 a001 39088169/1860498*1568397607^(6/11) 2178308999999462 a001 832040/87403803*1568397607^(10/11) 2178308999999462 a001 39088169/1860498*599074578^(4/7) 2178308999999462 a001 832040/87403803*599074578^(20/21) 2178308999999462 a001 39088169/1860498*228826127^(3/5) 2178308999999462 a001 39088169/1860498*87403803^(12/19) 2178308999999462 a001 68884650258820/31622993 2178308999999462 a001 233802911/620166*141422324^(6/13) 2178308999999462 a001 165580141/1860498*141422324^(7/13) 2178308999999462 a001 832040/228826127*2537720636^(14/15) 2178308999999462 a001 2971215073/1860498*141422324^(5/13) 2178308999999462 a001 832040/228826127*17393796001^(6/7) 2178308999999462 a001 832040/228826127*45537549124^(14/17) 2178308999999462 a001 831985/15126*312119004989^(2/5) 2178308999999462 a001 832040/228826127*14662949395604^(2/3) 2178308999999462 a001 831985/15126*(1/2+1/2*5^(1/2))^22 2178308999999462 a001 832040/228826127*192900153618^(7/9) 2178308999999462 a001 831985/15126*10749957122^(11/24) 2178308999999462 a001 832040/228826127*10749957122^(7/8) 2178308999999462 a001 831985/15126*4106118243^(11/23) 2178308999999462 a001 832040/228826127*4106118243^(21/23) 2178308999999462 a001 831985/15126*1568397607^(1/2) 2178308999999462 a001 832040/228826127*1568397607^(21/22) 2178308999999462 a001 831985/15126*599074578^(11/21) 2178308999999462 a001 7778742049/1860498*141422324^(1/3) 2178308999999462 a001 12586269025/1860498*141422324^(4/13) 2178308999999462 a001 53316291173/1860498*141422324^(3/13) 2178308999999462 a001 831985/15126*228826127^(11/20) 2178308999999462 a001 75283811239/620166*141422324^(2/13) 2178308999999462 a001 360684711361480/165580141 2178308999999462 a001 956722026041/1860498*141422324^(1/13) 2178308999999462 a001 133957148/930249*2537720636^(4/9) 2178308999999462 a001 416020/299537289*312119004989^(4/5) 2178308999999462 a001 133957148/930249*(1/2+1/2*5^(1/2))^20 2178308999999462 a001 133957148/930249*23725150497407^(5/16) 2178308999999462 a001 133957148/930249*505019158607^(5/14) 2178308999999462 a001 133957148/930249*73681302247^(5/13) 2178308999999462 a001 416020/299537289*73681302247^(11/13) 2178308999999462 a001 133957148/930249*28143753123^(2/5) 2178308999999462 a001 133957148/930249*10749957122^(5/12) 2178308999999462 a001 416020/299537289*10749957122^(11/12) 2178308999999462 a001 133957148/930249*4106118243^(10/23) 2178308999999462 a001 416020/299537289*4106118243^(22/23) 2178308999999462 a001 133957148/930249*1568397607^(5/11) 2178308999999462 a001 133957148/930249*599074578^(10/21) 2178308999999462 a001 944284833566800/433494437 2178308999999462 a001 233802911/620166*2537720636^(2/5) 2178308999999462 a001 233802911/620166*45537549124^(6/17) 2178308999999462 a001 233802911/620166*14662949395604^(2/7) 2178308999999462 a001 233802911/620166*(1/2+1/2*5^(1/2))^18 2178308999999462 a001 233802911/620166*192900153618^(1/3) 2178308999999462 a001 233802911/620166*10749957122^(3/8) 2178308999999462 a001 832040/1568397607*10749957122^(23/24) 2178308999999462 a001 233802911/620166*4106118243^(9/23) 2178308999999462 a001 233802911/620166*1568397607^(9/22) 2178308999999462 a001 4052737359572/1860497 2178308999999462 a001 832040/4106118243*45537549124^(16/17) 2178308999999462 a001 1836311903/1860498*(1/2+1/2*5^(1/2))^16 2178308999999462 a001 1836311903/1860498*23725150497407^(1/4) 2178308999999462 a001 832040/4106118243*192900153618^(8/9) 2178308999999462 a001 1836311903/1860498*73681302247^(4/13) 2178308999999462 a001 832040/4106118243*73681302247^(12/13) 2178308999999462 a001 1836311903/1860498*10749957122^(1/3) 2178308999999462 a001 12586269025/1860498*2537720636^(4/15) 2178308999999462 a001 1836311903/1860498*4106118243^(8/23) 2178308999999462 a001 10983760033/620166*2537720636^(2/9) 2178308999999462 a001 53316291173/1860498*2537720636^(1/5) 2178308999999462 a001 2971215073/1860498*2537720636^(1/3) 2178308999999462 a001 75283811239/620166*2537720636^(2/15) 2178308999999462 a001 6472224534449960/2971215073 2178308999999462 a001 182717648081/930249*2537720636^(1/9) 2178308999999462 a001 956722026041/1860498*2537720636^(1/15) 2178308999999462 a001 267084832/103361*17393796001^(2/7) 2178308999999462 a001 416020/5374978561*312119004989^(10/11) 2178308999999462 a001 267084832/103361*14662949395604^(2/9) 2178308999999462 a001 267084832/103361*(1/2+1/2*5^(1/2))^14 2178308999999462 a001 267084832/103361*10749957122^(7/24) 2178308999999462 a001 16944503814010960/7778742049 2178308999999462 a001 12586269025/1860498*45537549124^(4/17) 2178308999999462 a001 12586269025/1860498*817138163596^(4/19) 2178308999999462 a001 12586269025/1860498*14662949395604^(4/21) 2178308999999462 a001 12586269025/1860498*(1/2+1/2*5^(1/2))^12 2178308999999462 a001 12586269025/1860498*192900153618^(2/9) 2178308999999462 a001 12586269025/1860498*73681302247^(3/13) 2178308999999462 a001 139583862445/1860498*17393796001^(1/7) 2178308999999462 a001 22180643453791460/10182505537 2178308999999462 a001 10983760033/620166*312119004989^(2/11) 2178308999999462 a001 10983760033/620166*(1/2+1/2*5^(1/2))^10 2178308999999462 a001 116139356908737800/53316291173 2178308999999462 a001 416020/96450076809*14662949395604^(8/9) 2178308999999462 a001 43133785636/930249*505019158607^(1/7) 2178308999999462 a001 75283811239/620166*(1/2+1/2*5^(1/2))^6 2178308999999462 a001 1288005205275676800/591286729879 2178308999999462 a001 182717648081/930249*312119004989^(1/11) 2178308999999462 a001 182717648081/930249*(1/2+1/2*5^(1/2))^5 2178308999999462 a001 139583862445/1860498*14662949395604^(1/9) 2178308999999462 a001 139583862445/1860498*(1/2+1/2*5^(1/2))^7 2178308999999462 a001 591286729879/1860498*73681302247^(1/13) 2178308999999462 a001 23489678363736585/10783446409 2178308999999462 a001 10983760033/620166*28143753123^(1/5) 2178308999999462 a001 53316291173/1860498*14662949395604^(1/7) 2178308999999462 a001 53316291173/1860498*(1/2+1/2*5^(1/2))^9 2178308999999462 a001 53316291173/1860498*192900153618^(1/6) 2178308999999462 a001 182717648081/930249*28143753123^(1/10) 2178308999999462 a001 71778070001154880/32951280099 2178308999999462 a001 832040*10749957122^(1/24) 2178308999999462 a001 10182505537/930249*312119004989^(1/5) 2178308999999462 a001 10182505537/930249*(1/2+1/2*5^(1/2))^11 2178308999999462 a001 956722026041/1860498*10749957122^(1/16) 2178308999999462 a001 591286729879/1860498*10749957122^(1/12) 2178308999999462 a001 12586269025/1860498*10749957122^(1/4) 2178308999999462 a001 498486965337672/228841255 2178308999999462 a001 43133785636/930249*10749957122^(1/6) 2178308999999462 a001 10983760033/620166*10749957122^(5/24) 2178308999999462 a001 53316291173/1860498*10749957122^(3/16) 2178308999999462 a001 832040*4106118243^(1/23) 2178308999999462 a001 832040/17393796001*817138163596^(17/19) 2178308999999462 a001 832040/17393796001*14662949395604^(17/21) 2178308999999462 a001 7778742049/1860498*(1/2+1/2*5^(1/2))^13 2178308999999462 a001 832040/17393796001*192900153618^(17/18) 2178308999999462 a001 7778742049/1860498*73681302247^(1/4) 2178308999999462 a001 591286729879/1860498*4106118243^(2/23) 2178308999999462 a001 1309034909945125/600940872 2178308999999462 a001 75283811239/620166*4106118243^(3/23) 2178308999999462 a001 267084832/103361*4106118243^(7/23) 2178308999999462 a001 43133785636/930249*4106118243^(4/23) 2178308999999462 a001 10983760033/620166*4106118243^(5/23) 2178308999999462 a001 12586269025/1860498*4106118243^(6/23) 2178308999999462 a001 832040*1568397607^(1/22) 2178308999999462 a001 2971215073/1860498*45537549124^(5/17) 2178308999999462 a001 2971215073/1860498*312119004989^(3/11) 2178308999999462 a001 2971215073/1860498*14662949395604^(5/21) 2178308999999462 a001 2971215073/1860498*(1/2+1/2*5^(1/2))^15 2178308999999462 a001 832040/6643838879*505019158607^(7/8) 2178308999999462 a001 2971215073/1860498*192900153618^(5/18) 2178308999999462 a001 2971215073/1860498*28143753123^(3/10) 2178308999999462 a001 2971215073/1860498*10749957122^(5/16) 2178308999999462 a001 591286729879/1860498*1568397607^(1/11) 2178308999999462 a001 4000054745111040/1836311903 2178308999999462 a001 75283811239/620166*1568397607^(3/22) 2178308999999462 a001 43133785636/930249*1568397607^(2/11) 2178308999999462 a001 1836311903/1860498*1568397607^(4/11) 2178308999999462 a001 10983760033/620166*1568397607^(5/22) 2178308999999462 a001 10182505537/930249*1568397607^(1/4) 2178308999999462 a001 12586269025/1860498*1568397607^(3/11) 2178308999999462 a001 267084832/103361*1568397607^(7/22) 2178308999999462 a001 832040*599074578^(1/21) 2178308999999462 a001 567451585/930249*45537549124^(1/3) 2178308999999462 a001 567451585/930249*(1/2+1/2*5^(1/2))^17 2178308999999462 a001 956722026041/1860498*599074578^(1/14) 2178308999999462 a001 591286729879/1860498*599074578^(2/21) 2178308999999462 a001 1527884955772120/701408733 2178308999999462 a001 75283811239/620166*599074578^(1/7) 2178308999999462 a001 139583862445/1860498*599074578^(1/6) 2178308999999462 a001 43133785636/930249*599074578^(4/21) 2178308999999462 a001 53316291173/1860498*599074578^(3/14) 2178308999999462 a001 10983760033/620166*599074578^(5/21) 2178308999999462 a001 233802911/620166*599074578^(3/7) 2178308999999462 a001 12586269025/1860498*599074578^(2/7) 2178308999999462 a001 267084832/103361*599074578^(1/3) 2178308999999462 a001 832040*228826127^(1/20) 2178308999999462 a001 1836311903/1860498*599074578^(8/21) 2178308999999462 a001 2971215073/1860498*599074578^(5/14) 2178308999999462 a001 832040/969323029*45537549124^(15/17) 2178308999999462 a001 832040/969323029*312119004989^(9/11) 2178308999999462 a001 433494437/1860498*817138163596^(1/3) 2178308999999462 a001 433494437/1860498*(1/2+1/2*5^(1/2))^19 2178308999999462 a001 832040/969323029*192900153618^(5/6) 2178308999999462 a001 832040/969323029*28143753123^(9/10) 2178308999999462 a001 832040/969323029*10749957122^(15/16) 2178308999999462 a001 591286729879/1860498*228826127^(1/10) 2178308999999462 a001 72950015275665/33489287 2178308999999462 a001 182717648081/930249*228826127^(1/8) 2178308999999462 a001 75283811239/620166*228826127^(3/20) 2178308999999462 a001 43133785636/930249*228826127^(1/5) 2178308999999462 a001 10983760033/620166*228826127^(1/4) 2178308999999462 a001 12586269025/1860498*228826127^(3/10) 2178308999999462 a001 267084832/103361*228826127^(7/20) 2178308999999462 a001 133957148/930249*228826127^(1/2) 2178308999999462 a001 832040*87403803^(1/19) 2178308999999462 a001 2971215073/1860498*228826127^(3/8) 2178308999999462 a001 165580141/1860498*2537720636^(7/15) 2178308999999462 a001 165580141/1860498*17393796001^(3/7) 2178308999999462 a001 165580141/1860498*45537549124^(7/17) 2178308999999462 a001 165580141/1860498*14662949395604^(1/3) 2178308999999462 a001 165580141/1860498*(1/2+1/2*5^(1/2))^21 2178308999999462 a001 165580141/1860498*192900153618^(7/18) 2178308999999462 a001 165580141/1860498*10749957122^(7/16) 2178308999999462 a001 1836311903/1860498*228826127^(2/5) 2178308999999462 a001 233802911/620166*228826127^(9/20) 2178308999999462 a001 165580141/1860498*599074578^(1/2) 2178308999999462 a001 591286729879/1860498*87403803^(2/19) 2178308999999462 a001 4053007469888/1860621 2178308999999462 a001 75283811239/620166*87403803^(3/19) 2178308999999462 a001 43133785636/930249*87403803^(4/19) 2178308999999462 a001 10983760033/620166*87403803^(5/19) 2178308999999462 a001 12586269025/1860498*87403803^(6/19) 2178308999999462 a001 267084832/103361*87403803^(7/19) 2178308999999462 a001 832040*33385282^(1/18) 2178308999999462 a001 31622993/930249*(1/2+1/2*5^(1/2))^23 2178308999999462 a001 31622993/930249*4106118243^(1/2) 2178308999999462 a001 1836311903/1860498*87403803^(8/19) 2178308999999462 a001 831985/15126*87403803^(11/19) 2178308999999462 a001 233802911/620166*87403803^(9/19) 2178308999999462 a001 133957148/930249*87403803^(10/19) 2178308999999462 a001 433494437/1860498*87403803^(1/2) 2178308999999462 a001 956722026041/1860498*33385282^(1/12) 2178308999999462 a001 591286729879/1860498*33385282^(1/9) 2178308999999462 a001 85146110326200/39088169 2178308999999462 a001 75283811239/620166*33385282^(1/6) 2178308999999462 a001 43133785636/930249*33385282^(2/9) 2178308999999462 a001 53316291173/1860498*33385282^(1/4) 2178308999999463 a001 10983760033/620166*33385282^(5/18) 2178308999999463 a001 12586269025/1860498*33385282^(1/3) 2178308999999463 a001 832040/54018521*2537720636^(13/15) 2178308999999463 a001 24157817/1860498*2537720636^(5/9) 2178308999999463 a001 832040/54018521*45537549124^(13/17) 2178308999999463 a001 24157817/1860498*312119004989^(5/11) 2178308999999463 a001 24157817/1860498*(1/2+1/2*5^(1/2))^25 2178308999999463 a001 24157817/1860498*3461452808002^(5/12) 2178308999999463 a001 832040/54018521*192900153618^(13/18) 2178308999999463 a001 832040/54018521*73681302247^(3/4) 2178308999999463 a001 24157817/1860498*28143753123^(1/2) 2178308999999463 a001 832040/54018521*10749957122^(13/16) 2178308999999463 a001 832040/54018521*599074578^(13/14) 2178308999999463 a001 267084832/103361*33385282^(7/18) 2178308999999463 a001 24157817/1860498*228826127^(5/8) 2178308999999463 a001 832040*12752043^(1/17) 2178308999999463 a001 2971215073/1860498*33385282^(5/12) 2178308999999463 a001 1836311903/1860498*33385282^(4/9) 2178308999999463 a001 233802911/620166*33385282^(1/2) 2178308999999463 a001 39088169/1860498*33385282^(2/3) 2178308999999463 a001 133957148/930249*33385282^(5/9) 2178308999999463 a001 831985/15126*33385282^(11/18) 2178308999999463 a001 165580141/1860498*33385282^(7/12) 2178308999999464 a001 591286729879/1860498*12752043^(2/17) 2178308999999464 a001 4065365016845/1866294 2178308999999464 a001 75283811239/620166*12752043^(3/17) 2178308999999465 a001 43133785636/930249*12752043^(4/17) 2178308999999466 a001 10983760033/620166*12752043^(5/17) 2178308999999467 a001 12586269025/1860498*12752043^(6/17) 2178308999999467 a001 9227465/1860498*141422324^(9/13) 2178308999999467 a001 9227465/1860498*2537720636^(3/5) 2178308999999467 a001 9227465/1860498*45537549124^(9/17) 2178308999999467 a001 9227465/1860498*817138163596^(9/19) 2178308999999467 a001 75640/1875749*(1/2+1/2*5^(1/2))^37 2178308999999467 a001 9227465/1860498*14662949395604^(3/7) 2178308999999467 a001 9227465/1860498*(1/2+1/2*5^(1/2))^27 2178308999999467 a001 9227465/1860498*192900153618^(1/2) 2178308999999467 a001 9227465/1860498*10749957122^(9/16) 2178308999999467 a001 9227465/1860498*599074578^(9/14) 2178308999999468 a001 267084832/103361*12752043^(7/17) 2178308999999468 a001 832040*4870847^(1/16) 2178308999999468 a001 1836311903/1860498*12752043^(8/17) 2178308999999469 a001 9227465/1860498*33385282^(3/4) 2178308999999469 a001 567451585/930249*12752043^(1/2) 2178308999999469 a001 233802911/620166*12752043^(9/17) 2178308999999470 a001 133957148/930249*12752043^(10/17) 2178308999999470 a001 829464/103361*12752043^(13/17) 2178308999999471 a001 831985/15126*12752043^(11/17) 2178308999999471 a001 39088169/1860498*12752043^(12/17) 2178308999999473 a001 14930352/710647*710647^(6/7) 2178308999999473 a001 12422650078080/5702887 2178308999999473 a001 591286729879/1860498*4870847^(1/8) 2178308999999479 a001 75283811239/620166*4870847^(3/16) 2178308999999485 a001 43133785636/930249*4870847^(1/4) 2178308999999491 a001 10983760033/620166*4870847^(5/16) 2178308999999496 a001 12586269025/1860498*4870847^(3/8) 2178308999999497 a001 208010/1970299*2537720636^(7/9) 2178308999999497 a001 208010/1970299*17393796001^(5/7) 2178308999999497 a001 208010/1970299*312119004989^(7/11) 2178308999999497 a001 208010/1970299*(1/2+1/2*5^(1/2))^35 2178308999999497 a001 1762289/930249*(1/2+1/2*5^(1/2))^29 2178308999999497 a001 1762289/930249*1322157322203^(1/2) 2178308999999497 a001 208010/1970299*505019158607^(5/8) 2178308999999497 a001 208010/1970299*28143753123^(7/10) 2178308999999497 a001 208010/1970299*599074578^(5/6) 2178308999999497 a001 208010/1970299*228826127^(7/8) 2178308999999502 a001 267084832/103361*4870847^(7/16) 2178308999999504 a001 832040*1860498^(1/15) 2178308999999508 a001 1836311903/1860498*4870847^(1/2) 2178308999999514 a001 233802911/620166*4870847^(9/16) 2178308999999519 a001 133957148/930249*4870847^(5/8) 2178308999999525 a001 956722026041/1860498*1860498^(1/10) 2178308999999525 a001 831985/15126*4870847^(11/16) 2178308999999529 a001 5702887/1860498*4870847^(7/8) 2178308999999531 a001 39088169/1860498*4870847^(3/4) 2178308999999535 a001 829464/103361*4870847^(13/16) 2178308999999540 a001 4745030099480/2178309 2178308999999546 a001 591286729879/1860498*1860498^(2/15) 2178308999999567 a001 182717648081/930249*1860498^(1/6) 2178308999999588 a001 75283811239/620166*1860498^(1/5) 2178308999999630 a001 43133785636/930249*1860498^(4/15) 2178308999999651 a001 53316291173/1860498*1860498^(3/10) 2178308999999672 a001 10983760033/620166*1860498^(1/3) 2178308999999702 a001 832040/3010349*141422324^(11/13) 2178308999999702 a001 832040/3010349*2537720636^(11/15) 2178308999999702 a001 832040/3010349*45537549124^(11/17) 2178308999999702 a001 832040/3010349*312119004989^(3/5) 2178308999999702 a001 832040/3010349*14662949395604^(11/21) 2178308999999702 a001 832040/3010349*(1/2+1/2*5^(1/2))^33 2178308999999702 a001 1346269/1860498*(1/2+1/2*5^(1/2))^31 2178308999999702 a001 1346269/1860498*9062201101803^(1/2) 2178308999999702 a001 832040/3010349*192900153618^(11/18) 2178308999999702 a001 832040/3010349*10749957122^(11/16) 2178308999999702 a001 832040/3010349*1568397607^(3/4) 2178308999999702 a001 832040/3010349*599074578^(11/14) 2178308999999704 a001 832040/3010349*33385282^(11/12) 2178308999999714 a001 12586269025/1860498*1860498^(2/5) 2178308999999756 a001 267084832/103361*1860498^(7/15) 2178308999999770 a001 5702887/710647*710647^(13/14) 2178308999999770 a001 832040*710647^(1/14) 2178308999999777 a001 2971215073/1860498*1860498^(1/2) 2178308999999794 a001 -514229/2+2178309/2*5^(1/2) 2178308999999798 a001 1836311903/1860498*1860498^(8/15) 2178308999999840 a001 233802911/620166*1860498^(3/5) 2178308999999851 a001 2/1346269*(1/2+1/2*5^(1/2))^63 2178308999999882 a001 133957148/930249*1860498^(2/3) 2178308999999903 a001 165580141/1860498*1860498^(7/10) 2178308999999908 a001 2178309/4870847*(1/2+1/2*5^(1/2))^32 2178308999999908 a001 2178309/4870847*23725150497407^(1/2) 2178308999999908 a001 2178309/4870847*73681302247^(8/13) 2178308999999908 a001 2178309/4870847*10749957122^(2/3) 2178308999999908 a001 2178309/4870847*4106118243^(16/23) 2178308999999908 a001 2178309/4870847*1568397607^(8/11) 2178308999999908 a001 2178309/4870847*599074578^(16/21) 2178308999999908 a001 2178309/4870847*228826127^(4/5) 2178308999999908 a001 2178309/4870847*87403803^(16/19) 2178308999999909 a001 2178309/4870847*33385282^(8/9) 2178308999999920 a001 2178309/4870847*12752043^(16/17) 2178308999999923 a001 831985/15126*1860498^(11/15) 2178308999999954 a001 5702887/4870847*7881196^(10/11) 2178308999999965 a001 39088169/1860498*1860498^(4/5) 2178308999999972 a001 24157817/4870847*7881196^(9/11) 2178308999999974 a001 102334155/4870847*7881196^(8/11) 2178308999999976 a001 267914296/4870847*7881196^(2/3) 2178308999999977 a001 433494437/4870847*7881196^(7/11) 2178308999999980 a001 1836311903/4870847*7881196^(6/11) 2178308999999982 a001 5702887/4870847*20633239^(6/7) 2178308999999984 a001 7778742049/4870847*7881196^(5/11) 2178308999999986 a001 5702887/4870847*141422324^(10/13) 2178308999999986 a001 5702887/4870847*2537720636^(2/3) 2178308999999986 a001 726103/4250681*45537549124^(2/3) 2178308999999986 a001 5702887/4870847*45537549124^(10/17) 2178308999999986 a001 5702887/4870847*312119004989^(6/11) 2178308999999986 a001 5702887/4870847*14662949395604^(10/21) 2178308999999986 a001 726103/4250681*(1/2+1/2*5^(1/2))^34 2178308999999986 a001 5702887/4870847*(1/2+1/2*5^(1/2))^30 2178308999999986 a001 5702887/4870847*192900153618^(5/9) 2178308999999986 a001 5702887/4870847*28143753123^(3/5) 2178308999999986 a001 5702887/4870847*10749957122^(5/8) 2178308999999986 a001 726103/4250681*10749957122^(17/24) 2178308999999986 a001 5702887/4870847*4106118243^(15/23) 2178308999999986 a001 726103/4250681*4106118243^(17/23) 2178308999999986 a001 5702887/4870847*1568397607^(15/22) 2178308999999986 a001 726103/4250681*1568397607^(17/22) 2178308999999986 a001 5702887/4870847*599074578^(5/7) 2178308999999986 a001 726103/4250681*599074578^(17/21) 2178308999999986 a001 5702887/4870847*228826127^(3/4) 2178308999999986 a001 726103/4250681*228826127^(17/20) 2178308999999986 a001 5702887/4870847*87403803^(15/19) 2178308999999986 a001 726103/4250681*87403803^(17/19) 2178308999999987 a001 32951280099/4870847*7881196^(4/11) 2178308999999987 a001 24157817/1860498*1860498^(5/6) 2178308999999988 a001 5702887/4870847*33385282^(5/6) 2178308999999988 a001 53316291173/4870847*7881196^(1/3) 2178308999999988 a001 726103/4250681*33385282^(17/18) 2178308999999990 a001 139583862445/4870847*7881196^(3/11) 2178308999999993 a001 591286729879/4870847*7881196^(2/11) 2178308999999993 a001 14930352/4870847*20633239^(4/5) 2178308999999996 a001 63245986/4870847*20633239^(5/7) 2178308999999996 a001 2504730781961/4870847*7881196^(1/11) 2178308999999996 a001 433494437/4870847*20633239^(3/5) 2178308999999997 a001 701408733/4870847*20633239^(4/7) 2178308999999997 a001 7778742049/4870847*20633239^(3/7) 2178308999999997 a001 311187/4769326*141422324^(12/13) 2178308999999997 a001 12586269025/4870847*20633239^(2/5) 2178308999999998 a001 311187/4769326*2537720636^(4/5) 2178308999999998 a001 14930352/4870847*17393796001^(4/7) 2178308999999998 a001 311187/4769326*45537549124^(12/17) 2178308999999998 a001 14930352/4870847*14662949395604^(4/9) 2178308999999998 a001 311187/4769326*(1/2+1/2*5^(1/2))^36 2178308999999998 a001 14930352/4870847*(1/2+1/2*5^(1/2))^28 2178308999999998 a001 311187/4769326*192900153618^(2/3) 2178308999999998 a001 14930352/4870847*73681302247^(7/13) 2178308999999998 a001 311187/4769326*73681302247^(9/13) 2178308999999998 a001 14930352/4870847*10749957122^(7/12) 2178308999999998 a001 311187/4769326*10749957122^(3/4) 2178308999999998 a001 14930352/4870847*4106118243^(14/23) 2178308999999998 a001 311187/4769326*4106118243^(18/23) 2178308999999998 a001 14930352/4870847*1568397607^(7/11) 2178308999999998 a001 311187/4769326*1568397607^(9/11) 2178308999999998 a001 14930352/4870847*599074578^(2/3) 2178308999999998 a001 311187/4769326*599074578^(6/7) 2178308999999998 a001 14930352/4870847*228826127^(7/10) 2178308999999998 a001 311187/4769326*228826127^(9/10) 2178308999999998 a001 14930352/4870847*87403803^(14/19) 2178308999999998 a001 311187/4769326*87403803^(18/19) 2178308999999998 a001 5702887/4870847*12752043^(15/17) 2178308999999998 a001 86267571272/4870847*20633239^(2/7) 2178308999999998 a001 365435296162/4870847*20633239^(1/5) 2178308999999999 a001 956722026041/4870847*20633239^(1/7) 2178308999999999 a001 14930352/4870847*33385282^(7/9) 2178308999999999 a001 39088169/4870847*141422324^(2/3) 2178308999999999 a001 726103/29134601*817138163596^(2/3) 2178308999999999 a001 39088169/4870847*(1/2+1/2*5^(1/2))^26 2178308999999999 a001 39088169/4870847*73681302247^(1/2) 2178308999999999 a001 39088169/4870847*10749957122^(13/24) 2178308999999999 a001 726103/29134601*10749957122^(19/24) 2178308999999999 a001 39088169/4870847*4106118243^(13/23) 2178308999999999 a001 726103/29134601*4106118243^(19/23) 2178308999999999 a001 39088169/4870847*1568397607^(13/22) 2178308999999999 a001 726103/29134601*1568397607^(19/22) 2178308999999999 a001 39088169/4870847*599074578^(13/21) 2178308999999999 a001 726103/29134601*599074578^(19/21) 2178308999999999 a001 39088169/4870847*228826127^(13/20) 2178308999999999 a001 726103/29134601*228826127^(19/20) 2178308999999999 a001 102334155/4870847*141422324^(8/13) 2178308999999999 a001 39088169/4870847*87403803^(13/19) 2178308999999999 a001 433494437/4870847*141422324^(7/13) 2178308999999999 a001 1836311903/4870847*141422324^(6/13) 2178308999999999 a001 46347/4868641*2537720636^(8/9) 2178308999999999 a001 7778742049/4870847*141422324^(5/13) 2178308999999999 a001 102334155/4870847*2537720636^(8/15) 2178308999999999 a001 102334155/4870847*45537549124^(8/17) 2178308999999999 a001 46347/4868641*312119004989^(8/11) 2178308999999999 a001 102334155/4870847*14662949395604^(8/21) 2178308999999999 a001 46347/4868641*23725150497407^(5/8) 2178308999999999 a001 102334155/4870847*(1/2+1/2*5^(1/2))^24 2178308999999999 a001 102334155/4870847*192900153618^(4/9) 2178308999999999 a001 102334155/4870847*73681302247^(6/13) 2178308999999999 a001 46347/4868641*73681302247^(10/13) 2178308999999999 a001 46347/4868641*28143753123^(4/5) 2178308999999999 a001 102334155/4870847*10749957122^(1/2) 2178308999999999 a001 46347/4868641*10749957122^(5/6) 2178308999999999 a001 102334155/4870847*4106118243^(12/23) 2178308999999999 a001 46347/4868641*4106118243^(20/23) 2178308999999999 a001 102334155/4870847*1568397607^(6/11) 2178308999999999 a001 46347/4868641*1568397607^(10/11) 2178308999999999 a001 102334155/4870847*599074578^(4/7) 2178308999999999 a001 20365011074/4870847*141422324^(1/3) 2178308999999999 a001 46347/4868641*599074578^(20/21) 2178308999999999 a001 32951280099/4870847*141422324^(4/13) 2178308999999999 a001 139583862445/4870847*141422324^(3/13) 2178308999999999 a001 591286729879/4870847*141422324^(2/13) 2178308999999999 a001 102334155/4870847*228826127^(3/5) 2178308999999999 a001 2504730781961/4870847*141422324^(1/13) 2178308999999999 a001 726103/199691526*2537720636^(14/15) 2178308999999999 a001 726103/199691526*17393796001^(6/7) 2178308999999999 a001 726103/199691526*45537549124^(14/17) 2178308999999999 a001 267914296/4870847*312119004989^(2/5) 2178308999999999 a001 267914296/4870847*(1/2+1/2*5^(1/2))^22 2178308999999999 a001 726103/199691526*505019158607^(3/4) 2178308999999999 a001 726103/199691526*192900153618^(7/9) 2178308999999999 a001 267914296/4870847*10749957122^(11/24) 2178308999999999 a001 726103/199691526*10749957122^(7/8) 2178308999999999 a001 267914296/4870847*4106118243^(11/23) 2178308999999999 a001 726103/199691526*4106118243^(21/23) 2178308999999999 a001 267914296/4870847*1568397607^(1/2) 2178308999999999 a001 726103/199691526*1568397607^(21/22) 2178308999999999 a001 267914296/4870847*599074578^(11/21) 2178308999999999 a001 701408733/4870847*2537720636^(4/9) 2178308999999999 a001 311187/224056801*312119004989^(4/5) 2178308999999999 a001 311187/224056801*23725150497407^(11/16) 2178308999999999 a001 701408733/4870847*(1/2+1/2*5^(1/2))^20 2178308999999999 a001 701408733/4870847*23725150497407^(5/16) 2178308999999999 a001 701408733/4870847*73681302247^(5/13) 2178308999999999 a001 311187/224056801*73681302247^(11/13) 2178308999999999 a001 701408733/4870847*28143753123^(2/5) 2178308999999999 a001 701408733/4870847*10749957122^(5/12) 2178308999999999 a001 311187/224056801*10749957122^(11/12) 2178308999999999 a001 701408733/4870847*4106118243^(10/23) 2178308999999999 a001 311187/224056801*4106118243^(22/23) 2178308999999999 a001 701408733/4870847*1568397607^(5/11) 2178308999999999 a001 1836311903/4870847*2537720636^(2/5) 2178308999999999 a001 1836311903/4870847*45537549124^(6/17) 2178308999999999 a001 1836311903/4870847*14662949395604^(2/7) 2178308999999999 a001 1836311903/4870847*(1/2+1/2*5^(1/2))^18 2178308999999999 a001 1836311903/4870847*192900153618^(1/3) 2178308999999999 a001 1836311903/4870847*10749957122^(3/8) 2178308999999999 a001 726103/1368706081*10749957122^(23/24) 2178308999999999 a001 7778742049/4870847*2537720636^(1/3) 2178308999999999 a001 32951280099/4870847*2537720636^(4/15) 2178308999999999 a001 1836311903/4870847*4106118243^(9/23) 2178308999999999 a001 86267571272/4870847*2537720636^(2/9) 2178308999999999 a001 139583862445/4870847*2537720636^(1/5) 2178308999999999 a001 591286729879/4870847*2537720636^(2/15) 2178308999999999 a001 956722026041/4870847*2537720636^(1/9) 2178308999999999 a001 2504730781961/4870847*2537720636^(1/15) 2178308999999999 a001 987/4870846*45537549124^(16/17) 2178308999999999 a001 4807526976/4870847*(1/2+1/2*5^(1/2))^16 2178308999999999 a001 4807526976/4870847*23725150497407^(1/4) 2178308999999999 a001 987/4870846*192900153618^(8/9) 2178308999999999 a001 4807526976/4870847*73681302247^(4/13) 2178308999999999 a001 987/4870846*73681302247^(12/13) 2178308999999999 a001 4807526976/4870847*10749957122^(1/3) 2178308999999999 a001 12586269025/4870847*17393796001^(2/7) 2178308999999999 a001 726103/9381251041*312119004989^(10/11) 2178308999999999 a001 12586269025/4870847*14662949395604^(2/9) 2178308999999999 a001 12586269025/4870847*(1/2+1/2*5^(1/2))^14 2178308999999999 a001 365435296162/4870847*17393796001^(1/7) 2178308999999999 a001 32951280099/4870847*45537549124^(4/17) 2178308999999999 a001 32951280099/4870847*817138163596^(4/19) 2178308999999999 a001 311187/10525900321*23725150497407^(13/16) 2178308999999999 a001 32951280099/4870847*(1/2+1/2*5^(1/2))^12 2178308999999999 a001 311187/10525900321*505019158607^(13/14) 2178308999999999 a001 32951280099/4870847*73681302247^(3/13) 2178308999999999 a001 139583862445/4870847*45537549124^(3/17) 2178308999999999 a001 591286729879/4870847*45537549124^(2/17) 2178308999999999 a001 726103/64300051206*14662949395604^(6/7) 2178308999999999 a001 86267571272/4870847*(1/2+1/2*5^(1/2))^10 2178308999999999 a001 225851433717/4870847*(1/2+1/2*5^(1/2))^8 2178308999999999 a001 225851433717/4870847*23725150497407^(1/8) 2178308999999999 a001 1548008755920/4870847*(1/2+1/2*5^(1/2))^4 2178308999999999 a001 1548008755920/4870847*23725150497407^(1/16) 2178309000000000 a001 2504730781961/4870847*(1/2+1/2*5^(1/2))^3 2178309000000000 a001 139583862445/4870847*14662949395604^(1/7) 2178309000000000 a001 139583862445/4870847*(1/2+1/2*5^(1/2))^9 2178309000000000 a001 139583862445/4870847*192900153618^(1/6) 2178309000000000 a001 225851433717/4870847*73681302247^(2/13) 2178309000000000 a001 53316291173/4870847*312119004989^(1/5) 2178309000000000 a001 53316291173/4870847*(1/2+1/2*5^(1/2))^11 2178309000000000 a001 956722026041/4870847*28143753123^(1/10) 2178309000000000 a001 86267571272/4870847*28143753123^(1/5) 2178309000000000 a001 4052739537881/4870847*10749957122^(1/24) 2178309000000000 a001 2178309/45537549124*14662949395604^(17/21) 2178309000000000 a001 20365011074/4870847*(1/2+1/2*5^(1/2))^13 2178309000000000 a001 2178309/45537549124*192900153618^(17/18) 2178309000000000 a001 20365011074/4870847*73681302247^(1/4) 2178309000000000 a001 2504730781961/4870847*10749957122^(1/16) 2178309000000000 a001 1548008755920/4870847*10749957122^(1/12) 2178309000000000 a001 591286729879/4870847*10749957122^(1/8) 2178309000000000 a001 12586269025/4870847*10749957122^(7/24) 2178309000000000 a001 225851433717/4870847*10749957122^(1/6) 2178309000000000 a001 139583862445/4870847*10749957122^(3/16) 2178309000000000 a001 86267571272/4870847*10749957122^(5/24) 2178309000000000 a001 32951280099/4870847*10749957122^(1/4) 2178309000000000 a001 4052739537881/4870847*4106118243^(1/23) 2178309000000000 a001 7778742049/4870847*45537549124^(5/17) 2178309000000000 a001 7778742049/4870847*312119004989^(3/11) 2178309000000000 a001 2178309/17393796001*14662949395604^(7/9) 2178309000000000 a001 7778742049/4870847*(1/2+1/2*5^(1/2))^15 2178309000000000 a001 2178309/17393796001*505019158607^(7/8) 2178309000000000 a001 7778742049/4870847*192900153618^(5/18) 2178309000000000 a001 7778742049/4870847*28143753123^(3/10) 2178309000000000 a001 1548008755920/4870847*4106118243^(2/23) 2178309000000000 a001 7778742049/4870847*10749957122^(5/16) 2178309000000000 a001 591286729879/4870847*4106118243^(3/23) 2178309000000000 a001 225851433717/4870847*4106118243^(4/23) 2178309000000000 a001 4807526976/4870847*4106118243^(8/23) 2178309000000000 a001 86267571272/4870847*4106118243^(5/23) 2178309000000000 a001 32951280099/4870847*4106118243^(6/23) 2178309000000000 a001 12586269025/4870847*4106118243^(7/23) 2178309000000000 a001 4052739537881/4870847*1568397607^(1/22) 2178309000000000 a001 2971215073/4870847*45537549124^(1/3) 2178309000000000 a001 2971215073/4870847*(1/2+1/2*5^(1/2))^17 2178309000000000 a001 1548008755920/4870847*1568397607^(1/11) 2178309000000000 a001 591286729879/4870847*1568397607^(3/22) 2178309000000000 a001 225851433717/4870847*1568397607^(2/11) 2178309000000000 a001 86267571272/4870847*1568397607^(5/22) 2178309000000000 a001 53316291173/4870847*1568397607^(1/4) 2178309000000000 a001 1836311903/4870847*1568397607^(9/22) 2178309000000000 a001 32951280099/4870847*1568397607^(3/11) 2178309000000000 a001 12586269025/4870847*1568397607^(7/22) 2178309000000000 a001 4052739537881/4870847*599074578^(1/21) 2178309000000000 a001 4807526976/4870847*1568397607^(4/11) 2178309000000000 a001 2178309/2537720636*45537549124^(15/17) 2178309000000000 a001 2178309/2537720636*312119004989^(9/11) 2178309000000000 a001 1134903170/4870847*817138163596^(1/3) 2178309000000000 a001 2178309/2537720636*14662949395604^(5/7) 2178309000000000 a001 1134903170/4870847*(1/2+1/2*5^(1/2))^19 2178309000000000 a001 2178309/2537720636*192900153618^(5/6) 2178309000000000 a001 2178309/2537720636*28143753123^(9/10) 2178309000000000 a001 2178309/2537720636*10749957122^(15/16) 2178309000000000 a001 2504730781961/4870847*599074578^(1/14) 2178309000000000 a001 1548008755920/4870847*599074578^(2/21) 2178309000000000 a001 591286729879/4870847*599074578^(1/7) 2178309000000000 a001 365435296162/4870847*599074578^(1/6) 2178309000000000 a001 225851433717/4870847*599074578^(4/21) 2178309000000000 a001 139583862445/4870847*599074578^(3/14) 2178309000000000 a001 86267571272/4870847*599074578^(5/21) 2178309000000000 a001 32951280099/4870847*599074578^(2/7) 2178309000000000 a001 701408733/4870847*599074578^(10/21) 2178309000000000 a001 12586269025/4870847*599074578^(1/3) 2178309000000000 a001 4052739537881/4870847*228826127^(1/20) 2178309000000000 a001 433494437/4870847*2537720636^(7/15) 2178309000000000 a001 7778742049/4870847*599074578^(5/14) 2178309000000000 a001 4807526976/4870847*599074578^(8/21) 2178309000000000 a001 433494437/4870847*17393796001^(3/7) 2178309000000000 a001 433494437/4870847*45537549124^(7/17) 2178309000000000 a001 433494437/4870847*14662949395604^(1/3) 2178309000000000 a001 433494437/4870847*(1/2+1/2*5^(1/2))^21 2178309000000000 a001 433494437/4870847*192900153618^(7/18) 2178309000000000 a001 433494437/4870847*10749957122^(7/16) 2178309000000000 a001 1836311903/4870847*599074578^(3/7) 2178309000000000 a001 1548008755920/4870847*228826127^(1/10) 2178309000000000 a001 956722026041/4870847*228826127^(1/8) 2178309000000000 a001 433494437/4870847*599074578^(1/2) 2178309000000000 a001 591286729879/4870847*228826127^(3/20) 2178309000000000 a001 225851433717/4870847*228826127^(1/5) 2178309000000000 a001 86267571272/4870847*228826127^(1/4) 2178309000000000 a001 32951280099/4870847*228826127^(3/10) 2178309000000000 a001 12586269025/4870847*228826127^(7/20) 2178309000000000 a001 4052739537881/4870847*87403803^(1/19) 2178309000000000 a001 7778742049/4870847*228826127^(3/8) 2178309000000000 a001 165580141/4870847*(1/2+1/2*5^(1/2))^23 2178309000000000 a001 165580141/4870847*4106118243^(1/2) 2178309000000000 a001 4807526976/4870847*228826127^(2/5) 2178309000000000 a001 267914296/4870847*228826127^(11/20) 2178309000000000 a001 1836311903/4870847*228826127^(9/20) 2178309000000000 a001 701408733/4870847*228826127^(1/2) 2178309000000000 a001 1548008755920/4870847*87403803^(2/19) 2178309000000000 a001 591286729879/4870847*87403803^(3/19) 2178309000000000 a001 225851433717/4870847*87403803^(4/19) 2178309000000000 a001 86267571272/4870847*87403803^(5/19) 2178309000000000 a001 32951280099/4870847*87403803^(6/19) 2178309000000000 a001 12586269025/4870847*87403803^(7/19) 2178309000000000 a001 4052739537881/4870847*33385282^(1/18) 2178309000000000 a001 2178309/141422324*2537720636^(13/15) 2178309000000000 a001 63245986/4870847*2537720636^(5/9) 2178309000000000 a001 2178309/141422324*45537549124^(13/17) 2178309000000000 a001 63245986/4870847*312119004989^(5/11) 2178309000000000 a001 2178309/141422324*14662949395604^(13/21) 2178309000000000 a001 63245986/4870847*(1/2+1/2*5^(1/2))^25 2178309000000000 a001 2178309/141422324*192900153618^(13/18) 2178309000000000 a001 2178309/141422324*73681302247^(3/4) 2178309000000000 a001 63245986/4870847*28143753123^(1/2) 2178309000000000 a001 2178309/141422324*10749957122^(13/16) 2178309000000000 a001 2178309/141422324*599074578^(13/14) 2178309000000000 a001 4807526976/4870847*87403803^(8/19) 2178309000000000 a001 63245986/4870847*228826127^(5/8) 2178309000000000 a001 1836311903/4870847*87403803^(9/19) 2178309000000000 a001 102334155/4870847*87403803^(12/19) 2178309000000000 a001 1134903170/4870847*87403803^(1/2) 2178309000000000 a001 701408733/4870847*87403803^(10/19) 2178309000000000 a001 267914296/4870847*87403803^(11/19) 2178309000000000 a001 2504730781961/4870847*33385282^(1/12) 2178309000000000 a001 1548008755920/4870847*33385282^(1/9) 2178309000000000 a001 591286729879/4870847*33385282^(1/6) 2178309000000000 a001 225851433717/4870847*33385282^(2/9) 2178309000000000 a001 139583862445/4870847*33385282^(1/4) 2178309000000000 a001 86267571272/4870847*33385282^(5/18) 2178309000000000 a001 32951280099/4870847*33385282^(1/3) 2178309000000000 a001 24157817/4870847*141422324^(9/13) 2178309000000000 a001 24157817/4870847*2537720636^(3/5) 2178309000000000 a001 24157817/4870847*45537549124^(9/17) 2178309000000000 a001 24157817/4870847*817138163596^(9/19) 2178309000000000 a001 24157817/4870847*14662949395604^(3/7) 2178309000000000 a001 24157817/4870847*(1/2+1/2*5^(1/2))^27 2178309000000000 a001 24157817/4870847*192900153618^(1/2) 2178309000000000 a001 24157817/4870847*10749957122^(9/16) 2178309000000000 a001 24157817/4870847*599074578^(9/14) 2178309000000000 a001 12586269025/4870847*33385282^(7/18) 2178309000000000 a001 4052739537881/4870847*12752043^(1/17) 2178309000000000 a001 7778742049/4870847*33385282^(5/12) 2178309000000000 a001 4807526976/4870847*33385282^(4/9) 2178309000000000 a001 1836311903/4870847*33385282^(1/2) 2178309000000001 a001 701408733/4870847*33385282^(5/9) 2178309000000001 a001 39088169/4870847*33385282^(13/18) 2178309000000001 a001 433494437/4870847*33385282^(7/12) 2178309000000001 a001 267914296/4870847*33385282^(11/18) 2178309000000001 a001 102334155/4870847*33385282^(2/3) 2178309000000001 a001 1548008755920/4870847*12752043^(2/17) 2178309000000002 a001 24157817/4870847*33385282^(3/4) 2178309000000002 a001 591286729879/4870847*12752043^(3/17) 2178309000000003 a001 225851433717/4870847*12752043^(4/17) 2178309000000003 a001 86267571272/4870847*12752043^(5/17) 2178309000000004 a001 32951280099/4870847*12752043^(6/17) 2178309000000005 a001 2178309/20633239*2537720636^(7/9) 2178309000000005 a001 2178309/20633239*17393796001^(5/7) 2178309000000005 a001 2178309/20633239*312119004989^(7/11) 2178309000000005 a001 2178309/20633239*14662949395604^(5/9) 2178309000000005 a001 2178309/20633239*(1/2+1/2*5^(1/2))^35 2178309000000005 a001 9227465/4870847*(1/2+1/2*5^(1/2))^29 2178309000000005 a001 9227465/4870847*1322157322203^(1/2) 2178309000000005 a001 2178309/20633239*505019158607^(5/8) 2178309000000005 a001 2178309/20633239*28143753123^(7/10) 2178309000000005 a001 2178309/20633239*599074578^(5/6) 2178309000000005 a001 2178309/20633239*228826127^(7/8) 2178309000000005 a001 12586269025/4870847*12752043^(7/17) 2178309000000005 a001 4052739537881/4870847*4870847^(1/16) 2178309000000005 a001 829464/103361*1860498^(13/15) 2178309000000006 a001 4807526976/4870847*12752043^(8/17) 2178309000000006 a001 2971215073/4870847*12752043^(1/2) 2178309000000007 a001 1836311903/4870847*12752043^(9/17) 2178309000000007 a001 701408733/4870847*12752043^(10/17) 2178309000000008 a001 267914296/4870847*12752043^(11/17) 2178309000000009 a001 14930352/4870847*12752043^(14/17) 2178309000000009 a001 102334155/4870847*12752043^(12/17) 2178309000000009 a001 39088169/4870847*12752043^(13/17) 2178309000000011 a001 1548008755920/4870847*4870847^(1/8) 2178309000000017 a001 591286729879/4870847*4870847^(3/16) 2178309000000022 a001 225851433717/4870847*4870847^(1/4) 2178309000000028 a001 86267571272/4870847*4870847^(5/16) 2178309000000034 a001 9227465/1860498*1860498^(9/10) 2178309000000034 a001 32951280099/4870847*4870847^(3/8) 2178309000000034 a001 2178309/7881196*141422324^(11/13) 2178309000000035 a001 2178309/7881196*2537720636^(11/15) 2178309000000035 a001 2178309/7881196*45537549124^(11/17) 2178309000000035 a001 2178309/7881196*312119004989^(3/5) 2178309000000035 a001 2178309/7881196*817138163596^(11/19) 2178309000000035 a001 2178309/7881196*14662949395604^(11/21) 2178309000000035 a001 2178309/7881196*(1/2+1/2*5^(1/2))^33 2178309000000035 a001 3524578/4870847*(1/2+1/2*5^(1/2))^31 2178309000000035 a001 2178309/7881196*192900153618^(11/18) 2178309000000035 a001 2178309/7881196*10749957122^(11/16) 2178309000000035 a001 2178309/7881196*1568397607^(3/4) 2178309000000035 a001 2178309/7881196*599074578^(11/14) 2178309000000036 a001 5702887/1860498*1860498^(14/15) 2178309000000036 a001 2178309/7881196*33385282^(11/12) 2178309000000040 a001 12586269025/4870847*4870847^(7/16) 2178309000000041 a001 4052739537881/4870847*1860498^(1/15) 2178309000000044 a001 4976784/4250681*7881196^(10/11) 2178309000000045 a001 4807526976/4870847*4870847^(1/2) 2178309000000049 a001 63245986/12752043*7881196^(9/11) 2178309000000051 a001 1836311903/4870847*4870847^(9/16) 2178309000000052 a001 267914296/12752043*7881196^(8/11) 2178309000000055 a001 233802911/4250681*7881196^(2/3) 2178309000000056 a001 1134903170/12752043*7881196^(7/11) 2178309000000057 a001 701408733/4870847*4870847^(5/8) 2178309000000057 a001 39088169/33385282*7881196^(10/11) 2178309000000059 a001 1602508992/4250681*7881196^(6/11) 2178309000000059 a001 34111385/29134601*7881196^(10/11) 2178309000000059 a001 267914296/228826127*7881196^(10/11) 2178309000000059 a001 233802911/199691526*7881196^(10/11) 2178309000000059 a001 1836311903/1568397607*7881196^(10/11) 2178309000000059 a001 1602508992/1368706081*7881196^(10/11) 2178309000000059 a001 12586269025/10749957122*7881196^(10/11) 2178309000000059 a001 10983760033/9381251041*7881196^(10/11) 2178309000000059 a001 86267571272/73681302247*7881196^(10/11) 2178309000000059 a001 75283811239/64300051206*7881196^(10/11) 2178309000000059 a001 2504730781961/2139295485799*7881196^(10/11) 2178309000000059 a001 365435296162/312119004989*7881196^(10/11) 2178309000000059 a001 139583862445/119218851371*7881196^(10/11) 2178309000000059 a001 53316291173/45537549124*7881196^(10/11) 2178309000000059 a001 20365011074/17393796001*7881196^(10/11) 2178309000000059 a001 7778742049/6643838879*7881196^(10/11) 2178309000000059 a001 2971215073/2537720636*7881196^(10/11) 2178309000000059 a001 1134903170/969323029*7881196^(10/11) 2178309000000059 a001 433494437/370248451*7881196^(10/11) 2178309000000060 a001 165580141/141422324*7881196^(10/11) 2178309000000060 a001 63245986/54018521*7881196^(10/11) 2178309000000061 a001 165580141/33385282*7881196^(9/11) 2178309000000062 a001 20365011074/12752043*7881196^(5/11) 2178309000000062 a001 433494437/87403803*7881196^(9/11) 2178309000000062 a001 2504730781961/4870847*1860498^(1/10) 2178309000000063 a001 1134903170/228826127*7881196^(9/11) 2178309000000063 a001 2971215073/599074578*7881196^(9/11) 2178309000000063 a001 267914296/4870847*4870847^(11/16) 2178309000000063 a001 7778742049/1568397607*7881196^(9/11) 2178309000000063 a001 20365011074/4106118243*7881196^(9/11) 2178309000000063 a001 53316291173/10749957122*7881196^(9/11) 2178309000000063 a001 139583862445/28143753123*7881196^(9/11) 2178309000000063 a001 365435296162/73681302247*7881196^(9/11) 2178309000000063 a001 956722026041/192900153618*7881196^(9/11) 2178309000000063 a001 2504730781961/505019158607*7881196^(9/11) 2178309000000063 a001 10610209857723/2139295485799*7881196^(9/11) 2178309000000063 a001 140728068720/28374454999*7881196^(9/11) 2178309000000063 a001 591286729879/119218851371*7881196^(9/11) 2178309000000063 a001 225851433717/45537549124*7881196^(9/11) 2178309000000063 a001 86267571272/17393796001*7881196^(9/11) 2178309000000063 a001 32951280099/6643838879*7881196^(9/11) 2178309000000063 a001 1144206275/230701876*7881196^(9/11) 2178309000000063 a001 4807526976/969323029*7881196^(9/11) 2178309000000063 a001 1836311903/370248451*7881196^(9/11) 2178309000000063 a001 701408733/141422324*7881196^(9/11) 2178309000000063 a001 267914296/54018521*7881196^(9/11) 2178309000000064 a001 701408733/33385282*7881196^(8/11) 2178309000000065 a001 5702887/12752043*(1/2+1/2*5^(1/2))^32 2178309000000065 a001 5702887/12752043*23725150497407^(1/2) 2178309000000065 a001 5702887/12752043*73681302247^(8/13) 2178309000000065 a001 5702887/12752043*10749957122^(2/3) 2178309000000065 a001 5702887/12752043*4106118243^(16/23) 2178309000000065 a001 5702887/12752043*1568397607^(8/11) 2178309000000065 a001 5702887/12752043*599074578^(16/21) 2178309000000065 a001 5702887/12752043*228826127^(4/5) 2178309000000065 a001 5702887/12752043*87403803^(16/19) 2178309000000065 a001 86267571272/12752043*7881196^(4/11) 2178309000000065 a001 24157817/20633239*7881196^(10/11) 2178309000000066 a001 1836311903/87403803*7881196^(8/11) 2178309000000066 a001 102287808/4868641*7881196^(8/11) 2178309000000066 a001 12586269025/599074578*7881196^(8/11) 2178309000000066 a001 32951280099/1568397607*7881196^(8/11) 2178309000000066 a001 86267571272/4106118243*7881196^(8/11) 2178309000000066 a001 225851433717/10749957122*7881196^(8/11) 2178309000000066 a001 591286729879/28143753123*7881196^(8/11) 2178309000000066 a001 1548008755920/73681302247*7881196^(8/11) 2178309000000066 a001 4052739537881/192900153618*7881196^(8/11) 2178309000000066 a001 225749145909/10745088481*7881196^(8/11) 2178309000000066 a001 6557470319842/312119004989*7881196^(8/11) 2178309000000066 a001 2504730781961/119218851371*7881196^(8/11) 2178309000000066 a001 956722026041/45537549124*7881196^(8/11) 2178309000000066 a001 365435296162/17393796001*7881196^(8/11) 2178309000000066 a001 139583862445/6643838879*7881196^(8/11) 2178309000000066 a001 53316291173/2537720636*7881196^(8/11) 2178309000000066 a001 20365011074/969323029*7881196^(8/11) 2178309000000066 a001 7778742049/370248451*7881196^(8/11) 2178309000000066 a001 2971215073/141422324*7881196^(8/11) 2178309000000066 a001 1836311903/33385282*7881196^(2/3) 2178309000000066 a001 139583862445/12752043*7881196^(1/3) 2178309000000066 a001 5702887/12752043*33385282^(8/9) 2178309000000066 a001 32522920134769/14930352 2178309000000067 a001 1134903170/54018521*7881196^(8/11) 2178309000000067 a001 2971215073/33385282*7881196^(7/11) 2178309000000068 a001 1602508992/29134601*7881196^(2/3) 2178309000000068 a001 9303105/1875749*7881196^(9/11) 2178309000000068 a001 12586269025/228826127*7881196^(2/3) 2178309000000068 a001 10983760033/199691526*7881196^(2/3) 2178309000000068 a001 86267571272/1568397607*7881196^(2/3) 2178309000000068 a001 75283811239/1368706081*7881196^(2/3) 2178309000000068 a001 591286729879/10749957122*7881196^(2/3) 2178309000000068 a001 12585437040/228811001*7881196^(2/3) 2178309000000068 a001 4052739537881/73681302247*7881196^(2/3) 2178309000000068 a001 3536736619241/64300051206*7881196^(2/3) 2178309000000068 a001 6557470319842/119218851371*7881196^(2/3) 2178309000000068 a001 2504730781961/45537549124*7881196^(2/3) 2178309000000068 a001 956722026041/17393796001*7881196^(2/3) 2178309000000068 a001 365435296162/6643838879*7881196^(2/3) 2178309000000068 a001 139583862445/2537720636*7881196^(2/3) 2178309000000068 a001 53316291173/969323029*7881196^(2/3) 2178309000000068 a001 20365011074/370248451*7881196^(2/3) 2178309000000068 a001 7778742049/141422324*7881196^(2/3) 2178309000000068 a001 102334155/4870847*4870847^(3/4) 2178309000000068 a001 365435296162/12752043*7881196^(3/11) 2178309000000069 a001 2971215073/54018521*7881196^(2/3) 2178309000000069 a001 7778742049/87403803*7881196^(7/11) 2178309000000069 a001 20365011074/228826127*7881196^(7/11) 2178309000000069 a001 53316291173/599074578*7881196^(7/11) 2178309000000069 a001 139583862445/1568397607*7881196^(7/11) 2178309000000069 a001 365435296162/4106118243*7881196^(7/11) 2178309000000069 a001 956722026041/10749957122*7881196^(7/11) 2178309000000069 a001 2504730781961/28143753123*7881196^(7/11) 2178309000000069 a001 6557470319842/73681302247*7881196^(7/11) 2178309000000069 a001 10610209857723/119218851371*7881196^(7/11) 2178309000000069 a001 4052739537881/45537549124*7881196^(7/11) 2178309000000069 a001 1548008755920/17393796001*7881196^(7/11) 2178309000000069 a001 591286729879/6643838879*7881196^(7/11) 2178309000000069 a001 225851433717/2537720636*7881196^(7/11) 2178309000000069 a001 86267571272/969323029*7881196^(7/11) 2178309000000069 a001 32951280099/370248451*7881196^(7/11) 2178309000000069 a001 12586269025/141422324*7881196^(7/11) 2178309000000070 a001 4807526976/54018521*7881196^(7/11) 2178309000000070 a001 12586269025/33385282*7881196^(6/11) 2178309000000071 a001 433494437/20633239*7881196^(8/11) 2178309000000072 a001 516002918640/4250681*7881196^(2/11) 2178309000000072 a001 4976784/4250681*20633239^(6/7) 2178309000000072 a001 10983760033/29134601*7881196^(6/11) 2178309000000072 a001 86267571272/228826127*7881196^(6/11) 2178309000000072 a001 267913919/710646*7881196^(6/11) 2178309000000072 a001 5702887/4870847*4870847^(15/16) 2178309000000072 a001 591286729879/1568397607*7881196^(6/11) 2178309000000072 a001 516002918640/1368706081*7881196^(6/11) 2178309000000072 a001 4052739537881/10749957122*7881196^(6/11) 2178309000000072 a001 3536736619241/9381251041*7881196^(6/11) 2178309000000072 a001 6557470319842/17393796001*7881196^(6/11) 2178309000000072 a001 2504730781961/6643838879*7881196^(6/11) 2178309000000072 a001 956722026041/2537720636*7881196^(6/11) 2178309000000072 a001 365435296162/969323029*7881196^(6/11) 2178309000000072 a001 139583862445/370248451*7881196^(6/11) 2178309000000072 a001 53316291173/141422324*7881196^(6/11) 2178309000000073 a001 20365011074/54018521*7881196^(6/11) 2178309000000073 a001 1134903170/20633239*7881196^(2/3) 2178309000000073 a001 53316291173/33385282*7881196^(5/11) 2178309000000074 a001 39088169/12752043*20633239^(4/5) 2178309000000074 a001 39088169/4870847*4870847^(13/16) 2178309000000074 a001 1836311903/20633239*7881196^(7/11) 2178309000000074 a001 165580141/12752043*20633239^(5/7) 2178309000000075 a001 6557470319842/12752043*7881196^(1/11) 2178309000000075 a001 1134903170/12752043*20633239^(3/5) 2178309000000075 a001 1836311903/12752043*20633239^(4/7) 2178309000000075 a001 139583862445/87403803*7881196^(5/11) 2178309000000075 a001 365435296162/228826127*7881196^(5/11) 2178309000000075 a001 956722026041/599074578*7881196^(5/11) 2178309000000075 a001 2504730781961/1568397607*7881196^(5/11) 2178309000000075 a001 6557470319842/4106118243*7881196^(5/11) 2178309000000075 a001 10610209857723/6643838879*7881196^(5/11) 2178309000000075 a001 4052739537881/2537720636*7881196^(5/11) 2178309000000075 a001 1548008755920/969323029*7881196^(5/11) 2178309000000075 a001 591286729879/370248451*7881196^(5/11) 2178309000000075 a001 225851433717/141422324*7881196^(5/11) 2178309000000076 a001 20365011074/12752043*20633239^(3/7) 2178309000000076 a001 10983760033/4250681*20633239^(2/5) 2178309000000076 a001 4976784/4250681*141422324^(10/13) 2178309000000076 a001 4976784/4250681*2537720636^(2/3) 2178309000000076 a001 5702887/33385282*45537549124^(2/3) 2178309000000076 a001 4976784/4250681*45537549124^(10/17) 2178309000000076 a001 4976784/4250681*312119004989^(6/11) 2178309000000076 a001 4976784/4250681*14662949395604^(10/21) 2178309000000076 a001 5702887/33385282*(1/2+1/2*5^(1/2))^34 2178309000000076 a001 4976784/4250681*(1/2+1/2*5^(1/2))^30 2178309000000076 a001 4976784/4250681*192900153618^(5/9) 2178309000000076 a001 4976784/4250681*28143753123^(3/5) 2178309000000076 a001 4976784/4250681*10749957122^(5/8) 2178309000000076 a001 5702887/33385282*10749957122^(17/24) 2178309000000076 a001 4976784/4250681*4106118243^(15/23) 2178309000000076 a001 5702887/33385282*4106118243^(17/23) 2178309000000076 a001 4976784/4250681*1568397607^(15/22) 2178309000000076 a001 5702887/33385282*1568397607^(17/22) 2178309000000076 a001 4976784/4250681*599074578^(5/7) 2178309000000076 a001 5702887/33385282*599074578^(17/21) 2178309000000076 a001 4976784/4250681*228826127^(3/4) 2178309000000076 a001 5702887/33385282*228826127^(17/20) 2178309000000076 a001 86267571272/54018521*7881196^(5/11) 2178309000000076 a001 4976784/4250681*87403803^(15/19) 2178309000000076 a001 5702887/33385282*87403803^(17/19) 2178309000000076 a001 85146110326224/39088169 2178309000000076 a001 75283811239/4250681*20633239^(2/7) 2178309000000077 a001 32264490531/4769326*7881196^(4/11) 2178309000000077 a001 956722026041/12752043*20633239^(1/5) 2178309000000077 a001 5702887/12752043*12752043^(16/17) 2178309000000077 a001 2504730781961/12752043*20633239^(1/7) 2178309000000077 a001 7778742049/20633239*7881196^(6/11) 2178309000000078 a001 5702887/87403803*141422324^(12/13) 2178309000000078 a001 4976784/4250681*33385282^(5/6) 2178309000000078 a001 5702887/87403803*2537720636^(4/5) 2178309000000078 a001 39088169/12752043*17393796001^(4/7) 2178309000000078 a001 5702887/87403803*45537549124^(12/17) 2178309000000078 a001 39088169/12752043*14662949395604^(4/9) 2178309000000078 a001 39088169/12752043*(1/2+1/2*5^(1/2))^28 2178309000000078 a001 5702887/87403803*192900153618^(2/3) 2178309000000078 a001 39088169/12752043*73681302247^(7/13) 2178309000000078 a001 5702887/87403803*73681302247^(9/13) 2178309000000078 a001 39088169/12752043*10749957122^(7/12) 2178309000000078 a001 5702887/87403803*10749957122^(3/4) 2178309000000078 a001 39088169/12752043*4106118243^(14/23) 2178309000000078 a001 5702887/87403803*4106118243^(18/23) 2178309000000078 a001 39088169/12752043*1568397607^(7/11) 2178309000000078 a001 5702887/87403803*1568397607^(9/11) 2178309000000078 a001 39088169/12752043*599074578^(2/3) 2178309000000078 a001 5702887/87403803*599074578^(6/7) 2178309000000078 a001 39088169/12752043*228826127^(7/10) 2178309000000078 a001 182717648081/16692641*7881196^(1/3) 2178309000000078 a001 5702887/87403803*228826127^(9/10) 2178309000000078 a001 222915410843903/102334155 2178309000000078 a001 34111385/4250681*141422324^(2/3) 2178309000000078 a001 5702887/33385282*33385282^(17/18) 2178309000000078 a001 39088169/12752043*87403803^(14/19) 2178309000000078 a001 267914296/12752043*141422324^(8/13) 2178309000000078 a001 1134903170/12752043*141422324^(7/13) 2178309000000078 a001 1602508992/4250681*141422324^(6/13) 2178309000000078 a001 20365011074/12752043*141422324^(5/13) 2178309000000078 a001 5702887/228826127*817138163596^(2/3) 2178309000000078 a001 34111385/4250681*(1/2+1/2*5^(1/2))^26 2178309000000078 a001 34111385/4250681*73681302247^(1/2) 2178309000000078 a001 34111385/4250681*10749957122^(13/24) 2178309000000078 a001 5702887/228826127*10749957122^(19/24) 2178309000000078 a001 34111385/4250681*4106118243^(13/23) 2178309000000078 a001 5702887/228826127*4106118243^(19/23) 2178309000000078 a001 34111385/4250681*1568397607^(13/22) 2178309000000078 a001 5702887/228826127*1568397607^(19/22) 2178309000000078 a001 34111385/4250681*599074578^(13/21) 2178309000000078 a001 53316291173/12752043*141422324^(1/3) 2178309000000078 a001 5702887/228826127*599074578^(19/21) 2178309000000078 a001 14930352/4870847*4870847^(7/8) 2178309000000078 a001 583600122205485/267914296 2178309000000078 a001 86267571272/12752043*141422324^(4/13) 2178309000000078 a001 365435296162/12752043*141422324^(3/13) 2178309000000078 a001 516002918640/4250681*141422324^(2/13) 2178309000000078 a001 5702887/87403803*87403803^(18/19) 2178309000000078 a001 34111385/4250681*228826127^(13/20) 2178309000000078 a001 6557470319842/12752043*141422324^(1/13) 2178309000000078 a001 5702887/599074578*2537720636^(8/9) 2178309000000078 a001 267914296/12752043*2537720636^(8/15) 2178309000000078 a001 267914296/12752043*45537549124^(8/17) 2178309000000078 a001 5702887/599074578*312119004989^(8/11) 2178309000000078 a001 267914296/12752043*14662949395604^(8/21) 2178309000000078 a001 267914296/12752043*(1/2+1/2*5^(1/2))^24 2178309000000078 a001 267914296/12752043*192900153618^(4/9) 2178309000000078 a001 267914296/12752043*73681302247^(6/13) 2178309000000078 a001 5702887/599074578*73681302247^(10/13) 2178309000000078 a001 5702887/599074578*28143753123^(4/5) 2178309000000078 a001 267914296/12752043*10749957122^(1/2) 2178309000000078 a001 5702887/599074578*10749957122^(5/6) 2178309000000078 a001 267914296/12752043*4106118243^(12/23) 2178309000000078 a001 5702887/599074578*4106118243^(20/23) 2178309000000078 a001 267914296/12752043*1568397607^(6/11) 2178309000000078 a001 5702887/599074578*1568397607^(10/11) 2178309000000078 a001 1527884955772552/701408733 2178309000000078 a001 267914296/12752043*599074578^(4/7) 2178309000000078 a001 5702887/228826127*228826127^(19/20) 2178309000000078 a001 5702887/1568397607*2537720636^(14/15) 2178309000000078 a001 5702887/1568397607*17393796001^(6/7) 2178309000000078 a001 5702887/1568397607*45537549124^(14/17) 2178309000000078 a001 233802911/4250681*312119004989^(2/5) 2178309000000078 a001 5702887/1568397607*14662949395604^(2/3) 2178309000000078 a001 233802911/4250681*(1/2+1/2*5^(1/2))^22 2178309000000078 a001 5702887/1568397607*505019158607^(3/4) 2178309000000078 a001 5702887/1568397607*192900153618^(7/9) 2178309000000078 a001 233802911/4250681*10749957122^(11/24) 2178309000000078 a001 5702887/1568397607*10749957122^(7/8) 2178309000000078 a001 233802911/4250681*4106118243^(11/23) 2178309000000078 a001 5702887/1568397607*4106118243^(21/23) 2178309000000078 a001 4000054745112171/1836311903 2178309000000078 a001 233802911/4250681*1568397607^(1/2) 2178309000000078 a001 5702887/599074578*599074578^(20/21) 2178309000000078 a001 1836311903/12752043*2537720636^(4/9) 2178309000000078 a001 1602508992/4250681*2537720636^(2/5) 2178309000000078 a001 5702887/4106118243*312119004989^(4/5) 2178309000000078 a001 1836311903/12752043*(1/2+1/2*5^(1/2))^20 2178309000000078 a001 1836311903/12752043*23725150497407^(5/16) 2178309000000078 a001 5702887/4106118243*23725150497407^(11/16) 2178309000000078 a001 1836311903/12752043*505019158607^(5/14) 2178309000000078 a001 1836311903/12752043*73681302247^(5/13) 2178309000000078 a001 5702887/4106118243*73681302247^(11/13) 2178309000000078 a001 1836311903/12752043*28143753123^(2/5) 2178309000000078 a001 1836311903/12752043*10749957122^(5/12) 2178309000000078 a001 5702887/4106118243*10749957122^(11/12) 2178309000000078 a001 20365011074/12752043*2537720636^(1/3) 2178309000000078 a001 10472279279563961/4807526976 2178309000000078 a001 86267571272/12752043*2537720636^(4/15) 2178309000000078 a001 75283811239/4250681*2537720636^(2/9) 2178309000000078 a001 1836311903/12752043*4106118243^(10/23) 2178309000000078 a001 365435296162/12752043*2537720636^(1/5) 2178309000000078 a001 516002918640/4250681*2537720636^(2/15) 2178309000000078 a001 5702887/1568397607*1568397607^(21/22) 2178309000000078 a001 2504730781961/12752043*2537720636^(1/9) 2178309000000078 a001 6557470319842/12752043*2537720636^(1/15) 2178309000000078 a001 1602508992/4250681*45537549124^(6/17) 2178309000000078 a001 1602508992/4250681*14662949395604^(2/7) 2178309000000078 a001 1602508992/4250681*(1/2+1/2*5^(1/2))^18 2178309000000078 a001 1602508992/4250681*192900153618^(1/3) 2178309000000078 a001 27416783093579712/12586269025 2178309000000078 a001 1602508992/4250681*10749957122^(3/8) 2178309000000078 a001 5702887/4106118243*4106118243^(22/23) 2178309000000078 a001 5702887/28143753123*45537549124^(16/17) 2178309000000078 a001 5702887/28143753123*14662949395604^(16/21) 2178309000000078 a001 12586269025/12752043*(1/2+1/2*5^(1/2))^16 2178309000000078 a001 12586269025/12752043*23725150497407^(1/4) 2178309000000078 a001 5702887/28143753123*192900153618^(8/9) 2178309000000078 a001 12586269025/12752043*73681302247^(4/13) 2178309000000078 a001 10983760033/4250681*17393796001^(2/7) 2178309000000078 a001 5702887/28143753123*73681302247^(12/13) 2178309000000078 a001 71778070001175175/32951280099 2178309000000078 a001 956722026041/12752043*17393796001^(1/7) 2178309000000078 a001 5702887/10749957122*10749957122^(23/24) 2178309000000078 a001 5702887/73681302247*312119004989^(10/11) 2178309000000078 a001 10983760033/4250681*14662949395604^(2/9) 2178309000000078 a001 10983760033/4250681*(1/2+1/2*5^(1/2))^14 2178309000000078 a001 10983760033/4250681*505019158607^(1/4) 2178309000000078 a001 187917426909945813/86267571272 2178309000000078 a001 86267571272/12752043*45537549124^(4/17) 2178309000000078 a001 365435296162/12752043*45537549124^(3/17) 2178309000000078 a001 516002918640/4250681*45537549124^(2/17) 2178309000000078 a001 6557470319842/12752043*45537549124^(1/17) 2178309000000078 a001 86267571272/12752043*(1/2+1/2*5^(1/2))^12 2178309000000078 a001 75283811239/4250681*312119004989^(2/11) 2178309000000078 a001 75283811239/4250681*(1/2+1/2*5^(1/2))^10 2178309000000078 a001 1288005205276040979/591286729879 2178309000000078 a001 516002918640/4250681*(1/2+1/2*5^(1/2))^6 2178309000000078 a001 4052739537881/12752043*(1/2+1/2*5^(1/2))^4 2178309000000078 a001 3536736619241/4250681*(1/2+1/2*5^(1/2))^2 2178309000000078 a006 5^(1/2)*Fibonacci(66)/Lucas(34)/sqrt(5) 2178309000000078 a001 14284196614945221407/6557470319842 2178309000000078 a001 2504730781961/12752043*(1/2+1/2*5^(1/2))^5 2178309000000078 a001 365435296162/12752043*14662949395604^(1/7) 2178309000000078 a001 139583862445/12752043*312119004989^(1/5) 2178309000000078 a001 796030994547378715/365435296162 2178309000000078 a001 139583862445/12752043*(1/2+1/2*5^(1/2))^11 2178309000000078 a001 591286729879/12752043*73681302247^(2/13) 2178309000000078 a001 304056783818716451/139583862445 2178309000000078 a001 5702887/119218851371*14662949395604^(17/21) 2178309000000078 a001 5702887/119218851371*192900153618^(17/18) 2178309000000078 a001 53316291173/12752043*73681302247^(1/4) 2178309000000078 a001 2504730781961/12752043*28143753123^(1/10) 2178309000000078 a001 75283811239/4250681*28143753123^(1/5) 2178309000000078 a001 20365011074/12752043*45537549124^(5/17) 2178309000000078 a001 3536736619241/4250681*10749957122^(1/24) 2178309000000078 a001 116139356908770638/53316291173 2178309000000078 a001 20365011074/12752043*312119004989^(3/11) 2178309000000078 a001 1597/12752044*14662949395604^(7/9) 2178309000000078 a001 20365011074/12752043*(1/2+1/2*5^(1/2))^15 2178309000000078 a001 1597/12752044*505019158607^(7/8) 2178309000000078 a001 20365011074/12752043*192900153618^(5/18) 2178309000000078 a001 6557470319842/12752043*10749957122^(1/16) 2178309000000078 a001 4052739537881/12752043*10749957122^(1/12) 2178309000000078 a001 20365011074/12752043*28143753123^(3/10) 2178309000000078 a001 516002918640/4250681*10749957122^(1/8) 2178309000000078 a001 591286729879/12752043*10749957122^(1/6) 2178309000000078 a001 12586269025/12752043*10749957122^(1/3) 2178309000000078 a001 365435296162/12752043*10749957122^(3/16) 2178309000000078 a001 75283811239/4250681*10749957122^(5/24) 2178309000000078 a001 86267571272/12752043*10749957122^(1/4) 2178309000000078 a001 10983760033/4250681*10749957122^(7/24) 2178309000000078 a001 3536736619241/4250681*4106118243^(1/23) 2178309000000078 a001 27777887856979/12752042 2178309000000078 a001 7778742049/12752043*45537549124^(1/3) 2178309000000078 a001 20365011074/12752043*10749957122^(5/16) 2178309000000078 a001 7778742049/12752043*(1/2+1/2*5^(1/2))^17 2178309000000078 a001 4052739537881/12752043*4106118243^(2/23) 2178309000000078 a001 516002918640/4250681*4106118243^(3/23) 2178309000000078 a001 591286729879/12752043*4106118243^(4/23) 2178309000000078 a001 75283811239/4250681*4106118243^(5/23) 2178309000000078 a001 1602508992/4250681*4106118243^(9/23) 2178309000000078 a001 86267571272/12752043*4106118243^(6/23) 2178309000000078 a001 10983760033/4250681*4106118243^(7/23) 2178309000000078 a001 3536736619241/4250681*1568397607^(1/22) 2178309000000078 a001 16944503814015751/7778742049 2178309000000078 a001 12586269025/12752043*4106118243^(8/23) 2178309000000078 a001 5702887/6643838879*45537549124^(15/17) 2178309000000078 a001 5702887/6643838879*312119004989^(9/11) 2178309000000078 a001 2971215073/12752043*817138163596^(1/3) 2178309000000078 a001 5702887/6643838879*14662949395604^(5/7) 2178309000000078 a001 2971215073/12752043*(1/2+1/2*5^(1/2))^19 2178309000000078 a001 5702887/6643838879*192900153618^(5/6) 2178309000000078 a001 5702887/6643838879*28143753123^(9/10) 2178309000000078 a001 5702887/6643838879*10749957122^(15/16) 2178309000000078 a001 4052739537881/12752043*1568397607^(1/11) 2178309000000078 a001 516002918640/4250681*1568397607^(3/22) 2178309000000078 a001 591286729879/12752043*1568397607^(2/11) 2178309000000078 a001 1134903170/12752043*2537720636^(7/15) 2178309000000078 a001 75283811239/4250681*1568397607^(5/22) 2178309000000078 a001 139583862445/12752043*1568397607^(1/4) 2178309000000078 a001 86267571272/12752043*1568397607^(3/11) 2178309000000078 a001 1836311903/12752043*1568397607^(5/11) 2178309000000078 a001 10983760033/4250681*1568397607^(7/22) 2178309000000078 a001 6472224534451790/2971215073 2178309000000078 a001 3536736619241/4250681*599074578^(1/21) 2178309000000078 a001 12586269025/12752043*1568397607^(4/11) 2178309000000078 a001 1134903170/12752043*17393796001^(3/7) 2178309000000078 a001 1134903170/12752043*45537549124^(7/17) 2178309000000078 a001 1134903170/12752043*14662949395604^(1/3) 2178309000000078 a001 1134903170/12752043*(1/2+1/2*5^(1/2))^21 2178309000000078 a001 1134903170/12752043*192900153618^(7/18) 2178309000000078 a001 1602508992/4250681*1568397607^(9/22) 2178309000000078 a001 1134903170/12752043*10749957122^(7/16) 2178309000000078 a001 6557470319842/12752043*599074578^(1/14) 2178309000000078 a001 4052739537881/12752043*599074578^(2/21) 2178309000000078 a001 516002918640/4250681*599074578^(1/7) 2178309000000078 a001 956722026041/12752043*599074578^(1/6) 2178309000000078 a001 591286729879/12752043*599074578^(4/21) 2178309000000078 a001 365435296162/12752043*599074578^(3/14) 2178309000000078 a001 75283811239/4250681*599074578^(5/21) 2178309000000078 a001 86267571272/12752043*599074578^(2/7) 2178309000000078 a001 2472169789339619/1134903170 2178309000000078 a001 10983760033/4250681*599074578^(1/3) 2178309000000078 a001 3536736619241/4250681*228826127^(1/20) 2178309000000078 a001 20365011074/12752043*599074578^(5/14) 2178309000000078 a001 233802911/4250681*599074578^(11/21) 2178309000000078 a001 12586269025/12752043*599074578^(8/21) 2178309000000078 a001 433494437/12752043*(1/2+1/2*5^(1/2))^23 2178309000000078 a001 433494437/12752043*4106118243^(1/2) 2178309000000078 a001 1602508992/4250681*599074578^(3/7) 2178309000000078 a001 1836311903/12752043*599074578^(10/21) 2178309000000078 a001 1134903170/12752043*599074578^(1/2) 2178309000000078 a001 4052739537881/12752043*228826127^(1/10) 2178309000000078 a001 2504730781961/12752043*228826127^(1/8) 2178309000000078 a001 516002918640/4250681*228826127^(3/20) 2178309000000078 a001 591286729879/12752043*228826127^(1/5) 2178309000000078 a001 75283811239/4250681*228826127^(1/4) 2178309000000078 a001 86267571272/12752043*228826127^(3/10) 2178309000000078 a001 944284833567067/433494437 2178309000000078 a001 10983760033/4250681*228826127^(7/20) 2178309000000078 a001 3536736619241/4250681*87403803^(1/19) 2178309000000078 a001 5702887/370248451*2537720636^(13/15) 2178309000000078 a001 20365011074/12752043*228826127^(3/8) 2178309000000078 a001 165580141/12752043*2537720636^(5/9) 2178309000000078 a001 5702887/370248451*45537549124^(13/17) 2178309000000078 a001 165580141/12752043*312119004989^(5/11) 2178309000000078 a001 165580141/12752043*(1/2+1/2*5^(1/2))^25 2178309000000078 a001 165580141/12752043*3461452808002^(5/12) 2178309000000078 a001 5702887/370248451*192900153618^(13/18) 2178309000000078 a001 5702887/370248451*73681302247^(3/4) 2178309000000078 a001 165580141/12752043*28143753123^(1/2) 2178309000000078 a001 5702887/370248451*10749957122^(13/16) 2178309000000078 a001 12586269025/12752043*228826127^(2/5) 2178309000000078 a001 1602508992/4250681*228826127^(9/20) 2178309000000078 a001 267914296/12752043*228826127^(3/5) 2178309000000078 a001 1836311903/12752043*228826127^(1/2) 2178309000000078 a001 5702887/370248451*599074578^(13/14) 2178309000000078 a001 233802911/4250681*228826127^(11/20) 2178309000000078 a001 4052739537881/12752043*87403803^(2/19) 2178309000000078 a001 63245986/12752043*141422324^(9/13) 2178309000000078 a001 165580141/12752043*228826127^(5/8) 2178309000000078 a001 516002918640/4250681*87403803^(3/19) 2178309000000078 a001 591286729879/12752043*87403803^(4/19) 2178309000000078 a001 75283811239/4250681*87403803^(5/19) 2178309000000078 a001 86267571272/12752043*87403803^(6/19) 2178309000000078 a001 360684711361582/165580141 2178309000000078 a001 10983760033/4250681*87403803^(7/19) 2178309000000078 a001 3536736619241/4250681*33385282^(1/18) 2178309000000078 a001 63245986/12752043*2537720636^(3/5) 2178309000000078 a001 63245986/12752043*45537549124^(9/17) 2178309000000078 a001 63245986/12752043*817138163596^(9/19) 2178309000000078 a001 63245986/12752043*14662949395604^(3/7) 2178309000000078 a001 63245986/12752043*(1/2+1/2*5^(1/2))^27 2178309000000078 a001 63245986/12752043*192900153618^(1/2) 2178309000000078 a001 63245986/12752043*10749957122^(9/16) 2178309000000078 a001 63245986/12752043*599074578^(9/14) 2178309000000078 a001 12586269025/12752043*87403803^(8/19) 2178309000000078 a001 1602508992/4250681*87403803^(9/19) 2178309000000078 a001 2971215073/12752043*87403803^(1/2) 2178309000000078 a001 1836311903/12752043*87403803^(10/19) 2178309000000078 a001 34111385/4250681*87403803^(13/19) 2178309000000078 a001 6557470319842/12752043*33385282^(1/12) 2178309000000078 a001 233802911/4250681*87403803^(11/19) 2178309000000078 a001 267914296/12752043*87403803^(12/19) 2178309000000078 a001 4052739537881/12752043*33385282^(1/9) 2178309000000078 a001 591286729879/1860498*710647^(1/7) 2178309000000078 a001 516002918640/4250681*33385282^(1/6) 2178309000000078 a001 591286729879/87403803*7881196^(4/11) 2178309000000078 a001 591286729879/12752043*33385282^(2/9) 2178309000000078 a001 365435296162/12752043*33385282^(1/4) 2178309000000078 a001 75283811239/4250681*33385282^(5/18) 2178309000000079 a001 1548008755920/228826127*7881196^(4/11) 2178309000000079 a001 4052739537881/599074578*7881196^(4/11) 2178309000000079 a001 137769300517679/63245986 2178309000000079 a001 1515744265389/224056801*7881196^(4/11) 2178309000000079 a001 6557470319842/969323029*7881196^(4/11) 2178309000000079 a001 86267571272/12752043*33385282^(1/3) 2178309000000079 a001 2504730781961/370248451*7881196^(4/11) 2178309000000079 a001 5702887/54018521*2537720636^(7/9) 2178309000000079 a001 5702887/54018521*17393796001^(5/7) 2178309000000079 a001 5702887/54018521*312119004989^(7/11) 2178309000000079 a001 5702887/54018521*14662949395604^(5/9) 2178309000000079 a001 24157817/12752043*(1/2+1/2*5^(1/2))^29 2178309000000079 a001 24157817/12752043*1322157322203^(1/2) 2178309000000079 a001 5702887/54018521*28143753123^(7/10) 2178309000000079 a001 5702887/54018521*599074578^(5/6) 2178309000000079 a001 956722026041/141422324*7881196^(4/11) 2178309000000079 a001 10983760033/4250681*33385282^(7/18) 2178309000000079 a001 5702887/54018521*228826127^(7/8) 2178309000000079 a001 3536736619241/4250681*12752043^(1/17) 2178309000000079 a001 20365011074/12752043*33385282^(5/12) 2178309000000079 a001 12586269025/12752043*33385282^(4/9) 2178309000000079 a001 1602508992/4250681*33385282^(1/2) 2178309000000079 a001 1836311903/12752043*33385282^(5/9) 2178309000000079 a001 1134903170/12752043*33385282^(7/12) 2178309000000079 a001 233802911/4250681*33385282^(11/18) 2178309000000079 a001 39088169/12752043*33385282^(7/9) 2178309000000079 a001 267914296/12752043*33385282^(2/3) 2178309000000079 a001 34111385/4250681*33385282^(13/18) 2178309000000079 a001 365435296162/54018521*7881196^(4/11) 2178309000000079 a001 956722026041/87403803*7881196^(1/3) 2178309000000079 a001 63245986/12752043*33385282^(3/4) 2178309000000079 a001 4052739537881/12752043*12752043^(2/17) 2178309000000080 a001 2504730781961/228826127*7881196^(1/3) 2178309000000080 a001 3278735159921/299537289*7881196^(1/3) 2178309000000080 a001 10610209857723/969323029*7881196^(1/3) 2178309000000080 a001 4052739537881/370248451*7881196^(1/3) 2178309000000080 a001 387002188980/35355581*7881196^(1/3) 2178309000000080 a001 956722026041/33385282*7881196^(3/11) 2178309000000080 a001 516002918640/4250681*12752043^(3/17) 2178309000000080 a001 591286729879/54018521*7881196^(1/3) 2178309000000080 a001 32951280099/20633239*7881196^(5/11) 2178309000000081 a001 591286729879/12752043*12752043^(4/17) 2178309000000081 a001 2504730781961/87403803*7881196^(3/11) 2178309000000082 a001 6557470319842/228826127*7881196^(3/11) 2178309000000082 a001 10610209857723/370248451*7881196^(3/11) 2178309000000082 a001 75283811239/4250681*12752043^(5/17) 2178309000000082 a001 4052739537881/141422324*7881196^(3/11) 2178309000000082 a001 52623190191455/24157817 2178309000000082 a001 1548008755920/54018521*7881196^(3/11) 2178309000000083 a001 86267571272/12752043*12752043^(6/17) 2178309000000083 a001 5702887/20633239*141422324^(11/13) 2178309000000083 a001 4052739537881/33385282*7881196^(2/11) 2178309000000083 a001 5702887/20633239*2537720636^(11/15) 2178309000000083 a001 5702887/20633239*45537549124^(11/17) 2178309000000083 a001 5702887/20633239*312119004989^(3/5) 2178309000000083 a001 5702887/20633239*14662949395604^(11/21) 2178309000000083 a001 5702887/20633239*(1/2+1/2*5^(1/2))^33 2178309000000083 a001 9227465/12752043*(1/2+1/2*5^(1/2))^31 2178309000000083 a001 5702887/20633239*192900153618^(11/18) 2178309000000083 a001 5702887/20633239*10749957122^(11/16) 2178309000000083 a001 5702887/20633239*1568397607^(3/4) 2178309000000083 a001 5702887/20633239*599074578^(11/14) 2178309000000083 a001 1548008755920/4870847*1860498^(2/15) 2178309000000083 a001 10983760033/4250681*12752043^(7/17) 2178309000000084 a001 3536736619241/4250681*4870847^(1/16) 2178309000000084 a001 139583862445/20633239*7881196^(4/11) 2178309000000084 a001 12586269025/12752043*12752043^(8/17) 2178309000000085 a001 7778742049/12752043*12752043^(1/2) 2178309000000085 a001 3536736619241/29134601*7881196^(2/11) 2178309000000085 a001 39088169/33385282*20633239^(6/7) 2178309000000085 a001 7787980473/711491*7881196^(1/3) 2178309000000085 a001 5702887/20633239*33385282^(11/12) 2178309000000085 a001 1602508992/4250681*12752043^(9/17) 2178309000000085 a001 14619165/4769326*20633239^(4/5) 2178309000000086 a001 6557470319842/54018521*7881196^(2/11) 2178309000000086 a001 433494437/33385282*20633239^(5/7) 2178309000000086 a001 1836311903/12752043*12752043^(10/17) 2178309000000086 a001 2971215073/33385282*20633239^(3/5) 2178309000000086 a001 14930208/103681*20633239^(4/7) 2178309000000087 a001 233802911/4250681*12752043^(11/17) 2178309000000087 a001 34111385/29134601*20633239^(6/7) 2178309000000087 a001 591286729879/20633239*7881196^(3/11) 2178309000000087 a001 267914296/228826127*20633239^(6/7) 2178309000000087 a001 233802911/199691526*20633239^(6/7) 2178309000000087 a001 1836311903/1568397607*20633239^(6/7) 2178309000000087 a001 1602508992/1368706081*20633239^(6/7) 2178309000000087 a001 12586269025/10749957122*20633239^(6/7) 2178309000000087 a001 10983760033/9381251041*20633239^(6/7) 2178309000000087 a001 86267571272/73681302247*20633239^(6/7) 2178309000000087 a001 75283811239/64300051206*20633239^(6/7) 2178309000000087 a001 2504730781961/2139295485799*20633239^(6/7) 2178309000000087 a001 365435296162/312119004989*20633239^(6/7) 2178309000000087 a001 139583862445/119218851371*20633239^(6/7) 2178309000000087 a001 53316291173/45537549124*20633239^(6/7) 2178309000000087 a001 20365011074/17393796001*20633239^(6/7) 2178309000000087 a001 7778742049/6643838879*20633239^(6/7) 2178309000000087 a001 2971215073/2537720636*20633239^(6/7) 2178309000000087 a001 267914296/87403803*20633239^(4/5) 2178309000000087 a001 1134903170/969323029*20633239^(6/7) 2178309000000087 a001 433494437/370248451*20633239^(6/7) 2178309000000087 a001 165580141/141422324*20633239^(6/7) 2178309000000087 a001 53316291173/33385282*20633239^(3/7) 2178309000000087 a001 701408733/228826127*20633239^(4/5) 2178309000000087 a001 1836311903/599074578*20633239^(4/5) 2178309000000087 a001 686789568/224056801*20633239^(4/5) 2178309000000087 a001 12586269025/4106118243*20633239^(4/5) 2178309000000087 a001 32951280099/10749957122*20633239^(4/5) 2178309000000087 a001 86267571272/28143753123*20633239^(4/5) 2178309000000087 a001 32264490531/10525900321*20633239^(4/5) 2178309000000087 a001 591286729879/192900153618*20633239^(4/5) 2178309000000087 a001 1515744265389/494493258286*20633239^(4/5) 2178309000000087 a001 2504730781961/817138163596*20633239^(4/5) 2178309000000087 a001 956722026041/312119004989*20633239^(4/5) 2178309000000087 a001 365435296162/119218851371*20633239^(4/5) 2178309000000087 a001 139583862445/45537549124*20633239^(4/5) 2178309000000087 a001 53316291173/17393796001*20633239^(4/5) 2178309000000087 a001 20365011074/6643838879*20633239^(4/5) 2178309000000087 a001 7778742049/2537720636*20633239^(4/5) 2178309000000087 a001 2971215073/969323029*20633239^(4/5) 2178309000000087 a001 1134903170/370248451*20633239^(4/5) 2178309000000087 a001 43133785636/16692641*20633239^(2/5) 2178309000000087 a001 433494437/141422324*20633239^(4/5) 2178309000000087 a001 267914296/12752043*12752043^(12/17) 2178309000000087 a001 1134903170/87403803*20633239^(5/7) 2178309000000087 a001 7465176/16692641*(1/2+1/2*5^(1/2))^32 2178309000000087 a001 7465176/16692641*23725150497407^(1/2) 2178309000000087 a001 7465176/16692641*505019158607^(4/7) 2178309000000087 a001 7465176/16692641*73681302247^(8/13) 2178309000000087 a001 7465176/16692641*10749957122^(2/3) 2178309000000087 a001 7465176/16692641*4106118243^(16/23) 2178309000000087 a001 7465176/16692641*1568397607^(8/11) 2178309000000087 a001 7465176/16692641*599074578^(16/21) 2178309000000087 a001 7465176/16692641*228826127^(4/5) 2178309000000087 a001 74305136947968/34111385 2178309000000088 a001 2971215073/228826127*20633239^(5/7) 2178309000000088 a001 7465176/16692641*87403803^(16/19) 2178309000000088 a001 7778742049/599074578*20633239^(5/7) 2178309000000088 a001 20365011074/1568397607*20633239^(5/7) 2178309000000088 a001 53316291173/4106118243*20633239^(5/7) 2178309000000088 a001 139583862445/10749957122*20633239^(5/7) 2178309000000088 a001 365435296162/28143753123*20633239^(5/7) 2178309000000088 a001 956722026041/73681302247*20633239^(5/7) 2178309000000088 a001 2504730781961/192900153618*20633239^(5/7) 2178309000000088 a001 10610209857723/817138163596*20633239^(5/7) 2178309000000088 a001 4052739537881/312119004989*20633239^(5/7) 2178309000000088 a001 1548008755920/119218851371*20633239^(5/7) 2178309000000088 a001 591286729879/45537549124*20633239^(5/7) 2178309000000088 a001 7787980473/599786069*20633239^(5/7) 2178309000000088 a001 86267571272/6643838879*20633239^(5/7) 2178309000000088 a001 32951280099/2537720636*20633239^(5/7) 2178309000000088 a001 12586269025/969323029*20633239^(5/7) 2178309000000088 a001 4807526976/370248451*20633239^(5/7) 2178309000000088 a001 1836311903/141422324*20633239^(5/7) 2178309000000088 a001 4976784/4250681*12752043^(15/17) 2178309000000088 a001 63245986/54018521*20633239^(6/7) 2178309000000088 a001 591286729879/33385282*20633239^(2/7) 2178309000000088 a001 7778742049/87403803*20633239^(3/5) 2178309000000088 a001 165580141/54018521*20633239^(4/5) 2178309000000088 a001 12586269025/87403803*20633239^(4/7) 2178309000000088 a001 34111385/4250681*12752043^(13/17) 2178309000000088 a001 20365011074/228826127*20633239^(3/5) 2178309000000088 a001 53316291173/599074578*20633239^(3/5) 2178309000000088 a001 139583862445/1568397607*20633239^(3/5) 2178309000000088 a001 365435296162/4106118243*20633239^(3/5) 2178309000000088 a001 956722026041/10749957122*20633239^(3/5) 2178309000000088 a001 2504730781961/28143753123*20633239^(3/5) 2178309000000088 a001 6557470319842/73681302247*20633239^(3/5) 2178309000000088 a001 10610209857723/119218851371*20633239^(3/5) 2178309000000088 a001 4052739537881/45537549124*20633239^(3/5) 2178309000000088 a001 1548008755920/17393796001*20633239^(3/5) 2178309000000088 a001 591286729879/6643838879*20633239^(3/5) 2178309000000088 a001 225851433717/2537720636*20633239^(3/5) 2178309000000088 a001 86267571272/969323029*20633239^(3/5) 2178309000000088 a001 32951280099/370248451*20633239^(3/5) 2178309000000088 a001 2504730781961/33385282*20633239^(1/5) 2178309000000088 a001 32951280099/228826127*20633239^(4/7) 2178309000000088 a001 12586269025/141422324*20633239^(3/5) 2178309000000088 a001 43133785636/299537289*20633239^(4/7) 2178309000000088 a001 32264490531/224056801*20633239^(4/7) 2178309000000088 a001 591286729879/4106118243*20633239^(4/7) 2178309000000088 a001 774004377960/5374978561*20633239^(4/7) 2178309000000088 a001 4052739537881/28143753123*20633239^(4/7) 2178309000000088 a001 1515744265389/10525900321*20633239^(4/7) 2178309000000088 a001 3278735159921/22768774562*20633239^(4/7) 2178309000000088 a001 2504730781961/17393796001*20633239^(4/7) 2178309000000088 a001 956722026041/6643838879*20633239^(4/7) 2178309000000088 a001 182717648081/1268860318*20633239^(4/7) 2178309000000088 a001 139583862445/969323029*20633239^(4/7) 2178309000000088 a001 701408733/54018521*20633239^(5/7) 2178309000000088 a001 53316291173/370248451*20633239^(4/7) 2178309000000088 a001 10182505537/70711162*20633239^(4/7) 2178309000000089 a001 3278735159921/16692641*20633239^(1/7) 2178309000000089 a001 39088169/12752043*12752043^(14/17) 2178309000000089 a001 139583862445/87403803*20633239^(3/7) 2178309000000089 a001 75283811239/29134601*20633239^(2/5) 2178309000000089 a001 4807526976/54018521*20633239^(3/5) 2178309000000089 a001 39088169/33385282*141422324^(10/13) 2178309000000089 a001 39088169/33385282*2537720636^(2/3) 2178309000000089 a001 4976784/29134601*45537549124^(2/3) 2178309000000089 a001 39088169/33385282*45537549124^(10/17) 2178309000000089 a001 39088169/33385282*312119004989^(6/11) 2178309000000089 a001 39088169/33385282*14662949395604^(10/21) 2178309000000089 a001 39088169/33385282*(1/2+1/2*5^(1/2))^30 2178309000000089 a001 39088169/33385282*192900153618^(5/9) 2178309000000089 a001 39088169/33385282*28143753123^(3/5) 2178309000000089 a001 39088169/33385282*10749957122^(5/8) 2178309000000089 a001 4976784/29134601*10749957122^(17/24) 2178309000000089 a001 39088169/33385282*4106118243^(15/23) 2178309000000089 a001 4976784/29134601*4106118243^(17/23) 2178309000000089 a001 39088169/33385282*1568397607^(15/22) 2178309000000089 a001 4976784/29134601*1568397607^(17/22) 2178309000000089 a001 39088169/33385282*599074578^(5/7) 2178309000000089 a001 4976784/29134601*599074578^(17/21) 2178309000000089 a001 365435296162/228826127*20633239^(3/7) 2178309000000089 a001 72950015275686/33489287 2178309000000089 a001 39088169/33385282*228826127^(3/4) 2178309000000089 a001 4976784/29134601*228826127^(17/20) 2178309000000089 a001 956722026041/599074578*20633239^(3/7) 2178309000000089 a001 2504730781961/1568397607*20633239^(3/7) 2178309000000089 a001 6557470319842/4106118243*20633239^(3/7) 2178309000000089 a001 10610209857723/6643838879*20633239^(3/7) 2178309000000089 a001 4052739537881/2537720636*20633239^(3/7) 2178309000000089 a001 1548008755920/969323029*20633239^(3/7) 2178309000000089 a001 7778742049/54018521*20633239^(4/7) 2178309000000089 a001 591286729879/370248451*20633239^(3/7) 2178309000000089 a001 7465176/16692641*33385282^(8/9) 2178309000000089 a001 14930352/228826127*141422324^(12/13) 2178309000000089 a001 591286729879/228826127*20633239^(2/5) 2178309000000089 a001 225851433717/141422324*20633239^(3/7) 2178309000000089 a001 86000486440/33281921*20633239^(2/5) 2178309000000089 a001 4052739537881/1568397607*20633239^(2/5) 2178309000000089 a001 3536736619241/1368706081*20633239^(2/5) 2178309000000089 a001 3278735159921/1268860318*20633239^(2/5) 2178309000000089 a001 2504730781961/969323029*20633239^(2/5) 2178309000000089 a001 133957148/16692641*141422324^(2/3) 2178309000000089 a001 956722026041/370248451*20633239^(2/5) 2178309000000089 a001 701408733/33385282*141422324^(8/13) 2178309000000089 a001 39088169/33385282*87403803^(15/19) 2178309000000089 a001 165580141/33385282*141422324^(9/13) 2178309000000089 a001 2971215073/33385282*141422324^(7/13) 2178309000000089 a001 12586269025/33385282*141422324^(6/13) 2178309000000089 a001 53316291173/33385282*141422324^(5/13) 2178309000000089 a001 14930352/228826127*2537720636^(4/5) 2178309000000089 a001 14619165/4769326*17393796001^(4/7) 2178309000000089 a001 14930352/228826127*45537549124^(12/17) 2178309000000089 a001 14619165/4769326*14662949395604^(4/9) 2178309000000089 a001 14619165/4769326*(1/2+1/2*5^(1/2))^28 2178309000000089 a001 14619165/4769326*505019158607^(1/2) 2178309000000089 a001 14930352/228826127*192900153618^(2/3) 2178309000000089 a001 14619165/4769326*73681302247^(7/13) 2178309000000089 a001 14930352/228826127*73681302247^(9/13) 2178309000000089 a001 14619165/4769326*10749957122^(7/12) 2178309000000089 a001 14930352/228826127*10749957122^(3/4) 2178309000000089 a001 14619165/4769326*4106118243^(14/23) 2178309000000089 a001 14930352/228826127*4106118243^(18/23) 2178309000000089 a001 14619165/4769326*1568397607^(7/11) 2178309000000089 a001 14930352/228826127*1568397607^(9/11) 2178309000000089 a001 509294985257520/233802911 2178309000000089 a001 14619165/4769326*599074578^(2/3) 2178309000000089 a001 14930352/228826127*599074578^(6/7) 2178309000000089 a001 139583862445/33385282*141422324^(1/3) 2178309000000089 a001 32264490531/4769326*141422324^(4/13) 2178309000000089 a001 4976784/29134601*87403803^(17/19) 2178309000000089 a001 956722026041/33385282*141422324^(3/13) 2178309000000089 a001 4052739537881/33385282*141422324^(2/13) 2178309000000089 a001 14619165/4769326*228826127^(7/10) 2178309000000089 a001 829464/33281921*817138163596^(2/3) 2178309000000089 a001 133957148/16692641*(1/2+1/2*5^(1/2))^26 2178309000000089 a001 133957148/16692641*73681302247^(1/2) 2178309000000089 a001 133957148/16692641*10749957122^(13/24) 2178309000000089 a001 829464/33281921*10749957122^(19/24) 2178309000000089 a001 133957148/16692641*4106118243^(13/23) 2178309000000089 a001 829464/33281921*4106118243^(19/23) 2178309000000089 a001 4000054745112192/1836311903 2178309000000089 a001 133957148/16692641*1568397607^(13/22) 2178309000000089 a001 829464/33281921*1568397607^(19/22) 2178309000000089 a001 14930352/228826127*228826127^(9/10) 2178309000000089 a001 133957148/16692641*599074578^(13/21) 2178309000000089 a001 14930352/1568397607*2537720636^(8/9) 2178309000000089 a001 701408733/33385282*2537720636^(8/15) 2178309000000089 a001 701408733/33385282*45537549124^(8/17) 2178309000000089 a001 14930352/1568397607*312119004989^(8/11) 2178309000000089 a001 701408733/33385282*14662949395604^(8/21) 2178309000000089 a001 701408733/33385282*(1/2+1/2*5^(1/2))^24 2178309000000089 a001 14930352/1568397607*23725150497407^(5/8) 2178309000000089 a001 701408733/33385282*192900153618^(4/9) 2178309000000089 a001 701408733/33385282*73681302247^(6/13) 2178309000000089 a001 14930352/1568397607*73681302247^(10/13) 2178309000000089 a001 14930352/1568397607*28143753123^(4/5) 2178309000000089 a001 701408733/33385282*10749957122^(1/2) 2178309000000089 a001 14930352/1568397607*10749957122^(5/6) 2178309000000089 a001 72724161663639/33385604 2178309000000089 a001 701408733/33385282*4106118243^(12/23) 2178309000000089 a001 14930352/1568397607*4106118243^(20/23) 2178309000000089 a001 829464/33281921*599074578^(19/21) 2178309000000089 a001 4976784/1368706081*2537720636^(14/15) 2178309000000089 a001 701408733/33385282*1568397607^(6/11) 2178309000000089 a001 14930208/103681*2537720636^(4/9) 2178309000000089 a001 12586269025/33385282*2537720636^(2/5) 2178309000000089 a001 4976784/1368706081*17393796001^(6/7) 2178309000000089 a001 4976784/1368706081*45537549124^(14/17) 2178309000000089 a001 1836311903/33385282*312119004989^(2/5) 2178309000000089 a001 1836311903/33385282*(1/2+1/2*5^(1/2))^22 2178309000000089 a001 4976784/1368706081*505019158607^(3/4) 2178309000000089 a001 4976784/1368706081*192900153618^(7/9) 2178309000000089 a001 27416783093579856/12586269025 2178309000000089 a001 1836311903/33385282*10749957122^(11/24) 2178309000000089 a001 4976784/1368706081*10749957122^(7/8) 2178309000000089 a001 53316291173/33385282*2537720636^(1/3) 2178309000000089 a001 2971215073/33385282*2537720636^(7/15) 2178309000000089 a001 32264490531/4769326*2537720636^(4/15) 2178309000000089 a001 14930352/1568397607*1568397607^(10/11) 2178309000000089 a001 591286729879/33385282*2537720636^(2/9) 2178309000000089 a001 956722026041/33385282*2537720636^(1/5) 2178309000000089 a001 1836311903/33385282*4106118243^(11/23) 2178309000000089 a001 4052739537881/33385282*2537720636^(2/15) 2178309000000089 a001 3278735159921/16692641*2537720636^(1/9) 2178309000000089 a001 7465176/5374978561*312119004989^(4/5) 2178309000000089 a001 14930208/103681*(1/2+1/2*5^(1/2))^20 2178309000000089 a001 14930208/103681*23725150497407^(5/16) 2178309000000089 a001 14930208/103681*505019158607^(5/14) 2178309000000089 a001 14930208/103681*73681302247^(5/13) 2178309000000089 a001 7465176/5374978561*73681302247^(11/13) 2178309000000089 a001 23926023333725184/10983760033 2178309000000089 a001 14930208/103681*28143753123^(2/5) 2178309000000089 a001 4976784/1368706081*4106118243^(21/23) 2178309000000089 a001 14930208/103681*10749957122^(5/12) 2178309000000089 a001 12586269025/33385282*45537549124^(6/17) 2178309000000089 a001 12586269025/33385282*14662949395604^(2/7) 2178309000000089 a001 12586269025/33385282*(1/2+1/2*5^(1/2))^18 2178309000000089 a001 12586269025/33385282*192900153618^(1/3) 2178309000000089 a001 72723462426450/33385283 2178309000000089 a001 43133785636/16692641*17393796001^(2/7) 2178309000000089 a001 7465176/5374978561*10749957122^(11/12) 2178309000000089 a001 14930352/73681302247*45537549124^(16/17) 2178309000000089 a001 2504730781961/33385282*17393796001^(1/7) 2178309000000089 a001 14930352/73681302247*14662949395604^(16/21) 2178309000000089 a001 32951280099/33385282*(1/2+1/2*5^(1/2))^16 2178309000000089 a001 32951280099/33385282*23725150497407^(1/4) 2178309000000089 a001 14930352/73681302247*192900153618^(8/9) 2178309000000089 a001 32951280099/33385282*73681302247^(4/13) 2178309000000089 a001 32264490531/4769326*45537549124^(4/17) 2178309000000089 a001 53316291173/33385282*45537549124^(5/17) 2178309000000089 a001 2584/33385281*312119004989^(10/11) 2178309000000089 a001 43133785636/16692641*(1/2+1/2*5^(1/2))^14 2178309000000089 a001 2584/33385281*3461452808002^(5/6) 2178309000000089 a001 1288005205276047744/591286729879 2178309000000089 a001 14930352/73681302247*73681302247^(12/13) 2178309000000089 a001 32264490531/4769326*(1/2+1/2*5^(1/2))^12 2178309000000089 a001 14930352/505019158607*23725150497407^(13/16) 2178309000000089 a001 4976784/440719107401*14662949395604^(6/7) 2178309000000089 a001 591286729879/33385282*(1/2+1/2*5^(1/2))^10 2178309000000089 a001 774004377960/16692641*(1/2+1/2*5^(1/2))^8 2178309000000089 a001 1515744265389/4769326*(1/2+1/2*5^(1/2))^4 2178309000000089 a006 5^(1/2)*Fibonacci(68)/Lucas(36)/sqrt(5) 2178309000000089 a001 14930352/2139295485799*3461452808002^(11/12) 2178309000000089 a001 14930352/312119004989*817138163596^(17/19) 2178309000000089 a001 14930352/312119004989*14662949395604^(17/21) 2178309000000089 a001 139583862445/33385282*(1/2+1/2*5^(1/2))^13 2178309000000089 a001 1515744265389/4769326*73681302247^(1/13) 2178309000000089 a001 774004377960/16692641*73681302247^(2/13) 2178309000000089 a001 14930352/312119004989*192900153618^(17/18) 2178309000000089 a001 139583862445/33385282*73681302247^(1/4) 2178309000000089 a001 53316291173/33385282*312119004989^(3/11) 2178309000000089 a001 398015497273691448/182717648081 2178309000000089 a001 14930352/119218851371*14662949395604^(7/9) 2178309000000089 a001 14930352/119218851371*505019158607^(7/8) 2178309000000089 a001 53316291173/33385282*192900153618^(5/18) 2178309000000089 a001 3278735159921/16692641*28143753123^(1/10) 2178309000000089 a001 591286729879/33385282*28143753123^(1/5) 2178309000000089 a001 10182505537/16692641*45537549124^(1/3) 2178309000000089 a001 53316291173/33385282*28143753123^(3/10) 2178309000000089 a001 304056783818718048/139583862445 2178309000000089 a001 10182505537/16692641*(1/2+1/2*5^(1/2))^17 2178309000000089 a001 1515744265389/4769326*10749957122^(1/12) 2178309000000089 a001 4052739537881/33385282*10749957122^(1/8) 2178309000000089 a001 774004377960/16692641*10749957122^(1/6) 2178309000000089 a001 956722026041/33385282*10749957122^(3/16) 2178309000000089 a001 591286729879/33385282*10749957122^(5/24) 2178309000000089 a001 12586269025/33385282*10749957122^(3/8) 2178309000000089 a001 32264490531/4769326*10749957122^(1/4) 2178309000000089 a001 43133785636/16692641*10749957122^(7/24) 2178309000000089 a001 32951280099/33385282*10749957122^(1/3) 2178309000000089 a001 53316291173/33385282*10749957122^(5/16) 2178309000000089 a001 14930352/17393796001*45537549124^(15/17) 2178309000000089 a001 116139356908771248/53316291173 2178309000000089 a001 14930352/17393796001*312119004989^(9/11) 2178309000000089 a001 14930352/17393796001*14662949395604^(5/7) 2178309000000089 a001 7778742049/33385282*(1/2+1/2*5^(1/2))^19 2178309000000089 a001 14930352/17393796001*192900153618^(5/6) 2178309000000089 a001 14930352/17393796001*28143753123^(9/10) 2178309000000089 a001 1515744265389/4769326*4106118243^(2/23) 2178309000000089 a001 4976784/9381251041*10749957122^(23/24) 2178309000000089 a001 4052739537881/33385282*4106118243^(3/23) 2178309000000089 a001 774004377960/16692641*4106118243^(4/23) 2178309000000089 a001 14930352/17393796001*10749957122^(15/16) 2178309000000089 a001 591286729879/33385282*4106118243^(5/23) 2178309000000089 a001 32264490531/4769326*4106118243^(6/23) 2178309000000089 a001 14930208/103681*4106118243^(10/23) 2178309000000089 a001 43133785636/16692641*4106118243^(7/23) 2178309000000089 a001 32951280099/33385282*4106118243^(8/23) 2178309000000089 a001 2971215073/33385282*17393796001^(3/7) 2178309000000089 a001 12586269025/33385282*4106118243^(9/23) 2178309000000089 a001 22180643453797848/10182505537 2178309000000089 a001 2971215073/33385282*45537549124^(7/17) 2178309000000089 a001 2971215073/33385282*14662949395604^(1/3) 2178309000000089 a001 2971215073/33385282*(1/2+1/2*5^(1/2))^21 2178309000000089 a001 2971215073/33385282*192900153618^(7/18) 2178309000000089 a001 2971215073/33385282*10749957122^(7/16) 2178309000000089 a001 1515744265389/4769326*1568397607^(1/11) 2178309000000089 a001 7465176/5374978561*4106118243^(22/23) 2178309000000089 a001 4052739537881/33385282*1568397607^(3/22) 2178309000000089 a001 774004377960/16692641*1568397607^(2/11) 2178309000000089 a001 591286729879/33385282*1568397607^(5/22) 2178309000000089 a001 182717648081/16692641*1568397607^(1/4) 2178309000000089 a001 32264490531/4769326*1568397607^(3/11) 2178309000000089 a001 43133785636/16692641*1568397607^(7/22) 2178309000000089 a001 1836311903/33385282*1568397607^(1/2) 2178309000000089 a001 32951280099/33385282*1568397607^(4/11) 2178309000000089 a001 16944503814015840/7778742049 2178309000000089 a001 567451585/16692641*(1/2+1/2*5^(1/2))^23 2178309000000089 a001 12586269025/33385282*1568397607^(9/22) 2178309000000089 a001 14930208/103681*1568397607^(5/11) 2178309000000089 a001 567451585/16692641*4106118243^(1/2) 2178309000000089 a001 1515744265389/4769326*599074578^(2/21) 2178309000000089 a001 4976784/1368706081*1568397607^(21/22) 2178309000000089 a001 4052739537881/33385282*599074578^(1/7) 2178309000000089 a001 2504730781961/33385282*599074578^(1/6) 2178309000000089 a001 774004377960/16692641*599074578^(4/21) 2178309000000089 a001 956722026041/33385282*599074578^(3/14) 2178309000000089 a001 591286729879/33385282*599074578^(5/21) 2178309000000089 a001 32264490531/4769326*599074578^(2/7) 2178309000000089 a001 43133785636/16692641*599074578^(1/3) 2178309000000089 a001 14930352/969323029*2537720636^(13/15) 2178309000000089 a001 433494437/33385282*2537720636^(5/9) 2178309000000089 a001 53316291173/33385282*599074578^(5/14) 2178309000000089 a001 6472224534451824/2971215073 2178309000000089 a001 32951280099/33385282*599074578^(8/21) 2178309000000089 a001 14930352/969323029*45537549124^(13/17) 2178309000000089 a001 433494437/33385282*312119004989^(5/11) 2178309000000089 a001 14930352/969323029*14662949395604^(13/21) 2178309000000089 a001 433494437/33385282*(1/2+1/2*5^(1/2))^25 2178309000000089 a001 14930352/969323029*192900153618^(13/18) 2178309000000089 a001 14930352/969323029*73681302247^(3/4) 2178309000000089 a001 433494437/33385282*28143753123^(1/2) 2178309000000089 a001 14930352/969323029*10749957122^(13/16) 2178309000000089 a001 701408733/33385282*599074578^(4/7) 2178309000000089 a001 12586269025/33385282*599074578^(3/7) 2178309000000089 a001 14930208/103681*599074578^(10/21) 2178309000000089 a001 1836311903/33385282*599074578^(11/21) 2178309000000089 a001 2971215073/33385282*599074578^(1/2) 2178309000000089 a001 1515744265389/4769326*228826127^(1/10) 2178309000000089 a001 14930352/1568397607*599074578^(20/21) 2178309000000089 a001 3278735159921/16692641*228826127^(1/8) 2178309000000089 a001 4052739537881/33385282*228826127^(3/20) 2178309000000089 a001 14930352/969323029*599074578^(13/14) 2178309000000089 a001 774004377960/16692641*228826127^(1/5) 2178309000000089 a001 591286729879/33385282*228826127^(1/4) 2178309000000089 a001 32264490531/4769326*228826127^(3/10) 2178309000000089 a001 43133785636/16692641*228826127^(7/20) 2178309000000089 a001 72710876157048/33379505 2178309000000089 a001 53316291173/33385282*228826127^(3/8) 2178309000000089 a001 165580141/33385282*2537720636^(3/5) 2178309000000089 a001 165580141/33385282*45537549124^(9/17) 2178309000000089 a001 165580141/33385282*817138163596^(9/19) 2178309000000089 a001 165580141/33385282*14662949395604^(3/7) 2178309000000089 a001 165580141/33385282*(1/2+1/2*5^(1/2))^27 2178309000000089 a001 165580141/33385282*192900153618^(1/2) 2178309000000089 a001 165580141/33385282*10749957122^(9/16) 2178309000000089 a001 32951280099/33385282*228826127^(2/5) 2178309000000089 a001 182717648081/70711162*20633239^(2/5) 2178309000000089 a001 12586269025/33385282*228826127^(9/20) 2178309000000089 a001 165580141/33385282*599074578^(9/14) 2178309000000089 a001 14930208/103681*228826127^(1/2) 2178309000000089 a001 133957148/16692641*228826127^(13/20) 2178309000000089 a001 1836311903/33385282*228826127^(11/20) 2178309000000089 a001 701408733/33385282*228826127^(3/5) 2178309000000089 a001 433494437/33385282*228826127^(5/8) 2178309000000089 a001 1515744265389/4769326*87403803^(2/19) 2178309000000089 a001 829464/33281921*228826127^(19/20) 2178309000000089 a001 4052739537881/12752043*4870847^(1/8) 2178309000000089 a001 4052739537881/33385282*87403803^(3/19) 2178309000000089 a001 774004377960/16692641*87403803^(4/19) 2178309000000089 a001 591286729879/33385282*87403803^(5/19) 2178309000000089 a001 32264490531/4769326*87403803^(6/19) 2178309000000089 a001 43133785636/16692641*87403803^(7/19) 2178309000000089 a001 944284833567072/433494437 2178309000000089 a001 3732588/35355581*2537720636^(7/9) 2178309000000089 a001 3732588/35355581*17393796001^(5/7) 2178309000000089 a001 3732588/35355581*14662949395604^(5/9) 2178309000000089 a001 31622993/16692641*(1/2+1/2*5^(1/2))^29 2178309000000089 a001 31622993/16692641*1322157322203^(1/2) 2178309000000089 a001 3732588/35355581*505019158607^(5/8) 2178309000000089 a001 3732588/35355581*28143753123^(7/10) 2178309000000089 a001 3732588/35355581*599074578^(5/6) 2178309000000089 a001 32951280099/33385282*87403803^(8/19) 2178309000000089 a001 12586269025/33385282*87403803^(9/19) 2178309000000090 a001 7778742049/33385282*87403803^(1/2) 2178309000000090 a001 3732588/35355581*228826127^(7/8) 2178309000000090 a001 14930208/103681*87403803^(10/19) 2178309000000090 a001 1836311903/33385282*87403803^(11/19) 2178309000000090 a001 14619165/4769326*87403803^(14/19) 2178309000000090 a001 701408733/33385282*87403803^(12/19) 2178309000000090 a001 133957148/16692641*87403803^(13/19) 2178309000000090 a001 516002918640/29134601*20633239^(2/7) 2178309000000090 a001 1515744265389/4769326*33385282^(1/9) 2178309000000090 a001 14930352/228826127*87403803^(18/19) 2178309000000090 a001 4052739537881/33385282*33385282^(1/6) 2178309000000090 a001 774004377960/16692641*33385282^(2/9) 2178309000000090 a001 4052739537881/228826127*20633239^(2/7) 2178309000000090 a001 3536736619241/199691526*20633239^(2/7) 2178309000000090 a001 956722026041/33385282*33385282^(1/4) 2178309000000090 a001 86267571272/54018521*20633239^(3/7) 2178309000000090 a001 6557470319842/370248451*20633239^(2/7) 2178309000000090 a001 591286729879/33385282*33385282^(5/18) 2178309000000090 a001 2504730781961/141422324*20633239^(2/7) 2178309000000090 a001 6557470319842/87403803*20633239^(1/5) 2178309000000090 a001 32264490531/4769326*33385282^(1/3) 2178309000000090 a001 139583862445/54018521*20633239^(2/5) 2178309000000090 a001 14930352/54018521*141422324^(11/13) 2178309000000090 a001 2504730781961/20633239*7881196^(2/11) 2178309000000090 a001 360684711361584/165580141 2178309000000090 a001 14930352/54018521*2537720636^(11/15) 2178309000000090 a001 14930352/54018521*45537549124^(11/17) 2178309000000090 a001 14930352/54018521*312119004989^(3/5) 2178309000000090 a001 14930352/54018521*817138163596^(11/19) 2178309000000090 a001 14930352/54018521*14662949395604^(11/21) 2178309000000090 a001 24157817/33385282*(1/2+1/2*5^(1/2))^31 2178309000000090 a001 14930352/54018521*192900153618^(11/18) 2178309000000090 a001 14930352/54018521*10749957122^(11/16) 2178309000000090 a001 14930352/54018521*1568397607^(3/4) 2178309000000090 a001 14930352/54018521*599074578^(11/14) 2178309000000090 a001 43133785636/16692641*33385282^(7/18) 2178309000000090 a001 53316291173/33385282*33385282^(5/12) 2178309000000090 a001 32951280099/33385282*33385282^(4/9) 2178309000000090 a001 12586269025/33385282*33385282^(1/2) 2178309000000090 a001 10610209857723/141422324*20633239^(1/5) 2178309000000090 a001 14930208/103681*33385282^(5/9) 2178309000000091 a001 2971215073/33385282*33385282^(7/12) 2178309000000091 a001 1836311903/33385282*33385282^(11/18) 2178309000000091 a001 956722026041/54018521*20633239^(2/7) 2178309000000091 a001 701408733/33385282*33385282^(2/3) 2178309000000091 a001 39088169/33385282*33385282^(5/6) 2178309000000091 a001 39088169/87403803*23725150497407^(1/2) 2178309000000091 a001 39088169/87403803*505019158607^(4/7) 2178309000000091 a001 39088169/87403803*73681302247^(8/13) 2178309000000091 a001 39088169/87403803*10749957122^(2/3) 2178309000000091 a001 39088169/87403803*4106118243^(16/23) 2178309000000091 a001 39088169/87403803*1568397607^(8/11) 2178309000000091 a001 1527884955772561/701408733 2178309000000091 a001 39088169/87403803*599074578^(16/21) 2178309000000091 a001 133957148/16692641*33385282^(13/18) 2178309000000091 a001 39088169/87403803*228826127^(4/5) 2178309000000091 a001 14619165/4769326*33385282^(7/9) 2178309000000091 a001 165580141/33385282*33385282^(3/4) 2178309000000091 a001 34111385/29134601*141422324^(10/13) 2178309000000091 a001 4976784/29134601*33385282^(17/18) 2178309000000091 a001 39088169/599074578*141422324^(12/13) 2178309000000091 a001 1515744265389/4769326*12752043^(2/17) 2178309000000091 a001 233802911/29134601*141422324^(2/3) 2178309000000091 a001 433494437/87403803*141422324^(9/13) 2178309000000091 a001 1836311903/87403803*141422324^(8/13) 2178309000000091 a001 7778742049/87403803*141422324^(7/13) 2178309000000091 a001 10983760033/29134601*141422324^(6/13) 2178309000000091 a001 39088169/87403803*87403803^(16/19) 2178309000000091 a001 139583862445/87403803*141422324^(5/13) 2178309000000091 a001 34111385/29134601*2537720636^(2/3) 2178309000000091 a001 39088169/228826127*45537549124^(2/3) 2178309000000091 a001 34111385/29134601*45537549124^(10/17) 2178309000000091 a001 34111385/29134601*312119004989^(6/11) 2178309000000091 a001 34111385/29134601*14662949395604^(10/21) 2178309000000091 a001 34111385/29134601*192900153618^(5/9) 2178309000000091 a001 34111385/29134601*28143753123^(3/5) 2178309000000091 a001 34111385/29134601*10749957122^(5/8) 2178309000000091 a001 39088169/228826127*10749957122^(17/24) 2178309000000091 a001 34111385/29134601*4106118243^(15/23) 2178309000000091 a001 39088169/228826127*4106118243^(17/23) 2178309000000091 a001 4000054745112195/1836311903 2178309000000091 a001 34111385/29134601*1568397607^(15/22) 2178309000000091 a001 39088169/228826127*1568397607^(17/22) 2178309000000091 a001 34111385/29134601*599074578^(5/7) 2178309000000091 a001 39088169/228826127*599074578^(17/21) 2178309000000091 a001 365435296162/87403803*141422324^(1/3) 2178309000000091 a001 591286729879/87403803*141422324^(4/13) 2178309000000091 a001 2504730781961/87403803*141422324^(3/13) 2178309000000091 a001 3536736619241/29134601*141422324^(2/13) 2178309000000091 a001 34111385/29134601*228826127^(3/4) 2178309000000091 a001 39088169/599074578*2537720636^(4/5) 2178309000000091 a001 39088169/228826127*228826127^(17/20) 2178309000000091 a001 267914296/87403803*17393796001^(4/7) 2178309000000091 a001 39088169/599074578*45537549124^(12/17) 2178309000000091 a001 39088169/599074578*14662949395604^(4/7) 2178309000000091 a001 267914296/87403803*14662949395604^(4/9) 2178309000000091 a001 39088169/599074578*192900153618^(2/3) 2178309000000091 a001 267914296/87403803*73681302247^(7/13) 2178309000000091 a001 39088169/599074578*73681302247^(9/13) 2178309000000091 a001 267914296/87403803*10749957122^(7/12) 2178309000000091 a001 39088169/599074578*10749957122^(3/4) 2178309000000091 a001 1309034909945503/600940872 2178309000000091 a001 267914296/87403803*4106118243^(14/23) 2178309000000091 a001 39088169/599074578*4106118243^(18/23) 2178309000000091 a001 267914296/87403803*1568397607^(7/11) 2178309000000091 a001 39088169/599074578*1568397607^(9/11) 2178309000000091 a001 267914296/87403803*599074578^(2/3) 2178309000000091 a001 39088169/1568397607*817138163596^(2/3) 2178309000000091 a001 233802911/29134601*73681302247^(1/2) 2178309000000091 a001 27416783093579877/12586269025 2178309000000091 a001 233802911/29134601*10749957122^(13/24) 2178309000000091 a001 39088169/1568397607*10749957122^(19/24) 2178309000000091 a001 39088169/599074578*599074578^(6/7) 2178309000000091 a001 233802911/29134601*4106118243^(13/23) 2178309000000091 a001 39088169/1568397607*4106118243^(19/23) 2178309000000091 a001 39088169/4106118243*2537720636^(8/9) 2178309000000091 a001 233802911/29134601*1568397607^(13/22) 2178309000000091 a001 39088169/10749957122*2537720636^(14/15) 2178309000000091 a001 1836311903/87403803*2537720636^(8/15) 2178309000000091 a001 12586269025/87403803*2537720636^(4/9) 2178309000000091 a001 7778742049/87403803*2537720636^(7/15) 2178309000000091 a001 10983760033/29134601*2537720636^(2/5) 2178309000000091 a001 1836311903/87403803*45537549124^(8/17) 2178309000000091 a001 39088169/4106118243*312119004989^(8/11) 2178309000000091 a001 1836311903/87403803*14662949395604^(8/21) 2178309000000091 a001 39088169/4106118243*23725150497407^(5/8) 2178309000000091 a001 1836311903/87403803*192900153618^(4/9) 2178309000000091 a001 1836311903/87403803*73681302247^(6/13) 2178309000000091 a001 39088169/4106118243*73681302247^(10/13) 2178309000000091 a001 71778070001175607/32951280099 2178309000000091 a001 39088169/4106118243*28143753123^(4/5) 2178309000000091 a001 39088169/1568397607*1568397607^(19/22) 2178309000000091 a001 1836311903/87403803*10749957122^(1/2) 2178309000000091 a001 39088169/4106118243*10749957122^(5/6) 2178309000000091 a001 139583862445/87403803*2537720636^(1/3) 2178309000000091 a001 591286729879/87403803*2537720636^(4/15) 2178309000000091 a001 516002918640/29134601*2537720636^(2/9) 2178309000000091 a001 2504730781961/87403803*2537720636^(1/5) 2178309000000091 a001 1836311903/87403803*4106118243^(12/23) 2178309000000091 a001 3536736619241/29134601*2537720636^(2/15) 2178309000000091 a001 39088169/10749957122*17393796001^(6/7) 2178309000000091 a001 39088169/10749957122*45537549124^(14/17) 2178309000000091 a001 1602508992/29134601*312119004989^(2/5) 2178309000000091 a001 39088169/10749957122*14662949395604^(2/3) 2178309000000091 a001 39088169/10749957122*192900153618^(7/9) 2178309000000091 a001 23489678363743368/10783446409 2178309000000091 a001 39088169/4106118243*4106118243^(20/23) 2178309000000091 a001 1602508992/29134601*10749957122^(11/24) 2178309000000091 a001 39088169/28143753123*312119004989^(4/5) 2178309000000091 a001 12586269025/87403803*23725150497407^(5/16) 2178309000000091 a001 12586269025/87403803*505019158607^(5/14) 2178309000000091 a001 491974210728665225/225851433717 2178309000000091 a001 12586269025/87403803*73681302247^(5/13) 2178309000000091 a001 39088169/28143753123*73681302247^(11/13) 2178309000000091 a001 39088169/10749957122*10749957122^(7/8) 2178309000000091 a001 75283811239/29134601*17393796001^(2/7) 2178309000000091 a001 12586269025/87403803*28143753123^(2/5) 2178309000000091 a001 39088169/192900153618*45537549124^(16/17) 2178309000000091 a001 6557470319842/87403803*17393796001^(1/7) 2178309000000091 a001 10983760033/29134601*45537549124^(6/17) 2178309000000091 a001 10983760033/29134601*14662949395604^(2/7) 2178309000000091 a001 1288005205276048731/591286729879 2178309000000091 a001 10983760033/29134601*192900153618^(1/3) 2178309000000091 a001 139583862445/87403803*45537549124^(5/17) 2178309000000091 a001 591286729879/87403803*45537549124^(4/17) 2178309000000091 a001 53316291173/87403803*45537549124^(1/3) 2178309000000091 a001 2504730781961/87403803*45537549124^(3/17) 2178309000000091 a001 3536736619241/29134601*45537549124^(2/17) 2178309000000091 a001 39088169/192900153618*14662949395604^(16/21) 2178309000000091 a001 39088169/505019158607*312119004989^(10/11) 2178309000000091 a001 39088169/192900153618*192900153618^(8/9) 2178309000000091 a001 23112315624967701551/10610209857723 2178309000000091 a006 5^(1/2)*Fibonacci(70)/Lucas(38)/sqrt(5) 2178309000000091 a001 2504730781961/87403803*14662949395604^(1/7) 2178309000000091 a001 139583862445/87403803*312119004989^(3/11) 2178309000000091 a001 5456077604922913205/2504730781961 2178309000000091 a001 139583862445/87403803*14662949395604^(5/21) 2178309000000091 a001 139583862445/87403803*192900153618^(5/18) 2178309000000091 a001 4181/87403804*192900153618^(17/18) 2178309000000091 a001 4052739537881/87403803*73681302247^(2/13) 2178309000000091 a001 591286729879/87403803*73681302247^(3/13) 2178309000000091 a001 365435296162/87403803*73681302247^(1/4) 2178309000000091 a001 39088169/45537549124*45537549124^(15/17) 2178309000000091 a001 2084036199823432237/956722026041 2178309000000091 a001 39088169/192900153618*73681302247^(12/13) 2178309000000091 a001 516002918640/29134601*28143753123^(1/5) 2178309000000091 a001 139583862445/87403803*28143753123^(3/10) 2178309000000091 a001 39088169/45537549124*312119004989^(9/11) 2178309000000091 a001 20365011074/87403803*817138163596^(1/3) 2178309000000091 a001 39088169/45537549124*192900153618^(5/6) 2178309000000091 a001 3536736619241/29134601*10749957122^(1/8) 2178309000000091 a001 4052739537881/87403803*10749957122^(1/6) 2178309000000091 a001 39088169/45537549124*28143753123^(9/10) 2178309000000091 a001 2504730781961/87403803*10749957122^(3/16) 2178309000000091 a001 516002918640/29134601*10749957122^(5/24) 2178309000000091 a001 7778742049/87403803*17393796001^(3/7) 2178309000000091 a001 591286729879/87403803*10749957122^(1/4) 2178309000000091 a001 12586269025/87403803*10749957122^(5/12) 2178309000000091 a001 75283811239/29134601*10749957122^(7/24) 2178309000000091 a001 139583862445/87403803*10749957122^(5/16) 2178309000000091 a001 86267571272/87403803*10749957122^(1/3) 2178309000000091 a001 10983760033/29134601*10749957122^(3/8) 2178309000000091 a001 7778742049/87403803*45537549124^(7/17) 2178309000000091 a001 304056783818718281/139583862445 2178309000000091 a001 7778742049/87403803*14662949395604^(1/3) 2178309000000091 a001 7778742049/87403803*192900153618^(7/18) 2178309000000091 a001 39088169/28143753123*10749957122^(11/12) 2178309000000091 a001 7778742049/87403803*10749957122^(7/16) 2178309000000091 a001 3536736619241/29134601*4106118243^(3/23) 2178309000000091 a001 39088169/73681302247*10749957122^(23/24) 2178309000000091 a001 39088169/45537549124*10749957122^(15/16) 2178309000000091 a001 4052739537881/87403803*4106118243^(4/23) 2178309000000091 a001 516002918640/29134601*4106118243^(5/23) 2178309000000091 a001 591286729879/87403803*4106118243^(6/23) 2178309000000091 a001 75283811239/29134601*4106118243^(7/23) 2178309000000091 a001 1602508992/29134601*4106118243^(11/23) 2178309000000091 a001 86267571272/87403803*4106118243^(8/23) 2178309000000091 a001 39088169/2537720636*2537720636^(13/15) 2178309000000091 a001 116139356908771337/53316291173 2178309000000091 a001 10983760033/29134601*4106118243^(9/23) 2178309000000091 a001 12586269025/87403803*4106118243^(10/23) 2178309000000091 a001 39088169/10749957122*4106118243^(21/23) 2178309000000091 a001 2971215073/87403803*4106118243^(1/2) 2178309000000091 a001 3536736619241/29134601*1568397607^(3/22) 2178309000000091 a001 39088169/28143753123*4106118243^(22/23) 2178309000000091 a001 1134903170/87403803*2537720636^(5/9) 2178309000000091 a001 4052739537881/87403803*1568397607^(2/11) 2178309000000091 a001 516002918640/29134601*1568397607^(5/22) 2178309000000091 a001 956722026041/87403803*1568397607^(1/4) 2178309000000091 a001 591286729879/87403803*1568397607^(3/11) 2178309000000091 a001 75283811239/29134601*1568397607^(7/22) 2178309000000091 a001 86267571272/87403803*1568397607^(4/11) 2178309000000091 a001 22180643453797865/10182505537 2178309000000091 a001 39088169/2537720636*45537549124^(13/17) 2178309000000091 a001 1134903170/87403803*312119004989^(5/11) 2178309000000091 a001 39088169/2537720636*14662949395604^(13/21) 2178309000000091 a001 1134903170/87403803*3461452808002^(5/12) 2178309000000091 a001 39088169/2537720636*192900153618^(13/18) 2178309000000091 a001 39088169/2537720636*73681302247^(3/4) 2178309000000091 a001 1134903170/87403803*28143753123^(1/2) 2178309000000091 a001 39088169/2537720636*10749957122^(13/16) 2178309000000091 a001 1836311903/87403803*1568397607^(6/11) 2178309000000091 a001 10983760033/29134601*1568397607^(9/22) 2178309000000091 a001 12586269025/87403803*1568397607^(5/11) 2178309000000091 a001 1602508992/29134601*1568397607^(1/2) 2178309000000091 a001 39088169/4106118243*1568397607^(10/11) 2178309000000091 a001 39088169/10749957122*1568397607^(21/22) 2178309000000091 a001 3536736619241/29134601*599074578^(1/7) 2178309000000091 a001 6557470319842/87403803*599074578^(1/6) 2178309000000091 a001 4052739537881/87403803*599074578^(4/21) 2178309000000091 a001 2504730781961/87403803*599074578^(3/14) 2178309000000091 a001 516002918640/29134601*599074578^(5/21) 2178309000000091 a001 591286729879/87403803*599074578^(2/7) 2178309000000091 a001 75283811239/29134601*599074578^(1/3) 2178309000000091 a001 433494437/87403803*2537720636^(3/5) 2178309000000091 a001 139583862445/87403803*599074578^(5/14) 2178309000000091 a001 16944503814015853/7778742049 2178309000000091 a001 86267571272/87403803*599074578^(8/21) 2178309000000091 a001 433494437/87403803*45537549124^(9/17) 2178309000000091 a001 433494437/87403803*817138163596^(9/19) 2178309000000091 a001 433494437/87403803*14662949395604^(3/7) 2178309000000091 a001 433494437/87403803*192900153618^(1/2) 2178309000000091 a001 433494437/87403803*10749957122^(9/16) 2178309000000091 a001 10983760033/29134601*599074578^(3/7) 2178309000000091 a001 233802911/29134601*599074578^(13/21) 2178309000000091 a001 12586269025/87403803*599074578^(10/21) 2178309000000091 a001 7778742049/87403803*599074578^(1/2) 2178309000000091 a001 1602508992/29134601*599074578^(11/21) 2178309000000091 a001 1836311903/87403803*599074578^(4/7) 2178309000000091 a001 39088169/1568397607*599074578^(19/21) 2178309000000091 a001 39088169/4106118243*599074578^(20/21) 2178309000000091 a001 39088169/2537720636*599074578^(13/14) 2178309000000091 a001 433494437/87403803*599074578^(9/14) 2178309000000091 a001 3536736619241/29134601*228826127^(3/20) 2178309000000091 a001 4052739537881/54018521*20633239^(1/5) 2178309000000091 a001 516002918640/29134601*228826127^(1/4) 2178309000000091 a001 591286729879/87403803*228826127^(3/10) 2178309000000091 a001 75283811239/29134601*228826127^(7/20) 2178309000000091 a001 139583862445/87403803*228826127^(3/8) 2178309000000091 a001 39088169/370248451*2537720636^(7/9) 2178309000000091 a001 6472224534451829/2971215073 2178309000000091 a001 39088169/370248451*17393796001^(5/7) 2178309000000091 a001 39088169/370248451*312119004989^(7/11) 2178309000000091 a001 39088169/370248451*14662949395604^(5/9) 2178309000000091 a001 165580141/87403803*1322157322203^(1/2) 2178309000000091 a001 39088169/370248451*505019158607^(5/8) 2178309000000091 a001 39088169/370248451*28143753123^(7/10) 2178309000000091 a001 86267571272/87403803*228826127^(2/5) 2178309000000091 a001 39088169/141422324*141422324^(11/13) 2178309000000091 a001 10983760033/29134601*228826127^(9/20) 2178309000000091 a001 12586269025/87403803*228826127^(1/2) 2178309000000091 a001 39088169/370248451*599074578^(5/6) 2178309000000091 a001 1602508992/29134601*228826127^(11/20) 2178309000000091 a001 267914296/87403803*228826127^(7/10) 2178309000000091 a001 1836311903/87403803*228826127^(3/5) 2178309000000091 a001 233802911/29134601*228826127^(13/20) 2178309000000091 a001 1134903170/87403803*228826127^(5/8) 2178309000000091 a001 39088169/599074578*228826127^(9/10) 2178309000000091 a001 39088169/1568397607*228826127^(19/20) 2178309000000091 a001 3536736619241/29134601*87403803^(3/19) 2178309000000091 a001 39088169/370248451*228826127^(7/8) 2178309000000091 a001 4052739537881/87403803*87403803^(4/19) 2178309000000091 a001 516002918640/29134601*87403803^(5/19) 2178309000000091 a001 591286729879/87403803*87403803^(6/19) 2178309000000091 a001 75283811239/29134601*87403803^(7/19) 2178309000000091 a001 1236084894669817/567451585 2178309000000091 a001 39088169/141422324*2537720636^(11/15) 2178309000000091 a001 39088169/141422324*45537549124^(11/17) 2178309000000091 a001 39088169/141422324*312119004989^(3/5) 2178309000000091 a001 39088169/141422324*817138163596^(11/19) 2178309000000091 a001 39088169/141422324*14662949395604^(11/21) 2178309000000091 a001 39088169/141422324*192900153618^(11/18) 2178309000000091 a001 39088169/141422324*10749957122^(11/16) 2178309000000091 a001 39088169/141422324*1568397607^(3/4) 2178309000000091 a001 39088169/141422324*599074578^(11/14) 2178309000000091 a001 86267571272/87403803*87403803^(8/19) 2178309000000091 a001 10983760033/29134601*87403803^(9/19) 2178309000000091 a001 14619165/224056801*141422324^(12/13) 2178309000000091 a001 20365011074/87403803*87403803^(1/2) 2178309000000091 a001 12586269025/87403803*87403803^(10/19) 2178309000000091 a001 267914296/228826127*141422324^(10/13) 2178309000000091 a001 1602508992/29134601*87403803^(11/19) 2178309000000091 a001 102334155/370248451*141422324^(11/13) 2178309000000091 a001 1134903170/228826127*141422324^(9/13) 2178309000000091 a001 1836311903/228826127*141422324^(2/3) 2178309000000091 a001 102287808/4868641*141422324^(8/13) 2178309000000091 a001 267914296/4106118243*141422324^(12/13) 2178309000000091 a001 1836311903/87403803*87403803^(12/19) 2178309000000091 a001 34111385/29134601*87403803^(15/19) 2178309000000091 a001 701408733/10749957122*141422324^(12/13) 2178309000000091 a001 1836311903/28143753123*141422324^(12/13) 2178309000000091 a001 686789568/10525900321*141422324^(12/13) 2178309000000091 a001 12586269025/192900153618*141422324^(12/13) 2178309000000091 a001 32951280099/505019158607*141422324^(12/13) 2178309000000091 a001 86267571272/1322157322203*141422324^(12/13) 2178309000000091 a001 32264490531/494493258286*141422324^(12/13) 2178309000000091 a001 1548008755920/23725150497407*141422324^(12/13) 2178309000000091 a001 365435296162/5600748293801*141422324^(12/13) 2178309000000091 a001 139583862445/2139295485799*141422324^(12/13) 2178309000000091 a001 53316291173/817138163596*141422324^(12/13) 2178309000000091 a001 20365011074/312119004989*141422324^(12/13) 2178309000000091 a001 7778742049/119218851371*141422324^(12/13) 2178309000000091 a001 2971215073/45537549124*141422324^(12/13) 2178309000000091 a001 20365011074/228826127*141422324^(7/13) 2178309000000091 a001 1134903170/17393796001*141422324^(12/13) 2178309000000091 a001 433494437/6643838879*141422324^(12/13) 2178309000000091 a001 267914296/969323029*141422324^(11/13) 2178309000000091 a001 701408733/2537720636*141422324^(11/13) 2178309000000091 a001 1836311903/6643838879*141422324^(11/13) 2178309000000091 a001 4807526976/17393796001*141422324^(11/13) 2178309000000091 a001 12586269025/45537549124*141422324^(11/13) 2178309000000091 a001 32951280099/119218851371*141422324^(11/13) 2178309000000091 a001 86267571272/312119004989*141422324^(11/13) 2178309000000091 a001 225851433717/817138163596*141422324^(11/13) 2178309000000091 a001 1548008755920/5600748293801*141422324^(11/13) 2178309000000091 a001 139583862445/505019158607*141422324^(11/13) 2178309000000091 a001 53316291173/192900153618*141422324^(11/13) 2178309000000091 a001 20365011074/73681302247*141422324^(11/13) 2178309000000091 a001 7778742049/28143753123*141422324^(11/13) 2178309000000091 a001 2971215073/10749957122*141422324^(11/13) 2178309000000091 a001 1134903170/4106118243*141422324^(11/13) 2178309000000091 a001 86267571272/228826127*141422324^(6/13) 2178309000000091 a001 233802911/29134601*87403803^(13/19) 2178309000000091 a001 233802911/199691526*141422324^(10/13) 2178309000000091 a001 433494437/1568397607*141422324^(11/13) 2178309000000091 a001 1836311903/1568397607*141422324^(10/13) 2178309000000091 a001 165580141/2537720636*141422324^(12/13) 2178309000000091 a001 1602508992/1368706081*141422324^(10/13) 2178309000000091 a001 12586269025/10749957122*141422324^(10/13) 2178309000000091 a001 10983760033/9381251041*141422324^(10/13) 2178309000000091 a001 86267571272/73681302247*141422324^(10/13) 2178309000000091 a001 75283811239/64300051206*141422324^(10/13) 2178309000000091 a001 2504730781961/2139295485799*141422324^(10/13) 2178309000000091 a001 365435296162/312119004989*141422324^(10/13) 2178309000000091 a001 139583862445/119218851371*141422324^(10/13) 2178309000000091 a001 53316291173/45537549124*141422324^(10/13) 2178309000000091 a001 20365011074/17393796001*141422324^(10/13) 2178309000000091 a001 7778742049/6643838879*141422324^(10/13) 2178309000000091 a001 365435296162/228826127*141422324^(5/13) 2178309000000091 a001 2971215073/2537720636*141422324^(10/13) 2178309000000091 a001 102334155/228826127*23725150497407^(1/2) 2178309000000091 a001 102334155/228826127*505019158607^(4/7) 2178309000000091 a001 102334155/228826127*73681302247^(8/13) 2178309000000091 a001 102334155/228826127*10749957122^(2/3) 2178309000000091 a001 166226655231175/76309952 2178309000000091 a001 102334155/228826127*4106118243^(16/23) 2178309000000091 a001 102334155/228826127*1568397607^(8/11) 2178309000000091 a001 165580141/599074578*141422324^(11/13) 2178309000000091 a001 2971215073/599074578*141422324^(9/13) 2178309000000091 a001 1134903170/969323029*141422324^(10/13) 2178309000000091 a001 267914296/87403803*87403803^(14/19) 2178309000000091 a001 267084832/33281921*141422324^(2/3) 2178309000000091 a001 102334155/228826127*599074578^(16/21) 2178309000000091 a001 956722026041/228826127*141422324^(1/3) 2178309000000091 a001 7778742049/1568397607*141422324^(9/13) 2178309000000091 a001 20365011074/4106118243*141422324^(9/13) 2178309000000091 a001 53316291173/10749957122*141422324^(9/13) 2178309000000091 a001 139583862445/28143753123*141422324^(9/13) 2178309000000091 a001 365435296162/73681302247*141422324^(9/13) 2178309000000091 a001 956722026041/192900153618*141422324^(9/13) 2178309000000091 a001 2504730781961/505019158607*141422324^(9/13) 2178309000000091 a001 10610209857723/2139295485799*141422324^(9/13) 2178309000000091 a001 140728068720/28374454999*141422324^(9/13) 2178309000000091 a001 591286729879/119218851371*141422324^(9/13) 2178309000000091 a001 225851433717/45537549124*141422324^(9/13) 2178309000000091 a001 86267571272/17393796001*141422324^(9/13) 2178309000000091 a001 32951280099/6643838879*141422324^(9/13) 2178309000000091 a001 1548008755920/228826127*141422324^(4/13) 2178309000000091 a001 1144206275/230701876*141422324^(9/13) 2178309000000091 a001 12586269025/1568397607*141422324^(2/3) 2178309000000091 a001 4807526976/969323029*141422324^(9/13) 2178309000000091 a001 12586269025/599074578*141422324^(8/13) 2178309000000091 a001 10983760033/1368706081*141422324^(2/3) 2178309000000091 a001 43133785636/5374978561*141422324^(2/3) 2178309000000091 a001 75283811239/9381251041*141422324^(2/3) 2178309000000091 a001 591286729879/73681302247*141422324^(2/3) 2178309000000091 a001 86000486440/10716675201*141422324^(2/3) 2178309000000091 a001 3536736619241/440719107401*141422324^(2/3) 2178309000000091 a001 3278735159921/408569081798*141422324^(2/3) 2178309000000091 a001 2504730781961/312119004989*141422324^(2/3) 2178309000000091 a001 956722026041/119218851371*141422324^(2/3) 2178309000000091 a001 182717648081/22768774562*141422324^(2/3) 2178309000000091 a001 139583862445/17393796001*141422324^(2/3) 2178309000000091 a001 53316291173/6643838879*141422324^(2/3) 2178309000000091 a001 10182505537/1268860318*141422324^(2/3) 2178309000000091 a001 39088169/228826127*87403803^(17/19) 2178309000000091 a001 7778742049/969323029*141422324^(2/3) 2178309000000091 a001 32951280099/1568397607*141422324^(8/13) 2178309000000091 a001 86267571272/4106118243*141422324^(8/13) 2178309000000091 a001 225851433717/10749957122*141422324^(8/13) 2178309000000091 a001 591286729879/28143753123*141422324^(8/13) 2178309000000091 a001 1548008755920/73681302247*141422324^(8/13) 2178309000000091 a001 4052739537881/192900153618*141422324^(8/13) 2178309000000091 a001 225749145909/10745088481*141422324^(8/13) 2178309000000091 a001 6557470319842/312119004989*141422324^(8/13) 2178309000000091 a001 2504730781961/119218851371*141422324^(8/13) 2178309000000091 a001 956722026041/45537549124*141422324^(8/13) 2178309000000091 a001 365435296162/17393796001*141422324^(8/13) 2178309000000091 a001 139583862445/6643838879*141422324^(8/13) 2178309000000091 a001 6557470319842/228826127*141422324^(3/13) 2178309000000091 a001 53316291173/2537720636*141422324^(8/13) 2178309000000091 a001 433494437/370248451*141422324^(10/13) 2178309000000091 a001 53316291173/599074578*141422324^(7/13) 2178309000000091 a001 20365011074/969323029*141422324^(8/13) 2178309000000091 a001 1836311903/370248451*141422324^(9/13) 2178309000000091 a001 139583862445/1568397607*141422324^(7/13) 2178309000000091 a001 365435296162/4106118243*141422324^(7/13) 2178309000000091 a001 956722026041/10749957122*141422324^(7/13) 2178309000000091 a001 2504730781961/28143753123*141422324^(7/13) 2178309000000091 a001 6557470319842/73681302247*141422324^(7/13) 2178309000000091 a001 10610209857723/119218851371*141422324^(7/13) 2178309000000091 a001 4052739537881/45537549124*141422324^(7/13) 2178309000000091 a001 1548008755920/17393796001*141422324^(7/13) 2178309000000091 a001 591286729879/6643838879*141422324^(7/13) 2178309000000091 a001 225851433717/2537720636*141422324^(7/13) 2178309000000091 a001 2971215073/370248451*141422324^(2/3) 2178309000000091 a001 267913919/710646*141422324^(6/13) 2178309000000091 a001 86267571272/969323029*141422324^(7/13) 2178309000000091 a001 591286729879/1568397607*141422324^(6/13) 2178309000000091 a001 7778742049/370248451*141422324^(8/13) 2178309000000091 a001 516002918640/1368706081*141422324^(6/13) 2178309000000091 a001 4052739537881/10749957122*141422324^(6/13) 2178309000000091 a001 3536736619241/9381251041*141422324^(6/13) 2178309000000091 a001 6557470319842/17393796001*141422324^(6/13) 2178309000000091 a001 2504730781961/6643838879*141422324^(6/13) 2178309000000091 a001 956722026041/2537720636*141422324^(6/13) 2178309000000091 a001 102334155/228826127*228826127^(4/5) 2178309000000091 a001 956722026041/599074578*141422324^(5/13) 2178309000000091 a001 365435296162/969323029*141422324^(6/13) 2178309000000091 a001 267914296/228826127*2537720636^(2/3) 2178309000000091 a001 34111385/199691526*45537549124^(2/3) 2178309000000091 a001 267914296/228826127*45537549124^(10/17) 2178309000000091 a001 267914296/228826127*312119004989^(6/11) 2178309000000091 a001 267914296/228826127*14662949395604^(10/21) 2178309000000091 a001 267914296/228826127*192900153618^(5/9) 2178309000000091 a001 267914296/228826127*28143753123^(3/5) 2178309000000091 a001 498486965337816/228841255 2178309000000091 a001 267914296/228826127*10749957122^(5/8) 2178309000000091 a001 34111385/199691526*10749957122^(17/24) 2178309000000091 a001 267914296/228826127*4106118243^(15/23) 2178309000000091 a001 34111385/199691526*4106118243^(17/23) 2178309000000091 a001 267914296/228826127*1568397607^(15/22) 2178309000000091 a001 34111385/199691526*1568397607^(17/22) 2178309000000091 a001 267914296/228826127*599074578^(5/7) 2178309000000091 a001 2504730781961/1568397607*141422324^(5/13) 2178309000000091 a001 14619165/224056801*2537720636^(4/5) 2178309000000091 a001 34111385/199691526*599074578^(17/21) 2178309000000091 a001 32951280099/370248451*141422324^(7/13) 2178309000000091 a001 701408733/228826127*17393796001^(4/7) 2178309000000091 a001 14619165/224056801*45537549124^(12/17) 2178309000000091 a001 14619165/224056801*14662949395604^(4/7) 2178309000000091 a001 14619165/224056801*505019158607^(9/14) 2178309000000091 a001 14619165/224056801*192900153618^(2/3) 2178309000000091 a001 701408733/228826127*73681302247^(7/13) 2178309000000091 a001 14619165/224056801*73681302247^(9/13) 2178309000000091 a001 23926023333725205/10983760033 2178309000000091 a001 701408733/228826127*10749957122^(7/12) 2178309000000091 a001 14619165/224056801*10749957122^(3/4) 2178309000000091 a001 701408733/228826127*4106118243^(14/23) 2178309000000091 a001 14619165/224056801*4106118243^(18/23) 2178309000000091 a001 2504730781961/599074578*141422324^(1/3) 2178309000000091 a001 6557470319842/4106118243*141422324^(5/13) 2178309000000091 a001 701408733/228826127*1568397607^(7/11) 2178309000000091 a001 102334155/10749957122*2537720636^(8/9) 2178309000000091 a001 831985/228811001*2537720636^(14/15) 2178309000000091 a001 102334155/6643838879*2537720636^(13/15) 2178309000000091 a001 10610209857723/6643838879*141422324^(5/13) 2178309000000091 a001 102287808/4868641*2537720636^(8/15) 2178309000000091 a001 14619165/224056801*1568397607^(9/11) 2178309000000091 a001 20365011074/228826127*2537720636^(7/15) 2178309000000091 a001 32951280099/228826127*2537720636^(4/9) 2178309000000091 a001 2971215073/228826127*2537720636^(5/9) 2178309000000091 a001 86267571272/228826127*2537720636^(2/5) 2178309000000091 a001 34111385/1368706081*817138163596^(2/3) 2178309000000091 a001 187917426909946965/86267571272 2178309000000091 a001 1836311903/228826127*73681302247^(1/2) 2178309000000091 a001 1836311903/228826127*10749957122^(13/24) 2178309000000091 a001 34111385/1368706081*10749957122^(19/24) 2178309000000091 a001 365435296162/228826127*2537720636^(1/3) 2178309000000091 a001 1548008755920/228826127*2537720636^(4/15) 2178309000000091 a001 4052739537881/228826127*2537720636^(2/9) 2178309000000091 a001 6557470319842/228826127*2537720636^(1/5) 2178309000000091 a001 1836311903/228826127*4106118243^(13/23) 2178309000000091 a001 34111385/1368706081*4106118243^(19/23) 2178309000000091 a001 102287808/4868641*45537549124^(8/17) 2178309000000091 a001 102334155/10749957122*312119004989^(8/11) 2178309000000091 a001 102287808/4868641*14662949395604^(8/21) 2178309000000091 a001 102334155/10749957122*23725150497407^(5/8) 2178309000000091 a001 102287808/4868641*192900153618^(4/9) 2178309000000091 a001 102287808/4868641*73681302247^(6/13) 2178309000000091 a001 102334155/10749957122*73681302247^(10/13) 2178309000000091 a001 102334155/10749957122*28143753123^(4/5) 2178309000000091 a001 102287808/4868641*10749957122^(1/2) 2178309000000091 a001 831985/228811001*17393796001^(6/7) 2178309000000091 a001 831985/228811001*45537549124^(14/17) 2178309000000091 a001 102334155/10749957122*10749957122^(5/6) 2178309000000091 a001 12586269025/228826127*312119004989^(2/5) 2178309000000091 a001 831985/228811001*505019158607^(3/4) 2178309000000091 a001 831985/228811001*192900153618^(7/9) 2178309000000091 a001 591286729879/228826127*17393796001^(2/7) 2178309000000091 a001 20365011074/228826127*17393796001^(3/7) 2178309000000091 a001 102334155/505019158607*45537549124^(16/17) 2178309000000091 a001 102334155/119218851371*45537549124^(15/17) 2178309000000091 a001 86267571272/228826127*45537549124^(6/17) 2178309000000091 a001 14619165/10525900321*312119004989^(4/5) 2178309000000091 a001 14619165/10525900321*23725150497407^(11/16) 2178309000000091 a001 166151338019191/76275376 2178309000000091 a001 32951280099/228826127*505019158607^(5/14) 2178309000000091 a001 139583862445/228826127*45537549124^(1/3) 2178309000000091 a001 365435296162/228826127*45537549124^(5/17) 2178309000000091 a001 1548008755920/228826127*45537549124^(4/17) 2178309000000091 a001 6557470319842/228826127*45537549124^(3/17) 2178309000000091 a001 14619165/10525900321*73681302247^(11/13) 2178309000000091 a001 86267571272/228826127*192900153618^(1/3) 2178309000000091 a001 34111385/440719107401*312119004989^(10/11) 2178309000000091 a001 1100586458331795435/505248088463 2178309000000091 a006 5^(1/2)*Fibonacci(72)/Lucas(40)/sqrt(5) 2178309000000091 a001 102334155/14662949395604*3461452808002^(11/12) 2178309000000091 a001 102334155/817138163596*14662949395604^(7/9) 2178309000000091 a001 102334155/817138163596*505019158607^(7/8) 2178309000000091 a001 365435296162/228826127*192900153618^(5/18) 2178309000000091 a001 102334155/505019158607*192900153618^(8/9) 2178309000000091 a001 102334155/2139295485799*192900153618^(17/18) 2178309000000091 a001 225749145909/4868641*73681302247^(2/13) 2178309000000091 a001 1548008755920/228826127*73681302247^(3/13) 2178309000000091 a001 225851433717/228826127*73681302247^(4/13) 2178309000000091 a001 102334155/119218851371*312119004989^(9/11) 2178309000000091 a001 53316291173/228826127*817138163596^(1/3) 2178309000000091 a001 102334155/119218851371*14662949395604^(5/7) 2178309000000091 a001 102334155/119218851371*192900153618^(5/6) 2178309000000091 a001 102334155/505019158607*73681302247^(12/13) 2178309000000091 a001 4052739537881/228826127*28143753123^(1/5) 2178309000000091 a001 20365011074/228826127*45537549124^(7/17) 2178309000000091 a001 32951280099/228826127*28143753123^(2/5) 2178309000000091 a001 365435296162/228826127*28143753123^(3/10) 2178309000000091 a001 20365011074/228826127*14662949395604^(1/3) 2178309000000091 a001 20365011074/228826127*192900153618^(7/18) 2178309000000091 a001 102334155/119218851371*28143753123^(9/10) 2178309000000091 a001 225749145909/4868641*10749957122^(1/6) 2178309000000091 a001 6557470319842/228826127*10749957122^(3/16) 2178309000000091 a001 4052739537881/228826127*10749957122^(5/24) 2178309000000091 a001 1548008755920/228826127*10749957122^(1/4) 2178309000000091 a001 591286729879/228826127*10749957122^(7/24) 2178309000000091 a001 12586269025/228826127*10749957122^(11/24) 2178309000000091 a001 365435296162/228826127*10749957122^(5/16) 2178309000000091 a001 225851433717/228826127*10749957122^(1/3) 2178309000000091 a001 86267571272/228826127*10749957122^(3/8) 2178309000000091 a001 796030994547383595/365435296162 2178309000000091 a001 32951280099/228826127*10749957122^(5/12) 2178309000000091 a001 20365011074/228826127*10749957122^(7/16) 2178309000000091 a001 831985/228811001*10749957122^(7/8) 2178309000000091 a001 14619165/10525900321*10749957122^(11/12) 2178309000000091 a001 102334155/119218851371*10749957122^(15/16) 2178309000000091 a001 34111385/64300051206*10749957122^(23/24) 2178309000000091 a001 225749145909/4868641*4106118243^(4/23) 2178309000000091 a001 4052739537881/228826127*4106118243^(5/23) 2178309000000091 a001 1548008755920/228826127*4106118243^(6/23) 2178309000000091 a001 591286729879/228826127*4106118243^(7/23) 2178309000000091 a001 225851433717/228826127*4106118243^(8/23) 2178309000000091 a001 102334155/6643838879*45537549124^(13/17) 2178309000000091 a001 102287808/4868641*4106118243^(12/23) 2178309000000091 a001 2971215073/228826127*312119004989^(5/11) 2178309000000091 a001 102334155/6643838879*14662949395604^(13/21) 2178309000000091 a001 102334155/6643838879*192900153618^(13/18) 2178309000000091 a001 102334155/6643838879*73681302247^(3/4) 2178309000000091 a001 4052739537881/2537720636*141422324^(5/13) 2178309000000091 a001 86267571272/228826127*4106118243^(9/23) 2178309000000091 a001 2971215073/228826127*28143753123^(1/2) 2178309000000091 a001 32951280099/228826127*4106118243^(10/23) 2178309000000091 a001 12586269025/228826127*4106118243^(11/23) 2178309000000091 a001 102334155/6643838879*10749957122^(13/16) 2178309000000091 a001 7778742049/228826127*4106118243^(1/2) 2178309000000091 a001 102334155/10749957122*4106118243^(20/23) 2178309000000091 a001 831985/228811001*4106118243^(21/23) 2178309000000091 a001 14619165/10525900321*4106118243^(22/23) 2178309000000091 a001 1134903170/228826127*2537720636^(3/5) 2178309000000091 a001 225749145909/4868641*1568397607^(2/11) 2178309000000091 a001 4052739537881/228826127*1568397607^(5/22) 2178309000000091 a001 2504730781961/228826127*1568397607^(1/4) 2178309000000091 a001 1548008755920/228826127*1568397607^(3/11) 2178309000000091 a001 591286729879/228826127*1568397607^(7/22) 2178309000000091 a001 225851433717/228826127*1568397607^(4/11) 2178309000000091 a001 1134903170/228826127*45537549124^(9/17) 2178309000000091 a001 116139356908771350/53316291173 2178309000000091 a001 1134903170/228826127*14662949395604^(3/7) 2178309000000091 a001 1134903170/228826127*192900153618^(1/2) 2178309000000091 a001 1134903170/228826127*10749957122^(9/16) 2178309000000091 a001 86267571272/228826127*1568397607^(9/22) 2178309000000091 a001 1836311903/228826127*1568397607^(13/22) 2178309000000091 a001 32951280099/228826127*1568397607^(5/11) 2178309000000091 a001 12586269025/228826127*1568397607^(1/2) 2178309000000091 a001 102287808/4868641*1568397607^(6/11) 2178309000000091 a001 34111385/1368706081*1568397607^(19/22) 2178309000000091 a001 102334155/10749957122*1568397607^(10/11) 2178309000000091 a001 831985/228811001*1568397607^(21/22) 2178309000000091 a001 225749145909/4868641*599074578^(4/21) 2178309000000091 a001 6557470319842/228826127*599074578^(3/14) 2178309000000091 a001 4052739537881/228826127*599074578^(5/21) 2178309000000091 a001 1548008755920/228826127*599074578^(2/7) 2178309000000091 a001 4052739537881/599074578*141422324^(4/13) 2178309000000091 a001 591286729879/228826127*599074578^(1/3) 2178309000000091 a001 1548008755920/969323029*141422324^(5/13) 2178309000000091 a001 102334155/969323029*2537720636^(7/9) 2178309000000091 a001 365435296162/228826127*599074578^(5/14) 2178309000000091 a001 225851433717/228826127*599074578^(8/21) 2178309000000091 a001 102334155/969323029*17393796001^(5/7) 2178309000000091 a001 44361286907595735/20365011074 2178309000000091 a001 102334155/969323029*312119004989^(7/11) 2178309000000091 a001 102334155/969323029*14662949395604^(5/9) 2178309000000091 a001 102334155/969323029*505019158607^(5/8) 2178309000000091 a001 102334155/969323029*28143753123^(7/10) 2178309000000091 a001 86267571272/228826127*599074578^(3/7) 2178309000000091 a001 32951280099/228826127*599074578^(10/21) 2178309000000091 a001 20365011074/228826127*599074578^(1/2) 2178309000000091 a001 701408733/228826127*599074578^(2/3) 2178309000000091 a001 12586269025/228826127*599074578^(11/21) 2178309000000091 a001 102287808/4868641*599074578^(4/7) 2178309000000091 a001 1836311903/228826127*599074578^(13/21) 2178309000000091 a001 1134903170/228826127*599074578^(9/14) 2178309000000091 a001 14619165/224056801*599074578^(6/7) 2178309000000091 a001 6557470319842/1568397607*141422324^(1/3) 2178309000000091 a001 34111385/1368706081*599074578^(19/21) 2178309000000091 a001 10610209857723/2537720636*141422324^(1/3) 2178309000000091 a001 102334155/6643838879*599074578^(13/14) 2178309000000091 a001 102334155/10749957122*599074578^(20/21) 2178309000000091 a001 1515744265389/224056801*141422324^(4/13) 2178309000000091 a001 139583862445/370248451*141422324^(6/13) 2178309000000091 a001 102334155/969323029*599074578^(5/6) 2178309000000091 a001 4052739537881/969323029*141422324^(1/3) 2178309000000091 a001 225749145909/4868641*228826127^(1/5) 2178309000000091 a001 4052739537881/228826127*228826127^(1/4) 2178309000000091 a001 6557470319842/969323029*141422324^(4/13) 2178309000000091 a001 1548008755920/228826127*228826127^(3/10) 2178309000000091 a001 591286729879/228826127*228826127^(7/20) 2178309000000091 a001 365435296162/228826127*228826127^(3/8) 2178309000000091 a001 591286729879/370248451*141422324^(5/13) 2178309000000091 a001 102334155/370248451*2537720636^(11/15) 2178309000000091 a001 16944503814015855/7778742049 2178309000000091 a001 102334155/370248451*45537549124^(11/17) 2178309000000091 a001 102334155/370248451*312119004989^(3/5) 2178309000000091 a001 102334155/370248451*817138163596^(11/19) 2178309000000091 a001 102334155/370248451*14662949395604^(11/21) 2178309000000091 a001 102334155/370248451*192900153618^(11/18) 2178309000000091 a001 102334155/370248451*10749957122^(11/16) 2178309000000091 a001 102334155/370248451*1568397607^(3/4) 2178309000000091 a001 225851433717/228826127*228826127^(2/5) 2178309000000091 a001 63245986/228826127*141422324^(11/13) 2178309000000091 a001 86267571272/228826127*228826127^(9/20) 2178309000000091 a001 39088169/599074578*87403803^(18/19) 2178309000000091 a001 102334155/370248451*599074578^(11/14) 2178309000000091 a001 32951280099/228826127*228826127^(1/2) 2178309000000091 a001 1548008755920/370248451*141422324^(1/3) 2178309000000091 a001 12586269025/228826127*228826127^(11/20) 2178309000000091 a001 2504730781961/370248451*141422324^(4/13) 2178309000000091 a001 102287808/4868641*228826127^(3/5) 2178309000000091 a001 267914296/228826127*228826127^(3/4) 2178309000000091 a001 2971215073/228826127*228826127^(5/8) 2178309000000091 a001 1836311903/228826127*228826127^(13/20) 2178309000000091 a001 701408733/228826127*228826127^(7/10) 2178309000000091 a001 34111385/199691526*228826127^(17/20) 2178309000000091 a001 133957148/299537289*23725150497407^(1/2) 2178309000000091 a001 133957148/299537289*505019158607^(4/7) 2178309000000091 a001 133957148/299537289*73681302247^(8/13) 2178309000000091 a001 71778070001175616/32951280099 2178309000000091 a001 133957148/299537289*10749957122^(2/3) 2178309000000091 a001 133957148/299537289*4106118243^(16/23) 2178309000000091 a001 133957148/299537289*1568397607^(8/11) 2178309000000091 a001 10610209857723/370248451*141422324^(3/13) 2178309000000091 a001 133957148/299537289*599074578^(16/21) 2178309000000091 a001 233802911/199691526*2537720636^(2/3) 2178309000000091 a001 267914296/1568397607*45537549124^(2/3) 2178309000000091 a001 233802911/199691526*45537549124^(10/17) 2178309000000091 a001 233802911/199691526*312119004989^(6/11) 2178309000000091 a001 233802911/199691526*14662949395604^(10/21) 2178309000000091 a001 233802911/199691526*192900153618^(5/9) 2178309000000091 a001 23489678363743371/10783446409 2178309000000091 a001 233802911/199691526*28143753123^(3/5) 2178309000000091 a001 233802911/199691526*10749957122^(5/8) 2178309000000091 a001 267914296/1568397607*10749957122^(17/24) 2178309000000091 a001 233802911/199691526*4106118243^(15/23) 2178309000000091 a001 267914296/1568397607*4106118243^(17/23) 2178309000000091 a001 267914296/4106118243*2537720636^(4/5) 2178309000000091 a001 267914296/73681302247*2537720636^(14/15) 2178309000000091 a001 267914296/28143753123*2537720636^(8/9) 2178309000000091 a001 9238424/599786069*2537720636^(13/15) 2178309000000091 a001 233802911/199691526*1568397607^(15/22) 2178309000000091 a001 267914296/1568397607*1568397607^(17/22) 2178309000000091 a001 12586269025/599074578*2537720636^(8/15) 2178309000000091 a001 7778742049/599074578*2537720636^(5/9) 2178309000000091 a001 53316291173/599074578*2537720636^(7/15) 2178309000000091 a001 2971215073/599074578*2537720636^(3/5) 2178309000000091 a001 43133785636/299537289*2537720636^(4/9) 2178309000000091 a001 267913919/710646*2537720636^(2/5) 2178309000000091 a001 1836311903/599074578*17393796001^(4/7) 2178309000000091 a001 267914296/4106118243*45537549124^(12/17) 2178309000000091 a001 1836311903/599074578*14662949395604^(4/9) 2178309000000091 a001 1304971381243144/599075421 2178309000000091 a001 267914296/4106118243*192900153618^(2/3) 2178309000000091 a001 1836311903/599074578*73681302247^(7/13) 2178309000000091 a001 267914296/4106118243*73681302247^(9/13) 2178309000000091 a001 1836311903/599074578*10749957122^(7/12) 2178309000000091 a001 267914296/4106118243*10749957122^(3/4) 2178309000000091 a001 956722026041/599074578*2537720636^(1/3) 2178309000000091 a001 4052739537881/599074578*2537720636^(4/15) 2178309000000091 a001 3536736619241/199691526*2537720636^(2/9) 2178309000000091 a001 1836311903/599074578*4106118243^(14/23) 2178309000000091 a001 267914296/4106118243*4106118243^(18/23) 2178309000000091 a001 133957148/5374978561*817138163596^(2/3) 2178309000000091 a001 1288005205276048896/591286729879 2178309000000091 a001 267084832/33281921*73681302247^(1/2) 2178309000000091 a001 267084832/33281921*10749957122^(13/24) 2178309000000091 a001 267914296/73681302247*17393796001^(6/7) 2178309000000091 a001 133957148/5374978561*10749957122^(19/24) 2178309000000091 a001 12586269025/599074578*45537549124^(8/17) 2178309000000091 a001 53316291173/599074578*17393796001^(3/7) 2178309000000091 a001 267914296/28143753123*312119004989^(8/11) 2178309000000091 a001 12586269025/599074578*14662949395604^(8/21) 2178309000000091 a001 267914296/28143753123*23725150497407^(5/8) 2178309000000091 a001 12586269025/599074578*192900153618^(4/9) 2178309000000091 a001 12586269025/599074578*73681302247^(6/13) 2178309000000091 a001 267914296/28143753123*73681302247^(10/13) 2178309000000091 a001 86000486440/33281921*17393796001^(2/7) 2178309000000091 a001 267914296/73681302247*45537549124^(14/17) 2178309000000091 a001 267914296/1322157322203*45537549124^(16/17) 2178309000000091 a001 267914296/312119004989*45537549124^(15/17) 2178309000000091 a001 267914296/28143753123*28143753123^(4/5) 2178309000000091 a001 10983760033/199691526*312119004989^(2/5) 2178309000000091 a001 267914296/73681302247*505019158607^(3/4) 2178309000000091 a001 267913919/710646*45537549124^(6/17) 2178309000000091 a001 267914296/73681302247*192900153618^(7/9) 2178309000000091 a001 182717648081/299537289*45537549124^(1/3) 2178309000000091 a001 956722026041/599074578*45537549124^(5/17) 2178309000000091 a001 53316291173/599074578*45537549124^(7/17) 2178309000000091 a001 4052739537881/599074578*45537549124^(4/17) 2178309000000091 a001 133957148/96450076809*312119004989^(4/5) 2178309000000091 a001 133957148/96450076809*23725150497407^(11/16) 2178309000000091 a001 43133785636/299537289*505019158607^(5/14) 2178309000000091 a001 133957148/1730726404001*312119004989^(10/11) 2178309000000091 a001 267913919/710646*14662949395604^(2/7) 2178309000000091 a001 133957148/1730726404001*3461452808002^(5/6) 2178309000000091 a006 5^(1/2)*Fibonacci(74)/Lucas(42)/sqrt(5) 2178309000000091 a001 956722026041/599074578*192900153618^(5/18) 2178309000000091 a001 139583862445/599074578*817138163596^(1/3) 2178309000000091 a001 267914296/1322157322203*192900153618^(8/9) 2178309000000091 a001 267914296/5600748293801*192900153618^(17/18) 2178309000000091 a001 267914296/312119004989*192900153618^(5/6) 2178309000000091 a001 4052739537881/599074578*73681302247^(3/13) 2178309000000091 a001 2504730781961/599074578*73681302247^(1/4) 2178309000000091 a001 591286729879/599074578*73681302247^(4/13) 2178309000000091 a001 1304969542750348/599074577 2178309000000091 a001 53316291173/599074578*192900153618^(7/18) 2178309000000091 a001 133957148/96450076809*73681302247^(11/13) 2178309000000091 a001 267914296/1322157322203*73681302247^(12/13) 2178309000000091 a001 3536736619241/199691526*28143753123^(1/5) 2178309000000091 a001 956722026041/599074578*28143753123^(3/10) 2178309000000091 a001 43133785636/299537289*28143753123^(2/5) 2178309000000091 a001 5456077604922913904/2504730781961 2178309000000091 a001 267914296/312119004989*28143753123^(9/10) 2178309000000091 a001 3536736619241/199691526*10749957122^(5/24) 2178309000000091 a001 4052739537881/599074578*10749957122^(1/4) 2178309000000091 a001 86000486440/33281921*10749957122^(7/24) 2178309000000091 a001 956722026041/599074578*10749957122^(5/16) 2178309000000091 a001 591286729879/599074578*10749957122^(1/3) 2178309000000091 a001 9238424/599786069*45537549124^(13/17) 2178309000000091 a001 12586269025/599074578*10749957122^(1/2) 2178309000000091 a001 267913919/710646*10749957122^(3/8) 2178309000000091 a001 7778742049/599074578*312119004989^(5/11) 2178309000000091 a001 2084036199823432504/956722026041 2178309000000091 a001 9238424/599786069*14662949395604^(13/21) 2178309000000091 a001 9238424/599786069*192900153618^(13/18) 2178309000000091 a001 9238424/599786069*73681302247^(3/4) 2178309000000091 a001 43133785636/299537289*10749957122^(5/12) 2178309000000091 a001 10983760033/199691526*10749957122^(11/24) 2178309000000091 a001 53316291173/599074578*10749957122^(7/16) 2178309000000091 a001 7778742049/599074578*28143753123^(1/2) 2178309000000091 a001 267914296/28143753123*10749957122^(5/6) 2178309000000091 a001 267914296/73681302247*10749957122^(7/8) 2178309000000091 a001 133957148/96450076809*10749957122^(11/12) 2178309000000091 a001 267914296/312119004989*10749957122^(15/16) 2178309000000091 a001 267914296/505019158607*10749957122^(23/24) 2178309000000091 a001 9238424/599786069*10749957122^(13/16) 2178309000000091 a001 3536736619241/199691526*4106118243^(5/23) 2178309000000091 a001 4052739537881/599074578*4106118243^(6/23) 2178309000000091 a001 86000486440/33281921*4106118243^(7/23) 2178309000000091 a001 591286729879/599074578*4106118243^(8/23) 2178309000000091 a001 2971215073/599074578*45537549124^(9/17) 2178309000000091 a001 2971215073/599074578*817138163596^(9/19) 2178309000000091 a001 2971215073/599074578*14662949395604^(3/7) 2178309000000091 a001 2971215073/599074578*192900153618^(1/2) 2178309000000091 a001 267913919/710646*4106118243^(9/23) 2178309000000091 a001 267084832/33281921*4106118243^(13/23) 2178309000000091 a001 43133785636/299537289*4106118243^(10/23) 2178309000000091 a001 2971215073/599074578*10749957122^(9/16) 2178309000000091 a001 10983760033/199691526*4106118243^(11/23) 2178309000000091 a001 12586269025/599074578*4106118243^(12/23) 2178309000000091 a001 10182505537/299537289*4106118243^(1/2) 2178309000000091 a001 66978574/634430159*2537720636^(7/9) 2178309000000091 a001 133957148/5374978561*4106118243^(19/23) 2178309000000091 a001 267914296/28143753123*4106118243^(20/23) 2178309000000091 a001 267914296/73681302247*4106118243^(21/23) 2178309000000091 a001 133957148/96450076809*4106118243^(22/23) 2178309000000091 a001 3536736619241/199691526*1568397607^(5/22) 2178309000000091 a001 3278735159921/299537289*1568397607^(1/4) 2178309000000091 a001 4052739537881/599074578*1568397607^(3/11) 2178309000000091 a001 86000486440/33281921*1568397607^(7/22) 2178309000000091 a001 591286729879/599074578*1568397607^(4/11) 2178309000000091 a001 66978574/634430159*17393796001^(5/7) 2178309000000091 a001 60811356763743664/27916772489 2178309000000091 a001 66978574/634430159*14662949395604^(5/9) 2178309000000091 a001 567451585/299537289*1322157322203^(1/2) 2178309000000091 a001 66978574/634430159*505019158607^(5/8) 2178309000000091 a001 66978574/634430159*28143753123^(7/10) 2178309000000091 a001 267913919/710646*1568397607^(9/22) 2178309000000091 a001 43133785636/299537289*1568397607^(5/11) 2178309000000091 a001 1836311903/599074578*1568397607^(7/11) 2178309000000091 a001 10983760033/199691526*1568397607^(1/2) 2178309000000091 a001 12586269025/599074578*1568397607^(6/11) 2178309000000091 a001 267084832/33281921*1568397607^(13/22) 2178309000000091 a001 267914296/4106118243*1568397607^(9/11) 2178309000000091 a001 133957148/5374978561*1568397607^(19/22) 2178309000000091 a001 267914296/28143753123*1568397607^(10/11) 2178309000000091 a001 267914296/73681302247*1568397607^(21/22) 2178309000000091 a001 14619165/224056801*228826127^(9/10) 2178309000000091 a001 3536736619241/199691526*599074578^(5/21) 2178309000000091 a001 4052739537881/599074578*599074578^(2/7) 2178309000000091 a001 86000486440/33281921*599074578^(1/3) 2178309000000091 a001 267914296/969323029*2537720636^(11/15) 2178309000000091 a001 956722026041/599074578*599074578^(5/14) 2178309000000091 a001 591286729879/599074578*599074578^(8/21) 2178309000000091 a001 267914296/969323029*45537549124^(11/17) 2178309000000091 a001 116139356908771352/53316291173 2178309000000091 a001 267914296/969323029*312119004989^(3/5) 2178309000000091 a001 267914296/969323029*14662949395604^(11/21) 2178309000000091 a001 267914296/969323029*192900153618^(11/18) 2178309000000091 a001 267914296/969323029*10749957122^(11/16) 2178309000000091 a001 267913919/710646*599074578^(3/7) 2178309000000091 a001 43133785636/299537289*599074578^(10/21) 2178309000000091 a001 267914296/969323029*1568397607^(3/4) 2178309000000091 a001 53316291173/599074578*599074578^(1/2) 2178309000000091 a001 10983760033/199691526*599074578^(11/21) 2178309000000091 a001 102334155/969323029*228826127^(7/8) 2178309000000091 a001 233802911/199691526*599074578^(5/7) 2178309000000091 a001 12586269025/599074578*599074578^(4/7) 2178309000000091 a001 267084832/33281921*599074578^(13/21) 2178309000000091 a001 34111385/1368706081*228826127^(19/20) 2178309000000091 a001 1836311903/599074578*599074578^(2/3) 2178309000000091 a001 2971215073/599074578*599074578^(9/14) 2178309000000091 a001 267914296/1568397607*599074578^(17/21) 2178309000000091 a001 701408733/1568397607*23725150497407^(1/2) 2178309000000091 a001 163991403576221763/75283811239 2178309000000091 a001 701408733/1568397607*73681302247^(8/13) 2178309000000091 a001 701408733/1568397607*10749957122^(2/3) 2178309000000091 a001 701408733/1568397607*4106118243^(16/23) 2178309000000091 a001 1836311903/1568397607*2537720636^(2/3) 2178309000000091 a001 233802911/64300051206*2537720636^(14/15) 2178309000000091 a001 701408733/73681302247*2537720636^(8/9) 2178309000000091 a001 701408733/45537549124*2537720636^(13/15) 2178309000000091 a001 701408733/10749957122*2537720636^(4/5) 2178309000000091 a001 701408733/1568397607*1568397607^(8/11) 2178309000000091 a001 701408733/6643838879*2537720636^(7/9) 2178309000000091 a001 7778742049/1568397607*2537720636^(3/5) 2178309000000091 a001 20365011074/1568397607*2537720636^(5/9) 2178309000000091 a001 32951280099/1568397607*2537720636^(8/15) 2178309000000091 a001 139583862445/1568397607*2537720636^(7/15) 2178309000000091 a001 32264490531/224056801*2537720636^(4/9) 2178309000000091 a001 591286729879/1568397607*2537720636^(2/5) 2178309000000091 a001 233802911/1368706081*45537549124^(2/3) 2178309000000091 a001 1836311903/1568397607*45537549124^(10/17) 2178309000000091 a001 1836311903/1568397607*312119004989^(6/11) 2178309000000091 a001 1836311903/1568397607*14662949395604^(10/21) 2178309000000091 a001 1288005205276048899/591286729879 2178309000000091 a001 1836311903/1568397607*192900153618^(5/9) 2178309000000091 a001 1836311903/1568397607*28143753123^(3/5) 2178309000000091 a001 1836311903/1568397607*10749957122^(5/8) 2178309000000091 a001 233802911/1368706081*10749957122^(17/24) 2178309000000091 a001 2504730781961/1568397607*2537720636^(1/3) 2178309000000091 a001 267914296/4106118243*599074578^(6/7) 2178309000000091 a001 1515744265389/224056801*2537720636^(4/15) 2178309000000091 a001 1836311903/1568397607*4106118243^(15/23) 2178309000000091 a001 233802911/1368706081*4106118243^(17/23) 2178309000000091 a001 686789568/224056801*17393796001^(4/7) 2178309000000091 a001 701408733/10749957122*45537549124^(12/17) 2178309000000091 a001 701408733/10749957122*14662949395604^(4/7) 2178309000000091 a001 23416954202079732/10750060805 2178309000000091 a001 701408733/10749957122*192900153618^(2/3) 2178309000000091 a001 686789568/224056801*73681302247^(7/13) 2178309000000091 a001 701408733/10749957122*73681302247^(9/13) 2178309000000091 a001 686789568/224056801*10749957122^(7/12) 2178309000000091 a001 233802911/64300051206*17393796001^(6/7) 2178309000000091 a001 701408733/10749957122*10749957122^(3/4) 2178309000000091 a001 139583862445/1568397607*17393796001^(3/7) 2178309000000091 a001 233802911/9381251041*817138163596^(2/3) 2178309000000091 a001 8828119010022395325/4052739537881 2178309000000091 a001 12586269025/1568397607*73681302247^(1/2) 2178309000000091 a001 4052739537881/1568397607*17393796001^(2/7) 2178309000000091 a001 701408733/3461452808002*45537549124^(16/17) 2178309000000091 a001 233802911/64300051206*45537549124^(14/17) 2178309000000091 a001 32951280099/1568397607*45537549124^(8/17) 2178309000000091 a001 139583862445/1568397607*45537549124^(7/17) 2178309000000091 a001 701408733/73681302247*23725150497407^(5/8) 2178309000000091 a001 7704105208322568189/3536736619241 2178309000000091 a001 32951280099/1568397607*192900153618^(4/9) 2178309000000091 a001 591286729879/1568397607*45537549124^(6/17) 2178309000000091 a001 956722026041/1568397607*45537549124^(1/3) 2178309000000091 a001 2504730781961/1568397607*45537549124^(5/17) 2178309000000091 a001 1515744265389/224056801*45537549124^(4/17) 2178309000000091 a001 32951280099/1568397607*73681302247^(6/13) 2178309000000091 a001 701408733/73681302247*73681302247^(10/13) 2178309000000091 a001 233802911/64300051206*817138163596^(14/19) 2178309000000091 a001 233802911/64300051206*14662949395604^(2/3) 2178309000000091 a001 701408733/505019158607*312119004989^(4/5) 2178309000000091 a001 233802911/3020733700601*312119004989^(10/11) 2178309000000091 a001 233802911/64300051206*192900153618^(7/9) 2178309000000091 a001 1515744265389/224056801*817138163596^(4/19) 2178309000000091 a001 1515744265389/224056801*14662949395604^(4/21) 2178309000000091 a006 5^(1/2)*Fibonacci(76)/Lucas(44)/sqrt(5) 2178309000000091 a001 2504730781961/1568397607*192900153618^(5/18) 2178309000000091 a001 139583862445/1568397607*14662949395604^(1/3) 2178309000000091 a001 139583862445/1568397607*192900153618^(7/18) 2178309000000091 a001 701408733/14662949395604*192900153618^(17/18) 2178309000000091 a001 1515744265389/224056801*73681302247^(3/13) 2178309000000091 a001 1548008755920/1568397607*73681302247^(4/13) 2178309000000091 a001 32264490531/224056801*73681302247^(5/13) 2178309000000091 a001 701408733/45537549124*45537549124^(13/17) 2178309000000091 a001 701408733/505019158607*73681302247^(11/13) 2178309000000091 a001 701408733/3461452808002*73681302247^(12/13) 2178309000000091 a001 2504730781961/1568397607*28143753123^(3/10) 2178309000000091 a001 20365011074/1568397607*312119004989^(5/11) 2178309000000091 a001 7142098307472654621/3278735159921 2178309000000091 a001 20365011074/1568397607*3461452808002^(5/12) 2178309000000091 a001 32264490531/224056801*28143753123^(2/5) 2178309000000091 a001 701408733/45537549124*192900153618^(13/18) 2178309000000091 a001 701408733/45537549124*73681302247^(3/4) 2178309000000091 a001 701408733/73681302247*28143753123^(4/5) 2178309000000091 a001 20365011074/1568397607*28143753123^(1/2) 2178309000000091 a001 701408733/817138163596*28143753123^(9/10) 2178309000000091 a001 1515744265389/224056801*10749957122^(1/4) 2178309000000091 a001 4052739537881/1568397607*10749957122^(7/24) 2178309000000091 a001 2504730781961/1568397607*10749957122^(5/16) 2178309000000091 a001 1548008755920/1568397607*10749957122^(1/3) 2178309000000091 a001 7778742049/1568397607*45537549124^(9/17) 2178309000000091 a001 591286729879/1568397607*10749957122^(3/8) 2178309000000091 a001 7778742049/1568397607*817138163596^(9/19) 2178309000000091 a001 5456077604922913917/2504730781961 2178309000000091 a001 7778742049/1568397607*192900153618^(1/2) 2178309000000091 a001 12586269025/1568397607*10749957122^(13/24) 2178309000000091 a001 32264490531/224056801*10749957122^(5/12) 2178309000000091 a001 139583862445/1568397607*10749957122^(7/16) 2178309000000091 a001 86267571272/1568397607*10749957122^(11/24) 2178309000000091 a001 32951280099/1568397607*10749957122^(1/2) 2178309000000091 a001 233802911/9381251041*10749957122^(19/24) 2178309000000091 a001 701408733/73681302247*10749957122^(5/6) 2178309000000091 a001 701408733/45537549124*10749957122^(13/16) 2178309000000091 a001 233802911/64300051206*10749957122^(7/8) 2178309000000091 a001 701408733/505019158607*10749957122^(11/12) 2178309000000091 a001 701408733/817138163596*10749957122^(15/16) 2178309000000091 a001 7778742049/1568397607*10749957122^(9/16) 2178309000000091 a001 233802911/440719107401*10749957122^(23/24) 2178309000000091 a001 1515744265389/224056801*4106118243^(6/23) 2178309000000091 a001 4052739537881/1568397607*4106118243^(7/23) 2178309000000091 a001 701408733/6643838879*17393796001^(5/7) 2178309000000091 a001 1548008755920/1568397607*4106118243^(8/23) 2178309000000091 a001 701408733/6643838879*312119004989^(7/11) 2178309000000091 a001 2084036199823432509/956722026041 2178309000000091 a001 2971215073/1568397607*1322157322203^(1/2) 2178309000000091 a001 591286729879/1568397607*4106118243^(9/23) 2178309000000091 a001 701408733/6643838879*28143753123^(7/10) 2178309000000091 a001 32264490531/224056801*4106118243^(10/23) 2178309000000091 a001 686789568/224056801*4106118243^(14/23) 2178309000000091 a001 86267571272/1568397607*4106118243^(11/23) 2178309000000091 a001 53316291173/1568397607*4106118243^(1/2) 2178309000000091 a001 32951280099/1568397607*4106118243^(12/23) 2178309000000091 a001 12586269025/1568397607*4106118243^(13/23) 2178309000000091 a001 701408733/10749957122*4106118243^(18/23) 2178309000000091 a001 701408733/2537720636*2537720636^(11/15) 2178309000000091 a001 233802911/9381251041*4106118243^(19/23) 2178309000000091 a001 701408733/73681302247*4106118243^(20/23) 2178309000000091 a001 233802911/64300051206*4106118243^(21/23) 2178309000000091 a001 701408733/505019158607*4106118243^(22/23) 2178309000000091 a001 66978574/634430159*599074578^(5/6) 2178309000000091 a001 1515744265389/224056801*1568397607^(3/11) 2178309000000091 a001 4052739537881/1568397607*1568397607^(7/22) 2178309000000091 a001 133957148/5374978561*599074578^(19/21) 2178309000000091 a001 1548008755920/1568397607*1568397607^(4/11) 2178309000000091 a001 701408733/2537720636*45537549124^(11/17) 2178309000000091 a001 701408733/2537720636*312119004989^(3/5) 2178309000000091 a001 1134903170/1568397607*9062201101803^(1/2) 2178309000000091 a001 701408733/2537720636*192900153618^(11/18) 2178309000000091 a001 701408733/2537720636*10749957122^(11/16) 2178309000000091 a001 591286729879/1568397607*1568397607^(9/22) 2178309000000091 a001 32264490531/224056801*1568397607^(5/11) 2178309000000091 a001 1836311903/505019158607*2537720636^(14/15) 2178309000000091 a001 86267571272/1568397607*1568397607^(1/2) 2178309000000091 a001 1836311903/192900153618*2537720636^(8/9) 2178309000000091 a001 9238424/599786069*599074578^(13/14) 2178309000000091 a001 1836311903/119218851371*2537720636^(13/15) 2178309000000091 a001 1836311903/1568397607*1568397607^(15/22) 2178309000000091 a001 32951280099/1568397607*1568397607^(6/11) 2178309000000091 a001 1836311903/28143753123*2537720636^(4/5) 2178309000000091 a001 1836311903/17393796001*2537720636^(7/9) 2178309000000091 a001 1602508992/1368706081*2537720636^(2/3) 2178309000000091 a001 12586269025/1568397607*1568397607^(13/22) 2178309000000091 a001 686789568/224056801*1568397607^(7/11) 2178309000000091 a001 1602508992/440719107401*2537720636^(14/15) 2178309000000091 a001 20365011074/4106118243*2537720636^(3/5) 2178309000000091 a001 233802911/1368706081*1568397607^(17/22) 2178309000000091 a001 1836311903/6643838879*2537720636^(11/15) 2178309000000091 a001 102287808/10745088481*2537720636^(8/9) 2178309000000091 a001 12586269025/3461452808002*2537720636^(14/15) 2178309000000091 a001 53316291173/4106118243*2537720636^(5/9) 2178309000000091 a001 10983760033/3020733700601*2537720636^(14/15) 2178309000000091 a001 86267571272/23725150497407*2537720636^(14/15) 2178309000000091 a001 53316291173/14662949395604*2537720636^(14/15) 2178309000000091 a001 20365011074/5600748293801*2537720636^(14/15) 2178309000000091 a001 4807526976/312119004989*2537720636^(13/15) 2178309000000091 a001 86267571272/4106118243*2537720636^(8/15) 2178309000000091 a001 7778742049/2139295485799*2537720636^(14/15) 2178309000000091 a001 12586269025/1322157322203*2537720636^(8/9) 2178309000000091 a001 32951280099/3461452808002*2537720636^(8/9) 2178309000000091 a001 86267571272/9062201101803*2537720636^(8/9) 2178309000000091 a001 225851433717/23725150497407*2537720636^(8/9) 2178309000000091 a001 139583862445/14662949395604*2537720636^(8/9) 2178309000000091 a001 53316291173/5600748293801*2537720636^(8/9) 2178309000000091 a001 20365011074/2139295485799*2537720636^(8/9) 2178309000000091 a001 12586269025/817138163596*2537720636^(13/15) 2178309000000091 a001 32951280099/2139295485799*2537720636^(13/15) 2178309000000091 a001 7778742049/817138163596*2537720636^(8/9) 2178309000000091 a001 86267571272/5600748293801*2537720636^(13/15) 2178309000000091 a001 7787980473/505618944676*2537720636^(13/15) 2178309000000091 a001 365435296162/23725150497407*2537720636^(13/15) 2178309000000091 a001 139583862445/9062201101803*2537720636^(13/15) 2178309000000091 a001 53316291173/3461452808002*2537720636^(13/15) 2178309000000091 a001 20365011074/1322157322203*2537720636^(13/15) 2178309000000091 a001 267914296/28143753123*599074578^(20/21) 2178309000000091 a001 686789568/10525900321*2537720636^(4/5) 2178309000000091 a001 365435296162/4106118243*2537720636^(7/15) 2178309000000091 a001 7778742049/505019158607*2537720636^(13/15) 2178309000000091 a001 1201881744/11384387281*2537720636^(7/9) 2178309000000091 a001 591286729879/4106118243*2537720636^(4/9) 2178309000000091 a001 12586269025/192900153618*2537720636^(4/5) 2178309000000091 a001 32951280099/505019158607*2537720636^(4/5) 2178309000000091 a001 86267571272/1322157322203*2537720636^(4/5) 2178309000000091 a001 32264490531/494493258286*2537720636^(4/5) 2178309000000091 a001 1548008755920/23725150497407*2537720636^(4/5) 2178309000000091 a001 139583862445/2139295485799*2537720636^(4/5) 2178309000000091 a001 53316291173/817138163596*2537720636^(4/5) 2178309000000091 a001 20365011074/312119004989*2537720636^(4/5) 2178309000000091 a001 2971215073/817138163596*2537720636^(14/15) 2178309000000091 a001 12586269025/119218851371*2537720636^(7/9) 2178309000000091 a001 516002918640/1368706081*2537720636^(2/5) 2178309000000091 a001 32951280099/312119004989*2537720636^(7/9) 2178309000000091 a001 7778742049/119218851371*2537720636^(4/5) 2178309000000091 a001 21566892818/204284540899*2537720636^(7/9) 2178309000000091 a001 225851433717/2139295485799*2537720636^(7/9) 2178309000000091 a001 182717648081/1730726404001*2537720636^(7/9) 2178309000000091 a001 139583862445/1322157322203*2537720636^(7/9) 2178309000000091 a001 53316291173/505019158607*2537720636^(7/9) 2178309000000091 a001 10182505537/96450076809*2537720636^(7/9) 2178309000000091 a001 4807526976/17393796001*2537720636^(11/15) 2178309000000091 a001 1836311903/4106118243*23725150497407^(1/2) 2178309000000091 a001 1836311903/4106118243*73681302247^(8/13) 2178309000000091 a001 7778742049/73681302247*2537720636^(7/9) 2178309000000091 a001 2971215073/312119004989*2537720636^(8/9) 2178309000000091 a001 12586269025/45537549124*2537720636^(11/15) 2178309000000091 a001 32951280099/119218851371*2537720636^(11/15) 2178309000000091 a001 86267571272/312119004989*2537720636^(11/15) 2178309000000091 a001 225851433717/817138163596*2537720636^(11/15) 2178309000000091 a001 1548008755920/5600748293801*2537720636^(11/15) 2178309000000091 a001 139583862445/505019158607*2537720636^(11/15) 2178309000000091 a001 53316291173/192900153618*2537720636^(11/15) 2178309000000091 a001 20365011074/73681302247*2537720636^(11/15) 2178309000000091 a001 12586269025/10749957122*2537720636^(2/3) 2178309000000091 a001 1836311903/4106118243*10749957122^(2/3) 2178309000000091 a001 2971215073/192900153618*2537720636^(13/15) 2178309000000091 a001 7778742049/28143753123*2537720636^(11/15) 2178309000000091 a001 6557470319842/4106118243*2537720636^(1/3) 2178309000000091 a001 10983760033/9381251041*2537720636^(2/3) 2178309000000091 a001 86267571272/73681302247*2537720636^(2/3) 2178309000000091 a001 75283811239/64300051206*2537720636^(2/3) 2178309000000091 a001 2504730781961/2139295485799*2537720636^(2/3) 2178309000000091 a001 365435296162/312119004989*2537720636^(2/3) 2178309000000091 a001 139583862445/119218851371*2537720636^(2/3) 2178309000000091 a001 53316291173/45537549124*2537720636^(2/3) 2178309000000091 a001 53316291173/10749957122*2537720636^(3/5) 2178309000000091 a001 2971215073/45537549124*2537720636^(4/5) 2178309000000091 a001 2971215073/10749957122*2537720636^(11/15) 2178309000000091 a001 20365011074/17393796001*2537720636^(2/3) 2178309000000091 a001 2971215073/28143753123*2537720636^(7/9) 2178309000000091 a001 139583862445/10749957122*2537720636^(5/9) 2178309000000091 a001 139583862445/28143753123*2537720636^(3/5) 2178309000000091 a001 365435296162/73681302247*2537720636^(3/5) 2178309000000091 a001 956722026041/192900153618*2537720636^(3/5) 2178309000000091 a001 2504730781961/505019158607*2537720636^(3/5) 2178309000000091 a001 10610209857723/2139295485799*2537720636^(3/5) 2178309000000091 a001 140728068720/28374454999*2537720636^(3/5) 2178309000000091 a001 591286729879/119218851371*2537720636^(3/5) 2178309000000091 a001 225851433717/45537549124*2537720636^(3/5) 2178309000000091 a001 225851433717/10749957122*2537720636^(8/15) 2178309000000091 a001 86267571272/17393796001*2537720636^(3/5) 2178309000000091 a001 365435296162/28143753123*2537720636^(5/9) 2178309000000091 a001 956722026041/73681302247*2537720636^(5/9) 2178309000000091 a001 2504730781961/192900153618*2537720636^(5/9) 2178309000000091 a001 10610209857723/817138163596*2537720636^(5/9) 2178309000000091 a001 4052739537881/312119004989*2537720636^(5/9) 2178309000000091 a001 1548008755920/119218851371*2537720636^(5/9) 2178309000000091 a001 591286729879/45537549124*2537720636^(5/9) 2178309000000091 a001 591286729879/28143753123*2537720636^(8/15) 2178309000000091 a001 1548008755920/73681302247*2537720636^(8/15) 2178309000000091 a001 7787980473/599786069*2537720636^(5/9) 2178309000000091 a001 4052739537881/192900153618*2537720636^(8/15) 2178309000000091 a001 225749145909/10745088481*2537720636^(8/15) 2178309000000091 a001 6557470319842/312119004989*2537720636^(8/15) 2178309000000091 a001 2504730781961/119218851371*2537720636^(8/15) 2178309000000091 a001 701408733/10749957122*1568397607^(9/11) 2178309000000091 a001 956722026041/45537549124*2537720636^(8/15) 2178309000000091 a001 956722026041/10749957122*2537720636^(7/15) 2178309000000091 a001 365435296162/17393796001*2537720636^(8/15) 2178309000000091 a001 774004377960/5374978561*2537720636^(4/9) 2178309000000091 a001 7778742049/6643838879*2537720636^(2/3) 2178309000000091 a001 1836311903/4106118243*4106118243^(16/23) 2178309000000091 a001 2504730781961/28143753123*2537720636^(7/15) 2178309000000091 a001 6557470319842/73681302247*2537720636^(7/15) 2178309000000091 a001 10610209857723/119218851371*2537720636^(7/15) 2178309000000091 a001 4052739537881/45537549124*2537720636^(7/15) 2178309000000091 a001 4052739537881/10749957122*2537720636^(2/5) 2178309000000091 a001 32951280099/6643838879*2537720636^(3/5) 2178309000000091 a001 4052739537881/28143753123*2537720636^(4/9) 2178309000000091 a001 1515744265389/10525900321*2537720636^(4/9) 2178309000000091 a001 1548008755920/17393796001*2537720636^(7/15) 2178309000000091 a001 3278735159921/22768774562*2537720636^(4/9) 2178309000000091 a001 1836311903/10749957122*45537549124^(2/3) 2178309000000091 a001 1602508992/1368706081*45537549124^(10/17) 2178309000000091 a001 1602508992/1368706081*312119004989^(6/11) 2178309000000091 a001 1602508992/1368706081*14662949395604^(10/21) 2178309000000091 a001 8828119010022395328/4052739537881 2178309000000091 a001 1602508992/1368706081*192900153618^(5/9) 2178309000000091 a001 1602508992/1368706081*28143753123^(3/5) 2178309000000091 a001 2504730781961/17393796001*2537720636^(4/9) 2178309000000091 a001 86267571272/6643838879*2537720636^(5/9) 2178309000000091 a001 3536736619241/9381251041*2537720636^(2/5) 2178309000000091 a001 1602508992/1368706081*10749957122^(5/8) 2178309000000091 a001 12586269025/4106118243*17393796001^(4/7) 2178309000000091 a001 1836311903/505019158607*17393796001^(6/7) 2178309000000091 a001 1836311903/10749957122*10749957122^(17/24) 2178309000000091 a001 1836311903/28143753123*45537549124^(12/17) 2178309000000091 a001 365435296162/4106118243*17393796001^(3/7) 2178309000000091 a001 1836311903/28143753123*14662949395604^(4/7) 2178309000000091 a001 12586269025/4106118243*14662949395604^(4/9) 2178309000000091 a001 1836311903/28143753123*192900153618^(2/3) 2178309000000091 a001 12586269025/4106118243*73681302247^(7/13) 2178309000000091 a001 1836311903/28143753123*73681302247^(9/13) 2178309000000091 a001 3536736619241/1368706081*17393796001^(2/7) 2178309000000091 a001 139583862445/6643838879*2537720636^(8/15) 2178309000000091 a001 1836311903/9062201101803*45537549124^(16/17) 2178309000000091 a001 1836311903/2139295485799*45537549124^(15/17) 2178309000000091 a001 1836311903/505019158607*45537549124^(14/17) 2178309000000091 a001 1836311903/119218851371*45537549124^(13/17) 2178309000000091 a001 86267571272/4106118243*45537549124^(8/17) 2178309000000091 a001 365435296162/4106118243*45537549124^(7/17) 2178309000000091 a001 1836311903/73681302247*817138163596^(2/3) 2178309000000091 a001 516002918640/1368706081*45537549124^(6/17) 2178309000000091 a001 2504730781961/4106118243*45537549124^(1/3) 2178309000000091 a001 6557470319842/4106118243*45537549124^(5/17) 2178309000000091 a001 10983760033/1368706081*73681302247^(1/2) 2178309000000091 a001 1836311903/192900153618*312119004989^(8/11) 2178309000000091 a001 1836311903/192900153618*23725150497407^(5/8) 2178309000000091 a001 1836311903/1322157322203*312119004989^(4/5) 2178309000000091 a001 1836311903/2139295485799*312119004989^(9/11) 2178309000000091 a006 5^(1/2)*Fibonacci(78)/Lucas(46)/sqrt(5) 2178309000000091 a001 1836311903/14662949395604*14662949395604^(7/9) 2178309000000091 a001 516002918640/1368706081*192900153618^(1/3) 2178309000000091 a001 365435296162/4106118243*192900153618^(7/18) 2178309000000091 a001 1836311903/505019158607*192900153618^(7/9) 2178309000000091 a001 1836311903/2139295485799*192900153618^(5/6) 2178309000000091 a001 4052739537881/4106118243*73681302247^(4/13) 2178309000000091 a001 1836311903/119218851371*14662949395604^(13/21) 2178309000000091 a001 53316291173/4106118243*3461452808002^(5/12) 2178309000000091 a001 1836311903/119218851371*192900153618^(13/18) 2178309000000091 a001 1836311903/192900153618*73681302247^(10/13) 2178309000000091 a001 1836311903/1322157322203*73681302247^(11/13) 2178309000000091 a001 1836311903/9062201101803*73681302247^(12/13) 2178309000000091 a001 1836311903/119218851371*73681302247^(3/4) 2178309000000091 a001 20365011074/4106118243*45537549124^(9/17) 2178309000000091 a001 6557470319842/4106118243*28143753123^(3/10) 2178309000000091 a001 20365011074/4106118243*817138163596^(9/19) 2178309000000091 a001 20365011074/4106118243*14662949395604^(3/7) 2178309000000091 a001 20365011074/4106118243*192900153618^(1/2) 2178309000000091 a001 591286729879/4106118243*28143753123^(2/5) 2178309000000091 a001 53316291173/4106118243*28143753123^(1/2) 2178309000000091 a001 1836311903/17393796001*17393796001^(5/7) 2178309000000091 a001 1836311903/192900153618*28143753123^(4/5) 2178309000000091 a001 1836311903/2139295485799*28143753123^(9/10) 2178309000000091 a001 3536736619241/1368706081*10749957122^(7/24) 2178309000000091 a001 233802911/9381251041*1568397607^(19/22) 2178309000000091 a001 6557470319842/4106118243*10749957122^(5/16) 2178309000000091 a001 4052739537881/4106118243*10749957122^(1/3) 2178309000000091 a001 516002918640/1368706081*10749957122^(3/8) 2178309000000091 a001 1836311903/17393796001*312119004989^(7/11) 2178309000000091 a001 1098784354995793019/504420793834 2178309000000091 a001 1836311903/17393796001*14662949395604^(5/9) 2178309000000091 a001 1836311903/17393796001*505019158607^(5/8) 2178309000000091 a001 591286729879/4106118243*10749957122^(5/12) 2178309000000091 a001 12586269025/4106118243*10749957122^(7/12) 2178309000000091 a001 365435296162/4106118243*10749957122^(7/16) 2178309000000091 a001 75283811239/1368706081*10749957122^(11/24) 2178309000000091 a001 1836311903/17393796001*28143753123^(7/10) 2178309000000091 a001 86267571272/4106118243*10749957122^(1/2) 2178309000000091 a001 10983760033/1368706081*10749957122^(13/24) 2178309000000091 a001 1836311903/28143753123*10749957122^(3/4) 2178309000000091 a001 20365011074/4106118243*10749957122^(9/16) 2178309000000091 a001 1836311903/73681302247*10749957122^(19/24) 2178309000000091 a001 1836311903/119218851371*10749957122^(13/16) 2178309000000091 a001 1836311903/192900153618*10749957122^(5/6) 2178309000000091 a001 1836311903/505019158607*10749957122^(7/8) 2178309000000091 a001 1836311903/1322157322203*10749957122^(11/12) 2178309000000091 a001 1836311903/2139295485799*10749957122^(15/16) 2178309000000091 a001 1836311903/3461452808002*10749957122^(23/24) 2178309000000091 a001 591286729879/6643838879*2537720636^(7/15) 2178309000000091 a001 956722026041/6643838879*2537720636^(4/9) 2178309000000091 a001 3536736619241/1368706081*4106118243^(7/23) 2178309000000091 a001 2504730781961/6643838879*2537720636^(2/5) 2178309000000091 a001 4052739537881/4106118243*4106118243^(8/23) 2178309000000091 a001 701408733/73681302247*1568397607^(10/11) 2178309000000091 a001 1836311903/6643838879*45537549124^(11/17) 2178309000000091 a001 1836311903/6643838879*312119004989^(3/5) 2178309000000091 a001 1836311903/6643838879*817138163596^(11/19) 2178309000000091 a001 1836311903/6643838879*14662949395604^(11/21) 2178309000000091 a001 1836311903/6643838879*192900153618^(11/18) 2178309000000091 a001 516002918640/1368706081*4106118243^(9/23) 2178309000000091 a001 591286729879/4106118243*4106118243^(10/23) 2178309000000091 a001 75283811239/1368706081*4106118243^(11/23) 2178309000000091 a001 1836311903/6643838879*10749957122^(11/16) 2178309000000091 a001 139583862445/4106118243*4106118243^(1/2) 2178309000000091 a001 1602508992/1368706081*4106118243^(15/23) 2178309000000091 a001 10610209857723/6643838879*2537720636^(1/3) 2178309000000091 a001 86267571272/4106118243*4106118243^(12/23) 2178309000000091 a001 10983760033/1368706081*4106118243^(13/23) 2178309000000091 a001 12586269025/4106118243*4106118243^(14/23) 2178309000000091 a001 1836311903/10749957122*4106118243^(17/23) 2178309000000091 a001 233802911/64300051206*1568397607^(21/22) 2178309000000091 a001 1134903170/4106118243*2537720636^(11/15) 2178309000000091 a001 2403763488/5374978561*23725150497407^(1/2) 2178309000000091 a001 23416733155995648/10749959329 2178309000000091 a001 2403763488/5374978561*73681302247^(8/13) 2178309000000091 a001 1836311903/28143753123*4106118243^(18/23) 2178309000000091 a001 2403763488/5374978561*10749957122^(2/3) 2178309000000091 a001 1602508992/440719107401*17393796001^(6/7) 2178309000000091 a001 32951280099/10749957122*17393796001^(4/7) 2178309000000091 a001 1201881744/11384387281*17393796001^(5/7) 2178309000000091 a001 1836311903/73681302247*4106118243^(19/23) 2178309000000091 a001 1602508992/9381251041*45537549124^(2/3) 2178309000000091 a001 12586269025/10749957122*45537549124^(10/17) 2178309000000091 a001 956722026041/10749957122*17393796001^(3/7) 2178309000000091 a001 12586269025/10749957122*312119004989^(6/11) 2178309000000091 a001 12586269025/10749957122*14662949395604^(10/21) 2178309000000091 a001 12586269025/10749957122*192900153618^(5/9) 2178309000000091 a001 686789568/10525900321*45537549124^(12/17) 2178309000000091 a001 12586269025/10749957122*28143753123^(3/5) 2178309000000091 a001 4807526976/23725150497407*45537549124^(16/17) 2178309000000091 a001 4807526976/5600748293801*45537549124^(15/17) 2178309000000091 a001 1602508992/440719107401*45537549124^(14/17) 2178309000000091 a001 4807526976/312119004989*45537549124^(13/17) 2178309000000091 a001 225851433717/10749957122*45537549124^(8/17) 2178309000000091 a001 956722026041/10749957122*45537549124^(7/17) 2178309000000091 a001 32951280099/10749957122*14662949395604^(4/9) 2178309000000091 a001 4052739537881/10749957122*45537549124^(6/17) 2178309000000091 a001 686789568/10525900321*192900153618^(2/3) 2178309000000091 a001 3278735159921/5374978561*45537549124^(1/3) 2178309000000091 a001 32951280099/10749957122*73681302247^(7/13) 2178309000000091 a001 686789568/10525900321*73681302247^(9/13) 2178309000000091 a001 267084832/10716675201*817138163596^(2/3) 2178309000000091 a001 102287808/10745088481*312119004989^(8/11) 2178309000000091 a001 14930208/10749853441*312119004989^(4/5) 2178309000000091 a001 225851433717/10749957122*14662949395604^(8/21) 2178309000000091 a001 102287808/10745088481*23725150497407^(5/8) 2178309000000091 a001 1602508992/440719107401*505019158607^(3/4) 2178309000000091 a001 139583862445/10749957122*312119004989^(5/11) 2178309000000091 a001 139583862445/10749957122*3461452808002^(5/12) 2178309000000091 a001 1602508992/440719107401*192900153618^(7/9) 2178309000000091 a001 4807526976/312119004989*192900153618^(13/18) 2178309000000091 a001 4807525989/4870846*73681302247^(4/13) 2178309000000091 a001 43133785636/5374978561*73681302247^(1/2) 2178309000000091 a001 53316291173/10749957122*817138163596^(9/19) 2178309000000091 a001 53316291173/10749957122*14662949395604^(3/7) 2178309000000091 a001 225851433717/10749957122*73681302247^(6/13) 2178309000000091 a001 102287808/10745088481*73681302247^(10/13) 2178309000000091 a001 4807526976/312119004989*73681302247^(3/4) 2178309000000091 a001 14930208/10749853441*73681302247^(11/13) 2178309000000091 a001 4807526976/23725150497407*73681302247^(12/13) 2178309000000091 a001 1201881744/11384387281*312119004989^(7/11) 2178309000000091 a001 1201881744/11384387281*14662949395604^(5/9) 2178309000000091 a001 10182505537/5374978561*1322157322203^(1/2) 2178309000000091 a001 774004377960/5374978561*28143753123^(2/5) 2178309000000091 a001 139583862445/10749957122*28143753123^(1/2) 2178309000000091 a001 1836311903/192900153618*4106118243^(20/23) 2178309000000091 a001 102287808/10745088481*28143753123^(4/5) 2178309000000091 a001 4807526976/5600748293801*28143753123^(9/10) 2178309000000091 a001 1201881744/11384387281*28143753123^(7/10) 2178309000000091 a001 4807525989/4870846*10749957122^(1/3) 2178309000000091 a001 4807526976/17393796001*45537549124^(11/17) 2178309000000091 a001 4052739537881/10749957122*10749957122^(3/8) 2178309000000091 a001 4807526976/17393796001*312119004989^(3/5) 2178309000000091 a001 4807526976/17393796001*14662949395604^(11/21) 2178309000000091 a001 4807526976/17393796001*192900153618^(11/18) 2178309000000091 a001 1836311903/505019158607*4106118243^(21/23) 2178309000000091 a001 774004377960/5374978561*10749957122^(5/12) 2178309000000091 a001 956722026041/10749957122*10749957122^(7/16) 2178309000000091 a001 591286729879/10749957122*10749957122^(11/24) 2178309000000091 a001 12586269025/10749957122*10749957122^(5/8) 2178309000000091 a001 225851433717/10749957122*10749957122^(1/2) 2178309000000091 a001 12586269025/3461452808002*17393796001^(6/7) 2178309000000091 a001 43133785636/5374978561*10749957122^(13/24) 2178309000000091 a001 32951280099/10749957122*10749957122^(7/12) 2178309000000091 a001 1602508992/9381251041*10749957122^(17/24) 2178309000000091 a001 53316291173/10749957122*10749957122^(9/16) 2178309000000091 a001 12586269025/119218851371*17393796001^(5/7) 2178309000000091 a001 86267571272/28143753123*17393796001^(4/7) 2178309000000091 a001 10983760033/3020733700601*17393796001^(6/7) 2178309000000091 a001 86267571272/23725150497407*17393796001^(6/7) 2178309000000091 a001 53316291173/14662949395604*17393796001^(6/7) 2178309000000091 a001 2504730781961/28143753123*17393796001^(3/7) 2178309000000091 a001 1836311903/1322157322203*4106118243^(22/23) 2178309000000091 a001 32951280099/312119004989*17393796001^(5/7) 2178309000000091 a001 12586269025/28143753123*23725150497407^(1/2) 2178309000000091 a001 12586269025/28143753123*73681302247^(8/13) 2178309000000091 a001 21566892818/204284540899*17393796001^(5/7) 2178309000000091 a001 225851433717/2139295485799*17393796001^(5/7) 2178309000000091 a001 182717648081/1730726404001*17393796001^(5/7) 2178309000000091 a001 139583862445/1322157322203*17393796001^(5/7) 2178309000000091 a001 20365011074/5600748293801*17393796001^(6/7) 2178309000000091 a001 53316291173/505019158607*17393796001^(5/7) 2178309000000091 a001 32264490531/10525900321*17393796001^(4/7) 2178309000000091 a001 591286729879/192900153618*17393796001^(4/7) 2178309000000091 a001 10182505537/96450076809*17393796001^(5/7) 2178309000000091 a001 1548008755920/505019158607*17393796001^(4/7) 2178309000000091 a001 1515744265389/494493258286*17393796001^(4/7) 2178309000000091 a001 2504730781961/817138163596*17393796001^(4/7) 2178309000000091 a001 956722026041/312119004989*17393796001^(4/7) 2178309000000091 a001 267084832/10716675201*10749957122^(19/24) 2178309000000091 a001 365435296162/119218851371*17393796001^(4/7) 2178309000000091 a001 12586269025/73681302247*45537549124^(2/3) 2178309000000091 a001 10983760033/9381251041*45537549124^(10/17) 2178309000000091 a001 12586269025/14662949395604*45537549124^(15/17) 2178309000000091 a001 12586269025/3461452808002*45537549124^(14/17) 2178309000000091 a001 12586269025/192900153618*45537549124^(12/17) 2178309000000091 a001 12586269025/817138163596*45537549124^(13/17) 2178309000000091 a001 4807526976/312119004989*10749957122^(13/16) 2178309000000091 a001 6557470319842/73681302247*17393796001^(3/7) 2178309000000091 a001 139583862445/28143753123*45537549124^(9/17) 2178309000000091 a001 591286729879/28143753123*45537549124^(8/17) 2178309000000091 a001 2504730781961/28143753123*45537549124^(7/17) 2178309000000091 a001 10983760033/9381251041*312119004989^(6/11) 2178309000000091 a001 10983760033/9381251041*14662949395604^(10/21) 2178309000000091 a001 102287808/10745088481*10749957122^(5/6) 2178309000000091 a001 3536736619241/9381251041*45537549124^(6/17) 2178309000000091 a001 10983760033/9381251041*192900153618^(5/9) 2178309000000091 a001 139583862445/45537549124*17393796001^(4/7) 2178309000000091 a001 10610209857723/119218851371*17393796001^(3/7) 2178309000000091 a001 12586269025/192900153618*14662949395604^(4/7) 2178309000000091 a001 12586269025/192900153618*505019158607^(9/14) 2178309000000091 a001 12586269025/14662949395604*312119004989^(9/11) 2178309000000091 a001 12586269025/1322157322203*312119004989^(8/11) 2178309000000091 a001 12585437040/228811001*312119004989^(2/5) 2178309000000091 a001 12586269025/1322157322203*23725150497407^(5/8) 2178309000000091 a006 5^(1/2)*Fibonacci(82)/Lucas(50)/sqrt(5) 2178309000000091 a001 139583862445/28143753123*817138163596^(9/19) 2178309000000091 a001 139583862445/28143753123*14662949395604^(3/7) 2178309000000091 a001 12586269025/817138163596*192900153618^(13/18) 2178309000000091 a001 12586269025/14662949395604*192900153618^(5/6) 2178309000000091 a001 12586269025/119218851371*312119004989^(7/11) 2178309000000091 a001 12586269025/119218851371*14662949395604^(5/9) 2178309000000091 a001 12586269025/119218851371*505019158607^(5/8) 2178309000000091 a001 591286729879/28143753123*73681302247^(6/13) 2178309000000091 a001 12586269025/192900153618*73681302247^(9/13) 2178309000000091 a001 12586269025/817138163596*73681302247^(3/4) 2178309000000091 a001 12586269025/1322157322203*73681302247^(10/13) 2178309000000091 a001 12586269025/9062201101803*73681302247^(11/13) 2178309000000091 a001 12586269025/45537549124*45537549124^(11/17) 2178309000000091 a001 1602508992/440719107401*10749957122^(7/8) 2178309000000091 a001 4052739537881/45537549124*17393796001^(3/7) 2178309000000091 a001 12586269025/45537549124*312119004989^(3/5) 2178309000000091 a001 12586269025/45537549124*817138163596^(11/19) 2178309000000091 a001 12586269025/45537549124*14662949395604^(11/21) 2178309000000091 a001 12586269025/45537549124*192900153618^(11/18) 2178309000000091 a001 4052739537881/28143753123*28143753123^(2/5) 2178309000000091 a001 14930208/10749853441*10749957122^(11/12) 2178309000000091 a001 10983760033/9381251041*28143753123^(3/5) 2178309000000091 a001 365435296162/28143753123*28143753123^(1/2) 2178309000000091 a001 10983760033/3020733700601*45537549124^(14/17) 2178309000000091 a001 32951280099/2139295485799*45537549124^(13/17) 2178309000000091 a001 4807526976/5600748293801*10749957122^(15/16) 2178309000000091 a001 10983760033/64300051206*45537549124^(2/3) 2178309000000091 a001 32951280099/505019158607*45537549124^(12/17) 2178309000000091 a001 86267571272/73681302247*45537549124^(10/17) 2178309000000091 a001 365435296162/73681302247*45537549124^(9/17) 2178309000000091 a001 32951280099/119218851371*45537549124^(11/17) 2178309000000091 a001 1548008755920/73681302247*45537549124^(8/17) 2178309000000091 a001 86267571272/5600748293801*45537549124^(13/17) 2178309000000091 a001 6557470319842/73681302247*45537549124^(7/17) 2178309000000091 a001 7787980473/505618944676*45537549124^(13/17) 2178309000000091 a001 32951280099/73681302247*23725150497407^(1/2) 2178309000000091 a001 32951280099/73681302247*505019158607^(4/7) 2178309000000091 a001 139583862445/9062201101803*45537549124^(13/17) 2178309000000091 a001 86267571272/505019158607*45537549124^(2/3) 2178309000000091 a001 32264490531/494493258286*45537549124^(12/17) 2178309000000091 a001 365435296162/5600748293801*45537549124^(12/17) 2178309000000091 a001 139583862445/2139295485799*45537549124^(12/17) 2178309000000091 a001 2504730781961/14662949395604*45537549124^(2/3) 2178309000000091 a001 225851433717/817138163596*45537549124^(11/17) 2178309000000091 a001 139583862445/817138163596*45537549124^(2/3) 2178309000000091 a001 12586269025/119218851371*28143753123^(7/10) 2178309000000091 a001 365435296162/312119004989*45537549124^(10/17) 2178309000000091 a001 4052739537881/192900153618*45537549124^(8/17) 2178309000000091 a001 12586269025/1322157322203*28143753123^(4/5) 2178309000000091 a001 140728068720/28374454999*45537549124^(9/17) 2178309000000091 a001 53316291173/312119004989*45537549124^(2/3) 2178309000000091 a001 225749145909/10745088481*45537549124^(8/17) 2178309000000091 a001 86267571272/73681302247*312119004989^(6/11) 2178309000000091 a001 6557470319842/312119004989*45537549124^(8/17) 2178309000000091 a001 139583862445/119218851371*45537549124^(10/17) 2178309000000091 a001 86267571272/73681302247*192900153618^(5/9) 2178309000000091 a001 32951280099/23725150497407*312119004989^(4/5) 2178309000000091 a001 10983760033/3020733700601*817138163596^(14/19) 2178309000000091 a001 10983760033/3020733700601*14662949395604^(2/3) 2178309000000091 a006 5^(1/2)*Fibonacci(84)/Lucas(52)/sqrt(5) 2178309000000091 a001 32951280099/312119004989*14662949395604^(5/9) 2178309000000091 a001 139583862445/73681302247*1322157322203^(1/2) 2178309000000091 a001 32951280099/2139295485799*192900153618^(13/18) 2178309000000091 a001 10983760033/3020733700601*192900153618^(7/9) 2178309000000091 a001 2504730781961/119218851371*45537549124^(8/17) 2178309000000091 a001 10610209857723/119218851371*45537549124^(7/17) 2178309000000091 a001 12586269025/14662949395604*28143753123^(9/10) 2178309000000091 a001 32951280099/119218851371*312119004989^(3/5) 2178309000000091 a001 32951280099/119218851371*817138163596^(11/19) 2178309000000091 a001 1515744265389/10525900321*73681302247^(5/13) 2178309000000091 a001 1548008755920/73681302247*73681302247^(6/13) 2178309000000091 a001 32951280099/119218851371*192900153618^(11/18) 2178309000000091 a001 32264490531/10525900321*73681302247^(7/13) 2178309000000091 a001 32951280099/505019158607*73681302247^(9/13) 2178309000000091 a001 43133785636/96450076809*23725150497407^(1/2) 2178309000000091 a001 32951280099/2139295485799*73681302247^(3/4) 2178309000000091 a001 32951280099/3461452808002*73681302247^(10/13) 2178309000000091 a001 75283811239/64300051206*312119004989^(6/11) 2178309000000091 a001 21566892818/204284540899*312119004989^(7/11) 2178309000000091 a001 182717648081/96450076809*1322157322203^(1/2) 2178309000000091 a001 21566892818/204284540899*505019158607^(5/8) 2178309000000091 a001 139583862445/192900153618*9062201101803^(1/2) 2178309000000091 a001 225851433717/2139295485799*312119004989^(7/11) 2178309000000091 a006 5^(1/2)*Fibonacci(94)/Lucas(62)/sqrt(5) 2178309000000091 a006 5^(1/2)*Fibonacci(93)/Lucas(61)/sqrt(5) 2178309000000091 a006 5^(1/2)*Fibonacci(89)/Lucas(57)/sqrt(5) 2178309000000091 a001 139583862445/1322157322203*312119004989^(7/11) 2178309000000091 a006 5^(1/2)*Fibonacci(87)/Lucas(55)/sqrt(5) 2178309000000091 a001 139583862445/1322157322203*505019158607^(5/8) 2178309000000091 a001 139583862445/312119004989*23725150497407^(1/2) 2178309000000091 a001 365435296162/312119004989*192900153618^(5/9) 2178309000000091 a001 139583862445/2139295485799*192900153618^(2/3) 2178309000000091 a001 53316291173/192900153618*312119004989^(3/5) 2178309000000091 a001 20365011074/23725150497407*45537549124^(15/17) 2178309000000091 a001 4052739537881/192900153618*73681302247^(6/13) 2178309000000091 a001 1548008755920/119218851371*312119004989^(5/11) 2178309000000091 a006 5^(1/2)*Fibonacci(85)/Lucas(53)/sqrt(5) 2178309000000091 a001 139583862445/119218851371*312119004989^(6/11) 2178309000000091 a001 20365011074/5600748293801*45537549124^(14/17) 2178309000000091 a001 3278735159921/408569081798*73681302247^(1/2) 2178309000000091 a001 1548008755920/505019158607*73681302247^(7/13) 2178309000000091 a001 139583862445/119218851371*192900153618^(5/9) 2178309000000091 a001 225851433717/505019158607*73681302247^(8/13) 2178309000000091 a001 86267571272/5600748293801*73681302247^(3/4) 2178309000000091 a001 182717648081/408569081798*73681302247^(8/13) 2178309000000091 a001 32264490531/494493258286*73681302247^(9/13) 2178309000000091 a001 365435296162/5600748293801*73681302247^(9/13) 2178309000000091 a001 139583862445/312119004989*73681302247^(8/13) 2178309000000091 a001 139583862445/2139295485799*73681302247^(9/13) 2178309000000091 a001 139583862445/9062201101803*73681302247^(3/4) 2178309000000091 a001 20365011074/312119004989*45537549124^(12/17) 2178309000000091 a001 956722026041/119218851371*73681302247^(1/2) 2178309000000091 a001 365435296162/119218851371*73681302247^(7/13) 2178309000000091 a001 53316291173/817138163596*73681302247^(9/13) 2178309000000091 a001 53316291173/3461452808002*73681302247^(3/4) 2178309000000091 a001 53316291173/5600748293801*73681302247^(10/13) 2178309000000091 a001 225851433717/45537549124*45537549124^(9/17) 2178309000000091 a001 20365011074/119218851371*45537549124^(2/3) 2178309000000091 a001 53316291173/119218851371*73681302247^(8/13) 2178309000000091 a001 956722026041/45537549124*45537549124^(8/17) 2178309000000091 a001 53316291173/45537549124*45537549124^(10/17) 2178309000000091 a001 4052739537881/45537549124*45537549124^(7/17) 2178309000000091 a001 20365011074/73681302247*312119004989^(3/5) 2178309000000091 a001 20365011074/73681302247*14662949395604^(11/21) 2178309000000091 a001 20365011074/73681302247*192900153618^(11/18) 2178309000000091 a001 1515744265389/10525900321*28143753123^(2/5) 2178309000000091 a001 956722026041/73681302247*28143753123^(1/2) 2178309000000091 a001 10182505537/96450076809*312119004989^(7/11) 2178309000000091 a001 10182505537/96450076809*14662949395604^(5/9) 2178309000000091 a001 10182505537/96450076809*505019158607^(5/8) 2178309000000091 a001 10182505537/7331474697802*312119004989^(4/5) 2178309000000091 a001 20365011074/2139295485799*312119004989^(8/11) 2178309000000091 a001 10182505537/408569081798*817138163596^(2/3) 2178309000000091 a001 20365011074/312119004989*14662949395604^(4/7) 2178309000000091 a001 139583862445/45537549124*14662949395604^(4/9) 2178309000000091 a001 20365011074/1322157322203*192900153618^(13/18) 2178309000000091 a001 20365011074/312119004989*192900153618^(2/3) 2178309000000091 a001 86267571272/73681302247*28143753123^(3/5) 2178309000000091 a001 53316291173/45537549124*312119004989^(6/11) 2178309000000091 a001 53316291173/45537549124*14662949395604^(10/21) 2178309000000091 a001 3278735159921/22768774562*73681302247^(5/13) 2178309000000091 a001 53316291173/45537549124*192900153618^(5/9) 2178309000000091 a001 182717648081/22768774562*73681302247^(1/2) 2178309000000091 a001 139583862445/45537549124*73681302247^(7/13) 2178309000000091 a001 4807526976/17393796001*10749957122^(11/16) 2178309000000091 a001 2504730781961/192900153618*28143753123^(1/2) 2178309000000091 a001 20365011074/1322157322203*73681302247^(3/4) 2178309000000091 a001 20365011074/312119004989*73681302247^(9/13) 2178309000000091 a001 10610209857723/817138163596*28143753123^(1/2) 2178309000000091 a001 10182505537/7331474697802*73681302247^(11/13) 2178309000000091 a001 1548008755920/119218851371*28143753123^(1/2) 2178309000000091 a001 32951280099/312119004989*28143753123^(7/10) 2178309000000091 a001 75283811239/64300051206*28143753123^(3/5) 2178309000000091 a001 2504730781961/2139295485799*28143753123^(3/5) 2178309000000091 a001 7778742049/73681302247*17393796001^(5/7) 2178309000000091 a001 365435296162/312119004989*28143753123^(3/5) 2178309000000091 a001 32951280099/3461452808002*28143753123^(4/5) 2178309000000091 a001 139583862445/119218851371*28143753123^(3/5) 2178309000000091 a001 21566892818/204284540899*28143753123^(7/10) 2178309000000091 a001 225851433717/2139295485799*28143753123^(7/10) 2178309000000091 a001 182717648081/1730726404001*28143753123^(7/10) 2178309000000091 a001 139583862445/1322157322203*28143753123^(7/10) 2178309000000091 a001 53316291173/505019158607*28143753123^(7/10) 2178309000000091 a001 10182505537/22768774562*23725150497407^(1/2) 2178309000000091 a001 86267571272/9062201101803*28143753123^(4/5) 2178309000000091 a001 3278735159921/22768774562*28143753123^(2/5) 2178309000000091 a001 225851433717/23725150497407*28143753123^(4/5) 2178309000000091 a001 139583862445/14662949395604*28143753123^(4/5) 2178309000000091 a001 10182505537/22768774562*73681302247^(8/13) 2178309000000091 a001 53316291173/5600748293801*28143753123^(4/5) 2178309000000091 a001 591286729879/45537549124*28143753123^(1/2) 2178309000000091 a001 53316291173/45537549124*28143753123^(3/5) 2178309000000091 a001 10182505537/96450076809*28143753123^(7/10) 2178309000000091 a001 53316291173/17393796001*17393796001^(4/7) 2178309000000091 a001 20365011074/2139295485799*28143753123^(4/5) 2178309000000091 a001 20365011074/23725150497407*28143753123^(9/10) 2178309000000091 a001 7778742049/28143753123*45537549124^(11/17) 2178309000000091 a001 1548008755920/17393796001*17393796001^(3/7) 2178309000000091 a001 3536736619241/9381251041*10749957122^(3/8) 2178309000000091 a001 7778742049/28143753123*312119004989^(3/5) 2178309000000091 a001 12586269025/17393796001*9062201101803^(1/2) 2178309000000091 a001 7778742049/28143753123*192900153618^(11/18) 2178309000000091 a001 4052739537881/28143753123*10749957122^(5/12) 2178309000000091 a001 2504730781961/28143753123*10749957122^(7/16) 2178309000000091 a001 12585437040/228811001*10749957122^(11/24) 2178309000000091 a001 7778742049/9062201101803*45537549124^(15/17) 2178309000000091 a001 7778742049/2139295485799*45537549124^(14/17) 2178309000000091 a001 7778742049/505019158607*45537549124^(13/17) 2178309000000091 a001 86267571272/17393796001*45537549124^(9/17) 2178309000000091 a001 7778742049/119218851371*45537549124^(12/17) 2178309000000091 a001 591286729879/28143753123*10749957122^(1/2) 2178309000000091 a001 365435296162/17393796001*45537549124^(8/17) 2178309000000091 a001 1548008755920/17393796001*45537549124^(7/17) 2178309000000091 a001 7778742049/73681302247*312119004989^(7/11) 2178309000000091 a001 7778742049/73681302247*14662949395604^(5/9) 2178309000000091 a001 32951280099/17393796001*1322157322203^(1/2) 2178309000000091 a001 6557470319842/17393796001*45537549124^(6/17) 2178309000000091 a001 10610209857723/17393796001*45537549124^(1/3) 2178309000000091 a001 12586269025/28143753123*10749957122^(2/3) 2178309000000091 a001 86267571272/17393796001*817138163596^(9/19) 2178309000000091 a001 86267571272/17393796001*14662949395604^(3/7) 2178309000000091 a001 7778742049/9062201101803*312119004989^(9/11) 2178309000000091 a001 7778742049/5600748293801*312119004989^(4/5) 2178309000000091 a001 1548008755920/17393796001*14662949395604^(1/3) 2178309000000091 a001 2504730781961/17393796001*505019158607^(5/14) 2178309000000091 a001 6557470319842/17393796001*192900153618^(1/3) 2178309000000091 a001 1548008755920/17393796001*192900153618^(7/18) 2178309000000091 a001 365435296162/17393796001*192900153618^(4/9) 2178309000000091 a001 7778742049/2139295485799*192900153618^(7/9) 2178309000000091 a001 53316291173/17393796001*14662949395604^(4/9) 2178309000000091 a001 2504730781961/17393796001*73681302247^(5/13) 2178309000000091 a001 365435296162/17393796001*73681302247^(6/13) 2178309000000091 a001 139583862445/17393796001*73681302247^(1/2) 2178309000000091 a001 1515744265389/10525900321*10749957122^(5/12) 2178309000000091 a001 7778742049/505019158607*73681302247^(3/4) 2178309000000091 a001 7778742049/817138163596*73681302247^(10/13) 2178309000000091 a001 7778742049/5600748293801*73681302247^(11/13) 2178309000000091 a001 7778742049/45537549124*45537549124^(2/3) 2178309000000091 a001 53316291173/17393796001*73681302247^(7/13) 2178309000000091 a001 7778742049/119218851371*73681302247^(9/13) 2178309000000091 a001 20365011074/17393796001*45537549124^(10/17) 2178309000000091 a001 6557470319842/73681302247*10749957122^(7/16) 2178309000000091 a001 139583862445/28143753123*10749957122^(9/16) 2178309000000091 a001 86267571272/28143753123*10749957122^(7/12) 2178309000000091 a001 20365011074/17393796001*312119004989^(6/11) 2178309000000091 a001 20365011074/17393796001*14662949395604^(10/21) 2178309000000091 a001 20365011074/17393796001*192900153618^(5/9) 2178309000000091 a001 2504730781961/17393796001*28143753123^(2/5) 2178309000000091 a001 10610209857723/119218851371*10749957122^(7/16) 2178309000000091 a001 7787980473/599786069*28143753123^(1/2) 2178309000000091 a001 3536736619241/64300051206*10749957122^(11/24) 2178309000000091 a001 10983760033/9381251041*10749957122^(5/8) 2178309000000091 a001 7778742049/73681302247*28143753123^(7/10) 2178309000000091 a001 6557470319842/119218851371*10749957122^(11/24) 2178309000000091 a001 3278735159921/22768774562*10749957122^(5/12) 2178309000000091 a001 1548008755920/73681302247*10749957122^(1/2) 2178309000000091 a001 4052739537881/45537549124*10749957122^(7/16) 2178309000000091 a001 4052739537881/192900153618*10749957122^(1/2) 2178309000000091 a001 7778742049/817138163596*28143753123^(4/5) 2178309000000091 a001 225749145909/10745088481*10749957122^(1/2) 2178309000000091 a001 6557470319842/312119004989*10749957122^(1/2) 2178309000000091 a001 2504730781961/119218851371*10749957122^(1/2) 2178309000000091 a001 7778742049/9062201101803*28143753123^(9/10) 2178309000000091 a001 2504730781961/45537549124*10749957122^(11/24) 2178309000000091 a001 591286729879/73681302247*10749957122^(13/24) 2178309000000091 a001 20365011074/17393796001*28143753123^(3/5) 2178309000000091 a001 86000486440/10716675201*10749957122^(13/24) 2178309000000091 a001 12586269025/73681302247*10749957122^(17/24) 2178309000000091 a001 365435296162/73681302247*10749957122^(9/16) 2178309000000091 a001 3278735159921/408569081798*10749957122^(13/24) 2178309000000091 a001 2504730781961/312119004989*10749957122^(13/24) 2178309000000091 a001 956722026041/119218851371*10749957122^(13/24) 2178309000000091 a001 956722026041/45537549124*10749957122^(1/2) 2178309000000091 a001 956722026041/192900153618*10749957122^(9/16) 2178309000000091 a001 32264490531/10525900321*10749957122^(7/12) 2178309000000091 a001 4052739537881/817138163596*10749957122^(9/16) 2178309000000091 a001 140728068720/28374454999*10749957122^(9/16) 2178309000000091 a001 591286729879/119218851371*10749957122^(9/16) 2178309000000091 a001 591286729879/192900153618*10749957122^(7/12) 2178309000000091 a001 1548008755920/505019158607*10749957122^(7/12) 2178309000000091 a001 1515744265389/494493258286*10749957122^(7/12) 2178309000000091 a001 956722026041/312119004989*10749957122^(7/12) 2178309000000091 a001 365435296162/119218851371*10749957122^(7/12) 2178309000000091 a001 12586269025/45537549124*10749957122^(11/16) 2178309000000091 a001 182717648081/22768774562*10749957122^(13/24) 2178309000000091 a001 86267571272/73681302247*10749957122^(5/8) 2178309000000091 a001 12586269025/192900153618*10749957122^(3/4) 2178309000000091 a001 225851433717/45537549124*10749957122^(9/16) 2178309000000091 a001 75283811239/64300051206*10749957122^(5/8) 2178309000000091 a001 32951280099/73681302247*10749957122^(2/3) 2178309000000091 a001 2504730781961/2139295485799*10749957122^(5/8) 2178309000000091 a001 365435296162/312119004989*10749957122^(5/8) 2178309000000091 a001 139583862445/119218851371*10749957122^(5/8) 2178309000000091 a001 139583862445/45537549124*10749957122^(7/12) 2178309000000091 a001 12586269025/505019158607*10749957122^(19/24) 2178309000000091 a001 43133785636/96450076809*10749957122^(2/3) 2178309000000091 a001 225851433717/505019158607*10749957122^(2/3) 2178309000000091 a001 591286729879/1322157322203*10749957122^(2/3) 2178309000000091 a001 139583862445/312119004989*10749957122^(2/3) 2178309000000091 a001 32951280099/119218851371*10749957122^(11/16) 2178309000000091 a001 53316291173/119218851371*10749957122^(2/3) 2178309000000091 a001 10983760033/64300051206*10749957122^(17/24) 2178309000000091 a001 86267571272/312119004989*10749957122^(11/16) 2178309000000091 a001 12586269025/1322157322203*10749957122^(5/6) 2178309000000091 a001 139583862445/505019158607*10749957122^(11/16) 2178309000000091 a001 53316291173/45537549124*10749957122^(5/8) 2178309000000091 a001 53316291173/192900153618*10749957122^(11/16) 2178309000000091 a001 86267571272/505019158607*10749957122^(17/24) 2178309000000091 a001 75283811239/440719107401*10749957122^(17/24) 2178309000000091 a001 139583862445/817138163596*10749957122^(17/24) 2178309000000091 a001 53316291173/312119004989*10749957122^(17/24) 2178309000000091 a001 20365011074/73681302247*10749957122^(11/16) 2178309000000091 a001 32951280099/505019158607*10749957122^(3/4) 2178309000000091 a001 12586269025/3461452808002*10749957122^(7/8) 2178309000000091 a001 86267571272/1322157322203*10749957122^(3/4) 2178309000000091 a001 32264490531/494493258286*10749957122^(3/4) 2178309000000091 a001 1548008755920/23725150497407*10749957122^(3/4) 2178309000000091 a001 139583862445/2139295485799*10749957122^(3/4) 2178309000000091 a001 6557470319842/17393796001*10749957122^(3/8) 2178309000000091 a001 53316291173/817138163596*10749957122^(3/4) 2178309000000091 a001 7778742049/17393796001*23725150497407^(1/2) 2178309000000091 a001 10983760033/440719107401*10749957122^(19/24) 2178309000000091 a001 12586269025/9062201101803*10749957122^(11/12) 2178309000000091 a001 20365011074/119218851371*10749957122^(17/24) 2178309000000091 a001 7778742049/17393796001*73681302247^(8/13) 2178309000000091 a001 10182505537/22768774562*10749957122^(2/3) 2178309000000091 a001 43133785636/1730726404001*10749957122^(19/24) 2178309000000091 a001 12586269025/14662949395604*10749957122^(15/16) 2178309000000091 a001 182717648081/7331474697802*10749957122^(19/24) 2178309000000091 a001 139583862445/5600748293801*10749957122^(19/24) 2178309000000091 a001 2504730781961/17393796001*10749957122^(5/12) 2178309000000091 a001 53316291173/2139295485799*10749957122^(19/24) 2178309000000091 a001 20365011074/312119004989*10749957122^(3/4) 2178309000000091 a001 86267571272/5600748293801*10749957122^(13/16) 2178309000000091 a001 32951280099/3461452808002*10749957122^(5/6) 2178309000000091 a001 12586269025/23725150497407*10749957122^(23/24) 2178309000000091 a001 139583862445/9062201101803*10749957122^(13/16) 2178309000000091 a001 1548008755920/17393796001*10749957122^(7/16) 2178309000000091 a001 53316291173/3461452808002*10749957122^(13/16) 2178309000000091 a001 86267571272/9062201101803*10749957122^(5/6) 2178309000000091 a001 225851433717/23725150497407*10749957122^(5/6) 2178309000000091 a001 139583862445/14662949395604*10749957122^(5/6) 2178309000000091 a001 956722026041/17393796001*10749957122^(11/24) 2178309000000091 a001 53316291173/5600748293801*10749957122^(5/6) 2178309000000091 a001 10182505537/408569081798*10749957122^(19/24) 2178309000000091 a001 10983760033/3020733700601*10749957122^(7/8) 2178309000000091 a001 20365011074/1322157322203*10749957122^(13/16) 2178309000000091 a001 86267571272/23725150497407*10749957122^(7/8) 2178309000000091 a001 365435296162/17393796001*10749957122^(1/2) 2178309000000091 a001 53316291173/14662949395604*10749957122^(7/8) 2178309000000091 a001 20365011074/2139295485799*10749957122^(5/6) 2178309000000091 a001 32951280099/23725150497407*10749957122^(11/12) 2178309000000091 a001 7778742049/28143753123*10749957122^(11/16) 2178309000000091 a001 139583862445/17393796001*10749957122^(13/24) 2178309000000091 a001 20365011074/5600748293801*10749957122^(7/8) 2178309000000091 a001 86267571272/17393796001*10749957122^(9/16) 2178309000000091 a001 10182505537/7331474697802*10749957122^(11/12) 2178309000000091 a001 53316291173/17393796001*10749957122^(7/12) 2178309000000091 a001 20365011074/23725150497407*10749957122^(15/16) 2178309000000091 a001 20365011074/17393796001*10749957122^(5/8) 2178309000000091 a001 7778742049/119218851371*10749957122^(3/4) 2178309000000091 a001 7778742049/45537549124*10749957122^(17/24) 2178309000000091 a001 7778742049/312119004989*10749957122^(19/24) 2178309000000091 a001 7778742049/505019158607*10749957122^(13/16) 2178309000000091 a001 1134903170/312119004989*2537720636^(14/15) 2178309000000091 a001 7778742049/817138163596*10749957122^(5/6) 2178309000000091 a001 7778742049/2139295485799*10749957122^(7/8) 2178309000000091 a001 7778742049/5600748293801*10749957122^(11/12) 2178309000000091 a001 7778742049/9062201101803*10749957122^(15/16) 2178309000000091 a001 7778742049/14662949395604*10749957122^(23/24) 2178309000000091 a001 4807525989/4870846*4106118243^(8/23) 2178309000000091 a001 7778742049/17393796001*10749957122^(2/3) 2178309000000091 a001 2971215073/10749957122*45537549124^(11/17) 2178309000000091 a001 2971215073/10749957122*312119004989^(3/5) 2178309000000091 a001 2971215073/10749957122*817138163596^(11/19) 2178309000000091 a001 2971215073/10749957122*14662949395604^(11/21) 2178309000000091 a001 2971215073/10749957122*192900153618^(11/18) 2178309000000091 a001 4052739537881/10749957122*4106118243^(9/23) 2178309000000091 a001 774004377960/5374978561*4106118243^(10/23) 2178309000000091 a001 1134903170/119218851371*2537720636^(8/9) 2178309000000091 a001 2971215073/28143753123*17393796001^(5/7) 2178309000000091 a001 591286729879/10749957122*4106118243^(11/23) 2178309000000091 a001 2971215073/817138163596*17393796001^(6/7) 2178309000000091 a001 2971215073/10749957122*10749957122^(11/16) 2178309000000091 a001 1134903170/73681302247*2537720636^(13/15) 2178309000000091 a001 182717648081/5374978561*4106118243^(1/2) 2178309000000091 a001 591286729879/6643838879*17393796001^(3/7) 2178309000000091 a001 20365011074/6643838879*17393796001^(4/7) 2178309000000091 a001 2971215073/28143753123*312119004989^(7/11) 2178309000000091 a001 2971215073/28143753123*14662949395604^(5/9) 2178309000000091 a001 12586269025/6643838879*1322157322203^(1/2) 2178309000000091 a001 3536736619241/9381251041*4106118243^(9/23) 2178309000000091 a001 2971215073/14662949395604*45537549124^(16/17) 2178309000000091 a001 32951280099/6643838879*45537549124^(9/17) 2178309000000091 a001 2971215073/3461452808002*45537549124^(15/17) 2178309000000091 a001 2971215073/192900153618*45537549124^(13/17) 2178309000000091 a001 2971215073/28143753123*28143753123^(7/10) 2178309000000091 a001 225851433717/10749957122*4106118243^(12/23) 2178309000000091 a001 139583862445/6643838879*45537549124^(8/17) 2178309000000091 a001 591286729879/6643838879*45537549124^(7/17) 2178309000000091 a001 32951280099/6643838879*14662949395604^(3/7) 2178309000000091 a001 2504730781961/6643838879*45537549124^(6/17) 2178309000000091 a001 4052739537881/6643838879*45537549124^(1/3) 2178309000000091 a001 10610209857723/6643838879*45537549124^(5/17) 2178309000000091 a001 86267571272/6643838879*312119004989^(5/11) 2178309000000091 a001 2971215073/192900153618*14662949395604^(13/21) 2178309000000091 a001 2971215073/192900153618*192900153618^(13/18) 2178309000000091 a001 10610209857723/6643838879*312119004989^(3/11) 2178309000000091 a001 10610209857723/6643838879*192900153618^(5/18) 2178309000000091 a001 139583862445/6643838879*14662949395604^(8/21) 2178309000000091 a001 139583862445/6643838879*192900153618^(4/9) 2178309000000091 a001 2971215073/14662949395604*192900153618^(8/9) 2178309000000091 a001 6557470319842/6643838879*73681302247^(4/13) 2178309000000091 a001 2971215073/119218851371*817138163596^(2/3) 2178309000000091 a001 139583862445/6643838879*73681302247^(6/13) 2178309000000091 a001 2971215073/192900153618*73681302247^(3/4) 2178309000000091 a001 2971215073/45537549124*45537549124^(12/17) 2178309000000091 a001 2971215073/312119004989*73681302247^(10/13) 2178309000000091 a001 2971215073/2139295485799*73681302247^(11/13) 2178309000000091 a001 53316291173/6643838879*73681302247^(1/2) 2178309000000091 a001 2971215073/14662949395604*73681302247^(12/13) 2178309000000091 a001 10610209857723/6643838879*28143753123^(3/10) 2178309000000091 a001 20365011074/6643838879*14662949395604^(4/9) 2178309000000091 a001 2971215073/45537549124*505019158607^(9/14) 2178309000000091 a001 2971215073/45537549124*192900153618^(2/3) 2178309000000091 a001 956722026041/6643838879*28143753123^(2/5) 2178309000000091 a001 20365011074/6643838879*73681302247^(7/13) 2178309000000091 a001 86267571272/6643838879*28143753123^(1/2) 2178309000000091 a001 2971215073/45537549124*73681302247^(9/13) 2178309000000091 a001 2971215073/312119004989*28143753123^(4/5) 2178309000000091 a001 2971215073/3461452808002*28143753123^(9/10) 2178309000000091 a001 2403763488/5374978561*4106118243^(16/23) 2178309000000091 a001 4052739537881/28143753123*4106118243^(10/23) 2178309000000091 a001 43133785636/5374978561*4106118243^(13/23) 2178309000000091 a001 10610209857723/6643838879*10749957122^(5/16) 2178309000000091 a001 6557470319842/6643838879*10749957122^(1/3) 2178309000000091 a001 1515744265389/10525900321*4106118243^(10/23) 2178309000000091 a001 2971215073/17393796001*45537549124^(2/3) 2178309000000091 a001 7778742049/6643838879*45537549124^(10/17) 2178309000000091 a001 567451585/5374978561*2537720636^(7/9) 2178309000000091 a001 2504730781961/6643838879*10749957122^(3/8) 2178309000000091 a001 7778742049/6643838879*312119004989^(6/11) 2178309000000091 a001 23112315624967704577/10610209857723 2178309000000091 a001 7778742049/6643838879*192900153618^(5/9) 2178309000000091 a001 956722026041/6643838879*10749957122^(5/12) 2178309000000091 a001 3278735159921/22768774562*4106118243^(10/23) 2178309000000091 a001 591286729879/6643838879*10749957122^(7/16) 2178309000000091 a001 6557470319842/17393796001*4106118243^(9/23) 2178309000000091 a001 365435296162/6643838879*10749957122^(11/24) 2178309000000091 a001 7778742049/6643838879*28143753123^(3/5) 2178309000000091 a001 139583862445/6643838879*10749957122^(1/2) 2178309000000091 a001 12585437040/228811001*4106118243^(11/23) 2178309000000091 a001 32951280099/10749957122*4106118243^(14/23) 2178309000000091 a001 32951280099/6643838879*10749957122^(9/16) 2178309000000091 a001 53316291173/6643838879*10749957122^(13/24) 2178309000000091 a001 4052739537881/73681302247*4106118243^(11/23) 2178309000000091 a001 20365011074/6643838879*10749957122^(7/12) 2178309000000091 a001 3536736619241/64300051206*4106118243^(11/23) 2178309000000091 a001 956722026041/28143753123*4106118243^(1/2) 2178309000000091 a001 6557470319842/119218851371*4106118243^(11/23) 2178309000000091 a001 12586269025/10749957122*4106118243^(15/23) 2178309000000091 a001 2504730781961/45537549124*4106118243^(11/23) 2178309000000091 a001 2504730781961/17393796001*4106118243^(10/23) 2178309000000091 a001 2504730781961/73681302247*4106118243^(1/2) 2178309000000091 a001 2971215073/119218851371*10749957122^(19/24) 2178309000000091 a001 2971215073/45537549124*10749957122^(3/4) 2178309000000091 a001 2971215073/192900153618*10749957122^(13/16) 2178309000000091 a001 10610209857723/312119004989*4106118243^(1/2) 2178309000000091 a001 591286729879/28143753123*4106118243^(12/23) 2178309000000091 a001 4052739537881/119218851371*4106118243^(1/2) 2178309000000091 a001 2971215073/312119004989*10749957122^(5/6) 2178309000000091 a001 387002188980/11384387281*4106118243^(1/2) 2178309000000091 a001 2971215073/817138163596*10749957122^(7/8) 2178309000000091 a001 2971215073/2139295485799*10749957122^(11/12) 2178309000000091 a001 1548008755920/73681302247*4106118243^(12/23) 2178309000000091 a001 2971215073/3461452808002*10749957122^(15/16) 2178309000000091 a001 4052739537881/192900153618*4106118243^(12/23) 2178309000000091 a001 225749145909/10745088481*4106118243^(12/23) 2178309000000091 a001 2971215073/5600748293801*10749957122^(23/24) 2178309000000091 a001 6557470319842/312119004989*4106118243^(12/23) 2178309000000091 a001 2504730781961/119218851371*4106118243^(12/23) 2178309000000091 a001 7778742049/6643838879*10749957122^(5/8) 2178309000000091 a001 956722026041/45537549124*4106118243^(12/23) 2178309000000091 a001 956722026041/17393796001*4106118243^(11/23) 2178309000000091 a001 2971215073/17393796001*10749957122^(17/24) 2178309000000091 a001 75283811239/9381251041*4106118243^(13/23) 2178309000000091 a001 591286729879/17393796001*4106118243^(1/2) 2178309000000091 a001 591286729879/73681302247*4106118243^(13/23) 2178309000000091 a001 86000486440/10716675201*4106118243^(13/23) 2178309000000091 a001 4052739537881/505019158607*4106118243^(13/23) 2178309000000091 a001 3278735159921/408569081798*4106118243^(13/23) 2178309000000091 a001 2504730781961/312119004989*4106118243^(13/23) 2178309000000091 a001 956722026041/119218851371*4106118243^(13/23) 2178309000000091 a001 1602508992/9381251041*4106118243^(17/23) 2178309000000091 a001 182717648081/22768774562*4106118243^(13/23) 2178309000000091 a001 365435296162/17393796001*4106118243^(12/23) 2178309000000091 a001 1134903170/17393796001*2537720636^(4/5) 2178309000000091 a001 86267571272/28143753123*4106118243^(14/23) 2178309000000091 a001 32264490531/10525900321*4106118243^(14/23) 2178309000000091 a001 591286729879/192900153618*4106118243^(14/23) 2178309000000091 a001 1515744265389/494493258286*4106118243^(14/23) 2178309000000091 a001 2504730781961/817138163596*4106118243^(14/23) 2178309000000091 a001 956722026041/312119004989*4106118243^(14/23) 2178309000000091 a001 365435296162/119218851371*4106118243^(14/23) 2178309000000091 a001 139583862445/45537549124*4106118243^(14/23) 2178309000000091 a001 139583862445/17393796001*4106118243^(13/23) 2178309000000091 a001 10983760033/9381251041*4106118243^(15/23) 2178309000000091 a001 686789568/10525900321*4106118243^(18/23) 2178309000000091 a001 86267571272/73681302247*4106118243^(15/23) 2178309000000091 a001 75283811239/64300051206*4106118243^(15/23) 2178309000000091 a001 2504730781961/2139295485799*4106118243^(15/23) 2178309000000091 a001 365435296162/312119004989*4106118243^(15/23) 2178309000000091 a001 12586269025/28143753123*4106118243^(16/23) 2178309000000091 a001 139583862445/119218851371*4106118243^(15/23) 2178309000000091 a001 53316291173/45537549124*4106118243^(15/23) 2178309000000091 a001 53316291173/17393796001*4106118243^(14/23) 2178309000000091 a001 267084832/10716675201*4106118243^(19/23) 2178309000000091 a001 32951280099/73681302247*4106118243^(16/23) 2178309000000091 a001 43133785636/96450076809*4106118243^(16/23) 2178309000000091 a001 225851433717/505019158607*4106118243^(16/23) 2178309000000091 a001 182717648081/408569081798*4106118243^(16/23) 2178309000000091 a001 139583862445/312119004989*4106118243^(16/23) 2178309000000091 a001 53316291173/119218851371*4106118243^(16/23) 2178309000000091 a001 10182505537/22768774562*4106118243^(16/23) 2178309000000091 a001 12586269025/73681302247*4106118243^(17/23) 2178309000000091 a001 20365011074/17393796001*4106118243^(15/23) 2178309000000091 a001 102287808/10745088481*4106118243^(20/23) 2178309000000091 a001 6557470319842/6643838879*4106118243^(8/23) 2178309000000091 a001 10983760033/64300051206*4106118243^(17/23) 2178309000000091 a001 86267571272/505019158607*4106118243^(17/23) 2178309000000091 a001 75283811239/440719107401*4106118243^(17/23) 2178309000000091 a001 139583862445/817138163596*4106118243^(17/23) 2178309000000091 a001 53316291173/312119004989*4106118243^(17/23) 2178309000000091 a001 20365011074/119218851371*4106118243^(17/23) 2178309000000091 a001 12586269025/192900153618*4106118243^(18/23) 2178309000000091 a001 2971215073/6643838879*23725150497407^(1/2) 2178309000000091 a001 2971215073/6643838879*505019158607^(4/7) 2178309000000091 a001 2971215073/6643838879*73681302247^(8/13) 2178309000000091 a001 1602508992/440719107401*4106118243^(21/23) 2178309000000091 a001 2504730781961/6643838879*4106118243^(9/23) 2178309000000091 a001 32951280099/505019158607*4106118243^(18/23) 2178309000000091 a001 86267571272/1322157322203*4106118243^(18/23) 2178309000000091 a001 32264490531/494493258286*4106118243^(18/23) 2178309000000091 a001 139583862445/2139295485799*4106118243^(18/23) 2178309000000091 a001 53316291173/817138163596*4106118243^(18/23) 2178309000000091 a001 20365011074/312119004989*4106118243^(18/23) 2178309000000091 a001 7778742049/45537549124*4106118243^(17/23) 2178309000000091 a001 12586269025/505019158607*4106118243^(19/23) 2178309000000091 a001 7778742049/17393796001*4106118243^(16/23) 2178309000000091 a001 14930208/10749853441*4106118243^(22/23) 2178309000000091 a001 956722026041/6643838879*4106118243^(10/23) 2178309000000091 a001 10983760033/440719107401*4106118243^(19/23) 2178309000000091 a001 43133785636/1730726404001*4106118243^(19/23) 2178309000000091 a001 75283811239/3020733700601*4106118243^(19/23) 2178309000000091 a001 182717648081/7331474697802*4106118243^(19/23) 2178309000000091 a001 139583862445/5600748293801*4106118243^(19/23) 2178309000000091 a001 53316291173/2139295485799*4106118243^(19/23) 2178309000000091 a001 10182505537/408569081798*4106118243^(19/23) 2178309000000091 a001 7778742049/119218851371*4106118243^(18/23) 2178309000000091 a001 12586269025/1322157322203*4106118243^(20/23) 2178309000000091 a001 365435296162/6643838879*4106118243^(11/23) 2178309000000091 a001 2971215073/6643838879*10749957122^(2/3) 2178309000000091 a001 32951280099/3461452808002*4106118243^(20/23) 2178309000000091 a001 86267571272/9062201101803*4106118243^(20/23) 2178309000000091 a001 225851433717/23725150497407*4106118243^(20/23) 2178309000000091 a001 139583862445/14662949395604*4106118243^(20/23) 2178309000000091 a001 53316291173/5600748293801*4106118243^(20/23) 2178309000000091 a001 20365011074/2139295485799*4106118243^(20/23) 2178309000000091 a001 225851433717/6643838879*4106118243^(1/2) 2178309000000091 a001 7778742049/312119004989*4106118243^(19/23) 2178309000000091 a001 12586269025/3461452808002*4106118243^(21/23) 2178309000000091 a001 139583862445/6643838879*4106118243^(12/23) 2178309000000091 a001 701408733/2537720636*1568397607^(3/4) 2178309000000091 a001 10983760033/3020733700601*4106118243^(21/23) 2178309000000091 a001 86267571272/23725150497407*4106118243^(21/23) 2178309000000091 a001 53316291173/14662949395604*4106118243^(21/23) 2178309000000091 a001 20365011074/5600748293801*4106118243^(21/23) 2178309000000091 a001 7778742049/817138163596*4106118243^(20/23) 2178309000000091 a001 12586269025/9062201101803*4106118243^(22/23) 2178309000000091 a001 53316291173/6643838879*4106118243^(13/23) 2178309000000091 a001 32951280099/23725150497407*4106118243^(22/23) 2178309000000091 a001 10182505537/7331474697802*4106118243^(22/23) 2178309000000091 a001 7778742049/2139295485799*4106118243^(21/23) 2178309000000091 a001 20365011074/6643838879*4106118243^(14/23) 2178309000000091 a001 7778742049/5600748293801*4106118243^(22/23) 2178309000000091 a001 1144206275/230701876*2537720636^(3/5) 2178309000000091 a001 7778742049/6643838879*4106118243^(15/23) 2178309000000091 a001 32951280099/2537720636*2537720636^(5/9) 2178309000000091 a001 2971215073/45537549124*4106118243^(18/23) 2178309000000091 a001 2971215073/17393796001*4106118243^(17/23) 2178309000000091 a001 3536736619241/1368706081*1568397607^(7/22) 2178309000000091 a001 2971215073/119218851371*4106118243^(19/23) 2178309000000091 a001 53316291173/2537720636*2537720636^(8/15) 2178309000000091 a001 2971215073/312119004989*4106118243^(20/23) 2178309000000091 a001 2971215073/2537720636*2537720636^(2/3) 2178309000000091 a001 2971215073/817138163596*4106118243^(21/23) 2178309000000091 a001 2971215073/2139295485799*4106118243^(22/23) 2178309000000091 a001 225851433717/2537720636*2537720636^(7/15) 2178309000000091 a001 182717648081/1268860318*2537720636^(4/9) 2178309000000091 a001 2971215073/6643838879*4106118243^(16/23) 2178309000000091 a001 4052739537881/4106118243*1568397607^(4/11) 2178309000000091 a001 956722026041/2537720636*2537720636^(2/5) 2178309000000091 a001 1134903170/4106118243*45537549124^(11/17) 2178309000000091 a001 1134903170/4106118243*312119004989^(3/5) 2178309000000091 a001 1134903170/4106118243*14662949395604^(11/21) 2178309000000091 a001 1134903170/4106118243*192900153618^(11/18) 2178309000000091 a001 1134903170/4106118243*10749957122^(11/16) 2178309000000091 a001 4052739537881/2537720636*2537720636^(1/3) 2178309000000091 a001 516002918640/1368706081*1568397607^(9/22) 2178309000000091 a001 591286729879/4106118243*1568397607^(5/11) 2178309000000091 a001 4807525989/4870846*1568397607^(4/11) 2178309000000091 a001 75283811239/1368706081*1568397607^(1/2) 2178309000000091 a001 567451585/5374978561*17393796001^(5/7) 2178309000000091 a001 567451585/5374978561*312119004989^(7/11) 2178309000000091 a001 567451585/5374978561*14662949395604^(5/9) 2178309000000091 a001 1201881744/634430159*1322157322203^(1/2) 2178309000000091 a001 567451585/5374978561*28143753123^(7/10) 2178309000000091 a001 1134903170/312119004989*17393796001^(6/7) 2178309000000091 a001 1144206275/230701876*45537549124^(9/17) 2178309000000091 a001 225851433717/2537720636*17393796001^(3/7) 2178309000000091 a001 1144206275/230701876*14662949395604^(3/7) 2178309000000091 a001 1144206275/230701876*192900153618^(1/2) 2178309000000091 a001 3278735159921/1268860318*17393796001^(2/7) 2178309000000091 a001 1134903170/73681302247*45537549124^(13/17) 2178309000000091 a001 1134903170/5600748293801*45537549124^(16/17) 2178309000000091 a001 1134903170/1322157322203*45537549124^(15/17) 2178309000000091 a001 1134903170/312119004989*45537549124^(14/17) 2178309000000091 a001 225851433717/2537720636*45537549124^(7/17) 2178309000000091 a001 32951280099/2537720636*312119004989^(5/11) 2178309000000091 a001 1134903170/73681302247*14662949395604^(13/21) 2178309000000091 a001 32951280099/2537720636*3461452808002^(5/12) 2178309000000091 a001 956722026041/2537720636*45537549124^(6/17) 2178309000000091 a001 1134903170/73681302247*192900153618^(13/18) 2178309000000091 a001 1134903780/1860499*45537549124^(1/3) 2178309000000091 a001 53316291173/2537720636*45537549124^(8/17) 2178309000000091 a001 4052739537881/2537720636*45537549124^(5/17) 2178309000000091 a001 1134903170/73681302247*73681302247^(3/4) 2178309000000091 a001 1134903170/1322157322203*312119004989^(9/11) 2178309000000091 a001 1134903170/1322157322203*14662949395604^(5/7) 2178309000000091 a006 5^(1/2)*Fibonacci(77)/Lucas(45)/sqrt(5) 2178309000000091 a001 1134903170/312119004989*14662949395604^(2/3) 2178309000000091 a001 1134903170/312119004989*505019158607^(3/4) 2178309000000091 a001 1134903170/1322157322203*192900153618^(5/6) 2178309000000091 a001 1134903170/312119004989*192900153618^(7/9) 2178309000000091 a001 10610209857723/2537720636*73681302247^(1/4) 2178309000000091 a001 2504730781961/2537720636*73681302247^(4/13) 2178309000000091 a001 1134903170/119218851371*312119004989^(8/11) 2178309000000091 a001 1134903170/119218851371*23725150497407^(5/8) 2178309000000091 a001 53316291173/2537720636*192900153618^(4/9) 2178309000000091 a001 53316291173/2537720636*73681302247^(6/13) 2178309000000091 a001 567451585/408569081798*73681302247^(11/13) 2178309000000091 a001 1134903170/5600748293801*73681302247^(12/13) 2178309000000091 a001 1134903170/119218851371*73681302247^(10/13) 2178309000000091 a001 4052739537881/2537720636*28143753123^(3/10) 2178309000000091 a001 32951280099/2537720636*28143753123^(1/2) 2178309000000091 a001 567451585/22768774562*817138163596^(2/3) 2178309000000091 a001 23112315624967704580/10610209857723 2178309000000091 a001 182717648081/1268860318*28143753123^(2/5) 2178309000000091 a001 10182505537/1268860318*73681302247^(1/2) 2178309000000091 a001 1134903170/119218851371*28143753123^(4/5) 2178309000000091 a001 1134903170/1322157322203*28143753123^(9/10) 2178309000000091 a001 7778742049/2537720636*17393796001^(4/7) 2178309000000091 a001 4052739537881/10749957122*1568397607^(9/22) 2178309000000091 a001 3278735159921/1268860318*10749957122^(7/24) 2178309000000091 a001 4052739537881/2537720636*10749957122^(5/16) 2178309000000091 a001 2504730781961/2537720636*10749957122^(1/3) 2178309000000091 a001 1134903170/17393796001*45537549124^(12/17) 2178309000000091 a001 956722026041/2537720636*10749957122^(3/8) 2178309000000091 a001 1134903170/17393796001*14662949395604^(4/7) 2178309000000091 a001 1134903170/17393796001*192900153618^(2/3) 2178309000000091 a001 7778742049/2537720636*73681302247^(7/13) 2178309000000091 a001 1134903170/17393796001*73681302247^(9/13) 2178309000000091 a001 1144206275/230701876*10749957122^(9/16) 2178309000000091 a001 182717648081/1268860318*10749957122^(5/12) 2178309000000091 a001 225851433717/2537720636*10749957122^(7/16) 2178309000000091 a001 139583862445/2537720636*10749957122^(11/24) 2178309000000091 a001 53316291173/2537720636*10749957122^(1/2) 2178309000000091 a001 10182505537/1268860318*10749957122^(13/24) 2178309000000091 a001 1134903170/73681302247*10749957122^(13/16) 2178309000000091 a001 86267571272/4106118243*1568397607^(6/11) 2178309000000091 a001 1134903170/119218851371*10749957122^(5/6) 2178309000000091 a001 567451585/22768774562*10749957122^(19/24) 2178309000000091 a001 1134903170/312119004989*10749957122^(7/8) 2178309000000091 a001 567451585/408569081798*10749957122^(11/12) 2178309000000091 a001 1134903170/1322157322203*10749957122^(15/16) 2178309000000091 a001 1134903170/2139295485799*10749957122^(23/24) 2178309000000091 a001 7778742049/2537720636*10749957122^(7/12) 2178309000000091 a001 3536736619241/9381251041*1568397607^(9/22) 2178309000000091 a001 1134903170/17393796001*10749957122^(3/4) 2178309000000091 a001 6557470319842/17393796001*1568397607^(9/22) 2178309000000091 a001 6557470319842/6643838879*1568397607^(4/11) 2178309000000091 a001 3278735159921/1268860318*4106118243^(7/23) 2178309000000091 a001 2504730781961/2537720636*4106118243^(8/23) 2178309000000091 a001 774004377960/5374978561*1568397607^(5/11) 2178309000000091 a001 1836311903/4106118243*1568397607^(8/11) 2178309000000091 a001 1134903170/6643838879*45537549124^(2/3) 2178309000000091 a001 2971215073/2537720636*45537549124^(10/17) 2178309000000091 a001 2971215073/2537720636*312119004989^(6/11) 2178309000000091 a001 2971215073/2537720636*14662949395604^(10/21) 2178309000000091 a001 5527936729671281/2537719272 2178309000000091 a001 2971215073/2537720636*192900153618^(5/9) 2178309000000091 a001 956722026041/2537720636*4106118243^(9/23) 2178309000000091 a001 2971215073/2537720636*28143753123^(3/5) 2178309000000091 a001 10983760033/1368706081*1568397607^(13/22) 2178309000000091 a001 182717648081/1268860318*4106118243^(10/23) 2178309000000091 a001 2971215073/2537720636*10749957122^(5/8) 2178309000000091 a001 4052739537881/28143753123*1568397607^(5/11) 2178309000000091 a001 139583862445/2537720636*4106118243^(11/23) 2178309000000091 a001 1134903170/6643838879*10749957122^(17/24) 2178309000000091 a001 1515744265389/10525900321*1568397607^(5/11) 2178309000000091 a001 1135099622/33391061*4106118243^(1/2) 2178309000000091 a001 3278735159921/22768774562*1568397607^(5/11) 2178309000000091 a001 53316291173/2537720636*4106118243^(12/23) 2178309000000091 a001 2504730781961/17393796001*1568397607^(5/11) 2178309000000091 a001 2504730781961/6643838879*1568397607^(9/22) 2178309000000091 a001 10182505537/1268860318*4106118243^(13/23) 2178309000000091 a001 591286729879/10749957122*1568397607^(1/2) 2178309000000091 a001 7778742049/2537720636*4106118243^(14/23) 2178309000000091 a001 12586269025/4106118243*1568397607^(7/11) 2178309000000091 a001 12585437040/228811001*1568397607^(1/2) 2178309000000091 a001 4052739537881/73681302247*1568397607^(1/2) 2178309000000091 a001 3536736619241/64300051206*1568397607^(1/2) 2178309000000091 a001 6557470319842/119218851371*1568397607^(1/2) 2178309000000091 a001 2504730781961/45537549124*1568397607^(1/2) 2178309000000091 a001 567451585/22768774562*4106118243^(19/23) 2178309000000091 a001 1134903170/17393796001*4106118243^(18/23) 2178309000000091 a001 956722026041/17393796001*1568397607^(1/2) 2178309000000091 a001 1134903170/119218851371*4106118243^(20/23) 2178309000000091 a001 956722026041/6643838879*1568397607^(5/11) 2178309000000091 a001 1602508992/1368706081*1568397607^(15/22) 2178309000000091 a001 1134903170/312119004989*4106118243^(21/23) 2178309000000091 a001 567451585/408569081798*4106118243^(22/23) 2178309000000091 a001 225851433717/10749957122*1568397607^(6/11) 2178309000000091 a001 2971215073/2537720636*4106118243^(15/23) 2178309000000091 a001 591286729879/28143753123*1568397607^(6/11) 2178309000000091 a001 1548008755920/73681302247*1568397607^(6/11) 2178309000000091 a001 4052739537881/192900153618*1568397607^(6/11) 2178309000000091 a001 225749145909/10745088481*1568397607^(6/11) 2178309000000091 a001 6557470319842/312119004989*1568397607^(6/11) 2178309000000091 a001 1134903170/6643838879*4106118243^(17/23) 2178309000000091 a001 2504730781961/119218851371*1568397607^(6/11) 2178309000000091 a001 956722026041/45537549124*1568397607^(6/11) 2178309000000091 a001 365435296162/17393796001*1568397607^(6/11) 2178309000000091 a001 365435296162/6643838879*1568397607^(1/2) 2178309000000091 a001 43133785636/5374978561*1568397607^(13/22) 2178309000000091 a001 75283811239/9381251041*1568397607^(13/22) 2178309000000091 a001 591286729879/73681302247*1568397607^(13/22) 2178309000000091 a001 86000486440/10716675201*1568397607^(13/22) 2178309000000091 a001 4052739537881/505019158607*1568397607^(13/22) 2178309000000091 a001 3536736619241/440719107401*1568397607^(13/22) 2178309000000091 a001 3278735159921/408569081798*1568397607^(13/22) 2178309000000091 a001 2504730781961/312119004989*1568397607^(13/22) 2178309000000091 a001 956722026041/119218851371*1568397607^(13/22) 2178309000000091 a001 182717648081/22768774562*1568397607^(13/22) 2178309000000091 a001 139583862445/17393796001*1568397607^(13/22) 2178309000000091 a001 139583862445/6643838879*1568397607^(6/11) 2178309000000091 a001 1836311903/10749957122*1568397607^(17/22) 2178309000000091 a001 32951280099/10749957122*1568397607^(7/11) 2178309000000091 a001 86267571272/28143753123*1568397607^(7/11) 2178309000000091 a001 32264490531/10525900321*1568397607^(7/11) 2178309000000091 a001 591286729879/192900153618*1568397607^(7/11) 2178309000000091 a001 1548008755920/505019158607*1568397607^(7/11) 2178309000000091 a001 1515744265389/494493258286*1568397607^(7/11) 2178309000000091 a001 956722026041/312119004989*1568397607^(7/11) 2178309000000091 a001 365435296162/119218851371*1568397607^(7/11) 2178309000000091 a001 139583862445/45537549124*1568397607^(7/11) 2178309000000091 a001 53316291173/17393796001*1568397607^(7/11) 2178309000000091 a001 53316291173/6643838879*1568397607^(13/22) 2178309000000091 a001 12586269025/10749957122*1568397607^(15/22) 2178309000000091 a001 1836311903/6643838879*1568397607^(3/4) 2178309000000091 a001 1836311903/28143753123*1568397607^(9/11) 2178309000000091 a001 10983760033/9381251041*1568397607^(15/22) 2178309000000091 a001 86267571272/73681302247*1568397607^(15/22) 2178309000000091 a001 75283811239/64300051206*1568397607^(15/22) 2178309000000091 a001 2504730781961/2139295485799*1568397607^(15/22) 2178309000000091 a001 365435296162/312119004989*1568397607^(15/22) 2178309000000091 a001 139583862445/119218851371*1568397607^(15/22) 2178309000000091 a001 53316291173/45537549124*1568397607^(15/22) 2178309000000091 a001 2403763488/5374978561*1568397607^(8/11) 2178309000000091 a001 20365011074/17393796001*1568397607^(15/22) 2178309000000091 a001 20365011074/6643838879*1568397607^(7/11) 2178309000000091 a001 3278735159921/1268860318*1568397607^(7/22) 2178309000000091 a001 1836311903/73681302247*1568397607^(19/22) 2178309000000091 a001 12586269025/28143753123*1568397607^(8/11) 2178309000000091 a001 32951280099/73681302247*1568397607^(8/11) 2178309000000091 a001 43133785636/96450076809*1568397607^(8/11) 2178309000000091 a001 225851433717/505019158607*1568397607^(8/11) 2178309000000091 a001 182717648081/408569081798*1568397607^(8/11) 2178309000000091 a001 139583862445/312119004989*1568397607^(8/11) 2178309000000091 a001 53316291173/119218851371*1568397607^(8/11) 2178309000000091 a001 10182505537/22768774562*1568397607^(8/11) 2178309000000091 a001 4807526976/17393796001*1568397607^(3/4) 2178309000000091 a001 7778742049/17393796001*1568397607^(8/11) 2178309000000091 a001 2504730781961/2537720636*1568397607^(4/11) 2178309000000091 a001 7778742049/6643838879*1568397607^(15/22) 2178309000000091 a001 12586269025/45537549124*1568397607^(3/4) 2178309000000091 a001 1602508992/9381251041*1568397607^(17/22) 2178309000000091 a001 32951280099/119218851371*1568397607^(3/4) 2178309000000091 a001 86267571272/312119004989*1568397607^(3/4) 2178309000000091 a001 225851433717/817138163596*1568397607^(3/4) 2178309000000091 a001 1548008755920/5600748293801*1568397607^(3/4) 2178309000000091 a001 139583862445/505019158607*1568397607^(3/4) 2178309000000091 a001 53316291173/192900153618*1568397607^(3/4) 2178309000000091 a001 20365011074/73681302247*1568397607^(3/4) 2178309000000091 a001 7778742049/28143753123*1568397607^(3/4) 2178309000000091 a001 1836311903/192900153618*1568397607^(10/11) 2178309000000091 a001 567451585/1268860318*23725150497407^(1/2) 2178309000000091 a001 1288005205276048900/591286729879 2178309000000091 a001 567451585/1268860318*73681302247^(8/13) 2178309000000091 a001 12586269025/73681302247*1568397607^(17/22) 2178309000000091 a001 10983760033/64300051206*1568397607^(17/22) 2178309000000091 a001 86267571272/505019158607*1568397607^(17/22) 2178309000000091 a001 75283811239/440719107401*1568397607^(17/22) 2178309000000091 a001 139583862445/817138163596*1568397607^(17/22) 2178309000000091 a001 53316291173/312119004989*1568397607^(17/22) 2178309000000091 a001 20365011074/119218851371*1568397607^(17/22) 2178309000000091 a001 567451585/1268860318*10749957122^(2/3) 2178309000000091 a001 7778742049/45537549124*1568397607^(17/22) 2178309000000091 a001 2971215073/10749957122*1568397607^(3/4) 2178309000000091 a001 956722026041/2537720636*1568397607^(9/22) 2178309000000091 a001 686789568/10525900321*1568397607^(9/11) 2178309000000091 a001 1836311903/505019158607*1568397607^(21/22) 2178309000000091 a001 12586269025/192900153618*1568397607^(9/11) 2178309000000091 a001 32951280099/505019158607*1568397607^(9/11) 2178309000000091 a001 86267571272/1322157322203*1568397607^(9/11) 2178309000000091 a001 32264490531/494493258286*1568397607^(9/11) 2178309000000091 a001 1548008755920/23725150497407*1568397607^(9/11) 2178309000000091 a001 139583862445/2139295485799*1568397607^(9/11) 2178309000000091 a001 53316291173/817138163596*1568397607^(9/11) 2178309000000091 a001 20365011074/312119004989*1568397607^(9/11) 2178309000000091 a001 7778742049/119218851371*1568397607^(9/11) 2178309000000091 a001 182717648081/1268860318*1568397607^(5/11) 2178309000000091 a001 2971215073/17393796001*1568397607^(17/22) 2178309000000091 a001 2971215073/6643838879*1568397607^(8/11) 2178309000000091 a001 267084832/10716675201*1568397607^(19/22) 2178309000000091 a001 12586269025/505019158607*1568397607^(19/22) 2178309000000091 a001 10983760033/440719107401*1568397607^(19/22) 2178309000000091 a001 43133785636/1730726404001*1568397607^(19/22) 2178309000000091 a001 182717648081/7331474697802*1568397607^(19/22) 2178309000000091 a001 139583862445/5600748293801*1568397607^(19/22) 2178309000000091 a001 53316291173/2139295485799*1568397607^(19/22) 2178309000000091 a001 10182505537/408569081798*1568397607^(19/22) 2178309000000091 a001 567451585/1268860318*4106118243^(16/23) 2178309000000091 a001 7778742049/312119004989*1568397607^(19/22) 2178309000000091 a001 2971215073/45537549124*1568397607^(9/11) 2178309000000091 a001 139583862445/2537720636*1568397607^(1/2) 2178309000000091 a001 102287808/10745088481*1568397607^(10/11) 2178309000000091 a001 12586269025/1322157322203*1568397607^(10/11) 2178309000000091 a001 32951280099/3461452808002*1568397607^(10/11) 2178309000000091 a001 86267571272/9062201101803*1568397607^(10/11) 2178309000000091 a001 225851433717/23725150497407*1568397607^(10/11) 2178309000000091 a001 139583862445/14662949395604*1568397607^(10/11) 2178309000000091 a001 53316291173/5600748293801*1568397607^(10/11) 2178309000000091 a001 20365011074/2139295485799*1568397607^(10/11) 2178309000000091 a001 7778742049/817138163596*1568397607^(10/11) 2178309000000091 a001 2971215073/119218851371*1568397607^(19/22) 2178309000000091 a001 53316291173/2537720636*1568397607^(6/11) 2178309000000091 a001 1602508992/440719107401*1568397607^(21/22) 2178309000000091 a001 12586269025/3461452808002*1568397607^(21/22) 2178309000000091 a001 10983760033/3020733700601*1568397607^(21/22) 2178309000000091 a001 86267571272/23725150497407*1568397607^(21/22) 2178309000000091 a001 53316291173/14662949395604*1568397607^(21/22) 2178309000000091 a001 20365011074/5600748293801*1568397607^(21/22) 2178309000000091 a001 1515744265389/224056801*599074578^(2/7) 2178309000000091 a001 7778742049/2139295485799*1568397607^(21/22) 2178309000000091 a001 2971215073/312119004989*1568397607^(10/11) 2178309000000091 a001 10182505537/1268860318*1568397607^(13/22) 2178309000000091 a001 1134903170/4106118243*1568397607^(3/4) 2178309000000091 a001 2971215073/817138163596*1568397607^(21/22) 2178309000000091 a001 7778742049/2537720636*1568397607^(7/11) 2178309000000091 a001 2971215073/2537720636*1568397607^(15/22) 2178309000000091 a001 267914296/969323029*599074578^(11/14) 2178309000000091 a001 1134903170/17393796001*1568397607^(9/11) 2178309000000091 a001 1134903170/6643838879*1568397607^(17/22) 2178309000000091 a001 567451585/22768774562*1568397607^(19/22) 2178309000000091 a001 4052739537881/1568397607*599074578^(1/3) 2178309000000091 a001 1134903170/119218851371*1568397607^(10/11) 2178309000000091 a001 1134903170/312119004989*1568397607^(21/22) 2178309000000091 a001 433494437/1568397607*2537720636^(11/15) 2178309000000091 a001 2504730781961/1568397607*599074578^(5/14) 2178309000000091 a001 567451585/1268860318*1568397607^(8/11) 2178309000000091 a001 1548008755920/1568397607*599074578^(8/21) 2178309000000091 a001 433494437/1568397607*45537549124^(11/17) 2178309000000091 a001 3416368357513689/1568358005 2178309000000091 a001 433494437/1568397607*312119004989^(3/5) 2178309000000091 a001 433494437/1568397607*14662949395604^(11/21) 2178309000000091 a001 433494437/1568397607*192900153618^(11/18) 2178309000000091 a001 433494437/1568397607*10749957122^(11/16) 2178309000000091 a001 591286729879/1568397607*599074578^(3/7) 2178309000000091 a001 3536736619241/1368706081*599074578^(1/3) 2178309000000091 a001 433494437/4106118243*2537720636^(7/9) 2178309000000091 a001 433494437/119218851371*2537720636^(14/15) 2178309000000091 a001 32264490531/224056801*599074578^(10/21) 2178309000000091 a001 433494437/45537549124*2537720636^(8/9) 2178309000000091 a001 433494437/28143753123*2537720636^(13/15) 2178309000000091 a001 6557470319842/4106118243*599074578^(5/14) 2178309000000091 a001 4807526976/969323029*2537720636^(3/5) 2178309000000091 a001 433494437/1568397607*1568397607^(3/4) 2178309000000091 a001 433494437/6643838879*2537720636^(4/5) 2178309000000091 a001 12586269025/969323029*2537720636^(5/9) 2178309000000091 a001 20365011074/969323029*2537720636^(8/15) 2178309000000091 a001 139583862445/1568397607*599074578^(1/2) 2178309000000091 a001 86267571272/969323029*2537720636^(7/15) 2178309000000091 a001 139583862445/969323029*2537720636^(4/9) 2178309000000091 a001 4052739537881/4106118243*599074578^(8/21) 2178309000000091 a001 365435296162/969323029*2537720636^(2/5) 2178309000000091 a001 433494437/4106118243*17393796001^(5/7) 2178309000000091 a001 433494437/4106118243*312119004989^(7/11) 2178309000000091 a001 796030994547383611/365435296162 2178309000000091 a001 1836311903/969323029*1322157322203^(1/2) 2178309000000091 a001 433494437/4106118243*505019158607^(5/8) 2178309000000091 a001 433494437/4106118243*28143753123^(7/10) 2178309000000091 a001 1548008755920/969323029*2537720636^(1/3) 2178309000000091 a001 10610209857723/6643838879*599074578^(5/14) 2178309000000091 a001 6557470319842/969323029*2537720636^(4/15) 2178309000000091 a001 4807525989/4870846*599074578^(8/21) 2178309000000091 a001 86267571272/1568397607*599074578^(11/21) 2178309000000091 a001 4807526976/969323029*45537549124^(9/17) 2178309000000091 a001 2084036199823432512/956722026041 2178309000000091 a001 4807526976/969323029*192900153618^(1/2) 2178309000000091 a001 4807526976/969323029*10749957122^(9/16) 2178309000000091 a001 433494437/119218851371*17393796001^(6/7) 2178309000000091 a001 433494437/28143753123*45537549124^(13/17) 2178309000000091 a001 86267571272/969323029*17393796001^(3/7) 2178309000000091 a001 12586269025/969323029*312119004989^(5/11) 2178309000000091 a001 12586269025/969323029*3461452808002^(5/12) 2178309000000091 a001 433494437/28143753123*192900153618^(13/18) 2178309000000091 a001 433494437/28143753123*73681302247^(3/4) 2178309000000091 a001 2504730781961/969323029*17393796001^(2/7) 2178309000000091 a001 12586269025/969323029*28143753123^(1/2) 2178309000000091 a001 433494437/2139295485799*45537549124^(16/17) 2178309000000091 a001 433494437/505019158607*45537549124^(15/17) 2178309000000091 a001 433494437/119218851371*45537549124^(14/17) 2178309000000091 a001 86267571272/969323029*45537549124^(7/17) 2178309000000091 a001 14284196614945309263/6557470319842 2178309000000091 a001 365435296162/969323029*45537549124^(6/17) 2178309000000091 a001 591286729879/969323029*45537549124^(1/3) 2178309000000091 a001 1548008755920/969323029*45537549124^(5/17) 2178309000000091 a001 6557470319842/969323029*45537549124^(4/17) 2178309000000091 a001 86267571272/969323029*14662949395604^(1/3) 2178309000000091 a001 433494437/505019158607*312119004989^(9/11) 2178309000000091 a001 433494437/5600748293801*312119004989^(10/11) 2178309000000091 a001 1548008755920/969323029*312119004989^(3/11) 2178309000000091 a001 10610209857723/969323029*312119004989^(1/5) 2178309000000091 a001 1548008755920/969323029*14662949395604^(5/21) 2178309000000091 a006 5^(1/2)*Fibonacci(75)/Lucas(43)/sqrt(5) 2178309000000091 a001 139583862445/969323029*23725150497407^(5/16) 2178309000000091 a001 139583862445/969323029*505019158607^(5/14) 2178309000000091 a001 433494437/505019158607*192900153618^(5/6) 2178309000000091 a001 433494437/2139295485799*192900153618^(8/9) 2178309000000091 a001 433494437/9062201101803*192900153618^(17/18) 2178309000000091 a001 6557470319842/969323029*73681302247^(3/13) 2178309000000091 a001 4052739537881/969323029*73681302247^(1/4) 2178309000000091 a001 956722026041/969323029*73681302247^(4/13) 2178309000000091 a001 433494437/119218851371*14662949395604^(2/3) 2178309000000091 a001 23112315624967704601/10610209857723 2178309000000091 a001 139583862445/969323029*73681302247^(5/13) 2178309000000091 a001 433494437/119218851371*192900153618^(7/9) 2178309000000091 a001 433494437/312119004989*73681302247^(11/13) 2178309000000091 a001 433494437/2139295485799*73681302247^(12/13) 2178309000000091 a001 20365011074/969323029*45537549124^(8/17) 2178309000000091 a001 1548008755920/969323029*28143753123^(3/10) 2178309000000091 a001 20365011074/969323029*14662949395604^(8/21) 2178309000000091 a001 433494437/45537549124*23725150497407^(5/8) 2178309000000091 a001 8828119010022395338/4052739537881 2178309000000091 a001 20365011074/969323029*192900153618^(4/9) 2178309000000091 a001 139583862445/969323029*28143753123^(2/5) 2178309000000091 a001 20365011074/969323029*73681302247^(6/13) 2178309000000091 a001 433494437/45537549124*73681302247^(10/13) 2178309000000091 a001 433494437/505019158607*28143753123^(9/10) 2178309000000091 a001 433494437/45537549124*28143753123^(4/5) 2178309000000091 a001 6557470319842/969323029*10749957122^(1/4) 2178309000000091 a001 2504730781961/969323029*10749957122^(7/24) 2178309000000091 a001 1548008755920/969323029*10749957122^(5/16) 2178309000000091 a001 956722026041/969323029*10749957122^(1/3) 2178309000000091 a001 365435296162/969323029*10749957122^(3/8) 2178309000000091 a001 3372041405099481413/1548008755920 2178309000000091 a001 7778742049/969323029*73681302247^(1/2) 2178309000000091 a001 139583862445/969323029*10749957122^(5/12) 2178309000000091 a001 86267571272/969323029*10749957122^(7/16) 2178309000000091 a001 53316291173/969323029*10749957122^(11/24) 2178309000000091 a001 20365011074/969323029*10749957122^(1/2) 2178309000000091 a001 433494437/28143753123*10749957122^(13/16) 2178309000000091 a001 433494437/119218851371*10749957122^(7/8) 2178309000000091 a001 433494437/45537549124*10749957122^(5/6) 2178309000000091 a001 433494437/312119004989*10749957122^(11/12) 2178309000000091 a001 7778742049/969323029*10749957122^(13/24) 2178309000000091 a001 433494437/505019158607*10749957122^(15/16) 2178309000000091 a001 433494437/817138163596*10749957122^(23/24) 2178309000000091 a001 433494437/17393796001*10749957122^(19/24) 2178309000000091 a001 6557470319842/969323029*4106118243^(6/23) 2178309000000091 a001 2504730781961/969323029*4106118243^(7/23) 2178309000000091 a001 3278735159921/1268860318*599074578^(1/3) 2178309000000091 a001 6557470319842/6643838879*599074578^(8/21) 2178309000000091 a001 956722026041/969323029*4106118243^(8/23) 2178309000000091 a001 2971215073/969323029*17393796001^(4/7) 2178309000000091 a001 433494437/6643838879*45537549124^(12/17) 2178309000000091 a001 1288005205276048901/591286729879 2178309000000091 a001 2971215073/969323029*505019158607^(1/2) 2178309000000091 a001 433494437/6643838879*192900153618^(2/3) 2178309000000091 a001 2971215073/969323029*73681302247^(7/13) 2178309000000091 a001 433494437/6643838879*73681302247^(9/13) 2178309000000091 a001 365435296162/969323029*4106118243^(9/23) 2178309000000091 a001 139583862445/969323029*4106118243^(10/23) 2178309000000091 a001 2971215073/969323029*10749957122^(7/12) 2178309000000091 a001 53316291173/969323029*4106118243^(11/23) 2178309000000091 a001 433494437/6643838879*10749957122^(3/4) 2178309000000091 a001 32951280099/969323029*4106118243^(1/2) 2178309000000091 a001 20365011074/969323029*4106118243^(12/23) 2178309000000091 a001 7778742049/969323029*4106118243^(13/23) 2178309000000091 a001 1134903170/969323029*2537720636^(2/3) 2178309000000091 a001 433494437/45537549124*4106118243^(20/23) 2178309000000091 a001 433494437/17393796001*4106118243^(19/23) 2178309000000091 a001 433494437/119218851371*4106118243^(21/23) 2178309000000091 a001 433494437/312119004989*4106118243^(22/23) 2178309000000091 a001 2971215073/969323029*4106118243^(14/23) 2178309000000091 a001 433494437/6643838879*4106118243^(18/23) 2178309000000091 a001 516002918640/1368706081*599074578^(3/7) 2178309000000091 a001 4052739537881/2537720636*599074578^(5/14) 2178309000000091 a001 10610209857723/969323029*1568397607^(1/4) 2178309000000091 a001 6557470319842/969323029*1568397607^(3/11) 2178309000000091 a001 32951280099/1568397607*599074578^(4/7) 2178309000000091 a001 4052739537881/10749957122*599074578^(3/7) 2178309000000091 a001 3536736619241/9381251041*599074578^(3/7) 2178309000000091 a001 2504730781961/969323029*1568397607^(7/22) 2178309000000091 a001 6557470319842/17393796001*599074578^(3/7) 2178309000000091 a001 956722026041/969323029*1568397607^(4/11) 2178309000000091 a001 2504730781961/2537720636*599074578^(8/21) 2178309000000091 a001 2504730781961/6643838879*599074578^(3/7) 2178309000000091 a001 433494437/2537720636*45537549124^(2/3) 2178309000000091 a001 1134903170/969323029*45537549124^(10/17) 2178309000000091 a001 1134903170/969323029*312119004989^(6/11) 2178309000000091 a001 1134903170/969323029*14662949395604^(10/21) 2178309000000091 a001 491974210728665290/225851433717 2178309000000091 a001 1134903170/969323029*192900153618^(5/9) 2178309000000091 a001 1134903170/969323029*28143753123^(3/5) 2178309000000091 a001 1134903170/969323029*10749957122^(5/8) 2178309000000091 a001 433494437/2537720636*10749957122^(17/24) 2178309000000091 a001 365435296162/969323029*1568397607^(9/22) 2178309000000091 a001 139583862445/969323029*1568397607^(5/11) 2178309000000091 a001 1134903170/969323029*4106118243^(15/23) 2178309000000091 a001 433494437/2537720636*4106118243^(17/23) 2178309000000091 a001 591286729879/4106118243*599074578^(10/21) 2178309000000091 a001 53316291173/969323029*1568397607^(1/2) 2178309000000091 a001 20365011074/969323029*1568397607^(6/11) 2178309000000091 a001 7778742049/969323029*1568397607^(13/22) 2178309000000091 a001 701408733/1568397607*599074578^(16/21) 2178309000000091 a001 12586269025/1568397607*599074578^(13/21) 2178309000000091 a001 774004377960/5374978561*599074578^(10/21) 2178309000000091 a001 4052739537881/28143753123*599074578^(10/21) 2178309000000091 a001 1515744265389/10525900321*599074578^(10/21) 2178309000000091 a001 3278735159921/22768774562*599074578^(10/21) 2178309000000091 a001 2504730781961/17393796001*599074578^(10/21) 2178309000000091 a001 365435296162/4106118243*599074578^(1/2) 2178309000000091 a001 2971215073/969323029*1568397607^(7/11) 2178309000000091 a001 956722026041/2537720636*599074578^(3/7) 2178309000000091 a001 956722026041/6643838879*599074578^(10/21) 2178309000000091 a001 956722026041/10749957122*599074578^(1/2) 2178309000000091 a001 7778742049/1568397607*599074578^(9/14) 2178309000000091 a001 2504730781961/28143753123*599074578^(1/2) 2178309000000091 a001 6557470319842/73681302247*599074578^(1/2) 2178309000000091 a001 10610209857723/119218851371*599074578^(1/2) 2178309000000091 a001 4052739537881/45537549124*599074578^(1/2) 2178309000000091 a001 1548008755920/17393796001*599074578^(1/2) 2178309000000091 a001 75283811239/1368706081*599074578^(11/21) 2178309000000091 a001 591286729879/6643838879*599074578^(1/2) 2178309000000091 a001 433494437/17393796001*1568397607^(19/22) 2178309000000091 a001 433494437/6643838879*1568397607^(9/11) 2178309000000091 a001 433494437/45537549124*1568397607^(10/11) 2178309000000091 a001 686789568/224056801*599074578^(2/3) 2178309000000091 a001 591286729879/10749957122*599074578^(11/21) 2178309000000091 a001 433494437/119218851371*1568397607^(21/22) 2178309000000091 a001 12585437040/228811001*599074578^(11/21) 2178309000000091 a001 4052739537881/73681302247*599074578^(11/21) 2178309000000091 a001 3536736619241/64300051206*599074578^(11/21) 2178309000000091 a001 6557470319842/119218851371*599074578^(11/21) 2178309000000091 a001 2504730781961/45537549124*599074578^(11/21) 2178309000000091 a001 956722026041/17393796001*599074578^(11/21) 2178309000000091 a001 182717648081/1268860318*599074578^(10/21) 2178309000000091 a001 365435296162/6643838879*599074578^(11/21) 2178309000000091 a001 1134903170/969323029*1568397607^(15/22) 2178309000000091 a001 1836311903/1568397607*599074578^(5/7) 2178309000000091 a001 86267571272/4106118243*599074578^(4/7) 2178309000000091 a001 433494437/2537720636*1568397607^(17/22) 2178309000000091 a001 225851433717/2537720636*599074578^(1/2) 2178309000000091 a001 225851433717/10749957122*599074578^(4/7) 2178309000000091 a001 591286729879/28143753123*599074578^(4/7) 2178309000000091 a001 1548008755920/73681302247*599074578^(4/7) 2178309000000091 a001 4052739537881/192900153618*599074578^(4/7) 2178309000000091 a001 225749145909/10745088481*599074578^(4/7) 2178309000000091 a001 6557470319842/312119004989*599074578^(4/7) 2178309000000091 a001 2504730781961/119218851371*599074578^(4/7) 2178309000000091 a001 956722026041/45537549124*599074578^(4/7) 2178309000000091 a001 365435296162/17393796001*599074578^(4/7) 2178309000000091 a001 139583862445/2537720636*599074578^(11/21) 2178309000000091 a001 139583862445/6643838879*599074578^(4/7) 2178309000000091 a001 10983760033/1368706081*599074578^(13/21) 2178309000000091 a001 43133785636/5374978561*599074578^(13/21) 2178309000000091 a001 75283811239/9381251041*599074578^(13/21) 2178309000000091 a001 591286729879/73681302247*599074578^(13/21) 2178309000000091 a001 86000486440/10716675201*599074578^(13/21) 2178309000000091 a001 4052739537881/505019158607*599074578^(13/21) 2178309000000091 a001 3278735159921/408569081798*599074578^(13/21) 2178309000000091 a001 2504730781961/312119004989*599074578^(13/21) 2178309000000091 a001 956722026041/119218851371*599074578^(13/21) 2178309000000091 a001 182717648081/22768774562*599074578^(13/21) 2178309000000091 a001 139583862445/17393796001*599074578^(13/21) 2178309000000091 a001 20365011074/4106118243*599074578^(9/14) 2178309000000091 a001 53316291173/2537720636*599074578^(4/7) 2178309000000091 a001 53316291173/6643838879*599074578^(13/21) 2178309000000091 a001 53316291173/10749957122*599074578^(9/14) 2178309000000091 a001 233802911/1368706081*599074578^(17/21) 2178309000000091 a001 139583862445/28143753123*599074578^(9/14) 2178309000000091 a001 365435296162/73681302247*599074578^(9/14) 2178309000000091 a001 956722026041/192900153618*599074578^(9/14) 2178309000000091 a001 2504730781961/505019158607*599074578^(9/14) 2178309000000091 a001 10610209857723/2139295485799*599074578^(9/14) 2178309000000091 a001 140728068720/28374454999*599074578^(9/14) 2178309000000091 a001 591286729879/119218851371*599074578^(9/14) 2178309000000091 a001 225851433717/45537549124*599074578^(9/14) 2178309000000091 a001 86267571272/17393796001*599074578^(9/14) 2178309000000091 a001 12586269025/4106118243*599074578^(2/3) 2178309000000091 a001 32951280099/6643838879*599074578^(9/14) 2178309000000091 a001 32951280099/10749957122*599074578^(2/3) 2178309000000091 a001 86267571272/28143753123*599074578^(2/3) 2178309000000091 a001 32264490531/10525900321*599074578^(2/3) 2178309000000091 a001 591286729879/192900153618*599074578^(2/3) 2178309000000091 a001 1548008755920/505019158607*599074578^(2/3) 2178309000000091 a001 1515744265389/494493258286*599074578^(2/3) 2178309000000091 a001 2504730781961/817138163596*599074578^(2/3) 2178309000000091 a001 956722026041/312119004989*599074578^(2/3) 2178309000000091 a001 365435296162/119218851371*599074578^(2/3) 2178309000000091 a001 139583862445/45537549124*599074578^(2/3) 2178309000000091 a001 6557470319842/969323029*599074578^(2/7) 2178309000000091 a001 53316291173/17393796001*599074578^(2/3) 2178309000000091 a001 10182505537/1268860318*599074578^(13/21) 2178309000000091 a001 20365011074/6643838879*599074578^(2/3) 2178309000000091 a001 1602508992/1368706081*599074578^(5/7) 2178309000000091 a001 701408733/2537720636*599074578^(11/14) 2178309000000091 a001 701408733/6643838879*599074578^(5/6) 2178309000000091 a001 1144206275/230701876*599074578^(9/14) 2178309000000091 a001 701408733/10749957122*599074578^(6/7) 2178309000000091 a001 12586269025/10749957122*599074578^(5/7) 2178309000000091 a001 3536736619241/199691526*228826127^(1/4) 2178309000000091 a001 10983760033/9381251041*599074578^(5/7) 2178309000000091 a001 86267571272/73681302247*599074578^(5/7) 2178309000000091 a001 75283811239/64300051206*599074578^(5/7) 2178309000000091 a001 2504730781961/2139295485799*599074578^(5/7) 2178309000000091 a001 365435296162/312119004989*599074578^(5/7) 2178309000000091 a001 139583862445/119218851371*599074578^(5/7) 2178309000000091 a001 53316291173/45537549124*599074578^(5/7) 2178309000000091 a001 2504730781961/969323029*599074578^(1/3) 2178309000000091 a001 20365011074/17393796001*599074578^(5/7) 2178309000000091 a001 1836311903/4106118243*599074578^(16/21) 2178309000000091 a001 7778742049/2537720636*599074578^(2/3) 2178309000000091 a001 7778742049/6643838879*599074578^(5/7) 2178309000000091 a001 1548008755920/969323029*599074578^(5/14) 2178309000000091 a001 2403763488/5374978561*599074578^(16/21) 2178309000000091 a001 233802911/9381251041*599074578^(19/21) 2178309000000091 a001 12586269025/28143753123*599074578^(16/21) 2178309000000091 a001 32951280099/73681302247*599074578^(16/21) 2178309000000091 a001 43133785636/96450076809*599074578^(16/21) 2178309000000091 a001 225851433717/505019158607*599074578^(16/21) 2178309000000091 a001 591286729879/1322157322203*599074578^(16/21) 2178309000000091 a001 139583862445/312119004989*599074578^(16/21) 2178309000000091 a001 53316291173/119218851371*599074578^(16/21) 2178309000000091 a001 10182505537/22768774562*599074578^(16/21) 2178309000000091 a001 956722026041/969323029*599074578^(8/21) 2178309000000091 a001 433494437/969323029*23725150497407^(1/2) 2178309000000091 a001 433494437/969323029*505019158607^(4/7) 2178309000000091 a001 187917426909946969/86267571272 2178309000000091 a001 433494437/969323029*73681302247^(8/13) 2178309000000091 a001 7778742049/17393796001*599074578^(16/21) 2178309000000091 a001 433494437/969323029*10749957122^(2/3) 2178309000000091 a001 1836311903/6643838879*599074578^(11/14) 2178309000000091 a001 2971215073/2537720636*599074578^(5/7) 2178309000000091 a001 2971215073/6643838879*599074578^(16/21) 2178309000000091 a001 433494437/969323029*4106118243^(16/23) 2178309000000091 a001 701408733/45537549124*599074578^(13/14) 2178309000000091 a001 4807526976/17393796001*599074578^(11/14) 2178309000000091 a001 1836311903/10749957122*599074578^(17/21) 2178309000000091 a001 12586269025/45537549124*599074578^(11/14) 2178309000000091 a001 32951280099/119218851371*599074578^(11/14) 2178309000000091 a001 86267571272/312119004989*599074578^(11/14) 2178309000000091 a001 225851433717/817138163596*599074578^(11/14) 2178309000000091 a001 1548008755920/5600748293801*599074578^(11/14) 2178309000000091 a001 139583862445/505019158607*599074578^(11/14) 2178309000000091 a001 53316291173/192900153618*599074578^(11/14) 2178309000000091 a001 20365011074/73681302247*599074578^(11/14) 2178309000000091 a001 7778742049/28143753123*599074578^(11/14) 2178309000000091 a001 2971215073/10749957122*599074578^(11/14) 2178309000000091 a001 1602508992/9381251041*599074578^(17/21) 2178309000000091 a001 701408733/73681302247*599074578^(20/21) 2178309000000091 a001 12586269025/73681302247*599074578^(17/21) 2178309000000091 a001 10983760033/64300051206*599074578^(17/21) 2178309000000091 a001 86267571272/505019158607*599074578^(17/21) 2178309000000091 a001 75283811239/440719107401*599074578^(17/21) 2178309000000091 a001 2504730781961/14662949395604*599074578^(17/21) 2178309000000091 a001 139583862445/817138163596*599074578^(17/21) 2178309000000091 a001 53316291173/312119004989*599074578^(17/21) 2178309000000091 a001 20365011074/119218851371*599074578^(17/21) 2178309000000091 a001 365435296162/969323029*599074578^(3/7) 2178309000000091 a001 7778742049/45537549124*599074578^(17/21) 2178309000000091 a001 1836311903/17393796001*599074578^(5/6) 2178309000000091 a001 2971215073/17393796001*599074578^(17/21) 2178309000000091 a001 1134903170/4106118243*599074578^(11/14) 2178309000000091 a001 1201881744/11384387281*599074578^(5/6) 2178309000000091 a001 12586269025/119218851371*599074578^(5/6) 2178309000000091 a001 32951280099/312119004989*599074578^(5/6) 2178309000000091 a001 21566892818/204284540899*599074578^(5/6) 2178309000000091 a001 225851433717/2139295485799*599074578^(5/6) 2178309000000091 a001 182717648081/1730726404001*599074578^(5/6) 2178309000000091 a001 139583862445/1322157322203*599074578^(5/6) 2178309000000091 a001 53316291173/505019158607*599074578^(5/6) 2178309000000091 a001 10182505537/96450076809*599074578^(5/6) 2178309000000091 a001 7778742049/73681302247*599074578^(5/6) 2178309000000091 a001 1836311903/28143753123*599074578^(6/7) 2178309000000091 a001 2971215073/28143753123*599074578^(5/6) 2178309000000091 a001 686789568/10525900321*599074578^(6/7) 2178309000000091 a001 12586269025/192900153618*599074578^(6/7) 2178309000000091 a001 32951280099/505019158607*599074578^(6/7) 2178309000000091 a001 86267571272/1322157322203*599074578^(6/7) 2178309000000091 a001 32264490531/494493258286*599074578^(6/7) 2178309000000091 a001 1548008755920/23725150497407*599074578^(6/7) 2178309000000091 a001 139583862445/2139295485799*599074578^(6/7) 2178309000000091 a001 53316291173/817138163596*599074578^(6/7) 2178309000000091 a001 20365011074/312119004989*599074578^(6/7) 2178309000000091 a001 139583862445/969323029*599074578^(10/21) 2178309000000091 a001 7778742049/119218851371*599074578^(6/7) 2178309000000091 a001 2971215073/45537549124*599074578^(6/7) 2178309000000091 a001 433494437/969323029*1568397607^(8/11) 2178309000000091 a001 567451585/1268860318*599074578^(16/21) 2178309000000091 a001 1134903170/6643838879*599074578^(17/21) 2178309000000091 a001 86267571272/969323029*599074578^(1/2) 2178309000000091 a001 1836311903/73681302247*599074578^(19/21) 2178309000000091 a001 567451585/5374978561*599074578^(5/6) 2178309000000091 a001 267084832/10716675201*599074578^(19/21) 2178309000000091 a001 12586269025/505019158607*599074578^(19/21) 2178309000000091 a001 10983760033/440719107401*599074578^(19/21) 2178309000000091 a001 43133785636/1730726404001*599074578^(19/21) 2178309000000091 a001 75283811239/3020733700601*599074578^(19/21) 2178309000000091 a001 182717648081/7331474697802*599074578^(19/21) 2178309000000091 a001 139583862445/5600748293801*599074578^(19/21) 2178309000000091 a001 53316291173/2139295485799*599074578^(19/21) 2178309000000091 a001 10182505537/408569081798*599074578^(19/21) 2178309000000091 a001 53316291173/969323029*599074578^(11/21) 2178309000000091 a001 7778742049/312119004989*599074578^(19/21) 2178309000000091 a001 1836311903/119218851371*599074578^(13/14) 2178309000000091 a001 2971215073/119218851371*599074578^(19/21) 2178309000000091 a001 1134903170/17393796001*599074578^(6/7) 2178309000000091 a001 4807526976/312119004989*599074578^(13/14) 2178309000000091 a001 12586269025/817138163596*599074578^(13/14) 2178309000000091 a001 32951280099/2139295485799*599074578^(13/14) 2178309000000091 a001 86267571272/5600748293801*599074578^(13/14) 2178309000000091 a001 7787980473/505618944676*599074578^(13/14) 2178309000000091 a001 365435296162/23725150497407*599074578^(13/14) 2178309000000091 a001 139583862445/9062201101803*599074578^(13/14) 2178309000000091 a001 53316291173/3461452808002*599074578^(13/14) 2178309000000091 a001 20365011074/1322157322203*599074578^(13/14) 2178309000000091 a001 7778742049/505019158607*599074578^(13/14) 2178309000000091 a001 1836311903/192900153618*599074578^(20/21) 2178309000000091 a001 2971215073/192900153618*599074578^(13/14) 2178309000000091 a001 102287808/10745088481*599074578^(20/21) 2178309000000091 a001 12586269025/1322157322203*599074578^(20/21) 2178309000000091 a001 32951280099/3461452808002*599074578^(20/21) 2178309000000091 a001 86267571272/9062201101803*599074578^(20/21) 2178309000000091 a001 225851433717/23725150497407*599074578^(20/21) 2178309000000091 a001 139583862445/14662949395604*599074578^(20/21) 2178309000000091 a001 53316291173/5600748293801*599074578^(20/21) 2178309000000091 a001 20365011074/2139295485799*599074578^(20/21) 2178309000000091 a001 20365011074/969323029*599074578^(4/7) 2178309000000091 a001 7778742049/817138163596*599074578^(20/21) 2178309000000091 a001 2971215073/312119004989*599074578^(20/21) 2178309000000091 a001 567451585/22768774562*599074578^(19/21) 2178309000000091 a001 1134903170/73681302247*599074578^(13/14) 2178309000000091 a001 7778742049/969323029*599074578^(13/21) 2178309000000091 a001 1134903170/119218851371*599074578^(20/21) 2178309000000091 a001 4807526976/969323029*599074578^(9/14) 2178309000000091 a001 433494437/1568397607*599074578^(11/14) 2178309000000091 a001 4052739537881/599074578*228826127^(3/10) 2178309000000091 a001 2971215073/969323029*599074578^(2/3) 2178309000000091 a001 1134903170/969323029*599074578^(5/7) 2178309000000091 a001 433494437/4106118243*599074578^(5/6) 2178309000000091 a001 433494437/2537720636*599074578^(17/21) 2178309000000091 a001 433494437/6643838879*599074578^(6/7) 2178309000000091 a001 433494437/17393796001*599074578^(19/21) 2178309000000091 a001 433494437/28143753123*599074578^(13/14) 2178309000000091 a001 433494437/45537549124*599074578^(20/21) 2178309000000091 a001 86000486440/33281921*228826127^(7/20) 2178309000000091 a001 433494437/969323029*599074578^(16/21) 2178309000000091 a001 956722026041/599074578*228826127^(3/8) 2178309000000091 a001 165580141/599074578*2537720636^(11/15) 2178309000000091 a001 22180643453797868/10182505537 2178309000000091 a001 165580141/599074578*45537549124^(11/17) 2178309000000091 a001 165580141/599074578*312119004989^(3/5) 2178309000000091 a001 165580141/599074578*14662949395604^(11/21) 2178309000000091 a001 165580141/599074578*192900153618^(11/18) 2178309000000091 a001 165580141/599074578*10749957122^(11/16) 2178309000000091 a001 165580141/599074578*1568397607^(3/4) 2178309000000091 a001 591286729879/599074578*228826127^(2/5) 2178309000000091 a001 63245986/969323029*141422324^(12/13) 2178309000000091 a001 1515744265389/224056801*228826127^(3/10) 2178309000000091 a001 267913919/710646*228826127^(9/20) 2178309000000091 a001 4052739537881/1568397607*228826127^(7/20) 2178309000000091 a001 3536736619241/1368706081*228826127^(7/20) 2178309000000091 a001 165580141/599074578*599074578^(11/14) 2178309000000091 a001 2504730781961/1568397607*228826127^(3/8) 2178309000000091 a001 43133785636/299537289*228826127^(1/2) 2178309000000091 a001 165580141/1568397607*2537720636^(7/9) 2178309000000091 a001 6557470319842/969323029*228826127^(3/10) 2178309000000091 a001 3278735159921/1268860318*228826127^(7/20) 2178309000000091 a001 165580141/1568397607*17393796001^(5/7) 2178309000000091 a001 116139356908771353/53316291173 2178309000000091 a001 165580141/1568397607*312119004989^(7/11) 2178309000000091 a001 165580141/1568397607*14662949395604^(5/9) 2178309000000091 a001 701408733/370248451*1322157322203^(1/2) 2178309000000091 a001 165580141/1568397607*505019158607^(5/8) 2178309000000091 a001 165580141/1568397607*28143753123^(7/10) 2178309000000091 a001 6557470319842/4106118243*228826127^(3/8) 2178309000000091 a001 1836311903/370248451*2537720636^(3/5) 2178309000000091 a001 10610209857723/54018521*20633239^(1/7) 2178309000000091 a001 165580141/45537549124*2537720636^(14/15) 2178309000000091 a001 165580141/10749957122*2537720636^(13/15) 2178309000000091 a001 165580141/17393796001*2537720636^(8/9) 2178309000000091 a001 10610209857723/6643838879*228826127^(3/8) 2178309000000091 a001 4807526976/370248451*2537720636^(5/9) 2178309000000091 a001 7778742049/370248451*2537720636^(8/15) 2178309000000091 a001 32951280099/370248451*2537720636^(7/15) 2178309000000091 a001 53316291173/370248451*2537720636^(4/9) 2178309000000091 a001 1548008755920/1568397607*228826127^(2/5) 2178309000000091 a001 139583862445/370248451*2537720636^(2/5) 2178309000000091 a001 1836311903/370248451*45537549124^(9/17) 2178309000000091 a001 304056783818718323/139583862445 2178309000000091 a001 1836311903/370248451*817138163596^(9/19) 2178309000000091 a001 1836311903/370248451*14662949395604^(3/7) 2178309000000091 a001 1836311903/370248451*192900153618^(1/2) 2178309000000091 a001 1836311903/370248451*10749957122^(9/16) 2178309000000091 a001 591286729879/370248451*2537720636^(1/3) 2178309000000091 a001 2504730781961/370248451*2537720636^(4/15) 2178309000000091 a001 6557470319842/370248451*2537720636^(2/9) 2178309000000091 a001 10610209857723/370248451*2537720636^(1/5) 2178309000000091 a001 165580141/10749957122*45537549124^(13/17) 2178309000000091 a001 4807526976/370248451*312119004989^(5/11) 2178309000000091 a001 165580141/10749957122*14662949395604^(13/21) 2178309000000091 a001 165580141/10749957122*192900153618^(13/18) 2178309000000091 a001 165580141/10749957122*73681302247^(3/4) 2178309000000091 a001 4807526976/370248451*28143753123^(1/2) 2178309000000091 a001 165580141/45537549124*17393796001^(6/7) 2178309000000091 a001 165580141/10749957122*10749957122^(13/16) 2178309000000091 a001 32951280099/370248451*17393796001^(3/7) 2178309000000091 a001 2084036199823432525/956722026041 2178309000000091 a001 956722026041/370248451*17393796001^(2/7) 2178309000000091 a001 165580141/192900153618*45537549124^(15/17) 2178309000000091 a001 32951280099/370248451*45537549124^(7/17) 2178309000000091 a001 32951280099/370248451*14662949395604^(1/3) 2178309000000091 a001 32951280099/370248451*192900153618^(7/18) 2178309000000091 a001 225851433717/370248451*45537549124^(1/3) 2178309000000091 a001 139583862445/370248451*45537549124^(6/17) 2178309000000091 a001 591286729879/370248451*45537549124^(5/17) 2178309000000091 a001 2504730781961/370248451*45537549124^(4/17) 2178309000000091 a001 10610209857723/370248451*45537549124^(3/17) 2178309000000091 a001 165580141/192900153618*312119004989^(9/11) 2178309000000091 a001 420123429851332628/192866774113 2178309000000091 a001 165580141/192900153618*14662949395604^(5/7) 2178309000000091 a001 165580141/2139295485799*312119004989^(10/11) 2178309000000091 a001 165580141/1322157322203*14662949395604^(7/9) 2178309000000091 a001 10610209857723/370248451*14662949395604^(1/7) 2178309000000091 a006 5^(1/2)*Fibonacci(73)/Lucas(41)/sqrt(5) 2178309000000091 a001 10610209857723/370248451*192900153618^(1/6) 2178309000000091 a001 139583862445/370248451*14662949395604^(2/7) 2178309000000091 a001 139583862445/370248451*192900153618^(1/3) 2178309000000091 a001 165580141/3461452808002*192900153618^(17/18) 2178309000000091 a001 2504730781961/370248451*73681302247^(3/13) 2178309000000091 a001 1548008755920/370248451*73681302247^(1/4) 2178309000000091 a001 165580141/119218851371*312119004989^(4/5) 2178309000000091 a001 53316291173/370248451*23725150497407^(5/16) 2178309000000091 a001 165580141/119218851371*23725150497407^(11/16) 2178309000000091 a001 53316291173/370248451*505019158607^(5/14) 2178309000000091 a001 165580141/45537549124*45537549124^(14/17) 2178309000000091 a001 53316291173/370248451*73681302247^(5/13) 2178309000000091 a001 165580141/817138163596*73681302247^(12/13) 2178309000000091 a001 165580141/119218851371*73681302247^(11/13) 2178309000000091 a001 6557470319842/370248451*28143753123^(1/5) 2178309000000091 a001 591286729879/370248451*28143753123^(3/10) 2178309000000091 a001 20365011074/370248451*312119004989^(2/5) 2178309000000091 a001 165580141/45537549124*14662949395604^(2/3) 2178309000000091 a001 165580141/45537549124*505019158607^(3/4) 2178309000000091 a001 165580141/45537549124*192900153618^(7/9) 2178309000000091 a001 53316291173/370248451*28143753123^(2/5) 2178309000000091 a001 165580141/192900153618*28143753123^(9/10) 2178309000000091 a001 10610209857723/370248451*10749957122^(3/16) 2178309000000091 a001 6557470319842/370248451*10749957122^(5/24) 2178309000000091 a001 2504730781961/370248451*10749957122^(1/4) 2178309000000091 a001 956722026041/370248451*10749957122^(7/24) 2178309000000091 a001 591286729879/370248451*10749957122^(5/16) 2178309000000091 a001 365435296162/370248451*10749957122^(1/3) 2178309000000091 a001 7778742049/370248451*45537549124^(8/17) 2178309000000091 a001 139583862445/370248451*10749957122^(3/8) 2178309000000091 a001 165580141/17393796001*312119004989^(8/11) 2178309000000091 a001 7778742049/370248451*14662949395604^(8/21) 2178309000000091 a001 1288005205276048909/591286729879 2178309000000091 a001 7778742049/370248451*192900153618^(4/9) 2178309000000091 a001 7778742049/370248451*73681302247^(6/13) 2178309000000091 a001 165580141/17393796001*73681302247^(10/13) 2178309000000091 a001 32951280099/370248451*10749957122^(7/16) 2178309000000091 a001 53316291173/370248451*10749957122^(5/12) 2178309000000091 a001 165580141/17393796001*28143753123^(4/5) 2178309000000091 a001 20365011074/370248451*10749957122^(11/24) 2178309000000091 a001 7778742049/370248451*10749957122^(1/2) 2178309000000091 a001 165580141/119218851371*10749957122^(11/12) 2178309000000091 a001 165580141/45537549124*10749957122^(7/8) 2178309000000091 a001 165580141/192900153618*10749957122^(15/16) 2178309000000091 a001 165580141/312119004989*10749957122^(23/24) 2178309000000091 a001 165580141/17393796001*10749957122^(5/6) 2178309000000091 a001 6557470319842/370248451*4106118243^(5/23) 2178309000000091 a001 2504730781961/370248451*4106118243^(6/23) 2178309000000091 a001 956722026041/370248451*4106118243^(7/23) 2178309000000091 a001 365435296162/370248451*4106118243^(8/23) 2178309000000091 a001 4052739537881/2537720636*228826127^(3/8) 2178309000000091 a001 165580141/6643838879*817138163596^(2/3) 2178309000000091 a001 491974210728665293/225851433717 2178309000000091 a001 2971215073/370248451*73681302247^(1/2) 2178309000000091 a001 139583862445/370248451*4106118243^(9/23) 2178309000000091 a001 53316291173/370248451*4106118243^(10/23) 2178309000000091 a001 2971215073/370248451*10749957122^(13/24) 2178309000000091 a001 12586269025/370248451*4106118243^(1/2) 2178309000000091 a001 20365011074/370248451*4106118243^(11/23) 2178309000000091 a001 165580141/6643838879*10749957122^(19/24) 2178309000000091 a001 165580141/2537720636*2537720636^(4/5) 2178309000000091 a001 7778742049/370248451*4106118243^(12/23) 2178309000000091 a001 165580141/45537549124*4106118243^(21/23) 2178309000000091 a001 165580141/17393796001*4106118243^(20/23) 2178309000000091 a001 2971215073/370248451*4106118243^(13/23) 2178309000000091 a001 165580141/119218851371*4106118243^(22/23) 2178309000000091 a001 165580141/6643838879*4106118243^(19/23) 2178309000000091 a001 6557470319842/370248451*1568397607^(5/22) 2178309000000091 a001 4052739537881/370248451*1568397607^(1/4) 2178309000000091 a001 2504730781961/370248451*1568397607^(3/11) 2178309000000091 a001 956722026041/370248451*1568397607^(7/22) 2178309000000091 a001 365435296162/370248451*1568397607^(4/11) 2178309000000091 a001 1134903170/370248451*17393796001^(4/7) 2178309000000091 a001 165580141/2537720636*45537549124^(12/17) 2178309000000091 a001 1134903170/370248451*14662949395604^(4/9) 2178309000000091 a001 165580141/2537720636*192900153618^(2/3) 2178309000000091 a001 5526983144410205/2537281508 2178309000000091 a001 1134903170/370248451*73681302247^(7/13) 2178309000000091 a001 165580141/2537720636*73681302247^(9/13) 2178309000000091 a001 1134903170/370248451*10749957122^(7/12) 2178309000000091 a001 165580141/2537720636*10749957122^(3/4) 2178309000000091 a001 139583862445/370248451*1568397607^(9/22) 2178309000000091 a001 53316291173/370248451*1568397607^(5/11) 2178309000000091 a001 1134903170/370248451*4106118243^(14/23) 2178309000000091 a001 165580141/2537720636*4106118243^(18/23) 2178309000000091 a001 20365011074/370248451*1568397607^(1/2) 2178309000000091 a001 7778742049/370248451*1568397607^(6/11) 2178309000000091 a001 2971215073/370248451*1568397607^(13/22) 2178309000000091 a001 4052739537881/4106118243*228826127^(2/5) 2178309000000091 a001 4807525989/4870846*228826127^(2/5) 2178309000000091 a001 6557470319842/6643838879*228826127^(2/5) 2178309000000091 a001 165580141/17393796001*1568397607^(10/11) 2178309000000091 a001 165580141/6643838879*1568397607^(19/22) 2178309000000091 a001 165580141/45537549124*1568397607^(21/22) 2178309000000091 a001 1134903170/370248451*1568397607^(7/11) 2178309000000091 a001 10983760033/199691526*228826127^(11/20) 2178309000000091 a001 2504730781961/969323029*228826127^(7/20) 2178309000000091 a001 165580141/2537720636*1568397607^(9/11) 2178309000000091 a001 2504730781961/2537720636*228826127^(2/5) 2178309000000091 a001 10610209857723/370248451*599074578^(3/14) 2178309000000091 a001 6557470319842/370248451*599074578^(5/21) 2178309000000091 a001 2504730781961/370248451*599074578^(2/7) 2178309000000091 a001 591286729879/1568397607*228826127^(9/20) 2178309000000091 a001 956722026041/370248451*599074578^(1/3) 2178309000000091 a001 1548008755920/969323029*228826127^(3/8) 2178309000000091 a001 433494437/370248451*2537720636^(2/3) 2178309000000091 a001 591286729879/370248451*599074578^(5/14) 2178309000000091 a001 365435296162/370248451*599074578^(8/21) 2178309000000091 a001 165580141/969323029*45537549124^(2/3) 2178309000000091 a001 433494437/370248451*45537549124^(10/17) 2178309000000091 a001 433494437/370248451*312119004989^(6/11) 2178309000000091 a001 433494437/370248451*14662949395604^(10/21) 2178309000000091 a001 433494437/370248451*192900153618^(5/9) 2178309000000091 a001 71778070001175617/32951280099 2178309000000091 a001 433494437/370248451*28143753123^(3/5) 2178309000000091 a001 433494437/370248451*10749957122^(5/8) 2178309000000091 a001 165580141/969323029*10749957122^(17/24) 2178309000000091 a001 433494437/370248451*4106118243^(15/23) 2178309000000091 a001 165580141/969323029*4106118243^(17/23) 2178309000000091 a001 225749145909/4868641*87403803^(4/19) 2178309000000091 a001 139583862445/370248451*599074578^(3/7) 2178309000000091 a001 516002918640/1368706081*228826127^(9/20) 2178309000000091 a001 4052739537881/10749957122*228826127^(9/20) 2178309000000091 a001 3536736619241/9381251041*228826127^(9/20) 2178309000000091 a001 6557470319842/17393796001*228826127^(9/20) 2178309000000091 a001 2504730781961/6643838879*228826127^(9/20) 2178309000000091 a001 53316291173/370248451*599074578^(10/21) 2178309000000091 a001 433494437/370248451*1568397607^(15/22) 2178309000000091 a001 12586269025/599074578*228826127^(3/5) 2178309000000091 a001 165580141/969323029*1568397607^(17/22) 2178309000000091 a001 32951280099/370248451*599074578^(1/2) 2178309000000091 a001 956722026041/969323029*228826127^(2/5) 2178309000000091 a001 956722026041/2537720636*228826127^(9/20) 2178309000000091 a001 20365011074/370248451*599074578^(11/21) 2178309000000091 a001 7778742049/370248451*599074578^(4/7) 2178309000000091 a001 1836311903/370248451*599074578^(9/14) 2178309000000091 a001 2971215073/370248451*599074578^(13/21) 2178309000000091 a001 32264490531/224056801*228826127^(1/2) 2178309000000091 a001 7778742049/599074578*228826127^(5/8) 2178309000000091 a001 165580141/1568397607*599074578^(5/6) 2178309000000091 a001 1134903170/370248451*599074578^(2/3) 2178309000000091 a001 591286729879/4106118243*228826127^(1/2) 2178309000000091 a001 774004377960/5374978561*228826127^(1/2) 2178309000000091 a001 4052739537881/28143753123*228826127^(1/2) 2178309000000091 a001 1515744265389/10525900321*228826127^(1/2) 2178309000000091 a001 3278735159921/22768774562*228826127^(1/2) 2178309000000091 a001 2504730781961/17393796001*228826127^(1/2) 2178309000000091 a001 956722026041/6643838879*228826127^(1/2) 2178309000000091 a001 267084832/33281921*228826127^(13/20) 2178309000000091 a001 365435296162/969323029*228826127^(9/20) 2178309000000091 a001 182717648081/1268860318*228826127^(1/2) 2178309000000091 a001 133957148/299537289*228826127^(4/5) 2178309000000091 a001 165580141/2537720636*599074578^(6/7) 2178309000000091 a001 165580141/6643838879*599074578^(19/21) 2178309000000091 a001 165580141/10749957122*599074578^(13/14) 2178309000000091 a001 165580141/17393796001*599074578^(20/21) 2178309000000091 a001 86267571272/1568397607*228826127^(11/20) 2178309000000091 a001 433494437/370248451*599074578^(5/7) 2178309000000091 a001 75283811239/1368706081*228826127^(11/20) 2178309000000091 a001 591286729879/10749957122*228826127^(11/20) 2178309000000091 a001 12585437040/228811001*228826127^(11/20) 2178309000000091 a001 4052739537881/73681302247*228826127^(11/20) 2178309000000091 a001 3536736619241/64300051206*228826127^(11/20) 2178309000000091 a001 6557470319842/119218851371*228826127^(11/20) 2178309000000091 a001 2504730781961/45537549124*228826127^(11/20) 2178309000000091 a001 956722026041/17393796001*228826127^(11/20) 2178309000000091 a001 1836311903/599074578*228826127^(7/10) 2178309000000091 a001 365435296162/6643838879*228826127^(11/20) 2178309000000091 a001 139583862445/969323029*228826127^(1/2) 2178309000000091 a001 165580141/969323029*599074578^(17/21) 2178309000000091 a001 139583862445/2537720636*228826127^(11/20) 2178309000000091 a001 32951280099/1568397607*228826127^(3/5) 2178309000000091 a001 233802911/199691526*228826127^(3/4) 2178309000000091 a001 86267571272/4106118243*228826127^(3/5) 2178309000000091 a001 225851433717/10749957122*228826127^(3/5) 2178309000000091 a001 591286729879/28143753123*228826127^(3/5) 2178309000000091 a001 1548008755920/73681302247*228826127^(3/5) 2178309000000091 a001 4052739537881/192900153618*228826127^(3/5) 2178309000000091 a001 225749145909/10745088481*228826127^(3/5) 2178309000000091 a001 6557470319842/312119004989*228826127^(3/5) 2178309000000091 a001 2504730781961/119218851371*228826127^(3/5) 2178309000000091 a001 956722026041/45537549124*228826127^(3/5) 2178309000000091 a001 365435296162/17393796001*228826127^(3/5) 2178309000000091 a001 139583862445/6643838879*228826127^(3/5) 2178309000000091 a001 20365011074/1568397607*228826127^(5/8) 2178309000000091 a001 53316291173/969323029*228826127^(11/20) 2178309000000091 a001 53316291173/2537720636*228826127^(3/5) 2178309000000091 a001 53316291173/4106118243*228826127^(5/8) 2178309000000091 a001 139583862445/10749957122*228826127^(5/8) 2178309000000091 a001 365435296162/28143753123*228826127^(5/8) 2178309000000091 a001 956722026041/73681302247*228826127^(5/8) 2178309000000091 a001 2504730781961/192900153618*228826127^(5/8) 2178309000000091 a001 10610209857723/817138163596*228826127^(5/8) 2178309000000091 a001 4052739537881/312119004989*228826127^(5/8) 2178309000000091 a001 1548008755920/119218851371*228826127^(5/8) 2178309000000091 a001 591286729879/45537549124*228826127^(5/8) 2178309000000091 a001 7787980473/599786069*228826127^(5/8) 2178309000000091 a001 86267571272/6643838879*228826127^(5/8) 2178309000000091 a001 12586269025/1568397607*228826127^(13/20) 2178309000000091 a001 6557470319842/370248451*228826127^(1/4) 2178309000000091 a001 32951280099/2537720636*228826127^(5/8) 2178309000000091 a001 10983760033/1368706081*228826127^(13/20) 2178309000000091 a001 43133785636/5374978561*228826127^(13/20) 2178309000000091 a001 75283811239/9381251041*228826127^(13/20) 2178309000000091 a001 591286729879/73681302247*228826127^(13/20) 2178309000000091 a001 86000486440/10716675201*228826127^(13/20) 2178309000000091 a001 4052739537881/505019158607*228826127^(13/20) 2178309000000091 a001 3278735159921/408569081798*228826127^(13/20) 2178309000000091 a001 2504730781961/312119004989*228826127^(13/20) 2178309000000091 a001 956722026041/119218851371*228826127^(13/20) 2178309000000091 a001 182717648081/22768774562*228826127^(13/20) 2178309000000091 a001 139583862445/17393796001*228826127^(13/20) 2178309000000091 a001 53316291173/6643838879*228826127^(13/20) 2178309000000091 a001 20365011074/969323029*228826127^(3/5) 2178309000000091 a001 10182505537/1268860318*228826127^(13/20) 2178309000000091 a001 686789568/224056801*228826127^(7/10) 2178309000000091 a001 12586269025/969323029*228826127^(5/8) 2178309000000091 a001 2504730781961/370248451*228826127^(3/10) 2178309000000091 a001 267914296/1568397607*228826127^(17/20) 2178309000000091 a001 12586269025/4106118243*228826127^(7/10) 2178309000000091 a001 32951280099/10749957122*228826127^(7/10) 2178309000000091 a001 86267571272/28143753123*228826127^(7/10) 2178309000000091 a001 32264490531/10525900321*228826127^(7/10) 2178309000000091 a001 591286729879/192900153618*228826127^(7/10) 2178309000000091 a001 1515744265389/494493258286*228826127^(7/10) 2178309000000091 a001 2504730781961/817138163596*228826127^(7/10) 2178309000000091 a001 956722026041/312119004989*228826127^(7/10) 2178309000000091 a001 365435296162/119218851371*228826127^(7/10) 2178309000000091 a001 139583862445/45537549124*228826127^(7/10) 2178309000000091 a001 53316291173/17393796001*228826127^(7/10) 2178309000000091 a001 20365011074/6643838879*228826127^(7/10) 2178309000000091 a001 7778742049/969323029*228826127^(13/20) 2178309000000091 a001 7778742049/2537720636*228826127^(7/10) 2178309000000091 a001 1836311903/1568397607*228826127^(3/4) 2178309000000091 a001 956722026041/370248451*228826127^(7/20) 2178309000000091 a001 66978574/634430159*228826127^(7/8) 2178309000000091 a001 1602508992/1368706081*228826127^(3/4) 2178309000000091 a001 12586269025/10749957122*228826127^(3/4) 2178309000000091 a001 10983760033/9381251041*228826127^(3/4) 2178309000000091 a001 86267571272/73681302247*228826127^(3/4) 2178309000000091 a001 75283811239/64300051206*228826127^(3/4) 2178309000000091 a001 2504730781961/2139295485799*228826127^(3/4) 2178309000000091 a001 365435296162/312119004989*228826127^(3/4) 2178309000000091 a001 139583862445/119218851371*228826127^(3/4) 2178309000000091 a001 53316291173/45537549124*228826127^(3/4) 2178309000000091 a001 20365011074/17393796001*228826127^(3/4) 2178309000000091 a001 267914296/4106118243*228826127^(9/10) 2178309000000091 a001 7778742049/6643838879*228826127^(3/4) 2178309000000091 a001 2971215073/969323029*228826127^(7/10) 2178309000000091 a001 591286729879/370248451*228826127^(3/8) 2178309000000091 a001 701408733/1568397607*228826127^(4/5) 2178309000000091 a001 2971215073/2537720636*228826127^(3/4) 2178309000000091 a001 165580141/370248451*23725150497407^(1/2) 2178309000000091 a001 165580141/370248451*505019158607^(4/7) 2178309000000091 a001 165580141/370248451*73681302247^(8/13) 2178309000000091 a001 27416783093579881/12586269025 2178309000000091 a001 165580141/370248451*10749957122^(2/3) 2178309000000091 a001 165580141/370248451*4106118243^(16/23) 2178309000000091 a001 165580141/370248451*1568397607^(8/11) 2178309000000091 a001 365435296162/370248451*228826127^(2/5) 2178309000000091 a001 701408733/141422324*141422324^(9/13) 2178309000000091 a001 1836311903/4106118243*228826127^(4/5) 2178309000000091 a001 2403763488/5374978561*228826127^(4/5) 2178309000000091 a001 12586269025/28143753123*228826127^(4/5) 2178309000000091 a001 32951280099/73681302247*228826127^(4/5) 2178309000000091 a001 43133785636/96450076809*228826127^(4/5) 2178309000000091 a001 225851433717/505019158607*228826127^(4/5) 2178309000000091 a001 10610209857723/23725150497407*228826127^(4/5) 2178309000000091 a001 182717648081/408569081798*228826127^(4/5) 2178309000000091 a001 139583862445/312119004989*228826127^(4/5) 2178309000000091 a001 53316291173/119218851371*228826127^(4/5) 2178309000000091 a001 10182505537/22768774562*228826127^(4/5) 2178309000000091 a001 7778742049/17393796001*228826127^(4/5) 2178309000000091 a001 2971215073/6643838879*228826127^(4/5) 2178309000000091 a001 133957148/5374978561*228826127^(19/20) 2178309000000091 a001 4052739537881/228826127*87403803^(5/19) 2178309000000091 a001 1134903170/969323029*228826127^(3/4) 2178309000000091 a001 567451585/1268860318*228826127^(4/5) 2178309000000091 a001 233802911/1368706081*228826127^(17/20) 2178309000000091 a001 139583862445/370248451*228826127^(9/20) 2178309000000091 a001 1836311903/10749957122*228826127^(17/20) 2178309000000091 a001 1602508992/9381251041*228826127^(17/20) 2178309000000091 a001 12586269025/73681302247*228826127^(17/20) 2178309000000091 a001 10983760033/64300051206*228826127^(17/20) 2178309000000091 a001 86267571272/505019158607*228826127^(17/20) 2178309000000091 a001 75283811239/440719107401*228826127^(17/20) 2178309000000091 a001 2504730781961/14662949395604*228826127^(17/20) 2178309000000091 a001 139583862445/817138163596*228826127^(17/20) 2178309000000091 a001 53316291173/312119004989*228826127^(17/20) 2178309000000091 a001 20365011074/119218851371*228826127^(17/20) 2178309000000091 a001 7778742049/45537549124*228826127^(17/20) 2178309000000091 a001 2971215073/17393796001*228826127^(17/20) 2178309000000091 a001 701408733/6643838879*228826127^(7/8) 2178309000000091 a001 1134903170/6643838879*228826127^(17/20) 2178309000000091 a001 1836311903/17393796001*228826127^(7/8) 2178309000000091 a001 1201881744/11384387281*228826127^(7/8) 2178309000000091 a001 12586269025/119218851371*228826127^(7/8) 2178309000000091 a001 32951280099/312119004989*228826127^(7/8) 2178309000000091 a001 21566892818/204284540899*228826127^(7/8) 2178309000000091 a001 225851433717/2139295485799*228826127^(7/8) 2178309000000091 a001 182717648081/1730726404001*228826127^(7/8) 2178309000000091 a001 139583862445/1322157322203*228826127^(7/8) 2178309000000091 a001 53316291173/505019158607*228826127^(7/8) 2178309000000091 a001 10182505537/96450076809*228826127^(7/8) 2178309000000091 a001 165580141/370248451*599074578^(16/21) 2178309000000091 a001 7778742049/73681302247*228826127^(7/8) 2178309000000091 a001 2971215073/28143753123*228826127^(7/8) 2178309000000091 a001 701408733/10749957122*228826127^(9/10) 2178309000000091 a001 567451585/70711162*141422324^(2/3) 2178309000000091 a001 53316291173/370248451*228826127^(1/2) 2178309000000091 a001 567451585/5374978561*228826127^(7/8) 2178309000000091 a001 1836311903/28143753123*228826127^(9/10) 2178309000000091 a001 686789568/10525900321*228826127^(9/10) 2178309000000091 a001 12586269025/192900153618*228826127^(9/10) 2178309000000091 a001 32951280099/505019158607*228826127^(9/10) 2178309000000091 a001 86267571272/1322157322203*228826127^(9/10) 2178309000000091 a001 32264490531/494493258286*228826127^(9/10) 2178309000000091 a001 1548008755920/23725150497407*228826127^(9/10) 2178309000000091 a001 139583862445/2139295485799*228826127^(9/10) 2178309000000091 a001 53316291173/817138163596*228826127^(9/10) 2178309000000091 a001 20365011074/312119004989*228826127^(9/10) 2178309000000091 a001 7778742049/119218851371*228826127^(9/10) 2178309000000091 a001 2971215073/45537549124*228826127^(9/10) 2178309000000091 a001 1134903170/17393796001*228826127^(9/10) 2178309000000091 a001 433494437/969323029*228826127^(4/5) 2178309000000091 a001 433494437/2537720636*228826127^(17/20) 2178309000000091 a001 433494437/4106118243*228826127^(7/8) 2178309000000091 a001 233802911/9381251041*228826127^(19/20) 2178309000000091 a001 20365011074/370248451*228826127^(11/20) 2178309000000091 a001 1836311903/73681302247*228826127^(19/20) 2178309000000091 a001 267084832/10716675201*228826127^(19/20) 2178309000000091 a001 12586269025/505019158607*228826127^(19/20) 2178309000000091 a001 10983760033/440719107401*228826127^(19/20) 2178309000000091 a001 43133785636/1730726404001*228826127^(19/20) 2178309000000091 a001 75283811239/3020733700601*228826127^(19/20) 2178309000000091 a001 182717648081/7331474697802*228826127^(19/20) 2178309000000091 a001 139583862445/5600748293801*228826127^(19/20) 2178309000000091 a001 53316291173/2139295485799*228826127^(19/20) 2178309000000091 a001 10182505537/408569081798*228826127^(19/20) 2178309000000091 a001 7778742049/312119004989*228826127^(19/20) 2178309000000091 a001 2971215073/119218851371*228826127^(19/20) 2178309000000091 a001 433494437/6643838879*228826127^(9/10) 2178309000000091 a001 567451585/22768774562*228826127^(19/20) 2178309000000091 a001 3536736619241/29134601*33385282^(1/6) 2178309000000091 a001 7778742049/370248451*228826127^(3/5) 2178309000000091 a001 165580141/141422324*141422324^(10/13) 2178309000000091 a001 433494437/17393796001*228826127^(19/20) 2178309000000091 a001 4807526976/370248451*228826127^(5/8) 2178309000000091 a001 2971215073/141422324*141422324^(8/13) 2178309000000091 a001 2971215073/370248451*228826127^(13/20) 2178309000000091 a001 1134903170/370248451*228826127^(7/10) 2178309000000091 a001 1548008755920/228826127*87403803^(6/19) 2178309000000091 a001 433494437/370248451*228826127^(3/4) 2178309000000091 a001 12586269025/141422324*141422324^(7/13) 2178309000000091 a001 165580141/1568397607*228826127^(7/8) 2178309000000091 a001 165580141/969323029*228826127^(17/20) 2178309000000091 a001 165580141/2537720636*228826127^(9/10) 2178309000000091 a001 165580141/6643838879*228826127^(19/20) 2178309000000091 a001 53316291173/141422324*141422324^(6/13) 2178309000000091 a001 591286729879/228826127*87403803^(7/19) 2178309000000091 a001 165580141/370248451*228826127^(4/5) 2178309000000091 a001 225851433717/141422324*141422324^(5/13) 2178309000000091 a001 63245986/228826127*2537720636^(11/15) 2178309000000091 a001 6472224534451830/2971215073 2178309000000091 a001 63245986/228826127*45537549124^(11/17) 2178309000000091 a001 63245986/228826127*312119004989^(3/5) 2178309000000091 a001 102334155/141422324*9062201101803^(1/2) 2178309000000091 a001 63245986/228826127*192900153618^(11/18) 2178309000000091 a001 63245986/228826127*10749957122^(11/16) 2178309000000091 a001 63245986/228826127*1568397607^(3/4) 2178309000000091 a001 3536736619241/199691526*87403803^(5/19) 2178309000000091 a001 63245986/228826127*599074578^(11/14) 2178309000000091 a001 591286729879/141422324*141422324^(1/3) 2178309000000091 a001 956722026041/141422324*141422324^(4/13) 2178309000000091 a001 225851433717/228826127*87403803^(8/19) 2178309000000091 a001 4052739537881/141422324*141422324^(3/13) 2178309000000091 a001 4052739537881/599074578*87403803^(6/19) 2178309000000091 a001 1515744265389/224056801*87403803^(6/19) 2178309000000091 a001 6557470319842/370248451*87403803^(5/19) 2178309000000091 a001 6557470319842/969323029*87403803^(6/19) 2178309000000091 a001 86267571272/228826127*87403803^(9/19) 2178309000000091 a001 86000486440/33281921*87403803^(7/19) 2178309000000091 a001 53316291173/228826127*87403803^(1/2) 2178309000000091 a001 31622993/299537289*2537720636^(7/9) 2178309000000091 a001 1303423370308912/598364773 2178309000000091 a001 31622993/299537289*17393796001^(5/7) 2178309000000091 a001 31622993/299537289*312119004989^(7/11) 2178309000000091 a001 31622993/299537289*14662949395604^(5/9) 2178309000000091 a001 31622993/299537289*505019158607^(5/8) 2178309000000091 a001 31622993/299537289*28143753123^(7/10) 2178309000000091 a001 4052739537881/1568397607*87403803^(7/19) 2178309000000091 a001 3536736619241/1368706081*87403803^(7/19) 2178309000000091 a001 3278735159921/1268860318*87403803^(7/19) 2178309000000091 a001 2504730781961/370248451*87403803^(6/19) 2178309000000091 a001 2504730781961/969323029*87403803^(7/19) 2178309000000091 a001 701408733/141422324*2537720636^(3/5) 2178309000000091 a001 31622993/299537289*599074578^(5/6) 2178309000000091 a001 22180643453797869/10182505537 2178309000000091 a001 701408733/141422324*45537549124^(9/17) 2178309000000091 a001 701408733/141422324*817138163596^(9/19) 2178309000000091 a001 701408733/141422324*14662949395604^(3/7) 2178309000000091 a001 701408733/141422324*192900153618^(1/2) 2178309000000091 a001 701408733/141422324*10749957122^(9/16) 2178309000000091 a001 32951280099/228826127*87403803^(10/19) 2178309000000091 a001 63245986/4106118243*2537720636^(13/15) 2178309000000091 a001 1836311903/141422324*2537720636^(5/9) 2178309000000091 a001 63245986/17393796001*2537720636^(14/15) 2178309000000091 a001 63245986/6643838879*2537720636^(8/9) 2178309000000091 a001 12586269025/141422324*2537720636^(7/15) 2178309000000091 a001 10182505537/70711162*2537720636^(4/9) 2178309000000091 a001 53316291173/141422324*2537720636^(2/5) 2178309000000091 a001 2971215073/141422324*2537720636^(8/15) 2178309000000091 a001 63245986/4106118243*45537549124^(13/17) 2178309000000091 a001 116139356908771358/53316291173 2178309000000091 a001 1836311903/141422324*312119004989^(5/11) 2178309000000091 a001 1836311903/141422324*3461452808002^(5/12) 2178309000000091 a001 63245986/4106118243*192900153618^(13/18) 2178309000000091 a001 63245986/4106118243*73681302247^(3/4) 2178309000000091 a001 1836311903/141422324*28143753123^(1/2) 2178309000000091 a001 63245986/4106118243*10749957122^(13/16) 2178309000000091 a001 225851433717/141422324*2537720636^(1/3) 2178309000000091 a001 956722026041/141422324*2537720636^(4/15) 2178309000000091 a001 2504730781961/141422324*2537720636^(2/9) 2178309000000091 a001 4052739537881/141422324*2537720636^(1/5) 2178309000000091 a001 304056783818718336/139583862445 2178309000000091 a001 12586269025/141422324*17393796001^(3/7) 2178309000000091 a001 12586269025/141422324*45537549124^(7/17) 2178309000000091 a001 12586269025/141422324*14662949395604^(1/3) 2178309000000091 a001 12586269025/141422324*192900153618^(7/18) 2178309000000091 a001 182717648081/70711162*17393796001^(2/7) 2178309000000091 a001 63245986/73681302247*45537549124^(15/17) 2178309000000091 a001 10610209857723/141422324*17393796001^(1/7) 2178309000000091 a001 63245986/312119004989*45537549124^(16/17) 2178309000000091 a001 63245986/73681302247*312119004989^(9/11) 2178309000000091 a001 21566892818/35355581*45537549124^(1/3) 2178309000000091 a001 2084036199823432614/956722026041 2178309000000091 a001 63245986/73681302247*192900153618^(5/6) 2178309000000091 a001 225851433717/141422324*45537549124^(5/17) 2178309000000091 a001 956722026041/141422324*45537549124^(4/17) 2178309000000091 a001 53316291173/141422324*45537549124^(6/17) 2178309000000091 a001 4052739537881/141422324*45537549124^(3/17) 2178309000000091 a001 5456077604922914192/2504730781961 2178309000000091 a001 225851433717/141422324*312119004989^(3/11) 2178309000000091 a001 2504730781961/141422324*312119004989^(2/11) 2178309000000091 a001 10610209857723/141422324*14662949395604^(1/9) 2178309000000091 a006 5^(1/2)*Fibonacci(71)/Lucas(39)/sqrt(5) 2178309000000091 a001 182717648081/70711162*14662949395604^(2/9) 2178309000000091 a001 139583862445/141422324*23725150497407^(1/4) 2178309000000091 a001 63245986/1322157322203*192900153618^(17/18) 2178309000000091 a001 3278735159921/70711162*73681302247^(2/13) 2178309000000091 a001 956722026041/141422324*73681302247^(3/13) 2178309000000091 a001 591286729879/141422324*73681302247^(1/4) 2178309000000091 a001 139583862445/141422324*73681302247^(4/13) 2178309000000091 a001 1686020702549740789/774004377960 2178309000000091 a001 53316291173/141422324*192900153618^(1/3) 2178309000000091 a001 63245986/312119004989*73681302247^(12/13) 2178309000000091 a001 2504730781961/141422324*28143753123^(1/5) 2178309000000091 a001 225851433717/141422324*28143753123^(3/10) 2178309000000091 a001 31622993/22768774562*312119004989^(4/5) 2178309000000091 a001 10182505537/70711162*23725150497407^(5/16) 2178309000000091 a001 31622993/22768774562*23725150497407^(11/16) 2178309000000091 a001 10182505537/70711162*505019158607^(5/14) 2178309000000091 a001 10182505537/70711162*73681302247^(5/13) 2178309000000091 a001 31622993/22768774562*73681302247^(11/13) 2178309000000091 a001 63245986/73681302247*28143753123^(9/10) 2178309000000091 a001 10182505537/70711162*28143753123^(2/5) 2178309000000091 a001 3278735159921/70711162*10749957122^(1/6) 2178309000000091 a001 4052739537881/141422324*10749957122^(3/16) 2178309000000091 a001 2504730781961/141422324*10749957122^(5/24) 2178309000000091 a001 956722026041/141422324*10749957122^(1/4) 2178309000000091 a001 12586269025/141422324*10749957122^(7/16) 2178309000000091 a001 225851433717/141422324*10749957122^(5/16) 2178309000000091 a001 139583862445/141422324*10749957122^(1/3) 2178309000000091 a001 63245986/17393796001*45537549124^(14/17) 2178309000000091 a001 7778742049/141422324*312119004989^(2/5) 2178309000000091 a001 63245986/17393796001*14662949395604^(2/3) 2178309000000091 a001 37844170056051178/17373187209 2178309000000091 a001 53316291173/141422324*10749957122^(3/8) 2178309000000091 a001 63245986/17393796001*192900153618^(7/9) 2178309000000091 a001 10182505537/70711162*10749957122^(5/12) 2178309000000091 a001 7778742049/141422324*10749957122^(11/24) 2178309000000091 a001 63245986/73681302247*10749957122^(15/16) 2178309000000091 a001 63245986/119218851371*10749957122^(23/24) 2178309000000091 a001 31622993/22768774562*10749957122^(11/12) 2178309000000091 a001 3278735159921/70711162*4106118243^(4/23) 2178309000000091 a001 63245986/17393796001*10749957122^(7/8) 2178309000000091 a001 2504730781961/141422324*4106118243^(5/23) 2178309000000091 a001 956722026041/141422324*4106118243^(6/23) 2178309000000091 a001 182717648081/70711162*4106118243^(7/23) 2178309000000091 a001 139583862445/141422324*4106118243^(8/23) 2178309000000091 a001 1201881744/35355581*4106118243^(1/2) 2178309000000091 a001 2971215073/141422324*45537549124^(8/17) 2178309000000091 a001 63245986/6643838879*312119004989^(8/11) 2178309000000091 a001 2971215073/141422324*14662949395604^(8/21) 2178309000000091 a001 2971215073/141422324*192900153618^(4/9) 2178309000000091 a001 93958713454973489/43133785636 2178309000000091 a001 2971215073/141422324*73681302247^(6/13) 2178309000000091 a001 63245986/6643838879*73681302247^(10/13) 2178309000000091 a001 53316291173/141422324*4106118243^(9/23) 2178309000000091 a001 63245986/6643838879*28143753123^(4/5) 2178309000000091 a001 10182505537/70711162*4106118243^(10/23) 2178309000000091 a001 2971215073/141422324*10749957122^(1/2) 2178309000000091 a001 63245986/6643838879*10749957122^(5/6) 2178309000000091 a001 7778742049/141422324*4106118243^(11/23) 2178309000000091 a001 2971215073/141422324*4106118243^(12/23) 2178309000000091 a001 31622993/22768774562*4106118243^(22/23) 2178309000000091 a001 63245986/17393796001*4106118243^(21/23) 2178309000000091 a001 3278735159921/70711162*1568397607^(2/11) 2178309000000091 a001 63245986/6643838879*4106118243^(20/23) 2178309000000091 a001 2504730781961/141422324*1568397607^(5/22) 2178309000000091 a001 387002188980/35355581*1568397607^(1/4) 2178309000000091 a001 956722026041/141422324*1568397607^(3/11) 2178309000000091 a001 182717648081/70711162*1568397607^(7/22) 2178309000000091 a001 139583862445/141422324*1568397607^(4/11) 2178309000000091 a001 31622993/1268860318*817138163596^(2/3) 2178309000000091 a001 567451585/70711162*73681302247^(1/2) 2178309000000091 a001 308060386271140/141421803 2178309000000091 a001 567451585/70711162*10749957122^(13/24) 2178309000000091 a001 31622993/1268860318*10749957122^(19/24) 2178309000000091 a001 53316291173/141422324*1568397607^(9/22) 2178309000000091 a001 10182505537/70711162*1568397607^(5/11) 2178309000000091 a001 567451585/70711162*4106118243^(13/23) 2178309000000091 a001 31622993/1268860318*4106118243^(19/23) 2178309000000091 a001 7778742049/141422324*1568397607^(1/2) 2178309000000091 a001 2971215073/141422324*1568397607^(6/11) 2178309000000091 a001 63245986/17393796001*1568397607^(21/22) 2178309000000091 a001 63245986/6643838879*1568397607^(10/11) 2178309000000091 a001 567451585/70711162*1568397607^(13/22) 2178309000000091 a001 10610209857723/141422324*599074578^(1/6) 2178309000000091 a001 31622993/1268860318*1568397607^(19/22) 2178309000000091 a001 3278735159921/70711162*599074578^(4/21) 2178309000000091 a001 4052739537881/141422324*599074578^(3/14) 2178309000000091 a001 2504730781961/141422324*599074578^(5/21) 2178309000000091 a001 956722026041/141422324*599074578^(2/7) 2178309000000091 a001 182717648081/70711162*599074578^(1/3) 2178309000000091 a001 63245986/969323029*2537720636^(4/5) 2178309000000091 a001 225851433717/141422324*599074578^(5/14) 2178309000000091 a001 139583862445/141422324*599074578^(8/21) 2178309000000091 a001 433494437/141422324*17393796001^(4/7) 2178309000000091 a001 63245986/969323029*45537549124^(12/17) 2178309000000091 a001 433494437/141422324*14662949395604^(4/9) 2178309000000091 a001 433494437/141422324*505019158607^(1/2) 2178309000000091 a001 63245986/969323029*192900153618^(2/3) 2178309000000091 a001 433494437/141422324*73681302247^(7/13) 2178309000000091 a001 63245986/969323029*73681302247^(9/13) 2178309000000091 a001 27416783093579882/12586269025 2178309000000091 a001 433494437/141422324*10749957122^(7/12) 2178309000000091 a001 63245986/969323029*10749957122^(3/4) 2178309000000091 a001 433494437/141422324*4106118243^(14/23) 2178309000000091 a001 63245986/969323029*4106118243^(18/23) 2178309000000091 a001 53316291173/141422324*599074578^(3/7) 2178309000000091 a001 433494437/141422324*1568397607^(7/11) 2178309000000091 a001 10182505537/70711162*599074578^(10/21) 2178309000000091 a001 701408733/141422324*599074578^(9/14) 2178309000000091 a001 12586269025/141422324*599074578^(1/2) 2178309000000091 a001 63245986/969323029*1568397607^(9/11) 2178309000000091 a001 7778742049/141422324*599074578^(11/21) 2178309000000091 a001 2971215073/141422324*599074578^(4/7) 2178309000000091 a001 567451585/70711162*599074578^(13/21) 2178309000000091 a001 591286729879/599074578*87403803^(8/19) 2178309000000091 a001 63245986/4106118243*599074578^(13/14) 2178309000000091 a001 31622993/1268860318*599074578^(19/21) 2178309000000091 a001 63245986/6643838879*599074578^(20/21) 2178309000000091 a001 433494437/141422324*599074578^(2/3) 2178309000000091 a001 63245986/969323029*599074578^(6/7) 2178309000000091 a001 3278735159921/70711162*228826127^(1/5) 2178309000000091 a001 1548008755920/1568397607*87403803^(8/19) 2178309000000091 a001 2504730781961/141422324*228826127^(1/4) 2178309000000091 a001 4052739537881/4106118243*87403803^(8/19) 2178309000000091 a001 4807525989/4870846*87403803^(8/19) 2178309000000091 a001 6557470319842/6643838879*87403803^(8/19) 2178309000000091 a001 2504730781961/2537720636*87403803^(8/19) 2178309000000091 a001 956722026041/370248451*87403803^(7/19) 2178309000000091 a001 956722026041/141422324*228826127^(3/10) 2178309000000091 a001 956722026041/969323029*87403803^(8/19) 2178309000000091 a001 182717648081/70711162*228826127^(7/20) 2178309000000091 a001 12586269025/228826127*87403803^(11/19) 2178309000000091 a001 225851433717/141422324*228826127^(3/8) 2178309000000091 a001 165580141/141422324*2537720636^(2/3) 2178309000000091 a001 63245986/370248451*45537549124^(2/3) 2178309000000091 a001 165580141/141422324*45537549124^(10/17) 2178309000000091 a001 165580141/141422324*312119004989^(6/11) 2178309000000091 a001 165580141/141422324*14662949395604^(10/21) 2178309000000091 a001 165580141/141422324*192900153618^(5/9) 2178309000000091 a001 165580141/141422324*28143753123^(3/5) 2178309000000091 a001 165580141/141422324*10749957122^(5/8) 2178309000000091 a001 63245986/370248451*10749957122^(17/24) 2178309000000091 a001 5236139639782013/2403763488 2178309000000091 a001 165580141/141422324*4106118243^(15/23) 2178309000000091 a001 63245986/370248451*4106118243^(17/23) 2178309000000091 a001 165580141/141422324*1568397607^(15/22) 2178309000000091 a001 63245986/370248451*1568397607^(17/22) 2178309000000091 a001 139583862445/141422324*228826127^(2/5) 2178309000000091 a001 53316291173/141422324*228826127^(9/20) 2178309000000091 a001 267913919/710646*87403803^(9/19) 2178309000000091 a001 165580141/141422324*599074578^(5/7) 2178309000000091 a001 10182505537/70711162*228826127^(1/2) 2178309000000091 a001 63245986/370248451*599074578^(17/21) 2178309000000091 a001 7778742049/141422324*228826127^(11/20) 2178309000000091 a001 2971215073/141422324*228826127^(3/5) 2178309000000091 a001 591286729879/1568397607*87403803^(9/19) 2178309000000091 a001 1836311903/141422324*228826127^(5/8) 2178309000000091 a001 516002918640/1368706081*87403803^(9/19) 2178309000000091 a001 4052739537881/10749957122*87403803^(9/19) 2178309000000091 a001 3536736619241/9381251041*87403803^(9/19) 2178309000000091 a001 6557470319842/17393796001*87403803^(9/19) 2178309000000091 a001 2504730781961/6643838879*87403803^(9/19) 2178309000000091 a001 956722026041/2537720636*87403803^(9/19) 2178309000000091 a001 365435296162/370248451*87403803^(8/19) 2178309000000091 a001 567451585/70711162*228826127^(13/20) 2178309000000091 a001 139583862445/599074578*87403803^(1/2) 2178309000000091 a001 365435296162/969323029*87403803^(9/19) 2178309000000091 a001 102287808/4868641*87403803^(12/19) 2178309000000091 a001 31622993/299537289*228826127^(7/8) 2178309000000091 a001 433494437/141422324*228826127^(7/10) 2178309000000091 a001 365435296162/1568397607*87403803^(1/2) 2178309000000091 a001 956722026041/4106118243*87403803^(1/2) 2178309000000091 a001 2504730781961/10749957122*87403803^(1/2) 2178309000000091 a001 6557470319842/28143753123*87403803^(1/2) 2178309000000091 a001 10610209857723/45537549124*87403803^(1/2) 2178309000000091 a001 4052739537881/17393796001*87403803^(1/2) 2178309000000091 a001 1548008755920/6643838879*87403803^(1/2) 2178309000000091 a001 591286729879/2537720636*87403803^(1/2) 2178309000000091 a001 43133785636/299537289*87403803^(10/19) 2178309000000091 a001 225851433717/969323029*87403803^(1/2) 2178309000000091 a001 63245986/969323029*228826127^(9/10) 2178309000000091 a001 31622993/1268860318*228826127^(19/20) 2178309000000091 a001 4052739537881/87403803*33385282^(2/9) 2178309000000091 a001 32264490531/224056801*87403803^(10/19) 2178309000000091 a001 591286729879/4106118243*87403803^(10/19) 2178309000000091 a001 774004377960/5374978561*87403803^(10/19) 2178309000000091 a001 4052739537881/28143753123*87403803^(10/19) 2178309000000091 a001 1515744265389/10525900321*87403803^(10/19) 2178309000000091 a001 3278735159921/22768774562*87403803^(10/19) 2178309000000091 a001 2504730781961/17393796001*87403803^(10/19) 2178309000000091 a001 956722026041/6643838879*87403803^(10/19) 2178309000000091 a001 182717648081/1268860318*87403803^(10/19) 2178309000000091 a001 139583862445/370248451*87403803^(9/19) 2178309000000091 a001 139583862445/969323029*87403803^(10/19) 2178309000000091 a001 1836311903/228826127*87403803^(13/19) 2178309000000091 a001 165580141/141422324*228826127^(3/4) 2178309000000091 a001 102334155/228826127*87403803^(16/19) 2178309000000091 a001 86267571272/370248451*87403803^(1/2) 2178309000000091 a001 10983760033/199691526*87403803^(11/19) 2178309000000091 a001 63245986/370248451*228826127^(17/20) 2178309000000091 a001 86267571272/1568397607*87403803^(11/19) 2178309000000091 a001 75283811239/1368706081*87403803^(11/19) 2178309000000091 a001 591286729879/10749957122*87403803^(11/19) 2178309000000091 a001 12585437040/228811001*87403803^(11/19) 2178309000000091 a001 4052739537881/73681302247*87403803^(11/19) 2178309000000091 a001 3536736619241/64300051206*87403803^(11/19) 2178309000000091 a001 6557470319842/119218851371*87403803^(11/19) 2178309000000091 a001 2504730781961/45537549124*87403803^(11/19) 2178309000000091 a001 956722026041/17393796001*87403803^(11/19) 2178309000000091 a001 365435296162/6643838879*87403803^(11/19) 2178309000000091 a001 139583862445/2537720636*87403803^(11/19) 2178309000000091 a001 53316291173/370248451*87403803^(10/19) 2178309000000091 a001 53316291173/969323029*87403803^(11/19) 2178309000000091 a001 701408733/228826127*87403803^(14/19) 2178309000000091 a001 3278735159921/70711162*87403803^(4/19) 2178309000000091 a001 12586269025/599074578*87403803^(12/19) 2178309000000091 a001 267914296/228826127*87403803^(15/19) 2178309000000091 a001 32951280099/1568397607*87403803^(12/19) 2178309000000091 a001 86267571272/4106118243*87403803^(12/19) 2178309000000091 a001 225851433717/10749957122*87403803^(12/19) 2178309000000091 a001 591286729879/28143753123*87403803^(12/19) 2178309000000091 a001 1548008755920/73681302247*87403803^(12/19) 2178309000000091 a001 4052739537881/192900153618*87403803^(12/19) 2178309000000091 a001 225749145909/10745088481*87403803^(12/19) 2178309000000091 a001 6557470319842/312119004989*87403803^(12/19) 2178309000000091 a001 2504730781961/119218851371*87403803^(12/19) 2178309000000091 a001 956722026041/45537549124*87403803^(12/19) 2178309000000091 a001 365435296162/17393796001*87403803^(12/19) 2178309000000091 a001 139583862445/6643838879*87403803^(12/19) 2178309000000091 a001 53316291173/2537720636*87403803^(12/19) 2178309000000091 a001 20365011074/370248451*87403803^(11/19) 2178309000000091 a001 20365011074/969323029*87403803^(12/19) 2178309000000091 a001 2504730781961/141422324*87403803^(5/19) 2178309000000092 a001 267084832/33281921*87403803^(13/19) 2178309000000092 a001 12586269025/1568397607*87403803^(13/19) 2178309000000092 a001 10983760033/1368706081*87403803^(13/19) 2178309000000092 a001 43133785636/5374978561*87403803^(13/19) 2178309000000092 a001 75283811239/9381251041*87403803^(13/19) 2178309000000092 a001 591286729879/73681302247*87403803^(13/19) 2178309000000092 a001 86000486440/10716675201*87403803^(13/19) 2178309000000092 a001 4052739537881/505019158607*87403803^(13/19) 2178309000000092 a001 3278735159921/408569081798*87403803^(13/19) 2178309000000092 a001 2504730781961/312119004989*87403803^(13/19) 2178309000000092 a001 956722026041/119218851371*87403803^(13/19) 2178309000000092 a001 182717648081/22768774562*87403803^(13/19) 2178309000000092 a001 139583862445/17393796001*87403803^(13/19) 2178309000000092 a001 53316291173/6643838879*87403803^(13/19) 2178309000000092 a001 10182505537/1268860318*87403803^(13/19) 2178309000000092 a001 7778742049/370248451*87403803^(12/19) 2178309000000092 a001 7778742049/969323029*87403803^(13/19) 2178309000000092 a001 956722026041/141422324*87403803^(6/19) 2178309000000092 a001 2504730781961/87403803*33385282^(1/4) 2178309000000092 a001 1836311903/599074578*87403803^(14/19) 2178309000000092 a001 34111385/199691526*87403803^(17/19) 2178309000000092 a001 686789568/224056801*87403803^(14/19) 2178309000000092 a001 12586269025/4106118243*87403803^(14/19) 2178309000000092 a001 32951280099/10749957122*87403803^(14/19) 2178309000000092 a001 86267571272/28143753123*87403803^(14/19) 2178309000000092 a001 32264490531/10525900321*87403803^(14/19) 2178309000000092 a001 591286729879/192900153618*87403803^(14/19) 2178309000000092 a001 1548008755920/505019158607*87403803^(14/19) 2178309000000092 a001 1515744265389/494493258286*87403803^(14/19) 2178309000000092 a001 2504730781961/817138163596*87403803^(14/19) 2178309000000092 a001 956722026041/312119004989*87403803^(14/19) 2178309000000092 a001 365435296162/119218851371*87403803^(14/19) 2178309000000092 a001 139583862445/45537549124*87403803^(14/19) 2178309000000092 a001 53316291173/17393796001*87403803^(14/19) 2178309000000092 a001 20365011074/6643838879*87403803^(14/19) 2178309000000092 a001 7778742049/2537720636*87403803^(14/19) 2178309000000092 a001 2971215073/370248451*87403803^(13/19) 2178309000000092 a001 2971215073/969323029*87403803^(14/19) 2178309000000092 a001 182717648081/70711162*87403803^(7/19) 2178309000000092 a001 31622993/70711162*23725150497407^(1/2) 2178309000000092 a001 31622993/70711162*505019158607^(4/7) 2178309000000092 a001 31622993/70711162*73681302247^(8/13) 2178309000000092 a001 31622993/70711162*10749957122^(2/3) 2178309000000092 a001 31622993/70711162*4106118243^(16/23) 2178309000000092 a001 4000054745112196/1836311903 2178309000000092 a001 233802911/199691526*87403803^(15/19) 2178309000000092 a001 31622993/70711162*1568397607^(8/11) 2178309000000092 a001 31622993/70711162*599074578^(16/21) 2178309000000092 a001 1836311903/1568397607*87403803^(15/19) 2178309000000092 a001 1602508992/1368706081*87403803^(15/19) 2178309000000092 a001 12586269025/10749957122*87403803^(15/19) 2178309000000092 a001 10983760033/9381251041*87403803^(15/19) 2178309000000092 a001 86267571272/73681302247*87403803^(15/19) 2178309000000092 a001 75283811239/64300051206*87403803^(15/19) 2178309000000092 a001 2504730781961/2139295485799*87403803^(15/19) 2178309000000092 a001 365435296162/312119004989*87403803^(15/19) 2178309000000092 a001 139583862445/119218851371*87403803^(15/19) 2178309000000092 a001 53316291173/45537549124*87403803^(15/19) 2178309000000092 a001 20365011074/17393796001*87403803^(15/19) 2178309000000092 a001 7778742049/6643838879*87403803^(15/19) 2178309000000092 a001 2971215073/2537720636*87403803^(15/19) 2178309000000092 a001 1134903170/370248451*87403803^(14/19) 2178309000000092 a001 14619165/224056801*87403803^(18/19) 2178309000000092 a001 1134903170/969323029*87403803^(15/19) 2178309000000092 a001 133957148/299537289*87403803^(16/19) 2178309000000092 a001 139583862445/141422324*87403803^(8/19) 2178309000000092 a001 701408733/1568397607*87403803^(16/19) 2178309000000092 a001 1836311903/4106118243*87403803^(16/19) 2178309000000092 a001 2403763488/5374978561*87403803^(16/19) 2178309000000092 a001 12586269025/28143753123*87403803^(16/19) 2178309000000092 a001 32951280099/73681302247*87403803^(16/19) 2178309000000092 a001 43133785636/96450076809*87403803^(16/19) 2178309000000092 a001 225851433717/505019158607*87403803^(16/19) 2178309000000092 a001 10610209857723/23725150497407*87403803^(16/19) 2178309000000092 a001 182717648081/408569081798*87403803^(16/19) 2178309000000092 a001 139583862445/312119004989*87403803^(16/19) 2178309000000092 a001 53316291173/119218851371*87403803^(16/19) 2178309000000092 a001 10182505537/22768774562*87403803^(16/19) 2178309000000092 a001 7778742049/17393796001*87403803^(16/19) 2178309000000092 a001 2971215073/6643838879*87403803^(16/19) 2178309000000092 a001 567451585/1268860318*87403803^(16/19) 2178309000000092 a001 433494437/370248451*87403803^(15/19) 2178309000000092 a001 53316291173/141422324*87403803^(9/19) 2178309000000092 a001 433494437/969323029*87403803^(16/19) 2178309000000092 a001 267914296/1568397607*87403803^(17/19) 2178309000000092 a001 31622993/70711162*228826127^(4/5) 2178309000000092 a001 63246219/271444*87403803^(1/2) 2178309000000092 a001 233802911/1368706081*87403803^(17/19) 2178309000000092 a001 1836311903/10749957122*87403803^(17/19) 2178309000000092 a001 1602508992/9381251041*87403803^(17/19) 2178309000000092 a001 12586269025/73681302247*87403803^(17/19) 2178309000000092 a001 10983760033/64300051206*87403803^(17/19) 2178309000000092 a001 86267571272/505019158607*87403803^(17/19) 2178309000000092 a001 75283811239/440719107401*87403803^(17/19) 2178309000000092 a001 2504730781961/14662949395604*87403803^(17/19) 2178309000000092 a001 139583862445/817138163596*87403803^(17/19) 2178309000000092 a001 53316291173/312119004989*87403803^(17/19) 2178309000000092 a001 20365011074/119218851371*87403803^(17/19) 2178309000000092 a001 7778742049/45537549124*87403803^(17/19) 2178309000000092 a001 2971215073/17393796001*87403803^(17/19) 2178309000000092 a001 1134903170/6643838879*87403803^(17/19) 2178309000000092 a001 516002918640/29134601*33385282^(5/18) 2178309000000092 a001 433494437/2537720636*87403803^(17/19) 2178309000000092 a001 10182505537/70711162*87403803^(10/19) 2178309000000092 a001 267914296/4106118243*87403803^(18/19) 2178309000000092 a001 701408733/10749957122*87403803^(18/19) 2178309000000092 a001 1836311903/28143753123*87403803^(18/19) 2178309000000092 a001 686789568/10525900321*87403803^(18/19) 2178309000000092 a001 12586269025/192900153618*87403803^(18/19) 2178309000000092 a001 32951280099/505019158607*87403803^(18/19) 2178309000000092 a001 86267571272/1322157322203*87403803^(18/19) 2178309000000092 a001 32264490531/494493258286*87403803^(18/19) 2178309000000092 a001 1548008755920/23725150497407*87403803^(18/19) 2178309000000092 a001 139583862445/2139295485799*87403803^(18/19) 2178309000000092 a001 53316291173/817138163596*87403803^(18/19) 2178309000000092 a001 20365011074/312119004989*87403803^(18/19) 2178309000000092 a001 7778742049/119218851371*87403803^(18/19) 2178309000000092 a001 2971215073/45537549124*87403803^(18/19) 2178309000000092 a001 1134903170/17393796001*87403803^(18/19) 2178309000000092 a001 165580141/370248451*87403803^(16/19) 2178309000000092 a001 433494437/6643838879*87403803^(18/19) 2178309000000092 a001 165580141/969323029*87403803^(17/19) 2178309000000092 a001 7778742049/141422324*87403803^(11/19) 2178309000000092 a001 165580141/2537720636*87403803^(18/19) 2178309000000092 a001 2971215073/141422324*87403803^(12/19) 2178309000000092 a001 567451585/70711162*87403803^(13/19) 2178309000000092 a001 433494437/141422324*87403803^(14/19) 2178309000000092 a001 165580141/141422324*87403803^(15/19) 2178309000000092 a001 591286729879/87403803*33385282^(1/3) 2178309000000092 a001 24157817/87403803*141422324^(11/13) 2178309000000092 a001 63245986/370248451*87403803^(17/19) 2178309000000092 a001 63245986/969323029*87403803^(18/19) 2178309000000092 a001 225749145909/4868641*33385282^(2/9) 2178309000000092 a001 4052739537881/33385282*12752043^(3/17) 2178309000000092 a001 6557470319842/228826127*33385282^(1/4) 2178309000000092 a001 31622993/70711162*87403803^(16/19) 2178309000000092 a001 944284833567073/433494437 2178309000000092 a001 24157817/87403803*2537720636^(11/15) 2178309000000092 a001 24157817/87403803*45537549124^(11/17) 2178309000000092 a001 24157817/87403803*312119004989^(3/5) 2178309000000092 a001 24157817/87403803*14662949395604^(11/21) 2178309000000092 a001 24157817/87403803*192900153618^(11/18) 2178309000000092 a001 24157817/87403803*10749957122^(11/16) 2178309000000092 a001 24157817/87403803*1568397607^(3/4) 2178309000000092 a001 24157817/87403803*599074578^(11/14) 2178309000000092 a001 75283811239/29134601*33385282^(7/18) 2178309000000092 a001 4052739537881/228826127*33385282^(5/18) 2178309000000092 a001 10610209857723/370248451*33385282^(1/4) 2178309000000092 a001 139583862445/87403803*33385282^(5/12) 2178309000000092 a001 3536736619241/199691526*33385282^(5/18) 2178309000000092 a001 3278735159921/70711162*33385282^(2/9) 2178309000000092 a001 6557470319842/370248451*33385282^(5/18) 2178309000000092 a001 86267571272/87403803*33385282^(4/9) 2178309000000092 a001 14930352/54018521*33385282^(11/12) 2178309000000092 a001 4052739537881/141422324*33385282^(1/4) 2178309000000092 a001 1548008755920/228826127*33385282^(1/3) 2178309000000092 a001 4052739537881/599074578*33385282^(1/3) 2178309000000092 a001 1515744265389/224056801*33385282^(1/3) 2178309000000092 a001 2504730781961/141422324*33385282^(5/18) 2178309000000092 a001 6557470319842/969323029*33385282^(1/3) 2178309000000092 a001 24157817/370248451*141422324^(12/13) 2178309000000092 a001 267914296/54018521*141422324^(9/13) 2178309000000092 a001 2504730781961/370248451*33385282^(1/3) 2178309000000092 a001 433494437/54018521*141422324^(2/3) 2178309000000092 a001 1134903170/54018521*141422324^(8/13) 2178309000000092 a001 4807526976/54018521*141422324^(7/13) 2178309000000092 a001 10983760033/29134601*33385282^(1/2) 2178309000000092 a001 20365011074/54018521*141422324^(6/13) 2178309000000092 a001 494433957867927/226980634 2178309000000092 a001 86267571272/54018521*141422324^(5/13) 2178309000000092 a001 24157817/228826127*2537720636^(7/9) 2178309000000092 a001 24157817/228826127*17393796001^(5/7) 2178309000000092 a001 24157817/228826127*312119004989^(7/11) 2178309000000092 a001 24157817/228826127*14662949395604^(5/9) 2178309000000092 a001 102334155/54018521*1322157322203^(1/2) 2178309000000092 a001 24157817/228826127*28143753123^(7/10) 2178309000000092 a001 24157817/228826127*599074578^(5/6) 2178309000000092 a001 225851433717/54018521*141422324^(1/3) 2178309000000092 a001 365435296162/54018521*141422324^(4/13) 2178309000000092 a001 591286729879/228826127*33385282^(7/18) 2178309000000092 a001 1548008755920/54018521*141422324^(3/13) 2178309000000092 a001 6557470319842/54018521*141422324^(2/13) 2178309000000092 a001 267914296/54018521*2537720636^(3/5) 2178309000000092 a001 6472224534451832/2971215073 2178309000000092 a001 267914296/54018521*45537549124^(9/17) 2178309000000092 a001 267914296/54018521*14662949395604^(3/7) 2178309000000092 a001 267914296/54018521*192900153618^(1/2) 2178309000000092 a001 267914296/54018521*10749957122^(9/16) 2178309000000092 a001 24157817/228826127*228826127^(7/8) 2178309000000092 a001 267914296/54018521*599074578^(9/14) 2178309000000092 a001 24157817/1568397607*2537720636^(13/15) 2178309000000092 a001 701408733/54018521*2537720636^(5/9) 2178309000000092 a001 16944503814015861/7778742049 2178309000000092 a001 24157817/1568397607*45537549124^(13/17) 2178309000000092 a001 24157817/1568397607*14662949395604^(13/21) 2178309000000092 a001 701408733/54018521*3461452808002^(5/12) 2178309000000092 a001 24157817/1568397607*192900153618^(13/18) 2178309000000092 a001 24157817/1568397607*73681302247^(3/4) 2178309000000092 a001 701408733/54018521*28143753123^(1/2) 2178309000000092 a001 24157817/1568397607*10749957122^(13/16) 2178309000000092 a001 24157817/6643838879*2537720636^(14/15) 2178309000000092 a001 4807526976/54018521*2537720636^(7/15) 2178309000000092 a001 7778742049/54018521*2537720636^(4/9) 2178309000000092 a001 20365011074/54018521*2537720636^(2/5) 2178309000000092 a001 44361286907595751/20365011074 2178309000000092 a001 86267571272/54018521*2537720636^(1/3) 2178309000000092 a001 365435296162/54018521*2537720636^(4/15) 2178309000000092 a001 956722026041/54018521*2537720636^(2/9) 2178309000000092 a001 1548008755920/54018521*2537720636^(1/5) 2178309000000092 a001 1836311903/54018521*4106118243^(1/2) 2178309000000092 a001 6557470319842/54018521*2537720636^(2/15) 2178309000000092 a001 10610209857723/54018521*2537720636^(1/9) 2178309000000092 a001 4807526976/54018521*17393796001^(3/7) 2178309000000092 a001 4807526976/54018521*45537549124^(7/17) 2178309000000092 a001 116139356908771392/53316291173 2178309000000092 a001 4807526976/54018521*14662949395604^(1/3) 2178309000000092 a001 4807526976/54018521*192900153618^(7/18) 2178309000000092 a001 4807526976/54018521*10749957122^(7/16) 2178309000000092 a001 24157817/28143753123*45537549124^(15/17) 2178309000000092 a001 24157817/28143753123*312119004989^(9/11) 2178309000000092 a001 12586269025/54018521*817138163596^(1/3) 2178309000000092 a001 24157817/28143753123*14662949395604^(5/7) 2178309000000092 a001 24157817/28143753123*192900153618^(5/6) 2178309000000092 a001 139583862445/54018521*17393796001^(2/7) 2178309000000092 a001 4052739537881/54018521*17393796001^(1/7) 2178309000000092 a001 24157817/119218851371*45537549124^(16/17) 2178309000000092 a001 32951280099/54018521*45537549124^(1/3) 2178309000000092 a001 796030994547383883/365435296162 2178309000000092 a001 86267571272/54018521*45537549124^(5/17) 2178309000000092 a001 24157817/28143753123*28143753123^(9/10) 2178309000000092 a001 365435296162/54018521*45537549124^(4/17) 2178309000000092 a001 1548008755920/54018521*45537549124^(3/17) 2178309000000092 a001 6557470319842/54018521*45537549124^(2/17) 2178309000000092 a001 86267571272/54018521*312119004989^(3/11) 2178309000000092 a001 2084036199823433224/956722026041 2178309000000092 a001 24157817/192900153618*14662949395604^(7/9) 2178309000000092 a001 24157817/192900153618*505019158607^(7/8) 2178309000000092 a001 24157817/505019158607*817138163596^(17/19) 2178309000000092 a001 10610209857723/54018521*312119004989^(1/11) 2178309000000092 a001 14284196614945314143/6557470319842 2178309000000092 a006 5^(1/2)*Fibonacci(69)/Lucas(37)/sqrt(5) 2178309000000092 a001 24157817/817138163596*505019158607^(13/14) 2178309000000092 a001 139583862445/54018521*14662949395604^(2/9) 2178309000000092 a001 24157817/505019158607*192900153618^(17/18) 2178309000000092 a001 2504730781961/54018521*73681302247^(2/13) 2178309000000092 a001 225851433717/54018521*73681302247^(1/4) 2178309000000092 a001 1288005205276049341/591286729879 2178309000000092 a001 24157817/119218851371*192900153618^(8/9) 2178309000000092 a001 10610209857723/54018521*28143753123^(1/10) 2178309000000092 a001 53316291173/54018521*73681302247^(4/13) 2178309000000092 a001 24157817/119218851371*73681302247^(12/13) 2178309000000092 a001 956722026041/54018521*28143753123^(1/5) 2178309000000092 a001 20365011074/54018521*45537549124^(6/17) 2178309000000092 a001 86267571272/54018521*28143753123^(3/10) 2178309000000092 a001 20365011074/54018521*14662949395604^(2/7) 2178309000000092 a001 491974210728665458/225851433717 2178309000000092 a001 20365011074/54018521*192900153618^(1/3) 2178309000000092 a001 6557470319842/54018521*10749957122^(1/8) 2178309000000092 a001 2504730781961/54018521*10749957122^(1/6) 2178309000000092 a001 1548008755920/54018521*10749957122^(3/16) 2178309000000092 a001 956722026041/54018521*10749957122^(5/24) 2178309000000092 a001 365435296162/54018521*10749957122^(1/4) 2178309000000092 a001 139583862445/54018521*10749957122^(7/24) 2178309000000092 a001 86267571272/54018521*10749957122^(5/16) 2178309000000092 a001 53316291173/54018521*10749957122^(1/3) 2178309000000092 a001 24157817/17393796001*312119004989^(4/5) 2178309000000092 a001 7778742049/54018521*23725150497407^(5/16) 2178309000000092 a001 24157817/17393796001*23725150497407^(11/16) 2178309000000092 a001 7778742049/54018521*505019158607^(5/14) 2178309000000092 a001 187917426909947033/86267571272 2178309000000092 a001 7778742049/54018521*73681302247^(5/13) 2178309000000092 a001 24157817/17393796001*73681302247^(11/13) 2178309000000092 a001 20365011074/54018521*10749957122^(3/8) 2178309000000092 a001 7778742049/54018521*28143753123^(2/5) 2178309000000092 a001 24157817/28143753123*10749957122^(15/16) 2178309000000092 a001 7778742049/54018521*10749957122^(5/12) 2178309000000092 a001 6557470319842/54018521*4106118243^(3/23) 2178309000000092 a001 24157817/45537549124*10749957122^(23/24) 2178309000000092 a001 2504730781961/54018521*4106118243^(4/23) 2178309000000092 a001 24157817/17393796001*10749957122^(11/12) 2178309000000092 a001 956722026041/54018521*4106118243^(5/23) 2178309000000092 a001 365435296162/54018521*4106118243^(6/23) 2178309000000092 a001 24157817/2537720636*2537720636^(8/9) 2178309000000092 a001 139583862445/54018521*4106118243^(7/23) 2178309000000092 a001 24157817/6643838879*17393796001^(6/7) 2178309000000092 a001 53316291173/54018521*4106118243^(8/23) 2178309000000092 a001 24157817/6643838879*45537549124^(14/17) 2178309000000092 a001 24157817/6643838879*817138163596^(14/19) 2178309000000092 a001 24157817/6643838879*14662949395604^(2/3) 2178309000000092 a001 24157817/6643838879*192900153618^(7/9) 2178309000000092 a001 71778070001175641/32951280099 2178309000000092 a001 20365011074/54018521*4106118243^(9/23) 2178309000000092 a001 2971215073/54018521*10749957122^(11/24) 2178309000000092 a001 7778742049/54018521*4106118243^(10/23) 2178309000000092 a001 24157817/6643838879*10749957122^(7/8) 2178309000000092 a001 2971215073/54018521*4106118243^(11/23) 2178309000000092 a001 6557470319842/54018521*1568397607^(3/22) 2178309000000092 a001 24157817/17393796001*4106118243^(22/23) 2178309000000092 a001 1134903170/54018521*2537720636^(8/15) 2178309000000092 a001 2504730781961/54018521*1568397607^(2/11) 2178309000000092 a001 24157817/6643838879*4106118243^(21/23) 2178309000000092 a001 956722026041/54018521*1568397607^(5/22) 2178309000000092 a001 591286729879/54018521*1568397607^(1/4) 2178309000000092 a001 365435296162/54018521*1568397607^(3/11) 2178309000000092 a001 139583862445/54018521*1568397607^(7/22) 2178309000000092 a001 53316291173/54018521*1568397607^(4/11) 2178309000000092 a001 1134903170/54018521*45537549124^(8/17) 2178309000000092 a001 24157817/2537720636*312119004989^(8/11) 2178309000000092 a001 1134903170/54018521*14662949395604^(8/21) 2178309000000092 a001 1134903170/54018521*192900153618^(4/9) 2178309000000092 a001 1134903170/54018521*73681302247^(6/13) 2178309000000092 a001 24157817/2537720636*73681302247^(10/13) 2178309000000092 a001 24157817/2537720636*28143753123^(4/5) 2178309000000092 a001 5483356618715978/2517253805 2178309000000092 a001 1134903170/54018521*10749957122^(1/2) 2178309000000092 a001 24157817/2537720636*10749957122^(5/6) 2178309000000092 a001 20365011074/54018521*1568397607^(9/22) 2178309000000092 a001 1134903170/54018521*4106118243^(12/23) 2178309000000092 a001 7778742049/54018521*1568397607^(5/11) 2178309000000092 a001 24157817/2537720636*4106118243^(20/23) 2178309000000092 a001 2971215073/54018521*1568397607^(1/2) 2178309000000092 a001 1134903170/54018521*1568397607^(6/11) 2178309000000092 a001 6557470319842/54018521*599074578^(1/7) 2178309000000092 a001 24157817/6643838879*1568397607^(21/22) 2178309000000092 a001 4052739537881/54018521*599074578^(1/6) 2178309000000092 a001 24157817/2537720636*1568397607^(10/11) 2178309000000092 a001 2504730781961/54018521*599074578^(4/21) 2178309000000092 a001 1548008755920/54018521*599074578^(3/14) 2178309000000092 a001 956722026041/54018521*599074578^(5/21) 2178309000000092 a001 365435296162/54018521*599074578^(2/7) 2178309000000092 a001 139583862445/54018521*599074578^(1/3) 2178309000000092 a001 86267571272/54018521*599074578^(5/14) 2178309000000092 a001 53316291173/54018521*599074578^(8/21) 2178309000000092 a001 24157817/969323029*817138163596^(2/3) 2178309000000092 a001 433494437/54018521*73681302247^(1/2) 2178309000000092 a001 433494437/54018521*10749957122^(13/24) 2178309000000092 a001 24157817/969323029*10749957122^(19/24) 2178309000000092 a001 10472279279564029/4807526976 2178309000000092 a001 433494437/54018521*4106118243^(13/23) 2178309000000092 a001 24157817/969323029*4106118243^(19/23) 2178309000000092 a001 20365011074/54018521*599074578^(3/7) 2178309000000092 a001 433494437/54018521*1568397607^(13/22) 2178309000000092 a001 7778742049/54018521*599074578^(10/21) 2178309000000092 a001 4807526976/54018521*599074578^(1/2) 2178309000000092 a001 24157817/969323029*1568397607^(19/22) 2178309000000092 a001 2971215073/54018521*599074578^(11/21) 2178309000000092 a001 1134903170/54018521*599074578^(4/7) 2178309000000092 a001 24157817/1568397607*599074578^(13/14) 2178309000000092 a001 10610209857723/54018521*228826127^(1/8) 2178309000000092 a001 433494437/54018521*599074578^(13/21) 2178309000000092 a001 24157817/2537720636*599074578^(20/21) 2178309000000092 a001 6557470319842/54018521*228826127^(3/20) 2178309000000092 a001 86000486440/33281921*33385282^(7/18) 2178309000000092 a001 24157817/969323029*599074578^(19/21) 2178309000000092 a001 2504730781961/54018521*228826127^(1/5) 2178309000000092 a001 956722026041/54018521*228826127^(1/4) 2178309000000092 a001 365435296162/54018521*228826127^(3/10) 2178309000000092 a001 4052739537881/1568397607*33385282^(7/18) 2178309000000092 a001 3536736619241/1368706081*33385282^(7/18) 2178309000000092 a001 956722026041/141422324*33385282^(1/3) 2178309000000092 a001 3278735159921/1268860318*33385282^(7/18) 2178309000000092 a001 139583862445/54018521*228826127^(7/20) 2178309000000092 a001 86267571272/54018521*228826127^(3/8) 2178309000000092 a001 24157817/370248451*2537720636^(4/5) 2178309000000092 a001 2504730781961/969323029*33385282^(7/18) 2178309000000092 a001 165580141/54018521*17393796001^(4/7) 2178309000000092 a001 24157817/370248451*45537549124^(12/17) 2178309000000092 a001 165580141/54018521*14662949395604^(4/9) 2178309000000092 a001 24157817/370248451*192900153618^(2/3) 2178309000000092 a001 165580141/54018521*73681302247^(7/13) 2178309000000092 a001 24157817/370248451*73681302247^(9/13) 2178309000000092 a001 165580141/54018521*10749957122^(7/12) 2178309000000092 a001 24157817/370248451*10749957122^(3/4) 2178309000000092 a001 165580141/54018521*4106118243^(14/23) 2178309000000092 a001 24157817/370248451*4106118243^(18/23) 2178309000000092 a001 4000054745112197/1836311903 2178309000000092 a001 165580141/54018521*1568397607^(7/11) 2178309000000092 a001 24157817/370248451*1568397607^(9/11) 2178309000000092 a001 53316291173/54018521*228826127^(2/5) 2178309000000092 a001 20365011074/54018521*228826127^(9/20) 2178309000000092 a001 165580141/54018521*599074578^(2/3) 2178309000000092 a001 7778742049/54018521*228826127^(1/2) 2178309000000092 a001 24157817/370248451*599074578^(6/7) 2178309000000092 a001 2971215073/54018521*228826127^(11/20) 2178309000000092 a001 701408733/54018521*228826127^(5/8) 2178309000000092 a001 63245986/54018521*141422324^(10/13) 2178309000000092 a001 1134903170/54018521*228826127^(3/5) 2178309000000092 a001 365435296162/228826127*33385282^(5/12) 2178309000000092 a001 433494437/54018521*228826127^(13/20) 2178309000000092 a001 956722026041/370248451*33385282^(7/18) 2178309000000092 a001 24157817/969323029*228826127^(19/20) 2178309000000092 a001 165580141/54018521*228826127^(7/10) 2178309000000092 a001 6557470319842/54018521*87403803^(3/19) 2178309000000092 a001 24157817/370248451*228826127^(9/10) 2178309000000092 a001 12586269025/87403803*33385282^(5/9) 2178309000000092 a001 2504730781961/54018521*87403803^(4/19) 2178309000000092 a001 956722026041/599074578*33385282^(5/12) 2178309000000092 a001 2504730781961/1568397607*33385282^(5/12) 2178309000000092 a001 6557470319842/4106118243*33385282^(5/12) 2178309000000092 a001 10610209857723/6643838879*33385282^(5/12) 2178309000000092 a001 4052739537881/2537720636*33385282^(5/12) 2178309000000092 a001 1548008755920/969323029*33385282^(5/12) 2178309000000092 a001 956722026041/54018521*87403803^(5/19) 2178309000000092 a001 225851433717/228826127*33385282^(4/9) 2178309000000092 a001 591286729879/370248451*33385282^(5/12) 2178309000000092 a001 365435296162/54018521*87403803^(6/19) 2178309000000092 a001 139583862445/54018521*87403803^(7/19) 2178309000000092 a001 7778742049/87403803*33385282^(7/12) 2178309000000092 a001 63245986/54018521*2537720636^(2/3) 2178309000000092 a001 24157817/141422324*45537549124^(2/3) 2178309000000092 a001 63245986/54018521*45537549124^(10/17) 2178309000000092 a001 63245986/54018521*312119004989^(6/11) 2178309000000092 a001 63245986/54018521*14662949395604^(10/21) 2178309000000092 a001 63245986/54018521*192900153618^(5/9) 2178309000000092 a001 63245986/54018521*28143753123^(3/5) 2178309000000092 a001 63245986/54018521*10749957122^(5/8) 2178309000000092 a001 24157817/141422324*10749957122^(17/24) 2178309000000092 a001 63245986/54018521*4106118243^(15/23) 2178309000000092 a001 24157817/141422324*4106118243^(17/23) 2178309000000092 a001 63245986/54018521*1568397607^(15/22) 2178309000000092 a001 24157817/141422324*1568397607^(17/22) 2178309000000092 a001 1527884955772562/701408733 2178309000000092 a001 63245986/54018521*599074578^(5/7) 2178309000000092 a001 24157817/141422324*599074578^(17/21) 2178309000000092 a001 591286729879/599074578*33385282^(4/9) 2178309000000092 a001 53316291173/54018521*87403803^(8/19) 2178309000000092 a001 1548008755920/1568397607*33385282^(4/9) 2178309000000092 a001 4052739537881/4106118243*33385282^(4/9) 2178309000000092 a001 4807525989/4870846*33385282^(4/9) 2178309000000092 a001 6557470319842/6643838879*33385282^(4/9) 2178309000000092 a001 182717648081/70711162*33385282^(7/18) 2178309000000092 a001 2504730781961/2537720636*33385282^(4/9) 2178309000000092 a001 956722026041/969323029*33385282^(4/9) 2178309000000092 a001 20365011074/54018521*87403803^(9/19) 2178309000000092 a001 365435296162/370248451*33385282^(4/9) 2178309000000092 a001 63245986/54018521*228826127^(3/4) 2178309000000092 a001 12586269025/54018521*87403803^(1/2) 2178309000000092 a001 24157817/141422324*228826127^(17/20) 2178309000000092 a001 7778742049/54018521*87403803^(10/19) 2178309000000092 a001 1602508992/29134601*33385282^(11/18) 2178309000000092 a001 2971215073/54018521*87403803^(11/19) 2178309000000092 a001 225851433717/141422324*33385282^(5/12) 2178309000000092 a001 1134903170/54018521*87403803^(12/19) 2178309000000092 a001 86267571272/228826127*33385282^(1/2) 2178309000000092 a001 433494437/54018521*87403803^(13/19) 2178309000000092 a001 267913919/710646*33385282^(1/2) 2178309000000092 a001 165580141/54018521*87403803^(14/19) 2178309000000092 a001 591286729879/1568397607*33385282^(1/2) 2178309000000092 a001 516002918640/1368706081*33385282^(1/2) 2178309000000092 a001 4052739537881/10749957122*33385282^(1/2) 2178309000000092 a001 3536736619241/9381251041*33385282^(1/2) 2178309000000092 a001 6557470319842/17393796001*33385282^(1/2) 2178309000000092 a001 2504730781961/6643838879*33385282^(1/2) 2178309000000092 a001 139583862445/141422324*33385282^(4/9) 2178309000000092 a001 956722026041/2537720636*33385282^(1/2) 2178309000000092 a001 365435296162/969323029*33385282^(1/2) 2178309000000092 a001 139583862445/370248451*33385282^(1/2) 2178309000000092 a001 1836311903/87403803*33385282^(2/3) 2178309000000092 a001 24157817/370248451*87403803^(18/19) 2178309000000092 a001 32951280099/228826127*33385282^(5/9) 2178309000000092 a001 6557470319842/54018521*33385282^(1/6) 2178309000000092 a001 43133785636/299537289*33385282^(5/9) 2178309000000092 a001 63245986/54018521*87403803^(15/19) 2178309000000092 a001 32264490531/224056801*33385282^(5/9) 2178309000000092 a001 591286729879/4106118243*33385282^(5/9) 2178309000000092 a001 774004377960/5374978561*33385282^(5/9) 2178309000000092 a001 4052739537881/28143753123*33385282^(5/9) 2178309000000092 a001 1515744265389/10525900321*33385282^(5/9) 2178309000000092 a001 3278735159921/22768774562*33385282^(5/9) 2178309000000092 a001 2504730781961/17393796001*33385282^(5/9) 2178309000000092 a001 956722026041/6643838879*33385282^(5/9) 2178309000000092 a001 53316291173/141422324*33385282^(1/2) 2178309000000092 a001 182717648081/1268860318*33385282^(5/9) 2178309000000092 a001 139583862445/969323029*33385282^(5/9) 2178309000000092 a001 20365011074/228826127*33385282^(7/12) 2178309000000092 a001 53316291173/370248451*33385282^(5/9) 2178309000000092 a001 24157817/141422324*87403803^(17/19) 2178309000000092 a001 233802911/29134601*33385282^(13/18) 2178309000000092 a001 63245986/20633239*20633239^(4/5) 2178309000000092 a001 53316291173/599074578*33385282^(7/12) 2178309000000092 a001 139583862445/1568397607*33385282^(7/12) 2178309000000092 a001 365435296162/4106118243*33385282^(7/12) 2178309000000092 a001 956722026041/10749957122*33385282^(7/12) 2178309000000092 a001 2504730781961/28143753123*33385282^(7/12) 2178309000000092 a001 6557470319842/73681302247*33385282^(7/12) 2178309000000092 a001 10610209857723/119218851371*33385282^(7/12) 2178309000000092 a001 4052739537881/45537549124*33385282^(7/12) 2178309000000092 a001 1548008755920/17393796001*33385282^(7/12) 2178309000000092 a001 591286729879/6643838879*33385282^(7/12) 2178309000000092 a001 225851433717/2537720636*33385282^(7/12) 2178309000000092 a001 86267571272/969323029*33385282^(7/12) 2178309000000092 a001 12586269025/228826127*33385282^(11/18) 2178309000000092 a001 32951280099/370248451*33385282^(7/12) 2178309000000092 a001 39088169/87403803*33385282^(8/9) 2178309000000092 a001 2504730781961/54018521*33385282^(2/9) 2178309000000092 a001 433494437/87403803*33385282^(3/4) 2178309000000093 a001 10983760033/199691526*33385282^(11/18) 2178309000000093 a001 86267571272/1568397607*33385282^(11/18) 2178309000000093 a001 75283811239/1368706081*33385282^(11/18) 2178309000000093 a001 591286729879/10749957122*33385282^(11/18) 2178309000000093 a001 12585437040/228811001*33385282^(11/18) 2178309000000093 a001 4052739537881/73681302247*33385282^(11/18) 2178309000000093 a001 3536736619241/64300051206*33385282^(11/18) 2178309000000093 a001 6557470319842/119218851371*33385282^(11/18) 2178309000000093 a001 2504730781961/45537549124*33385282^(11/18) 2178309000000093 a001 956722026041/17393796001*33385282^(11/18) 2178309000000093 a001 365435296162/6643838879*33385282^(11/18) 2178309000000093 a001 10182505537/70711162*33385282^(5/9) 2178309000000093 a001 139583862445/2537720636*33385282^(11/18) 2178309000000093 a001 53316291173/969323029*33385282^(11/18) 2178309000000093 a001 774004377960/16692641*12752043^(4/17) 2178309000000093 a001 20365011074/370248451*33385282^(11/18) 2178309000000093 a001 267914296/87403803*33385282^(7/9) 2178309000000093 a001 1548008755920/54018521*33385282^(1/4) 2178309000000093 a001 12586269025/141422324*33385282^(7/12) 2178309000000093 a001 102287808/4868641*33385282^(2/3) 2178309000000093 a001 956722026041/54018521*33385282^(5/18) 2178309000000093 a001 12586269025/599074578*33385282^(2/3) 2178309000000093 a001 34111385/29134601*33385282^(5/6) 2178309000000093 a001 32951280099/1568397607*33385282^(2/3) 2178309000000093 a001 86267571272/4106118243*33385282^(2/3) 2178309000000093 a001 225851433717/10749957122*33385282^(2/3) 2178309000000093 a001 591286729879/28143753123*33385282^(2/3) 2178309000000093 a001 1548008755920/73681302247*33385282^(2/3) 2178309000000093 a001 4052739537881/192900153618*33385282^(2/3) 2178309000000093 a001 225749145909/10745088481*33385282^(2/3) 2178309000000093 a001 6557470319842/312119004989*33385282^(2/3) 2178309000000093 a001 2504730781961/119218851371*33385282^(2/3) 2178309000000093 a001 956722026041/45537549124*33385282^(2/3) 2178309000000093 a001 365435296162/17393796001*33385282^(2/3) 2178309000000093 a001 139583862445/6643838879*33385282^(2/3) 2178309000000093 a001 53316291173/2537720636*33385282^(2/3) 2178309000000093 a001 7778742049/141422324*33385282^(11/18) 2178309000000093 a001 20365011074/969323029*33385282^(2/3) 2178309000000093 a001 7778742049/370248451*33385282^(2/3) 2178309000000093 a001 1836311903/228826127*33385282^(13/18) 2178309000000093 a001 365435296162/54018521*33385282^(1/3) 2178309000000093 a001 267084832/33281921*33385282^(13/18) 2178309000000093 a001 12586269025/1568397607*33385282^(13/18) 2178309000000093 a001 10983760033/1368706081*33385282^(13/18) 2178309000000093 a001 43133785636/5374978561*33385282^(13/18) 2178309000000093 a001 75283811239/9381251041*33385282^(13/18) 2178309000000093 a001 591286729879/73681302247*33385282^(13/18) 2178309000000093 a001 86000486440/10716675201*33385282^(13/18) 2178309000000093 a001 4052739537881/505019158607*33385282^(13/18) 2178309000000093 a001 3278735159921/408569081798*33385282^(13/18) 2178309000000093 a001 2504730781961/312119004989*33385282^(13/18) 2178309000000093 a001 956722026041/119218851371*33385282^(13/18) 2178309000000093 a001 182717648081/22768774562*33385282^(13/18) 2178309000000093 a001 139583862445/17393796001*33385282^(13/18) 2178309000000093 a001 53316291173/6643838879*33385282^(13/18) 2178309000000093 a001 10182505537/1268860318*33385282^(13/18) 2178309000000093 a001 2971215073/141422324*33385282^(2/3) 2178309000000093 a001 7778742049/969323029*33385282^(13/18) 2178309000000093 a001 1134903170/228826127*33385282^(3/4) 2178309000000093 a001 2971215073/370248451*33385282^(13/18) 2178309000000093 a001 9238424/711491*20633239^(5/7) 2178309000000093 a001 2971215073/599074578*33385282^(3/4) 2178309000000093 a001 7778742049/1568397607*33385282^(3/4) 2178309000000093 a001 20365011074/4106118243*33385282^(3/4) 2178309000000093 a001 53316291173/10749957122*33385282^(3/4) 2178309000000093 a001 139583862445/28143753123*33385282^(3/4) 2178309000000093 a001 365435296162/73681302247*33385282^(3/4) 2178309000000093 a001 956722026041/192900153618*33385282^(3/4) 2178309000000093 a001 2504730781961/505019158607*33385282^(3/4) 2178309000000093 a001 10610209857723/2139295485799*33385282^(3/4) 2178309000000093 a001 4052739537881/817138163596*33385282^(3/4) 2178309000000093 a001 140728068720/28374454999*33385282^(3/4) 2178309000000093 a001 591286729879/119218851371*33385282^(3/4) 2178309000000093 a001 225851433717/45537549124*33385282^(3/4) 2178309000000093 a001 86267571272/17393796001*33385282^(3/4) 2178309000000093 a001 32951280099/6643838879*33385282^(3/4) 2178309000000093 a001 1144206275/230701876*33385282^(3/4) 2178309000000093 a001 4807526976/969323029*33385282^(3/4) 2178309000000093 a001 24157817/20633239*20633239^(6/7) 2178309000000093 a001 701408733/228826127*33385282^(7/9) 2178309000000093 a001 1836311903/370248451*33385282^(3/4) 2178309000000093 a001 24157817/54018521*23725150497407^(1/2) 2178309000000093 a001 24157817/54018521*505019158607^(4/7) 2178309000000093 a001 24157817/54018521*73681302247^(8/13) 2178309000000093 a001 24157817/54018521*10749957122^(2/3) 2178309000000093 a001 24157817/54018521*4106118243^(16/23) 2178309000000093 a001 24157817/54018521*1568397607^(8/11) 2178309000000093 a001 24157817/54018521*599074578^(16/21) 2178309000000093 a001 583600122205489/267914296 2178309000000093 a001 139583862445/54018521*33385282^(7/18) 2178309000000093 a001 1836311903/599074578*33385282^(7/9) 2178309000000093 a001 39088169/228826127*33385282^(17/18) 2178309000000093 a001 686789568/224056801*33385282^(7/9) 2178309000000093 a001 12586269025/4106118243*33385282^(7/9) 2178309000000093 a001 32951280099/10749957122*33385282^(7/9) 2178309000000093 a001 86267571272/28143753123*33385282^(7/9) 2178309000000093 a001 32264490531/10525900321*33385282^(7/9) 2178309000000093 a001 591286729879/192900153618*33385282^(7/9) 2178309000000093 a001 1548008755920/505019158607*33385282^(7/9) 2178309000000093 a001 1515744265389/494493258286*33385282^(7/9) 2178309000000093 a001 2504730781961/817138163596*33385282^(7/9) 2178309000000093 a001 956722026041/312119004989*33385282^(7/9) 2178309000000093 a001 365435296162/119218851371*33385282^(7/9) 2178309000000093 a001 139583862445/45537549124*33385282^(7/9) 2178309000000093 a001 53316291173/17393796001*33385282^(7/9) 2178309000000093 a001 20365011074/6643838879*33385282^(7/9) 2178309000000093 a001 7778742049/2537720636*33385282^(7/9) 2178309000000093 a001 567451585/70711162*33385282^(13/18) 2178309000000093 a001 2971215073/969323029*33385282^(7/9) 2178309000000093 a001 24157817/54018521*228826127^(4/5) 2178309000000093 a001 1134903170/370248451*33385282^(7/9) 2178309000000093 a001 86267571272/54018521*33385282^(5/12) 2178309000000093 a001 701408733/141422324*33385282^(3/4) 2178309000000093 a001 267914296/228826127*33385282^(5/6) 2178309000000093 a001 53316291173/54018521*33385282^(4/9) 2178309000000093 a001 39088169/141422324*33385282^(11/12) 2178309000000093 a001 233802911/199691526*33385282^(5/6) 2178309000000093 a001 1836311903/1568397607*33385282^(5/6) 2178309000000093 a001 1602508992/1368706081*33385282^(5/6) 2178309000000093 a001 12586269025/10749957122*33385282^(5/6) 2178309000000093 a001 10983760033/9381251041*33385282^(5/6) 2178309000000093 a001 86267571272/73681302247*33385282^(5/6) 2178309000000093 a001 75283811239/64300051206*33385282^(5/6) 2178309000000093 a001 2504730781961/2139295485799*33385282^(5/6) 2178309000000093 a001 365435296162/312119004989*33385282^(5/6) 2178309000000093 a001 139583862445/119218851371*33385282^(5/6) 2178309000000093 a001 53316291173/45537549124*33385282^(5/6) 2178309000000093 a001 20365011074/17393796001*33385282^(5/6) 2178309000000093 a001 7778742049/6643838879*33385282^(5/6) 2178309000000093 a001 2971215073/2537720636*33385282^(5/6) 2178309000000093 a001 433494437/141422324*33385282^(7/9) 2178309000000093 a001 1134903170/969323029*33385282^(5/6) 2178309000000093 a001 433494437/370248451*33385282^(5/6) 2178309000000093 a001 102334155/228826127*33385282^(8/9) 2178309000000093 a001 20365011074/54018521*33385282^(1/2) 2178309000000093 a001 133957148/299537289*33385282^(8/9) 2178309000000093 a001 24157817/54018521*87403803^(16/19) 2178309000000093 a001 701408733/1568397607*33385282^(8/9) 2178309000000093 a001 1836311903/4106118243*33385282^(8/9) 2178309000000093 a001 2403763488/5374978561*33385282^(8/9) 2178309000000093 a001 12586269025/28143753123*33385282^(8/9) 2178309000000093 a001 32951280099/73681302247*33385282^(8/9) 2178309000000093 a001 43133785636/96450076809*33385282^(8/9) 2178309000000093 a001 225851433717/505019158607*33385282^(8/9) 2178309000000093 a001 591286729879/1322157322203*33385282^(8/9) 2178309000000093 a001 10610209857723/23725150497407*33385282^(8/9) 2178309000000093 a001 139583862445/312119004989*33385282^(8/9) 2178309000000093 a001 53316291173/119218851371*33385282^(8/9) 2178309000000093 a001 10182505537/22768774562*33385282^(8/9) 2178309000000093 a001 7778742049/17393796001*33385282^(8/9) 2178309000000093 a001 2971215073/6643838879*33385282^(8/9) 2178309000000093 a001 567451585/1268860318*33385282^(8/9) 2178309000000093 a001 433494437/969323029*33385282^(8/9) 2178309000000093 a001 165580141/141422324*33385282^(5/6) 2178309000000093 a001 102334155/370248451*33385282^(11/12) 2178309000000093 a001 165580141/370248451*33385282^(8/9) 2178309000000093 a001 267914296/969323029*33385282^(11/12) 2178309000000093 a001 701408733/2537720636*33385282^(11/12) 2178309000000093 a001 1836311903/6643838879*33385282^(11/12) 2178309000000093 a001 4807526976/17393796001*33385282^(11/12) 2178309000000093 a001 12586269025/45537549124*33385282^(11/12) 2178309000000093 a001 32951280099/119218851371*33385282^(11/12) 2178309000000093 a001 86267571272/312119004989*33385282^(11/12) 2178309000000093 a001 225851433717/817138163596*33385282^(11/12) 2178309000000093 a001 139583862445/505019158607*33385282^(11/12) 2178309000000093 a001 53316291173/192900153618*33385282^(11/12) 2178309000000093 a001 20365011074/73681302247*33385282^(11/12) 2178309000000093 a001 7778742049/28143753123*33385282^(11/12) 2178309000000093 a001 2971215073/10749957122*33385282^(11/12) 2178309000000093 a001 1134903170/4106118243*33385282^(11/12) 2178309000000093 a001 433494437/1568397607*33385282^(11/12) 2178309000000093 a001 34111385/199691526*33385282^(17/18) 2178309000000093 a001 165580141/599074578*33385282^(11/12) 2178309000000093 a001 7778742049/54018521*33385282^(5/9) 2178309000000093 a001 267914296/1568397607*33385282^(17/18) 2178309000000093 a001 233802911/1368706081*33385282^(17/18) 2178309000000093 a001 1836311903/10749957122*33385282^(17/18) 2178309000000093 a001 1602508992/9381251041*33385282^(17/18) 2178309000000093 a001 12586269025/73681302247*33385282^(17/18) 2178309000000093 a001 10983760033/64300051206*33385282^(17/18) 2178309000000093 a001 86267571272/505019158607*33385282^(17/18) 2178309000000093 a001 75283811239/440719107401*33385282^(17/18) 2178309000000093 a001 2504730781961/14662949395604*33385282^(17/18) 2178309000000093 a001 139583862445/817138163596*33385282^(17/18) 2178309000000093 a001 53316291173/312119004989*33385282^(17/18) 2178309000000093 a001 20365011074/119218851371*33385282^(17/18) 2178309000000093 a001 7778742049/45537549124*33385282^(17/18) 2178309000000093 a001 2971215073/17393796001*33385282^(17/18) 2178309000000093 a001 1134903170/6643838879*33385282^(17/18) 2178309000000093 a001 433494437/2537720636*33385282^(17/18) 2178309000000093 a001 63245986/228826127*33385282^(11/12) 2178309000000093 a001 165580141/969323029*33385282^(17/18) 2178309000000093 a001 4807526976/54018521*33385282^(7/12) 2178309000000093 a001 10610209857723/20633239*7881196^(1/11) 2178309000000093 a001 2971215073/54018521*33385282^(11/18) 2178309000000093 a001 31622993/70711162*33385282^(8/9) 2178309000000093 a001 63245986/370248451*33385282^(17/18) 2178309000000093 a001 591286729879/33385282*12752043^(5/17) 2178309000000093 a001 1836311903/20633239*20633239^(3/5) 2178309000000093 a001 1134903170/54018521*33385282^(2/3) 2178309000000093 a001 3536736619241/29134601*12752043^(3/17) 2178309000000093 a001 433494437/54018521*33385282^(13/18) 2178309000000094 a001 2971215073/20633239*20633239^(4/7) 2178309000000094 a001 267914296/54018521*33385282^(3/4) 2178309000000094 a001 24157817/87403803*33385282^(11/12) 2178309000000094 a001 165580141/54018521*33385282^(7/9) 2178309000000094 a001 63245986/54018521*33385282^(5/6) 2178309000000094 a001 24157817/141422324*33385282^(17/18) 2178309000000094 a001 32264490531/4769326*12752043^(6/17) 2178309000000094 a001 4052739537881/87403803*12752043^(4/17) 2178309000000094 a001 32951280099/20633239*20633239^(3/7) 2178309000000094 a001 68884650258840/31622993 2178309000000094 a001 53316291173/20633239*20633239^(2/5) 2178309000000094 a001 9227465/33385282*141422324^(11/13) 2178309000000094 a001 225749145909/4868641*12752043^(4/17) 2178309000000094 a001 6557470319842/54018521*12752043^(3/17) 2178309000000094 a001 9227465/33385282*2537720636^(11/15) 2178309000000094 a001 9227465/33385282*45537549124^(11/17) 2178309000000094 a001 9227465/33385282*312119004989^(3/5) 2178309000000094 a001 9227465/33385282*(1/2+1/2*5^(1/2))^33 2178309000000094 a001 14930352/20633239*(1/2+1/2*5^(1/2))^31 2178309000000094 a001 14930352/20633239*9062201101803^(1/2) 2178309000000094 a001 9227465/33385282*192900153618^(11/18) 2178309000000094 a001 9227465/33385282*10749957122^(11/16) 2178309000000094 a001 9227465/33385282*1568397607^(3/4) 2178309000000094 a001 9227465/33385282*599074578^(11/14) 2178309000000095 a001 24157817/54018521*33385282^(8/9) 2178309000000095 a001 3278735159921/70711162*12752043^(4/17) 2178309000000095 a001 43133785636/16692641*12752043^(7/17) 2178309000000095 a001 516002918640/29134601*12752043^(5/17) 2178309000000095 a001 365435296162/20633239*20633239^(2/7) 2178309000000095 a001 516002918640/4250681*4870847^(3/16) 2178309000000095 a001 4052739537881/228826127*12752043^(5/17) 2178309000000095 a001 2504730781961/54018521*12752043^(4/17) 2178309000000095 a001 3536736619241/199691526*12752043^(5/17) 2178309000000095 a001 6557470319842/370248451*12752043^(5/17) 2178309000000095 a001 2504730781961/141422324*12752043^(5/17) 2178309000000095 a001 140728068720/1875749*20633239^(1/5) 2178309000000096 a001 32951280099/33385282*12752043^(8/17) 2178309000000096 a001 4052739537881/20633239*20633239^(1/7) 2178309000000096 a001 591286729879/87403803*12752043^(6/17) 2178309000000096 a001 1548008755920/228826127*12752043^(6/17) 2178309000000096 a001 956722026041/54018521*12752043^(5/17) 2178309000000096 a001 4052739537881/599074578*12752043^(6/17) 2178309000000096 a001 1515744265389/224056801*12752043^(6/17) 2178309000000096 a001 6557470319842/969323029*12752043^(6/17) 2178309000000096 a001 10182505537/16692641*12752043^(1/2) 2178309000000096 a001 2504730781961/370248451*12752043^(6/17) 2178309000000096 a001 360684711361585/165580141 2178309000000096 a001 9227465/87403803*2537720636^(7/9) 2178309000000096 a001 9227465/87403803*17393796001^(5/7) 2178309000000096 a001 9227465/87403803*312119004989^(7/11) 2178309000000096 a001 9227465/87403803*14662949395604^(5/9) 2178309000000096 a001 39088169/20633239*(1/2+1/2*5^(1/2))^29 2178309000000096 a001 39088169/20633239*1322157322203^(1/2) 2178309000000096 a001 9227465/87403803*28143753123^(7/10) 2178309000000096 a001 9227465/87403803*599074578^(5/6) 2178309000000096 a001 956722026041/141422324*12752043^(6/17) 2178309000000096 a001 9227465/87403803*228826127^(7/8) 2178309000000096 a001 9227465/33385282*33385282^(11/12) 2178309000000096 a001 9303105/1875749*141422324^(9/13) 2178309000000096 a001 433494437/20633239*141422324^(8/13) 2178309000000096 a001 1836311903/20633239*141422324^(7/13) 2178309000000096 a001 165580141/20633239*141422324^(2/3) 2178309000000096 a001 7778742049/20633239*141422324^(6/13) 2178309000000096 a001 944284833567075/433494437 2178309000000096 a001 32951280099/20633239*141422324^(5/13) 2178309000000096 a001 9303105/1875749*2537720636^(3/5) 2178309000000096 a001 9303105/1875749*45537549124^(9/17) 2178309000000096 a001 9303105/1875749*817138163596^(9/19) 2178309000000096 a001 9303105/1875749*14662949395604^(3/7) 2178309000000096 a001 9303105/1875749*(1/2+1/2*5^(1/2))^27 2178309000000096 a001 9303105/1875749*192900153618^(1/2) 2178309000000096 a001 9303105/1875749*10749957122^(9/16) 2178309000000096 a001 9303105/1875749*599074578^(9/14) 2178309000000096 a001 86267571272/20633239*141422324^(1/3) 2178309000000096 a001 139583862445/20633239*141422324^(4/13) 2178309000000096 a001 591286729879/20633239*141422324^(3/13) 2178309000000096 a001 2504730781961/20633239*141422324^(2/13) 2178309000000096 a001 10610209857723/20633239*141422324^(1/13) 2178309000000096 a001 247216978933964/113490317 2178309000000096 a001 9227465/599074578*2537720636^(13/15) 2178309000000096 a001 9238424/711491*2537720636^(5/9) 2178309000000096 a001 9227465/599074578*45537549124^(13/17) 2178309000000096 a001 9238424/711491*312119004989^(5/11) 2178309000000096 a001 9227465/599074578*14662949395604^(13/21) 2178309000000096 a001 9238424/711491*(1/2+1/2*5^(1/2))^25 2178309000000096 a001 9238424/711491*3461452808002^(5/12) 2178309000000096 a001 9227465/599074578*192900153618^(13/18) 2178309000000096 a001 9227465/599074578*73681302247^(3/4) 2178309000000096 a001 9238424/711491*28143753123^(1/2) 2178309000000096 a001 9227465/599074578*10749957122^(13/16) 2178309000000096 a001 6472224534451845/2971215073 2178309000000096 a001 701408733/20633239*(1/2+1/2*5^(1/2))^23 2178309000000096 a001 701408733/20633239*4106118243^(1/2) 2178309000000096 a001 9227465/599074578*599074578^(13/14) 2178309000000096 a001 1836311903/20633239*2537720636^(7/15) 2178309000000096 a001 1303423370308915/598364773 2178309000000096 a001 1836311903/20633239*17393796001^(3/7) 2178309000000096 a001 1836311903/20633239*45537549124^(7/17) 2178309000000096 a001 1836311903/20633239*14662949395604^(1/3) 2178309000000096 a001 1836311903/20633239*(1/2+1/2*5^(1/2))^21 2178309000000096 a001 1836311903/20633239*192900153618^(7/18) 2178309000000096 a001 7778742049/20633239*2537720636^(2/5) 2178309000000096 a001 1836311903/20633239*10749957122^(7/16) 2178309000000096 a001 32951280099/20633239*2537720636^(1/3) 2178309000000096 a001 2971215073/20633239*2537720636^(4/9) 2178309000000096 a001 139583862445/20633239*2537720636^(4/15) 2178309000000096 a001 365435296162/20633239*2537720636^(2/9) 2178309000000096 a001 591286729879/20633239*2537720636^(1/5) 2178309000000096 a001 2504730781961/20633239*2537720636^(2/15) 2178309000000096 a001 4052739537881/20633239*2537720636^(1/9) 2178309000000096 a001 10610209857723/20633239*2537720636^(1/15) 2178309000000096 a001 22180643453797920/10182505537 2178309000000096 a001 9227465/10749957122*45537549124^(15/17) 2178309000000096 a001 9227465/10749957122*312119004989^(9/11) 2178309000000096 a001 4807526976/20633239*817138163596^(1/3) 2178309000000096 a001 4807526976/20633239*(1/2+1/2*5^(1/2))^19 2178309000000096 a001 9227465/10749957122*192900153618^(5/6) 2178309000000096 a001 9227465/10749957122*28143753123^(9/10) 2178309000000096 a001 1144206275/1875749*45537549124^(1/3) 2178309000000096 a001 1144206275/1875749*(1/2+1/2*5^(1/2))^17 2178309000000096 a001 53316291173/20633239*17393796001^(2/7) 2178309000000096 a001 9227465/10749957122*10749957122^(15/16) 2178309000000096 a001 140728068720/1875749*17393796001^(1/7) 2178309000000096 a001 32951280099/20633239*45537549124^(5/17) 2178309000000096 a001 60811356763743807/27916772489 2178309000000096 a001 32951280099/20633239*312119004989^(3/11) 2178309000000096 a001 9227465/73681302247*14662949395604^(7/9) 2178309000000096 a001 32951280099/20633239*14662949395604^(5/21) 2178309000000096 a001 32951280099/20633239*(1/2+1/2*5^(1/2))^15 2178309000000096 a001 32951280099/20633239*192900153618^(5/18) 2178309000000096 a001 139583862445/20633239*45537549124^(4/17) 2178309000000096 a001 591286729879/20633239*45537549124^(3/17) 2178309000000096 a001 2504730781961/20633239*45537549124^(2/17) 2178309000000096 a001 10610209857723/20633239*45537549124^(1/17) 2178309000000096 a001 86267571272/20633239*(1/2+1/2*5^(1/2))^13 2178309000000096 a001 7787980473/711491*(1/2+1/2*5^(1/2))^11 2178309000000096 a001 4052739537881/20633239*(1/2+1/2*5^(1/2))^5 2178309000000096 a001 10610209857723/20633239*14662949395604^(1/21) 2178309000000096 a001 10610209857723/20633239*(1/2+1/2*5^(1/2))^3 2178309000000096 a001 6557470319842/20633239*(1/2+1/2*5^(1/2))^4 2178309000000096 a001 2504730781961/20633239*(1/2+1/2*5^(1/2))^6 2178309000000096 a001 956722026041/20633239*(1/2+1/2*5^(1/2))^8 2178309000000096 a001 10610209857723/20633239*192900153618^(1/18) 2178309000000096 a001 365435296162/20633239*(1/2+1/2*5^(1/2))^10 2178309000000096 a001 591286729879/20633239*192900153618^(1/6) 2178309000000096 a001 139583862445/20633239*(1/2+1/2*5^(1/2))^12 2178309000000096 a001 1288005205276051925/591286729879 2178309000000096 a001 139583862445/20633239*192900153618^(2/9) 2178309000000096 a001 86267571272/20633239*73681302247^(1/4) 2178309000000096 a001 9227465/45537549124*45537549124^(16/17) 2178309000000096 a001 139583862445/20633239*73681302247^(3/13) 2178309000000096 a001 9227465/119218851371*312119004989^(10/11) 2178309000000096 a001 53316291173/20633239*14662949395604^(2/9) 2178309000000096 a001 37844170056051265/17373187209 2178309000000096 a001 4052739537881/20633239*28143753123^(1/10) 2178309000000096 a001 32951280099/20633239*28143753123^(3/10) 2178309000000096 a001 365435296162/20633239*28143753123^(1/5) 2178309000000096 a001 20365011074/20633239*(1/2+1/2*5^(1/2))^16 2178309000000096 a001 20365011074/20633239*23725150497407^(1/4) 2178309000000096 a001 9227465/45537549124*192900153618^(8/9) 2178309000000096 a001 93958713454973705/43133785636 2178309000000096 a001 10610209857723/20633239*10749957122^(1/16) 2178309000000096 a001 9227465/45537549124*73681302247^(12/13) 2178309000000096 a001 6557470319842/20633239*10749957122^(1/12) 2178309000000096 a001 2504730781961/20633239*10749957122^(1/8) 2178309000000096 a001 956722026041/20633239*10749957122^(1/6) 2178309000000096 a001 591286729879/20633239*10749957122^(3/16) 2178309000000096 a001 365435296162/20633239*10749957122^(5/24) 2178309000000096 a001 139583862445/20633239*10749957122^(1/4) 2178309000000096 a001 32951280099/20633239*10749957122^(5/16) 2178309000000096 a001 53316291173/20633239*10749957122^(7/24) 2178309000000096 a001 7778742049/20633239*45537549124^(6/17) 2178309000000096 a001 7778742049/20633239*14662949395604^(2/7) 2178309000000096 a001 7778742049/20633239*(1/2+1/2*5^(1/2))^18 2178309000000096 a001 7778742049/20633239*192900153618^(1/3) 2178309000000096 a001 20365011074/20633239*10749957122^(1/3) 2178309000000096 a001 71778070001175785/32951280099 2178309000000096 a001 6557470319842/20633239*4106118243^(2/23) 2178309000000096 a001 7778742049/20633239*10749957122^(3/8) 2178309000000096 a001 2504730781961/20633239*4106118243^(3/23) 2178309000000096 a001 956722026041/20633239*4106118243^(4/23) 2178309000000096 a001 9227465/2537720636*2537720636^(14/15) 2178309000000096 a001 9227465/17393796001*10749957122^(23/24) 2178309000000096 a001 365435296162/20633239*4106118243^(5/23) 2178309000000096 a001 139583862445/20633239*4106118243^(6/23) 2178309000000096 a001 53316291173/20633239*4106118243^(7/23) 2178309000000096 a001 20365011074/20633239*4106118243^(8/23) 2178309000000096 a001 9227465/6643838879*312119004989^(4/5) 2178309000000096 a001 2971215073/20633239*(1/2+1/2*5^(1/2))^20 2178309000000096 a001 2971215073/20633239*23725150497407^(5/16) 2178309000000096 a001 9227465/6643838879*23725150497407^(11/16) 2178309000000096 a001 2971215073/20633239*505019158607^(5/14) 2178309000000096 a001 2971215073/20633239*73681302247^(5/13) 2178309000000096 a001 9227465/6643838879*73681302247^(11/13) 2178309000000096 a001 2971215073/20633239*28143753123^(2/5) 2178309000000096 a001 5483356618715989/2517253805 2178309000000096 a001 2971215073/20633239*10749957122^(5/12) 2178309000000096 a001 7778742049/20633239*4106118243^(9/23) 2178309000000096 a001 9227465/6643838879*10749957122^(11/12) 2178309000000096 a001 6557470319842/20633239*1568397607^(1/11) 2178309000000096 a001 2971215073/20633239*4106118243^(10/23) 2178309000000096 a001 2504730781961/20633239*1568397607^(3/22) 2178309000000096 a001 956722026041/20633239*1568397607^(2/11) 2178309000000096 a001 9227465/6643838879*4106118243^(22/23) 2178309000000096 a001 365435296162/20633239*1568397607^(5/22) 2178309000000096 a001 7787980473/711491*1568397607^(1/4) 2178309000000096 a001 139583862445/20633239*1568397607^(3/11) 2178309000000096 a001 53316291173/20633239*1568397607^(7/22) 2178309000000096 a001 20365011074/20633239*1568397607^(4/11) 2178309000000096 a001 9227465/2537720636*17393796001^(6/7) 2178309000000096 a001 9227465/2537720636*45537549124^(14/17) 2178309000000096 a001 1134903170/20633239*312119004989^(2/5) 2178309000000096 a001 9227465/2537720636*14662949395604^(2/3) 2178309000000096 a001 1134903170/20633239*(1/2+1/2*5^(1/2))^22 2178309000000096 a001 9227465/2537720636*505019158607^(3/4) 2178309000000096 a001 9227465/2537720636*192900153618^(7/9) 2178309000000096 a001 1134903170/20633239*10749957122^(11/24) 2178309000000096 a001 9227465/2537720636*10749957122^(7/8) 2178309000000096 a001 5236139639782025/2403763488 2178309000000096 a001 7778742049/20633239*1568397607^(9/22) 2178309000000096 a001 1134903170/20633239*4106118243^(11/23) 2178309000000096 a001 10610209857723/20633239*599074578^(1/14) 2178309000000096 a001 2971215073/20633239*1568397607^(5/11) 2178309000000096 a001 9227465/2537720636*4106118243^(21/23) 2178309000000096 a001 6557470319842/20633239*599074578^(2/21) 2178309000000096 a001 1134903170/20633239*1568397607^(1/2) 2178309000000096 a001 2504730781961/20633239*599074578^(1/7) 2178309000000096 a001 140728068720/1875749*599074578^(1/6) 2178309000000096 a001 956722026041/20633239*599074578^(4/21) 2178309000000096 a001 9227465/2537720636*1568397607^(21/22) 2178309000000096 a001 591286729879/20633239*599074578^(3/14) 2178309000000096 a001 365435296162/20633239*599074578^(5/21) 2178309000000096 a001 139583862445/20633239*599074578^(2/7) 2178309000000096 a001 9227465/969323029*2537720636^(8/9) 2178309000000096 a001 53316291173/20633239*599074578^(1/3) 2178309000000096 a001 433494437/20633239*2537720636^(8/15) 2178309000000096 a001 32951280099/20633239*599074578^(5/14) 2178309000000096 a001 20365011074/20633239*599074578^(8/21) 2178309000000096 a001 433494437/20633239*45537549124^(8/17) 2178309000000096 a001 9227465/969323029*312119004989^(8/11) 2178309000000096 a001 433494437/20633239*14662949395604^(8/21) 2178309000000096 a001 433494437/20633239*(1/2+1/2*5^(1/2))^24 2178309000000096 a001 9227465/969323029*23725150497407^(5/8) 2178309000000096 a001 433494437/20633239*192900153618^(4/9) 2178309000000096 a001 433494437/20633239*73681302247^(6/13) 2178309000000096 a001 9227465/969323029*73681302247^(10/13) 2178309000000096 a001 9227465/969323029*28143753123^(4/5) 2178309000000096 a001 433494437/20633239*10749957122^(1/2) 2178309000000096 a001 9227465/969323029*10749957122^(5/6) 2178309000000096 a001 433494437/20633239*4106118243^(12/23) 2178309000000096 a001 9227465/969323029*4106118243^(20/23) 2178309000000096 a001 4000054745112205/1836311903 2178309000000096 a001 7778742049/20633239*599074578^(3/7) 2178309000000096 a001 433494437/20633239*1568397607^(6/11) 2178309000000096 a001 1836311903/20633239*599074578^(1/2) 2178309000000096 a001 2971215073/20633239*599074578^(10/21) 2178309000000096 a001 9227465/969323029*1568397607^(10/11) 2178309000000096 a001 1134903170/20633239*599074578^(11/21) 2178309000000096 a001 6557470319842/20633239*228826127^(1/10) 2178309000000096 a001 4052739537881/20633239*228826127^(1/8) 2178309000000096 a001 433494437/20633239*599074578^(4/7) 2178309000000096 a001 2504730781961/20633239*228826127^(3/20) 2178309000000096 a001 9227465/969323029*599074578^(20/21) 2178309000000096 a001 956722026041/20633239*228826127^(1/5) 2178309000000096 a001 9227465/141422324*141422324^(12/13) 2178309000000096 a001 365435296162/20633239*228826127^(1/4) 2178309000000096 a001 139583862445/20633239*228826127^(3/10) 2178309000000096 a001 53316291173/20633239*228826127^(7/20) 2178309000000096 a001 32951280099/20633239*228826127^(3/8) 2178309000000096 a001 9227465/370248451*817138163596^(2/3) 2178309000000096 a001 165580141/20633239*(1/2+1/2*5^(1/2))^26 2178309000000096 a001 165580141/20633239*73681302247^(1/2) 2178309000000096 a001 165580141/20633239*10749957122^(13/24) 2178309000000096 a001 9227465/370248451*10749957122^(19/24) 2178309000000096 a001 165580141/20633239*4106118243^(13/23) 2178309000000096 a001 9227465/370248451*4106118243^(19/23) 2178309000000096 a001 165580141/20633239*1568397607^(13/22) 2178309000000096 a001 20365011074/20633239*228826127^(2/5) 2178309000000096 a001 9227465/370248451*1568397607^(19/22) 2178309000000096 a001 1527884955772565/701408733 2178309000000096 a001 7778742049/20633239*228826127^(9/20) 2178309000000096 a001 165580141/20633239*599074578^(13/21) 2178309000000096 a001 9238424/711491*228826127^(5/8) 2178309000000096 a001 12586269025/33385282*12752043^(9/17) 2178309000000096 a001 2971215073/20633239*228826127^(1/2) 2178309000000096 a001 9227465/370248451*599074578^(19/21) 2178309000000096 a001 1134903170/20633239*228826127^(11/20) 2178309000000096 a001 433494437/20633239*228826127^(3/5) 2178309000000096 a001 6557470319842/20633239*87403803^(2/19) 2178309000000096 a001 165580141/20633239*228826127^(13/20) 2178309000000096 a001 2504730781961/20633239*87403803^(3/19) 2178309000000096 a001 9227465/370248451*228826127^(19/20) 2178309000000096 a001 956722026041/20633239*87403803^(4/19) 2178309000000097 a001 365435296162/20633239*87403803^(5/19) 2178309000000097 a001 139583862445/20633239*87403803^(6/19) 2178309000000097 a001 53316291173/20633239*87403803^(7/19) 2178309000000097 a001 9227465/141422324*2537720636^(4/5) 2178309000000097 a001 63245986/20633239*17393796001^(4/7) 2178309000000097 a001 9227465/141422324*45537549124^(12/17) 2178309000000097 a001 9227465/141422324*14662949395604^(4/7) 2178309000000097 a001 63245986/20633239*14662949395604^(4/9) 2178309000000097 a001 63245986/20633239*(1/2+1/2*5^(1/2))^28 2178309000000097 a001 9227465/141422324*192900153618^(2/3) 2178309000000097 a001 63245986/20633239*73681302247^(7/13) 2178309000000097 a001 9227465/141422324*73681302247^(9/13) 2178309000000097 a001 63245986/20633239*10749957122^(7/12) 2178309000000097 a001 9227465/141422324*10749957122^(3/4) 2178309000000097 a001 63245986/20633239*4106118243^(14/23) 2178309000000097 a001 9227465/141422324*4106118243^(18/23) 2178309000000097 a001 63245986/20633239*1568397607^(7/11) 2178309000000097 a001 9227465/141422324*1568397607^(9/11) 2178309000000097 a001 63245986/20633239*599074578^(2/3) 2178309000000097 a001 75283811239/29134601*12752043^(7/17) 2178309000000097 a001 9227465/141422324*599074578^(6/7) 2178309000000097 a001 22446158546365/10304396 2178309000000097 a001 20365011074/20633239*87403803^(8/19) 2178309000000097 a001 7778742049/20633239*87403803^(9/19) 2178309000000097 a001 63245986/20633239*228826127^(7/10) 2178309000000097 a001 4807526976/20633239*87403803^(1/2) 2178309000000097 a001 9227465/141422324*228826127^(9/10) 2178309000000097 a001 2971215073/20633239*87403803^(10/19) 2178309000000097 a001 10610209857723/20633239*33385282^(1/12) 2178309000000097 a001 1134903170/20633239*87403803^(11/19) 2178309000000097 a001 433494437/20633239*87403803^(12/19) 2178309000000097 a001 165580141/20633239*87403803^(13/19) 2178309000000097 a001 6557470319842/20633239*33385282^(1/9) 2178309000000097 a001 63245986/20633239*87403803^(14/19) 2178309000000097 a001 2504730781961/20633239*33385282^(1/6) 2178309000000097 a001 591286729879/228826127*12752043^(7/17) 2178309000000097 a001 365435296162/54018521*12752043^(6/17) 2178309000000097 a001 9227465/141422324*87403803^(18/19) 2178309000000097 a001 86000486440/33281921*12752043^(7/17) 2178309000000097 a001 4052739537881/1568397607*12752043^(7/17) 2178309000000097 a001 3536736619241/1368706081*12752043^(7/17) 2178309000000097 a001 3278735159921/1268860318*12752043^(7/17) 2178309000000097 a001 2504730781961/969323029*12752043^(7/17) 2178309000000097 a001 956722026041/370248451*12752043^(7/17) 2178309000000097 a001 956722026041/20633239*33385282^(2/9) 2178309000000097 a001 591286729879/20633239*33385282^(1/4) 2178309000000097 a001 182717648081/70711162*12752043^(7/17) 2178309000000097 a001 365435296162/20633239*33385282^(5/18) 2178309000000097 a001 139583862445/20633239*33385282^(1/3) 2178309000000097 a001 24157817/20633239*141422324^(10/13) 2178309000000097 a001 24157817/20633239*2537720636^(2/3) 2178309000000097 a001 9227465/54018521*45537549124^(2/3) 2178309000000097 a001 24157817/20633239*45537549124^(10/17) 2178309000000097 a001 24157817/20633239*312119004989^(6/11) 2178309000000097 a001 24157817/20633239*14662949395604^(10/21) 2178309000000097 a001 24157817/20633239*(1/2+1/2*5^(1/2))^30 2178309000000097 a001 24157817/20633239*192900153618^(5/9) 2178309000000097 a001 24157817/20633239*28143753123^(3/5) 2178309000000097 a001 24157817/20633239*10749957122^(5/8) 2178309000000097 a001 9227465/54018521*10749957122^(17/24) 2178309000000097 a001 24157817/20633239*4106118243^(15/23) 2178309000000097 a001 9227465/54018521*4106118243^(17/23) 2178309000000097 a001 24157817/20633239*1568397607^(15/22) 2178309000000097 a001 9227465/54018521*1568397607^(17/22) 2178309000000097 a001 24157817/20633239*599074578^(5/7) 2178309000000097 a001 9227465/54018521*599074578^(17/21) 2178309000000097 a001 53316291173/20633239*33385282^(7/18) 2178309000000097 a001 24157817/20633239*228826127^(3/4) 2178309000000097 a001 9227465/54018521*228826127^(17/20) 2178309000000097 a001 44583082168781/20466831 2178309000000097 a001 14930208/103681*12752043^(10/17) 2178309000000097 a001 32951280099/20633239*33385282^(5/12) 2178309000000097 a001 20365011074/20633239*33385282^(4/9) 2178309000000097 a001 86267571272/87403803*12752043^(8/17) 2178309000000097 a001 24157817/20633239*87403803^(15/19) 2178309000000097 a001 39088169/7881196*7881196^(9/11) 2178309000000097 a001 7778742049/20633239*33385282^(1/2) 2178309000000097 a001 9227465/54018521*87403803^(17/19) 2178309000000098 a001 2971215073/20633239*33385282^(5/9) 2178309000000098 a001 1836311903/20633239*33385282^(7/12) 2178309000000098 a001 225851433717/228826127*12752043^(8/17) 2178309000000098 a001 139583862445/54018521*12752043^(7/17) 2178309000000098 a001 591286729879/599074578*12752043^(8/17) 2178309000000098 a001 1548008755920/1568397607*12752043^(8/17) 2178309000000098 a001 4052739537881/4106118243*12752043^(8/17) 2178309000000098 a001 4807525989/4870846*12752043^(8/17) 2178309000000098 a001 6557470319842/6643838879*12752043^(8/17) 2178309000000098 a001 2504730781961/2537720636*12752043^(8/17) 2178309000000098 a001 956722026041/969323029*12752043^(8/17) 2178309000000098 a001 1134903170/20633239*33385282^(11/18) 2178309000000098 a001 365435296162/370248451*12752043^(8/17) 2178309000000098 a001 53316291173/87403803*12752043^(1/2) 2178309000000098 a001 139583862445/141422324*12752043^(8/17) 2178309000000098 a001 433494437/20633239*33385282^(2/3) 2178309000000098 a001 9303105/1875749*33385282^(3/4) 2178309000000098 a001 165580141/20633239*33385282^(13/18) 2178309000000098 a001 139583862445/228826127*12752043^(1/2) 2178309000000098 a001 182717648081/299537289*12752043^(1/2) 2178309000000098 a001 6557470319842/20633239*12752043^(2/17) 2178309000000098 a001 956722026041/1568397607*12752043^(1/2) 2178309000000098 a001 2504730781961/4106118243*12752043^(1/2) 2178309000000098 a001 3278735159921/5374978561*12752043^(1/2) 2178309000000098 a001 10610209857723/17393796001*12752043^(1/2) 2178309000000098 a001 4052739537881/6643838879*12752043^(1/2) 2178309000000098 a001 1134903780/1860499*12752043^(1/2) 2178309000000098 a001 591286729879/969323029*12752043^(1/2) 2178309000000098 a001 1836311903/33385282*12752043^(11/17) 2178309000000098 a001 225851433717/370248451*12752043^(1/2) 2178309000000098 a001 63245986/20633239*33385282^(7/9) 2178309000000098 a001 10983760033/29134601*12752043^(9/17) 2178309000000098 a001 21566892818/35355581*12752043^(1/2) 2178309000000098 a001 86267571272/228826127*12752043^(9/17) 2178309000000098 a001 53316291173/54018521*12752043^(8/17) 2178309000000098 a001 267913919/710646*12752043^(9/17) 2178309000000098 a001 591286729879/1568397607*12752043^(9/17) 2178309000000098 a001 516002918640/1368706081*12752043^(9/17) 2178309000000098 a001 4052739537881/10749957122*12752043^(9/17) 2178309000000098 a001 3536736619241/9381251041*12752043^(9/17) 2178309000000098 a001 6557470319842/17393796001*12752043^(9/17) 2178309000000098 a001 2504730781961/6643838879*12752043^(9/17) 2178309000000098 a001 956722026041/2537720636*12752043^(9/17) 2178309000000098 a001 365435296162/969323029*12752043^(9/17) 2178309000000098 a001 139583862445/370248451*12752043^(9/17) 2178309000000099 a001 53316291173/141422324*12752043^(9/17) 2178309000000099 a001 32951280099/54018521*12752043^(1/2) 2178309000000099 a001 2504730781961/20633239*12752043^(3/17) 2178309000000099 a001 24157817/20633239*33385282^(5/6) 2178309000000099 a001 701408733/33385282*12752043^(12/17) 2178309000000099 a001 12586269025/87403803*12752043^(10/17) 2178309000000099 a001 9227465/54018521*33385282^(17/18) 2178309000000099 a001 32951280099/228826127*12752043^(10/17) 2178309000000099 a001 20365011074/54018521*12752043^(9/17) 2178309000000099 a001 43133785636/299537289*12752043^(10/17) 2178309000000099 a001 32264490531/224056801*12752043^(10/17) 2178309000000099 a001 591286729879/4106118243*12752043^(10/17) 2178309000000099 a001 774004377960/5374978561*12752043^(10/17) 2178309000000099 a001 4052739537881/28143753123*12752043^(10/17) 2178309000000099 a001 1515744265389/10525900321*12752043^(10/17) 2178309000000099 a001 3278735159921/22768774562*12752043^(10/17) 2178309000000099 a001 2504730781961/17393796001*12752043^(10/17) 2178309000000099 a001 956722026041/6643838879*12752043^(10/17) 2178309000000099 a001 182717648081/1268860318*12752043^(10/17) 2178309000000099 a001 139583862445/969323029*12752043^(10/17) 2178309000000099 a001 53316291173/370248451*12752043^(10/17) 2178309000000099 a001 10182505537/70711162*12752043^(10/17) 2178309000000100 a001 956722026041/20633239*12752043^(4/17) 2178309000000100 a001 133957148/16692641*12752043^(13/17) 2178309000000100 a001 9227465/7881196*7881196^(10/11) 2178309000000100 a001 1602508992/29134601*12752043^(11/17) 2178309000000100 a001 12586269025/228826127*12752043^(11/17) 2178309000000100 a001 7778742049/54018521*12752043^(10/17) 2178309000000100 a001 10983760033/199691526*12752043^(11/17) 2178309000000100 a001 86267571272/1568397607*12752043^(11/17) 2178309000000100 a001 75283811239/1368706081*12752043^(11/17) 2178309000000100 a001 591286729879/10749957122*12752043^(11/17) 2178309000000100 a001 12585437040/228811001*12752043^(11/17) 2178309000000100 a001 4052739537881/73681302247*12752043^(11/17) 2178309000000100 a001 3536736619241/64300051206*12752043^(11/17) 2178309000000100 a001 6557470319842/119218851371*12752043^(11/17) 2178309000000100 a001 2504730781961/45537549124*12752043^(11/17) 2178309000000100 a001 956722026041/17393796001*12752043^(11/17) 2178309000000100 a001 365435296162/6643838879*12752043^(11/17) 2178309000000100 a001 139583862445/2537720636*12752043^(11/17) 2178309000000100 a001 53316291173/969323029*12752043^(11/17) 2178309000000100 a001 20365011074/370248451*12752043^(11/17) 2178309000000100 a001 7465176/16692641*12752043^(16/17) 2178309000000100 a001 7778742049/141422324*12752043^(11/17) 2178309000000100 a001 14619165/4769326*12752043^(14/17) 2178309000000100 a001 365435296162/20633239*12752043^(5/17) 2178309000000100 a001 1836311903/87403803*12752043^(12/17) 2178309000000101 a001 102287808/4868641*12752043^(12/17) 2178309000000101 a001 2971215073/54018521*12752043^(11/17) 2178309000000101 a001 12586269025/599074578*12752043^(12/17) 2178309000000101 a001 32951280099/1568397607*12752043^(12/17) 2178309000000101 a001 86267571272/4106118243*12752043^(12/17) 2178309000000101 a001 225851433717/10749957122*12752043^(12/17) 2178309000000101 a001 591286729879/28143753123*12752043^(12/17) 2178309000000101 a001 1548008755920/73681302247*12752043^(12/17) 2178309000000101 a001 4052739537881/192900153618*12752043^(12/17) 2178309000000101 a001 225749145909/10745088481*12752043^(12/17) 2178309000000101 a001 6557470319842/312119004989*12752043^(12/17) 2178309000000101 a001 2504730781961/119218851371*12752043^(12/17) 2178309000000101 a001 956722026041/45537549124*12752043^(12/17) 2178309000000101 a001 365435296162/17393796001*12752043^(12/17) 2178309000000101 a001 139583862445/6643838879*12752043^(12/17) 2178309000000101 a001 53316291173/2537720636*12752043^(12/17) 2178309000000101 a001 20365011074/969323029*12752043^(12/17) 2178309000000101 a001 7778742049/370248451*12752043^(12/17) 2178309000000101 a001 1515744265389/4769326*4870847^(1/8) 2178309000000101 a001 591286729879/12752043*4870847^(1/4) 2178309000000101 a001 2971215073/141422324*12752043^(12/17) 2178309000000101 a001 39088169/33385282*12752043^(15/17) 2178309000000101 a001 165580141/7881196*7881196^(8/11) 2178309000000101 a001 139583862445/20633239*12752043^(6/17) 2178309000000101 a001 233802911/29134601*12752043^(13/17) 2178309000000102 a001 1836311903/228826127*12752043^(13/17) 2178309000000102 a001 1134903170/54018521*12752043^(12/17) 2178309000000102 a001 9227465/20633239*(1/2+1/2*5^(1/2))^32 2178309000000102 a001 9227465/20633239*23725150497407^(1/2) 2178309000000102 a001 9227465/20633239*73681302247^(8/13) 2178309000000102 a001 9227465/20633239*10749957122^(2/3) 2178309000000102 a001 9227465/20633239*4106118243^(16/23) 2178309000000102 a001 9227465/20633239*1568397607^(8/11) 2178309000000102 a001 267084832/33281921*12752043^(13/17) 2178309000000102 a001 9227465/20633239*599074578^(16/21) 2178309000000102 a001 12586269025/1568397607*12752043^(13/17) 2178309000000102 a001 10983760033/1368706081*12752043^(13/17) 2178309000000102 a001 43133785636/5374978561*12752043^(13/17) 2178309000000102 a001 75283811239/9381251041*12752043^(13/17) 2178309000000102 a001 591286729879/73681302247*12752043^(13/17) 2178309000000102 a001 86000486440/10716675201*12752043^(13/17) 2178309000000102 a001 3536736619241/440719107401*12752043^(13/17) 2178309000000102 a001 3278735159921/408569081798*12752043^(13/17) 2178309000000102 a001 2504730781961/312119004989*12752043^(13/17) 2178309000000102 a001 956722026041/119218851371*12752043^(13/17) 2178309000000102 a001 182717648081/22768774562*12752043^(13/17) 2178309000000102 a001 139583862445/17393796001*12752043^(13/17) 2178309000000102 a001 53316291173/6643838879*12752043^(13/17) 2178309000000102 a001 10182505537/1268860318*12752043^(13/17) 2178309000000102 a001 7778742049/969323029*12752043^(13/17) 2178309000000102 a001 2971215073/370248451*12752043^(13/17) 2178309000000102 a001 9227465/20633239*228826127^(4/5) 2178309000000102 a001 567451585/70711162*12752043^(13/17) 2178309000000102 a001 9227465/20633239*87403803^(16/19) 2178309000000102 a001 85146110326225/39088169 2178309000000102 a001 53316291173/20633239*12752043^(7/17) 2178309000000102 a001 267914296/87403803*12752043^(14/17) 2178309000000102 a001 701408733/228826127*12752043^(14/17) 2178309000000102 a001 433494437/54018521*12752043^(13/17) 2178309000000102 a001 1836311903/599074578*12752043^(14/17) 2178309000000102 a001 686789568/224056801*12752043^(14/17) 2178309000000102 a001 12586269025/4106118243*12752043^(14/17) 2178309000000102 a001 32951280099/10749957122*12752043^(14/17) 2178309000000102 a001 86267571272/28143753123*12752043^(14/17) 2178309000000102 a001 32264490531/10525900321*12752043^(14/17) 2178309000000102 a001 591286729879/192900153618*12752043^(14/17) 2178309000000102 a001 1548008755920/505019158607*12752043^(14/17) 2178309000000102 a001 1515744265389/494493258286*12752043^(14/17) 2178309000000102 a001 2504730781961/817138163596*12752043^(14/17) 2178309000000102 a001 956722026041/312119004989*12752043^(14/17) 2178309000000102 a001 365435296162/119218851371*12752043^(14/17) 2178309000000102 a001 139583862445/45537549124*12752043^(14/17) 2178309000000102 a001 53316291173/17393796001*12752043^(14/17) 2178309000000102 a001 20365011074/6643838879*12752043^(14/17) 2178309000000102 a001 7778742049/2537720636*12752043^(14/17) 2178309000000102 a001 2971215073/969323029*12752043^(14/17) 2178309000000102 a001 1134903170/370248451*12752043^(14/17) 2178309000000102 a001 433494437/141422324*12752043^(14/17) 2178309000000103 a001 20365011074/20633239*12752043^(8/17) 2178309000000103 a001 34111385/29134601*12752043^(15/17) 2178309000000103 a001 433494437/7881196*7881196^(2/3) 2178309000000103 a001 267914296/228826127*12752043^(15/17) 2178309000000103 a001 165580141/54018521*12752043^(14/17) 2178309000000103 a001 233802911/199691526*12752043^(15/17) 2178309000000103 a001 1144206275/1875749*12752043^(1/2) 2178309000000103 a001 1836311903/1568397607*12752043^(15/17) 2178309000000103 a001 1602508992/1368706081*12752043^(15/17) 2178309000000103 a001 12586269025/10749957122*12752043^(15/17) 2178309000000103 a001 10983760033/9381251041*12752043^(15/17) 2178309000000103 a001 86267571272/73681302247*12752043^(15/17) 2178309000000103 a001 75283811239/64300051206*12752043^(15/17) 2178309000000103 a001 2504730781961/2139295485799*12752043^(15/17) 2178309000000103 a001 365435296162/312119004989*12752043^(15/17) 2178309000000103 a001 139583862445/119218851371*12752043^(15/17) 2178309000000103 a001 53316291173/45537549124*12752043^(15/17) 2178309000000103 a001 20365011074/17393796001*12752043^(15/17) 2178309000000103 a001 7778742049/6643838879*12752043^(15/17) 2178309000000103 a001 2971215073/2537720636*12752043^(15/17) 2178309000000103 a001 1134903170/969323029*12752043^(15/17) 2178309000000103 a001 433494437/370248451*12752043^(15/17) 2178309000000103 a001 165580141/141422324*12752043^(15/17) 2178309000000103 a001 9227465/20633239*33385282^(8/9) 2178309000000103 a001 39088169/87403803*12752043^(16/17) 2178309000000104 a001 7778742049/20633239*12752043^(9/17) 2178309000000104 a001 102334155/228826127*12752043^(16/17) 2178309000000104 a001 133957148/299537289*12752043^(16/17) 2178309000000104 a001 701408733/1568397607*12752043^(16/17) 2178309000000104 a001 1836311903/4106118243*12752043^(16/17) 2178309000000104 a001 2403763488/5374978561*12752043^(16/17) 2178309000000104 a001 12586269025/28143753123*12752043^(16/17) 2178309000000104 a001 32951280099/73681302247*12752043^(16/17) 2178309000000104 a001 43133785636/96450076809*12752043^(16/17) 2178309000000104 a001 225851433717/505019158607*12752043^(16/17) 2178309000000104 a001 10610209857723/23725150497407*12752043^(16/17) 2178309000000104 a001 182717648081/408569081798*12752043^(16/17) 2178309000000104 a001 139583862445/312119004989*12752043^(16/17) 2178309000000104 a001 53316291173/119218851371*12752043^(16/17) 2178309000000104 a001 10182505537/22768774562*12752043^(16/17) 2178309000000104 a001 7778742049/17393796001*12752043^(16/17) 2178309000000104 a001 2971215073/6643838879*12752043^(16/17) 2178309000000104 a001 567451585/1268860318*12752043^(16/17) 2178309000000104 a001 433494437/969323029*12752043^(16/17) 2178309000000104 a001 165580141/370248451*12752043^(16/17) 2178309000000104 a001 63245986/54018521*12752043^(15/17) 2178309000000104 a001 3524667/39604*7881196^(7/11) 2178309000000104 a001 31622993/70711162*12752043^(16/17) 2178309000000104 a001 2971215073/20633239*12752043^(10/17) 2178309000000104 a001 956722026041/4870847*1860498^(1/6) 2178309000000105 a001 1134903170/20633239*12752043^(11/17) 2178309000000105 a001 24157817/54018521*12752043^(16/17) 2178309000000106 a001 433494437/20633239*12752043^(12/17) 2178309000000107 a001 4052739537881/33385282*4870847^(3/16) 2178309000000107 a001 75283811239/4250681*4870847^(5/16) 2178309000000107 a001 165580141/20633239*12752043^(13/17) 2178309000000107 a001 2971215073/7881196*7881196^(6/11) 2178309000000108 a001 63245986/20633239*12752043^(14/17) 2178309000000108 a001 20100270056686/9227465 2178309000000108 a001 6557470319842/20633239*4870847^(1/8) 2178309000000108 a001 3536736619241/29134601*4870847^(3/16) 2178309000000109 a001 24157817/20633239*12752043^(15/17) 2178309000000109 a001 6557470319842/54018521*4870847^(3/16) 2178309000000110 a001 12586269025/7881196*7881196^(5/11) 2178309000000112 a001 774004377960/16692641*4870847^(1/4) 2178309000000112 a001 86267571272/12752043*4870847^(3/8) 2178309000000113 a001 3524578/12752043*141422324^(11/13) 2178309000000113 a001 3524578/12752043*2537720636^(11/15) 2178309000000113 a001 3524578/12752043*45537549124^(11/17) 2178309000000113 a001 3524578/12752043*312119004989^(3/5) 2178309000000113 a001 3524578/12752043*817138163596^(11/19) 2178309000000113 a001 3524578/12752043*14662949395604^(11/21) 2178309000000113 a001 3524578/12752043*(1/2+1/2*5^(1/2))^33 2178309000000113 a001 5702887/7881196*(1/2+1/2*5^(1/2))^31 2178309000000113 a001 3524578/12752043*192900153618^(11/18) 2178309000000113 a001 3524578/12752043*10749957122^(11/16) 2178309000000113 a001 3524578/12752043*1568397607^(3/4) 2178309000000113 a001 3524578/12752043*599074578^(11/14) 2178309000000114 a001 53316291173/7881196*7881196^(4/11) 2178309000000114 a001 2504730781961/20633239*4870847^(3/16) 2178309000000114 a001 4052739537881/87403803*4870847^(1/4) 2178309000000114 a001 9227465/20633239*12752043^(16/17) 2178309000000114 a001 225749145909/4868641*4870847^(1/4) 2178309000000114 a001 3278735159921/70711162*4870847^(1/4) 2178309000000115 a001 21566892818/1970299*7881196^(1/3) 2178309000000115 a001 3524578/12752043*33385282^(11/12) 2178309000000115 a001 2504730781961/54018521*4870847^(1/4) 2178309000000117 a001 225851433717/7881196*7881196^(3/11) 2178309000000118 a001 591286729879/33385282*4870847^(5/16) 2178309000000118 a001 10983760033/4250681*4870847^(7/16) 2178309000000119 a001 956722026041/20633239*4870847^(1/4) 2178309000000120 a001 516002918640/29134601*4870847^(5/16) 2178309000000120 a001 3536736619241/4250681*1860498^(1/15) 2178309000000120 a001 4052739537881/228826127*4870847^(5/16) 2178309000000120 a001 3536736619241/199691526*4870847^(5/16) 2178309000000120 a001 956722026041/7881196*7881196^(2/11) 2178309000000120 a001 6557470319842/370248451*4870847^(5/16) 2178309000000120 a001 2504730781961/141422324*4870847^(5/16) 2178309000000121 a001 956722026041/54018521*4870847^(5/16) 2178309000000123 a001 102334155/7881196*20633239^(5/7) 2178309000000123 a001 24157817/7881196*20633239^(4/5) 2178309000000123 a001 4052739537881/7881196*7881196^(1/11) 2178309000000123 a001 3524667/39604*20633239^(3/5) 2178309000000123 a001 567451585/3940598*20633239^(4/7) 2178309000000124 a001 52623190191456/24157817 2178309000000124 a001 32264490531/4769326*4870847^(3/8) 2178309000000124 a001 12586269025/12752043*4870847^(1/2) 2178309000000124 a001 12586269025/7881196*20633239^(3/7) 2178309000000124 a001 10182505537/3940598*20633239^(2/5) 2178309000000124 a001 1762289/16692641*2537720636^(7/9) 2178309000000124 a001 1762289/16692641*17393796001^(5/7) 2178309000000124 a001 1762289/16692641*312119004989^(7/11) 2178309000000124 a001 1762289/16692641*14662949395604^(5/9) 2178309000000124 a001 1762289/16692641*(1/2+1/2*5^(1/2))^35 2178309000000124 a001 3732588/1970299*(1/2+1/2*5^(1/2))^29 2178309000000124 a001 3732588/1970299*1322157322203^(1/2) 2178309000000124 a001 1762289/16692641*505019158607^(5/8) 2178309000000124 a001 1762289/16692641*28143753123^(7/10) 2178309000000124 a001 1762289/16692641*599074578^(5/6) 2178309000000124 a001 1762289/16692641*228826127^(7/8) 2178309000000125 a001 139583862445/7881196*20633239^(2/7) 2178309000000125 a001 365435296162/20633239*4870847^(5/16) 2178309000000125 a001 591286729879/4870847*1860498^(1/5) 2178309000000125 a001 591286729879/87403803*4870847^(3/8) 2178309000000126 a001 387002188980/1970299*20633239^(1/7) 2178309000000126 a001 1548008755920/228826127*4870847^(3/8) 2178309000000126 a001 4052739537881/599074578*4870847^(3/8) 2178309000000126 a001 1515744265389/224056801*4870847^(3/8) 2178309000000126 a001 6557470319842/969323029*4870847^(3/8) 2178309000000126 a001 2504730781961/370248451*4870847^(3/8) 2178309000000126 a001 956722026041/141422324*4870847^(3/8) 2178309000000126 a001 68884650258841/31622993 2178309000000126 a001 39088169/7881196*141422324^(9/13) 2178309000000126 a001 39088169/7881196*2537720636^(3/5) 2178309000000126 a001 39088169/7881196*45537549124^(9/17) 2178309000000126 a001 39088169/7881196*817138163596^(9/19) 2178309000000126 a001 39088169/7881196*14662949395604^(3/7) 2178309000000126 a001 39088169/7881196*(1/2+1/2*5^(1/2))^27 2178309000000126 a001 39088169/7881196*192900153618^(1/2) 2178309000000126 a001 39088169/7881196*10749957122^(9/16) 2178309000000126 a001 39088169/7881196*599074578^(9/14) 2178309000000126 a001 3524667/39604*141422324^(7/13) 2178309000000126 a001 360684711361590/165580141 2178309000000126 a001 165580141/7881196*141422324^(8/13) 2178309000000126 a001 2971215073/7881196*141422324^(6/13) 2178309000000126 a001 3524578/228826127*2537720636^(13/15) 2178309000000126 a001 12586269025/7881196*141422324^(5/13) 2178309000000126 a001 102334155/7881196*2537720636^(5/9) 2178309000000126 a001 3524578/228826127*45537549124^(13/17) 2178309000000126 a001 102334155/7881196*312119004989^(5/11) 2178309000000126 a001 3524578/228826127*14662949395604^(13/21) 2178309000000126 a001 102334155/7881196*(1/2+1/2*5^(1/2))^25 2178309000000126 a001 102334155/7881196*3461452808002^(5/12) 2178309000000126 a001 3524578/228826127*192900153618^(13/18) 2178309000000126 a001 3524578/228826127*73681302247^(3/4) 2178309000000126 a001 102334155/7881196*28143753123^(1/2) 2178309000000126 a001 3524578/228826127*10749957122^(13/16) 2178309000000126 a001 32951280099/7881196*141422324^(1/3) 2178309000000126 a001 3524578/228826127*599074578^(13/14) 2178309000000126 a001 53316291173/7881196*141422324^(4/13) 2178309000000126 a001 225851433717/7881196*141422324^(3/13) 2178309000000126 a001 956722026041/7881196*141422324^(2/13) 2178309000000126 a001 102334155/7881196*228826127^(5/8) 2178309000000126 a001 944284833567088/433494437 2178309000000126 a001 4052739537881/7881196*141422324^(1/13) 2178309000000126 a001 66978574/1970299*(1/2+1/2*5^(1/2))^23 2178309000000126 a001 66978574/1970299*4106118243^(1/2) 2178309000000126 a001 1236084894669837/567451585 2178309000000126 a001 3524667/39604*2537720636^(7/15) 2178309000000126 a001 3524667/39604*17393796001^(3/7) 2178309000000126 a001 3524667/39604*45537549124^(7/17) 2178309000000126 a001 3524667/39604*14662949395604^(1/3) 2178309000000126 a001 3524667/39604*(1/2+1/2*5^(1/2))^21 2178309000000126 a001 3524667/39604*192900153618^(7/18) 2178309000000126 a001 3524667/39604*10749957122^(7/16) 2178309000000126 a001 6472224534451934/2971215073 2178309000000126 a001 3524578/4106118243*45537549124^(15/17) 2178309000000126 a001 3524578/4106118243*312119004989^(9/11) 2178309000000126 a001 1836311903/7881196*817138163596^(1/3) 2178309000000126 a001 1836311903/7881196*(1/2+1/2*5^(1/2))^19 2178309000000126 a001 3524578/4106118243*192900153618^(5/6) 2178309000000126 a001 3524578/4106118243*28143753123^(9/10) 2178309000000126 a001 12586269025/7881196*2537720636^(1/3) 2178309000000126 a001 3524578/4106118243*10749957122^(15/16) 2178309000000126 a001 53316291173/7881196*2537720636^(4/15) 2178309000000126 a001 2971215073/7881196*2537720636^(2/5) 2178309000000126 a001 139583862445/7881196*2537720636^(2/9) 2178309000000126 a001 225851433717/7881196*2537720636^(1/5) 2178309000000126 a001 956722026041/7881196*2537720636^(2/15) 2178309000000126 a001 387002188980/1970299*2537720636^(1/9) 2178309000000126 a001 16944503814016128/7778742049 2178309000000126 a001 4052739537881/7881196*2537720636^(1/15) 2178309000000126 a001 1201881744/1970299*45537549124^(1/3) 2178309000000126 a001 1201881744/1970299*(1/2+1/2*5^(1/2))^17 2178309000000126 a001 22180643453798225/10182505537 2178309000000126 a001 12586269025/7881196*45537549124^(5/17) 2178309000000126 a001 12586269025/7881196*312119004989^(3/11) 2178309000000126 a001 12586269025/7881196*14662949395604^(5/21) 2178309000000126 a001 12586269025/7881196*(1/2+1/2*5^(1/2))^15 2178309000000126 a001 12586269025/7881196*192900153618^(5/18) 2178309000000126 a001 12586269025/7881196*28143753123^(3/10) 2178309000000126 a001 591286729879/7881196*17393796001^(1/7) 2178309000000126 a001 10182505537/3940598*17393796001^(2/7) 2178309000000126 a001 116139356908773222/53316291173 2178309000000126 a001 3524578/73681302247*817138163596^(17/19) 2178309000000126 a001 3524578/73681302247*14662949395604^(17/21) 2178309000000126 a001 32951280099/7881196*(1/2+1/2*5^(1/2))^13 2178309000000126 a001 3524578/73681302247*192900153618^(17/18) 2178309000000126 a001 32951280099/7881196*73681302247^(1/4) 2178309000000126 a001 225851433717/7881196*45537549124^(3/17) 2178309000000126 a001 956722026041/7881196*45537549124^(2/17) 2178309000000126 a001 53316291173/7881196*45537549124^(4/17) 2178309000000126 a001 21566892818/1970299*312119004989^(1/5) 2178309000000126 a001 21566892818/1970299*(1/2+1/2*5^(1/2))^11 2178309000000126 a001 225851433717/7881196*(1/2+1/2*5^(1/2))^9 2178309000000126 a001 2084036199823466062/956722026041 2178309000000126 a001 387002188980/1970299*(1/2+1/2*5^(1/2))^5 2178309000000126 a001 3278735159921/3940598*(1/2+1/2*5^(1/2))^2 2178309000000126 a001 2504730781961/7881196*(1/2+1/2*5^(1/2))^4 2178309000000126 a001 1288005205276069636/591286729879 2178309000000126 a001 139583862445/7881196*312119004989^(2/11) 2178309000000126 a001 139583862445/7881196*(1/2+1/2*5^(1/2))^10 2178309000000126 a001 2504730781961/7881196*73681302247^(1/13) 2178309000000126 a001 182717648081/3940598*73681302247^(2/13) 2178309000000126 a001 3524578/119218851371*23725150497407^(13/16) 2178309000000126 a001 3524578/119218851371*505019158607^(13/14) 2178309000000126 a001 93958713454974997/43133785636 2178309000000126 a001 53316291173/7881196*73681302247^(3/13) 2178309000000126 a001 387002188980/1970299*28143753123^(1/10) 2178309000000126 a001 139583862445/7881196*28143753123^(1/5) 2178309000000126 a001 3278735159921/3940598*10749957122^(1/24) 2178309000000126 a001 1762289/22768774562*312119004989^(10/11) 2178309000000126 a001 10182505537/3940598*14662949395604^(2/9) 2178309000000126 a001 10182505537/3940598*(1/2+1/2*5^(1/2))^14 2178309000000126 a001 4052739537881/7881196*10749957122^(1/16) 2178309000000126 a001 71778070001176772/32951280099 2178309000000126 a001 2504730781961/7881196*10749957122^(1/12) 2178309000000126 a001 956722026041/7881196*10749957122^(1/8) 2178309000000126 a001 12586269025/7881196*10749957122^(5/16) 2178309000000126 a001 225851433717/7881196*10749957122^(3/16) 2178309000000126 a001 139583862445/7881196*10749957122^(5/24) 2178309000000126 a001 53316291173/7881196*10749957122^(1/4) 2178309000000126 a001 3278735159921/3940598*4106118243^(1/23) 2178309000000126 a001 3524578/17393796001*45537549124^(16/17) 2178309000000126 a001 10182505537/3940598*10749957122^(7/24) 2178309000000126 a001 3524578/17393796001*14662949395604^(16/21) 2178309000000126 a001 7778742049/7881196*(1/2+1/2*5^(1/2))^16 2178309000000126 a001 3524578/17393796001*192900153618^(8/9) 2178309000000126 a001 7778742049/7881196*73681302247^(4/13) 2178309000000126 a001 3524578/17393796001*73681302247^(12/13) 2178309000000126 a001 27416783093580322/12586269025 2178309000000126 a001 2504730781961/7881196*4106118243^(2/23) 2178309000000126 a001 7778742049/7881196*10749957122^(1/3) 2178309000000126 a001 956722026041/7881196*4106118243^(3/23) 2178309000000126 a001 182717648081/3940598*4106118243^(4/23) 2178309000000126 a001 139583862445/7881196*4106118243^(5/23) 2178309000000126 a001 53316291173/7881196*4106118243^(6/23) 2178309000000126 a001 3278735159921/3940598*1568397607^(1/22) 2178309000000126 a001 10182505537/3940598*4106118243^(7/23) 2178309000000126 a001 2971215073/7881196*45537549124^(6/17) 2178309000000126 a001 2971215073/7881196*14662949395604^(2/7) 2178309000000126 a001 2971215073/7881196*(1/2+1/2*5^(1/2))^18 2178309000000126 a001 2971215073/7881196*192900153618^(1/3) 2178309000000126 a001 7778742049/7881196*4106118243^(8/23) 2178309000000126 a001 2971215073/7881196*10749957122^(3/8) 2178309000000126 a001 3524578/6643838879*10749957122^(23/24) 2178309000000126 a001 5236139639782097/2403763488 2178309000000126 a001 2504730781961/7881196*1568397607^(1/11) 2178309000000126 a001 2971215073/7881196*4106118243^(9/23) 2178309000000126 a001 956722026041/7881196*1568397607^(3/22) 2178309000000126 a001 182717648081/3940598*1568397607^(2/11) 2178309000000126 a001 567451585/3940598*2537720636^(4/9) 2178309000000126 a001 139583862445/7881196*1568397607^(5/22) 2178309000000126 a001 21566892818/1970299*1568397607^(1/4) 2178309000000126 a001 53316291173/7881196*1568397607^(3/11) 2178309000000126 a001 10182505537/3940598*1568397607^(7/22) 2178309000000126 a001 3278735159921/3940598*599074578^(1/21) 2178309000000126 a001 7778742049/7881196*1568397607^(4/11) 2178309000000126 a001 1762289/1268860318*312119004989^(4/5) 2178309000000126 a001 567451585/3940598*(1/2+1/2*5^(1/2))^20 2178309000000126 a001 567451585/3940598*23725150497407^(5/16) 2178309000000126 a001 1762289/1268860318*23725150497407^(11/16) 2178309000000126 a001 567451585/3940598*73681302247^(5/13) 2178309000000126 a001 1762289/1268860318*73681302247^(11/13) 2178309000000126 a001 567451585/3940598*28143753123^(2/5) 2178309000000126 a001 567451585/3940598*10749957122^(5/12) 2178309000000126 a001 1762289/1268860318*10749957122^(11/12) 2178309000000126 a001 567451585/3940598*4106118243^(10/23) 2178309000000126 a001 2971215073/7881196*1568397607^(9/22) 2178309000000126 a001 4052739537881/7881196*599074578^(1/14) 2178309000000126 a001 1762289/1268860318*4106118243^(22/23) 2178309000000126 a001 4000054745112260/1836311903 2178309000000126 a001 2504730781961/7881196*599074578^(2/21) 2178309000000126 a001 567451585/3940598*1568397607^(5/11) 2178309000000126 a001 956722026041/7881196*599074578^(1/7) 2178309000000126 a001 591286729879/7881196*599074578^(1/6) 2178309000000126 a001 182717648081/3940598*599074578^(4/21) 2178309000000126 a001 225851433717/7881196*599074578^(3/14) 2178309000000126 a001 139583862445/7881196*599074578^(5/21) 2178309000000126 a001 53316291173/7881196*599074578^(2/7) 2178309000000126 a001 3524578/969323029*2537720636^(14/15) 2178309000000126 a001 10182505537/3940598*599074578^(1/3) 2178309000000126 a001 3278735159921/3940598*228826127^(1/20) 2178309000000126 a001 3524667/39604*599074578^(1/2) 2178309000000126 a001 12586269025/7881196*599074578^(5/14) 2178309000000126 a001 3524578/969323029*17393796001^(6/7) 2178309000000126 a001 3524578/969323029*45537549124^(14/17) 2178309000000126 a001 3524578/969323029*817138163596^(14/19) 2178309000000126 a001 3524578/969323029*14662949395604^(2/3) 2178309000000126 a001 433494437/7881196*(1/2+1/2*5^(1/2))^22 2178309000000126 a001 3524578/969323029*505019158607^(3/4) 2178309000000126 a001 3524578/969323029*192900153618^(7/9) 2178309000000126 a001 7778742049/7881196*599074578^(8/21) 2178309000000126 a001 433494437/7881196*10749957122^(11/24) 2178309000000126 a001 3524578/969323029*10749957122^(7/8) 2178309000000126 a001 433494437/7881196*4106118243^(11/23) 2178309000000126 a001 3524578/969323029*4106118243^(21/23) 2178309000000126 a001 2971215073/7881196*599074578^(3/7) 2178309000000126 a001 433494437/7881196*1568397607^(1/2) 2178309000000126 a001 3524578/969323029*1568397607^(21/22) 2178309000000126 a001 17167246694074/7880997 2178309000000126 a001 567451585/3940598*599074578^(10/21) 2178309000000126 a001 2504730781961/7881196*228826127^(1/10) 2178309000000126 a001 387002188980/1970299*228826127^(1/8) 2178309000000126 a001 433494437/7881196*599074578^(11/21) 2178309000000126 a001 956722026041/7881196*228826127^(3/20) 2178309000000126 a001 182717648081/3940598*228826127^(1/5) 2178309000000126 a001 139583862445/7881196*228826127^(1/4) 2178309000000126 a001 53316291173/7881196*228826127^(3/10) 2178309000000126 a001 10182505537/3940598*228826127^(7/20) 2178309000000126 a001 3278735159921/3940598*87403803^(1/19) 2178309000000126 a001 3524578/370248451*2537720636^(8/9) 2178309000000126 a001 12586269025/7881196*228826127^(3/8) 2178309000000126 a001 165580141/7881196*2537720636^(8/15) 2178309000000126 a001 165580141/7881196*45537549124^(8/17) 2178309000000126 a001 3524578/370248451*312119004989^(8/11) 2178309000000126 a001 165580141/7881196*14662949395604^(8/21) 2178309000000126 a001 165580141/7881196*(1/2+1/2*5^(1/2))^24 2178309000000126 a001 165580141/7881196*192900153618^(4/9) 2178309000000126 a001 165580141/7881196*73681302247^(6/13) 2178309000000126 a001 3524578/370248451*73681302247^(10/13) 2178309000000126 a001 3524578/370248451*28143753123^(4/5) 2178309000000126 a001 165580141/7881196*10749957122^(1/2) 2178309000000126 a001 3524578/370248451*10749957122^(5/6) 2178309000000126 a001 165580141/7881196*4106118243^(12/23) 2178309000000126 a001 3524578/370248451*4106118243^(20/23) 2178309000000126 a001 165580141/7881196*1568397607^(6/11) 2178309000000126 a001 7778742049/7881196*228826127^(2/5) 2178309000000126 a001 3524578/370248451*1568397607^(10/11) 2178309000000126 a001 2971215073/7881196*228826127^(9/20) 2178309000000126 a001 165580141/7881196*599074578^(4/7) 2178309000000126 a001 567451585/3940598*228826127^(1/2) 2178309000000126 a001 3524578/370248451*599074578^(20/21) 2178309000000126 a001 291800061102749/133957148 2178309000000126 a001 433494437/7881196*228826127^(11/20) 2178309000000126 a001 2504730781961/7881196*87403803^(2/19) 2178309000000126 a001 31622993/3940598*141422324^(2/3) 2178309000000126 a001 165580141/7881196*228826127^(3/5) 2178309000000126 a001 956722026041/7881196*87403803^(3/19) 2178309000000126 a001 182717648081/3940598*87403803^(4/19) 2178309000000126 a001 139583862445/7881196*87403803^(5/19) 2178309000000126 a001 53316291173/7881196*87403803^(6/19) 2178309000000126 a001 10182505537/3940598*87403803^(7/19) 2178309000000126 a001 365435296162/54018521*4870847^(3/8) 2178309000000126 a001 3278735159921/3940598*33385282^(1/18) 2178309000000126 a001 1762289/70711162*817138163596^(2/3) 2178309000000126 a001 31622993/3940598*(1/2+1/2*5^(1/2))^26 2178309000000126 a001 31622993/3940598*73681302247^(1/2) 2178309000000126 a001 31622993/3940598*10749957122^(13/24) 2178309000000126 a001 1762289/70711162*10749957122^(19/24) 2178309000000126 a001 31622993/3940598*4106118243^(13/23) 2178309000000126 a001 1762289/70711162*4106118243^(19/23) 2178309000000126 a001 31622993/3940598*1568397607^(13/22) 2178309000000126 a001 1762289/70711162*1568397607^(19/22) 2178309000000126 a001 31622993/3940598*599074578^(13/21) 2178309000000126 a001 1762289/70711162*599074578^(19/21) 2178309000000127 a001 7778742049/7881196*87403803^(8/19) 2178309000000127 a001 2971215073/7881196*87403803^(9/19) 2178309000000127 a001 31622993/3940598*228826127^(13/20) 2178309000000127 a001 1836311903/7881196*87403803^(1/2) 2178309000000127 a001 1762289/70711162*228826127^(19/20) 2178309000000127 a001 567451585/3940598*87403803^(10/19) 2178309000000127 a001 222915410843908/102334155 2178309000000127 a001 4052739537881/7881196*33385282^(1/12) 2178309000000127 a001 433494437/7881196*87403803^(11/19) 2178309000000127 a001 165580141/7881196*87403803^(12/19) 2178309000000127 a001 2504730781961/7881196*33385282^(1/9) 2178309000000127 a001 31622993/3940598*87403803^(13/19) 2178309000000127 a001 956722026041/7881196*33385282^(1/6) 2178309000000127 a001 182717648081/3940598*33385282^(2/9) 2178309000000127 a001 225851433717/7881196*33385282^(1/4) 2178309000000127 a001 139583862445/7881196*33385282^(5/18) 2178309000000127 a001 3524578/54018521*141422324^(12/13) 2178309000000127 a001 53316291173/7881196*33385282^(1/3) 2178309000000127 a001 9227465/7881196*20633239^(6/7) 2178309000000127 a001 3524578/54018521*2537720636^(4/5) 2178309000000127 a001 24157817/7881196*17393796001^(4/7) 2178309000000127 a001 3524578/54018521*45537549124^(12/17) 2178309000000127 a001 24157817/7881196*14662949395604^(4/9) 2178309000000127 a001 24157817/7881196*(1/2+1/2*5^(1/2))^28 2178309000000127 a001 3524578/54018521*192900153618^(2/3) 2178309000000127 a001 24157817/7881196*73681302247^(7/13) 2178309000000127 a001 3524578/54018521*73681302247^(9/13) 2178309000000127 a001 24157817/7881196*10749957122^(7/12) 2178309000000127 a001 3524578/54018521*10749957122^(3/4) 2178309000000127 a001 24157817/7881196*4106118243^(14/23) 2178309000000127 a001 3524578/54018521*4106118243^(18/23) 2178309000000127 a001 24157817/7881196*1568397607^(7/11) 2178309000000127 a001 3524578/54018521*1568397607^(9/11) 2178309000000127 a001 24157817/7881196*599074578^(2/3) 2178309000000127 a001 3524578/54018521*599074578^(6/7) 2178309000000127 a001 10182505537/3940598*33385282^(7/18) 2178309000000127 a001 24157817/7881196*228826127^(7/10) 2178309000000127 a001 3524578/54018521*228826127^(9/10) 2178309000000127 a001 3278735159921/3940598*12752043^(1/17) 2178309000000127 a001 12586269025/7881196*33385282^(5/12) 2178309000000127 a001 7778742049/7881196*33385282^(4/9) 2178309000000127 a001 24157817/7881196*87403803^(14/19) 2178309000000127 a001 2971215073/7881196*33385282^(1/2) 2178309000000127 a001 3524578/54018521*87403803^(18/19) 2178309000000127 a001 85146110326226/39088169 2178309000000127 a001 567451585/3940598*33385282^(5/9) 2178309000000128 a001 3524667/39604*33385282^(7/12) 2178309000000128 a001 39088169/7881196*33385282^(3/4) 2178309000000128 a001 433494437/7881196*33385282^(11/18) 2178309000000128 a001 165580141/7881196*33385282^(2/3) 2178309000000128 a001 31622993/3940598*33385282^(13/18) 2178309000000128 a001 2504730781961/7881196*12752043^(2/17) 2178309000000129 a001 24157817/7881196*33385282^(7/9) 2178309000000129 a001 956722026041/7881196*12752043^(3/17) 2178309000000130 a001 43133785636/16692641*4870847^(7/16) 2178309000000130 a001 182717648081/3940598*12752043^(4/17) 2178309000000130 a001 1602508992/4250681*4870847^(9/16) 2178309000000130 a001 139583862445/7881196*12752043^(5/17) 2178309000000131 a001 139583862445/20633239*4870847^(3/8) 2178309000000131 a001 53316291173/7881196*12752043^(6/17) 2178309000000131 a001 75283811239/29134601*4870847^(7/16) 2178309000000131 a001 9227465/7881196*141422324^(10/13) 2178309000000131 a001 591286729879/228826127*4870847^(7/16) 2178309000000131 a001 86000486440/33281921*4870847^(7/16) 2178309000000131 a001 4052739537881/1568397607*4870847^(7/16) 2178309000000131 a001 3536736619241/1368706081*4870847^(7/16) 2178309000000131 a001 3278735159921/1268860318*4870847^(7/16) 2178309000000131 a001 2504730781961/969323029*4870847^(7/16) 2178309000000131 a001 956722026041/370248451*4870847^(7/16) 2178309000000132 a001 9227465/7881196*2537720636^(2/3) 2178309000000132 a001 3524578/20633239*45537549124^(2/3) 2178309000000132 a001 9227465/7881196*45537549124^(10/17) 2178309000000132 a001 9227465/7881196*312119004989^(6/11) 2178309000000132 a001 9227465/7881196*14662949395604^(10/21) 2178309000000132 a001 3524578/20633239*(1/2+1/2*5^(1/2))^34 2178309000000132 a001 9227465/7881196*(1/2+1/2*5^(1/2))^30 2178309000000132 a001 9227465/7881196*192900153618^(5/9) 2178309000000132 a001 9227465/7881196*28143753123^(3/5) 2178309000000132 a001 9227465/7881196*10749957122^(5/8) 2178309000000132 a001 3524578/20633239*10749957122^(17/24) 2178309000000132 a001 9227465/7881196*4106118243^(15/23) 2178309000000132 a001 3524578/20633239*4106118243^(17/23) 2178309000000132 a001 9227465/7881196*1568397607^(15/22) 2178309000000132 a001 3524578/20633239*1568397607^(17/22) 2178309000000132 a001 9227465/7881196*599074578^(5/7) 2178309000000132 a001 3524578/20633239*599074578^(17/21) 2178309000000132 a001 9227465/7881196*228826127^(3/4) 2178309000000132 a001 3524578/20633239*228826127^(17/20) 2178309000000132 a001 182717648081/70711162*4870847^(7/16) 2178309000000132 a001 9227465/7881196*87403803^(15/19) 2178309000000132 a001 3524578/20633239*87403803^(17/19) 2178309000000132 a001 10182505537/3940598*12752043^(7/17) 2178309000000132 a001 3278735159921/3940598*4870847^(1/16) 2178309000000132 a001 139583862445/54018521*4870847^(7/16) 2178309000000133 a001 7778742049/7881196*12752043^(8/17) 2178309000000133 a001 1201881744/1970299*12752043^(1/2) 2178309000000133 a001 9227465/7881196*33385282^(5/6) 2178309000000133 a001 3524578/20633239*33385282^(17/18) 2178309000000133 a001 16261460067385/7465176 2178309000000133 a001 2971215073/7881196*12752043^(9/17) 2178309000000134 a001 567451585/3940598*12752043^(10/17) 2178309000000135 a001 433494437/7881196*12752043^(11/17) 2178309000000135 a001 32951280099/33385282*4870847^(1/2) 2178309000000135 a001 1836311903/12752043*4870847^(5/8) 2178309000000136 a001 165580141/7881196*12752043^(12/17) 2178309000000137 a001 53316291173/20633239*4870847^(7/16) 2178309000000137 a001 31622993/3940598*12752043^(13/17) 2178309000000137 a001 86267571272/87403803*4870847^(1/2) 2178309000000137 a001 225851433717/228826127*4870847^(1/2) 2178309000000137 a001 591286729879/599074578*4870847^(1/2) 2178309000000137 a001 1548008755920/1568397607*4870847^(1/2) 2178309000000137 a001 4052739537881/4106118243*4870847^(1/2) 2178309000000137 a001 4807525989/4870846*4870847^(1/2) 2178309000000137 a001 6557470319842/6643838879*4870847^(1/2) 2178309000000137 a001 2504730781961/2537720636*4870847^(1/2) 2178309000000137 a001 956722026041/969323029*4870847^(1/2) 2178309000000137 a001 365435296162/370248451*4870847^(1/2) 2178309000000137 a001 139583862445/141422324*4870847^(1/2) 2178309000000138 a001 2504730781961/7881196*4870847^(1/8) 2178309000000138 a001 53316291173/54018521*4870847^(1/2) 2178309000000138 a001 24157817/7881196*12752043^(14/17) 2178309000000141 a001 6557470319842/12752043*1860498^(1/10) 2178309000000141 a001 12586269025/33385282*4870847^(9/16) 2178309000000141 a001 233802911/4250681*4870847^(11/16) 2178309000000142 a001 20365011074/20633239*4870847^(1/2) 2178309000000143 a001 10983760033/29134601*4870847^(9/16) 2178309000000143 a001 86267571272/228826127*4870847^(9/16) 2178309000000143 a001 267913919/710646*4870847^(9/16) 2178309000000143 a001 591286729879/1568397607*4870847^(9/16) 2178309000000143 a001 516002918640/1368706081*4870847^(9/16) 2178309000000143 a001 4052739537881/10749957122*4870847^(9/16) 2178309000000143 a001 3536736619241/9381251041*4870847^(9/16) 2178309000000143 a001 6557470319842/17393796001*4870847^(9/16) 2178309000000143 a001 2504730781961/6643838879*4870847^(9/16) 2178309000000143 a001 956722026041/2537720636*4870847^(9/16) 2178309000000143 a001 365435296162/969323029*4870847^(9/16) 2178309000000143 a001 139583862445/370248451*4870847^(9/16) 2178309000000143 a001 53316291173/141422324*4870847^(9/16) 2178309000000143 a001 9227465/7881196*12752043^(15/17) 2178309000000144 a001 956722026041/7881196*4870847^(3/16) 2178309000000144 a001 20365011074/54018521*4870847^(9/16) 2178309000000147 a001 14930208/103681*4870847^(5/8) 2178309000000147 a001 267914296/12752043*4870847^(3/4) 2178309000000148 a001 7778742049/20633239*4870847^(9/16) 2178309000000148 a001 12586269025/87403803*4870847^(5/8) 2178309000000149 a001 32951280099/228826127*4870847^(5/8) 2178309000000149 a001 43133785636/299537289*4870847^(5/8) 2178309000000149 a001 32264490531/224056801*4870847^(5/8) 2178309000000149 a001 591286729879/4106118243*4870847^(5/8) 2178309000000149 a001 774004377960/5374978561*4870847^(5/8) 2178309000000149 a001 4052739537881/28143753123*4870847^(5/8) 2178309000000149 a001 1515744265389/10525900321*4870847^(5/8) 2178309000000149 a001 3278735159921/22768774562*4870847^(5/8) 2178309000000149 a001 2504730781961/17393796001*4870847^(5/8) 2178309000000149 a001 956722026041/6643838879*4870847^(5/8) 2178309000000149 a001 182717648081/1268860318*4870847^(5/8) 2178309000000149 a001 139583862445/969323029*4870847^(5/8) 2178309000000149 a001 53316291173/370248451*4870847^(5/8) 2178309000000149 a001 10182505537/70711162*4870847^(5/8) 2178309000000149 a001 182717648081/3940598*4870847^(1/4) 2178309000000149 a001 7778742049/54018521*4870847^(5/8) 2178309000000152 a001 34111385/4250681*4870847^(13/16) 2178309000000152 a001 1836311903/33385282*4870847^(11/16) 2178309000000154 a001 2971215073/20633239*4870847^(5/8) 2178309000000154 a001 1602508992/29134601*4870847^(11/16) 2178309000000154 a001 12586269025/228826127*4870847^(11/16) 2178309000000154 a001 10983760033/199691526*4870847^(11/16) 2178309000000154 a001 86267571272/1568397607*4870847^(11/16) 2178309000000154 a001 75283811239/1368706081*4870847^(11/16) 2178309000000154 a001 591286729879/10749957122*4870847^(11/16) 2178309000000154 a001 12585437040/228811001*4870847^(11/16) 2178309000000154 a001 4052739537881/73681302247*4870847^(11/16) 2178309000000154 a001 3536736619241/64300051206*4870847^(11/16) 2178309000000154 a001 6557470319842/119218851371*4870847^(11/16) 2178309000000154 a001 2504730781961/45537549124*4870847^(11/16) 2178309000000154 a001 956722026041/17393796001*4870847^(11/16) 2178309000000154 a001 365435296162/6643838879*4870847^(11/16) 2178309000000154 a001 139583862445/2537720636*4870847^(11/16) 2178309000000154 a001 53316291173/969323029*4870847^(11/16) 2178309000000154 a001 20365011074/370248451*4870847^(11/16) 2178309000000155 a001 7778742049/141422324*4870847^(11/16) 2178309000000155 a001 139583862445/7881196*4870847^(5/16) 2178309000000155 a001 2971215073/54018521*4870847^(11/16) 2178309000000156 a001 14930352-5702887*5^(1/2) 2178309000000158 a001 39088169/12752043*4870847^(7/8) 2178309000000158 a001 701408733/33385282*4870847^(3/4) 2178309000000159 a001 10610209857723/20633239*1860498^(1/10) 2178309000000160 a001 1134903170/20633239*4870847^(11/16) 2178309000000160 a001 1836311903/87403803*4870847^(3/4) 2178309000000160 a001 102287808/4868641*4870847^(3/4) 2178309000000160 a001 12586269025/599074578*4870847^(3/4) 2178309000000160 a001 32951280099/1568397607*4870847^(3/4) 2178309000000160 a001 86267571272/4106118243*4870847^(3/4) 2178309000000160 a001 225851433717/10749957122*4870847^(3/4) 2178309000000160 a001 591286729879/28143753123*4870847^(3/4) 2178309000000160 a001 1548008755920/73681302247*4870847^(3/4) 2178309000000160 a001 4052739537881/192900153618*4870847^(3/4) 2178309000000160 a001 225749145909/10745088481*4870847^(3/4) 2178309000000160 a001 6557470319842/312119004989*4870847^(3/4) 2178309000000160 a001 2504730781961/119218851371*4870847^(3/4) 2178309000000160 a001 956722026041/45537549124*4870847^(3/4) 2178309000000160 a001 365435296162/17393796001*4870847^(3/4) 2178309000000160 a001 139583862445/6643838879*4870847^(3/4) 2178309000000160 a001 53316291173/2537720636*4870847^(3/4) 2178309000000160 a001 20365011074/969323029*4870847^(3/4) 2178309000000160 a001 7778742049/370248451*4870847^(3/4) 2178309000000160 a001 2971215073/141422324*4870847^(3/4) 2178309000000161 a001 53316291173/7881196*4870847^(3/8) 2178309000000161 a001 1134903170/54018521*4870847^(3/4) 2178309000000161 a001 1762289/3940598*(1/2+1/2*5^(1/2))^32 2178309000000161 a001 1762289/3940598*23725150497407^(1/2) 2178309000000161 a001 1762289/3940598*505019158607^(4/7) 2178309000000161 a001 1762289/3940598*73681302247^(8/13) 2178309000000161 a001 1762289/3940598*10749957122^(2/3) 2178309000000161 a001 1762289/3940598*4106118243^(16/23) 2178309000000161 a001 1762289/3940598*1568397607^(8/11) 2178309000000161 a001 1762289/3940598*599074578^(16/21) 2178309000000161 a001 1762289/3940598*228826127^(4/5) 2178309000000162 a001 1762289/3940598*87403803^(16/19) 2178309000000162 a001 4052739537881/12752043*1860498^(2/15) 2178309000000162 a001 4976784/4250681*4870847^(15/16) 2178309000000163 a001 1762289/3940598*33385282^(8/9) 2178309000000164 a001 133957148/16692641*4870847^(13/16) 2178309000000165 a001 433494437/20633239*4870847^(3/4) 2178309000000166 a001 233802911/29134601*4870847^(13/16) 2178309000000166 a001 1836311903/228826127*4870847^(13/16) 2178309000000166 a001 267084832/33281921*4870847^(13/16) 2178309000000166 a001 12586269025/1568397607*4870847^(13/16) 2178309000000166 a001 10983760033/1368706081*4870847^(13/16) 2178309000000166 a001 43133785636/5374978561*4870847^(13/16) 2178309000000166 a001 75283811239/9381251041*4870847^(13/16) 2178309000000166 a001 591286729879/73681302247*4870847^(13/16) 2178309000000166 a001 86000486440/10716675201*4870847^(13/16) 2178309000000166 a001 4052739537881/505019158607*4870847^(13/16) 2178309000000166 a001 3278735159921/408569081798*4870847^(13/16) 2178309000000166 a001 2504730781961/312119004989*4870847^(13/16) 2178309000000166 a001 956722026041/119218851371*4870847^(13/16) 2178309000000166 a001 182717648081/22768774562*4870847^(13/16) 2178309000000166 a001 139583862445/17393796001*4870847^(13/16) 2178309000000166 a001 53316291173/6643838879*4870847^(13/16) 2178309000000166 a001 10182505537/1268860318*4870847^(13/16) 2178309000000166 a001 7778742049/969323029*4870847^(13/16) 2178309000000166 a001 2971215073/370248451*4870847^(13/16) 2178309000000166 a001 567451585/70711162*4870847^(13/16) 2178309000000167 a001 10182505537/3940598*4870847^(7/16) 2178309000000167 a001 433494437/54018521*4870847^(13/16) 2178309000000167 a001 225851433717/4870847*1860498^(4/15) 2178309000000168 a001 3278735159921/3940598*1860498^(1/15) 2178309000000170 a001 14619165/4769326*4870847^(7/8) 2178309000000171 a001 165580141/20633239*4870847^(13/16) 2178309000000171 a001 267914296/87403803*4870847^(7/8) 2178309000000172 a001 701408733/228826127*4870847^(7/8) 2178309000000172 a001 1836311903/599074578*4870847^(7/8) 2178309000000172 a001 686789568/224056801*4870847^(7/8) 2178309000000172 a001 12586269025/4106118243*4870847^(7/8) 2178309000000172 a001 32951280099/10749957122*4870847^(7/8) 2178309000000172 a001 86267571272/28143753123*4870847^(7/8) 2178309000000172 a001 32264490531/10525900321*4870847^(7/8) 2178309000000172 a001 591286729879/192900153618*4870847^(7/8) 2178309000000172 a001 1548008755920/505019158607*4870847^(7/8) 2178309000000172 a001 1515744265389/494493258286*4870847^(7/8) 2178309000000172 a001 956722026041/312119004989*4870847^(7/8) 2178309000000172 a001 365435296162/119218851371*4870847^(7/8) 2178309000000172 a001 139583862445/45537549124*4870847^(7/8) 2178309000000172 a001 53316291173/17393796001*4870847^(7/8) 2178309000000172 a001 20365011074/6643838879*4870847^(7/8) 2178309000000172 a001 7778742049/2537720636*4870847^(7/8) 2178309000000172 a001 2971215073/969323029*4870847^(7/8) 2178309000000172 a001 1134903170/370248451*4870847^(7/8) 2178309000000172 a001 433494437/141422324*4870847^(7/8) 2178309000000172 a001 7778742049/7881196*4870847^(1/2) 2178309000000172 a001 165580141/54018521*4870847^(7/8) 2178309000000173 a001 1515744265389/4769326*1860498^(2/15) 2178309000000174 a001 1762289/3940598*12752043^(16/17) 2178309000000175 a001 12422650078084/5702887 2178309000000175 a001 39088169/33385282*4870847^(15/16) 2178309000000177 a001 63245986/20633239*4870847^(7/8) 2178309000000177 a001 34111385/29134601*4870847^(15/16) 2178309000000177 a001 267914296/228826127*4870847^(15/16) 2178309000000177 a001 233802911/199691526*4870847^(15/16) 2178309000000177 a001 1836311903/1568397607*4870847^(15/16) 2178309000000177 a001 1602508992/1368706081*4870847^(15/16) 2178309000000177 a001 12586269025/10749957122*4870847^(15/16) 2178309000000177 a001 10983760033/9381251041*4870847^(15/16) 2178309000000177 a001 86267571272/73681302247*4870847^(15/16) 2178309000000177 a001 75283811239/64300051206*4870847^(15/16) 2178309000000177 a001 2504730781961/2139295485799*4870847^(15/16) 2178309000000177 a001 365435296162/312119004989*4870847^(15/16) 2178309000000177 a001 139583862445/119218851371*4870847^(15/16) 2178309000000177 a001 53316291173/45537549124*4870847^(15/16) 2178309000000177 a001 20365011074/17393796001*4870847^(15/16) 2178309000000177 a001 7778742049/6643838879*4870847^(15/16) 2178309000000177 a001 2971215073/2537720636*4870847^(15/16) 2178309000000177 a001 1134903170/969323029*4870847^(15/16) 2178309000000177 a001 433494437/370248451*4870847^(15/16) 2178309000000178 a001 165580141/141422324*4870847^(15/16) 2178309000000178 a001 2971215073/7881196*4870847^(9/16) 2178309000000178 a001 63245986/54018521*4870847^(15/16) 2178309000000180 a001 6557470319842/20633239*1860498^(2/15) 2178309000000183 a001 2504730781961/12752043*1860498^(1/6) 2178309000000183 a001 2/2178309*(1/2+1/2*5^(1/2))^64 2178309000000183 a001 24157817/20633239*4870847^(15/16) 2178309000000184 a001 567451585/3940598*4870847^(5/8) 2178309000000188 a001 139583862445/4870847*1860498^(3/10) 2178309000000189 a001 4052739537881/7881196*1860498^(1/10) 2178309000000190 a001 433494437/7881196*4870847^(11/16) 2178309000000194 a001 3278735159921/16692641*1860498^(1/6) 2178309000000195 a001 165580141/7881196*4870847^(3/4) 2178309000000197 a001 10610209857723/54018521*1860498^(1/6) 2178309000000201 a001 31622993/3940598*4870847^(13/16) 2178309000000201 a001 4052739537881/20633239*1860498^(1/6) 2178309000000204 a001 516002918640/4250681*1860498^(1/5) 2178309000000205 a001 9227465/2-2178309/2*5^(1/2) 2178309000000207 a001 24157817/7881196*4870847^(7/8) 2178309000000209 a001 86267571272/4870847*1860498^(1/3) 2178309000000210 a001 2504730781961/7881196*1860498^(2/15) 2178309000000215 a001 4052739537881/33385282*1860498^(1/5) 2178309000000217 a001 3536736619241/29134601*1860498^(1/5) 2178309000000218 a001 9227465/7881196*4870847^(15/16) 2178309000000218 a001 6557470319842/54018521*1860498^(1/5) 2178309000000222 a001 2504730781961/20633239*1860498^(1/5) 2178309000000231 a001 387002188980/1970299*1860498^(1/6) 2178309000000240 a001 1346269/4870847*141422324^(11/13) 2178309000000240 a001 1346269/4870847*2537720636^(11/15) 2178309000000240 a001 1346269/4870847*45537549124^(11/17) 2178309000000240 a001 1346269/4870847*312119004989^(3/5) 2178309000000240 a001 1346269/4870847*14662949395604^(11/21) 2178309000000240 a001 1346269/4870847*(1/2+1/2*5^(1/2))^33 2178309000000240 a001 2178309/3010349*(1/2+1/2*5^(1/2))^31 2178309000000240 a001 1346269/4870847*192900153618^(11/18) 2178309000000240 a001 1346269/4870847*10749957122^(11/16) 2178309000000240 a001 1346269/4870847*1568397607^(3/4) 2178309000000240 a001 1346269/4870847*599074578^(11/14) 2178309000000242 a001 1346269/4870847*33385282^(11/12) 2178309000000246 a001 591286729879/12752043*1860498^(4/15) 2178309000000251 a001 32951280099/4870847*1860498^(2/5) 2178309000000252 a001 956722026041/7881196*1860498^(1/5) 2178309000000253 a001 -5702887+3524578*5^(1/2) 2178309000000257 a001 774004377960/16692641*1860498^(4/15) 2178309000000259 a001 4052739537881/87403803*1860498^(4/15) 2178309000000259 a001 225749145909/4868641*1860498^(4/15) 2178309000000259 a001 3278735159921/70711162*1860498^(4/15) 2178309000000260 a001 2504730781961/54018521*1860498^(4/15) 2178309000000264 a001 956722026041/20633239*1860498^(4/15) 2178309000000267 a001 365435296162/12752043*1860498^(3/10) 2178309000000278 a001 956722026041/33385282*1860498^(3/10) 2178309000000280 a001 2504730781961/87403803*1860498^(3/10) 2178309000000280 a001 6557470319842/228826127*1860498^(3/10) 2178309000000280 a001 10610209857723/370248451*1860498^(3/10) 2178309000000280 a001 4052739537881/141422324*1860498^(3/10) 2178309000000281 a001 1548008755920/54018521*1860498^(3/10) 2178309000000283 a001 7677619978603/3524578 2178309000000283 a001 10989754-3940598*5^(1/2) 2178309000000285 a001 591286729879/20633239*1860498^(3/10) 2178309000000288 a001 75283811239/4250681*1860498^(1/3) 2178309000000293 a001 12586269025/4870847*1860498^(7/15) 2178309000000294 a001 182717648081/3940598*1860498^(4/15) 2178309000000299 a001 591286729879/33385282*1860498^(1/3) 2178309000000301 a001 516002918640/29134601*1860498^(1/3) 2178309000000301 a001 14930352/3010349*7881196^(9/11) 2178309000000301 a001 4052739537881/228826127*1860498^(1/3) 2178309000000301 a001 3536736619241/199691526*1860498^(1/3) 2178309000000301 a001 6557470319842/370248451*1860498^(1/3) 2178309000000301 a001 2504730781961/141422324*1860498^(1/3) 2178309000000302 a001 956722026041/54018521*1860498^(1/3) 2178309000000306 a001 365435296162/20633239*1860498^(1/3) 2178309000000306 a001 63245986/3010349*7881196^(8/11) 2178309000000308 a001 4052739537881/4870847*710647^(1/14) 2178309000000308 a001 165580141/3010349*7881196^(2/3) 2178309000000309 a001 267914296/3010349*7881196^(7/11) 2178309000000313 a001 1134903170/3010349*7881196^(6/11) 2178309000000314 a001 7778742049/4870847*1860498^(1/2) 2178309000000315 a001 225851433717/7881196*1860498^(3/10) 2178309000000316 a001 4807526976/3010349*7881196^(5/11) 2178309000000318 a001 1346269/12752043*2537720636^(7/9) 2178309000000318 a001 1346269/12752043*17393796001^(5/7) 2178309000000318 a001 1346269/12752043*312119004989^(7/11) 2178309000000318 a001 1346269/12752043*14662949395604^(5/9) 2178309000000318 a001 1346269/12752043*(1/2+1/2*5^(1/2))^35 2178309000000318 a001 5702887/3010349*(1/2+1/2*5^(1/2))^29 2178309000000318 a001 1346269/12752043*505019158607^(5/8) 2178309000000318 a001 1346269/12752043*28143753123^(7/10) 2178309000000318 a001 1346269/12752043*599074578^(5/6) 2178309000000318 a001 1346269/12752043*228826127^(7/8) 2178309000000319 a001 20365011074/3010349*7881196^(4/11) 2178309000000320 a001 32951280099/3010349*7881196^(1/3) 2178309000000322 a001 86267571272/3010349*7881196^(3/11) 2178309000000325 a001 20100270056688/9227465 2178309000000325 a001 365435296162/3010349*7881196^(2/11) 2178309000000326 a001 317811*271443^(2/13) 2178309000000328 a001 39088169/3010349*20633239^(5/7) 2178309000000328 a001 1548008755920/3010349*7881196^(1/11) 2178309000000329 a001 267914296/3010349*20633239^(3/5) 2178309000000329 a001 433494437/3010349*20633239^(4/7) 2178309000000329 a001 4807526976/3010349*20633239^(3/7) 2178309000000330 a001 86267571272/12752043*1860498^(2/5) 2178309000000330 a001 7778742049/3010349*20633239^(2/5) 2178309000000330 a001 14930352/3010349*141422324^(9/13) 2178309000000330 a001 14930352/3010349*2537720636^(3/5) 2178309000000330 a001 14930352/3010349*45537549124^(9/17) 2178309000000330 a001 14930352/3010349*817138163596^(9/19) 2178309000000330 a001 1346269/33385282*(1/2+1/2*5^(1/2))^37 2178309000000330 a001 14930352/3010349*14662949395604^(3/7) 2178309000000330 a001 14930352/3010349*(1/2+1/2*5^(1/2))^27 2178309000000330 a001 14930352/3010349*192900153618^(1/2) 2178309000000330 a001 14930352/3010349*10749957122^(9/16) 2178309000000330 a001 14930352/3010349*599074578^(9/14) 2178309000000330 a001 53316291173/3010349*20633239^(2/7) 2178309000000331 a001 52623190191461/24157817 2178309000000331 a001 225851433717/3010349*20633239^(1/5) 2178309000000331 a001 591286729879/3010349*20633239^(1/7) 2178309000000331 a001 14930352/3010349*33385282^(3/4) 2178309000000331 a001 1346269/87403803*2537720636^(13/15) 2178309000000331 a001 39088169/3010349*2537720636^(5/9) 2178309000000331 a001 1346269/87403803*45537549124^(13/17) 2178309000000331 a001 1346269/87403803*14662949395604^(13/21) 2178309000000331 a001 39088169/3010349*(1/2+1/2*5^(1/2))^25 2178309000000331 a001 39088169/3010349*3461452808002^(5/12) 2178309000000331 a001 1346269/87403803*192900153618^(13/18) 2178309000000331 a001 1346269/87403803*73681302247^(3/4) 2178309000000331 a001 39088169/3010349*28143753123^(1/2) 2178309000000331 a001 1346269/87403803*10749957122^(13/16) 2178309000000331 a001 1346269/87403803*599074578^(13/14) 2178309000000331 a001 39088169/3010349*228826127^(5/8) 2178309000000332 a001 137769300517695/63245986 2178309000000332 a001 267914296/3010349*141422324^(7/13) 2178309000000332 a001 1134903170/3010349*141422324^(6/13) 2178309000000332 a001 4807526976/3010349*141422324^(5/13) 2178309000000332 a001 102334155/3010349*(1/2+1/2*5^(1/2))^23 2178309000000332 a001 102334155/3010349*4106118243^(1/2) 2178309000000332 a001 12586269025/3010349*141422324^(1/3) 2178309000000332 a001 20365011074/3010349*141422324^(4/13) 2178309000000332 a001 86267571272/3010349*141422324^(3/13) 2178309000000332 a001 360684711361624/165580141 2178309000000332 a001 365435296162/3010349*141422324^(2/13) 2178309000000332 a001 1548008755920/3010349*141422324^(1/13) 2178309000000332 a001 267914296/3010349*2537720636^(7/15) 2178309000000332 a001 267914296/3010349*17393796001^(3/7) 2178309000000332 a001 267914296/3010349*45537549124^(7/17) 2178309000000332 a001 267914296/3010349*14662949395604^(1/3) 2178309000000332 a001 267914296/3010349*(1/2+1/2*5^(1/2))^21 2178309000000332 a001 267914296/3010349*192900153618^(7/18) 2178309000000332 a001 267914296/3010349*10749957122^(7/16) 2178309000000332 a001 944284833567177/433494437 2178309000000332 a001 267914296/3010349*599074578^(1/2) 2178309000000332 a001 1346269/1568397607*45537549124^(15/17) 2178309000000332 a001 1346269/1568397607*312119004989^(9/11) 2178309000000332 a001 1346269/1568397607*14662949395604^(5/7) 2178309000000332 a001 701408733/3010349*(1/2+1/2*5^(1/2))^19 2178309000000332 a001 1346269/1568397607*192900153618^(5/6) 2178309000000332 a001 1346269/1568397607*28143753123^(9/10) 2178309000000332 a001 1346269/1568397607*10749957122^(15/16) 2178309000000332 a001 2472169789339907/1134903170 2178309000000332 a001 4807526976/3010349*2537720636^(1/3) 2178309000000332 a001 1836311903/3010349*45537549124^(1/3) 2178309000000332 a001 1836311903/3010349*(1/2+1/2*5^(1/2))^17 2178309000000332 a001 20365011074/3010349*2537720636^(4/15) 2178309000000332 a001 53316291173/3010349*2537720636^(2/9) 2178309000000332 a001 6472224534452544/2971215073 2178309000000332 a001 86267571272/3010349*2537720636^(1/5) 2178309000000332 a001 365435296162/3010349*2537720636^(2/15) 2178309000000332 a001 591286729879/3010349*2537720636^(1/9) 2178309000000332 a001 1548008755920/3010349*2537720636^(1/15) 2178309000000332 a001 4807526976/3010349*45537549124^(5/17) 2178309000000332 a001 4807526976/3010349*312119004989^(3/11) 2178309000000332 a001 1346269/10749957122*14662949395604^(7/9) 2178309000000332 a001 4807526976/3010349*14662949395604^(5/21) 2178309000000332 a001 4807526976/3010349*(1/2+1/2*5^(1/2))^15 2178309000000332 a001 1346269/10749957122*505019158607^(7/8) 2178309000000332 a001 4807526976/3010349*28143753123^(3/10) 2178309000000332 a001 4807526976/3010349*10749957122^(5/16) 2178309000000332 a001 16944503814017725/7778742049 2178309000000332 a001 1346269/28143753123*14662949395604^(17/21) 2178309000000332 a001 12586269025/3010349*(1/2+1/2*5^(1/2))^13 2178309000000332 a001 1346269/28143753123*192900153618^(17/18) 2178309000000332 a001 12586269025/3010349*73681302247^(1/4) 2178309000000332 a001 44361286907600631/20365011074 2178309000000332 a001 225851433717/3010349*17393796001^(1/7) 2178309000000332 a001 32951280099/3010349*312119004989^(1/5) 2178309000000332 a001 32951280099/3010349*(1/2+1/2*5^(1/2))^11 2178309000000332 a001 86267571272/3010349*45537549124^(3/17) 2178309000000332 a001 116139356908784168/53316291173 2178309000000332 a001 365435296162/3010349*45537549124^(2/17) 2178309000000332 a001 86267571272/3010349*(1/2+1/2*5^(1/2))^9 2178309000000332 a001 1346269/192900153618*3461452808002^(11/12) 2178309000000332 a001 86267571272/3010349*192900153618^(1/6) 2178309000000332 a001 225851433717/3010349*(1/2+1/2*5^(1/2))^7 2178309000000332 a001 1548008755920/3010349*(1/2+1/2*5^(1/2))^3 2178309000000332 a001 1346269/2+1346269/2*5^(1/2) 2178309000000332 a006 5^(1/2)*Fibonacci(63)/Lucas(31)/sqrt(5) 2178309000000332 a001 2504730781961/3010349*(1/2+1/2*5^(1/2))^2 2178309000000332 a001 1288005205276191029/591286729879 2178309000000332 a001 365435296162/3010349*14662949395604^(2/21) 2178309000000332 a001 1346269/312119004989*14662949395604^(8/9) 2178309000000332 a001 139583862445/3010349*(1/2+1/2*5^(1/2))^8 2178309000000332 a001 956722026041/3010349*73681302247^(1/13) 2178309000000332 a001 187917426909967705/86267571272 2178309000000332 a001 139583862445/3010349*73681302247^(2/13) 2178309000000332 a001 53316291173/3010349*312119004989^(2/11) 2178309000000332 a001 1346269/119218851371*14662949395604^(6/7) 2178309000000332 a001 53316291173/3010349*(1/2+1/2*5^(1/2))^10 2178309000000332 a001 591286729879/3010349*28143753123^(1/10) 2178309000000332 a001 71778070001183537/32951280099 2178309000000332 a001 53316291173/3010349*28143753123^(1/5) 2178309000000332 a001 2504730781961/3010349*10749957122^(1/24) 2178309000000332 a001 20365011074/3010349*45537549124^(4/17) 2178309000000332 a001 1346269/45537549124*23725150497407^(13/16) 2178309000000332 a001 20365011074/3010349*(1/2+1/2*5^(1/2))^12 2178309000000332 a001 1346269/45537549124*505019158607^(13/14) 2178309000000332 a001 20365011074/3010349*73681302247^(3/13) 2178309000000332 a001 1548008755920/3010349*10749957122^(1/16) 2178309000000332 a001 956722026041/3010349*10749957122^(1/12) 2178309000000332 a001 365435296162/3010349*10749957122^(1/8) 2178309000000332 a001 139583862445/3010349*10749957122^(1/6) 2178309000000332 a001 86267571272/3010349*10749957122^(3/16) 2178309000000332 a001 27416783093582906/12586269025 2178309000000332 a001 53316291173/3010349*10749957122^(5/24) 2178309000000332 a001 7778742049/3010349*17393796001^(2/7) 2178309000000332 a001 2504730781961/3010349*4106118243^(1/23) 2178309000000332 a001 20365011074/3010349*10749957122^(1/4) 2178309000000332 a001 1346269/17393796001*312119004989^(10/11) 2178309000000332 a001 7778742049/3010349*(1/2+1/2*5^(1/2))^14 2178309000000332 a001 1346269/17393796001*3461452808002^(5/6) 2178309000000332 a001 956722026041/3010349*4106118243^(2/23) 2178309000000332 a001 7778742049/3010349*10749957122^(7/24) 2178309000000332 a001 365435296162/3010349*4106118243^(3/23) 2178309000000332 a001 139583862445/3010349*4106118243^(4/23) 2178309000000332 a001 10472279279565181/4807526976 2178309000000332 a001 53316291173/3010349*4106118243^(5/23) 2178309000000332 a001 20365011074/3010349*4106118243^(6/23) 2178309000000332 a001 2504730781961/3010349*1568397607^(1/22) 2178309000000332 a001 7778742049/3010349*4106118243^(7/23) 2178309000000332 a001 1346269/6643838879*45537549124^(16/17) 2178309000000332 a001 1346269/6643838879*14662949395604^(16/21) 2178309000000332 a001 2971215073/3010349*(1/2+1/2*5^(1/2))^16 2178309000000332 a001 1346269/6643838879*192900153618^(8/9) 2178309000000332 a001 2971215073/3010349*73681302247^(4/13) 2178309000000332 a001 1346269/6643838879*73681302247^(12/13) 2178309000000332 a001 2971215073/3010349*10749957122^(1/3) 2178309000000332 a001 956722026041/3010349*1568397607^(1/11) 2178309000000332 a001 2971215073/3010349*4106118243^(8/23) 2178309000000332 a001 365435296162/3010349*1568397607^(3/22) 2178309000000332 a001 139583862445/3010349*1568397607^(2/11) 2178309000000332 a001 4000054745112637/1836311903 2178309000000332 a001 53316291173/3010349*1568397607^(5/22) 2178309000000332 a001 1134903170/3010349*2537720636^(2/5) 2178309000000332 a001 32951280099/3010349*1568397607^(1/4) 2178309000000332 a001 20365011074/3010349*1568397607^(3/11) 2178309000000332 a001 7778742049/3010349*1568397607^(7/22) 2178309000000332 a001 2504730781961/3010349*599074578^(1/21) 2178309000000332 a001 1134903170/3010349*45537549124^(6/17) 2178309000000332 a001 1134903170/3010349*14662949395604^(2/7) 2178309000000332 a001 1134903170/3010349*(1/2+1/2*5^(1/2))^18 2178309000000332 a001 1134903170/3010349*192900153618^(1/3) 2178309000000332 a001 1134903170/3010349*10749957122^(3/8) 2178309000000332 a001 1346269/2537720636*10749957122^(23/24) 2178309000000332 a001 2971215073/3010349*1568397607^(4/11) 2178309000000332 a001 1134903170/3010349*4106118243^(9/23) 2178309000000332 a001 1548008755920/3010349*599074578^(1/14) 2178309000000332 a001 956722026041/3010349*599074578^(2/21) 2178309000000332 a001 1134903170/3010349*1568397607^(9/22) 2178309000000332 a001 365435296162/3010349*599074578^(1/7) 2178309000000332 a001 225851433717/3010349*599074578^(1/6) 2178309000000332 a001 139583862445/3010349*599074578^(4/21) 2178309000000332 a001 1527884955772730/701408733 2178309000000332 a001 86267571272/3010349*599074578^(3/14) 2178309000000332 a001 53316291173/3010349*599074578^(5/21) 2178309000000332 a001 20365011074/3010349*599074578^(2/7) 2178309000000332 a001 7778742049/3010349*599074578^(1/3) 2178309000000332 a001 2504730781961/3010349*228826127^(1/20) 2178309000000332 a001 4807526976/3010349*599074578^(5/14) 2178309000000332 a001 433494437/3010349*2537720636^(4/9) 2178309000000332 a001 1346269/969323029*312119004989^(4/5) 2178309000000332 a001 1346269/969323029*23725150497407^(11/16) 2178309000000332 a001 433494437/3010349*(1/2+1/2*5^(1/2))^20 2178309000000332 a001 433494437/3010349*23725150497407^(5/16) 2178309000000332 a001 433494437/3010349*73681302247^(5/13) 2178309000000332 a001 1346269/969323029*73681302247^(11/13) 2178309000000332 a001 433494437/3010349*28143753123^(2/5) 2178309000000332 a001 433494437/3010349*10749957122^(5/12) 2178309000000332 a001 1346269/969323029*10749957122^(11/12) 2178309000000332 a001 2971215073/3010349*599074578^(8/21) 2178309000000332 a001 433494437/3010349*4106118243^(10/23) 2178309000000332 a001 1346269/969323029*4106118243^(22/23) 2178309000000332 a001 433494437/3010349*1568397607^(5/11) 2178309000000332 a001 1134903170/3010349*599074578^(3/7) 2178309000000332 a001 956722026041/3010349*228826127^(1/10) 2178309000000332 a001 591286729879/3010349*228826127^(1/8) 2178309000000332 a001 433494437/3010349*599074578^(10/21) 2178309000000332 a001 365435296162/3010349*228826127^(3/20) 2178309000000332 a001 139583862445/3010349*228826127^(1/5) 2178309000000332 a001 583600122205553/267914296 2178309000000332 a001 53316291173/3010349*228826127^(1/4) 2178309000000332 a001 20365011074/3010349*228826127^(3/10) 2178309000000332 a001 7778742049/3010349*228826127^(7/20) 2178309000000332 a001 2504730781961/3010349*87403803^(1/19) 2178309000000332 a001 1346269/370248451*2537720636^(14/15) 2178309000000332 a001 4807526976/3010349*228826127^(3/8) 2178309000000332 a001 1346269/370248451*17393796001^(6/7) 2178309000000332 a001 1346269/370248451*45537549124^(14/17) 2178309000000332 a001 1346269/370248451*817138163596^(14/19) 2178309000000332 a001 1346269/370248451*14662949395604^(2/3) 2178309000000332 a001 165580141/3010349*(1/2+1/2*5^(1/2))^22 2178309000000332 a001 1346269/370248451*192900153618^(7/9) 2178309000000332 a001 165580141/3010349*10749957122^(11/24) 2178309000000332 a001 1346269/370248451*10749957122^(7/8) 2178309000000332 a001 165580141/3010349*4106118243^(11/23) 2178309000000332 a001 1346269/370248451*4106118243^(21/23) 2178309000000332 a001 165580141/3010349*1568397607^(1/2) 2178309000000332 a001 2971215073/3010349*228826127^(2/5) 2178309000000332 a001 1346269/370248451*1568397607^(21/22) 2178309000000332 a001 1134903170/3010349*228826127^(9/20) 2178309000000332 a001 165580141/3010349*599074578^(11/21) 2178309000000332 a001 433494437/3010349*228826127^(1/2) 2178309000000332 a001 956722026041/3010349*87403803^(2/19) 2178309000000332 a001 165580141/3010349*228826127^(11/20) 2178309000000332 a001 63245986/3010349*141422324^(8/13) 2178309000000332 a001 365435296162/3010349*87403803^(3/19) 2178309000000332 a001 222915410843929/102334155 2178309000000332 a001 139583862445/3010349*87403803^(4/19) 2178309000000332 a001 53316291173/3010349*87403803^(5/19) 2178309000000332 a001 20365011074/3010349*87403803^(6/19) 2178309000000332 a001 7778742049/3010349*87403803^(7/19) 2178309000000332 a001 2504730781961/3010349*33385282^(1/18) 2178309000000332 a001 1346269/141422324*2537720636^(8/9) 2178309000000332 a001 63245986/3010349*2537720636^(8/15) 2178309000000332 a001 63245986/3010349*45537549124^(8/17) 2178309000000332 a001 1346269/141422324*312119004989^(8/11) 2178309000000332 a001 1346269/141422324*23725150497407^(5/8) 2178309000000332 a001 63245986/3010349*14662949395604^(8/21) 2178309000000332 a001 63245986/3010349*(1/2+1/2*5^(1/2))^24 2178309000000332 a001 63245986/3010349*192900153618^(4/9) 2178309000000332 a001 63245986/3010349*73681302247^(6/13) 2178309000000332 a001 1346269/141422324*73681302247^(10/13) 2178309000000332 a001 1346269/141422324*28143753123^(4/5) 2178309000000332 a001 63245986/3010349*10749957122^(1/2) 2178309000000332 a001 1346269/141422324*10749957122^(5/6) 2178309000000332 a001 63245986/3010349*4106118243^(12/23) 2178309000000332 a001 1346269/141422324*4106118243^(20/23) 2178309000000332 a001 63245986/3010349*1568397607^(6/11) 2178309000000332 a001 1346269/141422324*1568397607^(10/11) 2178309000000332 a001 63245986/3010349*599074578^(4/7) 2178309000000332 a001 1346269/141422324*599074578^(20/21) 2178309000000332 a001 2971215073/3010349*87403803^(8/19) 2178309000000332 a001 63245986/3010349*228826127^(3/5) 2178309000000332 a001 1134903170/3010349*87403803^(9/19) 2178309000000332 a001 701408733/3010349*87403803^(1/2) 2178309000000332 a001 433494437/3010349*87403803^(10/19) 2178309000000332 a001 1548008755920/3010349*33385282^(1/12) 2178309000000332 a001 165580141/3010349*87403803^(11/19) 2178309000000332 a001 956722026041/3010349*33385282^(1/9) 2178309000000332 a001 63245986/3010349*87403803^(12/19) 2178309000000332 a001 365435296162/3010349*33385282^(1/6) 2178309000000332 a001 85146110326234/39088169 2178309000000332 a001 139583862445/3010349*33385282^(2/9) 2178309000000332 a001 86267571272/3010349*33385282^(1/4) 2178309000000332 a001 53316291173/3010349*33385282^(5/18) 2178309000000332 a001 20365011074/3010349*33385282^(1/3) 2178309000000332 a001 24157817/3010349*141422324^(2/3) 2178309000000332 a001 1346269/54018521*817138163596^(2/3) 2178309000000332 a001 24157817/3010349*(1/2+1/2*5^(1/2))^26 2178309000000332 a001 24157817/3010349*73681302247^(1/2) 2178309000000332 a001 24157817/3010349*10749957122^(13/24) 2178309000000332 a001 1346269/54018521*10749957122^(19/24) 2178309000000332 a001 24157817/3010349*4106118243^(13/23) 2178309000000332 a001 1346269/54018521*4106118243^(19/23) 2178309000000332 a001 24157817/3010349*1568397607^(13/22) 2178309000000332 a001 1346269/54018521*1568397607^(19/22) 2178309000000332 a001 24157817/3010349*599074578^(13/21) 2178309000000332 a001 1346269/54018521*599074578^(19/21) 2178309000000332 a001 7778742049/3010349*33385282^(7/18) 2178309000000332 a001 24157817/3010349*228826127^(13/20) 2178309000000332 a001 1346269/54018521*228826127^(19/20) 2178309000000332 a001 2504730781961/3010349*12752043^(1/17) 2178309000000333 a001 4807526976/3010349*33385282^(5/12) 2178309000000333 a001 2971215073/3010349*33385282^(4/9) 2178309000000333 a001 24157817/3010349*87403803^(13/19) 2178309000000333 a001 1134903170/3010349*33385282^(1/2) 2178309000000333 a001 9227465/3010349*20633239^(4/5) 2178309000000333 a001 433494437/3010349*33385282^(5/9) 2178309000000333 a001 267914296/3010349*33385282^(7/12) 2178309000000333 a001 165580141/3010349*33385282^(11/18) 2178309000000333 a001 63245986/3010349*33385282^(2/3) 2178309000000333 a001 956722026041/3010349*12752043^(2/17) 2178309000000334 a001 24157817/3010349*33385282^(13/18) 2178309000000334 a001 365435296162/3010349*12752043^(3/17) 2178309000000334 a001 32522920134773/14930352 2178309000000335 a001 139583862445/3010349*12752043^(4/17) 2178309000000335 a001 3524578/3010349*7881196^(10/11) 2178309000000335 a001 4807526976/4870847*1860498^(8/15) 2178309000000336 a001 53316291173/3010349*12752043^(5/17) 2178309000000336 a001 139583862445/7881196*1860498^(1/3) 2178309000000336 a001 20365011074/3010349*12752043^(6/17) 2178309000000337 a001 1346269/20633239*141422324^(12/13) 2178309000000337 a001 1346269/20633239*2537720636^(4/5) 2178309000000337 a001 9227465/3010349*17393796001^(4/7) 2178309000000337 a001 1346269/20633239*45537549124^(12/17) 2178309000000337 a001 1346269/20633239*14662949395604^(4/7) 2178309000000337 a001 1346269/20633239*(1/2+1/2*5^(1/2))^36 2178309000000337 a001 9227465/3010349*(1/2+1/2*5^(1/2))^28 2178309000000337 a001 1346269/20633239*505019158607^(9/14) 2178309000000337 a001 1346269/20633239*192900153618^(2/3) 2178309000000337 a001 9227465/3010349*73681302247^(7/13) 2178309000000337 a001 1346269/20633239*73681302247^(9/13) 2178309000000337 a001 9227465/3010349*10749957122^(7/12) 2178309000000337 a001 1346269/20633239*10749957122^(3/4) 2178309000000337 a001 9227465/3010349*4106118243^(14/23) 2178309000000337 a001 1346269/20633239*4106118243^(18/23) 2178309000000337 a001 9227465/3010349*1568397607^(7/11) 2178309000000337 a001 1346269/20633239*1568397607^(9/11) 2178309000000337 a001 9227465/3010349*599074578^(2/3) 2178309000000337 a001 1346269/20633239*599074578^(6/7) 2178309000000337 a001 9227465/3010349*228826127^(7/10) 2178309000000337 a001 1346269/20633239*228826127^(9/10) 2178309000000337 a001 9227465/3010349*87403803^(14/19) 2178309000000337 a001 1346269/20633239*87403803^(18/19) 2178309000000337 a001 7778742049/3010349*12752043^(7/17) 2178309000000337 a001 2504730781961/3010349*4870847^(1/16) 2178309000000338 a001 2971215073/3010349*12752043^(8/17) 2178309000000338 a001 9227465/3010349*33385282^(7/9) 2178309000000338 a001 1836311903/3010349*12752043^(1/2) 2178309000000339 a001 1134903170/3010349*12752043^(9/17) 2178309000000340 a001 433494437/3010349*12752043^(10/17) 2178309000000340 a001 165580141/3010349*12752043^(11/17) 2178309000000341 a001 32264490531/4769326*1860498^(2/5) 2178309000000341 a001 63245986/3010349*12752043^(12/17) 2178309000000343 a001 24157817/3010349*12752043^(13/17) 2178309000000343 a001 591286729879/87403803*1860498^(2/5) 2178309000000343 a001 1548008755920/228826127*1860498^(2/5) 2178309000000343 a001 4052739537881/599074578*1860498^(2/5) 2178309000000343 a001 1515744265389/224056801*1860498^(2/5) 2178309000000343 a001 6557470319842/969323029*1860498^(2/5) 2178309000000343 a001 2504730781961/370248451*1860498^(2/5) 2178309000000343 a001 956722026041/141422324*1860498^(2/5) 2178309000000343 a001 956722026041/3010349*4870847^(1/8) 2178309000000344 a001 365435296162/54018521*1860498^(2/5) 2178309000000348 a001 9227465/3010349*12752043^(14/17) 2178309000000348 a001 139583862445/20633239*1860498^(2/5) 2178309000000349 a001 365435296162/3010349*4870847^(3/16) 2178309000000350 a001 12422650078085/5702887 2178309000000355 a001 139583862445/3010349*4870847^(1/4) 2178309000000360 a001 53316291173/3010349*4870847^(5/16) 2178309000000362 a001 3524578/3010349*20633239^(6/7) 2178309000000366 a001 20365011074/3010349*4870847^(3/8) 2178309000000367 a001 3524578/3010349*141422324^(10/13) 2178309000000367 a001 3524578/3010349*2537720636^(2/3) 2178309000000367 a001 1346269/7881196*45537549124^(2/3) 2178309000000367 a001 3524578/3010349*45537549124^(10/17) 2178309000000367 a001 3524578/3010349*312119004989^(6/11) 2178309000000367 a001 1346269/7881196*(1/2+1/2*5^(1/2))^34 2178309000000367 a001 3524578/3010349*14662949395604^(10/21) 2178309000000367 a001 3524578/3010349*(1/2+1/2*5^(1/2))^30 2178309000000367 a001 3524578/3010349*192900153618^(5/9) 2178309000000367 a001 3524578/3010349*28143753123^(3/5) 2178309000000367 a001 3524578/3010349*10749957122^(5/8) 2178309000000367 a001 1346269/7881196*10749957122^(17/24) 2178309000000367 a001 3524578/3010349*4106118243^(15/23) 2178309000000367 a001 1346269/7881196*4106118243^(17/23) 2178309000000367 a001 3524578/3010349*1568397607^(15/22) 2178309000000367 a001 1346269/7881196*1568397607^(17/22) 2178309000000367 a001 3524578/3010349*599074578^(5/7) 2178309000000367 a001 1346269/7881196*599074578^(17/21) 2178309000000367 a001 3524578/3010349*228826127^(3/4) 2178309000000367 a001 1346269/7881196*228826127^(17/20) 2178309000000367 a001 3524578/3010349*87403803^(15/19) 2178309000000367 a001 1346269/7881196*87403803^(17/19) 2178309000000368 a001 3524578/3010349*33385282^(5/6) 2178309000000369 a001 1346269/7881196*33385282^(17/18) 2178309000000372 a001 10983760033/4250681*1860498^(7/15) 2178309000000372 a001 7778742049/3010349*4870847^(7/16) 2178309000000374 a001 2504730781961/3010349*1860498^(1/15) 2178309000000377 a001 1836311903/4870847*1860498^(3/5) 2178309000000378 a001 2971215073/3010349*4870847^(1/2) 2178309000000378 a001 53316291173/7881196*1860498^(2/5) 2178309000000379 a001 3524578/3010349*12752043^(15/17) 2178309000000383 a001 43133785636/16692641*1860498^(7/15) 2178309000000383 a001 1134903170/3010349*4870847^(9/16) 2178309000000385 a001 75283811239/29134601*1860498^(7/15) 2178309000000385 a001 591286729879/228826127*1860498^(7/15) 2178309000000385 a001 86000486440/33281921*1860498^(7/15) 2178309000000385 a001 4052739537881/1568397607*1860498^(7/15) 2178309000000385 a001 3536736619241/1368706081*1860498^(7/15) 2178309000000385 a001 3278735159921/1268860318*1860498^(7/15) 2178309000000385 a001 2504730781961/969323029*1860498^(7/15) 2178309000000385 a001 956722026041/370248451*1860498^(7/15) 2178309000000385 a001 182717648081/70711162*1860498^(7/15) 2178309000000386 a001 139583862445/54018521*1860498^(7/15) 2178309000000386 a001 3536736619241/4250681*710647^(1/14) 2178309000000386 a001 75283811239/620166*710647^(3/14) 2178309000000389 a001 433494437/3010349*4870847^(5/8) 2178309000000390 a001 53316291173/20633239*1860498^(7/15) 2178309000000393 a001 20365011074/12752043*1860498^(1/2) 2178309000000395 a001 1548008755920/3010349*1860498^(1/10) 2178309000000395 a001 165580141/3010349*4870847^(11/16) 2178309000000401 a001 63245986/3010349*4870847^(3/4) 2178309000000404 a001 53316291173/33385282*1860498^(1/2) 2178309000000406 a001 139583862445/87403803*1860498^(1/2) 2178309000000406 a001 365435296162/228826127*1860498^(1/2) 2178309000000406 a001 956722026041/599074578*1860498^(1/2) 2178309000000406 a001 2504730781961/1568397607*1860498^(1/2) 2178309000000406 a001 6557470319842/4106118243*1860498^(1/2) 2178309000000406 a001 10610209857723/6643838879*1860498^(1/2) 2178309000000406 a001 4052739537881/2537720636*1860498^(1/2) 2178309000000406 a001 1548008755920/969323029*1860498^(1/2) 2178309000000406 a001 591286729879/370248451*1860498^(1/2) 2178309000000406 a001 225851433717/141422324*1860498^(1/2) 2178309000000407 a001 86267571272/54018521*1860498^(1/2) 2178309000000407 a001 24157817/3010349*4870847^(13/16) 2178309000000411 a001 32951280099/20633239*1860498^(1/2) 2178309000000414 a001 12586269025/12752043*1860498^(8/15) 2178309000000416 a001 956722026041/3010349*1860498^(2/15) 2178309000000417 a001 9227465/3010349*4870847^(7/8) 2178309000000419 a001 701408733/4870847*1860498^(2/3) 2178309000000420 a001 10182505537/3940598*1860498^(7/15) 2178309000000425 a001 32951280099/33385282*1860498^(8/15) 2178309000000427 a001 86267571272/87403803*1860498^(8/15) 2178309000000427 a001 225851433717/228826127*1860498^(8/15) 2178309000000427 a001 591286729879/599074578*1860498^(8/15) 2178309000000427 a001 1548008755920/1568397607*1860498^(8/15) 2178309000000427 a001 4052739537881/4106118243*1860498^(8/15) 2178309000000427 a001 4807525989/4870846*1860498^(8/15) 2178309000000427 a001 6557470319842/6643838879*1860498^(8/15) 2178309000000427 a001 2504730781961/2537720636*1860498^(8/15) 2178309000000427 a001 956722026041/969323029*1860498^(8/15) 2178309000000427 a001 365435296162/370248451*1860498^(8/15) 2178309000000427 a001 139583862445/141422324*1860498^(8/15) 2178309000000428 a001 53316291173/54018521*1860498^(8/15) 2178309000000432 a001 20365011074/20633239*1860498^(8/15) 2178309000000434 a001 3278735159921/3940598*710647^(1/14) 2178309000000437 a001 591286729879/3010349*1860498^(1/6) 2178309000000440 a001 433494437/4870847*1860498^(7/10) 2178309000000441 a001 12586269025/7881196*1860498^(1/2) 2178309000000453 a001 3524578/3010349*4870847^(15/16) 2178309000000456 a001 1602508992/4250681*1860498^(3/5) 2178309000000458 a001 365435296162/3010349*1860498^(1/5) 2178309000000459 a001 -6534927/2+4870847/2*5^(1/2) 2178309000000459 a001 4745030099482/2178309 2178309000000461 a001 267914296/4870847*1860498^(11/15) 2178309000000462 a001 7778742049/7881196*1860498^(8/15) 2178309000000467 a001 12586269025/33385282*1860498^(3/5) 2178309000000469 a001 10983760033/29134601*1860498^(3/5) 2178309000000469 a001 86267571272/228826127*1860498^(3/5) 2178309000000469 a001 267913919/710646*1860498^(3/5) 2178309000000469 a001 591286729879/1568397607*1860498^(3/5) 2178309000000469 a001 516002918640/1368706081*1860498^(3/5) 2178309000000469 a001 4052739537881/10749957122*1860498^(3/5) 2178309000000469 a001 3536736619241/9381251041*1860498^(3/5) 2178309000000469 a001 6557470319842/17393796001*1860498^(3/5) 2178309000000469 a001 2504730781961/6643838879*1860498^(3/5) 2178309000000469 a001 956722026041/2537720636*1860498^(3/5) 2178309000000469 a001 365435296162/969323029*1860498^(3/5) 2178309000000469 a001 139583862445/370248451*1860498^(3/5) 2178309000000469 a001 53316291173/141422324*1860498^(3/5) 2178309000000470 a001 20365011074/54018521*1860498^(3/5) 2178309000000474 a001 7778742049/20633239*1860498^(3/5) 2178309000000484 a001 514229*439204^(1/9) 2178309000000497 a001 1836311903/12752043*1860498^(2/3) 2178309000000500 a001 139583862445/3010349*1860498^(4/15) 2178309000000503 a001 102334155/4870847*1860498^(4/5) 2178309000000504 a001 2971215073/7881196*1860498^(3/5) 2178309000000509 a001 14930208/103681*1860498^(2/3) 2178309000000511 a001 12586269025/87403803*1860498^(2/3) 2178309000000511 a001 32951280099/228826127*1860498^(2/3) 2178309000000511 a001 43133785636/299537289*1860498^(2/3) 2178309000000511 a001 32264490531/224056801*1860498^(2/3) 2178309000000511 a001 591286729879/4106118243*1860498^(2/3) 2178309000000511 a001 774004377960/5374978561*1860498^(2/3) 2178309000000511 a001 4052739537881/28143753123*1860498^(2/3) 2178309000000511 a001 1515744265389/10525900321*1860498^(2/3) 2178309000000511 a001 3278735159921/22768774562*1860498^(2/3) 2178309000000511 a001 2504730781961/17393796001*1860498^(2/3) 2178309000000511 a001 956722026041/6643838879*1860498^(2/3) 2178309000000511 a001 182717648081/1268860318*1860498^(2/3) 2178309000000511 a001 139583862445/969323029*1860498^(2/3) 2178309000000511 a001 53316291173/370248451*1860498^(2/3) 2178309000000511 a001 10182505537/70711162*1860498^(2/3) 2178309000000512 a001 7778742049/54018521*1860498^(2/3) 2178309000000516 a001 2971215073/20633239*1860498^(2/3) 2178309000000518 a001 1134903170/12752043*1860498^(7/10) 2178309000000520 a001 86267571272/3010349*1860498^(3/10) 2178309000000524 a001 63245986/4870847*1860498^(5/6) 2178309000000530 a001 2971215073/33385282*1860498^(7/10) 2178309000000532 a001 7778742049/87403803*1860498^(7/10) 2178309000000532 a001 20365011074/228826127*1860498^(7/10) 2178309000000532 a001 53316291173/599074578*1860498^(7/10) 2178309000000532 a001 139583862445/1568397607*1860498^(7/10) 2178309000000532 a001 365435296162/4106118243*1860498^(7/10) 2178309000000532 a001 956722026041/10749957122*1860498^(7/10) 2178309000000532 a001 2504730781961/28143753123*1860498^(7/10) 2178309000000532 a001 6557470319842/73681302247*1860498^(7/10) 2178309000000532 a001 10610209857723/119218851371*1860498^(7/10) 2178309000000532 a001 4052739537881/45537549124*1860498^(7/10) 2178309000000532 a001 1548008755920/17393796001*1860498^(7/10) 2178309000000532 a001 591286729879/6643838879*1860498^(7/10) 2178309000000532 a001 225851433717/2537720636*1860498^(7/10) 2178309000000532 a001 86267571272/969323029*1860498^(7/10) 2178309000000532 a001 32951280099/370248451*1860498^(7/10) 2178309000000532 a001 12586269025/141422324*1860498^(7/10) 2178309000000533 a001 4807526976/54018521*1860498^(7/10) 2178309000000537 a001 1836311903/20633239*1860498^(7/10) 2178309000000537 a001 3108558-416020*5^(1/2) 2178309000000539 a001 233802911/4250681*1860498^(11/15) 2178309000000540 a001 139583862445/1860498*710647^(1/4) 2178309000000541 a001 53316291173/3010349*1860498^(1/3) 2178309000000545 a001 39088169/4870847*1860498^(13/15) 2178309000000546 a001 567451585/3940598*1860498^(2/3) 2178309000000551 a001 1836311903/33385282*1860498^(11/15) 2178309000000553 a001 1602508992/29134601*1860498^(11/15) 2178309000000553 a001 12586269025/228826127*1860498^(11/15) 2178309000000553 a001 10983760033/199691526*1860498^(11/15) 2178309000000553 a001 86267571272/1568397607*1860498^(11/15) 2178309000000553 a001 75283811239/1368706081*1860498^(11/15) 2178309000000553 a001 591286729879/10749957122*1860498^(11/15) 2178309000000553 a001 12585437040/228811001*1860498^(11/15) 2178309000000553 a001 4052739537881/73681302247*1860498^(11/15) 2178309000000553 a001 3536736619241/64300051206*1860498^(11/15) 2178309000000553 a001 6557470319842/119218851371*1860498^(11/15) 2178309000000553 a001 2504730781961/45537549124*1860498^(11/15) 2178309000000553 a001 956722026041/17393796001*1860498^(11/15) 2178309000000553 a001 365435296162/6643838879*1860498^(11/15) 2178309000000553 a001 139583862445/2537720636*1860498^(11/15) 2178309000000553 a001 53316291173/969323029*1860498^(11/15) 2178309000000553 a001 20365011074/370248451*1860498^(11/15) 2178309000000553 a001 7778742049/141422324*1860498^(11/15) 2178309000000554 a001 2971215073/54018521*1860498^(11/15) 2178309000000558 a001 1134903170/20633239*1860498^(11/15) 2178309000000567 a001 24157817/4870847*1860498^(9/10) 2178309000000567 a001 3524667/39604*1860498^(7/10) 2178309000000572 a001 1346269/3010349*(1/2+1/2*5^(1/2))^32 2178309000000572 a001 1346269/3010349*23725150497407^(1/2) 2178309000000572 a001 1346269/3010349*505019158607^(4/7) 2178309000000572 a001 1346269/3010349*73681302247^(8/13) 2178309000000572 a001 1346269/3010349*10749957122^(2/3) 2178309000000572 a001 1346269/3010349*4106118243^(16/23) 2178309000000572 a001 1346269/3010349*1568397607^(8/11) 2178309000000572 a001 1346269/3010349*599074578^(16/21) 2178309000000572 a001 1346269/3010349*228826127^(4/5) 2178309000000572 a001 1346269/3010349*87403803^(16/19) 2178309000000574 a001 1346269/3010349*33385282^(8/9) 2178309000000581 a001 267914296/12752043*1860498^(4/5) 2178309000000583 a001 20365011074/3010349*1860498^(2/5) 2178309000000585 a001 1346269/3010349*12752043^(16/17) 2178309000000585 a001 14930352/4870847*1860498^(14/15) 2178309000000588 a001 433494437/7881196*1860498^(11/15) 2178309000000593 a001 701408733/33385282*1860498^(4/5) 2178309000000594 a001 1836311903/87403803*1860498^(4/5) 2178309000000595 a001 102287808/4868641*1860498^(4/5) 2178309000000595 a001 12586269025/599074578*1860498^(4/5) 2178309000000595 a001 32951280099/1568397607*1860498^(4/5) 2178309000000595 a001 86267571272/4106118243*1860498^(4/5) 2178309000000595 a001 225851433717/10749957122*1860498^(4/5) 2178309000000595 a001 591286729879/28143753123*1860498^(4/5) 2178309000000595 a001 1548008755920/73681302247*1860498^(4/5) 2178309000000595 a001 4052739537881/192900153618*1860498^(4/5) 2178309000000595 a001 225749145909/10745088481*1860498^(4/5) 2178309000000595 a001 6557470319842/312119004989*1860498^(4/5) 2178309000000595 a001 2504730781961/119218851371*1860498^(4/5) 2178309000000595 a001 956722026041/45537549124*1860498^(4/5) 2178309000000595 a001 365435296162/17393796001*1860498^(4/5) 2178309000000595 a001 139583862445/6643838879*1860498^(4/5) 2178309000000595 a001 53316291173/2537720636*1860498^(4/5) 2178309000000595 a001 20365011074/969323029*1860498^(4/5) 2178309000000595 a001 7778742049/370248451*1860498^(4/5) 2178309000000595 a001 2971215073/141422324*1860498^(4/5) 2178309000000596 a001 1134903170/54018521*1860498^(4/5) 2178309000000600 a001 433494437/20633239*1860498^(4/5) 2178309000000602 a001 165580141/12752043*1860498^(5/6) 2178309000000614 a001 433494437/33385282*1860498^(5/6) 2178309000000615 a001 1134903170/87403803*1860498^(5/6) 2178309000000616 a001 1548008755920/4870847*710647^(1/7) 2178309000000616 a001 2971215073/228826127*1860498^(5/6) 2178309000000616 a001 7778742049/599074578*1860498^(5/6) 2178309000000616 a001 20365011074/1568397607*1860498^(5/6) 2178309000000616 a001 53316291173/4106118243*1860498^(5/6) 2178309000000616 a001 139583862445/10749957122*1860498^(5/6) 2178309000000616 a001 365435296162/28143753123*1860498^(5/6) 2178309000000616 a001 956722026041/73681302247*1860498^(5/6) 2178309000000616 a001 2504730781961/192900153618*1860498^(5/6) 2178309000000616 a001 10610209857723/817138163596*1860498^(5/6) 2178309000000616 a001 4052739537881/312119004989*1860498^(5/6) 2178309000000616 a001 1548008755920/119218851371*1860498^(5/6) 2178309000000616 a001 591286729879/45537549124*1860498^(5/6) 2178309000000616 a001 7787980473/599786069*1860498^(5/6) 2178309000000616 a001 86267571272/6643838879*1860498^(5/6) 2178309000000616 a001 32951280099/2537720636*1860498^(5/6) 2178309000000616 a001 12586269025/969323029*1860498^(5/6) 2178309000000616 a001 4807526976/370248451*1860498^(5/6) 2178309000000616 a001 1836311903/141422324*1860498^(5/6) 2178309000000616 a001 701408733/54018521*1860498^(5/6) 2178309000000621 a001 9238424/711491*1860498^(5/6) 2178309000000623 a001 34111385/4250681*1860498^(13/15) 2178309000000625 a001 7778742049/3010349*1860498^(7/15) 2178309000000630 a001 165580141/7881196*1860498^(4/5) 2178309000000635 a001 133957148/16692641*1860498^(13/15) 2178309000000636 a001 233802911/29134601*1860498^(13/15) 2178309000000637 a001 1836311903/228826127*1860498^(13/15) 2178309000000637 a001 267084832/33281921*1860498^(13/15) 2178309000000637 a001 12586269025/1568397607*1860498^(13/15) 2178309000000637 a001 10983760033/1368706081*1860498^(13/15) 2178309000000637 a001 43133785636/5374978561*1860498^(13/15) 2178309000000637 a001 75283811239/9381251041*1860498^(13/15) 2178309000000637 a001 591286729879/73681302247*1860498^(13/15) 2178309000000637 a001 86000486440/10716675201*1860498^(13/15) 2178309000000637 a001 4052739537881/505019158607*1860498^(13/15) 2178309000000637 a001 3278735159921/408569081798*1860498^(13/15) 2178309000000637 a001 2504730781961/312119004989*1860498^(13/15) 2178309000000637 a001 956722026041/119218851371*1860498^(13/15) 2178309000000637 a001 182717648081/22768774562*1860498^(13/15) 2178309000000637 a001 139583862445/17393796001*1860498^(13/15) 2178309000000637 a001 53316291173/6643838879*1860498^(13/15) 2178309000000637 a001 10182505537/1268860318*1860498^(13/15) 2178309000000637 a001 7778742049/969323029*1860498^(13/15) 2178309000000637 a001 2971215073/370248451*1860498^(13/15) 2178309000000637 a001 567451585/70711162*1860498^(13/15) 2178309000000637 a001 433494437/54018521*1860498^(13/15) 2178309000000640 a001 2504730781961/3010349*710647^(1/14) 2178309000000642 a001 165580141/20633239*1860498^(13/15) 2178309000000644 a001 63245986/12752043*1860498^(9/10) 2178309000000646 a001 4807526976/3010349*1860498^(1/2) 2178309000000651 a001 102334155/7881196*1860498^(5/6) 2178309000000656 a001 165580141/33385282*1860498^(9/10) 2178309000000657 a001 433494437/87403803*1860498^(9/10) 2178309000000658 a001 1134903170/228826127*1860498^(9/10) 2178309000000658 a001 2971215073/599074578*1860498^(9/10) 2178309000000658 a001 7778742049/1568397607*1860498^(9/10) 2178309000000658 a001 20365011074/4106118243*1860498^(9/10) 2178309000000658 a001 53316291173/10749957122*1860498^(9/10) 2178309000000658 a001 139583862445/28143753123*1860498^(9/10) 2178309000000658 a001 365435296162/73681302247*1860498^(9/10) 2178309000000658 a001 956722026041/192900153618*1860498^(9/10) 2178309000000658 a001 2504730781961/505019158607*1860498^(9/10) 2178309000000658 a001 10610209857723/2139295485799*1860498^(9/10) 2178309000000658 a001 140728068720/28374454999*1860498^(9/10) 2178309000000658 a001 591286729879/119218851371*1860498^(9/10) 2178309000000658 a001 225851433717/45537549124*1860498^(9/10) 2178309000000658 a001 86267571272/17393796001*1860498^(9/10) 2178309000000658 a001 32951280099/6643838879*1860498^(9/10) 2178309000000658 a001 1144206275/230701876*1860498^(9/10) 2178309000000658 a001 4807526976/969323029*1860498^(9/10) 2178309000000658 a001 1836311903/370248451*1860498^(9/10) 2178309000000658 a001 701408733/141422324*1860498^(9/10) 2178309000000658 a001 267914296/54018521*1860498^(9/10) 2178309000000663 a001 9303105/1875749*1860498^(9/10) 2178309000000664 a001 -832040+1346269*5^(1/2) 2178309000000665 a001 39088169/12752043*1860498^(14/15) 2178309000000667 a001 2971215073/3010349*1860498^(8/15) 2178309000000672 a001 31622993/3940598*1860498^(13/15) 2178309000000677 a001 14619165/4769326*1860498^(14/15) 2178309000000678 a001 267914296/87403803*1860498^(14/15) 2178309000000679 a001 701408733/228826127*1860498^(14/15) 2178309000000679 a001 1836311903/599074578*1860498^(14/15) 2178309000000679 a001 686789568/224056801*1860498^(14/15) 2178309000000679 a001 12586269025/4106118243*1860498^(14/15) 2178309000000679 a001 32951280099/10749957122*1860498^(14/15) 2178309000000679 a001 86267571272/28143753123*1860498^(14/15) 2178309000000679 a001 32264490531/10525900321*1860498^(14/15) 2178309000000679 a001 591286729879/192900153618*1860498^(14/15) 2178309000000679 a001 1548008755920/505019158607*1860498^(14/15) 2178309000000679 a001 1515744265389/494493258286*1860498^(14/15) 2178309000000679 a001 956722026041/312119004989*1860498^(14/15) 2178309000000679 a001 365435296162/119218851371*1860498^(14/15) 2178309000000679 a001 139583862445/45537549124*1860498^(14/15) 2178309000000679 a001 53316291173/17393796001*1860498^(14/15) 2178309000000679 a001 20365011074/6643838879*1860498^(14/15) 2178309000000679 a001 7778742049/2537720636*1860498^(14/15) 2178309000000679 a001 2971215073/969323029*1860498^(14/15) 2178309000000679 a001 1134903170/370248451*1860498^(14/15) 2178309000000679 a001 433494437/141422324*1860498^(14/15) 2178309000000679 a001 165580141/54018521*1860498^(14/15) 2178309000000684 a001 63245986/20633239*1860498^(14/15) 2178309000000692 a001 39088169/7881196*1860498^(9/10) 2178309000000694 a001 4052739537881/12752043*710647^(1/7) 2178309000000694 a001 43133785636/930249*710647^(2/7) 2178309000000706 a001 1515744265389/4769326*710647^(1/7) 2178309000000709 a001 1134903170/3010349*1860498^(3/5) 2178309000000713 a001 6557470319842/20633239*710647^(1/7) 2178309000000714 a001 24157817/7881196*1860498^(14/15) 2178309000000721 a001 1/416020*(1/2+1/2*5^(1/2))^62 2178309000000743 a001 2504730781961/7881196*710647^(1/7) 2178309000000751 a001 433494437/3010349*1860498^(2/3) 2178309000000772 a001 267914296/3010349*1860498^(7/10) 2178309000000793 a001 165580141/3010349*1860498^(11/15) 2178309000000835 a001 63245986/3010349*1860498^(4/5) 2178309000000856 a001 39088169/3010349*1860498^(5/6) 2178309000000869 a001 3206767/2+514229/2*5^(1/2) 2178309000000878 a001 24157817/3010349*1860498^(13/15) 2178309000000896 a001 14930352/3010349*1860498^(9/10) 2178309000000924 a001 591286729879/4870847*710647^(3/14) 2178309000000924 a001 9227465/3010349*1860498^(14/15) 2178309000000948 a001 956722026041/3010349*710647^(1/7) 2178309000001002 a001 516002918640/4250681*710647^(3/14) 2178309000001002 a001 10983760033/620166*710647^(5/14) 2178309000001014 a001 4052739537881/33385282*710647^(3/14) 2178309000001015 a001 3536736619241/29134601*710647^(3/14) 2178309000001016 a001 6557470319842/54018521*710647^(3/14) 2178309000001021 a001 2504730781961/20633239*710647^(3/14) 2178309000001051 a001 956722026041/7881196*710647^(3/14) 2178309000001078 a001 365435296162/4870847*710647^(1/4) 2178309000001109 a001 514229/1860498*141422324^(11/13) 2178309000001110 a001 514229/1860498*2537720636^(11/15) 2178309000001110 a001 514229/1860498*45537549124^(11/17) 2178309000001110 a001 514229/1860498*312119004989^(3/5) 2178309000001110 a001 514229/1860498*14662949395604^(11/21) 2178309000001110 a001 514229/1860498*(1/2+1/2*5^(1/2))^33 2178309000001110 a001 832040/1149851*(1/2+1/2*5^(1/2))^31 2178309000001110 a001 514229/1860498*192900153618^(11/18) 2178309000001110 a001 514229/1860498*10749957122^(11/16) 2178309000001110 a001 514229/1860498*1568397607^(3/4) 2178309000001110 a001 514229/1860498*599074578^(11/14) 2178309000001111 a001 514229/1860498*33385282^(11/12) 2178309000001156 a001 956722026041/12752043*710647^(1/4) 2178309000001168 a001 2504730781961/33385282*710647^(1/4) 2178309000001169 a001 6557470319842/87403803*710647^(1/4) 2178309000001170 a001 10610209857723/141422324*710647^(1/4) 2178309000001170 a001 4052739537881/54018521*710647^(1/4) 2178309000001175 a001 140728068720/1875749*710647^(1/4) 2178309000001201 a001 98209+930249*5^(1/2) 2178309000001201 a001 1812440220361/832040 2178309000001205 a001 591286729879/7881196*710647^(1/4) 2178309000001232 a001 225851433717/4870847*710647^(2/7) 2178309000001256 a001 365435296162/3010349*710647^(3/14) 2178309000001310 a001 591286729879/12752043*710647^(2/7) 2178309000001311 a001 12586269025/1860498*710647^(3/7) 2178309000001322 a001 774004377960/16692641*710647^(2/7) 2178309000001323 a001 4052739537881/87403803*710647^(2/7) 2178309000001324 a001 225749145909/4868641*710647^(2/7) 2178309000001324 a001 3278735159921/70711162*710647^(2/7) 2178309000001324 a001 2504730781961/54018521*710647^(2/7) 2178309000001329 a001 956722026041/20633239*710647^(2/7) 2178309000001351 a001 9227465/439204*439204^(8/9) 2178309000001359 a001 182717648081/3940598*710647^(2/7) 2178309000001410 a001 225851433717/3010349*710647^(1/4) 2178309000001485 a001 2932589879123/1346269 2178309000001540 a001 86267571272/4870847*710647^(5/14) 2178309000001564 a001 139583862445/3010349*710647^(2/7) 2178309000001618 a001 75283811239/4250681*710647^(5/14) 2178309000001619 a001 267084832/103361*710647^(1/2) 2178309000001630 a001 591286729879/33385282*710647^(5/14) 2178309000001632 a001 516002918640/29134601*710647^(5/14) 2178309000001632 a001 4052739537881/228826127*710647^(5/14) 2178309000001632 a001 3536736619241/199691526*710647^(5/14) 2178309000001632 a001 6557470319842/370248451*710647^(5/14) 2178309000001632 a001 2504730781961/141422324*710647^(5/14) 2178309000001633 a001 956722026041/54018521*710647^(5/14) 2178309000001637 a001 365435296162/20633239*710647^(5/14) 2178309000001647 a001 514229/4870847*2537720636^(7/9) 2178309000001647 a001 514229/4870847*17393796001^(5/7) 2178309000001647 a001 514229/4870847*312119004989^(7/11) 2178309000001647 a001 514229/4870847*14662949395604^(5/9) 2178309000001647 a001 514229/4870847*(1/2+1/2*5^(1/2))^35 2178309000001647 a001 2178309/1149851*(1/2+1/2*5^(1/2))^29 2178309000001647 a001 2178309/1149851*1322157322203^(1/2) 2178309000001647 a001 514229/4870847*28143753123^(7/10) 2178309000001647 a001 514229/4870847*599074578^(5/6) 2178309000001647 a001 514229/4870847*228826127^(7/8) 2178309000001667 a001 139583862445/7881196*710647^(5/14) 2178309000001697 a001 5702887/1149851*7881196^(9/11) 2178309000001702 a001 3838809989304/1762289 2178309000001714 a001 24157817/1149851*7881196^(8/11) 2178309000001716 a001 63245986/1149851*7881196^(2/3) 2178309000001716 a001 102334155/1149851*7881196^(7/11) 2178309000001720 a001 433494437/1149851*7881196^(6/11) 2178309000001723 a001 1836311903/1149851*7881196^(5/11) 2178309000001725 a001 5702887/1149851*141422324^(9/13) 2178309000001725 a001 5702887/1149851*2537720636^(3/5) 2178309000001725 a001 5702887/1149851*45537549124^(9/17) 2178309000001725 a001 514229/12752043*(1/2+1/2*5^(1/2))^37 2178309000001725 a001 5702887/1149851*14662949395604^(3/7) 2178309000001725 a001 5702887/1149851*(1/2+1/2*5^(1/2))^27 2178309000001725 a001 5702887/1149851*192900153618^(1/2) 2178309000001725 a001 5702887/1149851*10749957122^(9/16) 2178309000001725 a001 5702887/1149851*599074578^(9/14) 2178309000001726 a001 7778742049/1149851*7881196^(4/11) 2178309000001727 a001 5702887/1149851*33385282^(3/4) 2178309000001727 a001 12586269025/1149851*7881196^(1/3) 2178309000001729 a001 32951280099/1149851*7881196^(3/11) 2178309000001732 a001 139583862445/1149851*7881196^(2/11) 2178309000001733 a001 14930352/1149851*20633239^(5/7) 2178309000001733 a001 20100270056701/9227465 2178309000001736 a001 514229*7881196^(1/11) 2178309000001736 a001 102334155/1149851*20633239^(3/5) 2178309000001736 a001 165580141/1149851*20633239^(4/7) 2178309000001736 a001 832040*271443^(1/13) 2178309000001737 a001 1836311903/1149851*20633239^(3/7) 2178309000001737 a001 2971215073/1149851*20633239^(2/5) 2178309000001737 a001 514229/33385282*2537720636^(13/15) 2178309000001737 a001 14930352/1149851*2537720636^(5/9) 2178309000001737 a001 514229/33385282*45537549124^(13/17) 2178309000001737 a001 14930352/1149851*312119004989^(5/11) 2178309000001737 a001 514229/33385282*(1/2+1/2*5^(1/2))^39 2178309000001737 a001 14930352/1149851*(1/2+1/2*5^(1/2))^25 2178309000001737 a001 14930352/1149851*3461452808002^(5/12) 2178309000001737 a001 514229/33385282*192900153618^(13/18) 2178309000001737 a001 514229/33385282*73681302247^(3/4) 2178309000001737 a001 14930352/1149851*28143753123^(1/2) 2178309000001737 a001 514229/33385282*10749957122^(13/16) 2178309000001737 a001 514229/33385282*599074578^(13/14) 2178309000001737 a001 14930352/1149851*228826127^(5/8) 2178309000001737 a001 20365011074/1149851*20633239^(2/7) 2178309000001738 a001 86267571272/1149851*20633239^(1/5) 2178309000001738 a001 52623190191495/24157817 2178309000001738 a001 225851433717/1149851*20633239^(1/7) 2178309000001739 a001 39088169/1149851*(1/2+1/2*5^(1/2))^23 2178309000001739 a001 39088169/1149851*4106118243^(1/2) 2178309000001739 a001 68884650258892/31622993 2178309000001739 a001 102334155/1149851*141422324^(7/13) 2178309000001739 a001 433494437/1149851*141422324^(6/13) 2178309000001739 a001 1836311903/1149851*141422324^(5/13) 2178309000001739 a001 102334155/1149851*2537720636^(7/15) 2178309000001739 a001 102334155/1149851*17393796001^(3/7) 2178309000001739 a001 102334155/1149851*45537549124^(7/17) 2178309000001739 a001 102334155/1149851*14662949395604^(1/3) 2178309000001739 a001 102334155/1149851*(1/2+1/2*5^(1/2))^21 2178309000001739 a001 102334155/1149851*192900153618^(7/18) 2178309000001739 a001 102334155/1149851*10749957122^(7/16) 2178309000001739 a001 102334155/1149851*599074578^(1/2) 2178309000001739 a001 4807526976/1149851*141422324^(1/3) 2178309000001739 a001 7778742049/1149851*141422324^(4/13) 2178309000001739 a001 32951280099/1149851*141422324^(3/13) 2178309000001739 a001 360684711361857/165580141 2178309000001739 a001 139583862445/1149851*141422324^(2/13) 2178309000001739 a001 514229*141422324^(1/13) 2178309000001739 a001 514229/599074578*45537549124^(15/17) 2178309000001739 a001 514229/599074578*312119004989^(9/11) 2178309000001739 a001 267914296/1149851*817138163596^(1/3) 2178309000001739 a001 267914296/1149851*(1/2+1/2*5^(1/2))^19 2178309000001739 a001 514229/599074578*192900153618^(5/6) 2178309000001739 a001 514229/599074578*28143753123^(9/10) 2178309000001739 a001 514229/599074578*10749957122^(15/16) 2178309000001739 a001 944284833567787/433494437 2178309000001739 a001 701408733/1149851*45537549124^(1/3) 2178309000001739 a001 701408733/1149851*(1/2+1/2*5^(1/2))^17 2178309000001739 a001 1236084894670752/567451585 2178309000001739 a001 1836311903/1149851*2537720636^(1/3) 2178309000001739 a001 1836311903/1149851*45537549124^(5/17) 2178309000001739 a001 1836311903/1149851*312119004989^(3/11) 2178309000001739 a001 514229/4106118243*14662949395604^(7/9) 2178309000001739 a001 1836311903/1149851*14662949395604^(5/21) 2178309000001739 a001 1836311903/1149851*(1/2+1/2*5^(1/2))^15 2178309000001739 a001 1836311903/1149851*192900153618^(5/18) 2178309000001739 a001 1836311903/1149851*28143753123^(3/10) 2178309000001739 a001 1836311903/1149851*10749957122^(5/16) 2178309000001739 a001 7778742049/1149851*2537720636^(4/15) 2178309000001739 a001 20365011074/1149851*2537720636^(2/9) 2178309000001739 a001 32951280099/1149851*2537720636^(1/5) 2178309000001739 a001 6472224534456725/2971215073 2178309000001739 a001 139583862445/1149851*2537720636^(2/15) 2178309000001739 a001 225851433717/1149851*2537720636^(1/9) 2178309000001739 a001 514229*2537720636^(1/15) 2178309000001739 a001 514229/10749957122*817138163596^(17/19) 2178309000001739 a001 514229/10749957122*14662949395604^(17/21) 2178309000001739 a001 4807526976/1149851*(1/2+1/2*5^(1/2))^13 2178309000001739 a001 514229/10749957122*192900153618^(17/18) 2178309000001739 a001 4807526976/1149851*73681302247^(1/4) 2178309000001739 a001 16944503814028671/7778742049 2178309000001739 a001 12586269025/1149851*312119004989^(1/5) 2178309000001739 a001 12586269025/1149851*(1/2+1/2*5^(1/2))^11 2178309000001739 a001 22180643453814644/10182505537 2178309000001739 a001 86267571272/1149851*17393796001^(1/7) 2178309000001739 a001 32951280099/1149851*45537549124^(3/17) 2178309000001739 a001 32951280099/1149851*817138163596^(3/19) 2178309000001739 a001 32951280099/1149851*14662949395604^(1/7) 2178309000001739 a001 32951280099/1149851*(1/2+1/2*5^(1/2))^9 2178309000001739 a001 32951280099/1149851*192900153618^(1/6) 2178309000001739 a001 116139356908859193/53316291173 2178309000001739 a001 139583862445/1149851*45537549124^(2/17) 2178309000001739 a001 514229/192900153618*14662949395604^(19/21) 2178309000001739 a001 86267571272/1149851*(1/2+1/2*5^(1/2))^7 2178309000001739 a001 304056783818948291/139583862445 2178309000001739 a001 225851433717/1149851*312119004989^(1/11) 2178309000001739 a001 225851433717/1149851*(1/2+1/2*5^(1/2))^5 2178309000001739 a001 1686020702551015909/774004377960 2178309000001739 a001 365435296162/1149851*23725150497407^(1/16) 2178309000001739 a001 139583862445/1149851*14662949395604^(2/21) 2178309000001739 a001 139583862445/1149851*(1/2+1/2*5^(1/2))^6 2178309000001739 a001 365435296162/1149851*73681302247^(1/13) 2178309000001739 a001 93958713455044549/43133785636 2178309000001739 a001 514229/119218851371*14662949395604^(8/9) 2178309000001739 a001 53316291173/1149851*(1/2+1/2*5^(1/2))^8 2178309000001739 a001 53316291173/1149851*73681302247^(2/13) 2178309000001739 a001 225851433717/1149851*28143753123^(1/10) 2178309000001739 a001 71778070001229905/32951280099 2178309000001739 a001 956722026041/1149851*10749957122^(1/24) 2178309000001739 a001 20365011074/1149851*312119004989^(2/11) 2178309000001739 a001 20365011074/1149851*(1/2+1/2*5^(1/2))^10 2178309000001739 a001 514229*10749957122^(1/16) 2178309000001739 a001 365435296162/1149851*10749957122^(1/12) 2178309000001739 a001 20365011074/1149851*28143753123^(1/5) 2178309000001739 a001 139583862445/1149851*10749957122^(1/8) 2178309000001739 a001 27416783093600617/12586269025 2178309000001739 a001 32951280099/1149851*10749957122^(3/16) 2178309000001739 a001 53316291173/1149851*10749957122^(1/6) 2178309000001739 a001 20365011074/1149851*10749957122^(5/24) 2178309000001739 a001 956722026041/1149851*4106118243^(1/23) 2178309000001739 a001 7778742049/1149851*45537549124^(4/17) 2178309000001739 a001 514229/17393796001*23725150497407^(13/16) 2178309000001739 a001 7778742049/1149851*(1/2+1/2*5^(1/2))^12 2178309000001739 a001 514229/17393796001*505019158607^(13/14) 2178309000001739 a001 7778742049/1149851*73681302247^(3/13) 2178309000001739 a001 365435296162/1149851*4106118243^(2/23) 2178309000001739 a001 7778742049/1149851*10749957122^(1/4) 2178309000001739 a001 139583862445/1149851*4106118243^(3/23) 2178309000001739 a001 5236139639785973/2403763488 2178309000001739 a001 53316291173/1149851*4106118243^(4/23) 2178309000001739 a001 20365011074/1149851*4106118243^(5/23) 2178309000001739 a001 956722026041/1149851*1568397607^(1/22) 2178309000001739 a001 7778742049/1149851*4106118243^(6/23) 2178309000001739 a001 2971215073/1149851*17393796001^(2/7) 2178309000001739 a001 514229/6643838879*312119004989^(10/11) 2178309000001739 a001 2971215073/1149851*14662949395604^(2/9) 2178309000001739 a001 2971215073/1149851*(1/2+1/2*5^(1/2))^14 2178309000001739 a001 2971215073/1149851*10749957122^(7/24) 2178309000001739 a001 365435296162/1149851*1568397607^(1/11) 2178309000001739 a001 2971215073/1149851*4106118243^(7/23) 2178309000001739 a001 139583862445/1149851*1568397607^(3/22) 2178309000001739 a001 4000054745115221/1836311903 2178309000001739 a001 53316291173/1149851*1568397607^(2/11) 2178309000001739 a001 20365011074/1149851*1568397607^(5/22) 2178309000001739 a001 12586269025/1149851*1568397607^(1/4) 2178309000001739 a001 7778742049/1149851*1568397607^(3/11) 2178309000001739 a001 956722026041/1149851*599074578^(1/21) 2178309000001739 a001 2971215073/1149851*1568397607^(7/22) 2178309000001739 a001 514229/2537720636*45537549124^(16/17) 2178309000001739 a001 1134903170/1149851*(1/2+1/2*5^(1/2))^16 2178309000001739 a001 1134903170/1149851*23725150497407^(1/4) 2178309000001739 a001 514229/2537720636*192900153618^(8/9) 2178309000001739 a001 1134903170/1149851*73681302247^(4/13) 2178309000001739 a001 514229/2537720636*73681302247^(12/13) 2178309000001739 a001 1134903170/1149851*10749957122^(1/3) 2178309000001739 a001 1134903170/1149851*4106118243^(8/23) 2178309000001739 a001 514229*599074578^(1/14) 2178309000001739 a001 365435296162/1149851*599074578^(2/21) 2178309000001739 a001 1134903170/1149851*1568397607^(4/11) 2178309000001739 a001 139583862445/1149851*599074578^(1/7) 2178309000001739 a001 1527884955773717/701408733 2178309000001739 a001 86267571272/1149851*599074578^(1/6) 2178309000001739 a001 53316291173/1149851*599074578^(4/21) 2178309000001739 a001 32951280099/1149851*599074578^(3/14) 2178309000001739 a001 20365011074/1149851*599074578^(5/21) 2178309000001739 a001 7778742049/1149851*599074578^(2/7) 2178309000001739 a001 1836311903/1149851*599074578^(5/14) 2178309000001739 a001 2971215073/1149851*599074578^(1/3) 2178309000001739 a001 956722026041/1149851*228826127^(1/20) 2178309000001739 a001 433494437/1149851*2537720636^(2/5) 2178309000001739 a001 433494437/1149851*45537549124^(6/17) 2178309000001739 a001 433494437/1149851*14662949395604^(2/7) 2178309000001739 a001 433494437/1149851*(1/2+1/2*5^(1/2))^18 2178309000001739 a001 433494437/1149851*192900153618^(1/3) 2178309000001739 a001 433494437/1149851*10749957122^(3/8) 2178309000001739 a001 514229/969323029*10749957122^(23/24) 2178309000001739 a001 433494437/1149851*4106118243^(9/23) 2178309000001739 a001 1134903170/1149851*599074578^(8/21) 2178309000001739 a001 433494437/1149851*1568397607^(9/22) 2178309000001739 a001 365435296162/1149851*228826127^(1/10) 2178309000001739 a001 433494437/1149851*599074578^(3/7) 2178309000001739 a001 225851433717/1149851*228826127^(1/8) 2178309000001739 a001 139583862445/1149851*228826127^(3/20) 2178309000001739 a001 291800061102965/133957148 2178309000001739 a001 53316291173/1149851*228826127^(1/5) 2178309000001739 a001 20365011074/1149851*228826127^(1/4) 2178309000001739 a001 7778742049/1149851*228826127^(3/10) 2178309000001739 a001 2971215073/1149851*228826127^(7/20) 2178309000001739 a001 956722026041/1149851*87403803^(1/19) 2178309000001739 a001 1836311903/1149851*228826127^(3/8) 2178309000001739 a001 165580141/1149851*2537720636^(4/9) 2178309000001739 a001 514229/370248451*312119004989^(4/5) 2178309000001739 a001 165580141/1149851*(1/2+1/2*5^(1/2))^20 2178309000001739 a001 165580141/1149851*23725150497407^(5/16) 2178309000001739 a001 165580141/1149851*505019158607^(5/14) 2178309000001739 a001 165580141/1149851*73681302247^(5/13) 2178309000001739 a001 514229/370248451*73681302247^(11/13) 2178309000001739 a001 165580141/1149851*28143753123^(2/5) 2178309000001739 a001 165580141/1149851*10749957122^(5/12) 2178309000001739 a001 514229/370248451*10749957122^(11/12) 2178309000001739 a001 165580141/1149851*4106118243^(10/23) 2178309000001739 a001 514229/370248451*4106118243^(22/23) 2178309000001739 a001 165580141/1149851*1568397607^(5/11) 2178309000001739 a001 1134903170/1149851*228826127^(2/5) 2178309000001739 a001 165580141/1149851*599074578^(10/21) 2178309000001739 a001 433494437/1149851*228826127^(9/20) 2178309000001739 a001 365435296162/1149851*87403803^(2/19) 2178309000001739 a001 165580141/1149851*228826127^(1/2) 2178309000001739 a001 222915410844073/102334155 2178309000001739 a001 139583862445/1149851*87403803^(3/19) 2178309000001739 a001 53316291173/1149851*87403803^(4/19) 2178309000001739 a001 20365011074/1149851*87403803^(5/19) 2178309000001739 a001 7778742049/1149851*87403803^(6/19) 2178309000001739 a001 2971215073/1149851*87403803^(7/19) 2178309000001739 a001 956722026041/1149851*33385282^(1/18) 2178309000001739 a001 514229/141422324*2537720636^(14/15) 2178309000001739 a001 514229/141422324*17393796001^(6/7) 2178309000001739 a001 514229/141422324*45537549124^(14/17) 2178309000001739 a001 514229/141422324*14662949395604^(2/3) 2178309000001739 a001 63245986/1149851*(1/2+1/2*5^(1/2))^22 2178309000001739 a001 514229/141422324*505019158607^(3/4) 2178309000001739 a001 514229/141422324*192900153618^(7/9) 2178309000001739 a001 63245986/1149851*10749957122^(11/24) 2178309000001739 a001 514229/141422324*10749957122^(7/8) 2178309000001739 a001 63245986/1149851*4106118243^(11/23) 2178309000001739 a001 514229/141422324*4106118243^(21/23) 2178309000001739 a001 63245986/1149851*1568397607^(1/2) 2178309000001739 a001 514229/141422324*1568397607^(21/22) 2178309000001739 a001 63245986/1149851*599074578^(11/21) 2178309000001739 a001 1134903170/1149851*87403803^(8/19) 2178309000001739 a001 63245986/1149851*228826127^(11/20) 2178309000001739 a001 267914296/1149851*87403803^(1/2) 2178309000001739 a001 433494437/1149851*87403803^(9/19) 2178309000001739 a001 514229*33385282^(1/12) 2178309000001739 a001 165580141/1149851*87403803^(10/19) 2178309000001739 a001 365435296162/1149851*33385282^(1/9) 2178309000001739 a001 63245986/1149851*87403803^(11/19) 2178309000001739 a001 85146110326289/39088169 2178309000001739 a001 139583862445/1149851*33385282^(1/6) 2178309000001739 a001 53316291173/1149851*33385282^(2/9) 2178309000001739 a001 32951280099/1149851*33385282^(1/4) 2178309000001739 a001 20365011074/1149851*33385282^(5/18) 2178309000001740 a001 7778742049/1149851*33385282^(1/3) 2178309000001740 a001 24157817/1149851*141422324^(8/13) 2178309000001740 a001 514229/54018521*2537720636^(8/9) 2178309000001740 a001 24157817/1149851*2537720636^(8/15) 2178309000001740 a001 24157817/1149851*45537549124^(8/17) 2178309000001740 a001 514229/54018521*312119004989^(8/11) 2178309000001740 a001 24157817/1149851*14662949395604^(8/21) 2178309000001740 a001 24157817/1149851*(1/2+1/2*5^(1/2))^24 2178309000001740 a001 24157817/1149851*192900153618^(4/9) 2178309000001740 a001 24157817/1149851*73681302247^(6/13) 2178309000001740 a001 514229/54018521*73681302247^(10/13) 2178309000001740 a001 514229/54018521*28143753123^(4/5) 2178309000001740 a001 24157817/1149851*10749957122^(1/2) 2178309000001740 a001 514229/54018521*10749957122^(5/6) 2178309000001740 a001 24157817/1149851*4106118243^(12/23) 2178309000001740 a001 514229/54018521*4106118243^(20/23) 2178309000001740 a001 24157817/1149851*1568397607^(6/11) 2178309000001740 a001 514229/54018521*1568397607^(10/11) 2178309000001740 a001 24157817/1149851*599074578^(4/7) 2178309000001740 a001 514229/54018521*599074578^(20/21) 2178309000001740 a001 2971215073/1149851*33385282^(7/18) 2178309000001740 a001 24157817/1149851*228826127^(3/5) 2178309000001740 a001 956722026041/1149851*12752043^(1/17) 2178309000001740 a001 1836311903/1149851*33385282^(5/12) 2178309000001740 a001 1134903170/1149851*33385282^(4/9) 2178309000001740 a001 24157817/1149851*87403803^(12/19) 2178309000001740 a001 433494437/1149851*33385282^(1/2) 2178309000001740 a001 102334155/1149851*33385282^(7/12) 2178309000001740 a001 165580141/1149851*33385282^(5/9) 2178309000001740 a001 63245986/1149851*33385282^(11/18) 2178309000001740 a001 365435296162/1149851*12752043^(2/17) 2178309000001741 a001 24157817/1149851*33385282^(2/3) 2178309000001741 a001 16261460067397/7465176 2178309000001741 a001 139583862445/1149851*12752043^(3/17) 2178309000001742 a001 53316291173/1149851*12752043^(4/17) 2178309000001743 a001 20365011074/1149851*12752043^(5/17) 2178309000001744 a001 7778742049/1149851*12752043^(6/17) 2178309000001744 a001 9227465/1149851*141422324^(2/3) 2178309000001744 a001 514229/20633239*817138163596^(2/3) 2178309000001744 a001 514229/20633239*(1/2+1/2*5^(1/2))^38 2178309000001744 a001 9227465/1149851*(1/2+1/2*5^(1/2))^26 2178309000001744 a001 9227465/1149851*73681302247^(1/2) 2178309000001744 a001 9227465/1149851*10749957122^(13/24) 2178309000001744 a001 514229/20633239*10749957122^(19/24) 2178309000001744 a001 9227465/1149851*4106118243^(13/23) 2178309000001744 a001 514229/20633239*4106118243^(19/23) 2178309000001744 a001 9227465/1149851*1568397607^(13/22) 2178309000001744 a001 514229/20633239*1568397607^(19/22) 2178309000001744 a001 9227465/1149851*599074578^(13/21) 2178309000001744 a001 514229/20633239*599074578^(19/21) 2178309000001744 a001 9227465/1149851*228826127^(13/20) 2178309000001744 a001 514229/20633239*228826127^(19/20) 2178309000001744 a001 9227465/1149851*87403803^(13/19) 2178309000001744 a001 2971215073/1149851*12752043^(7/17) 2178309000001745 a001 956722026041/1149851*4870847^(1/16) 2178309000001745 a001 1134903170/1149851*12752043^(8/17) 2178309000001745 a001 9227465/1149851*33385282^(13/18) 2178309000001746 a001 701408733/1149851*12752043^(1/2) 2178309000001746 a001 433494437/1149851*12752043^(9/17) 2178309000001747 a001 165580141/1149851*12752043^(10/17) 2178309000001748 a001 63245986/1149851*12752043^(11/17) 2178309000001749 a001 24157817/1149851*12752043^(12/17) 2178309000001750 a001 365435296162/1149851*4870847^(1/8) 2178309000001753 a001 12422650078093/5702887 2178309000001754 a001 9227465/1149851*12752043^(13/17) 2178309000001756 a001 139583862445/1149851*4870847^(3/16) 2178309000001762 a001 53316291173/1149851*4870847^(1/4) 2178309000001768 a001 20365011074/1149851*4870847^(5/16) 2178309000001770 a001 3524578/1149851*20633239^(4/5) 2178309000001773 a001 7778742049/1149851*4870847^(3/8) 2178309000001774 a001 514229/7881196*141422324^(12/13) 2178309000001774 a001 514229/7881196*2537720636^(4/5) 2178309000001774 a001 3524578/1149851*17393796001^(4/7) 2178309000001774 a001 514229/7881196*45537549124^(12/17) 2178309000001774 a001 514229/7881196*14662949395604^(4/7) 2178309000001774 a001 514229/7881196*(1/2+1/2*5^(1/2))^36 2178309000001774 a001 3524578/1149851*14662949395604^(4/9) 2178309000001774 a001 3524578/1149851*(1/2+1/2*5^(1/2))^28 2178309000001774 a001 514229/7881196*192900153618^(2/3) 2178309000001774 a001 3524578/1149851*73681302247^(7/13) 2178309000001774 a001 514229/7881196*73681302247^(9/13) 2178309000001774 a001 3524578/1149851*10749957122^(7/12) 2178309000001774 a001 514229/7881196*10749957122^(3/4) 2178309000001774 a001 3524578/1149851*4106118243^(14/23) 2178309000001774 a001 514229/7881196*4106118243^(18/23) 2178309000001774 a001 3524578/1149851*1568397607^(7/11) 2178309000001774 a001 514229/7881196*1568397607^(9/11) 2178309000001774 a001 3524578/1149851*599074578^(2/3) 2178309000001774 a001 514229/7881196*599074578^(6/7) 2178309000001774 a001 3524578/1149851*228826127^(7/10) 2178309000001774 a001 514229/7881196*228826127^(9/10) 2178309000001774 a001 3524578/1149851*87403803^(14/19) 2178309000001774 a001 514229/7881196*87403803^(18/19) 2178309000001775 a001 3524578/1149851*33385282^(7/9) 2178309000001779 a001 2971215073/1149851*4870847^(7/16) 2178309000001781 a001 956722026041/1149851*1860498^(1/15) 2178309000001785 a001 1134903170/1149851*4870847^(1/2) 2178309000001785 a001 3524578/1149851*12752043^(14/17) 2178309000001791 a001 433494437/1149851*4870847^(9/16) 2178309000001796 a001 165580141/1149851*4870847^(5/8) 2178309000001802 a001 514229*1860498^(1/10) 2178309000001802 a001 63245986/1149851*4870847^(11/16) 2178309000001808 a001 24157817/1149851*4870847^(3/4) 2178309000001819 a001 9227465/1149851*4870847^(13/16) 2178309000001823 a001 365435296162/1149851*1860498^(2/15) 2178309000001836 a001 4745030099485/2178309 2178309000001844 a001 225851433717/1149851*1860498^(1/6) 2178309000001848 a001 32951280099/4870847*710647^(3/7) 2178309000001854 a001 3524578/1149851*4870847^(7/8) 2178309000001865 a001 139583862445/1149851*1860498^(1/5) 2178309000001872 a001 53316291173/3010349*710647^(5/14) 2178309000001907 a001 53316291173/1149851*1860498^(4/15) 2178309000001926 a001 86267571272/12752043*710647^(3/7) 2178309000001927 a001 1836311903/1860498*710647^(4/7) 2178309000001928 a001 32951280099/1149851*1860498^(3/10) 2178309000001938 a001 32264490531/4769326*710647^(3/7) 2178309000001940 a001 591286729879/87403803*710647^(3/7) 2178309000001940 a001 1548008755920/228826127*710647^(3/7) 2178309000001940 a001 4052739537881/599074578*710647^(3/7) 2178309000001940 a001 1515744265389/224056801*710647^(3/7) 2178309000001940 a001 6557470319842/969323029*710647^(3/7) 2178309000001940 a001 2504730781961/370248451*710647^(3/7) 2178309000001940 a001 956722026041/141422324*710647^(3/7) 2178309000001941 a001 365435296162/54018521*710647^(3/7) 2178309000001945 a001 139583862445/20633239*710647^(3/7) 2178309000001947 a001 1346269/1149851*7881196^(10/11) 2178309000001949 a001 20365011074/1149851*1860498^(1/3) 2178309000001975 a001 1346269/1149851*20633239^(6/7) 2178309000001975 a001 53316291173/7881196*710647^(3/7) 2178309000001979 a001 1346269/1149851*141422324^(10/13) 2178309000001979 a001 1346269/1149851*2537720636^(2/3) 2178309000001979 a001 514229/3010349*45537549124^(2/3) 2178309000001979 a001 1346269/1149851*45537549124^(10/17) 2178309000001979 a001 1346269/1149851*312119004989^(6/11) 2178309000001979 a001 514229/3010349*(1/2+1/2*5^(1/2))^34 2178309000001979 a001 1346269/1149851*14662949395604^(10/21) 2178309000001979 a001 1346269/1149851*(1/2+1/2*5^(1/2))^30 2178309000001979 a001 1346269/1149851*192900153618^(5/9) 2178309000001979 a001 1346269/1149851*28143753123^(3/5) 2178309000001979 a001 1346269/1149851*10749957122^(5/8) 2178309000001979 a001 514229/3010349*10749957122^(17/24) 2178309000001979 a001 1346269/1149851*4106118243^(15/23) 2178309000001979 a001 514229/3010349*4106118243^(17/23) 2178309000001979 a001 1346269/1149851*1568397607^(15/22) 2178309000001979 a001 514229/3010349*1568397607^(17/22) 2178309000001979 a001 1346269/1149851*599074578^(5/7) 2178309000001979 a001 514229/3010349*599074578^(17/21) 2178309000001979 a001 1346269/1149851*228826127^(3/4) 2178309000001979 a001 514229/3010349*228826127^(17/20) 2178309000001979 a001 1346269/1149851*87403803^(15/19) 2178309000001979 a001 514229/3010349*87403803^(17/19) 2178309000001981 a001 1346269/1149851*33385282^(5/6) 2178309000001981 a001 514229/3010349*33385282^(17/18) 2178309000001991 a001 7778742049/1149851*1860498^(2/5) 2178309000001991 a001 1346269/1149851*12752043^(15/17) 2178309000002033 a001 2971215073/1149851*1860498^(7/15) 2178309000002047 a001 956722026041/1149851*710647^(1/14) 2178309000002054 a001 1836311903/1149851*1860498^(1/2) 2178309000002065 a001 1346269/1149851*4870847^(15/16) 2178309000002074 a001 1134903170/1149851*1860498^(8/15) 2178309000002116 a001 433494437/1149851*1860498^(3/5) 2178309000002156 a001 12586269025/4870847*710647^(1/2) 2178309000002158 a001 165580141/1149851*1860498^(2/3) 2178309000002179 a001 102334155/1149851*1860498^(7/10) 2178309000002180 a001 20365011074/3010349*710647^(3/7) 2178309000002200 a001 63245986/1149851*1860498^(11/15) 2178309000002235 a001 10983760033/4250681*710647^(1/2) 2178309000002235 a001 233802911/620166*710647^(9/14) 2178309000002243 a001 24157817/1149851*1860498^(4/5) 2178309000002246 a001 43133785636/16692641*710647^(1/2) 2178309000002248 a001 75283811239/29134601*710647^(1/2) 2178309000002248 a001 591286729879/228826127*710647^(1/2) 2178309000002248 a001 86000486440/33281921*710647^(1/2) 2178309000002248 a001 4052739537881/1568397607*710647^(1/2) 2178309000002248 a001 3536736619241/1368706081*710647^(1/2) 2178309000002248 a001 3278735159921/1268860318*710647^(1/2) 2178309000002248 a001 2504730781961/969323029*710647^(1/2) 2178309000002248 a001 956722026041/370248451*710647^(1/2) 2178309000002248 a001 182717648081/70711162*710647^(1/2) 2178309000002249 a001 139583862445/54018521*710647^(1/2) 2178309000002253 a001 53316291173/20633239*710647^(1/2) 2178309000002261 a001 14930352/1149851*1860498^(5/6) 2178309000002274 a001 4052739537881/4870847*271443^(1/13) 2178309000002283 a001 10182505537/3940598*710647^(1/2) 2178309000002289 a001 9227465/1149851*1860498^(13/15) 2178309000002292 a001 5702887/1149851*1860498^(9/10) 2178309000002352 a001 3536736619241/4250681*271443^(1/13) 2178309000002355 a001 365435296162/1149851*710647^(1/7) 2178309000002361 a001 3524578/1149851*1860498^(14/15) 2178309000002401 a001 3278735159921/3940598*271443^(1/13) 2178309000002403 a001 906220110181/416020 2178309000002464 a001 4807526976/4870847*710647^(4/7) 2178309000002488 a001 7778742049/3010349*710647^(1/2) 2178309000002543 a001 12586269025/12752043*710647^(4/7) 2178309000002543 a001 133957148/930249*710647^(5/7) 2178309000002554 a001 32951280099/33385282*710647^(4/7) 2178309000002556 a001 86267571272/87403803*710647^(4/7) 2178309000002556 a001 225851433717/228826127*710647^(4/7) 2178309000002556 a001 591286729879/599074578*710647^(4/7) 2178309000002556 a001 1548008755920/1568397607*710647^(4/7) 2178309000002556 a001 4052739537881/4106118243*710647^(4/7) 2178309000002556 a001 4807525989/4870846*710647^(4/7) 2178309000002556 a001 6557470319842/6643838879*710647^(4/7) 2178309000002556 a001 2504730781961/2537720636*710647^(4/7) 2178309000002556 a001 956722026041/969323029*710647^(4/7) 2178309000002556 a001 365435296162/370248451*710647^(4/7) 2178309000002556 a001 139583862445/141422324*710647^(4/7) 2178309000002557 a001 53316291173/54018521*710647^(4/7) 2178309000002561 a001 20365011074/20633239*710647^(4/7) 2178309000002591 a001 7778742049/7881196*710647^(4/7) 2178309000002600 a001 86267571272/710647*271443^(3/13) 2178309000002600 a001 39088169/439204*439204^(7/9) 2178309000002606 a001 2504730781961/3010349*271443^(1/13) 2178309000002663 a001 139583862445/1149851*710647^(3/14) 2178309000002697 a001 165580141/1860498*710647^(3/4) 2178309000002772 a001 1836311903/4870847*710647^(9/14) 2178309000002796 a001 2971215073/3010349*710647^(4/7) 2178309000002817 a001 86267571272/1149851*710647^(1/4) 2178309000002851 a001 1602508992/4250681*710647^(9/14) 2178309000002851 a001 831985/15126*710647^(11/14) 2178309000002862 a001 12586269025/33385282*710647^(9/14) 2178309000002864 a001 10983760033/29134601*710647^(9/14) 2178309000002864 a001 86267571272/228826127*710647^(9/14) 2178309000002864 a001 267913919/710646*710647^(9/14) 2178309000002864 a001 591286729879/1568397607*710647^(9/14) 2178309000002864 a001 516002918640/1368706081*710647^(9/14) 2178309000002864 a001 4052739537881/10749957122*710647^(9/14) 2178309000002864 a001 3536736619241/9381251041*710647^(9/14) 2178309000002864 a001 6557470319842/17393796001*710647^(9/14) 2178309000002864 a001 2504730781961/6643838879*710647^(9/14) 2178309000002864 a001 956722026041/2537720636*710647^(9/14) 2178309000002864 a001 365435296162/969323029*710647^(9/14) 2178309000002864 a001 139583862445/370248451*710647^(9/14) 2178309000002864 a001 53316291173/141422324*710647^(9/14) 2178309000002865 a001 20365011074/54018521*710647^(9/14) 2178309000002869 a001 7778742049/20633239*710647^(9/14) 2178309000002899 a001 2971215073/7881196*710647^(9/14) 2178309000002971 a001 53316291173/1149851*710647^(2/7) 2178309000003080 a001 701408733/4870847*710647^(5/7) 2178309000003105 a001 1134903170/3010349*710647^(9/14) 2178309000003146 a001 692290561600/317811 2178309000003159 a001 39088169/1860498*710647^(6/7) 2178309000003159 a001 1836311903/12752043*710647^(5/7) 2178309000003170 a001 14930208/103681*710647^(5/7) 2178309000003172 a001 12586269025/87403803*710647^(5/7) 2178309000003172 a001 32951280099/228826127*710647^(5/7) 2178309000003172 a001 43133785636/299537289*710647^(5/7) 2178309000003172 a001 32264490531/224056801*710647^(5/7) 2178309000003172 a001 591286729879/4106118243*710647^(5/7) 2178309000003172 a001 774004377960/5374978561*710647^(5/7) 2178309000003172 a001 4052739537881/28143753123*710647^(5/7) 2178309000003172 a001 1515744265389/10525900321*710647^(5/7) 2178309000003172 a001 3278735159921/22768774562*710647^(5/7) 2178309000003172 a001 2504730781961/17393796001*710647^(5/7) 2178309000003172 a001 956722026041/6643838879*710647^(5/7) 2178309000003172 a001 182717648081/1268860318*710647^(5/7) 2178309000003172 a001 139583862445/969323029*710647^(5/7) 2178309000003172 a001 53316291173/370248451*710647^(5/7) 2178309000003172 a001 10182505537/70711162*710647^(5/7) 2178309000003173 a001 7778742049/54018521*710647^(5/7) 2178309000003177 a001 2971215073/20633239*710647^(5/7) 2178309000003207 a001 567451585/3940598*710647^(5/7) 2178309000003234 a001 433494437/4870847*710647^(3/4) 2178309000003279 a001 20365011074/1149851*710647^(5/14) 2178309000003313 a001 1134903170/12752043*710647^(3/4) 2178309000003324 a001 2971215073/33385282*710647^(3/4) 2178309000003326 a001 7778742049/87403803*710647^(3/4) 2178309000003326 a001 20365011074/228826127*710647^(3/4) 2178309000003326 a001 53316291173/599074578*710647^(3/4) 2178309000003326 a001 139583862445/1568397607*710647^(3/4) 2178309000003326 a001 365435296162/4106118243*710647^(3/4) 2178309000003326 a001 956722026041/10749957122*710647^(3/4) 2178309000003326 a001 2504730781961/28143753123*710647^(3/4) 2178309000003326 a001 6557470319842/73681302247*710647^(3/4) 2178309000003326 a001 10610209857723/119218851371*710647^(3/4) 2178309000003326 a001 4052739537881/45537549124*710647^(3/4) 2178309000003326 a001 1548008755920/17393796001*710647^(3/4) 2178309000003326 a001 591286729879/6643838879*710647^(3/4) 2178309000003326 a001 225851433717/2537720636*710647^(3/4) 2178309000003326 a001 86267571272/969323029*710647^(3/4) 2178309000003326 a001 32951280099/370248451*710647^(3/4) 2178309000003326 a001 12586269025/141422324*710647^(3/4) 2178309000003327 a001 4807526976/54018521*710647^(3/4) 2178309000003331 a001 1836311903/20633239*710647^(3/4) 2178309000003361 a001 3524667/39604*710647^(3/4) 2178309000003386 a001 514229/1149851*(1/2+1/2*5^(1/2))^32 2178309000003386 a001 514229/1149851*23725150497407^(1/2) 2178309000003386 a001 514229/1149851*73681302247^(8/13) 2178309000003386 a001 514229/1149851*10749957122^(2/3) 2178309000003386 a001 514229/1149851*4106118243^(16/23) 2178309000003386 a001 514229/1149851*1568397607^(8/11) 2178309000003386 a001 514229/1149851*599074578^(16/21) 2178309000003386 a001 514229/1149851*228826127^(4/5) 2178309000003387 a001 514229/1149851*87403803^(16/19) 2178309000003388 a001 514229/1149851*33385282^(8/9) 2178309000003389 a001 267914296/4870847*710647^(11/14) 2178309000003399 a001 514229/1149851*12752043^(16/17) 2178309000003413 a001 433494437/3010349*710647^(5/7) 2178309000003465 a001 829464/103361*710647^(13/14) 2178309000003467 a001 233802911/4250681*710647^(11/14) 2178309000003478 a001 1836311903/33385282*710647^(11/14) 2178309000003480 a001 1602508992/29134601*710647^(11/14) 2178309000003480 a001 12586269025/228826127*710647^(11/14) 2178309000003480 a001 10983760033/199691526*710647^(11/14) 2178309000003480 a001 86267571272/1568397607*710647^(11/14) 2178309000003480 a001 75283811239/1368706081*710647^(11/14) 2178309000003480 a001 591286729879/10749957122*710647^(11/14) 2178309000003480 a001 12585437040/228811001*710647^(11/14) 2178309000003480 a001 4052739537881/73681302247*710647^(11/14) 2178309000003480 a001 3536736619241/64300051206*710647^(11/14) 2178309000003480 a001 6557470319842/119218851371*710647^(11/14) 2178309000003480 a001 2504730781961/45537549124*710647^(11/14) 2178309000003480 a001 956722026041/17393796001*710647^(11/14) 2178309000003480 a001 365435296162/6643838879*710647^(11/14) 2178309000003480 a001 139583862445/2537720636*710647^(11/14) 2178309000003480 a001 53316291173/969323029*710647^(11/14) 2178309000003480 a001 20365011074/370248451*710647^(11/14) 2178309000003480 a001 7778742049/141422324*710647^(11/14) 2178309000003481 a001 2971215073/54018521*710647^(11/14) 2178309000003485 a001 1134903170/20633239*710647^(11/14) 2178309000003515 a001 433494437/7881196*710647^(11/14) 2178309000003567 a001 267914296/3010349*710647^(3/4) 2178309000003587 a001 7778742049/1149851*710647^(3/7) 2178309000003697 a001 102334155/4870847*710647^(6/7) 2178309000003721 a001 165580141/3010349*710647^(11/14) 2178309000003775 a001 267914296/12752043*710647^(6/7) 2178309000003786 a001 701408733/33385282*710647^(6/7) 2178309000003788 a001 1836311903/87403803*710647^(6/7) 2178309000003788 a001 102287808/4868641*710647^(6/7) 2178309000003788 a001 12586269025/599074578*710647^(6/7) 2178309000003788 a001 32951280099/1568397607*710647^(6/7) 2178309000003788 a001 86267571272/4106118243*710647^(6/7) 2178309000003788 a001 225851433717/10749957122*710647^(6/7) 2178309000003788 a001 591286729879/28143753123*710647^(6/7) 2178309000003788 a001 1548008755920/73681302247*710647^(6/7) 2178309000003788 a001 4052739537881/192900153618*710647^(6/7) 2178309000003788 a001 225749145909/10745088481*710647^(6/7) 2178309000003788 a001 6557470319842/312119004989*710647^(6/7) 2178309000003788 a001 2504730781961/119218851371*710647^(6/7) 2178309000003788 a001 956722026041/45537549124*710647^(6/7) 2178309000003788 a001 365435296162/17393796001*710647^(6/7) 2178309000003788 a001 139583862445/6643838879*710647^(6/7) 2178309000003788 a001 53316291173/2537720636*710647^(6/7) 2178309000003788 a001 20365011074/969323029*710647^(6/7) 2178309000003788 a001 7778742049/370248451*710647^(6/7) 2178309000003789 a001 2971215073/141422324*710647^(6/7) 2178309000003789 a001 1134903170/54018521*710647^(6/7) 2178309000003794 a001 433494437/20633239*710647^(6/7) 2178309000003824 a001 165580141/7881196*710647^(6/7) 2178309000003855 a001 165580141/439204*439204^(2/3) 2178309000003896 a001 2971215073/1149851*710647^(1/2) 2178309000004004 a001 39088169/4870847*710647^(13/14) 2178309000004010 a001 591286729879/1860498*271443^(2/13) 2178309000004013 a001 956722026041/1149851*271443^(1/13) 2178309000004029 a001 63245986/3010349*710647^(6/7) 2178309000004083 a001 34111385/4250681*710647^(13/14) 2178309000004095 a001 133957148/16692641*710647^(13/14) 2178309000004096 a001 233802911/29134601*710647^(13/14) 2178309000004096 a001 1836311903/228826127*710647^(13/14) 2178309000004097 a001 267084832/33281921*710647^(13/14) 2178309000004097 a001 12586269025/1568397607*710647^(13/14) 2178309000004097 a001 10983760033/1368706081*710647^(13/14) 2178309000004097 a001 43133785636/5374978561*710647^(13/14) 2178309000004097 a001 75283811239/9381251041*710647^(13/14) 2178309000004097 a001 591286729879/73681302247*710647^(13/14) 2178309000004097 a001 86000486440/10716675201*710647^(13/14) 2178309000004097 a001 4052739537881/505019158607*710647^(13/14) 2178309000004097 a001 3278735159921/408569081798*710647^(13/14) 2178309000004097 a001 2504730781961/312119004989*710647^(13/14) 2178309000004097 a001 956722026041/119218851371*710647^(13/14) 2178309000004097 a001 182717648081/22768774562*710647^(13/14) 2178309000004097 a001 139583862445/17393796001*710647^(13/14) 2178309000004097 a001 53316291173/6643838879*710647^(13/14) 2178309000004097 a001 10182505537/1268860318*710647^(13/14) 2178309000004097 a001 7778742049/969323029*710647^(13/14) 2178309000004097 a001 2971215073/370248451*710647^(13/14) 2178309000004097 a001 567451585/70711162*710647^(13/14) 2178309000004097 a001 433494437/54018521*710647^(13/14) 2178309000004102 a001 165580141/20633239*710647^(13/14) 2178309000004132 a001 31622993/3940598*710647^(13/14) 2178309000004204 a001 1134903170/1149851*710647^(4/7) 2178309000004221 a001 956722026041/710647*103682^(1/24) 2178309000004300 a001 86267571272/271443*103682^(1/6) 2178309000004338 a001 24157817/3010349*710647^(13/14) 2178309000004405 a001 2/317811*(1/2+1/2*5^(1/2))^60 2178309000004512 a001 433494437/1149851*710647^(9/14) 2178309000004548 a001 1548008755920/4870847*271443^(2/13) 2178309000004626 a001 4052739537881/12752043*271443^(2/13) 2178309000004638 a001 1515744265389/4769326*271443^(2/13) 2178309000004645 a001 6557470319842/20633239*271443^(2/13) 2178309000004675 a001 2504730781961/7881196*271443^(2/13) 2178309000004820 a001 165580141/1149851*710647^(5/7) 2178309000004875 a001 32951280099/710647*271443^(4/13) 2178309000004880 a001 956722026041/3010349*271443^(2/13) 2178309000004974 a001 102334155/1149851*710647^(3/4) 2178309000005110 a001 701408733/439204*439204^(5/9) 2178309000005128 a001 63245986/1149851*710647^(11/14) 2178309000005437 a001 24157817/1149851*710647^(6/7) 2178309000005749 a001 9227465/1149851*710647^(13/14) 2178309000006284 a001 75283811239/620166*271443^(3/13) 2178309000006287 a001 365435296162/1149851*271443^(2/13) 2178309000006293 a001 692290561601/317811 2178309000006365 a001 2971215073/439204*439204^(4/9) 2178309000006822 a001 591286729879/4870847*271443^(3/13) 2178309000006900 a001 516002918640/4250681*271443^(3/13) 2178309000006912 a001 4052739537881/33385282*271443^(3/13) 2178309000006913 a001 3536736619241/29134601*271443^(3/13) 2178309000006915 a001 6557470319842/54018521*271443^(3/13) 2178309000006919 a001 2504730781961/20633239*271443^(3/13) 2178309000006949 a001 956722026041/7881196*271443^(3/13) 2178309000007070 a001 196418/710647*141422324^(11/13) 2178309000007070 a001 196418/710647*2537720636^(11/15) 2178309000007070 a001 196418/710647*45537549124^(11/17) 2178309000007070 a001 196418/710647*312119004989^(3/5) 2178309000007070 a001 196418/710647*14662949395604^(11/21) 2178309000007070 a001 196418/710647*(1/2+1/2*5^(1/2))^33 2178309000007070 a001 196418/710647*192900153618^(11/18) 2178309000007070 a001 317811/439204*(1/2+1/2*5^(1/2))^31 2178309000007070 a001 317811/439204*9062201101803^(1/2) 2178309000007070 a001 196418/710647*10749957122^(11/16) 2178309000007070 a001 196418/710647*1568397607^(3/4) 2178309000007070 a001 196418/710647*599074578^(11/14) 2178309000007072 a001 196418/710647*33385282^(11/12) 2178309000007149 a001 12586269025/710647*271443^(5/13) 2178309000007154 a001 365435296162/3010349*271443^(3/13) 2178309000007620 a001 12586269025/439204*439204^(1/3) 2178309000007905 a001 2504730781961/1860498*103682^(1/24) 2178309000008295 a001 86267571272/167761*64079^(3/23) 2178309000008443 a001 6557470319842/4870847*103682^(1/24) 2178309000008559 a001 43133785636/930249*271443^(4/13) 2178309000008561 a001 139583862445/1149851*271443^(3/13) 2178309000008569 a001 10610209857723/7881196*103682^(1/24) 2178309000008775 a001 1346269*103682^(1/24) 2178309000008874 a001 53316291173/439204*439204^(2/9) 2178309000009096 a001 225851433717/4870847*271443^(4/13) 2178309000009175 a001 591286729879/12752043*271443^(4/13) 2178309000009186 a001 774004377960/16692641*271443^(4/13) 2178309000009188 a001 4052739537881/87403803*271443^(4/13) 2178309000009188 a001 225749145909/4868641*271443^(4/13) 2178309000009188 a001 3278735159921/70711162*271443^(4/13) 2178309000009189 a001 2504730781961/54018521*271443^(4/13) 2178309000009193 a001 956722026041/20633239*271443^(4/13) 2178309000009223 a001 182717648081/3940598*271443^(4/13) 2178309000009423 a001 686789568/101521*271443^(6/13) 2178309000009428 a001 139583862445/3010349*271443^(4/13) 2178309000009723 a001 1120149658766/514229 2178309000010129 a001 225851433717/439204*439204^(1/9) 2178309000010182 a001 1548008755920/1149851*103682^(1/24) 2178309000010560 a001 2971215073/710647*271443^(1/2) 2178309000010754 a001 98209/930249*2537720636^(7/9) 2178309000010754 a001 98209/930249*17393796001^(5/7) 2178309000010754 a001 98209/930249*312119004989^(7/11) 2178309000010754 a001 98209/930249*14662949395604^(5/9) 2178309000010754 a001 98209/930249*(1/2+1/2*5^(1/2))^35 2178309000010754 a001 98209/930249*505019158607^(5/8) 2178309000010754 a001 208010/109801*(1/2+1/2*5^(1/2))^29 2178309000010754 a001 208010/109801*1322157322203^(1/2) 2178309000010754 a001 98209/930249*28143753123^(7/10) 2178309000010754 a001 98209/930249*599074578^(5/6) 2178309000010754 a001 98209/930249*228826127^(7/8) 2178309000010833 a001 10983760033/620166*271443^(5/13) 2178309000010835 a001 53316291173/1149851*271443^(4/13) 2178309000011141 a001 2932589879136/1346269 2178309000011148 a001 32951280099/64079*24476^(1/7) 2178309000011263 a001 2178309/439204*7881196^(9/11) 2178309000011292 a001 2178309/439204*141422324^(9/13) 2178309000011292 a001 2178309/439204*2537720636^(3/5) 2178309000011292 a001 2178309/439204*45537549124^(9/17) 2178309000011292 a001 196418/4870847*(1/2+1/2*5^(1/2))^37 2178309000011292 a001 2178309/439204*14662949395604^(3/7) 2178309000011292 a001 2178309/439204*(1/2+1/2*5^(1/2))^27 2178309000011292 a001 2178309/439204*192900153618^(1/2) 2178309000011292 a001 2178309/439204*10749957122^(9/16) 2178309000011292 a001 2178309/439204*599074578^(9/14) 2178309000011293 a001 2178309/439204*33385282^(3/4) 2178309000011348 a001 3838809989321/1762289 2178309000011361 a001 24157817/439204*7881196^(2/3) 2178309000011361 a001 39088169/439204*7881196^(7/11) 2178309000011363 a001 9227465/439204*7881196^(8/11) 2178309000011365 a001 165580141/439204*7881196^(6/11) 2178309000011367 a001 5702887/439204*20633239^(5/7) 2178309000011368 a001 701408733/439204*7881196^(5/11) 2178309000011370 a001 86267571272/4870847*271443^(5/13) 2178309000011370 a001 196418/12752043*2537720636^(13/15) 2178309000011370 a001 5702887/439204*2537720636^(5/9) 2178309000011370 a001 196418/12752043*45537549124^(13/17) 2178309000011370 a001 196418/12752043*14662949395604^(13/21) 2178309000011370 a001 196418/12752043*(1/2+1/2*5^(1/2))^39 2178309000011370 a001 196418/12752043*192900153618^(13/18) 2178309000011370 a001 5702887/439204*312119004989^(5/11) 2178309000011370 a001 5702887/439204*(1/2+1/2*5^(1/2))^25 2178309000011370 a001 5702887/439204*3461452808002^(5/12) 2178309000011370 a001 196418/12752043*73681302247^(3/4) 2178309000011370 a001 5702887/439204*28143753123^(1/2) 2178309000011370 a001 196418/12752043*10749957122^(13/16) 2178309000011370 a001 196418/12752043*599074578^(13/14) 2178309000011370 a001 5702887/439204*228826127^(5/8) 2178309000011371 a001 2971215073/439204*7881196^(4/11) 2178309000011372 a001 1201881744/109801*7881196^(1/3) 2178309000011374 a001 12586269025/439204*7881196^(3/11) 2178309000011377 a001 53316291173/439204*7881196^(2/11) 2178309000011379 a001 4020054011358/1845493 2178309000011380 a001 39088169/439204*20633239^(3/5) 2178309000011381 a001 225851433717/439204*7881196^(1/11) 2178309000011381 a001 31622993/219602*20633239^(4/7) 2178309000011382 a001 701408733/439204*20633239^(3/7) 2178309000011382 a001 567451585/219602*20633239^(2/5) 2178309000011382 a001 98209/16692641*(1/2+1/2*5^(1/2))^41 2178309000011382 a001 196452/5779*(1/2+1/2*5^(1/2))^23 2178309000011382 a001 196452/5779*4106118243^(1/2) 2178309000011382 a001 7778742049/439204*20633239^(2/7) 2178309000011383 a001 32951280099/439204*20633239^(1/5) 2178309000011383 a001 52623190191728/24157817 2178309000011383 a001 196418*20633239^(1/7) 2178309000011383 a001 39088169/439204*141422324^(7/13) 2178309000011383 a001 39088169/439204*2537720636^(7/15) 2178309000011383 a001 39088169/439204*17393796001^(3/7) 2178309000011383 a001 39088169/439204*45537549124^(7/17) 2178309000011383 a001 39088169/439204*14662949395604^(1/3) 2178309000011383 a001 39088169/439204*(1/2+1/2*5^(1/2))^21 2178309000011383 a001 39088169/439204*192900153618^(7/18) 2178309000011383 a001 39088169/439204*10749957122^(7/16) 2178309000011383 a001 39088169/439204*599074578^(1/2) 2178309000011384 a001 68884650259197/31622993 2178309000011384 a001 701408733/439204*141422324^(5/13) 2178309000011384 a001 196418/228826127*45537549124^(15/17) 2178309000011384 a001 196418/228826127*312119004989^(9/11) 2178309000011384 a001 196418/228826127*14662949395604^(5/7) 2178309000011384 a001 196418/228826127*192900153618^(5/6) 2178309000011384 a001 102334155/439204*817138163596^(1/3) 2178309000011384 a001 102334155/439204*(1/2+1/2*5^(1/2))^19 2178309000011384 a001 196418/228826127*28143753123^(9/10) 2178309000011384 a001 196418/228826127*10749957122^(15/16) 2178309000011384 a001 1836311903/439204*141422324^(1/3) 2178309000011384 a001 165580141/439204*141422324^(6/13) 2178309000011384 a001 2971215073/439204*141422324^(4/13) 2178309000011384 a001 12586269025/439204*141422324^(3/13) 2178309000011384 a001 53316291173/439204*141422324^(2/13) 2178309000011384 a001 360684711363454/165580141 2178309000011384 a001 225851433717/439204*141422324^(1/13) 2178309000011384 a001 66978574/109801*45537549124^(1/3) 2178309000011384 a001 66978574/109801*(1/2+1/2*5^(1/2))^17 2178309000011384 a001 944284833571968/433494437 2178309000011384 a001 701408733/439204*2537720636^(1/3) 2178309000011384 a001 701408733/439204*45537549124^(5/17) 2178309000011384 a001 196418/1568397607*14662949395604^(7/9) 2178309000011384 a001 196418/1568397607*505019158607^(7/8) 2178309000011384 a001 701408733/439204*312119004989^(3/11) 2178309000011384 a001 701408733/439204*14662949395604^(5/21) 2178309000011384 a001 701408733/439204*(1/2+1/2*5^(1/2))^15 2178309000011384 a001 701408733/439204*192900153618^(5/18) 2178309000011384 a001 701408733/439204*28143753123^(3/10) 2178309000011384 a001 701408733/439204*10749957122^(5/16) 2178309000011384 a001 14542175231485/6675901 2178309000011384 a001 196418/4106118243*817138163596^(17/19) 2178309000011384 a001 196418/4106118243*14662949395604^(17/21) 2178309000011384 a001 196418/4106118243*192900153618^(17/18) 2178309000011384 a001 1836311903/439204*(1/2+1/2*5^(1/2))^13 2178309000011384 a001 1836311903/439204*73681302247^(1/4) 2178309000011384 a001 12586269025/439204*2537720636^(1/5) 2178309000011384 a001 7778742049/439204*2537720636^(2/9) 2178309000011384 a001 6472224534485382/2971215073 2178309000011384 a001 53316291173/439204*2537720636^(2/15) 2178309000011384 a001 2971215073/439204*2537720636^(4/15) 2178309000011384 a001 196418*2537720636^(1/9) 2178309000011384 a001 225851433717/439204*2537720636^(1/15) 2178309000011384 a001 1201881744/109801*312119004989^(1/5) 2178309000011384 a001 1201881744/109801*(1/2+1/2*5^(1/2))^11 2178309000011384 a001 16944503814103696/7778742049 2178309000011384 a001 12586269025/439204*45537549124^(3/17) 2178309000011384 a001 196418/28143753123*3461452808002^(11/12) 2178309000011384 a001 12586269025/439204*14662949395604^(1/7) 2178309000011384 a001 12586269025/439204*(1/2+1/2*5^(1/2))^9 2178309000011384 a001 12586269025/439204*192900153618^(1/6) 2178309000011384 a001 32951280099/439204*17393796001^(1/7) 2178309000011384 a001 22180643453912853/10182505537 2178309000011384 a001 196418/73681302247*14662949395604^(19/21) 2178309000011384 a001 32951280099/439204*14662949395604^(1/9) 2178309000011384 a001 116139356909373422/53316291173 2178309000011384 a001 60811356764058912/27916772489 2178309000011384 a001 225851433717/439204*45537549124^(1/17) 2178309000011384 a001 1288005205282725956/591286729879 2178309000011384 a001 491974210731215698/225851433717 2178309000011384 a001 196418/312119004989*14662949395604^(20/21) 2178309000011384 a001 956722026041/439204 2178309000011384 a001 182717648081/219602*(1/2+1/2*5^(1/2))^2 2178309000011384 a001 139583862445/439204*(1/2+1/2*5^(1/2))^4 2178309000011384 a001 139583862445/439204*23725150497407^(1/16) 2178309000011384 a001 53316291173/439204*45537549124^(2/17) 2178309000011384 a001 139583862445/439204*73681302247^(1/13) 2178309000011384 a001 53316291173/439204*14662949395604^(2/21) 2178309000011384 a001 53316291173/439204*(1/2+1/2*5^(1/2))^6 2178309000011384 a001 196418*28143753123^(1/10) 2178309000011384 a001 71778070001547716/32951280099 2178309000011384 a001 12586269025/439204*10749957122^(3/16) 2178309000011384 a001 98209/22768774562*14662949395604^(8/9) 2178309000011384 a001 10182505537/219602*(1/2+1/2*5^(1/2))^8 2178309000011384 a001 10182505537/219602*23725150497407^(1/8) 2178309000011384 a001 10182505537/219602*505019158607^(1/7) 2178309000011384 a001 10182505537/219602*73681302247^(2/13) 2178309000011384 a001 225851433717/439204*10749957122^(1/16) 2178309000011384 a001 139583862445/439204*10749957122^(1/12) 2178309000011384 a001 53316291173/439204*10749957122^(1/8) 2178309000011384 a001 5483356618744402/2517253805 2178309000011384 a001 10182505537/219602*10749957122^(1/6) 2178309000011384 a001 182717648081/219602*4106118243^(1/23) 2178309000011384 a001 196418/17393796001*14662949395604^(6/7) 2178309000011384 a001 7778742049/439204*312119004989^(2/11) 2178309000011384 a001 7778742049/439204*(1/2+1/2*5^(1/2))^10 2178309000011384 a001 7778742049/439204*28143753123^(1/5) 2178309000011384 a001 7778742049/439204*10749957122^(5/24) 2178309000011384 a001 139583862445/439204*4106118243^(2/23) 2178309000011384 a001 53316291173/439204*4106118243^(3/23) 2178309000011384 a001 5236139639809157/2403763488 2178309000011384 a001 10182505537/219602*4106118243^(4/23) 2178309000011384 a001 7778742049/439204*4106118243^(5/23) 2178309000011384 a001 182717648081/219602*1568397607^(1/22) 2178309000011384 a001 2971215073/439204*45537549124^(4/17) 2178309000011384 a001 196418/6643838879*23725150497407^(13/16) 2178309000011384 a001 196418/6643838879*505019158607^(13/14) 2178309000011384 a001 2971215073/439204*14662949395604^(4/21) 2178309000011384 a001 2971215073/439204*(1/2+1/2*5^(1/2))^12 2178309000011384 a001 2971215073/439204*192900153618^(2/9) 2178309000011384 a001 2971215073/439204*73681302247^(3/13) 2178309000011384 a001 2971215073/439204*10749957122^(1/4) 2178309000011384 a001 139583862445/439204*1568397607^(1/11) 2178309000011384 a001 2971215073/439204*4106118243^(6/23) 2178309000011384 a001 53316291173/439204*1568397607^(3/22) 2178309000011384 a001 4000054745132932/1836311903 2178309000011384 a001 10182505537/219602*1568397607^(2/11) 2178309000011384 a001 1201881744/109801*1568397607^(1/4) 2178309000011384 a001 7778742049/439204*1568397607^(5/22) 2178309000011384 a001 182717648081/219602*599074578^(1/21) 2178309000011384 a001 2971215073/439204*1568397607^(3/11) 2178309000011384 a001 567451585/219602*17393796001^(2/7) 2178309000011384 a001 98209/1268860318*312119004989^(10/11) 2178309000011384 a001 98209/1268860318*3461452808002^(5/6) 2178309000011384 a001 567451585/219602*14662949395604^(2/9) 2178309000011384 a001 567451585/219602*(1/2+1/2*5^(1/2))^14 2178309000011384 a001 567451585/219602*505019158607^(1/4) 2178309000011384 a001 567451585/219602*10749957122^(7/24) 2178309000011384 a001 567451585/219602*4106118243^(7/23) 2178309000011384 a001 225851433717/439204*599074578^(1/14) 2178309000011384 a001 139583862445/439204*599074578^(2/21) 2178309000011384 a001 567451585/219602*1568397607^(7/22) 2178309000011384 a001 53316291173/439204*599074578^(1/7) 2178309000011384 a001 1527884955780482/701408733 2178309000011384 a001 32951280099/439204*599074578^(1/6) 2178309000011384 a001 10182505537/219602*599074578^(4/21) 2178309000011384 a001 701408733/439204*599074578^(5/14) 2178309000011384 a001 12586269025/439204*599074578^(3/14) 2178309000011384 a001 7778742049/439204*599074578^(5/21) 2178309000011384 a001 2971215073/439204*599074578^(2/7) 2178309000011384 a001 182717648081/219602*228826127^(1/20) 2178309000011384 a001 196418/969323029*45537549124^(16/17) 2178309000011384 a001 196418/969323029*14662949395604^(16/21) 2178309000011384 a001 196418/969323029*192900153618^(8/9) 2178309000011384 a001 433494437/439204*(1/2+1/2*5^(1/2))^16 2178309000011384 a001 433494437/439204*23725150497407^(1/4) 2178309000011384 a001 433494437/439204*73681302247^(4/13) 2178309000011384 a001 196418/969323029*73681302247^(12/13) 2178309000011384 a001 433494437/439204*10749957122^(1/3) 2178309000011384 a001 567451585/219602*599074578^(1/3) 2178309000011384 a001 433494437/439204*4106118243^(8/23) 2178309000011384 a001 433494437/439204*1568397607^(4/11) 2178309000011384 a001 139583862445/439204*228826127^(1/10) 2178309000011384 a001 433494437/439204*599074578^(8/21) 2178309000011384 a001 196418*228826127^(1/8) 2178309000011384 a001 291800061104257/133957148 2178309000011384 a001 53316291173/439204*228826127^(3/20) 2178309000011384 a001 10182505537/219602*228826127^(1/5) 2178309000011384 a001 7778742049/439204*228826127^(1/4) 2178309000011384 a001 2971215073/439204*228826127^(3/10) 2178309000011384 a001 701408733/439204*228826127^(3/8) 2178309000011384 a001 567451585/219602*228826127^(7/20) 2178309000011384 a001 182717648081/219602*87403803^(1/19) 2178309000011384 a001 165580141/439204*2537720636^(2/5) 2178309000011384 a001 165580141/439204*45537549124^(6/17) 2178309000011384 a001 165580141/439204*14662949395604^(2/7) 2178309000011384 a001 165580141/439204*(1/2+1/2*5^(1/2))^18 2178309000011384 a001 165580141/439204*192900153618^(1/3) 2178309000011384 a001 165580141/439204*10749957122^(3/8) 2178309000011384 a001 196418/370248451*10749957122^(23/24) 2178309000011384 a001 165580141/439204*4106118243^(9/23) 2178309000011384 a001 165580141/439204*1568397607^(9/22) 2178309000011384 a001 165580141/439204*599074578^(3/7) 2178309000011384 a001 433494437/439204*228826127^(2/5) 2178309000011384 a001 139583862445/439204*87403803^(2/19) 2178309000011384 a001 165580141/439204*228826127^(9/20) 2178309000011384 a001 44583082169012/20466831 2178309000011384 a001 53316291173/439204*87403803^(3/19) 2178309000011384 a001 10182505537/219602*87403803^(4/19) 2178309000011384 a001 7778742049/439204*87403803^(5/19) 2178309000011384 a001 2971215073/439204*87403803^(6/19) 2178309000011384 a001 102334155/439204*87403803^(1/2) 2178309000011384 a001 567451585/219602*87403803^(7/19) 2178309000011384 a001 182717648081/219602*33385282^(1/18) 2178309000011384 a001 31622993/219602*2537720636^(4/9) 2178309000011384 a001 98209/70711162*312119004989^(4/5) 2178309000011384 a001 98209/70711162*23725150497407^(11/16) 2178309000011384 a001 31622993/219602*(1/2+1/2*5^(1/2))^20 2178309000011384 a001 31622993/219602*23725150497407^(5/16) 2178309000011384 a001 31622993/219602*505019158607^(5/14) 2178309000011384 a001 31622993/219602*73681302247^(5/13) 2178309000011384 a001 98209/70711162*73681302247^(11/13) 2178309000011384 a001 31622993/219602*28143753123^(2/5) 2178309000011384 a001 31622993/219602*10749957122^(5/12) 2178309000011384 a001 98209/70711162*10749957122^(11/12) 2178309000011384 a001 31622993/219602*4106118243^(10/23) 2178309000011384 a001 98209/70711162*4106118243^(22/23) 2178309000011384 a001 31622993/219602*1568397607^(5/11) 2178309000011384 a001 31622993/219602*599074578^(10/21) 2178309000011384 a001 433494437/439204*87403803^(8/19) 2178309000011384 a001 31622993/219602*228826127^(1/2) 2178309000011384 a001 165580141/439204*87403803^(9/19) 2178309000011384 a001 225851433717/439204*33385282^(1/12) 2178309000011384 a001 139583862445/439204*33385282^(1/9) 2178309000011384 a001 31622993/219602*87403803^(10/19) 2178309000011384 a001 85146110326666/39088169 2178309000011384 a001 53316291173/439204*33385282^(1/6) 2178309000011384 a001 10182505537/219602*33385282^(2/9) 2178309000011384 a001 12586269025/439204*33385282^(1/4) 2178309000011384 a001 7778742049/439204*33385282^(5/18) 2178309000011384 a001 2971215073/439204*33385282^(1/3) 2178309000011384 a001 196418/54018521*2537720636^(14/15) 2178309000011384 a001 196418/54018521*17393796001^(6/7) 2178309000011384 a001 196418/54018521*45537549124^(14/17) 2178309000011384 a001 196418/54018521*14662949395604^(2/3) 2178309000011384 a001 196418/54018521*505019158607^(3/4) 2178309000011384 a001 196418/54018521*192900153618^(7/9) 2178309000011384 a001 24157817/439204*312119004989^(2/5) 2178309000011384 a001 24157817/439204*(1/2+1/2*5^(1/2))^22 2178309000011384 a001 24157817/439204*10749957122^(11/24) 2178309000011384 a001 196418/54018521*10749957122^(7/8) 2178309000011384 a001 24157817/439204*4106118243^(11/23) 2178309000011384 a001 196418/54018521*4106118243^(21/23) 2178309000011384 a001 24157817/439204*1568397607^(1/2) 2178309000011384 a001 196418/54018521*1568397607^(21/22) 2178309000011384 a001 24157817/439204*599074578^(11/21) 2178309000011384 a001 567451585/219602*33385282^(7/18) 2178309000011385 a001 24157817/439204*228826127^(11/20) 2178309000011385 a001 182717648081/219602*12752043^(1/17) 2178309000011385 a001 701408733/439204*33385282^(5/12) 2178309000011385 a001 39088169/439204*33385282^(7/12) 2178309000011385 a001 433494437/439204*33385282^(4/9) 2178309000011385 a001 24157817/439204*87403803^(11/19) 2178309000011385 a001 165580141/439204*33385282^(1/2) 2178309000011385 a001 31622993/219602*33385282^(5/9) 2178309000011385 a001 139583862445/439204*12752043^(2/17) 2178309000011386 a001 24157817/439204*33385282^(11/18) 2178309000011386 a001 956556474557/439128 2178309000011386 a001 53316291173/439204*12752043^(3/17) 2178309000011387 a001 10182505537/219602*12752043^(4/17) 2178309000011388 a001 7778742049/439204*12752043^(5/17) 2178309000011388 a001 2971215073/439204*12752043^(6/17) 2178309000011389 a001 9227465/439204*141422324^(8/13) 2178309000011389 a001 196418/20633239*2537720636^(8/9) 2178309000011389 a001 9227465/439204*2537720636^(8/15) 2178309000011389 a001 9227465/439204*45537549124^(8/17) 2178309000011389 a001 196418/20633239*312119004989^(8/11) 2178309000011389 a001 196418/20633239*(1/2+1/2*5^(1/2))^40 2178309000011389 a001 196418/20633239*23725150497407^(5/8) 2178309000011389 a001 9227465/439204*14662949395604^(8/21) 2178309000011389 a001 9227465/439204*(1/2+1/2*5^(1/2))^24 2178309000011389 a001 9227465/439204*192900153618^(4/9) 2178309000011389 a001 9227465/439204*73681302247^(6/13) 2178309000011389 a001 196418/20633239*73681302247^(10/13) 2178309000011389 a001 196418/20633239*28143753123^(4/5) 2178309000011389 a001 9227465/439204*10749957122^(1/2) 2178309000011389 a001 196418/20633239*10749957122^(5/6) 2178309000011389 a001 9227465/439204*4106118243^(12/23) 2178309000011389 a001 196418/20633239*4106118243^(20/23) 2178309000011389 a001 9227465/439204*1568397607^(6/11) 2178309000011389 a001 196418/20633239*1568397607^(10/11) 2178309000011389 a001 9227465/439204*599074578^(4/7) 2178309000011389 a001 196418/20633239*599074578^(20/21) 2178309000011389 a001 9227465/439204*228826127^(3/5) 2178309000011389 a001 9227465/439204*87403803^(12/19) 2178309000011389 a001 567451585/219602*12752043^(7/17) 2178309000011389 a001 182717648081/219602*4870847^(1/16) 2178309000011390 a001 433494437/439204*12752043^(8/17) 2178309000011390 a001 9227465/439204*33385282^(2/3) 2178309000011390 a001 66978574/109801*12752043^(1/2) 2178309000011391 a001 165580141/439204*12752043^(9/17) 2178309000011392 a001 31622993/219602*12752043^(10/17) 2178309000011393 a001 24157817/439204*12752043^(11/17) 2178309000011395 a001 139583862445/439204*4870847^(1/8) 2178309000011397 a001 12422650078148/5702887 2178309000011398 a001 9227465/439204*12752043^(12/17) 2178309000011401 a001 53316291173/439204*4870847^(3/16) 2178309000011407 a001 10182505537/219602*4870847^(1/4) 2178309000011412 a001 7778742049/439204*4870847^(5/16) 2178309000011418 a001 2971215073/439204*4870847^(3/8) 2178309000011419 a001 1762289/219602*141422324^(2/3) 2178309000011419 a001 98209/3940598*817138163596^(2/3) 2178309000011419 a001 98209/3940598*(1/2+1/2*5^(1/2))^38 2178309000011419 a001 1762289/219602*(1/2+1/2*5^(1/2))^26 2178309000011419 a001 1762289/219602*73681302247^(1/2) 2178309000011419 a001 1762289/219602*10749957122^(13/24) 2178309000011419 a001 98209/3940598*10749957122^(19/24) 2178309000011419 a001 1762289/219602*4106118243^(13/23) 2178309000011419 a001 98209/3940598*4106118243^(19/23) 2178309000011419 a001 1762289/219602*1568397607^(13/22) 2178309000011419 a001 98209/3940598*1568397607^(19/22) 2178309000011419 a001 1762289/219602*599074578^(13/21) 2178309000011419 a001 98209/3940598*599074578^(19/21) 2178309000011419 a001 1762289/219602*228826127^(13/20) 2178309000011419 a001 98209/3940598*228826127^(19/20) 2178309000011419 a001 1762289/219602*87403803^(13/19) 2178309000011420 a001 1762289/219602*33385282^(13/18) 2178309000011424 a001 567451585/219602*4870847^(7/16) 2178309000011426 a001 182717648081/219602*1860498^(1/15) 2178309000011429 a001 1762289/219602*12752043^(13/17) 2178309000011430 a001 433494437/439204*4870847^(1/2) 2178309000011435 a001 165580141/439204*4870847^(9/16) 2178309000011441 a001 31622993/219602*4870847^(5/8) 2178309000011447 a001 225851433717/439204*1860498^(1/10) 2178309000011448 a001 24157817/439204*4870847^(11/16) 2178309000011449 a001 75283811239/4250681*271443^(5/13) 2178309000011458 a001 9227465/439204*4870847^(3/4) 2178309000011460 a001 591286729879/33385282*271443^(5/13) 2178309000011462 a001 516002918640/29134601*271443^(5/13) 2178309000011462 a001 4052739537881/228826127*271443^(5/13) 2178309000011462 a001 3536736619241/199691526*271443^(5/13) 2178309000011462 a001 6557470319842/370248451*271443^(5/13) 2178309000011462 a001 2504730781961/141422324*271443^(5/13) 2178309000011463 a001 956722026041/54018521*271443^(5/13) 2178309000011467 a001 365435296162/20633239*271443^(5/13) 2178309000011468 a001 139583862445/439204*1860498^(2/15) 2178309000011476 a001 4745030099506/2178309 2178309000011489 a001 196418*1860498^(1/6) 2178309000011493 a001 1762289/219602*4870847^(13/16) 2178309000011497 a001 139583862445/7881196*271443^(5/13) 2178309000011510 a001 53316291173/439204*1860498^(1/5) 2178309000011552 a001 10182505537/219602*1860498^(4/15) 2178309000011573 a001 12586269025/439204*1860498^(3/10) 2178309000011593 a001 7778742049/439204*1860498^(1/3) 2178309000011620 a001 1346269/439204*20633239^(4/5) 2178309000011624 a001 196418/3010349*141422324^(12/13) 2178309000011624 a001 196418/3010349*2537720636^(4/5) 2178309000011624 a001 1346269/439204*17393796001^(4/7) 2178309000011624 a001 196418/3010349*45537549124^(12/17) 2178309000011624 a001 196418/3010349*14662949395604^(4/7) 2178309000011624 a001 196418/3010349*(1/2+1/2*5^(1/2))^36 2178309000011624 a001 196418/3010349*505019158607^(9/14) 2178309000011624 a001 196418/3010349*192900153618^(2/3) 2178309000011624 a001 1346269/439204*14662949395604^(4/9) 2178309000011624 a001 1346269/439204*(1/2+1/2*5^(1/2))^28 2178309000011624 a001 1346269/439204*505019158607^(1/2) 2178309000011624 a001 1346269/439204*73681302247^(7/13) 2178309000011624 a001 1346269/439204*10749957122^(7/12) 2178309000011624 a001 196418/3010349*10749957122^(3/4) 2178309000011624 a001 1346269/439204*4106118243^(14/23) 2178309000011624 a001 196418/3010349*4106118243^(18/23) 2178309000011624 a001 1346269/439204*1568397607^(7/11) 2178309000011624 a001 196418/3010349*1568397607^(9/11) 2178309000011624 a001 1346269/439204*599074578^(2/3) 2178309000011624 a001 196418/3010349*599074578^(6/7) 2178309000011624 a001 1346269/439204*228826127^(7/10) 2178309000011624 a001 196418/3010349*228826127^(9/10) 2178309000011624 a001 1346269/439204*87403803^(14/19) 2178309000011624 a001 196418/3010349*87403803^(18/19) 2178309000011626 a001 1346269/439204*33385282^(7/9) 2178309000011635 a001 1346269/439204*12752043^(14/17) 2178309000011635 a001 2971215073/439204*1860498^(2/5) 2178309000011677 a001 567451585/219602*1860498^(7/15) 2178309000011692 a001 182717648081/219602*710647^(1/14) 2178309000011697 a001 1836311903/710647*271443^(7/13) 2178309000011698 a001 701408733/439204*1860498^(1/2) 2178309000011702 a001 53316291173/3010349*271443^(5/13) 2178309000011704 a001 1346269/439204*4870847^(7/8) 2178309000011719 a001 433494437/439204*1860498^(8/15) 2178309000011761 a001 165580141/439204*1860498^(3/5) 2178309000011803 a001 31622993/219602*1860498^(2/3) 2178309000011824 a001 39088169/439204*1860498^(7/10) 2178309000011846 a001 24157817/439204*1860498^(11/15) 2178309000011858 a001 2178309/439204*1860498^(9/10) 2178309000011892 a001 9227465/439204*1860498^(4/5) 2178309000011895 a001 5702887/439204*1860498^(5/6) 2178309000011964 a001 1762289/219602*1860498^(13/15) 2178309000012000 a001 139583862445/439204*710647^(1/7) 2178309000012018 a001 181244022037/83204 2178309000012211 a001 1346269/439204*1860498^(14/15) 2178309000012308 a001 53316291173/439204*710647^(3/14) 2178309000012462 a001 32951280099/439204*710647^(1/4) 2178309000012616 a001 10182505537/219602*710647^(2/7) 2178309000012664 a001 591286729879/710647*103682^(1/12) 2178309000012743 a001 53316291173/271443*103682^(5/24) 2178309000012924 a001 7778742049/439204*710647^(5/14) 2178309000012999 a001 514229/439204*7881196^(10/11) 2178309000013027 a001 514229/439204*20633239^(6/7) 2178309000013031 a001 514229/439204*141422324^(10/13) 2178309000013031 a001 514229/439204*2537720636^(2/3) 2178309000013031 a001 196418/1149851*45537549124^(2/3) 2178309000013031 a001 514229/439204*45537549124^(10/17) 2178309000013031 a001 196418/1149851*(1/2+1/2*5^(1/2))^34 2178309000013031 a001 514229/439204*312119004989^(6/11) 2178309000013031 a001 514229/439204*14662949395604^(10/21) 2178309000013031 a001 514229/439204*(1/2+1/2*5^(1/2))^30 2178309000013031 a001 514229/439204*192900153618^(5/9) 2178309000013031 a001 514229/439204*28143753123^(3/5) 2178309000013031 a001 514229/439204*10749957122^(5/8) 2178309000013031 a001 196418/1149851*10749957122^(17/24) 2178309000013031 a001 514229/439204*4106118243^(15/23) 2178309000013031 a001 196418/1149851*4106118243^(17/23) 2178309000013031 a001 514229/439204*1568397607^(15/22) 2178309000013031 a001 196418/1149851*1568397607^(17/22) 2178309000013031 a001 514229/439204*599074578^(5/7) 2178309000013031 a001 196418/1149851*599074578^(17/21) 2178309000013031 a001 514229/439204*228826127^(3/4) 2178309000013031 a001 196418/1149851*228826127^(17/20) 2178309000013031 a001 514229/439204*87403803^(15/19) 2178309000013032 a001 196418/1149851*87403803^(17/19) 2178309000013033 a001 514229/439204*33385282^(5/6) 2178309000013033 a001 196418/1149851*33385282^(17/18) 2178309000013043 a001 514229/439204*12752043^(15/17) 2178309000013107 a001 12586269025/1860498*271443^(6/13) 2178309000013110 a001 20365011074/1149851*271443^(5/13) 2178309000013117 a001 514229/439204*4870847^(15/16) 2178309000013232 a001 2971215073/439204*710647^(3/7) 2178309000013540 a001 567451585/219602*710647^(1/2) 2178309000013644 a001 32951280099/4870847*271443^(6/13) 2178309000013658 a001 182717648081/219602*271443^(1/13) 2178309000013723 a001 86267571272/12752043*271443^(6/13) 2178309000013734 a001 32264490531/4769326*271443^(6/13) 2178309000013736 a001 591286729879/87403803*271443^(6/13) 2178309000013736 a001 1548008755920/228826127*271443^(6/13) 2178309000013736 a001 4052739537881/599074578*271443^(6/13) 2178309000013736 a001 1515744265389/224056801*271443^(6/13) 2178309000013736 a001 6557470319842/969323029*271443^(6/13) 2178309000013736 a001 2504730781961/370248451*271443^(6/13) 2178309000013736 a001 956722026041/141422324*271443^(6/13) 2178309000013737 a001 365435296162/54018521*271443^(6/13) 2178309000013741 a001 139583862445/20633239*271443^(6/13) 2178309000013771 a001 53316291173/7881196*271443^(6/13) 2178309000013848 a001 433494437/439204*710647^(4/7) 2178309000013971 a001 701408733/710647*271443^(8/13) 2178309000013977 a001 20365011074/3010349*271443^(6/13) 2178309000014157 a001 165580141/439204*710647^(9/14) 2178309000014244 a001 7778742049/1860498*271443^(1/2) 2178309000014465 a001 31622993/219602*710647^(5/7) 2178309000014618 a001 39088169/439204*710647^(3/4) 2178309000014774 a001 24157817/439204*710647^(11/14) 2178309000014781 a001 20365011074/4870847*271443^(1/2) 2178309000014860 a001 53316291173/12752043*271443^(1/2) 2178309000014871 a001 139583862445/33385282*271443^(1/2) 2178309000014873 a001 365435296162/87403803*271443^(1/2) 2178309000014873 a001 956722026041/228826127*271443^(1/2) 2178309000014873 a001 2504730781961/599074578*271443^(1/2) 2178309000014873 a001 6557470319842/1568397607*271443^(1/2) 2178309000014873 a001 10610209857723/2537720636*271443^(1/2) 2178309000014873 a001 4052739537881/969323029*271443^(1/2) 2178309000014873 a001 1548008755920/370248451*271443^(1/2) 2178309000014873 a001 591286729879/141422324*271443^(1/2) 2178309000014874 a001 225851433717/54018521*271443^(1/2) 2178309000014878 a001 86267571272/20633239*271443^(1/2) 2178309000014908 a001 32951280099/7881196*271443^(1/2) 2178309000015086 a001 9227465/439204*710647^(6/7) 2178309000015114 a001 12586269025/3010349*271443^(1/2) 2178309000015381 a001 267084832/103361*271443^(7/13) 2178309000015384 a001 7778742049/1149851*271443^(6/13) 2178309000015424 a001 1762289/219602*710647^(13/14) 2178309000015572 a001 24157817/167761*167761^(4/5) 2178309000015732 a001 692290561604/317811 2178309000015919 a001 12586269025/4870847*271443^(7/13) 2178309000015932 a001 139583862445/439204*271443^(2/13) 2178309000015997 a001 10983760033/4250681*271443^(7/13) 2178309000016008 a001 43133785636/16692641*271443^(7/13) 2178309000016010 a001 75283811239/29134601*271443^(7/13) 2178309000016010 a001 591286729879/228826127*271443^(7/13) 2178309000016010 a001 86000486440/33281921*271443^(7/13) 2178309000016010 a001 4052739537881/1568397607*271443^(7/13) 2178309000016010 a001 3536736619241/1368706081*271443^(7/13) 2178309000016010 a001 3278735159921/1268860318*271443^(7/13) 2178309000016010 a001 2504730781961/969323029*271443^(7/13) 2178309000016010 a001 956722026041/370248451*271443^(7/13) 2178309000016010 a001 182717648081/70711162*271443^(7/13) 2178309000016011 a001 139583862445/54018521*271443^(7/13) 2178309000016015 a001 53316291173/20633239*271443^(7/13) 2178309000016045 a001 10182505537/3940598*271443^(7/13) 2178309000016245 a001 267914296/710647*271443^(9/13) 2178309000016251 a001 7778742049/3010349*271443^(7/13) 2178309000016348 a001 832040*103682^(1/12) 2178309000016521 a001 4807526976/1149851*271443^(1/2) 2178309000016886 a001 4052739537881/4870847*103682^(1/12) 2178309000016964 a001 3536736619241/4250681*103682^(1/12) 2178309000017013 a001 3278735159921/3940598*103682^(1/12) 2178309000017218 a001 2504730781961/3010349*103682^(1/12) 2178309000017655 a001 1836311903/1860498*271443^(8/13) 2178309000017658 a001 2971215073/1149851*271443^(7/13) 2178309000018193 a001 4807526976/4870847*271443^(8/13) 2178309000018206 a001 53316291173/439204*271443^(3/13) 2178309000018271 a001 12586269025/12752043*271443^(8/13) 2178309000018283 a001 32951280099/33385282*271443^(8/13) 2178309000018284 a001 86267571272/87403803*271443^(8/13) 2178309000018284 a001 225851433717/228826127*271443^(8/13) 2178309000018284 a001 591286729879/599074578*271443^(8/13) 2178309000018285 a001 1548008755920/1568397607*271443^(8/13) 2178309000018285 a001 4052739537881/4106118243*271443^(8/13) 2178309000018285 a001 4807525989/4870846*271443^(8/13) 2178309000018285 a001 6557470319842/6643838879*271443^(8/13) 2178309000018285 a001 2504730781961/2537720636*271443^(8/13) 2178309000018285 a001 956722026041/969323029*271443^(8/13) 2178309000018285 a001 365435296162/370248451*271443^(8/13) 2178309000018285 a001 139583862445/141422324*271443^(8/13) 2178309000018285 a001 53316291173/54018521*271443^(8/13) 2178309000018290 a001 20365011074/20633239*271443^(8/13) 2178309000018320 a001 7778742049/7881196*271443^(8/13) 2178309000018519 a001 14619165/101521*271443^(10/13) 2178309000018525 a001 2971215073/3010349*271443^(8/13) 2178309000018625 a001 956722026041/1149851*103682^(1/12) 2178309000019827 a001 591286729879/439204*103682^(1/24) 2178309000019929 a001 233802911/620166*271443^(9/13) 2178309000019932 a001 1134903170/1149851*271443^(8/13) 2178309000020467 a001 1836311903/4870847*271443^(9/13) 2178309000020480 a001 10182505537/219602*271443^(4/13) 2178309000020545 a001 1602508992/4250681*271443^(9/13) 2178309000020557 a001 12586269025/33385282*271443^(9/13) 2178309000020558 a001 10983760033/29134601*271443^(9/13) 2178309000020559 a001 86267571272/228826127*271443^(9/13) 2178309000020559 a001 267913919/710646*271443^(9/13) 2178309000020559 a001 591286729879/1568397607*271443^(9/13) 2178309000020559 a001 516002918640/1368706081*271443^(9/13) 2178309000020559 a001 4052739537881/10749957122*271443^(9/13) 2178309000020559 a001 3536736619241/9381251041*271443^(9/13) 2178309000020559 a001 6557470319842/17393796001*271443^(9/13) 2178309000020559 a001 2504730781961/6643838879*271443^(9/13) 2178309000020559 a001 956722026041/2537720636*271443^(9/13) 2178309000020559 a001 365435296162/969323029*271443^(9/13) 2178309000020559 a001 139583862445/370248451*271443^(9/13) 2178309000020559 a001 53316291173/141422324*271443^(9/13) 2178309000020559 a001 20365011074/54018521*271443^(9/13) 2178309000020564 a001 7778742049/20633239*271443^(9/13) 2178309000020594 a001 2971215073/7881196*271443^(9/13) 2178309000020793 a001 39088169/710647*271443^(11/13) 2178309000020799 a001 1134903170/3010349*271443^(9/13) 2178309000021107 a001 365435296162/710647*103682^(1/8) 2178309000021186 a001 121393*103682^(1/4) 2178309000022203 a001 133957148/930249*271443^(10/13) 2178309000022206 a001 433494437/1149851*271443^(9/13) 2178309000022676 a001 98209/219602*(1/2+1/2*5^(1/2))^32 2178309000022676 a001 98209/219602*23725150497407^(1/2) 2178309000022676 a001 98209/219602*505019158607^(4/7) 2178309000022676 a001 98209/219602*73681302247^(8/13) 2178309000022676 a001 98209/219602*10749957122^(2/3) 2178309000022676 a001 98209/219602*4106118243^(16/23) 2178309000022676 a001 98209/219602*1568397607^(8/11) 2178309000022676 a001 98209/219602*599074578^(16/21) 2178309000022676 a001 98209/219602*228826127^(4/5) 2178309000022676 a001 98209/219602*87403803^(16/19) 2178309000022678 a001 98209/219602*33385282^(8/9) 2178309000022689 a001 98209/219602*12752043^(16/17) 2178309000022741 a001 701408733/4870847*271443^(10/13) 2178309000022754 a001 7778742049/439204*271443^(5/13) 2178309000022819 a001 1836311903/12752043*271443^(10/13) 2178309000022831 a001 14930208/103681*271443^(10/13) 2178309000022833 a001 12586269025/87403803*271443^(10/13) 2178309000022833 a001 32951280099/228826127*271443^(10/13) 2178309000022833 a001 43133785636/299537289*271443^(10/13) 2178309000022833 a001 32264490531/224056801*271443^(10/13) 2178309000022833 a001 591286729879/4106118243*271443^(10/13) 2178309000022833 a001 774004377960/5374978561*271443^(10/13) 2178309000022833 a001 4052739537881/28143753123*271443^(10/13) 2178309000022833 a001 1515744265389/10525900321*271443^(10/13) 2178309000022833 a001 3278735159921/22768774562*271443^(10/13) 2178309000022833 a001 2504730781961/17393796001*271443^(10/13) 2178309000022833 a001 956722026041/6643838879*271443^(10/13) 2178309000022833 a001 182717648081/1268860318*271443^(10/13) 2178309000022833 a001 139583862445/969323029*271443^(10/13) 2178309000022833 a001 53316291173/370248451*271443^(10/13) 2178309000022833 a001 10182505537/70711162*271443^(10/13) 2178309000022834 a001 7778742049/54018521*271443^(10/13) 2178309000022838 a001 2971215073/20633239*271443^(10/13) 2178309000022868 a001 567451585/3940598*271443^(10/13) 2178309000023066 a001 14930352/710647*271443^(12/13) 2178309000023073 a001 433494437/3010349*271443^(10/13) 2178309000023192 a001 3524578/64079*64079^(22/23) 2178309000024478 a001 831985/15126*271443^(11/13) 2178309000024480 a001 165580141/1149851*271443^(10/13) 2178309000024713 a001 264431464440/121393 2178309000024791 a001 956722026041/1860498*103682^(1/8) 2178309000025015 a001 267914296/4870847*271443^(11/13) 2178309000025029 a001 2971215073/439204*271443^(6/13) 2178309000025094 a001 233802911/4250681*271443^(11/13) 2178309000025105 a001 1836311903/33385282*271443^(11/13) 2178309000025107 a001 1602508992/29134601*271443^(11/13) 2178309000025107 a001 12586269025/228826127*271443^(11/13) 2178309000025107 a001 10983760033/199691526*271443^(11/13) 2178309000025107 a001 86267571272/1568397607*271443^(11/13) 2178309000025107 a001 75283811239/1368706081*271443^(11/13) 2178309000025107 a001 591286729879/10749957122*271443^(11/13) 2178309000025107 a001 12585437040/228811001*271443^(11/13) 2178309000025107 a001 4052739537881/73681302247*271443^(11/13) 2178309000025107 a001 3536736619241/64300051206*271443^(11/13) 2178309000025107 a001 6557470319842/119218851371*271443^(11/13) 2178309000025107 a001 2504730781961/45537549124*271443^(11/13) 2178309000025107 a001 956722026041/17393796001*271443^(11/13) 2178309000025107 a001 365435296162/6643838879*271443^(11/13) 2178309000025107 a001 139583862445/2537720636*271443^(11/13) 2178309000025107 a001 53316291173/969323029*271443^(11/13) 2178309000025107 a001 20365011074/370248451*271443^(11/13) 2178309000025107 a001 7778742049/141422324*271443^(11/13) 2178309000025108 a001 2971215073/54018521*271443^(11/13) 2178309000025112 a001 1134903170/20633239*271443^(11/13) 2178309000025142 a001 433494437/7881196*271443^(11/13) 2178309000025329 a001 2504730781961/4870847*103682^(1/8) 2178309000025347 a001 165580141/3010349*271443^(11/13) 2178309000025407 a001 6557470319842/12752043*103682^(1/8) 2178309000025426 a001 10610209857723/20633239*103682^(1/8) 2178309000025456 a001 4052739537881/7881196*103682^(1/8) 2178309000025661 a001 1548008755920/3010349*103682^(1/8) 2178309000026166 a001 1836311903/439204*271443^(1/2) 2178309000026752 a001 39088169/1860498*271443^(12/13) 2178309000026755 a001 63245986/1149851*271443^(11/13) 2178309000027068 a001 514229*103682^(1/8) 2178309000027289 a001 102334155/4870847*271443^(12/13) 2178309000027303 a001 567451585/219602*271443^(7/13) 2178309000027368 a001 267914296/12752043*271443^(12/13) 2178309000027379 a001 701408733/33385282*271443^(12/13) 2178309000027381 a001 1836311903/87403803*271443^(12/13) 2178309000027381 a001 102287808/4868641*271443^(12/13) 2178309000027381 a001 12586269025/599074578*271443^(12/13) 2178309000027381 a001 32951280099/1568397607*271443^(12/13) 2178309000027381 a001 86267571272/4106118243*271443^(12/13) 2178309000027381 a001 225851433717/10749957122*271443^(12/13) 2178309000027381 a001 591286729879/28143753123*271443^(12/13) 2178309000027381 a001 1548008755920/73681302247*271443^(12/13) 2178309000027381 a001 4052739537881/192900153618*271443^(12/13) 2178309000027381 a001 225749145909/10745088481*271443^(12/13) 2178309000027381 a001 6557470319842/312119004989*271443^(12/13) 2178309000027381 a001 2504730781961/119218851371*271443^(12/13) 2178309000027381 a001 956722026041/45537549124*271443^(12/13) 2178309000027381 a001 365435296162/17393796001*271443^(12/13) 2178309000027381 a001 139583862445/6643838879*271443^(12/13) 2178309000027381 a001 53316291173/2537720636*271443^(12/13) 2178309000027381 a001 20365011074/969323029*271443^(12/13) 2178309000027381 a001 7778742049/370248451*271443^(12/13) 2178309000027381 a001 2971215073/141422324*271443^(12/13) 2178309000027382 a001 1134903170/54018521*271443^(12/13) 2178309000027386 a001 433494437/20633239*271443^(12/13) 2178309000027416 a001 165580141/7881196*271443^(12/13) 2178309000027622 a001 63245986/3010349*271443^(12/13) 2178309000028270 a001 182717648081/219602*103682^(1/12) 2178309000029029 a001 24157817/1149851*271443^(12/13) 2178309000029550 a001 317811*103682^(1/6) 2178309000029577 a001 433494437/439204*271443^(8/13) 2178309000029629 a001 20365011074/271443*103682^(7/24) 2178309000029655 a001 2/121393*(1/2+1/2*5^(1/2))^58 2178309000031051 a001 267914296/167761*167761^(3/5) 2178309000031360 a001 139583862445/167761*64079^(2/23) 2178309000031851 a001 165580141/439204*271443^(9/13) 2178309000032950 a001 264431464441/121393 2178309000033234 a001 591286729879/1860498*103682^(1/6) 2178309000033658 a001 365435296162/271443*39603^(1/22) 2178309000033772 a001 1548008755920/4870847*103682^(1/6) 2178309000033850 a001 4052739537881/12752043*103682^(1/6) 2178309000033862 a001 1515744265389/4769326*103682^(1/6) 2178309000033869 a001 6557470319842/20633239*103682^(1/6) 2178309000033899 a001 2504730781961/7881196*103682^(1/6) 2178309000034104 a001 956722026041/3010349*103682^(1/6) 2178309000034125 a001 31622993/219602*271443^(10/13) 2178309000035511 a001 365435296162/1149851*103682^(1/6) 2178309000036400 a001 24157817/439204*271443^(11/13) 2178309000036713 a001 225851433717/439204*103682^(1/8) 2178309000037993 a001 139583862445/710647*103682^(5/24) 2178309000038072 a001 12586269025/271443*103682^(1/3) 2178309000038679 a001 9227465/439204*271443^(12/13) 2178309000039140 a001 20365011074/39603*15127^(3/20) 2178309000041188 a001 264431464442/121393 2178309000041677 a001 182717648081/930249*103682^(5/24) 2178309000042215 a001 956722026041/4870847*103682^(5/24) 2178309000042293 a001 2504730781961/12752043*103682^(5/24) 2178309000042305 a001 3278735159921/16692641*103682^(5/24) 2178309000042308 a001 10610209857723/54018521*103682^(5/24) 2178309000042312 a001 4052739537881/20633239*103682^(5/24) 2178309000042342 a001 387002188980/1970299*103682^(5/24) 2178309000042547 a001 591286729879/3010349*103682^(5/24) 2178309000043954 a001 225851433717/1149851*103682^(5/24) 2178309000045156 a001 139583862445/439204*103682^(1/6) 2178309000046209 a001 5702887/64079*64079^(21/23) 2178309000046437 a001 86267571272/710647*103682^(1/4) 2178309000046515 a001 7778742049/271443*103682^(3/8) 2178309000046531 a001 2971215073/167761*167761^(2/5) 2178309000047927 a001 75025/271443*141422324^(11/13) 2178309000047927 a001 75025/271443*2537720636^(11/15) 2178309000047927 a001 75025/271443*45537549124^(11/17) 2178309000047927 a001 75025/271443*312119004989^(3/5) 2178309000047927 a001 75025/271443*14662949395604^(11/21) 2178309000047927 a001 75025/271443*(1/2+1/2*5^(1/2))^33 2178309000047927 a001 75025/271443*192900153618^(11/18) 2178309000047927 a001 121393/167761*(1/2+1/2*5^(1/2))^31 2178309000047927 a001 121393/167761*9062201101803^(1/2) 2178309000047927 a001 75025/271443*10749957122^(11/16) 2178309000047927 a001 75025/271443*1568397607^(3/4) 2178309000047927 a001 75025/271443*599074578^(11/14) 2178309000047929 a001 75025/271443*33385282^(11/12) 2178309000049980 a001 32951280099/103682*39603^(2/11) 2178309000050121 a001 75283811239/620166*103682^(1/4) 2178309000050658 a001 591286729879/4870847*103682^(1/4) 2178309000050736 a001 516002918640/4250681*103682^(1/4) 2178309000050748 a001 4052739537881/33385282*103682^(1/4) 2178309000050750 a001 3536736619241/29134601*103682^(1/4) 2178309000050751 a001 6557470319842/54018521*103682^(1/4) 2178309000050755 a001 2504730781961/20633239*103682^(1/4) 2178309000050785 a001 956722026041/7881196*103682^(1/4) 2178309000050990 a001 365435296162/3010349*103682^(1/4) 2178309000052397 a001 139583862445/1149851*103682^(1/4) 2178309000053599 a001 196418*103682^(5/24) 2178309000054425 a001 225851433717/167761*64079^(1/23) 2178309000054880 a001 53316291173/710647*103682^(7/24) 2178309000054958 a001 1602508992/90481*103682^(5/12) 2178309000058564 a001 139583862445/1860498*103682^(7/24) 2178309000058909 a001 956722026041/710647*39603^(1/22) 2178309000059101 a001 365435296162/4870847*103682^(7/24) 2178309000059180 a001 956722026041/12752043*103682^(7/24) 2178309000059191 a001 2504730781961/33385282*103682^(7/24) 2178309000059193 a001 6557470319842/87403803*103682^(7/24) 2178309000059193 a001 10610209857723/141422324*103682^(7/24) 2178309000059194 a001 4052739537881/54018521*103682^(7/24) 2178309000059198 a001 140728068720/1875749*103682^(7/24) 2178309000059228 a001 591286729879/7881196*103682^(7/24) 2178309000059433 a001 225851433717/3010349*103682^(7/24) 2178309000060840 a001 86267571272/1149851*103682^(7/24) 2178309000062011 a001 32951280099/167761*167761^(1/5) 2178309000062042 a001 53316291173/439204*103682^(1/4) 2178309000062593 a001 2504730781961/1860498*39603^(1/22) 2178309000063130 a001 6557470319842/4870847*39603^(1/22) 2178309000063257 a001 10610209857723/7881196*39603^(1/22) 2178309000063323 a001 32951280099/710647*103682^(1/3) 2178309000063401 a001 2971215073/271443*103682^(11/24) 2178309000063462 a001 1346269*39603^(1/22) 2178309000064870 a001 1548008755920/1149851*39603^(1/22) 2178309000066185 a001 427859097175/196418 2178309000067007 a001 43133785636/930249*103682^(1/3) 2178309000067488 a001 3524578/167761*439204^(8/9) 2178309000067544 a001 225851433717/4870847*103682^(1/3) 2178309000067623 a001 591286729879/12752043*103682^(1/3) 2178309000067634 a001 774004377960/16692641*103682^(1/3) 2178309000067636 a001 4052739537881/87403803*103682^(1/3) 2178309000067636 a001 225749145909/4868641*103682^(1/3) 2178309000067636 a001 3278735159921/70711162*103682^(1/3) 2178309000067637 a001 2504730781961/54018521*103682^(1/3) 2178309000067641 a001 956722026041/20633239*103682^(1/3) 2178309000067671 a001 182717648081/3940598*103682^(1/3) 2178309000067876 a001 139583862445/3010349*103682^(1/3) 2178309000068706 a001 14930352/167761*439204^(7/9) 2178309000069284 a001 53316291173/1149851*103682^(1/3) 2178309000069293 a001 9227465/64079*64079^(20/23) 2178309000069963 a001 63245986/167761*439204^(2/3) 2178309000070485 a001 32951280099/439204*103682^(7/24) 2178309000071217 a001 267914296/167761*439204^(5/9) 2178309000071766 a001 20365011074/710647*103682^(3/8) 2178309000071844 a001 1836311903/271443*103682^(1/2) 2178309000072472 a001 1134903170/167761*439204^(4/9) 2178309000073177 a001 75025/710647*2537720636^(7/9) 2178309000073177 a001 75025/710647*17393796001^(5/7) 2178309000073177 a001 75025/710647*312119004989^(7/11) 2178309000073177 a001 75025/710647*14662949395604^(5/9) 2178309000073177 a001 75025/710647*(1/2+1/2*5^(1/2))^35 2178309000073177 a001 75025/710647*505019158607^(5/8) 2178309000073177 a001 75025/710647*28143753123^(7/10) 2178309000073177 a001 317811/167761*(1/2+1/2*5^(1/2))^29 2178309000073177 a001 317811/167761*1322157322203^(1/2) 2178309000073177 a001 75025/710647*599074578^(5/6) 2178309000073177 a001 75025/710647*228826127^(7/8) 2178309000073727 a001 4807526976/167761*439204^(1/3) 2178309000074514 a001 591286729879/439204*39603^(1/22) 2178309000074981 a001 20365011074/167761*439204^(2/9) 2178309000075450 a001 53316291173/1860498*103682^(3/8) 2178309000075841 a001 1120149658800/514229 2178309000075987 a001 139583862445/4870847*103682^(3/8) 2178309000076066 a001 365435296162/12752043*103682^(3/8) 2178309000076077 a001 956722026041/33385282*103682^(3/8) 2178309000076079 a001 2504730781961/87403803*103682^(3/8) 2178309000076079 a001 6557470319842/228826127*103682^(3/8) 2178309000076079 a001 10610209857723/370248451*103682^(3/8) 2178309000076079 a001 4052739537881/141422324*103682^(3/8) 2178309000076080 a001 1548008755920/54018521*103682^(3/8) 2178309000076084 a001 591286729879/20633239*103682^(3/8) 2178309000076114 a001 225851433717/7881196*103682^(3/8) 2178309000076236 a001 86267571272/167761*439204^(1/9) 2178309000076320 a001 86267571272/3010349*103682^(3/8) 2178309000076833 a001 75640/15251*7881196^(9/11) 2178309000076861 a001 75640/15251*141422324^(9/13) 2178309000076861 a001 75640/15251*2537720636^(3/5) 2178309000076861 a001 75025/1860498*(1/2+1/2*5^(1/2))^37 2178309000076861 a001 75640/15251*45537549124^(9/17) 2178309000076861 a001 75640/15251*14662949395604^(3/7) 2178309000076861 a001 75640/15251*(1/2+1/2*5^(1/2))^27 2178309000076861 a001 75640/15251*192900153618^(1/2) 2178309000076861 a001 75640/15251*10749957122^(9/16) 2178309000076861 a001 75640/15251*599074578^(9/14) 2178309000076863 a001 75640/15251*33385282^(3/4) 2178309000077250 a001 2932589879225/1346269 2178309000077395 a001 2178309/167761*20633239^(5/7) 2178309000077399 a001 75025/4870847*2537720636^(13/15) 2178309000077399 a001 2178309/167761*2537720636^(5/9) 2178309000077399 a001 75025/4870847*45537549124^(13/17) 2178309000077399 a001 75025/4870847*14662949395604^(13/21) 2178309000077399 a001 75025/4870847*(1/2+1/2*5^(1/2))^39 2178309000077399 a001 75025/4870847*192900153618^(13/18) 2178309000077399 a001 75025/4870847*73681302247^(3/4) 2178309000077399 a001 2178309/167761*312119004989^(5/11) 2178309000077399 a001 2178309/167761*(1/2+1/2*5^(1/2))^25 2178309000077399 a001 2178309/167761*3461452808002^(5/12) 2178309000077399 a001 2178309/167761*28143753123^(1/2) 2178309000077399 a001 75025/4870847*10749957122^(13/16) 2178309000077399 a001 75025/4870847*599074578^(13/14) 2178309000077399 a001 2178309/167761*228826127^(5/8) 2178309000077428 a001 75640/15251*1860498^(9/10) 2178309000077456 a001 7677619978875/3524578 2178309000077466 a001 14930352/167761*7881196^(7/11) 2178309000077472 a001 63245986/167761*7881196^(6/11) 2178309000077472 a001 9227465/167761*7881196^(2/3) 2178309000077475 a001 267914296/167761*7881196^(5/11) 2178309000077477 a001 75025/12752043*(1/2+1/2*5^(1/2))^41 2178309000077477 a001 5702887/167761*(1/2+1/2*5^(1/2))^23 2178309000077477 a001 5702887/167761*4106118243^(1/2) 2178309000077478 a001 1134903170/167761*7881196^(4/11) 2178309000077479 a001 1836311903/167761*7881196^(1/3) 2178309000077481 a001 4807526976/167761*7881196^(3/11) 2178309000077484 a001 20365011074/167761*7881196^(2/11) 2178309000077486 a001 309234923960/141961 2178309000077486 a001 14930352/167761*20633239^(3/5) 2178309000077488 a001 86267571272/167761*7881196^(1/11) 2178309000077488 a001 267914296/167761*20633239^(3/7) 2178309000077489 a001 24157817/167761*20633239^(4/7) 2178309000077489 a001 433494437/167761*20633239^(2/5) 2178309000077489 a001 14930352/167761*141422324^(7/13) 2178309000077489 a001 14930352/167761*2537720636^(7/15) 2178309000077489 a001 14930352/167761*17393796001^(3/7) 2178309000077489 a001 75025/33385282*(1/2+1/2*5^(1/2))^43 2178309000077489 a001 14930352/167761*45537549124^(7/17) 2178309000077489 a001 14930352/167761*14662949395604^(1/3) 2178309000077489 a001 14930352/167761*(1/2+1/2*5^(1/2))^21 2178309000077489 a001 14930352/167761*192900153618^(7/18) 2178309000077489 a001 14930352/167761*10749957122^(7/16) 2178309000077489 a001 14930352/167761*599074578^(1/2) 2178309000077489 a001 2971215073/167761*20633239^(2/7) 2178309000077490 a001 75025*20633239^(1/5) 2178309000077490 a001 14930352/167761*33385282^(7/12) 2178309000077490 a001 52623190193325/24157817 2178309000077490 a001 32951280099/167761*20633239^(1/7) 2178309000077490 a001 75025/87403803*45537549124^(15/17) 2178309000077490 a001 75025/87403803*312119004989^(9/11) 2178309000077490 a001 75025/87403803*14662949395604^(5/7) 2178309000077490 a001 75025/87403803*192900153618^(5/6) 2178309000077490 a001 75025/87403803*28143753123^(9/10) 2178309000077490 a001 39088169/167761*817138163596^(1/3) 2178309000077490 a001 39088169/167761*(1/2+1/2*5^(1/2))^19 2178309000077490 a001 75025/87403803*10749957122^(15/16) 2178309000077491 a001 39088169/167761*87403803^(1/2) 2178309000077491 a001 137769300522575/63245986 2178309000077491 a001 267914296/167761*141422324^(5/13) 2178309000077491 a001 9303105/15251*45537549124^(1/3) 2178309000077491 a001 9303105/15251*(1/2+1/2*5^(1/2))^17 2178309000077491 a001 701408733/167761*141422324^(1/3) 2178309000077491 a001 1134903170/167761*141422324^(4/13) 2178309000077491 a001 4807526976/167761*141422324^(3/13) 2178309000077491 a001 20365011074/167761*141422324^(2/13) 2178309000077491 a001 360684711374400/165580141 2178309000077491 a001 86267571272/167761*141422324^(1/13) 2178309000077491 a001 267914296/167761*2537720636^(1/3) 2178309000077491 a001 75025/599074578*14662949395604^(7/9) 2178309000077491 a001 75025/599074578*505019158607^(7/8) 2178309000077491 a001 267914296/167761*45537549124^(5/17) 2178309000077491 a001 267914296/167761*312119004989^(3/11) 2178309000077491 a001 267914296/167761*14662949395604^(5/21) 2178309000077491 a001 267914296/167761*(1/2+1/2*5^(1/2))^15 2178309000077491 a001 267914296/167761*192900153618^(5/18) 2178309000077491 a001 267914296/167761*28143753123^(3/10) 2178309000077491 a001 267914296/167761*10749957122^(5/16) 2178309000077491 a001 267914296/167761*599074578^(5/14) 2178309000077491 a001 944284833600625/433494437 2178309000077491 a001 75025/1568397607*14662949395604^(17/21) 2178309000077491 a001 75025/1568397607*192900153618^(17/18) 2178309000077491 a001 701408733/167761*(1/2+1/2*5^(1/2))^13 2178309000077491 a001 701408733/167761*73681302247^(1/4) 2178309000077491 a001 494433957885495/226980634 2178309000077491 a001 1836311903/167761*312119004989^(1/5) 2178309000077491 a001 1836311903/167761*(1/2+1/2*5^(1/2))^11 2178309000077491 a001 4807526976/167761*2537720636^(1/5) 2178309000077491 a001 6472224534681800/2971215073 2178309000077491 a001 20365011074/167761*2537720636^(2/15) 2178309000077491 a001 32951280099/167761*2537720636^(1/9) 2178309000077491 a001 2971215073/167761*2537720636^(2/9) 2178309000077491 a001 86267571272/167761*2537720636^(1/15) 2178309000077491 a001 75025/10749957122*3461452808002^(11/12) 2178309000077491 a001 4807526976/167761*45537549124^(3/17) 2178309000077491 a001 4807526976/167761*14662949395604^(1/7) 2178309000077491 a001 4807526976/167761*(1/2+1/2*5^(1/2))^9 2178309000077491 a001 4807526976/167761*192900153618^(1/6) 2178309000077491 a001 4807526976/167761*10749957122^(3/16) 2178309000077491 a001 1303423370355225/598364773 2178309000077491 a001 75025/28143753123*14662949395604^(19/21) 2178309000077491 a001 44361286909171975/20365011074 2178309000077491 a001 75025*17393796001^(1/7) 2178309000077491 a001 116139356912898000/53316291173 2178309000077491 a001 60811356765904405/27916772489 2178309000077491 a001 75025*14662949395604^(1/9) 2178309000077491 a001 37844170057395850/17373187209 2178309000077491 a001 187917426916624025/86267571272 2178309000077491 a001 75025/119218851371*14662949395604^(20/21) 2178309000077491 a001 71778070003726025/32951280099 2178309000077491 a001 32951280099/167761*312119004989^(1/11) 2178309000077491 a001 32951280099/167761*(1/2+1/2*5^(1/2))^5 2178309000077491 a001 32951280099/167761*28143753123^(1/10) 2178309000077491 a001 86267571272/167761*45537549124^(1/17) 2178309000077491 a001 86267571272/167761*14662949395604^(1/21) 2178309000077491 a001 86267571272/167761*(1/2+1/2*5^(1/2))^3 2178309000077491 a001 139583862445/167761*(1/2+1/2*5^(1/2))^2 2178309000077491 a001 53316291173/167761*(1/2+1/2*5^(1/2))^4 2178309000077491 a001 53316291173/167761*23725150497407^(1/16) 2178309000077491 a001 53316291173/167761*73681302247^(1/13) 2178309000077491 a001 139583862445/167761*10749957122^(1/24) 2178309000077491 a001 20365011074/167761*45537549124^(2/17) 2178309000077491 a001 20365011074/167761*14662949395604^(2/21) 2178309000077491 a001 20365011074/167761*(1/2+1/2*5^(1/2))^6 2178309000077491 a001 86267571272/167761*10749957122^(1/16) 2178309000077491 a001 53316291173/167761*10749957122^(1/12) 2178309000077491 a001 20365011074/167761*10749957122^(1/8) 2178309000077491 a001 75025/17393796001*14662949395604^(8/9) 2178309000077491 a001 139583862445/167761*4106118243^(1/23) 2178309000077491 a001 7778742049/167761*(1/2+1/2*5^(1/2))^8 2178309000077491 a001 7778742049/167761*23725150497407^(1/8) 2178309000077491 a001 7778742049/167761*73681302247^(2/13) 2178309000077491 a001 7778742049/167761*10749957122^(1/6) 2178309000077491 a001 53316291173/167761*4106118243^(2/23) 2178309000077491 a001 10472279279936125/4807526976 2178309000077491 a001 20365011074/167761*4106118243^(3/23) 2178309000077491 a001 7778742049/167761*4106118243^(4/23) 2178309000077491 a001 139583862445/167761*1568397607^(1/22) 2178309000077491 a001 75025/6643838879*14662949395604^(6/7) 2178309000077491 a001 2971215073/167761*312119004989^(2/11) 2178309000077491 a001 2971215073/167761*(1/2+1/2*5^(1/2))^10 2178309000077491 a001 2971215073/167761*28143753123^(1/5) 2178309000077491 a001 2971215073/167761*10749957122^(5/24) 2178309000077491 a001 2971215073/167761*4106118243^(5/23) 2178309000077491 a001 53316291173/167761*1568397607^(1/11) 2178309000077491 a001 1836311903/167761*1568397607^(1/4) 2178309000077491 a001 20365011074/167761*1568397607^(3/22) 2178309000077491 a001 4000054745254325/1836311903 2178309000077491 a001 7778742049/167761*1568397607^(2/11) 2178309000077491 a001 1134903170/167761*2537720636^(4/15) 2178309000077491 a001 2971215073/167761*1568397607^(5/22) 2178309000077491 a001 139583862445/167761*599074578^(1/21) 2178309000077491 a001 75025/2537720636*23725150497407^(13/16) 2178309000077491 a001 75025/2537720636*505019158607^(13/14) 2178309000077491 a001 1134903170/167761*45537549124^(4/17) 2178309000077491 a001 1134903170/167761*817138163596^(4/19) 2178309000077491 a001 1134903170/167761*14662949395604^(4/21) 2178309000077491 a001 1134903170/167761*(1/2+1/2*5^(1/2))^12 2178309000077491 a001 1134903170/167761*73681302247^(3/13) 2178309000077491 a001 1134903170/167761*10749957122^(1/4) 2178309000077491 a001 1134903170/167761*4106118243^(6/23) 2178309000077491 a001 86267571272/167761*599074578^(1/14) 2178309000077491 a001 53316291173/167761*599074578^(2/21) 2178309000077491 a001 1134903170/167761*1568397607^(3/11) 2178309000077491 a001 20365011074/167761*599074578^(1/7) 2178309000077491 a001 1527884955826850/701408733 2178309000077491 a001 75025*599074578^(1/6) 2178309000077491 a001 7778742049/167761*599074578^(4/21) 2178309000077491 a001 4807526976/167761*599074578^(3/14) 2178309000077491 a001 2971215073/167761*599074578^(5/21) 2178309000077491 a001 1134903170/167761*599074578^(2/7) 2178309000077491 a001 139583862445/167761*228826127^(1/20) 2178309000077491 a001 75025/969323029*312119004989^(10/11) 2178309000077491 a001 75025/969323029*3461452808002^(5/6) 2178309000077491 a001 433494437/167761*17393796001^(2/7) 2178309000077491 a001 433494437/167761*14662949395604^(2/9) 2178309000077491 a001 433494437/167761*(1/2+1/2*5^(1/2))^14 2178309000077491 a001 433494437/167761*10749957122^(7/24) 2178309000077491 a001 433494437/167761*4106118243^(7/23) 2178309000077491 a001 433494437/167761*1568397607^(7/22) 2178309000077491 a001 53316291173/167761*228826127^(1/10) 2178309000077491 a001 433494437/167761*599074578^(1/3) 2178309000077491 a001 32951280099/167761*228826127^(1/8) 2178309000077491 a001 44892317094325/20608792 2178309000077491 a001 20365011074/167761*228826127^(3/20) 2178309000077491 a001 7778742049/167761*228826127^(1/5) 2178309000077491 a001 267914296/167761*228826127^(3/8) 2178309000077491 a001 2971215073/167761*228826127^(1/4) 2178309000077491 a001 1134903170/167761*228826127^(3/10) 2178309000077491 a001 139583862445/167761*87403803^(1/19) 2178309000077491 a001 75025/370248451*45537549124^(16/17) 2178309000077491 a001 75025/370248451*14662949395604^(16/21) 2178309000077491 a001 75025/370248451*192900153618^(8/9) 2178309000077491 a001 75025/370248451*73681302247^(12/13) 2178309000077491 a001 165580141/167761*(1/2+1/2*5^(1/2))^16 2178309000077491 a001 165580141/167761*23725150497407^(1/4) 2178309000077491 a001 165580141/167761*73681302247^(4/13) 2178309000077491 a001 165580141/167761*10749957122^(1/3) 2178309000077491 a001 165580141/167761*4106118243^(8/23) 2178309000077491 a001 165580141/167761*1568397607^(4/11) 2178309000077491 a001 433494437/167761*228826127^(7/20) 2178309000077491 a001 165580141/167761*599074578^(8/21) 2178309000077491 a001 53316291173/167761*87403803^(2/19) 2178309000077491 a001 165580141/167761*228826127^(2/5) 2178309000077491 a001 44583082170365/20466831 2178309000077491 a001 20365011074/167761*87403803^(3/19) 2178309000077491 a001 63245986/167761*141422324^(6/13) 2178309000077491 a001 7778742049/167761*87403803^(4/19) 2178309000077491 a001 2971215073/167761*87403803^(5/19) 2178309000077491 a001 1134903170/167761*87403803^(6/19) 2178309000077491 a001 433494437/167761*87403803^(7/19) 2178309000077491 a001 139583862445/167761*33385282^(1/18) 2178309000077491 a001 63245986/167761*2537720636^(2/5) 2178309000077491 a001 63245986/167761*45537549124^(6/17) 2178309000077491 a001 63245986/167761*14662949395604^(2/7) 2178309000077491 a001 63245986/167761*(1/2+1/2*5^(1/2))^18 2178309000077491 a001 63245986/167761*192900153618^(1/3) 2178309000077491 a001 63245986/167761*10749957122^(3/8) 2178309000077491 a001 75025/141422324*10749957122^(23/24) 2178309000077491 a001 63245986/167761*4106118243^(9/23) 2178309000077491 a001 63245986/167761*1568397607^(9/22) 2178309000077491 a001 63245986/167761*599074578^(3/7) 2178309000077491 a001 63245986/167761*228826127^(9/20) 2178309000077491 a001 165580141/167761*87403803^(8/19) 2178309000077491 a001 86267571272/167761*33385282^(1/12) 2178309000077491 a001 53316291173/167761*33385282^(1/9) 2178309000077491 a001 63245986/167761*87403803^(9/19) 2178309000077491 a001 85146110329250/39088169 2178309000077491 a001 20365011074/167761*33385282^(1/6) 2178309000077491 a001 7778742049/167761*33385282^(2/9) 2178309000077491 a001 4807526976/167761*33385282^(1/4) 2178309000077491 a001 2971215073/167761*33385282^(5/18) 2178309000077491 a001 1134903170/167761*33385282^(1/3) 2178309000077491 a001 24157817/167761*2537720636^(4/9) 2178309000077491 a001 75025/54018521*312119004989^(4/5) 2178309000077491 a001 75025/54018521*23725150497407^(11/16) 2178309000077491 a001 75025/54018521*73681302247^(11/13) 2178309000077491 a001 24157817/167761*(1/2+1/2*5^(1/2))^20 2178309000077491 a001 24157817/167761*23725150497407^(5/16) 2178309000077491 a001 24157817/167761*505019158607^(5/14) 2178309000077491 a001 24157817/167761*73681302247^(5/13) 2178309000077491 a001 24157817/167761*28143753123^(2/5) 2178309000077491 a001 24157817/167761*10749957122^(5/12) 2178309000077491 a001 75025/54018521*10749957122^(11/12) 2178309000077491 a001 24157817/167761*4106118243^(10/23) 2178309000077491 a001 75025/54018521*4106118243^(22/23) 2178309000077491 a001 24157817/167761*1568397607^(5/11) 2178309000077491 a001 24157817/167761*599074578^(10/21) 2178309000077491 a001 433494437/167761*33385282^(7/18) 2178309000077491 a001 24157817/167761*228826127^(1/2) 2178309000077491 a001 139583862445/167761*12752043^(1/17) 2178309000077492 a001 267914296/167761*33385282^(5/12) 2178309000077492 a001 165580141/167761*33385282^(4/9) 2178309000077492 a001 24157817/167761*87403803^(10/19) 2178309000077492 a001 63245986/167761*33385282^(1/2) 2178309000077492 a001 53316291173/167761*12752043^(2/17) 2178309000077493 a001 24157817/167761*33385282^(5/9) 2178309000077493 a001 32522920135925/14930352 2178309000077493 a001 20365011074/167761*12752043^(3/17) 2178309000077494 a001 7778742049/167761*12752043^(4/17) 2178309000077495 a001 2971215073/167761*12752043^(5/17) 2178309000077495 a001 1134903170/167761*12752043^(6/17) 2178309000077496 a001 75025/20633239*2537720636^(14/15) 2178309000077496 a001 75025/20633239*17393796001^(6/7) 2178309000077496 a001 75025/20633239*45537549124^(14/17) 2178309000077496 a001 75025/20633239*14662949395604^(2/3) 2178309000077496 a001 75025/20633239*(1/2+1/2*5^(1/2))^42 2178309000077496 a001 75025/20633239*505019158607^(3/4) 2178309000077496 a001 75025/20633239*192900153618^(7/9) 2178309000077496 a001 9227465/167761*312119004989^(2/5) 2178309000077496 a001 9227465/167761*(1/2+1/2*5^(1/2))^22 2178309000077496 a001 9227465/167761*10749957122^(11/24) 2178309000077496 a001 75025/20633239*10749957122^(7/8) 2178309000077496 a001 9227465/167761*4106118243^(11/23) 2178309000077496 a001 75025/20633239*4106118243^(21/23) 2178309000077496 a001 9227465/167761*1568397607^(1/2) 2178309000077496 a001 75025/20633239*1568397607^(21/22) 2178309000077496 a001 9227465/167761*599074578^(11/21) 2178309000077496 a001 9227465/167761*228826127^(11/20) 2178309000077496 a001 9227465/167761*87403803^(11/19) 2178309000077496 a001 433494437/167761*12752043^(7/17) 2178309000077496 a001 139583862445/167761*4870847^(1/16) 2178309000077497 a001 9227465/167761*33385282^(11/18) 2178309000077497 a001 165580141/167761*12752043^(8/17) 2178309000077497 a001 9303105/15251*12752043^(1/2) 2178309000077498 a001 63245986/167761*12752043^(9/17) 2178309000077499 a001 24157817/167761*12752043^(10/17) 2178309000077500 a001 3524578/167761*7881196^(8/11) 2178309000077502 a001 53316291173/167761*4870847^(1/8) 2178309000077504 a001 12422650078525/5702887 2178309000077504 a001 9227465/167761*12752043^(11/17) 2178309000077508 a001 20365011074/167761*4870847^(3/16) 2178309000077514 a001 7778742049/167761*4870847^(1/4) 2178309000077519 a001 2971215073/167761*4870847^(5/16) 2178309000077525 a001 1134903170/167761*4870847^(3/8) 2178309000077526 a001 3524578/167761*141422324^(8/13) 2178309000077526 a001 75025/7881196*2537720636^(8/9) 2178309000077526 a001 3524578/167761*2537720636^(8/15) 2178309000077526 a001 75025/7881196*312119004989^(8/11) 2178309000077526 a001 75025/7881196*(1/2+1/2*5^(1/2))^40 2178309000077526 a001 75025/7881196*23725150497407^(5/8) 2178309000077526 a001 75025/7881196*73681302247^(10/13) 2178309000077526 a001 75025/7881196*28143753123^(4/5) 2178309000077526 a001 3524578/167761*45537549124^(8/17) 2178309000077526 a001 3524578/167761*14662949395604^(8/21) 2178309000077526 a001 3524578/167761*(1/2+1/2*5^(1/2))^24 2178309000077526 a001 3524578/167761*192900153618^(4/9) 2178309000077526 a001 3524578/167761*73681302247^(6/13) 2178309000077526 a001 3524578/167761*10749957122^(1/2) 2178309000077526 a001 75025/7881196*10749957122^(5/6) 2178309000077526 a001 3524578/167761*4106118243^(12/23) 2178309000077526 a001 75025/7881196*4106118243^(20/23) 2178309000077526 a001 3524578/167761*1568397607^(6/11) 2178309000077526 a001 75025/7881196*1568397607^(10/11) 2178309000077526 a001 3524578/167761*599074578^(4/7) 2178309000077526 a001 75025/7881196*599074578^(20/21) 2178309000077526 a001 3524578/167761*228826127^(3/5) 2178309000077526 a001 3524578/167761*87403803^(12/19) 2178309000077527 a001 3524578/167761*33385282^(2/3) 2178309000077531 a001 433494437/167761*4870847^(7/16) 2178309000077533 a001 139583862445/167761*1860498^(1/15) 2178309000077535 a001 3524578/167761*12752043^(12/17) 2178309000077537 a001 165580141/167761*4870847^(1/2) 2178309000077542 a001 63245986/167761*4870847^(9/16) 2178309000077549 a001 24157817/167761*4870847^(5/8) 2178309000077554 a001 86267571272/167761*1860498^(1/10) 2178309000077559 a001 9227465/167761*4870847^(11/16) 2178309000077575 a001 53316291173/167761*1860498^(2/15) 2178309000077583 a001 4745030099650/2178309 2178309000077595 a001 3524578/167761*4870847^(3/4) 2178309000077596 a001 32951280099/167761*1860498^(1/6) 2178309000077617 a001 20365011074/167761*1860498^(1/5) 2178309000077659 a001 7778742049/167761*1860498^(4/15) 2178309000077679 a001 4807526976/167761*1860498^(3/10) 2178309000077700 a001 2971215073/167761*1860498^(1/3) 2178309000077727 a001 32951280099/1149851*103682^(3/8) 2178309000077731 a001 1346269/167761*141422324^(2/3) 2178309000077731 a001 75025/3010349*817138163596^(2/3) 2178309000077731 a001 75025/3010349*(1/2+1/2*5^(1/2))^38 2178309000077731 a001 1346269/167761*(1/2+1/2*5^(1/2))^26 2178309000077731 a001 1346269/167761*73681302247^(1/2) 2178309000077731 a001 1346269/167761*10749957122^(13/24) 2178309000077731 a001 75025/3010349*10749957122^(19/24) 2178309000077731 a001 1346269/167761*4106118243^(13/23) 2178309000077731 a001 75025/3010349*4106118243^(19/23) 2178309000077731 a001 1346269/167761*1568397607^(13/22) 2178309000077731 a001 75025/3010349*1568397607^(19/22) 2178309000077731 a001 1346269/167761*599074578^(13/21) 2178309000077731 a001 75025/3010349*599074578^(19/21) 2178309000077731 a001 1346269/167761*228826127^(13/20) 2178309000077731 a001 75025/3010349*228826127^(19/20) 2178309000077731 a001 1346269/167761*87403803^(13/19) 2178309000077732 a001 1346269/167761*33385282^(13/18) 2178309000077741 a001 1346269/167761*12752043^(13/17) 2178309000077742 a001 1134903170/167761*1860498^(2/5) 2178309000077784 a001 433494437/167761*1860498^(7/15) 2178309000077799 a001 139583862445/167761*710647^(1/14) 2178309000077805 a001 267914296/167761*1860498^(1/2) 2178309000077806 a001 1346269/167761*4870847^(13/16) 2178309000077826 a001 165580141/167761*1860498^(8/15) 2178309000077868 a001 63245986/167761*1860498^(3/5) 2178309000077911 a001 24157817/167761*1860498^(2/3) 2178309000077923 a001 2178309/167761*1860498^(5/6) 2178309000077929 a001 14930352/167761*1860498^(7/10) 2178309000077957 a001 9227465/167761*1860498^(11/15) 2178309000078029 a001 3524578/167761*1860498^(4/5) 2178309000078107 a001 53316291173/167761*710647^(1/7) 2178309000078121 a001 362488044085/166408 2178309000078276 a001 1346269/167761*1860498^(13/15) 2178309000078415 a001 20365011074/167761*710647^(3/14) 2178309000078569 a001 75025*710647^(1/4) 2178309000078723 a001 7778742049/167761*710647^(2/7) 2178309000078928 a001 10182505537/219602*103682^(1/3) 2178309000079031 a001 2971215073/167761*710647^(5/14) 2178309000079134 a001 514229/167761*20633239^(4/5) 2178309000079138 a001 75025/1149851*141422324^(12/13) 2178309000079138 a001 75025/1149851*2537720636^(4/5) 2178309000079138 a001 514229/167761*17393796001^(4/7) 2178309000079138 a001 75025/1149851*45537549124^(12/17) 2178309000079138 a001 75025/1149851*14662949395604^(4/7) 2178309000079138 a001 75025/1149851*(1/2+1/2*5^(1/2))^36 2178309000079138 a001 75025/1149851*192900153618^(2/3) 2178309000079138 a001 75025/1149851*73681302247^(9/13) 2178309000079138 a001 514229/167761*14662949395604^(4/9) 2178309000079138 a001 514229/167761*(1/2+1/2*5^(1/2))^28 2178309000079138 a001 514229/167761*73681302247^(7/13) 2178309000079138 a001 514229/167761*10749957122^(7/12) 2178309000079138 a001 75025/1149851*10749957122^(3/4) 2178309000079138 a001 514229/167761*4106118243^(14/23) 2178309000079138 a001 75025/1149851*4106118243^(18/23) 2178309000079138 a001 514229/167761*1568397607^(7/11) 2178309000079138 a001 75025/1149851*1568397607^(9/11) 2178309000079138 a001 514229/167761*599074578^(2/3) 2178309000079138 a001 75025/1149851*599074578^(6/7) 2178309000079138 a001 514229/167761*228826127^(7/10) 2178309000079138 a001 75025/1149851*228826127^(9/10) 2178309000079138 a001 514229/167761*87403803^(14/19) 2178309000079139 a001 75025/1149851*87403803^(18/19) 2178309000079140 a001 514229/167761*33385282^(7/9) 2178309000079149 a001 514229/167761*12752043^(14/17) 2178309000079219 a001 514229/167761*4870847^(7/8) 2178309000079339 a001 1134903170/167761*710647^(3/7) 2178309000079647 a001 433494437/167761*710647^(1/2) 2178309000079726 a001 514229/167761*1860498^(14/15) 2178309000079765 a001 139583862445/167761*271443^(1/13) 2178309000079955 a001 165580141/167761*710647^(4/7) 2178309000080209 a001 12586269025/710647*103682^(5/12) 2178309000080264 a001 63245986/167761*710647^(9/14) 2178309000080288 a001 1134903170/271443*103682^(13/24) 2178309000080572 a001 24157817/167761*710647^(5/7) 2178309000080724 a001 14930352/167761*710647^(3/4) 2178309000080885 a001 9227465/167761*710647^(11/14) 2178309000081223 a001 3524578/167761*710647^(6/7) 2178309000081736 a001 1346269/167761*710647^(13/14) 2178309000081809 a001 53253120125/24447 2178309000082039 a001 53316291173/167761*271443^(2/13) 2178309000083893 a001 10983760033/620166*103682^(5/12) 2178309000084313 a001 20365011074/167761*271443^(3/13) 2178309000084430 a001 86267571272/4870847*103682^(5/12) 2178309000084509 a001 75283811239/4250681*103682^(5/12) 2178309000084520 a001 591286729879/33385282*103682^(5/12) 2178309000084522 a001 516002918640/29134601*103682^(5/12) 2178309000084522 a001 4052739537881/228826127*103682^(5/12) 2178309000084522 a001 3536736619241/199691526*103682^(5/12) 2178309000084522 a001 6557470319842/370248451*103682^(5/12) 2178309000084522 a001 2504730781961/141422324*103682^(5/12) 2178309000084523 a001 956722026041/54018521*103682^(5/12) 2178309000084527 a001 365435296162/20633239*103682^(5/12) 2178309000084557 a001 139583862445/7881196*103682^(5/12) 2178309000084763 a001 53316291173/3010349*103682^(5/12) 2178309000085934 a001 225851433717/167761*103682^(1/24) 2178309000086170 a001 20365011074/1149851*103682^(5/12) 2178309000086587 a001 7778742049/167761*271443^(4/13) 2178309000087372 a001 12586269025/439204*103682^(3/8) 2178309000088652 a001 7778742049/710647*103682^(11/24) 2178309000088731 a001 233802911/90481*103682^(7/12) 2178309000088751 a001 196418/167761*7881196^(10/11) 2178309000088779 a001 196418/167761*20633239^(6/7) 2178309000088783 a001 196418/167761*141422324^(10/13) 2178309000088783 a001 196418/167761*2537720636^(2/3) 2178309000088783 a001 75025/439204*45537549124^(2/3) 2178309000088783 a001 75025/439204*(1/2+1/2*5^(1/2))^34 2178309000088783 a001 196418/167761*45537549124^(10/17) 2178309000088783 a001 196418/167761*312119004989^(6/11) 2178309000088783 a001 196418/167761*14662949395604^(10/21) 2178309000088783 a001 196418/167761*(1/2+1/2*5^(1/2))^30 2178309000088783 a001 196418/167761*192900153618^(5/9) 2178309000088783 a001 196418/167761*28143753123^(3/5) 2178309000088783 a001 75025/439204*10749957122^(17/24) 2178309000088783 a001 196418/167761*10749957122^(5/8) 2178309000088783 a001 196418/167761*4106118243^(15/23) 2178309000088783 a001 75025/439204*4106118243^(17/23) 2178309000088783 a001 196418/167761*1568397607^(15/22) 2178309000088783 a001 75025/439204*1568397607^(17/22) 2178309000088783 a001 196418/167761*599074578^(5/7) 2178309000088783 a001 75025/439204*599074578^(17/21) 2178309000088783 a001 196418/167761*228826127^(3/4) 2178309000088783 a001 75025/439204*228826127^(17/20) 2178309000088783 a001 196418/167761*87403803^(15/19) 2178309000088783 a001 75025/439204*87403803^(17/19) 2178309000088785 a001 196418/167761*33385282^(5/6) 2178309000088785 a001 75025/439204*33385282^(17/18) 2178309000088795 a001 196418/167761*12752043^(15/17) 2178309000088861 a001 2971215073/167761*271443^(5/13) 2178309000088869 a001 196418/167761*4870847^(15/16) 2178309000091136 a001 1134903170/167761*271443^(6/13) 2178309000092273 a001 701408733/167761*271443^(1/2) 2178309000092336 a001 10182505537/930249*103682^(11/24) 2178309000092351 a001 14930352/64079*64079^(19/23) 2178309000092874 a001 53316291173/4870847*103682^(11/24) 2178309000092952 a001 139583862445/12752043*103682^(11/24) 2178309000092963 a001 182717648081/16692641*103682^(11/24) 2178309000092965 a001 956722026041/87403803*103682^(11/24) 2178309000092965 a001 2504730781961/228826127*103682^(11/24) 2178309000092965 a001 3278735159921/299537289*103682^(11/24) 2178309000092965 a001 10610209857723/969323029*103682^(11/24) 2178309000092965 a001 4052739537881/370248451*103682^(11/24) 2178309000092965 a001 387002188980/35355581*103682^(11/24) 2178309000092966 a001 591286729879/54018521*103682^(11/24) 2178309000092970 a001 7787980473/711491*103682^(11/24) 2178309000093000 a001 21566892818/1970299*103682^(11/24) 2178309000093206 a001 32951280099/3010349*103682^(11/24) 2178309000093410 a001 433494437/167761*271443^(7/13) 2178309000094377 a001 139583862445/167761*103682^(1/12) 2178309000094613 a001 12586269025/1149851*103682^(11/24) 2178309000095684 a001 165580141/167761*271443^(8/13) 2178309000095815 a001 7778742049/439204*103682^(5/12) 2178309000096789 a001 75283811239/90481*39603^(1/11) 2178309000097095 a001 686789568/101521*103682^(1/2) 2178309000097174 a001 433494437/271443*103682^(5/8) 2178309000097958 a001 63245986/167761*271443^(9/13) 2178309000100233 a001 24157817/167761*271443^(10/13) 2178309000100779 a001 12586269025/1860498*103682^(1/2) 2178309000101317 a001 32951280099/4870847*103682^(1/2) 2178309000101395 a001 86267571272/12752043*103682^(1/2) 2178309000101406 a001 32264490531/4769326*103682^(1/2) 2178309000101408 a001 591286729879/87403803*103682^(1/2) 2178309000101408 a001 1548008755920/228826127*103682^(1/2) 2178309000101408 a001 4052739537881/599074578*103682^(1/2) 2178309000101408 a001 1515744265389/224056801*103682^(1/2) 2178309000101408 a001 6557470319842/969323029*103682^(1/2) 2178309000101408 a001 2504730781961/370248451*103682^(1/2) 2178309000101409 a001 956722026041/141422324*103682^(1/2) 2178309000101409 a001 365435296162/54018521*103682^(1/2) 2178309000101414 a001 139583862445/20633239*103682^(1/2) 2178309000101443 a001 53316291173/7881196*103682^(1/2) 2178309000101649 a001 20365011074/3010349*103682^(1/2) 2178309000102511 a001 9227465/167761*271443^(11/13) 2178309000102820 a001 86267571272/167761*103682^(1/8) 2178309000103056 a001 7778742049/1149851*103682^(1/2) 2178309000104258 a001 1201881744/109801*103682^(11/24) 2178309000104816 a001 3524578/167761*271443^(12/13) 2178309000105538 a001 2971215073/710647*103682^(13/24) 2178309000105617 a001 267914296/271443*103682^(2/3) 2178309000107090 a001 264431464450/121393 2178309000109222 a001 7778742049/1860498*103682^(13/24) 2178309000109760 a001 20365011074/4870847*103682^(13/24) 2178309000109838 a001 53316291173/12752043*103682^(13/24) 2178309000109850 a001 139583862445/33385282*103682^(13/24) 2178309000109851 a001 365435296162/87403803*103682^(13/24) 2178309000109851 a001 956722026041/228826127*103682^(13/24) 2178309000109852 a001 2504730781961/599074578*103682^(13/24) 2178309000109852 a001 6557470319842/1568397607*103682^(13/24) 2178309000109852 a001 10610209857723/2537720636*103682^(13/24) 2178309000109852 a001 4052739537881/969323029*103682^(13/24) 2178309000109852 a001 1548008755920/370248451*103682^(13/24) 2178309000109852 a001 591286729879/141422324*103682^(13/24) 2178309000109852 a001 225851433717/54018521*103682^(13/24) 2178309000109857 a001 86267571272/20633239*103682^(13/24) 2178309000109887 a001 32951280099/7881196*103682^(13/24) 2178309000110092 a001 12586269025/3010349*103682^(13/24) 2178309000111263 a001 53316291173/167761*103682^(1/6) 2178309000111499 a001 4807526976/1149851*103682^(13/24) 2178309000112701 a001 2971215073/439204*103682^(1/2) 2178309000113111 a001 10182505537/51841*39603^(5/22) 2178309000113981 a001 1836311903/710647*103682^(7/12) 2178309000114060 a001 165580141/271443*103682^(17/24) 2178309000115419 a001 24157817/64079*64079^(18/23) 2178309000117665 a001 267084832/103361*103682^(7/12) 2178309000118203 a001 12586269025/4870847*103682^(7/12) 2178309000118281 a001 10983760033/4250681*103682^(7/12) 2178309000118293 a001 43133785636/16692641*103682^(7/12) 2178309000118294 a001 75283811239/29134601*103682^(7/12) 2178309000118295 a001 591286729879/228826127*103682^(7/12) 2178309000118295 a001 86000486440/33281921*103682^(7/12) 2178309000118295 a001 4052739537881/1568397607*103682^(7/12) 2178309000118295 a001 3536736619241/1368706081*103682^(7/12) 2178309000118295 a001 3278735159921/1268860318*103682^(7/12) 2178309000118295 a001 2504730781961/969323029*103682^(7/12) 2178309000118295 a001 956722026041/370248451*103682^(7/12) 2178309000118295 a001 182717648081/70711162*103682^(7/12) 2178309000118295 a001 139583862445/54018521*103682^(7/12) 2178309000118300 a001 53316291173/20633239*103682^(7/12) 2178309000118330 a001 10182505537/3940598*103682^(7/12) 2178309000118535 a001 7778742049/3010349*103682^(7/12) 2178309000119706 a001 32951280099/167761*103682^(5/24) 2178309000119942 a001 2971215073/1149851*103682^(7/12) 2178309000121144 a001 1836311903/439204*103682^(13/24) 2178309000122039 a001 591286729879/710647*39603^(1/11) 2178309000122424 a001 1134903170/710647*103682^(5/8) 2178309000122503 a001 34111385/90481*103682^(3/4) 2178309000125723 a001 832040*39603^(1/11) 2178309000126108 a001 2971215073/1860498*103682^(5/8) 2178309000126261 a001 4052739537881/4870847*39603^(1/11) 2178309000126339 a001 3536736619241/4250681*39603^(1/11) 2178309000126388 a001 3278735159921/3940598*39603^(1/11) 2178309000126593 a001 2504730781961/3010349*39603^(1/11) 2178309000126646 a001 7778742049/4870847*103682^(5/8) 2178309000126724 a001 20365011074/12752043*103682^(5/8) 2178309000126736 a001 53316291173/33385282*103682^(5/8) 2178309000126737 a001 139583862445/87403803*103682^(5/8) 2178309000126738 a001 365435296162/228826127*103682^(5/8) 2178309000126738 a001 956722026041/599074578*103682^(5/8) 2178309000126738 a001 2504730781961/1568397607*103682^(5/8) 2178309000126738 a001 6557470319842/4106118243*103682^(5/8) 2178309000126738 a001 10610209857723/6643838879*103682^(5/8) 2178309000126738 a001 4052739537881/2537720636*103682^(5/8) 2178309000126738 a001 1548008755920/969323029*103682^(5/8) 2178309000126738 a001 591286729879/370248451*103682^(5/8) 2178309000126738 a001 225851433717/141422324*103682^(5/8) 2178309000126738 a001 86267571272/54018521*103682^(5/8) 2178309000126743 a001 32951280099/20633239*103682^(5/8) 2178309000126773 a001 12586269025/7881196*103682^(5/8) 2178309000126978 a001 4807526976/3010349*103682^(5/8) 2178309000128000 a001 956722026041/1149851*39603^(1/11) 2178309000128149 a001 20365011074/167761*103682^(1/4) 2178309000128385 a001 1836311903/1149851*103682^(5/8) 2178309000129587 a001 567451585/219602*103682^(7/12) 2178309000130867 a001 701408733/710647*103682^(2/3) 2178309000130946 a001 63245986/271443*103682^(19/24) 2178309000134551 a001 1836311903/1860498*103682^(2/3) 2178309000135089 a001 4807526976/4870847*103682^(2/3) 2178309000135167 a001 12586269025/12752043*103682^(2/3) 2178309000135179 a001 32951280099/33385282*103682^(2/3) 2178309000135180 a001 86267571272/87403803*103682^(2/3) 2178309000135181 a001 225851433717/228826127*103682^(2/3) 2178309000135181 a001 591286729879/599074578*103682^(2/3) 2178309000135181 a001 1548008755920/1568397607*103682^(2/3) 2178309000135181 a001 4052739537881/4106118243*103682^(2/3) 2178309000135181 a001 4807525989/4870846*103682^(2/3) 2178309000135181 a001 6557470319842/6643838879*103682^(2/3) 2178309000135181 a001 2504730781961/2537720636*103682^(2/3) 2178309000135181 a001 956722026041/969323029*103682^(2/3) 2178309000135181 a001 365435296162/370248451*103682^(2/3) 2178309000135181 a001 139583862445/141422324*103682^(2/3) 2178309000135182 a001 53316291173/54018521*103682^(2/3) 2178309000135186 a001 20365011074/20633239*103682^(2/3) 2178309000135216 a001 7778742049/7881196*103682^(2/3) 2178309000135421 a001 2971215073/3010349*103682^(2/3) 2178309000136592 a001 75025*103682^(7/24) 2178309000136828 a001 1134903170/1149851*103682^(2/3) 2178309000137645 a001 182717648081/219602*39603^(1/11) 2178309000138030 a001 701408733/439204*103682^(5/8) 2178309000138483 a001 39088169/64079*64079^(17/23) 2178309000139311 a001 433494437/710647*103682^(17/24) 2178309000139389 a001 39088169/271443*103682^(5/6) 2178309000140621 a001 225851433717/167761*39603^(1/22) 2178309000142995 a001 567451585/930249*103682^(17/24) 2178309000143532 a001 2971215073/4870847*103682^(17/24) 2178309000143610 a001 7778742049/12752043*103682^(17/24) 2178309000143622 a001 10182505537/16692641*103682^(17/24) 2178309000143624 a001 53316291173/87403803*103682^(17/24) 2178309000143624 a001 139583862445/228826127*103682^(17/24) 2178309000143624 a001 182717648081/299537289*103682^(17/24) 2178309000143624 a001 956722026041/1568397607*103682^(17/24) 2178309000143624 a001 2504730781961/4106118243*103682^(17/24) 2178309000143624 a001 3278735159921/5374978561*103682^(17/24) 2178309000143624 a001 10610209857723/17393796001*103682^(17/24) 2178309000143624 a001 4052739537881/6643838879*103682^(17/24) 2178309000143624 a001 1134903780/1860499*103682^(17/24) 2178309000143624 a001 591286729879/969323029*103682^(17/24) 2178309000143624 a001 225851433717/370248451*103682^(17/24) 2178309000143624 a001 21566892818/35355581*103682^(17/24) 2178309000143625 a001 32951280099/54018521*103682^(17/24) 2178309000143629 a001 1144206275/1875749*103682^(17/24) 2178309000143659 a001 1201881744/1970299*103682^(17/24) 2178309000143864 a001 1836311903/3010349*103682^(17/24) 2178309000145035 a001 7778742049/167761*103682^(1/3) 2178309000145271 a001 701408733/1149851*103682^(17/24) 2178309000146473 a001 433494437/439204*103682^(2/3) 2178309000147754 a001 267914296/710647*103682^(3/4) 2178309000147833 a001 24157817/271443*103682^(7/8) 2178309000151438 a001 233802911/620166*103682^(3/4) 2178309000151975 a001 1836311903/4870847*103682^(3/4) 2178309000152054 a001 1602508992/4250681*103682^(3/4) 2178309000152065 a001 12586269025/33385282*103682^(3/4) 2178309000152067 a001 10983760033/29134601*103682^(3/4) 2178309000152067 a001 86267571272/228826127*103682^(3/4) 2178309000152067 a001 267913919/710646*103682^(3/4) 2178309000152067 a001 591286729879/1568397607*103682^(3/4) 2178309000152067 a001 516002918640/1368706081*103682^(3/4) 2178309000152067 a001 4052739537881/10749957122*103682^(3/4) 2178309000152067 a001 3536736619241/9381251041*103682^(3/4) 2178309000152067 a001 6557470319842/17393796001*103682^(3/4) 2178309000152067 a001 2504730781961/6643838879*103682^(3/4) 2178309000152067 a001 956722026041/2537720636*103682^(3/4) 2178309000152067 a001 365435296162/969323029*103682^(3/4) 2178309000152067 a001 139583862445/370248451*103682^(3/4) 2178309000152067 a001 53316291173/141422324*103682^(3/4) 2178309000152068 a001 20365011074/54018521*103682^(3/4) 2178309000152072 a001 7778742049/20633239*103682^(3/4) 2178309000152102 a001 2971215073/7881196*103682^(3/4) 2178309000152307 a001 1134903170/3010349*103682^(3/4) 2178309000153479 a001 4807526976/167761*103682^(3/8) 2178309000153715 a001 433494437/1149851*103682^(3/4) 2178309000154890 a001 75025/167761*(1/2+1/2*5^(1/2))^32 2178309000154890 a001 75025/167761*23725150497407^(1/2) 2178309000154890 a001 75025/167761*73681302247^(8/13) 2178309000154890 a001 75025/167761*10749957122^(2/3) 2178309000154890 a001 75025/167761*4106118243^(16/23) 2178309000154890 a001 75025/167761*1568397607^(8/11) 2178309000154890 a001 75025/167761*599074578^(16/21) 2178309000154890 a001 75025/167761*228826127^(4/5) 2178309000154890 a001 75025/167761*87403803^(16/19) 2178309000154892 a001 75025/167761*33385282^(8/9) 2178309000154903 a001 75025/167761*12752043^(16/17) 2178309000154916 a001 66978574/109801*103682^(17/24) 2178309000156197 a001 165580141/710647*103682^(19/24) 2178309000156273 a001 4976784/90481*103682^(11/12) 2178309000159881 a001 433494437/1860498*103682^(19/24) 2178309000159919 a001 139583862445/271443*39603^(3/22) 2178309000160418 a001 1134903170/4870847*103682^(19/24) 2178309000160497 a001 2971215073/12752043*103682^(19/24) 2178309000160508 a001 7778742049/33385282*103682^(19/24) 2178309000160510 a001 20365011074/87403803*103682^(19/24) 2178309000160510 a001 53316291173/228826127*103682^(19/24) 2178309000160510 a001 139583862445/599074578*103682^(19/24) 2178309000160510 a001 365435296162/1568397607*103682^(19/24) 2178309000160510 a001 956722026041/4106118243*103682^(19/24) 2178309000160510 a001 2504730781961/10749957122*103682^(19/24) 2178309000160510 a001 6557470319842/28143753123*103682^(19/24) 2178309000160510 a001 10610209857723/45537549124*103682^(19/24) 2178309000160510 a001 4052739537881/17393796001*103682^(19/24) 2178309000160510 a001 1548008755920/6643838879*103682^(19/24) 2178309000160510 a001 591286729879/2537720636*103682^(19/24) 2178309000160510 a001 225851433717/969323029*103682^(19/24) 2178309000160510 a001 86267571272/370248451*103682^(19/24) 2178309000160510 a001 63246219/271444*103682^(19/24) 2178309000160511 a001 12586269025/54018521*103682^(19/24) 2178309000160515 a001 4807526976/20633239*103682^(19/24) 2178309000160545 a001 1836311903/7881196*103682^(19/24) 2178309000160750 a001 701408733/3010349*103682^(19/24) 2178309000161549 a001 63245986/64079*64079^(16/23) 2178309000161922 a001 2971215073/167761*103682^(5/12) 2178309000162158 a001 267914296/1149851*103682^(19/24) 2178309000163359 a001 165580141/439204*103682^(3/4) 2178309000164640 a001 14619165/101521*103682^(5/6) 2178309000164724 a001 9227465/271443*103682^(23/24) 2178309000168324 a001 133957148/930249*103682^(5/6) 2178309000168861 a001 701408733/4870847*103682^(5/6) 2178309000168940 a001 1836311903/12752043*103682^(5/6) 2178309000168951 a001 14930208/103681*103682^(5/6) 2178309000168953 a001 12586269025/87403803*103682^(5/6) 2178309000168953 a001 32951280099/228826127*103682^(5/6) 2178309000168953 a001 43133785636/299537289*103682^(5/6) 2178309000168953 a001 32264490531/224056801*103682^(5/6) 2178309000168953 a001 591286729879/4106118243*103682^(5/6) 2178309000168953 a001 774004377960/5374978561*103682^(5/6) 2178309000168953 a001 4052739537881/28143753123*103682^(5/6) 2178309000168953 a001 1515744265389/10525900321*103682^(5/6) 2178309000168953 a001 3278735159921/22768774562*103682^(5/6) 2178309000168953 a001 2504730781961/17393796001*103682^(5/6) 2178309000168953 a001 956722026041/6643838879*103682^(5/6) 2178309000168953 a001 182717648081/1268860318*103682^(5/6) 2178309000168953 a001 139583862445/969323029*103682^(5/6) 2178309000168953 a001 53316291173/370248451*103682^(5/6) 2178309000168953 a001 10182505537/70711162*103682^(5/6) 2178309000168954 a001 7778742049/54018521*103682^(5/6) 2178309000168958 a001 2971215073/20633239*103682^(5/6) 2178309000168988 a001 567451585/3940598*103682^(5/6) 2178309000169194 a001 433494437/3010349*103682^(5/6) 2178309000170365 a001 1836311903/167761*103682^(11/24) 2178309000170601 a001 165580141/1149851*103682^(5/6) 2178309000171802 a001 102334155/439204*103682^(19/24) 2178309000172532 a001 12625478965/5796 2178309000173083 a001 63245986/710647*103682^(7/8) 2178309000173275 a001 1762289/12238*24476^(20/21) 2178309000176241 a001 12586269025/103682*39603^(3/11) 2178309000176767 a001 165580141/1860498*103682^(7/8) 2178309000177304 a001 433494437/4870847*103682^(7/8) 2178309000177383 a001 1134903170/12752043*103682^(7/8) 2178309000177394 a001 2971215073/33385282*103682^(7/8) 2178309000177396 a001 7778742049/87403803*103682^(7/8) 2178309000177396 a001 20365011074/228826127*103682^(7/8) 2178309000177396 a001 53316291173/599074578*103682^(7/8) 2178309000177396 a001 139583862445/1568397607*103682^(7/8) 2178309000177396 a001 365435296162/4106118243*103682^(7/8) 2178309000177396 a001 956722026041/10749957122*103682^(7/8) 2178309000177396 a001 2504730781961/28143753123*103682^(7/8) 2178309000177396 a001 6557470319842/73681302247*103682^(7/8) 2178309000177396 a001 10610209857723/119218851371*103682^(7/8) 2178309000177396 a001 4052739537881/45537549124*103682^(7/8) 2178309000177396 a001 1548008755920/17393796001*103682^(7/8) 2178309000177396 a001 591286729879/6643838879*103682^(7/8) 2178309000177396 a001 225851433717/2537720636*103682^(7/8) 2178309000177396 a001 86267571272/969323029*103682^(7/8) 2178309000177396 a001 32951280099/370248451*103682^(7/8) 2178309000177396 a001 12586269025/141422324*103682^(7/8) 2178309000177397 a001 4807526976/54018521*103682^(7/8) 2178309000177401 a001 1836311903/20633239*103682^(7/8) 2178309000177431 a001 3524667/39604*103682^(7/8) 2178309000177637 a001 267914296/3010349*103682^(7/8) 2178309000178808 a001 1134903170/167761*103682^(1/2) 2178309000179044 a001 102334155/1149851*103682^(7/8) 2178309000180246 a001 31622993/219602*103682^(5/6) 2178309000181526 a001 39088169/710647*103682^(11/12) 2178309000184297 a001 53316291173/64079*24476^(2/21) 2178309000184614 a001 102334155/64079*64079^(15/23) 2178309000185170 a001 365435296162/710647*39603^(3/22) 2178309000185210 a001 831985/15126*103682^(11/12) 2178309000185748 a001 267914296/4870847*103682^(11/12) 2178309000185826 a001 233802911/4250681*103682^(11/12) 2178309000185837 a001 1836311903/33385282*103682^(11/12) 2178309000185839 a001 1602508992/29134601*103682^(11/12) 2178309000185839 a001 12586269025/228826127*103682^(11/12) 2178309000185839 a001 10983760033/199691526*103682^(11/12) 2178309000185839 a001 86267571272/1568397607*103682^(11/12) 2178309000185839 a001 75283811239/1368706081*103682^(11/12) 2178309000185839 a001 591286729879/10749957122*103682^(11/12) 2178309000185839 a001 12585437040/228811001*103682^(11/12) 2178309000185839 a001 4052739537881/73681302247*103682^(11/12) 2178309000185839 a001 3536736619241/64300051206*103682^(11/12) 2178309000185839 a001 6557470319842/119218851371*103682^(11/12) 2178309000185839 a001 2504730781961/45537549124*103682^(11/12) 2178309000185839 a001 956722026041/17393796001*103682^(11/12) 2178309000185839 a001 365435296162/6643838879*103682^(11/12) 2178309000185839 a001 139583862445/2537720636*103682^(11/12) 2178309000185839 a001 53316291173/969323029*103682^(11/12) 2178309000185839 a001 20365011074/370248451*103682^(11/12) 2178309000185839 a001 7778742049/141422324*103682^(11/12) 2178309000185840 a001 2971215073/54018521*103682^(11/12) 2178309000185844 a001 1134903170/20633239*103682^(11/12) 2178309000185874 a001 433494437/7881196*103682^(11/12) 2178309000186080 a001 165580141/3010349*103682^(11/12) 2178309000187251 a001 701408733/167761*103682^(13/24) 2178309000187487 a001 63245986/1149851*103682^(11/12) 2178309000188688 a001 39088169/439204*103682^(7/8) 2178309000188854 a001 956722026041/1860498*39603^(3/22) 2178309000189392 a001 2504730781961/4870847*39603^(3/22) 2178309000189470 a001 6557470319842/12752043*39603^(3/22) 2178309000189489 a001 10610209857723/20633239*39603^(3/22) 2178309000189518 a001 4052739537881/7881196*39603^(3/22) 2178309000189724 a001 1548008755920/3010349*39603^(3/22) 2178309000189970 a001 24157817/710647*103682^(23/24) 2178309000191131 a001 514229*39603^(3/22) 2178309000193653 a001 31622993/930249*103682^(23/24) 2178309000194099 a001 11222647969/5152 2178309000194191 a001 165580141/4870847*103682^(23/24) 2178309000194269 a001 433494437/12752043*103682^(23/24) 2178309000194280 a001 567451585/16692641*103682^(23/24) 2178309000194282 a001 2971215073/87403803*103682^(23/24) 2178309000194282 a001 7778742049/228826127*103682^(23/24) 2178309000194282 a001 10182505537/299537289*103682^(23/24) 2178309000194282 a001 53316291173/1568397607*103682^(23/24) 2178309000194282 a001 139583862445/4106118243*103682^(23/24) 2178309000194282 a001 182717648081/5374978561*103682^(23/24) 2178309000194282 a001 956722026041/28143753123*103682^(23/24) 2178309000194282 a001 2504730781961/73681302247*103682^(23/24) 2178309000194282 a001 3278735159921/96450076809*103682^(23/24) 2178309000194282 a001 10610209857723/312119004989*103682^(23/24) 2178309000194282 a001 4052739537881/119218851371*103682^(23/24) 2178309000194282 a001 387002188980/11384387281*103682^(23/24) 2178309000194282 a001 591286729879/17393796001*103682^(23/24) 2178309000194282 a001 225851433717/6643838879*103682^(23/24) 2178309000194282 a001 1135099622/33391061*103682^(23/24) 2178309000194282 a001 32951280099/969323029*103682^(23/24) 2178309000194282 a001 12586269025/370248451*103682^(23/24) 2178309000194283 a001 1201881744/35355581*103682^(23/24) 2178309000194283 a001 1836311903/54018521*103682^(23/24) 2178309000194288 a001 701408733/20633239*103682^(23/24) 2178309000194317 a001 66978574/1970299*103682^(23/24) 2178309000194523 a001 102334155/3010349*103682^(23/24) 2178309000195694 a001 433494437/167761*103682^(7/12) 2178309000195930 a001 39088169/1149851*103682^(23/24) 2178309000197132 a001 24157817/439204*103682^(11/12) 2178309000200776 a001 225851433717/439204*39603^(3/22) 2178309000202726 a001 1/23184*(1/2+1/2*5^(1/2))^56 2178309000203752 a001 139583862445/167761*39603^(1/11) 2178309000204137 a001 267914296/167761*103682^(5/8) 2178309000205573 a001 196452/5779*103682^(23/24) 2178309000207680 a001 165580141/64079*64079^(14/23) 2178309000212580 a001 165580141/167761*103682^(2/3) 2178309000215665 a001 50501915861/23184 2178309000221023 a001 9303105/15251*103682^(17/24) 2178309000223050 a001 86267571272/271443*39603^(2/11) 2178309000229466 a001 63245986/167761*103682^(3/4) 2178309000230745 a001 267914296/64079*64079^(13/23) 2178309000237909 a001 39088169/167761*103682^(19/24) 2178309000239372 a001 7778742049/103682*39603^(7/22) 2178309000246353 a001 24157817/167761*103682^(5/6) 2178309000248301 a001 317811*39603^(2/11) 2178309000251985 a001 591286729879/1860498*39603^(2/11) 2178309000252522 a001 1548008755920/4870847*39603^(2/11) 2178309000252601 a001 4052739537881/12752043*39603^(2/11) 2178309000252612 a001 1515744265389/4769326*39603^(2/11) 2178309000252619 a001 6557470319842/20633239*39603^(2/11) 2178309000252649 a001 2504730781961/7881196*39603^(2/11) 2178309000252855 a001 956722026041/3010349*39603^(2/11) 2178309000253810 a001 433494437/64079*64079^(12/23) 2178309000254262 a001 365435296162/1149851*39603^(2/11) 2178309000254794 a001 14930352/167761*103682^(7/8) 2178309000263244 a001 9227465/167761*103682^(11/12) 2178309000263907 a001 139583862445/439204*39603^(2/11) 2178309000266883 a001 86267571272/167761*39603^(3/22) 2178309000271668 a001 5702887/167761*103682^(23/24) 2178309000273432 a001 139583862445/103682*15127^(1/20) 2178309000276876 a001 701408733/64079*64079^(11/23) 2178309000280365 a001 101003831725/46368 2178309000286181 a001 53316291173/271443*39603^(5/22) 2178309000299941 a001 1134903170/64079*64079^(10/23) 2178309000302503 a001 46368*39603^(4/11) 2178309000311432 a001 139583862445/710647*39603^(5/22) 2178309000315116 a001 182717648081/930249*39603^(5/22) 2178309000315653 a001 956722026041/4870847*39603^(5/22) 2178309000315731 a001 2504730781961/12752043*39603^(5/22) 2178309000315743 a001 3278735159921/16692641*39603^(5/22) 2178309000315746 a001 10610209857723/54018521*39603^(5/22) 2178309000315750 a001 4052739537881/20633239*39603^(5/22) 2178309000315780 a001 387002188980/1970299*39603^(5/22) 2178309000315985 a001 591286729879/3010349*39603^(5/22) 2178309000317392 a001 225851433717/1149851*39603^(5/22) 2178309000323006 a001 28657*64079^(9/23) 2178309000327037 a001 196418*39603^(5/22) 2178309000327960 a001 28657/103682*141422324^(11/13) 2178309000327960 a001 28657/103682*2537720636^(11/15) 2178309000327960 a001 28657/103682*45537549124^(11/17) 2178309000327960 a001 28657/103682*312119004989^(3/5) 2178309000327960 a001 28657/103682*817138163596^(11/19) 2178309000327960 a001 28657/103682*14662949395604^(11/21) 2178309000327960 a001 28657/103682*(1/2+1/2*5^(1/2))^33 2178309000327960 a001 28657/103682*192900153618^(11/18) 2178309000327960 a001 28657/103682*10749957122^(11/16) 2178309000327960 a001 46368/64079*(1/2+1/2*5^(1/2))^31 2178309000327960 a001 46368/64079*9062201101803^(1/2) 2178309000327960 a001 28657/103682*1568397607^(3/4) 2178309000327960 a001 28657/103682*599074578^(11/14) 2178309000327962 a001 28657/103682*33385282^(11/12) 2178309000330014 a001 53316291173/167761*39603^(2/11) 2178309000346072 a001 2971215073/64079*64079^(8/23) 2178309000346375 a001 5702887/24476*24476^(19/21) 2178309000349312 a001 121393*39603^(3/11) 2178309000357446 a001 86267571272/64079*24476^(1/21) 2178309000365633 a001 2971215073/103682*39603^(9/22) 2178309000369137 a001 4807526976/64079*64079^(7/23) 2178309000374562 a001 86267571272/710647*39603^(3/11) 2178309000378246 a001 75283811239/620166*39603^(3/11) 2178309000378784 a001 591286729879/4870847*39603^(3/11) 2178309000378862 a001 516002918640/4250681*39603^(3/11) 2178309000378874 a001 4052739537881/33385282*39603^(3/11) 2178309000378875 a001 3536736619241/29134601*39603^(3/11) 2178309000378876 a001 6557470319842/54018521*39603^(3/11) 2178309000378881 a001 2504730781961/20633239*39603^(3/11) 2178309000378911 a001 956722026041/7881196*39603^(3/11) 2178309000379116 a001 365435296162/3010349*39603^(3/11) 2178309000380523 a001 139583862445/1149851*39603^(3/11) 2178309000390168 a001 53316291173/439204*39603^(3/11) 2178309000392202 a001 7778742049/64079*64079^(6/23) 2178309000393144 a001 32951280099/167761*39603^(5/22) 2178309000412442 a001 20365011074/271443*39603^(7/22) 2178309000415268 a001 12586269025/64079*64079^(5/23) 2178309000428764 a001 1836311903/103682*39603^(5/11) 2178309000437693 a001 53316291173/710647*39603^(7/22) 2178309000438333 a001 20365011074/64079*64079^(4/23) 2178309000441377 a001 139583862445/1860498*39603^(7/22) 2178309000441914 a001 365435296162/4870847*39603^(7/22) 2178309000441993 a001 956722026041/12752043*39603^(7/22) 2178309000442004 a001 2504730781961/33385282*39603^(7/22) 2178309000442006 a001 6557470319842/87403803*39603^(7/22) 2178309000442006 a001 10610209857723/141422324*39603^(7/22) 2178309000442007 a001 4052739537881/54018521*39603^(7/22) 2178309000442011 a001 140728068720/1875749*39603^(7/22) 2178309000442041 a001 591286729879/7881196*39603^(7/22) 2178309000442247 a001 225851433717/3010349*39603^(7/22) 2178309000443654 a001 86267571272/1149851*39603^(7/22) 2178309000446502 a001 365435296162/271443*15127^(1/20) 2178309000453182 a001 163427632759/75025 2178309000453299 a001 32951280099/439204*39603^(7/22) 2178309000456275 a001 20365011074/167761*39603^(3/11) 2178309000461398 a001 32951280099/64079*64079^(3/23) 2178309000468680 a001 9227465/64079*167761^(4/5) 2178309000471753 a001 956722026041/710647*15127^(1/20) 2178309000475437 a001 2504730781961/1860498*15127^(1/20) 2178309000475573 a001 12586269025/271443*39603^(4/11) 2178309000475974 a001 6557470319842/4870847*15127^(1/20) 2178309000476101 a001 10610209857723/7881196*15127^(1/20) 2178309000476306 a001 1346269*15127^(1/20) 2178309000477714 a001 1548008755920/1149851*15127^(1/20) 2178309000484155 a001 102334155/64079*167761^(3/5) 2178309000484464 a001 53316291173/64079*64079^(2/23) 2178309000487358 a001 591286729879/439204*15127^(1/20) 2178309000491895 a001 567451585/51841*39603^(1/2) 2178309000499635 a001 1134903170/64079*167761^(2/5) 2178309000500824 a001 32951280099/710647*39603^(4/11) 2178309000501031 a001 28657/271443*2537720636^(7/9) 2178309000501031 a001 28657/271443*17393796001^(5/7) 2178309000501031 a001 28657/271443*312119004989^(7/11) 2178309000501031 a001 28657/271443*14662949395604^(5/9) 2178309000501031 a001 28657/271443*(1/2+1/2*5^(1/2))^35 2178309000501031 a001 28657/271443*505019158607^(5/8) 2178309000501031 a001 28657/271443*28143753123^(7/10) 2178309000501031 a001 121393/64079*(1/2+1/2*5^(1/2))^29 2178309000501031 a001 121393/64079*1322157322203^(1/2) 2178309000501031 a001 28657/271443*599074578^(5/6) 2178309000501031 a001 28657/271443*228826127^(7/8) 2178309000504508 a001 43133785636/930249*39603^(4/11) 2178309000505045 a001 225851433717/4870847*39603^(4/11) 2178309000505124 a001 591286729879/12752043*39603^(4/11) 2178309000505135 a001 774004377960/16692641*39603^(4/11) 2178309000505137 a001 4052739537881/87403803*39603^(4/11) 2178309000505137 a001 225749145909/4868641*39603^(4/11) 2178309000505137 a001 3278735159921/70711162*39603^(4/11) 2178309000505138 a001 2504730781961/54018521*39603^(4/11) 2178309000505142 a001 956722026041/20633239*39603^(4/11) 2178309000505172 a001 182717648081/3940598*39603^(4/11) 2178309000505377 a001 139583862445/3010349*39603^(4/11) 2178309000506784 a001 53316291173/1149851*39603^(4/11) 2178309000507529 a001 86267571272/64079*64079^(1/23) 2178309000515115 a001 12586269025/39603*15127^(1/5) 2178309000515115 a001 12586269025/64079*167761^(1/5) 2178309000516429 a001 10182505537/219602*39603^(4/11) 2178309000519300 a001 12584091096/5777 2178309000519406 a001 75025*39603^(7/22) 2178309000519543 a001 9227465/24476*24476^(6/7) 2178309000520797 a001 1346269/64079*439204^(8/9) 2178309000521798 a001 5702887/64079*439204^(7/9) 2178309000523067 a001 24157817/64079*439204^(2/3) 2178309000524321 a001 102334155/64079*439204^(5/9) 2178309000525576 a001 433494437/64079*439204^(4/9) 2178309000526253 a001 317811/64079*7881196^(9/11) 2178309000526281 a001 317811/64079*141422324^(9/13) 2178309000526281 a001 317811/64079*2537720636^(3/5) 2178309000526281 a001 28657/710647*(1/2+1/2*5^(1/2))^37 2178309000526281 a001 317811/64079*45537549124^(9/17) 2178309000526281 a001 317811/64079*14662949395604^(3/7) 2178309000526281 a001 317811/64079*(1/2+1/2*5^(1/2))^27 2178309000526281 a001 317811/64079*192900153618^(1/2) 2178309000526281 a001 317811/64079*10749957122^(9/16) 2178309000526281 a001 317811/64079*599074578^(9/14) 2178309000526283 a001 317811/64079*33385282^(3/4) 2178309000526830 a001 28657*439204^(1/3) 2178309000526848 a001 317811/64079*1860498^(9/10) 2178309000528085 a001 7778742049/64079*439204^(2/9) 2178309000528947 a001 1120149659033/514229 2178309000529340 a001 32951280099/64079*439204^(1/9) 2178309000529962 a001 832040/64079*20633239^(5/7) 2178309000529965 a001 28657/1860498*2537720636^(13/15) 2178309000529965 a001 832040/64079*2537720636^(5/9) 2178309000529965 a001 28657/1860498*45537549124^(13/17) 2178309000529965 a001 28657/1860498*14662949395604^(13/21) 2178309000529965 a001 28657/1860498*(1/2+1/2*5^(1/2))^39 2178309000529965 a001 28657/1860498*192900153618^(13/18) 2178309000529965 a001 28657/1860498*73681302247^(3/4) 2178309000529965 a001 28657/1860498*10749957122^(13/16) 2178309000529965 a001 832040/64079*312119004989^(5/11) 2178309000529965 a001 832040/64079*(1/2+1/2*5^(1/2))^25 2178309000529965 a001 832040/64079*3461452808002^(5/12) 2178309000529965 a001 832040/64079*28143753123^(1/2) 2178309000529965 a001 28657/1860498*599074578^(13/14) 2178309000529965 a001 832040/64079*228826127^(5/8) 2178309000530354 a001 2932589879835/1346269 2178309000530490 a001 832040/64079*1860498^(5/6) 2178309000530503 a001 28657/4870847*(1/2+1/2*5^(1/2))^41 2178309000530503 a001 2178309/64079*(1/2+1/2*5^(1/2))^23 2178309000530503 a001 2178309/64079*4106118243^(1/2) 2178309000530559 a001 5702887/64079*7881196^(7/11) 2178309000530559 a001 3838809990236/1762289 2178309000530576 a001 24157817/64079*7881196^(6/11) 2178309000530578 a001 5702887/64079*20633239^(3/5) 2178309000530579 a001 102334155/64079*7881196^(5/11) 2178309000530581 a001 5702887/64079*141422324^(7/13) 2178309000530581 a001 5702887/64079*2537720636^(7/15) 2178309000530581 a001 28657/12752043*(1/2+1/2*5^(1/2))^43 2178309000530581 a001 5702887/64079*17393796001^(3/7) 2178309000530581 a001 5702887/64079*45537549124^(7/17) 2178309000530581 a001 5702887/64079*14662949395604^(1/3) 2178309000530581 a001 5702887/64079*(1/2+1/2*5^(1/2))^21 2178309000530581 a001 5702887/64079*192900153618^(7/18) 2178309000530581 a001 5702887/64079*10749957122^(7/16) 2178309000530581 a001 5702887/64079*599074578^(1/2) 2178309000530582 a001 433494437/64079*7881196^(4/11) 2178309000530582 a001 5702887/64079*33385282^(7/12) 2178309000530583 a001 701408733/64079*7881196^(1/3) 2178309000530585 a001 28657*7881196^(3/11) 2178309000530588 a001 7778742049/64079*7881196^(2/11) 2178309000530589 a001 20100270061581/9227465 2178309000530591 a001 32951280099/64079*7881196^(1/11) 2178309000530592 a001 102334155/64079*20633239^(3/7) 2178309000530593 a001 165580141/64079*20633239^(2/5) 2178309000530593 a001 28657/33385282*45537549124^(15/17) 2178309000530593 a001 28657/33385282*312119004989^(9/11) 2178309000530593 a001 28657/33385282*14662949395604^(5/7) 2178309000530593 a001 28657/33385282*(1/2+1/2*5^(1/2))^45 2178309000530593 a001 28657/33385282*192900153618^(5/6) 2178309000530593 a001 28657/33385282*28143753123^(9/10) 2178309000530593 a001 28657/33385282*10749957122^(15/16) 2178309000530593 a001 14930352/64079*817138163596^(1/3) 2178309000530593 a001 14930352/64079*(1/2+1/2*5^(1/2))^19 2178309000530593 a001 14930352/64079*87403803^(1/2) 2178309000530593 a001 1134903170/64079*20633239^(2/7) 2178309000530594 a001 4807526976/64079*20633239^(1/5) 2178309000530594 a001 52623190204271/24157817 2178309000530594 a001 12586269025/64079*20633239^(1/7) 2178309000530594 a001 39088169/64079*45537549124^(1/3) 2178309000530594 a001 39088169/64079*(1/2+1/2*5^(1/2))^17 2178309000530594 a001 68884650275616/31622993 2178309000530594 a001 102334155/64079*141422324^(5/13) 2178309000530595 a001 267914296/64079*141422324^(1/3) 2178309000530595 a001 28657/228826127*14662949395604^(7/9) 2178309000530595 a001 28657/228826127*505019158607^(7/8) 2178309000530595 a001 102334155/64079*2537720636^(1/3) 2178309000530595 a001 102334155/64079*45537549124^(5/17) 2178309000530595 a001 102334155/64079*312119004989^(3/11) 2178309000530595 a001 102334155/64079*14662949395604^(5/21) 2178309000530595 a001 102334155/64079*(1/2+1/2*5^(1/2))^15 2178309000530595 a001 102334155/64079*192900153618^(5/18) 2178309000530595 a001 102334155/64079*28143753123^(3/10) 2178309000530595 a001 102334155/64079*10749957122^(5/16) 2178309000530595 a001 102334155/64079*599074578^(5/14) 2178309000530595 a001 433494437/64079*141422324^(4/13) 2178309000530595 a001 102334155/64079*228826127^(3/8) 2178309000530595 a001 28657*141422324^(3/13) 2178309000530595 a001 7778742049/64079*141422324^(2/13) 2178309000530595 a001 360684711449425/165580141 2178309000530595 a001 32951280099/64079*141422324^(1/13) 2178309000530595 a001 28657/599074578*817138163596^(17/19) 2178309000530595 a001 28657/599074578*14662949395604^(17/21) 2178309000530595 a001 28657/599074578*192900153618^(17/18) 2178309000530595 a001 267914296/64079*(1/2+1/2*5^(1/2))^13 2178309000530595 a001 267914296/64079*73681302247^(1/4) 2178309000530595 a001 944284833797043/433494437 2178309000530595 a001 701408733/64079*312119004989^(1/5) 2178309000530595 a001 701408733/64079*(1/2+1/2*5^(1/2))^11 2178309000530595 a001 701408733/64079*1568397607^(1/4) 2178309000530595 a001 72710876174756/33379505 2178309000530595 a001 28657/4106118243*3461452808002^(11/12) 2178309000530595 a001 28657*2537720636^(1/5) 2178309000530595 a001 6472224536028069/2971215073 2178309000530595 a001 28657/10749957122*14662949395604^(19/21) 2178309000530595 a001 16944503818142503/7778742049 2178309000530595 a001 22180643459199720/10182505537 2178309000530595 a001 28657*45537549124^(3/17) 2178309000530595 a001 116139356937055817/53316291173 2178309000530595 a001 304056783892768011/139583862445 2178309000530595 a001 28657*14662949395604^(1/7) 2178309000530595 a001 28657*192900153618^(1/6) 2178309000530595 a001 5526983145756241/2537281508 2178309000530595 a001 71778070018656377/32951280099 2178309000530595 a001 28657/45537549124*14662949395604^(20/21) 2178309000530595 a001 27416783100256937/12586269025 2178309000530595 a001 28657*10749957122^(3/16) 2178309000530595 a001 5236139641057217/2403763488 2178309000530595 a001 28657/6643838879*14662949395604^(8/9) 2178309000530595 a001 12586269025/64079*2537720636^(1/9) 2178309000530595 a001 7778742049/64079*2537720636^(2/15) 2178309000530595 a001 32951280099/64079*2537720636^(1/15) 2178309000530595 a001 4807526976/64079*17393796001^(1/7) 2178309000530595 a001 4807526976/64079*14662949395604^(1/9) 2178309000530595 a001 4807526976/64079*(1/2+1/2*5^(1/2))^7 2178309000530595 a001 12586269025/64079*312119004989^(1/11) 2178309000530595 a001 12586269025/64079*(1/2+1/2*5^(1/2))^5 2178309000530595 a001 12586269025/64079*28143753123^(1/10) 2178309000530595 a001 32951280099/64079*45537549124^(1/17) 2178309000530595 a001 32951280099/64079*14662949395604^(1/21) 2178309000530595 a001 32951280099/64079*(1/2+1/2*5^(1/2))^3 2178309000530595 a001 43133785636/64079+43133785636/64079*5^(1/2) 2178309000530595 a001 139583862445/64079 2178309000530595 a001 53316291173/64079*(1/2+1/2*5^(1/2))^2 2178309000530595 a001 32951280099/64079*10749957122^(1/16) 2178309000530595 a001 53316291173/64079*10749957122^(1/24) 2178309000530595 a001 20365011074/64079*(1/2+1/2*5^(1/2))^4 2178309000530595 a001 20365011074/64079*23725150497407^(1/16) 2178309000530595 a001 20365011074/64079*73681302247^(1/13) 2178309000530595 a001 20365011074/64079*10749957122^(1/12) 2178309000530595 a001 53316291173/64079*4106118243^(1/23) 2178309000530595 a001 7778742049/64079*45537549124^(2/17) 2178309000530595 a001 7778742049/64079*14662949395604^(2/21) 2178309000530595 a001 7778742049/64079*(1/2+1/2*5^(1/2))^6 2178309000530595 a001 7778742049/64079*10749957122^(1/8) 2178309000530595 a001 20365011074/64079*4106118243^(2/23) 2178309000530595 a001 7778742049/64079*4106118243^(3/23) 2178309000530595 a001 53316291173/64079*1568397607^(1/22) 2178309000530595 a001 2971215073/64079*(1/2+1/2*5^(1/2))^8 2178309000530595 a001 2971215073/64079*23725150497407^(1/8) 2178309000530595 a001 2971215073/64079*505019158607^(1/7) 2178309000530595 a001 2971215073/64079*73681302247^(2/13) 2178309000530595 a001 2971215073/64079*10749957122^(1/6) 2178309000530595 a001 2971215073/64079*4106118243^(4/23) 2178309000530595 a001 20365011074/64079*1568397607^(1/11) 2178309000530595 a001 7778742049/64079*1568397607^(3/22) 2178309000530595 a001 28657/2537720636*14662949395604^(6/7) 2178309000530595 a001 2971215073/64079*1568397607^(2/11) 2178309000530595 a001 1134903170/64079*2537720636^(2/9) 2178309000530595 a001 53316291173/64079*599074578^(1/21) 2178309000530595 a001 1134903170/64079*312119004989^(2/11) 2178309000530595 a001 1134903170/64079*(1/2+1/2*5^(1/2))^10 2178309000530595 a001 1134903170/64079*28143753123^(1/5) 2178309000530595 a001 1134903170/64079*10749957122^(5/24) 2178309000530595 a001 1134903170/64079*4106118243^(5/23) 2178309000530595 a001 32951280099/64079*599074578^(1/14) 2178309000530595 a001 1134903170/64079*1568397607^(5/22) 2178309000530595 a001 20365011074/64079*599074578^(2/21) 2178309000530595 a001 1527884956144661/701408733 2178309000530595 a001 7778742049/64079*599074578^(1/7) 2178309000530595 a001 4807526976/64079*599074578^(1/6) 2178309000530595 a001 28657*599074578^(3/14) 2178309000530595 a001 2971215073/64079*599074578^(4/21) 2178309000530595 a001 1134903170/64079*599074578^(5/21) 2178309000530595 a001 53316291173/64079*228826127^(1/20) 2178309000530595 a001 28657/969323029*23725150497407^(13/16) 2178309000530595 a001 28657/969323029*505019158607^(13/14) 2178309000530595 a001 433494437/64079*2537720636^(4/15) 2178309000530595 a001 433494437/64079*45537549124^(4/17) 2178309000530595 a001 433494437/64079*817138163596^(4/19) 2178309000530595 a001 433494437/64079*14662949395604^(4/21) 2178309000530595 a001 433494437/64079*(1/2+1/2*5^(1/2))^12 2178309000530595 a001 433494437/64079*192900153618^(2/9) 2178309000530595 a001 433494437/64079*73681302247^(3/13) 2178309000530595 a001 433494437/64079*10749957122^(1/4) 2178309000530595 a001 433494437/64079*4106118243^(6/23) 2178309000530595 a001 433494437/64079*1568397607^(3/11) 2178309000530595 a001 433494437/64079*599074578^(2/7) 2178309000530595 a001 20365011074/64079*228826127^(1/10) 2178309000530595 a001 12586269025/64079*228826127^(1/8) 2178309000530595 a001 291800061173809/133957148 2178309000530595 a001 7778742049/64079*228826127^(3/20) 2178309000530595 a001 2971215073/64079*228826127^(1/5) 2178309000530595 a001 1134903170/64079*228826127^(1/4) 2178309000530595 a001 433494437/64079*228826127^(3/10) 2178309000530595 a001 53316291173/64079*87403803^(1/19) 2178309000530595 a001 28657/370248451*312119004989^(10/11) 2178309000530595 a001 28657/370248451*3461452808002^(5/6) 2178309000530595 a001 165580141/64079*17393796001^(2/7) 2178309000530595 a001 165580141/64079*14662949395604^(2/9) 2178309000530595 a001 165580141/64079*(1/2+1/2*5^(1/2))^14 2178309000530595 a001 165580141/64079*10749957122^(7/24) 2178309000530595 a001 165580141/64079*4106118243^(7/23) 2178309000530595 a001 165580141/64079*1568397607^(7/22) 2178309000530595 a001 165580141/64079*599074578^(1/3) 2178309000530595 a001 20365011074/64079*87403803^(2/19) 2178309000530595 a001 165580141/64079*228826127^(7/20) 2178309000530595 a001 222915410898193/102334155 2178309000530595 a001 7778742049/64079*87403803^(3/19) 2178309000530595 a001 2971215073/64079*87403803^(4/19) 2178309000530595 a001 1134903170/64079*87403803^(5/19) 2178309000530595 a001 433494437/64079*87403803^(6/19) 2178309000530595 a001 53316291173/64079*33385282^(1/18) 2178309000530595 a001 28657/141422324*45537549124^(16/17) 2178309000530595 a001 28657/141422324*14662949395604^(16/21) 2178309000530595 a001 28657/141422324*192900153618^(8/9) 2178309000530595 a001 28657/141422324*73681302247^(12/13) 2178309000530595 a001 63245986/64079*(1/2+1/2*5^(1/2))^16 2178309000530595 a001 63245986/64079*23725150497407^(1/4) 2178309000530595 a001 63245986/64079*73681302247^(4/13) 2178309000530595 a001 63245986/64079*10749957122^(1/3) 2178309000530595 a001 63245986/64079*4106118243^(8/23) 2178309000530595 a001 63245986/64079*1568397607^(4/11) 2178309000530595 a001 63245986/64079*599074578^(8/21) 2178309000530595 a001 165580141/64079*87403803^(7/19) 2178309000530595 a001 63245986/64079*228826127^(2/5) 2178309000530595 a001 32951280099/64079*33385282^(1/12) 2178309000530595 a001 20365011074/64079*33385282^(1/9) 2178309000530595 a001 63245986/64079*87403803^(8/19) 2178309000530595 a001 85146110346961/39088169 2178309000530595 a001 7778742049/64079*33385282^(1/6) 2178309000530595 a001 2971215073/64079*33385282^(2/9) 2178309000530595 a001 28657*33385282^(1/4) 2178309000530595 a001 1134903170/64079*33385282^(5/18) 2178309000530595 a001 433494437/64079*33385282^(1/3) 2178309000530595 a001 24157817/64079*141422324^(6/13) 2178309000530595 a001 24157817/64079*2537720636^(2/5) 2178309000530595 a001 28657/54018521*10749957122^(23/24) 2178309000530595 a001 24157817/64079*45537549124^(6/17) 2178309000530595 a001 24157817/64079*14662949395604^(2/7) 2178309000530595 a001 24157817/64079*(1/2+1/2*5^(1/2))^18 2178309000530595 a001 24157817/64079*192900153618^(1/3) 2178309000530595 a001 24157817/64079*10749957122^(3/8) 2178309000530595 a001 24157817/64079*4106118243^(9/23) 2178309000530595 a001 24157817/64079*1568397607^(9/22) 2178309000530595 a001 24157817/64079*599074578^(3/7) 2178309000530595 a001 24157817/64079*228826127^(9/20) 2178309000530595 a001 102334155/64079*33385282^(5/12) 2178309000530595 a001 165580141/64079*33385282^(7/18) 2178309000530595 a001 53316291173/64079*12752043^(1/17) 2178309000530595 a001 24157817/64079*87403803^(9/19) 2178309000530596 a001 63245986/64079*33385282^(4/9) 2178309000530596 a001 20365011074/64079*12752043^(2/17) 2178309000530596 a001 24157817/64079*33385282^(1/2) 2178309000530597 a001 956556474785/439128 2178309000530597 a001 9227465/64079*20633239^(4/7) 2178309000530597 a001 7778742049/64079*12752043^(3/17) 2178309000530598 a001 2971215073/64079*12752043^(4/17) 2178309000530598 a001 1134903170/64079*12752043^(5/17) 2178309000530599 a001 433494437/64079*12752043^(6/17) 2178309000530600 a001 9227465/64079*2537720636^(4/9) 2178309000530600 a001 28657/20633239*312119004989^(4/5) 2178309000530600 a001 28657/20633239*(1/2+1/2*5^(1/2))^44 2178309000530600 a001 28657/20633239*23725150497407^(11/16) 2178309000530600 a001 28657/20633239*73681302247^(11/13) 2178309000530600 a001 28657/20633239*10749957122^(11/12) 2178309000530600 a001 28657/20633239*4106118243^(22/23) 2178309000530600 a001 9227465/64079*(1/2+1/2*5^(1/2))^20 2178309000530600 a001 9227465/64079*23725150497407^(5/16) 2178309000530600 a001 9227465/64079*505019158607^(5/14) 2178309000530600 a001 9227465/64079*73681302247^(5/13) 2178309000530600 a001 9227465/64079*28143753123^(2/5) 2178309000530600 a001 9227465/64079*10749957122^(5/12) 2178309000530600 a001 9227465/64079*4106118243^(10/23) 2178309000530600 a001 9227465/64079*1568397607^(5/11) 2178309000530600 a001 9227465/64079*599074578^(10/21) 2178309000530600 a001 9227465/64079*228826127^(1/2) 2178309000530600 a001 9227465/64079*87403803^(10/19) 2178309000530600 a001 165580141/64079*12752043^(7/17) 2178309000530600 a001 53316291173/64079*4870847^(1/16) 2178309000530601 a001 9227465/64079*33385282^(5/9) 2178309000530601 a001 39088169/64079*12752043^(1/2) 2178309000530601 a001 63245986/64079*12752043^(8/17) 2178309000530602 a001 24157817/64079*12752043^(9/17) 2178309000530606 a001 20365011074/64079*4870847^(1/8) 2178309000530606 a001 3524578/64079*7881196^(2/3) 2178309000530608 a001 9227465/64079*12752043^(10/17) 2178309000530608 a001 12422650081109/5702887 2178309000530612 a001 7778742049/64079*4870847^(3/16) 2178309000530618 a001 2971215073/64079*4870847^(1/4) 2178309000530623 a001 1134903170/64079*4870847^(5/16) 2178309000530629 a001 433494437/64079*4870847^(3/8) 2178309000530630 a001 28657/7881196*2537720636^(14/15) 2178309000530630 a001 28657/7881196*17393796001^(6/7) 2178309000530630 a001 28657/7881196*45537549124^(14/17) 2178309000530630 a001 28657/7881196*817138163596^(14/19) 2178309000530630 a001 28657/7881196*14662949395604^(2/3) 2178309000530630 a001 28657/7881196*(1/2+1/2*5^(1/2))^42 2178309000530630 a001 28657/7881196*192900153618^(7/9) 2178309000530630 a001 28657/7881196*10749957122^(7/8) 2178309000530630 a001 28657/7881196*4106118243^(21/23) 2178309000530630 a001 3524578/64079*312119004989^(2/5) 2178309000530630 a001 3524578/64079*(1/2+1/2*5^(1/2))^22 2178309000530630 a001 3524578/64079*10749957122^(11/24) 2178309000530630 a001 3524578/64079*4106118243^(11/23) 2178309000530630 a001 3524578/64079*1568397607^(1/2) 2178309000530630 a001 28657/7881196*1568397607^(21/22) 2178309000530630 a001 3524578/64079*599074578^(11/21) 2178309000530630 a001 3524578/64079*228826127^(11/20) 2178309000530630 a001 3524578/64079*87403803^(11/19) 2178309000530631 a001 3524578/64079*33385282^(11/18) 2178309000530635 a001 165580141/64079*4870847^(7/16) 2178309000530637 a001 53316291173/64079*1860498^(1/15) 2178309000530638 a001 3524578/64079*12752043^(11/17) 2178309000530641 a001 63245986/64079*4870847^(1/2) 2178309000530647 a001 24157817/64079*4870847^(9/16) 2178309000530657 a001 9227465/64079*4870847^(5/8) 2178309000530657 a001 32951280099/64079*1860498^(1/10) 2178309000530678 a001 20365011074/64079*1860498^(2/15) 2178309000530686 a001 4745030100637/2178309 2178309000530693 a001 3524578/64079*4870847^(11/16) 2178309000530699 a001 12586269025/64079*1860498^(1/6) 2178309000530720 a001 7778742049/64079*1860498^(1/5) 2178309000530762 a001 2971215073/64079*1860498^(4/15) 2178309000530783 a001 28657*1860498^(3/10) 2178309000530804 a001 1134903170/64079*1860498^(1/3) 2178309000530809 a001 1346269/64079*7881196^(8/11) 2178309000530835 a001 1346269/64079*141422324^(8/13) 2178309000530835 a001 28657/3010349*2537720636^(8/9) 2178309000530835 a001 1346269/64079*2537720636^(8/15) 2178309000530835 a001 28657/3010349*312119004989^(8/11) 2178309000530835 a001 28657/3010349*(1/2+1/2*5^(1/2))^40 2178309000530835 a001 28657/3010349*23725150497407^(5/8) 2178309000530835 a001 28657/3010349*73681302247^(10/13) 2178309000530835 a001 28657/3010349*28143753123^(4/5) 2178309000530835 a001 28657/3010349*10749957122^(5/6) 2178309000530835 a001 28657/3010349*4106118243^(20/23) 2178309000530835 a001 1346269/64079*45537549124^(8/17) 2178309000530835 a001 1346269/64079*14662949395604^(8/21) 2178309000530835 a001 1346269/64079*(1/2+1/2*5^(1/2))^24 2178309000530835 a001 1346269/64079*192900153618^(4/9) 2178309000530835 a001 1346269/64079*73681302247^(6/13) 2178309000530835 a001 1346269/64079*10749957122^(1/2) 2178309000530835 a001 1346269/64079*4106118243^(12/23) 2178309000530835 a001 1346269/64079*1568397607^(6/11) 2178309000530835 a001 28657/3010349*1568397607^(10/11) 2178309000530835 a001 1346269/64079*599074578^(4/7) 2178309000530835 a001 28657/3010349*599074578^(20/21) 2178309000530835 a001 1346269/64079*228826127^(3/5) 2178309000530835 a001 1346269/64079*87403803^(12/19) 2178309000530836 a001 1346269/64079*33385282^(2/3) 2178309000530844 a001 1346269/64079*12752043^(12/17) 2178309000530846 a001 433494437/64079*1860498^(2/5) 2178309000530888 a001 165580141/64079*1860498^(7/15) 2178309000530903 a001 53316291173/64079*710647^(1/14) 2178309000530904 a001 1346269/64079*4870847^(3/4) 2178309000530909 a001 102334155/64079*1860498^(1/2) 2178309000530930 a001 63245986/64079*1860498^(8/15) 2178309000530973 a001 24157817/64079*1860498^(3/5) 2178309000531019 a001 9227465/64079*1860498^(2/3) 2178309000531022 a001 5702887/64079*1860498^(7/10) 2178309000531091 a001 3524578/64079*1860498^(11/15) 2178309000531211 a001 20365011074/64079*710647^(1/7) 2178309000531224 a001 906220110401/416020 2178309000531338 a001 1346269/64079*1860498^(4/5) 2178309000531519 a001 7778742049/64079*710647^(3/14) 2178309000531673 a001 4807526976/64079*710647^(1/4) 2178309000531827 a001 2971215073/64079*710647^(2/7) 2178309000532135 a001 1134903170/64079*710647^(5/14) 2178309000532242 a001 514229/64079*141422324^(2/3) 2178309000532242 a001 28657/1149851*817138163596^(2/3) 2178309000532242 a001 28657/1149851*(1/2+1/2*5^(1/2))^38 2178309000532242 a001 28657/1149851*10749957122^(19/24) 2178309000532242 a001 28657/1149851*4106118243^(19/23) 2178309000532242 a001 514229/64079*(1/2+1/2*5^(1/2))^26 2178309000532242 a001 514229/64079*73681302247^(1/2) 2178309000532242 a001 514229/64079*10749957122^(13/24) 2178309000532242 a001 514229/64079*4106118243^(13/23) 2178309000532242 a001 514229/64079*1568397607^(13/22) 2178309000532242 a001 28657/1149851*1568397607^(19/22) 2178309000532242 a001 514229/64079*599074578^(13/21) 2178309000532242 a001 28657/1149851*599074578^(19/21) 2178309000532242 a001 514229/64079*228826127^(13/20) 2178309000532242 a001 28657/1149851*228826127^(19/20) 2178309000532242 a001 514229/64079*87403803^(13/19) 2178309000532243 a001 514229/64079*33385282^(13/18) 2178309000532252 a001 514229/64079*12752043^(13/17) 2178309000532317 a001 514229/64079*4870847^(13/16) 2178309000532443 a001 433494437/64079*710647^(3/7) 2178309000532751 a001 165580141/64079*710647^(1/2) 2178309000532787 a001 514229/64079*1860498^(13/15) 2178309000532869 a001 53316291173/64079*271443^(1/13) 2178309000533059 a001 63245986/64079*710647^(4/7) 2178309000533368 a001 24157817/64079*710647^(9/14) 2178309000533681 a001 9227465/64079*710647^(5/7) 2178309000533816 a001 5702887/64079*710647^(3/4) 2178309000534019 a001 3524578/64079*710647^(11/14) 2178309000534532 a001 1346269/64079*710647^(6/7) 2178309000534909 a001 692290561769/317811 2178309000535143 a001 20365011074/64079*271443^(2/13) 2178309000536247 a001 514229/64079*710647^(13/14) 2178309000537417 a001 7778742049/64079*271443^(3/13) 2178309000538704 a001 7778742049/271443*39603^(9/22) 2178309000539038 a001 86267571272/64079*103682^(1/24) 2178309000539691 a001 2971215073/64079*271443^(4/13) 2178309000541883 a001 196418/64079*20633239^(4/5) 2178309000541887 a001 28657/439204*141422324^(12/13) 2178309000541887 a001 28657/439204*2537720636^(4/5) 2178309000541887 a001 28657/439204*45537549124^(12/17) 2178309000541887 a001 28657/439204*14662949395604^(4/7) 2178309000541887 a001 28657/439204*(1/2+1/2*5^(1/2))^36 2178309000541887 a001 28657/439204*192900153618^(2/3) 2178309000541887 a001 28657/439204*73681302247^(9/13) 2178309000541887 a001 28657/439204*10749957122^(3/4) 2178309000541887 a001 28657/439204*4106118243^(18/23) 2178309000541887 a001 196418/64079*17393796001^(4/7) 2178309000541887 a001 196418/64079*14662949395604^(4/9) 2178309000541887 a001 196418/64079*(1/2+1/2*5^(1/2))^28 2178309000541887 a001 196418/64079*73681302247^(7/13) 2178309000541887 a001 196418/64079*10749957122^(7/12) 2178309000541887 a001 196418/64079*4106118243^(14/23) 2178309000541887 a001 196418/64079*1568397607^(7/11) 2178309000541887 a001 28657/439204*1568397607^(9/11) 2178309000541887 a001 196418/64079*599074578^(2/3) 2178309000541887 a001 28657/439204*599074578^(6/7) 2178309000541887 a001 196418/64079*228826127^(7/10) 2178309000541887 a001 28657/439204*228826127^(9/10) 2178309000541887 a001 196418/64079*87403803^(14/19) 2178309000541887 a001 28657/439204*87403803^(18/19) 2178309000541888 a001 196418/64079*33385282^(7/9) 2178309000541898 a001 196418/64079*12752043^(14/17) 2178309000541965 a001 1134903170/64079*271443^(5/13) 2178309000541967 a001 196418/64079*4870847^(7/8) 2178309000542474 a001 196418/64079*1860498^(14/15) 2178309000544239 a001 433494437/64079*271443^(6/13) 2178309000545377 a001 267914296/64079*271443^(1/2) 2178309000546514 a001 165580141/64079*271443^(7/13) 2178309000547481 a001 53316291173/64079*103682^(1/12) 2178309000548788 a001 63245986/64079*271443^(8/13) 2178309000551063 a001 24157817/64079*271443^(9/13) 2178309000553341 a001 9227465/64079*271443^(10/13) 2178309000553465 a001 225851433717/167761*15127^(1/20) 2178309000555026 a001 701408733/103682*39603^(6/11) 2178309000555645 a001 3524578/64079*271443^(11/13) 2178309000555924 a001 32951280099/64079*103682^(1/8) 2178309000558125 a001 1346269/64079*271443^(12/13) 2178309000560164 a001 264431464505/121393 2178309000563954 a001 20365011074/710647*39603^(9/22) 2178309000564367 a001 20365011074/64079*103682^(1/6) 2178309000567638 a001 53316291173/1860498*39603^(9/22) 2178309000568176 a001 139583862445/4870847*39603^(9/22) 2178309000568254 a001 365435296162/12752043*39603^(9/22) 2178309000568266 a001 956722026041/33385282*39603^(9/22) 2178309000568267 a001 2504730781961/87403803*39603^(9/22) 2178309000568268 a001 6557470319842/228826127*39603^(9/22) 2178309000568268 a001 10610209857723/370248451*39603^(9/22) 2178309000568268 a001 4052739537881/141422324*39603^(9/22) 2178309000568268 a001 1548008755920/54018521*39603^(9/22) 2178309000568273 a001 591286729879/20633239*39603^(9/22) 2178309000568303 a001 225851433717/7881196*39603^(9/22) 2178309000568508 a001 86267571272/3010349*39603^(9/22) 2178309000569915 a001 32951280099/1149851*39603^(9/22) 2178309000572810 a001 12586269025/64079*103682^(5/24) 2178309000579560 a001 12586269025/439204*39603^(9/22) 2178309000581253 a001 7778742049/64079*103682^(1/4) 2178309000582536 a001 7778742049/167761*39603^(4/11) 2178309000589696 a001 4807526976/64079*103682^(7/24) 2178309000593725 a001 86267571272/64079*39603^(1/22) 2178309000598139 a001 2971215073/64079*103682^(1/3) 2178309000601834 a001 1602508992/90481*39603^(5/11) 2178309000606582 a001 28657*103682^(3/8) 2178309000607962 a001 75025/64079*7881196^(10/11) 2178309000607990 a001 75025/64079*20633239^(6/7) 2178309000607994 a001 75025/64079*141422324^(10/13) 2178309000607994 a001 75025/64079*2537720636^(2/3) 2178309000607994 a001 28657/167761*45537549124^(2/3) 2178309000607994 a001 28657/167761*(1/2+1/2*5^(1/2))^34 2178309000607994 a001 28657/167761*10749957122^(17/24) 2178309000607994 a001 28657/167761*4106118243^(17/23) 2178309000607994 a001 75025/64079*45537549124^(10/17) 2178309000607994 a001 75025/64079*312119004989^(6/11) 2178309000607994 a001 75025/64079*14662949395604^(10/21) 2178309000607994 a001 75025/64079*(1/2+1/2*5^(1/2))^30 2178309000607994 a001 75025/64079*192900153618^(5/9) 2178309000607994 a001 75025/64079*28143753123^(3/5) 2178309000607994 a001 75025/64079*10749957122^(5/8) 2178309000607994 a001 75025/64079*4106118243^(15/23) 2178309000607994 a001 28657/167761*1568397607^(17/22) 2178309000607994 a001 75025/64079*1568397607^(15/22) 2178309000607994 a001 75025/64079*599074578^(5/7) 2178309000607994 a001 28657/167761*599074578^(17/21) 2178309000607994 a001 75025/64079*228826127^(3/4) 2178309000607994 a001 28657/167761*228826127^(17/20) 2178309000607994 a001 75025/64079*87403803^(15/19) 2178309000607994 a001 28657/167761*87403803^(17/19) 2178309000607996 a001 75025/64079*33385282^(5/6) 2178309000607996 a001 28657/167761*33385282^(17/18) 2178309000608006 a001 75025/64079*12752043^(15/17) 2178309000608080 a001 75025/64079*4870847^(15/16) 2178309000615025 a001 1134903170/64079*103682^(5/12) 2178309000618156 a001 433494437/103682*39603^(13/22) 2178309000623469 a001 701408733/64079*103682^(11/24) 2178309000627085 a001 12586269025/710647*39603^(5/11) 2178309000630769 a001 10983760033/620166*39603^(5/11) 2178309000631307 a001 86267571272/4870847*39603^(5/11) 2178309000631385 a001 75283811239/4250681*39603^(5/11) 2178309000631396 a001 591286729879/33385282*39603^(5/11) 2178309000631398 a001 516002918640/29134601*39603^(5/11) 2178309000631398 a001 4052739537881/228826127*39603^(5/11) 2178309000631398 a001 3536736619241/199691526*39603^(5/11) 2178309000631398 a001 6557470319842/370248451*39603^(5/11) 2178309000631398 a001 2504730781961/141422324*39603^(5/11) 2178309000631399 a001 956722026041/54018521*39603^(5/11) 2178309000631403 a001 365435296162/20633239*39603^(5/11) 2178309000631433 a001 139583862445/7881196*39603^(5/11) 2178309000631639 a001 53316291173/3010349*39603^(5/11) 2178309000631912 a001 433494437/64079*103682^(1/2) 2178309000633046 a001 20365011074/1149851*39603^(5/11) 2178309000640355 a001 267914296/64079*103682^(13/24) 2178309000642691 a001 7778742049/439204*39603^(5/11) 2178309000645667 a001 4807526976/167761*39603^(9/22) 2178309000648798 a001 165580141/64079*103682^(7/12) 2178309000656856 a001 53316291173/64079*39603^(1/11) 2178309000657241 a001 102334155/64079*103682^(5/8) 2178309000664965 a001 2971215073/271443*39603^(1/2) 2178309000665684 a001 63245986/64079*103682^(2/3) 2178309000674127 a001 39088169/64079*103682^(17/24) 2178309000681287 a001 133957148/51841*39603^(7/11) 2178309000682571 a001 24157817/64079*103682^(3/4) 2178309000690216 a001 7778742049/710647*39603^(1/2) 2178309000691011 a001 14930352/64079*103682^(19/24) 2178309000692684 a001 3732588/6119*24476^(17/21) 2178309000693900 a001 10182505537/930249*39603^(1/2) 2178309000694437 a001 53316291173/4870847*39603^(1/2) 2178309000694516 a001 139583862445/12752043*39603^(1/2) 2178309000694527 a001 182717648081/16692641*39603^(1/2) 2178309000694529 a001 956722026041/87403803*39603^(1/2) 2178309000694529 a001 2504730781961/228826127*39603^(1/2) 2178309000694529 a001 3278735159921/299537289*39603^(1/2) 2178309000694529 a001 10610209857723/969323029*39603^(1/2) 2178309000694529 a001 4052739537881/370248451*39603^(1/2) 2178309000694529 a001 387002188980/35355581*39603^(1/2) 2178309000694530 a001 591286729879/54018521*39603^(1/2) 2178309000694534 a001 7787980473/711491*39603^(1/2) 2178309000694564 a001 21566892818/1970299*39603^(1/2) 2178309000694769 a001 32951280099/3010349*39603^(1/2) 2178309000696177 a001 12586269025/1149851*39603^(1/2) 2178309000699461 a001 9227465/64079*103682^(5/6) 2178309000705821 a001 1201881744/109801*39603^(1/2) 2178309000707886 a001 5702887/64079*103682^(7/8) 2178309000708798 a001 2971215073/167761*39603^(5/11) 2178309000716378 a001 3524578/64079*103682^(11/12) 2178309000719987 a001 32951280099/64079*39603^(3/22) 2178309000724694 a001 2178309/64079*103682^(23/24) 2178309000728096 a001 1836311903/271443*39603^(6/11) 2178309000733264 a001 50501915873/23184 2178309000744418 a001 165580141/103682*39603^(15/22) 2178309000749407 a001 43133785636/51841*15127^(1/10) 2178309000753346 a001 686789568/101521*39603^(6/11) 2178309000757030 a001 12586269025/1860498*39603^(6/11) 2178309000757568 a001 32951280099/4870847*39603^(6/11) 2178309000757646 a001 86267571272/12752043*39603^(6/11) 2178309000757658 a001 32264490531/4769326*39603^(6/11) 2178309000757659 a001 591286729879/87403803*39603^(6/11) 2178309000757660 a001 1548008755920/228826127*39603^(6/11) 2178309000757660 a001 4052739537881/599074578*39603^(6/11) 2178309000757660 a001 1515744265389/224056801*39603^(6/11) 2178309000757660 a001 6557470319842/969323029*39603^(6/11) 2178309000757660 a001 2504730781961/370248451*39603^(6/11) 2178309000757660 a001 956722026041/141422324*39603^(6/11) 2178309000757661 a001 365435296162/54018521*39603^(6/11) 2178309000757665 a001 139583862445/20633239*39603^(6/11) 2178309000757695 a001 53316291173/7881196*39603^(6/11) 2178309000757900 a001 20365011074/3010349*39603^(6/11) 2178309000759307 a001 7778742049/1149851*39603^(6/11) 2178309000768952 a001 2971215073/439204*39603^(6/11) 2178309000771928 a001 1836311903/167761*39603^(1/2) 2178309000783117 a001 20365011074/64079*39603^(2/11) 2178309000791227 a001 1134903170/271443*39603^(13/22) 2178309000807548 a001 102334155/103682*39603^(8/11) 2178309000816477 a001 2971215073/710647*39603^(13/22) 2178309000820161 a001 7778742049/1860498*39603^(13/22) 2178309000820699 a001 20365011074/4870847*39603^(13/22) 2178309000820777 a001 53316291173/12752043*39603^(13/22) 2178309000820789 a001 139583862445/33385282*39603^(13/22) 2178309000820790 a001 365435296162/87403803*39603^(13/22) 2178309000820790 a001 956722026041/228826127*39603^(13/22) 2178309000820790 a001 2504730781961/599074578*39603^(13/22) 2178309000820790 a001 6557470319842/1568397607*39603^(13/22) 2178309000820790 a001 10610209857723/2537720636*39603^(13/22) 2178309000820790 a001 4052739537881/969323029*39603^(13/22) 2178309000820790 a001 1548008755920/370248451*39603^(13/22) 2178309000820791 a001 591286729879/141422324*39603^(13/22) 2178309000820791 a001 225851433717/54018521*39603^(13/22) 2178309000820796 a001 86267571272/20633239*39603^(13/22) 2178309000820826 a001 32951280099/7881196*39603^(13/22) 2178309000821031 a001 12586269025/3010349*39603^(13/22) 2178309000822438 a001 4807526976/1149851*39603^(13/22) 2178309000832083 a001 1836311903/439204*39603^(13/22) 2178309000835059 a001 1134903170/167761*39603^(6/11) 2178309000846248 a001 12586269025/64079*39603^(5/22) 2178309000854357 a001 233802911/90481*39603^(7/11) 2178309000865836 a001 24157817/24476*24476^(16/21) 2178309000870679 a001 31622993/51841*39603^(17/22) 2178309000879608 a001 1836311903/710647*39603^(7/11) 2178309000883292 a001 267084832/103361*39603^(7/11) 2178309000883829 a001 12586269025/4870847*39603^(7/11) 2178309000883908 a001 10983760033/4250681*39603^(7/11) 2178309000883919 a001 43133785636/16692641*39603^(7/11) 2178309000883921 a001 75283811239/29134601*39603^(7/11) 2178309000883921 a001 591286729879/228826127*39603^(7/11) 2178309000883921 a001 86000486440/33281921*39603^(7/11) 2178309000883921 a001 4052739537881/1568397607*39603^(7/11) 2178309000883921 a001 3536736619241/1368706081*39603^(7/11) 2178309000883921 a001 3278735159921/1268860318*39603^(7/11) 2178309000883921 a001 2504730781961/969323029*39603^(7/11) 2178309000883921 a001 956722026041/370248451*39603^(7/11) 2178309000883921 a001 182717648081/70711162*39603^(7/11) 2178309000883922 a001 139583862445/54018521*39603^(7/11) 2178309000883926 a001 53316291173/20633239*39603^(7/11) 2178309000883956 a001 10182505537/3940598*39603^(7/11) 2178309000884162 a001 7778742049/3010349*39603^(7/11) 2178309000885569 a001 2971215073/1149851*39603^(7/11) 2178309000895214 a001 567451585/219602*39603^(7/11) 2178309000898190 a001 701408733/167761*39603^(13/22) 2178309000909379 a001 7778742049/64079*39603^(3/11) 2178309000917488 a001 433494437/271443*39603^(15/22) 2178309000922477 a001 75283811239/90481*15127^(1/10) 2178309000933810 a001 39088169/103682*39603^(9/11) 2178309000942739 a001 1134903170/710647*39603^(15/22) 2178309000946423 a001 2971215073/1860498*39603^(15/22) 2178309000946960 a001 7778742049/4870847*39603^(15/22) 2178309000947038 a001 20365011074/12752043*39603^(15/22) 2178309000947050 a001 53316291173/33385282*39603^(15/22) 2178309000947052 a001 139583862445/87403803*39603^(15/22) 2178309000947052 a001 365435296162/228826127*39603^(15/22) 2178309000947052 a001 956722026041/599074578*39603^(15/22) 2178309000947052 a001 2504730781961/1568397607*39603^(15/22) 2178309000947052 a001 6557470319842/4106118243*39603^(15/22) 2178309000947052 a001 10610209857723/6643838879*39603^(15/22) 2178309000947052 a001 4052739537881/2537720636*39603^(15/22) 2178309000947052 a001 1548008755920/969323029*39603^(15/22) 2178309000947052 a001 591286729879/370248451*39603^(15/22) 2178309000947052 a001 225851433717/141422324*39603^(15/22) 2178309000947053 a001 86267571272/54018521*39603^(15/22) 2178309000947057 a001 32951280099/20633239*39603^(15/22) 2178309000947087 a001 12586269025/7881196*39603^(15/22) 2178309000947292 a001 4807526976/3010349*39603^(15/22) 2178309000947727 a001 591286729879/710647*15127^(1/10) 2178309000948699 a001 1836311903/1149851*39603^(15/22) 2178309000951411 a001 832040*15127^(1/10) 2178309000951949 a001 4052739537881/4870847*15127^(1/10) 2178309000952027 a001 3536736619241/4250681*15127^(1/10) 2178309000952076 a001 3278735159921/3940598*15127^(1/10) 2178309000952281 a001 2504730781961/3010349*15127^(1/10) 2178309000953688 a001 956722026041/1149851*15127^(1/10) 2178309000958344 a001 701408733/439204*39603^(15/22) 2178309000961321 a001 433494437/167761*39603^(7/11) 2178309000963333 a001 182717648081/219602*15127^(1/10) 2178309000972509 a001 4807526976/64079*39603^(7/22) 2178309000980619 a001 267914296/271443*39603^(8/11) 2178309000991089 a001 7778742049/39603*15127^(1/4) 2178309000996941 a001 24157817/103682*39603^(19/22) 2178309001005869 a001 701408733/710647*39603^(8/11) 2178309001006569 a001 86267571272/64079*15127^(1/20) 2178309001009553 a001 1836311903/1860498*39603^(8/11) 2178309001010091 a001 4807526976/4870847*39603^(8/11) 2178309001010169 a001 12586269025/12752043*39603^(8/11) 2178309001010181 a001 32951280099/33385282*39603^(8/11) 2178309001010182 a001 86267571272/87403803*39603^(8/11) 2178309001010183 a001 225851433717/228826127*39603^(8/11) 2178309001010183 a001 591286729879/599074578*39603^(8/11) 2178309001010183 a001 1548008755920/1568397607*39603^(8/11) 2178309001010183 a001 4052739537881/4106118243*39603^(8/11) 2178309001010183 a001 4807525989/4870846*39603^(8/11) 2178309001010183 a001 6557470319842/6643838879*39603^(8/11) 2178309001010183 a001 2504730781961/2537720636*39603^(8/11) 2178309001010183 a001 956722026041/969323029*39603^(8/11) 2178309001010183 a001 365435296162/370248451*39603^(8/11) 2178309001010183 a001 139583862445/141422324*39603^(8/11) 2178309001010183 a001 53316291173/54018521*39603^(8/11) 2178309001010188 a001 20365011074/20633239*39603^(8/11) 2178309001010218 a001 7778742049/7881196*39603^(8/11) 2178309001010423 a001 2971215073/3010349*39603^(8/11) 2178309001011830 a001 1134903170/1149851*39603^(8/11) 2178309001012808 a001 10182505537/12238*9349^(2/19) 2178309001021475 a001 433494437/439204*39603^(8/11) 2178309001024451 a001 267914296/167761*39603^(15/22) 2178309001029440 a001 139583862445/167761*15127^(1/10) 2178309001035640 a001 2971215073/64079*39603^(4/11) 2178309001038983 a001 39088169/24476*24476^(5/7) 2178309001043749 a001 165580141/271443*39603^(17/22) 2178309001060069 a001 7465176/51841*39603^(10/11) 2178309001061098 a001 28657/64079*(1/2+1/2*5^(1/2))^32 2178309001061098 a001 28657/64079*23725150497407^(1/2) 2178309001061098 a001 28657/64079*73681302247^(8/13) 2178309001061098 a001 28657/64079*10749957122^(2/3) 2178309001061098 a001 28657/64079*4106118243^(16/23) 2178309001061098 a001 28657/64079*1568397607^(8/11) 2178309001061098 a001 28657/64079*599074578^(16/21) 2178309001061098 a001 28657/64079*228826127^(4/5) 2178309001061098 a001 28657/64079*87403803^(16/19) 2178309001061100 a001 28657/64079*33385282^(8/9) 2178309001061110 a001 28657/64079*12752043^(16/17) 2178309001069000 a001 433494437/710647*39603^(17/22) 2178309001072684 a001 567451585/930249*39603^(17/22) 2178309001073221 a001 2971215073/4870847*39603^(17/22) 2178309001073300 a001 7778742049/12752043*39603^(17/22) 2178309001073311 a001 10182505537/16692641*39603^(17/22) 2178309001073313 a001 53316291173/87403803*39603^(17/22) 2178309001073313 a001 139583862445/228826127*39603^(17/22) 2178309001073313 a001 182717648081/299537289*39603^(17/22) 2178309001073313 a001 956722026041/1568397607*39603^(17/22) 2178309001073313 a001 2504730781961/4106118243*39603^(17/22) 2178309001073313 a001 3278735159921/5374978561*39603^(17/22) 2178309001073313 a001 10610209857723/17393796001*39603^(17/22) 2178309001073313 a001 4052739537881/6643838879*39603^(17/22) 2178309001073313 a001 1134903780/1860499*39603^(17/22) 2178309001073313 a001 591286729879/969323029*39603^(17/22) 2178309001073313 a001 225851433717/370248451*39603^(17/22) 2178309001073313 a001 21566892818/35355581*39603^(17/22) 2178309001073314 a001 32951280099/54018521*39603^(17/22) 2178309001073318 a001 1144206275/1875749*39603^(17/22) 2178309001073348 a001 1201881744/1970299*39603^(17/22) 2178309001073554 a001 1836311903/3010349*39603^(17/22) 2178309001074961 a001 701408733/1149851*39603^(17/22) 2178309001084606 a001 66978574/109801*39603^(17/22) 2178309001087582 a001 165580141/167761*39603^(8/11) 2178309001098771 a001 28657*39603^(9/22) 2178309001106880 a001 34111385/90481*39603^(9/11) 2178309001123207 a001 9227465/103682*39603^(21/22) 2178309001132131 a001 267914296/710647*39603^(9/11) 2178309001135815 a001 233802911/620166*39603^(9/11) 2178309001136352 a001 1836311903/4870847*39603^(9/11) 2178309001136431 a001 1602508992/4250681*39603^(9/11) 2178309001136442 a001 12586269025/33385282*39603^(9/11) 2178309001136444 a001 10983760033/29134601*39603^(9/11) 2178309001136444 a001 86267571272/228826127*39603^(9/11) 2178309001136444 a001 267913919/710646*39603^(9/11) 2178309001136444 a001 591286729879/1568397607*39603^(9/11) 2178309001136444 a001 516002918640/1368706081*39603^(9/11) 2178309001136444 a001 4052739537881/10749957122*39603^(9/11) 2178309001136444 a001 3536736619241/9381251041*39603^(9/11) 2178309001136444 a001 6557470319842/17393796001*39603^(9/11) 2178309001136444 a001 2504730781961/6643838879*39603^(9/11) 2178309001136444 a001 956722026041/2537720636*39603^(9/11) 2178309001136444 a001 365435296162/969323029*39603^(9/11) 2178309001136444 a001 139583862445/370248451*39603^(9/11) 2178309001136444 a001 53316291173/141422324*39603^(9/11) 2178309001136445 a001 20365011074/54018521*39603^(9/11) 2178309001136449 a001 7778742049/20633239*39603^(9/11) 2178309001136479 a001 2971215073/7881196*39603^(9/11) 2178309001136684 a001 1134903170/3010349*39603^(9/11) 2178309001138092 a001 433494437/1149851*39603^(9/11) 2178309001147736 a001 165580141/439204*39603^(9/11) 2178309001150713 a001 9303105/15251*39603^(17/22) 2178309001161902 a001 1134903170/64079*39603^(5/11) 2178309001170011 a001 63245986/271443*39603^(19/22) 2178309001185703 a001 38580030720/17711 2178309001195261 a001 165580141/710647*39603^(19/22) 2178309001198945 a001 433494437/1860498*39603^(19/22) 2178309001199483 a001 1134903170/4870847*39603^(19/22) 2178309001199561 a001 2971215073/12752043*39603^(19/22) 2178309001199573 a001 7778742049/33385282*39603^(19/22) 2178309001199574 a001 20365011074/87403803*39603^(19/22) 2178309001199575 a001 53316291173/228826127*39603^(19/22) 2178309001199575 a001 139583862445/599074578*39603^(19/22) 2178309001199575 a001 365435296162/1568397607*39603^(19/22) 2178309001199575 a001 956722026041/4106118243*39603^(19/22) 2178309001199575 a001 2504730781961/10749957122*39603^(19/22) 2178309001199575 a001 6557470319842/28143753123*39603^(19/22) 2178309001199575 a001 10610209857723/45537549124*39603^(19/22) 2178309001199575 a001 4052739537881/17393796001*39603^(19/22) 2178309001199575 a001 1548008755920/6643838879*39603^(19/22) 2178309001199575 a001 591286729879/2537720636*39603^(19/22) 2178309001199575 a001 225851433717/969323029*39603^(19/22) 2178309001199575 a001 86267571272/370248451*39603^(19/22) 2178309001199575 a001 63246219/271444*39603^(19/22) 2178309001199575 a001 12586269025/54018521*39603^(19/22) 2178309001199580 a001 4807526976/20633239*39603^(19/22) 2178309001199610 a001 1836311903/7881196*39603^(19/22) 2178309001199815 a001 701408733/3010349*39603^(19/22) 2178309001201222 a001 267914296/1149851*39603^(19/22) 2178309001210867 a001 102334155/439204*39603^(19/22) 2178309001212133 a001 31622993/12238*24476^(2/3) 2178309001213843 a001 63245986/167761*39603^(9/11) 2178309001225032 a001 701408733/64079*39603^(1/2) 2178309001225381 a001 53316291173/103682*15127^(3/20) 2178309001233141 a001 39088169/271443*39603^(10/11) 2178309001258392 a001 14619165/101521*39603^(10/11) 2178309001262076 a001 133957148/930249*39603^(10/11) 2178309001262614 a001 701408733/4870847*39603^(10/11) 2178309001262692 a001 1836311903/12752043*39603^(10/11) 2178309001262703 a001 14930208/103681*39603^(10/11) 2178309001262705 a001 12586269025/87403803*39603^(10/11) 2178309001262705 a001 32951280099/228826127*39603^(10/11) 2178309001262705 a001 43133785636/299537289*39603^(10/11) 2178309001262705 a001 32264490531/224056801*39603^(10/11) 2178309001262705 a001 591286729879/4106118243*39603^(10/11) 2178309001262705 a001 774004377960/5374978561*39603^(10/11) 2178309001262705 a001 4052739537881/28143753123*39603^(10/11) 2178309001262705 a001 1515744265389/10525900321*39603^(10/11) 2178309001262705 a001 3278735159921/22768774562*39603^(10/11) 2178309001262705 a001 2504730781961/17393796001*39603^(10/11) 2178309001262705 a001 956722026041/6643838879*39603^(10/11) 2178309001262705 a001 182717648081/1268860318*39603^(10/11) 2178309001262705 a001 139583862445/969323029*39603^(10/11) 2178309001262705 a001 53316291173/370248451*39603^(10/11) 2178309001262706 a001 10182505537/70711162*39603^(10/11) 2178309001262706 a001 7778742049/54018521*39603^(10/11) 2178309001262711 a001 2971215073/20633239*39603^(10/11) 2178309001262740 a001 567451585/3940598*39603^(10/11) 2178309001262946 a001 433494437/3010349*39603^(10/11) 2178309001264353 a001 165580141/1149851*39603^(10/11) 2178309001273998 a001 31622993/219602*39603^(10/11) 2178309001276974 a001 39088169/167761*39603^(19/22) 2178309001288163 a001 433494437/64079*39603^(6/11) 2178309001296273 a001 24157817/271443*39603^(21/22) 2178309001311830 a001 3524578/9349*9349^(18/19) 2178309001321523 a001 63245986/710647*39603^(21/22) 2178309001325207 a001 165580141/1860498*39603^(21/22) 2178309001325744 a001 433494437/4870847*39603^(21/22) 2178309001325823 a001 1134903170/12752043*39603^(21/22) 2178309001325834 a001 2971215073/33385282*39603^(21/22) 2178309001325836 a001 7778742049/87403803*39603^(21/22) 2178309001325836 a001 20365011074/228826127*39603^(21/22) 2178309001325836 a001 53316291173/599074578*39603^(21/22) 2178309001325836 a001 139583862445/1568397607*39603^(21/22) 2178309001325836 a001 365435296162/4106118243*39603^(21/22) 2178309001325836 a001 956722026041/10749957122*39603^(21/22) 2178309001325836 a001 2504730781961/28143753123*39603^(21/22) 2178309001325836 a001 6557470319842/73681302247*39603^(21/22) 2178309001325836 a001 10610209857723/119218851371*39603^(21/22) 2178309001325836 a001 4052739537881/45537549124*39603^(21/22) 2178309001325836 a001 1548008755920/17393796001*39603^(21/22) 2178309001325836 a001 591286729879/6643838879*39603^(21/22) 2178309001325836 a001 225851433717/2537720636*39603^(21/22) 2178309001325836 a001 86267571272/969323029*39603^(21/22) 2178309001325836 a001 32951280099/370248451*39603^(21/22) 2178309001325836 a001 12586269025/141422324*39603^(21/22) 2178309001325837 a001 4807526976/54018521*39603^(21/22) 2178309001325841 a001 1836311903/20633239*39603^(21/22) 2178309001325871 a001 3524667/39604*39603^(21/22) 2178309001326076 a001 267914296/3010349*39603^(21/22) 2178309001327484 a001 102334155/1149851*39603^(21/22) 2178309001337128 a001 39088169/439204*39603^(21/22) 2178309001340106 a001 24157817/167761*39603^(10/11) 2178309001351294 a001 267914296/64079*39603^(13/22) 2178309001355090 a001 38580030723/17711 2178309001355194 a001 7778742049/15127*5778^(1/6) 2178309001385281 a001 102334155/24476*24476^(13/21) 2178309001388967 a001 2/17711*(1/2+1/2*5^(1/2))^54 2178309001398452 a001 139583862445/271443*15127^(3/20) 2178309001403234 a001 14930352/167761*39603^(21/22) 2178309001411552 a001 38580030724/17711 2178309001414424 a001 165580141/64079*39603^(7/11) 2178309001423702 a001 365435296162/710647*15127^(3/20) 2178309001427386 a001 956722026041/1860498*15127^(3/20) 2178309001427924 a001 2504730781961/4870847*15127^(3/20) 2178309001428002 a001 6557470319842/12752043*15127^(3/20) 2178309001428021 a001 10610209857723/20633239*15127^(3/20) 2178309001428051 a001 4052739537881/7881196*15127^(3/20) 2178309001428256 a001 1548008755920/3010349*15127^(3/20) 2178309001429663 a001 514229*15127^(3/20) 2178309001439308 a001 225851433717/439204*15127^(3/20) 2178309001467064 a001 1602508992/13201*15127^(3/10) 2178309001468014 a001 38580030725/17711 2178309001477555 a001 102334155/64079*39603^(15/22) 2178309001482544 a001 53316291173/64079*15127^(1/10) 2178309001505415 a001 86267571272/167761*15127^(3/20) 2178309001540686 a001 63245986/64079*39603^(8/11) 2178309001558430 a001 165580141/24476*24476^(4/7) 2178309001603816 a001 39088169/64079*39603^(17/22) 2178309001666948 a001 24157817/64079*39603^(9/11) 2178309001701356 a001 32951280099/103682*15127^(1/5) 2178309001730076 a001 14930352/64079*39603^(19/22) 2178309001731579 a001 10946*24476^(11/21) 2178309001793214 a001 9227465/64079*39603^(10/11) 2178309001856326 a001 5702887/64079*39603^(21/22) 2178309001874426 a001 86267571272/271443*15127^(1/5) 2178309001899677 a001 317811*15127^(1/5) 2178309001903361 a001 591286729879/1860498*15127^(1/5) 2178309001903898 a001 1548008755920/4870847*15127^(1/5) 2178309001903977 a001 4052739537881/12752043*15127^(1/5) 2178309001903988 a001 1515744265389/4769326*15127^(1/5) 2178309001903995 a001 6557470319842/20633239*15127^(1/5) 2178309001904025 a001 2504730781961/7881196*15127^(1/5) 2178309001904231 a001 956722026041/3010349*15127^(1/5) 2178309001904727 a001 433494437/24476*24476^(10/21) 2178309001905638 a001 365435296162/1149851*15127^(1/5) 2178309001915283 a001 139583862445/439204*15127^(1/5) 2178309001919710 a001 38580030733/17711 2178309001943039 a001 2971215073/39603*15127^(7/20) 2178309001958519 a001 32951280099/64079*15127^(3/20) 2178309001981390 a001 53316291173/167761*15127^(1/5) 2178309002077876 a001 701408733/24476*24476^(3/7) 2178309002177331 a001 10182505537/51841*15127^(1/4) 2178309002236082 a001 53316291173/39603*5778^(1/18) 2178309002247339 a001 10946/39603*141422324^(11/13) 2178309002247339 a001 10946/39603*2537720636^(11/15) 2178309002247339 a001 10946/39603*45537549124^(11/17) 2178309002247339 a001 10946/39603*312119004989^(3/5) 2178309002247339 a001 10946/39603*14662949395604^(11/21) 2178309002247339 a001 10946/39603*(1/2+1/2*5^(1/2))^33 2178309002247339 a001 10946/39603*192900153618^(11/18) 2178309002247339 a001 10946/39603*10749957122^(11/16) 2178309002247339 a001 10946/39603*1568397607^(3/4) 2178309002247339 a001 10946/39603*599074578^(11/14) 2178309002247339 a001 17711/24476*(1/2+1/2*5^(1/2))^31 2178309002247339 a001 17711/24476*9062201101803^(1/2) 2178309002247341 a001 10946/39603*33385282^(11/12) 2178309002251025 a001 567451585/12238*24476^(8/21) 2178309002324511 a001 32951280099/24476*9349^(1/19) 2178309002350401 a001 53316291173/271443*15127^(1/4) 2178309002375652 a001 139583862445/710647*15127^(1/4) 2178309002379336 a001 182717648081/930249*15127^(1/4) 2178309002379873 a001 956722026041/4870847*15127^(1/4) 2178309002379951 a001 2504730781961/12752043*15127^(1/4) 2178309002379963 a001 3278735159921/16692641*15127^(1/4) 2178309002379966 a001 10610209857723/54018521*15127^(1/4) 2178309002379970 a001 4052739537881/20633239*15127^(1/4) 2178309002380000 a001 387002188980/1970299*15127^(1/4) 2178309002380205 a001 591286729879/3010349*15127^(1/4) 2178309002381612 a001 225851433717/1149851*15127^(1/4) 2178309002391257 a001 196418*15127^(1/4) 2178309002419014 a001 1836311903/39603*15127^(2/5) 2178309002424173 a001 1836311903/24476*24476^(1/3) 2178309002434493 a001 20365011074/64079*15127^(1/5) 2178309002457364 a001 32951280099/167761*15127^(1/4) 2178309002597322 a001 2971215073/24476*24476^(2/7) 2178309002623484 a001 5702887/9349*9349^(17/19) 2178309002653305 a001 12586269025/103682*15127^(3/10) 2178309002770471 a001 1201881744/6119*24476^(5/21) 2178309002826376 a001 121393*15127^(3/10) 2178309002851626 a001 86267571272/710647*15127^(3/10) 2178309002855310 a001 75283811239/620166*15127^(3/10) 2178309002855848 a001 591286729879/4870847*15127^(3/10) 2178309002855926 a001 516002918640/4250681*15127^(3/10) 2178309002855938 a001 4052739537881/33385282*15127^(3/10) 2178309002855939 a001 3536736619241/29134601*15127^(3/10) 2178309002855940 a001 6557470319842/54018521*15127^(3/10) 2178309002855945 a001 2504730781961/20633239*15127^(3/10) 2178309002855975 a001 956722026041/7881196*15127^(3/10) 2178309002856180 a001 365435296162/3010349*15127^(3/10) 2178309002857587 a001 139583862445/1149851*15127^(3/10) 2178309002867232 a001 53316291173/439204*15127^(3/10) 2178309002894988 a001 1134903170/39603*15127^(9/20) 2178309002910468 a001 12586269025/64079*15127^(1/4) 2178309002933339 a001 20365011074/167761*15127^(3/10) 2178309002943620 a001 7778742049/24476*24476^(4/21) 2178309003105698 a001 62423801102/28657 2178309003116768 a001 12586269025/24476*24476^(1/7) 2178309003129017 a001 1346269/24476*64079^(22/23) 2178309003129280 a001 7778742049/103682*15127^(7/20) 2178309003151750 a001 2178309/24476*64079^(21/23) 2178309003174942 a001 1762289/12238*64079^(20/23) 2178309003197959 a001 5702887/24476*64079^(19/23) 2178309003221043 a001 9227465/24476*64079^(18/23) 2178309003244102 a001 3732588/6119*64079^(17/23) 2178309003267170 a001 24157817/24476*64079^(16/23) 2178309003289917 a001 10182505537/12238*24476^(2/21) 2178309003290234 a001 39088169/24476*64079^(15/23) 2178309003302350 a001 20365011074/271443*15127^(7/20) 2178309003313300 a001 31622993/12238*64079^(14/23) 2178309003327601 a001 53316291173/710647*15127^(7/20) 2178309003331285 a001 139583862445/1860498*15127^(7/20) 2178309003331822 a001 365435296162/4870847*15127^(7/20) 2178309003331901 a001 956722026041/12752043*15127^(7/20) 2178309003331912 a001 2504730781961/33385282*15127^(7/20) 2178309003331914 a001 6557470319842/87403803*15127^(7/20) 2178309003331914 a001 10610209857723/141422324*15127^(7/20) 2178309003331915 a001 4052739537881/54018521*15127^(7/20) 2178309003331919 a001 140728068720/1875749*15127^(7/20) 2178309003331949 a001 591286729879/7881196*15127^(7/20) 2178309003332155 a001 225851433717/3010349*15127^(7/20) 2178309003333562 a001 86267571272/1149851*15127^(7/20) 2178309003336365 a001 102334155/24476*64079^(13/23) 2178309003343207 a001 32951280099/439204*15127^(7/20) 2178309003359430 a001 165580141/24476*64079^(12/23) 2178309003370963 a001 17711*15127^(1/2) 2178309003382496 a001 10946*64079^(11/23) 2178309003386443 a001 7778742049/64079*15127^(3/10) 2178309003405561 a001 433494437/24476*64079^(10/23) 2178309003409314 a001 75025*15127^(7/20) 2178309003422323 a001 139583862445/103682*5778^(1/18) 2178309003428626 a001 701408733/24476*64079^(9/23) 2178309003433580 a001 5473/51841*2537720636^(7/9) 2178309003433580 a001 5473/51841*17393796001^(5/7) 2178309003433580 a001 5473/51841*312119004989^(7/11) 2178309003433580 a001 5473/51841*14662949395604^(5/9) 2178309003433580 a001 5473/51841*(1/2+1/2*5^(1/2))^35 2178309003433580 a001 5473/51841*505019158607^(5/8) 2178309003433580 a001 5473/51841*28143753123^(7/10) 2178309003433580 a001 5473/51841*599074578^(5/6) 2178309003433580 a001 11592/6119*(1/2+1/2*5^(1/2))^29 2178309003433580 a001 11592/6119*1322157322203^(1/2) 2178309003433580 a001 5473/51841*228826127^(7/8) 2178309003451692 a001 567451585/12238*64079^(8/23) 2178309003463066 a001 32951280099/24476*24476^(1/21) 2178309003474757 a001 1836311903/24476*64079^(7/23) 2178309003497822 a001 2971215073/24476*64079^(6/23) 2178309003520888 a001 1201881744/6119*64079^(5/23) 2178309003543953 a001 7778742049/24476*64079^(4/23) 2178309003558813 a001 163427632992/75025 2178309003567018 a001 12586269025/24476*64079^(3/23) 2178309003574330 a001 1762289/12238*167761^(4/5) 2178309003589775 a001 39088169/24476*167761^(3/5) 2178309003590084 a001 10182505537/12238*64079^(2/23) 2178309003595393 a001 365435296162/271443*5778^(1/18) 2178309003605255 a001 46368*15127^(2/5) 2178309003605255 a001 433494437/24476*167761^(2/5) 2178309003606622 a001 121393/24476*7881196^(9/11) 2178309003606651 a001 121393/24476*141422324^(9/13) 2178309003606651 a001 10946/271443*(1/2+1/2*5^(1/2))^37 2178309003606651 a001 121393/24476*2537720636^(3/5) 2178309003606651 a001 121393/24476*45537549124^(9/17) 2178309003606651 a001 121393/24476*817138163596^(9/19) 2178309003606651 a001 121393/24476*14662949395604^(3/7) 2178309003606651 a001 121393/24476*(1/2+1/2*5^(1/2))^27 2178309003606651 a001 121393/24476*192900153618^(1/2) 2178309003606651 a001 121393/24476*10749957122^(9/16) 2178309003606651 a001 121393/24476*599074578^(9/14) 2178309003606652 a001 121393/24476*33385282^(3/4) 2178309003607217 a001 121393/24476*1860498^(9/10) 2178309003613149 a001 32951280099/24476*64079^(1/23) 2178309003620644 a001 956722026041/710647*5778^(1/18) 2178309003620735 a001 1201881744/6119*167761^(1/5) 2178309003624328 a001 2504730781961/1860498*5778^(1/18) 2178309003624865 a001 6557470319842/4870847*5778^(1/18) 2178309003624922 a001 213929548937/98209 2178309003624992 a001 10610209857723/7881196*5778^(1/18) 2178309003625197 a001 1346269*5778^(1/18) 2178309003626605 a001 1548008755920/1149851*5778^(1/18) 2178309003627340 a001 2178309/24476*439204^(7/9) 2178309003627824 a001 514229/24476*439204^(8/9) 2178309003628691 a001 9227465/24476*439204^(2/3) 2178309003629941 a001 39088169/24476*439204^(5/9) 2178309003631196 a001 165580141/24476*439204^(4/9) 2178309003631898 a001 10959/844*20633239^(5/7) 2178309003631901 a001 10946/710647*2537720636^(13/15) 2178309003631901 a001 10946/710647*45537549124^(13/17) 2178309003631901 a001 10946/710647*14662949395604^(13/21) 2178309003631901 a001 10946/710647*(1/2+1/2*5^(1/2))^39 2178309003631901 a001 10946/710647*192900153618^(13/18) 2178309003631901 a001 10946/710647*73681302247^(3/4) 2178309003631901 a001 10946/710647*10749957122^(13/16) 2178309003631901 a001 10946/710647*599074578^(13/14) 2178309003631901 a001 10959/844*2537720636^(5/9) 2178309003631901 a001 10959/844*312119004989^(5/11) 2178309003631901 a001 10959/844*(1/2+1/2*5^(1/2))^25 2178309003631901 a001 10959/844*3461452808002^(5/12) 2178309003631901 a001 10959/844*28143753123^(1/2) 2178309003631901 a001 10959/844*228826127^(5/8) 2178309003632426 a001 10959/844*1860498^(5/6) 2178309003632450 a001 701408733/24476*439204^(1/3) 2178309003633705 a001 2971215073/24476*439204^(2/9) 2178309003634567 a001 1120149660630/514229 2178309003634960 a001 12586269025/24476*439204^(1/9) 2178309003635585 a001 5473/930249*(1/2+1/2*5^(1/2))^41 2178309003635585 a001 208010/6119*(1/2+1/2*5^(1/2))^23 2178309003635585 a001 208010/6119*4106118243^(1/2) 2178309003635974 a001 2932589884016/1346269 2178309003636100 a001 2178309/24476*7881196^(7/11) 2178309003636120 a001 2178309/24476*20633239^(3/5) 2178309003636123 a001 2178309/24476*141422324^(7/13) 2178309003636123 a001 10946/4870847*(1/2+1/2*5^(1/2))^43 2178309003636123 a001 2178309/24476*2537720636^(7/15) 2178309003636123 a001 2178309/24476*17393796001^(3/7) 2178309003636123 a001 2178309/24476*45537549124^(7/17) 2178309003636123 a001 2178309/24476*14662949395604^(1/3) 2178309003636123 a001 2178309/24476*(1/2+1/2*5^(1/2))^21 2178309003636123 a001 2178309/24476*192900153618^(7/18) 2178309003636123 a001 2178309/24476*10749957122^(7/16) 2178309003636123 a001 2178309/24476*599074578^(1/2) 2178309003636124 a001 2178309/24476*33385282^(7/12) 2178309003636179 a001 43132696581/19801 2178309003636198 a001 39088169/24476*7881196^(5/11) 2178309003636201 a001 9227465/24476*7881196^(6/11) 2178309003636201 a001 10946/12752043*45537549124^(15/17) 2178309003636201 a001 10946/12752043*312119004989^(9/11) 2178309003636201 a001 10946/12752043*14662949395604^(5/7) 2178309003636201 a001 10946/12752043*(1/2+1/2*5^(1/2))^45 2178309003636201 a001 10946/12752043*192900153618^(5/6) 2178309003636201 a001 10946/12752043*28143753123^(9/10) 2178309003636201 a001 10946/12752043*10749957122^(15/16) 2178309003636201 a001 5702887/24476*817138163596^(1/3) 2178309003636201 a001 5702887/24476*(1/2+1/2*5^(1/2))^19 2178309003636201 a001 5702887/24476*87403803^(1/2) 2178309003636202 a001 165580141/24476*7881196^(4/11) 2178309003636203 a001 10946*7881196^(1/3) 2178309003636205 a001 701408733/24476*7881196^(3/11) 2178309003636208 a001 2971215073/24476*7881196^(2/11) 2178309003636209 a001 1546174622326/709805 2178309003636211 a001 12586269025/24476*7881196^(1/11) 2178309003636212 a001 39088169/24476*20633239^(3/7) 2178309003636213 a001 5473/16692641*(1/2+1/2*5^(1/2))^47 2178309003636213 a001 3732588/6119*45537549124^(1/3) 2178309003636213 a001 3732588/6119*(1/2+1/2*5^(1/2))^17 2178309003636213 a001 31622993/12238*20633239^(2/5) 2178309003636213 a001 433494437/24476*20633239^(2/7) 2178309003636214 a001 1836311903/24476*20633239^(1/5) 2178309003636214 a001 52623190279296/24157817 2178309003636214 a001 1201881744/6119*20633239^(1/7) 2178309003636214 a001 39088169/24476*141422324^(5/13) 2178309003636214 a001 10946/87403803*14662949395604^(7/9) 2178309003636214 a001 10946/87403803*505019158607^(7/8) 2178309003636214 a001 39088169/24476*2537720636^(1/3) 2178309003636214 a001 39088169/24476*45537549124^(5/17) 2178309003636214 a001 39088169/24476*312119004989^(3/11) 2178309003636214 a001 39088169/24476*14662949395604^(5/21) 2178309003636214 a001 39088169/24476*(1/2+1/2*5^(1/2))^15 2178309003636214 a001 39088169/24476*192900153618^(5/18) 2178309003636214 a001 39088169/24476*28143753123^(3/10) 2178309003636214 a001 39088169/24476*10749957122^(5/16) 2178309003636214 a001 39088169/24476*599074578^(5/14) 2178309003636214 a001 39088169/24476*228826127^(3/8) 2178309003636214 a001 68884650373825/31622993 2178309003636214 a001 102334155/24476*141422324^(1/3) 2178309003636215 a001 10946/228826127*14662949395604^(17/21) 2178309003636215 a001 10946/228826127*192900153618^(17/18) 2178309003636215 a001 102334155/24476*(1/2+1/2*5^(1/2))^13 2178309003636215 a001 102334155/24476*73681302247^(1/4) 2178309003636215 a001 701408733/24476*141422324^(3/13) 2178309003636215 a001 360684711963654/165580141 2178309003636215 a001 165580141/24476*141422324^(4/13) 2178309003636215 a001 2971215073/24476*141422324^(2/13) 2178309003636215 a001 944284835143312/433494437 2178309003636215 a001 12586269025/24476*141422324^(1/13) 2178309003636215 a001 10946/1568397607*3461452808002^(11/12) 2178309003636215 a001 1236084896733141/567451585 2178309003636215 a001 10946/4106118243*14662949395604^(19/21) 2178309003636215 a001 6472224545255534/2971215073 2178309003636215 a001 1303423372484640/598364773 2178309003636215 a001 22180643490822713/10182505537 2178309003636215 a001 116139357102635958/53316291173 2178309003636215 a001 10946*312119004989^(1/5) 2178309003636215 a001 71778070120990532/32951280099 2178309003636215 a001 27416783139345106/12586269025 2178309003636215 a001 10946/17393796001*14662949395604^(20/21) 2178309003636215 a001 5236139648522393/2403763488 2178309003636215 a001 4000054751789252/1836311903 2178309003636215 a001 10946*1568397607^(1/4) 2178309003636215 a001 5473/1268860318*14662949395604^(8/9) 2178309003636215 a001 17167246722730/7880997 2178309003636215 a001 10946/969323029*14662949395604^(6/7) 2178309003636215 a001 701408733/24476*2537720636^(1/5) 2178309003636215 a001 701408733/24476*45537549124^(3/17) 2178309003636215 a001 701408733/24476*14662949395604^(1/7) 2178309003636215 a001 701408733/24476*(1/2+1/2*5^(1/2))^9 2178309003636215 a001 701408733/24476*192900153618^(1/6) 2178309003636215 a001 701408733/24476*10749957122^(3/16) 2178309003636215 a001 1836311903/24476*17393796001^(1/7) 2178309003636215 a001 1836311903/24476*14662949395604^(1/9) 2178309003636215 a001 1836311903/24476*(1/2+1/2*5^(1/2))^7 2178309003636215 a001 1201881744/6119*2537720636^(1/9) 2178309003636215 a001 12586269025/24476*2537720636^(1/15) 2178309003636215 a001 1201881744/6119*312119004989^(1/11) 2178309003636215 a001 1201881744/6119*(1/2+1/2*5^(1/2))^5 2178309003636215 a001 1201881744/6119*28143753123^(1/10) 2178309003636215 a001 12586269025/24476*45537549124^(1/17) 2178309003636215 a001 12586269025/24476*14662949395604^(1/21) 2178309003636215 a001 12586269025/24476*(1/2+1/2*5^(1/2))^3 2178309003636215 a001 12586269025/24476*10749957122^(1/16) 2178309003636215 a001 32951280099/48952+32951280099/48952*5^(1/2) 2178309003636215 a001 53316291173/24476 2178309003636215 a001 10182505537/12238*(1/2+1/2*5^(1/2))^2 2178309003636215 a001 10182505537/12238*10749957122^(1/24) 2178309003636215 a001 2971215073/24476*2537720636^(2/15) 2178309003636215 a001 10182505537/12238*4106118243^(1/23) 2178309003636215 a001 7778742049/24476*(1/2+1/2*5^(1/2))^4 2178309003636215 a001 7778742049/24476*23725150497407^(1/16) 2178309003636215 a001 7778742049/24476*73681302247^(1/13) 2178309003636215 a001 7778742049/24476*10749957122^(1/12) 2178309003636215 a001 7778742049/24476*4106118243^(2/23) 2178309003636215 a001 10182505537/12238*1568397607^(1/22) 2178309003636215 a001 2971215073/24476*45537549124^(2/17) 2178309003636215 a001 2971215073/24476*14662949395604^(2/21) 2178309003636215 a001 2971215073/24476*(1/2+1/2*5^(1/2))^6 2178309003636215 a001 2971215073/24476*10749957122^(1/8) 2178309003636215 a001 2971215073/24476*4106118243^(3/23) 2178309003636215 a001 7778742049/24476*1568397607^(1/11) 2178309003636215 a001 2971215073/24476*1568397607^(3/22) 2178309003636215 a001 10182505537/12238*599074578^(1/21) 2178309003636215 a001 567451585/12238*(1/2+1/2*5^(1/2))^8 2178309003636215 a001 567451585/12238*23725150497407^(1/8) 2178309003636215 a001 567451585/12238*73681302247^(2/13) 2178309003636215 a001 567451585/12238*10749957122^(1/6) 2178309003636215 a001 567451585/12238*4106118243^(4/23) 2178309003636215 a001 701408733/24476*599074578^(3/14) 2178309003636215 a001 12586269025/24476*599074578^(1/14) 2178309003636215 a001 567451585/12238*1568397607^(2/11) 2178309003636215 a001 7778742049/24476*599074578^(2/21) 2178309003636215 a001 1836311903/24476*599074578^(1/6) 2178309003636215 a001 2971215073/24476*599074578^(1/7) 2178309003636215 a001 567451585/12238*599074578^(4/21) 2178309003636215 a001 10182505537/12238*228826127^(1/20) 2178309003636215 a001 433494437/24476*2537720636^(2/9) 2178309003636215 a001 433494437/24476*312119004989^(2/11) 2178309003636215 a001 433494437/24476*(1/2+1/2*5^(1/2))^10 2178309003636215 a001 433494437/24476*28143753123^(1/5) 2178309003636215 a001 433494437/24476*10749957122^(5/24) 2178309003636215 a001 433494437/24476*4106118243^(5/23) 2178309003636215 a001 433494437/24476*1568397607^(5/22) 2178309003636215 a001 433494437/24476*599074578^(5/21) 2178309003636215 a001 7778742049/24476*228826127^(1/10) 2178309003636215 a001 1201881744/6119*228826127^(1/8) 2178309003636215 a001 2971215073/24476*228826127^(3/20) 2178309003636215 a001 567451585/12238*228826127^(1/5) 2178309003636215 a001 10946/370248451*23725150497407^(13/16) 2178309003636215 a001 10946/370248451*505019158607^(13/14) 2178309003636215 a001 433494437/24476*228826127^(1/4) 2178309003636215 a001 10182505537/12238*87403803^(1/19) 2178309003636215 a001 165580141/24476*2537720636^(4/15) 2178309003636215 a001 165580141/24476*45537549124^(4/17) 2178309003636215 a001 165580141/24476*14662949395604^(4/21) 2178309003636215 a001 165580141/24476*(1/2+1/2*5^(1/2))^12 2178309003636215 a001 165580141/24476*192900153618^(2/9) 2178309003636215 a001 165580141/24476*73681302247^(3/13) 2178309003636215 a001 165580141/24476*10749957122^(1/4) 2178309003636215 a001 165580141/24476*4106118243^(6/23) 2178309003636215 a001 165580141/24476*1568397607^(3/11) 2178309003636215 a001 165580141/24476*599074578^(2/7) 2178309003636215 a001 165580141/24476*228826127^(3/10) 2178309003636215 a001 7778742049/24476*87403803^(2/19) 2178309003636215 a001 222915411216004/102334155 2178309003636215 a001 2971215073/24476*87403803^(3/19) 2178309003636215 a001 567451585/12238*87403803^(4/19) 2178309003636215 a001 433494437/24476*87403803^(5/19) 2178309003636215 a001 5473/70711162*312119004989^(10/11) 2178309003636215 a001 5473/70711162*3461452808002^(5/6) 2178309003636215 a001 165580141/24476*87403803^(6/19) 2178309003636215 a001 10182505537/12238*33385282^(1/18) 2178309003636215 a001 31622993/12238*17393796001^(2/7) 2178309003636215 a001 31622993/12238*14662949395604^(2/9) 2178309003636215 a001 31622993/12238*(1/2+1/2*5^(1/2))^14 2178309003636215 a001 31622993/12238*505019158607^(1/4) 2178309003636215 a001 31622993/12238*10749957122^(7/24) 2178309003636215 a001 31622993/12238*4106118243^(7/23) 2178309003636215 a001 31622993/12238*1568397607^(7/22) 2178309003636215 a001 31622993/12238*599074578^(1/3) 2178309003636215 a001 31622993/12238*228826127^(7/20) 2178309003636215 a001 12586269025/24476*33385282^(1/12) 2178309003636215 a001 31622993/12238*87403803^(7/19) 2178309003636215 a001 7778742049/24476*33385282^(1/9) 2178309003636215 a001 85146110468354/39088169 2178309003636215 a001 2971215073/24476*33385282^(1/6) 2178309003636215 a001 567451585/12238*33385282^(2/9) 2178309003636215 a001 701408733/24476*33385282^(1/4) 2178309003636215 a001 39088169/24476*33385282^(5/12) 2178309003636215 a001 433494437/24476*33385282^(5/18) 2178309003636215 a001 165580141/24476*33385282^(1/3) 2178309003636215 a001 10946/54018521*45537549124^(16/17) 2178309003636215 a001 10946/54018521*14662949395604^(16/21) 2178309003636215 a001 10946/54018521*192900153618^(8/9) 2178309003636215 a001 10946/54018521*73681302247^(12/13) 2178309003636215 a001 24157817/24476*(1/2+1/2*5^(1/2))^16 2178309003636215 a001 24157817/24476*23725150497407^(1/4) 2178309003636215 a001 24157817/24476*73681302247^(4/13) 2178309003636215 a001 24157817/24476*10749957122^(1/3) 2178309003636215 a001 24157817/24476*4106118243^(8/23) 2178309003636215 a001 24157817/24476*1568397607^(4/11) 2178309003636215 a001 24157817/24476*599074578^(8/21) 2178309003636215 a001 24157817/24476*228826127^(2/5) 2178309003636215 a001 10182505537/12238*12752043^(1/17) 2178309003636215 a001 24157817/24476*87403803^(8/19) 2178309003636215 a001 31622993/12238*33385282^(7/18) 2178309003636216 a001 7778742049/24476*12752043^(2/17) 2178309003636216 a001 24157817/24476*33385282^(4/9) 2178309003636217 a001 16261460094529/7465176 2178309003636217 a001 2971215073/24476*12752043^(3/17) 2178309003636218 a001 567451585/12238*12752043^(4/17) 2178309003636219 a001 433494437/24476*12752043^(5/17) 2178309003636219 a001 3732588/6119*12752043^(1/2) 2178309003636219 a001 165580141/24476*12752043^(6/17) 2178309003636220 a001 9227465/24476*141422324^(6/13) 2178309003636220 a001 10946/20633239*(1/2+1/2*5^(1/2))^46 2178309003636220 a001 10946/20633239*10749957122^(23/24) 2178309003636220 a001 9227465/24476*2537720636^(2/5) 2178309003636220 a001 9227465/24476*45537549124^(6/17) 2178309003636220 a001 9227465/24476*14662949395604^(2/7) 2178309003636220 a001 9227465/24476*(1/2+1/2*5^(1/2))^18 2178309003636220 a001 9227465/24476*192900153618^(1/3) 2178309003636220 a001 9227465/24476*10749957122^(3/8) 2178309003636220 a001 9227465/24476*4106118243^(9/23) 2178309003636220 a001 9227465/24476*1568397607^(9/22) 2178309003636220 a001 9227465/24476*599074578^(3/7) 2178309003636220 a001 9227465/24476*228826127^(9/20) 2178309003636220 a001 9227465/24476*87403803^(9/19) 2178309003636220 a001 31622993/12238*12752043^(7/17) 2178309003636220 a001 10182505537/12238*4870847^(1/16) 2178309003636221 a001 9227465/24476*33385282^(1/2) 2178309003636222 a001 24157817/24476*12752043^(8/17) 2178309003636226 a001 7778742049/24476*4870847^(1/8) 2178309003636227 a001 9227465/24476*12752043^(9/17) 2178309003636228 a001 12422650098820/5702887 2178309003636232 a001 2971215073/24476*4870847^(3/16) 2178309003636238 a001 567451585/12238*4870847^(1/4) 2178309003636243 a001 433494437/24476*4870847^(5/16) 2178309003636247 a001 1762289/12238*20633239^(4/7) 2178309003636249 a001 165580141/24476*4870847^(3/8) 2178309003636249 a001 591286729879/439204*5778^(1/18) 2178309003636250 a001 5473/3940598*312119004989^(4/5) 2178309003636250 a001 5473/3940598*(1/2+1/2*5^(1/2))^44 2178309003636250 a001 5473/3940598*23725150497407^(11/16) 2178309003636250 a001 5473/3940598*73681302247^(11/13) 2178309003636250 a001 5473/3940598*10749957122^(11/12) 2178309003636250 a001 5473/3940598*4106118243^(22/23) 2178309003636250 a001 1762289/12238*2537720636^(4/9) 2178309003636250 a001 1762289/12238*(1/2+1/2*5^(1/2))^20 2178309003636250 a001 1762289/12238*23725150497407^(5/16) 2178309003636250 a001 1762289/12238*505019158607^(5/14) 2178309003636250 a001 1762289/12238*73681302247^(5/13) 2178309003636250 a001 1762289/12238*28143753123^(2/5) 2178309003636250 a001 1762289/12238*10749957122^(5/12) 2178309003636250 a001 1762289/12238*4106118243^(10/23) 2178309003636250 a001 1762289/12238*1568397607^(5/11) 2178309003636250 a001 1762289/12238*599074578^(10/21) 2178309003636250 a001 1762289/12238*228826127^(1/2) 2178309003636250 a001 1762289/12238*87403803^(10/19) 2178309003636251 a001 1762289/12238*33385282^(5/9) 2178309003636255 a001 31622993/12238*4870847^(7/16) 2178309003636257 a001 10182505537/12238*1860498^(1/15) 2178309003636258 a001 1762289/12238*12752043^(10/17) 2178309003636261 a001 24157817/24476*4870847^(1/2) 2178309003636271 a001 9227465/24476*4870847^(9/16) 2178309003636277 a001 12586269025/24476*1860498^(1/10) 2178309003636298 a001 7778742049/24476*1860498^(2/15) 2178309003636306 a001 4745030107402/2178309 2178309003636307 a001 1762289/12238*4870847^(5/8) 2178309003636319 a001 1201881744/6119*1860498^(1/6) 2178309003636340 a001 2971215073/24476*1860498^(1/5) 2178309003636382 a001 567451585/12238*1860498^(4/15) 2178309003636403 a001 701408733/24476*1860498^(3/10) 2178309003636424 a001 433494437/24476*1860498^(1/3) 2178309003636432 a001 1346269/24476*7881196^(2/3) 2178309003636455 a001 10946/3010349*2537720636^(14/15) 2178309003636455 a001 10946/3010349*17393796001^(6/7) 2178309003636455 a001 10946/3010349*45537549124^(14/17) 2178309003636455 a001 10946/3010349*817138163596^(14/19) 2178309003636455 a001 10946/3010349*14662949395604^(2/3) 2178309003636455 a001 10946/3010349*(1/2+1/2*5^(1/2))^42 2178309003636455 a001 10946/3010349*505019158607^(3/4) 2178309003636455 a001 10946/3010349*192900153618^(7/9) 2178309003636455 a001 10946/3010349*10749957122^(7/8) 2178309003636455 a001 10946/3010349*4106118243^(21/23) 2178309003636455 a001 10946/3010349*1568397607^(21/22) 2178309003636455 a001 1346269/24476*312119004989^(2/5) 2178309003636455 a001 1346269/24476*(1/2+1/2*5^(1/2))^22 2178309003636455 a001 1346269/24476*10749957122^(11/24) 2178309003636455 a001 1346269/24476*4106118243^(11/23) 2178309003636455 a001 1346269/24476*1568397607^(1/2) 2178309003636455 a001 1346269/24476*599074578^(11/21) 2178309003636455 a001 1346269/24476*228826127^(11/20) 2178309003636455 a001 1346269/24476*87403803^(11/19) 2178309003636456 a001 1346269/24476*33385282^(11/18) 2178309003636464 a001 1346269/24476*12752043^(11/17) 2178309003636466 a001 165580141/24476*1860498^(2/5) 2178309003636508 a001 31622993/12238*1860498^(7/15) 2178309003636518 a001 1346269/24476*4870847^(11/16) 2178309003636523 a001 10182505537/12238*710647^(1/14) 2178309003636529 a001 39088169/24476*1860498^(1/2) 2178309003636551 a001 24157817/24476*1860498^(8/15) 2178309003636563 a001 2178309/24476*1860498^(7/10) 2178309003636597 a001 9227465/24476*1860498^(3/5) 2178309003636669 a001 1762289/12238*1860498^(2/3) 2178309003636831 a001 7778742049/24476*710647^(1/7) 2178309003636844 a001 906220111693/416020 2178309003636916 a001 1346269/24476*1860498^(11/15) 2178309003637139 a001 2971215073/24476*710647^(3/14) 2178309003637293 a001 1836311903/24476*710647^(1/4) 2178309003637447 a001 567451585/12238*710647^(2/7) 2178309003637755 a001 433494437/24476*710647^(5/14) 2178309003637837 a001 514229/24476*7881196^(8/11) 2178309003637862 a001 514229/24476*141422324^(8/13) 2178309003637862 a001 10946/1149851*2537720636^(8/9) 2178309003637862 a001 10946/1149851*312119004989^(8/11) 2178309003637862 a001 10946/1149851*(1/2+1/2*5^(1/2))^40 2178309003637862 a001 10946/1149851*23725150497407^(5/8) 2178309003637862 a001 10946/1149851*73681302247^(10/13) 2178309003637862 a001 10946/1149851*28143753123^(4/5) 2178309003637862 a001 10946/1149851*10749957122^(5/6) 2178309003637862 a001 10946/1149851*4106118243^(20/23) 2178309003637862 a001 10946/1149851*1568397607^(10/11) 2178309003637862 a001 10946/1149851*599074578^(20/21) 2178309003637862 a001 514229/24476*2537720636^(8/15) 2178309003637862 a001 514229/24476*45537549124^(8/17) 2178309003637862 a001 514229/24476*14662949395604^(8/21) 2178309003637862 a001 514229/24476*(1/2+1/2*5^(1/2))^24 2178309003637862 a001 514229/24476*192900153618^(4/9) 2178309003637862 a001 514229/24476*73681302247^(6/13) 2178309003637862 a001 514229/24476*10749957122^(1/2) 2178309003637862 a001 514229/24476*4106118243^(12/23) 2178309003637862 a001 514229/24476*1568397607^(6/11) 2178309003637862 a001 514229/24476*599074578^(4/7) 2178309003637862 a001 514229/24476*228826127^(3/5) 2178309003637862 a001 514229/24476*87403803^(12/19) 2178309003637863 a001 514229/24476*33385282^(2/3) 2178309003637872 a001 514229/24476*12752043^(12/17) 2178309003637931 a001 514229/24476*4870847^(3/4) 2178309003638063 a001 165580141/24476*710647^(3/7) 2178309003638366 a001 514229/24476*1860498^(4/5) 2178309003638371 a001 31622993/12238*710647^(1/2) 2178309003638489 a001 10182505537/12238*271443^(1/13) 2178309003638680 a001 24157817/24476*710647^(4/7) 2178309003638993 a001 9227465/24476*710647^(9/14) 2178309003639331 a001 1762289/12238*710647^(5/7) 2178309003639358 a001 2178309/24476*710647^(3/4) 2178309003639844 a001 1346269/24476*710647^(11/14) 2178309003640528 a001 53253120212/24447 2178309003640763 a001 7778742049/24476*271443^(2/13) 2178309003641559 a001 514229/24476*710647^(6/7) 2178309003643037 a001 2971215073/24476*271443^(3/13) 2178309003644658 a001 32951280099/24476*103682^(1/24) 2178309003645311 a001 567451585/12238*271443^(4/13) 2178309003647507 a001 98209/12238*141422324^(2/3) 2178309003647507 a001 5473/219602*817138163596^(2/3) 2178309003647507 a001 5473/219602*(1/2+1/2*5^(1/2))^38 2178309003647507 a001 5473/219602*10749957122^(19/24) 2178309003647507 a001 5473/219602*4106118243^(19/23) 2178309003647507 a001 5473/219602*1568397607^(19/22) 2178309003647507 a001 5473/219602*599074578^(19/21) 2178309003647507 a001 98209/12238*(1/2+1/2*5^(1/2))^26 2178309003647507 a001 98209/12238*73681302247^(1/2) 2178309003647507 a001 98209/12238*10749957122^(13/24) 2178309003647507 a001 98209/12238*4106118243^(13/23) 2178309003647507 a001 98209/12238*1568397607^(13/22) 2178309003647507 a001 98209/12238*599074578^(13/21) 2178309003647507 a001 98209/12238*228826127^(13/20) 2178309003647507 a001 5473/219602*228826127^(19/20) 2178309003647507 a001 98209/12238*87403803^(13/19) 2178309003647508 a001 98209/12238*33385282^(13/18) 2178309003647517 a001 98209/12238*12752043^(13/17) 2178309003647582 a001 98209/12238*4870847^(13/16) 2178309003647585 a001 433494437/24476*271443^(5/13) 2178309003648052 a001 98209/12238*1860498^(13/15) 2178309003649859 a001 165580141/24476*271443^(6/13) 2178309003650996 a001 102334155/24476*271443^(1/2) 2178309003651512 a001 98209/12238*710647^(13/14) 2178309003652134 a001 31622993/12238*271443^(7/13) 2178309003653101 a001 10182505537/12238*103682^(1/12) 2178309003654409 a001 24157817/24476*271443^(8/13) 2178309003656687 a001 9227465/24476*271443^(9/13) 2178309003658991 a001 1762289/12238*271443^(10/13) 2178309003661471 a001 1346269/24476*271443^(11/13) 2178309003661544 a001 12586269025/24476*103682^(1/8) 2178309003665152 a001 514229/24476*271443^(12/13) 2178309003665779 a001 264431464882/121393 2178309003669987 a001 7778742049/24476*103682^(1/6) 2178309003678430 a001 1201881744/6119*103682^(5/24) 2178309003686873 a001 2971215073/24476*103682^(1/4) 2178309003695316 a001 1836311903/24476*103682^(7/24) 2178309003699345 a001 32951280099/24476*39603^(1/22) 2178309003702356 a001 225851433717/167761*5778^(1/18) 2178309003703759 a001 567451585/12238*103682^(1/3) 2178309003712202 a001 701408733/24476*103682^(3/8) 2178309003713610 a001 75025/24476*20633239^(4/5) 2178309003713614 a001 10946/167761*141422324^(12/13) 2178309003713614 a001 10946/167761*2537720636^(4/5) 2178309003713614 a001 10946/167761*45537549124^(12/17) 2178309003713614 a001 10946/167761*14662949395604^(4/7) 2178309003713614 a001 10946/167761*(1/2+1/2*5^(1/2))^36 2178309003713614 a001 10946/167761*505019158607^(9/14) 2178309003713614 a001 10946/167761*192900153618^(2/3) 2178309003713614 a001 10946/167761*73681302247^(9/13) 2178309003713614 a001 10946/167761*10749957122^(3/4) 2178309003713614 a001 10946/167761*4106118243^(18/23) 2178309003713614 a001 10946/167761*1568397607^(9/11) 2178309003713614 a001 10946/167761*599074578^(6/7) 2178309003713614 a001 75025/24476*17393796001^(4/7) 2178309003713614 a001 75025/24476*14662949395604^(4/9) 2178309003713614 a001 75025/24476*(1/2+1/2*5^(1/2))^28 2178309003713614 a001 75025/24476*73681302247^(7/13) 2178309003713614 a001 75025/24476*10749957122^(7/12) 2178309003713614 a001 75025/24476*4106118243^(14/23) 2178309003713614 a001 75025/24476*1568397607^(7/11) 2178309003713614 a001 75025/24476*599074578^(2/3) 2178309003713614 a001 75025/24476*228826127^(7/10) 2178309003713614 a001 10946/167761*228826127^(9/10) 2178309003713614 a001 75025/24476*87403803^(14/19) 2178309003713614 a001 10946/167761*87403803^(18/19) 2178309003713615 a001 75025/24476*33385282^(7/9) 2178309003713625 a001 75025/24476*12752043^(14/17) 2178309003713694 a001 75025/24476*4870847^(7/8) 2178309003714201 a001 75025/24476*1860498^(14/15) 2178309003720645 a001 433494437/24476*103682^(5/12) 2178309003729089 a001 10946*103682^(11/24) 2178309003737532 a001 165580141/24476*103682^(1/2) 2178309003745975 a001 102334155/24476*103682^(13/24) 2178309003754418 a001 31622993/12238*103682^(7/12) 2178309003762476 a001 10182505537/12238*39603^(1/11) 2178309003762861 a001 39088169/24476*103682^(5/8) 2178309003771305 a001 24157817/24476*103682^(2/3) 2178309003778325 a001 12586269025/271443*15127^(2/5) 2178309003779745 a001 3732588/6119*103682^(17/24) 2178309003788195 a001 9227465/24476*103682^(3/4) 2178309003796620 a001 5702887/24476*103682^(19/24) 2178309003803576 a001 32951280099/710647*15127^(2/5) 2178309003805111 a001 1762289/12238*103682^(5/6) 2178309003807260 a001 43133785636/930249*15127^(2/5) 2178309003807797 a001 225851433717/4870847*15127^(2/5) 2178309003807876 a001 591286729879/12752043*15127^(2/5) 2178309003807887 a001 774004377960/16692641*15127^(2/5) 2178309003807889 a001 4052739537881/87403803*15127^(2/5) 2178309003807889 a001 225749145909/4868641*15127^(2/5) 2178309003807889 a001 3278735159921/70711162*15127^(2/5) 2178309003807890 a001 2504730781961/54018521*15127^(2/5) 2178309003807894 a001 956722026041/20633239*15127^(2/5) 2178309003807924 a001 182717648081/3940598*15127^(2/5) 2178309003808129 a001 139583862445/3010349*15127^(2/5) 2178309003809537 a001 53316291173/1149851*15127^(2/5) 2178309003813428 a001 2178309/24476*103682^(7/8) 2178309003819181 a001 10182505537/219602*15127^(2/5) 2178309003822203 a001 1346269/24476*103682^(11/12) 2178309003825607 a001 12586269025/24476*39603^(3/22) 2178309003829776 a001 208010/6119*103682^(23/24) 2178309003838854 a001 50501915945/23184 2178309003846938 a001 433494437/39603*15127^(11/20) 2178309003862418 a001 4807526976/64079*15127^(7/20) 2178309003885288 a001 7778742049/167761*15127^(2/5) 2178309003888737 a001 7778742049/24476*39603^(2/11) 2178309003935206 a001 9227465/9349*9349^(16/19) 2178309003951868 a001 1201881744/6119*39603^(5/22) 2178309004014999 a001 2971215073/24476*39603^(3/11) 2178309004078129 a001 1836311903/24476*39603^(7/22) 2178309004081230 a001 2971215073/103682*15127^(9/20) 2178309004112189 a001 32951280099/24476*15127^(1/20) 2178309004141260 a001 567451585/12238*39603^(4/11) 2178309004155460 a001 86267571272/64079*5778^(1/18) 2178309004166686 a001 28657/24476*7881196^(10/11) 2178309004166713 a001 28657/24476*20633239^(6/7) 2178309004166718 a001 28657/24476*141422324^(10/13) 2178309004166718 a001 10946/64079*45537549124^(2/3) 2178309004166718 a001 10946/64079*(1/2+1/2*5^(1/2))^34 2178309004166718 a001 10946/64079*10749957122^(17/24) 2178309004166718 a001 10946/64079*4106118243^(17/23) 2178309004166718 a001 10946/64079*1568397607^(17/22) 2178309004166718 a001 10946/64079*599074578^(17/21) 2178309004166718 a001 28657/24476*2537720636^(2/3) 2178309004166718 a001 28657/24476*45537549124^(10/17) 2178309004166718 a001 28657/24476*312119004989^(6/11) 2178309004166718 a001 28657/24476*14662949395604^(10/21) 2178309004166718 a001 28657/24476*(1/2+1/2*5^(1/2))^30 2178309004166718 a001 28657/24476*192900153618^(5/9) 2178309004166718 a001 28657/24476*28143753123^(3/5) 2178309004166718 a001 28657/24476*10749957122^(5/8) 2178309004166718 a001 28657/24476*4106118243^(15/23) 2178309004166718 a001 28657/24476*1568397607^(15/22) 2178309004166718 a001 28657/24476*599074578^(5/7) 2178309004166718 a001 10946/64079*228826127^(17/20) 2178309004166718 a001 28657/24476*228826127^(3/4) 2178309004166718 a001 28657/24476*87403803^(15/19) 2178309004166718 a001 10946/64079*87403803^(17/19) 2178309004166719 a001 28657/24476*33385282^(5/6) 2178309004166720 a001 10946/64079*33385282^(17/18) 2178309004166730 a001 28657/24476*12752043^(15/17) 2178309004166804 a001 28657/24476*4870847^(15/16) 2178309004204391 a001 701408733/24476*39603^(9/22) 2178309004254300 a001 7778742049/271443*15127^(9/20) 2178309004267522 a001 433494437/24476*39603^(5/11) 2178309004279550 a001 20365011074/710647*15127^(9/20) 2178309004283234 a001 53316291173/1860498*15127^(9/20) 2178309004283772 a001 139583862445/4870847*15127^(9/20) 2178309004283850 a001 365435296162/12752043*15127^(9/20) 2178309004283862 a001 956722026041/33385282*15127^(9/20) 2178309004283863 a001 2504730781961/87403803*15127^(9/20) 2178309004283864 a001 6557470319842/228826127*15127^(9/20) 2178309004283864 a001 10610209857723/370248451*15127^(9/20) 2178309004283864 a001 4052739537881/141422324*15127^(9/20) 2178309004283864 a001 1548008755920/54018521*15127^(9/20) 2178309004283869 a001 591286729879/20633239*15127^(9/20) 2178309004283899 a001 225851433717/7881196*15127^(9/20) 2178309004284104 a001 86267571272/3010349*15127^(9/20) 2178309004285511 a001 32951280099/1149851*15127^(9/20) 2178309004295156 a001 12586269025/439204*15127^(9/20) 2178309004322912 a001 267914296/39603*15127^(3/5) 2178309004330652 a001 10946*39603^(1/2) 2178309004338392 a001 2971215073/64079*15127^(2/5) 2178309004361263 a001 4807526976/167761*15127^(9/20) 2178309004393783 a001 165580141/24476*39603^(6/11) 2178309004456914 a001 102334155/24476*39603^(13/22) 2178309004520045 a001 31622993/12238*39603^(7/11) 2178309004557204 a001 1836311903/103682*15127^(1/2) 2178309004583175 a001 39088169/24476*39603^(15/22) 2178309004588164 a001 10182505537/12238*15127^(1/10) 2178309004646307 a001 24157817/24476*39603^(8/11) 2178309004709435 a001 3732588/6119*39603^(17/22) 2178309004730275 a001 1602508992/90481*15127^(1/2) 2178309004755525 a001 12586269025/710647*15127^(1/2) 2178309004759209 a001 10983760033/620166*15127^(1/2) 2178309004759747 a001 86267571272/4870847*15127^(1/2) 2178309004759825 a001 75283811239/4250681*15127^(1/2) 2178309004759836 a001 591286729879/33385282*15127^(1/2) 2178309004759838 a001 516002918640/29134601*15127^(1/2) 2178309004759838 a001 4052739537881/228826127*15127^(1/2) 2178309004759838 a001 3536736619241/199691526*15127^(1/2) 2178309004759838 a001 6557470319842/370248451*15127^(1/2) 2178309004759839 a001 2504730781961/141422324*15127^(1/2) 2178309004759839 a001 956722026041/54018521*15127^(1/2) 2178309004759844 a001 365435296162/20633239*15127^(1/2) 2178309004759874 a001 139583862445/7881196*15127^(1/2) 2178309004760079 a001 53316291173/3010349*15127^(1/2) 2178309004761486 a001 20365011074/1149851*15127^(1/2) 2178309004771131 a001 7778742049/439204*15127^(1/2) 2178309004772572 a001 9227465/24476*39603^(9/11) 2178309004798887 a001 165580141/39603*15127^(13/20) 2178309004814367 a001 28657*15127^(9/20) 2178309004825933 a001 7778742049/9349*3571^(2/17) 2178309004835685 a001 5702887/24476*39603^(19/22) 2178309004837238 a001 2971215073/167761*15127^(1/2) 2178309004898864 a001 1762289/12238*39603^(10/11) 2178309004961868 a001 2178309/24476*39603^(21/22) 2178309004980060 a001 686789568/2161*5778^(2/9) 2178309005025125 a001 433483492/199 2178309005033179 a001 567451585/51841*15127^(11/20) 2178309005064139 a001 12586269025/24476*15127^(3/20) 2178309005206249 a001 2971215073/271443*15127^(11/20) 2178309005231500 a001 7778742049/710647*15127^(11/20) 2178309005235184 a001 10182505537/930249*15127^(11/20) 2178309005235721 a001 53316291173/4870847*15127^(11/20) 2178309005235800 a001 139583862445/12752043*15127^(11/20) 2178309005235811 a001 182717648081/16692641*15127^(11/20) 2178309005235813 a001 956722026041/87403803*15127^(11/20) 2178309005235813 a001 2504730781961/228826127*15127^(11/20) 2178309005235813 a001 3278735159921/299537289*15127^(11/20) 2178309005235813 a001 10610209857723/969323029*15127^(11/20) 2178309005235813 a001 4052739537881/370248451*15127^(11/20) 2178309005235813 a001 387002188980/35355581*15127^(11/20) 2178309005235814 a001 591286729879/54018521*15127^(11/20) 2178309005235818 a001 7787980473/711491*15127^(11/20) 2178309005235848 a001 21566892818/1970299*15127^(11/20) 2178309005236054 a001 32951280099/3010349*15127^(11/20) 2178309005237461 a001 12586269025/1149851*15127^(11/20) 2178309005246902 a001 14930352/9349*9349^(15/19) 2178309005247106 a001 1201881744/109801*15127^(11/20) 2178309005274862 a001 34111385/13201*15127^(7/10) 2178309005290342 a001 1134903170/64079*15127^(1/2) 2178309005313213 a001 1836311903/167761*15127^(11/20) 2178309005509154 a001 701408733/103682*15127^(3/5) 2178309005540113 a001 7778742049/24476*15127^(1/5) 2178309005682224 a001 1836311903/271443*15127^(3/5) 2178309005707475 a001 686789568/101521*15127^(3/5) 2178309005711159 a001 12586269025/1860498*15127^(3/5) 2178309005711696 a001 32951280099/4870847*15127^(3/5) 2178309005711774 a001 86267571272/12752043*15127^(3/5) 2178309005711786 a001 32264490531/4769326*15127^(3/5) 2178309005711788 a001 591286729879/87403803*15127^(3/5) 2178309005711788 a001 1548008755920/228826127*15127^(3/5) 2178309005711788 a001 4052739537881/599074578*15127^(3/5) 2178309005711788 a001 1515744265389/224056801*15127^(3/5) 2178309005711788 a001 6557470319842/969323029*15127^(3/5) 2178309005711788 a001 2504730781961/370248451*15127^(3/5) 2178309005711788 a001 956722026041/141422324*15127^(3/5) 2178309005711789 a001 365435296162/54018521*15127^(3/5) 2178309005711793 a001 139583862445/20633239*15127^(3/5) 2178309005711823 a001 53316291173/7881196*15127^(3/5) 2178309005712028 a001 20365011074/3010349*15127^(3/5) 2178309005713435 a001 7778742049/1149851*15127^(3/5) 2178309005723080 a001 2971215073/439204*15127^(3/5) 2178309005750837 a001 63245986/39603*15127^(3/4) 2178309005766316 a001 701408733/64079*15127^(11/20) 2178309005789187 a001 1134903170/167761*15127^(3/5) 2178309005860947 a001 10983760033/13201*5778^(1/9) 2178309005985128 a001 433494437/103682*15127^(13/20) 2178309006016088 a001 1201881744/6119*15127^(1/4) 2178309006158199 a001 1134903170/271443*15127^(13/20) 2178309006183449 a001 2971215073/710647*15127^(13/20) 2178309006187133 a001 7778742049/1860498*15127^(13/20) 2178309006187671 a001 20365011074/4870847*15127^(13/20) 2178309006187749 a001 53316291173/12752043*15127^(13/20) 2178309006187761 a001 139583862445/33385282*15127^(13/20) 2178309006187762 a001 365435296162/87403803*15127^(13/20) 2178309006187763 a001 956722026041/228826127*15127^(13/20) 2178309006187763 a001 2504730781961/599074578*15127^(13/20) 2178309006187763 a001 6557470319842/1568397607*15127^(13/20) 2178309006187763 a001 10610209857723/2537720636*15127^(13/20) 2178309006187763 a001 4052739537881/969323029*15127^(13/20) 2178309006187763 a001 1548008755920/370248451*15127^(13/20) 2178309006187763 a001 591286729879/141422324*15127^(13/20) 2178309006187763 a001 225851433717/54018521*15127^(13/20) 2178309006187768 a001 86267571272/20633239*15127^(13/20) 2178309006187798 a001 32951280099/7881196*15127^(13/20) 2178309006188003 a001 12586269025/3010349*15127^(13/20) 2178309006189410 a001 4807526976/1149851*15127^(13/20) 2178309006199055 a001 1836311903/439204*15127^(13/20) 2178309006226811 a001 39088169/39603*15127^(4/5) 2178309006242291 a001 433494437/64079*15127^(3/5) 2178309006265162 a001 701408733/167761*15127^(13/20) 2178309006357145 r009 Re(z^3+c),c=-23/82+7/22*I,n=6 2178309006461103 a001 133957148/51841*15127^(7/10) 2178309006492063 a001 2971215073/24476*15127^(3/10) 2178309006558608 a001 24157817/9349*9349^(14/19) 2178309006634173 a001 233802911/90481*15127^(7/10) 2178309006659424 a001 1836311903/710647*15127^(7/10) 2178309006663108 a001 267084832/103361*15127^(7/10) 2178309006663645 a001 12586269025/4870847*15127^(7/10) 2178309006663724 a001 10983760033/4250681*15127^(7/10) 2178309006663735 a001 43133785636/16692641*15127^(7/10) 2178309006663737 a001 75283811239/29134601*15127^(7/10) 2178309006663737 a001 591286729879/228826127*15127^(7/10) 2178309006663737 a001 86000486440/33281921*15127^(7/10) 2178309006663737 a001 4052739537881/1568397607*15127^(7/10) 2178309006663737 a001 3536736619241/1368706081*15127^(7/10) 2178309006663737 a001 3278735159921/1268860318*15127^(7/10) 2178309006663737 a001 2504730781961/969323029*15127^(7/10) 2178309006663737 a001 956722026041/370248451*15127^(7/10) 2178309006663737 a001 182717648081/70711162*15127^(7/10) 2178309006663738 a001 139583862445/54018521*15127^(7/10) 2178309006663742 a001 53316291173/20633239*15127^(7/10) 2178309006663772 a001 10182505537/3940598*15127^(7/10) 2178309006663978 a001 7778742049/3010349*15127^(7/10) 2178309006665385 a001 2971215073/1149851*15127^(7/10) 2178309006675030 a001 567451585/219602*15127^(7/10) 2178309006702787 a001 24157817/39603*15127^(17/20) 2178309006718266 a001 267914296/64079*15127^(13/20) 2178309006741137 a001 433494437/167761*15127^(7/10) 2178309006937078 a001 165580141/103682*15127^(3/4) 2178309006968038 a001 1836311903/24476*15127^(7/20) 2178309007047189 a001 43133785636/51841*5778^(1/9) 2178309007110148 a001 433494437/271443*15127^(3/4) 2178309007135399 a001 1134903170/710647*15127^(3/4) 2178309007139083 a001 2971215073/1860498*15127^(3/4) 2178309007139620 a001 7778742049/4870847*15127^(3/4) 2178309007139699 a001 20365011074/12752043*15127^(3/4) 2178309007139710 a001 53316291173/33385282*15127^(3/4) 2178309007139712 a001 139583862445/87403803*15127^(3/4) 2178309007139712 a001 365435296162/228826127*15127^(3/4) 2178309007139712 a001 956722026041/599074578*15127^(3/4) 2178309007139712 a001 2504730781961/1568397607*15127^(3/4) 2178309007139712 a001 6557470319842/4106118243*15127^(3/4) 2178309007139712 a001 10610209857723/6643838879*15127^(3/4) 2178309007139712 a001 4052739537881/2537720636*15127^(3/4) 2178309007139712 a001 1548008755920/969323029*15127^(3/4) 2178309007139712 a001 591286729879/370248451*15127^(3/4) 2178309007139712 a001 225851433717/141422324*15127^(3/4) 2178309007139713 a001 86267571272/54018521*15127^(3/4) 2178309007139717 a001 32951280099/20633239*15127^(3/4) 2178309007139747 a001 12586269025/7881196*15127^(3/4) 2178309007139952 a001 4807526976/3010349*15127^(3/4) 2178309007141360 a001 1836311903/1149851*15127^(3/4) 2178309007151004 a001 701408733/439204*15127^(3/4) 2178309007178759 a001 4976784/13201*15127^(9/10) 2178309007194241 a001 165580141/64079*15127^(7/10) 2178309007217111 a001 267914296/167761*15127^(3/4) 2178309007220259 a001 75283811239/90481*5778^(1/9) 2178309007245509 a001 591286729879/710647*5778^(1/9) 2178309007249193 a001 832040*5778^(1/9) 2178309007249731 a001 4052739537881/4870847*5778^(1/9) 2178309007249809 a001 3536736619241/4250681*5778^(1/9) 2178309007249858 a001 3278735159921/3940598*5778^(1/9) 2178309007250063 a001 2504730781961/3010349*5778^(1/9) 2178309007251470 a001 956722026041/1149851*5778^(1/9) 2178309007261080 a001 32951280099/24476*5778^(1/18) 2178309007261115 a001 182717648081/219602*5778^(1/9) 2178309007272338 a001 5473/12238*(1/2+1/2*5^(1/2))^32 2178309007272338 a001 5473/12238*23725150497407^(1/2) 2178309007272338 a001 5473/12238*505019158607^(4/7) 2178309007272338 a001 5473/12238*73681302247^(8/13) 2178309007272338 a001 5473/12238*10749957122^(2/3) 2178309007272338 a001 5473/12238*4106118243^(16/23) 2178309007272338 a001 5473/12238*1568397607^(8/11) 2178309007272338 a001 5473/12238*599074578^(16/21) 2178309007272338 a001 5473/12238*228826127^(4/5) 2178309007272338 a001 5473/12238*87403803^(16/19) 2178309007272340 a001 5473/12238*33385282^(8/9) 2178309007272350 a001 5473/12238*12752043^(16/17) 2178309007327222 a001 139583862445/167761*5778^(1/9) 2178309007413052 a001 102334155/103682*15127^(4/5) 2178309007444012 a001 567451585/12238*15127^(2/5) 2178309007586123 a001 267914296/271443*15127^(4/5) 2178309007611373 a001 701408733/710647*15127^(4/5) 2178309007615057 a001 1836311903/1860498*15127^(4/5) 2178309007615595 a001 4807526976/4870847*15127^(4/5) 2178309007615673 a001 12586269025/12752043*15127^(4/5) 2178309007615685 a001 32951280099/33385282*15127^(4/5) 2178309007615686 a001 86267571272/87403803*15127^(4/5) 2178309007615687 a001 225851433717/228826127*15127^(4/5) 2178309007615687 a001 591286729879/599074578*15127^(4/5) 2178309007615687 a001 1548008755920/1568397607*15127^(4/5) 2178309007615687 a001 4052739537881/4106118243*15127^(4/5) 2178309007615687 a001 4807525989/4870846*15127^(4/5) 2178309007615687 a001 6557470319842/6643838879*15127^(4/5) 2178309007615687 a001 2504730781961/2537720636*15127^(4/5) 2178309007615687 a001 956722026041/969323029*15127^(4/5) 2178309007615687 a001 365435296162/370248451*15127^(4/5) 2178309007615687 a001 139583862445/141422324*15127^(4/5) 2178309007615687 a001 53316291173/54018521*15127^(4/5) 2178309007615692 a001 20365011074/20633239*15127^(4/5) 2178309007615722 a001 7778742049/7881196*15127^(4/5) 2178309007615927 a001 2971215073/3010349*15127^(4/5) 2178309007617334 a001 1134903170/1149851*15127^(4/5) 2178309007626979 a001 433494437/439204*15127^(4/5) 2178309007654740 a001 9227465/39603*15127^(19/20) 2178309007670215 a001 102334155/64079*15127^(3/4) 2178309007693086 a001 165580141/167761*15127^(4/5) 2178309007780326 a001 53316291173/64079*5778^(1/9) 2178309007870310 a001 4181*9349^(13/19) 2178309007889027 a001 31622993/51841*15127^(17/20) 2178309007919987 a001 701408733/24476*15127^(9/20) 2178309008062098 a001 165580141/271443*15127^(17/20) 2178309008087348 a001 433494437/710647*15127^(17/20) 2178309008091032 a001 567451585/930249*15127^(17/20) 2178309008091570 a001 2971215073/4870847*15127^(17/20) 2178309008091648 a001 7778742049/12752043*15127^(17/20) 2178309008091659 a001 10182505537/16692641*15127^(17/20) 2178309008091661 a001 53316291173/87403803*15127^(17/20) 2178309008091661 a001 139583862445/228826127*15127^(17/20) 2178309008091661 a001 182717648081/299537289*15127^(17/20) 2178309008091661 a001 956722026041/1568397607*15127^(17/20) 2178309008091661 a001 2504730781961/4106118243*15127^(17/20) 2178309008091661 a001 3278735159921/5374978561*15127^(17/20) 2178309008091661 a001 10610209857723/17393796001*15127^(17/20) 2178309008091661 a001 4052739537881/6643838879*15127^(17/20) 2178309008091661 a001 1134903780/1860499*15127^(17/20) 2178309008091661 a001 591286729879/969323029*15127^(17/20) 2178309008091661 a001 225851433717/370248451*15127^(17/20) 2178309008091662 a001 21566892818/35355581*15127^(17/20) 2178309008091662 a001 32951280099/54018521*15127^(17/20) 2178309008091667 a001 1144206275/1875749*15127^(17/20) 2178309008091696 a001 1201881744/1970299*15127^(17/20) 2178309008091902 a001 1836311903/3010349*15127^(17/20) 2178309008093309 a001 701408733/1149851*15127^(17/20) 2178309008102954 a001 66978574/109801*15127^(17/20) 2178309008130081 a001 267932008/123 2178309008146190 a001 63245986/64079*15127^(4/5) 2178309008169061 a001 9303105/15251*15127^(17/20) 2178309008365002 a001 39088169/103682*15127^(9/10) 2178309008395962 a001 433494437/24476*15127^(1/2) 2178309008538072 a001 34111385/90481*15127^(9/10) 2178309008563323 a001 267914296/710647*15127^(9/10) 2178309008567007 a001 233802911/620166*15127^(9/10) 2178309008567544 a001 1836311903/4870847*15127^(9/10) 2178309008567623 a001 1602508992/4250681*15127^(9/10) 2178309008567634 a001 12586269025/33385282*15127^(9/10) 2178309008567636 a001 10983760033/29134601*15127^(9/10) 2178309008567636 a001 86267571272/228826127*15127^(9/10) 2178309008567636 a001 267913919/710646*15127^(9/10) 2178309008567636 a001 591286729879/1568397607*15127^(9/10) 2178309008567636 a001 516002918640/1368706081*15127^(9/10) 2178309008567636 a001 4052739537881/10749957122*15127^(9/10) 2178309008567636 a001 3536736619241/9381251041*15127^(9/10) 2178309008567636 a001 6557470319842/17393796001*15127^(9/10) 2178309008567636 a001 2504730781961/6643838879*15127^(9/10) 2178309008567636 a001 956722026041/2537720636*15127^(9/10) 2178309008567636 a001 365435296162/969323029*15127^(9/10) 2178309008567636 a001 139583862445/370248451*15127^(9/10) 2178309008567636 a001 53316291173/141422324*15127^(9/10) 2178309008567637 a001 20365011074/54018521*15127^(9/10) 2178309008567641 a001 7778742049/20633239*15127^(9/10) 2178309008567671 a001 2971215073/7881196*15127^(9/10) 2178309008567877 a001 1134903170/3010349*15127^(9/10) 2178309008569284 a001 433494437/1149851*15127^(9/10) 2178309008578929 a001 165580141/439204*15127^(9/10) 2178309008604926 a001 2971215073/15127*5778^(5/18) 2178309008622164 a001 39088169/64079*15127^(17/20) 2178309008645036 a001 63245986/167761*15127^(9/10) 2178309008840977 a001 24157817/103682*15127^(19/20) 2178309008871936 a001 10946*15127^(11/20) 2178309009014047 a001 63245986/271443*15127^(19/20) 2178309009039298 a001 165580141/710647*15127^(19/20) 2178309009042982 a001 433494437/1860498*15127^(19/20) 2178309009043519 a001 1134903170/4870847*15127^(19/20) 2178309009043597 a001 2971215073/12752043*15127^(19/20) 2178309009043609 a001 7778742049/33385282*15127^(19/20) 2178309009043611 a001 20365011074/87403803*15127^(19/20) 2178309009043611 a001 53316291173/228826127*15127^(19/20) 2178309009043611 a001 139583862445/599074578*15127^(19/20) 2178309009043611 a001 365435296162/1568397607*15127^(19/20) 2178309009043611 a001 956722026041/4106118243*15127^(19/20) 2178309009043611 a001 2504730781961/10749957122*15127^(19/20) 2178309009043611 a001 6557470319842/28143753123*15127^(19/20) 2178309009043611 a001 10610209857723/45537549124*15127^(19/20) 2178309009043611 a001 4052739537881/17393796001*15127^(19/20) 2178309009043611 a001 1548008755920/6643838879*15127^(19/20) 2178309009043611 a001 591286729879/2537720636*15127^(19/20) 2178309009043611 a001 225851433717/969323029*15127^(19/20) 2178309009043611 a001 86267571272/370248451*15127^(19/20) 2178309009043611 a001 63246219/271444*15127^(19/20) 2178309009043612 a001 12586269025/54018521*15127^(19/20) 2178309009043616 a001 4807526976/20633239*15127^(19/20) 2178309009043646 a001 1836311903/7881196*15127^(19/20) 2178309009043851 a001 701408733/3010349*15127^(19/20) 2178309009045258 a001 267914296/1149851*15127^(19/20) 2178309009054903 a001 102334155/439204*15127^(19/20) 2178309009098140 a001 24157817/64079*15127^(9/10) 2178309009121010 a001 39088169/167761*15127^(19/20) 2178309009182013 a001 63245986/9349*9349^(12/19) 2178309009312638 a001 4912086816/2255 2178309009347911 a001 165580141/24476*15127^(3/5) 2178309009460458 a001 14736260449/6765 2178309009485813 a001 20365011074/39603*5778^(1/6) 2178309009519586 a001 2/6765*(1/2+1/2*5^(1/2))^52 2178309009574112 a001 14930352/64079*15127^(19/20) 2178309009608277 a001 2947252090/1353 2178309009823886 a001 102334155/24476*15127^(13/20) 2178309010048385 a001 3524578/3571*3571^(16/17) 2178309010051736 a001 14736260453/6765 2178309010299861 a001 31622993/12238*15127^(7/10) 2178309010493716 a001 102334155/9349*9349^(11/19) 2178309010672054 a001 53316291173/103682*5778^(1/6) 2178309010775835 a001 39088169/24476*15127^(3/4) 2178309010845125 a001 139583862445/271443*5778^(1/6) 2178309010870375 a001 365435296162/710647*5778^(1/6) 2178309010874059 a001 956722026041/1860498*5778^(1/6) 2178309010874597 a001 2504730781961/4870847*5778^(1/6) 2178309010874675 a001 6557470319842/12752043*5778^(1/6) 2178309010874694 a001 10610209857723/20633239*5778^(1/6) 2178309010874724 a001 4052739537881/7881196*5778^(1/6) 2178309010874929 a001 1548008755920/3010349*5778^(1/6) 2178309010876336 a001 514229*5778^(1/6) 2178309010885946 a001 10182505537/12238*5778^(1/9) 2178309010885981 a001 225851433717/439204*5778^(1/6) 2178309010952088 a001 86267571272/167761*5778^(1/6) 2178309011251811 a001 24157817/24476*15127^(4/5) 2178309011405192 a001 32951280099/64079*5778^(1/6) 2178309011727783 a001 3732588/6119*15127^(17/20) 2178309011805420 a001 165580141/9349*9349^(10/19) 2178309012203765 a001 9227465/24476*15127^(9/10) 2178309012229792 a001 1836311903/15127*5778^(1/3) 2178309012679721 a001 5702887/24476*15127^(19/20) 2178309013110679 a001 12586269025/39603*5778^(2/9) 2178309013117123 a001 267914296/9349*9349^(9/19) 2178309013155949 a001 14736260474/6765 2178309014296920 a001 32951280099/103682*5778^(2/9) 2178309014428826 a001 433494437/9349*9349^(8/19) 2178309014469990 a001 86267571272/271443*5778^(2/9) 2178309014495241 a001 317811*5778^(2/9) 2178309014498925 a001 591286729879/1860498*5778^(2/9) 2178309014499462 a001 1548008755920/4870847*5778^(2/9) 2178309014499541 a001 4052739537881/12752043*5778^(2/9) 2178309014499552 a001 1515744265389/4769326*5778^(2/9) 2178309014499559 a001 6557470319842/20633239*5778^(2/9) 2178309014499589 a001 2504730781961/7881196*5778^(2/9) 2178309014499795 a001 956722026041/3010349*5778^(2/9) 2178309014501202 a001 365435296162/1149851*5778^(2/9) 2178309014510812 a001 12586269025/24476*5778^(1/6) 2178309014510847 a001 139583862445/439204*5778^(2/9) 2178309014576954 a001 53316291173/167761*5778^(2/9) 2178309014711064 a001 2971215073/3571*1364^(2/15) 2178309014874192 a001 12586269025/9349*3571^(1/17) 2178309015030058 a001 20365011074/64079*5778^(2/9) 2178309015402956 a001 4181/15127*141422324^(11/13) 2178309015402956 a001 4181/15127*2537720636^(11/15) 2178309015402956 a001 4181/15127*45537549124^(11/17) 2178309015402956 a001 4181/15127*312119004989^(3/5) 2178309015402956 a001 4181/15127*14662949395604^(11/21) 2178309015402956 a001 4181/15127*(1/2+1/2*5^(1/2))^33 2178309015402956 a001 4181/15127*192900153618^(11/18) 2178309015402956 a001 4181/15127*10749957122^(11/16) 2178309015402956 a001 4181/15127*1568397607^(3/4) 2178309015402957 a001 4181/15127*599074578^(11/14) 2178309015402957 a001 6765/9349*(1/2+1/2*5^(1/2))^31 2178309015402957 a001 6765/9349*9062201101803^(1/2) 2178309015402958 a001 4181/15127*33385282^(11/12) 2178309015740529 a001 701408733/9349*9349^(7/19) 2178309015854657 a001 1134903170/15127*5778^(7/18) 2178309016735545 a001 7778742049/39603*5778^(5/18) 2178309017052232 a001 1134903170/9349*9349^(6/19) 2178309017921786 a001 10182505537/51841*5778^(5/18) 2178309018094856 a001 53316291173/271443*5778^(5/18) 2178309018120107 a001 139583862445/710647*5778^(5/18) 2178309018123791 a001 182717648081/930249*5778^(5/18) 2178309018124328 a001 956722026041/4870847*5778^(5/18) 2178309018124407 a001 2504730781961/12752043*5778^(5/18) 2178309018124418 a001 3278735159921/16692641*5778^(5/18) 2178309018124421 a001 10610209857723/54018521*5778^(5/18) 2178309018124425 a001 4052739537881/20633239*5778^(5/18) 2178309018124455 a001 387002188980/1970299*5778^(5/18) 2178309018124660 a001 591286729879/3010349*5778^(5/18) 2178309018126068 a001 225851433717/1149851*5778^(5/18) 2178309018135678 a001 7778742049/24476*5778^(2/9) 2178309018135712 a001 196418*5778^(5/18) 2178309018201819 a001 32951280099/167761*5778^(5/18) 2178309018363935 a001 1836311903/9349*9349^(5/19) 2178309018431444 a001 20365011074/15127*2207^(1/16) 2178309018605049 a001 2971215073/5778*2207^(3/16) 2178309018654923 a001 12586269025/64079*5778^(5/18) 2178309019479523 a001 701408733/15127*5778^(4/9) 2178309019675638 a001 2971215073/9349*9349^(4/19) 2178309020096596 a001 1597*3571^(15/17) 2178309020360410 a001 1602508992/13201*5778^(1/3) 2178309020987342 a001 4807526976/9349*9349^(3/19) 2178309021286314 a001 23843770547/10946 2178309021459717 a001 1346269/9349*24476^(20/21) 2178309021546652 a001 12586269025/103682*5778^(1/3) 2178309021600895 m001 Porter/(exp(-1/2*Pi)-ln(2^(1/2)+1)) 2178309021632533 a001 2178309/9349*24476^(19/21) 2178309021719722 a001 121393*5778^(1/3) 2178309021744973 a001 86267571272/710647*5778^(1/3) 2178309021748657 a001 75283811239/620166*5778^(1/3) 2178309021749194 a001 591286729879/4870847*5778^(1/3) 2178309021749272 a001 516002918640/4250681*5778^(1/3) 2178309021749284 a001 4052739537881/33385282*5778^(1/3) 2178309021749286 a001 3536736619241/29134601*5778^(1/3) 2178309021749287 a001 6557470319842/54018521*5778^(1/3) 2178309021749291 a001 2504730781961/20633239*5778^(1/3) 2178309021749321 a001 956722026041/7881196*5778^(1/3) 2178309021749526 a001 365435296162/3010349*5778^(1/3) 2178309021750933 a001 139583862445/1149851*5778^(1/3) 2178309021760543 a001 1201881744/6119*5778^(5/18) 2178309021760578 a001 53316291173/439204*5778^(1/3) 2178309021805809 a001 3524578/9349*24476^(6/7) 2178309021826685 a001 20365011074/167761*5778^(1/3) 2178309021978909 a001 5702887/9349*24476^(17/21) 2178309022152077 a001 9227465/9349*24476^(16/21) 2178309022279789 a001 7778742049/64079*5778^(1/3) 2178309022299045 a001 7778742049/9349*9349^(2/19) 2178309022325218 a001 14930352/9349*24476^(5/7) 2178309022498370 a001 24157817/9349*24476^(2/3) 2178309022671517 a001 4181*24476^(13/21) 2178309022844666 a001 63245986/9349*24476^(4/7) 2178309023017815 a001 102334155/9349*24476^(11/21) 2178309023104389 a001 433494437/15127*5778^(1/2) 2178309023190964 a001 165580141/9349*24476^(10/21) 2178309023364113 a001 267914296/9349*24476^(3/7) 2178309023533575 a001 4181/39603*2537720636^(7/9) 2178309023533575 a001 4181/39603*17393796001^(5/7) 2178309023533575 a001 4181/39603*312119004989^(7/11) 2178309023533575 a001 4181/39603*14662949395604^(5/9) 2178309023533575 a001 4181/39603*(1/2+1/2*5^(1/2))^35 2178309023533575 a001 4181/39603*505019158607^(5/8) 2178309023533575 a001 4181/39603*28143753123^(7/10) 2178309023533575 a001 4181/39603*599074578^(5/6) 2178309023533575 a001 4181/39603*228826127^(7/8) 2178309023533576 a001 17711/9349*(1/2+1/2*5^(1/2))^29 2178309023533576 a001 17711/9349*1322157322203^(1/2) 2178309023537261 a001 433494437/9349*24476^(8/21) 2178309023610748 a001 12586269025/9349*9349^(1/19) 2178309023710410 a001 701408733/9349*24476^(1/3) 2178309023883559 a001 1134903170/9349*24476^(2/7) 2178309023985276 a001 2971215073/39603*5778^(7/18) 2178309024056707 a001 1836311903/9349*24476^(5/21) 2178309024229856 a001 2971215073/9349*24476^(4/21) 2178309024391946 a001 62423801712/28657 2178309024403005 a001 4807526976/9349*24476^(1/7) 2178309024416661 a001 514229/9349*64079^(22/23) 2178309024437449 a001 832040/9349*64079^(21/23) 2178309024461384 a001 1346269/9349*64079^(20/23) 2178309024484117 a001 2178309/9349*64079^(19/23) 2178309024507310 a001 3524578/9349*64079^(18/23) 2178309024530327 a001 5702887/9349*64079^(17/23) 2178309024553410 a001 9227465/9349*64079^(16/23) 2178309024576154 a001 7778742049/9349*24476^(2/21) 2178309024576469 a001 14930352/9349*64079^(15/23) 2178309024599537 a001 24157817/9349*64079^(14/23) 2178309024622601 a001 4181*64079^(13/23) 2178309024645667 a001 63245986/9349*64079^(12/23) 2178309024668732 a001 102334155/9349*64079^(11/23) 2178309024691798 a001 165580141/9349*64079^(10/23) 2178309024714863 a001 267914296/9349*64079^(9/23) 2178309024719788 a001 46368/9349*7881196^(9/11) 2178309024719817 a001 4181/103682*(1/2+1/2*5^(1/2))^37 2178309024719817 a001 46368/9349*141422324^(9/13) 2178309024719817 a001 46368/9349*2537720636^(3/5) 2178309024719817 a001 46368/9349*45537549124^(9/17) 2178309024719817 a001 46368/9349*14662949395604^(3/7) 2178309024719817 a001 46368/9349*(1/2+1/2*5^(1/2))^27 2178309024719817 a001 46368/9349*192900153618^(1/2) 2178309024719817 a001 46368/9349*10749957122^(9/16) 2178309024719817 a001 46368/9349*599074578^(9/14) 2178309024719818 a001 46368/9349*33385282^(3/4) 2178309024720383 a001 46368/9349*1860498^(9/10) 2178309024737928 a001 433494437/9349*64079^(8/23) 2178309024749302 a001 12586269025/9349*24476^(1/21) 2178309024760994 a001 701408733/9349*64079^(7/23) 2178309024784059 a001 1134903170/9349*64079^(6/23) 2178309024807124 a001 1836311903/9349*64079^(5/23) 2178309024830190 a001 2971215073/9349*64079^(4/23) 2178309024845051 a001 163427634589/75025 2178309024853255 a001 4807526976/9349*64079^(3/23) 2178309024860772 a001 1346269/9349*167761^(4/5) 2178309024876010 a001 14930352/9349*167761^(3/5) 2178309024876320 a001 7778742049/9349*64079^(2/23) 2178309024891491 a001 165580141/9349*167761^(2/5) 2178309024892884 a001 121393/9349*20633239^(5/7) 2178309024892887 a001 4181/271443*2537720636^(13/15) 2178309024892887 a001 4181/271443*45537549124^(13/17) 2178309024892887 a001 4181/271443*14662949395604^(13/21) 2178309024892887 a001 4181/271443*(1/2+1/2*5^(1/2))^39 2178309024892887 a001 4181/271443*192900153618^(13/18) 2178309024892887 a001 4181/271443*73681302247^(3/4) 2178309024892887 a001 4181/271443*10749957122^(13/16) 2178309024892887 a001 4181/271443*599074578^(13/14) 2178309024892887 a001 121393/9349*2537720636^(5/9) 2178309024892887 a001 121393/9349*312119004989^(5/11) 2178309024892887 a001 121393/9349*(1/2+1/2*5^(1/2))^25 2178309024892887 a001 121393/9349*3461452808002^(5/12) 2178309024892887 a001 121393/9349*28143753123^(1/2) 2178309024892887 a001 121393/9349*228826127^(5/8) 2178309024893412 a001 121393/9349*1860498^(5/6) 2178309024899386 a001 12586269025/9349*64079^(1/23) 2178309024906971 a001 1836311903/9349*167761^(1/5) 2178309024911158 a001 427859102055/196418 2178309024913039 a001 832040/9349*439204^(7/9) 2178309024914958 a001 3524578/9349*439204^(2/3) 2178309024916176 a001 14930352/9349*439204^(5/9) 2178309024917432 a001 63245986/9349*439204^(4/9) 2178309024918137 a001 4181/710647*(1/2+1/2*5^(1/2))^41 2178309024918138 a001 317811/9349*(1/2+1/2*5^(1/2))^23 2178309024918138 a001 317811/9349*4106118243^(1/2) 2178309024918687 a001 267914296/9349*439204^(1/3) 2178309024919942 a001 1134903170/9349*439204^(2/9) 2178309024920803 a001 1120149671576/514229 2178309024921196 a001 4807526976/9349*439204^(1/9) 2178309024921799 a001 832040/9349*7881196^(7/11) 2178309024921819 a001 832040/9349*20633239^(3/5) 2178309024921822 a001 4181/1860498*(1/2+1/2*5^(1/2))^43 2178309024921822 a001 832040/9349*141422324^(7/13) 2178309024921822 a001 832040/9349*2537720636^(7/15) 2178309024921822 a001 832040/9349*17393796001^(3/7) 2178309024921822 a001 832040/9349*45537549124^(7/17) 2178309024921822 a001 832040/9349*14662949395604^(1/3) 2178309024921822 a001 832040/9349*(1/2+1/2*5^(1/2))^21 2178309024921822 a001 832040/9349*192900153618^(7/18) 2178309024921822 a001 832040/9349*10749957122^(7/16) 2178309024921822 a001 832040/9349*599074578^(1/2) 2178309024921823 a001 832040/9349*33385282^(7/12) 2178309024922210 a001 2932589912673/1346269 2178309024922262 a001 832040/9349*1860498^(7/10) 2178309024922359 a001 4181/4870847*45537549124^(15/17) 2178309024922359 a001 4181/4870847*312119004989^(9/11) 2178309024922359 a001 4181/4870847*14662949395604^(5/7) 2178309024922359 a001 4181/4870847*(1/2+1/2*5^(1/2))^45 2178309024922359 a001 4181/4870847*192900153618^(5/6) 2178309024922359 a001 4181/4870847*28143753123^(9/10) 2178309024922359 a001 4181/4870847*10749957122^(15/16) 2178309024922359 a001 2178309/9349*817138163596^(1/3) 2178309024922359 a001 2178309/9349*(1/2+1/2*5^(1/2))^19 2178309024922359 a001 2178309/9349*87403803^(1/2) 2178309024922416 a001 7677620066443/3524578 2178309024922433 a001 14930352/9349*7881196^(5/11) 2178309024922437 a001 4181/12752043*(1/2+1/2*5^(1/2))^47 2178309024922438 a001 5702887/9349*45537549124^(1/3) 2178309024922438 a001 5702887/9349*(1/2+1/2*5^(1/2))^17 2178309024922438 a001 63245986/9349*7881196^(4/11) 2178309024922439 a001 102334155/9349*7881196^(1/3) 2178309024922442 a001 267914296/9349*7881196^(3/11) 2178309024922444 a001 5702887/9349*12752043^(1/2) 2178309024922445 a001 1134903170/9349*7881196^(2/11) 2178309024922446 a001 20100270286656/9227465 2178309024922447 a001 14930352/9349*20633239^(3/7) 2178309024922448 a001 4807526976/9349*7881196^(1/11) 2178309024922449 a001 4181/33385282*14662949395604^(7/9) 2178309024922449 a001 4181/33385282*(1/2+1/2*5^(1/2))^49 2178309024922449 a001 4181/33385282*505019158607^(7/8) 2178309024922449 a001 14930352/9349*141422324^(5/13) 2178309024922449 a001 14930352/9349*2537720636^(1/3) 2178309024922449 a001 14930352/9349*45537549124^(5/17) 2178309024922449 a001 14930352/9349*312119004989^(3/11) 2178309024922449 a001 14930352/9349*14662949395604^(5/21) 2178309024922449 a001 14930352/9349*(1/2+1/2*5^(1/2))^15 2178309024922449 a001 14930352/9349*192900153618^(5/18) 2178309024922449 a001 14930352/9349*28143753123^(3/10) 2178309024922449 a001 14930352/9349*10749957122^(5/16) 2178309024922449 a001 14930352/9349*599074578^(5/14) 2178309024922449 a001 14930352/9349*228826127^(3/8) 2178309024922450 a001 165580141/9349*20633239^(2/7) 2178309024922450 a001 24157817/9349*20633239^(2/5) 2178309024922450 a001 14930352/9349*33385282^(5/12) 2178309024922450 a001 52623190793525/24157817 2178309024922450 a001 701408733/9349*20633239^(1/5) 2178309024922450 a001 1836311903/9349*20633239^(1/7) 2178309024922451 a001 4181/87403803*817138163596^(17/19) 2178309024922451 a001 4181/87403803*14662949395604^(17/21) 2178309024922451 a001 4181/87403803*192900153618^(17/18) 2178309024922451 a001 591284558343/271442 2178309024922451 a001 4181*141422324^(1/3) 2178309024922451 a001 360684715488232/165580141 2178309024922451 a001 4181/599074578*3461452808002^(11/12) 2178309024922451 a001 944284844370777/433494437 2178309024922451 a001 4181/1568397607*14662949395604^(19/21) 2178309024922451 a001 2472169817624099/1134903170 2178309024922451 a001 6472224608501520/2971215073 2178309024922451 a001 16944504007880461/7778742049 2178309024922451 a001 44361287415139863/20365011074 2178309024922451 a001 4181*73681302247^(1/4) 2178309024922451 a001 27416783407259402/12586269025 2178309024922451 a001 10472279399378941/4807526976 2178309024922451 a001 4181/6643838879*14662949395604^(20/21) 2178309024922451 a001 4000054790877421/1836311903 2178309024922451 a001 1527884973253322/701408733 2178309024922451 a001 4181/969323029*14662949395604^(8/9) 2178309024922451 a001 583600128882545/267914296 2178309024922451 a001 4181/370248451*14662949395604^(6/7) 2178309024922451 a001 222915413394313/102334155 2178309024922451 a001 4181/141422324*23725150497407^(13/16) 2178309024922451 a001 4181/141422324*505019158607^(13/14) 2178309024922451 a001 102334155/9349*312119004989^(1/5) 2178309024922451 a001 102334155/9349*(1/2+1/2*5^(1/2))^11 2178309024922451 a001 102334155/9349*1568397607^(1/4) 2178309024922451 a001 267914296/9349*141422324^(3/13) 2178309024922451 a001 1134903170/9349*141422324^(2/13) 2178309024922451 a001 4807526976/9349*141422324^(1/13) 2178309024922451 a001 267914296/9349*2537720636^(1/5) 2178309024922451 a001 267914296/9349*45537549124^(3/17) 2178309024922451 a001 267914296/9349*14662949395604^(1/7) 2178309024922451 a001 267914296/9349*(1/2+1/2*5^(1/2))^9 2178309024922451 a001 267914296/9349*192900153618^(1/6) 2178309024922451 a001 267914296/9349*10749957122^(3/16) 2178309024922451 a001 267914296/9349*599074578^(3/14) 2178309024922451 a001 701408733/9349*17393796001^(1/7) 2178309024922451 a001 701408733/9349*14662949395604^(1/9) 2178309024922451 a001 701408733/9349*(1/2+1/2*5^(1/2))^7 2178309024922451 a001 1836311903/9349*2537720636^(1/9) 2178309024922451 a001 1836311903/9349*312119004989^(1/11) 2178309024922451 a001 1836311903/9349*(1/2+1/2*5^(1/2))^5 2178309024922451 a001 1836311903/9349*28143753123^(1/10) 2178309024922451 a001 4807526976/9349*2537720636^(1/15) 2178309024922451 a001 4807526976/9349*45537549124^(1/17) 2178309024922451 a001 4807526976/9349*14662949395604^(1/21) 2178309024922451 a001 4807526976/9349*(1/2+1/2*5^(1/2))^3 2178309024922451 a001 4807526976/9349*192900153618^(1/18) 2178309024922451 a001 4807526976/9349*10749957122^(1/16) 2178309024922451 a001 12586269025/18698+12586269025/18698*5^(1/2) 2178309024922451 a001 20365011074/9349 2178309024922451 a001 7778742049/9349*(1/2+1/2*5^(1/2))^2 2178309024922451 a001 7778742049/9349*10749957122^(1/24) 2178309024922451 a001 7778742049/9349*4106118243^(1/23) 2178309024922451 a001 7778742049/9349*1568397607^(1/22) 2178309024922451 a001 2971215073/9349*(1/2+1/2*5^(1/2))^4 2178309024922451 a001 2971215073/9349*23725150497407^(1/16) 2178309024922451 a001 2971215073/9349*73681302247^(1/13) 2178309024922451 a001 2971215073/9349*10749957122^(1/12) 2178309024922451 a001 2971215073/9349*4106118243^(2/23) 2178309024922451 a001 701408733/9349*599074578^(1/6) 2178309024922451 a001 2971215073/9349*1568397607^(1/11) 2178309024922451 a001 1134903170/9349*2537720636^(2/15) 2178309024922451 a001 7778742049/9349*599074578^(1/21) 2178309024922451 a001 1134903170/9349*45537549124^(2/17) 2178309024922451 a001 1134903170/9349*14662949395604^(2/21) 2178309024922451 a001 1134903170/9349*(1/2+1/2*5^(1/2))^6 2178309024922451 a001 1134903170/9349*10749957122^(1/8) 2178309024922451 a001 1134903170/9349*4106118243^(3/23) 2178309024922451 a001 4807526976/9349*599074578^(1/14) 2178309024922451 a001 1134903170/9349*1568397607^(3/22) 2178309024922451 a001 2971215073/9349*599074578^(2/21) 2178309024922451 a001 1134903170/9349*599074578^(1/7) 2178309024922451 a001 7778742049/9349*228826127^(1/20) 2178309024922451 a001 433494437/9349*(1/2+1/2*5^(1/2))^8 2178309024922451 a001 433494437/9349*23725150497407^(1/8) 2178309024922451 a001 433494437/9349*505019158607^(1/7) 2178309024922451 a001 433494437/9349*73681302247^(2/13) 2178309024922451 a001 433494437/9349*10749957122^(1/6) 2178309024922451 a001 433494437/9349*4106118243^(4/23) 2178309024922451 a001 433494437/9349*1568397607^(2/11) 2178309024922451 a001 433494437/9349*599074578^(4/21) 2178309024922451 a001 2971215073/9349*228826127^(1/10) 2178309024922451 a001 1836311903/9349*228826127^(1/8) 2178309024922451 a001 1134903170/9349*228826127^(3/20) 2178309024922451 a001 433494437/9349*228826127^(1/5) 2178309024922451 a001 7778742049/9349*87403803^(1/19) 2178309024922451 a001 165580141/9349*2537720636^(2/9) 2178309024922451 a001 165580141/9349*312119004989^(2/11) 2178309024922451 a001 165580141/9349*(1/2+1/2*5^(1/2))^10 2178309024922451 a001 165580141/9349*28143753123^(1/5) 2178309024922451 a001 165580141/9349*10749957122^(5/24) 2178309024922451 a001 165580141/9349*4106118243^(5/23) 2178309024922451 a001 165580141/9349*1568397607^(5/22) 2178309024922451 a001 165580141/9349*599074578^(5/21) 2178309024922451 a001 165580141/9349*228826127^(1/4) 2178309024922451 a001 2971215073/9349*87403803^(2/19) 2178309024922451 a001 1134903170/9349*87403803^(3/19) 2178309024922451 a001 433494437/9349*87403803^(4/19) 2178309024922451 a001 63245986/9349*141422324^(4/13) 2178309024922451 a001 165580141/9349*87403803^(5/19) 2178309024922451 a001 7778742049/9349*33385282^(1/18) 2178309024922451 a001 63245986/9349*2537720636^(4/15) 2178309024922451 a001 63245986/9349*45537549124^(4/17) 2178309024922451 a001 63245986/9349*817138163596^(4/19) 2178309024922451 a001 63245986/9349*14662949395604^(4/21) 2178309024922451 a001 63245986/9349*(1/2+1/2*5^(1/2))^12 2178309024922451 a001 63245986/9349*192900153618^(2/9) 2178309024922451 a001 63245986/9349*73681302247^(3/13) 2178309024922451 a001 63245986/9349*10749957122^(1/4) 2178309024922451 a001 63245986/9349*4106118243^(6/23) 2178309024922451 a001 63245986/9349*1568397607^(3/11) 2178309024922451 a001 63245986/9349*599074578^(2/7) 2178309024922451 a001 63245986/9349*228826127^(3/10) 2178309024922451 a001 4807526976/9349*33385282^(1/12) 2178309024922451 a001 63245986/9349*87403803^(6/19) 2178309024922451 a001 2971215073/9349*33385282^(1/9) 2178309024922451 a001 1134903170/9349*33385282^(1/6) 2178309024922452 a001 433494437/9349*33385282^(2/9) 2178309024922452 a001 4181/54018521*312119004989^(10/11) 2178309024922452 a001 4181/54018521*3461452808002^(5/6) 2178309024922452 a001 267914296/9349*33385282^(1/4) 2178309024922452 a001 165580141/9349*33385282^(5/18) 2178309024922452 a001 24157817/9349*17393796001^(2/7) 2178309024922452 a001 24157817/9349*14662949395604^(2/9) 2178309024922452 a001 24157817/9349*(1/2+1/2*5^(1/2))^14 2178309024922452 a001 24157817/9349*505019158607^(1/4) 2178309024922452 a001 24157817/9349*10749957122^(7/24) 2178309024922452 a001 24157817/9349*4106118243^(7/23) 2178309024922452 a001 24157817/9349*1568397607^(7/22) 2178309024922452 a001 24157817/9349*599074578^(1/3) 2178309024922452 a001 63245986/9349*33385282^(1/3) 2178309024922452 a001 24157817/9349*228826127^(7/20) 2178309024922452 a001 7778742049/9349*12752043^(1/17) 2178309024922452 a001 24157817/9349*87403803^(7/19) 2178309024922453 a001 24157817/9349*33385282^(7/18) 2178309024922453 a001 2971215073/9349*12752043^(2/17) 2178309024922453 a001 32522920506869/14930352 2178309024922453 a001 1134903170/9349*12752043^(3/17) 2178309024922454 a001 433494437/9349*12752043^(4/17) 2178309024922455 a001 165580141/9349*12752043^(5/17) 2178309024922456 a001 4181/20633239*45537549124^(16/17) 2178309024922456 a001 4181/20633239*14662949395604^(16/21) 2178309024922456 a001 4181/20633239*(1/2+1/2*5^(1/2))^48 2178309024922456 a001 4181/20633239*192900153618^(8/9) 2178309024922456 a001 4181/20633239*73681302247^(12/13) 2178309024922456 a001 63245986/9349*12752043^(6/17) 2178309024922456 a001 9227465/9349*(1/2+1/2*5^(1/2))^16 2178309024922456 a001 9227465/9349*23725150497407^(1/4) 2178309024922456 a001 9227465/9349*73681302247^(4/13) 2178309024922456 a001 9227465/9349*10749957122^(1/3) 2178309024922456 a001 9227465/9349*4106118243^(8/23) 2178309024922456 a001 9227465/9349*1568397607^(4/11) 2178309024922456 a001 9227465/9349*599074578^(8/21) 2178309024922456 a001 9227465/9349*228826127^(2/5) 2178309024922456 a001 9227465/9349*87403803^(8/19) 2178309024922457 a001 7778742049/9349*4870847^(1/16) 2178309024922457 a001 9227465/9349*33385282^(4/9) 2178309024922457 a001 24157817/9349*12752043^(7/17) 2178309024922463 a001 9227465/9349*12752043^(8/17) 2178309024922463 a001 2971215073/9349*4870847^(1/8) 2178309024922464 a001 12422650220213/5702887 2178309024922467 a001 3524578/9349*7881196^(6/11) 2178309024922468 a001 1134903170/9349*4870847^(3/16) 2178309024922474 a001 433494437/9349*4870847^(1/4) 2178309024922480 a001 165580141/9349*4870847^(5/16) 2178309024922486 a001 63245986/9349*4870847^(3/8) 2178309024922486 a001 4181/7881196*(1/2+1/2*5^(1/2))^46 2178309024922486 a001 4181/7881196*10749957122^(23/24) 2178309024922486 a001 3524578/9349*141422324^(6/13) 2178309024922486 a001 3524578/9349*2537720636^(2/5) 2178309024922486 a001 3524578/9349*45537549124^(6/17) 2178309024922486 a001 3524578/9349*14662949395604^(2/7) 2178309024922486 a001 3524578/9349*(1/2+1/2*5^(1/2))^18 2178309024922486 a001 3524578/9349*192900153618^(1/3) 2178309024922486 a001 3524578/9349*10749957122^(3/8) 2178309024922486 a001 3524578/9349*4106118243^(9/23) 2178309024922486 a001 3524578/9349*1568397607^(9/22) 2178309024922486 a001 3524578/9349*599074578^(3/7) 2178309024922486 a001 3524578/9349*228826127^(9/20) 2178309024922486 a001 3524578/9349*87403803^(9/19) 2178309024922487 a001 3524578/9349*33385282^(1/2) 2178309024922492 a001 24157817/9349*4870847^(7/16) 2178309024922493 a001 7778742049/9349*1860498^(1/15) 2178309024922493 a001 3524578/9349*12752043^(9/17) 2178309024922502 a001 9227465/9349*4870847^(1/2) 2178309024922514 a001 4807526976/9349*1860498^(1/10) 2178309024922535 a001 2971215073/9349*1860498^(2/15) 2178309024922538 a001 3524578/9349*4870847^(9/16) 2178309024922543 a001 4745030153770/2178309 2178309024922556 a001 1836311903/9349*1860498^(1/6) 2178309024922577 a001 1134903170/9349*1860498^(1/5) 2178309024922619 a001 433494437/9349*1860498^(4/15) 2178309024922640 a001 267914296/9349*1860498^(3/10) 2178309024922661 a001 165580141/9349*1860498^(1/3) 2178309024922689 a001 1346269/9349*20633239^(4/7) 2178309024922691 a001 4181/3010349*312119004989^(4/5) 2178309024922691 a001 4181/3010349*(1/2+1/2*5^(1/2))^44 2178309024922691 a001 4181/3010349*23725150497407^(11/16) 2178309024922691 a001 4181/3010349*73681302247^(11/13) 2178309024922691 a001 4181/3010349*10749957122^(11/12) 2178309024922691 a001 4181/3010349*4106118243^(22/23) 2178309024922691 a001 1346269/9349*2537720636^(4/9) 2178309024922691 a001 1346269/9349*(1/2+1/2*5^(1/2))^20 2178309024922691 a001 1346269/9349*23725150497407^(5/16) 2178309024922691 a001 1346269/9349*505019158607^(5/14) 2178309024922691 a001 1346269/9349*73681302247^(5/13) 2178309024922691 a001 1346269/9349*28143753123^(2/5) 2178309024922691 a001 1346269/9349*10749957122^(5/12) 2178309024922691 a001 1346269/9349*4106118243^(10/23) 2178309024922691 a001 1346269/9349*1568397607^(5/11) 2178309024922691 a001 1346269/9349*599074578^(10/21) 2178309024922691 a001 1346269/9349*228826127^(1/2) 2178309024922692 a001 1346269/9349*87403803^(10/19) 2178309024922693 a001 1346269/9349*33385282^(5/9) 2178309024922699 a001 1346269/9349*12752043^(10/17) 2178309024922703 a001 63245986/9349*1860498^(2/5) 2178309024922746 a001 24157817/9349*1860498^(7/15) 2178309024922749 a001 1346269/9349*4870847^(5/8) 2178309024922759 a001 7778742049/9349*710647^(1/14) 2178309024922764 a001 14930352/9349*1860498^(1/2) 2178309024922792 a001 9227465/9349*1860498^(8/15) 2178309024922864 a001 3524578/9349*1860498^(3/5) 2178309024923067 a001 2971215073/9349*710647^(1/7) 2178309024923080 a001 1812440241097/832040 2178309024923111 a001 1346269/9349*1860498^(2/3) 2178309024923375 a001 1134903170/9349*710647^(3/14) 2178309024923529 a001 701408733/9349*710647^(1/4) 2178309024923683 a001 433494437/9349*710647^(2/7) 2178309024923706 a001 196418/9349*439204^(8/9) 2178309024923992 a001 165580141/9349*710647^(5/14) 2178309024924075 a001 514229/9349*7881196^(2/3) 2178309024924098 a001 4181/1149851*2537720636^(14/15) 2178309024924098 a001 4181/1149851*17393796001^(6/7) 2178309024924098 a001 4181/1149851*45537549124^(14/17) 2178309024924098 a001 4181/1149851*817138163596^(14/19) 2178309024924098 a001 4181/1149851*14662949395604^(2/3) 2178309024924098 a001 4181/1149851*(1/2+1/2*5^(1/2))^42 2178309024924098 a001 4181/1149851*192900153618^(7/9) 2178309024924098 a001 4181/1149851*10749957122^(7/8) 2178309024924098 a001 4181/1149851*4106118243^(21/23) 2178309024924098 a001 4181/1149851*1568397607^(21/22) 2178309024924099 a001 514229/9349*312119004989^(2/5) 2178309024924099 a001 514229/9349*(1/2+1/2*5^(1/2))^22 2178309024924099 a001 514229/9349*10749957122^(11/24) 2178309024924099 a001 514229/9349*4106118243^(11/23) 2178309024924099 a001 514229/9349*1568397607^(1/2) 2178309024924099 a001 514229/9349*599074578^(11/21) 2178309024924099 a001 514229/9349*228826127^(11/20) 2178309024924099 a001 514229/9349*87403803^(11/19) 2178309024924100 a001 514229/9349*33385282^(11/18) 2178309024924107 a001 514229/9349*12752043^(11/17) 2178309024924162 a001 514229/9349*4870847^(11/16) 2178309024924300 a001 63245986/9349*710647^(3/7) 2178309024924560 a001 514229/9349*1860498^(11/15) 2178309024924609 a001 24157817/9349*710647^(1/2) 2178309024924725 a001 7778742049/9349*271443^(1/13) 2178309024924921 a001 9227465/9349*710647^(4/7) 2178309024925057 a001 832040/9349*710647^(3/4) 2178309024925259 a001 3524578/9349*710647^(9/14) 2178309024925772 a001 1346269/9349*710647^(5/7) 2178309024926764 a001 692290569521/317811 2178309024926999 a001 2971215073/9349*271443^(2/13) 2178309024927488 a001 514229/9349*710647^(11/14) 2178309024929274 a001 1134903170/9349*271443^(3/13) 2178309024930894 a001 12586269025/9349*103682^(1/24) 2178309024931548 a001 433494437/9349*271443^(4/13) 2178309024933718 a001 196418/9349*7881196^(8/11) 2178309024933743 a001 4181/439204*2537720636^(8/9) 2178309024933743 a001 4181/439204*312119004989^(8/11) 2178309024933743 a001 4181/439204*(1/2+1/2*5^(1/2))^40 2178309024933743 a001 4181/439204*23725150497407^(5/8) 2178309024933743 a001 4181/439204*73681302247^(10/13) 2178309024933743 a001 4181/439204*28143753123^(4/5) 2178309024933743 a001 4181/439204*10749957122^(5/6) 2178309024933743 a001 4181/439204*4106118243^(20/23) 2178309024933743 a001 4181/439204*1568397607^(10/11) 2178309024933743 a001 4181/439204*599074578^(20/21) 2178309024933743 a001 196418/9349*141422324^(8/13) 2178309024933744 a001 196418/9349*2537720636^(8/15) 2178309024933744 a001 196418/9349*45537549124^(8/17) 2178309024933744 a001 196418/9349*14662949395604^(8/21) 2178309024933744 a001 196418/9349*(1/2+1/2*5^(1/2))^24 2178309024933744 a001 196418/9349*192900153618^(4/9) 2178309024933744 a001 196418/9349*73681302247^(6/13) 2178309024933744 a001 196418/9349*10749957122^(1/2) 2178309024933744 a001 196418/9349*4106118243^(12/23) 2178309024933744 a001 196418/9349*1568397607^(6/11) 2178309024933744 a001 196418/9349*599074578^(4/7) 2178309024933744 a001 196418/9349*228826127^(3/5) 2178309024933744 a001 196418/9349*87403803^(12/19) 2178309024933745 a001 196418/9349*33385282^(2/3) 2178309024933753 a001 196418/9349*12752043^(12/17) 2178309024933812 a001 196418/9349*4870847^(3/4) 2178309024933822 a001 165580141/9349*271443^(5/13) 2178309024934247 a001 196418/9349*1860498^(4/5) 2178309024936096 a001 63245986/9349*271443^(6/13) 2178309024937233 a001 4181*271443^(1/2) 2178309024937441 a001 196418/9349*710647^(6/7) 2178309024938371 a001 24157817/9349*271443^(7/13) 2178309024939337 a001 7778742049/9349*103682^(1/12) 2178309024940649 a001 9227465/9349*271443^(8/13) 2178309024942954 a001 3524578/9349*271443^(9/13) 2178309024945433 a001 1346269/9349*271443^(10/13) 2178309024947780 a001 4807526976/9349*103682^(1/8) 2178309024949114 a001 514229/9349*271443^(11/13) 2178309024952015 a001 1134899002/521 2178309024956223 a001 2971215073/9349*103682^(1/6) 2178309024961033 a001 196418/9349*271443^(12/13) 2178309024964667 a001 1836311903/9349*103682^(5/24) 2178309024973110 a001 1134903170/9349*103682^(1/4) 2178309024981553 a001 701408733/9349*103682^(7/24) 2178309024985582 a001 12586269025/9349*39603^(1/22) 2178309024989996 a001 433494437/9349*103682^(1/3) 2178309024998439 a001 267914296/9349*103682^(3/8) 2178309024999850 a001 4181/167761*817138163596^(2/3) 2178309024999850 a001 4181/167761*(1/2+1/2*5^(1/2))^38 2178309024999850 a001 4181/167761*10749957122^(19/24) 2178309024999850 a001 4181/167761*4106118243^(19/23) 2178309024999850 a001 4181/167761*1568397607^(19/22) 2178309024999850 a001 4181/167761*599074578^(19/21) 2178309024999850 a001 4181/167761*228826127^(19/20) 2178309024999850 a001 75025/9349*141422324^(2/3) 2178309024999850 a001 75025/9349*(1/2+1/2*5^(1/2))^26 2178309024999850 a001 75025/9349*73681302247^(1/2) 2178309024999850 a001 75025/9349*10749957122^(13/24) 2178309024999850 a001 75025/9349*4106118243^(13/23) 2178309024999850 a001 75025/9349*1568397607^(13/22) 2178309024999850 a001 75025/9349*599074578^(13/21) 2178309024999851 a001 75025/9349*228826127^(13/20) 2178309024999851 a001 75025/9349*87403803^(13/19) 2178309024999852 a001 75025/9349*33385282^(13/18) 2178309024999861 a001 75025/9349*12752043^(13/17) 2178309024999925 a001 75025/9349*4870847^(13/16) 2178309025000396 a001 75025/9349*1860498^(13/15) 2178309025003856 a001 75025/9349*710647^(13/14) 2178309025006882 a001 165580141/9349*103682^(5/12) 2178309025015325 a001 102334155/9349*103682^(11/24) 2178309025023768 a001 63245986/9349*103682^(1/2) 2178309025032211 a001 4181*103682^(13/24) 2178309025040655 a001 24157817/9349*103682^(7/12) 2178309025048713 a001 7778742049/9349*39603^(1/11) 2178309025049096 a001 14930352/9349*103682^(5/8) 2178309025057546 a001 9227465/9349*103682^(2/3) 2178309025065970 a001 5702887/9349*103682^(17/24) 2178309025074462 a001 3524578/9349*103682^(3/4) 2178309025082778 a001 2178309/9349*103682^(19/24) 2178309025091553 a001 1346269/9349*103682^(5/6) 2178309025099127 a001 832040/9349*103682^(7/8) 2178309025109847 a001 514229/9349*103682^(11/12) 2178309025111843 a001 4807526976/9349*39603^(3/22) 2178309025112329 a001 317811/9349*103682^(23/24) 2178309025125086 a001 101003832877/46368 2178309025171517 a001 7778742049/103682*5778^(7/18) 2178309025174974 a001 2971215073/9349*39603^(2/11) 2178309025238105 a001 1836311903/9349*39603^(5/22) 2178309025301235 a001 1134903170/9349*39603^(3/11) 2178309025344588 a001 20365011074/271443*5778^(7/18) 2178309025364366 a001 701408733/9349*39603^(7/22) 2178309025369838 a001 53316291173/710647*5778^(7/18) 2178309025373522 a001 139583862445/1860498*5778^(7/18) 2178309025374060 a001 365435296162/4870847*5778^(7/18) 2178309025374138 a001 956722026041/12752043*5778^(7/18) 2178309025374150 a001 2504730781961/33385282*5778^(7/18) 2178309025374151 a001 6557470319842/87403803*5778^(7/18) 2178309025374152 a001 10610209857723/141422324*5778^(7/18) 2178309025374152 a001 4052739537881/54018521*5778^(7/18) 2178309025374157 a001 140728068720/1875749*5778^(7/18) 2178309025374187 a001 591286729879/7881196*5778^(7/18) 2178309025374392 a001 225851433717/3010349*5778^(7/18) 2178309025375799 a001 86267571272/1149851*5778^(7/18) 2178309025385409 a001 2971215073/24476*5778^(1/3) 2178309025385444 a001 32951280099/439204*5778^(7/18) 2178309025398426 a001 12586269025/9349*15127^(1/20) 2178309025427497 a001 433494437/9349*39603^(4/11) 2178309025451551 a001 75025*5778^(7/18) 2178309025452950 a001 28657/9349*20633239^(4/5) 2178309025452954 a001 4181/64079*141422324^(12/13) 2178309025452954 a001 4181/64079*2537720636^(4/5) 2178309025452954 a001 4181/64079*45537549124^(12/17) 2178309025452954 a001 4181/64079*14662949395604^(4/7) 2178309025452954 a001 4181/64079*(1/2+1/2*5^(1/2))^36 2178309025452954 a001 4181/64079*192900153618^(2/3) 2178309025452954 a001 4181/64079*73681302247^(9/13) 2178309025452954 a001 4181/64079*10749957122^(3/4) 2178309025452954 a001 4181/64079*4106118243^(18/23) 2178309025452954 a001 4181/64079*1568397607^(9/11) 2178309025452954 a001 4181/64079*599074578^(6/7) 2178309025452954 a001 4181/64079*228826127^(9/10) 2178309025452954 a001 4181/64079*87403803^(18/19) 2178309025452954 a001 28657/9349*17393796001^(4/7) 2178309025452954 a001 28657/9349*14662949395604^(4/9) 2178309025452954 a001 28657/9349*(1/2+1/2*5^(1/2))^28 2178309025452954 a001 28657/9349*505019158607^(1/2) 2178309025452954 a001 28657/9349*73681302247^(7/13) 2178309025452954 a001 28657/9349*10749957122^(7/12) 2178309025452954 a001 28657/9349*4106118243^(14/23) 2178309025452954 a001 28657/9349*1568397607^(7/11) 2178309025452954 a001 28657/9349*599074578^(2/3) 2178309025452954 a001 28657/9349*228826127^(7/10) 2178309025452955 a001 28657/9349*87403803^(14/19) 2178309025452956 a001 28657/9349*33385282^(7/9) 2178309025452965 a001 28657/9349*12752043^(14/17) 2178309025453035 a001 28657/9349*4870847^(7/8) 2178309025453542 a001 28657/9349*1860498^(14/15) 2178309025490627 a001 267914296/9349*39603^(9/22) 2178309025553758 a001 165580141/9349*39603^(5/11) 2178309025616889 a001 102334155/9349*39603^(1/2) 2178309025680020 a001 63245986/9349*39603^(6/11) 2178309025743150 a001 4181*39603^(13/22) 2178309025806282 a001 24157817/9349*39603^(7/11) 2178309025869410 a001 14930352/9349*39603^(15/22) 2178309025874401 a001 7778742049/9349*15127^(1/10) 2178309025904655 a001 4807526976/64079*5778^(7/18) 2178309025932547 a001 9227465/9349*39603^(8/11) 2178309025995660 a001 5702887/9349*39603^(17/22) 2178309026058839 a001 3524578/9349*39603^(9/11) 2178309026121843 a001 2178309/9349*39603^(19/22) 2178309026150132 r009 Re(z^3+c),c=-5/44+51/64*I,n=47 2178309026185306 a001 1346269/9349*39603^(10/11) 2178309026247567 a001 832040/9349*39603^(21/22) 2178309026311331 a001 38580031165/17711 2178309026350375 a001 4807526976/9349*15127^(3/20) 2178309026562063 a001 53316291173/39603*2207^(1/16) 2178309026729255 a001 267914296/15127*5778^(5/9) 2178309026826350 a001 2971215073/9349*15127^(1/5) 2178309027302325 a001 1836311903/9349*15127^(1/4) 2178309027610142 a001 1836311903/39603*5778^(4/9) 2178309027748304 a001 139583862445/103682*2207^(1/16) 2178309027778299 a001 1134903170/9349*15127^(3/10) 2178309027921374 a001 365435296162/271443*2207^(1/16) 2178309027946625 a001 956722026041/710647*2207^(1/16) 2178309027950309 a001 2504730781961/1860498*2207^(1/16) 2178309027950847 a001 6557470319842/4870847*2207^(1/16) 2178309027950973 a001 10610209857723/7881196*2207^(1/16) 2178309027951179 a001 1346269*2207^(1/16) 2178309027952586 a001 1548008755920/1149851*2207^(1/16) 2178309027962231 a001 591286729879/439204*2207^(1/16) 2178309028028338 a001 225851433717/167761*2207^(1/16) 2178309028254274 a001 701408733/9349*15127^(7/20) 2178309028481442 a001 86267571272/64079*2207^(1/16) 2178309028547317 a001 12586269025/9349*5778^(1/18) 2178309028558543 a001 10946/9349*7881196^(10/11) 2178309028558570 a001 10946/9349*20633239^(6/7) 2178309028558574 a001 4181/24476*45537549124^(2/3) 2178309028558574 a001 4181/24476*(1/2+1/2*5^(1/2))^34 2178309028558574 a001 4181/24476*10749957122^(17/24) 2178309028558574 a001 4181/24476*4106118243^(17/23) 2178309028558574 a001 4181/24476*1568397607^(17/22) 2178309028558574 a001 4181/24476*599074578^(17/21) 2178309028558574 a001 4181/24476*228826127^(17/20) 2178309028558574 a001 10946/9349*141422324^(10/13) 2178309028558574 a001 4181/24476*87403803^(17/19) 2178309028558574 a001 10946/9349*2537720636^(2/3) 2178309028558574 a001 10946/9349*45537549124^(10/17) 2178309028558574 a001 10946/9349*312119004989^(6/11) 2178309028558574 a001 10946/9349*14662949395604^(10/21) 2178309028558574 a001 10946/9349*(1/2+1/2*5^(1/2))^30 2178309028558574 a001 10946/9349*192900153618^(5/9) 2178309028558574 a001 10946/9349*28143753123^(3/5) 2178309028558574 a001 10946/9349*10749957122^(5/8) 2178309028558574 a001 10946/9349*4106118243^(15/23) 2178309028558574 a001 10946/9349*1568397607^(15/22) 2178309028558574 a001 10946/9349*599074578^(5/7) 2178309028558574 a001 10946/9349*228826127^(3/4) 2178309028558575 a001 10946/9349*87403803^(15/19) 2178309028558576 a001 4181/24476*33385282^(17/18) 2178309028558576 a001 10946/9349*33385282^(5/6) 2178309028558586 a001 10946/9349*12752043^(15/17) 2178309028558660 a001 10946/9349*4870847^(15/16) 2178309028730249 a001 433494437/9349*15127^(2/5) 2178309028796383 a001 46368*5778^(4/9) 2178309028969453 a001 12586269025/271443*5778^(4/9) 2178309028994704 a001 32951280099/710647*5778^(4/9) 2178309028998388 a001 43133785636/930249*5778^(4/9) 2178309028998926 a001 225851433717/4870847*5778^(4/9) 2178309028999004 a001 591286729879/12752043*5778^(4/9) 2178309028999015 a001 774004377960/16692641*5778^(4/9) 2178309028999017 a001 4052739537881/87403803*5778^(4/9) 2178309028999017 a001 225749145909/4868641*5778^(4/9) 2178309028999018 a001 3278735159921/70711162*5778^(4/9) 2178309028999018 a001 2504730781961/54018521*5778^(4/9) 2178309028999023 a001 956722026041/20633239*5778^(4/9) 2178309028999052 a001 182717648081/3940598*5778^(4/9) 2178309028999258 a001 139583862445/3010349*5778^(4/9) 2178309029000665 a001 53316291173/1149851*5778^(4/9) 2178309029010275 a001 1836311903/24476*5778^(7/18) 2178309029010310 a001 10182505537/219602*5778^(4/9) 2178309029076417 a001 7778742049/167761*5778^(4/9) 2178309029206224 a001 267914296/9349*15127^(9/20) 2178309029529521 a001 2971215073/64079*5778^(4/9) 2178309029682198 a001 165580141/9349*15127^(1/2) 2178309030144873 a001 9227465/3571*3571^(14/17) 2178309030158173 a001 102334155/9349*15127^(11/20) 2178309030354120 a001 165580141/15127*5778^(11/18) 2178309030634148 a001 63245986/9349*15127^(3/5) 2178309031110122 a001 4181*15127^(13/20) 2178309031235008 a001 1134903170/39603*5778^(1/2) 2178309031586098 a001 24157817/9349*15127^(7/10) 2178309031587062 a001 32951280099/24476*2207^(1/16) 2178309032062070 a001 14930352/9349*15127^(3/4) 2178309032172183 a001 7778742049/9349*5778^(1/9) 2178309032421249 a001 2971215073/103682*5778^(1/2) 2178309032538052 a001 9227465/9349*15127^(4/5) 2178309032594319 a001 7778742049/271443*5778^(1/2) 2178309032619570 a001 20365011074/710647*5778^(1/2) 2178309032623254 a001 53316291173/1860498*5778^(1/2) 2178309032623791 a001 139583862445/4870847*5778^(1/2) 2178309032623870 a001 365435296162/12752043*5778^(1/2) 2178309032623881 a001 956722026041/33385282*5778^(1/2) 2178309032623883 a001 2504730781961/87403803*5778^(1/2) 2178309032623883 a001 6557470319842/228826127*5778^(1/2) 2178309032623883 a001 10610209857723/370248451*5778^(1/2) 2178309032623883 a001 4052739537881/141422324*5778^(1/2) 2178309032623884 a001 1548008755920/54018521*5778^(1/2) 2178309032623888 a001 591286729879/20633239*5778^(1/2) 2178309032623918 a001 225851433717/7881196*5778^(1/2) 2178309032624124 a001 86267571272/3010349*5778^(1/2) 2178309032625531 a001 32951280099/1149851*5778^(1/2) 2178309032635141 a001 567451585/12238*5778^(4/9) 2178309032635176 a001 12586269025/439204*5778^(1/2) 2178309032701283 a001 4807526976/167761*5778^(1/2) 2178309033014008 a001 5702887/9349*15127^(17/20) 2178309033154386 a001 28657*5778^(1/2) 2178309033490031 a001 3524578/9349*15127^(9/10) 2178309033965879 a001 2178309/9349*15127^(19/20) 2178309033978986 a001 6765*5778^(2/3) 2178309034441980 a001 14736260618/6765 2178309034859873 a001 17711*5778^(5/9) 2178309035797048 a001 4807526976/9349*5778^(1/6) 2178309036046115 a001 1836311903/103682*5778^(5/9) 2178309036219185 a001 1602508992/90481*5778^(5/9) 2178309036244436 a001 12586269025/710647*5778^(5/9) 2178309036248120 a001 10983760033/620166*5778^(5/9) 2178309036248657 a001 86267571272/4870847*5778^(5/9) 2178309036248736 a001 75283811239/4250681*5778^(5/9) 2178309036248747 a001 591286729879/33385282*5778^(5/9) 2178309036248749 a001 516002918640/29134601*5778^(5/9) 2178309036248749 a001 4052739537881/228826127*5778^(5/9) 2178309036248749 a001 3536736619241/199691526*5778^(5/9) 2178309036248749 a001 6557470319842/370248451*5778^(5/9) 2178309036248749 a001 2504730781961/141422324*5778^(5/9) 2178309036248750 a001 956722026041/54018521*5778^(5/9) 2178309036248754 a001 365435296162/20633239*5778^(5/9) 2178309036248784 a001 139583862445/7881196*5778^(5/9) 2178309036248989 a001 53316291173/3010349*5778^(5/9) 2178309036250397 a001 20365011074/1149851*5778^(5/9) 2178309036260007 a001 701408733/24476*5778^(1/2) 2178309036260041 a001 7778742049/439204*5778^(5/9) 2178309036326148 a001 2971215073/167761*5778^(5/9) 2178309036779252 a001 1134903170/64079*5778^(5/9) 2178309037603852 a001 63245986/15127*5778^(13/18) 2178309038484739 a001 433494437/39603*5778^(11/18) 2178309039421914 a001 2971215073/9349*5778^(2/9) 2178309039670981 a001 567451585/51841*5778^(11/18) 2178309039703051 r005 Re(z^2+c),c=-7/40+22/51*I,n=41 2178309039844051 a001 2971215073/271443*5778^(11/18) 2178309039869301 a001 7778742049/710647*5778^(11/18) 2178309039872985 a001 10182505537/930249*5778^(11/18) 2178309039873523 a001 53316291173/4870847*5778^(11/18) 2178309039873601 a001 139583862445/12752043*5778^(11/18) 2178309039873613 a001 182717648081/16692641*5778^(11/18) 2178309039873615 a001 956722026041/87403803*5778^(11/18) 2178309039873615 a001 2504730781961/228826127*5778^(11/18) 2178309039873615 a001 3278735159921/299537289*5778^(11/18) 2178309039873615 a001 10610209857723/969323029*5778^(11/18) 2178309039873615 a001 4052739537881/370248451*5778^(11/18) 2178309039873615 a001 387002188980/35355581*5778^(11/18) 2178309039873616 a001 591286729879/54018521*5778^(11/18) 2178309039873620 a001 7787980473/711491*5778^(11/18) 2178309039873650 a001 21566892818/1970299*5778^(11/18) 2178309039873855 a001 32951280099/3010349*5778^(11/18) 2178309039875262 a001 12586269025/1149851*5778^(11/18) 2178309039884872 a001 433494437/24476*5778^(5/9) 2178309039884907 a001 1201881744/109801*5778^(11/18) 2178309039951014 a001 1836311903/167761*5778^(11/18) 2178309040024914 k001 Champernowne real with 912*n+1266 2178309040193125 a001 14930352/3571*3571^(13/17) 2178309040404118 a001 701408733/64079*5778^(11/18) 2178309041228718 a001 39088169/15127*5778^(7/9) 2178309042109605 a001 267914296/39603*5778^(2/3) 2178309043046780 a001 1836311903/9349*5778^(5/18) 2178309043295846 a001 701408733/103682*5778^(2/3) 2178309043468917 a001 1836311903/271443*5778^(2/3) 2178309043494167 a001 686789568/101521*5778^(2/3) 2178309043497851 a001 12586269025/1860498*5778^(2/3) 2178309043498389 a001 32951280099/4870847*5778^(2/3) 2178309043498467 a001 86267571272/12752043*5778^(2/3) 2178309043498479 a001 32264490531/4769326*5778^(2/3) 2178309043498480 a001 591286729879/87403803*5778^(2/3) 2178309043498481 a001 1548008755920/228826127*5778^(2/3) 2178309043498481 a001 4052739537881/599074578*5778^(2/3) 2178309043498481 a001 1515744265389/224056801*5778^(2/3) 2178309043498481 a001 6557470319842/969323029*5778^(2/3) 2178309043498481 a001 2504730781961/370248451*5778^(2/3) 2178309043498481 a001 956722026041/141422324*5778^(2/3) 2178309043498481 a001 365435296162/54018521*5778^(2/3) 2178309043498486 a001 139583862445/20633239*5778^(2/3) 2178309043498516 a001 53316291173/7881196*5778^(2/3) 2178309043498721 a001 20365011074/3010349*5778^(2/3) 2178309043500128 a001 7778742049/1149851*5778^(2/3) 2178309043509738 a001 10946*5778^(11/18) 2178309043509773 a001 2971215073/439204*5778^(2/3) 2178309043575880 a001 1134903170/167761*5778^(2/3) 2178309044028984 a001 433494437/64079*5778^(2/3) 2178309044853584 a001 24157817/15127*5778^(5/6) 2178309045734471 a001 165580141/39603*5778^(13/18) 2178309046382291 a001 12586269025/15127*2207^(1/8) 2178309046555896 a001 1836311903/5778*2207^(1/4) 2178309046671646 a001 1134903170/9349*5778^(1/3) 2178309046920712 a001 433494437/103682*5778^(13/18) 2178309047023339 m001 Thue^Otter/(TwinPrimes^Otter) 2178309047093782 a001 1134903170/271443*5778^(13/18) 2178309047119033 a001 2971215073/710647*5778^(13/18) 2178309047122717 a001 7778742049/1860498*5778^(13/18) 2178309047123255 a001 20365011074/4870847*5778^(13/18) 2178309047123333 a001 53316291173/12752043*5778^(13/18) 2178309047123344 a001 139583862445/33385282*5778^(13/18) 2178309047123346 a001 365435296162/87403803*5778^(13/18) 2178309047123346 a001 956722026041/228826127*5778^(13/18) 2178309047123346 a001 2504730781961/599074578*5778^(13/18) 2178309047123346 a001 6557470319842/1568397607*5778^(13/18) 2178309047123346 a001 10610209857723/2537720636*5778^(13/18) 2178309047123346 a001 4052739537881/969323029*5778^(13/18) 2178309047123346 a001 1548008755920/370248451*5778^(13/18) 2178309047123347 a001 591286729879/141422324*5778^(13/18) 2178309047123347 a001 225851433717/54018521*5778^(13/18) 2178309047123352 a001 86267571272/20633239*5778^(13/18) 2178309047123381 a001 32951280099/7881196*5778^(13/18) 2178309047123587 a001 12586269025/3010349*5778^(13/18) 2178309047124994 a001 4807526976/1149851*5778^(13/18) 2178309047134604 a001 165580141/24476*5778^(2/3) 2178309047134639 a001 1836311903/439204*5778^(13/18) 2178309047200746 a001 701408733/167761*5778^(13/18) 2178309047653850 a001 267914296/64079*5778^(13/18) 2178309047888680 m001 1/3*(exp(1)-3^(1/2)*KomornikLoreti)*3^(1/2) 2178309048478447 a001 14930352/15127*5778^(8/9) 2178309049359337 a001 34111385/13201*5778^(7/9) 2178309049844811 a001 4181/9349*(1/2+1/2*5^(1/2))^32 2178309049844811 a001 4181/9349*23725150497407^(1/2) 2178309049844811 a001 4181/9349*505019158607^(4/7) 2178309049844811 a001 4181/9349*73681302247^(8/13) 2178309049844811 a001 4181/9349*10749957122^(2/3) 2178309049844811 a001 4181/9349*4106118243^(16/23) 2178309049844811 a001 4181/9349*1568397607^(8/11) 2178309049844811 a001 4181/9349*599074578^(16/21) 2178309049844811 a001 4181/9349*228826127^(4/5) 2178309049844811 a001 4181/9349*87403803^(16/19) 2178309049844813 a001 4181/9349*33385282^(8/9) 2178309049844823 a001 4181/9349*12752043^(16/17) 2178309050241387 a001 24157817/3571*3571^(12/17) 2178309050296512 a001 701408733/9349*5778^(7/18) 2178309050545578 a001 133957148/51841*5778^(7/9) 2178309050718648 a001 233802911/90481*5778^(7/9) 2178309050743899 a001 1836311903/710647*5778^(7/9) 2178309050747583 a001 267084832/103361*5778^(7/9) 2178309050748120 a001 12586269025/4870847*5778^(7/9) 2178309050748199 a001 10983760033/4250681*5778^(7/9) 2178309050748210 a001 43133785636/16692641*5778^(7/9) 2178309050748212 a001 75283811239/29134601*5778^(7/9) 2178309050748212 a001 591286729879/228826127*5778^(7/9) 2178309050748212 a001 86000486440/33281921*5778^(7/9) 2178309050748212 a001 4052739537881/1568397607*5778^(7/9) 2178309050748212 a001 3536736619241/1368706081*5778^(7/9) 2178309050748212 a001 3278735159921/1268860318*5778^(7/9) 2178309050748212 a001 2504730781961/969323029*5778^(7/9) 2178309050748212 a001 956722026041/370248451*5778^(7/9) 2178309050748212 a001 182717648081/70711162*5778^(7/9) 2178309050748213 a001 139583862445/54018521*5778^(7/9) 2178309050748217 a001 53316291173/20633239*5778^(7/9) 2178309050748247 a001 10182505537/3940598*5778^(7/9) 2178309050748453 a001 7778742049/3010349*5778^(7/9) 2178309050749860 a001 2971215073/1149851*5778^(7/9) 2178309050759470 a001 102334155/24476*5778^(13/18) 2178309050759505 a001 567451585/219602*5778^(7/9) 2178309050825612 a001 433494437/167761*5778^(7/9) 2178309051278715 a001 165580141/64079*5778^(7/9) 2178309052103320 a001 9227465/15127*5778^(17/18) 2178309052873298 a001 12586269025/9349*2207^(1/16) 2178309052984203 a001 63245986/39603*5778^(5/6) 2178309053921378 a001 433494437/9349*5778^(4/9) 2178309054170444 a001 165580141/103682*5778^(5/6) 2178309054343514 a001 433494437/271443*5778^(5/6) 2178309054368765 a001 1134903170/710647*5778^(5/6) 2178309054372449 a001 2971215073/1860498*5778^(5/6) 2178309054372986 a001 7778742049/4870847*5778^(5/6) 2178309054373065 a001 20365011074/12752043*5778^(5/6) 2178309054373076 a001 53316291173/33385282*5778^(5/6) 2178309054373078 a001 139583862445/87403803*5778^(5/6) 2178309054373078 a001 365435296162/228826127*5778^(5/6) 2178309054373078 a001 956722026041/599074578*5778^(5/6) 2178309054373078 a001 2504730781961/1568397607*5778^(5/6) 2178309054373078 a001 6557470319842/4106118243*5778^(5/6) 2178309054373078 a001 10610209857723/6643838879*5778^(5/6) 2178309054373078 a001 4052739537881/2537720636*5778^(5/6) 2178309054373078 a001 1548008755920/969323029*5778^(5/6) 2178309054373078 a001 591286729879/370248451*5778^(5/6) 2178309054373078 a001 225851433717/141422324*5778^(5/6) 2178309054373079 a001 86267571272/54018521*5778^(5/6) 2178309054373083 a001 32951280099/20633239*5778^(5/6) 2178309054373113 a001 12586269025/7881196*5778^(5/6) 2178309054373318 a001 4807526976/3010349*5778^(5/6) 2178309054374726 a001 1836311903/1149851*5778^(5/6) 2178309054384336 a001 31622993/12238*5778^(7/9) 2178309054384370 a001 701408733/439204*5778^(5/6) 2178309054450477 a001 267914296/167761*5778^(5/6) 2178309054512910 a001 10983760033/13201*2207^(1/8) 2178309054635960 r005 Im(z^2+c),c=-7/106+16/61*I,n=8 2178309054868539 l006 ln(7285/9058) 2178309054903581 a001 102334155/64079*5778^(5/6) 2178309055699152 a001 43133785636/51841*2207^(1/8) 2178309055727554 a001 703593825/323 2178309055872222 a001 75283811239/90481*2207^(1/8) 2178309055897472 a001 591286729879/710647*2207^(1/8) 2178309055901156 a001 832040*2207^(1/8) 2178309055901694 a001 4052739537881/4870847*2207^(1/8) 2178309055901772 a001 3536736619241/4250681*2207^(1/8) 2178309055901821 a001 3278735159921/3940598*2207^(1/8) 2178309055902026 a001 2504730781961/3010349*2207^(1/8) 2178309055903433 a001 956722026041/1149851*2207^(1/8) 2178309055913078 a001 182717648081/219602*2207^(1/8) 2178309055979185 a001 139583862445/167761*2207^(1/8) 2178309056432289 a001 53316291173/64079*2207^(1/8) 2178309056609068 a001 39088169/39603*5778^(8/9) 2178309057193202 m001 1/exp(Zeta(1,2))^2*Ei(1)^2/Zeta(5)^2 2178309057546243 a001 267914296/9349*5778^(1/2) 2178309057795310 a001 102334155/103682*5778^(8/9) 2178309057968380 a001 267914296/271443*5778^(8/9) 2178309057993631 a001 701408733/710647*5778^(8/9) 2178309057997315 a001 1836311903/1860498*5778^(8/9) 2178309057997852 a001 4807526976/4870847*5778^(8/9) 2178309057997930 a001 12586269025/12752043*5778^(8/9) 2178309057997942 a001 32951280099/33385282*5778^(8/9) 2178309057997944 a001 86267571272/87403803*5778^(8/9) 2178309057997944 a001 225851433717/228826127*5778^(8/9) 2178309057997944 a001 591286729879/599074578*5778^(8/9) 2178309057997944 a001 1548008755920/1568397607*5778^(8/9) 2178309057997944 a001 4052739537881/4106118243*5778^(8/9) 2178309057997944 a001 4807525989/4870846*5778^(8/9) 2178309057997944 a001 6557470319842/6643838879*5778^(8/9) 2178309057997944 a001 2504730781961/2537720636*5778^(8/9) 2178309057997944 a001 956722026041/969323029*5778^(8/9) 2178309057997944 a001 365435296162/370248451*5778^(8/9) 2178309057997944 a001 139583862445/141422324*5778^(8/9) 2178309057997945 a001 53316291173/54018521*5778^(8/9) 2178309057997949 a001 20365011074/20633239*5778^(8/9) 2178309057997979 a001 7778742049/7881196*5778^(8/9) 2178309057998184 a001 2971215073/3010349*5778^(8/9) 2178309057999591 a001 1134903170/1149851*5778^(8/9) 2178309058009201 a001 39088169/24476*5778^(5/6) 2178309058009236 a001 433494437/439204*5778^(8/9) 2178309058075343 a001 165580141/167761*5778^(8/9) 2178309058528447 a001 63245986/64079*5778^(8/9) 2178309059537909 a001 10182505537/12238*2207^(1/8) 2178309060233935 a001 24157817/39603*5778^(17/18) 2178309060289645 a001 39088169/3571*3571^(11/17) 2178309061171109 a001 165580141/9349*5778^(5/9) 2178309061420176 a001 31622993/51841*5778^(17/18) 2178309061593246 a001 165580141/271443*5778^(17/18) 2178309061618496 a001 433494437/710647*5778^(17/18) 2178309061622180 a001 567451585/930249*5778^(17/18) 2178309061622718 a001 2971215073/4870847*5778^(17/18) 2178309061622796 a001 7778742049/12752043*5778^(17/18) 2178309061622808 a001 10182505537/16692641*5778^(17/18) 2178309061622809 a001 53316291173/87403803*5778^(17/18) 2178309061622810 a001 139583862445/228826127*5778^(17/18) 2178309061622810 a001 182717648081/299537289*5778^(17/18) 2178309061622810 a001 956722026041/1568397607*5778^(17/18) 2178309061622810 a001 2504730781961/4106118243*5778^(17/18) 2178309061622810 a001 3278735159921/5374978561*5778^(17/18) 2178309061622810 a001 10610209857723/17393796001*5778^(17/18) 2178309061622810 a001 4052739537881/6643838879*5778^(17/18) 2178309061622810 a001 1134903780/1860499*5778^(17/18) 2178309061622810 a001 591286729879/969323029*5778^(17/18) 2178309061622810 a001 225851433717/370248451*5778^(17/18) 2178309061622810 a001 21566892818/35355581*5778^(17/18) 2178309061622810 a001 32951280099/54018521*5778^(17/18) 2178309061622815 a001 1144206275/1875749*5778^(17/18) 2178309061622845 a001 1201881744/1970299*5778^(17/18) 2178309061623050 a001 1836311903/3010349*5778^(17/18) 2178309061624457 a001 701408733/1149851*5778^(17/18) 2178309061634068 a001 24157817/24476*5778^(8/9) 2178309061634102 a001 66978574/109801*5778^(17/18) 2178309061700209 a001 9303105/15251*5778^(17/18) 2178309062153313 a001 39088169/64079*5778^(17/18) 2178309063854489 a001 5628750621/2584 2178309064795975 a001 102334155/9349*5778^(11/18) 2178309065015479 a001 703593828/323 2178309065247678 a001 1/1292*(1/2+1/2*5^(1/2))^50 2178309065258931 a001 3732588/6119*5778^(17/18) 2178309065402476 a001 5628750625/2584 2178309068420841 a001 63245986/9349*5778^(2/3) 2178309068885448 a001 2814375317/1292 2178309069304529 r005 Re(z^2+c),c=39/122+4/19*I,n=29 2178309070337904 a001 63245986/3571*3571^(10/17) 2178309070592571 r009 Re(z^3+c),c=-9/74+37/43*I,n=40 2178309071044264 a007 Real Root Of -767*x^4+568*x^3+320*x^2+935*x-223 2178309072045706 a001 4181*5778^(13/18) 2178309074333139 a001 7778742049/15127*2207^(3/16) 2178309074506744 a001 567451585/2889*2207^(5/16) 2178309075670573 a001 24157817/9349*5778^(7/9) 2178309077531694 m001 MertensB3/(ZetaQ(4)^ZetaP(4)) 2178309078054842 a001 1762289/682*1364^(14/15) 2178309079295437 a001 14930352/9349*5778^(5/6) 2178309080386163 a001 102334155/3571*3571^(9/17) 2178309080824146 a001 7778742049/9349*2207^(1/8) 2178309082463758 a001 20365011074/39603*2207^(3/16) 2178309082920309 a001 9227465/9349*5778^(8/9) 2178309083649999 a001 53316291173/103682*2207^(3/16) 2178309083823070 a001 139583862445/271443*2207^(3/16) 2178309083848320 a001 365435296162/710647*2207^(3/16) 2178309083852004 a001 956722026041/1860498*2207^(3/16) 2178309083852542 a001 2504730781961/4870847*2207^(3/16) 2178309083852620 a001 6557470319842/12752043*2207^(3/16) 2178309083852639 a001 10610209857723/20633239*2207^(3/16) 2178309083852669 a001 4052739537881/7881196*2207^(3/16) 2178309083852874 a001 1548008755920/3010349*2207^(3/16) 2178309083854281 a001 514229*2207^(3/16) 2178309083863926 a001 225851433717/439204*2207^(3/16) 2178309083930033 a001 86267571272/167761*2207^(3/16) 2178309084383137 a001 32951280099/64079*2207^(3/16) 2178309084558508 a001 843/1597*89^(6/19) 2178309086545157 a001 5702887/9349*5778^(17/18) 2178309087488757 a001 12586269025/24476*2207^(3/16) 2178309090170278 a001 5628750689/2584 2178309090434423 a001 165580141/3571*3571^(8/17) 2178309092765779 a001 4807526976/3571*1364^(1/15) 2178309100482682 a001 267914296/3571*3571^(7/17) 2178309102283987 a001 686789568/2161*2207^(1/4) 2178309102457592 a001 233802911/1926*2207^(3/8) 2178309102892536 r002 8th iterates of z^2 + 2178309105572897 a001 1597/5778*141422324^(11/13) 2178309105572897 a001 1597/5778*2537720636^(11/15) 2178309105572897 a001 1597/5778*45537549124^(11/17) 2178309105572897 a001 1597/5778*312119004989^(3/5) 2178309105572897 a001 1597/5778*14662949395604^(11/21) 2178309105572897 a001 1597/5778*(1/2+1/2*5^(1/2))^33 2178309105572897 a001 1597/5778*192900153618^(11/18) 2178309105572897 a001 1597/5778*10749957122^(11/16) 2178309105572897 a001 1597/5778*1568397607^(3/4) 2178309105572897 a001 1597/5778*599074578^(11/14) 2178309105572899 a001 1597/5778*33385282^(11/12) 2178309105572909 a001 2584/3571*(1/2+1/2*5^(1/2))^31 2178309105572909 a001 2584/3571*9062201101803^(1/2) 2178309108774994 a001 4807526976/9349*2207^(3/16) 2178309110414606 a001 12586269025/39603*2207^(1/4) 2178309110530941 a001 433494437/3571*3571^(6/17) 2178309111600847 a001 32951280099/103682*2207^(1/4) 2178309111773918 a001 86267571272/271443*2207^(1/4) 2178309111799168 a001 317811*2207^(1/4) 2178309111802852 a001 591286729879/1860498*2207^(1/4) 2178309111803390 a001 1548008755920/4870847*2207^(1/4) 2178309111803468 a001 4052739537881/12752043*2207^(1/4) 2178309111803480 a001 1515744265389/4769326*2207^(1/4) 2178309111803487 a001 6557470319842/20633239*2207^(1/4) 2178309111803517 a001 2504730781961/7881196*2207^(1/4) 2178309111803722 a001 956722026041/3010349*2207^(1/4) 2178309111805129 a001 365435296162/1149851*2207^(1/4) 2178309111814774 a001 139583862445/439204*2207^(1/4) 2178309111880881 a001 53316291173/167761*2207^(1/4) 2178309112033167 m005 (1/3*Pi+1/8)/(2*5^(1/2)+10/11) 2178309112333985 a001 20365011074/64079*2207^(1/4) 2178309115439605 a001 7778742049/24476*2207^(1/4) 2178309117432301 a001 28143753123*144^(7/17) 2178309120579200 a001 701408733/3571*3571^(5/17) 2178309128105360 m001 (MasserGramainDelta+Thue)/(sin(1/5*Pi)+Cahen) 2178309129810016 m001 Riemann2ndZero^(arctan(1/3)*Kolakoski) 2178309130234835 a001 2971215073/15127*2207^(5/16) 2178309130343683 l006 ln(338/2985) 2178309130408440 a001 433494437/5778*2207^(7/16) 2178309130627460 a001 1134903170/3571*3571^(4/17) 2178309133127749 r005 Im(z^2+c),c=-9/10+43/223*I,n=31 2178309136725843 a001 2971215073/9349*2207^(1/4) 2178309138365454 a001 7778742049/39603*2207^(5/16) 2178309139551696 a001 10182505537/51841*2207^(5/16) 2178309139695422 r005 Im(z^2+c),c=-61/50+1/29*I,n=58 2178309139724766 a001 53316291173/271443*2207^(5/16) 2178309139750017 a001 139583862445/710647*2207^(5/16) 2178309139753701 a001 182717648081/930249*2207^(5/16) 2178309139754238 a001 956722026041/4870847*2207^(5/16) 2178309139754317 a001 2504730781961/12752043*2207^(5/16) 2178309139754328 a001 3278735159921/16692641*2207^(5/16) 2178309139754331 a001 10610209857723/54018521*2207^(5/16) 2178309139754335 a001 4052739537881/20633239*2207^(5/16) 2178309139754365 a001 387002188980/1970299*2207^(5/16) 2178309139754570 a001 591286729879/3010349*2207^(5/16) 2178309139755978 a001 225851433717/1149851*2207^(5/16) 2178309139765622 a001 196418*2207^(5/16) 2178309139831729 a001 32951280099/167761*2207^(5/16) 2178309140044917 k001 Champernowne real with 913*n+1265 2178309140284833 a001 12586269025/64079*2207^(5/16) 2178309140675719 a001 1836311903/3571*3571^(3/17) 2178309141195600 a007 Real Root Of 517*x^4+678*x^3-978*x^2-197*x-421 2178309143390454 a001 1201881744/6119*2207^(5/16) 2178309145898110 a001 9107510539/4181 2178309147210080 a001 1346269/3571*9349^(18/19) 2178309148409222 r009 Re(z^3+c),c=-13/46+45/61*I,n=55 2178309148521451 a001 2178309/3571*9349^(17/19) 2178309149833281 a001 3524578/3571*9349^(16/19) 2178309150723979 a001 2971215073/3571*3571^(2/17) 2178309151144936 a001 1597*9349^(15/19) 2178309151547884 r005 Im(z^2+c),c=5/66+8/39*I,n=17 2178309152456658 a001 9227465/3571*9349^(14/19) 2178309153698615 a001 7778742049/5778*843^(1/14) 2178309153768354 a001 14930352/3571*9349^(13/19) 2178309153769953 r005 Im(z^2+c),c=-1/9+7/25*I,n=5 2178309155080060 a001 24157817/3571*9349^(12/19) 2178309156109511 a001 5702887/1364*1364^(13/15) 2178309156391762 a001 39088169/3571*9349^(11/19) 2178309157703466 a001 63245986/3571*9349^(10/19) 2178309158185684 a001 1836311903/15127*2207^(3/8) 2178309158359289 a001 133957148/2889*2207^(1/2) 2178309159015169 a001 102334155/3571*9349^(9/19) 2178309160127656 r005 Im(z^2+c),c=-25/56+17/45*I,n=29 2178309160326872 a001 165580141/3571*9349^(8/19) 2178309160772238 a001 4807526976/3571*3571^(1/17) 2178309161300990 a001 1597/15127*2537720636^(7/9) 2178309161300990 a001 1597/15127*17393796001^(5/7) 2178309161300990 a001 1597/15127*312119004989^(7/11) 2178309161300990 a001 1597/15127*14662949395604^(5/9) 2178309161300990 a001 1597/15127*(1/2+1/2*5^(1/2))^35 2178309161300990 a001 1597/15127*505019158607^(5/8) 2178309161300990 a001 1597/15127*28143753123^(7/10) 2178309161300990 a001 1597/15127*599074578^(5/6) 2178309161300990 a001 1597/15127*228826127^(7/8) 2178309161301003 a001 6765/3571*(1/2+1/2*5^(1/2))^29 2178309161301003 a001 6765/3571*1322157322203^(1/2) 2178309161638575 a001 267914296/3571*9349^(7/19) 2178309162950279 a001 433494437/3571*9349^(6/19) 2178309163849493 m001 arctan(1/2)^LandauRamanujan2nd*Magata 2178309164261982 a001 701408733/3571*9349^(5/19) 2178309164676691 a001 1836311903/9349*2207^(5/16) 2178309165573685 a001 1134903170/3571*9349^(4/19) 2178309166316303 a001 1602508992/13201*2207^(3/8) 2178309166885388 a001 1836311903/3571*9349^(3/19) 2178309167184359 a001 11921886072/5473 2178309167359171 a001 514229/3571*24476^(20/21) 2178309167502545 a001 12586269025/103682*2207^(3/8) 2178309167530043 a001 832040/3571*24476^(19/21) 2178309167675615 a001 121393*2207^(3/8) 2178309167700866 a001 86267571272/710647*2207^(3/8) 2178309167704061 a001 1346269/3571*24476^(6/7) 2178309167704550 a001 75283811239/620166*2207^(3/8) 2178309167705087 a001 591286729879/4870847*2207^(3/8) 2178309167705165 a001 516002918640/4250681*2207^(3/8) 2178309167705177 a001 4052739537881/33385282*2207^(3/8) 2178309167705179 a001 3536736619241/29134601*2207^(3/8) 2178309167705180 a001 6557470319842/54018521*2207^(3/8) 2178309167705184 a001 2504730781961/20633239*2207^(3/8) 2178309167705214 a001 956722026041/7881196*2207^(3/8) 2178309167705419 a001 365435296162/3010349*2207^(3/8) 2178309167706826 a001 139583862445/1149851*2207^(3/8) 2178309167716471 a001 53316291173/439204*2207^(3/8) 2178309167782578 a001 20365011074/167761*2207^(3/8) 2178309167876878 a001 2178309/3571*24476^(17/21) 2178309168050153 a001 3524578/3571*24476^(16/21) 2178309168197091 a001 2971215073/3571*9349^(2/19) 2178309168223253 a001 1597*24476^(5/7) 2178309168235682 a001 7778742049/64079*2207^(3/8) 2178309168396421 a001 9227465/3571*24476^(2/3) 2178309168449563 a007 Real Root Of 687*x^4-895*x^3-3*x^2-883*x-203 2178309168569562 a001 14930352/3571*24476^(13/21) 2178309168742714 a001 24157817/3571*24476^(4/7) 2178309168915862 a001 39088169/3571*24476^(11/21) 2178309169089011 a001 63245986/3571*24476^(10/21) 2178309169262159 a001 102334155/3571*24476^(3/7) 2178309169431594 a001 17711/3571*7881196^(9/11) 2178309169431609 a001 1597/39603*(1/2+1/2*5^(1/2))^37 2178309169431622 a001 17711/3571*141422324^(9/13) 2178309169431622 a001 17711/3571*2537720636^(3/5) 2178309169431622 a001 17711/3571*45537549124^(9/17) 2178309169431622 a001 17711/3571*817138163596^(9/19) 2178309169431622 a001 17711/3571*14662949395604^(3/7) 2178309169431622 a001 17711/3571*(1/2+1/2*5^(1/2))^27 2178309169431622 a001 17711/3571*192900153618^(1/2) 2178309169431622 a001 17711/3571*10749957122^(9/16) 2178309169431622 a001 17711/3571*599074578^(9/14) 2178309169431624 a001 17711/3571*33385282^(3/4) 2178309169432189 a001 17711/3571*1860498^(9/10) 2178309169435308 a001 165580141/3571*24476^(8/21) 2178309169508795 a001 4807526976/3571*9349^(1/19) 2178309169608457 a001 267914296/3571*24476^(1/3) 2178309169781606 a001 433494437/3571*24476^(2/7) 2178309169954754 a001 701408733/3571*24476^(5/21) 2178309170127903 a001 1134903170/3571*24476^(4/21) 2178309170289981 a001 62423805893/28657 2178309170301052 a001 1836311903/3571*24476^(1/7) 2178309170324352 a001 196418/3571*64079^(22/23) 2178309170331812 a001 317811/3571*64079^(21/23) 2178309170360838 a001 514229/3571*64079^(20/23) 2178309170381627 a001 832040/3571*64079^(19/23) 2178309170405562 a001 1346269/3571*64079^(18/23) 2178309170428295 a001 2178309/3571*64079^(17/23) 2178309170451487 a001 3524578/3571*64079^(16/23) 2178309170474200 a001 2971215073/3571*24476^(2/21) 2178309170474504 a001 1597*64079^(15/23) 2178309170497588 a001 9227465/3571*64079^(14/23) 2178309170520646 a001 14930352/3571*64079^(13/23) 2178309170543714 a001 24157817/3571*64079^(12/23) 2178309170566779 a001 39088169/3571*64079^(11/23) 2178309170589844 a001 63245986/3571*64079^(10/23) 2178309170612910 a001 102334155/3571*64079^(9/23) 2178309170617850 a001 1597/103682*2537720636^(13/15) 2178309170617850 a001 1597/103682*45537549124^(13/17) 2178309170617850 a001 1597/103682*14662949395604^(13/21) 2178309170617850 a001 1597/103682*(1/2+1/2*5^(1/2))^39 2178309170617850 a001 1597/103682*192900153618^(13/18) 2178309170617850 a001 1597/103682*73681302247^(3/4) 2178309170617850 a001 1597/103682*10749957122^(13/16) 2178309170617850 a001 1597/103682*599074578^(13/14) 2178309170617860 a001 46368/3571*20633239^(5/7) 2178309170617864 a001 46368/3571*2537720636^(5/9) 2178309170617864 a001 46368/3571*312119004989^(5/11) 2178309170617864 a001 46368/3571*(1/2+1/2*5^(1/2))^25 2178309170617864 a001 46368/3571*3461452808002^(5/12) 2178309170617864 a001 46368/3571*28143753123^(1/2) 2178309170617864 a001 46368/3571*228826127^(5/8) 2178309170618388 a001 46368/3571*1860498^(5/6) 2178309170635975 a001 165580141/3571*64079^(8/23) 2178309170647349 a001 4807526976/3571*24476^(1/21) 2178309170659040 a001 267914296/3571*64079^(7/23) 2178309170682106 a001 433494437/3571*64079^(6/23) 2178309170705171 a001 701408733/3571*64079^(5/23) 2178309170728237 a001 1134903170/3571*64079^(4/23) 2178309170743085 a001 32685529107/15005 2178309170751302 a001 1836311903/3571*64079^(3/23) 2178309170760226 a001 514229/3571*167761^(4/5) 2178309170774045 a001 1597*167761^(3/5) 2178309170774367 a001 2971215073/3571*64079^(2/23) 2178309170789538 a001 63245986/3571*167761^(2/5) 2178309170790921 a001 1597/271443*(1/2+1/2*5^(1/2))^41 2178309170790934 a001 121393/3571*(1/2+1/2*5^(1/2))^23 2178309170790934 a001 121393/3571*4106118243^(1/2) 2178309170797433 a001 4807526976/3571*64079^(1/23) 2178309170805018 a001 701408733/3571*167761^(1/5) 2178309170807402 a001 317811/3571*439204^(7/9) 2178309170809192 a001 213929565356/98209 2178309170813210 a001 1346269/3571*439204^(2/3) 2178309170814211 a001 1597*439204^(5/9) 2178309170815480 a001 24157817/3571*439204^(4/9) 2178309170816162 a001 317811/3571*7881196^(7/11) 2178309170816171 a001 1597/710647*(1/2+1/2*5^(1/2))^43 2178309170816182 a001 317811/3571*20633239^(3/5) 2178309170816185 a001 317811/3571*141422324^(7/13) 2178309170816185 a001 317811/3571*2537720636^(7/15) 2178309170816185 a001 317811/3571*17393796001^(3/7) 2178309170816185 a001 317811/3571*45537549124^(7/17) 2178309170816185 a001 317811/3571*14662949395604^(1/3) 2178309170816185 a001 317811/3571*(1/2+1/2*5^(1/2))^21 2178309170816185 a001 317811/3571*192900153618^(7/18) 2178309170816185 a001 317811/3571*10749957122^(7/16) 2178309170816185 a001 317811/3571*599074578^(1/2) 2178309170816186 a001 317811/3571*33385282^(7/12) 2178309170816625 a001 317811/3571*1860498^(7/10) 2178309170816734 a001 102334155/3571*439204^(1/3) 2178309170817989 a001 433494437/3571*439204^(2/9) 2178309170818837 a001 1120149746601/514229 2178309170819243 a001 1836311903/3571*439204^(1/9) 2178309170819420 a001 317811/3571*710647^(3/4) 2178309170819855 a001 1597/1860498*45537549124^(15/17) 2178309170819855 a001 1597/1860498*312119004989^(9/11) 2178309170819855 a001 1597/1860498*14662949395604^(5/7) 2178309170819855 a001 1597/1860498*(1/2+1/2*5^(1/2))^45 2178309170819855 a001 1597/1860498*192900153618^(5/6) 2178309170819855 a001 1597/1860498*28143753123^(9/10) 2178309170819855 a001 1597/1860498*10749957122^(15/16) 2178309170819869 a001 832040/3571*817138163596^(1/3) 2178309170819869 a001 832040/3571*(1/2+1/2*5^(1/2))^19 2178309170819869 a001 832040/3571*87403803^(1/2) 2178309170820244 a001 2932590109091/1346269 2178309170820393 a001 1597/4870847*(1/2+1/2*5^(1/2))^47 2178309170820406 a001 2178309/3571*45537549124^(1/3) 2178309170820406 a001 2178309/3571*(1/2+1/2*5^(1/2))^17 2178309170820413 a001 2178309/3571*12752043^(1/2) 2178309170820449 a001 3838810290336/1762289 2178309170820469 a001 1597*7881196^(5/11) 2178309170820471 a001 1597/12752043*14662949395604^(7/9) 2178309170820471 a001 1597/12752043*(1/2+1/2*5^(1/2))^49 2178309170820471 a001 1597/12752043*505019158607^(7/8) 2178309170820479 a001 4020054326585/1845493 2178309170820482 a001 1597*20633239^(3/7) 2178309170820483 a001 1597/33385282*817138163596^(17/19) 2178309170820483 a001 1597/33385282*14662949395604^(17/21) 2178309170820483 a001 1597/33385282*(1/2+1/2*5^(1/2))^51 2178309170820483 a001 1597/33385282*192900153618^(17/18) 2178309170820484 a001 52623194318103/24157817 2178309170820484 a001 68884655660692/31622993 2178309170820485 a001 1597*141422324^(5/13) 2178309170820485 a001 1597/228826127*3461452808002^(11/12) 2178309170820485 a001 360684739646049/165580141 2178309170820485 a001 1597/599074578*14662949395604^(19/21) 2178309170820485 a001 944284907616763/433494437 2178309170820485 a001 4052737677384/1860497 2178309170820485 a001 1597*2537720636^(1/3) 2178309170820485 a001 6472225041995957/2971215073 2178309170820485 a001 16944505142783631/7778742049 2178309170820485 a001 1597*45537549124^(5/17) 2178309170820485 a001 1597*312119004989^(3/11) 2178309170820485 a001 1597*14662949395604^(5/21) 2178309170820485 a001 1597*192900153618^(5/18) 2178309170820485 a001 1597*28143753123^(3/10) 2178309170820485 a001 1597*10749957122^(5/16) 2178309170820485 a001 5236140050393837/2403763488 2178309170820485 a001 4000055058791717/1836311903 2178309170820485 a001 1597/2537720636*14662949395604^(20/21) 2178309170820485 a001 1527885075587477/701408733 2178309170820485 a001 1597*599074578^(5/14) 2178309170820485 a001 291800083985357/133957148 2178309170820485 a001 1597*228826127^(3/8) 2178309170820485 a001 1597/370248451*14662949395604^(8/9) 2178309170820485 a001 44583085664933/20466831 2178309170820485 a001 1597/141422324*14662949395604^(6/7) 2178309170820485 a001 85146117003281/39088169 2178309170820485 a001 1597/54018521*23725150497407^(13/16) 2178309170820485 a001 1597/54018521*505019158607^(13/14) 2178309170820485 a001 1597*33385282^(5/12) 2178309170820486 a001 24157817/3571*7881196^(4/11) 2178309170820486 a001 39088169/3571*7881196^(1/3) 2178309170820487 a001 16261461342589/7465176 2178309170820488 a001 102334155/3571*7881196^(3/11) 2178309170820490 a001 1597/20633239*312119004989^(10/11) 2178309170820490 a001 1597/20633239*(1/2+1/2*5^(1/2))^50 2178309170820490 a001 1597/20633239*3461452808002^(5/6) 2178309170820492 a001 433494437/3571*7881196^(2/11) 2178309170820495 a001 1836311903/3571*7881196^(1/11) 2178309170820496 a001 14930352/3571*141422324^(1/3) 2178309170820496 a001 14930352/3571*(1/2+1/2*5^(1/2))^13 2178309170820496 a001 14930352/3571*73681302247^(1/4) 2178309170820497 a001 63245986/3571*20633239^(2/7) 2178309170820497 a001 267914296/3571*20633239^(1/5) 2178309170820497 a001 701408733/3571*20633239^(1/7) 2178309170820498 a001 39088169/3571*312119004989^(1/5) 2178309170820498 a001 39088169/3571*(1/2+1/2*5^(1/2))^11 2178309170820498 a001 39088169/3571*1568397607^(1/4) 2178309170820498 a001 102334155/3571*141422324^(3/13) 2178309170820498 a001 102334155/3571*2537720636^(1/5) 2178309170820498 a001 102334155/3571*45537549124^(3/17) 2178309170820498 a001 102334155/3571*817138163596^(3/19) 2178309170820498 a001 102334155/3571*14662949395604^(1/7) 2178309170820498 a001 102334155/3571*(1/2+1/2*5^(1/2))^9 2178309170820498 a001 102334155/3571*192900153618^(1/6) 2178309170820498 a001 102334155/3571*10749957122^(3/16) 2178309170820498 a001 102334155/3571*599074578^(3/14) 2178309170820498 a001 433494437/3571*141422324^(2/13) 2178309170820498 a001 1836311903/3571*141422324^(1/13) 2178309170820498 a001 267914296/3571*17393796001^(1/7) 2178309170820498 a001 267914296/3571*14662949395604^(1/9) 2178309170820498 a001 267914296/3571*(1/2+1/2*5^(1/2))^7 2178309170820498 a001 267914296/3571*599074578^(1/6) 2178309170820498 a001 701408733/3571*2537720636^(1/9) 2178309170820498 a001 701408733/3571*312119004989^(1/11) 2178309170820498 a001 701408733/3571*(1/2+1/2*5^(1/2))^5 2178309170820498 a001 701408733/3571*28143753123^(1/10) 2178309170820498 a001 1836311903/3571*2537720636^(1/15) 2178309170820498 a001 1836311903/3571*45537549124^(1/17) 2178309170820498 a001 1836311903/3571*14662949395604^(1/21) 2178309170820498 a001 1836311903/3571*(1/2+1/2*5^(1/2))^3 2178309170820498 a001 1836311903/3571*10749957122^(1/16) 2178309170820498 a001 2403763488/3571+2403763488/3571*5^(1/2) 2178309170820498 a001 7778742049/3571 2178309170820498 a001 2971215073/3571*(1/2+1/2*5^(1/2))^2 2178309170820498 a001 2971215073/3571*10749957122^(1/24) 2178309170820498 a001 2971215073/3571*4106118243^(1/23) 2178309170820498 a001 2971215073/3571*1568397607^(1/22) 2178309170820498 a001 1836311903/3571*599074578^(1/14) 2178309170820498 a001 1134903170/3571*(1/2+1/2*5^(1/2))^4 2178309170820498 a001 1134903170/3571*23725150497407^(1/16) 2178309170820498 a001 1134903170/3571*73681302247^(1/13) 2178309170820498 a001 2971215073/3571*599074578^(1/21) 2178309170820498 a001 1134903170/3571*10749957122^(1/12) 2178309170820498 a001 1134903170/3571*4106118243^(2/23) 2178309170820498 a001 1134903170/3571*1568397607^(1/11) 2178309170820498 a001 1134903170/3571*599074578^(2/21) 2178309170820498 a001 2971215073/3571*228826127^(1/20) 2178309170820498 a001 433494437/3571*2537720636^(2/15) 2178309170820498 a001 433494437/3571*45537549124^(2/17) 2178309170820498 a001 433494437/3571*14662949395604^(2/21) 2178309170820498 a001 433494437/3571*(1/2+1/2*5^(1/2))^6 2178309170820498 a001 433494437/3571*10749957122^(1/8) 2178309170820498 a001 433494437/3571*4106118243^(3/23) 2178309170820498 a001 433494437/3571*1568397607^(3/22) 2178309170820498 a001 433494437/3571*599074578^(1/7) 2178309170820498 a001 701408733/3571*228826127^(1/8) 2178309170820498 a001 1134903170/3571*228826127^(1/10) 2178309170820498 a001 433494437/3571*228826127^(3/20) 2178309170820498 a001 2971215073/3571*87403803^(1/19) 2178309170820498 a001 165580141/3571*(1/2+1/2*5^(1/2))^8 2178309170820498 a001 165580141/3571*23725150497407^(1/8) 2178309170820498 a001 165580141/3571*505019158607^(1/7) 2178309170820498 a001 165580141/3571*73681302247^(2/13) 2178309170820498 a001 165580141/3571*10749957122^(1/6) 2178309170820498 a001 165580141/3571*4106118243^(4/23) 2178309170820498 a001 165580141/3571*1568397607^(2/11) 2178309170820498 a001 165580141/3571*599074578^(4/21) 2178309170820498 a001 165580141/3571*228826127^(1/5) 2178309170820498 a001 1134903170/3571*87403803^(2/19) 2178309170820498 a001 433494437/3571*87403803^(3/19) 2178309170820498 a001 165580141/3571*87403803^(4/19) 2178309170820498 a001 2971215073/3571*33385282^(1/18) 2178309170820498 a001 63245986/3571*2537720636^(2/9) 2178309170820498 a001 63245986/3571*312119004989^(2/11) 2178309170820498 a001 63245986/3571*(1/2+1/2*5^(1/2))^10 2178309170820498 a001 63245986/3571*28143753123^(1/5) 2178309170820498 a001 63245986/3571*10749957122^(5/24) 2178309170820498 a001 63245986/3571*4106118243^(5/23) 2178309170820498 a001 63245986/3571*1568397607^(5/22) 2178309170820498 a001 63245986/3571*599074578^(5/21) 2178309170820498 a001 63245986/3571*228826127^(1/4) 2178309170820498 a001 1836311903/3571*33385282^(1/12) 2178309170820498 a001 63245986/3571*87403803^(5/19) 2178309170820498 a001 1134903170/3571*33385282^(1/9) 2178309170820498 a001 433494437/3571*33385282^(1/6) 2178309170820498 a001 102334155/3571*33385282^(1/4) 2178309170820498 a001 165580141/3571*33385282^(2/9) 2178309170820499 a001 63245986/3571*33385282^(5/18) 2178309170820499 a001 24157817/3571*141422324^(4/13) 2178309170820499 a001 24157817/3571*2537720636^(4/15) 2178309170820499 a001 24157817/3571*45537549124^(4/17) 2178309170820499 a001 24157817/3571*14662949395604^(4/21) 2178309170820499 a001 24157817/3571*(1/2+1/2*5^(1/2))^12 2178309170820499 a001 24157817/3571*192900153618^(2/9) 2178309170820499 a001 24157817/3571*73681302247^(3/13) 2178309170820499 a001 24157817/3571*10749957122^(1/4) 2178309170820499 a001 24157817/3571*4106118243^(6/23) 2178309170820499 a001 24157817/3571*1568397607^(3/11) 2178309170820499 a001 24157817/3571*599074578^(2/7) 2178309170820499 a001 24157817/3571*228826127^(3/10) 2178309170820499 a001 2971215073/3571*12752043^(1/17) 2178309170820499 a001 24157817/3571*87403803^(6/19) 2178309170820499 a001 24157817/3571*33385282^(1/3) 2178309170820500 a001 1134903170/3571*12752043^(2/17) 2178309170820500 a001 433494437/3571*12752043^(3/17) 2178309170820501 a001 9227465/3571*20633239^(2/5) 2178309170820501 a001 165580141/3571*12752043^(4/17) 2178309170820502 a001 63245986/3571*12752043^(5/17) 2178309170820503 a001 9227465/3571*17393796001^(2/7) 2178309170820503 a001 9227465/3571*14662949395604^(2/9) 2178309170820503 a001 9227465/3571*(1/2+1/2*5^(1/2))^14 2178309170820503 a001 9227465/3571*10749957122^(7/24) 2178309170820503 a001 9227465/3571*4106118243^(7/23) 2178309170820503 a001 9227465/3571*1568397607^(7/22) 2178309170820503 a001 9227465/3571*599074578^(1/3) 2178309170820503 a001 9227465/3571*228826127^(7/20) 2178309170820503 a001 9227465/3571*87403803^(7/19) 2178309170820503 a001 24157817/3571*12752043^(6/17) 2178309170820504 a001 2971215073/3571*4870847^(1/16) 2178309170820504 a001 9227465/3571*33385282^(7/18) 2178309170820509 a001 9227465/3571*12752043^(7/17) 2178309170820509 a001 1134903170/3571*4870847^(1/8) 2178309170820515 a001 433494437/3571*4870847^(3/16) 2178309170820520 a001 1597/7881196*45537549124^(16/17) 2178309170820520 a001 1597/7881196*14662949395604^(16/21) 2178309170820520 a001 1597/7881196*(1/2+1/2*5^(1/2))^48 2178309170820520 a001 1597/7881196*192900153618^(8/9) 2178309170820520 a001 1597/7881196*73681302247^(12/13) 2178309170820521 a001 165580141/3571*4870847^(1/4) 2178309170820527 a001 63245986/3571*4870847^(5/16) 2178309170820533 a001 3524578/3571*(1/2+1/2*5^(1/2))^16 2178309170820533 a001 3524578/3571*23725150497407^(1/4) 2178309170820533 a001 3524578/3571*73681302247^(4/13) 2178309170820533 a001 3524578/3571*10749957122^(1/3) 2178309170820533 a001 3524578/3571*4106118243^(8/23) 2178309170820533 a001 3524578/3571*1568397607^(4/11) 2178309170820533 a001 3524578/3571*599074578^(8/21) 2178309170820533 a001 3524578/3571*228826127^(2/5) 2178309170820533 a001 24157817/3571*4870847^(3/8) 2178309170820533 a001 3524578/3571*87403803^(8/19) 2178309170820534 a001 3524578/3571*33385282^(4/9) 2178309170820539 a001 3524578/3571*12752043^(8/17) 2178309170820540 a001 2971215073/3571*1860498^(1/15) 2178309170820543 a001 9227465/3571*4870847^(7/16) 2178309170820561 a001 1836311903/3571*1860498^(1/10) 2178309170820576 a001 4745030471581/2178309 2178309170820579 a001 3524578/3571*4870847^(1/2) 2178309170820582 a001 1134903170/3571*1860498^(2/15) 2178309170820603 a001 701408733/3571*1860498^(1/6) 2178309170820624 a001 433494437/3571*1860498^(1/5) 2178309170820666 a001 165580141/3571*1860498^(4/15) 2178309170820687 a001 102334155/3571*1860498^(3/10) 2178309170820708 a001 63245986/3571*1860498^(1/3) 2178309170820719 a001 1346269/3571*7881196^(6/11) 2178309170820725 a001 1597/3010349*(1/2+1/2*5^(1/2))^46 2178309170820725 a001 1597/3010349*10749957122^(23/24) 2178309170820738 a001 1346269/3571*141422324^(6/13) 2178309170820738 a001 1346269/3571*2537720636^(2/5) 2178309170820738 a001 1346269/3571*45537549124^(6/17) 2178309170820738 a001 1346269/3571*14662949395604^(2/7) 2178309170820738 a001 1346269/3571*(1/2+1/2*5^(1/2))^18 2178309170820738 a001 1346269/3571*192900153618^(1/3) 2178309170820738 a001 1346269/3571*10749957122^(3/8) 2178309170820738 a001 1346269/3571*4106118243^(9/23) 2178309170820738 a001 1346269/3571*1568397607^(9/22) 2178309170820738 a001 1346269/3571*599074578^(3/7) 2178309170820738 a001 1346269/3571*228826127^(9/20) 2178309170820738 a001 1346269/3571*87403803^(9/19) 2178309170820739 a001 1346269/3571*33385282^(1/2) 2178309170820745 a001 1346269/3571*12752043^(9/17) 2178309170820750 a001 24157817/3571*1860498^(2/5) 2178309170820790 a001 1346269/3571*4870847^(9/16) 2178309170820797 a001 9227465/3571*1860498^(7/15) 2178309170820799 a001 1597*1860498^(1/2) 2178309170820806 a001 2971215073/3571*710647^(1/14) 2178309170820869 a001 3524578/3571*1860498^(8/15) 2178309170821114 a001 2971213709/1364 2178309170821114 a001 1134903170/3571*710647^(1/7) 2178309170821116 a001 1346269/3571*1860498^(3/5) 2178309170821422 a001 433494437/3571*710647^(3/14) 2178309170821576 a001 267914296/3571*710647^(1/4) 2178309170821730 a001 165580141/3571*710647^(2/7) 2178309170822039 a001 63245986/3571*710647^(5/14) 2178309170822132 a001 1597/1149851*312119004989^(4/5) 2178309170822132 a001 1597/1149851*(1/2+1/2*5^(1/2))^44 2178309170822132 a001 1597/1149851*23725150497407^(11/16) 2178309170822132 a001 1597/1149851*73681302247^(11/13) 2178309170822132 a001 1597/1149851*10749957122^(11/12) 2178309170822132 a001 1597/1149851*4106118243^(22/23) 2178309170822143 a001 514229/3571*20633239^(4/7) 2178309170822146 a001 514229/3571*2537720636^(4/9) 2178309170822146 a001 514229/3571*(1/2+1/2*5^(1/2))^20 2178309170822146 a001 514229/3571*23725150497407^(5/16) 2178309170822146 a001 514229/3571*505019158607^(5/14) 2178309170822146 a001 514229/3571*73681302247^(5/13) 2178309170822146 a001 514229/3571*28143753123^(2/5) 2178309170822146 a001 514229/3571*10749957122^(5/12) 2178309170822146 a001 514229/3571*4106118243^(10/23) 2178309170822146 a001 514229/3571*1568397607^(5/11) 2178309170822146 a001 514229/3571*599074578^(10/21) 2178309170822146 a001 514229/3571*228826127^(1/2) 2178309170822146 a001 514229/3571*87403803^(10/19) 2178309170822147 a001 514229/3571*33385282^(5/9) 2178309170822153 a001 514229/3571*12752043^(10/17) 2178309170822203 a001 514229/3571*4870847^(5/8) 2178309170822347 a001 24157817/3571*710647^(3/7) 2178309170822565 a001 514229/3571*1860498^(2/3) 2178309170822660 a001 9227465/3571*710647^(1/2) 2178309170822772 a001 2971215073/3571*271443^(1/13) 2178309170822998 a001 3524578/3571*710647^(4/7) 2178309170823511 a001 1346269/3571*710647^(9/14) 2178309170824798 a001 692290615889/317811 2178309170825046 a001 1134903170/3571*271443^(2/13) 2178309170825226 a001 514229/3571*710647^(5/7) 2178309170827320 a001 433494437/3571*271443^(3/13) 2178309170828941 a001 4807526976/3571*103682^(1/24) 2178309170829595 a001 165580141/3571*271443^(4/13) 2178309170831767 a001 196418/3571*7881196^(2/3) 2178309170831777 a001 1597/439204*2537720636^(14/15) 2178309170831777 a001 1597/439204*17393796001^(6/7) 2178309170831777 a001 1597/439204*45537549124^(14/17) 2178309170831777 a001 1597/439204*817138163596^(14/19) 2178309170831777 a001 1597/439204*14662949395604^(2/3) 2178309170831777 a001 1597/439204*(1/2+1/2*5^(1/2))^42 2178309170831777 a001 1597/439204*192900153618^(7/9) 2178309170831777 a001 1597/439204*10749957122^(7/8) 2178309170831777 a001 1597/439204*4106118243^(21/23) 2178309170831777 a001 1597/439204*1568397607^(21/22) 2178309170831790 a001 196418/3571*312119004989^(2/5) 2178309170831790 a001 196418/3571*(1/2+1/2*5^(1/2))^22 2178309170831790 a001 196418/3571*10749957122^(11/24) 2178309170831790 a001 196418/3571*4106118243^(11/23) 2178309170831790 a001 196418/3571*1568397607^(1/2) 2178309170831790 a001 196418/3571*599074578^(11/21) 2178309170831790 a001 196418/3571*228826127^(11/20) 2178309170831791 a001 196418/3571*87403803^(11/19) 2178309170831792 a001 196418/3571*33385282^(11/18) 2178309170831799 a001 196418/3571*12752043^(11/17) 2178309170831854 a001 196418/3571*4870847^(11/16) 2178309170831869 a001 63245986/3571*271443^(5/13) 2178309170832252 a001 196418/3571*1860498^(11/15) 2178309170834144 a001 24157817/3571*271443^(6/13) 2178309170835179 a001 196418/3571*710647^(11/14) 2178309170835278 a001 14930352/3571*271443^(1/2) 2178309170836422 a001 9227465/3571*271443^(7/13) 2178309170837384 a001 2971215073/3571*103682^(1/12) 2178309170838726 a001 3524578/3571*271443^(8/13) 2178309170841206 a001 1346269/3571*271443^(9/13) 2178309170844887 a001 514229/3571*271443^(10/13) 2178309170845827 a001 1836311903/3571*103682^(1/8) 2178309170850049 a001 264431485177/121393 2178309170854270 a001 1134903170/3571*103682^(1/6) 2178309170856806 a001 196418/3571*271443^(11/13) 2178309170862713 a001 701408733/3571*103682^(5/24) 2178309170871157 a001 433494437/3571*103682^(1/4) 2178309170879600 a001 267914296/3571*103682^(7/24) 2178309170883629 a001 4807526976/3571*39603^(1/22) 2178309170887860 a001 75025/3571*439204^(8/9) 2178309170888043 a001 165580141/3571*103682^(1/3) 2178309170896486 a001 102334155/3571*103682^(3/8) 2178309170897872 a001 75025/3571*7881196^(8/11) 2178309170897884 a001 1597/167761*2537720636^(8/9) 2178309170897884 a001 1597/167761*312119004989^(8/11) 2178309170897884 a001 1597/167761*(1/2+1/2*5^(1/2))^40 2178309170897884 a001 1597/167761*23725150497407^(5/8) 2178309170897884 a001 1597/167761*73681302247^(10/13) 2178309170897884 a001 1597/167761*28143753123^(4/5) 2178309170897884 a001 1597/167761*10749957122^(5/6) 2178309170897884 a001 1597/167761*4106118243^(20/23) 2178309170897884 a001 1597/167761*1568397607^(10/11) 2178309170897884 a001 1597/167761*599074578^(20/21) 2178309170897897 a001 75025/3571*141422324^(8/13) 2178309170897897 a001 75025/3571*2537720636^(8/15) 2178309170897897 a001 75025/3571*45537549124^(8/17) 2178309170897897 a001 75025/3571*14662949395604^(8/21) 2178309170897897 a001 75025/3571*(1/2+1/2*5^(1/2))^24 2178309170897897 a001 75025/3571*192900153618^(4/9) 2178309170897897 a001 75025/3571*73681302247^(6/13) 2178309170897897 a001 75025/3571*10749957122^(1/2) 2178309170897897 a001 75025/3571*4106118243^(12/23) 2178309170897897 a001 75025/3571*1568397607^(6/11) 2178309170897897 a001 75025/3571*599074578^(4/7) 2178309170897897 a001 75025/3571*228826127^(3/5) 2178309170897898 a001 75025/3571*87403803^(12/19) 2178309170897899 a001 75025/3571*33385282^(2/3) 2178309170897907 a001 75025/3571*12752043^(12/17) 2178309170897966 a001 75025/3571*4870847^(3/4) 2178309170898401 a001 75025/3571*1860498^(4/5) 2178309170901594 a001 75025/3571*710647^(6/7) 2178309170904929 a001 63245986/3571*103682^(5/12) 2178309170913372 a001 39088169/3571*103682^(11/24) 2178309170921816 a001 24157817/3571*103682^(1/2) 2178309170925187 a001 75025/3571*271443^(12/13) 2178309170930256 a001 14930352/3571*103682^(13/24) 2178309170938706 a001 9227465/3571*103682^(7/12) 2178309170946759 a001 2971215073/3571*39603^(1/11) 2178309170947131 a001 1597*103682^(5/8) 2178309170955623 a001 3524578/3571*103682^(2/3) 2178309170963939 a001 2178309/3571*103682^(17/24) 2178309170972714 a001 1346269/3571*103682^(3/4) 2178309170980287 a001 832040/3571*103682^(19/24) 2178309170985125 a001 121393/3571*103682^(23/24) 2178309170991007 a001 514229/3571*103682^(5/6) 2178309170993490 a001 317811/3571*103682^(7/8) 2178309171009890 a001 1836311903/3571*39603^(3/22) 2178309171017538 a001 196418/3571*103682^(11/12) 2178309171023119 a001 50501919821/23184 2178309171073021 a001 1134903170/3571*39603^(2/11) 2178309171136152 a001 701408733/3571*39603^(5/22) 2178309171199282 a001 433494437/3571*39603^(3/11) 2178309171262413 a001 267914296/3571*39603^(7/22) 2178309171296473 a001 4807526976/3571*15127^(1/20) 2178309171325544 a001 165580141/3571*39603^(4/11) 2178309171341302 a001 2971215073/24476*2207^(3/8) 2178309171350988 a001 1597/64079*817138163596^(2/3) 2178309171350988 a001 1597/64079*(1/2+1/2*5^(1/2))^38 2178309171350988 a001 1597/64079*10749957122^(19/24) 2178309171350988 a001 1597/64079*4106118243^(19/23) 2178309171350988 a001 1597/64079*1568397607^(19/22) 2178309171350988 a001 1597/64079*599074578^(19/21) 2178309171350988 a001 1597/64079*228826127^(19/20) 2178309171351001 a001 28657/3571*141422324^(2/3) 2178309171351001 a001 28657/3571*(1/2+1/2*5^(1/2))^26 2178309171351001 a001 28657/3571*73681302247^(1/2) 2178309171351001 a001 28657/3571*10749957122^(13/24) 2178309171351001 a001 28657/3571*4106118243^(13/23) 2178309171351001 a001 28657/3571*1568397607^(13/22) 2178309171351001 a001 28657/3571*599074578^(13/21) 2178309171351001 a001 28657/3571*228826127^(13/20) 2178309171351001 a001 28657/3571*87403803^(13/19) 2178309171351003 a001 28657/3571*33385282^(13/18) 2178309171351011 a001 28657/3571*12752043^(13/17) 2178309171351076 a001 28657/3571*4870847^(13/16) 2178309171351547 a001 28657/3571*1860498^(13/15) 2178309171355006 a001 28657/3571*710647^(13/14) 2178309171388674 a001 102334155/3571*39603^(9/22) 2178309171451805 a001 63245986/3571*39603^(5/11) 2178309171514935 a001 39088169/3571*39603^(1/2) 2178309171578067 a001 24157817/3571*39603^(6/11) 2178309171641195 a001 14930352/3571*39603^(13/22) 2178309171704333 a001 9227465/3571*39603^(7/11) 2178309171767445 a001 1597*39603^(15/22) 2178309171772447 a001 2971215073/3571*15127^(1/10) 2178309171830624 a001 3524578/3571*39603^(8/11) 2178309171893628 a001 2178309/3571*39603^(17/22) 2178309171957091 a001 1346269/3571*39603^(9/11) 2178309172019352 a001 832040/3571*39603^(19/22) 2178309172084760 a001 514229/3571*39603^(10/11) 2178309172141930 a001 317811/3571*39603^(21/22) 2178309172209361 a001 38580033749/17711 2178309172248422 a001 1836311903/3571*15127^(3/20) 2178309172724397 a001 1134903170/3571*15127^(1/5) 2178309173200372 a001 701408733/3571*15127^(1/4) 2178309173676346 a001 433494437/3571*15127^(3/10) 2178309174152321 a001 267914296/3571*15127^(7/20) 2178309174445364 a001 4807526976/3571*5778^(1/18) 2178309174456608 a001 1597/24476*141422324^(12/13) 2178309174456608 a001 1597/24476*2537720636^(4/5) 2178309174456608 a001 1597/24476*45537549124^(12/17) 2178309174456608 a001 1597/24476*14662949395604^(4/7) 2178309174456608 a001 1597/24476*(1/2+1/2*5^(1/2))^36 2178309174456608 a001 1597/24476*505019158607^(9/14) 2178309174456608 a001 1597/24476*192900153618^(2/3) 2178309174456608 a001 1597/24476*73681302247^(9/13) 2178309174456608 a001 1597/24476*10749957122^(3/4) 2178309174456608 a001 1597/24476*4106118243^(18/23) 2178309174456608 a001 1597/24476*1568397607^(9/11) 2178309174456608 a001 1597/24476*599074578^(6/7) 2178309174456608 a001 1597/24476*228826127^(9/10) 2178309174456608 a001 1597/24476*87403803^(18/19) 2178309174456617 a001 10946/3571*20633239^(4/5) 2178309174456621 a001 10946/3571*17393796001^(4/7) 2178309174456621 a001 10946/3571*14662949395604^(4/9) 2178309174456621 a001 10946/3571*(1/2+1/2*5^(1/2))^28 2178309174456621 a001 10946/3571*505019158607^(1/2) 2178309174456621 a001 10946/3571*73681302247^(7/13) 2178309174456621 a001 10946/3571*10749957122^(7/12) 2178309174456621 a001 10946/3571*4106118243^(14/23) 2178309174456621 a001 10946/3571*1568397607^(7/11) 2178309174456621 a001 10946/3571*599074578^(2/3) 2178309174456622 a001 10946/3571*228826127^(7/10) 2178309174456622 a001 10946/3571*87403803^(14/19) 2178309174456623 a001 10946/3571*33385282^(7/9) 2178309174456633 a001 10946/3571*12752043^(14/17) 2178309174456702 a001 10946/3571*4870847^(7/8) 2178309174457209 a001 10946/3571*1860498^(14/15) 2178309174628296 a001 165580141/3571*15127^(2/5) 2178309175104271 a001 102334155/3571*15127^(9/20) 2178309175580246 a001 63245986/3571*15127^(1/2) 2178309176056220 a001 39088169/3571*15127^(11/20) 2178309176532196 a001 24157817/3571*15127^(3/5) 2178309177008168 a001 14930352/3571*15127^(13/20) 2178309177484150 a001 9227465/3571*15127^(7/10) 2178309177820268 a001 1/322*(1/2*5^(1/2)+1/2)^18*3^(3/17) 2178309177960106 a001 1597*15127^(3/4) 2178309178070230 a001 2971215073/3571*5778^(1/9) 2178309178436129 a001 3524578/3571*15127^(4/5) 2178309178911977 a001 2178309/3571*15127^(17/20) 2178309179388284 a001 1346269/3571*15127^(9/10) 2178309179863389 a001 832040/3571*15127^(19/20) 2178309180339985 a001 2947252321/1353 2178309181695096 a001 1836311903/3571*5778^(1/6) 2178309182290872 a007 Real Root Of -48*x^4+292*x^3+761*x^2+107*x+721 2178309185319962 a001 1134903170/3571*5778^(2/9) 2178309186136533 a001 1134903170/15127*2207^(7/16) 2178309186310138 a001 165580141/5778*2207^(9/16) 2178309188034003 r005 Im(z^2+c),c=-7/30+1/33*I,n=18 2178309188198318 r005 Re(z^2+c),c=-13/66+3/8*I,n=21 2178309188369286 a007 Real Root Of 169*x^4+272*x^3-191*x^2+2*x-83 2178309188944828 a001 701408733/3571*5778^(5/18) 2178309192569694 a001 433494437/3571*5778^(1/3) 2178309192627541 a001 1134903170/9349*2207^(3/8) 2178309194267152 a001 2971215073/39603*2207^(7/16) 2178309195453394 a001 7778742049/103682*2207^(7/16) 2178309195626464 a001 20365011074/271443*2207^(7/16) 2178309195651715 a001 53316291173/710647*2207^(7/16) 2178309195655399 a001 139583862445/1860498*2207^(7/16) 2178309195655936 a001 365435296162/4870847*2207^(7/16) 2178309195656015 a001 956722026041/12752043*2207^(7/16) 2178309195656026 a001 2504730781961/33385282*2207^(7/16) 2178309195656028 a001 6557470319842/87403803*2207^(7/16) 2178309195656028 a001 10610209857723/141422324*2207^(7/16) 2178309195656029 a001 4052739537881/54018521*2207^(7/16) 2178309195656033 a001 140728068720/1875749*2207^(7/16) 2178309195656063 a001 591286729879/7881196*2207^(7/16) 2178309195656268 a001 225851433717/3010349*2207^(7/16) 2178309195657676 a001 86267571272/1149851*2207^(7/16) 2178309195667320 a001 32951280099/439204*2207^(7/16) 2178309195733427 a001 75025*2207^(7/16) 2178309195742828 a001 4181/3571*7881196^(10/11) 2178309195742846 a001 1597/9349*45537549124^(2/3) 2178309195742846 a001 1597/9349*(1/2+1/2*5^(1/2))^34 2178309195742846 a001 1597/9349*10749957122^(17/24) 2178309195742846 a001 1597/9349*4106118243^(17/23) 2178309195742846 a001 1597/9349*1568397607^(17/22) 2178309195742846 a001 1597/9349*599074578^(17/21) 2178309195742846 a001 1597/9349*228826127^(17/20) 2178309195742847 a001 1597/9349*87403803^(17/19) 2178309195742848 a001 1597/9349*33385282^(17/18) 2178309195742855 a001 4181/3571*20633239^(6/7) 2178309195742859 a001 4181/3571*141422324^(10/13) 2178309195742859 a001 4181/3571*2537720636^(2/3) 2178309195742859 a001 4181/3571*45537549124^(10/17) 2178309195742859 a001 4181/3571*312119004989^(6/11) 2178309195742859 a001 4181/3571*14662949395604^(10/21) 2178309195742859 a001 4181/3571*(1/2+1/2*5^(1/2))^30 2178309195742859 a001 4181/3571*192900153618^(5/9) 2178309195742859 a001 4181/3571*28143753123^(3/5) 2178309195742859 a001 4181/3571*10749957122^(5/8) 2178309195742859 a001 4181/3571*4106118243^(15/23) 2178309195742859 a001 4181/3571*1568397607^(15/22) 2178309195742859 a001 4181/3571*599074578^(5/7) 2178309195742859 a001 4181/3571*228826127^(3/4) 2178309195742860 a001 4181/3571*87403803^(15/19) 2178309195742861 a001 4181/3571*33385282^(5/6) 2178309195742871 a001 4181/3571*12752043^(15/17) 2178309195742945 a001 4181/3571*4870847^(15/16) 2178309196186531 a001 4807526976/64079*2207^(7/16) 2178309196194560 a001 267914296/3571*5778^(7/18) 2178309198771347 a001 4807526976/3571*2207^(1/16) 2178309199292152 a001 1836311903/24476*2207^(7/16) 2178309199819426 a001 165580141/3571*5778^(4/9) 2178309200405994 r005 Re(z^2+c),c=19/82+16/31*I,n=48 2178309203444292 a001 102334155/3571*5778^(1/2) 2178309207069159 a001 63245986/3571*5778^(5/9) 2178309209426709 a001 20365011074/15127*843^(1/14) 2178309209624858 a001 1134903170/2207*843^(3/14) 2178309210694024 a001 39088169/3571*5778^(11/18) 2178309214087382 a001 701408733/15127*2207^(1/2) 2178309214260987 a001 34111385/1926*2207^(5/8) 2178309214318891 a001 24157817/3571*5778^(2/3) 2178309217557329 a001 53316291173/39603*843^(1/14) 2178309217943755 a001 14930352/3571*5778^(13/18) 2178309218324119 r005 Im(z^2+c),c=-99/118+7/44*I,n=21 2178309218743570 a001 139583862445/103682*843^(1/14) 2178309218916640 a001 365435296162/271443*843^(1/14) 2178309218941891 a001 956722026041/710647*843^(1/14) 2178309218945575 a001 2504730781961/1860498*843^(1/14) 2178309218946112 a001 6557470319842/4870847*843^(1/14) 2178309218946239 a001 10610209857723/7881196*843^(1/14) 2178309218946445 a001 1346269*843^(1/14) 2178309218947852 a001 1548008755920/1149851*843^(1/14) 2178309218957497 a001 591286729879/439204*843^(1/14) 2178309219023604 a001 225851433717/167761*843^(1/14) 2178309219476708 a001 86267571272/64079*843^(1/14) 2178309220578390 a001 701408733/9349*2207^(7/16) 2178309221568628 a001 9227465/3571*5778^(7/9) 2178309222218002 a001 1836311903/39603*2207^(1/2) 2178309222582328 a001 32951280099/24476*843^(1/14) 2178309223404243 a001 46368*2207^(1/2) 2178309223577314 a001 12586269025/271443*2207^(1/2) 2178309223602564 a001 32951280099/710647*2207^(1/2) 2178309223606248 a001 43133785636/930249*2207^(1/2) 2178309223606786 a001 225851433717/4870847*2207^(1/2) 2178309223606864 a001 591286729879/12752043*2207^(1/2) 2178309223606876 a001 774004377960/16692641*2207^(1/2) 2178309223606877 a001 4052739537881/87403803*2207^(1/2) 2178309223606878 a001 225749145909/4868641*2207^(1/2) 2178309223606878 a001 3278735159921/70711162*2207^(1/2) 2178309223606878 a001 2504730781961/54018521*2207^(1/2) 2178309223606883 a001 956722026041/20633239*2207^(1/2) 2178309223606913 a001 182717648081/3940598*2207^(1/2) 2178309223607118 a001 139583862445/3010349*2207^(1/2) 2178309223608525 a001 53316291173/1149851*2207^(1/2) 2178309223618170 a001 10182505537/219602*2207^(1/2) 2178309223684277 a001 7778742049/167761*2207^(1/2) 2178309223995903 r009 Im(z^3+c),c=-8/19+5/51*I,n=23 2178309224131162 a005 (1/cos(33/208*Pi))^77 2178309224137381 a001 2971215073/64079*2207^(1/2) 2178309225193476 a001 1597*5778^(5/6) 2178309226722197 a001 2971215073/3571*2207^(1/8) 2178309227243001 a001 567451585/12238*2207^(1/2) 2178309228818390 a001 3524578/3571*5778^(8/9) 2178309232443129 a001 2178309/3571*5778^(17/18) 2178309234164251 a001 9227465/1364*1364^(4/5) 2178309236068111 a001 2814375533/1292 2178309240064920 k001 Champernowne real with 914*n+1264 2178309242038232 a001 433494437/15127*2207^(9/16) 2178309242211837 a001 31622993/2889*2207^(11/16) 2178309243868567 a001 12586269025/9349*843^(1/14) 2178309246819266 a007 Real Root Of -815*x^4-915*x^3-777*x^2+132*x+58 2178309248529240 a001 433494437/9349*2207^(1/2) 2178309249988575 m001 (Lehmer+MinimumGamma)/(HardyLittlewoodC3-Kac) 2178309250168852 a001 1134903170/39603*2207^(9/16) 2178309251355093 a001 2971215073/103682*2207^(9/16) 2178309251528164 a001 7778742049/271443*2207^(9/16) 2178309251553414 a001 20365011074/710647*2207^(9/16) 2178309251557098 a001 53316291173/1860498*2207^(9/16) 2178309251557636 a001 139583862445/4870847*2207^(9/16) 2178309251557714 a001 365435296162/12752043*2207^(9/16) 2178309251557726 a001 956722026041/33385282*2207^(9/16) 2178309251557727 a001 2504730781961/87403803*2207^(9/16) 2178309251557727 a001 6557470319842/228826127*2207^(9/16) 2178309251557728 a001 10610209857723/370248451*2207^(9/16) 2178309251557728 a001 4052739537881/141422324*2207^(9/16) 2178309251557728 a001 1548008755920/54018521*2207^(9/16) 2178309251557733 a001 591286729879/20633239*2207^(9/16) 2178309251557763 a001 225851433717/7881196*2207^(9/16) 2178309251557968 a001 86267571272/3010349*2207^(9/16) 2178309251559375 a001 32951280099/1149851*2207^(9/16) 2178309251569020 a001 12586269025/439204*2207^(9/16) 2178309251635127 a001 4807526976/167761*2207^(9/16) 2178309252088231 a001 28657*2207^(9/16) 2178309253228668 s001 sum(exp(-3*Pi/5)^n*A275303[n],n=1..infinity) 2178309254109879 m001 (Mills+TwinPrimes)/(GAMMA(3/4)-FellerTornier) 2178309254673047 a001 1836311903/3571*2207^(3/16) 2178309255193851 a001 701408733/24476*2207^(9/16) 2178309265858106 r005 Re(z^2+c),c=-11/78+25/47*I,n=13 2178309268008386 a007 Real Root Of -33*x^4-685*x^3+767*x^2+671*x+469 2178309269705041 r002 22th iterates of z^2 + 2178309269989082 a001 267914296/15127*2207^(5/8) 2178309270162687 a001 39088169/5778*2207^(3/4) 2178309273135929 l006 ln(5058/6289) 2178309276197549 r005 Im(z^2+c),c=-7/8+23/129*I,n=35 2178309276480090 a001 267914296/9349*2207^(9/16) 2178309276611098 m001 1/ln(Riemann2ndZero)^2*Artin*cos(1) 2178309278119702 a001 17711*2207^(5/8) 2178309279305944 a001 1836311903/103682*2207^(5/8) 2178309279479014 a001 1602508992/90481*2207^(5/8) 2178309279504264 a001 12586269025/710647*2207^(5/8) 2178309279507948 a001 10983760033/620166*2207^(5/8) 2178309279508486 a001 86267571272/4870847*2207^(5/8) 2178309279508564 a001 75283811239/4250681*2207^(5/8) 2178309279508576 a001 591286729879/33385282*2207^(5/8) 2178309279508577 a001 516002918640/29134601*2207^(5/8) 2178309279508578 a001 4052739537881/228826127*2207^(5/8) 2178309279508578 a001 3536736619241/199691526*2207^(5/8) 2178309279508578 a001 6557470319842/370248451*2207^(5/8) 2178309279508578 a001 2504730781961/141422324*2207^(5/8) 2178309279508578 a001 956722026041/54018521*2207^(5/8) 2178309279508583 a001 365435296162/20633239*2207^(5/8) 2178309279508613 a001 139583862445/7881196*2207^(5/8) 2178309279508818 a001 53316291173/3010349*2207^(5/8) 2178309279510225 a001 20365011074/1149851*2207^(5/8) 2178309279519870 a001 7778742049/439204*2207^(5/8) 2178309279585977 a001 2971215073/167761*2207^(5/8) 2178309280039081 a001 1134903170/64079*2207^(5/8) 2178309282450753 m005 (1/12+1/6*5^(1/2))/(169/132+4/11*5^(1/2)) 2178309282623897 a001 1134903170/3571*2207^(1/4) 2178309283144701 a001 433494437/24476*2207^(5/8) 2178309284986465 p003 LerchPhi(1/10,5,201/148) 2178309297939933 a001 165580141/15127*2207^(11/16) 2178309298113538 a001 24157817/5778*2207^(13/16) 2178309299592336 m005 (1/2*exp(1)+1)/(5/11*Catalan+2/3) 2178309304430941 a001 165580141/9349*2207^(5/8) 2178309306070553 a001 433494437/39603*2207^(11/16) 2178309307256794 a001 567451585/51841*2207^(11/16) 2178309307429864 a001 2971215073/271443*2207^(11/16) 2178309307455115 a001 7778742049/710647*2207^(11/16) 2178309307458799 a001 10182505537/930249*2207^(11/16) 2178309307459337 a001 53316291173/4870847*2207^(11/16) 2178309307459415 a001 139583862445/12752043*2207^(11/16) 2178309307459426 a001 182717648081/16692641*2207^(11/16) 2178309307459428 a001 956722026041/87403803*2207^(11/16) 2178309307459428 a001 2504730781961/228826127*2207^(11/16) 2178309307459428 a001 3278735159921/299537289*2207^(11/16) 2178309307459428 a001 10610209857723/969323029*2207^(11/16) 2178309307459428 a001 4052739537881/370248451*2207^(11/16) 2178309307459428 a001 387002188980/35355581*2207^(11/16) 2178309307459429 a001 591286729879/54018521*2207^(11/16) 2178309307459433 a001 7787980473/711491*2207^(11/16) 2178309307459463 a001 21566892818/1970299*2207^(11/16) 2178309307459669 a001 32951280099/3010349*2207^(11/16) 2178309307461076 a001 12586269025/1149851*2207^(11/16) 2178309307470721 a001 1201881744/109801*2207^(11/16) 2178309307536828 a001 1836311903/167761*2207^(11/16) 2178309307989932 a001 701408733/64079*2207^(11/16) 2178309310574748 a001 701408733/3571*2207^(5/16) 2178309311095552 a001 10946*2207^(11/16) 2178309312218967 a001 3732588/341*1364^(11/15) 2178309315706973 a007 Real Root Of -162*x^4-234*x^3+230*x^2-126*x-137 2178309319754123 m001 1/GAMMA(17/24)^2*exp(Si(Pi))^2/GAMMA(5/6) 2178309324067290 a007 Real Root Of -218*x^4+165*x^3+496*x^2+272*x-84 2178309325890784 a001 6765*2207^(3/4) 2178309326064386 a001 2584*2207^(7/8) 2178309327534406 m001 KhintchineHarmonic*Champernowne*exp(Trott) 2178309327986191 m001 cos(1)*Pi*2^(1/2)/GAMMA(3/4)+Ei(1,1) 2178309330016233 m001 (exp(-1/2*Pi)+Niven)/(ln(2)/ln(10)+gamma) 2178309332381792 a001 102334155/9349*2207^(11/16) 2178309334021404 a001 267914296/39603*2207^(3/4) 2178309335207645 a001 701408733/103682*2207^(3/4) 2178309335380715 a001 1836311903/271443*2207^(3/4) 2178309335405966 a001 686789568/101521*2207^(3/4) 2178309335409650 a001 12586269025/1860498*2207^(3/4) 2178309335410188 a001 32951280099/4870847*2207^(3/4) 2178309335410266 a001 86267571272/12752043*2207^(3/4) 2178309335410277 a001 32264490531/4769326*2207^(3/4) 2178309335410279 a001 591286729879/87403803*2207^(3/4) 2178309335410279 a001 1548008755920/228826127*2207^(3/4) 2178309335410279 a001 4052739537881/599074578*2207^(3/4) 2178309335410279 a001 1515744265389/224056801*2207^(3/4) 2178309335410279 a001 6557470319842/969323029*2207^(3/4) 2178309335410279 a001 2504730781961/370248451*2207^(3/4) 2178309335410279 a001 956722026041/141422324*2207^(3/4) 2178309335410280 a001 365435296162/54018521*2207^(3/4) 2178309335410284 a001 139583862445/20633239*2207^(3/4) 2178309335410314 a001 53316291173/7881196*2207^(3/4) 2178309335410520 a001 20365011074/3010349*2207^(3/4) 2178309335411927 a001 7778742049/1149851*2207^(3/4) 2178309335421572 a001 2971215073/439204*2207^(3/4) 2178309335487679 a001 1134903170/167761*2207^(3/4) 2178309335940783 a001 433494437/64079*2207^(3/4) 2178309338525599 a001 433494437/3571*2207^(3/8) 2178309339046403 a001 165580141/24476*2207^(3/4) 2178309339615929 m005 (1/2*gamma-5/11)/(4/5*gamma+3/10) 2178309340084923 k001 Champernowne real with 915*n+1263 2178309341640905 a001 1597/3571*(1/2+1/2*5^(1/2))^32 2178309341640905 a001 1597/3571*23725150497407^(1/2) 2178309341640905 a001 1597/3571*73681302247^(8/13) 2178309341640905 a001 1597/3571*10749957122^(2/3) 2178309341640905 a001 1597/3571*4106118243^(16/23) 2178309341640905 a001 1597/3571*1568397607^(8/11) 2178309341640905 a001 1597/3571*599074578^(16/21) 2178309341640905 a001 1597/3571*228826127^(4/5) 2178309341640905 a001 1597/3571*87403803^(16/19) 2178309341640906 a001 1597/3571*33385282^(8/9) 2178309341640917 a001 1597/3571*12752043^(16/17) 2178309343515873 m001 exp((2^(1/3)))/DuboisRaymond*Zeta(3) 2178309345752140 m001 DuboisRaymond*ErdosBorwein^2*ln(cosh(1)) 2178309346589604 r005 Im(z^2+c),c=-17/50+8/23*I,n=33 2178309353679716 m005 (1/2*Catalan+4/7)/(5/8*gamma-5/6) 2178309353841635 a001 63245986/15127*2207^(13/16) 2178309354015245 a001 9227465/5778*2207^(15/16) 2178309359082087 r005 Im(z^2+c),c=5/66+8/39*I,n=18 2178309360332643 a001 63245986/9349*2207^(3/4) 2178309361972255 a001 165580141/39603*2207^(13/16) 2178309363158496 a001 433494437/103682*2207^(13/16) 2178309363331567 a001 1134903170/271443*2207^(13/16) 2178309363356817 a001 2971215073/710647*2207^(13/16) 2178309363360501 a001 7778742049/1860498*2207^(13/16) 2178309363361039 a001 20365011074/4870847*2207^(13/16) 2178309363361117 a001 53316291173/12752043*2207^(13/16) 2178309363361129 a001 139583862445/33385282*2207^(13/16) 2178309363361130 a001 365435296162/87403803*2207^(13/16) 2178309363361131 a001 956722026041/228826127*2207^(13/16) 2178309363361131 a001 2504730781961/599074578*2207^(13/16) 2178309363361131 a001 6557470319842/1568397607*2207^(13/16) 2178309363361131 a001 10610209857723/2537720636*2207^(13/16) 2178309363361131 a001 4052739537881/969323029*2207^(13/16) 2178309363361131 a001 1548008755920/370248451*2207^(13/16) 2178309363361131 a001 591286729879/141422324*2207^(13/16) 2178309363361131 a001 225851433717/54018521*2207^(13/16) 2178309363361136 a001 86267571272/20633239*2207^(13/16) 2178309363361166 a001 32951280099/7881196*2207^(13/16) 2178309363361371 a001 12586269025/3010349*2207^(13/16) 2178309363362778 a001 4807526976/1149851*2207^(13/16) 2178309363372423 a001 1836311903/439204*2207^(13/16) 2178309363438530 a001 701408733/167761*2207^(13/16) 2178309363891634 a001 267914296/64079*2207^(13/16) 2178309366476450 a001 267914296/3571*2207^(7/16) 2178309366997254 a001 102334155/24476*2207^(13/16) 2178309372644744 a001 267084832/321*843^(1/7) 2178309375455961 m001 TreeGrowth2nd^2/exp(Sierpinski)/sin(Pi/12)^2 2178309376686821 r002 18th iterates of z^2 + 2178309376986467 p001 sum(1/(153*n+140)/n/(16^n),n=0..infinity) 2178309378393449 m001 1/LaplaceLimit*exp(FeigenbaumDelta)*GAMMA(2/3) 2178309380552485 m009 (1/5*Pi^2+2/5)/(6*Catalan+3/4*Pi^2-2) 2178309381792486 a001 39088169/15127*2207^(7/8) 2178309381965552 a001 2149991360/987 2178309386403111 r005 Im(z^2+c),c=6/23+1/12*I,n=34 2178309388005542 m001 (arctan(1/2)-Zeta(1,-1))/(Artin-LaplaceLimit) 2178309388283494 a001 4181*2207^(13/16) 2178309389766628 a001 4807526976/3571*843^(1/14) 2178309389923107 a001 34111385/13201*2207^(7/8) 2178309390273696 a001 24157817/1364*1364^(2/3) 2178309391109348 a001 133957148/51841*2207^(7/8) 2178309391282418 a001 233802911/90481*2207^(7/8) 2178309391307669 a001 1836311903/710647*2207^(7/8) 2178309391311353 a001 267084832/103361*2207^(7/8) 2178309391311891 a001 12586269025/4870847*2207^(7/8) 2178309391311969 a001 10983760033/4250681*2207^(7/8) 2178309391311980 a001 43133785636/16692641*2207^(7/8) 2178309391311982 a001 75283811239/29134601*2207^(7/8) 2178309391311982 a001 591286729879/228826127*2207^(7/8) 2178309391311982 a001 86000486440/33281921*2207^(7/8) 2178309391311982 a001 4052739537881/1568397607*2207^(7/8) 2178309391311982 a001 3536736619241/1368706081*2207^(7/8) 2178309391311982 a001 3278735159921/1268860318*2207^(7/8) 2178309391311982 a001 2504730781961/969323029*2207^(7/8) 2178309391311982 a001 956722026041/370248451*2207^(7/8) 2178309391311982 a001 182717648081/70711162*2207^(7/8) 2178309391311983 a001 139583862445/54018521*2207^(7/8) 2178309391311987 a001 53316291173/20633239*2207^(7/8) 2178309391312017 a001 10182505537/3940598*2207^(7/8) 2178309391312223 a001 7778742049/3010349*2207^(7/8) 2178309391313630 a001 2971215073/1149851*2207^(7/8) 2178309391323275 a001 567451585/219602*2207^(7/8) 2178309391389382 a001 433494437/167761*2207^(7/8) 2178309391842486 a001 165580141/64079*2207^(7/8) 2178309394427302 a001 165580141/3571*2207^(1/2) 2178309394948106 a001 31622993/12238*2207^(7/8) 2178309398207140 r009 Im(z^3+c),c=-29/62+4/49*I,n=16 2178309409743339 a001 24157817/15127*2207^(15/16) 2178309413453245 r005 Im(z^2+c),c=-113/114+7/30*I,n=17 2178309414319508 a001 28657/3*521^(46/53) 2178309414857863 a007 Real Root Of -465*x^4-467*x^3+755*x^2-528*x+910 2178309416234347 a001 24157817/9349*2207^(7/8) 2178309417873959 a001 63245986/39603*2207^(15/16) 2178309419060200 a001 165580141/103682*2207^(15/16) 2178309419233270 a001 433494437/271443*2207^(15/16) 2178309419258521 a001 1134903170/710647*2207^(15/16) 2178309419262205 a001 2971215073/1860498*2207^(15/16) 2178309419262743 a001 7778742049/4870847*2207^(15/16) 2178309419262821 a001 20365011074/12752043*2207^(15/16) 2178309419262832 a001 53316291173/33385282*2207^(15/16) 2178309419262834 a001 139583862445/87403803*2207^(15/16) 2178309419262834 a001 365435296162/228826127*2207^(15/16) 2178309419262834 a001 956722026041/599074578*2207^(15/16) 2178309419262834 a001 2504730781961/1568397607*2207^(15/16) 2178309419262834 a001 6557470319842/4106118243*2207^(15/16) 2178309419262834 a001 10610209857723/6643838879*2207^(15/16) 2178309419262834 a001 4052739537881/2537720636*2207^(15/16) 2178309419262834 a001 1548008755920/969323029*2207^(15/16) 2178309419262834 a001 591286729879/370248451*2207^(15/16) 2178309419262835 a001 225851433717/141422324*2207^(15/16) 2178309419262835 a001 86267571272/54018521*2207^(15/16) 2178309419262840 a001 32951280099/20633239*2207^(15/16) 2178309419262869 a001 12586269025/7881196*2207^(15/16) 2178309419263075 a001 4807526976/3010349*2207^(15/16) 2178309419264482 a001 1836311903/1149851*2207^(15/16) 2178309419274127 a001 701408733/439204*2207^(15/16) 2178309419340234 a001 267914296/167761*2207^(15/16) 2178309419793338 a001 102334155/64079*2207^(15/16) 2178309420444441 a007 Real Root Of 84*x^4-100*x^3-730*x^2-656*x-890 2178309422378154 a001 102334155/3571*2207^(9/16) 2178309422898958 a001 39088169/24476*2207^(15/16) 2178309423242332 r005 Im(z^2+c),c=-55/86+17/62*I,n=18 2178309428372843 a001 12586269025/15127*843^(1/7) 2178309428570992 a001 701408733/2207*843^(2/7) 2178309429902702 m001 (arctan(1/2)-GAMMA(11/12))/(MertensB2-Mills) 2178309436324404 a001 233802911/281*322^(1/6) 2178309436503463 a001 10983760033/13201*843^(1/7) 2178309437689705 a001 43133785636/51841*843^(1/7) 2178309437689969 a001 716663805/329 2178309437862775 a001 75283811239/90481*843^(1/7) 2178309437888026 a001 591286729879/710647*843^(1/7) 2178309437891710 a001 832040*843^(1/7) 2178309437892247 a001 4052739537881/4870847*843^(1/7) 2178309437892326 a001 3536736619241/4250681*843^(1/7) 2178309437892374 a001 3278735159921/3940598*843^(1/7) 2178309437892580 a001 2504730781961/3010349*843^(1/7) 2178309437893987 a001 956722026041/1149851*843^(1/7) 2178309437903632 a001 182717648081/219602*843^(1/7) 2178309437969739 a001 139583862445/167761*843^(1/7) 2178309438422843 a001 53316291173/64079*843^(1/7) 2178309440104926 k001 Champernowne real with 916*n+1262 2178309441528463 a001 10182505537/12238*843^(1/7) 2178309443893443 r009 Re(z^3+c),c=-37/106+28/45*I,n=27 2178309444185197 a001 14930352/9349*2207^(15/16) 2178309445795339 a001 2149991423/987 2178309447213779 a001 2/987*(1/2+1/2*5^(1/2))^48 2178309447730269 r005 Im(z^2+c),c=-43/48+11/57*I,n=37 2178309447821681 a001 2149991425/987 2178309449737526 a007 Real Root Of 174*x^4+145*x^3-190*x^2+361*x-731 2178309450329006 a001 63245986/3571*2207^(5/8) 2178309450861195 a001 2149991428/987 2178309459375047 r005 Re(z^2+c),c=-7/30+21/41*I,n=9 2178309461390279 s001 sum(exp(-3*Pi/5)^n*A081146[n],n=1..infinity) 2178309462814704 a001 7778742049/9349*843^(1/7) 2178309468328425 a001 39088169/1364*1364^(3/5) 2178309468921709 r002 22th iterates of z^2 + 2178309472137791 a001 2149991449/987 2178309474692260 l006 ln(7889/9809) 2178309478279859 a001 39088169/3571*2207^(11/16) 2178309490180756 l006 ln(931/8222) 2178309504105797 r005 Im(z^2+c),c=-17/82+13/42*I,n=25 2178309504442408 m001 2/3-exp(1/2)+LandauRamanujan 2178309506230713 a001 24157817/3571*2207^(3/4) 2178309509769962 r005 Re(z^2+c),c=-7/38+34/53*I,n=4 2178309523656876 m005 (2/5*Catalan-3/4)/(2/3*Pi-1/3) 2178309532124329 b008 3+22*Sech[EulerGamma] 2178309534181564 a001 14930352/3571*2207^(13/16) 2178309540124929 k001 Champernowne real with 917*n+1261 2178309540716412 a007 Real Root Of 231*x^4+20*x^3-787*x^2+628*x+108 2178309545535387 m001 Pi*csc(5/12*Pi)/GAMMA(7/12)+Robbin*ZetaP(4) 2178309546383157 a001 31622993/682*1364^(8/15) 2178309547947737 a003 sin(Pi*3/50)/sin(Pi*30/91) 2178309551612369 r009 Im(z^3+c),c=-7/27+3/16*I,n=3 2178309553518013 a001 1836311903/1364*521^(1/13) 2178309557394906 r005 Im(z^2+c),c=11/46+2/19*I,n=20 2178309558131275 a007 Real Root Of 253*x^4+336*x^3-557*x^2-491*x-650 2178309560098542 a007 Real Root Of -309*x^4-712*x^3-581*x^2-767*x+684 2178309562132425 a001 9227465/3571*2207^(7/8) 2178309562955675 m001 1/ln(GAMMA(5/12))^2*GAMMA(3/4)/Pi^2 2178309569398567 m001 (Zeta(1/2)+ZetaP(4))/(2^(1/3)-Ei(1)) 2178309571368528 m001 1/ln(cosh(1))^2*GAMMA(11/12)^2/exp(1) 2178309588263659 r005 Im(z^2+c),c=-7/30+1/33*I,n=20 2178309590083261 a001 1597*2207^(15/16) 2178309590259314 m001 (Chi(1)+ln(Pi))/(Zeta(1,2)+Trott2nd) 2178309591590894 a001 2971215073/5778*843^(3/14) 2178309593996507 a001 1926*4181^(16/55) 2178309606012851 a007 Real Root Of -565*x^4-235*x^3+154*x^2+957*x+200 2178309608712780 a001 2971215073/3571*843^(1/7) 2178309617303071 a001 3524578/521*521^(12/13) 2178309618034447 a001 2149991593/987 2178309618921838 r005 Re(z^2+c),c=-5/21+13/18*I,n=19 2178309622513601 a007 Real Root Of -96*x^4+573*x^3-401*x^2+215*x+72 2178309624437892 a001 9303105/124*1364^(7/15) 2178309626461364 h001 (8/9*exp(2)+1/6)/(3/10*exp(2)+7/8) 2178309634554224 m001 (3^(1/3))^2/Kolakoski/ln(cos(Pi/12))^2 2178309638421967 r009 Re(z^3+c),c=-23/110+2/47*I,n=5 2178309639514083 a007 Real Root Of -66*x^4-187*x^3-482*x^2-652*x+420 2178309640144932 k001 Champernowne real with 918*n+1260 2178309641284249 r005 Im(z^2+c),c=-7/30+1/33*I,n=22 2178309647318999 a001 7778742049/15127*843^(3/14) 2178309647517148 a001 433494437/2207*843^(5/14) 2178309647704782 r005 Im(z^2+c),c=-7/30+1/33*I,n=24 2178309648373022 r005 Im(z^2+c),c=-7/30+1/33*I,n=26 2178309648413644 r005 Im(z^2+c),c=-7/30+1/33*I,n=29 2178309648416021 r005 Im(z^2+c),c=-7/30+1/33*I,n=31 2178309648416919 r005 Im(z^2+c),c=-7/30+1/33*I,n=33 2178309648417133 r005 Im(z^2+c),c=-7/30+1/33*I,n=35 2178309648417177 r005 Im(z^2+c),c=-7/30+1/33*I,n=37 2178309648417184 r005 Im(z^2+c),c=-7/30+1/33*I,n=39 2178309648417186 r005 Im(z^2+c),c=-7/30+1/33*I,n=41 2178309648417186 r005 Im(z^2+c),c=-7/30+1/33*I,n=43 2178309648417186 r005 Im(z^2+c),c=-7/30+1/33*I,n=45 2178309648417186 r005 Im(z^2+c),c=-7/30+1/33*I,n=47 2178309648417186 r005 Im(z^2+c),c=-7/30+1/33*I,n=49 2178309648417186 r005 Im(z^2+c),c=-7/30+1/33*I,n=51 2178309648417186 r005 Im(z^2+c),c=-7/30+1/33*I,n=53 2178309648417186 r005 Im(z^2+c),c=-7/30+1/33*I,n=55 2178309648417186 r005 Im(z^2+c),c=-7/30+1/33*I,n=56 2178309648417186 r005 Im(z^2+c),c=-7/30+1/33*I,n=58 2178309648417186 r005 Im(z^2+c),c=-7/30+1/33*I,n=60 2178309648417186 r005 Im(z^2+c),c=-7/30+1/33*I,n=62 2178309648417186 r005 Im(z^2+c),c=-7/30+1/33*I,n=64 2178309648417186 r005 Im(z^2+c),c=-7/30+1/33*I,n=63 2178309648417186 r005 Im(z^2+c),c=-7/30+1/33*I,n=61 2178309648417186 r005 Im(z^2+c),c=-7/30+1/33*I,n=59 2178309648417186 r005 Im(z^2+c),c=-7/30+1/33*I,n=57 2178309648417186 r005 Im(z^2+c),c=-7/30+1/33*I,n=54 2178309648417186 r005 Im(z^2+c),c=-7/30+1/33*I,n=52 2178309648417186 r005 Im(z^2+c),c=-7/30+1/33*I,n=50 2178309648417186 r005 Im(z^2+c),c=-7/30+1/33*I,n=48 2178309648417186 r005 Im(z^2+c),c=-7/30+1/33*I,n=46 2178309648417186 r005 Im(z^2+c),c=-7/30+1/33*I,n=44 2178309648417186 r005 Im(z^2+c),c=-7/30+1/33*I,n=42 2178309648417187 r005 Im(z^2+c),c=-7/30+1/33*I,n=40 2178309648417190 r005 Im(z^2+c),c=-7/30+1/33*I,n=38 2178309648417209 r005 Im(z^2+c),c=-7/30+1/33*I,n=36 2178309648417306 r005 Im(z^2+c),c=-7/30+1/33*I,n=34 2178309648417758 r005 Im(z^2+c),c=-7/30+1/33*I,n=32 2178309648419377 r005 Im(z^2+c),c=-7/30+1/33*I,n=30 2178309648420930 r005 Im(z^2+c),c=-7/30+1/33*I,n=28 2178309648421144 r005 Im(z^2+c),c=-7/30+1/33*I,n=27 2178309648614692 r005 Im(z^2+c),c=-7/30+1/33*I,n=25 2178309650740141 r005 Im(z^2+c),c=-7/30+1/33*I,n=23 2178309653359954 a007 Real Root Of -398*x^4-575*x^3+987*x^2+704*x-132 2178309655449620 a001 20365011074/39603*843^(3/14) 2178309656635862 a001 53316291173/103682*843^(3/14) 2178309656808932 a001 139583862445/271443*843^(3/14) 2178309656834183 a001 365435296162/710647*843^(3/14) 2178309656837867 a001 956722026041/1860498*843^(3/14) 2178309656838404 a001 2504730781961/4870847*843^(3/14) 2178309656838483 a001 6557470319842/12752043*843^(3/14) 2178309656838501 a001 10610209857723/20633239*843^(3/14) 2178309656838531 a001 4052739537881/7881196*843^(3/14) 2178309656838737 a001 1548008755920/3010349*843^(3/14) 2178309656840144 a001 514229*843^(3/14) 2178309656849789 a001 225851433717/439204*843^(3/14) 2178309656915896 a001 86267571272/167761*843^(3/14) 2178309657369000 a001 32951280099/64079*843^(3/14) 2178309660474621 a001 12586269025/24476*843^(3/14) 2178309668380878 m002 4+Pi^6/5+E^Pi/ProductLog[Pi] 2178309669445408 r005 Im(z^2+c),c=-7/30+1/33*I,n=21 2178309673694875 m001 (GAMMA(19/24)+ZetaQ(3))/(Psi(2,1/3)+Chi(1)) 2178309675161164 b008 (3*Tanh[1/5])/E 2178309681760864 a001 4807526976/9349*843^(3/14) 2178309695091042 r005 Im(z^2+c),c=-13/42+11/30*I,n=7 2178309695281762 l006 ln(593/5237) 2178309695281762 p004 log(5237/593) 2178309697419605 r005 Im(z^2+c),c=-85/122+11/57*I,n=53 2178309701436316 m001 (GAMMA(11/12)-Shi(1))/(-Thue+ZetaP(4)) 2178309702492629 a001 165580141/1364*1364^(2/5) 2178309714129320 k002 Champernowne real with 87*n^2-204*n+138 2178309716962903 r005 Im(z^2+c),c=5/66+8/39*I,n=22 2178309720788242 m001 1/ln(Cahen)^2*Backhouse^2*Riemann1stZero^2 2178309722543848 r002 47th iterates of z^2 + 2178309723606740 a001 610/2207*141422324^(11/13) 2178309723606741 a001 610/2207*2537720636^(11/15) 2178309723606741 a001 610/2207*45537549124^(11/17) 2178309723606741 a001 610/2207*312119004989^(3/5) 2178309723606741 a001 610/2207*817138163596^(11/19) 2178309723606741 a001 610/2207*14662949395604^(11/21) 2178309723606741 a001 610/2207*(1/2+1/2*5^(1/2))^33 2178309723606741 a001 610/2207*192900153618^(11/18) 2178309723606741 a001 610/2207*10749957122^(11/16) 2178309723606741 a001 610/2207*1568397607^(3/4) 2178309723606741 a001 610/2207*599074578^(11/14) 2178309723606742 a001 610/2207*33385282^(11/12) 2178309723607278 a001 987/1364*(1/2+1/2*5^(1/2))^31 2178309723607278 a001 987/1364*9062201101803^(1/2) 2178309728564827 a007 Real Root Of -176*x^4-294*x^3+595*x^2+838*x-74 2178309729004159 r005 Im(z^2+c),c=5/66+8/39*I,n=21 2178309730822330 r005 Re(z^2+c),c=23/64+7/25*I,n=46 2178309731818487 r005 Im(z^2+c),c=5/66+8/39*I,n=23 2178309732417018 r005 Im(z^2+c),c=5/66+8/39*I,n=26 2178309732756008 r005 Im(z^2+c),c=5/66+8/39*I,n=27 2178309732912497 r005 Im(z^2+c),c=5/66+8/39*I,n=30 2178309732913605 r005 Im(z^2+c),c=5/66+8/39*I,n=31 2178309732922436 r005 Im(z^2+c),c=5/66+8/39*I,n=35 2178309732922745 r005 Im(z^2+c),c=5/66+8/39*I,n=36 2178309732922785 r005 Im(z^2+c),c=5/66+8/39*I,n=39 2178309732922790 r005 Im(z^2+c),c=5/66+8/39*I,n=40 2178309732922795 r005 Im(z^2+c),c=5/66+8/39*I,n=44 2178309732922795 r005 Im(z^2+c),c=5/66+8/39*I,n=43 2178309732922795 r005 Im(z^2+c),c=5/66+8/39*I,n=48 2178309732922795 r005 Im(z^2+c),c=5/66+8/39*I,n=49 2178309732922795 r005 Im(z^2+c),c=5/66+8/39*I,n=52 2178309732922795 r005 Im(z^2+c),c=5/66+8/39*I,n=53 2178309732922795 r005 Im(z^2+c),c=5/66+8/39*I,n=57 2178309732922795 r005 Im(z^2+c),c=5/66+8/39*I,n=56 2178309732922795 r005 Im(z^2+c),c=5/66+8/39*I,n=58 2178309732922795 r005 Im(z^2+c),c=5/66+8/39*I,n=61 2178309732922795 r005 Im(z^2+c),c=5/66+8/39*I,n=62 2178309732922795 r005 Im(z^2+c),c=5/66+8/39*I,n=64 2178309732922795 r005 Im(z^2+c),c=5/66+8/39*I,n=63 2178309732922795 r005 Im(z^2+c),c=5/66+8/39*I,n=60 2178309732922795 r005 Im(z^2+c),c=5/66+8/39*I,n=59 2178309732922795 r005 Im(z^2+c),c=5/66+8/39*I,n=54 2178309732922795 r005 Im(z^2+c),c=5/66+8/39*I,n=55 2178309732922795 r005 Im(z^2+c),c=5/66+8/39*I,n=51 2178309732922795 r005 Im(z^2+c),c=5/66+8/39*I,n=50 2178309732922795 r005 Im(z^2+c),c=5/66+8/39*I,n=47 2178309732922795 r005 Im(z^2+c),c=5/66+8/39*I,n=45 2178309732922795 r005 Im(z^2+c),c=5/66+8/39*I,n=46 2178309732922796 r005 Im(z^2+c),c=5/66+8/39*I,n=42 2178309732922796 r005 Im(z^2+c),c=5/66+8/39*I,n=41 2178309732922812 r005 Im(z^2+c),c=5/66+8/39*I,n=38 2178309732922837 r005 Im(z^2+c),c=5/66+8/39*I,n=34 2178309732922858 r005 Im(z^2+c),c=5/66+8/39*I,n=37 2178309732923713 r005 Im(z^2+c),c=5/66+8/39*I,n=32 2178309732924677 r005 Im(z^2+c),c=5/66+8/39*I,n=33 2178309732964146 r005 Im(z^2+c),c=5/66+8/39*I,n=29 2178309733001060 r005 Im(z^2+c),c=5/66+8/39*I,n=28 2178309733480753 r005 Im(z^2+c),c=5/66+8/39*I,n=25 2178309735877482 r005 Im(z^2+c),c=5/66+8/39*I,n=24 2178309740164935 k001 Champernowne real with 919*n+1259 2178309741654421 g007 Psi(2,5/11)+Psi(2,6/7)+Psi(2,2/3)-Psi(2,4/7) 2178309742473327 a007 Real Root Of 404*x^4+403*x^3-856*x^2+213*x-405 2178309743563498 r002 18th iterates of z^2 + 2178309750251094 s003 concatenated sequence A105711 2178309771874706 m001 (-Kolakoski+Stephens)/(Chi(1)-Zeta(1,-1)) 2178309773372499 m006 (3/5*Pi^2-4/5)/(4/5*exp(Pi)+5) 2178309776504080 m001 1/exp(FeigenbaumKappa)^2*Lehmer^2*cos(Pi/12)^2 2178309780547370 a001 66978574/341*1364^(1/3) 2178309782416444 a007 Real Root Of 67*x^4-747*x^3+916*x^2+741*x+252 2178309783280878 a003 cos(Pi*17/99)/cos(Pi*36/97) 2178309786871090 a001 5/843*64079^(14/43) 2178309801644663 r005 Im(z^2+c),c=5/66+8/39*I,n=19 2178309810537067 a001 1836311903/5778*843^(2/7) 2178309812277287 a007 Real Root Of -32*x^4-662*x^3+807*x^2+984*x+887 2178309813164550 r005 Im(z^2+c),c=5/66+8/39*I,n=20 2178309815870781 r005 Im(z^2+c),c=9/32+1/18*I,n=41 2178309816466039 r005 Im(z^2+c),c=-7/30+1/33*I,n=19 2178309816783122 r009 Re(z^3+c),c=-7/58+53/61*I,n=16 2178309822524593 m001 (GaussAGM+KhinchinLevy)/(PlouffeB+ZetaP(2)) 2178309825148163 m001 Stephens^ZetaP(4)/BesselJ(1,1) 2178309826565469 a001 161/5473*832040^(6/19) 2178309827658954 a001 1836311903/3571*843^(3/14) 2178309827901281 a007 Real Root Of -395*x^4-658*x^3+428*x^2+401*x+935 2178309829165162 a007 Real Root Of -593*x^4-741*x^3+908*x^2-746*x-241 2178309829318611 m005 (1/2*Catalan+8/11)/(3/4*Catalan-1/7) 2178309830190499 a001 161/98209*7778742049^(6/19) 2178309834802431 l006 ln(2831/3520) 2178309840184938 k001 Champernowne real with 920*n+1258 2178309843616623 m005 (1/3*2^(1/2)+1/5)/(7/8*Pi+1/3) 2178309846323327 a007 Real Root Of -747*x^4+622*x^3-684*x^2+787*x+212 2178309849778475 a001 521/987*2178309^(13/51) 2178309856945559 a007 Real Root Of 160*x^4-82*x^3-793*x^2+433*x+256 2178309858602113 a001 433494437/1364*1364^(4/15) 2178309860358641 p001 sum((-1)^n/(464*n+265)/n/(6^n),n=1..infinity) 2178309864169999 r009 Im(z^3+c),c=-13/114+48/55*I,n=58 2178309866265177 a001 686789568/2161*843^(2/7) 2178309866463326 a001 267914296/2207*843^(3/7) 2178309870445705 m001 Niven*MertensB1/ln(Trott)^2 2178309874395799 a001 12586269025/39603*843^(2/7) 2178309875269510 a007 Real Root Of -555*x^4-766*x^3+711*x^2-885*x-723 2178309875582041 a001 32951280099/103682*843^(2/7) 2178309875755111 a001 86267571272/271443*843^(2/7) 2178309875780362 a001 317811*843^(2/7) 2178309875784046 a001 591286729879/1860498*843^(2/7) 2178309875784583 a001 1548008755920/4870847*843^(2/7) 2178309875784662 a001 4052739537881/12752043*843^(2/7) 2178309875784673 a001 1515744265389/4769326*843^(2/7) 2178309875784680 a001 6557470319842/20633239*843^(2/7) 2178309875784710 a001 2504730781961/7881196*843^(2/7) 2178309875784916 a001 956722026041/3010349*843^(2/7) 2178309875786323 a001 365435296162/1149851*843^(2/7) 2178309875795968 a001 139583862445/439204*843^(2/7) 2178309875862075 a001 53316291173/167761*843^(2/7) 2178309876315179 a001 20365011074/64079*843^(2/7) 2178309879420800 a001 7778742049/24476*843^(2/7) 2178309888064740 r002 35th iterates of z^2 + 2178309890296970 a007 Real Root Of 885*x^4+748*x^3+786*x^2-752*x+16 2178309895039124 a003 sin(Pi*23/103)/cos(Pi*19/47) 2178309900707045 a001 2971215073/9349*843^(2/7) 2178309904723605 r005 Im(z^2+c),c=-33/38+7/38*I,n=41 2178309904787743 m001 (Pi+Shi(1))/(sin(1/5*Pi)+Totient) 2178309905935487 m001 Sierpinski*exp(PrimesInBinary)*GAMMA(1/6) 2178309906700596 m005 (1/3*3^(1/2)-1/5)/(91/99+4/11*5^(1/2)) 2178309909270687 r002 23th iterates of z^2 + 2178309915866223 m001 (ZetaP(4)+ZetaQ(4))/(GaussAGM-Weierstrass) 2178309917405904 m001 (Artin+MertensB1)/(ln(Pi)+Pi^(1/2)) 2178309920457464 l006 ln(848/7489) 2178309925072261 a007 Real Root Of 66*x^4-424*x^3-904*x^2+561*x-357 2178309936656859 a001 701408733/1364*1364^(1/5) 2178309940204941 k001 Champernowne real with 921*n+1257 2178309944489752 r009 Im(z^3+c),c=-9/106+50/57*I,n=26 2178309945402548 a005 (1/cos(22/201*Pi))^700 2178309953070578 a007 Real Root Of 25*x^4+543*x^3-21*x^2+320*x+630 2178309957277459 a007 Real Root Of -208*x^4-192*x^3+344*x^2-675*x-404 2178309961383686 m005 (2/5*Catalan-3)/(13/2+5/2*5^(1/2)) 2178309962221277 a007 Real Root Of 159*x^4-48*x^3-311*x^2+905*x-629 2178309965635340 m001 GAMMA(11/12)/ln(Niven)^2*sin(Pi/5) 2178309983530779 m001 ln(gamma)*BesselK(1,1)^MasserGramainDelta 2178309991672770 a007 Real Root Of -235*x^4-300*x^3-393*x^2+321*x+86 2178309992010331 m001 FeigenbaumD^gamma(3)+Salem 2178310000000332 a001 1346271/2+1346269/2*5^(1/2) 2178310010049133 a001 1346269/1364*3571^(16/17) 2178310014711608 a001 567451585/682*1364^(2/15) 2178310015251553 m001 Porter^2*exp(Niven)*Tribonacci 2178310016323979 m009 (2*Psi(1,3/4)-1/2)/(1/2*Psi(1,3/4)+5/6) 2178310018560204 m001 FeigenbaumC*PisotVijayaraghavan/exp(OneNinth) 2178310020097064 a001 2178309/1364*3571^(15/17) 2178310025948438 m001 cos(1/5*Pi)/(arctan(1/3)-ln(2)) 2178310029483261 a001 567451585/2889*843^(5/14) 2178310030145454 a001 1762289/682*3571^(14/17) 2178310030723253 r009 Re(z^3+c),c=-13/40+11/25*I,n=24 2178310031473653 m001 (ln(5)-exp(-1/2*Pi))/(Conway-TwinPrimes) 2178310032059877 r005 Re(z^2+c),c=1/40+13/22*I,n=32 2178310034308991 r005 Re(z^2+c),c=3/14+3/26*I,n=8 2178310040193670 a001 5702887/1364*3571^(13/17) 2178310040224944 k001 Champernowne real with 922*n+1256 2178310040810988 m008 (5/6*Pi^2+1/6)/(2/5*Pi^6+2/3) 2178310041517453 l006 ln(1103/9741) 2178310044839513 a007 Real Root Of 284*x^4+256*x^3-627*x^2+315*x-87 2178310046605151 a001 1134903170/3571*843^(2/7) 2178310050241952 a001 9227465/1364*3571^(12/17) 2178310051124634 m005 (1/3*gamma+2/7)/(9/11*3^(1/2)+7/9) 2178310053904775 r005 Im(z^2+c),c=5/66+8/39*I,n=10 2178310060290208 a001 3732588/341*3571^(11/17) 2178310061356066 r005 Im(z^2+c),c=-23/54+4/11*I,n=20 2178310065564021 r005 Im(z^2+c),c=-43/114+19/53*I,n=24 2178310070338475 a001 24157817/1364*3571^(10/17) 2178310071269129 a007 Real Root Of -309*x^4-163*x^3-278*x^2+628*x+149 2178310074683618 a001 377/1149851*18^(19/29) 2178310078088704 b008 4-81/Pi 2178310078161636 r005 Re(z^2+c),c=-21/106+16/43*I,n=28 2178310078301118 r005 Re(z^2+c),c=-27/110+11/54*I,n=10 2178310078928170 h001 (2/11*exp(1)+3/11)/(3/8*exp(2)+3/4) 2178310079988508 m001 1/TwinPrimes*Khintchine*exp(Pi)^2 2178310080386737 a001 39088169/1364*3571^(9/17) 2178310084454897 m001 (Pi-Chi(1))/(LandauRamanujan2nd+PlouffeB) 2178310085018045 a007 Real Root Of -403*x^4-900*x^3-78*x^2-237*x-375 2178310085211377 a001 2971215073/15127*843^(5/14) 2178310085409526 a001 165580141/2207*843^(1/2) 2178310090435002 a001 31622993/682*3571^(8/17) 2178310092766359 a001 1836311903/1364*1364^(1/15) 2178310092844392 a003 cos(Pi*1/9)/cos(Pi*29/81) 2178310093342000 a001 7778742049/39603*843^(5/14) 2178310094528242 a001 10182505537/51841*843^(5/14) 2178310094701312 a001 53316291173/271443*843^(5/14) 2178310094726563 a001 139583862445/710647*843^(5/14) 2178310094730247 a001 182717648081/930249*843^(5/14) 2178310094730784 a001 956722026041/4870847*843^(5/14) 2178310094730863 a001 2504730781961/12752043*843^(5/14) 2178310094730874 a001 3278735159921/16692641*843^(5/14) 2178310094730877 a001 10610209857723/54018521*843^(5/14) 2178310094730881 a001 4052739537881/20633239*843^(5/14) 2178310094730911 a001 387002188980/1970299*843^(5/14) 2178310094731117 a001 591286729879/3010349*843^(5/14) 2178310094732524 a001 225851433717/1149851*843^(5/14) 2178310094742169 a001 196418*843^(5/14) 2178310094808276 a001 32951280099/167761*843^(5/14) 2178310095261380 a001 12586269025/64079*843^(5/14) 2178310098367001 a001 1201881744/6119*843^(5/14) 2178310100483265 a001 9303105/124*3571^(7/17) 2178310105572867 a001 305/2889*2537720636^(7/9) 2178310105572867 a001 305/2889*17393796001^(5/7) 2178310105572867 a001 305/2889*312119004989^(7/11) 2178310105572867 a001 305/2889*14662949395604^(5/9) 2178310105572867 a001 305/2889*(1/2+1/2*5^(1/2))^35 2178310105572867 a001 305/2889*505019158607^(5/8) 2178310105572867 a001 305/2889*28143753123^(7/10) 2178310105572867 a001 305/2889*599074578^(5/6) 2178310105572867 a001 305/2889*228826127^(7/8) 2178310105573495 a001 646/341*(1/2+1/2*5^(1/2))^29 2178310105573495 a001 646/341*1322157322203^(1/2) 2178310108780915 m001 GAMMA(23/24)^2*Tribonacci*ln(GAMMA(7/24)) 2178310110531529 a001 165580141/1364*3571^(6/17) 2178310111342111 k008 concat of cont frac of 2178310111441795 a007 Real Root Of 594*x^4-817*x^3+524*x^2-805*x-210 2178310115368811 m001 (-exp(1)+1)/(-sin(Pi/5)+2/3) 2178310118921066 r009 Im(z^3+c),c=-41/98+2/49*I,n=8 2178310119653249 a001 1836311903/9349*843^(5/14) 2178310120579793 a001 66978574/341*3571^(5/17) 2178310121970075 m009 (16/5*Catalan+2/5*Pi^2-5)/(3*Psi(1,3/4)+1) 2178310122595601 g007 Psi(2,1/4)-Psi(2,2/11)-2*Psi(2,7/10) 2178310128265741 m005 (-5/42+1/6*5^(1/2))/(19/24+1/6*5^(1/2)) 2178310130628057 a001 433494437/1364*3571^(4/17) 2178310133427541 m001 BesselJ(0,1)*(LambertW(1)+BesselI(0,2)) 2178310140244947 k001 Champernowne real with 923*n+1255 2178310140676321 a001 701408733/1364*3571^(3/17) 2178310141429384 m005 (1/2*3^(1/2)-9/11)/(11/12*2^(1/2)+9/10) 2178310142684131 r009 Re(z^3+c),c=-4/21+35/39*I,n=16 2178310145898110 a001 9107514720/4181 2178310147212092 a001 514229/1364*9349^(18/19) 2178310148521519 a001 610*9349^(17/19) 2178310149834093 a001 1346269/1364*9349^(16/19) 2178310150724586 a001 567451585/682*3571^(2/17) 2178310151145464 a001 2178309/1364*9349^(15/19) 2178310151431165 m001 (5^(1/2)+LambertW(1))/(GaussAGM+ZetaP(2)) 2178310152457295 a001 1762289/682*9349^(14/19) 2178310153768951 a001 5702887/1364*9349^(13/19) 2178310155080673 a001 9227465/1364*9349^(12/19) 2178310156392370 a001 3732588/341*9349^(11/19) 2178310157704076 a001 24157817/1364*9349^(10/19) 2178310159015779 a001 39088169/1364*9349^(9/19) 2178310160327483 a001 31622993/682*9349^(8/19) 2178310160772850 a001 1836311903/1364*3571^(1/17) 2178310161300985 a001 610/15127*(1/2+1/2*5^(1/2))^37 2178310161301586 a001 615/124*7881196^(9/11) 2178310161301614 a001 615/124*141422324^(9/13) 2178310161301615 a001 615/124*2537720636^(3/5) 2178310161301615 a001 615/124*45537549124^(9/17) 2178310161301615 a001 615/124*14662949395604^(3/7) 2178310161301615 a001 615/124*(1/2+1/2*5^(1/2))^27 2178310161301615 a001 615/124*192900153618^(1/2) 2178310161301615 a001 615/124*10749957122^(9/16) 2178310161301615 a001 615/124*599074578^(9/14) 2178310161301616 a001 615/124*33385282^(3/4) 2178310161302181 a001 615/124*1860498^(9/10) 2178310161639187 a001 9303105/124*9349^(7/19) 2178310162025305 a007 Real Root Of 246*x^4+127*x^3-616*x^2+814*x+470 2178310162950891 a001 165580141/1364*9349^(6/19) 2178310164262595 a001 66978574/341*9349^(5/19) 2178310165574299 a001 433494437/1364*9349^(4/19) 2178310166208380 r002 58th iterates of z^2 + 2178310166886002 a001 701408733/1364*9349^(3/19) 2178310167184359 a001 11921891545/5473 2178310167369430 a001 98209/682*24476^(20/21) 2178310167526973 a001 317811/1364*24476^(19/21) 2178310167706083 a001 514229/1364*24476^(6/7) 2178310167876955 a001 610*24476^(17/21) 2178310168050973 a001 1346269/1364*24476^(16/21) 2178310168197706 a001 567451585/682*9349^(2/19) 2178310168223790 a001 2178309/1364*24476^(5/7) 2178310168397065 a001 1762289/682*24476^(2/3) 2178310168570166 a001 5702887/1364*24476^(13/21) 2178310168743333 a001 9227465/1364*24476^(4/7) 2178310168916475 a001 3732588/341*24476^(11/21) 2178310169089626 a001 24157817/1364*24476^(10/21) 2178310169262774 a001 39088169/1364*24476^(3/7) 2178310169431608 a001 610/39603*2537720636^(13/15) 2178310169431608 a001 610/39603*45537549124^(13/17) 2178310169431608 a001 610/39603*14662949395604^(13/21) 2178310169431608 a001 610/39603*(1/2+1/2*5^(1/2))^39 2178310169431608 a001 610/39603*192900153618^(13/18) 2178310169431608 a001 610/39603*73681302247^(3/4) 2178310169431608 a001 610/39603*10749957122^(13/16) 2178310169431608 a001 610/39603*599074578^(13/14) 2178310169432234 a001 17711/1364*20633239^(5/7) 2178310169432238 a001 17711/1364*2537720636^(5/9) 2178310169432238 a001 17711/1364*312119004989^(5/11) 2178310169432238 a001 17711/1364*(1/2+1/2*5^(1/2))^25 2178310169432238 a001 17711/1364*3461452808002^(5/12) 2178310169432238 a001 17711/1364*28143753123^(1/2) 2178310169432238 a001 17711/1364*228826127^(5/8) 2178310169432762 a001 17711/1364*1860498^(5/6) 2178310169435923 a001 31622993/682*24476^(8/21) 2178310169509410 a001 1836311903/1364*9349^(1/19) 2178310169609072 a001 9303105/124*24476^(1/3) 2178310169782221 a001 165580141/1364*24476^(2/7) 2178310169955370 a001 66978574/341*24476^(5/21) 2178310170128519 a001 433494437/1364*24476^(4/21) 2178310170289981 a001 62423834550/28657 2178310170301667 a001 701408733/1364*24476^(1/7) 2178310170307177 a001 121393/1364*64079^(21/23) 2178310170371099 a001 98209/682*64079^(20/23) 2178310170378559 a001 317811/1364*64079^(19/23) 2178310170391075 a001 75025/1364*64079^(22/23) 2178310170407585 a001 514229/1364*64079^(18/23) 2178310170428373 a001 610*64079^(17/23) 2178310170452308 a001 1346269/1364*64079^(16/23) 2178310170474816 a001 567451585/682*24476^(2/21) 2178310170475042 a001 2178309/1364*64079^(15/23) 2178310170498234 a001 1762289/682*64079^(14/23) 2178310170521251 a001 5702887/1364*64079^(13/23) 2178310170544335 a001 9227465/1364*64079^(12/23) 2178310170567393 a001 3732588/341*64079^(11/23) 2178310170590461 a001 24157817/1364*64079^(10/23) 2178310170613525 a001 39088169/1364*64079^(9/23) 2178310170617850 a001 305/51841*(1/2+1/2*5^(1/2))^41 2178310170618480 a001 11592/341*(1/2+1/2*5^(1/2))^23 2178310170618480 a001 11592/341*4106118243^(1/2) 2178310170636591 a001 31622993/682*64079^(8/23) 2178310170647965 a001 1836311903/1364*24476^(1/21) 2178310170659656 a001 9303105/124*64079^(7/23) 2178310170682722 a001 165580141/1364*64079^(6/23) 2178310170705787 a001 66978574/341*64079^(5/23) 2178310170728852 a001 433494437/1364*64079^(4/23) 2178310170743085 a001 32685544112/15005 2178310170751918 a001 701408733/1364*64079^(3/23) 2178310170770487 a001 98209/682*167761^(4/5) 2178310170774582 a001 2178309/1364*167761^(3/5) 2178310170774983 a001 567451585/682*64079^(2/23) 2178310170782767 a001 121393/1364*439204^(7/9) 2178310170790155 a001 24157817/1364*167761^(2/5) 2178310170790921 a001 610/271443*(1/2+1/2*5^(1/2))^43 2178310170791528 a001 121393/1364*7881196^(7/11) 2178310170791547 a001 121393/1364*20633239^(3/5) 2178310170791550 a001 121393/1364*141422324^(7/13) 2178310170791550 a001 121393/1364*2537720636^(7/15) 2178310170791550 a001 121393/1364*17393796001^(3/7) 2178310170791550 a001 121393/1364*45537549124^(7/17) 2178310170791550 a001 121393/1364*14662949395604^(1/3) 2178310170791550 a001 121393/1364*(1/2+1/2*5^(1/2))^21 2178310170791550 a001 121393/1364*192900153618^(7/18) 2178310170791550 a001 121393/1364*10749957122^(7/16) 2178310170791550 a001 121393/1364*599074578^(1/2) 2178310170791551 a001 121393/1364*33385282^(7/12) 2178310170791990 a001 121393/1364*1860498^(7/10) 2178310170794785 a001 121393/1364*710647^(3/4) 2178310170798048 a001 1836311903/1364*64079^(1/23) 2178310170805634 a001 66978574/341*167761^(1/5) 2178310170809192 a001 213929663565/98209 2178310170812671 a001 11592/341*103682^(23/24) 2178310170814748 a001 2178309/1364*439204^(5/9) 2178310170815233 a001 514229/1364*439204^(2/3) 2178310170816100 a001 9227465/1364*439204^(4/9) 2178310170816171 a001 610/710647*45537549124^(15/17) 2178310170816171 a001 610/710647*312119004989^(9/11) 2178310170816171 a001 610/710647*14662949395604^(5/7) 2178310170816171 a001 610/710647*(1/2+1/2*5^(1/2))^45 2178310170816171 a001 610/710647*192900153618^(5/6) 2178310170816171 a001 610/710647*28143753123^(9/10) 2178310170816171 a001 610/710647*10749957122^(15/16) 2178310170816801 a001 317811/1364*817138163596^(1/3) 2178310170816801 a001 317811/1364*(1/2+1/2*5^(1/2))^19 2178310170816801 a001 317811/1364*87403803^(1/2) 2178310170817349 a001 39088169/1364*439204^(1/3) 2178310170818604 a001 165580141/1364*439204^(2/9) 2178310170818837 a001 1120150260830/514229 2178310170819855 a001 305/930249*(1/2+1/2*5^(1/2))^47 2178310170819859 a001 701408733/1364*439204^(1/9) 2178310170820244 a001 2932591455360/1346269 2178310170820393 a001 610/4870847*14662949395604^(7/9) 2178310170820393 a001 610/4870847*(1/2+1/2*5^(1/2))^49 2178310170820393 a001 610/4870847*505019158607^(7/8) 2178310170820449 a001 3838812052625/1762289 2178310170820471 a001 610/12752043*817138163596^(17/19) 2178310170820471 a001 610/12752043*14662949395604^(17/21) 2178310170820471 a001 610/12752043*(1/2+1/2*5^(1/2))^51 2178310170820471 a001 610/12752043*192900153618^(17/18) 2178310170820479 a001 4020056172078/1845493 2178310170820483 a001 305/16692641*(1/2+1/2*5^(1/2))^53 2178310170820484 a001 52623218475920/24157817 2178310170820484 a001 610/87403803*3461452808002^(11/12) 2178310170820484 a001 68884687283685/31622993 2178310170820485 a001 610/228826127*14662949395604^(19/21) 2178310170820485 a001 360684905226190/165580141 2178310170820485 a001 944285341111200/433494437 2178310170820485 a001 4052739537881/1860497 2178310170820485 a001 6472228013211030/2971215073 2178310170820485 a001 610*45537549124^(1/3) 2178310170820485 a001 4000056895103620/1836311903 2178310170820485 a001 1527885776996210/701408733 2178310170820485 a001 610/969323029*14662949395604^(20/21) 2178310170820485 a001 291800217942505/133957148 2178310170820485 a001 44583106131764/20466831 2178310170820485 a001 305/70711162*14662949395604^(8/9) 2178310170820485 a001 85146156091450/39088169 2178310170820485 a001 610/54018521*14662949395604^(6/7) 2178310170820487 a001 16261468807765/7465176 2178310170820490 a001 610/20633239*(1/2+1/2*5^(1/2))^52 2178310170820490 a001 610/20633239*23725150497407^(13/16) 2178310170820490 a001 610/20633239*505019158607^(13/14) 2178310170820491 a001 610*12752043^(1/2) 2178310170820498 a001 7778745620/3571 2178310170820520 a001 305/3940598*312119004989^(10/11) 2178310170820520 a001 305/3940598*(1/2+1/2*5^(1/2))^50 2178310170820520 a001 305/3940598*3461452808002^(5/6) 2178310170820576 a001 4745032649890/2178309 2178310170820725 a001 610/3010349*45537549124^(16/17) 2178310170820725 a001 610/3010349*14662949395604^(16/21) 2178310170820725 a001 610/3010349*(1/2+1/2*5^(1/2))^48 2178310170820725 a001 610/3010349*192900153618^(8/9) 2178310170820725 a001 610/3010349*73681302247^(12/13) 2178310170821006 a001 2178309/1364*7881196^(5/11) 2178310170821020 a001 2178309/1364*20633239^(3/7) 2178310170821022 a001 2178309/1364*141422324^(5/13) 2178310170821022 a001 2178309/1364*2537720636^(1/3) 2178310170821022 a001 2178309/1364*45537549124^(5/17) 2178310170821022 a001 2178309/1364*312119004989^(3/11) 2178310170821022 a001 2178309/1364*14662949395604^(5/21) 2178310170821022 a001 2178309/1364*(1/2+1/2*5^(1/2))^15 2178310170821022 a001 2178309/1364*192900153618^(5/18) 2178310170821022 a001 2178309/1364*28143753123^(3/10) 2178310170821022 a001 2178309/1364*10749957122^(5/16) 2178310170821022 a001 2178309/1364*599074578^(5/14) 2178310170821022 a001 2178309/1364*228826127^(3/8) 2178310170821023 a001 2178309/1364*33385282^(5/12) 2178310170821100 a001 3732588/341*7881196^(1/3) 2178310170821100 a001 5702887/1364*141422324^(1/3) 2178310170821100 a001 5702887/1364*(1/2+1/2*5^(1/2))^13 2178310170821100 a001 5702887/1364*73681302247^(1/4) 2178310170821104 a001 39088169/1364*7881196^(3/11) 2178310170821106 a001 9227465/1364*7881196^(4/11) 2178310170821108 a001 165580141/1364*7881196^(2/11) 2178310170821111 a001 701408733/1364*7881196^(1/11) 2178310170821112 a001 3732588/341*312119004989^(1/5) 2178310170821112 a001 3732588/341*(1/2+1/2*5^(1/2))^11 2178310170821112 a001 3732588/341*1568397607^(1/4) 2178310170821113 a001 9303105/124*20633239^(1/5) 2178310170821113 a001 66978574/341*20633239^(1/7) 2178310170821113 a001 24157817/1364*20633239^(2/7) 2178310170821114 a001 39088169/1364*141422324^(3/13) 2178310170821114 a001 39088169/1364*2537720636^(1/5) 2178310170821114 a001 39088169/1364*45537549124^(3/17) 2178310170821114 a001 39088169/1364*14662949395604^(1/7) 2178310170821114 a001 39088169/1364*(1/2+1/2*5^(1/2))^9 2178310170821114 a001 39088169/1364*192900153618^(1/6) 2178310170821114 a001 39088169/1364*10749957122^(3/16) 2178310170821114 a001 39088169/1364*599074578^(3/14) 2178310170821114 a001 9303105/124*17393796001^(1/7) 2178310170821114 a001 9303105/124*14662949395604^(1/9) 2178310170821114 a001 9303105/124*(1/2+1/2*5^(1/2))^7 2178310170821114 a001 9303105/124*599074578^(1/6) 2178310170821114 a001 701408733/1364*141422324^(1/13) 2178310170821114 a001 66978574/341*2537720636^(1/9) 2178310170821114 a001 66978574/341*312119004989^(1/11) 2178310170821114 a001 66978574/341*(1/2+1/2*5^(1/2))^5 2178310170821114 a001 66978574/341*28143753123^(1/10) 2178310170821114 a001 701408733/1364*2537720636^(1/15) 2178310170821114 a001 701408733/1364*45537549124^(1/17) 2178310170821114 a001 701408733/1364*14662949395604^(1/21) 2178310170821114 a001 701408733/1364*(1/2+1/2*5^(1/2))^3 2178310170821114 a001 701408733/1364*10749957122^(1/16) 2178310170821114 a001 66978574/341*228826127^(1/8) 2178310170821114 a001 165580141/1364*141422324^(2/13) 2178310170821114 a001 701408733/1364*599074578^(1/14) 2178310170821114 a001 1836311903/2728+1836311903/2728*5^(1/2) 2178310170821114 a001 2971215073/1364 2178310170821114 a001 567451585/682*(1/2+1/2*5^(1/2))^2 2178310170821114 a001 567451585/682*10749957122^(1/24) 2178310170821114 a001 567451585/682*4106118243^(1/23) 2178310170821114 a001 567451585/682*1568397607^(1/22) 2178310170821114 a001 567451585/682*599074578^(1/21) 2178310170821114 a001 433494437/1364*(1/2+1/2*5^(1/2))^4 2178310170821114 a001 433494437/1364*23725150497407^(1/16) 2178310170821114 a001 433494437/1364*73681302247^(1/13) 2178310170821114 a001 433494437/1364*10749957122^(1/12) 2178310170821114 a001 433494437/1364*4106118243^(2/23) 2178310170821114 a001 433494437/1364*1568397607^(1/11) 2178310170821114 a001 567451585/682*228826127^(1/20) 2178310170821114 a001 433494437/1364*599074578^(2/21) 2178310170821114 a001 433494437/1364*228826127^(1/10) 2178310170821114 a001 567451585/682*87403803^(1/19) 2178310170821114 a001 165580141/1364*2537720636^(2/15) 2178310170821114 a001 165580141/1364*45537549124^(2/17) 2178310170821114 a001 165580141/1364*14662949395604^(2/21) 2178310170821114 a001 165580141/1364*(1/2+1/2*5^(1/2))^6 2178310170821114 a001 165580141/1364*10749957122^(1/8) 2178310170821114 a001 165580141/1364*4106118243^(3/23) 2178310170821114 a001 165580141/1364*1568397607^(3/22) 2178310170821114 a001 165580141/1364*599074578^(1/7) 2178310170821114 a001 165580141/1364*228826127^(3/20) 2178310170821114 a001 433494437/1364*87403803^(2/19) 2178310170821114 a001 165580141/1364*87403803^(3/19) 2178310170821114 a001 31622993/682*(1/2+1/2*5^(1/2))^8 2178310170821114 a001 31622993/682*23725150497407^(1/8) 2178310170821114 a001 31622993/682*73681302247^(2/13) 2178310170821114 a001 567451585/682*33385282^(1/18) 2178310170821114 a001 31622993/682*10749957122^(1/6) 2178310170821114 a001 31622993/682*4106118243^(4/23) 2178310170821114 a001 31622993/682*1568397607^(2/11) 2178310170821114 a001 31622993/682*599074578^(4/21) 2178310170821114 a001 31622993/682*228826127^(1/5) 2178310170821114 a001 701408733/1364*33385282^(1/12) 2178310170821114 a001 31622993/682*87403803^(4/19) 2178310170821114 a001 39088169/1364*33385282^(1/4) 2178310170821114 a001 433494437/1364*33385282^(1/9) 2178310170821114 a001 165580141/1364*33385282^(1/6) 2178310170821114 a001 31622993/682*33385282^(2/9) 2178310170821115 a001 24157817/1364*2537720636^(2/9) 2178310170821115 a001 24157817/1364*312119004989^(2/11) 2178310170821115 a001 24157817/1364*(1/2+1/2*5^(1/2))^10 2178310170821115 a001 24157817/1364*28143753123^(1/5) 2178310170821115 a001 24157817/1364*10749957122^(5/24) 2178310170821115 a001 24157817/1364*4106118243^(5/23) 2178310170821115 a001 24157817/1364*1568397607^(5/22) 2178310170821115 a001 24157817/1364*599074578^(5/21) 2178310170821115 a001 24157817/1364*228826127^(1/4) 2178310170821115 a001 567451585/682*12752043^(1/17) 2178310170821115 a001 24157817/1364*87403803^(5/19) 2178310170821115 a001 24157817/1364*33385282^(5/18) 2178310170821115 a001 433494437/1364*12752043^(2/17) 2178310170821116 a001 165580141/1364*12752043^(3/17) 2178310170821117 a001 31622993/682*12752043^(4/17) 2178310170821119 a001 24157817/1364*12752043^(5/17) 2178310170821119 a001 9227465/1364*141422324^(4/13) 2178310170821119 a001 9227465/1364*2537720636^(4/15) 2178310170821119 a001 9227465/1364*45537549124^(4/17) 2178310170821119 a001 9227465/1364*14662949395604^(4/21) 2178310170821119 a001 9227465/1364*(1/2+1/2*5^(1/2))^12 2178310170821119 a001 9227465/1364*192900153618^(2/9) 2178310170821119 a001 9227465/1364*73681302247^(3/13) 2178310170821119 a001 9227465/1364*10749957122^(1/4) 2178310170821119 a001 9227465/1364*4106118243^(6/23) 2178310170821119 a001 9227465/1364*1568397607^(3/11) 2178310170821119 a001 9227465/1364*599074578^(2/7) 2178310170821119 a001 9227465/1364*228826127^(3/10) 2178310170821119 a001 9227465/1364*87403803^(6/19) 2178310170821120 a001 567451585/682*4870847^(1/16) 2178310170821120 a001 9227465/1364*33385282^(1/3) 2178310170821124 a001 9227465/1364*12752043^(6/17) 2178310170821125 a001 433494437/1364*4870847^(1/8) 2178310170821131 a001 165580141/1364*4870847^(3/16) 2178310170821137 a001 31622993/682*4870847^(1/4) 2178310170821143 a001 24157817/1364*4870847^(5/16) 2178310170821147 a001 1762289/682*20633239^(2/5) 2178310170821149 a001 1762289/682*17393796001^(2/7) 2178310170821149 a001 1762289/682*14662949395604^(2/9) 2178310170821149 a001 1762289/682*(1/2+1/2*5^(1/2))^14 2178310170821149 a001 1762289/682*10749957122^(7/24) 2178310170821149 a001 1762289/682*4106118243^(7/23) 2178310170821149 a001 1762289/682*1568397607^(7/22) 2178310170821149 a001 1762289/682*599074578^(1/3) 2178310170821149 a001 1762289/682*228826127^(7/20) 2178310170821149 a001 1762289/682*87403803^(7/19) 2178310170821150 a001 1762289/682*33385282^(7/18) 2178310170821153 a001 9227465/1364*4870847^(3/8) 2178310170821154 a001 1762289/682*12752043^(7/17) 2178310170821156 a001 567451585/682*1860498^(1/15) 2178310170821177 a001 701408733/1364*1860498^(1/10) 2178310170821189 a001 1762289/682*4870847^(7/16) 2178310170821198 a001 433494437/1364*1860498^(2/15) 2178310170821219 a001 66978574/341*1860498^(1/6) 2178310170821240 a001 165580141/1364*1860498^(1/5) 2178310170821282 a001 31622993/682*1860498^(4/15) 2178310170821302 a001 39088169/1364*1860498^(3/10) 2178310170821324 a001 24157817/1364*1860498^(1/3) 2178310170821337 a001 2178309/1364*1860498^(1/2) 2178310170821354 a001 1346269/1364*(1/2+1/2*5^(1/2))^16 2178310170821354 a001 1346269/1364*23725150497407^(1/4) 2178310170821354 a001 1346269/1364*73681302247^(4/13) 2178310170821354 a001 1346269/1364*10749957122^(1/3) 2178310170821354 a001 1346269/1364*4106118243^(8/23) 2178310170821354 a001 1346269/1364*1568397607^(4/11) 2178310170821354 a001 1346269/1364*599074578^(8/21) 2178310170821354 a001 1346269/1364*228826127^(2/5) 2178310170821354 a001 1346269/1364*87403803^(8/19) 2178310170821355 a001 1346269/1364*33385282^(4/9) 2178310170821361 a001 1346269/1364*12752043^(8/17) 2178310170821371 a001 9227465/1364*1860498^(2/5) 2178310170821400 a001 1346269/1364*4870847^(1/2) 2178310170821422 a001 567451585/682*710647^(1/14) 2178310170821443 a001 1762289/682*1860498^(7/15) 2178310170821690 a001 1346269/1364*1860498^(8/15) 2178310170821730 a001 433494437/1364*710647^(1/7) 2178310170822038 a001 165580141/1364*710647^(3/14) 2178310170822132 a001 610/1149851*(1/2+1/2*5^(1/2))^46 2178310170822132 a001 610/1149851*10749957122^(23/24) 2178310170822192 a001 9303105/124*710647^(1/4) 2178310170822346 a001 31622993/682*710647^(2/7) 2178310170822655 a001 24157817/1364*710647^(5/14) 2178310170822742 a001 514229/1364*7881196^(6/11) 2178310170822761 a001 514229/1364*141422324^(6/13) 2178310170822761 a001 514229/1364*2537720636^(2/5) 2178310170822761 a001 514229/1364*45537549124^(6/17) 2178310170822761 a001 514229/1364*14662949395604^(2/7) 2178310170822761 a001 514229/1364*(1/2+1/2*5^(1/2))^18 2178310170822761 a001 514229/1364*192900153618^(1/3) 2178310170822761 a001 514229/1364*10749957122^(3/8) 2178310170822761 a001 514229/1364*4106118243^(9/23) 2178310170822761 a001 514229/1364*1568397607^(9/22) 2178310170822761 a001 514229/1364*599074578^(3/7) 2178310170822761 a001 514229/1364*228826127^(9/20) 2178310170822762 a001 514229/1364*87403803^(9/19) 2178310170822762 a001 514229/1364*33385282^(1/2) 2178310170822769 a001 514229/1364*12752043^(9/17) 2178310170822813 a001 514229/1364*4870847^(9/16) 2178310170822968 a001 9227465/1364*710647^(3/7) 2178310170823139 a001 514229/1364*1860498^(3/5) 2178310170823306 a001 1762289/682*710647^(1/2) 2178310170823388 a001 567451585/682*271443^(1/13) 2178310170823819 a001 1346269/1364*710647^(4/7) 2178310170824798 a001 692290933700/317811 2178310170825534 a001 514229/1364*710647^(9/14) 2178310170825662 a001 433494437/1364*271443^(2/13) 2178310170827936 a001 165580141/1364*271443^(3/13) 2178310170829557 a001 1836311903/1364*103682^(1/24) 2178310170830211 a001 31622993/682*271443^(4/13) 2178310170831777 a001 305/219602*312119004989^(4/5) 2178310170831777 a001 305/219602*(1/2+1/2*5^(1/2))^44 2178310170831777 a001 305/219602*23725150497407^(11/16) 2178310170831777 a001 305/219602*73681302247^(11/13) 2178310170831777 a001 305/219602*10749957122^(11/12) 2178310170831777 a001 305/219602*4106118243^(22/23) 2178310170832403 a001 98209/682*20633239^(4/7) 2178310170832406 a001 98209/682*2537720636^(4/9) 2178310170832406 a001 98209/682*(1/2+1/2*5^(1/2))^20 2178310170832406 a001 98209/682*23725150497407^(5/16) 2178310170832406 a001 98209/682*505019158607^(5/14) 2178310170832406 a001 98209/682*73681302247^(5/13) 2178310170832406 a001 98209/682*28143753123^(2/5) 2178310170832406 a001 98209/682*10749957122^(5/12) 2178310170832406 a001 98209/682*4106118243^(10/23) 2178310170832406 a001 98209/682*1568397607^(5/11) 2178310170832406 a001 98209/682*599074578^(10/21) 2178310170832406 a001 98209/682*228826127^(1/2) 2178310170832406 a001 98209/682*87403803^(10/19) 2178310170832407 a001 98209/682*33385282^(5/9) 2178310170832414 a001 98209/682*12752043^(10/17) 2178310170832464 a001 98209/682*4870847^(5/8) 2178310170832485 a001 24157817/1364*271443^(5/13) 2178310170832826 a001 98209/682*1860498^(2/3) 2178310170834764 a001 9227465/1364*271443^(6/13) 2178310170835487 a001 98209/682*710647^(5/7) 2178310170835882 a001 5702887/1364*271443^(1/2) 2178310170837068 a001 1762289/682*271443^(7/13) 2178310170838000 a001 567451585/682*103682^(1/12) 2178310170839547 a001 1346269/1364*271443^(8/13) 2178310170843229 a001 514229/1364*271443^(9/13) 2178310170846443 a001 701408733/1364*103682^(1/8) 2178310170850049 a001 264431606570/121393 2178310170854886 a001 433494437/1364*103682^(1/6) 2178310170855148 a001 98209/682*271443^(10/13) 2178310170863329 a001 66978574/341*103682^(5/24) 2178310170871772 a001 165580141/1364*103682^(1/4) 2178310170880216 a001 9303105/124*103682^(7/24) 2178310170884245 a001 1836311903/1364*39603^(1/22) 2178310170888659 a001 31622993/682*103682^(1/3) 2178310170897101 a001 39088169/1364*103682^(3/8) 2178310170897884 a001 610/167761*2537720636^(14/15) 2178310170897884 a001 610/167761*17393796001^(6/7) 2178310170897884 a001 610/167761*45537549124^(14/17) 2178310170897884 a001 610/167761*14662949395604^(2/3) 2178310170897884 a001 610/167761*(1/2+1/2*5^(1/2))^42 2178310170897884 a001 610/167761*505019158607^(3/4) 2178310170897884 a001 610/167761*192900153618^(7/9) 2178310170897884 a001 610/167761*10749957122^(7/8) 2178310170897884 a001 610/167761*4106118243^(21/23) 2178310170897884 a001 610/167761*1568397607^(21/22) 2178310170898490 a001 75025/1364*7881196^(2/3) 2178310170898513 a001 75025/1364*312119004989^(2/5) 2178310170898513 a001 75025/1364*(1/2+1/2*5^(1/2))^22 2178310170898513 a001 75025/1364*10749957122^(11/24) 2178310170898513 a001 75025/1364*4106118243^(11/23) 2178310170898513 a001 75025/1364*1568397607^(1/2) 2178310170898513 a001 75025/1364*599074578^(11/21) 2178310170898513 a001 75025/1364*228826127^(11/20) 2178310170898513 a001 75025/1364*87403803^(11/19) 2178310170898514 a001 75025/1364*33385282^(11/18) 2178310170898522 a001 75025/1364*12752043^(11/17) 2178310170898576 a001 75025/1364*4870847^(11/16) 2178310170898975 a001 75025/1364*1860498^(11/15) 2178310170901902 a001 75025/1364*710647^(11/14) 2178310170905546 a001 24157817/1364*103682^(5/12) 2178310170913986 a001 3732588/341*103682^(11/24) 2178310170922436 a001 9227465/1364*103682^(1/2) 2178310170923529 a001 75025/1364*271443^(11/13) 2178310170930861 a001 5702887/1364*103682^(13/24) 2178310170939352 a001 1762289/682*103682^(7/12) 2178310170947375 a001 567451585/682*39603^(1/11) 2178310170947669 a001 2178309/1364*103682^(5/8) 2178310170956444 a001 1346269/1364*103682^(2/3) 2178310170964017 a001 610*103682^(17/24) 2178310170968855 a001 121393/1364*103682^(7/8) 2178310170974737 a001 514229/1364*103682^(3/4) 2178310170977219 a001 317811/1364*103682^(19/24) 2178310171001268 a001 98209/682*103682^(5/6) 2178310171010506 a001 701408733/1364*39603^(3/22) 2178310171023119 a001 50501943005/23184 2178310171073637 a001 433494437/1364*39603^(2/11) 2178310171084261 a001 75025/1364*103682^(11/12) 2178310171136768 a001 66978574/341*39603^(5/22) 2178310171199898 a001 165580141/1364*39603^(3/11) 2178310171263029 a001 9303105/124*39603^(7/22) 2178310171297089 a001 1836311903/1364*15127^(1/20) 2178310171326160 a001 31622993/682*39603^(4/11) 2178310171341580 a001 28657/1364*439204^(8/9) 2178310171350988 a001 610/64079*2537720636^(8/9) 2178310171350988 a001 610/64079*312119004989^(8/11) 2178310171350988 a001 610/64079*(1/2+1/2*5^(1/2))^40 2178310171350988 a001 610/64079*23725150497407^(5/8) 2178310171350988 a001 610/64079*73681302247^(10/13) 2178310171350988 a001 610/64079*28143753123^(4/5) 2178310171350988 a001 610/64079*10749957122^(5/6) 2178310171350988 a001 610/64079*4106118243^(20/23) 2178310171350988 a001 610/64079*1568397607^(10/11) 2178310171350988 a001 610/64079*599074578^(20/21) 2178310171351592 a001 28657/1364*7881196^(8/11) 2178310171351617 a001 28657/1364*141422324^(8/13) 2178310171351617 a001 28657/1364*2537720636^(8/15) 2178310171351617 a001 28657/1364*45537549124^(8/17) 2178310171351617 a001 28657/1364*14662949395604^(8/21) 2178310171351617 a001 28657/1364*(1/2+1/2*5^(1/2))^24 2178310171351617 a001 28657/1364*192900153618^(4/9) 2178310171351617 a001 28657/1364*73681302247^(6/13) 2178310171351617 a001 28657/1364*10749957122^(1/2) 2178310171351617 a001 28657/1364*4106118243^(12/23) 2178310171351617 a001 28657/1364*1568397607^(6/11) 2178310171351617 a001 28657/1364*599074578^(4/7) 2178310171351617 a001 28657/1364*228826127^(3/5) 2178310171351618 a001 28657/1364*87403803^(12/19) 2178310171351619 a001 28657/1364*33385282^(2/3) 2178310171351627 a001 28657/1364*12752043^(12/17) 2178310171351686 a001 28657/1364*4870847^(3/4) 2178310171352121 a001 28657/1364*1860498^(4/5) 2178310171355315 a001 28657/1364*710647^(6/7) 2178310171378907 a001 28657/1364*271443^(12/13) 2178310171389290 a001 39088169/1364*39603^(9/22) 2178310171452422 a001 24157817/1364*39603^(5/11) 2178310171515550 a001 3732588/341*39603^(1/2) 2178310171578688 a001 9227465/1364*39603^(6/11) 2178310171641800 a001 5702887/1364*39603^(13/22) 2178310171704979 a001 1762289/682*39603^(7/11) 2178310171767983 a001 2178309/1364*39603^(15/22) 2178310171773064 a001 567451585/682*15127^(1/10) 2178310171831446 a001 1346269/1364*39603^(8/11) 2178310171893707 a001 610*39603^(17/22) 2178310171959115 a001 514229/1364*39603^(9/11) 2178310172016285 a001 317811/1364*39603^(19/22) 2178310172095021 a001 98209/682*39603^(10/11) 2178310172117295 a001 121393/1364*39603^(21/22) 2178310172209361 a001 38580051460/17711 2178310172249039 a001 701408733/1364*15127^(3/20) 2178310172725014 a001 433494437/1364*15127^(1/5) 2178310173200989 a001 66978574/341*15127^(1/4) 2178310173676964 a001 165580141/1364*15127^(3/10) 2178310174152939 a001 9303105/124*15127^(7/20) 2178310174445982 a001 1836311903/1364*5778^(1/18) 2178310174456610 a001 305/12238*817138163596^(2/3) 2178310174456610 a001 305/12238*(1/2+1/2*5^(1/2))^38 2178310174456610 a001 305/12238*10749957122^(19/24) 2178310174456610 a001 305/12238*4106118243^(19/23) 2178310174456610 a001 305/12238*1568397607^(19/22) 2178310174456610 a001 305/12238*599074578^(19/21) 2178310174456610 a001 305/12238*228826127^(19/20) 2178310174457239 a001 5473/682*141422324^(2/3) 2178310174457239 a001 5473/682*(1/2+1/2*5^(1/2))^26 2178310174457239 a001 5473/682*73681302247^(1/2) 2178310174457239 a001 5473/682*10749957122^(13/24) 2178310174457239 a001 5473/682*4106118243^(13/23) 2178310174457239 a001 5473/682*1568397607^(13/22) 2178310174457239 a001 5473/682*599074578^(13/21) 2178310174457239 a001 5473/682*228826127^(13/20) 2178310174457239 a001 5473/682*87403803^(13/19) 2178310174457240 a001 5473/682*33385282^(13/18) 2178310174457249 a001 5473/682*12752043^(13/17) 2178310174457314 a001 5473/682*4870847^(13/16) 2178310174457784 a001 5473/682*1860498^(13/15) 2178310174461244 a001 5473/682*710647^(13/14) 2178310174628914 a001 31622993/682*15127^(2/5) 2178310175104888 a001 39088169/1364*15127^(9/20) 2178310175580864 a001 24157817/1364*15127^(1/2) 2178310176056837 a001 3732588/341*15127^(11/20) 2178310176532819 a001 9227465/1364*15127^(3/5) 2178310177008775 a001 5702887/1364*15127^(13/20) 2178310177484798 a001 1762289/682*15127^(7/10) 2178310177960647 a001 2178309/1364*15127^(3/4) 2178310178070849 a001 567451585/682*5778^(1/9) 2178310178436954 a001 1346269/1364*15127^(4/5) 2178310178912059 a001 610*15127^(17/20) 2178310179390311 a001 514229/1364*15127^(9/10) 2178310179860325 a001 317811/1364*15127^(19/20) 2178310180339985 a001 2947253674/1353 2178310181695717 a001 701408733/1364*5778^(1/6) 2178310185320585 a001 433494437/1364*5778^(2/9) 2178310186394981 m001 (Pi-Zeta(1,-1))/(Kolakoski+Sarnak) 2178310188945452 a001 66978574/341*5778^(5/18) 2178310192570320 a001 165580141/1364*5778^(1/3) 2178310195742858 a001 610/9349*141422324^(12/13) 2178310195742858 a001 610/9349*2537720636^(4/5) 2178310195742858 a001 610/9349*45537549124^(12/17) 2178310195742858 a001 610/9349*14662949395604^(4/7) 2178310195742858 a001 610/9349*(1/2+1/2*5^(1/2))^36 2178310195742858 a001 610/9349*505019158607^(9/14) 2178310195742858 a001 610/9349*192900153618^(2/3) 2178310195742858 a001 610/9349*73681302247^(9/13) 2178310195742858 a001 610/9349*10749957122^(3/4) 2178310195742858 a001 610/9349*4106118243^(18/23) 2178310195742858 a001 610/9349*1568397607^(9/11) 2178310195742858 a001 610/9349*599074578^(6/7) 2178310195742858 a001 610/9349*228826127^(9/10) 2178310195742858 a001 610/9349*87403803^(18/19) 2178310195743483 a001 4181/1364*20633239^(4/5) 2178310195743487 a001 4181/1364*17393796001^(4/7) 2178310195743487 a001 4181/1364*14662949395604^(4/9) 2178310195743487 a001 4181/1364*(1/2+1/2*5^(1/2))^28 2178310195743487 a001 4181/1364*73681302247^(7/13) 2178310195743487 a001 4181/1364*10749957122^(7/12) 2178310195743487 a001 4181/1364*4106118243^(14/23) 2178310195743487 a001 4181/1364*1568397607^(7/11) 2178310195743487 a001 4181/1364*599074578^(2/3) 2178310195743487 a001 4181/1364*228826127^(7/10) 2178310195743487 a001 4181/1364*87403803^(14/19) 2178310195743488 a001 4181/1364*33385282^(7/9) 2178310195743498 a001 4181/1364*12752043^(14/17) 2178310195743567 a001 4181/1364*4870847^(7/8) 2178310195744074 a001 4181/1364*1860498^(14/15) 2178310196195188 a001 9303105/124*5778^(7/18) 2178310198771976 a001 1836311903/1364*2207^(1/16) 2178310199820056 a001 31622993/682*5778^(4/9) 2178310203444923 a001 39088169/1364*5778^(1/2) 2178310205840652 m001 (-FeigenbaumDelta+Khinchin)/(Chi(1)-gamma(1)) 2178310207069792 a001 24157817/1364*5778^(5/9) 2178310210694657 a001 3732588/341*5778^(11/18) 2178310211749078 a007 Real Root Of -293*x^4+283*x^3+555*x^2+816*x+155 2178310214319532 a001 9227465/1364*5778^(2/3) 2178310217944381 a001 5702887/1364*5778^(13/18) 2178310221569297 a001 1762289/682*5778^(7/9) 2178310221942315 m005 (1/3*5^(1/2)-3/4)/(2*Catalan+3/10) 2178310225194038 a001 2178309/1364*5778^(5/6) 2178310226722838 a001 567451585/682*2207^(1/8) 2178310228819238 a001 1346269/1364*5778^(8/9) 2178310232443236 a001 610*5778^(17/18) 2178310234606142 a001 5702887/521*521^(11/13) 2178310234895980 a007 Real Root Of -718*x^4-943*x^3+770*x^2-832*x+953 2178310236068111 a001 2814376825/1292 2178310240264950 k001 Champernowne real with 924*n+1254 2178310248429478 a001 233802911/1926*843^(3/7) 2178310253617550 q001 7/32135 2178310254673701 a001 701408733/1364*2207^(3/16) 2178310255236561 r005 Im(z^2+c),c=-7/8+28/169*I,n=22 2178310255848098 m001 (sin(1)+gamma(3))/(-Bloch+Thue) 2178310265551369 a001 701408733/3571*843^(5/14) 2178310268108660 m001 (-Ei(1,1)+Khinchin)/(Psi(1,1/3)+GAMMA(3/4)) 2178310271292841 r005 Im(z^2+c),c=-13/18+31/88*I,n=12 2178310272268370 m001 (BesselJ(1,1)+Porter)/ZetaQ(3) 2178310273687256 b008 Csch[ArcCot[2]^10] 2178310278494423 m001 (Zeta(3)-gamma(3))/(GAMMA(23/24)-Weierstrass) 2178310282280533 a007 Real Root Of -123*x^4+73*x^3+753*x^2-179*x-439 2178310282624564 a001 433494437/1364*2207^(1/4) 2178310286057697 a007 Real Root Of 662*x^4-222*x^3+298*x^2-695*x+15 2178310288187210 l006 ln(6266/7791) 2178310290005164 r005 Im(z^2+c),c=-45/56+7/54*I,n=32 2178310291930680 m001 (Artin-Mills)/(Otter+PisotVijayaraghavan) 2178310303571780 a001 2971215073/2207*322^(1/12) 2178310304157599 a001 1836311903/15127*843^(3/7) 2178310304355748 a001 102334155/2207*843^(4/7) 2178310305697686 m005 (1/2*Catalan+6/7)/(4/9*Pi-2) 2178310310575428 a001 66978574/341*2207^(5/16) 2178310311563048 r009 Re(z^3+c),c=-23/38+10/37*I,n=15 2178310312288223 a001 1602508992/13201*843^(3/7) 2178310313474465 a001 12586269025/103682*843^(3/7) 2178310313647535 a001 121393*843^(3/7) 2178310313672786 a001 86267571272/710647*843^(3/7) 2178310313676470 a001 75283811239/620166*843^(3/7) 2178310313677007 a001 591286729879/4870847*843^(3/7) 2178310313677086 a001 516002918640/4250681*843^(3/7) 2178310313677097 a001 4052739537881/33385282*843^(3/7) 2178310313677099 a001 3536736619241/29134601*843^(3/7) 2178310313677100 a001 6557470319842/54018521*843^(3/7) 2178310313677104 a001 2504730781961/20633239*843^(3/7) 2178310313677134 a001 956722026041/7881196*843^(3/7) 2178310313677340 a001 365435296162/3010349*843^(3/7) 2178310313678747 a001 139583862445/1149851*843^(3/7) 2178310313688392 a001 53316291173/439204*843^(3/7) 2178310313754499 a001 20365011074/167761*843^(3/7) 2178310314207603 a001 7778742049/64079*843^(3/7) 2178310315290379 r005 Im(z^2+c),c=-71/102+1/22*I,n=62 2178310317313225 a001 2971215073/24476*843^(3/7) 2178310328675423 m005 (1/2*gamma+9/11)/(4*Zeta(3)+3/11) 2178310338526292 a001 165580141/1364*2207^(3/8) 2178310338599474 a001 1134903170/9349*843^(3/7) 2178310340284953 k001 Champernowne real with 925*n+1253 2178310341640983 a001 610/3571*45537549124^(2/3) 2178310341640983 a001 610/3571*(1/2+1/2*5^(1/2))^34 2178310341640983 a001 610/3571*10749957122^(17/24) 2178310341640983 a001 610/3571*4106118243^(17/23) 2178310341640983 a001 610/3571*1568397607^(17/22) 2178310341640983 a001 610/3571*599074578^(17/21) 2178310341640983 a001 610/3571*228826127^(17/20) 2178310341640983 a001 610/3571*87403803^(17/19) 2178310341640985 a001 610/3571*33385282^(17/18) 2178310341641567 a001 1597/1364*7881196^(10/11) 2178310341641595 a001 1597/1364*20633239^(6/7) 2178310341641599 a001 1597/1364*141422324^(10/13) 2178310341641599 a001 1597/1364*2537720636^(2/3) 2178310341641599 a001 1597/1364*45537549124^(10/17) 2178310341641599 a001 1597/1364*312119004989^(6/11) 2178310341641599 a001 1597/1364*14662949395604^(10/21) 2178310341641599 a001 1597/1364*(1/2+1/2*5^(1/2))^30 2178310341641599 a001 1597/1364*192900153618^(5/9) 2178310341641599 a001 1597/1364*28143753123^(3/5) 2178310341641599 a001 1597/1364*10749957122^(5/8) 2178310341641599 a001 1597/1364*4106118243^(15/23) 2178310341641599 a001 1597/1364*1568397607^(15/22) 2178310341641599 a001 1597/1364*599074578^(5/7) 2178310341641599 a001 1597/1364*228826127^(3/4) 2178310341641599 a001 1597/1364*87403803^(15/19) 2178310341641601 a001 1597/1364*33385282^(5/6) 2178310341641611 a001 1597/1364*12752043^(15/17) 2178310341641685 a001 1597/1364*4870847^(15/16) 2178310341739289 r005 Im(z^2+c),c=-53/90+10/43*I,n=7 2178310350199155 b008 ArcCot[2]^(-10) 2178310352418606 r002 48th iterates of z^2 + 2178310358188094 a007 Real Root Of -11*x^4+174*x^3-270*x^2+215*x-738 2178310359874027 r005 Im(z^2+c),c=-13/19+3/59*I,n=18 2178310360242979 a007 Real Root Of 196*x^4+244*x^3-107*x^2+882*x+538 2178310365099119 m001 1/FeigenbaumDelta*FeigenbaumAlpha^2*ln(Salem) 2178310366477156 a001 9303105/124*2207^(7/16) 2178310369078767 r009 Re(z^3+c),c=-4/11+13/22*I,n=32 2178310370225575 r002 28th iterates of z^2 + 2178310372035026 a003 cos(Pi*20/71)*cos(Pi*33/85) 2178310382321811 s002 sum(A108682[n]/((pi^n-1)/n),n=1..infinity) 2178310389767345 a001 1836311903/1364*843^(1/14) 2178310394428020 a001 31622993/682*2207^(1/2) 2178310399519890 r009 Re(z^3+c),c=-5/18+5/16*I,n=2 2178310402925019 m001 1/(3^(1/3))/ln(FeigenbaumC)^2*GAMMA(1/12) 2178310412124259 a001 1/23184*21^(25/47) 2178310412495989 r005 Im(z^2+c),c=-7/6+43/243*I,n=8 2178310415773181 m001 (ArtinRank2-Champernowne)/(ln(5)+GAMMA(23/24)) 2178310415851713 r005 Im(z^2+c),c=-1+14/57*I,n=13 2178310422378885 a001 39088169/1364*2207^(9/16) 2178310431819736 r009 Re(z^3+c),c=-3/82+7/12*I,n=37 2178310435760559 r005 Im(z^2+c),c=-13/36+22/59*I,n=10 2178310440304956 k001 Champernowne real with 926*n+1252 2178310444101154 l006 ln(255/2252) 2178310449075773 m005 (1/3*3^(1/2)-3/8)/(1/2*2^(1/2)-4/5) 2178310450329751 a001 24157817/1364*2207^(5/8) 2178310458666073 a007 Real Root Of -354*x^4-783*x^3+285*x^2+539*x-301 2178310460851229 m001 Porter^2*Conway/ln(GAMMA(1/4)) 2178310467375716 a001 433494437/5778*843^(1/2) 2178310471619667 m001 (Tribonacci-TwinPrimes)/(ln(3)-GAMMA(13/24)) 2178310474162528 m008 (1/4*Pi^5+1/4)/(1/6*Pi+3) 2178310478280614 a001 3732588/341*2207^(11/16) 2178310481904080 m001 (1-sin(1))/(-cos(1/5*Pi)+StolarskyHarborth) 2178310484497609 a001 433494437/3571*843^(3/7) 2178310486324505 m001 (5^(1/2)+GAMMA(2/3))/(-ln(gamma)+ln(3)) 2178310487735895 r005 Re(z^2+c),c=-19/14+109/211*I,n=2 2178310489195591 a007 Real Root Of 273*x^4-822*x^3-524*x^2-516*x-11 2178310490332251 m001 LaplaceLimit^2/ln(Cahen)^2/Zeta(5) 2178310498116710 a007 Real Root Of -344*x^4-201*x^3+545*x^2-974*x+960 2178310499712431 r009 Re(z^3+c),c=-13/32+31/57*I,n=33 2178310503222956 b008 Coth[ArcCot[2]^10] 2178310503839929 a007 Real Root Of 98*x^4+195*x^3+270*x^2+382*x-640 2178310506231487 a001 9227465/1364*2207^(3/4) 2178310516889697 r005 Re(z^2+c),c=-7/32+9/29*I,n=14 2178310520035395 m005 (-9/20+1/4*5^(1/2))/(9/11*3^(1/2)-11/12) 2178310523103843 a001 1134903170/15127*843^(1/2) 2178310523301992 a001 63245986/2207*843^(9/14) 2178310527496554 r005 Im(z^2+c),c=-21/31+2/47*I,n=64 2178310531234468 a001 2971215073/39603*843^(1/2) 2178310532420710 a001 7778742049/103682*843^(1/2) 2178310532593780 a001 20365011074/271443*843^(1/2) 2178310532619031 a001 53316291173/710647*843^(1/2) 2178310532622715 a001 139583862445/1860498*843^(1/2) 2178310532623252 a001 365435296162/4870847*843^(1/2) 2178310532623331 a001 956722026041/12752043*843^(1/2) 2178310532623342 a001 2504730781961/33385282*843^(1/2) 2178310532623344 a001 6557470319842/87403803*843^(1/2) 2178310532623344 a001 10610209857723/141422324*843^(1/2) 2178310532623345 a001 4052739537881/54018521*843^(1/2) 2178310532623349 a001 140728068720/1875749*843^(1/2) 2178310532623379 a001 591286729879/7881196*843^(1/2) 2178310532623585 a001 225851433717/3010349*843^(1/2) 2178310532624992 a001 86267571272/1149851*843^(1/2) 2178310532634637 a001 32951280099/439204*843^(1/2) 2178310532700744 a001 75025*843^(1/2) 2178310533153848 a001 4807526976/64079*843^(1/2) 2178310534182335 a001 5702887/1364*2207^(13/16) 2178310535555954 m001 (Kac+Trott)/(GAMMA(13/24)+GlaisherKinkelin) 2178310536259470 a001 1836311903/24476*843^(1/2) 2178310540324959 k001 Champernowne real with 927*n+1251 2178310555518853 r005 Re(z^2+c),c=-4/23+23/53*I,n=43 2178310557545722 a001 701408733/9349*843^(1/2) 2178310560412633 m005 (1/2*2^(1/2)-6)/(7/11*exp(1)+7/10) 2178310562133250 a001 1762289/682*2207^(7/8) 2178310563238740 r005 Im(z^2+c),c=-67/70+15/58*I,n=37 2178310573980350 m005 (1/2*Zeta(3)-4/7)/(9/10*3^(1/2)-1/5) 2178310582620842 r005 Im(z^2+c),c=-21/58+6/23*I,n=3 2178310584614678 m001 (3^(1/3))/GAMMA(3/4)/cos(1) 2178310584614678 m001 3^(1/3)/GAMMA(3/4)/cos(1) 2178310585243625 b008 6*Sqrt[6]+Csc[3] 2178310590083990 a001 2178309/1364*2207^(15/16) 2178310590867700 h001 (2/3*exp(2)+5/7)/(9/10*exp(1)+1/7) 2178310594412293 r002 7th iterates of z^2 + 2178310594545008 a007 Real Root Of 433*x^4+614*x^3-229*x^2+971*x-201 2178310606694894 m005 (1/2*3^(1/2)-10/11)/(4/7*Pi+2/11) 2178310608297890 r005 Im(z^2+c),c=-15/29+18/49*I,n=20 2178310608713597 a001 567451585/682*843^(1/7) 2178310609824499 m001 (-sin(1/12*Pi)+Mills)/(2^(1/2)-Ei(1)) 2178310611233497 m001 1/exp((2^(1/3)))*FeigenbaumD^2/Zeta(1,2) 2178310618033988 a001 4356619/2+1/2*5^(1/2) 2178310618034447 a001 2149992580/987 2178310624096977 p004 log(21787/2467) 2178310625038824 r005 Re(z^2+c),c=-5/48+23/39*I,n=55 2178310640344962 k001 Champernowne real with 928*n+1250 2178310653568737 r005 Re(z^2+c),c=-17/90+25/63*I,n=28 2178310655250546 m001 GAMMA(1/4)/RenyiParking*ln(cos(Pi/5))^2 2178310658761856 m001 (-Pi^(1/2)+1/2)/(sin(1)+5) 2178310659669362 m005 (1/2*Zeta(3)+3/4)/(-67/90+1/18*5^(1/2)) 2178310661276359 r005 Im(z^2+c),c=-8/17+21/55*I,n=53 2178310661850167 l006 ln(3435/4271) 2178310663520798 a007 Real Root Of -371*x^4-783*x^3-21*x^2+103*x+584 2178310664030385 a005 (1/cos(17/201*Pi))^1182 2178310671151039 b008 5/Gamma[1/10,1] 2178310675529325 r005 Re(z^2+c),c=4/21+2/25*I,n=18 2178310680350761 m005 (23/30+1/6*5^(1/2))/(8/9*Zeta(3)-6/11) 2178310684528647 r005 Im(z^2+c),c=1/94+44/53*I,n=13 2178310685538008 a001 7778742049/5778*322^(1/12) 2178310686321977 a001 133957148/2889*843^(4/7) 2178310690105018 r005 Re(z^2+c),c=-19/22+31/98*I,n=2 2178310694535474 a007 Real Root Of 390*x^4+806*x^3-83*x^2-397*x-921 2178310703129747 m001 (Otter-ZetaP(2))/(GAMMA(23/24)+Champernowne) 2178310703443871 a001 267914296/3571*843^(1/2) 2178310717009765 a007 Real Root Of 293*x^4+425*x^3+13*x^2+958*x-179 2178310717129920 k002 Champernowne real with 175/2*n^2-411/2*n+139 2178310721281843 r005 Re(z^2+c),c=-4/23+23/53*I,n=37 2178310740354535 q001 2089/959 2178310740364965 k001 Champernowne real with 929*n+1249 2178310741266141 a001 20365011074/15127*322^(1/12) 2178310742050109 a001 701408733/15127*843^(4/7) 2178310742248258 a001 39088169/2207*843^(5/7) 2178310747151398 m001 OneNinth^2*exp(KhintchineHarmonic)^3 2178310749396766 a001 53316291173/39603*322^(1/12) 2178310750180735 a001 1836311903/39603*843^(4/7) 2178310750583009 a001 139583862445/103682*322^(1/12) 2178310750756079 a001 365435296162/271443*322^(1/12) 2178310750781330 a001 956722026041/710647*322^(1/12) 2178310750785014 a001 2504730781961/1860498*322^(1/12) 2178310750785551 a001 6557470319842/4870847*322^(1/12) 2178310750785678 a001 10610209857723/7881196*322^(1/12) 2178310750785883 a001 1346269*322^(1/12) 2178310750787291 a001 1548008755920/1149851*322^(1/12) 2178310750796935 a001 591286729879/439204*322^(1/12) 2178310750863042 a001 225851433717/167761*322^(1/12) 2178310751316147 a001 86267571272/64079*322^(1/12) 2178310751366977 a001 46368*843^(4/7) 2178310751540047 a001 12586269025/271443*843^(4/7) 2178310751565298 a001 32951280099/710647*843^(4/7) 2178310751568982 a001 43133785636/930249*843^(4/7) 2178310751569519 a001 225851433717/4870847*843^(4/7) 2178310751569598 a001 591286729879/12752043*843^(4/7) 2178310751569609 a001 774004377960/16692641*843^(4/7) 2178310751569611 a001 4052739537881/87403803*843^(4/7) 2178310751569611 a001 225749145909/4868641*843^(4/7) 2178310751569611 a001 3278735159921/70711162*843^(4/7) 2178310751569612 a001 2504730781961/54018521*843^(4/7) 2178310751569616 a001 956722026041/20633239*843^(4/7) 2178310751569646 a001 182717648081/3940598*843^(4/7) 2178310751569852 a001 139583862445/3010349*843^(4/7) 2178310751571259 a001 53316291173/1149851*843^(4/7) 2178310751580904 a001 10182505537/219602*843^(4/7) 2178310751647011 a001 7778742049/167761*843^(4/7) 2178310752100115 a001 2971215073/64079*843^(4/7) 2178310754421769 a001 32951280099/24476*322^(1/12) 2178310755205737 a001 567451585/12238*843^(4/7) 2178310760515030 r002 52th iterates of z^2 + 2178310766099231 m001 (2^(1/3)+Zeta(5))/(-ln(2)+MadelungNaCl) 2178310769770187 r009 Re(z^3+c),c=-17/114+20/33*I,n=4 2178310775708023 a001 12586269025/9349*322^(1/12) 2178310776491991 a001 433494437/9349*843^(4/7) 2178310782160492 a007 Real Root Of -196*x^4-110*x^3+697*x^2+394*x+827 2178310789386998 m001 GAMMA(7/12)/(Weierstrass^PlouffeB) 2178310792839483 m001 (GaussKuzminWirsing-Niven)/Cahen 2178310793593311 m001 LaplaceLimit^GAMMA(23/24)/ln(2)*ln(10) 2178310799220493 s001 sum(exp(-Pi/4)^(n-1)*A153972[n],n=1..infinity) 2178310802239769 m001 (RenyiParking+3)/(-BesselI(0,2)+4) 2178310802445679 m005 (1/2*3^(1/2)+5/8)/(4*3^(1/2)-1/12) 2178310804776708 m001 cos(Pi/5)*BesselJZeros(0,1)^GAMMA(5/6) 2178310807856873 r005 Re(z^2+c),c=15/118+14/45*I,n=28 2178310810184751 m002 -E^Pi+Log[Pi]+(Pi^2*Sech[Pi])/4 2178310810433188 r002 2th iterates of z^2 + 2178310816567270 r005 Im(z^2+c),c=-6/11+19/56*I,n=19 2178310827659872 a001 701408733/1364*843^(3/14) 2178310828598961 m002 -4+E^Pi*ProductLog[Pi]+ProductLog[Pi]/Log[Pi] 2178310833491449 a007 Real Root Of 493*x^4+992*x^3-395*x^2-531*x-129 2178310836210777 m001 (-Zeta(1/2)+FeigenbaumMu)/(3^(1/2)+gamma) 2178310837692582 r005 Im(z^2+c),c=-7/8+37/235*I,n=7 2178310840384968 k001 Champernowne real with 930*n+1248 2178310840633475 m005 (7/44+1/4*5^(1/2))/(6*gamma-1/6) 2178310841189257 r002 45th iterates of z^2 + 2178310846111515 a007 Real Root Of -720*x^4-925*x^3-876*x^2+750*x+197 2178310848235508 m001 FeigenbaumKappa*ln(Riemann2ndZero)/Ei(1) 2178310848487154 r009 Re(z^3+c),c=-1/44+6/49*I,n=6 2178310851909455 a001 9227465/521*521^(10/13) 2178310852584208 m001 GAMMA(17/24)^GAMMA(2/3)-KhinchinLevy 2178310852847575 m001 (-PrimesInBinary+Rabbit)/(Ei(1)-cos(1)) 2178310863693722 q001 1/4590713 2178310874460179 r009 Re(z^3+c),c=-1/44+6/49*I,n=8 2178310874467010 r009 Re(z^3+c),c=-1/44+6/49*I,n=9 2178310874467824 r009 Re(z^3+c),c=-1/44+6/49*I,n=11 2178310874467830 r009 Re(z^3+c),c=-1/44+6/49*I,n=13 2178310874467830 r009 Re(z^3+c),c=-1/44+6/49*I,n=15 2178310874467830 r009 Re(z^3+c),c=-1/44+6/49*I,n=17 2178310874467830 r009 Re(z^3+c),c=-1/44+6/49*I,n=18 2178310874467830 r009 Re(z^3+c),c=-1/44+6/49*I,n=20 2178310874467830 r009 Re(z^3+c),c=-1/44+6/49*I,n=22 2178310874467830 r009 Re(z^3+c),c=-1/44+6/49*I,n=24 2178310874467830 r009 Re(z^3+c),c=-1/44+6/49*I,n=27 2178310874467830 r009 Re(z^3+c),c=-1/44+6/49*I,n=29 2178310874467830 r009 Re(z^3+c),c=-1/44+6/49*I,n=31 2178310874467830 r009 Re(z^3+c),c=-1/44+6/49*I,n=32 2178310874467830 r009 Re(z^3+c),c=-1/44+6/49*I,n=33 2178310874467830 r009 Re(z^3+c),c=-1/44+6/49*I,n=36 2178310874467830 r009 Re(z^3+c),c=-1/44+6/49*I,n=30 2178310874467830 r009 Re(z^3+c),c=-1/44+6/49*I,n=28 2178310874467830 r009 Re(z^3+c),c=-1/44+6/49*I,n=26 2178310874467830 r009 Re(z^3+c),c=-1/44+6/49*I,n=25 2178310874467830 r009 Re(z^3+c),c=-1/44+6/49*I,n=23 2178310874467830 r009 Re(z^3+c),c=-1/44+6/49*I,n=21 2178310874467830 r009 Re(z^3+c),c=-1/44+6/49*I,n=19 2178310874467830 r009 Re(z^3+c),c=-1/44+6/49*I,n=16 2178310874467830 r009 Re(z^3+c),c=-1/44+6/49*I,n=14 2178310874467830 r009 Re(z^3+c),c=-1/44+6/49*I,n=12 2178310874467915 r009 Re(z^3+c),c=-1/44+6/49*I,n=10 2178310875185236 r009 Re(z^3+c),c=-1/44+6/49*I,n=7 2178310878173161 m001 Zeta(1,-1)/ln(gamma)*Sarnak 2178310888666724 r005 Im(z^2+c),c=-7/30+1/33*I,n=17 2178310891307995 a007 Real Root Of 207*x^4+269*x^3-233*x^2+200*x-339 2178310894498423 r009 Re(z^3+c),c=-5/14+13/25*I,n=62 2178310899130775 b008 4^FresnelC[EulerGamma] 2178310900366659 a003 cos(Pi*33/113)*cos(Pi*23/60) 2178310901652164 m001 (gamma(2)+gamma(3))/(Magata+Paris) 2178310901924645 r009 Im(z^3+c),c=-27/50+13/49*I,n=4 2178310905268259 a001 165580141/5778*843^(9/14) 2178310909602444 a007 Real Root Of 205*x^4+284*x^3-86*x^2+539*x-98 2178310910122182 m001 2*gamma*Pi/GAMMA(5/6)-MertensB2 2178310918006841 l006 ln(937/8275) 2178310921606187 a001 4807526976/3571*322^(1/12) 2178310922390155 a001 165580141/3571*843^(4/7) 2178310930840578 r009 Im(z^3+c),c=-19/42+7/58*I,n=7 2178310939893411 m009 (1/6*Psi(1,3/4)+3)/(3/4*Psi(1,1/3)-6) 2178310940404971 k001 Champernowne real with 931*n+1247 2178310947171659 m005 (1/36+1/4*5^(1/2))/(5/6*exp(1)+3/7) 2178310956939120 b008 ArcCosh[E^(2/7)+Pi] 2178310957055957 r005 Re(z^2+c),c=17/50+9/38*I,n=60 2178310960996398 a001 433494437/15127*843^(9/14) 2178310961194547 a001 24157817/2207*843^(11/14) 2178310963681191 a007 Real Root Of 207*x^4+121*x^3-726*x^2-291*x-599 2178310964715353 a007 Real Root Of -528*x^4+610*x^3-969*x^2+209*x+99 2178310969127024 a001 1134903170/39603*843^(9/14) 2178310969546335 a007 Real Root Of -264*x^4-24*x^3+832*x^2-898*x-208 2178310970313266 a001 2971215073/103682*843^(9/14) 2178310970486336 a001 7778742049/271443*843^(9/14) 2178310970511587 a001 20365011074/710647*843^(9/14) 2178310970515271 a001 53316291173/1860498*843^(9/14) 2178310970515809 a001 139583862445/4870847*843^(9/14) 2178310970515887 a001 365435296162/12752043*843^(9/14) 2178310970515898 a001 956722026041/33385282*843^(9/14) 2178310970515900 a001 2504730781961/87403803*843^(9/14) 2178310970515900 a001 6557470319842/228826127*843^(9/14) 2178310970515900 a001 10610209857723/370248451*843^(9/14) 2178310970515900 a001 4052739537881/141422324*843^(9/14) 2178310970515901 a001 1548008755920/54018521*843^(9/14) 2178310970515905 a001 591286729879/20633239*843^(9/14) 2178310970515935 a001 225851433717/7881196*843^(9/14) 2178310970516141 a001 86267571272/3010349*843^(9/14) 2178310970517548 a001 32951280099/1149851*843^(9/14) 2178310970527193 a001 12586269025/439204*843^(9/14) 2178310970586225 r005 Re(z^2+c),c=23/114+1/10*I,n=14 2178310970593300 a001 4807526976/167761*843^(9/14) 2178310971046404 a001 28657*843^(9/14) 2178310971186217 m001 (MasserGramain-ZetaQ(3))/(Cahen-FeigenbaumMu) 2178310972664861 r005 Re(z^2+c),c=-12/29+19/34*I,n=34 2178310974065130 r001 43i'th iterates of 2*x^2-1 of 2178310974152027 a001 701408733/24476*843^(9/14) 2178310975119101 l006 ln(7474/9293) 2178310980351729 r005 Im(z^2+c),c=-23/28+11/63*I,n=38 2178310980825357 h001 (-exp(-3)-4)/(-5*exp(1)-5) 2178310983975842 m006 (2*Pi+1/2)/(ln(Pi)-5/6) 2178310985608168 a007 Real Root Of 845*x^4-567*x^3-793*x^2-842*x+225 2178310995438283 a001 267914296/9349*843^(9/14) 2178311000000332 a001 1346273/2+1346269/2*5^(1/2) 2178311017387315 m005 (1/3*3^(1/2)+1/12)/(3/8*2^(1/2)-1/2) 2178311018416187 a007 Real Root Of -131*x^4-17*x^3+650*x^2+513*x+807 2178311019783169 a007 Real Root Of -589*x^4-947*x^3+532*x^2-16*x+914 2178311028790797 a007 Real Root Of 30*x^4+688*x^3+765*x^2+247*x-948 2178311040424974 k001 Champernowne real with 932*n+1246 2178311044478913 r009 Re(z^3+c),c=-3/8+18/29*I,n=55 2178311046515017 m004 -2+25*Sqrt[5]*Pi+(125*Pi*Sin[Sqrt[5]*Pi])/6 2178311046606169 a001 433494437/1364*843^(2/7) 2178311051897437 m001 exp(MadelungNaCl)^2/HardHexagonsEntropy/Trott 2178311054838081 h001 (-7*exp(-1)+4)/(-7*exp(1/2)+5) 2178311055584324 a003 sin(Pi*4/63)/cos(Pi*3/22) 2178311063419604 a007 Real Root Of 925*x^4-781*x^3-468*x^2-146*x+60 2178311063646769 r005 Re(z^2+c),c=-49/48+1/31*I,n=4 2178311065153218 r009 Re(z^3+c),c=-45/122+35/52*I,n=39 2178311066062029 r009 Im(z^3+c),c=-11/32+7/45*I,n=17 2178311068056637 r005 Im(z^2+c),c=-23/44+20/51*I,n=58 2178311071290820 r005 Im(z^2+c),c=-8/31+9/17*I,n=5 2178311073181303 r005 Re(z^2+c),c=-7/40+22/51*I,n=46 2178311080490442 m001 GAMMA(1/3)^2*ln(LandauRamanujan)*GAMMA(5/6) 2178311082965034 m001 3^(1/2)+GolombDickman*TravellingSalesman 2178311085372586 m001 (Pi^(1/2)+GAMMA(23/24))/(FeigenbaumB+ZetaP(2)) 2178311093711283 p004 log(28031/27427) 2178311095200258 l006 ln(682/6023) 2178311096762711 r005 Im(z^2+c),c=-9/8+47/178*I,n=57 2178311098946705 r005 Re(z^2+c),c=6/19+13/62*I,n=29 2178311100283928 r005 Im(z^2+c),c=-79/126+2/49*I,n=62 2178311105136552 b008 1/6+Coth[6/11] 2178311105145436 m001 (FibonacciFactorial+Landau)/StolarskyHarborth 2178311105563975 r005 Re(z^2+c),c=-95/126+19/39*I,n=5 2178311109223242 k007 concat of cont frac of 2178311110534503 a001 (5+5^(1/2))^(620/47) 2178311111111132 k007 concat of cont frac of 2178311111221195 k008 concat of cont frac of 2178311111931191 k006 concat of cont frac of 2178311114641799 m001 GAMMA(7/12)^Totient+ThueMorse 2178311114964798 l006 ln(3210/3217) 2178311115323153 s001 sum(exp(-4*Pi/5)^n*A217200[n],n=1..infinity) 2178311118681590 a007 Real Root Of -637*x^4-820*x^3-832*x^2+884*x+225 2178311121231314 k007 concat of cont frac of 2178311124214563 a001 34111385/1926*843^(5/7) 2178311131308576 h001 (3/5*exp(2)+6/11)/(7/12*exp(1)+7/10) 2178311131977722 a001 28657/4*76^(41/52) 2178311140444977 k001 Champernowne real with 933*n+1245 2178311141336461 a001 102334155/3571*843^(9/14) 2178311145000082 a007 Real Root Of -555*x^4-834*x^3+243*x^2-856*x+858 2178311147579436 m001 exp(Pi)^OneNinth+StronglyCareFree 2178311151411171 k007 concat of cont frac of 2178311164498735 a001 15127/233*6765^(7/51) 2178311170347069 a007 Real Root Of -263*x^4-198*x^3+904*x^2+31*x-347 2178311176863942 a007 Real Root Of -229*x^4+798*x^3+394*x^2+806*x-202 2178311177246059 m001 (Kac-ZetaP(2))/(BesselK(1,1)+DuboisRaymond) 2178311179942708 a001 267914296/15127*843^(5/7) 2178311180140854 a001 14930352/2207*843^(6/7) 2178311180502224 m001 (HardyLittlewoodC5+Salem)/gamma(1) 2178311184790800 r009 Re(z^3+c),c=-3/82+7/12*I,n=39 2178311187110306 a001 433494437/843*322^(1/4) 2178311188073334 a001 17711*843^(5/7) 2178311189259577 a001 1836311903/103682*843^(5/7) 2178311189432647 a001 1602508992/90481*843^(5/7) 2178311189457898 a001 12586269025/710647*843^(5/7) 2178311189461582 a001 10983760033/620166*843^(5/7) 2178311189462120 a001 86267571272/4870847*843^(5/7) 2178311189462198 a001 75283811239/4250681*843^(5/7) 2178311189462209 a001 591286729879/33385282*843^(5/7) 2178311189462211 a001 516002918640/29134601*843^(5/7) 2178311189462211 a001 4052739537881/228826127*843^(5/7) 2178311189462211 a001 3536736619241/199691526*843^(5/7) 2178311189462211 a001 6557470319842/370248451*843^(5/7) 2178311189462211 a001 2504730781961/141422324*843^(5/7) 2178311189462212 a001 956722026041/54018521*843^(5/7) 2178311189462216 a001 365435296162/20633239*843^(5/7) 2178311189462246 a001 139583862445/7881196*843^(5/7) 2178311189462452 a001 53316291173/3010349*843^(5/7) 2178311189463859 a001 20365011074/1149851*843^(5/7) 2178311189473504 a001 7778742049/439204*843^(5/7) 2178311189539611 a001 2971215073/167761*843^(5/7) 2178311189992715 a001 1134903170/64079*843^(5/7) 2178311189995097 m005 (1/2*Catalan-2/7)/(51/22+5/2*5^(1/2)) 2178311193098338 a001 433494437/24476*843^(5/7) 2178311193785017 h001 (1/3*exp(2)+1/4)/(1/7*exp(1)+6/7) 2178311198877576 a001 1322157322203/55*55^(11/20) 2178311204875867 m001 (-GlaisherKinkelin+MertensB2)/(5^(1/2)-ln(3)) 2178311207850875 r009 Re(z^3+c),c=-11/30+22/39*I,n=36 2178311211313121 k006 concat of cont frac of 2178311211395605 v002 sum(1/(3^n*(3/2*n^3+25/2*n+4)),n=1..infinity) 2178311212411124 k006 concat of cont frac of 2178311214074746 m005 (19/42+1/6*5^(1/2))/(3/8*2^(1/2)-10/11) 2178311214384596 a001 165580141/9349*843^(5/7) 2178311216655720 m001 (2^(1/2))^exp(1)/((2^(1/2))^Bloch) 2178311217171651 k007 concat of cont frac of 2178311217505175 a001 18/5*1597^(33/38) 2178311223423621 m001 exp(-1/2*Pi)^GAMMA(2/3)+Paris 2178311224111511 k007 concat of cont frac of 2178311227543273 a007 Real Root Of 265*x^4+103*x^3-877*x^2+334*x-13 2178311236067977 a001 2178309+5^(1/2) 2178311236214008 a007 Real Root Of -181*x^4-73*x^3+412*x^2-941*x-684 2178311240464980 k001 Champernowne real with 934*n+1244 2178311241541174 l006 ln(4039/5022) 2178311243357793 r005 Im(z^2+c),c=-37/78+23/60*I,n=23 2178311244911895 l006 ln(1109/9794) 2178311253142599 m001 (Psi(1,1/3)+Chi(1))/(-exp(-1/2*Pi)+Rabbit) 2178311256058105 m001 (FeigenbaumMu-Kac)/(Stephens-Tetranacci) 2178311256109716 m001 (Conway-Gompertz)/(Robbin+Sierpinski) 2178311261325143 k007 concat of cont frac of 2178311263747570 m001 GAMMA(1/24)/(GAMMA(19/24)^arctan(1/2)) 2178311265552487 a001 66978574/341*843^(5/14) 2178311266309459 r005 Im(z^2+c),c=-22/25+12/61*I,n=35 2178311272923207 m001 (Cahen-MertensB3)/(Pi^(1/2)-Backhouse) 2178311286341261 m005 (1/2*Zeta(3)+8/9)/(3/10*gamma-6/7) 2178311287820984 m001 (HardyLittlewoodC3-PlouffeB)/(Sarnak+ZetaQ(3)) 2178311290945388 a007 Real Root Of -454*x^4-419*x^3+764*x^2-695*x+752 2178311298649115 m001 (-Lehmer+Trott2nd)/(exp(Pi)+FransenRobinson) 2178311299859895 m001 (3^(1/3)+Pi^(1/2))/(Cahen+FeigenbaumB) 2178311303154455 r005 Im(z^2+c),c=-13/58+14/45*I,n=9 2178311307723248 r005 Im(z^2+c),c=23/86+4/53*I,n=46 2178311309823750 g006 Psi(1,1/6)+Psi(1,1/3)-Psi(1,7/12)-Psi(1,1/8) 2178311316395884 a007 Real Root Of -597*x^4-135*x^3-702*x^2+894*x+228 2178311316940513 r005 Im(z^2+c),c=5/66+8/39*I,n=16 2178311321000995 m001 FeigenbaumDelta/Champernowne*Stephens 2178311324275290 r005 Im(z^2+c),c=-17/82+13/42*I,n=23 2178311328258324 m001 GAMMA(5/6)*MinimumGamma^(3^(1/2)) 2178311328916919 m001 (BesselJ(1,1)-Bloch)/Zeta(1/2) 2178311330147899 a001 28657/322*7^(23/50) 2178311331131361 k009 concat of cont frac of 2178311332849145 a007 Real Root Of 289*x^4+607*x^3+439*x^2+813*x-545 2178311333018416 r009 Im(z^3+c),c=-7/16+4/51*I,n=32 2178311333131092 r005 Re(z^2+c),c=3/23+29/43*I,n=15 2178311334414852 m001 Riemann1stZero^2/ArtinRank2/ln(Zeta(5))^2 2178311340484983 k001 Champernowne real with 935*n+1243 2178311341642136 a001 305/682*(1/2+1/2*5^(1/2))^32 2178311341642136 a001 305/682*23725150497407^(1/2) 2178311341642136 a001 305/682*505019158607^(4/7) 2178311341642136 a001 305/682*73681302247^(8/13) 2178311341642136 a001 305/682*10749957122^(2/3) 2178311341642136 a001 305/682*4106118243^(16/23) 2178311341642136 a001 305/682*1568397607^(8/11) 2178311341642136 a001 305/682*599074578^(16/21) 2178311341642136 a001 305/682*228826127^(4/5) 2178311341642137 a001 305/682*87403803^(16/19) 2178311341642138 a001 305/682*33385282^(8/9) 2178311341642149 a001 305/682*12752043^(16/17) 2178311341939071 r005 Re(z^2+c),c=-53/98+32/53*I,n=15 2178311343160890 a001 31622993/2889*843^(11/14) 2178311349113671 s003 concatenated sequence A079889 2178311350257235 m001 Khinchin^cos(Pi/5)/(GAMMA(23/24)^cos(Pi/5)) 2178311351714413 r002 49th iterates of z^2 + 2178311352460793 m004 31*Sqrt[5]*Pi+Cos[Sqrt[5]*Pi]-Sin[Sqrt[5]*Pi] 2178311354523528 r005 Im(z^2+c),c=-9/8+53/254*I,n=38 2178311355040172 r009 Re(z^3+c),c=-3/82+7/12*I,n=35 2178311360282790 a001 63245986/3571*843^(5/7) 2178311366035591 m005 (1/2*Zeta(3)+2/7)/(1/5*Zeta(3)+1/6) 2178311366901908 m005 (1/2*2^(1/2)+4/9)/(2/3*Zeta(3)-3/11) 2178311368378543 p001 sum((-1)^n/(560*n+387)/(2^n),n=0..infinity) 2178311374389041 a007 Real Root Of -398*x^4-993*x^3+298*x^2+834*x-900 2178311385285870 r002 10th iterates of z^2 + 2178311387710408 m001 (FeigenbaumMu-sin(1))/(-Mills+ZetaQ(2)) 2178311388012997 m008 (3/4*Pi^6-2/5)/(Pi+1/6) 2178311397803595 a007 Real Root Of -605*x^4-960*x^3+279*x^2-635*x+992 2178311398072778 p004 log(15817/12721) 2178311398889040 a001 165580141/15127*843^(11/14) 2178311399087194 a001 9227465/2207*843^(13/14) 2178311399152921 a007 Real Root Of -483*x^4+920*x^3-374*x^2+837*x-173 2178311407019667 a001 433494437/39603*843^(11/14) 2178311408205910 a001 567451585/51841*843^(11/14) 2178311408378980 a001 2971215073/271443*843^(11/14) 2178311408404231 a001 7778742049/710647*843^(11/14) 2178311408407915 a001 10182505537/930249*843^(11/14) 2178311408408453 a001 53316291173/4870847*843^(11/14) 2178311408408531 a001 139583862445/12752043*843^(11/14) 2178311408408542 a001 182717648081/16692641*843^(11/14) 2178311408408544 a001 956722026041/87403803*843^(11/14) 2178311408408544 a001 2504730781961/228826127*843^(11/14) 2178311408408544 a001 3278735159921/299537289*843^(11/14) 2178311408408544 a001 10610209857723/969323029*843^(11/14) 2178311408408544 a001 4052739537881/370248451*843^(11/14) 2178311408408545 a001 387002188980/35355581*843^(11/14) 2178311408408545 a001 591286729879/54018521*843^(11/14) 2178311408408550 a001 7787980473/711491*843^(11/14) 2178311408408579 a001 21566892818/1970299*843^(11/14) 2178311408408785 a001 32951280099/3010349*843^(11/14) 2178311408410192 a001 12586269025/1149851*843^(11/14) 2178311408419837 a001 1201881744/109801*843^(11/14) 2178311408485944 a001 1836311903/167761*843^(11/14) 2178311408939048 a001 701408733/64079*843^(11/14) 2178311411322718 k008 concat of cont frac of 2178311412044672 a001 10946*843^(11/14) 2178311416148149 a007 Real Root Of -482*x^4-640*x^3+974*x^2+406*x+500 2178311426594902 a001 5/843*843^(23/43) 2178311433330932 a001 102334155/9349*843^(11/14) 2178311440504986 k001 Champernowne real with 936*n+1242 2178311451699011 r002 51th iterates of z^2 + 2178311457435661 m001 (Landau+TwinPrimes)/(Champernowne-Psi(2,1/3)) 2178311469212917 a001 14930352/521*521^(9/13) 2178311472229634 r005 Re(z^2+c),c=13/30+13/62*I,n=14 2178311473093382 r005 Re(z^2+c),c=-17/18-47/254*I,n=24 2178311475672329 m006 (1/4*Pi-5)/(1/2*Pi^2-3) 2178311475672329 m008 (1/4*Pi-5)/(1/2*Pi^2-3) 2178311479396738 a001 103682*34^(4/19) 2178311484029732 l006 ln(427/3771) 2178311484498828 a001 165580141/1364*843^(3/7) 2178311490794405 m004 -3+750*Pi-25*Sqrt[5]*Pi+Cos[Sqrt[5]*Pi] 2178311505376468 m001 (GaussAGM-Trott)/(ln(3)+FeigenbaumD) 2178311509080098 a007 Real Root Of 285*x^4+88*x^3-806*x^2+470*x-659 2178311511128141 k006 concat of cont frac of 2178311512355755 m005 (1/2*Zeta(3)+1/12)/(10/11*Pi+2/7) 2178311514351511 r005 Im(z^2+c),c=-39/86+23/61*I,n=42 2178311540524989 k001 Champernowne real with 937*n+1241 2178311552898216 r002 36th iterates of z^2 + 2178311554455608 l002 exp(polylog(8,52/67)) 2178311562107238 a001 39088169/5778*843^(6/7) 2178311569088205 r005 Im(z^2+c),c=-17/42+23/63*I,n=48 2178311576725028 r004 Re(z^2+c),c=1/3+5/21*I,z(0)=exp(3/8*I*Pi),n=35 2178311579229140 a001 39088169/3571*843^(11/14) 2178311581793713 m001 ln(2+3^(1/2))*GAMMA(19/24)^Pi 2178311581793713 m001 ln(2+sqrt(3))*GAMMA(19/24)^Pi 2178311596758164 h001 (5/7*exp(2)+3/10)/(3/11*exp(2)+6/11) 2178311600219053 r009 Re(z^3+c),c=-1/44+6/49*I,n=5 2178311615777716 a003 sin(Pi*7/62)-sin(Pi*13/68) 2178311616864886 a007 Real Root Of 178*x^4-430*x^3+925*x^2-598*x-179 2178311617835394 a001 6765*843^(6/7) 2178311618037135 a001 821223480/377 2178311625966022 a001 267914296/39603*843^(6/7) 2178311627152265 a001 701408733/103682*843^(6/7) 2178311627325335 a001 1836311903/271443*843^(6/7) 2178311627350586 a001 686789568/101521*843^(6/7) 2178311627354270 a001 12586269025/1860498*843^(6/7) 2178311627354808 a001 32951280099/4870847*843^(6/7) 2178311627354886 a001 86267571272/12752043*843^(6/7) 2178311627354897 a001 32264490531/4769326*843^(6/7) 2178311627354899 a001 591286729879/87403803*843^(6/7) 2178311627354899 a001 1548008755920/228826127*843^(6/7) 2178311627354899 a001 4052739537881/599074578*843^(6/7) 2178311627354899 a001 1515744265389/224056801*843^(6/7) 2178311627354899 a001 6557470319842/969323029*843^(6/7) 2178311627354899 a001 2504730781961/370248451*843^(6/7) 2178311627354900 a001 956722026041/141422324*843^(6/7) 2178311627354900 a001 365435296162/54018521*843^(6/7) 2178311627354905 a001 139583862445/20633239*843^(6/7) 2178311627354935 a001 53316291173/7881196*843^(6/7) 2178311627355140 a001 20365011074/3010349*843^(6/7) 2178311627356547 a001 7778742049/1149851*843^(6/7) 2178311627366192 a001 2971215073/439204*843^(6/7) 2178311627432299 a001 1134903170/167761*843^(6/7) 2178311627885403 a001 433494437/64079*843^(6/7) 2178311630991027 a001 165580141/24476*843^(6/7) 2178311635476130 a007 Real Root Of -541*x^4-830*x^3+881*x^2+149*x-254 2178311640544992 k001 Champernowne real with 938*n+1240 2178311644612684 m005 (3*gamma-2)/(2*Catalan-3/5) 2178311648044337 r005 Re(z^2+c),c=-1+26/167*I,n=54 2178311652277289 a001 63245986/9349*843^(6/7) 2178311665480092 r005 Im(z^2+c),c=-9/10+30/157*I,n=52 2178311670410118 l006 ln(4643/5773) 2178311678634023 s002 sum(A115033[n]/((2^n-1)/n),n=1..infinity) 2178311692869393 r009 Re(z^3+c),c=-41/110+35/61*I,n=46 2178311696112560 m001 Cahen*OrthogonalArrays/PrimesInBinary 2178311696510473 a001 1/123*76^(41/54) 2178311699968208 a007 Real Root Of 404*x^4+500*x^3-311*x^2+810*x-688 2178311703445191 a001 9303105/124*843^(1/2) 2178311704423154 r009 Im(z^3+c),c=-59/106+13/33*I,n=41 2178311717222112 k007 concat of cont frac of 2178311720130520 k002 Champernowne real with 88*n^2-207*n+140 2178311729370850 q001 689/3163 2178311731370424 m001 1/FeigenbaumKappa*Cahen/exp(GAMMA(7/24)) 2178311736284787 r005 Re(z^2+c),c=-9/34+1/29*I,n=12 2178311738080217 g005 GAMMA(9/10)*GAMMA(2/7)/GAMMA(7/10)/GAMMA(7/9) 2178311740564995 k001 Champernowne real with 939*n+1239 2178311742491345 l006 ln(1026/9061) 2178311749879979 m001 (Si(Pi)-Zeta(1,2))/(-CopelandErdos+OneNinth) 2178311751132231 k008 concat of cont frac of 2178311756221312 m001 Khinchin^gamma(3)+Salem 2178311756467670 m001 1/exp(cos(1))/BesselJ(1,1)^2/sinh(1)^2 2178311761871729 m001 (exp(1)-gamma(1))/(-Backhouse+ZetaP(3)) 2178311767604491 m005 (1/3*2^(1/2)+3/7)/(3*2^(1/2)-1/9) 2178311769613106 m005 (7/4+3/2*5^(1/2))/(2/5*2^(1/2)-4/5) 2178311779897213 a001 7/4*(1/2*5^(1/2)+1/2)^22*4^(19/23) 2178311781053610 a001 24157817/5778*843^(13/14) 2178311797025372 r009 Im(z^3+c),c=-13/114+48/55*I,n=56 2178311797964203 m005 (1/2*Pi-5/8)/(4/7*3^(1/2)-5/9) 2178311798175513 a001 24157817/3571*843^(6/7) 2178311799977135 m001 (ThueMorse+2/3)/(ln(gamma)+1/2) 2178311805944244 m001 (-Zeta(5)+ZetaP(2))/(LambertW(1)-cos(1)) 2178311817458940 a007 Real Root Of -573*x^4-989*x^3+721*x^2+557*x+471 2178311823156178 a001 47/317811*514229^(9/44) 2178311833342255 m001 (exp(Pi)+GAMMA(2/3))/(PrimesInBinary+Rabbit) 2178311836781770 a001 63245986/15127*843^(13/14) 2178311840584998 k001 Champernowne real with 940*n+1238 2178311844912399 a001 165580141/39603*843^(13/14) 2178311845043710 a007 Real Root Of -x^4-218*x^3-41*x^2-920*x+155 2178311846098642 a001 433494437/103682*843^(13/14) 2178311846271713 a001 1134903170/271443*843^(13/14) 2178311846296963 a001 2971215073/710647*843^(13/14) 2178311846300647 a001 7778742049/1860498*843^(13/14) 2178311846301185 a001 20365011074/4870847*843^(13/14) 2178311846301263 a001 53316291173/12752043*843^(13/14) 2178311846301275 a001 139583862445/33385282*843^(13/14) 2178311846301276 a001 365435296162/87403803*843^(13/14) 2178311846301276 a001 956722026041/228826127*843^(13/14) 2178311846301276 a001 2504730781961/599074578*843^(13/14) 2178311846301277 a001 6557470319842/1568397607*843^(13/14) 2178311846301277 a001 10610209857723/2537720636*843^(13/14) 2178311846301277 a001 4052739537881/969323029*843^(13/14) 2178311846301277 a001 1548008755920/370248451*843^(13/14) 2178311846301277 a001 591286729879/141422324*843^(13/14) 2178311846301277 a001 225851433717/54018521*843^(13/14) 2178311846301282 a001 86267571272/20633239*843^(13/14) 2178311846301312 a001 32951280099/7881196*843^(13/14) 2178311846301517 a001 12586269025/3010349*843^(13/14) 2178311846302924 a001 4807526976/1149851*843^(13/14) 2178311846312569 a001 1836311903/439204*843^(13/14) 2178311846378676 a001 701408733/167761*843^(13/14) 2178311846831780 a001 267914296/64079*843^(13/14) 2178311849937404 a001 102334155/24476*843^(13/14) 2178311850404879 a003 -1/2-cos(1/7*Pi)+2*cos(13/27*Pi)-cos(4/27*Pi) 2178311859204770 s002 sum(A056146[n]/(n*10^n+1),n=1..infinity) 2178311869799887 m001 ln(BesselK(1,1))/Trott/arctan(1/2)^2 2178311871223669 a001 4181*843^(13/14) 2178311875865910 m001 1/exp(Sierpinski)/Riemann1stZero^2*gamma 2178311876228176 r005 Im(z^2+c),c=19/66+3/64*I,n=40 2178311876987044 m001 (-FeigenbaumC+ZetaQ(4))/(Chi(1)+gamma(3)) 2178311883011924 r005 Im(z^2+c),c=-4/7+45/121*I,n=47 2178311892488075 m001 1/cos(1)*GAMMA(11/24)^2/exp(gamma)^2 2178311895438247 a007 Real Root Of x^4+220*x^3+472*x^2-94*x+144 2178311902031100 p001 sum((-1)^n/(592*n+389)/(2^n),n=0..infinity) 2178311902674417 r005 Re(z^2+c),c=-1/19+37/58*I,n=35 2178311911162413 k006 concat of cont frac of 2178311911183159 r005 Im(z^2+c),c=-13/114+39/46*I,n=45 2178311917796691 r005 Re(z^2+c),c=-19/86+45/64*I,n=16 2178311921607607 a001 1836311903/1364*322^(1/12) 2178311922391575 a001 31622993/682*843^(4/7) 2178311926736895 l006 ln(599/5290) 2178311935407134 m001 (Zeta(5)-ln(5))/(Pi+exp(Pi)) 2178311940538894 m001 Tribonacci^(Pi*ln(5)) 2178311940605001 k001 Champernowne real with 941*n+1237 2178311943441094 m001 (Pi*csc(5/12*Pi)/GAMMA(7/12))^gamma/Rabbit 2178311952009895 m001 CopelandErdos/ln(Champernowne)*GAMMA(5/24)^2 2178311958496923 r005 Re(z^2+c),c=-5/32+17/36*I,n=25 2178311961385930 m008 (1/3*Pi^5+4)/(5*Pi^4-2/5) 2178311964832080 r005 Im(z^2+c),c=-13/27+5/13*I,n=64 2178311970255099 a003 sin(Pi*10/103)*sin(Pi*31/120) 2178311973023039 m005 (1/3*Catalan-1/5)/(3/7*exp(1)-6) 2178311977245440 r002 24th iterates of z^2 + 2178311984172172 a007 Real Root Of 75*x^4-23*x^3-337*x^2+456*x+666 2178311991330606 m005 (1/3*2^(1/2)-1/12)/(5^(1/2)-5/11) 2178312000000332 a001 1346275/2+1346269/2*5^(1/2) 2178312000541927 l006 ln(5247/6524) 2178312001529035 r005 Re(z^2+c),c=25/78+17/44*I,n=50 2178312003528842 r005 Im(z^2+c),c=-3/5+5/126*I,n=39 2178312011133214 k006 concat of cont frac of 2178312012162141 m001 Otter^(BesselK(1,1)/Chi(1)) 2178312017121904 a001 14930352/3571*843^(13/14) 2178312020215279 a007 Real Root Of 324*x^4+521*x^3-344*x^2+205*x+169 2178312024545644 a001 701408733/521*199^(1/11) 2178312032387771 a007 Real Root Of 474*x^4+708*x^3-717*x^2-392*x-806 2178312037690763 r009 Re(z^3+c),c=-41/114+39/62*I,n=13 2178312040625004 k001 Champernowne real with 942*n+1236 2178312041583379 a007 Real Root Of -190*x^4-190*x^3+415*x^2-246*x-191 2178312050303636 m005 (1/3*Pi-1/9)/(3/7*Pi-11/12) 2178312051001835 m006 (1/5*Pi^2+5/6)/(1/4*exp(2*Pi)-5) 2178312054358379 a001 1836311903/2207*322^(1/6) 2178312055691532 m001 FeigenbaumKappa^2*ln(CareFree)^2*cos(Pi/12) 2178312055702917 a001 821223645/377 2178312063660477 a001 821223648/377 2178312065251989 a001 2/377*(1/2+1/2*5^(1/2))^46 2178312065734095 r005 Im(z^2+c),c=-83/74+9/40*I,n=58 2178312066312997 a001 821223649/377 2178312071455161 r009 Re(z^3+c),c=-3/82+7/12*I,n=41 2178312086516564 a001 24157817/521*521^(8/13) 2178312086783248 a007 Real Root Of -645*x^4-891*x^3+940*x^2-536*x-315 2178312090185676 a001 821223658/377 2178312090948489 r009 Re(z^3+c),c=-3/94+5/11*I,n=17 2178312098717113 r002 27th iterates of z^2 + 2178312111125615 k008 concat of cont frac of 2178312111301146 k007 concat of cont frac of 2178312111415414 k008 concat of cont frac of 2178312115181212 k006 concat of cont frac of 2178312115210164 s001 sum(exp(-3*Pi)^(n-1)*A019291[n],n=1..infinity) 2178312115772782 k006 concat of cont frac of 2178312120931507 m001 (Grothendieck-MadelungNaCl)^MasserGramainDelta 2178312123278112 m001 Cahen/(Otter-gamma(3)) 2178312131417409 r005 Im(z^2+c),c=-85/94+12/61*I,n=57 2178312138449129 a007 Real Root Of -69*x^4+47*x^3+105*x^2-713*x-12 2178312140360781 m001 KhintchineHarmonic*ln(CareFree)^2*Zeta(7)^2 2178312140645007 k001 Champernowne real with 943*n+1235 2178312141337982 a001 39088169/1364*843^(9/14) 2178312144141123 k006 concat of cont frac of 2178312149427578 b008 ExpIntegralEi[7/117] 2178312150313258 m001 (-Tribonacci+ZetaQ(3))/(1-Catalan) 2178312156677843 m001 exp(1)/Psi(1,1/3)*cos(1/5*Pi) 2178312156821783 k006 concat of cont frac of 2178312170291177 a007 Real Root Of -44*x^4-929*x^3+657*x^2+352*x+395 2178312170758113 r005 Re(z^2+c),c=-7/78+4/7*I,n=12 2178312171919637 l006 ln(771/6809) 2178312191035349 m001 (GAMMA(5/6)*Riemann2ndZero+Thue)/GAMMA(5/6) 2178312196191920 a007 Real Root Of 159*x^4+53*x^3-116*x^2+834*x-665 2178312210411260 b008 6+Pi*ArcSinh[76] 2178312212198352 r004 Im(z^2+c),c=-2/9+7/20*I,z(0)=exp(7/8*I*Pi),n=7 2178312213546554 a007 Real Root Of 596*x^4+684*x^3-874*x^2+780*x-503 2178312215431873 m005 (1/3*5^(1/2)-1/2)/(9/11*Zeta(3)+1/7) 2178312216947561 a007 Real Root Of 545*x^4+865*x^3-381*x^2+265*x-945 2178312218428183 g006 Psi(1,1/9)-Psi(1,7/8)-Psi(1,1/8)-Psi(1,1/4) 2178312219536744 a001 2207/8*1346269^(26/55) 2178312219564437 m001 ErdosBorwein/BesselK(1,1)/GAMMA(3/4) 2178312228257009 r005 Im(z^2+c),c=-23/62+21/59*I,n=28 2178312228269445 m001 (Pi+2^(1/2))/(OneNinth-Riemann2ndZero) 2178312231561392 m001 FeigenbaumC^(cos(1/5*Pi)*BesselI(1,2)) 2178312235923757 a007 Real Root Of 475*x^4+347*x^3+79*x^2-920*x+192 2178312236067977 a001 2178310+5^(1/2) 2178312236074270 a001 821223713/377 2178312240665010 k001 Champernowne real with 944*n+1234 2178312240684579 r005 Re(z^2+c),c=-7/44+29/62*I,n=37 2178312241266066 r005 Re(z^2+c),c=-7/40+22/51*I,n=49 2178312259902910 r005 Im(z^2+c),c=-89/86+1/4*I,n=41 2178312260096592 m005 (1/4*gamma+3/4)/(gamma-1/6) 2178312260096592 m007 (-1/4*gamma-3/4)/(-gamma+1/6) 2178312261048351 r005 Im(z^2+c),c=-9/110+11/41*I,n=13 2178312261346852 a007 Real Root Of 321*x^4+698*x^3+425*x^2+911*x-45 2178312262514571 l006 ln(5851/7275) 2178312262691901 r009 Im(z^3+c),c=-7/82+11/49*I,n=5 2178312272155541 r005 Im(z^2+c),c=-7/17+23/63*I,n=25 2178312272373633 m001 (LambertW(1)+Artin*Robbin)/Artin 2178312273134994 h001 (3/7*exp(1)+1/9)/(7/9*exp(2)+1/9) 2178312278250706 r005 Re(z^2+c),c=-5/8+127/195*I,n=3 2178312278390798 a007 Real Root Of 398*x^4+186*x^3+9*x^2-855*x+183 2178312278677670 r009 Re(z^3+c),c=-1/31+13/28*I,n=17 2178312282871793 a003 sin(Pi*7/87)*sin(Pi*35/104) 2178312283608123 a007 Real Root Of -362*x^4-941*x^3-218*x^2+58*x-415 2178312289547689 a007 Real Root Of -402*x^4-198*x^3+996*x^2-794*x+549 2178312291610806 a007 Real Root Of 159*x^4+420*x^3+438*x^2+494*x-241 2178312291956111 k006 concat of cont frac of 2178312298380394 a003 cos(Pi*19/74)*cos(Pi*41/103) 2178312304424541 a001 5/76*29^(16/45) 2178312309736444 a001 5/2207*3571^(24/43) 2178312310274901 a007 Real Root Of 345*x^4+59*x^3+441*x^2-679*x-169 2178312311173151 k008 concat of cont frac of 2178312321047852 a007 Real Root Of -294*x^4-795*x^3-549*x^2-355*x+234 2178312325745641 r005 Re(z^2+c),c=11/114+16/61*I,n=13 2178312327661347 l006 ln(943/8328) 2178312340685013 k001 Champernowne real with 945*n+1233 2178312343995909 a007 Real Root Of -125*x^4+498*x^3+242*x^2+788*x-188 2178312354428367 r005 Im(z^2+c),c=-17/30+21/59*I,n=33 2178312355331288 r005 Re(z^2+c),c=-9/40+16/55*I,n=11 2178312360284411 a001 24157817/1364*843^(5/7) 2178312361427589 r009 Re(z^3+c),c=-41/106+31/61*I,n=14 2178312364851345 m001 CareFree*Conway^2/ln(gamma) 2178312364975261 a001 47/377*2584^(23/35) 2178312365052113 r009 Re(z^3+c),c=-17/48+8/17*I,n=11 2178312373623437 p001 sum((-1)^n/(368*n+45)/(5^n),n=0..infinity) 2178312375221312 k008 concat of cont frac of 2178312392297156 r005 Re(z^2+c),c=-7/29+13/50*I,n=5 2178312392746263 r005 Im(z^2+c),c=1/74+13/56*I,n=13 2178312407716142 r009 Im(z^3+c),c=-35/54+3/31*I,n=2 2178312411559044 m001 Robbin*Conway*ln(sqrt(1+sqrt(3)))^2 2178312426759911 a007 Real Root Of -602*x^4-820*x^3+914*x^2-643*x-659 2178312432669295 m005 (1/2*exp(1)-2/7)/(10/11*Zeta(3)-3/5) 2178312435353582 l006 ln(1115/9847) 2178312435358478 a001 7/3*377^(13/17) 2178312436324915 a001 267084832/321*322^(1/6) 2178312438676690 s001 sum(exp(-3*Pi/5)^n*A154033[n],n=1..infinity) 2178312439879616 a007 Real Root Of 466*x^4-29*x^3+387*x^2-61*x-33 2178312440100640 r002 24th iterates of z^2 + 2178312440705016 k001 Champernowne real with 946*n+1232 2178312449840701 r005 Re(z^2+c),c=-7/94+33/56*I,n=20 2178312450257862 a007 Real Root Of -281*x^4+884*x^3+690*x^2+233*x-92 2178312452748502 a007 Real Root Of -448*x^4-695*x^3+121*x^2-640*x+935 2178312457159353 m006 (5/6*Pi^2-4/5)/(5/Pi-5) 2178312461393734 a001 105937*24476^(57/58) 2178312462701326 a007 Real Root Of 370*x^4+516*x^3-373*x^2+888*x+707 2178312470706926 m001 1/exp(cos(1))*LaplaceLimit/sqrt(Pi) 2178312475461191 l006 ln(6455/8026) 2178312482462792 a001 9349*514229^(13/17) 2178312492053092 a001 12586269025/15127*322^(1/6) 2178312500183724 a001 10983760033/13201*322^(1/6) 2178312501205441 m005 (1/3*5^(1/2)+1/7)/(6/11*2^(1/2)-4/11) 2178312501369967 a001 43133785636/51841*322^(1/6) 2178312501543038 a001 75283811239/90481*322^(1/6) 2178312501568289 a001 591286729879/710647*322^(1/6) 2178312501571973 a001 832040*322^(1/6) 2178312501572510 a001 4052739537881/4870847*322^(1/6) 2178312501572589 a001 3536736619241/4250681*322^(1/6) 2178312501572637 a001 3278735159921/3940598*322^(1/6) 2178312501572842 a001 2504730781961/3010349*322^(1/6) 2178312501574249 a001 956722026041/1149851*322^(1/6) 2178312501583894 a001 182717648081/219602*322^(1/6) 2178312501650001 a001 139583862445/167761*322^(1/6) 2178312502103106 a001 53316291173/64079*322^(1/6) 2178312503764997 a007 Real Root Of -330*x^4-436*x^3+481*x^2-371*x-167 2178312505208731 a001 10182505537/12238*322^(1/6) 2178312518302843 m001 Grothendieck^GAMMA(5/6)/ln(2^(1/2)+1) 2178312521093516 h001 (1/9*exp(1)+1/10)/(4/11*exp(1)+6/7) 2178312521542262 m001 HardHexagonsEntropy/Cahen^2/exp(GAMMA(1/24)) 2178312526495002 a001 7778742049/9349*322^(1/6) 2178312540725019 k001 Champernowne real with 947*n+1231 2178312546223090 m001 (ln(5)+ln(2+3^(1/2)))/(MertensB3+Trott) 2178312549325950 r005 Im(z^2+c),c=-9/74+11/39*I,n=14 2178312549952571 r002 43th iterates of z^2 + 2178312555074104 r009 Im(z^3+c),c=-10/23+4/51*I,n=21 2178312558982465 m005 (1/3*2^(1/2)-1/6)/(1/6*3^(1/2)-3/7) 2178312562767589 m001 GAMMA(11/24)^2*ln(Bloch)*log(1+sqrt(2))^2 2178312566030585 h001 (7/8*exp(1)+1/2)/(1/5*exp(1)+7/9) 2178312572447533 r005 Im(z^2+c),c=-7/9+11/85*I,n=51 2178312574701970 r005 Re(z^2+c),c=-11/90+21/46*I,n=8 2178312576920519 m005 (1/2*gamma+5/7)/(8/9*3^(1/2)-2) 2178312579230859 a001 3732588/341*843^(11/14) 2178312585327168 r005 Re(z^2+c),c=-4/23+23/53*I,n=46 2178312588420000 r009 Re(z^3+c),c=-17/54+17/41*I,n=12 2178312590682718 r005 Im(z^2+c),c=-7/36+11/36*I,n=21 2178312594649131 b008 EllipticPi[24,Pi/12,-1] 2178312599832694 r005 Im(z^2+c),c=-39/74+25/62*I,n=59 2178312608316585 g006 -Psi(1,3/10)-Psi(1,5/9)-Psi(1,7/8)-Psi(1,5/8) 2178312632099482 m005 (1/3*Zeta(3)-2/3)/(4/11*2^(1/2)-7/11) 2178312633224724 m001 (FeigenbaumC+MertensB3)/(cos(1/5*Pi)+Cahen) 2178312639796118 m001 (3^(1/2)+GAMMA(23/24))/BesselI(0,1) 2178312639796118 m001 (sqrt(3)+GAMMA(23/24))/BesselI(0,1) 2178312640745022 k001 Champernowne real with 948*n+1230 2178312648769061 m001 1/Porter*ln(FibonacciFactorial)^2*BesselJ(0,1) 2178312651176721 m001 BesselI(0,2)*(exp(1/2)-ln(2)) 2178312651966454 l006 ln(7059/8777) 2178312660808949 a007 Real Root Of 427*x^4+471*x^3-682*x^2+312*x-830 2178312663752020 a007 Real Root Of -698*x^4+194*x^3-243*x^2+813*x-166 2178312665811680 m001 ln(Champernowne)^2/ErdosBorwein^2*GAMMA(17/24) 2178312672393283 a001 2971215073/3571*322^(1/6) 2178312674349736 a007 Real Root Of -123*x^4+191*x^3+964*x^2+267*x+751 2178312676121311 k009 concat of cont frac of 2178312677066417 m001 (5^(1/2)+cos(1))/(GaussAGM+TreeGrowth2nd) 2178312677558606 m001 (GaussAGM-Mills)/(polylog(4,1/2)-FeigenbaumD) 2178312678936263 m005 (3/4*exp(1)-4/5)/(2*exp(1)+1/4) 2178312679051787 m002 -Log[Pi]/4+ProductLog[Pi]/(5*Pi) 2178312687817672 m004 -1+Csc[Sqrt[5]*Pi]+5*Pi*Sec[Sqrt[5]*Pi] 2178312692305967 m001 (exp(1/Pi)+BesselI(1,1))/(3^(1/2)-sin(1)) 2178312692721175 a001 987/3010349*18^(19/29) 2178312695598781 m005 (1/2*exp(1)-5/11)/(5^(1/2)+23/12) 2178312703820382 a001 39088169/521*521^(7/13) 2178312705647282 m001 Si(Pi)/KomornikLoreti*Riemann2ndZero 2178312718800867 r009 Re(z^3+c),c=-3/82+7/12*I,n=43 2178312721911434 m005 (1/3*gamma+2/7)/(7/11*Zeta(3)-6/11) 2178312723131120 k002 Champernowne real with 177/2*n^2-417/2*n+141 2178312724112416 k007 concat of cont frac of 2178312726305032 a007 Real Root Of 474*x^4+579*x^3-878*x^2+188*x-112 2178312740451128 r005 Re(z^2+c),c=-7/40+22/51*I,n=44 2178312740765025 k001 Champernowne real with 949*n+1229 2178312741212869 m001 (3^(1/3)-GAMMA(23/24))/(Cahen-ZetaP(2)) 2178312745021934 r005 Im(z^2+c),c=-49/52+11/52*I,n=51 2178312749585595 a007 Real Root Of 228*x^4+34*x^3-889*x^2+279*x+44 2178312749855590 r005 Re(z^2+c),c=5/17+8/57*I,n=6 2178312754902553 m001 exp(Tribonacci)/RenyiParking*sin(Pi/12) 2178312764499960 r005 Re(z^2+c),c=-19/102+23/57*I,n=30 2178312771975447 a001 5/5778*9349^(26/43) 2178312779680676 m001 (Cahen-Landau)/(Pi+Backhouse) 2178312780521186 a007 Real Root Of 78*x^4-39*x^3-273*x^2+308*x-193 2178312781875548 r002 8th iterates of z^2 + 2178312784096822 a007 Real Root Of 366*x^4+246*x^3-624*x^2+920*x-733 2178312787568269 a001 3010349/610*34^(8/19) 2178312789046997 a007 Real Root Of -278*x^4-316*x^3+447*x^2-589*x-411 2178312790233022 a007 Real Root Of -43*x^4-922*x^3+283*x^2-813*x-316 2178312798177339 a001 9227465/1364*843^(6/7) 2178312799070292 r009 Im(z^3+c),c=-31/64+32/61*I,n=24 2178312800647317 l006 ln(7663/9528) 2178312801107583 r005 Re(z^2+c),c=-7/40+22/51*I,n=52 2178312806592098 m001 (Shi(1)+GAMMA(11/12))/(-Paris+ZetaQ(4)) 2178312815349094 m005 (1/2*Pi+1/12)/(2/11*3^(1/2)+4/9) 2178312825390826 a007 Real Root Of -396*x^4-345*x^3+835*x^2-460*x+386 2178312827327534 m001 (Thue-ZetaP(3))/Pi 2178312838253687 r005 Im(z^2+c),c=-17/36+1/27*I,n=36 2178312840785028 k001 Champernowne real with 950*n+1228 2178312849193128 a001 5/15127*15127^(29/43) 2178312853644769 a001 5/710647*39603^(42/43) 2178312865247076 m001 gamma*(exp(1)+GAMMA(11/12)) 2178312866151311 m005 (1/2*Catalan-5/8)/(5/6*gamma+2/7) 2178312869447031 p004 log(37189/4211) 2178312889774922 m009 (1/4*Pi^2+5/6)/(5*Psi(1,2/3)-1/6) 2178312892477658 m001 (Riemann3rdZero-ThueMorse)/(Zeta(3)+gamma(1)) 2178312893934024 m001 (Kac+Magata)/(GAMMA(7/12)+FellerTornier) 2178312896463034 a007 Real Root Of -168*x^4+287*x^3-902*x^2+362*x+125 2178312898437820 r005 Im(z^2+c),c=-51/58+9/50*I,n=3 2178312898927530 a007 Real Root Of -610*x^4-796*x^3+912*x^2-888*x-755 2178312907046996 a001 5/39603*5778^(37/43) 2178312907185346 g006 Psi(1,7/12)+1/2*Pi^2-Psi(1,6/11)-Psi(1,1/5) 2178312908526954 m001 exp(Zeta(3))*Ei(1)*sin(Pi/5)^2 2178312915635704 r005 Re(z^2+c),c=-17/106+18/29*I,n=45 2178312924155767 m001 (Artin-Catalan)/(ErdosBorwein+QuadraticClass) 2178312928903491 s002 sum(A017199[n]/(exp(n)+1),n=1..infinity) 2178312929916759 a007 Real Root Of -543*x^4-616*x^3+975*x^2-176*x+849 2178312930879890 m001 1/cos(1)^2/exp(Zeta(9))*sqrt(3) 2178312937897616 a001 267914296/843*322^(1/3) 2178312939064474 r009 Re(z^3+c),c=-25/78+3/7*I,n=22 2178312939895863 a001 7/2971215073*20365011074^(17/22) 2178312939897765 a001 7/832040*514229^(17/22) 2178312940805031 k001 Champernowne real with 951*n+1227 2178312942211626 a007 Real Root Of -470*x^4-660*x^3+563*x^2-308*x+418 2178312954894809 a007 Real Root Of -5*x^4+681*x^3-874*x^2-876*x-871 2178312955040927 m001 Zeta(1,-1)^gamma+5^(1/2) 2178312967234722 a001 144/7*7^(1/34) 2178312975244509 m001 (Chi(1)+polylog(4,1/2))/(-MertensB2+ThueMorse) 2178312978752994 a007 Real Root Of 290*x^4-505*x^3+494*x^2-375*x-111 2178312981614162 a001 11/365435296162*75025^(19/24) 2178312991293419 m001 (2^(1/2)-KhinchinLevy)/(-Niven+TwinPrimes) 2178312994292596 a007 Real Root Of 275*x^4+659*x^3-356*x^2-690*x+806 2178313001749913 m001 Lehmer*KhintchineHarmonic/exp(GAMMA(7/24))^2 2178313007488073 a007 Real Root Of -186*x^4+17*x^3+973*x^2+215*x+215 2178313010241970 m005 (1/2*exp(1)-4)/(6*Zeta(3)-6) 2178313017123816 a001 5702887/1364*843^(13/14) 2178313025782319 l006 ln(172/1519) 2178313040825034 k001 Champernowne real with 952*n+1226 2178313041672728 r005 Re(z^2+c),c=-7/40+22/51*I,n=55 2178313042948218 m001 1/Sierpinski/ln(Conway)/sin(Pi/12)^2 2178313049531800 m001 (sin(1)*gamma(3)+FeigenbaumC)/sin(1) 2178313056406588 a007 Real Root Of 451*x^4+869*x^3+81*x^2+301*x-901 2178313063103777 a007 Real Root Of -495*x^4-884*x^3+62*x^2-896*x-238 2178313065772471 a007 Real Root Of -72*x^4+6*x^3+614*x^2+114*x-982 2178313069530372 a007 Real Root Of -813*x^4-571*x^3-812*x^2+737*x+195 2178313070652907 r005 Re(z^2+c),c=-17/14+15/233*I,n=20 2178313073770198 p001 sum(1/(379*n+342)/n/(64^n),n=1..infinity) 2178313073797355 a001 2/47*271443^(13/15) 2178313074467720 r005 Im(z^2+c),c=-53/94+24/59*I,n=59 2178313077070499 r005 Im(z^2+c),c=-7/34+17/55*I,n=21 2178313077723821 r005 Re(z^2+c),c=-11/86+26/49*I,n=41 2178313102534449 g006 Psi(1,6/11)+2*Psi(1,1/3)-Psi(1,8/11) 2178313104458611 r005 Re(z^2+c),c=-1/6+23/51*I,n=32 2178313111133121 k009 concat of cont frac of 2178313118776778 r009 Re(z^3+c),c=-3/82+7/12*I,n=45 2178313119122811 k006 concat of cont frac of 2178313121112522 k008 concat of cont frac of 2178313122619112 k007 concat of cont frac of 2178313125134861 a007 Real Root Of -662*x^4+983*x^3-940*x^2+311*x+124 2178313125916959 m001 (-Backhouse+FeigenbaumC)/(3^(1/2)+gamma(2)) 2178313135359924 r005 Re(z^2+c),c=-7/40+22/51*I,n=58 2178313135852491 r005 Re(z^2+c),c=13/86+24/43*I,n=25 2178313140845037 k001 Champernowne real with 953*n+1225 2178313140889754 m001 GaussKuzminWirsing^exp(1/2)/Cahen 2178313141900112 m001 cos(1/12*Pi)^ln(2)+Zeta(3) 2178313141900112 m001 cos(Pi/12)^ln(2)+Zeta(3) 2178313153675007 a007 Real Root Of 431*x^4+531*x^3-707*x^2+521*x+274 2178313157090792 m002 -Pi+Csch[Pi]*ProductLog[Pi]+Tanh[Pi]/Log[Pi] 2178313159978618 m001 (ThueMorse+Weierstrass)/(Zeta(3)-ln(5)) 2178313161977156 r005 Re(z^2+c),c=-7/40+22/51*I,n=60 2178313162319861 r005 Re(z^2+c),c=-7/40+22/51*I,n=57 2178313162498616 a007 Real Root Of -749*x^4-944*x^3+964*x^2-844*x+694 2178313167681024 a007 Real Root Of -471*x^4-697*x^3+636*x^2-267*x-199 2178313168077429 r005 Re(z^2+c),c=-7/40+22/51*I,n=61 2178313168627000 r005 Re(z^2+c),c=-7/40+22/51*I,n=63 2178313169780094 m001 HardyLittlewoodC3/(Trott2nd^Zeta(1,2)) 2178313175446631 m005 (1/3*Catalan-2/5)/(3/7*Pi+3) 2178313176757717 m001 (3^(1/2)+BesselK(0,1))/(Stephens+ThueMorse) 2178313177884895 r005 Re(z^2+c),c=-7/40+22/51*I,n=64 2178313182923218 m001 (FeigenbaumDelta-Zeta(1,2))^KomornikLoreti 2178313194444210 m001 1/TwinPrimes/ErdosBorwein*ln((2^(1/3))) 2178313197526775 r002 44th iterates of z^2 + 2178313198467151 r005 Re(z^2+c),c=-7/40+22/51*I,n=62 2178313203682679 r005 Re(z^2+c),c=-7/40+22/51*I,n=54 2178313205540040 h001 (1/8*exp(2)+10/11)/(3/11*exp(1)+1/10) 2178313211313334 k006 concat of cont frac of 2178313224182925 a007 Real Root Of -459*x^4-423*x^3+726*x^2-872*x+618 2178313224507870 m001 exp(MertensB1)/GlaisherKinkelin^2/GAMMA(1/4) 2178313226785934 r005 Re(z^2+c),c=-7/40+22/51*I,n=59 2178313236074270 a001 821224090/377 2178313239794251 m001 (MasserGramain-Robbin)/Rabbit 2178313240865040 k001 Champernowne real with 954*n+1224 2178313241231341 k006 concat of cont frac of 2178313246658729 a001 1/11592*3^(43/51) 2178313247618020 r002 14th iterates of z^2 + 2178313253012048 q001 452/2075 2178313258814193 m005 (1/3*2^(1/2)+1/7)/(1/12*Zeta(3)+2/11) 2178313263787193 r009 Re(z^3+c),c=-9/70+20/21*I,n=16 2178313269403203 r002 4th iterates of z^2 + 2178313275192409 m001 (FeigenbaumMu+Porter)/(exp(1/Pi)-Zeta(1,2)) 2178313276236712 a007 Real Root Of 313*x^4+484*x^3-131*x^2+460*x-421 2178313283175389 r005 Im(z^2+c),c=-5/6+27/175*I,n=61 2178313283946368 m005 (1/2*Pi-6/7)/(1/8*3^(1/2)+1/9) 2178313285629975 r005 Re(z^2+c),c=-7/40+22/51*I,n=56 2178313291230585 a007 Real Root Of 810*x^4-941*x^3+460*x^2-921*x-234 2178313294361531 b008 17/14+Tanh[2] 2178313301139347 r005 Im(z^2+c),c=-11/21+7/19*I,n=29 2178313310756006 a001 1597/4870847*18^(19/29) 2178313312681624 a007 Real Root Of -467*x^4-644*x^3+495*x^2-451*x+527 2178313313251111 k008 concat of cont frac of 2178313313999495 a007 Real Root Of -355*x^4-467*x^3+438*x^2-901*x-875 2178313316324994 a007 Real Root Of 46*x^4-268*x^3-846*x^2-429*x-726 2178313317152188 m001 arctan(1/2)^2/Niven^2*exp(cos(1))^2 2178313321124377 a001 63245986/521*521^(6/13) 2178313321183659 m001 (-exp(1/Pi)+Riemann2ndZero)/(3^(1/3)-cos(1)) 2178313322270019 m002 4*Pi^5+Pi^6*Tanh[Pi]^2 2178313333730418 m005 (1/2*Pi-1/11)/(7/12*5^(1/2)-5/8) 2178313333742906 a007 Real Root Of -361*x^4-900*x^3-578*x^2-399*x+699 2178313334324974 r002 5th iterates of z^2 + 2178313339077946 a007 Real Root Of -454*x^4-741*x^3+168*x^2-879*x-149 2178313340885043 k001 Champernowne real with 955*n+1223 2178313342847230 a001 505019158607*144^(5/17) 2178313344456389 r009 Re(z^3+c),c=-3/82+7/12*I,n=47 2178313350392348 m001 FeigenbaumDelta^HeathBrownMoroz+Salem 2178313352774348 m001 Zeta(9)^2/exp(MertensB1)^2/sqrt(1+sqrt(3))^2 2178313370579595 a001 64079/34*89^(1/31) 2178313374424721 r009 Re(z^3+c),c=-23/70+7/10*I,n=25 2178313374923383 r005 Im(z^2+c),c=-6/5+21/118*I,n=6 2178313379158989 r005 Re(z^2+c),c=-91/110+1/35*I,n=28 2178313385738276 a007 Real Root Of 309*x^4+317*x^3-879*x^2-102*x+268 2178313390265443 r005 Re(z^2+c),c=-7/40+22/51*I,n=53 2178313394224477 r005 Re(z^2+c),c=-7/40+22/51*I,n=51 2178313396793389 r002 48th iterates of z^2 + 2178313408294943 r002 30th iterates of z^2 + 2178313411814252 k007 concat of cont frac of 2178313414221912 a007 Real Root Of 43*x^4+958*x^3+510*x^2+975*x-337 2178313415757391 p001 sum(1/(519*n+466)/(32^n),n=0..infinity) 2178313420219213 m001 GaussKuzminWirsing/(MadelungNaCl-Pi) 2178313425063678 p001 sum((-1)^n/(525*n+428)/(6^n),n=0..infinity) 2178313425513647 r005 Im(z^2+c),c=-139/114+2/13*I,n=22 2178313425783668 a007 Real Root Of -823*x^4+64*x^3-875*x^2+615*x+178 2178313426783441 k007 concat of cont frac of 2178313440905046 k001 Champernowne real with 956*n+1222 2178313445946632 v004 sum(1/(-2+9*n^2-3*n)/sinh(Pi*n),n=1..infinity) 2178313445950126 m005 (1/3*Catalan+2/7)/(4/5*Pi+1/5) 2178313447708933 r009 Re(z^3+c),c=-3/82+7/12*I,n=34 2178313449557368 m001 ZetaQ(2)/Conway/Ei(1) 2178313449961914 r009 Re(z^3+c),c=-4/23+53/61*I,n=47 2178313450487272 r005 Re(z^2+c),c=8/29+11/60*I,n=34 2178313452926547 m001 KomornikLoreti^Artin+Zeta(1/2) 2178313454282730 m001 Pi*2^(1/2)/GAMMA(3/4)*ArtinRank2^(2^(1/2)) 2178313454782128 m005 (1/2*5^(1/2)+1/9)/(2/7*Pi-1/3) 2178313455130180 a008 Real Root of (12+x+11*x^2+6*x^3) 2178313457921701 a007 Real Root Of 260*x^4+478*x^3-516*x^2-354*x+764 2178313464305784 r009 Re(z^3+c),c=-3/82+7/12*I,n=49 2178313465714315 a007 Real Root Of -131*x^4-446*x^3-293*x^2+511*x+843 2178313471728093 r009 Re(z^3+c),c=-11/86+51/55*I,n=12 2178313472007719 l003 hypergeom([1,1,1],[2,1/2],4/7) 2178313472135954 a001 2178309+2*5^(1/2) 2178313473796414 m001 GAMMA(3/4)*Paris^2*ln(sin(Pi/12))^2 2178313474804449 a001 29/2504730781961*46368^(1/17) 2178313474816369 a001 29/6557470319842*591286729879^(1/17) 2178313474816369 a001 29/4052739537881*165580141^(1/17) 2178313480689297 h001 (-8*exp(3)+12)/(-3*exp(3)-8) 2178313484023120 m001 (Si(Pi)*ZetaP(4)+GAMMA(7/12))/ZetaP(4) 2178313500922978 h001 (8/9*exp(1)+7/10)/(1/7*exp(2)+3/8) 2178313501199886 a001 7/1597*6557470319842^(4/9) 2178313502212067 r005 Re(z^2+c),c=23/126+4/11*I,n=12 2178313502592726 a007 Real Root Of 472*x^4+746*x^3-601*x^2-338*x-801 2178313503378337 m001 exp(1/Pi)/(cos(1)^RenyiParking) 2178313506435187 m001 (Robbin-ZetaQ(3))/(MertensB2+ReciprocalLucas) 2178313514176891 m001 1/ln(GAMMA(1/24))/Riemann2ndZero*Zeta(3)^2 2178313520363247 a003 cos(Pi*15/67)/cos(Pi*39/101) 2178313521916705 a007 Real Root Of 550*x^4+895*x^3-255*x^2+598*x-620 2178313524483905 m001 (2^(1/3)-GAMMA(3/4))/(Niven+Riemann1stZero) 2178313525092160 r009 Re(z^3+c),c=-3/82+7/12*I,n=51 2178313525566447 r005 Re(z^2+c),c=-7/40+22/51*I,n=50 2178313527410762 m005 (1/6*gamma+5/6)/(4/5*Catalan-5) 2178313529810622 r005 Re(z^2+c),c=-7/40+22/51*I,n=47 2178313540925049 k001 Champernowne real with 957*n+1221 2178313542879927 r005 Im(z^2+c),c=-17/82+13/42*I,n=22 2178313547008288 r005 Im(z^2+c),c=-5/14+22/63*I,n=16 2178313549849017 m001 (exp(1/Pi)-gamma(2))/(MasserGramain-Rabbit) 2178313554760878 r009 Re(z^3+c),c=-3/82+7/12*I,n=53 2178313557500022 m001 GAMMA(23/24)/Backhouse*exp(GAMMA(5/6)) 2178313560051658 m001 ln(TwinPrimes)/ErdosBorwein^2*GAMMA(2/3) 2178313563879164 m001 Kolakoski^(2/3*Pi*3^(1/2)/GAMMA(2/3))-exp(1) 2178313568737492 r009 Re(z^3+c),c=-15/46+27/61*I,n=23 2178313568747867 r009 Re(z^3+c),c=-3/82+7/12*I,n=55 2178313575123755 r009 Re(z^3+c),c=-3/82+7/12*I,n=57 2178313577930408 r009 Re(z^3+c),c=-3/82+7/12*I,n=59 2178313579118706 r009 Re(z^3+c),c=-3/82+7/12*I,n=61 2178313579490620 r005 Re(z^2+c),c=29/90+13/59*I,n=56 2178313579598703 r009 Re(z^3+c),c=-3/82+7/12*I,n=63 2178313580005022 r009 Re(z^3+c),c=-3/82+7/12*I,n=64 2178313580303441 r009 Re(z^3+c),c=-3/82+7/12*I,n=62 2178313581063686 r009 Re(z^3+c),c=-3/82+7/12*I,n=60 2178313581677158 m001 exp(1)^(KomornikLoreti/UniversalParabolic) 2178313582899539 r009 Re(z^3+c),c=-3/82+7/12*I,n=58 2178313587149038 r009 Re(z^3+c),c=-3/82+7/12*I,n=56 2178313590005693 r005 Re(z^2+c),c=-5/34+5/9*I,n=10 2178313591488975 m001 (Khinchin+RenyiParking)/(Zeta(3)+Artin) 2178313596632552 r009 Re(z^3+c),c=-3/82+7/12*I,n=54 2178313600323781 r005 Re(z^2+c),c=-5/22+11/39*I,n=11 2178313607157597 r005 Re(z^2+c),c=-17/98+13/30*I,n=14 2178313608756418 r005 Im(z^2+c),c=-13/36+39/59*I,n=13 2178313613050521 l006 ln(1121/9900) 2178313614580544 m005 (1/3*gamma+2/11)/(2/7*3^(1/2)-2/3) 2178313614716111 k006 concat of cont frac of 2178313617089569 r009 Re(z^3+c),c=-3/82+7/12*I,n=52 2178313617542705 a008 Real Root of (1+6*x+6*x^2-x^3+4*x^4-6*x^5) 2178313622296555 a007 Real Root Of -202*x^4-275*x^3+280*x^2+95*x+584 2178313622788594 r009 Re(z^3+c),c=-2/13+17/23*I,n=31 2178313638877203 r008 a(0)=0,K{-n^6,13-88*n^3-28*n^2+57*n} 2178313640945052 k001 Champernowne real with 958*n+1220 2178313641713198 m001 (-GAMMA(3/4)+Salem)/(2^(1/2)+sin(1)) 2178313644705206 p004 log(28181/3191) 2178313654447180 r005 Re(z^2+c),c=-5/36+25/29*I,n=3 2178313659045564 a007 Real Root Of 416*x^4-457*x^3-688*x^2-887*x-19 2178313659748090 r009 Re(z^3+c),c=-3/82+7/12*I,n=50 2178313661154434 p003 LerchPhi(1/125,2,410/191) 2178313661718627 m005 (1/2*3^(1/2)+5/7)/(1/5*exp(1)+2/11) 2178313672395507 a001 567451585/682*322^(1/6) 2178313680553941 m001 ThueMorse*(LandauRamanujan2nd-ZetaQ(2)) 2178313689687335 a007 Real Root Of 274*x^4+783*x^3+282*x^2+23*x+636 2178313698293519 r005 Im(z^2+c),c=5/66+8/39*I,n=15 2178313699414524 m001 exp(Salem)/HardHexagonsEntropy*Zeta(1,2) 2178313704983991 a007 Real Root Of 633*x^4+928*x^3-943*x^2+492*x+886 2178313710282703 r008 a(0)=0,K{-n^6,-89+86*n^3-4*n^2+53*n} 2178313711882202 a007 Real Root Of 154*x^4-55*x^3-867*x^2-107*x-155 2178313712518873 h001 (-9*exp(5)-5)/(-3*exp(1)+2) 2178313719488978 l006 ln(949/8381) 2178313722824325 m001 (LambertW(1)*ln(5)+FellerTornier)/LambertW(1) 2178313724738500 a007 Real Root Of -348*x^4-705*x^3+61*x^2-308*x-412 2178313726131720 k002 Champernowne real with 89*n^2-210*n+142 2178313733012340 m001 1/ln(Champernowne)^2*Artin^2/Porter 2178313740965055 k001 Champernowne real with 959*n+1219 2178313744616702 a007 Real Root Of 296*x^4+351*x^3+905*x^2-932*x-243 2178313745543129 r009 Re(z^3+c),c=-3/82+7/12*I,n=48 2178313757404427 r009 Im(z^3+c),c=-11/32+7/45*I,n=18 2178313762117905 r008 a(0)=0,K{-n^6,-95+77*n^3+20*n^2+44*n} 2178313762297768 r005 Re(z^2+c),c=-161/122+7/31*I,n=6 2178313766509436 a001 199/13*6765^(1/25) 2178313769614846 m005 (1/2*Pi+3/7)/(1/12*2^(1/2)+4/5) 2178313769759283 m001 ZetaR(2)*(FeigenbaumB+HardyLittlewoodC3) 2178313771527612 m005 (1/2*gamma-3/5)/(9/11*5^(1/2)-2/5) 2178313773590464 s002 sum(A014210[n]/(10^n+1),n=1..infinity) 2178313779641663 a001 322/6765*4181^(36/49) 2178313785815440 m002 -E^Pi-Pi^6+Pi^8/3 2178313787570134 a001 7881196/1597*34^(8/19) 2178313788810358 r005 Re(z^2+c),c=-4/23+23/53*I,n=44 2178313789907255 r002 2th iterates of z^2 + 2178313793391300 m001 GAMMA(1/12)^2*(3^(1/3))^2/ln(log(1+sqrt(2))) 2178313796539984 r009 Re(z^3+c),c=-15/44+12/25*I,n=29 2178313800830668 a007 Real Root Of -359*x^4-813*x^3-202*x^2-635*x-745 2178313802292154 r002 31th iterates of z^2 + 2178313805146386 a001 1134903170/2207*322^(1/4) 2178313809378314 b008 -1+44*SinhIntegral[3] 2178313813243212 k009 concat of cont frac of 2178313813287002 a007 Real Root Of -622*x^4+833*x^3+659*x^2+590*x-167 2178313821177121 k006 concat of cont frac of 2178313821642546 a007 Real Root Of 508*x^4+890*x^3-395*x^2+2*x-360 2178313832299575 r005 Re(z^2+c),c=-4/23+23/53*I,n=49 2178313836470551 a003 sin(Pi*41/95)-sin(Pi*46/95) 2178313840985058 k001 Champernowne real with 960*n+1218 2178313845505117 a001 710647/55*377^(10/21) 2178313854101966 a001 4356621/2+3/2*5^(1/2) 2178313860344218 v002 sum(1/(2^n*(10*n^2-28*n+57)),n=1..infinity) 2178313860369304 a007 Real Root Of -605*x^4-954*x^3+773*x^2-276*x-508 2178313871989148 m005 (1/2*gamma-4/5)/(1/12*exp(1)-1/4) 2178313872837656 r005 Re(z^2+c),c=-5/31+25/54*I,n=45 2178313873050747 l006 ln(777/6862) 2178313884328444 a007 Real Root Of 148*x^4-145*x^3-607*x^2+498*x-866 2178313890714452 r005 Im(z^2+c),c=-21/19+1/5*I,n=8 2178313892587936 r009 Re(z^3+c),c=-2/21+41/54*I,n=59 2178313897620515 r005 Re(z^2+c),c=-5/26+9/23*I,n=14 2178313902028479 m001 (cos(1)-sin(1))/(-FellerTornier+Niven) 2178313907703673 m008 (2/3*Pi+3/5)/(4*Pi^3-1/3) 2178313909619037 m001 1/Tribonacci^2*Robbin*exp(OneNinth) 2178313911066825 r009 Re(z^3+c),c=-3/82+7/12*I,n=46 2178313912359693 a007 Real Root Of 164*x^4+14*x^3-490*x^2+924*x+790 2178313917753003 a007 Real Root Of 563*x^4+968*x^3-97*x^2+788*x-494 2178313921192855 m001 (-BesselJ(1,1)+TwinPrimes)/(Si(Pi)-sin(1)) 2178313926048438 r005 Re(z^2+c),c=-81/82+11/57*I,n=48 2178313927874917 m001 Kolakoski^2/CareFree/ln(LaplaceLimit) 2178313933468517 a001 20633239/4181*34^(8/19) 2178313938428546 a001 102334155/521*521^(5/13) 2178313941005061 k001 Champernowne real with 961*n+1217 2178313942347547 m005 (1/2*Pi+3/8)/(5/9*2^(1/2)-7/8) 2178313942821417 a001 15127/89*514229^(1/53) 2178313947326655 a007 Real Root Of 134*x^4-267*x^3+819*x^2-819*x+142 2178313947403261 a007 Real Root Of -583*x^4-897*x^3+996*x^2-5*x-882 2178313948576949 m001 BesselI(1,2)/(CopelandErdos-cos(1/12*Pi)) 2178313949297691 r005 Im(z^2+c),c=1/38+13/56*I,n=4 2178313954754806 a001 54018521/10946*34^(8/19) 2178313957860434 a001 141422324/28657*34^(8/19) 2178313958313538 a001 370248451/75025*34^(8/19) 2178313958379646 a001 969323029/196418*34^(8/19) 2178313958389291 a001 2537720636/514229*34^(8/19) 2178313958390698 a001 6643838879/1346269*34^(8/19) 2178313958390903 a001 17393796001/3524578*34^(8/19) 2178313958390933 a001 45537549124/9227465*34^(8/19) 2178313958390937 a001 119218851371/24157817*34^(8/19) 2178313958390938 a001 312119004989/63245986*34^(8/19) 2178313958390938 a001 817138163596/165580141*34^(8/19) 2178313958390938 a001 2139295485799/433494437*34^(8/19) 2178313958390938 a001 5600748293801/1134903170*34^(8/19) 2178313958390938 a001 14662949395604/2971215073*34^(8/19) 2178313958390938 a001 23725150497407/4807526976*34^(8/19) 2178313958390938 a001 9062201101803/1836311903*34^(8/19) 2178313958390938 a001 3461452808002/701408733*34^(8/19) 2178313958390938 a001 1322157322203/267914296*34^(8/19) 2178313958390938 a001 505019158607/102334155*34^(8/19) 2178313958390938 a001 192900153618/39088169*34^(8/19) 2178313958390940 a001 73681302247/14930352*34^(8/19) 2178313958390951 a001 28143753123/5702887*34^(8/19) 2178313958391030 a001 4870846/987*34^(8/19) 2178313958391567 a001 4106118243/832040*34^(8/19) 2178313958395251 a001 1568397607/317811*34^(8/19) 2178313958420502 a001 599074578/121393*34^(8/19) 2178313958593573 a001 228826127/46368*34^(8/19) 2178313959667887 a001 233/843*141422324^(11/13) 2178313959667887 a001 233/843*2537720636^(11/15) 2178313959667887 a001 233/843*45537549124^(11/17) 2178313959667887 a001 233/843*312119004989^(3/5) 2178313959667887 a001 233/843*14662949395604^(11/21) 2178313959667887 a001 233/843*(1/2+1/2*5^(1/2))^33 2178313959667887 a001 233/843*192900153618^(11/18) 2178313959667887 a001 233/843*10749957122^(11/16) 2178313959667887 a001 233/843*1568397607^(3/4) 2178313959667887 a001 233/843*599074578^(11/14) 2178313959667889 a001 233/843*33385282^(11/12) 2178313959693138 a001 377/521*(1/2+1/2*5^(1/2))^31 2178313959693138 a001 377/521*9062201101803^(1/2) 2178313959779817 a001 87403803/17711*34^(8/19) 2178313962006564 m001 Pi/(1/Psi(2,1/3)-Zeta(1/2)) 2178313963228476 m001 1/Champernowne*ln(ErdosBorwein)*LambertW(1) 2178313967910456 a001 33385282/6765*34^(8/19) 2178313970118683 a001 18/17711*5^(9/19) 2178313970751866 a007 Real Root Of -335*x^4-539*x^3+310*x^2-87*x+311 2178313976980325 a007 Real Root Of 511*x^4+706*x^3-998*x^2-143*x+216 2178313977421907 m001 Kolakoski*exp(CareFree)*FeigenbaumKappa 2178313984930164 a007 Real Root Of 150*x^4+290*x^3+93*x^2-33*x-893 2178314000000332 a001 1346279/2+1346269/2*5^(1/2) 2178314000399554 a001 3524578/199*199^(10/11) 2178314006035010 a001 29*4181^(27/34) 2178314016162234 a007 Real Root Of -111*x^4+266*x^3+746*x^2-874*x-195 2178314018383631 a001 13/199*18^(5/12) 2178314023638686 a001 12752043/2584*34^(8/19) 2178314023899267 m001 1/Paris^2*ErdosBorwein/ln(log(2+sqrt(3)))^2 2178314028384046 m006 (1/4*exp(Pi)+2)/(2/3*exp(2*Pi)+2/5) 2178314034058250 r005 Re(z^2+c),c=-7/40+22/51*I,n=48 2178314036721323 m001 1/GAMMA(2/3)^2/LandauRamanujan/ln(sqrt(Pi))^2 2178314041025064 k001 Champernowne real with 962*n+1216 2178314049140144 r005 Im(z^2+c),c=-25/52+5/13*I,n=55 2178314049161684 s002 sum(A220086[n]/(n^3*2^n+1),n=1..infinity) 2178314054372819 r002 43th iterates of z^2 + 2178314054643691 r009 Re(z^3+c),c=-37/122+21/32*I,n=15 2178314057739944 m001 1/GAMMA(1/3)^2/Ei(1)^2/exp(gamma) 2178314075921455 m001 1/exp(Robbin)*Lehmer^2*Zeta(3) 2178314084760767 m009 (1/3*Psi(1,1/3)-6)/(Psi(1,1/3)+2) 2178314089525686 m001 -GAMMA(1/6)/(-exp(1/exp(1))+4) 2178314093384310 m001 Porter^2*ln(FransenRobinson)^2*GAMMA(7/24)^2 2178314094545385 m001 1/gamma^2*LandauRamanujan^2/ln(sqrt(5)) 2178314094880467 m001 (Kac-Magata)/(3^(1/3)+Zeta(1,-1)) 2178314099130659 m001 (Shi(1)+cos(1))/(Kac+OneNinth) 2178314099491897 a007 Real Root Of -131*x^4+12*x^3+17*x^2-936*x+954 2178314101013405 m005 (1/2*exp(1)+1/7)/(5/9*3^(1/2)-3/11) 2178314105178160 a007 Real Root Of 376*x^4+330*x^3-957*x^2+504*x+584 2178314106900847 r005 Im(z^2+c),c=-49/110+2/55*I,n=24 2178314107872162 m001 (Bloch-OneNinth)/(Riemann1stZero+Sierpinski) 2178314112647151 k009 concat of cont frac of 2178314113926929 l006 ln(605/5343) 2178314114378587 r005 Re(z^2+c),c=27/82+2/9*I,n=47 2178314129581977 m001 (-GAMMA(11/12)+Landau)/(2^(1/2)-Zeta(1,2)) 2178314131414331 k009 concat of cont frac of 2178314132417388 a007 Real Root Of -503*x^4-991*x^3-299*x^2-706*x+963 2178314141045067 k001 Champernowne real with 963*n+1215 2178314143727535 a007 Real Root Of -83*x^4+428*x^3-541*x^2+426*x-916 2178314148510484 m008 (Pi+1/4)/(5*Pi^3+2/3) 2178314151241112 k008 concat of cont frac of 2178314151671398 r005 Im(z^2+c),c=-33/122+14/43*I,n=11 2178314154269075 r005 Im(z^2+c),c=-17/20+4/25*I,n=22 2178314160120205 m004 5*Pi+(8*Csc[Sqrt[5]*Pi])/Log[Sqrt[5]*Pi] 2178314168040453 m001 (3^(1/2)-Niven)/(-OneNinth+Totient) 2178314173438231 m001 sin(1/12*Pi)^BesselJ(0,1)+MasserGramainDelta 2178314178759655 m005 (-2/3+1/4*5^(1/2))/(16/55+1/11*5^(1/2)) 2178314187113228 a001 2971215073/5778*322^(1/4) 2178314189954966 r005 Re(z^2+c),c=-31/122+8/63*I,n=4 2178314191949637 a001 11/1346269*34^(27/29) 2178314203832233 a007 Real Root Of 641*x^4+976*x^3-475*x^2+507*x-986 2178314206553933 m001 (Tribonacci+ZetaQ(4))/(Ei(1,1)+Kac) 2178314214203999 r009 Re(z^3+c),c=-3/82+7/12*I,n=44 2178314222603783 r005 Re(z^2+c),c=23/70+13/55*I,n=18 2178314224523585 h001 (7/8*exp(2)+4/5)/(9/10*exp(1)+8/9) 2178314235150351 m005 (1/2*exp(1)-3)/(2/9*gamma+5/8) 2178314240025509 m001 (LambertW(1)+Pi^(1/2))^Catalan 2178314240025509 m001 (LambertW(1)+sqrt(Pi))^Catalan 2178314241065070 k001 Champernowne real with 964*n+1214 2178314241343202 h001 (-3*exp(3/2)-4)/(-4*exp(-3)+1) 2178314242841451 a001 7778742049/15127*322^(1/4) 2178314250398909 m005 (1/2*3^(1/2)+7/9)/(1/5*Catalan+4/7) 2178314250972089 a001 20365011074/39603*322^(1/4) 2178314252158333 a001 53316291173/103682*322^(1/4) 2178314252331404 a001 139583862445/271443*322^(1/4) 2178314252356655 a001 365435296162/710647*322^(1/4) 2178314252360339 a001 956722026041/1860498*322^(1/4) 2178314252360876 a001 2504730781961/4870847*322^(1/4) 2178314252360955 a001 6557470319842/12752043*322^(1/4) 2178314252360973 a001 10610209857723/20633239*322^(1/4) 2178314252361003 a001 4052739537881/7881196*322^(1/4) 2178314252361208 a001 1548008755920/3010349*322^(1/4) 2178314252362616 a001 514229*322^(1/4) 2178314252372260 a001 225851433717/439204*322^(1/4) 2178314252438368 a001 86267571272/167761*322^(1/4) 2178314252891473 a001 32951280099/64079*322^(1/4) 2178314255997100 a001 12586269025/24476*322^(1/4) 2178314261067743 a001 439204*514229^(11/17) 2178314261688919 m005 (1/3*3^(1/2)+2/11)/(3/8*2^(1/2)-2/11) 2178314269602434 m001 (-PlouffeB+ZetaQ(4))/(2^(1/3)+Catalan) 2178314274180215 m001 (GAMMA(5/6)+Magata)/(ln(Pi)-Zeta(1,2)) 2178314277283388 a001 4807526976/9349*322^(1/4) 2178314285067028 r005 Im(z^2+c),c=-1/46+15/61*I,n=8 2178314294235941 l006 ln(1038/9167) 2178314308059539 r009 Im(z^3+c),c=-5/12+4/39*I,n=21 2178314310757369 a001 305/930249*18^(19/29) 2178314311431116 k006 concat of cont frac of 2178314312512331 k008 concat of cont frac of 2178314318420072 a007 Real Root Of 246*x^4-906*x^3+301*x^2-677*x+142 2178314322200710 a001 7/17711*55^(23/54) 2178314322289050 a007 Real Root Of -267*x^4+175*x^3-74*x^2+969*x+217 2178314329465720 a001 305/2*18^(23/25) 2178314329473904 h001 (1/2*exp(2)+4/7)/(1/4*exp(2)+1/9) 2178314341085073 k001 Champernowne real with 965*n+1213 2178314345379770 r005 Re(z^2+c),c=-8/31+5/41*I,n=15 2178314346628934 m001 1/KhintchineLevy*ln(CareFree)/FeigenbaumKappa 2178314376366054 m001 (CopelandErdos+LaplaceLimit)/ThueMorse 2178314393437443 r005 Im(z^2+c),c=-35/31+7/29*I,n=22 2178314402198579 m001 (Psi(1,1/3)+Zeta(3))/(-KhinchinLevy+Niven) 2178314404611053 a007 Real Root Of 341*x^4+484*x^3-726*x^2-616*x-572 2178314405605735 a001 4870847/987*34^(8/19) 2178314406618276 a007 Real Root Of -89*x^4+169*x^3+724*x^2-282*x-299 2178314411217148 m001 ((1+3^(1/2))^(1/2))^(Zeta(3)/StronglyCareFree) 2178314423181787 a001 1836311903/3571*322^(1/4) 2178314427980818 m001 (exp(1)+ln(3))/(-GAMMA(11/12)+FransenRobinson) 2178314431254376 m001 exp(PrimesInBinary)^2/Paris*Zeta(1,2) 2178314431421111 r005 Im(z^2+c),c=23/86+4/53*I,n=43 2178314441105076 k001 Champernowne real with 966*n+1212 2178314445117292 m001 (FeigenbaumC-Trott2nd)/(Zeta(3)-Artin) 2178314446748050 m001 1/GAMMA(5/12)*ErdosBorwein/ln(cos(Pi/12)) 2178314457094707 a001 4/3*3^(21/47) 2178314469840539 r005 Re(z^2+c),c=-4/23+23/53*I,n=52 2178314471043149 a007 Real Root Of 522*x^4+973*x^3+246*x^2+966*x-759 2178314475207937 m002 -Pi^3/3+Pi^3*Coth[Pi]+Tanh[Pi] 2178314480057920 r002 46th iterates of z^2 + 2178314488537676 r009 Re(z^3+c),c=-39/122+21/38*I,n=4 2178314495679853 m001 (Lehmer+2/3)/(exp(gamma)+4) 2178314502664702 a001 1364/28657*28657^(19/51) 2178314508218096 m008 (1/6*Pi^3-1)/(4/5*Pi-3/5) 2178314512272727 a007 Real Root Of -623*x^4-901*x^3+811*x^2+28*x+927 2178314513024202 a007 Real Root Of -711*x^4-978*x^3+883*x^2-616*x+368 2178314527092821 m005 (1/3*gamma+3/7)/(5/7*exp(1)+10/11) 2178314528075451 m005 (1/2*2^(1/2)-2/5)/(3/11*5^(1/2)+4/5) 2178314534989192 m001 (ErdosBorwein-Paris)^Ei(1) 2178314536766278 a003 cos(Pi*1/14)-cos(Pi*9/92) 2178314538293197 l006 ln(604/751) 2178314541125079 k001 Champernowne real with 967*n+1211 2178314541549401 a007 Real Root Of 23*x^4+517*x^3+350*x^2+14*x-520 2178314542157448 a007 Real Root Of 303*x^4+914*x^3+875*x^2+958*x+560 2178314546168802 l006 ln(433/3824) 2178314552967665 p003 LerchPhi(1/8,2,163/238) 2178314553115612 a007 Real Root Of -249*x^4-187*x^3+245*x^2-998*x+337 2178314554598748 a007 Real Root Of 117*x^4+8*x^3-708*x^2-89*x+614 2178314555732890 a001 165580141/521*521^(4/13) 2178314563772262 a007 Real Root Of -112*x^4+202*x^3+782*x^2-460*x-103 2178314565823273 m001 1/exp(Catalan)^2*CopelandErdos*gamma 2178314566164508 r009 Im(z^3+c),c=-11/32+7/45*I,n=16 2178314567977395 a007 Real Root Of -377*x^4-739*x^3-56*x^2-110*x+876 2178314571510672 a007 Real Root Of 427*x^4+890*x^3-234*x^2-81*x+519 2178314576653477 m001 (ln(3)-FeigenbaumAlpha)/(Mills-Robbin) 2178314576821416 l006 ln(9218/9421) 2178314580951468 m001 (2^(1/3)-Ei(1,1))/(gamma(3)+PlouffeB) 2178314585286907 m005 (1/2*3^(1/2)-5)/(7/11*3^(1/2)-3) 2178314587893879 a007 Real Root Of 900*x^4+21*x^3-172*x^2-285*x+68 2178314588464374 r009 Re(z^3+c),c=-10/29+30/61*I,n=23 2178314588924957 r005 Re(z^2+c),c=15/52+6/31*I,n=31 2178314594761451 m001 1/exp(Niven)^2/CareFree/Porter^2 2178314610701141 a007 Real Root Of -450*x^4-496*x^3+935*x^2+120*x+830 2178314619547772 a001 64079/8*5^(23/37) 2178314631029368 r002 13th iterates of z^2 + 2178314639336065 m001 (Shi(1)-Zeta(5))/(-BesselI(1,1)+Bloch) 2178314639935328 m001 (GAMMA(17/24)-ArtinRank2)/(Magata-Rabbit) 2178314641145082 k001 Champernowne real with 968*n+1210 2178314643942153 m001 1/(3^(1/3))^2/ln(FeigenbaumD)/sqrt(5) 2178314648324938 a007 Real Root Of -904*x^4+624*x^3+198*x^2+235*x-65 2178314655199004 m001 (GAMMA(19/24)+Riemann3rdZero)/Zeta(3) 2178314668337379 r005 Re(z^2+c),c=-7/10+10/113*I,n=2 2178314683257813 m001 1/ln(GAMMA(2/3))/CareFree/arctan(1/2)^2 2178314685568333 m001 (TreeGrowth2nd+ZetaP(4))/(exp(Pi)+Stephens) 2178314685738403 a007 Real Root Of 445*x^4+469*x^3-817*x^2+202*x-855 2178314688686333 a001 165580141/843*322^(5/12) 2178314691273785 r009 Re(z^3+c),c=-1/25+27/40*I,n=58 2178314695293957 a007 Real Root Of 37*x^4-456*x^3-493*x^2-999*x+22 2178314700718624 r009 Re(z^3+c),c=-17/44+19/54*I,n=3 2178314708292645 a001 2207*1836311903^(11/17) 2178314709817188 r005 Re(z^2+c),c=23/70+9/40*I,n=60 2178314712716173 r009 Re(z^3+c),c=-37/106+1/2*I,n=51 2178314715157192 m001 (Gompertz+Otter)/(3^(1/2)-Ei(1)) 2178314729132320 k002 Champernowne real with 179/2*n^2-423/2*n+143 2178314730404330 r009 Re(z^3+c),c=-3/82+7/12*I,n=42 2178314739438602 r005 Re(z^2+c),c=-7/38+11/27*I,n=11 2178314741165085 k001 Champernowne real with 969*n+1209 2178314749321212 a007 Real Root Of -69*x^4+657*x^3-957*x^2+88*x-888 2178314757841171 m005 (1/2*Pi+4/9)/(1/18+7/18*5^(1/2)) 2178314759732270 a001 7331474697802/17*2504730781961^(18/23) 2178314759981118 r005 Re(z^2+c),c=-4/23+23/53*I,n=55 2178314760189950 a007 Real Root Of 309*x^4+144*x^3-917*x^2+301*x-462 2178314770860669 r005 Im(z^2+c),c=-83/114+9/50*I,n=3 2178314776469623 m001 exp(GAMMA(5/24))^2/Riemann2ndZero^2*Zeta(1/2) 2178314778206287 l006 ln(1127/9953) 2178314780769012 m001 (3^(1/2)-Psi(1,1/3))/(-sin(1)+GAMMA(3/4)) 2178314782167586 a007 Real Root Of 233*x^4+509*x^3+275*x^2+347*x-534 2178314782295782 h001 (-8*exp(3)+9)/(-2*exp(3/2)+2) 2178314791323298 a007 Real Root Of -418*x^4-460*x^3+146*x^2+692*x+15 2178314792509947 r005 Re(z^2+c),c=-65/122+23/42*I,n=58 2178314804896751 m001 (-Conway+KomornikLoreti)/(exp(Pi)+Zeta(1,2)) 2178314805163011 m001 (Sierpinski+Tetranacci)/(BesselJ(0,1)+Mills) 2178314805641724 m001 (KhinchinLevy+MasserGramain)^GAMMA(17/24) 2178314807306547 m001 PrimesInBinary/Conway/Zeta(1/2) 2178314822425921 m005 (1/2*Zeta(3)+4/11)/(1/9*2^(1/2)+2/7) 2178314826910516 q001 667/3062 2178314828870913 m005 (7/8+1/4*5^(1/2))/(3/7*5^(1/2)-3/10) 2178314840384208 a001 341/36*2504730781961^(4/21) 2178314841185088 k001 Champernowne real with 970*n+1208 2178314844093047 a007 Real Root Of 773*x^4-349*x^3-472*x^2-389*x+109 2178314851213598 r005 Im(z^2+c),c=41/98+9/46*I,n=18 2178314859939581 m001 GAMMA(1/3)^2/Porter/exp(cos(Pi/5)) 2178314867588671 r009 Re(z^3+c),c=-37/110+22/47*I,n=25 2178314871993180 m001 (Zeta(5)-GAMMA(11/12))/(GolombDickman-Rabbit) 2178314880028392 r005 Re(z^2+c),c=-4/23+23/53*I,n=58 2178314884264312 m001 1/Catalan^2/exp(BesselK(0,1))/Ei(1)^2 2178314888026755 a005 (1/cos(5/167*Pi))^1735 2178314900795209 m005 (1/2*3^(1/2)-9/10)/(8/11*3^(1/2)+3/10) 2178314914604286 r009 Im(z^3+c),c=-29/50+27/59*I,n=51 2178314916409969 r009 Re(z^3+c),c=-13/114+49/61*I,n=52 2178314922978927 l006 ln(694/6129) 2178314925186436 r005 Re(z^2+c),c=-4/23+23/53*I,n=61 2178314929709520 m005 (1/2*3^(1/2)-5/6)/(5*Pi-7/10) 2178314929790347 r005 Re(z^2+c),c=-4/23+23/53*I,n=60 2178314933465036 r005 Re(z^2+c),c=-4/23+23/53*I,n=63 2178314940306354 r005 Re(z^2+c),c=-4/23+23/53*I,n=64 2178314941205091 k001 Champernowne real with 971*n+1207 2178314941229157 r005 Re(z^2+c),c=-4/23+23/53*I,n=57 2178314952448677 m001 Paris*exp(Bloch)*GAMMA(19/24)^2 2178314957785720 m001 1/Zeta(9)*ln(Tribonacci)^2*sin(Pi/5) 2178314969656551 r005 Re(z^2+c),c=-4/23+23/53*I,n=62 2178314971069249 a008 Real Root of x^4-x^3+8*x^2-12*x-24 2178314976702585 p004 log(26821/3037) 2178314976739521 m001 Chi(1)+sin(1)-Pi*csc(1/24*Pi)/GAMMA(23/24) 2178314981701626 m006 (1/4*ln(Pi)+3/4)/(3/5/Pi-2/3) 2178314982295371 r002 20th iterates of z^2 + 2178314988379543 m001 (Mills-ZetaP(3))/(GAMMA(2/3)-GaussAGM) 2178315001392801 m005 (5/6*Pi+5)/(4*Catalan-1/6) 2178315002652206 r005 Re(z^2+c),c=-4/23+23/53*I,n=59 2178315005828961 r005 Re(z^2+c),c=-23/90+4/33*I,n=4 2178315006748036 r002 12th iterates of z^2 + 2178315007352786 a007 Real Root Of 125*x^4+154*x^3-503*x^2-595*x-132 2178315013211011 k009 concat of cont frac of 2178315015470632 r005 Re(z^2+c),c=-4/23+23/53*I,n=54 2178315015681259 a007 Real Root Of -300*x^4-425*x^3+556*x^2+356*x+499 2178315031373202 m006 (4/5*exp(Pi)-5/6)/(1/6*Pi^2-5/6) 2178315033434290 m001 sin(1)/exp(-1/2*Pi)*ZetaQ(2) 2178315040250282 r005 Re(z^2+c),c=9/70+29/48*I,n=9 2178315041088239 m001 (ln(3)-gamma(2))/(FeigenbaumAlpha+Sierpinski) 2178315041225094 k001 Champernowne real with 972*n+1206 2178315050549597 m005 (1/2*3^(1/2)+1)/(4*Pi-4) 2178315050836784 m001 (Kac+Sierpinski)/(BesselI(0,1)+exp(-1/2*Pi)) 2178315066027837 r005 Re(z^2+c),c=-4/23+23/53*I,n=56 2178315078135071 a001 322/4181*8^(1/2) 2178315082570124 m008 (2/3*Pi^6-4)/(3*Pi^4+1/6) 2178315087752279 r005 Re(z^2+c),c=-4/23+23/53*I,n=47 2178315088023866 m001 (Catalan-DuboisRaymond)/(ErdosBorwein+Niven) 2178315088377786 a007 Real Root Of 856*x^4-505*x^3+213*x^2-270*x+52 2178315093825774 l006 ln(955/8434) 2178315097091839 a001 73681302247/89*46368^(7/23) 2178315097153510 a001 2537720636/89*2971215073^(7/23) 2178315098032524 m001 (-Thue+ZetaQ(4))/(BesselK(0,1)-Trott2nd) 2178315103260134 a001 1/72*(1/2*5^(1/2)+1/2)^5*4^(1/4) 2178315111252112 k009 concat of cont frac of 2178315112111512 k009 concat of cont frac of 2178315112813867 h001 (4/7*exp(2)+5/12)/(3/4*exp(1)+1/11) 2178315113811653 a007 Real Root Of -328*x^4-217*x^3+968*x^2-280*x-61 2178315114575821 m001 Khinchin*Niven/Riemann2ndZero 2178315116082714 r005 Im(z^2+c),c=-17/42+23/63*I,n=56 2178315116111134 k006 concat of cont frac of 2178315120504955 r009 Im(z^3+c),c=-11/32+7/45*I,n=22 2178315131900934 r005 Im(z^2+c),c=-11/14+23/213*I,n=42 2178315141245097 k001 Champernowne real with 973*n+1205 2178315143508616 r009 Im(z^3+c),c=-11/32+7/45*I,n=23 2178315145256452 h001 (-4*exp(4)-9)/(-7*exp(5)-5) 2178315145801835 a001 341/2*6765^(1/36) 2178315153998914 m004 -125*Pi-3125*Sqrt[5]*Pi+Cosh[Sqrt[5]*Pi] 2178315161478053 r002 46th iterates of z^2 + 2178315165723341 r005 Re(z^2+c),c=-4/23+23/53*I,n=53 2178315173037408 a001 267914296/521*521^(3/13) 2178315174778650 g007 Psi(2,8/11)+Psi(2,4/9)+Psi(2,2/7)-Psi(2,2/11) 2178315176818773 a003 sin(Pi*25/103)-sin(Pi*41/113) 2178315189461812 r009 Im(z^3+c),c=-11/32+7/45*I,n=24 2178315190552685 r009 Im(z^3+c),c=-11/32+7/45*I,n=28 2178315191163288 r009 Im(z^3+c),c=-11/32+7/45*I,n=27 2178315191442822 r009 Im(z^3+c),c=-11/32+7/45*I,n=29 2178315191747040 r009 Im(z^3+c),c=-11/32+7/45*I,n=33 2178315191757935 r009 Im(z^3+c),c=-11/32+7/45*I,n=34 2178315191770268 r009 Im(z^3+c),c=-11/32+7/45*I,n=39 2178315191770329 r009 Im(z^3+c),c=-11/32+7/45*I,n=38 2178315191770549 r009 Im(z^3+c),c=-11/32+7/45*I,n=40 2178315191770610 r009 Im(z^3+c),c=-11/32+7/45*I,n=44 2178315191770614 r009 Im(z^3+c),c=-11/32+7/45*I,n=45 2178315191770617 r009 Im(z^3+c),c=-11/32+7/45*I,n=49 2178315191770617 r009 Im(z^3+c),c=-11/32+7/45*I,n=50 2178315191770617 r009 Im(z^3+c),c=-11/32+7/45*I,n=51 2178315191770617 r009 Im(z^3+c),c=-11/32+7/45*I,n=55 2178315191770617 r009 Im(z^3+c),c=-11/32+7/45*I,n=56 2178315191770617 r009 Im(z^3+c),c=-11/32+7/45*I,n=54 2178315191770617 r009 Im(z^3+c),c=-11/32+7/45*I,n=60 2178315191770617 r009 Im(z^3+c),c=-11/32+7/45*I,n=61 2178315191770617 r009 Im(z^3+c),c=-11/32+7/45*I,n=62 2178315191770617 r009 Im(z^3+c),c=-11/32+7/45*I,n=64 2178315191770617 r009 Im(z^3+c),c=-11/32+7/45*I,n=63 2178315191770617 r009 Im(z^3+c),c=-11/32+7/45*I,n=59 2178315191770617 r009 Im(z^3+c),c=-11/32+7/45*I,n=57 2178315191770617 r009 Im(z^3+c),c=-11/32+7/45*I,n=58 2178315191770617 r009 Im(z^3+c),c=-11/32+7/45*I,n=53 2178315191770617 r009 Im(z^3+c),c=-11/32+7/45*I,n=52 2178315191770618 r009 Im(z^3+c),c=-11/32+7/45*I,n=48 2178315191770618 r009 Im(z^3+c),c=-11/32+7/45*I,n=46 2178315191770618 r009 Im(z^3+c),c=-11/32+7/45*I,n=47 2178315191770619 r009 Im(z^3+c),c=-11/32+7/45*I,n=43 2178315191770653 r009 Im(z^3+c),c=-11/32+7/45*I,n=42 2178315191770670 r009 Im(z^3+c),c=-11/32+7/45*I,n=41 2178315191771108 r009 Im(z^3+c),c=-11/32+7/45*I,n=35 2178315191771674 r009 Im(z^3+c),c=-11/32+7/45*I,n=37 2178315191773675 r009 Im(z^3+c),c=-11/32+7/45*I,n=36 2178315191786863 r009 Im(z^3+c),c=-11/32+7/45*I,n=32 2178315191902237 r009 Im(z^3+c),c=-11/32+7/45*I,n=31 2178315191921005 r009 Im(z^3+c),c=-11/32+7/45*I,n=30 2178315196127742 r009 Im(z^3+c),c=-11/32+7/45*I,n=26 2178315198475529 m004 -E^(Sqrt[5]*Pi)/2+125*Pi+3125*Sqrt[5]*Pi 2178315201809604 r009 Im(z^3+c),c=-11/32+7/45*I,n=25 2178315205568958 a008 Real Root of (2+2*x+5*x^2+3*x^3+6*x^4-4*x^5) 2178315214249887 r005 Re(z^2+c),c=-65/82+6/61*I,n=52 2178315219115122 k007 concat of cont frac of 2178315222121152 k006 concat of cont frac of 2178315230488778 m001 (-Artin+HardyLittlewoodC3)/(5^(1/2)-Zeta(5)) 2178315236594132 m005 (1/2*Catalan-7/10)/(8/9*3^(1/2)-3/7) 2178315241265100 k001 Champernowne real with 974*n+1204 2178315242952144 m004 -125*Pi-3125*Sqrt[5]*Pi+Sinh[Sqrt[5]*Pi] 2178315250722035 m005 (1/2*2^(1/2)-5)/(9/10*Zeta(3)+8/9) 2178315255556838 r005 Re(z^2+c),c=-4/23+23/53*I,n=50 2178315257108489 m001 GAMMA(13/24)^(Catalan/LandauRamanujan2nd) 2178315268109732 r005 Im(z^2+c),c=-25/26+13/71*I,n=6 2178315274064559 r009 Re(z^3+c),c=-11/30+19/35*I,n=54 2178315274839772 m005 (1/2*Pi+10/11)/(7/11*Catalan+5/9) 2178315276745920 m001 cos(1/5*Pi)*BesselI(0,2)^Zeta(3) 2178315276745920 m001 cos(Pi/5)*BesselI(0,2)^Zeta(3) 2178315284751438 r009 Im(z^3+c),c=-11/32+7/45*I,n=21 2178315291208995 r005 Re(z^2+c),c=-4/23+23/53*I,n=51 2178315293521621 m001 (Gompertz-Tribonacci*ZetaR(2))/ZetaR(2) 2178315306122095 r005 Im(z^2+c),c=-107/110+8/35*I,n=61 2178315306184615 a007 Real Root Of 795*x^4-946*x^3-646*x^2-720*x+16 2178315310994323 r005 Re(z^2+c),c=-27/106+2/15*I,n=6 2178315311084338 m001 ReciprocalFibonacci/(Landau-ArtinRank2) 2178315320307939 r009 Re(z^3+c),c=-43/118+29/52*I,n=33 2178315340381986 r005 Im(z^2+c),c=-17/42+23/63*I,n=53 2178315341285103 k001 Champernowne real with 975*n+1203 2178315354758767 r005 Re(z^2+c),c=-17/122+28/55*I,n=37 2178315357639149 m001 1/ln(Paris)/FeigenbaumB/cosh(1)^2 2178315368948801 a007 Real Root Of -49*x^4-266*x^3-520*x^2+21*x+867 2178315370395049 a001 5778/55*9227465^(10/21) 2178315375467891 r005 Im(z^2+c),c=-5/6+41/195*I,n=34 2178315382299970 m001 ln(GAMMA(13/24))/GAMMA(11/24)/sinh(1) 2178315385847737 r005 Re(z^2+c),c=37/114+8/35*I,n=32 2178315391643924 a007 Real Root Of 479*x^4-436*x^3+699*x^2-956*x-247 2178315398927291 r002 63th iterates of z^2 + 2178315400296609 m005 (1/2*exp(1)-1/12)/(4*2^(1/2)+1/5) 2178315417194241 a007 Real Root Of 311*x^4+249*x^3-642*x^2+383*x-548 2178315423184814 a001 701408733/1364*322^(1/4) 2178315441305106 k001 Champernowne real with 976*n+1202 2178315441530872 a007 Real Root Of 608*x^4-900*x^3+792*x^2-513*x-160 2178315443000194 a001 121393/7*3^(11/53) 2178315443754108 r005 Im(z^2+c),c=1/20+36/55*I,n=33 2178315446945682 a001 29/5*17711^(20/33) 2178315456544633 r005 Im(z^2+c),c=-125/106+1/35*I,n=49 2178315456575721 s002 sum(A017770[n]/((2^n+1)/n),n=1..infinity) 2178315467552123 a007 Real Root Of 121*x^4+249*x^3+172*x^2+313*x-285 2178315472135954 a001 2178311+2*5^(1/2) 2178315478223100 r005 Im(z^2+c),c=-41/34+27/83*I,n=4 2178315478377816 a001 4/2178309*2584^(1/46) 2178315500153100 m009 (3/4*Psi(1,3/4)-4/5)/(24*Catalan+3*Pi^2-4/5) 2178315500781981 m001 Conway/(Landau^sin(1)) 2178315503120871 a001 3571/75025*28657^(19/51) 2178315507144198 r005 Re(z^2+c),c=-33/26+14/127*I,n=10 2178315508259939 a007 Real Root Of -186*x^4+531*x^3-724*x^2+591*x+169 2178315510756172 r009 Re(z^3+c),c=-3/82+7/12*I,n=40 2178315511906061 r005 Re(z^2+c),c=13/110+37/62*I,n=9 2178315512508415 a003 cos(Pi*21/113)/cos(Pi*20/41) 2178315523420067 a007 Real Root Of 502*x^4+726*x^3-651*x^2-13*x-738 2178315524797474 m001 Trott*Robbin^2/exp(GAMMA(7/24)) 2178315526723061 r009 Re(z^3+c),c=-43/122+30/59*I,n=39 2178315528380272 a007 Real Root Of -508*x^4+455*x^3+407*x^2+983*x-237 2178315541325109 k001 Champernowne real with 977*n+1201 2178315543552812 r005 Im(z^2+c),c=-45/32+16/45*I,n=3 2178315545820781 a005 (1/cos(7/187*Pi))^1109 2178315548108055 l006 ln(261/2305) 2178315551268460 r005 Im(z^2+c),c=1/60+3/13*I,n=9 2178315555935800 a001 701408733/2207*322^(1/3) 2178315559875255 a007 Real Root Of -466*x^4-363*x^3-426*x^2+460*x-1 2178315572288403 m001 1/GAMMA(19/24)*ln(Khintchine)*sin(Pi/12) 2178315577452096 r009 Im(z^3+c),c=-11/32+7/45*I,n=19 2178315585281897 r005 Re(z^2+c),c=-19/102+23/57*I,n=25 2178315593482052 a007 Real Root Of -700*x^3-314*x^2-385*x+106 2178315595506865 r002 57th iterates of z^2 + 2178315603863666 r002 19th iterates of z^2 + 2178315633489750 q001 882/4049 2178315641345112 k001 Champernowne real with 978*n+1200 2178315642306987 m008 (5/6*Pi^3+1)/(2/5*Pi^5+4/5) 2178315646781166 a007 Real Root Of 324*x^4+630*x^3+226*x^2+710*x-309 2178315647197087 r005 Re(z^2+c),c=13/40+15/64*I,n=31 2178315649085459 a001 9349/196418*28657^(19/51) 2178315650450434 r009 Im(z^3+c),c=-7/15+1/21*I,n=63 2178315663666659 r009 Im(z^3+c),c=-11/32+7/45*I,n=20 2178315664518123 r009 Re(z^3+c),c=-1/29+29/41*I,n=33 2178315667395135 m001 (QuadraticClass-Sarnak)/(FeigenbaumB-OneNinth) 2178315668471664 m001 (Grothendieck+MertensB2)/(ln(3)+DuboisRaymond) 2178315670381405 a001 24476/514229*28657^(19/51) 2178315675408696 a001 39603/832040*28657^(19/51) 2178315676799944 l003 KelvinBei(0,85/91) 2178315683356674 m002 -6+Pi^4-Pi^5-3*ProductLog[Pi] 2178315683543024 a001 15127/317811*28657^(19/51) 2178315688011777 a007 Real Root Of -532*x^4-694*x^3+918*x^2-499*x-638 2178315692541401 m001 Paris^2/exp(MadelungNaCl)^2/FeigenbaumKappa 2178315698940155 a001 4181/322*199^(30/31) 2178315700760138 m005 (1/2*Catalan+1/11)/(8/9*Pi-3/11) 2178315705116425 s002 sum(A022399[n]/(n^3*2^n-1),n=1..infinity) 2178315708203932 a001 2178309+3*5^(1/2) 2178315709771317 m001 Sierpinski/exp(Paris)/Zeta(5)^2 2178315709984170 m004 (20*Pi)/3+Tan[Sqrt[5]*Pi]^2 2178315711637380 a007 Real Root Of 48*x^4-414*x^3+705*x^2-313*x+535 2178315715499361 a003 sin(Pi*11/86)*sin(Pi*22/117) 2178315731863405 a007 Real Root Of -715*x^4+235*x^3-483*x^2+294*x+91 2178315732132921 k002 Champernowne real with 90*n^2-213*n+144 2178315735017829 a001 10946/3*18^(34/55) 2178315739296535 a001 5778/121393*28657^(19/51) 2178315741365115 k001 Champernowne real with 979*n+1199 2178315742150427 a007 Real Root Of -16*x^4-337*x^3+234*x^2-333*x+894 2178315742648496 a007 Real Root Of -386*x^4-419*x^3+496*x^2-508*x+900 2178315743556668 r005 Im(z^2+c),c=-8/9+19/106*I,n=22 2178315748805653 m001 Ei(1)+MertensB3-Riemann3rdZero 2178315760161015 m001 (Zeta(5)-exp(1/Pi))/(Pi^(1/2)-Tetranacci) 2178315765771965 s002 sum(A281134[n]/((10^n-1)/n),n=1..infinity) 2178315770189298 m001 ErdosBorwein^(HardyLittlewoodC3*Sierpinski) 2178315775326264 s002 sum(A134171[n]/((2^n-1)/n),n=1..infinity) 2178315785584466 a007 Real Root Of 250*x^4+214*x^3-816*x^2+241*x+980 2178315790342102 a001 433494437/521*521^(2/13) 2178315794176091 m005 (1/3*Pi-4/5)/(2/3*gamma+3/4) 2178315795286466 m001 (Ei(1)+Backhouse)/(MertensB1-OneNinth) 2178315796144933 m001 (exp(-1/2*Pi)+Porter)/(ln(gamma)-Ei(1,1)) 2178315810722679 m001 (FransenRobinson+Paris)/(CareFree-Chi(1)) 2178315813604258 a001 521/987*13^(21/38) 2178315827884572 a007 Real Root Of 284*x^4-707*x^3+46*x^2-890*x-204 2178315832686223 p004 log(26927/3049) 2178315841385118 k001 Champernowne real with 980*n+1198 2178315843952475 a001 3571*6557470319842^(9/17) 2178315854098360 a001 1328772671/610 2178315868290497 l006 ln(8219/8400) 2178315871205286 m005 (1/2*gamma-9/10)/(4*Catalan-6/7) 2178315873745883 r005 Re(z^2+c),c=-7/40+22/51*I,n=45 2178315903611821 r005 Re(z^2+c),c=-19/78+21/40*I,n=9 2178315906308551 m001 GAMMA(5/6)+GAMMA(23/24)^Ei(1) 2178315907644166 a001 329*9349^(51/53) 2178315910599484 b008 18/13+2^(-1/3) 2178315918052800 m001 (FibonacciFactorial+ZetaP(2))/(ln(Pi)-Artin) 2178315931020144 l006 ln(1133/10006) 2178315932182510 a001 1346269/521*1364^(14/15) 2178315937902949 a001 1836311903/5778*322^(1/3) 2178315941405121 k001 Champernowne real with 981*n+1197 2178315947299401 p004 log(35251/28351) 2178315953726124 m005 (1/3*3^(1/2)+1/6)/(7/8*Pi+2/3) 2178315978832614 m001 exp(GAMMA(23/24))/FibonacciFactorial^2*sinh(1) 2178315985929710 p003 LerchPhi(1/512,5,184/215) 2178315986285930 a001 9349/144*102334155^(4/21) 2178315988624753 r009 Re(z^3+c),c=-7/62+50/61*I,n=34 2178315991711687 a007 Real Root Of -546*x^4-958*x^3+162*x^2-761*x-35 2178315993631216 a001 686789568/2161*322^(1/3) 2178316000000000 r002 3th iterates of z^2 + 2178316001761861 a001 12586269025/39603*322^(1/3) 2178316002948106 a001 32951280099/103682*322^(1/3) 2178316003121177 a001 86267571272/271443*322^(1/3) 2178316003146428 a001 317811*322^(1/3) 2178316003150112 a001 591286729879/1860498*322^(1/3) 2178316003150649 a001 1548008755920/4870847*322^(1/3) 2178316003150728 a001 4052739537881/12752043*322^(1/3) 2178316003150739 a001 1515744265389/4769326*322^(1/3) 2178316003150746 a001 6557470319842/20633239*322^(1/3) 2178316003150776 a001 2504730781961/7881196*322^(1/3) 2178316003150982 a001 956722026041/3010349*322^(1/3) 2178316003152389 a001 365435296162/1149851*322^(1/3) 2178316003162034 a001 139583862445/439204*322^(1/3) 2178316003228141 a001 53316291173/167761*322^(1/3) 2178316003681246 a001 20365011074/64079*322^(1/3) 2178316006786876 a001 7778742049/24476*322^(1/3) 2178316007100118 m001 (1-BesselI(0,1))/(ln(Pi)+ZetaP(4)) 2178316007397720 m005 (1/2*Catalan-1/3)/(1/9*gamma-7/11) 2178316010007258 p004 log(33749/27143) 2178316010237141 a001 2178309/521*1364^(13/15) 2178316010632261 m001 (gamma+ln(5))/(-Backhouse+ZetaP(2)) 2178316011010465 a007 Real Root Of -823*x^4+178*x^3-835*x^2+274*x+103 2178316011936423 m001 (BesselI(0,1)+GAMMA(13/24))/(Thue+Weierstrass) 2178316014774286 a001 20633239*514229^(9/17) 2178316014802983 a001 271443*1836311903^(9/17) 2178316015424996 a001 64079/144*4181^(4/21) 2178316028073181 a001 2971215073/9349*322^(1/3) 2178316041425124 k001 Champernowne real with 982*n+1196 2178316044573270 a003 cos(Pi*3/34)/cos(Pi*28/79) 2178316045630270 l006 ln(872/7701) 2178316046351405 m001 (2^(1/2))^ReciprocalFibonacci-GAMMA(23/24) 2178316061066909 m001 Magata/GAMMA(19/24)/MertensB3 2178316067340644 a007 Real Root Of 559*x^4+760*x^3-769*x^2+234*x-572 2178316077803889 m005 (1/2*Catalan+7/10)/(5/9*3^(1/2)-10/11) 2178316080604112 m001 1/CareFree^2/ArtinRank2/exp(Sierpinski) 2178316080788965 h001 (7/12*exp(2)+1/4)/(5/9*exp(1)+7/12) 2178316088292234 a001 3524578/521*1364^(4/5) 2178316089151363 m005 (1/3*Zeta(3)-2/3)/(7/12*5^(1/2)-1/12) 2178316089637775 r005 Re(z^2+c),c=29/78+14/47*I,n=10 2178316105569736 m001 1/exp(Ei(1))^2/Catalan^2*cos(Pi/5) 2178316108718898 a007 Real Root Of 81*x^4+111*x^3+228*x^2+585*x-484 2178316111562129 k006 concat of cont frac of 2178316121436787 a001 2207/46368*28657^(19/51) 2178316125183009 r009 Im(z^3+c),c=-25/94+10/53*I,n=13 2178316125433636 a007 Real Root Of -303*x^4+830*x^3+764*x^2+945*x-250 2178316129838057 r005 Re(z^2+c),c=-4/23+23/53*I,n=48 2178316141445127 k001 Champernowne real with 983*n+1195 2178316142766930 r009 Re(z^3+c),c=-19/56+25/41*I,n=29 2178316146917459 h001 (-9*exp(-1)-7)/(-6*exp(2)-3) 2178316151064539 r005 Im(z^2+c),c=-29/30+27/122*I,n=57 2178316151365097 r005 Re(z^2+c),c=-2/11+17/41*I,n=25 2178316166347155 a001 5702887/521*1364^(11/15) 2178316173971697 a001 1134903170/3571*322^(1/3) 2178316174951532 r005 Re(z^2+c),c=-25/98+23/51*I,n=6 2178316191231889 r005 Im(z^2+c),c=23/64+13/64*I,n=6 2178316194253666 l006 ln(8041/9998) 2178316202078454 r005 Im(z^2+c),c=-87/64+1/15*I,n=26 2178316209443261 r005 Im(z^2+c),c=-9/20+23/61*I,n=28 2178316222696019 r005 Re(z^2+c),c=-5/31+25/54*I,n=39 2178316226853648 m001 1/TwinPrimes^2*Robbin^2/exp(GAMMA(7/12)) 2178316237896712 r005 Im(z^2+c),c=-87/98+10/53*I,n=61 2178316240847914 m001 Zeta(3)/(PlouffeB^Psi(1,1/3)) 2178316241465130 k001 Champernowne real with 984*n+1194 2178316244070582 m001 (-ln(2+3^(1/2))+Tribonacci)/(exp(Pi)+Chi(1)) 2178316244402146 a001 9227465/521*1364^(2/3) 2178316258156051 l006 ln(611/5396) 2178316267469195 r009 Im(z^3+c),c=-25/94+10/53*I,n=14 2178316273966409 r005 Im(z^2+c),c=7/26+3/41*I,n=39 2178316280505252 a003 cos(Pi*23/65)/cos(Pi*10/23) 2178316282199076 m001 1/GAMMA(11/12)^2/ln(Rabbit)/Zeta(3) 2178316303087792 a007 Real Root Of 136*x^4-895*x^3+618*x^2-960*x-248 2178316305145296 a007 Real Root Of -551*x^4-568*x^3+745*x^2-948*x+935 2178316321940992 a001 341/646*2178309^(13/51) 2178316322457113 a001 14930352/521*1364^(3/5) 2178316327810754 m001 (Landau-exp(Pi))/(MertensB1+StronglyCareFree) 2178316328743384 l006 ln(7437/9247) 2178316341485133 k001 Champernowne real with 985*n+1193 2178316341819745 p001 sum(1/(551*n+482)/(10^n),n=0..infinity) 2178316351220389 p003 LerchPhi(1/100,1,35/76) 2178316351910752 m001 (ln(gamma)+gamma(2))/(Riemann3rdZero+Robbin) 2178316370292165 a007 Real Root Of -317*x^4+136*x^3-769*x^2+493*x+146 2178316375325570 a001 17711/3*24476^(31/53) 2178316378470865 r005 Re(z^2+c),c=3/17+33/59*I,n=34 2178316380001397 m001 Riemann3rdZero^2/ln(Si(Pi))^2*GAMMA(1/12)^2 2178316381357486 a001 514229/3*15127^(14/53) 2178316383315951 a001 10946/3*39603^(32/53) 2178316390364446 m001 (HardyLittlewoodC5-exp(Pi))/(-Niven+Robbin) 2178316392253332 a001 7/47*(1/2*5^(1/2)+1/2)^19*47^(5/7) 2178316393199806 m002 -6+Pi^3-5/Log[Pi]+Log[Pi] 2178316397236787 a008 Real Root of x^4-5*x^2-18*x-38 2178316400512094 a001 24157817/521*1364^(8/15) 2178316401726119 r009 Im(z^3+c),c=-25/94+10/53*I,n=18 2178316402702644 r009 Im(z^3+c),c=-25/94+10/53*I,n=17 2178316403368532 r009 Im(z^3+c),c=-25/94+10/53*I,n=19 2178316403408478 r009 Im(z^3+c),c=-25/94+10/53*I,n=22 2178316403421807 r009 Im(z^3+c),c=-25/94+10/53*I,n=23 2178316403425022 r009 Im(z^3+c),c=-25/94+10/53*I,n=26 2178316403425083 r009 Im(z^3+c),c=-25/94+10/53*I,n=27 2178316403425140 r009 Im(z^3+c),c=-25/94+10/53*I,n=31 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=30 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=32 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=35 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=36 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=39 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=40 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=44 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=43 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=45 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=48 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=49 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=52 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=53 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=57 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=56 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=58 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=61 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=62 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=64 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=63 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=60 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=59 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=55 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=54 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=51 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=50 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=47 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=46 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=42 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=41 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=38 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=37 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=34 2178316403425141 r009 Im(z^3+c),c=-25/94+10/53*I,n=33 2178316403425148 r009 Im(z^3+c),c=-25/94+10/53*I,n=29 2178316403425149 r009 Im(z^3+c),c=-25/94+10/53*I,n=28 2178316403425606 r009 Im(z^3+c),c=-25/94+10/53*I,n=25 2178316403426627 r009 Im(z^3+c),c=-25/94+10/53*I,n=24 2178316403444582 r009 Im(z^3+c),c=-25/94+10/53*I,n=21 2178316403598686 r009 Im(z^3+c),c=-25/94+10/53*I,n=20 2178316405375800 a007 Real Root Of -242*x^4-580*x^3-194*x^2-512*x-741 2178316406727997 r009 Re(z^3+c),c=-17/44+31/55*I,n=30 2178316407646971 a001 701408733/521*521^(1/13) 2178316410012230 a007 Real Root Of 268*x^4+110*x^3-575*x^2+554*x-962 2178316411113274 b008 Sqrt[2]*(1+Cos[1]) 2178316411113274 m001 (1+cos(1))*2^(1/2) 2178316411113274 m001 (1+cos(1))/(-cos(1/12*Pi)+sin(1/12*Pi)) 2178316419109714 r009 Im(z^3+c),c=-25/94+10/53*I,n=16 2178316421703833 r009 Re(z^3+c),c=-3/82+7/12*I,n=38 2178316421982472 r009 Im(z^3+c),c=-25/94+10/53*I,n=15 2178316425937421 a007 Real Root Of -394*x^4-378*x^3-452*x^2+806*x+194 2178316438308027 a007 Real Root Of -431*x^4-312*x^3+914*x^2-787*x+428 2178316439476456 a001 34111385/281*322^(1/2) 2178316441505136 k001 Champernowne real with 986*n+1192 2178316442726710 r005 Re(z^2+c),c=-13/110+11/20*I,n=56 2178316446621107 m003 1/20+Sqrt[5]/32+3*Cos[1/2+Sqrt[5]/2] 2178316450999384 l006 ln(961/8487) 2178316457995249 r005 Im(z^2+c),c=-13/14+43/210*I,n=48 2178316458195999 m005 (1/2*3^(1/2)-6/11)/(3/10*2^(1/2)-4/7) 2178316459162771 a001 4181/3*5778^(45/53) 2178316477414486 m001 Pi*(2^(1/3)*Si(Pi)-GAMMA(13/24)) 2178316478567073 a001 39088169/521*1364^(7/15) 2178316480408936 m001 Tribonacci*exp(ErdosBorwein)/BesselK(0,1) 2178316487009417 l006 ln(6833/8496) 2178316490619610 b008 1+(2*Sqrt[42])/11 2178316501099608 m001 (-exp(1/Pi)+1/3)/(exp(gamma)+3) 2178316513194669 m001 (Khinchin+Kolakoski)^GolombDickman 2178316516765892 a001 521/2*1597^(52/57) 2178316516769555 p004 log(31643/3583) 2178316517623488 m001 ZetaQ(3)^((1+3^(1/2))^(1/2))*ZetaQ(3)^ln(3) 2178316522954895 h001 (1/10*exp(1)+1/7)/(3/5*exp(1)+3/11) 2178316529387322 b008 -3+ArcSinh[Sqrt[Sin[1]]] 2178316541525139 k001 Champernowne real with 987*n+1191 2178316542291204 r009 Re(z^3+c),c=-17/54+31/64*I,n=3 2178316544122992 a007 Real Root Of 214*x^4+396*x^3-260*x^2-31*x+441 2178316549241980 r009 Re(z^3+c),c=-7/26+12/41*I,n=11 2178316553615254 a007 Real Root Of -376*x^4-423*x^3+575*x^2-921*x-641 2178316556622057 a001 63245986/521*1364^(2/5) 2178316562527389 a007 Real Root Of -922*x^4-777*x^3-181*x^2+43*x+12 2178316574216908 a007 Real Root Of -653*x^4-229*x^3-835*x^2+823*x+218 2178316577707300 a001 233/2207*2537720636^(7/9) 2178316577707300 a001 233/2207*17393796001^(5/7) 2178316577707300 a001 233/2207*312119004989^(7/11) 2178316577707300 a001 233/2207*14662949395604^(5/9) 2178316577707300 a001 233/2207*(1/2+1/2*5^(1/2))^35 2178316577707300 a001 233/2207*505019158607^(5/8) 2178316577707300 a001 233/2207*28143753123^(7/10) 2178316577707300 a001 233/2207*599074578^(5/6) 2178316577707300 a001 233/2207*228826127^(7/8) 2178316577736772 a001 987/521*(1/2+1/2*5^(1/2))^29 2178316577736772 a001 987/521*1322157322203^(1/2) 2178316579129489 m001 BesselJ(0,1)+MasserGramainDelta^Stephens 2178316595095717 a001 2/5*233^(11/15) 2178316596010834 m001 BesselJ(0,1)^MertensB2-cos(1) 2178316603970230 m001 (Tribonacci-ZetaQ(3))/(3^(1/3)-BesselK(1,1)) 2178316614758098 m001 (Catalan-exp(-1/2*Pi))/(BesselI(1,1)+Khinchin) 2178316621009312 m001 (gamma+Mills)/(ThueMorse+ZetaP(2)) 2178316632308545 r005 Im(z^2+c),c=-43/102+1/28*I,n=29 2178316634375526 m001 (exp(1/exp(1))+Pi^(1/2))/(Sarnak-Stephens) 2178316634588555 h001 (-9*exp(2/3)-1)/(-3*exp(-3)+1) 2178316634677043 a001 102334155/521*1364^(1/3) 2178316637581878 m001 (2^(1/3)+ArtinRank2)/(FellerTornier+Stephens) 2178316641399103 m001 Stephens^Shi(1)-StronglyCareFree 2178316641545142 k001 Champernowne real with 988*n+1190 2178316651599309 r005 Im(z^2+c),c=5/86+13/61*I,n=11 2178316652842982 m005 (1/2*Zeta(3)-1/8)/(2/3*Pi+1/11) 2178316654298777 a007 Real Root Of 486*x^4+519*x^3-945*x^2+858*x+775 2178316660645811 r009 Re(z^3+c),c=-3/82+7/12*I,n=36 2178316671183900 a001 102334155/76*29^(1/7) 2178316674651678 a001 29/1346269*17711^(29/41) 2178316675968234 l006 ln(6229/7745) 2178316676327546 m001 cos(Pi/12)*ln(FeigenbaumB)^2*sin(Pi/12)^2 2178316686654677 m001 (Catalan+Magata)/(-Riemann2ndZero+Salem) 2178316686865609 r004 Re(z^2+c),c=-7/30+5/19*I,z(0)=-1,n=17 2178316690442225 q001 1527/701 2178316693432014 m005 (1/2*exp(1)+1/5)/(5/7*Zeta(3)-1/7) 2178316704700797 m001 (Ei(1)-ZetaQ(3))^FibonacciFactorial 2178316712732032 a001 165580141/521*1364^(4/15) 2178316718362805 r009 Re(z^3+c),c=-5/36+41/54*I,n=31 2178316735133521 k002 Champernowne real with 181/2*n^2-429/2*n+145 2178316738712730 m006 (1/5*Pi+4/5)/(5*ln(Pi)+5/6) 2178316739321677 m001 Kolakoski^2*ArtinRank2^2/exp(GAMMA(1/4))^2 2178316739813187 r005 Im(z^2+c),c=-19/30+16/39*I,n=27 2178316741565145 k001 Champernowne real with 989*n+1189 2178316744495395 a003 cos(Pi*7/87)-cos(Pi*9/86) 2178316746964224 m001 MasserGramain*(ReciprocalFibonacci+Trott) 2178316748179787 a003 cos(Pi*22/83)*cos(Pi*32/81) 2178316753750298 a001 10946/3*2207^(44/53) 2178316758093236 s001 sum(exp(-Pi/2)^(n-1)*A084036[n],n=1..infinity) 2178316758098541 s001 sum(exp(-Pi/2)^(n-1)*A092117[n],n=1..infinity) 2178316758309611 a001 439204/233*6557470319842^(16/17) 2178316758320903 a001 969323029/233*1836311903^(16/17) 2178316758322454 a001 2139295485799/233*514229^(16/17) 2178316761432695 m001 (3^(1/2)-GAMMA(3/4))/(-Bloch+CareFree) 2178316762282051 a007 Real Root Of -341*x^4-835*x^3-166*x^2+523*x+974 2178316762680677 m001 (Niven+Weierstrass)/(exp(1/Pi)-Artin) 2178316767613351 r005 Im(z^2+c),c=3/98+31/39*I,n=3 2178316771853264 a001 29/121393*987^(36/55) 2178316775524035 m005 (1/2*Zeta(3)+6)/(6/7*Zeta(3)+2) 2178316787648656 l006 ln(350/3091) 2178316789921710 a001 133957148/161*123^(1/5) 2178316790419498 a007 Real Root Of 129*x^4-482*x^3+667*x^2-868*x-226 2178316790776106 m005 (1/2*Catalan-1/2)/(7/10*5^(1/2)+4/11) 2178316790787023 a001 267914296/521*1364^(1/5) 2178316808786346 a007 Real Root Of 520*x^4+927*x^3-533*x^2-632*x-974 2178316809099552 m001 (OneNinth-Otter)/(Landau+LandauRamanujan) 2178316810276182 m003 5/8+Sqrt[5]/512-Tan[1/2+Sqrt[5]/2] 2178316813157517 m005 (1/2*Pi-4/11)/(1/10*5^(1/2)-7/9) 2178316818312978 m009 (2*Psi(1,1/3)+5/6)/(24/5*Catalan+3/5*Pi^2-2/3) 2178316819070285 r009 Im(z^3+c),c=-65/122+31/63*I,n=45 2178316823142496 m004 2+5*Pi+(25*Sqrt[5]*Tan[Sqrt[5]*Pi])/(4*Pi) 2178316827551511 m001 1/cosh(1)^2/GAMMA(1/6)/exp(sqrt(Pi))^2 2178316832611348 r009 Im(z^3+c),c=-23/118+17/19*I,n=44 2178316836623479 r005 Im(z^2+c),c=-41/66+6/23*I,n=16 2178316840898580 a001 47/8*6765^(41/44) 2178316841585148 k001 Champernowne real with 990*n+1188 2178316847065928 r005 Re(z^2+c),c=-1/74+42/53*I,n=21 2178316852995358 a007 Real Root Of 564*x^4+552*x^3-950*x^2+692*x-978 2178316853746738 r009 Re(z^3+c),c=-29/82+27/41*I,n=9 2178316854101440 a001 3478772016/1597 2178316856280543 p003 LerchPhi(1/125,4,237/91) 2178316864180935 a001 514229/521*3571^(16/17) 2178316868842018 a001 433494437/521*1364^(2/15) 2178316869286315 m001 Figure8HypebolicComplement+ZetaR(2) 2178316874226953 a001 832040/521*3571^(15/17) 2178316884276118 a001 1346269/521*3571^(14/17) 2178316891763931 m005 (1/3*gamma+1/5)/(2/5*5^(1/2)-5/7) 2178316892336726 r002 46th iterates of z^2 + 2178316892411278 m005 (1/2*Pi+4)/(-19/35+5/14*5^(1/2)) 2178316894324081 a001 2178309/521*3571^(13/17) 2178316903041996 r005 Im(z^2+c),c=11/62+8/53*I,n=15 2178316904372503 a001 3524578/521*3571^(12/17) 2178316905262333 m005 (1/2*3^(1/2)+1/2)/(1/12*Zeta(3)-8/11) 2178316905507002 l006 ln(5625/6994) 2178316907658799 m001 (FeigenbaumB-HardyLittlewoodC5)/(Pi-Zeta(3)) 2178316914420750 a001 5702887/521*3571^(11/17) 2178316920126985 m001 ZetaQ(4)/(Rabbit-Porter) 2178316924469064 a001 9227465/521*3571^(10/17) 2178316932338493 a007 Real Root Of 428*x^4+848*x^3-221*x^2-410*x-716 2178316934517352 a001 14930352/521*3571^(9/17) 2178316941605151 k001 Champernowne real with 991*n+1187 2178316944565650 a001 24157817/521*3571^(8/17) 2178316945353804 r005 Re(z^2+c),c=-19/118+19/41*I,n=34 2178316946225842 r002 33th iterates of z^2 + 2178316946897015 a001 701408733/521*1364^(1/15) 2178316947844167 a001 1364/3*1346269^(42/55) 2178316950315480 m005 (1/3*Catalan-1/5)/(9/11*Zeta(3)-1/2) 2178316954613945 a001 39088169/521*3571^(7/17) 2178316959311726 r005 Re(z^2+c),c=5/23+7/22*I,n=4 2178316959674628 a001 233/5778*(1/2+1/2*5^(1/2))^37 2178316959704162 a001 2584/521*7881196^(9/11) 2178316959704190 a001 2584/521*141422324^(9/13) 2178316959704190 a001 2584/521*2537720636^(3/5) 2178316959704190 a001 2584/521*45537549124^(9/17) 2178316959704190 a001 2584/521*817138163596^(9/19) 2178316959704190 a001 2584/521*14662949395604^(3/7) 2178316959704190 a001 2584/521*(1/2+1/2*5^(1/2))^27 2178316959704190 a001 2584/521*192900153618^(1/2) 2178316959704190 a001 2584/521*10749957122^(9/16) 2178316959704190 a001 2584/521*599074578^(9/14) 2178316959704192 a001 2584/521*33385282^(3/4) 2178316959704757 a001 2584/521*1860498^(9/10) 2178316962856469 m001 ln(2^(1/2)+1)^(2*Pi/GAMMA(5/6))*TreeGrowth2nd 2178316964662241 a001 63245986/521*3571^(6/17) 2178316965786828 m001 GAMMA(19/24)^(5^(1/2))+RenyiParking 2178316965786828 m001 RenyiParking+GAMMA(19/24)^sqrt(5) 2178316968512721 m001 Lehmer^Conway*Lehmer^ln(5) 2178316969886857 r002 5th iterates of z^2 + 2178316971821473 a001 4/161*1364^(46/49) 2178316972607701 m001 (GAMMA(3/4)-ln(2))/(Riemann3rdZero-Stephens) 2178316972924610 m001 (-Lehmer+ReciprocalFibonacci)/(gamma+ln(2)) 2178316973333048 a007 Real Root Of 466*x^4-114*x^3+737*x^2-931*x-240 2178316974710536 a001 102334155/521*3571^(5/17) 2178316977771575 m001 (Porter-Totient)/(GAMMA(11/12)-GAMMA(13/24)) 2178316983774814 r009 Im(z^3+c),c=-3/94+11/48*I,n=2 2178316984758832 a001 165580141/521*3571^(4/17) 2178316985884013 m001 (GAMMA(11/12)-CareFree)^Backhouse 2178316989551274 h001 (10/11*exp(1)+2/3)/(3/10*exp(1)+5/8) 2178316994467613 m002 -E^Pi+(4*Log[Pi])/(Pi*ProductLog[Pi]) 2178316994807128 a001 267914296/521*3571^(3/17) 2178316995421373 m001 FeigenbaumAlpha/(Zeta(3)-ln(2+sqrt(3))) 2178316995421373 m001 FeigenbaumAlpha/(ln(2+3^(1/2))-Zeta(3)) 2178316997995770 a007 Real Root Of 43*x^4-369*x^3-784*x^2+511*x+51 2178317000000332 a001 1346285/2+1346269/2*5^(1/2) 2178317001352564 a001 196418/521*9349^(18/19) 2178317002648666 a001 317811/521*9349^(17/19) 2178317003966335 a001 514229/521*9349^(16/19) 2178317004855423 a001 433494437/521*3571^(2/17) 2178317005275766 a001 832040/521*9349^(15/19) 2178317006588344 a001 1346269/521*9349^(14/19) 2178317007287427 h001 (1/3*exp(1)+7/11)/(10/11*exp(2)+4/11) 2178317007899719 a001 2178309/521*9349^(13/19) 2178317009211554 a001 3524578/521*9349^(12/19) 2178317010523214 a001 5702887/521*9349^(11/19) 2178317011834940 a001 9227465/521*9349^(10/19) 2178317013146641 a001 14930352/521*9349^(9/19) 2178317014458352 a001 24157817/521*9349^(8/19) 2178317014903719 a001 701408733/521*3571^(1/17) 2178317015402922 a001 233/15127*2537720636^(13/15) 2178317015402922 a001 233/15127*45537549124^(13/17) 2178317015402922 a001 233/15127*14662949395604^(13/21) 2178317015402922 a001 233/15127*(1/2+1/2*5^(1/2))^39 2178317015402922 a001 233/15127*192900153618^(13/18) 2178317015402922 a001 233/15127*73681302247^(3/4) 2178317015402922 a001 233/15127*10749957122^(13/16) 2178317015402922 a001 233/15127*599074578^(13/14) 2178317015432482 a001 6765/521*20633239^(5/7) 2178317015432486 a001 6765/521*2537720636^(5/9) 2178317015432486 a001 6765/521*312119004989^(5/11) 2178317015432486 a001 6765/521*(1/2+1/2*5^(1/2))^25 2178317015432486 a001 6765/521*3461452808002^(5/12) 2178317015432486 a001 6765/521*28143753123^(1/2) 2178317015432486 a001 6765/521*228826127^(5/8) 2178317015433010 a001 6765/521*1860498^(5/6) 2178317015770059 a001 39088169/521*9349^(7/19) 2178317017081767 a001 63245986/521*9349^(6/19) 2178317018393475 a001 102334155/521*9349^(5/19) 2178317019705183 a001 165580141/521*9349^(4/19) 2178317021016891 a001 267914296/521*9349^(3/19) 2178317021286314 a001 23843858115/10946 2178317021566427 a001 75025/521*24476^(20/21) 2178317021632613 a001 233*24476^(19/21) 2178317021846619 a001 196418/521*24476^(6/7) 2178317022004162 a001 317811/521*24476^(17/21) 2178317022183273 a001 514229/521*24476^(16/21) 2178317022328599 a001 433494437/521*9349^(2/19) 2178317022354145 a001 832040/521*24476^(5/7) 2178317022528164 a001 1346269/521*24476^(2/3) 2178317022567860 m001 Kolakoski^KhinchinLevy+Riemann2ndZero 2178317022700981 a001 2178309/521*24476^(13/21) 2178317022874258 a001 3524578/521*24476^(4/7) 2178317023047358 a001 5702887/521*24476^(11/21) 2178317023220526 a001 9227465/521*24476^(10/21) 2178317023393669 a001 14930352/521*24476^(3/7) 2178317023533570 a001 233/39603*(1/2+1/2*5^(1/2))^41 2178317023563134 a001 17711/521*(1/2+1/2*5^(1/2))^23 2178317023563134 a001 17711/521*4106118243^(1/2) 2178317023566821 a001 24157817/521*24476^(8/21) 2178317023640307 a001 701408733/521*9349^(1/19) 2178317023650442 a001 1860498/377*34^(8/19) 2178317023739969 a001 39088169/521*24476^(1/3) 2178317023757326 a001 17711/521*103682^(23/24) 2178317023913119 a001 63245986/521*24476^(2/7) 2178317024086268 a001 102334155/521*24476^(5/21) 2178317024259417 a001 165580141/521*24476^(4/21) 2178317024265006 a001 46368/521*64079^(21/23) 2178317024391946 a001 62424030968/28657 2178317024432567 a001 267914296/521*24476^(1/7) 2178317024484207 a001 233*64079^(19/23) 2178317024548129 a001 196418/521*64079^(18/23) 2178317024555589 a001 317811/521*64079^(17/23) 2178317024568106 a001 75025/521*64079^(20/23) 2178317024584615 a001 514229/521*64079^(16/23) 2178317024605404 a001 832040/521*64079^(15/23) 2178317024605716 a001 433494437/521*24476^(2/21) 2178317024629339 a001 1346269/521*64079^(14/23) 2178317024652072 a001 2178309/521*64079^(13/23) 2178317024675265 a001 3524578/521*64079^(12/23) 2178317024698282 a001 5702887/521*64079^(11/23) 2178317024719816 a001 233/103682*(1/2+1/2*5^(1/2))^43 2178317024721366 a001 9227465/521*64079^(10/23) 2178317024740597 a001 46368/521*439204^(7/9) 2178317024744424 a001 14930352/521*64079^(9/23) 2178317024749358 a001 46368/521*7881196^(7/11) 2178317024749377 a001 46368/521*20633239^(3/5) 2178317024749380 a001 46368/521*141422324^(7/13) 2178317024749380 a001 46368/521*2537720636^(7/15) 2178317024749380 a001 46368/521*17393796001^(3/7) 2178317024749380 a001 46368/521*45537549124^(7/17) 2178317024749380 a001 46368/521*14662949395604^(1/3) 2178317024749380 a001 46368/521*(1/2+1/2*5^(1/2))^21 2178317024749380 a001 46368/521*192900153618^(7/18) 2178317024749380 a001 46368/521*10749957122^(7/16) 2178317024749380 a001 46368/521*599074578^(1/2) 2178317024749381 a001 46368/521*33385282^(7/12) 2178317024749820 a001 46368/521*1860498^(7/10) 2178317024752615 a001 46368/521*710647^(3/4) 2178317024767492 a001 24157817/521*64079^(8/23) 2178317024778865 a001 701408733/521*24476^(1/21) 2178317024790556 a001 39088169/521*64079^(7/23) 2178317024813622 a001 63245986/521*64079^(6/23) 2178317024836688 a001 102334155/521*64079^(5/23) 2178317024845051 a001 163428234789/75025 2178317024859753 a001 165580141/521*64079^(4/23) 2178317024882819 a001 267914296/521*64079^(3/23) 2178317024892887 a001 233/271443*45537549124^(15/17) 2178317024892887 a001 233/271443*312119004989^(9/11) 2178317024892887 a001 233/271443*14662949395604^(5/7) 2178317024892887 a001 233/271443*(1/2+1/2*5^(1/2))^45 2178317024892887 a001 233/271443*192900153618^(5/6) 2178317024892887 a001 233/271443*28143753123^(9/10) 2178317024892887 a001 233/271443*10749957122^(15/16) 2178317024904946 a001 832040/521*167761^(3/5) 2178317024905884 a001 433494437/521*64079^(2/23) 2178317024911158 a001 427860673399/196418 2178317024918137 a001 233/710647*(1/2+1/2*5^(1/2))^47 2178317024920803 a001 1120153785408/514229 2178317024921060 a001 9227465/521*167761^(2/5) 2178317024921822 a001 233/1860498*14662949395604^(7/9) 2178317024921822 a001 233/1860498*(1/2+1/2*5^(1/2))^49 2178317024921822 a001 233/1860498*505019158607^(7/8) 2178317024922210 a001 2932600682825/1346269 2178317024922359 a001 233/4870847*14662949395604^(17/21) 2178317024922359 a001 233/4870847*(1/2+1/2*5^(1/2))^51 2178317024922359 a001 233/4870847*192900153618^(17/18) 2178317024922416 a001 7677648263067/3524578 2178317024922437 a001 233/12752043*(1/2+1/2*5^(1/2))^53 2178317024922446 a001 20100344106376/9227465 2178317024922449 a001 233/33385282*(1/2+1/2*5^(1/2))^55 2178317024922449 a001 233/33385282*3461452808002^(11/12) 2178317024922450 a001 52623384056061/24157817 2178317024922451 a001 233/87403803*14662949395604^(19/21) 2178317024922451 a001 591286729879/271442 2178317024922451 a001 360686040129360/165580141 2178317024922451 a001 944288312326273/433494437 2178317024922451 a001 2472178896849459/1134903170 2178317024922451 a001 233*817138163596^(1/3) 2178317024922451 a001 1527890584523186/701408733 2178317024922451 a001 583602272196913/267914296 2178317024922451 a001 233/370248451*14662949395604^(20/21) 2178317024922451 a001 222916232067553/102334155 2178317024922451 a001 233*87403803^(1/2) 2178317024922451 a001 20365085866/9349 2178317024922452 a001 233/54018521*14662949395604^(8/9) 2178317024922453 a001 32523039949685/14930352 2178317024922456 a001 233/20633239*14662949395604^(6/7) 2178317024922456 a001 233/20633239*(1/2+1/2*5^(1/2))^54 2178317024922464 a001 12422695843309/5702887 2178317024922486 a001 233/7881196*(1/2+1/2*5^(1/2))^52 2178317024922486 a001 233/7881196*23725150497407^(13/16) 2178317024922486 a001 233/7881196*505019158607^(13/14) 2178317024922543 a001 4745047580242/2178309 2178317024922691 a001 233/3010349*312119004989^(10/11) 2178317024922691 a001 233/3010349*(1/2+1/2*5^(1/2))^50 2178317024922691 a001 233/3010349*3461452808002^(5/6) 2178317024923080 a001 1812446897417/832040 2178317024924098 a001 233/1149851*45537549124^(16/17) 2178317024924098 a001 233/1149851*14662949395604^(16/21) 2178317024924098 a001 233/1149851*(1/2+1/2*5^(1/2))^48 2178317024924098 a001 233/1149851*192900153618^(8/9) 2178317024924098 a001 233/1149851*73681302247^(12/13) 2178317024926685 a001 46368/521*103682^(7/8) 2178317024926764 a001 692293112009/317811 2178317024928949 a001 701408733/521*64079^(1/23) 2178317024933743 a001 233/439204*(1/2+1/2*5^(1/2))^46 2178317024933743 a001 233/439204*10749957122^(23/24) 2178317024936535 a001 102334155/521*167761^(1/5) 2178317024945112 a001 832040/521*439204^(5/9) 2178317024947031 a001 3524578/521*439204^(4/9) 2178317024947702 a001 317811/521*45537549124^(1/3) 2178317024947702 a001 317811/521*(1/2+1/2*5^(1/2))^17 2178317024947708 a001 317811/521*12752043^(1/2) 2178317024948249 a001 14930352/521*439204^(1/3) 2178317024949506 a001 63245986/521*439204^(2/9) 2178317024950760 a001 267914296/521*439204^(1/9) 2178317024951370 a001 832040/521*7881196^(5/11) 2178317024951383 a001 832040/521*20633239^(3/7) 2178317024951386 a001 832040/521*141422324^(5/13) 2178317024951386 a001 832040/521*2537720636^(1/3) 2178317024951386 a001 832040/521*45537549124^(5/17) 2178317024951386 a001 832040/521*312119004989^(3/11) 2178317024951386 a001 832040/521*14662949395604^(5/21) 2178317024951386 a001 832040/521*(1/2+1/2*5^(1/2))^15 2178317024951386 a001 832040/521*192900153618^(5/18) 2178317024951386 a001 832040/521*28143753123^(3/10) 2178317024951386 a001 832040/521*10749957122^(5/16) 2178317024951386 a001 832040/521*599074578^(5/14) 2178317024951386 a001 832040/521*228826127^(3/8) 2178317024951386 a001 832040/521*33385282^(5/12) 2178317024951700 a001 832040/521*1860498^(1/2) 2178317024951923 a001 2178309/521*141422324^(1/3) 2178317024951923 a001 2178309/521*(1/2+1/2*5^(1/2))^13 2178317024951923 a001 2178309/521*73681302247^(1/4) 2178317024951990 a001 5702887/521*7881196^(1/3) 2178317024952001 a001 5702887/521*312119004989^(1/5) 2178317024952001 a001 5702887/521*(1/2+1/2*5^(1/2))^11 2178317024952001 a001 5702887/521*1568397607^(1/4) 2178317024952003 a001 14930352/521*7881196^(3/11) 2178317024952009 a001 63245986/521*7881196^(2/11) 2178317024952012 a001 267914296/521*7881196^(1/11) 2178317024952013 a001 14930352/521*141422324^(3/13) 2178317024952013 a001 14930352/521*2537720636^(1/5) 2178317024952013 a001 14930352/521*45537549124^(3/17) 2178317024952013 a001 14930352/521*14662949395604^(1/7) 2178317024952013 a001 14930352/521*(1/2+1/2*5^(1/2))^9 2178317024952013 a001 14930352/521*192900153618^(1/6) 2178317024952013 a001 14930352/521*10749957122^(3/16) 2178317024952013 a001 14930352/521*599074578^(3/14) 2178317024952013 a001 14930352/521*33385282^(1/4) 2178317024952014 a001 39088169/521*20633239^(1/5) 2178317024952014 a001 102334155/521*20633239^(1/7) 2178317024952015 a001 39088169/521*17393796001^(1/7) 2178317024952015 a001 39088169/521*14662949395604^(1/9) 2178317024952015 a001 39088169/521*(1/2+1/2*5^(1/2))^7 2178317024952015 a001 39088169/521*599074578^(1/6) 2178317024952015 a001 102334155/521*2537720636^(1/9) 2178317024952015 a001 102334155/521*312119004989^(1/11) 2178317024952015 a001 102334155/521*(1/2+1/2*5^(1/2))^5 2178317024952015 a001 102334155/521*28143753123^(1/10) 2178317024952015 a001 102334155/521*228826127^(1/8) 2178317024952015 a001 267914296/521*141422324^(1/13) 2178317024952015 a001 267914296/521*2537720636^(1/15) 2178317024952015 a001 267914296/521*45537549124^(1/17) 2178317024952015 a001 267914296/521*14662949395604^(1/21) 2178317024952015 a001 267914296/521*(1/2+1/2*5^(1/2))^3 2178317024952015 a001 267914296/521*10749957122^(1/16) 2178317024952015 a001 267914296/521*599074578^(1/14) 2178317024952015 a001 701408733/1042+701408733/1042*5^(1/2) 2178317024952015 a001 1134903170/521 2178317024952015 a001 433494437/521*(1/2+1/2*5^(1/2))^2 2178317024952015 a001 433494437/521*10749957122^(1/24) 2178317024952015 a001 433494437/521*4106118243^(1/23) 2178317024952015 a001 433494437/521*1568397607^(1/22) 2178317024952015 a001 433494437/521*599074578^(1/21) 2178317024952015 a001 433494437/521*228826127^(1/20) 2178317024952015 a001 165580141/521*(1/2+1/2*5^(1/2))^4 2178317024952015 a001 165580141/521*23725150497407^(1/16) 2178317024952015 a001 165580141/521*73681302247^(1/13) 2178317024952015 a001 165580141/521*10749957122^(1/12) 2178317024952015 a001 165580141/521*4106118243^(2/23) 2178317024952015 a001 165580141/521*1568397607^(1/11) 2178317024952015 a001 165580141/521*599074578^(2/21) 2178317024952015 a001 433494437/521*87403803^(1/19) 2178317024952015 a001 165580141/521*228826127^(1/10) 2178317024952015 a001 165580141/521*87403803^(2/19) 2178317024952015 a001 63245986/521*141422324^(2/13) 2178317024952015 a001 63245986/521*2537720636^(2/15) 2178317024952015 a001 63245986/521*45537549124^(2/17) 2178317024952015 a001 63245986/521*14662949395604^(2/21) 2178317024952015 a001 63245986/521*(1/2+1/2*5^(1/2))^6 2178317024952015 a001 63245986/521*10749957122^(1/8) 2178317024952015 a001 63245986/521*4106118243^(3/23) 2178317024952015 a001 63245986/521*1568397607^(3/22) 2178317024952015 a001 63245986/521*599074578^(1/7) 2178317024952015 a001 433494437/521*33385282^(1/18) 2178317024952015 a001 63245986/521*228826127^(3/20) 2178317024952015 a001 63245986/521*87403803^(3/19) 2178317024952015 a001 267914296/521*33385282^(1/12) 2178317024952015 a001 165580141/521*33385282^(1/9) 2178317024952015 a001 63245986/521*33385282^(1/6) 2178317024952016 a001 24157817/521*(1/2+1/2*5^(1/2))^8 2178317024952016 a001 24157817/521*23725150497407^(1/8) 2178317024952016 a001 24157817/521*73681302247^(2/13) 2178317024952016 a001 24157817/521*10749957122^(1/6) 2178317024952016 a001 24157817/521*4106118243^(4/23) 2178317024952016 a001 24157817/521*1568397607^(2/11) 2178317024952016 a001 24157817/521*599074578^(4/21) 2178317024952016 a001 24157817/521*228826127^(1/5) 2178317024952016 a001 433494437/521*12752043^(1/17) 2178317024952016 a001 24157817/521*87403803^(4/19) 2178317024952016 a001 24157817/521*33385282^(2/9) 2178317024952016 a001 165580141/521*12752043^(2/17) 2178317024952017 a001 63245986/521*12752043^(3/17) 2178317024952019 a001 9227465/521*20633239^(2/7) 2178317024952019 a001 24157817/521*12752043^(4/17) 2178317024952020 a001 9227465/521*2537720636^(2/9) 2178317024952020 a001 9227465/521*312119004989^(2/11) 2178317024952020 a001 9227465/521*(1/2+1/2*5^(1/2))^10 2178317024952020 a001 9227465/521*28143753123^(1/5) 2178317024952020 a001 9227465/521*10749957122^(5/24) 2178317024952020 a001 9227465/521*4106118243^(5/23) 2178317024952020 a001 9227465/521*1568397607^(5/22) 2178317024952020 a001 9227465/521*599074578^(5/21) 2178317024952020 a001 9227465/521*228826127^(1/4) 2178317024952020 a001 9227465/521*87403803^(5/19) 2178317024952021 a001 9227465/521*33385282^(5/18) 2178317024952021 a001 433494437/521*4870847^(1/16) 2178317024952024 a001 9227465/521*12752043^(5/17) 2178317024952026 a001 165580141/521*4870847^(1/8) 2178317024952032 a001 63245986/521*4870847^(3/16) 2178317024952037 a001 3524578/521*7881196^(4/11) 2178317024952039 a001 24157817/521*4870847^(1/4) 2178317024952049 a001 9227465/521*4870847^(5/16) 2178317024952050 a001 3524578/521*141422324^(4/13) 2178317024952050 a001 3524578/521*2537720636^(4/15) 2178317024952050 a001 3524578/521*45537549124^(4/17) 2178317024952050 a001 3524578/521*817138163596^(4/19) 2178317024952050 a001 3524578/521*14662949395604^(4/21) 2178317024952050 a001 3524578/521*(1/2+1/2*5^(1/2))^12 2178317024952050 a001 3524578/521*192900153618^(2/9) 2178317024952050 a001 3524578/521*73681302247^(3/13) 2178317024952050 a001 3524578/521*10749957122^(1/4) 2178317024952050 a001 3524578/521*4106118243^(6/23) 2178317024952050 a001 3524578/521*1568397607^(3/11) 2178317024952050 a001 3524578/521*599074578^(2/7) 2178317024952050 a001 3524578/521*228826127^(3/10) 2178317024952050 a001 3524578/521*87403803^(6/19) 2178317024952051 a001 3524578/521*33385282^(1/3) 2178317024952055 a001 3524578/521*12752043^(6/17) 2178317024952057 a001 433494437/521*1860498^(1/15) 2178317024952078 a001 267914296/521*1860498^(1/10) 2178317024952084 a001 3524578/521*4870847^(3/8) 2178317024952099 a001 165580141/521*1860498^(2/15) 2178317024952120 a001 102334155/521*1860498^(1/6) 2178317024952141 a001 63245986/521*1860498^(1/5) 2178317024952183 a001 24157817/521*1860498^(4/15) 2178317024952202 a001 14930352/521*1860498^(3/10) 2178317024952230 a001 9227465/521*1860498^(1/3) 2178317024952253 a001 1346269/521*20633239^(2/5) 2178317024952255 a001 1346269/521*17393796001^(2/7) 2178317024952255 a001 1346269/521*14662949395604^(2/9) 2178317024952255 a001 1346269/521*(1/2+1/2*5^(1/2))^14 2178317024952255 a001 1346269/521*505019158607^(1/4) 2178317024952255 a001 1346269/521*10749957122^(7/24) 2178317024952255 a001 1346269/521*4106118243^(7/23) 2178317024952255 a001 1346269/521*1568397607^(7/22) 2178317024952255 a001 1346269/521*599074578^(1/3) 2178317024952255 a001 1346269/521*228826127^(7/20) 2178317024952255 a001 1346269/521*87403803^(7/19) 2178317024952256 a001 1346269/521*33385282^(7/18) 2178317024952261 a001 1346269/521*12752043^(7/17) 2178317024952295 a001 1346269/521*4870847^(7/16) 2178317024952302 a001 3524578/521*1860498^(2/5) 2178317024952323 a001 433494437/521*710647^(1/14) 2178317024952549 a001 1346269/521*1860498^(7/15) 2178317024952631 a001 165580141/521*710647^(1/7) 2178317024952939 a001 63245986/521*710647^(3/14) 2178317024953093 a001 39088169/521*710647^(1/4) 2178317024953248 a001 24157817/521*710647^(2/7) 2178317024953560 a001 9227465/521*710647^(5/14) 2178317024953662 a001 514229/521*(1/2+1/2*5^(1/2))^16 2178317024953662 a001 514229/521*23725150497407^(1/4) 2178317024953662 a001 514229/521*73681302247^(4/13) 2178317024953662 a001 514229/521*10749957122^(1/3) 2178317024953662 a001 514229/521*4106118243^(8/23) 2178317024953662 a001 514229/521*1568397607^(4/11) 2178317024953662 a001 514229/521*599074578^(8/21) 2178317024953662 a001 514229/521*228826127^(2/5) 2178317024953663 a001 514229/521*87403803^(8/19) 2178317024953663 a001 514229/521*33385282^(4/9) 2178317024953669 a001 514229/521*12752043^(8/17) 2178317024953708 a001 514229/521*4870847^(1/2) 2178317024953898 a001 3524578/521*710647^(3/7) 2178317024953998 a001 514229/521*1860498^(8/15) 2178317024954289 a001 433494437/521*271443^(1/13) 2178317024954412 a001 1346269/521*710647^(1/2) 2178317024955779 a001 196418/521*439204^(2/3) 2178317024956127 a001 514229/521*710647^(4/7) 2178317024956563 a001 165580141/521*271443^(2/13) 2178317024958837 a001 63245986/521*271443^(3/13) 2178317024960458 a001 701408733/521*103682^(1/24) 2178317024961112 a001 24157817/521*271443^(4/13) 2178317024963288 a001 196418/521*7881196^(6/11) 2178317024963307 a001 196418/521*141422324^(6/13) 2178317024963307 a001 196418/521*2537720636^(2/5) 2178317024963307 a001 196418/521*45537549124^(6/17) 2178317024963307 a001 196418/521*14662949395604^(2/7) 2178317024963307 a001 196418/521*(1/2+1/2*5^(1/2))^18 2178317024963307 a001 196418/521*192900153618^(1/3) 2178317024963307 a001 196418/521*10749957122^(3/8) 2178317024963307 a001 196418/521*4106118243^(9/23) 2178317024963307 a001 196418/521*1568397607^(9/22) 2178317024963307 a001 196418/521*599074578^(3/7) 2178317024963307 a001 196418/521*228826127^(9/20) 2178317024963307 a001 196418/521*87403803^(9/19) 2178317024963308 a001 196418/521*33385282^(1/2) 2178317024963314 a001 196418/521*12752043^(9/17) 2178317024963359 a001 196418/521*4870847^(9/16) 2178317024963391 a001 9227465/521*271443^(5/13) 2178317024963685 a001 196418/521*1860498^(3/5) 2178317024965695 a001 3524578/521*271443^(6/13) 2178317024966080 a001 196418/521*710647^(9/14) 2178317024966705 a001 2178309/521*271443^(1/2) 2178317024967495 a001 75025/521*167761^(4/5) 2178317024968174 a001 1346269/521*271443^(7/13) 2178317024968901 a001 433494437/521*103682^(1/12) 2178317024971856 a001 514229/521*271443^(8/13) 2178317024975080 a001 28657/521*64079^(22/23) 2178317024977344 a001 267914296/521*103682^(1/8) 2178317024983775 a001 196418/521*271443^(9/13) 2178317024985787 a001 165580141/521*103682^(1/6) 2178317024994230 a001 102334155/521*103682^(5/24) 2178317024999850 a001 233/167761*312119004989^(4/5) 2178317024999850 a001 233/167761*(1/2+1/2*5^(1/2))^44 2178317024999850 a001 233/167761*23725150497407^(11/16) 2178317024999850 a001 233/167761*73681302247^(11/13) 2178317024999850 a001 233/167761*10749957122^(11/12) 2178317024999850 a001 233/167761*4106118243^(22/23) 2178317025002674 a001 63245986/521*103682^(1/4) 2178317025011116 a001 39088169/521*103682^(7/24) 2178317025015146 a001 701408733/521*39603^(1/22) 2178317025019561 a001 24157817/521*103682^(1/3) 2178317025028001 a001 14930352/521*103682^(3/8) 2178317025029412 a001 75025/521*20633239^(4/7) 2178317025029415 a001 75025/521*2537720636^(4/9) 2178317025029415 a001 75025/521*(1/2+1/2*5^(1/2))^20 2178317025029415 a001 75025/521*23725150497407^(5/16) 2178317025029415 a001 75025/521*505019158607^(5/14) 2178317025029415 a001 75025/521*73681302247^(5/13) 2178317025029415 a001 75025/521*28143753123^(2/5) 2178317025029415 a001 75025/521*10749957122^(5/12) 2178317025029415 a001 75025/521*4106118243^(10/23) 2178317025029415 a001 75025/521*1568397607^(5/11) 2178317025029415 a001 75025/521*599074578^(10/21) 2178317025029415 a001 75025/521*228826127^(1/2) 2178317025029415 a001 75025/521*87403803^(10/19) 2178317025029416 a001 75025/521*33385282^(5/9) 2178317025029422 a001 75025/521*12752043^(10/17) 2178317025029472 a001 75025/521*4870847^(5/8) 2178317025029834 a001 75025/521*1860498^(2/3) 2178317025032495 a001 75025/521*710647^(5/7) 2178317025036451 a001 9227465/521*103682^(5/12) 2178317025044876 a001 5702887/521*103682^(11/24) 2178317025052156 a001 75025/521*271443^(10/13) 2178317025053367 a001 3524578/521*103682^(1/2) 2178317025061080 m001 (FeigenbaumKappa-TwinPrimes)/(ln(2)-Artin) 2178317025061684 a001 2178309/521*103682^(13/24) 2178317025070459 a001 1346269/521*103682^(7/12) 2178317025078032 a001 832040/521*103682^(5/8) 2178317025078277 a001 433494437/521*39603^(1/11) 2178317025082870 a001 233*103682^(19/24) 2178317025088752 a001 514229/521*103682^(2/3) 2178317025091235 a001 317811/521*103682^(17/24) 2178317025115284 a001 196418/521*103682^(3/4) 2178317025125086 a001 101004203821/46368 2178317025141408 a001 267914296/521*39603^(3/22) 2178317025198277 a001 75025/521*103682^(5/6) 2178317025204539 a001 165580141/521*39603^(2/11) 2178317025267669 a001 102334155/521*39603^(5/22) 2178317025330801 a001 63245986/521*39603^(3/11) 2178317025393931 a001 39088169/521*39603^(7/22) 2178317025427991 a001 701408733/521*15127^(1/20) 2178317025452956 a001 233/64079*2537720636^(14/15) 2178317025452956 a001 233/64079*17393796001^(6/7) 2178317025452956 a001 233/64079*45537549124^(14/17) 2178317025452956 a001 233/64079*817138163596^(14/19) 2178317025452956 a001 233/64079*14662949395604^(2/3) 2178317025452956 a001 233/64079*(1/2+1/2*5^(1/2))^42 2178317025452956 a001 233/64079*192900153618^(7/9) 2178317025452956 a001 233/64079*10749957122^(7/8) 2178317025452956 a001 233/64079*4106118243^(21/23) 2178317025452956 a001 233/64079*1568397607^(21/22) 2178317025457063 a001 24157817/521*39603^(4/11) 2178317025482497 a001 28657/521*7881196^(2/3) 2178317025482520 a001 28657/521*312119004989^(2/5) 2178317025482520 a001 28657/521*(1/2+1/2*5^(1/2))^22 2178317025482520 a001 28657/521*10749957122^(11/24) 2178317025482520 a001 28657/521*4106118243^(11/23) 2178317025482520 a001 28657/521*1568397607^(1/2) 2178317025482520 a001 28657/521*599074578^(11/21) 2178317025482520 a001 28657/521*228826127^(11/20) 2178317025482520 a001 28657/521*87403803^(11/19) 2178317025482521 a001 28657/521*33385282^(11/18) 2178317025482529 a001 28657/521*12752043^(11/17) 2178317025482583 a001 28657/521*4870847^(11/16) 2178317025482982 a001 28657/521*1860498^(11/15) 2178317025485909 a001 28657/521*710647^(11/14) 2178317025507536 a001 28657/521*271443^(11/13) 2178317025520191 a001 14930352/521*39603^(9/22) 2178317025583329 a001 9227465/521*39603^(5/11) 2178317025646442 a001 5702887/521*39603^(1/2) 2178317025668269 a001 28657/521*103682^(11/12) 2178317025709621 a001 3524578/521*39603^(6/11) 2178317025772625 a001 2178309/521*39603^(13/22) 2178317025836088 a001 1346269/521*39603^(7/11) 2178317025898350 a001 832040/521*39603^(15/22) 2178317025903968 a001 433494437/521*15127^(1/10) 2178317025963757 a001 514229/521*39603^(8/11) 2178317026020927 a001 317811/521*39603^(17/22) 2178317026075130 a001 46368/521*39603^(21/22) 2178317026099664 a001 196418/521*39603^(9/11) 2178317026121939 a001 233*39603^(19/22) 2178317026292033 a001 75025/521*39603^(10/11) 2178317026311331 a001 38580172853/17711 2178317026379944 a001 267914296/521*15127^(3/20) 2178317026855921 a001 165580141/521*15127^(1/5) 2178317026974856 r005 Re(z^2+c),c=-123/122+10/63*I,n=10 2178317027331897 a001 102334155/521*15127^(1/4) 2178317027418842 h001 (3/10*exp(2)+4/9)/(1/7*exp(1)+5/6) 2178317027807874 a001 63245986/521*15127^(3/10) 2178317028283850 a001 39088169/521*15127^(7/20) 2178317028558587 a001 233/24476*2537720636^(8/9) 2178317028558587 a001 233/24476*312119004989^(8/11) 2178317028558587 a001 233/24476*(1/2+1/2*5^(1/2))^40 2178317028558587 a001 233/24476*23725150497407^(5/8) 2178317028558587 a001 233/24476*73681302247^(10/13) 2178317028558587 a001 233/24476*28143753123^(4/5) 2178317028558587 a001 233/24476*10749957122^(5/6) 2178317028558587 a001 233/24476*4106118243^(20/23) 2178317028558587 a001 233/24476*1568397607^(10/11) 2178317028558587 a001 233/24476*599074578^(20/21) 2178317028576894 a001 701408733/521*5778^(1/18) 2178317028578114 a001 10946/521*439204^(8/9) 2178317028588126 a001 10946/521*7881196^(8/11) 2178317028588151 a001 10946/521*141422324^(8/13) 2178317028588151 a001 10946/521*2537720636^(8/15) 2178317028588151 a001 10946/521*45537549124^(8/17) 2178317028588151 a001 10946/521*14662949395604^(8/21) 2178317028588151 a001 10946/521*(1/2+1/2*5^(1/2))^24 2178317028588151 a001 10946/521*192900153618^(4/9) 2178317028588151 a001 10946/521*73681302247^(6/13) 2178317028588151 a001 10946/521*10749957122^(1/2) 2178317028588151 a001 10946/521*4106118243^(12/23) 2178317028588151 a001 10946/521*1568397607^(6/11) 2178317028588152 a001 10946/521*599074578^(4/7) 2178317028588152 a001 10946/521*228826127^(3/5) 2178317028588152 a001 10946/521*87403803^(12/19) 2178317028588153 a001 10946/521*33385282^(2/3) 2178317028588161 a001 10946/521*12752043^(12/17) 2178317028588220 a001 10946/521*4870847^(3/4) 2178317028588655 a001 10946/521*1860498^(4/5) 2178317028591849 a001 10946/521*710647^(6/7) 2178317028615441 a001 10946/521*271443^(12/13) 2178317028759827 a001 24157817/521*15127^(2/5) 2178317028772426 r005 Re(z^2+c),c=29/82+6/31*I,n=13 2178317029235801 a001 14930352/521*15127^(9/20) 2178317029711785 a001 9227465/521*15127^(1/2) 2178317030187743 a001 5702887/521*15127^(11/20) 2178317030663768 a001 3524578/521*15127^(3/5) 2178317031139617 a001 2178309/521*15127^(13/20) 2178317031615926 a001 1346269/521*15127^(7/10) 2178317032091033 a001 832040/521*15127^(3/4) 2178317032201773 a001 433494437/521*5778^(1/9) 2178317032260875 q001 1/45907 2178317032569286 a001 514229/521*15127^(4/5) 2178317032709887 m005 (1/2*exp(1)+11/12)/(6/11*3^(1/2)+1/10) 2178317033039301 a001 317811/521*15127^(17/20) 2178317033530884 a001 196418/521*15127^(9/10) 2178317033966004 a001 233*15127^(19/20) 2178317034441980 a001 14736314738/6765 2178317035666677 a007 Real Root Of -424*x^4-577*x^3+707*x^2-302*x-430 2178317035826652 a001 267914296/521*5778^(1/6) 2178317039451531 a001 165580141/521*5778^(2/9) 2178317041625154 k001 Champernowne real with 992*n+1186 2178317043076410 a001 102334155/521*5778^(5/18) 2178317043973990 r002 12th iterates of z^2 + 2178317044276785 m001 1/Riemann1stZero*Rabbit*ln(cosh(1)) 2178317044954551 m005 (1/2*Pi-1/2)/(1/6*2^(1/2)-8/11) 2178317046701290 a001 63245986/521*5778^(1/3) 2178317049844902 a001 233/9349*817138163596^(2/3) 2178317049844902 a001 233/9349*(1/2+1/2*5^(1/2))^38 2178317049844902 a001 233/9349*10749957122^(19/24) 2178317049844902 a001 233/9349*4106118243^(19/23) 2178317049844902 a001 233/9349*1568397607^(19/22) 2178317049844902 a001 233/9349*599074578^(19/21) 2178317049844902 a001 233/9349*228826127^(19/20) 2178317049874466 a001 4181/521*141422324^(2/3) 2178317049874466 a001 4181/521*(1/2+1/2*5^(1/2))^26 2178317049874466 a001 4181/521*73681302247^(1/2) 2178317049874466 a001 4181/521*10749957122^(13/24) 2178317049874466 a001 4181/521*4106118243^(13/23) 2178317049874466 a001 4181/521*1568397607^(13/22) 2178317049874466 a001 4181/521*599074578^(13/21) 2178317049874466 a001 4181/521*228826127^(13/20) 2178317049874466 a001 4181/521*87403803^(13/19) 2178317049874468 a001 4181/521*33385282^(13/18) 2178317049874476 a001 4181/521*12752043^(13/17) 2178317049874541 a001 4181/521*4870847^(13/16) 2178317049875012 a001 4181/521*1860498^(13/15) 2178317049878471 a001 4181/521*710647^(13/14) 2178317050326168 a001 39088169/521*5778^(7/18) 2178317052902965 a001 701408733/521*2207^(1/16) 2178317053951049 a001 24157817/521*5778^(4/9) 2178317057575925 a001 14930352/521*5778^(1/2) 2178317059549074 m001 (FellerTornier-Sarnak)/(Tribonacci+ZetaQ(4)) 2178317061200811 a001 9227465/521*5778^(5/9) 2178317064825672 a001 5702887/521*5778^(11/18) 2178317068450599 a001 3524578/521*5778^(2/3) 2178317069243699 m005 (1/2*3^(1/2)+1/9)/(4/11*2^(1/2)-5) 2178317071687156 l006 ln(1139/10059) 2178317072075352 a001 2178309/521*5778^(13/18) 2178317075556542 m001 DuboisRaymond/ErdosBorwein*ln(MertensB1)^2 2178317075700563 a001 1346269/521*5778^(7/9) 2178317076046045 p001 sum((-1)^n/(550*n+457)/(100^n),n=0..infinity) 2178317079324573 a001 832040/521*5778^(5/6) 2178317080853915 a001 433494437/521*2207^(1/8) 2178317082540290 a007 Real Root Of -33*x^4-704*x^3+362*x^2+833*x-188 2178317082951729 a001 514229/521*5778^(8/9) 2178317086570647 a001 317811/521*5778^(17/18) 2178317090169943 a001 4356623/2+5/2*5^(1/2) 2178317090170278 a001 5628771361/2584 2178317091893752 a001 41/7*10946^(7/11) 2178317101071909 a003 sin(Pi*9/40)-sin(Pi*26/111) 2178317106680556 m001 LaplaceLimit*ln(CopelandErdos)/GAMMA(5/24) 2178317108804866 a001 267914296/521*2207^(3/16) 2178317111213121 k007 concat of cont frac of 2178317128572229 r009 Re(z^3+c),c=-23/106+37/39*I,n=13 2178317132102922 m001 (GaussAGM+ZetaQ(4))/(Pi+ArtinRank2) 2178317136056312 m005 (1/2*3^(1/2)-1/10)/(Pi+3/8) 2178317136755817 a001 165580141/521*2207^(1/4) 2178317141645157 k001 Champernowne real with 993*n+1185 2178317150483088 a007 Real Root Of 490*x^4+643*x^3-659*x^2+597*x+41 2178317156797791 m001 (ln(2)-ArtinRank2)/(Cahen+FeigenbaumKappa) 2178317164131423 k008 concat of cont frac of 2178317164706768 a001 102334155/521*2207^(5/16) 2178317173498013 m005 (5/6*Pi+1/5)/(1/5*exp(1)+3/4) 2178317173975528 a001 433494437/1364*322^(1/3) 2178317177753460 r009 Re(z^3+c),c=-13/30+31/64*I,n=6 2178317184340598 r009 Re(z^3+c),c=-3/74+7/10*I,n=50 2178317190270386 l006 ln(5021/6243) 2178317192657720 a001 63245986/521*2207^(3/8) 2178317195743487 a001 233/3571*141422324^(12/13) 2178317195743487 a001 233/3571*2537720636^(4/5) 2178317195743487 a001 233/3571*45537549124^(12/17) 2178317195743487 a001 233/3571*14662949395604^(4/7) 2178317195743487 a001 233/3571*(1/2+1/2*5^(1/2))^36 2178317195743487 a001 233/3571*192900153618^(2/3) 2178317195743487 a001 233/3571*73681302247^(9/13) 2178317195743487 a001 233/3571*10749957122^(3/4) 2178317195743487 a001 233/3571*4106118243^(18/23) 2178317195743487 a001 233/3571*1568397607^(9/11) 2178317195743487 a001 233/3571*599074578^(6/7) 2178317195743487 a001 233/3571*228826127^(9/10) 2178317195743487 a001 233/3571*87403803^(18/19) 2178317195773033 a001 1597/521*20633239^(4/5) 2178317195773037 a001 1597/521*17393796001^(4/7) 2178317195773037 a001 1597/521*14662949395604^(4/9) 2178317195773037 a001 1597/521*(1/2+1/2*5^(1/2))^28 2178317195773037 a001 1597/521*73681302247^(7/13) 2178317195773037 a001 1597/521*10749957122^(7/12) 2178317195773037 a001 1597/521*4106118243^(14/23) 2178317195773037 a001 1597/521*1568397607^(7/11) 2178317195773037 a001 1597/521*599074578^(2/3) 2178317195773037 a001 1597/521*228826127^(7/10) 2178317195773038 a001 1597/521*87403803^(14/19) 2178317195773039 a001 1597/521*33385282^(7/9) 2178317195773048 a001 1597/521*12752043^(14/17) 2178317195773118 a001 1597/521*4870847^(7/8) 2178317195773625 a001 1597/521*1860498^(14/15) 2178317197686464 l006 ln(789/6968) 2178317197885640 a001 4/317811*34^(7/45) 2178317199874206 a007 Real Root Of 252*x^4+234*x^3-683*x^2-368*x-816 2178317213532557 a007 Real Root Of -36*x^4-742*x^3+874*x^2-976*x+151 2178317220608672 a001 39088169/521*2207^(7/16) 2178317224547190 r005 Im(z^2+c),c=-109/106+12/53*I,n=11 2178317225773648 m005 (1/3*3^(1/2)-1/8)/(7/9*Zeta(3)-8/11) 2178317237270311 r001 45i'th iterates of 2*x^2-1 of 2178317239466915 m001 (2^(1/2)-Shi(1))/(arctan(1/3)+ln(2+3^(1/2))) 2178317241665160 k001 Champernowne real with 994*n+1184 2178317243898934 a001 701408733/521*843^(1/14) 2178317248559626 a001 24157817/521*2207^(1/2) 2178317263432572 g006 Psi(1,4/9)+Psi(1,7/8)+Psi(1,3/5)+Psi(1,1/3) 2178317266216588 a001 3571/6765*2178309^(13/51) 2178317267920303 h001 (-7*exp(2)-6)/(-5*exp(4)+8) 2178317276510576 a001 14930352/521*2207^(9/16) 2178317277555820 a007 Real Root Of 35*x^4+786*x^3+533*x^2+399*x-399 2178317279187011 m001 (Paris-ZetaQ(4))/(sin(1/5*Pi)-Landau) 2178317285316608 h001 (7/10*exp(2)+4/9)/(7/8*exp(1)+1/5) 2178317293947884 a001 47/3*1346269^(20/39) 2178317296012471 b008 Sqrt[2/3]+Zeta[Sqrt[6]] 2178317304461536 a001 9227465/521*2207^(5/8) 2178317306726621 a001 433494437/2207*322^(5/12) 2178317311060488 a007 Real Root Of -529*x^4-829*x^3+673*x^2+221*x+630 2178317319040181 r009 Re(z^3+c),c=-39/110+33/64*I,n=28 2178317323159492 a001 29/2178309*2178309^(50/51) 2178317328007088 m001 FeigenbaumKappa*MertensB2+StronglyCareFree 2178317328868942 r002 23th iterates of z^2 + 2178317329261520 a001 29/28657*34^(47/54) 2178317330454603 m001 (Kac+KomornikLoreti)/(3^(1/2)-GolombDickman) 2178317332412471 a001 5702887/521*2207^(11/16) 2178317335283194 m005 (1/2*gamma-2)/(10/11*2^(1/2)-1/2) 2178317341685163 k001 Champernowne real with 995*n+1183 2178317342802937 r002 3th iterates of z^2 + 2178317346655699 h001 (9/11*exp(1)+4/9)/(1/4*exp(1)+6/11) 2178317360363474 a001 3524578/521*2207^(3/4) 2178317370472219 m001 (2^(1/2)+Chi(1))/(Thue+ZetaP(3)) 2178317388314301 a001 2178309/521*2207^(13/16) 2178317388932053 a007 Real Root Of -482*x^4-913*x^3+54*x^2-198*x+728 2178317393723111 k007 concat of cont frac of 2178317394567218 m001 (ln(Pi)-Kac)/(Landau+Tribonacci) 2178317403984536 a001 9349/17711*2178309^(13/51) 2178317410924548 m001 Kolakoski+Sarnak+TwinPrimes 2178317416265588 a001 1346269/521*2207^(7/8) 2178317418099684 r005 Re(z^2+c),c=-1/7+32/63*I,n=27 2178317424084609 a001 6119/11592*2178309^(13/51) 2178317428829593 a001 39603/75025*2178309^(13/51) 2178317436507137 a001 15127/28657*2178309^(13/51) 2178317438285528 r009 Re(z^3+c),c=-7/60+41/49*I,n=42 2178317441705166 k001 Champernowne real with 996*n+1182 2178317442191834 r005 Im(z^2+c),c=-7/106+32/61*I,n=3 2178317444215673 a001 832040/521*2207^(15/16) 2178317446093618 m004 31*Sqrt[5]*Pi+5*Sqrt[5]*Pi*Sech[Sqrt[5]*Pi] 2178317447082513 m004 31*Sqrt[5]*Pi+5*Sqrt[5]*Pi*Csch[Sqrt[5]*Pi] 2178317447878358 m001 OneNinth/exp(LandauRamanujan)^2*cos(Pi/12)^2 2178317458750716 m001 1/GAMMA(7/24)/ln(GAMMA(19/24))*Zeta(5)^2 2178317462845876 a001 433494437/521*843^(1/7) 2178317472003543 m005 (1/2*3^(1/2)-1/5)/(3/10*Pi-4) 2178317472137791 a001 2149999345/987 2178317472287048 h001 (1/4*exp(1)+1/10)/(5/12*exp(2)+1/2) 2178317480212053 r005 Im(z^2+c),c=-11/29+19/53*I,n=32 2178317480679544 m005 (1/2*Zeta(3)+9/11)/(3/7*Zeta(3)+6) 2178317485022366 a007 Real Root Of 17*x^4-495*x^3-970*x^2+558*x+319 2178317489129811 a001 2889/5473*2178309^(13/51) 2178317492096026 m001 (Pi^(1/2)+GAMMA(17/24))/(Paris-Riemann1stZero) 2178317494440657 a007 Real Root Of 669*x^4+984*x^3-940*x^2+492*x+640 2178317494651467 r009 Im(z^3+c),c=-25/94+10/53*I,n=12 2178317495468079 m001 1/cosh(1)^2*exp(GAMMA(3/4))^2/sqrt(5) 2178317499345169 r009 Re(z^3+c),c=-5/14+13/25*I,n=58 2178317500475779 m001 (HardHexagonsEntropy+Otter)/(GAMMA(2/3)+Cahen) 2178317504246647 r009 Im(z^3+c),c=-47/110+1/11*I,n=35 2178317506997468 a007 Real Root Of 106*x^4-373*x^3-990*x^2+541*x-366 2178317507569530 a007 Real Root Of -307*x^4-514*x^3+257*x^2+230*x+881 2178317517149473 l006 ln(7220/7379) 2178317524595757 l006 ln(439/3877) 2178317524595757 p004 log(3877/439) 2178317527745795 r005 Im(z^2+c),c=-137/122+5/19*I,n=39 2178317532802014 a007 Real Root Of -668*x^4+926*x^3-159*x^2+369*x+99 2178317535290193 r005 Im(z^2+c),c=-1/122+13/54*I,n=8 2178317535543507 a001 514229/3*843^(20/53) 2178317541725169 k001 Champernowne real with 997*n+1181 2178317548026951 a007 Real Root Of -668*x^4-952*x^3+652*x^2-620*x+756 2178317550592029 r009 Re(z^3+c),c=-3/58+30/41*I,n=55 2178317552913352 l006 ln(4417/5492) 2178317567654834 m005 (1/2*Catalan+5/9)/(7/9*3^(1/2)-6) 2178317568270356 a001 9062201101803*144^(3/17) 2178317569061170 m001 (Niven-gamma*StronglyCareFree)/gamma 2178317575127011 k007 concat of cont frac of 2178317578876141 m001 PlouffeB/(ln(2+3^(1/2))-ln(3)) 2178317588506244 a007 Real Root Of 70*x^4-790*x^3+915*x^2+728*x+662 2178317593036452 r005 Re(z^2+c),c=-5/46+41/64*I,n=24 2178317611237194 r005 Im(z^2+c),c=-25/26+19/82*I,n=34 2178317614410254 r002 9th iterates of z^2 + 2178317617392879 a007 Real Root Of 366*x^4+997*x^3+628*x^2+47*x-813 2178317635343352 m001 (Tetranacci+Trott)/(Porter-gamma) 2178317641745172 k001 Champernowne real with 998*n+1180 2178317656172399 r005 Im(z^2+c),c=-13/31+16/49*I,n=6 2178317656456181 m002 -12+2/E^Pi-Pi^2 2178317661252454 m005 (-7/36+1/4*5^(1/2))/(7/11*3^(1/2)+4/7) 2178317671535975 r005 Im(z^2+c),c=-6/17+13/37*I,n=42 2178317680326701 r005 Im(z^2+c),c=-3/22+13/45*I,n=6 2178317681792840 a001 267914296/521*843^(3/14) 2178317683273930 p004 log(28711/3251) 2178317688694077 a001 567451585/2889*322^(5/12) 2178317688892863 r002 63th iterates of z^2 + 2178317696603469 a007 Real Root Of 169*x^4+114*x^3-587*x^2-261*x-410 2178317699365255 m001 exp(Pi)-gamma(3)-FeigenbaumKappa 2178317699434638 s001 sum(exp(-Pi/4)^n*A136443[n],n=1..infinity) 2178317703862023 m005 (1/2*Zeta(3)-3/4)/(5/8*2^(1/2)-1/5) 2178317706613463 r004 Im(z^2+c),c=1/8+1/18*I,z(0)=exp(7/24*I*Pi),n=2 2178317713450879 r005 Im(z^2+c),c=-11/14+25/248*I,n=52 2178317724713433 a001 5778*5^(47/57) 2178317727775415 r005 Im(z^2+c),c=-21/31+3/62*I,n=48 2178317738134121 k002 Champernowne real with 91*n^2-216*n+146 2178317741765175 k001 Champernowne real with 999*n+1179 2178317744422389 a001 2971215073/15127*322^(5/12) 2178317744491968 m001 exp(TwinPrimes)/Rabbit^2*LambertW(1) 2178317747578272 a007 Real Root Of -249*x^4+58*x^3+995*x^2-878*x-428 2178317749107635 m001 GAMMA(7/24)^2*GolombDickman^2*exp(sqrt(Pi)) 2178317750829724 m001 (gamma(3)+TwinPrimes)/(exp(1)+arctan(1/3)) 2178317752246823 m005 (1/2*Catalan-5/9)/(3/8*exp(1)-4/7) 2178317752553041 a001 7778742049/39603*322^(5/12) 2178317753739287 a001 10182505537/51841*322^(5/12) 2178317753759666 m009 (16*Catalan+2*Pi^2+2/3)/(Psi(1,1/3)+6) 2178317753912358 a001 53316291173/271443*322^(5/12) 2178317753937608 a001 139583862445/710647*322^(5/12) 2178317753941292 a001 182717648081/930249*322^(5/12) 2178317753941830 a001 956722026041/4870847*322^(5/12) 2178317753941908 a001 2504730781961/12752043*322^(5/12) 2178317753941920 a001 3278735159921/16692641*322^(5/12) 2178317753941922 a001 10610209857723/54018521*322^(5/12) 2178317753941927 a001 4052739537881/20633239*322^(5/12) 2178317753941957 a001 387002188980/1970299*322^(5/12) 2178317753942162 a001 591286729879/3010349*322^(5/12) 2178317753943569 a001 225851433717/1149851*322^(5/12) 2178317753953214 a001 196418*322^(5/12) 2178317754019321 a001 32951280099/167761*322^(5/12) 2178317754472427 a001 12586269025/64079*322^(5/12) 2178317757578060 a001 1201881744/6119*322^(5/12) 2178317766068004 a007 Real Root Of -987*x^4+541*x^3-810*x^2+816*x+224 2178317768468632 a001 1149851*6557470319842^(7/17) 2178317768470282 a001 33385282*1836311903^(7/17) 2178317768470958 a001 969323029*514229^(7/17) 2178317771878662 a007 Real Root Of 403*x^4+70*x^3+779*x^2-59*x-50 2178317778864382 a001 1836311903/9349*322^(5/12) 2178317789347527 r005 Im(z^2+c),c=-11/16+9/41*I,n=16 2178317789537154 a007 Real Root Of -900*x^4+945*x^3+221*x^2-24*x-13 2178317791329321 l006 ln(967/8540) 2178317797720688 r002 4th iterates of z^2 + 2178317808608777 a007 Real Root Of 487*x^4+784*x^3-757*x^2-216*x+260 2178317811808906 m001 (ln(2)+ln(Pi))/(Ei(1,1)+GolombDickman) 2178317811982851 r009 Im(z^3+c),c=-21/50+5/46*I,n=3 2178317815166254 r005 Im(z^2+c),c=-15/28+10/27*I,n=31 2178317831745818 r005 Im(z^2+c),c=-31/122+11/34*I,n=22 2178317840760258 a007 Real Root Of 26*x^4+603*x^3+803*x^2+81*x-571 2178317841785178 k001 Champernowne real with 1000*n+1178 2178317849810976 a001 2207/4181*2178309^(13/51) 2178317853504508 m005 (1/2*exp(1)-1)/(2/11*5^(1/2)-4/7) 2178317862244122 m006 (2/5/Pi+4)/(ln(Pi)+3/4) 2178317863412065 a007 Real Root Of -223*x^4-540*x^3-423*x^2-407*x+560 2178317865990886 a007 Real Root Of 13*x^4+286*x^3+73*x^2+238*x-320 2178317872710781 r002 58th iterates of z^2 + 2178317876564542 r005 Re(z^2+c),c=-31/118+1/37*I,n=5 2178317876724461 a007 Real Root Of 595*x^4+922*x^3-684*x^2+629*x+749 2178317878768693 m001 Ei(1)^FeigenbaumAlpha/(Ei(1)^GAMMA(17/24)) 2178317895785601 m005 (1/2*exp(1)+2)/(6*exp(1)-8/9) 2178317898252297 r005 Re(z^2+c),c=-34/27+14/55*I,n=8 2178317900739825 a001 165580141/521*843^(2/7) 2178317901234567 r005 Re(z^2+c),c=-25/24+23/45*I,n=2 2178317902982945 m001 GAMMA(7/12)/exp(MertensB1)/cos(1) 2178317907397898 r005 Im(z^2+c),c=-19/66+1/3*I,n=25 2178317911755361 m005 (1/2*Catalan+9/10)/(4/7*Catalan+1/10) 2178317922901392 m001 (Kolakoski+Niven)/(exp(-1/2*Pi)-FellerTornier) 2178317924763015 a001 701408733/3571*322^(5/12) 2178317927083305 m001 1/Robbin^2/exp(FeigenbaumDelta)^2*Trott 2178317927399107 s002 sum(A141556[n]/(n*10^n+1),n=1..infinity) 2178317933395702 m001 (Salem-ZetaP(3))/(Pi+Backhouse) 2178317934718007 m008 (Pi^2+3/5)/(5*Pi^6-2/3) 2178317934967503 m005 (1/2*5^(1/2)-6/11)/(4/9*2^(1/2)+2) 2178317938193672 m001 gamma/LaplaceLimit*Riemann3rdZero 2178317941805181 k001 Champernowne real with 1001*n+1177 2178317944271909 a001 2178309+4*5^(1/2) 2178317945069198 m001 exp(GAMMA(1/12))^2*Backhouse^2*GAMMA(11/12) 2178317945341228 a007 Real Root Of 139*x^4-723*x^3+395*x^2+713*x+916 2178317947085121 m001 1/FeigenbaumD/exp(Backhouse)^2*Zeta(5)^2 2178317954558554 r005 Re(z^2+c),c=-93/94+11/58*I,n=42 2178317956441174 a001 521/55*377^(11/12) 2178317959035850 h001 (7/12*exp(2)+2/11)/(2/3*exp(1)+1/4) 2178317963251512 p001 sum((-1)^n/(599*n+456)/(64^n),n=0..infinity) 2178317963588969 m001 Catalan*Riemann2ndZero^2*exp(sin(1))^2 2178317977801916 m001 1/ln(FeigenbaumC)/Kolakoski^2/Zeta(3) 2178317980975838 m001 Trott^Stephens/(Trott^exp(Pi)) 2178317985482194 m009 (3/2*Pi^2+3/5)/(3/4*Psi(1,1/3)-1/2) 2178317992123332 m001 (GAMMA(3/4)+Ei(1))/(sin(1/12*Pi)+GAMMA(19/24)) 2178317994116481 a007 Real Root Of -519*x^4-705*x^3+959*x^2-376*x-971 2178317996900808 a007 Real Root Of -239*x^4-295*x^3+644*x^2+38*x-641 2178318008106725 m001 (OrthogonalArrays+Porter)/(ln(3)+Ei(1,1)) 2178318010473176 a001 39603/610*6765^(7/51) 2178318013102059 l006 ln(528/4663) 2178318014810508 s002 sum(A144687[n]/(n^2*pi^n-1),n=1..infinity) 2178318022691022 m001 (-Kac+OrthogonalArrays)/(3^(1/2)-exp(1/Pi)) 2178318023160304 m009 (1/2*Psi(1,2/3)+3/5)/(1/3*Psi(1,2/3)-2) 2178318025342299 m001 (ln(Pi)+Zeta(1,-1))/(Pi+GAMMA(2/3)) 2178318026617813 m001 cos(1/5*Pi)^TreeGrowth2nd-ln(2) 2178318030445545 l006 ln(3813/4741) 2178318032447493 a008 Real Root of (1+5*x+3*x^2+4*x^3+6*x^4+2*x^5) 2178318034151889 a007 Real Root Of 615*x^4-980*x^3+619*x^2-338*x+53 2178318039336437 r005 Re(z^2+c),c=35/122+12/49*I,n=8 2178318040184350 m001 GAMMA(1/6)*FeigenbaumKappa/exp(sqrt(Pi))^2 2178318041825184 k001 Champernowne real with 1002*n+1176 2178318051253208 a007 Real Root Of 25*x^4+560*x^3+303*x^2-730*x-287 2178318051851480 a007 Real Root Of 65*x^4-365*x^3-610*x^2+924*x-329 2178318052933834 r005 Im(z^2+c),c=-5/118+16/63*I,n=16 2178318056733873 m001 (ln(3)-LaplaceLimit)^Zeta(1,2) 2178318059139627 r009 Im(z^3+c),c=-2/13+51/59*I,n=56 2178318070638781 a001 4/161*64079^(30/49) 2178318079928961 a001 47/4181*591286729879^(13/21) 2178318096599441 m001 (gamma(2)-BesselI(1,1))/(MertensB3+Mills) 2178318101007005 m001 (Gompertz-MertensB3)/(PrimesInBinary-ZetaP(4)) 2178318102195479 m001 1/TreeGrowth2nd*exp(Magata)^2*GAMMA(23/24)^2 2178318103395391 r009 Im(z^3+c),c=-43/82+19/54*I,n=4 2178318117493288 r005 Re(z^2+c),c=41/122+15/64*I,n=49 2178318119686833 a001 102334155/521*843^(5/14) 2178318119795065 r005 Re(z^2+c),c=-5/26+43/63*I,n=28 2178318129599309 r009 Re(z^3+c),c=-2/17+29/38*I,n=52 2178318135764944 q001 215/987 2178318135764944 r002 2th iterates of z^2 + 2178318135764944 r002 2th iterates of z^2 + 2178318135764944 r002 2th iterates of z^2 + 2178318135764944 r002 2th iterates of z^2 + 2178318135764944 r002 2th iterates of z^2 + 2178318135764944 r005 Im(z^2+c),c=-13/21+43/47*I,n=2 2178318141141571 k008 concat of cont frac of 2178318141845187 k001 Champernowne real with 1003*n+1175 2178318156103923 m001 (2^(1/2)+5^(1/2))/(-Ei(1)+Ei(1,1)) 2178318174678881 a007 Real Root Of 651*x^4+974*x^3-553*x^2+915*x+27 2178318175891579 m001 (ln(5)+GAMMA(17/24))/(CareFree+GolombDickman) 2178318181895557 m004 7*Log[Sqrt[5]*Pi]+6*Sec[Sqrt[5]*Pi] 2178318190073968 r005 Re(z^2+c),c=-5/54+31/52*I,n=64 2178318190267988 a001 63245986/843*322^(7/12) 2178318194394334 r005 Re(z^2+c),c=-9/44+17/48*I,n=12 2178318195747787 a001 233/1364*45537549124^(2/3) 2178318195747787 a001 233/1364*(1/2+1/2*5^(1/2))^34 2178318195747787 a001 233/1364*10749957122^(17/24) 2178318195747787 a001 233/1364*4106118243^(17/23) 2178318195747787 a001 233/1364*1568397607^(17/22) 2178318195747787 a001 233/1364*599074578^(17/21) 2178318195747787 a001 233/1364*228826127^(17/20) 2178318195747787 a001 233/1364*87403803^(17/19) 2178318195747789 a001 233/1364*33385282^(17/18) 2178318195776690 a001 610/521*7881196^(10/11) 2178318195776717 a001 610/521*20633239^(6/7) 2178318195776721 a001 610/521*141422324^(10/13) 2178318195776721 a001 610/521*2537720636^(2/3) 2178318195776721 a001 610/521*45537549124^(10/17) 2178318195776721 a001 610/521*312119004989^(6/11) 2178318195776721 a001 610/521*14662949395604^(10/21) 2178318195776721 a001 610/521*(1/2+1/2*5^(1/2))^30 2178318195776721 a001 610/521*192900153618^(5/9) 2178318195776721 a001 610/521*28143753123^(3/5) 2178318195776721 a001 610/521*10749957122^(5/8) 2178318195776721 a001 610/521*4106118243^(15/23) 2178318195776721 a001 610/521*1568397607^(15/22) 2178318195776721 a001 610/521*599074578^(5/7) 2178318195776721 a001 610/521*228826127^(3/4) 2178318195776722 a001 610/521*87403803^(15/19) 2178318195776723 a001 610/521*33385282^(5/6) 2178318195776733 a001 610/521*12752043^(15/17) 2178318195776808 a001 610/521*4870847^(15/16) 2178318196534906 r005 Re(z^2+c),c=-3/94+11/17*I,n=14 2178318202087208 m001 (5^(1/2)+LambertW(1))/(-MinimumGamma+ZetaP(3)) 2178318210423855 r009 Re(z^3+c),c=-9/26+30/61*I,n=25 2178318219842811 p001 sum((-1)^n/(485*n+434)/(8^n),n=0..infinity) 2178318241865190 k001 Champernowne real with 1004*n+1174 2178318257802702 r009 Re(z^3+c),c=-7/32+7/61*I,n=4 2178318261525883 h001 (-4*exp(8)-5)/(-5*exp(7)+7) 2178318265929194 r005 Im(z^2+c),c=-7/30+1/33*I,n=15 2178318273737665 a001 521/10946*832040^(37/47) 2178318274688739 a001 64079/21*987^(13/21) 2178318286402374 a007 Real Root Of -60*x^4+707*x^3-815*x^2-564*x-861 2178318286908257 r005 Im(z^2+c),c=7/48+8/47*I,n=7 2178318287495481 r005 Im(z^2+c),c=-47/122+9/25*I,n=39 2178318296392089 m001 1/Zeta(3)^2*exp(Pi)^2*sin(Pi/5) 2178318299891411 m001 ln(FeigenbaumD)^2*FeigenbaumB^2/GAMMA(1/6)^2 2178318307111449 m001 1/(3^(1/3))^2*TwinPrimes/exp(GAMMA(1/3)) 2178318310835954 m001 (Paris-Robbin)/(GAMMA(5/6)+Backhouse) 2178318311550684 r002 60th iterates of z^2 + 2178318312219888 r005 Im(z^2+c),c=-1/3+19/55*I,n=18 2178318312443482 a007 Real Root Of 389*x^4+807*x^3+322*x^2+556*x-734 2178318314526763 a007 Real Root Of 697*x^4+954*x^3-657*x^2+926*x-698 2178318316688227 m002 (E^Pi*Pi^3*Csch[Pi])/3+ProductLog[Pi] 2178318320940090 b008 InverseGudermannian[(1+Sinh[2])^(-1)] 2178318325096157 a007 Real Root Of 308*x^4+363*x^3-376*x^2+654*x+26 2178318330824300 l006 ln(7022/8731) 2178318332821664 r005 Re(z^2+c),c=-1+65/252*I,n=38 2178318335997767 m005 (1/2*Catalan-3)/(7/9*Catalan+5/11) 2178318338633863 a001 63245986/521*843^(3/7) 2178318341885193 k001 Champernowne real with 1005*n+1173 2178318346666280 p001 sum(1/(361*n+7)/n/(125^n),n=1..infinity) 2178318351762549 s002 sum(A190323[n]/(n*exp(pi*n)+1),n=1..infinity) 2178318360118089 r005 Im(z^2+c),c=-31/46+19/61*I,n=58 2178318360677710 l006 ln(617/5449) 2178318360677710 p004 log(5449/617) 2178318366437902 m001 cos(1)-exp(gamma)+Zeta(1,2) 2178318368670461 r005 Re(z^2+c),c=53/122+20/59*I,n=7 2178318377951152 m006 (2/3*Pi+4/5)/(1/4*exp(2*Pi)-1) 2178318388748339 r005 Re(z^2+c),c=-4/23+23/53*I,n=45 2178318400614844 m001 LandauRamanujan/(ReciprocalFibonacci+ZetaR(2)) 2178318415562403 h005 exp(sin(Pi*5/42)+sin(Pi*8/59)) 2178318420173171 h001 (6/7*exp(2)+6/7)/(5/12*exp(2)+2/9) 2178318421390117 a007 Real Root Of 395*x^4+900*x^3-77*x^2-299*x+123 2178318434577617 a007 Real Root Of -360*x^4-640*x^3+46*x^2-629*x-98 2178318436825345 m001 ArtinRank2^2*exp(FeigenbaumDelta)/cosh(1)^2 2178318441905196 k001 Champernowne real with 1006*n+1172 2178318453039800 r005 Im(z^2+c),c=-23/58+26/53*I,n=15 2178318458457273 m001 1/exp(GAMMA(17/24))^2*LaplaceLimit^2/cosh(1) 2178318480930738 a007 Real Root Of -27*x^4+320*x^3-453*x^2-186*x-145 2178318483461959 m001 Ei(1)^2/Catalan/exp(sin(Pi/5)) 2178318486903115 r002 43th iterates of z^2 + 2178318488113724 r009 Re(z^3+c),c=-13/38+14/29*I,n=35 2178318488126789 r002 47th iterates of z^2 + 2178318499755714 a001 9349/144*4807526976^(6/23) 2178318506514212 a007 Real Root Of 396*x^4+494*x^3-831*x^2+224*x+621 2178318512018363 a001 141422324/233*6557470319842^(14/17) 2178318512018363 a001 119218851371/233*1836311903^(14/17) 2178318513650066 a007 Real Root Of 919*x^4+322*x^3+351*x^2-976*x-228 2178318520740957 a007 Real Root Of -296*x^4-91*x^3+623*x^2-947*x+705 2178318524620974 a001 167761/144*75025^(6/23) 2178318527449034 m005 (1/2*5^(1/2)-1/8)/(-107/22+3/22*5^(1/2)) 2178318530631748 m006 (1/4*exp(Pi)-5/6)/(4/Pi+1) 2178318530871916 m001 (1+ReciprocalFibonacci)/(Robbin+Totient) 2178318533645234 a007 Real Root Of 414*x^4+674*x^3-422*x^2-149*x-677 2178318536315331 a003 cos(Pi*13/60)-sin(Pi*22/47) 2178318541925199 k001 Champernowne real with 1007*n+1171 2178318557580914 a001 39088169/521*843^(1/2) 2178318560618024 a001 21/11*7^(4/59) 2178318568620286 r002 31th iterates of z^2 + 2178318569423677 r009 Re(z^3+c),c=-3/7+31/59*I,n=28 2178318578963019 a001 123/55*233^(21/25) 2178318582786384 m001 (Shi(1)*arctan(1/3)+ReciprocalLucas)/Shi(1) 2178318595901677 m001 (gamma(3)-Porter)/(Robbin+Trott) 2178318599027613 r005 Re(z^2+c),c=39/118+22/61*I,n=39 2178318602690716 m006 (5/6*ln(Pi)+1)/(1/5/Pi+5/6) 2178318607335677 a008 Real Root of x^3+200*x-446 2178318609810107 r005 Im(z^2+c),c=-13/14+35/179*I,n=14 2178318616400637 a007 Real Root Of 246*x^4+128*x^3-849*x^2+265*x+390 2178318617229999 m001 1/cos(Pi/5)^2/Niven/exp(sqrt(2)) 2178318619666892 a007 Real Root Of -672*x^4+943*x^3+489*x^2+458*x-1 2178318620620894 l006 ln(706/6235) 2178318623069480 r005 Im(z^2+c),c=-6/17+13/37*I,n=39 2178318628339805 r002 37th iterates of z^2 + 2178318634050418 a005 (1/cos(23/157*Pi))^49 2178318635300114 a007 Real Root Of 375*x^4+275*x^3-533*x^2+969*x-961 2178318639746663 m001 (Stephens+Totient)/(gamma(3)-QuadraticClass) 2178318641945202 k001 Champernowne real with 1008*n+1170 2178318642519167 m001 (sin(1/12*Pi)-GaussAGM)/(Porter+Salem) 2178318651150951 m001 Psi(1,1/3)^MertensB3+ZetaQ(4) 2178318654143358 a007 Real Root Of 680*x^4-612*x^3-164*x^2-422*x-92 2178318659906772 m001 MadelungNaCl^Stephens/(ZetaP(2)^Stephens) 2178318660071664 m001 (LaplaceLimit+Salem)/(BesselJ(0,1)-ln(5)) 2178318664009170 m005 (1/2*Pi-3/11)/(1/6*exp(1)+1/7) 2178318674637185 a007 Real Root Of -70*x^4+746*x^3-928*x^2-174*x+14 2178318679638495 p003 LerchPhi(1/32,3,166/215) 2178318683959718 a007 Real Root Of -161*x^4-524*x^3-701*x^2-253*x+984 2178318687740522 l006 ln(3209/3990) 2178318687815972 a007 Real Root Of 504*x^4+924*x^3-351*x^2-271*x-722 2178318700178227 r005 Re(z^2+c),c=21/64+8/53*I,n=13 2178318712793309 m005 (1/3*gamma-2/9)/(4/9*5^(1/2)+3/8) 2178318716734324 a007 Real Root Of -797*x^4-595*x^3+185*x^2+772*x-169 2178318723140569 m001 (-GAMMA(2/3)+ln(gamma))/(2^(1/2)-cos(1)) 2178318723171386 m001 (GAMMA(5/6)+Paris)/(GAMMA(3/4)-Psi(2,1/3)) 2178318740665044 a001 843/17711*28657^(19/51) 2178318741134721 k002 Champernowne real with 183/2*n^2-435/2*n+147 2178318741965205 k001 Champernowne real with 1009*n+1169 2178318743844375 a007 Real Root Of -199*x^4+67*x^3+792*x^2-892*x-528 2178318745050644 a001 1/322*(1/2*5^(1/2)+1/2)*47^(8/21) 2178318747340605 p004 log(33533/3797) 2178318757469314 r009 Re(z^3+c),c=-3/82+7/12*I,n=33 2178318761201203 m005 (1/2*3^(1/2)-9/11)/(-65/264+5/24*5^(1/2)) 2178318763299555 r005 Im(z^2+c),c=-7/8+30/169*I,n=18 2178318775206197 m005 (1/3*2^(1/2)-2/3)/(6/11*2^(1/2)+1/8) 2178318775423221 a007 Real Root Of -185*x^4+68*x^3+717*x^2-763*x-196 2178318775744017 a001 701408733/521*322^(1/12) 2178318776373180 p004 log(35159/28277) 2178318776527988 a001 24157817/521*843^(4/7) 2178318780458067 m001 (-FeigenbaumMu+Trott)/(2^(1/3)+Artin) 2178318782735327 m001 (Zeta(3)-sin(1))/(-Trott+Trott2nd) 2178318787288851 r009 Re(z^3+c),c=-53/102+41/62*I,n=2 2178318794414159 m001 ln(Magata)*Khintchine*Robbin 2178318794775768 m001 (Paris-ZetaP(3))/(cos(1/5*Pi)+Khinchin) 2178318801852857 r009 Re(z^3+c),c=-9/19+29/61*I,n=27 2178318802396529 p004 log(27179/21859) 2178318805726443 m001 GAMMA(3/4)^(GAMMA(5/6)*GAMMA(1/24)) 2178318807655714 m001 (FeigenbaumDelta+Khinchin)/(ln(2)+FeigenbaumD) 2178318809230748 m001 1/Rabbit^2/HardHexagonsEntropy^2/exp(cosh(1)) 2178318809978321 a007 Real Root Of -933*x^4-223*x^3-430*x^2+830*x+201 2178318822362916 l006 ln(795/7021) 2178318826124462 m005 (1/2*5^(1/2)-1)/(2/5*exp(1)-6/11) 2178318827152090 a007 Real Root Of 213*x^4-18*x^3-797*x^2+965*x+902 2178318830144608 a007 Real Root Of 21*x^4-44*x^3+137*x^2+475*x-543 2178318833738583 m001 (KhinchinLevy+Salem)/(ArtinRank2-Grothendieck) 2178318841985208 k001 Champernowne real with 1010*n+1168 2178318845334209 m001 (1+3^(1/2))^(1/2)-Stephens-Thue 2178318849762986 m001 (Pi-exp(Pi))/(arctan(1/3)+Gompertz) 2178318871060558 s002 sum(A053177[n]/(n*2^n-1),n=1..infinity) 2178318871600580 a007 Real Root Of 734*x^4-989*x^3+487*x^2-629*x-172 2178318875295458 a007 Real Root Of -429*x^4-706*x^3+517*x^2-211*x-551 2178318882762897 r002 60th iterates of z^2 + 2178318890833282 r005 Re(z^2+c),c=-7/11+17/42*I,n=40 2178318890954223 p004 log(36677/4153) 2178318895578000 r005 Im(z^2+c),c=-17/54+15/44*I,n=30 2178318901374298 m001 1/GAMMA(11/24)^2/BesselK(1,1)^2*exp(cos(1))^2 2178318902817216 m005 (1/2*gamma+9/11)/(2/9*gamma-7/11) 2178318905508606 m003 1/4+Sqrt[5]/8+5/(4*ProductLog[1/2+Sqrt[5]/2]) 2178318906246869 a007 Real Root Of -380*x^4-883*x^3-452*x^2-756*x-73 2178318911477600 a007 Real Root Of -22*x^4-480*x^3-62*x^2-977*x+180 2178318912416893 m001 exp(Ei(1))/FeigenbaumDelta*GAMMA(7/12) 2178318914412697 r005 Im(z^2+c),c=-47/102+13/33*I,n=21 2178318914944242 m001 (Pi^(1/2)-DuboisRaymond)/(Kac+Paris) 2178318924537464 a007 Real Root Of -639*x^4-894*x^3+775*x^2-799*x-271 2178318924767649 a001 66978574/341*322^(5/12) 2178318931812225 m005 (1/2*Catalan-1/3)/(2*exp(1)+2/7) 2178318933718685 a007 Real Root Of -570*x^4-919*x^3+521*x^2-206*x+414 2178318935566011 m001 (2^(1/3)+ln(5)*HardHexagonsEntropy)/ln(5) 2178318938790162 m001 BesselI(1,2)/(Chi(1)-OneNinth) 2178318942005211 k001 Champernowne real with 1011*n+1167 2178318950980229 m005 (1/2*2^(1/2)-1/8)/(4/5*Catalan-1) 2178318951463774 r009 Re(z^3+c),c=-11/34+24/55*I,n=16 2178318956234507 r005 Im(z^2+c),c=-15/94+7/24*I,n=7 2178318956413856 a005 (1/sin(99/235*Pi))^1292 2178318963035030 m001 (ln(2)-cos(1/12*Pi))/(GAMMA(5/6)+Champernowne) 2178318966779144 m005 (1/2*2^(1/2)+11/12)/(5/6*gamma-5/9) 2178318983482647 l006 ln(884/7807) 2178318988888230 m001 exp(1)^FeigenbaumB/(exp(1)^ZetaQ(2)) 2178318988888230 m001 exp(FeigenbaumB-ZetaQ(2)) 2178318994308054 a001 1/7*(1/2*5^(1/2)+1/2)^18*4^(7/10) 2178318995475081 a001 14930352/521*843^(9/14) 2178318995861331 a003 cos(Pi*20/73)*cos(Pi*23/47) 2178319000810412 a001 5702887/199*199^(9/11) 2178319008674732 r002 4th iterates of z^2 + 2178319036404787 a007 Real Root Of 236*x^4+852*x^3+966*x^2+953*x+985 2178319036452816 s001 sum(exp(-Pi)^n*A015524[n],n=1..infinity) 2178319036452816 s002 sum(A015524[n]/(exp(pi*n)),n=1..infinity) 2178319036697719 a007 Real Root Of 292*x^4+184*x^3-582*x^2+522*x-774 2178319042025214 k001 Champernowne real with 1012*n+1166 2178319042587238 h001 (1/9*exp(1)+9/10)/(5/8*exp(2)+9/10) 2178319055852939 a007 Real Root Of -791*x^4-782*x^3-954*x^2+760*x+17 2178319057518849 a001 267914296/2207*322^(1/2) 2178319059769630 m005 (7/6+5/12*5^(1/2))/(3/5*gamma-1/4) 2178319063978934 r005 Im(z^2+c),c=-9/8+50/189*I,n=3 2178319067975061 r005 Re(z^2+c),c=-9/34+1/29*I,n=15 2178319071421432 m001 (-Gompertz+Trott)/(2^(1/3)-GAMMA(7/12)) 2178319071766216 m001 Psi(2,1/3)^gamma*Psi(2,1/3)^Totient 2178319089645364 r005 Im(z^2+c),c=-5/9-23/70*I,n=19 2178319111173521 k007 concat of cont frac of 2178319114303967 r009 Re(z^3+c),c=-29/48+16/55*I,n=3 2178319115127217 l006 ln(973/8593) 2178319116775574 m001 (Psi(2,1/3)+Ei(1))/(-Riemann3rdZero+Stephens) 2178319118814759 l006 ln(5814/7229) 2178319141379709 a007 Real Root Of -24*x^4+918*x^3+404*x^2+897*x-224 2178319142045217 k001 Champernowne real with 1013*n+1165 2178319148196971 h001 (-2*exp(3)+9)/(-6*exp(1)+2) 2178319154161375 a001 9349/34*987^(26/41) 2178319154259712 r005 Im(z^2+c),c=33/94+17/41*I,n=35 2178319175438038 r005 Re(z^2+c),c=-37/54+17/56*I,n=51 2178319182184121 k006 concat of cont frac of 2178319199048761 m001 (-LambertW(1)+Kac)/(Si(Pi)+Chi(1)) 2178319209309338 r005 Re(z^2+c),c=-5/31+25/54*I,n=42 2178319209372692 m001 (-Pi^(1/2)+Riemann1stZero)/(gamma-ln(Pi)) 2178319213131082 r005 Re(z^2+c),c=-7/50+25/49*I,n=33 2178319214422206 a001 9227465/521*843^(5/7) 2178319216978189 r005 Re(z^2+c),c=-7/29+32/53*I,n=14 2178319221111641 k006 concat of cont frac of 2178319223489251 r005 Im(z^2+c),c=-5/19+15/46*I,n=19 2178319224707054 l006 ln(1062/9379) 2178319229231776 a008 Real Root of x^4-x^3-18*x^2-48*x-52 2178319231950437 r009 Re(z^3+c),c=-9/16+12/41*I,n=43 2178319234084964 r005 Im(z^2+c),c=-1/62+10/41*I,n=9 2178319240098946 m005 (1/2*3^(1/2)-8/9)/(1/9*3^(1/2)+6/7) 2178319242065220 k001 Champernowne real with 1014*n+1164 2178319246229547 r005 Im(z^2+c),c=47/118+12/55*I,n=19 2178319252210370 r009 Im(z^3+c),c=-35/114+4/23*I,n=2 2178319252276886 m001 (FeigenbaumD-Zeta(3)*ZetaQ(2))/Zeta(3) 2178319260120751 a007 Real Root Of 133*x^4+51*x^3-539*x^2-242*x-437 2178319269139576 m001 KhintchineHarmonic^2*ln(ArtinRank2)/Rabbit^2 2178319276402581 r005 Re(z^2+c),c=17/82+5/46*I,n=12 2178319298658710 m001 Sierpinski^2/Khintchine*exp(sqrt(5))^2 2178319299511204 a007 Real Root Of 168*x^4-40*x^3-739*x^2+485*x+367 2178319309139923 m001 ln(Robbin)*Backhouse*BesselK(1,1)^2 2178319322725282 r005 Im(z^2+c),c=-8/19+1/37*I,n=5 2178319324623388 a007 Real Root Of 100*x^4+284*x^3+462*x^2+540*x-332 2178319333673983 p001 sum((-1)^n/(491*n+223)/n/(64^n),n=1..infinity) 2178319334683366 m001 (GAMMA(11/12)+Otter)/(1+sin(1)) 2178319337755906 a007 Real Root Of -567*x^4-992*x^3+243*x^2-481*x+312 2178319342085223 k001 Champernowne real with 1015*n+1163 2178319346657754 r005 Im(z^2+c),c=-13/10+25/247*I,n=3 2178319351503372 m001 (-Robbin+ZetaP(2))/(GAMMA(7/12)-LambertW(1)) 2178319355228544 a007 Real Root Of 115*x^4+382*x^3+882*x^2-619*x-173 2178319357294108 r005 Re(z^2+c),c=-29/110+1/17*I,n=9 2178319363824374 a001 29/17711*1597^(20/57) 2178319366828051 a007 Real Root Of 310*x^4+928*x^3+527*x^2+311*x+789 2178319370232507 m001 (ln(3)+Sarnak*TwinPrimes)/Sarnak 2178319381151998 r005 Im(z^2+c),c=-9/40+17/54*I,n=17 2178319390787546 a001 11/610*17711^(37/51) 2178319397613427 r005 Im(z^2+c),c=-55/98+2/51*I,n=41 2178319399650610 m001 (3^(1/3))^GaussAGM-exp(Pi) 2178319400984676 a007 Real Root Of 314*x^4+399*x^3-151*x^2+966*x-125 2178319402922258 r002 3th iterates of z^2 + 2178319410912774 r009 Re(z^3+c),c=-17/48+1/2*I,n=19 2178319433369327 a001 5702887/521*843^(11/14) 2178319434340765 r002 34th iterates of z^2 + 2178319435461790 m001 GAMMA(17/24)/(gamma(1)+LaplaceLimit) 2178319439382015 a007 Real Root Of 253*x^4+313*x^3-557*x^2-10*x+160 2178319439486612 a001 233802911/1926*322^(1/2) 2178319442105226 k001 Champernowne real with 1016*n+1162 2178319455280876 a007 Real Root Of 400*x^4+546*x^3-466*x^2+799*x+589 2178319456278815 m005 (1/2*exp(1)+5/6)/(3/10*gamma+5/6) 2178319459296965 a007 Real Root Of 827*x^4+74*x^3+638*x^2-540*x-149 2178319465050962 m001 BesselI(1,1)^FibonacciFactorial/BesselI(0,2) 2178319466661173 a007 Real Root Of 123*x^4+90*x^3-184*x^2+264*x-391 2178319469942872 r005 Im(z^2+c),c=-17/28+11/31*I,n=30 2178319470175052 a007 Real Root Of -65*x^4+63*x^3+183*x^2+954*x-217 2178319481017305 a001 24476/89*75025^(22/37) 2178319482471512 a007 Real Root Of 324*x^4+421*x^3-919*x^2-332*x+694 2178319483235979 r005 Im(z^2+c),c=-11/14+29/189*I,n=5 2178319493567135 m001 (GAMMA(5/6)+Salem)/(BesselI(0,1)-exp(-1/2*Pi)) 2178319495214969 a001 1836311903/15127*322^(1/2) 2178319495672705 a007 Real Root Of -515*x^4-976*x^3-113*x^2-951*x-28 2178319498951478 r005 Re(z^2+c),c=4/21+2/25*I,n=13 2178319503345627 a001 1602508992/13201*322^(1/2) 2178319504531874 a001 12586269025/103682*322^(1/2) 2178319504704945 a001 121393*322^(1/2) 2178319504730196 a001 86267571272/710647*322^(1/2) 2178319504733880 a001 75283811239/620166*322^(1/2) 2178319504734417 a001 591286729879/4870847*322^(1/2) 2178319504734496 a001 516002918640/4250681*322^(1/2) 2178319504734507 a001 4052739537881/33385282*322^(1/2) 2178319504734509 a001 3536736619241/29134601*322^(1/2) 2178319504734510 a001 6557470319842/54018521*322^(1/2) 2178319504734514 a001 2504730781961/20633239*322^(1/2) 2178319504734544 a001 956722026041/7881196*322^(1/2) 2178319504734750 a001 365435296162/3010349*322^(1/2) 2178319504736157 a001 139583862445/1149851*322^(1/2) 2178319504745802 a001 53316291173/439204*322^(1/2) 2178319504811909 a001 20365011074/167761*322^(1/2) 2178319505265015 a001 7778742049/64079*322^(1/2) 2178319508370650 a001 2971215073/24476*322^(1/2) 2178319508879462 a007 Real Root Of -77*x^4+244*x^3+360*x^2-833*x+733 2178319509027742 m001 exp(Conway)^2/ErdosBorwein^2*PrimesInBinary 2178319511737076 m001 BesselJ(0,1)/(exp(1)+Kolakoski) 2178319514121112 k008 concat of cont frac of 2178319516624348 m001 (Catalan+ArtinRank2)/(-Kolakoski+ZetaQ(2)) 2178319517176562 k007 concat of cont frac of 2178319517762754 a007 Real Root Of 722*x^4+877*x^3-999*x^2+982*x-312 2178319522168553 a001 370248451*6557470319842^(5/17) 2178319522168553 a001 4106118243*1836311903^(5/17) 2178319522169038 a001 45537549124*514229^(5/17) 2178319525424692 m001 (cos(1/5*Pi)+gamma(1))/(Magata-Trott2nd) 2178319526016356 a007 Real Root Of -189*x^4-108*x^3+113*x^2-998*x+429 2178319527640954 r005 Im(z^2+c),c=9/86+1/60*I,n=5 2178319529656989 a001 1134903170/9349*322^(1/2) 2178319530639947 m001 BesselK(1,1)/Robbin*exp(GAMMA(1/24))^2 2178319531818704 s002 sum(A017214[n]/(exp(n)),n=1..infinity) 2178319532805965 a007 Real Root Of -18*x^4+379*x^3+556*x^2+865*x+166 2178319536861319 m001 (FellerTornier-LambertW(1))/(-Salem+ZetaQ(2)) 2178319542125229 k001 Champernowne real with 1017*n+1161 2178319545527504 r009 Re(z^3+c),c=-7/60+37/45*I,n=6 2178319559611059 r005 Re(z^2+c),c=-3/14+12/37*I,n=19 2178319560349295 m005 (-13/20+1/4*5^(1/2))/(37/11+4/11*5^(1/2)) 2178319576283514 m005 (-13/30+1/6*5^(1/2))/(6/7*exp(1)+5/11) 2178319577917736 a001 1/930249*3^(9/14) 2178319603346902 r009 Re(z^3+c),c=-17/126+55/59*I,n=8 2178319611640988 r002 36th iterates of z^2 + 2178319617655394 r005 Re(z^2+c),c=-9/34+1/29*I,n=17 2178319622048312 r005 Im(z^2+c),c=-47/102+17/45*I,n=37 2178319624011383 r002 23th iterates of z^2 + 2178319638800873 r005 Re(z^2+c),c=-5/29+7/16*I,n=39 2178319642145232 k001 Champernowne real with 1018*n+1160 2178319642331509 r009 Im(z^3+c),c=-31/126+1/58*I,n=6 2178319645097858 a005 (1/cos(13/225*Pi))^47 2178319647374263 a001 199/1597*514229^(26/35) 2178319649838620 l006 ln(2605/3239) 2178319652316537 a001 3524578/521*843^(6/7) 2178319661662616 b008 EulerGamma+ArcCos[-1/33] 2178319666934891 m005 (1/3*5^(1/2)-3/7)/(5/7*Catalan+4/5) 2178319675555740 a001 433494437/3571*322^(1/2) 2178319675903510 m001 (GAMMA(23/24)+ZetaQ(3))/Weierstrass 2178319677573161 r002 35th iterates of z^2 + 2178319684364479 p003 LerchPhi(1/512,2,433/202) 2178319689693277 m001 1/Lehmer*exp(MertensB1)^2*BesselJ(0,1) 2178319690571230 m005 (1/2*3^(1/2)-4/5)/(1/10*2^(1/2)-1/9) 2178319693730876 r009 Re(z^3+c),c=-39/110+19/37*I,n=36 2178319695572823 l006 ln(6221/6358) 2178319710945754 r009 Im(z^3+c),c=-10/19+7/61*I,n=8 2178319712735158 a001 29/5*8^(7/11) 2178319718194292 r002 5th iterates of z^2 + 2178319718835246 a007 Real Root Of 47*x^4+190*x^3+314*x^2-466*x+10 2178319720089232 a003 cos(Pi*21/83)-sin(Pi*10/27) 2178319742165235 k001 Champernowne real with 1019*n+1159 2178319742204017 m005 (11/28+1/4*5^(1/2))/(5/7*gamma-5/12) 2178319744135321 k002 Champernowne real with 92*n^2-219*n+148 2178319750325849 r009 Re(z^3+c),c=-6/11+32/63*I,n=3 2178319752727832 m001 (LandauRamanujan2nd+ZetaP(4))/(2^(1/2)+ln(5)) 2178319756630884 h005 exp(cos(Pi*13/45)/sin(Pi*9/31)) 2178319757251887 a001 1/3*(1/2*5^(1/2)+1/2)^20*76^(20/23) 2178319760744923 m001 (Ei(1,1)+BesselI(1,1))/(DuboisRaymond+Magata) 2178319767533566 r005 Im(z^2+c),c=-23/28+7/47*I,n=62 2178319774380417 r005 Re(z^2+c),c=-2/27+43/55*I,n=24 2178319780757651 m006 (1/6/Pi-1/4)/(1/2*Pi-2/3) 2178319791444945 a007 Real Root Of 145*x^4+285*x^3+22*x^2-43*x-517 2178319799508224 m001 (ln(Pi)-MertensB1)/(ln(2)-ln(3)) 2178319811810149 a007 Real Root Of -39*x^4-822*x^3+593*x^2-169*x-354 2178319816186987 m001 (2^(1/3)+Catalan)/(-HardyLittlewoodC4+Mills) 2178319818227244 a007 Real Root Of -581*x^4-657*x^3+947*x^2-797*x+61 2178319818371886 a007 Real Root Of 11*x^4-467*x^3+586*x^2+380*x+971 2178319819395211 a007 Real Root Of 797*x^4-3*x^3+686*x^2-921*x-235 2178319827838121 h002 exp(18^(7/3)-13^(6/5)) 2178319827838121 h007 exp(18^(7/3)-13^(6/5)) 2178319830562341 r005 Re(z^2+c),c=-1+26/167*I,n=36 2178319832814309 m001 (FeigenbaumC+Khinchin)/(ln(2)/ln(10)+Pi^(1/2)) 2178319834052346 a007 Real Root Of 130*x^4+289*x^3+454*x^2+926*x-77 2178319842185238 k001 Champernowne real with 1020*n+1158 2178319845141306 m001 (LandauRamanujan+Otter)^Lehmer 2178319851356997 m001 GAMMA(19/24)/Mills/ThueMorse 2178319858675257 m001 FeigenbaumB^ln(2)-LaplaceLimit 2178319871140712 r009 Im(z^3+c),c=-25/94+10/53*I,n=11 2178319871263594 a001 2178309/521*843^(13/14) 2178319876220249 a007 Real Root Of -368*x^4-735*x^3-151*x^2-483*x+353 2178319876954617 r005 Re(z^2+c),c=-5/34+26/49*I,n=10 2178319878655003 r002 44th iterates of z^2 + 2178319883928221 r005 Im(z^2+c),c=-117/122+11/54*I,n=13 2178319885018729 r005 Re(z^2+c),c=31/66+19/39*I,n=3 2178319887640291 r005 Re(z^2+c),c=-9/34+1/29*I,n=19 2178319889545527 a007 Real Root Of -686*x^4-869*x^3+905*x^2-753*x+529 2178319900573371 a007 Real Root Of -345*x^4-840*x^3-268*x^2-197*x-72 2178319900761100 m005 (1/2*Pi+4)/(9/11*exp(1)+1/3) 2178319902184989 a001 34/271443*11^(3/13) 2178319912958374 r005 Im(z^2+c),c=-65/66+1/4*I,n=47 2178319914087219 b008 1/8+Erfc[Csc[1]] 2178319917436155 r005 Re(z^2+c),c=-2/31+29/43*I,n=49 2178319917817755 m001 (Shi(1)+FeigenbaumD)/(-QuadraticClass+Rabbit) 2178319929761358 r005 Im(z^2+c),c=-55/64+5/29*I,n=11 2178319934324490 r009 Re(z^3+c),c=-41/122+43/59*I,n=12 2178319936283161 a007 Real Root Of 869*x^4-334*x^3+83*x^2-889*x-203 2178319941060926 a001 39088169/843*322^(2/3) 2178319942205241 k001 Champernowne real with 1021*n+1157 2178319948260411 r005 Re(z^2+c),c=-19/86+16/53*I,n=15 2178319952648547 a007 Real Root Of -514*x^4-831*x^3+46*x^2-961*x+672 2178319964615935 r005 Im(z^2+c),c=-35/38+11/54*I,n=49 2178319968595328 r005 Re(z^2+c),c=-9/34+1/29*I,n=21 2178319969437893 m009 (3/4*Psi(1,1/3)-4/5)/(3*Psi(1,1/3)+4/5) 2178319976752663 r005 Im(z^2+c),c=-25/66+14/39*I,n=24 2178319986703701 h001 (4/9*exp(1)+8/11)/(1/12*exp(2)+3/11) 2178319988988535 r005 Re(z^2+c),c=-9/34+1/29*I,n=23 2178319993648037 r005 Re(z^2+c),c=-9/34+1/29*I,n=25 2178319994642666 r005 Re(z^2+c),c=-9/34+1/29*I,n=27 2178319994843677 r005 Re(z^2+c),c=-9/34+1/29*I,n=29 2178319994882346 r005 Re(z^2+c),c=-9/34+1/29*I,n=31 2178319994889428 r005 Re(z^2+c),c=-9/34+1/29*I,n=33 2178319994890657 r005 Re(z^2+c),c=-9/34+1/29*I,n=35 2178319994890856 r005 Re(z^2+c),c=-9/34+1/29*I,n=37 2178319994890885 r005 Re(z^2+c),c=-9/34+1/29*I,n=39 2178319994890889 r005 Re(z^2+c),c=-9/34+1/29*I,n=41 2178319994890889 r005 Re(z^2+c),c=-9/34+1/29*I,n=44 2178319994890889 r005 Re(z^2+c),c=-9/34+1/29*I,n=46 2178319994890889 r005 Re(z^2+c),c=-9/34+1/29*I,n=42 2178319994890889 r005 Re(z^2+c),c=-9/34+1/29*I,n=48 2178319994890889 r005 Re(z^2+c),c=-9/34+1/29*I,n=50 2178319994890889 r005 Re(z^2+c),c=-9/34+1/29*I,n=52 2178319994890889 r005 Re(z^2+c),c=-9/34+1/29*I,n=54 2178319994890889 r005 Re(z^2+c),c=-9/34+1/29*I,n=56 2178319994890889 r005 Re(z^2+c),c=-9/34+1/29*I,n=58 2178319994890889 r005 Re(z^2+c),c=-9/34+1/29*I,n=60 2178319994890889 r005 Re(z^2+c),c=-9/34+1/29*I,n=62 2178319994890889 r005 Re(z^2+c),c=-9/34+1/29*I,n=64 2178319994890889 r005 Re(z^2+c),c=-9/34+1/29*I,n=63 2178319994890889 r005 Re(z^2+c),c=-9/34+1/29*I,n=61 2178319994890889 r005 Re(z^2+c),c=-9/34+1/29*I,n=59 2178319994890889 r005 Re(z^2+c),c=-9/34+1/29*I,n=57 2178319994890889 r005 Re(z^2+c),c=-9/34+1/29*I,n=55 2178319994890889 r005 Re(z^2+c),c=-9/34+1/29*I,n=53 2178319994890889 r005 Re(z^2+c),c=-9/34+1/29*I,n=51 2178319994890889 r005 Re(z^2+c),c=-9/34+1/29*I,n=49 2178319994890889 r005 Re(z^2+c),c=-9/34+1/29*I,n=47 2178319994890889 r005 Re(z^2+c),c=-9/34+1/29*I,n=45 2178319994890889 r005 Re(z^2+c),c=-9/34+1/29*I,n=43 2178319994890890 r005 Re(z^2+c),c=-9/34+1/29*I,n=40 2178319994890901 r005 Re(z^2+c),c=-9/34+1/29*I,n=38 2178319994890979 r005 Re(z^2+c),c=-9/34+1/29*I,n=36 2178319994891478 r005 Re(z^2+c),c=-9/34+1/29*I,n=34 2178319994894450 r005 Re(z^2+c),c=-9/34+1/29*I,n=32 2178319994911103 r005 Re(z^2+c),c=-9/34+1/29*I,n=30 2178319994999801 r005 Re(z^2+c),c=-9/34+1/29*I,n=28 2178319995406943 m001 GAMMA(2/3)*FransenRobinson/KhinchinHarmonic 2178319995449793 r005 Re(z^2+c),c=-9/34+1/29*I,n=26 2178319997618630 r005 Re(z^2+c),c=-9/34+1/29*I,n=24 2178320007411167 r002 53th iterates of z^2 + 2178320007462518 r005 Re(z^2+c),c=-9/34+1/29*I,n=22 2178320013477095 p004 log(27457/3109) 2178320015689106 r005 Im(z^2+c),c=2/19+9/47*I,n=6 2178320016029470 m001 (BesselI(0,1)-HardyLittlewoodC4)/BesselJ(1,1) 2178320036326543 m001 BesselI(1,2)/Psi(2,1/3)/PisotVijayaraghavan 2178320036858785 k002 Champernowne real with 51/2*n^2-123/2*n+38 2178320042115520 m001 (gamma+FeigenbaumKappa)/(Kac+MertensB1) 2178320042225244 k001 Champernowne real with 1022*n+1156 2178320048716257 r005 Re(z^2+c),c=-9/34+1/29*I,n=20 2178320055889451 m001 (Pi^(1/2)+GolombDickman)/(sin(1)+sin(1/12*Pi)) 2178320063091986 r009 Im(z^3+c),c=-13/114+48/55*I,n=44 2178320064049138 a001 199/55*1346269^(37/60) 2178320072023078 a007 Real Root Of 269*x^4+309*x^3-15*x^2+828*x-988 2178320073461586 p004 log(32173/3643) 2178320076291992 a007 Real Root Of -283*x^4-226*x^3+730*x^2-505*x-528 2178320077986252 l006 ln(7211/8966) 2178320090094439 b008 2+3*LogGamma[Sin[2]] 2178320090185676 a001 821226674/377 2178320090835713 m001 GAMMA(19/24)/Ei(1)^2/exp(GAMMA(2/3))^2 2178320091291801 r002 9th iterates of z^2 + 2178320091857563 m001 (cos(1/5*Pi)-Pi^(1/2))/(Otter+Porter) 2178320103752692 r005 Im(z^2+c),c=-5/4+7/169*I,n=43 2178320103979801 m001 (Pi^(1/2)+1/2)/(exp(-Pi)+1) 2178320110284412 r005 Re(z^2+c),c=25/98+33/58*I,n=6 2178320119729086 r005 Re(z^2+c),c=1/70+26/43*I,n=42 2178320120827560 m001 sin(1/5*Pi)+Champernowne+Porter 2178320122112911 m001 (-BesselK(0,1)+GaussAGM)/(Shi(1)+sin(1)) 2178320124141987 r008 a(0)=0,K{-n^6,-88+86*n^3-4*n^2+52*n} 2178320131621185 m001 ln(2+3^(1/2))*Champernowne*Totient 2178320136277216 a007 Real Root Of 444*x^4+673*x^3-310*x^2+918*x+430 2178320137979413 b008 2+79*(1+Sqrt[3]) 2178320140127204 r009 Re(z^3+c),c=-7/60+26/31*I,n=50 2178320142245247 k001 Champernowne real with 1023*n+1155 2178320146803769 r005 Re(z^2+c),c=27/82+7/31*I,n=61 2178320147230728 m005 (1/3*Pi+1/6)/(5/8*Catalan+5) 2178320152723128 a003 cos(Pi*10/67)-cos(Pi*10/61) 2178320162498978 a007 Real Root Of 289*x^4+627*x^3+434*x^2+749*x-454 2178320168996536 a007 Real Root Of -528*x^4-813*x^3+862*x^2+58*x-479 2178320173482927 r005 Re(z^2+c),c=-7/30+16/61*I,n=6 2178320173620299 m001 1/Sierpinski^2/MertensB1/exp(cos(Pi/12)) 2178320180339887 a001 2178309+5*5^(1/2) 2178320195826401 a003 -1+1/2*3^(1/2)-2*cos(1/18*Pi)-cos(10/21*Pi) 2178320197826281 r008 a(0)=0,K{-n^6,58-67*n^3-68*n^2+31*n} 2178320201152613 r005 Re(z^2+c),c=-9/34+1/29*I,n=18 2178320201601504 a001 21/47*123^(21/26) 2178320227097427 a007 Real Root Of -411*x^4-551*x^3+787*x^2-69*x-326 2178320228630415 m001 (LambertW(1)+BesselI(1,1))/(Pi+Psi(2,1/3)) 2178320229259087 a007 Real Root Of 543*x^4+760*x^3-654*x^2+646*x+140 2178320229429793 a007 Real Root Of -470*x^4-670*x^3+662*x^2+113*x+762 2178320239496769 r002 6i'th iterates of 2*x/(1-x^2) of 2178320242265250 k001 Champernowne real with 1024*n+1154 2178320242460876 r005 Im(z^2+c),c=-33/98+17/49*I,n=36 2178320246429775 m005 (1/2*3^(1/2)-2/3)/(6*2^(1/2)+2/3) 2178320265717235 a001 14662949395604/233*1836311903^(12/17) 2178320265717235 a001 45537549124/233*6557470319842^(12/17) 2178320271604151 m001 (Pi^(1/2)+Cahen)/(Conway-DuboisRaymond) 2178320274563595 m001 (BesselI(1,1)-GAMMA(11/12)*ZetaP(3))/ZetaP(3) 2178320286494956 s002 sum(A165390[n]/(exp(2*pi*n)-1),n=1..infinity) 2178320292184397 a007 Real Root Of -372*x^4-696*x^3+285*x^2+390*x+679 2178320293705594 r005 Re(z^2+c),c=-13/118+32/57*I,n=44 2178320306705455 r005 Im(z^2+c),c=-9/58+17/58*I,n=22 2178320310562692 a007 Real Root Of -356*x^4-828*x^3+99*x^2+295*x-370 2178320311522593 m001 TwinPrimes/(Mills-ln(5)) 2178320313599310 r005 Re(z^2+c),c=-9/86+24/41*I,n=55 2178320320132267 l006 ln(4606/5727) 2178320320409192 a007 Real Root Of -521*x^4-881*x^3+307*x^2-632*x-209 2178320321956273 a001 843/1597*2178309^(13/51) 2178320326237921 a001 4356625/2+7/2*5^(1/2) 2178320334447086 a001 1134903170/843*123^(1/10) 2178320334502729 r005 Re(z^2+c),c=-5/42+13/31*I,n=5 2178320338061791 k003 Champernowne real with 1/2*n^3+45/2*n^2-56*n+35 2178320342285253 k001 Champernowne real with 1025*n+1153 2178320349028235 m001 5^(1/2)*cos(1/5*Pi)^Champernowne 2178320352006401 m001 (Sierpinski+Tetranacci)/(2^(1/3)-Porter) 2178320359616848 a001 29/6765*2584^(6/29) 2178320369421470 m001 (Pi*gamma(2)+TravellingSalesman)/Pi 2178320375214079 m001 BesselK(1,1)^(ln(2+3^(1/2))*BesselI(0,2)) 2178320375214079 m001 BesselK(1,1)^(ln(2+sqrt(3))*BesselI(0,2)) 2178320379533657 a001 199/2584*3^(53/56) 2178320387815387 r005 Im(z^2+c),c=-13/56+19/60*I,n=14 2178320388265180 b008 LogGamma[Sqrt[5/2]*E] 2178320389890363 p004 log(31123/25031) 2178320389972444 a007 Real Root Of -226*x^4-766*x^3-354*x^2+607*x-107 2178320390068534 a007 Real Root Of 356*x^4-143*x^3+573*x^2-613*x-163 2178320390720660 m001 1/GAMMA(1/3)^2/ln(Lehmer)^2/GAMMA(7/12)^2 2178320391142684 a007 Real Root Of -83*x^4-10*x^3+590*x^2+113*x-788 2178320404290607 r009 Re(z^3+c),c=-55/106+22/61*I,n=14 2178320421992238 a007 Real Root Of -345*x^4-614*x^3-95*x^2-764*x+208 2178320422697066 l006 ln(89/786) 2178320424011190 r005 Re(z^2+c),c=-9/94+13/22*I,n=41 2178320439728289 a001 199*34^(1/39) 2178320442305256 k001 Champernowne real with 1026*n+1152 2178320446028049 a007 Real Root Of -520*x^4-926*x^3+289*x^2-154*x+430 2178320450969543 r005 Re(z^2+c),c=15/62+8/53*I,n=22 2178320467304911 a001 199/610*4181^(39/50) 2178320471976770 m001 gamma/exp(1)*GAMMA(23/24) 2178320474580340 m001 LambertW(1)^cos(1)+(3^(1/3)) 2178320474580340 m001 LambertW(1)^cos(1)+3^(1/3) 2178320485080685 a001 271443/5*75025^(17/23) 2178320485789641 r005 Re(z^2+c),c=-3/25+23/42*I,n=48 2178320493669851 m005 (1/2*gamma-2/7)/(5/9*exp(1)-2/11) 2178320494081998 a001 1/75640*3^(5/11) 2178320496206670 v004 sum(1/(-4+8*n^2)/sinh(Pi*n),n=1..infinity) 2178320506323644 m001 TreeGrowth2nd^ReciprocalLucas/Catalan 2178320512221701 r002 58th iterates of z^2 + 2178320516576589 a005 (1/cos(22/239*Pi))^507 2178320526537425 a001 433494437/521*322^(1/6) 2178320540329984 r009 Re(z^3+c),c=-5/58+45/59*I,n=34 2178320542325259 k001 Champernowne real with 1027*n+1151 2178320544487824 a007 Real Root Of -460*x^4-537*x^3+748*x^2-187*x+850 2178320549634755 m001 BesselI(0,2)-Khinchin-sqrt(Pi) 2178320549634755 m001 BesselI(0,2)-Pi^(1/2)-Khinchin 2178320552934012 m001 (Ei(1)-PrimesInBinary)/(Totient-TwinPrimes) 2178320558004130 m001 Porter^2/ln(Conway)*FeigenbaumD 2178320558200536 m005 (1/3*3^(1/2)-1/3)/(11/12*Pi-4) 2178320560322779 m008 (2/5*Pi-3)/(5/6*Pi^6-5/6) 2178320564106614 a003 cos(Pi*9/59)*cos(Pi*8/19) 2178320564119784 s002 sum(A056466[n]/((exp(n)+1)*n),n=1..infinity) 2178320566620576 b008 -45/2+ArcCsch[Glaisher] 2178320568032051 m002 Pi^4/6+(Pi^3*ProductLog[Pi])/6 2178320569692405 m006 (2/5/Pi-1)/(3/4*exp(2*Pi)-1) 2178320576040936 r005 Re(z^2+c),c=1/26+35/57*I,n=37 2178320583021325 a007 Real Root Of 3*x^4+658*x^3+985*x^2+856*x+338 2178320583438314 m001 -BesselJ(0,1)/(-exp(1/2)+2) 2178320584414827 l006 ln(6607/8215) 2178320585099205 m005 (1/2*3^(1/2)-4)/(3/4*exp(1)-3/5) 2178320592674177 m001 Porter/ln(Lehmer)*log(1+sqrt(2))^2 2178320597457726 r002 29th iterates of z^2 + 2178320598593480 r005 Im(z^2+c),c=-15/28+25/63*I,n=51 2178320598706030 m001 RenyiParking/(LandauRamanujan-BesselK(0,1)) 2178320599023225 r005 Im(z^2+c),c=-17/18+37/169*I,n=12 2178320607311529 a007 Real Root Of 326*x^4+526*x^3-521*x^2-252*x+20 2178320613286561 r005 Re(z^2+c),c=-7/40+22/51*I,n=42 2178320625300076 r002 28th iterates of z^2 + 2178320627877049 a007 Real Root Of 70*x^4+259*x^3+854*x^2-920*x+2 2178320629114745 a001 1/5778*(1/2*5^(1/2)+1/2)*76^(9/19) 2178320632202414 r005 Re(z^2+c),c=-9/34+1/29*I,n=16 2178320634354482 a007 Real Root Of 771*x^4-120*x^3+632*x^2-902*x+166 2178320635195801 m001 (exp(Pi)+5^(1/2))/(-GAMMA(19/24)+ZetaQ(3)) 2178320639264797 k003 Champernowne real with n^3+39/2*n^2-101/2*n+32 2178320639981799 r005 Im(z^2+c),c=-53/122+22/59*I,n=33 2178320640578786 s002 sum(A156862[n]/(n^2*2^n-1),n=1..infinity) 2178320642331414 r005 Im(z^2+c),c=-19/34+5/127*I,n=34 2178320642345262 k001 Champernowne real with 1028*n+1150 2178320657190989 r005 Re(z^2+c),c=-3/16+23/57*I,n=14 2178320661942422 r005 Im(z^2+c),c=-1/114+49/61*I,n=15 2178320670700466 r009 Re(z^3+c),c=-10/27+13/22*I,n=54 2178320673254429 r005 Im(z^2+c),c=-17/26+3/73*I,n=59 2178320674341661 r009 Re(z^3+c),c=-31/110+19/58*I,n=16 2178320675525412 m005 (1/2*Pi-2)/(-59/22+7/22*5^(1/2)) 2178320675561178 a001 165580141/1364*322^(1/2) 2178320675733689 m001 ReciprocalFibonacci*Sarnak^Totient 2178320675920991 r005 Re(z^2+c),c=-7/32+40/53*I,n=13 2178320681320702 a007 Real Root Of 677*x^4+996*x^3-930*x^2+69*x-385 2178320684843132 a001 1/15127*(1/2*5^(1/2)+1/2)^3*76^(9/19) 2178320690472847 m002 2+(Pi^3*Sech[Pi])/15 2178320692834914 a007 Real Root Of 464*x^4+629*x^3-806*x^2-21*x-167 2178320692973795 a001 1/39603*(1/2*5^(1/2)+1/2)^5*76^(9/19) 2178320693018018 a001 47/377*1346269^(15/41) 2178320694893184 a001 1/64079*(1/2*5^(1/2)+1/2)^6*76^(9/19) 2178320697998820 a001 1/24476*(1/2*5^(1/2)+1/2)^4*76^(9/19) 2178320699456794 r002 15th iterates of z^2 + 2178320713599797 m001 (2^(1/3)+Chi(1))/(-FeigenbaumC+Tetranacci) 2178320716547926 m001 (1-sin(1))/(-ln(3)+GAMMA(23/24)) 2178320719285171 a001 1/9349*(1/2*5^(1/2)+1/2)^2*76^(9/19) 2178320720248639 a007 Real Root Of -382*x^4-657*x^3+138*x^2-966*x-949 2178320724363222 a007 Real Root Of -114*x^4+167*x^3+887*x^2+308*x+755 2178320726577533 m001 Chi(1)+Riemann2ndZero-ZetaP(4) 2178320728939759 a007 Real Root Of 442*x^4+887*x^3-216*x^2-523*x-898 2178320733565628 a007 Real Root Of -452*x^4-740*x^3+233*x^2-615*x+83 2178320737519349 p001 sum((-1)^n/(575*n+447)/(16^n),n=0..infinity) 2178320738497620 r005 Im(z^2+c),c=-17/42+23/63*I,n=58 2178320741964649 s002 sum(A283819[n]/(n^2*2^n+1),n=1..infinity) 2178320742365265 k001 Champernowne real with 1029*n+1149 2178320744309583 r009 Re(z^3+c),c=-23/62+12/25*I,n=11 2178320747135921 k002 Champernowne real with 185/2*n^2-441/2*n+149 2178320754620995 p004 log(33851/3833) 2178320754711266 m001 FransenRobinson/(Niven^PlouffeB) 2178320769430725 q001 838/3847 2178320773860467 r009 Re(z^3+c),c=-11/46+59/62*I,n=33 2178320797965307 a005 (1/cos(11/68*Pi))^500 2178320798348923 r005 Re(z^2+c),c=-9/34+1/29*I,n=13 2178320801852772 r005 Re(z^2+c),c=-101/94+16/61*I,n=4 2178320808312484 a001 165580141/2207*322^(7/12) 2178320826677516 r005 Re(z^2+c),c=-17/122+27/53*I,n=47 2178320829058190 m001 Psi(2,1/3)^GolombDickman*Grothendieck 2178320832079610 a007 Real Root Of 349*x^4+881*x^3+649*x^2+439*x-875 2178320837116913 m001 1/exp(KhintchineHarmonic)/CareFree*Zeta(1,2)^2 2178320837471154 r005 Re(z^2+c),c=35/122+3/16*I,n=18 2178320842385268 k001 Champernowne real with 1030*n+1148 2178320852410699 r005 Im(z^2+c),c=9/23+7/32*I,n=43 2178320856976890 s002 sum(A283819[n]/(n^2*2^n-1),n=1..infinity) 2178320865184001 a001 1/3571*76^(9/19) 2178320881588174 r005 Re(z^2+c),c=-9/34+1/29*I,n=14 2178320886974659 m009 (5/6*Psi(1,2/3)-1)/(2/3*Psi(1,1/3)+2/5) 2178320893596339 r009 Re(z^3+c),c=-31/110+19/58*I,n=18 2178320899323426 m001 Porter+Zeta(1,-1)^ZetaR(2) 2178320901714521 m001 (FeigenbaumMu+QuadraticClass)/(sin(1)+Zeta(3)) 2178320907683940 m001 (GAMMA(3/4)+3^(1/3))/(Zeta(1/2)+CopelandErdos) 2178320907857102 m005 (-19/4+1/4*5^(1/2))/(7/8*exp(1)-5/11) 2178320909471992 m001 (2^(1/3)+Zeta(1/2))/(-MertensB3+ThueMorse) 2178320909926732 r005 Re(z^2+c),c=-5/32+21/44*I,n=24 2178320911167663 a007 Real Root Of -457*x^4-925*x^3+164*x^2+48*x+55 2178320913907101 m001 exp(GAMMA(1/12))^2*Conway^2*log(2+sqrt(3)) 2178320916851432 a007 Real Root Of -431*x^4-391*x^3+726*x^2-891*x+277 2178320917790306 r005 Re(z^2+c),c=4/21+2/25*I,n=17 2178320921633519 r005 Re(z^2+c),c=11/60+2/31*I,n=8 2178320937933759 r005 Im(z^2+c),c=-15/122+2/7*I,n=5 2178320940467710 k003 Champernowne real with 3/2*n^3+33/2*n^2-45*n+29 2178320942405271 k001 Champernowne real with 1031*n+1147 2178320950095541 m008 (1/6*Pi^5-5/6)/(3/4*Pi^5+4/5) 2178320955852690 s002 sum(A209937[n]/((10^n+1)/n),n=1..infinity) 2178320956063719 s002 sum(A209937[n]/((10^n-1)/n),n=1..infinity) 2178320959523977 a007 Real Root Of 993*x^4-628*x^3+637*x^2-698*x-191 2178320969534002 r005 Re(z^2+c),c=-5/31+29/63*I,n=22 2178320971954740 h001 (7/9*exp(2)+8/9)/(1/3*exp(2)+7/12) 2178320973195854 r005 Re(z^2+c),c=-5/38+21/40*I,n=40 2178320978985258 r005 Re(z^2+c),c=-7/40+22/51*I,n=34 2178320991754631 m001 FeigenbaumKappa*FransenRobinson*ln(sqrt(Pi)) 2178320996980148 m005 (1/3*2^(1/2)+1/6)/(2/7*Zeta(3)-7/11) 2178321006314069 a003 sin(Pi*9/119)*sin(Pi*35/93) 2178321011663500 m005 (1/2*Zeta(3)+5/8)/(1/5*Pi+5) 2178321025623771 b008 1+33*ArcCsch[28] 2178321031831493 m001 GAMMA(13/24)*(ln(2)+HardyLittlewoodC3) 2178321032550018 m001 HardHexagonsEntropy*exp(Catalan)^3 2178321042406875 p004 log(18131/2053) 2178321042425274 k001 Champernowne real with 1032*n+1146 2178321054256906 r005 Im(z^2+c),c=-11/14+26/253*I,n=26 2178321056958450 a007 Real Root Of -458*x^4-592*x^3+790*x^2-317*x-246 2178321057957762 m001 (Pi*2^(1/2)/GAMMA(3/4)-Zeta(3))/(Lehmer-Niven) 2178321058025364 m001 (-GAMMA(3/4)+ZetaQ(4))/(Psi(2,1/3)-Shi(1)) 2178321076754490 a007 Real Root Of -344*x^4-509*x^3+692*x^2+630*x+573 2178321085584606 a007 Real Root Of 278*x^4+278*x^3-975*x^2-491*x+171 2178321097057576 r005 Re(z^2+c),c=5/58+17/35*I,n=3 2178321104809716 a007 Real Root Of 190*x^4+216*x^3-640*x^2-457*x-4 2178321119422267 a007 Real Root Of 292*x^4+892*x^3+378*x^2-492*x-220 2178321120259459 a003 cos(Pi*13/40)*cos(Pi*55/113) 2178321121318181 k009 concat of cont frac of 2178321121519606 r009 Re(z^3+c),c=-23/62+26/47*I,n=56 2178321125112442 k007 concat of cont frac of 2178321125344317 m001 1/Porter/Paris/exp(gamma)^2 2178321125481603 r008 a(0)=3,K{-n^6,10+2*n^3+33*n^2-44*n} 2178321130141141 k006 concat of cont frac of 2178321131847106 a007 Real Root Of -48*x^4+425*x^3+920*x^2-848*x-739 2178321136486403 m001 Psi(1,1/3)^BesselJ(1,1)-sin(1/5*Pi) 2178321136923325 r004 Re(z^2+c),c=-4/9+7/20*I,z(0)=exp(7/8*I*Pi),n=3 2178321142445277 k001 Champernowne real with 1033*n+1145 2178321154110991 r009 Re(z^3+c),c=-19/62+24/61*I,n=13 2178321164868678 a001 233/710647*18^(19/29) 2178321173739959 m001 (5^(1/2)-Ei(1))/(sin(1/12*Pi)+Mills) 2178321176342715 a003 -3/2-cos(5/12*Pi)+cos(11/30*Pi)-cos(4/21*Pi) 2178321176491829 m001 (RenyiParking-Thue)/(Kolakoski-Mills) 2178321177169734 m005 (1/3*3^(1/2)-1/5)/(4/7*5^(1/2)+5/11) 2178321181239203 s002 sum(A182332[n]/(16^n),n=1..infinity) 2178321190280555 a001 433494437/5778*322^(7/12) 2178321191172625 a008 Real Root of x^2-x-47233 2178321192753366 l006 ln(2001/2488) 2178321201979397 r005 Im(z^2+c),c=-47/106+3/8*I,n=58 2178321214177221 k007 concat of cont frac of 2178321214278079 r005 Re(z^2+c),c=-9/56+6/13*I,n=22 2178321215131350 a007 Real Root Of 409*x^4+520*x^3-706*x^2+634*x+897 2178321221087869 m001 (ln(gamma)+Pi^(1/2))/(GAMMA(17/24)-Sarnak) 2178321221997544 m001 (gamma(2)-Zeta(1,2))/(GAMMA(17/24)-Thue) 2178321222399494 a007 Real Root Of -485*x^4-420*x^3+966*x^2-472*x+967 2178321226782349 a007 Real Root Of -393*x^4-555*x^3+420*x^2-926*x-898 2178321226916617 m005 (1/3*5^(1/2)+1/10)/(2*3^(1/2)+5/12) 2178321241670710 k003 Champernowne real with 2*n^3+27/2*n^2-79/2*n+26 2178321242465280 k001 Champernowne real with 1034*n+1144 2178321246008956 a001 1134903170/15127*322^(7/12) 2178321254139621 a001 2971215073/39603*322^(7/12) 2178321255325869 a001 7778742049/103682*322^(7/12) 2178321255498940 a001 20365011074/271443*322^(7/12) 2178321255524191 a001 53316291173/710647*322^(7/12) 2178321255527875 a001 139583862445/1860498*322^(7/12) 2178321255528412 a001 365435296162/4870847*322^(7/12) 2178321255528491 a001 956722026041/12752043*322^(7/12) 2178321255528502 a001 2504730781961/33385282*322^(7/12) 2178321255528504 a001 6557470319842/87403803*322^(7/12) 2178321255528504 a001 10610209857723/141422324*322^(7/12) 2178321255528505 a001 4052739537881/54018521*322^(7/12) 2178321255528509 a001 140728068720/1875749*322^(7/12) 2178321255528539 a001 591286729879/7881196*322^(7/12) 2178321255528744 a001 225851433717/3010349*322^(7/12) 2178321255530152 a001 86267571272/1149851*322^(7/12) 2178321255539797 a001 32951280099/439204*322^(7/12) 2178321255605904 a001 75025*322^(7/12) 2178321256059010 a001 4807526976/64079*322^(7/12) 2178321256431673 m001 RenyiParking^2*exp(ArtinRank2)^2*cos(Pi/12) 2178321256671564 h001 (1/10*exp(2)+1/3)/(4/7*exp(2)+7/10) 2178321258322780 r005 Re(z^2+c),c=23/126+21/44*I,n=29 2178321259164648 a001 1836311903/24476*322^(7/12) 2178321264529548 r005 Re(z^2+c),c=-7/122+11/17*I,n=48 2178321270049214 m001 (Landau+Sierpinski)/(ln(gamma)+ln(2)) 2178321271115107 k006 concat of cont frac of 2178321271312218 k008 concat of cont frac of 2178321275868238 a001 505019158607*1836311903^(3/17) 2178321275868238 a001 119218851371*6557470319842^(3/17) 2178321275868529 a001 2139295485799*514229^(3/17) 2178321280317990 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)*QuadraticClass/Trott 2178321280451004 a001 701408733/9349*322^(7/12) 2178321285146770 r005 Re(z^2+c),c=19/98+1/10*I,n=4 2178321289729097 r005 Re(z^2+c),c=11/90+4/9*I,n=12 2178321301999400 a007 Real Root Of 448*x^4+940*x^3-239*x^2-68*x+615 2178321304393246 a007 Real Root Of 108*x^4-833*x^3+978*x^2+279*x+930 2178321311207921 m004 -3101*Sqrt[5]*Pi+Cos[Sqrt[5]*Pi] 2178321313917907 h001 (2/9*exp(1)+1/12)/(2/5*exp(2)+1/5) 2178321336060077 r002 35th iterates of z^2 + 2178321336869486 r005 Im(z^2+c),c=-3/4+1/138*I,n=53 2178321342485283 k001 Champernowne real with 1035*n+1143 2178321359292944 r002 27th iterates of z^2 + 2178321364442811 k007 concat of cont frac of 2178321369500089 r009 Re(z^3+c),c=-10/27+23/42*I,n=43 2178321374491608 a007 Real Root Of 652*x^4-776*x^3+752*x^2-596*x-175 2178321375263554 b008 1+Zeta[4/3,17] 2178321376329306 m005 (23/20+1/4*5^(1/2))/(1/5*gamma-9/10) 2178321379244037 m005 (1/3*gamma-1/2)/(9/11*Zeta(3)+3/7) 2178321387696558 m008 (1/4*Pi^5-1/4)/(Pi^3+4) 2178321389543602 r002 12th iterates of z^2 + 2178321392475466 r005 Im(z^2+c),c=-121/126+9/41*I,n=34 2178321406502616 r005 Re(z^2+c),c=-11/48+14/51*I,n=11 2178321416021774 h001 (4/9*exp(2)+1/8)/(3/7*exp(1)+2/5) 2178321423155248 m001 (Pi+exp(Pi))/(3^(1/3)-CopelandErdos) 2178321426349872 a001 267914296/3571*322^(7/12) 2178321440141531 h001 (8/9*exp(1)+1/10)/(4/11*exp(1)+1/6) 2178321442505286 k001 Champernowne real with 1036*n+1142 2178321442657183 m007 (-1/5*gamma+3)/(-1/4*gamma-1/2*ln(2)-5/6) 2178321447604538 m009 (24/5*Catalan+3/5*Pi^2-2/5)/(5/6*Psi(1,2/3)+2) 2178321453880361 a001 29/2584*17711^(4/59) 2178321456963209 r005 Im(z^2+c),c=-9/34+16/49*I,n=19 2178321463633591 m001 GlaisherKinkelin^GAMMA(5/6)/(Cahen^GAMMA(5/6)) 2178321475920979 a007 Real Root Of 740*x^4-418*x^3+349*x^2-477*x+90 2178321480327949 m001 RenyiParking^FransenRobinson-arctan(1/2) 2178321483833084 a007 Real Root Of 399*x^4+818*x^3+193*x^2+687*x+52 2178321493117681 a007 Real Root Of 232*x^4+110*x^3-940*x^2-475*x-661 2178321499818669 r005 Im(z^2+c),c=-23/18+7/127*I,n=7 2178321500759795 m001 BesselK(0,1)*Tribonacci+OrthogonalArrays 2178321501439544 m001 (Psi(1,1/3)+Shi(1))/(-FellerTornier+GaussAGM) 2178321511815758 m001 (Chi(1)-Zeta(3))/(-ln(5)+3^(1/3)) 2178321513823023 r005 Re(z^2+c),c=11/102+23/61*I,n=20 2178321516647139 p004 log(10271/1163) 2178321517262435 r005 Re(z^2+c),c=-7/36+37/61*I,n=35 2178321520853814 m005 (1/2*2^(1/2)-1/6)/(10/11*Pi-3/8) 2178321522215574 r005 Im(z^2+c),c=31/114+28/51*I,n=52 2178321522930275 a005 (1/cos(5/87*Pi))^469 2178321533374199 r004 Im(z^2+c),c=-5/23*I,z(0)=1/2*3^(1/2)+1/2*I,n=6 2178321538471683 r005 Im(z^2+c),c=-33/98+17/49*I,n=33 2178321542525289 k001 Champernowne real with 1037*n+1141 2178321542873711 k003 Champernowne real with 5/2*n^3+21/2*n^2-34*n+23 2178321544849784 a007 Real Root Of -398*x^4-384*x^3+921*x^2-566*x-611 2178321570402233 m001 BesselK(1,1)^2*CopelandErdos*ln(GAMMA(23/24)) 2178321578742448 a007 Real Root Of 327*x^4+709*x^3-142*x^2-407*x-247 2178321580703690 r009 Re(z^3+c),c=-33/56+14/47*I,n=11 2178321583210888 m001 1/FeigenbaumKappa*ln(Sierpinski)/LambertW(1)^2 2178321599636764 a007 Real Root Of 335*x^4+581*x^3-495*x^2-193*x+391 2178321607300304 l006 ln(1074/9485) 2178321624595079 m001 (Artin-DuboisRaymond)/(Niven-QuadraticClass) 2178321636260669 m001 (gamma(2)+BesselI(1,2))/(BesselI(0,1)-cos(1)) 2178321638310039 m004 216+2*Tan[Sqrt[5]*Pi] 2178321641993660 m001 GAMMA(1/12)/LaplaceLimit^2/ln(cos(Pi/12))^2 2178321642545292 k001 Champernowne real with 1038*n+1140 2178321648617221 p003 LerchPhi(1/125,2,3/14) 2178321654592616 m001 (HardyLittlewoodC5+Magata)/(Salem+Stephens) 2178321656473826 r005 Re(z^2+c),c=-65/66+7/57*I,n=8 2178321665334624 r005 Im(z^2+c),c=9/23+7/32*I,n=61 2178321667751186 m001 (CopelandErdos-Niven)/(Paris+Stephens) 2178321672678732 r005 Im(z^2+c),c=5/118+11/50*I,n=10 2178321673433654 a007 Real Root Of 131*x^4-101*x^3-310*x^2+878*x-610 2178321678321678 q001 623/286 2178321678321678 r002 2th iterates of z^2 + 2178321691855272 a001 24157817/843*322^(3/4) 2178321701458703 a007 Real Root Of 536*x^4+864*x^3-645*x^2-301*x-733 2178321714335451 l006 ln(985/8699) 2178321716699860 r005 Im(z^2+c),c=9/23+7/32*I,n=55 2178321724459328 r009 Re(z^3+c),c=-41/114+20/37*I,n=28 2178321735901001 l006 ln(7400/9201) 2178321742565295 k001 Champernowne real with 1039*n+1139 2178321747077097 r009 Re(z^3+c),c=-11/32+18/35*I,n=7 2178321747765935 r005 Im(z^2+c),c=9/23+7/32*I,n=49 2178321750136521 k002 Champernowne real with 93*n^2-222*n+150 2178321762325145 a001 8/521*11^(7/48) 2178321776962103 r005 Re(z^2+c),c=-11/14+15/182*I,n=32 2178321796640147 a001 18/4052739537881*8^(13/17) 2178321799258521 a007 Real Root Of 243*x^4+253*x^3-731*x^2-406*x-272 2178321816078743 r005 Re(z^2+c),c=-19/82+17/62*I,n=6 2178321817808589 m008 (2/5*Pi^6-2)/(3/4*Pi-3/5) 2178321827331092 k006 concat of cont frac of 2178321831834753 r005 Im(z^2+c),c=-8/9+9/46*I,n=50 2178321835751028 m004 -25*Sqrt[5]*Pi+46875*Pi*Csc[Sqrt[5]*Pi] 2178321842105682 m001 (MertensB3+Sarnak)/(ErdosBorwein-LaplaceLimit) 2178321842585298 k001 Champernowne real with 1040*n+1138 2178321842634262 l006 ln(896/7913) 2178321843814258 m005 (1/2*Zeta(3)-10/11)/(7/9*exp(1)-7/10) 2178321844076712 k003 Champernowne real with 3*n^3+15/2*n^2-57/2*n+20 2178321857856465 m001 (1-cos(1))/(Riemann2ndZero+StolarskyHarborth) 2178321858762268 a007 Real Root Of -251*x^4-132*x^3+669*x^2-239*x+592 2178321866531833 m005 (1/2*Zeta(3)-7/12)/(8/9*3^(1/2)-8/11) 2178321866934530 r009 Re(z^3+c),c=-7/38+19/21*I,n=3 2178321871352586 m001 (MertensB1+Weierstrass)/(5^(1/2)+ln(Pi)) 2178321877855120 a007 Real Root Of -430*x^4-676*x^3+59*x^2-872*x+515 2178321883482534 a003 cos(Pi*4/107)/sin(Pi*11/73) 2178321884601384 m001 Backhouse/(Landau^TwinPrimes) 2178321893393547 m001 (GAMMA(23/24)+FeigenbaumC*Otter)/Otter 2178321900773491 m002 -4+E^Pi+Pi-Sinh[Pi]/E^Pi 2178321910473906 r009 Im(z^3+c),c=-13/114+48/55*I,n=48 2178321910977108 m001 (Pi+Champernowne)/(KhinchinLevy-Khinchin) 2178321911654070 a007 Real Root Of -462*x^4-899*x^3-132*x^2-742*x+120 2178321924818606 l004 Pi/cosh(339/62*Pi) 2178321924818612 l004 Pi/sinh(339/62*Pi) 2178321935457996 m005 (4*exp(1)-3/4)/(21/5+1/5*5^(1/2)) 2178321937204645 l006 ln(5399/6713) 2178321942605301 k001 Champernowne real with 1041*n+1137 2178321944271909 a001 2178313+4*5^(1/2) 2178321945530004 a007 Real Root Of 946*x^4+908*x^3+936*x^2-826*x+124 2178321976900611 r002 59th iterates of z^2 + 2178321984548244 a001 1/646*1597^(19/53) 2178321996956442 m001 (Kac+Lehmer)/(AlladiGrinstead-Psi(2,1/3)) 2178321999231921 l006 ln(807/7127) 2178322000000332 a001 1346295/2+1346269/2*5^(1/2) 2178322004586531 r005 Im(z^2+c),c=-29/42+9/46*I,n=34 2178322008297839 m005 (1/2*5^(1/2)-1/11)/(Catalan-4/9) 2178322013760751 r005 Re(z^2+c),c=-24/29+1/39*I,n=40 2178322015557992 r004 Re(z^2+c),c=3/14+5/9*I,z(0)=I,n=5 2178322019417519 a001 14662949395604/233*6557470319842^(10/17) 2178322020170816 m001 (sin(1/5*Pi)+ln(Pi))/(Ei(1,1)+Stephens) 2178322038960902 s002 sum(A041895[n]/(n^2*2^n+1),n=1..infinity) 2178322039654940 m009 (5/6*Psi(1,3/4)-1/4)/(4/5*Psi(1,1/3)+1/2) 2178322042625304 k001 Champernowne real with 1042*n+1136 2178322052417592 a007 Real Root Of 112*x^4-9*x^3-859*x^2-663*x+17 2178322053784200 a007 Real Root Of -634*x^4-880*x^3+654*x^2-683*x+588 2178322061149592 r005 Im(z^2+c),c=-2/3+29/120*I,n=29 2178322062906438 r005 Re(z^2+c),c=-17/94+41/49*I,n=7 2178322077625071 m001 1/GAMMA(17/24)*GAMMA(1/6)^2/exp(Zeta(3))^2 2178322093231270 r005 Re(z^2+c),c=-55/64+14/61*I,n=41 2178322099027145 r005 Re(z^2+c),c=-19/82+5/19*I,n=16 2178322099861638 h001 (5/6*exp(1)+2/5)/(5/12*exp(1)+1/11) 2178322105880214 s001 sum(exp(-Pi/2)^(n-1)*A217942[n],n=1..infinity) 2178322108301034 m005 (1/3*5^(1/2)+1/11)/(9/10*2^(1/2)-8/9) 2178322111158111 k006 concat of cont frac of 2178322111797008 a001 267914296/199*76^(1/9) 2178322113672511 b008 CosIntegral[ArcSec[8]]^2 2178322114121312 k007 concat of cont frac of 2178322117743858 r005 Re(z^2+c),c=-21/118+14/33*I,n=35 2178322120949074 r002 3th iterates of z^2 + 2178322136514540 m001 TravellingSalesman^Zeta(5)*arctan(1/3)^Zeta(5) 2178322137231089 p004 log(37039/29789) 2178322142645307 k001 Champernowne real with 1043*n+1135 2178322145136519 m002 -Pi^3/3-Sinh[Pi]+Tanh[Pi]/Pi^2 2178322145279712 k003 Champernowne real with 7/2*n^3+9/2*n^2-23*n+17 2178322147831252 a001 24476/21*2504730781961^(10/11) 2178322151463476 a001 45537549124/21*317811^(10/11) 2178322151467157 a001 3010349/21*12586269025^(10/11) 2178322151467397 a001 370248451/21*63245986^(10/11) 2178322156935072 r009 Im(z^3+c),c=-27/98+1/63*I,n=5 2178322171990314 r009 Re(z^3+c),c=-31/110+19/58*I,n=19 2178322173455036 r009 Im(z^3+c),c=-11/27+6/55*I,n=11 2178322181472764 m001 (ln(5)-sin(1/12*Pi))/(Lehmer+Trott2nd) 2178322184919931 m005 (1/3*exp(1)-1/9)/(3/8*3^(1/2)+3) 2178322191529863 r005 Im(z^2+c),c=-35/102+33/62*I,n=13 2178322194651807 l006 ln(718/6341) 2178322201918582 m001 (Psi(2,1/3)+arctan(1/3))/(-BesselJ(1,1)+Otter) 2178322207313697 a003 cos(Pi*3/109)/cos(Pi*50/103) 2178322213912720 m001 (GAMMA(17/24)+Artin)/(PrimesInBinary-Salem) 2178322217406743 m001 Zeta(3)*Zeta(5)*ZetaP(3) 2178322220461471 r009 Re(z^3+c),c=-19/54+29/54*I,n=20 2178322225638269 a007 Real Root Of -218*x^4-701*x^3-608*x^2-189*x+136 2178322225708898 m004 -9+5*Sqrt[5]*Pi+25*Sqrt[5]*Pi*Cot[Sqrt[5]*Pi] 2178322230093350 a003 cos(Pi*9/64)*cos(Pi*30/71) 2178322231463593 m001 1/DuboisRaymond^2*ln(Artin)^2/GAMMA(19/24) 2178322232005700 a001 17711/18*3^(34/47) 2178322232119299 a001 2/6119*18^(21/32) 2178322241539607 a001 844/13*6765^(7/51) 2178322242665310 k001 Champernowne real with 1044*n+1134 2178322251552121 k007 concat of cont frac of 2178322251580612 m001 Pi/ln(2)*ln(10)/(Chi(1)-ln(2+3^(1/2))) 2178322251844984 q001 1/4590689 2178322264778939 r005 Re(z^2+c),c=29/90+9/37*I,n=18 2178322265122220 r002 21th iterates of z^2 + 2178322266515437 m001 exp(cos(Pi/12))^2*Khintchine*sinh(1) 2178322267547037 m001 (5^(1/2)+2*Pi/GAMMA(5/6))/(Magata+ZetaP(3)) 2178322267947038 r005 Re(z^2+c),c=-5/16+10/29*I,n=3 2178322269797796 m001 BesselJ(0,1)*LaplaceLimit-Khinchin 2178322270859883 h001 (4/7*exp(2)+2/3)/(5/8*exp(1)+6/11) 2178322272508382 m006 (5/6*exp(Pi)+2/5)/(Pi^2-5/6) 2178322273888199 m005 (1/2*Zeta(3)+5/6)/(-19/90+7/18*5^(1/2)) 2178322277332241 a001 267914296/521*322^(1/4) 2178322285784494 a001 341/646*13^(21/38) 2178322289501499 b008 3-25*Tanh[E] 2178322290089321 r005 Im(z^2+c),c=-37/82+27/62*I,n=14 2178322300525602 a007 Real Root Of -69*x^4+447*x^3+789*x^2-763*x+768 2178322301749407 a007 Real Root Of -14*x^4+336*x^3+625*x^2-519*x-308 2178322306169073 r005 Im(z^2+c),c=-13/106+49/53*I,n=9 2178322306759601 a001 5600748293801/21*1597^(10/11) 2178322312645815 m001 1/exp(Catalan)^2/Riemann1stZero^2*exp(1) 2178322324317112 k006 concat of cont frac of 2178322326707501 r005 Im(z^2+c),c=-20/23+10/49*I,n=51 2178322327911066 a001 13/2207*4^(50/53) 2178322337026608 p004 log(29347/3323) 2178322338495586 r005 Re(z^2+c),c=-15/58+7/59*I,n=9 2178322342685313 k001 Champernowne real with 1045*n+1133 2178322343103067 m001 Si(Pi)^(2/3*Ei(1)) 2178322346081713 k003 Champernowne real with 23/6*n^3+5/2*n^2-58/3*n+15 2178322371358093 r005 Re(z^2+c),c=23/74+7/32*I,n=26 2178322371891614 m001 1/Khintchine/Backhouse^2*exp(OneNinth)^2 2178322374928926 r009 Im(z^3+c),c=-17/82+55/58*I,n=2 2178322375593968 l006 ln(3398/4225) 2178322381163294 a007 Real Root Of 467*x^4+789*x^3-347*x^2+157*x-371 2178322383744213 r009 Re(z^3+c),c=-23/66+29/57*I,n=20 2178322386066562 r005 Re(z^2+c),c=-27/122+43/52*I,n=18 2178322399707619 a007 Real Root Of 594*x^4+886*x^3-900*x^2+302*x+712 2178322403420776 a007 Real Root Of -326*x^4-564*x^3-239*x^2-777*x+952 2178322405457622 r009 Re(z^3+c),c=-5/14+13/25*I,n=64 2178322405721506 m001 (gamma(1)-Kac)/(Zeta(3)-ln(2^(1/2)+1)) 2178322412700621 m001 ln(5)/(RenyiParking-ZetaQ(3)) 2178322414654236 m001 (Salem+Sierpinski)/(ln(Pi)+LandauRamanujan2nd) 2178322414922597 m001 (Shi(1)-ln(3)*FellerTornier)/FellerTornier 2178322423011955 a007 Real Root Of 254*x^4+461*x^3-320*x^2-496*x-516 2178322425331734 r002 11th iterates of z^2 + 2178322426356114 a001 9303105/124*322^(7/12) 2178322432410846 m001 GAMMA(5/24)/(Ei(1)^ln(3)) 2178322432410846 m001 Pi*csc(5/24*Pi)/GAMMA(19/24)/(Ei(1)^ln(3)) 2178322442705316 k001 Champernowne real with 1046*n+1132 2178322445373289 l006 ln(629/5555) 2178322446482713 k003 Champernowne real with 4*n^3+3/2*n^2-35/2*n+14 2178322455499325 r005 Im(z^2+c),c=-77/106+3/20*I,n=49 2178322457586036 a007 Real Root Of 341*x^4+520*x^3+34*x^2+888*x-530 2178322460942726 m005 (1/2*Zeta(3)-7/11)/(3/8*exp(1)-6/7) 2178322463752200 a005 (1/cos(2/19*Pi))^758 2178322474329797 s002 sum(A066523[n]/(n^3*2^n-1),n=1..infinity) 2178322477209778 m001 (Stephens+ZetaQ(3))/(cos(1/12*Pi)-ArtinRank2) 2178322479149231 m001 (gamma(1)-Weierstrass)/(ZetaP(3)+ZetaP(4)) 2178322486602550 r005 Re(z^2+c),c=-29/46+23/35*I,n=3 2178322491693761 a007 Real Root Of -741*x^4+2*x^3+415*x^2+491*x-125 2178322504573970 r005 Im(z^2+c),c=-19/74+12/37*I,n=24 2178322505352547 m001 HardyLittlewoodC5-exp(1/exp(1))^Sierpinski 2178322505495057 a001 521/28657*2178309^(17/35) 2178322506114950 r005 Re(z^2+c),c=1/14+20/33*I,n=12 2178322509930566 r005 Re(z^2+c),c=-19/78+13/61*I,n=10 2178322532766514 a007 Real Root Of -345*x^4-194*x^3+907*x^2-566*x+226 2178322540536446 m001 sin(1/5*Pi)^(Riemann1stZero/ReciprocalLucas) 2178322542725319 k001 Champernowne real with 1047*n+1131 2178322545246452 m001 (sin(1)+Gompertz)/(-Robbin+ZetaQ(4)) 2178322545842727 a007 Real Root Of 116*x^4+292*x^3+384*x^2+879*x+499 2178322546883713 k003 Champernowne real with 25/6*n^3+1/2*n^2-47/3*n+13 2178322550419798 a007 Real Root Of 375*x^4+754*x^3-531*x^2-425*x+944 2178322553144083 m001 (5^(1/2)+GAMMA(2/3))/(Bloch+Salem) 2178322557556107 m001 3*exp(-1/2*Pi)-sin(1) 2178322559107527 a001 102334155/2207*322^(2/3) 2178322565561928 r002 58th iterates of z^2 + 2178322572653998 a007 Real Root Of 36*x^4+739*x^3-947*x^2+778*x-855 2178322575402891 v003 sum((2*n^3-5*n^2+25*n-12)/n^n,n=1..infinity) 2178322579820636 m001 (exp(Pi)-gamma(1))/(Kac+TreeGrowth2nd) 2178322580064272 r002 8th iterates of z^2 + 2178322588126349 m005 (1/3*3^(1/2)-1/3)/(1/10*Zeta(3)+1) 2178322591614149 a007 Real Root Of 260*x^4+538*x^3+146*x^2+11*x-962 2178322598284712 m003 -3/8+(17*Sqrt[5])/64-Cosh[1/2+Sqrt[5]/2]/6 2178322602673463 r005 Im(z^2+c),c=3/46+8/39*I,n=3 2178322609206256 a007 Real Root Of 149*x^4+168*x^3-601*x^2-967*x-873 2178322611524236 m004 1/3-Sin[Sqrt[5]*Pi]/(3*Log[Sqrt[5]*Pi]) 2178322621221160 a007 Real Root Of 16*x^4+326*x^3-511*x^2-412*x+605 2178322627294410 r005 Im(z^2+c),c=-15/14+3/127*I,n=6 2178322630262803 r005 Im(z^2+c),c=-9/58+17/58*I,n=20 2178322642745322 k001 Champernowne real with 1048*n+1130 2178322646736142 p003 LerchPhi(1/2,5,317/145) 2178322647284713 k003 Champernowne real with 13/3*n^3-1/2*n^2-83/6*n+12 2178322647519170 a007 Real Root Of 116*x^4+66*x^3+191*x^2+897*x-882 2178322652492860 a007 Real Root Of -547*x^4-610*x^3+964*x^2-565*x+206 2178322657350644 r005 Im(z^2+c),c=-17/32+1/26*I,n=33 2178322658291507 m001 Pi*exp(Pi)/(Ei(1)+3^(1/3)) 2178322663017390 m001 (ErdosBorwein-ReciprocalLucas)/(Salem-Totient) 2178322681875740 h005 exp(cos(Pi*8/37)/sin(Pi*21/43)) 2178322683256079 m001 (Thue+ZetaQ(3))/(FransenRobinson+Salem) 2178322692038506 r005 Im(z^2+c),c=-13/98+2/7*I,n=16 2178322692807250 a001 233/123*76^(1/31) 2178322701616115 k006 concat of cont frac of 2178322703556120 p004 log(24631/2789) 2178322706359093 m001 (Gompertz-Tribonacci)/(gamma(1)+Cahen) 2178322707487067 l006 ln(5222/5337) 2178322709661357 r009 Re(z^3+c),c=-31/110+19/58*I,n=21 2178322723432087 r009 Re(z^3+c),c=-31/110+19/58*I,n=22 2178322729119648 h001 (5/8*exp(2)+7/11)/(2/3*exp(1)+3/5) 2178322736127124 r005 Re(z^2+c),c=-11/26+27/53*I,n=5 2178322742727661 r005 Re(z^2+c),c=-1/12+26/57*I,n=5 2178322742765325 k001 Champernowne real with 1049*n+1129 2178322747685713 k003 Champernowne real with 9/2*n^3-3/2*n^2-12*n+11 2178322748215112 m006 (1/5*ln(Pi)+2)/(4/Pi-1/4) 2178322753137121 k002 Champernowne real with 187/2*n^2-447/2*n+151 2178322754156261 r002 26i'th iterates of 2*x/(1-x^2) of 2178322760929706 a007 Real Root Of -357*x^4-645*x^3+641*x^2+804*x+81 2178322774884953 p004 log(22111/17783) 2178322778739904 l006 ln(540/4769) 2178322789359999 m005 (1/2*gamma+11/12)/(4/7*exp(1)-1) 2178322803293410 r005 Re(z^2+c),c=27/106+29/47*I,n=10 2178322805544265 r005 Im(z^2+c),c=-67/52+1/21*I,n=55 2178322823430236 r009 Re(z^3+c),c=-31/110+19/58*I,n=25 2178322824453998 m002 -E^Pi+ProductLog[Pi]+(Pi^2*Sech[Pi])/3 2178322827647396 a001 3571/5*102334155^(17/21) 2178322830189832 a007 Real Root Of 256*x^4+468*x^3+152*x^2+493*x-574 2178322836200351 m001 ln(GAMMA(3/4))^2*FeigenbaumAlpha^2*sin(1) 2178322836795865 r009 Re(z^3+c),c=-31/110+19/58*I,n=24 2178322837986638 r009 Re(z^3+c),c=-31/110+19/58*I,n=28 2178322839742430 m005 (1/4*Pi+2)/(8/15+1/3*5^(1/2)) 2178322839853414 r009 Re(z^3+c),c=-31/110+19/58*I,n=31 2178322840070676 r009 Re(z^3+c),c=-31/110+19/58*I,n=34 2178322840093755 r009 Re(z^3+c),c=-31/110+19/58*I,n=37 2178322840095761 r009 Re(z^3+c),c=-31/110+19/58*I,n=38 2178322840095964 r009 Re(z^3+c),c=-31/110+19/58*I,n=40 2178322840096066 r009 Re(z^3+c),c=-31/110+19/58*I,n=41 2178322840096143 r009 Re(z^3+c),c=-31/110+19/58*I,n=44 2178322840096146 r009 Re(z^3+c),c=-31/110+19/58*I,n=43 2178322840096155 r009 Re(z^3+c),c=-31/110+19/58*I,n=47 2178322840096157 r009 Re(z^3+c),c=-31/110+19/58*I,n=50 2178322840096157 r009 Re(z^3+c),c=-31/110+19/58*I,n=53 2178322840096157 r009 Re(z^3+c),c=-31/110+19/58*I,n=56 2178322840096157 r009 Re(z^3+c),c=-31/110+19/58*I,n=59 2178322840096157 r009 Re(z^3+c),c=-31/110+19/58*I,n=57 2178322840096157 r009 Re(z^3+c),c=-31/110+19/58*I,n=60 2178322840096157 r009 Re(z^3+c),c=-31/110+19/58*I,n=62 2178322840096157 r009 Re(z^3+c),c=-31/110+19/58*I,n=63 2178322840096157 r009 Re(z^3+c),c=-31/110+19/58*I,n=64 2178322840096157 r009 Re(z^3+c),c=-31/110+19/58*I,n=61 2178322840096157 r009 Re(z^3+c),c=-31/110+19/58*I,n=58 2178322840096157 r009 Re(z^3+c),c=-31/110+19/58*I,n=54 2178322840096157 r009 Re(z^3+c),c=-31/110+19/58*I,n=55 2178322840096157 r009 Re(z^3+c),c=-31/110+19/58*I,n=52 2178322840096157 r009 Re(z^3+c),c=-31/110+19/58*I,n=51 2178322840096157 r009 Re(z^3+c),c=-31/110+19/58*I,n=46 2178322840096157 r009 Re(z^3+c),c=-31/110+19/58*I,n=49 2178322840096158 r009 Re(z^3+c),c=-31/110+19/58*I,n=48 2178322840096166 r009 Re(z^3+c),c=-31/110+19/58*I,n=45 2178322840096239 r009 Re(z^3+c),c=-31/110+19/58*I,n=42 2178322840096597 r009 Re(z^3+c),c=-31/110+19/58*I,n=35 2178322840096877 r009 Re(z^3+c),c=-31/110+19/58*I,n=39 2178322840101940 r009 Re(z^3+c),c=-31/110+19/58*I,n=36 2178322840134623 r009 Re(z^3+c),c=-31/110+19/58*I,n=32 2178322840137617 r009 Re(z^3+c),c=-31/110+19/58*I,n=33 2178322840344506 r009 Re(z^3+c),c=-31/110+19/58*I,n=30 2178322840711951 r009 Re(z^3+c),c=-31/110+19/58*I,n=29 2178322841050373 r009 Re(z^3+c),c=-31/110+19/58*I,n=27 2178322842738463 m004 -15/Pi+(Sqrt[5]*Pi)/2-Tan[Sqrt[5]*Pi] 2178322842785328 k001 Champernowne real with 1050*n+1128 2178322844053178 m001 (Stephens+Trott)/(FibonacciFactorial+Porter) 2178322844347046 m001 (-3^(1/3)+cos(1/12*Pi))/(gamma+ln(5)) 2178322847495430 r009 Re(z^3+c),c=-31/110+19/58*I,n=26 2178322848086714 k003 Champernowne real with 14/3*n^3-5/2*n^2-61/6*n+10 2178322849916312 r005 Im(z^2+c),c=-17/42+23/63*I,n=61 2178322851185246 r002 5th iterates of z^2 + 2178322856625679 a003 sin(Pi*21/101)/cos(Pi*41/100) 2178322866598753 m001 (ErdosBorwein-GolombDickman)/(Kac-ZetaP(3)) 2178322869204781 l006 ln(4795/5962) 2178322883497841 r009 Re(z^3+c),c=-61/102+23/47*I,n=12 2178322890171673 r009 Im(z^3+c),c=-29/66+3/61*I,n=5 2178322892371313 r005 Re(z^2+c),c=3/10+7/33*I,n=20 2178322906182143 m005 (1/2*exp(1)+9/11)/(7/11*2^(1/2)-4/5) 2178322907510138 m001 (ln(3)-gamma(1))/(Pi+5^(1/2)) 2178322911954115 a007 Real Root Of 287*x^4+7*x^3-858*x^2+765*x-652 2178322915875829 m005 (1/2*Zeta(3)+9/10)/(5/11*Catalan+3/11) 2178322916987985 r009 Re(z^3+c),c=-31/110+19/58*I,n=23 2178322925192812 a007 Real Root Of 529*x^4+945*x^3-624*x^2+68*x+966 2178322937912311 r009 Re(z^3+c),c=-23/64+21/40*I,n=41 2178322941075904 a001 133957148/2889*322^(2/3) 2178322941265974 m005 (1/2+1/6*5^(1/2))/(4/9*5^(1/2)-5) 2178322942805331 k001 Champernowne real with 1051*n+1127 2178322947804653 r002 30th iterates of z^2 + 2178322948487714 k003 Champernowne real with 29/6*n^3-7/2*n^2-25/3*n+9 2178322952494160 a001 2971215073/2207*123^(1/10) 2178322957800049 m001 exp(FeigenbaumB)^2*Lehmer^2*GAMMA(19/24) 2178322969009536 r002 3th iterates of z^2 + 2178322973851812 r005 Im(z^2+c),c=-43/90+18/47*I,n=42 2178322976452464 a007 Real Root Of -835*x^4+696*x^3-256*x^2+582*x+148 2178322980309300 m001 (Otter+ZetaQ(2))/(exp(-1/2*Pi)+GAMMA(19/24)) 2178322983924940 r005 Im(z^2+c),c=1/26+5/22*I,n=4 2178322983929705 m001 Salem^2*GaussAGM(1,1/sqrt(2))/exp(sin(1))^2 2178322986587529 a007 Real Root Of -224*x^4-14*x^3+625*x^2-472*x+905 2178322987639903 p001 sum(1/(251*n+49)/(3^n),n=0..infinity) 2178322989943690 a007 Real Root Of 382*x^4+931*x^3-167*x^2-743*x+196 2178322990331774 l006 ln(991/8752) 2178322994626669 m005 (1/2*2^(1/2)-5/11)/(5/12*Catalan+7/9) 2178322996804351 a001 701408733/15127*322^(2/3) 2178322998468887 a001 2*2504730781961^(17/21) 2178323000861570 r009 Re(z^3+c),c=-43/114+6/17*I,n=3 2178323003821435 m001 exp(Pi)*ln(2+3^(1/2))*TravellingSalesman 2178323004599215 m005 (1/2*exp(1)-9/11)/(8/11*5^(1/2)+6/7) 2178323004935022 a001 1836311903/39603*322^(2/3) 2178323006121270 a001 46368*322^(2/3) 2178323006294342 a001 12586269025/271443*322^(2/3) 2178323006319593 a001 32951280099/710647*322^(2/3) 2178323006323277 a001 43133785636/930249*322^(2/3) 2178323006323814 a001 225851433717/4870847*322^(2/3) 2178323006323893 a001 591286729879/12752043*322^(2/3) 2178323006323904 a001 774004377960/16692641*322^(2/3) 2178323006323906 a001 4052739537881/87403803*322^(2/3) 2178323006323906 a001 225749145909/4868641*322^(2/3) 2178323006323906 a001 3278735159921/70711162*322^(2/3) 2178323006323907 a001 2504730781961/54018521*322^(2/3) 2178323006323911 a001 956722026041/20633239*322^(2/3) 2178323006323941 a001 182717648081/3940598*322^(2/3) 2178323006324146 a001 139583862445/3010349*322^(2/3) 2178323006325554 a001 53316291173/1149851*322^(2/3) 2178323006335198 a001 10182505537/219602*322^(2/3) 2178323006401306 a001 7778742049/167761*322^(2/3) 2178323006854413 a001 2971215073/64079*322^(2/3) 2178323009960053 a001 567451585/12238*322^(2/3) 2178323016353985 a007 Real Root Of 720*x^4+946*x^3-913*x^2+600*x-794 2178323018644274 a001 12752043/5*4181^(17/21) 2178323020243642 m005 (1/2*3^(1/2)+3/7)/(-31/72+11/24*5^(1/2)) 2178323021209637 a007 Real Root Of -470*x^4-753*x^3+510*x^2-461*x-625 2178323024775877 m001 sin(Pi/12)^2/ln(Lehmer)/sin(Pi/5) 2178323030449898 p003 LerchPhi(1/100,5,329/153) 2178323031246426 a001 433494437/9349*322^(2/3) 2178323042738656 m001 (-GAMMA(3/4)+AlladiGrinstead)/(1-cos(1/5*Pi)) 2178323042825334 k001 Champernowne real with 1052*n+1126 2178323043314264 r009 Re(z^3+c),c=-37/114+25/57*I,n=20 2178323044459890 a007 Real Root Of -572*x^4-835*x^3+568*x^2-875*x-353 2178323048888714 k003 Champernowne real with 5*n^3-9/2*n^2-13/2*n+8 2178323049886945 m001 (2*Pi/GAMMA(5/6)+Mills)/(2^(1/3)+Ei(1)) 2178323056605071 m005 (5*exp(1)-4/5)/(7/5+2*5^(1/2)) 2178323061702031 b008 9/ArcCsch[1]^7 2178323063571622 a007 Real Root Of -65*x^4-108*x^3-331*x^2+598*x+145 2178323065980551 m001 (3^(1/2))^Chi(1)*exp(1/Pi) 2178323071884814 r005 Im(z^2+c),c=-27/25+12/49*I,n=38 2178323084508724 p004 log(29059/23371) 2178323090329272 r005 Im(z^2+c),c=8/29+3/47*I,n=33 2178323092340881 a001 2/317811*610^(21/38) 2178323095127790 r005 Im(z^2+c),c=-7/8+27/131*I,n=47 2178323095963264 m001 Lehmer/(2^(1/2)+Mills) 2178323102780242 a001 4/2178309*610^(35/47) 2178323108820687 m001 1/KhintchineLevy^2*FeigenbaumB^2*exp(Ei(1))^2 2178323109940753 m005 (1/3+1/6*5^(1/2))/(11/12*Zeta(3)-7/9) 2178323117891766 r005 Im(z^2+c),c=-41/118+7/20*I,n=27 2178323120538687 m001 (3^(1/3))*exp(FeigenbaumKappa)^2*Zeta(9)^2 2178323123348774 m001 Totient^(5^(1/2))*Shi(1)^(5^(1/2)) 2178323139483070 a007 Real Root Of 594*x^4+65*x^3+872*x^2-975*x+169 2178323140084865 l006 ln(6192/7699) 2178323141110148 k007 concat of cont frac of 2178323142845337 k001 Champernowne real with 1053*n+1125 2178323149289714 k003 Champernowne real with 31/6*n^3-11/2*n^2-14/3*n+7 2178323152755927 a007 Real Root Of -131*x^4+644*x^3+159*x^2+852*x+185 2178323154283144 a007 Real Root Of 63*x^4-511*x^3-792*x^2+966*x-838 2178323158424822 m005 (1/2*exp(1)+1/12)/(1/7*exp(1)-5/11) 2178323160220326 a007 Real Root Of 553*x^4-61*x^3-384*x^2-695*x+169 2178323172777983 r005 Im(z^2+c),c=13/46+1/53*I,n=26 2178323177145411 a001 165580141/3571*322^(2/3) 2178323181050659 l003 cosh(1+29/70) 2178323181050659 l004 cosh(99/70) 2178323181580705 r005 Re(z^2+c),c=37/122+6/29*I,n=33 2178323182467384 m005 (1/2*Catalan-4/9)/(7/8*exp(1)-3) 2178323184395802 m008 (1/2*Pi^2-3/4)/(1/5*Pi^6-1/6) 2178323190698493 a007 Real Root Of 371*x^4+365*x^3-431*x^2+872*x-636 2178323191434236 a007 Real Root Of -60*x^4+714*x^3+651*x^2+851*x+162 2178323198793007 m001 1/TwinPrimes*Lehmer^2/ln(GAMMA(1/12)) 2178323202830580 m002 -6+4*Pi^5+Pi^6-Log[Pi] 2178323206131300 m001 BesselK(0,1)/(Lehmer^Pi) 2178323207335364 r009 Re(z^3+c),c=-37/102+31/56*I,n=11 2178323219649824 r005 Im(z^2+c),c=-9/58+17/58*I,n=25 2178323219694221 m005 (1/2*Pi+2/11)/(1/4*exp(1)+1/8) 2178323219977370 m005 (1/2*Pi+11/12)/(8/9*Catalan-7/10) 2178323223941238 m001 1/Zeta(1/2)^2/CareFree^2/ln(cosh(1)) 2178323225944809 m005 (1/2*exp(1)-6)/(8/9*5^(1/2)+1/7) 2178323230062675 a001 3571/6765*13^(21/38) 2178323237777590 m001 (ln(5)+Zeta(1,2))/(FellerTornier-Magata) 2178323242454942 m005 (1/3*exp(1)+2/11)/(9/11*Catalan-1/4) 2178323242865340 k001 Champernowne real with 1054*n+1124 2178323243678965 l006 ln(451/3983) 2178323249690714 k003 Champernowne real with 16/3*n^3-13/2*n^2-17/6*n+6 2178323261872320 m001 (-MertensB1+ZetaQ(4))/(LambertW(1)+Kac) 2178323262933064 m006 (2*exp(2*Pi)-1/6)/(4/5*ln(Pi)+4) 2178323263754357 m002 -8+(Pi^4*Cosh[Pi])/5 2178323287429589 r009 Re(z^3+c),c=-17/29+19/34*I,n=17 2178323293132206 b008 28/3+Sqrt[155] 2178323296141120 r005 Re(z^2+c),c=-3/20+47/56*I,n=63 2178323300175021 m008 (4*Pi^3+1/6)/(2*Pi^3-5) 2178323300786910 m001 arctan(1/2)-ln(3)*BesselJZeros(0,1) 2178323308118519 m001 1/Zeta(7)^2/LandauRamanujan/ln(arctan(1/2))^2 2178323311236528 l006 ln(7589/9436) 2178323313963025 p001 sum((-1)^n/(503*n+53)/n/(8^n),n=1..infinity) 2178323317693927 s002 sum(A155274[n]/((10^n-1)/n),n=1..infinity) 2178323318837655 r005 Im(z^2+c),c=-41/102+20/53*I,n=14 2178323325434068 m001 (Paris+Trott)/(Backhouse+FeigenbaumMu) 2178323332356374 r005 Re(z^2+c),c=-89/126+5/49*I,n=2 2178323334462606 a001 7778742049/5778*123^(1/10) 2178323342885343 k001 Champernowne real with 1055*n+1123 2178323350091715 k003 Champernowne real with 11/2*n^3-15/2*n^2-n+5 2178323358758910 r009 Re(z^3+c),c=-27/98+9/29*I,n=11 2178323367831001 a001 9349/17711*13^(21/38) 2178323371742052 m001 (TravellingSalesman+ThueMorse)/polylog(4,1/2) 2178323373421831 a007 Real Root Of 486*x^4+929*x^3+72*x^2+936*x+357 2178323385668761 s002 sum(A175775[n]/((3*n+1)!),n=1..infinity) 2178323387931129 a001 6119/11592*13^(21/38) 2178323388601011 r005 Im(z^2+c),c=-23/58+7/12*I,n=54 2178323390191062 a001 20365011074/15127*123^(1/10) 2178323390863698 a001 64079/121393*13^(21/38) 2178323392676125 a001 39603/75025*13^(21/38) 2178323398321735 a001 53316291173/39603*123^(1/10) 2178323399507984 a001 139583862445/103682*123^(1/10) 2178323399681055 a001 365435296162/271443*123^(1/10) 2178323399706306 a001 956722026041/710647*123^(1/10) 2178323399709990 a001 2504730781961/1860498*123^(1/10) 2178323399710528 a001 6557470319842/4870847*123^(1/10) 2178323399710655 a001 10610209857723/7881196*123^(1/10) 2178323399710860 a001 1346269*123^(1/10) 2178323399712267 a001 1548008755920/1149851*123^(1/10) 2178323399721912 a001 591286729879/439204*123^(1/10) 2178323399788019 a001 225851433717/167761*123^(1/10) 2178323400241126 a001 86267571272/64079*123^(1/10) 2178323400353691 a001 15127/28657*13^(21/38) 2178323400533181 a001 682*987^(46/55) 2178323403346767 a001 32951280099/24476*123^(1/10) 2178323412053712 a007 Real Root Of 263*x^4-161*x^3-978*x^2+898*x-989 2178323423621109 a007 Real Root Of -921*x^4-543*x^3-69*x^2+699*x+152 2178323424633144 a001 12586269025/9349*123^(1/10) 2178323424656998 m001 1/BesselK(0,1)^2/Champernowne^2*exp(sqrt(Pi)) 2178323442025686 a001 1/1353*(1/2*5^(1/2)+1/2)^23*11^(7/11) 2178323442651022 a001 4976784/281*322^(5/6) 2178323442905346 k001 Champernowne real with 1056*n+1122 2178323450492715 k003 Champernowne real with 17/3*n^3-17/2*n^2+5/6*n+4 2178323450814411 m001 Riemann3rdZero^(Pi^(1/2)/Si(Pi)) 2178323452265651 m001 (GAMMA(17/24)+Salem)/(BesselJ(0,1)-Ei(1)) 2178323452976509 a001 2889/5473*13^(21/38) 2178323453524158 a001 5702887/76*11^(4/9) 2178323453805695 r005 Re(z^2+c),c=-1/31+19/29*I,n=49 2178323458446159 s002 sum(A247604[n]/(pi^n),n=1..infinity) 2178323463279060 m001 GAMMA(19/24)/GAMMA(1/24)/exp(exp(1))^2 2178323473428622 m005 (1/2*Zeta(3)+4)/(2/3*exp(1)+3/10) 2178323482235883 a007 Real Root Of 451*x^4+834*x^3-478*x^2-314*x+50 2178323483036500 m001 (Cahen+Mills)/(Psi(1,1/3)-ln(Pi)) 2178323483446055 a003 -2*cos(1/10*Pi)+cos(11/24*Pi)-cos(11/30*Pi) 2178323492916737 m009 (1/6*Psi(1,1/3)+2)/(1/4*Psi(1,1/3)-5/6) 2178323521732286 a007 Real Root Of -165*x^4+194*x^3+927*x^2-301*x+666 2178323523183001 m005 (1/2*Zeta(3)+1/11)/(3*Catalan+3/7) 2178323528402789 m001 1/exp(GAMMA(23/24))^2*(3^(1/3))*sinh(1) 2178323532247474 m001 exp(GlaisherKinkelin)^2*DuboisRaymond/Magata^2 2178323536938104 m005 (1/2*2^(1/2)-3/11)/(9/10*Pi-5/6) 2178323537812012 a001 3/2584*610^(16/35) 2178323539903507 m001 (Zeta(1/2)+PrimesInBinary)/(Shi(1)-gamma) 2178323542925349 k001 Champernowne real with 1057*n+1121 2178323545114789 q001 408/1873 2178323546671616 m001 (ln(2+3^(1/2))+Kac)/(Shi(1)+Zeta(1,-1)) 2178323550893715 k003 Champernowne real with 35/6*n^3-19/2*n^2+8/3*n+3 2178323552104059 a007 Real Root Of -300*x^4-333*x^3+986*x^2+577*x-109 2178323552494459 l006 ln(813/7180) 2178323560903741 r009 Re(z^3+c),c=-31/110+19/58*I,n=20 2178323562624487 m001 GAMMA(1/6)/DuboisRaymond^2*ln(GAMMA(5/24)) 2178323568564382 a001 199/18*(1/2*5^(1/2)+1/2)^17*18^(13/22) 2178323570532155 a001 4807526976/3571*123^(1/10) 2178323571817914 a003 sin(Pi*11/90)-sin(Pi*22/109) 2178323573045205 m006 (5/6*exp(2*Pi)+2/3)/(3/5*Pi+1/6) 2178323573111596 r005 Re(z^2+c),c=-3/14+12/37*I,n=17 2178323573421394 r005 Im(z^2+c),c=-21/22+15/71*I,n=34 2178323574821290 r005 Re(z^2+c),c=-7/74+22/37*I,n=64 2178323590463093 m005 (1/2*3^(1/2)-8/9)/(23/56+2/7*5^(1/2)) 2178323592563301 r009 Re(z^3+c),c=-7/38+19/22*I,n=50 2178323599132807 m001 (Psi(1,1/3)-exp(Pi))/(-ArtinRank2+Paris) 2178323609974205 a007 Real Root Of -389*x^4-644*x^3+617*x^2+727*x+758 2178323612441949 a001 1149851/610*6557470319842^(16/17) 2178323612443597 a001 1268860318/305*1836311903^(16/17) 2178323612445148 a001 5600748293801/610*514229^(16/17) 2178323615198058 a007 Real Root Of 378*x^4+254*x^3+729*x^2-414*x-123 2178323621502217 r009 Re(z^3+c),c=-43/126+21/44*I,n=19 2178323622498935 h005 exp(cos(Pi*12/47)/sin(Pi*13/37)) 2178323622510208 h001 (7/9*exp(2)+10/11)/(2/5*exp(2)+1/10) 2178323627349757 r005 Im(z^2+c),c=-39/31+1/29*I,n=46 2178323627933618 a005 (1/sin(113/235*Pi))^430 2178323638311838 r002 30i'th iterates of 2*x/(1-x^2) of 2178323642945352 k001 Champernowne real with 1058*n+1120 2178323649571543 p004 log(20327/19889) 2178323651294715 k003 Champernowne real with 6*n^3-21/2*n^2+9/2*n+2 2178323652499264 m001 RenyiParking^FeigenbaumDelta-Weierstrass 2178323656431020 m005 (1/3*2^(1/2)+1/12)/(6*gamma-11/12) 2178323662158623 r005 Im(z^2+c),c=-11/31+19/54*I,n=36 2178323664921534 r005 Re(z^2+c),c=-5/28+27/43*I,n=62 2178323665322143 a007 Real Root Of 326*x^4+174*x^3-965*x^2+699*x+560 2178323669135268 r009 Re(z^3+c),c=-13/38+14/29*I,n=37 2178323669642517 r005 Re(z^2+c),c=-3/26+28/43*I,n=51 2178323671353411 r009 Re(z^3+c),c=-9/64+31/44*I,n=17 2178323678356744 m001 (1/2)^cos(Pi/5)/((1/2)^GAMMA(11/24)) 2178323682562942 r005 Im(z^2+c),c=-5/118+16/63*I,n=19 2178323684896270 a007 Real Root Of 25*x^4+570*x^3+570*x^2+379*x+526 2178323686233039 a003 sin(Pi*3/80)/cos(Pi*36/113) 2178323693982436 a007 Real Root Of -180*x^4-362*x^3-134*x^2-639*x-445 2178323697084379 s002 sum(A231479[n]/(10^n+1),n=1..infinity) 2178323701868618 r008 a(0)=2,K{-n^6,-5-22*n+5*n^2+17*n^3} 2178323702579568 m001 (1-ln(2^(1/2)+1))/(HeathBrownMoroz+Landau) 2178323703306230 a007 Real Root Of -292*x^4+346*x^3+836*x^2+888*x+158 2178323704803573 m001 FeigenbaumC*(BesselJ(0,1)-MasserGramain) 2178323707004748 m001 (GAMMA(2/3)-BesselI(0,2))/(Trott2nd-ZetaP(2)) 2178323708676769 m001 (ln(gamma)+ArtinRank2)/(Conway-GolombDickman) 2178323721246276 a008 Real Root of x^5-x^4-3*x^3-3*x^2+4*x+10 2178323721592949 r005 Re(z^2+c),c=-17/110+38/63*I,n=36 2178323736020931 a007 Real Root Of -640*x^4+609*x^3-151*x^2+410*x-87 2178323742965355 k001 Champernowne real with 1059*n+1119 2178323744423129 p003 LerchPhi(1/2,3,127/162) 2178323751695715 k003 Champernowne real with 37/6*n^3-23/2*n^2+19/3*n+1 2178323756137721 k002 Champernowne real with 94*n^2-225*n+152 2178323758759346 r002 15th iterates of z^2 + 2178323763358473 m001 (RenyiParking+ZetaP(3))/(Zeta(5)+Zeta(1/2)) 2178323767497211 r005 Im(z^2+c),c=-9/58+17/58*I,n=28 2178323769896432 r005 Re(z^2+c),c=-9/34+1/63*I,n=7 2178323775071032 m001 (gamma(2)+BesselJ(1,1))/(Khinchin-Rabbit) 2178323775929249 r005 Re(z^2+c),c=5/94+31/50*I,n=60 2178323793699268 a007 Real Root Of 49*x^4+236*x^3+385*x^2+94*x-286 2178323796262816 m001 (DuboisRaymond+MertensB3)/(Rabbit-ZetaQ(3)) 2178323802766254 r005 Im(z^2+c),c=-17/42+23/63*I,n=63 2178323806433003 r005 Im(z^2+c),c=-21/26+1/95*I,n=58 2178323806563647 m001 1/BesselK(1,1)/exp((3^(1/3)))^2*GAMMA(1/24) 2178323806891850 m001 MertensB1*ln(GaussKuzminWirsing)^2/Niven 2178323807813982 m001 (FeigenbaumC+Tribonacci)/(cos(1)+ln(Pi)) 2178323812167718 m001 Salem^ln(3)/(ZetaQ(3)^ln(3)) 2178323813658662 a001 2207/4181*13^(21/38) 2178323822324038 s001 sum(exp(-Pi/2)^(n-1)*A261951[n],n=1..infinity) 2178323824581071 r009 Im(z^3+c),c=-19/106+11/52*I,n=4 2178323826538652 a007 Real Root Of -793*x^4-83*x^3+806*x^2+717*x-16 2178323827094828 r005 Re(z^2+c),c=1/9+18/29*I,n=25 2178323842985358 k001 Champernowne real with 1060*n+1118 2178323843163245 r005 Re(z^2+c),c=31/102+13/63*I,n=40 2178323851389549 r005 Im(z^2+c),c=-9/58+17/58*I,n=30 2178323851762372 r005 Im(z^2+c),c=-9/58+17/58*I,n=31 2178323852096716 k003 Champernowne real with 19/3*n^3-25/2*n^2+49/6*n 2178323858148789 r005 Im(z^2+c),c=-9/58+17/58*I,n=33 2178323861278953 r005 Im(z^2+c),c=-9/58+17/58*I,n=36 2178323861772866 r005 Im(z^2+c),c=-9/58+17/58*I,n=34 2178323862052606 r005 Im(z^2+c),c=-9/58+17/58*I,n=39 2178323862200675 r005 Im(z^2+c),c=-9/58+17/58*I,n=42 2178323862223853 r005 Im(z^2+c),c=-9/58+17/58*I,n=45 2178323862224240 r005 Im(z^2+c),c=-9/58+17/58*I,n=44 2178323862225781 r005 Im(z^2+c),c=-9/58+17/58*I,n=47 2178323862226587 r005 Im(z^2+c),c=-9/58+17/58*I,n=50 2178323862226684 r005 Im(z^2+c),c=-9/58+17/58*I,n=48 2178323862226792 r005 Im(z^2+c),c=-9/58+17/58*I,n=53 2178323862226832 r005 Im(z^2+c),c=-9/58+17/58*I,n=56 2178323862226838 r005 Im(z^2+c),c=-9/58+17/58*I,n=59 2178323862226838 r005 Im(z^2+c),c=-9/58+17/58*I,n=58 2178323862226839 r005 Im(z^2+c),c=-9/58+17/58*I,n=61 2178323862226839 r005 Im(z^2+c),c=-9/58+17/58*I,n=64 2178323862226839 r005 Im(z^2+c),c=-9/58+17/58*I,n=62 2178323862226839 r005 Im(z^2+c),c=-9/58+17/58*I,n=63 2178323862226840 r005 Im(z^2+c),c=-9/58+17/58*I,n=60 2178323862226842 r005 Im(z^2+c),c=-9/58+17/58*I,n=55 2178323862226843 r005 Im(z^2+c),c=-9/58+17/58*I,n=57 2178323862226856 r005 Im(z^2+c),c=-9/58+17/58*I,n=54 2178323862226879 r005 Im(z^2+c),c=-9/58+17/58*I,n=51 2178323862226889 r005 Im(z^2+c),c=-9/58+17/58*I,n=52 2178323862227274 r005 Im(z^2+c),c=-9/58+17/58*I,n=49 2178323862229707 r005 Im(z^2+c),c=-9/58+17/58*I,n=46 2178323862235293 r005 Im(z^2+c),c=-9/58+17/58*I,n=41 2178323862242307 r005 Im(z^2+c),c=-9/58+17/58*I,n=43 2178323862292561 r005 Im(z^2+c),c=-9/58+17/58*I,n=40 2178323862395011 r005 Im(z^2+c),c=-9/58+17/58*I,n=37 2178323862403709 r005 Im(z^2+c),c=-9/58+17/58*I,n=38 2178323863801532 r005 Im(z^2+c),c=-9/58+17/58*I,n=35 2178323865525343 m001 Artin*TravellingSalesman^ln(5) 2178323872809696 r005 Im(z^2+c),c=-9/58+17/58*I,n=32 2178323886165114 r005 Im(z^2+c),c=-9/58+17/58*I,n=27 2178323889281296 m001 (Ei(1)+Zeta(1,-1))/(GAMMA(11/12)-MertensB1) 2178323893682704 r005 Im(z^2+c),c=9/23+7/32*I,n=31 2178323894699379 m005 (1/3*Zeta(3)+3/4)/(9/11*3^(1/2)-8/9) 2178323895233071 s002 sum(A033025[n]/(2^n+1),n=1..infinity) 2178323895699458 m001 (Si(Pi)+GAMMA(2/3))/(-Zeta(1,-1)+Mills) 2178323897682585 m001 Catalan*TreeGrowth2nd*ln(GAMMA(11/12)) 2178323903703509 a005 (1/cos(55/234*Pi))^56 2178323907808116 a007 Real Root Of -514*x^4-742*x^3+616*x^2-183*x+582 2178323912106833 a007 Real Root Of 289*x^4+63*x^3-883*x^2+314*x-982 2178323913122229 r005 Re(z^2+c),c=-4/23+23/53*I,n=42 2178323920291836 r005 Im(z^2+c),c=-9/58+17/58*I,n=29 2178323924276014 r005 Im(z^2+c),c=-11/46+15/47*I,n=21 2178323926060555 m001 3/2*BesselI(0,1)-3/2*exp(1) 2178323937234070 l006 ln(362/3197) 2178323938839895 a007 Real Root Of -120*x^4+120*x^3+525*x^2-466*x+436 2178323943005361 k001 Champernowne real with 1061*n+1117 2178323952497716 k003 Champernowne real with 13/2*n^3-27/2*n^2+10*n-1 2178323953333690 m001 (cos(1)+Rabbit*Riemann2ndZero)/Rabbit 2178323954463390 a001 1/2204*(1/2*5^(1/2)+1/2)^10*76^(11/13) 2178323957743023 m001 (Artin+QuadraticClass)/(2^(1/2)-Chi(1)) 2178323968946732 m001 Ei(1)/MertensB1/exp(Zeta(3)) 2178323970576204 a001 144/710647*76^(17/31) 2178323970946841 b008 E^3+5*Sinh[1/3] 2178323974990478 r005 Im(z^2+c),c=-27/82+10/29*I,n=23 2178323980810603 m005 (1/3*exp(1)+1/4)/(3*3^(1/2)+1/9) 2178323986382461 r005 Im(z^2+c),c=-21/26+13/106*I,n=36 2178323994174969 a007 Real Root Of 545*x^4+936*x^3-26*x^2+942*x-421 2178323999101659 p002 log(7^(6/5)-17^(1/7)) 2178324001232816 a001 9227465/199*199^(8/11) 2178324012925719 r005 Im(z^2+c),c=-53/58+1/5*I,n=61 2178324013730010 r004 Im(z^2+c),c=5/34+1/6*I,z(0)=exp(3/8*I*Pi),n=10 2178324014681651 m003 -34+E^(1/2+Sqrt[5]/2)*Sinh[1/2+Sqrt[5]/2] 2178324017048257 h001 (11/12*exp(1)+7/11)/(3/8*exp(1)+5/12) 2178324022458118 m005 (1/5*Pi+4/5)/(1/4*gamma-4/5) 2178324028128465 a001 165580141/521*322^(1/3) 2178324029898848 m005 (1/3*3^(1/2)-2/5)/(1/10*Pi+1/2) 2178324030893541 r009 Re(z^3+c),c=-11/29+26/47*I,n=18 2178324033702585 m001 (5^(1/2)-Chi(1))/(-Conway+Robbin) 2178324034568004 m002 -(E^Pi*Pi^2)+Pi^2*ProductLog[Pi]*Tanh[Pi] 2178324038593059 r005 Re(z^2+c),c=19/66+11/60*I,n=11 2178324040790453 m008 (2*Pi+5/6)/(1/3*Pi^4+1/5) 2178324043025364 k001 Champernowne real with 1062*n+1116 2178324044220278 m001 (Trott2nd-TwinPrimes)/(Ei(1,1)+Khinchin) 2178324052898716 k003 Champernowne real with 20/3*n^3-29/2*n^2+71/6*n-2 2178324053798565 r005 Re(z^2+c),c=9/26+4/33*I,n=30 2178324061517423 r005 Im(z^2+c),c=11/36+25/57*I,n=4 2178324063037719 m001 Zeta(5)^2/exp(GAMMA(11/24))^2*cos(Pi/12) 2178324067411202 a007 Real Root Of -305*x^4-513*x^3+469*x^2+441*x+300 2178324069841431 l006 ln(1397/1737) 2178324072268844 a003 cos(Pi*8/79)-cos(Pi*13/107) 2178324073513653 r005 Re(z^2+c),c=-19/90+22/37*I,n=23 2178324083238581 a007 Real Root Of 607*x^4+239*x^3+988*x^2-405*x-134 2178324090035349 m001 ln(GAMMA(1/6))^2*FransenRobinson^2*Zeta(1,2) 2178324091068526 r009 Re(z^3+c),c=-19/58+25/56*I,n=34 2178324094672855 m001 (-Ei(1)+HardyLittlewoodC3)/(Psi(2,1/3)-exp(1)) 2178324104356475 r005 Im(z^2+c),c=-5/118+16/63*I,n=20 2178324109490265 a001 1/1135099622*13^(6/17) 2178324112664678 m001 (CopelandErdos+Salem)/(GAMMA(3/4)-gamma) 2178324114744743 r005 Im(z^2+c),c=9/23+7/32*I,n=37 2178324115087951 r005 Im(z^2+c),c=-9/58+17/58*I,n=26 2178324118984921 p004 log(15199/1721) 2178324121044779 m005 (-21/44+1/4*5^(1/2))/(3/7*gamma-4) 2178324126668538 r005 Re(z^2+c),c=27/70+9/58*I,n=34 2178324137212905 m001 GAMMA(19/24)*Cahen/ln(cos(Pi/12)) 2178324143045367 k001 Champernowne real with 1063*n+1115 2178324150441148 m001 (gamma(1)-Pi^(1/2))/(Champernowne+Sarnak) 2178324151945421 a007 Real Root Of 25*x^4+581*x^3+778*x^2-374*x-876 2178324152399436 m001 (2^(1/2)+5^(1/2))/(cos(1/12*Pi)+Rabbit) 2178324152746991 a007 Real Root Of -18*x^4-405*x^3-279*x^2+65*x+448 2178324153299716 k003 Champernowne real with 41/6*n^3-31/2*n^2+41/3*n-3 2178324158361340 r005 Im(z^2+c),c=-5/118+16/63*I,n=22 2178324163323181 m001 1/GAMMA(11/12)*exp(MinimumGamma)^2/cos(Pi/5) 2178324165394269 r005 Im(z^2+c),c=-5/118+16/63*I,n=23 2178324166082075 m001 (2^(1/3)+exp(1))/(Pi^(1/2)+ZetaQ(2)) 2178324173430756 a007 Real Root Of -95*x^4+743*x^3-82*x^2+685*x+161 2178324177152457 a001 31622993/682*322^(2/3) 2178324179220884 m001 1/ln(Riemann2ndZero)/LaplaceLimit*GAMMA(5/24) 2178324179628690 m001 (-ThueMorse+ZetaQ(3))/(Si(Pi)+HeathBrownMoroz) 2178324183056651 r005 Im(z^2+c),c=-5/118+16/63*I,n=26 2178324185605632 r005 Im(z^2+c),c=-5/118+16/63*I,n=29 2178324185882620 r005 Im(z^2+c),c=-5/118+16/63*I,n=32 2178324185903892 r005 Im(z^2+c),c=-5/118+16/63*I,n=33 2178324185906256 r005 Im(z^2+c),c=-5/118+16/63*I,n=35 2178324185906668 r005 Im(z^2+c),c=-5/118+16/63*I,n=36 2178324185907518 r005 Im(z^2+c),c=-5/118+16/63*I,n=39 2178324185907642 r005 Im(z^2+c),c=-5/118+16/63*I,n=42 2178324185907656 r005 Im(z^2+c),c=-5/118+16/63*I,n=45 2178324185907657 r005 Im(z^2+c),c=-5/118+16/63*I,n=46 2178324185907657 r005 Im(z^2+c),c=-5/118+16/63*I,n=48 2178324185907657 r005 Im(z^2+c),c=-5/118+16/63*I,n=49 2178324185907657 r005 Im(z^2+c),c=-5/118+16/63*I,n=52 2178324185907657 r005 Im(z^2+c),c=-5/118+16/63*I,n=55 2178324185907657 r005 Im(z^2+c),c=-5/118+16/63*I,n=58 2178324185907657 r005 Im(z^2+c),c=-5/118+16/63*I,n=51 2178324185907657 r005 Im(z^2+c),c=-5/118+16/63*I,n=59 2178324185907657 r005 Im(z^2+c),c=-5/118+16/63*I,n=61 2178324185907657 r005 Im(z^2+c),c=-5/118+16/63*I,n=62 2178324185907657 r005 Im(z^2+c),c=-5/118+16/63*I,n=64 2178324185907657 r005 Im(z^2+c),c=-5/118+16/63*I,n=63 2178324185907657 r005 Im(z^2+c),c=-5/118+16/63*I,n=60 2178324185907657 r005 Im(z^2+c),c=-5/118+16/63*I,n=56 2178324185907657 r005 Im(z^2+c),c=-5/118+16/63*I,n=57 2178324185907657 r005 Im(z^2+c),c=-5/118+16/63*I,n=54 2178324185907657 r005 Im(z^2+c),c=-5/118+16/63*I,n=53 2178324185907657 r005 Im(z^2+c),c=-5/118+16/63*I,n=50 2178324185907658 r005 Im(z^2+c),c=-5/118+16/63*I,n=47 2178324185907659 r005 Im(z^2+c),c=-5/118+16/63*I,n=43 2178324185907660 r005 Im(z^2+c),c=-5/118+16/63*I,n=44 2178324185907662 r005 Im(z^2+c),c=-5/118+16/63*I,n=38 2178324185907673 r005 Im(z^2+c),c=-5/118+16/63*I,n=41 2178324185907702 r005 Im(z^2+c),c=-5/118+16/63*I,n=40 2178324185908290 r005 Im(z^2+c),c=-5/118+16/63*I,n=37 2178324185914348 r005 Im(z^2+c),c=-5/118+16/63*I,n=34 2178324185938062 r005 Im(z^2+c),c=-5/118+16/63*I,n=30 2178324185963207 r005 Im(z^2+c),c=-5/118+16/63*I,n=31 2178324186121499 r005 Im(z^2+c),c=-5/118+16/63*I,n=25 2178324186228838 r005 Im(z^2+c),c=-5/118+16/63*I,n=28 2178324186807081 r005 Im(z^2+c),c=-5/118+16/63*I,n=27 2178324198699959 r005 Im(z^2+c),c=-5/118+16/63*I,n=24 2178324203086154 a007 Real Root Of 534*x^4+957*x^3-703*x^2-259*x+640 2178324204488059 m001 (Conway-FeigenbaumMu)/(Kac+PrimesInBinary) 2178324211865043 m001 1/OneNinth*ln(KhintchineHarmonic)*BesselK(0,1) 2178324218879320 m001 (BesselK(1,1)+GAMMA(5/6))/Kolakoski 2178324223949483 a007 Real Root Of 445*x^4+967*x^3+77*x^2+318*x+303 2178324227982783 m001 MertensB3+RenyiParking^Stephens 2178324227995733 a007 Real Root Of -695*x^4-945*x^3+835*x^2-463*x+910 2178324228303969 a001 2207/2*2^(52/53) 2178324231177103 m005 (1/3*gamma-1/4)/(5/7*Pi+2/5) 2178324243065370 k001 Champernowne real with 1064*n+1114 2178324249067416 m005 (1/2*Zeta(3)+3/4)/(2/9*Catalan+5/12) 2178324250968468 l006 ln(997/8805) 2178324253610071 k003 Champernowne real with 7*n^3-33/2*n^2+31/2*n-4 2178324256826627 m001 1/ln(GAMMA(5/6))*FeigenbaumD/Zeta(7)^2 2178324258656247 a001 47/6557470319842*139583862445^(5/16) 2178324258656247 a001 47/591286729879*63245986^(5/16) 2178324258822030 a001 47/53316291173*28657^(5/16) 2178324260281654 h001 (1/9*exp(2)+10/11)/(2/11*exp(1)+3/10) 2178324263903278 m001 TwinPrimes^2/exp(ArtinRank2)*Zeta(9)^2 2178324265218670 a007 Real Root Of -151*x^4-229*x^3-137*x^2-454*x+694 2178324272712956 a007 Real Root Of -542*x^4-821*x^3+540*x^2-455*x+164 2178324275752042 r009 Re(z^3+c),c=-13/56+4/23*I,n=5 2178324300731573 r002 3th iterates of z^2 + 2178324309903977 a001 63245986/2207*322^(3/4) 2178324322352679 r005 Im(z^2+c),c=-5/118+16/63*I,n=21 2178324323939509 a007 Real Root Of -154*x^4-232*x^3+467*x^2+704*x+387 2178324324328814 a007 Real Root Of -529*x^4-924*x^3+931*x^2+676*x-585 2178324339486260 a005 (1/cos(5/186*Pi))^863 2178324343085373 k001 Champernowne real with 1065*n+1113 2178324347398940 r005 Im(z^2+c),c=-7/36+11/36*I,n=24 2178324351164170 p004 log(20021/2267) 2178324354010171 k003 Champernowne real with 43/6*n^3-35/2*n^2+52/3*n-5 2178324354984679 m005 (1/2*Pi-5/11)/(7/10*3^(1/2)-7/10) 2178324357055087 m005 (1/2*exp(1)+9/11)/(4/11*Pi-1/7) 2178324378080292 a007 Real Root Of -531*x^4-641*x^3-817*x^2-75*x+17 2178324382483349 m006 (1/5*exp(2*Pi)+5/6)/(5*Pi^2+1/5) 2178324386955270 h001 (5/7*exp(2)+4/7)/(1/3*exp(2)+2/9) 2178324391999061 m001 (ThueMorse-ZetaQ(4))/(KomornikLoreti+Paris) 2178324400860442 a001 48/41*123^(4/31) 2178324414717690 a002 7^(9/10)-11^(5/7) 2178324427326401 s002 sum(A142990[n]/(n!^3),n=1..infinity) 2178324429821734 l006 ln(635/5608) 2178324431553100 a007 Real Root Of -618*x^4-893*x^3+879*x^2+182*x+910 2178324431943192 r009 Re(z^3+c),c=-17/42+8/23*I,n=3 2178324440163523 a007 Real Root Of -187*x^4-265*x^3+347*x^2-240*x-698 2178324443105376 k001 Champernowne real with 1066*n+1112 2178324450730519 a007 Real Root Of -290*x^4-382*x^3-41*x^2-845*x+935 2178324456729891 a001 521/8*8^(18/31) 2178324463330020 m001 (ln(Pi)-CareFree)/(HardHexagonsEntropy+Kac) 2178324464273843 a005 (1/cos(19/232*Pi))^1124 2178324479215728 r005 Im(z^2+c),c=-47/54+8/43*I,n=38 2178324480645023 r005 Im(z^2+c),c=-9/58+17/58*I,n=24 2178324490143420 m005 (1/2*5^(1/2)+2/11)/(1/11*5^(1/2)-4/5) 2178324492938166 r005 Re(z^2+c),c=-3/44+20/33*I,n=40 2178324512441129 m001 (2^(1/2)-GAMMA(23/24))/(Gompertz+KhinchinLevy) 2178324521355840 m005 (1/2*5^(1/2)-3/4)/(3/4*Pi-2/3) 2178324521433676 a007 Real Root Of -960*x^4+571*x^3+411*x^2+435*x-118 2178324529411031 m001 (Mills+Robbin)/(5^(1/2)-MertensB3) 2178324533269051 a007 Real Root Of -71*x^4+746*x^3-791*x^2-751*x-723 2178324539445696 r005 Im(z^2+c),c=7/26+3/41*I,n=40 2178324543125379 k001 Champernowne real with 1067*n+1111 2178324543540421 r002 3th iterates of z^2 + 2178324545386659 p004 log(13627/1543) 2178324551327445 r005 Re(z^2+c),c=-1/42+31/50*I,n=43 2178324551566447 m007 (-2*gamma-3/5)/(-4*gamma-8*ln(2)-1/5) 2178324554411026 r005 Re(z^2+c),c=-5/34+30/61*I,n=26 2178324554810371 k003 Champernowne real with 15/2*n^3-39/2*n^2+21*n-7 2178324557268337 r005 Im(z^2+c),c=-29/32+8/41*I,n=62 2178324558182833 r005 Im(z^2+c),c=-9/58+17/58*I,n=23 2178324569948279 r005 Re(z^2+c),c=-5/7+21/127*I,n=17 2178324570539382 a001 1836311903/1364*123^(1/10) 2178324571768698 s002 sum(A064954[n]/((pi^n+1)/n),n=1..infinity) 2178324575577632 m001 (Trott2nd-GAMMA(17/24))*3^(1/2) 2178324580648604 p004 log(28027/22541) 2178324585005841 a007 Real Root Of 141*x^4+87*x^3-202*x^2+241*x-792 2178324587194735 a007 Real Root Of -179*x^4+151*x^3+730*x^2-534*x+964 2178324594548683 b008 11*Sqrt[2/51] 2178324594685470 g005 GAMMA(9/10)*GAMMA(4/9)^2/GAMMA(5/11) 2178324612449986 a001 3010349/1597*6557470319842^(16/17) 2178324612450227 a001 6643838879/1597*1836311903^(16/17) 2178324612451777 a001 14662949395604/1597*514229^(16/17) 2178324624088656 m001 1/Niven*FeigenbaumAlpha/ln(BesselJ(1,1))^2 2178324626205735 l006 ln(908/8019) 2178324636222840 m001 GAMMA(11/12)/(TwinPrimes-ln(Pi)) 2178324642728399 m001 FeigenbaumKappa/(CareFree^GAMMA(2/3)) 2178324643145382 k001 Champernowne real with 1068*n+1110 2178324643451529 a007 Real Root Of 3*x^4+653*x^3-104*x^2+946*x-264 2178324648101022 h001 (-8*exp(8)+3)/(-exp(7)+2) 2178324648550185 a003 cos(Pi*27/62)+cos(Pi*47/95) 2178324652475842 a001 2178309+7*5^(1/2) 2178324654459669 m001 (Zeta(1,2)-BesselI(0,2))/(Sarnak-Stephens) 2178324658957017 m001 ln(LaplaceLimit)/Cahen*Magata 2178324670605766 r009 Re(z^3+c),c=-25/46+4/19*I,n=45 2178324674579309 r005 Im(z^2+c),c=-17/42+23/63*I,n=54 2178324674790344 m004 -120*Pi+75*Pi*Sin[Sqrt[5]*Pi] 2178324681982277 m001 ArtinRank2/cos(1)/Lehmer 2178324689471131 s002 sum(A217244[n]/(n^3*exp(n)+1),n=1..infinity) 2178324690928212 a007 Real Root Of -230*x^4-100*x^3+818*x^2-547*x-928 2178324691300519 l006 ln(9445/9653) 2178324691872661 a001 165580141/5778*322^(3/4) 2178324696046362 m005 (3*gamma-1/2)/(23/10+3/2*5^(1/2)) 2178324699164072 a008 Real Root of (2+5*x+2*x^2-x^3+6*x^4-3*x^5) 2178324704317792 a007 Real Root Of -16*x^4+256*x^3+213*x^2-514*x+876 2178324704341272 h005 exp(cos(Pi*11/52)*sin(Pi*24/53)) 2178324713151831 k007 concat of cont frac of 2178324722200623 r009 Re(z^3+c),c=-23/64+11/21*I,n=35 2178324725409929 a001 28657/11*1364^(55/59) 2178324726228631 r005 Re(z^2+c),c=-11/74+21/32*I,n=22 2178324726786307 m001 1/Kolakoski^2/ln(GlaisherKinkelin)^2/Trott^2 2178324734727527 r005 Re(z^2+c),c=-17/90+25/63*I,n=29 2178324737902165 m002 -5+Pi^2+6*Pi^3*Log[Pi] 2178324743165385 k001 Champernowne real with 1069*n+1109 2178324747601152 a001 433494437/15127*322^(3/4) 2178324752438691 a007 Real Root Of -264*x^4-509*x^3+249*x^2+474*x+534 2178324753283387 m001 Backhouse^exp(1)/(Backhouse^MasserGramain) 2178324755610571 k003 Champernowne real with 47/6*n^3-43/2*n^2+74/3*n-9 2178324755731830 a001 1134903170/39603*322^(3/4) 2178324756012198 r005 Im(z^2+c),c=-5/118+16/63*I,n=17 2178324756918079 a001 2971215073/103682*322^(3/4) 2178324757091151 a001 7778742049/271443*322^(3/4) 2178324757116402 a001 20365011074/710647*322^(3/4) 2178324757120086 a001 53316291173/1860498*322^(3/4) 2178324757120623 a001 139583862445/4870847*322^(3/4) 2178324757120702 a001 365435296162/12752043*322^(3/4) 2178324757120713 a001 956722026041/33385282*322^(3/4) 2178324757120715 a001 2504730781961/87403803*322^(3/4) 2178324757120715 a001 6557470319842/228826127*322^(3/4) 2178324757120715 a001 10610209857723/370248451*322^(3/4) 2178324757120715 a001 4052739537881/141422324*322^(3/4) 2178324757120716 a001 1548008755920/54018521*322^(3/4) 2178324757120720 a001 591286729879/20633239*322^(3/4) 2178324757120750 a001 225851433717/7881196*322^(3/4) 2178324757120955 a001 86267571272/3010349*322^(3/4) 2178324757122363 a001 32951280099/1149851*322^(3/4) 2178324757132008 a001 12586269025/439204*322^(3/4) 2178324757198115 a001 4807526976/167761*322^(3/4) 2178324757651222 a001 28657*322^(3/4) 2178324758349269 a001 7881196/4181*6557470319842^(16/17) 2178324758349304 a001 17393796001/4181*1836311903^(16/17) 2178324759138321 k002 Champernowne real with 189/2*n^2-453/2*n+153 2178324759776318 m001 (Grothendieck*TwinPrimes+MertensB1)/TwinPrimes 2178324760756865 a001 701408733/24476*322^(3/4) 2178324765906961 m001 ZetaQ(3)*(ln(2^(1/2)+1)+ErdosBorwein) 2178324769699180 a007 Real Root Of 20*x^4+476*x^3+867*x^2-278*x-538 2178324770255773 s001 sum(1/10^(n-1)*A054606[n]/n!^2,n=1..infinity) 2178324774053482 r009 Re(z^3+c),c=-37/106+28/45*I,n=52 2178324778445825 r005 Im(z^2+c),c=-57/106+22/51*I,n=11 2178324779635690 a001 20633239/10946*6557470319842^(16/17) 2178324779635695 a001 22768774562/5473*1836311903^(16/17) 2178324782043255 a001 267914296/9349*322^(3/4) 2178324782741336 a001 54018521/28657*6557470319842^(16/17) 2178324782741337 a001 119218851371/28657*1836311903^(16/17) 2178324783194444 a001 141422324/75025*6557470319842^(16/17) 2178324783194444 a001 312119004989/75025*1836311903^(16/17) 2178324783260552 a001 370248451/196418*6557470319842^(16/17) 2178324783260552 a001 408569081798/98209*1836311903^(16/17) 2178324783270197 a001 969323029/514229*6557470319842^(16/17) 2178324783270197 a001 2139295485799/514229*1836311903^(16/17) 2178324783271604 a001 2537720636/1346269*6557470319842^(16/17) 2178324783271604 a001 5600748293801/1346269*1836311903^(16/17) 2178324783271809 a001 7331474697802/1762289*1836311903^(16/17) 2178324783271809 a001 6643838879/3524578*6557470319842^(16/17) 2178324783271839 a001 17393796001/9227465*6557470319842^(16/17) 2178324783271843 a001 45537549124/24157817*6557470319842^(16/17) 2178324783271844 a001 119218851371/63245986*6557470319842^(16/17) 2178324783271844 a001 312119004989/165580141*6557470319842^(16/17) 2178324783271844 a001 817138163596/433494437*6557470319842^(16/17) 2178324783271844 a001 2139295485799/1134903170*6557470319842^(16/17) 2178324783271844 a001 5600748293801/2971215073*6557470319842^(16/17) 2178324783271844 a001 3020733700601/1602508992*6557470319842^(16/17) 2178324783271844 a001 3461452808002/1836311903*6557470319842^(16/17) 2178324783271844 a001 440719107401/233802911*6557470319842^(16/17) 2178324783271844 a001 505019158607/267914296*6557470319842^(16/17) 2178324783271844 a001 64300051206/34111385*6557470319842^(16/17) 2178324783271845 a001 73681302247/39088169*6557470319842^(16/17) 2178324783271846 a001 9381251041/4976784*6557470319842^(16/17) 2178324783271858 a001 23725150497407/5702887*1836311903^(16/17) 2178324783271858 a001 10749957122/5702887*6557470319842^(16/17) 2178324783271936 a001 3020733700601/726103*1836311903^(16/17) 2178324783271936 a001 1368706081/726103*6557470319842^(16/17) 2178324783272474 a001 1730726404001/416020*1836311903^(16/17) 2178324783272474 a001 1568397607/832040*6557470319842^(16/17) 2178324783276158 a001 440719107401/105937*1836311903^(16/17) 2178324783276158 a001 710646/377*6557470319842^(16/17) 2178324783301408 a001 505019158607/121393*1836311903^(16/17) 2178324783301408 a001 228826127/121393*6557470319842^(16/17) 2178324783474480 a001 10716675201/2576*1836311903^(16/17) 2178324783474480 a001 29134601/15456*6557470319842^(16/17) 2178324784660730 a001 73681302247/17711*1836311903^(16/17) 2178324784660732 a001 33385282/17711*6557470319842^(16/17) 2178324785540082 m001 (Shi(1)+GAMMA(3/4))/(Zeta(1/2)+ThueMorse) 2178324790428331 m001 (HardyLittlewoodC4-ln(2)/ln(10)*Lehmer)/Lehmer 2178324792791408 a001 228811001/55*1836311903^(16/17) 2178324792791421 a001 4250681/2255*6557470319842^(16/17) 2178324800347736 h001 (-exp(2)-3)/(-7*exp(1/3)+5) 2178324801910558 m006 (1/5*exp(Pi)+2/5)/(Pi-5/6) 2178324809936952 m001 exp(GAMMA(1/12))*Niven^2/log(2+sqrt(3)) 2178324810012706 l006 ln(7778/9671) 2178324812868174 a007 Real Root Of -247*x^4+321*x^3+130*x^2+829*x+18 2178324824599166 h001 (10/11*exp(2)+7/12)/(5/12*exp(2)+3/11) 2178324825924798 m005 (1/2*2^(1/2)-2/5)/(1/4*5^(1/2)-7/10) 2178324827521851 a007 Real Root Of -401*x^4-895*x^3+109*x^2+703*x+792 2178324831353342 r005 Im(z^2+c),c=-43/98+31/57*I,n=63 2178324834263805 a007 Real Root Of 698*x^4-128*x^3+595*x^2-991*x-247 2178324836710355 m001 cos(1/5*Pi)^BesselJ(1,1)-GAMMA(5/6) 2178324836710355 m001 cos(Pi/5)^BesselJ(1,1)-GAMMA(5/6) 2178324839817953 r005 Im(z^2+c),c=-141/122+1/36*I,n=32 2178324843185388 k001 Champernowne real with 1070*n+1108 2178324848519903 a001 5374978561/1292*1836311903^(16/17) 2178324848519995 a001 4870847/2584*6557470319842^(16/17) 2178324848521454 a001 23725150497407/2584*514229^(16/17) 2178324856010671 k003 Champernowne real with 8*n^3-45/2*n^2+53/2*n-10 2178324862137520 m001 (Shi(1)+ln(Pi))/(Zeta(1,-1)+Salem) 2178324866389884 s002 sum(A053820[n]/((10^n+1)/n),n=1..infinity) 2178324877443901 a007 Real Root Of -337*x^4+759*x^3+709*x^2+318*x-110 2178324879101950 m001 1/GAMMA(7/12)*exp(BesselJ(1,1))^2*sinh(1)^2 2178324886745742 m001 (HardyLittlewoodC5+Magata)/(Totient+ThueMorse) 2178324889819109 m005 (1/3*Catalan+3/4)/(1/6*5^(1/2)-6/7) 2178324906231497 m001 (5^(1/2)+ln(5))/(GAMMA(11/12)+Rabbit) 2178324912044444 m005 (1/3*Zeta(3)+1/7)/(3/4*5^(1/2)+9/11) 2178324913737738 r009 Im(z^3+c),c=-9/25+3/22*I,n=4 2178324916469545 m001 (OneNinth-ReciprocalFibonacci)^TwinPrimes 2178324919597120 r009 Re(z^3+c),c=-9/28+25/58*I,n=21 2178324920356425 r002 62th iterates of z^2 + 2178324927942357 a001 102334155/3571*322^(3/4) 2178324928180491 a007 Real Root Of -305*x^4-557*x^3+346*x^2+268*x+52 2178324933148723 a007 Real Root Of 411*x^4+421*x^3-743*x^2+201*x-939 2178324937911751 a007 Real Root Of -159*x^4-151*x^3+428*x^2+385*x+827 2178324943200773 m001 (-Cahen+FeigenbaumMu)/(exp(1)-exp(1/Pi)) 2178324943205391 k001 Champernowne real with 1071*n+1107 2178324946823860 a007 Real Root Of -401*x^4-902*x^3-558*x^2-809*x+591 2178324960204137 r005 Im(z^2+c),c=-101/114+11/58*I,n=62 2178324972059285 l006 ln(6381/7934) 2178324978635824 r005 Im(z^2+c),c=-8/11+5/39*I,n=36 2178324989620134 a007 Real Root Of -575*x^4-800*x^3+887*x^2+170*x+839 2178324997636103 r009 Im(z^3+c),c=-5/28+6/29*I,n=2 2178324997802557 m001 GAMMA(1/6)*exp(ErdosBorwein)/GAMMA(5/6)^2 2178325007164573 m001 (Shi(1)+exp(1/Pi))/(-Otter+Tribonacci) 2178325009614117 r009 Im(z^3+c),c=-11/98+57/64*I,n=2 2178325011282922 a005 (1/cos(11/157*Pi))^409 2178325015536609 m001 TwinPrimes^Si(Pi)/GAMMA(5/12) 2178325018557789 m002 -4/Pi^2+Cosh[Pi]+Pi^2*ProductLog[Pi] 2178325019229490 a007 Real Root Of 138*x^4+138*x^3-173*x^2-736*x-151 2178325024793243 m005 (39/44+1/4*5^(1/2))/(5*Zeta(3)+5/8) 2178325032866161 r002 4th iterates of z^2 + 2178325038216154 m005 (1/2*Zeta(3)-5/11)/(5*Zeta(3)+5/7) 2178325039780797 r009 Re(z^3+c),c=-11/31+39/64*I,n=21 2178325043225394 k001 Champernowne real with 1072*n+1106 2178325044615701 a008 Real Root of x^2-47451 2178325048856127 a007 Real Root Of -695*x^4+779*x^3+472*x^2+657*x-172 2178325049903938 a001 233/521*(1/2+1/2*5^(1/2))^32 2178325049903938 a001 233/521*23725150497407^(1/2) 2178325049903938 a001 233/521*505019158607^(4/7) 2178325049903938 a001 233/521*73681302247^(8/13) 2178325049903938 a001 233/521*10749957122^(2/3) 2178325049903938 a001 233/521*4106118243^(16/23) 2178325049903938 a001 233/521*1568397607^(8/11) 2178325049903938 a001 233/521*599074578^(16/21) 2178325049903938 a001 233/521*228826127^(4/5) 2178325049903939 a001 233/521*87403803^(16/19) 2178325049903940 a001 233/521*33385282^(8/9) 2178325049903951 a001 233/521*12752043^(16/17) 2178325053177979 m001 (-KomornikLoreti+Mills)/(BesselJ(0,1)+3^(1/3)) 2178325056096626 r002 3th iterates of z^2 + 2178325058230843 m005 (1/2*Zeta(3)+1/9)/(1/2*3^(1/2)-5/6) 2178325059851657 m005 (1/3*gamma+1/8)/(1/2*2^(1/2)+3/4) 2178325059982140 r002 5th iterates of z^2 + 2178325073141577 r005 Re(z^2+c),c=31/122+10/61*I,n=17 2178325073538691 r002 58th iterates of z^2 + 2178325075671554 a007 Real Root Of 41*x^4+885*x^3-213*x^2-767*x+501 2178325076323121 r009 Re(z^3+c),c=-5/14+13/25*I,n=51 2178325082996211 l006 ln(273/2411) 2178325088344636 m001 (exp(-1/2*Pi)+FellerTornier)/(cos(1)+Ei(1)) 2178325092510844 m005 (1/2*exp(1)+4/9)/(4/9*gamma+4/7) 2178325098901405 q001 1/4590683 2178325099167545 m001 (sin(1/5*Pi)+Zeta(1,-1))/(Bloch+Porter) 2178325099810303 m005 (1/3*Pi-1/2)/(1/7*Pi-7/10) 2178325111615306 b008 ArcCosh[4+E^(-3/4)] 2178325113411172 a007 Real Root Of -461*x^4-771*x^3+784*x^2+755*x+335 2178325114064619 r005 Re(z^2+c),c=-5/48+36/61*I,n=55 2178325123152709 q001 2211/1015 2178325130002024 m001 gamma(2)^(GAMMA(7/12)*Tribonacci) 2178325130999705 a001 1364/28657*832040^(37/47) 2178325137553539 a001 2/29*521^(23/25) 2178325140899491 m001 (Otter+TravellingSalesman)/(cos(1)+ln(Pi)) 2178325143245397 k001 Champernowne real with 1073*n+1105 2178325156950843 m001 (Shi(1)-cos(1/5*Pi)*GAMMA(17/24))/cos(1/5*Pi) 2178325157210971 k003 Champernowne real with 17/2*n^3-51/2*n^2+32*n-13 2178325161487287 r009 Re(z^3+c),c=-13/60+27/28*I,n=27 2178325167034999 r005 Im(z^2+c),c=3/62+5/23*I,n=10 2178325172250127 r005 Re(z^2+c),c=35/106+11/52*I,n=30 2178325177671855 r005 Im(z^2+c),c=-19/22+13/67*I,n=15 2178325178511202 m005 (1/2*Zeta(3)-6)/(7/8*exp(1)+1/10) 2178325182671530 r005 Re(z^2+c),c=-6/25+11/49*I,n=7 2178325182698267 m001 ln(Porter)^2*GolombDickman/BesselK(0,1) 2178325193448189 a001 9227465/843*322^(11/12) 2178325205658546 a007 Real Root Of 554*x^4+976*x^3-415*x^2+372*x+394 2178325209473534 r005 Re(z^2+c),c=-37/40+8/35*I,n=50 2178325218939660 p001 sum(1/(527*n+67)/n/(8^n),n=1..infinity) 2178325220467980 r005 Re(z^2+c),c=-7/32+13/42*I,n=9 2178325222635540 p003 LerchPhi(1/1024,4,106/229) 2178325224948184 l006 ln(4984/6197) 2178325227880221 m001 GAMMA(5/6)/(ReciprocalLucas-exp(1/exp(1))) 2178325230488772 a001 1368706081/329*1836311903^(16/17) 2178325230489401 a001 620166/329*6557470319842^(16/17) 2178325230490323 a001 3020733700601/329*514229^(16/17) 2178325233828801 r002 39th iterates of z^2 + 2178325237783662 m001 (exp(1/exp(1))+gamma(1))/(Stephens+ZetaQ(2)) 2178325238918252 a007 Real Root Of -38*x^4-853*x^3-545*x^2+111*x+173 2178325243265400 k001 Champernowne real with 1074*n+1104 2178325249589875 a005 (1/cos(43/235*Pi))^149 2178325255890633 m001 (-Zeta(1,-1)+CopelandErdos)/(1+sin(1)) 2178325256342283 m001 (Zeta(3)+MertensB3)/(Sarnak+TreeGrowth2nd) 2178325261224171 k006 concat of cont frac of 2178325267655116 m001 1/ln(Kolakoski)^2*Cahen^2/Ei(1)^2 2178325271511207 a007 Real Root Of 614*x^4+884*x^3-903*x^2+183*x-4 2178325272725080 a007 Real Root Of 587*x^4-844*x^3+21*x^2-693*x-162 2178325274588274 r005 Im(z^2+c),c=5/66+8/39*I,n=12 2178325275833029 m001 FeigenbaumMu/exp(1/exp(1))*QuadraticClass 2178325279206492 m001 (3^(1/3)-exp(1))/(-BesselJ(1,1)+GAMMA(23/24)) 2178325289902042 m002 Pi^4+6*ProductLog[Pi]+Pi^2*Sinh[Pi] 2178325301167295 r005 Re(z^2+c),c=-2/11+17/41*I,n=24 2178325302674649 a007 Real Root Of -693*x^4-961*x^3+770*x^2-923*x+6 2178325310714483 a008 Real Root of x^4-2*x^3-32*x^2+150 2178325319540802 m001 1/GAMMA(11/12)^2*ln(Rabbit)*sin(1)^2 2178325325125164 a007 Real Root Of 263*x^4+294*x^3-801*x^2-516*x-206 2178325329594104 r005 Im(z^2+c),c=-5/118+16/63*I,n=18 2178325335170860 m001 (-Kac+Stephens)/(1+GAMMA(17/24)) 2178325341704101 m001 (-FibonacciFactorial+Mills)/(Zeta(1,2)-exp(1)) 2178325343285403 k001 Champernowne real with 1075*n+1103 2178325346482965 m001 (gamma(2)+RenyiParking)/(Catalan-gamma) 2178325349647514 r005 Im(z^2+c),c=13/27+1/39*I,n=4 2178325359550784 a003 cos(Pi*40/93)/sin(Pi*59/119) 2178325362535537 b008 1+Pi^ArcCsc[7] 2178325362646185 h005 exp(cos(Pi*3/44)-cos(Pi*24/55)) 2178325366146575 a001 370248451/610*6557470319842^(14/17) 2178325366146575 a001 312119004989/610*1836311903^(14/17) 2178325371368668 a001 682*10946^(31/50) 2178325381338815 m001 (GAMMA(17/24)+GAMMA(23/24))/(sin(1)+Ei(1,1)) 2178325389470944 r005 Im(z^2+c),c=23/86+4/53*I,n=47 2178325389645022 m001 1/ln(LandauRamanujan)*Si(Pi)^2/BesselJ(0,1)^2 2178325406102141 m001 BesselI(1,2)*(BesselJ(1,1)-Riemann1stZero) 2178325409436902 m001 (ln(Pi)-cos(1/12*Pi))/(MasserGramain-Porter) 2178325414179243 a007 Real Root Of -341*x^4+579*x^3-743*x^2+877*x-161 2178325417715730 a001 2/2207*4^(31/49) 2178325417779108 m001 (Pi^(1/2))^ArtinRank2*(Pi^(1/2))^LaplaceLimit 2178325424752525 r009 Re(z^3+c),c=-37/126+14/39*I,n=12 2178325438923018 m005 (1/2*Catalan+1/3)/(7/11*gamma-4) 2178325443305406 k001 Champernowne real with 1076*n+1102 2178325444303662 a007 Real Root Of 545*x^4+820*x^3-879*x^2-491*x-694 2178325452862462 r009 Re(z^3+c),c=-43/122+30/59*I,n=45 2178325453920417 m001 (Champernowne+Rabbit)/(Ei(1,1)-BesselK(1,1)) 2178325458411271 k003 Champernowne real with 9*n^3-57/2*n^2+75/2*n-16 2178325459073774 r005 Re(z^2+c),c=-17/82+6/17*I,n=8 2178325471706537 r009 Re(z^3+c),c=-11/54+24/43*I,n=2 2178325475390826 m001 (exp(1/Pi)+Khinchin)/(Trott2nd-ZetaQ(3)) 2178325480246466 q001 601/2759 2178325482892603 r005 Im(z^2+c),c=-12/17+9/44*I,n=33 2178325495437203 m001 (1-HardyLittlewoodC4)/(Totient+Tribonacci) 2178325496521207 l006 ln(1003/8858) 2178325501791740 h001 (8/11*exp(2)+3/7)/(3/4*exp(1)+5/8) 2178325524740273 m001 (HeathBrownMoroz-Zeta(3))/Psi(2,1/3) 2178325526887829 m001 1/FeigenbaumD^2*Paris/ln(GAMMA(17/24))^2 2178325532054961 a007 Real Root Of 487*x^4+841*x^3-719*x^2-972*x-978 2178325533703057 a007 Real Root Of -464*x^4-602*x^3+883*x^2-157*x-307 2178325541629774 r005 Re(z^2+c),c=-7/52+37/60*I,n=51 2178325543325409 k001 Champernowne real with 1077*n+1101 2178325548590205 a001 9/10182505537*46368^(16/17) 2178325554719304 r005 Im(z^2+c),c=-9/32+15/46*I,n=9 2178325558703493 m005 (1/2*Catalan-5/8)/(6/7*gamma-4/7) 2178325564085927 m001 (-exp(1/exp(1))+Cahen)/(5^(1/2)+3^(1/3)) 2178325565543312 a007 Real Root Of 398*x^4+751*x^3+224*x^2+699*x-739 2178325570274974 r002 19th iterates of z^2 + 2178325573366275 b008 2+Tan[3/17] 2178325588300438 a007 Real Root Of 160*x^4-491*x^3+600*x^2-426*x+9 2178325592366898 r002 34th iterates of z^2 + 2178325594119058 a007 Real Root Of 388*x^4+930*x^3-345*x^2-845*x+673 2178325594901380 a001 19/36*377^(37/59) 2178325595542817 a007 Real Root Of 493*x^4+7*x^3-460*x^2-706*x-133 2178325599944787 r002 40th iterates of z^2 + 2178325610961140 l004 sinh(545/112*Pi) 2178325610961369 l004 cosh(545/112*Pi) 2178325620103967 r005 Im(z^2+c),c=-97/98+13/62*I,n=6 2178325640935632 r005 Re(z^2+c),c=7/122+31/48*I,n=37 2178325643345412 k001 Champernowne real with 1078*n+1100 2178325651168183 l006 ln(730/6447) 2178325651902271 a007 Real Root Of 49*x^4-298*x^3-589*x^2+514*x-269 2178325652798531 m001 (ln(2+3^(1/2))-gamma(2))/(FeigenbaumD+Magata) 2178325661267193 r005 Re(z^2+c),c=35/102+8/35*I,n=57 2178325664386991 a001 17711/11*3571^(52/59) 2178325665846387 m001 exp(GAMMA(1/12))*Porter^2*GAMMA(23/24) 2178325666724979 r009 Re(z^3+c),c=-21/44+31/64*I,n=42 2178325671515602 m001 (Conway+FellerTornier)/(Ei(1,1)-cos(1/12*Pi)) 2178325672375986 a007 Real Root Of -283*x^4+103*x^3-659*x^2+753*x+197 2178325673121316 a007 Real Root Of -29*x^4+252*x^3+470*x^2-446*x+56 2178325673511684 a007 Real Root Of 637*x^4+858*x^3-911*x^2+854*x+709 2178325674818271 l006 ln(3587/4460) 2178325681025577 m001 (Psi(2,1/3)+Chi(1))/(Grothendieck+Rabbit) 2178325683030905 m001 (Bloch-ZetaQ(3))/(cos(1/5*Pi)+ln(2+3^(1/2))) 2178325684225221 r005 Re(z^2+c),c=-9/50+18/43*I,n=22 2178325688108441 a007 Real Root Of -746*x^4+767*x^3-93*x^2+840*x+197 2178325688248089 m001 (ln(2)/ln(10)-CareFree)/Si(Pi) 2178325695509306 a008 Real Root of x^4-x^3+21*x^2-78*x-18 2178325706016514 a007 Real Root Of 422*x^4+841*x^3-364*x^2-860*x-955 2178325715863929 s002 sum(A110259[n]/((exp(n)+1)/n),n=1..infinity) 2178325716452486 a007 Real Root Of 553*x^4+697*x^3-638*x^2+659*x-784 2178325717865047 a007 Real Root Of 976*x^4+59*x^3+951*x^2-846*x-231 2178325718022415 r005 Im(z^2+c),c=-75/122+1/25*I,n=43 2178325718374084 m001 (Tribonacci+ZetaP(4))/(ln(3)-KhinchinLevy) 2178325720268120 m001 GAMMA(5/6)/exp(TreeGrowth2nd)^2/arctan(1/2)^2 2178325738002577 r005 Re(z^2+c),c=-9/52+17/39*I,n=30 2178325742470791 a001 843/8*3^(39/59) 2178325743365415 k001 Champernowne real with 1079*n+1099 2178325744264712 m001 (sin(1)+LandauRamanujan)/(MertensB1+PlouffeB) 2178325744587063 r002 6th iterates of z^2 + 2178325744772218 a007 Real Root Of 42*x^4-824*x^3+482*x^2-186*x-72 2178325753664994 r005 Re(z^2+c),c=-9/38+31/60*I,n=9 2178325755123296 m001 (Riemann1stZero+ZetaQ(4))/(Paris-RenyiParking) 2178325756236261 m005 (1/2*5^(1/2)+5/8)/(1/12*Zeta(3)+7/10) 2178325759318330 a001 615*4^(52/57) 2178325759611571 k003 Champernowne real with 19/2*n^3-63/2*n^2+43*n-19 2178325760118041 a001 2584/11*15127^(56/59) 2178325761869595 r005 Re(z^2+c),c=5/22+33/62*I,n=13 2178325762082027 a007 Real Root Of -428*x^4-741*x^3-96*x^2-668*x+978 2178325762138922 k002 Champernowne real with 95*n^2-228*n+154 2178325763112972 s003 concatenated sequence A053786 2178325768921000 r009 Re(z^3+c),c=-5/14+13/25*I,n=61 2178325778926095 a001 102334155/521*322^(5/12) 2178325784503159 m001 (Niven-ZetaP(4))/RenyiParking 2178325799447160 m001 RenyiParking+Tribonacci^sin(1/5*Pi) 2178325801331611 m001 (MertensB3+Thue)/(Backhouse-FeigenbaumKappa) 2178325803247000 a001 196418/11*9349^(31/59) 2178325805566904 m001 GaussKuzminWirsing^MertensB2*RenyiParking 2178325815467700 a001 2178309/11*24476^(14/59) 2178325822122182 r005 Re(z^2+c),c=-7/34+11/38*I,n=4 2178325830367010 a007 Real Root Of 143*x^4+179*x^3+190*x^2+713*x-718 2178325834508940 m005 (1/2*2^(1/2)+10/11)/(-37/140+9/20*5^(1/2)) 2178325841706508 a007 Real Root Of -405*x^4-374*x^3+856*x^2-103*x+967 2178325843385418 k001 Champernowne real with 1080*n+1098 2178325846076480 m001 1/GAMMA(23/24)^2*GAMMA(1/6)^2/ln(sin(Pi/12)) 2178325856113436 a001 121393/11*5778^(36/59) 2178325883160659 a005 (1/sin(71/145*Pi))^1474 2178325885152065 a007 Real Root Of 156*x^4+12*x^3-559*x^2+67*x-590 2178325889084441 b008 53*ArcCoth[5]^2 2178325892369879 m002 -(E^Pi*ProductLog[Pi])+Pi^3*Log[Pi]*Sech[Pi] 2178325898459468 s002 sum(A110259[n]/((exp(n)-1)/n),n=1..infinity) 2178325903839982 p003 LerchPhi(1/12,1,10/217) 2178325909201355 m005 (13/20+1/4*5^(1/2))/(5/12*3^(1/2)-1/6) 2178325919789400 m005 (1/3*Zeta(3)-1/7)/(7/9*5^(1/2)-5/9) 2178325927950207 a001 39088169/1364*322^(3/4) 2178325930983695 r005 Re(z^2+c),c=-5/31+25/54*I,n=43 2178325941990925 r005 Re(z^2+c),c=-13/30+33/58*I,n=23 2178325942727845 m001 GAMMA(13/24)^2/exp(FeigenbaumKappa)*Pi 2178325943405421 k001 Champernowne real with 1081*n+1097 2178325946420941 r009 Re(z^3+c),c=-47/110+10/21*I,n=6 2178325946764483 r002 3th iterates of z^2 + 2178325954828835 r005 Re(z^2+c),c=-121/102+6/41*I,n=4 2178325955289145 r005 Im(z^2+c),c=-9/25+19/51*I,n=10 2178325960047129 a007 Real Root Of 916*x^4+130*x^3-253*x^2-846*x-173 2178325964859073 m001 Backhouse-exp(Pi)-Paris 2178325966617171 r005 Im(z^2+c),c=-57/106+20/51*I,n=60 2178325971831709 r005 Re(z^2+c),c=-13/94+22/43*I,n=57 2178325973829293 m001 sqrt(3)^exp(sqrt(2))/GAMMA(5/24) 2178325978745646 a007 Real Root Of 430*x^4+598*x^3-636*x^2+644*x+920 2178325981500422 s001 sum(exp(-2*Pi/3)^n*A183052[n],n=1..infinity) 2178325983001623 a003 cos(Pi*11/113)/cos(Pi*37/104) 2178325984343803 a007 Real Root Of -241*x^4-76*x^3+768*x^2-362*x+208 2178325984833704 m001 GAMMA(17/24)+GaussAGM^GolombDickman 2178325989766625 r005 Im(z^2+c),c=-13/25+19/50*I,n=12 2178325990579294 l006 ln(457/4036) 2178325994475958 r005 Im(z^2+c),c=-9/10+10/53*I,n=32 2178325995857634 r005 Im(z^2+c),c=-6/17+13/37*I,n=40 2178325997636057 p001 sum(1/(312*n+287)/n/(8^n),n=1..infinity) 2178326028798125 a001 161/305*89^(6/19) 2178326038447320 a007 Real Root Of -176*x^4-516*x^3-639*x^2-546*x+472 2178326043425424 k001 Champernowne real with 1082*n+1096 2178326044681661 r005 Im(z^2+c),c=-31/66+22/59*I,n=25 2178326055616684 m001 (Pi+Zeta(1,2))/(KhinchinLevy-ZetaP(3)) 2178326057616940 r005 Im(z^2+c),c=-43/118+28/53*I,n=13 2178326058073449 g007 Psi(2,1/9)+Psi(2,7/8)-Psi(2,1/12)-Psi(2,2/9) 2178326060701833 a001 39088169/2207*322^(5/6) 2178326060811872 k003 Champernowne real with 10*n^3-69/2*n^2+97/2*n-22 2178326062935360 l006 ln(5777/7183) 2178326067348635 m001 FeigenbaumB^2/ArtinRank2*ln(GAMMA(5/24))^2 2178326069642597 a007 Real Root Of -327*x^4-556*x^3+335*x^2+106*x+257 2178326075439156 b008 7/13+Csch[EulerGamma] 2178326077131974 m005 (13/4+1/4*5^(1/2))/(97/90+3/10*5^(1/2)) 2178326089581860 a001 1/48*610^(29/40) 2178326090892319 m001 (Zeta(1,2)-Conway)/(KhinchinLevy-Salem) 2178326101143857 a001 1/76*(1/2*5^(1/2)+1/2)^8*521^(15/16) 2178326111104279 r005 Re(z^2+c),c=8/23+7/62*I,n=16 2178326113538472 m001 (Khinchin-Paris)/(RenyiParking+TreeGrowth2nd) 2178326129900863 m001 exp(Pi)-ln(3)-sin(1/12*Pi) 2178326129900863 m001 exp(Pi)-ln(3)-sin(Pi/12) 2178326131460755 a001 3571/75025*832040^(37/47) 2178326135475988 a008 Real Root of x^4-2*x^3-20*x^2-4*x+43 2178326141675757 a007 Real Root Of -432*x^4-668*x^3+406*x^2-632*x-481 2178326143279406 r005 Re(z^2+c),c=-51/62+2/29*I,n=10 2178326143445427 k001 Champernowne real with 1083*n+1095 2178326163468754 b008 5+(4*Erfi[3])/3 2178326166401948 r005 Re(z^2+c),c=25/122+25/61*I,n=64 2178326203366186 m001 BesselI(1,1)^(ln(2)/ln(10))-GolombDickman 2178326203585639 m006 (2/5*exp(Pi)-5)/(2*Pi^2-1/5) 2178326207778266 r005 Re(z^2+c),c=-22/27+7/47*I,n=4 2178326216235070 l006 ln(1098/9697) 2178326223757540 m001 (ln(2)-GAMMA(17/24))/(MertensB2-Mills) 2178326226788296 a007 Real Root Of -320*x^4-204*x^3+654*x^2-618*x+647 2178326229818642 r005 Re(z^2+c),c=11/34+23/61*I,n=55 2178326235015119 b008 7*Pi+Zeta[-1/2] 2178326237678169 l006 ln(7967/9906) 2178326239908743 m001 (Bloch-Catalan)/(-Gompertz+Stephens) 2178326241633760 s001 sum(exp(-3*Pi/5)^n*A007612[n],n=1..infinity) 2178326243465430 k001 Champernowne real with 1084*n+1094 2178326245400063 a001 11/21*12586269025^(20/21) 2178326250027616 m001 ln(Bloch)/DuboisRaymond/sqrt(Pi) 2178326256129178 a001 1/38*2207^(14/51) 2178326257588111 a007 Real Root Of -145*x^4-408*x^3-347*x^2+89*x+888 2178326272330951 m001 (exp(1/Pi)+Landau)/(BesselI(0,1)-GAMMA(2/3)) 2178326272554210 a007 Real Root Of -578*x^4-946*x^3+132*x^2-845*x+769 2178326276715661 r009 Im(z^3+c),c=-13/24+10/47*I,n=61 2178326277426055 a001 9349/196418*832040^(37/47) 2178326285207253 r005 Im(z^2+c),c=-25/28+8/43*I,n=44 2178326285810727 a001 843/1597*13^(21/38) 2178326294710441 r005 Re(z^2+c),c=-63/64+11/54*I,n=60 2178326296146619 r009 Re(z^3+c),c=-23/58+29/51*I,n=49 2178326298722105 a001 24476/514229*832040^(37/47) 2178326303749421 a001 39603/832040*832040^(37/47) 2178326305378430 a003 cos(Pi*10/83)*cos(Pi*33/67) 2178326311883788 a001 15127/317811*832040^(37/47) 2178326315165125 b008 ArcSinh[3+E/2] 2178326320576795 r002 4th iterates of z^2 + 2178326326597866 m001 (Paris+Trott)/(2*Pi/GAMMA(5/6)-cos(1)) 2178326328658918 r005 Im(z^2+c),c=-15/29+27/61*I,n=48 2178326330111045 m005 (1/2*gamma+4/5)/(4/11*Catalan+1/6) 2178326335572044 r005 Im(z^2+c),c=-5/31+18/61*I,n=17 2178326342889770 m001 1/2-log(gamma)+GAMMA(5/6) 2178326343485433 k001 Champernowne real with 1085*n+1093 2178326345817175 m001 (exp(Pi)+GAMMA(2/3))/(GAMMA(23/24)+Paris) 2178326346455545 m001 (5^(1/2)-Psi(2,1/3))/(-FellerTornier+Otter) 2178326350120415 m001 Pi*ln(2)/ln(10)*3^(1/2)+cos(1) 2178326362012172 k003 Champernowne real with 21/2*n^3-75/2*n^2+54*n-25 2178326364550013 a007 Real Root Of -392*x^4-785*x^3+482*x^2+751*x+61 2178326366154010 a001 969323029/1597*6557470319842^(14/17) 2178326366154010 a001 817138163596/1597*1836311903^(14/17) 2178326367637572 a001 5778/121393*832040^(37/47) 2178326377115989 l006 ln(641/5661) 2178326380024745 a001 76/17711*55^(15/37) 2178326380765568 r002 24th iterates of z^2 + 2178326391424529 a007 Real Root Of 524*x^4+800*x^3-626*x^2+459*x+441 2178326400173822 h001 (-3*exp(-1)-3)/(-9*exp(1/2)-4) 2178326401013164 r005 Re(z^2+c),c=-4/21+18/47*I,n=8 2178326407229254 a001 55/2207*5778^(16/31) 2178326409197520 m005 (1/2*5^(1/2)-6/11)/(4/7*Pi+5/6) 2178326427156653 m001 (-sin(Pi/5)+1)/(-OneNinth+2) 2178326442670825 a001 34111385/1926*322^(5/6) 2178326443505436 k001 Champernowne real with 1086*n+1092 2178326448082247 a007 Real Root Of 251*x^4+65*x^3-840*x^2+66*x-850 2178326449382678 r005 Im(z^2+c),c=-8/21+19/53*I,n=20 2178326449958821 m001 (Salem+Totient)/(Backhouse-ln(2)/ln(10)) 2178326452954047 m001 1/GAMMA(5/24)/ln(GAMMA(1/3))^2/Zeta(5)^2 2178326457987569 a007 Real Root Of 124*x^4-296*x^3-970*x^2+498*x-164 2178326463309653 r005 Re(z^2+c),c=11/86+11/20*I,n=26 2178326467482918 r005 Im(z^2+c),c=-91/110+5/33*I,n=59 2178326470799070 m005 (13/4+1/4*5^(1/2))/(2*Catalan-1/12) 2178326474622770 q001 1588/729 2178326477830235 r005 Re(z^2+c),c=31/102+3/8*I,n=10 2178326486243293 r005 Im(z^2+c),c=33/118+23/50*I,n=17 2178326486244157 r008 a(0)=0,K{-n^6,13-88*n^3-27*n^2+56*n} 2178326498399361 a001 267914296/15127*322^(5/6) 2178326500802008 m001 Niven*exp(MertensB1)/Zeta(7)^2 2178326501500549 m005 (1/2*Zeta(3)-5/8)/(2/9*Zeta(3)+5/6) 2178326501857685 r005 Im(z^2+c),c=-2/3+49/186*I,n=26 2178326502194832 m001 exp(LaplaceLimit)^2/Si(Pi)^2/Rabbit^2 2178326503691826 a007 Real Root Of -51*x^4+402*x^3+202*x^2+750*x-177 2178326505586550 a007 Real Root Of -237*x^4-85*x^3+725*x^2-272*x+425 2178326506530045 a001 17711*322^(5/6) 2178326507716296 a001 1836311903/103682*322^(5/6) 2178326507889367 a001 1602508992/90481*322^(5/6) 2178326507914618 a001 12586269025/710647*322^(5/6) 2178326507918302 a001 10983760033/620166*322^(5/6) 2178326507918840 a001 86267571272/4870847*322^(5/6) 2178326507918918 a001 75283811239/4250681*322^(5/6) 2178326507918929 a001 591286729879/33385282*322^(5/6) 2178326507918931 a001 516002918640/29134601*322^(5/6) 2178326507918931 a001 4052739537881/228826127*322^(5/6) 2178326507918931 a001 3536736619241/199691526*322^(5/6) 2178326507918931 a001 6557470319842/370248451*322^(5/6) 2178326507918932 a001 2504730781961/141422324*322^(5/6) 2178326507918932 a001 956722026041/54018521*322^(5/6) 2178326507918937 a001 365435296162/20633239*322^(5/6) 2178326507918966 a001 139583862445/7881196*322^(5/6) 2178326507919172 a001 53316291173/3010349*322^(5/6) 2178326507920579 a001 20365011074/1149851*322^(5/6) 2178326507930224 a001 7778742049/439204*322^(5/6) 2178326507996331 a001 2971215073/167761*322^(5/6) 2178326508449439 a001 1134903170/64079*322^(5/6) 2178326511555084 a001 433494437/24476*322^(5/6) 2178326512053205 a001 2537720636/4181*6557470319842^(14/17) 2178326512053205 a001 2139295485799/4181*1836311903^(14/17) 2178326521005563 m001 exp(Riemann2ndZero)/Magata*GAMMA(1/24)^2 2178326521238998 m003 17/8+(Sqrt[5]*Sech[1/2+Sqrt[5]/2])/16 2178326531689600 m001 (Bloch+FeigenbaumB)/(Pi^(1/2)-GAMMA(19/24)) 2178326531977444 a007 Real Root Of -304*x^4-344*x^3+848*x^2+374*x+80 2178326532841492 a001 165580141/9349*322^(5/6) 2178326533339612 a001 5600748293801/10946*1836311903^(14/17) 2178326533339612 a001 6643838879/10946*6557470319842^(14/17) 2178326536445257 a001 14662949395604/28657*1836311903^(14/17) 2178326536445257 a001 17393796001/28657*6557470319842^(14/17) 2178326536898365 a001 45537549124/75025*6557470319842^(14/17) 2178326536964472 a001 119218851371/196418*6557470319842^(14/17) 2178326536974117 a001 312119004989/514229*6557470319842^(14/17) 2178326536975525 a001 817138163596/1346269*6557470319842^(14/17) 2178326536975730 a001 2139295485799/3524578*6557470319842^(14/17) 2178326536975760 a001 5600748293801/9227465*6557470319842^(14/17) 2178326536975764 a001 14662949395604/24157817*6557470319842^(14/17) 2178326536975765 a001 23725150497407/39088169*6557470319842^(14/17) 2178326536975767 a001 3020733700601/4976784*6557470319842^(14/17) 2178326536975778 a001 3461452808002/5702887*6557470319842^(14/17) 2178326536975857 a001 440719107401/726103*6557470319842^(14/17) 2178326536976394 a001 505019158607/832040*6557470319842^(14/17) 2178326536980078 a001 64300051206/105937*6557470319842^(14/17) 2178326537005329 a001 73681302247/121393*6557470319842^(14/17) 2178326537178401 a001 23725150497407/46368*1836311903^(14/17) 2178326537178401 a001 9381251041/15456*6557470319842^(14/17) 2178326538364652 a001 9062201101803/17711*1836311903^(14/17) 2178326538364652 a001 10749957122/17711*6557470319842^(14/17) 2178326543525439 k001 Champernowne real with 1087*n+1091 2178326546495336 a001 3461452808002/6765*1836311903^(14/17) 2178326546495336 a001 1368706081/2255*6557470319842^(14/17) 2178326548920124 a003 sin(Pi*8/117)/sin(Pi*23/53) 2178326549239524 m001 GolombDickman-Shi(1)-KhinchinHarmonic 2178326557949687 r005 Im(z^2+c),c=-5/12+27/62*I,n=10 2178326569129161 m001 BesselK(1,1)^(Pi^(1/2))-Sierpinski 2178326569892096 a007 Real Root Of -35*x^4-718*x^3+995*x^2+639*x+865 2178326578605379 r005 Re(z^2+c),c=-2/9+17/57*I,n=14 2178326582331777 a007 Real Root Of -427*x^4-407*x^3+953*x^2-30*x+820 2178326584625989 r005 Im(z^2+c),c=-5/8+72/179*I,n=63 2178326589136556 m001 (exp(Pi)-ln(2)/ln(10))/(-Shi(1)+ZetaQ(3)) 2178326591233828 l006 ln(825/7286) 2178326602223876 a001 1322157322203/2584*1836311903^(14/17) 2178326602223876 a001 1568397607/2584*6557470319842^(14/17) 2178326611677809 a007 Real Root Of 172*x^4+22*x^3-689*x^2+84*x-193 2178326612023633 m005 (1/2*Pi-1/12)/(5*Zeta(3)+9/11) 2178326612694948 m002 -Pi^2+Pi^3+Log[Pi]-Tanh[Pi]/2 2178326630199472 m001 (5^(1/2)+ln(3))/(GAMMA(19/24)+Riemann1stZero) 2178326633227283 a001 55/2207*2207^(18/31) 2178326638019685 a007 Real Root Of 506*x^4+744*x^3-761*x^2+470*x+932 2178326643227554 r002 4th iterates of z^2 + 2178326643545442 k001 Champernowne real with 1088*n+1090 2178326644113234 m001 (exp(-1/2*Pi)-ln(5))/Cahen 2178326649134603 h001 (-3*exp(1/2)+3)/(-4*exp(3)-9) 2178326663212472 k003 Champernowne real with 11*n^3-81/2*n^2+119/2*n-28 2178326665017954 r002 44th iterates of z^2 + 2178326672983143 a007 Real Root Of 153*x^4+317*x^3+336*x^2+458*x-765 2178326678740711 a001 63245986/3571*322^(5/6) 2178326683231044 r008 a(0)=0,K{-n^6,89-63*n^3-64*n^2-8*n} 2178326687221398 m001 1/TwinPrimes^2/ln(GolombDickman)/sqrt(5) 2178326690329915 a007 Real Root Of 341*x^4+711*x^3-83*x^2-90*x-131 2178326695606430 a007 Real Root Of 995*x^4-350*x^3+141*x^2-530*x-128 2178326698632130 l006 ln(2190/2723) 2178326699234436 a005 (1/cos(5/132*Pi))^1083 2178326702575200 m001 Magata*Kolakoski*ln(sqrt(5)) 2178326709356909 m005 (1/2*Catalan-1/7)/(5*exp(1)+7/8) 2178326721758526 s002 sum(A005346[n]/(n^2*2^n-1),n=1..infinity) 2178326724210453 m001 1/GAMMA(13/24)*ln(Catalan)^2*arctan(1/2) 2178326727259110 l006 ln(1009/8911) 2178326730789261 a007 Real Root Of 666*x^4+930*x^3-672*x^2+797*x-458 2178326736508180 p001 sum(1/(311*n+46)/(64^n),n=0..infinity) 2178326738430945 m001 (Lehmer+Stephens)/(arctan(1/2)-gamma(1)) 2178326739725566 m005 (1/3+1/6*5^(1/2))/(6*gamma-2/9) 2178326740082951 m001 BesselJ(1,1)^(2^(1/3))+MasserGramainDelta 2178326743565445 k001 Champernowne real with 1089*n+1089 2178326746038628 a007 Real Root Of 525*x^4+551*x^3-782*x^2+863*x-535 2178326749779689 a001 2207/46368*832040^(37/47) 2178326750728360 a007 Real Root Of -411*x^4-889*x^3+27*x^2+264*x+512 2178326754384486 a007 Real Root Of -166*x^4-486*x^3-108*x^2+602*x+538 2178326762899924 m001 (BesselK(0,1)-FeigenbaumB*Sarnak)/FeigenbaumB 2178326764692965 m001 BesselI(0,2)/Zeta(1/2)*HardHexagonsEntropy 2178326765139522 k002 Champernowne real with 191/2*n^2-459/2*n+155 2178326769629050 m001 (PlouffeB+Porter)/(ln(Pi)-GAMMA(11/12)) 2178326769919233 m001 1/GAMMA(17/24)/Paris^2*exp(Zeta(9)) 2178326774936477 r005 Im(z^2+c),c=-13/25+18/47*I,n=41 2178326778189116 a007 Real Root Of -349*x^4-334*x^3+771*x^2-80*x+573 2178326795468078 m001 (ln(5)+GlaisherKinkelin)/(Riemann1stZero-Thue) 2178326798373876 a001 4356629/2+11/2*5^(1/2) 2178326805333379 m001 ErdosBorwein^GAMMA(13/24)+gamma(3) 2178326817615120 r009 Re(z^3+c),c=-41/126+15/34*I,n=21 2178326817680403 a001 5/15251*24476^(27/31) 2178326820295469 a001 55/271443*64079^(26/31) 2178326822109746 a001 55/710647*39603^(30/31) 2178326823151237 m001 (-FeigenbaumMu+ZetaQ(2))/(gamma+Zeta(5)) 2178326843585448 k001 Champernowne real with 1090*n+1088 2178326843686870 a001 5/199*47^(23/41) 2178326845994503 p001 sum((-1)^n/(551*n+457)/(100^n),n=0..infinity) 2178326850825905 a007 Real Root Of 402*x^4+366*x^3-751*x^2+565*x-474 2178326852275602 a007 Real Root Of -375*x^4-944*x^3-992*x^2+922*x+239 2178326853552346 p001 sum((-1)^n/(50*n+23)/n/(6^n),n=0..infinity) 2178326856092179 r005 Im(z^2+c),c=-25/56+2/55*I,n=27 2178326862464652 a007 Real Root Of -598*x^4-883*x^3+970*x^2+517*x+861 2178326865551070 r005 Im(z^2+c),c=-7/16+12/29*I,n=14 2178326869628173 b008 Pi*(1/3+ArcCsch[E]) 2178326875074882 r005 Re(z^2+c),c=-19/94+33/47*I,n=10 2178326888543819 a001 2178309+8*5^(1/2) 2178326897019352 r009 Re(z^3+c),c=-1/25+23/34*I,n=44 2178326897655595 m001 ArtinRank2/DuboisRaymond^2/ln(RenyiParking)^2 2178326902736835 a001 1/1292*75025^(11/37) 2178326906437718 m005 (1/3*Zeta(3)-1/2)/(1/5*Catalan+3/11) 2178326907358770 a001 2178309/11*843^(21/59) 2178326910160321 m005 (1/2*5^(1/2)-4/9)/(3/7*Catalan-1/12) 2178326928787845 m005 (1/2*exp(1)+6/11)/(8/11*gamma+5/11) 2178326929838287 m001 (Artin+ZetaQ(2))/(2^(1/2)-ln(gamma)) 2178326931202489 m001 sinh(1)^2/TreeGrowth2nd^2/ln(sqrt(Pi))^2 2178326931594108 m001 (-Zeta(5)+MertensB1)/(exp(1)+sin(1)) 2178326934188807 a001 18/24157817*987^(14/17) 2178326937511240 m001 (ln(2+3^(1/2))+Backhouse)/(Gompertz-Sarnak) 2178326937862824 a007 Real Root Of -851*x^4+174*x^3-207*x^2+849*x-175 2178326938445449 r005 Im(z^2+c),c=23/114+3/22*I,n=8 2178326940786720 h001 (6/7*exp(2)+11/12)/(10/11*exp(1)+6/7) 2178326942649754 r005 Im(z^2+c),c=-17/42+23/63*I,n=64 2178326943605451 k001 Champernowne real with 1091*n+1087 2178326945725977 r009 Re(z^3+c),c=-47/118+39/62*I,n=13 2178326952263746 m005 (1/2*2^(1/2)-3/10)/(4/7*Zeta(3)-1/2) 2178326954818352 r005 Re(z^2+c),c=1/17+27/41*I,n=18 2178326964412772 k003 Champernowne real with 23/2*n^3-87/2*n^2+65*n-31 2178326975781893 s002 sum(A256639[n]/(exp(n)-1),n=1..infinity) 2178326977028080 h001 (3/4*exp(2)+1/10)/(2/3*exp(1)+7/9) 2178326984193053 a001 10745088481/21*1836311903^(14/17) 2178326984193053 a001 199691526/329*6557470319842^(14/17) 2178326993716763 m001 (Pi^(1/2)-Mills)/(Zeta(3)-Zeta(1,2)) 2178326996943153 q001 1/4590679 2178327004984301 a001 2/121393*514229^(13/35) 2178327027977065 a007 Real Root Of 620*x^4+769*x^3+306*x^2-271*x-67 2178327034321656 h001 (1/5*exp(2)+1/7)/(11/12*exp(2)+2/3) 2178327037453332 r005 Re(z^2+c),c=-71/98+13/44*I,n=13 2178327041883218 r005 Im(z^2+c),c=-73/70+11/46*I,n=51 2178327043625454 k001 Champernowne real with 1092*n+1086 2178327045320846 r005 Im(z^2+c),c=-55/62+7/37*I,n=52 2178327045917414 p004 log(18661/2113) 2178327055816946 a007 Real Root Of -488*x^4-862*x^3+368*x^2-514*x-788 2178327070201056 m001 Landau^Grothendieck*MasserGramain 2178327073516005 r005 Re(z^2+c),c=-6/25+13/57*I,n=12 2178327077661685 r005 Im(z^2+c),c=-3/23+11/38*I,n=5 2178327086812262 m001 sin(1)*ThueMorse+FeigenbaumC 2178327095017106 a001 1/38*843^(16/51) 2178327103404899 a007 Real Root Of 563*x^4+748*x^3-636*x^2+774*x-241 2178327116862398 m001 (-GAMMA(13/24)+1/2)/(-GAMMA(1/6)+1/3) 2178327117233992 a007 Real Root Of -333*x^4-836*x^3-269*x^2+67*x+279 2178327119850965 a001 119218851371/610*6557470319842^(12/17) 2178327122068392 a001 1/843*(1/2*5^(1/2)+1/2)^20*3^(3/17) 2178327122947062 r005 Re(z^2+c),c=-7/74+26/51*I,n=11 2178327129207477 m005 (1/2*exp(1)-4/9)/(3/8*gamma-7/11) 2178327140775119 m001 (RenyiParking+ZetaQ(4))/(2^(1/3)-Catalan) 2178327143645457 k001 Champernowne real with 1093*n+1085 2178327144408170 l006 ln(4223/4316) 2178327145863377 p004 log(28411/3217) 2178327152899753 r009 Im(z^3+c),c=-17/126+20/23*I,n=34 2178327158796698 a001 1/9348*(1/2*5^(1/2)+1/2)^2*123^(19/21) 2178327159343643 p003 LerchPhi(1/64,2,243/113) 2178327159600417 m001 (-Kolakoski+ReciprocalLucas)/(1-arctan(1/2)) 2178327160828596 r005 Im(z^2+c),c=-47/66+8/31*I,n=15 2178327161404807 r005 Re(z^2+c),c=-11/94+29/52*I,n=30 2178327165804690 m005 (1/3*2^(1/2)+2/11)/(Pi-1/7) 2178327171734207 m001 Pi^(Pi*csc(5/24*Pi)/GAMMA(19/24))/(Pi^Niven) 2178327179524826 a007 Real Root Of -295*x^4-667*x^3+279*x^2+331*x-855 2178327184326256 b005 Number DB table 2178327197398942 l006 ln(7363/9155) 2178327198860998 h001 (3/5*exp(2)+2/3)/(4/5*exp(1)+1/6) 2178327206745809 a007 Real Root Of -451*x^4+282*x^3-186*x^2+523*x-107 2178327206954241 m001 (GAMMA(19/24)-BesselJZeros(0,1))/BesselI(1,1) 2178327218882318 b008 EulerGamma+Pi*Zeta[2/7] 2178327222041702 r005 Im(z^2+c),c=-9/23+1/32*I,n=7 2178327223519727 r005 Re(z^2+c),c=-11/122+38/63*I,n=58 2178327226746973 r005 Im(z^2+c),c=-17/42+23/63*I,n=59 2178327237012074 b005 Number DB table 2178327243665460 k001 Champernowne real with 1094*n+1084 2178327244395135 m001 GolombDickman/Champernowne/exp(Zeta(1/2)) 2178327261212955 a007 Real Root Of 392*x^4+659*x^3-19*x^2+782*x-221 2178327264562805 h001 (-exp(1)+11)/(-7*exp(4)+2) 2178327265613072 k003 Champernowne real with 12*n^3-93/2*n^2+141/2*n-34 2178327270228886 r005 Im(z^2+c),c=-5/12+7/19*I,n=36 2178327282349475 h005 exp(sin(Pi*1/22)+sin(Pi*9/41)) 2178327283218092 a001 18/55*987^(33/35) 2178327284463228 r002 27th iterates of z^2 + 2178327292689550 m001 (Zeta(1,2)+Conway)/(PolyaRandomWalk3D+Totient) 2178327298701081 a007 Real Root Of 253*x^4+879*x^3+553*x^2-522*x-372 2178327302485486 a001 9/10182505537*3524578^(14/17) 2178327321882778 m001 (Grothendieck+MadelungNaCl)/(Catalan+CareFree) 2178327330070500 a007 Real Root Of -572*x^4-815*x^3+929*x^2+416*x+953 2178327330386554 s002 sum(A222592[n]/((3*n+1)!),n=1..infinity) 2178327331180034 a007 Real Root Of 478*x^4+830*x^3-160*x^2+736*x+179 2178327334825269 a001 9349/2*1597^(25/48) 2178327337154852 l006 ln(184/1625) 2178327338174387 a007 Real Root Of 405*x^4+995*x^3+741*x^2+793*x-623 2178327343685463 k001 Champernowne real with 1095*n+1083 2178327346010743 m005 (1/2*5^(1/2)+9/11)/(4/5*5^(1/2)-9/10) 2178327355466716 m001 (arctan(1/3)+Artin)/(Bloch-TreeGrowth2nd) 2178327362182561 m001 (exp(Pi)+5^(1/2))/(-GAMMA(13/24)+Weierstrass) 2178327362856622 m001 OneNinth/exp(TreeGrowth2nd)*Pi 2178327364444109 a001 76/3*987^(49/50) 2178327375517360 m001 FransenRobinson/((3^(1/3))^ln(2)) 2178327383049787 a008 Real Root of x^4-x^3-28*x^2+72*x+17 2178327389614221 s002 sum(A207449[n]/(n*exp(n)+1),n=1..infinity) 2178327389614721 s002 sum(A081437[n]/(n*exp(n)+1),n=1..infinity) 2178327395305023 r005 Im(z^2+c),c=-107/102+13/56*I,n=12 2178327400962560 m001 (LambertW(1)-ln(2))/(-ln(2+3^(1/2))+exp(1/Pi)) 2178327408552872 l006 ln(5173/6432) 2178327408953031 r005 Im(z^2+c),c=-159/118+1/61*I,n=24 2178327413023130 a001 15127/13*28657^(26/51) 2178327416334474 m001 ln(GAMMA(1/6))^2*BesselJ(0,1)*cos(Pi/12) 2178327423582039 m001 GAMMA(19/24)/(Lehmer-ZetaQ(2)) 2178327425908831 m001 log(1+sqrt(2))^2*exp(MadelungNaCl)^2/sinh(1) 2178327428632001 r005 Re(z^2+c),c=-5/29+7/16*I,n=27 2178327436545155 m001 (Trott+Weierstrass)/(gamma+(1+3^(1/2))^(1/2)) 2178327441164649 m001 (FeigenbaumAlpha+GaussAGM)/(Pi-ln(5)) 2178327443705466 k001 Champernowne real with 1096*n+1082 2178327448286885 a001 1/17*89^(7/24) 2178327449520106 r005 Im(z^2+c),c=-7/36+11/36*I,n=22 2178327456578057 m001 (GAMMA(3/4)+Champernowne*Gompertz)/Gompertz 2178327457339037 s002 sum(A062617[n]/(n^2*10^n+1),n=1..infinity) 2178327457491054 m005 (7/18+1/6*5^(1/2))/(5/9*gamma-2/7) 2178327461549485 r005 Re(z^2+c),c=-7/12+51/115*I,n=33 2178327463277598 m001 (Si(Pi)+Zeta(1/2))/(-arctan(1/2)+Cahen) 2178327474761901 r005 Im(z^2+c),c=-121/122+11/49*I,n=44 2178327483522720 r002 10th iterates of z^2 + 2178327487663331 m001 (LaplaceLimit-Thue)/(exp(1/exp(1))-Landau) 2178327488676953 m001 (Catalan-KomornikLoreti)/(Lehmer+Magata) 2178327488946229 a001 3571/2*28657^(22/47) 2178327494341426 r009 Re(z^3+c),c=-33/56+11/58*I,n=4 2178327495335186 a003 sin(Pi*3/71)/cos(Pi*26/89) 2178327498254883 a007 Real Root Of -380*x^4-672*x^3+101*x^2-868*x-760 2178327499066303 m004 -3101*Sqrt[5]*Pi+Sin[Sqrt[5]*Pi] 2178327500621713 a007 Real Root Of -303*x^4+903*x^3-311*x^2+809*x+201 2178327517778438 p004 log(30089/3407) 2178327528709035 r005 Im(z^2+c),c=-99/98+16/61*I,n=64 2178327529725133 a001 63245986/521*322^(1/2) 2178327531243384 m001 (Psi(1,1/3)+ln(2)/ln(10))/(PlouffeB+ZetaQ(4)) 2178327532649049 m001 1/LaplaceLimit*FeigenbaumDelta*exp(GAMMA(5/6)) 2178327538201279 s002 sum(A106120[n]/((exp(n)+1)*n),n=1..infinity) 2178327539435894 m001 1/ln(GAMMA(5/24))^2*MinimumGamma^2*sqrt(5) 2178327543725469 k001 Champernowne real with 1097*n+1081 2178327543972790 s001 sum(exp(-2*Pi/3)^n*A283779[n],n=1..infinity) 2178327557040477 r009 Re(z^3+c),c=-11/86+55/57*I,n=28 2178327562175174 m005 (Catalan-4/5)/(51/10+1/10*5^(1/2)) 2178327564771632 a007 Real Root Of 679*x^4-503*x^3+643*x^2-821*x+152 2178327565907086 a008 Real Root of x^4-2*x^3-31*x^2-78*x-66 2178327569862027 p001 sum((-1)^n/(499*n+366)/n/(5^n),n=1..infinity) 2178327575492895 a007 Real Root Of 283*x^4+130*x^3-922*x^2-15*x-686 2178327582251545 m001 (TreeGrowth2nd+Thue)/(GAMMA(3/4)-GAMMA(17/24)) 2178327587003793 m001 Pi/(exp(Pi)+3^(1/3)/Zeta(1,-1)) 2178327588567714 r009 Re(z^3+c),c=-7/118+31/44*I,n=22 2178327591549738 r002 38th iterates of z^2 + 2178327608714138 m001 Zeta(3)+Backhouse*Riemann1stZero 2178327611177543 m001 (Pi-exp(Pi))/Zeta(1/2)*BesselI(1,2) 2178327625634163 a008 Real Root of x^3-x^2-65*x+136 2178327630413672 a007 Real Root Of 42*x^4+906*x^3-232*x^2-866*x-747 2178327636615929 m001 1/exp(Robbin)^2*Khintchine^2/log(1+sqrt(2)) 2178327642541015 m001 (Si(Pi)+CareFree)/(-Grothendieck+Otter) 2178327643745472 k001 Champernowne real with 1098*n+1080 2178327643830384 m001 MinimumGamma*LaplaceLimit^2/ln(GAMMA(1/6))^2 2178327660837297 m001 (-GaussAGM+Robbin)/(3^(1/3)-5^(1/2)) 2178327669881127 r005 Im(z^2+c),c=-31/86+18/29*I,n=61 2178327678749365 a001 24157817/1364*322^(5/6) 2178327682221511 a007 Real Root Of 321*x^4+348*x^3-967*x^2+6*x+971 2178327683266166 m001 (HeathBrownMoroz+Mills)/(Salem-Stephens) 2178327685803503 r009 Im(z^3+c),c=-18/29+3/10*I,n=28 2178327688432177 r009 Re(z^3+c),c=-25/78+3/7*I,n=25 2178327705410082 a007 Real Root Of 127*x^4-546*x^3+83*x^2+854*x+530 2178327712531253 a001 4/21*196418^(26/45) 2178327714549770 r005 Im(z^2+c),c=-39/64+7/20*I,n=58 2178327715689563 r005 Im(z^2+c),c=-153/122+1/10*I,n=15 2178327725059192 m001 Pi*FibonacciFactorial*exp(sqrt(3)) 2178327726241911 a001 1/55*144^(2/55) 2178327732351252 r005 Im(z^2+c),c=-6/17+13/37*I,n=44 2178327735695515 a007 Real Root Of 826*x^4-356*x^3-166*x^2-961*x-207 2178327740151369 r005 Im(z^2+c),c=-17/42+23/63*I,n=60 2178327743765475 k001 Champernowne real with 1099*n+1079 2178327746509843 b008 Pi*(-3+ExpIntegralEi[3]) 2178327749413757 m005 (1/2*2^(1/2)+9/11)/(3/8*gamma-11/12) 2178327768140122 k002 Champernowne real with 96*n^2-231*n+156 2178327779568544 m005 (1/2*Zeta(3)-3/4)/(7/11*Zeta(3)-5/6) 2178327782928886 r005 Im(z^2+c),c=-25/29+5/28*I,n=39 2178327787065193 r009 Re(z^3+c),c=-19/90+58/61*I,n=3 2178327791376684 p003 LerchPhi(1/2,4,101/122) 2178327791427744 m001 CareFree/BesselI(1,1)*ZetaP(3) 2178327796194450 a007 Real Root Of 536*x^4+930*x^3-252*x^2+757*x+389 2178327800030092 a007 Real Root Of -463*x^4+127*x^3+376*x^2+633*x-156 2178327801589459 m005 (5*Catalan+2/5)/(5*gamma-3/5) 2178327811501098 a001 24157817/2207*322^(11/12) 2178327820757743 m005 (4/5*Pi+3/5)/(1/2*Pi-3) 2178327820757743 m006 (3/5/Pi+4/5)/(3/Pi-1/2) 2178327820757743 m008 (4/5*Pi+3/5)/(1/2*Pi-3) 2178327830263661 m001 Trott^(Cahen/Weierstrass) 2178327835825419 a001 76/13*13^(20/39) 2178327836233741 a007 Real Root Of -338*x^4-525*x^3+968*x^2+810*x-645 2178327838366303 m005 (1/2*exp(1)+6)/(7/9*gamma-1/9) 2178327843785478 k001 Champernowne real with 1100*n+1078 2178327848545952 a001 1568397607/377*1836311903^(16/17) 2178327848547502 a001 3461452808002/377*514229^(16/17) 2178327848550265 a001 710647/377*6557470319842^(16/17) 2178327850888428 m005 (1/2*3^(1/2)+2/9)/(6*Catalan-1/2) 2178327856218412 a007 Real Root Of 452*x^4-154*x^3-94*x^2-844*x-182 2178327876522406 a007 Real Root Of 163*x^4+656*x^3+423*x^2-933*x-929 2178327889287477 r005 Im(z^2+c),c=-6/17+13/37*I,n=47 2178327890385301 a007 Real Root Of 474*x^4+972*x^3-10*x^2-27*x-637 2178327893129782 a007 Real Root Of 518*x^4+433*x^3-948*x^2+955*x-609 2178327898211577 a007 Real Root Of -278*x^4-102*x^3+831*x^2-998*x-912 2178327899206148 m001 ZetaP(4)/(Chi(1)+FeigenbaumD) 2178327906152709 m009 (5/6*Psi(1,2/3)+1/3)/(6*Psi(1,3/4)-2) 2178327908896356 p004 log(28517/3229) 2178327909860231 m001 1/Salem^2*exp(CopelandErdos)*cosh(1)^2 2178327913534583 m001 ThueMorse*(1-Bloch) 2178327914571399 m001 (-Zeta(1/2)+Bloch)/(GAMMA(3/4)-Psi(1,1/3)) 2178327917022395 a007 Real Root Of 539*x^4+847*x^3-515*x^2+143*x-626 2178327924210432 m005 (1/2*5^(1/2)+5)/(1/11*gamma-1/3) 2178327927040823 m001 1/(3^(1/3))*ln(FeigenbaumD)/Pi 2178327929748422 l006 ln(2983/3709) 2178327942809608 m005 (1/3*gamma+1/3)/(3/11*exp(1)-1/2) 2178327943444929 l006 ln(1015/8964) 2178327943805481 k001 Champernowne real with 1101*n+1077 2178327946244636 r009 Re(z^3+c),c=-31/122+41/61*I,n=15 2178327969838756 m005 (1/2*3^(1/2)-1/4)/(3/7*2^(1/2)-8/9) 2178327972185495 a007 Real Root Of -657*x^4-882*x^3+933*x^2-186*x+844 2178327976027681 m001 TravellingSalesman^Khinchin+Pi^(1/2) 2178327985070106 v004 sum(1/(-6+7*n^2+3*n)/sinh(Pi*n),n=1..infinity) 2178327989008692 r009 Re(z^3+c),c=-1/98+49/58*I,n=30 2178327990884468 r005 Im(z^2+c),c=-53/110+17/44*I,n=36 2178327994786094 m001 (FeigenbaumD+Landau)/(Mills+ZetaP(3)) 2178327995335786 m009 (1/6*Psi(1,2/3)+4/5)/(2/5*Psi(1,3/4)+5) 2178327998662974 m005 (1/2*5^(1/2)+6/7)/(37/63+1/7*5^(1/2)) 2178328011461761 m004 50/Pi+(25*Cos[Sqrt[5]*Pi]*Tanh[Sqrt[5]*Pi])/Pi 2178328033706506 r005 Im(z^2+c),c=-33/62+15/37*I,n=49 2178328035574996 m006 (2*ln(Pi)+1/4)/(4/5*ln(Pi)+1/4) 2178328039327946 m001 1/GaussKuzminWirsing^2*exp(Cahen)*GAMMA(11/12) 2178328041742582 a001 9349/2*10946^(19/46) 2178328043825484 k001 Champernowne real with 1102*n+1076 2178328051733521 m001 Niven*(Psi(1,1/3)+2/3*Pi*3^(1/2)/GAMMA(2/3)) 2178328051747644 m001 (Totient-Thue)/(Ei(1,1)-BesselJ(1,1)) 2178328064551404 a007 Real Root Of -435*x^4-498*x^3+376*x^2-941*x+813 2178328077689614 l006 ln(831/7339) 2178328078027667 v002 sum(1/(2^n*(7*n^2+28*n-6)),n=1..infinity) 2178328078636298 r009 Re(z^3+c),c=-1/34+16/21*I,n=2 2178328087001341 h001 (8/11*exp(2)+8/9)/(9/10*exp(1)+3/7) 2178328088897216 r008 a(0)=2,K{-n^6,-17+20*n^3-10*n^2+2*n} 2178328094543072 m001 GolombDickman/gamma(3)/HardHexagonsEntropy 2178328097020194 g005 GAMMA(2/9)/GAMMA(5/8)/GAMMA(5/6)/GAMMA(4/5) 2178328101012305 p002 log(1/14*(9+10^(3/4))^(1/2)*14^(1/2)) 2178328119397386 p004 log(35353/28433) 2178328119859205 a001 312119004989/1597*6557470319842^(12/17) 2178328128667879 a007 Real Root Of 355*x^4+445*x^3-599*x^2+545*x+636 2178328129625528 m001 1/Trott^2*exp(Champernowne)^2*sqrt(2)^2 2178328140929204 m001 1/TwinPrimes^2/exp(Salem)^2/Zeta(9) 2178328143845487 k001 Champernowne real with 1103*n+1075 2178328146133002 m001 FeigenbaumD^Zeta(1,2)*ln(gamma) 2178328148184326 r005 Im(z^2+c),c=-9/23+17/47*I,n=34 2178328149341167 r005 Re(z^2+c),c=-25/118+1/3*I,n=14 2178328153275223 m001 (Rabbit+Riemann3rdZero)/(3^(1/3)-MertensB1) 2178328157299974 b008 1-12*(16+Sqrt[5]) 2178328163513625 r009 Re(z^3+c),c=-23/110+17/18*I,n=15 2178328166885227 a007 Real Root Of -330*x^4-641*x^3-171*x^2-965*x-486 2178328171223131 a007 Real Root Of 429*x^4-233*x^3+460*x^2-908*x-20 2178328172637038 m001 (Zeta(1/2)*GAMMA(19/24)-Porter)/Zeta(1/2) 2178328176767488 m001 BesselI(0,1)*GAMMA(2/3)-GAMMA(11/24) 2178328183178363 a003 cos(Pi*28/65)/sin(Pi*47/103) 2178328193470396 a001 31622993/2889*322^(11/12) 2178328196396990 m001 cosh(1)*ln(GAMMA(1/4))^2/sinh(1) 2178328220620868 h001 (7/9*exp(2)+6/7)/(4/5*exp(1)+6/7) 2178328222034202 r005 Im(z^2+c),c=-59/122+16/31*I,n=59 2178328223596775 m001 (-ZetaQ(3)+ZetaQ(4))/(5^(1/2)+GAMMA(23/24)) 2178328228491027 m002 -2-2*E^Pi+Pi^5*Csch[Pi] 2178328239694591 r002 24th iterates of z^2 + 2178328241117703 r005 Im(z^2+c),c=-49/90+7/16*I,n=11 2178328243865490 k001 Champernowne real with 1104*n+1074 2178328244857928 a007 Real Root Of 541*x^4+667*x^3-822*x^2+215*x-918 2178328245662747 r005 Im(z^2+c),c=-41/44+7/33*I,n=27 2178328247838529 m001 (5^(1/2))^Backhouse-Riemann3rdZero 2178328249198977 a001 165580141/15127*322^(11/12) 2178328250490337 m001 GAMMA(2/3)-GAMMA(7/12)^(ln(2)/ln(10)) 2178328256203125 r005 Im(z^2+c),c=-11/14+2/235*I,n=62 2178328257329667 a001 433494437/39603*322^(11/12) 2178328258515919 a001 567451585/51841*322^(11/12) 2178328258688991 a001 2971215073/271443*322^(11/12) 2178328258714242 a001 7778742049/710647*322^(11/12) 2178328258717926 a001 10182505537/930249*322^(11/12) 2178328258718463 a001 53316291173/4870847*322^(11/12) 2178328258718542 a001 139583862445/12752043*322^(11/12) 2178328258718553 a001 182717648081/16692641*322^(11/12) 2178328258718555 a001 956722026041/87403803*322^(11/12) 2178328258718555 a001 2504730781961/228826127*322^(11/12) 2178328258718555 a001 3278735159921/299537289*322^(11/12) 2178328258718555 a001 10610209857723/969323029*322^(11/12) 2178328258718555 a001 4052739537881/370248451*322^(11/12) 2178328258718555 a001 387002188980/35355581*322^(11/12) 2178328258718556 a001 591286729879/54018521*322^(11/12) 2178328258718560 a001 7787980473/711491*322^(11/12) 2178328258718590 a001 21566892818/1970299*322^(11/12) 2178328258718795 a001 32951280099/3010349*322^(11/12) 2178328258720202 a001 12586269025/1149851*322^(11/12) 2178328258729847 a001 1201881744/109801*322^(11/12) 2178328258795955 a001 1836311903/167761*322^(11/12) 2178328259249063 a001 701408733/64079*322^(11/12) 2178328262354710 a001 10946*322^(11/12) 2178328265758518 a001 817138163596/4181*6557470319842^(12/17) 2178328269152250 m001 1/(3^(1/3))/ln((2^(1/3)))/GAMMA(19/24)^2 2178328277701705 m001 (sin(1)+BesselK(0,1))/(-ln(Pi)+BesselI(1,1)) 2178328283641135 a001 102334155/9349*322^(11/12) 2178328287044942 a001 2139295485799/10946*6557470319842^(12/17) 2178328288289817 l006 ln(647/5714) 2178328290150590 a001 5600748293801/28657*6557470319842^(12/17) 2178328290603697 a001 14662949395604/75025*6557470319842^(12/17) 2178328290710662 a001 23725150497407/121393*6557470319842^(12/17) 2178328290883733 a001 3020733700601/15456*6557470319842^(12/17) 2178328292069985 a001 3461452808002/17711*6557470319842^(12/17) 2178328298471070 m001 (BesselK(0,1)+Khinchin)^exp(1) 2178328300200676 a001 440719107401/2255*6557470319842^(12/17) 2178328302902194 g002 -3/2*ln(3)-1/2*Pi*3^(1/2)-Psi(10/11)-Psi(5/8) 2178328314336196 a001 21*3^(1/30) 2178328315897879 a007 Real Root Of 168*x^4+86*x^3-979*x^2-531*x+595 2178328317032080 b008 3*(-80+E^2) 2178328322503319 m001 1/Salem^2*ln(Si(Pi))^2/(2^(1/3)) 2178328322563981 m001 2/3/(BesselI(1,1)-GAMMA(1/4)) 2178328328645369 l006 ln(6759/8404) 2178328329200939 m001 exp(FeigenbaumC)^2*Artin^2/Riemann3rdZero 2178328331667108 r009 Re(z^3+c),c=-11/86+28/29*I,n=18 2178328335009411 r009 Im(z^3+c),c=-37/66+12/47*I,n=44 2178328337863280 r005 Re(z^2+c),c=-5/32+22/47*I,n=10 2178328341710740 r002 44th iterates of z^2 + 2178328343885493 k001 Champernowne real with 1105*n+1073 2178328343888210 m001 (Backhouse-MadelungNaCl)/(Totient-ZetaQ(4)) 2178328349815790 m001 1/BesselJ(1,1)/ln(Backhouse)^2/exp(1)^2 2178328353168510 r002 45th iterates of z^2 + 2178328355929262 a001 505019158607/2584*6557470319842^(12/17) 2178328357894085 m001 1/TreeGrowth2nd^2*Conway*exp(GAMMA(19/24)) 2178328364824396 r002 3th iterates of z^2 + 2178328371514248 r005 Re(z^2+c),c=-115/98+11/57*I,n=8 2178328380360836 m001 MertensB3+Stephens^GaussKuzminWirsing 2178328387738388 r005 Im(z^2+c),c=-25/62+23/63*I,n=27 2178328394298466 r005 Im(z^2+c),c=-163/118+1/12*I,n=13 2178328401580938 m001 1/GAMMA(2/3)^2/ln(Niven)^2/Zeta(1,2)^2 2178328403729136 a007 Real Root Of -261*x^4-248*x^3+183*x^2-779*x+748 2178328407359095 m001 1/LambertW(1)*PrimesInBinary*ln(sin(1))^2 2178328412487448 h001 (5/11*exp(2)+1/5)/(3/10*exp(1)+9/11) 2178328421287837 m001 (Gompertz+Totient)/(ln(2)/ln(10)+sin(1/5*Pi)) 2178328429540472 a001 39088169/3571*322^(11/12) 2178328443905496 k001 Champernowne real with 1106*n+1072 2178328445955346 l006 ln(1110/9803) 2178328448570586 a003 cos(Pi*29/105)*cos(Pi*25/64) 2178328449784575 m005 (3/5*Pi-2/5)/(-1/4+5/12*5^(1/2)) 2178328451219249 m001 FeigenbaumMu^ArtinRank2/(FeigenbaumMu^Ei(1)) 2178328455488209 h005 exp(sin(Pi*4/39)/cos(Pi*11/30)) 2178328456919016 m005 (1/2*Zeta(3)+4)/(6/7*2^(1/2)+9/10) 2178328458203641 r005 Im(z^2+c),c=-7/19+14/31*I,n=10 2178328460405868 a007 Real Root Of -261*x^4-484*x^3+434*x^2+586*x+91 2178328473879722 m001 (CopelandErdos+Otter)/(Zeta(3)-GAMMA(11/12)) 2178328478131405 r005 Re(z^2+c),c=-17/90+25/63*I,n=31 2178328479090474 s001 sum(exp(-4*Pi)^(n-1)*A235982[n],n=1..infinity) 2178328480706241 m001 (-BesselI(1,2)+Cahen)/(1-BesselI(1,1)) 2178328489681129 r005 Im(z^2+c),c=5/28+8/53*I,n=8 2178328489805715 m001 exp(Magata)*HardHexagonsEntropy/GAMMA(5/24)^2 2178328490062035 m001 1/exp(GAMMA(3/4))^2/(2^(1/3))/Pi 2178328492170062 m001 (ln(3)-gamma(1))/(BesselI(1,1)-Trott2nd) 2178328496834733 m005 (1/2*gamma+2/7)/(2/7*gamma-3/7) 2178328498011896 m001 ((1+3^(1/2))^(1/2)-Magata)/(Thue-ZetaQ(2)) 2178328506683273 a007 Real Root Of -608*x^4-887*x^3+860*x^2+249*x+983 2178328507102094 a007 Real Root Of 653*x^4+883*x^3-795*x^2+766*x-135 2178328513705380 m001 (Artin+LaplaceLimit)/(BesselJ(1,1)-Catalan) 2178328515052052 a007 Real Root Of -48*x^4+279*x^3+553*x^2-822*x-450 2178328533117575 m005 (1/3*gamma-1/7)/(10/11*3^(1/2)+7/10) 2178328540539247 a007 Real Root Of -309*x^4-721*x^3-503*x^2-733*x+295 2178328543925499 k001 Champernowne real with 1107*n+1071 2178328559857500 a007 Real Root Of -479*x^4-823*x^3+73*x^2-925*x-83 2178328564237754 m001 (TreeGrowth2nd-ZetaQ(3))/(ln(Pi)+GaussAGM) 2178328567718213 a007 Real Root Of 389*x^4-959*x^3+658*x^2-762*x-208 2178328572227603 m001 GAMMA(5/24)*(exp(1)+sqrt(5)) 2178328572227603 m001 Pi*csc(5/24*Pi)/GAMMA(19/24)*(exp(1)+5^(1/2)) 2178328583109776 r005 Re(z^2+c),c=-77/118+11/27*I,n=31 2178328584160699 m001 RenyiParking/ln(Magata)^2*Robbin^2 2178328585135431 m001 1/PrimesInBinary^2*Conway*exp(GAMMA(11/12)) 2178328586378690 r005 Re(z^2+c),c=-19/23+1/52*I,n=14 2178328602765337 r005 Re(z^2+c),c=17/46+15/46*I,n=33 2178328608213659 r005 Im(z^2+c),c=-7/10+13/55*I,n=40 2178328608377685 r005 Im(z^2+c),c=-47/90+21/53*I,n=37 2178328610904155 r005 Re(z^2+c),c=-3/13+17/64*I,n=12 2178328618365804 r005 Im(z^2+c),c=-9/10+24/121*I,n=45 2178328625152947 a005 (1/sin(50/111*Pi))^64 2178328636970164 r005 Im(z^2+c),c=23/86+4/53*I,n=37 2178328638474391 r005 Re(z^2+c),c=-7/46+25/52*I,n=25 2178328643769719 l006 ln(3776/4695) 2178328643945502 k001 Champernowne real with 1108*n+1070 2178328646413672 r005 Im(z^2+c),c=-3/106+15/28*I,n=3 2178328649142968 m008 (2/3*Pi^4-1/5)/(1/3*Pi-3/4) 2178328654106451 m001 (exp(1/Pi)+Khinchin)/(KomornikLoreti+ZetaP(4)) 2178328664126143 a001 7*(1/2*5^(1/2)+1/2)^6*18^(4/21) 2178328664202852 m005 (1/2*Catalan-8/11)/(5/8*Pi-8/11) 2178328666278408 l006 ln(463/4089) 2178328670341387 m001 Ei(1,1)+Niven^(2^(1/3)) 2178328680501550 a001 1/64079*18^(3/26) 2178328682423233 h001 (-8*exp(3/2)+2)/(-7*exp(1/2)-4) 2178328691249376 m001 GAMMA(19/24)/exp(CareFree)^2/log(2+sqrt(3)) 2178328694408401 g007 Psi(2,1/6)+Psi(2,1/4)-Psi(2,7/12)-Psi(2,2/11) 2178328708663093 m001 (Zeta(3)+Zeta(5))^cos(1/12*Pi) 2178328708663093 m001 (Zeta(3)+Zeta(5))^cos(Pi/12) 2178328717889981 a007 Real Root Of 298*x^4+789*x^3+359*x^2-326*x-968 2178328724811756 m001 Pi/(BesselI(1,2)-ZetaR(2)) 2178328727628760 m001 (3^(1/3))^2*Kolakoski^2*ln(GAMMA(1/4))^2 2178328729320029 m005 (1/2*5^(1/2)-4/7)/(2/3*5^(1/2)-4) 2178328731285220 m001 Thue^Pi/(HardHexagonsEntropy^Pi) 2178328737898745 a001 64300051206/329*6557470319842^(12/17) 2178328743180887 r005 Re(z^2+c),c=-13/110+14/23*I,n=27 2178328743965505 k001 Champernowne real with 1109*n+1069 2178328745196100 m005 (1/3*gamma+1/12)/(5/7*gamma-2/7) 2178328756460944 m005 (1/2*5^(1/2)+7/10)/(-25/112+1/16*5^(1/2)) 2178328756925699 m001 exp(Sierpinski)*Conway*(2^(1/3)) 2178328759329659 a007 Real Root Of -991*x^4-137*x^3-151*x^2+954*x-197 2178328762959979 r005 Re(z^2+c),c=15/64+10/23*I,n=23 2178328770634726 m005 (1/4+5/12*5^(1/2))/(3*Pi-4) 2178328771140722 k002 Champernowne real with 193/2*n^2-465/2*n+157 2178328781740844 a001 123/514229*39088169^(11/12) 2178328781742492 a001 123/20365011074*4052739537881^(11/12) 2178328781742492 a001 1/831985*12586269025^(11/12) 2178328783706691 a007 Real Root Of 750*x^4-625*x^3-430*x^2-676*x-135 2178328784821639 r005 Im(z^2+c),c=-19/48+13/36*I,n=20 2178328789819744 r002 41th iterates of z^2 + 2178328793814484 a007 Real Root Of -44*x^4-982*x^3-551*x^2-804*x+671 2178328797565100 m001 1/exp(LandauRamanujan)/Backhouse^2/Zeta(7) 2178328801132144 r005 Im(z^2+c),c=-23/26+14/87*I,n=10 2178328811588462 r009 Re(z^3+c),c=-10/31+30/61*I,n=9 2178328812828526 r005 Im(z^2+c),c=-23/22+29/125*I,n=15 2178328820697390 a001 199/956722026041*433494437^(13/14) 2178328820698920 a001 199/1836311903*514229^(13/14) 2178328823794813 r005 Im(z^2+c),c=-107/114+9/41*I,n=47 2178328829552996 r005 Im(z^2+c),c=-29/94+21/62*I,n=13 2178328840004784 a007 Real Root Of -328*x^4-339*x^3+563*x^2-178*x+822 2178328843703041 m001 (-ReciprocalLucas+ZetaP(2))/(Catalan-ln(5)) 2178328843985508 k001 Champernowne real with 1110*n+1068 2178328846963570 a001 123/2584*121393^(11/12) 2178328853489684 b008 1/13-2*Cosh[1/2] 2178328862863340 r009 Re(z^3+c),c=-4/11+34/63*I,n=26 2178328866126134 a007 Real Root Of 861*x^4-633*x^3+653*x^2-215*x-5 2178328876450216 a005 (1/sin(49/137*Pi))^230 2178328880402583 a008 Real Root of x^2-x-47669 2178328885522119 r005 Im(z^2+c),c=-4/27+19/59*I,n=3 2178328898819309 m003 Sin[1/2+Sqrt[5]/2]/6+Tanh[1/2+Sqrt[5]/2]/18 2178328907972007 r005 Re(z^2+c),c=-27/118+17/62*I,n=18 2178328910081137 m001 GAMMA(7/24)^2*Robbin*ln(cos(Pi/12)) 2178328924250393 m002 4/3-E^Pi+E^Pi/Pi^6 2178328935100399 m001 cosh(1)^CareFree-exp(Pi) 2178328936160403 r009 Re(z^3+c),c=-19/58+25/56*I,n=37 2178328937984461 a007 Real Root Of 726*x^4+465*x^3+676*x^2-510*x-140 2178328939105266 a001 29/8*832040^(30/47) 2178328940060401 m004 5/Pi+(5*Cos[Sqrt[5]*Pi])/(2*Pi) 2178328940289104 a007 Real Root Of 256*x^4+472*x^3-226*x^2+95*x+394 2178328944005511 k001 Champernowne real with 1111*n+1067 2178328947050267 a007 Real Root Of 296*x^4+577*x^3-90*x^2+480*x+772 2178328947497577 m001 BesselI(0,1)^(GAMMA(1/4)/ln(3)) 2178328947497577 m001 BesselI(0,1)^(Pi*2^(1/2)/GAMMA(3/4)/ln(3)) 2178328950126854 m001 (Salem-Thue)/Backhouse 2178328952607950 m001 1/GAMMA(1/3)/Rabbit/exp(log(1+sqrt(2))) 2178328962063546 p001 sum(floor(nd*n)/(5*n+4)/(512^n),n=0..infinity) 2178328967865555 r005 Re(z^2+c),c=5/58+23/39*I,n=34 2178328969152360 r009 Re(z^3+c),c=-3/82+13/22*I,n=19 2178328972389362 r005 Im(z^2+c),c=-7/36+11/36*I,n=27 2178328989353370 a008 Real Root of x^4+4*x^2-14*x-11 2178328995872116 l006 ln(742/6553) 2178328996921606 a003 cos(Pi*27/106)/cos(Pi*44/111) 2178329001666672 a001 14930352/199*199^(7/11) 2178329004059050 r005 Im(z^2+c),c=-81/74+13/59*I,n=40 2178329008163163 r009 Re(z^3+c),c=-31/110+19/58*I,n=17 2178329017265615 a001 5/2207*322^(34/43) 2178329018240775 p001 sum(1/(376*n+15)/n/(12^n),n=1..infinity) 2178329032999388 a007 Real Root Of 175*x^4+629*x^3+823*x^2+381*x-514 2178329043364021 a007 Real Root Of -595*x^4-873*x^3+680*x^2-262*x+576 2178329044025514 k001 Champernowne real with 1112*n+1066 2178329045361000 m001 AlladiGrinstead^Otter/(FeigenbaumKappa^Otter) 2178329050889314 p003 LerchPhi(1/3,6,192/101) 2178329056188362 a001 9/31622993*317811^(12/17) 2178329056191406 a001 9/3278735159921*4052739537881^(12/17) 2178329056191406 a001 9/10182505537*1134903170^(12/17) 2178329057135472 m001 Landau*RenyiParking^Pi 2178329057367461 m005 (1/2*2^(1/2)-7/8)/(5*2^(1/2)+7/11) 2178329061695479 a007 Real Root Of -399*x^4-429*x^3+696*x^2-987*x-903 2178329061872256 a001 3/4*(1/2*5^(1/2)+1/2)^11*4^(3/11) 2178329082328078 m001 Sierpinski^arctan(1/3)-exp(Pi) 2178329090948670 m005 (3/5*exp(1)-1/6)/(9/4+2*5^(1/2)) 2178329093876011 h001 (9/10*exp(2)+3/5)/(10/11*exp(1)+6/7) 2178329099271962 a007 Real Root Of -198*x^4+23*x^3+630*x^2-844*x-132 2178329100476366 a007 Real Root Of 554*x^4+546*x^3-978*x^2+917*x-192 2178329103259763 m009 (4/5*Psi(1,2/3)-4/5)/(5/6*Psi(1,1/3)-5/6) 2178329109938553 l006 ln(4569/5681) 2178329129115002 r005 Im(z^2+c),c=-17/42+23/63*I,n=62 2178329135433422 m005 (1/3*5^(1/2)+3/5)/(3/10*gamma+4/9) 2178329136085307 m001 (-Lehmer+Trott2nd)/(Champernowne-exp(1)) 2178329144045517 k001 Champernowne real with 1113*n+1065 2178329145335241 l006 ln(1021/9017) 2178329154449614 a007 Real Root Of -189*x^4-408*x^3-26*x^2-71*x+7 2178329172970720 a007 Real Root Of 140*x^4+573*x^3+853*x^2+292*x-641 2178329175038345 m005 (1/2*3^(1/2)+9/11)/(3*gamma+6) 2178329179309764 a001 969323029/5*832040^(13/19) 2178329179310823 a001 1860498/5*7778742049^(13/19) 2178329179421756 m009 (1/3*Psi(1,1/3)+3/5)/(1/10*Pi^2+5/6) 2178329188112289 m009 (2/5*Psi(1,2/3)-6)/(3/5*Psi(1,3/4)+2/3) 2178329188213387 r005 Re(z^2+c),c=-17/74+13/48*I,n=16 2178329190356236 m001 (LandauRamanujan+Tetranacci)/(1+CopelandErdos) 2178329201638631 r002 62th iterates of z^2 + 2178329212197343 a007 Real Root Of 207*x^4+214*x^3-298*x^2+526*x+111 2178329227515530 a001 55/5778*843^(25/31) 2178329231634623 s001 sum(exp(-2*Pi/3)^n*A262913[n],n=1..infinity) 2178329231722979 s002 sum(A031051[n]/((exp(n)-1)/n),n=1..infinity) 2178329235943174 a001 6/7*13^(4/11) 2178329237966798 m004 -1-125*Pi+25*Sqrt[5]*Pi+Cos[Sqrt[5]*Pi]/3 2178329244065520 k001 Champernowne real with 1114*n+1064 2178329252746776 m006 (2/5*Pi^2+3)/(3/4*Pi+5/6) 2178329252746776 m008 (2/5*Pi^2+3)/(3/4*Pi+5/6) 2178329271772150 m005 (1/2*5^(1/2)+5/9)/(-29/198+9/22*5^(1/2)) 2178329273960646 a001 75025/843*7^(23/50) 2178329280525577 a001 39088169/521*322^(7/12) 2178329281682845 r005 Im(z^2+c),c=-5/31+18/61*I,n=19 2178329283442257 r009 Im(z^3+c),c=-47/106+4/61*I,n=30 2178329289604390 r005 Im(z^2+c),c=-27/29+5/24*I,n=57 2178329293293775 r002 4th iterates of z^2 + 2178329300638847 m001 (-CareFree+MertensB1)/(3^(1/2)-GAMMA(7/12)) 2178329307016648 a001 9349/21*55^(21/53) 2178329310992162 m005 (1/2*Catalan+3/5)/(4*2^(1/2)-4/5) 2178329326892304 s002 sum(A043189[n]/(n!^2),n=1..infinity) 2178329329817456 m006 (2/Pi+2/5)/(1/6*ln(Pi)-2/3) 2178329333087757 r009 Re(z^3+c),c=-13/62+1/20*I,n=4 2178329334155295 a003 sin(Pi*11/65)-sin(Pi*8/31) 2178329343879951 s002 sum(A239430[n]/(n*exp(n)+1),n=1..infinity) 2178329344085523 k001 Champernowne real with 1115*n+1063 2178329347726561 r005 Im(z^2+c),c=1/38+18/29*I,n=26 2178329348034469 a003 cos(Pi*4/35)/sin(Pi*14/99) 2178329348538010 r005 Im(z^2+c),c=-91/86+11/49*I,n=38 2178329360117878 a001 1364/75025*2178309^(17/35) 2178329361046974 h001 (4/5*exp(2)+2/7)/(8/9*exp(1)+3/7) 2178329369020725 a001 843/17711*832040^(37/47) 2178329374359131 m002 -4*Csch[Pi]+(4*Tanh[Pi])/Pi^3 2178329378489827 r005 Re(z^2+c),c=-13/102+9/17*I,n=35 2178329380384340 a007 Real Root Of 5*x^4-141*x^3-283*x^2-173*x-604 2178329401229451 m006 (2/3/Pi-1/4)/(1/3*exp(2*Pi)-5) 2178329414609548 m001 (-polylog(4,1/2)+OneNinth)/(1+ln(2^(1/2)+1)) 2178329418072075 p004 log(28729/3253) 2178329423315671 r009 Im(z^3+c),c=-55/126+5/63*I,n=22 2178329426364270 a007 Real Root Of 117*x^4+414*x^3+587*x^2+771*x+539 2178329427267062 a005 (1/cos(25/142*Pi))^233 2178329429549927 a001 3732588/341*322^(11/12) 2178329438221554 l006 ln(5362/6667) 2178329444105526 k001 Champernowne real with 1116*n+1062 2178329468532474 a007 Real Root Of 445*x^4+704*x^3-416*x^2+532*x+390 2178329498760629 a007 Real Root Of 751*x^4-289*x^3+27*x^2-978*x-219 2178329507717688 g005 GAMMA(7/11)*GAMMA(7/9)^2*GAMMA(7/8) 2178329511729801 m001 LambertW(1)*OneNinth^2/ln(sqrt(3))^2 2178329542832044 l006 ln(279/2464) 2178329544125529 k001 Champernowne real with 1117*n+1061 2178329556538743 s002 sum(A144834[n]/(n*2^n+1),n=1..infinity) 2178329558161238 p003 LerchPhi(1/25,5,27/50) 2178329558219970 r005 Im(z^2+c),c=-9/58+17/58*I,n=21 2178329571106094 q001 193/886 2178329575359459 a007 Real Root Of 61*x^4-330*x^3-802*x^2+22*x-931 2178329584214379 m001 (-Tribonacci+Trott2nd)/(sin(1)+gamma(2)) 2178329584567894 m002 -2-ProductLog[Pi]+Tanh[Pi]-Tanh[Pi]/Pi^2 2178329590100364 m001 1/LambertW(1)/GAMMA(7/12)^2/exp(sqrt(Pi))^2 2178329602252340 a001 192900153618/377*1836311903^(14/17) 2178329602252340 a001 228826127/377*6557470319842^(14/17) 2178329606579929 m001 FeigenbaumB+ln(5)^GolombDickman 2178329610172464 a007 Real Root Of 270*x^4+220*x^3-911*x^2-625*x-844 2178329612125412 k006 concat of cont frac of 2178329614072718 r005 Im(z^2+c),c=-123/86+1/64*I,n=5 2178329625837547 a003 sin(Pi*17/112)*sin(Pi*17/108) 2178329632150506 m006 (2/5*exp(2*Pi)+2)/(1/2/Pi+5/6) 2178329634266048 r005 Re(z^2+c),c=-1/12+36/59*I,n=9 2178329638310733 m005 (1/2*5^(1/2)-5)/(9/11*2^(1/2)+5/8) 2178329644145532 k001 Champernowne real with 1118*n+1060 2178329648904687 a007 Real Root Of -803*x^4-88*x^3+451*x^2+915*x-218 2178329660323000 m001 ln(3)+exp(1)^ZetaP(4) 2178329663834311 r009 Im(z^3+c),c=-14/29+19/32*I,n=6 2178329668487195 r002 30th iterates of z^2 + 2178329670110295 m004 130*Pi-(Cosh[Sqrt[5]*Pi]*Sec[Sqrt[5]*Pi])/4 2178329672343370 b008 15*InverseErfc[1/25] 2178329681514930 m001 1/LaplaceLimit/ln(MertensB1)*BesselJ(1,1)^2 2178329681913672 l006 ln(6155/7653) 2178329683947114 s002 sum(A084973[n]/(16^n-1),n=1..infinity) 2178329684083792 s002 sum(A084973[n]/(16^n),n=1..infinity) 2178329689539313 a007 Real Root Of 231*x^4+298*x^3-527*x^2+97*x+591 2178329690894905 m001 (Kolakoski+OneNinth)/(Backhouse+Khinchin) 2178329692505449 m001 Riemann3rdZero/ln(Bloch)/GAMMA(7/12) 2178329695530397 r005 Re(z^2+c),c=-9/10+57/223*I,n=8 2178329704899199 m001 (Zeta(1,2)+Bloch)/(ln(2)+exp(1/exp(1))) 2178329710393418 g007 Psi(2,6/7)+14*Zeta(3)-Psi(2,8/9)-Psi(2,3/4) 2178329712969127 r005 Re(z^2+c),c=-4/25+27/43*I,n=51 2178329726215699 r005 Re(z^2+c),c=19/60+11/51*I,n=59 2178329730369723 a007 Real Root Of 564*x^4+614*x^3-962*x^2+778*x-93 2178329731070277 a001 2/377*121393^(49/54) 2178329733037921 m005 (1/2*exp(1)-10/11)/(6/11*exp(1)+7/12) 2178329740123624 a001 1/2207*(1/2*5^(1/2)+1/2)^22*3^(3/17) 2178329744165535 k001 Champernowne real with 1119*n+1059 2178329744300209 m005 (1/2*3^(1/2)+11/12)/(5/6*3^(1/2)-5/8) 2178329750532064 r005 Im(z^2+c),c=-51/56+7/26*I,n=44 2178329752625563 r009 Re(z^3+c),c=-17/50+15/32*I,n=14 2178329756898723 m001 2^(1/2)*ln(2^(1/2)+1)*ZetaP(3) 2178329770788103 r009 Re(z^3+c),c=-37/106+1/2*I,n=48 2178329774141322 k002 Champernowne real with 97*n^2-234*n+158 2178329793800902 a007 Real Root Of -208*x^4-162*x^3+477*x^2-109*x+508 2178329801356646 m001 BesselI(0,1)+PisotVijayaraghavan-ThueMorse 2178329819008945 m005 (1/2*2^(1/2)-1/9)/(6*gamma-8/11) 2178329829379221 r005 Im(z^2+c),c=-59/46+13/31*I,n=7 2178329844011978 q001 1/4590673 2178329844185538 k001 Champernowne real with 1120*n+1058 2178329868660511 m004 50/Pi+(25*Cos[Sqrt[5]*Pi]*Coth[Sqrt[5]*Pi])/Pi 2178329869978886 l006 ln(6948/8639) 2178329879208909 a007 Real Root Of -499*x^4+930*x^3-143*x^2+829*x-18 2178329879929897 m001 sin(Pi/5)^2*ln(Paris)^2*sinh(1) 2178329882860135 a007 Real Root Of -164*x^4+38*x^3+775*x^2+17*x+445 2178329890952288 r005 Im(z^2+c),c=-4/5+8/67*I,n=37 2178329892110941 m009 (2*Psi(1,2/3)+1/2)/(2/3*Psi(1,2/3)+1) 2178329892915609 m001 Pi*(2^(1/2)-cos(1))-LambertW(1) 2178329899917712 m005 (1/2*5^(1/2)+2/7)/(5/6*gamma-6/11) 2178329907897592 a001 199/3524578*610^(13/14) 2178329918469311 a007 Real Root Of -42*x^4-916*x^3-2*x^2+462*x-372 2178329923259486 r005 Re(z^2+c),c=-147/118+9/53*I,n=14 2178329925091039 a007 Real Root Of -408*x^4-391*x^3+856*x^2-91*x+885 2178329925899439 r009 Re(z^3+c),c=-13/74+49/57*I,n=15 2178329933846638 r009 Im(z^3+c),c=-9/32+11/60*I,n=14 2178329944135305 r005 Im(z^2+c),c=-7/36+11/36*I,n=29 2178329944205541 k001 Champernowne real with 1121*n+1057 2178329957507571 m001 BesselJ(0,1)^2*Conway^2*exp(cosh(1))^2 2178329959605475 r002 16th iterates of z^2 + 2178329969380434 r002 15th iterates of z^2 + 2178329969408381 r005 Im(z^2+c),c=-71/118+18/55*I,n=8 2178329972326533 a007 Real Root Of 139*x^4-57*x^3-281*x^2+990*x-229 2178329976715864 r005 Im(z^2+c),c=-7/36+11/36*I,n=30 2178329978287052 l006 ln(932/8231) 2178329990294900 r005 Im(z^2+c),c=-81/118+7/36*I,n=24 2178329996680145 r002 4th iterates of z^2 + 2178329997577324 r008 a(0)=2,K{-n^6,-30+15*n+59*n^2-50*n^3} 2178330000000332 a001 1346311/2+1346269/2*5^(1/2) 2178330009722222 a001 1/72*(1/2+1/2*5^(1/2))^44 2178330014728597 m001 (Zeta(3)-Zeta(5))/(Zeta(1,-1)-Lehmer) 2178330016726898 r005 Im(z^2+c),c=-7/36+11/36*I,n=32 2178330019512715 l006 ln(7741/9625) 2178330032281711 a007 Real Root Of -101*x^4+359*x^3+786*x^2-736*x+652 2178330034441853 a001 4356631/2+13/2*5^(1/2) 2178330036223171 m001 Artin^GaussAGM*Artin^TravellingSalesman 2178330037573433 m003 -1/9+6*Sech[1/2+Sqrt[5]/2] 2178330040465979 m001 (Kac+ThueMorse)/(Weierstrass+ZetaQ(4)) 2178330044225544 k001 Champernowne real with 1122*n+1056 2178330052344795 m001 (-ln(2^(1/2)+1)+Trott2nd)/(exp(1)+Zeta(3)) 2178330061741604 r009 Re(z^3+c),c=-5/14+13/25*I,n=59 2178330074086073 m001 (Psi(2,1/3)-cos(1))/(Ei(1)+TwinPrimes) 2178330075207952 r005 Im(z^2+c),c=-7/36+11/36*I,n=35 2178330079136839 r005 Im(z^2+c),c=-23/26+5/28*I,n=9 2178330091224223 r005 Im(z^2+c),c=-7/36+11/36*I,n=38 2178330093122968 r005 Im(z^2+c),c=-7/36+11/36*I,n=40 2178330093740661 r005 Im(z^2+c),c=-7/36+11/36*I,n=43 2178330093773357 r005 Im(z^2+c),c=-7/36+11/36*I,n=37 2178330093927430 r005 Im(z^2+c),c=-7/36+11/36*I,n=41 2178330093971624 r005 Im(z^2+c),c=-7/36+11/36*I,n=46 2178330094017626 r005 Im(z^2+c),c=-7/36+11/36*I,n=48 2178330094020444 r005 Im(z^2+c),c=-7/36+11/36*I,n=49 2178330094021882 r005 Im(z^2+c),c=-7/36+11/36*I,n=51 2178330094024851 r005 Im(z^2+c),c=-7/36+11/36*I,n=54 2178330094025640 r005 Im(z^2+c),c=-7/36+11/36*I,n=57 2178330094025726 r005 Im(z^2+c),c=-7/36+11/36*I,n=59 2178330094025747 r005 Im(z^2+c),c=-7/36+11/36*I,n=56 2178330094025758 r005 Im(z^2+c),c=-7/36+11/36*I,n=62 2178330094025769 r005 Im(z^2+c),c=-7/36+11/36*I,n=60 2178330094025773 r005 Im(z^2+c),c=-7/36+11/36*I,n=64 2178330094025777 r005 Im(z^2+c),c=-7/36+11/36*I,n=63 2178330094025791 r005 Im(z^2+c),c=-7/36+11/36*I,n=61 2178330094025888 r005 Im(z^2+c),c=-7/36+11/36*I,n=58 2178330094026206 r005 Im(z^2+c),c=-7/36+11/36*I,n=55 2178330094026386 r005 Im(z^2+c),c=-7/36+11/36*I,n=52 2178330094026647 r005 Im(z^2+c),c=-7/36+11/36*I,n=53 2178330094032931 r005 Im(z^2+c),c=-7/36+11/36*I,n=50 2178330094053713 r005 Im(z^2+c),c=-7/36+11/36*I,n=45 2178330094059550 r005 Im(z^2+c),c=-7/36+11/36*I,n=47 2178330094115679 r005 Im(z^2+c),c=-7/36+11/36*I,n=44 2178330094422744 r005 Im(z^2+c),c=-7/36+11/36*I,n=42 2178330096371015 r005 Im(z^2+c),c=-7/36+11/36*I,n=39 2178330102562839 r005 Im(z^2+c),c=-7/36+11/36*I,n=36 2178330104457880 r005 Im(z^2+c),c=-7/36+11/36*I,n=33 2178330106727734 r009 Re(z^3+c),c=-19/58+25/56*I,n=36 2178330110016811 m001 (BesselJ(0,1)+FeigenbaumB)/(Kac+OneNinth) 2178330112718652 r005 Im(z^2+c),c=-85/118+5/33*I,n=28 2178330112831032 r005 Im(z^2+c),c=-7/36+11/36*I,n=34 2178330122093260 a001 1/5778*(1/2*5^(1/2)+1/2)^24*3^(3/17) 2178330122325411 r009 Re(z^3+c),c=-19/58+25/56*I,n=39 2178330136483809 m005 (1/4*exp(1)+2)/(1/5*exp(1)-2/3) 2178330144245547 k001 Champernowne real with 1123*n+1055 2178330158531652 m004 -5-750/Pi+5*Sqrt[5]*Pi*Cos[Sqrt[5]*Pi] 2178330159878846 r005 Im(z^2+c),c=-6/17+13/37*I,n=45 2178330160017091 m001 Conway-exp(Pi)+ZetaQ(2) 2178330164338981 l006 ln(653/5767) 2178330171346789 r002 6i'th iterates of 2*x/(1-x^2) of 2178330175341187 a007 Real Root Of 258*x^4+462*x^3-321*x^2-524*x-652 2178330175434580 m002 -Pi^2/3+Cosh[Pi]/Pi^5+ProductLog[Pi] 2178330177821890 a001 1/15127*(1/2*5^(1/2)+1/2)^26*3^(3/17) 2178330181752929 m001 StolarskyHarborth/(KomornikLoreti-2^(1/2)) 2178330181830737 a001 1/281*11^(34/45) 2178330182757927 m001 1/ln(Lehmer)^2/Conway^2/Pi^2 2178330185952588 a001 1/39603*(1/2*5^(1/2)+1/2)^28*3^(3/17) 2178330186035640 m001 Paris^2/ln(Si(Pi))^2/Salem 2178330187341477 a001 (1/2*5^(1/2)+1/2)^6*3^(3/17) 2178330187871986 a001 1/64079*(1/2*5^(1/2)+1/2)^29*3^(3/17) 2178330190977636 a001 1/24476*(1/2*5^(1/2)+1/2)^27*3^(3/17) 2178330197347821 h001 (2/9*exp(1)+4/5)/(9/11*exp(2)+2/5) 2178330199450406 r005 Im(z^2+c),c=-6/17+13/37*I,n=49 2178330204739378 r005 Im(z^2+c),c=-47/46+1/44*I,n=8 2178330212264079 a001 1/9349*(1/2*5^(1/2)+1/2)^25*3^(3/17) 2178330216433402 m001 (-Bloch+Totient)/(exp(1)+BesselI(0,1)) 2178330217913762 s002 sum(A092815[n]/(n*2^n+1),n=1..infinity) 2178330223094805 r005 Im(z^2+c),c=-7/36+11/36*I,n=18 2178330223851273 m001 ReciprocalFibonacci^ErdosBorwein/arctan(1/3) 2178330232788991 a001 3/89*21^(19/31) 2178330235930444 m001 BesselJ(1,1)*(GAMMA(2/3)-Thue) 2178330241266397 r005 Im(z^2+c),c=-7/36+11/36*I,n=31 2178330244265550 k001 Champernowne real with 1124*n+1054 2178330246876901 r005 Im(z^2+c),c=-41/78+12/29*I,n=47 2178330248667641 m004 -2-5*Pi-Sqrt[5]*Pi+4*Cos[Sqrt[5]*Pi] 2178330252542606 r009 Im(z^3+c),c=-9/32+11/60*I,n=15 2178330253657218 m001 (-OneNinth+ZetaP(4))/(1+BesselK(0,1)) 2178330254247675 r005 Re(z^2+c),c=5/38+17/52*I,n=9 2178330255674602 l006 ln(7447/7611) 2178330261978068 a007 Real Root Of -356*x^4-931*x^3-769*x^2-603*x+728 2178330268401975 m001 1/TwinPrimes^2*FeigenbaumAlpha^2*exp(exp(1)) 2178330276806864 r005 Re(z^2+c),c=29/98+11/20*I,n=28 2178330290254362 r009 Im(z^3+c),c=-55/122+2/33*I,n=47 2178330303980030 r009 Re(z^3+c),c=-19/58+25/56*I,n=40 2178330309219350 h001 (-8*exp(4)-9)/(-9*exp(1)+4) 2178330311488997 m001 1/GAMMA(5/24)/ln(FeigenbaumD)^2*cos(Pi/12)^2 2178330311827849 m001 Zeta(1/2)^exp(1)/GAMMA(17/24) 2178330315027856 m005 (11/28+1/4*5^(1/2))/(3/4*Catalan-1/4) 2178330321700234 m001 1/exp(GAMMA(11/24))*Niven^2/GAMMA(5/24)^2 2178330325632828 r009 Re(z^3+c),c=-47/126+25/42*I,n=62 2178330329852975 r005 Im(z^2+c),c=-6/17+13/37*I,n=52 2178330333180624 l006 ln(1027/9070) 2178330333831666 m006 (4/5/Pi-3/5)/(1/4*Pi+4/5) 2178330338231405 r009 Im(z^3+c),c=-9/32+11/60*I,n=18 2178330338496090 m001 OneNinth^2/ErdosBorwein*ln(gamma)^2 2178330338658621 r009 Im(z^3+c),c=-9/32+11/60*I,n=19 2178330338856209 h001 (6/7*exp(1)+1/8)/(1/5*exp(1)+7/12) 2178330339399659 p002 log(14^(5/7)+2^(7/6)) 2178330340850533 r009 Im(z^3+c),c=-9/32+11/60*I,n=23 2178330340872581 r009 Im(z^3+c),c=-9/32+11/60*I,n=24 2178330340879793 r009 Im(z^3+c),c=-9/32+11/60*I,n=28 2178330340879800 r009 Im(z^3+c),c=-9/32+11/60*I,n=27 2178330340879961 r009 Im(z^3+c),c=-9/32+11/60*I,n=32 2178330340879961 r009 Im(z^3+c),c=-9/32+11/60*I,n=29 2178330340879962 r009 Im(z^3+c),c=-9/32+11/60*I,n=33 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=37 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=36 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=38 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=41 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=42 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=46 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=45 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=47 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=50 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=51 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=55 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=54 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=56 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=59 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=60 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=64 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=63 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=62 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=61 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=58 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=57 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=53 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=52 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=49 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=48 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=44 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=43 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=40 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=39 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=35 2178330340879963 r009 Im(z^3+c),c=-9/32+11/60*I,n=34 2178330340879966 r009 Im(z^3+c),c=-9/32+11/60*I,n=31 2178330340879983 r009 Im(z^3+c),c=-9/32+11/60*I,n=30 2178330340881192 r009 Im(z^3+c),c=-9/32+11/60*I,n=26 2178330340882594 r009 Im(z^3+c),c=-9/32+11/60*I,n=25 2178330340910041 r009 Im(z^3+c),c=-9/32+11/60*I,n=22 2178330340919053 r009 Im(z^3+c),c=-9/32+11/60*I,n=20 2178330341154220 r009 Im(z^3+c),c=-9/32+11/60*I,n=21 2178330341847334 m001 (Backhouse+GaussAGM)/(PlouffeB+Stephens) 2178330344285553 k001 Champernowne real with 1125*n+1053 2178330356429770 r009 Im(z^3+c),c=-9/32+11/60*I,n=17 2178330358163545 a001 1/3571*(1/2*5^(1/2)+1/2)^23*3^(3/17) 2178330359990053 m001 (Zeta(3)-ln(5))/(Cahen+FibonacciFactorial) 2178330360193870 a001 3571/196418*2178309^(17/35) 2178330361344670 r005 Re(z^2+c),c=1/78+29/35*I,n=4 2178330377583123 r009 Im(z^3+c),c=-13/106+20/23*I,n=18 2178330379010504 r009 Im(z^3+c),c=-9/32+11/60*I,n=16 2178330379438751 r005 Im(z^2+c),c=1/24+13/59*I,n=16 2178330379770924 a007 Real Root Of 985*x^4-859*x^3+841*x^2-583*x-178 2178330384143472 r005 Im(z^2+c),c=-107/122+8/49*I,n=5 2178330385309096 r009 Re(z^3+c),c=-19/58+25/56*I,n=42 2178330387281810 r005 Im(z^2+c),c=-49/74+8/35*I,n=16 2178330388451540 r005 Im(z^2+c),c=-21/25+1/6*I,n=52 2178330394082312 m001 (1-cos(1/12*Pi))/(-Gompertz+TreeGrowth2nd) 2178330424005315 a007 Real Root Of 365*x^4+846*x^3+70*x^2-477*x-845 2178330424561529 a007 Real Root Of 332*x^4+915*x^3+964*x^2-615*x-171 2178330435185699 r005 Im(z^2+c),c=-19/46+23/64*I,n=15 2178330440708990 a007 Real Root Of 569*x^4+969*x^3-93*x^2+849*x-505 2178330444305556 k001 Champernowne real with 1126*n+1052 2178330467620501 r005 Im(z^2+c),c=-49/48+11/48*I,n=33 2178330480490284 p001 sum(1/(359*n+9)/n/(125^n),n=1..infinity) 2178330482227979 a007 Real Root Of 550*x^4+47*x^3-140*x^2-835*x-176 2178330490590665 r009 Re(z^3+c),c=-5/36+45/56*I,n=26 2178330497861393 r005 Im(z^2+c),c=-4/15+18/55*I,n=20 2178330497876839 m001 (2^(1/2)+Si(Pi))/(Riemann1stZero+Thue) 2178330500486636 r005 Re(z^2+c),c=-7/50+31/61*I,n=54 2178330506102991 a001 9349/514229*2178309^(17/35) 2178330513572447 m005 (1/2*5^(1/2)-3/4)/(5/9*3^(1/2)+8/11) 2178330514987708 s001 sum(exp(-2*Pi)^n*A189159[n],n=1..infinity) 2178330516726424 m001 GAMMA(1/4)^2/Porter/exp(sqrt(2)) 2178330524661583 m001 cos(1/5*Pi)^KhinchinLevy/FeigenbaumMu 2178330527390844 a001 24476/1346269*2178309^(17/35) 2178330532416225 a001 13201/726103*2178309^(17/35) 2178330540547462 a001 15127/832040*2178309^(17/35) 2178330544325559 k001 Champernowne real with 1127*n+1051 2178330548684569 a003 cos(Pi*22/51)*cos(Pi*36/77) 2178330550159798 r009 Re(z^3+c),c=-19/58+25/56*I,n=45 2178330555815178 r005 Im(z^2+c),c=-13/14+47/227*I,n=64 2178330556933993 r002 53th iterates of z^2 + 2178330558141000 m001 5^(1/2)*ThueMorse-CareFree 2178330571607362 a007 Real Root Of -23*x^4-487*x^3+330*x^2+521*x-364 2178330573026359 b008 Sqrt[Pi*Gudermannian[7/2]] 2178330576370197 r005 Re(z^2+c),c=-17/66+7/62*I,n=4 2178330576995989 r005 Im(z^2+c),c=-27/31+5/28*I,n=38 2178330580923532 a007 Real Root Of -607*x^4-901*x^3+365*x^2-848*x+775 2178330582033716 a007 Real Root Of -285*x^4-347*x^3+803*x^2+740*x+632 2178330596279786 a001 1926/105937*2178309^(17/35) 2178330596777788 r005 Re(z^2+c),c=-11/70+21/38*I,n=7 2178330597205211 m005 (1/2*2^(1/2)+3/7)/(35/8+3/8*5^(1/2)) 2178330598125470 m005 (1/2*gamma+2/11)/(-17/30+7/20*5^(1/2)) 2178330604662027 m001 GAMMA(1/3)^BesselI(0,2)*(3^(1/3))^BesselI(0,2) 2178330604998649 m005 (1/2*Zeta(3)-7/12)/(1/4*Catalan+7/12) 2178330608851892 g002 Psi(2/11)+Psi(1/11)+Psi(1/5)-Psi(9/10) 2178330613240735 m008 (Pi^3+5/6)/(1/5*Pi+5/6) 2178330617175981 m001 (Otter+ZetaQ(3))/(Shi(1)+GaussKuzminWirsing) 2178330620657198 r005 Im(z^2+c),c=-3/44+41/64*I,n=40 2178330624494387 r005 Im(z^2+c),c=-55/78+4/29*I,n=9 2178330625292780 r009 Re(z^3+c),c=-19/58+25/56*I,n=48 2178330627191887 m001 (Pi+Artin)/(HardyLittlewoodC4+Mills) 2178330627976257 l006 ln(374/3303) 2178330630762180 r009 Re(z^3+c),c=-19/58+25/56*I,n=43 2178330631626907 a001 9349/5*2^(13/59) 2178330639732780 a007 Real Root Of -442*x^4+710*x^3+131*x^2+406*x-101 2178330643320841 r009 Im(z^3+c),c=-9/32+11/60*I,n=13 2178330644345562 k001 Champernowne real with 1128*n+1050 2178330654524225 r009 Re(z^3+c),c=-19/58+25/56*I,n=51 2178330662907849 m005 (4/5*gamma-3/5)/(1/5*gamma-3/4) 2178330662907849 m007 (-4/5*gamma+3/5)/(-1/5*gamma+3/4) 2178330663768406 a003 -1/2+cos(3/10*Pi)-2*cos(7/27*Pi)-cos(4/27*Pi) 2178330664672338 r009 Re(z^3+c),c=-19/58+25/56*I,n=54 2178330667844765 r009 Re(z^3+c),c=-19/58+25/56*I,n=57 2178330668470028 r009 Re(z^3+c),c=-19/58+25/56*I,n=56 2178330668551532 r009 Re(z^3+c),c=-19/58+25/56*I,n=59 2178330668724007 r009 Re(z^3+c),c=-19/58+25/56*I,n=60 2178330668748707 r009 Re(z^3+c),c=-19/58+25/56*I,n=62 2178330668927607 r009 Re(z^3+c),c=-19/58+25/56*I,n=63 2178330669053894 r009 Re(z^3+c),c=-19/58+25/56*I,n=64 2178330669315282 r009 Re(z^3+c),c=-19/58+25/56*I,n=61 2178330669776722 r009 Re(z^3+c),c=-19/58+25/56*I,n=53 2178330670073609 r009 Re(z^3+c),c=-19/58+25/56*I,n=58 2178330672039553 r009 Re(z^3+c),c=-19/58+25/56*I,n=55 2178330676411867 r009 Re(z^3+c),c=-19/58+25/56*I,n=52 2178330676902489 a007 Real Root Of 329*x^4+177*x^3-886*x^2+623*x-17 2178330677939736 r009 Re(z^3+c),c=-19/58+25/56*I,n=50 2178330683627539 r009 Re(z^3+c),c=-19/58+25/56*I,n=49 2178330684610749 m001 (Lehmer+Otter)/(gamma(1)+CopelandErdos) 2178330685378379 b008 1+(5+Sqrt[7])*E 2178330685409505 r009 Re(z^3+c),c=-19/58+25/56*I,n=46 2178330688409412 r005 Re(z^2+c),c=-7/32+13/45*I,n=7 2178330698957337 a007 Real Root Of 95*x^4-477*x^3-431*x^2-899*x+221 2178330706646441 m002 -E^Pi+5*Pi^4-E^Pi*Pi^6 2178330712632105 r009 Re(z^3+c),c=-19/58+25/56*I,n=47 2178330714780829 m005 (1/3*Catalan-3/7)/(3/8*5^(1/2)-3/11) 2178330718171754 r005 Re(z^2+c),c=-15/58+7/60*I,n=10 2178330719949527 b008 Sqrt[2]*(9+Sqrt[41]) 2178330723060158 m001 ((1+3^(1/2))^(1/2)-MinimumGamma)/(Paris-Trott) 2178330723426587 r005 Im(z^2+c),c=-93/74+7/44*I,n=9 2178330733333529 r005 Re(z^2+c),c=41/102+18/53*I,n=58 2178330734310315 r002 49th iterates of z^2 + 2178330739245135 r005 Im(z^2+c),c=-7/36+11/36*I,n=26 2178330741548791 m001 (-Rabbit+Salem)/(Chi(1)+Conway) 2178330741668290 m008 (2/5*Pi^3+1/5)/(1/4*Pi+5) 2178330742088108 r005 Re(z^2+c),c=8/27+25/56*I,n=51 2178330744365565 k001 Champernowne real with 1129*n+1049 2178330752574724 m001 (ln(2)+GAMMA(11/12))/(Grothendieck-Sierpinski) 2178330754739110 r005 Im(z^2+c),c=1/24+13/59*I,n=15 2178330754881682 r009 Re(z^3+c),c=-31/90+23/42*I,n=17 2178330760172158 r009 Im(z^3+c),c=-5/26+41/46*I,n=33 2178330767310025 r005 Im(z^2+c),c=-9/10+49/254*I,n=49 2178330767798760 m005 (1/2*3^(1/2)+5)/(1/2*Catalan-8/11) 2178330770301853 r005 Im(z^2+c),c=-7/36+11/36*I,n=28 2178330777141922 k002 Champernowne real with 195/2*n^2-471/2*n+159 2178330782553399 s002 sum(A213080[n]/(2^n-1),n=1..infinity) 2178330786943261 a007 Real Root Of 434*x^4+997*x^3-79*x^2-652*x-512 2178330792363432 m001 sin(1)^2/FeigenbaumKappa^2*exp(sqrt(3)) 2178330800118735 h001 (-4*exp(3)-4)/(-7*exp(4)-5) 2178330809898766 a001 18/24157817*39088169^(10/17) 2178330809898767 a001 18/2971215073*139583862445^(10/17) 2178330812026392 a001 9/98209*10946^(10/17) 2178330814928859 r005 Im(z^2+c),c=-5/118+16/63*I,n=12 2178330819614754 m001 (FeigenbaumC+FellerTornier)/(Catalan-gamma(1)) 2178330834738004 a007 Real Root Of -77*x^4-120*x^3-85*x^2-761*x-761 2178330836643811 r009 Re(z^3+c),c=-19/58+25/56*I,n=44 2178330840526364 r005 Im(z^2+c),c=-29/56+28/53*I,n=19 2178330844385568 k001 Champernowne real with 1130*n+1048 2178330845970344 a008 Real Root of x^3-86*x-177 2178330849922776 r005 Re(z^2+c),c=-75/94+2/19*I,n=4 2178330857626721 r005 Im(z^2+c),c=-6/17+13/37*I,n=54 2178330858410678 r005 Im(z^2+c),c=-7/9+1/127*I,n=55 2178330858610078 m001 (Zeta(1,-1)+GAMMA(5/6))/(1-3^(1/3)) 2178330859866349 r004 Re(z^2+c),c=-11/42+1/19*I,z(0)=-1,n=8 2178330870633415 m001 HardyLittlewoodC3^gamma(1)+ln(Pi) 2178330874860563 m001 exp(-1/2*Pi)/(BesselJ(0,1)^ZetaP(3)) 2178330875745539 a007 Real Root Of 12*x^4-312*x^3-631*x^2+471*x+525 2178330876533228 m001 (Magata+Riemann1stZero)/(Thue-ZetaQ(2)) 2178330900177730 b008 E^((3*Pi)/14)/9 2178330900324530 a007 Real Root Of -355*x^4-298*x^3+782*x^2-512*x+87 2178330902033153 r009 Re(z^3+c),c=-5/19+17/61*I,n=5 2178330902239436 r005 Re(z^2+c),c=21/62+8/33*I,n=41 2178330904014384 r005 Re(z^2+c),c=-27/110+13/64*I,n=7 2178330907980185 m001 GAMMA(19/24)^(Pi^(1/2))*GAMMA(13/24) 2178330907980185 m001 GAMMA(19/24)^sqrt(Pi)*GAMMA(13/24) 2178330911184527 r005 Im(z^2+c),c=-6/17+13/37*I,n=57 2178330914386602 a007 Real Root Of 242*x^4+683*x^3+316*x^2-507*x-993 2178330925534757 r005 Im(z^2+c),c=-5/118+16/63*I,n=15 2178330927968074 m003 7/20+Sqrt[5]/8-Tan[1/2+Sqrt[5]/2] 2178330929771267 m001 BesselI(0,1)^ln(2)-HardHexagonsEntropy 2178330937636541 m005 (1/2*exp(1)-7/12)/(11/56+1/14*5^(1/2)) 2178330939042748 r005 Im(z^2+c),c=-6/17+13/37*I,n=50 2178330944405571 k001 Champernowne real with 1131*n+1047 2178330956830028 a007 Real Root Of -146*x^4+154*x^3+784*x^2-729*x-429 2178330962710839 a001 55/521*521^(15/31) 2178330963350822 r009 Re(z^3+c),c=-57/110+9/17*I,n=11 2178330964176955 a003 sin(Pi*7/61)*sin(Pi*25/118) 2178330971034250 m001 GAMMA(19/24)+Riemann2ndZero-ThueMorse 2178330978274824 a001 2207/121393*2178309^(17/35) 2178330983276409 m001 ln(TreeGrowth2nd)/Sierpinski^2*BesselK(0,1)^2 2178330987116253 l006 ln(843/7445) 2178330987376759 m001 (Trott2nd+ZetaQ(3))/(MadelungNaCl-Magata) 2178331004939900 m001 (-GAMMA(11/24)+1)/(BesselI(0,2)+2) 2178331007911811 r009 Re(z^3+c),c=-13/48+15/29*I,n=3 2178331012796059 m005 (1/2*Zeta(3)+1/3)/(1/11*exp(1)+2/11) 2178331031081873 r005 Im(z^2+c),c=-6/17+13/37*I,n=59 2178331031327430 a001 24157817/521*322^(2/3) 2178331037002297 m001 (ln(Pi)-GAMMA(19/24))/(Totient-ZetaQ(3)) 2178331040724114 m002 2+5/E^Pi-Sinh[Pi]/Pi^5 2178331044425574 k001 Champernowne real with 1132*n+1046 2178331045131993 m001 (ln(5)+HardyLittlewoodC5)/(MertensB2-OneNinth) 2178331048903306 a003 sin(Pi*36/119)/cos(Pi*45/119) 2178331049264981 r005 Im(z^2+c),c=-6/17+13/37*I,n=62 2178331049507121 m005 (1/2*Catalan-1/8)/(3/7*exp(1)+4/11) 2178331060097945 m005 (1/2*2^(1/2)-5/12)/(3/7*5^(1/2)+3/8) 2178331064046832 r005 Im(z^2+c),c=-4/7+3/76*I,n=45 2178331066157497 a007 Real Root Of 247*x^4+15*x^3-586*x^2+913*x-637 2178331067800916 a007 Real Root Of -681*x^4+392*x^3-869*x^2+997*x+264 2178331068078011 a007 Real Root Of -466*x^4-536*x^3+634*x^2-941*x-106 2178331072334264 a005 (1/sin(76/165*Pi))^1301 2178331072475294 r005 Im(z^2+c),c=-6/17+13/37*I,n=55 2178331073409098 m001 1/ln(Porter)*Khintchine/LambertW(1)^2 2178331073443706 m001 (2^(1/3)+2^(1/2))/(-Si(Pi)+GolombDickman) 2178331076331499 r005 Im(z^2+c),c=-6/17+13/37*I,n=64 2178331080080715 a003 cos(Pi*3/74)/cos(Pi*36/103) 2178331091504856 r005 Im(z^2+c),c=-6/17+13/37*I,n=60 2178331099844160 b008 Sqrt[Pi]+3*AiryAi[1] 2178331102214426 k006 concat of cont frac of 2178331106898838 m001 (ln(5)+BesselI(1,1))/(Artin+GolombDickman) 2178331109821696 r009 Re(z^3+c),c=-29/102+18/55*I,n=6 2178331111083951 r005 Im(z^2+c),c=-13/12+22/97*I,n=9 2178331111222254 k007 concat of cont frac of 2178331112894803 a007 Real Root Of 163*x^4-627*x^3+221*x^2+455*x+771 2178331118679299 m001 (Robbin+Tribonacci)/(Pi^(1/2)-GolombDickman) 2178331124641778 r005 Im(z^2+c),c=-6/17+13/37*I,n=63 2178331127235790 r005 Im(z^2+c),c=-6/17+13/37*I,n=61 2178331127666959 r005 Im(z^2+c),c=-113/78+3/17*I,n=5 2178331139069042 m001 (exp(-1/2*Pi)-GAMMA(11/12))/(Mills+Sierpinski) 2178331144445577 k001 Champernowne real with 1133*n+1045 2178331146041480 a007 Real Root Of 608*x^4+997*x^3-337*x^2+641*x-389 2178331151121532 k007 concat of cont frac of 2178331160346649 a007 Real Root Of 287*x^4+154*x^3+974*x^2-467*x-147 2178331160757892 g005 GAMMA(2/7)/GAMMA(10/11)/GAMMA(9/11)/GAMMA(7/9) 2178331161389540 r009 Re(z^3+c),c=-13/42+15/37*I,n=10 2178331165028376 m006 (1/3*Pi^2-2/3)/(1/4/Pi-1/5) 2178331168445305 p004 log(29423/28789) 2178331168980785 a001 521/5*233^(29/52) 2178331169778734 r005 Re(z^2+c),c=21/62+23/64*I,n=4 2178331169864523 a007 Real Root Of -466*x^4-546*x^3+915*x^2+123*x+775 2178331177295073 m001 (Sarnak-TreeGrowth2nd)/(Ei(1)-Lehmer) 2178331177651715 a007 Real Root Of -332*x^4-456*x^3+809*x^2+201*x-639 2178331189641792 a007 Real Root Of -240*x^4-149*x^3+418*x^2-983*x-261 2178331189683734 a001 165580141/322*123^(3/10) 2178331194870948 r002 5th iterates of z^2 + 2178331216300574 m001 1/(2^(1/3))^2/exp(Conway)^2/Zeta(1/2)^2 2178331225250521 r005 Im(z^2+c),c=-6/17+13/37*I,n=58 2178331230444255 r009 Re(z^3+c),c=-19/58+25/56*I,n=41 2178331244465580 k001 Champernowne real with 1134*n+1044 2178331248652296 r005 Im(z^2+c),c=-6/17+13/37*I,n=56 2178331253176757 r005 Im(z^2+c),c=-5/7+11/87*I,n=11 2178331264120348 r005 Re(z^2+c),c=9/70+22/43*I,n=15 2178331264494100 m005 (1/2*Pi-4)/(3/7*Zeta(3)+3/5) 2178331266949280 a001 76*(1/2*5^(1/2)+1/2)^10*7^(10/23) 2178331273509250 l006 ln(469/4142) 2178331276143952 m001 (-Lehmer+OneNinth)/(5^(1/2)+gamma(2)) 2178331279975410 m001 (CopelandErdos-Kac)/(Kolakoski-Sierpinski) 2178331285437083 m005 (3/28+1/4*5^(1/2))/(-28/55+1/11*5^(1/2)) 2178331287069884 a007 Real Root Of 37*x^4+837*x^3+667*x^2-183*x+124 2178331290184961 m006 (1/5*Pi^2+2/3)/(2/3/Pi+1) 2178331290788852 r005 Re(z^2+c),c=-21/118+16/37*I,n=15 2178331292989496 m005 (1/2*Pi+2/11)/(6*Zeta(3)+5/6) 2178331293061248 b008 Sqrt[5]*CosIntegral[(6*Pi)/5] 2178331300358445 a007 Real Root Of -657*x^4-510*x^3-641*x^2+772*x-131 2178331311962527 a007 Real Root Of 241*x^4+712*x^3+507*x^2+340*x+268 2178331314739724 r002 7th iterates of z^2 + 2178331315013738 m003 Coth[1/2+Sqrt[5]/2]/4+5*Sech[1/2+Sqrt[5]/2] 2178331315785386 b008 9*Log[45/4] 2178331329677874 l006 ln(793/986) 2178331332626436 m001 GAMMA(2/3)/GAMMA(1/12)^2*exp(GAMMA(7/12))^2 2178331334751586 a007 Real Root Of 239*x^4+131*x^3-417*x^2+536*x-881 2178331344485583 k001 Champernowne real with 1135*n+1043 2178331348232411 r005 Im(z^2+c),c=23/86+4/53*I,n=55 2178331348256639 h005 exp(cos(Pi*14/55)/sin(Pi*6/17)) 2178331355356909 m005 (1/2*3^(1/2)+1/3)/(1/14+3/14*5^(1/2)) 2178331355960140 a001 23725150497407/377*1836311903^(12/17) 2178331355960140 a001 73681302247/377*6557470319842^(12/17) 2178331358173888 a001 1/1364*(1/2*5^(1/2)+1/2)^21*3^(3/17) 2178331359644038 m001 (Paris-Totient)/(Zeta(5)-ErdosBorwein) 2178331369680364 a007 Real Root Of 33*x^4+730*x^3+244*x^2+19*x-109 2178331373603353 r005 Re(z^2+c),c=-43/32+1/22*I,n=36 2178331394230285 r002 19th iterates of z^2 + 2178331394345409 s002 sum(A165411[n]/(n^2*pi^n-1),n=1..infinity) 2178331394767513 r005 Re(z^2+c),c=1/40+19/26*I,n=7 2178331395431826 a007 Real Root Of -518*x^4-682*x^3+590*x^2-456*x+821 2178331402351674 a007 Real Root Of -534*x^4-874*x^3+629*x^2+107*x+238 2178331404990898 a007 Real Root Of 966*x^4-178*x^3+290*x^2-611*x+119 2178331407488106 m001 Pi-sin(1/12*Pi)-CareFree 2178331408758824 a007 Real Root Of -83*x^4+252*x^3+579*x^2-775*x+38 2178331413351163 a007 Real Root Of -125*x^4-115*x^3+432*x^2-95*x-631 2178331415587908 m001 (Pi*ln(5)+KomornikLoreti)/Pi 2178331417154485 m001 (polylog(4,1/2)+Grothendieck*Mills)/Mills 2178331424715592 a001 701408733/521*123^(1/10) 2178331438262034 s001 sum(exp(-Pi/2)^n*A257516[n],n=1..infinity) 2178331439763255 m001 GAMMA(11/12)*Salem/ln(GAMMA(5/12))^2 2178331441121111 k007 concat of cont frac of 2178331444505586 k001 Champernowne real with 1136*n+1042 2178331453647464 m001 1/LambertW(1)*exp(Salem)^2*sinh(1) 2178331471106780 r005 Re(z^2+c),c=-17/98+17/39*I,n=21 2178331478029585 r009 Re(z^3+c),c=-1/48+58/61*I,n=17 2178331478158291 r009 Re(z^3+c),c=-1/48+58/61*I,n=19 2178331478176193 r009 Re(z^3+c),c=-1/48+58/61*I,n=21 2178331478177526 r009 Re(z^3+c),c=-1/48+58/61*I,n=23 2178331478177562 r009 Re(z^3+c),c=-1/48+58/61*I,n=33 2178331478177562 r009 Re(z^3+c),c=-1/48+58/61*I,n=35 2178331478177562 r009 Re(z^3+c),c=-1/48+58/61*I,n=37 2178331478177562 r009 Re(z^3+c),c=-1/48+58/61*I,n=39 2178331478177562 r009 Re(z^3+c),c=-1/48+58/61*I,n=41 2178331478177562 r009 Re(z^3+c),c=-1/48+58/61*I,n=51 2178331478177562 r009 Re(z^3+c),c=-1/48+58/61*I,n=53 2178331478177562 r009 Re(z^3+c),c=-1/48+58/61*I,n=55 2178331478177562 r009 Re(z^3+c),c=-1/48+58/61*I,n=57 2178331478177562 r009 Re(z^3+c),c=-1/48+58/61*I,n=63 2178331478177562 r009 Re(z^3+c),c=-1/48+58/61*I,n=61 2178331478177562 r009 Re(z^3+c),c=-1/48+58/61*I,n=59 2178331478177562 r009 Re(z^3+c),c=-1/48+58/61*I,n=49 2178331478177562 r009 Re(z^3+c),c=-1/48+58/61*I,n=47 2178331478177562 r009 Re(z^3+c),c=-1/48+58/61*I,n=45 2178331478177562 r009 Re(z^3+c),c=-1/48+58/61*I,n=43 2178331478177562 r009 Re(z^3+c),c=-1/48+58/61*I,n=31 2178331478177562 r009 Re(z^3+c),c=-1/48+58/61*I,n=29 2178331478177563 r009 Re(z^3+c),c=-1/48+58/61*I,n=27 2178331478177567 r009 Re(z^3+c),c=-1/48+58/61*I,n=25 2178331478304274 r009 Re(z^3+c),c=-1/48+58/61*I,n=15 2178331482682119 r005 Im(z^2+c),c=-3/94+1/4*I,n=4 2178331482713986 m001 1/MadelungNaCl*exp(ArtinRank2)*Ei(1) 2178331489128935 m005 (35/44+1/4*5^(1/2))/(1/9*Pi+3/11) 2178331499912893 a007 Real Root Of 415*x^4+643*x^3-424*x^2+611*x+645 2178331501793445 r009 Re(z^3+c),c=-1/48+58/61*I,n=13 2178331507225835 l006 ln(1033/9123) 2178331508209395 a003 cos(Pi*12/71)-sin(Pi*34/107) 2178331512760914 r005 Re(z^2+c),c=-5/29+7/16*I,n=34 2178331516487416 r005 Im(z^2+c),c=-13/28+13/35*I,n=22 2178331520313066 a007 Real Root Of 251*x^4+143*x^3-957*x^2+75*x+531 2178331520527187 m001 1/exp(TwinPrimes)^2/Paris^2/(2^(1/3)) 2178331523392156 m001 (GAMMA(3/4)+BesselI(1,2))/(Niven-ThueMorse) 2178331530449597 s002 sum(A062737[n]/(10^n+1),n=1..infinity) 2178331536400161 m009 (3/4*Psi(1,2/3)+1)/(1/3*Psi(1,3/4)+2/3) 2178331542158282 a007 Real Root Of -435*x^4-830*x^3-97*x^2-564*x+447 2178331544525589 k001 Champernowne real with 1137*n+1041 2178331545086810 r005 Im(z^2+c),c=-45/94+25/64*I,n=28 2178331553055757 m002 -2+Pi-Log[Pi]/Pi^3+ProductLog[Pi] 2178331558545266 a007 Real Root Of -964*x^4-450*x^3-237*x^2+630*x+146 2178331565422453 a007 Real Root Of -436*x^4+176*x^3-745*x^2+769*x-133 2178331566949594 m002 6+Pi-Cosh[Pi]+Pi*Csch[Pi] 2178331572896422 r005 Im(z^2+c),c=-20/21+11/50*I,n=53 2178331576560122 m001 BesselJ(1,1)+FeigenbaumKappa*GlaisherKinkelin 2178331577862898 r005 Im(z^2+c),c=-39/62+31/52*I,n=7 2178331585987342 r005 Re(z^2+c),c=-9/56+13/28*I,n=41 2178331591195981 a007 Real Root Of 418*x^4+855*x^3-514*x^2-790*x+144 2178331595167611 a001 4181/7*199^(11/45) 2178331600023227 b008 BesselJ[5,5/13] 2178331601390509 m001 (GAMMA(5/6)+Mills)/(Porter-Sierpinski) 2178331602752382 a001 2/123*11^(5/41) 2178331617222656 r005 Re(z^2+c),c=-1/16+9/16*I,n=21 2178331617924176 a007 Real Root Of 300*x^4+551*x^3-106*x^2-143*x-868 2178331626454221 m001 GAMMA(1/3)/sqrt(2)*GAMMA(1/12) 2178331628184542 r005 Im(z^2+c),c=-31/106+1/3*I,n=14 2178331634914279 r005 Im(z^2+c),c=-6/17+13/37*I,n=53 2178331636050863 m001 (Sierpinski+ZetaP(3))/(Landau+Sarnak) 2178331640215034 r005 Re(z^2+c),c=-47/46+17/61*I,n=16 2178331642907187 m001 ln(2^(1/2)+1)^FeigenbaumKappa*Sierpinski 2178331644545592 k001 Champernowne real with 1138*n+1040 2178331650300946 r005 Re(z^2+c),c=-7/58+39/64*I,n=30 2178331658346597 r005 Im(z^2+c),c=5/27+33/59*I,n=41 2178331659836454 r002 21th iterates of z^2 + 2178331660499217 m001 (GlaisherKinkelin+Porter)/(Backhouse-exp(1)) 2178331662065247 m001 1/Zeta(1,2)/GAMMA(5/6)/ln(cosh(1)) 2178331663325804 m005 (1/3*Pi-1/8)/(4/11*2^(1/2)-1/11) 2178331679630887 r005 Re(z^2+c),c=-7/40+22/51*I,n=39 2178331680590500 a007 Real Root Of -422*x^4+638*x^3-671*x^2+999*x+257 2178331687032124 m001 (Shi(1)+Pi^(1/2))/(TreeGrowth2nd+Thue) 2178331691759318 m001 exp(TreeGrowth2nd)^2/GolombDickman/sqrt(Pi) 2178331693652881 r009 Im(z^3+c),c=-9/32+11/60*I,n=11 2178331701575224 l006 ln(564/4981) 2178331710502871 a007 Real Root Of 339*x^4+322*x^3-593*x^2+812*x+278 2178331713732265 r002 52th iterates of z^2 + 2178331716558344 a007 Real Root Of 423*x^4+642*x^3-78*x^2-532*x+112 2178331730916348 m001 exp(Niven)/GolombDickman^2*cosh(1) 2178331735378715 q001 2272/1043 2178331744565595 k001 Champernowne real with 1139*n+1039 2178331747045246 r005 Im(z^2+c),c=23/86+4/53*I,n=56 2178331749581919 a007 Real Root Of -945*x^4+845*x^3-984*x^2+25*x+63 2178331750837424 r005 Re(z^2+c),c=3/28+15/52*I,n=6 2178331751412859 m001 gamma(3)*Champernowne*Thue 2178331751497351 a005 (1/cos(5/199*Pi))^988 2178331768453766 m001 (Stephens+ZetaQ(2))/(FeigenbaumB-Landau) 2178331780142522 k002 Champernowne real with 98*n^2-237*n+160 2178331781224951 a007 Real Root Of -200*x^4-213*x^3+879*x^2+776*x-179 2178331784421925 r005 Im(z^2+c),c=-6/17+13/37*I,n=51 2178331787426176 h001 (4/9*exp(1)+1/10)/(5/7*exp(2)+8/11) 2178331792283780 a007 Real Root Of -868*x^4-613*x^3-29*x^2+505*x+107 2178331792970442 m001 (GAMMA(5/6)+Magata)/(Mills+StronglyCareFree) 2178331794398276 r002 2th iterates of z^2 + 2178331802437121 m001 (Magata+Thue)/(DuboisRaymond+HeathBrownMoroz) 2178331804281923 r005 Im(z^2+c),c=-7/36+11/36*I,n=25 2178331809744027 m001 1/(3^(1/3))*ln(GAMMA(1/24))^3 2178331842341994 r009 Re(z^3+c),c=-14/23+28/55*I,n=54 2178331844585598 k001 Champernowne real with 1140*n+1038 2178331854378297 a007 Real Root Of -10*x^4+162*x^3-65*x^2-909*x+228 2178331856286648 a007 Real Root Of -420*x^4-388*x^3+840*x^2-546*x+271 2178331857351528 r005 Re(z^2+c),c=-25/114+21/29*I,n=7 2178331861710540 r002 3th iterates of z^2 + 2178331878532399 m005 (1/2*gamma-1/9)/(11/12*gamma+2/7) 2178331883298008 r009 Re(z^3+c),c=-1/48+58/61*I,n=11 2178331886970488 a007 Real Root Of -629*x^4+269*x^3-922*x^2+317*x+117 2178331891952356 a001 196418/2207*7^(23/50) 2178331892241407 a007 Real Root Of -403*x^4-775*x^3-67*x^2-304*x+719 2178331892514919 a001 199/34*2971215073^(19/21) 2178331895278571 m001 (FeigenbaumC+GaussAGM)/(Khinchin-MinimumGamma) 2178331898387657 r005 Im(z^2+c),c=-1+55/237*I,n=14 2178331902581001 m005 (1/3*5^(1/2)+1/3)/(3/8*3^(1/2)-3/5) 2178331903428425 a003 cos(Pi*40/93)/sin(Pi*58/117) 2178331903873442 m005 (1/3*Catalan+2/7)/(9/11*Pi+1/7) 2178331904226049 m001 PisotVijayaraghavan^2*ln(Niven)^2*TwinPrimes^2 2178331920936761 a007 Real Root Of -302*x^4-527*x^3+92*x^2-432*x-25 2178331928493222 m001 (OneNinth+ZetaQ(2))/(FeigenbaumD-Psi(1,1/3)) 2178331929636291 m005 (1/2*2^(1/2)+1)/(1/6*Zeta(3)+7/12) 2178331939196648 r005 Re(z^2+c),c=-8/31+5/41*I,n=13 2178331940533656 r009 Re(z^3+c),c=-4/11+11/21*I,n=24 2178331944605601 k001 Champernowne real with 1141*n+1037 2178331950882470 m008 (5/6*Pi^2-3)/(1/4*Pi^6-1/2) 2178331955438262 a003 2^(1/2)+cos(2/21*Pi)+cos(5/24*Pi)-cos(1/18*Pi) 2178331970107282 m001 (arctan(1/3)-GAMMA(7/12))/(Otter+Sierpinski) 2178331971689434 a003 sin(Pi*9/58)-sin(Pi*13/54) 2178331975238515 b008 LogIntegral[Sqrt[2+E^(-1)]] 2178331986952464 a007 Real Root Of -906*x^4-714*x^3-317*x^2+970*x+221 2178331989245290 h001 (3/10*exp(1)+8/9)/(1/12*exp(2)+1/6) 2178331993318011 a007 Real Root Of -194*x^4+19*x^3+931*x^2-257*x-413 2178331993664662 a008 Real Root of x^4+15*x^2-88*x+98 2178331998065015 a007 Real Root Of -635*x^4-988*x^3+745*x^2-652*x-870 2178332006222976 l006 ln(659/5820) 2178332006874040 r005 Im(z^2+c),c=2/11+4/27*I,n=20 2178332011542303 r002 16th iterates of z^2 + 2178332013124912 r002 18th iterates of z^2 + 2178332015900164 m001 (Riemann2ndZero+Tetranacci)/(Bloch-gamma) 2178332018494116 a007 Real Root Of -53*x^4+207*x^3+535*x^2-260*x+228 2178332028573423 r009 Re(z^3+c),c=-11/86+55/57*I,n=30 2178332030170118 m001 (Zeta(3)+PolyaRandomWalk3D)/(Rabbit-ZetaQ(4)) 2178332040707325 r005 Re(z^2+c),c=19/110+1/37*I,n=6 2178332042545150 a007 Real Root Of 753*x^4+380*x^3+882*x^2-945*x-21 2178332044625604 k001 Champernowne real with 1142*n+1036 2178332048658467 p004 log(35759/4049) 2178332049805917 m001 (5^(1/2)+Shi(1))/(-CopelandErdos+MadelungNaCl) 2178332067957402 a008 Real Root of (1+x-15*x^2-7*x^3) 2178332069778579 a007 Real Root Of 351*x^4+415*x^3-960*x^2+7*x+957 2178332069888530 r002 13th iterates of z^2 + 2178332078554596 p001 sum(1/(591*n+508)/(5^n),n=0..infinity) 2178332086405938 r005 Re(z^2+c),c=-1/4+6/37*I,n=6 2178332093486263 r005 Im(z^2+c),c=23/86+4/53*I,n=54 2178332099159078 r005 Re(z^2+c),c=-3/19+4/9*I,n=11 2178332105218357 a007 Real Root Of 477*x^4+825*x^3+64*x^2+888*x-582 2178332111450879 r005 Re(z^2+c),c=-21/110+5/8*I,n=64 2178332119521883 m004 3*Cos[Sqrt[5]*Pi]-Sin[Sqrt[5]*Pi]/20 2178332127245675 r005 Im(z^2+c),c=1/24+13/59*I,n=19 2178332128511412 k006 concat of cont frac of 2178332131316292 m001 exp(GAMMA(13/24))^2*Cahen*GAMMA(5/6)^2 2178332132339978 r005 Im(z^2+c),c=1/24+13/59*I,n=20 2178332134957697 m001 AlladiGrinstead^gamma(2)+Salem 2178332138509346 m001 Riemann3rdZero*(2^(1/2)-Landau) 2178332144645607 k001 Champernowne real with 1143*n+1035 2178332145101250 r005 Re(z^2+c),c=-39/50+5/57*I,n=36 2178332150546097 r009 Re(z^3+c),c=-17/54+15/23*I,n=43 2178332158007394 a007 Real Root Of -779*x^4+159*x^3+61*x^2+918*x-2 2178332158131263 r005 Re(z^2+c),c=-15/22+2/67*I,n=2 2178332168846264 m005 (1/2*Zeta(3)+1/4)/(-43/70+1/10*5^(1/2)) 2178332173552024 m001 Conway^HardyLittlewoodC3/Landau 2178332180153505 r009 Re(z^3+c),c=-19/66+11/32*I,n=12 2178332180822150 a001 15456*29^(11/14) 2178332181105477 r005 Im(z^2+c),c=-5/6+43/237*I,n=43 2178332185192763 a007 Real Root Of 471*x^4+666*x^3-656*x^2+80*x-434 2178332191920840 r005 Im(z^2+c),c=1/24+13/59*I,n=23 2178332192774810 r005 Im(z^2+c),c=1/24+13/59*I,n=24 2178332194775012 r005 Im(z^2+c),c=1/24+13/59*I,n=27 2178332194829655 r005 Im(z^2+c),c=1/24+13/59*I,n=28 2178332194895627 r005 Im(z^2+c),c=1/24+13/59*I,n=31 2178332194898436 r005 Im(z^2+c),c=1/24+13/59*I,n=32 2178332194900566 r005 Im(z^2+c),c=1/24+13/59*I,n=35 2178332194900696 r005 Im(z^2+c),c=1/24+13/59*I,n=36 2178332194900763 r005 Im(z^2+c),c=1/24+13/59*I,n=39 2178332194900769 r005 Im(z^2+c),c=1/24+13/59*I,n=40 2178332194900771 r005 Im(z^2+c),c=1/24+13/59*I,n=43 2178332194900771 r005 Im(z^2+c),c=1/24+13/59*I,n=44 2178332194900771 r005 Im(z^2+c),c=1/24+13/59*I,n=47 2178332194900771 r005 Im(z^2+c),c=1/24+13/59*I,n=48 2178332194900771 r005 Im(z^2+c),c=1/24+13/59*I,n=51 2178332194900771 r005 Im(z^2+c),c=1/24+13/59*I,n=52 2178332194900771 r005 Im(z^2+c),c=1/24+13/59*I,n=55 2178332194900771 r005 Im(z^2+c),c=1/24+13/59*I,n=56 2178332194900771 r005 Im(z^2+c),c=1/24+13/59*I,n=59 2178332194900771 r005 Im(z^2+c),c=1/24+13/59*I,n=63 2178332194900771 r005 Im(z^2+c),c=1/24+13/59*I,n=60 2178332194900771 r005 Im(z^2+c),c=1/24+13/59*I,n=62 2178332194900771 r005 Im(z^2+c),c=1/24+13/59*I,n=64 2178332194900771 r005 Im(z^2+c),c=1/24+13/59*I,n=61 2178332194900771 r005 Im(z^2+c),c=1/24+13/59*I,n=58 2178332194900771 r005 Im(z^2+c),c=1/24+13/59*I,n=57 2178332194900771 r005 Im(z^2+c),c=1/24+13/59*I,n=54 2178332194900771 r005 Im(z^2+c),c=1/24+13/59*I,n=53 2178332194900771 r005 Im(z^2+c),c=1/24+13/59*I,n=50 2178332194900771 r005 Im(z^2+c),c=1/24+13/59*I,n=49 2178332194900771 r005 Im(z^2+c),c=1/24+13/59*I,n=46 2178332194900772 r005 Im(z^2+c),c=1/24+13/59*I,n=45 2178332194900772 r005 Im(z^2+c),c=1/24+13/59*I,n=42 2178332194900773 r005 Im(z^2+c),c=1/24+13/59*I,n=41 2178332194900785 r005 Im(z^2+c),c=1/24+13/59*I,n=38 2178332194900812 r005 Im(z^2+c),c=1/24+13/59*I,n=37 2178332194901191 r005 Im(z^2+c),c=1/24+13/59*I,n=34 2178332194901802 r005 Im(z^2+c),c=1/24+13/59*I,n=33 2178332194913692 r005 Im(z^2+c),c=1/24+13/59*I,n=30 2178332194926294 r005 Im(z^2+c),c=1/24+13/59*I,n=29 2178332195290425 r005 Im(z^2+c),c=1/24+13/59*I,n=26 2178332195515683 r005 Im(z^2+c),c=1/24+13/59*I,n=25 2178332196142747 m001 (Bloch-Magata)/(Riemann1stZero-TwinPrimes) 2178332196762992 g001 abs(GAMMA(-1/15+I*8/3)) 2178332197687378 m005 (1/5*Pi+3/5)/(7/6+2*5^(1/2)) 2178332198323704 r002 37th iterates of z^2 + 2178332206454668 r005 Im(z^2+c),c=1/24+13/59*I,n=22 2178332209190306 r005 Im(z^2+c),c=1/24+13/59*I,n=21 2178332211738604 r005 Im(z^2+c),c=-43/50+5/27*I,n=54 2178332213921188 a007 Real Root Of 281*x^4-462*x^3+24*x^2-643*x+14 2178332215102021 k008 concat of cont frac of 2178332225923169 m001 GAMMA(7/24)*ln(GAMMA(1/12))/sin(Pi/5)^2 2178332229208498 m001 GAMMA(17/24)^2*ln(FeigenbaumD)^2*GAMMA(2/3) 2178332234102666 l006 ln(754/6659) 2178332234103881 r005 Re(z^2+c),c=31/94+9/41*I,n=41 2178332239569399 m001 (GAMMA(3/4)-3^(1/3))/(Niven-Rabbit) 2178332243112879 m001 (1/2*cos(1)+GAMMA(1/12))/cos(1) 2178332244665610 k001 Champernowne real with 1144*n+1034 2178332273704482 b008 -2/11+ProductLog[25] 2178332273912725 a001 514229/5778*7^(23/50) 2178332275861387 a007 Real Root Of -35*x^4+951*x^3-662*x^2+710*x-133 2178332280794060 r009 Re(z^3+c),c=-9/64+37/50*I,n=43 2178332302276247 m001 (sin(1)+Mills)/(-MinimumGamma+PlouffeB) 2178332302902998 r005 Re(z^2+c),c=-49/60+1/29*I,n=8 2178332311676094 a003 sin(Pi*8/115)/sin(Pi*38/81) 2178332312279050 m005 (4*gamma+5/6)/(3*Pi+5) 2178332316624551 a007 Real Root Of -339*x^4-569*x^3+716*x^2+953*x+430 2178332324390606 m005 (1/2*5^(1/2)+3)/(4/5*gamma-3/11) 2178332329640003 a001 1346269/15127*7^(23/50) 2178332333094180 m001 (Zeta(3)-exp(Pi))/(FeigenbaumB+ZetaP(3)) 2178332341785802 a007 Real Root Of -399*x^4-669*x^3-826*x^2+876*x+224 2178332342795429 a001 2178309/24476*7^(23/50) 2178332343102177 m001 ln(ErdosBorwein)^2/Artin*BesselK(1,1)^2 2178332344204169 m001 (FeigenbaumAlpha-OneNinth)/(Salem-ZetaP(4)) 2178332344685613 k001 Champernowne real with 1145*n+1033 2178332356656161 r009 Re(z^3+c),c=-19/58+25/56*I,n=38 2178332364081356 a001 832040/9349*7^(23/50) 2178332368244979 r009 Im(z^3+c),c=-11/32+7/45*I,n=15 2178332370581934 p004 log(29153/3301) 2178332376821770 m001 (-OneNinth+Paris)/(LambertW(1)+FeigenbaumMu) 2178332379061027 r009 Re(z^3+c),c=-19/58+25/56*I,n=33 2178332385048389 r005 Im(z^2+c),c=-16/19+7/44*I,n=21 2178332387255928 s001 sum(exp(-Pi/3)^(n-1)*A011684[n],n=1..infinity) 2178332394371384 m001 Khinchin-Zeta(1,2)-exp(1/exp(1)) 2178332394371384 m001 Khinchin-exp(1/exp(1))-Zeta(1,2) 2178332395069184 r009 Im(z^3+c),c=-3/16+47/51*I,n=6 2178332395070995 r005 Re(z^2+c),c=-7/6+91/219*I,n=2 2178332409419374 a001 1/29*(1/2*5^(1/2)+1/2)^4*123^(6/13) 2178332410688333 m005 (1/2*Catalan-1/11)/(6/7*Catalan+9/10) 2178332410984510 l006 ln(849/7498) 2178332417870471 r002 16th iterates of z^2 + 2178332422654853 m001 FeigenbaumD^2*Conway*exp(BesselK(0,1))^2 2178332427360579 m001 (exp(1/Pi)+Pi^(1/2))/(GAMMA(3/4)+Ei(1,1)) 2178332428147883 r005 Im(z^2+c),c=-39/110+13/37*I,n=23 2178332429340882 r005 Im(z^2+c),c=2/11+4/27*I,n=21 2178332430717408 r005 Im(z^2+c),c=-23/78+2/7*I,n=3 2178332435840951 a007 Real Root Of -318*x^4+697*x^3-314*x^2+997*x+240 2178332436650365 m001 1/ln(BesselJ(1,1))^2/Si(Pi)*exp(1) 2178332444705616 k001 Champernowne real with 1146*n+1032 2178332447375730 m005 (1/2*gamma-5)/(9/11*5^(1/2)+1/3) 2178332451135427 a007 Real Root Of 399*x^4+729*x^3-351*x^2-386*x-624 2178332459663854 m005 11/25*(1/3*2^(1/2)-1/4)*5^(1/2) 2178332477307533 a007 Real Root Of 299*x^4+442*x^3-519*x^2-421*x-618 2178332484421364 m005 (1/2*Zeta(3)+4)/(5/7*3^(1/2)+7/8) 2178332492124045 r009 Im(z^3+c),c=-9/25+6/41*I,n=12 2178332493302018 a007 Real Root Of 185*x^4+651*x^3+904*x^2+920*x+278 2178332502478310 p004 log(32257/25943) 2178332507103415 r005 Re(z^2+c),c=-11/62+20/47*I,n=33 2178332509977282 a001 317811/3571*7^(23/50) 2178332510209010 r005 Im(z^2+c),c=1/24+13/59*I,n=17 2178332510777852 a007 Real Root Of 342*x^4+249*x^3-765*x^2+408*x-608 2178332513464451 m005 (1/3*3^(1/2)-2/5)/(2/5*Zeta(3)+1/3) 2178332520287051 a001 2/29*64079^(13/25) 2178332522971814 p002 log(12^(2/3)/(23+6^(2/3))^(1/2)) 2178332527045017 m001 1/ln(Porter)^2*Si(Pi)^2*cos(Pi/12)^2 2178332527509421 r009 Re(z^3+c),c=-23/64+31/59*I,n=40 2178332529510364 h001 (1/2*exp(2)+5/12)/(2/5*exp(1)+4/5) 2178332530356359 g007 Psi(2,2/11)-14*Zeta(3)-Psi(2,5/6)-Psi(2,1/4) 2178332530611185 r009 Re(z^3+c),c=-23/98+27/38*I,n=54 2178332532471073 r005 Im(z^2+c),c=1/24+13/59*I,n=18 2178332535508029 r005 Im(z^2+c),c=-27/20+1/55*I,n=27 2178332544140269 a007 Real Root Of -278*x^4-355*x^3+659*x^2+297*x+110 2178332544725619 k001 Champernowne real with 1147*n+1031 2178332550413207 a001 18/4181*4181^(8/17) 2178332552265112 l006 ln(944/8337) 2178332559996051 a001 29/13*1134903170^(15/17) 2178332563596246 a001 9/98209*14930352^(8/17) 2178332563607535 a001 18/9227465*53316291173^(8/17) 2178332565627445 a001 123/377*8^(21/23) 2178332569412906 r005 Im(z^2+c),c=-23/22+27/116*I,n=37 2178332570580363 m003 11/2+Sqrt[5]/4-10*Sec[1/2+Sqrt[5]/2] 2178332578844914 l006 ln(8119/10095) 2178332580365473 m001 (FeigenbaumB+Mills)/(arctan(1/3)-Conway) 2178332585092939 a007 Real Root Of 417*x^4+696*x^3-77*x^2+991*x+329 2178332587906484 m001 1/exp(KhintchineHarmonic)^2*Bloch/TwinPrimes 2178332591187857 r005 Im(z^2+c),c=-17/54+15/44*I,n=23 2178332595387721 m001 BesselI(0,1)/Artin*Cahen 2178332612788312 m005 (1/2*Zeta(3)+11/12)/(-7/60+1/12*5^(1/2)) 2178332614220539 a007 Real Root Of -388*x^4-857*x^3+229*x^2+901*x+754 2178332621148093 r008 a(0)=0,K{-n^6,24+26*n+27*n^2-32*n^3} 2178332631603111 a001 75025/3*322^(41/53) 2178332638562899 r005 Re(z^2+c),c=37/114+12/49*I,n=24 2178332643709077 m001 Zeta(5)^BesselI(1,1)/(MertensB1^BesselI(1,1)) 2178332644745622 k001 Champernowne real with 1148*n+1030 2178332660666500 m001 (OneNinth+TravellingSalesman)/(exp(1)+Shi(1)) 2178332667709979 l006 ln(1039/9176) 2178332668999906 r002 62th iterates of z^2 + 2178332673292111 a001 1/76*(1/2*5^(1/2)+1/2)^8*1364^(13/16) 2178332678327165 m001 (-Landau+Sierpinski)/(2^(1/3)-FellerTornier) 2178332679497907 m005 (5/8+1/4*5^(1/2))/(1/3*Zeta(3)+1/7) 2178332679588357 r005 Im(z^2+c),c=-89/106+7/52*I,n=14 2178332682448029 m001 (BesselI(1,2)+KhinchinLevy)/(Paris+Salem) 2178332686010252 m004 130*Pi-(Sec[Sqrt[5]*Pi]*Sinh[Sqrt[5]*Pi])/4 2178332691088244 q001 1/4590667 2178332692646233 r005 Re(z^2+c),c=-11/70+28/53*I,n=18 2178332701237827 a007 Real Root Of -425*x^4-801*x^3+353*x^2-89*x-579 2178332711029123 a003 -1/2+cos(1/10*Pi)-cos(3/8*Pi)+2*cos(10/21*Pi) 2178332712124807 m001 FeigenbaumAlpha-GAMMA(11/12)*HardyLittlewoodC4 2178332713843790 m001 (ln(5)+exp(1/Pi))/(Rabbit+TwinPrimes) 2178332714060501 l006 ln(7326/9109) 2178332728077354 r005 Im(z^2+c),c=23/86+4/53*I,n=57 2178332728792070 m001 ln(GAMMA(11/24))^2/Conway*cos(Pi/5)^2 2178332730104140 a007 Real Root Of -324*x^4-887*x^3-269*x^2+649*x+817 2178332739545627 a003 cos(Pi*2/85)*cos(Pi*46/107) 2178332744370713 s002 sum(A085455[n]/(n^2*exp(n)+1),n=1..infinity) 2178332744765625 k001 Champernowne real with 1149*n+1029 2178332747568558 m009 (1/3*Pi^2-3/4)/(1/4*Psi(1,2/3)+2/5) 2178332752339282 a005 (1/sin(56/127*Pi))^178 2178332763812221 l006 ln(1134/10015) 2178332782130686 a001 14930352/521*322^(3/4) 2178332782983440 m001 Salem^2*ln(MertensB1)*GAMMA(19/24) 2178332783143122 k002 Champernowne real with 197/2*n^2-477/2*n+161 2178332784751884 r005 Im(z^2+c),c=-111/110+9/40*I,n=17 2178332795332700 b008 19/13+ArcCsch[Glaisher] 2178332808919449 a007 Real Root Of -202*x^4+962*x^3-944*x^2-314*x-232 2178332808995038 m001 (Ei(1)-GAMMA(17/24))/(Conway-Mills) 2178332813149674 m001 1/exp(GAMMA(11/12))^2*Robbin*exp(1) 2178332813441749 m001 1/GAMMA(1/24)/ln(TwinPrimes)^2*log(1+sqrt(2)) 2178332823602322 a001 7/75025*610^(28/57) 2178332828243701 r002 7th iterates of z^2 + 2178332831964058 s002 sum(A084758[n]/(10^n+1),n=1..infinity) 2178332844785628 k001 Champernowne real with 1150*n+1028 2178332849259366 q001 3/13772 2178332849259366 q001 75/3443 2178332863501032 a003 sin(Pi*6/77)*sin(Pi*16/45) 2178332866696192 h005 exp(sin(Pi*1/19)-sin(Pi*20/51)) 2178332872059268 m001 (HardyLittlewoodC4+MertensB2)/(Sarnak-Totient) 2178332876473089 m001 (ln(Pi)-Zeta(1,2))/(Artin+LandauRamanujan2nd) 2178332880537680 m001 (arctan(1/3)+BesselK(1,1))/(Pi+ln(3)) 2178332882102035 l006 ln(6533/8123) 2178332891081835 b008 -3/14+Pi*Tanh[1] 2178332909383162 m001 BesselK(1,1)+GAMMA(17/24)*FibonacciFactorial 2178332914703513 a007 Real Root Of -473*x^4-868*x^3+198*x^2-452*x-246 2178332915692324 m004 -1-5*Pi-Sqrt[5]*Pi+Log[Sqrt[5]*Pi] 2178332918379212 a007 Real Root Of -419*x^4-377*x^3+914*x^2-922*x-808 2178332922099280 a007 Real Root Of -438*x^4-657*x^3+783*x^2+546*x+545 2178332939913756 m001 (2^(1/2)+gamma(3))/(Gompertz+ZetaQ(2)) 2178332940363548 a001 7/5*233^(25/27) 2178332943688837 r008 a(0)=0,K{-n^6,-14+87*n^3+29*n^2-56*n} 2178332944805631 k001 Champernowne real with 1151*n+1027 2178332958665424 a007 Real Root Of 351*x^4+508*x^3-90*x^2+848*x-378 2178332964648114 a001 11*(1/2*5^(1/2)+1/2)^28*29^(7/23) 2178332965550526 a005 (1/sin(109/231*Pi))^199 2178332970198923 r005 Im(z^2+c),c=-25/48+8/33*I,n=5 2178332986405244 m001 1/ln(GAMMA(7/12))/GolombDickman*gamma 2178332999794516 a007 Real Root Of 374*x^4-785*x^3+279*x^2-247*x-76 2178333005453338 m002 E^Pi*Pi^2-Sinh[Pi]+Tanh[Pi]^2 2178333018789122 p004 log(22397/18013) 2178333021340640 r005 Re(z^2+c),c=-57/70+7/43*I,n=28 2178333026017070 m001 (Catalan-HeathBrownMoroz)/(Pi+Shi(1)) 2178333032401035 m001 (FeigenbaumD-Psi(2,1/3))/(KhinchinLevy+Porter) 2178333034388567 r002 20th iterates of z^2 + 2178333037928216 r002 20th iterates of z^2 + 2178333040580087 m009 (24/5*Catalan+3/5*Pi^2+3/4)/(5*Psi(1,1/3)+1/3) 2178333043438565 m001 1/exp(GAMMA(11/24))^2*FeigenbaumC*LambertW(1) 2178333044825634 k001 Champernowne real with 1152*n+1026 2178333048727945 r009 Re(z^3+c),c=-55/94+23/41*I,n=35 2178333050954930 a007 Real Root Of 289*x^4+236*x^3-263*x^2+857*x-953 2178333065181916 m001 (GAMMA(5/6)*Artin-Riemann3rdZero)/GAMMA(5/6) 2178333066384533 m001 OneNinth/exp(Riemann1stZero)/Ei(1)^2 2178333066401815 a001 2139295485799*13^(19/21) 2178333067620658 m001 (ln(5)+arctan(1/3))/(Bloch+PrimesInBinary) 2178333072362162 a001 3/55*144^(23/31) 2178333074582841 r002 5th iterates of z^2 + 2178333096574552 l006 ln(5740/7137) 2178333096588256 m001 KhinchinHarmonic+BesselI(1,1)^Porter 2178333097192445 r005 Re(z^2+c),c=-29/90+25/42*I,n=41 2178333103122652 m001 Paris^Mills*Paris^Totient 2178333109669352 a001 23725150497407/377*6557470319842^(10/17) 2178333116713942 g006 Psi(1,11/12)+Psi(1,2/5)+Psi(1,3/4)+Psi(1,1/3) 2178333120652722 m001 1/exp(BesselJ(0,1))^2/Robbin/GAMMA(3/4)^2 2178333120684274 a007 Real Root Of 366*x^4+255*x^3-938*x^2+691*x+351 2178333124224602 r005 Im(z^2+c),c=-2/31+25/39*I,n=40 2178333130507438 m005 (-3/8+1/4*5^(1/2))/(5/9*Zeta(3)-7/12) 2178333135121121 k007 concat of cont frac of 2178333138165014 m001 (Thue-ZetaP(2))/(Ei(1)-Trott2nd) 2178333141415239 k008 concat of cont frac of 2178333144845637 k001 Champernowne real with 1153*n+1025 2178333144944276 p001 sum(1/(345*n+128)/n/(10^n),n=1..infinity) 2178333146488338 a001 9/305*196418^(6/17) 2178333151136709 m002 4/Pi^2+Pi/5+Log[Pi] 2178333152481653 m001 gamma(3)^(BesselI(0,1)*DuboisRaymond) 2178333155415058 m001 (Magata+Weierstrass)/(Zeta(1/2)-arctan(1/3)) 2178333156726860 a007 Real Root Of 508*x^4+660*x^3-663*x^2+444*x-503 2178333165376778 r009 Re(z^3+c),c=-4/31+55/59*I,n=18 2178333166615228 m001 ZetaP(2)/(Pi^(1/2)+GaussKuzminWirsing) 2178333177099225 a007 Real Root Of -162*x^4-332*x^3-364*x^2-685*x+451 2178333178595359 r005 Im(z^2+c),c=-15/22+23/89*I,n=12 2178333179075964 a007 Real Root Of 404*x^4-891*x^3+311*x^2-377*x-107 2178333186629313 m001 GAMMA(13/24)*Riemann2ndZero^2/exp(Zeta(3)) 2178333193489802 a007 Real Root Of -2*x^4-433*x^3+578*x^2-625*x+645 2178333196983469 a007 Real Root Of -279*x^4-284*x^3+262*x^2-994*x-62 2178333206771182 m005 (1/2*Zeta(3)-9/10)/(5/8*Catalan+4/5) 2178333212435065 m005 (1/2*2^(1/2)+7/9)/(3/7*Zeta(3)-7/12) 2178333212924402 m001 (PlouffeB+Tribonacci)/(GAMMA(13/24)-gamma) 2178333213212111 k009 concat of cont frac of 2178333224886019 m001 Paris^Salem/ln(2)*ln(10) 2178333225896096 a001 8/7*24476^(3/47) 2178333235475721 a007 Real Root Of -478*x^4-370*x^3+974*x^2+857*x-228 2178333244865640 k001 Champernowne real with 1154*n+1024 2178333256040013 r005 Re(z^2+c),c=-4/23+23/53*I,n=34 2178333266683001 r005 Re(z^2+c),c=-3/26+25/41*I,n=55 2178333268940301 a003 cos(Pi*3/107)*sin(Pi*4/57) 2178333275031894 r002 15th iterates of z^2 + 2178333278738447 r008 a(0)=2,K{-n^6,-36+38*n+35*n^2-43*n^3} 2178333289875004 r005 Im(z^2+c),c=-30/31+13/57*I,n=59 2178333297652667 r005 Im(z^2+c),c=-6/17+13/37*I,n=48 2178333300511451 m001 (MertensB1+Sarnak)/ZetaP(2) 2178333304911403 r005 Re(z^2+c),c=1/66+16/25*I,n=49 2178333306086159 a007 Real Root Of -312*x^4-329*x^3+228*x^2-771*x+863 2178333308865653 h001 (11/12*exp(1)+1/3)/(3/11*exp(1)+5/9) 2178333318842890 a007 Real Root Of -42*x^4-935*x^3-445*x^2-115*x+890 2178333332507349 r005 Re(z^2+c),c=-19/98+14/23*I,n=24 2178333333333333 s001 sum(1/10^(n-1)*A252661[n]/n^n,n=1..infinity) 2178333333397651 m001 (LambertW(1)+Salem)/(Sarnak+ZetaP(4)) 2178333344885643 k001 Champernowne real with 1155*n+1023 2178333355415326 r002 4th iterates of z^2 + 2178333356325583 m001 1/exp(FeigenbaumKappa)^2/Artin*GAMMA(3/4) 2178333358038739 m005 (2/3*gamma+1/6)/(3*gamma+4/5) 2178333358038739 m007 (-2/3*gamma-1/6)/(-3*gamma-4/5) 2178333361378217 r005 Re(z^2+c),c=-23/118+8/21*I,n=23 2178333370820869 m001 PlouffeB/(GolombDickman-FransenRobinson) 2178333373056035 m001 1/Lehmer/DuboisRaymond^2/ln(Trott)^2 2178333377081642 s002 sum(A124332[n]/(2^n-1),n=1..infinity) 2178333379806596 l006 ln(4947/6151) 2178333382237549 m002 -1+Log[Pi]+6*Pi*Sinh[Pi] 2178333382770375 g005 GAMMA(4/5)*GAMMA(3/5)*GAMMA(2/3)/GAMMA(8/9) 2178333395679681 s002 sum(A269019[n]/(10^n-1),n=1..infinity) 2178333404037864 m001 exp(-1/2*Pi)^(2*Pi/GAMMA(5/6)*FransenRobinson) 2178333409543230 a005 (1/cos(9/106*Pi))^853 2178333416164555 b008 Tan[E^Sech[E]] 2178333422423728 r005 Re(z^2+c),c=-111/94+3/20*I,n=24 2178333422572812 m005 (1/2*Pi+1/2)/(2/9*2^(1/2)+7/11) 2178333422740192 m002 -Log[Pi]/4+Tanh[Pi]-Tanh[Pi]/ProductLog[Pi] 2178333423958210 p003 LerchPhi(1/64,2,154/227) 2178333431236733 a007 Real Root Of 585*x^4-883*x^3-886*x^2-827*x+230 2178333442683574 a003 cos(Pi*26/103)-sin(Pi*13/35) 2178333444905646 k001 Champernowne real with 1156*n+1022 2178333451380428 m001 1/LandauRamanujan^2/ln(Bloch)^2*GAMMA(1/3)^2 2178333458163432 r005 Im(z^2+c),c=-41/74+2/45*I,n=18 2178333460667335 a007 Real Root Of -641*x^4-968*x^3+659*x^2-231*x+797 2178333465731497 r005 Im(z^2+c),c=11/32+7/57*I,n=16 2178333487366087 m005 (1/2*Catalan-5/11)/(5/9*Catalan-2/3) 2178333494513707 a007 Real Root Of -210*x^4-354*x^3+75*x^2-165*x+354 2178333494741419 m001 (Trott2nd-Thue)/(CareFree-FellerTornier) 2178333504494553 r005 Im(z^2+c),c=-9/20+17/41*I,n=19 2178333507443449 a005 (1/cos(19/185*Pi))^232 2178333508560534 h001 (-6*exp(4)+3)/(-5*exp(8)+4) 2178333509963362 a001 121393/1364*7^(23/50) 2178333514514209 m001 KhinchinHarmonic/(Cahen-exp(1/exp(1))) 2178333523213705 p001 sum(1/(377*n+344)/n/(64^n),n=1..infinity) 2178333526357710 m005 (1/3*Pi-1/12)/(3*Pi-5) 2178333526357710 m006 (1/6/Pi-2/3)/(1/Pi-3/5) 2178333526357710 m008 (2/3*Pi-1/6)/(3/5*Pi-1) 2178333526908030 m001 1/ln(GAMMA(3/4))*Riemann2ndZero^2*Zeta(9) 2178333533019574 a007 Real Root Of -26*x^4-599*x^3-723*x^2-301*x-797 2178333533503940 r005 Re(z^2+c),c=-15/14+51/94*I,n=2 2178333540189248 p001 sum((-1)^n/(495*n+446)/(16^n),n=0..infinity) 2178333541306818 m001 CopelandErdos*sin(1/5*Pi)^ZetaR(2) 2178333544925649 k001 Champernowne real with 1157*n+1021 2178333547192087 m001 Trott/ln(LandauRamanujan)*cos(1) 2178333557183972 m001 GAMMA(19/24)^GAMMA(7/12)*Niven 2178333563665749 m001 (BesselJ(0,1)+arctan(1/2))/(Khinchin+Otter) 2178333565906583 a007 Real Root Of 11*x^4+204*x^3-750*x^2+603*x+869 2178333571890688 h001 (-exp(1/2)+1)/(-5*exp(1/3)+4) 2178333582671736 m001 (Trott-ThueMorse)/(cos(1/5*Pi)+MertensB2) 2178333592565296 a001 1/76*(1/2*5^(1/2)+1/2)^17*3571^(3/16) 2178333596507762 a001 281/15456*2178309^(17/35) 2178333596747752 a001 2178309+11*5^(1/2) 2178333602191141 a001 1/43133785636*610^(17/24) 2178333607427877 r005 Re(z^2+c),c=-21/106+16/43*I,n=31 2178333621955522 a001 10946/843*199^(30/31) 2178333623003661 a001 1/76*(1/2*5^(1/2)+1/2)^11*24476^(7/16) 2178333623036818 a001 1/76*(1/2*5^(1/2)+1/2)^19*9349^(1/16) 2178333624428699 a001 1/76*(1/2*5^(1/2)+1/2)^13*64079^(5/16) 2178333626639825 a001 1/1860176*(1/2*5^(1/2)+1/2)^32*24476^(7/16) 2178333644945652 k001 Champernowne real with 1158*n+1020 2178333646918023 m006 (4*Pi-2/5)/(1/4*exp(Pi)-1/5) 2178333649665079 a007 Real Root Of 272*x^4+600*x^3+235*x^2+256*x-480 2178333654543847 r002 3th iterates of z^2 + 2178333670610818 a007 Real Root Of -940*x^4+299*x^3+67*x^2+440*x-100 2178333679220625 r009 Re(z^3+c),c=-25/78+3/7*I,n=26 2178333679269366 m001 sin(1/12*Pi)+Khinchin*TravellingSalesman 2178333683174002 m001 Pi-2^(1/3)/GAMMA(2/3)/cos(1/12*Pi) 2178333688032717 r009 Im(z^3+c),c=-49/110+3/46*I,n=38 2178333688628963 a007 Real Root Of -284*x^4-507*x^3+117*x^2+141*x+906 2178333719102592 r002 33th iterates of z^2 + 2178333744965655 k001 Champernowne real with 1159*n+1019 2178333751581850 r002 4th iterates of z^2 + 2178333759644957 m001 (-Porter+Rabbit)/(BesselK(1,1)-LambertW(1)) 2178333764322062 r005 Im(z^2+c),c=23/86+4/53*I,n=58 2178333765799129 r005 Im(z^2+c),c=-53/110+19/46*I,n=17 2178333766275530 m002 -12-Pi^2+Sech[Pi] 2178333769614501 a007 Real Root Of 448*x^4+556*x^3-654*x^2+392*x-383 2178333771176813 l006 ln(4154/5165) 2178333783720646 m001 (Artin+KomornikLoreti)/(Porter-Weierstrass) 2178333786143722 k002 Champernowne real with 99*n^2-240*n+162 2178333792352181 a007 Real Root Of -433*x^4-860*x^3+494*x^2+678*x-7 2178333793293500 a007 Real Root Of -292*x^4-677*x^3-644*x^2-857*x+766 2178333801929855 m001 FransenRobinson/ln(ErdosBorwein)/exp(1) 2178333805704483 m005 (1/2*Pi+6/7)/(4*exp(1)+3/11) 2178333814866665 l006 ln(95/839) 2178333815907054 m001 (Backhouse+KomornikLoreti)^Robbin 2178333818021040 a001 (1+2^(1/2))^(34/3) 2178333818065658 r005 Re(z^2+c),c=11/42+7/41*I,n=36 2178333820060413 m005 (1/2*2^(1/2)-3/8)/(31/35+2/7*5^(1/2)) 2178333834593355 m009 (1/3*Psi(1,1/3)-3/4)/(4*Psi(1,2/3)-1/4) 2178333834612911 r002 35th iterates of z^2 + 2178333841668127 a007 Real Root Of -790*x^4+141*x^3-202*x^2+477*x-94 2178333844125858 a001 1/103664*(1/2*5^(1/2)+1/2)^23*1364^(13/16) 2178333844985658 k001 Champernowne real with 1160*n+1018 2178333854296048 m005 (1/2*3^(1/2)+8/11)/(1/11*3^(1/2)-8/9) 2178333861219933 m001 ReciprocalLucas^AlladiGrinstead+ZetaP(2) 2178333868588232 a007 Real Root Of -6*x^4+325*x^3-479*x^2-215*x-483 2178333871314701 m001 (Lehmer-ZetaP(3))/(Zeta(5)+ln(2^(1/2)+1)) 2178333877499200 m001 (-MasserGramain+ZetaP(2))/(3^(1/2)-sin(1)) 2178333878754858 a005 (1/cos(11/123*Pi))^480 2178333884112641 a001 521/3*144^(35/36) 2178333884318426 a007 Real Root Of -313*x^4-191*x^3+901*x^2-712*x-753 2178333897038710 m001 exp(GAMMA(1/6))*Rabbit*GAMMA(19/24) 2178333904448545 h001 (2/7*exp(2)+1/7)/(1/8*exp(2)+1/9) 2178333907459184 m001 Kolakoski^2*exp(ErdosBorwein)/Zeta(3)^2 2178333921689497 a007 Real Root Of 527*x^4-204*x^3-282*x^2-588*x-118 2178333921783287 r009 Re(z^3+c),c=-19/110+40/47*I,n=48 2178333926651797 a007 Real Root Of -463*x^4-711*x^3+72*x^2+871*x-19 2178333936899862 r005 Im(z^2+c),c=-1/54+27/50*I,n=3 2178333937523909 m001 GolombDickman*Weierstrass^(2^(1/2)) 2178333945005661 k001 Champernowne real with 1161*n+1017 2178333953535595 r009 Im(z^3+c),c=-31/70+3/44*I,n=36 2178333967930309 r005 Im(z^2+c),c=-7/50+17/59*I,n=15 2178333968912996 m009 (5*Psi(1,2/3)+3)/(4/5*Psi(1,1/3)+1/3) 2178333970028293 a007 Real Root Of -145*x^4+250*x^3+721*x^2-907*x+452 2178333974819160 m005 (1/3*Catalan-1/7)/(1/6*Pi+2/9) 2178333977066066 m001 (Ei(1,1)+exp(-1/2*Pi))/(Bloch-ZetaP(2)) 2178333977263583 a001 18/1597*14930352^(14/19) 2178333978419030 m001 (Pi+BesselI(0,2))^MasserGramainDelta 2178333981392877 r009 Im(z^3+c),c=-1/86+53/60*I,n=14 2178333985138834 q001 557/2557 2178333987951944 m001 5^(1/2)-ZetaQ(3)^BesselK(1,1) 2178333997323634 a001 3010349/13*1548008755920^(9/11) 2178333997323874 a001 17393796001/13*39088169^(9/11) 2178333997323874 a001 228826127/13*7778742049^(9/11) 2178333997333113 a001 1322157322203/13*196418^(9/11) 2178333997864860 m001 (Weierstrass+ZetaP(4))/(ln(2)+Tribonacci) 2178334002112017 a001 24157817/199*199^(6/11) 2178334002787922 a007 Real Root Of -492*x^4-659*x^3+690*x^2-298*x+343 2178334004372640 m001 (GAMMA(3/4)+gamma(1))/(DuboisRaymond-Sarnak) 2178334008618648 m001 (Grothendieck-MadelungNaCl)/BesselI(1,2) 2178334015099089 r009 Im(z^3+c),c=-9/32+11/60*I,n=12 2178334028809334 l006 ln(7515/9344) 2178334029631087 m001 (Porter+Riemann1stZero)/(gamma(1)-Cahen) 2178334041595726 a007 Real Root Of -446*x^4-582*x^3+512*x^2-566*x+364 2178334045025664 k001 Champernowne real with 1162*n+1016 2178334069238738 r005 Im(z^2+c),c=23/86+4/53*I,n=64 2178334070266801 r002 16th iterates of z^2 + 2178334070723646 a007 Real Root Of 103*x^4-141*x^3-707*x^2-130*x-705 2178334083601744 r005 Re(z^2+c),c=-99/98+5/44*I,n=14 2178334084536770 r005 Im(z^2+c),c=-37/30+1/88*I,n=10 2178334084704243 a007 Real Root Of -77*x^4+615*x^3-495*x^2+941*x+235 2178334086597182 a001 2/19*3571^(10/27) 2178334090770631 m001 (QuadraticClass-Totient)/(Zeta(1/2)-Cahen) 2178334095985132 a007 Real Root Of -415*x^4-439*x^3+966*x^2-122*x-43 2178334100481650 r009 Im(z^3+c),c=-33/94+5/33*I,n=15 2178334102067844 r005 Re(z^2+c),c=-7/8+49/184*I,n=27 2178334107190523 r005 Im(z^2+c),c=25/66+3/14*I,n=43 2178334116401643 m008 (1/2*Pi^3-1/4)/(3/4*Pi^2-2/5) 2178334118376915 m001 GAMMA(11/12)/Gompertz/StolarskyHarborth 2178334126158782 a001 1/39596*(1/2*5^(1/2)+1/2)^21*521^(15/16) 2178334134724214 r005 Im(z^2+c),c=-6/17+13/37*I,n=46 2178334145045667 k001 Champernowne real with 1163*n+1015 2178334148085696 a001 18/1346269*139583862445^(14/19) 2178334148822095 a007 Real Root Of -246*x^4-596*x^3+279*x^2+765*x-279 2178334150014169 m001 ln(Khintchine)/FeigenbaumDelta^2/(3^(1/3))^2 2178334152861639 a001 2/19*15127^(17/54) 2178334171836251 a001 5/24476*18^(1/45) 2178334174009312 m005 (1/3*Catalan-1/11)/(7/10*Zeta(3)+1/7) 2178334182617623 a007 Real Root Of 545*x^4+779*x^3-470*x^2+791*x-266 2178334187241439 a007 Real Root Of -328*x^4-226*x^3+902*x^2+83*x+950 2178334190348802 a001 89/817138163596*4^(1/2) 2178334190982383 r005 Im(z^2+c),c=-1+19/80*I,n=46 2178334193477887 r005 Re(z^2+c),c=-13/106+13/24*I,n=53 2178334193550962 a007 Real Root Of 313*x^4+742*x^3-422*x^2-844*x+786 2178334204961613 a007 Real Root Of -374*x^4-80*x^3+80*x^2+991*x-218 2178334206054710 a007 Real Root Of -353*x^4-777*x^3-267*x^2-694*x-328 2178334227744987 m001 1/exp(GAMMA(1/4))^2*KhintchineLevy*sin(Pi/12) 2178334230028785 h001 (7/8*exp(1)+4/5)/(1/2*exp(1)+1/10) 2178334238577599 m001 (Ei(1)+GAMMA(23/24))/(ArtinRank2+Cahen) 2178334242798044 r005 Re(z^2+c),c=23/122+3/38*I,n=2 2178334245065670 k001 Champernowne real with 1164*n+1014 2178334245594610 r009 Im(z^3+c),c=-13/19+1/11*I,n=2 2178334253677785 r005 Im(z^2+c),c=-11/50+27/34*I,n=24 2178334257371934 a007 Real Root Of -547*x^4+921*x^3-907*x^2+180*x+93 2178334261643869 r005 Re(z^2+c),c=35/118+24/49*I,n=52 2178334274290613 a007 Real Root Of -395*x^4-727*x^3+216*x^2-232*x-151 2178334289073340 r002 9th iterates of z^2 + 2178334291572417 m001 (-MertensB2+Tribonacci)/(2^(1/2)+BesselI(0,2)) 2178334291815890 r005 Im(z^2+c),c=-37/60+19/61*I,n=16 2178334295937421 r009 Re(z^3+c),c=-35/122+21/64*I,n=2 2178334300562938 a007 Real Root Of -160*x^4+129*x^3+832*x^2-763*x-674 2178334309228728 r005 Im(z^2+c),c=23/86+4/53*I,n=63 2178334313681559 a001 9/5473*701408733^(6/17) 2178334317306432 a001 9/98209*2504730781961^(6/17) 2178334318943012 r005 Im(z^2+c),c=23/86+4/53*I,n=53 2178334328151962 a001 5/39603*123^(29/49) 2178334330465512 m001 ZetaQ(2)/(BesselJ(0,1)+Niven) 2178334331008868 l006 ln(3224/3295) 2178334332253517 p003 LerchPhi(1/64,5,157/73) 2178334338798912 r009 Re(z^3+c),c=-35/86+39/64*I,n=58 2178334339676096 r009 Re(z^3+c),c=-4/13+19/48*I,n=20 2178334345085673 k001 Champernowne real with 1165*n+1013 2178334347228097 l006 ln(3361/4179) 2178334354218906 a007 Real Root Of 380*x^4+549*x^3-472*x^2+66*x-498 2178334354792452 a001 55/521*1364^(13/31) 2178334355549733 a001 1/9062201101803*18^(4/17) 2178334363188702 r009 Im(z^3+c),c=-11/19+13/38*I,n=4 2178334384167033 a007 Real Root Of -35*x^4-202*x^3-606*x^2-856*x-289 2178334387533867 a001 199/18*(1/2*5^(1/2)+1/2)^31*18^(13/20) 2178334395005611 a005 (1/cos(11/150*Pi))^975 2178334404571422 a003 sin(Pi*23/106)/cos(Pi*37/91) 2178334409717184 r009 Re(z^3+c),c=-15/118+42/47*I,n=28 2178334410352092 b008 ArcCsch[Pi+ArcTan[2*Pi]] 2178334411275306 r005 Re(z^2+c),c=-53/44+7/48*I,n=14 2178334414659099 m001 Psi(1,1/3)^Backhouse/(Psi(1,1/3)^Champernowne) 2178334414724695 m001 exp(-1/2*Pi)*OrthogonalArrays/Totient 2178334428382965 m001 exp(Lehmer)/ErdosBorwein^2/LambertW(1)^2 2178334431283216 r005 Re(z^2+c),c=-3/23+29/55*I,n=43 2178334437881904 a007 Real Root Of 359*x^4+598*x^3-304*x^2+239*x+61 2178334445105676 k001 Champernowne real with 1166*n+1012 2178334456564163 r002 31th iterates of z^2 + 2178334472343391 r005 Im(z^2+c),c=-5/28+17/53*I,n=3 2178334486764608 m001 polylog(4,1/2)^GAMMA(7/12)*Gompertz 2178334495063936 m001 Grothendieck^KhinchinHarmonic*Kolakoski 2178334500908986 m005 (1/2*gamma-2/9)/(5/8*3^(1/2)-7/9) 2178334500954580 m005 (1/2*gamma+1/5)/(9/8+1/2*5^(1/2)) 2178334504179945 m001 ArtinRank2/(5^(1/2)+cos(1/12*Pi)) 2178334509110937 r005 Im(z^2+c),c=-33/70+21/55*I,n=56 2178334513554838 r005 Im(z^2+c),c=23/86+4/53*I,n=59 2178334522265186 m001 (Mills+ZetaQ(2))/(HeathBrownMoroz-Kac) 2178334522687722 m003 -2/3+(17*Sqrt[5])/1024+Tan[1/2+Sqrt[5]/2] 2178334523252264 m005 (1/2+1/6*5^(1/2))/(3*Zeta(3)+2/5) 2178334532935360 a001 9227465/521*322^(5/6) 2178334541059034 m001 (Niven-Tribonacci)/(BesselJ(1,1)-GAMMA(11/12)) 2178334543585509 a007 Real Root Of -28*x^4-610*x^3-13*x^2-235*x+364 2178334545125679 k001 Champernowne real with 1167*n+1011 2178334555229059 m005 (1/2*5^(1/2)+8/9)/(-5/3+1/3*5^(1/2)) 2178334564566736 a003 2^(1/2)+cos(7/24*Pi)-cos(3/10*Pi)+cos(7/30*Pi) 2178334566538234 m005 (1/2*2^(1/2)+3/11)/(3/11*Catalan+1/5) 2178334568190281 r005 Re(z^2+c),c=7/26+11/62*I,n=38 2178334571837304 m001 (ln(3)+Riemann3rdZero)/(Sarnak+Weierstrass) 2178334572338667 m001 1/log(1+sqrt(2))/Artin/exp(log(2+sqrt(3)))^2 2178334572727616 m001 ln(Zeta(9))^2*LandauRamanujan*sin(1)^2 2178334576405713 a005 (1/sin(85/208*Pi))^1287 2178334582270881 m001 (Niven+Salem)/(HardHexagonsEntropy-exp(1)) 2178334593779335 m001 (Grothendieck-Totient)/(Bloch-FeigenbaumAlpha) 2178334594762641 m001 (-FeigenbaumC+Kac)/(Ei(1,1)-Psi(2,1/3)) 2178334598468458 m001 (2^(1/2)-Kac)/(MertensB2+Sierpinski) 2178334602809018 r005 Im(z^2+c),c=23/86+4/53*I,n=62 2178334603925864 m001 exp(1)^cos(1)/(Cahen^cos(1)) 2178334613466933 a007 Real Root Of -256*x^4-333*x^3+775*x^2+630*x+17 2178334614948050 p001 sum((-1)^n/(408*n+397)/(3^n),n=0..infinity) 2178334617308806 m001 (BesselI(0,1)*Sarnak+TwinPrimes)/Sarnak 2178334628696893 r005 Re(z^2+c),c=-9/106+15/26*I,n=36 2178334631902083 g002 2*Psi(1/12)+Psi(4/7)-Psi(2/9) 2178334641238375 r009 Re(z^3+c),c=-57/94+31/59*I,n=48 2178334643567938 p001 sum((-1)^n/(594*n+425)/(5^n),n=0..infinity) 2178334645145682 k001 Champernowne real with 1168*n+1010 2178334645966801 a007 Real Root Of 433*x^4+865*x^3+36*x^2+243*x-450 2178334650496458 a007 Real Root Of -276*x^4-145*x^3+474*x^2-788*x+750 2178334652680220 m001 1+gamma(3)+Salem 2178334657420751 r005 Im(z^2+c),c=-19/20+9/37*I,n=37 2178334663553186 r005 Im(z^2+c),c=-11/12+23/74*I,n=7 2178334667210095 a001 48/13201*7^(23/25) 2178334673306733 r005 Im(z^2+c),c=-37/78+18/47*I,n=55 2178334676017038 r005 Im(z^2+c),c=2/11+4/27*I,n=22 2178334677106551 a008 Real Root of x^4-2*x^3-19*x^2+17*x+84 2178334681646512 r005 Im(z^2+c),c=-17/42+23/63*I,n=55 2178334689028799 a007 Real Root Of -72*x^4-490*x^3-730*x^2+497*x+138 2178334691400616 a007 Real Root Of 215*x^4+196*x^3-556*x^2+537*x+993 2178334692949160 a007 Real Root Of -341*x^4-660*x^3+165*x^2+168*x+439 2178334706667088 m005 (1/2*5^(1/2)+3/7)/(7/9*2^(1/2)+6) 2178334711865020 r005 Im(z^2+c),c=-2/5+1/23*I,n=6 2178334712138944 m001 DuboisRaymond^Zeta(3)*DuboisRaymond^Psi(2,1/3) 2178334715096540 r005 Re(z^2+c),c=-3/19+8/17*I,n=35 2178334715899689 m001 (GAMMA(13/24)-gamma*LaplaceLimit)/gamma 2178334728802454 a007 Real Root Of -67*x^4+406*x^3+902*x^2-780*x-274 2178334734232540 a001 233802911/281*123^(1/5) 2178334736196855 m001 MadelungNaCl^(Bloch*Otter) 2178334745165685 k001 Champernowne real with 1169*n+1009 2178334750823462 l006 ln(5929/7372) 2178334751212396 m001 GAMMA(19/24)*(Mills-ln(gamma)) 2178334752199215 m001 (-Totient+ZetaP(3))/(Psi(2,1/3)+GAMMA(13/24)) 2178334757963300 r005 Re(z^2+c),c=-7/58+27/52*I,n=20 2178334771036303 r002 59th iterates of z^2 + 2178334789144322 k002 Champernowne real with 199/2*n^2-483/2*n+163 2178334799105399 a007 Real Root Of -317*x^4-588*x^3+275*x^2-78*x-415 2178334801177187 m005 (1/3*5^(1/2)+1/3)/(1/12*gamma-5) 2178334805822784 a007 Real Root Of -483*x^4-934*x^3+179*x^2-234*x-138 2178334812340675 h001 (-3*exp(-3)+4)/(-9*exp(3)+4) 2178334816209285 p003 LerchPhi(1/8,5,41/19) 2178334821597313 r005 Im(z^2+c),c=-6/11+6/29*I,n=3 2178334827535192 b008 3/14+ProductLog[14] 2178334831134335 r009 Im(z^3+c),c=-33/94+5/33*I,n=14 2178334835807441 r005 Im(z^2+c),c=23/86+4/53*I,n=61 2178334837852263 a001 76/5*365435296162^(1/10) 2178334845185688 k001 Champernowne real with 1170*n+1008 2178334851480457 r004 Im(z^2+c),c=-13/12+4/17*I,z(0)=-1,n=7 2178334853581184 r005 Im(z^2+c),c=23/86+4/53*I,n=60 2178334856995643 a007 Real Root Of -259*x^4+474*x^3+843*x^2+756*x-209 2178334861613419 r005 Im(z^2+c),c=-15/14+32/139*I,n=3 2178334871049328 r002 29i'th iterates of 2*x/(1-x^2) of 2178334883789417 s001 sum(1/10^(n-1)*A113574[n],n=1..infinity) 2178334886688923 m001 GAMMA(5/12)-Lehmer+Cahen 2178334886688923 m001 Lehmer-Cahen-Pi*csc(5/12*Pi)/GAMMA(7/12) 2178334889908227 r005 Im(z^2+c),c=-23/110+13/42*I,n=12 2178334892006295 s002 sum(A056456[n]/((exp(n)+1)*n),n=1..infinity) 2178334900195006 a001 9/305*1548008755920^(4/17) 2178334903784221 a007 Real Root Of -46*x^4-999*x^3+58*x^2-209*x-713 2178334922591244 m001 (Pi^(1/2)-ThueMorse)/GolombDickman 2178334922591244 m001 (ThueMorse-sqrt(Pi))/GolombDickman 2178334925478629 a005 (1/cos(2/187*Pi))^1379 2178334926294995 m001 (-GAMMA(2/3)+Paris)/(2^(1/2)-Chi(1)) 2178334928640510 a001 1/64079*3^(17/56) 2178334931817501 m001 (3^(1/3)-ThueMorse)/(GAMMA(2/3)-ln(2^(1/2)+1)) 2178334940027627 r005 Im(z^2+c),c=-67/122+29/48*I,n=30 2178334941569240 m001 Trott*exp(CopelandErdos)*(2^(1/3))^2 2178334945205691 k001 Champernowne real with 1171*n+1007 2178334947435571 m004 (-125*Pi)/4+125*Sqrt[5]*Pi-Cosh[Sqrt[5]*Pi] 2178334948924169 l006 ln(1051/9282) 2178334950062509 a007 Real Root Of 296*x^4+126*x^3-741*x^2+854*x+14 2178334964386736 s001 sum(1/10^(n-1)*A112375[n]/n^n,n=1..infinity) 2178334966078209 a007 Real Root Of 43*x^4+916*x^3-460*x^2-227*x-469 2178334968165205 a001 710647/144*34^(8/19) 2178334969790712 h005 exp(cos(Pi*11/51)*sin(Pi*21/43)) 2178334971991770 r005 Im(z^2+c),c=-7/10+31/125*I,n=62 2178334979440022 m001 (arctan(1/3)+Zeta(1,-1))/(ArtinRank2-Kac) 2178334982376116 r005 Im(z^2+c),c=-35/64+33/62*I,n=10 2178334986990260 m001 1/KhintchineLevy^2*ln(Bloch)^2/Tribonacci 2178334993174974 r009 Re(z^3+c),c=-11/31+18/35*I,n=55 2178334997531846 a001 1/3020733700601*11^(11/14) 2178335002207278 a007 Real Root Of -314*x^4-763*x^3-558*x^2-915*x-162 2178335006252997 r005 Re(z^2+c),c=11/42+7/41*I,n=35 2178335009909304 r005 Re(z^2+c),c=-9/52+17/39*I,n=31 2178335012000336 r005 Re(z^2+c),c=-13/86+12/25*I,n=20 2178335012959105 m008 (1/5*Pi^4+1)/(2/5*Pi^3-3) 2178335013258189 r005 Im(z^2+c),c=-75/106+19/50*I,n=4 2178335017192920 a007 Real Root Of -122*x^4-90*x^3+512*x^2+240*x-90 2178335025435717 m001 ln(2+3^(1/2))+BesselI(1,1)^MertensB1 2178335026267952 a007 Real Root Of -35*x^4-739*x^3+472*x^2-840*x-216 2178335037874952 m005 (25/42+1/6*5^(1/2))/(5/6*3^(1/2)+3) 2178335041961491 r005 Re(z^2+c),c=-31/122+7/46*I,n=9 2178335045225694 k001 Champernowne real with 1172*n+1006 2178335056809019 a007 Real Root Of -560*x^4-959*x^3+736*x^2+454*x+193 2178335061618098 l006 ln(956/8443) 2178335086379052 r005 Im(z^2+c),c=-29/56+19/42*I,n=53 2178335091556045 r009 Re(z^3+c),c=-11/86+55/57*I,n=34 2178335095393258 r005 Im(z^2+c),c=-17/42+23/63*I,n=57 2178335101065877 m001 1/csc(11/24*Pi)*GAMMA(13/24)*Totient 2178335118265101 a007 Real Root Of -248*x^4-666*x^3-327*x^2-295*x-391 2178335123899808 r009 Re(z^3+c),c=-10/29+26/51*I,n=15 2178335124431181 k008 concat of cont frac of 2178335130154279 a007 Real Root Of 222*x^4+389*x^3+302*x^2+980*x-276 2178335135788506 m001 (GAMMA(3/4)-Psi(2,1/3))/(Niven+QuadraticClass) 2178335142936089 r005 Im(z^2+c),c=-45/34+5/92*I,n=3 2178335143666825 r005 Re(z^2+c),c=19/60+10/47*I,n=35 2178335145245697 k001 Champernowne real with 1173*n+1005 2178335151927264 m005 (4*gamma+1)/(5/6*gamma-2) 2178335151927264 m007 (-4*gamma-1)/(-5/6*gamma+2) 2178335158336354 a007 Real Root Of -247*x^4-114*x^3+556*x^2-633*x+366 2178335173327549 r002 50th iterates of z^2 + 2178335174255505 m001 MinimumGamma^Landau*Pi^(1/2) 2178335177715423 r005 Im(z^2+c),c=-97/82+1/27*I,n=11 2178335182947862 r005 Im(z^2+c),c=37/114+7/60*I,n=9 2178335186059105 m001 Khintchine^2/GlaisherKinkelin^2*ln(OneNinth)^2 2178335199180588 l006 ln(861/7604) 2178335210530350 a007 Real Root Of -586*x^4-971*x^3+837*x^2+700*x+711 2178335217431878 a007 Real Root Of 378*x^4+539*x^3-597*x^2-303*x-767 2178335222663307 m001 1/HardHexagonsEntropy*ln(Backhouse)*cos(Pi/5) 2178335226019542 r009 Re(z^3+c),c=-19/58+25/56*I,n=35 2178335227773988 r009 Re(z^3+c),c=-11/106+19/25*I,n=51 2178335232380263 m001 (-BesselK(1,1)+4)/(-BesselJ(1,1)+2) 2178335233338101 a001 1/17*28657^(34/59) 2178335233765615 a007 Real Root Of 375*x^4+766*x^3+303*x^2+699*x-441 2178335245265700 k001 Champernowne real with 1174*n+1004 2178335250579046 m001 (PlouffeB-Sarnak)/(3^(1/3)-GaussKuzminWirsing) 2178335254283573 r005 Re(z^2+c),c=-1/56+16/25*I,n=33 2178335258571536 g007 Psi(2,2/9)-Psi(2,4/11)-Psi(2,2/7)-Psi(2,2/5) 2178335266442225 m001 (PlouffeB+Porter)/(Shi(1)+Zeta(1,-1)) 2178335272568566 r002 29th iterates of z^2 + 2178335279049302 l006 ln(2568/3193) 2178335280010168 p004 log(14369/1627) 2178335305328508 r009 Re(z^3+c),c=-25/78+29/56*I,n=9 2178335305507289 b008 4^Sinh[1/3]+EulerGamma 2178335306853348 a007 Real Root Of -231*x^4-237*x^3+631*x^2-344*x-992 2178335312644847 r005 Im(z^2+c),c=-8/17+7/31*I,n=3 2178335322231780 a007 Real Root Of 458*x^4+624*x^3-804*x^2-149*x-372 2178335324003749 r002 44th iterates of z^2 + 2178335325683119 r005 Im(z^2+c),c=-17/36+1/27*I,n=38 2178335331252815 r005 Im(z^2+c),c=-25/94+15/46*I,n=14 2178335335034393 r009 Re(z^3+c),c=-1/48+58/61*I,n=9 2178335336265192 a007 Real Root Of -371*x^4-486*x^3+177*x^2-741*x+876 2178335337743505 a001 11/233*514229^(5/43) 2178335342102391 s002 sum(A174854[n]/(n*exp(n)+1),n=1..infinity) 2178335345285703 k001 Champernowne real with 1175*n+1003 2178335351730037 m001 1/log(1+sqrt(2))^2*ln(BesselK(1,1))/sqrt(3)^2 2178335368587346 r005 Im(z^2+c),c=-19/22+23/121*I,n=56 2178335370864297 l006 ln(766/6765) 2178335372122814 a007 Real Root Of -395*x^4+540*x^3-717*x^2+948*x+247 2178335377412045 a005 (1/sin(94/231*Pi))^1239 2178335378943486 a007 Real Root Of -350*x^4+868*x^3+853*x^2+277*x-109 2178335379207563 r005 Im(z^2+c),c=-29/54+17/46*I,n=19 2178335384207379 a007 Real Root Of -98*x^4+43*x^3+558*x^2+4*x+12 2178335388327811 m005 (1/3*3^(1/2)+1/2)/(-79/110+1/10*5^(1/2)) 2178335396753101 s002 sum(A149366[n]/(n^3*exp(n)+1),n=1..infinity) 2178335397976417 a007 Real Root Of 282*x^4+788*x^3+303*x^2+91*x+556 2178335399829358 a008 Real Root of x^4-x^3-22*x^2-132*x-216 2178335400402499 r005 Re(z^2+c),c=17/54+7/32*I,n=32 2178335418267281 p003 LerchPhi(1/3,5,176/81) 2178335420525223 m001 GlaisherKinkelin*(Bloch+FibonacciFactorial) 2178335423205004 m001 (gamma(2)+MasserGramain)/(Pi-Ei(1,1)) 2178335423999046 r009 Re(z^3+c),c=-1/26+25/37*I,n=29 2178335435995851 r009 Im(z^3+c),c=-27/62+5/62*I,n=43 2178335440489332 a007 Real Root Of -328*x^4+181*x^3+701*x^2+889*x+163 2178335443860408 a003 cos(Pi*19/120)/cos(Pi*32/87) 2178335445305706 k001 Champernowne real with 1176*n+1002 2178335453890650 a007 Real Root Of 289*x^4+299*x^3-557*x^2+435*x+174 2178335462120298 a007 Real Root Of -323*x^4-607*x^3+369*x^2+765*x+914 2178335467866311 h005 exp(cos(Pi*5/27)*sin(Pi*21/55)) 2178335473725733 r005 Im(z^2+c),c=-19/30+37/123*I,n=30 2178335481633015 a007 Real Root Of -353*x^4-385*x^3+994*x^2+695*x+766 2178335489946827 m001 (Trott2nd+ZetaP(4))/(MasserGramainDelta+Otter) 2178335503144556 r009 Re(z^3+c),c=-17/122+43/57*I,n=44 2178335506180455 m001 (-CareFree+Porter)/(BesselI(0,1)-Catalan) 2178335511763653 r009 Re(z^3+c),c=-4/19+3/53*I,n=2 2178335519162659 a007 Real Root Of -564*x^4-848*x^3+653*x^2-69*x+685 2178335520473595 m009 (6*Psi(1,2/3)-2/5)/(4*Psi(1,2/3)-4) 2178335524197357 m001 KomornikLoreti/ArtinRank2/Salem 2178335535006605 q001 1649/757 2178335538171953 q001 1/4590661 2178335545325709 k001 Champernowne real with 1177*n+1001 2178335548280283 a003 cos(Pi*29/119)*cos(Pi*35/87) 2178335549363267 a007 Real Root Of -454*x^4-937*x^3-455*x^2-786*x+984 2178335555104922 p004 log(25339/24793) 2178335566409277 m001 (Kac+Sarnak)/(ln(2+3^(1/2))-ArtinRank2) 2178335571184235 k006 concat of cont frac of 2178335587824437 r005 Re(z^2+c),c=27/70+24/47*I,n=6 2178335591161828 l006 ln(671/5926) 2178335601539739 a007 Real Root Of 204*x^4+242*x^3-486*x^2+223*x+700 2178335605065707 m001 Porter*ln(Champernowne)*Rabbit 2178335608052571 a007 Real Root Of -447*x^4-583*x^3+418*x^2-629*x+685 2178335608820761 r005 Re(z^2+c),c=-5/34+19/35*I,n=21 2178335616358781 v004 sum(1/(n^3+17*n-14)/sinh(Pi*n),n=1..infinity) 2178335618836412 r005 Im(z^2+c),c=2/11+4/27*I,n=27 2178335619341087 a007 Real Root Of 282*x^4+186*x^3-563*x^2+530*x-601 2178335622843505 r005 Im(z^2+c),c=23/64+13/56*I,n=12 2178335631277048 r009 Re(z^3+c),c=-7/60+53/64*I,n=40 2178335634340865 a001 1/76*199^(2/21) 2178335635198037 m004 -1-125*Pi+750*Pi*Cot[Sqrt[5]*Pi] 2178335640925862 m001 1/Rabbit^2*Khintchine*ln(Ei(1))^2 2178335642287555 r005 Im(z^2+c),c=2/11+4/27*I,n=28 2178335643376805 m005 (1/3*3^(1/2)+1/5)/(1/8*5^(1/2)-7/11) 2178335645192697 m004 -5/2+5*Pi-E^(Sqrt[5]*Pi)*Log[Sqrt[5]*Pi] 2178335645345712 k001 Champernowne real with 1178*n+1000 2178335647085613 r005 Im(z^2+c),c=-121/118+17/42*I,n=5 2178335649940498 m001 Zeta(1/2)^ln(2)/(Weierstrass^ln(2)) 2178335650545662 m001 1/ln(Catalan)/MertensB1*sqrt(5)^2 2178335656214511 r005 Im(z^2+c),c=-123/98+1/55*I,n=43 2178335662556826 m001 (-Backhouse+ThueMorse)/(Chi(1)-ln(2+3^(1/2))) 2178335667564309 m006 (1/6*exp(Pi)+4)/(1/6*exp(Pi)-1/4) 2178335669205067 m001 Pi-sin(1)*ln(Pi) 2178335669412478 r005 Im(z^2+c),c=-77/58+1/41*I,n=5 2178335672629025 m001 (-PlouffeB+Thue)/(LambertW(1)+ln(gamma)) 2178335676464390 r005 Im(z^2+c),c=2/11+4/27*I,n=29 2178335683151185 r005 Im(z^2+c),c=2/11+4/27*I,n=34 2178335683623062 r005 Im(z^2+c),c=2/11+4/27*I,n=33 2178335683682133 r005 Im(z^2+c),c=2/11+4/27*I,n=35 2178335684159692 r005 Im(z^2+c),c=2/11+4/27*I,n=36 2178335684161726 r005 Im(z^2+c),c=2/11+4/27*I,n=41 2178335684162034 r005 Im(z^2+c),c=2/11+4/27*I,n=40 2178335684171225 r005 Im(z^2+c),c=2/11+4/27*I,n=42 2178335684176153 r005 Im(z^2+c),c=2/11+4/27*I,n=47 2178335684176230 r005 Im(z^2+c),c=2/11+4/27*I,n=48 2178335684176380 r005 Im(z^2+c),c=2/11+4/27*I,n=49 2178335684176421 r005 Im(z^2+c),c=2/11+4/27*I,n=54 2178335684176423 r005 Im(z^2+c),c=2/11+4/27*I,n=55 2178335684176424 r005 Im(z^2+c),c=2/11+4/27*I,n=53 2178335684176425 r005 Im(z^2+c),c=2/11+4/27*I,n=56 2178335684176425 r005 Im(z^2+c),c=2/11+4/27*I,n=61 2178335684176425 r005 Im(z^2+c),c=2/11+4/27*I,n=60 2178335684176425 r005 Im(z^2+c),c=2/11+4/27*I,n=62 2178335684176425 r005 Im(z^2+c),c=2/11+4/27*I,n=63 2178335684176425 r005 Im(z^2+c),c=2/11+4/27*I,n=64 2178335684176425 r005 Im(z^2+c),c=2/11+4/27*I,n=59 2178335684176426 r005 Im(z^2+c),c=2/11+4/27*I,n=58 2178335684176426 r005 Im(z^2+c),c=2/11+4/27*I,n=57 2178335684176437 r005 Im(z^2+c),c=2/11+4/27*I,n=52 2178335684176453 r005 Im(z^2+c),c=2/11+4/27*I,n=50 2178335684176456 r005 Im(z^2+c),c=2/11+4/27*I,n=51 2178335684176495 r005 Im(z^2+c),c=2/11+4/27*I,n=46 2178335684177392 r005 Im(z^2+c),c=2/11+4/27*I,n=43 2178335684177510 r005 Im(z^2+c),c=2/11+4/27*I,n=45 2178335684178563 r005 Im(z^2+c),c=2/11+4/27*I,n=44 2178335684195223 r005 Im(z^2+c),c=2/11+4/27*I,n=39 2178335684266854 r005 Im(z^2+c),c=2/11+4/27*I,n=38 2178335684310123 r005 Im(z^2+c),c=2/11+4/27*I,n=37 2178335684464143 r005 Im(z^2+c),c=2/11+4/27*I,n=26 2178335686473915 r005 Im(z^2+c),c=2/11+4/27*I,n=32 2178335689509145 r009 Re(z^3+c),c=-13/44+21/58*I,n=9 2178335691102162 r005 Im(z^2+c),c=2/11+4/27*I,n=31 2178335691479782 r005 Im(z^2+c),c=2/11+4/27*I,n=30 2178335693717911 m001 (BesselJ(0,1)-Paris)/(Sierpinski+Weierstrass) 2178335715293547 r009 Im(z^3+c),c=-9/20+4/63*I,n=39 2178335716805666 m001 (-GAMMA(23/24)+Mills)/(1-GAMMA(5/6)) 2178335720973595 m001 ErdosBorwein^Zeta(5)+Landau 2178335729724352 a007 Real Root Of -338*x^4-836*x^3+271*x^2+890*x-378 2178335729764729 m001 GAMMA(7/24)/(Zeta(1/2)^Catalan) 2178335732218286 l006 ln(6911/8593) 2178335733872622 m001 Magata*PlouffeB^BesselK(1,1) 2178335740601721 m005 (1/3*Catalan-1/7)/(3*5^(1/2)+3/4) 2178335742057493 a007 Real Root Of -430*x^4-313*x^3+995*x^2-669*x+268 2178335745365715 k001 Champernowne real with 1179*n+999 2178335745581489 h001 (4/9*exp(1)+4/11)/(7/8*exp(2)+3/4) 2178335754622141 m001 (MertensB2-Riemann3rdZero)/(ln(3)+gamma(3)) 2178335764582026 m001 gamma(1)^(2^(1/2))*gamma(1)^FeigenbaumD 2178335769168029 m005 (1/3*2^(1/2)+1/8)/(2/9*3^(1/2)-1/9) 2178335769691474 m001 (Artin-HardyLittlewoodC5)/(MadelungNaCl-Paris) 2178335770690396 r005 Im(z^2+c),c=3/98+9/40*I,n=9 2178335778271001 a007 Real Root Of 289*x^4+16*x^3-830*x^2+776*x-713 2178335788840851 m001 (LandauRamanujan+Sarnak)/(arctan(1/2)+Ei(1,1)) 2178335792144923 k002 Champernowne real with 100*n^2-243*n+164 2178335794090189 m001 1/Porter/LandauRamanujan*ln(GAMMA(1/12)) 2178335802184595 p004 log(21187/2399) 2178335803276480 r005 Im(z^2+c),c=-7/20+18/31*I,n=37 2178335806232568 m001 (PlouffeB+ZetaP(3))/(GAMMA(2/3)-GAMMA(11/12)) 2178335811424476 a007 Real Root Of 267*x^4+193*x^3-730*x^2+398*x+314 2178335815975010 r009 Re(z^3+c),c=-19/34+16/35*I,n=56 2178335820910493 m001 1/Lehmer/FeigenbaumDelta/ln(GAMMA(1/4))^2 2178335823834913 m001 (HardHexagonsEntropy-Riemann3rdZero)/Trott 2178335831397447 r002 42th iterates of z^2 + 2178335834502117 a007 Real Root Of 865*x^4-523*x^3-59*x^2-793*x+179 2178335839965689 a007 Real Root Of 486*x^4+401*x^3+227*x^2-909*x+182 2178335841864189 m001 exp(1/exp(1))/exp(1)*HardyLittlewoodC5 2178335845385718 k001 Champernowne real with 1180*n+998 2178335869190077 r002 55th iterates of z^2 + 2178335882765699 m001 1/Zeta(1/2)^2/ln(GAMMA(1/12))/log(1+sqrt(2)) 2178335884126873 l006 ln(576/5087) 2178335885371406 a007 Real Root Of 72*x^4-449*x^3+500*x^2+58*x+521 2178335887034497 m005 (1/2*5^(1/2)+2/9)/(1/6*Catalan+6) 2178335887591767 r005 Im(z^2+c),c=-7/10+26/185*I,n=15 2178335887889964 m001 1/ln(FeigenbaumD)/Lehmer*GAMMA(5/6)^2 2178335890849134 m001 GAMMA(19/24)+GAMMA(7/12)^Trott 2178335894226500 m002 (8*Pi^3)/Log[Pi]+Log[Pi] 2178335895997011 a007 Real Root Of 56*x^4-277*x^3+306*x^2-290*x+782 2178335908464009 r005 Im(z^2+c),c=2/11+4/27*I,n=25 2178335910707870 m005 (1/3*Catalan+1/10)/(8/9*exp(1)-5/9) 2178335932527702 m001 Zeta(1,2)^2/Cahen*ln(log(1+sqrt(2)))^2 2178335936938206 a008 Real Root of (1+6*x+6*x^2-3*x^3-3*x^4+4*x^5) 2178335942615273 p004 log(29683/3361) 2178335945405721 k001 Champernowne real with 1181*n+997 2178335951116288 r005 Im(z^2+c),c=-27/118+7/23*I,n=6 2178335953894161 r005 Im(z^2+c),c=33/98+15/43*I,n=10 2178335955564889 v004 sum(1/(-8+6*n^2+6*n)/sinh(Pi*n),n=1..infinity) 2178335960451739 m001 HardyLittlewoodC4^ZetaR(2)-Shi(1) 2178335972830481 r005 Im(z^2+c),c=-25/48+17/37*I,n=55 2178335987905866 r005 Re(z^2+c),c=-5/7+23/91*I,n=24 2178335988328649 h001 (4/11*exp(1)+9/11)/(1/5*exp(1)+2/7) 2178335990029176 r005 Im(z^2+c),c=2/11+4/27*I,n=23 2178335994020286 m001 BesselI(0,2)/(GAMMA(23/24)^exp(gamma)) 2178335995923049 a007 Real Root Of 39*x^4+845*x^3-93*x^2+129*x-102 2178336000175438 l006 ln(4343/5400) 2178336001926157 m001 (ln(Pi)+Zeta(1,-1))/(GolombDickman-ZetaP(3)) 2178336008835750 s001 sum(exp(-3*Pi/5)^n*A133551[n],n=1..infinity) 2178336009553219 m002 4+6*Pi-Log[Pi]/ProductLog[Pi] 2178336014452365 a008 Real Root of x^4-x^3-9*x^2-16*x-25 2178336023396782 r002 12th iterates of z^2 + 2178336028112506 a007 Real Root Of 506*x^4+961*x^3-434*x^2-70*x+447 2178336042934227 h001 (3/8*exp(1)+1/9)/(5/8*exp(2)+4/7) 2178336045168997 s002 sum(A276513[n]/(64^n-1),n=1..infinity) 2178336045425724 k001 Champernowne real with 1182*n+996 2178336047498036 r005 Im(z^2+c),c=-67/122+25/61*I,n=63 2178336057272513 m001 KhinchinLevy/(ZetaR(2)-ln(2)) 2178336057918952 m001 (Pi^(1/2)-exp(Pi))/(-Conway+FellerTornier) 2178336070105585 l006 ln(1057/9335) 2178336071349677 a007 Real Root Of 148*x^4+365*x^3-77*x^2-795*x-926 2178336097196111 m004 -3100*Sqrt[5]*Pi-Sqrt[5]*Pi*Tan[Sqrt[5]*Pi] 2178336110831989 a007 Real Root Of 486*x^4+922*x^3-182*x^2+679*x+930 2178336116870922 r005 Re(z^2+c),c=17/64+4/23*I,n=14 2178336120286219 h003 exp(Pi*(1/3*(8*3^(1/4)+6^(2/3))*3^(3/4))) 2178336138743020 m006 (3/4*ln(Pi)+5)/(2*ln(Pi)+2/5) 2178336143641582 m001 (Ei(1,1)+exp(1/Pi))/(CareFree+Trott2nd) 2178336145445727 k001 Champernowne real with 1183*n+995 2178336145996499 r005 Im(z^2+c),c=-47/102+8/21*I,n=29 2178336148455995 r005 Im(z^2+c),c=-61/90+9/44*I,n=22 2178336152709059 h001 (5/8*exp(1)+1/5)/(1/11*exp(2)+1/5) 2178336158097653 m001 FeigenbaumB+FeigenbaumD^(ln(2)/ln(10)) 2178336158362247 r005 Re(z^2+c),c=43/114+16/59*I,n=49 2178336159261970 r009 Re(z^3+c),c=-33/98+23/49*I,n=32 2178336174389436 r005 Im(z^2+c),c=2/11+4/27*I,n=24 2178336178415313 a001 4/4181*34^(7/30) 2178336179556835 r002 48th iterates of z^2 + 2178336207310540 r002 13th iterates of z^2 + 2178336208805035 r005 Re(z^2+c),c=-4/23+23/53*I,n=39 2178336211775706 a007 Real Root Of 269*x^4+297*x^3-811*x^2-58*x+735 2178336213266072 a001 1597/11*2^(24/41) 2178336228146799 m001 (-DuboisRaymond+FeigenbaumMu)/(1-ln(gamma)) 2178336229949369 m005 (1/3*5^(1/2)+3/4)/(4/9*3^(1/2)-1/12) 2178336230155352 a008 Real Root of (-3-2*x-3*x^2-6*x^3-5*x^4+4*x^5) 2178336236912907 a001 28657/2207*199^(30/31) 2178336239826201 a001 13/4*123^(17/43) 2178336240334477 m001 FeigenbaumD*FransenRobinson^2/ln(GAMMA(1/3))^2 2178336245465730 k001 Champernowne real with 1184*n+994 2178336248012714 a001 439204/21*2178309^(19/24) 2178336253419194 m001 GAMMA(11/24)*DuboisRaymond^2*ln(sin(1))^2 2178336253551967 a001 89/4870847*3^(4/25) 2178336260364900 m005 (1/2*exp(1)+1/9)/(9/11*Catalan+6) 2178336260899274 r005 Im(z^2+c),c=-139/114+7/45*I,n=62 2178336261631240 m001 (Magata-MasserGramain)/(Tetranacci-TwinPrimes) 2178336266683204 a007 Real Root Of 184*x^4+359*x^3-434*x^2-887*x-305 2178336268185657 r005 Im(z^2+c),c=-18/23+7/37*I,n=6 2178336271150617 r009 Re(z^3+c),c=-1/6+36/47*I,n=3 2178336273594531 r002 46th iterates of z^2 + 2178336278853248 m006 (1/6/Pi+2)/(1/6*exp(2*Pi)+5) 2178336283680836 h001 (7/12*exp(2)+7/10)/(3/10*exp(2)+1/12) 2178336283741415 a001 5702887/521*322^(11/12) 2178336286927385 r005 Im(z^2+c),c=9/34+5/63*I,n=15 2178336287134379 m001 exp(Pi)^CopelandErdos*sinh(1)^CopelandErdos 2178336289945560 m001 GAMMA(23/24)*ln(CopelandErdos)^2*Zeta(7)^2 2178336290258612 a001 123/13*1134903170^(6/23) 2178336292742076 m001 polylog(4,1/2)/Stephens/ThueMorse 2178336292816013 l006 ln(481/4248) 2178336296107429 r009 Re(z^3+c),c=-13/42+16/33*I,n=6 2178336296288991 m001 Rabbit^2/ln(CareFree)/TwinPrimes 2178336302864524 l006 ln(6118/7607) 2178336305410603 a001 41/48*225851433717^(10/21) 2178336307775077 m001 (Bloch-Totient)/(ZetaP(2)-ZetaQ(2)) 2178336308893008 a007 Real Root Of -11*x^4-253*x^3-258*x^2+697*x-726 2178336309011311 a007 Real Root Of 399*x^4+451*x^3-728*x^2+784*x+840 2178336312176122 a003 -1+cos(3/8*Pi)-cos(10/21*Pi)-2*cos(7/30*Pi) 2178336320295347 r005 Re(z^2+c),c=-9/118+29/47*I,n=60 2178336322281002 r005 Re(z^2+c),c=17/122+21/50*I,n=32 2178336322463358 m005 (1/2*exp(1)-1/12)/(3/11*Pi+5) 2178336325553560 q001 364/1671 2178336336119781 r009 Re(z^3+c),c=-11/86+55/57*I,n=40 2178336337277738 r009 Re(z^3+c),c=-11/86+55/57*I,n=36 2178336340646956 m001 1/BesselK(0,1)^2*ln(OneNinth)/gamma 2178336345485733 k001 Champernowne real with 1185*n+993 2178336368590966 m001 (BesselK(0,1)+BesselI(0,2))/(Cahen+Gompertz) 2178336373751355 m001 Porter^2/exp(Conway)/FeigenbaumD 2178336378503924 m001 Zeta(1,2)^ln(gamma)/PlouffeB 2178336383938865 a007 Real Root Of 192*x^4+67*x^3-901*x^2-66*x+501 2178336391076329 m001 Pi^cosh(1)/Khinchin 2178336397240547 m001 (FeigenbaumB+OneNinth)/(Pi+GAMMA(19/24)) 2178336401340053 m001 (BesselK(0,1)-KhinchinHarmonic)/(-Porter+Thue) 2178336402865390 m005 (19/42+1/6*5^(1/2))/(7/10*3^(1/2)-5) 2178336403953233 m001 1/Bloch*ln(FransenRobinson)^2/Zeta(5) 2178336405866936 r005 Re(z^2+c),c=-5/9+28/61*I,n=10 2178336411962239 m001 1/GAMMA(1/12)/KhintchineHarmonic^2/ln(Pi)^2 2178336414568125 a007 Real Root Of -395*x^4-802*x^3+274*x^2+292*x-60 2178336415214750 a003 cos(Pi*11/94)-sin(Pi*17/67) 2178336431439684 a007 Real Root Of -328*x^4-297*x^3+852*x^2-435*x-675 2178336431989594 h001 (7/9*exp(2)+3/5)/(3/4*exp(1)+7/8) 2178336433675200 m001 exp(GAMMA(5/6))*Paris^2/sinh(1)^2 2178336444814931 a007 Real Root Of -186*x^4-9*x^3+490*x^2-549*x+574 2178336445505736 k001 Champernowne real with 1186*n+992 2178336448565990 a001 3/3571*199^(9/50) 2178336453679315 m001 1/GAMMA(1/6)/ErdosBorwein^2/exp(sqrt(3))^2 2178336465110078 a007 Real Root Of -186*x^4-7*x^3+434*x^2-512*x+941 2178336469414462 l006 ln(7893/9814) 2178336486080658 m001 Zeta(3)^2*ln(Pi)*log(2+sqrt(3)) 2178336487686129 r005 Re(z^2+c),c=-19/110+14/31*I,n=15 2178336488551609 r005 Re(z^2+c),c=-17/14+5/253*I,n=10 2178336491100081 r005 Re(z^2+c),c=-3/22+27/53*I,n=26 2178336494628809 a001 1/39606*(1/2*5^(1/2)+1/2)^8*322^(2/19) 2178336498806943 a007 Real Root Of -31*x^4-638*x^3+769*x^2-930*x+230 2178336500488751 r009 Re(z^3+c),c=-11/86+55/57*I,n=46 2178336513097509 a007 Real Root Of 518*x^4+978*x^3-589*x^2-900*x-720 2178336514294843 a007 Real Root Of 177*x^4+78*x^3-668*x^2-37*x-90 2178336517462613 m001 GAMMA(1/12)*(GaussKuzminWirsing+BesselI(1,2)) 2178336517853725 s002 sum(A144302[n]/(2^n+1),n=1..infinity) 2178336519585460 r009 Re(z^3+c),c=-11/86+55/57*I,n=52 2178336520119918 a003 sin(Pi*3/91)/cos(Pi*37/108) 2178336521597179 r009 Re(z^3+c),c=-11/86+55/57*I,n=58 2178336521790453 r009 Re(z^3+c),c=-11/86+55/57*I,n=64 2178336521805217 r009 Re(z^3+c),c=-11/86+55/57*I,n=62 2178336521899043 r009 Re(z^3+c),c=-11/86+55/57*I,n=60 2178336521922298 r009 Re(z^3+c),c=-11/86+55/57*I,n=56 2178336522490125 r009 Re(z^3+c),c=-11/86+55/57*I,n=54 2178336524245363 r009 Re(z^3+c),c=-11/86+55/57*I,n=50 2178336525883695 r009 Re(z^3+c),c=-11/86+55/57*I,n=48 2178336526570747 a007 Real Root Of 369*x^4+921*x^3+746*x^2+743*x-710 2178336527291016 m001 (2^(1/3))^2*ln(CopelandErdos)*GAMMA(7/24)^2 2178336529782354 m001 (Zeta(5)-gamma(1))/(2*Pi/GAMMA(5/6)-Bloch) 2178336532776867 r009 Re(z^3+c),c=-11/86+55/57*I,n=42 2178336536034880 m005 (1/2*2^(1/2)+5/9)/(2/9*Catalan-6) 2178336545525739 k001 Champernowne real with 1187*n+991 2178336556434368 r009 Re(z^3+c),c=-11/86+55/57*I,n=44 2178336557360872 a007 Real Root Of 186*x^4-74*x^3-694*x^2+728*x-74 2178336564332581 l006 ln(867/7657) 2178336566851040 a007 Real Root Of 474*x^4+972*x^3-300*x^2-145*x+482 2178336572361237 a007 Real Root Of -248*x^4-403*x^3+595*x^2+392*x-551 2178336575665692 r005 Re(z^2+c),c=-9/11+2/33*I,n=28 2178336578327533 a008 Real Root of (-6+3*x-2*x^2+6*x^3+2*x^4-2*x^5) 2178336579490267 m005 (1/3*exp(1)-1/9)/(7/10*2^(1/2)-5/8) 2178336582570828 s002 sum(A085888[n]/((pi^n+1)/n),n=1..infinity) 2178336591481854 a007 Real Root Of 459*x^4+885*x^3-435*x^2-179*x+487 2178336596624595 p001 sum((-1)^n/(552*n+457)/(100^n),n=0..infinity) 2178336600267885 m001 BesselI(0,2)*PisotVijayaraghavan-sin(1) 2178336603146409 m009 (40*Catalan+5*Pi^2+1/5)/(1/3*Pi^2+2/3) 2178336618430573 a001 75025/5778*199^(30/31) 2178336629263659 r005 Re(z^2+c),c=-19/82+14/53*I,n=11 2178336632402103 a007 Real Root Of 378*x^4+512*x^3-677*x^2-76*x-172 2178336633130214 r009 Im(z^3+c),c=-6/31+12/59*I,n=2 2178336641770735 p004 log(29789/3373) 2178336645545742 k001 Champernowne real with 1188*n+990 2178336651328619 r005 Re(z^2+c),c=-3/106+31/50*I,n=60 2178336659177198 m001 cos(1/5*Pi)^gamma(2)+Salem 2178336666617559 a007 Real Root Of -78*x^4+281*x^3+975*x^2-428*x-898 2178336666910778 m001 1/ln(Niven)/DuboisRaymond^2*TreeGrowth2nd 2178336669267985 m005 (1/3*Catalan+1/3)/(5/11*gamma-5/9) 2178336670346374 r009 Re(z^3+c),c=-23/66+21/40*I,n=14 2178336674093261 a001 196418/15127*199^(30/31) 2178336680805172 m001 (Kac+Lehmer)/(Psi(2,1/3)-cos(1/5*Pi)) 2178336682214338 a001 514229/39603*199^(30/31) 2178336683399187 a001 1346269/103682*199^(30/31) 2178336683678892 a001 2178309/167761*199^(30/31) 2178336684131465 a001 832040/64079*199^(30/31) 2178336687233440 a001 10959/844*199^(30/31) 2178336689377581 a001 1/843*(1/2*5^(1/2)+1/2)^3*47^(8/21) 2178336693122667 a001 322/6765*28657^(19/51) 2178336705121429 a007 Real Root Of 338*x^4+330*x^3-544*x^2+455*x-627 2178336708494696 a001 121393/9349*199^(30/31) 2178336714088844 m005 (1/3*exp(1)-2/5)/(2^(1/2)+10/11) 2178336745565745 k001 Champernowne real with 1189*n+989 2178336749743651 r002 39th iterates of z^2 + 2178336754004166 a007 Real Root Of 66*x^4+264*x^3+369*x^2+360*x+276 2178336763242801 m001 exp(1)^gamma(3)+Salem 2178336772048050 r002 3th iterates of z^2 + 2178336777611295 m001 (GAMMA(3/4)-BesselI(1,1))/(FellerTornier-Kac) 2178336781537873 r005 Im(z^2+c),c=23/86+4/53*I,n=48 2178336783756630 r002 24th iterates of z^2 + 2178336784233985 m001 GAMMA(19/24)^2/Porter*exp(sin(1)) 2178336786978988 m001 exp(FeigenbaumD)^2/RenyiParking/GAMMA(1/4)^2 2178336788022199 m001 (Chi(1)-ln(5))/(-FeigenbaumB+KhinchinLevy) 2178336789957856 m001 FellerTornier/Psi(1,1/3)/Porter 2178336791782418 m001 exp(Pi)^(GAMMA(23/24)/FellerTornier) 2178336795145523 k002 Champernowne real with 201/2*n^2-489/2*n+165 2178336800558558 a007 Real Root Of -506*x^4-694*x^3+797*x^2+124*x+708 2178336801005449 r009 Im(z^3+c),c=-11/30+21/32*I,n=15 2178336804658558 r009 Re(z^3+c),c=-7/19+37/55*I,n=34 2178336809937508 m005 (1/2*Catalan+7/12)/(6/11*5^(1/2)-6) 2178336811839394 r005 Im(z^2+c),c=-9/10+39/200*I,n=60 2178336812739678 m001 (3^(1/2)+exp(1/exp(1)))/(-Porter+ZetaQ(3)) 2178336816798531 m001 Zeta(3)+MertensB1+TravellingSalesman 2178336822124965 a007 Real Root Of -482*x^4-942*x^3+57*x^2-552*x-357 2178336824690030 m006 (5*exp(2*Pi)-2/5)/(1/5*ln(Pi)+1) 2178336845585748 k001 Champernowne real with 1190*n+988 2178336854221525 a001 46368/3571*199^(30/31) 2178336855466693 a007 Real Root Of -32*x^4+224*x^3+585*x^2-314*x-424 2178336868092899 a007 Real Root Of 236*x^4+701*x^3+843*x^2+797*x-332 2178336872300082 s002 sum(A023021[n]/(n^2*pi^n-1),n=1..infinity) 2178336876303357 m008 (2/5*Pi^3+1/4)/(3/5*Pi^6+4) 2178336881910781 m001 (StolarskyHarborth+Trott)/(1-gamma) 2178336883113429 m001 (Ei(1)+MertensB2)/(MertensB3-Porter) 2178336884808485 m001 (Kolakoski+Thue)/(FeigenbaumKappa-Gompertz) 2178336898210572 m001 BesselI(0,1)+FeigenbaumAlpha-BesselI(1,2) 2178336898210572 m001 BesselI(0,1)-BesselI(1,2)+FeigenbaumAlpha 2178336902673072 l006 ln(386/3409) 2178336905109243 a007 Real Root Of -379*x^4-849*x^3-119*x^2-402*x-553 2178336912127829 m008 (4/5*Pi^4-5)/(2/5*Pi^2-3/5) 2178336922380746 m001 (exp(-Pi)+2/3)/(sin(Pi/12)+3) 2178336926891209 m004 -5*Pi+50*Pi*Csc[Sqrt[5]*Pi]+Tanh[Sqrt[5]*Pi] 2178336935453560 a001 10749957122/89*21^(19/20) 2178336935507150 r009 Re(z^3+c),c=-11/86+55/57*I,n=38 2178336939282520 m001 (BesselK(1,1)+GAMMA(5/6))/(3^(1/2)+Zeta(1,2)) 2178336941618177 m001 (PlouffeB+Trott2nd)/(Artin-FeigenbaumD) 2178336942716551 m004 -1+5*Pi-50*Pi*Csc[Sqrt[5]*Pi] 2178336945578487 m005 (1/2*Pi+2)/(6*3^(1/2)+6) 2178336945605751 k001 Champernowne real with 1191*n+987 2178336955401058 s002 sum(A163426[n]/(16^n),n=1..infinity) 2178336957391182 p003 LerchPhi(1/2,1,113/193) 2178336980306345 q001 1991/914 2178337013401392 a007 Real Root Of 162*x^4-177*x^3-729*x^2+830*x-210 2178337031051496 r009 Re(z^3+c),c=-27/122+17/24*I,n=28 2178337034974191 a007 Real Root Of -5*x^4+515*x^3+497*x^2-962*x+982 2178337041299301 a007 Real Root Of -186*x^4-160*x^3-215*x^2+621*x-123 2178337043472202 l006 ln(1775/2207) 2178337045625754 k001 Champernowne real with 1192*n+986 2178337046754575 a007 Real Root Of 597*x^4+807*x^3-782*x^2+460*x-388 2178337057930521 a007 Real Root Of -501*x^4+679*x^3-780*x^2+809*x+18 2178337063204550 m001 (Zeta(1/2)-exp(1/Pi))/(gamma(3)-Conway) 2178337065914812 r005 Im(z^2+c),c=-43/98+19/47*I,n=17 2178337088658469 m001 Salem/Zeta(1,2)/Stephens 2178337093234645 m001 (5^(1/2)+3^(1/3))/(-KomornikLoreti+Paris) 2178337097597763 m009 (2*Psi(1,1/3)+1/6)/(Psi(1,1/3)-3/4) 2178337118256573 a007 Real Root Of -210*x^4-556*x^3-438*x^2-133*x+770 2178337140481847 r002 62th iterates of z^2 + 2178337141258073 b008 -4+2^(E/Pi) 2178337144267897 a001 4181/4*7^(20/53) 2178337145645757 k001 Champernowne real with 1193*n+985 2178337148938272 m001 ln(3)*(3^(1/3))*exp(1/Pi) 2178337148938272 m001 ln(3)*3^(1/3)*exp(1/Pi) 2178337151225677 r009 Re(z^3+c),c=-4/31+17/18*I,n=18 2178337151874052 m001 (Riemann1stZero+Totient)/(2^(1/3)+ln(gamma)) 2178337167569436 a007 Real Root Of 970*x^4+368*x^3-397*x^2-928*x+215 2178337177791451 a007 Real Root Of 420*x^4+439*x^3-906*x^2+163*x-265 2178337178628966 l006 ln(1063/9388) 2178337191358024 r005 Re(z^2+c),c=-19/16+5/72*I,n=2 2178337200002310 a007 Real Root Of -449*x^4-889*x^3-147*x^2-921*x-388 2178337216969919 h001 (4/11*exp(1)+2/7)/(5/7*exp(2)+4/7) 2178337220865747 r009 Re(z^3+c),c=-39/110+19/37*I,n=46 2178337224508270 h001 (1/6*exp(1)+7/12)/(6/11*exp(2)+8/11) 2178337240328913 r005 Im(z^2+c),c=-15/16+21/97*I,n=47 2178337244260891 a007 Real Root Of -530*x^4-881*x^3+53*x^2-935*x+539 2178337245665760 k001 Champernowne real with 1194*n+984 2178337246960334 m001 GAMMA(2/3)^exp(-1/2*Pi)-GaussAGM(1,1/sqrt(2)) 2178337249881353 m001 Shi(1)-sin(1)+gamma(3) 2178337252059448 a001 11/4181*10946^(5/22) 2178337253658855 m005 (1/2*2^(1/2)-2/3)/(10/9+1/3*5^(1/2)) 2178337254602633 a007 Real Root Of -43*x^4+128*x^3+280*x^2+2*x+967 2178337255500957 p004 log(36713/4157) 2178337259785960 m001 Landau^Stephens/(Landau^Si(Pi)) 2178337261588045 a007 Real Root Of -471*x^4-968*x^3+230*x^2-23*x-542 2178337266283302 a001 161/305*2178309^(13/51) 2178337270574520 r005 Im(z^2+c),c=-5/6+29/130*I,n=11 2178337276358366 a001 11/46368*433494437^(5/22) 2178337279116479 r005 Re(z^2+c),c=-45/62+37/48*I,n=3 2178337283260375 m001 ln(BesselK(0,1))/Conway^2/GAMMA(7/12)^2 2178337284921815 a007 Real Root Of 174*x^4-592*x^3+727*x^2-964*x-251 2178337285599653 r005 Im(z^2+c),c=-33/86+18/29*I,n=64 2178337292159710 m001 (gamma+Zeta(5))/(-ln(2+3^(1/2))+Stephens) 2178337298829595 a007 Real Root Of -91*x^4+175*x^3+440*x^2-645*x+365 2178337301078626 a007 Real Root Of 8*x^4-58*x^3-18*x^2+506*x+408 2178337305306558 s001 sum(1/10^(n-1)*A222134[n]/n^n,n=1..infinity) 2178337315271874 a007 Real Root Of -426*x^4+638*x^3-62*x^2+791*x-175 2178337322487374 m005 (1/2*Catalan-2/9)/(1/10*3^(1/2)+10/11) 2178337327300837 r005 Re(z^2+c),c=-8/21+31/47*I,n=33 2178337328065219 m005 (1/2*Zeta(3)-1/6)/(2/3*exp(1)+2/11) 2178337329303063 r009 Im(z^3+c),c=-17/38+1/16*I,n=61 2178337335968629 l006 ln(677/5979) 2178337343654528 m001 ErdosBorwein^sin(1)*MinimumGamma 2178337345685763 k001 Champernowne real with 1195*n+983 2178337351391446 s002 sum(A005919[n]/(10^n+1),n=1..infinity) 2178337351968801 m001 (Conway+Weierstrass)/(Ei(1,1)-ln(2)/ln(10)) 2178337352296921 a001 1836311903/2207*123^(1/5) 2178337355225040 a007 Real Root Of -548*x^4-981*x^3+653*x^2+503*x+196 2178337373777006 a007 Real Root Of 202*x^4+201*x^3-698*x^2+20*x+885 2178337390306012 g007 -14*Zeta(3)-Psi(2,9/10)-Psi(13/10)-Psi(2,4/9) 2178337398156945 v002 sum(1/(2^n*(4*n^2+4*n+27)),n=1..infinity) 2178337411022025 m001 (Cahen*Tribonacci-Sierpinski)/Cahen 2178337415417019 m001 (Sierpinski-QuadraticClass)^MinimumGamma 2178337420830548 m005 (4/5*Pi-3/5)/(1/5*Pi+1/4) 2178337420830548 m006 (3/5/Pi-4/5)/(1/4/Pi+1/5) 2178337420830548 m008 (4/5*Pi-3/5)/(1/5*Pi+1/4) 2178337424860449 a007 Real Root Of 236*x^4+316*x^3-344*x^2+175*x-34 2178337426264238 r002 22th iterates of z^2 + 2178337430280618 a007 Real Root Of -103*x^4+152*x^3+689*x^2-95*x+414 2178337432086853 m003 18+3*Cosh[1/2+Sqrt[5]/2]*Log[1/2+Sqrt[5]/2] 2178337432196620 s002 sum(A193573[n]/(exp(n)),n=1..infinity) 2178337433558128 m005 (1/2*gamma+1/11)/(8/11*Zeta(3)-7/10) 2178337437295797 a007 Real Root Of -712*x^4-898*x^3+982*x^2-795*x+358 2178337437855773 s002 sum(A097449[n]/(pi^n),n=1..infinity) 2178337443331745 m005 (1/3*exp(1)-1/11)/(1/3*gamma+2/11) 2178337445705766 k001 Champernowne real with 1196*n+982 2178337453181923 r005 Re(z^2+c),c=-21/26+2/23*I,n=44 2178337463744547 a001 23725150497407/13*701408733^(8/23) 2178337468148901 m005 (1/2*Catalan-2)/(7/11*Catalan+1/8) 2178337469480318 m001 Paris^2*ln(Lehmer)/GAMMA(7/12)^2 2178337471969366 b008 2+ArcCoth[17/3] 2178337473467381 m001 (ln(Pi)+ErdosBorwein)/(Totient-ZetaP(4)) 2178337483838414 r002 14th iterates of z^2 + 2178337486483646 m001 1/(sin(1/12*Pi)^BesselI(0,2)) 2178337498452234 m001 (MertensB2-Salem)/(exp(1/exp(1))-Kolakoski) 2178337498736653 r005 Re(z^2+c),c=-9/94+3/5*I,n=47 2178337504602821 m001 (ln(2)-BesselI(1,1))/(GAMMA(17/24)-ArtinRank2) 2178337508749656 l006 ln(968/8549) 2178337509823178 m001 MinimumGamma*MadelungNaCl^TravellingSalesman 2178337511241318 a007 Real Root Of -550*x^4-808*x^3+612*x^2-623*x-229 2178337523956406 m003 3-Cosh[1/2+Sqrt[5]/2]/4-Sin[1/2+Sqrt[5]/2]/6 2178337528712308 a007 Real Root Of 20*x^4+428*x^3-201*x^2-706*x+743 2178337533801998 p001 sum(1/(571*n+509)/(5^n),n=0..infinity) 2178337543650307 m007 (-gamma-2*ln(2)+3/4)/(-4/5*gamma-8/5*ln(2)-4) 2178337545725769 k001 Champernowne real with 1197*n+981 2178337585052694 a007 Real Root Of -279*x^4-535*x^3-319*x^2-907*x+290 2178337585379621 m001 1/FeigenbaumB^2/Cahen*ln(GAMMA(1/3))^2 2178337595948270 m001 (1-Riemann2ndZero)/(-Trott+ZetaQ(4)) 2178337600886538 a007 Real Root Of -163*x^4+918*x^3-847*x^2+845*x-153 2178337601658902 p004 log(11119/1259) 2178337602110440 r005 Im(z^2+c),c=-99/86+11/47*I,n=54 2178337604105397 l006 ln(8082/10049) 2178337605654923 r002 4th iterates of z^2 + 2178337614140110 m001 (GAMMA(17/24)-LaplaceLimit)/(ln(5)-Ei(1)) 2178337627355795 m001 (Khinchin+TreeGrowth2nd)/(cos(1/5*Pi)+Kac) 2178337632117993 m005 (5*exp(1)+4/5)/(3/4*2^(1/2)-2/5) 2178337636533211 a007 Real Root Of -17*x^4-364*x^3+108*x^2-612*x+721 2178337636680775 m001 (2^(1/2))^QuadraticClass-exp(Pi) 2178337640721923 m001 (-Conway+QuadraticClass)/(1-Zeta(1,2)) 2178337645447895 m001 (Si(Pi)+GAMMA(11/12))/(PlouffeB+Thue) 2178337645745772 k001 Champernowne real with 1198*n+980 2178337648599100 h001 (1/3*exp(2)+3/11)/(3/7*exp(1)+1/11) 2178337650233747 a007 Real Root Of -66*x^4+211*x^3+670*x^2-44*x+392 2178337654475971 m001 1/BesselJ(0,1)*exp(Conway)*GAMMA(5/12)^2 2178337657779036 m001 (HardHexagonsEntropy+Kac)/(PlouffeB+ZetaP(2)) 2178337661125143 m005 (1/2*gamma-2/7)/(5/8*2^(1/2)+4/9) 2178337666592236 r005 Re(z^2+c),c=-61/98+25/61*I,n=54 2178337671017966 m005 (4/5*gamma+1/6)/(exp(1)+1/6) 2178337672721009 m001 1/ln(FeigenbaumC)^2/MadelungNaCl/GAMMA(1/3)^2 2178337673264052 p004 log(17891/14389) 2178337680840553 m001 ln(1+sqrt(2))*Khinchin^Catalan 2178337680840553 m001 ln(2^(1/2)+1)*Khinchin^Catalan 2178337684118702 r005 Im(z^2+c),c=-29/31+11/47*I,n=39 2178337688243697 p003 LerchPhi(1/2,2,3/140) 2178337691169739 a005 (1/sin(54/173*Pi))^203 2178337691471374 r005 Re(z^2+c),c=3/94+26/43*I,n=36 2178337698612387 m001 (Pi+CopelandErdos)/(ReciprocalLucas-ThueMorse) 2178337724778314 r005 Im(z^2+c),c=-17/42+23/63*I,n=43 2178337734267892 a001 267084832/321*123^(1/5) 2178337735711506 m001 1/Magata^2/ln(CareFree)/GAMMA(5/6) 2178337740063593 m001 BesselK(1,1)/FeigenbaumC*LaplaceLimit 2178337745765775 k001 Champernowne real with 1199*n+979 2178337759014144 a007 Real Root Of 32*x^4+695*x^3-56*x^2-203*x+774 2178337761886257 l006 ln(6307/7842) 2178337766243972 m005 (1/2*5^(1/2)+6/7)/(1/9*3^(1/2)+5/7) 2178337772297574 a007 Real Root Of 9*x^4-496*x^3+926*x^2+80*x+356 2178337781198689 a007 Real Root Of -568*x^4-856*x^3+932*x^2+517*x+645 2178337786386328 s002 sum(A016752[n]/((2^n-1)/n),n=1..infinity) 2178337788509973 h001 (1/3*exp(1)+5/12)/(7/10*exp(2)+9/10) 2178337789996717 a001 12586269025/15127*123^(1/5) 2178337793670009 m001 (PlouffeB+Sierpinski)/(Mills+Paris) 2178337794635795 a007 Real Root Of -851*x^4-190*x^3+5*x^2+765*x-163 2178337798127443 a001 10983760033/13201*123^(1/5) 2178337798146123 k002 Champernowne real with 101*n^2-246*n+166 2178337799313700 a001 43133785636/51841*123^(1/5) 2178337799486773 a001 75283811239/90481*123^(1/5) 2178337799512024 a001 591286729879/710647*123^(1/5) 2178337799515708 a001 832040*123^(1/5) 2178337799516245 a001 4052739537881/4870847*123^(1/5) 2178337799516324 a001 3536736619241/4250681*123^(1/5) 2178337799516372 a001 3278735159921/3940598*123^(1/5) 2178337799516577 a001 2504730781961/3010349*123^(1/5) 2178337799517985 a001 956722026041/1149851*123^(1/5) 2178337799527630 a001 182717648081/219602*123^(1/5) 2178337799593737 a001 139583862445/167761*123^(1/5) 2178337800046847 a001 53316291173/64079*123^(1/5) 2178337803152508 a001 10182505537/12238*123^(1/5) 2178337811609175 a007 Real Root Of 185*x^4+156*x^3-429*x^2+518*x+611 2178337824439026 a001 7778742049/9349*123^(1/5) 2178337825598655 r005 Im(z^2+c),c=-75/94+9/53*I,n=20 2178337826037484 r005 Im(z^2+c),c=23/86+4/53*I,n=52 2178337828265427 a007 Real Root Of 353*x^4+556*x^3-467*x^2+304*x+677 2178337829139932 a007 Real Root Of -412*x^4-984*x^3+250*x^2+856*x-216 2178337830260929 l006 ln(8673/8864) 2178337838304165 m003 11/2+Sqrt[5]/4+6*Cosh[1/2+Sqrt[5]/2] 2178337839286413 m005 (1/3*gamma+1/8)/(3/4*Zeta(3)+5/9) 2178337839637015 s002 sum(A263019[n]/((2^n-1)/n),n=1..infinity) 2178337844209521 r005 Im(z^2+c),c=-101/118+10/59*I,n=20 2178337844558113 r005 Re(z^2+c),c=3/14+7/59*I,n=10 2178337845785778 k001 Champernowne real with 1200*n+978 2178337846403902 m001 (sin(1)+arctan(1/2))/(-CareFree+Conway) 2178337853048592 a001 17711/1364*199^(30/31) 2178337862965465 m001 Riemann1stZero^2/RenyiParking^2*ln(Tribonacci) 2178337878271132 m001 1/ln(Salem)/FeigenbaumDelta*GAMMA(17/24)^2 2178337883222371 m001 (Kac-MertensB1)/(Zeta(5)+HardyLittlewoodC3) 2178337886632094 m002 -3+Pi^3-(Cosh[Pi]*ProductLog[Pi])/2 2178337887508325 m001 FransenRobinson/exp(ErdosBorwein)/Sierpinski 2178337895301890 m005 (1/12+1/4*5^(1/2))/(9/11*Catalan-5/11) 2178337895736008 r005 Re(z^2+c),c=-5/22+13/49*I,n=7 2178337898346027 h001 (4/11*exp(2)+1/12)/(1/11*exp(2)+3/5) 2178337910197296 b008 Sqrt[3]+2*Log[5/4] 2178337910197296 b008 Sqrt[3]+4*ArcCoth[9] 2178337910717772 l006 ln(291/2570) 2178337912169646 a005 (1/cos(1/56*Pi))^1957 2178337912311164 m002 -2*Cosh[Pi]+(Pi^4*Sech[Pi])/6 2178337917591959 m005 (1/3*gamma-1/6)/(3/4*exp(1)-6/7) 2178337920212262 r002 42th iterates of z^2 + 2178337923317488 m001 (exp(Pi)-Kolakoski)/GAMMA(23/24) 2178337928041682 m001 Otter^FeigenbaumDelta/Sarnak 2178337932082080 r005 Im(z^2+c),c=-27/94+14/41*I,n=10 2178337934535191 r005 Im(z^2+c),c=5/82+14/23*I,n=27 2178337937358272 r005 Re(z^2+c),c=-19/86+13/43*I,n=20 2178337939268750 m001 (Totient+ThueMorse)/(BesselK(0,1)-GAMMA(3/4)) 2178337945805781 k001 Champernowne real with 1201*n+977 2178337957195102 a007 Real Root Of 230*x^4-945*x^3+879*x^2-669*x-15 2178337958544692 r009 Im(z^3+c),c=-27/110+8/41*I,n=7 2178337970339002 a001 2971215073/3571*123^(1/5) 2178337981546193 a007 Real Root Of -200*x^4+240*x^3+995*x^2-912*x+276 2178337982932294 m001 Magata*Kolakoski/exp((2^(1/3)))^2 2178337994444124 m005 (1/2*Pi+1/4)/(1/9*gamma-9/10) 2178338000007396 m001 (Champernowne+KhinchinLevy)/(Lehmer+ZetaQ(3)) 2178338000647562 a007 Real Root Of -206*x^4-566*x^3-643*x^2-718*x+275 2178338006653074 m001 (Riemann1stZero+ZetaQ(4))/(ln(3)-MadelungNaCl) 2178338007293219 m005 (1/2*3^(1/2)-3/11)/(1/4*gamma-5/12) 2178338014653097 m001 (3^(1/2))^FeigenbaumKappa-gamma(1) 2178338016065939 a001 12238/17*10946^(5/42) 2178338026119457 r005 Re(z^2+c),c=-7/44+22/47*I,n=29 2178338037605306 m001 Zeta(1/2)*GAMMA(11/24)+Cahen 2178338037605306 m001 Zeta(1/2)*Pi*csc(11/24*Pi)/GAMMA(13/24)+Cahen 2178338043259797 l006 ln(4532/5635) 2178338044945006 r005 Im(z^2+c),c=-29/102+4/5*I,n=3 2178338045548192 r005 Re(z^2+c),c=25/74+1/4*I,n=29 2178338045825784 k001 Champernowne real with 1202*n+976 2178338050862156 m001 (exp(-1/2*Pi)+GAMMA(13/24))/(Trott-Thue) 2178338055885873 a007 Real Root Of -120*x^4-226*x^3-28*x^2+147*x+819 2178338056199860 m005 (1/2*5^(1/2)+5/7)/(1/11*Pi+5/9) 2178338068883707 a001 2178309+13*5^(1/2) 2178338074410801 m001 GAMMA(1/12)^2*Bloch^2/ln(sin(Pi/12)) 2178338076862855 r009 Im(z^3+c),c=-1/62+13/57*I,n=4 2178338084325424 m001 Riemann3rdZero^2*ln(Bloch)*arctan(1/2) 2178338088287659 a008 Real Root of x^4+13*x^2-46*x+16 2178338091926792 a007 Real Root Of -625*x^4-807*x^3-264*x^2+920*x+206 2178338100562228 a001 123/89*34^(4/31) 2178338102079290 h001 (1/7*exp(1)+9/10)/(5/7*exp(2)+7/11) 2178338103693727 b008 21+3^(-2/9) 2178338107061784 h001 (2/3*exp(1)+3/8)/(2/9*exp(1)+2/5) 2178338107193931 m001 (Gompertz-Sierpinski)/(Thue+ZetaQ(2)) 2178338107281856 a003 cos(Pi*14/67)-cos(Pi*29/95) 2178338111212121 k007 concat of cont frac of 2178338113025999 p001 sum(1/(315*n+47)/(6^n),n=0..infinity) 2178338124397388 h001 (-10*exp(1)+1)/(-2*exp(4)-11) 2178338124611797 a001 2178318+9*5^(1/2) 2178338127894859 r005 Re(z^2+c),c=-3/28+27/47*I,n=58 2178338130814285 a007 Real Root Of 64*x^4-607*x^3+669*x^2+576*x+404 2178338133608707 m001 (Kac+ZetaP(3))/(BesselI(1,1)-BesselK(1,1)) 2178338136214956 m001 (Psi(1,1/3)-exp(1/Pi))/(Gompertz+Magata) 2178338138521349 s002 sum(A284701[n]/(n*10^n+1),n=1..infinity) 2178338145211167 a007 Real Root Of 260*x^4+375*x^3-178*x^2+838*x+692 2178338145845787 k001 Champernowne real with 1203*n+975 2178338153248152 m001 exp(1/Pi)+CareFree^GolombDickman 2178338160468200 a007 Real Root Of 151*x^4-31*x^3-212*x^2+810*x-950 2178338161996805 b008 Sinh[1/5+Cos[2]] 2178338170059613 a007 Real Root Of 497*x^4+728*x^3-912*x^2-633*x-717 2178338174018408 m001 1/ln(Tribonacci)*Champernowne*Zeta(5)^2 2178338174087805 m001 (3^(1/3)+Khinchin)/(KomornikLoreti+OneNinth) 2178338176548978 r005 Im(z^2+c),c=-19/54+20/57*I,n=26 2178338179004181 m005 (1/2*Catalan-1/10)/(5/6*3^(1/2)+1/5) 2178338180134359 r005 Re(z^2+c),c=-13/106+38/63*I,n=30 2178338185403472 m005 (1/2*Pi-1)/(5/9*Pi+7/8) 2178338206240280 a007 Real Root Of 236*x^4+256*x^3-617*x^2-516*x-864 2178338211293872 m001 (cos(1/12*Pi)-Backhouse)/(Cahen+ErdosBorwein) 2178338211964766 m001 (GAMMA(11/12)+Lehmer)/(MertensB3-Stephens) 2178338212371455 a001 1/521*(1/2*5^(1/2)+1/2)^19*3^(3/17) 2178338212820354 a007 Real Root Of -509*x^4+755*x^3-719*x^2+351*x-49 2178338217749758 m001 1/cosh(1)^2*ln(KhintchineLevy)^2*sqrt(Pi) 2178338221094591 r002 43i'th iterates of 2*x/(1-x^2) of 2178338221094591 r002 44i'th iterates of 2*x/(1-x^2) of 2178338236888063 r009 Re(z^3+c),c=-12/23+23/39*I,n=30 2178338245326664 r005 Re(z^2+c),c=-7/54+9/17*I,n=45 2178338245865790 k001 Champernowne real with 1204*n+974 2178338248093889 a007 Real Root Of 64*x^4-28*x^3+348*x^2-317*x-86 2178338248936422 a007 Real Root Of -388*x^4-467*x^3+940*x^2-139*x-854 2178338258898888 r005 Re(z^2+c),c=-97/122+1/11*I,n=24 2178338259557197 m001 FeigenbaumB/Khintchine^2/exp(Riemann3rdZero)^2 2178338262775973 r005 Im(z^2+c),c=-8/23+7/20*I,n=32 2178338265903525 m006 (3/4/Pi+1/5)/(exp(Pi)-3) 2178338267633668 a007 Real Root Of 196*x^4+325*x^3+90*x^2+493*x-407 2178338274707471 l006 ln(1069/9441) 2178338275933347 m004 (-5*Sqrt[5])/Pi+(5*E^(Sqrt[5]*Pi))/Pi+125*Pi 2178338278148957 m005 (1/2*Pi+8/11)/(29/72+7/24*5^(1/2)) 2178338279164279 m005 (1/2*Zeta(3)-4/11)/(1/8*exp(1)+3/4) 2178338283693014 r009 Re(z^3+c),c=-3/32+41/51*I,n=50 2178338286725687 l006 ln(7289/9063) 2178338287421547 a007 Real Root Of 264*x^4+138*x^3-964*x^2+250*x+601 2178338287848306 a007 Real Root Of 468*x^4-343*x^3-354*x^2-623*x+155 2178338291126367 m001 (Zeta(1/2)-Ei(1,1))/(Gompertz+ZetaP(3)) 2178338296810183 a007 Real Root Of -447*x^4-714*x^3+101*x^2-613*x+870 2178338298504906 r002 63th iterates of z^2 + 2178338314680250 s002 sum(A051933[n]/(exp(n)-1),n=1..infinity) 2178338315794846 a007 Real Root Of -352*x^4-933*x^3-823*x^2-920*x+183 2178338316883898 m001 ln(MertensB1)^2*FibonacciFactorial*Pi^2 2178338319411363 g001 Re(GAMMA(61/30+I*143/30)) 2178338320137999 r005 Re(z^2+c),c=-31/23+3/43*I,n=28 2178338322974701 r005 Im(z^2+c),c=-15/16+20/101*I,n=13 2178338330498060 m001 (-Backhouse+Stephens)/(3^(1/2)-Pi^(1/2)) 2178338333075168 a007 Real Root Of 527*x^4+751*x^3-887*x^2+14*x+136 2178338338209062 a005 (1/sin(57/173*Pi))^234 2178338339353747 r005 Re(z^2+c),c=-3/50+37/62*I,n=36 2178338343183753 m001 (Paris+ZetaP(3))/(gamma(3)+Champernowne) 2178338344674091 a003 sin(Pi*1/40)*sin(Pi*6/67) 2178338345007101 m001 (RenyiParking+ZetaP(4))/(ln(3)+Khinchin) 2178338345885793 k001 Champernowne real with 1205*n+973 2178338349749016 m005 (1/2*5^(1/2)-4/11)/(7/8*Pi+5/7) 2178338357770291 r005 Im(z^2+c),c=-17/82+25/39*I,n=11 2178338358145568 m001 (2^(1/3)+GAMMA(13/24))/(-Gompertz+Tetranacci) 2178338364020963 m001 TwinPrimes/(5^(1/2)+Kolakoski) 2178338364615406 a003 cos(Pi*25/102)*cos(Pi*43/107) 2178338371442317 s002 sum(A188000[n]/(n^3*2^n-1),n=1..infinity) 2178338373299517 a007 Real Root Of 164*x^4-533*x^3+26*x^2-532*x-123 2178338384737281 r005 Im(z^2+c),c=-7/36+11/36*I,n=23 2178338385601311 m005 (1/3*2^(1/2)-3/7)/(6/7*exp(1)-4/11) 2178338386130341 a007 Real Root Of 127*x^4-84*x^3-394*x^2+495*x-780 2178338395724101 m001 Sierpinski^Robbin+GaussKuzminWirsing 2178338397713293 r002 39th iterates of z^2 + 2178338404540348 m001 (Ei(1)-Kac)/(Mills-Sarnak) 2178338410852684 l006 ln(778/6871) 2178338415231049 r002 3th iterates of z^2 + 2178338418721526 m005 (1/2*2^(1/2)+7/8)/(1/7*Catalan-6/7) 2178338427298230 s001 sum(exp(-2*Pi/5)^n*A143722[n],n=1..infinity) 2178338427298230 s002 sum(A143722[n]/(exp(2/5*pi*n)),n=1..infinity) 2178338438633041 r005 Im(z^2+c),c=-65/98+9/43*I,n=21 2178338445905796 k001 Champernowne real with 1206*n+972 2178338448072162 m005 (1/3*5^(1/2)+3/5)/(1/8*gamma+6/11) 2178338453424625 r005 Re(z^2+c),c=-7/50+11/21*I,n=24 2178338494069551 r005 Im(z^2+c),c=-13/18+31/122*I,n=19 2178338499204469 m001 1/ln(Lehmer)*LaplaceLimit*PrimesInBinary^2 2178338500041182 r002 14th iterates of z^2 + 2178338503196971 r009 Re(z^3+c),c=-31/110+19/58*I,n=13 2178338512836481 r005 Im(z^2+c),c=-33/98+17/49*I,n=29 2178338519208195 h001 (-6*exp(7)+5)/(-2*exp(5)-5) 2178338533606364 r005 Re(z^2+c),c=9/122+17/25*I,n=4 2178338545925799 k001 Champernowne real with 1207*n+971 2178338555435807 g005 GAMMA(7/12)*GAMMA(3/11)/GAMMA(4/7)/GAMMA(3/5) 2178338560844056 s002 sum(A251670[n]/((2*n)!),n=1..infinity) 2178338563529746 a007 Real Root Of 859*x^4-730*x^3-487*x^2-439*x-82 2178338568365864 a007 Real Root Of 50*x^4-776*x^3+60*x^2-647*x+146 2178338575483123 r002 15th iterates of z^2 + 2178338584117004 m001 ln(2)/ln(10)/((Pi^(1/2))^BesselI(1,1)) 2178338594804318 r002 41th iterates of z^2 + 2178338596549394 m001 (-Zeta(1,2)+Cahen)/(BesselI(0,1)-cos(1)) 2178338598141289 r005 Im(z^2+c),c=-55/102+15/31*I,n=50 2178338598399321 r005 Im(z^2+c),c=1/24+13/59*I,n=13 2178338605672932 m001 Bloch/ErdosBorwein/exp(Riemann2ndZero) 2178338614241488 m005 (1/3*exp(1)-1/11)/(8/11*Zeta(3)-1/2) 2178338619376407 a007 Real Root Of -283*x^4+460*x^3-503*x^2+591*x+158 2178338626173710 m001 GaussAGM*(Conway+Mills) 2178338633754747 a001 7*28657^(33/59) 2178338639900309 a007 Real Root Of 493*x^4+624*x^3-930*x^2-288*x-865 2178338643424498 r005 Im(z^2+c),c=-19/20+5/23*I,n=57 2178338645945802 k001 Champernowne real with 1208*n+970 2178338651905071 m001 (Psi(1,1/3)/Pi/csc(5/12*Pi)*GAMMA(7/12))^(1/2) 2178338655441862 m001 (Psi(2,1/3)+gamma)/(-GAMMA(17/24)+MertensB2) 2178338656252860 r009 Re(z^3+c),c=-3/25+17/21*I,n=34 2178338660323121 r005 Re(z^2+c),c=-15/86+25/51*I,n=4 2178338662734599 m001 (sin(Pi/5)+5)/(BesselI(1,1)+2) 2178338674626333 m001 ln(2+3^(1/2))^gamma/ZetaQ(2) 2178338682346297 m001 cos(1)^MinimumGamma-Sierpinski 2178338686938736 l006 ln(2757/3428) 2178338694828418 m005 (1/2*5^(1/2)+8/11)/(10/11*exp(1)+6) 2178338697068901 m001 (FeigenbaumC+ZetaQ(2))/(2^(1/2)-BesselI(0,2)) 2178338709701146 l006 ln(487/4301) 2178338725231819 m001 (Sarnak+Weierstrass)/(Psi(2,1/3)+Paris) 2178338727492015 a001 377/123*76^(24/53) 2178338731748236 m001 (ln(Pi)*arctan(1/2)+ReciprocalLucas)/ln(Pi) 2178338732101655 r002 15th iterates of z^2 + 2178338733611840 p001 sum(1/(396*n+47)/(5^n),n=0..infinity) 2178338745965805 k001 Champernowne real with 1209*n+969 2178338748146644 m001 (ln(5)*Porter+ln(Pi))/ln(5) 2178338748479703 r005 Re(z^2+c),c=-7/58+35/64*I,n=49 2178338756882844 a007 Real Root Of -117*x^4-23*x^3+509*x^2+65*x+123 2178338760482324 a007 Real Root Of 221*x^4-928*x^3-921*x^2-359*x+131 2178338762214983 q001 535/2456 2178338770503465 r005 Im(z^2+c),c=33/106+3/59*I,n=5 2178338772018378 r005 Im(z^2+c),c=2/11+4/27*I,n=19 2178338780442671 r009 Re(z^3+c),c=-5/48+29/38*I,n=26 2178338791721645 a003 cos(Pi*40/93)/sin(Pi*57/115) 2178338792775058 r005 Re(z^2+c),c=-23/34+27/83*I,n=16 2178338797106041 m008 (1/3*Pi^6-5)/(1/5*Pi^4-5) 2178338797487780 m001 (5^(1/2)+Cahen)/(Robbin+TwinPrimes) 2178338801146723 k002 Champernowne real with 203/2*n^2-495/2*n+167 2178338804104304 m005 (1/2*Zeta(3)-4/9)/(1/7*gamma+7/11) 2178338805647421 r005 Im(z^2+c),c=-31/60+23/60*I,n=41 2178338807567495 a007 Real Root Of 469*x^4+642*x^3-958*x^2-301*x-34 2178338812942742 a001 12586269025/2*14662949395604^(20/21) 2178338812942742 a001 4052739537881/2*45537549124^(16/17) 2178338812942742 a001 43133785636*14662949395604^(8/9) 2178338812942742 a001 774004377960*312119004989^(10/11) 2178338812942742 a001 225851433717/2*14662949395604^(6/7) 2178338812942742 a001 2504730781961/2*14662949395604^(7/9) 2178338812942742 a001 2504730781961/2*505019158607^(7/8) 2178338812942742 a001 139583862445/2*3461452808002^(11/12) 2178338812942742 a001 4052739537881/2*192900153618^(8/9) 2178338812942742 a001 956722026041/2*192900153618^(17/18) 2178338812942742 a001 53316291173/2*14662949395604^(19/21) 2178338812942742 a001 4052739537881/2*73681302247^(12/13) 2178338812942742 a001 10610209857723/2*10749957122^(23/24) 2178338824252465 a001 1/18*(1/2*5^(1/2)+1/2)^29*47^(11/12) 2178338825409621 r005 Im(z^2+c),c=-95/102+1/51*I,n=3 2178338826527270 r005 Re(z^2+c),c=13/56+8/57*I,n=18 2178338827632700 a007 Real Root Of -553*x^4-694*x^3+725*x^2-728*x+252 2178338830714007 m008 (1/6*Pi^3-5)/(4/5*Pi^6+4/5) 2178338833890289 h001 (6/11*exp(1)+7/9)/(3/10*exp(1)+2/9) 2178338834733607 m005 (1/2*Catalan+1/9)/(1/5*Catalan-4/9) 2178338837777061 r005 Re(z^2+c),c=27/70+4/27*I,n=55 2178338845985808 k001 Champernowne real with 1210*n+968 2178338860692759 a007 Real Root Of -297*x^4-282*x^3+981*x^2+614*x+455 2178338867158385 r009 Im(z^3+c),c=-9/44+39/43*I,n=12 2178338867341561 m001 (Sarnak+ZetaP(3))/(exp(1/Pi)-KomornikLoreti) 2178338874659380 a007 Real Root Of 185*x^4+468*x^3+486*x^2+388*x-789 2178338878177589 a007 Real Root Of 336*x^4-614*x^3-729*x^2-319*x-42 2178338884608648 m001 GAMMA(1/12)^2*LandauRamanujan^2*exp(Zeta(5)) 2178338890794789 m001 gamma^2/exp(Riemann2ndZero)^2/sin(1) 2178338900873928 m001 (-GolombDickman+MertensB2)/(GaussAGM-exp(1)) 2178338908671920 a007 Real Root Of 285*x^4+643*x^3-163*x^2-856*x-862 2178338909918865 m003 -4-Cosh[1/2+Sqrt[5]/2]/4+6*Csch[1/2+Sqrt[5]/2] 2178338911101506 m001 (ln(gamma)-Ei(1))/(Rabbit+ThueMorse) 2178338918476447 a008 Real Root of x^4+12*x^2-25*x-25 2178338918929834 m004 -4-(25*Sqrt[5])/Pi+6*Csch[Sqrt[5]*Pi] 2178338920619094 m004 -4-(25*Sqrt[5])/Pi+6*Sech[Sqrt[5]*Pi] 2178338930803311 a007 Real Root Of -620*x^4+516*x^3+150*x^2+975*x+212 2178338946005811 k001 Champernowne real with 1211*n+967 2178338946134446 a007 Real Root Of 412*x^4+929*x^3+110*x^2+124*x+74 2178338953876632 a007 Real Root Of 296*x^4+168*x^3-716*x^2+313*x-849 2178338958811807 m005 (5*gamma+1/2)/(2*gamma+2/5) 2178338958811807 m007 (-5*gamma-1/2)/(-2*gamma-2/5) 2178338960223239 m001 Zeta(1/2)^FeigenbaumKappa/ZetaP(4) 2178338970352839 a001 567451585/682*123^(1/5) 2178338980890111 a007 Real Root Of 803*x^4+162*x^3-553*x^2-350*x+99 2178338995098373 a007 Real Root Of 403*x^4+576*x^3-823*x^2-168*x+419 2178338996751517 m001 Sierpinski/LandauRamanujan/exp(BesselJ(1,1)) 2178338998368343 a007 Real Root Of -728*x^4-718*x^3-184*x^2+807*x-158 2178339000940745 a007 Real Root Of 437*x^4+971*x^3-24*x^2-482*x-739 2178339001389261 m001 (2^(1/2)-ln(5))/(-cos(1/12*Pi)+GAMMA(11/12)) 2178339002568837 a001 39088169/199*199^(5/11) 2178339006367439 r005 Im(z^2+c),c=-1/13+7/26*I,n=6 2178339021045714 a001 3/20633239*123^(9/16) 2178339026109228 a003 cos(Pi*14/57)*cos(Pi*47/117) 2178339030679963 m005 (1/3*3^(1/2)+1/9)/(6/7*Zeta(3)-5/7) 2178339031730494 r009 Re(z^3+c),c=-15/118+17/19*I,n=32 2178339039154018 a007 Real Root Of -480*x^4-658*x^3+512*x^2-325*x+869 2178339044070882 m004 5+(8*Sqrt[5]*Pi)/3-Log[Sqrt[5]*Pi] 2178339046025814 k001 Champernowne real with 1212*n+966 2178339046938896 r005 Re(z^2+c),c=4/19+9/22*I,n=19 2178339050117001 l006 ln(683/6032) 2178339055561027 a007 Real Root Of -291*x^4-731*x^3-409*x^2-376*x+118 2178339059653490 a001 8*3571^(6/49) 2178339062013787 m001 (GAMMA(7/24)-arctan(1/2))^cos(Pi/5) 2178339095230487 m005 (1/2*exp(1)+3/4)/(2/9*3^(1/2)+7/12) 2178339102373093 h001 (7/11*exp(2)+7/8)/(8/11*exp(1)+7/12) 2178339109421155 r005 Im(z^2+c),c=2/11+4/27*I,n=16 2178339118621060 m001 (-Landau+TwinPrimes)/(Psi(2,1/3)+Backhouse) 2178339120104253 m005 (Pi-1/6)/(2/5*2^(1/2)+4/5) 2178339136007824 l006 ln(6496/8077) 2178339138002582 m001 1/GAMMA(2/3)^2*ln(Bloch)^2*sin(1)^2 2178339140334639 m001 (Pi-arctan(1/2))/(BesselK(1,1)-FeigenbaumC) 2178339142663432 a003 cos(Pi*8/119)-cos(Pi*25/111) 2178339146045817 k001 Champernowne real with 1213*n+965 2178339152959094 a007 Real Root Of 289*x^4+414*x^3-256*x^2+287*x-388 2178339156053515 r005 Re(z^2+c),c=-11/48+3/11*I,n=15 2178339163154017 a001 199/514229*9227465^(7/13) 2178339163155662 a001 199/433494437*2504730781961^(7/13) 2178339163155664 a001 199/14930352*4807526976^(7/13) 2178339163796691 a001 1/89*17711^(7/13) 2178339174360681 p004 log(35353/4003) 2178339174659069 m001 (ln(3)*KhinchinHarmonic+PlouffeB)/ln(3) 2178339175156970 r009 Re(z^3+c),c=-11/31+18/35*I,n=47 2178339180067662 r002 48th iterates of z^2 + 2178339180624717 r009 Re(z^3+c),c=-9/20+23/47*I,n=2 2178339180909851 a007 Real Root Of 411*x^4+578*x^3-343*x^2+315*x-966 2178339182860989 m001 ReciprocalFibonacci^ZetaR(2)/ln(gamma) 2178339196288747 m005 (1/2*5^(1/2)+1/5)/(7/8*gamma+1/10) 2178339197894019 m001 exp(-1/2*Pi)*ErdosBorwein^Paris 2178339199762802 a007 Real Root Of 226*x^4+88*x^3-614*x^2+822*x+525 2178339203104897 m001 GaussKuzminWirsing*Magata/Weierstrass 2178339206740267 s001 sum(exp(-3*Pi/5)^n*A061297[n],n=1..infinity) 2178339211237233 r005 Im(z^2+c),c=-19/70+5/7*I,n=5 2178339212281169 h001 (1/2*exp(1)+1/11)/(1/9*exp(1)+4/11) 2178339212281169 m005 (1/2*exp(1)+1/11)/(1/9*exp(1)+4/11) 2178339213881307 r005 Im(z^2+c),c=-23/22+28/123*I,n=12 2178339216908953 a007 Real Root Of 243*x^4+352*x^3-536*x^2-159*x+364 2178339236828825 a007 Real Root Of 81*x^4-418*x^3+398*x^2-595*x-153 2178339238720503 l006 ln(879/7763) 2178339241770505 m001 exp(-Pi)/(BesselK(0,1)-BesselJZeros(0,1)) 2178339246065820 k001 Champernowne real with 1214*n+964 2178339250851305 r005 Re(z^2+c),c=-15/94+29/60*I,n=18 2178339255204629 m001 (Chi(1)*Ei(1,1)-Robbin)/Ei(1,1) 2178339258771218 r009 Im(z^3+c),c=-8/19+1/61*I,n=57 2178339259166017 m001 (Conway+Khinchin)/(BesselI(0,1)+BesselI(1,1)) 2178339265415409 m001 (-Riemann1stZero+Thue)/(1-ln(5)) 2178339265608341 a007 Real Root Of 38*x^4+824*x^3-92*x^2-255*x-857 2178339266755401 m001 exp(Trott)^2*Tribonacci*OneNinth^2 2178339277433772 a001 15127/13*17711^(23/43) 2178339278801633 r005 Re(z^2+c),c=-21/118+14/33*I,n=37 2178339281954915 r005 Im(z^2+c),c=-15/19+8/53*I,n=45 2178339282957390 r002 58th iterates of z^2 + 2178339290228846 a007 Real Root Of 98*x^4-116*x^3-404*x^2+867*x+400 2178339307444311 a001 1/2207*(1/2*5^(1/2)+1/2)^5*47^(8/21) 2178339307734682 a007 Real Root Of -428*x^4-978*x^3-18*x^2+514*x+733 2178339311008484 h001 (4/9*exp(2)+8/11)/(1/5*exp(2)+4/11) 2178339323225245 a007 Real Root Of -580*x^4-978*x^3-51*x^2+571*x+118 2178339327212093 m001 Zeta(1,-1)/FeigenbaumC/PrimesInBinary 2178339329428979 a007 Real Root Of 24*x^4+524*x^3+61*x^2+718*x-916 2178339334066595 a007 Real Root Of 31*x^4+709*x^3+714*x^2-434*x+237 2178339334333880 r005 Im(z^2+c),c=-5/11+2/63*I,n=9 2178339341174110 m005 (1/2*Catalan+3/8)/(1/8*gamma-5/11) 2178339346085823 k001 Champernowne real with 1215*n+963 2178339347315317 p001 sum((-1)^n/(591*n+451)/(24^n),n=0..infinity) 2178339358549500 l006 ln(1075/9494) 2178339372202747 r002 50i'th iterates of 2*x/(1-x^2) of 2178339372253701 r005 Re(z^2+c),c=-2/13+21/44*I,n=25 2178339374053094 a007 Real Root Of 435*x^4+765*x^3-313*x^2+499*x+685 2178339379750614 m001 (Pi-Catalan)/(MinimumGamma-TreeGrowth2nd) 2178339410484549 b008 36/E+E*Pi 2178339416522187 r002 3th iterates of z^2 + 2178339422775139 m005 (1/2*Pi-3/10)/(9/11*gamma+1/9) 2178339424580240 a005 (1/sin(43/104*Pi))^390 2178339424584948 a008 Real Root of x^4+11*x^2-4*x-66 2178339426240889 a007 Real Root Of -426*x^4-850*x^3+357*x^2+847*x+957 2178339427627217 m006 (4*exp(Pi)-1/3)/(4/5*exp(2*Pi)-5) 2178339430155850 m001 GAMMA(1/6)*Salem*exp(Zeta(3)) 2178339433498849 a001 7/4181*28657^(1/4) 2178339437874358 h001 (1/11*exp(1)+11/12)/(3/5*exp(2)+10/11) 2178339445524915 s002 sum(A231279[n]/((2^n-1)/n),n=1..infinity) 2178339445529790 m005 (1/2*2^(1/2)+3/7)/(10/11*Zeta(3)-4/7) 2178339446105826 k001 Champernowne real with 1216*n+962 2178339448001594 r008 a(0)=0,K{-n^6,73-90*n^3+10*n^2-39*n} 2178339448390248 a005 (1/sin(65/141*Pi))^1327 2178339451335382 r008 a(0)=0,K{-n^6,-65+88*n^3+23*n} 2178339454652815 a001 7/10946*1346269^(1/4) 2178339457758418 a001 7/28657*63245986^(1/4) 2178339458211528 a001 7/75025*2971215073^(1/4) 2178339458277636 a001 7/196418*139583862445^(1/4) 2178339458287281 a001 7/514229*6557470319842^(1/4) 2178339458293242 a001 7/317811*956722026041^(1/4) 2178339458318493 a001 7/121393*20365011074^(1/4) 2178339458491566 a001 1/6624*433494437^(1/4) 2178339458574536 m001 Tribonacci^GaussAGM/(Sarnak^GaussAGM) 2178339459597813 a007 Real Root Of 79*x^4-312*x^3-700*x^2+803*x+67 2178339459677825 a001 7/17711*9227465^(1/4) 2178339461869286 m001 (HardyLittlewoodC5-Trott2nd)/(ln(gamma)+Artin) 2178339467134710 l006 ln(3739/4649) 2178339467134710 p004 log(4649/3739) 2178339467811379 a001 7/6765*196418^(1/4) 2178339469484065 a007 Real Root Of -403*x^4-767*x^3-24*x^2-549*x+64 2178339475406050 m001 DuboisRaymond^Sarnak/OrthogonalArrays 2178339478408245 r002 5th iterates of z^2 + 2178339492472480 a007 Real Root Of 192*x^4+522*x^3+686*x^2+957*x-98 2178339497766704 a007 Real Root Of -33*x^4-763*x^3-919*x^2+908*x-479 2178339522198200 m005 (1/2*3^(1/2)+3/8)/(4*Zeta(3)+8/9) 2178339529768104 a001 7/2584*4181^(1/4) 2178339531266169 m001 (Weierstrass-ZetaQ(2))/(Cahen-LaplaceLimit) 2178339536679807 a007 Real Root Of -58*x^4-265*x^3-609*x^2+623*x+162 2178339538449851 r005 Im(z^2+c),c=9/32+1/18*I,n=51 2178339543472548 m001 (-Kac+Tribonacci)/(Psi(2,1/3)-sin(1/5*Pi)) 2178339546125829 k001 Champernowne real with 1217*n+961 2178339552611517 a007 Real Root Of -313*x^4-720*x^3-533*x^2-973*x+15 2178339555390669 m001 (Zeta(3)+GAMMA(2/3))/(arctan(1/2)+Rabbit) 2178339558818893 m005 (1/2*Zeta(3)+11/12)/(1/11*5^(1/2)-9/10) 2178339566657018 r005 Re(z^2+c),c=-23/106+6/19*I,n=16 2178339571063757 m001 GAMMA(2/3)*GAMMA(11/24)/ln(sqrt(2))^2 2178339575171320 m005 (1/2*exp(1)-6/7)/(10/11*exp(1)-1/6) 2178339579152741 m001 (Ei(1)+exp(1/Pi)*ZetaQ(3))/ZetaQ(3) 2178339580175269 a001 7/1597*610^(1/4) 2178339587620245 m001 (gamma(2)+GAMMA(23/24))/(Rabbit-Salem) 2178339595615894 m001 (Kac-PlouffeB)/(Robbin+Trott2nd) 2178339602797142 r005 Re(z^2+c),c=7/22+7/32*I,n=33 2178339611357636 r005 Im(z^2+c),c=-35/114+1/31*I,n=9 2178339612904397 a001 89/76*76^(27/40) 2178339622000295 a007 Real Root Of -464*x^4-550*x^3+948*x^2-85*x+79 2178339631503496 r009 Re(z^3+c),c=-10/27+22/37*I,n=54 2178339642327493 m001 BesselI(1,1)+MinimumGamma^(2^(1/3)) 2178339646145832 k001 Champernowne real with 1218*n+960 2178339646939808 m005 (1/2*gamma-2)/(4/5*3^(1/2)-3/5) 2178339654678439 a007 Real Root Of -414*x^4-626*x^3+544*x^2+46*x+370 2178339659860355 p004 log(21611/2447) 2178339664343724 m001 ln(2)+OrthogonalArrays+StolarskyHarborth 2178339665618112 r009 Re(z^3+c),c=-51/98+36/61*I,n=24 2178339665968655 r008 a(0)=2,K{-n^6,8+n^3-7*n^2-9*n} 2178339667335613 a007 Real Root Of -827*x^4+926*x^3-544*x^2+816*x+215 2178339685103539 h001 (5/9*exp(2)+9/10)/(3/5*exp(1)+2/3) 2178339687145180 m001 (PlouffeB-Rabbit*ZetaP(2))/Rabbit 2178339687195017 r009 Re(z^3+c),c=-13/25+10/17*I,n=51 2178339689415625 a001 1/5778*(1/2*5^(1/2)+1/2)^7*47^(8/21) 2178339693079784 a007 Real Root Of 341*x^4+110*x^3-999*x^2+475*x-766 2178339700600133 r005 Re(z^2+c),c=29/82+19/59*I,n=61 2178339705603584 r005 Re(z^2+c),c=-2/13+23/48*I,n=40 2178339726623075 r005 Im(z^2+c),c=-51/82+5/26*I,n=3 2178339729660160 m005 (1/2*exp(1)+2/3)/(3*Pi-1/8) 2178339730440361 m001 1/Tribonacci^2/Khintchine^2/ln(cosh(1))^2 2178339732958188 r005 Im(z^2+c),c=-57/122+19/47*I,n=24 2178339745144500 a001 1/15127*(1/2*5^(1/2)+1/2)^9*47^(8/21) 2178339746165835 k001 Champernowne real with 1219*n+959 2178339751247099 m001 MinimumGamma^Artin+GAMMA(23/24) 2178339753275233 a001 1/39603*(1/2*5^(1/2)+1/2)^11*47^(8/21) 2178339755194639 a001 1/64079*(1/2*5^(1/2)+1/2)^12*47^(8/21) 2178339755634149 a007 Real Root Of 769*x^4+999*x^3-989*x^2+746*x-671 2178339756431214 m005 (1/3*Zeta(3)-1/5)/(1/9*gamma+6/7) 2178339758300303 a001 1/24476*(1/2*5^(1/2)+1/2)^10*47^(8/21) 2178339761129835 a003 sin(Pi*1/88)*sin(Pi*14/67) 2178339762387649 a007 Real Root Of 897*x^4-954*x^3+644*x^2-480*x-147 2178339766246939 m001 (Zeta(1/2)-HeathBrownMoroz)/(Trott+TwinPrimes) 2178339773819103 r005 Im(z^2+c),c=-23/82+2/63*I,n=18 2178339777716915 a001 18/377*956722026041^(7/18) 2178339779586840 a001 1/9349*(1/2*5^(1/2)+1/2)^8*47^(8/21) 2178339780204429 m001 ln(gamma)^GAMMA(11/12)-(1+3^(1/2))^(1/2) 2178339780204429 m001 log(gamma)^GAMMA(11/12)-sqrt(1+sqrt(3)) 2178339794811095 a007 Real Root Of -97*x^4+131*x^3+840*x^2+363*x+343 2178339803951705 m005 (3*Catalan-1/2)/(2*Catalan-4/5) 2178339804147323 k002 Champernowne real with 102*n^2-249*n+168 2178339817422077 a007 Real Root Of 539*x^4+673*x^3-656*x^2+679*x-588 2178339823154826 a007 Real Root Of 341*x^4+191*x^3+410*x^2-715*x-174 2178339835568095 a007 Real Root Of -333*x^4-582*x^3+117*x^2-67*x+781 2178339846185838 k001 Champernowne real with 1220*n+958 2178339847779918 m001 Zeta(1/2)^(GolombDickman/GaussKuzminWirsing) 2178339858709077 m002 -5/ProductLog[Pi]+2*Log[Pi]*Sinh[Pi] 2178339869333968 m005 (1/2*exp(1)+4/9)/(11/70+3/10*5^(1/2)) 2178339871048589 a007 Real Root Of -442*x^4+65*x^3-24*x^2+553*x-119 2178339879453006 g001 abs(GAMMA(19/30+I*277/60)) 2178339880701370 m005 (1/2*3^(1/2)-10/11)/(1/2*gamma-1/11) 2178339886546790 m001 (Chi(1)-ln(Pi))/(-Salem+Sierpinski) 2178339892730332 a001 11/10946*6765^(5/57) 2178339892975349 m001 (Zeta(3)-Conway)/(FeigenbaumDelta-ZetaQ(3)) 2178339895787944 r009 Im(z^3+c),c=-9/58+33/38*I,n=48 2178339895945692 l006 ln(196/1731) 2178339900657026 l006 ln(5449/5569) 2178339900657026 p004 log(5569/5449) 2178339906868863 m005 (1/3*Pi+3/7)/(1/11*gamma+5/8) 2178339906890757 r009 Re(z^3+c),c=-23/64+19/29*I,n=54 2178339907738426 r005 Im(z^2+c),c=-153/118+4/59*I,n=12 2178339910143641 m001 HardyLittlewoodC3/(Grothendieck^Si(Pi)) 2178339911883062 h005 exp(sin(Pi*9/59)/cos(Pi*17/57)) 2178339913401428 m001 gamma(3)^2/BesselJ(1,1)^2 2178339922758553 l006 ln(4721/5870) 2178339925486947 a001 1/3571*(1/2*5^(1/2)+1/2)^6*47^(8/21) 2178339927178142 r009 Im(z^3+c),c=-31/70+2/29*I,n=30 2178339930627250 m001 (LambertW(1)-OneNinth)/(-PlouffeB+Sierpinski) 2178339937772968 m001 Niven^HardyLittlewoodC4+1 2178339944091053 m001 ln(Lehmer)*Khintchine^2/sqrt(3) 2178339946205841 k001 Champernowne real with 1221*n+957 2178339950654482 m001 ln(5)*Niven^LambertW(1) 2178339952494207 a007 Real Root Of 36*x^4-241*x^3-526*x^2+279*x-198 2178339963845741 h001 (7/8*exp(2)+1/4)/(9/10*exp(1)+7/11) 2178339969385292 a007 Real Root Of 188*x^4+546*x^3+723*x^2+651*x-602 2178339970074337 a001 1762289/161*18^(5/21) 2178339974453659 m001 (Otter-ZetaQ(3))/(Khinchin-MertensB3) 2178339974893356 m001 Weierstrass/(Magata-FibonacciFactorial) 2178339975065016 m001 FellerTornier^Otter/(cos(1)^Otter) 2178339977203240 m006 (4/5*Pi^2+2/5)/(Pi+2/3) 2178339977203240 m008 (4/5*Pi^2+2/5)/(Pi+2/3) 2178339981236557 a001 47/55*8^(9/20) 2178339994379164 m001 GAMMA(19/24)-Si(Pi)^ReciprocalLucas 2178339996307717 r005 Re(z^2+c),c=-21/118+14/33*I,n=34 2178340000103244 a003 sin(Pi*1/110)*sin(Pi*29/105) 2178340001247112 r005 Im(z^2+c),c=-155/118+2/29*I,n=31 2178340010160376 a007 Real Root Of 441*x^4+402*x^3-958*x^2+155*x-891 2178340013453932 r005 Re(z^2+c),c=-11/102+22/39*I,n=36 2178340018512804 q001 706/3241 2178340023631396 r005 Im(z^2+c),c=-6/17+13/37*I,n=43 2178340025449440 r005 Re(z^2+c),c=-7/62+21/37*I,n=46 2178340026229148 m001 ln(2)/OneNinth/Otter 2178340032938983 p004 log(37243/4217) 2178340039767379 r008 a(0)=2,K{-n^6,-6-9*n^3+6*n^2+2*n} 2178340039879133 a007 Real Root Of -210*x^4-50*x^3+391*x^2-882*x+435 2178340041907258 m001 (3^(1/2))^(3^(1/3))*Paris 2178340046225844 k001 Champernowne real with 1222*n+956 2178340054376470 a007 Real Root Of -212*x^4-316*x^3+515*x^2+637*x+451 2178340056266311 a007 Real Root Of -506*x^4-519*x^3+785*x^2-750*x+670 2178340056727769 r002 44th iterates of z^2 + 2178340062651213 a007 Real Root Of -339*x^4-653*x^3+372*x^2+274*x-285 2178340064224370 p004 log(30319/3433) 2178340072066451 r002 3th iterates of z^2 + 2178340076030209 a007 Real Root Of -42*x^4+143*x^3+298*x^2-380*x+182 2178340085492552 r002 29th iterates of z^2 + 2178340095988291 r005 Im(z^2+c),c=-17/18+15/64*I,n=35 2178340099602305 h001 (5/12*exp(1)+1/11)/(7/10*exp(2)+4/9) 2178340100574220 m001 1/ln(Paris)*CareFree^2*Zeta(7)^2 2178340119266812 m001 (gamma(2)-Riemann1stZero)/(Trott-TwinPrimes) 2178340124298399 m001 ln(Trott)^2/Magata*GAMMA(1/4) 2178340124458648 m001 polylog(4,1/2)*HardyLittlewoodC3*LaplaceLimit 2178340131691488 a007 Real Root Of 170*x^4+315*x^3+439*x^2-193*x-60 2178340132274135 r005 Im(z^2+c),c=-17/25+22/63*I,n=35 2178340146245847 k001 Champernowne real with 1223*n+955 2178340146556404 m001 (GAMMA(3/4)+GAMMA(19/24))/(Kac+PlouffeB) 2178340147114777 m006 (2/5/Pi+2/3)/(1/6*Pi^2+2) 2178340153548542 r005 Im(z^2+c),c=-37/94+21/58*I,n=35 2178340154508675 m005 (1/2*2^(1/2)+9/10)/(7/8*3^(1/2)-7/9) 2178340156009984 m001 FeigenbaumKappa/(PrimesInBinary-Zeta(5)) 2178340164062521 r002 39th iterates of z^2 + 2178340164657042 r005 Im(z^2+c),c=-119/110+11/46*I,n=53 2178340164807129 a001 9349/144*6765^(7/51) 2178340173824072 m001 ln(Sierpinski)^2/CareFree/sin(Pi/5) 2178340176252677 r005 Im(z^2+c),c=-28/25+10/37*I,n=9 2178340183797166 m001 Ei(1,1)-HeathBrownMoroz*Salem 2178340186557791 m001 (RenyiParking-Salem)/(Ei(1)-gamma(1)) 2178340194719208 m001 (LambertW(1)-sin(1))/(-ln(gamma)+Rabbit) 2178340200610067 m001 ArtinRank2^GAMMA(17/24)-FransenRobinson 2178340212201496 p001 sum((-1)^n/(73*n+69)/n/(32^n),n=0..infinity) 2178340221474578 l006 ln(5703/7091) 2178340222528986 m001 (-Rabbit+Salem)/(2^(1/3)+QuadraticClass) 2178340223444256 m005 (1/3*exp(1)-2/7)/(8/11*Pi-2) 2178340239130884 m001 MadelungNaCl^LandauRamanujan2nd+Kolakoski 2178340246265850 k001 Champernowne real with 1224*n+954 2178340246560315 m001 2^(1/2)*ZetaQ(2)^Psi(1,1/3) 2178340253332948 a007 Real Root Of 48*x^4-468*x^3+824*x^2-439*x+803 2178340254541033 m006 (3/4*ln(Pi)+1/3)/(1/4*ln(Pi)-5/6) 2178340256755045 a007 Real Root Of 25*x^4+563*x^3+448*x^2+984*x-801 2178340257674082 a007 Real Root Of 145*x^4-104*x^3-485*x^2+743*x-420 2178340261323750 m005 (1/2*gamma+4/9)/(2/3*3^(1/2)-9/11) 2178340264296710 a007 Real Root Of -235*x^4-523*x^3+34*x^2-174*x-655 2178340270822679 r005 Im(z^2+c),c=-14/15+9/38*I,n=7 2178340281284271 r005 Im(z^2+c),c=2/7+2/43*I,n=37 2178340285033744 r005 Im(z^2+c),c=-9/8+21/73*I,n=13 2178340287511057 a001 2/24157817*46368^(7/23) 2178340287572730 a001 2/701408733*2971215073^(7/23) 2178340292684585 a007 Real Root Of -664*x^4-967*x^3+815*x^2-220*x+609 2178340296804282 m009 (3/5*Psi(1,1/3)+1/6)/(1/4*Psi(1,1/3)+1/3) 2178340297230175 r005 Re(z^2+c),c=-11/9+1/43*I,n=14 2178340301736318 a007 Real Root Of 567*x^4+959*x^3-819*x^2-528*x-118 2178340313167418 a007 Real Root Of 380*x^4+727*x^3+166*x^2+983*x+312 2178340316660775 m001 (exp(Pi)+gamma(1))/(-MasserGramain+Niven) 2178340328304685 m001 exp(Zeta(5))/Niven*log(2+sqrt(3)) 2178340332261695 m005 (1/2*5^(1/2)+2/9)/(3*5^(1/2)-5/9) 2178340335693422 m001 (ln(2)/ln(10))^Psi(1,1/3)/Riemann3rdZero 2178340341918698 s002 sum(A048666[n]/((10^n-1)/n),n=1..infinity) 2178340346285853 k001 Champernowne real with 1225*n+953 2178340348866746 a007 Real Root Of 286*x^4+929*x^3+346*x^2-438*x+567 2178340351969356 m001 Champernowne*KhinchinHarmonic+ReciprocalLucas 2178340355209374 a007 Real Root Of -352*x^4-972*x^3-479*x^2-267*x-430 2178340356100149 a007 Real Root Of 250*x^4+174*x^3+533*x^2-788*x+144 2178340363994627 a001 46368/521*7^(23/50) 2178340373859151 s002 sum(A086041[n]/((exp(n)+1)*n),n=1..infinity) 2178340375873815 r009 Re(z^3+c),c=-13/114+14/17*I,n=58 2178340382820277 r002 22th iterates of z^2 + 2178340395042797 r005 Im(z^2+c),c=-19/14+1/44*I,n=64 2178340405687331 r005 Re(z^2+c),c=-13/110+23/41*I,n=37 2178340419957576 r005 Im(z^2+c),c=-4/3+1/221*I,n=3 2178340421585325 m001 (Porter+Stephens)/(Khinchin-MadelungNaCl) 2178340421759285 a007 Real Root Of 139*x^4-800*x^3+685*x^2+673*x+423 2178340430358824 l006 ln(1081/9547) 2178340431787764 r008 a(0)=2,K{-n^6,-17+8*n-19*n^2+23*n^3} 2178340432430197 l006 ln(6685/8312) 2178340435103219 r009 Im(z^3+c),c=-63/94+16/31*I,n=21 2178340440902251 a007 Real Root Of 370*x^4+389*x^3-855*x^2+208*x+200 2178340440922309 r005 Re(z^2+c),c=-5/23+11/35*I,n=19 2178340444686405 m003 -3+Sqrt[5]/4+10*Sinh[1/2+Sqrt[5]/2] 2178340446305856 k001 Champernowne real with 1226*n+952 2178340449545310 a007 Real Root Of -620*x^4-71*x^3-923*x^2+434*x+139 2178340462429679 r005 Re(z^2+c),c=-5/52+27/61*I,n=5 2178340465194258 m001 FellerTornier-exp(Pi)+MertensB2 2178340476225863 r005 Im(z^2+c),c=-13/74+23/34*I,n=21 2178340481671601 m001 (gamma(2)+Cahen)/(Si(Pi)+Shi(1)) 2178340486117878 p003 LerchPhi(1/10,2,41/60) 2178340491497086 m001 Backhouse+Chi(1)^Tribonacci 2178340493434550 a007 Real Root Of 378*x^4+418*x^3-548*x^2+691*x-85 2178340505493022 a007 Real Root Of 118*x^4-343*x^3-931*x^2+699*x-262 2178340507626465 m001 (exp(Pi)+Artin)/(-Kac+Niven) 2178340510764303 r005 Im(z^2+c),c=-3/31+14/53*I,n=4 2178340510883605 a001 1/167732*(1/2*5^(1/2)+1/2)^14*2207^(4/21) 2178340517963109 m001 (Pi-ErdosBorwein)/(HardyLittlewoodC3-Totient) 2178340523116980 a001 2537720636/5*591286729879^(11/15) 2178340523116980 a001 505019158607/5*433494437^(11/15) 2178340538507603 m005 (1/2*Catalan+1/5)/(Zeta(3)-9/10) 2178340538774985 m001 (3^(1/2)-exp(Pi))/(FellerTornier+TwinPrimes) 2178340546325859 k001 Champernowne real with 1227*n+951 2178340546705747 a007 Real Root Of -574*x^4-688*x^3+980*x^2-688*x-336 2178340548714689 l006 ln(885/7816) 2178340550057686 a001 1/322*(1/2*5^(1/2)+1/2)^21*3^(23/24) 2178340551749505 a007 Real Root Of 788*x^4-859*x^3-544*x^2-184*x+73 2178340556772228 r005 Im(z^2+c),c=41/106+11/27*I,n=9 2178340564849284 b008 (37*Sin[9])/7 2178340566657957 a001 2139295485799/2*6557470319842^(15/17) 2178340574989244 a007 Real Root Of -288*x^4+840*x^3-830*x^2+543*x+167 2178340578996806 m001 ArtinRank2*GaussKuzminWirsing^2*ln(Zeta(3))^2 2178340589346837 l006 ln(7667/9533) 2178340592165340 r005 Re(z^2+c),c=23/118+23/57*I,n=21 2178340602055126 r009 Re(z^3+c),c=-17/60+11/28*I,n=4 2178340639287363 s002 sum(A240405[n]/(2^n+1),n=1..infinity) 2178340640096759 m001 (exp(Pi)+Psi(1,1/3))/(Ei(1,1)+Mills) 2178340646345862 k001 Champernowne real with 1228*n+950 2178340646570051 s002 sum(A021947[n]/(n^3*exp(n)+1),n=1..infinity) 2178340651011242 r009 Re(z^3+c),c=-13/38+14/29*I,n=34 2178340660374260 a003 cos(Pi*1/59)*cos(Pi*43/100) 2178340661442324 m001 PisotVijayaraghavan^BesselI(1,1)/ZetaQ(2) 2178340662588200 a001 1/63246219*3^(7/24) 2178340665135425 r002 41i'th iterates of 2*x/(1-x^2) of 2178340669632257 r009 Im(z^3+c),c=-29/56+21/52*I,n=10 2178340670709298 m001 (ln(2^(1/2)+1)-BesselI(0,2))/(Conway-Robbin) 2178340673428503 m001 Ei(1)^LaplaceLimit-KhinchinHarmonic 2178340677465181 a007 Real Root Of 257*x^4+98*x^3-767*x^2+192*x-716 2178340681572243 m001 1/GAMMA(23/24)/Salem^2*exp(GAMMA(5/6)) 2178340685247193 s001 sum(exp(-4*Pi/5)^n*A024091[n],n=1..infinity) 2178340706571765 r005 Re(z^2+c),c=-21/34+39/119*I,n=7 2178340732197592 a007 Real Root Of -423*x^4-752*x^3+107*x^2-458*x+246 2178340734407968 l006 ln(689/6085) 2178340734881071 a007 Real Root Of -30*x^4-637*x^3+393*x^2+737*x+146 2178340746365865 k001 Champernowne real with 1229*n+949 2178340757844749 q001 2/91813 2178340763149255 m001 1/Ei(1)*ln(FeigenbaumDelta)*GAMMA(1/3) 2178340772370261 r005 Re(z^2+c),c=-9/56+19/33*I,n=24 2178340772684443 m005 (1/3*Zeta(3)-3/4)/(1/4*Pi+9/11) 2178340778342662 a007 Real Root Of 158*x^4+156*x^3+102*x^2+696*x-913 2178340779794542 m001 Pi-1-BesselI(1,1)+BesselK(1,1) 2178340784898161 q001 877/4026 2178340787182240 a007 Real Root Of -615*x^4-993*x^3+276*x^2-627*x+908 2178340791923401 a007 Real Root Of 287*x^4+583*x^3-299*x^2-694*x-529 2178340795513590 a001 4181/47*521^(51/58) 2178340799860036 a007 Real Root Of -373*x^4-742*x^3+111*x^2-377*x-619 2178340807147923 k002 Champernowne real with 205/2*n^2-501/2*n+169 2178340807426652 m001 1/exp(GAMMA(1/4))*Robbin/cos(Pi/5) 2178340814744106 h001 (7/8*exp(2)+3/10)/(7/8*exp(1)+8/11) 2178340815204408 a007 Real Root Of 211*x^4-809*x^3+904*x^2+86*x-33 2178340817763804 a007 Real Root Of 456*x^4+806*x^3+160*x^2+872*x-796 2178340819489453 a007 Real Root Of 44*x^4+952*x^3-132*x^2+221*x+573 2178340838571632 a007 Real Root Of -475*x^4-75*x^3-319*x^2+941*x-188 2178340840637557 m005 (1/2*5^(1/2)-6/7)/(8/11*5^(1/2)-3/7) 2178340846385868 k001 Champernowne real with 1230*n+948 2178340847444668 m001 1/Catalan^2/exp(Tribonacci)*GAMMA(1/12) 2178340848677489 m001 gamma(2)^AlladiGrinstead/OneNinth 2178340871596131 a001 1/3009828*(1/2*5^(1/2)+1/2)^22*39603^(1/21) 2178340872465573 a001 1/1149652*(1/2*5^(1/2)+1/2)^2*15127^(20/21) 2178340872985027 a001 1/76*39603^(1/21) 2178340873171513 a001 1/4870004*(1/2*5^(1/2)+1/2)^12*64079^(11/21) 2178340876586210 h001 (7/11*exp(1)+5/6)/(2/7*exp(1)+2/5) 2178340883206909 p003 LerchPhi(1/4,2,61/88) 2178340885973649 a001 1/710524*(1/2*5^(1/2)+1/2)^11*9349^(10/21) 2178340887447505 a007 Real Root Of -324*x^4+503*x^3-184*x^2+277*x+75 2178340888888888 r002 3th iterates of z^2 + 2178340891958215 m001 ((1+3^(1/2))^(1/2))^arctan(1/2)+Catalan 2178340891958215 m001 sqrt(1+sqrt(3))^arctan(1/2)+Catalan 2178340895120620 m001 (GlaisherKinkelin-KhinchinLevy)/BesselJ(1,1) 2178340899052726 m001 1/GAMMA(17/24)*MadelungNaCl*ln(GAMMA(19/24)) 2178340906869846 m001 (ErdosBorwein+MertensB3)/(cos(1)+cos(1/5*Pi)) 2178340908923032 r005 Im(z^2+c),c=23/66+3/31*I,n=19 2178340912352086 m001 (BesselI(0,2)+Salem)/(Zeta(5)-ln(gamma)) 2178340917189813 m001 (Otter+Sierpinski)/(5^(1/2)+HardyLittlewoodC4) 2178340917672752 r005 Re(z^2+c),c=3/28+35/57*I,n=46 2178340922194609 a007 Real Root Of -695*x^4-805*x^3+498*x^2+874*x+160 2178340922904155 h001 (2/3*exp(2)+4/11)/(4/7*exp(1)+7/8) 2178340925501681 a001 1/1364*(1/2*5^(1/2)+1/2)^4*47^(8/21) 2178340927659602 r005 Re(z^2+c),c=19/52+9/28*I,n=5 2178340935680835 a001 1/710647*2^(29/46) 2178340935865482 r005 Re(z^2+c),c=-59/98+23/58*I,n=28 2178340938018153 a007 Real Root Of 410*x^4+881*x^3-47*x^2+136*x+394 2178340938066715 r009 Re(z^3+c),c=-11/86+55/57*I,n=32 2178340946405871 k001 Champernowne real with 1231*n+947 2178340949660895 a005 (1/cos(25/169*Pi))^582 2178340958408067 r005 Re(z^2+c),c=4/21+2/25*I,n=16 2178340960676668 m001 (ln(Pi)+Khinchin)/(MertensB2+Sarnak) 2178340969841176 m001 (Magata+Otter)/(Ei(1)+GAMMA(23/24)) 2178340979273916 a007 Real Root Of -372*x^4-639*x^3+465*x^2-194*x-858 2178340988283826 r005 Im(z^2+c),c=-5/48+28/39*I,n=21 2178340999539759 r009 Im(z^3+c),c=-53/110+3/49*I,n=21 2178341002795167 b008 9+14/E^(1/11) 2178341003069673 a001 1/271396*(1/2*5^(1/2)+1/2)^14*3571^(5/21) 2178341012845151 m001 Salem^FeigenbaumMu*Salem^GAMMA(3/4) 2178341013824884 s002 sum(A085634[n]/(2^n-1),n=1..infinity) 2178341016100268 m001 (Bloch+ZetaQ(4))/(1+GAMMA(19/24)) 2178341018602434 a007 Real Root Of -395*x^4-666*x^3-17*x^2-805*x+337 2178341019577272 m001 (Champernowne+Tribonacci)/(ln(2)+exp(-1/2*Pi)) 2178341020374110 r005 Im(z^2+c),c=-35/106+7/18*I,n=7 2178341021242520 m006 (3*exp(Pi)+4/5)/(1/2*ln(Pi)-1/4) 2178341027102958 m001 (-FeigenbaumC+Niven)/(2^(1/3)-Zeta(3)) 2178341028117112 k006 concat of cont frac of 2178341034232550 a007 Real Root Of 244*x^4+683*x^3+827*x^2+821*x-570 2178341038847785 r009 Im(z^3+c),c=-17/56+11/63*I,n=9 2178341042355913 r002 52th iterates of z^2 + 2178341046100414 a007 Real Root Of 134*x^4-829*x^3+646*x^2+765*x+820 2178341046425874 k001 Champernowne real with 1232*n+946 2178341056356085 m001 1/FeigenbaumB*ln(CareFree)/GAMMA(11/24) 2178341067751802 l006 ln(493/4354) 2178341073646421 r002 19th iterates of z^2 + 2178341087213826 r002 51th iterates of z^2 + 2178341091515307 a001 1/208010*2584^(5/26) 2178341094304579 m002 -1-Pi*Sech[Pi]+E^Pi*Tanh[Pi] 2178341097737161 a007 Real Root Of -622*x^4-727*x^3+944*x^2-988*x-141 2178341099053063 a007 Real Root Of 462*x^4+771*x^3-250*x^2+846*x+596 2178341116153713 a001 4/5*55^(47/57) 2178341117118221 k009 concat of cont frac of 2178341146445877 k001 Champernowne real with 1233*n+945 2178341146607291 a007 Real Root Of 623*x^4+974*x^3-440*x^2+926*x+145 2178341150284674 m001 OneNinth^Conway/(OneNinth^((1+3^(1/2))^(1/2))) 2178341151011231 k008 concat of cont frac of 2178341164328956 a005 (1/cos(37/207*Pi))^419 2178341171446039 m001 (Salem+Stephens)/(BesselK(0,1)-GAMMA(3/4)) 2178341187822028 m001 (Artin*BesselI(0,2)+exp(sqrt(2)))/BesselI(0,2) 2178341192018180 a001 36*76^(18/19) 2178341200024336 r009 Im(z^3+c),c=-31/78+3/25*I,n=21 2178341205269891 m005 (1/3*3^(1/2)-1/7)/(3/5*exp(1)+4/11) 2178341211764804 s001 sum(1/10^(n-1)*A240961[n]/n^n,n=1..infinity) 2178341218661007 a001 23725150497407/34*956722026041^(7/24) 2178341223145490 a007 Real Root Of -187*x^4+34*x^3+836*x^2-522*x-542 2178341244290669 m001 FeigenbaumC^GaussAGM*FeigenbaumC^ZetaP(2) 2178341246465880 k001 Champernowne real with 1234*n+944 2178341250252821 r005 Re(z^2+c),c=-125/102+4/63*I,n=42 2178341252705095 a007 Real Root Of -330*x^4-630*x^3+72*x^2-638*x-813 2178341266653699 m001 exp(Tribonacci)/Champernowne^2/Ei(1) 2178341277568863 m001 (arctan(1/2)+Mills)/StolarskyHarborth 2178341292336366 a007 Real Root Of -436*x^4-777*x^3+682*x^2+827*x+351 2178341302507497 m001 GAMMA(5/6)^2/exp(PrimesInBinary)*sin(Pi/12) 2178341306981495 h001 (-6*exp(1)+9)/(-4*exp(2)-4) 2178341309960920 m005 (1/3*5^(1/2)-1/6)/(7/8*5^(1/2)+7/10) 2178341313673841 m001 FeigenbaumAlpha^2/exp(Cahen)*Robbin 2178341315724592 a007 Real Root Of 346*x^4+621*x^3-545*x^2-176*x+831 2178341334395899 p004 log(31511/25343) 2178341337101928 m001 (Si(Pi)-ln(5))^ln(gamma) 2178341337101928 m001 (Si(Pi)-ln(5))^log(gamma) 2178341344864283 r005 Im(z^2+c),c=-23/26+14/75*I,n=63 2178341346485883 k001 Champernowne real with 1235*n+943 2178341354600285 m001 (Trott+ZetaQ(2))/(GAMMA(5/6)+Tribonacci) 2178341357962879 m001 (Artin-Stephens)/(Totient-ThueMorse) 2178341358478169 l006 ln(790/6977) 2178341368539124 m005 (1/2*exp(1)+6/7)/(4/7*Pi-7/9) 2178341380475893 m001 BesselJ(1,1)-exp(1/exp(1))-GAMMA(19/24) 2178341381642417 m001 (3^(1/3)-QuadraticClass)/(Sierpinski-Trott) 2178341390901328 r005 Im(z^2+c),c=-29/62+15/31*I,n=32 2178341397415163 a001 76/17711*55^(49/50) 2178341399446856 m001 (FeigenbaumC-FransenRobinson)/(Paris-ZetaQ(2)) 2178341399875880 a007 Real Root Of 270*x^4+627*x^3-301*x^2-958*x-257 2178341402761669 m001 (arctan(1/3)+Cahen)/(FeigenbaumD+MadelungNaCl) 2178341412552471 m005 (1/3*3^(1/2)+2/7)/(1/6*gamma+3/10) 2178341415222574 m001 1/GAMMA(1/3)*ErdosBorwein/ln(log(2+sqrt(3))) 2178341421685083 m005 (1/2*2^(1/2)-4/11)/(42/55+4/11*5^(1/2)) 2178341426866902 m001 GolombDickman^2*Si(Pi)*exp(Magata) 2178341433333933 r009 Re(z^3+c),c=-19/58+25/56*I,n=32 2178341434309380 r005 Re(z^2+c),c=-21/122+23/52*I,n=18 2178341442267692 m005 (2*exp(1)-1/4)/(3/5*exp(1)+3/4) 2178341445055517 a003 sin(Pi*3/16)/cos(Pi*28/67) 2178341446031260 r002 12th iterates of z^2 + 2178341446505886 k001 Champernowne real with 1236*n+942 2178341450061910 r005 Re(z^2+c),c=15/118+14/45*I,n=21 2178341458852025 r009 Re(z^3+c),c=-73/114+23/44*I,n=6 2178341459087915 a007 Real Root Of 324*x^4+542*x^3-367*x^2-216*x-422 2178341462762577 a007 Real Root Of 597*x^4+939*x^3-439*x^2+663*x-209 2178341471103905 a001 9/17*17711^(19/50) 2178341478471458 h001 (10/11*exp(1)+1/8)/(1/3*exp(1)+2/7) 2178341479760348 r005 Re(z^2+c),c=-1/5+22/59*I,n=11 2178341480375894 m001 1/Porter*CareFree^2/exp(BesselJ(1,1)) 2178341489954226 m001 Si(Pi)^exp(-1/2*Pi)*Si(Pi)^GAMMA(11/12) 2178341490334718 l006 ln(1087/9600) 2178341495678151 m005 (1/2*3^(1/2)-5)/(5/12*Catalan-4/7) 2178341496768427 a007 Real Root Of 417*x^4+872*x^3+72*x^2+592*x+572 2178341502571824 m009 (2*Psi(1,3/4)+2/5)/(5/2*Pi^2+1/2) 2178341510338680 m005 (1/2*gamma+1/12)/(2/3*gamma-5/9) 2178341510338680 m007 (-3*gamma-1/2)/(-2/5*gamma+1/3) 2178341511228899 r005 Re(z^2+c),c=-21/106+16/43*I,n=34 2178341514719555 m001 (MertensB1-Robbin)/(Zeta(3)+HardyLittlewoodC3) 2178341516156963 a007 Real Root Of 714*x^4-637*x^3+407*x^2-759*x+151 2178341517602029 m001 1/Rabbit/GlaisherKinkelin/exp(cos(Pi/5))^2 2178341519119090 m001 (Shi(1)-gamma)/(Backhouse+RenyiParking) 2178341523037031 s002 sum(A225014[n]/(10^n-1),n=1..infinity) 2178341541122114 k006 concat of cont frac of 2178341544103220 h001 (4/11*exp(2)+7/8)/(5/9*exp(1)+1/8) 2178341546525889 k001 Champernowne real with 1237*n+941 2178341554620877 a007 Real Root Of 179*x^4-7*x^3-515*x^2+920*x+345 2178341557414408 s001 sum(1/10^(n-1)*A067599[n]/n^n,n=1..infinity) 2178341560549140 m001 (-MertensB3+Mills)/(gamma+Kac) 2178341567936227 a007 Real Root Of 261*x^4-331*x^3-337*x^2-156*x-22 2178341568630012 h001 (1/11*exp(1)+1/10)/(5/9*exp(1)+1/12) 2178341572266453 m001 (-Landau+Salem)/(BesselI(0,1)+GAMMA(13/24)) 2178341579516490 m005 (1/6*gamma-4/5)/(2/5*gamma+3) 2178341579516490 m007 (-1/6*gamma+4/5)/(-2/5*gamma-3) 2178341586030617 m001 (Paris+Rabbit)/(GAMMA(23/24)+Khinchin) 2178341587868761 m001 (Conway-Psi(2,1/3))/(LaplaceLimit+Tetranacci) 2178341590410501 r005 Re(z^2+c),c=-11/78+32/63*I,n=33 2178341594091557 a007 Real Root Of 239*x^4+190*x^3-538*x^2+239*x-344 2178341601963945 m005 (1/2*2^(1/2)-9/11)/(5/7*3^(1/2)-8/11) 2178341607611460 r005 Im(z^2+c),c=-51/64+2/19*I,n=17 2178341613894698 m001 Pi^(1/2)-PlouffeB+QuadraticClass 2178341616691350 r009 Re(z^3+c),c=-1/3+6/13*I,n=21 2178341623185612 r005 Re(z^2+c),c=-12/25+30/61*I,n=15 2178341623631869 a003 sin(Pi*35/101)/cos(Pi*11/30) 2178341626206350 a001 75025/7*47^(7/38) 2178341631953750 a007 Real Root Of 61*x^4-54*x^3-116*x^2+764*x+283 2178341640794251 a007 Real Root Of 36*x^4-396*x^3+444*x^2+386*x+335 2178341643922000 m001 (LambertW(1)+Totient)/(Trott+ZetaP(4)) 2178341644185332 m001 (Magata+Porter)/(BesselJ(0,1)-exp(Pi)) 2178341646515021 a003 sin(Pi*24/109)/cos(Pi*15/37) 2178341646545892 k001 Champernowne real with 1238*n+940 2178341649000353 m008 (5/6*Pi^3-1)/(2/5*Pi^3-1) 2178341649190208 r005 Im(z^2+c),c=23/86+4/53*I,n=51 2178341653203061 a007 Real Root Of -474*x^4+585*x^3+2*x^2+840*x+190 2178341657562387 l006 ln(982/1221) 2178341658547693 m005 (1/3*Pi+1/12)/(5/6*gamma-1) 2178341661782309 p004 log(37561/4253) 2178341662083644 m001 (GAMMA(11/12)+TwinPrimes)^(3^(1/3)) 2178341662083644 m001 (TwinPrimes+GAMMA(11/12))^(3^(1/3)) 2178341663288100 m001 (MasserGramainDelta-BesselI(1,1))*3^(1/2) 2178341675322759 m001 (FeigenbaumD+Otter)/(GAMMA(17/24)+Conway) 2178341680052669 a007 Real Root Of -467*x^4-848*x^3+444*x^2+387*x+486 2178341680481919 r005 Im(z^2+c),c=-19/50+19/53*I,n=30 2178341680761936 m001 GAMMA(1/12)*ln((3^(1/3)))/GAMMA(5/24)^2 2178341681171236 k007 concat of cont frac of 2178341684407169 m001 1/Porter*GaussKuzminWirsing^2*ln(sqrt(2)) 2178341695532245 a007 Real Root Of 99*x^4-41*x^3-763*x^2-738*x-640 2178341696628230 m001 Lehmer/(BesselK(0,1)-Pi) 2178341701766395 m001 BesselK(0,1)^exp(1)*BesselK(0,1)^Niven 2178341702932292 r005 Re(z^2+c),c=-11/42+1/12*I,n=12 2178341708889563 m001 log(2+sqrt(3))/ArtinRank2^2*ln(sqrt(5)) 2178341714802661 m001 GAMMA(17/24)^(Psi(1,1/3)*HardyLittlewoodC4) 2178341718741034 m001 1/Zeta(5)^2/Khintchine/exp(arctan(1/2)) 2178341719103646 a007 Real Root Of 148*x^4-20*x^3-593*x^2+512*x+390 2178341733202443 a007 Real Root Of 496*x^4+831*x^3-164*x^2+714*x-245 2178341735210815 r005 Re(z^2+c),c=-19/30+39/95*I,n=12 2178341743920372 b008 -2+E^E*Csch[2] 2178341743958916 a007 Real Root Of 125*x^4-564*x^3+586*x^2-92*x+435 2178341746565895 k001 Champernowne real with 1239*n+939 2178341749117686 m001 exp(Lehmer)^2/FeigenbaumDelta/LambertW(1)^2 2178341751406478 a007 Real Root Of -513*x^4-825*x^3+16*x^2-950*x+878 2178341759579337 r005 Re(z^2+c),c=5/38+37/58*I,n=5 2178341773255613 r005 Re(z^2+c),c=-45/62+3/19*I,n=40 2178341777594838 a007 Real Root Of -559*x^4+918*x^3+65*x^2+173*x-49 2178341784285701 m001 GAMMA(5/12)^GaussKuzminWirsing*sqrt(3) 2178341786184842 r005 Re(z^2+c),c=-21/106+16/43*I,n=26 2178341789234251 a007 Real Root Of 144*x^4+335*x^3-169*x^2-568*x-215 2178341791205583 a007 Real Root Of 274*x^4+540*x^3-359*x^2-290*x+484 2178341791984421 m001 (LambertW(1)-Zeta(5))/(Ei(1)+MertensB1) 2178341792287143 r005 Re(z^2+c),c=-6/25+8/35*I,n=13 2178341794252576 m005 (1/2*Catalan-1/11)/(71/70+3/10*5^(1/2)) 2178341804144963 a007 Real Root Of -3*x^4+385*x^3+394*x^2-732*x+583 2178341804919715 r005 Im(z^2+c),c=-39/82+2/49*I,n=12 2178341810148523 k002 Champernowne real with 103*n^2-252*n+170 2178341816071944 r009 Re(z^3+c),c=-31/86+21/38*I,n=11 2178341827479401 m001 (2^(1/2)+Ei(1))/(AlladiGrinstead+Rabbit) 2178341837833885 m005 (1/3*5^(1/2)+1/4)/(1/8*Catalan-4/7) 2178341841064174 l006 ln(297/2623) 2178341842944811 m001 ln(Si(Pi))^2/FeigenbaumDelta/GAMMA(11/24)^2 2178341844200095 r002 12th iterates of z^2 + 2178341846585898 k001 Champernowne real with 1240*n+938 2178341848768169 a003 cos(Pi*1/79)/cos(Pi*31/89) 2178341855455776 a001 1/29*(1/2*5^(1/2)+1/2)^8*47^(1/13) 2178341857291116 p001 sum((-1)^n/(448*n+433)/(8^n),n=0..infinity) 2178341863144640 m005 (1/2*5^(1/2)+1/7)/(5/12*3^(1/2)-1/7) 2178341889379667 r002 7th iterates of z^2 + 2178341896030176 a003 cos(Pi*37/120)-cos(Pi*29/75) 2178341896118126 m001 (FeigenbaumC-cos(1))/Lehmer 2178341914572321 a007 Real Root Of 263*x^4+500*x^3-535*x^2-393*x+929 2178341915148194 a001 377/1860498*76^(17/31) 2178341918145238 a007 Real Root Of -443*x^4-815*x^3+664*x^2+635*x-217 2178341918632149 a007 Real Root Of -538*x^4-962*x^3+33*x^2-519*x+883 2178341927531290 r005 Im(z^2+c),c=1/24+13/59*I,n=14 2178341927804003 r005 Im(z^2+c),c=1/4+6/61*I,n=11 2178341928892258 a007 Real Root Of 490*x^4+880*x^3-311*x^2+360*x+323 2178341935877849 m005 (1/2*Zeta(3)+3/10)/(10/11*gamma-1/9) 2178341940213571 m001 ln(Zeta(3))*GAMMA(3/4)*cos(Pi/12) 2178341946605901 k001 Champernowne real with 1241*n+937 2178341948515924 m005 (1/2*3^(1/2)+8/9)/(1/11*Catalan-8/9) 2178341951710365 m001 1/(3^(1/3))^2*exp(Cahen)*cosh(1)^2 2178341954015965 m001 (Pi+GAMMA(19/24))/(CareFree-Khinchin) 2178341960173593 m001 BesselI(1,2)^(Zeta(3)*HardHexagonsEntropy) 2178341964418704 r002 11th iterates of z^2 + 2178341974719270 a007 Real Root Of 405*x^4-240*x^3-105*x^2-448*x-96 2178341975063073 r005 Im(z^2+c),c=-57/122+8/21*I,n=59 2178341980873998 a007 Real Root Of 157*x^4+112*x^3-317*x^2+74*x-712 2178341981477116 a007 Real Root Of 245*x^4+445*x^3-489*x^2-979*x-729 2178341982181937 a007 Real Root Of -774*x^4-160*x^3-430*x^2+948*x+227 2178341984393976 a007 Real Root Of -282*x^4+309*x^3+291*x^2+739*x+151 2178341985008282 m001 (-Trott+ZetaP(3))/(2^(1/2)-Robbin) 2178341988376323 m001 Porter*Champernowne/ln(Zeta(7)) 2178341991794554 m001 (GAMMA(19/24)+ThueMorse)/gamma(1) 2178341994275140 m001 1/5*(5^(1/2)*FeigenbaumD-GAMMA(5/6))*5^(1/2) 2178341995255425 h001 (-7*exp(-3)+5)/(-exp(-2)-2) 2178342001219818 h001 (2/3*exp(2)+1/12)/(4/5*exp(1)+1/8) 2178342001862119 r009 Re(z^3+c),c=-25/78+3/7*I,n=28 2178342002049605 a001 3/196418*2^(21/41) 2178342005001491 m001 MertensB1^(cos(1/12*Pi)*Salem) 2178342014408197 m001 ln(Lehmer)/Cahen*GAMMA(1/3) 2178342025828860 a007 Real Root Of 418*x^4+843*x^3-343*x^2-333*x+204 2178342029063081 r005 Im(z^2+c),c=-91/110+13/60*I,n=34 2178342041741319 r005 Im(z^2+c),c=-7/34+17/55*I,n=24 2178342046625904 k001 Champernowne real with 1242*n+936 2178342052937712 r005 Im(z^2+c),c=-14/25+2/51*I,n=47 2178342060864006 p004 log(30637/3469) 2178342078084026 a007 Real Root Of -754*x^4+617*x^3-240*x^2+916*x+219 2178342082669736 s002 sum(A104057[n]/(n^2*2^n-1),n=1..infinity) 2178342085548108 m001 (ln(5)*Porter+GaussAGM)/Porter 2178342092480902 r005 Re(z^2+c),c=-83/118+15/52*I,n=53 2178342095277923 r002 6th iterates of z^2 + 2178342112811119 k008 concat of cont frac of 2178342115214456 m001 cos(1)/(polylog(4,1/2)+ReciprocalLucas) 2178342117411141 k009 concat of cont frac of 2178342117437694 r005 Im(z^2+c),c=-5/118+16/63*I,n=14 2178342120507522 r009 Im(z^3+c),c=-13/90+5/23*I,n=5 2178342124361401 a007 Real Root Of -248*x^4-443*x^3-250*x^2-826*x+392 2178342128917041 m001 PlouffeB/(Mills-exp(Pi)) 2178342132201220 m001 1/BesselK(0,1)^2/exp(Tribonacci)^2*GAMMA(7/12) 2178342146645907 k001 Champernowne real with 1243*n+935 2178342147304823 h001 (6/11*exp(2)+1/4)/(3/7*exp(1)+4/5) 2178342157814922 m005 (7/44+1/4*5^(1/2))/(-21/55+7/22*5^(1/2)) 2178342160963009 s002 sum(A080104[n]/(n^2*pi^n-1),n=1..infinity) 2178342164155574 a001 6765/47*18^(47/50) 2178342164515780 r005 Re(z^2+c),c=7/40+13/28*I,n=35 2178342173492928 m001 1/exp(Porter)^2*CareFree/PrimesInBinary^2 2178342175081552 r005 Re(z^2+c),c=-103/102+3/26*I,n=14 2178342177697180 m001 GlaisherKinkelin^exp(1/Pi)/MasserGramain 2178342178785627 m001 (Niven+PisotVijayaraghavan)/(BesselJ(0,1)+Kac) 2178342183552846 m002 1+Cosh[Pi]/Pi^5+Log[Pi]*Tanh[Pi] 2178342183635907 m001 1/GAMMA(1/6)*Champernowne^2*exp(Zeta(5))^2 2178342191693312 r009 Re(z^3+c),c=-1/48+58/61*I,n=7 2178342202245822 r005 Im(z^2+c),c=-29/23+5/58*I,n=13 2178342203887321 r009 Im(z^3+c),c=-17/122+12/55*I,n=9 2178342205079551 m001 (Porter+Thue)/(Conway-CopelandErdos) 2178342206084929 r005 Im(z^2+c),c=-19/20+11/47*I,n=25 2178342207096203 m001 (3^(1/3))^2*exp(PisotVijayaraghavan)/Ei(1)^2 2178342225381491 l006 ln(992/8761) 2178342237531982 m001 (FransenRobinson-Khinchin)/(Paris-TwinPrimes) 2178342240576878 l006 ln(7674/7843) 2178342244336213 a001 2/5*121393^(14/41) 2178342246111174 k009 concat of cont frac of 2178342246665910 k001 Champernowne real with 1244*n+934 2178342246845173 r009 Re(z^3+c),c=-29/118+29/36*I,n=2 2178342247427558 r005 Im(z^2+c),c=-53/110+10/29*I,n=15 2178342259978964 h001 (7/12*exp(2)+1/4)/(2/11*exp(2)+3/4) 2178342272921450 r005 Im(z^2+c),c=29/106+2/31*I,n=18 2178342279866543 a007 Real Root Of 103*x^4+70*x^3-551*x^2-280*x+409 2178342281447302 m001 GAMMA(19/24)^2/exp(FeigenbaumC)*Pi^2 2178342288459610 r009 Re(z^3+c),c=-11/31+18/35*I,n=57 2178342289630823 a007 Real Root Of -237*x^4-575*x^3-467*x^2-291*x+975 2178342293862072 r005 Re(z^2+c),c=-35/24+1/29*I,n=6 2178342295244256 a003 sin(Pi*11/104)*sin(Pi*27/116) 2178342296850421 r009 Re(z^3+c),c=-1/32+27/62*I,n=16 2178342298079616 r009 Re(z^3+c),c=-17/54+12/29*I,n=17 2178342304543677 m001 (Tetranacci+ZetaQ(3))/(Conway-PrimesInBinary) 2178342323212828 a001 7/6765*75025^(47/53) 2178342329910411 r005 Im(z^2+c),c=-22/27+7/52*I,n=30 2178342345413843 r009 Im(z^3+c),c=-19/34+7/19*I,n=25 2178342346685913 k001 Champernowne real with 1245*n+933 2178342349092034 m001 (2^(1/2)-Catalan)/(-Cahen+PrimesInBinary) 2178342349206523 a001 8/64079*11^(13/56) 2178342355617115 m001 1/MinimumGamma^2/LaplaceLimit/exp(Salem) 2178342365240939 a001 144/29*521^(13/55) 2178342375903794 r009 Re(z^3+c),c=-31/94+33/58*I,n=14 2178342389614889 l006 ln(695/6138) 2178342408249109 a007 Real Root Of 269*x^4+226*x^3-712*x^2+501*x+749 2178342408646850 m001 Tribonacci^2*PrimesInBinary*exp(BesselJ(1,1)) 2178342427871655 a001 11/1346269*987^(10/21) 2178342434239577 b008 3*ArcCsc[Sqrt[190]] 2178342435982919 r009 Im(z^3+c),c=-17/122+12/55*I,n=12 2178342437559951 r009 Im(z^3+c),c=-17/122+12/55*I,n=15 2178342437570642 r009 Im(z^3+c),c=-17/122+12/55*I,n=18 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=21 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=24 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=27 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=30 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=33 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=36 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=39 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=42 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=45 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=48 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=51 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=54 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=57 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=55 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=56 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=58 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=60 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=53 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=52 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=50 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=49 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=47 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=46 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=44 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=43 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=41 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=40 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=38 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=37 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=35 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=34 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=32 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=31 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=29 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=28 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=26 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=25 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=23 2178342437570715 r009 Im(z^3+c),c=-17/122+12/55*I,n=22 2178342437570717 r009 Im(z^3+c),c=-17/122+12/55*I,n=20 2178342437570718 r009 Im(z^3+c),c=-17/122+12/55*I,n=19 2178342437571014 r009 Im(z^3+c),c=-17/122+12/55*I,n=17 2178342437571142 r009 Im(z^3+c),c=-17/122+12/55*I,n=16 2178342437617309 r009 Im(z^3+c),c=-17/122+12/55*I,n=14 2178342437620725 r009 Im(z^3+c),c=-17/122+12/55*I,n=13 2178342442953552 r009 Im(z^3+c),c=-17/122+12/55*I,n=10 2178342444809731 r009 Im(z^3+c),c=-17/122+12/55*I,n=11 2178342446705916 k001 Champernowne real with 1246*n+932 2178342452010092 r002 15th iterates of z^2 + 2178342464826571 r005 Im(z^2+c),c=-13/14+43/200*I,n=52 2178342471270578 a001 1/29*(1/2*5^(1/2)+1/2)^13*18^(1/15) 2178342479033366 a007 Real Root Of 487*x^4+595*x^3-701*x^2+269*x-903 2178342481587811 m001 (ln(5)+ReciprocalLucas)/GAMMA(13/24) 2178342484523959 m001 sin(Pi/5)+RenyiParking*GAMMA(5/12) 2178342488070778 a007 Real Root Of 590*x^4+947*x^3-904*x^2-177*x+408 2178342490774647 a001 3/24476*521^(23/50) 2178342493342975 a007 Real Root Of 465*x^4+531*x^3+696*x^2+44*x-19 2178342494833995 m003 5/2+Log[1/2+Sqrt[5]/2]*Tan[1/2+Sqrt[5]/2]^2 2178342499215816 m001 (-TravellingSalesman+ZetaP(4))/(5^(1/2)+ln(2)) 2178342500174854 r005 Im(z^2+c),c=-35/114+21/62*I,n=29 2178342502251489 m001 LaplaceLimit+Paris+Riemann2ndZero 2178342508605537 r005 Re(z^2+c),c=-13/54+9/40*I,n=15 2178342516016975 v002 sum(1/(2^n+(7/2*n^2+57/2*n-28)),n=1..infinity) 2178342522812285 m001 BesselJ(0,1)-HardHexagonsEntropy+ThueMorse 2178342524990828 a007 Real Root Of 517*x^4+963*x^3+369*x^2-338*x+45 2178342535354826 s001 sum(exp(-3*Pi/4)^n*A047772[n],n=1..infinity) 2178342536992890 r009 Im(z^3+c),c=-4/9+4/59*I,n=54 2178342538672076 l006 ln(1093/9653) 2178342544869751 a001 18/1346269*987^(17/42) 2178342546725919 k001 Champernowne real with 1247*n+931 2178342549992451 r005 Im(z^2+c),c=-41/42+11/48*I,n=35 2178342553402873 r005 Re(z^2+c),c=23/82+23/55*I,n=10 2178342557703618 m001 ln(CopelandErdos)^2/Conway^2*sqrt(Pi) 2178342557876881 a007 Real Root Of -490*x^4+376*x^3+96*x^2+884*x+193 2178342560143997 a007 Real Root Of 138*x^4-948*x^3+888*x^2+836*x+657 2178342568291072 a005 (1/sin(104/213*Pi))^1145 2178342574794635 a007 Real Root Of 484*x^4+874*x^3+899*x^2-644*x-175 2178342583977765 m001 cos(Pi/5)*GAMMA(5/24)^2*exp(log(2+sqrt(3)))^2 2178342590977681 h001 (-2*exp(4)+12)/(-12*exp(1)-12) 2178342605290242 r009 Re(z^3+c),c=-37/106+1/2*I,n=43 2178342605832316 a007 Real Root Of 523*x^4+697*x^3-700*x^2+684*x+240 2178342606049668 a007 Real Root Of -130*x^4+762*x^3-758*x^2-513*x-235 2178342611211112 k009 concat of cont frac of 2178342611813941 a001 6/105937*2178309^(34/47) 2178342617502768 a007 Real Root Of -284*x^4-432*x^3+442*x^2-353*x-937 2178342618759403 m001 (Lehmer+Tetranacci)/(Ei(1,1)-Zeta(1,2)) 2178342633003858 a005 (1/cos(20/223*Pi))^420 2178342636597744 r005 Re(z^2+c),c=-7/10+41/195*I,n=15 2178342639099276 a001 55/2207*322^(24/31) 2178342640834051 a001 11/20365011074*591286729879^(10/21) 2178342640834051 a001 11/165580141*24157817^(10/21) 2178342646413677 a007 Real Root Of 341*x^4+416*x^3-351*x^2+794*x+17 2178342646745922 k001 Champernowne real with 1248*n+930 2178342657037796 h005 exp(cos(Pi*7/58)*cos(Pi*9/49)) 2178342660889095 m001 (-MertensB1+ZetaQ(2))/(3^(1/2)-Khinchin) 2178342663203479 r005 Im(z^2+c),c=-1/54+12/49*I,n=13 2178342666183174 r005 Im(z^2+c),c=31/110+1/62*I,n=60 2178342671862840 r002 29th iterates of z^2 + 2178342675586971 l006 ln(8045/10003) 2178342681368574 p001 sum(1/(357*n+11)/n/(125^n),n=1..infinity) 2178342699575226 r002 56th iterates of z^2 + 2178342704310132 m001 (BesselK(0,1)+GAMMA(11/12))/(-Conway+Kac) 2178342705668353 a008 Real Root of (13+12*x+7*x^2-7*x^3) 2178342716953750 r002 50th iterates of z^2 + 2178342728699250 r005 Re(z^2+c),c=-21/106+16/43*I,n=36 2178342735483677 m001 (Mills+Riemann3rdZero)/(Cahen-LandauRamanujan) 2178342746765925 k001 Champernowne real with 1249*n+929 2178342747348772 r005 Re(z^2+c),c=-7/46+15/31*I,n=30 2178342751874444 s002 sum(A219424[n]/(pi^n+1),n=1..infinity) 2178342757979207 m001 (GAMMA(7/12)+Conway*MadelungNaCl)/MadelungNaCl 2178342763239258 a001 11/610*377^(21/50) 2178342766310294 h002 exp(10^(12/11)-17^(3/10)) 2178342766310294 h007 exp(10^(12/11)-17^(3/10)) 2178342767258575 a007 Real Root Of 589*x^4+972*x^3-187*x^2+896*x-376 2178342774557191 r002 54th iterates of z^2 + 2178342781434458 m001 Totient^Sierpinski*Totient^ZetaP(4) 2178342784699254 r002 23th iterates of z^2 + 2178342786984855 m006 (1/3*Pi^2+2)/(5/6*exp(Pi)+5) 2178342797973758 a007 Real Root Of -243*x^4+799*x^3-183*x^2+918*x-199 2178342798960327 l006 ln(398/3515) 2178342802024470 m001 (1-polylog(4,1/2))/(GAMMA(5/6)+Riemann2ndZero) 2178342806485701 a001 5/28143753123*2^(5/17) 2178342813149123 k002 Champernowne real with 207/2*n^2-507/2*n+171 2178342817127404 l006 ln(7063/8782) 2178342823112308 m001 (-LaplaceLimit+Tribonacci)/(Backhouse-Catalan) 2178342837019155 a001 1926*987^(1/56) 2178342837330089 m001 (3^(1/2)-Backhouse)/(Landau+Sarnak) 2178342838402103 a001 29/55*2584^(23/30) 2178342846785928 k001 Champernowne real with 1250*n+928 2178342857533757 m001 BesselK(0,1)*ln(MinimumGamma)^2*Ei(1)^2 2178342860477339 m001 (ln(2)/ln(10))^(Grothendieck/OrthogonalArrays) 2178342861937621 m001 1/FeigenbaumD^2*ln(Salem)*cos(Pi/12) 2178342868603900 m005 (1/2*Zeta(3)-6/11)/(1/7*Pi-3) 2178342872264656 m001 Catalan^2*BesselJ(0,1)/ln(GAMMA(1/6))^2 2178342872842572 r005 Im(z^2+c),c=-1/66+14/57*I,n=4 2178342874028625 m005 (1/2*exp(1)+3/7)/(5/9*gamma+1/2) 2178342877356310 m001 (CopelandErdos-Psi(1,1/3))/(-Salem+Sarnak) 2178342879788733 g007 Psi(2,3/11)+Psi(2,3/10)+Psi(2,1/3)-Psi(2,5/9) 2178342888094488 r005 Re(z^2+c),c=-35/36+1/13*I,n=20 2178342888760090 a007 Real Root Of -225*x^4-308*x^3+420*x^2+148*x+212 2178342891493555 m001 (HardyLittlewoodC4+Khinchin)/(1+Artin) 2178342893113916 r005 Im(z^2+c),c=-23/48+23/60*I,n=51 2178342916871731 r009 Re(z^3+c),c=-21/58+8/15*I,n=42 2178342925667540 r009 Im(z^3+c),c=-17/122+12/55*I,n=7 2178342927082712 a007 Real Root Of -16*x^4-18*x^3+51*x^2+268*x+516 2178342929719351 r005 Re(z^2+c),c=-21/106+16/43*I,n=33 2178342939724272 a007 Real Root Of -56*x^4+268*x^3-459*x^2+602*x-112 2178342941484684 m001 (exp(Pi)+Zeta(1/2))/(Ei(1,1)+StronglyCareFree) 2178342943228003 m001 (Pi^(1/2)-FeigenbaumAlpha)/(Magata-ZetaQ(2)) 2178342945611354 m001 (Artin-sin(1))/(Riemann2ndZero+TreeGrowth2nd) 2178342946805931 k001 Champernowne real with 1251*n+927 2178342950459031 r009 Im(z^3+c),c=-5/9+37/60*I,n=15 2178342955745995 m005 (2/3*gamma+5)/(1/3*Pi-4/5) 2178342969006617 a007 Real Root Of 251*x^4+649*x^3+60*x^2-34*x+698 2178342978713763 a001 4356639/2+21/2*5^(1/2) 2178342983095355 m001 (exp(1)+ln(2+3^(1/2)))/(GAMMA(5/6)+Sarnak) 2178342984593069 r005 Im(z^2+c),c=23/86+4/53*I,n=49 2178342988923791 a007 Real Root Of -42*x^4-902*x^3+243*x^2-787*x+933 2178342991199370 a001 4/55*4181^(24/25) 2178342992291453 h001 (-4*exp(2)+1)/(-9*exp(-1)+2) 2178342993788854 a001 89/322*141422324^(11/13) 2178342993788854 a001 89/322*2537720636^(11/15) 2178342993788854 a001 89/322*45537549124^(11/17) 2178342993788854 a001 89/322*312119004989^(3/5) 2178342993788854 a001 89/322*817138163596^(11/19) 2178342993788854 a001 89/322*14662949395604^(11/21) 2178342993788854 a001 89/322*(1/2+1/2*5^(1/2))^33 2178342993788854 a001 89/322*192900153618^(11/18) 2178342993788854 a001 89/322*10749957122^(11/16) 2178342993788854 a001 89/322*1568397607^(3/4) 2178342993788854 a001 89/322*599074578^(11/14) 2178342993788856 a001 89/322*33385282^(11/12) 2178342994975114 a001 144/199*(1/2+1/2*5^(1/2))^31 2178342994975114 a001 144/199*9062201101803^(1/2) 2178343000000332 a001 1346337/2+1346269/2*5^(1/2) 2178343004381601 l006 ln(6081/7561) 2178343007331551 a007 Real Root Of 59*x^4-191*x^3-755*x^2-285*x-341 2178343009355153 a007 Real Root Of 228*x^4-56*x^3-992*x^2+238*x-487 2178343009919819 r009 Re(z^3+c),c=-57/98+13/44*I,n=3 2178343010714387 p001 sum(1/(181*n+46)/(100^n),n=0..infinity) 2178343011016911 m001 Riemann2ndZero^2*ArtinRank2^2/ln(FeigenbaumD) 2178343014270718 m001 HardHexagonsEntropy^2*Champernowne/exp(Paris) 2178343032687345 m001 ln(GAMMA(19/24))^2/GAMMA(1/3)/GAMMA(5/24) 2178343035806636 r005 Re(z^2+c),c=-5/6+54/223*I,n=8 2178343035910963 v002 sum(1/(3^n*(-30+47*n)),n=1..infinity) 2178343040481242 s002 sum(A219424[n]/(pi^n),n=1..infinity) 2178343045914878 a008 Real Root of (-6+x+x^2-6*x^3-6*x^4+4*x^5) 2178343046825934 k001 Champernowne real with 1252*n+926 2178343052154343 m005 (1/2*exp(1)-5)/(6/11*2^(1/2)+9/10) 2178343067252506 a007 Real Root Of 267*x^4+662*x^3+41*x^2-742*x-980 2178343075258464 p004 log(27281/3089) 2178343080661124 r005 Re(z^2+c),c=-7/62+14/25*I,n=62 2178343088199274 m001 1/ln(Catalan)^2/sin(1)^3 2178343089522095 r005 Re(z^2+c),c=19/54+8/43*I,n=32 2178343092696043 r005 Re(z^2+c),c=-61/74+1/19*I,n=16 2178343093280990 m001 (Bloch+Otter)/(GAMMA(2/3)+Ei(1,1)) 2178343102773835 h001 (4/7*exp(1)+5/11)/(1/11*exp(2)+1/4) 2178343103804207 r005 Im(z^2+c),c=-7/10+38/255*I,n=7 2178343105221536 m005 (1/2*2^(1/2)-9/10)/(1/8*Catalan-1) 2178343108879740 h001 (5/9*exp(1)+3/5)/(1/9*exp(1)+2/3) 2178343115898771 m001 Artin*(sin(1/12*Pi)+2*Pi/GAMMA(5/6)) 2178343115898771 m001 Artin*(sin(Pi/12)+GAMMA(1/6)) 2178343116123065 l006 ln(897/7922) 2178343122687368 r005 Im(z^2+c),c=-111/122+9/44*I,n=43 2178343126131171 k006 concat of cont frac of 2178343126778740 m001 (-Paris+Trott2nd)/(5^(1/2)+MertensB2) 2178343130541567 m005 (1/5*exp(1)+1/5)/(4*Catalan-1/4) 2178343140811968 m005 (1/2*2^(1/2)-5/12)/(6*5^(1/2)-1/12) 2178343145228581 a003 sin(Pi*3/88)/cos(Pi*33/98) 2178343146845937 k001 Champernowne real with 1253*n+925 2178343149048134 a007 Real Root Of 620*x^4+830*x^3-880*x^2+960*x+886 2178343152494447 m001 (FransenRobinson+Trott2nd)/(gamma(3)-Conway) 2178343152900962 r009 Re(z^3+c),c=-5/42+39/43*I,n=4 2178343170784050 r005 Im(z^2+c),c=-59/62+13/62*I,n=21 2178343192117076 m005 (1/2*Pi+3/7)/(1/5*3^(1/2)+4/7) 2178343209217218 m008 (5/6*Pi^3+5/6)/(4*Pi^5+1/3) 2178343215712342 r005 Im(z^2+c),c=-39/98+2/57*I,n=22 2178343218498354 s001 sum(exp(-Pi/4)^(n-1)*A274155[n],n=1..infinity) 2178343219551035 a007 Real Root Of 291*x^4+428*x^3-212*x^2+198*x-691 2178343220892718 m001 arctan(1/2)^(MadelungNaCl/ln(1+sqrt(2))) 2178343220892718 m001 arctan(1/2)^(MadelungNaCl/ln(2^(1/2)+1)) 2178343230184146 a001 161/305*13^(21/38) 2178343235418953 m001 Pi^(1/2)+ArtinRank2^FeigenbaumAlpha 2178343237554676 a007 Real Root Of 281*x^4+627*x^3+296*x^2+503*x-155 2178343242715133 r005 Re(z^2+c),c=-21/106+16/43*I,n=39 2178343245307737 r005 Im(z^2+c),c=-89/94+13/58*I,n=58 2178343246865940 k001 Champernowne real with 1254*n+924 2178343250926154 a003 sin(Pi*7/78)-sin(Pi*19/115) 2178343255532225 r005 Im(z^2+c),c=15/38+9/40*I,n=49 2178343257184823 a007 Real Root Of 515*x^4+937*x^3-24*x^2+840*x+33 2178343257953346 a007 Real Root Of 21*x^4-461*x^3-894*x^2+44*x-900 2178343260834346 m001 GolombDickman^sin(1/5*Pi)-cos(1) 2178343260834346 m001 GolombDickman^sin(Pi/5)-cos(1) 2178343263761158 l006 ln(5099/6340) 2178343264702144 m001 (Lehmer-MinimumGamma)/(PlouffeB-ZetaP(4)) 2178343273201761 a001 47/317811*28657^(2/53) 2178343274677592 m001 Rabbit-cos(1/5*Pi)*FeigenbaumMu 2178343287052453 a007 Real Root Of -405*x^4-478*x^3+659*x^2-596*x-247 2178343299339604 m001 MadelungNaCl^(2*Pi/GAMMA(5/6))-Stephens 2178343300188271 r002 47th iterates of z^2 + 2178343311511116 k008 concat of cont frac of 2178343313217081 m001 (ZetaP(2)-ZetaQ(2))/(GAMMA(2/3)+Weierstrass) 2178343325814669 r005 Re(z^2+c),c=31/94+8/35*I,n=42 2178343326770573 h001 (6/11*exp(2)+1/12)/(4/11*exp(1)+9/10) 2178343330397385 v003 sum((1/6*n^3+23/6*n+2)*n!/n^n,n=1..infinity) 2178343337663998 r005 Im(z^2+c),c=-17/31+17/57*I,n=12 2178343339442376 m008 (5/6*Pi^5-3)/(2/5*Pi^3-5/6) 2178343340079171 m001 (MinimumGamma+RenyiParking)/(GAMMA(13/24)-Kac) 2178343346885943 k001 Champernowne real with 1255*n+923 2178343349810437 a001 521/3524578*3^(6/17) 2178343353901365 s002 sum(A219424[n]/(pi^n-1),n=1..infinity) 2178343360178029 r009 Re(z^3+c),c=-1/25+29/43*I,n=59 2178343360831933 a007 Real Root Of 224*x^4+802*x^3+872*x^2-135*x-63 2178343369090468 l006 ln(499/4407) 2178343384540601 m001 (GAMMA(3/4)+ln(5)*Riemann2ndZero)/ln(5) 2178343391717184 a001 9349/3*2584^(20/37) 2178343393036388 a007 Real Root Of -118*x^4-404*x^3-158*x^2+781*x+932 2178343404341660 a007 Real Root Of 974*x^4+477*x^3-537*x^2-887*x-165 2178343418065350 a007 Real Root Of -423*x^4-844*x^3-71*x^2-888*x-797 2178343423282704 m001 (LambertW(1)-exp(Pi))/(Gompertz+TreeGrowth2nd) 2178343431718316 m001 (ln(Pi)+Ei(1))/HardHexagonsEntropy 2178343436854977 m001 Ei(1)^2*FeigenbaumB^2*exp(sqrt(5))^2 2178343441367366 m001 1/Magata/KhintchineHarmonic*exp(sin(Pi/12)) 2178343446905946 k001 Champernowne real with 1256*n+922 2178343452375581 m008 (5*Pi^3+2)/(3/4*Pi^6-1/6) 2178343457010168 r009 Im(z^3+c),c=-45/98+2/37*I,n=54 2178343460342741 a007 Real Root Of -194*x^4-332*x^3+434*x^2+179*x-733 2178343470349158 m001 (2^(1/2))^GAMMA(7/12)*GlaisherKinkelin 2178343479220163 m001 GAMMA(23/24)-KomornikLoreti-Riemann2ndZero 2178343487502081 r005 Re(z^2+c),c=-21/106+16/43*I,n=37 2178343518189467 r009 Re(z^3+c),c=-3/14+41/43*I,n=63 2178343519651789 r005 Im(z^2+c),c=-65/106+7/15*I,n=9 2178343523499377 r005 Im(z^2+c),c=-7/8+19/103*I,n=51 2178343523899523 a007 Real Root Of -354*x^4-453*x^3+969*x^2+441*x-349 2178343530908543 a007 Real Root Of -472*x^4-698*x^3+890*x^2+24*x-758 2178343532818379 m005 (1/2*5^(1/2)+7/12)/(5/11*exp(1)-5/11) 2178343533541975 m001 (Zeta(1,-1)+Pi^(1/2))/(Psi(1,1/3)-exp(1)) 2178343533985966 m002 Coth[Pi]+ProductLog[Pi]+Tanh[Pi]/Pi^2 2178343537584873 m001 Riemann2ndZero+Robbin^TwinPrimes 2178343538006156 a003 sin(Pi*7/69)*sin(Pi*23/94) 2178343538105732 r005 Re(z^2+c),c=-21/106+16/43*I,n=42 2178343542959086 a007 Real Root Of 408*x^4+339*x^3-959*x^2+735*x+469 2178343543952495 a007 Real Root Of -210*x^4-117*x^3+711*x^2-226*x-347 2178343546819484 m001 (GAMMA(5/6)-FellerTornier)/(Kac-LaplaceLimit) 2178343546925949 k001 Champernowne real with 1257*n+921 2178343549993647 s002 sum(A284778[n]/(n^3*2^n+1),n=1..infinity) 2178343558792271 r009 Im(z^3+c),c=-17/122+12/55*I,n=8 2178343559133308 a001 38/17*956722026041^(7/12) 2178343561203194 g007 -2*Psi(2,4/11)-Psi(2,9/10)-Psi(2,1/4) 2178343571081740 a007 Real Root Of 441*x^4+684*x^3-744*x^2-296*x+26 2178343571941719 h001 (2/9*exp(1)+3/8)/(1/2*exp(2)+4/5) 2178343575561540 l006 ln(1099/9706) 2178343579118363 a007 Real Root Of 821*x^4-608*x^3+354*x^2-744*x-187 2178343581754200 m001 FeigenbaumMu/(Zeta(5)+BesselK(1,1)) 2178343584766246 m001 1/Zeta(3)/ln((2^(1/3)))/sqrt(1+sqrt(3)) 2178343586526036 a001 1/6*(1/2*5^(1/2)+1/2)^16*18^(8/13) 2178343587152265 m005 (1/2*3^(1/2)+10/11)/(1/9*Catalan-11/12) 2178343602097022 a007 Real Root Of 300*x^4+717*x^3+291*x^2-14*x-755 2178343603535779 h001 (-4*exp(2)-12)/(-9*exp(3)-10) 2178343608461145 h001 (-8*exp(4)-11)/(-4*exp(2)+9) 2178343608509822 m001 GAMMA(5/12)^BesselI(1,2)-ln(Pi) 2178343615079100 a007 Real Root Of -661*x^4-917*x^3+755*x^2-736*x+219 2178343615886225 a007 Real Root Of 517*x^4+808*x^3-713*x^2-242*x-433 2178343623376006 a007 Real Root Of 37*x^4-193*x^3+148*x^2-823*x-18 2178343626156313 m001 gamma(1)^GAMMA(3/4)/Si(Pi) 2178343633307942 a003 sin(Pi*17/91)/cos(Pi*23/55) 2178343646876785 l006 ln(4117/5119) 2178343646945952 k001 Champernowne real with 1258*n+920 2178343647179805 r005 Re(z^2+c),c=-21/106+16/43*I,n=45 2178343649771957 a007 Real Root Of -95*x^4+118*x^3+494*x^2-559*x-203 2178343649799075 m001 Ei(1,1)-HardyLittlewoodC3^MasserGramainDelta 2178343669351326 r005 Im(z^2+c),c=-113/102+12/55*I,n=16 2178343671480679 r005 Re(z^2+c),c=13/82+4/9*I,n=29 2178343671949791 r005 Re(z^2+c),c=-21/106+16/43*I,n=47 2178343676622189 r005 Re(z^2+c),c=-21/106+16/43*I,n=50 2178343677278535 r005 Re(z^2+c),c=-21/106+16/43*I,n=48 2178343679647451 r009 Re(z^3+c),c=-6/31+39/44*I,n=52 2178343680187699 r005 Re(z^2+c),c=-21/106+16/43*I,n=53 2178343681651943 r005 Re(z^2+c),c=-21/106+16/43*I,n=56 2178343682093162 r005 Re(z^2+c),c=-21/106+16/43*I,n=58 2178343682094544 r005 Re(z^2+c),c=-21/106+16/43*I,n=59 2178343682122859 r005 Re(z^2+c),c=-21/106+16/43*I,n=61 2178343682163754 r005 Re(z^2+c),c=-21/106+16/43*I,n=64 2178343682191077 r005 Re(z^2+c),c=-21/106+16/43*I,n=62 2178343682221817 r005 Re(z^2+c),c=-21/106+16/43*I,n=63 2178343682319547 r005 Re(z^2+c),c=-21/106+16/43*I,n=60 2178343682351993 r005 Re(z^2+c),c=-21/106+16/43*I,n=55 2178343682586527 r005 Re(z^2+c),c=-21/106+16/43*I,n=57 2178343682911259 r005 Re(z^2+c),c=-21/106+16/43*I,n=44 2178343682927631 r005 Re(z^2+c),c=-21/106+16/43*I,n=51 2178343683059963 r005 Re(z^2+c),c=-21/106+16/43*I,n=54 2178343684102083 r005 Re(z^2+c),c=-21/106+16/43*I,n=52 2178343691079010 r005 Re(z^2+c),c=-1/70+31/57*I,n=12 2178343691166643 r005 Re(z^2+c),c=-21/106+16/43*I,n=49 2178343693567637 m005 (1/2*Catalan+3/5)/(4/9*2^(1/2)-1/7) 2178343695887420 h001 (3/7*exp(1)+4/11)/(10/11*exp(2)+3/10) 2178343697914082 m001 MertensB3+StronglyCareFree^TwinPrimes 2178343704537054 r005 Re(z^2+c),c=-21/118+14/33*I,n=40 2178343712366970 r005 Re(z^2+c),c=-21/106+16/43*I,n=46 2178343720281834 r005 Im(z^2+c),c=-12/23+7/19*I,n=20 2178343741346109 r005 Re(z^2+c),c=11/64+29/62*I,n=36 2178343746965955 k001 Champernowne real with 1259*n+919 2178343747276615 l006 ln(600/5299) 2178343749793160 m001 (Niven-Riemann1stZero)/(gamma(1)+Cahen) 2178343750107423 r005 Im(z^2+c),c=-71/78+13/64*I,n=54 2178343752600990 r005 Re(z^2+c),c=-21/118+14/33*I,n=38 2178343753803486 m001 (1+Zeta(1/2))/(MasserGramain+Porter) 2178343754536763 r005 Im(z^2+c),c=-18/29+22/59*I,n=25 2178343755492489 m001 Tribonacci^2/exp(PrimesInBinary)/GAMMA(23/24) 2178343756057473 r008 a(0)=2,K{-n^6,-1-4*n^3-7*n^2+5*n} 2178343757181868 r005 Re(z^2+c),c=-21/106+16/43*I,n=43 2178343776056181 p001 sum(1/(376*n+345)/n/(64^n),n=1..infinity) 2178343786898483 r005 Re(z^2+c),c=-21/106+16/43*I,n=40 2178343791106855 m001 (BesselI(0,1)-GAMMA(23/24))^FeigenbaumD 2178343792454388 r005 Re(z^2+c),c=-21/106+16/43*I,n=41 2178343792614883 r005 Im(z^2+c),c=-59/114+23/59*I,n=43 2178343804650045 r005 Im(z^2+c),c=-35/29+5/33*I,n=56 2178343816149723 k002 Champernowne real with 104*n^2-255*n+172 2178343817790280 a007 Real Root Of -46*x^4-981*x^3+414*x^2-950*x+319 2178343828605582 m005 (1/3*Zeta(3)+2/9)/(1/3*2^(1/2)-1/2) 2178343841097142 m001 BesselK(0,1)^(FeigenbaumDelta/GAMMA(11/12)) 2178343841616119 k006 concat of cont frac of 2178343842475092 r009 Re(z^3+c),c=-23/64+31/59*I,n=44 2178343842758641 m004 (-125*Pi)/4+125*Sqrt[5]*Pi-Sinh[Sqrt[5]*Pi] 2178343842886300 r005 Re(z^2+c),c=-43/40+4/17*I,n=12 2178343846985958 k001 Champernowne real with 1260*n+918 2178343856362271 m001 (ln(3)-arctan(1/2))/(Backhouse-MadelungNaCl) 2178343860586467 r005 Re(z^2+c),c=-9/34+1/62*I,n=7 2178343864960402 a007 Real Root Of 298*x^4+431*x^3-235*x^2+952*x+934 2178343869676012 m001 (Si(Pi)+5)/(-Khinchin+3) 2178343870933105 a003 2^(1/2)+cos(3/8*Pi)-cos(2/7*Pi)-cos(2/21*Pi) 2178343880122712 r009 Re(z^3+c),c=-9/32+8/25*I,n=6 2178343886563131 r005 Re(z^2+c),c=-7/86+31/53*I,n=9 2178343886918251 a007 Real Root Of -27*x^4-556*x^3+745*x^2+985*x+293 2178343888641167 r005 Re(z^2+c),c=-11/82+25/42*I,n=33 2178343902100095 m005 (1/3*2^(1/2)-2/9)/(5/8*Catalan+4/7) 2178343904393325 a003 cos(Pi*1/33)-sin(Pi*19/67) 2178343907189174 r005 Re(z^2+c),c=-21/26+3/37*I,n=36 2178343916251650 l006 ln(7252/9017) 2178343916807982 r005 Re(z^2+c),c=-11/14+16/255*I,n=4 2178343920918089 a003 sin(Pi*1/40)/cos(Pi*31/81) 2178343930084677 a001 1/39596*(1/2*5^(1/2)+1/2)^6*521^(13/21) 2178343931826431 a007 Real Root Of -425*x^4-971*x^3-135*x^2-215*x-295 2178343936431892 a007 Real Root Of 251*x^4+637*x^3-174*x^2-936*x+205 2178343936939855 r005 Im(z^2+c),c=-11/42+37/50*I,n=3 2178343939692761 m005 (1/3*Zeta(3)-1/12)/(9/10*Zeta(3)+3/8) 2178343942143140 a007 Real Root Of -513*x^4-806*x^3+628*x^2-139*x-63 2178343947005961 k001 Champernowne real with 1261*n+917 2178343948985162 m001 1/ln(Zeta(3))*Khintchine/sin(Pi/12)^2 2178343949044585 q001 171/785 2178343951216759 r002 57th iterates of z^2 + 2178343955774620 m005 (25/4+1/4*5^(1/2))/(8/11*Zeta(3)-4) 2178343958875006 r005 Re(z^2+c),c=-5/21+11/60*I,n=4 2178343966802180 m001 ThueMorse^(3^(1/3))/(KhinchinLevy^(3^(1/3))) 2178343967841784 m005 (1/2*Pi-1)/(2/11*Catalan-3/7) 2178343970450591 a001 6/7*1346269^(5/9) 2178343980434387 m001 1/exp(Riemann3rdZero)/Riemann2ndZero/sqrt(3)^2 2178343986316102 h001 (2/3*exp(1)+1/7)/(1/6*exp(1)+4/9) 2178343989556811 m005 (1/3*gamma-1/3)/(1/3*gamma+5/11) 2178343990628519 r005 Im(z^2+c),c=-27/58+11/29*I,n=39 2178343991063886 b008 1+ProductLog[1+2*Sqrt[2]] 2178343999776443 m001 (Pi+2^(1/2))/(GolombDickman+Porter) 2178344001177751 m001 (AlladiGrinstead-exp(Pi)*Gompertz)/Gompertz 2178344001542228 r009 Re(z^3+c),c=-3/8+16/27*I,n=57 2178344003037138 a001 63245986/199*199^(4/11) 2178344016484642 l006 ln(701/6191) 2178344020923625 m001 BesselI(1,1)+Champernowne^Zeta(1/2) 2178344030869046 h001 (-7*exp(-1)-7)/(-exp(1/3)-3) 2178344033538727 m006 (Pi-2/3)/(1/6/Pi-1/6) 2178344047025964 k001 Champernowne real with 1262*n+916 2178344053277052 a007 Real Root Of 615*x^4-388*x^3+674*x^2-805*x+146 2178344063060025 r005 Im(z^2+c),c=-39/86+23/61*I,n=39 2178344063977755 r005 Re(z^2+c),c=-15/62+9/40*I,n=8 2178344064479348 r005 Im(z^2+c),c=23/86+4/53*I,n=50 2178344070636574 a007 Real Root Of -244*x^4-723*x^3-414*x^2-360*x-799 2178344079467734 q001 1/4590643 2178344088721763 m001 (ln(3)-2*Pi/GAMMA(5/6))/(Kac-MasserGramain) 2178344089347454 a007 Real Root Of -242*x^4-51*x^3+426*x^2-894*x+953 2178344094649014 r005 Im(z^2+c),c=-31/34+25/122*I,n=43 2178344097930483 m001 (ln(gamma)-Artin)/(FeigenbaumB+Magata) 2178344134902475 r005 Im(z^2+c),c=-9/10+37/190*I,n=56 2178344136546556 m001 (GAMMA(5/6)+CareFree*Stephens)/CareFree 2178344146409783 r002 55th iterates of z^2 + 2178344146933530 r005 Im(z^2+c),c=-8/27+51/61*I,n=3 2178344147045967 k001 Champernowne real with 1263*n+915 2178344169540402 p003 LerchPhi(1/25,2,491/227) 2178344170359839 m001 DuboisRaymond^Conway/Landau 2178344172138464 m002 -(E^Pi/Pi^2)+ProductLog[Pi]+E^Pi*Tanh[Pi] 2178344172553793 m001 LambertW(1)*GAMMA(5/24)/ln(Pi) 2178344172553793 m001 LambertW(1)/ln(Pi)*GAMMA(5/24) 2178344207721396 m001 ln(HardyLittlewoodC4)/ln(LandauRamanujan2nd) 2178344212279851 m001 1/Zeta(9)^2/ln(GlaisherKinkelin)^2/exp(1)^2 2178344217887108 l006 ln(802/7083) 2178344219422905 m004 -5*Pi+25*Pi*Cot[Sqrt[5]*Pi]-4*Sinh[Sqrt[5]*Pi] 2178344227496288 r005 Im(z^2+c),c=-9/58+12/41*I,n=9 2178344229046130 a007 Real Root Of 86*x^4-741*x^3+866*x^2+615*x+274 2178344234147555 m001 (2^(1/2))^ln(2^(1/2)+1)-exp(Pi) 2178344234147555 m001 exp(Pi)-sqrt(2)^ln(1+sqrt(2)) 2178344245040116 a007 Real Root Of 531*x^4+502*x^3-951*x^2+677*x-780 2178344247065970 k001 Champernowne real with 1264*n+914 2178344251199236 m001 BesselK(1,1)^2*ln(LandauRamanujan)*sqrt(5) 2178344252229874 p004 log(36307/4111) 2178344263339119 a001 9349/233*8^(48/59) 2178344268142982 p003 LerchPhi(1/125,1,81/176) 2178344270004850 l006 ln(3135/3898) 2178344282118328 m005 (1/3*3^(1/2)+2/3)/(3/11*Pi-2/7) 2178344289005540 r005 Re(z^2+c),c=-21/106+16/43*I,n=38 2178344293962156 a007 Real Root Of 345*x^4+737*x^3+168*x^2+888*x+987 2178344294363773 m001 (Shi(1)+GAMMA(7/12))/(Salem+Trott) 2178344305872571 m005 (1/3*2^(1/2)+4/5)/(2*exp(1)+2/5) 2178344320479848 m001 (PlouffeB+ReciprocalLucas)/(Psi(1,1/3)+ln(3)) 2178344328123897 m001 (Porter+Riemann2ndZero)/(Chi(1)+DuboisRaymond) 2178344334212107 k006 concat of cont frac of 2178344338986475 r005 Re(z^2+c),c=-9/8+71/255*I,n=33 2178344339399365 r009 Re(z^3+c),c=-21/58+33/62*I,n=44 2178344347085973 k001 Champernowne real with 1265*n+913 2178344348845091 m001 2^(1/2)-ArtinRank2+MinimumGamma 2178344350806090 m009 (16/5*Catalan+2/5*Pi^2-2)/(3/4*Psi(1,3/4)+1/3) 2178344351390929 m001 ln(HardHexagonsEntropy)^2/Conway^2/sqrt(3)^2 2178344351560415 a001 5778/89*144^(41/58) 2178344353112110 a007 Real Root Of -127*x^4-107*x^3-96*x^2-612*x+876 2178344354165381 a007 Real Root Of -885*x^4+989*x^3-259*x^2+723*x+182 2178344359709152 r009 Re(z^3+c),c=-37/98+17/30*I,n=46 2178344360154522 m001 (Pi^(1/2)+GAMMA(7/12))/(MinimumGamma+ZetaQ(2)) 2178344362729116 a007 Real Root Of -544*x^4-753*x^3+984*x^2+211*x+256 2178344369076417 m001 1/Niven^2*ln(Magata)/TreeGrowth2nd^2 2178344374122546 r009 Im(z^3+c),c=-10/23+3/34*I,n=15 2178344374236059 l006 ln(903/7975) 2178344377404993 a007 Real Root Of 277*x^4+209*x^3-563*x^2+478*x-364 2178344390631597 r005 Im(z^2+c),c=-6/17+13/37*I,n=41 2178344391600648 m001 1/exp(GAMMA(19/24))^2*MertensB1^2*gamma^2 2178344396915183 r009 Re(z^3+c),c=-7/50+32/35*I,n=8 2178344399207102 h001 (1/3*exp(1)+2/7)/(1/11*exp(1)+3/10) 2178344399207102 m005 (1/3*exp(1)+2/7)/(10/11*exp(1)+3) 2178344403558926 r005 Im(z^2+c),c=-13/106+13/46*I,n=9 2178344406160690 s002 sum(A034542[n]/((10^n+1)/n),n=1..infinity) 2178344406160690 s002 sum(A034542[n]/((10^n-1)/n),n=1..infinity) 2178344406776693 m001 (2^(1/2)+gamma)/(-GAMMA(2/3)+TreeGrowth2nd) 2178344409121702 r005 Im(z^2+c),c=-97/86+13/58*I,n=55 2178344423182555 r005 Im(z^2+c),c=-11/27+41/63*I,n=5 2178344423753700 r008 a(0)=2,K{-n^6,-62+45*n+39*n^2-29*n^3} 2178344431152393 r005 Im(z^2+c),c=-43/106+19/52*I,n=39 2178344438624325 a007 Real Root Of 95*x^4-435*x^3+530*x^2-905*x-227 2178344441718824 m005 (1/2*exp(1)+3/10)/(5*2^(1/2)+6/11) 2178344444784345 r005 Im(z^2+c),c=-17/52+21/61*I,n=32 2178344447105976 k001 Champernowne real with 1266*n+912 2178344455947270 a007 Real Root Of 19*x^4+440*x^3+569*x^2-42*x-979 2178344462934288 m001 (-exp(1/Pi)+Otter)/(BesselI(0,1)-cos(1)) 2178344463465858 m001 LandauRamanujan2nd/GAMMA(7/12)/MadelungNaCl 2178344470088434 m001 (ThueMorse+ZetaP(4))/(Khinchin-TreeGrowth2nd) 2178344472489315 m001 (cos(1)+gamma(1))/(-FransenRobinson+Robbin) 2178344477836247 m001 (1-ln(5))/(3^(1/3)+FeigenbaumKappa) 2178344483801753 a007 Real Root Of -214*x^4-72*x^3+952*x^2+505*x+657 2178344493235534 a007 Real Root Of 254*x^4+532*x^3-324*x^2-994*x-848 2178344497284096 r009 Im(z^3+c),c=-31/82+7/52*I,n=17 2178344497298871 m002 3*E^Pi+Pi^4+Pi^5/6 2178344499128332 l006 ln(1004/8867) 2178344505567175 r005 Re(z^2+c),c=-13/16+7/79*I,n=18 2178344508276472 m001 (Gompertz+Lehmer)/(Psi(2,1/3)+cos(1)) 2178344508918401 a007 Real Root Of -625*x^4-947*x^3+424*x^2-904*x+303 2178344509206061 m001 Tribonacci^2*exp(Magata)^2/sqrt(2) 2178344524217929 m004 -5-(5*Pi)/3+(5*Pi)/Log[Sqrt[5]*Pi] 2178344529046932 r009 Im(z^3+c),c=-29/60+2/29*I,n=17 2178344531570751 a007 Real Root Of 153*x^4-891*x^3+302*x^2-755*x+159 2178344532729886 m001 (-Gompertz+Grothendieck)/(Catalan+Zeta(1/2)) 2178344533225964 a001 987/4870847*76^(17/31) 2178344538382181 b008 3/2+EulerGamma*Sinh[1] 2178344539985691 a007 Real Root Of -50*x^4+326*x^3+675*x^2-564*x+64 2178344546561506 a007 Real Root Of 413*x^4+688*x^3+22*x^2+803*x-543 2178344547125979 k001 Champernowne real with 1267*n+911 2178344548318329 a007 Real Root Of 437*x^4+791*x^3-260*x^2+582*x+838 2178344549193249 m005 (1/2*2^(1/2)+5/12)/(2/5*exp(1)-4/7) 2178344553060495 m001 (2^(1/3)-GAMMA(2/3))/(-MertensB2+Porter) 2178344561073121 b008 Sinh[(2*EulerGamma)/53] 2178344563183385 r005 Re(z^2+c),c=-17/90+25/63*I,n=34 2178344564817584 m009 (1/8*Pi^2+3/4)/(1/6*Psi(1,2/3)+2/5) 2178344568967571 m001 1/MinimumGamma/exp(FransenRobinson)/Ei(1) 2178344572152854 a007 Real Root Of -87*x^4+874*x^3-944*x^2-812*x-827 2178344574071093 a007 Real Root Of -60*x^4+365*x^3+567*x^2-759*x+780 2178344589401052 m001 Rabbit/exp(Lehmer)^2*Zeta(9)^2 2178344590505590 m001 (Zeta(1/2)-LandauRamanujan2nd)/Zeta(1,2) 2178344593770076 b008 ArcSin[(2*EulerGamma)/53] 2178344601189607 l006 ln(1105/9759) 2178344601708143 m001 Gompertz^Artin+GAMMA(2/3) 2178344626432620 m001 (gamma(3)+GolombDickman)/(BesselI(0,1)+ln(5)) 2178344627545329 m001 (GAMMA(2/3)+exp(1/exp(1)))/(CareFree-Stephens) 2178344629945976 m001 (2^(1/2)+Shi(1))/(-Gompertz+Rabbit) 2178344639074212 r005 Im(z^2+c),c=-7/25+2/63*I,n=12 2178344645268821 r005 Im(z^2+c),c=-51/82+22/61*I,n=62 2178344647145982 k001 Champernowne real with 1268*n+910 2178344662293086 m005 (1/2*3^(1/2)-2/3)/(9/10*Zeta(3)-1/6) 2178344664003394 m001 Zeta(3)^2*exp(GAMMA(1/6))/log(2+sqrt(3))^2 2178344669687646 m001 (gamma(2)-GAMMA(13/24))/(Porter-Rabbit) 2178344678113913 r005 Im(z^2+c),c=-47/54+3/17*I,n=45 2178344679231238 m001 Salem^2*Cahen/ln(Ei(1))^2 2178344686331360 r005 Re(z^2+c),c=-1/50+35/57*I,n=7 2178344690313586 r005 Im(z^2+c),c=-17/40+10/27*I,n=39 2178344694673749 r005 Im(z^2+c),c=-71/122+22/63*I,n=14 2178344696883186 m001 (BesselI(1,2)+LaplaceLimit)/(Zeta(3)-ln(3)) 2178344699135844 a001 6765/521*199^(30/31) 2178344699994092 m001 Catalan^BesselI(1,1)+FibonacciFactorial 2178344709632915 a007 Real Root Of -302*x^4-403*x^3+555*x^2+x+3 2178344710320470 r005 Re(z^2+c),c=-25/86+17/56*I,n=3 2178344711134706 p003 LerchPhi(1/256,4,427/164) 2178344718434054 m005 (1/5*gamma-2/3)/(1/6*exp(1)-1/5) 2178344719663250 m001 (gamma(3)-TreeGrowth2nd)/(ln(2)+ln(2+3^(1/2))) 2178344721764375 m001 (Pi-2^(1/3)+gamma)/GAMMA(5/6) 2178344726562500 r002 3th iterates of z^2 + 2178344726562500 r005 Re(z^2+c),c=-11/16+7/128*I,n=2 2178344727719707 a001 141*2207^(16/45) 2178344735253619 r005 Re(z^2+c),c=-11/42+3/37*I,n=8 2178344735756798 m001 (GAMMA(7/12)+ZetaP(3))^MinimumGamma 2178344742316328 m001 (TravellingSalesman+Trott2nd)/Magata 2178344747165985 k001 Champernowne real with 1269*n+909 2178344749805039 m001 (GAMMA(7/12)-exp(Pi))/(-Porter+Weierstrass) 2178344754686649 r005 Re(z^2+c),c=-17/56+19/30*I,n=25 2178344755144430 l006 ln(5288/6575) 2178344761738311 r005 Re(z^2+c),c=-1/4+11/62*I,n=13 2178344766375444 r005 Re(z^2+c),c=35/102+8/49*I,n=19 2178344772599869 m001 (MasserGramainDelta+Sarnak)/(Kac+Landau) 2178344774745522 a007 Real Root Of 368*x^4-591*x^3+437*x^2-833*x+166 2178344782350115 a007 Real Root Of 520*x^4+948*x^3-520*x^2-392*x-296 2178344782657253 r005 Re(z^2+c),c=-31/118+3/41*I,n=11 2178344787883754 a007 Real Root Of -246*x^4-104*x^3+601*x^2-893*x-333 2178344818958894 h001 (5/8*exp(2)+10/11)/(9/10*exp(1)+1/11) 2178344819150323 k002 Champernowne real with 209/2*n^2-513/2*n+173 2178344831236724 r005 Re(z^2+c),c=9/86+10/17*I,n=44 2178344843930793 m005 (1/3*5^(1/2)-1/6)/(2/7*Zeta(3)-3) 2178344845734372 r005 Im(z^2+c),c=-37/90+11/30*I,n=32 2178344846222872 h001 (-4*exp(1/3)+1)/(-3*exp(-1)-1) 2178344847185988 k001 Champernowne real with 1270*n+908 2178344850020334 r009 Re(z^3+c),c=-29/94+37/55*I,n=64 2178344860449255 m001 (Zeta(5)-arctan(1/2))/(Mills+Riemann3rdZero) 2178344867508176 b008 Pi-(3*SinIntegral[2])/5 2178344874740661 a007 Real Root Of 655*x^4+985*x^3-726*x^2+319*x-427 2178344880979134 m001 1/DuboisRaymond*ln(Backhouse)^2/gamma^2 2178344883824579 a007 Real Root Of -365*x^4-366*x^3+507*x^2-480*x+984 2178344886145827 r005 Re(z^2+c),c=1/126+35/58*I,n=48 2178344904507462 m001 1/Lehmer^2*exp(Conway)^2/sqrt(Pi) 2178344913026350 r009 Re(z^3+c),c=-12/19+10/31*I,n=8 2178344918137069 h001 (3/7*exp(2)+4/11)/(1/5*exp(2)+1/7) 2178344922894077 m005 (1/2*Pi-6/7)/(6/7*Pi+7/12) 2178344923240849 a001 1/4*(1/2*5^(1/2)+1/2)*29^(1/2) 2178344924932147 r002 29th iterates of z^2 + 2178344927343446 r005 Re(z^2+c),c=-19/78+11/52*I,n=15 2178344947205991 k001 Champernowne real with 1271*n+907 2178344949410248 a007 Real Root Of 576*x^4-363*x^3-499*x^2-385*x+110 2178344958741426 a007 Real Root Of -581*x^4-713*x^3-648*x^2+583*x+13 2178344959540685 l006 ln(7441/9252) 2178344960014186 m001 MinimumGamma*GAMMA(3/4)^ReciprocalLucas 2178344964915621 a007 Real Root Of -814*x^4+578*x^3+968*x^2+321*x-120 2178344979103658 r005 Im(z^2+c),c=-11/28+22/61*I,n=20 2178344983492962 m001 ln(Magata)/Lehmer/GAMMA(7/24)^2 2178344985391146 m001 (ln(gamma)+Porter)/(ThueMorse+ZetaQ(3)) 2178344986082920 m008 (1/2*Pi^4+1/2)/(3/4*Pi^3-2/3) 2178344992000062 a001 167761/34*13^(11/19) 2178345002448931 m005 (1/2*2^(1/2)-5/8)/(2/3*3^(1/2)-7/9) 2178345002493991 r005 Im(z^2+c),c=-93/118+6/55*I,n=41 2178345004193823 a001 6765/7*9349^(4/45) 2178345008471656 a001 17/2889*18^(24/53) 2178345012127135 a007 Real Root Of -33*x^4-733*x^3-338*x^2-695*x-976 2178345013637870 m001 FeigenbaumC/Backhouse*3^(1/2) 2178345026672934 m006 (2/3*Pi+5)/(1/6*exp(Pi)-3/5) 2178345027656683 a003 -1/2*2^(1/2)+cos(8/21*Pi)-3^(1/2)-cos(7/15*Pi) 2178345030873489 a007 Real Root Of -696*x^4-532*x^3-931*x^2+917*x+240 2178345032179040 a001 1836311903/18*29^(10/11) 2178345033143707 b008 E^(-5/2)+Sech[Khinchin] 2178345034490623 m001 ln(Bloch)^2/Cahen^2/Riemann3rdZero^2 2178345040837521 m001 (ln(Pi)+ln(2^(1/2)+1))/(GAMMA(13/24)-Rabbit) 2178345045493371 a001 121393/11*322^(54/59) 2178345047225994 k001 Champernowne real with 1272*n+906 2178345087146845 m001 1/ln(Rabbit)/FibonacciFactorial*Catalan 2178345089469659 r002 14th iterates of z^2 + 2178345110525043 m001 GAMMA(13/24)+Cahen^OrthogonalArrays 2178345112369527 r005 Re(z^2+c),c=-15/106+34/59*I,n=13 2178345116091875 s001 sum(1/10^(n-1)*A198122[n]/n^n,n=1..infinity) 2178345118711438 r005 Im(z^2+c),c=-13/90+11/38*I,n=9 2178345119347399 a003 sin(Pi*2/113)*sin(Pi*5/39) 2178345121733194 a007 Real Root Of 189*x^4+307*x^3+99*x^2+522*x-415 2178345139144331 r005 Im(z^2+c),c=-1/110+10/41*I,n=4 2178345145742513 a007 Real Root Of 208*x^4+59*x^3-670*x^2+316*x-206 2178345147245997 k001 Champernowne real with 1273*n+905 2178345148181112 k007 concat of cont frac of 2178345153134115 a008 Real Root of x^4-x^3-x^2-5*x-39 2178345157574266 r005 Re(z^2+c),c=-5/29+7/16*I,n=36 2178345171167450 m001 (GAMMA(2/3)-exp(1))/(-ln(gamma)+ZetaP(4)) 2178345172011522 a007 Real Root Of -202*x^4-693*x^3-958*x^2-555*x+722 2178345181198510 a007 Real Root Of 708*x^4-778*x^3-298*x^2-746*x-158 2178345181783742 m001 (FeigenbaumC+MasserGramain)/(PlouffeB+Robbin) 2178345189045201 r005 Im(z^2+c),c=-43/54+7/54*I,n=63 2178345196528428 a007 Real Root Of 251*x^4+507*x^3+52*x^2-147*x-978 2178345213308499 r002 44th iterates of z^2 + 2178345214889124 m004 -5-3100*Sqrt[5]*Pi-ProductLog[Sqrt[5]*Pi] 2178345217186635 a007 Real Root Of -663*x^4-988*x^3+541*x^2-532*x+990 2178345222053977 a003 cos(Pi*1/52)/cos(Pi*23/66) 2178345224876102 a007 Real Root Of 17*x^4-310*x^3-980*x^2-668*x-392 2178345228454193 a007 Real Root Of -365*x^4-498*x^3+70*x^2-969*x+628 2178345238006850 r009 Re(z^3+c),c=-5/32+11/13*I,n=42 2178345244485946 r009 Re(z^3+c),c=-25/78+24/55*I,n=10 2178345247266000 k001 Champernowne real with 1274*n+904 2178345269126929 m005 (1/2*Zeta(3)-4/7)/(7/10*Catalan-2) 2178345282826947 a001 843/5*1597^(29/44) 2178345289994105 a003 cos(Pi*27/91)/cos(Pi*7/17) 2178345296452392 m005 (1/2*Catalan+3)/(7/10*3^(1/2)+3/8) 2178345298682858 a007 Real Root Of 536*x^4+747*x^3-788*x^2+170*x-238 2178345299669803 a005 (1/cos(7/226*Pi))^1621 2178345307424412 m001 1/OneNinth/exp(Paris)*sin(Pi/12) 2178345331948763 m001 BesselK(1,1)^(cos(1/12*Pi)/arctan(1/3)) 2178345335308145 m001 (BesselI(0,2)+GAMMA(19/24))/(1-sin(1)) 2178345339069331 p003 LerchPhi(1/1024,6,166/189) 2178345339117324 r005 Im(z^2+c),c=-65/118+22/61*I,n=31 2178345342020881 s001 sum(1/10^(n-1)*A246672[n]/n^n,n=1..infinity) 2178345345090515 m001 (GAMMA(3/4)-Magata)/(Salem-ZetaP(3)) 2178345345988142 a007 Real Root Of 675*x^4-388*x^3+138*x^2-803*x-187 2178345346724600 m004 60*Pi+(125*Cos[Sqrt[5]*Pi])/Pi 2178345346798312 r009 Re(z^3+c),c=-11/31+18/35*I,n=60 2178345347286003 k001 Champernowne real with 1275*n+903 2178345349558005 r005 Im(z^2+c),c=-53/66+1/9*I,n=15 2178345354071362 r005 Im(z^2+c),c=11/58+1/7*I,n=11 2178345356221048 m004 -27/5-5*Pi-Sin[Sqrt[5]*Pi] 2178345357727605 r005 Im(z^2+c),c=-13/12+16/73*I,n=28 2178345357926798 a007 Real Root Of -558*x^4-899*x^3+751*x^2+235*x+220 2178345362267673 a007 Real Root Of -868*x^4+429*x^3-279*x^2+447*x+117 2178345363160339 r005 Re(z^2+c),c=-23/94+28/45*I,n=45 2178345366297612 m001 1/(2^(1/3))*exp(Cahen)*(3^(1/3)) 2178345375316661 a007 Real Root Of -351*x^4-321*x^3+509*x^2-959*x+81 2178345376022391 r005 Im(z^2+c),c=-17/36+1/27*I,n=40 2178345393687743 r005 Im(z^2+c),c=-11/78+9/28*I,n=3 2178345397872390 a003 sin(Pi*14/101)*sin(Pi*19/110) 2178345401081491 m001 (-Backhouse+LaplaceLimit)/(Chi(1)-Zeta(3)) 2178345401170234 m005 (1/3*Catalan+1/8)/(7/12*Pi+1/7) 2178345415832156 a007 Real Root Of 276*x^4+157*x^3-696*x^2+354*x-518 2178345428171579 a007 Real Root Of 449*x^4+713*x^3-942*x^2-353*x+961 2178345435656825 m004 6+5*Sqrt[5]*Pi+(375*Csc[Sqrt[5]*Pi])/Pi 2178345439990044 a007 Real Root Of 292*x^4+558*x^3+78*x^2+315*x-491 2178345441156958 a003 cos(Pi*8/43)-sin(Pi*17/52) 2178345441994747 r009 Re(z^3+c),c=-19/58+25/56*I,n=30 2178345447306006 k001 Champernowne real with 1276*n+902 2178345461559894 l006 ln(2153/2677) 2178345461559894 p004 log(2677/2153) 2178345471253940 m001 (-Niven+ReciprocalLucas)/(Psi(1,1/3)+3^(1/2)) 2178345475967995 a001 89/167761*47^(55/57) 2178345476371104 m005 (5^(1/2)+3/4)/(5*Pi-2) 2178345483423468 r005 Im(z^2+c),c=-16/27+1/25*I,n=57 2178345485993469 r005 Im(z^2+c),c=-9/8+23/98*I,n=22 2178345488785590 m001 (2^(1/3))^Conway*(3^(1/3))^Conway 2178345489370808 r005 Re(z^2+c),c=17/48+1/6*I,n=27 2178345494390740 a003 -1-cos(7/15*Pi)-2*cos(5/27*Pi)+cos(8/27*Pi) 2178345501051210 r009 Im(z^3+c),c=-17/94+47/54*I,n=54 2178345503138614 r009 Im(z^3+c),c=-4/31+40/49*I,n=52 2178345504240149 s002 sum(A207784[n]/(n*exp(n)-1),n=1..infinity) 2178345505308753 a007 Real Root Of 971*x^4+875*x^3+487*x^2-513*x-128 2178345517172754 r005 Im(z^2+c),c=-2/17+21/32*I,n=30 2178345532169428 a007 Real Root Of 507*x^4+593*x^3-805*x^2+586*x-190 2178345535044576 a005 (1/cos(49/138*Pi))^57 2178345539297664 m001 BesselI(1,2)*(Riemann1stZero-TreeGrowth2nd) 2178345539500636 a007 Real Root Of 952*x^4+160*x^3-384*x^2-907*x+212 2178345540956471 m001 1/exp(FeigenbaumKappa)^2/Porter/(3^(1/3))^2 2178345546119242 a007 Real Root Of 312*x^4+291*x^3-965*x^2+29*x+625 2178345547157558 a007 Real Root Of -602*x^4-845*x^3+489*x^2-792*x+775 2178345547326009 k001 Champernowne real with 1277*n+901 2178345556534824 a007 Real Root Of 82*x^4+364*x^3+902*x^2+970*x-251 2178345559324038 m001 (Zeta(5)+GAMMA(19/24))/(Porter-ZetaP(2)) 2178345560725902 r005 Im(z^2+c),c=-43/46+5/23*I,n=60 2178345564546767 a007 Real Root Of -242*x^4+158*x^3+919*x^2-922*x+713 2178345565050255 a007 Real Root Of -304*x^4-234*x^3+663*x^2-366*x+483 2178345566245504 h001 (-6*exp(-3)+5)/(-8*exp(2/3)-6) 2178345567119724 r002 53th iterates of z^2 + 2178345585000163 m001 (Catalan+Zeta(5))/(-HardyLittlewoodC5+Mills) 2178345589540947 a001 14619165/46*123^(2/5) 2178345593499264 m008 (2/3*Pi^4-1)/(1/4*Pi^4+5) 2178345595188165 m005 (-21/44+1/4*5^(1/2))/(10/11*gamma-9/10) 2178345615356303 r005 Re(z^2+c),c=25/126+3/32*I,n=9 2178345615738749 l006 ln(101/892) 2178345619651584 m005 (1/2*5^(1/2)+1/6)/(2/7*Pi+5) 2178345627325786 a005 (1/sin(95/224*Pi))^990 2178345632345841 s002 sum(A223521[n]/(n^2*10^n+1),n=1..infinity) 2178345635097193 p001 sum((-1)^n/(601*n+456)/(64^n),n=0..infinity) 2178345644272557 a007 Real Root Of 291*x^4+161*x^3-553*x^2+965*x-162 2178345647346012 k001 Champernowne real with 1278*n+900 2178345670151375 a007 Real Root Of 281*x^4-259*x^3+483*x^2-660*x-170 2178345671436366 g007 Psi(2,7/12)-14*Zeta(3)-Psi(2,7/8)-Psi(2,3/7) 2178345671965672 a007 Real Root Of -20*x^4-18*x^3-519*x^2+668*x+170 2178345679215846 a007 Real Root Of -388*x^4-453*x^3+758*x^2-371*x-351 2178345689118787 r002 4th iterates of z^2 + 2178345695090857 a007 Real Root Of -151*x^4+237*x^3+919*x^2-471*x+463 2178345712024332 r009 Re(z^3+c),c=-17/44+5/7*I,n=4 2178345712723733 m005 (1/2*gamma+5/11)/(10/11*Pi+5/9) 2178345721256552 m001 FeigenbaumKappa*(FeigenbaumMu-ReciprocalLucas) 2178345736105567 p001 sum(1/(601*n+498)/(6^n),n=0..infinity) 2178345747366015 k001 Champernowne real with 1279*n+899 2178345751402644 a003 sin(Pi*14/99)/cos(Pi*38/87) 2178345759379418 r005 Re(z^2+c),c=-15/86+27/64*I,n=13 2178345759529265 r005 Re(z^2+c),c=5/66+17/52*I,n=16 2178345759935643 a007 Real Root Of 309*x^4+883*x^3+546*x^2-60*x-552 2178345767574952 r005 Im(z^2+c),c=-77/122+16/57*I,n=25 2178345772850811 a007 Real Root Of 786*x^4-657*x^3-229*x^2-253*x+71 2178345784529482 m001 BesselJ(1,1)^FeigenbaumKappa*LaplaceLimit 2178345784670327 r005 Im(z^2+c),c=-29/46+2/41*I,n=30 2178345793146204 a001 33281921/8*1836311903^(16/17) 2178345793147754 a001 440719107401/48*514229^(16/17) 2178345793175768 a001 90481/48*6557470319842^(16/17) 2178345798134325 a007 Real Root Of 321*x^4+516*x^3-407*x^2-309*x-636 2178345799686014 a007 Real Root Of -563*x^4-397*x^3+198*x^2+436*x-99 2178345800867008 r005 Im(z^2+c),c=-47/110+23/62*I,n=43 2178345801316401 m001 (Zeta(5)-GAMMA(3/4))/(Gompertz-MinimumGamma) 2178345813432716 a007 Real Root Of 268*x^4+222*x^3-957*x^2-75*x+638 2178345818309596 a007 Real Root Of -398*x^4-222*x^3+894*x^2-750*x+791 2178345822040411 m001 (Bloch+OneNinth)/(sin(1/5*Pi)-arctan(1/3)) 2178345822150924 k002 Champernowne real with 105*n^2-258*n+174 2178345824574359 a001 433494437/521*123^(1/5) 2178345827568712 r009 Re(z^3+c),c=-3/82+7/12*I,n=31 2178345832435287 a007 Real Root Of -194*x^4-704*x^3-897*x^2-430*x+411 2178345835062281 m008 (1/4*Pi^3+2/3)/(4*Pi^2-5/6) 2178345835540629 a001 4/55*6557470319842^(7/12) 2178345839353100 a007 Real Root Of -551*x^4-891*x^3+844*x^2+668*x+647 2178345847386018 k001 Champernowne real with 1280*n+898 2178345857958264 a007 Real Root Of -385*x^4-768*x^3+318*x^2+732*x+816 2178345861824434 a007 Real Root Of x^4+217*x^3-181*x^2+176*x+295 2178345863475776 b008 1/2+Sqrt[Pi]*Sech[1/3] 2178345877026270 a007 Real Root Of -522*x^4-736*x^3+775*x^2-412*x-429 2178345885760140 r005 Im(z^2+c),c=-33/29+9/41*I,n=7 2178345892458588 m001 (GAMMA(19/24)-Trott2nd*ZetaQ(2))/ZetaQ(2) 2178345905762573 m003 (3*Sqrt[5])/16-5/(4*Log[1/2+Sqrt[5]/2]) 2178345915280105 r005 Im(z^2+c),c=-41/86+8/21*I,n=39 2178345918839637 r005 Re(z^2+c),c=-21/106+16/43*I,n=35 2178345945181691 a007 Real Root Of -507*x^4-847*x^3+784*x^2+30*x-994 2178345947406021 k001 Champernowne real with 1281*n+897 2178345947448676 a007 Real Root Of 136*x^4+600*x^3+868*x^2+281*x-367 2178345950842900 r009 Im(z^3+c),c=-49/110+4/59*I,n=40 2178345951143741 l006 ln(7630/9487) 2178345964332642 m007 (-2/3*gamma+5/6)/(-2/3*gamma-4/3*ln(2)-3/4) 2178345967140735 a007 Real Root Of 361*x^4+545*x^3-446*x^2+363*x+412 2178345968261254 a007 Real Root Of -581*x^4-725*x^3+968*x^2-330*x+276 2178345973965458 m001 (MertensB3-RenyiParking)/Khinchin 2178345974389702 m001 GAMMA(13/24)/(GAMMA(7/12)-StronglyCareFree) 2178345982910333 a001 7/514229*46368^(8/31) 2178345984992586 m001 (MadelungNaCl+OneNinth)/(FeigenbaumMu-exp(1)) 2178345987775327 a007 Real Root Of 429*x^4+675*x^3-371*x^2+443*x+43 2178345991201356 a007 Real Root Of 170*x^4+114*x^3-466*x^2+276*x+163 2178345998487520 m004 -2*E^(Sqrt[5]*Pi)-5*Pi+25*Pi*Cot[Sqrt[5]*Pi] 2178346003251284 a007 Real Root Of -306*x^4+612*x^3+28*x^2+459*x-1 2178346018095760 a001 3/3010349*3571^(47/50) 2178346032329911 m001 (ln(gamma)-Zeta(1,2))/(Pi^(1/2)+ZetaQ(3)) 2178346034446895 m001 (Otter-TreeGrowth2nd)/(Lehmer-MadelungNaCl) 2178346037122033 a007 Real Root Of -193*x^4+985*x^3+572*x^2+893*x+178 2178346037506641 r005 Re(z^2+c),c=-27/22+1/121*I,n=22 2178346047426024 k001 Champernowne real with 1282*n+896 2178346049031646 a003 cos(Pi*40/93)/sin(Pi*56/113) 2178346052045543 r008 a(0)=0,K{-n^6,58-66*n^3-69*n^2+31*n} 2178346052826645 m001 (Cahen-Riemann2ndZero)/(arctan(1/2)+Bloch) 2178346054780876 m001 (-GAMMA(7/12)+Thue)/(5^(1/2)+Chi(1)) 2178346059989581 m001 ZetaP(2)/((Pi*2^(1/2)/GAMMA(3/4))^LambertW(1)) 2178346070913428 r008 a(0)=0,K{-n^6,-84+67*n^3+53*n^2+10*n} 2178346082568950 p004 log(29917/24061) 2178346091377882 r005 Im(z^2+c),c=-29/122+18/59*I,n=6 2178346096793608 m001 ln(GAMMA(3/4))^2/Porter^2/log(1+sqrt(2)) 2178346102855675 m001 (-Magata+Porter)/(3^(1/2)-sin(1)) 2178346106134149 m005 (1/2*2^(1/2)+9/10)/(2*gamma-5/12) 2178346118867670 m001 (sin(1/5*Pi)+3^(1/3))/(gamma(1)-Thue) 2178346119326076 m001 (Zeta(5)+ZetaQ(3))/(Shi(1)-gamma) 2178346121664110 a007 Real Root Of -9*x^4+316*x^3-503*x^2-106*x-446 2178346128837643 a001 76/4052739537881*3^(3/22) 2178346134497831 a007 Real Root Of -421*x^4-934*x^3-618*x^2-828*x+954 2178346143598367 l006 ln(5477/6810) 2178346145787195 r002 16th iterates of z^2 + 2178346146021290 m001 (Psi(2,1/3)+Cahen)/(-Riemann3rdZero+ZetaQ(4)) 2178346147446027 k001 Champernowne real with 1283*n+895 2178346151287011 a001 610/3010349*76^(17/31) 2178346153108793 r002 50th iterates of z^2 + 2178346161531356 m005 (1/2*5^(1/2)-6)/(7/11*5^(1/2)+9/11) 2178346164085534 a007 Real Root Of -380*x^4-532*x^3+417*x^2-104*x+852 2178346168732372 a001 3/64079*9349^(21/50) 2178346172159122 m001 MasserGramain^GolombDickman+Riemann2ndZero 2178346177818192 a001 3/64079*24476^(19/50) 2178346177867312 m001 1/BesselK(1,1)^2/Khintchine*ln(cos(Pi/5)) 2178346182167682 a001 3/24476*64079^(13/50) 2178346189963461 m001 1/Niven^2*ln(MinimumGamma)^2*GAMMA(5/24) 2178346196110562 b008 BesselJ[3,Sqrt[2*Pi]] 2178346203632188 m005 (1/3*Zeta(3)+2/3)/(1/12*Zeta(3)-5) 2178346213099960 m001 (gamma(2)+ArtinRank2)/(FeigenbaumMu-ThueMorse) 2178346224308838 r009 Re(z^3+c),c=-13/110+59/64*I,n=4 2178346231185356 a003 cos(Pi*17/56)/cos(Pi*46/111) 2178346247106573 a007 Real Root Of -183*x^4-215*x^3+3*x^2-796*x+150 2178346247466030 k001 Champernowne real with 1284*n+894 2178346248946688 a007 Real Root Of 24*x^4+534*x^3+275*x^2+683*x+124 2178346249494481 a001 47/2584*832040^(31/45) 2178346250300169 r005 Im(z^2+c),c=13/44+1/42*I,n=49 2178346260653642 r009 Re(z^3+c),c=-23/62+29/52*I,n=7 2178346266392184 p004 log(15217/1723) 2178346280312066 m001 (GAMMA(2/3)-Otter)^((1+3^(1/2))^(1/2)) 2178346281331090 m006 (1/2*Pi+1/2)/(2/5*exp(Pi)+1/4) 2178346285698702 s002 sum(A056466[n]/(n*exp(n)+1),n=1..infinity) 2178346290865964 a007 Real Root Of 504*x^4+706*x^3-658*x^2+468*x+91 2178346292601204 r009 Re(z^3+c),c=-35/122+5/9*I,n=6 2178346294359336 p001 sum((-1)^n/(103*n+96)/n/(2^n),n=0..infinity) 2178346303203823 m001 Zeta(3)^BesselI(0,1)+Catalan 2178346327993522 p001 sum((-1)^n/(553*n+457)/(100^n),n=0..infinity) 2178346328783888 m001 (-Khinchin+Porter)/(Psi(2,1/3)-cos(1/5*Pi)) 2178346332350027 a007 Real Root Of 405*x^4+830*x^3-517*x^2-703*x+382 2178346336010773 m001 (2^(1/3)+ln(5))/(Mills+Trott) 2178346339037597 m001 (Psi(2,1/3)+Kac)/(MertensB2+Porter) 2178346347486033 k001 Champernowne real with 1285*n+893 2178346348202775 m001 Magata/(PisotVijayaraghavan^BesselI(1,2)) 2178346355645112 a007 Real Root Of 616*x^4-974*x^3-766*x^2-936*x-179 2178346357935263 r009 Re(z^3+c),c=-19/58+21/46*I,n=12 2178346361281780 m001 1/Porter/exp(Magata)/Zeta(5) 2178346361737033 a001 1/203*(1/2*5^(1/2)+1/2)^16*7^(5/14) 2178346372582538 m009 (6*Catalan+3/4*Pi^2+1/3)/(6*Psi(1,1/3)+1/6) 2178346373449653 a007 Real Root Of 82*x^4-478*x^3+449*x^2+353*x+195 2178346375336816 r002 56th iterates of z^2 + 2178346377777373 m001 (exp(1)+Chi(1))/(-Zeta(1,-1)+Porter) 2178346378928370 r002 21th iterates of z^2 + 2178346379391728 m001 FeigenbaumD+GlaisherKinkelin-KomornikLoreti 2178346383301479 a001 199/63245986*46368^(14/23) 2178346383424824 a001 199/53316291173*2971215073^(14/23) 2178346384480371 r002 55th iterates of z^2 + 2178346385838069 r005 Im(z^2+c),c=11/90+1/64*I,n=6 2178346389368079 m001 ln((3^(1/3)))*MinimumGamma^2/Ei(1)^2 2178346397218916 m001 Riemann3rdZero^RenyiParking*ReciprocalLucas 2178346411009636 b008 -10*Sqrt[5]+EulerGamma 2178346411931419 a007 Real Root Of -24*x^4+400*x^3+631*x^2+537*x-151 2178346413640732 m001 TwinPrimes^TreeGrowth2nd*MertensB1 2178346417087675 a007 Real Root Of -371*x^4-934*x^3-247*x^2+26*x-72 2178346428020293 r005 Im(z^2+c),c=-25/31+8/61*I,n=10 2178346429552425 r005 Im(z^2+c),c=-21/122+47/53*I,n=6 2178346436209093 a007 Real Root Of -177*x^4-427*x^3-564*x^2+373*x+104 2178346447506036 k001 Champernowne real with 1286*n+892 2178346447868175 a007 Real Root Of -388*x^4-665*x^3+553*x^2-48*x-866 2178346448852131 r005 Im(z^2+c),c=-2/3+41/159*I,n=38 2178346452252996 a007 Real Root Of -390*x^4-696*x^3+233*x^2-581*x-784 2178346459546167 m001 (GaussAGM+KhinchinLevy)/(gamma(2)-Zeta(1,2)) 2178346476316622 r002 3th iterates of z^2 + 2178346482428623 a007 Real Root Of 383*x^4+820*x^3-236*x^2-398*x+105 2178346488620080 r005 Im(z^2+c),c=-47/106+20/53*I,n=31 2178346492398019 m001 PrimesInBinary/(ln(gamma)-GAMMA(2/3)) 2178346504190807 r005 Im(z^2+c),c=-89/102+8/45*I,n=62 2178346512329840 g007 Psi(2,9/11)+Psi(2,4/7)-Psi(13/10)-Psi(2,5/7) 2178346514904205 h001 (7/8*exp(2)+7/9)/(11/12*exp(1)+5/6) 2178346519601273 m001 GlaisherKinkelin+Psi(1,1/3)^Mills 2178346520853107 m001 (Backhouse*ErdosBorwein+FeigenbaumB)/Backhouse 2178346534777614 a007 Real Root Of -219*x^4-481*x^3-279*x^2+933*x+212 2178346544352671 m001 (2^(1/2)+Ei(1))/(arctan(1/2)+GAMMA(11/12)) 2178346544631987 m005 (1/2*Pi-5)/(8/11*Zeta(3)+7/10) 2178346546922011 m001 (ln(2)+BesselI(0,2))/(Niven-PolyaRandomWalk3D) 2178346547526039 k001 Champernowne real with 1287*n+891 2178346554124781 p003 LerchPhi(1/512,4,106/229) 2178346568330218 m001 (GAMMA(11/12)+Pi^(1/2))/(GAMMA(3/4)-gamma(1)) 2178346568353600 h001 (2/5*exp(2)+5/11)/(3/10*exp(1)+3/4) 2178346569417908 m005 (-1/3+1/4*5^(1/2))/(5/6*Catalan+3/11) 2178346573907849 r005 Im(z^2+c),c=-21/19+13/58*I,n=7 2178346576741985 a007 Real Root Of -435*x^4-923*x^3+568*x^2+758*x-790 2178346583733720 m001 BesselI(0,2)*Zeta(1,2)^CareFree 2178346585363935 l006 ln(3324/4133) 2178346594961770 m001 (GAMMA(5/6)+Mills)/(Otter-Riemann1stZero) 2178346610924634 m001 (Totient+Thue)/(HeathBrownMoroz-Psi(1,1/3)) 2178346619387515 l006 ln(1117/9865) 2178346621226339 a007 Real Root Of 532*x^4+987*x^3-523*x^2-191*x+289 2178346625455440 m001 arctan(1/3)/(FeigenbaumKappa^GlaisherKinkelin) 2178346629643389 r005 Im(z^2+c),c=-9/14+9/251*I,n=37 2178346632610444 s002 sum(A058823[n]/(n*2^n-1),n=1..infinity) 2178346634182232 r005 Im(z^2+c),c=-17/40+10/27*I,n=43 2178346642397510 m001 CopelandErdos-ln(5)^Si(Pi) 2178346646054308 r005 Im(z^2+c),c=-5/58+17/63*I,n=13 2178346647546042 k001 Champernowne real with 1288*n+890 2178346648222656 r005 Re(z^2+c),c=-17/82+8/23*I,n=14 2178346663572846 a007 Real Root Of 392*x^4+879*x^3+292*x^2+551*x+74 2178346665741238 m005 (1/2*gamma-5/6)/(1/11*Catalan-1/3) 2178346673291371 r009 Re(z^3+c),c=-13/25+17/32*I,n=5 2178346673638937 a007 Real Root Of 335*x^4+162*x^3-835*x^2+888*x+28 2178346675615709 m001 (GAMMA(17/24)+ZetaP(3))/(ln(5)-BesselI(0,2)) 2178346678374923 r004 Re(z^2+c),c=-7/34+7/20*I,z(0)=I,n=30 2178346682376375 m004 2/3+(625*Cot[Sqrt[5]*Pi])/Pi 2178346684367069 a008 Real Root of x^4-x^3+16*x+2 2178346692005291 m001 1/Riemann2ndZero^2*exp(Champernowne)/Trott^2 2178346699591017 m001 FeigenbaumB+GAMMA(3/4)^MinimumGamma 2178346710375287 m001 FeigenbaumD^GolombDickman*Salem 2178346710875414 a003 cos(Pi*2/89)-cos(Pi*14/65) 2178346719159630 l006 ln(1016/8973) 2178346725771364 h001 (-4*exp(1)+1)/(-3*exp(5)-8) 2178346735863664 m001 (-BesselJZeros(0,1)+2)/(-Pi+5) 2178346746242920 b008 21+(2*Sinh[1])/3 2178346747566045 k001 Champernowne real with 1289*n+889 2178346751093177 r005 Re(z^2+c),c=37/102+9/38*I,n=64 2178346751281351 a007 Real Root Of -494*x^4-586*x^3+684*x^2-927*x-199 2178346754724128 m001 Zeta(1,2)/GAMMA(5/24)^2*ln(cos(Pi/5))^2 2178346755935249 r002 24th iterates of z^2 + 2178346761976214 r005 Im(z^2+c),c=-79/106+12/61*I,n=14 2178346765190222 m001 Kolakoski^Trott2nd-StronglyCareFree 2178346783834584 a007 Real Root Of 404*x^4+829*x^3+19*x^2+588*x+663 2178346785791310 r005 Re(z^2+c),c=-4/31+9/17*I,n=47 2178346786568717 a007 Real Root Of 280*x^4+786*x^3+107*x^2-842*x-181 2178346798112321 m001 (gamma+GAMMA(7/12))/(OneNinth+Thue) 2178346807325318 r002 59th iterates of z^2 + 2178346811172024 p001 sum(1/(131*n+46)/(128^n),n=0..infinity) 2178346824869775 r005 Re(z^2+c),c=-11/74+24/49*I,n=34 2178346825151524 k002 Champernowne real with 211/2*n^2-519/2*n+175 2178346830645089 a007 Real Root Of 374*x^4+651*x^3-324*x^2+430*x+782 2178346835317228 r005 Re(z^2+c),c=-13/110+16/29*I,n=52 2178346840099762 a007 Real Root Of -393*x^4-854*x^3-453*x^2-629*x+801 2178346840957926 l006 ln(915/8081) 2178346844137687 m001 FellerTornier^(GAMMA(5/6)/Chi(1)) 2178346847586048 k001 Champernowne real with 1290*n+888 2178346849829472 a007 Real Root Of 184*x^4-42*x^3-848*x^2+641*x+843 2178346855247955 b008 89*Zeta[2/3] 2178346857027952 m001 (Zeta(1/2)+GAMMA(17/24))/(Landau+MertensB1) 2178346865204205 a007 Real Root Of -573*x^4-668*x^3+782*x^2-844*x+448 2178346870396000 a007 Real Root Of -95*x^4+179*x^3+990*x^2+773*x-217 2178346877860683 r005 Im(z^2+c),c=-13/98+2/7*I,n=15 2178346879363561 a001 832040/29*76^(22/47) 2178346882889803 m001 DuboisRaymond^2/ln(CopelandErdos)/Zeta(3) 2178346884708924 m001 MinimumGamma*ln(LaplaceLimit)*BesselK(1,1)^2 2178346894808867 l006 ln(7819/9722) 2178346907481666 a007 Real Root Of 549*x^4+965*x^3-572*x^2-361*x-459 2178346921187836 a007 Real Root Of -322*x^4-677*x^3-297*x^2-941*x-388 2178346934981370 m001 (BesselI(0,2)*ZetaR(2)-Robbin)/ZetaR(2) 2178346935278119 m001 (GAMMA(2/3)-Psi(2,1/3))/(Ei(1)+ArtinRank2) 2178346937626033 m001 1/GAMMA(1/4)^2/exp(Cahen)^2*Zeta(5) 2178346947606051 k001 Champernowne real with 1291*n+887 2178346949075757 r009 Im(z^3+c),c=-47/110+1/11*I,n=32 2178346950678484 r009 Im(z^3+c),c=-11/32+7/45*I,n=14 2178346951343546 a001 22768774562/17*591286729879^(20/21) 2178346955801643 a007 Real Root Of 351*x^4+599*x^3-570*x^2-914*x-998 2178346962264298 a001 47/8*832040^(23/53) 2178346964868186 m009 (1/3*Psi(1,3/4)-4)/(1/3*Psi(1,3/4)+3/5) 2178346981646875 m005 (1/2*Catalan-3/5)/(9/10*gamma+6) 2178346984726623 m001 Chi(1)^(3^(1/2))+3^(1/3) 2178346987848998 r009 Im(z^3+c),c=-7/74+55/63*I,n=10 2178346992981331 l006 ln(814/7189) 2178347017513377 a003 sin(Pi*6/83)*sin(Pi*18/43) 2178347017706913 m001 GAMMA(13/24)^2*exp((3^(1/3)))^2*GAMMA(5/12)^2 2178347021174170 m001 (5^(1/2)-Khinchin)/(OneNinth+Paris) 2178347035231554 m001 1/2*(2^(1/3)*Mills+ln(3))*2^(2/3) 2178347042186235 a007 Real Root Of 879*x^4+127*x^3-341*x^2-152*x+46 2178347042380480 g002 Psi(1/12)-Psi(1/11)-Psi(4/7)-Psi(3/5) 2178347043331380 a008 Real Root of x^4-43*x^2-110*x+26 2178347044956036 m001 1/Si(Pi)^2*ErdosBorwein/exp(Khintchine)^2 2178347047626054 k001 Champernowne real with 1292*n+886 2178347052008578 a003 cos(Pi*39/106)-cos(Pi*26/59) 2178347054762829 m001 (1-ln(gamma))/(CopelandErdos+PlouffeB) 2178347058401068 m001 GAMMA(11/24)*FeigenbaumC*ln(cos(1)) 2178347059673665 m005 (1/3*2^(1/2)-1/7)/(11/12*exp(1)-4) 2178347067676875 r005 Re(z^2+c),c=-13/106+32/59*I,n=57 2178347068638450 h001 (-exp(2)+12)/(-3*exp(2)+1) 2178347075176283 r005 Im(z^2+c),c=-59/70+8/47*I,n=61 2178347080672414 a007 Real Root Of -243*x^4-776*x^3-839*x^2-547*x+240 2178347096904895 a001 1/9062201101803*3^(13/21) 2178347100795927 r005 Re(z^2+c),c=13/36+33/52*I,n=19 2178347104213382 m009 (5*Psi(1,1/3)-2/5)/(3/8*Pi^2-6) 2178347109769859 h001 (5/6*exp(1)+9/11)/(3/10*exp(1)+3/5) 2178347112441437 m001 (Cahen-FellerTornier)/(ln(3)+Artin) 2178347115679539 a007 Real Root Of -434*x^4-801*x^3+430*x^2-18*x-587 2178347117362134 m001 1/exp(Zeta(5))^2/Artin/cosh(1) 2178347119309648 m001 (FeigenbaumMu+Totient)/(BesselK(1,1)-exp(Pi)) 2178347123364184 r009 Re(z^3+c),c=-13/48+5/17*I,n=6 2178347123639775 l006 ln(4495/5589) 2178347125779953 r005 Im(z^2+c),c=-35/34+19/81*I,n=54 2178347125831322 r005 Re(z^2+c),c=-21/118+14/33*I,n=43 2178347147173554 r002 59th iterates of z^2 + 2178347147646057 k001 Champernowne real with 1293*n+885 2178347168386522 a001 567451585/2*47^(9/17) 2178347169722132 a007 Real Root Of 446*x^4+742*x^3-703*x^2-556*x-248 2178347171772205 r008 a(0)=2,K{-n^6,2-29*n^3+12*n^2+9*n} 2178347174633686 a007 Real Root Of -658*x^4-951*x^3+703*x^2-404*x+770 2178347177239320 h005 exp(cos(Pi*13/60)/sin(Pi*25/52)) 2178347182074231 s002 sum(A216546[n]/(n^2*exp(n)+1),n=1..infinity) 2178347186182260 r009 Re(z^3+c),c=-37/106+1/2*I,n=45 2178347186605658 r005 Im(z^2+c),c=-59/48+10/59*I,n=28 2178347188074446 l006 ln(713/6297) 2178347203844357 a001 2971215073/11*18^(13/18) 2178347205345150 a001 47/10946*514229^(9/19) 2178347208981186 a001 47/832040*4807526976^(9/19) 2178347211656320 r009 Re(z^3+c),c=-17/48+13/37*I,n=3 2178347212986414 h001 (9/10*exp(2)+3/7)/(8/9*exp(1)+5/6) 2178347219039753 a007 Real Root Of -41*x^4+313*x^3+718*x^2-530*x-403 2178347219305001 r005 Re(z^2+c),c=-11/9+16/69*I,n=2 2178347237720690 r009 Re(z^3+c),c=-37/106+1/2*I,n=42 2178347247666060 k001 Champernowne real with 1294*n+884 2178347250095294 m001 exp(CareFree)/GlaisherKinkelin*sinh(1)^2 2178347258941655 a007 Real Root Of 569*x^4-613*x^3+577*x^2-202*x-79 2178347261257270 m008 (1/3*Pi+2/3)/(4/5*Pi^4+3/4) 2178347280334728 q001 833/3824 2178347281532978 a001 2207/55*610^(54/55) 2178347284429435 r005 Im(z^2+c),c=-89/62+5/28*I,n=3 2178347290960868 r005 Im(z^2+c),c=-1/4+35/46*I,n=43 2178347311062462 m008 (5/6*Pi-5/6)/(4/5*Pi^4+4) 2178347311389083 m001 (ArtinRank2-Bloch)/(FeigenbaumAlpha-Porter) 2178347311461468 m001 (BesselI(0,1)+KomornikLoreti)^ArtinRank2 2178347312806611 a007 Real Root Of -283*x^4-332*x^3+747*x^2+556*x+607 2178347316255265 p003 LerchPhi(1/12,5,77/226) 2178347316478408 a007 Real Root Of -406*x^4-663*x^3+745*x^2+317*x-556 2178347321565940 a001 322/6765*832040^(37/47) 2178347323625564 a001 39603/2*832040^(10/29) 2178347328793057 a007 Real Root Of -347*x^4-571*x^3+315*x^2-389*x-431 2178347342113976 m001 (5^(1/2)+1)/(sin(1/12*Pi)+FibonacciFactorial) 2178347347686063 k001 Champernowne real with 1295*n+883 2178347355877206 m005 (1/2*Catalan+9/11)/(1/10*Pi-9/10) 2178347357743954 m001 Pi*ln(GAMMA(23/24))*exp(1) 2178347367018064 a003 2*cos(2/21*Pi)+2*cos(7/15*Pi)+cos(13/27*Pi) 2178347374984111 r005 Re(z^2+c),c=7/54+5/9*I,n=22 2178347389157693 h005 exp(cos(Pi*3/46)/cos(Pi*15/32)) 2178347389734490 a007 Real Root Of -512*x^4-829*x^3+449*x^2-252*x+280 2178347393623075 a007 Real Root Of 88*x^4-949*x^3-737*x^2-312*x-43 2178347403267503 a001 75025/47*1364^(21/58) 2178347412860756 m005 (1/3*5^(1/2)+1/5)/(1/8*exp(1)+4) 2178347413055176 s002 sum(A009781[n]/(n!^2),n=1..infinity) 2178347414406388 m006 (5*exp(Pi)+4/5)/(exp(2*Pi)-2/3) 2178347419364479 a007 Real Root Of -188*x^4+239*x^3-61*x^2+598*x-13 2178347426168651 m001 Psi(2,1/3)*MertensB1/Robbin 2178347433541093 r002 39th iterates of z^2 + 2178347439423187 l006 ln(5666/7045) 2178347445032509 m006 (2/5*exp(Pi)+4)/(3/4*ln(Pi)-1/4) 2178347445833393 m005 (1/2*3^(1/2)-8/9)/(3/5*Catalan+1/2) 2178347447560982 l006 ln(612/5405) 2178347447706066 k001 Champernowne real with 1296*n+882 2178347463234791 m001 (BesselI(0,1)+MinimumGamma)^StronglyCareFree 2178347463785727 m001 (1-sin(1/5*Pi))/(ln(Pi)+RenyiParking) 2178347465076724 m005 (41/8+1/8*5^(1/2))/(5/6*gamma+2) 2178347479884773 m001 (PolyaRandomWalk3D-Trott)/(3^(1/3)-Otter) 2178347487204674 a007 Real Root Of -52*x^4+27*x^3+391*x^2+434*x+540 2178347488566020 r005 Re(z^2+c),c=-9/40+17/59*I,n=20 2178347493553674 m001 1/5*HardyLittlewoodC5/sin(1)*5^(1/2) 2178347494789383 a007 Real Root Of 363*x^4+586*x^3-571*x^2-186*x+188 2178347496846112 m002 (-2*Cosh[Pi])/Pi^3+Pi/ProductLog[Pi] 2178347509931903 m001 (Gompertz-LaplaceLimit)/(OneNinth-ThueMorse) 2178347516815044 a001 341/21566892818*3^(7/24) 2178347520339229 r005 Re(z^2+c),c=1/52+10/47*I,n=8 2178347528799581 a007 Real Root Of -291*x^4-839*x^3-639*x^2-752*x-726 2178347528916260 a003 sin(Pi*6/67)*sin(Pi*29/101) 2178347529885022 m004 -3100*Sqrt[5]*Pi-6*Cot[Sqrt[5]*Pi] 2178347536999678 r005 Re(z^2+c),c=-7/86+15/23*I,n=19 2178347537880843 m005 (-3/8+1/4*5^(1/2))/(6/11*3^(1/2)-1/10) 2178347538003299 r002 12th iterates of z^2 + 2178347539310670 r005 Im(z^2+c),c=-18/25+11/45*I,n=14 2178347546867039 a001 73681302247/144*1836311903^(14/17) 2178347546867039 a001 29134601/48*6557470319842^(14/17) 2178347547336436 m001 1/(3^(1/3))*exp(TwinPrimes)^2*Catalan^2 2178347547726069 k001 Champernowne real with 1297*n+881 2178347551397894 r005 Im(z^2+c),c=-83/94+8/43*I,n=63 2178347558250663 a007 Real Root Of 299*x^4-113*x^3+486*x^2-611*x-158 2178347561718302 m001 (Kolakoski+Riemann2ndZero)/(Salem-ZetaP(3)) 2178347564645890 r005 Re(z^2+c),c=-3/19+8/17*I,n=26 2178347566828027 a001 38*144^(13/37) 2178347577185312 r002 60th iterates of z^2 + 2178347577531185 m005 (1/3*Zeta(3)+1/4)/(9/11*Pi+5/12) 2178347579905126 m001 GAMMA(11/24)^GAMMA(23/24)-MadelungNaCl 2178347584066347 r005 Re(z^2+c),c=31/122+8/49*I,n=25 2178347611038278 r005 Re(z^2+c),c=-23/114+17/47*I,n=21 2178347612310635 l006 ln(1123/9918) 2178347614134072 m005 (1/2*Zeta(3)-3/4)/(2*Pi+5/9) 2178347620865239 m005 (1/2*Pi-2/11)/(5/11*gamma-9/10) 2178347623874628 h001 (7/11*exp(1)+1/3)/(1/11*exp(1)+7/10) 2178347623950843 r005 Re(z^2+c),c=-29/110+1/16*I,n=6 2178347630771453 r009 Re(z^3+c),c=-9/34+7/25*I,n=8 2178347632510594 a007 Real Root Of 276*x^4-191*x^3+485*x^2-609*x+111 2178347644362484 a007 Real Root Of 557*x^4+770*x^3-931*x^2+33*x-93 2178347647035649 l006 ln(6837/8501) 2178347647746072 k001 Champernowne real with 1298*n+880 2178347651713817 m001 Shi(1)*FibonacciFactorial+ln(2^(1/2)+1) 2178347654253821 r005 Re(z^2+c),c=1/36+1/13*I,n=5 2178347655370038 m001 1/RenyiParking*ErdosBorwein/exp(GAMMA(1/12)) 2178347660687911 m001 (1-Artin)/(MertensB2+Tribonacci) 2178347665778939 m005 (1/2*3^(1/2)+8/9)/(1/7*5^(1/2)-2/5) 2178347666194847 a001 119218851371/5*591286729879^(11/13) 2178347666194847 a001 23725150497407/5*1134903170^(11/13) 2178347675986654 m005 (1/2*3^(1/2)-3/7)/(-2/3+5/24*5^(1/2)) 2178347676017295 a001 199/10946*2^(6/23) 2178347689120898 a007 Real Root Of -321*x^4-70*x^3+991*x^2-431*x+863 2178347699647107 r009 Im(z^3+c),c=-31/82+7/52*I,n=15 2178347721315420 a007 Real Root Of -582*x^4-971*x^3+650*x^2+154*x+319 2178347723264520 r005 Im(z^2+c),c=-2/3+13/165*I,n=26 2178347724976203 r005 Im(z^2+c),c=-23/82+2/63*I,n=20 2178347727415463 r009 Re(z^3+c),c=-45/122+34/63*I,n=32 2178347737174224 a001 4181/47*3571^(39/58) 2178347737710352 m001 (Salem+ZetaP(2))/RenyiParking 2178347740271895 r005 Re(z^2+c),c=-17/106+20/43*I,n=35 2178347747766075 k001 Champernowne real with 1299*n+879 2178347761691341 b008 1/18+9*(1+Sqrt[2]) 2178347777552134 m004 -5*Pi-4*Cosh[Sqrt[5]*Pi]+25*Pi*Cot[Sqrt[5]*Pi] 2178347778493058 a003 sin(Pi*2/53)/cos(Pi*33/104) 2178347779729353 a001 1/521*(1/2*5^(1/2)+1/2)^2*47^(8/21) 2178347788438259 r005 Re(z^2+c),c=-17/110+28/59*I,n=22 2178347789394411 a007 Real Root Of -634*x^4-728*x^3+990*x^2-930*x+27 2178347790488257 b008 -22+ArcCsch[Sqrt[21]] 2178347793930277 l006 ln(8008/9957) 2178347807032883 m001 (gamma(1)-BesselI(1,1))/(MinimumGamma+Porter) 2178347809378171 a007 Real Root Of -300*x^4+742*x^3-255*x^2+533*x-111 2178347809623296 l006 ln(511/4513) 2178347812066771 a007 Real Root Of 244*x^4+356*x^3+25*x^2+633*x-554 2178347817227545 m001 (OneNinth+PrimesInBinary)/(exp(Pi)+Chi(1)) 2178347817898957 m001 (Backhouse+FeigenbaumD)/(Tetranacci-Trott2nd) 2178347819176211 r002 42th iterates of z^2 + 2178347826252466 a001 75025/47*24476^(15/58) 2178347828152124 k002 Champernowne real with 106*n^2-261*n+176 2178347832979830 r005 Im(z^2+c),c=-5/31+18/61*I,n=22 2178347833236346 h005 exp(cos(Pi*13/57)/sin(Pi*21/50)) 2178347834015784 r005 Im(z^2+c),c=-83/82+8/39*I,n=12 2178347846357380 m001 GAMMA(17/24)^(OrthogonalArrays/ZetaP(2)) 2178347847786078 k001 Champernowne real with 1300*n+878 2178347859271781 r009 Re(z^3+c),c=-8/31+7/29*I,n=3 2178347862460592 m001 ln(BesselK(1,1))*Lehmer/sinh(1)^2 2178347884030777 a007 Real Root Of 105*x^4-414*x^3-964*x^2+753*x-429 2178347893572147 m001 Riemann3rdZero^ln(2)*Magata^ln(2) 2178347902512467 m001 (Bloch+Trott2nd)/(BesselI(0,1)+GAMMA(23/24)) 2178347903555008 r005 Re(z^2+c),c=-5/38+21/40*I,n=63 2178347903844819 m001 RenyiParking/exp(HardHexagonsEntropy)*Salem 2178347922769207 a007 Real Root Of -428*x^4-962*x^3-514*x^2-888*x+198 2178347925331431 r005 Im(z^2+c),c=-23/30+5/74*I,n=35 2178347926846438 r002 57th iterates of z^2 + 2178347930426574 g002 Psi(3/5)+Psi(1/5)-Psi(5/12)-Psi(5/11) 2178347931651758 r005 Im(z^2+c),c=-2/13+12/41*I,n=17 2178347934979717 b008 Pi+53*ProductLog[1/2] 2178347946442654 m009 (3*Psi(1,2/3)+6)/(1/5*Pi^2+5) 2178347947806081 k001 Champernowne real with 1301*n+877 2178347952844455 a007 Real Root Of -518*x^4-526*x^3+947*x^2-824*x-62 2178347971014076 l006 ln(2225/2274) 2178347972342419 r009 Re(z^3+c),c=-13/27+8/17*I,n=30 2178347980321052 a001 1597/47*9349^(41/58) 2178347991213605 a007 Real Root Of 572*x^4+964*x^3-69*x^2+929*x-564 2178347992031430 a007 Real Root Of -347*x^4-593*x^3+140*x^2-204*x+575 2178348009873708 m005 (1/3*3^(1/2)-1/8)/(3/10*3^(1/2)-8/11) 2178348012746698 m001 (Pi-BesselJ(0,1))/(ln(Pi)-ZetaQ(2)) 2178348030982342 b008 Log[1/9+Log[2]] 2178348037078836 m001 (Weierstrass+ZetaQ(4))/(Mills+QuadraticClass) 2178348043892270 r002 10th iterates of z^2 + 2178348047826084 k001 Champernowne real with 1302*n+876 2178348050211862 l006 ln(921/8134) 2178348063087010 m001 1/exp(LaplaceLimit)/FransenRobinson^2*gamma^2 2178348068268988 a007 Real Root Of -714*x^4+195*x^3-182*x^2+591*x+141 2178348080701742 m001 (exp(1/2)-sqrt(2))/OneNinth 2178348081150265 a007 Real Root Of -896*x^4-463*x^3-528*x^2+825*x+202 2178348083907828 m001 (-BesselK(1,1)+Backhouse)/(ln(2)-ln(2)/ln(10)) 2178348102080753 r005 Im(z^2+c),c=-5/8+82/251*I,n=16 2178348105466923 r002 58th iterates of z^2 + 2178348107505216 r005 Re(z^2+c),c=-73/90+8/53*I,n=44 2178348108531032 r002 14th iterates of z^2 + 2178348110254471 m001 1/GAMMA(1/3)/ln(HardHexagonsEntropy)^2/cosh(1) 2178348112374206 a001 11/377*4181^(15/29) 2178348113969911 m005 (1/3*gamma+3/4)/(-7/20+7/20*5^(1/2)) 2178348117606149 m001 1/Zeta(7)^2/Catalan^2/exp(sin(1))^2 2178348129482805 m005 (1/3*Zeta(3)-3/4)/(-4/11+1/11*5^(1/2)) 2178348133773875 s002 sum(A218894[n]/(n*10^n+1),n=1..infinity) 2178348138202810 a007 Real Root Of 202*x^4+479*x^3+513*x^2+479*x-988 2178348140835801 q001 662/3039 2178348143781785 m005 (1/2*gamma+2/3)/(-73/120+7/24*5^(1/2)) 2178348146627903 r002 5th iterates of z^2 + 2178348147846087 k001 Champernowne real with 1303*n+875 2178348149973072 m001 HardyLittlewoodC3*(Thue-Zeta(3)) 2178348171824843 m001 (Bloch+ErdosBorwein)/(ln(2^(1/2)+1)-gamma(1)) 2178348177038424 m001 (-Cahen+OneNinth)/(exp(1)-sin(1/12*Pi)) 2178348178835833 m005 (1/3*Zeta(3)+2/5)/(9/10*Zeta(3)-5/7) 2178348179226787 m005 (17/20+1/4*5^(1/2))/(1/10*exp(1)+3/8) 2178348198390744 r005 Re(z^2+c),c=-7/90+35/62*I,n=24 2178348199287721 a007 Real Root Of -233*x^4-734*x^3-774*x^2-864*x-550 2178348201415295 a007 Real Root Of -229*x^4-580*x^3+129*x^2+303*x-791 2178348206973929 r002 23th iterates of z^2 + 2178348206973929 r002 23th iterates of z^2 + 2178348225345786 a007 Real Root Of 268*x^4-424*x^3-100*x^2-778*x+178 2178348232281135 r005 Im(z^2+c),c=-37/70+23/63*I,n=6 2178348237057740 r009 Re(z^3+c),c=-15/122+25/31*I,n=34 2178348237345618 m001 (1/2)^GolombDickman/((1/2)^MadelungNaCl) 2178348239642928 r005 Im(z^2+c),c=-19/56+24/41*I,n=32 2178348247866090 k001 Champernowne real with 1304*n+874 2178348248718759 r002 31th iterates of z^2 + 2178348257212851 a007 Real Root Of -427*x^4-934*x^3+57*x^2+276*x+291 2178348260342067 m005 (1/3*Zeta(3)+2/11)/(5/8*2^(1/2)-6/7) 2178348260772142 r009 Re(z^3+c),c=-41/114+10/19*I,n=50 2178348267694465 m001 (KomornikLoreti+Magata)/(exp(Pi)+CareFree) 2178348285956146 m001 Riemann3rdZero*RenyiParking^Weierstrass 2178348286814396 m001 (Khinchin-log(gamma)*exp(1/2))/exp(1/2) 2178348289507650 r005 Im(z^2+c),c=-13/38+14/39*I,n=12 2178348291667182 m006 (3/5*Pi+2/3)/(1/3*exp(Pi)+4) 2178348294640004 a007 Real Root Of 415*x^4+514*x^3-501*x^2+752*x-16 2178348311448637 a007 Real Root Of 496*x^4+508*x^3-825*x^2+990*x+154 2178348320744979 r005 Im(z^2+c),c=-10/31+5/14*I,n=10 2178348324908061 r005 Re(z^2+c),c=1/60+43/64*I,n=7 2178348326870430 a007 Real Root Of -474*x^4-981*x^3+341*x^2+333*x-360 2178348330054586 m001 1/ArtinRank2/Cahen^2*ln(GAMMA(17/24))^2 2178348330840725 r005 Im(z^2+c),c=23/58+5/24*I,n=25 2178348332978528 m008 (1/4*Pi^5+5)/(Pi+3/5) 2178348335518209 h001 (-9*exp(-1)-9)/(-7*exp(-3)+6) 2178348343194199 a007 Real Root Of 673*x^4+298*x^3+164*x^2-272*x-6 2178348347324652 a001 1/64079*76^(14/23) 2178348347886093 k001 Champernowne real with 1305*n+873 2178348349683805 p003 LerchPhi(1/2,2,427/170) 2178348350067287 l006 ln(410/3621) 2178348352766277 r005 Re(z^2+c),c=-23/98+11/42*I,n=8 2178348356072834 r005 Re(z^2+c),c=-13/58+16/55*I,n=15 2178348377884090 g007 14*Zeta(3)-Psi(2,2/9)-Psi(2,3/5)-Psi(2,2/3) 2178348378895704 a007 Real Root Of 328*x^4+170*x^3-857*x^2+800*x+181 2178348383409420 a007 Real Root Of 475*x^4+588*x^3-796*x^2+518*x+288 2178348385356602 m003 2+Sqrt[5]/16+Log[1/2+Sqrt[5]/2]^2/6 2178348390282465 r005 Im(z^2+c),c=11/70+8/49*I,n=8 2178348402497151 m001 Salem+BesselI(0,1)^ZetaQ(3) 2178348407965934 r005 Re(z^2+c),c=-27/118+17/62*I,n=21 2178348411393939 s002 sum(A078258[n]/((2*n+1)!),n=1..infinity) 2178348432393314 m006 (5/6/Pi-2)/(1/3*exp(Pi)+1/4) 2178348438917342 a003 cos(Pi*25/116)*cos(Pi*25/61) 2178348440372149 a001 8/4870847*2^(11/27) 2178348440389636 a001 3/7*(1/2*5^(1/2)+1/2)*7^(10/17) 2178348447906096 k001 Champernowne real with 1306*n+872 2178348453304991 a001 13/47*370248451^(4/7) 2178348463175639 r005 Im(z^2+c),c=-7/10+4/253*I,n=7 2178348467909541 a007 Real Root Of 108*x^4+167*x^3+213*x^2+770*x-39 2178348473677304 m001 (1+exp(1/exp(1)))/(Rabbit+ThueMorse) 2178348474887734 m001 (OneNinth-Riemann3rdZero)/(polylog(4,1/2)+Kac) 2178348476478853 h001 (2/9*exp(1)+2/3)/(5/7*exp(2)+5/9) 2178348488143163 b008 -5/2+ProductLog[1]^2 2178348495281975 a007 Real Root Of -x^4+479*x^3+904*x^2+446*x-145 2178348502206516 m001 (Zeta(3)+Zeta(5))/(sin(1/5*Pi)+BesselJ(1,1)) 2178348506907859 m001 1/Salem/GaussKuzminWirsing*exp(GAMMA(23/24))^2 2178348516176897 r005 Im(z^2+c),c=-2/13+12/41*I,n=16 2178348516766049 b008 (-3+Pi)/65 2178348516833264 a001 3571/225851433717*3^(7/24) 2178348527575818 r005 Re(z^2+c),c=-7/50+38/61*I,n=19 2178348528740766 r005 Im(z^2+c),c=-29/32+16/57*I,n=22 2178348535672577 r002 61th iterates of z^2 + 2178348535750690 a001 13/73681302247*18^(20/23) 2178348542140584 r005 Im(z^2+c),c=-59/82+2/55*I,n=4 2178348547926099 k001 Champernowne real with 1307*n+871 2178348550693456 a007 Real Root Of -633*x^4-920*x^3+788*x^2-691*x-501 2178348572463189 m001 ln(BesselK(1,1))^2/FibonacciFactorial*Zeta(5) 2178348573058562 m001 (cos(1/5*Pi)-exp(Pi))/(-ln(gamma)+PlouffeB) 2178348576602069 a007 Real Root Of -146*x^4+39*x^3+505*x^2-994*x-871 2178348582044877 a007 Real Root Of -475*x^4-666*x^3+563*x^2-778*x-555 2178348583768475 a001 521/8*987^(28/55) 2178348588304756 a007 Real Root Of 322*x^4+896*x^3+687*x^2+761*x+409 2178348594679130 l006 ln(1129/9971) 2178348603912857 a007 Real Root Of 286*x^4+363*x^3-205*x^2+644*x-312 2178348607768421 r005 Im(z^2+c),c=-19/18+35/178*I,n=4 2178348610103719 r004 Re(z^2+c),c=-5/38+11/21*I,z(0)=I,n=43 2178348610603992 m005 (1/2*Zeta(3)+7/12)/(5*Catalan+6/7) 2178348621479920 r005 Re(z^2+c),c=41/106+4/25*I,n=12 2178348621944476 a007 Real Root Of 403*x^4+500*x^3-556*x^2+312*x-588 2178348629926141 m001 Grothendieck/(AlladiGrinstead+ZetaQ(3)) 2178348632016348 m001 (Magata-MertensB1)/(ln(5)+Zeta(1,-1)) 2178348634611790 m001 (FeigenbaumB-OneNinth)/(ln(2)-GAMMA(23/24)) 2178348635573934 a007 Real Root Of -6*x^4-140*x^3-205*x^2-98*x-980 2178348638008494 m001 (Sarnak+ZetaQ(3))/(Ei(1)+Porter) 2178348644234489 b008 2-(3*Cos[2])/7 2178348647946102 k001 Champernowne real with 1308*n+870 2178348651234253 a003 cos(Pi*10/69)*cos(Pi*46/109) 2178348651589139 l006 ln(1171/1456) 2178348653762040 m005 (1/2*3^(1/2)-1/3)/(9/11*Pi-1/8) 2178348660587689 m002 -1/9+2*Log[Pi] 2178348662733956 a001 9349/591286729879*3^(7/24) 2178348666844811 m001 BesselK(0,1)*GlaisherKinkelin-exp(1) 2178348670036989 r009 Re(z^3+c),c=-23/60+13/23*I,n=38 2178348674903657 m001 (MadelungNaCl+Rabbit)/(cos(1)+sin(1/5*Pi)) 2178348676532244 m001 1/Zeta(9)^2*exp(Artin)^2/cos(Pi/12) 2178348677990754 r002 50th iterates of z^2 + 2178348680133918 r005 Im(z^2+c),c=-41/46+7/37*I,n=52 2178348682044605 a007 Real Root Of 173*x^4+107*x^3-244*x^2+463*x-623 2178348684020580 a001 6119/387002188980*3^(7/24) 2178348687126257 a001 64079/4052739537881*3^(7/24) 2178348687579369 a001 167761/10610209857723*3^(7/24) 2178348687859407 a001 51841/3278735159921*3^(7/24) 2178348689045670 a001 39603/2504730781961*3^(7/24) 2178348697176437 a001 15127/956722026041*3^(7/24) 2178348698881713 m001 HardyLittlewoodC3/(ln(5)+Mills) 2178348705062381 h001 (5/11*exp(1)+1/7)/(4/5*exp(2)+5/12) 2178348705759376 r005 Re(z^2+c),c=-83/66+3/31*I,n=10 2178348731375328 m001 (-MertensB1+Sarnak)/(2^(1/2)-Zeta(3)) 2178348734165690 l006 ln(719/6350) 2178348739119792 m001 (gamma(2)-ReciprocalLucas)/(Pi-5^(1/2)) 2178348740745378 r005 Re(z^2+c),c=-7/94+13/23*I,n=24 2178348747966105 k001 Champernowne real with 1309*n+869 2178348752905543 a001 2889/182717648081*3^(7/24) 2178348762124101 m001 1/exp(sin(1))^2*GAMMA(19/24)^2/sinh(1) 2178348765989683 r002 55th iterates of z^2 + 2178348776335762 r005 Im(z^2+c),c=-11/106+13/47*I,n=5 2178348777109062 m001 1/exp(GAMMA(7/24))^2*GAMMA(23/24)*Zeta(7) 2178348793337769 r009 Re(z^3+c),c=-25/78+3/7*I,n=31 2178348807591626 r002 23th iterates of z^2 + 2178348809068894 r005 Im(z^2+c),c=-57/106+7/18*I,n=55 2178348811764724 m001 FeigenbaumD^2/exp(Backhouse)^2*GAMMA(1/6) 2178348813012388 a003 sin(Pi*3/113)*sin(Pi*8/95) 2178348814322144 r002 14th iterates of z^2 + 2178348821585524 a007 Real Root Of -218*x^4-9*x^3+671*x^2-839*x-196 2178348831152724 k002 Champernowne real with 213/2*n^2-525/2*n+177 2178348838152891 a007 Real Root Of 436*x^4+502*x^3-715*x^2+760*x+420 2178348847415544 a008 Real Root of x^4-x^3+7*x^2+6*x-53 2178348847986108 k001 Champernowne real with 1310*n+868 2178348848471264 a007 Real Root Of 432*x^4-250*x^3-743*x^2-983*x+251 2178348856958999 r002 33th iterates of z^2 + 2178348858394172 p004 log(33587/3803) 2178348859380192 a007 Real Root Of 356*x^4+472*x^3-619*x^2+285*x+421 2178348860363808 r005 Im(z^2+c),c=-2/3+5/174*I,n=37 2178348862036976 m001 1/GolombDickman*exp(Champernowne)*Zeta(3) 2178348871010908 a001 15127/34*21^(12/23) 2178348872352811 a007 Real Root Of 476*x^4+806*x^3-693*x^2-520*x-231 2178348878147176 a007 Real Root Of 730*x^4+948*x^3-847*x^2+998*x-445 2178348887356646 l006 ln(1028/9079) 2178348888243993 a003 cos(Pi*1/117)-sin(Pi*46/93) 2178348895026823 v002 sum(1/(2^n+(2*n^3-7*n^2+9*n+5)),n=1..infinity) 2178348899889319 m005 (23/20+1/4*5^(1/2))/(1/4*Catalan+5/9) 2178348900148107 m001 Pi^GAMMA(2/3)/(Pi^Khinchin) 2178348901199616 m001 exp(Zeta(9))^2*PrimesInBinary*sin(1)^2 2178348907560996 m001 (KhinchinLevy*Mills+MertensB2)/KhinchinLevy 2178348911557358 a007 Real Root Of 168*x^4+354*x^3+132*x^2+387*x+93 2178348915154085 a007 Real Root Of -55*x^4+276*x^3-x^2-464*x-599 2178348923040487 a005 (1/cos(22/221*Pi))^664 2178348926060463 b008 AngerJ[3/2,5] 2178348930113584 r009 Im(z^3+c),c=-33/118+9/49*I,n=4 2178348931266567 a003 cos(Pi*25/72)-cos(Pi*43/102) 2178348935698632 a007 Real Root Of -180*x^4+184*x^3+7*x^2+974*x-214 2178348943950775 h001 (-8*exp(-1)+5)/(-5*exp(3)+6) 2178348945479875 r005 Im(z^2+c),c=-5/8+75/226*I,n=8 2178348948006111 k001 Champernowne real with 1311*n+867 2178348949482696 h001 (7/11*exp(2)+8/9)/(5/7*exp(1)+5/8) 2178348951494654 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)/(ZetaR(2)^ln(3)) 2178348953159890 m006 (1/2*Pi^2+3/4)/(1/2*ln(Pi)-5/6) 2178348964386608 m001 Tribonacci/Backhouse*ln(TwinPrimes)^2 2178348965035647 m002 2-(37*E^Pi)/36 2178348968034272 a007 Real Root Of -263*x^4-511*x^3-116*x^2-372*x+380 2178348972592098 a007 Real Root Of 767*x^4+294*x^3-401*x^2-389*x+99 2178348974040973 m001 1/exp(1)^2*Rabbit^2*exp(sqrt(3))^2 2178348977318543 m001 (gamma(3)+HardyLittlewoodC4)/(1+BesselK(0,1)) 2178348978566924 m001 (3^(1/2))^(Catalan/MasserGramain) 2178348981987063 r005 Im(z^2+c),c=-17/18+23/104*I,n=46 2178348990369538 r005 Re(z^2+c),c=-21/118+14/33*I,n=46 2178348994155950 a007 Real Root Of -62*x^4+286*x^3+686*x^2-169*x+729 2178348994412528 a007 Real Root Of 220*x^4+61*x^3-957*x^2-939*x-20 2178348994534875 m001 ArtinRank2*(FeigenbaumD+TreeGrowth2nd) 2178349003516916 a001 102334155/199*199^(3/11) 2178349010653486 m005 (1/2*gamma-8/11)/(2*Catalan+2/11) 2178349024257950 r005 Im(z^2+c),c=-17/20+11/61*I,n=17 2178349026189418 m001 (BesselI(1,2)-Porter)/(gamma(3)+BesselI(1,1)) 2178349031692721 a001 89/5778*2^(1/2) 2178349033966955 m002 -4-Pi^4+Pi^5+Pi^5/E^Pi 2178349037629884 a007 Real Root Of -35*x^4-794*x^3-728*x^2-915*x-892 2178349041808711 r005 Re(z^2+c),c=-169/126+24/49*I,n=2 2178349048026114 k001 Champernowne real with 1312*n+866 2178349049624568 a007 Real Root Of 471*x^4+928*x^3-451*x^2-191*x+711 2178349052253185 a007 Real Root Of -857*x^4+191*x^3+11*x^2+585*x-128 2178349062244959 a007 Real Root Of -41*x^4-851*x^3+912*x^2-130*x-180 2178349068191039 m001 (Zeta(1,-1)-Zeta(1,2))/(Khinchin+Thue) 2178349068340873 m001 GAMMA(5/6)/(GAMMA(1/3)+FeigenbaumAlpha) 2178349074975401 m001 Sierpinski^FeigenbaumKappa-exp(1/exp(1)) 2178349075419711 h005 exp(cos(Pi*5/23)/sin(Pi*26/55)) 2178349083561248 s002 sum(A135784[n]/(exp(pi*n)+1),n=1..infinity) 2178349098841639 r005 Re(z^2+c),c=-11/36+1/3*I,n=3 2178349107620763 m001 ln(2)*(FeigenbaumKappa+KomornikLoreti) 2178349111544161 m005 (1/2*Zeta(3)+7/10)/(7/8*Zeta(3)-5/11) 2178349116696022 m001 (HardyLittlewoodC4-Niven)/(GAMMA(17/24)-Cahen) 2178349118438013 a001 1/3*(1/2*5^(1/2)+1/2)^8*4^(5/21) 2178349121235468 a007 Real Root Of -18*x^4-417*x^3-517*x^2+528*x-526 2178349125653008 a007 Real Root Of -300*x^4-497*x^3+128*x^2-316*x+322 2178349129920920 a007 Real Root Of -522*x^4-684*x^3+837*x^2-212*x+250 2178349132279610 r005 Re(z^2+c),c=-1/11+20/33*I,n=38 2178349134113185 a001 433494437/843*123^(3/10) 2178349134878513 a001 2207/139583862445*3^(7/24) 2178349148046117 k001 Champernowne real with 1313*n+865 2178349148046117 r005 Re(z^2+c),c=-2/9+7/33*I,n=2 2178349152050457 s001 sum(1/10^(n-1)*A011054[n]/n^n,n=1..infinity) 2178349165065775 a007 Real Root Of -420*x^4-769*x^3+194*x^2-239*x+67 2178349183295394 r009 Im(z^3+c),c=-13/114+48/55*I,n=46 2178349186880003 m004 -125*Pi+(99*Sqrt[5]*Pi)/4+Tanh[Sqrt[5]*Pi] 2178349187686405 g002 2*Psi(1/12)+Psi(9/10)-Psi(3/11) 2178349190106788 m005 (1/2*2^(1/2)+8/11)/(-19/90+7/18*5^(1/2)) 2178349203866369 a007 Real Root Of 26*x^4-358*x^3-649*x^2+529*x-54 2178349217630214 a001 11/75025*1597^(15/41) 2178349220182228 a001 3571*(1/2*5^(1/2)+1/2)^31*3^(9/14) 2178349233304056 a007 Real Root Of -632*x^4-58*x^3-469*x^2+803*x+198 2178349240712161 h001 (1/10*exp(1)+1/4)/(2/3*exp(1)+7/12) 2178349242535474 a007 Real Root Of -415*x^4-600*x^3+474*x^2-310*x+218 2178349242917647 m002 -E^Pi+Pi/5+Pi^6/4 2178349243810593 l006 ln(309/2729) 2178349244797502 a007 Real Root Of -447*x^4-832*x^3+643*x^2+590*x-301 2178349248066120 k001 Champernowne real with 1314*n+864 2178349249223594 a001 2178309+18*5^(1/2) 2178349264186445 m001 ((1+3^(1/2))^(1/2))^HardyLittlewoodC5-Magata 2178349277841860 a007 Real Root Of -13*x^4+654*x^3-935*x^2-761*x-373 2178349282392979 a007 Real Root Of -827*x^4+129*x^3+887*x^2+989*x-257 2178349283699557 m001 exp(BesselJ(1,1))^2*MertensB1*sin(Pi/5)^2 2178349285484850 a007 Real Root Of -386*x^4-907*x^3-390*x^2-980*x-968 2178349288793053 r005 Re(z^2+c),c=-29/110+35/57*I,n=39 2178349300589286 a001 3020733700601/48*1836311903^(12/17) 2178349300589286 a001 9381251041/48*6557470319842^(12/17) 2178349302468619 m001 (Zeta(3)+ln(5))/(Zeta(1,-1)+Backhouse) 2178349306260648 m001 1/exp(GAMMA(17/24))*GAMMA(1/12)/Zeta(1/2) 2178349313724545 r005 Im(z^2+c),c=-23/82+2/63*I,n=22 2178349315805603 s002 sum(A223710[n]/(n^3*exp(n)+1),n=1..infinity) 2178349348086123 k001 Champernowne real with 1315*n+863 2178349366082967 a001 9349*(1/2*5^(1/2)+1/2)^29*3^(9/14) 2178349367789838 m001 ReciprocalLucas*(GaussAGM-Sarnak) 2178349372311215 a007 Real Root Of 676*x^4+988*x^3-611*x^2+726*x-528 2178349382509295 r005 Re(z^2+c),c=-21/106+16/43*I,n=30 2178349387369598 a001 24476*(1/2*5^(1/2)+1/2)^27*3^(9/14) 2178349390475275 a001 64079*(1/2*5^(1/2)+1/2)^25*3^(9/14) 2178349391005788 a001 10749957122*3^(9/14) 2178349392394689 a001 39603*(1/2*5^(1/2)+1/2)^26*3^(9/14) 2178349397581910 a003 sin(Pi*41/115)/cos(Pi*43/118) 2178349400525459 a001 15127*(1/2*5^(1/2)+1/2)^28*3^(9/14) 2178349404595379 m001 (exp(1)+BesselI(0,1))/(GAMMA(2/3)+Weierstrass) 2178349410743734 m001 Conway+Gompertz^sin(1/12*Pi) 2178349414841646 a008 Real Root of x^4+24*x^2-120*x+125 2178349421191755 m001 (Paris-Salem)/(Stephens-StolarskyHarborth) 2178349422764923 m001 1/Zeta(9)*Riemann1stZero/ln(sqrt(5))^2 2178349424851241 m001 GAMMA(1/24)^2/ln(FeigenbaumDelta)/GAMMA(13/24) 2178349430930046 m001 1/GAMMA(13/24)*ln(GAMMA(1/3))^2/exp(1) 2178349432656311 m005 (1/3*3^(1/2)+1/8)/(9/10*exp(1)+7/9) 2178349442620059 m001 MertensB1^2/Artin/exp(GAMMA(5/12)) 2178349443331336 r005 Im(z^2+c),c=-17/23+9/58*I,n=12 2178349446010700 r005 Im(z^2+c),c=-1/32+47/61*I,n=48 2178349448106126 k001 Champernowne real with 1316*n+862 2178349455527797 m001 GAMMA(1/4)/exp(Riemann1stZero)^2/Zeta(1,2)^2 2178349456254582 a001 5778*(1/2*5^(1/2)+1/2)^30*3^(9/14) 2178349462026441 m001 (1+3^(1/2))^(1/2)*(Ei(1)-gamma) 2178349462026441 m001 sqrt(1+sqrt(3))*(Ei(1)-gamma) 2178349463092250 h001 (7/10*exp(1)+4/5)/(1/12*exp(2)+5/8) 2178349475056967 m001 1/exp(Khintchine)*FeigenbaumDelta/MinimumGamma 2178349475756813 r005 Re(z^2+c),c=33/122+5/28*I,n=34 2178349487547719 m001 1/exp(PisotVijayaraghavan)^2*GAMMA(7/24) 2178349490663580 r002 3th iterates of z^2 + 2178349505759302 r009 Re(z^3+c),c=-19/58+25/56*I,n=26 2178349507390933 m005 (1/2*Catalan-1/12)/(6/11*gamma-1/7) 2178349526881162 m005 (1/2*Pi+3/8)/(1/7*Pi+4/9) 2178349527978518 p004 log(22777/2579) 2178349529905859 a003 cos(Pi*33/112)-sin(Pi*11/36) 2178349530103506 r002 17th iterates of z^2 + 2178349537605344 a007 Real Root Of 212*x^4+63*x^3-571*x^2+403*x-535 2178349545882413 a007 Real Root Of -466*x^4-659*x^3+984*x^2+736*x+615 2178349548126129 k001 Champernowne real with 1317*n+861 2178349557896069 a001 38/17*6765^(27/52) 2178349563856929 a003 cos(Pi*12/107)/cos(Pi*24/67) 2178349565290564 r005 Im(z^2+c),c=-19/30+23/73*I,n=48 2178349566660401 l006 ln(1135/10024) 2178349574821729 m005 (1/3*gamma+1/8)/(8/11*2^(1/2)+3/7) 2178349583214824 a007 Real Root Of 281*x^4+374*x^3-738*x^2-738*x-567 2178349597114376 m005 (-23/4+1/4*5^(1/2))/(9/10*Pi-4/9) 2178349600709849 q001 491/2254 2178349603513122 l006 ln(7215/8971) 2178349611031826 m001 1/ln(GAMMA(13/24))/Catalan*Pi^2 2178349613958766 a007 Real Root Of -293*x^4-512*x^3+796*x^2+965*x-370 2178349618109703 r005 Im(z^2+c),c=-23/82+2/63*I,n=24 2178349625757058 m001 (Salem+Trott)/(Psi(2,1/3)+Kac) 2178349626138690 r005 Im(z^2+c),c=-39/98+19/52*I,n=22 2178349627844478 r009 Re(z^3+c),c=-1/94+33/41*I,n=19 2178349641999359 a007 Real Root Of 709*x^4+836*x^3+685*x^2-434*x-120 2178349642367829 r002 3th iterates of z^2 + 2178349642540519 m001 BesselI(1,2)*GAMMA(11/12)-GAMMA(1/24) 2178349648146132 k001 Champernowne real with 1318*n+860 2178349654722672 a007 Real Root Of 12*x^4+151*x^3+691*x^2+753*x-348 2178349656061679 a007 Real Root Of 18*x^4+386*x^3-100*x^2+673*x-972 2178349661502792 a007 Real Root Of 470*x^4+666*x^3-799*x^2-430*x-844 2178349667059241 a001 34/123*199^(33/40) 2178349667795911 a003 cos(Pi*13/68)-cos(Pi*19/65) 2178349669838807 a007 Real Root Of 433*x^4-560*x^3+94*x^2-279*x-72 2178349673512817 r005 Im(z^2+c),c=-23/82+2/63*I,n=26 2178349677509637 m001 GAMMA(13/24)^2/Champernowne 2178349681185007 a007 Real Root Of 155*x^4+92*x^3-322*x^2+231*x-508 2178349682919685 r005 Im(z^2+c),c=-23/82+2/63*I,n=28 2178349684119478 r005 Re(z^2+c),c=29/102+4/21*I,n=42 2178349684351083 r005 Im(z^2+c),c=-23/82+2/63*I,n=30 2178349684518795 r005 Im(z^2+c),c=-23/82+2/63*I,n=33 2178349684521476 r005 Im(z^2+c),c=-23/82+2/63*I,n=35 2178349684524792 r005 Im(z^2+c),c=-23/82+2/63*I,n=37 2178349684525394 r005 Im(z^2+c),c=-23/82+2/63*I,n=32 2178349684526048 r005 Im(z^2+c),c=-23/82+2/63*I,n=39 2178349684526420 r005 Im(z^2+c),c=-23/82+2/63*I,n=41 2178349684526519 r005 Im(z^2+c),c=-23/82+2/63*I,n=43 2178349684526543 r005 Im(z^2+c),c=-23/82+2/63*I,n=45 2178349684526549 r005 Im(z^2+c),c=-23/82+2/63*I,n=47 2178349684526550 r005 Im(z^2+c),c=-23/82+2/63*I,n=49 2178349684526550 r005 Im(z^2+c),c=-23/82+2/63*I,n=51 2178349684526550 r005 Im(z^2+c),c=-23/82+2/63*I,n=53 2178349684526550 r005 Im(z^2+c),c=-23/82+2/63*I,n=55 2178349684526550 r005 Im(z^2+c),c=-23/82+2/63*I,n=57 2178349684526550 r005 Im(z^2+c),c=-23/82+2/63*I,n=59 2178349684526550 r005 Im(z^2+c),c=-23/82+2/63*I,n=61 2178349684526550 r005 Im(z^2+c),c=-23/82+2/63*I,n=63 2178349684526550 r005 Im(z^2+c),c=-23/82+2/63*I,n=64 2178349684526550 r005 Im(z^2+c),c=-23/82+2/63*I,n=62 2178349684526550 r005 Im(z^2+c),c=-23/82+2/63*I,n=60 2178349684526550 r005 Im(z^2+c),c=-23/82+2/63*I,n=58 2178349684526550 r005 Im(z^2+c),c=-23/82+2/63*I,n=56 2178349684526550 r005 Im(z^2+c),c=-23/82+2/63*I,n=54 2178349684526550 r005 Im(z^2+c),c=-23/82+2/63*I,n=52 2178349684526550 r005 Im(z^2+c),c=-23/82+2/63*I,n=50 2178349684526551 r005 Im(z^2+c),c=-23/82+2/63*I,n=48 2178349684526554 r005 Im(z^2+c),c=-23/82+2/63*I,n=46 2178349684526566 r005 Im(z^2+c),c=-23/82+2/63*I,n=44 2178349684526615 r005 Im(z^2+c),c=-23/82+2/63*I,n=42 2178349684526809 r005 Im(z^2+c),c=-23/82+2/63*I,n=40 2178349684527506 r005 Im(z^2+c),c=-23/82+2/63*I,n=38 2178349684529643 r005 Im(z^2+c),c=-23/82+2/63*I,n=36 2178349684533888 r005 Im(z^2+c),c=-23/82+2/63*I,n=34 2178349684568303 r005 Im(z^2+c),c=-23/82+2/63*I,n=31 2178349685089163 r005 Im(z^2+c),c=-23/82+2/63*I,n=29 2178349687435907 l006 ln(826/7295) 2178349688207598 r002 8th iterates of z^2 + 2178349688824672 r005 Im(z^2+c),c=-23/82+2/63*I,n=27 2178349689007814 m005 (1/2*Zeta(3)-1/6)/(5/7*Pi-1/4) 2178349691573662 s002 sum(A178587[n]/((10^n-1)/n),n=1..infinity) 2178349694395480 a001 1/12238*29^(39/40) 2178349696529761 m001 (5^(1/2)+3^(1/3))/(GAMMA(23/24)+LaplaceLimit) 2178349701772086 a005 (1/cos(21/199*Pi))^1042 2178349707390984 m001 (1-sin(1/12*Pi))/(-CopelandErdos+Stephens) 2178349709057218 m001 FransenRobinson^Rabbit/(Zeta(1,2)^Rabbit) 2178349711893014 r005 Im(z^2+c),c=-23/82+2/63*I,n=25 2178349717728289 r009 Re(z^3+c),c=-25/78+3/7*I,n=29 2178349745401023 r005 Im(z^2+c),c=-17/36+1/27*I,n=42 2178349748166135 k001 Champernowne real with 1319*n+859 2178349753011283 r005 Re(z^2+c),c=-17/14+23/251*I,n=8 2178349758543257 r002 57th iterates of z^2 + 2178349768076439 a007 Real Root Of 178*x^4+760*x^3+981*x^2-275*x-99 2178349771646550 r005 Im(z^2+c),c=-51/58+5/29*I,n=19 2178349774507690 a007 Real Root Of -635*x^4+912*x^3-593*x^2+303*x+105 2178349776210640 r002 17th iterates of z^2 + 2178349782622837 m003 -3/4+Log[1/2+Sqrt[5]/2]/4+Tan[1/2+Sqrt[5]/2] 2178349783302064 r005 Im(z^2+c),c=-37/64+7/24*I,n=7 2178349787944446 l006 ln(6044/7515) 2178349801728262 r005 Re(z^2+c),c=-9/50+13/31*I,n=29 2178349802702938 m001 (exp(1/Pi)+Kac)/(Landau-MinimumGamma) 2178349825949166 m005 (-1/20+1/4*5^(1/2))/(7/12*gamma+2) 2178349829913067 r005 Re(z^2+c),c=1/5+23/53*I,n=21 2178349834153324 k002 Champernowne real with 107*n^2-264*n+178 2178349838227676 a001 2207*(1/2*5^(1/2)+1/2)^32*3^(9/14) 2178349839808650 r009 Re(z^3+c),c=-13/34+35/64*I,n=22 2178349842699503 r005 Im(z^2+c),c=-23/82+2/63*I,n=23 2178349847125860 r005 Re(z^2+c),c=-21/106+16/43*I,n=32 2178349848186138 k001 Champernowne real with 1320*n+858 2178349848369247 r005 Re(z^2+c),c=-21/118+14/33*I,n=49 2178349850425018 r005 Re(z^2+c),c=-21/118+14/33*I,n=41 2178349857171433 a007 Real Root Of -170*x^4-420*x^3-169*x^2+222*x+772 2178349857654095 r005 Im(z^2+c),c=-79/64+6/37*I,n=18 2178349857756766 a007 Real Root Of -324*x^4-284*x^3+990*x^2-253*x-889 2178349859388508 r005 Im(z^2+c),c=23/86+4/53*I,n=42 2178349865688490 m001 OneNinth^2*exp(Paris)^2*cosh(1) 2178349867126228 m001 Pi/Psi(2,1/3)-Zeta(1,-1)/BesselK(1,1) 2178349888690488 a007 Real Root Of -168*x^4-614*x^3-946*x^2-791*x+202 2178349907585307 a007 Real Root Of 174*x^4-874*x^3+684*x^2+766*x+202 2178349909993017 r002 42th iterates of z^2 + 2178349919210026 m001 FellerTornier/(FeigenbaumD-Zeta(3)) 2178349927620320 m008 (1/6*Pi^6-3)/(3/4*Pi^6+3/4) 2178349930226428 m001 (Gompertz-Rabbit)/(FeigenbaumKappa-GaussAGM) 2178349948206141 k001 Champernowne real with 1321*n+857 2178349948294466 m001 1/ArtinRank2/FibonacciFactorial/ln(Paris)^2 2178349952360464 a007 Real Root Of 457*x^4+615*x^3-910*x^2+118*x+642 2178349952581311 l006 ln(517/4566) 2178349952872227 a002 11^(7/6)+19^(4/7) 2178349960156870 m001 (ln(2+3^(1/2))+GAMMA(13/24))/(Conway+ZetaQ(2)) 2178349961554153 h001 (3/4*exp(1)+2/7)/(1/8*exp(1)+8/11) 2178349962516971 m005 (1/2*5^(1/2)+1/7)/(1/8*Zeta(3)+3/7) 2178349965517211 m001 (-GAMMA(5/6)+Cahen)/(Catalan-ln(2)) 2178349966688929 a005 (1/cos(6/143*Pi))^1675 2178349967443970 m001 (Chi(1)-ln(Pi))/(-ErdosBorwein+MadelungNaCl) 2178350004808168 r005 Im(z^2+c),c=-7/34+17/55*I,n=27 2178350010033068 a007 Real Root Of 610*x^4-898*x^3+988*x^2-452*x-156 2178350015559129 m005 (1/3*gamma-3/5)/(1/6*gamma+1/11) 2178350024814816 m001 (GAMMA(23/24)-ZetaP(4))/(ln(5)-GAMMA(19/24)) 2178350025418861 m001 (Catalan+FeigenbaumB)/(-OneNinth+Trott2nd) 2178350027957102 m001 HardHexagonsEntropy/Cahen/ln(GAMMA(1/24))^2 2178350047712960 r005 Im(z^2+c),c=9/28+25/49*I,n=40 2178350048226144 k001 Champernowne real with 1322*n+856 2178350050764772 m001 Zeta(1/2)/(MasserGramain^Catalan) 2178350053309309 m005 (1/4*Pi+1/5)/(1/6*Pi+4) 2178350053309309 m006 (1/4*Pi+1/5)/(1/6*Pi+4) 2178350053309309 m008 (1/4*Pi+1/5)/(1/6*Pi+4) 2178350061014828 l006 ln(4873/6059) 2178350074492960 r005 Im(z^2+c),c=-9/10+43/233*I,n=30 2178350078526462 s001 sum(exp(-3*Pi/5)^n*A114226[n],n=1..infinity) 2178350078537880 a007 Real Root Of -485*x^4-662*x^3+260*x^2-920*x+840 2178350081526118 r009 Im(z^3+c),c=-5/34+25/29*I,n=26 2178350087293867 r005 Re(z^2+c),c=-17/90+25/63*I,n=25 2178350093731145 m001 (ZetaP(4)-ZetaQ(4))/(Pi+GaussKuzminWirsing) 2178350094938729 r005 Im(z^2+c),c=-15/16+17/80*I,n=59 2178350096704673 m001 BesselI(1,1)^exp(gamma)*BesselK(1,1) 2178350097560879 r008 a(0)=2,K{-n^6,-2-13*n+4*n^2+7*n^3} 2178350105554010 a007 Real Root Of -281*x^4-756*x^3-762*x^2-519*x+998 2178350106281468 m001 GaussKuzminWirsing*Robbin*Trott 2178350114813768 a001 47/377*377^(47/54) 2178350116455949 a003 cos(Pi*11/92)/cos(Pi*32/89) 2178350117780887 a007 Real Root Of 53*x^4-207*x^3-280*x^2+667*x+822 2178350118940594 b008 1/2+Csc[1]^3 2178350120902609 m001 5^(1/2)/(Conway^Paris) 2178350122679682 m001 (Kolakoski-Magata)/(Conway-FeigenbaumAlpha) 2178350133984818 m005 (1/3*3^(1/2)-3/4)/(1/11*exp(1)+6/11) 2178350140660183 m005 (1/2*gamma+6/11)/(7/11*Catalan-1/5) 2178350148246147 k001 Champernowne real with 1323*n+855 2178350156611695 a007 Real Root Of 664*x^4+984*x^3-909*x^2+48*x-362 2178350162592298 r005 Im(z^2+c),c=-1/11+13/48*I,n=5 2178350167165033 a007 Real Root Of -696*x^4-543*x^3-330*x^2+773*x+180 2178350174254845 r009 Re(z^3+c),c=-29/82+17/33*I,n=14 2178350175637758 a007 Real Root Of -503*x^4-621*x^3+926*x^2-33*x+441 2178350180691798 a008 Real Root of x^4-2*x^3-29*x^2-36*x+16 2178350187992535 m005 (1/2*Catalan-3/8)/(3/5*gamma-8/11) 2178350192907272 m001 Sierpinski/(Cahen+Landau) 2178350194772704 m005 (1/3*3^(1/2)+3/4)/(2/11*gamma-5/7) 2178350197731271 r005 Re(z^2+c),c=-21/118+14/33*I,n=52 2178350200116658 a001 199/21*514229^(46/49) 2178350202194530 r005 Re(z^2+c),c=-7/58+23/42*I,n=39 2178350204045767 a001 1364/9227465*3^(6/17) 2178350206015296 r002 43th iterates of z^2 + 2178350206951907 b008 1+(17*ArcCoth[3])/5 2178350206951907 b008 10+17*Log[2] 2178350209591768 m001 1/GAMMA(7/24)^2*exp(Ei(1))/LambertW(1)^2 2178350224414230 r009 Re(z^3+c),c=-49/118+28/55*I,n=3 2178350227125275 m001 (Magata+Tetranacci)/(cos(1/5*Pi)+GAMMA(13/24)) 2178350229209073 a001 1/620166*2^(23/53) 2178350229316964 m001 GAMMA(5/12)/BesselK(0,1)/exp(sin(1)) 2178350236856378 r005 Re(z^2+c),c=-19/118+26/57*I,n=16 2178350240180782 a007 Real Root Of 741*x^4-561*x^3-769*x^2-952*x+248 2178350246447781 a007 Real Root Of -40*x^4+514*x^3-791*x^2-123*x-391 2178350248266150 k001 Champernowne real with 1324*n+854 2178350251186484 m001 1/Zeta(5)^2/GAMMA(1/24)*ln(gamma) 2178350252027320 m001 FransenRobinson/Zeta(1,2)/exp(1/Pi) 2178350254664127 l006 ln(725/6403) 2178350258157590 r005 Im(z^2+c),c=-35/74+20/53*I,n=32 2178350272052540 m001 (DuboisRaymond-ZetaP(4))/(ArtinRank2-Cahen) 2178350278273926 r005 Im(z^2+c),c=-9/14+35/79*I,n=56 2178350280507278 a007 Real Root Of 598*x^4+879*x^3-919*x^2-99*x-234 2178350281668860 m001 (CareFree+Stephens)/sin(1/5*Pi) 2178350283702921 r002 58th iterates of z^2 + 2178350289775014 a007 Real Root Of 414*x^4+740*x^3-400*x^2-304*x-437 2178350299225992 m001 Thue^Sarnak+GlaisherKinkelin 2178350313082545 a007 Real Root Of -306*x^4-238*x^3+909*x^2-200*x-319 2178350319280008 g006 Psi(1,7/8)+Psi(1,1/4)-Psi(1,5/12)-Psi(1,3/11) 2178350324507069 r005 Re(z^2+c),c=-21/118+14/33*I,n=55 2178350325986424 r005 Im(z^2+c),c=-17/42+23/63*I,n=52 2178350327074076 a007 Real Root Of -77*x^4+201*x^3+571*x^2-583*x-168 2178350336685939 r005 Re(z^2+c),c=-21/118+14/33*I,n=54 2178350337094124 m001 (cos(1/5*Pi)-ln(gamma))/(ln(3)-Weierstrass) 2178350338687206 a007 Real Root Of -788*x^4-216*x^3+353*x^2+676*x-160 2178350345533487 r005 Re(z^2+c),c=-21/118+14/33*I,n=57 2178350348286153 k001 Champernowne real with 1325*n+853 2178350358276614 m001 Zeta(5)*MinimumGamma+LaplaceLimit 2178350358486649 a003 cos(Pi*1/43)/cos(Pi*38/109) 2178350358505821 r005 Re(z^2+c),c=-21/118+14/33*I,n=60 2178350361203711 a007 Real Root Of 207*x^4+332*x^3+48*x^2+813*x+314 2178350361512180 r009 Im(z^3+c),c=-55/122+2/27*I,n=23 2178350364555695 r005 Re(z^2+c),c=-21/118+14/33*I,n=58 2178350366818404 r005 Re(z^2+c),c=-21/118+14/33*I,n=63 2178350367681927 m001 (gamma(1)-Artin)/(Kac-MasserGramain) 2178350374635823 r005 Re(z^2+c),c=-21/118+14/33*I,n=61 2178350375897734 r005 Re(z^2+c),c=-21/118+14/33*I,n=64 2178350376085611 a007 Real Root Of 411*x^4+687*x^3-693*x^2-237*x+619 2178350377264343 r005 Re(z^2+c),c=-21/118+14/33*I,n=51 2178350381461151 r005 Re(z^2+c),c=-21/118+14/33*I,n=62 2178350397158483 m001 (ln(3)+exp(1/exp(1)))/(Salem-ZetaQ(3)) 2178350397237660 r005 Re(z^2+c),c=-21/118+14/33*I,n=59 2178350410229805 m008 (3/4*Pi-1/4)/(1/3*Pi^3-2/3) 2178350411220815 r005 Im(z^2+c),c=-7/34+17/55*I,n=26 2178350411641935 m001 1/exp(GAMMA(3/4))*CareFree/GAMMA(7/24)^2 2178350419584350 m005 (1/3*exp(1)+2/5)/(6*Catalan+1/2) 2178350419769740 m001 (Cahen-PolyaRandomWalk3D)/(Porter-ZetaP(4)) 2178350422056173 l006 ln(933/8240) 2178350428822170 r002 25th iterates of z^2 + 2178350436120571 m001 (Landau-Sarnak)/(Zeta(3)-Artin) 2178350436903283 r005 Re(z^2+c),c=-21/118+14/33*I,n=56 2178350438383338 a007 Real Root Of 422*x^4+971*x^3+193*x^2-196*x-808 2178350448306156 k001 Champernowne real with 1326*n+852 2178350451479256 a007 Real Root Of -147*x^4+71*x^3-971*x^2+733*x-114 2178350458021235 m001 sinh(1)^2*exp(Magata)^2*sqrt(3) 2178350467674909 r005 Re(z^2+c),c=5/27+5/61*I,n=3 2178350474792938 m001 (Psi(2,1/3)+Zeta(5))/(-3^(1/3)+Porter) 2178350479949780 r005 Re(z^2+c),c=5/28+32/43*I,n=5 2178350506837986 l006 ln(3702/4603) 2178350509523742 a007 Real Root Of -297*x^4-201*x^3+815*x^2-687*x-754 2178350515072249 m001 (Zeta(5)+ln(Pi))/(Salem-ZetaP(3)) 2178350515463917 q001 2113/970 2178350525254867 r009 Re(z^3+c),c=-17/126+36/37*I,n=6 2178350525492613 r005 Re(z^2+c),c=-21/118+14/33*I,n=53 2178350528418326 l006 ln(1141/10077) 2178350528733835 m001 (gamma(2)-gamma)/(-MertensB1+Otter) 2178350531218673 m005 (1/3*Catalan-1/5)/(1/8*3^(1/2)-7/10) 2178350537746597 a007 Real Root Of 608*x^4+958*x^3-820*x^2+273*x+698 2178350539874579 a007 Real Root Of 218*x^4+387*x^3-313*x^2-173*x+200 2178350540810394 r005 Im(z^2+c),c=-7/34+17/55*I,n=29 2178350542073424 r005 Im(z^2+c),c=-23/82+2/63*I,n=21 2178350545411321 m001 arctan(1/3)/GAMMA(5/6)*LandauRamanujan 2178350548326159 k001 Champernowne real with 1327*n+851 2178350557232403 m001 1/ln(Salem)*LandauRamanujan^2/GAMMA(17/24)^2 2178350560344562 m001 (Rabbit-Tetranacci)/(MertensB2-PlouffeB) 2178350575003422 a007 Real Root Of -646*x^4-905*x^3+927*x^2-81*x+616 2178350580339134 r005 Im(z^2+c),c=9/23+7/32*I,n=13 2178350587587782 m001 BesselK(1,1)/FeigenbaumD*ln(GAMMA(1/3))^2 2178350589934990 m001 (ln(5)+exp(1/exp(1)))/(AlladiGrinstead+Lehmer) 2178350595905001 s002 sum(A117200[n]/(n*exp(n)+1),n=1..infinity) 2178350599292278 r002 41th iterates of z^2 + 2178350607225259 m005 (1/2*Catalan-9/10)/(10/11*3^(1/2)+5/11) 2178350626515144 a001 1/49*(1/2*5^(1/2)+1/2)^2*7^(13/18) 2178350627379525 r005 Re(z^2+c),c=-21/118+14/33*I,n=48 2178350635778094 r002 56th iterates of z^2 + 2178350648346162 k001 Champernowne real with 1328*n+850 2178350648911183 a007 Real Root Of -255*x^4-833*x^3-326*x^2+742*x-16 2178350650624220 h001 (-9*exp(5)-4)/(-9*exp(2)+5) 2178350657941618 r005 Re(z^2+c),c=-1/7+33/64*I,n=13 2178350660606348 m001 (-Thue+TwinPrimes)/(Shi(1)-cos(1/12*Pi)) 2178350663344097 m001 GaussKuzminWirsing^(Robbin/polylog(4,1/2)) 2178350667292844 g001 Psi(9/10,89/117) 2178350680704170 m001 1/CareFree^2/ln(Bloch)^2/GAMMA(13/24) 2178350681063609 g004 Im(Psi(-29/12+I*101/24)) 2178350694272807 m005 (1/2*2^(1/2)+1/6)/(1/12*3^(1/2)-6/11) 2178350695070546 r005 Re(z^2+c),c=-21/118+14/33*I,n=50 2178350698939357 a008 Real Root of x^4-2*x^3-36*x^2-26*x+71 2178350715231684 r009 Re(z^3+c),c=-1/28+19/34*I,n=20 2178350717527329 m005 (1/2*Zeta(3)-7/11)/(149/198+7/18*5^(1/2)) 2178350722768468 m001 RenyiParking^Lehmer*sin(1/12*Pi) 2178350722768468 m001 sin(Pi/12)*RenyiParking^Lehmer 2178350724927168 m001 ln(Lehmer)/GlaisherKinkelin^2/Zeta(1/2) 2178350726314409 r005 Re(z^2+c),c=-5/22+25/36*I,n=26 2178350731342317 m008 (3/5*Pi+5)/(Pi^3+3/5) 2178350739446205 m001 (gamma(2)-gamma)/(BesselI(0,2)+PrimesInBinary) 2178350741840057 a003 sin(Pi*8/97)*sin(Pi*11/34) 2178350744570906 a007 Real Root Of 355*x^4+267*x^3-858*x^2+820*x+624 2178350747575512 m001 ln(Riemann2ndZero)/LaplaceLimit^2*Pi 2178350748366165 k001 Champernowne real with 1329*n+849 2178350749694734 r005 Im(z^2+c),c=-47/70+2/49*I,n=61 2178350753494907 m002 Pi^2+Pi^5/E^Pi-Log[Pi]^2 2178350758350221 r005 Re(z^2+c),c=-27/118+17/62*I,n=19 2178350759741364 r009 Re(z^3+c),c=-31/66+8/17*I,n=21 2178350769164462 m001 1/ln(GAMMA(3/4))^2/FeigenbaumD^2/cosh(1) 2178350772149418 r009 Re(z^3+c),c=-31/114+16/31*I,n=3 2178350774431323 m001 1/GAMMA(11/24)^2/ln(Champernowne)/sin(Pi/5) 2178350777842566 m008 (1/5*Pi-4)/(5*Pi^3-1/4) 2178350782083017 a007 Real Root Of 4*x^4+874*x^3+577*x^2-518*x-227 2178350786716090 a007 Real Root Of -318*x^4+658*x^3-721*x^2+901*x+238 2178350792371743 q001 811/3723 2178350795104561 a007 Real Root Of 329*x^4+791*x^3+33*x^2-727*x-972 2178350795338396 r005 Re(z^2+c),c=-24/29+1/38*I,n=22 2178350801458895 r005 Re(z^2+c),c=-31/90+29/57*I,n=8 2178350802715159 g004 Re(GAMMA(-5/4+I*13/60)) 2178350809434747 r009 Re(z^3+c),c=-5/14+47/62*I,n=30 2178350809698935 a001 521/8*28657^(2/17) 2178350817630727 h001 (4/5*exp(1)+2/9)/(1/11*exp(2)+3/7) 2178350821899022 m005 (1/2*Pi+4)/(7/9*5^(1/2)+9/11) 2178350826315179 a007 Real Root Of -599*x^4-842*x^3+716*x^2-508*x+280 2178350830085137 h001 (-4*exp(8)-3)/(-5*exp(7)+8) 2178350831691131 r005 Im(z^2+c),c=-5/11+1/39*I,n=5 2178350836486639 r009 Re(z^3+c),c=-11/31+18/35*I,n=63 2178350836508573 p004 log(28447/3221) 2178350837153924 k002 Champernowne real with 215/2*n^2-531/2*n+179 2178350839728511 m001 (-Bloch+Trott)/(BesselK(1,1)-exp(1)) 2178350848386168 k001 Champernowne real with 1330*n+848 2178350855385420 l006 ln(6233/7750) 2178350860311132 a007 Real Root Of -479*x^4-967*x^3+32*x^2+55*x+758 2178350867908198 m001 (exp(Pi)+ln(gamma))/(-ln(Pi)+OneNinth) 2178350870165173 m001 (Pi-Psi(2,1/3))/(Shi(1)-PisotVijayaraghavan) 2178350878132111 m001 (CareFree-Totient)^ReciprocalFibonacci 2178350883013709 r005 Re(z^2+c),c=-9/70+26/49*I,n=53 2178350884679734 m001 (BesselI(1,1)+Backhouse)/(PlouffeB+ZetaP(2)) 2178350889054157 a007 Real Root Of -875*x^4+959*x^3-138*x^2+875*x-192 2178350889960135 r002 34th iterates of z^2 + 2178350890350844 a007 Real Root Of 442*x^4+644*x^3-977*x^2-619*x-8 2178350891985040 p001 sum((-1)^n/(598*n+453)/(32^n),n=0..infinity) 2178350892976079 a001 1762289/38*76^(8/9) 2178350898976680 a001 1/322*76^(53/54) 2178350917804973 r009 Re(z^3+c),c=-49/118+19/39*I,n=11 2178350922789128 r005 Im(z^2+c),c=-17/26+10/121*I,n=16 2178350938862868 r005 Re(z^2+c),c=-21/118+14/33*I,n=47 2178350939056042 m001 1/Zeta(9)^2/FeigenbaumB/ln(sqrt(3)) 2178350946953006 m002 -5*Coth[Pi]-Log[Pi]+4*Tanh[Pi] 2178350948406171 k001 Champernowne real with 1331*n+847 2178350950331607 r005 Re(z^2+c),c=23/82+17/36*I,n=25 2178350951796790 r005 Re(z^2+c),c=-19/106+40/59*I,n=43 2178350969576970 m001 exp(GAMMA(2/3))^2/GAMMA(13/24)*cosh(1)^2 2178350971832393 m001 (3^(1/3)-Si(Pi))/(CareFree+Salem) 2178350971947122 m001 GAMMA(11/12)*FeigenbaumKappa+RenyiParking 2178350972660259 m001 1/(3^(1/3))*KhintchineHarmonic*exp(sin(Pi/5)) 2178350974155704 r009 Re(z^3+c),c=-19/58+25/56*I,n=29 2178350977315703 m001 (-Magata+StronglyCareFree)/(1+exp(-1/2*Pi)) 2178350979162305 m001 (Zeta(5)+FeigenbaumD)^Lehmer 2178350987121627 a007 Real Root Of 546*x^4+788*x^3-719*x^2+298*x-88 2178350989952256 r005 Im(z^2+c),c=-7/34+17/55*I,n=32 2178350990718910 a007 Real Root Of 455*x^4+728*x^3-449*x^2-42*x-681 2178350993576608 a007 Real Root Of 361*x^4+577*x^3+135*x^2-600*x+13 2178350995955628 m005 (1/3*Pi-1/12)/(1/2*exp(1)-11/12) 2178350998967887 a001 322/89*34^(28/55) 2178351000762487 a005 (1/sin(49/191*Pi))^214 2178351004848727 a007 Real Root Of 62*x^4-306*x^3-905*x^2-13*x-293 2178351005513807 l006 ln(208/1837) 2178351019879415 r005 Re(z^2+c),c=-21/118+14/33*I,n=44 2178351028706316 r002 46th iterates of z^2 + 2178351035266892 a007 Real Root Of -307*x^4-215*x^3+611*x^2-443*x+826 2178351039250306 r002 4th iterates of z^2 + 2178351042379372 r005 Re(z^2+c),c=-99/94+8/39*I,n=8 2178351048426174 k001 Champernowne real with 1332*n+846 2178351049016258 h001 (-3*exp(1)-10)/(-4*exp(3)-3) 2178351054312945 a001 3020733700601/48*6557470319842^(10/17) 2178351068474807 a007 Real Root Of -693*x^4-889*x^3+922*x^2-930*x+14 2178351071323738 a001 21/29*167761^(6/7) 2178351071390082 a001 21/29*2537720636^(10/21) 2178351071390082 a001 21/29*3461452808002^(5/14) 2178351071390082 a001 21/29*28143753123^(3/7) 2178351071390531 a001 21/29*1860498^(5/7) 2178351071755243 m001 PrimesInBinary^2/FeigenbaumC*exp(sin(1)) 2178351076345687 r009 Re(z^3+c),c=-11/31+18/35*I,n=54 2178351078289691 a007 Real Root Of 594*x^4+756*x^3-977*x^2+98*x-711 2178351082280781 r005 Im(z^2+c),c=-9/8+35/169*I,n=32 2178351087657841 r005 Re(z^2+c),c=17/94+3/50*I,n=6 2178351087874795 m001 Zeta(5)*Pi*csc(11/24*Pi)/GAMMA(13/24)+ZetaP(3) 2178351112428447 m001 1/ln(Zeta(7))/Champernowne*sqrt(5) 2178351113795254 m001 (Zeta(3)-FransenRobinson)/(MertensB1+PlouffeB) 2178351114112411 k007 concat of cont frac of 2178351119647931 a007 Real Root Of -377*x^4-835*x^3-403*x^2-976*x-356 2178351128592511 k008 concat of cont frac of 2178351131874988 r005 Im(z^2+c),c=-7/34+17/55*I,n=35 2178351138835006 a001 12238/305*8^(48/59) 2178351147360087 r005 Im(z^2+c),c=-7/34+17/55*I,n=37 2178351148446177 k001 Champernowne real with 1333*n+845 2178351152392300 m001 1/cos(Pi/5)^2/GAMMA(3/4)/ln(sqrt(Pi)) 2178351153188761 r005 Im(z^2+c),c=-7/34+17/55*I,n=34 2178351153975139 r005 Im(z^2+c),c=-7/34+17/55*I,n=40 2178351154329676 m001 (exp(1/Pi)-Cahen)/(ThueMorse-ZetaP(4)) 2178351155939146 r005 Re(z^2+c),c=9/22+13/42*I,n=42 2178351156442589 r005 Im(z^2+c),c=-7/34+17/55*I,n=43 2178351156817364 r005 Im(z^2+c),c=-7/34+17/55*I,n=45 2178351156821806 r005 Im(z^2+c),c=-7/34+17/55*I,n=38 2178351156907643 r005 Im(z^2+c),c=-7/34+17/55*I,n=48 2178351156934501 r005 Im(z^2+c),c=-7/34+17/55*I,n=46 2178351156949438 r005 Im(z^2+c),c=-7/34+17/55*I,n=51 2178351156957712 r005 Im(z^2+c),c=-7/34+17/55*I,n=53 2178351156958790 r005 Im(z^2+c),c=-7/34+17/55*I,n=56 2178351156958832 r005 Im(z^2+c),c=-7/34+17/55*I,n=54 2178351156959478 r005 Im(z^2+c),c=-7/34+17/55*I,n=59 2178351156959650 r005 Im(z^2+c),c=-7/34+17/55*I,n=61 2178351156959652 r005 Im(z^2+c),c=-7/34+17/55*I,n=62 2178351156959659 r005 Im(z^2+c),c=-7/34+17/55*I,n=64 2178351156959701 r005 Im(z^2+c),c=-7/34+17/55*I,n=63 2178351156959788 r005 Im(z^2+c),c=-7/34+17/55*I,n=60 2178351156959812 r005 Im(z^2+c),c=-7/34+17/55*I,n=58 2178351156959895 r005 Im(z^2+c),c=-7/34+17/55*I,n=57 2178351156961096 r005 Im(z^2+c),c=-7/34+17/55*I,n=55 2178351156964523 r005 Im(z^2+c),c=-7/34+17/55*I,n=50 2178351156966479 r005 Im(z^2+c),c=-7/34+17/55*I,n=52 2178351156976573 r005 Im(z^2+c),c=-7/34+17/55*I,n=49 2178351157032751 r005 Im(z^2+c),c=-7/34+17/55*I,n=47 2178351157063510 r005 Im(z^2+c),c=-7/34+17/55*I,n=42 2178351157354978 r005 Im(z^2+c),c=-7/34+17/55*I,n=44 2178351158137014 r005 Im(z^2+c),c=-7/34+17/55*I,n=41 2178351160581950 r005 Im(z^2+c),c=-7/34+17/55*I,n=39 2178351162863099 r005 Re(z^2+c),c=-15/82+11/25*I,n=12 2178351164887200 a005 (1/sin(65/159*Pi))^1236 2178351179354227 r005 Im(z^2+c),c=-7/34+17/55*I,n=36 2178351180920030 a007 Real Root Of 800*x^4-890*x^3+567*x^2-471*x+10 2178351183265428 m001 1/PisotVijayaraghavan/CareFree*ln(GAMMA(3/4)) 2178351186475630 m005 (1/2*gamma-9/10)/(6/11*Zeta(3)-3/8) 2178351188562805 a008 Real Root of x^4-11*x^2-170*x+400 2178351190613872 m001 (Kac-LandauRamanujan2nd)/(ln(2)+ln(2+3^(1/2))) 2178351196821697 r005 Re(z^2+c),c=-1/106+19/32*I,n=3 2178351204065225 a001 3571/24157817*3^(6/17) 2178351205971833 h001 (-2*exp(-3)+1)/(-9*exp(3/2)-1) 2178351213197592 m003 3/2+Sqrt[5]/2-1/(3*ProductLog[1/2+Sqrt[5]/2]) 2178351215149558 h001 (7/10*exp(2)+10/11)/(11/12*exp(1)+3/10) 2178351215597975 m001 FibonacciFactorial/(1+3^(1/2))^(1/2)/Magata 2178351215766917 m001 GaussAGM^(2^(1/2))+OrthogonalArrays 2178351216859149 r005 Re(z^2+c),c=-13/110+21/38*I,n=36 2178351221043685 r005 Im(z^2+c),c=-7/34+17/55*I,n=30 2178351226372435 r009 Im(z^3+c),c=-1/70+13/57*I,n=6 2178351227213350 r009 Re(z^3+c),c=-15/44+8/17*I,n=14 2178351229843675 r005 Im(z^2+c),c=-4/7+37/92*I,n=33 2178351234276491 r005 Im(z^2+c),c=-7/34+17/55*I,n=33 2178351241264295 a007 Real Root Of -844*x^4+96*x^3+662*x^2+723*x-188 2178351248466180 k001 Champernowne real with 1334*n+844 2178351259627564 m001 FellerTornier*HardyLittlewoodC4^Psi(1,1/3) 2178351269007988 m001 (FeigenbaumD+Landau)/(Catalan+BesselI(1,1)) 2178351269715903 r005 Re(z^2+c),c=-9/11+3/32*I,n=14 2178351269801593 r009 Im(z^3+c),c=-31/90+61/64*I,n=4 2178351270468973 r005 Re(z^2+c),c=-1/10+25/43*I,n=44 2178351279823198 r005 Im(z^2+c),c=-25/34+1/116*I,n=57 2178351302386538 a007 Real Root Of -15*x^4+352*x^3-713*x^2+809*x-146 2178351307636982 a007 Real Root Of -588*x^4-844*x^3-898*x^2+984*x-21 2178351309707241 r002 2th iterates of z^2 + 2178351309707241 r002 2th iterates of z^2 + 2178351321095420 m004 -2+10*Pi-5*ProductLog[Sqrt[5]*Pi] 2178351325480848 m005 (1/3*Catalan+3/7)/(3/5*exp(1)-5) 2178351328348976 r005 Im(z^2+c),c=-7/34+17/55*I,n=31 2178351332335805 m005 (1/2*exp(1)+3/10)/(4/11*Catalan+3/7) 2178351337497617 m001 (1-MasserGramain)/(-Niven+StolarskyHarborth) 2178351348486183 k001 Champernowne real with 1335*n+843 2178351348572856 m009 (16*Catalan+2*Pi^2+2/5)/(1/3*Psi(1,3/4)+3/4) 2178351349966097 a001 9349/63245986*3^(6/17) 2178351350660577 r009 Re(z^3+c),c=-29/78+15/26*I,n=44 2178351360370409 a001 1/47*47^(29/48) 2178351361736032 m005 (1/2*exp(1)-5/11)/(1/6*Catalan+4) 2178351365192828 l006 ln(2531/3147) 2178351371252748 a001 24476/165580141*3^(6/17) 2178351374358428 a001 64079/433494437*3^(6/17) 2178351374811541 a001 167761/1134903170*3^(6/17) 2178351374877649 a001 439204/2971215073*3^(6/17) 2178351374887294 a001 1149851/7778742049*3^(6/17) 2178351374888701 a001 3010349/20365011074*3^(6/17) 2178351374888907 a001 7881196/53316291173*3^(6/17) 2178351374888937 a001 20633239/139583862445*3^(6/17) 2178351374888941 a001 54018521/365435296162*3^(6/17) 2178351374888942 a001 141422324/956722026041*3^(6/17) 2178351374888942 a001 370248451/2504730781961*3^(6/17) 2178351374888942 a001 969323029/6557470319842*3^(6/17) 2178351374888942 a001 224056801/1515744265389*3^(6/17) 2178351374888942 a001 599074578/4052739537881*3^(6/17) 2178351374888942 a001 228826127/1548008755920*3^(6/17) 2178351374888942 a001 87403803/591286729879*3^(6/17) 2178351374888944 a001 4769326/32264490531*3^(6/17) 2178351374888955 a001 12752043/86267571272*3^(6/17) 2178351374889034 a001 4870847/32951280099*3^(6/17) 2178351374889571 a001 1860498/12586269025*3^(6/17) 2178351374893255 a001 101521/686789568*3^(6/17) 2178351374918506 a001 271443/1836311903*3^(6/17) 2178351375091580 a001 103682/701408733*3^(6/17) 2178351376277844 a001 39603/267914296*3^(6/17) 2178351380765019 a007 Real Root Of 155*x^4-967*x^3-744*x^2-693*x-126 2178351384408621 a001 1/6765*3^(6/17) 2178351400394090 r005 Im(z^2+c),c=-1/31+46/61*I,n=30 2178351404807023 r009 Re(z^3+c),c=-25/78+3/7*I,n=34 2178351409357269 m005 (1/3*Pi+2/9)/(9/10*Pi+3) 2178351411879098 r004 Im(z^2+c),c=11/34+9/23*I,z(0)=I,n=3 2178351424656354 m001 (3^(1/2)+GAMMA(3/4))/(ArtinRank2+TwinPrimes) 2178351425080148 a001 123/233*6765^(9/56) 2178351427708772 r005 Re(z^2+c),c=-33/26+95/127*I,n=2 2178351432160698 a003 cos(Pi*5/116)-cos(Pi*7/32) 2178351440137796 a001 5778/39088169*3^(6/17) 2178351445441929 h001 (4/11*exp(1)+2/11)/(7/10*exp(2)+1/5) 2178351447977250 a007 Real Root Of -566*x^4+304*x^3-629*x^2+972*x+246 2178351448506186 k001 Champernowne real with 1336*n+842 2178351449823991 h001 (1/7*exp(1)+3/7)/(3/7*exp(2)+7/12) 2178351459793802 r005 Im(z^2+c),c=-9/8+20/89*I,n=49 2178351469228755 r005 Im(z^2+c),c=-8/9+19/92*I,n=13 2178351479203105 r009 Re(z^3+c),c=-12/29+35/57*I,n=55 2178351487383762 m001 (5^(1/2)-ln(gamma))/(-MertensB3+ZetaQ(2)) 2178351507629576 a007 Real Root Of 264*x^4+336*x^3-759*x^2-607*x-192 2178351509515184 m001 (GAMMA(7/12)-Kolakoski)/(Otter+PrimesInBinary) 2178351514975363 h001 (7/10*exp(2)+5/12)/(2/7*exp(2)+5/11) 2178351516631348 r005 Im(z^2+c),c=-19/18+58/207*I,n=8 2178351520792941 a001 3/8*28657^(6/35) 2178351521050297 a007 Real Root Of 513*x^4+773*x^3-321*x^2+548*x-844 2178351540949515 r002 10th iterates of z^2 + 2178351542143305 a001 322/17711*2178309^(17/35) 2178351548513477 m001 (5^(1/2)+Zeta(5))/(Cahen+Thue) 2178351548526189 k001 Champernowne real with 1337*n+841 2178351550624995 a007 Real Root Of 136*x^4+53*x^3-369*x^2+698*x+757 2178351553549516 a007 Real Root Of 263*x^4+370*x^3-118*x^2+681*x-54 2178351561945000 r005 Re(z^2+c),c=-21/118+14/33*I,n=45 2178351564466875 m005 (1/2*3^(1/2)+2)/(2/5*2^(1/2)+3/4) 2178351565766860 m005 (1/2*Pi-3/8)/(7/9*gamma+1/10) 2178351578613973 r005 Im(z^2+c),c=-17/36+1/27*I,n=44 2178351585242940 l006 ln(939/8293) 2178351586208378 m001 GAMMA(5/12)^2*MertensB1*ln(Zeta(3)) 2178351616859259 p001 sum(1/(309*n+46)/(64^n),n=0..infinity) 2178351628434525 m005 (1/3*Zeta(3)-3/5)/(3/7*exp(1)-1/4) 2178351628652541 a007 Real Root Of 175*x^4+118*x^3+515*x^2-900*x+170 2178351628765685 a007 Real Root Of 886*x^4-576*x^3-931*x^2-867*x+237 2178351648546192 k001 Champernowne real with 1338*n+840 2178351650088557 r005 Im(z^2+c),c=19/62+1/23*I,n=28 2178351653044472 m001 (BesselI(1,1)+BesselK(1,1))/(Cahen-OneNinth) 2178351659138275 m001 1/GAMMA(5/24)^2/ln(FeigenbaumDelta)^2 2178351664271421 a001 3/3010349*4^(22/39) 2178351668829566 a001 1/77*(1/2*5^(1/2)+1/2)^18*11^(4/9) 2178351678916431 m001 (Chi(1)-ln(2+3^(1/2)))/(ErdosBorwein+Lehmer) 2178351679470434 r009 Re(z^3+c),c=-37/64+14/47*I,n=63 2178351681192095 r005 Re(z^2+c),c=-131/106+11/29*I,n=5 2178351699938379 m001 (Si(Pi)+Magata)/(2^(1/2)+1) 2178351703364117 m001 (PlouffeB-Salem)/(GAMMA(17/24)-ErdosBorwein) 2178351724946265 r005 Re(z^2+c),c=2/11+1/15*I,n=3 2178351733395452 s002 sum(A231869[n]/(n*10^n-1),n=1..infinity) 2178351747808664 a001 4/4181*165580141^(1/23) 2178351748566195 k001 Champernowne real with 1339*n+839 2178351750200006 l006 ln(731/6456) 2178351752194872 a001 1134903170/2207*123^(3/10) 2178351752960201 a001 843/53316291173*3^(7/24) 2178351756250358 a007 Real Root Of -802*x^4-413*x^3-842*x^2+264*x+95 2178351757312961 m001 exp(Kolakoski)^2*FeigenbaumAlpha^2*Rabbit 2178351758800392 a001 21/4*1364^(16/31) 2178351758962287 r008 a(0)=2,K{-n^6,-8+38*n-14*n^2-22*n^3} 2178351760544273 a007 Real Root Of 393*x^4+517*x^3-597*x^2+147*x-352 2178351764256537 a008 Real Root of x^4-2*x^3-22*x^2-46*x-39 2178351780723252 r005 Re(z^2+c),c=-11/122+23/41*I,n=15 2178351781092547 a008 Real Root of x^2-x-47670 2178351782251194 a001 4/6765*10610209857723^(1/23) 2178351783517835 q001 1771/813 2178351784640780 r009 Re(z^3+c),c=-15/52+19/55*I,n=15 2178351791564688 m001 (FeigenbaumB+Niven)/(3^(1/2)-LambertW(1)) 2178351794255015 m005 (1/2*exp(1)+5/11)/(7/12*Pi-1) 2178351800552041 r009 Re(z^3+c),c=-9/44+58/59*I,n=49 2178351804335566 a007 Real Root Of 16*x^4+358*x^3+213*x^2+189*x+868 2178351812510766 p003 LerchPhi(1/1024,2,124/183) 2178351812600485 r005 Re(z^2+c),c=19/106+19/50*I,n=33 2178351815765858 r009 Re(z^3+c),c=-51/110+1/2*I,n=11 2178351815959864 r005 Im(z^2+c),c=-69/82+5/31*I,n=54 2178351816065126 r005 Im(z^2+c),c=-47/52+5/23*I,n=46 2178351819866573 s002 sum(A123655[n]/((2^n+1)/n),n=1..infinity) 2178351821671610 r005 Im(z^2+c),c=-5/31+18/61*I,n=25 2178351822111239 a001 2207/14930352*3^(6/17) 2178351835143473 a001 1/646*2584^(1/23) 2178351840154524 k002 Champernowne real with 108*n^2-267*n+180 2178351840239509 r005 Re(z^2+c),c=-9/40+17/57*I,n=5 2178351845592910 a001 11*2584^(35/52) 2178351848586198 k001 Champernowne real with 1340*n+838 2178351850312921 m003 23/6+Sqrt[5]/2-3*Tanh[1/2+Sqrt[5]/2] 2178351855574396 r005 Re(z^2+c),c=25/74+10/43*I,n=61 2178351856497170 r002 41th iterates of z^2 + 2178351859996535 l006 ln(6422/7985) 2178351864725341 m002 4/Pi^4+Log[Pi]+Tanh[Pi]^2 2178351872774857 a007 Real Root Of 540*x^4+885*x^3-454*x^2+588*x+424 2178351877063357 m001 1/BesselK(1,1)^2/ln(TreeGrowth2nd)/cosh(1) 2178351879970596 m001 (2^(1/3)+BesselI(0,2))/(-Grothendieck+Magata) 2178351883256333 r005 Re(z^2+c),c=7/40+19/41*I,n=62 2178351887098154 a007 Real Root Of 358*x^4+346*x^3-797*x^2+727*x+881 2178351888245169 m001 (GAMMA(11/12)+Tetranacci)/(3^(1/3)+gamma(1)) 2178351888551172 m001 (Zeta(3)-Zeta(5))/(cos(1/12*Pi)-exp(-1/2*Pi)) 2178351894204916 m001 1/exp(exp(1))^2/Riemann1stZero/sqrt(2) 2178351900853376 a007 Real Root Of -290*x^4-801*x^3-580*x^2-266*x+423 2178351916289336 r005 Re(z^2+c),c=-6/5+15/106*I,n=52 2178351924266504 m001 (gamma(1)+exp(-1/2*Pi))/(Lehmer+Trott2nd) 2178351936087494 s002 sum(A041890[n]/(10^n+1),n=1..infinity) 2178351940040414 m002 16*Coth[Pi]+5*Log[Pi] 2178351948606201 k001 Champernowne real with 1341*n+837 2178351954905042 h001 (5/11*exp(2)+1/8)/(5/11*exp(1)+4/11) 2178351966970164 m006 (2/5*ln(Pi)-3/5)/(5*ln(Pi)+4/5) 2178351980295384 r005 Re(z^2+c),c=-6/25+14/53*I,n=5 2178351981430468 p004 log(12823/10313) 2178351999306974 r009 Re(z^3+c),c=-3/13+18/25*I,n=31 2178352002937937 r004 Im(z^2+c),c=-1/24+8/13*I,z(0)=I,n=9 2178352010905964 a007 Real Root Of 3*x^4-548*x^3+130*x^2-850*x-197 2178352024424543 a007 Real Root Of 533*x^4-474*x^3+53*x^2-270*x+60 2178352024687003 a007 Real Root Of 198*x^4-74*x^3-611*x^2+925*x-309 2178352029512560 m001 3^(1/2)*exp(-1/2*Pi)/(1+3^(1/2))^(1/2) 2178352029512560 m001 sqrt(3)*exp(-1/2*Pi)/sqrt(1+sqrt(3)) 2178352043749764 m005 (1/2*5^(1/2)+1/12)/(11/24+1/24*5^(1/2)) 2178352046365682 l006 ln(523/4619) 2178352048626204 k001 Champernowne real with 1342*n+836 2178352049343622 m001 (3^(1/2)-Zeta(3))/(cos(1/12*Pi)+Porter) 2178352064673618 m001 (cos(1)+3^(1/3))/(-Landau+ZetaP(2)) 2178352064835082 r008 a(0)=2,K{-n^6,-18+57*n-25*n^2-20*n^3} 2178352071251322 m001 FeigenbaumD/(GlaisherKinkelin^Chi(1)) 2178352074309970 r005 Im(z^2+c),c=-7/8+45/203*I,n=36 2178352076113617 a007 Real Root Of -508*x^4-909*x^3+577*x^2+535*x+470 2178352080145401 m001 (ArtinRank2+FellerTornier)/(OneNinth-Stephens) 2178352082184914 a003 sin(Pi*43/91)/cos(Pi*50/103) 2178352095322012 r005 Re(z^2+c),c=-11/16+14/43*I,n=7 2178352095638735 m001 (-KhinchinHarmonic+MertensB3)/(Shi(1)+Chi(1)) 2178352095638735 m001 (KhinchinHarmonic-MertensB3)/Ei(1) 2178352099877262 m001 KhintchineLevy^2*ln(FeigenbaumDelta)*Zeta(9)^2 2178352107316361 r005 Re(z^2+c),c=-17/78+35/48*I,n=43 2178352117322897 s001 sum(exp(-3*Pi/5)^n*A147234[n],n=1..infinity) 2178352118440135 m001 ln(Si(Pi))^2*Conway*BesselJ(1,1) 2178352134168368 a001 2971215073/5778*123^(3/10) 2178352141959954 a001 64079/1597*8^(48/59) 2178352144421974 a007 Real Root Of -206*x^4-268*x^3+72*x^2-452*x+542 2178352146018519 r005 Im(z^2+c),c=2/25+29/48*I,n=41 2178352148646207 k001 Champernowne real with 1343*n+835 2178352151291718 r005 Im(z^2+c),c=-4/11+19/54*I,n=18 2178352151794089 m001 (cos(1/12*Pi)+ArtinRank2)/(Rabbit+ZetaQ(2)) 2178352176033840 m001 (gamma+Zeta(5))/(-KhinchinLevy+Tetranacci) 2178352176047628 m001 (exp(1/Pi)+Conway)/(Riemann1stZero-Tribonacci) 2178352181371188 a007 Real Root Of -200*x^4+698*x^3+797*x^2+741*x-206 2178352181854189 l006 ln(3891/4838) 2178352183930922 m005 (1/2*Pi-3)/(1/3*exp(1)-1/4) 2178352186445890 a005 (1/cos(23/172*Pi))^287 2178352186684274 r009 Re(z^3+c),c=-29/122+5/26*I,n=4 2178352189897562 a001 7778742049/15127*123^(3/10) 2178352196498010 m001 Conway+ZetaP(3)^ZetaP(4) 2178352198028341 a001 20365011074/39603*123^(3/10) 2178352199214606 a001 53316291173/103682*123^(3/10) 2178352199387680 a001 139583862445/271443*123^(3/10) 2178352199412931 a001 365435296162/710647*123^(3/10) 2178352199416615 a001 956722026041/1860498*123^(3/10) 2178352199417153 a001 2504730781961/4870847*123^(3/10) 2178352199417231 a001 6557470319842/12752043*123^(3/10) 2178352199417250 a001 10610209857723/20633239*123^(3/10) 2178352199417280 a001 4052739537881/7881196*123^(3/10) 2178352199417485 a001 1548008755920/3010349*123^(3/10) 2178352199418892 a001 514229*123^(3/10) 2178352199428537 a001 225851433717/439204*123^(3/10) 2178352199494645 a001 86267571272/167761*123^(3/10) 2178352199527653 m005 (1/2*3^(1/2)+3/10)/(-29/5+1/5*5^(1/2)) 2178352199828020 m001 (-Trott+ThueMorse)/(GAMMA(23/24)-sin(1)) 2178352199947758 a001 32951280099/64079*123^(3/10) 2178352203053440 a001 12586269025/24476*123^(3/10) 2178352206018175 s002 sum(A115473[n]/((3*n)!),n=1..infinity) 2178352207159228 a001 76/1597*121393^(18/25) 2178352207800657 r005 Re(z^2+c),c=-13/114+24/43*I,n=63 2178352217025765 m001 1/ln(FransenRobinson)/FeigenbaumAlpha^2/Rabbit 2178352218656880 r009 Re(z^3+c),c=-4/31+31/38*I,n=61 2178352224340099 a001 4807526976/9349*123^(3/10) 2178352228309707 a007 Real Root Of 234*x^4+827*x^3+602*x^2-732*x-180 2178352238869377 r009 Re(z^3+c),c=-1/90+23/27*I,n=10 2178352248666210 k001 Champernowne real with 1344*n+834 2178352264633818 m001 (GAMMA(17/24)+ArtinRank2)/(Landau-ZetaP(2)) 2178352274216436 a007 Real Root Of -431*x^4-465*x^3+514*x^2-719*x+893 2178352274569606 r005 Re(z^2+c),c=-11/82+13/25*I,n=54 2178352288358898 m001 Psi(1,1/3)/(TwinPrimes^Si(Pi)) 2178352293435767 m001 CopelandErdos^(Chi(1)/Kolakoski) 2178352298771549 m001 (ln(Pi)-CareFree)/(GaussAGM+KhinchinLevy) 2178352301420238 r009 Re(z^3+c),c=-25/78+3/7*I,n=37 2178352303437988 m005 (1/6*Catalan-3)/(1/2*2^(1/2)+3/5) 2178352304715383 l006 ln(838/7401) 2178352309761228 m001 BesselK(0,1)*ln(PrimesInBinary)*sin(Pi/5) 2178352310766916 r005 Im(z^2+c),c=-17/36+1/27*I,n=46 2178352311622975 r002 55th iterates of z^2 + 2178352313809281 r002 54th iterates of z^2 + 2178352324924841 s001 sum(exp(-Pi/2)^n*A171090[n],n=1..infinity) 2178352325190209 a007 Real Root Of -510*x^4+187*x^3-818*x^2+854*x-148 2178352327152373 p002 log(1/17*5^(3/4)*9^(3/4)) 2178352335231161 m001 sin(1/5*Pi)*(KhinchinHarmonic-exp(1/Pi)) 2178352339050610 m005 (1/3*gamma-1/11)/(3*2^(1/2)+5/12) 2178352343640324 s002 sum(A056466[n]/(n*exp(n)-1),n=1..infinity) 2178352348686213 k001 Champernowne real with 1345*n+833 2178352366791935 a001 21/4*15127^(12/31) 2178352370009144 b008 E^5+3*E^Pi 2178352370241039 a001 1836311903/3571*123^(3/10) 2178352382594313 m001 OneNinth^2*FeigenbaumDelta*ln(Zeta(9))^2 2178352391611496 a007 Real Root Of -314*x^4-368*x^3+915*x^2+636*x+310 2178352392025936 m001 BesselI(1,1)/(MertensB1-gamma(3)) 2178352394702977 r005 Im(z^2+c),c=-7/34+17/55*I,n=28 2178352396382946 a003 sin(Pi*7/106)/sin(Pi*43/109) 2178352412274992 r008 a(0)=0,K{-n^6,13-87*n^3-28*n^2+56*n} 2178352412935138 m001 1/GAMMA(11/24)^2*Riemann2ndZero^2*ln(Zeta(3)) 2178352414673463 a007 Real Root Of 310*x^4+262*x^3-526*x^2+421*x-859 2178352417692860 m001 (cos(1/12*Pi)+Backhouse)/(DuboisRaymond-Mills) 2178352420569230 m008 (2/3*Pi^5+4/5)/(3/4*Pi^2+2) 2178352438600695 a001 1/161*76^(23/28) 2178352440116528 a007 Real Root Of -542*x^4-858*x^3+799*x^2+365*x+339 2178352447887842 r005 Im(z^2+c),c=-13/50+20/47*I,n=5 2178352448706216 k001 Champernowne real with 1346*n+832 2178352472716983 m005 (1/2*gamma-3/11)/(17/10+5/2*5^(1/2)) 2178352473077098 m006 (5/6*exp(Pi)-2/3)/(4/5/Pi+3/5) 2178352474557352 a007 Real Root Of -571*x^4-736*x^3+882*x^2-225*x+574 2178352475108642 a007 Real Root Of 459*x^4+978*x^3+331*x^2+699*x-274 2178352485189926 m005 (1/3*gamma+1/8)/(7/11*exp(1)-3/11) 2178352485999631 m001 GAMMA(2/3)-Lehmer+Riemann2ndZero 2178352488492600 a007 Real Root Of -579*x^4-742*x^3+812*x^2-406*x+630 2178352488567979 r005 Re(z^2+c),c=-5/23+14/45*I,n=5 2178352493854370 r005 Im(z^2+c),c=-5/31+18/61*I,n=28 2178352494632700 a007 Real Root Of -473*x^4-653*x^3+660*x^2-229*x+270 2178352511230117 s002 sum(A154515[n]/(n^3*pi^n+1),n=1..infinity) 2178352516237356 b008 Csch[(1/2+E*Pi)/2] 2178352522097228 m001 1/GAMMA(1/3)/PrimesInBinary/ln(GAMMA(3/4))^2 2178352522747337 r005 Im(z^2+c),c=-5/31+18/61*I,n=27 2178352530518701 m001 (Sierpinski-ZetaP(2))/(Artin-Bloch) 2178352531114167 r008 a(0)=0,K{-n^6,-49+70*n^3+61*n^2-36*n} 2178352539139231 r002 10th iterates of z^2 + 2178352543731002 m001 (ln(5)-Backhouse)/(GaussAGM-LandauRamanujan) 2178352548726219 k001 Champernowne real with 1347*n+831 2178352553761188 r005 Im(z^2+c),c=-5/31+18/61*I,n=30 2178352571425359 m003 61/60+Sqrt[5]/(4*Log[1/2+Sqrt[5]/2]) 2178352574925556 r005 Im(z^2+c),c=-35/66+25/63*I,n=57 2178352575487741 l006 ln(5251/6529) 2178352576855392 r005 Im(z^2+c),c=-5/31+18/61*I,n=33 2178352579504868 a001 21/4*2207^(15/31) 2178352580034064 r005 Im(z^2+c),c=-5/31+18/61*I,n=31 2178352581816239 r005 Im(z^2+c),c=-17/36+1/27*I,n=48 2178352583147823 r005 Im(z^2+c),c=-5/31+18/61*I,n=36 2178352584402166 r005 Im(z^2+c),c=-5/31+18/61*I,n=39 2178352584591672 r005 Im(z^2+c),c=-5/31+18/61*I,n=41 2178352584599144 r005 Im(z^2+c),c=-5/31+18/61*I,n=42 2178352584610925 r005 Im(z^2+c),c=-5/31+18/61*I,n=44 2178352584619464 r005 Im(z^2+c),c=-5/31+18/61*I,n=47 2178352584621546 r005 Im(z^2+c),c=-5/31+18/61*I,n=50 2178352584621711 r005 Im(z^2+c),c=-5/31+18/61*I,n=45 2178352584621933 r005 Im(z^2+c),c=-5/31+18/61*I,n=53 2178352584621982 r005 Im(z^2+c),c=-5/31+18/61*I,n=55 2178352584621989 r005 Im(z^2+c),c=-5/31+18/61*I,n=56 2178352584621989 r005 Im(z^2+c),c=-5/31+18/61*I,n=52 2178352584621990 r005 Im(z^2+c),c=-5/31+18/61*I,n=58 2178352584621993 r005 Im(z^2+c),c=-5/31+18/61*I,n=61 2178352584621994 r005 Im(z^2+c),c=-5/31+18/61*I,n=64 2178352584621994 r005 Im(z^2+c),c=-5/31+18/61*I,n=63 2178352584621994 r005 Im(z^2+c),c=-5/31+18/61*I,n=62 2178352584621994 r005 Im(z^2+c),c=-5/31+18/61*I,n=59 2178352584621995 r005 Im(z^2+c),c=-5/31+18/61*I,n=60 2178352584622002 r005 Im(z^2+c),c=-5/31+18/61*I,n=57 2178352584622040 r005 Im(z^2+c),c=-5/31+18/61*I,n=54 2178352584622201 r005 Im(z^2+c),c=-5/31+18/61*I,n=51 2178352584622347 r005 Im(z^2+c),c=-5/31+18/61*I,n=49 2178352584622623 r005 Im(z^2+c),c=-5/31+18/61*I,n=48 2178352584625688 r005 Im(z^2+c),c=-5/31+18/61*I,n=46 2178352584647769 r005 Im(z^2+c),c=-5/31+18/61*I,n=43 2178352584670617 r005 Im(z^2+c),c=-5/31+18/61*I,n=38 2178352584762558 r005 Im(z^2+c),c=-5/31+18/61*I,n=40 2178352585024348 r005 Re(z^2+c),c=-17/90+25/63*I,n=37 2178352585209347 r005 Im(z^2+c),c=-5/31+18/61*I,n=37 2178352585896609 r009 Re(z^3+c),c=-25/78+3/7*I,n=40 2178352586030442 r005 Im(z^2+c),c=-5/31+18/61*I,n=34 2178352586073903 r005 Im(z^2+c),c=-5/31+18/61*I,n=35 2178352595445669 a007 Real Root Of -252*x^4+126*x^3+847*x^2-945*x+899 2178352597462178 m001 1/GAMMA(2/3)^2/ln(Bloch)*sqrt(3)^2 2178352597614212 r005 Im(z^2+c),c=-5/31+18/61*I,n=32 2178352597805843 a007 Real Root Of 323*x^4+844*x^3+822*x^2+916*x-454 2178352613052783 a001 377/103682*7^(23/25) 2178352618191824 r009 Re(z^3+c),c=-25/78+3/7*I,n=32 2178352620830496 q001 32/1469 2178352620830496 q001 8/36725 2178352620830496 r005 Im(z^2+c),c=-17/26+80/113*I,n=2 2178352626348769 m001 Ei(1)+Gompertz*Weierstrass 2178352632462864 a007 Real Root Of 576*x^4-474*x^3+546*x^2-252*x-87 2178352634834624 m006 (2/5*exp(2*Pi)+2)/(3*Pi+1/2) 2178352638093964 r005 Im(z^2+c),c=-17/36+1/27*I,n=53 2178352638434444 a007 Real Root Of 574*x^4-385*x^3+416*x^2-560*x-147 2178352640316383 r005 Im(z^2+c),c=-9/74+11/39*I,n=12 2178352641463230 b008 19*ArcSech[EulerGamma] 2178352643530330 r005 Im(z^2+c),c=-17/36+1/27*I,n=55 2178352643634374 r005 Im(z^2+c),c=-17/36+1/27*I,n=51 2178352648746222 k001 Champernowne real with 1348*n+830 2178352649511742 m001 ZetaP(3)-ln(2)/ln(10)*sin(1/5*Pi) 2178352650183200 r005 Im(z^2+c),c=-17/36+1/27*I,n=57 2178352653833227 m001 1/GolombDickman^2/Conway*exp(Zeta(3))^2 2178352653930885 m001 (1+Psi(2,1/3))/(Zeta(1,-1)+Riemann3rdZero) 2178352655364932 r005 Im(z^2+c),c=-17/36+1/27*I,n=59 2178352655369133 m001 (ArtinRank2-Weierstrass)/(sin(1/5*Pi)-ln(5)) 2178352657796291 r009 Re(z^3+c),c=-4/11+25/47*I,n=32 2178352658814842 r005 Im(z^2+c),c=-17/36+1/27*I,n=61 2178352659117814 h001 (1/12*exp(1)+5/8)/(4/9*exp(2)+5/8) 2178352660929450 r005 Im(z^2+c),c=-17/36+1/27*I,n=63 2178352663172663 a007 Real Root Of 795*x^4-984*x^3-277*x^2-677*x+169 2178352665577265 a001 1/13201*76^(10/41) 2178352665634515 r005 Im(z^2+c),c=-17/36+1/27*I,n=64 2178352667255880 r005 Im(z^2+c),c=-17/36+1/27*I,n=62 2178352668521348 r005 Im(z^2+c),c=-5/31+18/61*I,n=29 2178352669203337 r005 Im(z^2+c),c=-17/36+1/27*I,n=50 2178352669978359 r005 Im(z^2+c),c=-17/36+1/27*I,n=60 2178352670470689 r009 Re(z^3+c),c=-25/78+3/7*I,n=43 2178352670501935 b008 EllipticK[Tanh[Coth[4]]] 2178352674262995 r005 Im(z^2+c),c=-17/36+1/27*I,n=58 2178352677959706 r005 Im(z^2+c),c=5/34+10/59*I,n=5 2178352680301300 r005 Im(z^2+c),c=-17/36+1/27*I,n=56 2178352686962504 r005 Im(z^2+c),c=-17/36+1/27*I,n=54 2178352688410695 r005 Im(z^2+c),c=-17/36+1/27*I,n=49 2178352688897046 r005 Im(z^2+c),c=-17/36+1/27*I,n=52 2178352692377301 r005 Im(z^2+c),c=-37/50+6/35*I,n=10 2178352694117822 r009 Re(z^3+c),c=-25/78+3/7*I,n=46 2178352694648525 m005 (1/2*5^(1/2)-2/11)/(11/36+1/18*5^(1/2)) 2178352695746177 r005 Re(z^2+c),c=19/66+12/61*I,n=21 2178352699739137 r005 Im(z^2+c),c=-41/58+1/51*I,n=57 2178352700309146 r009 Re(z^3+c),c=-25/78+3/7*I,n=49 2178352701160739 r009 Re(z^3+c),c=-25/78+3/7*I,n=48 2178352701601697 r009 Re(z^3+c),c=-25/78+3/7*I,n=51 2178352701804548 r009 Re(z^3+c),c=-25/78+3/7*I,n=52 2178352701940811 r009 Re(z^3+c),c=-25/78+3/7*I,n=54 2178352702094074 r009 Re(z^3+c),c=-25/78+3/7*I,n=57 2178352702125658 r009 Re(z^3+c),c=-25/78+3/7*I,n=55 2178352702151663 r009 Re(z^3+c),c=-25/78+3/7*I,n=60 2178352702171143 r009 Re(z^3+c),c=-25/78+3/7*I,n=63 2178352702180750 r009 Re(z^3+c),c=-25/78+3/7*I,n=58 2178352702182485 r009 Re(z^3+c),c=-25/78+3/7*I,n=64 2178352702184811 r009 Re(z^3+c),c=-25/78+3/7*I,n=61 2178352702188140 r009 Re(z^3+c),c=-25/78+3/7*I,n=62 2178352702216371 r009 Re(z^3+c),c=-25/78+3/7*I,n=59 2178352702261210 r009 Re(z^3+c),c=-25/78+3/7*I,n=45 2178352702324847 r009 Re(z^3+c),c=-25/78+3/7*I,n=56 2178352702714850 r009 Re(z^3+c),c=-25/78+3/7*I,n=53 2178352703728960 m001 (PlouffeB+Sierpinski)/(Chi(1)+LambertW(1)) 2178352704033496 r009 Re(z^3+c),c=-25/78+3/7*I,n=50 2178352707947823 m001 exp(Tribonacci)/CopelandErdos/GAMMA(3/4) 2178352708213884 r009 Re(z^3+c),c=-25/78+3/7*I,n=47 2178352714925301 r009 Re(z^3+c),c=-25/78+3/7*I,n=42 2178352716012292 m001 Paris*FeigenbaumAlpha^2*exp((2^(1/3))) 2178352717032571 r005 Re(z^2+c),c=-11/58+19/49*I,n=13 2178352720481861 r009 Re(z^3+c),c=-25/78+3/7*I,n=44 2178352733657755 l006 ln(315/2782) 2178352735536347 h001 (6/7*exp(1)+5/8)/(1/6*exp(2)+1/8) 2178352743727432 r005 Im(z^2+c),c=-6/17+31/52*I,n=58 2178352748766225 k001 Champernowne real with 1349*n+829 2178352752765482 r009 Re(z^3+c),c=-25/78+3/7*I,n=41 2178352754694836 a001 7/11*(1/2*5^(1/2)+1/2)*11^(5/16) 2178352760131047 m001 (Zeta(5)+Backhouse)/(FellerTornier-Porter) 2178352761925727 a001 13201/329*8^(48/59) 2178352773313750 a007 Real Root Of 225*x^4+268*x^3-526*x^2-190*x-214 2178352786738473 r009 Re(z^3+c),c=-25/78+3/7*I,n=39 2178352789905977 m001 (ln(gamma)-FeigenbaumC)/(GaussAGM-Tetranacci) 2178352798181021 r005 Im(z^2+c),c=-19/32+1/29*I,n=23 2178352801794120 a007 Real Root Of -482*x^4-642*x^3+797*x^2+5*x+446 2178352807166474 l006 ln(6611/8220) 2178352807690727 m001 MertensB1^2/Conway*ln(TwinPrimes) 2178352810736943 a007 Real Root Of -324*x^4-374*x^3+591*x^2-685*x-867 2178352811915060 a007 Real Root Of 444*x^4+975*x^3+328*x^2+772*x+206 2178352812269625 r005 Re(z^2+c),c=-11/62+7/12*I,n=4 2178352814395184 a007 Real Root Of -19*x^4-406*x^3+175*x^2+28*x-905 2178352822551449 r009 Re(z^3+c),c=-25/78+3/7*I,n=38 2178352835031942 a001 8/39603*47^(21/34) 2178352843155124 k002 Champernowne real with 217/2*n^2-537/2*n+181 2178352846075418 r005 Im(z^2+c),c=-17/36+1/27*I,n=47 2178352846851496 a007 Real Root Of 44*x^4+945*x^3-259*x^2+710*x-923 2178352848087724 m001 (-2*Pi/GAMMA(5/6)+Cahen)/(1+2^(1/3)) 2178352848786228 k001 Champernowne real with 1350*n+828 2178352851561888 m001 (Kac+PolyaRandomWalk3D)/(GAMMA(17/24)-sin(1)) 2178352858167624 m001 sin(1/12*Pi)^Magata/(sin(1/12*Pi)^Stephens) 2178352859531573 m001 (Si(Pi)+ln(5))/(-BesselI(1,2)+ZetaQ(4)) 2178352872884152 m001 (Pi+Porter)/(StronglyCareFree+Totient) 2178352878081222 r009 Re(z^3+c),c=-19/118+40/47*I,n=33 2178352888362590 r005 Im(z^2+c),c=-51/106+21/55*I,n=37 2178352889422067 m005 (1/3*5^(1/2)+1/10)/(1/3*2^(1/2)-1/12) 2178352892348161 a007 Real Root Of 108*x^4+274*x^3+331*x^2+192*x-752 2178352904394489 r009 Re(z^3+c),c=-25/78+3/7*I,n=35 2178352906533291 m005 (1/2*exp(1)-8/9)/(8/11*exp(1)+2/11) 2178352916030384 r005 Im(z^2+c),c=-43/60+1/45*I,n=28 2178352920775763 m001 (Gompertz*Lehmer-Zeta(1,2))/Lehmer 2178352921092639 r009 Re(z^3+c),c=-47/126+33/59*I,n=57 2178352921373498 a007 Real Root Of -242*x^4-251*x^3+667*x^2+81*x-134 2178352923270528 a007 Real Root Of 141*x^4-703*x^3+547*x^2+573*x+248 2178352930385284 m001 2/3*Pi*3^(1/2)/GAMMA(2/3)*Ei(1,1)+BesselI(1,2) 2178352942639482 a001 7/3524578*2^(2/15) 2178352944554151 r002 4th iterates of z^2 + 2178352947136498 r005 Im(z^2+c),c=-5/31+18/61*I,n=24 2178352948806231 k001 Champernowne real with 1351*n+827 2178352951652542 r009 Im(z^3+c),c=-17/126+25/29*I,n=20 2178352953673907 a001 233/7*3571^(23/45) 2178352957754986 m001 2/3*exp(1)*Zeta(3) 2178352959787852 l006 ln(7971/9911) 2178352967345569 a007 Real Root Of -384*x^4-363*x^3+825*x^2-59*x+851 2178352989324366 m001 1/exp((2^(1/3)))^2/ArtinRank2^2*log(2+sqrt(3)) 2178352996608437 p004 log(12073/1367) 2178352999146464 m001 (-GAMMA(23/24)+CopelandErdos)/(3^(1/2)+Ei(1)) 2178353003199849 r002 5th iterates of z^2 + 2178353003399475 m005 (1/2*5^(1/2)-3/7)/(1/8*3^(1/2)+1/10) 2178353005503598 a001 233/1149851*76^(17/31) 2178353008399073 a007 Real Root Of -244*x^4-174*x^3+580*x^2-344*x+194 2178353011328513 r005 Im(z^2+c),c=-5/31+18/61*I,n=26 2178353018005181 r005 Im(z^2+c),c=-20/23+7/39*I,n=18 2178353040693361 h001 (1/7*exp(1)+2/9)/(7/10*exp(1)+9/10) 2178353040783459 a001 233/7*64079^(17/45) 2178353044742861 m001 (Chi(1)-ln(3))/(-ln(5)+ThueMorse) 2178353048676082 a007 Real Root Of -212*x^4-826*x^3-926*x^2-160*x+281 2178353048826234 k001 Champernowne real with 1352*n+826 2178353054098759 p001 sum((-1)^n/(393*n+161)/n/(8^n),n=1..infinity) 2178353056087941 r008 a(0)=2,K{-n^6,-6-n^3-6*n^2+5*n} 2178353060328646 m005 (1/2*gamma-2/7)/(1/5*Pi+7/10) 2178353066006854 a001 10946/7*2^(11/23) 2178353070355777 a007 Real Root Of 33*x^4+688*x^3-638*x^2+760*x+344 2178353075343657 l006 ln(1052/9291) 2178353096051279 h001 (7/10*exp(1)+1/3)/(1/12*exp(1)+4/5) 2178353104438668 a001 843/55*55^(5/57) 2178353105183768 a003 sin(Pi*29/101)/cos(Pi*31/81) 2178353110204655 a007 Real Root Of 125*x^4+522*x^3+663*x^2-3*x-27 2178353115126161 k007 concat of cont frac of 2178353117061235 r009 Re(z^3+c),c=-25/78+3/7*I,n=36 2178353118053958 m005 (1/3*3^(1/2)+1/10)/(6/7*Pi+5/12) 2178353123400059 r005 Re(z^2+c),c=-2/17+16/29*I,n=51 2178353132150510 r009 Re(z^3+c),c=-67/118+12/41*I,n=11 2178353132364624 a007 Real Root Of 644*x^4+61*x^3+181*x^2-549*x-129 2178353148846237 k001 Champernowne real with 1353*n+825 2178353149452002 m001 (cos(1/5*Pi)+ln(Pi))/(ErdosBorwein-Rabbit) 2178353151106652 m001 (Ei(1)+exp(1/Pi))/(Kac-PlouffeB) 2178353154954262 m001 (gamma(1)+BesselK(1,1))/(Niven+Sarnak) 2178353167356606 b008 2+(2+E^(-1))^(-2) 2178353191237934 r005 Re(z^2+c),c=-13/56+24/47*I,n=9 2178353213877425 a001 6/105937*75025^(3/25) 2178353215632304 r002 44th iterates of z^2 + 2178353219956224 a007 Real Root Of -577*x^4-302*x^3-700*x^2+875*x+222 2178353221383050 l006 ln(737/6509) 2178353222165248 m001 (BesselK(0,1)+sin(1/5*Pi))/(-Bloch+ZetaQ(3)) 2178353239314008 a007 Real Root Of 472*x^4+511*x^3-837*x^2+663*x+70 2178353241576429 a007 Real Root Of 709*x^4-612*x^3-355*x^2-663*x+166 2178353248866240 k001 Champernowne real with 1354*n+824 2178353260633537 m001 (Catalan*Riemann2ndZero+ArtinRank2)/Catalan 2178353262912268 m005 (1/2*Zeta(3)-3/5)/(3/5*Zeta(3)+4) 2178353265406712 m001 GAMMA(11/24)^arctan(1/2)-exp(Pi) 2178353272823897 r009 Re(z^3+c),c=-27/74+29/53*I,n=36 2178353275042090 r005 Re(z^2+c),c=-9/34+1/29*I,n=11 2178353280709575 a007 Real Root Of 378*x^4+747*x^3-604*x^2-702*x+547 2178353287026992 a007 Real Root Of -694*x^4-606*x^3-64*x^2+811*x+175 2178353296948694 r005 Im(z^2+c),c=-17/36+1/27*I,n=45 2178353300374630 p001 sum(1/(135*n+46)/(125^n),n=0..infinity) 2178353306730329 r005 Im(z^2+c),c=-35/78+23/61*I,n=38 2178353331399708 m005 (1/2*Zeta(3)-5/12)/(6/11*exp(1)-7/11) 2178353348886243 k001 Champernowne real with 1355*n+823 2178353352971667 m006 (4*exp(Pi)+4/5)/(4/5*exp(2*Pi)+1/5) 2178353366019723 r002 4th iterates of z^2 + 2178353368269955 r009 Re(z^3+c),c=-7/78+29/38*I,n=32 2178353369326963 m001 HardHexagonsEntropy*exp(Artin)^2*exp(1)^2 2178353370261486 a001 701408733/1364*123^(3/10) 2178353372482088 m005 (1/2*5^(1/2)-6/11)/(7/8*exp(1)+1/4) 2178353373814359 a007 Real Root Of 211*x^4-460*x^3+977*x^2-236*x-103 2178353377329333 m001 OneNinth/(GAMMA(1/6)-GolombDickman) 2178353377329333 m001 OneNinth/(GolombDickman-2*Pi/GAMMA(5/6)) 2178353380097950 m001 1/3*(3^(1/3)*Porter+GAMMA(23/24))*3^(2/3) 2178353392878392 m001 gamma(1)/DuboisRaymond*LandauRamanujan2nd 2178353396385515 m001 (2*Pi/GAMMA(5/6)+GAMMA(11/12))/(ln(Pi)+Ei(1)) 2178353397779437 s002 sum(A249853[n]/(pi^n),n=1..infinity) 2178353398026609 a007 Real Root Of 801*x^4-468*x^3-639*x^2-765*x+200 2178353408776699 m001 (LaplaceLimit+ZetaP(3))/(Ei(1)-BesselI(0,2)) 2178353411656602 r005 Re(z^2+c),c=-6/23+3/17*I,n=3 2178353419619321 m001 ZetaP(3)*(GAMMA(2/3)-OneNinth) 2178353436686464 h001 (-12*exp(1)+9)/(-5*exp(3)-8) 2178353448906246 k001 Champernowne real with 1356*n+822 2178353449137644 a001 9349/34*196418^(9/53) 2178353452117965 a003 cos(Pi*2/61)/cos(Pi*37/106) 2178353454805195 r009 Re(z^3+c),c=-9/44+21/34*I,n=3 2178353455197474 r005 Im(z^2+c),c=-7/38+17/60*I,n=4 2178353456064234 b008 -1/12+SphericalBesselJ[1,1] 2178353459352593 a008 Real Root of (-6+5*x-6*x^2-4*x^3-2*x^4-x^5) 2178353468691503 r002 11th iterates of z^2 + 2178353471851723 a007 Real Root Of -324*x^4-417*x^3+800*x^2+718*x+753 2178353477809035 a007 Real Root Of -199*x^4-274*x^3+748*x^2+795*x-169 2178353482019147 m001 exp(-1/2*Pi)*FeigenbaumC/MadelungNaCl 2178353482228004 l006 ln(7337/7353) 2178353486866278 m001 (gamma(1)-FeigenbaumDelta)/(Porter+Rabbit) 2178353499727257 r005 Im(z^2+c),c=-10/9+33/113*I,n=11 2178353522063470 r009 Im(z^3+c),c=-5/12+9/14*I,n=9 2178353532088999 a007 Real Root Of 217*x^4+66*x^3-627*x^2+705*x+307 2178353532124765 a001 1364/89*21^(34/39) 2178353536812401 l006 ln(7901/8075) 2178353539809213 r005 Im(z^2+c),c=-73/78+3/14*I,n=49 2178353541574924 m001 (sin(1)+MasserGramainDelta)^Kolakoski 2178353547391569 a007 Real Root Of -137*x^4-426*x^3-71*x^2+531*x+175 2178353548926249 k001 Champernowne real with 1357*n+821 2178353551447571 p003 LerchPhi(1/6,1,56/115) 2178353557859785 a007 Real Root Of -301*x^4-752*x^3-92*x^2+673*x+907 2178353579699635 a007 Real Root Of -641*x^4+888*x^3+519*x^2+944*x-238 2178353585443246 l006 ln(422/3727) 2178353601376982 r005 Im(z^2+c),c=-9/14+66/223*I,n=43 2178353627952329 m001 MadelungNaCl/(GAMMA(1/4)+GAMMA(5/24)) 2178353628961345 a007 Real Root Of 686*x^4+856*x^3-814*x^2+902*x-771 2178353631783467 b008 69*Sqrt[ArcCot[10]] 2178353643390140 m005 (1/2*2^(1/2)-2/3)/(6/11*Pi+1/7) 2178353648946252 k001 Champernowne real with 1358*n+820 2178353656482789 a001 1/141*89^(1/4) 2178353658536585 q001 1429/656 2178353661440465 r002 56th iterates of z^2 + 2178353677396160 r009 Re(z^3+c),c=-35/62+17/58*I,n=24 2178353677494453 m001 Salem^2*RenyiParking/exp(GAMMA(7/24))^2 2178353684322593 r005 Im(z^2+c),c=-61/86+7/37*I,n=37 2178353685821075 a007 Real Root Of 693*x^4+932*x^3-936*x^2+897*x+425 2178353701612239 a005 (1/sin(71/151*Pi))^702 2178353701684826 l006 ln(1360/1691) 2178353702196112 a003 cos(Pi*40/93)/sin(Pi*55/111) 2178353703589327 b008 23*Hyperfactorial[-3+Pi] 2178353706903522 a007 Real Root Of -361*x^4-644*x^3+416*x^2+46*x-402 2178353708443346 a008 Real Root of x^4+17*x^2-130*x+180 2178353708991454 m001 1/exp(GAMMA(1/3))*TreeGrowth2nd^2*GAMMA(13/24) 2178353712957929 m001 ln(2)/ln(10)/BesselI(0,2)*ZetaQ(4) 2178353719739130 m001 (2^(1/2)+Backhouse)/HeathBrownMoroz 2178353722572993 r005 Im(z^2+c),c=-31/86+18/29*I,n=53 2178353736521833 m005 (1/2*exp(1)+1/2)/(53/18+5/2*5^(1/2)) 2178353741260474 a007 Real Root Of 314*x^4+609*x^3+63*x^2+377*x-253 2178353741278671 r009 Re(z^3+c),c=-3/74+30/47*I,n=20 2178353741484018 r005 Im(z^2+c),c=-27/70+13/36*I,n=24 2178353743223209 r005 Im(z^2+c),c=-23/18+11/181*I,n=20 2178353746707275 r005 Im(z^2+c),c=-101/118+7/40*I,n=45 2178353747006473 m005 (1/2*gamma+1/8)/(3^(1/2)+1/6) 2178353748966255 k001 Champernowne real with 1359*n+819 2178353770825224 m001 GAMMA(19/24)*Sierpinski/exp(log(2+sqrt(3)))^2 2178353778443788 r005 Re(z^2+c),c=-1/31+46/59*I,n=52 2178353781176133 r005 Im(z^2+c),c=-57/44+27/61*I,n=5 2178353781884828 r005 Im(z^2+c),c=-61/62+13/53*I,n=10 2178353794946378 a007 Real Root Of 230*x^4+246*x^3-753*x^2-404*x+57 2178353803132996 m005 (1/2*Zeta(3)-3/11)/(1/2*2^(1/2)+4/5) 2178353805076663 r005 Re(z^2+c),c=-7/62+33/59*I,n=42 2178353806098929 r005 Im(z^2+c),c=-11/14+17/146*I,n=47 2178353806597814 a003 -1-cos(1/12*Pi)-cos(2/21*Pi)+cos(7/30*Pi) 2178353810224176 m001 (GAMMA(2/3)-sqrt(5)*GAMMA(1/24))/GAMMA(1/24) 2178353817965670 r005 Im(z^2+c),c=-97/106+13/64*I,n=53 2178353822041397 r005 Im(z^2+c),c=-17/14+29/191*I,n=12 2178353824700163 m001 (Paris+ThueMorse)/Pi/csc(1/24*Pi)*GAMMA(23/24) 2178353825756227 r005 Im(z^2+c),c=-59/90+5/22*I,n=18 2178353835374638 p003 LerchPhi(1/10,1,113/238) 2178353835526508 m001 (2*Pi/GAMMA(5/6)-ReciprocalLucas)/Zeta(1,-1) 2178353838960174 m005 (1/3*exp(1)+2/5)/(3/4*gamma+1/6) 2178353840635119 a005 (1/sin(41/195*Pi))^143 2178353845730405 a007 Real Root Of -948*x^4-882*x^3-919*x^2+548*x+156 2178353846155724 k002 Champernowne real with 109*n^2-270*n+182 2178353848986258 k001 Champernowne real with 1360*n+818 2178353853319325 m001 BesselI(0,2)^exp(sqrt(2))/(BesselI(0,2)^Artin) 2178353856179239 s001 sum(exp(-3*Pi/5)^n*A187154[n],n=1..infinity) 2178353857266725 b008 2+ArcCsch[5+EulerGamma] 2178353867003237 r005 Re(z^2+c),c=-61/74+1/36*I,n=12 2178353867482994 m001 BesselI(1,2)^Artin*FeigenbaumC 2178353867580236 l006 ln(951/8399) 2178353871309447 m001 (Champernowne+Trott)/(2^(1/3)-Cahen) 2178353881435910 r005 Im(z^2+c),c=-17/122+5/17*I,n=5 2178353883304718 s002 sum(A268900[n]/(exp(n)+1),n=1..infinity) 2178353891309518 m001 1/Zeta(1,2)*Robbin/exp(sin(Pi/5))^2 2178353900336833 a001 3571/89*13^(31/47) 2178353913191890 a007 Real Root Of 502*x^4-289*x^3-506*x^2-983*x+240 2178353916228720 r009 Re(z^3+c),c=-13/110+29/35*I,n=40 2178353917240099 a001 196418/29*11^(19/39) 2178353917427166 p002 log(3^(7/4)+5^(3/7)) 2178353923327022 m001 2^(1/3)*MertensB3-Pi*csc(1/24*Pi)/GAMMA(23/24) 2178353928347759 r005 Im(z^2+c),c=33/86+9/58*I,n=16 2178353937326361 a007 Real Root Of -543*x^4-898*x^3+640*x^2-238*x-611 2178353938801459 m008 (1/3*Pi^5+3)/(5*Pi^4-5) 2178353949006261 k001 Champernowne real with 1361*n+817 2178353953112189 r005 Im(z^2+c),c=-4/17+20/63*I,n=11 2178353964919036 m001 ln(2)*ln(3)+Riemann2ndZero 2178353970610078 m001 (FeigenbaumMu-Otter)/(exp(1/exp(1))+exp(1/Pi)) 2178353970863152 m001 cosh(1)^(cos(1)/ln(2)*ln(10)) 2178353972462309 m001 (TreeGrowth2nd+ZetaQ(3))/(Kac-Khinchin) 2178353976000735 v003 sum((n^3+6*n^2-20*n+27)/(n!+2),n=1..infinity) 2178353987912600 r005 Re(z^2+c),c=-31/118+1/36*I,n=5 2178354000957737 m001 Catalan-FeigenbaumMu+PlouffeB 2178354004008174 a001 165580141/199*199^(2/11) 2178354011895377 a001 521/165580141*20365011074^(21/22) 2178354016480938 m001 (-GAMMA(5/6)+KhinchinHarmonic)/(3^(1/2)+ln(3)) 2178354016564504 m001 (Catalan+3^(1/3))/(-polylog(4,1/2)+Kac) 2178354021416641 a001 521/6765*514229^(21/22) 2178354029053598 a007 Real Root Of 451*x^4+810*x^3-624*x^2-990*x-978 2178354029714661 r005 Im(z^2+c),c=17/52+5/12*I,n=36 2178354031058999 a005 (1/cos(6/149*Pi))^671 2178354040830820 a007 Real Root Of 422*x^4+784*x^3-529*x^2-914*x-879 2178354041954599 m001 (Backhouse-Conway)/(MasserGramain+ZetaQ(2)) 2178354047714804 p001 sum(1/(375*n+346)/n/(64^n),n=1..infinity) 2178354049026264 k001 Champernowne real with 1362*n+816 2178354059345607 r005 Im(z^2+c),c=3/50+5/23*I,n=4 2178354061132431 m001 1/Niven*FeigenbaumDelta*exp(Zeta(5))^2 2178354070661801 r009 Re(z^3+c),c=-9/26+24/49*I,n=22 2178354072658921 b008 Erf[E^(-2+E^(-1))] 2178354073290916 p003 LerchPhi(1/256,3,133/80) 2178354075534228 m001 Paris*(Shi(1)-exp(Pi)) 2178354083065078 a003 cos(Pi*27/103)*cos(Pi*24/49) 2178354083764111 m002 -36+Log[Pi]*Sinh[Pi]+Tanh[Pi] 2178354086571278 m001 FeigenbaumDelta*ZetaP(4)-Stephens 2178354092649763 l006 ln(529/4672) 2178354102079737 r005 Re(z^2+c),c=-19/110+7/16*I,n=23 2178354102091924 m005 (1/2*exp(1)-5/8)/(4/11*3^(1/2)-4) 2178354102686506 m001 exp(GAMMA(1/6))/FeigenbaumB^2*gamma 2178354108188123 m001 (3^(1/3))^2/ln(Artin)^2/Pi^2 2178354113709441 r005 Im(z^2+c),c=-23/82+2/63*I,n=19 2178354122171111 k006 concat of cont frac of 2178354122415600 m001 PisotVijayaraghavan*exp(Bloch)*GAMMA(23/24) 2178354135368158 r009 Im(z^3+c),c=-3/122+14/61*I,n=2 2178354139183283 m001 Pi/exp(Pi)*2^(1/2)/ln(2^(1/2)+1) 2178354144072701 a003 sin(Pi*38/93)/cos(Pi*52/107) 2178354149046267 k001 Champernowne real with 1363*n+815 2178354153366776 r005 Re(z^2+c),c=-67/70+12/53*I,n=52 2178354154901827 a007 Real Root Of -168*x^4-12*x^3+277*x^2-877*x+434 2178354158111180 r005 Re(z^2+c),c=5/98+34/57*I,n=46 2178354161797988 r002 34th iterates of z^2 + 2178354161797988 r002 34th iterates of z^2 + 2178354165394982 a007 Real Root Of 367*x^4+662*x^3-642*x^2-934*x-409 2178354177984296 a007 Real Root Of -476*x^4-611*x^3+639*x^2-388*x+525 2178354186425383 a007 Real Root Of -287*x^4-443*x^3+732*x^2+394*x-732 2178354187650059 r005 Im(z^2+c),c=-5/31+18/61*I,n=23 2178354189947964 a003 sin(Pi*4/59)/cos(Pi*8/103) 2178354190534425 r005 Re(z^2+c),c=-43/90+15/37*I,n=5 2178354196537911 r009 Re(z^3+c),c=-31/94+25/61*I,n=5 2178354230610178 a001 13/167761*11^(25/58) 2178354235939085 p004 log(13763/11069) 2178354241113741 a007 Real Root Of 32*x^4+702*x^3+137*x^2+610*x-796 2178354243335629 r008 a(0)=2,K{-n^6,-8+8*n^3-2*n^2-2*n} 2178354247401831 s002 sum(A085613[n]/(10^n+1),n=1..infinity) 2178354249066270 k001 Champernowne real with 1364*n+814 2178354255294676 b008 1+LogGamma[2+8*Sqrt[2]] 2178354263478953 m001 ln(TreeGrowth2nd)*Paris*GAMMA(13/24)^2 2178354264403634 r005 Im(z^2+c),c=-37/42+2/11*I,n=58 2178354271958072 a007 Real Root Of 382*x^4+785*x^3+25*x^2+184*x-205 2178354281463665 r002 43th iterates of z^2 + 2178354291608410 a007 Real Root Of -278*x^4-871*x^3-474*x^2+142*x-185 2178354304211819 a007 Real Root Of -225*x^4-606*x^3-482*x^2+664*x-115 2178354317430680 r005 Im(z^2+c),c=-8/11+10/53*I,n=64 2178354331767745 a007 Real Root Of 577*x^4+906*x^3+456*x^2-865*x-202 2178354332160662 m001 (gamma*MertensB2+TwinPrimes)/gamma 2178354336418403 b008 (5+E^(3/7))/3 2178354340686097 a007 Real Root Of -115*x^4+675*x^3-282*x^2+710*x-148 2178354348965916 r005 Re(z^2+c),c=31/126+14/47*I,n=2 2178354349086273 k001 Champernowne real with 1365*n+813 2178354356029353 a007 Real Root Of -535*x^4-801*x^3+807*x^2-31*x-130 2178354356138972 p004 log(21523/2437) 2178354362413191 p003 LerchPhi(1/10,4,103/125) 2178354382258661 m005 (1/2*Catalan+3/8)/(3/10*gamma-5/9) 2178354390886559 a003 sin(Pi*8/119)/sin(Pi*40/97) 2178354393814431 a007 Real Root Of 370*x^4+378*x^3-553*x^2+594*x-506 2178354404360422 m001 (KomornikLoreti*Magata+MertensB3)/Magata 2178354413344795 b008 5*Log[78] 2178354422136418 m001 (2^(1/3)-sin(1/12*Pi))/(GAMMA(13/24)+Otter) 2178354422283625 a007 Real Root Of 515*x^4-122*x^3+875*x^2+64*x-30 2178354425331314 r005 Re(z^2+c),c=-21/118+14/33*I,n=42 2178354425911050 a007 Real Root Of -672*x^4-464*x^3-763*x^2+565*x+156 2178354429192310 l006 ln(636/5617) 2178354437810213 a007 Real Root Of -658*x^4-935*x^3+953*x^2-674*x-839 2178354440196168 a001 843/5702887*3^(6/17) 2178354448350892 a007 Real Root Of 493*x^4+983*x^3-681*x^2-906*x+318 2178354449106276 k001 Champernowne real with 1366*n+812 2178354449972220 m001 (FeigenbaumMu-Totient)/(gamma(3)-GAMMA(23/24)) 2178354454188519 a007 Real Root Of -450*x^4-849*x^3-212*x^2-638*x+973 2178354462468017 r005 Im(z^2+c),c=-15/31+15/41*I,n=22 2178354464063733 r005 Im(z^2+c),c=-17/36+1/27*I,n=43 2178354466285324 m003 Sqrt[5]/64+25/(2*ProductLog[1/2+Sqrt[5]/2]^2) 2178354474112132 r009 Re(z^3+c),c=-25/78+3/7*I,n=33 2178354486489288 m008 (3/4*Pi^6-2/3)/(1/3*Pi^4+3/5) 2178354487950581 m001 (3^(1/2)-Mills)/(-ReciprocalLucas+ZetaQ(3)) 2178354495473255 r005 Re(z^2+c),c=-13/60+19/60*I,n=19 2178354500276090 q001 789/3622 2178354502497131 r005 Im(z^2+c),c=-19/25+7/53*I,n=12 2178354504676778 a007 Real Root Of -426*x^4-712*x^3+495*x^2+159*x+230 2178354517874177 r005 Im(z^2+c),c=-5/11+17/45*I,n=59 2178354518268611 m001 1/cos(Pi/12)^2/exp(Porter)*log(1+sqrt(2)) 2178354518839179 a007 Real Root Of -275*x^4+801*x^3+309*x^2+251*x-77 2178354521307141 r005 Re(z^2+c),c=-23/28+1/48*I,n=10 2178354523985230 m001 Khintchine^2*DuboisRaymond*exp(BesselJ(1,1)) 2178354525846219 m005 (1/2*3^(1/2)+3/11)/(3/7*2^(1/2)-1/12) 2178354532274650 r002 3th iterates of z^2 + 2178354534957092 h001 (3/4*exp(2)+3/5)/(7/10*exp(1)+11/12) 2178354541130807 m005 (1/2*Catalan+3/5)/(3/11*Pi+4) 2178354546236207 r008 a(0)=2,K{-n^6,40-44*n+25*n^2-27*n^3} 2178354547823086 l006 ln(6989/8690) 2178354549126279 k001 Champernowne real with 1367*n+811 2178354559484440 r005 Im(z^2+c),c=-4/21+3/10*I,n=6 2178354560468770 a001 521/28657*6557470319842^(17/24) 2178354570548542 a001 15127/233*63245986^(17/24) 2178354572717205 h001 (3/10*exp(1)+5/7)/(8/9*exp(2)+5/11) 2178354583527122 r005 Re(z^2+c),c=-7/11+5/11*I,n=19 2178354584823088 a001 1/102287808*21^(5/19) 2178354593128466 s002 sum(A268900[n]/(exp(n)),n=1..infinity) 2178354603740727 r002 17th iterates of z^2 + 2178354603973038 a003 cos(2/15*Pi)-2^(1/2)-cos(7/27*Pi)-cos(1/24*Pi) 2178354607034254 r009 Re(z^3+c),c=-65/118+16/25*I,n=29 2178354609940684 a007 Real Root Of 561*x^4+697*x^3-806*x^2+991*x+556 2178354619779805 m001 1/Tribonacci/Champernowne*ln(GAMMA(13/24)) 2178354631805823 m005 (1/3*Pi-1/11)/(1/12*3^(1/2)-7/12) 2178354644701630 r005 Im(z^2+c),c=-41/58+3/23*I,n=11 2178354646236931 m001 1/GAMMA(1/12)/exp(Tribonacci)^2/Zeta(7) 2178354648957674 m001 (Catalan+GAMMA(7/12))/(Rabbit+ThueMorse) 2178354649146282 k001 Champernowne real with 1368*n+810 2178354652896056 a001 2/1597*21^(2/11) 2178354665608066 r009 Re(z^3+c),c=-23/64+31/59*I,n=52 2178354666062762 a007 Real Root Of 249*x^4+244*x^3-991*x^2-549*x+422 2178354668672248 a005 (1/cos(9/239*Pi))^111 2178354668803287 l006 ln(743/6562) 2178354676407307 m001 gamma^2/exp(FeigenbaumB)^2*sin(Pi/5)^2 2178354682147744 r009 Re(z^3+c),c=-25/98+13/49*I,n=2 2178354685532719 a001 7/2584*1597^(39/43) 2178354685572773 a007 Real Root Of 329*x^4+501*x^3-200*x^2+389*x-433 2178354687600812 b008 Sqrt[ArcCot[43]]/7 2178354692171919 a007 Real Root Of -459*x^4-424*x^3+767*x^2-970*x+200 2178354701212369 r005 Im(z^2+c),c=17/42+8/37*I,n=13 2178354706989531 m009 (1/2*Psi(1,2/3)+3)/(3/2*Pi^2+6) 2178354715598931 a001 123/34*144^(47/57) 2178354716717056 a007 Real Root Of -492*x^4-918*x^3-359*x^2+681*x+157 2178354727373966 m005 (-29/44+1/4*5^(1/2))/(5/7*3^(1/2)-7/9) 2178354747623573 m001 (Rabbit-ZetaQ(2))/(gamma(1)+Artin) 2178354749166285 k001 Champernowne real with 1369*n+809 2178354752255130 l006 ln(5629/6999) 2178354756972886 r002 61th iterates of z^2 + 2178354761666931 a007 Real Root Of -144*x^4+780*x^3-473*x^2-761*x-918 2178354767527018 r005 Im(z^2+c),c=-83/114+1/39*I,n=8 2178354776590139 a003 cos(Pi*17/50)*cos(Pi*27/77) 2178354795055179 m005 (1/3*Catalan+2/11)/(1/4*gamma-1/6) 2178354796561801 m001 Riemann1stZero^2*exp(DuboisRaymond)^2*exp(1)^2 2178354801841389 m001 (FeigenbaumD+Sarnak)^HardyLittlewoodC3 2178354805217101 r002 45th iterates of z^2 + 2178354814929092 m001 Pi*csc(5/12*Pi)/GAMMA(7/12)+Bloch*OneNinth 2178354821096348 s002 sum(A084859[n]/(n*exp(n)-1),n=1..infinity) 2178354822602693 r005 Re(z^2+c),c=-21/106+16/43*I,n=29 2178354825844173 m001 (BesselI(0,2)+Bloch)/(Totient-ZetaP(4)) 2178354828875773 a008 Real Root of (-3-5*x-2*x^3-5*x^4+3*x^5) 2178354828956142 m001 (Zeta(3)+GAMMA(2/3))/(gamma(2)-OneNinth) 2178354829211779 h001 (9/11*exp(1)+8/11)/(5/12*exp(1)+2/9) 2178354848088640 l006 ln(850/7507) 2178354849156324 k002 Champernowne real with 219/2*n^2-543/2*n+183 2178354849186288 k001 Champernowne real with 1370*n+808 2178354853683541 s002 sum(A086640[n]/(n^3*pi^n+1),n=1..infinity) 2178354855592654 r005 Re(z^2+c),c=-4/23+10/23*I,n=21 2178354857411447 r005 Re(z^2+c),c=19/54+7/36*I,n=17 2178354859127795 a007 Real Root Of 482*x^4+832*x^3-258*x^2+212*x-567 2178354862497947 m001 1/exp(log(1+sqrt(2)))/Khintchine/sin(1)^2 2178354862831723 r005 Re(z^2+c),c=-7/40+22/51*I,n=36 2178354866401106 m001 exp(GAMMA(19/24))*FeigenbaumAlpha^2*Zeta(5)^2 2178354870210870 r009 Re(z^3+c),c=-11/31+18/35*I,n=58 2178354879182217 m005 (3*exp(1)+4)/(5*Catalan+1) 2178354879926619 a008 Real Root of x^4-2*x^3-399*x^2-1169*x+4438 2178354882794149 m001 ln(GAMMA(7/12))/GAMMA(11/24)/Zeta(7) 2178354888608721 r005 Re(z^2+c),c=-17/114+19/39*I,n=25 2178354891405294 m001 (polylog(4,1/2)+Landau)/(Robbin-ZetaP(3)) 2178354894600223 r002 5th iterates of z^2 + 2178354898240105 s002 sum(A082605[n]/(10^n+1),n=1..infinity) 2178354898670971 m002 E^Pi-(E^Pi*Coth[Pi])/Pi^2+Tanh[Pi] 2178354918872336 a001 1/105937*144^(12/19) 2178354930169168 a001 7/1346269*46368^(2/15) 2178354930196392 a001 7/3524578*63245986^(2/15) 2178354930196422 a001 7/9227465*86267571272^(2/15) 2178354936975968 r005 Re(z^2+c),c=-71/98+8/45*I,n=19 2178354942457136 m005 (1/3*5^(1/2)-2/5)/(1/4*Pi+4/5) 2178354947969092 m001 (3^(1/3)+gamma(3))/(HeathBrownMoroz+Robbin) 2178354949206291 k001 Champernowne real with 1371*n+807 2178354949858834 p001 sum(1/(355*n+13)/n/(125^n),n=1..infinity) 2178354956361345 p003 LerchPhi(1/12,6,579/208) 2178354966471611 h001 (7/10*exp(2)+3/7)/(10/11*exp(1)+1/10) 2178354966862492 r002 62th iterates of z^2 + 2178354970882953 m001 ln(1+sqrt(2))^sqrt(3)+exp(1/Pi) 2178354970882953 m001 ln(2^(1/2)+1)^(3^(1/2))+exp(1/Pi) 2178354977962185 a007 Real Root Of 316*x^4+603*x^3-19*x^2+601*x+517 2178354981821414 r005 Re(z^2+c),c=-31/118+2/27*I,n=9 2178354987282993 l006 ln(957/8452) 2178354988376941 m001 ReciprocalFibonacci/Artin/ThueMorse 2178354992994775 r009 Im(z^3+c),c=-5/118+5/22*I,n=5 2178354994668797 r005 Im(z^2+c),c=-27/50+10/27*I,n=6 2178355000923867 m001 (BesselI(1,2)-sin(1))/(-FeigenbaumB+Salem) 2178355001216028 m001 1/GAMMA(2/3)/Khintchine^2*exp(GAMMA(7/12))^2 2178355011836986 a007 Real Root Of -23*x^4-539*x^3-829*x^2-27*x+217 2178355013095663 r005 Im(z^2+c),c=-3/32+41/58*I,n=18 2178355013336778 m001 ln(2)^ArtinRank2+OrthogonalArrays 2178355015493865 g006 Psi(1,9/10)+Psi(1,2/7)+Psi(1,1/3)-Psi(1,3/5) 2178355033948947 r005 Im(z^2+c),c=2/11+4/27*I,n=18 2178355034526050 a007 Real Root Of -41*x^4+461*x^3+971*x^2-857*x-786 2178355040368274 m001 1/Tribonacci/FeigenbaumD^2/ln(cos(Pi/12)) 2178355049226294 k001 Champernowne real with 1372*n+806 2178355049504197 a007 Real Root Of -440*x^4-621*x^3+310*x^2-619*x+669 2178355049984528 a008 Real Root of x^4-x^3-14*x^2+36*x+112 2178355052962876 p003 LerchPhi(1/125,3,82/229) 2178355053843145 m001 MertensB3^Champernowne/PlouffeB 2178355056057942 a007 Real Root Of 682*x^4+940*x^3-877*x^2+934*x+556 2178355057786484 r005 Im(z^2+c),c=-5/31+18/61*I,n=20 2178355070180483 p003 LerchPhi(1/12,4,144/55) 2178355086941360 l006 ln(4269/5308) 2178355088922893 m001 Totient*(FeigenbaumD-Shi(1)) 2178355094213089 m001 (-Sarnak+ZetaQ(3))/(Catalan-sin(1/5*Pi)) 2178355098481475 l006 ln(1064/9397) 2178355098520449 m005 (1/2*5^(1/2)+2)/(4/5*2^(1/2)+3/10) 2178355099281557 m001 1/Lehmer/Khintchine*ln(cos(Pi/12)) 2178355101693284 m001 1/Magata^2/ln(LaplaceLimit)^2/GAMMA(7/12)^2 2178355102862368 a001 17/9*2207^(1/54) 2178355104543226 a001 1/271461*(1/2*5^(1/2)+1/2)^4*2207^(11/19) 2178355105704443 b008 Cos[(10/3)^(1/4)] 2178355106013737 h001 (5/7*exp(1)+1/4)/(1/3*exp(1)+1/10) 2178355122165611 m004 (15*Sqrt[5])/(2*Pi)+5*Pi+Cos[Sqrt[5]*Pi] 2178355127288169 r005 Im(z^2+c),c=-39/82+23/60*I,n=52 2178355149246297 k001 Champernowne real with 1373*n+805 2178355149560139 m005 (1/2*Zeta(3)-3/4)/(1/3*exp(1)-2/9) 2178355153447502 m001 (Zeta(3)+Grothendieck)/(Rabbit+TwinPrimes) 2178355168829631 r005 Re(z^2+c),c=-31/29+13/47*I,n=4 2178355182268308 a007 Real Root Of -398*x^4-984*x^3-786*x^2-915*x+527 2178355194398724 a007 Real Root Of -40*x^4-870*x^3+49*x^2+435*x+97 2178355198914187 m001 1/FeigenbaumB^2/ln(Si(Pi))/Zeta(5)^2 2178355201109263 a007 Real Root Of 296*x^4+410*x^3-237*x^2+675*x+168 2178355215842702 m001 GAMMA(5/6)*HardyLittlewoodC4+FeigenbaumC 2178355221024834 a007 Real Root Of -952*x^4+510*x^3-969*x^2+939*x-20 2178355221627157 a007 Real Root Of -529*x^4+893*x^3+936*x^2+964*x+176 2178355227336615 b008 21+ArcCsch[2*EulerGamma] 2178355231315947 a001 329/90481*7^(23/25) 2178355232894769 m001 TwinPrimes*GlaisherKinkelin^2*ln(Zeta(9)) 2178355244621800 a007 Real Root Of 146*x^4+376*x^3+654*x^2+949*x-437 2178355246294369 r009 Re(z^3+c),c=-1/110+37/47*I,n=23 2178355246495912 a007 Real Root Of -341*x^4-178*x^3+886*x^2-640*x+240 2178355249266300 k001 Champernowne real with 1374*n+804 2178355253449484 m001 Bloch*ErdosBorwein-cos(1) 2178355271631810 m001 PlouffeB-exp(Pi)+QuadraticClass 2178355274503982 m001 (-Otter+Tribonacci)/(2^(1/3)-Pi^(1/2)) 2178355275676880 a001 1/710694*(1/2*5^(1/2)+1/2)^2*5778^(14/19) 2178355278619578 m001 (Tetranacci+Thue)/(CareFree-FeigenbaumB) 2178355283761240 a005 (1/cos(5/89*Pi))^638 2178355285833148 a001 1/1860621*(1/2*5^(1/2)+1/2)^12*15127^(5/19) 2178355292043558 a001 1/4871169*(1/2*5^(1/2)+1/2)^10*39603^(8/19) 2178355293210645 a001 1/7881717*(1/2*5^(1/2)+1/2)^13*64079^(6/19) 2178355294187314 a001 1/3010548*(1/2*5^(1/2)+1/2)^5*24476^(12/19) 2178355298566922 m001 (BesselI(0,2)*Trott+Bloch)/BesselI(0,2) 2178355301702181 m001 exp(Pi)^exp(-Pi)/(exp(Pi)^Zeta(1,2)) 2178355304279041 s002 sum(A268900[n]/(exp(n)-1),n=1..infinity) 2178355312067068 r009 Re(z^3+c),c=-3/86+29/54*I,n=22 2178355312106996 r005 Re(z^2+c),c=6/19+21/43*I,n=6 2178355317031993 a001 521/46368*233^(31/57) 2178355317196604 m005 (1/2*Pi+3/7)/(2/9*Catalan+5/7) 2178355320261801 m005 (31/30+1/5*5^(1/2))/(3/5*gamma+1/3) 2178355324974914 a007 Real Root Of -679*x^4-953*x^3+981*x^2+44*x+879 2178355327222538 a007 Real Root Of 328*x^4+396*x^3-445*x^2+469*x-159 2178355339063638 a005 (1/cos(30/163*Pi))^251 2178355339879422 a007 Real Root Of 684*x^4-515*x^3+738*x^2-556*x-163 2178355346090560 a007 Real Root Of 70*x^4-70*x^3-815*x^2-777*x-125 2178355348514271 r004 Im(z^2+c),c=-47/46+3/13*I,z(0)=-1,n=16 2178355349286303 k001 Champernowne real with 1375*n+803 2178355349402872 l006 ln(7178/8925) 2178355354032055 h001 (5/12*exp(1)+7/9)/(1/5*exp(1)+1/3) 2178355360418284 a007 Real Root Of 378*x^4+783*x^3+122*x^2+660*x+441 2178355367490302 a007 Real Root Of 257*x^4+42*x^3-776*x^2+911*x+314 2178355381592113 r005 Re(z^2+c),c=-5/21+13/55*I,n=12 2178355388146788 a001 15127/377*8^(48/59) 2178355390377241 a001 54018521/233*610^(17/24) 2178355393718833 a007 Real Root Of -21*x^4-479*x^3-508*x^2-815*x+594 2178355400736525 a001 1/439233*(1/2*5^(1/2)+1/2)^8*3571^(7/19) 2178355405353168 r005 Im(z^2+c),c=-11/29+24/43*I,n=15 2178355415421954 r005 Im(z^2+c),c=-41/44+12/55*I,n=17 2178355418265613 r009 Re(z^3+c),c=-43/126+12/25*I,n=25 2178355419914781 m001 (-Kac+Lehmer)/(BesselK(0,1)+ln(3)) 2178355422967601 r009 Re(z^3+c),c=-29/102+11/38*I,n=3 2178355431980056 r005 Im(z^2+c),c=13/106+17/27*I,n=17 2178355434216590 a007 Real Root Of -407*x^4-481*x^3+714*x^2-64*x+665 2178355434432649 r009 Re(z^3+c),c=-4/15+2/7*I,n=8 2178355446461705 h001 (7/12*exp(2)+1/4)/(7/11*exp(1)+4/11) 2178355449306306 k001 Champernowne real with 1376*n+802 2178355459608126 m005 (1/2*Zeta(3)+3/4)/(Zeta(3)+5) 2178355466602929 s001 sum(exp(-Pi/2)^(n-1)*A191161[n],n=1..infinity) 2178355476170622 m001 1/RenyiParking^2*exp(CareFree)*BesselK(1,1) 2178355476764168 m001 (Salem-Sierpinski)/(AlladiGrinstead-Backhouse) 2178355482584942 r005 Re(z^2+c),c=19/46+3/14*I,n=35 2178355486932559 r002 38th iterates of z^2 + 2178355508964845 a007 Real Root Of 261*x^4+295*x^3-787*x^2-330*x+188 2178355512622657 v002 sum(1/(2^n*(5/2*n^2+69/2*n-7)),n=1..infinity) 2178355513572829 a001 2/21*987^(3/25) 2178355518694270 r005 Re(z^2+c),c=7/23+13/63*I,n=16 2178355526087631 p004 log(32969/3733) 2178355532175396 r002 23th iterates of z^2 + 2178355533712892 k002 Champernowne real with 1/2*n^2+349/2*n-173 2178355538117129 a007 Real Root Of 889*x^4+825*x^3+392*x^2-882*x+163 2178355538133793 h001 (5/8*exp(2)+4/9)/(9/11*exp(1)+1/10) 2178355538791533 m004 -500/Pi-5*Pi+125*Pi*Tanh[Sqrt[5]*Pi] 2178355549326309 k001 Champernowne real with 1377*n+801 2178355555334014 m001 (BesselK(1,1)-ArtinRank2)/(FeigenbaumD+Niven) 2178355561301849 m001 (Ei(1,1)+Landau)/(BesselI(0,1)-Catalan) 2178355565867056 r005 Re(z^2+c),c=-4/21+4/7*I,n=18 2178355571333624 h005 exp(sin(Pi*2/39)+sin(Pi*7/33)) 2178355574680590 r005 Im(z^2+c),c=-37/90+17/49*I,n=13 2178355576686042 m001 (Si(Pi)+sin(1))/(GAMMA(5/6)+OneNinth) 2178355584059783 a007 Real Root Of 563*x^4+926*x^3-746*x^2-267*x-147 2178355609808816 r009 Re(z^3+c),c=-19/90+31/41*I,n=8 2178355612520819 h001 (1/9*exp(1)+1/3)/(3/10*exp(2)+7/10) 2178355612917388 m001 (sin(1)+exp(1/Pi))/(BesselI(1,1)+ZetaP(2)) 2178355613315394 a001 2584/710647*7^(23/25) 2178355615104566 s001 sum(exp(-4*Pi/5)^n*A089493[n],n=1..infinity) 2178355618090568 m001 (MertensB3+Sierpinski)/(Zeta(3)+Gompertz) 2178355626103250 a001 5/322*2^(21/43) 2178355627385905 r005 Im(z^2+c),c=-169/126+1/60*I,n=42 2178355630217607 m001 (Totient-Trott)/(Ei(1)-GAMMA(17/24)) 2178355631703836 r005 Re(z^2+c),c=-9/34+2/53*I,n=8 2178355637044417 r005 Re(z^2+c),c=-37/56+23/38*I,n=6 2178355637870869 m002 Pi^2+(37*Cosh[Pi])/36 2178355640469233 m001 Rabbit^Lehmer*OneNinth^Lehmer 2178355649346312 k001 Champernowne real with 1378*n+800 2178355649872668 m001 GAMMA(11/24)^2*exp(FeigenbaumKappa)^3 2178355649910420 r005 Re(z^2+c),c=-19/82+10/49*I,n=4 2178355651487199 m005 (1/3*exp(1)-1/7)/(1/22+3/22*5^(1/2)) 2178355662588405 a001 1/167772*(1/2*5^(1/2)+1/2)^2*1364^(13/19) 2178355663584359 r005 Im(z^2+c),c=-35/82+1/26*I,n=10 2178355665478874 r009 Re(z^3+c),c=-29/54+17/60*I,n=4 2178355667460047 m001 Salem+GAMMA(23/24)^StolarskyHarborth 2178355668876555 m001 (Zeta(5)+ln(Pi))/(Cahen-Landau) 2178355669048363 a001 55/15126*7^(23/25) 2178355669403996 h001 (5/9*exp(2)+7/12)/(5/11*exp(1)+11/12) 2178355677179693 a001 17711/4870847*7^(23/25) 2178355682205132 a001 10946/3010349*7^(23/25) 2178355684150476 a007 Real Root Of 220*x^4+298*x^3-509*x^2-633*x-837 2178355685618141 r005 Re(z^2+c),c=7/22+13/60*I,n=52 2178355692124987 m001 Trott/(FeigenbaumDelta+HardyLittlewoodC4) 2178355703493231 a001 4181/1149851*7^(23/25) 2178355703984132 m008 (Pi^2+3/5)/(5*Pi^6-3/4) 2178355704631195 a007 Real Root Of 139*x^4+424*x^3+289*x^2-160*x-467 2178355710740067 r005 Re(z^2+c),c=-17/90+25/63*I,n=40 2178355713499686 a007 Real Root Of 235*x^4+349*x^3-2*x^2-877*x+187 2178355716282837 r004 Re(z^2+c),c=1/4-4/17*I,z(0)=exp(7/12*I*Pi),n=6 2178355716694028 r002 6th iterates of z^2 + 2178355718613104 l006 ln(5676/5801) 2178355731191039 a007 Real Root Of -105*x^4-314*x^3-578*x^2-439*x+905 2178355733125675 a001 312119004989/21*144^(1/13) 2178355734568963 l006 ln(2909/3617) 2178355734568963 p004 log(3617/2909) 2178355736714001 m001 RenyiParking^2/ln(Niven)*(3^(1/3))^2 2178355749143699 r005 Re(z^2+c),c=-3/25+35/64*I,n=59 2178355749366315 k001 Champernowne real with 1379*n+799 2178355759436648 r009 Im(z^3+c),c=-17/62+1/63*I,n=8 2178355769572441 m001 (Zeta(1/2)+1/3)/(GAMMA(19/24)+4) 2178355773923271 a007 Real Root Of 759*x^4+505*x^3-976*x^2-916*x+2 2178355782628889 q001 469/2153 2178355794088798 m001 (ln(5)+CopelandErdos)/(Kolakoski-Rabbit) 2178355795267761 a007 Real Root Of 15*x^4+314*x^3-262*x^2+365*x+447 2178355803321009 r005 Re(z^2+c),c=-57/70+5/31*I,n=28 2178355808472287 r005 Im(z^2+c),c=-67/78+5/34*I,n=12 2178355809195809 m001 (PlouffeB-exp(Pi))/(ZetaQ(3)+ZetaQ(4)) 2178355812881996 m006 (5/6*exp(2*Pi)+1/6)/(3/Pi-3/4) 2178355823445686 r005 Re(z^2+c),c=35/102+2/9*I,n=46 2178355833973687 m001 exp(Zeta(1,2))^2/Rabbit*Zeta(7) 2178355836764063 r002 43th iterates of z^2 + 2178355840317158 m006 (5/6/Pi-2/3)/(2/3*exp(Pi)+3) 2178355845056884 m001 (Rabbit+ZetaP(2))/(ln(3)-BesselI(1,1)) 2178355848860933 a007 Real Root Of -21*x^4+242*x^3+391*x^2-740*x-493 2178355849386318 k001 Champernowne real with 1380*n+798 2178355849404036 a001 1597/439204*7^(23/25) 2178355852156925 k002 Champernowne real with 110*n^2-273*n+184 2178355855284869 g004 Re(GAMMA(13/4+I*7/15)) 2178355855673904 m002 -3+E^Pi+Log[Pi]+Tanh[Pi]/2 2178355859660978 h001 (6/11*exp(2)+1/5)/(2/9*exp(2)+3/10) 2178355860789111 r009 Im(z^3+c),c=-1/70+13/57*I,n=8 2178355875566342 r009 Re(z^3+c),c=-25/86+15/43*I,n=5 2178355883422471 r009 Re(z^3+c),c=-21/58+29/55*I,n=30 2178355883781905 m001 (Si(Pi)+ln(2))/(-Kolakoski+ReciprocalLucas) 2178355888049693 m001 (-Kac+StolarskyHarborth)/(Shi(1)+3^(1/3)) 2178355894598248 a007 Real Root Of -517*x^4-845*x^3+371*x^2-613*x-189 2178355897951673 a007 Real Root Of 934*x^4+297*x^3+335*x^2-744*x+141 2178355905136456 m001 (GlaisherKinkelin+Niven)/(Rabbit+Robbin) 2178355906959134 m001 1/ArtinRank2^2/FeigenbaumDelta^2*ln((2^(1/3))) 2178355907261031 a007 Real Root Of 602*x^4+987*x^3-406*x^2+518*x-298 2178355920911540 a007 Real Root Of -740*x^4+611*x^3-415*x^2+978*x-198 2178355922985673 a001 4356647/2+29/2*5^(1/2) 2178355929578677 r005 Re(z^2+c),c=37/114+13/58*I,n=27 2178355933029397 r009 Im(z^3+c),c=-1/70+13/57*I,n=10 2178355933970953 r009 Im(z^3+c),c=-1/70+13/57*I,n=12 2178355933978159 r009 Im(z^3+c),c=-1/70+13/57*I,n=15 2178355933978191 r009 Im(z^3+c),c=-1/70+13/57*I,n=17 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=19 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=21 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=23 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=25 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=27 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=29 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=31 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=33 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=35 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=37 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=39 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=42 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=44 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=46 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=48 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=49 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=50 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=51 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=52 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=47 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=45 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=43 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=41 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=40 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=38 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=36 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=34 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=32 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=30 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=28 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=26 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=24 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=22 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=20 2178355933978192 r009 Im(z^3+c),c=-1/70+13/57*I,n=18 2178355933978199 r009 Im(z^3+c),c=-1/70+13/57*I,n=16 2178355933978299 r009 Im(z^3+c),c=-1/70+13/57*I,n=14 2178355933978335 r009 Im(z^3+c),c=-1/70+13/57*I,n=13 2178355934071906 r009 Im(z^3+c),c=-1/70+13/57*I,n=11 2178355937109737 a007 Real Root Of -14*x^4+552*x^3-889*x^2-399*x-303 2178355940557204 r002 38th iterates of z^2 + 2178355942582902 r009 Im(z^3+c),c=-1/70+13/57*I,n=9 2178355949406321 k001 Champernowne real with 1381*n+797 2178355957427527 a001 2178309+21*5^(1/2) 2178355959189713 r005 Im(z^2+c),c=-79/126+4/13*I,n=25 2178355969709982 r005 Im(z^2+c),c=-11/21+19/49*I,n=46 2178355970426109 s002 sum(A215512[n]/(n^3*2^n+1),n=1..infinity) 2178355978540772 a001 507556943/233 2178355993292299 m003 -13/2+(17*Sqrt[5])/64+Tan[1/2+Sqrt[5]/2]^2/2 2178356000482714 s001 sum(exp(-3*Pi/5)^n*A027450[n],n=1..infinity) 2178356003918245 a007 Real Root Of 173*x^4-189*x^3-962*x^2+276*x-683 2178356009453636 m001 (-Lehmer+Magata)/(3^(1/2)-BesselJ(1,1)) 2178356021258780 s001 sum(1/10^(n-1)*A287580[n]/n!^2,n=1..infinity) 2178356021308242 r005 Im(z^2+c),c=-7/34+17/55*I,n=25 2178356040158257 p001 sum((-1)^n/(554*n+457)/(100^n),n=0..infinity) 2178356046965819 a007 Real Root Of 459*x^4+398*x^3-841*x^2+738*x-623 2178356049426324 k001 Champernowne real with 1382*n+796 2178356070239363 a001 4/4052739537881*317811^(15/19) 2178356070667940 m001 (1+CareFree)/(HardyLittlewoodC4+Weierstrass) 2178356075624107 a007 Real Root Of 404*x^4+676*x^3-446*x^2-421*x-910 2178356082856325 a001 2/3*514229^(28/29) 2178356085766059 r005 Re(z^2+c),c=-85/86+9/41*I,n=34 2178356093031836 l006 ln(107/945) 2178356094933156 a007 Real Root Of 160*x^4+82*x^3-603*x^2-405*x-776 2178356095296819 a007 Real Root Of -466*x^4-454*x^3+989*x^2-735*x-494 2178356095393481 a008 Real Root of x^4+9*x^2-119*x+194 2178356098953350 r005 Im(z^2+c),c=-39/56+5/43*I,n=41 2178356103260929 r002 19th iterates of z^2 + 2178356109853623 l006 ln(7367/9160) 2178356125687867 r005 Re(z^2+c),c=-125/102+9/61*I,n=32 2178356135045670 m001 1/Riemann3rdZero*ln(Magata)^2*GAMMA(1/4) 2178356139381826 r005 Im(z^2+c),c=-1+47/204*I,n=25 2178356146830467 a007 Real Root Of 549*x^4+975*x^3-724*x^2-981*x-985 2178356149446327 k001 Champernowne real with 1383*n+795 2178356152262594 m001 (Zeta(5)-sin(1/12*Pi))/(gamma(3)+FeigenbaumMu) 2178356154791562 a007 Real Root Of -32*x^4-694*x^3+48*x^2-370*x+938 2178356185648616 m005 (1/3*2^(1/2)-1/5)/(7/8*Catalan+4/9) 2178356186947506 m001 (Psi(2,1/3)+Shi(1))/(GAMMA(23/24)+Backhouse) 2178356193384508 r005 Im(z^2+c),c=-57/58+7/31*I,n=62 2178356201347341 a007 Real Root Of 822*x^4+419*x^3+407*x^2-723*x+132 2178356202423881 m001 ln(Cahen)^2/ErdosBorwein/CopelandErdos^2 2178356210800744 a007 Real Root Of -432*x^4+97*x^3-761*x^2+868*x-153 2178356211843239 m001 HardyLittlewoodC4+MertensB3*OrthogonalArrays 2178356226659803 r005 Re(z^2+c),c=-2/9+14/47*I,n=17 2178356228034405 m001 exp(sqrt(2))/(GAMMA(13/24)^GAMMA(17/24)) 2178356228514205 m005 (1/3*gamma+1/6)/(43/60+5/12*5^(1/2)) 2178356243260215 r005 Re(z^2+c),c=-43/40+8/33*I,n=8 2178356249466330 k001 Champernowne real with 1384*n+794 2178356258485449 r005 Re(z^2+c),c=-9/70+25/47*I,n=42 2178356262012272 m001 FeigenbaumAlpha^(polylog(4,1/2)*GAMMA(13/24)) 2178356265456210 a001 47*(1/2*5^(1/2)+1/2)^30*18^(6/19) 2178356269332274 a007 Real Root Of -39*x^4-819*x^3+670*x^2+57*x-807 2178356273229202 m005 (1/2*exp(1)-7/11)/(5/6*Pi+7/10) 2178356274170567 r005 Im(z^2+c),c=-11/34+11/40*I,n=3 2178356294722050 r005 Im(z^2+c),c=-7/50+44/45*I,n=7 2178356300902553 a007 Real Root Of 324*x^4+545*x^3-480*x^2-144*x+302 2178356301878773 r005 Im(z^2+c),c=-25/102+12/37*I,n=10 2178356333500835 r009 Im(z^3+c),c=-15/34+31/43*I,n=5 2178356349486333 k001 Champernowne real with 1385*n+793 2178356354739905 l006 ln(4458/5543) 2178356363552777 a001 34/4870847*199^(13/20) 2178356363817716 h005 exp(cos(Pi*7/29)/sin(Pi*13/34)) 2178356370802634 m006 (2/5*ln(Pi)-4)/(2/3*exp(Pi)+5/6) 2178356381702496 h003 exp(Pi*(10^(1/6)+6^(3/10))) 2178356381702496 h008 exp(Pi*(10^(1/6)+6^(3/10))) 2178356388947716 a007 Real Root Of 520*x^4+900*x^3-559*x^2+293*x+885 2178356391308857 a007 Real Root Of -572*x^4-789*x^3+731*x^2-972*x-862 2178356392619377 a007 Real Root Of 521*x^4+998*x^3-251*x^2+97*x-13 2178356392786287 r009 Re(z^3+c),c=-17/44+35/62*I,n=46 2178356395360411 m005 (1/2*3^(1/2)-1/5)/(3/11*Catalan-5/9) 2178356398936139 a007 Real Root Of -39*x^4-803*x^3+981*x^2-725*x-29 2178356400035515 m005 (1/2*exp(1)-7/8)/(3/4*5^(1/2)+6/11) 2178356417013225 q001 1/4590617 2178356434052184 r005 Re(z^2+c),c=-3/13+4/15*I,n=17 2178356445288927 r009 Im(z^3+c),c=-5/118+5/22*I,n=4 2178356445331087 r002 44th iterates of z^2 + 2178356446456327 a008 Real Root of (1+4*x-2*x^2+3*x^3-x^4+x^5) 2178356449506336 k001 Champernowne real with 1386*n+792 2178356458136424 m001 (1+BesselJ(0,1))/(cos(1/5*Pi)+HeathBrownMoroz) 2178356467023858 a001 8/9062201101803*18^(5/16) 2178356467978814 v003 sum((3*n^3-7*n^2+7)/n^(n-2),n=1..infinity) 2178356493688989 a007 Real Root Of -42*x^4-45*x^3-346*x^2-535*x+957 2178356493986007 a005 (1/sin(97/239*Pi))^1055 2178356495829077 m005 (1/2*2^(1/2)-1/9)/(1/6*Pi-1/4) 2178356502578786 m001 exp(1/Pi)^BesselI(1,1)/ln(gamma) 2178356502578786 m001 exp(1/Pi)^BesselI(1,1)/log(gamma) 2178356505283367 a007 Real Root Of -292*x^4-528*x^3+261*x^2+254*x+432 2178356521973555 m001 (sin(1/12*Pi)+Khinchin)/(Stephens-Tetranacci) 2178356524232877 m001 exp(1)/(exp(1/exp(1))^BesselK(1,1)) 2178356527433736 r005 Im(z^2+c),c=-13/118+11/35*I,n=3 2178356529109569 m001 (Niven-Sarnak)/(ZetaP(2)-ZetaQ(4)) 2178356530068769 m001 GAMMA(3/4)/Robbin*Salem 2178356530298832 r009 Im(z^3+c),c=-1/70+13/57*I,n=7 2178356534312213 m001 (-Champernowne+Paris)/(BesselJ(0,1)+Artin) 2178356534940444 m001 (-Magata+Robbin)/(LambertW(1)+ln(2)) 2178356536718902 k002 Champernowne real with n^2+173*n-172 2178356537929521 a001 7*21^(22/59) 2178356537977664 r005 Re(z^2+c),c=-17/90+25/63*I,n=32 2178356538059023 a007 Real Root Of 510*x^4+901*x^3-123*x^2+856*x+278 2178356538117039 a007 Real Root Of -22*x^4-503*x^3-539*x^2-442*x+521 2178356546459685 r009 Re(z^3+c),c=-17/66+25/47*I,n=3 2178356547800035 r009 Re(z^3+c),c=-1/86+41/47*I,n=8 2178356548249300 r005 Re(z^2+c),c=-11/14+31/252*I,n=52 2178356549276080 m001 (MertensB2+Sarnak)/(sin(1/5*Pi)+Ei(1,1)) 2178356549526339 k001 Champernowne real with 1387*n+791 2178356549826985 a007 Real Root Of 462*x^4+841*x^3-546*x^2-814*x-892 2178356551210159 m001 arctan(1/2)^2*ln(FeigenbaumKappa)*gamma^2 2178356551526950 r002 11th iterates of z^2 + 2178356552934711 a008 Real Root of x^4-2*x^3+10*x^2-2*x-95 2178356559249030 r002 20th iterates of z^2 + 2178356564241587 r005 Im(z^2+c),c=-9/10+40/223*I,n=20 2178356566147199 m001 1/BesselJ(1,1)^2/MertensB1^2/ln(cos(Pi/12)) 2178356567968062 m005 (51/44+1/4*5^(1/2))/(1/12*Zeta(3)-8/9) 2178356580072302 m001 (GAMMA(2/3)-cos(1/12*Pi))/(GAMMA(19/24)-Otter) 2178356588443053 a005 (1/cos(3/130*Pi))^296 2178356593147018 a007 Real Root Of -511*x^4-687*x^3+527*x^2-758*x+253 2178356593591519 a007 Real Root Of 259*x^4+292*x^3-171*x^2+786*x-290 2178356597216625 a001 1346269/199*521^(12/13) 2178356600203225 r005 Re(z^2+c),c=35/102+5/22*I,n=58 2178356605370034 a007 Real Root Of 394*x^4+753*x^3+184*x^2+568*x-724 2178356608590777 m001 (MertensB2+OneNinth)/(Psi(2,1/3)+FeigenbaumD) 2178356619732797 m001 (BesselJ(1,1)-Grothendieck)/(Sarnak-Totient) 2178356627721455 r009 Re(z^3+c),c=-1/74+35/46*I,n=16 2178356633423507 r009 Re(z^3+c),c=-31/86+28/53*I,n=53 2178356638529231 m001 exp(1)^2*ln(CareFree)*sin(1) 2178356643996182 a001 1/51841*47^(17/27) 2178356649546342 k001 Champernowne real with 1388*n+790 2178356651144138 a008 Real Root of (-3-6*x^2+6*x^3+3*x^4-2*x^5) 2178356652158566 r005 Im(z^2+c),c=-137/118+1/34*I,n=15 2178356655069052 l006 ln(6007/7469) 2178356656753847 r005 Im(z^2+c),c=-25/24+9/32*I,n=7 2178356660895087 m008 (1/2*Pi^5+5/6)/(4/5*Pi^2-5/6) 2178356672774031 r009 Re(z^3+c),c=-13/42+2/5*I,n=14 2178356695851064 m006 (3/5/Pi+4)/(2*Pi^2-1/2) 2178356698621262 r005 Re(z^2+c),c=-19/30+52/127*I,n=33 2178356707923891 r005 Re(z^2+c),c=-17/90+25/63*I,n=42 2178356711180309 a007 Real Root Of 50*x^4-205*x^3-243*x^2+840*x-262 2178356713426853 q001 1087/499 2178356715378123 r005 Re(z^2+c),c=-17/90+25/63*I,n=43 2178356720594412 a005 (1/sin(41/107*Pi))^312 2178356725876144 m001 GAMMA(13/24)/GAMMA(1/3)^2/exp(sinh(1))^2 2178356725922610 a007 Real Root Of 152*x^4+14*x^3-579*x^2+378*x+293 2178356728778740 p004 log(29401/3329) 2178356738219389 a007 Real Root Of 296*x^4+863*x^3+929*x^2+593*x-861 2178356742286424 m001 (Artin+FeigenbaumMu)/(3^(1/3)+Zeta(1/2)) 2178356745035567 r009 Re(z^3+c),c=-5/54+9/11*I,n=10 2178356746184143 m001 (ln(2)/ln(10)+Catalan)/(gamma(3)+ZetaQ(2)) 2178356749566345 k001 Champernowne real with 1389*n+789 2178356754846469 a001 1364/21*610^(10/53) 2178356763072939 r005 Re(z^2+c),c=5/26+34/63*I,n=41 2178356776224832 r005 Re(z^2+c),c=17/62+20/47*I,n=29 2178356782317815 r009 Re(z^3+c),c=-11/30+9/17*I,n=27 2178356786398360 a007 Real Root Of 567*x^4+671*x^3-828*x^2+562*x-678 2178356795869840 r005 Re(z^2+c),c=-17/90+25/63*I,n=45 2178356796528882 m001 (Trott+ZetaP(3))/(exp(1/exp(1))-Lehmer) 2178356799517738 r005 Re(z^2+c),c=-3/13+4/15*I,n=15 2178356821919400 r005 Im(z^2+c),c=-111/118+10/47*I,n=11 2178356822447199 m001 (PlouffeB+TwinPrimes)/(gamma-ln(3)) 2178356832261655 l006 ln(7556/9395) 2178356837936915 a007 Real Root Of 536*x^4+767*x^3-676*x^2+668*x+522 2178356849491574 a001 610/167761*7^(23/25) 2178356849586348 k001 Champernowne real with 1390*n+788 2178356851356317 a007 Real Root Of 225*x^4+54*x^3-591*x^2+593*x-412 2178356855157525 k002 Champernowne real with 221/2*n^2-549/2*n+185 2178356872472278 r005 Im(z^2+c),c=-89/106+8/49*I,n=61 2178356875804892 a007 Real Root Of 599*x^4+958*x^3-494*x^2+516*x-117 2178356878536773 m001 (Kac-MinimumGamma)/(Otter+QuadraticClass) 2178356881326596 r005 Im(z^2+c),c=-8/15+18/47*I,n=43 2178356888456423 r005 Re(z^2+c),c=-91/114+4/45*I,n=24 2178356890744927 a007 Real Root Of -269*x^4-320*x^3+957*x^2+812*x-23 2178356891136487 m001 (Champernowne+Paris)/(GAMMA(2/3)-Backhouse) 2178356895085531 m001 (GAMMA(5/6)+MertensB3)/(BesselJ(0,1)-Ei(1)) 2178356901076109 m001 (2^(1/3)-exp(1))/(DuboisRaymond+Weierstrass) 2178356901464894 r005 Re(z^2+c),c=-17/90+25/63*I,n=48 2178356905810987 m001 1/TreeGrowth2nd*Robbin/exp(GAMMA(11/24)) 2178356931029931 m001 exp(sin(1))/GolombDickman^2/sqrt(1+sqrt(3))^2 2178356935633141 a001 1/18*18^(26/55) 2178356937813749 r009 Re(z^3+c),c=-45/118+7/16*I,n=2 2178356941987829 m001 QuadraticClass+(3^(1/3))^Rabbit 2178356948834995 p004 log(21841/2473) 2178356949202960 r005 Im(z^2+c),c=-49/114+28/59*I,n=15 2178356949606351 k001 Champernowne real with 1391*n+787 2178356951148970 a003 cos(Pi*14/85)/cos(Pi*41/111) 2178356956255350 a007 Real Root Of -23*x^4-506*x^3-117*x^2-145*x+905 2178356957661004 r005 Re(z^2+c),c=-17/90+25/63*I,n=51 2178356959129347 m005 (1/2*Catalan+4/9)/(2/9*2^(1/2)+1/10) 2178356960530801 r005 Re(z^2+c),c=-6/29+17/49*I,n=25 2178356971721387 r005 Re(z^2+c),c=-17/90+25/63*I,n=46 2178356972182551 m005 (1/2*2^(1/2)-5)/(11/12*Pi-10/11) 2178356980419489 r005 Re(z^2+c),c=-17/90+25/63*I,n=54 2178356988003161 r005 Re(z^2+c),c=-17/90+25/63*I,n=57 2178356988649541 r005 Re(z^2+c),c=-17/90+25/63*I,n=56 2178356988977521 r005 Re(z^2+c),c=-17/90+25/63*I,n=59 2178356989656460 r005 Re(z^2+c),c=-17/90+25/63*I,n=62 2178356990039914 r005 Re(z^2+c),c=-17/90+25/63*I,n=60 2178356990242301 m001 GAMMA(3/4)+ln(2)*exp(1/Pi) 2178356990408023 r005 Re(z^2+c),c=-17/90+25/63*I,n=63 2178356990493224 r005 Re(z^2+c),c=-17/90+25/63*I,n=64 2178356991150324 r005 Re(z^2+c),c=-17/90+25/63*I,n=61 2178356992524814 r005 Re(z^2+c),c=-17/90+25/63*I,n=53 2178356993087517 r005 Re(z^2+c),c=-17/90+25/63*I,n=58 2178356997775660 r005 Re(z^2+c),c=-17/90+25/63*I,n=55 2178357002627750 m009 (24/5*Catalan+3/5*Pi^2-1/3)/(2*Psi(1,3/4)-1/2) 2178357005132919 r005 Re(z^2+c),c=-11/10+53/223*I,n=16 2178357006205515 m001 Zeta(5)/ln(Pi)*BesselJZeros(0,1) 2178357006267639 r005 Re(z^2+c),c=-17/90+25/63*I,n=52 2178357008369501 a007 Real Root Of 239*x^4+476*x^3+168*x^2+143*x-947 2178357011951642 r005 Re(z^2+c),c=-17/90+25/63*I,n=49 2178357015412010 r005 Re(z^2+c),c=-17/90+25/63*I,n=50 2178357015625220 m005 (1/3*2^(1/2)-2/9)/(10/11*5^(1/2)-8/9) 2178357020689491 m001 1/Conway/Champernowne^2/ln((2^(1/3))) 2178357027155355 a005 (1/cos(26/123*Pi))^90 2178357049626354 k001 Champernowne real with 1392*n+786 2178357055463290 m001 (Lehmer+MasserGramainDelta)/(exp(1)-ln(5)) 2178357056835888 a007 Real Root Of -429*x^4-640*x^3+330*x^2-692*x-29 2178357062608752 m001 Pi*Psi(2,1/3)*Catalan/gamma(1) 2178357064513590 m005 (1/3*Zeta(3)+2/7)/(2/9*3^(1/2)-7/10) 2178357065986079 m005 (1/2*Pi-4/7)/(11/12*3^(1/2)+3) 2178357066464797 r002 59th iterates of z^2 + 2178357076489585 l006 ln(1076/9503) 2178357078064873 m001 FeigenbaumC^HardyLittlewoodC3+Rabbit 2178357088159824 r009 Re(z^3+c),c=-41/126+26/59*I,n=20 2178357091503905 a001 123/86267571272*1597^(15/22) 2178357093934016 p004 log(15173/12203) 2178357094011745 h001 (4/5*exp(1)+3/10)/(1/11*exp(1)+8/9) 2178357102778816 r005 Re(z^2+c),c=-17/90+25/63*I,n=47 2178357106594249 m005 (1/2*3^(1/2)-4/5)/(3/8*Pi-7/8) 2178357109353891 r005 Im(z^2+c),c=-59/122+7/18*I,n=11 2178357111915135 m005 (1/2*Pi+6)/(2/5*Pi-10/11) 2178357118214764 r005 Re(z^2+c),c=-17/90+25/63*I,n=39 2178357130475594 m001 exp(Zeta(1/2))^2*GolombDickman^2*Zeta(5) 2178357139571072 m001 exp(Salem)/ErdosBorwein^2*log(2+sqrt(3))^2 2178357144679197 m005 (1/2*exp(1)-1/12)/(5/9*2^(1/2)-1/5) 2178357149646357 k001 Champernowne real with 1393*n+785 2178357156736532 m001 1/Sierpinski^2*Riemann1stZero/ln(GAMMA(1/3))^2 2178357157971849 m006 (2*Pi^2+1/4)/(4*exp(Pi)-4/5) 2178357163325562 r005 Re(z^2+c),c=-41/78+29/46*I,n=39 2178357172307576 r005 Re(z^2+c),c=-9/38+15/62*I,n=14 2178357173277315 a003 cos(Pi*23/95)-sin(Pi*9/23) 2178357176063432 a008 Real Root of (2+6*x-17*x^2-11*x^3) 2178357179203715 a007 Real Root Of 151*x^4+21*x^3-713*x^2-355*x-573 2178357183601167 m001 (ln(5)+Cahen)/(LandauRamanujan2nd+ZetaP(2)) 2178357185085995 l006 ln(969/8558) 2178357188820760 r005 Im(z^2+c),c=-19/90+14/45*I,n=13 2178357195653551 m001 Artin-arctan(1/3)*Tribonacci 2178357196238069 r005 Im(z^2+c),c=-65/48+1/62*I,n=32 2178357202911872 m001 (PlouffeB+ZetaQ(3))/(2^(1/2)+AlladiGrinstead) 2178357205445188 r005 Re(z^2+c),c=-2/25+37/58*I,n=32 2178357210358337 a007 Real Root Of 253*x^4+614*x^3+261*x^2-8*x-606 2178357210750316 r005 Im(z^2+c),c=-65/122+22/57*I,n=48 2178357211691212 r009 Im(z^3+c),c=-33/94+5/33*I,n=8 2178357212675757 m005 (1/3*Zeta(3)+1/7)/(4/7*Pi+7/10) 2178357214532725 a001 2178309/199*521^(11/13) 2178357214989370 a007 Real Root Of -192*x^4-327*x^3+832*x^2+986*x-857 2178357216088842 p004 log(33287/3769) 2178357232288247 a007 Real Root Of 304*x^4+514*x^3-278*x^2+381*x+617 2178357241756150 m001 (Riemann1stZero+Robbin)/(Conway-GolombDickman) 2178357245924100 a005 (1/sin(114/235*Pi))^711 2178357249666360 k001 Champernowne real with 1394*n+784 2178357250740961 a001 1/123*(1/2*5^(1/2)+1/2)^3*11^(10/13) 2178357258152421 m001 1/FeigenbaumD^2*CopelandErdos*exp(Ei(1)) 2178357264884031 m005 (1/2*gamma+3)/(8/11*3^(1/2)+1/4) 2178357265186195 m005 (1/3*exp(1)-1/8)/(-5/11+4/11*5^(1/2)) 2178357266538356 r005 Im(z^2+c),c=-67/82+4/33*I,n=12 2178357270611788 s002 sum(A200253[n]/(n*2^n-1),n=1..infinity) 2178357274644800 a007 Real Root Of 294*x^4+739*x^3+252*x^2+297*x+470 2178357274950708 a007 Real Root Of 927*x^4-416*x^3+311*x^2-737*x+148 2178357278099490 r009 Im(z^3+c),c=-13/102+47/54*I,n=48 2178357280515881 m005 (1/2*Pi+9/10)/(4/9*Zeta(3)+3/5) 2178357282855886 p001 sum(1/(472*n+337)/n/(6^n),n=1..infinity) 2178357283500388 m001 BesselI(0,2)*Catalan^polylog(4,1/2) 2178357285761208 m005 (1/5*gamma-1)/(3/4*2^(1/2)+3) 2178357308779874 r005 Im(z^2+c),c=-17/36+1/27*I,n=41 2178357313379432 m005 (1/2*Zeta(3)+1/8)/(8/9*exp(1)+11/12) 2178357320224810 a001 9349/8*21^(9/44) 2178357320642519 l006 ln(862/7613) 2178357335374395 a005 (1/cos(9/91*Pi))^579 2178357336399124 r005 Re(z^2+c),c=-13/60+20/63*I,n=14 2178357340826848 r005 Re(z^2+c),c=3/98+25/49*I,n=6 2178357348177965 m001 exp(Paris)^2*Khintchine/GAMMA(3/4)^2 2178357349285624 a001 119218851371/21*39088169^(1/13) 2178357349285624 a001 45537549124/21*10610209857723^(1/13) 2178357349285624 a001 10525900321/3*20365011074^(1/13) 2178357349291578 a001 64300051206/7*75025^(1/13) 2178357349686363 k001 Champernowne real with 1395*n+783 2178357350969489 r005 Im(z^2+c),c=-75/86+11/60*I,n=41 2178357351734263 m005 (1/3*2^(1/2)-2/3)/(3/5*3^(1/2)-1/7) 2178357357347619 m001 1/LaplaceLimit^2/exp(CareFree)*TreeGrowth2nd^2 2178357359359331 r005 Im(z^2+c),c=-111/94+1/35*I,n=48 2178357362261823 m001 GAMMA(3/4)*GAMMA(7/12)^FeigenbaumKappa 2178357369710668 r005 Re(z^2+c),c=-17/90+25/63*I,n=44 2178357377988806 h001 (4/7*exp(2)+2/7)/(7/10*exp(1)+1/6) 2178357388197275 a007 Real Root Of -28*x^4-620*x^3-223*x^2-69*x+328 2178357388689948 m001 exp(1)^HardyLittlewoodC4/GolombDickman 2178357390740917 a007 Real Root Of -97*x^4+580*x^3-338*x^2-809*x-445 2178357395842913 r005 Re(z^2+c),c=-3/34+4/7*I,n=23 2178357412020170 m001 LambertW(1)^2*ln(Catalan)^2*Zeta(1,2)^2 2178357415662298 r005 Re(z^2+c),c=-103/126+2/13*I,n=26 2178357417758330 r005 Im(z^2+c),c=-1/54+12/49*I,n=14 2178357419809658 q001 618/2837 2178357431501993 m001 1/ln(BesselJ(1,1))*MertensB1^3 2178357437240857 r009 Re(z^3+c),c=-11/30+31/57*I,n=58 2178357438016528 r002 2th iterates of z^2 + 2178357438881969 r005 Re(z^2+c),c=31/90+13/57*I,n=39 2178357439827629 h001 (-3*exp(-2)-5)/(-exp(3/2)+2) 2178357441781437 a007 Real Root Of -87*x^4+660*x^3-891*x^2+32*x-705 2178357443367585 r005 Re(z^2+c),c=23/62+1/3*I,n=24 2178357444910317 m002 (-30*E^Pi)/Pi+Pi 2178357446893043 m001 3/2*sqrt(5)^arctan(1/2) 2178357449706366 k001 Champernowne real with 1396*n+782 2178357452226820 b008 Sqrt[2]+(2*ArcSinh[Sqrt[2]])/3 2178357452226820 b008 Sqrt[2]+ArcCosh[5]/3 2178357470522520 m001 (GAMMA(19/24)+Thue)/(ln(3)+Zeta(1,-1)) 2178357470684034 r005 Im(z^2+c),c=-77/114+3/61*I,n=46 2178357473744957 m005 (1/2*Pi+9/11)/(5/12*3^(1/2)+3/8) 2178357477373147 a001 11/34*987^(13/47) 2178357483024543 r002 12th iterates of z^2 + 2178357483472990 m001 (OneNinth+Sierpinski)/(Bloch+LandauRamanujan) 2178357494621659 l006 ln(755/6668) 2178357506124551 a007 Real Root Of 718*x^4+279*x^3-448*x^2-792*x-150 2178357519412022 l006 ln(1549/1926) 2178357527505534 a007 Real Root Of -468*x^4-978*x^3+365*x^2+456*x-310 2178357528439728 m001 (FeigenbaumD-gamma)/(OneNinth+Thue) 2178357539724912 k002 Champernowne real with 3/2*n^2+343/2*n-171 2178357543951036 a007 Real Root Of 950*x^4-333*x^3+80*x^2-618*x-144 2178357549726369 k001 Champernowne real with 1397*n+781 2178357551666560 a007 Real Root Of -992*x^4+63*x^3+139*x^2+459*x-105 2178357558725099 m001 (StolarskyHarborth+ZetaQ(3))/(Otter+Salem) 2178357562118271 a007 Real Root Of 182*x^4+504*x^3+295*x^2-94*x-493 2178357570139946 a003 sin(Pi*20/71)-sin(Pi*28/61) 2178357571052899 a007 Real Root Of 378*x^4+709*x^3+413*x^2-610*x-146 2178357573314211 r002 34th iterates of z^2 + 2178357583185104 a007 Real Root Of -435*x^4-634*x^3+578*x^2-419*x-414 2178357586805064 m005 (1/2*gamma+1/9)/(6*Pi-1/2) 2178357588089729 r005 Im(z^2+c),c=-6/11+16/37*I,n=62 2178357592395538 a007 Real Root Of 77*x^4+92*x^3+196*x^2+577*x-456 2178357597497074 b008 3+14*PolyLog[2,Catalan] 2178357607339631 l006 ln(9127/9328) 2178357608063359 m005 (-21/44+1/4*5^(1/2))/(1/7*3^(1/2)-4) 2178357608320546 m005 (2*gamma-1/4)/(2/3*gamma-4/5) 2178357608320546 m007 (-2*gamma+1/4)/(-2/3*gamma+4/5) 2178357608400819 a007 Real Root Of 480*x^4+477*x^3-668*x^2+997*x-536 2178357613333440 m001 exp(BesselJ(0,1))^2/Artin/LambertW(1) 2178357621204261 m001 GAMMA(1/12)*ln(Lehmer)^2/Zeta(3)^2 2178357637487672 r005 Im(z^2+c),c=-9/14+41/144*I,n=18 2178357643621870 m001 (Zeta(1,-1)+Cahen)/(Paris-ZetaP(4)) 2178357646594433 a007 Real Root Of 25*x^4+536*x^3-191*x^2-61*x+518 2178357647269901 r005 Re(z^2+c),c=-7/36+21/55*I,n=19 2178357648408929 m005 (1/2*3^(1/2)-1)/(1/8*Zeta(3)+6) 2178357649746372 k001 Champernowne real with 1398*n+780 2178357655790138 a005 (1/cos(10/69*Pi))^393 2178357689394068 a001 1/15124*(1/2*5^(1/2)+1/2)^25*199^(9/16) 2178357695640968 r009 Re(z^3+c),c=-45/106+25/32*I,n=4 2178357701521503 r009 Im(z^3+c),c=-7/102+7/31*I,n=5 2178357713785127 s002 sum(A071885[n]/(n^3*exp(n)+1),n=1..infinity) 2178357718419168 m001 (Riemann1stZero+Totient)/(cos(1/5*Pi)-Paris) 2178357726056827 l006 ln(648/5723) 2178357726340421 m005 (1/2*5^(1/2)+3/7)/(2*gamma-4/9) 2178357727183142 m001 Paris/sin(1)/ZetaQ(2) 2178357730653006 m001 GAMMA(1/3)/Bloch/ln(sinh(1))^2 2178357738484040 a007 Real Root Of 401*x^4+584*x^3-509*x^2+434*x+368 2178357749766375 k001 Champernowne real with 1399*n+779 2178357750110624 r005 Re(z^2+c),c=-7/40+17/36*I,n=4 2178357759713749 m001 (ln(5)-cos(1/12*Pi))/(Otter-ZetaQ(4)) 2178357771297321 s001 sum(1/10^(n-1)*A187971[n]/n!^2,n=1..infinity) 2178357771297321 s001 sum(1/10^(n-1)*A190548[n]/n!^2,n=1..infinity) 2178357771297518 s001 sum(1/10^(n-1)*A190486[n]/n!^2,n=1..infinity) 2178357777675773 a008 Real Root of x^4-2*x^3+16*x^2-x-1 2178357781318123 a007 Real Root Of 434*x^4+707*x^3-218*x^2+235*x-918 2178357782270918 a007 Real Root Of 350*x^4-64*x^3+924*x^2-802*x-220 2178357785186210 s001 sum(1/10^(n-1)*A266109[n]/n!^2,n=1..infinity) 2178357786099065 m001 (Sarnak-ZetaQ(3))/(Gompertz+Khinchin) 2178357793289801 m001 Weierstrass^FeigenbaumMu/arctan(1/3) 2178357795498069 a007 Real Root Of 583*x^4+993*x^3-472*x^2+445*x+346 2178357809602800 a007 Real Root Of -457*x^4-523*x^3+725*x^2-723*x-131 2178357830392457 a007 Real Root Of -646*x^4+936*x^3-497*x^2+644*x+175 2178357830474381 h005 exp(cos(Pi*5/37)*cos(Pi*4/23)) 2178357831849460 a001 3524578/199*521^(10/13) 2178357835966148 m008 (4*Pi^5-3/5)/(2*Pi-2/3) 2178357839333025 a007 Real Root Of -428*x^4-681*x^3+559*x^2+390*x+795 2178357839724044 m005 (7/18+1/6*5^(1/2))/(exp(1)+7/9) 2178357841815298 m001 Ei(1,1)/(MertensB2^exp(-1/2*Pi)) 2178357847810317 m001 HardHexagonsEntropy-Paris+QuadraticClass 2178357849786378 k001 Champernowne real with 1400*n+778 2178357856068791 m005 (1/2*Catalan-1/8)/(1/3*2^(1/2)-2) 2178357857443033 h001 (8/11*exp(2)+6/7)/(9/11*exp(1)+7/11) 2178357858158125 k002 Champernowne real with 111*n^2-276*n+186 2178357869093883 m005 (5/4+1/4*5^(1/2))/(1/11*exp(1)+7/12) 2178357870005227 a001 2/89*514229^(8/23) 2178357874454547 p003 LerchPhi(1/3,1,61/116) 2178357877537868 r009 Re(z^3+c),c=-5/13+30/53*I,n=46 2178357892837157 h001 (5/9*exp(2)+5/6)/(2/9*exp(2)+5/8) 2178357908235763 a007 Real Root Of -313*x^4+848*x^3+23*x^2+440*x-105 2178357914576089 a001 9227465/843*18^(5/21) 2178357921329844 r009 Im(z^3+c),c=-6/25+12/61*I,n=7 2178357927852323 m005 (1/2*Zeta(3)+8/9)/(11/12*Catalan+6) 2178357935901172 m001 (gamma(2)-HardyLittlewoodC4)/Backhouse 2178357945890914 m001 HardyLittlewoodC5*(LambertW(1)-ln(3)) 2178357947921935 m005 (1/2*exp(1)-5/11)/(-23/90+3/10*5^(1/2)) 2178357949806381 k001 Champernowne real with 1401*n+777 2178357950206841 a003 cos(Pi*31/91)-cos(Pi*32/77) 2178357950648376 l003 hypergeom([2,2,3/2],[4/3,5/3],22/87) 2178357952992579 r005 Im(z^2+c),c=-95/82+16/55*I,n=17 2178357954869835 r005 Re(z^2+c),c=3/8+25/43*I,n=8 2178357955938659 m005 (1/2*3^(1/2)+1/2)/(1/12*Pi-8/9) 2178357956828718 m001 (Paris+ThueMorse)/(exp(Pi)+arctan(1/3)) 2178357956925059 a001 1/72*610^(4/57) 2178357961925430 m001 (Psi(1,1/3)+Artin)/(Bloch+ZetaQ(3)) 2178357968924166 a007 Real Root Of -106*x^4+729*x^3-609*x^2-801*x-514 2178357973435241 r002 21th iterates of z^2 + 2178357980246149 h001 (5/8*exp(1)+3/7)/(2/7*exp(1)+1/5) 2178357993784962 r005 Re(z^2+c),c=-1/10+33/56*I,n=61 2178358008586401 m001 Niven/Lehmer^2/ln(OneNinth) 2178358009791877 r005 Re(z^2+c),c=-15/122+19/35*I,n=42 2178358016617650 m001 (Ei(1,1)-FeigenbaumC)/(Lehmer-MertensB3) 2178358020766413 m001 1/Champernowne/Backhouse*exp(Zeta(1,2)) 2178358025039669 m001 1/cos(Pi/12)*exp(BesselK(0,1))*sinh(1)^2 2178358030226871 m001 (Totient+TwinPrimes)/(arctan(1/3)+Gompertz) 2178358032589958 m001 (FeigenbaumAlpha-Grothendieck)/(Magata-Paris) 2178358034279914 a007 Real Root Of 411*x^4+604*x^3-959*x^2-771*x-140 2178358039908676 r005 Im(z^2+c),c=-91/74+1/51*I,n=48 2178358041834236 r005 Re(z^2+c),c=-17/90+25/63*I,n=41 2178358044564132 r005 Im(z^2+c),c=-19/20+2/9*I,n=55 2178358049039273 l006 ln(541/4778) 2178358049826384 k001 Champernowne real with 1402*n+776 2178358053341698 a001 55/3010349*199^(28/31) 2178358059770682 m005 (1/2*2^(1/2)-8/9)/(1/10*Zeta(3)+5/7) 2178358064692901 r005 Im(z^2+c),c=-121/126+12/55*I,n=60 2178358080492654 a003 sin(Pi*13/96)*sin(Pi*20/113) 2178358082736693 m001 (1+Catalan)/(Ei(1,1)+TwinPrimes) 2178358093464787 p003 LerchPhi(1/256,1,74/161) 2178358098807401 r005 Re(z^2+c),c=-1/4+8/45*I,n=12 2178358104736056 a007 Real Root Of 534*x^4+956*x^3+35*x^2+826*x-509 2178358107393505 s002 sum(A066528[n]/((exp(n)+1)*n),n=1..infinity) 2178358115643524 a007 Real Root Of -317*x^4-140*x^3+775*x^2-551*x+813 2178358124391883 m001 FeigenbaumKappa-exp(Pi)+ZetaQ(4) 2178358124492352 m001 (2^(1/3))^(Conway*Sierpinski) 2178358132761053 m005 (1/2*3^(1/2)-1/11)/(Pi+5/12) 2178358135902542 m001 GolombDickman*FransenRobinson*exp((2^(1/3)))^2 2178358140266738 m001 (2^(1/2))^(FeigenbaumC*FibonacciFactorial) 2178358141746992 r009 Im(z^3+c),c=-43/94+1/15*I,n=18 2178358143487071 m005 (1/2*exp(1)+3/5)/(6/11*exp(1)-7/12) 2178358149846387 k001 Champernowne real with 1403*n+775 2178358152846251 a007 Real Root Of 749*x^4+953*x^3-944*x^2+981*x-398 2178358156169356 m001 1/LambertW(1)^2*GAMMA(11/24)*ln(Zeta(5)) 2178358156780892 r002 61th iterates of z^2 + 2178358158200943 m002 6+E^Pi/Pi^5+5*Pi 2178358158982524 m001 exp(1/2)^GAMMA(11/12)*GAMMA(17/24) 2178358161155098 m001 (ln(2)-gamma(2))/(Bloch-Kolakoski) 2178358168536898 s002 sum(A022136[n]/(n*exp(pi*n)+1),n=1..infinity) 2178358171034320 a003 -2*cos(3/8*Pi)-2*cos(4/15*Pi)-cos(10/21*Pi) 2178358173824402 l006 ln(7934/9865) 2178358175527928 a007 Real Root Of 321*x^4+50*x^3-953*x^2+970*x-76 2178358175633625 m001 (ln(2+3^(1/2))-AlladiGrinstead)/(Kac-Otter) 2178358178540629 m001 (ZetaP(4)+ZetaQ(2))/(CareFree-Conway) 2178358184032252 r005 Im(z^2+c),c=-5/31+18/61*I,n=21 2178358184310792 r002 35th iterates of z^2 + 2178358198793825 m001 Chi(1)/(HardyLittlewoodC5-Kolakoski) 2178358204075220 r005 Im(z^2+c),c=-5/6+43/205*I,n=4 2178358228744248 m001 (Magata+Paris)/(cos(1/12*Pi)+Cahen) 2178358232313008 r005 Re(z^2+c),c=-23/18+28/185*I,n=4 2178358242817131 m001 (3^(1/2)-Psi(2,1/3))/(Conway+Mills) 2178358245836450 r005 Im(z^2+c),c=-17/60+21/64*I,n=11 2178358249557362 a008 Real Root of x^3-x^2+50*x+124 2178358249866390 k001 Champernowne real with 1404*n+774 2178358255770412 m001 (Weierstrass+ZetaQ(3))/(KhinchinLevy-Magata) 2178358259871717 a007 Real Root Of -390*x^4-854*x^3-301*x^2-877*x-528 2178358263698318 l006 ln(975/8611) 2178358271156290 p001 sum(1/(602*n+487)/(8^n),n=0..infinity) 2178358271638024 a007 Real Root Of 36*x^4-373*x^3-936*x^2+318*x+468 2178358276643990 r005 Re(z^2+c),c=-9/7+29/75*I,n=2 2178358299431489 r009 Re(z^3+c),c=-1/3+29/63*I,n=22 2178358300351055 r005 Re(z^2+c),c=-13/56+11/42*I,n=10 2178358310058254 m001 (LambertW(1)+GlaisherKinkelin)^BesselI(0,1) 2178358310414660 a007 Real Root Of 285*x^4+230*x^3-854*x^2+188*x+422 2178358326935313 r005 Im(z^2+c),c=23/86+31/53*I,n=43 2178358332584737 l006 ln(6385/7939) 2178358334368969 h001 (4/9*exp(2)+3/11)/(2/5*exp(1)+6/11) 2178358342852769 a007 Real Root Of 164*x^4+265*x^3+31*x^2+643*x+300 2178358343214387 m001 1/Sierpinski^2*exp(CopelandErdos)*GAMMA(1/12) 2178358345073584 r005 Re(z^2+c),c=-13/62+5/16*I,n=7 2178358345278680 m001 MadelungNaCl^Catalan*Mills 2178358345692171 a001 9*987^(5/39) 2178358345745695 m001 (-Kolakoski+Porter)/(3^(1/2)+FeigenbaumKappa) 2178358349683512 a007 Real Root Of -244*x^4-343*x^3+477*x^2+167*x+49 2178358349886393 k001 Champernowne real with 1405*n+773 2178358351909811 m001 GaussKuzminWirsing^(ln(5)*Kolakoski) 2178358357529387 r005 Re(z^2+c),c=-13/16+5/64*I,n=6 2178358360806730 m001 (ln(2)-ln(3))/(Sarnak-Sierpinski) 2178358361440830 r002 52th iterates of z^2 + 2178358384217843 a007 Real Root Of 647*x^4+965*x^3-662*x^2+512*x-337 2178358387660877 h001 (1/10*exp(1)+3/10)/(1/4*exp(2)+7/9) 2178358388759374 a007 Real Root Of 288*x^4+57*x^3-901*x^2+456*x-627 2178358389251786 a007 Real Root Of 9*x^4+174*x^3-485*x^2-94*x+146 2178358392076260 m001 exp(Salem)/CopelandErdos^2/GAMMA(1/3) 2178358399727651 m005 (1/3*exp(1)+1/4)/(2/5*3^(1/2)-6) 2178358402687823 r002 25th iterates of z^2 + 2178358420903152 q001 767/3521 2178358440215437 r005 Im(z^2+c),c=-33/106+18/53*I,n=19 2178358441667990 m001 (Cahen+Gompertz)/(KhinchinHarmonic-Salem) 2178358444673661 a007 Real Root Of 27*x^4-596*x^3-981*x^2+839*x-286 2178358445708797 m001 (-cos(1/12*Pi)+MertensB2)/(2^(1/3)+Ei(1)) 2178358447678746 m001 BesselJ(0,1)*Khinchin+Champernowne 2178358449135638 m001 (ln(2)-Champernowne)/(Otter-PolyaRandomWalk3D) 2178358449166194 a001 5702887/199*521^(9/13) 2178358449906396 k001 Champernowne real with 1406*n+772 2178358452667707 a005 (1/sin(46/121*Pi))^423 2178358458959785 r005 Im(z^2+c),c=-21/34+38/83*I,n=51 2178358462779342 m005 (1/2*exp(1)-1/6)/(2/7*Catalan+2/7) 2178358472869949 m005 (1/2*Catalan+6)/(1/10*Zeta(3)-5/12) 2178358474424664 a003 sin(Pi*2/105)-sin(Pi*6/67) 2178358477855548 a007 Real Root Of 414*x^4+687*x^3-198*x^2+674*x+187 2178358478358239 g007 Psi(2,1/5)+Psi(2,2/3)-Psi(2,5/12)-Psi(2,5/9) 2178358486348307 r005 Im(z^2+c),c=-59/54+10/41*I,n=20 2178358488778843 m002 -6*Coth[Pi]+Pi^6/(4*ProductLog[Pi]) 2178358489227715 a007 Real Root Of -680*x^4-671*x^3+100*x^2+646*x-137 2178358494564245 a001 1/843*(1/2*5^(1/2)+1/2)^23*3^(23/24) 2178358495959431 m006 (3/Pi-2/3)/(4*Pi+2/3) 2178358498606159 r009 Im(z^3+c),c=-53/98+46/57*I,n=3 2178358511228206 r005 Im(z^2+c),c=2/27+11/53*I,n=5 2178358529329620 m001 1/GAMMA(1/12)^2*Trott*exp(GAMMA(13/24))^2 2178358531280150 l006 ln(434/3833) 2178358541239030 m001 1/MertensB1^2/ln(ArtinRank2)^2*GAMMA(5/24)^2 2178358542730922 k002 Champernowne real with 2*n^2+170*n-170 2178358545953718 m001 MasserGramainDelta/(AlladiGrinstead+Trott2nd) 2178358549926399 k001 Champernowne real with 1407*n+771 2178358564092105 m001 exp(GAMMA(3/4))/FeigenbaumKappa^2*sinh(1) 2178358564527599 a001 64079/3*34^(27/41) 2178358572569700 m001 (cos(1)+Ei(1,1))/(Grothendieck+Niven) 2178358575548555 b008 ArcSin[2/3+Tan[E]] 2178358577605699 m001 (ThueMorse+ZetaP(4))/(cos(1)+Niven) 2178358579538306 r002 13th iterates of z^2 + 2178358593048853 l006 ln(4836/6013) 2178358605034743 r002 23th iterates of z^2 + 2178358610825724 a007 Real Root Of 234*x^4+70*x^3-788*x^2+433*x+137 2178358617738011 m005 (1/2*exp(1)+1/8)/(4/11*5^(1/2)+6) 2178358624186820 r002 5th iterates of z^2 + 2178358629890072 r005 Im(z^2+c),c=41/118+17/49*I,n=49 2178358632626176 a003 sin(Pi*5/74)/cos(Pi*9/110) 2178358638854047 m001 Salem^(FeigenbaumD*KomornikLoreti) 2178358648599078 a007 Real Root Of -367*x^4-283*x^3+771*x^2-695*x+166 2178358649946402 k001 Champernowne real with 1408*n+770 2178358652975359 a007 Real Root Of -620*x^4-830*x^3+886*x^2-504*x+79 2178358656010118 m001 (Gompertz+Porter)/(gamma(2)+Zeta(1,2)) 2178358656887732 a007 Real Root Of 412*x^4+498*x^3-932*x^2-57*x+169 2178358656947837 r005 Im(z^2+c),c=-47/52+5/27*I,n=16 2178358657515100 m001 (Paris+RenyiParking)/(GAMMA(3/4)-KhinchinLevy) 2178358665550629 a007 Real Root Of 346*x^4+320*x^3-763*x^2+65*x-721 2178358689083914 r005 Re(z^2+c),c=-3/23+29/55*I,n=60 2178358691105873 a007 Real Root Of 98*x^4-326*x^3+227*x^2-618*x+127 2178358698935002 a003 sin(Pi*1/30)-sin(Pi*7/67) 2178358700710479 r005 Im(z^2+c),c=-7/34+17/55*I,n=22 2178358701186161 r005 Im(z^2+c),c=-29/34+22/125*I,n=45 2178358705771079 b008 3+9*E^(2/E) 2178358714912272 m001 FeigenbaumDelta/(Riemann2ndZero+ThueMorse) 2178358720063046 m001 Rabbit^2*Champernowne^2/exp((2^(1/3))) 2178358720757121 a007 Real Root Of -578*x^4-721*x^3+652*x^2-921*x+462 2178358731531576 h001 (1/5*exp(2)+11/12)/(1/5*exp(1)+5/9) 2178358732889748 m001 (Bloch-Kolakoski)/(Mills+ZetaP(3)) 2178358736311630 r005 Im(z^2+c),c=-143/114+23/59*I,n=4 2178358747258403 r005 Im(z^2+c),c=-7/34+17/55*I,n=23 2178358749966405 k001 Champernowne real with 1409*n+769 2178358762553369 r009 Re(z^3+c),c=-11/50+27/46*I,n=3 2178358771730268 m008 (5*Pi+1/4)/(3/4*Pi^4+1/5) 2178358772890342 m001 (ErdosBorwein+FeigenbaumMu)/(Pi-BesselJ(0,1)) 2178358775463548 m001 BesselJ(1,1)/(ReciprocalFibonacci-Totient) 2178358777205979 a007 Real Root Of -39*x^4-889*x^3-854*x^2+129*x+368 2178358781298544 a001 47/7*(1/2*5^(1/2)+1/2)^6*7^(7/23) 2178358786292482 m002 -6+E^Pi+Pi^4/6-Cosh[Pi] 2178358788725656 r005 Re(z^2+c),c=-145/122+7/50*I,n=28 2178358796587859 m005 (1/2*3^(1/2)-1/6)/(-11/112+3/16*5^(1/2)) 2178358797783969 l006 ln(8123/10100) 2178358798426609 r002 6th iterates of z^2 + 2178358808763356 m001 Magata^2*GolombDickman/exp(Zeta(3)) 2178358811955617 m008 (1/3*Pi^2+5)/(2/5*Pi^6-4) 2178358819032682 a001 11*(1/2*5^(1/2)+1/2)^8*11^(3/5) 2178358822453582 a007 Real Root Of 108*x^4-586*x^3-114*x^2-279*x+72 2178358824312432 m001 GAMMA(2/3)*ln(BesselK(0,1))^2*arctan(1/2)^2 2178358829704706 r005 Im(z^2+c),c=-11/102+48/53*I,n=21 2178358843508843 h001 (3/8*exp(2)+2/5)/(3/11*exp(1)+5/7) 2178358845741482 a007 Real Root Of -427*x^4-623*x^3+10*x^2+872*x+184 2178358849463049 a007 Real Root Of 280*x^4+525*x^3-209*x^2-49*x+7 2178358849986408 k001 Champernowne real with 1410*n+768 2178358850292142 m001 2*Pi/GAMMA(5/6)/(Ei(1)+TwinPrimes) 2178358850292142 m001 GAMMA(1/6)/(Ei(1)+TwinPrimes) 2178358861158725 k002 Champernowne real with 223/2*n^2-555/2*n+187 2178358874108280 l006 ln(761/6721) 2178358877030079 s002 sum(A288903[n]/(10^n+1),n=1..infinity) 2178358887728166 a008 Real Root of x^4-x^3+26*x^2+91*x+42 2178358910798728 a007 Real Root Of 191*x^4+267*x^3+220*x^2+784*x-877 2178358912570313 m001 Zeta(3)*(Lehmer-BesselJZeros(0,1)) 2178358927095627 m001 (Pi+FeigenbaumD)/(GaussAGM+Tribonacci) 2178358942314653 a007 Real Root Of 256*x^4+581*x^3+55*x^2-52*x-133 2178358945985685 r008 a(0)=0,K{-n^6,-14+86*n^3+30*n^2-56*n} 2178358950006411 k001 Champernowne real with 1411*n+767 2178358951835227 m001 (Zeta(1/2)+Cahen)/(Kolakoski+Otter) 2178358955927889 r005 Re(z^2+c),c=-7/25+43/46*I,n=4 2178358968115567 a005 (1/cos(17/130*Pi))^221 2178358977486907 m001 arctan(1/2)^2*GAMMA(1/6)/ln(sqrt(3)) 2178358979038278 s002 sum(A289038[n]/(10^n+1),n=1..infinity) 2178358979801173 a001 11/13*1597^(5/39) 2178358985425402 a003 sin(Pi*26/73)/cos(Pi*39/107) 2178358998017608 a007 Real Root Of -553*x^4-985*x^3+36*x^2-597*x+799 2178359001333129 m001 (Psi(2,1/3)+2^(1/2))/(CopelandErdos+Trott) 2178359002183191 m001 BesselK(1,1)*FeigenbaumMu/Paris 2178359003065374 a003 sin(Pi*7/102)/sin(Pi*51/116) 2178359004510910 a001 267914296/199*199^(1/11) 2178359010861379 l006 ln(1088/9609) 2178359011007573 m001 (Ei(1)-GAMMA(5/6)*GAMMA(1/24))/GAMMA(5/6) 2178359015876430 m001 ln(Paris)^2*Niven*cosh(1)^2 2178359023481315 a007 Real Root Of -120*x^4-96*x^3+184*x^2-267*x+255 2178359026378396 m001 exp(gamma)^(sqrt(1+sqrt(3))/GAMMA(3/4)) 2178359028240553 a001 11/75025*317811^(1/32) 2178359031592085 r002 59th iterates of z^2 + 2178359034671312 m005 (1/2*Pi+6/7)/(1/4*5^(1/2)+5/9) 2178359046348718 m005 (1/2*5^(1/2)-4)/(2/5*5^(1/2)+3/7) 2178359050026414 k001 Champernowne real with 1412*n+766 2178359058830770 r008 a(0)=0,K{-n^6,-48+70*n^3+61*n^2-37*n} 2178359060656690 a007 Real Root Of -441*x^4-651*x^3+687*x^2+309*x+614 2178359062869947 r009 Re(z^3+c),c=-17/56+23/62*I,n=6 2178359063729016 a007 Real Root Of -268*x^4-469*x^3-338*x^2-861*x+915 2178359065996473 r005 Im(z^2+c),c=-5/8+4/11*I,n=15 2178359066483171 a001 9227465/199*521^(8/13) 2178359074237010 m001 (GAMMA(11/12)+ArtinRank2)/(Landau+MertensB1) 2178359076177579 m001 gamma(3)+Psi(1,1/3)^MertensB3 2178359078674002 m001 (Si(Pi)+Riemann3rdZero)/(Psi(1,1/3)+5^(1/2)) 2178359088231849 m001 GaussAGM^GAMMA(2/3)+HardHexagonsEntropy 2178359089517153 m001 ln(gamma)*ZetaQ(2)+Trott2nd 2178359089652848 m004 -2+6*Cos[Sqrt[5]*Pi]^2+Tan[Sqrt[5]*Pi] 2178359096313912 q001 1832/841 2178359097394819 m001 (ln(2)+Ei(1))/(GAMMA(7/12)-PolyaRandomWalk3D) 2178359097903863 r005 Re(z^2+c),c=7/24+10/51*I,n=31 2178359099000579 l006 ln(3287/4087) 2178359108577889 h001 (-4*exp(2)+9)/(-2*exp(1)-4) 2178359116403745 b008 3*(-6+(1/2+Pi)^2) 2178359135520474 h001 (3/4*exp(2)+1/12)/(10/11*exp(1)+1/9) 2178359137193232 h001 (1/10*exp(2)+4/7)/(1/12*exp(1)+3/8) 2178359150046417 k001 Champernowne real with 1413*n+765 2178359150277251 m001 gamma(1)^(ln(2)/ln(10)/polylog(4,1/2)) 2178359150445718 m006 (1/3*Pi+1/4)/(3/Pi+5) 2178359153979271 m001 (1+ln(2))/(-gamma(1)+CareFree) 2178359160080167 h001 (5/9*exp(2)+11/12)/(5/7*exp(1)+4/11) 2178359179016911 l005 293/23/(exp(293/46)+1) 2178359187628477 a007 Real Root Of -46*x^4+16*x^3+503*x^2+542*x-5 2178359188892291 a003 -1+cos(2/9*Pi)-cos(1/21*Pi)-cos(2/21*Pi) 2178359205038671 r005 Re(z^2+c),c=17/62+2/11*I,n=39 2178359206328491 m008 (3/5*Pi^4-5)/(1/4*Pi^6+5) 2178359214909544 a007 Real Root Of 400*x^4+574*x^3-404*x^2+586*x+120 2178359222021097 a007 Real Root Of -41*x^4-82*x^3-609*x^2-922*x+957 2178359227047293 m001 1/exp(BesselK(1,1))^2/DuboisRaymond/sin(1)^2 2178359233029320 a005 (1/sin(17/101*Pi))^92 2178359234703409 m004 -120*Pi+(500*Coth[Sqrt[5]*Pi])/Pi 2178359239024203 a007 Real Root Of 571*x^4+962*x^3-619*x^2-465*x-989 2178359240719268 r005 Im(z^2+c),c=19/70+1/49*I,n=13 2178359250066420 k001 Champernowne real with 1414*n+764 2178359251541527 a001 7/1346269*34^(13/32) 2178359261393256 r005 Im(z^2+c),c=-149/102+5/46*I,n=5 2178359271495977 a007 Real Root Of -614*x^4-795*x^3+615*x^2-788*x+973 2178359273490535 r005 Re(z^2+c),c=13/32+19/61*I,n=36 2178359276347361 a008 Real Root of (4+15*x-15*x^2+2*x^3) 2178359280982087 r005 Im(z^2+c),c=-61/66+12/59*I,n=47 2178359287884682 m001 1/GAMMA(1/4)*exp(Porter)^2/cosh(1)^2 2178359305751251 a007 Real Root Of -270*x^4+356*x^3-494*x^2+929*x-182 2178359325326754 a007 Real Root Of 710*x^4+660*x^3-474*x^2-926*x-174 2178359327477858 m001 GAMMA(1/12)/Trott^2/ln(cos(Pi/5))^2 2178359329115463 l006 ln(327/2888) 2178359333812894 a007 Real Root Of -150*x^4-33*x^3+387*x^2-292*x+564 2178359343906310 m001 (Niven-Totient)/(Artin+Conway) 2178359347703865 r005 Im(z^2+c),c=-37/78+21/52*I,n=26 2178359348103232 r005 Re(z^2+c),c=-17/90+25/63*I,n=38 2178359350086423 k001 Champernowne real with 1415*n+763 2178359354605262 m005 (1/2*Zeta(3)+11/12)/(4/11*Catalan+4/11) 2178359357004093 a007 Real Root Of -520*x^4-831*x^3+435*x^2-493*x-19 2178359361950107 r005 Re(z^2+c),c=-13/94+22/43*I,n=60 2178359368980390 a007 Real Root Of 908*x^4+381*x^3-309*x^2-231*x+59 2178359374683627 m001 (2^(1/2)+Backhouse)/(-Kolakoski+LaplaceLimit) 2178359380964257 m005 (1/3*gamma+1/8)/(9/11*2^(1/2)+3/10) 2178359391587421 a007 Real Root Of -114*x^4+327*x^3+767*x^2-872*x+408 2178359395243290 m001 (TwinPrimes+1/3)/(-Backhouse+1) 2178359396885988 s002 sum(A003068[n]/(n^3*2^n-1),n=1..infinity) 2178359398397545 r005 Re(z^2+c),c=1/3+11/49*I,n=52 2178359405582361 m005 (1/3*exp(1)-1/2)/(7/9*exp(1)-1/4) 2178359417175583 a007 Real Root Of -225*x^4-334*x^3+843*x^2+742*x-770 2178359418547098 a001 5778*21^(17/39) 2178359420763469 m001 Chi(1)*FeigenbaumAlpha+StolarskyHarborth 2178359425727542 a007 Real Root Of 280*x^4+745*x^3+822*x^2+984*x-361 2178359428620800 a007 Real Root Of 40*x^4+881*x^3+167*x^2-987*x-931 2178359432396249 m001 1/exp(Zeta(9))^2/Salem^2*sqrt(5) 2178359434141668 r002 36th iterates of z^2 + 2178359435317755 a007 Real Root Of 367*x^4+303*x^3-976*x^2+395*x+360 2178359443141066 a007 Real Root Of 260*x^4+272*x^3-521*x^2+267*x+11 2178359445075811 m001 (Pi-MadelungNaCl)/(OneNinth-RenyiParking) 2178359450106426 k001 Champernowne real with 1416*n+762 2178359456065420 m001 (arctan(1/3)-Bloch)/(Robbin+Trott2nd) 2178359467681935 r009 Im(z^3+c),c=-11/32+9/58*I,n=5 2178359476293548 a008 Real Root of x^4-x^3+18*x^2+80*x+56 2178359477522913 a007 Real Root Of -389*x^4-551*x^3+115*x^2-723*x+943 2178359490663896 r005 Im(z^2+c),c=-45/118+14/39*I,n=39 2178359492396650 h001 (5/12*exp(1)+3/7)/(6/7*exp(2)+5/6) 2178359514333666 s001 sum(1/10^(n-1)*A190453[n]/n!^2,n=1..infinity) 2178359518621911 m001 (Pi-Kac)/(Lehmer-MadelungNaCl) 2178359521905449 m001 (Totient-Tribonacci)/(LaplaceLimit-Otter) 2178359525254857 a007 Real Root Of -582*x^4-643*x^3+874*x^2-685*x+819 2178359532388123 a001 7/89*3^(51/55) 2178359537470508 m001 (-ReciprocalLucas+Salem)/(5^(1/2)+exp(1/Pi)) 2178359545736932 k002 Champernowne real with 5/2*n^2+337/2*n-169 2178359550126429 k001 Champernowne real with 1417*n+761 2178359550385332 a003 sin(Pi*5/108)/cos(Pi*11/41) 2178359553259808 m001 (GAMMA(2/3)-ln(5))/(GAMMA(19/24)-ZetaQ(4)) 2178359572379932 a001 9349/55*9227465^(11/15) 2178359573361004 r005 Im(z^2+c),c=-25/36+1/17*I,n=44 2178359576495255 a008 Real Root of x^4-2*x^3+3*x^2+8*x-40 2178359585922453 l006 ln(5025/6248) 2178359586858163 m001 GAMMA(11/24)^2*ln(FeigenbaumC)/Zeta(5) 2178359590322372 a001 1860498/55*6765^(11/15) 2178359598577081 r005 Im(z^2+c),c=-13/46+18/29*I,n=27 2178359603445283 r005 Re(z^2+c),c=15/56+3/17*I,n=23 2178359608330163 r009 Re(z^3+c),c=-17/66+15/58*I,n=13 2178359617425486 p004 log(10607/1201) 2178359626680172 r009 Re(z^3+c),c=-25/78+3/7*I,n=30 2178359629585451 r005 Re(z^2+c),c=-173/122+2/41*I,n=17 2178359639033767 a007 Real Root Of -550*x^4-870*x^3+872*x^2+2*x-742 2178359643754618 m001 (2^(1/3))^2*Rabbit^2*exp(Zeta(9)) 2178359650146432 k001 Champernowne real with 1418*n+760 2178359662180046 a007 Real Root Of 6*x^4-506*x^3-827*x^2+747*x+186 2178359679519302 m001 (TreeGrowth2nd+ZetaQ(3))/(Lehmer+Porter) 2178359683800296 a001 14930352/199*521^(7/13) 2178359685965855 m001 (exp(1/exp(1))+MasserGramain)^GAMMA(11/12) 2178359688876771 h001 (1/8*exp(1)+2/11)/(1/5*exp(2)+11/12) 2178359707188078 m005 (1/2*3^(1/2)+3)/(1/11*gamma+1/8) 2178359709974578 m001 ln(FeigenbaumC)*CopelandErdos^2/cosh(1) 2178359725294318 l006 ln(874/7719) 2178359728438386 a007 Real Root Of -516*x^4-720*x^3+491*x^2-401*x+973 2178359728665424 m001 Zeta(1,2)-GAMMA(5/6)^exp(gamma) 2178359733489726 m001 exp(Catalan)*TwinPrimes^2*sqrt(2)^2 2178359743502721 m001 Zeta(1,2)/ln(GAMMA(1/6))^2/Zeta(1/2) 2178359743806057 r009 Re(z^3+c),c=-25/74+17/36*I,n=29 2178359750166435 k001 Champernowne real with 1419*n+759 2178359755085592 m001 1/Catalan^2/GlaisherKinkelin^2/exp(Zeta(3)) 2178359756219446 r005 Re(z^2+c),c=-13/44+6/61*I,n=2 2178359765608550 a005 (1/cos(5/91*Pi))^52 2178359771964725 a007 Real Root Of -963*x^4-197*x^3+55*x^2+879*x+189 2178359784298780 m001 (BesselI(0,1)-cos(1))/(Khinchin+MasserGramain) 2178359789197327 m006 (5*exp(Pi)-5/6)/(4/Pi+4) 2178359794135235 r005 Im(z^2+c),c=-125/114+1/29*I,n=4 2178359803297038 m001 (BesselJ(0,1)-Khinchin)/QuadraticClass 2178359803525164 m001 Ei(1)^2*ln(Bloch)^2*Zeta(5)^2 2178359806890951 m001 (FeigenbaumB-cos(1))/(-Niven+Tribonacci) 2178359807521947 m001 (MertensB2+Sierpinski)/(3^(1/3)+Ei(1,1)) 2178359807838605 m001 (BesselJ(0,1)-gamma(1))/(Magata+TreeGrowth2nd) 2178359808098584 a008 Real Root of x^4-x^3-31*x^2-7*x+99 2178359822579580 l006 ln(6763/8409) 2178359823494009 m005 (1/2*gamma+2)/(3/4*Catalan+4/11) 2178359833289237 a007 Real Root Of 122*x^4-973*x^3+755*x^2-978*x+187 2178359834557570 r005 Re(z^2+c),c=-9/34+2/57*I,n=10 2178359838491423 m002 -3-6/Pi^4+E^Pi*ProductLog[Pi] 2178359838542092 m001 FellerTornier-Robbin-Tribonacci 2178359841369478 a007 Real Root Of -437*x^4-664*x^3+371*x^2-779*x-481 2178359846490493 m001 1/exp(sqrt(1+sqrt(3)))^2*Si(Pi)^2*sqrt(3) 2178359850186438 k001 Champernowne real with 1420*n+758 2178359850643597 a007 Real Root Of 486*x^4+869*x^3-271*x^2-63*x-812 2178359850845704 a007 Real Root Of 938*x^4-235*x^3+631*x^2-820*x+149 2178359858628294 b008 1+ArcSinh[ArcSec[10]] 2178359864159325 k002 Champernowne real with 112*n^2-279*n+188 2178359873093490 m001 1/exp(cos(1))/CopelandErdos*log(1+sqrt(2)) 2178359906530617 m005 (35/44+1/4*5^(1/2))/(1/12*Catalan+6/11) 2178359941710814 h001 (-3*exp(1)-4)/(-10*exp(4)-12) 2178359950206441 k001 Champernowne real with 1421*n+757 2178359951276012 a007 Real Root Of 445*x^4+475*x^3-928*x^2+497*x+376 2178359960173248 r002 10th iterates of z^2 + 2178359962132425 l006 ln(547/4831) 2178359962132425 p004 log(4831/547) 2178359964895156 a007 Real Root Of -357*x^4-765*x^3-103*x^2+584*x+125 2178359965430035 r005 Re(z^2+c),c=7/26+11/62*I,n=39 2178359966012284 r002 41i'th iterates of 2*x/(1-x^2) of 2178359971148897 m005 (1/2*3^(1/2)+3)/(7/8*5^(1/2)-2/11) 2178359979101808 r005 Re(z^2+c),c=-17/90+25/63*I,n=36 2178359989493350 a001 31622993/161*123^(1/2) 2178359989725881 a007 Real Root Of 98*x^4+75*x^3-145*x^2-110*x-983 2178359995892638 r005 Re(z^2+c),c=-11/118+28/47*I,n=64 2178359997199019 p004 log(33871/27241) 2178359998382250 a007 Real Root Of 148*x^4-241*x^3-887*x^2+290*x-983 2178360001641354 m005 (1/2*5^(1/2)+1/3)/(4/7*Catalan+1/7) 2178360008226105 a005 (1/cos(7/221*Pi))^157 2178360009132199 m001 (exp(1)-sin(1/12*Pi))/(-Pi^(1/2)+Cahen) 2178360014778128 a005 (1/cos(48/193*Pi))^130 2178360019690988 m005 (1+1/4*5^(1/2))/(1/10*3^(1/2)-8/9) 2178360024326021 r005 Re(z^2+c),c=-89/78+12/55*I,n=48 2178360029175811 r005 Re(z^2+c),c=47/126+17/52*I,n=23 2178360038126083 m005 (1/2*2^(1/2)-7/8)/(4/9*Catalan+4/11) 2178360042938950 r005 Im(z^2+c),c=-77/90+5/31*I,n=21 2178360050226444 k001 Champernowne real with 1422*n+756 2178360052999943 m004 -75/Pi+(5*Cos[Sqrt[5]*Pi])/Pi+Tan[Sqrt[5]*Pi] 2178360057588227 r005 Re(z^2+c),c=19/106+3/56*I,n=8 2178360058751643 m001 FeigenbaumC^2*Bloch^2/ln(Rabbit) 2178360062525427 r005 Im(z^2+c),c=-113/94+11/38*I,n=13 2178360064477884 r005 Im(z^2+c),c=-13/22+44/107*I,n=61 2178360065710724 m001 exp(OneNinth)^2*Porter^2/GAMMA(3/4) 2178360075717440 h001 (6/11*exp(2)+3/4)/(2/7*exp(2)+1/12) 2178360084655227 a007 Real Root Of 527*x^4+688*x^3-725*x^2+166*x-953 2178360086661843 r005 Im(z^2+c),c=-19/22+19/110*I,n=47 2178360094056614 m008 (3/5*Pi^5-1/4)/(5/6*Pi^4+3) 2178360101987694 a007 Real Root Of -457*x^4-632*x^3+391*x^2-898*x-54 2178360109537923 a001 4/3*987^(17/23) 2178360115652051 m004 -6-3100*Sqrt[5]*Pi-Sin[Sqrt[5]*Pi] 2178360116379481 a007 Real Root Of 6*x^4+112*x^3-385*x^2+449*x-843 2178360150246447 k001 Champernowne real with 1423*n+755 2178360161071839 p004 log(18379/2081) 2178360165905048 s001 sum(exp(-Pi/3)^n*A018925[n],n=1..infinity) 2178360166671467 a007 Real Root Of -481*x^4-621*x^3+544*x^2-422*x+911 2178360167231714 a007 Real Root Of -346*x^4+626*x^3+284*x^2+697*x-171 2178360167574342 m001 (Bloch-Robbin)/(Zeta(5)+Zeta(1,-1)) 2178360178995812 m001 (HardyLittlewoodC4+Magata)/Niven 2178360180719882 r005 Im(z^2+c),c=-37/102+32/59*I,n=18 2178360181879831 r005 Im(z^2+c),c=-55/122+19/49*I,n=24 2178360185368730 m001 (Conway-Salem)/(GAMMA(11/12)-GAMMA(13/24)) 2178360187561082 m001 GaussAGM(1,1/sqrt(2))-GAMMA(5/24)^RenyiParking 2178360189130441 a007 Real Root Of -368*x^4-491*x^3+420*x^2-998*x-956 2178360195833452 a008 Real Root of x^4+x^2-14*x+3 2178360197878125 r005 Re(z^2+c),c=-13/14+3/13*I,n=40 2178360200128432 b008 11*ArcCsc[101/2] 2178360207183242 a007 Real Root Of -477*x^4-804*x^3+210*x^2-838*x-392 2178360213876456 m001 (Si(Pi)-gamma)/(-Zeta(3)+KomornikLoreti) 2178360218266147 a001 3/4*1364^(11/14) 2178360224528316 a001 267914296/521*123^(3/10) 2178360232010460 l006 ln(767/6774) 2178360237472110 r005 Im(z^2+c),c=-17/42+23/63*I,n=50 2178360246590067 m005 (1/2*2^(1/2)-1/2)/(11/12*Catalan+1/9) 2178360250266450 k001 Champernowne real with 1424*n+754 2178360251352185 a007 Real Root Of -331*x^4-558*x^3+96*x^2-335*x+500 2178360259134997 a007 Real Root Of -388*x^4-269*x^3+959*x^2-423*x+484 2178360265068642 m001 (Conway+Kac)/(MinimumGamma-Stephens) 2178360267836760 a007 Real Root Of -576*x^4-876*x^3+566*x^2-752*x-409 2178360272794156 m001 GAMMA(17/24)*Lehmer+Riemann2ndZero 2178360277388297 a007 Real Root Of -259*x^4-107*x^3+601*x^2-505*x+774 2178360286154741 a007 Real Root Of 882*x^4-361*x^3+842*x^2-736*x-206 2178360287579267 m001 1/ln(GAMMA(1/24))^2/CareFree/cos(Pi/5)^2 2178360293290344 r005 Re(z^2+c),c=-41/70+41/62*I,n=41 2178360300853497 m001 (Pi-1)*arctan(1/2)*Ei(1,1) 2178360301117607 a001 24157817/199*521^(6/13) 2178360303941885 m001 1/ln(Rabbit)*Lehmer*(2^(1/3)) 2178360307751964 m001 (Sarnak-ZetaQ(2))/HardyLittlewoodC4 2178360309483052 a003 cos(Pi*4/67)/cos(Pi*33/94) 2178360314682309 r005 Im(z^2+c),c=-5/6+37/178*I,n=15 2178360316821511 r009 Re(z^3+c),c=-10/31+19/43*I,n=10 2178360322508007 m006 (2/5*Pi+3/4)/(1/6*ln(Pi)-1/5) 2178360334142438 m001 exp(1)/exp(Khintchine)*sinh(1) 2178360336069020 a003 -1-cos(1/10*Pi)-cos(2/15*Pi)+cos(7/27*Pi) 2178360349717140 m001 (Pi^(1/2)-Magata)/(ln(Pi)-Ei(1)) 2178360350286453 k001 Champernowne real with 1425*n+753 2178360365074278 m001 1/ln((2^(1/3)))^2/DuboisRaymond^2*BesselJ(1,1) 2178360371228820 a007 Real Root Of -275*x^4-297*x^3+547*x^2-592*x-763 2178360375525291 a007 Real Root Of 430*x^4+557*x^3-848*x^2-124*x-171 2178360381578094 l006 ln(987/8717) 2178360386358189 r005 Im(z^2+c),c=-5/7+34/123*I,n=22 2178360386601418 m001 (BesselK(1,1)+MertensB2)/(Salem-Tetranacci) 2178360390172113 a008 Real Root of (-5+6*x+6*x^2+3*x^3-3*x^4) 2178360390540120 a007 Real Root Of 438*x^4+740*x^3-325*x^2+169*x-303 2178360396970403 m001 (gamma(1)+FeigenbaumC)/(GaussAGM-Trott2nd) 2178360397364514 m001 (Ei(1)+Conway)/(HeathBrownMoroz+Porter) 2178360403196374 m001 (ErdosBorwein-Totient)/(Ei(1,1)-exp(1/exp(1))) 2178360403525444 a005 (1/cos(1/55*Pi))^477 2178360404491681 m001 (Salem+TwinPrimes)/(BesselI(1,2)-RenyiParking) 2178360407568423 m005 (1/2*Catalan-7/10)/(2/7*Zeta(3)-5/11) 2178360408110747 l005 429025/11881/(exp(655/109)^2-1) 2178360410267432 r005 Im(z^2+c),c=-31/42+10/61*I,n=24 2178360416799962 r009 Re(z^3+c),c=-45/122+11/20*I,n=55 2178360421562976 r005 Im(z^2+c),c=-9/14+49/164*I,n=30 2178360427730653 m001 (Khinchin+MertensB2)^Lehmer 2178360428927786 r005 Re(z^2+c),c=-3/22+21/40*I,n=27 2178360434070930 a005 (1/sin(77/186*Pi))^1765 2178360438437194 m001 Catalan/exp(Rabbit)^2/Zeta(7)^2 2178360442961435 a003 cos(Pi*26/103)/cos(Pi*36/91) 2178360450306456 k001 Champernowne real with 1426*n+752 2178360467567550 b008 23-3*Log[3/2] 2178360467567550 b008 23-6*ArcCoth[5] 2178360472773717 m001 1/cos(Pi/12)^2/Niven*ln(sqrt(2)) 2178360473685500 m004 6+30*Sqrt[5]*Pi+Cot[Sqrt[5]*Pi] 2178360475910528 a001 4870847/3*832040^(4/21) 2178360475914870 a001 710647/3*20365011074^(4/21) 2178360477206631 a001 29/8*6765^(37/51) 2178360481928077 a007 Real Root Of -961*x^4-805*x^3+311*x^2+982*x+193 2178360484364819 r005 Re(z^2+c),c=19/54+5/13*I,n=37 2178360490356868 m001 (exp(1)+GaussAGM)/(Gompertz+MertensB2) 2178360493932987 r005 Re(z^2+c),c=-5/27+13/32*I,n=27 2178360498845283 m001 (-ln(2)+MasserGramain)/(3^(1/2)+BesselK(0,1)) 2178360499000420 s002 sum(A227448[n]/((2*n+1)!),n=1..infinity) 2178360500263214 a001 224056801/3*34^(22/23) 2178360506815486 l006 ln(1738/2161) 2178360516355535 r009 Re(z^3+c),c=-16/29+21/55*I,n=41 2178360521053151 a007 Real Root Of -740*x^4+724*x^3+292*x^2+903*x+192 2178360521579682 r005 Im(z^2+c),c=-47/82+1/43*I,n=9 2178360532668325 a001 24157817/2207*18^(5/21) 2178360538947858 m005 (1/3*Catalan-3/5)/(6*5^(1/2)+1/9) 2178360545282604 m001 (Pi^(1/2)+LaplaceLimit)/(Porter-Sierpinski) 2178360548742942 k002 Champernowne real with 3*n^2+167*n-168 2178360549062028 r005 Im(z^2+c),c=-13/106+11/39*I,n=10 2178360550326459 k001 Champernowne real with 1427*n+751 2178360553032619 a007 Real Root Of 19*x^4+429*x^3+304*x^2-555*x-140 2178360568338660 m005 (1/2*2^(1/2)+7/9)/(5/12*Catalan+3/10) 2178360569411046 a007 Real Root Of -142*x^4+991*x^3+483*x^2+547*x-152 2178360580880760 a007 Real Root Of 43*x^4+967*x^3+632*x^2-585*x+615 2178360587784731 m001 BesselK(0,1)-ln(2+3^(1/2))-GlaisherKinkelin 2178360588005705 a001 5/4*64079^(15/17) 2178360589926744 r005 Im(z^2+c),c=-27/62+28/57*I,n=20 2178360598550844 a001 521/5*4807526976^(3/22) 2178360601691634 a007 Real Root Of 373*x^4+939*x^3+26*x^2-437*x+232 2178360604143504 m001 (Magata+ZetaP(2))/(Ei(1)-Champernowne) 2178360605991375 r009 Re(z^3+c),c=-21/64+34/57*I,n=14 2178360607992082 a003 sin(Pi*7/26)/cos(Pi*40/103) 2178360613585363 s002 sum(A056456[n]/(n*exp(n)+1),n=1..infinity) 2178360615171501 h001 (3/8*exp(1)+1/6)/(5/7*exp(2)+1/6) 2178360616351755 m005 (1/2*Pi+8/9)/(5*5^(1/2)+1/9) 2178360625648056 r005 Re(z^2+c),c=-17/90+25/63*I,n=35 2178360645017088 m002 -3+Pi^4/4+5*Sech[Pi] 2178360646678284 r005 Im(z^2+c),c=-17/66+38/59*I,n=33 2178360647408499 r005 Im(z^2+c),c=-7/29+3/10*I,n=4 2178360650346462 k001 Champernowne real with 1428*n+750 2178360665825225 g006 Psi(1,1/11)+Psi(1,1/10)-Psi(1,7/11)-Psi(1,5/7) 2178360668527415 a007 Real Root Of 32*x^4+717*x^3+428*x^2-166*x-755 2178360669358782 r005 Re(z^2+c),c=-19/86+13/43*I,n=17 2178360670917890 r005 Im(z^2+c),c=-32/27+1/34*I,n=27 2178360671384981 r009 Re(z^3+c),c=-31/90+21/43*I,n=33 2178360671526899 m001 (-MertensB2+ZetaQ(2))/(Psi(1,1/3)+Psi(2,1/3)) 2178360674440240 r005 Re(z^2+c),c=-4/23+23/53*I,n=36 2178360690591964 m005 (1/2*exp(1)+5/9)/(47/84+1/7*5^(1/2)) 2178360713804858 l006 ln(3451/3527) 2178360715841382 m001 (FeigenbaumAlpha+Mills)/(ln(2)+GAMMA(11/12)) 2178360720188853 r002 56i'th iterates of 2*x/(1-x^2) of 2178360727117642 h001 (1/8*exp(1)+2/9)/(6/7*exp(1)+1/4) 2178360733029982 r005 Re(z^2+c),c=-1/21+25/42*I,n=30 2178360734989145 m001 (Pi+ln(2+3^(1/2)))/(BesselJ(1,1)+ErdosBorwein) 2178360750366465 k001 Champernowne real with 1429*n+749 2178360762649722 m001 1/exp((3^(1/3)))^2/Porter^2*Catalan^2 2178360766619122 m001 (exp(Pi)+Weierstrass)/Trott 2178360770197946 a007 Real Root Of -673*x^4-971*x^3+556*x^2-907*x+503 2178360782834904 a001 2/13*13^(8/59) 2178360784373294 a007 Real Root Of 989*x^4+57*x^3+386*x^2-983*x+193 2178360784934342 r005 Im(z^2+c),c=-39/82+21/55*I,n=44 2178360793435994 m008 (4/5*Pi^2-3/4)/(1/3*Pi^4+1/3) 2178360797091525 m008 (1/4*Pi^6-3)/(4/5*Pi^2+3) 2178360797153926 r002 5th iterates of z^2 + 2178360797409197 b008 11*(1+Sech[1/5]) 2178360822006075 m001 (3^(1/2)*Shi(1)+Bloch)/Shi(1) 2178360841518235 m001 1/GAMMA(1/24)/exp(Cahen)^2/cos(1) 2178360845928819 m001 log(2+sqrt(3))^2/TwinPrimes^2/ln(sin(Pi/12))^2 2178360849502117 m001 1/Trott^2*ln(FeigenbaumDelta)/BesselK(1,1) 2178360850386468 k001 Champernowne real with 1430*n+748 2178360856840943 s001 sum(exp(-Pi/4)^(n-1)*A196537[n],n=1..infinity) 2178360857957140 m005 (1/2*Zeta(3)-1/11)/(6/7*3^(1/2)+6/7) 2178360858970246 r009 Re(z^3+c),c=-7/102+23/31*I,n=39 2178360864361699 a007 Real Root Of -71*x^4+224*x^3+657*x^2-20*x+753 2178360866164225 a001 1364/433494437*20365011074^(21/22) 2178360867159925 k002 Champernowne real with 225/2*n^2-561/2*n+189 2178360867554707 a001 1364/17711*514229^(21/22) 2178360878591677 r005 Re(z^2+c),c=-15/86+21/40*I,n=4 2178360886054210 r005 Im(z^2+c),c=-15/29+19/39*I,n=26 2178360899004295 m005 (1/2*2^(1/2)+1/10)/(Catalan-6/11) 2178360903025078 l006 ln(220/1943) 2178360906181572 a007 Real Root Of 568*x^4+404*x^3+113*x^2-714*x-158 2178360912556433 a007 Real Root Of -15*x^4-309*x^3+382*x^2-85*x+402 2178360913337898 a001 39603/233*514229^(1/53) 2178360913527851 b008 21*Coth[2] 2178360914643360 a001 31622993/2889*18^(5/21) 2178360917909437 m001 (GAMMA(5/6)-Pi^(1/2))/(Magata-ZetaP(2)) 2178360918435088 a001 39088169/199*521^(5/13) 2178360924104921 m001 1/ln(GAMMA(1/24))/MertensB1^2/GAMMA(5/12) 2178360924210330 m005 (1/3*Pi-1/7)/(3/5*2^(1/2)-5) 2178360924224507 r005 Re(z^2+c),c=-7/36+13/34*I,n=15 2178360926166837 m001 (exp(1)+Cahen)/(QuadraticClass+Robbin) 2178360929406370 m005 (1/2*Pi-7/9)/(-35/9+1/9*5^(1/2)) 2178360930942239 a001 322/3*28657^(2/29) 2178360937141978 h001 (7/12*exp(1)+1/2)/(1/11*exp(2)+2/7) 2178360938307996 m005 (1/2*gamma-4/7)/(5/12*Catalan+11/12) 2178360938315544 a001 89/843*2537720636^(7/9) 2178360938315544 a001 89/843*17393796001^(5/7) 2178360938315544 a001 89/843*312119004989^(7/11) 2178360938315544 a001 89/843*14662949395604^(5/9) 2178360938315544 a001 89/843*(1/2+1/2*5^(1/2))^35 2178360938315544 a001 89/843*505019158607^(5/8) 2178360938315544 a001 89/843*28143753123^(7/10) 2178360938315544 a001 89/843*599074578^(5/6) 2178360938315544 a001 89/843*228826127^(7/8) 2178360939700140 a001 377/199*(1/2+1/2*5^(1/2))^29 2178360939700140 a001 377/199*1322157322203^(1/2) 2178360950406471 k001 Champernowne real with 1431*n+747 2178360953481881 r009 Re(z^3+c),c=-13/38+15/31*I,n=21 2178360959767845 a001 9349/21*13^(13/21) 2178360966232004 m009 (1/5*Psi(1,3/4)+5)/(3*Psi(1,1/3)-5) 2178360970372778 a001 165580141/15127*18^(5/21) 2178360971712319 a007 Real Root Of 46*x^4-67*x^3-121*x^2+416*x-248 2178360972290600 r009 Im(z^3+c),c=-1/70+45/52*I,n=2 2178360978503591 a001 433494437/39603*18^(5/21) 2178360979689860 a001 567451585/51841*18^(5/21) 2178360979862935 a001 2971215073/271443*18^(5/21) 2178360979888186 a001 7778742049/710647*18^(5/21) 2178360979891870 a001 10182505537/930249*18^(5/21) 2178360979892407 a001 53316291173/4870847*18^(5/21) 2178360979892486 a001 139583862445/12752043*18^(5/21) 2178360979892497 a001 182717648081/16692641*18^(5/21) 2178360979892499 a001 956722026041/87403803*18^(5/21) 2178360979892499 a001 2504730781961/228826127*18^(5/21) 2178360979892499 a001 3278735159921/299537289*18^(5/21) 2178360979892499 a001 10610209857723/969323029*18^(5/21) 2178360979892499 a001 4052739537881/370248451*18^(5/21) 2178360979892499 a001 387002188980/35355581*18^(5/21) 2178360979892500 a001 591286729879/54018521*18^(5/21) 2178360979892504 a001 7787980473/711491*18^(5/21) 2178360979892534 a001 21566892818/1970299*18^(5/21) 2178360979892740 a001 32951280099/3010349*18^(5/21) 2178360979894147 a001 12586269025/1149851*18^(5/21) 2178360979903792 a001 1201881744/109801*18^(5/21) 2178360979969900 a001 1836311903/167761*18^(5/21) 2178360980423015 a001 701408733/64079*18^(5/21) 2178360981084050 r009 Re(z^3+c),c=-19/70+15/56*I,n=3 2178360983420100 h001 (-4*exp(7)-1)/(-5*exp(6)+3) 2178360983528709 a001 10946*18^(5/21) 2178360987934742 a007 Real Root Of 170*x^4+239*x^3-367*x^2+95*x+591 2178360988782565 a007 Real Root Of -36*x^4-740*x^3+949*x^2-327*x-455 2178361004815454 a001 102334155/9349*18^(5/21) 2178361005380992 m002 6+(Pi^8*Log[Pi])/5 2178361006192138 m005 (2*Catalan+1/6)/(3*Pi-1/4) 2178361006636552 s002 sum(A118985[n]/((pi^n+1)/n),n=1..infinity) 2178361017334995 r009 Re(z^3+c),c=-6/17+27/53*I,n=41 2178361025710989 r005 Im(z^2+c),c=-109/98+5/23*I,n=34 2178361026154722 m001 ln(arctan(1/2))^2/FransenRobinson/cos(Pi/12) 2178361036657095 r001 47i'th iterates of 2*x^2-1 of 2178361036680509 m005 (1/2*Pi+5)/(5/11*5^(1/2)+2) 2178361050426474 k001 Champernowne real with 1432*n+746 2178361052032774 r009 Im(z^3+c),c=-35/102+7/45*I,n=5 2178361063070904 a007 Real Root Of 437*x^4+595*x^3-575*x^2+242*x-434 2178361074595568 a003 cos(Pi*9/95)*cos(Pi*35/82) 2178361079738802 a007 Real Root Of -453*x^4-526*x^3+735*x^2-423*x+354 2178361085493287 p003 LerchPhi(1/16,1,82/175) 2178361092622141 m001 (GAMMA(13/24)+Sierpinski)^cos(1) 2178361093105768 a003 cos(Pi*11/115)-sin(Pi*41/107) 2178361110873196 m008 (3*Pi^4-1/3)/(4*Pi+5/6) 2178361112657182 a001 1/2207*(1/2*5^(1/2)+1/2)^25*3^(23/24) 2178361118215545 m001 (exp(1/exp(1))+MadelungNaCl)/(Porter-ZetaQ(4)) 2178361119713021 r005 Re(z^2+c),c=-19/102+17/26*I,n=4 2178361121173217 m002 -Pi-(Csch[Pi]*Log[Pi])/3+Tanh[Pi] 2178361135143598 r009 Re(z^3+c),c=-16/31+28/53*I,n=8 2178361138218515 a001 3/4*7881196^(5/14) 2178361138218528 a001 3/4*312119004989^(3/14) 2178361138962586 a001 3/4*39603^(15/28) 2178361143828364 a001 3/4*15127^(33/56) 2178361144194032 r005 Im(z^2+c),c=-137/126+13/58*I,n=21 2178361150446477 k001 Champernowne real with 1433*n+745 2178361150559516 a007 Real Root Of 816*x^4+41*x^3+420*x^2-889*x-215 2178361150716982 a001 39088169/3571*18^(5/21) 2178361154832168 l006 ln(7141/8879) 2178361160086403 r005 Re(z^2+c),c=-21/26+9/106*I,n=38 2178361162489122 m005 (1/3*2^(1/2)-1/5)/(1/6*2^(1/2)-1/9) 2178361167213910 a001 199/2*6557470319842^(5/12) 2178361171783915 r005 Re(z^2+c),c=1/3+17/48*I,n=45 2178361171808352 r005 Re(z^2+c),c=-9/56+29/63*I,n=17 2178361181695251 a007 Real Root Of -727*x^4-528*x^3-329*x^2+763*x+178 2178361182795346 a007 Real Root Of -352*x^4-751*x^3+332*x^2+551*x-212 2178361194354374 r009 Re(z^3+c),c=-17/66+15/58*I,n=14 2178361196849906 a001 76/514229*21^(38/43) 2178361200457684 a007 Real Root Of 557*x^4+933*x^3-974*x^2-510*x+613 2178361204043507 m001 Zeta(5)*(MertensB1+Tribonacci) 2178361209494349 m001 (Trott-ZetaQ(3))/(Ei(1)+Zeta(1,2)) 2178361211118121 k007 concat of cont frac of 2178361211950312 m001 (BesselI(1,1)-exp(1))/(Stephens+ThueMorse) 2178361213097662 m002 -3*E^Pi*Pi+3*Csch[Pi] 2178361218012399 m001 (FeigenbaumD*Gompertz-ln(2)/ln(10))/Gompertz 2178361222699491 m004 6+5*Pi+Cos[Sqrt[5]*Pi]/(5*Log[Sqrt[5]*Pi]) 2178361223652014 r005 Re(z^2+c),c=11/102+35/57*I,n=46 2178361227490679 a007 Real Root Of -436*x^4+827*x^3+78*x^2+873*x+196 2178361238396833 m002 Pi^(-3)+Tanh[Pi]/(5*ProductLog[Pi]) 2178361250466480 k001 Champernowne real with 1434*n+744 2178361257447210 s001 sum(1/10^(n-1)*A215247[n]/n!^2,n=1..infinity) 2178361261262987 r009 Re(z^3+c),c=-1/32+27/62*I,n=18 2178361261617478 a007 Real Root Of 297*x^4+676*x^3+175*x^2-82*x-709 2178361262134248 m005 (1/2*2^(1/2)-5/12)/(6/7*5^(1/2)-7/12) 2178361269087315 r009 Im(z^3+c),c=-11/19+5/29*I,n=6 2178361269594737 a007 Real Root Of -544*x^4-722*x^3+915*x^2-316*x-244 2178361273845845 m003 1/12+(Sqrt[5]*Log[1/2+Sqrt[5]/2])/8 2178361292155007 m001 (3^(1/2)-ln(2)/ln(10))/(-GAMMA(5/6)+Bloch) 2178361292916200 m001 ln(Conway)*Cahen^2/Rabbit^2 2178361295199784 a007 Real Root Of -187*x^4-197*x^3+136*x^2-802*x-218 2178361302946866 r009 Re(z^3+c),c=-31/122+26/37*I,n=59 2178361327913434 m001 UniversalParabolic/(1+ZetaQ(2)) 2178361331985305 m001 (-LambertW(1)+gamma(2))/(3^(1/2)+Catalan) 2178361337408007 r009 Re(z^3+c),c=-11/31+18/35*I,n=62 2178361337793545 r005 Re(z^2+c),c=-5/58+17/30*I,n=27 2178361344737388 b008 Log[E*(2+ArcTan[3])] 2178361350486483 k001 Champernowne real with 1435*n+743 2178361354064053 a007 Real Root Of -12*x^4-242*x^3+381*x^2-938*x-657 2178361362117522 a007 Real Root Of 36*x^4+819*x^3+725*x^2-711*x+100 2178361363281722 l006 ln(5403/6718) 2178361378224100 r005 Im(z^2+c),c=-17/14+38/177*I,n=5 2178361390632107 r009 Im(z^3+c),c=-13/23+31/52*I,n=3 2178361394975783 a007 Real Root Of 264*x^4+285*x^3-746*x^2-658*x-892 2178361406172990 a007 Real Root Of -385*x^4-849*x^3+139*x^2+232*x-261 2178361408689233 a003 sin(Pi*1/30)+sin(Pi*3/83) 2178361411393941 r009 Re(z^3+c),c=-69/110+35/61*I,n=3 2178361415192459 a001 1364/75025*6557470319842^(17/24) 2178361416659399 a001 39603/610*63245986^(17/24) 2178361417423644 a007 Real Root Of -632*x^4-953*x^3+571*x^2-922*x-338 2178361421321056 l006 ln(993/8770) 2178361426879091 m001 (Magata-ZetaQ(4))/(arctan(1/3)+Zeta(1,-1)) 2178361435535726 a007 Real Root Of 556*x^4+781*x^3-706*x^2+210*x-639 2178361444554290 a007 Real Root Of -687*x^4-995*x^3+795*x^2-840*x-418 2178361450506486 k001 Champernowne real with 1436*n+742 2178361455443812 r009 Re(z^3+c),c=-1/5+21/23*I,n=31 2178361462070995 m001 GlaisherKinkelin/Si(Pi)^2/exp(cos(1)) 2178361462836892 r004 Im(z^2+c),c=-6/11-1/4*I,z(0)=exp(1/8*I*Pi),n=5 2178361463256906 g007 Psi(2,1/10)+Psi(2,2/9)-Psi(2,9/10)-Psi(2,5/6) 2178361471433963 a007 Real Root Of -42*x^4+687*x^3-794*x^2-639*x-996 2178361473134624 h001 (-9*exp(3)-5)/(-11*exp(2)-4) 2178361475114404 m001 (ln(3)-Trott)/(Pi+Si(Pi)) 2178361479948850 m001 (Tetranacci+Thue)/(Zeta(1,-1)+exp(1/exp(1))) 2178361480023426 a007 Real Root Of -775*x^4+314*x^3-311*x^2+956*x+228 2178361484262937 r009 Im(z^3+c),c=-13/27+3/34*I,n=33 2178361493582578 m001 (Backhouse+ZetaQ(3))/(Chi(1)+Zeta(1,-1)) 2178361494632320 a001 1/5778*(1/2*5^(1/2)+1/2)^27*3^(23/24) 2178361497336892 a007 Real Root Of 501*x^4+768*x^3-690*x^2-402*x-944 2178361497425942 a001 1364/5*144^(52/59) 2178361503167624 r009 Im(z^3+c),c=-21/46+29/54*I,n=26 2178361504804514 m004 -500/Pi+125*Pi-5*Pi*Coth[Sqrt[5]*Pi] 2178361519096157 m001 (LambertW(1)-Zeta(1,2))/(-Lehmer+Robbin) 2178361535752746 a001 63245986/199*521^(4/13) 2178361550361753 a001 1/15127*(1/2*5^(1/2)+1/2)^29*3^(23/24) 2178361550526489 k001 Champernowne real with 1437*n+741 2178361551748952 k002 Champernowne real with 7/2*n^2+331/2*n-167 2178361554149751 r005 Im(z^2+c),c=-39/58+13/59*I,n=22 2178361557400059 r005 Im(z^2+c),c=-7/10+95/253*I,n=22 2178361558492567 a001 1/39603*(1/2*5^(1/2)+1/2)^31*3^(23/24) 2178361559881476 a001 (1/2*5^(1/2)+1/2)^9*3^(23/24) 2178361560411992 a001 1/64079*(1/2*5^(1/2)+1/2)^32*3^(23/24) 2178361563517687 a001 1/24476*(1/2*5^(1/2)+1/2)^30*3^(23/24) 2178361564550067 r005 Im(z^2+c),c=-61/102+17/40*I,n=14 2178361568563327 r005 Re(z^2+c),c=-13/50+5/37*I,n=5 2178361568830858 l006 ln(773/6827) 2178361568830858 p004 log(6827/773) 2178361569984930 r005 Re(z^2+c),c=-17/78+13/41*I,n=11 2178361572246795 a007 Real Root Of 80*x^4-311*x^3-166*x^2+606*x+881 2178361584804438 a001 1/9349*(1/2*5^(1/2)+1/2)^28*3^(23/24) 2178361598215982 a007 Real Root Of 379*x^4+453*x^3-383*x^2+634*x-653 2178361598978502 m001 (GAMMA(19/24)-gamma(2))/Landau 2178361599200334 m005 (1/3*exp(1)-1/9)/(7/11*Zeta(3)-2/5) 2178361603117220 r002 10th iterates of z^2 + 2178361607598788 a005 (1/sin(70/173*Pi))^1078 2178361609297538 a007 Real Root Of 361*x^4+433*x^3-559*x^2+428*x-68 2178361610171170 a007 Real Root Of -79*x^4+367*x^3-39*x^2-615*x-490 2178361610712784 a007 Real Root Of 527*x^4+928*x^3-624*x^2-695*x-827 2178361611212176 k007 concat of cont frac of 2178361646893857 m003 21/40+(3*Sqrt[5])/64-Tan[1/2+Sqrt[5]/2] 2178361650546492 k001 Champernowne real with 1438*n+740 2178361653741865 r009 Re(z^3+c),c=-43/122+29/56*I,n=14 2178361668200902 m001 GAMMA(1/4)^2*Lehmer^2/ln(cos(Pi/5)) 2178361669139143 r005 Im(z^2+c),c=-65/126+25/64*I,n=44 2178361679415707 a001 2/233*2178309^(41/59) 2178361695023348 m001 GaussAGM/(FeigenbaumMu+MertensB1) 2178361695944974 r005 Im(z^2+c),c=-8/25+32/51*I,n=21 2178361710744590 a007 Real Root Of -384*x^4-7*x^3+413*x^2+860*x-206 2178361712220458 m001 exp(log(1+sqrt(2)))^2*LaplaceLimit^2/sinh(1) 2178361713667999 g005 GAMMA(7/11)/GAMMA(8/11)/GAMMA(3/11)/GAMMA(4/7) 2178361716816602 m001 1/Porter^2*FeigenbaumAlpha/ln((2^(1/3)))^2 2178361719176467 a007 Real Root Of -366*x^4-404*x^3+571*x^2-834*x-461 2178361723994733 p003 LerchPhi(1/5,2,537/238) 2178361726500072 r009 Re(z^3+c),c=-9/70+43/50*I,n=4 2178361730706005 a001 1/3571*(1/2*5^(1/2)+1/2)^26*3^(23/24) 2178361731155070 g001 abs(GAMMA(3+I*113/30)) 2178361742611187 m001 BesselK(1,1)/(BesselI(1,1)-sin(1)) 2178361748973036 a007 Real Root Of 444*x^4+800*x^3-361*x^2+175*x+366 2178361750566495 k001 Champernowne real with 1439*n+739 2178361754971352 r005 Im(z^2+c),c=-33/32+13/63*I,n=10 2178361755275979 a007 Real Root Of 292*x^4-577*x^3+550*x^2-823*x-212 2178361755287570 m002 2*Coth[Pi]+ProductLog[Pi]/(2*Pi) 2178361757763199 a007 Real Root Of 289*x^4+658*x^3+106*x^2-96*x-418 2178361768343040 a008 Real Root of (2+9*x+2*x^2+13*x^3) 2178361769431306 l006 ln(3665/4557) 2178361779219363 m002 E^Pi/Log[Pi]+Log[Pi]/2+Tanh[Pi] 2178361779635895 m001 (Conway+MasserGramain)/(Psi(1,1/3)-ln(Pi)) 2178361780537709 a003 cos(Pi*40/93)/sin(Pi*54/109) 2178361783659321 p004 log(36131/4091) 2178361786518665 r005 Re(z^2+c),c=5/19+11/64*I,n=33 2178361791038749 r005 Re(z^2+c),c=17/60+13/63*I,n=7 2178361793972693 r005 Re(z^2+c),c=29/102+4/21*I,n=49 2178361795750851 a005 (1/sin(99/203*Pi))^1040 2178361802460007 r009 Re(z^3+c),c=-17/66+15/58*I,n=17 2178361802499166 m001 ln(Pi)/(Ei(1)+ReciprocalFibonacci) 2178361808226518 m008 (4/5*Pi^6+2)/(1/3*Pi^2+1/4) 2178361812720083 m001 (-Artin+RenyiParking)/(ln(2)/ln(10)+2^(1/2)) 2178361816627451 s002 sum(A131035[n]/(2^n-1),n=1..infinity) 2178361816706046 m005 (1/3*Zeta(3)+1/7)/(3/8*3^(1/2)-2/5) 2178361823938013 r009 Re(z^3+c),c=-10/31+23/53*I,n=21 2178361832909532 r005 Re(z^2+c),c=-7/27+4/37*I,n=8 2178361832913230 a007 Real Root Of 197*x^4+121*x^3-724*x^2+138*x+551 2178361833708260 l006 ln(553/4884) 2178361840403568 a001 47/29*(1/2*5^(1/2)+1/2)^4*29^(1/5) 2178361840924756 g002 -Pi-Psi(3/11)-Psi(5/8) 2178361841966013 m001 LandauRamanujan^2*exp(Backhouse)/GAMMA(1/12) 2178361842761047 m005 (3/4*exp(1)-3/4)/(Catalan+5) 2178361844045441 r005 Im(z^2+c),c=-79/70+13/54*I,n=40 2178361850586498 k001 Champernowne real with 1440*n+738 2178361855059570 a007 Real Root Of 372*x^4+318*x^3-235*x^2-471*x-89 2178361862709104 r009 Re(z^3+c),c=-17/66+15/58*I,n=20 2178361864580420 r009 Re(z^3+c),c=-17/66+15/58*I,n=21 2178361865088864 r009 Re(z^3+c),c=-17/66+15/58*I,n=24 2178361865147335 r009 Re(z^3+c),c=-17/66+15/58*I,n=27 2178361865149470 r009 Re(z^3+c),c=-17/66+15/58*I,n=28 2178361865149877 r009 Re(z^3+c),c=-17/66+15/58*I,n=31 2178361865149923 r009 Re(z^3+c),c=-17/66+15/58*I,n=30 2178361865149933 r009 Re(z^3+c),c=-17/66+15/58*I,n=34 2178361865149935 r009 Re(z^3+c),c=-17/66+15/58*I,n=35 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=38 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=37 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=41 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=42 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=45 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=44 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=48 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=49 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=51 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=52 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=55 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=58 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=59 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=56 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=62 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=63 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=64 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=61 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=60 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=57 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=54 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=53 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=50 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=47 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=46 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=43 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=40 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=39 2178361865149936 r009 Re(z^3+c),c=-17/66+15/58*I,n=36 2178361865149942 r009 Re(z^3+c),c=-17/66+15/58*I,n=33 2178361865149948 r009 Re(z^3+c),c=-17/66+15/58*I,n=32 2178361865150378 r009 Re(z^3+c),c=-17/66+15/58*I,n=29 2178361865152196 r009 Re(z^3+c),c=-17/66+15/58*I,n=23 2178361865156581 r009 Re(z^3+c),c=-17/66+15/58*I,n=26 2178361865160313 r009 Re(z^3+c),c=-17/66+15/58*I,n=25 2178361865587834 r009 Re(z^3+c),c=-17/66+15/58*I,n=22 2178361866188573 a001 3571/1134903170*20365011074^(21/22) 2178361866392785 a001 3571/46368*514229^(21/22) 2178361870160525 k002 Champernowne real with 113*n^2-282*n+190 2178361872343654 r009 Re(z^3+c),c=-17/66+15/58*I,n=19 2178361873677483 r009 Re(z^3+c),c=-17/66+15/58*I,n=18 2178361875723016 r005 Re(z^2+c),c=-1/36+25/42*I,n=24 2178361882504973 m005 (1/2*Pi-4/7)/(5/7*gamma-5) 2178361882803669 r009 Re(z^3+c),c=-17/66+15/58*I,n=16 2178361885756323 r009 Re(z^3+c),c=-11/31+18/35*I,n=61 2178361908550166 a007 Real Root Of -120*x^4-354*x^3-164*x^2+465*x+834 2178361914097091 r005 Im(z^2+c),c=-91/110+9/62*I,n=46 2178361915921927 m001 (sin(1/5*Pi)-ln(Pi))/(GAMMA(19/24)-Salem) 2178361927886495 p001 sum((-1)^n/(559*n+443)/(12^n),n=0..infinity) 2178361933972242 a007 Real Root Of 529*x^4+691*x^3-991*x^2+434*x+879 2178361936295620 m005 (1/3*5^(1/2)-1/9)/(8/11*Catalan-3/8) 2178361938243327 a007 Real Root Of 639*x^4+897*x^3-723*x^2+413*x-786 2178361946631783 m001 (-GaussAGM+Thue)/(1+Champernowne) 2178361950606501 k001 Champernowne real with 1441*n+737 2178361952586883 r005 Im(z^2+c),c=-31/34+17/86*I,n=60 2178361967265400 r009 Re(z^3+c),c=-13/54+50/57*I,n=8 2178361967578291 r009 Re(z^3+c),c=-9/25+19/36*I,n=42 2178361974412958 r005 Re(z^2+c),c=-5/4+7/230*I,n=38 2178361987488880 m001 Zeta(3)*exp(Riemann1stZero)*log(2+sqrt(3)) 2178361990744618 m001 (Zeta(3)*MertensB2+exp(1/Pi))/Zeta(3) 2178361993713260 m002 Pi^3-Log[Pi]+6*Pi^3*Sinh[Pi] 2178361997226540 m001 (Chi(1)+exp(1/exp(1)))/(Bloch+Stephens) 2178361997869311 a001 1/21566892818*121393^(13/18) 2178362000582399 r005 Re(z^2+c),c=-7/12+47/97*I,n=15 2178362001972689 m004 -500/Pi+125*Pi-5*Pi*Tanh[Sqrt[5]*Pi] 2178362012090159 a001 9349/2971215073*20365011074^(21/22) 2178362012121297 a001 9349/121393*514229^(21/22) 2178362014185550 r005 Im(z^2+c),c=-107/98+13/57*I,n=14 2178362015282091 m004 -750*Pi+25*Sqrt[5]*Pi+3*Cos[Sqrt[5]*Pi] 2178362016584695 m001 Conway^GAMMA(3/4)+Kolakoski 2178362021766993 m001 LambertW(1)/Salem^2/ln(cosh(1))^2 2178362028739300 a007 Real Root Of 84*x^4-736*x^3+862*x^2-700*x+119 2178362033376914 a001 24476/7778742049*20365011074^(21/22) 2178362033382800 a001 844/10959*514229^(21/22) 2178362036482609 a001 64079/20365011074*20365011074^(21/22) 2178362036484811 a001 64079/832040*514229^(21/22) 2178362036935724 a001 167761/53316291173*20365011074^(21/22) 2178362036937389 a001 167761/2178309*514229^(21/22) 2178362037001833 a001 439204/139583862445*20365011074^(21/22) 2178362037003419 a001 439204/5702887*514229^(21/22) 2178362037011478 a001 1149851/365435296162*20365011074^(21/22) 2178362037012885 a001 3010349/956722026041*20365011074^(21/22) 2178362037013053 a001 1149851/14930352*514229^(21/22) 2178362037013090 a001 7881196/2504730781961*20365011074^(21/22) 2178362037013120 a001 20633239/6557470319842*20365011074^(21/22) 2178362037013127 a001 4769326/1515744265389*20365011074^(21/22) 2178362037013139 a001 12752043/4052739537881*20365011074^(21/22) 2178362037013217 a001 4870847/1548008755920*20365011074^(21/22) 2178362037013755 a001 1860498/591286729879*20365011074^(21/22) 2178362037014458 a001 3010349/39088169*514229^(21/22) 2178362037014663 a001 7881196/102334155*514229^(21/22) 2178362037014693 a001 711491/9238424*514229^(21/22) 2178362037014697 a001 54018521/701408733*514229^(21/22) 2178362037014698 a001 141422324/1836311903*514229^(21/22) 2178362037014698 a001 370248451/4807526976*514229^(21/22) 2178362037014698 a001 969323029/12586269025*514229^(21/22) 2178362037014698 a001 2537720636/32951280099*514229^(21/22) 2178362037014698 a001 6643838879/86267571272*514229^(21/22) 2178362037014698 a001 599786069/7787980473*514229^(21/22) 2178362037014698 a001 45537549124/591286729879*514229^(21/22) 2178362037014698 a001 119218851371/1548008755920*514229^(21/22) 2178362037014698 a001 312119004989/4052739537881*514229^(21/22) 2178362037014698 a001 817138163596/10610209857723*514229^(21/22) 2178362037014698 a001 505019158607/6557470319842*514229^(21/22) 2178362037014698 a001 192900153618/2504730781961*514229^(21/22) 2178362037014698 a001 73681302247/956722026041*514229^(21/22) 2178362037014698 a001 28143753123/365435296162*514229^(21/22) 2178362037014698 a001 10749957122/139583862445*514229^(21/22) 2178362037014698 a001 4106118243/53316291173*514229^(21/22) 2178362037014698 a001 1568397607/20365011074*514229^(21/22) 2178362037014698 a001 599074578/7778742049*514229^(21/22) 2178362037014698 a001 228826127/2971215073*514229^(21/22) 2178362037014699 a001 87403803/1134903170*514229^(21/22) 2178362037014700 a001 33385282/433494437*514229^(21/22) 2178362037014712 a001 12752043/165580141*514229^(21/22) 2178362037014790 a001 4870847/63245986*514229^(21/22) 2178362037015327 a001 1860498/24157817*514229^(21/22) 2178362037017439 a001 1/317811*20365011074^(21/22) 2178362037019007 a001 710647/9227465*514229^(21/22) 2178362037042690 a001 271443/86267571272*20365011074^(21/22) 2178362037044228 a001 271443/3524578*514229^(21/22) 2178362037215765 a001 103682/32951280099*20365011074^(21/22) 2178362037217097 a001 103682/1346269*514229^(21/22) 2178362038401960 a001 39603/514229*514229^(21/22) 2178362038402035 a001 39603/12586269025*20365011074^(21/22) 2178362040266530 r005 Im(z^2+c),c=-25/28+11/58*I,n=63 2178362045693512 a007 Real Root Of 101*x^4-321*x^3-638*x^2+992*x-404 2178362046523132 a001 15127/196418*514229^(21/22) 2178362046532852 a001 2161/686789568*20365011074^(21/22) 2178362050626504 k001 Champernowne real with 1442*n+736 2178362055318457 r005 Im(z^2+c),c=15/52+1/45*I,n=38 2178362059883363 a007 Real Root Of 362*x^4+294*x^3-423*x^2+987*x-955 2178362060067934 a007 Real Root Of -152*x^4+134*x^3+842*x^2-809*x-950 2178362064803273 l006 ln(886/7825) 2178362075696018 a007 Real Root Of 225*x^4+170*x^3+119*x^2-673*x-151 2178362075764026 a001 192900153618/233*46368^(7/23) 2178362075825699 a001 6643838879/233*2971215073^(7/23) 2178362080359823 a001 377/47*521^(19/36) 2178362087895277 r005 Im(z^2+c),c=29/102+1/20*I,n=49 2178362088833648 a007 Real Root Of -36*x^4-786*x^3-42*x^2-80*x-312 2178362098561218 r005 Re(z^2+c),c=-9/10+64/179*I,n=2 2178362100486409 a007 Real Root Of -278*x^4-86*x^3+591*x^2-950*x+497 2178362100534618 r009 Re(z^3+c),c=-35/66+15/41*I,n=56 2178362102186470 a001 5778/75025*514229^(21/22) 2178362102262298 a001 5778/1836311903*20365011074^(21/22) 2178362111113869 r002 10th iterates of z^2 + 2178362117654539 a007 Real Root Of -38*x^4+888*x^3-874*x^2+295*x+115 2178362119550298 m001 (Totient-ThueMorse)/(Zeta(1/2)+MertensB2) 2178362121118435 k006 concat of cont frac of 2178362123231322 k006 concat of cont frac of 2178362124495893 r005 Re(z^2+c),c=-21/118+14/33*I,n=39 2178362126125321 a001 2/165580141*21^(19/20) 2178362126697250 m001 ln(sqrt(1+sqrt(3)))*Zeta(3)^2*sqrt(3)^2 2178362129120746 r005 Im(z^2+c),c=-23/70+19/54*I,n=12 2178362132434794 r009 Re(z^3+c),c=-6/17+27/52*I,n=23 2178362138930758 a007 Real Root Of 720*x^4+963*x^3-928*x^2+861*x+21 2178362142435545 r005 Im(z^2+c),c=-17/42+25/58*I,n=10 2178362150646507 k001 Champernowne real with 1443*n+735 2178362150741458 a001 3732588/341*18^(5/21) 2178362153070578 a001 102334155/199*521^(3/13) 2178362154386731 m001 1/Ei(1)^2/ErdosBorwein/exp(Zeta(5))^2 2178362155437704 a007 Real Root Of 193*x^4-20*x^3-696*x^2+577*x+7 2178362158178838 m006 (3/Pi+3)/(3/4*exp(Pi)+4/5) 2178362159428234 m001 AlladiGrinstead*Bloch^MadelungNaCl 2178362161134033 m001 ThueMorse/(Chi(1)+GAMMA(11/12)) 2178362161853716 l006 ln(5592/6953) 2178362163868440 a001 48/41*2^(43/48) 2178362169177138 a001 199/2584*46368^(3/31) 2178362169533046 m001 (-Lehmer+1/2)/(-RenyiParking+5) 2178362171131874 a001 1364/121393*233^(31/57) 2178362174188050 a007 Real Root Of -401*x^4-498*x^3+414*x^2-887*x-15 2178362191060428 r005 Re(z^2+c),c=-1/28+32/53*I,n=10 2178362199637152 m001 (Paris+Weierstrass)/(FellerTornier-Otter) 2178362200318837 a007 Real Root Of 461*x^4+471*x^3-977*x^2+66*x-732 2178362213570303 a007 Real Root Of -30*x^4+260*x^3+76*x^2+595*x-13 2178362219938832 a007 Real Root Of 216*x^4+670*x^3+943*x^2+756*x-766 2178362222372692 r005 Im(z^2+c),c=-159/110+8/49*I,n=3 2178362229968197 r005 Im(z^2+c),c=-107/106+1/45*I,n=6 2178362231269578 a001 13/9349*64079^(48/55) 2178362235219327 a007 Real Root Of 353*x^4+689*x^3-609*x^2-753*x+423 2178362239474901 a007 Real Root Of 156*x^4+321*x^3+165*x^2+760*x+678 2178362239698614 r009 Re(z^3+c),c=-23/74+21/52*I,n=23 2178362240084290 a003 sin(Pi*1/66)/cos(Pi*46/107) 2178362244621492 a001 70711162/305*610^(17/24) 2178362245289949 r008 a(0)=2,K{-n^6,13-35*n-7*n^2+24*n^3} 2178362250666510 k001 Champernowne real with 1444*n+734 2178362256682222 m005 (1/2*Catalan-5/8)/(6*2^(1/2)-9/11) 2178362257844007 m001 1/exp(RenyiParking)/Si(Pi)/GAMMA(19/24) 2178362263343931 m001 (Gompertz+Lehmer)/(BesselJ(0,1)-Ei(1,1)) 2178362270505191 m001 1/Robbin*exp(Artin)/Zeta(7) 2178362271355984 r005 Re(z^2+c),c=-35/29+7/53*I,n=38 2178362272394708 a007 Real Root Of 37*x^4+804*x^3-45*x^2-44*x-217 2178362272977378 r005 Re(z^2+c),c=-21/82+5/42*I,n=4 2178362278147483 p001 sum((-1)^n/(380*n+373)/(2^n),n=0..infinity) 2178362281043853 p002 log(3^(3/5)+5^(6/5)) 2178362284835249 a007 Real Root Of 520*x^4+142*x^3-85*x^2-254*x-51 2178362291874606 m001 1/Lehmer/LandauRamanujan^2/exp(Sierpinski) 2178362295280226 r009 Re(z^3+c),c=-17/66+15/58*I,n=15 2178362299037620 m005 (1/60+5/12*5^(1/2))/(1/4*2^(1/2)+4) 2178362311738720 m005 (1/2*Pi+5/6)/(3/4*Catalan+5/12) 2178362319969120 m005 (1/2*Pi-5/7)/(1/12*exp(1)+1/6) 2178362322294183 a007 Real Root Of -130*x^4-150*x^3-23*x^2-560*x+266 2178362326141072 r009 Im(z^3+c),c=-25/94+10/53*I,n=8 2178362328231449 a001 11/377*317811^(16/47) 2178362335111422 m005 (1/3*exp(1)-1/2)/(1/5*5^(1/2)-3/7) 2178362335674996 m002 2*Coth[Pi]+E^Pi*Pi^2*Csch[Pi] 2178362336119101 m001 (Zeta(5)-Zeta(1,-1))/(GolombDickman-Salem) 2178362343956214 a001 521/3*2^(17/52) 2178362347414557 m009 (3/4*Psi(1,2/3)-3/5)/(1/5*Psi(1,2/3)+1/6) 2178362350686513 k001 Champernowne real with 1445*n+733 2178362353031054 r005 Im(z^2+c),c=29/114+6/53*I,n=3 2178362353132887 l006 ln(7519/9349) 2178362363875442 a007 Real Root Of 53*x^4+305*x^3+727*x^2+782*x+213 2178362369866542 a007 Real Root Of -141*x^4+543*x^3+8*x^2-678*x-999 2178362381114687 h001 (5/8*exp(2)+2/9)/(7/12*exp(1)+7/11) 2178362381416732 r005 Re(z^2+c),c=-11/56+30/43*I,n=4 2178362387165556 r005 Re(z^2+c),c=-6/17+23/58*I,n=3 2178362394082179 a007 Real Root Of 858*x^4-408*x^3+760*x^2-302*x-108 2178362401447795 m004 -Pi/6+4*Sin[Sqrt[5]*Pi] 2178362415283167 a001 3571/196418*6557470319842^(17/24) 2178362415497113 a001 103682/1597*63245986^(17/24) 2178362418370090 r002 48th iterates of z^2 + 2178362419518325 r009 Re(z^3+c),c=-11/31+18/35*I,n=64 2178362424050983 a007 Real Root Of 339*x^4+477*x^3-533*x^2+457*x+822 2178362437168015 m001 (Khinchin-Otter)/(3^(1/3)-FeigenbaumD) 2178362438934419 m001 Chi(1)*(FransenRobinson-exp(-1/2*Pi)) 2178362448573551 l006 ln(333/2941) 2178362450706516 k001 Champernowne real with 1446*n+732 2178362462467515 m001 exp(CareFree)*Si(Pi)/PrimesInBinary^2 2178362471495833 m001 1/exp(GAMMA(23/24))/OneNinth/GAMMA(7/12) 2178362478890226 a001 18/4181*4181^(7/36) 2178362481039541 a007 Real Root Of 199*x^4-890*x^3-653*x^2-979*x+253 2178362481330502 a007 Real Root Of 115*x^4+7*x^3-595*x^2-52*x+193 2178362483708666 a001 2207/28657*514229^(21/22) 2178362483962834 m001 (1+Psi(2,1/3))/(MasserGramainDelta+Robbin) 2178362484237610 a001 2207/701408733*20365011074^(21/22) 2178362484798067 a007 Real Root Of 449*x^4+857*x^3-272*x^2-6*x+26 2178362498243140 r002 7th iterates of z^2 + 2178362499456238 r005 Im(z^2+c),c=-25/26+11/51*I,n=42 2178362500643949 r009 Re(z^3+c),c=-1/4+4/17*I,n=10 2178362504304027 a007 Real Root Of -292*x^4-435*x^3+702*x^2+323*x-549 2178362505470338 m001 (Paris+PlouffeB)/(ReciprocalFibonacci-Sarnak) 2178362509449112 a007 Real Root Of 104*x^4+x^3-800*x^2-974*x-657 2178362521363312 k007 concat of cont frac of 2178362533816275 r005 Im(z^2+c),c=-25/94+17/52*I,n=17 2178362537268403 m001 (-Cahen+Paris)/(Chi(1)-sin(1/5*Pi)) 2178362545950496 m001 1/ln(GAMMA(2/3))^2*Riemann1stZero^2*Zeta(9) 2178362548508736 a001 7/610*21^(4/19) 2178362550726519 k001 Champernowne real with 1447*n+731 2178362552518444 a007 Real Root Of 440*x^4+450*x^3+153*x^2-998*x-221 2178362554754962 k002 Champernowne real with 4*n^2+164*n-166 2178362555893491 a007 Real Root Of 362*x^4+375*x^3-311*x^2+960*x-708 2178362560528788 m005 (1/2*gamma+7/8)/(1/9*5^(1/2)+2/7) 2178362561194435 a001 9349/514229*6557470319842^(17/24) 2178362561225648 a001 271443/4181*63245986^(17/24) 2178362563389585 m002 Pi+Pi^9/(6*E^Pi) 2178362568653525 m001 (Zeta(3)+cos(1/5*Pi))/(MertensB1+Robbin) 2178362569171546 r002 15th iterates of z^2 + 2178362573099415 q001 149/684 2178362573099415 r002 2th iterates of z^2 + 2178362573099415 r005 Im(z^2+c),c=-5/8+149/171*I,n=2 2178362580585223 r005 Re(z^2+c),c=-9/10+11/50*I,n=40 2178362582482602 a001 24476/1346269*6557470319842^(17/24) 2178362582487156 a001 710647/10946*63245986^(17/24) 2178362585588504 a001 64079/3524578*6557470319842^(17/24) 2178362585589169 a001 1860498/28657*63245986^(17/24) 2178362586041649 a001 167761/9227465*6557470319842^(17/24) 2178362586041746 a001 4870847/75025*63245986^(17/24) 2178362586107762 a001 439204/24157817*6557470319842^(17/24) 2178362586107776 a001 12752043/196418*63245986^(17/24) 2178362586117408 a001 1149851/63245986*6557470319842^(17/24) 2178362586117410 a001 33385282/514229*63245986^(17/24) 2178362586118815 a001 3010349/165580141*6557470319842^(17/24) 2178362586118815 a001 87403803/1346269*63245986^(17/24) 2178362586119020 a001 7881196/433494437*6557470319842^(17/24) 2178362586119021 a001 228826127/3524578*63245986^(17/24) 2178362586119050 a001 20633239/1134903170*6557470319842^(17/24) 2178362586119050 a001 599074578/9227465*63245986^(17/24) 2178362586119055 a001 54018521/2971215073*6557470319842^(17/24) 2178362586119055 a001 1568397607/24157817*63245986^(17/24) 2178362586119055 a001 141422324/7778742049*6557470319842^(17/24) 2178362586119055 a001 4106118243/63245986*63245986^(17/24) 2178362586119055 a001 370248451/20365011074*6557470319842^(17/24) 2178362586119055 a001 969323029/53316291173*6557470319842^(17/24) 2178362586119055 a001 2537720636/139583862445*6557470319842^(17/24) 2178362586119055 a001 6643838879/365435296162*6557470319842^(17/24) 2178362586119055 a001 17393796001/956722026041*6557470319842^(17/24) 2178362586119055 a001 228811001/12585437040*6557470319842^(17/24) 2178362586119055 a001 10749957122/591286729879*6557470319842^(17/24) 2178362586119055 a001 1368706081/75283811239*6557470319842^(17/24) 2178362586119055 a001 1568397607/86267571272*6557470319842^(17/24) 2178362586119055 a001 199691526/10983760033*6557470319842^(17/24) 2178362586119056 a001 228826127/12586269025*6557470319842^(17/24) 2178362586119056 a001 10749957122/165580141*63245986^(17/24) 2178362586119056 a001 28143753123/433494437*63245986^(17/24) 2178362586119056 a001 73681302247/1134903170*63245986^(17/24) 2178362586119056 a001 192900153618/2971215073*63245986^(17/24) 2178362586119056 a001 505019158607/7778742049*63245986^(17/24) 2178362586119056 a001 1322157322203/20365011074*63245986^(17/24) 2178362586119056 a001 3461452808002/53316291173*63245986^(17/24) 2178362586119056 a001 9062201101803/139583862445*63245986^(17/24) 2178362586119056 a001 23725150497407/365435296162*63245986^(17/24) 2178362586119056 a001 505618944676/7787980473*63245986^(17/24) 2178362586119056 a001 5600748293801/86267571272*63245986^(17/24) 2178362586119056 a001 2139295485799/32951280099*63245986^(17/24) 2178362586119056 a001 817138163596/12586269025*63245986^(17/24) 2178362586119056 a001 312119004989/4807526976*63245986^(17/24) 2178362586119056 a001 119218851371/1836311903*63245986^(17/24) 2178362586119056 a001 45537549124/701408733*63245986^(17/24) 2178362586119056 a001 599786069/9238424*63245986^(17/24) 2178362586119056 a001 6643838879/102334155*63245986^(17/24) 2178362586119056 a001 29134601/1602508992*6557470319842^(17/24) 2178362586119056 a001 2537720636/39088169*63245986^(17/24) 2178362586119057 a001 33385282/1836311903*6557470319842^(17/24) 2178362586119058 a001 969323029/14930352*63245986^(17/24) 2178362586119069 a001 4250681/233802911*6557470319842^(17/24) 2178362586119069 a001 370248451/5702887*63245986^(17/24) 2178362586119147 a001 141422324/2178309*63245986^(17/24) 2178362586119147 a001 4870847/267914296*6557470319842^(17/24) 2178362586119684 a001 54018521/832040*63245986^(17/24) 2178362586119685 a001 15126/831985*6557470319842^(17/24) 2178362586123364 a001 711491/10959*63245986^(17/24) 2178362586123369 a001 710647/39088169*6557470319842^(17/24) 2178362586148585 a001 7881196/121393*63245986^(17/24) 2178362586148622 a001 90481/4976784*6557470319842^(17/24) 2178362586321454 a001 3010349/46368*63245986^(17/24) 2178362586321708 a001 103682/5702887*6557470319842^(17/24) 2178362587506318 a001 1149851/17711*63245986^(17/24) 2178362587508057 a001 13201/726103*6557470319842^(17/24) 2178362588811982 a007 Real Root Of -403*x^4-886*x^3-329*x^2-820*x-309 2178362595627491 a001 439204/6765*63245986^(17/24) 2178362595639413 a001 15127/832040*6557470319842^(17/24) 2178362599105092 m005 (1/2*2^(1/2)-5/9)/(1/8*Zeta(3)+6/11) 2178362602430342 h001 (-exp(4)+2)/(-6*exp(6)+6) 2178362603378657 m001 FeigenbaumC*HardyLittlewoodC4/Sierpinski 2178362605073258 r009 Im(z^3+c),c=-33/52+34/63*I,n=3 2178362620315586 s001 sum(exp(-4*Pi/5)^n*A019986[n],n=1..infinity) 2178362620891391 m001 exp(GAMMA(11/24))/RenyiParking^2/LambertW(1) 2178362628049020 s002 sum(A134966[n]/(n^3*10^n+1),n=1..infinity) 2178362628383937 s002 sum(A108419[n]/(n^3*10^n+1),n=1..infinity) 2178362630284547 m005 (1/2*exp(1)+3/11)/(1/7*gamma+2/3) 2178362631187414 r005 Re(z^2+c),c=-5/118+26/43*I,n=46 2178362640006979 r005 Re(z^2+c),c=-1/5+23/55*I,n=9 2178362646751220 b008 45-7*Sqrt[11] 2178362650746522 k001 Champernowne real with 1448*n+730 2178362651290846 a001 167761/2584*63245986^(17/24) 2178362651372558 a001 1926/105937*6557470319842^(17/24) 2178362652465241 m003 1/2+(3*Sqrt[5])/4-Cos[1/2+Sqrt[5]/2]/36 2178362652732331 a007 Real Root Of 560*x^4+923*x^3-455*x^2+649*x+504 2178362660169819 r005 Re(z^2+c),c=-7/10+41/154*I,n=9 2178362665425978 a003 sin(Pi*28/93)-sin(Pi*26/83) 2178362666982637 m001 (GAMMA(5/6)-MadelungNaCl)/(Pi-ln(2)/ln(10)) 2178362676800513 m001 (Shi(1)+LambertW(1))/(-Sierpinski+Tribonacci) 2178362678488148 m001 (BesselJ(0,1)+ln(gamma))/(-3^(1/3)+ZetaP(2)) 2178362682363986 r005 Im(z^2+c),c=-9/10+17/90*I,n=42 2178362693110345 a005 (1/sin(41/153*Pi))^199 2178362697784444 m001 Pi-Psi(2,1/3)/(ln(2+3^(1/2))+GAMMA(13/24)) 2178362703999459 m005 (5*Catalan-4)/(2*2^(1/2)-1/6) 2178362704580172 r002 51th iterates of z^2 + 2178362717952273 m005 (1/3*gamma+1/7)/(9/11*Zeta(3)+5/9) 2178362717994619 r005 Re(z^2+c),c=-11/62+20/47*I,n=24 2178362719284015 m001 (CareFree-Khinchin)/(Ei(1,1)-GAMMA(5/6)) 2178362719525644 a001 24476/5*10946^(28/31) 2178362724749136 a007 Real Root Of -704*x^4-906*x^3+995*x^2-362*x+977 2178362727257397 m001 LambertW(1)*Conway*exp(cos(1))^2 2178362730730749 a001 1/1364*(1/2*5^(1/2)+1/2)^24*3^(23/24) 2178362733993941 m001 Zeta(5)+Totient^ZetaP(2) 2178362738034709 m001 1/ln(GAMMA(1/6))^2*BesselK(1,1)/Zeta(1,2) 2178362739729389 r005 Im(z^2+c),c=-25/27+8/39*I,n=34 2178362742568401 r002 29th iterates of z^2 + 2178362750766525 k001 Champernowne real with 1449*n+729 2178362754347246 l006 ln(1112/9821) 2178362757416015 r009 Re(z^3+c),c=-33/106+15/37*I,n=16 2178362761022427 m001 DuboisRaymond+ErdosBorwein^exp(1/exp(1)) 2178362762038167 m001 (FeigenbaumC-GolombDickman)/(OneNinth-Robbin) 2178362762731881 r002 60th iterates of z^2 + 2178362764492824 a003 cos(Pi*38/91)/cos(Pi*37/80) 2178362768387348 s002 sum(A080646[n]/(16^n-1),n=1..infinity) 2178362770328542 a007 Real Root Of 499*x^4+736*x^3-354*x^2+524*x-807 2178362770388586 a001 165580141/199*521^(2/13) 2178362774527831 r005 Re(z^2+c),c=-27/118+17/62*I,n=24 2178362775630983 m001 (Zeta(3)-GAMMA(11/12))/(Kolakoski-Porter) 2178362782647723 a007 Real Root Of 460*x^4+614*x^3-611*x^2+728*x+474 2178362789788089 m001 Trott^ZetaP(2)/(Trott^GolombDickman) 2178362796393020 a007 Real Root Of 909*x^4-602*x^3+3*x^2-413*x+94 2178362801069326 m001 MertensB1/FibonacciFactorial*exp(Trott)^2 2178362801902670 r002 19th iterates of z^2 + 2178362803209921 m003 -1+16*Csch[1/2+Sqrt[5]/2]*Log[1/2+Sqrt[5]/2] 2178362807411520 m001 (Porter+Tribonacci)/(gamma(1)+BesselI(1,2)) 2178362828909893 r005 Re(z^2+c),c=-4/29+20/39*I,n=42 2178362832786885 a001 664400664/305 2178362832970587 a007 Real Root Of -511*x^4+890*x^3+464*x^2+826*x-210 2178362840992315 a007 Real Root Of 275*x^4+381*x^3-381*x^2+443*x+519 2178362844801917 m001 BesselJZeros(0,1)-arctan(1/2)^GAMMA(11/24) 2178362850786528 k001 Champernowne real with 1450*n+728 2178362857614527 r005 Re(z^2+c),c=-31/118+4/55*I,n=12 2178362861364039 m001 (Si(Pi)+KhinchinHarmonic)/(-Niven+ZetaQ(2)) 2178362864854721 r005 Im(z^2+c),c=-9/58+17/58*I,n=18 2178362866401405 r005 Re(z^2+c),c=17/62+14/31*I,n=46 2178362868536858 r009 Re(z^3+c),c=-5/21+5/23*I,n=2 2178362870910153 r009 Im(z^3+c),c=-7/16+5/64*I,n=38 2178362873161125 k002 Champernowne real with 227/2*n^2-567/2*n+191 2178362873362918 m001 (ln(5)*cos(1/12*Pi)-ln(gamma))/cos(1/12*Pi) 2178362873362918 m001 (ln(5)*cos(Pi/12)-log(gamma))/cos(Pi/12) 2178362882707219 r005 Im(z^2+c),c=23/82+1/20*I,n=23 2178362885056641 l006 ln(779/6880) 2178362885421879 m001 (Sarnak-Sierpinski)/(sin(1/5*Pi)-3^(1/3)) 2178362893934199 m001 (Paris+Totient)/(Zeta(5)+2*Pi/GAMMA(5/6)) 2178362903451787 h001 (7/9*exp(1)+1/5)/(2/7*exp(1)+2/7) 2178362904881934 m001 (LambertW(1)+Kac)/(-MasserGramain+Paris) 2178362906679757 m001 cos(1/5*Pi)^GAMMA(17/24)+Riemann2ndZero 2178362908209735 l006 ln(1927/2396) 2178362912233459 a001 514229/199*1364^(14/15) 2178362930531963 a007 Real Root Of -120*x^4+458*x^3+978*x^2+579*x-177 2178362932867958 m001 CareFree/AlladiGrinstead*FeigenbaumAlpha 2178362937149093 a001 1/6643838879*2^(8/15) 2178362941167566 a001 6765/322*521^(23/31) 2178362950806531 k001 Champernowne real with 1451*n+727 2178362953208670 a007 Real Root Of -72*x^4-145*x^3-97*x^2-60*x+452 2178362964015642 r005 Im(z^2+c),c=-29/52+17/45*I,n=33 2178362972743925 a003 cos(Pi*8/91)-sin(Pi*37/95) 2178362973623557 a007 Real Root Of -574*x^4-498*x^3-944*x^2+721*x+198 2178362985293398 r005 Im(z^2+c),c=-91/110+4/27*I,n=64 2178362986536558 s001 sum(1/10^(n-1)*A277598[n]/n!^2,n=1..infinity) 2178362990287829 a001 832040/199*1364^(13/15) 2178363000470451 a003 cos(Pi*16/83)/cos(Pi*26/69) 2178363000522095 s001 sum(1/10^(n-1)*A016873[n]/n!^2,n=1..infinity) 2178363000522095 s001 sum(1/10^(n-1)*A053741[n]/n!^2,n=1..infinity) 2178363002348123 b008 13/6+Sech[2+Pi] 2178363010376856 m001 ln(PrimesInBinary)^2*LandauRamanujan/exp(1) 2178363013228511 m005 (1/2*exp(1)-3/8)/(6/7*Catalan-1/3) 2178363019051874 m001 1/GAMMA(5/12)^2/TreeGrowth2nd*ln(cosh(1)) 2178363027158684 r005 Im(z^2+c),c=11/40+4/61*I,n=11 2178363032813228 a001 64079/987*63245986^(17/24) 2178363033373217 a001 2207/121393*6557470319842^(17/24) 2178363039662447 r005 Im(z^2+c),c=-26/31+5/32*I,n=58 2178363040077909 m001 FeigenbaumC^2/exp(FransenRobinson)*OneNinth 2178363043695346 m001 (Zeta(3)*exp(1/Pi)+cos(1/12*Pi))/Zeta(3) 2178363043695346 m001 (Zeta(3)*exp(1/Pi)+cos(Pi/12))/Zeta(3) 2178363044012040 m001 ((1+3^(1/2))^(1/2)-exp(Pi))/Paris 2178363047704041 m001 (Conway+Sarnak)/(BesselJ(0,1)-Zeta(1,-1)) 2178363050826534 k001 Champernowne real with 1452*n+726 2178363051788758 r005 Re(z^2+c),c=43/126+13/46*I,n=24 2178363055444660 p001 sum((-1)^n/(479*n+421)/(5^n),n=0..infinity) 2178363066621644 r005 Im(z^2+c),c=-17/30+23/59*I,n=55 2178363068345349 a001 1346269/199*1364^(4/5) 2178363076232929 h001 (-4*exp(3)+5)/(-4*exp(-2)+4) 2178363088829878 m005 (1/2*exp(1)-9/10)/(6/7*exp(1)-2/9) 2178363099720367 m001 (cos(1)*Trott2nd+LandauRamanujan2nd)/Trott2nd 2178363107216989 m001 1/Ei(1)^2*Riemann1stZero^2*exp(Zeta(1,2)) 2178363110684927 m001 (sin(1/5*Pi)+BesselJ(1,1))/(CareFree-Salem) 2178363112746284 a007 Real Root Of 396*x^4+325*x^3-960*x^2+527*x+146 2178363113966959 m001 1/GAMMA(1/4)/exp(MertensB1)*GAMMA(23/24) 2178363118268629 m001 sin(1/12*Pi)*(Zeta(1,-1)+StolarskyHarborth) 2178363124414000 r005 Im(z^2+c),c=-2/3+20/241*I,n=14 2178363125094211 a007 Real Root Of 300*x^4+661*x^3+364*x^2+414*x-748 2178363137107381 m009 (1/5*Psi(1,2/3)-1/6)/(3/4*Psi(1,2/3)-1/4) 2178363137911828 r005 Re(z^2+c),c=1/54+7/36*I,n=3 2178363144574382 a007 Real Root Of 457*x^4+481*x^3-924*x^2+257*x-374 2178363146401669 a001 2178309/199*1364^(11/15) 2178363150846537 k001 Champernowne real with 1453*n+725 2178363157765600 a007 Real Root Of -443*x^4+903*x^3-577*x^2+745*x+200 2178363160294390 m001 ln(GAMMA(7/12))^2/BesselJ(0,1)^2*sin(1)^2 2178363163499099 r009 Re(z^3+c),c=-31/94+39/64*I,n=14 2178363167913578 r005 Im(z^2+c),c=-111/98+2/9*I,n=49 2178363171131569 a001 3571/317811*233^(31/57) 2178363186458140 a007 Real Root Of -352*x^4+306*x^3-84*x^2+797*x-172 2178363186651431 r009 Im(z^3+c),c=-25/56+4/55*I,n=18 2178363195632008 r009 Re(z^3+c),c=-39/110+19/37*I,n=49 2178363198635551 s002 sum(A162169[n]/(n*exp(n)+1),n=1..infinity) 2178363203934725 r009 Re(z^3+c),c=-9/70+52/57*I,n=28 2178363204974794 r002 38th iterates of z^2 + 2178363210950841 l006 ln(446/3939) 2178363211539306 m005 (1/2*3^(1/2)+5/12)/(3/11*Zeta(3)-11/12) 2178363215446451 a001 13201*6765^(11/19) 2178363216152277 a001 13/1364*3571^(52/55) 2178363219568964 a001 1/3*591286729879^(11/19) 2178363222269792 r005 Im(z^2+c),c=-22/25+4/25*I,n=7 2178363224458452 a001 3524578/199*1364^(2/3) 2178363244645857 a001 370248451/1597*610^(17/24) 2178363250866540 k001 Champernowne real with 1454*n+724 2178363252491213 a003 cos(Pi*7/97)/cos(Pi*37/105) 2178363252869550 s001 sum(exp(-Pi/2)^n*A096976[n],n=1..infinity) 2178363253490877 m001 FeigenbaumAlpha+Pi^Sierpinski 2178363264879600 m001 polylog(4,1/2)/(MinimumGamma^BesselI(0,2)) 2178363269096187 a005 (1/sin(95/199*Pi))^1220 2178363277156019 m001 (ln(5)+Khinchin)/(ReciprocalLucas+ZetaQ(3)) 2178363280284417 p003 LerchPhi(1/32,5,383/178) 2178363283775382 m001 1/GAMMA(1/12)^2/ln(Salem)^2/log(2+sqrt(3)) 2178363296703942 m001 1/Magata*exp(MertensB1)^2*TreeGrowth2nd 2178363302515061 a001 5702887/199*1364^(3/5) 2178363310954628 m001 exp(1)^2/Lehmer/ln(sqrt(Pi)) 2178363316474150 h001 (8/9*exp(1)+7/12)/(1/5*exp(1)+5/6) 2178363317029559 a001 9349/832040*233^(31/57) 2178363323207706 m001 1/Tribonacci^2*Riemann3rdZero*exp(cos(1))^2 2178363330249766 m001 1/exp(Lehmer)*Si(Pi)*GAMMA(5/12) 2178363337001276 m001 1/Magata*FibonacciFactorial*ln(FeigenbaumC) 2178363338315788 a001 24476/2178309*233^(31/57) 2178363339703225 r005 Re(z^2+c),c=-13/114+19/34*I,n=33 2178363350129032 m005 (27/44+1/4*5^(1/2))/(2*Pi-9/10) 2178363350317342 a001 199/317811*55^(14/45) 2178363350886543 k001 Champernowne real with 1455*n+723 2178363351471402 a001 15127/1346269*233^(31/57) 2178363352509588 r009 Re(z^3+c),c=-37/114+18/41*I,n=21 2178363354391700 r005 Re(z^2+c),c=13/42+13/61*I,n=32 2178363356935124 m001 (MadelungNaCl+Mills)/(ArtinRank2+CareFree) 2178363380571741 a001 9227465/199*1364^(8/15) 2178363383740498 a007 Real Root Of -587*x^4-983*x^3+701*x^2+554*x+937 2178363387706768 a001 267914296/199*521^(1/13) 2178363390547522 a001 969323029/4181*610^(17/24) 2178363393230351 a007 Real Root Of 17*x^4+373*x^3+92*x^2+740*x+148 2178363393429141 m001 (Bloch-FeigenbaumD)/(arctan(1/2)-BesselI(1,1)) 2178363394344391 a007 Real Root Of -572*x^4-925*x^3+576*x^2-96*x+376 2178363397752630 m001 Pi*csc(11/24*Pi)/GAMMA(13/24)*Conway^ZetaP(2) 2178363407199475 a001 5778/514229*233^(31/57) 2178363411834290 a001 1268860318/5473*610^(17/24) 2178363414770011 a007 Real Root Of -98*x^4+138*x^3+627*x^2-151*x+329 2178363414939987 a001 6643838879/28657*610^(17/24) 2178363415393102 a001 17393796001/75025*610^(17/24) 2178363415459211 a001 22768774562/98209*610^(17/24) 2178363415468856 a001 119218851371/514229*610^(17/24) 2178363415470263 a001 312119004989/1346269*610^(17/24) 2178363415470469 a001 408569081798/1762289*610^(17/24) 2178363415470499 a001 2139295485799/9227465*610^(17/24) 2178363415470503 a001 5600748293801/24157817*610^(17/24) 2178363415470504 a001 7331474697802/31622993*610^(17/24) 2178363415470504 a001 23725150497407/102334155*610^(17/24) 2178363415470504 a001 9062201101803/39088169*610^(17/24) 2178363415470506 a001 1730726404001/7465176*610^(17/24) 2178363415470517 a001 1322157322203/5702887*610^(17/24) 2178363415470596 a001 10745088481/46347*610^(17/24) 2178363415471133 a001 96450076809/416020*610^(17/24) 2178363415474817 a001 73681302247/317811*610^(17/24) 2178363415500068 a001 28143753123/121393*610^(17/24) 2178363415673143 a001 5374978561/23184*610^(17/24) 2178363416859414 a001 4106118243/17711*610^(17/24) 2178363418986058 m001 1/ln(cos(1))*GAMMA(7/24)^2/sin(1)^2 2178363422787911 r005 Re(z^2+c),c=-13/102+26/49*I,n=38 2178363424990236 a001 1568397607/6765*610^(17/24) 2178363430750873 r005 Re(z^2+c),c=13/94+13/35*I,n=15 2178363431429441 r005 Re(z^2+c),c=-7/54+28/53*I,n=47 2178363436717092 l006 ln(7897/9819) 2178363437402493 r004 Re(z^2+c),c=-31/38-1/17*I,z(0)=-1,n=5 2178363450906546 k001 Champernowne real with 1456*n+722 2178363453130034 r005 Re(z^2+c),c=17/126+23/38*I,n=58 2178363456501638 h001 (10/11*exp(1)+1/10)/(1/6*exp(1)+8/11) 2178363456631638 r005 Im(z^2+c),c=-21/22+29/125*I,n=63 2178363458628398 a001 14930352/199*1364^(7/15) 2178363461358941 m001 1/Zeta(3)*exp(Paris)^2*arctan(1/2)^2 2178363463559308 l006 ln(1005/8876) 2178363467306307 r009 Re(z^3+c),c=-13/44+31/45*I,n=17 2178363470526293 a001 (1+2^(1/2))^(1307/60) 2178363472334685 r005 Im(z^2+c),c=-8/9+17/93*I,n=31 2178363480719720 a001 299537289/1292*610^(17/24) 2178363480914063 a007 Real Root Of 254*x^4+743*x^3+858*x^2+861*x-235 2178363481892682 r005 Im(z^2+c),c=25/64+8/35*I,n=55 2178363482557896 a007 Real Root Of 370*x^4+790*x^3+119*x^2+73*x-571 2178363491011088 m001 (Ei(1,1)-polylog(4,1/2))/(Paris-Porter) 2178363493731511 m001 (Psi(2,1/3)+cos(1))/(Zeta(3)+Conway) 2178363499933764 m002 -Pi+6/ProductLog[Pi]-ProductLog[Pi]/4 2178363506360065 m005 (1/2*Zeta(3)-3/11)/(4/5*Zeta(3)+6/11) 2178363510087989 a007 Real Root Of 264*x^4-998*x^3+480*x^2-999*x-22 2178363523599577 b008 -1/3+1/(15*EulerGamma) 2178363524350919 m005 (Catalan+2/3)/(5/6*exp(1)+5) 2178363531400788 a007 Real Root Of 50*x^4-23*x^3-307*x^2-214*x-373 2178363534089020 a001 267914296/843*123^(2/5) 2178363536685067 a001 24157817/199*1364^(2/5) 2178363539319345 m001 1/Paris/FibonacciFactorial*ln(Salem)^2 2178363548919782 a001 9/133957148*144^(7/10) 2178363550926549 k001 Champernowne real with 1457*n+721 2178363556411418 a001 89/2207*(1/2+1/2*5^(1/2))^37 2178363556761430 m001 (gamma-sin(1/12*Pi))/MinimumGamma 2178363557760972 k002 Champernowne real with 9/2*n^2+325/2*n-165 2178363557800208 a001 987/199*7881196^(9/11) 2178363557800237 a001 987/199*141422324^(9/13) 2178363557800237 a001 987/199*2537720636^(3/5) 2178363557800237 a001 987/199*45537549124^(9/17) 2178363557800237 a001 987/199*14662949395604^(3/7) 2178363557800237 a001 987/199*(1/2+1/2*5^(1/2))^27 2178363557800237 a001 987/199*192900153618^(1/2) 2178363557800237 a001 987/199*10749957122^(9/16) 2178363557800237 a001 987/199*599074578^(9/14) 2178363557800238 a001 987/199*33385282^(3/4) 2178363557800803 a001 987/199*1860498^(9/10) 2178363562939315 m001 (Sarnak-ZetaQ(4))/(arctan(1/3)-gamma(2)) 2178363566302219 m005 (1/2*exp(1)+1/11)/(1/10*Zeta(3)+6/11) 2178363574993293 r005 Re(z^2+c),c=-7/26+10/43*I,n=3 2178363594757124 a001 1/29*(1/2*5^(1/2)+1/2)^3*11^(1/6) 2178363604829998 r005 Re(z^2+c),c=21/58+20/47*I,n=26 2178363607308991 l006 ln(5970/7423) 2178363614741736 a001 39088169/199*1364^(1/3) 2178363618877690 r002 17th iterates of z^2 + 2178363620310408 m001 1/GAMMA(23/24)*CareFree*exp(gamma)^2 2178363623029851 a007 Real Root Of -821*x^4+446*x^3-190*x^2+474*x-97 2178363629393018 m001 (ln(2)/ln(10))^ln(2^(1/2)+1)+FeigenbaumC 2178363634945484 a007 Real Root Of 501*x^4+853*x^3-472*x^2+169*x+144 2178363634996070 m001 (5^(1/2)-Chi(1))/(BesselI(1,1)+ZetaP(4)) 2178363641820313 m005 (1/2*exp(1)+3/10)/(4/5*Zeta(3)-1/5) 2178363647224328 r005 Re(z^2+c),c=31/64+25/51*I,n=3 2178363649470674 r005 Im(z^2+c),c=-37/64+20/53*I,n=61 2178363650946552 k001 Champernowne real with 1458*n+720 2178363665103763 l006 ln(559/4937) 2178363667202861 a005 (1/cos(24/151*Pi))^395 2178363668615927 m005 (1/2*Catalan-3/10)/(119/198+1/18*5^(1/2)) 2178363686871850 r005 Re(z^2+c),c=-55/58+1/6*I,n=30 2178363687065095 m001 (HardyLittlewoodC5-ZetaP(3))/(ln(2)-Pi^(1/2)) 2178363692798408 a001 63245986/199*1364^(4/15) 2178363703536280 m001 1/exp(Porter)^2*Niven^2/Rabbit 2178363704193531 a001 233/64079*7^(23/25) 2178363706009514 m001 (Shi(1)+Chi(1))/(-GlaisherKinkelin+ThueMorse) 2178363706009514 m001 Ei(1)/(GlaisherKinkelin-ThueMorse) 2178363707135846 m008 (1/3*Pi^3+3)/(3/5*Pi^2+1/5) 2178363708923697 m005 (1/2*2^(1/2)-1/12)/(5/8*Pi+9/10) 2178363714953145 r008 a(0)=2,K{-n^6,44-34*n+3*n^2-19*n^3} 2178363727649194 m001 (Artin-Conway)/(FeigenbaumKappa-Grothendieck) 2178363733286589 r005 Im(z^2+c),c=-67/110+6/17*I,n=60 2178363738424635 a001 5/47*843^(5/47) 2178363739678188 g006 Psi(1,3/11)+Psi(1,4/9)+1/2*Pi^2-Psi(1,7/12) 2178363750874617 r005 Im(z^2+c),c=-13/66+43/63*I,n=6 2178363750966555 k001 Champernowne real with 1459*n+719 2178363758921484 r005 Re(z^2+c),c=-9/62+29/48*I,n=39 2178363766959045 m005 (1/2*Catalan-2/5)/(7/10*Catalan-3/8) 2178363769857230 m009 (4*Psi(1,1/3)+1/4)/(1/2*Psi(1,2/3)+1/3) 2178363770855083 a001 102334155/199*1364^(1/5) 2178363774439237 a007 Real Root Of 862*x^4-392*x^3+767*x^2-543*x+84 2178363775198416 a007 Real Root Of 888*x^4-976*x^3+776*x^2-770*x+139 2178363778856750 b008 (7*Sech[3/8])/3 2178363780732712 m001 (sin(1)+ln(Pi))/(Bloch+TreeGrowth2nd) 2178363789165370 a001 2207/196418*233^(31/57) 2178363794718036 m001 PrimesInBinary-Riemann2ndZero-Salem 2178363796439719 m001 (cos(1)-cos(1/5*Pi))/(gamma(1)+Mills) 2178363800292362 r009 Re(z^3+c),c=-3/122+44/63*I,n=21 2178363802484543 b008 13/6+Csch[2+Pi] 2178363821110700 m005 (1/3*3^(1/2)-2/9)/(Catalan+5/7) 2178363831354465 m001 Pi^(1/2)+ArtinRank2*LandauRamanujan2nd 2178363832811521 a001 3478847041/1597 2178363835430181 m001 (BesselI(0,2)+Tetranacci)/(gamma+GAMMA(2/3)) 2178363842441159 r009 Re(z^3+c),c=-31/90+21/43*I,n=28 2178363844260223 a001 196418/199*3571^(16/17) 2178363848911761 a001 165580141/199*1364^(2/15) 2178363850986558 k001 Champernowne real with 1460*n+718 2178363854293129 a001 317811/199*3571^(15/17) 2178363862695363 a001 4868641/21*610^(17/24) 2178363864347602 a001 514229/199*3571^(14/17) 2178363869468348 r009 Re(z^3+c),c=-21/62+22/35*I,n=9 2178363874393837 a001 832040/199*3571^(13/17) 2178363876161725 k002 Champernowne real with 114*n^2-285*n+192 2178363884443218 a001 1346269/199*3571^(12/17) 2178363893527419 m001 (1-ln(2+3^(1/2)))/(-Zeta(1,2)+polylog(4,1/2)) 2178363894491398 a001 2178309/199*3571^(11/17) 2178363897569571 r009 Re(z^3+c),c=-23/62+22/37*I,n=24 2178363900840779 r009 Re(z^3+c),c=-15/46+27/61*I,n=28 2178363904540037 a001 3524578/199*3571^(10/17) 2178363911423751 a007 Real Root Of 111*x^4-368*x^3+599*x^2+195*x+10 2178363912101365 a007 Real Root Of 368*x^4+659*x^3-849*x^2-809*x+792 2178363914588501 a001 5702887/199*3571^(9/17) 2178363917484446 r005 Im(z^2+c),c=-115/106+9/43*I,n=16 2178363922460688 m001 (exp(Pi)+Chi(1))/(-ln(Pi)+MertensB2) 2178363923731121 m006 (1/4/Pi+3/4)/(Pi+2/3) 2178363924637031 a001 9227465/199*3571^(8/17) 2178363926968442 a001 267914296/199*1364^(1/15) 2178363930499385 m001 (gamma(1)*Otter+Thue)/Otter 2178363931557135 r005 Im(z^2+c),c=-35/38+12/61*I,n=25 2178363934685536 a001 14930352/199*3571^(7/17) 2178363938386985 a001 89/5778*2537720636^(13/15) 2178363938386985 a001 89/5778*45537549124^(13/17) 2178363938386985 a001 89/5778*14662949395604^(13/21) 2178363938386985 a001 89/5778*(1/2+1/2*5^(1/2))^39 2178363938386985 a001 89/5778*192900153618^(13/18) 2178363938386985 a001 89/5778*73681302247^(3/4) 2178363938386985 a001 89/5778*10749957122^(13/16) 2178363938386985 a001 89/5778*599074578^(13/14) 2178363939775890 a001 2584/199*20633239^(5/7) 2178363939775893 a001 2584/199*2537720636^(5/9) 2178363939775893 a001 2584/199*312119004989^(5/11) 2178363939775893 a001 2584/199*(1/2+1/2*5^(1/2))^25 2178363939775893 a001 2584/199*3461452808002^(5/12) 2178363939775893 a001 2584/199*28143753123^(1/2) 2178363939775893 a001 2584/199*228826127^(5/8) 2178363939776418 a001 2584/199*1860498^(5/6) 2178363940518043 l006 ln(4043/5027) 2178363944734051 a001 24157817/199*3571^(6/17) 2178363951006561 k001 Champernowne real with 1461*n+717 2178363954782563 a001 39088169/199*3571^(5/17) 2178363961140751 r005 Im(z^2+c),c=-17/36+1/27*I,n=39 2178363964831075 a001 63245986/199*3571^(4/17) 2178363966520618 l006 ln(672/5935) 2178363971941830 s001 sum(1/10^(n-1)*A233124[n]/n!,n=1..infinity) 2178363974879588 a001 102334155/199*3571^(3/17) 2178363978713226 a001 9107739795/4181 2178363980603008 a007 Real Root Of -436*x^4-571*x^3+901*x^2+388*x+485 2178363981491274 a001 75025/199*9349^(18/19) 2178363982696044 a001 121393/199*9349^(17/19) 2178363984048638 a001 196418/199*9349^(16/19) 2178363984928100 a001 165580141/199*3571^(2/17) 2178363985344768 a001 317811/199*9349^(15/19) 2178363986662465 a001 514229/199*9349^(14/19) 2178363986862123 m001 1/GAMMA(5/12)*Artin^2/ln(sqrt(3))^2 2178363987971924 a001 832040/199*9349^(13/19) 2178363989284530 a001 1346269/199*9349^(12/19) 2178363990595934 a001 2178309/199*9349^(11/19) 2178363991724728 m001 (exp(Pi)-ln(5))/(Stephens+ThueMorse) 2178363991907798 a001 3524578/199*9349^(10/19) 2178363993219485 a001 5702887/199*9349^(9/19) 2178363994116480 a001 89/15127*(1/2+1/2*5^(1/2))^41 2178363994531240 a001 9227465/199*9349^(8/19) 2178363994976613 a001 267914296/199*3571^(1/17) 2178363995505390 a001 6765/199*(1/2+1/2*5^(1/2))^23 2178363995505390 a001 6765/199*4106118243^(1/2) 2178363995699587 a001 6765/199*103682^(23/24) 2178363995842969 a001 14930352/199*9349^(7/19) 2178363997154708 a001 24157817/199*9349^(6/19) 2178363998466444 a001 39088169/199*9349^(5/19) 2178363999778180 a001 63245986/199*9349^(4/19) 2178364000000332 a001 1346379/2+1346269/2*5^(1/2) 2178364001089916 a001 102334155/199*9349^(3/19) 2178364001532577 a001 46368/199*24476^(19/21) 2178364001985771 a001 75025/199*24476^(6/7) 2178364002051958 a001 121393/199*24476^(17/21) 2178364002092580 a001 28657/199*24476^(20/21) 2178364002247304 a001 89/39603*(1/2+1/2*5^(1/2))^43 2178364002265968 a001 196418/199*24476^(16/21) 2178364002401653 a001 165580141/199*9349^(2/19) 2178364002423515 a001 317811/199*24476^(5/7) 2178364002602629 a001 514229/199*24476^(2/3) 2178364002773506 a001 832040/199*24476^(13/21) 2178364002947528 a001 1346269/199*24476^(4/7) 2178364003105698 a001 62425377237/28657 2178364003120349 a001 2178309/199*24476^(11/21) 2178364003151830 a001 89*64079^(21/23) 2178364003293629 a001 3524578/199*24476^(10/21) 2178364003433575 a001 89/103682*45537549124^(15/17) 2178364003433575 a001 89/103682*312119004989^(9/11) 2178364003433575 a001 89/103682*14662949395604^(5/7) 2178364003433575 a001 89/103682*(1/2+1/2*5^(1/2))^45 2178364003433575 a001 89/103682*192900153618^(5/6) 2178364003433575 a001 89/103682*28143753123^(9/10) 2178364003433575 a001 89/103682*10749957122^(15/16) 2178364003466734 a001 5702887/199*24476^(3/7) 2178364003558813 a001 163431759367/75025 2178364003606650 a001 89/271443*(1/2+1/2*5^(1/2))^47 2178364003624922 a001 213934950432/98209 2178364003627431 a001 89*439204^(7/9) 2178364003631901 a001 89/710647*14662949395604^(7/9) 2178364003631901 a001 89/710647*(1/2+1/2*5^(1/2))^49 2178364003631901 a001 89/710647*505019158607^(7/8) 2178364003634567 a001 1120177943225/514229 2178364003635585 a001 89/1860498*817138163596^(17/19) 2178364003635585 a001 89/1860498*14662949395604^(17/21) 2178364003635585 a001 89/1860498*(1/2+1/2*5^(1/2))^51 2178364003635585 a001 89/1860498*192900153618^(17/18) 2178364003635974 a001 2932663928811/1346269 2178364003636123 a001 89/4870847*(1/2+1/2*5^(1/2))^53 2178364003636179 a001 43133785636/19801 2178364003636192 a001 89*7881196^(7/11) 2178364003636201 a001 89/12752043*(1/2+1/2*5^(1/2))^55 2178364003636201 a001 89/12752043*3461452808002^(11/12) 2178364003636209 a001 1546213661601/709805 2178364003636211 a001 89*20633239^(3/5) 2178364003636213 a001 89/33385282*14662949395604^(19/21) 2178364003636213 a001 89/33385282*(1/2+1/2*5^(1/2))^57 2178364003636214 a001 52624518959231/24157817 2178364003636214 a001 68886389638440/31622993 2178364003636215 a001 89*141422324^(7/13) 2178364003636215 a001 360693818871409/165580141 2178364003636215 a001 944308677337347/433494437 2178364003636215 a001 89*2537720636^(7/15) 2178364003636215 a001 89*17393796001^(3/7) 2178364003636215 a001 89*45537549124^(7/17) 2178364003636215 a001 89*14662949395604^(1/3) 2178364003636215 a001 89*192900153618^(7/18) 2178364003636215 a001 89*10749957122^(7/16) 2178364003636215 a001 89*599074578^(1/2) 2178364003636215 a001 53317637353/24476 2178364003636215 a001 222921039594529/102334155 2178364003636215 a001 89/141422324*14662949395604^(20/21) 2178364003636215 a001 85148260317649/39088169 2178364003636216 a001 89*33385282^(7/12) 2178364003636217 a001 16261870679209/7465176 2178364003636220 a001 89/20633239*14662949395604^(8/9) 2178364003636220 a001 89/20633239*(1/2+1/2*5^(1/2))^56 2178364003636228 a001 12422963757605/5702887 2178364003636250 a001 89/7881196*14662949395604^(6/7) 2178364003636250 a001 89/7881196*(1/2+1/2*5^(1/2))^54 2178364003636306 a001 4745149914397/2178309 2178364003636455 a001 89/3010349*(1/2+1/2*5^(1/2))^52 2178364003636455 a001 89/3010349*23725150497407^(13/16) 2178364003636455 a001 89/3010349*505019158607^(13/14) 2178364003636655 a001 89*1860498^(7/10) 2178364003636844 a001 906242992793/416020 2178364003637862 a001 89/1149851*312119004989^(10/11) 2178364003637862 a001 89/1149851*(1/2+1/2*5^(1/2))^50 2178364003637862 a001 89/1149851*3461452808002^(5/6) 2178364003639450 a001 89*710647^(3/4) 2178364003639905 a001 9227465/199*24476^(8/21) 2178364003640528 a001 53254464797/24447 2178364003647507 a001 89/439204*45537549124^(16/17) 2178364003647507 a001 89/439204*14662949395604^(16/21) 2178364003647507 a001 89/439204*(1/2+1/2*5^(1/2))^48 2178364003647507 a001 89/439204*192900153618^(8/9) 2178364003647507 a001 89/439204*73681302247^(12/13) 2178364003665779 a001 264438141497/121393 2178364003713389 a001 267914296/199*9349^(1/19) 2178364003713616 a001 89/167761*(1/2+1/2*5^(1/2))^46 2178364003713616 a001 89/167761*10749957122^(23/24) 2178364003813051 a001 14930352/199*24476^(1/3) 2178364003813524 a001 89*103682^(7/8) 2178364003838854 a001 50503191065/23184 2178364003986207 a001 24157817/199*24476^(2/7) 2178364004159359 a001 39088169/199*24476^(5/21) 2178364004166731 a001 89/64079*312119004989^(4/5) 2178364004166731 a001 89/64079*(1/2+1/2*5^(1/2))^44 2178364004166731 a001 89/64079*23725150497407^(11/16) 2178364004166731 a001 89/64079*73681302247^(11/13) 2178364004166731 a001 89/64079*10749957122^(11/12) 2178364004166731 a001 89/64079*4106118243^(22/23) 2178364004332513 a001 63245986/199*24476^(4/21) 2178364004384233 a001 46368/199*64079^(19/23) 2178364004505666 a001 102334155/199*24476^(1/7) 2178364004603439 a001 121393/199*64079^(17/23) 2178364004667363 a001 196418/199*64079^(16/23) 2178364004674823 a001 317811/199*64079^(15/23) 2178364004678819 a001 165580141/199*24476^(2/21) 2178364004687340 a001 75025/199*64079^(18/23) 2178364004703850 a001 514229/199*64079^(14/23) 2178364004724639 a001 832040/199*64079^(13/23) 2178364004748574 a001 1346269/199*64079^(12/23) 2178364004771308 a001 2178309/199*64079^(11/23) 2178364004794501 a001 3524578/199*64079^(10/23) 2178364004817518 a001 5702887/199*64079^(9/23) 2178364004822486 a001 46368/199*817138163596^(1/3) 2178364004822486 a001 46368/199*(1/2+1/2*5^(1/2))^19 2178364004822486 a001 46368/199*87403803^(1/2) 2178364004840603 a001 9227465/199*64079^(8/23) 2178364004851972 a001 267914296/199*24476^(1/21) 2178364004863662 a001 14930352/199*64079^(7/23) 2178364004886730 a001 24157817/199*64079^(6/23) 2178364004909795 a001 39088169/199*64079^(5/23) 2178364004932861 a001 63245986/199*64079^(4/23) 2178364004955927 a001 102334155/199*64079^(3/23) 2178364004961993 a001 89*39603^(21/22) 2178364004974371 a001 317811/199*167761^(3/5) 2178364004978993 a001 165580141/199*64079^(2/23) 2178364004982909 a001 46368/199*103682^(19/24) 2178364004994200 a001 3524578/199*167761^(2/5) 2178364004995560 a001 121393/199*45537549124^(1/3) 2178364004995560 a001 121393/199*(1/2+1/2*5^(1/2))^17 2178364004995567 a001 121393/199*12752043^(1/2) 2178364005002059 a001 267914296/199*64079^(1/23) 2178364005009645 a001 39088169/199*167761^(1/5) 2178364005014538 a001 317811/199*439204^(5/9) 2178364005020347 a001 1346269/199*439204^(4/9) 2178364005020796 a001 317811/199*7881196^(5/11) 2178364005020810 a001 317811/199*20633239^(3/7) 2178364005020812 a001 317811/199*141422324^(5/13) 2178364005020812 a001 317811/199*2537720636^(1/3) 2178364005020812 a001 317811/199*45537549124^(5/17) 2178364005020812 a001 317811/199*312119004989^(3/11) 2178364005020812 a001 317811/199*14662949395604^(5/21) 2178364005020812 a001 317811/199*(1/2+1/2*5^(1/2))^15 2178364005020812 a001 317811/199*192900153618^(5/18) 2178364005020812 a001 317811/199*28143753123^(3/10) 2178364005020812 a001 317811/199*10749957122^(5/16) 2178364005020812 a001 317811/199*599074578^(5/14) 2178364005020812 a001 317811/199*228826127^(3/8) 2178364005020813 a001 317811/199*33385282^(5/12) 2178364005021126 a001 317811/199*1860498^(1/2) 2178364005021347 a001 5702887/199*439204^(1/3) 2178364005022616 a001 24157817/199*439204^(2/9) 2178364005023870 a001 102334155/199*439204^(1/9) 2178364005024496 a001 832040/199*141422324^(1/3) 2178364005024496 a001 832040/199*(1/2+1/2*5^(1/2))^13 2178364005024496 a001 832040/199*73681302247^(1/4) 2178364005025022 a001 2178309/199*7881196^(1/3) 2178364005025033 a001 2178309/199*312119004989^(1/5) 2178364005025033 a001 2178309/199*(1/2+1/2*5^(1/2))^11 2178364005025033 a001 2178309/199*1568397607^(1/4) 2178364005025102 a001 5702887/199*7881196^(3/11) 2178364005025112 a001 5702887/199*141422324^(3/13) 2178364005025112 a001 5702887/199*2537720636^(1/5) 2178364005025112 a001 5702887/199*45537549124^(3/17) 2178364005025112 a001 5702887/199*817138163596^(3/19) 2178364005025112 a001 5702887/199*14662949395604^(1/7) 2178364005025112 a001 5702887/199*(1/2+1/2*5^(1/2))^9 2178364005025112 a001 5702887/199*192900153618^(1/6) 2178364005025112 a001 5702887/199*10749957122^(3/16) 2178364005025112 a001 5702887/199*599074578^(3/14) 2178364005025112 a001 5702887/199*33385282^(1/4) 2178364005025119 a001 24157817/199*7881196^(2/11) 2178364005025122 a001 102334155/199*7881196^(1/11) 2178364005025122 a001 14930352/199*20633239^(1/5) 2178364005025123 a001 14930352/199*17393796001^(1/7) 2178364005025123 a001 14930352/199*14662949395604^(1/9) 2178364005025123 a001 14930352/199*(1/2+1/2*5^(1/2))^7 2178364005025123 a001 14930352/199*599074578^(1/6) 2178364005025124 a001 39088169/199*20633239^(1/7) 2178364005025125 a001 39088169/199*2537720636^(1/9) 2178364005025125 a001 39088169/199*312119004989^(1/11) 2178364005025125 a001 39088169/199*(1/2+1/2*5^(1/2))^5 2178364005025125 a001 39088169/199*28143753123^(1/10) 2178364005025125 a001 39088169/199*228826127^(1/8) 2178364005025125 a001 102334155/199*141422324^(1/13) 2178364005025125 a001 102334155/199*2537720636^(1/15) 2178364005025125 a001 102334155/199*45537549124^(1/17) 2178364005025125 a001 102334155/199*14662949395604^(1/21) 2178364005025125 a001 102334155/199*(1/2+1/2*5^(1/2))^3 2178364005025125 a001 102334155/199*192900153618^(1/18) 2178364005025125 a001 102334155/199*10749957122^(1/16) 2178364005025125 a001 102334155/199*599074578^(1/14) 2178364005025125 a001 133957148/199+133957148/199*5^(1/2) 2178364005025125 a006 5^(1/2)*Fibonacci(43)/Lucas(11)/sqrt(5) 2178364005025125 a001 165580141/199*(1/2+1/2*5^(1/2))^2 2178364005025125 a001 165580141/199*10749957122^(1/24) 2178364005025125 a001 165580141/199*4106118243^(1/23) 2178364005025125 a001 165580141/199*1568397607^(1/22) 2178364005025125 a001 165580141/199*599074578^(1/21) 2178364005025125 a001 165580141/199*228826127^(1/20) 2178364005025125 a001 165580141/199*87403803^(1/19) 2178364005025125 a001 63245986/199*(1/2+1/2*5^(1/2))^4 2178364005025125 a001 63245986/199*23725150497407^(1/16) 2178364005025125 a001 63245986/199*73681302247^(1/13) 2178364005025125 a001 63245986/199*10749957122^(1/12) 2178364005025125 a001 63245986/199*4106118243^(2/23) 2178364005025125 a001 63245986/199*1568397607^(1/11) 2178364005025125 a001 63245986/199*599074578^(2/21) 2178364005025125 a001 63245986/199*228826127^(1/10) 2178364005025125 a001 102334155/199*33385282^(1/12) 2178364005025125 a001 165580141/199*33385282^(1/18) 2178364005025125 a001 63245986/199*87403803^(2/19) 2178364005025125 a001 63245986/199*33385282^(1/9) 2178364005025126 a001 24157817/199*141422324^(2/13) 2178364005025126 a001 24157817/199*2537720636^(2/15) 2178364005025126 a001 24157817/199*45537549124^(2/17) 2178364005025126 a001 24157817/199*14662949395604^(2/21) 2178364005025126 a001 24157817/199*(1/2+1/2*5^(1/2))^6 2178364005025126 a001 24157817/199*10749957122^(1/8) 2178364005025126 a001 24157817/199*4106118243^(3/23) 2178364005025126 a001 24157817/199*1568397607^(3/22) 2178364005025126 a001 24157817/199*599074578^(1/7) 2178364005025126 a001 24157817/199*228826127^(3/20) 2178364005025126 a001 24157817/199*87403803^(3/19) 2178364005025126 a001 165580141/199*12752043^(1/17) 2178364005025126 a001 24157817/199*33385282^(1/6) 2178364005025127 a001 63245986/199*12752043^(2/17) 2178364005025128 a001 24157817/199*12752043^(3/17) 2178364005025130 a001 9227465/199*(1/2+1/2*5^(1/2))^8 2178364005025130 a001 9227465/199*23725150497407^(1/8) 2178364005025130 a001 9227465/199*73681302247^(2/13) 2178364005025130 a001 9227465/199*10749957122^(1/6) 2178364005025130 a001 9227465/199*4106118243^(4/23) 2178364005025130 a001 9227465/199*1568397607^(2/11) 2178364005025130 a001 9227465/199*599074578^(4/21) 2178364005025130 a001 9227465/199*228826127^(1/5) 2178364005025130 a001 9227465/199*87403803^(4/19) 2178364005025131 a001 9227465/199*33385282^(2/9) 2178364005025131 a001 165580141/199*4870847^(1/16) 2178364005025133 a001 9227465/199*12752043^(4/17) 2178364005025137 a001 63245986/199*4870847^(1/8) 2178364005025143 a001 24157817/199*4870847^(3/16) 2178364005025153 a001 9227465/199*4870847^(1/4) 2178364005025159 a001 3524578/199*20633239^(2/7) 2178364005025160 a001 3524578/199*2537720636^(2/9) 2178364005025160 a001 3524578/199*312119004989^(2/11) 2178364005025160 a001 3524578/199*(1/2+1/2*5^(1/2))^10 2178364005025160 a001 3524578/199*28143753123^(1/5) 2178364005025160 a001 3524578/199*10749957122^(5/24) 2178364005025160 a001 3524578/199*4106118243^(5/23) 2178364005025160 a001 3524578/199*1568397607^(5/22) 2178364005025160 a001 3524578/199*599074578^(5/21) 2178364005025160 a001 3524578/199*228826127^(1/4) 2178364005025160 a001 3524578/199*87403803^(5/19) 2178364005025161 a001 3524578/199*33385282^(5/18) 2178364005025164 a001 3524578/199*12752043^(5/17) 2178364005025167 a001 165580141/199*1860498^(1/15) 2178364005025188 a001 102334155/199*1860498^(1/10) 2178364005025189 a001 3524578/199*4870847^(5/16) 2178364005025209 a001 63245986/199*1860498^(2/15) 2178364005025230 a001 39088169/199*1860498^(1/6) 2178364005025252 a001 24157817/199*1860498^(1/5) 2178364005025298 a001 9227465/199*1860498^(4/15) 2178364005025301 a001 5702887/199*1860498^(3/10) 2178364005025353 a001 1346269/199*7881196^(4/11) 2178364005025365 a001 1346269/199*141422324^(4/13) 2178364005025366 a001 1346269/199*2537720636^(4/15) 2178364005025366 a001 1346269/199*45537549124^(4/17) 2178364005025366 a001 1346269/199*817138163596^(4/19) 2178364005025366 a001 1346269/199*14662949395604^(4/21) 2178364005025366 a001 1346269/199*(1/2+1/2*5^(1/2))^12 2178364005025366 a001 1346269/199*192900153618^(2/9) 2178364005025366 a001 1346269/199*73681302247^(3/13) 2178364005025366 a001 1346269/199*10749957122^(1/4) 2178364005025366 a001 1346269/199*4106118243^(6/23) 2178364005025366 a001 1346269/199*1568397607^(3/11) 2178364005025366 a001 1346269/199*599074578^(2/7) 2178364005025366 a001 1346269/199*228826127^(3/10) 2178364005025366 a001 1346269/199*87403803^(6/19) 2178364005025366 a001 1346269/199*33385282^(1/3) 2178364005025370 a001 3524578/199*1860498^(1/3) 2178364005025370 a001 1346269/199*12752043^(6/17) 2178364005025400 a001 1346269/199*4870847^(3/8) 2178364005025433 a001 165580141/199*710647^(1/14) 2178364005025617 a001 1346269/199*1860498^(2/5) 2178364005025741 a001 63245986/199*710647^(1/7) 2178364005026050 a001 24157817/199*710647^(3/14) 2178364005026202 a001 14930352/199*710647^(1/4) 2178364005026363 a001 9227465/199*710647^(2/7) 2178364005026701 a001 3524578/199*710647^(5/14) 2178364005026771 a001 514229/199*20633239^(2/5) 2178364005026773 a001 514229/199*17393796001^(2/7) 2178364005026773 a001 514229/199*14662949395604^(2/9) 2178364005026773 a001 514229/199*(1/2+1/2*5^(1/2))^14 2178364005026773 a001 514229/199*10749957122^(7/24) 2178364005026773 a001 514229/199*4106118243^(7/23) 2178364005026773 a001 514229/199*1568397607^(7/22) 2178364005026773 a001 514229/199*599074578^(1/3) 2178364005026773 a001 514229/199*228826127^(7/20) 2178364005026773 a001 514229/199*87403803^(7/19) 2178364005026773 a001 514229/199*33385282^(7/18) 2178364005026778 a001 514229/199*12752043^(7/17) 2178364005026813 a001 514229/199*4870847^(7/16) 2178364005027066 a001 514229/199*1860498^(7/15) 2178364005027214 a001 1346269/199*710647^(3/7) 2178364005027399 a001 165580141/199*271443^(1/13) 2178364005028929 a001 514229/199*710647^(1/2) 2178364005029674 a001 63245986/199*271443^(2/13) 2178364005031948 a001 24157817/199*271443^(3/13) 2178364005033568 a001 267914296/199*103682^(1/24) 2178364005034227 a001 9227465/199*271443^(4/13) 2178364005036418 a001 196418/199*(1/2+1/2*5^(1/2))^16 2178364005036418 a001 196418/199*23725150497407^(1/4) 2178364005036418 a001 196418/199*73681302247^(4/13) 2178364005036418 a001 196418/199*10749957122^(1/3) 2178364005036418 a001 196418/199*4106118243^(8/23) 2178364005036418 a001 196418/199*1568397607^(4/11) 2178364005036418 a001 196418/199*599074578^(8/21) 2178364005036418 a001 196418/199*228826127^(2/5) 2178364005036418 a001 196418/199*87403803^(8/19) 2178364005036419 a001 196418/199*33385282^(4/9) 2178364005036424 a001 196418/199*12752043^(8/17) 2178364005036464 a001 196418/199*4870847^(1/2) 2178364005036531 a001 3524578/199*271443^(5/13) 2178364005036753 a001 196418/199*1860498^(8/15) 2178364005038883 a001 196418/199*710647^(4/7) 2178364005039011 a001 1346269/199*271443^(6/13) 2178364005039278 a001 832040/199*271443^(1/2) 2178364005042012 a001 165580141/199*103682^(1/12) 2178364005042692 a001 514229/199*271443^(7/13) 2178364005050455 a001 102334155/199*103682^(1/8) 2178364005054611 a001 196418/199*271443^(8/13) 2178364005058898 a001 63245986/199*103682^(1/6) 2178364005067341 a001 39088169/199*103682^(5/24) 2178364005075786 a001 24157817/199*103682^(1/4) 2178364005084226 a001 14930352/199*103682^(7/24) 2178364005088257 a001 267914296/199*39603^(1/22) 2178364005092677 a001 9227465/199*103682^(1/3) 2178364005094323 a001 28657/199*64079^(20/23) 2178364005094998 a001 75025/199*439204^(2/3) 2178364005101101 a001 5702887/199*103682^(3/8) 2178364005102507 a001 75025/199*7881196^(6/11) 2178364005102526 a001 75025/199*141422324^(6/13) 2178364005102526 a001 75025/199*2537720636^(2/5) 2178364005102526 a001 75025/199*45537549124^(6/17) 2178364005102526 a001 75025/199*14662949395604^(2/7) 2178364005102526 a001 75025/199*(1/2+1/2*5^(1/2))^18 2178364005102526 a001 75025/199*192900153618^(1/3) 2178364005102526 a001 75025/199*10749957122^(3/8) 2178364005102526 a001 75025/199*4106118243^(9/23) 2178364005102526 a001 75025/199*1568397607^(9/22) 2178364005102526 a001 75025/199*599074578^(3/7) 2178364005102526 a001 75025/199*228826127^(9/20) 2178364005102527 a001 75025/199*87403803^(9/19) 2178364005102527 a001 75025/199*33385282^(1/2) 2178364005102534 a001 75025/199*12752043^(9/17) 2178364005102578 a001 75025/199*4870847^(9/16) 2178364005102904 a001 75025/199*1860498^(3/5) 2178364005105299 a001 75025/199*710647^(9/14) 2178364005109593 a001 3524578/199*103682^(5/12) 2178364005117910 a001 2178309/199*103682^(11/24) 2178364005122994 a001 75025/199*271443^(9/13) 2178364005126685 a001 1346269/199*103682^(1/2) 2178364005134259 a001 832040/199*103682^(13/24) 2178364005139097 a001 121393/199*103682^(17/24) 2178364005144979 a001 514229/199*103682^(7/12) 2178364005147461 a001 317811/199*103682^(5/8) 2178364005151390 a001 165580141/199*39603^(1/11) 2178364005171511 a001 196418/199*103682^(2/3) 2178364005214522 a001 102334155/199*39603^(3/22) 2178364005254506 a001 75025/199*103682^(3/4) 2178364005277654 a001 63245986/199*39603^(2/11) 2178364005340786 a001 39088169/199*39603^(5/22) 2178364005403920 a001 24157817/199*39603^(3/11) 2178364005467049 a001 14930352/199*39603^(7/22) 2178364005493721 a001 28657/199*167761^(4/5) 2178364005501112 a001 267914296/199*15127^(1/20) 2178364005530189 a001 9227465/199*39603^(4/11) 2178364005555639 a001 28657/199*20633239^(4/7) 2178364005555642 a001 28657/199*2537720636^(4/9) 2178364005555642 a001 28657/199*(1/2+1/2*5^(1/2))^20 2178364005555642 a001 28657/199*23725150497407^(5/16) 2178364005555642 a001 28657/199*505019158607^(5/14) 2178364005555642 a001 28657/199*73681302247^(5/13) 2178364005555642 a001 28657/199*28143753123^(2/5) 2178364005555642 a001 28657/199*10749957122^(5/12) 2178364005555642 a001 28657/199*4106118243^(10/23) 2178364005555642 a001 28657/199*1568397607^(5/11) 2178364005555642 a001 28657/199*599074578^(10/21) 2178364005555642 a001 28657/199*228826127^(1/2) 2178364005555642 a001 28657/199*87403803^(10/19) 2178364005555643 a001 28657/199*33385282^(5/9) 2178364005555650 a001 28657/199*12752043^(10/17) 2178364005555699 a001 28657/199*4870847^(5/8) 2178364005556061 a001 28657/199*1860498^(2/3) 2178364005558723 a001 28657/199*710647^(5/7) 2178364005578384 a001 28657/199*271443^(10/13) 2178364005593302 a001 5702887/199*39603^(9/22) 2178364005656483 a001 3524578/199*39603^(5/11) 2178364005719489 a001 2178309/199*39603^(1/2) 2178364005724508 a001 28657/199*103682^(5/6) 2178364005782953 a001 1346269/199*39603^(6/11) 2178364005845216 a001 832040/199*39603^(13/22) 2178364005910625 a001 514229/199*39603^(7/11) 2178364005967796 a001 317811/199*39603^(15/22) 2178364005977099 a001 165580141/199*15127^(1/10) 2178364006021999 a001 46368/199*39603^(19/22) 2178364006046535 a001 196418/199*39603^(8/11) 2178364006068810 a001 121393/199*39603^(17/22) 2178364006238908 a001 75025/199*39603^(9/11) 2178364006453085 a001 102334155/199*15127^(3/20) 2178364006818288 a001 28657/199*39603^(10/11) 2178364006929072 a001 63245986/199*15127^(1/5) 2178364007272430 a001 89/24476*2537720636^(14/15) 2178364007272430 a001 89/24476*17393796001^(6/7) 2178364007272430 a001 89/24476*45537549124^(14/17) 2178364007272430 a001 89/24476*14662949395604^(2/3) 2178364007272430 a001 89/24476*(1/2+1/2*5^(1/2))^42 2178364007272430 a001 89/24476*505019158607^(3/4) 2178364007272430 a001 89/24476*192900153618^(7/9) 2178364007272430 a001 89/24476*10749957122^(7/8) 2178364007272430 a001 89/24476*4106118243^(21/23) 2178364007272430 a001 89/24476*1568397607^(21/22) 2178364007405058 a001 39088169/199*15127^(1/4) 2178364007881046 a001 24157817/199*15127^(3/10) 2178364008153890 a001 10946/199*64079^(22/23) 2178364008357030 a001 14930352/199*15127^(7/20) 2178364008650082 a001 267914296/199*5778^(1/18) 2178364008661317 a001 10946/199*7881196^(2/3) 2178364008661340 a001 10946/199*312119004989^(2/5) 2178364008661340 a001 10946/199*(1/2+1/2*5^(1/2))^22 2178364008661340 a001 10946/199*10749957122^(11/24) 2178364008661340 a001 10946/199*4106118243^(11/23) 2178364008661340 a001 10946/199*1568397607^(1/2) 2178364008661340 a001 10946/199*599074578^(11/21) 2178364008661340 a001 10946/199*228826127^(11/20) 2178364008661340 a001 10946/199*87403803^(11/19) 2178364008661341 a001 10946/199*33385282^(11/18) 2178364008661349 a001 10946/199*12752043^(11/17) 2178364008661403 a001 10946/199*4870847^(11/16) 2178364008661802 a001 10946/199*1860498^(11/15) 2178364008664729 a001 10946/199*710647^(11/14) 2178364008686356 a001 10946/199*271443^(11/13) 2178364008833024 a001 9227465/199*15127^(2/5) 2178364008847093 a001 10946/199*103682^(11/12) 2178364009308992 a001 5702887/199*15127^(9/20) 2178364009785028 a001 3524578/199*15127^(1/2) 2178364010260887 a001 2178309/199*15127^(11/20) 2178364010737206 a001 1346269/199*15127^(3/5) 2178364011212323 a001 832040/199*15127^(13/20) 2178364011690587 a001 514229/199*15127^(7/10) 2178364012160613 a001 317811/199*15127^(3/4) 2178364012275040 a001 165580141/199*5778^(1/9) 2178364012652206 a001 196418/199*15127^(4/5) 2178364013087335 a001 121393/199*15127^(17/20) 2178364013155617 a001 2178326+17*5^(1/2) 2178364013155949 a001 14736632549/6765 2178364013670288 a001 75025/199*15127^(9/10) 2178364013866234 a001 46368/199*15127^(19/20) 2178364015899997 a001 102334155/199*5778^(1/6) 2178364016443933 m001 (-cos(1/12*Pi)+DuboisRaymond)/(1-GAMMA(2/3)) 2178364019524954 a001 63245986/199*5778^(2/9) 2178364023149911 a001 39088169/199*5778^(5/18) 2178364026774870 a001 24157817/199*5778^(1/3) 2178364028559204 a001 89/9349*2537720636^(8/9) 2178364028559204 a001 89/9349*312119004989^(8/11) 2178364028559204 a001 89/9349*(1/2+1/2*5^(1/2))^40 2178364028559204 a001 89/9349*23725150497407^(5/8) 2178364028559204 a001 89/9349*73681302247^(10/13) 2178364028559204 a001 89/9349*28143753123^(4/5) 2178364028559204 a001 89/9349*10749957122^(5/6) 2178364028559204 a001 89/9349*4106118243^(20/23) 2178364028559204 a001 89/9349*1568397607^(10/11) 2178364028559204 a001 89/9349*599074578^(20/21) 2178364029938076 a001 4181/199*439204^(8/9) 2178364029948088 a001 4181/199*7881196^(8/11) 2178364029948114 a001 4181/199*141422324^(8/13) 2178364029948114 a001 4181/199*2537720636^(8/15) 2178364029948114 a001 4181/199*45537549124^(8/17) 2178364029948114 a001 4181/199*14662949395604^(8/21) 2178364029948114 a001 4181/199*(1/2+1/2*5^(1/2))^24 2178364029948114 a001 4181/199*192900153618^(4/9) 2178364029948114 a001 4181/199*73681302247^(6/13) 2178364029948114 a001 4181/199*10749957122^(1/2) 2178364029948114 a001 4181/199*4106118243^(12/23) 2178364029948114 a001 4181/199*1568397607^(6/11) 2178364029948114 a001 4181/199*599074578^(4/7) 2178364029948114 a001 4181/199*228826127^(3/5) 2178364029948114 a001 4181/199*87403803^(12/19) 2178364029948115 a001 4181/199*33385282^(2/3) 2178364029948123 a001 4181/199*12752043^(12/17) 2178364029948183 a001 4181/199*4870847^(3/4) 2178364029948617 a001 4181/199*1860498^(4/5) 2178364029951811 a001 4181/199*710647^(6/7) 2178364029975404 a001 4181/199*271443^(12/13) 2178364030399824 a001 14930352/199*5778^(7/18) 2178364032976678 a001 267914296/199*2207^(1/16) 2178364034024789 a001 9227465/199*5778^(4/9) 2178364034649679 m001 (exp(1/exp(1))-ZetaP(2))/(Pi+2^(1/2)) 2178364034992256 r005 Re(z^2+c),c=3/118+19/31*I,n=49 2178364037649727 a001 5702887/199*5778^(1/2) 2178364039419199 r005 Im(z^2+c),c=-4/5+13/106*I,n=19 2178364041274733 a001 3524578/199*5778^(5/9) 2178364041990173 a005 (1/sin(47/153*Pi))^98 2178364044899564 a001 2178309/199*5778^(11/18) 2178364045661995 p004 log(18803/2129) 2178364048524853 a001 1346269/199*5778^(2/3) 2178364048555855 m001 1/CareFree^2/Backhouse^2*exp(PrimesInBinary)^2 2178364051026564 k001 Champernowne real with 1462*n+716 2178364052085485 r005 Re(z^2+c),c=-17/70+12/47*I,n=5 2178364052148941 a001 832040/199*5778^(13/18) 2178364055347663 m001 Zeta(1,2)*GAMMA(5/24)^2*ln(cos(Pi/12))^2 2178364055482176 m006 (3/4*Pi^2+1/5)/(1/3*Pi^2+1/5) 2178364055482176 m008 (3/4*Pi^2+1/5)/(1/3*Pi^2+1/5) 2178364055776175 a001 514229/199*5778^(7/9) 2178364059395171 a001 317811/199*5778^(5/6) 2178364060928231 a001 165580141/199*2207^(1/8) 2178364061738825 a007 Real Root Of -471*x^4+376*x^3-566*x^2+437*x+127 2178364063015663 r005 Im(z^2+c),c=-23/25+9/44*I,n=33 2178364063035735 a001 196418/199*5778^(8/9) 2178364066619835 a001 121393/199*5778^(17/18) 2178364068885448 a001 2814446377/1292 2178364088879785 a001 102334155/199*2207^(3/16) 2178364095710811 r005 Re(z^2+c),c=-27/118+17/62*I,n=26 2178364099260801 m001 exp(Catalan)*Riemann3rdZero^2/GAMMA(1/3)^2 2178364100663698 r005 Re(z^2+c),c=-13/10+43/115*I,n=5 2178364104566569 m001 (-CareFree+StronglyCareFree)/(1+BesselI(0,2)) 2178364111851764 a007 Real Root Of 54*x^4-427*x^3-719*x^2-347*x+114 2178364116831339 a001 63245986/199*2207^(1/4) 2178364122016515 m005 (1/2*Zeta(3)-3)/(7/12*3^(1/2)+1/11) 2178364143772762 p003 LerchPhi(1/512,4,315/121) 2178364144782893 a001 39088169/199*2207^(5/16) 2178364145044475 r002 4th iterates of z^2 + 2178364147595540 a008 Real Root of x^4-x^3-15*x^2+15*x+71 2178364151046567 k001 Champernowne real with 1463*n+715 2178364155548613 r005 Re(z^2+c),c=29/102+4/21*I,n=50 2178364163730554 r005 Re(z^2+c),c=-1/4+12/53*I,n=5 2178364172734448 a001 24157817/199*2207^(3/8) 2178364174460935 a001 89/3571*817138163596^(2/3) 2178364174460935 a001 89/3571*(1/2+1/2*5^(1/2))^38 2178364174460935 a001 89/3571*10749957122^(19/24) 2178364174460935 a001 89/3571*4106118243^(19/23) 2178364174460935 a001 89/3571*1568397607^(19/22) 2178364174460935 a001 89/3571*599074578^(19/21) 2178364174460935 a001 89/3571*228826127^(19/20) 2178364175849832 a001 1597/199*141422324^(2/3) 2178364175849832 a001 1597/199*(1/2+1/2*5^(1/2))^26 2178364175849832 a001 1597/199*73681302247^(1/2) 2178364175849832 a001 1597/199*10749957122^(13/24) 2178364175849832 a001 1597/199*4106118243^(13/23) 2178364175849832 a001 1597/199*1568397607^(13/22) 2178364175849832 a001 1597/199*599074578^(13/21) 2178364175849832 a001 1597/199*228826127^(13/20) 2178364175849832 a001 1597/199*87403803^(13/19) 2178364175849833 a001 1597/199*33385282^(13/18) 2178364175849842 a001 1597/199*12752043^(13/17) 2178364175849906 a001 1597/199*4870847^(13/16) 2178364175850377 a001 1597/199*1860498^(13/15) 2178364175853837 a001 1597/199*710647^(13/14) 2178364177044731 m001 Rabbit^Kolakoski+Riemann2ndZero 2178364178036557 a005 (1/cos(3/74*Pi))^662 2178364181160081 l006 ln(785/6933) 2178364183204455 a007 Real Root Of -231*x^4-309*x^3+264*x^2-60*x+624 2178364185018538 a007 Real Root Of 255*x^4+8*x^3-614*x^2+957*x-661 2178364187022819 r005 Im(z^2+c),c=-7/10+6/37*I,n=5 2178364193161780 m001 Magata^2/ln(Khintchine)^2*FeigenbaumC 2178364193287129 h002 exp(11^(4/7)+11^(5/3)) 2178364193287129 h007 exp(11^(4/7)+11^(5/3)) 2178364194187868 m002 Pi^5/4+6*Pi^5*Log[Pi] 2178364195888860 r009 Im(z^3+c),c=-29/54+18/53*I,n=29 2178364200450323 a007 Real Root Of 485*x^4+731*x^3-363*x^2+388*x-797 2178364200686000 a001 14930352/199*2207^(7/16) 2178364202080841 l006 ln(8128/8307) 2178364223976767 a001 267914296/199*843^(1/14) 2178364228637563 a001 9227465/199*2207^(1/2) 2178364232598499 m002 2+(Coth[Pi]*Log[Pi])/(6*ProductLog[Pi]) 2178364238711072 a007 Real Root Of 420*x^4+604*x^3-800*x^2-641*x-814 2178364251066570 k001 Champernowne real with 1464*n+714 2178364251118311 r005 Im(z^2+c),c=-24/29+7/54*I,n=16 2178364255874312 r009 Re(z^3+c),c=-5/14+13/25*I,n=47 2178364256589100 a001 5702887/199*2207^(9/16) 2178364263122172 m001 1/exp(GAMMA(1/4))*Riemann2ndZero^2/cos(1) 2178364263501965 l006 ln(6159/7658) 2178364264178714 r005 Re(z^2+c),c=3/26+6/17*I,n=7 2178364272070201 m004 -120*Pi+(500*Tanh[Sqrt[5]*Pi])/Pi 2178364276704378 m001 ln(gamma)^cos(1)*ln(2)/ln(10) 2178364284540705 a001 3524578/199*2207^(5/8) 2178364296301659 m005 (1/2*Zeta(3)-10/11)/(8/9*Catalan+3/5) 2178364301369823 m001 1/3*GaussKuzminWirsing-BesselI(0,2) 2178364312492134 a001 2178309/199*2207^(11/16) 2178364314877119 a007 Real Root Of -28*x^4+422*x^3+715*x^2-582*x+332 2178364322397048 a007 Real Root Of -780*x^4-490*x^3-529*x^2+561*x+144 2178364322887615 r005 Re(z^2+c),c=-23/114+24/61*I,n=9 2178364323512497 a007 Real Root Of -504*x^4-594*x^3+830*x^2-270*x+682 2178364327005743 r005 Im(z^2+c),c=-8/9+4/21*I,n=60 2178364332893833 m001 (-exp(1/exp(1))+Grothendieck)/(1-ln(gamma)) 2178364338241563 p001 sum(1/(374*n+347)/n/(64^n),n=1..infinity) 2178364339076388 s002 sum(A176654[n]/((exp(n)+1)/n),n=1..infinity) 2178364339796221 a007 Real Root Of 40*x^4-691*x^3+974*x^2+429*x+40 2178364340444023 a001 1346269/199*2207^(3/4) 2178364341781120 l006 ln(898/7931) 2178364342776420 r005 Im(z^2+c),c=-83/90+10/47*I,n=41 2178364351086573 k001 Champernowne real with 1465*n+713 2178364351957924 a007 Real Root Of -280*x^4-711*x^3-591*x^2-840*x-70 2178364365926134 r002 43th iterates of z^2 + 2178364365968903 a007 Real Root Of -628*x^4-713*x^3+676*x^2+903*x-220 2178364368394710 a001 832040/199*2207^(13/16) 2178364373211977 p003 LerchPhi(1/25,3,78/101) 2178364379596216 g001 Psi(2/5,23/63) 2178364391249398 a007 Real Root Of -420*x^4-595*x^3+733*x^2-211*x-631 2178364394962843 r005 Re(z^2+c),c=-13/48+11/18*I,n=53 2178364396348545 a001 514229/199*2207^(7/8) 2178364400233736 a003 cos(Pi*5/41)/cos(Pi*9/25) 2178364400409354 m001 sqrt(1+sqrt(3))^polylog(4,1/2)+ln(1+sqrt(2)) 2178364401481154 m001 1/ln((3^(1/3)))/Trott^2*Zeta(1,2) 2178364405272576 m001 1/BesselJ(0,1)/FeigenbaumC/ln(sqrt(Pi))^2 2178364422120151 m001 exp(GAMMA(1/12))*Magata/cosh(1) 2178364424294142 a001 317811/199*2207^(15/16) 2178364425877354 m005 (1/2*exp(1)-1/5)/(3*3^(1/2)+1/8) 2178364436967590 h003 exp(Pi*(15^(2/3)+18^(7/5))) 2178364436967590 h008 exp(Pi*(15^(2/3)+18^(7/5))) 2178364437789215 h001 (9/10*exp(1)+1/3)/(3/7*exp(1)+1/9) 2178364442928430 a001 165580141/199*843^(1/7) 2178364450861195 a001 2150045713/987 2178364451106576 k001 Champernowne real with 1466*n+712 2178364454821790 m001 CareFree/(TreeGrowth2nd^exp(1/Pi)) 2178364458976574 m001 exp(Pi)^ZetaQ(3)/Bloch 2178364461596837 h001 (5/12*exp(1)+1/4)/(7/9*exp(2)+3/5) 2178364462867653 m001 Catalan^2*ln(BesselK(0,1))/gamma^2 2178364466496745 l006 ln(1011/8929) 2178364468673646 r005 Im(z^2+c),c=-23/31+8/63*I,n=9 2178364471596231 a007 Real Root Of -302*x^4-957*x^3-580*x^2+459*x+660 2178364483945453 q001 1/45906 2178364484845403 a007 Real Root Of 885*x^4+120*x^3-14*x^2-985*x+212 2178364486574394 a007 Real Root Of -55*x^4+284*x^3+834*x^2-379*x-609 2178364492533918 r005 Im(z^2+c),c=-17/54+15/44*I,n=28 2178364493060025 m001 Riemann2ndZero+ThueMorse^HardyLittlewoodC4 2178364502381461 m005 (1/3*Pi+1/4)/(-7/8+1/8*5^(1/2)) 2178364530981888 h001 (8/11*exp(2)+1/2)/(9/10*exp(1)+1/4) 2178364531854052 m001 CareFree^arctan(1/3)*CareFree^Psi(2,1/3) 2178364534124574 m001 FellerTornier/CareFree*PlouffeB 2178364536953960 m006 (1/3*Pi+1/6)/(1/2*ln(Pi)+5) 2178364538743268 r005 Im(z^2+c),c=-9/19+13/34*I,n=56 2178364540331935 a007 Real Root Of 521*x^4+963*x^3-680*x^2-833*x-365 2178364544751820 a007 Real Root Of -328*x^4-643*x^3+317*x^2+438*x+189 2178364550843960 r005 Im(z^2+c),c=-115/94+4/43*I,n=3 2178364551126579 k001 Champernowne real with 1467*n+711 2178364554471858 r005 Im(z^2+c),c=-29/34+13/74*I,n=42 2178364555193814 a008 Real Root of x^3-x^2-391*x-1345 2178364556772783 m005 (1/2*exp(1)-4)/(2/5*exp(1)+1/8) 2178364557394585 r009 Re(z^3+c),c=-1/32+27/62*I,n=20 2178364560766982 k002 Champernowne real with 5*n^2+161*n-164 2178364566136085 l006 ln(1124/9927) 2178364572673580 a007 Real Root Of -89*x^4+647*x^3-556*x^2-760*x-390 2178364577984991 g006 Psi(1,4/11)-Psi(1,5/12)-Psi(1,3/7)-Psi(1,1/4) 2178364606711301 m001 ln(2)*(Pi+ln(2)/ln(10))-exp(-1/2*Pi) 2178364609859377 r005 Im(z^2+c),c=-17/50+8/23*I,n=24 2178364616657363 a001 76/4181*317811^(17/45) 2178364620419548 a007 Real Root Of 523*x^4+879*x^3-221*x^2+599*x-337 2178364631062941 a007 Real Root Of -15*x^4-315*x^3+239*x^2-386*x-313 2178364634888699 a001 18*832040^(20/29) 2178364647773470 r009 Re(z^3+c),c=-35/106+24/53*I,n=25 2178364651146582 k001 Champernowne real with 1468*n+710 2178364658865401 a003 cos(Pi*23/118)*cos(Pi*29/59) 2178364661880116 a001 102334155/199*843^(3/14) 2178364672074495 m001 FeigenbaumDelta/BesselJ(0,1)*FeigenbaumMu 2178364674654726 p001 sum(1/(232*n+161)/n/(12^n),n=1..infinity) 2178364676230966 s002 sum(A187579[n]/(16^n-1),n=1..infinity) 2178364676565418 m001 FellerTornier-PisotVijayaraghavan-Salem 2178364681243768 m005 (1/2*3^(1/2)+3/5)/(3/8*Zeta(3)+2/9) 2178364708137791 m002 -2-E^Pi/Log[Pi]+5*Sech[Pi] 2178364713269523 m001 (Pi^(1/2)-ZetaQ(2))/(GAMMA(2/3)-BesselI(1,1)) 2178364717747989 a007 Real Root Of -795*x^4-283*x^3-888*x^2+482*x+146 2178364722686210 s001 sum(1/10^(n-1)*A220120[n]/n!^2,n=1..infinity) 2178364730129556 m005 (1/2*Zeta(3)+3/4)/(1/7*2^(1/2)+6) 2178364732136847 r005 Im(z^2+c),c=-47/106+19/39*I,n=22 2178364734668737 m001 1/exp(GAMMA(2/3))^2/GAMMA(17/24)/cosh(1)^2 2178364736633088 s001 sum(1/10^(n-1)*A131190[n]/n!^2,n=1..infinity) 2178364739700571 a005 (1/sin(59/201*Pi))^257 2178364740143861 a002 5^(7/6)+7^(7/5) 2178364751166585 k001 Champernowne real with 1469*n+709 2178364752622211 r002 62th iterates of z^2 + 2178364758807145 a007 Real Root Of -89*x^4+458*x^3-394*x^2+19*x-902 2178364760431518 a003 sin(Pi*23/89)-sin(Pi*31/79) 2178364767783703 r009 Im(z^3+c),c=-1/48+15/17*I,n=6 2178364774434710 r005 Im(z^2+c),c=-117/118+11/49*I,n=46 2178364780922213 m001 (arctan(1/2)-FeigenbaumD)/(Landau+PlouffeB) 2178364782956091 r002 41th iterates of z^2 + 2178364786329871 a007 Real Root Of -485*x^4+849*x^3-13*x^2+826*x-187 2178364791212567 a008 Real Root of (1+2*x-5*x^2+x^3-4*x^4+2*x^5) 2178364792263137 r009 Re(z^3+c),c=-25/102+9/41*I,n=8 2178364792298354 r005 Re(z^2+c),c=-27/118+17/62*I,n=29 2178364792366987 a007 Real Root Of -28*x^4-604*x^3+145*x^2+384*x+982 2178364795225222 a007 Real Root Of -296*x^4-686*x^3-352*x^2-249*x+702 2178364806693596 m001 (-3^(1/3)+1)/(-arctan(1/2)+2/3) 2178364813375073 a007 Real Root Of -84*x^4-49*x^3-756*x^2+507*x+146 2178364835804490 m001 (ErdosBorwein-Niven)/ZetaP(2) 2178364843999159 m001 GAMMA(7/12)*Artin+ErdosBorwein 2178364851186588 k001 Champernowne real with 1470*n+708 2178364852650774 a007 Real Root Of 732*x^4-109*x^3+536*x^2-390*x+59 2178364854721987 a007 Real Root Of -257*x^4-665*x^3-589*x^2-678*x+231 2178364855382003 a007 Real Root Of 342*x^4+353*x^3-680*x^2+97*x-614 2178364861107003 h001 (6/7*exp(2)+3/10)/(7/8*exp(1)+2/3) 2178364864050217 r005 Im(z^2+c),c=-21/26+10/93*I,n=18 2178364871983658 s001 sum(1/10^(n-1)*A120483[n]/n^n,n=1..infinity) 2178364879162325 k002 Champernowne real with 229/2*n^2-573/2*n+193 2178364880621027 l006 ln(2116/2631) 2178364880831824 a001 63245986/199*843^(2/7) 2178364881867336 a007 Real Root Of 745*x^4+522*x^3+890*x^2-16*x-42 2178364891482210 a005 (1/sin(94/229*Pi))^1111 2178364892466287 a007 Real Root Of 583*x^4+988*x^3-239*x^2+649*x-367 2178364895526508 m001 HardyLittlewoodC4+Niven^GAMMA(19/24) 2178364899240639 m005 (1/2*exp(1)-5)/(7/9*2^(1/2)+4/7) 2178364902148075 m001 GolombDickman*LandauRamanujan-Weierstrass 2178364916649051 m001 (GAMMA(17/24)+Bloch)/(cos(1/12*Pi)-Pi^(1/2)) 2178364917491231 a001 76/15127*(1/2*5^(1/2)+1/2)^7*15127^(1/24) 2178364919871166 a001 76/15127*(1/2*5^(1/2)+1/2)^2*15127^(7/24) 2178364925341146 a001 76/39603*(1/2*5^(1/2)+1/2)^8*39603^(1/12) 2178364927056411 a001 76/64079*(1/2*5^(1/2)+1/2)^7*64079^(1/6) 2178364929240471 a001 19/6119*(1/2*5^(1/2)+1/2)^3*24476^(5/18) 2178364929461235 m001 (Catalan*gamma(1)+(1+3^(1/2))^(1/2))/gamma(1) 2178364932125392 r002 42th iterates of z^2 + 2178364949250214 r005 Re(z^2+c),c=-9/34+1/61*I,n=7 2178364951206591 k001 Champernowne real with 1471*n+707 2178364957126414 r005 Re(z^2+c),c=-27/118+17/62*I,n=31 2178364958761313 m001 2^(1/3)*FellerTornier-GolombDickman 2178364977484535 r005 Re(z^2+c),c=-27/118+17/62*I,n=34 2178364982245993 r005 Re(z^2+c),c=-27/118+17/62*I,n=32 2178364989654333 r005 Re(z^2+c),c=-27/118+17/62*I,n=37 2178364990578954 r005 Re(z^2+c),c=-27/118+17/62*I,n=39 2178364991163980 r005 Re(z^2+c),c=-27/118+17/62*I,n=36 2178364991194932 r005 Re(z^2+c),c=-27/118+17/62*I,n=42 2178364991323577 r005 Re(z^2+c),c=-27/118+17/62*I,n=44 2178364991343857 r005 Re(z^2+c),c=-27/118+17/62*I,n=47 2178364991350121 r005 Re(z^2+c),c=-27/118+17/62*I,n=45 2178364991354116 r005 Re(z^2+c),c=-27/118+17/62*I,n=50 2178364991354737 r005 Re(z^2+c),c=-27/118+17/62*I,n=52 2178364991354988 r005 Re(z^2+c),c=-27/118+17/62*I,n=49 2178364991355278 r005 Re(z^2+c),c=-27/118+17/62*I,n=55 2178364991355377 r005 Re(z^2+c),c=-27/118+17/62*I,n=57 2178364991355397 r005 Re(z^2+c),c=-27/118+17/62*I,n=60 2178364991355404 r005 Re(z^2+c),c=-27/118+17/62*I,n=58 2178364991355405 r005 Re(z^2+c),c=-27/118+17/62*I,n=63 2178364991355406 r005 Re(z^2+c),c=-27/118+17/62*I,n=62 2178364991355407 r005 Re(z^2+c),c=-27/118+17/62*I,n=64 2178364991355411 r005 Re(z^2+c),c=-27/118+17/62*I,n=61 2178364991355418 r005 Re(z^2+c),c=-27/118+17/62*I,n=59 2178364991355489 r005 Re(z^2+c),c=-27/118+17/62*I,n=56 2178364991355493 r005 Re(z^2+c),c=-27/118+17/62*I,n=54 2178364991355565 r005 Re(z^2+c),c=-27/118+17/62*I,n=53 2178364991356671 r005 Re(z^2+c),c=-27/118+17/62*I,n=51 2178364991360336 r005 Re(z^2+c),c=-27/118+17/62*I,n=48 2178364991370697 r005 Re(z^2+c),c=-27/118+17/62*I,n=46 2178364991453763 r005 Re(z^2+c),c=-27/118+17/62*I,n=43 2178364991478938 r005 Re(z^2+c),c=-27/118+17/62*I,n=41 2178364991512788 r005 Re(z^2+c),c=-27/118+17/62*I,n=40 2178364992901894 r005 Re(z^2+c),c=-27/118+17/62*I,n=38 2178364996680481 m001 BesselK(0,1)^2*(3^(1/3))^2*ln(arctan(1/2))^2 2178364996919290 r005 Re(z^2+c),c=-27/118+17/62*I,n=35 2178365004805803 a007 Real Root Of -410*x^4-929*x^3+30*x^2+668*x+942 2178365010783998 r005 Re(z^2+c),c=-27/118+17/62*I,n=33 2178365016385509 m005 (1/2*5^(1/2)-1/5)/(5/9*2^(1/2)-5) 2178365017911160 r005 Im(z^2+c),c=-49/94+10/23*I,n=45 2178365023543400 m001 CareFree^2*ln(Bloch)^2/GAMMA(17/24) 2178365029647950 h001 (4/5*exp(2)+5/6)/(10/11*exp(1)+5/8) 2178365035096791 m001 (BesselI(1,2)-Shi(1))/(Kac+MasserGramainDelta) 2178365040126324 m005 (1/3*Zeta(3)+1/8)/(5/8*exp(1)+5/7) 2178365048401406 m002 -2/3+6*Pi*Cosh[Pi] 2178365051226594 k001 Champernowne real with 1472*n+706 2178365054449041 s001 sum(1/10^(n-1)*A178392[n]/n^n,n=1..infinity) 2178365065971600 a001 1597/76*76^(27/50) 2178365068968307 a001 76/3571*(1/2*5^(1/2)+1/2)^2*3571^(1/6) 2178365071172512 p004 log(22901/2593) 2178365074036203 s002 sum(A071698[n]/(n*pi^n+1),n=1..infinity) 2178365075247916 s002 sum(A089188[n]/(n*pi^n+1),n=1..infinity) 2178365077066802 l002 exp(polylog(4,76/103)) 2178365089035825 m009 (5/2*Pi^2+5/6)/(5*Psi(1,3/4)-1) 2178365092337712 r009 Re(z^3+c),c=-1/32+27/62*I,n=22 2178365095591297 h001 (2/11*exp(1)+1/7)/(4/5*exp(1)+3/4) 2178365098700698 a001 843/10946*514229^(21/22) 2178365099783553 a001 39088169/199*843^(5/14) 2178365102335342 a001 843/267914296*20365011074^(21/22) 2178365102671394 p004 log(21283/17117) 2178365107331342 r005 Re(z^2+c),c=-27/118+17/62*I,n=30 2178365124689946 m001 FibonacciFactorial*(Champernowne-ln(2)/ln(10)) 2178365125004087 a007 Real Root Of 533*x^4-310*x^3-791*x^2-351*x+116 2178365128824428 m001 HeathBrownMoroz+KomornikLoreti^Totient 2178365135173936 a003 sin(Pi*31/109)-sin(Pi*49/103) 2178365139207112 r005 Re(z^2+c),c=-27/118+17/62*I,n=23 2178365139961942 r005 Re(z^2+c),c=-27/118+17/62*I,n=27 2178365143118563 m001 (Gompertz-Salem)/(GAMMA(11/12)+ErdosBorwein) 2178365147301987 m001 Psi(2,1/3)*KomornikLoreti/ZetaP(2) 2178365149151469 r005 Re(z^2+c),c=-15/82+26/63*I,n=18 2178365151246597 k001 Champernowne real with 1473*n+705 2178365152068453 m001 (5^(1/2)+Si(Pi))/(MasserGramainDelta+ZetaQ(2)) 2178365155636705 a003 sin(Pi*6/97)/cos(Pi*17/111) 2178365159107437 r002 8th iterates of z^2 + 2178365162547816 r005 Re(z^2+c),c=-27/118+17/62*I,n=28 2178365170780257 r009 Re(z^3+c),c=-5/17+17/47*I,n=10 2178365171233335 r009 Re(z^3+c),c=-1/32+27/62*I,n=24 2178365174486801 a001 89/1364*141422324^(12/13) 2178365174486801 a001 89/1364*2537720636^(4/5) 2178365174486801 a001 89/1364*45537549124^(12/17) 2178365174486801 a001 89/1364*14662949395604^(4/7) 2178365174486801 a001 89/1364*(1/2+1/2*5^(1/2))^36 2178365174486801 a001 89/1364*505019158607^(9/14) 2178365174486801 a001 89/1364*192900153618^(2/3) 2178365174486801 a001 89/1364*73681302247^(9/13) 2178365174486801 a001 89/1364*10749957122^(3/4) 2178365174486801 a001 89/1364*4106118243^(18/23) 2178365174486801 a001 89/1364*1568397607^(9/11) 2178365174486801 a001 89/1364*599074578^(6/7) 2178365174486801 a001 89/1364*228826127^(9/10) 2178365174486801 a001 89/1364*87403803^(18/19) 2178365175875079 a001 610/199*20633239^(4/5) 2178365175875083 a001 610/199*17393796001^(4/7) 2178365175875083 a001 610/199*14662949395604^(4/9) 2178365175875083 a001 610/199*(1/2+1/2*5^(1/2))^28 2178365175875083 a001 610/199*73681302247^(7/13) 2178365175875083 a001 610/199*10749957122^(7/12) 2178365175875083 a001 610/199*4106118243^(14/23) 2178365175875083 a001 610/199*1568397607^(7/11) 2178365175875083 a001 610/199*599074578^(2/3) 2178365175875083 a001 610/199*228826127^(7/10) 2178365175875083 a001 610/199*87403803^(14/19) 2178365175875085 a001 610/199*33385282^(7/9) 2178365175875094 a001 610/199*12752043^(14/17) 2178365175875163 a001 610/199*4870847^(7/8) 2178365175875670 a001 610/199*1860498^(14/15) 2178365178813359 m001 ln(Kolakoski)/Champernowne^2/FeigenbaumB^2 2178365179730584 m001 (-exp(1/Pi)+CareFree)/(Si(Pi)+GAMMA(3/4)) 2178365179814452 m006 (3/4*Pi+2/5)/(5/6/Pi+1) 2178365180628928 m001 (-exp(-Pi)+5)/(-Pi^(1/2)+2) 2178365181097689 r009 Re(z^3+c),c=-1/32+27/62*I,n=26 2178365181642153 r009 Re(z^3+c),c=-1/32+27/62*I,n=29 2178365181715701 r009 Re(z^3+c),c=-1/32+27/62*I,n=31 2178365181745781 r009 Re(z^3+c),c=-1/32+27/62*I,n=27 2178365181746754 r009 Re(z^3+c),c=-1/32+27/62*I,n=33 2178365181755609 r009 Re(z^3+c),c=-1/32+27/62*I,n=35 2178365181757768 r009 Re(z^3+c),c=-1/32+27/62*I,n=37 2178365181758247 r009 Re(z^3+c),c=-1/32+27/62*I,n=39 2178365181758347 r009 Re(z^3+c),c=-1/32+27/62*I,n=41 2178365181758367 r009 Re(z^3+c),c=-1/32+27/62*I,n=43 2178365181758370 r009 Re(z^3+c),c=-1/32+27/62*I,n=45 2178365181758371 r009 Re(z^3+c),c=-1/32+27/62*I,n=47 2178365181758371 r009 Re(z^3+c),c=-1/32+27/62*I,n=49 2178365181758371 r009 Re(z^3+c),c=-1/32+27/62*I,n=51 2178365181758371 r009 Re(z^3+c),c=-1/32+27/62*I,n=53 2178365181758371 r009 Re(z^3+c),c=-1/32+27/62*I,n=56 2178365181758371 r009 Re(z^3+c),c=-1/32+27/62*I,n=58 2178365181758371 r009 Re(z^3+c),c=-1/32+27/62*I,n=60 2178365181758371 r009 Re(z^3+c),c=-1/32+27/62*I,n=62 2178365181758371 r009 Re(z^3+c),c=-1/32+27/62*I,n=64 2178365181758371 r009 Re(z^3+c),c=-1/32+27/62*I,n=63 2178365181758371 r009 Re(z^3+c),c=-1/32+27/62*I,n=61 2178365181758371 r009 Re(z^3+c),c=-1/32+27/62*I,n=59 2178365181758371 r009 Re(z^3+c),c=-1/32+27/62*I,n=57 2178365181758371 r009 Re(z^3+c),c=-1/32+27/62*I,n=55 2178365181758371 r009 Re(z^3+c),c=-1/32+27/62*I,n=54 2178365181758371 r009 Re(z^3+c),c=-1/32+27/62*I,n=52 2178365181758371 r009 Re(z^3+c),c=-1/32+27/62*I,n=50 2178365181758371 r009 Re(z^3+c),c=-1/32+27/62*I,n=48 2178365181758371 r009 Re(z^3+c),c=-1/32+27/62*I,n=46 2178365181758373 r009 Re(z^3+c),c=-1/32+27/62*I,n=44 2178365181758381 r009 Re(z^3+c),c=-1/32+27/62*I,n=42 2178365181758426 r009 Re(z^3+c),c=-1/32+27/62*I,n=40 2178365181758646 r009 Re(z^3+c),c=-1/32+27/62*I,n=38 2178365181759674 r009 Re(z^3+c),c=-1/32+27/62*I,n=36 2178365181764108 r009 Re(z^3+c),c=-1/32+27/62*I,n=34 2178365181772977 m001 (Zeta(1/2)+Salem)/(2^(1/2)-exp(1)) 2178365181781139 r009 Re(z^3+c),c=-1/32+27/62*I,n=32 2178365181833102 r009 Re(z^3+c),c=-1/32+27/62*I,n=30 2178365181895147 r009 Re(z^3+c),c=-1/32+27/62*I,n=28 2178365184832165 r009 Re(z^3+c),c=-1/32+27/62*I,n=25 2178365211058297 a007 Real Root Of -49*x^4+518*x^3-735*x^2+9*x-783 2178365213537223 r009 Re(z^3+c),c=-1/32+27/62*I,n=23 2178365216006199 a007 Real Root Of 366*x^4+667*x^3-477*x^2-537*x-253 2178365226176718 m005 (1/2*Catalan+4/7)/(5/12*Catalan+1/11) 2178365232110809 m001 (ln(2)+ln(2+3^(1/2)))/(exp(1/Pi)-Porter) 2178365235979050 m001 Ei(1)+Backhouse*DuboisRaymond 2178365244862476 a001 7/165580141*6557470319842^(1/18) 2178365244862476 a001 1/14619165*1134903170^(1/18) 2178365244863103 a001 7/63245986*196418^(1/18) 2178365246296910 a007 Real Root Of 219*x^4+51*x^3-113*x^2-990*x+220 2178365251266600 k001 Champernowne real with 1474*n+704 2178365261646497 h001 (1/4*exp(2)+4/9)/(1/9*exp(1)+3/4) 2178365263721565 r005 Re(z^2+c),c=-13/110+30/47*I,n=42 2178365271700264 s002 sum(A250768[n]/((3*n+1)!),n=1..infinity) 2178365273442048 a007 Real Root Of -189*x^4+101*x^3+994*x^2+123*x+851 2178365276522340 a007 Real Root Of -221*x^4-150*x^3+981*x^2+478*x-188 2178365278812076 m001 GAMMA(2/3)/Si(Pi)*ln(sin(1))^2 2178365281201159 m005 (1/2*2^(1/2)+3/8)/(4/5*3^(1/2)-8/9) 2178365283887051 a007 Real Root Of -252*x^4-352*x^3-110*x^2-868*x+667 2178365287418447 r005 Im(z^2+c),c=-6/7+22/105*I,n=53 2178365318735306 a001 24157817/199*843^(3/7) 2178365319363797 b008 1/7+Sqrt[3]*Sinh[1] 2178365329824818 r005 Im(z^2+c),c=-5/6+12/65*I,n=20 2178365331175196 m001 Cahen/Landau*Tribonacci 2178365351286603 k001 Champernowne real with 1475*n+703 2178365386394235 a007 Real Root Of -33*x^4-683*x^3+791*x^2+201*x-284 2178365405055329 a007 Real Root Of -19*x^4-450*x^3-779*x^2+134*x-697 2178365411458086 s002 sum(A272386[n]/(64^n),n=1..infinity) 2178365417447920 r005 Im(z^2+c),c=-97/122+3/31*I,n=20 2178365421645109 m001 (DuboisRaymond+ZetaQ(3))/(ln(3)+Zeta(1,-1)) 2178365422019144 r009 Re(z^3+c),c=-1/32+27/62*I,n=21 2178365427166736 m001 (ReciprocalLucas+ZetaQ(2))/(Chi(1)-Psi(1,1/3)) 2178365427320365 m001 (BesselI(1,1)-Paris)/(Pi-1) 2178365434889516 a007 Real Root Of -519*x^4-669*x^3+575*x^2-901*x+80 2178365438611530 r005 Re(z^2+c),c=-15/82+24/61*I,n=8 2178365446477404 b008 -2/13+Erfi[Pi^(-1)] 2178365448278835 m001 (Shi(1)-exp(1/Pi))/(OrthogonalArrays+ZetaQ(2)) 2178365451306606 k001 Champernowne real with 1476*n+702 2178365451954721 m001 1/exp(LandauRamanujan)/Cahen^2*BesselJ(1,1)^2 2178365453322333 r005 Im(z^2+c),c=-7/8+49/237*I,n=52 2178365455918295 m002 -4*E^Pi+Pi-Pi^3-Pi^4 2178365457599123 l006 ln(113/998) 2178365462055335 l006 ln(6537/8128) 2178365470937265 m001 (2^(1/2)-LambertW(1))/(Conway+Sierpinski) 2178365476659663 r009 Re(z^3+c),c=-5/14+13/25*I,n=56 2178365485931354 r005 Re(z^2+c),c=-13/94+24/47*I,n=35 2178365488531034 a007 Real Root Of -333*x^4-296*x^3+742*x^2-682*x-568 2178365489904505 r005 Re(z^2+c),c=19/70+7/39*I,n=29 2178365493936829 m001 Tribonacci*(Gompertz-TravellingSalesman) 2178365499266716 p003 LerchPhi(1/10,5,125/146) 2178365511117212 k007 concat of cont frac of 2178365513453791 h001 (-8*exp(5)-8)/(-5*exp(7)-4) 2178365514668838 r005 Re(z^2+c),c=-101/122+11/52*I,n=20 2178365517102404 a007 Real Root Of 385*x^4+756*x^3-451*x^2-418*x+375 2178365537687077 a001 14930352/199*843^(1/2) 2178365543169243 r008 a(0)=0,K{-n^6,-1+74*n^3+72*n^2-99*n} 2178365551326609 k001 Champernowne real with 1477*n+701 2178365555914536 m001 (2*Pi/GAMMA(5/6)+MasserGramain)/(1+Si(Pi)) 2178365560069931 p003 LerchPhi(1/6,5,167/195) 2178365563772992 k002 Champernowne real with 11/2*n^2+319/2*n-163 2178365565788563 m001 BesselJ(1,1)^2/BesselJ(0,1)^2*ln(GAMMA(11/24)) 2178365578346594 m001 (ln(5)-ErdosBorwein)/(Gompertz+LaplaceLimit) 2178365580319308 r005 Re(z^2+c),c=4/17+11/29*I,n=8 2178365587529283 m001 (MertensB1-gamma)/(MertensB2+PrimesInBinary) 2178365599533309 m001 (BesselK(1,1)-gamma)/(GAMMA(23/24)+OneNinth) 2178365607458947 a007 Real Root Of -437*x^4-449*x^3+710*x^2-907*x-146 2178365624579422 r005 Re(z^2+c),c=17/60+11/58*I,n=50 2178365630415659 m005 (1/2*exp(1)-7/9)/(1/6*3^(1/2)-5/9) 2178365633533184 p001 sum(1/(429*n+167)/n/(8^n),n=1..infinity) 2178365644663777 m005 (1/2*exp(1)+1/5)/(4/11*exp(1)-3/11) 2178365645818962 r005 Im(z^2+c),c=-19/50+19/53*I,n=33 2178365647810140 a001 844/13*63245986^(17/24) 2178365648433307 a007 Real Root Of -268*x^4+581*x^3-687*x^2+841*x-18 2178365649131921 m001 (Pi^(1/2)-ZetaQ(3))/(exp(1/Pi)-BesselI(1,1)) 2178365649153759 m001 GAMMA(2/3)^sin(1/5*Pi)*MasserGramainDelta 2178365651346612 k001 Champernowne real with 1478*n+700 2178365651644684 a001 281/15456*6557470319842^(17/24) 2178365675436092 m001 (exp(Pi)+Ei(1))/(GAMMA(23/24)+Champernowne) 2178365677864331 a007 Real Root Of 612*x^4+913*x^3-395*x^2+694*x-957 2178365686392704 a001 29/514229*12586269025^(15/23) 2178365687373025 m001 GAMMA(17/24)*BesselK(1,1)^2*exp(cosh(1)) 2178365698674492 r005 Im(z^2+c),c=-73/126+1/25*I,n=36 2178365700870089 a007 Real Root Of -324*x^4-756*x^3-674*x^2-781*x+978 2178365702709937 m001 GAMMA(7/12)*StronglyCareFree-OrthogonalArrays 2178365711094749 m001 sin(1)^Psi(1,1/3)/(sin(1)^BesselI(0,1)) 2178365712434297 r005 Im(z^2+c),c=-73/82+7/37*I,n=45 2178365712902045 h001 (2/5*exp(2)+7/10)/(1/9*exp(2)+6/7) 2178365718089160 m001 (ln(gamma)+Conway)/(5^(1/2)+GAMMA(3/4)) 2178365723048373 m001 ReciprocalLucas^(MinimumGamma/BesselI(0,1)) 2178365723456960 m001 ln(log(1+sqrt(2)))/Zeta(9)^2*sqrt(3) 2178365731558785 m005 (1/3*Pi+2/11)/(8/9*Catalan-1/4) 2178365732796700 m001 3^(1/3)-FibonacciFactorial+ReciprocalLucas 2178365733175552 p001 sum((-1)^n/(555*n+457)/(100^n),n=0..infinity) 2178365740344171 l006 ln(4421/5497) 2178365751366615 k001 Champernowne real with 1479*n+699 2178365752443111 r002 6th iterates of z^2 + 2178365753435706 m005 (1/3*Pi+1/2)/(2/3*3^(1/2)-4/9) 2178365755854886 a001 267914296/199*322^(1/12) 2178365756638880 a001 9227465/199*843^(4/7) 2178365772503065 m001 cos(1/5*Pi)^(Psi(1,1/3)/OrthogonalArrays) 2178365774631578 m002 1+Pi^3-(E^Pi*Cosh[Pi])/ProductLog[Pi] 2178365782810331 r005 Im(z^2+c),c=-37/30+7/60*I,n=6 2178365782969564 m005 (1/3*2^(1/2)+1/6)/(9/10*5^(1/2)+11/12) 2178365786142131 m003 -3+(8*Tanh[1/2+Sqrt[5]/2])/9 2178365811529016 m001 exp(GAMMA(7/12))^2*BesselK(1,1)/sin(Pi/5) 2178365818692919 m004 50*Pi*Csc[Sqrt[5]*Pi]^2-Sinh[Sqrt[5]*Pi] 2178365833722043 a007 Real Root Of 235*x^4+436*x^3-654*x^2-727*x+735 2178365834169898 m001 OneNinth/LaplaceLimit*ln((3^(1/3)))^2 2178365835896689 a001 48/281*24476^(29/31) 2178365846084518 a005 (1/cos(31/181*Pi))^383 2178365847313817 a007 Real Root Of -253*x^4-901*x^3-624*x^2+983*x+235 2178365851386618 k001 Champernowne real with 1480*n+698 2178365864901761 a007 Real Root Of 528*x^4+846*x^3-676*x^2+210*x+521 2178365866549360 m001 (Cahen+GaussKuzminWirsing)/(Ei(1)+Zeta(1/2)) 2178365881891796 a007 Real Root Of 329*x^4+687*x^3-257*x^2-189*x+501 2178365882162926 k002 Champernowne real with 115*n^2-288*n+194 2178365886619235 r009 Re(z^3+c),c=-13/40+25/58*I,n=11 2178365900627255 a007 Real Root Of 10*x^4-938*x^3-647*x^2-719*x+197 2178365901368098 a007 Real Root Of -41*x^4-897*x^3-105*x^2-464*x-286 2178365905182029 r005 Re(z^2+c),c=-33/122+1/28*I,n=4 2178365917882235 a001 21/4*322^(20/31) 2178365919421984 m001 2^(1/3)*CopelandErdos^FransenRobinson 2178365921552342 m001 (GAMMA(7/12)+KhinchinLevy)/(Pi-Ei(1)) 2178365925858049 m002 -12-Pi^2+Sech[Pi]*Tanh[Pi] 2178365931627204 a007 Real Root Of 484*x^4+993*x^3-108*x^2+339*x+617 2178365937859608 q001 1893/869 2178365938925708 s002 sum(A267833[n]/(16^n),n=1..infinity) 2178365945258907 m001 GAMMA(1/3)^2*ln(FeigenbaumKappa)/Zeta(9) 2178365949510796 r002 44th iterates of z^2 + 2178365950849120 r005 Re(z^2+c),c=-3/19+24/35*I,n=18 2178365951406621 k001 Champernowne real with 1481*n+697 2178365956393684 a007 Real Root Of -571*x^4-805*x^3-448*x^2+963*x+224 2178365965337878 m001 Mills-Si(Pi)*sin(1/5*Pi) 2178365966960882 r002 53th iterates of z^2 + 2178365967481821 m001 FransenRobinson*(MertensB2-sin(1/12*Pi)) 2178365975590679 a001 5702887/199*843^(9/14) 2178365979553328 m006 (2/3*exp(Pi)-1/4)/(3*exp(Pi)+1/4) 2178365991100300 r002 16th iterates of z^2 + 2178366010813108 l006 ln(6726/8363) 2178366019190139 m005 (1/2*3^(1/2)-4/5)/(2/9*5^(1/2)-4/5) 2178366029758671 r005 Im(z^2+c),c=11/50+7/57*I,n=8 2178366032418098 a001 19/341*(1/2*5^(1/2)+1/2)^2*1364^(1/18) 2178366035720714 a001 8/843*123^(28/43) 2178366040295804 a007 Real Root Of -463*x^4-712*x^3+182*x^2-937*x+161 2178366047806924 r002 34th iterates of z^2 + 2178366051426624 k001 Champernowne real with 1482*n+696 2178366060609576 m001 1/exp(Niven)^2*LaplaceLimit^2*GAMMA(3/4)^2 2178366064127737 m002 -6/E^Pi+3*E^Pi*Pi 2178366072163778 a007 Real Root Of -18*x^4+284*x^3+685*x^2-14*x+60 2178366073018336 a007 Real Root Of -336*x^4-220*x^3+696*x^2-763*x+327 2178366074185037 m001 (Porter-Thue)/(Pi*2^(1/2)/GAMMA(3/4)-GaussAGM) 2178366080071552 r005 Im(z^2+c),c=-17/20+7/46*I,n=26 2178366084267904 m005 (1/2*2^(1/2)-6/11)/(3/5*exp(1)-8/9) 2178366088044159 m005 (1/3*5^(1/2)+1/9)/(5/12*5^(1/2)+3) 2178366088786784 m006 (2/5*exp(Pi)+1/3)/(3/4*Pi^2-3) 2178366089876401 a007 Real Root Of -381*x^4-366*x^3+719*x^2-617*x+40 2178366094856008 r005 Re(z^2+c),c=35/122+9/46*I,n=16 2178366110381388 r005 Im(z^2+c),c=-57/118+24/61*I,n=33 2178366120288677 m002 -(Cosh[Pi]/Log[Pi])+2*Pi^2*Sinh[Pi] 2178366128029409 a001 124/5*12586269025^(11/16) 2178366130529024 r002 4th iterates of z^2 + 2178366141914879 r009 Re(z^3+c),c=-39/106+7/13*I,n=32 2178366151446627 k001 Champernowne real with 1483*n+695 2178366152188013 a001 701408733/2207*123^(2/5) 2178366153734978 m001 (gamma(3)-Cahen)/(FeigenbaumMu-Kac) 2178366166383161 m001 (Sarnak+Totient)/(gamma(2)+Zeta(1,2)) 2178366168577389 p003 LerchPhi(1/8,6,298/231) 2178366171148912 m001 (-Kolakoski+Trott)/(ArtinRank2-Shi(1)) 2178366172289260 r005 Re(z^2+c),c=-3/26+31/56*I,n=47 2178366183137433 m001 (gamma(1)-Cahen)/(Champernowne-ZetaP(2)) 2178366194500308 a007 Real Root Of -550*x^4-746*x^3+936*x^2+276*x+833 2178366194542567 a001 3524578/199*843^(5/7) 2178366198282442 a001 1/141*75025^(25/49) 2178366205806128 r002 27th iterates of z^2 + 2178366213753467 a005 (1/cos(4/149*Pi))^1512 2178366216718632 a007 Real Root Of -399*x^4-713*x^3+385*x^2+239*x+308 2178366218546322 b008 43/2+Cos[5] 2178366224858158 r005 Re(z^2+c),c=-101/122+1/41*I,n=28 2178366225331001 q001 872/4003 2178366241464969 m001 (ln(2)-exp(1/Pi))/(MasserGramainDelta+Mills) 2178366251466630 k001 Champernowne real with 1484*n+694 2178366261392132 m001 HardHexagonsEntropy+RenyiParking^sin(1) 2178366261633908 a007 Real Root Of -44*x^4+758*x^3-872*x^2-862*x-829 2178366265120547 r002 7th iterates of z^2 + 2178366266286817 m008 (2*Pi^3+5/6)/(3*Pi^6+5/6) 2178366269676519 r005 Im(z^2+c),c=-17/52+21/61*I,n=35 2178366273326470 m001 1/GAMMA(17/24)/ln(GAMMA(1/3))^2*exp(1) 2178366279470399 a007 Real Root Of 165*x^4+156*x^3-718*x^2-478*x+263 2178366280500150 m001 (BesselK(0,1)-Ei(1))/(-PlouffeB+Weierstrass) 2178366288203453 m001 Bloch^2*ErdosBorwein^2*ln(cos(1))^2 2178366303510433 m004 -6-3100*Sqrt[5]*Pi-Cos[Sqrt[5]*Pi] 2178366306850661 a001 377/47*9349^(13/36) 2178366308510369 r009 Im(z^3+c),c=-35/78+3/53*I,n=44 2178366310799586 r009 Re(z^3+c),c=-3/25+52/61*I,n=50 2178366324881986 r005 Im(z^2+c),c=-11/9+1/99*I,n=3 2178366327833260 m001 (3^(1/2)-OneNinth)/(-Sierpinski+Tribonacci) 2178366336587737 m001 (Conway-FeigenbaumB)/(cos(1/5*Pi)+GAMMA(2/3)) 2178366339644516 l006 ln(1136/10033) 2178366340788506 m001 GAMMA(2/3)^Salem/(Paris^Salem) 2178366347560278 a007 Real Root Of -486*x^4-823*x^3+371*x^2-38*x+593 2178366351486633 k001 Champernowne real with 1485*n+693 2178366351686606 m001 (Pi^(1/2)-Salem)/(ln(2+3^(1/2))-BesselI(1,2)) 2178366354818973 a007 Real Root Of -936*x^4-446*x^3-388*x^2+790*x+188 2178366382725429 m005 (1/3*2^(1/2)-1/5)/(-18/35+2/7*5^(1/2)) 2178366384169408 r005 Re(z^2+c),c=31/94+10/43*I,n=36 2178366385439632 r009 Re(z^3+c),c=-23/74+9/22*I,n=10 2178366386466141 m005 (9/20+1/4*5^(1/2))/(3/10*gamma-7/11) 2178366391856197 m001 ln(2)^GAMMA(5/6)*Artin^GAMMA(5/6) 2178366392484174 a005 (1/cos(11/197*Pi))^497 2178366395752592 r005 Im(z^2+c),c=-1/82+8/33*I,n=12 2178366400969638 r002 30th iterates of z^2 + 2178366406232496 r009 Im(z^3+c),c=-5/56+13/58*I,n=8 2178366407198562 a001 843/75025*233^(31/57) 2178366409604976 r005 Im(z^2+c),c=-21/34+11/59*I,n=5 2178366413494302 a001 2178309/199*843^(11/14) 2178366418446954 m002 -E^(2*Pi)+Pi^5+Cosh[Pi]*Coth[Pi] 2178366434735459 a003 sin(Pi*1/38)/cos(Pi*38/101) 2178366435969294 s001 sum(exp(-4*Pi/5)^n*A146943[n],n=1..infinity) 2178366437074702 l006 ln(1023/9035) 2178366444209103 a007 Real Root Of 494*x^4+903*x^3-169*x^2+300*x-334 2178366444305823 m001 1/cosh(1)*exp(Robbin)*log(2+sqrt(3))^2 2178366451506636 k001 Champernowne real with 1486*n+692 2178366463850919 r005 Re(z^2+c),c=-29/110+2/35*I,n=7 2178366464721102 m005 (1/2*gamma-1/5)/(-1/80+3/16*5^(1/2)) 2178366480798974 a001 87403803/377*610^(17/24) 2178366480848091 r005 Im(z^2+c),c=-67/126+23/58*I,n=57 2178366486710524 s001 sum(1/10^(n-1)*A188039[n]/n!^2,n=1..infinity) 2178366486807172 s001 sum(1/10^(n-1)*A133459[n]/n!^2,n=1..infinity) 2178366488244221 a007 Real Root Of -798*x^4+658*x^3-418*x^2+783*x+199 2178366496323204 r005 Im(z^2+c),c=-1/54+12/49*I,n=17 2178366497572051 r005 Im(z^2+c),c=-7/30+1/33*I,n=13 2178366508393374 r002 16i'th iterates of 2*x/(1-x^2) of 2178366520940090 a007 Real Root Of -16*x^4-328*x^3+434*x^2-296*x-86 2178366529573682 l006 ln(2305/2866) 2178366534164035 a001 1836311903/5778*123^(2/5) 2178366536091670 m001 exp(GAMMA(1/3))^2/FransenRobinson^2*cos(Pi/5) 2178366541594826 r005 Im(z^2+c),c=-57/86+7/15*I,n=16 2178366551298314 m001 ZetaQ(4)^ReciprocalFibonacci/gamma(3) 2178366551526639 k001 Champernowne real with 1487*n+691 2178366554251363 r005 Re(z^2+c),c=1/64+38/63*I,n=42 2178366558701822 l006 ln(910/8037) 2178366559231949 r009 Re(z^3+c),c=-27/46+13/27*I,n=3 2178366560181018 r009 Re(z^3+c),c=-65/126+29/50*I,n=15 2178366563368599 r008 a(0)=0,K{-n^6,-62-6*n+39*n^2-18*n^3} 2178366566514162 a007 Real Root Of -207*x^4-580*x^3-198*x^2-153*x-728 2178366566778100 k002 Champernowne real with 6*n^2+158*n-162 2178366576375968 m001 (Zeta(3)-Zeta(1/2))/(MasserGramain+Stephens) 2178366578126136 r009 Im(z^3+c),c=-69/122+8/17*I,n=33 2178366580635349 m001 Porter^2*ln(FeigenbaumDelta)^2/GAMMA(1/24) 2178366583963445 a007 Real Root Of -507*x^4+934*x^3+559*x^2+693*x-186 2178366585110007 r005 Im(z^2+c),c=-51/74+10/43*I,n=42 2178366589893597 a001 686789568/2161*123^(2/5) 2178366598024430 a001 12586269025/39603*123^(2/5) 2178366599210703 a001 32951280099/103682*123^(2/5) 2178366599383778 a001 86267571272/271443*123^(2/5) 2178366599409029 a001 317811*123^(2/5) 2178366599412713 a001 591286729879/1860498*123^(2/5) 2178366599413251 a001 1548008755920/4870847*123^(2/5) 2178366599413329 a001 4052739537881/12752043*123^(2/5) 2178366599413341 a001 1515744265389/4769326*123^(2/5) 2178366599413348 a001 6557470319842/20633239*123^(2/5) 2178366599413378 a001 2504730781961/7881196*123^(2/5) 2178366599413583 a001 956722026041/3010349*123^(2/5) 2178366599414990 a001 365435296162/1149851*123^(2/5) 2178366599424635 a001 139583862445/439204*123^(2/5) 2178366599490744 a001 53316291173/167761*123^(2/5) 2178366599943860 a001 20365011074/64079*123^(2/5) 2178366601961300 h001 (2/7*exp(1)+1/6)/(6/11*exp(2)+3/10) 2178366603049562 a001 7778742049/24476*123^(2/5) 2178366622688620 m001 (ErdosBorwein+Totient)/(ln(Pi)+exp(-1/2*Pi)) 2178366624336361 a001 2971215073/9349*123^(2/5) 2178366632446518 a001 1346269/199*843^(6/7) 2178366632706834 m001 (gamma(1)-FibonacciFactorial)/(Mills-Rabbit) 2178366633972975 m001 (gamma-FeigenbaumB*PlouffeB)/FeigenbaumB 2178366640100913 m001 gamma(3)^Lehmer*LandauRamanujan^Lehmer 2178366651078096 m001 GlaisherKinkelin^DuboisRaymond+GAMMA(5/6) 2178366651546642 k001 Champernowne real with 1488*n+690 2178366654378681 m001 Paris*TreeGrowth2nd^Tribonacci 2178366659392053 r005 Re(z^2+c),c=-19/74+9/64*I,n=7 2178366661088654 m001 (GAMMA(3/4)+BesselI(1,2))/(Conway-Trott) 2178366671527002 s002 sum(A056456[n]/(n*exp(n)-1),n=1..infinity) 2178366680529241 m005 (1/2*Zeta(3)-2/5)/(2*Catalan-10/11) 2178366681403446 m005 (1/2*3^(1/2)+1)/(1/11*gamma-10/11) 2178366686144820 m001 Sierpinski-gamma*CareFree 2178366697082325 r005 Re(z^2+c),c=19/58+11/50*I,n=40 2178366699450541 m005 (1/2*Zeta(3)-7/8)/(3/7*3^(1/2)-2) 2178366700134841 b008 94*E^Pi+Pi 2178366714817916 l006 ln(797/7039) 2178366714817916 p004 log(7039/797) 2178366714902190 r005 Im(z^2+c),c=-15/32+8/21*I,n=49 2178366715799459 r009 Re(z^3+c),c=-11/40+41/61*I,n=22 2178366728536088 a007 Real Root Of -41*x^4-872*x^3+459*x^2-17*x+245 2178366737097636 r009 Im(z^3+c),c=-5/56+13/58*I,n=10 2178366741829925 r009 Im(z^3+c),c=-5/56+13/58*I,n=11 2178366741993168 r009 Im(z^3+c),c=-5/56+13/58*I,n=13 2178366742031727 r009 Im(z^3+c),c=-5/56+13/58*I,n=15 2178366742031892 r009 Im(z^3+c),c=-5/56+13/58*I,n=16 2178366742031959 r009 Im(z^3+c),c=-5/56+13/58*I,n=18 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=21 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=23 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=26 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=28 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=29 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=31 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=33 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=34 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=36 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=39 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=38 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=41 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=44 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=46 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=49 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=51 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=52 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=53 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=54 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=56 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=50 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=47 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=48 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=45 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=43 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=42 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=40 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=37 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=35 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=32 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=30 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=27 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=25 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=24 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=22 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=20 2178366742031963 r009 Im(z^3+c),c=-5/56+13/58*I,n=19 2178366742031987 r009 Im(z^3+c),c=-5/56+13/58*I,n=17 2178366742036970 r009 Im(z^3+c),c=-5/56+13/58*I,n=14 2178366742209720 r009 Im(z^3+c),c=-5/56+13/58*I,n=12 2178366751566645 k001 Champernowne real with 1489*n+689 2178366757248636 r005 Re(z^2+c),c=-1/5+17/40*I,n=9 2178366759215825 r005 Im(z^2+c),c=-119/106+15/56*I,n=63 2178366762901455 r009 Re(z^3+c),c=-1/32+27/62*I,n=19 2178366770238266 a001 1134903170/3571*123^(2/5) 2178366773405823 a001 521/4181*514229^(26/35) 2178366775961544 l006 ln(4677/4780) 2178366777720645 b008 CosIntegral[7/110] 2178366777720645 l003 Ci(7/110) 2178366777720645 l004 Ci(7/110) 2178366784865389 r005 Im(z^2+c),c=-37/78+18/47*I,n=35 2178366785461652 m005 (1/3*Catalan+3/4)/(7/8*3^(1/2)-2) 2178366797050497 r009 Im(z^3+c),c=-5/56+13/58*I,n=9 2178366807429869 m001 Zeta(1,2)/Champernowne^2/ln(sin(Pi/5))^2 2178366809711498 a001 29/8*2504730781961^(19/20) 2178366813544327 a001 47/24157817*39088169^(8/15) 2178366813544328 a001 47/1134903170*53316291173^(8/15) 2178366813575603 a001 505019158607/5*89^(13/19) 2178366813825623 a001 47/514229*28657^(8/15) 2178366821402416 a007 Real Root Of -322*x^4-522*x^3-18*x^2-674*x+472 2178366827650954 m001 (Cahen-FeigenbaumMu)/(Kolakoski-TwinPrimes) 2178366828604853 m001 (Si(Pi)+2*Pi/GAMMA(5/6))/(-Magata+ZetaQ(4)) 2178366832287254 b008 Csc[InverseErf[1/2]] 2178366841452193 a007 Real Root Of -339*x^4+935*x^3-456*x^2+826*x+212 2178366844006237 r005 Im(z^2+c),c=-7/19+9/26*I,n=13 2178366845975868 m001 (Psi(1,1/3)-cos(1/5*Pi))/(ln(2)+FeigenbaumMu) 2178366849638057 b008 Coth[Sech[1/8]/2] 2178366851397554 a001 832040/199*843^(13/14) 2178366851586648 k001 Champernowne real with 1490*n+688 2178366861949891 a007 Real Root Of 41*x^4+891*x^3-72*x^2-513*x+969 2178366867635510 r002 19th iterates of z^2 + 2178366868590023 m005 (1/2*5^(1/2)-2/11)/(8/11*Zeta(3)-4/9) 2178366873344929 r005 Re(z^2+c),c=-27/118+17/62*I,n=25 2178366885163526 k002 Champernowne real with 231/2*n^2-579/2*n+195 2178366894429783 a007 Real Root Of -664*x^4-843*x^3+898*x^2-692*x+469 2178366895534554 m001 (-GAMMA(1/4)+1/2)/(-BesselI(1,1)+2) 2178366899126981 a007 Real Root Of 72*x^4-391*x^3-815*x^2+794*x-66 2178366912300133 a007 Real Root Of -353*x^4+741*x^3-170*x^2+942*x-204 2178366922516190 l006 ln(684/6041) 2178366933706596 r005 Re(z^2+c),c=11/46+28/53*I,n=28 2178366934270344 a007 Real Root Of -471*x^4-799*x^3+70*x^2-849*x+165 2178366942512930 m001 (FeigenbaumB+RenyiParking)/(Sarnak+ZetaQ(4)) 2178366947661586 r005 Im(z^2+c),c=-113/122+7/29*I,n=32 2178366950144030 m001 (Magata+OneNinth)/(Catalan+ArtinRank2) 2178366951606651 k001 Champernowne real with 1491*n+687 2178366958943377 m001 BesselI(1,1)*(exp(sqrt(2))-sin(Pi/12)) 2178366959635361 m001 (cos(1)-ln(2^(1/2)+1))/(Paris+Porter) 2178366967838546 m001 exp(1)^Weierstrass*Ei(1)^Weierstrass 2178366972421204 a007 Real Root Of -57*x^4+566*x^3-776*x^2-89*x-691 2178366972572284 p004 log(29207/3307) 2178366976453441 r005 Re(z^2+c),c=-15/118+23/43*I,n=37 2178366978005423 q001 723/3319 2178366989505648 a007 Real Root Of -569*x^4-154*x^3+514*x^2+917*x-2 2178366991163569 r005 Im(z^2+c),c=-75/82+6/29*I,n=41 2178366993706626 m001 (RenyiParking+TwinPrimes)/MasserGramain 2178366997797429 r005 Re(z^2+c),c=-1/9+29/30*I,n=16 2178367005763272 m006 (2/5/Pi-3)/(1/4*exp(2*Pi)-2) 2178367008025041 m005 (1/3*gamma+1/8)/(8/9*2^(1/2)+1/5) 2178367019349869 r005 Re(z^2+c),c=-3/20+16/33*I,n=23 2178367020717719 a007 Real Root Of -54*x^4-153*x^3-353*x^2-597*x+9 2178367020731262 l006 ln(7104/8833) 2178367030180839 h001 (1/11*exp(1)+1/9)/(1/5*exp(2)+1/6) 2178367030560501 r005 Im(z^2+c),c=-35/114+16/49*I,n=4 2178367038318569 m005 (1/2*Pi+1/5)/(6*Zeta(3)+11/12) 2178367043466471 r005 Re(z^2+c),c=17/60+11/58*I,n=49 2178367051626654 k001 Champernowne real with 1492*n+686 2178367054865457 m005 (1/2*Pi+9/10)/(3/5*2^(1/2)+2/7) 2178367076380593 r009 Im(z^3+c),c=-37/64+18/29*I,n=12 2178367077934062 a007 Real Root Of -520*x^4-644*x^3+632*x^2-500*x+964 2178367078614006 m001 (AlladiGrinstead+Paris)/(BesselK(0,1)-Chi(1)) 2178367082396562 m001 1/TwinPrimes^2/exp(GolombDickman)*sqrt(Pi) 2178367089988128 m006 (4/5*ln(Pi)+4)/(2/5*Pi+1) 2178367090688724 a001 1/829464*55^(13/18) 2178367102618256 m005 (1/2*Pi+2/11)/(41/126+3/14*5^(1/2)) 2178367106804651 m001 (GAMMA(2/3)-Khinchin)/(Paris-Rabbit) 2178367118115968 r005 Im(z^2+c),c=-79/64+4/37*I,n=52 2178367124509580 r002 4th iterates of z^2 + 2178367126437275 m005 (1/2*Zeta(3)+4/7)/(4/5*gamma-1) 2178367132331713 m001 Ei(1)/Riemann1stZero^2*exp(exp(1))^2 2178367134238305 r005 Im(z^2+c),c=-6/17+13/37*I,n=38 2178367135804004 a007 Real Root Of 425*x^4+908*x^3-51*x^2+275*x+657 2178367142007729 a007 Real Root Of -539*x^4+747*x^3+774*x^2+738*x-204 2178367143634032 a007 Real Root Of -535*x^4-978*x^3+122*x^2-541*x+180 2178367146954210 a007 Real Root Of 679*x^4+231*x^3+101*x^2-645*x+14 2178367151646657 k001 Champernowne real with 1493*n+685 2178367152563521 m001 1/exp(RenyiParking)/Backhouse*sin(Pi/12)^2 2178367153020142 b008 -1/2+ArcCot[1+Sqrt[6]] 2178367157447810 r009 Re(z^3+c),c=-17/66+16/59*I,n=2 2178367162081288 a007 Real Root Of 708*x^4-576*x^3+373*x^2-614*x-159 2178367165696201 r005 Re(z^2+c),c=-23/28+5/57*I,n=8 2178367172597513 a007 Real Root Of 456*x^4+611*x^3-244*x^2+955*x-714 2178367172917536 a007 Real Root Of -685*x^4+825*x^3+143*x^2+825*x+183 2178367187629168 a007 Real Root Of -702*x^4+979*x^3+130*x^2+856*x+192 2178367195229636 m001 (Artin-exp(gamma))^BesselI(0,2) 2178367196266009 r002 33th iterates of z^2 + 2178367203040371 r002 27th iterates of z^2 + 2178367203212563 a008 Real Root of x^2-x-47235 2178367204771508 a001 3/4181*75025^(5/7) 2178367205890223 p003 LerchPhi(1/5,4,552/209) 2178367207422926 m001 (Zeta(1,2)+Mills)/(1+ln(2)) 2178367212420715 l006 ln(571/5043) 2178367213853588 r005 Im(z^2+c),c=-5/6+27/160*I,n=35 2178367216024229 r005 Re(z^2+c),c=19/58+2/9*I,n=52 2178367221564183 a007 Real Root Of -26*x^4-605*x^3-802*x^2+870*x+263 2178367221628996 h001 (-exp(7)+5)/(-8*exp(2)+9) 2178367228006422 r009 Im(z^3+c),c=-43/78+9/19*I,n=36 2178367229637599 a001 3/514229*63245986^(5/7) 2178367229639247 a001 3/63245986*53316291173^(5/7) 2178367229639247 a001 1/233802911*1548008755920^(5/7) 2178367229639260 a001 3/5702887*1836311903^(5/7) 2178367229841821 a001 1/15456*2178309^(5/7) 2178367230644538 a007 Real Root Of -678*x^4-721*x^3-206*x^2+827*x+184 2178367234556160 r002 39th iterates of z^2 + 2178367238639440 m001 (Conway+GaussAGM)/(Niven-Sarnak) 2178367239728367 m001 ln(2)/ln(10)/(FeigenbaumB-ln(gamma)) 2178367241755180 m001 1/cos(Pi/5)^2*BesselJ(1,1)*exp(sin(Pi/5))^2 2178367244205801 r005 Im(z^2+c),c=-9/23+10/27*I,n=14 2178367244456663 r002 39th iterates of z^2 + 2178367247477767 r005 Im(z^2+c),c=-9/10+39/202*I,n=61 2178367248027876 m001 exp(-1/2*Pi)/(GaussAGM^sin(1/12*Pi)) 2178367251666660 k001 Champernowne real with 1494*n+684 2178367254022222 a001 54018521/55*2584^(11/16) 2178367254366335 r005 Im(z^2+c),c=-37/98+18/49*I,n=9 2178367256638363 l006 ln(4799/5967) 2178367270275751 a007 Real Root Of -734*x^4-497*x^3+384*x^2+903*x+175 2178367270432945 b008 18+ArcCosh[22] 2178367273725661 b008 SinIntegral[Pi]^5 2178367274408234 a001 1/141*13^(7/16) 2178367282600014 m001 GAMMA(5/6)+OrthogonalArrays*RenyiParking 2178367286524957 p001 sum(1/(353*n+15)/n/(125^n),n=1..infinity) 2178367288275711 a007 Real Root Of 52*x^4-312*x^3-522*x^2+785*x-209 2178367291652291 g005 GAMMA(5/8)*Pi*2^(1/2)/GAMMA(3/4)^2/GAMMA(5/11) 2178367293494760 r005 Im(z^2+c),c=-1/17+13/50*I,n=11 2178367294323494 m001 (Trott+ZetaQ(2))/(BesselK(1,1)-FeigenbaumMu) 2178367295870609 a003 cos(Pi*18/79)*cos(Pi*24/59) 2178367297520547 m001 Robbin*FransenRobinson^2/exp(GAMMA(1/24))^2 2178367298910693 a001 271443/55*5702887^(11/16) 2178367299183157 m005 (1/3*2^(1/2)+3/7)/(1/9*exp(1)+1/9) 2178367303949533 a001 521/6765*3^(53/56) 2178367306697724 m001 sin(1/5*Pi)/ArtinRank2*Sierpinski 2178367308359404 a007 Real Root Of -174*x^4-526*x^3-224*x^2+147*x-136 2178367316915768 r005 Im(z^2+c),c=-79/110+21/61*I,n=4 2178367320606697 r009 Re(z^3+c),c=-2/17+49/58*I,n=44 2178367323914348 r009 Re(z^3+c),c=-3/32+34/47*I,n=29 2178367326356895 m001 1/FeigenbaumD^2*Paris*exp(arctan(1/2)) 2178367329009086 m001 (exp(1/exp(1))+MertensB3)/(Paris+Salem) 2178367333507420 m001 exp(FeigenbaumKappa)*Paris^2*gamma 2178367343159331 m001 arctan(1/2)/ErdosBorwein/PisotVijayaraghavan 2178367343235063 a001 2207/89*2178309^(28/45) 2178367346093688 m004 (25*Sqrt[5]*Pi)/8-Sin[Sqrt[5]*Pi]/4 2178367351686663 k001 Champernowne real with 1495*n+683 2178367356025958 r005 Re(z^2+c),c=3/19+11/21*I,n=34 2178367361031092 a007 Real Root Of -120*x^4+335*x^3+290*x^2-532*x-978 2178367361150066 h001 (3/11*exp(2)+6/11)/(2/9*exp(1)+4/7) 2178367376468241 a007 Real Root Of -138*x^4+248*x^3+824*x^2-661*x+321 2178367386712599 m001 (1+MasserGramainDelta)/(-Riemann1stZero+Salem) 2178367395141137 r005 Re(z^2+c),c=15/122+11/36*I,n=14 2178367402964678 a001 199/24157817*5702887^(4/19) 2178367402964682 a001 199/165580141*53316291173^(4/19) 2178367405126882 l006 ln(1029/9088) 2178367413556329 m001 sin(1)^GAMMA(11/12)/(sin(1)^(2*Pi/GAMMA(5/6))) 2178367413556329 m001 sin(1)^GAMMA(11/12)/(sin(1)^GAMMA(1/6)) 2178367416487436 a007 Real Root Of -318*x^4-210*x^3+826*x^2-265*x+493 2178367421581641 r005 Im(z^2+c),c=-51/94+11/53*I,n=3 2178367422431110 r005 Im(z^2+c),c=-29/26+27/127*I,n=26 2178367428138154 a007 Real Root Of -172*x^4-91*x^3+935*x^2+737*x+101 2178367434915693 r009 Re(z^3+c),c=-25/114+2/17*I,n=6 2178367443405372 m005 (1/3*2^(1/2)+1/2)/(1/10*3^(1/2)+3/11) 2178367451706666 k001 Champernowne real with 1496*n+682 2178367457764594 a007 Real Root Of -603*x^4-837*x^3+496*x^2-967*x+466 2178367458502031 m001 (GAMMA(19/24)+Cahen)^Conway 2178367461892638 m001 ln(Bloch)^2*Conway^2/BesselJ(1,1) 2178367465275319 m001 (Pi+Ei(1,1))/(MinimumGamma+StolarskyHarborth) 2178367473491552 g007 Psi(2,2/7)+Psi(2,1/4)-Psi(2,3/11)-Psi(2,2/11) 2178367476496115 r005 Re(z^2+c),c=-4/21+25/62*I,n=12 2178367477659556 m001 1/GAMMA(7/24)^2/Champernowne/exp(Zeta(1,2)) 2178367486431865 l006 ln(7293/9068) 2178367490936691 r005 Im(z^2+c),c=2/11+4/27*I,n=17 2178367498935957 a003 sin(Pi*25/118)-sin(Pi*17/77) 2178367502213390 r009 Re(z^3+c),c=-13/86+23/32*I,n=5 2178367506032379 m005 (1/2*Zeta(3)-7/12)/(7/12*Zeta(3)+1/9) 2178367506686055 a001 165580141/199*322^(1/6) 2178367510319675 r009 Re(z^3+c),c=-5/36+41/54*I,n=18 2178367512300747 a007 Real Root Of -301*x^4-495*x^3+545*x^2-16*x-960 2178367526991777 m001 (GAMMA(2/3)+Ei(1,1))/(HeathBrownMoroz-Sarnak) 2178367533736451 a007 Real Root Of -217*x^4-137*x^3+532*x^2-643*x-455 2178367537458739 a007 Real Root Of -152*x^4-72*x^3+703*x^2+513*x+460 2178367538716237 a003 cos(Pi*47/113)-cos(Pi*53/109) 2178367539152899 a003 sin(Pi*4/109)/sin(Pi*17/96) 2178367551726669 k001 Champernowne real with 1497*n+681 2178367559775429 s002 sum(A109636[n]/((2^n+1)/n),n=1..infinity) 2178367565459020 g007 Psi(2,1/5)-Psi(2,5/11)-Psi(13/10)-Psi(2,4/9) 2178367567635256 m001 (Totient+ZetaQ(4))/(arctan(1/3)+Zeta(1,2)) 2178367569784101 k002 Champernowne real with 13/2*n^2+313/2*n-161 2178367572951924 m009 (6*Psi(1,1/3)+1/5)/(1/3*Pi^2-1/2) 2178367572997162 m001 (-BesselJ(1,1)+2/3)/(cos(1)+1/2) 2178367582360027 p003 LerchPhi(1/512,6,166/189) 2178367589081942 a003 sin(Pi*6/55)*sin(Pi*11/49) 2178367591615624 r002 35th iterates of z^2 + 2178367591827034 r005 Re(z^2+c),c=23/78+9/44*I,n=20 2178367592074575 a003 cos(Pi*1/40)-cos(Pi*11/51) 2178367597772575 m001 (3^(1/2)-BesselI(0,2))/(GAMMA(19/24)+Totient) 2178367606486377 m001 1/ln(Tribonacci)^2*FeigenbaumDelta/gamma 2178367607098586 r005 Im(z^2+c),c=-41/34+8/95*I,n=4 2178367609650873 m005 (1/4*Catalan-1/3)/(1/4*Catalan+1/4) 2178367619851916 r005 Re(z^2+c),c=-7/46+25/43*I,n=27 2178367620845767 r005 Im(z^2+c),c=-13/10+5/243*I,n=41 2178367625511200 a007 Real Root Of -380*x^4-325*x^3-958*x^2+294*x+107 2178367626008353 p004 log(25153/24611) 2178367631674814 r002 25th iterates of z^2 + 2178367636134213 m001 1/Paris/GaussAGM(1,1/sqrt(2))/ln(sqrt(3)) 2178367645378407 l006 ln(458/4045) 2178367646798993 m001 GaussAGM^LandauRamanujan*Riemann3rdZero 2178367648834681 r005 Re(z^2+c),c=-15/13+25/56*I,n=2 2178367649459707 a001 199/3524578*610^(4/19) 2178367650687757 m002 E^Pi/ProductLog[Pi]+ProductLog[Pi]^2/5 2178367651746672 k001 Champernowne real with 1498*n+680 2178367652973073 a007 Real Root Of 230*x^4+570*x^3+142*x^2-57*x-85 2178367679880651 r005 Re(z^2+c),c=4/21+2/25*I,n=15 2178367680090973 a007 Real Root Of -482*x^4-986*x^3+52*x^2-530*x-740 2178367680444995 a007 Real Root Of -280*x^4+747*x^3-314*x^2+995*x+240 2178367684097533 a007 Real Root Of 572*x^4+175*x^3+544*x^2-903*x-222 2178367710185800 r005 Re(z^2+c),c=-19/60+34/57*I,n=38 2178367712452752 a007 Real Root Of 210*x^4-969*x^3-537*x^2-918*x+235 2178367714941586 a007 Real Root Of 530*x^4+780*x^3-402*x^2-795*x+183 2178367736970629 a007 Real Root Of 424*x^4+823*x^3+408*x^2+977*x-848 2178367740407275 r005 Im(z^2+c),c=-69/74+7/31*I,n=18 2178367745078300 r009 Re(z^3+c),c=-10/31+19/44*I,n=6 2178367751766675 k001 Champernowne real with 1499*n+679 2178367759142324 s002 sum(A175252[n]/(n*10^n+1),n=1..infinity) 2178367761685346 m001 (sin(1/5*Pi)+GAMMA(3/4))/FeigenbaumB 2178367764857032 m006 (4/Pi-2/5)/(3/4*exp(2*Pi)-3/4) 2178367770265324 a001 433494437/1364*123^(2/5) 2178367774682816 r009 Re(z^3+c),c=-11/38+15/43*I,n=10 2178367778960847 m005 (1/2*Catalan-5)/(8/9*3^(1/2)+6/11) 2178367789216562 r005 Im(z^2+c),c=-14/17+4/25*I,n=50 2178367798017911 r005 Re(z^2+c),c=-41/42+1/15*I,n=4 2178367798826185 m001 cos(1)^KhinchinLevy*ZetaP(2) 2178367799958569 r002 59th iterates of z^2 + 2178367806277663 r005 Im(z^2+c),c=-17/18+38/155*I,n=58 2178367807239858 r005 Im(z^2+c),c=-27/94+38/47*I,n=3 2178367812500682 p003 LerchPhi(1/512,2,448/209) 2178367829361019 r002 53th iterates of z^2 + 2178367829466314 r009 Im(z^3+c),c=-5/56+13/58*I,n=7 2178367835713571 m001 (MadelungNaCl-Magata)/(gamma(1)+GaussAGM) 2178367851786678 k001 Champernowne real with 1500*n+678 2178367858236334 s002 sum(A004230[n]/(n*pi^n+1),n=1..infinity) 2178367865637258 a007 Real Root Of 517*x^4+782*x^3-512*x^2+889*x+808 2178367873025253 a003 cos(Pi*11/69)-cos(Pi*13/48) 2178367877032213 a001 4/3*1597^(38/55) 2178367882489508 a001 9/98209*89^(12/17) 2178367888164126 k002 Champernowne real with 116*n^2-291*n+196 2178367896653748 a007 Real Root Of -465*x^4+653*x^3-617*x^2+904*x+234 2178367900376194 a007 Real Root Of -313*x^4-292*x^3+920*x^2+314*x+348 2178367905787557 m001 Bloch+Sierpinski*TwinPrimes 2178367908718860 m005 (1/3*2^(1/2)-1/9)/(5/8*3^(1/2)+4/7) 2178367908803669 r005 Im(z^2+c),c=-133/122+13/57*I,n=53 2178367920524413 m001 log(gamma)*(GAMMA(1/3)+GAMMA(17/24)) 2178367926513922 m001 (Porter+PrimesInBinary)/(BesselJ(0,1)+Paris) 2178367928377179 r002 39th iterates of z^2 + 2178367928604671 l006 ln(2494/3101) 2178367931216044 m001 GAMMA(1/4)^2*exp(Backhouse)/sin(Pi/12) 2178367934782136 r009 Im(z^3+c),c=-17/122+12/55*I,n=4 2178367936950628 a001 124/5*987^(37/57) 2178367936958065 r005 Im(z^2+c),c=-61/82+1/10*I,n=22 2178367943679967 m001 KhinchinLevy-ln(5)*BesselK(1,1) 2178367944733163 a007 Real Root Of 685*x^4-862*x^3+326*x^2+119*x 2178367951806681 k001 Champernowne real with 1501*n+677 2178367952827983 a007 Real Root Of 51*x^4-220*x^3-564*x^2+601*x+563 2178367953247336 l006 ln(803/7092) 2178367954117684 m001 (Artin+ArtinRank2)/(Otter+ReciprocalLucas) 2178367964024587 a007 Real Root Of -919*x^4+650*x^3-145*x^2+938*x+220 2178367967535532 r005 Re(z^2+c),c=-11/32+19/33*I,n=27 2178367967995898 m004 -500/Pi-5*Pi+125*Pi*Coth[Sqrt[5]*Pi] 2178367976936170 a007 Real Root Of -528*x^4-739*x^3+918*x^2-399*x-975 2178367989347836 r005 Im(z^2+c),c=-9/16+35/97*I,n=33 2178368015154215 m001 PisotVijayaraghavan/Cahen^2/ln(Porter)^2 2178368015555265 r008 a(0)=0,K{-n^6,-26+36*n^3-40*n^2-15*n} 2178368024415531 r005 Re(z^2+c),c=5/18+3/8*I,n=6 2178368025519988 p004 log(17231/1951) 2178368038752046 m005 (1/2*exp(1)+2/5)/(1/9*3^(1/2)-1) 2178368041782617 r005 Im(z^2+c),c=-1/54+12/49*I,n=20 2178368046642916 a007 Real Root Of -377*x^4-790*x^3-358*x^2-509*x+913 2178368046646461 r009 Re(z^3+c),c=-25/102+9/41*I,n=11 2178368051826684 k001 Champernowne real with 1502*n+676 2178368054462465 r005 Im(z^2+c),c=-17/26+30/79*I,n=34 2178368060852212 r008 a(0)=0,K{-n^6,-44+18*n-58*n^2+39*n^3} 2178368062673506 a007 Real Root Of 41*x^4+858*x^3-794*x^2-609*x+362 2178368063363527 a007 Real Root Of 385*x^4+935*x^3+381*x^2+545*x+375 2178368063379594 r005 Im(z^2+c),c=-103/106+12/53*I,n=53 2178368075294857 r002 39th iterates of z^2 + 2178368077508882 m001 cos(1)^2/Khintchine^2*exp(sin(1))^2 2178368088537055 a008 Real Root of x^4-x^3+14*x^2-138*x+222 2178368098823843 a001 4181/322*1364^(22/31) 2178368111989171 a001 76/28657*10946^(12/53) 2178368112308522 m001 FeigenbaumMu/(KhinchinLevy+ZetaP(2)) 2178368121442125 q001 1148/527 2178368122551828 m001 1/GAMMA(3/4)^2*Trott*ln(sqrt(3))^2 2178368127585173 b008 1+6*Zeta[1/32] 2178368142163441 m001 (Shi(1)-ln(3))/(sin(1/12*Pi)+GAMMA(13/24)) 2178368143646474 a001 89/271443*18^(19/29) 2178368151846687 k001 Champernowne real with 1503*n+675 2178368152773823 m001 exp(GAMMA(17/24))/MadelungNaCl/GAMMA(7/24)^2 2178368154930909 m005 (1/2*3^(1/2)+1/3)/(2/11*exp(1)-6) 2178368162395553 r005 Im(z^2+c),c=1/30+7/31*I,n=3 2178368162872220 r005 Im(z^2+c),c=-1/54+12/49*I,n=21 2178368163014324 a007 Real Root Of -308*x^4-943*x^3-940*x^2-635*x+265 2178368166004957 a007 Real Root Of 203*x^4+6*x^3-709*x^2+727*x+439 2178368167156495 r005 Im(z^2+c),c=-25/18+2/195*I,n=31 2178368174932355 r005 Im(z^2+c),c=-1/54+12/49*I,n=24 2178368176012767 r005 Im(z^2+c),c=-1/54+12/49*I,n=23 2178368179931185 r005 Im(z^2+c),c=-1/54+12/49*I,n=27 2178368180514972 r005 Im(z^2+c),c=-1/54+12/49*I,n=30 2178368180536666 r005 Im(z^2+c),c=-1/54+12/49*I,n=31 2178368180549415 r005 Im(z^2+c),c=-1/54+12/49*I,n=34 2178368180551613 r005 Im(z^2+c),c=-1/54+12/49*I,n=37 2178368180551788 r005 Im(z^2+c),c=-1/54+12/49*I,n=38 2178368180551804 r005 Im(z^2+c),c=-1/54+12/49*I,n=41 2178368180551806 r005 Im(z^2+c),c=-1/54+12/49*I,n=40 2178368180551811 r005 Im(z^2+c),c=-1/54+12/49*I,n=44 2178368180551812 r005 Im(z^2+c),c=-1/54+12/49*I,n=47 2178368180551812 r005 Im(z^2+c),c=-1/54+12/49*I,n=48 2178368180551812 r005 Im(z^2+c),c=-1/54+12/49*I,n=51 2178368180551812 r005 Im(z^2+c),c=-1/54+12/49*I,n=54 2178368180551812 r005 Im(z^2+c),c=-1/54+12/49*I,n=55 2178368180551812 r005 Im(z^2+c),c=-1/54+12/49*I,n=58 2178368180551812 r005 Im(z^2+c),c=-1/54+12/49*I,n=57 2178368180551812 r005 Im(z^2+c),c=-1/54+12/49*I,n=61 2178368180551812 r005 Im(z^2+c),c=-1/54+12/49*I,n=64 2178368180551812 r005 Im(z^2+c),c=-1/54+12/49*I,n=62 2178368180551812 r005 Im(z^2+c),c=-1/54+12/49*I,n=63 2178368180551812 r005 Im(z^2+c),c=-1/54+12/49*I,n=60 2178368180551812 r005 Im(z^2+c),c=-1/54+12/49*I,n=59 2178368180551812 r005 Im(z^2+c),c=-1/54+12/49*I,n=56 2178368180551812 r005 Im(z^2+c),c=-1/54+12/49*I,n=50 2178368180551812 r005 Im(z^2+c),c=-1/54+12/49*I,n=53 2178368180551812 r005 Im(z^2+c),c=-1/54+12/49*I,n=52 2178368180551812 r005 Im(z^2+c),c=-1/54+12/49*I,n=49 2178368180551812 r005 Im(z^2+c),c=-1/54+12/49*I,n=45 2178368180551813 r005 Im(z^2+c),c=-1/54+12/49*I,n=46 2178368180551813 r005 Im(z^2+c),c=-1/54+12/49*I,n=43 2178368180551816 r005 Im(z^2+c),c=-1/54+12/49*I,n=42 2178368180551859 r005 Im(z^2+c),c=-1/54+12/49*I,n=39 2178368180552107 r005 Im(z^2+c),c=-1/54+12/49*I,n=33 2178368180552171 r005 Im(z^2+c),c=-1/54+12/49*I,n=36 2178368180552347 r005 Im(z^2+c),c=-1/54+12/49*I,n=35 2178368180563137 r005 Im(z^2+c),c=-1/54+12/49*I,n=32 2178368180587991 r005 Im(z^2+c),c=-1/54+12/49*I,n=28 2178368180670203 r005 Im(z^2+c),c=-1/54+12/49*I,n=29 2178368181126825 r005 Im(z^2+c),c=-1/54+12/49*I,n=26 2178368182879596 r005 Im(z^2+c),c=-1/54+12/49*I,n=25 2178368188422352 a001 1/10983760033*12586269025^(12/19) 2178368188422503 a001 1/34111385*1346269^(12/19) 2178368189092651 a007 Real Root Of -905*x^4-464*x^3+656*x^2+802*x-199 2178368189261020 a007 Real Root Of 540*x^4+939*x^3-961*x^2-931*x+79 2178368191600386 r002 12th iterates of z^2 + 2178368200569458 r005 Im(z^2+c),c=15/38+13/57*I,n=25 2178368200822402 m005 (1/2*2^(1/2)-7/8)/(2/9*exp(1)+1/6) 2178368204152367 r005 Re(z^2+c),c=19/60+20/61*I,n=12 2178368209574276 r002 8th iterates of z^2 + 2178368212751607 m005 (1/2*3^(1/2)+3/4)/(1/12*Catalan-9/11) 2178368213425880 r005 Im(z^2+c),c=-1/54+12/49*I,n=22 2178368215898782 m001 (2^(1/3)-Landau)/(MasserGramainDelta+Porter) 2178368227317116 a001 8/710647*2^(20/21) 2178368227898939 r005 Im(z^2+c),c=-25/122+17/55*I,n=11 2178368233691326 a007 Real Root Of 121*x^4-45*x^3+568*x^2-536*x+90 2178368244065286 a007 Real Root Of 290*x^4+460*x^3-123*x^2+339*x-453 2178368251866690 k001 Champernowne real with 1504*n+674 2178368263325095 r005 Re(z^2+c),c=-1+62/241*I,n=14 2178368266372388 m005 (1/2*2^(1/2)-9/11)/(2/9*3^(1/2)+1/8) 2178368267183992 a007 Real Root Of 873*x^4+193*x^3+600*x^2-861*x-216 2178368269753470 m002 Pi^2+(Pi^3*ProductLog[Pi]^2)/3 2178368276465960 a001 64079/34*233^(22/49) 2178368287145618 m001 cos(1/5*Pi)/(ZetaP(4)^GlaisherKinkelin) 2178368287247646 r005 Im(z^2+c),c=-1+49/212*I,n=59 2178368287752863 m008 (4*Pi^5+1/4)/(1/5*Pi^5-5) 2178368304079158 m006 (2/5/Pi-5)/(2/3*ln(Pi)-3) 2178368305758595 r004 Re(z^2+c),c=-3/34-5/9*I,z(0)=I,n=17 2178368313129018 m001 ln(Rabbit)/MinimumGamma/OneNinth 2178368317099407 r002 31th iterates of z^2 + 2178368324618361 m001 FeigenbaumB^arctan(1/2)+2^(1/3) 2178368325610687 r005 Im(z^2+c),c=-23/60+13/36*I,n=22 2178368326332199 r005 Re(z^2+c),c=2/13+19/49*I,n=54 2178368328851903 r005 Re(z^2+c),c=-29/114+37/60*I,n=42 2178368335823963 m004 (5*Sqrt[5])/Pi+(125*Tan[Sqrt[5]*Pi])/(2*Pi) 2178368340119505 a007 Real Root Of 192*x^4-995*x^3+694*x^2+968*x+560 2178368341677636 m001 1/Lehmer*ln(Khintchine)/BesselJ(0,1) 2178368348988733 l006 ln(7671/9538) 2178368351886693 k001 Champernowne real with 1505*n+673 2178368352122003 s002 sum(A142925[n]/(n^3*10^n-1),n=1..infinity) 2178368357643627 r005 Im(z^2+c),c=-7/66+1/39*I,n=3 2178368361954349 l006 ln(345/3047) 2178368365964564 r005 Im(z^2+c),c=-59/122+13/34*I,n=37 2178368367552192 r005 Re(z^2+c),c=-5/19+9/46*I,n=3 2178368380124303 r005 Re(z^2+c),c=-19/86+13/43*I,n=18 2178368385660064 m001 sin(1/5*Pi)^(5^(1/2))*TravellingSalesman 2178368388627424 r009 Im(z^3+c),c=-9/70+26/31*I,n=12 2178368397476015 a007 Real Root Of -354*x^4-134*x^3+915*x^2-629*x+874 2178368407395100 r002 15th iterates of z^2 + 2178368420323033 r005 Re(z^2+c),c=-73/106+13/33*I,n=7 2178368421909172 m001 (Pi-ln(2)/ln(10)-ln(5))/BesselI(1,1) 2178368423956554 r005 Im(z^2+c),c=-1/54+12/49*I,n=16 2178368425351891 r009 Re(z^3+c),c=-5/126+2/3*I,n=50 2178368426415496 a007 Real Root Of -229*x^4+844*x^3-603*x^2+617*x-114 2178368426753436 m005 (1/2*Pi+2)/(5/7*Catalan-9/11) 2178368427290836 m002 1-E^Pi+(3*Cosh[Pi])/Pi^4 2178368428130644 h005 exp(cos(Pi*6/23)+cos(Pi*23/49)) 2178368431837243 r002 52th iterates of z^2 + 2178368434675277 r005 Im(z^2+c),c=-1/54+12/49*I,n=19 2178368435104579 r009 Re(z^3+c),c=-17/66+15/58*I,n=11 2178368436694927 a007 Real Root Of -199*x^4-159*x^3+384*x^2-108*x+780 2178368439780708 a007 Real Root Of 437*x^4+412*x^3-854*x^2+252*x-980 2178368442869094 r005 Re(z^2+c),c=-19/50+35/61*I,n=32 2178368445953882 r005 Re(z^2+c),c=-4/31+26/49*I,n=45 2178368447479017 a001 521/1597*4181^(39/50) 2178368451906696 k001 Champernowne real with 1506*n+672 2178368461098644 m001 (exp(Pi)-sin(1))/(-Ei(1,1)+arctan(1/3)) 2178368462008886 r005 Im(z^2+c),c=-37/42+4/21*I,n=4 2178368499918395 m001 (DuboisRaymond*Khinchin-Paris)/DuboisRaymond 2178368502129292 a003 sin(Pi*26/85)/cos(Pi*43/114) 2178368505260264 r005 Im(z^2+c),c=-137/122+17/60*I,n=17 2178368505616656 m001 1/ln(GAMMA(7/12))^2*Backhouse^2/cos(1) 2178368515864541 r005 Re(z^2+c),c=2/13+19/49*I,n=57 2178368527572555 r005 Im(z^2+c),c=-5/58+3/11*I,n=6 2178368530994002 m001 1/Robbin^2*CopelandErdos^2*ln(GAMMA(1/6)) 2178368532657395 m001 (RenyiParking-Robbin)/(Zeta(1,2)+Landau) 2178368538401401 m001 (Pi-exp(1))/(sin(1/5*Pi)+FeigenbaumKappa) 2178368543183424 m005 (1/2*gamma+6/7)/(8/11*3^(1/2)+4) 2178368545361438 m001 BesselI(1,1)/(FeigenbaumD^cos(1/12*Pi)) 2178368549047184 r005 Im(z^2+c),c=-1/54+12/49*I,n=18 2178368551507145 l006 ln(5177/6437) 2178368551926699 k001 Champernowne real with 1507*n+671 2178368556516930 a007 Real Root Of -586*x^4-744*x^3+706*x^2-956*x+72 2178368557776694 m001 (GAMMA(17/24)+Paris)/(2^(1/3)-Ei(1)) 2178368559352106 a007 Real Root Of 455*x^4+879*x^3-166*x^2+469*x+650 2178368560261519 r005 Re(z^2+c),c=-19/90+1/3*I,n=15 2178368561383209 m001 cos(1/5*Pi)/gamma/Cahen 2178368561383209 m001 cos(Pi/5)/gamma/Cahen 2178368567535003 m005 (1/2*Zeta(3)-2/7)/(5/8*Catalan+7/8) 2178368572790102 k002 Champernowne real with 7*n^2+155*n-160 2178368573553100 s001 sum(exp(-3*Pi/5)^n*A147083[n],n=1..infinity) 2178368580465778 r005 Re(z^2+c),c=17/56+12/61*I,n=17 2178368590621646 m001 1/exp(GAMMA(5/24))/BesselJ(0,1)/exp(1)^2 2178368591906747 a007 Real Root Of 260*x^4+222*x^3-750*x^2-455*x-992 2178368604841715 m005 (1/3*Catalan-1/4)/(8/9*3^(1/2)+1) 2178368607679866 r005 Re(z^2+c),c=-17/58+31/50*I,n=53 2178368618729570 r002 54th iterates of z^2 + 2178368619088551 s001 sum(1/10^(n-1)*A201892[n]/n^n,n=1..infinity) 2178368620769119 b008 1/12+PolyLog[2,-1/16] 2178368622433946 r009 Re(z^3+c),c=-3/98+18/43*I,n=9 2178368623443703 m001 Kolakoski/(HardyLittlewoodC4^FransenRobinson) 2178368630825980 m005 (1/2*2^(1/2)-2/3)/(5/9*Pi+1/9) 2178368632083108 m001 cos(1)/(Conway-GAMMA(11/12)) 2178368634136472 a007 Real Root Of -358*x^4-656*x^3+409*x^2-126*x-935 2178368635742057 a007 Real Root Of 98*x^4+135*x^3-439*x^2-678*x-205 2178368647262210 a001 55/322*2^(20/57) 2178368651946702 k001 Champernowne real with 1508*n+670 2178368661726459 m001 (GAMMA(23/24)+Riemann3rdZero)/(Pi^(1/2)-gamma) 2178368678194657 r002 58th iterates of z^2 + 2178368699749948 m001 (Zeta(1/2)+exp(1/exp(1)))/(Cahen+ZetaP(4)) 2178368701132352 m001 1/(3^(1/3))^2*Si(Pi)*ln(GAMMA(13/24))^2 2178368702069155 a007 Real Root Of -266*x^4-802*x^3-880*x^2-725*x+296 2178368704103170 m001 Riemann2ndZero/(BesselI(0,1)-ln(2)/ln(10)) 2178368704516371 m001 Zeta(1/2)-sin(1)+Champernowne 2178368711424158 a007 Real Root Of 443*x^4+634*x^3-254*x^2+748*x-587 2178368715422537 a007 Real Root Of 182*x^4-961*x^3-538*x^2-515*x-97 2178368717129325 m008 (1/6*Pi^4-4)/(2*Pi-2/3) 2178368717910537 l006 ln(922/8143) 2178368722439832 a007 Real Root Of 221*x^4-11*x^3-631*x^2+700*x-571 2178368731087515 s002 sum(A122766[n]/(n^2*10^n-1),n=1..infinity) 2178368749155835 l006 ln(7860/9773) 2178368751733381 a001 1/13*196418^(15/23) 2178368751966705 k001 Champernowne real with 1509*n+669 2178368752678963 a007 Real Root Of -378*x^4-703*x^3+10*x^2-501*x+106 2178368761279763 r005 Im(z^2+c),c=-15/34+4/11*I,n=20 2178368770824693 r005 Re(z^2+c),c=9/50+3/53*I,n=3 2178368771380428 m001 1/ln(GAMMA(11/24))*Magata^2/cos(Pi/5) 2178368771819008 m001 BesselI(0,2)/(exp(1/exp(1))^Champernowne) 2178368777275437 a007 Real Root Of 6*x^4-45*x^3-41*x^2+138*x+224 2178368781096556 r005 Im(z^2+c),c=-23/56+17/30*I,n=51 2178368781841034 m001 1/Lehmer*exp(FransenRobinson)^2/GAMMA(5/12) 2178368785842231 a003 sin(Pi*14/85)/cos(Pi*41/96) 2178368790052319 m001 (Magata+Stephens)/(Tribonacci-Trott) 2178368795465774 m005 (1/2*Pi-1/9)/(2/3*2^(1/2)-3/11) 2178368797570983 a007 Real Root Of -574*x^4-807*x^3+679*x^2-943*x-693 2178368804739305 a007 Real Root Of 523*x^4+975*x^3-227*x^2+275*x-22 2178368820471625 a007 Real Root Of -569*x^4-839*x^3+331*x^2-999*x+393 2178368824125462 a007 Real Root Of -470*x^4-624*x^3+548*x^2-996*x-637 2178368824303726 a001 1292/161*9349^(19/31) 2178368825206980 m001 (-KhinchinLevy+Landau)/(Gompertz-ln(2)/ln(10)) 2178368837589858 r009 Re(z^3+c),c=-43/74+18/59*I,n=35 2178368841945018 a007 Real Root Of 500*x^4+748*x^3-162*x^2+819*x-974 2178368845247335 r005 Im(z^2+c),c=-53/60+2/11*I,n=29 2178368851986708 k001 Champernowne real with 1510*n+668 2178368854506815 m001 (-HardyLittlewoodC4+Salem)/(Backhouse-Shi(1)) 2178368857017779 m001 GAMMA(11/24)/exp(BesselJ(1,1))^2*exp(1) 2178368859424697 m001 1/Magata^2/exp(Backhouse)^2/arctan(1/2)^2 2178368860520436 m009 (8/5*Catalan+1/5*Pi^2+1/3)/(5*Psi(1,2/3)+2) 2178368867697210 m005 (1/2*2^(1/2)+4)/(11/12*5^(1/2)+1/9) 2178368872641954 m009 (5/6*Psi(1,1/3)+5)/(6*Psi(1,1/3)+1) 2178368881634820 r005 Im(z^2+c),c=-13/10+5/243*I,n=45 2178368888292744 a001 317811/322*3571^(3/31) 2178368891164726 k002 Champernowne real with 233/2*n^2-585/2*n+197 2178368899964242 r005 Im(z^2+c),c=-59/86+2/53*I,n=8 2178368901961430 a007 Real Root Of 96*x^4-309*x^3-722*x^2+761*x-272 2178368905137255 a001 514229/322*15127^(1/31) 2178368905377111 a007 Real Root Of -878*x^4+494*x^3-4*x^2+721*x-160 2178368905709059 m001 (exp(Pi)+Chi(1))/(ln(2^(1/2)+1)+Ei(1,1)) 2178368921744469 a001 75025/322*5778^(8/31) 2178368923346600 m001 Bloch/CareFree/HardyLittlewoodC4 2178368927439834 a001 123/1346269*86267571272^(5/23) 2178368927469691 a001 123/121393*1346269^(5/23) 2178368930029312 a001 505019158607/610*46368^(7/23) 2178368930090985 a001 17393796001/610*2971215073^(7/23) 2178368930423618 a001 4181/322*39603^(15/31) 2178368930743899 l006 ln(577/5096) 2178368941051992 a007 Real Root Of -432*x^4-608*x^3+621*x^2-168*x+130 2178368945685849 r005 Re(z^2+c),c=-27/22+11/123*I,n=8 2178368952006711 k001 Champernowne real with 1511*n+667 2178368955490057 a001 3/10946*1597^(35/59) 2178368965594195 m001 (RenyiParking+Trott2nd)/(BesselK(1,1)+Otter) 2178368967656383 m004 -7+(E^(Sqrt[5]*Pi)*Tanh[Sqrt[5]*Pi])/5 2178368974841795 a007 Real Root Of 452*x^4+735*x^3-673*x^2-91*x+415 2178368982682914 p003 LerchPhi(1/1024,3,364/219) 2178368983210072 r005 Re(z^2+c),c=-7/34+7/20*I,n=20 2178369001146195 m001 (2^(1/3)-LambertW(1))/(Ei(1,1)+Paris) 2178369002037778 m008 (4*Pi+5/6)/(2*Pi^3-1/2) 2178369002628417 r005 Re(z^2+c),c=-7/62+32/57*I,n=61 2178369005035905 a001 5702887/521*18^(5/21) 2178369006595252 h001 (2/3*exp(2)+7/8)/(1/3*exp(2)+1/5) 2178369008292258 m001 (Psi(2,1/3)+Catalan)/(-sin(1)+Lehmer) 2178369010618481 s001 sum(exp(-Pi/2)^(n-1)*A005621[n],n=1..infinity) 2178369015168572 m001 ZetaP(2)^Tribonacci*Zeta(1,2) 2178369016558257 h001 (5/12*exp(2)+1/2)/(2/5*exp(1)+5/9) 2178369018872407 r005 Im(z^2+c),c=-29/74+4/11*I,n=22 2178369019718910 m001 1/ln(BesselJ(0,1))/Lehmer*sin(Pi/5)^2 2178369020624287 m001 1/GAMMA(1/3)/Cahen*exp(GAMMA(1/4)) 2178369029335608 r009 Im(z^3+c),c=-43/102+35/58*I,n=11 2178369032942836 r004 Im(z^2+c),c=-5/46+5/18*I,z(0)=I,n=16 2178369033642688 a007 Real Root Of 479*x^4+867*x^3-199*x^2+715*x+678 2178369034745686 a001 75025/322*2207^(9/31) 2178369037447745 a007 Real Root Of -288*x^4-165*x^3+861*x^2-341*x-49 2178369037995655 r005 Re(z^2+c),c=3/110+16/25*I,n=10 2178369039492852 a001 1/4*32951280099^(17/20) 2178369045069020 h001 (7/9*exp(2)+1/4)/(3/4*exp(1)+5/7) 2178369051412069 r009 Re(z^3+c),c=-43/114+14/25*I,n=26 2178369052026714 k001 Champernowne real with 1512*n+666 2178369054220489 m001 (StolarskyHarborth+ZetaP(3))/(ln(gamma)-Kac) 2178369059399138 a007 Real Root Of 28*x^4+629*x^3+423*x^2+161*x-230 2178369070914663 a001 2207/5*121393^(3/22) 2178369075983238 r009 Re(z^3+c),c=-25/42+43/63*I,n=50 2178369095138473 p004 log(31627/3581) 2178369101874615 s002 sum(A075739[n]/(pi^n+1),n=1..infinity) 2178369107305186 r005 Im(z^2+c),c=-8/9+11/58*I,n=40 2178369113713944 m008 (2/3*Pi^5+1/4)/(3*Pi^3+3/4) 2178369129415960 a007 Real Root Of 262*x^4+250*x^3-538*x^2+266*x-183 2178369130530132 l006 ln(2683/3336) 2178369139611145 a001 6/7*46368^(27/37) 2178369144966927 m005 (1/2*Zeta(3)-5/12)/(3/5*gamma+1/2) 2178369152046717 k001 Champernowne real with 1513*n+665 2178369159575559 m005 (1/2*Pi+1/11)/(5/7*3^(1/2)-2) 2178369169784904 r002 4th iterates of z^2 + 2178369173102316 m001 1/ln(BesselJ(0,1))*Conway/sqrt(5) 2178369173305476 l006 ln(809/7145) 2178369177108035 r005 Re(z^2+c),c=17/60+11/58*I,n=42 2178369179533904 m002 -E^Pi/5-Pi^2+Pi*Sinh[Pi] 2178369188366884 m001 (2^(1/2)+LambertW(1))/(1-Psi(1,1/3)) 2178369189594806 r005 Re(z^2+c),c=-9/74+13/27*I,n=11 2178369207043897 r005 Im(z^2+c),c=-15/62+17/53*I,n=13 2178369211687370 m001 Zeta(1/2)*GaussAGM*KomornikLoreti 2178369215509442 a007 Real Root Of -264*x^4-602*x^3+400*x^2+680*x-695 2178369220100589 s002 sum(A072456[n]/(16^n),n=1..infinity) 2178369234890562 s002 sum(A075739[n]/(pi^n),n=1..infinity) 2178369241013646 g005 1/Pi/csc(3/10*Pi)*GAMMA(7/10)^2/GAMMA(7/11)^2 2178369248242713 a001 123*(1/2*5^(1/2)+1/2)^23*4^(11/15) 2178369252066720 k001 Champernowne real with 1514*n+664 2178369252562211 a005 (1/cos(2/215*Pi))^1823 2178369254338803 m001 (Niven+Porter)/(Catalan+cos(1)) 2178369255064359 a005 (1/cos(1/108*Pi))^1840 2178369257518630 a001 102334155/199*322^(1/4) 2178369262164683 m005 (1/2*gamma+1/12)/(1/3*Zeta(3)-4/7) 2178369268510901 m001 (-Kac+Riemann3rdZero)/(Psi(1,1/3)+ln(3)) 2178369270100604 r005 Re(z^2+c),c=1/6+9/25*I,n=16 2178369272931526 m001 (Totient+Trott)/(MertensB1-QuadraticClass) 2178369281066756 a007 Real Root Of 352*x^4+592*x^3-8*x^2-512*x+105 2178369284787814 m001 (-ln(3)+LandauRamanujan2nd)/(exp(Pi)+gamma) 2178369296902373 m001 exp(Pi)-ln(2^(1/2)+1)-PlouffeB 2178369298693553 r009 Im(z^3+c),c=-5/118+5/22*I,n=7 2178369302897260 r002 48th iterates of z^2 + 2178369303321089 r005 Im(z^2+c),c=-57/52+11/45*I,n=3 2178369307751204 l006 ln(1041/9194) 2178369310520268 r009 Im(z^3+c),c=-5/56+13/58*I,n=6 2178369314897268 m005 (5/6*exp(1)+1/6)/(2/5*Catalan+3/4) 2178369324765023 a007 Real Root Of 321*x^4+643*x^3+116*x^2+639*x+260 2178369335320126 m001 (3^(1/3)-KhinchinLevy)/GAMMA(19/24) 2178369344266795 m001 (MertensB3+Tribonacci)/Backhouse 2178369352086723 k001 Champernowne real with 1515*n+663 2178369353264559 m008 (2/3*Pi^4+5)/(1/3*Pi^6+3/5) 2178369357296484 m005 (1/2*Zeta(3)-1/8)/(11/12*2^(1/2)+8/9) 2178369359529012 r005 Im(z^2+c),c=-5/6+26/147*I,n=36 2178369367938620 s002 sum(A075739[n]/(pi^n-1),n=1..infinity) 2178369372689458 m001 FeigenbaumAlpha^Trott/arctan(1/2) 2178369402926818 m001 FransenRobinson^FeigenbaumB/Trott 2178369405955897 m001 2^(1/2)*FransenRobinson/MasserGramainDelta 2178369412697473 r005 Im(z^2+c),c=25/82+2/37*I,n=5 2178369416422412 m001 GolombDickman*FransenRobinson/ln(sqrt(5)) 2178369431124626 r005 Re(z^2+c),c=3/38+22/45*I,n=3 2178369446751645 b008 -3+Cos[1/Sqrt[E]] 2178369452106726 k001 Champernowne real with 1516*n+662 2178369456749097 a005 (1/cos(10/223*Pi))^772 2178369457076681 r005 Re(z^2+c),c=-73/114+19/46*I,n=54 2178369476148254 b008 -1/5+LogBarnesG[1/8] 2178369477585729 a007 Real Root Of -322*x^4-167*x^3+814*x^2-879*x-253 2178369479503478 a007 Real Root Of -179*x^4-594*x^3-327*x^2+380*x+270 2178369484375318 a007 Real Root Of -430*x^4-691*x^3+680*x^2+129*x-406 2178369492376308 m005 (1/3*gamma+1/5)/(2/3*Zeta(3)+1) 2178369496161867 m005 (1/3*exp(1)-1/4)/(5/7*gamma-1/9) 2178369498957819 m001 (Zeta(1,-1)+Otter)/(sin(1/5*Pi)+ln(2)) 2178369507094281 m001 (Ei(1,1)-gamma(2))/(PlouffeB+Stephens) 2178369511991572 a003 sin(Pi*1/92)-sin(Pi*3/37) 2178369518136168 s001 sum(exp(-Pi/3)^n*A246858[n],n=1..infinity) 2178369521308419 a007 Real Root Of -445*x^4-506*x^3+616*x^2-980*x-268 2178369522811368 r005 Re(z^2+c),c=-53/64+1/45*I,n=26 2178369523308656 m001 BesselI(0,1)^ln(1+sqrt(2))/BesselI(1,1) 2178369523308656 m001 BesselI(0,1)^ln(2^(1/2)+1)/BesselI(1,1) 2178369524172425 m001 (sin(1)+LambertW(1))/(-ln(2)+Totient) 2178369525963762 m002 -2*Coth[Pi]+Log[Pi]*ProductLog[Pi]+Tanh[Pi] 2178369528573467 m005 (1/2*Catalan-1/6)/(2/5*exp(1)+1/4) 2178369533963050 r009 Re(z^3+c),c=-17/78+44/47*I,n=13 2178369538093515 r005 Re(z^2+c),c=-3/98+31/43*I,n=54 2178369545661879 m006 (1/6*Pi^2+2)/(4/Pi+2/5) 2178369551990646 r002 3th iterates of z^2 + 2178369552126729 k001 Champernowne real with 1517*n+661 2178369557325072 r009 Re(z^3+c),c=-17/66+15/58*I,n=12 2178369565952100 m005 (1/2*Pi+1/6)/(2/7*Pi-1/10) 2178369574976373 a007 Real Root Of -432*x^4-940*x^3-147*x^2+31*x+776 2178369575796103 k002 Champernowne real with 15/2*n^2+307/2*n-159 2178369583445536 a007 Real Root Of -274*x^4-712*x^3-475*x^2-252*x+515 2178369585027032 a001 1/521*(1/2*5^(1/2)+1/2)^22*3^(23/24) 2178369587501258 m001 (Zeta(1,2)+HardHexagonsEntropy)/Riemann2ndZero 2178369592752501 r002 48th iterates of z^2 + 2178369607985211 m001 (Thue-ZetaP(4))/(Champernowne+CopelandErdos) 2178369615927201 a007 Real Root Of -44*x^4-956*x^3+42*x^2-274*x-236 2178369616091558 a003 cos(Pi*22/93)/cos(Pi*16/41) 2178369621589729 m001 (Lehmer-Trott2nd)/(cos(1/5*Pi)+ln(gamma)) 2178369628631329 r009 Im(z^3+c),c=-53/114+26/45*I,n=34 2178369639321814 m001 1/KhintchineHarmonic^2/exp(Bloch)^2*Niven 2178369652146732 k001 Champernowne real with 1518*n+660 2178369656276070 p004 log(35831/4057) 2178369657213530 m001 (Pi-ZetaP(2))/Champernowne 2178369658741829 m001 (1+Zeta(5))/(-StolarskyHarborth+ZetaP(3)) 2178369662423941 m001 (3^(1/2)*Chi(1)+Artin)/Chi(1) 2178369667304888 a007 Real Root Of -238*x^4+165*x^3+920*x^2-898*x+743 2178369670152425 l006 ln(5555/6907) 2178369671203279 r001 31i'th iterates of 2*x^2-1 of 2178369672984202 a007 Real Root Of 158*x^4+46*x^3-436*x^2+316*x-325 2178369678645089 r002 18th iterates of z^2 + 2178369683777973 m001 (RenyiParking+Weierstrass)/(1-Psi(2,1/3)) 2178369696711209 a008 Real Root of x^3-x^2-372*x+2708 2178369697559046 a001 161/10182505537*3^(7/24) 2178369702218470 m001 (gamma(1)-gamma)/(BesselI(0,2)+CareFree) 2178369708358496 r009 Re(z^3+c),c=-4/31+52/55*I,n=24 2178369711842559 m001 GAMMA(5/6)^2/Ei(1)*exp(sin(Pi/5))^2 2178369716100798 m001 (-GAMMA(2/3)+1)/(-GAMMA(1/4)+2) 2178369722725300 a007 Real Root Of -512*x^4+782*x^3+505*x^2+949*x+192 2178369723024284 m005 (-25/44+1/4*5^(1/2))/(-37/72+1/24*5^(1/2)) 2178369728036628 m001 Pi^FeigenbaumB-PrimesInBinary 2178369728757204 m001 (2^(1/3))^2*ln(Sierpinski)*Zeta(3)^2 2178369733070807 r002 30th iterates of z^2 + 2178369735180291 r009 Im(z^3+c),c=-11/34+32/45*I,n=5 2178369752166735 k001 Champernowne real with 1519*n+659 2178369752524517 a007 Real Root Of -408*x^4-404*x^3+987*x^2-457*x-668 2178369754890794 m001 Salem/ln(CareFree)^2/TreeGrowth2nd 2178369758309723 r005 Im(z^2+c),c=-5/11+17/45*I,n=61 2178369766512996 r009 Im(z^3+c),c=-16/29+17/45*I,n=25 2178369776572589 l006 ln(232/2049) 2178369780327959 a001 29/144*5^(2/41) 2178369785990397 a007 Real Root Of -257*x^4+997*x^3-458*x^2+369*x+113 2178369818557859 m001 ln(log(1+sqrt(2)))/GAMMA(11/24)/sqrt(3)^2 2178369818787867 a005 (1/cos(1/16*Pi))^1939 2178369826645709 m001 1/Zeta(9)^2*GAMMA(5/6)^2*exp(cos(1)) 2178369829300458 r005 Im(z^2+c),c=11/62+8/53*I,n=20 2178369833697951 m005 (1/2*Catalan+3)/(7/9*Catalan+7/8) 2178369844675247 a007 Real Root Of -193*x^4+832*x^3-631*x^2+963*x-188 2178369850462832 a003 cos(Pi*3/14)-sin(Pi*30/61) 2178369852186738 k001 Champernowne real with 1520*n+658 2178369856733640 m005 (1/3*2^(1/2)-1/6)/(5/8*exp(1)-3/10) 2178369873752663 m001 exp(FransenRobinson)^2*Artin^2*LambertW(1) 2178369890523786 a007 Real Root Of 218*x^4+141*x^3-709*x^2-303*x-747 2178369893497031 a005 (1/sin(27/58*Pi))^1699 2178369894165326 k002 Champernowne real with 117*n^2-294*n+198 2178369902124421 a007 Real Root Of -140*x^4-20*x^3+640*x^2-94*x-296 2178369905214693 r005 Im(z^2+c),c=-13/14+41/196*I,n=51 2178369905995337 m001 (HardyLittlewoodC5+Trott)/(gamma+GAMMA(2/3)) 2178369910958824 a007 Real Root Of -187*x^4+583*x^3-890*x^2+814*x+226 2178369914119661 a007 Real Root Of 544*x^4+669*x^3-875*x^2+180*x-790 2178369923923386 m001 Ei(1)+Artin^GlaisherKinkelin 2178369926836692 m005 (13/12+1/4*5^(1/2))/(5/11*2^(1/2)+1/9) 2178369930056746 a001 1322157322203/1597*46368^(7/23) 2178369930118419 a001 45537549124/1597*2971215073^(7/23) 2178369939664856 r009 Re(z^3+c),c=-25/102+9/41*I,n=10 2178369944689333 p004 log(25639/2903) 2178369946443963 m001 Salem*(FeigenbaumAlpha-Riemann2ndZero) 2178369952206741 k001 Champernowne real with 1521*n+657 2178369959716930 r002 59th iterates of z^2 + 2178369965882000 a007 Real Root Of -201*x^4-778*x^3-827*x^2+178*x+796 2178369966736261 b008 1/5+1/(2*E^(10/3)) 2178369966736261 b008 2+5/E^(10/3) 2178369967435032 r002 27th iterates of z^2 + 2178369984537659 m001 (sin(1/12*Pi)+KomornikLoreti*Robbin)/Robbin 2178369999547849 r009 Re(z^3+c),c=-17/38+26/59*I,n=9 2178370008158640 m001 Zeta(7)^2/exp(GAMMA(5/24))^2/sin(1)^2 2178370023473895 m001 (BesselK(1,1)+Trott2nd)/(Si(Pi)+Zeta(5)) 2178370026435615 m001 1/Riemann3rdZero/Khintchine*exp(FeigenbaumD) 2178370027232141 r005 Im(z^2+c),c=1/16+28/43*I,n=16 2178370032225882 b008 -5+E^Coth[2] 2178370035793716 a007 Real Root Of 583*x^4+911*x^3-334*x^2+594*x-832 2178370036551343 m005 (1/2*gamma+5/12)/(4/9*Catalan-1/12) 2178370037814686 m001 1/PisotVijayaraghavan^2/ln(Lehmer)*sqrt(2)^2 2178370051265845 r005 Im(z^2+c),c=-10/23+22/59*I,n=48 2178370052226744 k001 Champernowne real with 1522*n+656 2178370059854843 r005 Re(z^2+c),c=15/74+7/52*I,n=3 2178370066632496 q001 425/1951 2178370074948071 a007 Real Root Of -416*x^4-828*x^3+282*x^2+111*x-288 2178370075958859 a001 3461452808002/4181*46368^(7/23) 2178370076020532 a001 119218851371/4181*2971215073^(7/23) 2178370076227033 m001 (-sin(1/5*Pi)+GAMMA(19/24))/(Si(Pi)+Chi(1)) 2178370079622216 r002 62th iterates of z^2 + 2178370079896744 a007 Real Root Of -215*x^4+651*x^3+540*x^2+337*x+55 2178370081987695 r005 Re(z^2+c),c=15/118+14/45*I,n=29 2178370085901176 r002 10th iterates of z^2 + 2178370092612696 s002 sum(A087582[n]/(10^n+1),n=1..infinity) 2178370092754511 m001 Pi/Psi(1,1/3)/ln(3)+Ei(1) 2178370095244965 b008 ArcCot[51]/9 2178370097245692 a001 9062201101803/10946*46368^(7/23) 2178370097307365 a001 312119004989/10946*2971215073^(7/23) 2178370097577037 m005 (1/2*Catalan-5/7)/(1/7*5^(1/2)+6/7) 2178370100351399 a001 23725150497407/28657*46368^(7/23) 2178370100413072 a001 817138163596/28657*2971215073^(7/23) 2178370100866189 a001 2139295485799/75025*2971215073^(7/23) 2178370100932298 a001 5600748293801/196418*2971215073^(7/23) 2178370100941943 a001 14662949395604/514229*2971215073^(7/23) 2178370100944220 a001 23725150497407/832040*2971215073^(7/23) 2178370100947904 a001 3020733700601/105937*2971215073^(7/23) 2178370100973155 a001 3461452808002/121393*2971215073^(7/23) 2178370101146230 a001 440719107401/15456*2971215073^(7/23) 2178370101588577 m001 FeigenbaumC/ln(3)/BesselJ(0,1) 2178370102270832 a001 14662949395604/17711*46368^(7/23) 2178370102332505 a001 505019158607/17711*2971215073^(7/23) 2178370108900198 a005 (1/cos(11/129*Pi))^1226 2178370109830306 a007 Real Root Of 553*x^4+708*x^3-618*x^2+769*x-526 2178370110401679 a001 5600748293801/6765*46368^(7/23) 2178370110463352 a001 64300051206/2255*2971215073^(7/23) 2178370114574593 m001 (FransenRobinson-exp(1))/(-ThueMorse+ZetaQ(4)) 2178370115736560 r002 5th iterates of z^2 + 2178370123678246 m005 (1/2*2^(1/2)+3)/(6/7*Catalan+11/12) 2178370125100538 r005 Re(z^2+c),c=11/58+5/64*I,n=10 2178370127278568 a007 Real Root Of 31*x^4+653*x^3-455*x^2+638*x-652 2178370144236072 r005 Im(z^2+c),c=-8/23+7/20*I,n=30 2178370145716973 m002 -(E^Pi*Pi^2)+Sinh[Pi]-Tanh[Pi] 2178370152246747 k001 Champernowne real with 1523*n+655 2178370166131334 a001 2139295485799/2584*46368^(7/23) 2178370166193007 a001 73681302247/2584*2971215073^(7/23) 2178370169309033 r005 Im(z^2+c),c=-15/14+45/184*I,n=26 2178370174263336 l006 ln(2872/3571) 2178370174969927 a007 Real Root Of -528*x^4-802*x^3+339*x^2-810*x+226 2178370178783742 m006 (1/3*exp(Pi)+2)/(5/6*exp(2*Pi)-1/3) 2178370193700167 r009 Im(z^3+c),c=-5/118+5/22*I,n=9 2178370208955802 h001 (7/9*exp(2)+1/3)/(8/9*exp(1)+3/8) 2178370211672460 a007 Real Root Of 346*x^4+666*x^3-303*x^2-23*x+481 2178370214890631 a007 Real Root Of -554*x^4-488*x^3+996*x^2-892*x+761 2178370217091835 r009 Im(z^3+c),c=-5/118+5/22*I,n=11 2178370217463188 r009 Im(z^3+c),c=-5/118+5/22*I,n=13 2178370217464420 r009 Im(z^3+c),c=-5/118+5/22*I,n=14 2178370217464707 r009 Im(z^3+c),c=-5/118+5/22*I,n=16 2178370217464733 r009 Im(z^3+c),c=-5/118+5/22*I,n=18 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=20 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=22 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=23 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=25 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=27 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=29 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=31 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=34 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=36 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=38 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=40 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=43 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=45 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=47 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=49 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=50 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=52 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=48 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=46 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=44 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=42 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=41 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=39 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=37 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=35 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=32 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=33 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=30 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=28 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=26 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=24 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=21 2178370217464734 r009 Im(z^3+c),c=-5/118+5/22*I,n=19 2178370217464739 r009 Im(z^3+c),c=-5/118+5/22*I,n=17 2178370217464854 r009 Im(z^3+c),c=-5/118+5/22*I,n=15 2178370217499275 r009 Im(z^3+c),c=-5/118+5/22*I,n=12 2178370220658579 r009 Im(z^3+c),c=-5/118+5/22*I,n=10 2178370224308508 a007 Real Root Of 461*x^4+923*x^3-683*x^2-972*x+284 2178370233281500 m001 1/Salem/exp(Kolakoski)*LambertW(1) 2178370235236851 a007 Real Root Of 557*x^4+973*x^3-901*x^2-768*x+118 2178370237703351 a003 sin(Pi*26/113)/cos(Pi*45/112) 2178370242707101 l006 ln(1047/9247) 2178370242927457 r005 Im(z^2+c),c=1/10+10/51*I,n=5 2178370245752104 m001 (GAMMA(7/12)+OrthogonalArrays)^Sarnak 2178370248366355 a001 3/377*2584^(5/7) 2178370252266750 k001 Champernowne real with 1524*n+654 2178370265824084 m005 (1/2*5^(1/2)+10/11)/(1/2*exp(1)-3/7) 2178370270735512 a007 Real Root Of 290*x^4+336*x^3+895*x^2-341*x+7 2178370273371223 r005 Im(z^2+c),c=-11/90+39/59*I,n=45 2178370282970726 a001 13/521*5778^(43/55) 2178370289357075 a007 Real Root Of 177*x^4+714*x^3+978*x^2+521*x-111 2178370290022425 a003 sin(Pi*18/79)/cos(Pi*31/77) 2178370300879086 p001 sum((-1)^n/(346*n+207)/n/(8^n),n=1..infinity) 2178370304654316 r002 41th iterates of z^2 + 2178370305790292 m005 (1/2*gamma-1/12)/(2/11*exp(1)-2/5) 2178370313751715 r005 Im(z^2+c),c=-21/82+19/58*I,n=8 2178370316145408 a003 cos(Pi*40/93)/sin(Pi*53/107) 2178370319123855 a007 Real Root Of 371*x^4+427*x^3-713*x^2+369*x+247 2178370320007237 l006 ln(5903/6033) 2178370332418946 a007 Real Root Of 896*x^4+19*x^3+72*x^2-637*x-144 2178370336206299 r005 Im(z^2+c),c=-33/86+13/33*I,n=12 2178370336879029 r009 Im(z^3+c),c=-5/44+55/63*I,n=24 2178370338983527 m001 ln(Riemann2ndZero)^2*Si(Pi)^2/Zeta(1/2) 2178370341946559 a007 Real Root Of -298*x^4+309*x^3-20*x^2+663*x-146 2178370345893877 r005 Im(z^2+c),c=-61/62+3/13*I,n=9 2178370347237507 h001 (7/12*exp(2)+4/9)/(6/11*exp(1)+7/10) 2178370352286753 k001 Champernowne real with 1525*n+653 2178370360034390 a007 Real Root Of 460*x^4+686*x^3-789*x^2-600*x-830 2178370361861000 r005 Im(z^2+c),c=-9/10+47/234*I,n=13 2178370369398792 m001 1/ln(GAMMA(1/4))^2*Riemann3rdZero*Zeta(3)^2 2178370370863335 m001 (-KhinchinLevy+Mills)/(cos(1)-gamma(2)) 2178370374757705 r009 Im(z^3+c),c=-5/118+5/22*I,n=8 2178370375015010 m001 (-FeigenbaumMu+ZetaP(2))/(Shi(1)+Artin) 2178370375398113 l006 ln(815/7198) 2178370382611945 r005 Im(z^2+c),c=-14/27+27/64*I,n=45 2178370388467656 a007 Real Root Of 622*x^4+795*x^3-849*x^2+591*x-472 2178370390438194 m005 (1/2+1/2*5^(1/2))/(8/77+2/7*5^(1/2)) 2178370393326586 r005 Re(z^2+c),c=31/98+8/37*I,n=43 2178370395069050 m001 (-Trott+ZetaQ(2))/(gamma+HardHexagonsEntropy) 2178370409013658 a007 Real Root Of -327*x^4-141*x^3+720*x^2-943*x+435 2178370414079728 p004 log(14519/11677) 2178370417843399 m005 (1/2*2^(1/2)-4/9)/(5/11*Pi-2/9) 2178370419084006 a003 cos(Pi*7/58)*cos(Pi*31/73) 2178370452306756 k001 Champernowne real with 1526*n+652 2178370462582621 a007 Real Root Of 545*x^4+816*x^3-338*x^2+753*x-593 2178370464827916 r002 59th iterates of z^2 + 2178370473465936 a008 Real Root of x^4-x^3+65*x^2-245*x-875 2178370480140221 m005 (1/3*Pi-3/7)/(7/11*gamma-1/12) 2178370485407177 a007 Real Root Of -246*x^4-150*x^3+576*x^2-474*x+223 2178370501889852 m001 (-Niven+Weierstrass)/(GAMMA(2/3)-Psi(2,1/3)) 2178370507817240 s002 sum(A060611[n]/(10^n+1),n=1..infinity) 2178370511048083 r002 5th iterates of z^2 + 2178370512512745 a001 18/89*21^(1/41) 2178370516717676 m001 (Si(Pi)+Ei(1,1))/(-CopelandErdos+KhinchinLevy) 2178370519735137 a007 Real Root Of -416*x^4-798*x^3-6*x^2-381*x+317 2178370534296239 m001 (Cahen+FeigenbaumD)/(Lehmer-TreeGrowth2nd) 2178370547492637 r004 Im(z^2+c),c=-15/46-7/20*I,z(0)=-1,n=17 2178370547580247 m001 BesselK(0,1)^ln(gamma)*Stephens^ln(gamma) 2178370548108149 a001 817138163596/987*46368^(7/23) 2178370548169822 a001 9381251041/329*2971215073^(7/23) 2178370548778620 a001 521/18*(1/2*5^(1/2)+1/2)^15*18^(13/22) 2178370550682251 m001 (-gamma(2)+Cahen)/(3^(1/2)+BesselI(0,1)) 2178370552326759 k001 Champernowne real with 1527*n+651 2178370570870825 m001 (1-Conway)/(Totient+ZetaQ(2)) 2178370572818661 a007 Real Root Of 661*x^4+984*x^3-877*x^2+460*x+451 2178370578802104 k002 Champernowne real with 8*n^2+152*n-158 2178370585066242 r002 51th iterates of z^2 + 2178370587777514 a007 Real Root Of 427*x^4+476*x^3-767*x^2+589*x+228 2178370588236846 r005 Im(z^2+c),c=-19/70+19/58*I,n=14 2178370591276778 r005 Im(z^2+c),c=-9/98+11/21*I,n=3 2178370604803039 r005 Im(z^2+c),c=-9/17+21/53*I,n=44 2178370611280468 a007 Real Root Of 156*x^4+276*x^3-77*x^2-295*x-937 2178370613695648 l006 ln(583/5149) 2178370620299746 m001 (-Artin+MertensB1)/(Chi(1)-GAMMA(2/3)) 2178370622100140 r009 Im(z^3+c),c=-14/31+16/29*I,n=34 2178370631364043 r009 Re(z^3+c),c=-17/50+27/50*I,n=14 2178370633773564 m001 (GlaisherKinkelin+Mills)/(BesselK(0,1)-ln(5)) 2178370639783955 m001 1/Sierpinski^2*exp(Niven)^2/(3^(1/3))^2 2178370642936459 a001 1292/9*11^(4/23) 2178370646256590 l006 ln(5933/7377) 2178370652346762 k001 Champernowne real with 1528*n+650 2178370653282999 m004 -3100*Sqrt[5]*Pi-5*Sec[Sqrt[5]*Pi] 2178370655162180 m001 1/gamma^2/exp(cos(Pi/5))^2/sqrt(1+sqrt(3))^2 2178370661475341 m002 -Log[Pi]-6*Pi*Sinh[Pi]+Tanh[Pi] 2178370662010871 a008 Real Root of x^4-2*x^3+22*x^2+93*x+55 2178370669398082 m005 (1/2*Pi+1/11)/(4*3^(1/2)+7/10) 2178370670672053 m001 (Landau+Mills)/(PisotVijayaraghavan-PlouffeB) 2178370679200590 m001 (Mills+ZetaP(4))/(LambertW(1)-Zeta(3)) 2178370684573638 m001 (Si(Pi)+sin(1))/(-gamma(2)+FibonacciFactorial) 2178370687089414 m001 (Si(Pi)+ln(gamma))/(2*Pi/GAMMA(5/6)+ThueMorse) 2178370700955506 a007 Real Root Of 274*x^4+228*x^3-518*x^2+768*x+318 2178370702386853 r005 Re(z^2+c),c=-1/23+37/53*I,n=48 2178370705354430 r009 Re(z^3+c),c=-31/110+19/58*I,n=14 2178370721266753 a007 Real Root Of -450*x^4-683*x^3+837*x^2+723*x+676 2178370722707792 a007 Real Root Of 254*x^4+362*x^3-794*x^2-803*x+41 2178370735222341 r005 Re(z^2+c),c=17/94+31/64*I,n=39 2178370746718182 m004 -7+(2*Sinh[Sqrt[5]*Pi])/5 2178370749051350 a005 (1/cos(7/184*Pi))^752 2178370752366765 k001 Champernowne real with 1529*n+649 2178370762543524 m004 -6+(2*Sinh[Sqrt[5]*Pi])/5-Tanh[Sqrt[5]*Pi] 2178370768595928 h001 (-6*exp(1)-1)/(-3*exp(1/2)-3) 2178370774464118 a008 Real Root of (-6+2*x+4*x^2+2*x^3-6*x^4-3*x^5) 2178370778518736 a007 Real Root Of 227*x^4+103*x^3-984*x^2-373*x-190 2178370780103752 m001 Ei(1)^2/Riemann3rdZero/exp(GAMMA(5/24))^2 2178370780183855 b008 1-(3*Sqrt[55])/7 2178370781970086 m001 1/Pi^2/ln(Kolakoski)^2/Zeta(1,2)^2 2178370782763984 h001 (-8*exp(3/2)-2)/(-9*exp(3)+7) 2178370784686593 m001 (MertensB3+ZetaP(4))/(DuboisRaymond-sin(1)) 2178370786516853 q001 1551/712 2178370795087598 r005 Im(z^2+c),c=-9/26+15/43*I,n=21 2178370800215387 m001 (gamma(3)-Conway)/(sin(1/5*Pi)-gamma(2)) 2178370814894652 a007 Real Root Of -112*x^4+48*x^3+854*x^2+781*x+667 2178370821631889 l006 ln(934/8249) 2178370822276724 p003 LerchPhi(1/16,4,183/70) 2178370831239218 m001 (ln(gamma)+Rabbit)^FeigenbaumB 2178370832416008 r005 Re(z^2+c),c=-11/98+25/43*I,n=21 2178370832964498 a007 Real Root Of 430*x^4+857*x^3-410*x^2-873*x-780 2178370835790618 a007 Real Root Of -568*x^4-627*x^3+986*x^2-325*x+922 2178370843513713 a007 Real Root Of 707*x^4+900*x^3-910*x^2+620*x-948 2178370848464205 m001 GAMMA(13/24)^2*Champernowne^2/ln(cosh(1))^2 2178370850799825 r009 Re(z^3+c),c=-4/13+17/29*I,n=11 2178370852386768 k001 Champernowne real with 1530*n+648 2178370866649190 m006 (1/5*exp(Pi)-1/2)/(5/6*exp(Pi)-1/3) 2178370869437239 a007 Real Root Of 123*x^4-82*x^3-806*x^2-75*x+44 2178370871378671 a007 Real Root Of 273*x^4+570*x^3+52*x^2+202*x-62 2178370880449514 r009 Re(z^3+c),c=-11/31+18/35*I,n=59 2178370883715675 a001 (1+2^(1/2))^(1171/48) 2178370897073542 m002 -3*E^Pi*Pi+3*Sech[Pi] 2178370897165926 k002 Champernowne real with 235/2*n^2-591/2*n+199 2178370905372608 m001 log(1+sqrt(2))^2/exp(cos(Pi/5))^2*sqrt(2) 2178370908655390 r009 Im(z^3+c),c=-59/126+1/36*I,n=5 2178370923141590 a007 Real Root Of -339*x^4-681*x^3-70*x^2-702*x-603 2178370923820185 a007 Real Root Of 561*x^4+731*x^3-459*x^2+903*x-931 2178370935564081 r005 Re(z^2+c),c=29/126+23/52*I,n=43 2178370938511577 a007 Real Root Of -532*x^4-977*x^3+171*x^2-694*x-443 2178370940380264 m001 (Conway-Grothendieck)/(sin(1/5*Pi)+ln(5)) 2178370947330984 m001 (Catalan*Stephens-Grothendieck)/Stephens 2178370952406771 k001 Champernowne real with 1531*n+647 2178370972178695 r005 Re(z^2+c),c=-9/56+13/28*I,n=44 2178370976647272 m001 exp(Riemann2ndZero)*GlaisherKinkelin*(2^(1/3)) 2178370984331190 r005 Re(z^2+c),c=-5/31+25/54*I,n=40 2178371008352614 a001 63245986/199*322^(1/3) 2178371015266799 r005 Re(z^2+c),c=-29/114+4/63*I,n=3 2178371026152748 r005 Re(z^2+c),c=-4/31+26/49*I,n=37 2178371037061165 m001 Champernowne*Artin/ln(cos(Pi/5)) 2178371045584193 m001 FeigenbaumKappa/(ArtinRank2^ln(2+3^(1/2))) 2178371052426774 k001 Champernowne real with 1532*n+646 2178371068359934 m001 exp(-1/2*Pi)*(Zeta(1/2)+ThueMorse) 2178371070778313 b008 E*(2*(1+E)+EulerGamma) 2178371085648438 m001 (Paris+TreeGrowth2nd)/(gamma+Ei(1)) 2178371087525092 m001 Paris^2/exp(CareFree)^2*Catalan 2178371089106822 l006 ln(3061/3806) 2178371090321267 m005 (1/2*5^(1/2)+1/9)/(1/2*2^(1/2)-1/7) 2178371097864666 m001 LambertW(1)+DuboisRaymond+Riemann2ndZero 2178371100853884 r002 56th iterates of z^2 + 2178371101197604 a007 Real Root Of -441*x^4-341*x^3+930*x^2-854*x+132 2178371102361981 m001 (HeathBrownMoroz-Salem)/(Zeta(1,-1)-Artin) 2178371103801793 r005 Im(z^2+c),c=-81/110+7/32*I,n=40 2178371113811173 k006 concat of cont frac of 2178371115086506 g005 GAMMA(2/7)/GAMMA(11/12)/GAMMA(8/11)/GAMMA(7/8) 2178371119406516 m001 1/sqrt(3)/BesselJ(0,1)/exp(sqrt(Pi))^2 2178371124931646 a001 1/141*75025^(18/59) 2178371129309823 m001 (Stephens+ZetaQ(2))/(exp(-1/2*Pi)+FeigenbaumD) 2178371132674113 m001 ln(3)^Pi+GaussAGM 2178371135410280 r005 Im(z^2+c),c=-49/58+10/49*I,n=4 2178371143274094 m001 (-Backhouse+CareFree)/(2^(1/3)-GAMMA(3/4)) 2178371146413820 r002 38th iterates of z^2 + 2178371146866303 m001 Porter^PrimesInBinary/ZetaQ(2) 2178371149932449 s002 sum(A092815[n]/(n*2^n-1),n=1..infinity) 2178371152446777 k001 Champernowne real with 1533*n+645 2178371157638221 r002 18th iterates of z^2 + 2178371162455511 r005 Re(z^2+c),c=17/54+20/49*I,n=59 2178371166159637 r005 Im(z^2+c),c=35/114+5/52*I,n=3 2178371167007371 l006 ln(351/3100) 2178371184037125 m001 Shi(1)^FeigenbaumDelta+QuadraticClass 2178371190192080 a007 Real Root Of -786*x^4+160*x^3+551*x^2+646*x+118 2178371195236318 r005 Re(z^2+c),c=33/118+22/51*I,n=42 2178371202108144 m001 (-ln(Pi)+Backhouse)/(sin(1)+sin(1/5*Pi)) 2178371205677605 r005 Re(z^2+c),c=-35/36+1/13*I,n=16 2178371210934966 r005 Re(z^2+c),c=-27/118+17/62*I,n=22 2178371212866755 r002 13th iterates of z^2 + 2178371214979312 m001 (Grothendieck-RenyiParking)/Weierstrass 2178371233679788 a007 Real Root Of -580*x^4-788*x^3+687*x^2-778*x-40 2178371249437845 m001 1/TreeGrowth2nd^2*exp(Conway)^2/LambertW(1)^2 2178371252466780 k001 Champernowne real with 1534*n+644 2178371256941088 a007 Real Root Of -580*x^4-862*x^3+323*x^2-993*x+454 2178371257136102 r005 Re(z^2+c),c=-7/78+20/21*I,n=6 2178371266550769 r005 Im(z^2+c),c=-29/62+8/21*I,n=56 2178371284126229 m001 1/BesselJ(1,1)*Robbin^2*exp(cosh(1))^2 2178371295747521 m001 arctan(1/2)/(5^(1/2)-OneNinth) 2178371295747521 m001 arctan(1/2)/(OneNinth-sqrt(5)) 2178371298342731 a007 Real Root Of -42*x^4-921*x^3-158*x^2-570*x-332 2178371300798040 r005 Im(z^2+c),c=-35/34+19/81*I,n=24 2178371303887989 h005 exp(sin(Pi*16/57)/sin(Pi*11/24)) 2178371305311548 m001 (3^(1/2)+3^(1/3))/(GlaisherKinkelin+ZetaP(3)) 2178371307155542 a007 Real Root Of 376*x^4+921*x^3+105*x^2-36*x+477 2178371307949449 r009 Re(z^3+c),c=-25/102+9/41*I,n=14 2178371318607716 m002 -5+Pi^4-6*Cosh[Pi]-ProductLog[Pi] 2178371325690487 m001 FibonacciFactorial+Landau^StolarskyHarborth 2178371333054530 r009 Re(z^3+c),c=-25/102+9/41*I,n=15 2178371333512051 m008 (2/3*Pi^4-5)/(1/4*Pi^3-5) 2178371334461067 m006 (3/5*ln(Pi)-1/3)/(2*ln(Pi)-2/3) 2178371337534987 r002 39th iterates of z^2 + 2178371338378368 m005 (1/2*Pi+1/9)/(59/88+1/22*5^(1/2)) 2178371348940728 r009 Im(z^3+c),c=-13/114+48/55*I,n=38 2178371352486783 k001 Champernowne real with 1535*n+643 2178371354732496 a007 Real Root Of -33*x^4-762*x^3-931*x^2+201*x+253 2178371358406456 r005 Im(z^2+c),c=-49/106+9/23*I,n=26 2178371359620339 r009 Re(z^3+c),c=-25/102+9/41*I,n=18 2178371360261605 r009 Re(z^3+c),c=-25/102+9/41*I,n=19 2178371360430447 r009 Re(z^3+c),c=-25/102+9/41*I,n=22 2178371360439715 r009 Re(z^3+c),c=-25/102+9/41*I,n=23 2178371360440222 r009 Re(z^3+c),c=-25/102+9/41*I,n=26 2178371360440322 r009 Re(z^3+c),c=-25/102+9/41*I,n=29 2178371360440322 r009 Re(z^3+c),c=-25/102+9/41*I,n=25 2178371360440322 r009 Re(z^3+c),c=-25/102+9/41*I,n=30 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=33 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=34 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=37 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=38 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=41 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=45 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=44 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=48 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=49 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=52 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=53 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=56 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=57 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=60 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=59 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=63 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=64 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=62 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=61 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=58 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=55 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=54 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=51 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=50 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=47 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=46 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=42 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=43 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=40 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=39 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=36 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=35 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=32 2178371360440323 r009 Re(z^3+c),c=-25/102+9/41*I,n=31 2178371360440329 r009 Re(z^3+c),c=-25/102+9/41*I,n=27 2178371360440333 r009 Re(z^3+c),c=-25/102+9/41*I,n=28 2178371360441340 r009 Re(z^3+c),c=-25/102+9/41*I,n=24 2178371360452479 r009 Re(z^3+c),c=-25/102+9/41*I,n=21 2178371360532471 r009 Re(z^3+c),c=-25/102+9/41*I,n=20 2178371362741867 r009 Re(z^3+c),c=-25/102+9/41*I,n=17 2178371364281515 m001 (ln(Pi)-OrthogonalArrays)^GAMMA(5/6) 2178371364582329 r009 Re(z^3+c),c=-25/62+37/61*I,n=31 2178371366416834 m001 (Cahen-KhinchinLevy)/(Riemann3rdZero-ZetaP(4)) 2178371367303416 r009 Re(z^3+c),c=-25/102+9/41*I,n=16 2178371378813419 p004 log(13451/1523) 2178371381267825 a007 Real Root Of 435*x^4+853*x^3-118*x^2+571*x+826 2178371385157250 m001 (Chi(1)+BesselI(0,1))/(-Artin+Totient) 2178371388579267 a007 Real Root Of -68*x^4+461*x^3+861*x^2-588*x+930 2178371411113123 k006 concat of cont frac of 2178371411508038 m005 (3*exp(1)+1/6)/(5/6*Pi-3) 2178371418676433 m009 (2*Psi(1,3/4)-4/5)/(4/5*Psi(1,3/4)-4) 2178371420573922 m001 arctan(1/3)+Riemann2ndZero+TreeGrowth2nd 2178371425806271 r008 a(0)=0,K{-n^6,-54+20*n^3-25*n^2+15*n} 2178371437853837 r005 Im(z^2+c),c=5/74+8/11*I,n=6 2178371442933104 r002 22th iterates of z^2 + 2178371452506786 k001 Champernowne real with 1536*n+642 2178371461202302 h001 (11/12*exp(1)+10/11)/(5/12*exp(1)+3/7) 2178371464938627 a007 Real Root Of -173*x^4-290*x^3+403*x^2+356*x-239 2178371469462564 m001 (Kac+Stephens)/(Weierstrass+ZetaP(4)) 2178371473337131 s002 sum(A184711[n]/(n^2*10^n-1),n=1..infinity) 2178371488656006 r009 Re(z^3+c),c=-7/22+14/33*I,n=13 2178371490387794 m005 (1/2*5^(1/2)-4/11)/(11/12*Pi+7/12) 2178371503601285 a007 Real Root Of 67*x^4-102*x^3-660*x^2-526*x-577 2178371505432336 l006 ln(6311/7847) 2178371509488323 r005 Re(z^2+c),c=-17/90+25/63*I,n=33 2178371518768504 s002 sum(A278735[n]/(n^3*exp(n)-1),n=1..infinity) 2178371537350487 b008 5+CosIntegral[Pi/94] 2178371550912962 m005 (1/2*gamma+7/8)/(3/5*5^(1/2)+4) 2178371552526789 k001 Champernowne real with 1537*n+641 2178371559919164 l006 ln(821/7251) 2178371560555067 a003 cos(Pi*13/95)-sin(Pi*33/95) 2178371573651418 a007 Real Root Of 25*x^4+521*x^3-520*x^2-133*x-22 2178371578240036 m001 cos(Pi/12)/ln(GAMMA(5/6))*sqrt(1+sqrt(3))^2 2178371578689024 r005 Re(z^2+c),c=-19/78+11/52*I,n=12 2178371581808105 k002 Champernowne real with 17/2*n^2+301/2*n-157 2178371584892992 a007 Real Root Of -556*x^4-828*x^3+710*x^2-133*x+302 2178371586621760 a005 (1/cos(8/203*Pi))^401 2178371586939033 a005 (1/cos(12/235*Pi))^1842 2178371592233709 m009 (2/5*Pi^2+3)/(8/5*Catalan+1/5*Pi^2-1/4) 2178371595566052 m001 (Bloch+OneNinth)/(BesselJ(0,1)+Ei(1)) 2178371610102147 m001 (-TravellingSalesman+Trott2nd)/(Si(Pi)+Conway) 2178371612812871 r009 Re(z^3+c),c=-5/46+23/28*I,n=54 2178371622418222 r005 Im(z^2+c),c=11/62+8/53*I,n=21 2178371647110121 r005 Im(z^2+c),c=-31/70+2/55*I,n=20 2178371649786914 r005 Im(z^2+c),c=-23/82+2/63*I,n=17 2178371651346466 r005 Re(z^2+c),c=-27/20+1/14*I,n=8 2178371652546792 k001 Champernowne real with 1538*n+640 2178371654566659 r004 Re(z^2+c),c=-5/38+11/18*I,z(0)=I,n=47 2178371656392788 a007 Real Root Of 9*x^4-605*x^3-506*x^2-816*x+208 2178371659415786 q001 701/3218 2178371660434720 m001 1/CareFree^2/exp(Backhouse)*arctan(1/2) 2178371662659697 h002 exp(2^(7/3)-12^(7/12)) 2178371662659697 h007 exp(2^(7/3)-12^(7/12)) 2178371668301771 m001 Pi/Psi(1,1/3)*sin(1)/Zeta(3) 2178371668515840 r009 Re(z^3+c),c=-25/102+9/41*I,n=13 2178371668665485 m009 (2/3*Psi(1,2/3)+4)/(1/4*Psi(1,1/3)+1/4) 2178371669621607 r005 Re(z^2+c),c=-21/118+14/33*I,n=31 2178371670374182 a003 cos(Pi*3/68)*sin(Pi*6/85) 2178371680044843 r009 Re(z^3+c),c=-5/16+20/49*I,n=23 2178371684689164 a007 Real Root Of -296*x^4-313*x^3+649*x^2-365*x-445 2178371688555909 m008 (2/3*Pi^3-2/3)/(3*Pi^5+1/4) 2178371690482897 a007 Real Root Of -505*x^4-854*x^3+141*x^2-979*x-258 2178371700307613 r005 Re(z^2+c),c=-11/122+3/5*I,n=35 2178371701781824 r009 Re(z^3+c),c=-25/102+9/41*I,n=12 2178371711729857 r005 Re(z^2+c),c=13/42+4/19*I,n=63 2178371712627919 m001 (ln(gamma)-cos(1/12*Pi))/(CareFree-ZetaQ(3)) 2178371712822102 m001 (3^(1/3)+MertensB3*Niven)/Niven 2178371724316691 r002 39th iterates of z^2 + 2178371725520993 a007 Real Root Of -120*x^4+229*x^3+497*x^2-790*x+990 2178371727466360 m001 (Kac+MasserGramainDelta)/(Psi(1,1/3)+ln(Pi)) 2178371735595257 m001 exp(GAMMA(1/24))^2*TreeGrowth2nd^2/GAMMA(5/12) 2178371736676482 m005 (1/2*2^(1/2)+7/11)/(1/5*Zeta(3)-6/7) 2178371739034096 a007 Real Root Of 11*x^4+222*x^3-371*x^2+245*x-760 2178371739612327 r005 Im(z^2+c),c=-155/118+4/47*I,n=12 2178371742205002 r009 Im(z^3+c),c=-49/114+1/34*I,n=28 2178371745643096 r005 Im(z^2+c),c=-2/7+1/3*I,n=13 2178371749854923 h001 (3/4*exp(1)+5/9)/(1/9*exp(1)+8/9) 2178371752566795 k001 Champernowne real with 1539*n+639 2178371757989584 a003 sin(Pi*32/113)/cos(Pi*43/112) 2178371761749482 r005 Im(z^2+c),c=-2/13+12/41*I,n=19 2178371779785663 a007 Real Root Of -271*x^4-191*x^3+992*x^2-26*x-636 2178371787616916 a007 Real Root Of 314*x^4+547*x^3-818*x^2-888*x+531 2178371794664804 a007 Real Root Of 71*x^4-114*x^3-290*x^2+617*x-57 2178371815972761 m001 cos(Pi/5)^2/ln(BesselJ(1,1))*sqrt(1+sqrt(3))^2 2178371830570573 m005 (1/2*2^(1/2)-5/11)/(8/9*Zeta(3)+1/11) 2178371833402053 r005 Im(z^2+c),c=-55/122+23/61*I,n=48 2178371839147650 a007 Real Root Of -302*x^4-677*x^3-114*x^2-74*x+182 2178371844340498 a001 1597/322*843^(28/31) 2178371852586798 k001 Champernowne real with 1540*n+638 2178371853281025 a007 Real Root Of -667*x^4-507*x^3-775*x^2+568*x-12 2178371853348934 l006 ln(470/4151) 2178371868846641 r005 Im(z^2+c),c=-23/32+9/58*I,n=36 2178371871529246 a007 Real Root Of -92*x^4+74*x^3+654*x^2+442*x+696 2178371883885971 m001 (Backhouse-FellerTornier)/(Ei(1)-exp(1/Pi)) 2178371897546905 l006 ln(3250/4041) 2178371897898464 r005 Im(z^2+c),c=49/102+3/52*I,n=3 2178371898860805 a005 (1/cos(14/223*Pi))^275 2178371900166526 k002 Champernowne real with 118*n^2-297*n+200 2178371900212568 s002 sum(A079551[n]/(n*pi^n+1),n=1..infinity) 2178371904849560 h001 (5/6*exp(1)+8/9)/(3/8*exp(1)+3/7) 2178371909658363 m001 1/FeigenbaumAlpha^2*Artin^2*ln(Khintchine)^2 2178371914959061 h001 (1/11*exp(2)+3/7)/(2/3*exp(2)+1/8) 2178371928477339 m001 1/GAMMA(7/24)^2/ln(LaplaceLimit)/sinh(1) 2178371932189428 r005 Re(z^2+c),c=-3/28+29/48*I,n=58 2178371940019189 a001 39603/8*832040^(5/46) 2178371952602966 r005 Im(z^2+c),c=-41/34+17/122*I,n=4 2178371952606801 k001 Champernowne real with 1541*n+637 2178371956371645 m001 BesselI(1,2)/(Bloch-Zeta(3)) 2178371967197378 r005 Re(z^2+c),c=-1/11+33/50*I,n=63 2178371971657106 r005 Im(z^2+c),c=27/98+18/31*I,n=8 2178371990151823 r005 Im(z^2+c),c=-5/62+15/56*I,n=11 2178371992038293 p004 log(32563/26189) 2178371999483945 r005 Re(z^2+c),c=-37/30+32/121*I,n=2 2178372004411265 r005 Re(z^2+c),c=-7/58+6/11*I,n=56 2178372005891326 r005 Im(z^2+c),c=-21/52+37/64*I,n=46 2178372014929852 r005 Re(z^2+c),c=17/82+5/46*I,n=11 2178372017609798 m001 BesselJ(0,1)-Zeta(1,2)+PlouffeB 2178372018891525 r001 56i'th iterates of 2*x^2-1 of 2178372024564448 m001 (Psi(2,1/3)+ln(gamma))/(-Ei(1,1)+Weierstrass) 2178372028790773 a001 89/521*45537549124^(2/3) 2178372028790773 a001 89/521*(1/2+1/2*5^(1/2))^34 2178372028790773 a001 89/521*10749957122^(17/24) 2178372028790773 a001 89/521*4106118243^(17/23) 2178372028790773 a001 89/521*1568397607^(17/22) 2178372028790773 a001 89/521*599074578^(17/21) 2178372028790773 a001 89/521*228826127^(17/20) 2178372028790773 a001 89/521*87403803^(17/19) 2178372028790775 a001 89/521*33385282^(17/18) 2178372030150092 a001 233/199*7881196^(10/11) 2178372030150120 a001 233/199*20633239^(6/7) 2178372030150124 a001 233/199*141422324^(10/13) 2178372030150124 a001 233/199*2537720636^(2/3) 2178372030150124 a001 233/199*45537549124^(10/17) 2178372030150124 a001 233/199*312119004989^(6/11) 2178372030150124 a001 233/199*14662949395604^(10/21) 2178372030150124 a001 233/199*(1/2+1/2*5^(1/2))^30 2178372030150124 a001 233/199*192900153618^(5/9) 2178372030150124 a001 233/199*28143753123^(3/5) 2178372030150124 a001 233/199*10749957122^(5/8) 2178372030150124 a001 233/199*4106118243^(15/23) 2178372030150124 a001 233/199*1568397607^(15/22) 2178372030150124 a001 233/199*599074578^(5/7) 2178372030150124 a001 233/199*228826127^(3/4) 2178372030150124 a001 233/199*87403803^(15/19) 2178372030150126 a001 233/199*33385282^(5/6) 2178372030150136 a001 233/199*12752043^(15/17) 2178372030150210 a001 233/199*4870847^(15/16) 2178372032503765 r005 Im(z^2+c),c=-14/31+23/61*I,n=52 2178372032544480 a007 Real Root Of -371*x^4-610*x^3+680*x^2+876*x+730 2178372034867953 r009 Im(z^3+c),c=-1/94+53/60*I,n=12 2178372040152873 h001 (5/6*exp(2)+7/8)/(2/5*exp(2)+3/11) 2178372045587911 a001 4/17711*2584^(15/52) 2178372051939928 m001 2^(1/2)*Grothendieck^RenyiParking 2178372052626804 k001 Champernowne real with 1542*n+636 2178372053060420 a007 Real Root Of 66*x^4-838*x^3-149*x^2-416*x-9 2178372058134038 r008 a(0)=0,K{-n^6,-6-83*n^3-48*n^2+91*n} 2178372059790852 r008 a(0)=0,K{-n^6,-14+86*n^3+29*n^2-55*n} 2178372063473298 a001 55/4*76^(37/58) 2178372080833144 l006 ln(1059/9353) 2178372103169988 m001 MertensB3^(5^(1/2))*MertensB3^PlouffeB 2178372112137112 k007 concat of cont frac of 2178372121320111 k006 concat of cont frac of 2178372123238818 m001 exp(1/Pi)*GAMMA(7/12)+ZetaP(4) 2178372134092917 m001 (2^(1/3)-Psi(2,1/3))/(ln(2)+Ei(1)) 2178372134389706 m009 (6*Psi(1,3/4)-1/2)/(3/4*Psi(1,1/3)-4/5) 2178372135749312 a007 Real Root Of -469*x^4+455*x^3+17*x^2+496*x+113 2178372142791370 m006 (3*ln(Pi)+1)/(3/4*exp(Pi)+3) 2178372152646807 k001 Champernowne real with 1543*n+635 2178372153029429 m001 Chi(1)^Stephens-Pi*csc(7/24*Pi)/GAMMA(17/24) 2178372161286943 a008 Real Root of x^5-2*x^4-13*x^3+11*x^2+42*x-1 2178372162168058 a007 Real Root Of 490*x^4-197*x^3+739*x^2-22*x-43 2178372173886805 r008 a(0)=0,K{-n^6,-48+70*n^3+60*n^2-36*n} 2178372175728949 r005 Im(z^2+c),c=-47/106+3/8*I,n=62 2178372181468672 r002 55th iterates of z^2 + 2178372191206821 m008 (2*Pi^3+3/4)/(3*Pi^6-3) 2178372192636857 a001 47/591286729879*102334155^(7/23) 2178372199822816 a007 Real Root Of -370*x^4-833*x^3-421*x^2-682*x+233 2178372210955723 r002 12th iterates of z^2 + 2178372213359723 a007 Real Root Of -97*x^4-434*x^3-921*x^2-916*x+73 2178372215320628 r005 Re(z^2+c),c=-21/110+9/23*I,n=18 2178372216541069 a007 Real Root Of 502*x^4+766*x^3-277*x^2+630*x-699 2178372219822628 m001 Catalan/Paris^2*exp(Pi) 2178372229536608 r002 11th iterates of z^2 + 2178372231072771 r008 a(0)=0,K{-n^6,-84+66*n^3+54*n^2+10*n} 2178372237520742 p001 sum(1/(217*n+55)/n/(2^n),n=1..infinity) 2178372244627179 a001 47/20365011074*1597^(7/23) 2178372248840242 m001 (gamma(3)+GAMMA(23/24))/Bloch 2178372252666810 k001 Champernowne real with 1544*n+634 2178372252761217 a007 Real Root Of 151*x^4+57*x^3-495*x^2+191*x-46 2178372254186494 r009 Im(z^3+c),c=-45/94+33/62*I,n=12 2178372259129339 a007 Real Root Of 29*x^4+652*x^3+484*x^2+884*x-863 2178372262357010 l006 ln(589/5202) 2178372267502794 l006 ln(6689/8317) 2178372267502794 p004 log(8317/6689) 2178372270135317 m006 (3*ln(Pi)-1/3)/(3/5/Pi-1/3) 2178372271556787 a007 Real Root Of -5*x^4+565*x^3-725*x^2-754*x-645 2178372274598936 a007 Real Root Of 350*x^4+713*x^3-48*x^2+130*x 2178372274771009 m001 Tribonacci*exp(CareFree)*BesselJ(0,1)^2 2178372279388990 r005 Re(z^2+c),c=21/110+4/41*I,n=2 2178372285752920 a007 Real Root Of -993*x^4-404*x^3+144*x^2+646*x+14 2178372289393836 r008 a(0)=0,K{-n^6,-70+54*n^3+97*n^2-35*n} 2178372293766216 b008 31*Cos[1+E]^2 2178372302198384 m001 1/Lehmer/LandauRamanujan*exp(GAMMA(1/12)) 2178372304430834 a007 Real Root Of 386*x^4-533*x^3+67*x^2-916*x+201 2178372306368016 a007 Real Root Of -285*x^4-320*x^3+569*x^2+170*x+780 2178372313404006 m001 (BesselI(1,1)-gamma(3))/Sierpinski 2178372315333287 a007 Real Root Of -291*x^4-35*x^3+910*x^2-828*x+69 2178372323753330 m001 ZetaP(3)*(Ei(1)-Pi) 2178372328865704 r004 Im(z^2+c),c=-5/16-1/2*I,z(0)=exp(1/8*I*Pi),n=4 2178372342853701 m001 (MinimumGamma-Porter)/(Riemann3rdZero-Trott) 2178372348149822 a007 Real Root Of -488*x^4-488*x^3+896*x^2-468*x+673 2178372351610161 b008 ProductLog[-1/2+2*Pi^2] 2178372352285395 q001 1954/897 2178372352686813 k001 Champernowne real with 1545*n+633 2178372353295629 m001 GAMMA(1/12)^2*GolombDickman/ln(cos(1))^2 2178372354772600 r005 Re(z^2+c),c=4/17+30/61*I,n=11 2178372355965577 a007 Real Root Of 511*x^4+741*x^3-478*x^2+469*x-557 2178372371284391 a007 Real Root Of 299*x^4+86*x^3-942*x^2+481*x-326 2178372382869581 h001 (-9*exp(2)-4)/(-8*exp(6)-9) 2178372384817228 a001 46/311187*3^(6/17) 2178372385412146 r005 Re(z^2+c),c=3/26+15/31*I,n=12 2178372391985092 a007 Real Root Of -280*x^4-941*x^3-453*x^2+827*x+529 2178372396855551 a007 Real Root Of 159*x^4-169*x^3-755*x^2+906*x+229 2178372411532041 a005 (1/cos(10/231*Pi))^1325 2178372414999167 m001 1/KhintchineHarmonic*Cahen/ln(LaplaceLimit)^2 2178372417630269 a007 Real Root Of 74*x^4-33*x^3-230*x^2+572*x+330 2178372427038149 m001 Trott/ln(Conway)^2/sin(1)^2 2178372429185827 m001 MertensB1^StolarskyHarborth/(MertensB1^Robbin) 2178372430830594 m004 1-E^(Sqrt[5]*Pi)/5+6*Coth[Sqrt[5]*Pi] 2178372431747592 r009 Re(z^3+c),c=-2/17+9/11*I,n=46 2178372432271601 a007 Real Root Of 823*x^4-597*x^3+600*x^2-345*x+51 2178372434887423 m001 (-FeigenbaumKappa+ZetaP(3))/(Artin-Catalan) 2178372435068867 m001 1/ln(Robbin)^2/Artin/FeigenbaumD^2 2178372443243070 m008 (1/2*Pi^5-2/5)/(3/4*Pi^4-3) 2178372443842014 m002 -1+Pi^4/(2*E^Pi)+ProductLog[Pi] 2178372446655961 m004 2-E^(Sqrt[5]*Pi)/5+5*Coth[Sqrt[5]*Pi] 2178372451195108 p001 sum((-1)^n/(614*n+441)/(10^n),n=0..infinity) 2178372451196512 r002 2th iterates of z^2 + 2178372451957822 b008 1/10+Sqrt[2]-Sqrt[3] 2178372452706816 k001 Champernowne real with 1546*n+632 2178372453847702 m001 BesselI(1,2)/(Zeta(1,-1)^ZetaP(3)) 2178372461624136 a001 76/2178309*6765^(15/32) 2178372462481328 m004 3-E^(Sqrt[5]*Pi)/5+4*Coth[Sqrt[5]*Pi] 2178372462742615 a008 Real Root of x^4-x^3-32*x^2-62*x-12 2178372468016535 a007 Real Root Of 19*x^4+429*x^3+294*x^2-787*x-471 2178372470150834 a007 Real Root Of -148*x^4+17*x^3+375*x^2-532*x+570 2178372470961896 r002 3th iterates of z^2 + 2178372476921561 a007 Real Root Of 192*x^4-546*x^3+223*x^2-961*x-226 2178372478306695 m004 4-E^(Sqrt[5]*Pi)/5+3*Coth[Sqrt[5]*Pi] 2178372490020060 m001 MertensB3*Sierpinski^polylog(4,1/2) 2178372490506092 s002 sum(A055957[n]/(n*pi^n+1),n=1..infinity) 2178372494132062 m004 5-E^(Sqrt[5]*Pi)/5+2*Coth[Sqrt[5]*Pi] 2178372495141865 p004 log(36467/4129) 2178372495821323 m005 (1/2*Zeta(3)+5)/(2/11*Pi+2) 2178372497651696 p001 sum(1/(542*n+473)/(16^n),n=0..infinity) 2178372498828202 s002 sum(A255000[n]/(16^n),n=1..infinity) 2178372504353166 a007 Real Root Of 554*x^4+946*x^3-398*x^2+25*x-753 2178372505304856 a007 Real Root Of 524*x^4+683*x^3-785*x^2+780*x+685 2178372506605148 s002 sum(A088514[n]/(exp(n)+1),n=1..infinity) 2178372509957454 m004 -8+E^(Sqrt[5]*Pi)/5+Tanh[Sqrt[5]*Pi] 2178372511099233 a003 sin(Pi*25/76)/cos(Pi*23/62) 2178372511826139 r002 4th iterates of z^2 + 2178372514181171 k006 concat of cont frac of 2178372515804164 a007 Real Root Of -212*x^4-195*x^3+584*x^2-369*x-817 2178372523307293 a001 7/4181*144^(48/49) 2178372525782796 m004 -7+E^(Sqrt[5]*Pi)/5 2178372527833997 a007 Real Root Of 667*x^4-140*x^3+647*x^2-782*x-204 2178372529537339 a007 Real Root Of -281*x^4-843*x^3-703*x^2-159*x+603 2178372533873578 l006 ln(708/6253) 2178372541608138 m004 -6+E^(Sqrt[5]*Pi)/5-Tanh[Sqrt[5]*Pi] 2178372544058271 m001 (ZetaQ(3)-Pi*csc(5/12*Pi)/GAMMA(7/12))^Zeta(5) 2178372544955081 a001 47/196418*46368^(28/33) 2178372549087675 m001 (PlouffeB+Trott)/(cos(1/5*Pi)-exp(Pi)) 2178372550937429 q001 1/4590583 2178372552726819 k001 Champernowne real with 1547*n+631 2178372557433455 m004 6-E^(Sqrt[5]*Pi)/5+Tanh[Sqrt[5]*Pi]^2 2178372557433480 m004 5-E^(Sqrt[5]*Pi)/5+2*Tanh[Sqrt[5]*Pi] 2178372560797345 p001 sum(1/(218*n+47)/(8^n),n=0..infinity) 2178372562642487 a001 5/4106118243*3^(9/17) 2178372567394230 r009 Re(z^3+c),c=-15/122+53/61*I,n=28 2178372573258822 m004 4-E^(Sqrt[5]*Pi)/5+3*Tanh[Sqrt[5]*Pi] 2178372584814106 k002 Champernowne real with 9*n^2+149*n-156 2178372589084164 m004 3-E^(Sqrt[5]*Pi)/5+4*Tanh[Sqrt[5]*Pi] 2178372595439024 r005 Re(z^2+c),c=-17/114+23/47*I,n=41 2178372600334328 m001 1/ln(Rabbit)*FeigenbaumAlpha^2/Catalan^2 2178372602325380 r005 Im(z^2+c),c=-17/40+11/25*I,n=10 2178372602341968 a007 Real Root Of -722*x^4+627*x^3+301*x^2-19*x-15 2178372604909506 m004 2-E^(Sqrt[5]*Pi)/5+5*Tanh[Sqrt[5]*Pi] 2178372608225848 m001 ln(Porter)/Magata*BesselJ(1,1)^2 2178372608478387 r005 Im(z^2+c),c=-7/8+47/198*I,n=9 2178372609208790 m005 (-2/3+1/6*5^(1/2))/(3/5*Catalan+4/5) 2178372616828147 a001 199/46368*13^(19/30) 2178372617126696 l006 ln(3439/4276) 2178372618903403 r005 Im(z^2+c),c=-11/30+11/31*I,n=28 2178372620734848 m004 1-E^(Sqrt[5]*Pi)/5+6*Tanh[Sqrt[5]*Pi] 2178372623934473 m005 (1/2*3^(1/2)+1/6)/(1/9*Pi+1/8) 2178372628587070 r005 Im(z^2+c),c=-31/27+1/34*I,n=11 2178372630264154 m005 (1/2*5^(1/2)+7/8)/(2/7*gamma+3/4) 2178372633393471 m001 (GAMMA(23/24)-ArtinRank2)/(Kac+QuadraticClass) 2178372636560190 m004 -E^(Sqrt[5]*Pi)/5+7*Tanh[Sqrt[5]*Pi] 2178372645088064 l006 ln(7129/7286) 2178372652064616 a007 Real Root Of -250*x^4-540*x^3+158*x^2+394*x+156 2178372652746822 k001 Champernowne real with 1548*n+630 2178372660413605 m001 5^(1/2)-MinimumGamma+OrthogonalArrays 2178372674646588 m001 (-Lehmer+Weierstrass)/(Psi(2,1/3)+ln(3)) 2178372683294542 r002 28th iterates of z^2 + 2178372684538448 m009 (24/5*Catalan+3/5*Pi^2-1/5)/(1/6*Pi^2+3) 2178372686027207 m001 1/MertensB1*GlaisherKinkelin^2*exp(sqrt(Pi))^2 2178372694936457 r005 Im(z^2+c),c=-9/8+56/253*I,n=7 2178372699362204 a007 Real Root Of -333*x^4-269*x^3+830*x^2-231*x+276 2178372705371205 r009 Re(z^3+c),c=-31/90+30/59*I,n=15 2178372706106026 r005 Im(z^2+c),c=-12/23+9/23*I,n=60 2178372715543332 r005 Re(z^2+c),c=33/118+11/59*I,n=30 2178372717180254 m001 KomornikLoreti+StolarskyHarborth^Artin 2178372717892352 m001 1/GolombDickman*FeigenbaumAlpha/ln(Zeta(3)) 2178372722591312 s001 sum(exp(-3*Pi/5)^n*A134563[n],n=1..infinity) 2178372727251113 l006 ln(827/7304) 2178372738471155 h001 (7/8*exp(2)+7/10)/(10/11*exp(1)+9/11) 2178372748794997 a001 89/76*47^(41/54) 2178372752766825 k001 Champernowne real with 1549*n+629 2178372759188003 a001 39088169/199*322^(5/12) 2178372760931555 m009 (1/6*Psi(1,1/3)-3/4)/(2/5*Pi^2+1/3) 2178372761454378 m001 1/GAMMA(5/6)^2/exp(FeigenbaumC)/gamma 2178372764548878 r005 Re(z^2+c),c=-1+32/203*I,n=8 2178372768065426 m001 1/GAMMA(1/4)/Niven^2*exp(exp(1))^2 2178372769788337 r005 Re(z^2+c),c=27/74+5/27*I,n=26 2178372774414052 m005 (1/4*2^(1/2)-1/2)/(4/5*Catalan-4/5) 2178372775699321 a005 (1/cos(37/190*Pi))^234 2178372780035384 r005 Im(z^2+c),c=-33/50+13/49*I,n=38 2178372790199900 m005 (3/8+1/4*5^(1/2))/(3/11*2^(1/2)-3/7) 2178372791187569 m005 (7/24+1/6*5^(1/2))/(11/12*5^(1/2)+1) 2178372797522665 a007 Real Root Of 622*x^4-227*x^3-818*x^2-630*x+177 2178372803070722 m001 Si(Pi)*(GAMMA(13/24)-arctan(1/2)) 2178372804840088 a007 Real Root Of -564*x^4-903*x^3+487*x^2-638*x-335 2178372804899281 m005 (1/2*5^(1/2)-7/9)/(3/4*Catalan+7/8) 2178372808334761 m001 (MertensB1-Stephens)/(3^(1/3)+HeathBrownMoroz) 2178372820521850 a007 Real Root Of 413*x^4+324*x^3+636*x^2-731*x-187 2178372826743246 r005 Im(z^2+c),c=-17/82+13/42*I,n=20 2178372828614972 a001 199/6765*46368^(34/41) 2178372836779536 r005 Im(z^2+c),c=11/62+8/53*I,n=19 2178372837944651 m001 (Pi+1)/(BesselI(0,1)+HardyLittlewoodC3) 2178372846718160 m005 (1/2*exp(1)+5)/(4/11*Catalan-5/8) 2178372852663133 h001 (1/10*exp(2)+5/9)/(2/11*exp(1)+1/10) 2178372852786828 k001 Champernowne real with 1550*n+628 2178372854069920 m001 1/GAMMA(3/4)^2/exp(Riemann3rdZero)*cosh(1)^2 2178372862152055 m001 Rabbit^2*ln(FibonacciFactorial)^2/cos(Pi/12) 2178372862858466 a005 (1/sin(78/193*Pi))^567 2178372871721469 m004 -5*Pi+3125*Sqrt[5]*Pi-25*Pi*Log[Sqrt[5]*Pi] 2178372871977615 l006 ln(946/8355) 2178372877495306 r005 Re(z^2+c),c=-2/13+23/47*I,n=21 2178372890970336 m001 exp(Pi)^2/Sierpinski^2*exp(1) 2178372892697488 m001 (1-Shi(1))/(HeathBrownMoroz+MertensB1) 2178372900328288 r009 Re(z^3+c),c=-29/126+39/58*I,n=10 2178372902457141 m001 (sin(1/12*Pi)+exp(1/exp(1)))^MinimumGamma 2178372903167126 k002 Champernowne real with 237/2*n^2-597/2*n+201 2178372904876444 a007 Real Root Of 53*x^4-307*x^3-372*x^2+755*x-957 2178372907976882 m005 (1/3*Zeta(3)-3/4)/(4/7*Zeta(3)+11/12) 2178372910488847 a001 55/39603*18^(20/21) 2178372913949443 a007 Real Root Of 431*x^4+772*x^3-777*x^2-903*x-5 2178372923759521 a007 Real Root Of 355*x^4+827*x^3+604*x^2+837*x-488 2178372930998328 r004 Im(z^2+c),c=-13/16+3/17*I,z(0)=-1,n=34 2178372931494674 p004 log(17761/2011) 2178372947580875 r005 Im(z^2+c),c=-25/26+10/43*I,n=52 2178372948049888 l006 ln(7067/8787) 2178372952177956 r005 Im(z^2+c),c=-35/74+18/31*I,n=27 2178372952806831 k001 Champernowne real with 1551*n+627 2178372963619368 r005 Im(z^2+c),c=-59/94+3/34*I,n=6 2178372968408980 m001 1/Catalan^2*LaplaceLimit/ln(Zeta(5)) 2178372973023287 r005 Re(z^2+c),c=-23/19+6/55*I,n=40 2178372976560898 s001 sum(exp(-2*Pi/5)^n*A077194[n],n=1..infinity) 2178372976560898 s002 sum(A077194[n]/(exp(2/5*pi*n)),n=1..infinity) 2178372982412518 a007 Real Root Of -565*x^4-818*x^3+604*x^2-621*x+48 2178372984066669 m005 (1/2*Catalan-1/3)/(1/5*5^(1/2)+1/8) 2178372984361467 l006 ln(1065/9406) 2178372984799218 m001 (BesselJ(0,1)*FeigenbaumB+Salem)/FeigenbaumB 2178372988631108 m001 (BesselJ(1,1)+GAMMA(5/6))/(MertensB3-Totient) 2178372990046590 r005 Im(z^2+c),c=-19/18+29/134*I,n=16 2178372991635130 a007 Real Root Of -490*x^4-935*x^3+678*x^2+968*x+260 2178372992583003 r005 Im(z^2+c),c=-57/70+4/25*I,n=34 2178373026720205 r005 Im(z^2+c),c=-37/94+9/28*I,n=8 2178373033750175 m005 (21/20+1/4*5^(1/2))/(53/99+1/11*5^(1/2)) 2178373039528211 r005 Im(z^2+c),c=-17/118+11/38*I,n=15 2178373044191531 r005 Im(z^2+c),c=-16/23+8/23*I,n=35 2178373046191080 m005 (1/2*3^(1/2)-7/11)/(3/11*5^(1/2)+4/9) 2178373050882288 a007 Real Root Of -320*x^4-656*x^3-25*x^2-607*x-779 2178373052826834 k001 Champernowne real with 1552*n+626 2178373055923084 a007 Real Root Of 259*x^4+124*x^3-966*x^2+204*x+478 2178373056423331 r005 Im(z^2+c),c=-27/25+2/9*I,n=30 2178373058183300 r009 Im(z^3+c),c=-49/106+1/32*I,n=15 2178373060317002 m001 exp(FibonacciFactorial)*Cahen^2*cosh(1) 2178373074370463 r009 Re(z^3+c),c=-17/98+49/57*I,n=33 2178373087669258 a007 Real Root Of -493*x^4-552*x^3+922*x^2-808*x-740 2178373094846704 r002 10th iterates of z^2 + 2178373112115855 r005 Im(z^2+c),c=-3/16+17/56*I,n=13 2178373122409499 m006 (1/3*ln(Pi)-2/3)/(1/4*exp(2*Pi)-3) 2178373129794807 a007 Real Root Of -245*x^4+891*x^3+314*x^2+989*x-239 2178373132793876 m001 1/3*Artin*MadelungNaCl 2178373134252939 r009 Im(z^3+c),c=-5/38+20/23*I,n=40 2178373135247182 a007 Real Root Of 436*x^4+888*x^3+199*x^2+969*x+528 2178373135692114 m001 GAMMA(1/3)*GAMMA(1/24)*ln(sqrt(2)) 2178373143033998 a007 Real Root Of 158*x^4+84*x^3-432*x^2-81*x-816 2178373152846837 k001 Champernowne real with 1553*n+625 2178373153938235 r005 Im(z^2+c),c=-17/30+65/116*I,n=12 2178373166219794 a001 312119004989/377*46368^(7/23) 2178373166281467 a001 10749957122/377*2971215073^(7/23) 2178373166419035 a007 Real Root Of 37*x^4-207*x^3+309*x^2-458*x+838 2178373174319297 a007 Real Root Of 612*x^4+777*x^3-794*x^2+697*x-463 2178373175845600 a003 cos(Pi*35/106)/cos(Pi*17/40) 2178373182849895 m001 cos(1/5*Pi)*Salem+FibonacciFactorial 2178373186608154 a007 Real Root Of 117*x^4+245*x^3+84*x^2+609*x+826 2178373187987488 m001 (3^(1/2)-HeathBrownMoroz)/Kolakoski 2178373196594852 b008 1/150+Tan[2] 2178373203573611 r002 5th iterates of z^2 + 2178373205905443 m001 (ReciprocalLucas+Tribonacci)/KhinchinHarmonic 2178373207265807 m001 GaussAGM/(FeigenbaumMu^GAMMA(11/12)) 2178373209116618 m001 GAMMA(1/12)*ln(FeigenbaumC)^2/GAMMA(11/24) 2178373213586634 h001 (-exp(3/2)+7)/(-9*exp(1/3)+1) 2178373226715489 m005 (1/2*exp(1)-1/11)/(2/11*Zeta(3)+4/11) 2178373228043556 a007 Real Root Of 463*x^4+795*x^3-541*x^2-557*x-854 2178373230586631 m001 (Champernowne+QuadraticClass)/(exp(1)+Ei(1)) 2178373234914592 b008 9*Sqrt[9-Pi] 2178373239772076 a007 Real Root Of 324*x^4+533*x^3+105*x^2+905*x-313 2178373252866840 k001 Champernowne real with 1554*n+624 2178373257042074 a007 Real Root Of -976*x^4-186*x^3-671*x^2+812*x+209 2178373258486461 r005 Re(z^2+c),c=-1/9+32/57*I,n=39 2178373261733687 l006 ln(3628/4511) 2178373264608625 m001 sin(Pi/5)*TreeGrowth2nd^2/exp(sqrt(1+sqrt(3))) 2178373268234808 p001 sum((-1)^n/(587*n+407)/(3^n),n=0..infinity) 2178373273595063 m001 (ln(gamma)-GAMMA(13/24))/(Lehmer+ThueMorse) 2178373285216059 a007 Real Root Of 280*x^4+512*x^3-443*x^2-901*x-873 2178373294547158 a001 233/29*9349^(6/55) 2178373299368522 m001 ln(Rabbit)*Niven/FeigenbaumD 2178373302987647 m001 ln(Robbin)^2*PisotVijayaraghavan/Zeta(5) 2178373312732515 m001 FeigenbaumC+PrimesInBinary^Zeta(3) 2178373312997759 m001 exp(RenyiParking)^2/Lehmer/sin(Pi/5)^2 2178373317452858 s002 sum(A282993[n]/(n*2^n+1),n=1..infinity) 2178373330187328 a008 Real Root of x^4-2*x^3-33*x^2-7*x+170 2178373332537255 r005 Re(z^2+c),c=9/32+13/28*I,n=33 2178373336809063 m005 (1/3*3^(1/2)+1/7)/(3*Zeta(3)-3/10) 2178373341015433 a007 Real Root Of 625*x^4+852*x^3-931*x^2+200*x-413 2178373349522470 a001 969323029/5*13^(1/22) 2178373350128784 r005 Im(z^2+c),c=-11/29+21/38*I,n=15 2178373351826699 m009 (1/4*Psi(1,2/3)-3)/(4*Psi(1,2/3)-2) 2178373352886843 k001 Champernowne real with 1555*n+623 2178373375683584 m001 GolombDickman*(5^(1/2)-Sierpinski) 2178373378638098 m001 (FeigenbaumMu-exp(Pi))/(Sarnak+ZetaP(3)) 2178373383440790 m005 (1/2*Catalan-1/11)/(2/11*3^(1/2)-2) 2178373388703641 a001 321/8*8^(48/59) 2178373389955827 s002 sum(A003881[n]/(n^2*exp(n)+1),n=1..infinity) 2178373393059876 a007 Real Root Of -442*x^4-787*x^3+145*x^2-351*x+365 2178373396670397 m005 (2/5*exp(1)+4/5)/(4*Catalan+5) 2178373397960083 r005 Im(z^2+c),c=-3/10+38/63*I,n=38 2178373409296655 a007 Real Root Of 385*x^4+683*x^3+87*x^2+645*x-617 2178373410830984 a001 13/23725150497407*47^(22/23) 2178373417850948 r005 Im(z^2+c),c=13/50+1/12*I,n=16 2178373429747257 r009 Re(z^3+c),c=-1/11+51/62*I,n=12 2178373451518713 a007 Real Root Of 32*x^4-404*x^3+799*x^2-291*x+298 2178373452906846 k001 Champernowne real with 1556*n+622 2178373455429552 m005 (1/2*gamma+1/5)/(5/6*Pi-3/8) 2178373456730765 a007 Real Root Of 614*x^4+898*x^3-624*x^2+551*x-382 2178373457180167 m005 (1/2*Catalan+1/12)/(3/5*Pi+3/5) 2178373462327238 r005 Im(z^2+c),c=-13/10+5/243*I,n=49 2178373464601648 a001 2/305*10946^(34/39) 2178373466109666 a001 3524578/47*4^(10/13) 2178373486021874 a007 Real Root Of -220*x^4-258*x^3+307*x^2-158*x+486 2178373488989158 a007 Real Root Of 234*x^4+38*x^3-726*x^2-856*x+220 2178373493660356 m001 exp(1/exp(1))/(BesselK(1,1)^cos(1/5*Pi)) 2178373493660356 m001 exp(1/exp(1))/(BesselK(1,1)^cos(Pi/5)) 2178373496711779 b008 ProductLog[Csch[1]/Pi] 2178373518017938 r002 44th iterates of z^2 + 2178373521288405 m002 -5+Pi-Log[Pi]+3*ProductLog[Pi] 2178373525847310 r005 Re(z^2+c),c=7/40+11/19*I,n=61 2178373526434187 r005 Re(z^2+c),c=1/40+27/43*I,n=18 2178373536785212 m001 1/3*(3^(1/2)*Bloch+Otter)*3^(1/2) 2178373544106110 r009 Re(z^3+c),c=-7/15+20/51*I,n=6 2178373550935709 a007 Real Root Of 564*x^4+660*x^3-832*x^2+491*x-860 2178373552926849 k001 Champernowne real with 1557*n+621 2178373553286844 r009 Re(z^3+c),c=-27/46+13/43*I,n=31 2178373556143967 r005 Re(z^2+c),c=1/29+4/7*I,n=19 2178373559491019 l006 ln(7445/9257) 2178373559838512 r002 12th iterates of z^2 + 2178373563616846 m001 (-Lehmer+Paris)/(arctan(1/2)-exp(Pi)) 2178373567501547 r005 Im(z^2+c),c=-3/4+11/230*I,n=52 2178373571174470 m006 (4/5*exp(2*Pi)-3)/(1/3*Pi-3) 2178373578142417 r005 Im(z^2+c),c=11/62+8/53*I,n=22 2178373583279575 r005 Im(z^2+c),c=-81/118+14/61*I,n=44 2178373585554366 r009 Re(z^3+c),c=-1/4+4/17*I,n=11 2178373587820107 k002 Champernowne real with 19/2*n^2+295/2*n-155 2178373595202302 m003 -5/2+Sqrt[5]/8+ProductLog[1/2+Sqrt[5]/2]/18 2178373612027182 h001 (1/7*exp(2)+2/5)/(9/11*exp(2)+7/11) 2178373623491743 r005 Re(z^2+c),c=4/23+25/54*I,n=35 2178373623600813 m001 GlaisherKinkelin/(PrimesInBinary^BesselK(1,1)) 2178373635313203 r002 20th iterates of z^2 + 2178373640065252 m001 ArtinRank2+GaussAGM+MasserGramain 2178373644808756 a007 Real Root Of -364*x^4-936*x^3-596*x^2-663*x-95 2178373649001694 a001 682/5473*514229^(26/35) 2178373652946852 k001 Champernowne real with 1558*n+620 2178373654467138 a001 4/233*89^(30/53) 2178373660622937 m005 (1/2*5^(1/2)+7/8)/(2/11*3^(1/2)+3/5) 2178373661663785 m001 exp(BesselJ(0,1))^2*TreeGrowth2nd/cos(Pi/12)^2 2178373664758421 a007 Real Root Of 419*x^4+963*x^3-363*x^2-920*x+238 2178373693469044 b008 E^(4*Sqrt[2])*Cosh[E] 2178373696515630 m001 Ei(1,1)+Zeta(1,2)*ZetaQ(4) 2178373705510387 m001 (ln(2)/ln(10)+BesselK(0,1))/(ln(5)+Niven) 2178373714793792 r002 61th iterates of z^2 + 2178373719897590 r005 Im(z^2+c),c=-73/82+10/49*I,n=33 2178373726314482 r005 Im(z^2+c),c=11/62+8/53*I,n=27 2178373729258102 r005 Im(z^2+c),c=11/62+8/53*I,n=26 2178373747537291 a007 Real Root Of -611*x^4-984*x^3+599*x^2-75*x+581 2178373749453674 r005 Im(z^2+c),c=-31/36+4/23*I,n=53 2178373752121132 m001 Paris^FeigenbaumKappa/(Paris^ArtinRank2) 2178373752966855 k001 Champernowne real with 1559*n+619 2178373757850965 m001 (BesselJ(0,1)+cos(1/12*Pi))/(Shi(1)-Si(Pi)) 2178373760154879 s002 sum(A071305[n]/(n^3*2^n-1),n=1..infinity) 2178373762257411 r005 Im(z^2+c),c=11/62+8/53*I,n=28 2178373762992963 a007 Real Root Of 89*x^4-3*x^3+63*x^2+746*x-709 2178373768555026 a007 Real Root Of -169*x^4-602*x^3-996*x^2-751*x+673 2178373772379012 m001 GAMMA(11/12)-GAMMA(7/12)-Niven 2178373780191720 r005 Im(z^2+c),c=11/62+8/53*I,n=33 2178373780575247 r005 Im(z^2+c),c=11/62+8/53*I,n=34 2178373781111591 r005 Im(z^2+c),c=11/62+8/53*I,n=35 2178373781198083 r005 Im(z^2+c),c=11/62+8/53*I,n=40 2178373781201919 r005 Im(z^2+c),c=11/62+8/53*I,n=39 2178373781207105 r005 Im(z^2+c),c=11/62+8/53*I,n=41 2178373781212919 r005 Im(z^2+c),c=11/62+8/53*I,n=46 2178373781212991 r005 Im(z^2+c),c=11/62+8/53*I,n=47 2178373781213136 r005 Im(z^2+c),c=11/62+8/53*I,n=48 2178373781213172 r005 Im(z^2+c),c=11/62+8/53*I,n=53 2178373781213174 r005 Im(z^2+c),c=11/62+8/53*I,n=52 2178373781213174 r005 Im(z^2+c),c=11/62+8/53*I,n=54 2178373781213176 r005 Im(z^2+c),c=11/62+8/53*I,n=59 2178373781213176 r005 Im(z^2+c),c=11/62+8/53*I,n=60 2178373781213176 r005 Im(z^2+c),c=11/62+8/53*I,n=61 2178373781213176 r005 Im(z^2+c),c=11/62+8/53*I,n=55 2178373781213176 r005 Im(z^2+c),c=11/62+8/53*I,n=64 2178373781213176 r005 Im(z^2+c),c=11/62+8/53*I,n=62 2178373781213176 r005 Im(z^2+c),c=11/62+8/53*I,n=63 2178373781213176 r005 Im(z^2+c),c=11/62+8/53*I,n=58 2178373781213177 r005 Im(z^2+c),c=11/62+8/53*I,n=57 2178373781213177 r005 Im(z^2+c),c=11/62+8/53*I,n=56 2178373781213186 r005 Im(z^2+c),c=11/62+8/53*I,n=51 2178373781213204 r005 Im(z^2+c),c=11/62+8/53*I,n=49 2178373781213205 r005 Im(z^2+c),c=11/62+8/53*I,n=50 2178373781213271 r005 Im(z^2+c),c=11/62+8/53*I,n=45 2178373781213736 r005 Im(z^2+c),c=11/62+8/53*I,n=42 2178373781214288 r005 Im(z^2+c),c=11/62+8/53*I,n=44 2178373781215245 r005 Im(z^2+c),c=11/62+8/53*I,n=43 2178373781241966 r005 Im(z^2+c),c=11/62+8/53*I,n=38 2178373781250441 r005 Im(z^2+c),c=11/62+8/53*I,n=32 2178373781315033 r005 Im(z^2+c),c=11/62+8/53*I,n=37 2178373781332029 r005 Im(z^2+c),c=11/62+8/53*I,n=36 2178373784788241 a007 Real Root Of 234*x^4+718*x^3+838*x^2+806*x-68 2178373784888989 r005 Im(z^2+c),c=11/62+8/53*I,n=31 2178373785168596 r005 Im(z^2+c),c=11/62+8/53*I,n=29 2178373785843833 m001 (5^(1/2)-cos(1))/(-exp(1/Pi)+Gompertz) 2178373787694714 r009 Re(z^3+c),c=-11/31+9/13*I,n=10 2178373789028014 r005 Im(z^2+c),c=11/62+8/53*I,n=30 2178373790468520 r005 Im(z^2+c),c=-29/32+7/32*I,n=53 2178373793229955 r002 43th iterates of z^2 + 2178373793472972 m001 Riemann2ndZero+LaplaceLimit^Robbin 2178373795630330 m009 (6*Catalan+3/4*Pi^2-5)/(3*Psi(1,3/4)-4) 2178373803858950 m001 (sin(1/12*Pi)-CareFree)/(KhinchinLevy+Thue) 2178373809301343 h001 (3/7*exp(2)+3/4)/(2/11*exp(2)+5/11) 2178373810740598 r002 3th iterates of z^2 + 2178373832045659 m001 exp(Riemann1stZero)/FeigenbaumAlpha^2/Zeta(7) 2178373834077569 r005 Re(z^2+c),c=-11/90+18/29*I,n=55 2178373842504791 l006 ln(3817/4746) 2178373843047494 m001 (-Sierpinski+Thue)/(MertensB3-cos(1)) 2178373845971347 a001 2178309+29*5^(1/2) 2178373848044820 a007 Real Root Of 344*x^4+350*x^3-731*x^2+361*x+127 2178373852986858 k001 Champernowne real with 1560*n+618 2178373855400848 r005 Im(z^2+c),c=-79/86+11/56*I,n=38 2178373855605257 a007 Real Root Of 131*x^4-14*x^3-366*x^2+694*x+154 2178373862131060 r005 Im(z^2+c),c=11/62+8/53*I,n=25 2178373862217739 a007 Real Root Of -573*x^4-855*x^3+894*x^2+301*x+478 2178373872100509 m001 Ei(1,1)-GAMMA(19/24)*HeathBrownMoroz 2178373875837874 r008 a(0)=2,K{-n^6,-2+8*n^3-7*n^2-2*n} 2178373877765421 l006 ln(119/1051) 2178373878809446 a007 Real Root Of -202*x^4-181*x^3+488*x^2-78*x+192 2178373883141319 a007 Real Root Of -495*x^4-602*x^3+938*x^2+166*x+834 2178373884322342 a007 Real Root Of 209*x^4+9*x^3-783*x^2+340*x-157 2178373887675130 m001 (Artin+Cahen)/(Pi+GAMMA(7/12)) 2178373889286489 a007 Real Root Of -370*x^4-960*x^3-797*x^2-634*x+809 2178373890347378 m001 (exp(Pi)+Zeta(5))/(arctan(1/2)+MasserGramain) 2178373906167726 k002 Champernowne real with 119*n^2-300*n+202 2178373908284020 a007 Real Root Of 435*x^4+476*x^3-884*x^2-140*x-985 2178373911226413 a007 Real Root Of -160*x^4+576*x^3-10*x^2+734*x+16 2178373911775144 r005 Re(z^2+c),c=21/64+16/45*I,n=35 2178373916502901 m004 -5*Pi-Sqrt[5]*Pi+(Pi*Sin[Sqrt[5]*Pi])/Sqrt[5] 2178373927510886 m001 Backhouse+Kolakoski^(2^(1/2)) 2178373927924064 r002 5th iterates of z^2 + 2178373939520338 m001 (Zeta(5)-ln(2)/ln(10))/(ln(3)+BesselI(0,2)) 2178373945250630 m001 (Otter+Sarnak)/(GAMMA(3/4)+arctan(1/2)) 2178373953006861 k001 Champernowne real with 1561*n+617 2178373955533616 m001 FeigenbaumB/(BesselK(1,1)^Ei(1)) 2178373967366308 a007 Real Root Of -686*x^4-991*x^3+880*x^2-137*x+729 2178373969230732 a003 cos(Pi*8/65)/sin(Pi*13/93) 2178373975252740 a001 3/2*3^(18/53) 2178373976153458 a007 Real Root Of -337*x^4-374*x^3+235*x^2-742*x+991 2178373980445903 h001 (2/7*exp(2)+2/7)/(1/11*exp(2)+3/7) 2178373986244308 a005 (1/cos(11/139*Pi))^836 2178373992358323 a005 (1/cos(4/239*Pi))^563 2178373997605559 r005 Im(z^2+c),c=-22/23+9/40*I,n=19 2178374000973040 r005 Im(z^2+c),c=-53/122+21/61*I,n=10 2178374001480550 a007 Real Root Of 475*x^4+671*x^3-290*x^2+974*x-262 2178374005516738 a007 Real Root Of -47*x^4-981*x^3+906*x^2-555*x+781 2178374008372603 a007 Real Root Of 717*x^4-495*x^3-249*x^2-969*x-206 2178374018001577 m001 FeigenbaumKappa^2/DuboisRaymond^2/ln(OneNinth) 2178374018586230 r002 4th iterates of z^2 + 2178374023947544 m001 (LaplaceLimit-MertensB3)/HardyLittlewoodC4 2178374030701553 a007 Real Root Of 71*x^4-375*x^3-945*x^2+543*x+192 2178374033077886 m001 (Sierpinski+ZetaQ(3))/(Ei(1)-CareFree) 2178374033302243 m001 (sin(1)+BesselI(1,2))/(-Otter+Tribonacci) 2178374038576303 s002 sum(A041046[n]/(n*exp(pi*n)+1),n=1..infinity) 2178374044533654 m001 (3^(1/3))^2*ln(Riemann1stZero)^2/sin(Pi/12)^2 2178374053026864 k001 Champernowne real with 1562*n+616 2178374060906323 m006 (1/5*Pi^2-3/4)/(1/4*exp(Pi)-1/6) 2178374064522749 h001 (7/9*exp(1)+3/4)/(1/6*exp(2)+1/12) 2178374066045103 a007 Real Root Of 493*x^4+470*x^3-944*x^2+445*x-794 2178374066399891 a007 Real Root Of 342*x^4+951*x^3+80*x^2-621*x+397 2178374068013402 a007 Real Root Of 166*x^4-76*x^3-986*x^2-422*x-764 2178374086808164 a007 Real Root Of -634*x^4-995*x^3+948*x^2+586*x+769 2178374091531642 a007 Real Root Of 480*x^4+614*x^3-569*x^2+592*x-472 2178374092889363 a007 Real Root Of -856*x^4+199*x^3+662*x^2+865*x+161 2178374100701101 r005 Re(z^2+c),c=-43/106+31/52*I,n=18 2178374106151614 s002 sum(A054521[n]/((2^n-1)/n),n=1..infinity) 2178374111843597 l006 ln(7823/9727) 2178374112075769 q001 276/1267 2178374112075769 r005 Im(z^2+c),c=-19/14+23/181*I,n=2 2178374116904939 r009 Re(z^3+c),c=-11/32+19/39*I,n=29 2178374122620584 r005 Im(z^2+c),c=-59/102+16/61*I,n=7 2178374136346329 a007 Real Root Of 418*x^4+999*x^3+171*x^2+220*x+582 2178374139001517 r005 Im(z^2+c),c=11/62+8/53*I,n=24 2178374150129344 a001 1364/17711*3^(53/56) 2178374151353356 m001 1/GAMMA(5/12)^2/Ei(1)^2/ln(sin(Pi/5))^2 2178374153046867 k001 Champernowne real with 1563*n+615 2178374160608379 m001 1/cosh(1)/GlaisherKinkelin/exp(sin(1)) 2178374162007384 m001 1/MadelungNaCl*exp(Si(Pi))^2*Zeta(1,2) 2178374175858891 m001 ReciprocalFibonacci/OrthogonalArrays/ln(3) 2178374184944600 g004 Im(GAMMA(109/30+I*11/20)) 2178374186480706 a003 sin(Pi*1/72)-sin(Pi*1/48) 2178374186579707 m001 (1+gamma)/(-Salem+ZetaP(2)) 2178374191275022 a003 sin(Pi*8/95)*sin(Pi*21/67) 2178374194825652 r002 40th iterates of z^2 + 2178374201626701 m005 (1/2*Pi-3/5)/(8/11*Zeta(3)-3/7) 2178374203170724 a007 Real Root Of 402*x^4+270*x^3-968*x^2+464*x-657 2178374203204296 m001 1/exp(FeigenbaumC)/Conway*sqrt(Pi) 2178374205125217 r005 Re(z^2+c),c=-11/14+15/239*I,n=4 2178374206021414 s002 sum(A218983[n]/(n*pi^n-1),n=1..infinity) 2178374210489075 m005 (1/2*exp(1)+4/11)/(1/5*3^(1/2)+4/9) 2178374211168644 a007 Real Root Of 324*x^4+533*x^3-581*x^2-571*x-273 2178374211331129 k008 concat of cont frac of 2178374213038122 a007 Real Root Of -283*x^4-340*x^3+786*x^2+526*x+274 2178374219873110 m001 2^(1/2)+HardyLittlewoodC3^Lehmer 2178374222424171 k007 concat of cont frac of 2178374228521005 r005 Im(z^2+c),c=-7/8+43/236*I,n=64 2178374236018343 m001 ln(ArtinRank2)^2*DuboisRaymond/OneNinth^2 2178374248203321 r005 Re(z^2+c),c=-15/14+18/73*I,n=24 2178374248982179 m001 1/ln(BesselJ(0,1))^2/Trott^2*GAMMA(2/3)^2 2178374251845143 m004 -5+30/Pi+5*Pi+ProductLog[Sqrt[5]*Pi] 2178374253066870 k001 Champernowne real with 1564*n+614 2178374258089563 m001 (3^(1/3)+ErdosBorwein)/(ln(2)/ln(10)+ln(3)) 2178374269833770 r005 Im(z^2+c),c=11/62+8/53*I,n=23 2178374272634255 r005 Re(z^2+c),c=-7/50+31/61*I,n=57 2178374278275190 m001 Riemann2ndZero*Magata*ln(FeigenbaumKappa) 2178374279022935 m005 (1/3*Pi-1/10)/(1/12*5^(1/2)-1/7) 2178374283382236 r005 Im(z^2+c),c=-8/9+17/94*I,n=3 2178374287532575 h001 (6/11*exp(2)+5/12)/(4/9*exp(1)+5/6) 2178374287811206 l006 ln(8355/8539) 2178374291883139 m001 (ln(3)+GlaisherKinkelin)/(OneNinth+ZetaQ(4)) 2178374293641924 m009 (32*Catalan+4*Pi^2-2/5)/(16*Catalan+2*Pi^2-3) 2178374295268772 m001 (HardHexagonsEntropy+Kac)/(gamma(2)-Zeta(1,2)) 2178374298274143 m001 (CareFree+FeigenbaumC)/(gamma(2)+GAMMA(19/24)) 2178374302200480 r005 Im(z^2+c),c=-11/16+12/53*I,n=46 2178374304847410 m004 -7+(2*Cosh[Sqrt[5]*Pi])/5 2178374312491544 a007 Real Root Of -75*x^4+240*x^3-352*x^2+975*x-198 2178374316601003 m002 -1+Pi+(Log[Pi]*Tanh[Pi])/Pi^3 2178374317771096 r002 10th iterates of z^2 + 2178374320672752 m004 -6+(2*Cosh[Sqrt[5]*Pi])/5-Tanh[Sqrt[5]*Pi] 2178374327616243 r005 Re(z^2+c),c=-11/94+34/63*I,n=29 2178374336009002 a007 Real Root Of -34*x^4-702*x^3+827*x^2-337*x-279 2178374340630111 r005 Im(z^2+c),c=-27/70+25/63*I,n=12 2178374349881971 r005 Im(z^2+c),c=-65/118+23/63*I,n=29 2178374351459012 m001 Catalan*(BesselI(0,2)+Paris) 2178374353086873 k001 Champernowne real with 1565*n+613 2178374353698255 m001 HardHexagonsEntropy^Catalan-exp(Pi) 2178374357008075 a007 Real Root Of -208*x^4-366*x^3-261*x^2-661*x+699 2178374362048260 r002 27th iterates of z^2 + 2178374363024359 r005 Re(z^2+c),c=-11/86+33/62*I,n=57 2178374365510840 s002 sum(A083073[n]/((2*n+1)!),n=1..infinity) 2178374368475198 l006 ln(4006/4981) 2178374372258717 m001 (BesselK(1,1)-MasserGramain)/(Salem+Thue) 2178374388362493 a007 Real Root Of 583*x^4+879*x^3-689*x^2+287*x-147 2178374389331410 b008 -35/4+ExpIntegralEi[Pi] 2178374389540944 a001 39088169/322*123^(3/5) 2178374391937019 p004 log(32687/3701) 2178374392021192 m001 Sarnak/(ErdosBorwein-GAMMA(13/24)) 2178374392335832 r005 Re(z^2+c),c=-17/78+29/45*I,n=61 2178374398005370 m001 Landau^(Pi^(1/2))+Tribonacci 2178374405205808 m001 1/exp(GAMMA(3/4))^2*Trott^2*arctan(1/2)^2 2178374407976596 m005 (1/2*3^(1/2)-3/4)/(-1/4+7/20*5^(1/2)) 2178374410121950 r005 Im(z^2+c),c=-23/86+18/55*I,n=16 2178374413290243 s002 sum(A156478[n]/(exp(pi*n)-1),n=1..infinity) 2178374416823168 a007 Real Root Of 538*x^4+776*x^3-520*x^2+603*x-312 2178374417031950 m005 (1/2*Catalan-1/12)/(6*exp(1)+8/9) 2178374420268140 a008 Real Root of (1+6*x+5*x^2-6*x^3+3*x^4-2*x^5) 2178374432514752 m001 OneNinth^(Landau/Kolakoski) 2178374448947877 a007 Real Root Of -560*x^4-951*x^3+396*x^2-389*x+53 2178374451185816 r005 Im(z^2+c),c=-41/66+16/43*I,n=30 2178374453106876 k001 Champernowne real with 1566*n+612 2178374456024308 r005 Re(z^2+c),c=-43/52+1/34*I,n=42 2178374457068190 m001 ln(Riemann1stZero)^2*MadelungNaCl^2*Zeta(7)^2 2178374463486722 m005 (1/2*exp(1)-9/11)/(3/11*gamma+1/11) 2178374467618065 m001 (FeigenbaumAlpha-GAMMA(7/12))*5^(1/2) 2178374467618065 m001 sqrt(5)*(FeigenbaumAlpha-GAMMA(7/12)) 2178374486331515 a001 1/3*(1/2*5^(1/2)+1/2)^3*18^(3/20) 2178374493004386 m001 (Pi-Psi(1,1/3))/ln(2)*ln(10)+ln(2+3^(1/2)) 2178374510024802 a001 24157817/199*322^(1/2) 2178374517525510 r005 Im(z^2+c),c=-13/10+5/243*I,n=61 2178374521960442 a003 sin(Pi*3/56)/cos(Pi*17/77) 2178374532873649 a007 Real Root Of 118*x^4-469*x^3+48*x^2-779*x+172 2178374546099076 m001 Landau*(Zeta(3)+FransenRobinson) 2178374550309336 m001 (HeathBrownMoroz+Trott)/(Psi(2,1/3)-ln(2)) 2178374553126879 k001 Champernowne real with 1567*n+611 2178374563262442 m005 (1/3*2^(1/2)-3/4)/(9/10*Catalan+5/11) 2178374567139662 a007 Real Root Of 277*x^4+719*x^3+700*x^2+913*x-138 2178374570972424 a007 Real Root Of -567*x^4-936*x^3+567*x^2+75*x+565 2178374577499671 r005 Im(z^2+c),c=-13/14+41/208*I,n=13 2178374584537591 a007 Real Root Of 45*x^4-549*x^3+496*x^2+931*x+280 2178374585047568 a007 Real Root Of 470*x^4+966*x^3-319*x^2-689*x-585 2178374585690288 a007 Real Root Of -118*x^4+212*x^3+815*x^2-668*x-474 2178374589423516 a005 (1/cos(1/66*Pi))^687 2178374590826108 k002 Champernowne real with 10*n^2+146*n-154 2178374597241103 r005 Re(z^2+c),c=11/40+26/57*I,n=14 2178374607999660 a007 Real Root Of 483*x^4+687*x^3-362*x^2+683*x-569 2178374608311391 r005 Re(z^2+c),c=-91/114+1/7*I,n=24 2178374612278403 a005 (1/cos(31/194*Pi))^513 2178374618375311 a001 204284540899/2*5^(8/17) 2178374618426475 a007 Real Root Of -606*x^4-894*x^3+695*x^2-491*x+37 2178374624577464 a001 165580141/521*123^(2/5) 2178374629258700 a007 Real Root Of -429*x^4-676*x^3+210*x^2-386*x+835 2178374632883277 m005 (1/2*5^(1/2)-7/11)/(4/5*5^(1/2)-4) 2178374636818603 m001 (Champernowne*Mills+OneNinth)/Champernowne 2178374638631773 a007 Real Root Of -522*x^4-878*x^3+518*x^2-417*x-688 2178374642183355 m001 (arctan(1/2)+Trott2nd)/(1-GAMMA(3/4)) 2178374647060866 a007 Real Root Of -788*x^4-575*x^3-687*x^2+301*x+94 2178374647688638 p001 sum(1/(373*n+348)/n/(64^n),n=1..infinity) 2178374652137623 a001 3571/28657*514229^(26/35) 2178374653146882 k001 Champernowne real with 1568*n+610 2178374659881820 r005 Im(z^2+c),c=-11/27+33/50*I,n=7 2178374663794227 s001 sum(exp(-Pi)^(n-1)*A121414[n],n=1..infinity) 2178374672700853 m003 1/2+Sqrt[5]/8-(16*Tanh[1/2+Sqrt[5]/2])/5 2178374673463478 m001 (Cahen+HardHexagonsEntropy)/(Catalan-Si(Pi)) 2178374673798755 a007 Real Root Of 423*x^4+887*x^3-705*x^2-966*x+885 2178374681542313 a008 Real Root of x^2-x-47671 2178374692176069 r005 Im(z^2+c),c=-37/78+19/50*I,n=34 2178374693401830 r002 4th iterates of z^2 + 2178374714000240 m001 Zeta(1,-1)^(1/3*3^(1/2)*Porter) 2178374714015990 m004 -Cosh[Sqrt[5]*Pi]+50*Pi*Csc[Sqrt[5]*Pi]^2 2178374723029993 r009 Im(z^3+c),c=-5/118+5/22*I,n=6 2178374729460079 r009 Re(z^3+c),c=-1/32+27/62*I,n=17 2178374735575783 m001 (3^(1/3)+Salem)/Zeta(3) 2178374753166885 k001 Champernowne real with 1569*n+609 2178374755158983 a007 Real Root Of 376*x^4+576*x^3-513*x^2+237*x+438 2178374755774608 a001 2139295485799/21*832040^(9/16) 2178374755774962 a001 370248451/21*4052739537881^(9/16) 2178374755774962 a001 9381251041/7*1836311903^(9/16) 2178374756655942 r005 Im(z^2+c),c=-7/15+17/31*I,n=42 2178374756821689 r002 52th iterates of z^2 + 2178374761214229 l006 ln(1077/9512) 2178374761650363 r005 Im(z^2+c),c=-121/90+1/39*I,n=53 2178374765060914 m001 Niven/FeigenbaumDelta*ln(GAMMA(1/12))^2 2178374771400697 m001 Robbin^2*ln(GlaisherKinkelin)*sqrt(2)^2 2178374775167120 m001 (Tribonacci+ZetaQ(4))/(ln(2+3^(1/2))-Bloch) 2178374777052574 r002 5th iterates of z^2 + 2178374781669229 m005 (1/2*Pi+3/7)/(3/7*Pi-3/7) 2178374782152760 r005 Re(z^2+c),c=-59/110+10/21*I,n=46 2178374798493183 a001 9349/75025*514229^(26/35) 2178374799564397 m005 (1/2*Pi+2/3)/(5*5^(1/2)-10/11) 2178374799925689 a007 Real Root Of -627*x^4-969*x^3+742*x^2+44*x+677 2178374801951789 r005 Im(z^2+c),c=-13/10+5/243*I,n=57 2178374803889820 m001 1/ln(GAMMA(5/6))/FeigenbaumD*sin(1)^2 2178374805303173 m001 1/GAMMA(13/24)/MadelungNaCl/ln(GAMMA(19/24)) 2178374819846172 a001 12238/98209*514229^(26/35) 2178374824886929 a001 13201/105937*514229^(26/35) 2178374833043044 a001 15127/121393*514229^(26/35) 2178374847051823 l006 ln(4195/5216) 2178374847365390 b008 2/3+Sqrt[2]*E^(1/15) 2178374853186888 k001 Champernowne real with 1570*n+608 2178374855281736 m008 (5/6*Pi^2+1/4)/(4*Pi^4-3/5) 2178374870953640 l006 ln(958/8461) 2178374875083490 m005 (1/2*Zeta(3)+5/12)/(1/4*Zeta(3)+1/6) 2178374882043697 r005 Im(z^2+c),c=-7/10+46/251*I,n=22 2178374888945894 a001 321/2576*514229^(26/35) 2178374893722050 m006 (1/4/Pi+5/6)/(1/6*ln(Pi)+4) 2178374896174014 r005 Re(z^2+c),c=21/62+23/62*I,n=37 2178374909168326 k002 Champernowne real with 239/2*n^2-603/2*n+203 2178374911153206 m001 (TreeGrowth2nd+Trott2nd)/(BesselJ(1,1)+Niven) 2178374913854157 h001 (-7*exp(4)+10)/(-exp(3)+3) 2178374922719454 m002 -Pi^4+Pi^5+(Pi^2*Coth[Pi])/ProductLog[Pi] 2178374926841240 m001 (BesselI(0,2)-exp(1))/(GAMMA(13/24)+Artin) 2178374934722477 r009 Im(z^3+c),c=-33/74+1/16*I,n=38 2178374951821305 r005 Re(z^2+c),c=-23/98+7/36*I,n=4 2178374953206891 k001 Champernowne real with 1571*n+607 2178374954309147 r005 Im(z^2+c),c=-13/10+5/243*I,n=53 2178374956634815 m001 (Shi(1)-gamma(3))/(FeigenbaumDelta+ZetaP(3)) 2178374972484951 m001 (BesselK(0,1)+GAMMA(5/6))/(Rabbit+ZetaQ(4)) 2178374976577824 m001 GAMMA(11/24)^2*Tribonacci*exp(gamma)^2 2178374980530672 r005 Re(z^2+c),c=-165/122+29/57*I,n=2 2178374993610833 a007 Real Root Of 37*x^4-496*x^3+421*x^2+747*x+669 2178374996776970 b008 Sqrt[ArcCsc[1+Sqrt[2]]]/3 2178374999112073 m005 (21/20+1/4*5^(1/2))/(1/8*Zeta(3)-8/9) 2178375002585792 a007 Real Root Of -152*x^4-231*x^3+251*x^2+444*x+811 2178375007653056 r005 Re(z^2+c),c=-11/90+19/35*I,n=62 2178375011822926 l006 ln(839/7410) 2178375016410515 a003 cos(Pi*36/107)-cos(Pi*7/17) 2178375019115572 a007 Real Root Of 238*x^4+522*x^3+168*x^2+289*x-131 2178375019433533 r009 Re(z^3+c),c=-7/26+8/27*I,n=2 2178375023225861 r002 64th iterates of z^2 + 2178375038113287 m001 1/ln(cos(Pi/12))^2/Robbin/gamma 2178375046890730 r009 Re(z^3+c),c=-51/98+29/49*I,n=15 2178375050028409 m005 (1/3*5^(1/2)-1/2)/(7/8*2^(1/2)-1/9) 2178375053226894 k001 Champernowne real with 1572*n+606 2178375055055314 r005 Im(z^2+c),c=-19/14+1/47*I,n=55 2178375055964260 r008 a(0)=2,K{-n^6,19-38*n-13*n^2+27*n^3} 2178375065749150 r009 Im(z^3+c),c=-41/110+4/29*I,n=9 2178375071306425 m001 (Sierpinski-ZetaP(4))/(ln(gamma)-BesselK(1,1)) 2178375073724302 a007 Real Root Of 976*x^4-379*x^3+782*x^2-773*x+133 2178375080512186 a005 (1/sin(47/149*Pi))^185 2178375085561815 m001 1/ln(GAMMA(1/24))^2/GolombDickman*GAMMA(2/3) 2178375092930688 r005 Re(z^2+c),c=10/23+11/48*I,n=22 2178375095893921 r005 Re(z^2+c),c=-9/56+13/28*I,n=36 2178375101620398 m005 (1/3*exp(1)+1/6)/(30/7+2/7*5^(1/2)) 2178375121316117 k008 concat of cont frac of 2178375134863632 m001 ln(Pi)*exp(1)^Cahen 2178375142862402 m001 cos(1)-ArtinRank2^Pi 2178375143477782 r005 Re(z^2+c),c=-17/114+23/47*I,n=45 2178375145500761 r005 Im(z^2+c),c=-14/15+12/55*I,n=32 2178375148973512 a001 3571/46368*3^(53/56) 2178375153246897 k001 Champernowne real with 1573*n+605 2178375153861125 r005 Im(z^2+c),c=-21/44+2/51*I,n=14 2178375156534326 a007 Real Root Of 573*x^4+967*x^3-214*x^2+417*x-983 2178375161635050 r009 Re(z^3+c),c=-1/86+29/36*I,n=10 2178375166128190 r009 Im(z^3+c),c=-1/9+19/22*I,n=10 2178375166627245 r009 Im(z^3+c),c=-3/23+45/52*I,n=18 2178375168718351 a007 Real Root Of -2*x^4-435*x^3+151*x^2+859*x-428 2178375174885533 m006 (5/6*exp(2*Pi)-3/4)/(3/Pi-3) 2178375176743835 r005 Re(z^2+c),c=-17/122+28/55*I,n=22 2178375192677892 m001 (Si(Pi)+polylog(4,1/2))/(-GAMMA(17/24)+Salem) 2178375199257306 l006 ln(720/6359) 2178375210277679 r005 Im(z^2+c),c=1/56+19/30*I,n=32 2178375232440077 m003 -5+8*Sech[1/2+Sqrt[5]/2]*Tanh[1/2+Sqrt[5]/2] 2178375234096516 r005 Im(z^2+c),c=-7/94+11/41*I,n=6 2178375241552729 m001 (GAMMA(17/24)-Bloch)/(Zeta(1,-1)-exp(-1/2*Pi)) 2178375245478690 r005 Re(z^2+c),c=-37/98+37/60*I,n=3 2178375248289618 a007 Real Root Of 247*x^4-98*x^3-965*x^2+677*x-521 2178375253266900 k001 Champernowne real with 1574*n+604 2178375255359382 s002 sum(A217244[n]/(n^3*exp(n)-1),n=1..infinity) 2178375263637732 r005 Re(z^2+c),c=31/86+8/47*I,n=53 2178375272109725 a001 2207/17711*514229^(26/35) 2178375275208609 a003 cos(Pi*10/37)-sin(Pi*14/41) 2178375281053089 a005 (1/cos(17/105*Pi))^363 2178375284364294 l006 ln(4384/5451) 2178375291343964 a007 Real Root Of 533*x^4-472*x^3+91*x^2-361*x+78 2178375292987497 h001 (-5*exp(3)-4)/(-9*exp(4)+12) 2178375293504266 a003 cos(Pi*43/100)*sin(Pi*43/89) 2178375294702913 a001 9349/121393*3^(53/56) 2178375315918097 a007 Real Root Of 257*x^4+425*x^3-638*x^2-766*x-35 2178375315964546 a001 844/10959*3^(53/56) 2178375319066576 a001 64079/832040*3^(53/56) 2178375320983736 a001 39603/514229*3^(53/56) 2178375329104957 a001 15127/196418*3^(53/56) 2178375336185552 m001 (Catalan+cos(1/12*Pi))/(-gamma(2)+ZetaP(4)) 2178375336709937 r005 Im(z^2+c),c=-39/122+13/38*I,n=18 2178375345216538 a007 Real Root Of 563*x^4+873*x^3-490*x^2+713*x+225 2178375351562500 r005 Im(z^2+c),c=-1/25+17/32*I,n=3 2178375353286903 k001 Champernowne real with 1575*n+603 2178375353406048 r005 Re(z^2+c),c=31/98+11/51*I,n=62 2178375360638302 r005 Im(z^2+c),c=-31/56+2/31*I,n=4 2178375361658349 m005 (1/2*exp(1)+3/5)/(5*3^(1/2)+1/3) 2178375367749362 m001 (Sierpinski-ZetaQ(2))/(Landau-Niven) 2178375368375891 m008 (1/3*Pi^2-5)/(1/4*Pi^5+2) 2178375371241650 a007 Real Root Of 416*x^4+447*x^3+145*x^2-787*x+159 2178375384768635 a001 5778/75025*3^(53/56) 2178375394141987 h001 (7/11*exp(2)+2/11)/(2/9*exp(2)+3/5) 2178375395676973 a007 Real Root Of 465*x^4+790*x^3-845*x^2-814*x-68 2178375398125333 q001 1/4590577 2178375403369028 a007 Real Root Of -184*x^4-251*x^3+643*x^2+956*x+580 2178375404404814 r005 Re(z^2+c),c=-3/19+27/55*I,n=18 2178375405405536 a007 Real Root Of 694*x^4+887*x^3-912*x^2+638*x-741 2178375407101935 p001 sum((-1)^n/(556*n+457)/(100^n),n=0..infinity) 2178375409893807 h001 (1/8*exp(1)+8/9)/(2/3*exp(2)+5/7) 2178375412956004 a005 (1/cos(13/132*Pi))^158 2178375424719465 m001 (Magata-ZetaQ(4))/(Zeta(1,2)-Kac) 2178375433342696 m005 (1/2*3^(1/2)-4/7)/(10/11*3^(1/2)-2/9) 2178375434798894 a007 Real Root Of -286*x^4-419*x^3+900*x^2+700*x-637 2178375438330341 m001 Gompertz/(FeigenbaumMu-FeigenbaumB) 2178375439597840 a007 Real Root Of -379*x^4-737*x^3+446*x^2+171*x-828 2178375441878336 s002 sum(A164437[n]/((pi^n-1)/n),n=1..infinity) 2178375447695760 a001 1364/4181*4181^(39/50) 2178375447782210 m001 (Pi^(1/2)+MasserGramain)^QuadraticClass 2178375453306906 k001 Champernowne real with 1576*n+602 2178375456756178 a001 64079/89*21^(4/11) 2178375460916890 l006 ln(601/5308) 2178375473745703 r005 Im(z^2+c),c=-29/90+18/53*I,n=9 2178375473798594 r005 Re(z^2+c),c=-23/106+27/34*I,n=64 2178375481313881 r002 3th iterates of z^2 + 2178375488486001 m005 (1/2*exp(1)-1/4)/(1/10*Catalan+5) 2178375488981587 r005 Im(z^2+c),c=5/24+3/23*I,n=10 2178375489218613 a007 Real Root Of -980*x^4+69*x^3-221*x^2+549*x+133 2178375489263441 m001 (GaussKuzminWirsing-Si(Pi))^exp(gamma) 2178375496374358 m001 exp(ArtinRank2)*Conway/Zeta(3) 2178375510123397 l006 ln(9581/9792) 2178375512059443 m001 (3^(1/3)+Ei(1,1))/(Zeta(1,2)+ZetaP(3)) 2178375514339385 a007 Real Root Of 31*x^4+660*x^3-316*x^2+392*x+371 2178375519627136 p001 sum((-1)^n/(551*n+451)/(25^n),n=0..infinity) 2178375520791589 r005 Re(z^2+c),c=-15/22+27/64*I,n=10 2178375523000961 a007 Real Root Of 474*x^4+915*x^3-66*x^2+521*x+233 2178375526173422 m001 GlaisherKinkelin*(Zeta(5)+Robbin) 2178375531366839 a007 Real Root Of -15*x^4+291*x^3-208*x^2+936*x-197 2178375537182980 m005 (1/2*2^(1/2)+7/11)/(1/11*Catalan-7/10) 2178375539053087 m001 (Pi^(1/2)+LaplaceLimit)/(Otter-Riemann1stZero) 2178375546112025 r005 Re(z^2+c),c=-7/12+43/123*I,n=7 2178375553008997 a007 Real Root Of -597*x^4-708*x^3+934*x^2-754*x+50 2178375553326909 k001 Champernowne real with 1577*n+601 2178375559916340 r005 Im(z^2+c),c=-5/24+17/54*I,n=3 2178375561743502 a007 Real Root Of 418*x^4+703*x^3-365*x^2+188*x-4 2178375573521635 m001 (GAMMA(11/12)-Conway)/(Zeta(1/2)+arctan(1/3)) 2178375574324615 m002 -E^Pi+Log[Pi]/Pi+Tanh[Pi]^2 2178375574654415 m001 Psi(1,1/3)^ThueMorse/(GAMMA(7/12)^ThueMorse) 2178375576145164 h001 (-5*exp(2)+12)/(-6*exp(3)+6) 2178375584060342 a007 Real Root Of -940*x^4-572*x^3-809*x^2+34*x+42 2178375593832109 k002 Champernowne real with 21/2*n^2+289/2*n-153 2178375594961022 r005 Re(z^2+c),c=-27/70+10/17*I,n=34 2178375600852753 m009 (5*Psi(1,3/4)+1/2)/(Psi(1,2/3)+3) 2178375611731751 m005 (1/2*Catalan-9/10)/(2*Zeta(3)-3/8) 2178375612612984 m001 1/log(1+sqrt(2))^2/Rabbit*ln(sqrt(2))^2 2178375614127343 h001 (-7*exp(3)+4)/(-2*exp(-2)-6) 2178375614899854 r005 Im(z^2+c),c=-11/31+2/59*I,n=20 2178375615532726 r005 Re(z^2+c),c=-19/94+22/61*I,n=21 2178375615614067 m002 -E^Pi+2/(3*Pi)+Log[Pi] 2178375620253337 m001 exp(Khintchine)^2*FeigenbaumDelta^2/Porter^2 2178375634873362 l006 ln(1083/9565) 2178375636045179 a007 Real Root Of -415*x^4-461*x^3+743*x^2-526*x-92 2178375637581621 m001 (-gamma(3)+DuboisRaymond)/(2^(1/3)-Psi(1,1/3)) 2178375637856805 h001 (-3*exp(1/2)-8)/(-8*exp(-1)-3) 2178375639946777 a007 Real Root Of -275*x^4+97*x^3+747*x^2+671*x-182 2178375653346912 k001 Champernowne real with 1578*n+600 2178375658974886 m001 (Niven+OneNinth)/(exp(-1/2*Pi)+GolombDickman) 2178375669807482 b008 -3/52+Sqrt[5] 2178375672541403 m001 exp(Magata)^2/MertensB1*Riemann3rdZero^2 2178375673254794 m001 (-arctan(1/2)+ZetaQ(2))/(1+ln(2^(1/2)+1)) 2178375673399639 r005 Im(z^2+c),c=-79/70+10/53*I,n=8 2178375673869616 m001 Catalan/polylog(4,1/2)/StolarskyHarborth 2178375674272323 r002 38th iterates of z^2 + 2178375678914550 r009 Im(z^3+c),c=-5/66+36/41*I,n=10 2178375679523202 m001 BesselJ(0,1)^ln(Pi)+(3^(1/3)) 2178375679523202 m001 BesselJ(0,1)^ln(Pi)+3^(1/3) 2178375685528899 l006 ln(4573/5686) 2178375686465133 r005 Im(z^2+c),c=-97/102+13/62*I,n=21 2178375686676314 m001 (cos(1)-sin(1))/(-3^(1/3)+Backhouse) 2178375687435582 a007 Real Root Of 23*x^4+510*x^3+198*x^2+67*x+263 2178375688147295 a003 sin(Pi*8/93)*sin(Pi*24/79) 2178375689151336 m001 (CareFree-HardHexagonsEntropy)/(Niven+Porter) 2178375697228415 m001 ln(Tribonacci)/GolombDickman^2/GAMMA(1/3)^2 2178375700644755 a008 Real Root of (13+16*x-15*x^2-9*x^3) 2178375702509228 r005 Re(z^2+c),c=-8/31+7/59*I,n=8 2178375704366533 m005 (1/2*5^(1/2)+8/11)/(3/7*Catalan+5/11) 2178375711932321 m001 (2*Pi/GAMMA(5/6)-GAMMA(23/24))/(Pi-Shi(1)) 2178375719300007 r005 Im(z^2+c),c=-9/29+18/53*I,n=26 2178375719572842 a007 Real Root Of -627*x^4-936*x^3+796*x^2-544*x-519 2178375722971121 r005 Re(z^2+c),c=3/8+5/32*I,n=28 2178375729292433 a007 Real Root Of 484*x^4+643*x^3-960*x^2-485*x-753 2178375730247865 a007 Real Root Of -319*x^4-612*x^3+482*x^2+209*x-975 2178375731458482 m001 (sin(1/5*Pi)-GAMMA(23/24))/(GaussAGM+Salem) 2178375741083098 r005 Re(z^2+c),c=-25/17+2/37*I,n=6 2178375742465943 a007 Real Root Of 677*x^4+239*x^3+881*x^2-703*x-194 2178375753366915 k001 Champernowne real with 1579*n+599 2178375760944978 r005 Re(z^2+c),c=13/48+20/33*I,n=8 2178375766293158 a001 2207/28657*3^(53/56) 2178375768677065 r002 9th iterates of z^2 + 2178375786013506 a007 Real Root Of -820*x^4+745*x^3+909*x^2+829*x+147 2178375786699344 m002 24/Pi^4+Cosh[Pi]/6 2178375787681099 a007 Real Root Of -61*x^4+200*x^3+555*x^2+54*x+925 2178375792470404 r005 Re(z^2+c),c=-87/86+23/48*I,n=2 2178375794455424 a007 Real Root Of 580*x^4+644*x^3-123*x^2-967*x-21 2178375801024901 a001 521/2504730781961*433494437^(13/14) 2178375801026431 a001 521/4807526976*514229^(13/14) 2178375817993305 m001 BesselI(1,1)*Backhouse+FeigenbaumKappa 2178375828066634 a007 Real Root Of 728*x^4-936*x^3+796*x^2-96*x-70 2178375831525190 a007 Real Root Of -220*x^4-630*x^3-672*x^2-552*x+428 2178375840851731 m006 (4*ln(Pi)-4/5)/(5/6/Pi-2) 2178375851777552 l006 ln(482/4257) 2178375853386918 k001 Champernowne real with 1580*n+598 2178375874598993 m005 (1/2*Pi+6/11)/(8/11*2^(1/2)-2) 2178375875396674 m001 ln(cos(Pi/5))*Lehmer*log(2+sqrt(3))^2 2178375885601744 r005 Im(z^2+c),c=-10/29+22/63*I,n=19 2178375896809052 r004 Im(z^2+c),c=7/22+7/24*I,z(0)=exp(5/8*I*Pi),n=5 2178375912168927 k002 Champernowne real with 120*n^2-303*n+204 2178375923119589 m003 1/2+(5*Sqrt[5])/8+Tan[1/2+Sqrt[5]/2]/10 2178375928080212 m001 (gamma(1)-GAMMA(5/6))/(HardyLittlewoodC4-Thue) 2178375937026959 a001 55/199*18^(5/7) 2178375940580264 m005 (1/2*gamma-6)/(3/7*gamma-1/4) 2178375951844165 r009 Im(z^3+c),c=-51/122+5/44*I,n=8 2178375953406921 k001 Champernowne real with 1581*n+597 2178375953659072 m001 1/LandauRamanujan^2*exp(Conway)*sin(Pi/5)^2 2178375962771926 h001 (1/11*exp(1)+1/10)/(2/11*exp(2)+1/4) 2178375963604124 m001 (gamma(2)-BesselI(0,2))/(Stephens+Weierstrass) 2178375965823886 m001 1/GAMMA(11/12)/exp(MinimumGamma)/Zeta(7) 2178375973608872 m001 (Zeta(1,2)-Gompertz)/(StolarskyHarborth-Trott) 2178375980347268 m001 1/Niven/FeigenbaumB*exp(GAMMA(5/6)) 2178375982291774 m001 1/Zeta(3)^2*ln(Riemann1stZero)/sin(1) 2178376004063330 a007 Real Root Of -681*x^4-964*x^3+918*x^2-525*x-130 2178376009722595 m001 (Ei(1)+Kac)/(StronglyCareFree-TwinPrimes) 2178376019667277 m001 (ln(2)+MinimumGamma)/(OneNinth+QuadraticClass) 2178376021547739 m001 (2*Pi/GAMMA(5/6))^gamma/(exp(1/exp(1))^gamma) 2178376021547739 m001 GAMMA(1/6)^gamma/(exp(1/exp(1))^gamma) 2178376031256057 m001 (exp(Pi)+GAMMA(11/12))/(-Pi^(1/2)+Robbin) 2178376033203547 r005 Re(z^2+c),c=-7/60+47/53*I,n=15 2178376034350613 a003 cos(Pi*26/95)*cos(Pi*47/120) 2178376035336266 r005 Re(z^2+c),c=-17/106+9/19*I,n=7 2178376036786372 r005 Im(z^2+c),c=-11/14+36/203*I,n=3 2178376045390193 m001 sin(Pi/12)*exp(LaplaceLimit)^2*sqrt(5) 2178376047090989 r009 Re(z^3+c),c=-17/46+11/20*I,n=26 2178376049223281 r005 Im(z^2+c),c=-8/17+8/17*I,n=19 2178376052384763 m002 5/6-E^Pi+Pi/6 2178376053426924 k001 Champernowne real with 1582*n+596 2178376054339847 r009 Im(z^3+c),c=-29/62+5/7*I,n=3 2178376054849680 l006 ln(4762/5921) 2178376067362949 m001 5^(1/2)/Grothendieck/Stephens 2178376069873528 h001 (1/9*exp(1)+3/11)/(8/9*exp(1)+2/9) 2178376077816408 m001 1/exp(TwinPrimes)*FeigenbaumD^2*BesselJ(0,1)^2 2178376082437704 m001 BesselK(0,1)*ln(Paris)^2/Zeta(5) 2178376083914840 m004 7-(E^(Sqrt[5]*Pi)*Coth[Sqrt[5]*Pi])/5 2178376084171344 m009 (8/3*Catalan+1/3*Pi^2-5)/(5/12*Pi^2-3/4) 2178376085013510 m001 (ln(2^(1/2)+1)+Landau)/(LaplaceLimit-ZetaQ(3)) 2178376086808356 p003 LerchPhi(1/8,2,221/100) 2178376091884704 r005 Im(z^2+c),c=-1/54+12/49*I,n=15 2178376113452007 m001 Landau-Zeta(1/2)+ZetaP(3) 2178376121606485 r005 Im(z^2+c),c=3/46+13/62*I,n=7 2178376125131082 a007 Real Root Of 302*x^4+378*x^3+307*x^2-990*x-227 2178376129774213 l006 ln(845/7463) 2178376134330234 m001 (Stephens+ThueMorse)/(Si(Pi)+Khinchin) 2178376145495931 s002 sum(A199020[n]/((10^n-1)/n),n=1..infinity) 2178376149635011 m001 LaplaceLimit+exp(1/Pi)^Mills 2178376153446927 k001 Champernowne real with 1583*n+595 2178376156596335 m005 (1/3*Catalan+2/3)/(2/11*Pi-1/8) 2178376158424337 r002 9th iterates of z^2 + 2178376166513779 r005 Re(z^2+c),c=33/98+7/32*I,n=41 2178376169496380 m005 (1/6*gamma+3/4)/(1/5*gamma-4) 2178376169496380 m007 (-1/6*gamma-3/4)/(-1/5*gamma+4) 2178376173229484 m005 (17/10+5/2*5^(1/2))/(4/5*Pi+5/6) 2178376173754723 a007 Real Root Of 443*x^4+982*x^3-129*x^2-441*x-173 2178376174152478 m001 Riemann2ndZero+Sarnak^sin(1) 2178376187503811 a007 Real Root Of -141*x^4+921*x^3-960*x^2-476*x-753 2178376207116291 r002 14th iterates of z^2 + 2178376207688416 a007 Real Root Of 124*x^4+73*x^3-245*x^2+757*x+774 2178376213737205 a007 Real Root Of -13*x^4+298*x^3-528*x^2+240*x-805 2178376217018161 m001 (BesselI(0,1)-Niven)^Si(Pi) 2178376224078174 m001 sin(Pi/12)*exp(GAMMA(7/24))^2*sqrt(Pi) 2178376238335491 r005 Re(z^2+c),c=1/6+19/36*I,n=14 2178376241456209 m001 arctan(1/3)^Gompertz*arctan(1/3)^RenyiParking 2178376242971071 a007 Real Root Of 59*x^4+271*x^3+701*x^2+699*x-331 2178376246837921 s002 sum(A036928[n]/(n*exp(n)+1),n=1..infinity) 2178376250724713 m005 (1/2*exp(1)-3/8)/(4/11*Zeta(3)-8/9) 2178376253466930 k001 Champernowne real with 1584*n+594 2178376254696553 s002 sum(A148544[n]/(pi^n+1),n=1..infinity) 2178376256789157 r005 Im(z^2+c),c=-41/94+19/51*I,n=35 2178376260863003 a001 14930352/199*322^(7/12) 2178376267148553 s002 sum(A215309[n]/(n^3*2^n-1),n=1..infinity) 2178376271467143 r005 Re(z^2+c),c=-67/58+3/16*I,n=32 2178376283900181 r005 Re(z^2+c),c=-33/26+49/122*I,n=7 2178376287728903 r005 Re(z^2+c),c=-47/58+3/35*I,n=20 2178376291976179 r005 Im(z^2+c),c=-39/29+1/39*I,n=13 2178376305245993 m001 MertensB1^GaussAGM+Si(Pi) 2178376305855655 m005 (1/2*Pi-6/11)/(3/11*Zeta(3)+1/7) 2178376312361069 a007 Real Root Of -310*x^4+623*x^3-163*x^2-105*x-8 2178376312791835 r005 Re(z^2+c),c=13/74+2/47*I,n=5 2178376312983345 r009 Re(z^3+c),c=-7/44+19/27*I,n=5 2178376316878970 m001 Otter/GAMMA(5/6)/Zeta(3) 2178376317658967 a003 cos(Pi*8/99)-cos(Pi*23/100) 2178376321070005 a007 Real Root Of 360*x^4+504*x^3-688*x^2-242*x-159 2178376328115682 a001 3/2584*4181^(4/53) 2178376336130000 a007 Real Root Of 237*x^4+50*x^3-905*x^2+249*x+17 2178376343222598 m001 ln(GAMMA(1/4))*PrimesInBinary^2/Zeta(7)^2 2178376345065831 a007 Real Root Of 517*x^4-572*x^3+233*x^2-690*x+144 2178376346836721 m005 (1/2*Zeta(3)-7/11)/(7/11*Zeta(3)+6/7) 2178376353486933 k001 Champernowne real with 1585*n+593 2178376363112231 p004 log(20287/2297) 2178376363365516 r009 Re(z^3+c),c=-7/50+49/54*I,n=8 2178376366366008 a001 3/233*2^(22/29) 2178376381945511 m005 (1/2*Catalan+3/5)/(6/11*2^(1/2)-2/7) 2178376388965738 m005 (1/3*Catalan-1/11)/(1/11*Zeta(3)+7/8) 2178376395723974 p004 log(26699/3023) 2178376395973467 l006 ln(4951/6156) 2178376403430854 m001 (-Cahen+Robbin)/(Chi(1)+gamma(3)) 2178376403552463 m001 (Zeta(1/2)+Niven)/(Psi(1,1/3)+ln(Pi)) 2178376413013803 a007 Real Root Of -81*x^4+625*x^3+471*x^2+903*x+181 2178376414582955 m001 (Lehmer+RenyiParking)/(Ei(1,1)-GaussAGM) 2178376420497243 r005 Re(z^2+c),c=9/26+15/62*I,n=58 2178376423383025 r005 Im(z^2+c),c=-19/18+43/184*I,n=51 2178376425164645 r005 Im(z^2+c),c=-5/98+9/35*I,n=11 2178376427826950 p001 sum((-1)^n/(592*n+451)/(24^n),n=0..infinity) 2178376430154515 r005 Re(z^2+c),c=-41/34+4/43*I,n=16 2178376430283416 a001 76/987*1346269^(9/38) 2178376433739959 r005 Im(z^2+c),c=-31/30+23/96*I,n=64 2178376448956290 h001 (7/11*exp(2)+4/7)/(6/7*exp(1)+1/11) 2178376453506936 k001 Champernowne real with 1586*n+592 2178376458479502 m001 Psi(1,1/3)/(HardyLittlewoodC3-ln(3)) 2178376469013697 a001 3571/10946*4181^(39/50) 2178376477223477 p004 log(24859/19993) 2178376488056345 a007 Real Root Of 534*x^4+683*x^3-985*x^2+209*x+165 2178376491417386 m001 (sin(Pi/12)+2)/Zeta(5) 2178376492812897 r005 Re(z^2+c),c=-14/19+7/51*I,n=48 2178376496294639 r005 Re(z^2+c),c=11/42+22/49*I,n=53 2178376498904647 l006 ln(363/3206) 2178376500179047 m001 polylog(4,1/2)^Zeta(1/2)*FeigenbaumB 2178376501209340 a005 (1/cos(22/185*Pi))^623 2178376502877174 m001 (Shi(1)+Chi(1))/(-sin(1/12*Pi)+GAMMA(5/6)) 2178376502877174 m001 Ei(1)/(GAMMA(5/6)-sin(1/12*Pi)) 2178376502877174 m001 Ei(1)/(GAMMA(5/6)-sin(Pi/12)) 2178376511389038 r005 Re(z^2+c),c=-31/90+12/31*I,n=3 2178376512644618 m005 (1/6*exp(1)-5)/(2/5*exp(1)+1) 2178376516824919 m001 1/cos(1)/exp(Magata)^2/cos(Pi/12)^2 2178376524130026 a007 Real Root Of -313*x^4-496*x^3+215*x^2-346*x+147 2178376528817375 m001 exp(Ei(1))^2*FeigenbaumKappa^2/GAMMA(11/24)^2 2178376536986207 m005 (-11/4+1/4*5^(1/2))/(gamma+3/7) 2178376540231900 a007 Real Root Of -742*x^4-249*x^3+451*x-94 2178376545345979 r005 Im(z^2+c),c=-6/11+23/59*I,n=57 2178376553526939 k001 Champernowne real with 1587*n+591 2178376556951709 p004 log(12547/10091) 2178376558956916 r002 2th iterates of z^2 + 2178376560811956 r005 Im(z^2+c),c=-31/122+11/34*I,n=16 2178376563295185 m005 (1/2*3^(1/2)+5/11)/(3/7*Zeta(3)-5/11) 2178376563722860 r009 Im(z^3+c),c=-29/54+31/63*I,n=6 2178376564480929 a007 Real Root Of 831*x^4+693*x^3-502*x^2-965*x+225 2178376564766151 r009 Re(z^3+c),c=-29/78+31/56*I,n=30 2178376570402836 m003 -7/60+Sqrt[5]/4-Cosh[1/2+Sqrt[5]/2] 2178376594869574 m001 Pi*FeigenbaumAlpha^2*exp(Zeta(3))^2 2178376596838110 k002 Champernowne real with 11*n^2+143*n-152 2178376598482347 a007 Real Root Of 338*x^4+323*x^3-367*x^2+985*x-385 2178376607274358 b008 1+(9*Sqrt[3/7])/5 2178376609093729 r005 Re(z^2+c),c=-9/8+38/183*I,n=16 2178376612409201 m001 cosh(1)^2*exp(CareFree)^2*sqrt(5) 2178376618021978 a001 9349/28657*4181^(39/50) 2178376619192544 a007 Real Root Of 349*x^4+483*x^3-892*x^2-313*x+685 2178376636815026 m005 (1/3*Catalan+1/10)/(3/4*2^(1/2)+4/5) 2178376638555467 m001 (HeathBrownMoroz-Porter)/(ln(Pi)-Bloch) 2178376639275598 a001 199/2*63245986^(3/10) 2178376639761993 a001 24476/75025*4181^(39/50) 2178376640033693 r009 Re(z^3+c),c=-37/122+6/17*I,n=2 2178376643645482 m005 (1/2*3^(1/2)+7/8)/(25/132+3/11*5^(1/2)) 2178376644209175 q001 679/3117 2178376644894114 a001 39603/121393*4181^(39/50) 2178376650201711 m005 (1/2*Catalan-11/12)/(3/4*5^(1/2)+3/7) 2178376653198061 a001 2161/6624*4181^(39/50) 2178376653546942 k001 Champernowne real with 1588*n+590 2178376654314653 m005 (13/2+3/2*5^(1/2))/(1/6*Pi+4) 2178376657812581 r005 Re(z^2+c),c=-4/17+11/45*I,n=9 2178376671423151 a007 Real Root Of -13*x^4+761*x^3+836*x^2+420*x-139 2178376671675728 m001 (Bloch+PolyaRandomWalk3D)/(Pi+sin(1/5*Pi)) 2178376678720066 a007 Real Root Of 260*x^4+338*x^3-821*x^2-539*x+361 2178376684344390 a007 Real Root Of -274*x^4-761*x^3-860*x^2-675*x+914 2178376686059564 a007 Real Root Of 414*x^4+564*x^3-999*x^2-573*x 2178376687473113 m005 (-13/28+1/4*5^(1/2))/(3/8*Catalan-3/10) 2178376689102334 s001 sum(1/10^(n-1)*A221280[n]/n^n,n=1..infinity) 2178376689533462 s001 sum(1/10^(n-1)*A166570[n]/n^n,n=1..infinity) 2178376696714683 r009 Re(z^3+c),c=-4/31+59/64*I,n=38 2178376709611577 m001 ErdosBorwein-GAMMA(19/24)+KhinchinHarmonic 2178376710114160 a001 5778/17711*4181^(39/50) 2178376710473336 a007 Real Root Of 273*x^4+671*x^3+222*x^2-153*x-598 2178376712010709 l006 ln(5140/6391) 2178376719646833 r005 Im(z^2+c),c=-43/102+1/28*I,n=27 2178376721317883 s001 sum(1/10^(n-1)*A003668[n]/n^n,n=1..infinity) 2178376721969453 s001 sum(1/10^(n-1)*A191263[n]/n^n,n=1..infinity) 2178376730517716 a007 Real Root Of 57*x^4-32*x^3-137*x^2+388*x-119 2178376734186990 r005 Im(z^2+c),c=-1+74/253*I,n=31 2178376741613899 m001 (Pi-1)/(Zeta(5)-ZetaQ(2)) 2178376748894717 m001 cos(1)/(Riemann3rdZero-exp(-1/2*Pi)) 2178376753566945 k001 Champernowne real with 1589*n+589 2178376753753898 s001 sum(1/10^(n-1)*A287359[n]/n^n,n=1..infinity) 2178376754400557 s001 sum(1/10^(n-1)*A136498[n]/n^n,n=1..infinity) 2178376759937265 m001 cos(1/12*Pi)*(Artin-ZetaR(2)) 2178376764658784 m001 1/Paris*Champernowne^2*exp(GAMMA(1/4))^2 2178376770474591 m001 (-cos(1/12*Pi)+BesselJ(1,1))/(exp(Pi)+1) 2178376779317170 p001 sum(1/(307*n+46)/(64^n),n=0..infinity) 2178376783223453 a007 Real Root Of -394*x^4-931*x^3-162*x^2+353*x+786 2178376784867194 m001 (MadelungNaCl-Otter)/(ZetaQ(2)+ZetaQ(4)) 2178376786184990 s001 sum(1/10^(n-1)*A288598[n]/n^n,n=1..infinity) 2178376786184990 s001 sum(1/10^(n-1)*A277737[n]/n^n,n=1..infinity) 2178376787421590 p004 log(25799/20749) 2178376796293175 r005 Im(z^2+c),c=-105/118+1/61*I,n=13 2178376808195253 r005 Im(z^2+c),c=-41/56+10/63*I,n=24 2178376816115125 r005 Im(z^2+c),c=-15/26+29/69*I,n=32 2178376818180109 s001 sum(1/10^(n-1)*A082371[n]/n^n,n=1..infinity) 2178376820466615 l006 ln(970/8567) 2178376820499683 r005 Im(z^2+c),c=-123/106+17/64*I,n=28 2178376828089070 r002 3th iterates of z^2 + 2178376833396192 r005 Re(z^2+c),c=-9/25+7/12*I,n=35 2178376835376013 r009 Im(z^3+c),c=-55/106+8/45*I,n=6 2178376837536525 a001 29/47*(1/2*5^(1/2)+1/2)^20*47^(9/11) 2178376845079764 a007 Real Root Of -622*x^4+460*x^3+393*x^2+521*x+101 2178376847300742 r002 55th iterates of z^2 + 2178376849229544 m001 (Landau+ZetaP(2))/(1+FeigenbaumMu) 2178376851526257 m005 (1/2*Zeta(3)-11/12)/(5/12*3^(1/2)+8/11) 2178376853586948 k001 Champernowne real with 1590*n+588 2178376860674494 m001 (Zeta(5)+arctan(1/2))/(BesselI(0,1)-gamma) 2178376864953451 m001 ln(3)/ln(2^(1/2)+1)*ZetaP(3) 2178376870187181 m001 1/GAMMA(1/6)*ln(FransenRobinson)^2/Zeta(1,2)^2 2178376878796189 r008 a(0)=0,K{-n^6,-15-22*n^3+24*n^2+61*n} 2178376883731770 a003 sin(Pi*5/72)/sin(Pi*45/97) 2178376885644604 m001 Pi+(exp(Pi)-2^(1/3))/GAMMA(19/24) 2178376888248581 a001 521/9227465*610^(13/14) 2178376888931976 m001 (Pi+GAMMA(3/4))/(Zeta(1,-1)-Tribonacci) 2178376898881595 m001 (Lehmer-Riemann2ndZero)/(Pi^(1/2)-GaussAGM) 2178376903157152 a007 Real Root Of -380*x^4-602*x^3+34*x^2-564*x+944 2178376905633073 m001 1/GAMMA(5/12)^2/ln(GaussKuzminWirsing)*sinh(1) 2178376910103954 m001 (Mills-Rabbit)/(CopelandErdos+FeigenbaumAlpha) 2178376912829553 r009 Re(z^3+c),c=-17/44+10/19*I,n=14 2178376912919875 r005 Im(z^2+c),c=1/15+9/43*I,n=13 2178376914516852 r002 30th iterates of z^2 + 2178376943734052 m001 (Champernowne+Landau)/(PlouffeB+Sierpinski) 2178376945275813 s001 sum(1/10^(n-1)*A122264[n]/n!^2,n=1..infinity) 2178376952627085 r005 Im(z^2+c),c=-25/54+16/51*I,n=8 2178376953606951 k001 Champernowne real with 1591*n+587 2178376955409851 m001 (3^(1/2)+ln(2))/(-exp(1/Pi)+MertensB1) 2178376961434499 a007 Real Root Of -329*x^4-828*x^3-578*x^2-965*x-510 2178376962788412 m001 1/BesselJ(1,1)/CareFree/ln(GAMMA(5/24)) 2178376965644672 a007 Real Root Of 403*x^4+600*x^3-547*x^2-298*x-926 2178376967980769 r005 Im(z^2+c),c=-63/110+17/60*I,n=12 2178376987816676 r005 Im(z^2+c),c=-61/78+11/62*I,n=3 2178376991027191 m001 KomornikLoreti*Niven*TravellingSalesman 2178376994139467 a007 Real Root Of 479*x^4+812*x^3-53*x^2+650*x-725 2178376997195080 a007 Real Root Of -362*x^4-19*x^3-825*x^2+910*x+238 2178376997379092 r005 Re(z^2+c),c=35/114+1/28*I,n=36 2178377005630589 l006 ln(5329/6626) 2178377012768039 l006 ln(607/5361) 2178377023796029 a007 Real Root Of 672*x^4+990*x^3-667*x^2+809*x+29 2178377030616525 r005 Re(z^2+c),c=-1/12+37/61*I,n=9 2178377037822760 a001 75025/322*322^(12/31) 2178377040071853 v003 sum((4*n^3-22*n^2+48*n-16)/n^n,n=1..infinity) 2178377043477136 s001 sum(1/10^(n-1)*A090348[n]/n^n,n=1..infinity) 2178377043790461 a007 Real Root Of 871*x^4+960*x^3-178*x^2-787*x+168 2178377047663808 h001 (10/11*exp(1)+8/9)/(1/3*exp(1)+7/11) 2178377053626954 k001 Champernowne real with 1592*n+586 2178377067090647 a007 Real Root Of -288*x^4-566*x^3-271*x^2-888*x-14 2178377067342196 h001 (8/11*exp(2)+2/7)/(8/9*exp(1)+2/11) 2178377071629482 a007 Real Root Of -517*x^4-868*x^3+403*x^2-5*x+746 2178377073255735 r005 Im(z^2+c),c=-73/82+11/58*I,n=61 2178377089559218 m001 (Niven-PlouffeB)/(Pi+FeigenbaumAlpha) 2178377100222905 a001 2207/6765*4181^(39/50) 2178377100474152 r005 Im(z^2+c),c=-49/106+19/50*I,n=50 2178377101468889 m001 Khinchin*(LaplaceLimit+ZetaR(2)) 2178377104258385 m001 1/Paris^2*ln(CareFree)/sqrt(1+sqrt(3)) 2178377108538539 r005 Re(z^2+c),c=-3/4+16/45*I,n=7 2178377114044226 r002 10th iterates of z^2 + 2178377116055283 a007 Real Root Of -552*x^4-908*x^3+163*x^2-776*x+580 2178377135352122 m005 (1/2*exp(1)-7/8)/(5/7*Zeta(3)-7/11) 2178377136923932 r002 52th iterates of z^2 + 2178377144766400 p004 log(13487/10847) 2178377148297842 r005 Im(z^2+c),c=-25/48+21/52*I,n=52 2178377153646957 k001 Champernowne real with 1593*n+585 2178377157171677 a007 Real Root Of 26*x^4+603*x^3+835*x^2+769*x-918 2178377169837009 m001 (StronglyCareFree+Thue)/(Zeta(1/2)+Rabbit) 2178377170850933 b008 -10+Tan[ArcSinh[2]] 2178377174337851 p004 log(20393/2309) 2178377175709821 a007 Real Root Of -461*x^4-908*x^3+634*x^2+593*x-722 2178377193253646 h001 (5/12*exp(1)+3/10)/(7/8*exp(2)+1/9) 2178377194340044 r005 Im(z^2+c),c=-1/90+15/62*I,n=9 2178377199642255 r009 Re(z^3+c),c=-7/60+41/49*I,n=18 2178377204591973 m005 (1/3*5^(1/2)-1/5)/(7/8*exp(1)+1/8) 2178377217658462 m008 (1/5*Pi^2-2/3)/(1/6*Pi^3+5/6) 2178377227805645 r005 Re(z^2+c),c=-97/102+8/39*I,n=28 2178377229717293 m001 (Robbin+Tetranacci)/(gamma(3)+KhinchinLevy) 2178377230948702 r009 Re(z^3+c),c=-27/74+25/46*I,n=39 2178377231959981 l006 ln(851/7516) 2178377241673575 r005 Re(z^2+c),c=-6/23+5/43*I,n=5 2178377253666960 k001 Champernowne real with 1594*n+584 2178377254336394 r002 62th iterates of z^2 + 2178377255043486 a003 cos(Pi*2/25)/sin(Pi*11/75) 2178377266702136 s002 sum(A244570[n]/(16^n),n=1..infinity) 2178377267128805 a005 (1/cos(8/207*Pi))^417 2178377273996578 a007 Real Root Of 400*x^4+512*x^3-467*x^2+491*x-429 2178377274640272 r005 Re(z^2+c),c=5/18+8/43*I,n=22 2178377279136594 l006 ln(5518/6861) 2178377283332407 a007 Real Root Of 25*x^4+273*x^3+753*x^2-854*x-219 2178377284892152 m001 (Sierpinski+ZetaP(2))/(gamma(1)+Porter) 2178377295583473 m005 (3/5*Catalan+5/6)/(65/12+5/12*5^(1/2)) 2178377301780290 s002 sum(A150209[n]/(n^3*2^n+1),n=1..infinity) 2178377303815373 s001 sum(exp(-Pi)^(n-1)*A067893[n],n=1..infinity) 2178377303815427 s001 sum(exp(-Pi)^(n-1)*A067794[n],n=1..infinity) 2178377303825653 m005 (1/2*3^(1/2)+7/10)/(5/8*3^(1/2)-4/11) 2178377309284365 r005 Im(z^2+c),c=-21/26+1/90*I,n=25 2178377329873502 a007 Real Root Of 311*x^4+185*x^3-688*x^2+611*x-495 2178377334552147 m001 (Artin-Bloch)/(FeigenbaumDelta-ZetaP(3)) 2178377336826227 r005 Re(z^2+c),c=-4/29+21/41*I,n=44 2178377339314492 m005 (1/3*gamma+1/10)/(3/7*3^(1/2)+3/5) 2178377351558750 m006 (1/4*Pi^2-3)/(1/6*Pi^2+4/5) 2178377351558750 m008 (1/4*Pi^2-3)/(1/6*Pi^2+4/5) 2178377351558750 m009 (1/4*Pi^2-3)/(1/6*Pi^2+4/5) 2178377353466362 l006 ln(1095/9671) 2178377353686963 k001 Champernowne real with 1595*n+583 2178377357596488 a001 2207/2*3^(13/21) 2178377365259019 m001 HardyLittlewoodC3*(DuboisRaymond+ZetaR(2)) 2178377371345666 m005 (9/20+1/4*5^(1/2))/(-23/40+1/20*5^(1/2)) 2178377376490827 r005 Im(z^2+c),c=-13/12+13/60*I,n=8 2178377378240877 a007 Real Root Of 629*x^4+912*x^3-541*x^2+618*x-823 2178377390674183 r005 Re(z^2+c),c=-27/32+6/29*I,n=34 2178377395237695 a007 Real Root Of -28*x^4-607*x^3+69*x^2+97*x-180 2178377399016202 a007 Real Root Of 400*x^4+777*x^3-214*x^2-343*x-707 2178377400573853 m005 (1/2*exp(1)+1/9)/(1/10*Catalan+7/12) 2178377403099502 a001 682/9*(1/2*5^(1/2)+1/2)^13*18^(13/22) 2178377403645507 m005 (1/2*Zeta(3)-1/4)/(6/11*3^(1/2)+2/3) 2178377409799607 r009 Re(z^3+c),c=-3/56+31/41*I,n=59 2178377422522398 b008 -22+Csch[Sqrt[5]] 2178377423244032 m001 (Zeta(1/2)-PrimesInBinary)/(Thue+ZetaQ(4)) 2178377437080913 r005 Im(z^2+c),c=-11/15+1/61*I,n=22 2178377448388446 a007 Real Root Of -250*x^4-680*x^3-436*x^2-136*x+373 2178377452927431 a007 Real Root Of -329*x^4-172*x^3+746*x^2-894*x+143 2178377453706966 k001 Champernowne real with 1596*n+582 2178377455647593 a007 Real Root Of 681*x^4+998*x^3-882*x^2+17*x-796 2178377460482227 a007 Real Root Of -437*x^4-266*x^3+982*x^2-997*x+259 2178377485525974 m001 1/3*(ln(3)+3^(1/3)*Riemann2ndZero)*3^(2/3) 2178377487920697 a007 Real Root Of -317*x^4-880*x^3-200*x^2+58*x-883 2178377511306426 a003 sin(Pi*3/44)/cos(Pi*4/57) 2178377511745492 r009 Re(z^3+c),c=-1/10+47/59*I,n=31 2178377525236888 a007 Real Root Of -600*x^4-806*x^3+748*x^2-996*x-540 2178377526498102 m008 (3/4*Pi+2/5)/(2/5*Pi^3+1/4) 2178377530650774 a007 Real Root Of -246*x^4-495*x^3+173*x^2-155*x-736 2178377534527073 l006 ln(5707/7096) 2178377541580371 r005 Im(z^2+c),c=-17/18+36/157*I,n=55 2178377542250406 m001 LaplaceLimit^3*ln(BesselK(0,1))^2 2178377544264543 m005 (1/2*3^(1/2)-1/11)/(2/5*Zeta(3)-1/8) 2178377544409057 r002 64th iterates of z^2 + 2178377553726969 k001 Champernowne real with 1597*n+581 2178377559426170 p003 LerchPhi(1/125,4,306/209) 2178377559603541 h001 (2/5*exp(1)+2/11)/(2/3*exp(2)+9/10) 2178377569507295 r009 Re(z^3+c),c=-14/23+31/60*I,n=51 2178377569592018 r002 57th iterates of z^2 + 2178377578403184 m001 (Zeta(3)-ln(Pi))/(Khinchin-ZetaQ(2)) 2178377584629689 a003 sin(Pi*8/59)/cos(Pi*47/107) 2178377586619701 m005 (1/2*Pi-2)/(9/10*Pi-6/7) 2178377593068573 m001 (Bloch+ZetaQ(4))/(Si(Pi)+arctan(1/3)) 2178377594920758 m005 (1/2*3^(1/2)+1/10)/(7/9*Pi-2) 2178377595753325 p004 log(28619/23017) 2178377599844111 k002 Champernowne real with 23/2*n^2+283/2*n-151 2178377609581896 m001 Shi(1)*Ei(1)+ZetaP(3) 2178377610050185 m001 (MertensB1-Rabbit)/(BesselK(1,1)+Backhouse) 2178377624479661 m001 1/ln(GAMMA(5/12))*GlaisherKinkelin^2 2178377624589164 m001 1/GAMMA(7/24)/exp(FeigenbaumB)*cosh(1) 2178377625466561 m006 (2/5/Pi-1/4)/(2/3*ln(Pi)-1/5) 2178377627273230 m001 (1-CareFree)/(FeigenbaumKappa+HeathBrownMoroz) 2178377629389499 a001 2889/4*1346269^(7/29) 2178377633212098 m001 (1-ln(Pi))/(LaplaceLimit+ZetaQ(4)) 2178377634321964 m001 (Artin+GolombDickman)/(QuadraticClass-Totient) 2178377640624797 h001 (3/5*exp(2)+1/11)/(8/11*exp(1)+1/10) 2178377644414647 a003 cos(Pi*7/107)*cos(Pi*3/7) 2178377648428880 a001 6557470319842/3*1364^(22/23) 2178377650501162 m001 (2^(1/3)+exp(1/Pi))/(-ZetaP(3)+ZetaQ(2)) 2178377653746972 k001 Champernowne real with 1598*n+580 2178377654254322 m001 (-BesselK(0,1)+ln(5))/(Psi(2,1/3)+LambertW(1)) 2178377654662724 a007 Real Root Of 986*x^4+791*x^3+774*x^2-607*x-163 2178377658507813 m005 (1/2*2^(1/2)-2/7)/(1/2*Pi+4/11) 2178377659361805 r005 Im(z^2+c),c=-7/36+11/36*I,n=20 2178377660539838 a007 Real Root Of 509*x^4+774*x^3-565*x^2+643*x+621 2178377661288875 h001 (2/11*exp(1)+7/12)/(7/12*exp(2)+7/11) 2178377666759403 r005 Re(z^2+c),c=-5/29+25/57*I,n=21 2178377667490734 r002 45th iterates of z^2 + 2178377668379560 s002 sum(A019686[n]/(n*2^n-1),n=1..infinity) 2178377692269749 a001 1/304*(1/2*5^(1/2)+1/2)^2*76^(3/14) 2178377704520786 m001 Gompertz/PrimesInBinary/TwinPrimes 2178377705117745 m001 1/LandauRamanujan^2/Si(Pi)/ln(GAMMA(7/12)) 2178377707846898 m002 1+Log[Pi]+Tanh[Pi]/(3*Pi^2) 2178377710388268 a007 Real Root Of -547*x^4-799*x^3+798*x^2-125*x-1 2178377717221187 b008 1-3*Coth[Sqrt[Pi]] 2178377720442753 a007 Real Root Of 558*x^4+981*x^3-521*x^2-134*x-244 2178377731760361 m006 (4*exp(Pi)+2/5)/(3*ln(Pi)+5/6) 2178377733315221 m001 1/Zeta(3)*GAMMA(5/6)*exp(sin(1)) 2178377738686646 a007 Real Root Of 469*x^4+798*x^3-593*x^2-611*x-829 2178377742846922 m005 (1/2*gamma+1/6)/(2/5*Pi+5/6) 2178377750377097 a001 2/987*75025^(43/52) 2178377750778231 m001 GAMMA(3/4)^KomornikLoreti/TwinPrimes 2178377753766975 k001 Champernowne real with 1599*n+579 2178377753851776 m001 GAMMA(19/24)*exp(DuboisRaymond)/cos(Pi/5)^2 2178377757659679 r009 Re(z^3+c),c=-9/29+14/29*I,n=6 2178377760721502 m001 MadelungNaCl^2/ln(GaussKuzminWirsing)^2/Pi^2 2178377773544140 l006 ln(5896/7331) 2178377776243634 a007 Real Root Of 652*x^4+345*x^3+286*x^2-108*x-35 2178377777244646 l006 ln(244/2155) 2178377787337376 m001 (MinimumGamma+Rabbit)/(Chi(1)+Zeta(1,2)) 2178377792657562 a007 Real Root Of -686*x^4-908*x^3+864*x^2-602*x+650 2178377793661491 r005 Im(z^2+c),c=-13/21+2/45*I,n=32 2178377799421294 m001 (LambertW(1)*BesselI(1,2)+1/3)/LambertW(1) 2178377811730297 a007 Real Root Of -325*x^4+559*x^3-984*x^2+224*x+102 2178377815882251 m001 (OrthogonalArrays-exp(Pi)*MertensB2)/MertensB2 2178377819248958 m001 (CareFree+Stephens)/(Tetranacci-Totient) 2178377820376228 b008 E/15+Sech[4] 2178377821084268 r005 Re(z^2+c),c=1/36+1/13*I,n=8 2178377823305979 m005 (1/3*Catalan-2/7)/(1/10*exp(1)-2/11) 2178377823801670 a007 Real Root Of -914*x^4+339*x^3+892*x^2+839*x+146 2178377828788819 a007 Real Root Of -314*x^4-695*x^3+173*x^2+160*x-586 2178377848327651 a007 Real Root Of 578*x^4+777*x^3+325*x^2-690*x-159 2178377853786978 k001 Champernowne real with 1600*n+578 2178377861383277 r009 Re(z^3+c),c=-1/4+4/17*I,n=14 2178377867429830 r002 14th iterates of z^2 + 2178377873019556 r005 Re(z^2+c),c=9/28+8/45*I,n=7 2178377881875155 a001 11/89*34^(9/56) 2178377887396938 p004 log(14897/11981) 2178377889712385 a007 Real Root Of -241*x^4+201*x^3-704*x^2+133*x+65 2178377895631869 m001 (Zeta(1,-1)-gamma(2))/(Sarnak-ZetaQ(3)) 2178377898353702 a001 281/2255*514229^(26/35) 2178377898705901 r005 Im(z^2+c),c=-3/94+17/23*I,n=9 2178377900630257 a001 38/10182505537*53316291173^(1/14) 2178377900630257 a001 76/12586269025*63245986^(1/14) 2178377900635785 a001 76/7778742049*75025^(1/14) 2178377916539570 m001 3^(1/3)+Gompertz^Lehmer 2178377917075727 m001 (-PolyaRandomWalk3D+TwinPrimes)/(Niven-Si(Pi)) 2178377934160045 a001 165580141/843*123^(1/2) 2178377942986860 p004 log(30029/24151) 2178377945618598 a007 Real Root Of -71*x^4+231*x^3+387*x^2+651*x+14 2178377947561494 r005 Re(z^2+c),c=-17/122+27/53*I,n=49 2178377949915808 m002 1+Pi/30+ProductLog[Pi] 2178377953806981 k001 Champernowne real with 1601*n+577 2178377956373380 m001 Psi(2,1/3)*HardyLittlewoodC5+AlladiGrinstead 2178377959074728 r009 Re(z^3+c),c=-25/78+3/7*I,n=27 2178377960208050 m005 (1/2*exp(1)-5)/(11/12*2^(1/2)+3/8) 2178377968969759 m005 (3/20+1/4*5^(1/2))/(11/12*Pi+3/8) 2178377976726842 m001 (FeigenbaumC+KhinchinLevy)/(Robbin+Sarnak) 2178377987484455 m001 (Gompertz+ZetaP(3))/(Zeta(5)+FeigenbaumAlpha) 2178377987948694 m001 (-Lehmer+Porter)/(BesselJ(1,1)-sin(1)) 2178377993294405 a005 (1/sin(79/227*Pi))^589 2178377997713470 l006 ln(6085/7566) 2178378004296895 a001 7/144*1346269^(28/47) 2178378004458313 a007 Real Root Of -67*x^4+506*x^3-487*x^2-375*x-594 2178378008773725 r005 Im(z^2+c),c=-53/94+10/47*I,n=5 2178378011702622 a001 9227465/199*322^(2/3) 2178378012117651 r005 Re(z^2+c),c=-10/19+22/41*I,n=23 2178378023889371 r002 44th iterates of z^2 + 2178378032336116 r005 Re(z^2+c),c=-73/90+4/55*I,n=28 2178378041949337 q001 7/32134 2178378053826984 k001 Champernowne real with 1602*n+576 2178378076600056 r009 Re(z^3+c),c=-4/31+59/64*I,n=32 2178378089711665 m005 (1/2*gamma-5/6)/(1/12*2^(1/2)-1/7) 2178378094913004 r005 Im(z^2+c),c=27/62+13/33*I,n=6 2178378114482955 m001 (ArtinRank2-Riemann1stZero)/(Zeta(5)-ln(3)) 2178378133956646 r002 3th iterates of z^2 + 2178378145204878 s001 sum(exp(-Pi/2)^(n-1)*A149048[n],n=1..infinity) 2178378145344027 r009 Re(z^3+c),c=-1/4+4/17*I,n=18 2178378145466350 r009 Re(z^3+c),c=-1/4+4/17*I,n=17 2178378147062300 r009 Re(z^3+c),c=-1/4+4/17*I,n=15 2178378147069636 r005 Re(z^2+c),c=43/122+4/17*I,n=41 2178378148628842 r009 Re(z^3+c),c=-1/4+4/17*I,n=21 2178378148721842 r009 Re(z^3+c),c=-1/4+4/17*I,n=22 2178378148743024 r009 Re(z^3+c),c=-1/4+4/17*I,n=25 2178378148744878 r009 Re(z^3+c),c=-1/4+4/17*I,n=28 2178378148744889 r009 Re(z^3+c),c=-1/4+4/17*I,n=29 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=32 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=33 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=36 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=39 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=40 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=43 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=44 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=47 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=46 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=50 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=51 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=54 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=58 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=57 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=55 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=61 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=62 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=64 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=63 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=60 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=59 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=56 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=53 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=52 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=49 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=48 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=45 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=42 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=41 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=35 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=37 2178378148744909 r009 Re(z^3+c),c=-1/4+4/17*I,n=38 2178378148744910 r009 Re(z^3+c),c=-1/4+4/17*I,n=34 2178378148744911 r009 Re(z^3+c),c=-1/4+4/17*I,n=31 2178378148744915 r009 Re(z^3+c),c=-1/4+4/17*I,n=30 2178378148744997 r009 Re(z^3+c),c=-1/4+4/17*I,n=26 2178378148745115 r009 Re(z^3+c),c=-1/4+4/17*I,n=27 2178378148745886 r009 Re(z^3+c),c=-1/4+4/17*I,n=24 2178378148760560 r009 Re(z^3+c),c=-1/4+4/17*I,n=23 2178378149054979 r009 Re(z^3+c),c=-1/4+4/17*I,n=20 2178378149476960 r009 Re(z^3+c),c=-1/4+4/17*I,n=19 2178378153846987 k001 Champernowne real with 1603*n+575 2178378158053910 a007 Real Root Of 560*x^4+687*x^3-982*x^2-58*x-975 2178378159807859 m005 (2*Catalan+1/5)/(4/5*Catalan+1/5) 2178378159907635 m003 193/8+Sqrt[5]/8-Cosh[1/2+Sqrt[5]/2] 2178378163899950 a007 Real Root Of -522*x^4-839*x^3+38*x^2-966*x+797 2178378168700592 h001 (8/11*exp(2)+1/7)/(8/11*exp(1)+5/9) 2178378169720286 p004 log(31327/3547) 2178378178800654 a001 3/89*377^(26/37) 2178378181646139 r009 Re(z^3+c),c=-1/4+4/17*I,n=16 2178378189961671 m005 (-9/44+1/4*5^(1/2))/(7/11*2^(1/2)+8/11) 2178378190113200 a007 Real Root Of 148*x^4+168*x^3-628*x^2-471*x+358 2178378193852483 a007 Real Root Of 143*x^4-9*x^3-752*x^2-557*x-958 2178378195210579 a001 514229/322*123^(2/31) 2178378198713334 l006 ln(1101/9724) 2178378203004906 r005 Re(z^2+c),c=6/19+25/58*I,n=29 2178378208172518 h001 (5/11*exp(2)+8/9)/(5/11*exp(1)+5/7) 2178378208376896 l006 ln(6274/7801) 2178378226806647 m001 gamma(3)^(2*Pi/GAMMA(5/6))*gamma(3)^MertensB1 2178378227669985 m001 (QuadraticClass+Sarnak)/(TwinPrimes+ZetaP(4)) 2178378233086069 m001 (Zeta(5)-ln(5))/(HeathBrownMoroz+MertensB1) 2178378241066269 a007 Real Root Of 589*x^4+720*x^3-938*x^2+770*x+308 2178378253866990 k001 Champernowne real with 1604*n+574 2178378255100038 a001 18/7778742049*17711^(7/10) 2178378256072217 a001 6/75283811239*2178309^(7/10) 2178378256072281 a001 9/3278735159921*267914296^(7/10) 2178378264945122 r005 Im(z^2+c),c=-101/106+7/27*I,n=9 2178378287179919 m001 (Kac-Robbin)/(Zeta(3)-Zeta(5)) 2178378289776899 r009 Im(z^3+c),c=-65/126+9/64*I,n=43 2178378293781699 m006 (Pi^2+3)/(1/6*ln(Pi)+2/5) 2178378294778753 a007 Real Root Of -553*x^4-864*x^3+921*x^2+186*x-444 2178378302444060 a007 Real Root Of -280*x^4-203*x^3+628*x^2-676*x-246 2178378306793497 m005 (1/3*exp(1)-2/7)/(3*Catalan+1/10) 2178378310411665 m002 -4+Pi^9*Sech[Pi]^2 2178378318711387 l006 ln(857/7569) 2178378318921050 r009 Re(z^3+c),c=-9/40+7/48*I,n=3 2178378334913536 m005 (1/2*5^(1/2)-1/6)/(7/11*gamma+4) 2178378342424084 m001 (3^(1/3)-exp(Pi))/(-Conway+HardyLittlewoodC4) 2178378348953118 m001 (-Pi^(1/2)+Totient)/(sin(1)+ln(Pi)) 2178378351705284 m001 (-Trott2nd+ZetaP(3))/(3^(1/2)-GAMMA(11/12)) 2178378353886993 k001 Champernowne real with 1605*n+573 2178378366172489 m008 (Pi^2+3/5)/(5*Pi^6-4/5) 2178378373078621 m001 (cos(1/12*Pi)+PlouffeB)/(Zeta(3)-cos(1)) 2178378378378378 q001 403/185 2178378380535203 m001 (2^(1/2)+exp(1/exp(1)))/(-Totient+Trott2nd) 2178378381301134 a001 843/10946*3^(53/56) 2178378389740226 r005 Re(z^2+c),c=-21/110+13/34*I,n=8 2178378394030901 a007 Real Root Of -21*x^4+542*x^3-803*x^2-271*x-729 2178378396673768 m001 Catalan/exp(Magata)*GAMMA(1/3)^2 2178378397486425 a007 Real Root Of 502*x^4+950*x^3-627*x^2-709*x-53 2178378403131441 a001 3571/18*(1/2*5^(1/2)+1/2)^11*18^(13/22) 2178378405099264 a001 267914296/199*123^(1/10) 2178378406719295 l006 ln(6463/8036) 2178378420504771 b008 LogBarnesG[14/E^3] 2178378421499242 r005 Re(z^2+c),c=-13/94+22/43*I,n=63 2178378428530627 r005 Re(z^2+c),c=13/98+15/47*I,n=23 2178378429674676 r009 Re(z^3+c),c=-1/4+4/17*I,n=13 2178378431781857 p001 sum(1/(494*n+479)/(12^n),n=0..infinity) 2178378431893950 m001 ArtinRank2+(3^(1/2))^TravellingSalesman 2178378434801209 r005 Im(z^2+c),c=-7/8+25/139*I,n=57 2178378445486944 r002 22th iterates of z^2 + 2178378445564811 p004 log(18397/2083) 2178378453906996 k001 Champernowne real with 1606*n+572 2178378455488457 m001 (Riemann2ndZero+Robbin)/(Niven-Rabbit) 2178378455979608 r005 Im(z^2+c),c=9/58+22/35*I,n=14 2178378456099736 p001 sum((-1)^n/(599*n+453)/(32^n),n=0..infinity) 2178378464080284 m001 BesselJ(0,1)/ln(OneNinth)^2*sqrt(2) 2178378464083772 m001 (Psi(2,1/3)+3^(1/2))/(sin(1)+ln(5)) 2178378472824927 r002 22th iterates of z^2 + 2178378476217977 a007 Real Root Of 368*x^4+430*x^3-836*x^2-473*x-905 2178378487756986 r005 Im(z^2+c),c=-41/94+23/40*I,n=51 2178378492237448 m005 (1/2*gamma+2/3)/(3/8*5^(1/2)-2/5) 2178378495890270 m006 (5*ln(Pi)-5/6)/(1/6*Pi^2+3/5) 2178378498025186 m001 TwinPrimes*(Sierpinski+TravellingSalesman) 2178378500584566 a007 Real Root Of 463*x^4+836*x^3-41*x^2+827*x+212 2178378501142596 a001 31622993/2*3^(7/24) 2178378506100511 r009 Re(z^3+c),c=-31/114+19/63*I,n=2 2178378506161242 m001 ZetaP(4)*(exp(1/exp(1))+HardHexagonsEntropy) 2178378509694681 m001 (sin(1)+cos(1))/(-Robbin+Trott2nd) 2178378509864987 a007 Real Root Of -983*x^4-824*x^3-488*x^2+524*x+131 2178378513163471 m001 Si(Pi)^Zeta(1/2)-Sierpinski 2178378519751701 m006 (Pi-2/5)/(3/4*ln(Pi)+2/5) 2178378519878461 r009 Im(z^3+c),c=-17/42+3/25*I,n=8 2178378534238035 l006 ln(613/5414) 2178378543065030 m005 (1/2*Catalan-9/11)/(8/11*2^(1/2)+5/8) 2178378547024316 m001 (ArtinRank2+Gompertz)/(HeathBrownMoroz+Lehmer) 2178378547103888 r005 Im(z^2+c),c=-7/62+53/61*I,n=30 2178378549034135 a001 9349/18*(1/2*5^(1/2)+1/2)^9*18^(13/22) 2178378552324684 m001 (HardyLittlewoodC5+Sierpinski)^Rabbit 2178378553926999 k001 Champernowne real with 1607*n+571 2178378570321051 a001 12238/9*(1/2*5^(1/2)+1/2)^7*18^(13/22) 2178378573426770 a001 64079/18*(1/2*5^(1/2)+1/2)^5*18^(13/22) 2178378573957291 a001 1/18*(1/2*5^(1/2)+1/2)^28*18^(13/22) 2178378574490614 a007 Real Root Of 441*x^4+936*x^3+313*x^2+534*x-577 2178378575346210 a001 13201/6*(1/2*5^(1/2)+1/2)^6*18^(13/22) 2178378576123342 m001 BesselK(1,1)-Ei(1)*Porter 2178378578827387 a007 Real Root Of 972*x^4-338*x^3-689*x^2-583*x+161 2178378582911360 r005 Re(z^2+c),c=-39/122+1/53*I,n=2 2178378583477089 a001 15127/18*(1/2*5^(1/2)+1/2)^8*18^(13/22) 2178378590572084 m001 (3^(1/2)+BesselJ(0,1))/(ln(Pi)+ZetaQ(4)) 2178378593790881 l006 ln(6652/8271) 2178378602850112 k002 Champernowne real with 12*n^2+140*n-150 2178378610086444 m001 (1+Psi(2,1/3))/(ln(Pi)+Totient) 2178378610452460 s002 sum(A282993[n]/(n*2^n-1),n=1..infinity) 2178378639206959 a001 321*(1/2*5^(1/2)+1/2)^10*18^(13/22) 2178378640151172 m001 HardHexagonsEntropy/(gamma(1)+ZetaQ(3)) 2178378643058259 a007 Real Root Of -500*x^4-761*x^3+439*x^2-669*x-148 2178378643257670 r008 a(0)=0,K{-n^6,-7-83*n^3-48*n^2+92*n} 2178378644922148 r008 a(0)=0,K{-n^6,-13+86*n^3+29*n^2-56*n} 2178378653947002 k001 Champernowne real with 1608*n+570 2178378659163898 m001 (GAMMA(2/3)-arctan(1/3))/(gamma(3)+Bloch) 2178378660683816 a003 sin(Pi*13/113)*sin(Pi*15/71) 2178378672892531 a005 (1/sin(99/205*Pi))^541 2178378676742404 m001 1/Zeta(3)^2*(2^(1/3))^2/exp(cos(Pi/5))^2 2178378705581074 a007 Real Root Of 46*x^4-684*x^3+741*x^2+709*x+974 2178378715093629 b008 ArcCsch[7*Sqrt[43]] 2178378716187195 m001 (-GAMMA(3/4)+TreeGrowth2nd)/(Zeta(3)-sin(1)) 2178378720013937 r005 Im(z^2+c),c=17/66+17/38*I,n=4 2178378722329989 l006 ln(982/8673) 2178378723067692 m004 -5+5*Csc[Sqrt[5]*Pi]-5*Tan[Sqrt[5]*Pi] 2178378728181316 m001 Catalan/GaussKuzminWirsing^2*ln(GAMMA(5/24))^2 2178378730231381 r009 Re(z^3+c),c=-19/50+26/47*I,n=30 2178378732611167 a001 161/4*28657^(7/18) 2178378735078213 m005 (1/2*Zeta(3)-1/5)/(4/9*2^(1/2)-4/9) 2178378735962324 r009 Re(z^3+c),c=-25/66+21/38*I,n=18 2178378736756563 r009 Re(z^3+c),c=-21/52+28/51*I,n=25 2178378744360443 a003 cos(Pi*2/31)-sin(Pi*18/41) 2178378745623994 a001 516002918640*9349^(21/23) 2178378753375240 r005 Re(z^2+c),c=-11/90+25/46*I,n=52 2178378753967005 k001 Champernowne real with 1609*n+569 2178378759037448 a001 64079/2*14930352^(20/21) 2178378759420402 r005 Im(z^2+c),c=-79/70+2/9*I,n=13 2178378765376071 a001 516002918640*24476^(19/23) 2178378767585633 r002 42th iterates of z^2 + 2178378768379906 a001 6557470319842/3*7881196^(10/23) 2178378768379917 a001 53316291173/3*20633239^(16/23) 2178378768379920 a001 12586269025/3*54018521^(17/23) 2178378768379921 a001 365435296162/3*141422324^(12/23) 2178378768379921 a001 233802911*2139295485799^(13/23) 2178378768379921 a001 1602508992*2537720636^(15/23) 2178378768379921 a001 2504730781961/3*6643838879^(8/23) 2178378768379921 a001 10983760033*119218851371^(11/23) 2178378768379921 a001 6557470319842/3*312119004989^(6/23) 2178378768379921 a001 516002918640*817138163596^(7/23) 2178378768379921 a001 53316291173/3*505019158607^(10/23) 2178378768379921 a001 365435296162/3*73681302247^(9/23) 2178378768379921 a001 1134903170/3*9062201101803^(12/23) 2178378768379921 a001 165580141/3*1568397607^(19/23) 2178378768379921 a001 53316291173/3*228826127^(14/23) 2178378768379921 a001 63245986/3*17393796001^(18/23) 2178378768379921 a001 63245986/3*14662949395604^(14/23) 2178378768379921 a001 63245986/3*599074578^(21/23) 2178378768379921 a001 165580141/3*87403803^(22/23) 2178378768379922 a001 24157817/3*1322157322203^(16/23) 2178378768379922 a001 365435296162/3*33385282^(13/23) 2178378768379956 a001 3524578/3*45537549124^(20/23) 2178378768379956 a001 3524578/3*3461452808002^(17/23) 2178378768380222 a001 6557470319842/3*1860498^(11/23) 2178378768383672 a001 53316291173/3*710647^(20/23) 2178378768403058 a001 365435296162/3*271443^(18/23) 2178378769285738 a001 6557470319842/3*39603^(15/23) 2178378770525808 l006 ln(6841/8506) 2178378792532141 m001 GAMMA(2/3)^2*exp(Trott)*sinh(1) 2178378793303078 a001 4181/3*5600748293801^(22/23) 2178378801758466 r005 Im(z^2+c),c=-43/94+19/49*I,n=26 2178378802912832 m005 (2/3*Catalan-3/5)/(1/2*gamma+1/5) 2178378809689708 r005 Im(z^2+c),c=-61/86+6/49*I,n=15 2178378816791627 r005 Re(z^2+c),c=23/74+11/52*I,n=57 2178378821097823 s002 sum(A224749[n]/(exp(pi*n)-1),n=1..infinity) 2178378828766747 r004 Re(z^2+c),c=-41/42+1/21*I,z(0)=-1,n=7 2178378830460871 a007 Real Root Of -440*x^4-401*x^3+912*x^2-931*x-593 2178378853987008 k001 Champernowne real with 1610*n+568 2178378857115758 r005 Re(z^2+c),c=-35/36+1/13*I,n=28 2178378870803941 m005 (1/2*Pi+5/11)/(8/9*gamma+5/12) 2178378874166385 m008 (3/5*Pi^6-2/3)/(1/6*Pi^2+1) 2178378880718060 m001 Zeta(1,2)*(MertensB1-Sierpinski) 2178378889754740 m001 (Lehmer+Trott)/(exp(1/Pi)+HardHexagonsEntropy) 2178378893881535 r009 Im(z^3+c),c=-23/82+7/38*I,n=5 2178378894995385 r002 3th iterates of z^2 + 2178378903796528 r005 Re(z^2+c),c=-17/66+4/35*I,n=6 2178378913289144 m005 (25/36+1/4*5^(1/2))/(12/5+3/2*5^(1/2)) 2178378918658061 a007 Real Root Of 318*x^4+516*x^3-480*x^2-336*x-281 2178378922214395 a007 Real Root Of 169*x^4-155*x^3+593*x^2-991*x-246 2178378928766398 s002 sum(A203772[n]/((exp(n)+1)/n),n=1..infinity) 2178378937757773 l006 ln(7030/8741) 2178378940337464 v002 sum(1/(3^n*(7/2*n^2+71/2*n-22)),n=1..infinity) 2178378942116954 m001 GaussAGM(1,1/sqrt(2))/(Pi+RenyiParking) 2178378948848482 a007 Real Root Of -371*x^4-654*x^3+366*x^2+415*x+761 2178378952637826 r009 Re(z^3+c),c=-39/110+20/39*I,n=33 2178378954007011 k001 Champernowne real with 1611*n+567 2178378956373928 b008 EulerGamma+EllipticK[2/27] 2178378956465564 a007 Real Root Of 502*x^4+786*x^3-263*x^2+651*x-513 2178378966898686 m001 1/Trott^2*FeigenbaumAlpha^2*ln(Ei(1))^2 2178378968298363 m009 (1/10*Pi^2+1/2)/(1/6*Psi(1,1/3)-1) 2178378979716252 r005 Im(z^2+c),c=-9/14+67/213*I,n=57 2178378989362127 m001 cos(1/5*Pi)+GAMMA(2/3)^Zeta(5) 2178378989362127 m001 cos(Pi/5)+GAMMA(2/3)^Zeta(5) 2178378994530241 m001 (2^(1/3)-Zeta(5))/(-Ei(1,1)+arctan(1/3)) 2178379001949323 r005 Re(z^2+c),c=-7/44+17/19*I,n=11 2178379006109969 m002 -24+Pi^2/3-ProductLog[Pi] 2178379012671538 m001 Ei(1)^2*ln(BesselJ(1,1))*exp(1)^2 2178379014681368 r002 5th iterates of z^2 + 2178379021185170 a001 2207/18*(1/2*5^(1/2)+1/2)^12*18^(13/22) 2178379022832753 r009 Re(z^3+c),c=-43/122+30/59*I,n=42 2178379025240438 m001 1/FeigenbaumD^2/Magata^2/ln(sqrt(3)) 2178379026722914 m001 Trott/FransenRobinson/Pi^(1/2) 2178379027531547 m001 exp(-1/2*Pi)*(ArtinRank2-KhinchinHarmonic) 2178379034797034 l006 ln(369/3259) 2178379041279986 r005 Im(z^2+c),c=-17/36+1/27*I,n=37 2178379051293413 h001 (-2*exp(2/3)+2)/(-6*exp(-3)+9) 2178379054027014 k001 Champernowne real with 1612*n+566 2178379055862674 a007 Real Root Of -646*x^4+705*x^3+900*x^2+833*x-230 2178379057764002 r005 Im(z^2+c),c=-33/46+7/44*I,n=5 2178379060002689 a007 Real Root Of 517*x^4+778*x^3-448*x^2+957*x+611 2178379063110454 a007 Real Root Of -430*x^4-330*x^3+440*x^2+925*x-218 2178379067477981 h001 (-8*exp(-3)-6)/(-7*exp(3/2)+2) 2178379075099181 r005 Re(z^2+c),c=1/36+1/13*I,n=9 2178379083398140 m001 (GAMMA(19/24)-Backhouse)/(MertensB1+MertensB2) 2178379096233165 l006 ln(7219/8976) 2178379110547745 r002 40th iterates of z^2 + 2178379114259097 a003 sin(Pi*26/103)/cos(Pi*13/33) 2178379117145795 s002 sum(A030286[n]/(10^n+1),n=1..infinity) 2178379133792591 m005 (1/2*2^(1/2)-2/7)/(-2/7+3/14*5^(1/2)) 2178379136583046 r002 4th iterates of z^2 + 2178379154047017 k001 Champernowne real with 1613*n+565 2178379160904067 a005 (1/cos(13/108*Pi))^482 2178379162931180 p002 log(15^(9/10)-11^(2/5)) 2178379177113726 m001 (arctan(1/2)-Backhouse)/(Pi+2^(1/2)) 2178379193307902 m001 LambertW(1)/(LandauRamanujan+Tribonacci) 2178379197886272 m002 (16*Cosh[Pi]^2)/Pi^2 2178379212212362 p001 sum(1/(598*n+477)/(12^n),n=0..infinity) 2178379212432692 m006 (1/3*exp(Pi)+3)/(5*Pi^2-1/6) 2178379216471386 m001 (ln(3)-Grothendieck)/(Paris-ThueMorse) 2178379217401162 a008 Real Root of (1+4*x-3*x^2+5*x^4-5*x^5) 2178379219644743 b008 2+SinIntegral[2]/9 2178379220710357 r005 Re(z^2+c),c=7/26+11/62*I,n=37 2178379222581432 m001 Cahen^(2^(1/3))*arctan(1/2)^(2^(1/3)) 2178379224375110 a007 Real Root Of -457*x^4-482*x^3+891*x^2-304*x+418 2178379227554725 m002 -4*Pi^3-Pi^4+Pi*Log[Pi] 2178379229705789 a007 Real Root Of 257*x^4+536*x^3+182*x^2+96*x-901 2178379230118073 a007 Real Root Of -850*x^4-759*x^3-136*x^2+965*x-194 2178379241621661 a003 sin(Pi*7/101)/sin(Pi*39/85) 2178379244344025 m001 (cos(1)+GAMMA(3/4))/(-Bloch+GlaisherKinkelin) 2178379244764211 r005 Re(z^2+c),c=3/34+41/60*I,n=5 2178379246622202 l006 ln(7408/9211) 2178379252417839 r005 Re(z^2+c),c=29/86+13/36*I,n=4 2178379254067020 k001 Champernowne real with 1614*n+564 2178379267470966 m005 (1/3*5^(1/2)+1/8)/(2/9*Zeta(3)-2/3) 2178379271047059 m001 (Niven+PolyaRandomWalk3D)/(BesselI(1,1)+Artin) 2178379275260258 a007 Real Root Of 689*x^4+212*x^3+919*x^2-652*x-185 2178379277021255 r005 Im(z^2+c),c=11/52+6/47*I,n=11 2178379282513355 r005 Re(z^2+c),c=-35/36+1/13*I,n=30 2178379286775887 r002 38th iterates of z^2 + 2178379290619069 a007 Real Root Of 483*x^4+487*x^3-813*x^2+696*x-468 2178379293267185 r005 Re(z^2+c),c=-21/94+43/57*I,n=4 2178379303163135 r005 Re(z^2+c),c=-45/34+1/95*I,n=28 2178379311293480 a001 11/610*2584^(28/31) 2178379319176134 m001 Catalan*BesselJ(0,1)/arctan(1/3) 2178379328054228 r005 Im(z^2+c),c=-16/19+9/55*I,n=51 2178379328423522 a005 (1/cos(13/235*Pi))^203 2178379330357278 r002 44th iterates of z^2 + 2178379330478460 a007 Real Root Of -240*x^4+781*x^3-322*x^2+894*x-187 2178379337173392 r009 Re(z^3+c),c=-9/28+8/19*I,n=6 2178379344193668 a003 cos(Pi*40/93)/sin(Pi*52/105) 2178379354087023 k001 Champernowne real with 1615*n+563 2178379355909743 a001 11*55^(38/51) 2178379355939577 r005 Im(z^2+c),c=-25/34+7/29*I,n=6 2178379357704413 r005 Im(z^2+c),c=-37/86+23/62*I,n=28 2178379373315341 m001 Artin^BesselI(1,2)*GAMMA(23/24)^BesselI(1,2) 2178379380531342 a001 76*(1/2*5^(1/2)+1/2)^11*7^(3/16) 2178379386773776 a007 Real Root Of -105*x^4+118*x^3+424*x^2-399*x+703 2178379389528408 l006 ln(7597/9446) 2178379390350377 l006 ln(863/7622) 2178379393433251 a007 Real Root Of 481*x^4+707*x^3-355*x^2+994*x+327 2178379399510140 m001 (sin(1/5*Pi)+FeigenbaumC)^ln(2^(1/2)+1) 2178379402035168 b008 67/3+Log[EulerGamma] 2178379402573942 a007 Real Root Of 399*x^4+700*x^3-325*x^2+3*x-200 2178379409335731 r002 55th iterates of z^2 + 2178379411748675 a007 Real Root Of 255*x^4+716*x^3+x^2-541*x+476 2178379414728424 m005 (1/2*gamma-7/11)/(3/7*Pi+1/4) 2178379424133388 a007 Real Root Of 177*x^4-794*x^3+914*x^2-450*x+865 2178379427633812 m001 CareFree*(Pi*csc(7/24*Pi)/GAMMA(17/24)+Trott) 2178379432316112 m001 CareFree*exp(Artin)*GAMMA(5/12) 2178379434085663 b008 LogGamma[(1/3+E)^(-2)] 2178379438133179 a007 Real Root Of 236*x^4+204*x^3-314*x^2+810*x+49 2178379441799892 a007 Real Root Of -72*x^4+302*x^3+658*x^2-643*x+220 2178379442685817 r002 52th iterates of z^2 + 2178379443130322 r005 Re(z^2+c),c=-35/36+1/13*I,n=38 2178379444424396 r005 Re(z^2+c),c=-35/36+1/13*I,n=40 2178379444572073 r002 54th iterates of z^2 + 2178379444852614 r005 Re(z^2+c),c=1/36+1/13*I,n=13 2178379445073311 r005 Re(z^2+c),c=1/36+1/13*I,n=14 2178379445105277 r002 62th iterates of z^2 + 2178379445107308 r005 Re(z^2+c),c=-35/36+1/13*I,n=48 2178379445110906 r005 Re(z^2+c),c=-35/36+1/13*I,n=50 2178379445111327 r002 64th iterates of z^2 + 2178379445113684 r005 Re(z^2+c),c=1/36+1/13*I,n=18 2178379445113702 r005 Re(z^2+c),c=-35/36+1/13*I,n=58 2178379445113711 r005 Re(z^2+c),c=-35/36+1/13*I,n=60 2178379445113718 r005 Re(z^2+c),c=1/36+1/13*I,n=19 2178379445113721 r005 Re(z^2+c),c=-35/36+1/13*I,n=62 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=23 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=22 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=24 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=27 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=28 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=29 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=32 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=33 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=37 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=38 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=42 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=43 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=47 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=46 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=48 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=51 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=52 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=53 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=54 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=55 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=56 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=57 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=58 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=59 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=60 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=61 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=62 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=63 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=64 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=50 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=49 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=45 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=44 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=41 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=40 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=39 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=36 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=34 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=35 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=31 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=30 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=26 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=25 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=21 2178379445113722 r005 Re(z^2+c),c=1/36+1/13*I,n=20 2178379445113723 r005 Re(z^2+c),c=-35/36+1/13*I,n=64 2178379445113744 r005 Re(z^2+c),c=1/36+1/13*I,n=17 2178379445113783 r005 Re(z^2+c),c=-35/36+1/13*I,n=52 2178379445113785 r005 Re(z^2+c),c=-35/36+1/13*I,n=56 2178379445114037 r005 Re(z^2+c),c=-35/36+1/13*I,n=54 2178379445115169 r005 Re(z^2+c),c=1/36+1/13*I,n=16 2178379445117452 r005 Re(z^2+c),c=1/36+1/13*I,n=15 2178379445118565 r002 60th iterates of z^2 + 2178379445126710 r005 Re(z^2+c),c=-35/36+1/13*I,n=46 2178379445133479 r002 50th iterates of z^2 + 2178379445172802 r005 Re(z^2+c),c=-35/36+1/13*I,n=42 2178379445200623 r005 Re(z^2+c),c=-35/36+1/13*I,n=44 2178379445202682 r002 58th iterates of z^2 + 2178379445253190 r002 56th iterates of z^2 + 2178379445749590 r005 Re(z^2+c),c=1/36+1/13*I,n=12 2178379447436373 r005 Re(z^2+c),c=-35/36+1/13*I,n=36 2178379448685214 m001 (3^(1/2)-MasserGramainDelta)^HardyLittlewoodC3 2178379454107026 k001 Champernowne real with 1616*n+562 2178379454405459 r005 Im(z^2+c),c=-33/94+9/17*I,n=13 2178379455398661 r009 Re(z^3+c),c=-11/86+55/57*I,n=26 2178379456510539 r005 Re(z^2+c),c=1/36+1/13*I,n=11 2178379457975326 r005 Re(z^2+c),c=1/36+1/13*I,n=10 2178379465908755 r005 Im(z^2+c),c=23/82+1/18*I,n=31 2178379467841157 r002 48th iterates of z^2 + 2178379468469533 r005 Re(z^2+c),c=-35/36+1/13*I,n=34 2178379471907989 r005 Re(z^2+c),c=-35/36+1/13*I,n=32 2178379473476072 m001 (Ei(1)-FeigenbaumKappa)/(OneNinth-Sierpinski) 2178379478470225 m001 (GAMMA(3/4)-sin(1))/(KhinchinLevy+Stephens) 2178379485461785 p001 sum((-1)^n/(449*n+379)/(2^n),n=0..infinity) 2178379492121505 r002 46th iterates of z^2 + 2178379492978845 m005 (1/2*exp(1)-3/11)/(3/11*5^(1/2)-1/9) 2178379494908653 r005 Im(z^2+c),c=-5/6+29/177*I,n=64 2178379497782481 r002 26th iterates of z^2 + 2178379504039316 m005 (1/3*5^(1/2)-1/6)/(3/8*Catalan-3) 2178379508692164 a007 Real Root Of -947*x^4+688*x^3+988*x^2+361*x+41 2178379514658986 r005 Im(z^2+c),c=-9/8+31/126*I,n=6 2178379522348539 m005 (1/2*2^(1/2)-2/5)/(8/11*Pi-7/8) 2178379525496704 l006 ln(7786/9681) 2178379526952640 r009 Re(z^3+c),c=-47/126+16/29*I,n=38 2178379534406345 r009 Im(z^3+c),c=-9/20+3/50*I,n=55 2178379536436521 s001 sum(exp(-Pi/3)^(n-1)*A065616[n],n=1..infinity) 2178379540260978 r005 Re(z^2+c),c=-11/74+19/39*I,n=23 2178379544905325 a007 Real Root Of -359*x^4+872*x^3+731*x^2+432*x-137 2178379548788013 h001 (-4*exp(8)+3)/(-7*exp(2)-3) 2178379554127029 k001 Champernowne real with 1617*n+561 2178379566274319 b008 41/2+ArcCsch[3/5] 2178379566436279 s002 sum(A173547[n]/(2^n+1),n=1..infinity) 2178379591035131 p004 log(19597/15761) 2178379605856113 k002 Champernowne real with 25/2*n^2+277/2*n-149 2178379609730332 m001 (Chi(1)+Sarnak*Stephens)/Stephens 2178379623648542 m004 2+(6*Sqrt[5])/Pi+(25*Log[Sqrt[5]*Pi])/Pi 2178379629319009 a007 Real Root Of 570*x^4+664*x^3+760*x^2-668*x-176 2178379629853161 h001 (6/7*exp(1)+2/11)/(1/6*exp(1)+7/10) 2178379643455799 a003 -3/2-cos(5/27*Pi)+cos(4/21*Pi)-cos(4/15*Pi) 2178379646501457 r009 Im(z^3+c),c=-31/32+2/35*I,n=2 2178379649242430 a007 Real Root Of 982*x^4-981*x^3+697*x^2+80*x-28 2178379650837256 m005 (1/2*Catalan+3/5)/(5/9*2^(1/2)-3/10) 2178379654147032 k001 Champernowne real with 1618*n+560 2178379655020358 l006 ln(7975/9916) 2178379655935687 l006 ln(494/4363) 2178379683864178 r005 Re(z^2+c),c=4/21+2/25*I,n=14 2178379687363936 h001 (5/11*exp(2)+10/11)/(1/2*exp(1)+3/5) 2178379689840483 m001 (FeigenbaumKappa*TwinPrimes+Landau)/TwinPrimes 2178379691937127 p001 sum(1/(351*n+17)/n/(125^n),n=1..infinity) 2178379693528680 m001 (FeigenbaumD-Trott)/FibonacciFactorial 2178379694222915 r009 Re(z^3+c),c=-13/106+32/37*I,n=48 2178379708774720 m001 1/TreeGrowth2nd*ln(ErdosBorwein)^2/GAMMA(1/24) 2178379711209392 r005 Im(z^2+c),c=-9/29+17/50*I,n=20 2178379721814712 a007 Real Root Of -403*x^4+579*x^3-859*x^2-104*x+25 2178379726462736 m005 (1/2*3^(1/2)+6)/(2/3*gamma-7/10) 2178379731522936 m005 (1/3*5^(1/2)-2/11)/(7/11*exp(1)+6/7) 2178379742454460 p001 sum(1/(517*n+466)/(32^n),n=0..infinity) 2178379743507345 r005 Re(z^2+c),c=-35/36+1/13*I,n=26 2178379754167035 k001 Champernowne real with 1619*n+559 2178379755775017 r005 Re(z^2+c),c=-13/94+23/45*I,n=34 2178379759856717 m004 -6+500*Pi+Cot[Sqrt[5]*Pi]*Sinh[Sqrt[5]*Pi] 2178379762543623 a001 5702887/199*322^(3/4) 2178379766270332 m005 (1/2*2^(1/2)-4)/(159/154+3/14*5^(1/2)) 2178379772550452 m001 Zeta(1,2)^TwinPrimes/TreeGrowth2nd 2178379773714327 r005 Im(z^2+c),c=-67/118+16/47*I,n=26 2178379774068105 a001 843/2584*4181^(39/50) 2178379776933705 m005 (1/2*Pi+1)/(2/5*5^(1/2)+2/7) 2178379787927985 a007 Real Root Of 424*x^4+582*x^3-980*x^2-790*x-602 2178379791889338 m001 ln(cos(Pi/5))/CareFree/sinh(1)^2 2178379794515523 m001 KomornikLoreti^Kolakoski/gamma(1) 2178379796772114 r005 Re(z^2+c),c=11/25+5/13*I,n=6 2178379802189642 m001 (BesselI(1,2)+Gompertz)/(cos(1)+arctan(1/2)) 2178379808604649 m005 (1/2*5^(1/2)+3/5)/(1/6*3^(1/2)+1/2) 2178379818892470 m001 Paris^2/exp(ErdosBorwein)^2*GAMMA(1/6) 2178379828059711 a005 (1/cos(42/215*Pi))^301 2178379833867027 r005 Im(z^2+c),c=-23/90+27/47*I,n=5 2178379843678339 a001 34/47*76^(14/55) 2178379844435841 m001 (5^(1/2))^ln(2+3^(1/2))/PisotVijayaraghavan 2178379851777807 r005 Im(z^2+c),c=-87/98+5/27*I,n=56 2178379854187038 k001 Champernowne real with 1620*n+558 2178379861865667 l006 ln(1113/9830) 2178379864653742 a007 Real Root Of 902*x^4-285*x^3-207*x^2-295*x+75 2178379872160783 a001 123/832040*2^(33/59) 2178379874670707 a001 969323029/2*610^(20/21) 2178379875698904 r002 4th iterates of z^2 + 2178379878986743 a007 Real Root Of -567*x^4+594*x^3-950*x^2+443*x+149 2178379882426573 m002 2+5/Pi^6+2*Csch[Pi] 2178379888743078 m001 (Chi(1)-GAMMA(7/12))/(-CopelandErdos+Magata) 2178379889703887 a007 Real Root Of -979*x^4+932*x^3+938*x^2+984*x+21 2178379894968289 a003 sin(Pi*14/101)-sin(Pi*19/86) 2178379897431160 m005 (1/2*Catalan-7/11)/(1/10*Catalan+8/11) 2178379909715514 a001 2178309/29*7^(29/53) 2178379913933593 h001 (4/9*exp(1)+6/11)/(1/7*exp(1)+5/12) 2178379916530586 m001 exp(-1/2*Pi)*(Ei(1)-GaussAGM(1,1/sqrt(2))) 2178379926334754 r009 Re(z^3+c),c=-23/54+21/50*I,n=6 2178379929638219 r008 a(0)=2,K{-n^6,-2-6*n^3+8*n^2-8*n} 2178379931036517 r005 Re(z^2+c),c=21/58+12/61*I,n=44 2178379933339255 m001 LaplaceLimit^(ln(2)/ln(10)/StolarskyHarborth) 2178379937276634 r002 25th iterates of z^2 + 2178379942768155 r005 Im(z^2+c),c=-6/13+16/51*I,n=5 2178379947755184 m005 (1/3*exp(1)-1/8)/(7/12*exp(1)+2) 2178379950847337 m001 (BesselI(1,2)-Porter)/(Stephens-ZetaQ(3)) 2178379951859501 a001 317811/4*29^(59/60) 2178379952138067 m001 1/Riemann2ndZero/KhintchineLevy/ln(Zeta(3)) 2178379954207041 k001 Champernowne real with 1621*n+557 2178379959332468 a003 sin(Pi*3/43)/sin(Pi*37/77) 2178379966824892 r009 Re(z^3+c),c=-9/58+37/44*I,n=45 2178379971996473 a007 Real Root Of -354*x^4-658*x^3+17*x^2-863*x-791 2178379990380735 g002 gamma+2*ln(2)+Psi(8/9)+Psi(7/8)+Psi(2/5) 2178379992545662 m005 (1/2*5^(1/2)+7/8)/(3/8*Catalan+4/7) 2178380000100644 m005 (3*gamma+3/4)/(5*gamma-3) 2178380000100644 m007 (-3*gamma-3/4)/(-5*gamma+3) 2178380017104995 m001 gamma^2*GAMMA(13/24)^2/exp(sqrt(2)) 2178380020247259 s001 sum(exp(-Pi/2)^(n-1)*A257256[n],n=1..infinity) 2178380026210403 l006 ln(619/5467) 2178380033582541 a001 843/233*34^(28/55) 2178380036659310 a001 29/13*2178309^(25/53) 2178380041472683 m005 (3/4*Catalan+5)/(2/3*Catalan+2) 2178380054227044 k001 Champernowne real with 1622*n+556 2178380054389058 h001 (-4*exp(2/3)-8)/(-5*exp(-3)-7) 2178380063686079 a007 Real Root Of 53*x^4-153*x^3-567*x^2+479*x+959 2178380067933895 r009 Re(z^3+c),c=-39/122+3/7*I,n=12 2178380084428756 r005 Re(z^2+c),c=-7/6+31/136*I,n=48 2178380087191101 m005 (1/3*gamma-2/7)/(2/11*Pi-1/7) 2178380087987574 m006 (Pi^2-2/3)/(5/6*Pi^2-4) 2178380087987574 m008 (Pi^2-2/3)/(5/6*Pi^2-4) 2178380087987574 m009 (3/2*Pi^2-1)/(1/8*Pi^2-3/5) 2178380088115100 r002 16th iterates of z^2 + 2178380094206825 r005 Im(z^2+c),c=-11/24+9/28*I,n=5 2178380110764299 r002 34th iterates of z^2 + 2178380125412361 a007 Real Root Of 740*x^4-240*x^3-910*x^2-785*x+215 2178380125726538 r009 Re(z^3+c),c=-5/14+15/29*I,n=30 2178380127366671 r002 13th iterates of z^2 + 2178380138804516 m001 sinh(1)/(Psi(2,1/3)+GAMMA(19/24)) 2178380139115485 m001 (Catalan+ReciprocalFibonacci)/ReciprocalLucas 2178380141053206 a003 sin(Pi*20/81)/cos(Pi*19/48) 2178380154247047 k001 Champernowne real with 1623*n+555 2178380156453293 m005 (1/3*gamma+3/4)/(5/12*exp(1)-7/10) 2178380169895117 m001 (MertensB1-Paris)/RenyiParking 2178380186163940 m001 (Pi-DuboisRaymond)/(Khinchin-MertensB3) 2178380189547485 r005 Im(z^2+c),c=-87/110+9/58*I,n=27 2178380192274388 r002 57th iterates of z^2 + 2178380199793091 r005 Re(z^2+c),c=-3/25+33/61*I,n=35 2178380203468486 a001 15127/13*21^(51/53) 2178380208774403 m001 (2*Pi/GAMMA(5/6))^ln(2)*LaplaceLimit 2178380213066493 r005 Im(z^2+c),c=-39/86+20/53*I,n=49 2178380219430442 m005 (-23/4+1/4*5^(1/2))/(2/7*Catalan-1/2) 2178380224478742 p001 sum(1/(499*n+487)/n/(5^n),n=1..infinity) 2178380229014998 m001 1/ln(FeigenbaumD)^2*GAMMA(17/24)^3 2178380229377661 m001 1/GlaisherKinkelin*exp(Artin)^2*GAMMA(1/12)^2 2178380236200251 a007 Real Root Of 35*x^4+727*x^3-762*x^2+225*x+219 2178380239839851 a007 Real Root Of -498*x^4-700*x^3+909*x^2-205*x-782 2178380250314195 m001 (FeigenbaumAlpha+Porter)/(Shi(1)+BesselJ(0,1)) 2178380251569777 m001 1/FeigenbaumB/Kolakoski*ln(MinimumGamma)^2 2178380254267050 k001 Champernowne real with 1624*n+554 2178380256193171 m001 FransenRobinson^Thue*QuadraticClass^Thue 2178380260879136 m008 (3/5*Pi+1/4)/(1/3*Pi^5-4) 2178380262651700 r009 Re(z^3+c),c=-43/110+41/59*I,n=24 2178380263419819 m005 (1/2*gamma+1/9)/(1/8*3^(1/2)-2/5) 2178380263859827 m001 FeigenbaumMu/(Otter-ln(2+3^(1/2))) 2178380272064776 l006 ln(744/6571) 2178380277381791 a007 Real Root Of 215*x^4+608*x^3+67*x^2-452*x+141 2178380289160575 s002 sum(A153759[n]/(exp(n)),n=1..infinity) 2178380295805675 r009 Re(z^3+c),c=-4/13+19/48*I,n=23 2178380302182652 r005 Re(z^2+c),c=23/110+17/41*I,n=50 2178380306756099 m005 (1/2*5^(1/2)-5/12)/(6/11*5^(1/2)+2) 2178380307015891 r005 Im(z^2+c),c=-14/25+23/63*I,n=33 2178380341957902 m001 Backhouse*(3^(1/3)+ZetaQ(2)) 2178380354287053 k001 Champernowne real with 1625*n+553 2178380356532533 r009 Re(z^3+c),c=-43/122+27/53*I,n=31 2178380360888264 r005 Im(z^2+c),c=-7/8+22/131*I,n=20 2178380367236235 m001 (2^(1/3)+3^(1/2))/(-exp(1/Pi)+HeathBrownMoroz) 2178380385258295 a007 Real Root Of 642*x^4+910*x^3-749*x^2+710*x+51 2178380388777427 r002 61th iterates of z^2 + 2178380393667288 a007 Real Root Of 243*x^4+256*x^3-637*x^2-113*x-49 2178380396137170 r005 Re(z^2+c),c=29/122+28/55*I,n=5 2178380405498717 h001 (2/7*exp(2)+11/12)/(4/9*exp(1)+2/11) 2178380411995836 r009 Re(z^3+c),c=-1/4+4/17*I,n=12 2178380418559781 m001 (1-ln(2)/ln(10))/(-ErdosBorwein+Tetranacci) 2178380419678919 m001 Conway*Gompertz-Otter 2178380426536759 a001 4/1597*514229^(32/37) 2178380430052425 m001 (Mills-Trott2nd)/(Zeta(3)+FeigenbaumDelta) 2178380434804676 a007 Real Root Of 500*x^4+905*x^3-689*x^2-743*x-253 2178380437092720 r009 Re(z^3+c),c=-49/94+17/40*I,n=16 2178380447190005 l006 ln(869/7675) 2178380451671235 m009 (16/3*Catalan+2/3*Pi^2-1/2)/(4/5*Psi(1,3/4)+3) 2178380451963556 h001 (1/2*exp(2)+2/9)/(2/11*exp(2)+5/11) 2178380454307056 k001 Champernowne real with 1626*n+552 2178380485668659 r002 32th iterates of z^2 + 2178380487799057 a007 Real Root Of 652*x^4+946*x^3-957*x^2+71*x-207 2178380490369374 m001 Ei(1)/(2^(1/3))/exp(GAMMA(11/24)) 2178380505971747 a007 Real Root Of 696*x^4-789*x^3-849*x^2-276*x+107 2178380511544412 a007 Real Root Of -687*x^4+283*x^3+778*x^2+600*x-169 2178380535472322 a007 Real Root Of -333*x^4+687*x^3-287*x^2+893*x+216 2178380545598849 m002 -2+Pi^5+Cosh[Pi]-Pi^4*Coth[Pi] 2178380548455535 m001 GAMMA(11/12)^2/DuboisRaymond^2/ln(sin(Pi/12)) 2178380549661537 p004 log(23827/19163) 2178380550169401 r005 Re(z^2+c),c=17/62+2/11*I,n=44 2178380551547098 m009 (1/4*Pi^2+3/5)/(20/3*Catalan+5/6*Pi^2-1/4) 2178380552276346 a001 433494437/2207*123^(1/2) 2178380554327059 k001 Champernowne real with 1627*n+551 2178380556179548 r005 Im(z^2+c),c=-11/14+8/59*I,n=54 2178380574669420 a007 Real Root Of -147*x^4-111*x^3+859*x^2+625*x-552 2178380578269634 l006 ln(994/8779) 2178380586746578 m001 ln(ArtinRank2)/DuboisRaymond*Salem 2178380589082866 r005 Re(z^2+c),c=-21/118+14/33*I,n=36 2178380597993200 a001 41/48*12586269025^(11/15) 2178380599716009 r005 Im(z^2+c),c=-11/23+21/55*I,n=29 2178380600082203 q001 53/2433 2178380608862114 k002 Champernowne real with 13*n^2+137*n-148 2178380614473226 m001 (Cahen-Riemann2ndZero)/(gamma(3)+Zeta(1,2)) 2178380620350282 r005 Im(z^2+c),c=-23/26+14/79*I,n=17 2178380629602024 m001 (Pi-GAMMA(11/12))/(Niven-RenyiParking) 2178380633915818 r009 Re(z^3+c),c=-35/106+39/61*I,n=28 2178380637704720 h001 (2/7*exp(2)+1/8)/(1/12*exp(1)+4/5) 2178380645585292 h005 exp(cos(Pi*3/26)-cos(Pi*9/20)) 2178380650159331 m001 OrthogonalArrays^(BesselI(1,2)/ln(2)) 2178380654347062 k001 Champernowne real with 1628*n+550 2178380660214566 s001 sum(1/10^(n-1)*A049638[n]/n^n,n=1..infinity) 2178380660431336 s001 sum(1/10^(n-1)*A190490[n]/n^n,n=1..infinity) 2178380660434990 s001 sum(1/10^(n-1)*A059649[n]/n^n,n=1..infinity) 2178380660434990 s001 sum(1/10^(n-1)*A190500[n]/n^n,n=1..infinity) 2178380662274348 m001 Robbin/ln(KhintchineHarmonic)*GAMMA(2/3)^2 2178380664728718 m001 ln(GAMMA(11/12))/Conway^2/Zeta(1/2) 2178380666499212 a007 Real Root Of -20*x^4+388*x^3-833*x^2+249*x-150 2178380680064258 l006 ln(1119/9883) 2178380680230519 a003 sin(Pi*4/107)*sin(Pi*5/84) 2178380687325599 m001 1/GAMMA(1/12)^2/Catalan/ln(cos(1))^2 2178380697540158 r005 Re(z^2+c),c=-33/94+33/58*I,n=6 2178380698486804 m001 (arctan(1/2)*Niven+Ei(1,1))/arctan(1/2) 2178380701832038 a007 Real Root Of 432*x^4+679*x^3-209*x^2+528*x-567 2178380705520929 m007 (-2/3*gamma-1/4)/(-gamma-3*ln(2)+1/2*Pi+4) 2178380709164790 m003 4-Cosh[1/2+Sqrt[5]/2]+(4*Sin[1/2+Sqrt[5]/2])/5 2178380718220979 p004 log(24767/19919) 2178380729018043 m001 BesselJ(1,1)^GAMMA(23/24)+MadelungNaCl 2178380729018043 m001 MadelungNaCl+BesselJ(1,1)^GAMMA(23/24) 2178380730875020 m004 -6+500*Pi+Cosh[Sqrt[5]*Pi]*Cot[Sqrt[5]*Pi] 2178380731871998 r005 Im(z^2+c),c=-35/34+27/121*I,n=17 2178380732251785 a008 Real Root of (-4+5*x+2*x^2+5*x^3-4*x^4-3*x^5) 2178380738979590 b008 EllipticPi[2/17,2/3] 2178380746980758 m005 (1/2*Catalan+10/11)/(1/7*3^(1/2)-7/8) 2178380754367065 k001 Champernowne real with 1629*n+549 2178380757517658 s001 sum(1/10^(n-1)*A165584[n]/n^n,n=1..infinity) 2178380767758989 a007 Real Root Of 435*x^4+791*x^3-621*x^2-208*x+875 2178380774467552 a007 Real Root Of -226*x^4-2*x^3+796*x^2-640*x-103 2178380775702903 a001 47/12586269025*144^(9/11) 2178380777858292 a007 Real Root Of -61*x^4+229*x^3+721*x^2-350*x-443 2178380779591806 r009 Im(z^3+c),c=-29/48+7/15*I,n=12 2178380786230714 m005 (1/2*2^(1/2)-3/7)/(5/12*Zeta(3)+7/9) 2178380797390090 r009 Re(z^3+c),c=-1/8+36/41*I,n=40 2178380797791964 p004 log(25237/20297) 2178380799377504 m001 (Zeta(1,-1)-gamma)/(gamma(3)+Magata) 2178380801917988 a007 Real Root Of 547*x^4-89*x^3+889*x^2+75*x-28 2178380803051149 m009 (3/5*Psi(1,3/4)+2)/(5/6*Psi(1,3/4)-1/2) 2178380809673141 r005 Im(z^2+c),c=-53/46+17/64*I,n=34 2178380814026063 a007 Real Root Of 589*x^4+752*x^3-720*x^2+931*x-45 2178380814479519 m001 Gompertz-Zeta(1,-1)+Riemann2ndZero 2178380815337190 m001 (GAMMA(19/24)-PisotVijayaraghavan)/ln(2) 2178380815551187 r005 Im(z^2+c),c=-7/20+20/33*I,n=50 2178380821941435 s001 sum(1/10^(n-1)*A165474[n]/n^n,n=1..infinity) 2178380838532542 a003 sin(Pi*1/112)/sin(Pi*3/73) 2178380839784724 a003 cos(Pi*34/87)-cos(Pi*55/119) 2178380840916024 m001 (Tetranacci+Tribonacci)/(GaussAGM-Robbin) 2178380842593073 m001 1/CareFree^2/exp(CopelandErdos)^2*sqrt(3) 2178380854387068 k001 Champernowne real with 1630*n+548 2178380861166031 a007 Real Root Of -315*x^4-635*x^3+7*x^2-493*x-578 2178380865484436 m001 (BesselI(0,2)+GAMMA(11/12))/(Chi(1)+ln(2)) 2178380866659920 m002 -(Tanh[Pi]/Pi^4)+Tanh[Pi]^2/Pi^3 2178380871814899 r009 Im(z^3+c),c=-3/29+48/55*I,n=8 2178380873223592 m001 GAMMA(3/4)-arctan(1/2)+Riemann2ndZero 2178380877151080 a007 Real Root Of -540*x^4-686*x^3+882*x^2-343*x+136 2178380891281608 a001 6/726103*591286729879^(6/11) 2178380891311081 a001 18/121393*2971215073^(6/11) 2178380893614505 m001 Ei(1)^2/exp(TwinPrimes)*GAMMA(19/24) 2178380893989464 a001 17711/843*521^(23/31) 2178380900801324 a001 6/2255*14930352^(6/11) 2178380929223565 r005 Im(z^2+c),c=-173/126+3/31*I,n=11 2178380934254893 a001 567451585/2889*123^(1/2) 2178380943419254 r005 Re(z^2+c),c=-11/12+20/63*I,n=19 2178380944799799 m001 GAMMA(3/4)/(Ei(1)-MertensB3) 2178380949492998 m001 GAMMA(5/6)/BesselI(0,2)*TreeGrowth2nd 2178380950896944 r005 Im(z^2+c),c=-21/52+23/63*I,n=34 2178380954407071 k001 Champernowne real with 1631*n+547 2178380954952927 m001 ln(1+sqrt(2))+GAMMA(17/24)^Zeta(5) 2178380954952927 m001 ln(2^(1/2)+1)+GAMMA(17/24)^Zeta(5) 2178380964857329 m005 (1/3*3^(1/2)-2/9)/(3/11*exp(1)+8/9) 2178380969994073 m005 (1/2*3^(1/2)+5/8)/(1/12*gamma+7/11) 2178380985639703 m001 (exp(1)+Zeta(1,2))/(OneNinth+Rabbit) 2178380989984823 a001 2971215073/15127*123^(1/2) 2178380992016513 m001 (GAMMA(19/24)-Thue)/(3^(1/3)+gamma(3)) 2178380998115710 a001 7778742049/39603*123^(1/2) 2178380999301991 a001 10182505537/51841*123^(1/2) 2178380999475067 a001 53316291173/271443*123^(1/2) 2178380999500318 a001 139583862445/710647*123^(1/2) 2178380999504002 a001 182717648081/930249*123^(1/2) 2178380999504540 a001 956722026041/4870847*123^(1/2) 2178380999504618 a001 2504730781961/12752043*123^(1/2) 2178380999504630 a001 3278735159921/16692641*123^(1/2) 2178380999504632 a001 10610209857723/54018521*123^(1/2) 2178380999504637 a001 4052739537881/20633239*123^(1/2) 2178380999504667 a001 387002188980/1970299*123^(1/2) 2178380999504872 a001 591286729879/3010349*123^(1/2) 2178380999506279 a001 225851433717/1149851*123^(1/2) 2178380999515924 a001 196418*123^(1/2) 2178380999582034 a001 32951280099/167761*123^(1/2) 2178381000035152 a001 12586269025/64079*123^(1/2) 2178381003140875 a001 1201881744/6119*123^(1/2) 2178381016032086 r005 Re(z^2+c),c=15/62+8/53*I,n=27 2178381019251374 r005 Re(z^2+c),c=-17/18+11/52*I,n=20 2178381021349642 m001 cos(1/5*Pi)^MasserGramain+Mills 2178381024427815 a001 1836311903/9349*123^(1/2) 2178381036207255 a007 Real Root Of 367*x^4+421*x^3-498*x^2+875*x+357 2178381037957848 a003 cos(Pi*6/89)/cos(Pi*19/54) 2178381043865451 a007 Real Root Of -315*x^4-329*x^3+644*x^2-697*x-882 2178381044595248 a001 6/2255*4181^(28/53) 2178381054427074 k001 Champernowne real with 1632*n+546 2178381062162077 m001 1/cos(1)*Niven*exp(cos(Pi/12))^2 2178381062309572 m001 1/GAMMA(5/12)^2*ln(Cahen)*sqrt(5) 2178381071025777 r005 Im(z^2+c),c=-59/122+22/57*I,n=50 2178381076932179 r005 Im(z^2+c),c=-31/27+10/47*I,n=19 2178381108884516 m001 (exp(-1/2*Pi)+ZetaP(4))/Mills 2178381128224082 m005 (1/5*Catalan-2)/(11/4+5/2*5^(1/2)) 2178381132693455 r005 Im(z^2+c),c=-4/7+49/127*I,n=6 2178381138370360 m001 (Psi(2,1/3)+Bloch)/(Riemann3rdZero+ZetaP(4)) 2178381141387002 a007 Real Root Of 962*x^4-350*x^3+299*x^2-450*x-118 2178381154447077 k001 Champernowne real with 1633*n+545 2178381163072030 s001 sum(exp(-3*Pi/5)^n*A279320[n],n=1..infinity) 2178381165966469 r005 Re(z^2+c),c=-5/94+17/19*I,n=11 2178381170330684 a001 701408733/3571*123^(1/2) 2178381175769237 r002 14th iterates of z^2 + 2178381177547784 a007 Real Root Of 150*x^4-222*x^3-819*x^2+668*x-331 2178381184902410 a007 Real Root Of 518*x^4+704*x^3-539*x^2+501*x-738 2178381188411547 a001 591286729879/4*3^(6/17) 2178381190880688 r009 Im(z^3+c),c=-5/86+5/22*I,n=2 2178381200020683 r005 Re(z^2+c),c=13/38+11/51*I,n=36 2178381200274938 m001 1/Robbin^2/DuboisRaymond/exp(Zeta(1/2))^2 2178381204955112 m001 Ei(1,1)^(Backhouse/gamma) 2178381212870270 a007 Real Root Of 290*x^4+814*x^3+193*x^2-495*x-110 2178381217465189 r009 Re(z^3+c),c=-9/58+37/42*I,n=10 2178381218598781 a001 11/196418*6765^(22/53) 2178381221055363 m005 (1/2*exp(1)-2/7)/(5/12*Catalan+1/9) 2178381234745522 a005 (1/cos(11/142*Pi))^180 2178381242976012 a007 Real Root Of -490*x^4-891*x^3+839*x^2+879*x-243 2178381248598871 a001 3*(1/2*5^(1/2)+1/2)^2*18^(6/17) 2178381251035529 m001 Riemann3rdZero*ln(Porter)/BesselJ(1,1) 2178381254467080 k001 Champernowne real with 1634*n+544 2178381257824150 m005 (1/2*2^(1/2)-3)/(3/10*Catalan+7/9) 2178381263174354 r005 Im(z^2+c),c=-21/94+23/30*I,n=27 2178381264683488 r005 Re(z^2+c),c=-25/106+10/39*I,n=8 2178381270143159 r005 Im(z^2+c),c=-2/3+47/256*I,n=11 2178381271195611 r002 10th iterates of z^2 + 2178381271788358 h001 (5/6*exp(1)+1/7)/(1/8*exp(2)+2/11) 2178381272443620 a007 Real Root Of -435*x^4-638*x^3+247*x^2-590*x+743 2178381277087805 a007 Real Root Of -136*x^4+190*x^3-333*x^2+422*x+110 2178381278023657 m001 Pi^(1/2)+PrimesInBinary-ZetaQ(3) 2178381283836035 m005 (1/2*gamma-1/7)/(5/12*gamma+3/7) 2178381301266825 s002 sum(A116678[n]/(exp(2*pi*n)-1),n=1..infinity) 2178381309325096 m001 TwinPrimes^(Paris/gamma(3)) 2178381311187927 b008 Sqrt[Erfc[-1/6]]/5 2178381321173368 p003 LerchPhi(1/32,6,407/215) 2178381321302078 m005 (1/3*exp(1)-2/3)/(13/22+5/22*5^(1/2)) 2178381354487083 k001 Champernowne real with 1635*n+543 2178381356394968 a001 516002918640*123^(7/9) 2178381367981439 a001 521/18*(1/2*5^(1/2)+1/2)^29*18^(13/20) 2178381372732668 m001 GolombDickman/exp(Backhouse)/Sierpinski^2 2178381374850574 a007 Real Root Of -176*x^4-29*x^3+516*x^2-627*x-151 2178381375484392 r005 Im(z^2+c),c=-23/26+22/113*I,n=48 2178381397961585 m001 1/LambertW(1)^2*MertensB1/exp(log(2+sqrt(3))) 2178381398038600 m005 (1/4*Pi-4)/(11/12+1/4*5^(1/2)) 2178381399527745 r005 Re(z^2+c),c=-63/64+11/42*I,n=14 2178381401661188 m001 GAMMA(13/24)^Backhouse+Champernowne 2178381433020966 m001 StronglyCareFree/AlladiGrinstead/BesselJ(1,1) 2178381454507086 k001 Champernowne real with 1636*n+542 2178381455947401 m001 (-Catalan+5)/(exp(1/Pi)+1/2) 2178381463485433 r005 Im(z^2+c),c=-7/10+7/256*I,n=61 2178381471281472 m001 (MinimumGamma-PlouffeB)/(Salem-Sarnak) 2178381480417982 m001 LandauRamanujan2nd/(Sierpinski^MertensB2) 2178381489534739 l006 ln(125/1104) 2178381513386097 a001 3524578/199*322^(5/6) 2178381513721507 a007 Real Root Of 243*x^4-46*x^3-966*x^2+238*x-845 2178381514716115 k006 concat of cont frac of 2178381515541923 r005 Im(z^2+c),c=11/36+1/47*I,n=23 2178381516592762 m005 (1/2*gamma-2/7)/(1/2*Zeta(3)+8/11) 2178381535292800 r005 Re(z^2+c),c=-31/122+3/61*I,n=3 2178381547601130 m001 (Ei(1,1)-FellerTornier)/(PlouffeB-ZetaQ(4)) 2178381551645010 m001 (Si(Pi)+ln(Pi))/(-arctan(1/2)+Tribonacci) 2178381554527089 k001 Champernowne real with 1637*n+541 2178381554898109 m001 (ln(2)/ln(10))^Niven/Lehmer 2178381566314674 r005 Re(z^2+c),c=-19/98+6/17*I,n=7 2178381567666886 a007 Real Root Of -471*x^4-881*x^3+113*x^2-229*x+464 2178381573451706 r002 23th iterates of z^2 + 2178381574763420 r002 39th iterates of z^2 + 2178381596180482 m001 (polylog(4,1/2)+Weierstrass)/(Pi+2^(1/2)) 2178381598881804 r005 Im(z^2+c),c=-14/23+19/53*I,n=31 2178381605517827 a007 Real Root Of -158*x^4-110*x^3+713*x^2+267*x-381 2178381609712096 r005 Im(z^2+c),c=-5/7+44/123*I,n=55 2178381611868115 k002 Champernowne real with 27/2*n^2+271/2*n-147 2178381616980206 r005 Im(z^2+c),c=-7/10+4/21*I,n=28 2178381619372476 r002 42th iterates of z^2 + 2178381628190302 r005 Re(z^2+c),c=-7/29+2/9*I,n=13 2178381633136284 m001 (Conway+GlaisherKinkelin)/(Salem+Trott) 2178381633306121 m005 (1/2*3^(1/2)+3/10)/(-17/198+5/18*5^(1/2)) 2178381639302777 a001 281/6*(1/2*5^(1/2)+1/2)^14*18^(13/22) 2178381651835922 m001 (exp(1/exp(1))-BesselJ(1,1))/(ln(3)-ln(Pi)) 2178381654547092 k001 Champernowne real with 1638*n+540 2178381655502807 a007 Real Root Of 240*x^4+725*x^3+206*x^2-670*x-347 2178381657512081 a007 Real Root Of -314*x^4-849*x^3-303*x^2+413*x+632 2178381664947431 p004 log(31817/25589) 2178381679271351 m005 (3/5*Pi-3/4)/(1/4*Catalan-3/4) 2178381687200636 r005 Re(z^2+c),c=-5/19+4/59*I,n=6 2178381690442818 r009 Re(z^3+c),c=-27/86+25/38*I,n=50 2178381698411311 a007 Real Root Of -637*x^4+274*x^3+331*x^2+888*x+182 2178381701308135 m001 Riemann2ndZero*(LaplaceLimit-Robbin) 2178381704625868 r002 56th iterates of z^2 + 2178381706073154 r009 Re(z^3+c),c=-23/74+21/52*I,n=26 2178381711300318 r005 Im(z^2+c),c=-4/19+4/13*I,n=9 2178381712227835 m001 GAMMA(3/4)^FeigenbaumB*Tribonacci 2178381715452846 a007 Real Root Of 399*x^4+664*x^3-714*x^2-164*x+910 2178381722002995 m005 (1/3*Pi-1/2)/(1/4*3^(1/2)-2/11) 2178381724118633 r005 Im(z^2+c),c=-17/54+24/41*I,n=24 2178381730118224 r009 Re(z^3+c),c=-1/86+57/64*I,n=10 2178381734996430 r005 Re(z^2+c),c=-13/24+18/31*I,n=48 2178381738996867 p004 log(32069/3631) 2178381745970394 r008 a(0)=2,K{-n^6,-26-25*n+46*n^2} 2178381747431589 r005 Re(z^2+c),c=-27/106+4/27*I,n=9 2178381754567095 k001 Champernowne real with 1639*n+539 2178381765031036 a007 Real Root Of -130*x^4+101*x^3+653*x^2-133*x+583 2178381765459894 m005 (1/3*Catalan-1/3)/(7/10*Zeta(3)+4/9) 2178381772430119 r005 Im(z^2+c),c=-47/106+3/8*I,n=63 2178381773060141 a001 3/4*322^(55/56) 2178381777997093 m001 (-sin(1)+4)/(GAMMA(1/12)+3) 2178381787233630 r009 Im(z^3+c),c=-19/118+53/61*I,n=46 2178381796346245 b008 21/2+Sqrt[2]+Pi^2 2178381799648758 a007 Real Root Of -912*x^4+291*x^3+906*x^2+799*x-218 2178381802832966 m001 (Gompertz+Landau)/(Psi(2,1/3)+FransenRobinson) 2178381804960718 r009 Im(z^3+c),c=-13/25+14/61*I,n=5 2178381805726946 m005 (1/2*5^(1/2)-1/4)/(1/12*exp(1)-5/8) 2178381806552384 b008 ArcCoth[E^(1/39)] 2178381811351425 m001 sin(1)*Pi*csc(11/24*Pi)/GAMMA(13/24)*Totient 2178381813131613 a007 Real Root Of 418*x^4+714*x^3-68*x^2+674*x-241 2178381814362863 m001 1/FeigenbaumKappa^2*Paris^2*exp(sqrt(2)) 2178381815593007 a003 sin(Pi*29/84)/cos(Pi*40/109) 2178381820617188 a001 55/199*9349^(7/31) 2178381821423007 r005 Im(z^2+c),c=-57/98+1/63*I,n=10 2178381829187521 m005 (1/2*5^(1/2)-7/10)/(1/4*2^(1/2)-6/11) 2178381829461534 a007 Real Root Of -505*x^4-138*x^3+837*x^2+821*x-216 2178381829539618 a001 19/1201881744*89^(1/14) 2178381829813204 a007 Real Root Of -651*x^4-997*x^3+365*x^2-971*x+506 2178381839707090 a007 Real Root Of -37*x^4-783*x^3+483*x^2-379*x+312 2178381848204401 m006 (5*ln(Pi)-3/4)/(2*Pi-4) 2178381852797867 a007 Real Root Of -401*x^4-934*x^3-943*x^2+202*x+80 2178381854587098 k001 Champernowne real with 1640*n+538 2178381869628089 a007 Real Root Of 843*x^4-213*x^3+903*x^2-597*x-177 2178381877823685 r005 Im(z^2+c),c=-93/94+9/40*I,n=21 2178381889319380 r009 Re(z^3+c),c=-17/48+1/2*I,n=14 2178381894514436 m001 1/Ei(1)*exp(Riemann3rdZero)*LambertW(1) 2178381910200516 m002 (Pi^4*Log[Pi])/5-6*Sech[Pi] 2178381924393994 m001 (Lehmer-sin(1))/(MertensB2+OneNinth) 2178381926230135 r005 Re(z^2+c),c=-103/118+17/52*I,n=2 2178381930666081 a007 Real Root Of -442*x^4-720*x^3+683*x^2+419*x+182 2178381954607101 k001 Champernowne real with 1641*n+537 2178381957144512 a007 Real Root Of 565*x^4+596*x^3-967*x^2+937*x+68 2178381962864721 q001 657/3016 2178381962864721 r002 2th iterates of z^2 + 2178381979777722 h001 (2/3*exp(2)+3/10)/(5/9*exp(1)+8/9) 2178381987102741 r009 Re(z^3+c),c=-12/31+34/45*I,n=2 2178381988374116 a007 Real Root Of 489*x^4+546*x^3-879*x^2+259*x-632 2178381992342084 r005 Im(z^2+c),c=13/62+4/31*I,n=14 2178381999203693 m001 (ln(3)+Zeta(1/2))/(GAMMA(19/24)-Totient) 2178382007440061 m001 (-Bloch+Kolakoski)/(Catalan+BesselI(1,1)) 2178382016479234 m001 (Totient+Trott2nd)/(2*Pi/GAMMA(5/6)+Rabbit) 2178382032583719 r005 Im(z^2+c),c=-2/17+16/57*I,n=17 2178382033003438 r002 14th iterates of z^2 + 2178382039307141 m005 (1/3*2^(1/2)-1/10)/(6/7*exp(1)-5/8) 2178382039677174 m005 (1/3*2^(1/2)-2/11)/(4*Pi+8/11) 2178382041592719 q001 1/4590563 2178382042129333 m001 (3^(1/2)-Kolakoski*ZetaQ(4))/Kolakoski 2178382054627104 k001 Champernowne real with 1642*n+536 2178382062857144 m001 (BesselI(0,2)+Landau)/(Riemann1stZero-Salem) 2178382066479627 h001 (2/7*exp(1)+4/7)/(9/11*exp(2)+1/7) 2178382082082815 a007 Real Root Of 35*x^4-15*x^3-298*x^2-263*x-102 2178382082624801 m005 (1/2*exp(1)-1/7)/(7/12*Zeta(3)-1/7) 2178382082691400 a007 Real Root Of -613*x^4-959*x^3+821*x^2-81*x-182 2178382094133474 a007 Real Root Of 485*x^4+855*x^3-717*x^2-226*x+827 2178382097661337 m005 (1/3*5^(1/2)+2/11)/(3/7*Catalan-9/11) 2178382104393843 m001 (Ei(1)*Backhouse+ThueMorse)/Backhouse 2178382108687711 r009 Im(z^3+c),c=-53/126+6/61*I,n=29 2178382109349670 p003 LerchPhi(1/32,1,83/179) 2178382124524496 a007 Real Root Of 976*x^4-266*x^3+120*x^2-704*x-164 2178382135500245 a007 Real Root Of 49*x^4-591*x^3+439*x^2+996*x+753 2178382135626020 p001 sum((-1)^n/(367*n+80)/n/(10^n),n=1..infinity) 2178382138423823 a007 Real Root Of 418*x^4-407*x^3+811*x^2-626*x-180 2178382143311781 a007 Real Root Of 412*x^4+642*x^3-892*x^2-279*x+984 2178382145433946 p004 log(12197/1381) 2178382147265439 m002 5*Coth[Pi]+18/ProductLog[Pi] 2178382147868716 r005 Re(z^2+c),c=-1/7+19/48*I,n=5 2178382154647107 k001 Champernowne real with 1643*n+535 2178382170364353 a001 66978574/341*123^(1/2) 2178382170454600 r002 18th iterates of z^2 + 2178382177695902 a007 Real Root Of 323*x^4+622*x^3-617*x^2-528*x+934 2178382180240674 m006 (1/2*exp(Pi)-3)/(2/5/Pi-1/6) 2178382184642731 m001 PrimesInBinary/ln(Artin)/TreeGrowth2nd^2 2178382185652431 a005 (1/cos(1/98*Pi))^1515 2178382191810533 m005 (1/6*exp(1)+2/5)/(Catalan+3) 2178382195218618 m001 (Zeta(1,-1)-Zeta(1,2))/(Niven+Tribonacci) 2178382201841761 a007 Real Root Of 180*x^4+159*x^3-278*x^2+98*x-877 2178382202016803 m001 Salem+FeigenbaumMu^ZetaQ(4) 2178382203927276 h001 (3/5*exp(1)+6/11)/(1/10*exp(1)+8/11) 2178382215374500 m001 (BesselI(1,2)+GAMMA(17/24))/(5^(1/2)-Catalan) 2178382227878316 r009 Re(z^3+c),c=-13/102+44/49*I,n=30 2178382228861795 r005 Im(z^2+c),c=37/126+2/53*I,n=52 2178382236068612 a007 Real Root Of -441*x^4-401*x^3+991*x^2-77*x+915 2178382239034635 r009 Re(z^3+c),c=-3/8+38/63*I,n=62 2178382241495417 m001 (2^(1/3)-FransenRobinson)/(-ZetaQ(3)+ZetaQ(4)) 2178382242007152 a007 Real Root Of -311*x^4-285*x^3+774*x^2-46*x+284 2178382248520278 m001 (-MertensB3+Totient)/(exp(1)+sin(1/5*Pi)) 2178382254667110 k001 Champernowne real with 1644*n+534 2178382257355576 m005 (1/2*Catalan+1/9)/(9/10*5^(1/2)+3/5) 2178382259525199 a007 Real Root Of -429*x^4-579*x^3+633*x^2-512*x-444 2178382279034870 m001 1/PrimesInBinary^2*LaplaceLimit*exp(sqrt(3)) 2178382282649628 a007 Real Root Of 403*x^4+930*x^3-472*x^2-967*x+672 2178382282913754 a005 (1/sin(77/216*Pi))^576 2178382287356330 a007 Real Root Of -298*x^4-232*x^3+779*x^2-166*x+254 2178382288732569 m001 1/exp(Sierpinski)^2/FeigenbaumC^2*GAMMA(17/24) 2178382290416029 l006 ln(1131/9989) 2178382291719275 a007 Real Root Of -676*x^4-895*x^3+890*x^2-719*x+181 2178382315860567 m001 arctan(1/3)*(LaplaceLimit-Totient) 2178382324628172 a007 Real Root Of 286*x^4+605*x^3-357*x^2-840*x-322 2178382328256935 r005 Im(z^2+c),c=-2/5+17/47*I,n=20 2178382332714449 r005 Im(z^2+c),c=-10/21+22/59*I,n=17 2178382333906746 s002 sum(A215105[n]/(n^3*2^n-1),n=1..infinity) 2178382342264710 a001 610/29*47^(17/28) 2178382343086662 a007 Real Root Of 428*x^4+805*x^3-110*x^2+193*x-374 2178382343380891 a007 Real Root Of 346*x^4-608*x^3+207*x^2-612*x+129 2178382353972181 m005 (1/2*2^(1/2)-3/4)/(2/9*5^(1/2)-3/10) 2178382354687113 k001 Champernowne real with 1645*n+533 2178382356080282 m001 (exp(1)+CopelandErdos)/(MasserGramain+Rabbit) 2178382356598334 g007 Psi(2,1/10)+Psi(2,2/9)+Psi(2,6/7)-Psi(2,7/12) 2178382362706898 a007 Real Root Of -554*x^4-933*x^3+475*x^2-614*x-761 2178382371605445 a007 Real Root Of -450*x^4+504*x^3-840*x^2+298*x+111 2178382383742623 m001 (FeigenbaumDelta+Stephens)/(Zeta(1,2)-exp(Pi)) 2178382389929067 l006 ln(1006/8885) 2178382399463190 m001 Salem^KhinchinLevy+cos(1/12*Pi) 2178382402821186 a007 Real Root Of 580*x^4+857*x^3-545*x^2+423*x-694 2178382413247592 p001 sum(1/(179*n+46)/(100^n),n=0..infinity) 2178382421287096 m001 exp(-1/2*Pi)^(exp(sqrt(2))/BesselK(1,1)) 2178382430080454 m001 (exp(1)+Pi^(1/2))/(Paris+ReciprocalLucas) 2178382431411744 a007 Real Root Of 371*x^4+904*x^3-47*x^2-345*x+462 2178382437963909 m001 (gamma(3)+Gompertz)/(TreeGrowth2nd-ThueMorse) 2178382443007597 m001 GAMMA(1/12)*ln(MertensB1)/sin(1)^2 2178382445202096 h001 (2/3*exp(2)+7/10)/(11/12*exp(1)+1/11) 2178382449830345 a007 Real Root Of -3*x^4+239*x^3-95*x^2-702*x-423 2178382449913717 a007 Real Root Of 371*x^4+558*x^3-213*x^2+546*x-386 2178382450211018 m001 (cos(1)+3)/(-exp(1/Pi)+3) 2178382454707116 k001 Champernowne real with 1646*n+532 2178382456200038 r009 Im(z^3+c),c=-7/82+11/49*I,n=8 2178382461336483 m001 GAMMA(7/24)*Niven^2/exp(sqrt(2)) 2178382481515950 a007 Real Root Of -537*x^4-924*x^3+290*x^2-581*x-101 2178382489418078 m001 Backhouse^(GAMMA(7/12)*FeigenbaumKappa) 2178382493090724 a001 1/12238*76^(12/53) 2178382493236321 r002 44th iterates of z^2 + 2178382499191500 a007 Real Root Of 289*x^4-452*x^3-348*x^2-553*x+141 2178382500300745 r009 Im(z^3+c),c=-3/22+53/61*I,n=52 2178382507819064 m001 (GAMMA(3/4)-Psi(2,1/3))/(-GaussAGM+Stephens) 2178382513326698 m001 1/ln(Si(Pi))/ErdosBorwein/arctan(1/2) 2178382517680750 l006 ln(881/7781) 2178382518861778 a007 Real Root Of 450*x^4+541*x^3-656*x^2+588*x-147 2178382522481244 r005 Im(z^2+c),c=6/23+1/12*I,n=35 2178382531577708 r005 Im(z^2+c),c=-14/31+23/61*I,n=61 2178382534732447 a007 Real Root Of -437*x^4-965*x^3-191*x^2-597*x-529 2178382536018123 m009 (3/4*Psi(1,3/4)+1/5)/(Pi^2-1/5) 2178382540687106 h001 (-7*exp(1/2)-4)/(-4*exp(3)+9) 2178382549446561 a007 Real Root Of 88*x^4-73*x^3-282*x^2+729*x+190 2178382549510025 r009 Re(z^3+c),c=-21/29+39/50*I,n=2 2178382553435724 a007 Real Root Of 543*x^4+918*x^3-990*x^2-908*x-18 2178382553601682 r005 Im(z^2+c),c=-33/62+16/45*I,n=24 2178382554727119 k001 Champernowne real with 1647*n+531 2178382556010546 a007 Real Root Of 359*x^4+588*x^3-187*x^2+692*x+389 2178382568740018 a007 Real Root Of 610*x^4+947*x^3-903*x^2-399*x-531 2178382577757586 a007 Real Root Of 43*x^4+895*x^3-876*x^2+663*x-972 2178382603158793 m005 (1/2*3^(1/2)+4/9)/(1/9*2^(1/2)+4/9) 2178382606323399 a007 Real Root Of -898*x^4+983*x^3+132*x^2+168*x-51 2178382612459588 a007 Real Root Of -39*x^4-862*x^3-269*x^2+12*x-588 2178382614874116 k002 Champernowne real with 14*n^2+134*n-146 2178382614941115 m001 (-ZetaP(3)+ZetaQ(4))/(Shi(1)-Si(Pi)) 2178382616435355 r005 Im(z^2+c),c=-2/13+12/41*I,n=22 2178382619612216 m002 -Pi^2-Pi^2/E^Pi+Pi^3+ProductLog[Pi] 2178382620235754 r005 Re(z^2+c),c=-17/114+23/47*I,n=38 2178382634543551 m001 (Salem-Thue)/(Champernowne+MertensB3) 2178382637443643 m001 (Riemann3rdZero-Robbin)/(GAMMA(3/4)-OneNinth) 2178382639128119 m001 Zeta(3)*GAMMA(5/6)-exp(Pi) 2178382649354135 m001 (cos(1)+HeathBrownMoroz)/(-Paris+Sierpinski) 2178382650075913 m001 1/(2^(1/3))^2*Salem^2*exp(Catalan) 2178382652002478 a001 2/5*144^(37/46) 2178382654747122 k001 Champernowne real with 1648*n+530 2178382655362310 a001 682/3278735159921*433494437^(13/14) 2178382655363840 a001 124/1144206275*514229^(13/14) 2178382674350012 m005 (3*gamma+1)/(2/5*exp(1)+1/6) 2178382676030559 a007 Real Root Of -911*x^4-556*x^3-218*x^2+883*x+199 2178382676778073 m001 exp(-Pi)^(Pi/Cahen) 2178382680069638 a005 (1/sin(43/139*Pi))^281 2178382687678335 l006 ln(756/6677) 2178382692860177 r005 Im(z^2+c),c=-39/46+2/13*I,n=28 2178382696725115 r002 35th iterates of z^2 + 2178382700492811 r009 Re(z^3+c),c=-43/114+21/37*I,n=46 2178382704975419 r002 19th iterates of z^2 + 2178382707084916 m001 (Ei(1)+BesselJ(1,1))/(Gompertz+PlouffeB) 2178382714451567 m001 (Niven+Otter)/(cos(1/12*Pi)+GAMMA(19/24)) 2178382718187179 m001 (exp(Pi)+gamma)/(-GAMMA(7/12)+TreeGrowth2nd) 2178382720257822 r009 Im(z^3+c),c=-7/82+11/49*I,n=10 2178382726577143 r009 Im(z^3+c),c=-7/82+11/49*I,n=13 2178382726607354 r009 Im(z^3+c),c=-7/82+11/49*I,n=15 2178382726607892 r009 Im(z^3+c),c=-7/82+11/49*I,n=18 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=20 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=21 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=23 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=25 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=26 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=28 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=30 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=31 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=33 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=36 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=38 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=41 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=43 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=46 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=48 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=51 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=52 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=53 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=54 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=49 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=50 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=47 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=45 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=44 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=42 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=40 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=39 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=37 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=35 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=34 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=32 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=29 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=27 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=24 2178382726607895 r009 Im(z^3+c),c=-7/82+11/49*I,n=22 2178382726607896 r009 Im(z^3+c),c=-7/82+11/49*I,n=19 2178382726607897 r009 Im(z^3+c),c=-7/82+11/49*I,n=16 2178382726607908 r009 Im(z^3+c),c=-7/82+11/49*I,n=17 2178382726613160 r009 Im(z^3+c),c=-7/82+11/49*I,n=14 2178382726704457 r009 Im(z^3+c),c=-7/82+11/49*I,n=12 2178382726865145 r009 Im(z^3+c),c=-7/82+11/49*I,n=11 2178382728888983 r002 3th iterates of z^2 + 2178382729666797 a007 Real Root Of -109*x^4+992*x^3+334*x^2+782*x+165 2178382732809086 a003 sin(Pi*1/42)-sin(Pi*2/65) 2178382749054110 r005 Re(z^2+c),c=-13/16+14/73*I,n=22 2178382752030969 m001 gamma^2*Ei(1)^2/ln(sqrt(3)) 2178382754767125 k001 Champernowne real with 1649*n+529 2178382765142182 r005 Re(z^2+c),c=-5/26+39/64*I,n=38 2178382774189839 r005 Im(z^2+c),c=-17/22+10/117*I,n=21 2178382779263367 r009 Im(z^3+c),c=-7/82+11/49*I,n=9 2178382800871094 m001 (Salem-ZetaQ(2))/(DuboisRaymond-Rabbit) 2178382804087266 a007 Real Root Of -526*x^4-788*x^3+606*x^2-663*x-621 2178382811368186 a008 Real Root of x^4-28*x^2-30*x+45 2178382828686788 a001 13201*14930352^(13/15) 2178382830449275 a001 20633239/3*10946^(13/15) 2178382844387344 r005 Im(z^2+c),c=-37/62+5/12*I,n=42 2178382852439703 g006 Psi(1,3/7)-Psi(1,5/12)-Psi(1,6/11)-Psi(1,1/4) 2178382854787128 k001 Champernowne real with 1650*n+528 2178382863590358 r005 Im(z^2+c),c=-13/40+11/32*I,n=30 2178382864923828 m001 MadelungNaCl/(sin(1/5*Pi)^PrimesInBinary) 2178382868489993 r009 Im(z^3+c),c=-55/98+16/63*I,n=52 2178382873191836 r005 Im(z^2+c),c=-35/58+5/14*I,n=31 2178382878296684 m005 (5/18+1/6*5^(1/2))/(-1/2+5/14*5^(1/2)) 2178382879979042 r005 Im(z^2+c),c=-17/36+16/41*I,n=31 2178382882040262 m001 (-BesselJ(0,1)+Conway)/(2^(1/2)+Shi(1)) 2178382884134481 q001 784/3599 2178382884134481 r002 2th iterates of z^2 + 2178382884134481 r002 2th iterates of z^2 + 2178382884134481 r005 Im(z^2+c),c=-77/122+49/59*I,n=2 2178382904546988 a007 Real Root Of -294*x^4-703*x^3-275*x^2+15*x+691 2178382906055564 m001 Landau+(Pi^(1/2))^Thue 2178382907883132 a007 Real Root Of 244*x^4+248*x^3+256*x^2-284*x-72 2178382907990325 r005 Im(z^2+c),c=-65/126+11/28*I,n=56 2178382913146707 h001 (1/6*exp(1)+9/10)/(4/5*exp(2)+3/10) 2178382923253866 m001 (Pi/Psi(1,1/3)+1)/BesselK(1,1) 2178382925028323 l006 ln(631/5573) 2178382925028323 p004 log(5573/631) 2178382928116551 h001 (4/9*exp(2)+1/11)/(5/12*exp(1)+5/12) 2178382930501348 m001 Catalan^2/Niven^2*ln(GAMMA(5/12)) 2178382933065559 m001 Rabbit/ln(CareFree)*Zeta(5)^2 2178382935014689 m001 (3^(1/2)-ln(gamma))/(-BesselI(1,2)+Landau) 2178382935160636 a003 sin(Pi*8/81)*sin(Pi*22/87) 2178382940075828 m001 (ln(2)/ln(10))^Grothendieck/cos(1) 2178382947312484 l005 sec(450/61) 2178382954807131 k001 Champernowne real with 1651*n+527 2178382962614751 r005 Im(z^2+c),c=-43/102+17/46*I,n=41 2178382991222979 m001 (Zeta(3)+ln(3))/(ln(2^(1/2)+1)+ZetaP(3)) 2178382991372115 a007 Real Root Of -138*x^4+529*x^3+155*x^2+117*x-38 2178382996043294 r005 Im(z^2+c),c=-11/16+2/93*I,n=39 2178382996523874 m001 Grothendieck^(ln(2^(1/2)+1)*GAMMA(7/12)) 2178382998786101 m001 1/ln(GAMMA(5/6))^2*BesselK(0,1)/log(2+sqrt(3)) 2178383013468528 m001 Zeta(1,2)/GAMMA(17/24)^2/ln(sinh(1))^2 2178383022122521 a001 322/4181*514229^(21/22) 2178383024183304 r005 Re(z^2+c),c=-13/82+35/59*I,n=30 2178383036931519 a007 Real Root Of 838*x^4-761*x^3+123*x^2-819*x-194 2178383047044155 a001 46/14619165*20365011074^(21/22) 2178383047686475 r009 Re(z^3+c),c=-11/90+44/51*I,n=48 2178383047958120 m001 1/ln(OneNinth)^2/RenyiParking*cos(Pi/5) 2178383051040999 a007 Real Root Of 824*x^4+282*x^3-641*x^2-984*x+240 2178383052656413 m005 (11/30+1/6*5^(1/2))/(1/11*Pi-5/8) 2178383054827134 k001 Champernowne real with 1652*n+526 2178383059854292 g005 GAMMA(7/10)*GAMMA(2/9)/GAMMA(7/12)/GAMMA(5/9) 2178383068663878 r002 10th iterates of z^2 + 2178383068933496 a003 cos(Pi*3/115)/sin(Pi*18/119) 2178383074515422 r002 55th iterates of z^2 + 2178383082844114 l006 ln(1137/10042) 2178383084316117 r005 Im(z^2+c),c=-16/29+21/55*I,n=34 2178383084513340 r005 Im(z^2+c),c=7/36+8/57*I,n=9 2178383100776758 r009 Im(z^3+c),c=-17/38+3/46*I,n=19 2178383106936844 a007 Real Root Of 526*x^4+850*x^3-352*x^2+542*x-207 2178383109659634 m001 MasserGramainDelta^Champernowne-Thue 2178383112528695 r005 Re(z^2+c),c=-5/29+7/16*I,n=33 2178383113035096 m001 LandauRamanujan/Khinchin/Mills 2178383121924269 b008 ExpIntegralEi[(1+Pi)^Sqrt[Pi]] 2178383128853726 r005 Im(z^2+c),c=-25/42+16/55*I,n=10 2178383135028890 r005 Im(z^2+c),c=-1/70+9/37*I,n=12 2178383139012343 a001 123*(1/2*5^(1/2)+1/2)^32*47^(14/15) 2178383145111955 a001 3/34*144^(20/31) 2178383146949715 m005 (1/2*Zeta(3)+8/11)/(3/7*gamma-6/7) 2178383148529279 m001 (Shi(1)-ln(3))/(FeigenbaumKappa+Landau) 2178383151173048 a007 Real Root Of 142*x^4-667*x^3+96*x^2-125*x-39 2178383151714011 a007 Real Root Of -640*x^4+232*x^3+116*x^2+710*x+153 2178383154847137 k001 Champernowne real with 1653*n+525 2178383154924648 m001 exp(GAMMA(5/6))^2/Bloch*Zeta(5)^2 2178383158553690 a007 Real Root Of -436*x^4-448*x^3+706*x^2-873*x-65 2178383158742689 m001 (1-Si(Pi))/(GAMMA(3/4)+Khinchin) 2178383161313643 r009 Re(z^3+c),c=-3/23+46/61*I,n=61 2178383162614413 m001 (Artin+HardyLittlewoodC4)/(Landau+Sierpinski) 2178383188653872 a007 Real Root Of -951*x^4+308*x^3-680*x^2+617*x+172 2178383188925066 m002 -3*E^Pi*Pi*Coth[Pi]+ProductLog[Pi] 2178383201842103 m001 (Shi(1)+GlaisherKinkelin)^Catalan 2178383211437189 a007 Real Root Of -321*x^4-202*x^3+655*x^2-718*x+468 2178383211732127 r005 Re(z^2+c),c=-13/74+14/33*I,n=16 2178383216205099 a007 Real Root Of 405*x^4+441*x^3-929*x^2+83*x+28 2178383219029978 b008 7-2*E^(8/3) 2178383220287302 r005 Im(z^2+c),c=-7/58+15/23*I,n=18 2178383227826812 a007 Real Root Of -212*x^4+845*x^3+191*x^2+935*x-221 2178383236363914 m001 ln(gamma)^ln(3)+Cahen 2178383236363914 m001 log(gamma)^ln(3)+Cahen 2178383246135260 r005 Re(z^2+c),c=-21/106+16/43*I,n=27 2178383246584419 r005 Im(z^2+c),c=-33/94+20/57*I,n=30 2178383246670828 r005 Im(z^2+c),c=-17/52+21/61*I,n=37 2178383250252939 m001 (-BesselI(1,2)+ThueMorse)/(Psi(2,1/3)+Zeta(5)) 2178383251128647 r005 Re(z^2+c),c=8/27+8/27*I,n=6 2178383254867140 k001 Champernowne real with 1654*n+524 2178383264229804 a001 2178309/199*322^(11/12) 2178383267303333 r009 Re(z^3+c),c=-31/122+10/43*I,n=3 2178383269078081 m001 -5^(1/2)/(ln(2)+1/3) 2178383269078081 m001 sqrt(5)/(1/3+ln(2)) 2178383279645985 l006 ln(506/4469) 2178383285177314 m001 1/exp(Magata)^2/ArtinRank2*Salem^2 2178383290342582 a007 Real Root Of -116*x^4+806*x^3-9*x^2+603*x-139 2178383292618983 m001 (FeigenbaumKappa-Lehmer)/(Ei(1)+ErdosBorwein) 2178383307859034 m001 ln(2+3^(1/2))/Gompertz*Paris 2178383321736736 a007 Real Root Of 134*x^4-226*x^3-902*x^2+927*x+946 2178383325001592 a007 Real Root Of 387*x^4+869*x^3+80*x^2-10*x-133 2178383325154700 r009 Im(z^3+c),c=-7/82+11/49*I,n=7 2178383329022282 m001 (Ei(1,1)-Zeta(1,-1))/(gamma(1)+Tribonacci) 2178383331261198 r005 Re(z^2+c),c=-75/74+4/41*I,n=20 2178383335667623 m001 ln(Riemann1stZero)^2/Conway^2/Ei(1) 2178383343861602 a007 Real Root Of -57*x^4+369*x^3+851*x^2-570*x-182 2178383354887143 k001 Champernowne real with 1655*n+523 2178383354959733 m001 (Kac+Riemann1stZero)/(BesselK(0,1)-ln(3)) 2178383358688008 a007 Real Root Of -263*x^4-205*x^3+677*x^2+176*x+974 2178383360545894 r005 Im(z^2+c),c=-9/19+21/44*I,n=10 2178383372449139 m005 (-17/40+3/8*5^(1/2))/(3*gamma+1/6) 2178383379612313 a007 Real Root Of -348*x^4-847*x^3-167*x^2+262*x+444 2178383383004037 m009 (6*Psi(1,2/3)-4/5)/(3/4*Psi(1,1/3)+1/2) 2178383388717801 r005 Im(z^2+c),c=-17/30+15/46*I,n=17 2178383394945631 m001 (exp(Pi)+Mills)/(Rabbit+ThueMorse) 2178383402149559 m001 KhinchinHarmonic+HardyLittlewoodC4^Rabbit 2178383410543394 h001 (-4*exp(8)-1)/(-5*exp(7)+9) 2178383413082472 m005 (1/2*exp(1)+5/7)/(4/9*Pi-4/9) 2178383420536801 a007 Real Root Of -526*x^4-949*x^3+80*x^2-359*x+873 2178383424139315 a003 sin(Pi*9/59)*sin(Pi*13/83) 2178383447295822 r002 38th iterates of z^2 + 2178383454907146 k001 Champernowne real with 1656*n+522 2178383470023235 m001 (Psi(1,1/3)-ln(3))/(exp(1/exp(1))+Khinchin) 2178383475808552 h001 (3/5*exp(2)+4/9)/(7/9*exp(1)+1/8) 2178383476520600 r005 Re(z^2+c),c=-11/54+11/29*I,n=9 2178383481720493 r005 Im(z^2+c),c=-10/17+18/49*I,n=56 2178383483130169 a001 322/3*610^(23/49) 2178383489481949 a007 Real Root Of 338*x^4+292*x^3-536*x^2+988*x+103 2178383498712034 a007 Real Root Of -76*x^4+77*x^3-58*x^2+825*x+18 2178383499018823 a007 Real Root Of -999*x^4-970*x^3-633*x^2+308*x+7 2178383500126799 r009 Re(z^3+c),c=-4/31+35/37*I,n=26 2178383513295604 a001 46368/2207*521^(23/31) 2178383518520802 m001 ln(GAMMA(17/24))^2/Khintchine/Zeta(5)^2 2178383531916197 l006 ln(887/7834) 2178383535306205 m005 (1/2*2^(1/2)-9/11)/(4/11*gamma+3/10) 2178383538445669 m001 (GAMMA(13/24)+Landau)/(3^(1/3)-BesselJ(1,1)) 2178383554927149 k001 Champernowne real with 1657*n+521 2178383556896917 a007 Real Root Of 24*x^4+494*x^3-601*x^2+605*x+539 2178383565376691 r005 Im(z^2+c),c=-51/86+14/43*I,n=8 2178383571434809 a001 9349/144*63245986^(17/24) 2178383587707223 r009 Re(z^3+c),c=-53/98+16/47*I,n=47 2178383595720809 m001 GaussAGM*arctan(1/2)^MadelungNaCl 2178383597544304 a001 322/17711*6557470319842^(17/24) 2178383605916524 r005 Im(z^2+c),c=-28/25+15/58*I,n=42 2178383617880117 k002 Champernowne real with 29/2*n^2+265/2*n-145 2178383626098841 m001 LandauRamanujan-exp(Pi)+Lehmer 2178383630075460 m005 (1/2*Catalan-7/9)/(2/3*Zeta(3)+2/3) 2178383631161819 a007 Real Root Of -753*x^4-978*x^3-255*x^2+993*x+220 2178383633203495 r005 Re(z^2+c),c=23/118+3/34*I,n=7 2178383637499787 r009 Re(z^3+c),c=-17/30+24/43*I,n=17 2178383649298927 m005 (1/3*Pi+2/5)/(7/24+1/6*5^(1/2)) 2178383654947152 k001 Champernowne real with 1658*n+520 2178383655398190 a001 3571/32951280099*514229^(13/14) 2178383663197001 p004 log(25763/2917) 2178383663928537 r005 Re(z^2+c),c=-41/98+28/61*I,n=3 2178383670035403 a007 Real Root Of 969*x^4+80*x^3+602*x^2-705*x+122 2178383670985030 s001 sum(exp(-Pi/4)^(n-1)*A247892[n],n=1..infinity) 2178383686676042 r002 30th iterates of z^2 + 2178383701318732 s002 sum(A232592[n]/(n*2^n+1),n=1..infinity) 2178383716853638 m001 (Ei(1,1)-Conway)/(Gompertz-Paris) 2178383722259031 m001 (Totient-Tribonacci)/(sin(1/5*Pi)+Niven) 2178383726880706 m005 (1/2*3^(1/2)+1/10)/(4/9*gamma-7/10) 2178383730943614 a007 Real Root Of -618*x^4-935*x^3+819*x^2-26*x+308 2178383731343806 r005 Re(z^2+c),c=-49/36+5/58*I,n=14 2178383734955554 r009 Re(z^3+c),c=-1/86+23/28*I,n=33 2178383741174377 b008 Coth[Pi/4]/7 2178383742589415 a001 1364/24157817*610^(13/14) 2178383749290689 a007 Real Root Of 251*x^4+909*x^3+869*x^2-144*x-693 2178383754967155 k001 Champernowne real with 1659*n+519 2178383766836073 r005 Im(z^2+c),c=-3/4+4/245*I,n=5 2178383777987055 r002 15th iterates of z^2 + 2178383790754726 a003 cos(Pi*5/92)/sin(Pi*13/87) 2178383791866744 a007 Real Root Of 534*x^4+533*x^3-977*x^2+431*x-940 2178383793424913 r009 Im(z^3+c),c=-9/106+50/57*I,n=36 2178383801301236 a001 9349/86267571272*514229^(13/14) 2178383806687884 a007 Real Root Of 588*x^4-324*x^3-534*x^2-58*x+40 2178383811516736 a007 Real Root Of 143*x^4-887*x^3+870*x^2+513*x+703 2178383812026025 r002 3th iterates of z^2 + 2178383812089232 g002 2*Psi(1/10)+Psi(5/9)-Psi(8/9) 2178383815044608 m001 (Ei(1)-Psi(1,1/3))/(FellerTornier+ZetaQ(2)) 2178383817350193 m002 4*E^(2*Pi)+Pi*Cosh[Pi] 2178383822588203 a001 844/7787980473*514229^(13/14) 2178383825693930 a001 64079/591286729879*514229^(13/14) 2178383825968520 m009 (6*Psi(1,2/3)+1)/(6*Catalan+3/4*Pi^2-4) 2178383826147049 a001 15251/140728068720*514229^(13/14) 2178383826213159 a001 439204/4052739537881*514229^(13/14) 2178383826222804 a001 1149851/10610209857723*514229^(13/14) 2178383826228765 a001 710647/6557470319842*514229^(13/14) 2178383826254016 a001 271443/2504730781961*514229^(13/14) 2178383826427093 a001 103682/956722026041*514229^(13/14) 2178383827295338 m005 (1/2*gamma+5)/(7/11*Pi+3/7) 2178383827613375 a001 39603/365435296162*514229^(13/14) 2178383830017724 m001 1/GAMMA(1/24)^2*ln(TreeGrowth2nd)*Zeta(1/2) 2178383835744273 a001 15127/139583862445*514229^(13/14) 2178383839991159 l006 ln(1226/1253) 2178383840864315 r005 Re(z^2+c),c=-13/122+17/30*I,n=42 2178383843940882 g005 GAMMA(4/5)^2/GAMMA(2/11)/GAMMA(3/4) 2178383854987158 k001 Champernowne real with 1660*n+518 2178383859818789 m001 (ArtinRank2+Rabbit*Weierstrass)/Weierstrass 2178383864234058 m005 (1/3*2^(1/2)-1/3)/(1/5*2^(1/2)-11/12) 2178383866952127 l006 ln(381/3365) 2178383876174331 r005 Im(z^2+c),c=-17/50+1/34*I,n=5 2178383884068796 a007 Real Root Of -798*x^4+276*x^3+970*x^2+780*x-217 2178383886881415 m001 LandauRamanujan-PisotVijayaraghavan*ThueMorse 2178383891436108 m001 1/MertensB1*ErdosBorwein/exp(Zeta(5)) 2178383891474277 a001 5778/53316291173*514229^(13/14) 2178383895447746 a001 121393/5778*521^(23/31) 2178383896369865 r005 Re(z^2+c),c=-1/6+34/55*I,n=39 2178383898298738 a007 Real Root Of 497*x^4+584*x^3-848*x^2+497*x-48 2178383900972937 m005 (1/2*5^(1/2)+3/7)/(3/10*2^(1/2)+2/7) 2178383902378370 m001 (Kac-ZetaQ(3))/(GAMMA(7/12)+Conway) 2178383909870774 a007 Real Root Of 204*x^4+274*x^3-161*x^2+187*x-590 2178383914596724 a001 28143753123/233*21^(19/20) 2178383918251573 s002 sum(A168593[n]/(pi^n+1),n=1..infinity) 2178383919970165 m001 GlaisherKinkelin^2*exp(FeigenbaumAlpha)*Trott 2178383920024751 r005 Im(z^2+c),c=-18/31+1/29*I,n=21 2178383921588758 m005 (1/2*Zeta(3)-6/7)/(53/66+1/6*5^(1/2)) 2178383926745791 m001 (ln(gamma)-Cahen)/(GolombDickman-ZetaP(4)) 2178383926908385 a007 Real Root Of -358*x^4-353*x^3+864*x^2-20*x+269 2178383929753862 s002 sum(A168593[n]/(pi^n),n=1..infinity) 2178383936561152 a007 Real Root Of 838*x^4-578*x^3+76*x^2-411*x-101 2178383936605003 a007 Real Root Of -83*x^4+65*x^3-12*x^2-773*x+914 2178383939733701 q001 1/4590559 2178383941256968 s002 sum(A168593[n]/(pi^n-1),n=1..infinity) 2178383948162925 a001 2/6765*10946^(45/47) 2178383948218405 m001 (Otter-TwinPrimes)/(Bloch+LandauRamanujan2nd) 2178383951203003 a001 317811/15127*521^(23/31) 2178383955007161 k001 Champernowne real with 1661*n+517 2178383956676796 a001 18/377*75025^(6/11) 2178383959337586 a001 832040/39603*521^(23/31) 2178383960524405 a001 46347/2206*521^(23/31) 2178383961257900 a001 1346269/64079*521^(23/31) 2178383964365034 a001 514229/24476*521^(23/31) 2178383968807126 m001 1/GAMMA(1/6)/ln(Tribonacci)*exp(1)^2 2178383975661715 m001 (Porter+ZetaP(4))/(Zeta(1,-1)-Landau) 2178383980957550 r005 Im(z^2+c),c=-11/70+5/17*I,n=11 2178383985661649 a001 196418/9349*521^(23/31) 2178384009219123 r009 Re(z^3+c),c=-15/58+28/37*I,n=36 2178384016493916 r009 Re(z^3+c),c=-9/23+22/39*I,n=40 2178384018751149 m001 GAMMA(19/24)-GaussAGM+Tribonacci 2178384021641606 a001 47/89*121393^(32/45) 2178384031979946 a007 Real Root Of -342*x^4-929*x^3-806*x^2-565*x+692 2178384034749288 m001 1/GAMMA(1/24)^2*(3^(1/3))*ln(Zeta(7)) 2178384049122538 a007 Real Root Of 504*x^4+526*x^3-751*x^2+752*x-710 2178384050367261 q001 2076/953 2178384055027164 k001 Champernowne real with 1662*n+516 2178384056698811 r005 Im(z^2+c),c=-17/31+23/63*I,n=29 2178384060538421 a007 Real Root Of -299*x^4-79*x^3+833*x^2-468*x+944 2178384060896002 r005 Im(z^2+c),c=-2/13+12/41*I,n=20 2178384065874458 r009 Re(z^3+c),c=-17/30+24/43*I,n=20 2178384066337858 a007 Real Root Of 512*x^4-707*x^3-691*x^2-736*x-136 2178384068904874 m001 (-Riemann2ndZero+Tetranacci)/(1-Champernowne) 2178384077891313 m001 arctan(1/3)+BesselJ(1,1)+Riemann2ndZero 2178384106437694 a001 2207/2*89^(5/33) 2178384112857616 p004 log(21347/2417) 2178384113333735 r005 Re(z^2+c),c=-23/118+11/29*I,n=16 2178384127667930 b008 E^EulerGamma+4*Sech[3] 2178384131630825 a001 75025/3571*521^(23/31) 2178384131810388 a007 Real Root Of 15*x^4-141*x^3-405*x^2-132*x-161 2178384137193357 r005 Im(z^2+c),c=-51/86+2/27*I,n=14 2178384139623349 a005 (1/sin(44/123*Pi))^297 2178384144024506 r009 Re(z^3+c),c=-17/30+24/43*I,n=29 2178384144182371 r009 Re(z^3+c),c=-17/30+24/43*I,n=32 2178384144208630 r009 Re(z^3+c),c=-17/30+24/43*I,n=41 2178384144208688 r009 Re(z^3+c),c=-17/30+24/43*I,n=44 2178384144208696 r009 Re(z^3+c),c=-17/30+24/43*I,n=53 2178384144208696 r009 Re(z^3+c),c=-17/30+24/43*I,n=56 2178384144208696 r009 Re(z^3+c),c=-17/30+24/43*I,n=62 2178384144208696 r009 Re(z^3+c),c=-17/30+24/43*I,n=59 2178384144208696 r009 Re(z^3+c),c=-17/30+24/43*I,n=50 2178384144208698 r009 Re(z^3+c),c=-17/30+24/43*I,n=47 2178384144209178 r009 Re(z^3+c),c=-17/30+24/43*I,n=38 2178384144212204 r009 Re(z^3+c),c=-17/30+24/43*I,n=35 2178384145645235 r009 Re(z^3+c),c=-17/30+24/43*I,n=26 2178384146813383 m001 ln(Cahen)/ErdosBorwein/(2^(1/3)) 2178384147939983 r005 Im(z^2+c),c=-51/94+13/34*I,n=41 2178384153873495 r009 Re(z^3+c),c=-17/30+24/43*I,n=23 2178384155047167 k001 Champernowne real with 1663*n+515 2178384158874304 l006 ln(1018/8991) 2178384160306929 a007 Real Root Of -473*x^4-520*x^3+639*x^2-917*x+246 2178384172305833 r005 Im(z^2+c),c=1/15+9/43*I,n=12 2178384174416598 m005 (1/2*Pi-3/11)/(2*Zeta(3)-3) 2178384174814175 m004 -6-3100*Sqrt[5]*Pi-Tan[Sqrt[5]*Pi] 2178384190958687 r009 Re(z^3+c),c=-4/31+59/64*I,n=36 2178384192068077 a005 (1/sin(61/133*Pi))^92 2178384194501041 r005 Re(z^2+c),c=-113/110+3/38*I,n=2 2178384197473889 m001 ZetaP(2)^sin(1/5*Pi)*Zeta(1,-1)^sin(1/5*Pi) 2178384199172008 p003 LerchPhi(1/256,2,371/173) 2178384231061999 r005 Im(z^2+c),c=-33/70+13/34*I,n=48 2178384231481654 r005 Im(z^2+c),c=-43/46+5/24*I,n=53 2178384232890235 m005 (1/2*gamma+1/9)/(7/9*Zeta(3)+9/10) 2178384248072466 m005 (1/2*exp(1)+5)/(1/8*5^(1/2)-4/7) 2178384252481686 m001 Thue/(FibonacciFactorial-FeigenbaumB) 2178384255067170 k001 Champernowne real with 1664*n+514 2178384269780416 a001 2207/610*34^(28/55) 2178384273451879 a001 1/4807525989*433494437^(13/14) 2178384273453409 a001 2207/20365011074*514229^(13/14) 2178384274437571 a001 514229/3*3^(12/55) 2178384286037017 a003 cos(Pi*22/109)*cos(Pi*45/109) 2178384287455912 a007 Real Root Of 282*x^4-156*x^3+748*x^2-575*x-163 2178384293187072 a007 Real Root Of -615*x^4-921*x^3-47*x^2+858*x+181 2178384301015637 m001 exp(GAMMA(5/6))^2*MinimumGamma^2/Zeta(1,2) 2178384305320552 r005 Im(z^2+c),c=-17/54+15/44*I,n=35 2178384306732927 m001 (Lehmer+Trott)/(polylog(4,1/2)-Kolakoski) 2178384315344141 r005 Re(z^2+c),c=-7/74+27/46*I,n=63 2178384315647668 r005 Im(z^2+c),c=-5/8+62/191*I,n=48 2178384320209152 a007 Real Root Of 573*x^4+854*x^3-932*x^2-435*x-600 2178384322355167 m005 (1/2*exp(1)+5/12)/(6*2^(1/2)-1/3) 2178384322713937 m005 (1/2*Pi+5/6)/(7/12*3^(1/2)-9/10) 2178384325685397 m001 (-ln(gamma)+1)/(exp(sqrt(2))+3) 2178384330125062 r009 Re(z^3+c),c=-5/42+39/46*I,n=48 2178384331325533 r002 3th iterates of z^2 + 2178384333477638 l006 ln(637/5626) 2178384333576803 r002 15th iterates of z^2 + 2178384347777410 r005 Im(z^2+c),c=-33/74+29/54*I,n=50 2178384351465005 a001 322/28657*233^(31/57) 2178384351537377 a007 Real Root Of -653*x^4-898*x^3+744*x^2-825*x+94 2178384355087173 k001 Champernowne real with 1665*n+513 2178384360812923 r009 Re(z^3+c),c=-25/106+59/63*I,n=19 2178384383509488 m001 (cos(1/5*Pi)+Totient)/Paris 2178384410540802 a007 Real Root Of 199*x^4-37*x^3-930*x^2+210*x+7 2178384425717472 a001 16692641/72*610^(17/24) 2178384434391468 r002 37th iterates of z^2 + 2178384436548375 r005 Im(z^2+c),c=-13/14+37/179*I,n=54 2178384444949708 a007 Real Root Of -589*x^4+368*x^3+607*x^2+632*x+114 2178384448830072 a007 Real Root Of -787*x^4+224*x^3+558*x^2+436*x-122 2178384454726420 m005 (1/3*Catalan-1/3)/(3/8*3^(1/2)+7/11) 2178384455107176 k001 Champernowne real with 1666*n+512 2178384455377416 r009 Im(z^3+c),c=-8/23+9/59*I,n=5 2178384459531154 m001 (1-cos(1))/(-ArtinRank2+FransenRobinson) 2178384493484469 m001 TwinPrimes*ln(ArtinRank2)*Catalan 2178384502644520 a001 433494437/29*76^(2/23) 2178384517367098 a005 (1/cos(2/75*Pi))^877 2178384518838280 a007 Real Root Of 176*x^4+50*x^3-443*x^2+898*x+612 2178384523664403 r002 56th iterates of z^2 + 2178384531577005 m001 GAMMA(17/24)/exp(Tribonacci)/Zeta(1,2) 2178384532521491 l006 ln(893/7887) 2178384533604682 r005 Re(z^2+c),c=43/126+5/17*I,n=5 2178384550780706 r005 Im(z^2+c),c=-123/94+16/61*I,n=3 2178384554020607 r005 Im(z^2+c),c=13/126+34/57*I,n=45 2178384555127179 k001 Champernowne real with 1667*n+511 2178384587268444 m005 (1/2*2^(1/2)+2/11)/(2/5*Zeta(3)-8/9) 2178384588227011 r008 a(0)=2,K{-n^6,63+25*n^3-27*n^2-64*n} 2178384594227008 b008 1/9-3*Sinh[Khinchin] 2178384595280033 r002 27th iterates of z^2 + 2178384607504667 m001 Kolakoski^BesselJ(0,1)+Totient 2178384607669389 a007 Real Root Of 236*x^4+578*x^3+629*x^2+848*x-477 2178384610013404 r005 Re(z^2+c),c=-37/70+25/41*I,n=28 2178384611989318 p004 log(28183/3191) 2178384612811868 r005 Re(z^2+c),c=-23/94+10/19*I,n=9 2178384616389659 m003 2+Sqrt[5]/1024+(Sqrt[5]*E^(1/2+Sqrt[5]/2))/64 2178384620886118 k002 Champernowne real with 15*n^2+131*n-144 2178384634349860 r005 Im(z^2+c),c=-15/32+5/51*I,n=4 2178384634533606 m005 (1/2*Pi-4/11)/(-7/60+3/10*5^(1/2)) 2178384649733758 r005 Im(z^2+c),c=-17/42+23/63*I,n=47 2178384655147182 k001 Champernowne real with 1668*n+510 2178384656230080 a007 Real Root Of 43*x^4-375*x^3-807*x^2+220*x-536 2178384663102103 a003 cos(Pi*1/80)/cos(Pi*31/89) 2178384670819416 m001 (Sierpinski-Weierstrass)/(sin(1/12*Pi)+Rabbit) 2178384672207589 r009 Re(z^3+c),c=-67/126+10/27*I,n=28 2178384672925896 r005 Im(z^2+c),c=-2/3+10/193*I,n=10 2178384676310176 r005 Re(z^2+c),c=-13/62+8/23*I,n=9 2178384676576612 r002 4th iterates of z^2 + 2178384681284913 m004 (-5*E^(Sqrt[5]*Pi))/Pi-125*Pi+(Sqrt[5]*Pi)/2 2178384688314453 m001 Trott*GaussKuzminWirsing^2*exp(GAMMA(7/24)) 2178384690780954 r005 Im(z^2+c),c=-65/56+3/61*I,n=8 2178384691026889 r005 Re(z^2+c),c=17/94+11/19*I,n=19 2178384696325784 a007 Real Root Of 700*x^4+675*x^3+430*x^2-964*x-225 2178384700267382 a005 (1/cos(9/100*Pi))^1440 2178384701378285 a007 Real Root Of -175*x^4+813*x^3-518*x^2+416*x+124 2178384704910553 m001 (Salem+Sarnak)/(ln(gamma)-FellerTornier) 2178384705311382 m001 (Pi+BesselI(0,2))/(DuboisRaymond-FeigenbaumD) 2178384709038666 m001 (MinimumGamma-Paris)/(ZetaQ(2)+ZetaQ(3)) 2178384715554212 m001 (Bloch-Champernowne)/(GAMMA(3/4)+Artin) 2178384720174552 a007 Real Root Of -608*x^4-855*x^3+574*x^2-673*x+663 2178384739581857 a007 Real Root Of -460*x^4-750*x^3+789*x^2+272*x-546 2178384742624265 a001 3571/63245986*610^(13/14) 2178384748908536 s001 sum(exp(-3*Pi)^n*A109994[n],n=1..infinity) 2178384752006118 r005 Im(z^2+c),c=-17/30+30/79*I,n=50 2178384755167185 k001 Champernowne real with 1669*n+509 2178384757245485 r009 Re(z^3+c),c=-25/106+42/61*I,n=17 2178384759102033 m001 (-ln(3)+CareFree)/(2^(1/3)-ln(gamma)) 2178384761153379 m005 (1/3*Zeta(3)+1/10)/(1/4*Pi-5/9) 2178384765058234 a007 Real Root Of 410*x^4+572*x^3-417*x^2+386*x-500 2178384776290852 a007 Real Root Of -499*x^4-697*x^3+995*x^2-45*x-788 2178384780719289 m008 (1/3*Pi^4-4)/(2/5*Pi^3+2/3) 2178384782413092 a007 Real Root Of 300*x^4+343*x^3-174*x^2+982*x-245 2178384789732281 a007 Real Root Of 25*x^4+552*x^3+178*x^2+367*x+62 2178384793684622 r009 Re(z^3+c),c=-12/31+20/37*I,n=10 2178384796932546 m001 ln(cos(Pi/12))*BesselK(1,1)^2*log(2+sqrt(3))^2 2178384798757077 m008 (2/5*Pi^2+1/4)/(3/5*Pi^3+2/3) 2178384806385589 r005 Im(z^2+c),c=-137/126+7/33*I,n=22 2178384810576776 r009 Im(z^3+c),c=-19/56+3/19*I,n=5 2178384820523722 r009 Re(z^3+c),c=-3/74+24/35*I,n=49 2178384824426423 m001 (-BesselI(0,2)+Artin)/(Shi(1)-ln(Pi)) 2178384827267162 a007 Real Root Of 448*x^4+832*x^3-250*x^2-183*x-700 2178384829757106 b008 -4+Sqrt[3/5+E] 2178384832570360 r005 Re(z^2+c),c=-21/122+25/57*I,n=26 2178384838463472 m008 (1/2*Pi^5+1/5)/(2*Pi+3/4) 2178384841046217 a007 Real Root Of 172*x^4+372*x^3-171*x^2-556*x+125 2178384845786283 s002 sum(A002536[n]/((2^n-1)/n),n=1..infinity) 2178384846313835 a007 Real Root Of -621*x^4-770*x^3+869*x^2-547*x+709 2178384855187188 k001 Champernowne real with 1670*n+508 2178384859274311 a001 5/47*123^(7/47) 2178384859702312 m001 (Catalan-Khinchin)^Psi(2,1/3) 2178384868193551 a001 48/41*3^(13/23) 2178384868878257 m001 (BesselJ(0,1)+KomornikLoreti)/(-Lehmer+Rabbit) 2178384875443800 a007 Real Root Of -452*x^4-780*x^3+89*x^2-936*x-346 2178384876620521 r005 Im(z^2+c),c=-3/29+8/29*I,n=15 2178384876745281 r005 Re(z^2+c),c=-7/34+42/59*I,n=22 2178384877170648 m008 (2/5*Pi^4+1/2)/(1/6*Pi^2+1/6) 2178384880334731 m001 1/Ei(1)^2/Cahen^2*exp(sinh(1)) 2178384886148747 h005 exp(cos(Pi*2/31)*cos(Pi*11/53)) 2178384887082520 m002 -5+Pi-20*Tanh[Pi] 2178384887835585 a001 5778/1597*34^(28/55) 2178384888527383 a001 9349/165580141*610^(13/14) 2178384888805432 q001 1/4590557 2178384896488371 a007 Real Root Of 442*x^4+699*x^3-903*x^2-480*x+512 2178384900045153 m001 (Backhouse+Mills)/(BesselI(0,1)+gamma(3)) 2178384904227754 m005 (1/2*Catalan+8/11)/(1/4*5^(1/2)-6) 2178384905975874 m001 ErdosBorwein+Robbin^GAMMA(2/3) 2178384909814362 a001 24476/433494437*610^(13/14) 2178384912920090 a001 64079/1134903170*610^(13/14) 2178384913080353 m002 -6-E^Pi+2*Pi+ProductLog[Pi] 2178384913373209 a001 167761/2971215073*610^(13/14) 2178384913439319 a001 439204/7778742049*610^(13/14) 2178384913448964 a001 1149851/20365011074*610^(13/14) 2178384913450371 a001 3010349/53316291173*610^(13/14) 2178384913450576 a001 7881196/139583862445*610^(13/14) 2178384913450606 a001 20633239/365435296162*610^(13/14) 2178384913450611 a001 54018521/956722026041*610^(13/14) 2178384913450611 a001 141422324/2504730781961*610^(13/14) 2178384913450611 a001 370248451/6557470319842*610^(13/14) 2178384913450611 a001 199691526/3536736619241*610^(13/14) 2178384913450612 a001 228826127/4052739537881*610^(13/14) 2178384913450612 a001 29134601/516002918640*610^(13/14) 2178384913450613 a001 33385282/591286729879*610^(13/14) 2178384913450625 a001 4250681/75283811239*610^(13/14) 2178384913450703 a001 4870847/86267571272*610^(13/14) 2178384913451241 a001 620166/10983760033*610^(13/14) 2178384913454925 a001 710647/12586269025*610^(13/14) 2178384913480176 a001 90481/1602508992*610^(13/14) 2178384913653253 a001 103682/1836311903*610^(13/14) 2178384914839535 a001 1/17711*610^(13/14) 2178384922970437 a001 15127/267914296*610^(13/14) 2178384932084526 r009 Re(z^3+c),c=-29/52+3/20*I,n=15 2178384935514345 m001 CareFree-GAMMA(7/12)-GAMMA(2/3) 2178384936029493 a007 Real Root Of -355*x^4-429*x^3+595*x^2-773*x-948 2178384940634186 a001 199/365435296162*6557470319842^(1/8) 2178384940634186 a001 199/225851433717*139583862445^(1/8) 2178384940634186 a001 199/139583862445*2971215073^(1/8) 2178384940634186 a001 199/86267571272*63245986^(1/8) 2178384940634216 a001 199/53316291173*1346269^(1/8) 2178384940700501 a001 199/32951280099*28657^(1/8) 2178384950635002 s002 sum(A199870[n]/(n^2*pi^n+1),n=1..infinity) 2178384955207191 k001 Champernowne real with 1671*n+507 2178384964031437 a007 Real Root Of 494*x^4+943*x^3-8*x^2+724*x+239 2178384976108403 p001 sum(1/(372*n+349)/n/(64^n),n=1..infinity) 2178384978008667 a001 15127/4181*34^(28/55) 2178384978700470 a001 1926/34111385*610^(13/14) 2178384982762083 m001 (LaplaceLimit+MertensB3)/Catalan 2178384987404546 a001 2/17*75025^(13/50) 2178384989121597 a007 Real Root Of 798*x^4+516*x^3+973*x^2-970*x+158 2178384990845165 l006 ln(189/235) 2178384991164743 a001 39603/10946*34^(28/55) 2178384994270471 a001 64079/17711*34^(28/55) 2178384998758562 m005 (1/2*exp(1)+1/5)/(1/4*gamma+4/7) 2178384999295645 a001 24476/6765*34^(28/55) 2178385003056263 p001 sum(floor(nd*n)/(561*n+8)/(2^n),n=0..infinity) 2178385016343519 a007 Real Root Of 430*x^4+588*x^3-481*x^2+651*x+96 2178385019176430 m001 (-Otter+Totient)/(Si(Pi)+2*Pi/GAMMA(5/6)) 2178385026311234 a001 2178309+34*5^(1/2) 2178385027798407 l006 ln(256/2261) 2178385032723998 v004 sum(1/(-18+n^2+21*n)/sinh(Pi*n),n=1..infinity) 2178385033738702 a001 9349/2584*34^(28/55) 2178385047597471 a001 4356665/2+47/2*5^(1/2) 2178385052845593 a003 cos(Pi*3/106)/cos(Pi*15/43) 2178385055227194 k001 Champernowne real with 1672*n+506 2178385058517378 m005 (1/3*3^(1/2)+2/11)/(3/7*Zeta(3)-1/6) 2178385059545379 r005 Re(z^2+c),c=-17/106+29/63*I,n=19 2178385061993710 p001 sum((-1)^n/(557*n+457)/(100^n),n=0..infinity) 2178385062460701 r009 Re(z^3+c),c=-7/19+25/49*I,n=13 2178385063496195 m001 gamma(1)+GaussAGM+Riemann2ndZero 2178385065969291 a007 Real Root Of 196*x^4-482*x^3-209*x^2-647*x-14 2178385065982396 m001 (gamma(3)+Rabbit)/(exp(1)-ln(gamma)) 2178385069067962 a007 Real Root Of -146*x^4-528*x^3-789*x^2-873*x-328 2178385069995572 a007 Real Root Of -426*x^4-643*x^3+84*x^2-832*x+735 2178385071444869 r005 Im(z^2+c),c=-117/94+7/64*I,n=16 2178385081241774 r002 38th iterates of z^2 + 2178385086467931 a007 Real Root Of 210*x^4+446*x^3+359*x^2+645*x-417 2178385086991803 a001 199/20365011074*610^(1/8) 2178385093638613 r009 Re(z^3+c),c=-43/94+15/29*I,n=52 2178385100848977 m001 (Shi(1)+ln(Pi))/(-arctan(1/3)+MertensB3) 2178385103247893 a003 cos(Pi*22/107)/cos(Pi*43/113) 2178385113287842 r005 Re(z^2+c),c=-33/62+33/62*I,n=62 2178385131643704 m005 (23/66+1/6*5^(1/2))/(10/11*Pi+5/11) 2178385132118973 a001 28657/1364*521^(23/31) 2178385142354928 r009 Re(z^3+c),c=-17/40+26/55*I,n=6 2178385148425005 r005 Re(z^2+c),c=11/29+3/19*I,n=5 2178385149715544 m005 (1/2*3^(1/2)-6)/(1/3*Zeta(3)-7/11) 2178385155247197 k001 Champernowne real with 1673*n+505 2178385159438255 a007 Real Root Of -320*x^4-153*x^3+533*x^2-970*x+982 2178385164240372 m001 (cos(1)+GAMMA(17/24))/(Cahen+DuboisRaymond) 2178385165882124 p004 log(28289/3203) 2178385173063759 m001 AlladiGrinstead^FeigenbaumB+Totient 2178385185262574 m001 (3^(1/2)+Ei(1,1))/(-AlladiGrinstead+Niven) 2178385185879628 m001 1/GAMMA(1/24)*RenyiParking*exp(GAMMA(1/6))^2 2178385192901518 a001 1/199*(1/2*5^(1/2)+1/2)^17*3^(3/17) 2178385199828425 r005 Im(z^2+c),c=-9/58+17/58*I,n=13 2178385205177891 r005 Re(z^2+c),c=-39/58+31/44*I,n=3 2178385208167396 a007 Real Root Of 293*x^4-636*x^3-670*x^2-846*x+222 2178385209064094 r005 Re(z^2+c),c=-17/14+177/256*I,n=2 2178385210966363 m001 GAMMA(13/24)*ReciprocalLucas^BesselK(0,1) 2178385213291827 a007 Real Root Of -44*x^4-954*x^3+100*x^2+43*x-108 2178385221268541 a007 Real Root Of -446*x^4-544*x^3+838*x^2-242*x-84 2178385228981159 a001 370248451/2*63245986^(13/20) 2178385228985472 a001 710647/2*956722026041^(13/20) 2178385239994840 a007 Real Root Of -43*x^4-963*x^3-536*x^2+804*x+55 2178385243840406 a007 Real Root Of -98*x^4-304*x^3-644*x^2+906*x+225 2178385245181259 a001 96450076809*4181^(13/20) 2178385253897620 r005 Re(z^2+c),c=-15/94+12/25*I,n=7 2178385255267200 k001 Champernowne real with 1674*n+504 2178385261083867 m001 2^(1/2)/(FeigenbaumDelta+MasserGramainDelta) 2178385262826532 m001 (-Otter+Stephens)/(2^(1/2)-arctan(1/3)) 2178385267449738 r009 Re(z^3+c),c=-11/30+31/57*I,n=53 2178385269814970 a001 3571/987*34^(28/55) 2178385288746524 a007 Real Root Of 409*x^4+32*x^3-556*x^2-706*x-128 2178385293114614 p004 log(14723/1667) 2178385300822678 r005 Im(z^2+c),c=-9/17+17/44*I,n=48 2178385305036732 r005 Im(z^2+c),c=-2/13+12/41*I,n=25 2178385317190744 r009 Re(z^3+c),c=-31/114+3/10*I,n=9 2178385317390064 m001 (Otter+Thue)/(Chi(1)-LaplaceLimit) 2178385319164710 r005 Re(z^2+c),c=-1/27+37/61*I,n=53 2178385320259120 a001 144/11*2^(36/49) 2178385324948285 r009 Re(z^3+c),c=-25/78+3/7*I,n=19 2178385326988266 m001 (Rabbit-ZetaP(4))/(exp(1/exp(1))+MinimumGamma) 2178385343474688 m001 (Psi(2,1/3)+Zeta(1,2))/(Riemann3rdZero+Sarnak) 2178385355287203 k001 Champernowne real with 1675*n+503 2178385359673343 a001 521/55*4807526976^(19/22) 2178385360679793 a001 2207/39088169*610^(13/14) 2178385368441358 r002 3th iterates of z^2 + 2178385368719283 r005 Re(z^2+c),c=-25/102+12/59*I,n=11 2178385374870822 a007 Real Root Of 622*x^4+706*x^3-985*x^2+730*x-444 2178385385314897 m001 GlaisherKinkelin^FibonacciFactorial-exp(Pi) 2178385387173413 a001 55/54018521*3^(9/13) 2178385392449578 m007 (-3*gamma-9*ln(2)-3/2*Pi+2)/(-1/6*gamma+5) 2178385395645390 a001 29*(1/2*5^(1/2)+1/2)^2*7^(13/24) 2178385404393366 a007 Real Root Of -720*x^4+895*x^3-798*x^2+676*x+196 2178385412231442 m001 (-Otter+ZetaP(3))/(Shi(1)+Ei(1,1)) 2178385416666666 q001 1673/768 2178385420463766 r008 a(0)=0,K{-n^6,38-59*n^3-97*n^2+72*n} 2178385424410211 r008 a(0)=0,K{-n^6,-84+66*n^3+53*n^2+11*n} 2178385430793715 a007 Real Root Of 488*x^4+87*x^3+760*x^2-770*x-204 2178385439616316 a007 Real Root Of 104*x^4+188*x^3-29*x^2-264*x-836 2178385442081095 a007 Real Root Of -169*x^4-734*x^3-832*x^2+122*x+432 2178385447031614 m005 (1/3*gamma+1/4)/(7/9*exp(1)-1/12) 2178385451943183 p001 sum((-1)^n/(499*n+215)/n/(64^n),n=1..infinity) 2178385455307206 k001 Champernowne real with 1676*n+502 2178385470327284 r002 56th iterates of z^2 + 2178385477255804 a001 1/76*(1/2*5^(1/2)+1/2)^13*18^(2/5) 2178385477362841 a003 sin(Pi*5/41)*sin(Pi*20/101) 2178385477551759 r005 Im(z^2+c),c=-35/78+14/37*I,n=29 2178385491522106 r005 Re(z^2+c),c=3/10+25/54*I,n=3 2178385492493253 m004 (-5*Pi)/4+5*Sec[Sqrt[5]*Pi]-Sin[Sqrt[5]*Pi] 2178385497553063 m002 -Cosh[Pi]^2/2+Pi^5/ProductLog[Pi] 2178385513100920 r005 Re(z^2+c),c=41/126+2/9*I,n=42 2178385516609108 r002 46th iterates of z^2 + 2178385519769561 l006 ln(899/7940) 2178385521480806 m001 (ln(3)-ln(Pi))/(GaussAGM+GlaisherKinkelin) 2178385534949383 m006 (3/4*Pi^2-1)/(1/3/Pi-2/5) 2178385535339617 m001 (GAMMA(7/12)+Bloch)/(Landau-MinimumGamma) 2178385536794700 m001 (Catalan-exp(1))/(-ln(2)+StronglyCareFree) 2178385539360126 m001 Bloch*ln(GaussAGM(1,1/sqrt(2)))/Ei(1)^2 2178385540713343 r009 Re(z^3+c),c=-29/98+23/63*I,n=11 2178385549614508 m001 (Pi^(1/2)-Kac)/(KhinchinLevy-TwinPrimes) 2178385553073776 m001 exp(Pi)/(Riemann2ndZero^StronglyCareFree) 2178385555327209 k001 Champernowne real with 1677*n+501 2178385558980178 r005 Re(z^2+c),c=-35/36+1/13*I,n=24 2178385561284370 m001 RenyiParking^2*MertensB1^2*ln(GAMMA(5/12))^2 2178385561935935 a007 Real Root Of -481*x^4-817*x^3+335*x^2-612*x-537 2178385563775400 a007 Real Root Of -110*x^4+907*x^3+444*x^2+608*x+121 2178385565571773 m001 (gamma(1)-BesselI(1,2))/(Rabbit+ZetaQ(2)) 2178385569430707 r005 Im(z^2+c),c=-11/8+11/153*I,n=16 2178385571365047 p004 log(21559/2441) 2178385574246641 q001 9/41315 2178385574720899 m001 (-KhinchinLevy+LaplaceLimit)/(2^(1/3)+ln(Pi)) 2178385582585743 a007 Real Root Of 122*x^4+119*x^3-298*x^2-28*x-164 2178385589404164 r002 58th iterates of z^2 + 2178385596122230 a003 cos(Pi*1/26)*sin(Pi*5/71) 2178385600412068 r009 Re(z^3+c),c=-4/31+59/64*I,n=44 2178385621147005 p004 log(32917/3727) 2178385623892119 k002 Champernowne real with 31/2*n^2+259/2*n-143 2178385628718880 s002 sum(A112579[n]/((exp(n)+1)*n),n=1..infinity) 2178385629828472 a007 Real Root Of 203*x^4+484*x^3-336*x^2-860*x+153 2178385641837364 a007 Real Root Of 438*x^4+767*x^3-237*x^2+195*x-385 2178385643350633 a005 (1/cos(3/65*Pi))^1820 2178385649361943 r005 Im(z^2+c),c=11/62+8/53*I,n=18 2178385655347212 k001 Champernowne real with 1678*n+500 2178385660621709 r005 Im(z^2+c),c=-27/58+23/60*I,n=28 2178385661746604 r004 Im(z^2+c),c=-8/9+3/16*I,z(0)=-1,n=54 2178385662659978 a007 Real Root Of -524*x^4-101*x^3-694*x^2+624*x+169 2178385672592904 r005 Im(z^2+c),c=-31/118+15/46*I,n=21 2178385675304770 r005 Re(z^2+c),c=17/62+2/11*I,n=33 2178385677338718 m001 StolarskyHarborth/ln(2)/ZetaQ(2) 2178385679752136 m001 Ei(1,1)-Robbin+TwinPrimes 2178385679928815 m005 (1/2*exp(1)+6/7)/(4/11*Pi-1/8) 2178385680597586 a007 Real Root Of -366*x^4-202*x^3+909*x^2-578*x+581 2178385688385058 a007 Real Root Of 156*x^4+154*x^3-27*x^2+369*x-989 2178385689851535 r005 Re(z^2+c),c=-35/44+5/51*I,n=4 2178385695325208 m001 GAMMA(1/12)^2/ln(Ei(1))/GAMMA(7/24)^2 2178385701631683 m001 (1+KomornikLoreti)/(-Riemann1stZero+Totient) 2178385707520228 m001 (BesselI(0,2)+Trott)/(sin(1/5*Pi)+arctan(1/2)) 2178385708000015 r005 Re(z^2+c),c=-15/58+7/46*I,n=3 2178385715639813 l006 ln(643/5679) 2178385716035477 m001 ZetaP(4)/(BesselI(1,1)+Otter) 2178385716201691 r002 3i'th iterates of 2*x/(1-x^2) of 2178385716992688 r002 6th iterates of z^2 + 2178385720417094 a001 19/1201881744*13^(1/8) 2178385724731839 m001 (-MinimumGamma+ZetaQ(2))/(KhinchinLevy-cos(1)) 2178385726901009 m003 1/2+Sqrt[5]/2+E^(1/2+Sqrt[5]/2)/9 2178385743715090 m005 (1/2*exp(1)-1/8)/(2/11*Catalan+2/5) 2178385750292119 m008 (1/3*Pi^2+5/6)/(1/5*Pi^6-3) 2178385751712878 r005 Im(z^2+c),c=-21/46+17/45*I,n=42 2178385753468430 a007 Real Root Of -619*x^4-726*x^3+893*x^2-967*x+90 2178385754338773 m001 (exp(1/Pi)+Artin)/(FeigenbaumC-Tribonacci) 2178385755367215 k001 Champernowne real with 1679*n+499 2178385757757022 m001 1/exp(Zeta(5))^2*GAMMA(3/4)*sqrt(2) 2178385769531629 r009 Re(z^3+c),c=-63/118+7/22*I,n=18 2178385779596448 m001 (Pi-3^(1/2))/(cos(1/5*Pi)-Backhouse) 2178385784245095 r005 Im(z^2+c),c=-45/118+14/39*I,n=37 2178385785008108 a003 cos(Pi*19/102)*cos(Pi*42/101) 2178385786269919 m003 -25-Log[1/2+Sqrt[5]/2]+4*Tanh[1/2+Sqrt[5]/2] 2178385786528405 m002 -1+Pi+(Pi^2*Sech[Pi])/E^Pi 2178385786596269 m001 (-GAMMA(5/6)+ErdosBorwein)/(Zeta(3)-exp(Pi)) 2178385791832273 r005 Re(z^2+c),c=11/74+26/57*I,n=20 2178385822266886 r005 Im(z^2+c),c=-2/13+12/41*I,n=28 2178385827286543 m001 FeigenbaumD/ln(MinimumGamma)*GAMMA(7/24) 2178385832129841 m001 (-Zeta(1,2)+Tribonacci)/(Si(Pi)-gamma) 2178385832226654 m001 1/Paris^2/ErdosBorwein*exp(GAMMA(3/4)) 2178385833399265 a001 34/167761*76^(1/60) 2178385838969911 m001 Trott*(LambertW(1)+3^(1/3)) 2178385845634052 m005 (1/2*3^(1/2)-2/3)/(3/7*Zeta(3)+2/5) 2178385845762734 a007 Real Root Of -48*x^4+157*x^3+204*x^2-806*x-20 2178385852542636 m001 GAMMA(2/3)^2/exp(MertensB1)*cosh(1) 2178385853025214 a007 Real Root Of x^4+219*x^3+255*x^2+434*x-321 2178385854655373 b008 97*E^(4+Sqrt[2]) 2178385855387218 k001 Champernowne real with 1680*n+498 2178385862828793 s001 sum(exp(-Pi/4)^(n-1)*A248762[n],n=1..infinity) 2178385866560334 a007 Real Root Of 151*x^4-105*x^3-476*x^2+689*x-726 2178385876266464 r005 Re(z^2+c),c=7/25+12/49*I,n=7 2178385876465650 b008 14+3*Sqrt[5+Sqrt[3]] 2178385877354886 r005 Re(z^2+c),c=-7/40+25/62*I,n=8 2178385881729463 m006 (exp(2*Pi)+3)/(1/3*Pi-4/5) 2178385886598380 l006 ln(1030/9097) 2178385888423717 s002 sum(A007341[n]/((exp(n)+1)/n),n=1..infinity) 2178385888735536 r009 Im(z^3+c),c=-9/106+50/57*I,n=34 2178385899481984 a007 Real Root Of 423*x^4+813*x^3+210*x^2+598*x-815 2178385904252939 r005 Im(z^2+c),c=-2/13+12/41*I,n=31 2178385907859391 r005 Im(z^2+c),c=-2/13+12/41*I,n=30 2178385911913814 r005 Im(z^2+c),c=-2/13+12/41*I,n=33 2178385914470366 r005 Im(z^2+c),c=-2/13+12/41*I,n=36 2178385914591549 r005 Im(z^2+c),c=-2/13+12/41*I,n=34 2178385915145057 r005 Im(z^2+c),c=-2/13+12/41*I,n=39 2178385915279737 r005 Im(z^2+c),c=-2/13+12/41*I,n=42 2178385915301826 r005 Im(z^2+c),c=-2/13+12/41*I,n=45 2178385915303671 r005 Im(z^2+c),c=-2/13+12/41*I,n=44 2178385915304193 r005 Im(z^2+c),c=-2/13+12/41*I,n=47 2178385915304748 r005 Im(z^2+c),c=-2/13+12/41*I,n=48 2178385915304784 r005 Im(z^2+c),c=-2/13+12/41*I,n=50 2178385915304952 r005 Im(z^2+c),c=-2/13+12/41*I,n=53 2178385915304987 r005 Im(z^2+c),c=-2/13+12/41*I,n=56 2178385915304993 r005 Im(z^2+c),c=-2/13+12/41*I,n=59 2178385915304993 r005 Im(z^2+c),c=-2/13+12/41*I,n=61 2178385915304993 r005 Im(z^2+c),c=-2/13+12/41*I,n=58 2178385915304993 r005 Im(z^2+c),c=-2/13+12/41*I,n=62 2178385915304993 r005 Im(z^2+c),c=-2/13+12/41*I,n=64 2178385915304994 r005 Im(z^2+c),c=-2/13+12/41*I,n=63 2178385915304994 r005 Im(z^2+c),c=-2/13+12/41*I,n=60 2178385915304997 r005 Im(z^2+c),c=-2/13+12/41*I,n=57 2178385915304998 r005 Im(z^2+c),c=-2/13+12/41*I,n=55 2178385915305006 r005 Im(z^2+c),c=-2/13+12/41*I,n=54 2178385915305010 r005 Im(z^2+c),c=-2/13+12/41*I,n=51 2178385915305047 r005 Im(z^2+c),c=-2/13+12/41*I,n=52 2178385915305409 r005 Im(z^2+c),c=-2/13+12/41*I,n=49 2178385915307577 r005 Im(z^2+c),c=-2/13+12/41*I,n=46 2178385915318233 r005 Im(z^2+c),c=-2/13+12/41*I,n=43 2178385915318361 r005 Im(z^2+c),c=-2/13+12/41*I,n=41 2178385915357195 r005 Im(z^2+c),c=-2/13+12/41*I,n=40 2178385915406176 r005 Im(z^2+c),c=-2/13+12/41*I,n=37 2178385915492414 r005 Im(z^2+c),c=-2/13+12/41*I,n=38 2178385916839247 r005 Im(z^2+c),c=-2/13+12/41*I,n=35 2178385925191659 r005 Im(z^2+c),c=-2/13+12/41*I,n=32 2178385927489452 r009 Im(z^3+c),c=-13/23+10/41*I,n=60 2178385929238785 a003 cos(Pi*7/67)*cos(Pi*49/115) 2178385936376746 a001 3/75025*1346269^(25/56) 2178385936542393 h001 (5/7*exp(1)+1/12)/(1/4*exp(1)+1/4) 2178385941991028 a005 (1/cos(17/131*Pi))^413 2178385945694421 a007 Real Root Of -688*x^4-903*x^3+861*x^2-720*x+504 2178385952377137 r005 Im(z^2+c),c=-2/13+12/41*I,n=27 2178385955407221 k001 Champernowne real with 1681*n+497 2178385967823484 r005 Im(z^2+c),c=-2/13+12/41*I,n=29 2178385976743865 m001 1/exp(Zeta(7))*Pi^2/sqrt(1+sqrt(3)) 2178385979871008 r005 Re(z^2+c),c=-25/114+15/49*I,n=12 2178385984025529 m001 (ln(3)-exp(1/Pi))/(Backhouse-Riemann1stZero) 2178385990777754 r005 Im(z^2+c),c=-87/62+5/41*I,n=14 2178385998765760 m001 (cos(1)-ln(2^(1/2)+1))/(3^(1/3)+Champernowne) 2178385998766239 g005 Pi^(1/2)*GAMMA(2/7)/GAMMA(5/9)^2 2178386006513986 r009 Re(z^3+c),c=-4/31+59/64*I,n=46 2178386006577084 p001 sum((-1)^n/(248*n+197)/n/(10^n),n=1..infinity) 2178386007039316 m001 (Bloch-Tribonacci)/(ln(Pi)-Pi^(1/2)) 2178386015219214 a001 73681302247*12586269025^(13/24) 2178386022270352 a001 10946/843*1364^(22/31) 2178386024330151 r002 19th iterates of z^2 + 2178386027025526 m001 BesselJ(0,1)^2*exp(MinimumGamma)^2*sqrt(2)^2 2178386032623108 a007 Real Root Of -512*x^4-803*x^3-606*x^2+874*x+212 2178386034458994 r009 Re(z^3+c),c=-9/34+17/59*I,n=4 2178386042088913 r009 Re(z^3+c),c=-17/110+27/32*I,n=7 2178386052460546 m001 Pi*2^(1/2)/GAMMA(3/4)*Artin*ErdosBorwein 2178386055427224 k001 Champernowne real with 1682*n+496 2178386059359333 m001 1/OneNinth^2/Cahen/ln(cos(1)) 2178386063401616 r005 Im(z^2+c),c=-47/122+9/25*I,n=37 2178386077159038 m009 (5/6*Psi(1,1/3)+3)/(24*Catalan+3*Pi^2+4/5) 2178386079669468 r005 Im(z^2+c),c=-8/19+20/63*I,n=8 2178386087696488 m005 (1/5*Catalan-2/3)/(5*gamma-2/3) 2178386089417922 a007 Real Root Of -707*x^4-795*x^3-810*x^2+616*x+166 2178386092397889 p004 log(33023/3739) 2178386095188751 m001 (Zeta(1,-1)+MertensB2)/(ln(2^(1/2)+1)-sin(1)) 2178386109383040 m009 (1/6*Psi(1,1/3)-1/6)/(3*Psi(1,3/4)-2/3) 2178386119258043 a008 Real Root of x^3+x^2-353*x+2173 2178386121905394 m001 1/exp(Trott)^2*Si(Pi)*Zeta(3) 2178386123346085 a007 Real Root Of 317*x^4+814*x^3+514*x^2+936*x+876 2178386130114299 r005 Im(z^2+c),c=-29/26+25/123*I,n=14 2178386134475571 a007 Real Root Of 709*x^4-112*x^3+920*x^2-246*x-100 2178386134768014 r005 Im(z^2+c),c=-2/13+12/41*I,n=26 2178386136693075 m001 1/ln((2^(1/3)))^2*Porter^2*cos(1) 2178386143160989 a001 521/46368*17711^(7/13) 2178386143705993 a001 521/1346269*9227465^(7/13) 2178386143706230 a001 521/1134903170*2504730781961^(7/13) 2178386143706231 a001 521/39088169*4807526976^(7/13) 2178386155447227 k001 Champernowne real with 1683*n+495 2178386169825685 a007 Real Root Of -396*x^4-705*x^3+86*x^2-737*x-384 2178386170645754 l006 ln(387/3418) 2178386173728794 a005 (1/sin(67/163*Pi))^1649 2178386188165594 a001 7/39088169*34^(1/18) 2178386200987118 r005 Im(z^2+c),c=-33/52+3/53*I,n=26 2178386219184794 r009 Re(z^3+c),c=-11/31+18/35*I,n=56 2178386226936846 m001 ln(Pi)^(Pi*csc(7/24*Pi)/GAMMA(17/24))+Robbin 2178386229695549 m001 1/Conway*ln(Artin)^2/Magata 2178386230530140 a007 Real Root Of -43*x^4-912*x^3+576*x^2+817*x-143 2178386234895261 r005 Re(z^2+c),c=-7/52+27/52*I,n=48 2178386236522115 p003 LerchPhi(1/10,5,77/226) 2178386249068922 r005 Re(z^2+c),c=-5/46+17/30*I,n=57 2178386255467230 k001 Champernowne real with 1684*n+494 2178386275773471 m001 Ei(1,1)^Tribonacci/(Ei(1,1)^GaussAGM) 2178386280616155 a001 4*(1/2*5^(1/2)+1/2)^16*18^(5/16) 2178386296057506 a007 Real Root Of -343*x^4-180*x^3+865*x^2-916*x-237 2178386299943763 r009 Re(z^3+c),c=-23/74+21/52*I,n=29 2178386305035932 r002 3th iterates of z^2 + 2178386309284254 r009 Im(z^3+c),c=-9/106+50/57*I,n=38 2178386309348833 a001 21/2*11^(7/23) 2178386320109945 m001 (Zeta(3)+exp(1/Pi))/(Champernowne-Mills) 2178386326647284 m001 1/Zeta(3)^2/ln(Kolakoski)/sinh(1)^2 2178386335036500 a005 (1/sin(84/185*Pi))^515 2178386336172721 m001 (Ei(1,1)+KhinchinHarmonic)/(3^(1/3)-cos(1)) 2178386340906185 a001 86267571272/47*11^(1/14) 2178386343231937 r005 Im(z^2+c),c=-3/29+8/29*I,n=14 2178386346547536 a007 Real Root Of 25*x^4+525*x^3-444*x^2-358*x+321 2178386352934853 m001 (Catalan+sin(Pi/5)*exp(-Pi))/exp(-Pi) 2178386352934853 m001 exp(Pi)*Catalan+sin(1/5*Pi) 2178386352934853 m001 exp(Pi)*Catalan+sin(Pi/5) 2178386355487233 k001 Champernowne real with 1685*n+493 2178386360813104 r002 46i'th iterates of 2*x/(1-x^2) of 2178386368606601 r002 38th iterates of z^2 + 2178386369266663 m002 -Pi^2/2+Pi^5-Pi^6*Csch[Pi] 2178386370554811 m005 (1/2*exp(1)-6/7)/(7/8*Pi-4/9) 2178386376389251 m001 (arctan(1/2)+ZetaP(2))/(BesselK(0,1)-sin(1)) 2178386390863663 r005 Im(z^2+c),c=-65/94+7/33*I,n=33 2178386397887213 m001 ln(2)/(exp(1)+arctan(1/2)) 2178386398933200 a001 377/2207*24476^(29/31) 2178386410863348 m001 (RenyiParking+Robbin)/(Sarnak-ZetaP(4)) 2178386414589126 a007 Real Root Of 401*x^4+684*x^3+54*x^2+782*x-512 2178386424293062 m001 LambertW(1)^2/ln(Cahen)^2*log(2+sqrt(3)) 2178386433263527 h001 (8/11*exp(1)+3/7)/(1/11*exp(1)+6/7) 2178386435683242 l006 ln(4127/4136) 2178386448396078 r005 Im(z^2+c),c=-2/13+12/41*I,n=23 2178386448837836 r005 Im(z^2+c),c=-67/74+6/31*I,n=52 2178386450230917 m001 (Lehmer+OneNinth)/(3^(1/3)+Pi^(1/2)) 2178386453041384 r009 Re(z^3+c),c=-19/90+2/31*I,n=4 2178386453505330 a001 341/2*89^(21/37) 2178386453977908 a001 7*2178309^(13/15) 2178386455507236 k001 Champernowne real with 1686*n+492 2178386455740744 a007 Real Root Of 80*x^4+25*x^3-413*x^2-380*x-411 2178386465166749 m009 (1/6*Psi(1,3/4)-3/5)/(Psi(1,1/3)-2) 2178386465464663 a007 Real Root Of 373*x^4+836*x^3+328*x^2+465*x-301 2178386466168802 m001 (KhinchinLevy-Si(Pi))/(Otter+Paris) 2178386468174687 m005 (1/2*Catalan+4/9)/(3*2^(1/2)-1/10) 2178386483343447 r004 Im(z^2+c),c=-43/34-1/11*I,z(0)=-1,n=29 2178386486234504 m001 HeathBrownMoroz^(Zeta(5)*FeigenbaumMu) 2178386490769656 a007 Real Root Of 522*x^4+690*x^3-789*x^2+700*x+647 2178386490856553 a007 Real Root Of 36*x^4+813*x^3+645*x^2+410*x+370 2178386493926092 l006 ln(905/7993) 2178386495854685 m001 (Landau+ReciprocalFibonacci)/(ln(2)+ln(3)) 2178386499776325 a007 Real Root Of 17*x^4+349*x^3-439*x^2+521*x-778 2178386506343224 m001 MasserGramain^Stephens/FeigenbaumMu 2178386510526541 r009 Re(z^3+c),c=-4/31+59/64*I,n=52 2178386513676870 m005 (1/3*gamma-4)/(3*Catalan-1) 2178386514877234 r005 Im(z^2+c),c=-79/114+8/57*I,n=11 2178386527155923 r002 16th iterates of z^2 + 2178386546439051 m001 1/exp(Pi)^2*GAMMA(3/4)^2*log(1+sqrt(2))^2 2178386548048712 s002 sum(A226753[n]/((3*n+1)!),n=1..infinity) 2178386550629720 m002 (Pi^4*Log[Pi])/ProductLog[Pi]+Pi^2*Sinh[Pi] 2178386555527239 k001 Champernowne real with 1687*n+491 2178386558214198 m005 (1/2*gamma-4/7)/(4*Pi+5/12) 2178386564578702 r005 Im(z^2+c),c=-2/13+12/41*I,n=24 2178386564847566 m001 (ThueMorse+Weierstrass)/(1-Lehmer) 2178386565547394 a007 Real Root Of 19*x^4-369*x^3+559*x^2+179*x+344 2178386573919759 r002 13th iterates of z^2 + 2178386577585128 r005 Re(z^2+c),c=-57/70+4/59*I,n=36 2178386579899323 m001 1/Salem^3/exp(Zeta(5)) 2178386586868298 r009 Re(z^3+c),c=-37/98+22/39*I,n=46 2178386587375499 m002 -Pi^3+Pi^8/(4*ProductLog[Pi]) 2178386594392558 p001 sum(1/(533*n+489)/(8^n),n=0..infinity) 2178386595041741 a007 Real Root Of 739*x^4-750*x^3+494*x^2-401*x+70 2178386595756505 a007 Real Root Of 64*x^4-x^3+93*x^2+470*x-869 2178386596247041 r002 11th iterates of z^2 + 2178386596269876 r009 Re(z^3+c),c=-23/64+31/59*I,n=54 2178386597150603 a007 Real Root Of 302*x^4+483*x^3-841*x^2-724*x+606 2178386598405678 r005 Re(z^2+c),c=-17/86+23/61*I,n=12 2178386599128405 m001 (FeigenbaumAlpha+Lehmer)/(1+BesselK(0,1)) 2178386617832602 r002 5th iterates of z^2 + 2178386619041530 a007 Real Root Of -180*x^4-219*x^3-203*x^2-963*x+655 2178386620952845 m001 (Bloch+Conway)/((1+3^(1/2))^(1/2)-Chi(1)) 2178386622864663 m001 Zeta(3)/exp(GAMMA(5/6))^2/gamma 2178386625337174 a007 Real Root Of 163*x^4+18*x^3-944*x^2-769*x-680 2178386626641001 r005 Im(z^2+c),c=-17/52+21/61*I,n=40 2178386626898120 k002 Champernowne real with 16*n^2+128*n-142 2178386634658054 r009 Re(z^3+c),c=-4/31+59/64*I,n=54 2178386640255395 r009 Re(z^3+c),c=-4/31+59/64*I,n=60 2178386642735089 m001 ln(GAMMA(1/12))^2/Champernowne^2*GAMMA(1/6) 2178386651421583 a003 sin(Pi*8/35)/cos(Pi*51/104) 2178386652959350 r009 Re(z^3+c),c=-4/31+59/64*I,n=58 2178386655547242 k001 Champernowne real with 1688*n+490 2178386656205212 r009 Re(z^3+c),c=-4/31+59/64*I,n=62 2178386657681402 r009 Re(z^3+c),c=-4/31+59/64*I,n=64 2178386675495821 a007 Real Root Of 644*x^4-744*x^3-258*x^2-668*x+164 2178386682715702 a005 (1/cos(16/179*Pi))^711 2178386692745107 a007 Real Root Of 444*x^4+727*x^3-588*x^2+94*x+512 2178386698638404 a007 Real Root Of -108*x^4-168*x^3+247*x^2+122*x-211 2178386699829288 r009 Re(z^3+c),c=-4/31+59/64*I,n=56 2178386702049571 m001 (cos(1)+cos(1/5*Pi))/(-Robbin+Sarnak) 2178386705738875 p003 LerchPhi(1/1024,7,17/19) 2178386707026541 m005 (1/2*exp(1)-1/5)/(1/5*gamma+5/12) 2178386708422001 m001 (Si(Pi)+cos(1))/(GaussKuzminWirsing+Kolakoski) 2178386714916252 r005 Im(z^2+c),c=-35/38+7/34*I,n=64 2178386715520415 a007 Real Root Of -759*x^4+161*x^3+140*x^2+314*x-75 2178386715644167 m001 (Ei(1)+Robbin)/GAMMA(19/24) 2178386727614138 r005 Im(z^2+c),c=-109/122+11/58*I,n=55 2178386735019280 a007 Real Root Of -265*x^4-544*x^3+34*x^2-407*x-704 2178386735450138 l006 ln(518/4575) 2178386735618630 r005 Re(z^2+c),c=-17/114+37/54*I,n=42 2178386741090306 m001 GAMMA(5/24)^2/ln(Si(Pi))^2/GAMMA(7/12)^2 2178386755567245 k001 Champernowne real with 1689*n+489 2178386757150465 r005 Im(z^2+c),c=-87/70+2/27*I,n=47 2178386769494873 m005 (1/3*Zeta(3)+3/4)/(1/5*3^(1/2)+2/11) 2178386784440693 m001 ln(Rabbit)*FeigenbaumC^2*Ei(1) 2178386788035496 r009 Re(z^3+c),c=-4/31+59/64*I,n=50 2178386790045852 a007 Real Root Of 651*x^4-759*x^3-450*x^2-497*x+136 2178386790794413 r005 Re(z^2+c),c=-95/98+5/57*I,n=8 2178386794666809 m002 (4*E^(2*Pi)*Coth[Pi])/Pi^2 2178386795030035 m005 (1/2*Catalan-8/9)/(3/8*Pi+4/5) 2178386795380486 r005 Re(z^2+c),c=-11/82+13/25*I,n=31 2178386796672114 s002 sum(A007189[n]/(n*10^n+1),n=1..infinity) 2178386801047181 r005 Re(z^2+c),c=-21/94+3/13*I,n=4 2178386806117838 m001 (2^(1/2)-Si(Pi))/(LambertW(1)+3^(1/3)) 2178386813518128 m001 sin(1)*FeigenbaumC^2/exp(sin(Pi/12)) 2178386824773281 a001 2255/281*9349^(19/31) 2178386831699595 a007 Real Root Of 45*x^4+960*x^3-474*x^2-711*x-136 2178386833036429 a001 832040/843*3571^(3/31) 2178386833555761 r005 Re(z^2+c),c=-27/106+9/61*I,n=13 2178386834669032 p004 log(19457/2203) 2178386840657729 m001 (GAMMA(2/3)-ln(2^(1/2)+1))/(Zeta(1/2)-Rabbit) 2178386842205819 m001 Ei(1,1)^ArtinRank2+FeigenbaumC 2178386849875987 a001 1346269/843*15127^(1/31) 2178386850439469 r009 Re(z^3+c),c=-6/13+1/2*I,n=17 2178386853876969 a001 10946/843*39603^(15/31) 2178386855182956 a007 Real Root Of -372*x^4-383*x^3+668*x^2-397*x+383 2178386855587248 k001 Champernowne real with 1690*n+488 2178386860971580 a007 Real Root Of -481*x^4-407*x^3+994*x^2-747*x+280 2178386861830176 m005 (1/2*3^(1/2)-7/12)/(7/12*Zeta(3)-4/7) 2178386866418636 a001 196418/843*5778^(8/31) 2178386873966726 s002 sum(A144326[n]/(n^2*pi^n+1),n=1..infinity) 2178386876107084 m005 (-7/36+1/4*5^(1/2))/(1/2*5^(1/2)+5/9) 2178386878682768 a007 Real Root Of -566*x^4-749*x^3+536*x^2-899*x+501 2178386881483081 a001 199/10946*34^(2/39) 2178386887908016 a001 1364/377*34^(28/55) 2178386891575799 a001 843/4052739537881*433494437^(13/14) 2178386891577329 a001 843/7778742049*514229^(13/14) 2178386898091897 a001 930249/17*121393^(19/21) 2178386898425620 p001 sum((-1)^n/(136*n+53)/n/(24^n),n=0..infinity) 2178386903965629 m001 (RenyiParking-ZetaQ(4))/(ln(Pi)+BesselI(0,2)) 2178386904988413 r005 Im(z^2+c),c=-29/86+17/49*I,n=23 2178386914130133 r005 Im(z^2+c),c=-103/114+7/32*I,n=46 2178386915433302 r005 Re(z^2+c),c=13/42+4/19*I,n=43 2178386917410389 a007 Real Root Of 500*x^4+721*x^3-582*x^2+680*x+437 2178386919366033 r005 Re(z^2+c),c=-27/110+8/39*I,n=8 2178386925600380 m005 (1/6*2^(1/2)+1/3)/(2/3*exp(1)+4/5) 2178386938712514 r009 Re(z^3+c),c=-41/122+21/29*I,n=56 2178386955607251 k001 Champernowne real with 1691*n+487 2178386955636008 a001 103682/89*5^(7/18) 2178386955801079 r005 Re(z^2+c),c=17/62+23/48*I,n=16 2178386962194559 r005 Re(z^2+c),c=-5/62+29/47*I,n=29 2178386963674716 m001 (Gompertz+Porter)/(BesselI(1,2)-Cahen) 2178386971168269 m005 (1/2*exp(1)-3/7)/(1/10*exp(1)+4) 2178386972290377 r009 Re(z^3+c),c=-7/23+38/61*I,n=2 2178386974837548 r005 Re(z^2+c),c=-5/58+29/49*I,n=54 2178386976646653 m001 (Catalan-Zeta(1,-1))/(-Rabbit+TwinPrimes) 2178386979420784 a001 196418/843*2207^(9/31) 2178386983303334 r005 Im(z^2+c),c=-81/118+10/53*I,n=23 2178386992574647 m001 CopelandErdos^2*Cahen*ln(Tribonacci) 2178386995017368 m001 1/Pi/Niven^2/ln(sqrt(1+sqrt(3))) 2178386999495497 r005 Re(z^2+c),c=-23/114+21/58*I,n=20 2178387006714522 a007 Real Root Of 453*x^4-265*x^3+23*x^2-929*x+203 2178387008145094 r009 Re(z^3+c),c=-4/11+29/54*I,n=33 2178387009219496 a007 Real Root Of 302*x^4+181*x^3-639*x^2+506*x-795 2178387011322495 m005 (1/2*Catalan-2/11)/(4*Pi+1/9) 2178387014857516 r005 Re(z^2+c),c=39/118+16/55*I,n=4 2178387015871610 r002 41th iterates of z^2 + 2178387021545230 m001 (ln(gamma)-arctan(1/3))/(Lehmer+Magata) 2178387045295164 m002 -Pi-(3*ProductLog[Pi])/Pi^4+Tanh[Pi] 2178387055627254 k001 Champernowne real with 1692*n+486 2178387059243412 a007 Real Root Of -328*x^4-522*x^3+233*x^2-742*x-732 2178387065335740 a007 Real Root Of 162*x^4-961*x^3+960*x^2+743*x+112 2178387065539707 r009 Re(z^3+c),c=-4/31+59/64*I,n=48 2178387070724335 r005 Im(z^2+c),c=-31/70+17/46*I,n=25 2178387072243972 l006 ln(649/5732) 2178387079813889 p003 LerchPhi(1/6,4,78/53) 2178387081872814 a007 Real Root Of -574*x^4-975*x^3+925*x^2+553*x-338 2178387083927910 a007 Real Root Of 162*x^4-21*x^3-643*x^2+823*x+979 2178387096193461 a007 Real Root Of 466*x^4+480*x^3-886*x^2+955*x+753 2178387103128368 r005 Re(z^2+c),c=-9/34+1/60*I,n=7 2178387107789951 m005 (23/20+1/4*5^(1/2))/(7/12*Zeta(3)+1/12) 2178387110285726 r005 Im(z^2+c),c=-29/34+11/76*I,n=8 2178387115338857 r002 46th iterates of z^2 + 2178387123043849 r005 Im(z^2+c),c=-51/50+14/59*I,n=57 2178387143936080 r005 Im(z^2+c),c=-59/122+23/60*I,n=44 2178387151965739 m001 (BesselJ(1,1)+Champernowne)/(Khinchin-Paris) 2178387155647257 k001 Champernowne real with 1693*n+485 2178387156237693 m001 (Landau-OrthogonalArrays)/(Pi+AlladiGrinstead) 2178387167653529 a003 -1+2*cos(5/24*Pi)+cos(8/27*Pi)+cos(1/30*Pi) 2178387181744613 r005 Re(z^2+c),c=-17/74+4/15*I,n=9 2178387189933238 r009 Im(z^3+c),c=-25/62+3/26*I,n=15 2178387196684023 a008 Real Root of (16+10*x+16*x^2-11*x^3) 2178387198304296 m001 (ZetaP(3)+ZetaQ(4))/(Backhouse-MasserGramain) 2178387198922373 r005 Im(z^2+c),c=-67/86+5/42*I,n=64 2178387212156668 a007 Real Root Of 276*x^4+606*x^3-57*x^2+164*x+677 2178387213043525 a007 Real Root Of 546*x^4+849*x^3+792*x^2-339*x+7 2178387219919477 r005 Re(z^2+c),c=6/29+18/37*I,n=52 2178387224025026 r005 Im(z^2+c),c=-27/98+4/13*I,n=6 2178387229216434 r005 Im(z^2+c),c=-4/5+8/67*I,n=39 2178387232292653 m001 (FeigenbaumD+Trott)/(Ei(1,1)-Backhouse) 2178387232782109 r005 Im(z^2+c),c=23/118+6/43*I,n=15 2178387238333257 m001 1/Magata^2/KhintchineLevy/exp(BesselK(1,1))^2 2178387245104411 r005 Im(z^2+c),c=-65/74+9/50*I,n=45 2178387255667260 k001 Champernowne real with 1694*n+484 2178387258803062 m008 (2*Pi^6-2/5)/(3*Pi-3/5) 2178387260066988 r005 Im(z^2+c),c=-17/54+15/44*I,n=32 2178387272217637 m005 (1/2*2^(1/2)-5/6)/(-113/168+1/24*5^(1/2)) 2178387274227421 r005 Im(z^2+c),c=-25/22+31/115*I,n=27 2178387287987730 m005 (1/2*exp(1)-5/12)/(1/3*Zeta(3)-5/6) 2178387289220915 p001 sum((-1)^n/(431*n+297)/n/(6^n),n=1..infinity) 2178387289523969 a007 Real Root Of 247*x^4+367*x^3-143*x^2+744*x+531 2178387295909558 l006 ln(780/6889) 2178387298264901 s001 sum(1/10^(n-1)*A073586[n]/n^n,n=1..infinity) 2178387305480238 m001 ln(Pi)/GAMMA(5/24)^2/exp(1) 2178387326462280 a007 Real Root Of 435*x^4+604*x^3-714*x^2+43*x-70 2178387327989256 r005 Im(z^2+c),c=-63/64+7/33*I,n=20 2178387329423468 b008 1/14+(-1+Sqrt[3])/5 2178387337500178 m005 (1/3*exp(1)+1/12)/(1/2*Catalan-5) 2178387343384810 a001 89*7^(23/50) 2178387347569165 m001 (Cahen+5)/(BesselI(1,2)+1) 2178387355687263 k001 Champernowne real with 1695*n+483 2178387364622049 r009 Re(z^3+c),c=-23/74+21/52*I,n=32 2178387373399596 m001 2^(1/2)/(sin(1)^FeigenbaumAlpha) 2178387373399596 m001 sqrt(2)/(sin(1)^FeigenbaumAlpha) 2178387374809023 a007 Real Root Of 148*x^4+347*x^3+190*x^2+299*x+4 2178387376596618 m001 HardyLittlewoodC3+QuadraticClass+Robbin 2178387378666748 a001 47/28657*2178309^(57/59) 2178387380753307 r009 Re(z^3+c),c=-11/29+7/13*I,n=27 2178387398408997 m001 (Ei(1)-GAMMA(7/12))/(Khinchin+Riemann1stZero) 2178387400727588 a007 Real Root Of 653*x^4+874*x^3-858*x^2+383*x-764 2178387409659237 r009 Re(z^3+c),c=-17/122+40/53*I,n=44 2178387427731955 m001 Paris*(GAMMA(19/24)+MertensB2) 2178387433643373 m001 ZetaQ(3)^(Magata/AlladiGrinstead) 2178387445648607 a007 Real Root Of -485*x^4-653*x^3-868*x^2+755*x+200 2178387455249775 l006 ln(911/8046) 2178387455707266 k001 Champernowne real with 1696*n+482 2178387466210175 r009 Im(z^3+c),c=-7/82+11/49*I,n=6 2178387470509882 s002 sum(A205462[n]/(n*exp(pi*n)+1),n=1..infinity) 2178387489844053 a007 Real Root Of 215*x^4+360*x^3-86*x^2+140*x-407 2178387490548647 r005 Im(z^2+c),c=-41/56+3/17*I,n=12 2178387490794044 m001 (FellerTornier+ZetaP(3))/(GAMMA(13/24)+Cahen) 2178387495640989 r009 Re(z^3+c),c=-37/110+7/15*I,n=13 2178387511506831 m004 -5-3100*Sqrt[5]*Pi-Log[Sqrt[5]*Pi] 2178387513006617 r005 Im(z^2+c),c=-29/26+24/107*I,n=16 2178387513085911 r005 Im(z^2+c),c=-57/110+19/49*I,n=48 2178387519473480 a001 1364/21*2178309^(34/39) 2178387520241482 a007 Real Root Of 344*x^4+84*x^3-798*x^2+988*x-939 2178387522250349 r005 Re(z^2+c),c=-1/48+24/35*I,n=13 2178387522391934 m001 (BesselI(1,1)+Backhouse)/(gamma(2)-Zeta(1,2)) 2178387528819552 m002 E^Pi/ProductLog[Pi]+Pi^3*Sech[Pi]^2 2178387529794260 m005 (1/2*Catalan+4)/(11/12*Pi-5/6) 2178387546570542 m001 (Weierstrass-ZetaP(3))/(ln(gamma)+Tetranacci) 2178387549868241 h001 (3/10*exp(2)+2/3)/(1/8*exp(2)+2/5) 2178387551508370 a007 Real Root Of -631*x^4-908*x^3+814*x^2-220*x+481 2178387555727269 k001 Champernowne real with 1697*n+481 2178387558280179 a001 1/90481*3^(21/34) 2178387563881068 m009 (1/5*Psi(1,2/3)-2/3)/(1/5*Pi^2+1/2) 2178387574525544 l006 ln(1042/9203) 2178387583596385 h001 (1/11*exp(2)+3/5)/(7/9*exp(2)+1/11) 2178387590486264 a007 Real Root Of 839*x^4-174*x^3+667*x^2-407*x-124 2178387600954873 a007 Real Root Of 888*x^4+529*x^3+478*x^2-726*x+128 2178387602099402 m001 LandauRamanujan^(Zeta(1,2)/Zeta(1,-1)) 2178387604910895 r005 Im(z^2+c),c=-5/56+17/63*I,n=7 2178387606847264 r009 Re(z^3+c),c=-23/74+21/52*I,n=35 2178387625437356 r005 Im(z^2+c),c=-7/8+1/58*I,n=5 2178387629723752 m001 (Pi^(1/2)+GlaisherKinkelin)/(Landau+Thue) 2178387629904121 k002 Champernowne real with 33/2*n^2+253/2*n-141 2178387630125676 m001 Rabbit^2*Porter*ln(GAMMA(1/6))^2 2178387636609308 m001 (Si(Pi)-gamma(1))/(gamma(3)+QuadraticClass) 2178387650085763 q001 127/583 2178387650085763 r002 2th iterates of z^2 + 2178387655101935 m001 BesselI(0,1)+exp(-1/2*Pi)+CareFree 2178387655747272 k001 Champernowne real with 1698*n+480 2178387658559888 r005 Re(z^2+c),c=-13/106+36/47*I,n=6 2178387660657408 m001 (Pi+sin(1))/(Tribonacci-Trott) 2178387660882812 r009 Re(z^3+c),c=-23/74+21/52*I,n=38 2178387663525633 m001 (sin(1/5*Pi)+BesselI(0,2))/(Lehmer+Sarnak) 2178387672145050 m001 (GaussAGM-exp(1))/(ThueMorse+ZetaP(2)) 2178387672677796 r009 Re(z^3+c),c=-23/74+21/52*I,n=41 2178387672914335 r005 Re(z^2+c),c=1/36+1/13*I,n=7 2178387674726051 r009 Re(z^3+c),c=-23/74+21/52*I,n=40 2178387675024213 r009 Re(z^3+c),c=-23/74+21/52*I,n=37 2178387675188556 r009 Re(z^3+c),c=-23/74+21/52*I,n=44 2178387675363063 r009 Re(z^3+c),c=-23/74+21/52*I,n=43 2178387675675442 r009 Re(z^3+c),c=-23/74+21/52*I,n=46 2178387675706930 r009 Re(z^3+c),c=-23/74+21/52*I,n=47 2178387675785579 r009 Re(z^3+c),c=-23/74+21/52*I,n=49 2178387675809802 r009 Re(z^3+c),c=-23/74+21/52*I,n=50 2178387675819587 r009 Re(z^3+c),c=-23/74+21/52*I,n=52 2178387675829111 r009 Re(z^3+c),c=-23/74+21/52*I,n=53 2178387675829335 r009 Re(z^3+c),c=-23/74+21/52*I,n=55 2178387675831996 r009 Re(z^3+c),c=-23/74+21/52*I,n=58 2178387675832430 r009 Re(z^3+c),c=-23/74+21/52*I,n=56 2178387675832696 r009 Re(z^3+c),c=-23/74+21/52*I,n=61 2178387675832876 r009 Re(z^3+c),c=-23/74+21/52*I,n=64 2178387675832910 r009 Re(z^3+c),c=-23/74+21/52*I,n=59 2178387675832951 r009 Re(z^3+c),c=-23/74+21/52*I,n=62 2178387675833015 r009 Re(z^3+c),c=-23/74+21/52*I,n=63 2178387675833308 r009 Re(z^3+c),c=-23/74+21/52*I,n=60 2178387675834639 r009 Re(z^3+c),c=-23/74+21/52*I,n=57 2178387675840548 r009 Re(z^3+c),c=-23/74+21/52*I,n=54 2178387675866295 r009 Re(z^3+c),c=-23/74+21/52*I,n=51 2178387675976453 r009 Re(z^3+c),c=-23/74+21/52*I,n=48 2178387676439303 r009 Re(z^3+c),c=-23/74+21/52*I,n=45 2178387678348067 r009 Re(z^3+c),c=-23/74+21/52*I,n=42 2178387686063872 r009 Re(z^3+c),c=-23/74+21/52*I,n=39 2178387686714156 a007 Real Root Of -457*x^4-504*x^3+396*x^2+716*x+133 2178387686722171 a007 Real Root Of -354*x^4-777*x^3-140*x^2-700*x-921 2178387687104395 m005 (1/2*Pi+5/11)/(1/5*3^(1/2)+7/12) 2178387687523444 a007 Real Root Of -360*x^4-356*x^3+681*x^2-286*x+572 2178387688592856 p001 sum(1/(107*n+79)/n/(25^n),n=0..infinity) 2178387689135231 r009 Re(z^3+c),c=-23/74+21/52*I,n=34 2178387690906104 h001 (4/9*exp(1)+2/7)/(5/6*exp(2)+7/10) 2178387694316911 m001 Trott/(Ei(1)+Pi*csc(7/24*Pi)/GAMMA(17/24)) 2178387700691645 m004 15+(25*Cos[Sqrt[5]*Pi])/Pi+Tan[Sqrt[5]*Pi] 2178387703559078 a001 34/4870847*521^(11/20) 2178387707380403 m001 (ln(5)+sin(1/12*Pi))/(MertensB3-Weierstrass) 2178387716566015 r009 Re(z^3+c),c=-23/74+21/52*I,n=36 2178387720921348 m001 ZetaP(2)^Tribonacci*ZetaP(2)^StolarskyHarborth 2178387730146657 a003 sin(Pi*10/101)*sin(Pi*30/119) 2178387732573290 m001 1/GAMMA(3/4)^2*CareFree^2*exp(GAMMA(5/24))^2 2178387735940722 m005 (1/2*exp(1)-5)/(4/5*3^(1/2)+2/7) 2178387738521005 m001 (Backhouse*ZetaR(2)+Otter)/Backhouse 2178387747794679 a007 Real Root Of 438*x^4+414*x^3+326*x^2-770*x+147 2178387752880736 m001 1/ln(MinimumGamma)*Cahen*GAMMA(17/24) 2178387754227850 a007 Real Root Of 175*x^4+62*x^3-353*x^2+346*x-871 2178387755767275 k001 Champernowne real with 1699*n+479 2178387777138518 m001 (ArtinRank2+FransenRobinson)/(Catalan+ln(2)) 2178387779229653 a007 Real Root Of x^4-386*x^3+450*x^2+405*x+950 2178387784715090 a007 Real Root Of -78*x^4+106*x^3+714*x^2+398*x+331 2178387787004664 m001 (polylog(4,1/2)-Cahen)/(sin(1/5*Pi)+gamma(2)) 2178387794252746 r002 63th iterates of z^2 + 2178387798380029 b008 4/Pi+Tanh[3/2] 2178387800788865 m001 (-Si(Pi)+gamma(1))/(2^(1/3)-Psi(1,1/3)) 2178387803008810 r009 Re(z^3+c),c=-23/74+21/52*I,n=31 2178387820709859 a007 Real Root Of 915*x^4-539*x^3+528*x^2-892*x-227 2178387823688929 r005 Im(z^2+c),c=-5/9+13/35*I,n=36 2178387830645320 r005 Re(z^2+c),c=-1/74+11/17*I,n=43 2178387831321373 m005 (5/36+1/4*5^(1/2))/(3/7*2^(1/2)-2/7) 2178387834052738 r009 Re(z^3+c),c=-23/74+21/52*I,n=33 2178387835802728 m004 -125*Pi+25*Sqrt[5]*Pi-Log[Sqrt[5]*Pi]^2/5 2178387852875009 r005 Re(z^2+c),c=-5/38+15/26*I,n=27 2178387855787278 k001 Champernowne real with 1700*n+478 2178387875771461 m001 Riemann2ndZero*BesselI(1,2)^ZetaP(4) 2178387876567139 a007 Real Root Of -529*x^4-777*x^3+753*x^2-370*x-499 2178387887914867 r009 Re(z^3+c),c=-43/114+30/53*I,n=64 2178387890669081 r009 Re(z^3+c),c=-23/106+49/53*I,n=55 2178387897090710 r005 Re(z^2+c),c=11/58+3/34*I,n=2 2178387898070734 m005 (1/2*Pi-9/11)/(-5/8+1/8*5^(1/2)) 2178387898915638 m005 (15/44+1/4*5^(1/2))/(4/11*5^(1/2)-2/5) 2178387910805169 b008 CosIntegral[20/E^2] 2178387913410222 m001 1/(3^(1/3))^2*Backhouse^2/exp(cosh(1)) 2178387915928657 r009 Im(z^3+c),c=-3/22+37/41*I,n=2 2178387916687851 a007 Real Root Of 823*x^4+428*x^3+951*x^2-989*x-258 2178387917297982 r004 Im(z^2+c),c=1/18+3/14*I,z(0)=I,n=21 2178387922405495 a007 Real Root Of 379*x^4+693*x^3-215*x^2+261*x+218 2178387923628812 m005 (1/3*Catalan-2/11)/(5/12*5^(1/2)-7/8) 2178387938563896 a007 Real Root Of -101*x^4+643*x^3-218*x^2+454*x+10 2178387940608402 a007 Real Root Of -35*x^4-781*x^3-392*x^2+247*x-504 2178387940905848 h001 (-2*exp(3)+6)/(-6*exp(2/3)-4) 2178387941521947 p004 log(35863/28843) 2178387947117715 a001 1/208010*377^(9/14) 2178387947265095 m001 (1+Shi(1))/(-BesselI(1,2)+MasserGramain) 2178387955394448 m001 ArtinRank2^2*Backhouse^2*exp(RenyiParking) 2178387955807281 k001 Champernowne real with 1701*n+477 2178387962722888 a005 (1/cos(16/105*Pi))^161 2178387966206594 a005 (1/sin(72/215*Pi))^381 2178387972165652 m005 (-25/44+1/4*5^(1/2))/(-9/154+3/14*5^(1/2)) 2178387975360345 m001 (3^(1/3)-Kolakoski)/(Rabbit-ThueMorse) 2178387977849210 r005 Im(z^2+c),c=-77/78+9/50*I,n=4 2178387978805021 a001 281/4976784*610^(13/14) 2178387993715412 r005 Re(z^2+c),c=-6/29+17/49*I,n=28 2178387994077620 m001 exp(TreeGrowth2nd)/Sierpinski^2*Zeta(1,2) 2178388004693234 m001 (ln(Pi)+sin(1/12*Pi)*Gompertz)/Gompertz 2178388009148653 r009 Im(z^3+c),c=-9/106+50/57*I,n=48 2178388010797042 m001 1/Zeta(1/2)/ln(GAMMA(2/3))/Zeta(5) 2178388014553591 m005 (1/3*gamma-1/7)/(4/5*3^(1/2)+8/9) 2178388015998293 m001 (FeigenbaumB-Gompertz)/(BesselJ(1,1)+Cahen) 2178388023814164 m001 (OneNinth+Sierpinski)/(1-5^(1/2)) 2178388023814164 m001 cos(1/5*Pi)*(OneNinth+Sierpinski) 2178388028439278 a007 Real Root Of 275*x^4+546*x^3+20*x^2+131*x-358 2178388039354077 r009 Im(z^3+c),c=-9/106+50/57*I,n=50 2178388043552970 r005 Im(z^2+c),c=-23/66+10/29*I,n=13 2178388044398614 m001 ln(RenyiParking)/ErdosBorwein^2*GAMMA(5/24)^2 2178388049900832 a007 Real Root Of 527*x^4+786*x^3-553*x^2+740*x+494 2178388051171112 r005 Im(z^2+c),c=-57/94+14/47*I,n=21 2178388055827284 k001 Champernowne real with 1702*n+476 2178388056682031 r005 Im(z^2+c),c=-49/54+9/46*I,n=62 2178388064797430 m001 FibonacciFactorial*Artin*exp(GAMMA(7/24))^2 2178388072813078 r009 Im(z^3+c),c=-9/106+50/57*I,n=52 2178388074316726 r009 Im(z^3+c),c=-9/106+50/57*I,n=60 2178388074575792 r009 Im(z^3+c),c=-9/106+50/57*I,n=62 2178388074851365 r009 Im(z^3+c),c=-9/106+50/57*I,n=46 2178388075060367 m005 (1/2*Pi+4/5)/(1/7*exp(1)+7/10) 2178388075125852 r009 Im(z^3+c),c=-9/106+50/57*I,n=64 2178388075896552 r009 Im(z^3+c),c=-9/106+50/57*I,n=58 2178388080221079 r009 Im(z^3+c),c=-9/106+50/57*I,n=56 2178388080645549 m002 -1/25+Log[Pi]+ProductLog[Pi] 2178388083216535 r009 Im(z^3+c),c=-9/106+50/57*I,n=54 2178388083695273 a007 Real Root Of 319*x^4+404*x^3-661*x^2-272*x-463 2178388090515661 r009 Re(z^3+c),c=-1/110+37/45*I,n=28 2178388101937727 r005 Im(z^2+c),c=-26/31+9/62*I,n=28 2178388109711134 a007 Real Root Of -27*x^4-615*x^3-566*x^2+363*x-907 2178388117138686 m001 (GolombDickman+KhinchinLevy)/(OneNinth+Sarnak) 2178388133657357 r005 Re(z^2+c),c=17/114+36/47*I,n=5 2178388136900570 m001 (ln(2)-FeigenbaumC*Gompertz)/FeigenbaumC 2178388137174249 r005 Re(z^2+c),c=-29/22+22/49*I,n=2 2178388141996745 m006 (5/6*exp(2*Pi)+3/5)/(4/5*exp(Pi)+2) 2178388144868023 m001 (Landau-Trott)/(Pi-ArtinRank2) 2178388155452419 a001 1/208010*317811^(14/29) 2178388155847287 k001 Champernowne real with 1703*n+475 2178388164665372 a007 Real Root Of -386*x^4-937*x^3-743*x^2-964*x+432 2178388168128103 r005 Re(z^2+c),c=-33/34+23/99*I,n=22 2178388177764629 h001 (4/11*exp(1)+7/12)/(7/8*exp(2)+3/4) 2178388186438175 a007 Real Root Of -465*x^4-463*x^3+930*x^2-380*x+444 2178388187969580 r009 Re(z^3+c),c=-25/106+7/38*I,n=3 2178388193584155 m001 1/GAMMA(19/24)^2/ln(Magata)/exp(1) 2178388198243437 p003 LerchPhi(1/8,1,23/48) 2178388199087293 m003 5/8+(17*Sqrt[5])/64-Csc[1/2+Sqrt[5]/2] 2178388200611442 m005 (-13/44+1/4*5^(1/2))/(4/11*gamma+1) 2178388201202826 a001 7/89*34^(13/45) 2178388202286278 m002 (Pi^3*Sech[Pi])/5-Tanh[Pi]/Pi 2178388210563004 q001 2/91811 2178388221885177 r009 Im(z^3+c),c=-9/106+50/57*I,n=40 2178388222336364 a001 682/9*(1/2*5^(1/2)+1/2)^27*18^(13/20) 2178388223823654 m001 1/DuboisRaymond^2*exp(Artin)*LambertW(1) 2178388229925878 r005 Im(z^2+c),c=-19/32+19/40*I,n=7 2178388233273785 a003 cos(Pi*11/42)*cos(Pi*21/53) 2178388234818568 a007 Real Root Of 272*x^4+753*x^3+109*x^2-867*x-747 2178388247965547 m008 (1/5*Pi^3-1/2)/(5/6*Pi^3+1/3) 2178388251299652 h001 (-6*exp(2/3)+4)/(-4*exp(-1)+5) 2178388254419862 a007 Real Root Of -616*x^4-927*x^3+353*x^2-755*x+969 2178388255867290 k001 Champernowne real with 1704*n+474 2178388256787741 a007 Real Root Of 369*x^4+693*x^3+95*x^2+905*x+375 2178388260928598 m002 2*Pi^6*ProductLog[Pi]+Pi^2*Sinh[Pi] 2178388261185762 a007 Real Root Of 363*x^4+701*x^3-572*x^2-401*x+913 2178388267770260 m001 (-Riemann2ndZero+Stephens)/(2^(1/2)-PlouffeB) 2178388268126507 a001 2/17711*34^(47/56) 2178388272340428 r009 Re(z^3+c),c=-23/74+21/52*I,n=30 2178388273852107 h001 (4/9*exp(2)+4/7)/(1/7*exp(2)+5/7) 2178388285049121 a007 Real Root Of -994*x^4+935*x^3+129*x^2+x+6 2178388293773531 m001 (LambertW(1)+Zeta(5))/(-Salem+TreeGrowth2nd) 2178388297427324 m001 1/LaplaceLimit/ln(Khintchine)^2/Rabbit 2178388297466777 a007 Real Root Of 201*x^4+845*x^3+949*x^2-653*x-179 2178388302852752 m005 (5*Catalan+1/6)/(1/5*gamma-1/3) 2178388306209870 a001 39603/2*55^(1/42) 2178388306917186 m001 Rabbit/CopelandErdos^2*ln(Robbin)^2 2178388309890948 m001 GAMMA(2/3)*exp(CopelandErdos)^2*Zeta(9)^2 2178388310279993 a007 Real Root Of 622*x^4+836*x^3-905*x^2+174*x-691 2178388318298450 m001 (PlouffeB+Trott)/(GAMMA(7/12)+CareFree) 2178388318345930 r005 Im(z^2+c),c=-31/98+13/38*I,n=17 2178388329764738 r009 Im(z^3+c),c=-9/106+50/57*I,n=44 2178388333209294 m001 (Riemann1stZero-Thue)/(Zeta(3)-Lehmer) 2178388336676527 m001 GAMMA(3/4)/ln(Lehmer)/Zeta(5)^2 2178388337725574 m001 1/GAMMA(2/3)/Trott^2*ln(cos(Pi/12)) 2178388337863827 r009 Re(z^3+c),c=-5/122+39/55*I,n=64 2178388341662193 r002 46th iterates of z^2 + 2178388347665719 r009 Re(z^3+c),c=-11/31+18/35*I,n=51 2178388353581903 m005 (1/2*Zeta(3)-4)/(7/8*exp(1)-9/11) 2178388355887293 k001 Champernowne real with 1705*n+473 2178388364360731 a007 Real Root Of -193*x^4+45*x^3+746*x^2-971*x-844 2178388370807807 a007 Real Root Of 600*x^4+879*x^3-796*x^2+686*x+847 2178388375318073 h001 (1/3*exp(2)+3/5)/(1/3*exp(1)+1/2) 2178388384145576 r005 Re(z^2+c),c=3/16+1/11*I,n=3 2178388396899475 m006 (4*Pi^2-4/5)/(3/4*exp(Pi)+2/5) 2178388403992525 l006 ln(131/1157) 2178388407989926 s002 sum(A113857[n]/(exp(pi*n)-1),n=1..infinity) 2178388412812877 r009 Re(z^3+c),c=-17/30+24/43*I,n=14 2178388413842515 m005 (-3/4+1/4*5^(1/2))/(8/9*gamma+4/11) 2178388417882449 a001 36/6119*47^(17/50) 2178388420435554 r009 Im(z^3+c),c=-29/94+1/59*I,n=2 2178388421215435 a005 (1/cos(17/202*Pi))^1845 2178388450877939 m001 Artin^cos(1)+BesselI(1,2) 2178388450877939 m001 BesselI(1,2)+Artin^cos(1) 2178388452767713 r002 52th iterates of z^2 + 2178388455907296 k001 Champernowne real with 1706*n+472 2178388460818532 m008 (3/5*Pi^3+5)/(1/3*Pi^3+1/2) 2178388465799896 m001 cos(1)^(Porter/Lehmer) 2178388471887540 r005 Im(z^2+c),c=-43/82+15/41*I,n=13 2178388472414305 m001 (LambertW(1)-sin(1))/(-polylog(4,1/2)+Cahen) 2178388475962276 m001 1/TwinPrimes^2*ln(MertensB1)^2/Ei(1) 2178388482258552 m001 (sin(1)+MinimumGamma)/Shi(1) 2178388500852609 a007 Real Root Of 310*x^4+457*x^3-648*x^2-501*x-273 2178388508626238 r009 Im(z^3+c),c=-55/102+11/49*I,n=57 2178388508982081 r009 Re(z^3+c),c=-23/74+21/52*I,n=28 2178388515908824 m001 (polylog(4,1/2)-GAMMA(23/24))/(Kac-Thue) 2178388517028965 r005 Im(z^2+c),c=-15/13+11/42*I,n=10 2178388532419596 a007 Real Root Of -784*x^4-607*x^3+253*x^2+854*x-190 2178388536063275 m001 1/KhintchineHarmonic^2/CopelandErdos/ln(Ei(1)) 2178388536715793 s001 sum(1/10^(n-1)*A205559[n]/n^n,n=1..infinity) 2178388538852810 r002 11th iterates of z^2 + 2178388547465494 p004 log(29753/23929) 2178388547628528 m006 (2*exp(Pi)-3/4)/(3/5/Pi-2/5) 2178388548366735 r005 Re(z^2+c),c=-3/28+33/58*I,n=57 2178388550244660 r005 Re(z^2+c),c=-17/122+25/49*I,n=39 2178388551050623 r005 Re(z^2+c),c=17/60+11/58*I,n=56 2178388555927299 k001 Champernowne real with 1707*n+471 2178388556321404 m001 (-GAMMA(17/24)+Backhouse)/(gamma+exp(-1/2*Pi)) 2178388576175309 a001 75025/18*11^(20/29) 2178388579128765 m005 (1/2*2^(1/2)-3/10)/(4/11*5^(1/2)-1) 2178388589849343 r005 Im(z^2+c),c=-61/106+21/55*I,n=61 2178388594152370 a007 Real Root Of -11*x^4+411*x^3-686*x^2+873*x+227 2178388601578012 s001 sum(1/10^(n-1)*A184400[n]/n^n,n=1..infinity) 2178388601814596 a007 Real Root Of -507*x^4-540*x^3-805*x^2+148*x+66 2178388603877511 a003 cos(Pi*23/95)*cos(Pi*29/72) 2178388610234146 a007 Real Root Of 572*x^4+894*x^3-219*x^2+857*x-733 2178388610481474 m009 (48*Catalan+6*Pi^2-1/6)/(1/2*Psi(1,3/4)-6) 2178388612263993 r009 Im(z^3+c),c=-9/106+50/57*I,n=42 2178388612720286 m001 GAMMA(11/24)*exp(Robbin)^2/gamma^2 2178388616573737 h001 (2/11*exp(2)+1/8)/(9/10*exp(2)+1/11) 2178388619132241 r005 Re(z^2+c),c=17/78+29/54*I,n=61 2178388622340306 a007 Real Root Of 558*x^4+808*x^3-698*x^2+491*x+169 2178388632910122 k002 Champernowne real with 17*n^2+125*n-140 2178388633366118 s001 sum(1/10^(n-1)*A190565[n]/n^n,n=1..infinity) 2178388634191857 r005 Re(z^2+c),c=2/5+10/29*I,n=8 2178388637290640 a001 28657/2207*1364^(22/31) 2178388649541597 a007 Real Root Of 339*x^4-427*x^3+11*x^2-4*x+4 2178388655947302 k001 Champernowne real with 1708*n+470 2178388658198218 a007 Real Root Of 108*x^4+270*x^3+551*x^2+951*x-184 2178388661754437 m001 1/Si(Pi)/exp(Champernowne)^2/BesselJ(1,1)^2 2178388662502444 r005 Im(z^2+c),c=15/58+4/57*I,n=8 2178388663497276 p004 log(28813/23173) 2178388664563076 m001 (BesselJ(1,1)+Conway)/(cos(1/5*Pi)-ln(5)) 2178388669540361 r005 Im(z^2+c),c=-5/31+19/62*I,n=5 2178388670928928 r009 Re(z^3+c),c=-23/38+43/63*I,n=6 2178388673067769 r005 Im(z^2+c),c=-17/54+15/44*I,n=33 2178388673939355 m001 1/GAMMA(5/12)^2*ln(DuboisRaymond)^2/exp(1) 2178388691101019 m001 1/OneNinth^2/Porter^2/ln(Zeta(3)) 2178388692164015 m005 (1/2*gamma-8/11)/(2/3*Zeta(3)-3/5) 2178388701128716 m001 Cahen^(Pi^(1/2))/(PrimesInBinary^(Pi^(1/2))) 2178388704264266 a007 Real Root Of 58*x^4-315*x^3+140*x^2+453*x+299 2178388727943763 r002 34th iterates of z^2 + 2178388728171253 r005 Im(z^2+c),c=-11/42+17/53*I,n=9 2178388734381104 r009 Re(z^3+c),c=-9/86+49/61*I,n=56 2178388741670061 r005 Im(z^2+c),c=-7/8+37/205*I,n=61 2178388751521387 r005 Im(z^2+c),c=11/50+4/33*I,n=15 2178388752939959 a007 Real Root Of 436*x^4-907*x^3-397*x^2-256*x+83 2178388755967305 k001 Champernowne real with 1709*n+469 2178388757345361 m005 (1/3*3^(1/2)-2/5)/(1/9*gamma+3/4) 2178388776496562 s002 sum(A203772[n]/((exp(n)-1)/n),n=1..infinity) 2178388779698468 a001 11/144*4181^(40/59) 2178388780229341 m001 ln(2)/BesselJ(0,1)*BesselJZeros(0,1) 2178388789683731 a001 24157817/322*123^(7/10) 2178388791970385 r009 Re(z^3+c),c=-73/126+33/52*I,n=17 2178388799353918 r005 Re(z^2+c),c=-13/46+13/46*I,n=3 2178388803364780 r005 Im(z^2+c),c=-69/82+9/55*I,n=51 2178388803626350 r005 Im(z^2+c),c=-7/12+32/91*I,n=14 2178388811455512 r005 Im(z^2+c),c=-5/6+25/197*I,n=14 2178388815214521 a007 Real Root Of -568*x^4-824*x^3+491*x^2-811*x+176 2178388820131094 a007 Real Root Of 509*x^4-974*x^3+186*x^2-491*x-127 2178388825014006 r005 Im(z^2+c),c=3/56+31/39*I,n=3 2178388830679786 r005 Im(z^2+c),c=-111/122+8/41*I,n=20 2178388832495124 a007 Real Root Of -275*x^4-755*x^3-96*x^2+552*x+46 2178388853961682 m001 PlouffeB+Riemann2ndZero^ZetaP(3) 2178388855798075 r009 Re(z^3+c),c=-4/31+59/64*I,n=40 2178388855987308 k001 Champernowne real with 1710*n+468 2178388862899104 a007 Real Root Of 292*x^4+402*x^3-600*x^2-473*x-603 2178388865647247 a007 Real Root Of -407*x^4-911*x^3+179*x^2+777*x+591 2178388871788125 r009 Im(z^3+c),c=-1/106+51/58*I,n=4 2178388899684425 m001 (ln(2)-gamma(2))/(FeigenbaumD+Landau) 2178388903305447 a003 cos(Pi*40/93)/sin(Pi*51/103) 2178388908303176 m001 (BesselK(1,1)-exp(Pi))/MertensB2 2178388913767369 m001 (GAMMA(5/6)-GAMMA(13/24))/(ln(5)-exp(1/Pi)) 2178388914374933 m002 -E^Pi+Log[Pi]^2+ProductLog[Pi]/E^Pi 2178388914504694 m001 1/OneNinth^2*ln(GolombDickman)^2/Zeta(1,2)^2 2178388918192936 m001 (KhinchinHarmonic-Niven)/(ln(5)+CopelandErdos) 2178388922236400 m002 Cosh[Pi]/Log[Pi]+ProductLog[Pi]/Pi^2+Sinh[Pi] 2178388924329999 m006 (3*exp(Pi)+3/4)/(3/5*exp(2*Pi)+5/6) 2178388929492015 r005 Im(z^2+c),c=-6/17+13/37*I,n=36 2178388932494433 m001 exp(ArtinRank2)/Champernowne^2*sqrt(1+sqrt(3)) 2178388934748235 m001 1/GAMMA(13/24)*Paris^2/exp(Zeta(9)) 2178388938945890 m001 (LaplaceLimit+Mills)/(KhinchinHarmonic-sin(1)) 2178388943163167 m005 (1/2*Zeta(3)+3/8)/(9/10*gamma-5) 2178388956007311 k001 Champernowne real with 1711*n+467 2178388970191880 r005 Im(z^2+c),c=-25/26+27/109*I,n=9 2178388973835723 m001 exp(1/exp(1))/(Gompertz^Kolakoski) 2178388980458320 m001 1/GAMMA(17/24)/ln(Catalan)^2/arctan(1/2) 2178388984089263 m001 (5^(1/2)-Si(Pi))/(GAMMA(13/24)+Champernowne) 2178388992441108 b008 -1+E+CosIntegral[Sqrt[Pi]] 2178388996376237 m001 (Tetranacci+ZetaP(2))/(2^(1/2)-arctan(1/3)) 2178388997144054 r005 Re(z^2+c),c=17/60+11/58*I,n=51 2178388998347949 h001 (5/7*exp(2)+7/9)/(8/9*exp(1)+4/11) 2178389002073547 m001 GAMMA(11/12)^2*(2^(1/3))^2/exp(GAMMA(5/24)) 2178389005670208 m001 StolarskyHarborth^sin(1/5*Pi)-Trott 2178389018817484 a001 75025/5778*1364^(22/31) 2178389024721803 a001 102334155/521*123^(1/2) 2178389036201589 r005 Re(z^2+c),c=-34/29+4/21*I,n=8 2178389040431115 a007 Real Root Of 108*x^4-459*x^3-959*x^2+953*x-550 2178389044032541 m009 (3/5*Psi(1,3/4)+3/5)/(2/5*Psi(1,2/3)-1/4) 2178389044927806 a007 Real Root Of 137*x^4+633*x^3+981*x^2+94*x-992 2178389045237520 a001 13/29*123^(46/57) 2178389051885743 m001 (Chi(1)+cos(1/5*Pi))/(-BesselI(1,2)+GaussAGM) 2178389056027314 k001 Champernowne real with 1712*n+466 2178389057102675 a007 Real Root Of -153*x^4-94*x^3-108*x^2-965*x+884 2178389067317694 a007 Real Root Of -252*x^4-169*x^3+572*x^2-512*x+98 2178389074481511 a001 196418/15127*1364^(22/31) 2178389082602784 a001 514229/39603*1364^(22/31) 2178389083787661 a001 1346269/103682*1364^(22/31) 2178389084067373 a001 2178309/167761*1364^(22/31) 2178389084519956 a001 832040/64079*1364^(22/31) 2178389087622006 a001 10959/844*1364^(22/31) 2178389095364981 a007 Real Root Of -759*x^4+977*x^3-64*x^2+182*x-45 2178389098577409 a007 Real Root Of -115*x^4+120*x^3+339*x^2-961*x+128 2178389101231345 r005 Im(z^2+c),c=-15/16+20/97*I,n=33 2178389103064043 r005 Im(z^2+c),c=-65/48+1/54*I,n=50 2178389108883774 a001 121393/9349*1364^(22/31) 2178389111511620 m005 (1/2*2^(1/2)+1/5)/(4/11*Catalan+1/12) 2178389141670879 m005 (-5/28+1/4*5^(1/2))/(9/10*exp(1)-7/10) 2178389144130583 r002 14th iterates of z^2 + 2178389149148851 m001 GAMMA(23/24)-HardyLittlewoodC3-ThueMorse 2178389149567585 m005 (1/2*Pi+1/11)/(6*2^(1/2)-6/7) 2178389151163202 r005 Re(z^2+c),c=5/94+9/44*I,n=3 2178389153515972 r002 44th iterates of z^2 + 2178389154340879 m005 (13/42+1/6*5^(1/2))/(Zeta(3)-8/9) 2178389156047317 k001 Champernowne real with 1713*n+465 2178389191410200 m001 (-LandauRamanujan+5)/(-GAMMA(11/12)+3) 2178389214343407 s001 sum(1/10^(n-1)*A226824[n]/n^n,n=1..infinity) 2178389222373270 a001 3571/18*(1/2*5^(1/2)+1/2)^25*18^(13/20) 2178389222673401 a007 Real Root Of -613*x^4-318*x^3-547*x^2+585*x+13 2178389224015182 l006 ln(1054/9309) 2178389231013236 r005 Re(z^2+c),c=-19/118+13/28*I,n=27 2178389232682177 p003 LerchPhi(1/256,4,106/229) 2178389233625021 h001 (7/10*exp(2)+3/11)/(8/9*exp(1)+1/12) 2178389234442824 r009 Re(z^3+c),c=-29/78+11/19*I,n=35 2178389246617082 r009 Im(z^3+c),c=-1/16+53/60*I,n=4 2178389248032208 m001 ErdosBorwein*KomornikLoreti-ln(2) 2178389250352296 m001 (Otter+Trott2nd)/(3^(1/3)+gamma(1)) 2178389250561725 m005 (1/2*3^(1/2)-7/11)/(5/132+5/11*5^(1/2)) 2178389254614108 a001 46368/3571*1364^(22/31) 2178389256067320 k001 Champernowne real with 1714*n+464 2178389263186009 r009 Re(z^3+c),c=-3/25+53/63*I,n=24 2178389283077885 b008 1-3*2^(1/12) 2178389306333589 a003 cos(Pi*1/19)/cos(Pi*41/117) 2178389313275279 m001 (Magata-ReciprocalLucas)/(Zeta(5)-Artin) 2178389316094943 m001 (Chi(1)+FransenRobinson)^BesselK(1,1) 2178389322903908 r009 Re(z^3+c),c=-4/31+59/64*I,n=42 2178389327274152 r009 Re(z^3+c),c=-19/62+23/58*I,n=10 2178389332039755 a007 Real Root Of 784*x^4-544*x^3+436*x^2-601*x-159 2178389334168049 a007 Real Root Of -210*x^4+342*x^3-444*x^2+987*x-197 2178389340399708 l006 ln(923/8152) 2178389341706913 a007 Real Root Of -25*x^4+415*x^3-388*x^2-509*x-777 2178389352085136 r005 Re(z^2+c),c=-35/36+1/13*I,n=22 2178389356087323 k001 Champernowne real with 1715*n+463 2178389368276688 a001 9349/18*(1/2*5^(1/2)+1/2)^23*18^(13/20) 2178389368519136 m001 (5^(1/2)*Weierstrass-Trott2nd)/Weierstrass 2178389373765160 a007 Real Root Of 169*x^4+380*x^3+214*x^2+241*x-368 2178389374080774 a007 Real Root Of -350*x^4-840*x^3-519*x^2-488*x+598 2178389375182798 r005 Im(z^2+c),c=-17/18+15/71*I,n=22 2178389379721368 m001 (Zeta(5)-Lehmer)/(ReciprocalLucas+ZetaP(4)) 2178389380810577 m001 (TwinPrimes+ZetaQ(3))/(5^(1/2)+GaussAGM) 2178389384196748 m002 Pi*Sech[Pi]+(2*Sinh[Pi])/ProductLog[Pi] 2178389385243389 m006 (3/5/Pi-1)/(1/4*ln(Pi)-4) 2178389389563710 a001 12238/9*(1/2*5^(1/2)+1/2)^21*18^(13/20) 2178389390732000 r009 Re(z^3+c),c=-11/82+43/46*I,n=8 2178389391612926 r005 Re(z^2+c),c=-5/21+13/53*I,n=8 2178389392669445 a001 64079/18*(1/2*5^(1/2)+1/2)^19*18^(13/20) 2178389394089146 m005 (1/2*Catalan+5/6)/(1/8*gamma-6) 2178389394588895 a001 13201/6*(1/2*5^(1/2)+1/2)^20*18^(13/20) 2178389398572884 q001 2137/981 2178389399043927 a001 329/1926*24476^(29/31) 2178389402291566 m001 (-ArtinRank2+Thue)/(Si(Pi)+2*Pi/GAMMA(5/6)) 2178389402719813 a001 15127/18*(1/2*5^(1/2)+1/2)^22*18^(13/20) 2178389411147239 a007 Real Root Of 7*x^4-410*x^3+864*x^2-30*x+46 2178389416023634 m001 1/Lehmer^2/exp(FeigenbaumDelta)^2/GAMMA(1/12) 2178389427257198 a007 Real Root Of -544*x^4-681*x^3+881*x^2-307*x+361 2178389429628173 r002 5th iterates of z^2 + 2178389451031186 a001 17711/2207*9349^(19/31) 2178389451163963 a001 987*3571^(3/31) 2178389451951036 p004 log(29137/3299) 2178389455071571 a007 Real Root Of -109*x^4+541*x^3-73*x^2-827*x-990 2178389456107326 k001 Champernowne real with 1716*n+462 2178389458449960 a001 321*(1/2*5^(1/2)+1/2)^24*18^(13/20) 2178389464501649 m001 (-MertensB2+ZetaP(3))/(cos(1)+Magata) 2178389464807839 a001 18/28657*13^(16/33) 2178389466896344 m001 (Zeta(5)+arctan(1/3))/(Backhouse-FeigenbaumB) 2178389468898256 a001 28657/2207*39603^(15/31) 2178389483699011 m001 (sin(1/12*Pi)-Trott2nd)/(GAMMA(2/3)+Zeta(1/2)) 2178389484536027 a001 514229/2207*5778^(8/31) 2178389495285155 l006 ln(792/6995) 2178389504662532 m001 (GAMMA(7/12)-Pi*CareFree)/Pi 2178389507117663 r005 Re(z^2+c),c=-27/118+17/62*I,n=20 2178389510560790 r002 23th iterates of z^2 + 2178389513537298 a007 Real Root Of -523*x^4-588*x^3+762*x^2-706*x+545 2178389517251023 r005 Im(z^2+c),c=-59/110+26/61*I,n=64 2178389522128134 m001 FeigenbaumB^2*ln(MertensB1)^2*MadelungNaCl 2178389526729242 m001 (GAMMA(19/24)+ZetaQ(3))/(ln(Pi)-BesselK(1,1)) 2178389528808415 m001 (-GAMMA(3/4)+gamma(3))/(Psi(2,1/3)-Zeta(5)) 2178389530054469 m001 ZetaP(2)^ln(Pi)*cos(1) 2178389539501013 a007 Real Root Of 397*x^4+488*x^3-960*x^2-719*x-906 2178389542081200 m001 1/LaplaceLimit^2*exp(MertensB1)^2*LambertW(1) 2178389552432064 m001 -BesselK(0,1)/(BesselI(0,1)+2/3) 2178389552432064 m001 BesselK(0,1)/(BesselI(0,1)+2/3) 2178389554659213 m001 (GAMMA(17/24)-Weierstrass)/(Pi+gamma) 2178389555709524 m001 (Cahen-Paris)/(ReciprocalFibonacci-Thue) 2178389556127329 k001 Champernowne real with 1717*n+461 2178389557372157 p004 log(23173/18637) 2178389565376150 a007 Real Root Of -583*x^4-993*x^3+393*x^2-754*x-644 2178389565546970 m001 (sin(1/5*Pi)+KhinchinLevy*Lehmer)/Lehmer 2178389566820667 m005 (1/2*gamma+9/11)/(1/9*Pi-6/7) 2178389569316100 m005 (1/2*5^(1/2)-8/11)/(4/9*5^(1/2)+4/5) 2178389573414816 m001 (5^(1/2)+exp(1/Pi))/(-Pi^(1/2)+ErdosBorwein) 2178389578229859 r005 Re(z^2+c),c=-7/30+11/43*I,n=12 2178389581421526 r005 Re(z^2+c),c=-11/14+19/203*I,n=34 2178389582693055 a007 Real Root Of 559*x^4-916*x^3-863*x^2-988*x-185 2178389583856951 r009 Re(z^3+c),c=-31/86+19/36*I,n=46 2178389596517655 a007 Real Root Of -279*x^4-757*x^3-382*x^2-578*x-989 2178389597538311 a001 514229/2207*2207^(9/31) 2178389607079686 s002 sum(A133554[n]/(n!^2),n=1..infinity) 2178389630183768 r005 Re(z^2+c),c=29/102+4/21*I,n=56 2178389631688932 a007 Real Root Of 24*x^4-719*x^3+928*x^2+826*x+689 2178389635916123 k002 Champernowne real with 35/2*n^2+247/2*n-139 2178389643201416 a001 4181/843*843^(28/31) 2178389646179898 s002 sum(A059649[n]/(n*2^n+1),n=1..infinity) 2178389646752755 a007 Real Root Of -343*x^4-943*x^3-506*x^2-426*x-551 2178389655475036 a007 Real Root Of -537*x^4-805*x^3+800*x^2+254*x+528 2178389656147332 k001 Champernowne real with 1718*n+460 2178389656639520 r005 Im(z^2+c),c=-109/90+7/39*I,n=14 2178389664941665 a003 sin(Pi*1/52)-sin(Pi*7/78) 2178389668419918 a001 329/41*29^(50/51) 2178389673251633 r005 Im(z^2+c),c=-59/64+13/62*I,n=40 2178389674817839 v002 sum(1/(2^n+(1+5/2*n^2+7/2*n)),n=1..infinity) 2178389675238235 r005 Re(z^2+c),c=-13/16+7/43*I,n=46 2178389680591292 m001 1/ln(Pi)/CopelandErdos*sin(Pi/5) 2178389680591292 m001 sin(1/5*Pi)/ln(Pi)/CopelandErdos 2178389682155281 m001 (ln(Pi)-Zeta(1/2))/(Cahen-Tribonacci) 2178389685244948 a007 Real Root Of -238*x^4-206*x^3+345*x^2-907*x-383 2178389687716874 r005 Re(z^2+c),c=7/44+20/61*I,n=3 2178389690806623 m005 (1/3*3^(1/2)-3/4)/(3/7*Catalan+2/5) 2178389696836801 a007 Real Root Of -369*x^4+933*x^3-19*x^2+517*x+124 2178389699352549 m001 ZetaQ(3)^Chi(1)*KhinchinLevy^Chi(1) 2178389705538271 a001 11/21*610^(2/9) 2178389706592854 m001 1/Lehmer^2/CareFree*exp(Zeta(1/2))^2 2178389707737713 m001 (3^(1/2)+GlaisherKinkelin)/(Sarnak+TwinPrimes) 2178389711562373 l006 ln(661/5838) 2178389714531404 m001 Catalan^ErdosBorwein*(Pi^(1/2))^ErdosBorwein 2178389714924804 a005 (1/cos(31/220*Pi))^303 2178389724005684 m005 (1/2*3^(1/2)-2/7)/(5/11*5^(1/2)-3/4) 2178389753988383 a001 1/11*3^(35/44) 2178389756167335 k001 Champernowne real with 1719*n+459 2178389766630487 m001 TreeGrowth2nd/(Niven^ln(2+3^(1/2))) 2178389772551769 h001 (5/12*exp(2)+5/6)/(5/9*exp(1)+2/7) 2178389779931153 m001 Sierpinski/(ln(Pi)^BesselI(0,1)) 2178389786473114 a007 Real Root Of -180*x^4-243*x^3+126*x^2-126*x+669 2178389786969220 m001 (Gompertz-HardyLittlewoodC3)/(Mills+PlouffeB) 2178389791204228 m001 BesselK(0,1)*ln(Niven)^2/GAMMA(1/24)^2 2178389794063692 r009 Re(z^3+c),c=-9/26+28/57*I,n=10 2178389797715911 m001 Riemann2ndZero*MadelungNaCl^2/ln(GAMMA(1/6))^2 2178389808970427 m005 (-23/36+1/4*5^(1/2))/(3/10*Zeta(3)-8/11) 2178389814198972 r002 18th iterates of z^2 + 2178389816389556 r005 Im(z^2+c),c=-13/16+15/103*I,n=63 2178389829678780 m001 (Chi(1)+ln(gamma))^GAMMA(3/4) 2178389834197578 a001 2576/321*9349^(19/31) 2178389836754271 a001 2584/15127*24476^(29/31) 2178389840110035 r009 Re(z^3+c),c=-23/74+21/52*I,n=27 2178389840430068 a001 2207/18*(1/2*5^(1/2)+1/2)^26*18^(13/20) 2178389850425245 a001 75025/5778*39603^(15/31) 2178389855820870 m005 (1/2*2^(1/2)-2/7)/(2/11*5^(1/2)-3/5) 2178389856187338 k001 Champernowne real with 1720*n+458 2178389859688160 m001 (Zeta(1,-1)+HeathBrownMoroz)/(Si(Pi)-ln(3)) 2178389860968907 r005 Im(z^2+c),c=-81/94+11/63*I,n=53 2178389866514733 a001 1346269/5778*5778^(8/31) 2178389874589762 a007 Real Root Of 290*x^4+287*x^3-485*x^2+847*x+583 2178389883281224 a007 Real Root Of 481*x^4+707*x^3-388*x^2+324*x-976 2178389886885057 m002 -Pi+(Pi^4*Cosh[Pi]^2)/6 2178389890100813 a001 121393/15127*9349^(19/31) 2178389896913632 a007 Real Root Of -577*x^4-976*x^3+598*x^2+228*x+563 2178389898256985 a001 105937/13201*9349^(19/31) 2178389899446954 a001 416020/51841*9349^(19/31) 2178389899620569 a001 726103/90481*9349^(19/31) 2178389899727868 a001 1346269/167761*9349^(19/31) 2178389900182396 a001 514229/64079*9349^(19/31) 2178389900615351 a001 2255/13201*24476^(29/31) 2178389903297777 a001 98209/12238*9349^(19/31) 2178389904863916 m005 (1/2*2^(1/2)-5)/(4/5*5^(1/2)+2/11) 2178389906089294 a001 196418/15127*39603^(15/31) 2178389906223675 a001 3/1346269*317811^(17/47) 2178389909932558 a001 17711/103682*24476^(29/31) 2178389911291920 a001 15456/90481*24476^(29/31) 2178389911490248 a001 121393/710647*24476^(29/31) 2178389911519184 a001 105937/620166*24476^(29/31) 2178389911523405 a001 832040/4870847*24476^(29/31) 2178389911526014 a001 514229/3010349*24476^(29/31) 2178389911537067 a001 196418/1149851*24476^(29/31) 2178389911612821 a001 75025/439204*24476^(29/31) 2178389912132052 a001 28657/167761*24476^(29/31) 2178389914210569 a001 514229/39603*39603^(15/31) 2178389914839448 a001 29/1548008755920*13^(22/23) 2178389915395447 a001 1346269/103682*39603^(15/31) 2178389915675159 a001 2178309/167761*39603^(15/31) 2178389915690908 a001 10946/64079*24476^(29/31) 2178389916127742 a001 832040/64079*39603^(15/31) 2178389916178211 a007 Real Root Of -368*x^4-319*x^3+818*x^2-928*x-914 2178389917704311 a001 2/31622993*317811^(9/14) 2178389917707084 a001 1/1201881744*267914296^(9/14) 2178389917707084 a001 2/182717648081*225851433717^(9/14) 2178389919229794 a001 10959/844*39603^(15/31) 2178389924650913 a001 75025/9349*9349^(19/31) 2178389932934979 a007 Real Root Of -526*x^4-907*x^3+482*x^2+232*x+687 2178389940083670 a001 4181/24476*24476^(29/31) 2178389940491569 a001 121393/9349*39603^(15/31) 2178389943726556 a001 6119/36*514229^(1/53) 2178389944137387 r005 Re(z^2+c),c=-17/30+38/83*I,n=19 2178389952560640 m001 (Tetranacci+ZetaQ(2))/(1-Psi(1,1/3)) 2178389955534065 a007 Real Root Of 490*x^4+773*x^3-531*x^2-47*x-626 2178389956207341 k001 Champernowne real with 1721*n+457 2178389956687693 a001 2178309/9349*5778^(8/31) 2178389962841931 m005 (1/2*5^(1/2)+7/11)/(3/11*Catalan+5/9) 2178389964884654 m001 (1+ln(2^(1/2)+1))/(-Conway+TreeGrowth2nd) 2178389969972925 r005 Im(z^2+c),c=-137/122+13/58*I,n=19 2178389971477130 m008 (1/5*Pi^6+1/2)/(3/5*Pi-1) 2178389971823460 r005 Re(z^2+c),c=15/46+8/31*I,n=24 2178389973379738 m005 (1/2*exp(1)-1/12)/(6/7*gamma+1/11) 2178389976603583 m005 (1/3*5^(1/2)-1/4)/(9/11*5^(1/2)+4/9) 2178389978978356 m001 (Catalan+gamma(3))/(-Backhouse+MertensB2) 2178389979316427 a001 123/55*121393^(7/36) 2178389979517036 a001 1346269/5778*2207^(9/31) 2178389988844975 a003 sin(Pi*1/17)/cos(Pi*44/93) 2178389989943570 r005 Im(z^2+c),c=-13/17+7/48*I,n=10 2178390001962520 r009 Re(z^3+c),c=-37/102+13/21*I,n=60 2178390010009099 r002 27i'th iterates of 2*x/(1-x^2) of 2178390010660091 m001 FeigenbaumD^2/ln(PisotVijayaraghavan)/Trott^2 2178390012409274 m001 Conway+PlouffeB*Tribonacci 2178390019330547 m001 (Backhouse+LaplaceLimit)^Zeta(5) 2178390022685022 h001 (-6*exp(2)+8)/(-3*exp(4)-3) 2178390024852486 m001 FeigenbaumD^Zeta(3)/(OrthogonalArrays^Zeta(3)) 2178390030207813 m001 (5^(1/2)+BesselI(0,1))/(-3^(1/3)+Zeta(1,-1)) 2178390034753903 l006 ln(530/4681) 2178390041004541 r005 Im(z^2+c),c=15/38+5/23*I,n=25 2178390044000434 a007 Real Root Of 241*x^4+494*x^3-438*x^2-606*x+438 2178390054026904 r009 Im(z^3+c),c=-35/66+7/48*I,n=10 2178390054981323 r005 Im(z^2+c),c=-21/118+17/56*I,n=8 2178390056131707 r002 32th iterates of z^2 + 2178390056227344 k001 Champernowne real with 1722*n+456 2178390058530130 h001 (7/10*exp(2)+4/5)/(5/7*exp(1)+4/5) 2178390058615778 a007 Real Root Of 132*x^4-153*x^3-795*x^2-560*x+161 2178390059911445 r005 Im(z^2+c),c=-59/110+2/5*I,n=63 2178390061697708 r009 Im(z^3+c),c=-25/58+5/58*I,n=28 2178390069690001 a001 2178309/9349*2207^(9/31) 2178390070161530 m001 GAMMA(11/12)^2/BesselK(0,1)^2*ln(sqrt(2)) 2178390071007499 a001 28657/3571*9349^(19/31) 2178390076724444 m001 exp(sin(1))^2/Robbin^2*sqrt(Pi) 2178390080746227 a007 Real Root Of -71*x^4+476*x^3+788*x^2-897*x+826 2178390086221959 a001 46368/3571*39603^(15/31) 2178390096553096 g007 Psi(2,4/7)+Psi(2,3/7)-Psi(2,9/11)-Psi(2,1/5) 2178390098136207 a007 Real Root Of 333*x^4+746*x^3-61*x^2-288*x-125 2178390101755365 a007 Real Root Of 688*x^4+870*x^3-955*x^2+502*x-874 2178390102590623 a001 832040/3571*5778^(8/31) 2178390107274152 a001 1597/9349*24476^(29/31) 2178390109649347 m001 FeigenbaumDelta-ln(1+sqrt(2))-ln(5) 2178390109649347 m001 FeigenbaumDelta-ln(2^(1/2)+1)-ln(5) 2178390111827645 m001 HardyLittlewoodC5-Ei(1)-ln(2) 2178390121161400 a007 Real Root Of 332*x^4-173*x^3-49*x^2-986*x-215 2178390139095845 p001 sum((-1)^n/(563*n+424)/(5^n),n=0..infinity) 2178390150645635 m001 1/exp(cosh(1))/Conway^2*sqrt(3) 2178390156247347 k001 Champernowne real with 1723*n+455 2178390172803625 a007 Real Root Of -126*x^4-113*x^3+57*x^2-391*x+547 2178390173713132 r005 Re(z^2+c),c=-21/17+1/15*I,n=12 2178390178979052 r009 Re(z^3+c),c=-1/50+26/41*I,n=3 2178390190085244 p004 log(20353/16369) 2178390191085592 m001 (-Kolakoski+ThueMorse)/(Chi(1)+Catalan) 2178390194536691 a007 Real Root Of 530*x^4+710*x^3-692*x^2+592*x-22 2178390203949974 r005 Im(z^2+c),c=-3/4+21/167*I,n=9 2178390207388043 r005 Im(z^2+c),c=31/122+1/11*I,n=14 2178390208867243 a008 Real Root of x^2-x-47236 2178390210803556 a001 7/90481*3^(49/52) 2178390211746920 m001 1/sqrt(3)/cos(Pi/5)/ln(sqrt(Pi))^2 2178390213137810 r009 Im(z^3+c),c=-35/78+3/52*I,n=52 2178390215592939 a001 832040/3571*2207^(9/31) 2178390234839512 a005 (1/sin(81/175*Pi))^789 2178390235285224 m001 ZetaQ(4)^(Zeta(5)*Stephens) 2178390239231697 a008 Real Root of x^3-x^2-135*x-279 2178390243614668 m001 (Otter+Tribonacci)/(GAMMA(5/6)-exp(Pi)) 2178390246620007 s002 sum(A022630[n]/(exp(n)-1),n=1..infinity) 2178390246892133 a007 Real Root Of -515*x^4-783*x^3+812*x^2-150*x-677 2178390248105344 m005 (1/2*Zeta(3)-5/9)/(7/12*gamma-6/11) 2178390248872100 m001 (2^(1/2)+Zeta(5))/(Landau+LandauRamanujan2nd) 2178390250818008 l006 ln(8090/10059) 2178390253240935 a001 7/18*(1/2*5^(1/2)+1/2)^2*18^(5/19) 2178390253465202 a001 17711/1364*1364^(22/31) 2178390256265167 a007 Real Root Of -318*x^4-273*x^3+836*x^2-4*x+363 2178390256267350 k001 Champernowne real with 1724*n+454 2178390257222408 m005 (-1/44+1/4*5^(1/2))/(4/7*Pi+2/3) 2178390263177960 a007 Real Root Of -366*x^4-426*x^3+808*x^2-302*x-654 2178390264460113 m005 (1/2*gamma-2/3)/(4/5*Pi-7/9) 2178390264710352 l006 ln(929/8205) 2178390271750530 a007 Real Root Of -326*x^4-288*x^3+767*x^2-674*x-744 2178390292220323 r005 Re(z^2+c),c=-7/34+7/20*I,n=22 2178390314734714 r005 Re(z^2+c),c=-7/36+29/36*I,n=48 2178390332587685 m003 -5/2+(3*Sqrt[5])/8+3*Log[1/2+Sqrt[5]/2] 2178390337269881 r002 41th iterates of z^2 + 2178390342748679 a007 Real Root Of 426*x^4+955*x^3+236*x^2-623*x-138 2178390348244385 a008 Real Root of x^4-2*x^3-9*x^2-40*x+128 2178390349574478 r005 Im(z^2+c),c=-13/14+15/74*I,n=35 2178390355511493 r005 Re(z^2+c),c=-17/110+19/39*I,n=21 2178390356287353 k001 Champernowne real with 1725*n+453 2178390367100920 r005 Im(z^2+c),c=-17/52+21/61*I,n=42 2178390376641904 l006 ln(7901/9824) 2178390385849288 a001 64079/2*6557470319842^(11/18) 2178390386379825 a001 12752043/2*1134903170^(11/18) 2178390386386713 a001 1268860318*196418^(11/18) 2178390389195676 a001 18/89*2^(3/28) 2178390396788874 m001 (PlouffeB+Rabbit)/(Psi(2,1/3)+CareFree) 2178390403778976 a001 6643838879/55*832040^(11/20) 2178390403779324 a001 33385282/55*12586269025^(11/20) 2178390407804965 r005 Re(z^2+c),c=-7/94+49/53*I,n=10 2178390412575320 m001 (cos(1/5*Pi)+Pi^(1/2))/(Salem+ZetaQ(3)) 2178390416838280 m001 (ln(Pi)-CareFree)/(Mills+TravellingSalesman) 2178390422968140 a001 23725150497407*377^(16/21) 2178390429590176 r009 Im(z^3+c),c=-27/50+7/37*I,n=43 2178390431091111 m001 GAMMA(19/24)/Khintchine/ln(Zeta(9)) 2178390434712902 m001 Bloch+HeathBrownMoroz+Niven 2178390435109087 r005 Im(z^2+c),c=-35/94+32/49*I,n=40 2178390437547401 m001 (MertensB1-Niven)/LaplaceLimit 2178390452210429 m001 BesselK(1,1)*Bloch*ZetaP(4) 2178390456239592 r009 Im(z^3+c),c=-7/40+7/33*I,n=5 2178390456307356 k001 Champernowne real with 1726*n+452 2178390459585078 a007 Real Root Of -173*x^4+132*x^3+704*x^2-569*x+680 2178390468667877 a007 Real Root Of -375*x^4-364*x^3+717*x^2-394*x+421 2178390487092155 a007 Real Root Of -375*x^4-548*x^3+632*x^2-149*x-544 2178390489095730 m001 (Shi(1)+MasserGramain)^MinimumGamma 2178390497235130 m001 (ln(5)-gamma(3))/(BesselK(1,1)-Totient) 2178390497686252 r005 Re(z^2+c),c=-21/118+23/54*I,n=17 2178390507263518 m001 (-Landau+Trott2nd)/(exp(Pi)+cos(1)) 2178390508632996 l006 ln(7712/9589) 2178390537967172 m001 (Khinchin-OneNinth)/(AlladiGrinstead+Artin) 2178390541839298 r008 a(0)=0,K{-n^6,-9-2*n^3+11*n^2-47*n} 2178390545127246 m001 HardyLittlewoodC3^ln(5)*ZetaP(2) 2178390546978218 a007 Real Root Of 633*x^4-588*x^3-741*x^2-896*x+235 2178390553163870 r005 Im(z^2+c),c=-29/48+15/44*I,n=44 2178390554135010 m001 3^(1/3)-FeigenbaumDelta+Riemann3rdZero 2178390555377011 a007 Real Root Of -406*x^4-500*x^3+779*x^2-237*x-239 2178390555625764 m003 -49/2+(3*Sqrt[5])/4+1/(2*Log[1/2+Sqrt[5]/2]) 2178390556327359 k001 Champernowne real with 1727*n+451 2178390560881394 m001 Zeta(7)^2*ln(Si(Pi))^2/sqrt(Pi) 2178390565847452 r005 Re(z^2+c),c=-99/98+7/61*I,n=18 2178390570166206 l006 ln(399/3524) 2178390583272978 m001 ln(FeigenbaumD)*DuboisRaymond/log(1+sqrt(2)) 2178390585552153 m001 Lehmer^sin(1)/Otter 2178390601379644 m005 (41/36+1/4*5^(1/2))/(2*gamma-3/8) 2178390602026560 r005 Re(z^2+c),c=-117/122+1/8*I,n=6 2178390606278107 h002 exp(22*23^(1/2)+2^(1/4)) 2178390629229563 a007 Real Root Of 90*x^4-576*x^3+776*x^2+55*x-31 2178390630681028 p003 LerchPhi(1/2,6,53/130) 2178390633680482 m001 1/exp(GAMMA(5/6))^2*(2^(1/3))*sqrt(1+sqrt(3)) 2178390638922124 k002 Champernowne real with 18*n^2+122*n-138 2178390640038449 a001 1/15124*(1/2*5^(1/2)+1/2)^11*199^(2/21) 2178390642657844 m005 (1/3*Catalan+1/11)/(5/11*exp(1)+7/12) 2178390647256099 l006 ln(7523/9354) 2178390655104304 m002 -7/5+2*Cosh[Pi] 2178390656347362 k001 Champernowne real with 1728*n+450 2178390659848199 r001 64i'th iterates of 2*x^2-1 of 2178390660564359 r005 Im(z^2+c),c=-5/19+15/46*I,n=16 2178390669257050 g007 Psi(2,1/6)+Psi(2,1/3)-Psi(2,1/11)-Psi(2,9/10) 2178390670764829 m001 Trott^2/Niven^2*exp(Zeta(1/2))^2 2178390679088843 m005 (1/2*Catalan+5/8)/(8/11*2^(1/2)-6) 2178390680368329 m001 Khintchine^2*Champernowne*ln(GAMMA(13/24))^2 2178390681331387 r005 Im(z^2+c),c=-17/19+5/24*I,n=48 2178390684336717 m005 (1/2*Zeta(3)+5/8)/(3/5*2^(1/2)-2/7) 2178390689242812 r002 42th iterates of z^2 + 2178390693628245 m006 (4/5*ln(Pi)+1/4)/(exp(2*Pi)-1/3) 2178390711593732 m001 (HeathBrownMoroz-Paris)/(gamma(1)-Artin) 2178390712979903 r005 Im(z^2+c),c=-13/56+13/41*I,n=21 2178390714083173 a007 Real Root Of -318*x^4-500*x^3+727*x^2+407*x-571 2178390719826138 m001 1/exp(Trott)/FeigenbaumC^2/GAMMA(2/3) 2178390726182709 r009 Re(z^3+c),c=-5/122+17/24*I,n=64 2178390729519109 r005 Re(z^2+c),c=-9/58+29/61*I,n=23 2178390733232314 a007 Real Root Of 414*x^4+615*x^3-742*x^2+175*x+937 2178390751631977 h005 exp(cos(Pi*5/28)*sin(Pi*13/35)) 2178390756367365 k001 Champernowne real with 1729*n+449 2178390756466936 m001 exp(Sierpinski)^2/Rabbit*Zeta(1,2)^2 2178390763464435 r005 Im(z^2+c),c=1/94+7/30*I,n=10 2178390768930727 a001 73681302247/610*21^(19/20) 2178390774451517 a007 Real Root Of -388*x^4+285*x^3+306*x^2+617*x-151 2178390785385283 a007 Real Root Of 515*x^4+710*x^3-614*x^2+353*x-575 2178390790121187 m001 (ArtinRank2-Conway)/(MadelungNaCl+MertensB2) 2178390793023941 l006 ln(7334/9119) 2178390811643726 a007 Real Root Of 543*x^4+750*x^3-884*x^2-192*x-698 2178390812318177 m005 (1/3*Catalan+1/11)/(1/5*Zeta(3)-2/9) 2178390812770799 a007 Real Root Of -334*x^4-418*x^3+856*x^2+111*x-620 2178390815184149 a007 Real Root Of -121*x^4-100*x^3-14*x^2-580*x+494 2178390816642903 r009 Re(z^3+c),c=-4/13+19/48*I,n=26 2178390817458508 m005 (1/3*exp(1)+1/4)/(5*Catalan+8/11) 2178390817663854 m001 Pi^2*GAMMA(11/24)/exp(sqrt(5))^2 2178390817989710 r009 Re(z^3+c),c=-35/106+29/48*I,n=9 2178390825697181 m001 (ln(2)/ln(10)-BesselI(1,1))^ln(Pi) 2178390829501325 r009 Re(z^3+c),c=-3/50+47/63*I,n=30 2178390830647418 p004 log(36241/29147) 2178390832680967 m001 (-Zeta(1/2)+GAMMA(17/24))/(LambertW(1)+ln(2)) 2178390836365462 l006 ln(1066/9415) 2178390839417948 r005 Im(z^2+c),c=-17/52+21/61*I,n=45 2178390847876182 m001 Otter*Weierstrass^HardyLittlewoodC5 2178390852384820 a007 Real Root Of 204*x^4+150*x^3-280*x^2+541*x-536 2178390852680082 r005 Re(z^2+c),c=-11/62+23/54*I,n=21 2178390855183367 m001 Trott2nd-Gompertz-ln(5) 2178390856387368 k001 Champernowne real with 1730*n+448 2178390859796531 m004 -375/(4*Pi)+(5*Pi)/Log[Sqrt[5]*Pi] 2178390861191275 a007 Real Root Of -536*x^4-718*x^3+612*x^2-710*x+197 2178390867510376 r009 Re(z^3+c),c=-4/13+19/48*I,n=18 2178390873208406 m001 (Backhouse-gamma(1)*KomornikLoreti)/gamma(1) 2178390887717404 m001 (HardyLittlewoodC5+Sierpinski)/exp(1/Pi) 2178390896043067 m001 (Pi+FeigenbaumB)/(MadelungNaCl+ZetaP(4)) 2178390898728891 a007 Real Root Of -93*x^4+443*x^3-545*x^2+331*x-620 2178390898885532 m001 (ln(2)+GaussAGM)/(Salem-Weierstrass) 2178390911041670 m004 -750*Pi+25*Sqrt[5]*Pi+2*Cot[Sqrt[5]*Pi] 2178390932471544 m001 (-TreeGrowth2nd+Trott)/(2^(1/3)+Rabbit) 2178390943529035 b008 14/3+Sqrt[293] 2178390946503502 l006 ln(7145/8884) 2178390956407371 k001 Champernowne real with 1731*n+447 2178390958771061 a007 Real Root Of -349*x^4-763*x^3-416*x^2-447*x+972 2178390960831625 h001 (8/9*exp(2)+3/7)/(7/8*exp(1)+5/6) 2178390966896059 a001 1/51841*18^(26/31) 2178390984259529 a007 Real Root Of 329*x^4+815*x^3-171*x^2-587*x+549 2178390986471465 r009 Re(z^3+c),c=-11/86+37/41*I,n=24 2178390995606063 l006 ln(667/5891) 2178390996674020 m001 (Zeta(1,-1)+BesselI(1,2))/(Cahen+Trott) 2178391015780724 a007 Real Root Of 511*x^4+576*x^3-669*x^2+819*x-594 2178391028690427 m005 (1/2*Zeta(3)-3/10)/(10/11*gamma+6/7) 2178391035222389 h001 (-3*exp(3)-1)/(-6*exp(-2)-2) 2178391037785114 a007 Real Root Of -264*x^4-146*x^3+390*x^2-852*x+729 2178391051126818 k007 concat of cont frac of 2178391052731605 m002 1/4+E^Pi/12 2178391056427374 k001 Champernowne real with 1732*n+446 2178391067048817 m001 (-Magata+Sierpinski)/(exp(1)+GAMMA(11/12)) 2178391069258912 a001 1346269/1364*3571^(3/31) 2178391071717894 m006 (5*exp(2*Pi)-1/3)/(1/5*ln(Pi)+1) 2178391072073132 a007 Real Root Of -415*x^4-909*x^3-29*x^2-321*x-613 2178391074150991 a001 5473/682*9349^(19/31) 2178391083680497 a007 Real Root Of 712*x^4-211*x^3-127*x^2-832*x-179 2178391085073435 a001 17711/1364*39603^(15/31) 2178391086097301 a001 2178309/1364*15127^(1/31) 2178391087582055 m001 MasserGramain^Shi(1)-ThueMorse 2178391088990156 a007 Real Root Of -269*x^4-745*x^3-685*x^2-767*x-64 2178391099484331 m005 (1/2*3^(1/2)+10/11)/(5/6*2^(1/2)-4/11) 2178391101204854 a003 cos(Pi*12/89)-sin(Pi*41/107) 2178391102127144 k009 concat of cont frac of 2178391102624708 a001 317811/1364*5778^(8/31) 2178391108323382 l006 ln(6956/8649) 2178391110039176 a007 Real Root Of -169*x^4-330*x^3+457*x^2+551*x-574 2178391111193364 a001 119218851371/144*46368^(7/23) 2178391111255038 a001 1368706081/48*2971215073^(7/23) 2178391112456647 m001 (ln(3)+CareFree)/(QuadraticClass-ZetaQ(2)) 2178391114072106 m001 RenyiParking/Porter^2/ln(log(1+sqrt(2)))^2 2178391118960019 a007 Real Root Of 81*x^4+279*x^3+535*x^2+542*x-298 2178391121291154 k006 concat of cont frac of 2178391131832514 k007 concat of cont frac of 2178391138349247 a007 Real Root Of -757*x^4-92*x^3-444*x^2+492*x+129 2178391139273851 m001 ln(GAMMA(11/12))^2*GAMMA(1/24)^2*GAMMA(2/3) 2178391150917703 r005 Re(z^2+c),c=-21/26+5/104*I,n=6 2178391155418392 m001 (3^(1/3)-sin(1/12*Pi))/Landau 2178391156447377 k001 Champernowne real with 1733*n+445 2178391166929665 m009 (40*Catalan+5*Pi^2+1/6)/(4*Psi(1,1/3)-5/6) 2178391170038108 r009 Im(z^3+c),c=-4/9+35/62*I,n=31 2178391177157348 l006 ln(935/8258) 2178391182843986 m001 (Zeta(3)-ln(gamma))/(gamma(2)+ZetaQ(4)) 2178391192765462 r009 Re(z^3+c),c=-7/22+17/40*I,n=9 2178391198832666 r005 Re(z^2+c),c=5/17+5/27*I,n=7 2178391203662876 m004 31*Sqrt[5]*Pi+(25*Pi)/E^(Sqrt[5]*Pi) 2178391215251109 a003 sin(Pi*15/77)-sin(Pi*23/79) 2178391215627076 a001 317811/1364*2207^(9/31) 2178391218071405 m006 (2*Pi^2-1/6)/(1/6*exp(2*Pi)+3/5) 2178391220292801 a007 Real Root Of 372*x^4+565*x^3-221*x^2+368*x-686 2178391222131411 k006 concat of cont frac of 2178391233388971 r005 Im(z^2+c),c=-61/66+6/29*I,n=44 2178391242536406 p001 sum(1/(375*n+16)/n/(12^n),n=1..infinity) 2178391253214852 a001 610/3571*24476^(29/31) 2178391253251007 a008 Real Root of (1+4*x-3*x^2-2*x^3-2*x^4+5*x^5) 2178391253975480 r005 Re(z^2+c),c=-9/56+13/28*I,n=47 2178391254156708 m005 (1/2*Zeta(3)+6)/(1/10*2^(1/2)-4/9) 2178391254912097 a007 Real Root Of -425*x^4-622*x^3+479*x^2-222*x+384 2178391256467380 k001 Champernowne real with 1734*n+444 2178391268465362 m001 Riemann2ndZero/ln(MinimumGamma)^2/sin(Pi/12)^2 2178391271854919 r005 Re(z^2+c),c=37/122+6/29*I,n=32 2178391272119151 a007 Real Root Of 38*x^4+822*x^3-102*x^2+493*x-697 2178391273857963 a007 Real Root Of 441*x^4+743*x^3+46*x^2+860*x-595 2178391273974413 m001 1/ln(GAMMA(1/12))^2*GlaisherKinkelin/Pi^2 2178391275133325 a001 15127/233*144^(41/58) 2178391276386708 r005 Re(z^2+c),c=10/29+19/61*I,n=18 2178391278627461 m005 (-5/12+1/3*5^(1/2))/(4*gamma-4/5) 2178391279182406 l006 ln(6767/8414) 2178391279211917 r005 Im(z^2+c),c=-13/14+46/229*I,n=28 2178391280027502 a007 Real Root Of -30*x^4-611*x^3+942*x^2+305*x-856 2178391285573254 r002 14th iterates of z^2 + 2178391298442964 a007 Real Root Of 560*x^4+762*x^3-877*x^2+447*x+402 2178391303329747 r005 Im(z^2+c),c=-73/78+4/19*I,n=62 2178391306701107 r002 5th iterates of z^2 + 2178391318691800 m001 FeigenbaumKappa-exp(Pi)+HeathBrownMoroz 2178391321711030 r005 Re(z^2+c),c=-113/102+11/50*I,n=10 2178391335397359 s002 sum(A165483[n]/(n*exp(n)-1),n=1..infinity) 2178391344973775 a007 Real Root Of 240*x^4+896*x^3+808*x^2+216*x+494 2178391346907068 m001 cos(1)-cos(1/5*Pi)^exp(1) 2178391346907068 m001 cos(1)-cos(Pi/5)^exp(1) 2178391349461659 r005 Im(z^2+c),c=-75/86+11/62*I,n=23 2178391356487383 k001 Champernowne real with 1735*n+443 2178391363267871 m001 exp(Robbin)^2*GolombDickman/OneNinth 2178391364796816 a003 sin(Pi*12/119)-sin(Pi*19/107) 2178391369874452 m005 (1/2*gamma+10/11)/(3/11*Catalan+3/10) 2178391370503715 b008 2+5/(17*Sqrt[E]) 2178391372482059 a001 4/5*2178309^(12/53) 2178391382037415 a007 Real Root Of -294*x^4-638*x^3+105*x^2+168*x-107 2178391416773001 r005 Im(z^2+c),c=-14/31+23/61*I,n=59 2178391427907852 a007 Real Root Of 670*x^4+980*x^3-841*x^2+236*x-452 2178391435446208 m008 (2*Pi^3+5/6)/(3*Pi^6+4/5) 2178391440860375 r005 Im(z^2+c),c=-1+57/232*I,n=21 2178391445340823 m005 (1/2*5^(1/2)+7/10)/(-2/11+5/11*5^(1/2)) 2178391453631557 a007 Real Root Of 673*x^4+573*x^3+456*x^2-940*x-222 2178391456507386 k001 Champernowne real with 1736*n+442 2178391459859718 l006 ln(6578/8179) 2178391460551313 r005 Im(z^2+c),c=-103/118+5/26*I,n=39 2178391466562686 p003 LerchPhi(1/100,3,331/199) 2178391469538281 a007 Real Root Of 361*x^4+961*x^3+20*x^2-824*x-85 2178391481683102 r005 Re(z^2+c),c=-5/24+15/44*I,n=13 2178391484345462 m001 (ln(3)-exp(1/exp(1)))/(gamma(3)-BesselI(1,2)) 2178391490900885 s002 sum(A231661[n]/(2^n-1),n=1..infinity) 2178391497527192 m001 Ei(1)+HardyLittlewoodC5^(2^(1/2)) 2178391505618738 m001 GAMMA(7/24)^2/ln(Ei(1))^2*Zeta(1,2) 2178391508353943 r005 Re(z^2+c),c=-47/110+11/20*I,n=21 2178391509021066 r009 Re(z^3+c),c=-10/27+35/64*I,n=38 2178391510287789 m001 (BesselJZeros(0,1)-exp(Pi)*sqrt(Pi))/sqrt(Pi) 2178391522242616 m001 (Gompertz-Psi(2,1/3))/(-Kac+QuadraticClass) 2178391531119250 a007 Real Root Of -209*x^4-327*x^3+699*x^2+661*x-551 2178391546892506 r005 Im(z^2+c),c=-2/13+12/41*I,n=21 2178391556527389 k001 Champernowne real with 1737*n+441 2178391564458891 a007 Real Root Of -492*x^4-833*x^3+82*x^2-606*x+759 2178391571455287 m001 1/3/(Lehmer-Zeta(1,2)) 2178391571699109 r002 43th iterates of z^2 + 2178391580748677 m001 (BesselK(0,1)-sin(1))/(GAMMA(2/3)+Stephens) 2178391585799169 a007 Real Root Of 670*x^4+904*x^3-683*x^2+939*x-456 2178391586697150 r002 13th iterates of z^2 + 2178391587413015 a007 Real Root Of 264*x^4+517*x^3+60*x^2+265*x-308 2178391588443407 m001 (-Zeta(5)+2)/(BesselK(0,1)+4) 2178391595687503 r005 Im(z^2+c),c=-17/14+45/179*I,n=5 2178391601185366 r005 Re(z^2+c),c=-1/98+23/43*I,n=4 2178391607578192 m005 (1/2*5^(1/2)-1/7)/(4/7*Catalan-5) 2178391621854392 a007 Real Root Of 308*x^4-470*x^3+377*x^2-760*x-189 2178391622812113 k008 concat of cont frac of 2178391624075602 a001 2584/199*199^(30/31) 2178391626620374 r009 Re(z^3+c),c=-11/38+24/35*I,n=47 2178391628816424 r005 Im(z^2+c),c=-29/31+9/43*I,n=55 2178391629003127 l006 ln(268/2367) 2178391629176355 m001 (BesselK(1,1)-cos(1))/(GAMMA(11/12)+Pi^(1/2)) 2178391633339518 a007 Real Root Of -534*x^4-938*x^3+540*x^2-320*x-931 2178391637724590 a007 Real Root Of 273*x^4+597*x^3+320*x^2+946*x+566 2178391641928125 k002 Champernowne real with 37/2*n^2+241/2*n-137 2178391642928916 r005 Im(z^2+c),c=-1/54+12/49*I,n=11 2178391642944255 a001 17/9*47^(1/27) 2178391650871328 m005 (1/2*exp(1)+7/10)/(2/3*5^(1/2)-6/11) 2178391651226652 l006 ln(6389/7944) 2178391652762537 r005 Im(z^2+c),c=-17/52+21/61*I,n=47 2178391652846289 r009 Re(z^3+c),c=-45/122+17/31*I,n=62 2178391655246694 h001 (1/6*exp(1)+1/6)/(8/9*exp(1)+3/7) 2178391656547392 k001 Champernowne real with 1738*n+440 2178391672267102 m001 GAMMA(3/4)/ErdosBorwein^2/exp(GAMMA(7/24)) 2178391681492320 r005 Im(z^2+c),c=-157/126+5/36*I,n=11 2178391682939818 a001 199/956722026041*2^(1/15) 2178391684711732 r005 Im(z^2+c),c=5/48+1/60*I,n=7 2178391685518393 s002 sum(A119656[n]/(n^3*exp(n)-1),n=1..infinity) 2178391685599969 p003 LerchPhi(1/2,2,535/213) 2178391688269728 r005 Re(z^2+c),c=-7/8+53/193*I,n=4 2178391688924405 r005 Re(z^2+c),c=-11/42+1/12*I,n=5 2178391696749488 m005 (1/2*2^(1/2)-9/10)/(3*exp(1)+7/10) 2178391700656982 a007 Real Root Of -826*x^4-590*x^3+718*x^2+913*x-225 2178391700850639 p004 log(31541/25367) 2178391702108556 a007 Real Root Of 681*x^4+921*x^3-796*x^2+775*x-349 2178391705392196 r005 Im(z^2+c),c=-17/52+21/61*I,n=50 2178391706398550 r005 Re(z^2+c),c=-7/29+23/38*I,n=34 2178391708673490 a007 Real Root Of -322*x^4-564*x^3+527*x^2+387*x-237 2178391717728764 r005 Im(z^2+c),c=-31/27+11/51*I,n=13 2178391719019459 m005 (3/4*gamma-4)/(29/30+3/10*5^(1/2)) 2178391726617366 r005 Im(z^2+c),c=-19/27+9/32*I,n=55 2178391732345236 r005 Re(z^2+c),c=17/62+2/11*I,n=45 2178391733547463 m001 1/Paris*LaplaceLimit*exp(Salem) 2178391735322982 m005 (1/3*Catalan+1/4)/(3/8*Zeta(3)-3) 2178391742539256 r005 Im(z^2+c),c=-17/30+23/58*I,n=33 2178391749540422 a007 Real Root Of -413*x^4-748*x^3-23*x^2-830*x-131 2178391755967481 a007 Real Root Of 200*x^4-944*x^3+801*x^2+295*x+811 2178391756492327 r005 Re(z^2+c),c=-11/62+11/27*I,n=10 2178391756567395 k001 Champernowne real with 1739*n+439 2178391757232996 a001 3/2161*2^(13/20) 2178391760572821 m003 29/10+Sqrt[5]/8-Csc[1/2+Sqrt[5]/2] 2178391763704807 r005 Im(z^2+c),c=-17/52+21/61*I,n=43 2178391768968186 a001 192900153618/1597*21^(19/20) 2178391769229864 m001 (-Landau+Niven)/(Psi(2,1/3)+Grothendieck) 2178391772078272 a007 Real Root Of -314*x^4-347*x^3+732*x^2+352*x+777 2178391772154947 g001 abs(GAMMA(217/60+I*23/12)) 2178391774819434 r005 Re(z^2+c),c=17/60+11/58*I,n=55 2178391776857954 a007 Real Root Of 209*x^4-814*x^3+548*x^2-634*x-173 2178391781889568 s002 sum(A055957[n]/(n*pi^n-1),n=1..infinity) 2178391782521091 a007 Real Root Of -50*x^4+574*x^3+866*x^2-914*x+959 2178391805116496 r009 Im(z^3+c),c=-11/98+55/63*I,n=40 2178391819939726 m001 Ei(1,1)^Mills/(CareFree^Mills) 2178391824663741 r009 Re(z^3+c),c=-41/122+29/62*I,n=20 2178391837583304 m001 (Catalan*Riemann3rdZero-Otter)/Catalan 2178391842690018 m001 TreeGrowth2nd/Robbin^2/exp(GAMMA(7/12)) 2178391842791157 m001 BesselI(0,2)-Pi*2^(1/2)/GAMMA(3/4)-FeigenbaumB 2178391853182714 h001 (-2*exp(3/2)+1)/(-4*exp(2)-7) 2178391854260792 l006 ln(6200/7709) 2178391856587398 k001 Champernowne real with 1740*n+438 2178391858545152 r005 Im(z^2+c),c=-25/106+7/22*I,n=21 2178391861329455 r005 Im(z^2+c),c=-17/52+21/61*I,n=48 2178391862739188 m001 BesselI(1,1)^Ei(1)+Tribonacci 2178391869619315 m005 (47/44+1/4*5^(1/2))/(8/9*Catalan-8/9) 2178391871048880 m001 (ln(3)+FeigenbaumC)/(HardyLittlewoodC3+Rabbit) 2178391873717917 r008 a(0)=0,K{-n^6,-7-83*n^3-47*n^2+91*n} 2178391878740694 m001 (GAMMA(2/3)-Zeta(5))/Backhouse 2178391878862624 a007 Real Root Of 463*x^4+868*x^3-337*x^2-425*x-780 2178391880269140 r005 Im(z^2+c),c=-17/52+21/61*I,n=52 2178391882257745 r005 Im(z^2+c),c=-17/52+21/61*I,n=55 2178391897844835 m005 (1/2*3^(1/2)-5/8)/(2/3*Catalan-1/2) 2178391900567763 a007 Real Root Of 287*x^4+431*x^3-123*x^2+268*x-840 2178391907395257 r005 Im(z^2+c),c=-17/52+21/61*I,n=53 2178391909976867 a007 Real Root Of -2*x^4-436*x^3-68*x^2+449*x+7 2178391914296292 r005 Re(z^2+c),c=-77/64+5/61*I,n=12 2178391914871762 a001 505019158607/4181*21^(19/20) 2178391918155272 r005 Im(z^2+c),c=-17/52+21/61*I,n=60 2178391919488989 r005 Im(z^2+c),c=-17/52+21/61*I,n=57 2178391919844890 r008 a(0)=0,K{-n^6,22+17*n+44*n^2-38*n^3} 2178391921926422 r005 Im(z^2+c),c=-17/52+21/61*I,n=58 2178391925891664 r005 Im(z^2+c),c=-17/52+21/61*I,n=63 2178391926012281 r005 Im(z^2+c),c=-17/52+21/61*I,n=62 2178391928357190 r005 Im(z^2+c),c=-31/25+10/61*I,n=14 2178391928757341 r002 63th iterates of z^2 + 2178391929367960 r005 Im(z^2+c),c=-17/52+21/61*I,n=64 2178391932347551 r005 Im(z^2+c),c=-17/52+21/61*I,n=61 2178391932628696 r008 a(0)=0,K{-n^6,-1+73*n^3+73*n^2-99*n} 2178391933034684 r002 61th iterates of z^2 + 2178391933837493 r005 Im(z^2+c),c=-17/52+21/61*I,n=38 2178391935864598 m001 (BesselI(1,2)+KhinchinHarmonic)^MasserGramain 2178391936158808 a001 1322157322203/10946*21^(19/20) 2178391937405732 r005 Im(z^2+c),c=-17/52+21/61*I,n=59 2178391938903381 a007 Real Root Of 388*x^4+539*x^3-216*x^2+877*x-230 2178391939264547 a001 3461452808002/28657*21^(19/20) 2178391939717668 a001 9062201101803/75025*21^(19/20) 2178391939783777 a001 23725150497407/196418*21^(19/20) 2178391939824635 a001 14662949395604/121393*21^(19/20) 2178391939997712 a001 5600748293801/46368*21^(19/20) 2178391941183999 a001 2139295485799/17711*21^(19/20) 2178391946942899 m001 (Porter-Tetranacci)/(Backhouse-FeigenbaumMu) 2178391949314927 a001 817138163596/6765*21^(19/20) 2178391949316805 a001 17711/322*18^(10/21) 2178391950936513 m001 (gamma+MadelungNaCl*Totient)/Totient 2178391954254771 r005 Im(z^2+c),c=-17/52+21/61*I,n=56 2178391955152974 a001 34/370248451*3571^(19/20) 2178391956607401 k001 Champernowne real with 1741*n+437 2178391958142140 r005 Re(z^2+c),c=29/98+1/5*I,n=38 2178391959798994 q001 867/398 2178391970243973 r005 Re(z^2+c),c=-25/102+10/49*I,n=15 2178391974926126 r005 Im(z^2+c),c=-17/52+21/61*I,n=54 2178391982904555 r005 Im(z^2+c),c=-51/38+1/60*I,n=38 2178391987404918 a001 322/13*514229^(16/47) 2178391989591481 a001 10946/521*521^(23/31) 2178391989711077 r001 55i'th iterates of 2*x^2-1 of 2178391990908062 m001 (GAMMA(19/24)+3)/(Catalan+1) 2178391993193008 r008 a(0)=0,K{-n^6,-49+70*n^3+58*n^2-33*n} 2178391993194712 r008 a(0)=0,K{-n^6,37-68*n^3-70*n^2+55*n} 2178391994505112 r005 Re(z^2+c),c=-17/114+23/47*I,n=44 2178391999906409 m001 (Landau-Paris)/(sin(1/12*Pi)+Grothendieck) 2178392005045141 a001 312119004989/2584*21^(19/20) 2178392020486414 r009 Im(z^3+c),c=-7/17+3/28*I,n=17 2178392021168328 r005 Im(z^2+c),c=-7/10+31/170*I,n=3 2178392021347888 a007 Real Root Of 430*x^4+932*x^3-541*x^2-732*x+924 2178392035056387 m001 (gamma+Riemann3rdZero)/(-Salem+ZetaQ(4)) 2178392041012432 m005 (1/3*gamma+1/6)/(10/11*Zeta(3)+5/9) 2178392045450055 r008 a(0)=0,K{-n^6,37-59*n^3-97*n^2+73*n} 2178392049415373 r008 a(0)=0,K{-n^6,-83+66*n^3+53*n^2+10*n} 2178392051948240 a008 Real Root of x^4-2*x^3-39*x^2-89*x-52 2178392056627404 k001 Champernowne real with 1742*n+436 2178392057149960 m007 (-2/3*gamma+3/5)/(-1/3*gamma-2/3*ln(2)-1/3) 2178392064882315 r002 60th iterates of z^2 + 2178392068290340 r005 Im(z^2+c),c=-17/52+21/61*I,n=51 2178392070062671 l006 ln(6011/7474) 2178392075436740 m001 (Ei(1,1)+GAMMA(5/6))/(sin(1)+Zeta(1/2)) 2178392075472202 r005 Im(z^2+c),c=6/23+1/12*I,n=42 2178392076564023 m001 GAMMA(5/12)^2*exp(MadelungNaCl)^2*Zeta(1/2) 2178392077525947 m001 1/Tribonacci^2*exp(Paris)^2/sqrt(1+sqrt(3)) 2178392077967646 l006 ln(941/8311) 2178392077967646 p004 log(8311/941) 2178392096253726 a001 34/370248451*9349^(17/20) 2178392102102586 r005 Re(z^2+c),c=11/102+33/56*I,n=23 2178392111536249 a007 Real Root Of 263*x^4+159*x^3-531*x^2+639*x-367 2178392116888787 a001 34/710647*24476^(3/20) 2178392117382449 a001 34/271443*64079^(1/20) 2178392117433459 a001 34/54018521*439204^(9/20) 2178392117434226 a001 34/710647*14662949395604^(1/20) 2178392117437968 a001 34/20633239*1149851^(7/20) 2178392117438384 a001 17/1268860318*3010349^(13/20) 2178392117438521 a001 34/969323029*7881196^(11/20) 2178392117438526 a001 34/12752043*5600748293801^(3/20) 2178392117438539 a001 17/1730726404001*54018521^(19/20) 2178392117438540 a001 34/1322157322203*141422324^(17/20) 2178392117438540 a001 17/299537289*17393796001^(7/20) 2178392117438540 a001 34/4106118243*6643838879^(9/20) 2178392117438540 a001 34/1322157322203*45537549124^(13/20) 2178392117438540 a001 17/96450076809*119218851371^(11/20) 2178392117438780 a001 34/3010349*370248451^(3/20) 2178392117449833 a001 17/219602*969323029^(1/20) 2178392117889850 a001 34/4870847*39603^(13/40) 2178392120580043 a007 Real Root Of -654*x^4+464*x^3-999*x^2+767*x-123 2178392127173512 a007 Real Root Of -899*x^4-722*x^3-835*x^2+752*x+198 2178392128165133 m001 (1+Ei(1,1))/(-arctan(1/3)+QuadraticClass) 2178392128852989 a001 34/710647*5778^(7/40) 2178392129505391 p001 sum((-1)^n/(303*n+143)/n/(10^n),n=1..infinity) 2178392141591718 h001 (3/7*exp(1)+4/5)/(1/9*exp(1)+3/5) 2178392148204861 r005 Im(z^2+c),c=-17/52+21/61*I,n=49 2178392151054976 s002 sum(A235661[n]/(10^n+1),n=1..infinity) 2178392151146386 a005 (1/cos(18/215*Pi))^1075 2178392156647407 k001 Champernowne real with 1743*n+435 2178392161499024 r009 Im(z^3+c),c=-10/23+4/49*I,n=45 2178392162282295 m001 Otter/(LandauRamanujan+Lehmer) 2178392166310090 r005 Re(z^2+c),c=-29/106+19/30*I,n=36 2178392166671909 p001 sum(1/(349*n+19)/n/(125^n),n=1..infinity) 2178392168604445 r005 Im(z^2+c),c=1/18+3/14*I,n=12 2178392178956165 m001 Niven*(FeigenbaumAlpha-GAMMA(3/4)) 2178392183133881 p004 log(14713/11833) 2178392183252333 r005 Im(z^2+c),c=-2/17+16/57*I,n=15 2178392188833807 r009 Im(z^3+c),c=-1/70+13/57*I,n=5 2178392189245827 h001 (1/8*exp(2)+5/9)/(8/9*exp(2)+2/9) 2178392201605441 m001 ErdosBorwein^cos(1/5*Pi)*ZetaR(2) 2178392202582161 m001 (exp(1)+MinimumGamma)/(-Tetranacci+ZetaQ(3)) 2178392203716512 r009 Re(z^3+c),c=-17/36+31/56*I,n=18 2178392220767036 a007 Real Root Of -119*x^4-125*x^3-72*x^2-887*x-203 2178392225100015 a007 Real Root Of 35*x^4+751*x^3-252*x^2-74*x-259 2178392226348054 m005 (1/2*3^(1/2)+8/9)/(9/11*gamma+1/3) 2178392238754861 r009 Im(z^3+c),c=-27/70+8/61*I,n=8 2178392240044740 a001 10946/2207*843^(28/31) 2178392245096488 a005 (1/cos(20/229*Pi))^1772 2178392245128583 m001 1/Zeta(1/2)/LandauRamanujan/exp(sqrt(2)) 2178392248514095 m009 (3*Pi^2-3)/(16/3*Catalan+2/3*Pi^2+3/4) 2178392253653356 m001 FibonacciFactorial^MertensB2/LambertW(1) 2178392256543270 a007 Real Root Of 333*x^4+686*x^3+92*x^2+78*x-674 2178392256667410 k001 Champernowne real with 1744*n+434 2178392256752867 l006 ln(673/5944) 2178392266546798 a007 Real Root Of -639*x^4+861*x^3-449*x^2+984*x+246 2178392271646344 m001 (GolombDickman+MinimumGamma)/(Ei(1)+Zeta(1,2)) 2178392299299923 m001 (Pi^(1/2)-exp(Pi)*Mills)/Mills 2178392299673022 a007 Real Root Of -63*x^4+356*x^3+727*x^2-330*x+930 2178392299875728 l006 ln(5822/7239) 2178392306515918 r005 Re(z^2+c),c=29/102+4/21*I,n=55 2178392317820845 m005 (1/2*Catalan-6/11)/(3/4*Zeta(3)-1/2) 2178392321962420 r005 Im(z^2+c),c=-7/18+9/25*I,n=20 2178392334326263 a001 34111385/281*123^(3/5) 2178392340563234 m005 (2/3*gamma+2)/(2/3*2^(1/2)-5/6) 2178392355046668 b008 3/4+Erfc[-2/5] 2178392355046668 b008 7/4+Erf[2/5] 2178392356477304 b008 -23+Csch[3/4] 2178392356687413 k001 Champernowne real with 1745*n+433 2178392359165204 r005 Im(z^2+c),c=-35/74+20/53*I,n=17 2178392364886575 a007 Real Root Of -479*x^4-427*x^3+926*x^2-814*x+205 2178392365819640 m003 -7/10+Sqrt[5]/32+Tan[1/2+Sqrt[5]/2] 2178392366482036 a007 Real Root Of -427*x^4-804*x^3+251*x^2-259*x-451 2178392376377360 m006 (1/5*exp(2*Pi)-5/6)/(1/5*exp(Pi)+1/4) 2178392378259944 m001 1/RenyiParking*exp(GaussKuzminWirsing)*Zeta(3) 2178392387025785 a001 119218851371/987*21^(19/20) 2178392392269051 a003 cos(Pi*2/119)*cos(Pi*43/100) 2178392398462919 r005 Im(z^2+c),c=-59/58+9/41*I,n=26 2178392403692637 a007 Real Root Of 34*x^4+728*x^3-276*x^2+20*x+606 2178392405578015 r009 Re(z^3+c),c=-23/74+21/52*I,n=25 2178392410627810 m001 (KhinchinLevy-Sarnak)/(GAMMA(7/12)+Gompertz) 2178392411610023 s001 sum(1/10^(n-1)*A211280[n]/n^n,n=1..infinity) 2178392412816748 l006 ln(1078/9521) 2178392416614533 a005 (1/cos(16/151*Pi))^911 2178392419730392 r005 Im(z^2+c),c=-51/94+5/12*I,n=61 2178392427089244 m002 -E^Pi+3/(Pi^2*ProductLog[Pi])+ProductLog[Pi] 2178392428191489 r009 Re(z^3+c),c=-37/114+25/52*I,n=3 2178392433188881 m001 5^(1/2)-Rabbit*StolarskyHarborth 2178392433760865 m001 ln(Champernowne)^2*ErdosBorwein*GAMMA(1/6)^2 2178392435060934 r005 Re(z^2+c),c=-21/25+7/31*I,n=64 2178392435941857 m005 (1/2*Catalan-3/4)/(8/11*5^(1/2)-2/7) 2178392436651063 r005 Re(z^2+c),c=-6/29+17/49*I,n=30 2178392446668790 m005 (1/3*2^(1/2)+1/9)/(5/8*2^(1/2)-6/7) 2178392452200438 m005 (1/2*Pi-8/11)/(1/8*Catalan+3/11) 2178392454119949 a001 514229/3*123^(28/53) 2178392456707416 k001 Champernowne real with 1746*n+432 2178392458560679 a001 281/6*(1/2*5^(1/2)+1/2)^28*18^(13/20) 2178392462466209 r005 Re(z^2+c),c=9/56+26/57*I,n=21 2178392462618117 m001 (LandauRamanujan-Rabbit)/(Pi-Cahen) 2178392464855733 r005 Im(z^2+c),c=-36/31+7/32*I,n=31 2178392465691057 r005 Re(z^2+c),c=-7/46+29/60*I,n=33 2178392481809431 m001 (GAMMA(17/24)+Magata)/(Ei(1)+sin(1/12*Pi)) 2178392484869047 a007 Real Root Of -325*x^4-359*x^3+392*x^2-708*x+205 2178392518097860 m005 (1/2*Catalan+2/3)/(-17/110+3/10*5^(1/2)) 2178392520770134 m001 (1+BesselI(0,1))/(exp(-1/2*Pi)+FeigenbaumB) 2178392522260133 m001 ln(2)^FeigenbaumC/Pi/csc(1/24*Pi)*GAMMA(23/24) 2178392526872122 r005 Im(z^2+c),c=3/62+40/57*I,n=3 2178392531893626 r005 Im(z^2+c),c=-11/46+15/47*I,n=23 2178392538535525 a007 Real Root Of 243*x^4+731*x^3+676*x^2+798*x+615 2178392542338878 m001 (-PlouffeB+ZetaP(3))/(Chi(1)+Landau) 2178392543080667 r005 Re(z^2+c),c=25/106+26/59*I,n=27 2178392545110285 l006 ln(5633/7004) 2178392556727419 k001 Champernowne real with 1747*n+431 2178392566464371 m004 -6-3100*Sqrt[5]*Pi-Tanh[Sqrt[5]*Pi] 2178392573807441 m001 (-Sarnak+Trott2nd)/(Catalan-Gompertz) 2178392587815069 r005 Im(z^2+c),c=-89/110+4/33*I,n=11 2178392590241420 r009 Re(z^3+c),c=-11/27+21/38*I,n=41 2178392601977944 a007 Real Root Of 324*x^4+129*x^3-965*x^2+747*x+244 2178392615213948 a007 Real Root Of 482*x^4+989*x^3+222*x^2+347*x-928 2178392615496283 m001 (Pi-ln(2)/ln(10)/Psi(2,1/3))/exp(1/exp(1)) 2178392618919597 a001 28657/5778*843^(28/31) 2178392622611283 m001 PisotVijayaraghavan^Zeta(3)/(ln(2)^Zeta(3)) 2178392624311556 p001 sum((-1)^n/(443*n+5)/n/(10^n),n=1..infinity) 2178392638546972 r005 Re(z^2+c),c=13/42+4/19*I,n=62 2178392638591103 h001 (-8*exp(2)-6)/(-6*exp(3/2)-3) 2178392644934126 k002 Champernowne real with 19*n^2+119*n-136 2178392656747422 k001 Champernowne real with 1748*n+430 2178392657199942 r005 Im(z^2+c),c=-17/52+21/61*I,n=46 2178392672152478 l006 ln(405/3577) 2178392672437515 r005 Im(z^2+c),c=-17/36+21/52*I,n=17 2178392674196705 a001 75025/15127*843^(28/31) 2178392682261526 a001 196418/39603*843^(28/31) 2178392683438168 a001 514229/103682*843^(28/31) 2178392683609838 a001 1346269/271443*843^(28/31) 2178392683650363 a001 2178309/439204*843^(28/31) 2178392683715935 a001 75640/15251*843^(28/31) 2178392684165372 a001 317811/64079*843^(28/31) 2178392685961055 r002 36th iterates of z^2 + 2178392687245860 a001 121393/24476*843^(28/31) 2178392698433459 m005 (1/2*2^(1/2)-1/4)/(3/11*5^(1/2)-2/5) 2178392699440682 q001 74/3397 2178392708359837 a001 46368/9349*843^(28/31) 2178392715871982 m001 (PrimesInBinary-ZetaP(3))/(Kac+PlouffeB) 2178392716226377 r009 Re(z^3+c),c=-9/44+61/64*I,n=42 2178392717541004 r009 Re(z^3+c),c=-19/54+32/51*I,n=50 2178392720028442 m001 (Bloch-PlouffeB)/(GAMMA(2/3)+Artin) 2178392723748290 m001 exp(GAMMA(3/4))*MadelungNaCl/sqrt(1+sqrt(3))^2 2178392725901672 r005 Im(z^2+c),c=-61/86+10/47*I,n=16 2178392734148499 r005 Im(z^2+c),c=-9/52+33/52*I,n=32 2178392736180263 m001 1/ln(GAMMA(2/3))^2/ErdosBorwein*LambertW(1)^2 2178392750829702 a001 3010349/2*2^(8/15) 2178392751609646 h001 (5/7*exp(1)+5/8)/(2/5*exp(1)+1/11) 2178392752224530 m001 FeigenbaumMu/(KomornikLoreti-ZetaR(2)) 2178392756767425 k001 Champernowne real with 1749*n+429 2178392758485066 a001 10749957122*9227465^(16/21) 2178392758485154 a001 4870847*225851433717^(16/21) 2178392760680582 a007 Real Root Of 636*x^4-572*x^3-833*x^2-896*x-163 2178392778230453 r005 Im(z^2+c),c=-23/66+7/19*I,n=10 2178392786757664 a001 5702887/76*76^(7/9) 2178392805268595 a001 165580141/199*123^(1/5) 2178392806625047 r005 Im(z^2+c),c=-23/82+19/58*I,n=11 2178392807140873 a001 34/710647*843^(9/40) 2178392807372509 l006 ln(5444/6769) 2178392808559583 a007 Real Root Of -601*x^4-990*x^3+342*x^2-773*x-7 2178392811588937 r005 Im(z^2+c),c=6/23+1/12*I,n=43 2178392811983165 m001 (Magata-MertensB2)/(ln(2)-Grothendieck) 2178392812989612 a007 Real Root Of 502*x^4+536*x^3-862*x^2+533*x-512 2178392814391638 a007 Real Root Of 343*x^4+31*x^3-733*x^2-690*x+184 2178392814823496 p004 log(34613/3919) 2178392823361468 r005 Re(z^2+c),c=5/62+38/61*I,n=20 2178392826531833 m001 cos(1/12*Pi)*Riemann2ndZero^Psi(1,1/3) 2178392828628884 a007 Real Root Of 32*x^4+677*x^3-398*x^2+838*x-511 2178392829587403 m001 Rabbit/Backhouse^2*ln(GAMMA(23/24))^2 2178392836194052 r005 Re(z^2+c),c=-7/40+22/51*I,n=31 2178392847814935 m001 (MertensB1+PisotVijayaraghavan)/gamma(1) 2178392849739187 r002 62th iterates of z^2 + 2178392851897881 m001 GAMMA(5/12)^2*exp((3^(1/3)))/Zeta(1,2)^2 2178392852075769 m001 exp(1)/FeigenbaumDelta^2/ln(sqrt(Pi)) 2178392853077202 a001 17711/3571*843^(28/31) 2178392854047510 m006 (4*exp(Pi)+1/6)/(1/6*exp(Pi)+2/5) 2178392856787428 k001 Champernowne real with 1750*n+428 2178392862513898 a007 Real Root Of 493*x^4+916*x^3-265*x^2-279*x-983 2178392864916366 a003 cos(Pi*20/111)-sin(Pi*14/65) 2178392870334164 r005 Re(z^2+c),c=-9/19+23/44*I,n=8 2178392873928450 m005 (1/2*2^(1/2)-5)/(6*Pi+6/7) 2178392885796661 r005 Im(z^2+c),c=-28/23+1/51*I,n=17 2178392894348370 m005 (1/2*Catalan-7/11)/(1/7*3^(1/2)+4/7) 2178392896160832 r002 63th iterates of z^2 + 2178392899847153 a007 Real Root Of -443*x^4-946*x^3-253*x^2-607*x+75 2178392899868112 l006 ln(8809/9003) 2178392920997314 b008 Sqrt[5]+Sinh[11/3] 2178392921083029 r005 Re(z^2+c),c=-11/56+32/51*I,n=52 2178392924870419 m001 Salem/CareFree^2*ln(GAMMA(2/3))^2 2178392926377989 s002 sum(A063227[n]/(16^n-1),n=1..infinity) 2178392931520821 m005 (7/8+1/4*5^(1/2))/(7/12*2^(1/2)-1/6) 2178392931943649 a002 11^(6/5)+7^(5/7) 2178392938576692 r005 Im(z^2+c),c=-17/52+21/61*I,n=44 2178392943251070 m001 ln(GAMMA(13/24))^2*FeigenbaumB^2*GAMMA(17/24) 2178392947434773 a003 cos(Pi*15/113)*cos(Pi*47/111) 2178392947648804 m001 gamma(1)^Magata/(BesselJ(1,1)^Magata) 2178392952408137 a007 Real Root Of 132*x^4-681*x^3+670*x^2+341*x+145 2178392956807431 k001 Champernowne real with 1751*n+427 2178392958719283 m001 1+ln(3)^KhinchinHarmonic 2178392965972413 m001 (Landau-Riemann2ndZero)/(Pi^(1/2)-FeigenbaumB) 2178392967362445 l006 ln(947/8364) 2178392974591562 m001 1/ln(CopelandErdos)^2/Artin/sin(Pi/5) 2178392978878109 r005 Im(z^2+c),c=41/114+6/19*I,n=15 2178392985103138 m001 (QuadraticClass+ZetaP(4))/(Pi^(1/2)-MertensB3) 2178392985307514 m001 (Kac+StolarskyHarborth)/(2^(1/2)+FeigenbaumC) 2178392991983284 r008 a(0)=2,K{-n^6,33-51*n-18*n^2+31*n^3} 2178392994819889 r002 14th iterates of z^2 + 2178392996504663 r005 Im(z^2+c),c=-31/94+10/29*I,n=19 2178392997357863 a001 1364/121393*17711^(7/13) 2178392997741491 m005 (1/2*exp(1)-4)/(5/7*gamma+4/5) 2178392997786618 a007 Real Root Of -196*x^4-259*x^3+478*x^2+667*x+921 2178392998076150 a001 682/1762289*9227465^(7/13) 2178392998076183 a001 1364/2971215073*2504730781961^(7/13) 2178392998076183 a001 124/9303105*4807526976^(7/13) 2178393006282358 m003 9/10+Sqrt[5]/8+Sin[1/2+Sqrt[5]/2] 2178393007793673 m005 (1/3*Zeta(3)-1/5)/(6*2^(1/2)+8/11) 2178393008564521 r002 10th iterates of z^2 + 2178393018544975 a007 Real Root Of 190*x^4+162*x^3-673*x^2-105*x+361 2178393028018514 r002 5th iterates of z^2 + 2178393032298407 m001 (ln(gamma)+arctan(1/2))/(Zeta(1,2)+Landau) 2178393032962742 a007 Real Root Of 383*x^4+294*x^3-916*x^2+688*x+260 2178393038698426 a007 Real Root Of 602*x^4+753*x^3-992*x^2+784*x+643 2178393040868113 m002 -22+5/E^Pi 2178393045529498 m001 OneNinth/exp(FeigenbaumKappa)/GAMMA(5/6)^2 2178393047250293 m001 Porter^(Chi(1)/ThueMorse) 2178393047657955 p004 log(13151/1489) 2178393056827434 k001 Champernowne real with 1752*n+426 2178393058917899 b008 Gamma[E^(1/5)/3] 2178393064436987 a007 Real Root Of -19*x^4-428*x^3-282*x^2+531*x-424 2178393071635850 a001 3010349/5*86267571272^(18/23) 2178393071636278 a001 17393796001/5*1346269^(18/23) 2178393076561520 a003 cos(Pi*34/79)/sin(Pi*25/53) 2178393080010821 r005 Re(z^2+c),c=-13/56+9/35*I,n=9 2178393084041371 a007 Real Root Of -347*x^4-360*x^3+735*x^2+181*x+999 2178393088499639 l006 ln(5255/6534) 2178393091758283 m001 Pi/(Psi(1,1/3)*BesselI(0,1)+GAMMA(13/24)) 2178393102525843 m001 Psi(1,1/3)^arctan(1/3)/cos(1/12*Pi) 2178393104494093 m001 (-OneNinth+StolarskyHarborth)/(Chi(1)+Artin) 2178393106323823 r005 Re(z^2+c),c=17/60+11/58*I,n=57 2178393109689262 b008 Pi^2*ArcCosh[23/5] 2178393112297372 a007 Real Root Of 470*x^4-938*x^3+919*x^2-641*x-194 2178393121818128 m001 1/exp(Robbin)/Niven*FeigenbaumD^2 2178393128368702 r002 17th iterates of z^2 + 2178393133520926 m001 Paris-FeigenbaumB-exp(1/exp(1)) 2178393134007890 m001 (Catalan+exp(1/Pi))/(PlouffeB+Stephens) 2178393147552338 r005 Im(z^2+c),c=-41/110+6/17*I,n=16 2178393152524525 s001 sum(exp(-Pi/3)^n*A182379[n],n=1..infinity) 2178393156847437 k001 Champernowne real with 1753*n+425 2178393170154643 m001 (Chi(1)-gamma)/(-FeigenbaumAlpha+Mills) 2178393176415531 r002 52th iterates of z^2 + 2178393180376649 a005 (1/cos(3/157*Pi))^1709 2178393187952862 l006 ln(542/4787) 2178393198136779 r005 Re(z^2+c),c=25/94+7/40*I,n=17 2178393199302959 r009 Re(z^3+c),c=-4/13+19/48*I,n=29 2178393201384577 h005 exp(cos(Pi*19/44)-sin(Pi*27/59)) 2178393205431780 a007 Real Root Of -173*x^4-91*x^3+25*x^2-860*x+963 2178393208375853 r005 Re(z^2+c),c=11/74+21/37*I,n=25 2178393209655218 m001 (sin(Pi/12)+ThueMorse)/GAMMA(7/24) 2178393234610149 m001 (gamma-ln(2+3^(1/2)))/(BesselJ(1,1)+Otter) 2178393253673415 m001 (cos(1)-sin(1/5*Pi))/(Backhouse+Sarnak) 2178393256867440 k001 Champernowne real with 1754*n+424 2178393269813909 r005 Re(z^2+c),c=-31/118+1/35*I,n=5 2178393279815403 m001 polylog(4,1/2)^exp(-1/2*Pi)+Mills 2178393287573357 m001 (ln(3)-exp(1/exp(1)))/(GAMMA(19/24)-MertensB3) 2178393288266128 r005 Re(z^2+c),c=-13/14+75/242*I,n=17 2178393291989057 r009 Im(z^3+c),c=-21/46+3/49*I,n=47 2178393293993125 a007 Real Root Of 158*x^4+139*x^3-386*x^2-576*x+142 2178393295771530 r005 Im(z^2+c),c=-1/94+15/62*I,n=6 2178393301217965 m001 1/Riemann1stZero^2*ln(Cahen)*Pi^2 2178393302761369 m001 (GaussAGM+Tribonacci)/(GAMMA(3/4)+gamma(3)) 2178393306299146 m001 Weierstrass/(FellerTornier-FeigenbaumAlpha) 2178393307650775 r005 Re(z^2+c),c=-6/7+29/127*I,n=14 2178393311153297 m001 (Otter-Pi*csc(7/24*Pi)/GAMMA(17/24))/gamma 2178393312616160 a003 cos(Pi*6/113)/sin(Pi*16/107) 2178393314388636 m001 1/exp(GAMMA(11/12))/GaussKuzminWirsing^2*gamma 2178393321792142 a007 Real Root Of 449*x^4+631*x^3-590*x^2+764*x+876 2178393323759227 r005 Re(z^2+c),c=-163/122+3/17*I,n=4 2178393327650072 r005 Re(z^2+c),c=29/102+4/21*I,n=51 2178393329786369 a007 Real Root Of 281*x^4+399*x^3+130*x^2+931*x-792 2178393339788722 r009 Re(z^3+c),c=-13/114+13/18*I,n=25 2178393344671437 s002 sum(A205462[n]/(n*exp(pi*n)-1),n=1..infinity) 2178393347750669 s001 sum(exp(-Pi/4)^n*A165921[n],n=1..infinity) 2178393351478894 r005 Re(z^2+c),c=-73/58+21/64*I,n=2 2178393355735455 a007 Real Root Of 229*x^4+510*x^3+131*x^2+120*x-245 2178393356887443 k001 Champernowne real with 1755*n+423 2178393358135897 a007 Real Root Of -378*x^4-139*x^3+276*x^2+717*x-167 2178393364007765 a001 521/165580141*46368^(14/23) 2178393364131113 a001 521/139583862445*2971215073^(14/23) 2178393366034750 r005 Im(z^2+c),c=-43/48+7/34*I,n=58 2178393368756090 m005 (1/2*3^(1/2)+4/11)/(17/42+1/14*5^(1/2)) 2178393373535716 a001 63245986/29*199^(10/23) 2178393376304518 r005 Im(z^2+c),c=-11/28+21/58*I,n=32 2178393378161524 m009 (2*Psi(1,3/4)+3)/(3/10*Pi^2+3/4) 2178393381369476 a001 2207/55*233^(9/29) 2178393382728154 a001 196418/47*7^(28/33) 2178393384197374 p002 log(7^(6/5)-2^(7/12)) 2178393384881136 a001 4870847/55*121393^(19/22) 2178393385683158 m001 (BesselJ(0,1)-exp(Pi))/((1+3^(1/2))^(1/2)-Kac) 2178393390603084 l006 ln(5066/6299) 2178393391789089 m001 ln(sin(1))^2/MertensB1^2*sqrt(5)^2 2178393407345671 r009 Re(z^3+c),c=-23/122+46/59*I,n=4 2178393421515943 r005 Im(z^2+c),c=-5/8+42/101*I,n=20 2178393421927015 a001 89/7*521^(37/45) 2178393425789538 m006 (ln(Pi)+3)/(1/6*Pi-1/3) 2178393430957755 m001 (MinimumGamma*ZetaR(2)-cos(1))/ZetaR(2) 2178393437409130 m001 (KhinchinLevy-Porter)/(ln(5)-arctan(1/3)) 2178393439037212 s002 sum(A025104[n]/((2*n+1)!),n=1..infinity) 2178393445003661 a007 Real Root Of 592*x^4+749*x^3+776*x^2-627*x-167 2178393451495438 a003 cos(Pi*14/85)*cos(Pi*13/31) 2178393456907446 k001 Champernowne real with 1756*n+422 2178393458801417 m005 (1/3*3^(1/2)-1/5)/(10/9+5/18*5^(1/2)) 2178393469329956 m001 Riemann1stZero*ln(Bloch)^2*sqrt(1+sqrt(3))^2 2178393471639859 m005 (1/3*exp(1)+1/2)/(5*Zeta(3)+4/9) 2178393474560022 m008 (Pi^2+3/5)/(5*Pi^6-5/6) 2178393486666743 a007 Real Root Of 4*x^4-274*x^3+200*x^2-228*x+43 2178393495609813 l006 ln(679/5997) 2178393495765362 a007 Real Root Of -563*x^4-701*x^3+770*x^2-553*x+573 2178393498310831 r009 Re(z^3+c),c=-3/62+31/40*I,n=40 2178393504792262 m001 (Ei(1)+GAMMA(11/12))/(Sarnak-Thue) 2178393506174705 r005 Im(z^2+c),c=-127/102+23/61*I,n=4 2178393514027737 r002 21th iterates of z^2 + 2178393523792628 a007 Real Root Of -10*x^4-172*x^3+967*x^2-661*x+578 2178393533249672 a001 7/832040*4181^(16/41) 2178393533289119 m001 1/exp(cos(Pi/5))/PisotVijayaraghavan/cosh(1) 2178393551191378 r005 Im(z^2+c),c=25/64+13/57*I,n=55 2178393552313238 r005 Im(z^2+c),c=-27/31+9/55*I,n=22 2178393556927449 k001 Champernowne real with 1757*n+421 2178393561515628 r009 Im(z^3+c),c=-9/56+44/49*I,n=4 2178393568206493 a007 Real Root Of -889*x^4+883*x^3-810*x^2+383*x+133 2178393572046861 b008 E+48*E^(3/2) 2178393575346704 s002 sum(A132092[n]/((pi^n+1)/n),n=1..infinity) 2178393577401854 s002 sum(A132092[n]/((pi^n-1)/n),n=1..infinity) 2178393583571057 r005 Re(z^2+c),c=-9/28+34/55*I,n=27 2178393583787544 r005 Re(z^2+c),c=-5/24+17/48*I,n=9 2178393590283743 m005 (1/3*2^(1/2)+3/4)/(6*Catalan+1/9) 2178393600565440 h001 (-6*exp(1)+1)/(-7*exp(1)+12) 2178393600565440 m005 (1/2*exp(1)-1/12)/(7/12*exp(1)-1) 2178393605724975 h001 (-4*exp(2)+8)/(-2*exp(2/3)-6) 2178393627186412 m001 1/GAMMA(13/24)/GAMMA(1/6)^2*exp(Zeta(3))^2 2178393633605760 m001 (2^(1/2)-DuboisRaymond)/(OneNinth+ZetaP(2)) 2178393639919661 p004 log(20411/2311) 2178393641201897 m001 (GAMMA(1/24)+5)/(-GAMMA(13/24)+1/3) 2178393647855893 a001 1/620166*199^(38/41) 2178393647940127 k002 Champernowne real with 39/2*n^2+235/2*n-135 2178393648221114 r005 Re(z^2+c),c=25/118+19/37*I,n=15 2178393648913096 a001 1/123*(1/2*5^(1/2)+1/2)^8*7^(17/19) 2178393652650070 r005 Im(z^2+c),c=-10/23+22/59*I,n=46 2178393653394587 a005 (1/sin(67/173*Pi))^120 2178393656947452 k001 Champernowne real with 1758*n+420 2178393671387567 m005 (1/2*Catalan-2)/(19/3+1/3*5^(1/2)) 2178393673738890 m005 (1/3*Pi+1/8)/(1/11*2^(1/2)-2/3) 2178393681621994 m008 (4/5*Pi^6+2)/(1/4*Pi-3/4) 2178393682385135 r005 Re(z^2+c),c=-29/62+32/61*I,n=13 2178393690039175 s002 sum(A237257[n]/(exp(pi*n)-1),n=1..infinity) 2178393690823130 m001 ln(FeigenbaumKappa)/Artin/GAMMA(11/24)^2 2178393696997819 r005 Re(z^2+c),c=19/106+19/50*I,n=36 2178393699960334 l006 ln(816/7207) 2178393703151126 a003 cos(Pi*7/25)-cos(Pi*25/89) 2178393707422058 r002 3th iterates of z^2 + 2178393707792065 m005 (4/5*Catalan+3/4)/(1/6*Catalan-5/6) 2178393713324783 a007 Real Root Of 497*x^4+742*x^3-348*x^2+623*x-513 2178393716121549 l006 ln(4877/6064) 2178393723204139 m001 (-Rabbit+Salem)/(Catalan+GAMMA(3/4)) 2178393725183318 m005 (-7/12+1/4*5^(1/2))/(1/2*Pi-5/11) 2178393733506206 r009 Re(z^3+c),c=-4/13+19/48*I,n=32 2178393738742986 m001 (Shi(1)+Ei(1,1))/(-LaplaceLimit+ZetaP(4)) 2178393738792333 r005 Im(z^2+c),c=-7/102+47/57*I,n=12 2178393739582577 r005 Re(z^2+c),c=-27/22+8/111*I,n=56 2178393745557924 q001 613/2814 2178393756967455 k001 Champernowne real with 1759*n+419 2178393757930039 g005 Pi*2^(1/2)/GAMMA(3/4)^2/GAMMA(3/11)/GAMMA(2/9) 2178393761703286 m001 (-BesselJ(0,1)+TreeGrowth2nd)/(gamma+Catalan) 2178393766070631 m005 (1/2*3^(1/2)-4/5)/(6/7*2^(1/2)-10/11) 2178393767546153 r005 Re(z^2+c),c=17/78+18/41*I,n=34 2178393777517967 a007 Real Root Of -521*x^4-632*x^3+942*x^2-179*x+339 2178393782618701 a007 Real Root Of -9*x^4-223*x^3-564*x^2+487*x-286 2178393788204233 a001 4/4181*21^(10/37) 2178393788715755 a007 Real Root Of 203*x^4+85*x^3-428*x^2+564*x-433 2178393799390623 m001 Pi*csc(5/12*Pi)/GAMMA(7/12)*MertensB2^ln(2) 2178393803314126 r005 Re(z^2+c),c=-23/94+11/57*I,n=6 2178393805530092 r005 Re(z^2+c),c=-9/34+1/30*I,n=9 2178393805851196 m001 (TreeGrowth2nd-ZetaQ(2))/Pi^(1/2) 2178393814837185 m001 (Weierstrass-ZetaQ(2))/(ln(3)+GaussAGM) 2178393822731237 m001 Tribonacci+gamma(3)^ZetaP(3) 2178393822933031 a007 Real Root Of 194*x^4+19*x^3-413*x^2+815*x-437 2178393833539823 b008 Coth[4/9]/11 2178393835079461 m001 Trott^2/CopelandErdos^2/ln(GAMMA(1/3))^2 2178393835350881 m001 (AlladiGrinstead+Trott2nd)/(5^(1/2)-Si(Pi)) 2178393837851825 a005 (1/cos(1/84*Pi))^1113 2178393838081706 m001 (-GaussAGM(1,1/sqrt(2))+4)/(-ln(Pi)+1) 2178393844582888 r005 Im(z^2+c),c=-9/32+35/58*I,n=16 2178393844682139 a007 Real Root Of -4*x^4-867*x^3+947*x^2-487*x+369 2178393844985299 a001 615/124*843^(28/31) 2178393845473022 r009 Re(z^3+c),c=-6/19+15/37*I,n=8 2178393845557373 l006 ln(953/8417) 2178393849761356 m001 (LaplaceLimit+Paris)/(2^(1/3)-ln(5)) 2178393851211378 s002 sum(A278735[n]/(n^2*10^n-1),n=1..infinity) 2178393852139013 r009 Re(z^3+c),c=-4/13+19/48*I,n=35 2178393856987458 k001 Champernowne real with 1760*n+418 2178393863101655 a007 Real Root Of -177*x^4+36*x^3+532*x^2-434*x+888 2178393878242023 r009 Re(z^3+c),c=-4/13+19/48*I,n=38 2178393880915941 a007 Real Root Of -412*x^4-419*x^3+775*x^2-374*x+454 2178393883933441 r009 Re(z^3+c),c=-4/13+19/48*I,n=41 2178393884033515 m001 (1-ln(3))/(-GAMMA(17/24)+FeigenbaumB) 2178393885163081 r009 Re(z^3+c),c=-4/13+19/48*I,n=44 2178393885426274 r009 Re(z^3+c),c=-4/13+19/48*I,n=47 2178393885482061 r009 Re(z^3+c),c=-4/13+19/48*I,n=50 2178393885493764 r009 Re(z^3+c),c=-4/13+19/48*I,n=53 2178393885496192 r009 Re(z^3+c),c=-4/13+19/48*I,n=56 2178393885496667 r009 Re(z^3+c),c=-4/13+19/48*I,n=55 2178393885496689 r009 Re(z^3+c),c=-4/13+19/48*I,n=59 2178393885496712 r009 Re(z^3+c),c=-4/13+19/48*I,n=52 2178393885496755 r009 Re(z^3+c),c=-4/13+19/48*I,n=58 2178393885496789 r009 Re(z^3+c),c=-4/13+19/48*I,n=62 2178393885496795 r009 Re(z^3+c),c=-4/13+19/48*I,n=61 2178393885496809 r009 Re(z^3+c),c=-4/13+19/48*I,n=64 2178393885496837 r009 Re(z^3+c),c=-4/13+19/48*I,n=63 2178393885496915 r009 Re(z^3+c),c=-4/13+19/48*I,n=60 2178393885497263 r009 Re(z^3+c),c=-4/13+19/48*I,n=57 2178393885498788 r009 Re(z^3+c),c=-4/13+19/48*I,n=54 2178393885498974 r009 Re(z^3+c),c=-4/13+19/48*I,n=49 2178393885505401 r009 Re(z^3+c),c=-4/13+19/48*I,n=51 2178393885518633 r009 Re(z^3+c),c=-4/13+19/48*I,n=46 2178393885533702 r009 Re(z^3+c),c=-4/13+19/48*I,n=48 2178393885650382 r009 Re(z^3+c),c=-4/13+19/48*I,n=43 2178393885653071 r009 Re(z^3+c),c=-4/13+19/48*I,n=45 2178393886147939 r009 Re(z^3+c),c=-4/13+19/48*I,n=42 2178393886439114 r009 Re(z^3+c),c=-4/13+19/48*I,n=40 2178393886858884 r005 Im(z^2+c),c=-23/60+14/39*I,n=20 2178393888156728 r009 Re(z^3+c),c=-4/13+19/48*I,n=39 2178393890866388 r009 Re(z^3+c),c=-4/13+19/48*I,n=37 2178393896065577 a007 Real Root Of 223*x^4+125*x^3-400*x^2+742*x-215 2178393896094709 r009 Re(z^3+c),c=-4/13+19/48*I,n=36 2178393899056559 b008 12*Sqrt[3]+Tanh[4] 2178393900185058 a007 Real Root Of -159*x^4+86*x^3+630*x^2-347*x+724 2178393903774062 a008 Real Root of x^2-47454 2178393908925667 m001 (-2*Pi/GAMMA(5/6)+ZetaP(3))/(exp(Pi)+ln(5)) 2178393914168724 m001 (GAMMA(23/24)-Cahen)/(MertensB2-Thue) 2178393914252818 m001 (-Cahen+MertensB2)/(5^(1/2)-BesselJ(1,1)) 2178393914686597 r009 Re(z^3+c),c=-4/13+19/48*I,n=34 2178393918953360 r009 Re(z^3+c),c=-3/74+40/57*I,n=50 2178393919191658 m005 (3/5*Pi+1/5)/(1/2*2^(1/2)+1/4) 2178393921607562 a007 Real Root Of -578*x^4-861*x^3+873*x^2+41*x+62 2178393921912757 a007 Real Root Of -542*x^4-775*x^3+834*x^2-292*x-400 2178393925288003 a001 3/4*(1/2*5^(1/2)+1/2)^20*4^(8/17) 2178393926346945 r009 Re(z^3+c),c=-4/13+19/48*I,n=33 2178393930835536 r005 Re(z^2+c),c=11/40+6/13*I,n=3 2178393937597588 a007 Real Root Of -89*x^4+100*x^3+146*x^2-746*x+720 2178393940432132 r004 Re(z^2+c),c=1/5+2/21*I,z(0)=exp(5/8*I*Pi),n=10 2178393942934098 r009 Im(z^3+c),c=-10/23+5/61*I,n=30 2178393943177797 a003 2*cos(5/27*Pi)-cos(5/12*Pi)-2*cos(8/27*Pi) 2178393947893175 a007 Real Root Of 30*x^4+633*x^3-444*x^2+93*x+618 2178393954554777 l006 ln(1090/9627) 2178393957007461 k001 Champernowne real with 1761*n+417 2178393960848725 m002 -2-Pi*Sech[Pi]+ProductLog[Pi]*Sech[Pi] 2178393962616004 m005 (1/2*gamma-7/12)/(3/10*3^(1/2)+5/6) 2178393962835937 m001 GAMMA(5/6)*ErdosBorwein*ln(sqrt(2))^2 2178393972484198 r005 Im(z^2+c),c=-10/21+23/60*I,n=62 2178393975964978 m001 1/exp(LandauRamanujan)/Artin^2/GAMMA(7/12) 2178393979203566 r009 Re(z^3+c),c=-7/36+11/15*I,n=57 2178393979937311 r005 Re(z^2+c),c=-3/38+8/21*I,n=2 2178393985043335 p004 log(30091/3407) 2178393987686655 m001 (BesselI(0,1)-LandauRamanujan)/(Pi-Chi(1)) 2178393988189346 m001 ArtinRank2-PrimesInBinary^GaussAGM 2178393989428985 a007 Real Root Of -999*x^4-53*x^3+205*x^2+932*x+195 2178393993256832 r005 Im(z^2+c),c=23/86+4/53*I,n=21 2178393996551572 a007 Real Root Of 742*x^4+716*x^3-248*x^2-387*x+87 2178393997371710 a001 3571/317811*17711^(7/13) 2178393998115279 a001 3571/9227465*9227465^(7/13) 2178393998115281 a001 3571/7778742049*2504730781961^(7/13) 2178393998115281 a001 3571/267914296*4807526976^(7/13) 2178394003777655 a007 Real Root Of -360*x^4-478*x^3+476*x^2-615*x-433 2178394006852632 m001 GAMMA(1/6)^2/exp(ArtinRank2)/sin(1)^2 2178394018206506 m005 (1/2*exp(1)-1/8)/(4*Zeta(3)+6/7) 2178394027755757 a007 Real Root Of 885*x^4-931*x^3+777*x^2-731*x+130 2178394030839131 m001 (arctan(1/3)-GaussAGM)/(Porter-Riemann3rdZero) 2178394035725723 r009 Re(z^3+c),c=-4/13+19/48*I,n=30 2178394039000273 r009 Re(z^3+c),c=-4/13+19/48*I,n=31 2178394040457348 r009 Re(z^3+c),c=-6/23+17/61*I,n=2 2178394046668398 h001 (3/7*exp(2)+3/7)/(3/11*exp(1)+10/11) 2178394048183894 a007 Real Root Of 493*x^4+992*x^3-495*x^2-470*x+478 2178394057027464 k001 Champernowne real with 1762*n+416 2178394060170739 r005 Im(z^2+c),c=-21/22+24/107*I,n=53 2178394067887012 l006 ln(4688/5829) 2178394069792293 m001 (cos(1)+Zeta(5))/(-Salem+ZetaP(2)) 2178394072359078 r009 Re(z^3+c),c=-11/40+17/62*I,n=3 2178394088875717 h001 (1/12*exp(1)+7/9)/(7/12*exp(2)+3/10) 2178394091673859 r009 Re(z^3+c),c=-17/46+19/32*I,n=24 2178394101573589 a007 Real Root Of -446*x^4-704*x^3+670*x^2-98*x-627 2178394107492596 r005 Re(z^2+c),c=-6/29+17/49*I,n=27 2178394109243310 m001 Riemann1stZero*Tribonacci^Rabbit 2178394123775846 m005 (1/2*Zeta(3)-8/9)/(1/5*exp(1)+7/9) 2178394130863607 r009 Im(z^3+c),c=-63/110+25/37*I,n=4 2178394135373349 r002 6th iterates of z^2 + 2178394143271764 a001 9349/832040*17711^(7/13) 2178394144019019 a001 9349/20365011074*2504730781961^(7/13) 2178394144019019 a001 9349/701408733*4807526976^(7/13) 2178394144019021 a001 9349/24157817*9227465^(7/13) 2178394144351863 m001 ln(2)*Magata/Trott 2178394147957631 a007 Real Root Of 186*x^4+310*x^3-22*x^2+670*x+580 2178394153547372 a007 Real Root Of 83*x^4+212*x^3+680*x^2-765*x+132 2178394157047467 k001 Champernowne real with 1763*n+415 2178394164558295 a001 24476/2178309*17711^(7/13) 2178394165306088 a001 24476/53316291173*2504730781961^(7/13) 2178394165306088 a001 24476/1836311903*4807526976^(7/13) 2178394165306091 a001 12238/31622993*9227465^(7/13) 2178394167663958 a001 64079/5702887*17711^(7/13) 2178394168117068 a001 167761/14930352*17711^(7/13) 2178394168183176 a001 439204/39088169*17711^(7/13) 2178394168192821 a001 1149851/102334155*17711^(7/13) 2178394168194228 a001 3010349/267914296*17711^(7/13) 2178394168194433 a001 39604/3524667*17711^(7/13) 2178394168194463 a001 20633239/1836311903*17711^(7/13) 2178394168194467 a001 54018521/4807526976*17711^(7/13) 2178394168194468 a001 141422324/12586269025*17711^(7/13) 2178394168194468 a001 370248451/32951280099*17711^(7/13) 2178394168194468 a001 969323029/86267571272*17711^(7/13) 2178394168194468 a001 2537720636/225851433717*17711^(7/13) 2178394168194468 a001 6643838879/591286729879*17711^(7/13) 2178394168194468 a001 17393796001/1548008755920*17711^(7/13) 2178394168194468 a001 45537549124/4052739537881*17711^(7/13) 2178394168194468 a001 119218851371/10610209857723*17711^(7/13) 2178394168194468 a001 73681302247/6557470319842*17711^(7/13) 2178394168194468 a001 28143753123/2504730781961*17711^(7/13) 2178394168194468 a001 10749957122/956722026041*17711^(7/13) 2178394168194468 a001 4106118243/365435296162*17711^(7/13) 2178394168194468 a001 1568397607/139583862445*17711^(7/13) 2178394168194468 a001 599074578/53316291173*17711^(7/13) 2178394168194468 a001 228826127/20365011074*17711^(7/13) 2178394168194468 a001 87403803/7778742049*17711^(7/13) 2178394168194470 a001 33385282/2971215073*17711^(7/13) 2178394168194482 a001 12752043/1134903170*17711^(7/13) 2178394168194560 a001 4870847/433494437*17711^(7/13) 2178394168195097 a001 1860498/165580141*17711^(7/13) 2178394168198781 a001 710647/63245986*17711^(7/13) 2178394168224032 a001 271443/24157817*17711^(7/13) 2178394168397105 a001 103682/9227465*17711^(7/13) 2178394168411829 a001 64079/139583862445*2504730781961^(7/13) 2178394168411829 a001 64079/4807526976*4807526976^(7/13) 2178394168411832 a001 64079/165580141*9227465^(7/13) 2178394168864951 a001 1/75025*4807526976^(7/13) 2178394168864951 a001 167761/365435296162*2504730781961^(7/13) 2178394168864954 a001 167761/433494437*9227465^(7/13) 2178394168931061 a001 439204/32951280099*4807526976^(7/13) 2178394168931061 a001 439204/956722026041*2504730781961^(7/13) 2178394168931063 a001 219602/567451585*9227465^(7/13) 2178394168940706 a001 1149851/86267571272*4807526976^(7/13) 2178394168940706 a001 1149851/2504730781961*2504730781961^(7/13) 2178394168940709 a001 1149851/2971215073*9227465^(7/13) 2178394168942113 a001 3010349/225851433717*4807526976^(7/13) 2178394168942113 a001 3010349/6557470319842*2504730781961^(7/13) 2178394168942116 a001 3010349/7778742049*9227465^(7/13) 2178394168942318 a001 7881196/591286729879*4807526976^(7/13) 2178394168942321 a001 3940598/10182505537*9227465^(7/13) 2178394168942348 a001 1875749/140728068720*4807526976^(7/13) 2178394168942351 a001 20633239/53316291173*9227465^(7/13) 2178394168942353 a001 54018521/4052739537881*4807526976^(7/13) 2178394168942353 a001 141422324/10610209857723*4807526976^(7/13) 2178394168942354 a001 87403803/6557470319842*4807526976^(7/13) 2178394168942355 a001 33385282/2504730781961*4807526976^(7/13) 2178394168942355 a001 54018521/139583862445*9227465^(7/13) 2178394168942356 a001 70711162/182717648081*9227465^(7/13) 2178394168942356 a001 370248451/956722026041*9227465^(7/13) 2178394168942356 a001 969323029/2504730781961*9227465^(7/13) 2178394168942356 a001 1268860318/3278735159921*9227465^(7/13) 2178394168942356 a001 1368706081/3536736619241*9227465^(7/13) 2178394168942356 a001 1568397607/4052739537881*9227465^(7/13) 2178394168942356 a001 33281921/86000486440*9227465^(7/13) 2178394168942356 a001 228826127/591286729879*9227465^(7/13) 2178394168942356 a001 29134601/75283811239*9227465^(7/13) 2178394168942358 a001 16692641/43133785636*9227465^(7/13) 2178394168942367 a001 12752043/956722026041*4807526976^(7/13) 2178394168942370 a001 4250681/10983760033*9227465^(7/13) 2178394168942445 a001 4870847/365435296162*4807526976^(7/13) 2178394168942445 a001 1/2178309*2504730781961^(7/13) 2178394168942448 a001 4870847/12586269025*9227465^(7/13) 2178394168942983 a001 1860498/139583862445*4807526976^(7/13) 2178394168942983 a001 1860498/4052739537881*2504730781961^(7/13) 2178394168942985 a001 103361/267084832*9227465^(7/13) 2178394168946667 a001 710647/53316291173*4807526976^(7/13) 2178394168946667 a001 710647/1548008755920*2504730781961^(7/13) 2178394168946670 a001 710647/1836311903*9227465^(7/13) 2178394168971918 a001 271443/20365011074*4807526976^(7/13) 2178394168971918 a001 271443/591286729879*2504730781961^(7/13) 2178394168971921 a001 90481/233802911*9227465^(7/13) 2178394169144996 a001 103682/7778742049*4807526976^(7/13) 2178394169144996 a001 103682/225851433717*2504730781961^(7/13) 2178394169144998 a001 51841/133957148*9227465^(7/13) 2178394169583363 a001 39603/3524578*17711^(7/13) 2178394170084595 r004 Re(z^2+c),c=-1/14-2/3*I,z(0)=I,n=39 2178394170331283 a001 39603/2971215073*4807526976^(7/13) 2178394170331283 a001 39603/86267571272*2504730781961^(7/13) 2178394170331286 a001 13201/34111385*9227465^(7/13) 2178394174841840 a007 Real Root Of 37*x^4+764*x^3-907*x^2+211*x+775 2178394177714094 a001 15127/1346269*17711^(7/13) 2178394178462220 a001 15127/1134903170*4807526976^(7/13) 2178394178462220 a001 15127/32951280099*2504730781961^(7/13) 2178394178462223 a001 15127/39088169*9227465^(7/13) 2178394179883451 a007 Real Root Of 719*x^4+570*x^3+679*x^2-698*x-180 2178394180887590 r005 Re(z^2+c),c=-6/29+17/49*I,n=33 2178394210161621 r005 Re(z^2+c),c=21/118+9/17*I,n=18 2178394214814177 r002 19th iterates of z^2 + 2178394217977947 m001 (Paris-Weierstrass)/(Zeta(3)-exp(1/Pi)) 2178394221948255 m005 (1/2*Catalan+4)/(9/10*exp(1)-2/5) 2178394233442956 a001 5778/514229*17711^(7/13) 2178394234192489 a001 5778/433494437*4807526976^(7/13) 2178394234192489 a001 5778/12586269025*2504730781961^(7/13) 2178394234192493 a001 1/2584*9227465^(7/13) 2178394234419269 a007 Real Root Of 38*x^4-591*x^3-851*x^2+974*x-805 2178394234527703 r009 Re(z^3+c),c=-3/10+27/40*I,n=5 2178394240967917 b008 Sinh[(4+Pi)*Csch[1]] 2178394245437135 m001 ln(GAMMA(5/6))*Salem*GAMMA(7/12) 2178394247917120 m001 (RenyiParking+Trott)/(Zeta(3)+BesselI(0,2)) 2178394249404230 r005 Im(z^2+c),c=-43/110+23/63*I,n=19 2178394250364619 b008 1/2-1/(3*E^(1/6)) 2178394254624806 p004 log(11423/9187) 2178394257067470 k001 Champernowne real with 1764*n+414 2178394260861026 r009 Re(z^3+c),c=-5/17+22/61*I,n=13 2178394263125733 b008 1/2+5^ArcCot[3] 2178394271700354 m001 (-PlouffeB+Trott2nd)/(2^(1/2)+Cahen) 2178394272263791 a007 Real Root Of 208*x^4+8*x^3-845*x^2+215*x-123 2178394273814195 m001 BesselK(0,1)-Pi*csc(5/12*Pi)/GAMMA(7/12)-Bloch 2178394274474749 r002 36th iterates of z^2 + 2178394274521634 m002 -6+4*Pi^5+Pi^6-ProductLog[Pi] 2178394278422400 m001 1/(2^(1/3))/ln(KhintchineHarmonic)*GAMMA(7/12) 2178394280247880 m001 gamma(3)*(Ei(1)-Otter) 2178394280527991 m001 ErdosBorwein^Cahen-exp(Pi) 2178394284716397 r005 Im(z^2+c),c=-57/62+10/49*I,n=62 2178394286485407 a007 Real Root Of -852*x^4-115*x^3+118*x^2+163*x-38 2178394293184909 m001 (gamma+BesselI(0,1))/(-Khinchin+Tribonacci) 2178394307951666 m001 (2^(1/3)+2^(1/2)*exp(1/2))/exp(1/2) 2178394307951666 m001 (sqrt(2)*exp(1/2)+(2^(1/3)))/exp(1/2) 2178394312674635 a007 Real Root Of -24*x^4-511*x^3+300*x^2+949*x+443 2178394319415925 m001 GAMMA(1/4)^2*BesselK(1,1)*ln(log(2+sqrt(3))) 2178394342588246 a007 Real Root Of 338*x^4+730*x^3+43*x^2+567*x+966 2178394343919493 r005 Re(z^2+c),c=33/106+5/24*I,n=30 2178394346691344 a007 Real Root Of -185*x^4-330*x^3+77*x^2-136*x+93 2178394347109909 a007 Real Root Of 521*x^4+569*x^3-965*x^2+544*x-86 2178394352631216 a008 Real Root of x^4-x^3+16*x^2-24*x-6 2178394353682168 m001 (BesselK(1,1)+FeigenbaumMu)/(cos(1)+exp(1/Pi)) 2178394353860869 m001 GAMMA(5/6)^KhinchinHarmonic/LambertW(1) 2178394357087473 k001 Champernowne real with 1765*n+413 2178394360136742 m005 (1/2*Zeta(3)-3/11)/(8/9*2^(1/2)+1/4) 2178394364645715 l006 ln(7583/7750) 2178394383887966 h001 (9/10*exp(1)+5/7)/(2/5*exp(1)+4/11) 2178394390174055 m001 GAMMA(7/12)^2*(2^(1/3))/ln(sin(Pi/12)) 2178394397184473 h001 (2/5*exp(2)+9/11)/(5/9*exp(1)+2/9) 2178394398678492 r009 Re(z^3+c),c=-4/13+19/48*I,n=27 2178394406539673 m005 (1/4*exp(1)+1/4)/(4/5*Catalan-5) 2178394418569771 r002 5th iterates of z^2 + 2178394418642948 m001 ln(Riemann2ndZero)^2*Kolakoski/Tribonacci^2 2178394424397052 a003 sin(Pi*7/115)/cos(Pi*13/80) 2178394435157299 s001 sum(exp(-Pi/3)^(n-1)*A232938[n],n=1..infinity) 2178394439654610 m009 (2*Psi(1,2/3)-4)/(4*Psi(1,3/4)-2/5) 2178394443257997 m002 Pi^(-3)+(4*ProductLog[Pi])/E^Pi 2178394449207327 l006 ln(4499/5594) 2178394449950445 q001 2198/1009 2178394453799706 m001 1/ln(GAMMA(2/3))*Robbin/Zeta(9) 2178394457107476 k001 Champernowne real with 1766*n+412 2178394460623568 r004 Re(z^2+c),c=-11/42+2/15*I,z(0)=-1,n=9 2178394462329860 r005 Im(z^2+c),c=-5/8+57/223*I,n=16 2178394465429311 m001 arctan(1/2)+FeigenbaumAlpha^sin(1/5*Pi) 2178394465429311 m001 arctan(1/2)+FeigenbaumAlpha^sin(Pi/5) 2178394473688697 a007 Real Root Of 326*x^4+816*x^3-59*x^2-735*x-227 2178394474145356 m001 (Sarnak+Totient)/(BesselI(1,2)-Cahen) 2178394479634521 r005 Im(z^2+c),c=-27/23+9/37*I,n=16 2178394480681865 a003 sin(Pi*16/83)/cos(Pi*42/101) 2178394500499192 a007 Real Root Of -348*x^4-364*x^3+616*x^2-491*x+81 2178394503163515 a007 Real Root Of -126*x^4+20*x^3+943*x^2+565*x-200 2178394510003114 r005 Im(z^2+c),c=-13/14+41/218*I,n=8 2178394516597831 r005 Im(z^2+c),c=-13/10+5/243*I,n=37 2178394525833251 m002 -Pi^3+(Pi^2*ProductLog[Pi]*Tanh[Pi])/Log[Pi] 2178394530291032 r005 Im(z^2+c),c=-1/5+22/27*I,n=51 2178394536810822 a007 Real Root Of 983*x^4+219*x^3-12*x^2-959*x+205 2178394539201026 r001 27i'th iterates of 2*x^2-1 of 2178394551252331 m002 -4/Pi^6+1/(E^Pi*Pi^2) 2178394557127479 k001 Champernowne real with 1767*n+411 2178394562520911 m001 2/3+Khinchin-GAMMA(19/24) 2178394568167821 a007 Real Root Of 942*x^4-533*x^3+629*x^2-870*x-227 2178394569723009 r002 63th iterates of z^2 + 2178394579615591 s002 sum(A279943[n]/((pi^n-1)/n),n=1..infinity) 2178394585536995 r005 Re(z^2+c),c=-13/114+14/25*I,n=55 2178394598719852 m005 (1/2*2^(1/2)-1)/(Catalan+3/7) 2178394605803418 r002 30th iterates of z^2 + 2178394606873739 a003 sin(Pi*30/97)/cos(Pi*38/101) 2178394607065935 m005 (1/3*Catalan+1/7)/(9/11*exp(1)-1/6) 2178394607484732 a001 39603/13*144^(19/48) 2178394610371197 a007 Real Root Of 584*x^4+13*x^3+176*x^2-527*x+105 2178394615414256 a001 2207/196418*17711^(7/13) 2178394615694282 r005 Re(z^2+c),c=15/118+14/45*I,n=32 2178394616173434 a001 2207/165580141*4807526976^(7/13) 2178394616173434 a001 2207/4807526976*2504730781961^(7/13) 2178394616173450 a001 2207/5702887*9227465^(7/13) 2178394636750123 s002 sum(A188923[n]/(n^3*2^n-1),n=1..infinity) 2178394650946128 k002 Champernowne real with 20*n^2+116*n-134 2178394653110964 r005 Im(z^2+c),c=11/62+8/53*I,n=16 2178394653175629 a005 (1/cos(19/188*Pi))^105 2178394656940659 m005 (1/2*3^(1/2)+5)/(2/5*3^(1/2)+2) 2178394657147482 k001 Champernowne real with 1768*n+410 2178394659857203 a001 521/28657*2^(6/23) 2178394662996651 r002 8th iterates of z^2 + 2178394663443034 m001 FeigenbaumKappa/Si(Pi)/ReciprocalFibonacci 2178394664420151 a001 9349/5*2584^(5/16) 2178394664504498 a007 Real Root Of 454*x^4+758*x^3-722*x^2-86*x+851 2178394672793455 r009 Re(z^3+c),c=-4/13+19/48*I,n=28 2178394684674471 m001 1/ln((2^(1/3)))^2/Champernowne^2*sqrt(Pi) 2178394690549684 a007 Real Root Of 566*x^4+973*x^3-644*x^2-323*x-335 2178394697906962 p001 sum((-1)^n/(558*n+457)/(100^n),n=0..infinity) 2178394708775093 r002 37th iterates of z^2 + 2178394712762661 l006 ln(137/1210) 2178394713244167 a007 Real Root Of -497*x^4-936*x^3+51*x^2-533*x+113 2178394713283068 m005 (1/2*gamma+3/4)/(1/8*2^(1/2)+3/10) 2178394719454859 m008 (4*Pi^2+5)/(2/3*Pi^5+1/6) 2178394722927550 r005 Im(z^2+c),c=-2/3+25/154*I,n=7 2178394736001956 m001 1/ln(LambertW(1))^2/Robbin*arctan(1/2) 2178394740401842 a007 Real Root Of -166*x^4+69*x^3+851*x^2-617*x-931 2178394751612261 m007 (-gamma-3*ln(2)+1/2*Pi-5/6)/(-5/6*gamma-2/5) 2178394753388117 m001 (KhinchinHarmonic-Khinchin)/(Pi+GAMMA(19/24)) 2178394757167485 k001 Champernowne real with 1769*n+409 2178394760465756 a001 1/199*47^(8/21) 2178394775149142 m001 BesselI(0,2)-GAMMA(23/24)*Paris 2178394788801073 m005 (1/2*gamma+2/11)/(5/12*exp(1)-11/12) 2178394802208908 m001 BesselJ(0,1)^Robbin-GAMMA(11/12) 2178394822309504 m001 (Catalan-LambertW(1))/(MertensB1+Totient) 2178394834035253 a007 Real Root Of 593*x^4+691*x^3+483*x^2-913*x-216 2178394835627589 r005 Im(z^2+c),c=-11/32+15/43*I,n=31 2178394838474138 m001 (sin(1/12*Pi)-Khinchin)/(Robbin+ZetaP(2)) 2178394848223548 s002 sum(A031542[n]/(n^3*10^n-1),n=1..infinity) 2178394854165499 r002 49th iterates of z^2 + 2178394857187488 k001 Champernowne real with 1770*n+408 2178394862860805 a007 Real Root Of -489*x^4-659*x^3+624*x^2-506*x+136 2178394863970567 l006 ln(4310/5359) 2178394875927681 r009 Re(z^3+c),c=-43/118+41/57*I,n=7 2178394878376803 r009 Re(z^3+c),c=-17/48+15/28*I,n=15 2178394885553213 a007 Real Root Of 391*x^4+645*x^3-651*x^2-297*x+305 2178394893926650 m005 (1/2*Zeta(3)-1/8)/(90/77+5/11*5^(1/2)) 2178394901590065 m001 exp(-1/2*Pi)/(Landau^ZetaP(4)) 2178394909194966 r009 Im(z^3+c),c=-23/42+11/23*I,n=21 2178394925661393 a007 Real Root Of -457*x^4-962*x^3-138*x^2-535*x-164 2178394935324463 m001 1/Sierpinski^2*ln(KhintchineLevy)/sinh(1) 2178394948284241 a007 Real Root Of -331*x^4-999*x^3-558*x^2+456*x+768 2178394952459871 a001 267914296/2207*123^(3/5) 2178394957171650 p001 sum(1/(463*n+49)/(2^n),n=0..infinity) 2178394957207491 k001 Champernowne real with 1771*n+407 2178394957397484 a007 Real Root Of -41*x^4-913*x^3-419*x^2+321*x+545 2178394964154415 p004 log(21997/21523) 2178394966397106 m001 (2^(1/3)-ln(2))/(-HeathBrownMoroz+MertensB1) 2178394974650613 r009 Re(z^3+c),c=-15/46+27/61*I,n=31 2178394978256549 m001 (ln(3)-Artin)/(Cahen+FeigenbaumD) 2178394982563785 a001 196418/843*322^(12/31) 2178394995113180 a007 Real Root Of -508*x^4-736*x^3+691*x^2+167*x+916 2178395000101632 m001 (KhinchinHarmonic+Totient)/(2^(1/2)+gamma(3)) 2178395005163678 a001 45537549124/377*21^(19/20) 2178395008576980 m006 (4/5*exp(2*Pi)+2/5)/(5/6*exp(Pi)+2/5) 2178395018481525 a007 Real Root Of 462*x^4-332*x^3-190*x^2-448*x+109 2178395022238341 r005 Re(z^2+c),c=17/60+11/58*I,n=62 2178395022415794 r005 Re(z^2+c),c=-6/29+17/49*I,n=31 2178395022499670 h001 (2/7*exp(1)+3/5)/(3/4*exp(2)+7/9) 2178395025281973 a007 Real Root Of -77*x^4+526*x^3-878*x^2+409*x-428 2178395030821584 a003 cos(1/21*Pi)-3^(1/2)-cos(2/9*Pi)-cos(4/15*Pi) 2178395038268298 m001 ln(Niven)*ArtinRank2^2*Catalan^2 2178395046984028 m004 -3100*Sqrt[5]*Pi-Sqrt[5]*Pi*Tanh[Sqrt[5]*Pi] 2178395049207431 m004 -3100*Sqrt[5]*Pi-Sqrt[5]*Pi*Coth[Sqrt[5]*Pi] 2178395057227494 k001 Champernowne real with 1772*n+406 2178395064161578 p001 sum((-1)^n/(399*n+328)/n/(6^n),n=1..infinity) 2178395064786751 r002 36th iterates of z^2 + 2178395072208620 r009 Re(z^3+c),c=-17/66+15/58*I,n=9 2178395078144758 a007 Real Root Of 412*x^4+487*x^3-710*x^2+63*x-737 2178395083568660 a007 Real Root Of -260*x^4+364*x^3+804*x^2+912*x-240 2178395084277683 r005 Re(z^2+c),c=-6/29+17/49*I,n=36 2178395084659374 a001 1/1135099622*5^(9/16) 2178395086163536 m005 (1/2*gamma+1/3)/(1/8*Catalan-2/5) 2178395088584309 m005 (1/2*Zeta(3)-5/7)/(7/10*Pi+3) 2178395089586800 a007 Real Root Of 370*x^4+502*x^3-340*x^2+769*x+146 2178395095231649 a007 Real Root Of -654*x^4-899*x^3+970*x^2+28*x+892 2178395101429217 m001 (FeigenbaumD-Gompertz)/(MertensB2-ZetaP(4)) 2178395102335866 m001 GAMMA(2/3)^2/BesselK(0,1)^2/exp(GAMMA(7/24))^2 2178395102618182 m006 (4/5/Pi+5)/(1/6*ln(Pi)-1/6) 2178395115275240 r005 Re(z^2+c),c=33/122+5/28*I,n=35 2178395119971759 r009 Re(z^3+c),c=-23/74+21/52*I,n=24 2178395121056679 r002 26th iterates of z^2 + 2178395135417652 r009 Re(z^3+c),c=-41/122+29/62*I,n=29 2178395143942560 m001 (2*Pi/GAMMA(5/6)-Niven)/Pi^(1/2) 2178395157247497 k001 Champernowne real with 1773*n+405 2178395161934021 a001 29/5*5^(37/45) 2178395163128193 a007 Real Root Of 4*x^4+869*x^3-515*x^2-292*x-960 2178395182527854 m001 1/Tribonacci^2*Rabbit^2/exp(GAMMA(1/6))^2 2178395189312104 m008 (3/5*Pi^5+1)/(5/6*Pi^2+1/4) 2178395190197610 r005 Im(z^2+c),c=-21/26+2/13*I,n=5 2178395192950430 r005 Re(z^2+c),c=7/26+11/62*I,n=45 2178395199726535 p004 log(20731/16673) 2178395201288766 s002 sum(A190158[n]/(16^n-1),n=1..infinity) 2178395201288769 s002 sum(A188217[n]/(16^n-1),n=1..infinity) 2178395213952482 r005 Im(z^2+c),c=-16/23+13/44*I,n=43 2178395238430875 m001 (Zeta(1,-1)-gamma)/(Khinchin+Sarnak) 2178395257267500 k001 Champernowne real with 1774*n+404 2178395263133290 m005 (-29/8+3/8*5^(1/2))/(5*exp(1)-4/5) 2178395270098149 m001 (3^(1/3))*TwinPrimes^2*ln(sqrt(2)) 2178395276593412 m001 LambertW(1)*BesselI(0,1)-Zeta(1/2) 2178395279003553 r009 Re(z^3+c),c=-4/31+41/44*I,n=18 2178395288906108 r009 Re(z^3+c),c=-31/74+11/19*I,n=55 2178395312060351 a002 7^(5/3)-10^(7/12) 2178395313319289 r009 Re(z^3+c),c=-45/118+25/44*I,n=59 2178395316778075 l006 ln(4121/5124) 2178395324968960 a007 Real Root Of -105*x^4-182*x^3-341*x^2-932*x+71 2178395332273180 h005 exp(sin(Pi*7/48)/cos(Pi*4/13)) 2178395334440942 a001 233802911/1926*123^(3/5) 2178395338335569 m001 Zeta(3)/(3^(1/2)-KomornikLoreti) 2178395338413267 q001 486/2231 2178395338467251 m008 (1/6*Pi^4+1/3)/(3/4*Pi^4+3) 2178395351451338 r005 Re(z^2+c),c=-25/102+10/49*I,n=13 2178395353384957 m002 Pi^4+Pi^2*Cosh[Pi]+6*Coth[Pi] 2178395354089185 r005 Re(z^2+c),c=-6/29+17/49*I,n=39 2178395357287503 k001 Champernowne real with 1775*n+403 2178395360871860 r005 Re(z^2+c),c=-6/29+17/49*I,n=38 2178395367229441 m001 ln(MinimumGamma)/Kolakoski^2*BesselK(1,1)^2 2178395370421685 r009 Im(z^3+c),c=-35/78+2/39*I,n=55 2178395371136345 r005 Re(z^2+c),c=-6/29+17/49*I,n=41 2178395376647486 a003 cos(Pi*25/93)*cos(Pi*37/94) 2178395378891998 r005 Im(z^2+c),c=-17/32+11/35*I,n=12 2178395383915673 a007 Real Root Of 417*x^4+661*x^3-280*x^2+525*x-85 2178395390171241 a001 1836311903/15127*123^(3/5) 2178395392238264 r005 Re(z^2+c),c=-6/29+17/49*I,n=44 2178395398302182 a001 1602508992/13201*123^(3/5) 2178395399488470 a001 12586269025/103682*123^(3/5) 2178395399661547 a001 121393*123^(3/5) 2178395399686799 a001 86267571272/710647*123^(3/5) 2178395399690483 a001 75283811239/620166*123^(3/5) 2178395399691021 a001 591286729879/4870847*123^(3/5) 2178395399691099 a001 516002918640/4250681*123^(3/5) 2178395399691111 a001 4052739537881/33385282*123^(3/5) 2178395399691112 a001 3536736619241/29134601*123^(3/5) 2178395399691113 a001 6557470319842/54018521*123^(3/5) 2178395399691118 a001 2504730781961/20633239*123^(3/5) 2178395399691148 a001 956722026041/7881196*123^(3/5) 2178395399691353 a001 365435296162/3010349*123^(3/5) 2178395399692760 a001 139583862445/1149851*123^(3/5) 2178395399702405 a001 53316291173/439204*123^(3/5) 2178395399768515 a001 20365011074/167761*123^(3/5) 2178395400221637 a001 7778742049/64079*123^(3/5) 2178395400854121 r005 Re(z^2+c),c=-6/29+17/49*I,n=47 2178395402726352 r005 Re(z^2+c),c=-6/29+17/49*I,n=49 2178395403034897 r005 Re(z^2+c),c=-6/29+17/49*I,n=52 2178395403088339 r005 Re(z^2+c),c=-6/29+17/49*I,n=50 2178395403263171 r005 Re(z^2+c),c=-6/29+17/49*I,n=55 2178395403327380 a001 2971215073/24476*123^(3/5) 2178395403341383 r005 Re(z^2+c),c=-6/29+17/49*I,n=58 2178395403352084 r005 Re(z^2+c),c=-6/29+17/49*I,n=60 2178395403355725 r005 Re(z^2+c),c=-6/29+17/49*I,n=57 2178395403356616 r005 Re(z^2+c),c=-6/29+17/49*I,n=63 2178395403358877 r005 Re(z^2+c),c=-6/29+17/49*I,n=61 2178395403360730 r005 Re(z^2+c),c=-6/29+17/49*I,n=64 2178395403363662 r005 Re(z^2+c),c=-6/29+17/49*I,n=62 2178395403377364 r005 Re(z^2+c),c=-6/29+17/49*I,n=59 2178395403411190 r005 Re(z^2+c),c=-6/29+17/49*I,n=56 2178395403429075 r005 Re(z^2+c),c=-6/29+17/49*I,n=53 2178395403436793 r005 Re(z^2+c),c=-6/29+17/49*I,n=54 2178395403864335 r005 Re(z^2+c),c=-6/29+17/49*I,n=51 2178395403923954 r005 Re(z^2+c),c=-6/29+17/49*I,n=46 2178395405304069 r005 Re(z^2+c),c=-6/29+17/49*I,n=48 2178395405643228 r005 Re(z^2+c),c=-6/29+17/49*I,n=42 2178395408116220 r005 Re(z^2+c),c=-6/29+17/49*I,n=45 2178395410614147 m001 (GAMMA(13/24)-MertensB1)/(Trott2nd-TwinPrimes) 2178395414584449 a005 (1/sin(49/128*Pi))^642 2178395414674021 m001 (exp(1)+3^(1/2))/(-Lehmer+Riemann2ndZero) 2178395414688256 r009 Re(z^3+c),c=-4/13+19/48*I,n=24 2178395415013461 r005 Re(z^2+c),c=-6/29+17/49*I,n=43 2178395419417146 m006 (3*Pi^2+1)/(3/5*exp(Pi)+1/6) 2178395424614461 a001 1134903170/9349*123^(3/5) 2178395436215251 r005 Im(z^2+c),c=-31/46+14/51*I,n=62 2178395457307506 k001 Champernowne real with 1776*n+402 2178395457731847 m005 (1/3*2^(1/2)+3/7)/(4/5*2^(1/2)+3) 2178395462713633 l006 ln(1102/9733) 2178395463441374 m006 (1/2/Pi-4)/(2/3*ln(Pi)+1) 2178395464281528 r005 Re(z^2+c),c=-6/29+17/49*I,n=40 2178395470848054 m001 FeigenbaumKappa*Khinchin-MinimumGamma 2178395484142741 r005 Im(z^2+c),c=-51/98+26/57*I,n=55 2178395495660628 m005 (1/3*Zeta(3)-1/8)/(7/8*3^(1/2)-1/4) 2178395499616038 m001 ErdosBorwein/exp(Backhouse)/PrimesInBinary^2 2178395500297009 a001 13201/48*75025^(22/37) 2178395502067498 s002 sum(A138926[n]/(16^n-1),n=1..infinity) 2178395502902228 m007 (-3*gamma-5)/(-2/5*gamma-6/5*ln(2)-1/5*Pi+2) 2178395510236728 s002 sum(A007189[n]/(n*10^n-1),n=1..infinity) 2178395511756569 m001 1/exp((3^(1/3)))/Champernowne/Zeta(1,2)^2 2178395512968003 s002 sum(A098379[n]/(n*2^n-1),n=1..infinity) 2178395516157569 a007 Real Root Of 240*x^4+4*x^3-794*x^2+355*x-822 2178395522521621 r005 Im(z^2+c),c=-37/94+4/11*I,n=24 2178395530761020 a007 Real Root Of 133*x^4-83*x^3-759*x^2+405*x+631 2178395541740931 m005 (-1/2+1/6*5^(1/2))/(5/9*Zeta(3)-1/12) 2178395543652873 r005 Re(z^2+c),c=-19/58+34/63*I,n=6 2178395556817052 a007 Real Root Of -140*x^4+973*x^3+251*x^2+714*x+154 2178395557327509 k001 Champernowne real with 1777*n+401 2178395559122578 l006 ln(8053/10013) 2178395559277874 r009 Re(z^3+c),c=-1/42+27/46*I,n=5 2178395569183311 l006 ln(965/8523) 2178395570518295 a001 433494437/3571*123^(3/5) 2178395573473898 a007 Real Root Of 590*x^4+591*x^3-964*x^2+982*x-463 2178395578279044 a007 Real Root Of 386*x^4+313*x^3-867*x^2+221*x-861 2178395578672140 r005 Re(z^2+c),c=-6/29+17/49*I,n=35 2178395587060500 m001 exp(Riemann2ndZero)/Riemann1stZero/Robbin^2 2178395597328711 a007 Real Root Of 404*x^4+926*x^3-113*x^2-768*x-662 2178395604131320 a001 408569081798/17*2584^(13/15) 2178395607166377 r005 Re(z^2+c),c=-6/29+17/49*I,n=37 2178395613853196 a007 Real Root Of -149*x^4+31*x^3-304*x^2+787*x-17 2178395616273152 r005 Im(z^2+c),c=-51/56+13/64*I,n=46 2178395637009508 a001 4/6765*8^(37/59) 2178395637347909 r005 Im(z^2+c),c=-41/122+5/16*I,n=6 2178395638309120 a007 Real Root Of -59*x^4-143*x^3-155*x^2-319*x-109 2178395642386328 a007 Real Root Of -896*x^4-551*x^3-377*x^2+885*x+207 2178395647661364 m001 2*ln(Pi*csc(5/12*Pi)/GAMMA(7/12))/ln(2) 2178395653842003 m005 (1/2*exp(1)-4)/(25/28+1/7*5^(1/2)) 2178395653952129 k002 Champernowne real with 41/2*n^2+229/2*n-133 2178395657228615 m001 1/GAMMA(19/24)*Khintchine^2/exp(Zeta(5)) 2178395657347512 k001 Champernowne real with 1778*n+400 2178395658513866 l003 Psi(3,11/48) 2178395660681236 a001 3010349/34*4807526976^(13/15) 2178395660681507 a001 1568397607/34*3524578^(13/15) 2178395664284703 m001 (3^(1/3))^2/Cahen*ln(BesselJ(1,1))^2 2178395676240220 r005 Im(z^2+c),c=-17/52+21/61*I,n=41 2178395680451049 a007 Real Root Of -448*x^4-542*x^3+651*x^2-669*x-61 2178395684093350 r005 Re(z^2+c),c=17/60+11/58*I,n=63 2178395684772519 r002 5th iterates of z^2 + 2178395692011603 m005 (17/4+1/4*5^(1/2))/(7/12*Pi+3/8) 2178395699662622 p003 LerchPhi(1/6,4,598/227) 2178395710814795 r005 Re(z^2+c),c=-13/16+18/113*I,n=22 2178395710885691 l006 ln(828/7313) 2178395714822911 a007 Real Root Of -59*x^4+678*x^3-793*x^2-712*x-366 2178395721444489 h001 (2/9*exp(1)+1/11)/(1/3*exp(2)+8/11) 2178395725931657 a001 2889/17*6557470319842^(13/15) 2178395730179092 m001 (2^(1/2)+3^(1/2))/(3^(1/3)+gamma(3)) 2178395751059223 r005 Im(z^2+c),c=-14/13+13/53*I,n=17 2178395757367515 k001 Champernowne real with 1779*n+399 2178395764615232 r002 13th iterates of z^2 + 2178395765310774 m001 GAMMA(11/12)/(2^(1/3))^2*ln(sqrt(Pi))^2 2178395769085043 r005 Im(z^2+c),c=-59/114+17/43*I,n=57 2178395776423361 m001 1/exp(Porter)*Kolakoski^2/Sierpinski^2 2178395779983798 a001 47/21*1597^(18/29) 2178395796180586 r005 Re(z^2+c),c=-6/29+17/49*I,n=34 2178395804025054 m001 1/ln(Riemann1stZero)^2*Cahen/BesselK(0,1) 2178395806037197 m001 exp(-Pi)/(Khinchin-FeigenbaumDelta) 2178395808855585 a007 Real Root Of -354*x^4-277*x^3+686*x^2-644*x+450 2178395809033817 a007 Real Root Of -181*x^4-351*x^3+212*x^2+670*x+901 2178395813115883 l006 ln(3932/4889) 2178395819815931 m001 LandauRamanujan/FeigenbaumDelta/exp(Zeta(7))^2 2178395820068900 m009 (Psi(1,1/3)+3/4)/(1/3*Psi(1,2/3)-6) 2178395821524631 r009 Re(z^3+c),c=-3/86+37/64*I,n=13 2178395822627145 m001 exp(Niven)*Bloch*Catalan^2 2178395827962395 b008 -1+E^(Pi*Tanh[3]) 2178395828290210 r005 Re(z^2+c),c=29/102+4/21*I,n=57 2178395833333333 s001 sum(1/10^(n-1)*A092831[n]/n!^2,n=1..infinity) 2178395836381657 r009 Re(z^3+c),c=-39/122+19/46*I,n=6 2178395844577906 m001 (PlouffeB-Trott)/(ln(gamma)+FeigenbaumD) 2178395845071972 a007 Real Root Of -391*x^4-613*x^3+361*x^2-84*x+572 2178395853625660 a007 Real Root Of 354*x^4+986*x^3+791*x^2+951*x+539 2178395857387518 k001 Champernowne real with 1780*n+398 2178395858992124 m009 (32/5*Catalan+4/5*Pi^2+2)/(1/8*Pi^2+6) 2178395859536093 s001 sum(exp(-Pi/2)^(n-1)*A002936[n],n=1..infinity) 2178395865978795 s001 sum(1/10^(n-1)*A098017[n]/n^n,n=1..infinity) 2178395881609957 a007 Real Root Of -273*x^4+791*x^3-302*x^2+890*x+217 2178395886918282 m005 (2*Catalan+3/5)/(2/5*Catalan+3/4) 2178395887414935 m001 ln(2+3^(1/2))+StronglyCareFree^sin(1/5*Pi) 2178395898898238 a001 161/1292*514229^(26/35) 2178395898977382 m005 (-17/44+1/4*5^(1/2))/(1/11*exp(1)+6/11) 2178395899213337 r005 Re(z^2+c),c=11/114+7/12*I,n=41 2178395903174352 a007 Real Root Of -177*x^4-308*x^3-105*x^2-685*x-192 2178395908776825 l006 ln(691/6103) 2178395913475835 m001 GaussAGM*(5^(1/2)+Artin) 2178395915830481 m005 (1/2*Pi-11/12)/(2/5*Catalan-2/3) 2178395925422734 a007 Real Root Of -422*x^4-981*x^3-197*x^2-16*x+262 2178395928491945 a005 (1/cos(11/117*Pi))^1630 2178395931316589 m001 Otter^gamma*Conway^gamma 2178395950363165 r002 30th iterates of z^2 + 2178395954065317 r002 48th iterates of z^2 + 2178395957407521 k001 Champernowne real with 1781*n+397 2178395961284071 r005 Im(z^2+c),c=-19/18+59/255*I,n=37 2178395966552299 m001 1/ln(Kolakoski)^2*Backhouse^2/Tribonacci 2178395967629535 a001 48*47^(11/28) 2178395968853972 m001 (Ei(1,1)-ReciprocalLucas)/(Sarnak+ZetaP(4)) 2178395969028566 a007 Real Root Of 292*x^4+720*x^3+45*x^2-655*x-773 2178395981116648 a001 11/2584*55^(11/27) 2178395995094626 m001 2*Pi/GAMMA(5/6)/sin(1)/GaussKuzminWirsing 2178395995094626 m001 GAMMA(1/6)/GaussKuzminWirsing/sin(1) 2178396000575069 m005 (4/15+1/6*5^(1/2))/(7/9*Zeta(3)+2) 2178396008724066 a007 Real Root Of -265*x^4+917*x^3-157*x^2-924*x-754 2178396012296773 r005 Re(z^2+c),c=3/11+8/17*I,n=42 2178396013582176 m001 GAMMA(3/4)*exp(Artin)^2*sin(1) 2178396015008244 r002 44th iterates of z^2 + 2178396015106727 a007 Real Root Of -404*x^4-699*x^3+319*x^2-471*x-668 2178396016675145 a001 3/89*28657^(2/11) 2178396029762947 r005 Im(z^2+c),c=-17/52+21/61*I,n=33 2178396032162074 l003 FresnelS(83/109) 2178396034475733 a003 sin(Pi*21/113)-sin(Pi*31/111) 2178396037083750 m001 (Tribonacci+Thue)/(LaplaceLimit+Stephens) 2178396042215509 a007 Real Root Of -182*x^4-694*x^3-789*x^2-8*x+651 2178396044120957 m001 (ln(3)-DuboisRaymond)/(FeigenbaumD+Porter) 2178396050784621 m001 GolombDickman^gamma+Riemann2ndZero 2178396051592938 m001 (Ei(1)+FeigenbaumMu)/(Riemann3rdZero+ZetaP(4)) 2178396057427524 k001 Champernowne real with 1782*n+396 2178396072013093 q001 1331/611 2178396073452738 m005 (1/3*2^(1/2)-1/2)/(1/4*Pi-11/12) 2178396079618558 l006 ln(7675/9543) 2178396079865764 m001 1/Niven^2/exp(Khintchine)/OneNinth 2178396085596250 a007 Real Root Of 680*x^4+966*x^3-831*x^2+328*x-669 2178396086039463 r009 Re(z^3+c),c=-23/54+14/41*I,n=3 2178396101685151 a007 Real Root Of 584*x^4+845*x^3-808*x^2+682*x+904 2178396104692837 a007 Real Root Of 249*x^4+234*x^3+897*x^2-636*x+93 2178396107090401 m001 exp(Pi)/((2^(1/3))^MertensB1) 2178396124629109 m005 (23/30+1/6*5^(1/2))/(4/9*3^(1/2)-6) 2178396127453720 m001 (Zeta(5)+Pi^(1/2))/(Cahen+MasserGramain) 2178396128026703 r005 Im(z^2+c),c=33/98+6/59*I,n=18 2178396138607620 m001 exp(Bloch)^2*DuboisRaymond*TwinPrimes^2 2178396140025840 a001 1346269/843*123^(2/31) 2178396150662348 m001 (exp(1)-ln(2))/(-Zeta(1,-1)+LandauRamanujan) 2178396152367240 m001 (MertensB1-Sarnak)/(Artin+MadelungNaCl) 2178396153519869 r002 12th iterates of z^2 + 2178396156514366 a001 1/12238*4^(29/41) 2178396157447527 k001 Champernowne real with 1783*n+395 2178396169305382 m005 (1/2*exp(1)+9/11)/(1/6*5^(1/2)-3/11) 2178396176523630 m001 (exp(1)+Champernowne)/(Psi(1,1/3)-exp(Pi)) 2178396180388486 a001 281/7*1597^(35/41) 2178396185436781 r005 Im(z^2+c),c=-89/94+10/47*I,n=43 2178396187842270 a007 Real Root Of -679*x^4-834*x^3+289*x^2+585*x-131 2178396196985133 a007 Real Root Of -41*x^4-922*x^3-660*x^2-660*x+508 2178396199180798 a007 Real Root Of 352*x^4+549*x^3-608*x^2-66*x+490 2178396204541839 l006 ln(554/4893) 2178396205881036 m001 (cos(1)+KomornikLoreti)/(-Tetranacci+Thue) 2178396207721458 r009 Re(z^3+c),c=-7/26+17/58*I,n=8 2178396215694853 m005 (1/2*gamma+9/10)/(1/5*exp(1)-6) 2178396232504470 a007 Real Root Of -284*x^4-913*x^3-425*x^2+599*x+279 2178396248646495 p002 log(1/11*(9-6^(3/4))^(1/2)*11^(2/3)) 2178396257467530 k001 Champernowne real with 1784*n+394 2178396260318588 a007 Real Root Of 445*x^4+532*x^3-864*x^2-222*x-905 2178396261948701 m001 (Kac+MinimumGamma)/(QuadraticClass+ZetaP(4)) 2178396267361111 r005 Re(z^2+c),c=-7/10+17/192*I,n=2 2178396276786673 r005 Im(z^2+c),c=-55/48+4/19*I,n=41 2178396278955710 a001 144/29*969323029^(17/23) 2178396291773773 a007 Real Root Of 99*x^4-135*x^3-635*x^2+334*x+116 2178396301319663 m001 (arctan(1/3)+Totient)/(BesselJ(0,1)-sin(1)) 2178396304832246 a001 322/4181*3^(53/56) 2178396307172029 r005 Re(z^2+c),c=17/60+11/58*I,n=45 2178396315191118 m001 MasserGramainDelta/((ln(2)/ln(10))^ZetaR(2)) 2178396323544572 m001 (GAMMA(3/4)-cos(1))/(GaussKuzminWirsing+Trott) 2178396323633817 m005 (1/2*Pi+2/5)/(2/3*3^(1/2)-1/4) 2178396329980374 r002 35th iterates of z^2 + 2178396332891506 r005 Re(z^2+c),c=7/26+11/62*I,n=44 2178396336049796 m001 (Si(Pi)+Zeta(1,-1))/(ArtinRank2+ZetaP(4)) 2178396354945931 m001 (OrthogonalArrays-exp(1))/(Stephens+Trott2nd) 2178396357487533 k001 Champernowne real with 1785*n+393 2178396359578080 l006 ln(3743/4654) 2178396364613737 r005 Im(z^2+c),c=-77/94+10/59*I,n=56 2178396367953328 m001 (ArtinRank2-MertensB1)/(Robbin+Totient) 2178396370554746 m001 (StronglyCareFree+Thue)/(Catalan+Zeta(1,-1)) 2178396374898840 m001 Sierpinski/(Bloch+TravellingSalesman) 2178396381221870 s001 sum(1/10^(n-1)*A225675[n]/n^n,n=1..infinity) 2178396388958842 r005 Im(z^2+c),c=-17/54+15/44*I,n=40 2178396390365552 r002 64th iterates of z^2 + 2178396391766198 r002 5th iterates of z^2 + 2178396394412220 l006 ln(6357/6497) 2178396409636460 m005 (3/5*Pi-5)/(5/6*Catalan+2/3) 2178396413228831 b008 2-7*Zeta[-3/2] 2178396413655426 s001 sum(1/10^(n-1)*A185869[n]/n^n,n=1..infinity) 2178396415019258 l006 ln(971/8576) 2178396416513884 m001 Artin^(2^(1/2))*ZetaQ(3) 2178396417430548 r002 55th iterates of z^2 + 2178396420033823 r005 Im(z^2+c),c=-131/114+7/34*I,n=31 2178396420124696 a003 sin(Pi*35/81)/cos(Pi*17/35) 2178396429422397 r005 Im(z^2+c),c=-17/54+15/44*I,n=38 2178396431781943 a007 Real Root Of 523*x^4+671*x^3-677*x^2+955*x+452 2178396433410368 r005 Re(z^2+c),c=-35/31+11/61*I,n=4 2178396434567781 r002 51th iterates of z^2 + 2178396441980320 m001 (exp(Pi)+BesselI(0,1))/(-Ei(1,1)+Totient) 2178396442032798 r009 Re(z^3+c),c=-3/98+12/29*I,n=8 2178396449127040 m001 (GAMMA(3/4)-arctan(1/2))/(Artin-Sarnak) 2178396457507536 k001 Champernowne real with 1786*n+392 2178396470419410 m001 (GAMMA(5/6)-GAMMA(23/24))/(Artin+Paris) 2178396478081655 s001 sum(1/10^(n-1)*A287575[n]/n^n,n=1..infinity) 2178396479415195 a007 Real Root Of -312*x^4-770*x^3-155*x^2+484*x+856 2178396490895498 r005 Im(z^2+c),c=-17/52+21/61*I,n=39 2178396491674057 r009 Re(z^3+c),c=-7/86+19/30*I,n=8 2178396493941737 q001 845/3879 2178396501148600 r005 Im(z^2+c),c=23/126+9/61*I,n=11 2178396504983576 m001 GAMMA(17/24)^2/MadelungNaCl/ln(cosh(1)) 2178396505045844 m001 gamma/(3^(1/2)-Porter) 2178396518521764 a007 Real Root Of 266*x^4+690*x^3+42*x^2-53*x+828 2178396521820401 r005 Re(z^2+c),c=-97/98+10/51*I,n=28 2178396522111516 r005 Im(z^2+c),c=17/60+3/29*I,n=3 2178396540572699 m001 MasserGramainDelta^Kolakoski+LambertW(1) 2178396545557059 r005 Re(z^2+c),c=17/60+11/58*I,n=61 2178396556782070 m009 (5/6*Psi(1,3/4)-6)/(1/2*Psi(1,2/3)+1/4) 2178396557527539 k001 Champernowne real with 1787*n+391 2178396560573881 a007 Real Root Of -39*x^4-813*x^3+778*x^2-410*x-38 2178396564005216 a007 Real Root Of 427*x^4+400*x^3-839*x^2+943*x+555 2178396566423144 m001 (5^(1/2)+ln(Pi))/(Ei(1,1)+MertensB3) 2178396570558574 a001 165580141/1364*123^(3/5) 2178396574489769 a007 Real Root Of 214*x^4+372*x^3-777*x^2-822*x+923 2178396575108913 a005 (1/sin(66/137*Pi))^1874 2178396579029754 r009 Re(z^3+c),c=-5/126+17/26*I,n=28 2178396581275692 a007 Real Root Of 75*x^4-690*x^3+935*x^2+263*x+434 2178396587485753 a007 Real Root Of 426*x^4+555*x^3-821*x^2-57*x-84 2178396588184731 a003 cos(Pi*2/73)/cos(Pi*50/103) 2178396605867465 r005 Im(z^2+c),c=-17/14+39/256*I,n=42 2178396628316132 r005 Re(z^2+c),c=-7/40+22/51*I,n=33 2178396631815820 m004 -6+5*Pi+(150*Sqrt[5]*Log[Sqrt[5]*Pi])/Pi 2178396632566570 a007 Real Root Of -406*x^4-905*x^3+87*x^2+199*x-192 2178396633963348 m005 (1/2*5^(1/2)+8/11)/(41/55+1/22*5^(1/2)) 2178396639899324 a007 Real Root Of 332*x^4+154*x^3-726*x^2+724*x-862 2178396642201840 s001 sum(1/10^(n-1)*A022113[n]/n^n,n=1..infinity) 2178396643280193 a008 Real Root of x^4+20*x^2-8*x-100 2178396651236390 m001 LandauRamanujan/FeigenbaumKappa/sin(1/12*Pi) 2178396653034340 a007 Real Root Of 333*x^4-842*x^3+569*x^2-978*x+194 2178396653558378 a007 Real Root Of -562*x^4-633*x^3+933*x^2-833*x-130 2178396654040088 l006 ln(7297/9073) 2178396656958130 k002 Champernowne real with 21*n^2+113*n-132 2178396657547542 k001 Champernowne real with 1788*n+390 2178396660344569 r005 Im(z^2+c),c=6/23+1/12*I,n=44 2178396667996888 m001 (cos(1)*HeathBrownMoroz+Salem)/cos(1) 2178396674909956 m001 Psi(2,1/3)/(GAMMA(2/3)+Salem) 2178396677287209 r005 Im(z^2+c),c=-9/52+15/26*I,n=3 2178396677849685 a007 Real Root Of -473*x^4-979*x^3-272*x^2-958*x-265 2178396692522157 a007 Real Root Of -824*x^4+633*x^3+579*x^2+798*x-206 2178396694646263 l006 ln(417/3683) 2178396702958730 m001 FeigenbaumDelta^(exp(Pi)*Psi(2,1/3)) 2178396702990072 r009 Re(z^3+c),c=-41/110+27/49*I,n=43 2178396720700373 m001 (exp(1)*Totient+BesselI(0,2))/exp(1) 2178396735210508 r004 Im(z^2+c),c=-29/20+1/9*I,z(0)=-1,n=6 2178396746224593 m005 (1/6+5/12*5^(1/2))/(3/5*Catalan-3/5) 2178396752090171 r009 Re(z^3+c),c=-1/70+11/13*I,n=15 2178396757567545 k001 Champernowne real with 1789*n+389 2178396758692372 a007 Real Root Of 52*x^4+15*x^3+232*x^2+599*x-812 2178396765262223 a007 Real Root Of -266*x^4-127*x^3+889*x^2-513*x-659 2178396777052330 m001 (Zeta(5)+Pi^(1/2))/(Pi-Si(Pi)) 2178396778179120 m001 BesselI(0,1)-GAMMA(1/24)+ThueMorse 2178396794214038 h001 (-2*exp(-3)+1)/(-6*exp(2)+3) 2178396799302596 a001 38/98209*2178309^(23/53) 2178396803672977 r005 Re(z^2+c),c=-13/94+39/44*I,n=10 2178396821093945 g001 Psi(8/11,16/81) 2178396822265791 a001 123/610*514229^(52/59) 2178396828092303 m001 (HardyLittlewoodC4+Paris)/(ln(3)-GAMMA(17/24)) 2178396828795607 m001 ln(Si(Pi))^2/Conway^2/GAMMA(23/24) 2178396833512879 a003 sin(Pi*30/89)/cos(Pi*38/103) 2178396835884880 r005 Im(z^2+c),c=-7/19+16/45*I,n=34 2178396841295694 m001 (Artin-FeigenbaumD)/(OneNinth-ZetaQ(4)) 2178396845558767 a003 sin(Pi*7/94)*sin(Pi*7/18) 2178396848117649 m001 (Cahen-Chi(1))/(-MertensB3+TreeGrowth2nd) 2178396857587548 k001 Champernowne real with 1790*n+388 2178396859314746 r009 Re(z^3+c),c=-35/94+29/46*I,n=28 2178396866071326 m001 (-PlouffeB+TreeGrowth2nd)/(cos(1)+ln(3)) 2178396867585071 a007 Real Root Of 432*x^4-58*x^3-975*x^2-914*x+245 2178396886854496 r009 Re(z^3+c),c=-9/17+17/44*I,n=61 2178396894401571 a007 Real Root Of 335*x^4+174*x^3-962*x^2+516*x-56 2178396899089324 m001 Ei(1,1)^MertensB2-gamma(2) 2178396900596402 h001 (1/6*exp(2)+4/11)/(7/8*exp(2)+6/7) 2178396905645811 r005 Im(z^2+c),c=-7/6+4/149*I,n=22 2178396906009376 r005 Im(z^2+c),c=-109/118+8/39*I,n=59 2178396908075461 r005 Re(z^2+c),c=-29/118+1/5*I,n=11 2178396909058785 m001 GAMMA(11/24)/ln(MinimumGamma)/GAMMA(7/12)^2 2178396914766236 a007 Real Root Of 172*x^4+341*x^3-49*x^2-226*x-608 2178396919886768 m001 (MertensB1+PolyaRandomWalk3D)/(Cahen-Magata) 2178396935491776 r005 Re(z^2+c),c=7/62+25/64*I,n=13 2178396935964526 m009 (4/5*Psi(1,1/3)+2)/(3*Psi(1,3/4)-3) 2178396938378536 l006 ln(1114/9839) 2178396942164211 m001 exp(1)-GAMMA(5/24)+GAMMA(1/24) 2178396952431449 m001 1/Riemann1stZero^2*exp(Magata)*(3^(1/3)) 2178396957607551 k001 Champernowne real with 1791*n+387 2178396964161433 l006 ln(3554/4419) 2178396972196983 m004 -1+(5*Cos[Sqrt[5]*Pi])/3+Log[Sqrt[5]*Pi] 2178396972256815 a001 17*15127^(57/58) 2178396981586393 r005 Im(z^2+c),c=-7/6+34/135*I,n=10 2178396985746532 a007 Real Root Of -525*x^4-684*x^3+883*x^2-580*x-702 2178396989347802 a007 Real Root Of 426*x^4+609*x^3-843*x^2-621*x-650 2178396991416018 r005 Re(z^2+c),c=-6/29+17/49*I,n=32 2178396998415549 r005 Re(z^2+c),c=-21/94+7/24*I,n=10 2178397016749452 m001 OneNinth/HardHexagonsEntropy*ln(sin(Pi/5))^2 2178397025907674 p002 log(19^(2/3)+6^(3/10)) 2178397038152999 h001 (-6*exp(1)+1)/(-11*exp(2)+11) 2178397040501421 h001 (1/10*exp(1)+8/9)/(1/11*exp(1)+2/7) 2178397042785511 r005 Im(z^2+c),c=-5/42+31/41*I,n=6 2178397046080793 m003 51/2+Sqrt[5]/8-4*Sin[1/2+Sqrt[5]/2] 2178397046402038 r005 Im(z^2+c),c=-61/90+4/61*I,n=34 2178397052849865 r005 Re(z^2+c),c=35/106+19/49*I,n=22 2178397057627554 k001 Champernowne real with 1792*n+386 2178397058004549 s002 sum(A253006[n]/(n^2*exp(n)-1),n=1..infinity) 2178397063477882 m001 (2^(1/3)-FransenRobinson)^Grothendieck 2178397066007292 a001 305*47^(24/47) 2178397069606413 r009 Re(z^3+c),c=-4/13+19/48*I,n=21 2178397071388179 a001 199/12586269025*21^(2/19) 2178397084198245 l006 ln(697/6156) 2178397088773389 m001 (-Artin+Weierstrass)/(5^(1/2)-Pi^(1/2)) 2178397089200923 a007 Real Root Of 241*x^4-37*x^3-836*x^2+658*x-409 2178397097559090 a007 Real Root Of -174*x^4-361*x^3-271*x^2-995*x-695 2178397099717139 a001 6765/521*1364^(22/31) 2178397104847222 m001 (CopelandErdos-MertensB2)/(Ei(1)+Pi^(1/2)) 2178397108943560 m001 RenyiParking^2/Magata^2*ln(Trott) 2178397109418111 r005 Im(z^2+c),c=-35/62+2/51*I,n=37 2178397120335166 a007 Real Root Of 664*x^4+912*x^3-628*x^2+761*x-887 2178397120753148 r005 Im(z^2+c),c=-5/31+18/61*I,n=18 2178397129277322 r009 Re(z^3+c),c=-1/118+38/47*I,n=26 2178397131032731 m001 (BesselJ(1,1)-exp(Pi))/(-Conway+MertensB1) 2178397140194951 r005 Re(z^2+c),c=-13/14+29/76*I,n=4 2178397146272514 a007 Real Root Of -266*x^4-608*x^3-622*x^2-928*x+635 2178397151668992 r005 Re(z^2+c),c=-7/29+13/57*I,n=8 2178397152684086 m001 (BesselJ(0,1)-exp(Pi))/(-Porter+TreeGrowth2nd) 2178397155509897 r005 Im(z^2+c),c=17/74+6/53*I,n=15 2178397156494793 r005 Im(z^2+c),c=-17/14+39/256*I,n=62 2178397157647557 k001 Champernowne real with 1793*n+385 2178397159792318 r005 Im(z^2+c),c=-63/74+5/29*I,n=59 2178397160198739 m005 (7/12+1/4*5^(1/2))/(5/7*Pi+3) 2178397161955662 m001 -ln(3)/(exp(-Pi)+5) 2178397180688292 a007 Real Root Of -606*x^4+719*x^3+747*x^2+967*x+184 2178397183098232 r002 39th iterates of z^2 + 2178397185615692 r005 Re(z^2+c),c=29/102+4/21*I,n=62 2178397187353924 r009 Re(z^3+c),c=-11/56+17/24*I,n=12 2178397187823881 m001 (MertensB1-ZetaP(4))/(exp(1/exp(1))-Gompertz) 2178397188372434 m005 (-1/2+1/4*5^(1/2))/(8/9*Pi-1/12) 2178397189058320 r005 Im(z^2+c),c=-27/22+4/105*I,n=31 2178397193370982 m005 (1/2*5^(1/2)+5/9)/(7/9*Zeta(3)-1/6) 2178397193523313 r005 Re(z^2+c),c=5/23+29/47*I,n=6 2178397196213740 m001 (Shi(1)+Zeta(1/2))/(arctan(1/3)+GAMMA(7/12)) 2178397202173897 m001 ArtinRank2*gamma(2)^RenyiParking 2178397212699205 r005 Im(z^2+c),c=-29/40+18/55*I,n=4 2178397222121589 a007 Real Root Of -495*x^4-791*x^3+454*x^2-334*x+88 2178397223250854 r005 Im(z^2+c),c=6/23+1/12*I,n=41 2178397232691923 m001 Si(Pi)/FransenRobinson/exp(Niven)^2 2178397233484496 a001 843/75025*17711^(7/13) 2178397233704607 v004 sum(1/(-20+24*n)/sinh(Pi*n),n=1..infinity) 2178397234309785 a001 843/63245986*4807526976^(7/13) 2178397234309785 a001 843/1836311903*2504730781961^(7/13) 2178397234309879 a001 281/726103*9227465^(7/13) 2178397235499008 m008 (1/4*Pi^2+1/5)/(4*Pi^5+2/5) 2178397238178674 r005 Re(z^2+c),c=17/60+11/58*I,n=64 2178397239476337 a007 Real Root Of -27*x^4-608*x^3-424*x^2+137*x-829 2178397245510752 m001 (MinimumGamma+ZetaQ(3))/(ln(2)/ln(10)+Artin) 2178397249712293 r009 Re(z^3+c),c=-11/30+6/11*I,n=44 2178397250465524 l006 ln(977/8629) 2178397250465524 p004 log(8629/977) 2178397252879570 m004 1+(25*Pi)/2+25*Sqrt[5]*Pi+Log[Sqrt[5]*Pi] 2178397253203134 a008 Real Root of x^4-2*x^3-12*x^2+7*x+29 2178397257667560 k001 Champernowne real with 1794*n+384 2178397260986503 r005 Re(z^2+c),c=1/54+29/47*I,n=39 2178397271055355 a007 Real Root Of -185*x^4-358*x^3+308*x^2+344*x-247 2178397291014494 a007 Real Root Of -189*x^4-152*x^3+871*x^2+451*x-466 2178397291225370 l006 ln(6919/8603) 2178397292731758 m001 GAMMA(11/12)^(exp(Pi)/ErdosBorwein) 2178397293769354 m001 cos(1)^2/exp(BesselK(0,1))^2*sqrt(3) 2178397301575960 a007 Real Root Of -504*x^4-905*x^3-98*x^2-960*x+368 2178397317245267 r005 Im(z^2+c),c=-23/74+19/54*I,n=10 2178397320945760 r009 Im(z^3+c),c=-65/126+5/48*I,n=46 2178397323179970 m005 (1/2*2^(1/2)+1/5)/(2*3^(1/2)+7/10) 2178397329319430 p003 LerchPhi(1/32,2,218/101) 2178397332400470 m001 GAMMA(7/12)*Bloch*ln(gamma)^2 2178397344108838 s002 sum(A179210[n]/(n*exp(pi*n)+1),n=1..infinity) 2178397357687563 k001 Champernowne real with 1795*n+383 2178397359579763 r005 Re(z^2+c),c=15/62+8/53*I,n=28 2178397390362070 b008 ArcSin[(2*Cos[1])/5] 2178397392941677 m001 cos(Pi/12)/exp(GAMMA(11/12))/cosh(1) 2178397398971351 a001 1/5*377^(34/43) 2178397415625384 m005 (1/3*gamma+1/8)/(2/7*5^(1/2)+9/11) 2178397416944021 m001 5^(1/2)-ErdosBorwein-FransenRobinson 2178397423135166 r005 Im(z^2+c),c=-85/94+9/46*I,n=60 2178397426661742 m001 (BesselI(0,1)+ZetaQ(4))/LandauRamanujan2nd 2178397436312209 m001 (-Riemann1stZero+Robbin)/(Chi(1)-Ei(1,1)) 2178397437805453 m003 -1/4+Sqrt[5]/2+Cosh[1/2+Sqrt[5]/2]/2 2178397443651178 a005 (1/cos(33/224*Pi))^442 2178397449947601 h001 (5/12*exp(2)+2/3)/(3/8*exp(1)+7/10) 2178397451576761 m001 (Lehmer+PlouffeB)/(BesselI(1,1)-GAMMA(11/12)) 2178397452582600 m001 1/Sierpinski^2*Si(Pi)^2*ln(GAMMA(7/12)) 2178397457707566 k001 Champernowne real with 1796*n+382 2178397461707955 r005 Im(z^2+c),c=-71/118+19/51*I,n=51 2178397462424154 a007 Real Root Of -338*x^4+84*x^3-42*x^2+812*x-175 2178397464701093 a007 Real Root Of -218*x^4-95*x^3+853*x^2-248*x-661 2178397488789214 r005 Im(z^2+c),c=-17/42+15/41*I,n=29 2178397491627919 p003 LerchPhi(1/125,3,153/92) 2178397499237477 h002 exp(10^(7/10)-10^(2/7)) 2178397499237477 h007 exp(10^(7/10)-10^(2/7)) 2178397506666901 r005 Im(z^2+c),c=-77/122+1/24*I,n=46 2178397509509907 r005 Im(z^2+c),c=-79/70+13/54*I,n=64 2178397511903483 m005 (1/2*5^(1/2)-7/10)/(7/12*exp(1)+1/3) 2178397513501637 a007 Real Root Of -408*x^4-659*x^3+96*x^2-554*x+713 2178397516604959 r005 Im(z^2+c),c=-19/27+17/60*I,n=44 2178397517337734 p001 sum(1/(129*n+46)/(128^n),n=0..infinity) 2178397519582038 m004 (25*Pi)/2+25*Sqrt[5]*Pi+4*Cos[Sqrt[5]*Pi] 2178397519959996 m005 (1/2*2^(1/2)+1/12)/(4/9*2^(1/2)+3) 2178397520494389 m005 (1/3*Zeta(3)+1/5)/(3/10*Zeta(3)-7/11) 2178397523262283 a007 Real Root Of 445*x^4-974*x^3+942*x^2-641*x+104 2178397523316850 a003 1/2+cos(5/18*Pi)-2*cos(7/27*Pi)+cos(13/30*Pi) 2178397523942798 a007 Real Root Of -261*x^4-719*x^3-41*x^2+575*x-108 2178397525256044 r002 44th iterates of z^2 + 2178397544364608 m003 35/2+Sqrt[5]/8+4*Csc[1/2+Sqrt[5]/2] 2178397548105420 a007 Real Root Of -580*x^4-958*x^3+308*x^2-584*x+424 2178397556421729 m005 (1/2*3^(1/2)-5/11)/(4/5*exp(1)-2/7) 2178397557727569 k001 Champernowne real with 1797*n+381 2178397561391859 h001 (-2*exp(1)-5)/(-4*exp(2/3)+3) 2178397574094455 m001 Riemann3rdZero-Grothendieck-exp(1/exp(1)) 2178397580884980 r005 Im(z^2+c),c=-57/64+11/57*I,n=47 2178397581751889 a008 Real Root of x^2-x-47672 2178397582623499 b008 (17*Sqrt[2]*E)/3 2178397587560430 s002 sum(A216544[n]/(n^2*exp(n)+1),n=1..infinity) 2178397593757725 m001 (-GAMMA(13/24)+1)/(-Zeta(1,2)+2) 2178397600690930 a001 514229/2207*322^(12/31) 2178397605883830 r002 10th iterates of z^2 + 2178397611362118 a007 Real Root Of 112*x^4-709*x^3-245*x^2+17*x+15 2178397613935273 m001 (Paris-Tetranacci)/(Ei(1)-GAMMA(11/12)) 2178397636659306 l006 ln(3365/4184) 2178397637512782 m001 Ei(1)^2/BesselK(0,1)/exp(Zeta(1,2)) 2178397654690196 m009 (2/5*Pi^2-2)/(3*Psi(1,2/3)-1/4) 2178397655930113 m001 Landau*(FeigenbaumMu+TreeGrowth2nd) 2178397657747572 k001 Champernowne real with 1798*n+380 2178397659964131 k002 Champernowne real with 43/2*n^2+223/2*n-131 2178397664352166 l006 ln(280/2473) 2178397672744961 r005 Im(z^2+c),c=-107/118+8/37*I,n=19 2178397672792482 r005 Im(z^2+c),c=-15/14+49/223*I,n=30 2178397674967491 m001 (BesselI(0,1)+Zeta(5))/(GAMMA(11/12)+ZetaQ(4)) 2178397687164809 p003 LerchPhi(1/2,4,179/66) 2178397689432619 m005 (Catalan+3)/(3/5*exp(1)+1/6) 2178397689745346 a007 Real Root Of -481*x^4-891*x^3-201*x^2-980*x+440 2178397690178956 a007 Real Root Of 128*x^4+252*x^3+410*x^2+684*x-733 2178397693061384 r005 Im(z^2+c),c=21/52+16/45*I,n=5 2178397702657894 r005 Re(z^2+c),c=17/74+30/61*I,n=14 2178397704851731 a007 Real Root Of 140*x^4-25*x^3-729*x^2-439*x-908 2178397707589668 m001 (Zeta(1/2)+Tetranacci)/(1+ln(Pi)) 2178397716476637 r005 Im(z^2+c),c=-59/56+13/57*I,n=15 2178397717770005 r009 Re(z^3+c),c=-5/16+20/49*I,n=26 2178397718994286 m005 (1/2*Catalan-1/6)/(57/56+1/7*5^(1/2)) 2178397726657144 r005 Re(z^2+c),c=3/16+5/59*I,n=4 2178397730485473 r005 Re(z^2+c),c=37/118+5/29*I,n=13 2178397736639219 r005 Re(z^2+c),c=-75/56+2/31*I,n=4 2178397740640653 h001 (2/3*exp(1)+7/11)/(1/4*exp(1)+4/9) 2178397741812196 a007 Real Root Of 197*x^4-194*x^3-897*x^2+701*x-658 2178397752521700 r005 Re(z^2+c),c=-29/34+17/80*I,n=60 2178397757767575 k001 Champernowne real with 1799*n+379 2178397766917568 a007 Real Root Of 550*x^4+965*x^3-581*x^2-35*x+271 2178397774415968 m001 1/exp(cos(1))^2/Zeta(1,2)^2/sqrt(Pi) 2178397775102351 a001 843/5*5702887^(5/16) 2178397781337078 a001 521/13*75025^(21/59) 2178397781700409 m001 (cos(1)+gamma(2))/(-MinimumGamma+Niven) 2178397784875157 a007 Real Root Of 454*x^4-157*x^3+164*x^2-985*x-225 2178397785096657 r005 Im(z^2+c),c=-30/31+12/55*I,n=31 2178397789912146 r002 3th iterates of z^2 + 2178397804642866 r005 Im(z^2+c),c=-25/34+11/54*I,n=38 2178397806738634 b008 Pi^Csch[EulerGamma]/3 2178397809169543 r005 Im(z^2+c),c=-9/8+8/251*I,n=8 2178397812861972 m001 (Zeta(1/2)-GAMMA(11/12))/(Lehmer-MadelungNaCl) 2178397819722977 a001 2139295485799/5*34^(6/13) 2178397820801769 m001 GAMMA(2/3)*Robbin/exp(sqrt(2)) 2178397843922730 m001 Zeta(1,-1)*(Riemann1stZero-cos(1/12*Pi)) 2178397843955526 r009 Re(z^3+c),c=-4/13+19/48*I,n=25 2178397857787578 k001 Champernowne real with 1800*n+378 2178397857839932 m001 (GAMMA(19/24)+Gompertz)/StolarskyHarborth 2178397862508556 s001 sum(1/10^(n-1)*A055257[n]/n!^2,n=1..infinity) 2178397869077814 a007 Real Root Of 17*x^4-231*x^3-707*x^2-433*x-359 2178397877178472 a001 9349*75025^(43/48) 2178397878489126 s002 sum(A133662[n]/(10^n+1),n=1..infinity) 2178397889762983 r005 Im(z^2+c),c=13/110+7/38*I,n=8 2178397902766165 a007 Real Root Of -381*x^4-471*x^3+262*x^2-939*x+422 2178397905256803 p003 LerchPhi(1/5,3,389/230) 2178397910960046 m001 (GAMMA(5/6)+Tetranacci)/(Chi(1)+BesselI(1,1)) 2178397917201389 r005 Im(z^2+c),c=-17/54+15/44*I,n=37 2178397921791121 a007 Real Root Of 81*x^4+173*x^3+151*x^2+147*x-432 2178397923645770 a001 514229/521*3571^(3/31) 2178397924743532 r005 Im(z^2+c),c=-37/86+23/62*I,n=27 2178397925580822 r009 Re(z^3+c),c=-4/11+15/28*I,n=51 2178397928455969 r005 Im(z^2+c),c=-23/94+13/40*I,n=8 2178397931327985 a001 6765/521*39603^(15/31) 2178397940482267 a001 832040/521*15127^(1/31) 2178397941585904 m001 GAMMA(2/3)^2*ln(Backhouse)^2*sin(1) 2178397941959452 r005 Re(z^2+c),c=3/52+18/61*I,n=17 2178397949823562 a001 4181/521*9349^(19/31) 2178397956352721 m001 (Psi(1,1/3)-arctan(1/2)*gamma(2))/arctan(1/2) 2178397956985012 a001 233*5778^(8/31) 2178397957807581 k001 Champernowne real with 1801*n+377 2178397959007859 r005 Re(z^2+c),c=-7/46+20/41*I,n=24 2178397966460954 a001 47/956722026041*28657^(9/11) 2178397978587430 a001 521/144*34^(28/55) 2178397980436593 a007 Real Root Of -21*x^4-496*x^3-858*x^2-444*x-882 2178397981964055 m005 (1/2*5^(1/2)-3/5)/(7/12*Pi+6/11) 2178397982671059 a001 1346269/5778*322^(12/31) 2178397983338435 m001 exp(ArtinRank2)/GaussKuzminWirsing^2 2178397985852288 r009 Re(z^3+c),c=-25/74+29/47*I,n=26 2178397990258703 m001 HardyLittlewoodC4^OneNinth-ln(3) 2178397991869381 a001 4356673/2+55/2*5^(1/2) 2178398000000332 a001 1346447/2+1346269/2*5^(1/2) 2178398002055624 l006 ln(6541/8133) 2178398004735270 m001 (Kac-Totient)/(exp(1/exp(1))-Pi^(1/2)) 2178398004868342 a007 Real Root Of 961*x^4-244*x^3-937*x^2-492*x+152 2178398007727154 a007 Real Root Of -510*x^4-978*x^3+385*x^2-4*x-461 2178398009614880 m001 (exp(Pi)+sin(1))/(gamma(1)+GAMMA(19/24)) 2178398012387452 a007 Real Root Of -213*x^4-497*x^3-322*x^2-89*x+993 2178398030507331 a007 Real Root Of 242*x^4-875*x^3-52*x^2-890*x-201 2178398030871794 m001 Salem*Si(Pi) 2178398030871794 m001 Si(Pi)*Salem 2178398032046448 m001 Chi(1)-Lehmer-Trott2nd 2178398034847463 m008 (3/4*Pi^6+4/5)/(1/3*Pi^4+2/3) 2178398035938763 r002 37th iterates of z^2 + 2178398039110258 m001 (1/3+GAMMA(2/3)*GAMMA(11/24))/GAMMA(2/3) 2178398055399325 r009 Re(z^3+c),c=-3/46+31/44*I,n=10 2178398057827584 k001 Champernowne real with 1802*n+376 2178398058252427 q001 1795/824 2178398068476300 r009 Im(z^3+c),c=-19/50+7/52*I,n=8 2178398069987736 a001 233*2207^(9/31) 2178398072844355 a001 2178309/9349*322^(12/31) 2178398075020829 m001 GAMMA(17/24)-GlaisherKinkelin^MertensB1 2178398075712372 l006 ln(983/8682) 2178398078586896 h001 (5/8*exp(2)+3/7)/(3/10*exp(2)+1/10) 2178398079297216 a007 Real Root Of -642*x^4-936*x^3+658*x^2-616*x+317 2178398080742610 r005 Im(z^2+c),c=-19/50+14/39*I,n=27 2178398087793336 a007 Real Root Of 542*x^4-602*x^3-473*x^2-939*x+232 2178398100879426 a001 46/141*4181^(39/50) 2178398109093743 s002 sum(A034066[n]/(n^3*2^n-1),n=1..infinity) 2178398113109305 r005 Im(z^2+c),c=-13/14+43/222*I,n=15 2178398121359536 a001 39603/610*144^(41/58) 2178398123106581 m005 (1/2*2^(1/2)-8/9)/(5/9*Zeta(3)+1/6) 2178398124134802 m001 Zeta(1/2)/ln(Bloch)^2*sin(1) 2178398130683643 m005 (1/2*3^(1/2)+6/7)/(5*3^(1/2)-3/4) 2178398138367109 a007 Real Root Of -631*x^4-7*x^3+748*x^2+964*x-244 2178398141274046 m001 (Khinchin+ZetaP(3))/(cos(1/12*Pi)-GaussAGM) 2178398145567563 a007 Real Root Of 629*x^4+372*x^3-556*x^2-890*x+215 2178398148053220 r005 Im(z^2+c),c=-17/66+13/40*I,n=15 2178398151529498 r005 Re(z^2+c),c=11/64+23/58*I,n=13 2178398152146578 a007 Real Root Of -380*x^4-720*x^3+370*x^2+698*x+879 2178398156044013 r005 Im(z^2+c),c=-27/34+14/115*I,n=43 2178398157847587 k001 Champernowne real with 1803*n+375 2178398164701592 r005 Im(z^2+c),c=-115/122+8/37*I,n=57 2178398190877870 b008 22-Sech[1]/3 2178398191585802 a007 Real Root Of 42*x^4-982*x^3-21*x^2-995*x-226 2178398194499948 p001 sum(1/(92*n+5)/n/(5^n),n=0..infinity) 2178398198788315 m001 ln(GAMMA(2/3))^2/BesselK(0,1)/Zeta(9) 2178398200084396 a001 1/116*(1/2*5^(1/2)+1/2)^4*4^(16/17) 2178398204138821 m001 LambertW(1)*CopelandErdos^2*ln(Zeta(7))^2 2178398216969050 r005 Im(z^2+c),c=-31/66+7/17*I,n=5 2178398218747829 a001 832040/3571*322^(12/31) 2178398219563609 r005 Re(z^2+c),c=-23/106+11/15*I,n=51 2178398223840910 m005 (-15/4+1/4*5^(1/2))/(1/2*Zeta(3)-5/11) 2178398235918607 m001 arctan(1/2)^cos(Pi/5)*arctan(1/2)^GAMMA(19/24) 2178398239554227 l006 ln(703/6209) 2178398242705448 r005 Re(z^2+c),c=-117/122+7/47*I,n=12 2178398242922836 r005 Im(z^2+c),c=-40/29+1/24*I,n=17 2178398249982919 m001 (GAMMA(2/3)+CareFree)/(ErdosBorwein-Robbin) 2178398253712825 m001 (Magata-Niven)/(BesselI(1,2)-AlladiGrinstead) 2178398257404928 s002 sum(A070865[n]/(10^n+1),n=1..infinity) 2178398257867590 k001 Champernowne real with 1804*n+374 2178398257883787 m001 (Shi(1)+BesselK(0,1))/(BesselK(1,1)+ZetaP(4)) 2178398258792082 r002 18th iterates of z^2 + 2178398263135983 r005 Re(z^2+c),c=29/102+4/21*I,n=63 2178398269454883 m001 (sin(1/5*Pi)-GAMMA(3/4)*ArtinRank2)/GAMMA(3/4) 2178398310568279 m001 ZetaQ(2)/(Riemann3rdZero-HardyLittlewoodC4) 2178398310601246 a007 Real Root Of -142*x^4-46*x^3+222*x^2-940*x-379 2178398311297717 h001 (8/11*exp(1)+5/11)/(1/11*exp(2)+4/9) 2178398316551833 m005 (1/3*gamma-1/2)/(1/3*5^(1/2)+2/3) 2178398325345529 r005 Re(z^2+c),c=-95/122+5/56*I,n=36 2178398345271901 a007 Real Root Of -576*x^4+733*x^3-386*x^2+348*x+103 2178398348741822 p003 LerchPhi(1/2,6,234/181) 2178398357887593 k001 Champernowne real with 1805*n+373 2178398368327904 a008 Real Root of x^3-114*x-238 2178398371136499 r005 Re(z^2+c),c=4/17+5/34*I,n=9 2178398376208169 a007 Real Root Of -695*x^4-698*x^3-409*x^2+919*x-2 2178398378204139 m001 sqrt(2)*(ln(2)+GaussAGM(1,1/sqrt(2))) 2178398380674906 m001 Riemann3rdZero^(ReciprocalLucas/GAMMA(19/24)) 2178398382588436 l006 ln(1126/9945) 2178398385845810 r005 Re(z^2+c),c=-11/50+11/36*I,n=22 2178398386602444 m005 (1/4*2^(1/2)+1)/(43/8+3/8*5^(1/2)) 2178398388317379 a001 144/9349*199^(29/31) 2178398389196230 l006 ln(3176/3949) 2178398405295785 a003 cos(Pi*13/53)/cos(Pi*46/117) 2178398441274370 r005 Im(z^2+c),c=-17/54+15/44*I,n=43 2178398445305764 a007 Real Root Of 25*x^4+573*x^3+604*x^2-309*x+232 2178398447503245 p004 log(13681/1549) 2178398451591651 m001 1/exp(PrimesInBinary)/Porter^2*Rabbit 2178398457907596 k001 Champernowne real with 1806*n+372 2178398464335978 m005 (1/3*2^(1/2)-1/6)/(7/9+5/18*5^(1/2)) 2178398464914768 r009 Re(z^3+c),c=-1/10+45/56*I,n=42 2178398468358710 m005 (1/2*5^(1/2)-2/7)/(8/9*2^(1/2)-7/8) 2178398487243605 m001 (exp(Pi)+sin(1/12*Pi))/(Robbin+ThueMorse) 2178398488341873 r005 Im(z^2+c),c=-3/4+34/155*I,n=6 2178398489608088 p004 log(31357/25219) 2178398495539850 a007 Real Root Of -341*x^4-751*x^3-120*x^2+196*x+912 2178398498737321 a007 Real Root Of 95*x^4+377*x^3+821*x^2+718*x-574 2178398519526956 r009 Im(z^3+c),c=-43/98+3/61*I,n=24 2178398527742725 r008 a(0)=0,K{-n^6,-88+97*n^3-43*n^2+80*n} 2178398533263278 m005 (1/2*Pi-7/10)/(10/11*gamma-1/8) 2178398534332130 r005 Im(z^2+c),c=-57/44+5/31*I,n=3 2178398543295247 a007 Real Root Of 131*x^4+38*x^3-824*x^2-701*x-174 2178398549010150 h005 exp(sin(Pi*14/53)/sin(Pi*23/58)) 2178398555178330 a007 Real Root Of -375*x^4-484*x^3+499*x^2-215*x+605 2178398557927599 k001 Champernowne real with 1807*n+371 2178398563928239 r005 Im(z^2+c),c=-11/10+19/82*I,n=19 2178398572355098 m001 (ln(3)-FeigenbaumB)/(MasserGramain+Stephens) 2178398575677830 r005 Im(z^2+c),c=-17/54+15/44*I,n=45 2178398586148875 a007 Real Root Of 409*x^4+556*x^3-812*x^2-407*x-496 2178398591145114 r009 Re(z^3+c),c=-1/38+8/25*I,n=3 2178398595687276 m001 (Trott2nd+TwinPrimes)/(ln(Pi)+Zeta(1/2)) 2178398609161142 m001 Sierpinski^2*Salem^2/ln(GAMMA(7/12)) 2178398620302455 l006 ln(423/3736) 2178398622872413 a007 Real Root Of 939*x^4-410*x^3+773*x^2-760*x+131 2178398630637037 m001 (ln(3)+GAMMA(19/24))/(CareFree-MadelungNaCl) 2178398631931092 r005 Re(z^2+c),c=-77/102+23/64*I,n=7 2178398635723856 r005 Re(z^2+c),c=-7/50+31/61*I,n=60 2178398640171354 m001 (Kac+TwinPrimes)/(gamma(1)-polylog(4,1/2)) 2178398643299608 r008 a(0)=0,K{-n^6,-48+69*n^3+61*n^2-36*n} 2178398647687926 r009 Re(z^3+c),c=-7/32+7/61*I,n=6 2178398652424883 a007 Real Root Of -962*x^4-587*x^3+208*x^2+877*x+19 2178398655662586 a005 (1/cos(17/167*Pi))^723 2178398657947602 k001 Champernowne real with 1808*n+370 2178398661947107 r009 Re(z^3+c),c=-4/13+21/32*I,n=35 2178398662841891 a007 Real Root Of -434*x^4-109*x^3-842*x^2+818*x+218 2178398662970132 k002 Champernowne real with 22*n^2+110*n-130 2178398673245054 m008 (2*Pi^3-1/4)/(1/4*Pi^4+4) 2178398673621029 a007 Real Root Of 396*x^4+936*x^3-364*x^2-721*x+915 2178398680253453 a007 Real Root Of -259*x^4-652*x^3-121*x^2+103*x-109 2178398682252633 m001 QuadraticClass/(MinimumGamma+Sierpinski) 2178398683352154 m001 (2^(1/2)+GolombDickman)/(Thue+ZetaP(4)) 2178398683843102 a007 Real Root Of 152*x^4-66*x^3-932*x^2-205*x-129 2178398689240091 a007 Real Root Of -438*x^4-421*x^3+630*x^2-923*x+511 2178398695456253 m005 (1/3*exp(1)-3/5)/(4/11*exp(1)+5/12) 2178398696192997 p004 log(31151/3527) 2178398699727999 b008 ArcCsch[3*ArcSec[19]] 2178398701948816 r005 Im(z^2+c),c=-23/56+17/49*I,n=13 2178398719141605 m002 E^Pi+2*Pi^4-Cosh[Pi]/Pi^4 2178398724761941 a007 Real Root Of 252*x^4+564*x^3+426*x^2+813*x-95 2178398732694288 m005 (1/3*Catalan+1/8)/(-25/36+2/9*5^(1/2)) 2178398733234608 r005 Re(z^2+c),c=29/102+4/21*I,n=61 2178398734813981 m001 (Pi+1/3)/(-BesselJZeros(0,1)+4) 2178398736776223 r005 Re(z^2+c),c=-21/110+29/42*I,n=13 2178398740013328 m001 (FeigenbaumD-Thue)/(3^(1/3)-BesselI(0,2)) 2178398740657902 m005 (1/3*Zeta(3)-1/11)/(5/9*2^(1/2)+7/11) 2178398741961347 m007 (-1/3*gamma-ln(2)-1/6*Pi-2)/(-3*gamma+1/6) 2178398754060740 m001 ln(2)/ln(10)*Sarnak 2178398757967605 k001 Champernowne real with 1809*n+369 2178398762109561 r008 a(0)=0,K{-n^6,-70+53*n^3+98*n^2-35*n} 2178398765008348 r005 Im(z^2+c),c=-9/14+31/109*I,n=27 2178398785130755 a007 Real Root Of 34*x^4+711*x^3-615*x^2+709*x+726 2178398787310979 r005 Im(z^2+c),c=-19/66+1/3*I,n=28 2178398789922940 s002 sum(A203827[n]/(n*exp(n)+1),n=1..infinity) 2178398794053534 m005 (1/2*Pi-1/7)/(7/9*2^(1/2)-4/9) 2178398800081611 l006 ln(6163/7663) 2178398802381579 m009 (8/3*Catalan+1/3*Pi^2+4)/(5/6*Psi(1,2/3)-3) 2178398802520106 m005 (1/4*exp(1)+2/3)/(5/6*Pi-2) 2178398819960835 r005 Im(z^2+c),c=-49/94+25/62*I,n=42 2178398823139351 m009 (1/6*Psi(1,1/3)-1/6)/(32*Catalan+4*Pi^2+4/5) 2178398832134561 m009 (16/3*Catalan+2/3*Pi^2+1/4)/(2*Psi(1,2/3)-3/4) 2178398840498255 a007 Real Root Of 456*x^4+803*x^3-298*x^2+93*x-351 2178398848524696 r005 Im(z^2+c),c=-91/114+3/23*I,n=64 2178398857987608 k001 Champernowne real with 1810*n+368 2178398861003818 a007 Real Root Of -421*x^4-740*x^3+655*x^2+804*x+474 2178398862432126 m001 ZetaP(2)/(Riemann2ndZero-MertensB1) 2178398864834856 m001 GAMMA(1/3)^LandauRamanujan*GAMMA(23/24) 2178398871394751 r005 Im(z^2+c),c=-5/8+59/179*I,n=17 2178398875219723 a001 29*317811^(15/44) 2178398875464299 m001 arctan(1/3)^((1+3^(1/2))^(1/2))/CareFree 2178398880191641 r005 Re(z^2+c),c=-21/26+55/62*I,n=3 2178398881099495 m005 (1/2*5^(1/2)-3)/(1/2*gamma-3/8) 2178398890945444 l006 ln(989/8735) 2178398891360752 a007 Real Root Of 317*x^4+357*x^3-837*x^2+141*x+831 2178398893584624 h001 (6/11*exp(1)+1/10)/(7/8*exp(2)+4/5) 2178398893605393 s002 sum(A221743[n]/(n*exp(pi*n)+1),n=1..infinity) 2178398896460892 m002 5+(Pi^4*Cosh[Pi]*Sinh[Pi])/6 2178398898188983 r005 Im(z^2+c),c=-2/17+16/57*I,n=20 2178398902827238 m001 1/ln(GAMMA(23/24))^2/PrimesInBinary*sin(Pi/5) 2178398912408705 r005 Im(z^2+c),c=-17/54+15/44*I,n=48 2178398920695470 r002 20th iterates of z^2 + 2178398933102652 r005 Re(z^2+c),c=11/48+26/51*I,n=2 2178398946763135 m001 TreeGrowth2nd^ln(2+3^(1/2))+Tribonacci 2178398953934594 m001 (Catalan-Psi(2,1/3))/(BesselI(0,1)+Mills) 2178398958007611 k001 Champernowne real with 1811*n+367 2178398962967073 r005 Im(z^2+c),c=-17/54+15/44*I,n=50 2178398965327367 m005 (1/3*Zeta(3)-1/8)/(2*gamma+1/9) 2178398992036434 r002 44th iterates of z^2 + 2178398995505174 m001 1/Riemann3rdZero/ln(DuboisRaymond)^2*Zeta(1/2) 2178398997008841 m001 (sin(1)+ln(2))/(-BesselK(1,1)+Mills) 2178398997110263 r002 4th iterates of z^2 + 2178399001358049 h001 (1/10*exp(2)+9/11)/(1/8*exp(1)+3/8) 2178399009101420 a007 Real Root Of 104*x^4-134*x^3-480*x^2+630*x-77 2178399010990903 a007 Real Root Of 510*x^4+663*x^3-956*x^2-82*x-273 2178399014399070 m001 exp(KhintchineHarmonic)/CareFree*GAMMA(1/3) 2178399016061111 r005 Im(z^2+c),c=-17/54+15/44*I,n=53 2178399018318513 a007 Real Root Of 409*x^4+968*x^3+614*x^2+882*x-196 2178399027111964 s002 sum(A004485[n]/(n*pi^n-1),n=1..infinity) 2178399029801330 r009 Re(z^3+c),c=-3/5+12/49*I,n=24 2178399029968171 r005 Im(z^2+c),c=-17/54+15/44*I,n=55 2178399031333737 m001 (Pi-3^(1/2))/(Si(Pi)-KomornikLoreti) 2178399033902117 r005 Im(z^2+c),c=-17/54+15/44*I,n=42 2178399035962700 r005 Re(z^2+c),c=-1/7+18/35*I,n=24 2178399035966018 a003 cos(Pi*40/93)/sin(Pi*50/101) 2178399037891161 r005 Im(z^2+c),c=-17/54+15/44*I,n=58 2178399041252376 r005 Im(z^2+c),c=-17/54+15/44*I,n=60 2178399042337493 r005 Im(z^2+c),c=-17/54+15/44*I,n=63 2178399043637635 r005 Im(z^2+c),c=-17/54+15/44*I,n=61 2178399043958433 m001 (FeigenbaumKappa+Niven)/(Chi(1)+LambertW(1)) 2178399044217943 r005 Im(z^2+c),c=-17/54+15/44*I,n=64 2178399044300224 r005 Im(z^2+c),c=-17/54+15/44*I,n=62 2178399046299241 r005 Im(z^2+c),c=-17/54+15/44*I,n=56 2178399047036390 r005 Im(z^2+c),c=-17/54+15/44*I,n=57 2178399047849200 r005 Im(z^2+c),c=-17/54+15/44*I,n=59 2178399056555740 r005 Im(z^2+c),c=-17/54+15/44*I,n=52 2178399058027614 k001 Champernowne real with 1812*n+366 2178399063874684 a001 23725150497407/55*225851433717^(5/21) 2178399066740062 m001 (Shi(1)-ln(5))/(KomornikLoreti+RenyiParking) 2178399066816538 m001 GAMMA(11/24)^2/ln(Cahen)^2/log(1+sqrt(2)) 2178399067669843 r005 Im(z^2+c),c=-17/54+15/44*I,n=54 2178399068056308 r005 Im(z^2+c),c=-17/54+15/44*I,n=51 2178399070477313 m005 (1/2*5^(1/2)+5/12)/(17/40+1/8*5^(1/2)) 2178399071067587 r005 Re(z^2+c),c=3/10+9/22*I,n=14 2178399078416901 r005 Im(z^2+c),c=-17/54+15/44*I,n=47 2178399080474831 m001 LandauRamanujan*(ArtinRank2-ThueMorse) 2178399084286790 a007 Real Root Of 226*x^4+328*x^3-40*x^2+481*x-461 2178399087380653 m005 (1/2*exp(1)+3/8)/(5/12*gamma+5/9) 2178399093210387 l006 ln(566/4999) 2178399105955760 r002 5th iterates of z^2 + 2178399107613390 a001 233/1364*24476^(29/31) 2178399109235375 m001 (GAMMA(3/4)-Robbin)/(Tetranacci+TwinPrimes) 2178399112648494 a007 Real Root Of -143*x^4+271*x^3+876*x^2-441*x+904 2178399135964797 s002 sum(A019774[n]/((pi^n+1)/n),n=1..infinity) 2178399143975263 r005 Re(z^2+c),c=17/60+11/58*I,n=58 2178399157939111 p003 LerchPhi(1/32,6,631/227) 2178399158047617 k001 Champernowne real with 1813*n+365 2178399160271766 r005 Re(z^2+c),c=-5/36+13/25*I,n=16 2178399165524312 a007 Real Root Of -166*x^4-119*x^3-162*x^2+570*x+131 2178399168275406 r005 Im(z^2+c),c=-5/11+23/52*I,n=9 2178399173660130 r005 Im(z^2+c),c=-17/54+15/44*I,n=49 2178399183554454 r005 Im(z^2+c),c=1/10+7/38*I,n=3 2178399193292672 a007 Real Root Of -276*x^4-616*x^3+152*x^2+560*x+346 2178399197391826 a007 Real Root Of -487*x^4-951*x^3+45*x^2-327*x+210 2178399200950957 a003 cos(Pi*3/52)/cos(Pi*20/57) 2178399204845559 a007 Real Root Of -64*x^4+819*x^3+234*x^2+503*x-129 2178399205787758 m001 FeigenbaumKappa^2*Magata/exp(GAMMA(11/12)) 2178399218136764 m001 GaussKuzminWirsing*Rabbit+ReciprocalLucas 2178399218785640 a001 317811/1364*322^(12/31) 2178399223170683 r005 Im(z^2+c),c=-17/54+15/44*I,n=46 2178399223422070 p001 sum((-1)^n/(505*n+439)/(10^n),n=0..infinity) 2178399228543876 q001 2259/1037 2178399229188101 m001 (RenyiParking-ZetaP(3))/(3^(1/3)-Niven) 2178399229869226 r005 Im(z^2+c),c=31/98+13/23*I,n=28 2178399230478651 a001 64079/8*1597^(19/25) 2178399232514308 m001 1/FeigenbaumB^2*CareFree^2*ln(FeigenbaumKappa) 2178399233473815 m005 (1/2*5^(1/2)+4/11)/(5/12*2^(1/2)+1/11) 2178399236965413 l006 ln(2987/3714) 2178399241949450 b008 Cosh[1+Erfc[EulerGamma]] 2178399243283913 r009 Re(z^3+c),c=-11/31+18/35*I,n=50 2178399247530702 a007 Real Root Of -205*x^4-240*x^3+730*x^2+901*x+634 2178399248898806 r005 Im(z^2+c),c=-71/78+8/39*I,n=23 2178399258067620 k001 Champernowne real with 1814*n+364 2178399262079099 r005 Im(z^2+c),c=-6/7+15/101*I,n=9 2178399279860609 r002 4th iterates of z^2 + 2178399280696266 r002 5th iterates of z^2 + 2178399285361623 a007 Real Root Of 138*x^4+146*x^3-279*x^2-194*x-697 2178399288790112 m001 GAMMA(19/24)^2*ln(OneNinth)^2/Pi 2178399305067221 r005 Im(z^2+c),c=-79/70+13/54*I,n=58 2178399305336464 p001 sum((-1)^n/(447*n+416)/n/(5^n),n=1..infinity) 2178399305813156 m001 (Tetranacci-ZetaQ(3))/(BesselI(1,2)-Rabbit) 2178399307275017 p001 sum((-1)^n/(472*n+401)/(3^n),n=0..infinity) 2178399312088544 r008 a(0)=0,K{-n^6,-28+10*n+34*n^2-22*n^3} 2178399321859740 m005 (15/44+1/4*5^(1/2))/(1/10*Pi-8/11) 2178399325295050 a007 Real Root Of 590*x^4-517*x^2-942*x-182 2178399328504668 m001 RenyiParking^2*GolombDickman/ln(GAMMA(19/24)) 2178399330560394 r009 Re(z^3+c),c=-19/58+25/56*I,n=27 2178399330834951 r005 Re(z^2+c),c=-13/54+11/63*I,n=4 2178399342800860 a007 Real Root Of 890*x^4-825*x^3-191*x^2-337*x+89 2178399344240651 r004 Re(z^2+c),c=5/34-3/14*I,z(0)=exp(3/8*I*Pi),n=2 2178399348883233 a007 Real Root Of -390*x^4-758*x^3+226*x^2-130*x-409 2178399357757879 a007 Real Root Of 826*x^4+56*x^3+618*x^2-874*x-221 2178399358087623 k001 Champernowne real with 1815*n+363 2178399361127655 a007 Real Root Of 671*x^4-701*x^3-375*x^2-755*x+188 2178399375354223 l006 ln(709/6262) 2178399382169509 r005 Im(z^2+c),c=23/86+4/53*I,n=41 2178399387763966 r005 Im(z^2+c),c=-15/22+41/117*I,n=49 2178399390117661 b008 4+9*KelvinKei[0,2] 2178399394162566 l006 ln(5131/5244) 2178399417268107 m005 (1/3*3^(1/2)+1/10)/(1/3*exp(1)-7/8) 2178399417522515 m004 -1+(25*Pi*Csc[Sqrt[5]*Pi]*Sinh[Sqrt[5]*Pi])/3 2178399426564532 m001 (Si(Pi)+BesselK(0,1))/(MertensB2+ZetaQ(3)) 2178399431220091 m001 1/Sierpinski^2*exp(ErdosBorwein)*cos(1)^2 2178399432747376 a007 Real Root Of 489*x^4+959*x^3+19*x^2+260*x-622 2178399443007278 r005 Re(z^2+c),c=15/118+14/45*I,n=33 2178399456101543 m001 1/GAMMA(1/6)^2*exp(FeigenbaumC)^2/gamma 2178399456968363 a007 Real Root Of -236*x^4-95*x^3+933*x^2+387*x+748 2178399458107626 k001 Champernowne real with 1816*n+362 2178399472939906 m005 (1/2*Zeta(3)-11/12)/(7/9*gamma+1) 2178399478463179 r009 Re(z^3+c),c=-5/14+27/52*I,n=38 2178399497173260 m001 1/GAMMA(1/3)/exp(Lehmer)*GAMMA(11/12) 2178399508550057 r005 Re(z^2+c),c=-11/62+20/47*I,n=30 2178399514305577 a001 987/2*76^(12/35) 2178399517803262 m001 Mills^(FeigenbaumMu/GAMMA(3/4)) 2178399538336357 r002 3th iterates of z^2 + 2178399548896038 r002 8th iterates of z^2 + 2178399552878815 m001 (-Trott+TwinPrimes)/(Si(Pi)+GAMMA(5/6)) 2178399555742751 b008 Sech[Sqrt[3+ArcSinh[Pi]]] 2178399558127629 k001 Champernowne real with 1817*n+361 2178399560274197 a007 Real Root Of 471*x^4+492*x^3-675*x^2+764*x-653 2178399561100413 a007 Real Root Of -592*x^4-980*x^3+616*x^2-277*x-326 2178399561861210 m001 (Stephens-Tribonacci)/(Gompertz-Salem) 2178399562787760 l006 ln(852/7525) 2178399565181920 m001 ln(FeigenbaumKappa)^2/Porter*sin(Pi/5)^2 2178399576200863 m005 (1/2*exp(1)+11/12)/(1/4*5^(1/2)-5/11) 2178399580634037 r005 Im(z^2+c),c=-20/27+12/49*I,n=12 2178399581816907 h001 (2/3*exp(2)+5/11)/(4/7*exp(1)+11/12) 2178399582252337 m001 (Shi(1)-gamma)/(-BesselI(0,1)+Zeta(1,2)) 2178399584147817 a001 161/9*(1/2*5^(1/2)+1/2)^16*18^(13/22) 2178399601258244 m001 (Pi-Psi(2,1/3))/(Khinchin-Trott) 2178399603186175 m001 ((1+3^(1/2))^(1/2)-2^(1/2))/(Cahen+ZetaP(2)) 2178399610807318 s002 sum(A077497[n]/(10^n+1),n=1..infinity) 2178399617343226 m005 (5/6*gamma+2/5)/(2*gamma-3/4) 2178399617343226 m007 (-5/6*gamma-2/5)/(-2*gamma+3/4) 2178399617497951 r009 Re(z^3+c),c=-27/70+25/47*I,n=22 2178399645909594 r005 Re(z^2+c),c=17/60+11/58*I,n=60 2178399649639424 m001 Zeta(5)^2*Riemann3rdZero^2*exp(sinh(1)) 2178399658147632 k001 Champernowne real with 1818*n+360 2178399658639131 a005 (1/sin(56/145*Pi))^435 2178399664187510 m001 (CareFree-Weierstrass)/(gamma(3)-GAMMA(11/12)) 2178399665976133 k002 Champernowne real with 45/2*n^2+217/2*n-129 2178399667751877 a007 Real Root Of -368*x^4-487*x^3+24*x^2-991*x+980 2178399669337970 m001 (Ei(1)-Sarnak)/(Pi+5^(1/2)) 2178399674227111 m001 2^(1/2)+ErdosBorwein*PlouffeB 2178399687565896 s002 sum(A060861[n]/(16^n-1),n=1..infinity) 2178399696345908 l006 ln(995/8788) 2178399699783268 m001 GAMMA(5/6)*(GAMMA(3/4)+CareFree) 2178399702395792 l006 ln(5785/7193) 2178399707291994 m001 KhinchinLevy*(2^(1/3)+Stephens) 2178399714354356 r005 Im(z^2+c),c=-51/110+21/55*I,n=36 2178399717338439 r002 6th iterates of z^2 + 2178399718984106 r009 Im(z^3+c),c=-31/56+17/36*I,n=57 2178399719564166 r005 Re(z^2+c),c=17/62+2/11*I,n=43 2178399722598743 r002 20th iterates of z^2 + 2178399725796858 r005 Re(z^2+c),c=-17/66+27/41*I,n=63 2178399727734135 a003 cos(Pi*30/97)-cos(Pi*31/80) 2178399728654609 r005 Im(z^2+c),c=-17/54+15/44*I,n=44 2178399731483121 m001 FeigenbaumKappa*PrimesInBinary-cos(1) 2178399737540597 a001 64079/987*144^(41/58) 2178399741071376 a007 Real Root Of -280*x^4-237*x^3+677*x^2-217*x+170 2178399741570489 m001 MasserGramain/(Otter+Trott) 2178399741694230 a007 Real Root Of 61*x^4-303*x^3-905*x^2+153*x+122 2178399742805104 m001 Artin+Bloch+MertensB3 2178399750748872 m001 (OneNinth+Stephens)/(ln(5)+GAMMA(7/12)) 2178399758167635 k001 Champernowne real with 1819*n+359 2178399758560715 a007 Real Root Of -196*x^4+288*x^3+244*x^2+229*x-64 2178399770326400 r005 Im(z^2+c),c=-5/6+9/59*I,n=48 2178399778194087 a007 Real Root Of 234*x^4+126*x^3-766*x^2-778*x+204 2178399789984624 a007 Real Root Of -910*x^4+625*x^3+373*x^2+913*x-221 2178399795467312 r005 Im(z^2+c),c=-21/74+17/50*I,n=10 2178399796338463 l006 ln(1138/10051) 2178399809175140 r009 Im(z^3+c),c=-11/98+55/63*I,n=42 2178399809900065 m005 (1/6*Catalan+1/3)/(3/5*exp(1)+3/5) 2178399811072701 m001 (1+Pi*2^(1/2)/GAMMA(3/4))/(-FeigenbaumB+Otter) 2178399815952393 a007 Real Root Of 108*x^4+376*x^3+407*x^2+205*x-30 2178399823475541 a007 Real Root Of 363*x^4+521*x^3-506*x^2-20*x-431 2178399824996480 b008 Sinh[Pi-3*Cos[1]] 2178399827315014 m005 (1/2*Pi+7/12)/(7/12*Catalan+5/11) 2178399828307657 m001 1/Riemann2ndZero/Cahen*exp(cos(1))^2 2178399832062386 r009 Re(z^3+c),c=-25/114+2/17*I,n=10 2178399833529365 m005 (1/2*exp(1)-2)/(10/11*5^(1/2)+10/11) 2178399834643792 r005 Re(z^2+c),c=1/21+8/29*I,n=17 2178399840249059 m001 (gamma(2)-gamma)/(Khinchin+ZetaQ(3)) 2178399847167485 r002 20th iterates of z^2 + 2178399850998722 m001 (LandauRamanujan-Otter)/(GAMMA(3/4)-Ei(1,1)) 2178399854976702 r009 Re(z^3+c),c=-25/114+2/17*I,n=11 2178399856286936 m001 (Gompertz+Khinchin)/(cos(1/5*Pi)+ArtinRank2) 2178399858187638 k001 Champernowne real with 1820*n+358 2178399860106798 m001 (Landau+Trott2nd)/(FeigenbaumB+KomornikLoreti) 2178399867999534 r009 Re(z^3+c),c=-25/114+2/17*I,n=12 2178399869051577 r009 Re(z^3+c),c=-25/114+2/17*I,n=16 2178399869054048 r009 Re(z^3+c),c=-25/114+2/17*I,n=17 2178399869054783 r009 Re(z^3+c),c=-25/114+2/17*I,n=18 2178399869054789 r009 Re(z^3+c),c=-25/114+2/17*I,n=22 2178399869054789 r009 Re(z^3+c),c=-25/114+2/17*I,n=21 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=23 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=27 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=28 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=29 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=33 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=34 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=35 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=39 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=38 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=40 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=44 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=45 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=46 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=50 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=51 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=52 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=56 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=55 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=57 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=58 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=59 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=60 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=61 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=54 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=53 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=49 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=48 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=47 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=43 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=42 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=41 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=37 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=36 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=32 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=31 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=30 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=26 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=25 2178399869054790 r009 Re(z^3+c),c=-25/114+2/17*I,n=24 2178399869054795 r009 Re(z^3+c),c=-25/114+2/17*I,n=20 2178399869054817 r009 Re(z^3+c),c=-25/114+2/17*I,n=19 2178399869059302 r009 Re(z^3+c),c=-25/114+2/17*I,n=15 2178399869158608 r009 Re(z^3+c),c=-25/114+2/17*I,n=14 2178399869412261 r009 Re(z^3+c),c=-25/114+2/17*I,n=13 2178399875383208 r005 Im(z^2+c),c=-143/98+6/41*I,n=3 2178399877910062 a005 (1/cos(7/123*Pi))^1768 2178399881375694 a003 sin(Pi*1/87)*sin(Pi*20/97) 2178399891964839 a007 Real Root Of 743*x^4+88*x^3-702*x^2-658*x-14 2178399904487532 r005 Im(z^2+c),c=11/98+3/16*I,n=15 2178399905642093 a001 5/7*4^(37/46) 2178399914301023 m008 (1/6*Pi^2-5)/(1/6*Pi^4-5/6) 2178399926054085 m001 GAMMA(1/4)*(Ei(1)+exp(sqrt(2))) 2178399927355353 r005 Im(z^2+c),c=1/15+9/43*I,n=17 2178399927675117 m001 GaussKuzminWirsing/(KhinchinHarmonic^Gompertz) 2178399934983944 a007 Real Root Of 545*x^4+985*x^3-233*x^2+341*x-242 2178399935952405 m001 1/exp(CopelandErdos)^2/Cahen^2*Zeta(3)^2 2178399940122046 m001 (ln(3)+(1+3^(1/2))^(1/2))/(Totient-ZetaP(4)) 2178399940429083 r002 48th iterates of z^2 + 2178399958207641 k001 Champernowne real with 1821*n+357 2178399970655960 a007 Real Root Of 36*x^4-210*x^3-459*x^2+389*x+44 2178399985002983 a001 89/439204*76^(17/31) 2178399992113372 m001 1/exp(GAMMA(7/24))^2*RenyiParking^2/cos(1) 2178399993140671 b008 3+Sinh[Sinh[2]] 2178399995823323 a007 Real Root Of 72*x^4-27*x^3-221*x^2+447*x+122 2178399999293002 r002 44th iterates of z^2 +